Dynamical masses of two young globular clusters in the blue compact galaxy ESO 338–IG04

Göran Östlin, Robert J. Cumming, and Nils Bergvall

1 Stockholm Observatory, AlbaNova University Center, Stockholms Center for Physics, Astronomy and Biotechnology, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden. e-mail: ostlin@astro.su.se, robert@astro.su.se

Received ; accepted 26 September 2006

Abstract.
We present high-resolution échelle spectroscopy, obtained with the UVES spectrograph on ESO/VLT, of two luminous star clusters in the metal-poor blue compact galaxy ESO 338–IG04 at a distance of 37.5 Mpc. Cross-correlating with template stars, we obtain line-of-sight velocity dispersions of 33 and 17 km s$^{-1}$. By combining with size estimates from Hubble Space Telescope images we infer dynamical masses of 1.3 \times 107 M$_\odot$ and 4.0 \times 106 M$_\odot$ for the two clusters, making them among the most massive known. The less massive cluster is the faintest cluster for which a dynamical mass has yet been obtained. In both clusters we detect Balmer absorption lines which we use to estimate their ages. From the younger (~ 6 Myr) and more massive cluster, we detect HeΠ λ4686 emission of intermediate width, indicating the presence of very massive O-stars. Moreover, analysis of the [O$\ III$] λ5007 and Hα emission lines from the region near the younger cluster indicates that it is associated with a bubble expanding at \sim 40 km s$^{-1}$. We also see from the Na$\ I$ D absorption lines indications of neutral gas flows towards the younger cluster. We compare the dynamical masses with those derived from photometry and discuss implications for the stellar initial mass function (IMF) in each cluster. Both clusters are compatible with rather normal IMFs which will favour their long-term survival and evolution into massive bona fide globular clusters.

Key words. galaxies: evolution – galaxies: individual: ESO338–IG04 (= Tol 1924-416) – galaxies: starburst – galaxies: star clusters – galaxies: stellar content

1. Introduction

Super star clusters (SSCs) are important sites for star formation in starburst galaxies (Arp and Sandage 1995, Meurer et al. 1995), and may be the progenitors of globular clusters (GCs). Different observational techniques have been used to investigate the nature and history of these objects. High resolution imaging, notably with the Hubble Space Telescope (HST), has been used to collect photometry and to estimate the sizes of many SSCs (Whitmore 2003). Photometry, in combination with spectral evolutionary synthesis models, has also been used to estimate cluster ages and masses (Östlin et al. 1998). While many such photometric masses have been determined, only a small fraction of extragalactic SSCs and GCs have dynamical mass estimates. Taken together, measurements of the photometric and dynamical masses can allow constraints on the stellar initial mass function (IMF) and the dynamical state in these objects.

The spectrum of a cluster can provide other information about the stellar population. For example, González Delgado et al. (1997) inferred a population of Wolf-Rayet stars in the massive cluster NGC 1569-A, and Origlia et al. (2001) used ultraviolet spectra to show that the same cluster has a population of O-stars.

High-resolution spectra can be used to measure the velocity dispersion, and, assuming virialisation, to estimate dynamical masses for SSCs and GCs. Ho and Filippenko (1996a, 1996b) were first to use the cross-correlation method described by Simkin (1974) and Tonry and Davis (1979) to measure the velocity dispersions of NGC 1569-A (giving a kinematic mass of 3.3 \times 105 M$_\odot$) and the SSC in NGC 1705 (8.2 \times 104 M$_\odot$). The same method has been applied to M82-F by Smith and Gallagher (2001).
Fig. 1. Acquisition. **Upper left:** HST/WFPC2 image of ESO 338–IG04 in the F814W band, rotated to match the position angle used for our UVES observations. The orientation is indicated and the two main targets for the spectroscopy discussed in this paper are labelled. **Upper right:** Enlargement of the upper left image showing the slit location, the main targets and some other nearby clusters. The width of the slit is 0.7″. The clusters have been identified with the index number used by Östlin et al. (1998). All but #34 belong to their ‘inner sample’. **Lower left:** The image in the upper left panel, convolved with a Gaussian kernel the same size as the seeing (FWHM=0′′.65) to simulate the actual observing conditions. **Lower right:** Slit view image from the red camera of UVES. The slit is the horizontal bright bar, and has a length of 11″. The bright foreground star on the right was used for offsetting in the acquisition.

1.2 × 10^6 M₀, to five clusters in NGC 4214 and NGC 6946 by Larsen et al. (2001, 2004) 0.2 – 1.8 × 10^6 M₀), by Gilbert and Graham (2002) to clusters A1, A2 and B in NGC 1569 (3.9 × 10^5 M₀, 4.4 × 10^5 M₀ and 2.3 × 10^5 M₀, respectively) and by McCrady, Gilbert and Graham (2003) to two SSCs in M82 (1.5 × 10^6 M₀ and 3.5 × 10^5 M₀). Mengel et al. (2002) measured the dynamical masses of five SSCs in NGC 4038/4039 (0.65 – 4.7 × 10^6 M₀) by fitting model spectra in the near-IR and optical. Maraston et al. (2004) presented a dynamical mass estimate of as much
as $8 \times 10^7 M_\odot$ for the cluster W3 in NGC 7252, which may possibly be a dwarf galaxy. Bastian et al. (2004) found masses of $1.6 \times 10^7 M_\odot$ for both W30 in NGC 7252 and G114 in NGC 1316, and present a compilation of previously published results (their Table 6).

A possibly related class of objects are the nuclear star clusters found in many bulgeless spiral galaxies (e.g. Walcher et al. 2015), some of which appear to be very massive but which probably have more extended star formation histories than GCs and SSCs.

ESO 338–IG04, also known as Tol 1924-416, is a luminous ($M_B = -19$) blue compact galaxy (BCG) — the closest in a class of galaxies that are rare in the local universe but that become increasingly important towards higher redshifts and the peak in the cosmic star formation rate at $z \sim 1$ (e.g. Werk et al. 2014). ESO 338–IG04 shows both vigorous star formation and a rich population of more than 100 young SSCs and old globular clusters (Ostlin et al. 2001). Analysis of the age distribution of these clusters shows evidence that at least one strong starburst occurred in the past, a couple of Gyr ago, and the present starburst has probably been active for about 40 Myr (Ostlin et al. 2003). In addition ESO 338–IG04 hosts a population of cosmologically old (age ≤ 10 Gyr) globular clusters. What makes ESO 338–IG04 particularly interesting as a star cluster formation laboratory is its combination of small reddening, many clusters, and a low metallicity $(12 + \log(O/H) = 8.0)$. Compared to other metal-poor star-forming galaxies in the local universe (such as NGC 1569, NGC 1705, and He 2-10) the clusters in ESO 338–IG04 are more luminous and numerous. The present starburst has been triggered by a small merger or interaction with its companion galaxy (Ostlin et al. 2001, Cannon et al. 2004). Hence ESO 338–IG04 offers the possibility of directly studying globular cluster formation associated with hierarchical galaxy evolution, at a low metallicity.

In this paper, we report high-dispersion échelle spectroscopy of two of these clusters, labelled Inner-#23 and Outer-#34 by Ostlin et al. (1998). Hereafter, we refer to them simply as #23 and #34. Cluster #23, a young blue cluster situated in the centre of the starburst region, is the most luminous in the whole galaxy ($M_V = -15.5$). Cluster #34 is of intermediate age, ~ 1 Gyr, but still very luminous ($M_V = -12.8$), which led Ostlin et al. (1995) to suspect a mass in excess of $10^7 M_\odot$. Here, we use high-dispersion VLT/UVES spectroscopy to make dynamical mass estimates and new age estimates for both clusters. These two clusters were selected since they represent the most luminous of the young and intermediate age clusters, respectively, and could be observed in a single UVES slit.

The outline of the rest of the paper is as follows. In Sect. 2 we describe the observations and reductions. In Sect. 3 we show the results obtained; subsection 3.4 in particular describes how we obtained estimates of the velocity dispersions of the clusters through cross-correlation techniques. In Sect. 4 we discuss the inferred dynamical masses and compare with results derived from photometry. Sect. 5 summarises our conclusions.

2. Observations and reductions

2.1. UVES-spectroscopy

Our spectra were taken on 2000 June 15 using the échelle spectrograph UVES mounted on the telescope Kueyen (UT2) of the Very Large Telescope, at the European Southern Observatory’s Paranal site. The observations were performed in service mode. The seeing was typically 0.6″.

