Readability Assessment of Commonly Used German Urological Questionnaires

Pavel Lyatoshinskya Manolis Pratsinisb Dominik Abta Hans-Peter Schmida
Valentin Zumsteina,b Patrick Betscharta

aDepartment of Urology, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland; bDepartment of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Key Words
Readability assessment • Urology • Questionnaire • German language

Abstract

Purpose: We intended to assess the readability of the German versions of commonly used urological questionnaires and identify questions that are potentially demanding for patients. Materials and Methods: The Guidelines of the European Association of Urology were analyzed for recommended questionnaires. Readability of the German versions of these questionnaires including their respective single-items was analyzed using established readability assessment tools. Results: A total of 13 questionnaires were analyzed. The calculated readability scores ranged between the 4.3th and 10.3th grade level. Easiest readability as calculated by median grade levels was found for the short and long forms of the International Consultation on Incontinence Questionnaires-Female and -Male Lower Urinary Tract Symptoms and the SF-Qualiveen (all median grade level 5.0). The short form of the International Index of Erectile Function showed the hardest readability (median grade level 10.0). Readability of the single-items varied widely between the assessed questionnaires with up to 80% (the International Index of Erectile Function) of their single-items being written above recommended grade levels. Conclusions: The majority of commonly used German urological questionnaires comply with recommended readability levels. Some questionnaires as well as single-items of most of the questionnaires clearly exceed recommended readability levels. This should be considered for interpretation of their results and when revising questionnaires.

Introduction

Medical questionnaires are not only routinely used in clinical practice, but also for the assessment of patient reported outcomes in clinical trials. The use of validated questionnaires allows a reproducible evaluation of recent complaints and the assessment of changes during a longer-term course. Therefore, most of the urological guidelines encourage clinicians to implement questionnaires into clinical practice and diagnostic procedures.

Development processes of medical questionnaires vary substantially, which has been shown to affect their quality [1]. Especially, readability represents a key component of comprehensibility and has been shown to be often neglected [2]. Therefore, the American Medical Association and the USA National Institutes of Health (NIH) recommend a reading level of medical content for non-professionals from 5th to 6th grade [3] and 7th to 8th grade [4] respectively to improve the readability of medical health materials.

Readability of commonly used medical questionnaires has been assessed for different medical disciplines [5, 6]. However, these analysis exclusively assessed the mean...
level of comprehensibility of complete questionnaires, and did not evaluate the readability of each survey item. Thus, very complicated single items may be concealed by less demanding ones and result in an overall good readability of the whole questionnaire [7].

A recent readability analysis of English urological questionnaires found an overall good readability for only 5 out of 13 questionnaires. Moreover, all of the surveys showed very demanding single items [8]. Therefore, the aim of our study was to assess the readability of frequently used urological questionnaires in German language including an analysis of their single-items to identify questions that might be particularly demanding for patients and may require a special consideration when interpreting the results.

Materials and Methods

The 2018 guidelines of the European Association of Urology were screened for recommended questionnaires. Validated versions of the questionnaires were used whenever available. The 36-Item Short Form Health Survey version 2 (SF-36v2) [9, 10] was chosen as a benchmark questionnaire as it is one of the most commonly used questionnaires, and has recently been subjected to a comprehensibility improvement [10].

The readability assessment was performed by extracting each question or single-item into a separate Microsoft Word document (Microsoft Corp., Redmond, Washington, WA, USA). Sub-questions or items within the questionnaires which were not recognized and analyzed by the software as a complete sentence or question were combined with potential question choices to form and test only complete sentences as recommended elsewhere [11]. Single word answers, as well as copyright notices, disclaimers, acknowledgments, author information, citations and references were excluded from analysis. All analysis were performed using the Readability Studio Professional Edition version 2015 software for Mac (Oleander Software, Ltd., Vandalia, OH, USA). A complete list of tools used for the analysis is provided in table 1.

Descriptive statistics using median and range were performed for all tests corresponding to a grade level, i.e. German Simple Measure of Gobbledygook (G-SMOG) [12, 13], Wiener Sachtextformel (WS) [12], Lesbarkeitsindex [14]. The Amstad Test [15] is charted and results in a score between 0 and 100.

