Heterogeneous Programming with Single Operation Multiple Data

Hervé Paulino, Eduardo Marques
CITI / Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
2829-516 Caparica, Portugal

Abstract
Heterogeneity is omnipresent in today’s commodity computational systems, which comprise at least one multi-core Central Processing Unit (CPU) and one Graphics Processing Unit (GPU). Nonetheless, all this computing power is not being harnessed in mainstream computing, as the programming of these systems entails many details of the underlying architecture and of its distinct execution models. Current research on parallel programming is addressing these issues but, still, the system’s heterogeneity is exposed at language level.

This paper proposes a uniform framework, grounded on the Single Operation Multiple Data model, for the programming of such heterogeneous systems. The model is declarative, empowering the compiler to generate code for multiple architectures from the same source. To this extent, we designed a simple extension of the Java programming language that embodies the model, and developed a compiler that generates code for both multi-core CPUs and GPUs. A performance evaluation attests the validity of the approach that, despite being based on a simple programming model, is able to deliver performance gains on par with hand-tuned data parallel multi-threaded Java applications.

Keywords: Data Parallelism, Single Operation - Multiple Data, Multi-cores, GPUs

1. Introduction

The landscape of computing systems has altered in the last few years, with the shift from frequency to core scaling in CPU design, and the increasing popularity of General Purpose computation on GPUs (GPGPU) [1]. The architecture of current commodity computational systems is quite complex and heterogeneous, featuring a combination of, at least, one multi-core CPU and one GPU. This is further aggravated by the distinct nature of the architectural and execution models in place.

Therefore, the programming of these heterogeneous systems as a whole raises several challenges: which computations to run on each kind of processing unit; how to decompose a problem to fit the execution model of the target processing unit; how to map this decomposition in the system’s complex memory hierarchy; among others. Tackling them efficiently requires true knowledge of parallel computing and computer architecture. However, mainstream software developers do not wish to deal with details, inherent to the underlying architecture, that are completely abstracted in classic sequential and even concurrent programming. Consequently, most of the available computing power is not really exploited.
The definition of high-level programming models for heterogeneous computing has been the driver of a considerable amount of recent research. Existing languages, such as X10 [2], Chapel [3], and StreamIt [4] have incorporated GPU support, and new languages, such as Lime [5], have been proposed altogether. Of these works, we are particularly interested in X10 and Chapel, since, to the best of our knowledge, they are the only to target heterogeneous systems at node and cluster level. However, as will be detailed in Section 2, their approach is not platform independent, exposing details of the target architecture at language level.

In this paper, we propose the use of the Single Operation Multiple Data (SOMD) model, presented in [6], to provide a uniform framework for the programming of this range of architectures. SOMD introduces the expression of data parallelism at subroutine level. The calling of a subroutine in this context spawns several tasks, each operating on a separate partition of the input dataset. These tasks are offloaded for parallel execution by multiple workers, and run in conformity to a variation of the Single Program Multiple Data (SPMD) execution model.

This approach provides a framework for the average programmer to express data parallel computations by annotating unaltered sequential subroutines, hence taking advantage of the parallel nature of the target hardware without having to program specialized code. In [6] we debated that this approach is viable for the programming of both shared and distributed memory architectures. In this extended version, we broaden this claim to the GPU computing field, thus addressing the issue of heterogeneous computing. To this extent, our contributions are: i) a more detailed presentation of the SOMD execution model and a refinement of its programming model, featuring new constructs; ii) the conceptual realization of this execution model on shared memory architectures, distributed memory architectures, and GPU accelerated systems; iii) the effective compilation process for tackling heterogeneous computing, namely targeting multi-core CPUs and GPUs; iv) the evaluation of the code generated by our current prototype against hand-tuned data parallel multi-threaded applications.

The remainder of this paper is structured as follows: the next section provides a detailed motivation for expressing data parallelism at subroutine level, when compared to the usual loop-level parallelism. We also make evidence that approaches such as X10 and Chapel are bound to the underlying architecture. Section 3 overviews the SOMD execution and programming models. Section 4 presents our conceptual realization of the model on multiple architectures. Sections 5 and 6 describe, respectively, the compilation process for generating code for both shared memory multi-core CPUs and GPUs, and the required runtime support. Section 7 evaluates our prototype implementation from a performance perspective. Finally, Section 8 presents our concluding remarks.

2. Background and Related Work

Data-parallelism is traditionally expressed at loop-level in both shared and distributed memory programming. Regarding the former, OpenMP [7] is the most popular parallel computing framework. It provides a mix of compiler directives, library calls and environment variables, being that data-parallelism is expressed by annotating with directives the loops suitable for parallel execution. More recently, similar approaches have made their way into GPGPU. The most notorious example is OpenACC [8], a directive-based specification for offloading computation to GPUs and managing the associated data transfers.

Another representative system for shared-memory parallelism is Cilk [9], a C language extension that offers primitives to spawn and synchronize concurrent tasks (C functions). In Cilk, data-parallelism is expressed by programming a loop to spawn the desired number of tasks, each receiving as argument the boundaries of the subset of the problem’s domain it will work upon. A C++ derivation of the extension was recently integrated in Intel’s parallel programming toolkit [10]. This derivation adds some new features to the system, among which a special loop construct (cilk_for) for loop-level parallelism.

Intel Threading Building Blocks (TBB) [11] is a C++ template library that factorizes recurring parallel patterns. Data-parallelism in TBB may be expressed through the specialization of loop templates, supplying the task’s body and, eventually, a partitioning strategy.
Loop-level data parallelism also prevails in distributed memory environments. dipSystem [12] applied Cilk-like parallelism to distributed environments, providing a uniform interface for the programming of both shared and distributed memory architectures. For that purpose, the spawned tasks could be parametrized with the data to work upon and operate over explicitly managed shared variables. Single Program Multiple Data (SPMD) languages, such as UPC [13], require a special forall construct to express loops that work upon data distributed across multiple nodes. In the particular case of UPC (and Co-Array Fortran [14]) the Partitioned Global Addressing Space (PGAS) model provides the means for the programmer to explore the affinity between data and computation and hence reduce the communication overhead.

X10 [15] extends the PGAS model with notion of asynchronous activity, providing a framework for both task and data parallelism. Data distribution is performed at runtime upon a set of places (abstractions of network nodes). In this context, data parallelism is expressed through loops that iterate over this set of places, working only on the data residing locally at each place. Inter-place parallelism is expressed much in the same way as in the original Cilk. More recently, the language has also been extended to support the offload of computation to GPUs [2], which are presented as sub-places of the original place, the node hosting the GPU. This approach adequately exposes the isolation of the GPU’s memory relatively to node’s main memory. However, the X10 programming model is very imperative, forcing the programmer to be also aware of the underlying execution model. In order to be suitable for GPU execution an X10 asynchronous task must begin with two for loops: one to denote the distribution of the work per thread-groups, and a second to denote the distribution of the work within a group. Moreover, the enclosed code must fulfil several restrictions, such as the absence of method invocations.

Since X10 embraces some of the same goals of this work, we illustrate how it can be utilized to implement the simple problem of adding two vectors in shared memory, distributed memory, and GPUs (Listings 1 to 3). Note that the code entails specificities of the underlying architectures, reducing abstraction and disabling portability. Furthermore, there is no support for partitioning the contents of an existing data-structure. One must first allocate a distributed data-structure and then copy the contents from the local to the distributed version. For simplicity’s sake, in the cluster version we assume that this task has been previously taken care of, and thus the method receives two distributed arrays. In Listing 2, the | operator, the here constant and the at construct denote,
```python
def vectorAddGPU(a: Array[Int](1), b: Array[Int](1), Place gpu): Array[Int](1) {
    at (gpu) CUDA {
        val blocks = CUDAUtilities.autoBlocks(); // Atomically define the number of blocks
        val threads = CUDAUtilities.autoThreads(); // Atomically define the number of threads
        var c = new Array[Float](a.length); // Result array
        var c_shm = new Array[Int](a.length); // Local data, shared by all threads in a block
        finish for ([b] in 0..blocks-1) async {
            c_shm(t) = a(t) + b(t); // Implicit data transfer of a and b
        }
        finish Array.asyncCopy(c, c_shm, a.length); // Copy data from GPU to host
        return c;
    }
}
```

Listing 3: Vector addition - X10 version for GPUs

```chapel
proc vectorAddSM(A:[] int, B:[] int): [] int {
    var C: [a.domain] int;
    forall (a,b,c) in (A,B,C) do c = a + b;
    return C;
}
```

Listing 4: Vector addition - Chapel version for shared memory

respectively, domain restriction, current place, and computation locality. Method vectorAddSM in that same listing implements the behaviour of vectorAdd (Listing 1), but with the target array passed as argument.

