De novo transcriptome analysis of Chlorella sorokiniana: effect of glucose assimilation, and moderate light intensity

Siti Nor Ani Azaman1,2, Darren C. J. Wong3, Sheau Wei Tan4, Fatimah M. Yusoff5,6, Norio Nagao2,7 & Swee Keong Yeap8

Chlorella can produce an unusually wide range of metabolites under various nutrient availability, carbon source, and light availability. Glucose, an essential molecule for the growth of microorganisms, also contributes significantly to the metabolism of various metabolic compounds produced by Chlorella. In addition, manipulation of light intensity also induces the formation of secondary metabolites such as pigments, and carotenoids in Chlorella. This study will focus on the effect of glucose addition, and moderate light on the regulation of carotenoid, lipid, starch, and other key metabolic pathways in Chlorella sorokiniana. To gain knowledge about this, we performed transcriptome profiling on C. sorokiniana strain NIES-2168 in response to moderate light stress supplemented with glucose under mixotrophic conditions. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length was obtained from both normal, and mixotrophic samples of C. sorokiniana. After pre-processing, 93.63% high-quality PE reads were obtained, and 18,310 predicted full-length transcripts were assembled. Differential gene expression showed that a total of 937, and 1124 genes were upregulated, and downregulated in mixotrophic samples, respectively. Transcriptome analysis revealed that the mixotrophic condition caused upregulation of genes involved in carotenoids production (specifically lutein biosynthesis), fatty acid biosynthesis, TAG accumulation, and the majority of the carbon fixation pathways. Conversely, starch biosynthesis, sucrose biosynthesis, and isoprenoid biosynthesis were downregulated. Novel insights into the pathways that link the enhanced production of valuable metabolites (such as carotenoids in C. sorokiniana) grown under mixotrophic conditions is presented.

Chlorella species is one the most popular microalgae applied in many industries (especially pharmaceuticals, and health) across many Asian countries such as China, Korea, and Japan for hundreds of years. The ability of this species to produce metabolites that possess various health-promoting activities such as antioxidant, antimicrobial, antibacterial, antifungal, anticancer, and antiviral activities make them popular in such industries. The potential of producing different pigments by Chlorella species also paves a new way for commercial application of this species, making this system an excellent alternative to current pigment-producing microalgae species. For example, several studies have shown that pigment production was higher in Chlorella compared to other microalgae species, and can serve well in commercial applications due to their adaptability to various culture conditions.

In an attempt to induce the formation of higher metabolite production such as pigments, and lipid production, manipulation of carbon source, and light intensity were commonly used. Carbon sources like glucose, glycerol,
or acetate have contributed to increased biomass, and lipid productivity of microalgae11,12. Light intensity also influences microalgal growth, and the biochemical composition of cells through the process of photo-acclimation, and photo-adaptation13,14. In photo-adaptation, the microalgae change their fatty acid compositions, pigment composition, growth rate, and dark respiration rate14. For example, an increase in light intensity led to an increase in chlorophyll a, and other light-harvesting pigments (such as primary carotenoids, chlorophyll b, chlorophyll c, and phycobiliproteins)14. On the other hand, when microalgae were exposed to higher light intensity, chlorophyll a, and other pigments directly involved in photosynthesis were reduced, while carotenoids, which serve as photo-protective agents, such as zeaxanthin, \(\beta \)-carotene, and astaxanthin were found to be increased. However, saturated light intensity, may also disrupt the chloroplast lamellae, and inactivate enzymes involved in carbon dioxide fixation, resulting in photo-inhibition15.

Although a lot of studies were reported on the effect of various cultivation condition on metabolite production in microalgae16–18, a more specific analysis on the effect of genes related to physiological changes were still unpromising. Most were species-specific, and limited to certain treatments only19–21. On the other hand, genomic study provides very wide coverage of genetic information on the biological systems of microalgae. For example, Hovde et al.22 who studied the genomic characteristics of similar \textit{Chlorella} species of three different strains showed a significant divergence on their gene content, and nucleotide identity. They also found high variability in transcriptional regulation between the three strains due to distinctive epigenetic machinery. These findings also suggest that each strain had adapted their genomic content according to the new maintained environment. Therefore, individual assessment of different strain is potentially required for understanding their performance in cultivation systems to improve the biomass, and bioproduct yields. In the other genomic report, there are highly conserved genes among the \textit{Chlorella} species found in the chloroplast providing information that could be applied in microalgal systematics, phylogenetic reconstruction, and biotechnology23. In the construction of a microalgal system for commercial application, transcriptomic study could be more efficient, and relatively economical compared to genomic study24. It provides an initial, and broad view of molecular, and biochemical mechanisms related to the treatment, and condition used25,26. Moreover, a growing number of transcriptomes of microalgae were sequenced, assembled, and annotated, providing information on how genes are regulated, and reveal details of the microalgal biology27–30.