Results

A total of 13 questionnaires were analyzed for their readability (table 2), only 6 of these surveys have been validated for the German language. The other 7 questionnaires were obtained from the corresponding questionnaire specific homepage SF-Qualiveen [16], International Consultation on Incontinence questionnaires...
Table 1. Description of applied readability assessments (based on Betschart et al. [25])

Readability tool	Tool details	Parameters analyzed	Formula
G-SMOG (Bamberger - Vanecek) [12, 13]	German variation of the original SMOG-score; calculates the grade level of a document	number of words with 3 or more syllables	(no. of words with 3 or more syllables) – 2
Wiener Sachtextformel [12]	for evaluation of nonfiction literature; average sentence length, word length and complexity are analyzed; results in a grade level score	word length/complexity and sentence length; complex words have 3+ syllables, long words 7+ characters.	0.1935 × [(number of complex words/number of words) × 100] + 0.1672 × (number of words/number of sentences) + 0.1297 × (number of long words/number of words) × 100 – 0.0327 × [(number of monosyllabic words/number of words) × 100] – 0.875
Lesbarkeitsindex [14]	formula that can be applied to documents of any Western European language; possible scores are 0 to 70. Higher scores represent harder readability; possible grade level adjustment for use with German literature ranging from 4th to 15th grade recalculation of the Flesch Reading Ease [26] for German text; typical use of longer words in German language compared to English is considered; uses also a lower weighting for the sentence-length factor; possible scores are 0 to 100, the higher the easier to read	sentence length and number of long words (7+ characters)	number of words/number of sentences + 100 × (number of long words/number of words)
Amstad Test [15]	recalculation of the Flesch Reading Ease [26] for German text; typical use of longer words in German language compared to English is considered; uses also a lower weighting for the sentence-length factor; possible scores are 0 to 100, the higher the easier to read	average number of syllables per word and average number of words per sentence	180 – (number of syllables/number of words) – [58.5 × (number of words/number of sentences)]

Table 2. Median grade levels of the different surveys

Survey	No. of items	SMOG	WS	LIX	Median (range)
ICIQ-FLUTS-SF [27]	24	4.3	5.6	5.0	5.0 (4.3–5.6)
ICIQ-FLUTS-LF [27]	36	4.4	5.6	5.0	5.0 (4.3–5.6)
ICIQ-MLUTS-SF [28]	26	4.4	5.3	5.0	5.0 (4.4–5.3)
SF-Qualiveen [29]	8	4.7	6.7	5.0	5.0 (4.7–6.7)
SF-36v2 [9]	50	5.0	6.2	5.0	5.0 (5.0–6.2)
I-QOL [30]	22	5.3	7.0	5.0	5.3 (5.0–7.0)
ICIQ-MLUTS-LF [28]	43	4.6	5.9	5.0	5.9 (4.6–6.0)
IPSS [31]	8	6.1	6.0	6.0	6.0 (6.0–6.1)
Qualiveen [32]	30	6.4	9.3	7.0	7.0 (6.4–9.3)
ICSI [33]	4	5.2	7.5	9.0	7.5 (5.2–9.0)
NIH-CPSI [34]	13	7.3	8.5	10.0	8.5 (7.3–10.0)
IIEF [35]	15	7.7	9.4	9.0	9.0 (7.7–9.4)
IIEF-5 [36]	5	10.0	10.3	9.0	10.0 (9.0–10.3)
Median	5.2	6.7	6.0	6.0	6.0
Range	4.3–10.0	5.6–10.3	5.0–10.0		

ICIQ-FLUTS-SF = International Consultation on Incontinence Questionnaires–Female Lower Urinary Tract Symptoms short form; ICIQ-FLUTS-LF = ICIQ-FLUTS long form; ICIQ-MLUTS-SF = international consultation on incontinence questionnaires – male lower urinary tract symptoms short form; I-QOL = incontinence quality of life; ICIQ-MLUTS-LF = ICIQ-MLUTS long form; IPSS = international prostate symptom score; ICSI = international cystitis symptom index; NIH-CPSI = national institutes of health chronic prostatitis symptom index; IIEF = international index of erectile function; IIEF-5 = IIEF short form.
(ICIQ) [17] or from official self-help organizations, which provide a German online 5-item version International Index of Erectile Function (IIEF-5) [18], Interstitial Cystitis Symptom Index (ICSI) [19].