Chapel [16] is also a PGAS language that embodies the shared memory, distributed memory and GPU programming paradigms [3]. It borrows many concepts of ZPL [17], a fact that has a clear impact on its high-level constructs for data parallelism. A forall loop iterates over a domain’s index set or over an array, spawning one thread per available processing unit in multi-core architectures. On GPUs, each loop iteration corresponds to a GPU thread. There are still asymmetries between the three versions presented in Listings 4 to 6, namely in the expressing of how the data must be partitioned among the existing addressing spaces in cluster and GPU environments. Moreover, as for X10, there is no support for distributing the contents of an existing data-structure.

MapReduce [18] is a programming model for distributed data-parallel processing of large datasets. Parallelism is not expressed at loop-level. Instead, the programmer must structure the input dataset in terms of key-value pairs and the computation as a sequence of two stages: map and reduce. The map stage defines a transformation to be applied in parallel to the entire input data-set. Its output is subsequently aggregated and combined by the reduce stage to produce the computation’s final result. Additionally, most implementations provide hooks for user-defined functions, which can be specified to provide application specific strategies relating to the management of intermediate data. Otherwise, the runtime system performs all execution steps automatically. MapReduce is essentially used in cluster environments, however there also implementations for shared memory [19] and GPUs [20, 21].

```chapel
proc vectorAddCluster(A:[] int, B:[] int): [] int {
    const space = [1..A.size] dmapped @block(boundingBox=[1..A.size]);
    var DA, DB, DC : [space] int; // Distribute vectors
    DA = A; // Load A into DA
    DB = B; // Load B into DB
    forall (a,b,c) in (DA,DB,DC) do c = a + b; // Cluster wide computation, performed locally at each location of (a,b,c)
    return C;
}
```

Listing 5: Vector addition - Chapel version for cluster environments
proc vectorAddGPU(A : [] int, B : [] int): [] int {
 const space = [1..A.size] dmapped GPUDist(rank=1);
 var DA, DB, DC : [space] int; // Allocate space for the vectors in the GPU
 DA = A; // Load A into DA
 DB = B; // Load B into DB
 forall (a,b,c) in (DA, DB, DC) do
 c = a + b; // Implicit copy of DA and DB
 return DC; // Return result vector, implicit copy from the GPU's memory
}

Listing 6: Vector addition - Chapel version for GPUs

__kernel void vectorAdd (__global int *a, __global int *b, __global int *c, const unsigned int len)
{
 int i = get_global_id(0); // Obtain the thread's global identifier
 if (i < len) // Make sure that the index is not outside the vector's boundaries
 c[i] = a[i] + b[i];
}

Listing 7: Vector addition - OpenCL version

Finally, the base GPGPU programming model exported by OpenCL [22] and CUDA [23] differs considerably from the loop-level parallelism. The computation is divided into two categories: GPU devices run computational kernels that follow the SPMD execution model, while host computations, processed by the CPU, have the purpose of orchestrating and issuing these device executions.Programming in such APIs is a challenging exercise, since not only do the kernels need to be structured according to the SPMD model, but also, the host has to oversee many low-level programming concerns. The latter range from memory/resource management, to performing data transfers between host and device memories, or even synchronizing with the device. Since our work also targets GPU devices, we depict in Listing 7 a kernel for the computation of the vector addition example. The __global keyword specifies that the data is located in the GPU’s global memory, and the get_global_id() function retrieves the thread’s global identifier in the defined one-dimensional grid. The host counterpart of the example is omitted due to its verbosity, approximately 100 lines.

These base GPGPU frameworks are ideal for squeezing the full potential of a GPU, but will never make their way into more mainstream programming. They can almost be seen as a portable assembly for GPGPU. Moreover, even though OpenCL code is portable between CPUs and GPUs, and there are even some proposals that tackle cluster environments [24], performance portability across this range of architectures is all but trivial. The degree of abstraction is much lower than the one offered by Chapel and X10.

On the other hand, the latter cannot deliver the same level of performance on GPUs. A key issue is the efficient management of data movement between host and device. With this limitation in mind, both Chapel and X10 enable the programmer to take explicit control upon all data transfer operations to, and from, the GPU. The amount of extra code is not particularly significant, but the level of abstraction is greatly reduced.

3. The SOMD Execution Model

The SOMD execution model consists on carrying out multiple instances of a given method[2] in parallel, over different partitions of the input dataset. The invocation is decoupled from the execution, a characteristic that makes the parallel nature of the execution model transparent to the invoker. As is illustrated in Figure 1, the invocation is synchronous, complying with the common semantics of subroutine invocation in most imperative programming languages, such a C

[2]Our current research is applying the SOMD model to object-oriented languages, thus, from this point onward, we will use the method terminology rather than subroutine.
and Java. The execution stage is carried out by multiple concurrent flows, each operating over one of the partitions of the input dataset. If each of these method instances (MIs) produces a result, their collection will be fed to a reduction stage that will use them to compute the method’s final result.

The model is presented to the programmer in the form of a Distribute-Map-Reduce (DMR) paradigm that shares some ideas with the MapReduce paradigm. A brief description of each stage follows:

Distribute partitions the target value into a collection of values of the same type. It can be applied to multiple input arguments and local variables.

Map applies a MI to each partition of the input dataset.

Reduce combines the partial results of the previous stage to compute the method’s final result.

Note that the prototype of the original method does not have to be modified, in order to be suitable for the application of the DMR paradigm. Given an argument of type T, a distribution over such argument must be a function of type

$$T \mapsto \text{List}<T>$$

Moreover, a reduction applied to a method that returns a value of type R must be a function of type

$$\text{List}<R> \mapsto R$$

Thus, the method’s application complies to its original prototype, since it receives one of the elements of the distribution set (of type T) and provides an output of type R. Figure 2 depicts a simplified version of the paradigm comprising a single distributed value.

3.1. Programming Constructs

The constructs presented in this subsection extend and refine the ones originally proposed in [6], namely with built-in, self and intermediate reductions. We have prototyped our proposal in the Java language, hence the exhibited programming examples will comply with the Java syntax. To provide a linguistic framework as little intrusive as possible, we have extended the language with four simple constructs. These extensions could be performed through the language’s annotation framework. However, the latter does not possess the expressive power we require, particularly in the annotation of blocks of code.

Partitioning and Reduction Strategies. The application of a partitioning strategy is expressed through the `dist` qualifier, which can target both method parameters and local variables. Unlike regular Java qualifiers, `dist` may be parametrized, for instance, with the name of the class implementing the partitioner and its arguments. Partitioner implementations (that we will refer to as strategies) must comply to a pre-determined interface and can be user-defined. However, since the
Figure 2: The *Distribute-Map-Reduce* (DMR) paradigm applied to a method with prototype `R method(T D)`

![Distribute-Map-Reduce diagram]

```java
int[] vectorAdd(dist int[] a, dist int[] b) {
    int[] c = new int[a.length];
    for (int i = 0; i < a.length; i++)
        c[i] = a[i] + b[i];
    return c;
}
```

Listing 8: Vector addition - SOMD version

The large majority of data parallel computations work upon arrays, we will treat these data-structures specially, providing built-in implementations. By default, we assume a block-partitioning strategy.

Reduction operations are denoted by the `reduce` qualifier and have a method-wide scope. Similarly to partitions, these may be parametrized with the name of the implementing class and its arguments. Moreover, once again, built-in strategies are supplied: (a) reduction through primitive operations (currently `+`, `−`, and `∗`) can be written simply as `reduce(op)`, e.g. `reduce (+)`, and (b) the assembling of partially computed arrays is assumed by default whenever the method’s return value is an array. In such cases, the `reduce` qualifier may be omitted. Currently, reductions are sequentially and deterministically applied to the list of results output by the map stage. Commutativity should not be an issue, but there are situations that require reductions to be associative (see Section 1.2). Our prototype implementation does not validate any of these properties. Thus it is up to the programmer to ensure them.