In our previous study, we examined the biochemical changes, and the morphology of microalgae \textit{Chlorella sorokiniana} under photautotrophic, and mixotrophic conditions31. We found that glucose, and moderate light intensity treatments contributed to a higher scavenging activity, key changes in pigmentation (i.e. shifts from chlorophyll to carotenoids), and accumulation of lipid bodies compared to the normal light condition. To date, molecular insights into the combinatorial effect of glucose, and light intensity in microalgae, or specifically in \textit{Chlorella} species is lacking. Thus, this study explored the effect of mixotrophic condition (i.e. moderate light intensity supplemented with 2% glucose under nutrient-limited condition) on \textit{C. sorokiniana} using transcriptomics. Several novel findings on the genes involved, and their related pathways, especially the production of secondary metabolites, are highlighted.

Results

Illumina sequencing, and de novo assembly. The transcriptome of \textit{C. sorokiniana} grown under normal, and mixotrophic conditions generated from RNA with RIN > 7.8 was sequenced using Illumina sequencing platform. A total of 60,982,352 raw paired-end (PE) reads 100 bp in length were obtained from both normal, and mixotrophic samples of \textit{C. sorokiniana}. After read trimming, and quality filtering, 57,097,573 (93.63%) high-quality PE reads were obtained (Table 1). A total of 102,643 contigs were successfully assembled using Trinity software2.

Sample	Total sequences Before	Total sequences After	Average length Before	Average length After
Normal replicate 1	13,225,251	12,714,292	100	79
Normal replicate 2	16,604,976	15,073,499	100	74
Mixotrophic replicate 1	16,690,891	15,817,686	100	75
Mixotrophic replicate 2	14,461,234	13,492,097	100	75
Total	60,982,352	57,097,573	100	75

Table 1. Sequencing throughput, and trimming results for \textit{C. sorokiniana} RNA-seq data. Two samples: Normal, and Mixotrophic (moderate light stress supplemented with glucose), with three biological replicates of 100 bp reads were generated on the Illumina HiSeq 2000 platform.

Functional annotation. In order to assign functional information, the transcripts were annotated through multiple databases (see “Materials and methods” section). Functional annotation using the NR database showed the highest match, in which 99.8% (or 18,276 genes) of \textit{C. sorokiniana} transcripts had successfull hits (Table 3). When the assembled transcripts were annotated against InterPro, Swiss Prot, Mercator Mapman, and Refseq,
50% to 55% of *C. sorokiniana* transcripts had matches, whereas, annotation to KEGG, and GO databases produced 38.1%, and 43.1% matches, respectively.

Based on the NR annotation result, the E-value frequency distribution analysis revealed that 70.3% of the matched sequences had strong homology with E-value \(\leq 1.0 \times 10^{-60} \), while the remaining 29.7% fell into the range of \(1.0 \times 10^{-60} \) to \(1.0 \times 10^{-5} \) (Fig. 1). Furthermore, we also observed that all the annotated sequences had a similarity of more than 70%. Based on the homologous species identified among the annotated transcripts, 71.6% of them matched to *Chlorella variabilis*, followed by *Auxenochlorella protothecoids* (5.5%), *Chlamydomonas reinhardtii* (3.8%), *Coccomyxa subellipsoidea* (1.7%), and *Volvox carteri* (1.2%). About 16.3% of the transcripts had similarity matches with other types of viridiplantae. In addition, Mercator determined that 9341 transcripts (51%) had at least one ascribed Mapman annotation.

