Genetics of glutamate and its receptors in autism spectrum disorder

Sabah Nisar1,10, Ajaz A. Bhat1,10, Tariq Masoodi1, Sheema Hashem1, Sabah Akhtar1, Tayyiba Akbar Ali2,3, Sara Amjad2, Sanjeev Chawla3, Puneet Bagga4, Michael P. Frenneaux5, Ravinder Reddy6, Khalid Fakhro7,8 and Mohammad Haris1,6,9

© The Author(s) 2022

Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.

Molecular Psychiatry (2022) 27:2380–2392; https://doi.org/10.1038/s41380-022-01506-w

INTRODUCTION

Autism spectrum disorder (ASD) comprises a broad range of conditions, including social, verbal, and repetitive behaviors with intellectual disability (ID). The cost of autism to society is increasing worldwide and is now $126 billion per year in the USA, more than three times the cost in 2006 [1]. Although the etiology of ASD is largely unknown, a broad scientific consensus points to genetics and environmental factors as predisposing characteristics in the development of autistic features.

Evidence from genetic and molecular studies delineates the impairment of synaptic function in ASD, with genes regulating synaptic functions being altered or mutated in ASD [2]. Individuals with ASD show alterations in brain development; however, the mechanism underlying the changes is unknown. The onset of ASD symptoms coincides with the timing of synapse formation and maturation, thus supporting the involvement of synaptic connections and neuronal function in ASD pathogenesis [3]. The arrested synaptic development in autism has been confirmed in human and animal studies, which found an abundance of thin, disrupted, and immature dendritic spines in different forms of ASD. Genes regulating synaptic structure and function are also highly mutated in ASD. The disrupted synaptic function in ASD relates to higher-level phenotypic changes as observed in other neurologic disorders and may result in altered sensory processing, cognitive deficits, hyperactivity, and seizures by affecting the balance between excitatory and inhibitory neurotransmission [4].

The abrupt synaptic connectivity relates to the alterations in glutamate receptor expression and function, subsequently modulating neuronal function [5]. The amino acid glutamate is the most abundant excitatory neurotransmitter in vertebrates and plays a significant role in neuronal development and cognition through its receptors. Defects in glutamate signaling are implicated in autism, but how such defects affect neuronal signal processing and cause varied autistic phenotypes remains unknown [6]. This review article describes how genetic changes affect glutamate and its receptors in ASD and highlights the role of non-invasive imaging modalities in detecting these changes.

Glutamate receptors

Glutamate is an important excitatory neurotransmitter in the human brain. Glutamate receptors are implicated in various cognitive and neuronal developmental processes such as learning, memory formation, spine maturation, circuit development, and synaptic plasticity [7]. They are categorized as either ionotropic glutamate receptors (iGluRs) or metabotropic glutamate receptors (mGluRs).

The iGluRs are non-selective ion channels induced by glutamate and usher synaptic transmissions throughout the central nervous system [8]. These channels are subcategorized

1Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999 Doha, Qatar. 2Shibli National College, Azamgarh, Uttar Pradesh 276001, India. 3Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. 4Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA. 5Academic Health System, Hamad Medical Corporation, P.O. Box 3050 Doha, Qatar. 6Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. 7Department of Human Genetics, Sidra Medicine, P.O. Box 26999 Doha, Qatar. 8Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144 Doha, Qatar. 9Laboratory of Animal Research, Qatar University, P.O. Box 2713 Doha, Qatar. 10These authors contributed equally: Sabah Nisar, Ajaz A. Bhat. ✉email: mhans@sidra.org

Received: 18 July 2021 Revised: 11 February 2022 Accepted: 22 February 2022
Published online: 16 March 2022
into N-methyl-d-aspartate (NMDA), kainate, 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA), or delta receptors based on their ligand-binding properties [9].

The mGluRs act through a second messenger and activate biochemical cascades that cause modification of ion channel proteins [10]. The eight types of mGluRs (mGluR1–mGluR8) are classified into three groups depending upon their structure and function. Group I mGluRs include mGluR1 and mGluR5, which are associated with the activation of phospholipase C [11]. Group II includes mGluR2 and mGluR3, and group III includes mGluR4 and mGluR6–8 [11]. Altered glutamate signaling is associated with both syndromic and non-syndromic neurodevelopmental disorders.

Mechanism of action of glutamate receptors

Glutamate released from the pre-synaptic membrane binds to iGluRs such as NMDA and AMPA receptors. All iGluRs are non-selective channels that facilitate the entry of cations such as Na++, K++, and sometimes Ca++. The activation of NMDA, AMPA, and kainate receptors results in excitatory post-synaptic responses. In the NMDA receptor, an Mg2+ binding site binds Mg2+ in the presence of hyperpolarized membrane potentials and eventually blocks the opening of the NMDA receptor channel, thus restricting the entry of Ca++. However, when the synaptic membrane is depolarized, Mg2+ is removed, thereby allowing access to Ca++. The NMDA receptor enables the passing of Ca++ ions only during depolarization of the post-synaptic cell, a property that is the basis for synaptic plasticity. Another interesting property of the NMDA receptor is that it requires co-agonists, such as glycine and glutamate, to occupy the binding sites for activation of the NMDA receptor.

Although both NMDA and AMPA receptors can allow entry for cations, weak stimulation causes the activation of only the AMPA receptor. In case of a strong stimulus, the AMPA receptor depolarizes the membrane sufficiently to expel the Mg2+ ion from the NMDA receptor and allow the entry of cations, including Ca++. This results in a high intracellular concentration of Ca++, which activates intracellular signaling cascades. In some cases, the intracellular Ca++ binds to calmodulin (CAM), which further binds to the Ca++/calmodulin-dependent protein kinase II (CAMKII) and phosphorelylates the AMPA receptor on the synaptic membrane, resulting in increased Na+ conductance. CAM also promotes the movement of AMPA receptors from the intracellular stores to the synaptic membrane, thus creating more AMPA receptors to stimulate the post-synaptic neuron. As a result, the AMPA receptor response to a given stimulus is more robust, leading to synaptic enhancement. This change is one of the mechanisms underlying long-term potentiation (LTP). However, mGluRs modulate post-synaptic channels indirectly and are sensitive to pharmacological agents. The binding of glutamate on mGluRs activates and dissociates G proteins, which then directly associate with ion channels or bind to other effector proteins such as enzymes (Fig. 1). Compared to iGluRs, mGluRs cause slower post-synaptic responses.

Kainate receptors are like AMPA receptors and allow the passing of cations, but they have limited distribution in the brain and exhibit a minor role in synaptic plasticity. Also, the selective activation of GluK1 Kainate receptors elicits seizures in the basolateral amygdala region of wild-type and GluK1 and GluK2 knock-out mice [12].

Metabotropic glutamate receptors and autism

Group I mGluRs comprising mGluR1 and mGluR5 are the most studied in autism and autism-related disorders. Altered functioning of the mGluR5 receptor occurs in Fragile X syndrome (FXS) [13], obsessive-compulsive disorder (OCD) [14], intellectual disability (ID) [15], and autism [16]. Higher levels of mGluR5 protein have been found in the vermis region of the cerebellum in children with autism than in unaffected children [17]. Similarly, a post-mortem study by Fatemi and Folsom (2011) found higher levels of the mGluR5 receptor in the superior frontal cortex of children with autism than in unaffected children [18]. The FXS is a major genetic cause of autism and is associated with the most common ASD phenotypes. Lohith et al. (2013) reported a higher expression of mGluR5 protein in the prefrontal cortex of patients with FXS than in healthy controls [19]. Fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, negatively regulates the synthesis of post-synaptic glutamate receptors and contributes to synaptic plasticity [20, 21]. A single gene mutation in FMRP leads to increased excitatory activity and altered synaptic function. Knock-out of FMR1 results in mGluR-induced long-term depression (LTD) in animal models [22].