Listing 9 illustrates the SOMD implementation of the addition of two vectors. Counterposing with the X10 and Chapel versions depicted in Section 2, the method’s body is the same of the sequential implementation and the constructs required for the parallel execution are much more declarative. The programmer is aware that multiple method instances will execute in parallel, possibly in different locations with their own addressing spaces, but no details of the underlying architecture are exposed at language level. This approach gives way for the compiler to generate code for distinct architectural designs from a single implementation.

```java
reduce(self)
int sum(dist int[] a) {
    int sum = 0;
    for (int i = 0; i < a.length; i++)
        sum += a[i];
    return sum;
}
```

Listing 9: Sum of the elements of an array
Figure 3: Intermediate reductions in the DMR paradigm

Self-Reductions. A recurrent pattern in SOMD programming is the application of the same behaviour on both the map and the reduction stages. Given this, a second built-in distribution, **self**, natively provides such behaviour. Listing 9 applies it in the sum of the elements of a vector. Both the map and the reduction stages will execute instances of the `sum` method. Note that there are no visible data-races, since `sum` is local to each method instance and to the reduction itself. If, eventually, the reduction is performed in parallel, it is up to the compiler to generate the concurrency management code. Note that in this particular case `reduce(+)` could also be used.

Intermediate Reductions. A SOMD method may invoke an auxiliary method. If the latter method performs a reduction, such operation is applied to the results computed by all MIs. The motivation behind this feature is to, on one hand, allow the nesting of SOMD methods, and, on the other, enable multiple reductions over a single distributed dataset. This prevents distributing the same data more than once, and therefore narrows the communication overhead. Currently MI divergence in this context is not supported, meaning that nested SOMD invocations cannot be conditional. Figure 3 illustrates how intermediate reductions integrate with the DMR paradigm. One of the MIs assumes the responsibility of computing the operation. Ergo it must receive the operation’s input values and disseminate the computed result to the remainder MIs.

Listing 10 illustrates the use of an intermediate reduction to compute the norm of a vector: $\|a_1, a_2, \ldots, a_n\| = \sqrt{a_1^2 + a_2^2 + \cdots + a_n^2}$. Method `sumProd` computes the sum of the products of each partition, reducing the result through the `+` reduction. The square-root is computed locally by each MI (line 2) to be later used in the normalization (line 3). Lastly, the default reduction for arrays assembles the result vector.

Shared Array Positions. From the programmer’s perspective, communication between MIs can also be performed through shared memory. It is up to the compiler to generate the necessary remote communication (if necessary). For that purpose, we allow for both array positions and
Figure 4: The gray mesh denotes the elements assigned to the MI, while the blue rows and columns denote the ones it is able to access from its neighbours.

```c
reduce(+)
double stencil(dist(view = <1,1>, <1,1>) double[][] G, int num_iterations) {
    double Gtotal = 0;
    for (int p = 0; p < num_iterations; p++)
        sync {
            for (int i = 1; i < G.length - 1; i++)
                for (int j = 1; j < G[i].length - 1; j++)
                    G[i][j] = (G[i-1][j]+G[i+1][j]+G[i][j-1]+ G[i][j+1]) + a_constant * G[i][j];
        }
    for (int i = 1; i < G.length - 1; i++)
        for (int j = 1; j < G[i].length - 1; j++)
            Gtotal += G[i][j];
    return Gtotal;
}
```

Listing 11: A stencil computation inspired by SOR

Scalars objects to be shared. We abide to the PGAS model in the sense that the programmer must explicitly state which data is remotely accessible, i.e., does not reside in a MI’s local memory.

Regarding distributed arrays, we define an extra argument to the dist construct: view, a vector that, for each dimension, indicates how many indexes beyond (but adjacent to) the boundaries of the partition assigned to a given MI are visible to the latter. Consider a SOMD implementation of a stencil computation inspired in the Successive Over-Relaxation (SOR) benchmark taken from the JavaGrande suite [25], depicted in Listing 11. The view vector

< 1, 1 >, < 1, 1 >

present in line 1 indicates that for dimensions 1 and 2 the MI is able to expand its view in 1 position in either direction, as illustrated in Figure 4(a). Polygonal views, such as the one in Figure 4(b), are expressed through a different keyword: polyview. This view concept is somehow reminiscent of ZPL’s region borders [17]. Note that by default a matrix is partitioned into two-dimensional blocks. Parameter dim allows for the explicit specification on which dimension(s) to partition.

Performance issues dictate that, in distributed memory architectures, memory consistency should be relaxed. Although we do not compromise ourselves with any particular consistency model, we provide language support for such relaxation. We introduce a memory-fence synchronization construct, sync, that, when in place, forces all MIs to have the same view of a particular variable or of all shared memory (if no particular variable is given) once the enclosed code has completed its execution. It can be interpreted as a data-centred version of X10’s finish. finish ensures that all asynchronous computations spawned within the scope of the construct complete before the execution flow may proceed, while sync ensures that the memory is consistent across all MIs before the execution flow may proceed. Iterative computing, such as the one depicted in Listing 11, is a paradigmatic setting for the display of sync’s usefulness. The iterations of the loop at line 6 are data-dependent - the contents of the G matrix computed by an iteration are required by the following. Ergo, we enclose them in a sync block.
int[] normalize(dist int[] a) {
 shared double norm = 0;
 sync reduce(+) (norm) {
 for (int i = 0 ; i < a.length ; i++) norm += a[i]*a[i]; // local operation
 } // all copies of norm are combined to produce an identical copy in all MIs
 norm = Math.sqrt(norm);
 for (int i = 0 ; i < a.length ; i++) a[i] = a[i]/norm;
 return a;
}

Listing 12: Vector normalization (version 2)

Shared scalars. We also allow scalars to be shared between MIs, through the shared qualifier. As with shared arrays, consistency is enforced through sync blocks. However, with shared variables this can only be achieved if the local copies are reduced into a single global value. For that purpose, sync blocks must be combined with reduction functions. This, in fact, is nothing more than syntactic sugar for an intermediate reduction. Listing 12 showcases the use of shared variables in a new version of the vector normalization problem.

In addition, we allow reductions to be applied directly upon a sync block targeting a single distributed value.

4. Supporting Multiple Architectures

Despite its simplicity, the SOMD execution model can effectively run computations on a wide range of architectures, multi-core CPUs, GPUs and clusters of the former. This flexibility arises from the declarative nature of the proposed linguistic constructs. No architecture specific details are encoded at language level, a characteristic that enables the portability of the source code, empowering the compiler and the runtime system. The programmer still detains control of where the computation must take place, but this information is segregated from the functional concerns.

In order for the code to be fully portable across such disparate set of architectures, we must apply a restriction: parameters must be used for input only. Inout parameters are common in shared memory programming, but not suitable for distributed memory environments. Therefore, any result produced by a SOMD method must be explicitly returned.

The SOMD model induces a master-worker pattern. The master is responsible for: i) the application of the partitioning strategy over the original dataset; ii) the dispatching of the MIs to the slave workers; iii) the collection of the partial results, and; iv) the computation of the reduction stage. In turn, a slave executes one or more MIs on a target architecture. These roles may be mixed up, as the master may itself execute a subset of the MIs it distributes, assuming the role of a slave, and, as will be detailed in Subsection 4.2, the application of a hierarchical work distribution strategy may lead a slave to further decompose the received dataset, assuming a mixed role of master.

The master-slave pattern is a common paradigm for parallel computing in all our target architectures, and thus can be efficiently implemented. However, its concrete realization may differ considerably from one architecture to another.

4.1. Shared-memory Architectures

Shared memory architectures are the simplest ones to deal with. As proposed in [6], the set of slaves can be realized through a pool of threads. However, as concluded in that same paper, effectively splitting data in Java-like languages can be too much of a burden for shared-memory programming, as the splitting process requires the creation of new objects and the subsequent copy of data. Consequently, copy-free approaches are welcomed. For instance, a simple distribution of

\footnote{At this point, for the sake of simplicity, we are only executing the map stage in parallel (the execution of the MIs). Nonetheless, parallelism may also be applied to both the partitioning and reduction stages.}
index ranges over arrays is preferable to the actual partitioning of the array’s contents. The number of MIs to spawn may follow different criteria, such as one per available processor, or as many as required to have the associated data partition fit a given level of the cache hierarchy. Figure 5 provides an overall perspective of the realization of the model in shared memory architectures.

In what concerns memory consistency across MIs. In shared-memory, we assume a strict memory model, hence consistency is trivially obtained with a synchronization barrier at the end of the code enclosed by a sync block (more details in Subsection 5.1).

4.2. Clusters

In cluster environments, distributed arrays must be effectively scattered across the participating nodes. This operation can be carried out hierarchically, since distribution strategies are intrinsically associative. Ergo, a straightforward approach is to simply split the data, as evenly as possible, among the target nodes and then perform the same operation inside the node, by distributing index ranges among the existing slaves, as described in the previous section. The handling of heterogeneity requires more sophisticated partitioning and load-balancing algorithms, such as hierarchical work-stealing [26]. These concerns, however crucial for the efficient implementation of SOMD-like distribution in heterogeneous environments, are outside the scope of this paper.