In the subsequent functional analysis, the functional annotation was done based on the KO (KEGG Orthology) database using KOALA tools (available at KEGG Web site; https://www.kegg.jp) that assign the KO identifiers (K numbers) to the transcript by BLAST, and GHOSTX searchers. In this study, of the 18,310 transcripts that aligned with KO database, only 6971 transcripts (38.1%) were annotated, and had significant matches to different functional categories (Fig. 2). The highest number of genes identified was from the genetic information processing category, which were 3007 genes (43%). The second highest functional categories of transcripts identified were carbohydrate metabolism (637 genes), followed by environmental information processing (563 genes), amino acid metabolism (377 genes), lipid metabolism (329 genes), energy metabolism (304 genes), cellular processes (311 genes), and metabolism of cofactor, and vitamins (231 genes). The remaining 17% of KEGG annotated transcripts were from other categories.

Under pathway reconstruction of KO, each transcript from different functional categories was further elucidated into different metabolic pathways. All the metabolic pathways were then divided into four main pathway modules such as metabolism, genetic information processing, environmental information processing, and cellular processes (Fig. 3). According to this pathway assignment, 5018 transcripts (27.4% of all transcripts) were classified into 23 KEGG pathways. From the annotation result, the transcripts coding for all the genes related to the major metabolic pathways in *C. sorokiniana* were identified. The completeness of these reconstructed pathways indicates that the gene function assignments were biologically meaningful, and the EC number(s) has been correctly assigned to the annotated sequences (Table 4). Other KEGG pathways with multiple transcript hits encoding for a nearly complete pathway include nucleotide, and amino acid metabolism (such as serine, and threonine biosynthesis, lysine biosynthesis, and histidine biosynthesis), and cofactor, and vitamin biosynthesis (such as shikimate pathway, phenylalanine biosynthesis, coenzyme A biosynthesis, and biotin biosynthesis).

Differential expression analysis.

Differential expression analysis between normal, and mixotrophic conditions revealed 2061 differentially expressed transcripts among the treatments, of which 937, and 1124 were upregulated, and downregulated in mixotrophic samples, respectively (Supplementary Data 1; Supplementary Figure S1, and S2). The biological pathways that were significantly affected (Adj. \(p < 0.05 \)) by mixotrophic conditions are summarised in Fig. 4, and briefly described below. Detail information of genes involved in different metabolic pathways can be found in Supplementary Figures, and Tables.

Subject	Number of reads	Length (bp)
Total number of high-quality paired-end reads	57,097,573	
Number of contigs	102,643	
Number of protein-coding transcripts	18,310	1,446
N50 (bp)	654	
N90 (bp)	16,695	

Table 2. Summary of *de-novo* assembly result for *C. sorokiniana* RNA-seq data.

Public database	No. of annotated genes	% of annotated genes
NR	18,276	99.8
InterPro	10,019	54.7
UniProt/Swiss Prot	10,259	56.0
KO	6971	38.1
GO	7896	43.1
Mapman	9341	51.0
Refseq	10,187	55.6

Table 3. Summary of the functional annotation of the assembled *C. sorokiniana* transcriptome using different databases.
Secondary metabolism and carotenoids biosynthesis. Biosynthesis of secondary metabolites including carotenoids, phenols, and other isoprenoids originated from two pathways: mevalonate pathway, and non-mevalonate (or MEP) pathway. It is well known that carotenoids biosynthesis in *C. sorokiniana* is primarily biosynthesized via the plastid-localized non-mevalonate (or MEP/DOXP) pathway. All the key enzymes involved in the synthesis of important precursors for pigments biosynthesis, which are isopentenyl pyrophosphate (IPP), and dimethylallyl pyrophosphate (DMAPP) were identified (Supplementary Figure S3). The non-identified enzyme for mevalonate kinase (MVK, EC 2.7.1.36) confirmed that this pathway occurs in the plastids.
not in the cytoplasm, which is similar to the other photosynthetic green algae\(^3\). Our transcriptome analysis revealed that the transcripts encoding genes potentially responsible for carotenoid production was generally upregulated when moderate light intensity, and glucose addition were applied to the \(C.\) sorokiniana culture (Table S1). This was evidenced by the upregulation of transcripts encoding 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (CMS) or IspD; the gene responsible for the production of an intermediate molecule from MEP to produce isopentenyl diphosphate (IPP), and dimethylallyl diphosphate (DMAPP). In the downstream step, lutein production was also upregulated (Fig. 4). This was evidenced by the upregulation of carotenoids lycopene epsilon cyclase, and ε-ring hydroxylase (Table S2). These two genes are required to cyclise the hydrocarbon chain, and hydroxylate the carotene rings to generate xanthophylls such as lutein, and zeaxanthin\(^3\). On the other hand, two genes related to the production of β-carotene, and astaxanthin were downregulated; they were phytoene dehydrogenase, and carotenoid cleavage dioxygenase\(^3\). Downregulation of these two genes showed that the mixotrophic condition was favourable for lutein production but not towards the biosynthesis of other carotenoids, and apocarotenoids (such as vitamin A, retinol, and abscisic acid hormone)\(^3\).