Genetic studies have revealed the presence of altered glutamatergic signaling pathways in ASD. Glutamate transporter genes are functional candidates for autism, and single-nucleotide polymorphisms (SNPs) in SLC1A1 and SLC1A2 glutamate transporter genes are associated with autism [23, 24]. The SNP rs301430 in the glutamate transporter gene SLC1A1 is linked with repetitive behaviors and anxiety in children with ASD [25]. Moreover, Ramoz et al. (2004) reported that two SNPs (rs2056202 and rs2229813) in the mitochondrial aspartate/glutamate carrier gene SLC25A12 are associated with autism [26].

Group I mGluRs are associated with NMDA receptors and therefore regulate the NMDA receptor-mediated LTP and LTD [27]. Studies using in situ hybridization and immunohistochemical analysis to assess the neuroanatomical localization of mGluRs demonstrated the presence of high mGluR1 expression levels in the olfactory bulb, cerebellum, thalamus, and hippocampus regions in the rodents brain [28]. However, mGluR5 was highly expressed in the forebrain and limbic structures [28]. Deleting or inhibiting the Group I mGluRs in rodents is associated with a reduction in learning and memory-associated tasks such as the Morris water maze task, which was the first evidence for the function of mGluR5 receptors in spatial learning using mGluR5 receptor knock-out animals [29]. In this task, mGluR5 receptor knock-out mice presented deficits in the acquisition and had impaired long-term retention [29]. In another study that used mice for the water maze task, inhibiting mGluR1 affected learning of new information but did not affect spatial information [30]. The use of the highly selective and strong mGluR5 receptor antagonist 3-[2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MPEP) reduced reference and working memory in a radial arm maze task in rats [31].

Transcriptomic analysis of the post-mortem brain of autistic individuals has shown that genes involved in synaptic function are downregulated [32, 33]. Many genes associated with ASD, such as neuroligin-3 (NLGN3), neuroligin-4 X linked (NLGN4X), neuromodulin (NRXN1), src homology-3 domain (SH3), and multiple Ankyrin repeat domains 3 (SHANK3) play a significant role in synaptic functioning [34].

Genomic studies using copy-number variation analysis have identified alterations in neurexins (pre-synaptic proteins) and neuroligins (post-synaptic proteins) in ASD [35]. Deletions of NRXN1 [36] or NRXN3 [37] truncating mutations in NRXN2 [38] and rare structural variations in NRXN1 (NRXN1α and NRXN1β) are associated with the autism phenotype [39–41]. Neuroligins such as NLGN1, NLGN2, NLGN3, and NLGN4 are implicated in ASD [42–45]. However, mutations of NLGN3 and NLGN4 are encountered in a small fraction of autism cases [46–49]. NRXN1α knock-out mice models show that α-neurexins are crucial for maintaining post-synaptic NMDA-receptor function, regulating synaptic transmission, and organizing the pre-synaptic terminals by coupling Ca2+ channels on the pre-synaptic surface [50–52], accompanied by behavioral abnormalities that resemble the core symptoms of ASD [53]. Similarly, mice with NLGN3 mutations showed social and olfactory deficits [54], altered hippocampal synaptic plasticity [55, 56], impaired spatial learning [57], and altered synaptic transmission in the calyx of Held [44].
The alterations in neuronal circuits in autism may be reversible by re-expression of NLGN3, as an NLGN3-knockout mice model of non-syndromic autism showed impaired heterosynaptic competition and altered mGluR-dependent synaptic plasticity [58].

Group I mGluRs are implicated in SHANK3-dependent synaptic dysfunction in ASD [59]. SHANK3 mutations impair mGluR-dependent LTD and attenuate the ability of hippocampal neurons to express group I metabotropic mGluRs at synapses [59]. Similarly, Heise et al. (2018) showed that compared to wild-type mice, SHANK3- and SHANK2-knockout mice had fewer glutamate receptors in the striatum and thalamus regions, while CNTN4 knock-out mice had fewer glutamate receptors in the cortex and hippocampus regions [60]. Another gene, the G-protein coupled receptor-associated sorting protein-2 (GPRASP2), has been shown to play an important role in glutamatergic synapses. Deletion of GPRASP2 causes impaired synaptic communications and modulates the surface availability of mGluR5 in mice [61]. GPRASP knock-out mice have abnormal mGluR signaling in the hippocampal neurons and exhibit ASD-like behaviors [61]. These results suggest that monogenetic variants in ASD-associated genes do not exhibit a common molecular phenotype excitatory and inhibitory signaling components, indicating that more research is required to explore the commonalities at different levels, such as information processing or neuronal activity networks in ASD [60].

Ionotropic glutamate receptors and autism

Genetic alterations have also been linked to the NMDA class of iGluRs where both NMDA hyperfunction and hypofunction are associated with an ASD phenotype [62, 63]. However, an autoradiographic post-mortem study demonstrated no significant modifications in the expression of NMDA receptors in the hippocampal tissue from 4 males with autism [64]. Another post-mortem study found significantly increased NMDA receptor subunit 1 protein expression and reduced AMPA receptor density in the cerebellum tissue from 9 people with autism [65]. Disrupted NMDA signaling has also been implicated in a wide range of neuropsychiatric disorders other than ASD, including ID,
schizophrenia, Alzheimer’s disease, and other mood disorders [66], suggesting different roles of NMDARs in synaptic plasticity and excitotoxicity [67, 68]. Moreover, causative mutations in NMDAR genes are implicated in ASD [69], and several ASD-related animal model studies have shown the association of ASD with NMDA abnormalities [70].

SHANK3, a post-synaptic protein at excitatory glutamatergic synapses that connects neurotransmitters and ions channels to the actin cytoskeleton, is implicated in ASD. Specifically, SHANK3 plays a pivotal role in regulating glutamatergic synapses, maturation of the dendritic spine, and strengthening the formation and transmission of synapses via glutamate receptors such as AMPARs and NMDARs. Therefore, mutations or deletions in SHANK3 contribute to ASD symptoms [71]. The wide range of synaptic deficits observed in ASD-associated SHANK3 rodent models are alterations in NMDARs [72]. Hence, alterations in NMDARs associated with the glutamatergic synapse are now identified as an important pathogenic pathway implicated in ASD.

Emerging evidence supports the role of iGluRs in synaptic plasticity, neuronal development, learning, memory, and cognitive processes. The expression and trafficking of iGluRs are regulated by neuronal post-synaptic density proteins, cytoskeletal proteins, and cell adhesion molecules [73]. A study identified a missense de novo mutation in the NMDAR subunit gene GRIN2B in a patient with ASD [74]. Furthermore, changes in AMPA and kainate receptors have been reported in ASD. A genetic study found that the interstitial deletion of chromosome 4q in a child with autism contributed to hemizygosity of the glutamate receptor AMPA2, glycine receptors GLRB and GLRA3, and neuropeptide receptors NPY1R and NPY5R [75]. Another study found that the glutamate receptor GluR6 was in linkage disequilibrium with ASD and suggested that chromosome 6q21 is a strong candidate region for autism [76]. In addition, a complex mutation in GluR6 co-segregates with non-syndromic autosomal recessive mental retardation, leading to the complete loss of GluR6 protein and thereby to cognitive impairments [77].

In addition to SHANK genes, other genes such as CNTN4 affect synapse formation and the excitatory and inhibitory signaling in ASD. Interestingly, the expression of glutamate receptors in the striatum and thalamus region of Shank2- and Shank3αβ knock-out mice is reduced. However, Cntn4-knockout mice show elevated levels of glutamate receptors in the striatum region and reduced levels of glutamate receptors in the hippocampus and cortex [60].