Reductions can also be performed hierarchically, as a mean to decrease the amount of data transferred to the master. However, the associativity assumptions deduced in the partitioning stage are not generically valid for reduction operations. Programmers are obliged to supply associative reduction operations, whose property may be statically verified at cluster deployment-time.

This overall approach embraces the concepts of hierarchical data-parallelism popularized by Sequoia [27] and subsequently used in several other systems/languages. An interesting property of the SOMD model is that it embodies PGAS properties by design (Figure 6). Unless explicitly expressed, each MI operates on local data. This contrasts with existing approaches where remote communication is assumed by default and it is affinity that must explicitly expressed, e.g. the domain restriction operator in X10 (Listing 2) and the fourth parameter of UPC’s forall loop. Figure 7 illustrates the hierarchy of the execution model in distributed memory environments.

When it comes to distributed shared arrays, each node may hold sub-parts of the array visible to remotely executing MIs. The efficient implementation of such a system requires a runtime service with characteristics akin to one-way messaging services, such as GasNet [28]. To implement such support in the Java language is still a challenge to surmount. Finding out where the data is can be easily achieved by computing a hash code for the index. Naturally, caching and weak consistency models are welcomed to reduce communication overhead.
Figure 6: PGAS properties of the SOMD model

Figure 7: SOMD execution model on distributed memory architectures
In this paper, we will not address this class of architectures, however some initial results have been presented in [29]. This substantiates the viability of the execution model in cluster environments.

4.3. Graphic Processing Units

Like SOMD, GPGPU is grounded on the SPMD model. Data-parallel computations are carried out by a set of threads organized in blocks, each running the same code. Therefore, it is not difficult to establish a parallel between the SOMD and the GPGPU models, an evidence that sustains our claim to use SOMD for GPU programming.

Both CUDA and OpenCL divide the computation in two categories: host and device. The host computations orchestrate and issue device executions, whilst the device runs the parallel computations: the kernel functions. Once again, similarities with the SOMD execution model are evident. The host may execute the master side of a SOMD method execution, whilst the device executes the kernel(s) needed to realize the execution of the MIs. The code generated for the master side is similar to its generated counterpart for cluster environments: it must partition the input dataset, launch the MIs, perform the reduction stage, and return the result.

Given the number of thread-groups (work-groups in OpenCL) and the number of threads per group (work-items in OpenCL), domain decomposition is transparently handled by the underlying execution model, both in OpenCL and in CUDA. Therefore, the master code must only determine and supply such configuration values. However, studies such as [30] indicate that, if on one hand the determination of the number of thread-groups and their size is a crucial aspect for the computation’s performance, on the other, the optimal solution is greatly dependent on the problem and on the target device(s). Benchmarking is a common procedure for obtaining empirical performance information of the target devices and, with that, adapt the work-loads to the devices capabilities. In addition, statistics of the kernels’ execution can also be taken into account.

As will be detailed in Subsection 5.2, the global MI synchronization induced by the sync construct forces the code generated for the slave side to require more than one kernel. Figure 8 depicts the instantiation of the SOMD execution model in GPUs accordingly, a MI may comprise multiple kernel executions (of the same or possibly different kernels). These kernels may operate over different parts of the dataset, which motivates an on-demand copying strategy that makes use of the ability of current GPUs to overlap data transfer operations with computation. Upon the final kernel execution, the partial results must be copied from GPU to host memory, for a
complete or final reduction (more details in Section 5.2) and posterior delivery of the computed result to the invoker.

5. Compilation for Shared Memory and GPUs

This section elaborates on how SOMD methods that operate upon arrays can be compiled for multi-cores and GPUs. To that extent, the compiler must produce two different versions of the code, one for each kind of architecture (Figure 9).

The new constructs are translated into Java by a dedicated compiler built on top of Polyglot [31], a Java-to-Java compiler that provides a framework to easily extend the language. This compiler guarantees the program’s type safety and generates Java code, which is in turn compiled by a standard Java compiler.

In order to engender the master-slave pattern, the compiler must generate code for both roles. The master code will replace the method’s original code and will have, as previously mentioned, the responsibility to launch and coordinate the parallel execution of the MIs, and perform the reduction. The slave code will carry out a set of MIs upon one partition of the original dataset, on the target architecture. While it is waiting, the master may itself execute one of the tasks. However, for the sake of simplicity, here we have chosen to offload the entirety of the work to a pool of worker slaves.

We will now detail the code generation process for both target architectures.

5.1. Shared-memory Architectures

The compilation process follows the guidelines of Subsection 4.1. The MIs are offloaded to a pool of threads, working in behalf of the application. Each of these MIs will receive a range of indexes of the original array, that delimit the assigned partition. The outcome of their execution, the partial result, is placed on a position (given by the MIs rank) of a results’ vector created for that one purpose. This array will be directly fed to the reduction operation, which will take an array of elements of type \(T \) and output a value of that same type. Synchronization of task completion is performed through a phaser that we will refer to as \texttt{completed}. The master blocks on this phaser, while the MIs simply notify their completions and consequent writing on the results’ vector. Phasers are also used to encode the \texttt{sync} construct, following the strict memory model premisses of Subsection 4.1. We will refer to this phaser as \texttt{fence}.

Algorithm 1 sketches the compilation scheme for the master code. The default computation of the index ranges over the annotated arrays is performed by a dedicated partitioner (\texttt{IndexPartitioner}) at line 9. The partitioner receives the length of the dimension to partition and the number of divisions, and returns an index range encoded in a 2-element array. These ranges are then supplied as argument to each MI (line 11).

Algorithm 1 sketches the compilation scheme for the master code. The default computation of the index ranges over the annotated arrays is performed by a dedicated partitioner (\texttt{IndexPartitioner}) at line 9. The partitioner receives the length of the dimension to partition and the number of divisions, and returns an index range encoded in a 2-element array. These ranges are then supplied as argument to each MI (line 11).

Data-structures that must be visible to all MIs, namely shared variables, the \texttt{fence} phaser, and the \texttt{results} vector, are created by the master and passed as arguments to the MIs (line 11). The parameter list of the latter is completed with the value of their rank.

The code of a slave task enclosing a MI results from a transformation of the method’s original code. We represent such transformation with function