We placed the slit at a fixed position angle of 42°.6 in order to capture the spectra of both cluster #23 and #34 in the same exposure (see Fig. 1). To minimise contamination from other sources in this crowded starburst environment, we used a slit width of 0.6″. The slit lengths used were 8″ and 11″ for the blue and red cameras, respectively. The atmospheric dispersion corrector in UVES was used to minimise slit losses due to differential refraction.

Using the dichroic setting DIC1 with cross-dispersers CD2 and CD3, we covered the optical spectrum from 3280Å to 6660Å at a resolution of $R \sim 60000$. We binned the CCD pixels 2 \times 2 to lower the influence of the readout noise, which resulted in a spatial scale of 0″.50 for the blue arm and 0″.36 per pixel for the red arm. A total of eight 2000-second exposures were taken. The data were reduced using the UVES pipeline, with extraction and sky windows modified to allow for the extraction of two non-centred sources. Our wavelength calibration, done by comparison with ThAr lamps, should be accurate to better than 0.02 Å, or about 1 km s$^{-1}$.

Using the same instrumental set-up, we observed five template stars (for details, see Table 1). Two of these, HR 7706 and HR 7749, were observed on 2000 April 22; the rest were observed on the same night as the cluster observations.

2.2. Source extraction

Special care was taken with the background subtraction, though the small size of the slit and the complex H I region emission meant that the subtraction is unreliable in the vicinity of strong emission lines. This is also due to the intrinsically different spatial distribution of nebular emission and the stellar continuum (see Ostlin et al. 2003 and Fig. 9). Spectra were extracted using average extraction, centred on the continuum of the clusters. The extraction windows were 3 and 5 pixels wide for the blue and red arm spectra, respectively. We extracted the spectra for both the clusters and the template stars in this way.

While clusters #23 and #34 are well-separated on the sky, light from a number of other sources was also collected by our slit (see Fig. 1). In particular, we expect a contribution from at least two more clusters from the...
Table 1. Template stars

Designation	Type and class	Radial velocity (km s\(^{-1}\))	Reference
HR 6961	K4\,i	~2.291	Nidever et al. (2002)
HR 7277	K1\,i	+2.8	Ochsenbein (1980)
HR 7706	K1\,iii	+1.0 ± 0.3	This work
HR 7749	F5\,v	~30.8	Kharchenko et al. (2003)
HR 8299	G5\,iii	~57.1 ± 0.4	This work

Note: (1) All references are to catalogues available at the VizieR website, http://vizier.u-strasbg.fr/ (Ochsenbein, Bauer and Marcout 2000).

inner sample of Östlin et al. (1998): numbers 24 and 27 (#24 and #27, see Fig. 1). Both are slightly offset from the centre of the slit and we estimate that about 50% of the flux from #24 and about 15% of that from #27 are collected by our extraction window. Both clusters are however fainter than #23, by 4.2 and 2.1 magnitudes, respectively, in the F555W filter (Östlin et al. 1998). Based on this we estimate that on the order of 1% or less of the flux from #23 has its origin in each of #24 and #27. Contamination from known sources should thus not be a problem.

Nevertheless, since #23 is located in a crowded area, we also tried using narrower extraction windows (width 1 pixel for the blue arm, and 3 pixels for the red arm) with the centre offset by 1 pixel to the north-east, where the crowding is less severe (see Fig. 1).

2.3. HST Imaging

In addition to the UVES spectra, we used images from the Hubble Space Telescope obtained with the Planetary Camera (PC) aperture of the WFPC2 in the F218W, F336W, F439W, F555W and F814W passbands. These data are described fully in Östlin et al. (1998 and 2003).

We used these images to estimate the sizes of the two clusters, and to constrain their age and photometric mass from comparison with spectral evolutionary synthesis models. The photometry used in the current paper differs slightly from that of Östlin et al. (1998) in that we have optimised the photometric parameters specifically for these two clusters and also corrected for the charge transfer (in)efficiency of WFPC2 (Whitmore et al. 1999a; Dolphin 2000) using the web-based tool CTE Tool #1\(^2\) by Andrew Dolphin. This effect is noticeable for faint sources on low backgrounds and is here important mainly for the F336W magnitude of #34 where it amounts to ~0.06 magnitudes.

3. Results

3.1. The spectrum of cluster #23

Figure 2 shows parts of the spectrum of cluster #23. The spectrum shows a stellar continuum with superimposed narrow emission lines and a few emission lines of intermediate width. The narrow emission lines come from extended emission close to the cluster. Background subtraction across this emission was not always successful, leading to the spurious absorption features seen in some of the emission lines.

The narrow line emission presumably originates from a combination of H II regions and supernova remnants. We have identified lines of H\,i, He\,i, [N\,ii], [O\,ii], [O\,iii], [Ne\,iii], [S\,ii], [S\,iii] and [Fe\,iii]. The ratio of [O\,ii] \(\lambda\)3729 to A3726 indicates a emitting electron density of around 150 cm\(^{-3}\).

In addition, broader emission is seen in He\,ii \(\lambda\)4686 (FWHM ~ 460 km s\(^{-1}\)) and possibly C\,iv \(\lambda\)4658 (blended with narrower [Fe\,iii]). The line widths we see here are comparable to those seen in Of stars, but narrower than in Wolf-Rayet stars (cf. Nota et al. 1996).

Stellar absorption lines with broad wings are seen in the Balmer series. Narrower absorptions are seen in He\,i, Na\,i D (both at the redshift of ESO 338–IG04 and at zero redshift from the local Galactic ISM) and Ca\,ii K. A num-

\(\text{Fig. 2. Part of the spectrum of cluster #23 with line identifications. The spectrum has not been flux-calibrated. Note the absorptions in the Balmer series and the broad emission line in He\,ii \(\lambda\)4686.}\)
ber of other absorption features are apparent towards the red parts of the spectrum, in particular at 5168/5172 Å (Mg i), 5185 Å (Mg i, MgH), and also at 6138/42 Å and 6496 Å.

3.2. The spectrum of cluster #34

Cluster #34 was detected with much poorer signal-to-noise ratio than #23. Its spectrum shows Na i D absorption lines, the Mg i doublet at 5168/5172 Å, and a number of other features also seen in the template stars. No broad emission lines of the type seen in cluster #23 were detected, though features with the same equivalent widths (EW) could easily be hidden in #34’s noisier spectrum.

3.3. Cluster ages from Balmer lines

We have estimated the ages of the clusters by fitting the model spectra of González Delgado and Leitherer (1999) to the Balmer and He i line spectrum around Hδ and in the region from H8 to H11.

First we smoothed our spectra to match the resolution of the models. Comparing the models with the smoothed data, we located the combination of effective temperature and surface gravity which gave the best fit to the observed line spectrum. Since the line cores are dominated by emission in our data, we matched based on the broad lines.

For cluster #23 we get $T_{\text{eff}} = 3.75 \pm 0.5 \times 10^4$ K (corresponding to late O stars), log $g = 4.5-5$; and for #34 we get $T_{\text{eff}} = 1.5 +0.7,-0.3 \times 10^4$ K (late B stars), log $g = 4.5-5$. In Figures 3 and A we show some of these fits. Adopting log $g = 4.5$, we estimated the equivalent widths of the Hδ and H8 lines using the data in Tables 4 and 5 of González Delgado and Leitherer (1999). We obtain, for #23, $W_{\text{Hδ}} = 3.6^{+0.8}_{-0.6}$ Å and $W_{\text{H8}} = 2.8^{+0.4}_{-0.5}$ Å, and for #34, $W_{\text{Hδ}} = 12^{+6}_{-4}$ Å and $W_{\text{H8}} = 9^{+3}_{-3}$ Å.

Finally, we estimated the age of each cluster by comparing these equivalent widths derived from Hδ and H8 with the values for different instantaneous population ages presented by GDL99 (their Table 5, for $Z=0.001$ and a Salpeter (1955) IMF3 with mass range 1 to 80 M_\odot). We obtain log $t(\text{yr}) = 6.8 \pm 0.2$ for cluster #23, or 6^{+2}_{-2} Myr.

This metallicity is slightly lower than the ISM abundance of ESO 338–IG04, which could lead us to underestimate the age slightly. Moreover, one may speculate that the high dynamical mass of #23 (see Sect. 3.7) could allow some self-enrichment with the result that this cluster would be richer in metals than its environment. On the other hand, the use of an upper mass limit of 80 M_\odot, as in the GDL99 model, would lead to an underestimate of the age if the true IMF were to extend to 120 M_\odot.