The questionnaires had a median length of 232 words, with a range of 43 words (ICSI) to 383 words ICIQ Male Lower Urinary Tract Symptoms Long Form Module (ICIQ-MLUTS LF). The SF-36v2 questionnaire, used as a reference questionnaire, has a length of 822 words. Analysis of word complexity (3 or more syllables) of the questionnaires ranged from 15.5 (ICIQ-MLUTSF) to 29.6% (IIEF-5). Analysis of word length showed 35.8 (ICIQ-MLUTS SF) to 48.8% (ICSI) of words with 6 or more characters.

Calculation of grade levels using SMOG, WS and Lesbarkeitsindex showed readability scores between 4.3th and 10.3th grade (table 2). The easiest readability, as calculated by the median grade level of SMOG, WS and Lesbarkeitsindex was found for the ICIQ-FLUTS-SF and -LF, ICIQ-MLUTS-SF, SF-Qualiveen and SF-36v2 [5.0 (4.3–6.7)]. The hardest readability was found for the IIEF-5 [10.0 (9.0–10.3)].

These results were confirmed by the Amstad Test, where scores of 76 points (corresponding to “fairly easy” readability) were found for the ICIQ-FLUTS-SF and ICIQ-MLUTS-SF. The IIEF-5 proved to be the most difficult of all assessed questionnaires (fig. 1), with a score of 43 points (corresponding to “difficult” readability). Using the SF-36v2 as a benchmark, six of the urological questionnaires showed an easier or harder readability respectively, while the score of the ICSI was equal, i.e. 66 points.

Analysis of single-items of the different questionnaires showed a wide range of readability scores. In figure 2, the three most commonly used surveys (IPSS, IIEF and CPSI-NIH) according to a PubMed search (all languages included in the search) were assessed using SMOG, WS and Lesbarkeitsindex. Single-item assessments for the other questionnaires are presented in figure 3.

Assessing the single-items of all questionnaires exclusively using the WS, which was specifically created for the German language [12], readability scores still showed a wide range (fig. 4). The widest range was found for the SF-36v2, I-QOL and Qualiveen questionnaires. Based on the WS, a readability level above the maximum recommended 8th grade level [4] was found for the following proportions of single-items of the questionnaires: IIEF-5: 80%; Qualiveen: 53%; IIEF: 47%; NIH-CPSI: 46%; SF-Qualiveen: 38%; SF-36v2: 34%; I-QOL: 32%; ICSI and IPSS: 25%; ICIQ-MLUTS-LF: 16%; ICIQ-FLUTS-SF: 13%; ICIQ-MLUTS-SF: 12% and ICIQ-FLUTS-LF: 11%.

Discussion

In this study we analyzed the readability of commonly used urological questionnaires in German. A wide range of readability levels was found for the assessed questionnaires, with some of them clearly exceeding the 7th to 8th grade reading level recommended by the NIH [4] and the 5th to 6th grade reading level recommended by the
Fig. 3. Readability grade levels for single-items of the questionnaires ICIQ-FLUTS (SF and LF) (A, B), ICIQ-MLUTS (LF and SF) (C, D), I-QOL (E), Qualiveen (F), SF-Qualiveen (G), SF-36v2 (H), ICSI (I), IIEF-5 (J) (SMOG = G-SMOG; WS = wiener sachtextformel; LIX = lesbarkeitsindex).
American Medical Association [3]. Ten of the 13 questionnaires appeared to be comprehensible and did not exceed the recommended reading levels (table 2). The IIEF, IIEF-5 and NIH-CPSI, on the other hand, show clearly increased reading levels in the applied tests and therefore should in general be regarded as too difficult.

In order to conclude from the questionnaire’s result on the presence or severity of a disease, it is important that questionnaires are answered correctly and completely. Thus, items exceeding patients’ reading skills may induce to give an invalid response or to skip the item. It is therefore important not only to evaluate the average readability of entire questionnaires, but also of the individual items of each questionnaire [7,11]. Importantly, even questionnaires with a good median readability (e.g. ICIQ-MLUTS/-FLUTS questionnaires) had individual items, which were clearly above accepted readability levels (fig. 3).