\[
C : (\text{SourceCode}, \text{Env}) \mapsto \text{SourceCode}
\]
Algorithm 1: Compilation scheme for the master code

```
Input: SOMD method \( m \) with parameters \( L_p \) and return type \( \tau \); a list of distributed parameters \( L_d \); a list of distributed local variables \( L_l \); list of shared local variables \( L_s \); and reduction \( R \) with argument list \( L_e \).

1. Declarations of initialized variables:
   - \( n_{Slaves} \leftarrow \) number of slaves assigned to the execution of the method
   - \( fence \leftarrow \) phaser for encoding the sync construct
   - \( completed \leftarrow \) phaser to synchronize task completion

2. foreach \( s \in L_s \) do
   - Declare \( s \) and assign initial value (if any)
   - Declare the results vector of type \( \tau \)

3. foreach \( a \in L_d \cup L_l \) do
   - Generate statements to produce a set of \( n_{Slaves} \) index ranges of \( a \) by resorting to partition strategy \( \text{IndexPartitioner} \) by default

4. for \( i \leftarrow 0 \) to \( n_{Slaves} - 1 \) do
   - Generate statements to create and spawn a task to enclose an MI working on the \( i \)th index range of each array \( \in L_d \cup L_l \)
   - Generate statements to:
     - Wait for the conclusion of the tasks in phaser \( completed \)
     - Declare variable \( result \) of type \( \tau \)
     - Apply reduction \( R(L_e) \) and assign result to variable \( result \)

5. Return \( result \)

where \( Env \) is an environment that provides for the concrete identifiers of each of the compiler generated parameters: \( completed, fence, results, rank \) and index ranges. The translation function eliminates all declarations of shared variables, since these are included in the task’s parameters. The return of a result is translated into the writing of the value in the MI’s index of the results’ vector:

\[
C(\text{return } e, \Sigma) = \Sigma(results)[\Sigma(rank)] \leftarrow e ; \Sigma(completed).\text{advance()}
\]

The synchronization associated to sync blocks is performed by a barrier at the end of the block’s translation (by resorting to class \texttt{java.util.concurrent.Phase}):

\[
C(\text{sync} \{ P \}, \Sigma) = C(P, \Sigma) \Sigma(fence).\text{advanceAndWait()}
\]

The boundaries of for loops are modified to reflect the index range assigned to the MI. Consider a one-dimensional distributed array \( a \) of size \( N \). Loop boundaries that encompass the entirety of the array \([0, N]\) are translated into:

\[
[\Sigma(a_{range})[0], \Sigma(a_{range})[1]]
\]

Boundaries that only encompass a subset of the array’s index space, such as \([e_1, e_2]\) with \( e_1 > 0 \) and \( e_2 < N - 1 \) are translated into:

\[
[\text{max}(e_1, \Sigma(a_{range})[0]), \text{min}(\Sigma(a_{range})[1], e_2)]
\]

where \( \text{max()} \) and \( \text{min()} \) compute, respectively, the maximum and the minimum of the two given expressions. When views are involved, these must be added and subtracted to the upper and lower bounds, respectively.

Currently the loop transformations that we apply are quite simple and require the computation of the boundaries to be not dependent on local variables. This restriction allows us to compute the number of elements to partition in the master code, and supply this information to the index range partitioner. Our future plans include applying polyhedral optimizations [32] to enhance our loop parallelization.

Listings 13 and 14 depict, respectively, the generated master and slave code for the stencil example of Listing 11. The application of the \texttt{IndexPartitioner} strategy takes into account the view specified for each dimension in the last argument. Regarding the slave code, specialized versions can be generated for the first and last ranked MIs and with that remove the \( \text{max()} \) and \( \text{min()} \) operations.
double[][] stencil(double omega, double G[][], int num_iterations) {
    int nSlaves = getNumberOfWorkers(); // number of MIs
    Phaser fence = new Phaser(nSlaves); // Phaser "fence"
    Phaser completed = new Phaser(nSlaves+1); // Phaser "completed"
    double[][] results = new double[nSlaves][]; // "Results" vector
    int[] G_1 = Distributions.IndexPartitioner((G.length-1), nSlaves, {1,1}); // 1st dimension of G
    int[] G_2 = Distributions.IndexPartitioner((G.length-1), nSlaves, {1,1}); // 2nd dimension of G
    for (int i = 0; i < nSlaves; i++) // Spawn tasks
        spawn(new Stencil_MultiCore(omega, G, num_iterations, G_1[i], G_2[i], fence, completed, results, i));
    completed.advanceAndWait(); // Wait for their completion
    double result = Reductions.ArraySum(results); // Reduce results
    return result; // Return result
}

Listing 13: Stencil example - Master code for shared memory

class Stencil_MultiCore extends SOMDTask {
    // Method's original local parameters
    private final int[] G_1;
    private final int[] G_2;
    private final Phaser fence;
    private final Phaser completed;
    private final double results;
    private final int rank;
    Stencil_MultiCore(double omega, double[][] G, int num_iterations, int[] G_1, int[] G_2, Phaser fence, Phaser completed, double results, int rank) {
        ... // assign parameters to local variables
    }
    void call() {
        ... // Summation loop, lines 11 to 13 of Listing 13
        results[rank] = Gtotal;
        completed.advance();
    }
}

Listing 14: Stencil example - MI code for shared memory

5.2. Graphic Processing Units

The code generated for the master side follows the overall behaviour described in Subsection 4.3. It must configure the number and size of the thread-groups, perform the required data transfers between the host and the GPU addressing spaces, launch the kernels, perform the reduction stage, and return the result. Other than specifying the thread grid, the master has no control on the data partition strategy. The underlying GPU execution model does not permit such stage to be user-defined. This limitation transits to the programmer, which means that any partitioning strategy other than the default is ignored when generating the GPU code (a warning is emitted).

The disjointness of the host and device addressing spaces forces the master to allocate GPU memory for the method’s parameters and shared variables, and also for the results vector. Moreover, the initial contents of the parameters and the value assigned at shared variable declaration time (if any) must be copied to the newly allocated positions. The actual kernel execution is performed synchronously, hence there is no need for the completed phaser. Once that last kernel terminates the results vector is copied back to host memory, so it can be passed to the reduction stage.

For loops iterating over dist annotated arrays must be refactored to generate a kernel that computes a range (usually of size one) of the iteration set. A major concern in this refactoring is the

16
Algorithm 2: Compilation scheme for the master code in GPU

**Input:** SOMD method \( m \) with parameters \( L_p \) and return type \( \tau \); a list of shared variables \( L_s \); a list of kernels \( L_k \) resulting from the compilation of \( m \); and reduction \( R \) with argument list \( L_e \)

1. Generate statements to determine thread-group number and size
2. \textbf{foreach} \( a \in L_p \cup L_s \) \textbf{do}
3. Generate statements to allocate GPU memory for \( a \) and copy \( a \) to this newly allocated memory
4. Declare local copy of results vector of type \( \tau \)
5. Generate statements to allocate GPU memory for results vector
6. \textbf{foreach} \( k \in L_k \) \textbf{do}
7. Generate statements to:
8. Synchronously launch \( k \) - parameters are all \( a \in L_p \cup L_s \) and the results vector
9. Eventually reduce some of the results on the host side
10. Generate statements to:
11. Copy contents of the results to host memory
12. Declare variable \( \text{result} \) of type \( \tau \)
13. Apply reduction \( R(L_e) \) and assign result to variable \( \text{result} \)
14. Return \( \text{result} \)

Listing 15: Transformation of the first loop of the stencil example

There is divergence on the boundary groups, since one or two threads (depending on the group's position in the grid) will not perform the computation. In fact, there are many factors that establish the overall performance of the kernel, such as the use of local memory, eliminating bank conflicts, loop unrolling, and so on. To prototype our solution in Java we resorted do AMD’s Aparapi API \[33\] and, hence, delegated most of these concerns on a lower-layer of our software stack. However, the use of Aparapi raises other issues, of which the more limiting are the lack of support for arrays with more than one dimension, and of double precision arithmetic. The first limitation is visible in the flattening of the array in line 6 of Listing \[15\], Rootbeer \[34\] could be a viable alternative, since it allows more of Java's features to be used in the programming of a kernel. However, its runtime makes use of a dedicated GPU memory manager that does not allow memory objects to reside in the GPU's memory across multiple kernel executions. This feature is a requisite of our compilation process, as will be detailed in the remainder of this subsection.

Loops that perform reduction operations within the method’s body, such as the second loop of the stencil example, also require special attention. In GPU devices, these reductions can be
int nThreads = numberOfThreads(G.length * G[0].length); // Size of the matrix, for readability’s sake
Kernel kernel = new Kernel(G); // Explicit management of the data transfers
kernel.setExplicit(true); // Transfer the G matrix
for (int p = 0; p < num_iterations; p++)
kernel.execute(nThreads); // Execute the loop - lines 6 to 8 of Listing 13
kernel.get(G); // Read the matrix to the host

Listing 16: Snippet of the code generated for the master

performed globally by all threads. However, GPUs are not particularly efficient when reducing a full data-set into a single scalar value. Instead, it is preferable to begin the enterprise on the device, and move it to the host side as soon as there is not enough work to keep all of the GPU’s processing units busy, a threshold that is device-dependent. This approach justifies line 9 of Algorithm 2.

When a reduction is applied at the end of a kernel, it is most likely to be the same as the one provided in the reduce construct. When such is the case, only the latter is performed. In an opposite case, when the method does not end with a reduction, this overall reduction compilation strategy can be used to parallelize the reduction provided in the reduce construct.