For the fainter cluster #34, we cannot set very stringent limits on the age. One reason is the noisy spectrum, leading to uncertain EW estimates. In addition,

\footnote{We parameterise the IMF as a power law, $dN/dM \propto M^{-\alpha}$, where a Salpeter IMF has $\alpha = 2.35$}

the Balmer line absorption EW of a low-metallicity stellar population increases with time up to an age ~ 1 Gyr, after which it decreases again (Bica and Alloin 1986). Based on the GDL99 models, the estimated EW indicates an age ~ 0.3 Gyr, with a lower limit on the age of 50 Myr. Comparing also with the empirical Hδ data from Bica and Alloin (1986), we find for #34 an allowed age range from about 0.5 to 3 Gyr.

As a consistency check, we compared the effective temperature of the best-fitting models to the effective temperature at the main-sequence turnoff in the models of Bertelli et al. (1994). Stars at the turnoff are expected to dominate the blue light from the clusters. This estimate gives log $t(\text{yr}) = 6.8 \pm 0.25$ for cluster #23. For #34 we obtain log $t(\text{yr}) = 8.6 \pm 0.6$ for a low metallicity ($Z = 0.001$) and ~ 0.5 dex lower for a high metallicity ($Z = 0.02$).

Thus we find an age of ~ 6 Myr for cluster #23, and a rather generous age span for #34. These results are consistent with our photometric modelling (Östlin et al. 2003), which we discuss in Sect. 4.

3.4. Cross-correlation analysis: radial velocities and line-of-sight velocity dispersions

To estimate the radial velocities and line-of-sight velocity dispersions of the two clusters, we cross-correlated their spectra with a number of template stars, following the

![Fig. 3. Normalised spectrum of cluster #23, with superimposed models of González Delgado and Leitherer (1999). We show models for log $g = 4.5$ and effective temperatures of 30000 K (thin solid line), 35000 K (thick solid line), 40000 K (broken line) and 45000 K (dotted line). For ease of comparison, the slope of the model spectrum shortward of 3940 Å has been adjusted to match the data.]
Fig. 4. As Figure 3 but for cluster #34. Here the models have effective temperatures of 10000 K (thin solid line), 15000 K (thick solid line) and 20000 K (broken line).

Fig. 5. Part of the spectra of the two clusters, showing the region around the Mg i triplet, compared to the same region in the five template stars. The spectra have been smoothed with a 9-pixel boxcar and shifted to a rest wavelength scale for clarity of presentation.

3.4.1. Selecting the proper template stars

For the cross-correlation method to yield trustworthy measurements of the velocity dispersion, the absorption line spectrum should be dominated by stars with intrinsically narrow lines common to both the target and the template star. Cool giants and supergiants are likely to be the best templates.

At the age of cluster #34, we expect the luminosity to be dominated by late-type giants, which suggests that the optimum template star should be of this type. Cluster #23 is much younger, but following the discussion in Ho and Filippenko (1996a), we still expect its absorption line spectrum in the visual wavelength region to be dominated by red supergiants. Examination of the high resolution spectra of local stars presented by the UVES Paranal Observatory Project (uvespop; Bagnulo et al. 2003) confirms that in our wavelength range, only stars of spectral type later than A are likely to contribute significantly to the observed absorption line spectrum.

As an independent quantitative check, we used Starburst99 (Leitherer et al. 1999; see below) to calculate the contributions from stars of different spectral types to some of the well-known Lick indices (Worthey et al. 1994). Although these are defined for resolutions much lower than ours, the type of stars that dominate a particular index should also dominate the individual lines that make up the index. The cross-correlation method should also be sensitive to these lines. Equally, a spectral type that gives a negligible contribution to the indices in the visual wavelength region is unlikely to contaminate the cross-correlation signal.

At the Starburst99 website it is possible to run simulations that output the number of stars for each spectral type and luminosity class, as a function of age. We ran a few such models (see Table 2) and used this information, together with the luminosity and temperature relations from Drilling and Landolt (2000) and the fitting functions of Worthey et al. (1994), to predict the relative contribution to the Lick indices from stars of different spectral types as a function of stellar population age. Model G1 has the same tracks and metallicity as the standard model used in Östlin et al. (2003) for estimating stellar populations in the clusters in ESO338–IG04. Models P1 and P2 bracket model G1 in metallicity, and also bracket the observed nebular abundance for ESO 338–IG04. Finally, model P3 has a lower upper mass limit; in Sect. 4.1 we discuss the possibility of an IMF devoid of very massive

4 IRAF (Image Reduction and Analysis Facility) is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the US National Science Foundation.

5 http://www.stsci.edu/science/starburst99/
stars. All models use a lower mass limit of 0.1 M⊙ and an IMF with slope $\alpha = 2.35$.

We found that for all ages, only spectral types later than A contribute to the indices in the spectral region 4600-6540 Å. For models P1, P2 and G1 and ages younger than 4 Myr, these indices are dominated by main sequence stars of class F, G and K. Later, red supergiants (RSGs) take over completely, and only after 15 Myr do giants and supergiants of spectral type earlier than K contribute. If the cluster has an IMF lacking very massive stars, as in our model P3, the situation is somewhat different. Here the main sequence stars of types F to K dominate longer, up to ages of just over 10 Myr, after which RSGs take over. This is understandable since less massive stars take longer to evolve off the main sequence. Hence, if the high-mass IMF is truncated at $M_{up} = 20 M_\odot$, our F V template star would be the best choice for cross-correlation. However, a low-resolution long-slit spectrum of #23 taken with VLT/FORS2 (Cumming et al. 2006, in prep.) shows the presence of the Ca II near-IR triplet, with an equivalent width of several Å. This indicates that red giants or supergiants must be present (Díaz et al. 1994). The Starburst99 models also predict that strong Ca II triplet absorption lines develop when RSGs appear.

In summary, even though #23 is young, we can still safely assume that red supergiants dominate the absorption features we see, and that such stars should be used as template stars for cross-correlation.

Cluster #34 is somewhere in the range 0.3 to 1.4 Gyr old, depending on metallicity (see Sect. 3.3 and 12). For such ages, our analysis using Starburst99 indicates that the absorption features in the visual wavelength region are dominated by red giants of luminosity classes II and III, with a contribution from main sequence stars of types F to K. Hence a mix of all the template stars in Table 1 would seem appropriate.

A remaining potential problem is the macroturbulence broadening in our template stars may differ from the macroturbulence characteristics of the cluster stars. This difference may be of the order of 1-3 km s$^{-1}$ for giants and supergiants (Gray 1981 Gray and Toner 1987) and somewhat larger for main sequence stars (Gray 1981). Since giants and supergiants are likely to dominate the line widths in both clusters, the importance of macroturbulence will be small, and will not be considered further.

Table 2. Starburst99 models used to test which stellar types dominate the absorption line features in the spectral region 4600-6540 Å.

Model	Tracks	Z	M_{up} (M⊙)
P1	Padova	0.004	120
P2	Padova	0.0004	120
P3	Padova	0.004	20
G1	Geneva	0.001	120

Table 3. Spectral regions used for cross-correlation in this paper in the rest frame of ESO 338-IG04. ‘G’ and ‘R’ refer to the short and long wavelength detectors, respectively, of the UVES red arm, avoiding the strongest emission lines and telluric absorption. Weaker emission lines remaining have been masked out. The subscripts ‘B’ and ‘R’ correspond to the ‘blue’ and ‘red’ parts of each region.

Rest wavelength range (Å)	Name
4606-4952, 5023-5552	G
5023-5552	G_R
5665-6273, 6320-6544	R
5665-6273	R_B
6320-6544	R_R

3.4.2. Selecting the optimum wavelength region

We used fxcor to carry out separate cross-correlations for a number of different wavelength regions.

Prior to cross-correlation, we masked out strong emission lines, telluric absorption features, and absorption in the Na D lines (see discussion in section 3.5 below). The spectrum of #23 shortward of 4745 Å is contaminated by nebular emission and early-type stars. For cluster #34, this part of the spectrum has in addition poor signal-to-noise ratio. We therefore omitted this spectral region from the cross-correlation analysis.

We show the names and ranges of the spectral regions we have used in Table 3. Inspection of the spectra (see for example Figure 5) showed that those features which are visible above the noise in the cluster spectra tend also to be present in all our template stars, though with different strengths. All the template stars gave a positive cross-correlation signal between 4606 Å and 6545 Å, and always at the same radial velocity, to within ±4 km s$^{-1}$. The blue part of region G (4606-4952 Å) gave less reliable results, and will not be further considered. We found that the best cross-correlations were obtained if we filtered out the lowest frequencies in the spectrum. For this we used a ramp filter rising from zero to unity at wavenumber 90 (40) for spectral regions G and G_R (R_B, R and R_R).