In the case of isoprenoid metabolism (see monoterpene biosynthesis Fig. 4), the downregulation of HMGS, the gene that converts cytosolic acetyl-CoA into HMG-CoA via the mevalonate pathways, is indicative of a general downregulation of the isoprenoid biosynthesis. Further downstream of this pathway showed downregulation of several genes such as those related with phenylpropanoid (lignin) biosynthesis which is cinnamyl alcohol dehydrogenase (CAD); gene related with tocopherol (vitamin E) biosynthesis which is MSBQ methyltransferase; and those related with monoterpene biosynthesis which is isoglycerol diphosphate (GPP) synthase (Supplementary Data 1, and Figure S4)\(^3\).
Fatty acid biosynthesis, and lipid metabolism. The fatty acid biosynthesis in microalgae occurs in two subcellular components; first, de novo synthesis of fatty acids in plastids, and second, conversion into long-chain fatty acid occurs in the endoplasmic reticulum. All transcripts encoding genes related to fatty acid biosynthesis, and TAG synthesis were detected in this C. sorokiniana transcriptome (Table 4). Under mixotrophic condition imposed in this study, the first step of fatty acid synthesis was downregulated, as detected by the downregulation of acetyl coA carboxylation reaction of both types of acetyl coA carboxylase (homomeric, and heteromeric) transcripts (Table S3). The plastidial acetyl coA carboxylase transcripts, whose products form a heteromeric multi-subunit enzyme complex that contains biotin carboxylase activity, whereas the cytosolic acetyl coA carboxylase is a homomeric multifunctional protein that does not contain biotin carboxylase activity.

However, the subsequent steps in the lipid metabolism such as desaturation, and elongation processes were upregulated (Table S4–S6). This is evident by the upregulation of transcripts encoding acetyl coA carboxylase (FabH); ketoacyl ACP synthase (FabB, and FabF); oxoacyl ACP reductase (FabG); steroyl-ACP desaturase (DESA1); stearoyl-coA desaturase (SCD or desC); and omega-6 desaturase (FAD2 or desA) in biosynthesis, and desaturation processes. DESA1, and desA responsible for desaturation step, and further exported to the cytosol into the acyl-coA, and acyl-lipid pools in the cytoplasm. Meanwhile, elongation in endoplasmic reticulum showed upregulated as detected by ketoacyl coA synthase (KCS), acyl-coA reductase (FAR), very-long chain (3R)-hydroxyacyl-coA dehydratase (PAS1), and very long chain enoyl-coA reductase.

In the case of glycerolipid, and triacylglycerol (TAG) metabolism, most transcripts detected were downregulated, including, glycerol-3-phosphate O-acyltransferase (GPAT), lysophospholipid acyltransferase (LPLAT), TAG lipase (TagL), and diacylglycerol kinase (DGK). Several other transcripts encoding genes involved in the synthesis of membrane lipids especially thylakoid membrane such as UDP-sulfoquinovose synthase (SQD1), sullolipid synthase (SQD2), phosphatidate cytidyltransferase (CDS), cyclopropane-fatty-acyl-phospholipid synthase (CFAS), and phosphatidylethanolamine O-acyltransferase (LCAT) were also downregulated (Table S7). All these transcripts involved in the formation of membrane components such as digalactosyl diacylglycerol (DGDG), diacylglycerol N,N,N-trimethyl homoserine (DGTS), and sulfoquinovosyl diacylglycerol (SQDG) (Fig. 4).