The cerebellum and hippocampus are two important regions that exhibit changes in iGluRs and are implicated in ASD. Mutations in neuronal synthetic proteins are critical in regulating the function of iGluRs. Mutations in neuronal synaptic proteins include post-synaptic proteins such as neurexins (NRXNs), SHANK, and GRIP1 [73]. As the number of post-mortem studies are limited, it is unclear whether these findings are true representations of regional expression variations between the hippocampus and cerebellum.

Several mutations have been observed in metabotropic and ionotropic receptors implicated in ASD susceptibility (Fig. 2). The majority of the mutations are observed in ionotropic receptors, with GRIN2B, GRIN1, and GRM5 as the most susceptible receptors and GRM8 and GRIK4 as the least susceptible in ASD. Mutations are distributed evenly across the amino acids of both metabotropic and ionotropic receptors.

![Fig. 2 Distribution and amino acid location of mutations in ionotropic (GRIN1, GRIK5, GRIK4, GRIN2B) and metabotropic (GRM5, GRM7, GRM8) receptors. The data were downloaded using SFARI Gene database for autism spectrum disorder (https://gene.sfari.org/).](https://example.com/fig2.png)
Dynamic relationship of excitotoxicity, oxidative stress, and mitochondrial dysfunction

Recent studies [78, 79] have unraveled the role of oxidative stress in the pathophysiology of ASD. Children with ASD exhibit low plasma and cellular glutathione (an endogenous antioxidant) levels and reduced capacity of glutathione reserve; therefore, they are highly susceptible to oxidative stress. It has been documented that oxidative stress and redox imbalance are crucial components of ASD pathophysiology. Glutamate-mediated excitotoxicity has been reported as one of the essential contributing factors in developing oxidative stress in ASD [80]. Glutamic acid decarboxylase (GAD), an enzyme that catalyzes the transformation of glutamate to gamma-aminobutyric acid (GABA), glutamine synthase, and GABA receptors, are susceptible to oxidative injuries. The reduced levels of GAD in the brain promote excitotoxicity by decreasing GABA and increasing glutamate levels.

Accumulating evidence suggests that overstimulation of glutamate receptors, impaired mitochondrial functions, and oxidative stress are interconnected events that lead to oxidative neuronal injury in patients with autism [81, 82]. Typically, excitatory receptors allow the movement of sodium, calcium, and potassium, resulting in neuronal excitation. The movement of calcium into the cells results in the activation of inducible nitric oxide (iNOS) and phosphorylation of protein kinase C. Elevated levels of iNOS increase the production of free radicals, reactive oxygen, and nitrogen species, which start damaging lipids, proteins, and nucleic acids. Concurrently, protein kinase C induces phospholipase A2, which is involved in the production of pro-inflammatory molecules [83]. This cascade eventually generates free radicals that can initiate a wide range of toxic oxidative reactions, thereby potentially inhibiting oxidative phosphorylation and damaging mitochondrial enzymes that regulate the electron transport chain. Collectively, these events cause ATP depletion [84], eventually leading to energy deficits in neurons and cell death.

Genes affecting neuronal migration, differentiation, and maturation in ASD

Modulation of neuronal activity is controlled by proteins that are involved in the pathophysiology of ASD. Genes that are optimal for the normal functioning of glutamate receptors and neuronal migration are found to be mutated or disrupted in ASD (Fig. 3). Transcripts regulated by neuronal activity are present in high amounts in ASD candidate genes; for example, MEF2A/D, a transcription factor that plays a significant role in synapse development, regulates the genes UBE3A, DIA1, and PCDH10. The neuronal transcription factor NPAS4 plays an important role in the synaptic excitatory-inhibitory balance, and its expression is found to be regulated by neuronal activity. NPAS4 regulates the ASD candidate gene NHE9.

The expression of ASD candidate genes UBE3B, CLTCL1, NCKAP5L, and ZNF18 is regulated by neuronal depolarization [85]. Mutations in a spliced variant of the ANK2 gene known as Giant ankyrin-B (ankB) are involved in gene regulation and synaptic function and result in increased axonal branching and excitatory synapses during postnatal development [86]. CNTNAP2 mutations in ectopic neurons also suggest their role in neuronal migration [87] and aberrant positioning of neurons in the corpus callosum. Moreover, the abnormal localization of CUX1-positive upper-layer neurons in the deeper layers has been reported in CNTNAP2-knockout mice, suggesting its function in core autistic deficits [88]. CNTNAP2 also plays a critical role in radial-glia–driven neuronal movement as it encodes a neural transmembrane protein (contactin 2) that is involved in neural-glial interactions and excitatory synapses during postnatal development [86].

Fig. 3 Genes optimal for normal functioning of glutamate receptors, neuronal migration, and synapsis. Mutations or disruptions in genes optimal for neuronal migration, synapsis, and normal functioning of glutamate receptors can cause neuronal excitability, altered brain volume, and impaired long-term LTP and LTD that lead to various autism-related deficits. MZ marginal zone, CP cortical plate, IZ intermediate zone, SVZ subventricular zone, VZ ventricular zone, LTP long term potentiation, LTD long term depression.

Autism related deficits

- Intellectual disability
- Rett Syndrome
- Heterotopias
- Cerebellar Dysplasia
- Microgryria
- Lissencephaly
- Phelan-McDermid Syndrome
- Fragile X Syndrome
- Angelman Syndrome
- Tuberous Sclerosis Complex
NRXN-1α deletion. The results showed that neural cells with the deletion had more radial-glia-like morphology and an increased number of differentiated astroglia [92]. Astrotranscript 1 (ASTN1) and Astrotactin 2 (ASTN2) genes are neuronal cell surface antigens that are crucial for neuronal migration [93]. The interaction of ASTN1 with ASTN2 regulates neuron-glia adhesion [94]. The ASTN2 gene has been implicated in ASD, and genome-wide association studies have shown that ASTN2 is a candidate gene for ASD [95]. ASTN2 deletions are associated with ASD and other neurodevelopmental complications such as attention deficit hyperactivity disorder, OCD, and language delay [96]. Moreover, the copy-number variations of ASTN2 increase excitatory and inhibitory post-synaptic activity in individuals with ASD [97].

Distal-less homeobox (DLX) genes play a key role in neurodevelopmental disorders, including autism. They encode homeodomain transcription factors associated with the Drosophila distal-less (DII) gene [98]. DLX1 and DLX2 genes are found in the transitory structure known as ganglionic eminences in the brain and regulate the migration of inhibitory interneurons from the medial ganglion eminence into the cortex [99]. There is a decrease in GABAergic neurons in DLX1-knockout mice, and the mice also exhibit epileptic behavior, which is a common pathology associated with ASD [100]. The downstream target of DLX is ARX, an X-linked homeobox gene that regulates the functioning of DLX in neuronal migration [101]. Patients with ARX mutations have autistic features [102].

UBE3A is highly expressed in the GABAergic and pyramidal neurons of the human cerebral cortex region. Deleting UBE3A in the GABAergic or inhibitory neurons of the Angelman syndrome (AS) mice model resulted in hyperexcitability and epileptic seizures, common abnormalities in ASD [103]. Additionally, a mutation of rolled MAPK3 at the 16p11.2 locus, an ASD mapped region, results in abnormal axonal targeting and fasciculation in Drosophila larval neuromuscular junctions [104]. AUTS2 protein is mainly involved in gene expression regulation during brain development [105]. AUTS2 is localized in the nucleus and in the cytoplasm, where it helps regulate neuronal migration and the growth of neurites [106]. Mice having mutations in SHANK3, a candidate gene for ASD, showed altered glutamatergic synapses in the pyramidal neurons of the ACC. Excitatory synaptic dysfunction and social deficits were observed in SHANK3-knockout mice, and the social behavior of the mice was improved by restoring SHANK3 expression [107]. Moreover, SHANK3 knock-out in mice demonstrated that SHANK3 is associated with total brain volume and hippocampal size [108].