Compared to a recent analysis of the English versions of these questionnaires [8], there are certain analogies. The IIEF-5, IIEF, NIH-CPSI were shown to be the questionnaires with the most difficult readability in English as well as in German. However, twice as many German as English questionnaires meet the recommended over all reading levels (10 vs. 5 surveys respectively). Remarkably, only 6 of the German questionnaires have been validated and 2 of them (i.e. IIEF and NIH-CPSI [20, 21]) are exceeding the recommended reading level.

Different options to improve readability have been described previously, including substitution of multisyllabic words or simplification of sentence structure [22]. As some of the German questionnaires have not been validated yet, such improvements could be implemented in the validation process. Changes in validated questionnaires could be considered while undergoing revisions, as it had been performed for the SF-36 (version 1) in the past [10]. Moreover, the readability testing of individual questions should be considered when creating new surveys.

This study has some limitations, which have to be addressed. There is no consensus, which readability formulas should be used for assessing questionnaires. As performed in previous studies, we therefore used a combination of different assessment tools [2, 23]. Additionally, readability tests do not provide information about the content and other factors like the font types, images or appealing layout which also affect the comprehensibility [24]. Furthermore, not all of the questionnaires assessed had been validated, and therefore might be used in slightly modified versions. Thus it seems to be important to improve and validate such questionnaires in the future.
Conclusion

Readability of commonly used German urological questionnaires largely complies with recommended reading grade levels. However, inappropriate reading levels were found for certain questionnaires and for several single-items of all assessed questionnaires. These results should be considered for the interpretation of outcomes, future revisions and validation of German urological questionnaires.