Configuration of the Thread Grid. The determination of the thread-group number and size (line 1 in Algorithm 2) adjusts the total number of threads according to the maximum size allowed for a thread-group (local work-size in Aparapi and OpenCL) in the target device. For instance, if such value is 512, and the size of the problem equals 1000000

numberOfThreads(1000000) = 1000448 = 1954 × 512
resulting in 1954 groups of 512 threads. Naturally, some of these will not perform any effective computation, since they fall outside the loops’ boundaries.

Data Dependencies and Synchronization. Global, inter-group, synchronization is not permitted in the GPGPU execution model. Group independence is an established pre-condition that permits an efficient, hardware implemented, scheduling of the computation.

Consequently, the sync data-driven synchronization construct cannot be trivially translated into either OpenCL, CUDA, or any other GPGPU framework. The only global synchronization point is implicitly established when the control is relinquished back to the host, upon kernel completion. Given this, the compilation of sync requires the synchronous iterative issuing of a kernel responsible for executing the code enclosed by the construct. Coming back to the stencil example, Listing 16 highlights a snippet of the code generated for the master, resorting to the Aparapi API. Line 1 showcases the determination of the total number of GPU threads, whilst kernel, declared at line 2, refers to the code enclosed by sync.

6. Runtime System

The duo compiler/runtime system that backed the results presented in [6] resorted to X10’s Java runtime system (X10RT). Since then we shifted to the Elina parallel computing framework [29]. Elina is highly modular, though perfect for the development of new parallel runtime systems, since it allows for rapid prototyping and, posterior refinement and optimizations. Moreover it suits perfectly our vision of code once, run in multiple architectures.

One of the responsibilities delegated onto the runtime system is the choice, for each SOMD method, of which version to execute, among the multiple versions generated by the compiler. This choice must take into consideration the characteristics of the underlying architecture, in particular its ability to execute the selected version, and the configuration information provided by the user. Concerning the scope of this paper, stand-alone computers, the shared memory version is selected by default. The user may force GPU execution by providing a configuration file composed of rules of the form: Class.method:target_architecture. The inapplicability of the user’s preferences, given the available hardware, reverts to the default setting.
Some of the master’s code generated by Algorithms 1 and 2 is factorized by Elina. Among these is the spawning of the multiple tasks, and the application of the reduction function. These factorizations have not been exposed in the algorithms with the purpose of providing a higher degree of abstraction, removed from overwhelming details of the Elina API.

Regarding the parallel computing engine, the shared memory support resorts to a Java thread-pool, parametrized and managed by Elina. The default parametrization takes into account the number of cores available in the system, but this setting may be overridden both at development and/or deployment time. SOMD execution requests may be submitted concurrently, and hence compete for this pool of threads. The scheduling and load balancing is internally managed by the system.

The current GPU support is experimental. We delegate mostly everything to the Aparapi library, which, in turn, resorts to OpenCL. Our objective is to have such support seamlessly integrated in Elina, but we are still waiting for a Java GPGPU API that meets our requirements.

7. Evaluation

This section evaluates our approach from a functional and performance perspective. For comparison purposes, we implemented a subset of the JavaGrande (JG) benchmark suite [25], namely the applications of its Section 2 for which the suite provides multi-threaded implementations. We built from the sequential implementations of these same benchmarks (also included in the suite), being that our intervention was limited to the annotation of the code as it was. No extra optimizations were performed. Moreover, we tried to resort, as much as possible, to built-in features.

In this section we begin by briefly describing our take on the implementation of each of these applications, and evaluate the impact on the original sequential code. Next we carry out a comparative performance analysis in both shared memory and GPUs.

7.1. Benchmarks

Crypt. Ciphers and deciphers a given sequence of bytes. We implemented each of these operations as a SOMD method that, given the original byte array, returns its cipher. We qualified both original and destination (allocated within the method’s scope) arrays with $\text{dist}$, applying the built-in array partitioning strategy. The method’s body comprises a single loop that traverses the entirety of both arrays, unrolled so that each iteration operates upon eight bytes.

LU matrix factorization (LUFact). Linear system solver that uses LU factorisation followed by a triangular solve. The benchmark only parallelizes the factorisation stage. The JavaGrande multi-threaded version does so by using a ranking scheme to divert the kernels. The prime (with rank 0) is the sole to perform all operations. The remainder only enter the scene to perform a loop of invocations to an implementation of the Daxpy BLAS routine. This requires a number of synchronization points, namely 6 barriers, although some could be eliminated.

Our proposed programming model is rank agnostic. Therefore our approach was to decompose the algorithm into two methods. The top-level one performs the main iterative loop and resorts to an actual SOMD method to apply parallelism where needed. Hence, since the execution of a SOMD method is synchronous, no explicit synchronization points are required.

Series. Computes the first $N$ Fourier coefficients ($N$ given as argument) in interval $[0, 2]$. The method is parametrized in a single argument, a matrix with two rows - one for the $a_n$ terms and another for the $b_m$ terms, for $n \geq 0$ and $m \geq 1$. In JavaGrande’s implementation, the computation of $a_0$ is performed by a single thread, selected by its rank. As in the LUFact case, our solution resorts to two methods, the top-level one simply computes $a_0$ and invokes a SOMD method to perform the rest of the job in parallel. Since the input matrix only features two rows, only the column dimension is partitioned: $\text{dist} (\text{dim}=2)$. 

19
Table 1: Reference table for the benchmark’s configuration classes

| Benchmark | Configuration | Execution time (s) |
|-----------|---------------|-------------------|
| Class A   |               |                   |
| Crypt     | vector size: 3000000 | 0.225             |
| LUFact    | matrix size: 500     | 0.991             |
| Series    | Number of coefficients: 10000 | 10.054           |
| SOR       | matrix size: 1000   | 0.885             |
| SparseMatMult | matrix size: 50000 | 0.665             |
|           |               |                   |
| Class B   |               |                   |
| Crypt     | vector size: 20000000 | 1.341            |
| LUFact    | matrix size: 1000   | 0.778             |
| Series    | Number of coefficients: 100000 | 102.974          |
| SOR       | matrix size: 1500   | 2.021             |
| SparseMatMult | matrix size: 100000 | 1.744             |
|           |               |                   |
| Class C   |               |                   |
| Crypt     | vector size: 50000000 | 3.340            |
| LUFact    | matrix size: 2000   | 9.181             |
| Series    | Number of coefficients: 1000000 | 1669.133         |
| SOR       | matrix size: 2000   | 3.342             |
| SparseMatMult | matrix size: 500000 | 19.448           |

SOR. Solves a system of linear equations of size $N \times N$ through Jacobi’s Successive Over-Relaxation numerical algorithm. $N$ is given as argument, while the number of iterations is set at 100. As illustrated in Listing 11, the input matrix is partitioned through the built-in strategy, that performs an index range distribution on both dimensions - the equivalent to a (block,block) distribution. The method’s body features a single loop that requires a sync block.

Sparse Matrix Multiplication (SparseMatMult). Performs a multiplication over a matrix of size $N \times N$ in compressed-row format. The vectors with the matrix’s data, row index and column index are all partitioned through a user-defined strategy that ensures the disjointness of the ranges of rows assigned to each partition. The method’s body is straightforward and thus required no additional annotations. The user-defined distribution applies the algorithm featured in JavaGrande’s multi-threaded version of the benchmark, which contains roughly 50 lines of code.

7.2. Performance Analysis (Shared Memory)

This analysis compares the performance of our implementations against the multi-threaded versions featured in the JavaGrande suite. The measurements account the parallel decomposition of the problem plus the actual execution of the computational kernel. The presented speed-up values are relative to the original sequential versions, and result from an average of the middle tier of 30 measurements.

7.2.1. Infrastructure and Benchmark Configurations

All measurements were performed on a system composed of two Quad-Core AMD Opteron 2376 CPUs at 2.3 GHz and 16 Gigabytes of main memory, running the 2.6.26-2 version of the Linux operating system.

The JavaGrande suite specifies three configuration classes (A to C) for each benchmark. Table 1 presents such configurations, as well as our baseline - the execution times of the original sequential implementations.

7.2.2. Results

The charts of Figure 10a to 10c depict the speed-up results obtained by both implementations, for each class of configurations. The number of partitions (in the SOMD versions) or threads (in the JavaGrande versions) range from 1 to 8. The first allows us to assess the overhead imposed by either approach, while the second explores the maximum parallelism available.
Crypt. The SOMD approach scales better in all configurations. The main reason for this performance delta is our optimized index range partitioning algorithm, which proves to be considerably faster than JavaGrande’s. The performance are only on par when the weight of the kernel is too small for these optimizations to have impact (Class A, 8 partitions).