In vivo evidence of increased expression of glutamate in autism

PET imaging. Non-invasive in vivo PET imaging is ideal for quantifying AMPARs and NMDARs in normal and diseased brains. PET tracers can be used to target NMDARs and AMPARs and can help facilitate both drug development and the pharmacokinetic profiling of candidate drugs [109]. PET probes are developed by targeting group 1 mGluR. These probes have already shown their specificity in binding with the Glu5 receptor and have been implicated in studying Glu5R receptors in humans. The mGluR5 tracer [18F]-3-fluoro-5-[(pyridin-3-yl) ethenyl] benzonitrile ([18F]-FPEB) is used to measure the binding of mGluR5 in different brain regions. The binding potential of [18F]-FPEB was elevated in the cerebellum and postcentral gyrus regions of individuals with autism, suggesting altered mGluR5 binding in these regions [110].

A highly selective PET probe used for imaging the Gln2B subunit of the NMDA receptor is the benzazepine-based radioligand (R)-[11C]-Me-NB. The efficacy of the PET probe has been demonstrated in rodents, which showed GluN2B-NMDA receptor expression in the cortex, striatum, thalamus, and hippocampus [111]. Using this probe, the NMDA receptor can be imaged non-invasively in autism, and the role of different genes on the expression of NMDA receptors can be evaluated in animal models. This PET probe can also be used to screen drugs targeting NMDA receptors. Several PET-based probes have been developed and tested to image iGluRs both in vitro and in vivo; however, none of them has yet been translated to clinical use, possibly due to their low binding affinity and impermeability to the blood-brain barrier. This provides an opportunity to develop a new class of PET ligands targeting iGluRs and potential clinical translatability. Nonetheless, these probes can be further developed to investigate the impact of gene mutations on glutamate receptors in animal models of autism.

Magnetic resonance spectroscopy

Alterations in glutamate levels have been proposed to account for various behavioral and electrophysiological phenotypes in autism. The glutamate dysfunction is linked with abrupt neuronal function in autism. Alterations in the glutamate level in different brain areas may lead to different autistic phenotypes. Thus, quantifying the glutamate level in the brain of individuals with autism may provide valuable insights into the possible connections between altered genetic profiles and behavioral phenotypes of autism.

Proton magnetic resonance spectroscopy (1H MRS) is a well-established non-invasive approach used to ascertain the metabolic profile from different brain regions. The glutamate molecule consists of two methylene groups and a methine group that are firmly linked to form an AMNPQ spin system. Four protons present in two methylene groups form a prominent multiplet in the 2.04-2.35 ppm range on 1H MRS [112]. However, because of overlapping resonances with other metabolites such as glutamine, GABA, and NAA at lower field strength, their contributions are commonly combined and referred to as Glx.

Several 1H MRS studies have evaluated the alterations in Glx levels from different brain regions of individuals with autism. A 1H MRS study performed by Page et al. reported that the Glx concentration in the right hippocampus of 20 individuals with autism was higher than those of typically developing controls. However, no significant changes were reported between the Glx level of the two groups in the right parietal cortex [113]. Although some studies have reported reduced Glx in the cerebellum [114], basal ganglia [115], and anterior cingulate cortex [116] in patients with ASD, others have reported elevated Glx levels in the anterior cingulate gyrus and auditory cortex regions in patients with ASD [117-119]. Glutamate levels that are significantly higher than those of controls have also been reported from the pregenual anterior cingulate cortex in pediatric patients with ASD, supporting the hypothesis that the activity of attention-monitoring tasks is generally modulated in ASD [119]. Observations of higher or lower concentrations of Glx from different brain regions indicate that Glx levels are area-specific in ASD. However, the ratio of glutamate to glutamine in the Glx level remains unknown. Moreover, aberrations in glutamate and Glx levels in ASD differ between child and adult populations, suggesting that age is an important factor determining the excitatory or inhibitory functions in ASD.

Hassan and co-workers reported significantly higher blood and brain glutamate levels in children with autistic disorders [120]. In addition, the blood and brain glutamate levels were positively correlated, suggesting that blood glutamate levels can be utilized to diagnose autism early. 1H MRS analyses of single-gene disorders developed to investigate the impact of gene mutations on glutamate receptors in animal models of autism.
absolute glutamate concentration in the striatum and the medial prefrontal cortex in both humans and six rodent models of ASD [125]. They observed lower glutamate levels in the striatum of human ASD. Mice exposed to valproate showed decreased glutamate in the striatum, but BTBR T + tf/j mice showed higher glutamate in the striatum. Rats carrying NLGN3 mutations showed significantly reduced glutamate both in the striatum and prefrontal cortex. This study emphasizes the varying effects of gene mutation on glutamate changes in the brain [125]. Individuals with ASD exhibited reduced functional connectivity and excitatory-to-inhibitory imbalance (glutamate + glutamine/GABA) in the cerebro-cerebellar region, with altered listening comprehension skills, suggesting altered glutamatergic signaling in the cerebellar regions of those with ASD [126].

Several studies have used single-voxel or single-slice multi-voxel 1H MRS approaches to ascertain the metabolite pattern in patients with ASD but were constrained by limited spatial coverage. A substantial body of evidence [127] suggests that ASD is more diffuse than previously understood because more widespread brain dysfunctions have been reported from ASD patients. In contrast to single-voxel or single-slice 1H MRS sequences, three-dimensional echo-planar spectroscopic imaging (3D EPSI) provides whole-brain metabolite maps with better spatial resolution [128,129]. These volumetric maps can be spatially co-registered to anatomical images to help in mapping metabolite variations from different brain areas with reduced possibility of partial volume averaging. Several studies have shown the potential of 3D EPSI in detecting metabolic abnormalities from multiple regions in patients with brain tumors [130,131], neurodegenerative diseases [132-134], and neuropsychiatric disorders [135,136]. We reason that 3D EPSI may be useful for detecting metabolic abnormalities, including glutamate, throughout the brain of patients with ASD.

Non-invasive detection of glutamate on conventional 1H MRS is challenging owing to increased resonance overlapping of glutamate with its neighboring metabolites such as glutamine, GABA, and NAA. However, two-dimensional correlated spectroscopy (2D COSY) resolves overlapping resonances of these metabolites unambiguously by introducing a second spectral dimension and identifying "cross-peak" resonances because of J-coupling interactions [137]. Moreover, an ultra-high-field (7 T) scanner further improves the sensitivity of 2D COSY in glutamate detection and other complex metabolites due to the high signal-to-noise ratio and increased chemical shift dispersion [138]. Due to its potential to isolate glutamate, glutamine, and GABA signals, 2D COSY may be an effective tool to investigate the impaired cortical excitation/inhibition equilibrium in ASD patients.

GluCEST imaging
Chemical exchange saturation transfer (CEST) is a recently developed metabolic imaging technique used to detect low concentrations of specific endogenous and exogenous compounds. Studies have demonstrated that glutamate displays a concentration- and pH-dependent CEST effect at ~3.0 ppm downfield from bulk water protons [139]. Our group has established a glutamate imaging CEST approach (GluCEST) that can be used to create high-resolution parametric maps of glutamate changes in various neurological disorders. GluCEST detected decreased glutamate levels in the brain in a transgenic mouse model of Alzheimer’s disease [140]. In contrast, it showed a higher glutamate level in the brain in a mouse model of Parkinson’s disease [141].