For both clusters, the highest cross-correlation signal was obtained for spectral region G_R, irrespective of which template star was used. Figures 5 and 7 show examples of cross-correlation functions (CCFs) for one of the template stars, HR 6961. These figures illustrate how the CCF peak amplitudes differ between wavelength regions. The CCF peak amplitudes for region G_R are always significantly larger than regions G, R_B and R_R, which have peak values similar to that for R.

The arguments for the choice of template star presented in Sect. 3.4.1 based on the analysis using Starburst99, are of course best founded for wavelength regions that include some of the Lick indices (Worthey et al. 1994). This is fulfilled for region G_R, about half of whose wavelength range is covered by these indices. The
other wavelength regions defined in Table 3 are clearly less suitable from this point of view. While region \(R_{B} \) contains five defined indices, two are TiO and one is Na D, which we have masked out to avoid contamination by interstellar absorption. The TiO lines could be problematic since they are strong only in very cool stars with later spectral type than any of our template stars, but which may nevertheless be present in our clusters (e.g. M giants and supergiants). In summary, region \(G_{R} \) appears to be the safest to use. It is also the wavelength region which contains most of apparent absorption features and for which the strength of the cross-correlation data is clearly the strongest.

Fig. 6. Examples of cross-correlation functions of cluster #23, here using the K4 supergiant HR 6961 as template star, in spectral regions \(R \) (top) and \(G_{R} \) (middle; see Table 3 for details) and in the region around the Na \(i \) D lines towards #23 (bottom). The ranges in rest wavelength used for each cross-correlation are shown by the horizontal bar in each plot: the bar stretches from 4500 Å to 7000 Å.

Fig. 7. Same as Figure 6, but for cluster #34 using the same template star. The upper panel shows spectral region \(R \), the lower panel \(G_{R} \).

Table 4. Notation for cross-correlation analysis.

Symbol	Definition
\(v_{\text{helio}} \)	Heliocentric radial velocity
\(W_{c} \)	Measured FWHM of the CCF peak
\(\Delta W \)	Estimated uncertainty of \(W_{c} \)
\(h \)	Peak value of the CCF
\(\Delta h \)	Tolerance in \(h \) matching
\(\sigma \)	Velocity dispersion
\(s_{W} \)	RMS scatter in \(W_{c} \) of derived \(W_{c} - \sigma \) relation
\(s_{\sigma} \)	RMS scatter in \(\sigma \) of derived \(W_{c} - \sigma \) relation

3.4.3. Calibrations and uncertainties

For each cluster, spectral region and template star, we measured the heliocentric radial velocity \((v_{\text{helio}}) \), the amplitude \((h) \) and full width at half maximum \((W_{c}) \) of the best Gaussian fit to the peak of the cross-correlation function. To estimate \(\Delta W \), the uncertainty in \(W_{c} \), we measured several measurements with \(\text{fxcor} \) of the width of each CCF peak, varying within plausible limits the baseline and velocity region for the fit, and taking the standard deviation of several measurements. Our notation is summarised in Table 4.

We measured \(v_{\text{helio}} \) independently for each cluster and template star, using accurate radial velocities from the literature (Table 1). Since the catalogue velocity of HR 8299 was only accurate to 10 km s\(^{-1}\), and no catalogue velocity was available for HR 7706, we cross-correlated these
Our clusters are however faint, and our CCFs peak at somewhat larger than ∆W. Hence the uncertainty in the derived σ values is not only due to uncertainty in measuring W, but includes a small additional component from the cross-correlation method itself. Hence, σ should give a realistic estimate of the uncertainty in each σ measurement, and these are the values quoted in parentheses in Table 5.

The derived velocity dispersions show some variation with template star, though where the CCF amplitude is highest (region G), the derived values of σ are gratifyingly similar. The F5v template star HR 7749 gives systematically lower values of σ for both clusters, but only towards the blue, where we expect more contamination from early-type stars. For these reasons, and those outlined in Sect. 3.4.2, we regard the blue part of the G window as less reliable and prefer therefore the results from region R. The higher measured dispersion in R could be due in part to contamination from the broader lines seen in for example Si II in some early-type stars (UVESPOP database, Bagnulo et al. 2003). However, a velocity dispersion that varies as a function of wavelength is not necessarily unphysical but may arise naturally due to mass segregation, although we do not claim that this is the reason for the present discrepancy.

As we argued in Sect. 3.4.1 early-type supergiants are not likely contributors to the absorption spectra in the visual region of either #23 or #34. We nevertheless carried out some tests with an A-type supergiant as template star, in order to further constrain the dependence of our results on the assumed template star. The A2 Iab star HD 102878 from the UVESPOP database (Bagnulo et al. 2003) was used for this purpose. We found that while this star gave ac-

6 We denote the RMS scatter in W and σ about the linear relation as sW and σ, respectively.
ceptable cross-correlation signals, indicating the same radial velocities as for our standard set of templates, we were unable to use it for obtaining a robust $\sigma - W_c$ calibration relation for our noisy data. Better results were obtained, however, for a hybrid template star which we constructed by adding HD 102878 and the K4 supergiant HR 6961 in proportions 1:4. This hybrid star produced radial velocities and σ fully consistent with those of our normal template stars. Hence, even if early-type stars could contribute to the continua, they would not contribute much to the CCF signal.

3.4.4. Results for cluster #23

In Tables 5 and 6 we present the resulting velocity dispersions and radial velocities for the different wavelength regions and template stars.

For #23, we find a weighted average value of $\sigma_{23} = 32.5 \pm 2.7$ km s$^{-1}$ in region G$_R$ (Sect. 3.4.3), when using all 5 template stars, and $\sigma_{23} = 32.5 \pm 2.3$ if we only use the two K supergiants (see discussion in Sect. 3.4.1). The uncertainty here includes both the uncertainty in each measurement (σ_i; the values quoted in parentheses in Table 6 see Sect. 3.4.3), and the smaller variation between results for different template stars (i.e. the standard deviation of the σ column in question). We use this method to estimate the total uncertainty in σ in what follows. For region R we find $\sigma_{23} = 37.1 \pm 3.4$ km s$^{-1}$ when using all stars and $\sigma_{23} = 36.7 \pm 3.1$ when using the K supergiants only. Combining the measurements from G$_R$ and R we obtain $\sigma_{23} = 34.4 \pm 3.8$ km s$^{-1}$ when using all stars, and $\sigma_{23} = 34.1 \pm 3.5$ km s$^{-1}$ when using only the K supergiants.

Following the discussion in Sect 3.4.1 giving higher weight to the K super giants, and noting the better quality of the G$_R$ data, we adopt as our best estimate $\sigma_{23} = 32.5 \pm 2.5$ km s$^{-1}$. We note that adopting a velocity dispersion of the magnitude implied from region R would produce a virial mass that is $25 \pm 25\%$ higher.

We find heliocentric velocities $v_{\text{helio,}23} = 2859.7$ km s$^{-1}$ in G$_R$ and 2855.2 in R, with a scatter between the five template stars that in both cases is only ~ 1 km s$^{-1}$. Restricting to K supergiants only makes no significant difference for $v_{\text{helio,}23}$. The output uncertainties on v_{helio} from fxcor are on the order of 4 km s$^{-1}$ in G$_R$ and 8 km s$^{-1}$ in R (see Table 6). The small star-to-star scatter suggests that the uncertainty is dominated by the quality of our cluster spectra rather than by template star mismatches. We note a systematic difference of ~ 4 km s$^{-1}$ between regions G$_R$ and R, that however is within the uncertainties. We base our final value on the G$_R$ data: $v_{\text{helio,}23} = 2859.7 \pm 4.4$.

To investigate possible contamination from other clusters, we compared cross-correlation results for the 1.8-arcsec extraction with the narrower, 1-arcsec wide, extraction around cluster #23 (see Sect. 2.2). The narrower extraction gives CCFs with poorer signal-to-noise ratio but very similar velocity dispersion in both G$_R$ and R. Also, the use of hybrid templates made from HD 102878 (A supergiant) and HR 6961 (K supergiant) produced very similar results ($\sigma_{23} = 30$ km s$^{-1}$ in both G$_R$ and R).

3.4.5. Results for cluster #34

For cluster #34 (Tables 5 and 6) the analysis was more straightforward. We measured $\sigma_{34} = 17.6 \pm 2.0$ km s$^{-1}$ in G$_R$ and 17.4 \pm 4.4, in R. Combining G$_R$ and R yields $\sigma_{34} = 17.5 \pm 2.8$ km s$^{-1}$.

For the radial velocities we find $v_{\text{helio,}34} = 2794.6 \pm 2.2$ km s$^{-1}$ in G$_R$ and 2791.7 \pm 5.6 in R, i.e. we see a similar systematic difference between G$_R$ and R as for cluster #23, but which again is within the uncertainties.