Series. The benchmark’s long execution times mitigate the overhead imposed, and the optimizations performed, by any of the approaches. Ergo, the results are on a par in all classes.

SOR. Once again our partitioning algorithm makes the difference. JavaGrande’s version only parallelizes the outer loop, meaning that each thread receives a range of rows. Our built-in approach performs a (block, block) distribution, generating a list of smaller matrices that allow for both loops to be parallelized. In practice, we generate a more cache friendly code that takes advantage of both spatial and temporal locality. This is reflected in the results, our work distribution may be heavier (we lose in the 2 partition configuration in all classes) but provides much better results as the problem size increases.

SparseMatMult. The only benchmark to require a user-defined partitioning strategy. This strategy was borrowed from the JavaGrande version, thus no performance penalty should incur from it.
Given that the computational kernel is almost exactly the same, the reasons behind JavaGrande’s overall best performances must be in the overhead imposed by the Elina runtime system.

**LUFact.** We saved for last the benchmark for which the proposed programming model was not able to produce good results. JavaGrande resorts to a rank-based approach to distinguish one of the threads (with rank 0) from the remainder. Accordingly, it may distribute the work and launch the required threads only once, at the beginning. Any sequential part of the algorithm is executed only by this ranked-0 thread. This is done at the expense of having to explicitly synchronize the execution of the threads. Our approach, although more declarative and absent of explicit synchronization, follows a split-join pattern. Each invocation to the inner SOMD method requires the partitioning of the input dataset and the spawning of tasks. This is a viable solution for workloads heavy enough to dilute this extra overhead, which is not the case of LUFact. The execution time of the section suitable for parallelism is 0.010, 0.013, 0.021 for the A, B and C configuration classes, respectively. Consequently, the results were below par. No implementation was able to deliver speed-ups for Class A, but, as the problem size increased, the JavaGrande version came out with the best performances. The SOMD version was able to even things up on Class C, while the weight of the parallel section so allowed.

### 7.3. Performance Analysis (GPU)

Our next analysis takes, for each configuration class, the best results delivered by the versions evaluated in the previous subsection, and compares them against the GPU code generated from the same SOMD source.

#### 7.3.1. Infrastructure

The measurements were performed on two GPU-accelerated systems:

- the first, that we will name *Fermi*, is composed by a Quad-core Intel Xeon E5506 at 2.13 GHz, and a NVIDIA Tesla C2050 GPU with 3 Gigabytes of memory. The operating system is Linux, kernel version 2.6.32-41.

- the second, that we will name *GeForce 320M*, is an Apple MacBook Pro Laptop featuring an Intel Core 2 Duo processor at 2.4 GHz, and a NVIDIA Geforce 320M GPU that as assigned 256 Megabytes of shared memory.

#### 7.3.2. Results

The results are displayed in charts 11a to 11c. We have omitted LUFact, since the limitations that bounded the performance results in the shared memory infrastructure, were inflated in the GPU. Each invocation of the SOMD method requires copying the whole matrix to the GPU, since it is modified between invocations, and launching the execution of a kernel that is not computationally heavy enough to mitigate the overhead of the data transfers.

**Crypt.** is a memory-bound benchmark in this setting. The computational kernel is too small to justify the overhead of copying the data to the GPU. Therefore, the shared memory versions deliver the best results for classes A and B. The impact of the data movement overhead is also noticeable in class C; by sharing memory with the CPU, the GeForce 320M outperforms the Fermi, despite having much less computational power.

**Series.** greatly benefits from GPU execution, as it is a heavy computing bound application. The speed-ups range from 39.46 to 420.77 in the Fermi infrastructure, and from 35.42 to 98.18 in the GeForce 320M. Note that, due to Aparapi’s inability to generate kernels that require double precision, we had restrict ourselves to single precision. Ergo, the results are not as accurate as in the shared memory versions. This also has a major impact in the execution time, since the throughput of double precision in, for instance, the Fermi GPU is, at its peak, half the one for single precision. This is most noticeable in the transcendental and trigonometric functions that are massively exercised in this benchmark. The GPU version of benchmarks SOR and SparseMatMult also performs single precision, rather than double precision, arithmetic.
**Figure 11:** Best JG and SOMD CPU versions versus the GPU SOMD version. The depicted speed-ups are relatively to the JG sequential version

**SOR.** is the only application in JavaGrande’s section 2 whose SOMD version requires a sync block. Consequently, the generated GPU version features a loop on the host side that, at each iteration, prompts a kernel execution request. Aparapi’s explicit data movement management facilities allows us to transfer the input matrix only once, at the beginning of the computation. Nonetheless, the multiple, 100 to be exact, kernel execution requests convey a non-negligible overhead. Even so, the best overall performances are achieved in the Fermi infrastructure.

**SparseMatMult.** exercises indirect memory accesses, which do not really fit in the GPGPU model, since they break the coalescing of memory accesses. Moreover, the user-defined partitioning strategy is ignored (see Subsection 5.2). Therefore, there is no guarantee that different thread-groups access different rows in the matrix, which may lead to conflicts in global memory accesses. The results confirm these limitations, as none of GPU accelerated systems are able to be competitive with the shared memory versions.

### 7.4. Discussion

The evaluation attested the viability of the proposed model in the programming of both multi-core CPUs and GPUs. The SOMD shared memory versions are competitive against the multi-threaded versions provided by the JavaGrande benchmark suite, which perform hand-tuned parallel decompositions of the domain across a given number of threads. In fact, in some cases we were able to deliver better performances without extra programming support (other than the original method), due to our built-in partitioning strategies.
Table 2: SOMD adequacy of JavaGrande’s section 2

| Benchmark     | Number of annotations | Extra LoC |
|---------------|-----------------------|-----------|
| Crypt         | 2                     | 1         |
| LUFact        | 1                     | 3         |
| Series        | 1                     | 3         |
| SOR           | 2                     | 1         |
| SparseMatMult | 3                     | 50        |

Table 2 presents the number of annotations, and extra lines of code required by our implementations. We do not take into consideration block delimiters in this count. The impact on the code is minimal, which corroborates our statement that the proposed model is simple to use. This affirmation is further substantiated with the facts that: 1) built-in partitions cover most of the needs when handling arrays; 2) most of the user-defined partitioning and reduction strategies are general enough to be available in a library, and therefore applicable in multiple scenarios, and 3) the computations performed by the latter are algorithmic problems that do not require special knowledge of parallel programming.

The GPU support gave us an assessment of the expressiveness of our constructs in this particular context. Naturally, there are also some limitations that we will discuss ahead. Nonetheless, we were able to easily offload the benchmarks to the GPU with good initial results. We also noted that our annotation based approach is somewhat in-between the implicit and explicit memory transfer management support provided by Chapel, X10 and Aparapi. The scope of the method determines the boundaries of data transfers, being that this data persists on the GPU until the computation of the method, which may encompass several kernels, terminates. Ergo, the method’s boundaries implicitly play a role comparable to *data* regions in OpenACC [8].

These experiments on heterogeneous architectures also supplied us an initial assessment of which kind of applications should be offloaded to the GPU, and which should be executed by the CPU. We will build upon this work to try to infer these characteristics automatically, in order to provide an initial configuration that may be adjusted at runtime, as actual execution time information can be retrieved. These execution times may also be persisted, so that can be later employed in the refinement of the configuration of future deployments.

7.5. Limitations

The SOMD model is specially tailored for data-parallel computations whose domain can be decomposed into independent partitions, and the results of the partial computations subsequently reduced. Therefore, the performance of a SOMD method is tightly coupled to the number of non-scalar parameters that are effectively distributed. For instance, a SOMD take on matrix multiplication (MM) should resort to solutions that decompose both matrices, rather than only one. Moreover, data sharing may also introduce overheads. These issues have more impact on some architectures than others:

**Multi-core CPUs** are optimized for shared-memory parallelism. Hence, the second matrix in MM could be shared by all MIs with apparently minor performance penalties. However, assigning bigger datasets to each MI results in less cache friendly code, a crucial factor when performance optimizations are at stake. The same reasoning can be applied for the writing on shared, rather than private, data.

**On cluster environments** undistributed parameters increase the amount of data to be transferred to each node. To a greater extent, the use of shared data infuses network communication and synchronization in MI execution, which are known to be performance bottlenecks. In [29] we provide some initial experimental data on this topic.

**On GPUs** data sharing may cause bank conflicts, since multiple threads from distinct thread-groups may try to concurrently access the same memory locations. This is further aggravated by the fact that, on GPUs, there is no architectural support for global synchronization. Thus,
writing on data shared across all MIs may compromise the correctness of an algorithm. These scenarios can be statically identified and a warning issued.