Similarly, GluCEST detected altered brain glutamate concentration in patients with schizophrenia and temporal lobe epilepsy [142,143]. In another study, GluCEST was used to monitor the modafinil-induced changes in glutamate levels in the rat brain [144]. Thus far, no GluCEST studies have been conducted in patients with autism, but this technique provides a novel approach to measure the level of glutamate changes in the brain.

The GluCEST approach can be beneficial to determine the impact of a gene on the glutamate level in the brain. An animal model with different genes knocked out could be generated and imaged with GluCEST to understand better the effect of the gene mutation on regional alterations in the brain’s glutamate level. This method may explain how the mutation or deletion of particular genes links with regional brain glutamate level changes, thereby further enhancing our knowledge on the association of genes with specific neuronal functions.

Treatments targeting the glutamatergic systems in autism
Substantive evidence suggests that inhibiting mGluRs can reverse autistic phenotypes in several ASD mouse models. Considering the substantial involvement of glutamate receptors in autism, different therapeutic strategies targeting these receptors are being developed to reduce ASD symptoms. Several drugs that target mGlus are used to restore the excitation and inhibition balance in brain cortical regions. These include mGlus5 antagonists (fenobam), AMPA receptors (ampakines), and NMDA receptor inhibitors such as memantine, amantadine, and acamprosate [112,145]. Glu5 antagonists improve the social and stereotypic behaviors in rodent models of ASD [146]. In the BTBR mouse model of autism, mGluR5 antagonist MPEP decreased repetitive self-grooming, whereas in three cohorts of BTBR mice, another antagonist of mGluR5, GRN-259, decreased repetitive behaviors. Moreover, both antagonists improved behavioral and communication skills in BTBR mice [147,148]. Furthermore, treatment with AMPA compounds such as CX1837 and CX1739 reconditioned sociability in the sniffing parameter of the social approach task in BTBR mice [149].

Additionally, the non-competitive NMDA antagonist memantine has been utilized in clinical trials of ASD. Treatment with memantine reduced irritability, stereotypic behavior, and hyperactivity in children with ASD [150] and improved social behaviors in children with ASD [151,152]. In addition, mGluR5 inhibition rescued autistic phenotypes in mouse models of ASD. One of the most common mutations in autism is the 16p11.2 microdeletion, and a study found altered mGluR5 synaptic plasticity in the hippocampus region of a mouse model of ASD with 16p11.2 deletion. These cognitive deficiencies in mice were reversed by treatment with a negative allosteric modulator of mGluR5 [153]. A study by Mehta et al. showed that the mGluR5 antagonist MPEP significantly decreased repetitive behaviors in valproic acid-treated mice [154]. An open-label clinical trial showed improved anxiety and pre-pulse inhibition in FXS individuals treated with the mGluR5 antagonist fenobam [154]. Single doses of mGluR1 antagonist (JNJ16259685) and fenobam rescued social and repetitive behaviors in eukaryotic initiation factor 4E-binding protein 2 gene (Eif4ebp2) knock-out mice [155], implying that group I mGlusRs are a favorable therapeutic target for ASD. Results from these studies will permit researchers to gain better insights into the regulatory mechanisms of social behavior in ASD and help guide the development of novel AMPA receptor-based therapies to rectify social deficits implicated in ASD. In addition to glutamate receptor modulation by agonists, antagonists, and negative allosteric modulators, drugs or agents can be developed that can inhibit glutamate release, facilitate the clearance of glutamate by excitatory amino acid transporters, and modulate the voltage gated Na+ channels that are involved in glutamate regulation (Fig. 4). Subsequently, these modalities will be used for the treatment of glutamatergic dysfunction and would aid in rescuing social and behavioral deficits in ASD.

Other mechanisms underlying ASD
Significant advances in delineating molecular mechanisms underlying ASD have provided insights into the neuroanatomical abnormalities implicated in ASD, such as enlargement of brain [156-161], hypoplasia of the cerebellar hemispheres, and vermis...
and decreased number of cerebellar Purkinje cells [162]. Studies on neural stem cells have demonstrated that abnormalities in neuronal morphogenesis, neurogenesis, synaptic function, and cell fate also contribute toward the development of ASD. In addition, Ca²⁺ signaling, chromatin changes, Wnt signaling, and RNA splicing also play an important role in the pathogenesis of these diseases. The neuropathological studies delineate the association between dysregulated fetal cortical development and ASD. The abnormalities associated with cortical development include increased neuronal number and decreased neuron size, misoriented pyramidal neurons, ectopic cells, dendritic abnormalities, irregular lamination, and reduced white matter tracts [163].

Several transcription factors are also involved in ASD due to their considerable effect on diverse neuronal functions. Transcription factors regulate the expression of many genes and their downstream target molecules. The X-linked gene methyl CpG binding protein 2 (MeCP2) is a transcription factor that represses gene function and influences downstream molecules implicated in ASD, such as brain-derived neurotrophic factor (BDNF) and CDKL5 [164]. Engrailed-2 is another transcription factor that influences several biological processes implicated in ASD, as Engrailed-2 is located in the ASD-susceptibility region on the human chromosome [165–167]. The involvement of Engrailed-2 in ASD is demonstrated by the finding that the Engrailed-2 null mice exhibited cognitive impairment and social dysfunction [168]. Moreover, Engrailed-2 is expressed upon activation of the Wnt signaling pathway; therefore, the Wnt pathway, along with Engrailed-2, also regulates axonal guidance and neuronal migration.

The Wnt pathway contributes significantly toward ASD because the genetic variants involved in ASD are increasingly found in genes of the WNT pathway [169]. In ASD, several de novo mutations are found in genes directly or indirectly related to the canonical Wnt pathway. These genes include mixed-lineage leukemia (MLL) complexes, members of the Brg1-associated factors (BAF), CHD8, and T-box brain 1 (TBR1) [170–177]. Moreover, Wnt2 genes found in the autism susceptibility chromosomal locus and several Wnt2 variants are associated with ASD [178–182]. Correlation of the Wnt signaling pathway with ASD pathophysiology has also been demonstrated by the finding that the Wnt pathway is regulated by chromodomain-helicase-DNA-binding protein 8 (CHD8), and de novo mutations of CHD8 are increasingly found in ASD individuals [183–185]. The modulation of the Wnt pathway in mice leads to the development of ASD-like social deficits and changes in the production of cortical neurons [186–189].

In addition to the Wnt pathway, the mTOR pathway has also been implicated in ASD. Mutations in the genes involved in the mTOR pathway affect the translation of neurons in ASD patients [190]. Studies in mice have demonstrated that dysregulation in mTOR signaling is associated with ASD behaviors [191–196]. The downstream signaling molecules of the mTOR pathway, such as 4EBP and eIF4E, are involved in ASD. Additionally, animal studies on mice demonstrated that the 4EBP2 knock-out and eIF4E overexpressed mice exhibited autistic-like behaviors [194]. The deficiency of phosphatase and tensin homolog (PTEN) hyperactivates the mTOR pathway, which contributes to altered social interaction and the development of macrocephaly [197].

Multiple regions of the brains of individuals with ASD contain activated astrocytes and microglia. The post-mortem studies on idiopathic ASD individuals have revealed that genes involved in activated astrocytes and microglia are upregulated in the cortex of the brain and to a lesser extent in the cerebellum [198, 199]. Although the genetic variations in the genes of astrocytes or microglia have not been reported, the knockdown of chemokine receptor 1 (CX3CR1) resulted in a reduction in microglia, ASD-associated functional connectivity, and behavioral deficits and defects in synaptic pruning [200, 201]. This indicated a potential association of this receptor to ASD. In addition, the upregulation of microglia and astrocytes causes dysregulated synaptic pruning, leading to synaptic dysfunction in ASD [202, 203].