Given the better quality of the G$_R$ data, we adopt these results for σ_{34} and $v_{\text{helio,}34}$.

3.5. Evidence for ISM gas flows from Na I lines

We also carried out cross-correlations on the narrow spectral region 5874-5912 Å, which is dominated by the Na I D doublet. For cluster #23 this was successful (see Fig. 4), but the wavelength region was too short to yield anything useful in the more noisy spectrum of #34. Nor could we obtain a reliable velocity dispersion calibration. The result would in any case be difficult to interpret, since we might also expect a contribution from ISM absorption. The heliocentric velocity is well-determined and remarkably low. At 2845\pm7 km s$^{-1}$ it is 25 km s$^{-1}$ lower than that inferred from region G$_R$ along the same line of sight. Presumably, the Na I absorption we are seeing here is a combination of both stellar lines and cold interstellar medium moving at a speed of ~ 20 km s$^{-1}$ along the line of sight to the cluster (cf. Schwartz and Martin 2004). The emission lines also show evidence for a blue-shifted component (see Sect. 3.8).

3.6. Cluster sizes

We have measured the spatial extent of the two clusters using the HST images described and presented by Östlin et al. (1998).

To measure the sizes of #23 and #34 we used curves of growth extending from 0 to 5 Planetary Camera (PC) pixels. One PC pixel has a size of 0′′.0455 which corresponds to 8.27 pc at the adopted distance of ESO 338-IG04. We used observations in 4 passbands: F336W, F439W, F555W and F814W.

The growth curves were compared to model PSFs generated with Tiny Tim7 (Krist and Hook 2003) that we convolved with Gaussian profiles and King profiles with a concentration parameter $c = 2$.

Using the whole growth curve from 0 to 5 pixels, the resulting sizes are well-constrained. We find the best-fitting effective half-light radii to be $r_e = 5.2 \pm 1.0$ and 5.6 ± 0.4 km.

7 http://www.stsci.edu/software/tinytim
Table 5. Derived velocity dispersions in km s\(^{-1}\) for the two clusters, for each template star and spectral region. Errors are 1-sigma and are equal to the RMS scatter in the \(\sigma - W_r\) relation for each particular measurement, see text for details.

ref. star	Type/ class	G	GR	RB	R	RR
Cluster #23						
HR 6961	K4 Ib	33.4 (2.5)	32.3 (2.2)	27.4 (5.1)	36.2 (3.1)	38.6 (2.8)
HR 7277	K1 i	33.0 (3.2)	32.8 (2.4)	29.7 (6.7)	37.2 (2.9)	48.6 (7.8)
HR 7706	K1 III	32.5 (3.1)	31.3 (3.1)	29.3 (3.6)	33.2 (4.8)	41.1 (4.4)
HR 7749	F5 V	21.2 (2.7)	32.0 (2.4)	30.9 (3.5)	39.7 (3.9)	46.0 (6.2)
HR 8299	G5 III	35.4 (2.1)	34.6 (3.3)	39.5 (6.1)	37.7 (2.4)	43.8 (4.6)
Hybrid 1	K+A	31.9 (3.4)	29.9 (3.5)	29.4 (5.0)	30.2 (2.4)	37.5 (13)

Cluster #34						
HR 6961	K4 Ib	18.6 (2.4)	17.4 (2.0)	19.1 (2.8)	15.8 (3.0)	34.3 (19)
HR 7277	K1 i	18.2 (2.4)	17.6 (1.7)	16.2 (4.4)	11.0 (5.6)	18.2 (4.4)
HR 7706	K1 III	18.0 (2.5)	16.8 (3.0)	16.3 (3.5)	15.8 (3.5)	15.8 (8.0)
HR 7749	F5 V	9.1 (1.9)	17.4 (2.0)	16.0 (3.5)	22.1 (3.3)	55.8 (30)
HR 8299	G5 III	18.8 (1.7)	18.1 (1.8)	16.3 (3.5)	15.8 (2.7)	20.3 (32)
Hybrid 1	K+A	18.5 (2.3)	18.4 (2.4)	15.6 (8.2)	15.3 (2.4)	18.5 (15)

Note: (1) K4 Ib and A2 Iab in proportion 4:1.

Table 6. Derived heliocentric velocities in km s\(^{-1}\) for the two clusters, for each template star and spectral region. Errors are formal errors in Gaussian fitting to the CCF peak from fxcor.

ref. star	Type/ class	G	GR	RB	R	RR
Cluster #23						
HR 6961	K4 Ib	2860 (7)	2860 (4)	2858 (7)	2857 (7)	2855 (7)
HR 7277	K1 i	2857 (7)	2858 (4)	2855 (6)	2854 (7)	2853 (7)
HR 7706	K1 III	2860 (8)	2861 (5)	2857 (9)	2856 (9)	2856 (9)
HR 7749	F5 V	2858 (8)	2860 (5)	2857 (8)	2854 (9)	2853 (8)
HR 8299	G5 III	2859 (7)	2860 (4)	2857 (7)	2855 (7)	2854 (7)
Hybrid 1	K+A	2860 (7)	2859 (4)	2857 (8)	2857 (7)	2856 (7)

Cluster #34						
HR 6961	K4 Ib	2794 (4)	2795 (2)	2793 (5)	2792 (5)	2789 (14)
HR 7277	K1 i	2792 (4)	2793 (2)	2791 (5)	2790 (5)	2789 (5)
HR 7706	K1 III	2794 (4)	2796 (2)	2793 (7)	2793 (5)	2793 (5)
HR 7749	F5 V	2793 (4)	2794 (2)	2793 (7)	2790 (8)	2785 (13)
HR 8299	G5 III	2794 (3)	2795 (2)	2793 (6)	2793 (6)	2792 (5)
Hybrid 1	K+A	2794 (4)	2795 (2)	2792 (5)	2792 (5)	2791 (5)

Note: (1) K4 Ib and A2 Iab in proportion 4:1.

3.7. Virial masses

From the virial theorem, we can estimate the mass of a cluster if we know its velocity dispersion \(\sigma\) and its size. Assuming the cluster is in virial equilibrium, its mass is given by

\[
M_{\text{vir}} = k \sigma^2 r_m / G,
\]

(e.g. Spitzer 1987, Smith and Gallagher 2001, McCrady et al. 2003) where \(r_m\) is the half-mass radius. Taking \(k = 7.5, r_m = \frac{4}{3} r_e\) (Spitzer 1987), we find that the cluster masses are given by:

\[
M_{\text{vir}} = 2.324 \times 10^3 \left(\frac{\sigma}{\text{km s}^{-1}} \right)^2 \left(\frac{r_e}{\text{pc}} \right) M_\odot
\]

Specifically, for #23,

\[
M_{23} = 1.28 \times 10^7 \left(\frac{\sigma_{23}}{32.5 \text{ km s}^{-1}} \right)^2 \left(\frac{r_e}{5.2 \text{ pc}} \right) M_\odot
\]
and for #34,

$$M_{34} = 4.03 \times 10^6 \left(\frac{\sigma_{34}}{17.6 \text{ km s}^{-1}}\right)^2 \left(\frac{r_e}{5.6 \text{ pc}}\right) M_\odot$$

In Table 7 we summarise the properties of clusters #23 and #34, including the resulting dynamical mass-to-light ratios (M/L_V). The uncertainty intervals follow from a root-square-addition of the uncertainties in σ and r_e. Boily et al. (2003) discuss the evolution of $\eta = k \cdot r_m/r_e$ with time during the evolution of a cluster. For a cluster of the age of #23, i.e. ~ 5 Myr, Boily et al. (2003) find $\eta \approx 10$, which is what we have used above. For ages greater than 50 Myr, however, they predict $\eta \approx 20$ for models with high initial density.

3.8. Velocity structure in emission lines

The slit covers a region of strong emission from ionised gas. In Figure 9 we show a spectral image centred on [O III] $\lambda 5007$ showing that the ionised gas motions along the slit are complex. The same features are seen in Hα. The wavelength of the peak of the Hα and [O III] $\lambda 5007$ lines vary by almost 100 km s$^{-1}$ along the slit, but not in a monotonic fashion. Closer inspection reveals the presence of several velocity components at each position along the slit. For most positions at least three Gaussians appear to be needed to adequately reproduce the observed emission.

Figure 10 shows the Hα line profile at the location of #23. The line is very broad and clearly non-Gaussian, with peak intensity blue-shifted by 45 km s$^{-1}$ with respect to the velocity inferred from the absorption lines in #23. We fit three Gaussians to the observed profile and find, one narrow blueshifted component (at -40 km s$^{-1}$ with respect to the absorption line velocity), one redshifted component (at $+20$ km s$^{-1}$), and one broad ($\sigma = 65$ km s$^{-1}$) component with nearly the same velocity as #23. We see the same pattern in both Hα and [O III] 5007 Å.