The SOMD approach is also not particularly suitable when the data-parallel computation (the SOMD method) must be iteratively applied, as it is noticeable in the LUFact benchmark. The overhead of a per iteration distribution and reduction mines the global performance. This limitation can be easily overcome by extending the programming model with a construct (single) to delimit sections of the code that must be executed by a single MI. We are, however, trying to solve this issue under the wood, in the context of the compiler and the runtime system. Our success will avoid having to expose these details to the programmer.

In conclusion, whenever performance is the most important requirement, SOMD application should be confined to data-parallel computations that can be decomposed into independent partitions. This sometimes implies altering the original sequential implementation. Otherwise, the annotations can be used directly upon the unaltered sequential code as the trade-off between performance and productivity. In fact, our experience [6] reveals that many of the operations performed on vectors and matrices can be trivially parallelized only by applying these annotations on the non-scalar parameters. In such cases, no trade-off is necessary.

Regarding our current GPU support, the back-end is a proof-of-concept prototype, and naturally there is much room for improvement. The use of Aparapi as an intermediate for OpenCL prevents us to assume control of the orchestration code. For instance, we have no control over the size of thread-groups and over the type of memory allocated for each kernel parameter, we cannot perform optimizations that overlap communication with computation, among others. Accordingly, we are not extracting the full potential of the hardware. Nonetheless, our results are of the same order of magnitude of other GPGPU approaches that supply performance results for a subset of JavaGrande’s benchmark suite, namely [5].

8. Conclusions

This paper presented the SOMD programming and execution model, and how it can be realized in multiple architectures, namely multi-cores, GPUs, and clusters of both. We addressed the former two in detail, elaborating on the effective compilation process and runtime system support.

The simplicity of expressing data parallelism at the subroutine level provides a powerful framework for the parallel computing of heterogeneous computational systems, composed of multi-core CPUs, and accelerators, such as GPUs and Accelerator Processing Units (APUs). The simple annotation of Java methods with data partition and reduction strategies, and the eventual delimitation of data-centric synchronized blocks, is sufficient to have a method compiled for parallel execution in either architecture. Despite its simplicity our approach provided very good performance results, when compared to hand-tuned multi-threaded applications - the most common way of expressing parallelism.

In conclusion, the SOMD approach paves a possible way for the increasing adoption of data parallel heterogeneous computing in mainstream software development.

Acknowledgement

This work used hardware acquired in the scope of project PTDC/EIA-EIA/102579/2008 - Problem Solving Environment for Materials Structural Characterization via Tomography funded by the Portuguese national funding agency for science, research and technology (FCT-MEC).

References

[1] C. J. Thompson, S. Hahn, M. Oskin, Using modern graphics architectures for general-purpose computing: a framework and analysis, in: Proceedings of the 35th annual ACM/IEEE international symposium on Microarchitecture (MICRO 2002), ACM/IEEE, 2002, pp. 306–317.
[2] D. Cunningham, R. Bordawekar, V. Saraswat, GPU programming in a high level language: compiling X10 to CUDA, in: Proceedings of the 2011 ACM SIGPLAN X10 Workshop (X10 ’11), ACM, 2011, pp. 8:1–8:10.

[3] A. Sidehnik, S. Maleki, B. L. Chamberlain, M. J. Garzarán, D. A. Padua, Performance portability with the Chapel language, in: 26th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2012), IEEE Computer Society, 2012, pp. 582–594.

[4] H. P. Huynh, A. Hagiescu, W.-F. Wong, R. S. M. Goh, Scalable framework for mapping streaming applications onto multi-GPU systems, in: Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP’12), ACM, 2012, pp. 1–10.

[5] C. Dubach, P. Cheng, R. M. Rabbah, D. F. Bacon, S. J. Fink, Compiling a high-level language for GPUs: (via language support for architectures and compilers), in: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’12), ACM, 2012, pp. 1–12.

[6] E. Marques, H. Paulino, Single Operation Multiple Data: Data parallelism at method level, in: 14th IEEE International Conference on High Performance Computing & Communication (HPCC 2012), IEEE Computer Society, 2012, pp. 254–261.

[7] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory programming, Computing in Science and Engineering 5 (1) (1998) 46–55.

[8] OpenACC, The OpenACC application programming interface (version 1.0), http://www.openacc.org/sites/default/files/OpenACC.1.0.0.pdf (2011).

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, Y. Zhou, Cilk: An efficient multithreaded runtime system, in: Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP 1995), ACM, 1995, pp. 207–216.

[10] Intel® Corporation, Intel® Cilk™ Plus, http://software.intel.com/en-us/intel-cilk-plus, last visited in July 2013.

[11] J. Reinders, Intel Threading Building Blocks, O’Reilly & Associates, Inc., 2007.

[12] F. Silva, H. Paulino, L. Lopes, di_pSystem: A parallel programming system for distributed memory architectures, in: Proceedings of the 6th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing Interface, Springer-Verlag, 1999, pp. 525–532.

[13] UPC Consortium, UPC language specifications, v1.2, Tech. Rep. LBNL-59208, Lawrence Berkeley National Lab (2005).

[14] R. W. Numrich, J. Reid, Co-array Fortran for parallel programming, SIGPLAN Fortran Forum 17 (2) (1998) 1–31.

[15] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioğlu, C. von Praun, V. Sarkar, X10: an object-oriented approach to non-uniform cluster computing, SIGPLAN Not. 40 (10) (2005) 519–538.

[16] D. Callahan, B. L. Chamberlain, H. P. Zima, The cascade high productivity language, in: 9th International Workshop on High-Level Programming Models and Supportive Environments (HIPS 2004), 26 April 2004, Santa Fe, NM, USA, IEEE Computer Society, 2004, pp. 52–60.

[17] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, L. Snyder, W. D. Weathersby, C. Lin, The case for high-level parallel programming in ZPL, Computing in Science and Engineering 5 (3) (1998) 76–86.
[18] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM 51 (1) (2008) 107–113.

[19] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, C. Kozyrakis, Evaluating MapReduce for multi-core and multiprocessor systems, in: 13th International Conference on High-Performance Computer Architecture (HPCA-13 2007), 10-14 February 2007, Phoenix, Arizona, USA, IEEE Computer Society, 2007, pp. 13–24.

[20] W. Fang, B. He, Q. Luo, N. K. Govindaraju, Mars: Accelerating MapReduce with graphics processors, IEEE Trans. Parallel Distrib. Syst. 22 (4) (2011) 608–620.

[21] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, I. Stoica, Improving MapReduce performance in heterogeneous environments, in: 8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008. December 8-10, 2008, San Diego, California, USA, Proceedings, USENIX Association, 2008, pp. 29–42.

[22] A. Munshi, et al., The OpenCL Specification, Khronos OpenCL Working Group (2009).

[23] NVIDIA Corporation, NVIDIA CUDA, http://www.nvidia.com/object/cuda_home_new.html (last visited in July 2013).

[24] P. Kegel, M. Steuwer, S. Gorlatch, dOpenCL: Towards a uniform programming approach for distributed heterogeneous multi-/many-core systems, in: 26th IEEE International Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, May 21-25, 2012, IEEE Computer Society, 2012, pp. 174–186.

[25] L. A. Smith, J. M. Bull, J. Obdrzálek, A parallel Java Grande benchmark suite, in: SC, 2001, p. 8.

[26] J.-N. Quintin, F. Wagner, Hierarchical work-stealing, in: P. D’Ambra, M. R. Guarracino, D. Talia (Eds.), Euro-Par 2010 - Parallel Processing, 16th International Euro-Par Conference, Ischia, Italy, August 31 - September 3, 2010, Proceedings, Part I, Vol. 6271 of Lecture Notes in Computer Science, Springer, 2010, pp. 217–229.

[27] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, P. Hanrahan, Sequoia: programming the memory hierarchy, in: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC ’06, ACM, New York, NY, USA, 2006.

[28] D. Bonachea, Gasnet specification, v1.1, Tech. rep., Berkeley, CA, USA (2002).

[29] J. Saramago, D. Mourão, H. Paulino, Towards an adaptable middleware for parallel computing in heterogeneous environments, in: 2012 IEEE International Conference on Cluster Computing Workshops, CLUSTER Workshops 2012, Beijing, China, September 24-28, 2012, IEEE, 2012, pp. 143–151.

[30] K. Spafford, J. S. Meredith, J. S. Vetter, Maestro: Data orchestration and tuning for OpenCL devices, in: Proceedings of the 16th International Parallel Processing Conference, Euro-Par’10, Ischia, Italy, August 31 - September 3, 2010, Springer, 2010, pp. 275–286.

[31] N. Nyström, M. R. Clarkson, A. C. Myers, Polyglot: An extensible compiler framework for Java, in: Compiler Construction, 12th International Conference, CC 2003, Warsaw, Poland, April 7-11, 2003, Proceedings, Vol. 2622 of Lecture Notes in Computer Science, Springer, 2003, pp. 158–152.

[32] C. Bastoul, Code generation in the polyhedral model is easier than you think, in: 13th International Conference on Parallel Architectures and Compilation Techniques (PACT 2004), 29 September - 3 October 2004, Antibes Juan-les-Pins, France, IEEE Computer Society, 2004, pp. 7–16.
[33] Aparapi, Api for data-parallel Java, https://code.google.com/p/aparapi/ (last visited in July 2013).

[34] P. Pratt-Szeliga, J. Fawcett, R. Welch, Rootbeer: Seamlessly using GPUs from Java, in: 14th IEEE International Conference on High Performance Computing & Communication, HPCC 2012, Liverpool, UK, June 25-27, 2012, IEEE Computer Society, 2012, pp. 375–380.