Some neurotrophic factors, growth factors, and their receptors are also involved in ASD, such as MET receptor tyrosine kinase (RTK). The RTKs regulate several aspects of neuronal physiology, including neurogenesis and survival, differentiation and migration, patterned connectivity, and plasticity. The human gene MET, which encodes MET RTK, has emerged as a prominent risk factor for ASD. The mRNA and protein levels of MET are reduced in the cortex of ASD
individuals [162, 204]. Therefore, failure in the transcription process of the MET protein is associated with ASD. In addition to MET, BDNF is involved in the autistic brain, but the utilization of GluCEST imaging in detecting glutamate changes and to quantify NMDARs and AMPARs are required to explain how glutamatergic dysfunction drives core symptoms and deficits in ASD.

CONCLUSION

In the last few decades, investigations of genes and genetic loci have delineated the etiology of glutamatergic dysfunction in ASD. Moreover, the phenotypic penetration of genetic variants overlaps with other disorders such as attention deficit hyperactivity disorder, which is highly dependent on an individual’s genetic background. Future studies should be focused on detecting low-penetrance variants and epistatic gene interactions and how these genetic factors are involved in the regulatory mechanism underlying the glutamatergic system in ASD. Furthermore, the glutamate receptors serve as a potential therapeutic target for ASD. Techniques such as MRS and PET imaging have been used to detect glutamate changes and to quantify NMDARs and AMPARs in the autistic brain, but the utilization of GluCEST imaging in patients with autism remains to be studied. The GluCEST approach can be instrumental in determining a gene’s effect on glutamate levels in the brain and can serve as a biomarker for detecting glutamatergic changes in ASD. In summary, glutamate has broad implications in the pathophysiology of autism, but more studies are required to explain how glutamatergic dysfunction drives core symptoms and deficits in ASD.

REFERENCES

1. New Research Finds Annual Cost of Autism Has More Than Tripled to $126 Billion in the U.S. and Reached $34 Billion in the UK. https://www.autismspeaks.org/press-release/new-research-finds-annual-cost-autism-has-more-tripled-126-billion-us-and-reached-2012-accessed-date-accessed-2012-accessed
2. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012;4:a009886.
3. Guang S, Pang N, Deng X, Yang L, He F, Wu L, et al. Synaptopathology involved in autism spectrum disorder. Front Cell Neurosci. 2018;12:1470–470.
4. Lepetit K, Lorenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, et al. Synaptopathies: synaptic dysfunction in neurological disorders—A review from students to students. J Neurochem. 2016;138:785–805.
5. Institute of Medicine Forum on N, Nervous System D. The National Academies Collection: Reports funded by National Institutes of Health. Glutamate-Related Biomarkers in Drug Development for Disorders of the Nervous System: Workshop Summary. National Academies Press (US) Copyright 2011, National Academy of Sciences. Washington, DC, 2011.
6. Choudhury PR, Lahiri S, Rajamma U. Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharm Biochem Behav. 2012;100:841–9.
7. Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res. 2019; 9: 24-45.
8. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharm Rev. 2010;62:405–96.
9. Tao W, Ma C, Bemben MA, Li KH, Burlingame AL, Zhang M, et al. Mechanisms underlying the synaptic trafficking of the glutamate delta receptor GluD1. Mol Psychiatry. 2019;24:1511–60.
10. Lubicz N, Rovasini P, Rittmann AE, Koberz M, Melkian HE. The acid-sensitive, anesthetic-activated potassium leak channel, KCNK3, is regulated by 14-3-3β-dependent, protein kinase C (PKC)-mediated endocytic trafficking. J Biol Chem. 2012;287:32354–66.
11. Grupi R, Impellizzieri D, Cuzzocrea S. Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci. 2019;12:120.
12. Fritsch B, Reis J, Gassar M, Kaminski RM, Rogawski MA. Role of GluK1 kainate receptors in seizures, epileptic discharges, and epileptogenesis. J Neurosci. 2014;34:5765–75.
13. Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W, Bimbbaum SG, et al. Disrupted Homer scaffolds mediate abnormal mGluRs function in a mouse model of fragile X syndrome. Nat Neurosci. 2012;15:431–543.
14. Ade KK, Wan Y, Hamman HC, O’Hare JK, Guo W, Quian A, et al. Increased metabotropic glutamate receptor 5 signaling underlies obsessive-compulsive disorder-like behavior and striatal circuit abnormalities in mice. Biol Psychiatry. 2016;80:522–33.
15. D’Antoni S, Spatuzzo M, Bonacorso CM, Musumeci SA, Cianella L, Nicoletti F, et al. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci Biobehav Rev. 2014;46:228–41.
16. Mehta MV, Gandal MJ, Siegel SJ. mGluR5-antagonist mediated reversal of elevated stereotyped, repetitive behaviors in the VPA model of autism. PLoS One. 2011;6:e26077–e26077.
17. Fatemi SH, Folsom TD, Kereeland RE, Liesch SB. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken). 2011;294:1635–45.
18. Fatemi SH, Folsom TD. Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study. Mol Autism. 2011;2:6–6.
19. Lohith TG, Osterweil EK, Fujita M, Jenko KJ, Bear MF, Innis RB. Is metabotropic glutamate receptor 5 upregulated in prefrontal cortex in fragile X syndrome? Mol Autism. 2013;4:15–15.
20. Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61.
21. Till SM, Li H-L, Miniaci MC, Kandel ER, Choi Y-B. A presynaptic role for FMRP during protein synthesis-dependent long-term plasticity in Aplysia. Learn Mem. 2010;18:39–49.
22. Berry-Kravis E. Mechanism-based treatments in neurodevelopmental disorders: fragile X syndrome. Pediatr Neurol. 2014;50:297–302.
23. Autism Genome Project C, Szaftmari P, Paterson AD, Zwaigenbaum L, Roberts B, Brian J, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet. 2007;39:319–28.
24. Jacob S, Brune CW, Badner JA, Ernstom K, Courchesne E, Lord C, et al. Family-based association testing of glutamate transporter genes in autism. Psychiatric Genet. 2011;21:212–3.
25. Gadov KD, Roshi J, DeVincent CJ, Kirsch S, Hatchwell E. Glutamate transporter gene (SLC1A1) single nucleotide polymorphism (rs301430) and repetitive behaviors and anxiety in children with autism spectrum disorder. Autism Dev Disord. 2010;40:1139–45.
26. Ramoz N, Reichert JG, Smith CJ, Silverman JM, Bespalova IN, Davis KL, et al. Linkage and association of the mitochondrial aspartate/glutamate carrier (SLC25A12) gene with autism. Am J Psychiatry. 2004;161:662–9.
27. Ménard C, Quirion R. Group 1 metabotropic glutamate receptor function and its regulation of learning and memory in the aging brain. Front Pharmacol. 2012;3:182–182.
28. Olive MF. Metabotropic glutamate receptor ligands as potential therapeutic agents for addiction. Curr Drug Abus Rev. 2009;2:83–98.
29. Xu J, Zhu Y, Contractor A, Heinemann SF. mGluRs has a critical role in inhibitory learning. J Neurosci. 2009;29:6376–84.
30. Steckler T, oliveira AFM, Van Dyck C, Van Craenendonck H, Mateus AMA, Langlois X, et al. Metabotropic glutamate receptor 1 blockade impairs acquisition and retention in a spatial Water maze task. Behavioural Brain Res. 2005;164:52–60.
31. Naie K, Manahan-Vaughan D. Regulation by metabotropic glutamate receptor 5 of LTP in the dentate gyrus of freely moving rats: relevance for learning and memory formation. J Neurosci. 2004;14:139–98.
50. Zhang W, Rohlmann A, Sargsyan V, Aramuni G, Hammer RE, Südhof TC, et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. J Neurodev Disord. 2018;10:18–18.