Looking at the scan lines to the north-east of cluster #23 (above #23 in Fig. 9), the line is split into two components: one blueshifted and one redshifted with respect to the centre of the cluster. For the scan lines immediately below cluster #23, the blueshifted component dominates. The blue- and red-shifted components suggest a bubble expanding with a velocity of ~ 40 km s$^{-1}$. If we take a characteristic radius of 1" (see Fig. 9 and Sect. 3.1), the timescale for blowing such a bubble is ~ 5 Myr, which is of the same order as the age of #23. Our analysis here also shows that emission lines, being much broader than the cluster’s absorption lines, cannot reliably be used to infer the dynamical mass of associated clusters (cf. Turner et al. 2003). A few scan lines further down (marked with ticks in Fig. 9) we see high-velocity components, redshifted by 200 km s$^{-1}$ and 80 km s$^{-1}$. We finally note that cluster #34 has a stellar absorption line velocity which is 65 km s$^{-1}$ less than the ionised gas from the same position on the slit.

4. Discussion: Comparing cluster masses and ages from photometry and spectroscopy

The ages and photometric masses of the cluster population in ESO 338–IG04 have been investigated by Östlin et al. (2003). Here, we discuss the properties of cluster #23 and #34 in more detail, and compare with the virial mass estimates and age estimates based on our UVES spectra.

For the sub-population of young (age ≤ 20 Myr) clusters, Östlin et al. (2003) preferred a low metallicity for both the stellar and ionised gas components. This agrees with the nebular oxygen abundance of $12 + \log(O/H) = 8.0$ (Bergvall and Östlin 2002). Moreover, to reproduce the youngest clusters, the IMF needs to have a slope equal to or flatter than the Salpeter value ($\alpha = 2.35$) and an upper mass limit $M_{\text{up}} \geq 60 M_\odot$. We shall refer to this preferred metal-poor model as the “standard” model8 in the following sections.

In the absence of dark matter, the photometric and dynamical masses should agree. If this is not the case, the reason may be sought either in the determination of the dynamical mass (because of mass segregation, or non-equilibrium), or the photometric mass (IMF, stellar parameters). Below we discuss the photometric and dynamical masses of each cluster in this context.

4.1. Cluster #23

The standard model gives an age of 7 Myr, an internal reddening of $E_{B-V} = 0.05$ and a photometric mass of $5 \times 10^6 M_\odot$, i.e. significantly lower than the virial mass. By adopting a steeper IMF slope ($\alpha = 2.85$) or a low upper mass limit ($M_{\text{up}} = 20 M_\odot$), photometric masses in the range 2 to $6 \times 10^7 M_\odot$ can be produced.

The models of Zackrisson et al. (2001; 2003) that were used in Östlin et al. (2003) include nebular emission. However, the nebular emission produced by each cluster is assumed to be included in the photometric aperture, which has a radius of 0″.14, or 25 pc at the distance of ESO 338–IG04. This assumption appears to be valid for the majority of young clusters, but it does not hold for #23. This cluster alone accounts for just over 10% of the integrated starburst flux at 2000 Å and has ionised a large bubble (radius $\sim 1''$, i.e. nearly 200 pc), which, as we discussed in Sect. 3.8, is expanding (Figs. 9 and 10; see also Fig. 2 in Östlin et al. 2003 or Fig. 7 in Hayes et al. 2005). Since ionised gas dominates the luminosity output when the cluster is young (Bergvall and Östlin 2002), the total luminosity, and hence the photometric mass of #23 may be underestimated by at most a factor of about two (see Fig. 17 in Bergvall and Östlin 2002). For instantaneous bursts of age ~ 6 Myr, the correction to the mass is instead of the order $+25\%$. The displaced nebular emission also means that the results of the photometric modelling

8 Standard model: instant burst, IMF with slope $\alpha = 2.35$ (Salpeter) and mass range $0.08 - 120 M_\odot$, gas covering factor of unity, metallicity of stars and gas: $Z_{\text{gas}} = 0.002$, $Z_{\text{stars}} = 0.001$.

"Ostlin et al.: Dynamical masses of globular clusters in ESO338–IG04"
Table 7. Properties of clusters 23 and 34. The colours, absolute magnitudes and mass–to–light ratios are corrected for Galactic reddening according to Schlegel et al. (1998), but not for internal reddening.

Cluster no.	#23	#34
Absolute magnitude \(M_v\)	-15.5	-12.8
Colour \((v-i)\)	0.11	0.86
Effective radius \(r_e\) (pc)	5.2 ± 1.0	5.6 ± 0.4
Heliocentric velocity \(v_{\text{helio}}\) (km s\(^{-1}\))	2859.7 ± 4.4	2794.6 ± 2.2
Velocity dispersion \(\sigma\) (km s\(^{-1}\))	32.5 ± 2.5	17.6 ± 2
Virial mass \((10^6 M_\odot)\)	13 ± 3	4.0 ± 1
Mass-to-light ratio \((M/L_V)_\odot\)	0.093 ± 0.02	0.35 ± 0.09

Fig. 9. Two-dimensional spectrum around [O III] \(\lambda5007\) showing the complex velocity structure in the ionised gas. The x-axis is labelled with velocity in units of km s\(^{-1}\). The y-axis is the location along the slit, and the tick marks have a spacing of one arcsecond. The position of #23 is indicated by an arrow, and two high velocity structures are marked by short dashes.

for #23 are more uncertain than for most other young clusters in ESO 338–IG04.

Indeed, recent H\(\alpha\) photometry with HST/ACS (Östlin et al., in prep.), gives an integrated H\(\alpha\) luminosity for #23 (within the same aperture as above) of \(\sim 10^{32}\) W. For the electron density derived from our UVES spectra (Sect. 3.1), this implies a total ionised gas mass of \(\sim 10^4\) M\(_\odot\) or about one thousandth of the dynamical mass. We caution that the density is derived from a larger region where the nebular component is dominated by the more extended gas around #23, but the value is sufficiently small that we can conclude that the mass of ionised gas in #23 is negligible compared to the dynamical and stellar masses. Moreover, the H\(\alpha\) emission line equivalent width for #23 derived from the ACS images is only about \(\sim 50\) Å, much smaller than predicted for an age of \(\sim 7\) Myr (Starburst99, Leitherer et al. 1999). Hence, the ionising photons produced in #23 leak out over a much larger volume than the size of the cluster. Much of the ISM originally present in this cluster is likely to have been removed already.

Another reason for the discrepant masses could be that the cluster is not in virial equilibrium. This could be the case if the cluster is so young that it has not yet had time to virialise, or because supernova explosions have led to the prompt expulsion of gas from the cluster. In such cases its dynamical mass may be overestimated by a factor of up to 3, depending on the star formation efficiency (SFE) in the cluster, i.e. the mass fraction of gas initially present that was turned into stars (Bastian and Goodwin 2006). In the case of #23 we would infer a SFE of \(\sim 40\%\) for a stellar mass of \(5 \times 10^6\) M\(_\odot\). If we account for the displaced nebular emission, we obtain SFE > 50\%, the exact amount depending on the dynamical state of the cluster prior to gas expulsion. If the fraction of gas lost is larger than 70\% the cluster may dissolve completely, but even a cluster which remains bound will lose a few tenths of its initial stellar mass (Bastian and Goodwin 2006). Hence we expect #23 to remain bound but to lose a few tenths of its mass over the next \(\sim 50\) Myr.

Alternative constraints on the age and IMF can be obtained from the spectra presented in this paper. Our analysis of Balmer and He I absorption lines in Sect. 3.3 indicated an age of \(6^{+4}_{-2}\) Myr. The effect of adopting an IMF with relatively few massive stars is to increase the equivalent widths at young ages. A low upper mass limit \((M_{\text{up}}\geq 30 M_\odot)\) may still be marginally consistent with the data, but an IMF slope significantly steeper than the
Salpeter value predicts equivalent widths that are too high (see for example Fig. 11 in González Delgado et al. 1999).

More evidence for the presence of very massive stars comes from the detection of intermediate-width stellar He II 4686 line emission with equivalent width 0.8 Å. We see no obvious WR features but interpret this line as a signature of Of stars, which are very massive stars that may on their way to becoming WR stars (Nota et al. 1999, Schaefer and Vacca 1998). This observation makes an IMF with a low upper mass limit improbable, but is consistent with a Salpeter IMF and an age \leq 5 Myr (Schaefer and Vacca 1998, Leitherer et al. 1999).