References

1. Artino AR Jr, La Rochelle JS, Dezee KJ, Gehlbach H: Developing questionnaires for educational research: AMEE Guide No. 87. Med Teach 2014;36:463–474.
2. Kasabwala K, Agarwal N, Hansberry DR, Barades S, Eloy JA: Readability assessment of patient education materials from the American Academy of Otolaryngology–Head and Neck Surgery Foundation. Otolaryngol Head Neck Surg 2012;147:466–471.
3. Weiss BD: Health literacy and patient safety: help patients understand. Manual for Clinicians (ed 2). Chicago, American Medical Association, American Medical Foundation, 2007.
4. Pike R: How to write easy-to-read health materials. U.S. National Library of Medicine. https://medlineplus.gov/et.html.
5. Bergman J, Gore JL, Singer JS, Anger JT, Litwin MS: Readability of health related quality of life instruments in urology. J Urol 2010;183:1977–1981.
6. Atcherson SR, Richburg CM, Zracki RI, George CM: Readability of questionnaires assessing listening difficulties associated with (central) auditory processing disorders. Lang Speech Hear Serv Sch 2013;44:48–60.
7. Homan S, Hewitt M, Linder J: The development and validation of a formula for measuring single-sentence test item readability. J Educ Meas 1994;31:349–358.
8. Betschart P, Acht D, Schmid HP, Viktorin P, Langenauer J, Zumstein V: Readability assessment of commonly used urological questionnaires. Investig Clin Urol 2018;59:297–304.
9. Ware JR Jr, Sherbourne CD: The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992;30:473–483.
10. Ware JR Jr: SF-36 health survey update. Spine (Phila Pa 1976) 2000;25:3130–3139.
11. Calderon JL, Morales LS, Liu H, Hays RD: Variation in the readability of items within surveys. Am J Med Qual 2006;21:49–56.
12. Bamberger R, Vanecek E: Lesen-Verstehen-Lernen-Schreiben. Die Schwierigkeitstufen von Texten in deutscher Sprache. Jugend und Volk Verlagsgesellschaft, Wien, 1984.
13. McLaughlin GH: SMOG grading: a new readability formula. J Reading 1969;12:8.
14. Johnston CH: Readability of scientific papers in 11 languages. Read Res Quart 1983;18:480–493.
15. AmstadT: Wie verständlich sind unsere Zeitungen? Dissertation, Universität Zürich, 1978.
16. eProvide Online Support for Clinical Outcome Assessments. Lyon: SF-Qualitativ-Qualitativ Short Form. https://eprovide.mapitrust.org/instruments/qualitativ-short-form.
17. Bristol Urological Institute: International Consultation on Incontinence Modular Questionnaire (ICIQ). http://www.iciq.net/index.html.
18. Selbsthilfegruppe Erektile Dysfunktion: Definition der erektilen Dysfunction (ED). http://www.impotenz-selbsthilfe.de.
19. ICA-Deutschland e.V: Förderverein Intersitial Cystitis. https://www.icad-eu.de.
20. Schneider H, Braehler E, Ludwig M, Hochreiter T, Collins MF, Eremenco S, Weidner W: Two-year experience with the german-translated version of the NIH-CPSI in patients with CP/CPPS. Urology 2004; 63:1027–1030.
21. Whiltink J, Hauck EW, Phadayan M, Weidner W, Beutel ME: Validation of the German version of the International Index of Erectile Function (IIEF) in patients with erectile dysfunction, Peyronie’s disease and controls. Int J Impot Res 2003;15:192–197.
22. Dalziel K, Leveridge MJ, Steele SS, Izard JP: An analysis of the readability of patient information materials for common urological conditions. Can Urol Assoc J 2016;10:165–170.170.
23. Betschart P, Zumstein V, Bentivoglio M, Engel G, Schmid HP, Acht D: Readability assessment of online patient education materials provided by the European Association of Urology. Int Ulr Nephrol 2017;49:2111–2117.
24. Kandula S, Zeng-Treitleir Q: Creating a gold standard for the readability measurement of health texts. AMIA Annu Symp Proc 2008: 353–357.
25. Betschart P, Zumstein V, Hasan Ali O, Schmid HP, Acht D: Readability assessment of patient education material published by German-Speaking Associations of Urology. Urol Int 2018;100:79–84.
26. Fleisch R: A new readability yardstick. J Appl Psychol 1948;32:221–233.
27. Brookes ST, Donovan JL, Wright M, Jackson S, Abrams P: A scored form of the Bristol Female Lower Urinary Tract Symptoms questionnaire: data from a randomized controlled trial of surgery for women with stress incontinence. Am J Obstet Gynecol 2004;191:73–82.
28. Abrams P, Avery K, Gardener N, Donovan J, Board IA: The International Consultation on Incontinence Modular Questionnaire: www.iciq.net. J Urol 2006;175:1063–1066.
29. Bonniaud V, Bryant D, Parratte B, Guyatt G: Development and validation of the short form of a urinary quality of life questionnaire: SF-Qualitativ. J Urol 2008;180:2592–2598.
30. Patrick DL, Martin ML, Bushnell DM, Yalcin I, Wagner TH, Buesching DP: Quality of life of women with urinary incontinence: further development of the incontinence quality of life instrument (I-QOL). Urol 1999; 53:71–76.
31. Barry MJ, Fowler FJ Jr, O’Leary MP, Bruske-witz RC, Holtgrewe HL, Mebus WK, Cock-ett AF: The American Urological Association symptom index for benign prostatic hyperplasia. The Measurement Committee of the American Urological Association. J Urol 1992;148:1549–1557.
32. Bonniaud V, Parratte B, Ane SA, Mav-owska D, Didier JP, Guyatt G: Measuring quality of life in multiple sclerosis patients with urinary disorders using the Qualiveen questionnaire. Arch Phys Med Rehabil 2004; 85:1317–1323.
33. Lubeck DP, Whitmore K, Sant GR, Alva-rez-Horine S, Lai C: Psychometric validation of the O’Leary-Sant interstitial cystitis symptom index in a clinical trial of pentosan polysulfate sodium. Urology 2001;57(6 Suppl 1): 62–66.
34. Clemens JQ, Calhoun EA, Litwin MS, McNaughton-Collins M, Dunn RL, Crowley EM, Landis JR: Rescoring the NIH chronic prostatitis symptom index: nothing new. Prostate Cancer Prostati Dis 2009;12:285–287.
35. Rosen RC, Riley A, Wagner G, Osterloh IH, Kirkpatrick J, Mishra A: The International Index of Erectile Function (IIEF): a multidimensional scale for assessment of erectile dysfunction. Urology 1997;49:822–830.
36. Rosen RC, Cappelleri JC, Smith MD, Lipsky J, Pena BM: Development and evaluation of an abridged, 5-item version of the International Index of Erectile Function (IIEF-5) as a diagnostic tool for erectile dysfunction. Int J Impot Res 1999;11:319–326.