47. Liu Y, Du Y, Liu W, Yang C, Liu Y, Wang H, et al. Lack of association between NLGN3 and NLGN4X in probands with autism spectrum disorder on high density genotyping arrays. Hum Genet. 2010;127:413–25.

46. Gauthier J, Bonnel A, St-Onge J, Karemera L, Laurent S, Mottron L, et al. NLGN3/34. Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276–276.

45. Rechelt AC, Dachtl J The Role of Neurexins and Neuroligins in Autism. In: Fatemi SH (ed). The Molecular Basis of Autism. Springer New York: New York, NY, 2013, pp 361–81.

44. Ching MSL, Shen Y, Tan W-H, Jeste SS, Morrow EM, Chen X, et al. Deletions of NRXN1 (neurexin-11) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:937–47.

43. Nakanishi M, Nomura J, Ji X, Tamada K, Arai T, Takahashi E, et al. Functional plasticity shapes synaptic phenotypes of autism-associated neuroligin-3 mutations in the calyx of Held. Mol Psychiatry. 2017;22:1483–91.

42. Parente DJ, Garriga C, Baskin B, Douglas G, Cho MT, Araujo GC, et al. Neuroligin 2 α missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci. 2009;29:10843.

41. Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, et al. Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet. 2012;90:133–41.

40. Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet. 2011;130:563–73.

39. Camacho-Garcia RJ, Planelles MI, Margalef M, Pecero PL, Martinez-Leal R, Aguilera F, et al. Mutations affecting synaptic levels of neurexin-1β in autism and mental retardation. Neurobiol Dis. 2012;47:135–43.

38. Camacho-Garcia RJ, Heravi A, Toma C, Balmaha N, Cormand B, Martínez-Mir A, et al. Rare variants analysis of neurexin-1β in autism reveals a novel start codon mutation affecting protein levels at synapses. Psychiatr Genet. 2013;23:262–6.

37. Vaags AK, Lionel AC, Sato D, Goodenberger M, Stein QP, Curran S, et al. Rare mutations in the calyx of Held. Mol Psychiatry. 2012;17:2483–91.

36. Ching MSL, Shen Y, Tan W-H, Jeste SS, Morrow EM, Chen X, et al. Deletions of NRXN1 (neurexin-11) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:937–47.

35. Grayton HM, Missler M, Collier DA, Fernandes C. Altered social behaviours in Children with autism spectrum disorder receiving the antipsychotic quetiapine: A double-blind, placebo-controlled, randomized, crossover study. Autism Res. 2012;5:142–49.

34. Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276–276.

33. Rechelt AC, Dachtl J The Role of Neurexins and Neuroligins in Autism. In: Fatemi SH (ed). The Molecular Basis of Autism. Springer New York: New York, NY, 2013, pp 361–81.

32. Schwede M, Nagaol S, Gandal MI, Parikhshak NN, Mimnics K, Geschwind DH, et al. Strong correlation of downregulated genes related to synaptic transmission and mitochondria in post-mortem autism cerebral cortex. J Neurodev Disord. 2018;10:18–18.

31. Romero-Garcia R, Warrier V, Bullmore ET, Baron-Cohen S, Bethlehem RA. Synthetic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Mol Psychiatry. 2014;19:1053–64.

30. Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci. 2014;8:276–276.
82. Oloqoquejui J, Cornejo-Córdova E, Verdugue E, Soriano FX, Binvignot O, Auladell C, et al. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: therapeutic implications. J Psychopharmacol. 2018;32:265–75.

83. Babu GN, Bawari M, Ali MM. Lipid peroxidation potential and antioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology. 1994;15:773–7.

84. Flosson MJ, Huang RJ, Sasauma M, Mollilver ME, Snyder SH, et al. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999;19:5910–8.

85. Berg JM, Geschwind DH. Autism genetics: searching for specificity and convergence. Genome Biol. 2012;13:247.

86. Yang R, Walder-Christensen KK, Kim N, Wu D, Lorenzo DN, Badea A, et al. ANK2 mutation targeting giant ankrec polypeptide axon branching and ectopic connectivity. Proc Natl Acad Sci USA. 2019;116:15262–71.

87. Strauss KA, Fuffmanberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, et al. Recessive symptomatic focal epilepsy and mutant contact-associated protein-like 2. N Engl J Med. 2006;354:1370–7.

88.Perlakagino O, Aabrams BS, Herman EI, Winden KD, Gidalyahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147:2335–46.

89. Pollak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, et al. Caspr2, a new synaptic protein, regulates the formation of glutamatergic, GABAergic, and cholinergic synapses. J Neurosci. 2007;27:4241–51.

90. Danaxa M, Chan C-H, Schachner M, Parnavelas JG, Karageorgos D, et al. The adhesion molecule TAG-1 mediates the migration of cortical interneurons from the ganglionic eminence along the corticofugal fiber system. Development. 2001;128:4635.

91. Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, et al. Reduced expression of glutamate N-methyl-D-aspartate receptor subunit 2B in children with autism spectrum disorders. Brain Res. 2019;383:111469.

92. Lam M, Moslem M, Bryois J, Pronk RJ, Uhlin E, Ellström ID, et al. Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Exp Cell Res. 2019;383:111469.

93. Behesti H, Fore TR, Wu P, Horn Z, Leppert M, Hull C, et al. ASTN2 modulates autism spectrum disorders, ADHD and other neurodevelopmental phenotypes. Disruption of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for autism. Brain Sci. 2017;7:54.

94. Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D, et al. Moleculargenetic analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Exp Cell Res. 2019;383:111469.

95. Lesch K-P, Timmesfeld N, Renner TJ, Halperin R, Röser C, Nguyen TT, et al. Mental retardation and core autism-related deficits. Mol Psychiatry (2022) 27:2380 – 2392.

96. Hori K, Hoshino M. Neuronal migration and AUTS2 syndrome. Brain Sci. 2017;7:54.

97. Behesti H, Fore TR, Wu P, Horn Z, Leppert M, Hull C, et al. Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Exp Cell Res. 2019;383:111469.

98. Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, et al. Reduced expression of glutamate N-methyl-D-aspartate receptor subunit 2B in children with autism spectrum disorders. Brain Res. 2019;383:111469.

99. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, et al. Caspr2, a new synaptic protein, regulates the formation of glutamatergic, GABAergic, and cholinergic synapses. J Neurosci. 2007;27:4241–51.

100. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, et al. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopy imaging study. Biol Psychiatry. 2007;61:465–73.

101. Hordjer J, Lavender T, Mendez MA, O’Gorman R, Daly E, Craig MC, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H MR] study. Transl Psychiatry. 2013;3:e279–e279.

102. Bernardi S, Anagnostou E, Shinn J, Kolevzon A, Buxbaum JD, Hollander E, et al. In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am J Psychiatry. 2006;163:2189–92.

103. DeVito TJ, Drost DJ, Neufeld RWJ, Rajakumar N, Pavlovsky W, Williamson P, et al. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopy imaging study. Biol Psychiatry. 2007;61:465–73.

104. Hordjer J, Lavender T, Mendez MA, O’Gorman R, Daly E, Craig MC, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H] MRS study. Transl Psychiatry. 2013;3:e279–e279.

105. Jogi S, Biederman J, Wozniak J, Goldin RL, Crowley D, Futaki S, et al. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci. 2013;263:379–84.