We noted in Sect. 3.4.1 that the presence of strong calcium triplet absorption from #23 signals the presence of red supergiants. For a Salpeter IMF and low metallicity, the presence of RSGs indicates an age of \geq 5 Myr, whereas for an IMF with a low upper mass limit, the RSGs require that the cluster is older than 10 Myr. The simultaneous presence of RSGs and emission in He II 4686 is somewhat unexpected, but could be accounted for if the formation of the cluster extended over a few Myr, rather than being instantaneous. Similar scenarios have been presented for R136 (Massey and Hunter 1998) and NGC 3603 (Pandey et al. 2000). Moreover, recent stellar models which include rotation predict longer WR lifetimes (Meynet and Maeder 2005).

Fellhauer and Kroupa (2003) have proposed that the anomalously massive, intermediate-age cluster W3 in NGC 7252 may be the product of merging of several less massive clusters. Though the timescale for this to happen seems short in the case of #23, an earlier merger of young clusters could lead to the presence of stellar populations with different ages, and explain the simultaneous presence of Of stars and RSGs.

It is also quite possible that stellar evolution in a cluster as massive as #23 is different compared to a low-density environment. Numerical simulations of massive star clusters indicate that dynamical friction rapidly leads
to strong mass segregation and possibly merging of the most massive stars (e.g. Portegies Zwart et al. 1999). Massive-star mergers would likely have a sizeable impact on the early spectral evolution of such a star cluster.

In conclusion, we find strong support for an IMF of #23 that extends to high masses (on the order of 100 M_\odot) and has a slope not significantly steeper than the Salpeter value. The cluster’s photometric and dynamical masses are in reasonable agreement, when allowing for the fact that most of its associated nebular emission lies outside the photometric aperture, and the possibility that the cluster is not yet fully virialised. A more exotic possibility would be that the cluster contains of the order of 50% dark matter.

4.2. Cluster #34

Cluster #34 is much older than both #23 and the current starburst. Our standard metal-poor model (considered in Östlin et al. 2003, based on the code by Zackrisson et al. 2001; Z01), implies an age of ~ 1.5 Gyr, and photometric mass $2 \times 10^7 M_\odot$, almost an order of magnitude larger than the virial estimate $\sim 4 \times 10^6 M_\odot$. Compared to the photometry of #34, this model is discordant at the 1-sigma level. Varying the IMF slope α in the range 1.35 to 2.85 gives comparable qualities of fit and a mass $\sim 10^7 M_\odot$. A better fit can be obtained by adopting a model with significantly higher metallicity ($Z = 0.008$ to 0.04). This results in a lower age, 250 Myr (for $Z = 0.04$) to 500 Myr ($Z = 0.008$), and a somewhat lower mass of $\sim 10^7 M_\odot$. For all assumed metallicities and IMF parameters, we find a rather high internal reddening, $E_{B-V} \approx 0.25$, which can be compared to the low values for the galaxy’s starburst centre ($E_{B-V} \leq 0.05$; Östlin et al. 2003) suggesting that #34 may lie on the far side of ESO 338-IG04. About one third of the other old and intermediate age clusters have similar implied reddenings.

In addition to Z01, whose stellar evolutionary tracks come mainly from the Geneva group, we have used the spectral synthesis code PEGASE.2 (Fioc and Rocca-Volmerange 1997, 1999) which is mainly based on tracks from the Padova group. One effect of adopting a different set of tracks is that PEGASE.2 in general implies a lower reddening and higher age for #34. The best fit is again obtained for a rather metal-rich ($Z = 0.008$) model that gives an age of 1.2 Gyr, a reddening of $E_{B-V} = 0.1$ and mass $1.1 \times 10^7 M_\odot$ for a Salpeter IMF. However, PEGASE.2 gives results that are consistent with the photometry for all metallicities in the range 0.002 < Z < 0.05, with resulting ages from 0.8 to 1.2 Gyr, and masses which differ by less than 20%. In summary, models based on a Salpeter IMF predict a mass of $\sim 10^7 M_\odot$, irrespective of the set of stellar evolutionary tracks or metallicity used.

All the mass estimates so far in this subsection assume a single power law IMF, including remnants but excluding the gas returned in the process of stellar evolution, which is assumed to have left the cluster. If we instead assume an IMF like that seen in the solar neighbourhood, with a flatter slope for stars with mass smaller than $0.5 - 1 M_\odot$, the photometric masses quoted above are reduced by a factor of ~ 2. For instance, a Scalo98 (Scalo 1998) IMF yields $\sim 5 \times 10^6 M_\odot$ for the best fitting models. This is only slightly larger than the virial mass and such an IMF is also consistent with Galactic GCs (Chabrier and Méra 1997).

The work by Boily et al. 2003 suggests that for ages larger than 50 Myr, masses may be underestimated by a factor of two if the temporal evolution of η is not accounted for (see also Sect. 3.7). However, this is only true for clusters with high initial mass surface density, and moreover, the evolution past 50 Myr is not known. Our #34 has a present mass surface density of $\sim 2 \times 10^4 M_\odot/\text{pc}^2$ (without any η-evolution included), so strong effects are not expected.

Given the concordance of the photometric mass for different models and metallicities, we conclude that the dynamical mass of #34 is best explained with an IMF where the low-mass part is similar to that observed in the solar neighbourhood and in Galactic GCs.

4.3. Implications for the globular cluster system in ESO 338–IG04

The two clusters studied in this paper are consistent with a normal IMF, extending to low stellar masses ($M \sim 0.1 M_\odot$) and with a slope in the high mass regime ($M > 1 M_\odot$) close to the Salpeter value. Such IMFs will favour survival against cluster destruction mechanisms related to stellar death and gas-expulsion. A few SSCs in other galaxies on the other hand seem to have rather odd IMFs, e.g. M82-F, for which a severe deficiency of low mass stars is implied (Smith and Gallagher 2001), making its long-term survival unlikely.

All SSCs and GCs clusters line up nicely in a fundamental plane (Walcher et al. 2003) suggesting that initial conditions regulate their properties (McLaughlin 2000). That young SSCs, including #23 and #34, follow the same trends suggests that the same basic formation mechanism applies both for globular clusters in ancient halos and for present-day mergers. Östlin et al. (OZBR) used the cluster age distribution in ESO 338–IG04 to map its past star and cluster formation history, and found that star clusters seem to make up as much as several percent of the total stellar mass, in contrast to the value of 0.3% found for most galaxies (McLaughlin 2000).

Our study demonstrates the massive nature of at least some of the star clusters in ESO 338–IG04. More velocity dispersion measurements in ESO 338–IG04 would be illuminating. Though they are the brightest of the subpopulations of young and intermediate-age clusters, respectively, the objects studied in this paper are just two of the hundreds of clusters detected in this galaxy. Despite their impressive masses, #23 and #34 are apparently faint, with $m_v = 17.4$ and 20.1, respectively. Cluster #34 is the
faintest so far for which velocity dispersions have been
derived from optical spectroscopy. With the exception of
two very massive intermediate age clusters in NGC 7252
(Bastian et al. 2006), our clusters are also the most
distant yet probed. In this paper we have shown that velocity
dispersion measurements of such faint clusters are indeed
feasible, and we expect that clusters one magnitude fainter
would be within reach with modest increase of integration
time on VLT/UVES. Several more clusters in ESO 338–
IG04 could be weighed by the same method.

5. Conclusions

We have presented high resolution spectra of two lumi-
nous star clusters in the luminous blue compact galaxy
ESO 338–IG04 (Tololo 1924–416). The spectra have been
cross-correlated with template stars observed using the
same setup to determine each cluster’s line-of-sight ve-
cocity dispersion. Using size estimates from Hubble Space
Telescope images, we have used the velocity dispersions
to determine the virial masses of the clusters. Our mass
estimates have been compared to masses derived from
HST photometry fitted to spectral evolutionary synthe-
sis models. This comparison indicates that both clusters
have rather normal IMFs, favouring their survival against
internal disruption mechanisms.

One of the clusters (#23) is young, with an age of
\(\sim 7 \) Myr and mass in excess of \(10^7 \mathrm{M}_\odot \), making it one of the most massive very young clusters known. We find
evidence for the simultaneous presence of massive O-stars
and red supergiants. The \([\mathrm{O} \ tituleq 5007 \text{ and } \mathrm{H} \alpha \text{ emission}\) line profiles from the region surrounding cluster #23 indicate
the presence of a bubble expanding at a velocity \(\sim 40 \mathrm{~km} \text{ s}^{-1} \). In addition, we see signs of neutral gas flows along
the line of sight from the cross-correlation analysis of the
\(\mathrm{Na} \text{ I D absorption lines.} \) The IMF of this cluster shows no
evidence for any deficiency of low-mass stars, but is con-
sistent with a Salpeter slope over the whole mass range
0.08–120 \(\mathrm{M}_\odot \). The inferred dynamical mass is larger than
expected based on the luminosity of the cluster, which
may indicate that the cluster is not yet virialised.

The other cluster (#34) is older and has a mass of
\(4 \times 10^6 \mathrm{M}_\odot \). A combined analysis with the photometric
data suggests that it has an age of between 0.3 and 1.4
Gyr. The slope of the IMF at masses less than 1 \(\mathrm{M}_\odot \) must
be flatter than the Salpeter value for the virial and photo-
metric masses to be consistent. Such an IMF is in agree-
ment with that observed for old Galactic globular clusters.
This work confirms that this cluster is a bona-fide young
globular cluster.

Acknowledgements. We thank Andrea Modigliani for useful
suggestions on the reduction of UVES data. The authors ac-
knowledge financial support from the Swedish research council
and the Swedish National Space Board. We thank Matthew
Hayes, Erik Zackrisson, Kambiz Fathi and Jan-Olov Persson
for useful discussions.

References

Arp, H., Sandage, A., 1985, AJ, 90, 1163
Bagnulo, S., Jehin, E., Ledoux, C., Cabanac, R., Melo, C.,
Gilmozzi, R., 2003, Messenger 114, 10
Bastian, N., Saglia, R. P., Goudroij, P., Kissler-Patig, M.,
Maraston, C., Schweizer, F., Zoccali, M., 2006, A&A, 448,
881, astro-ph/0511033
Bastian, N., Goodwin, S., 2006, MNRAS, 369, 9,
astro-ph/0602465
Bergvall, N., Ostlin, G., 2002, A&A, 390, 891
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., Nasi, E., 1994,
A&AS, 106, 275
Bica, E., Alton, D., 1986, A&A 162, 21
Bruzual, G., Charlot, S., 2003, MNRAS 344, 1000
Boily, C.M., Lancon, A., Dieters, S., Heggie, D.C., 2005, ApJ, 620, L27
Carlson, M. N., Holtzman, J. A., 2001, PASP, 113, 1522
Chabrier, G., Mérá, D., 1997, A&A 328, 83
Díaz, A. I., Terlevich, E., Terlevich, R. 1989, MNRAS, 239, 325
Drilling, J. S., Landolt, A. U. 2000, in Cox A. N., ed., Allen’s
Astrophysical Quantities, 4th edn., Am. Inst. Phys., New York
Drinkwater, M.J., Gregg, M.D., Hilker, M., 2003, Nature, 423, 519
Dolphin, A.E., 2000, PASP 112, 1397
Fellhauer, M., Kroupa, P., 2005, MNRAS, 359, 223
Fioc, M., Rocca-Volmerange, B., 1997, A&A 326, 950
Fioc, M., Rocca-Volmerange, B., 1999, astro-ph/9912179
(GPACSE.2)
Gilbert, A. M., Graham, J. R. 2002, in IAU Symp. 207,
Extragalactic Star Clusters, ed. E. K. Grebel, D. Geisler
& D. Minniti
González Delgado, R. M., Leitherer, C., Heckman, T., Cerviño,
M. 1997, ApJ, 483, 705
González Delgado, R. M., Leitherer, C. 1999, ApJS, 125, 479
(GDL99)
González Delgado, R. M., Leitherer, C., Heckman, T., 1999,
ApJS, 125, 489
Gray, D. F. 1984, ApJ, 251, 152
Gray, D. F. 1984, ApJ, 281, 719
Gray, D. F., Toner, C. G. 1987, ApJ, 322, 360
Hayes, M., Östlin, G., Mas-Hesse, J.M., Kunth, D., Leitherer,
C., Petrov, A., 2005, A&A 438, 71, astro-ph/0503320
Ho, L. C., Filippenko, A. V., 1996a, ApJ, 466, L83
Ho, L. C., Filippenko, A. V., 1996b, ApJ, 472, 600
Kharchenko, N.V., Piskunov, A.E., Scholz, R.-D., 2004,
Astron. Nachr., 325, 439
Krist, J., Hook, R., 2003 “The Tiny Time User’s Guide”, ver-
sion 6.1, http://www.stsci.edu/software/tinytime
Larsen, S. S., Brodie, J. P., Elmegreen B. G., Efremov, Y. N.,
Hodge P. W., Richtler, T. 2001, ApJ, 556, 801
Larsen, S. S., Brodie, J. P., Hunter, D. A. 2004, ApJ, 128, 2295
Leitherer, C., Schaerer, D., Goldader, J.D., et al., 1999 ApJS,
123, 3
Maoz, D., Ho, L. C., Sternberg, A. 2001, ApJ, 554, L139
Maraston, C., Bastian, N, Saglia R.P., Kissler-Patig M.,
Schweizer, F., Goudroij, P., 2004, A&A 416, 467
Massey, P., Hunter, D.A., 1998, ApJ, 493, 180
McCray, N., Gilbert, A. M., Graham, J. R., 2003, ApJ, 596, 240
McLaughlin, D.E., 2000, ApJ 539, 618
Mengel, S., Lehner, M. D., Thalte, N., Genzel, R., 2002, A&A,
383, 137
Meurer, G.R., Heckman T.M., Leitherer, C., Kinney, A., Robert, C., Garnett, D.R., 1995, AJ, 110, 2665
Meynet, G., Maeder, A., 2005, A&A, 429, 581
Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., Vogt, S. S., 2002, ApJS, 141, 503
Ochsenbein, F., 1980, Bull. Inf. CDS, 19, 74
Ochsenbein F., Bauer P., Marcout, J., 2000, A&AS, 143, 221
Nota, A., Pasquali, A., Drissen, L., Leitherer, C., Robert, C., Moffat, A. F. J., Schmutz, W. 1996, ApJS, 102, 383
Origlia, L., Leitherer, C., Aloisi, A., Greggio, L., Tosi, M. 2001, AJ, 122, 815
Östlin, G., Bergvall, N., Rönnback, J., 1998, A&A, 335, 85
Östlin G., Amram P., Bergvall N., Masegosa J., Boulesteix J., Marquez I., 2001, A&A, 374, 800
Östlin, G., Zackrisson, E., Bergvall N., Rönnback, J., 2003, A&A, 408, 887, astro-ph/0306522
Pandey, A.K., Ogura, K., Sekiguchi, K., 2000, PASJ 52, 847
Portegies Zwart S.F., Makino, J., McMillan, S.L.W., Hut, P., 1999, A&A 348, 117
Salpeter, E., 1955, ApJ, 121, 161
Scalo, J. 1998, in ASP Conf. Ser., 142, The Stellar Initial Mass Function, 201
Schaerer, D., Vacca, W. D., 1998, ApJ, 497, 618
Schlegel, D.J., Finkbeiner, D.P., Davis M., 1998, ApJ, 500, 525
Schwartz, C. M., Martin, C. L., 2004, ApJ, 610, 201
Simkin, S.M., 1974, A&A, 31, 129
Smith, L. J., & Gallagher, J. S., III. 2001, MNRAS, 326, 1027
Spitzer, L., Jr., 1987, Dynamical Evolution of Globular Clusters, Princeton Univ. Press, Princeton, NJ
Tonry, J., & Davis, M., 1979, AJ, 84, 1511
Turner, J. L., Beck, S. C., Crosthwaite, L. P., Larkin, J. E., McLean, I. S., Meier, D. S., 2003, Nature 423, 621
Underhill, A. 1995, ApJS, 100, 461
Vacca, W. C., & Conti, P. S., 1992, ApJ, 401, 543
Walcher, C.J., van der Marel, R.P., McLaughlin, D., et al., 2005, ApJ 618, 237
Werk, J. K., Jangren, A., Salzer, J. I., 2004, ApJ, 617, 1004
Whitmore, B.C., 2003, in “A Decade of Hubble Space Telescope Science”, Eds. Livio M., Noll K., Stiavelli M., Space Telescope Science Institute symposium series, Vol. 14, p. 153, Cambridge University Press, astro-ph/0012546
Whitmore B., Heyer, I., Casertano, S., 1999, PASP, 111, 1559
Whitmore, B. C., Zhang, Q., Leitherer, C., Fall, M. S., Schweizer, F., Miller, B. W., 1999, AJ, 118, 1551
Worthey, G., Faber, S. M., Gonzalez, J. J., Burstein, D. 1994, ApJ, 94, 687
Zackrisson E., Bergvall N., Olofsson K., Siebert A., 2001, A&A 375, 814 (201)