106. Brown MS, Singel D, Hebbum S, Rojas DC. Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: a [1H-MRS study. Autism Res. 2013;6:1–10.

107. Bejjani A, O’Neill J, Kim S, Frew AJ, Yee WW, Ly R, et al. Elevated glutamate compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS One. 2012;7:e38786–e38786.

108. Hassan TH, Abdelrahman HM, Abdel Fattah NR, El-Masry NM, Hashim HM, El-Gerby KM, et al. Blood and brain glutamate levels in children with autistic disorder. Res Autism Spectr Disord. 2013;7:541–8.

109. Bruno JL, Shelly EW, Quintin E-M, Rostami M, Patnaik S, Spielman D, et al. Aberrant basal ganglia metabolism in fragile X syndrome: a magnetic resonance spectroscopy study. J Neurodev Disord. 2013;5:20–20.

110. Pan JW, Lane JB, Hetherington H, Percy AK. Rett Syndrome: 1H Spectroscopic Imaging at 4.1 Tesla. J Child Neurol. 1999;14:524–8.

111. Balchandani P, Naich TD. Ultra-high-field MRI spectroscopic imaging of schizophrenia. Schizophrenia Res. 2015;63:1204–15.

112. Godlewksa BR, Clare C, Cowen PJ, Emre U. Ultra-high-field magnetic resonance spectroscopy in psychiatry. Front Psychiatry. 2017;8:123–123.

113. Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spoorwen W, et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry. 2018;8:106–106.

114. Heegarty JP, Weber DJ, Cirstea CM, Beversdorf DQ. Cerebro-cerebellar functional connectivity is associated with cerebellar excitation–inhibition balance in autism spectrum disorder. J Autism Dev Disord. 2018;48:3460–73.

115. Hernandez LM, Rudie JD, Green SA, Bookheimer S, Dapretto M. Neural signatures of autism spectrum disorders: insights into brain network dynamics. Neuropsychopharmacology. 2015;40:171–89.

116. Bernardi S, Anagnostou E, Shinn J, Kolevzon A, Buxbaum JD, Hollander E, et al. In vivo 1H-magnetic resonance spectroscopy study of the glutamatergic system in adolescent with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci. 2013;263:379–84.
133. Verma G, Chawla S, Wang S, Sheriff S, Elman LB, et al. Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology. 2013;267:851–7.

134. Donadieu M, Le Fur Y, Lecocq A, Maudsley AA, Ghebri S, Soulier E, et al. Metabolic voxel-based analysis of the complete human brain using fast 3D-MRSI: Proof of concept in multiple sclerosis. J Magn Reson Imaging. 2014;39:11–9.

135. Klitz M, Bronzlik P, Nösel P, Wegner F, Dressler DW, Dadak M, et al. Altered neurometabolic profile in early Parkinson’s disease: a study with short echo-time whole brain MR spectroscopic imaging. Front Neurol. 2019;10:777.

136. Kahl KG, Atalay S, Maudsley AA, Sheriff S, Cummings A, Frieling H, et al. Altered neurometabolism in major depressive disorder: A whole brain 1H-magnetic resonance spectroscopic imaging study at 3T. Prog Neuro-Psychopharmacol Biol Psychiatry. 2020;110:109916.

137. Thomas MA, Yue K, Binesh N, Davanzo P, Kumar A, Siegel B, et al. Localized two-dimensional spectroscopy of the brain in vivo. J Magn Reson. 2017;277:104–5.

138. Verma G, Chawla S, Nagarajan R, Iqbal M, Verma R, Volesky A, et al. Inhibition of group I metabotropic glutamate receptors reverses autistic-like phenotypes caused by deficiency of the translation repressor eif4e binding protein 2. J Neurosci. 2015;35:11125–32.
Sowers LP, Loo L, Wu Y, Campbell E, Ulrich JD, Wu S, et al. Disruption of the non-canonical Wnt gene PRICKLE2 leads to autism-like behaviors with evidence for hippocampal synaptic dysfunction. Mol Psychiatry. 2013;18:1077–89.

Fang WQ, Chen WW, Jiang L, Liu K, Yung WH, Fu AKY, et al. Overproduction of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83:1131–43.

Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behavior and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.

Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, Sinton C, et al. Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci. 2009;29:1773–83.

Gkogkas CG, Khoutorsky A, Ran I, Rampakakis E, Nevarko T, Weatherill DB, et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature. 2013;493:371–7.

Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, et al. Exaggerated translation causes synaptic and behavioural alterations associated with autism. Nature. 2013;493:411–5.

Berg JM, Lee C, Chen L, Galvan L, Cepeda C, Chen JY, et al. JAKMIP1, a novel regulator of neuronal translation, modulates synaptic function and autistic-like behaviors in mice. Neuron. 2015;88:1173–91.

Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377–88.

Voincheau I, Wang X, Johnstone P, Lowe JK, Tian Y, Horvath S, et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011;474:380–4.

Gupta S, Ellis SE, Ashar FN, Motes A, Bader JS, Zhan J, et al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat Commun. 2014;5:5748.

Paulicelli RC, Bolasco G, Pagani F, Magli L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

Zhan Y, Paulicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2016;19:400–6.

Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature. 2013;504:394–400.

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mandinlin AR, Yamazaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705.

Campbell DB, Sutcliffe JS, Ebert PJ, Millenii R, Bravaccio C, Trillo S, et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA. 2006;103:16834–9.

Förster E, Jossin Y, Zhao S, Chai X, Frotscher M, Goffinet AM. Recent progress in understanding the role of Reelin in radial neuronal migration, with specific emphasis on the dentate gyrus. Eur J Neurosci. 2006;23:901–9.

Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677–736.

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10:1089–93.

Magni L, Cambiaggi M, Caminelli M, Alfaro-Cervello G, Cursi M, Pala M, et al. Subependymal activation of mTOR in embryonic neural stem cells leads to development of tuberous sclerosis complex-associated lesions. cell stem cell. 2011;9:447–62.

La Fata G, Gartner A, Dominguez-Izunza N, Dresellars T, Dowititz J, Poorthuis RB, et al. FMRP regulates multistep to bipolar transition affecting neuronal migration and cortical circuitry. Nat Neurosci. 2014;17:1693–700.

Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalayahu A, Dong H, et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell. 2011;147:235–46.

Feng W, Khan MA, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, et al. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. cell stem cell. 2013;13:62–72.

Zhou J, Shrikhande G, Xu J, McKay RM, Burns DK, Johnson JE, et al. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. Genes Dev. 2011;25:1595–1600.

Grabrucker AM. Environmental factors in autism. Front Psychiatry. 2012;3:118.

Rodler PM, Ingram JL, Tisdale B, Croog VJ. Linking etiologies in humans and animal models: studies of autism. Reprod Toxicol (Elmsford, NY). 1997;11:417–22.

Ingram JL, Peckham SM, Tisdale B, Rodler PM. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicology Teratol. 2000;22:319–24.

ACKNOWLEDGEMENTS

This work was supported by the Qatar Foundation, National Priorities Research Program (NPRP10-0202-170320) (NPRP13S-0121-200129), the Sidra Medicine Precision Program (SDR #200048) and the NIHB (Grant No: P41 EB029460).

AUTHOR CONTRIBUTIONS

MH conceived of and designed the study and contributed to manuscript writing and editing. SN, AAB contributed to the conception and design of the study, performed the literature search and wrote the manuscript. SA, AM, MM prepared the figures. SH, SA, TAA, and SA contributed to manuscript writing and editing. SC, PB, MPF, RR, and KF performed the critical revision and editing of the scientific contents of the manuscript. All authors read and approved the final manuscript.

FUNDING INFORMATION

Open Access funding provided by the Qatar National Library.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Mohammad Hams.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.