Carbohydrate metabolism. Generally, most carbohydrate metabolic pathways (such as glycolysis, starch, and sucrose metabolisms) were downregulated (Table S9–S11). However, some transcripts involved in the glycolysis process were upregulated. For example, aldolase (ALDO), triose phosphate dehydrogenase (GAPDH), and...
phosphoglycerate kinase (PGK) showed upregulation. Whilst, the other transcript in all three pathways showed downregulation.

Validation of gene expression through quantitative real-time PCR. Quantitative real-time PCR (RT-qPCR) was used to validate 7 differentially expressed genes identified by RNA-seq. The genes were chosen from each of the important pathways in the transcriptomic analysis of RNA-seq data. For example, stearyl-ACP desaturase (DESA1) from desaturation of fatty acid, malate dehydrogenase (MDH) from TCA cycle, 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD) from MEP pathway, Acetyl-Coa carboxylase (ACACA) from fatty acid biosynthesis pathway, TAG lipase (TagL) from TAG biosynthesis pathway, 1,4-glucon branching enzyme (glgB) from starch biosynthesis pathway, and phosphofructokinase (pfkA) from glycolysis pathway. The primers used for each target genes, and selected housekeeping genes with their efficiency, and R2 data are shown in Table 5. In RNA-seq sequencing results, the expression levels of DESA1, MDH, and IspD were significantly upregulated, whilst the expression of ACACA, TagL, glgB, and pfkA were significantly downregulated in mixotrophic conditions. The gene expression profile based on RT-qPCR was highly correlated (R = 0.916) with RNA-seq confirming the reliability, and validity of the RNA-seq technique (Fig. 5).

Discussion

Chlorella sorokiniana can grow in various growth conditions making them a target organism for sustainable metabolite production. Findings from several microalgae have previously shown that mixotrophic conditions are more desirable to achieve both higher growth rates, and biomass yields (and even lipid content)41,42. In the present study, we induced the production of carotenoids, and lipids production through glucose assimilation, and light mixotrophic condition, and investigated the expression of genes involved in carotenoids, and lipid accumulation at the transcriptome level for the very first time. However, this transcriptomic analysis is not a substitute for detailed gene, and pathway studies, but it provides a broad overview of the important metabolic process from which to efficiently build a hypothesis that can guide future detailed studies on improving the carotenoid production, and lipid accumulation in this and others microalgae.

In the case of isoprenoids biosynthesis, there were two pathways responsible for the production of these biomolecules; the MVA, and MEP pathway. The incomplete genes for MVA pathway in this C. sorokiniana transcriptome suggest that the production of isoprenoids was dependent on MEP pathway that exists in the plastid. In our study, we found that homologs of the MVA pathway genes such as hydroxymethyl-glutaryl-CoA (HMG-CoA) synthase (HMGS) exist in C. sorokiniana. Conversely, homologs encoding hydroxymethyl-glutaryl-CoA

Table 5. Housekeeping, and target genes, and their primers used for RT-qPCR.

Gene symbol	Target gene	Forward/reverse primers (5′–3′)	Product size (bp)	Efficiency value (%)	R2
RPL	Ribosomal protein L19	GTCTGGCGTGGACCCCAATGA	143	90.4	0.999
		GCCCTCTGCGGTTG			
		CAAGCTTACCCTGCTCCCC			
		TCAGCCCGGTTAAGGTTGG	185	97.6	0.996
A-tub	Alpha-tubulin	TGGGCCCTGAACCTGAACAAC	301	90.3	0.987
		TGTAGGCCCTCTCTGCTC			
PCNA	Proliferating cell nuclear antigen	TGGGCCCTGAACCTGAAC			
		ACACCAGAGAACATGG			
DESA 1	Stearyl-ACP desaturase	TGCTGGTCGCCCTCCT	397	94.3	0.995
		CCGTGTGAGCCTGCAAGGG			
MDH	Malate dehydrogenase	TCACCAAGAGAACATGG	342	105.3	0.989
		CGCCTGCTTAATGTTGG			
IspD	2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase	CTTGACGCTCAAGGGGCTCAGT	263	99.3	0.981
		TCAGTGCCTCCAGGTCTC			
ACACA	Acetyl Coa carboxylase	GCTGCTGGAACAACCAGATGC	347	94.1	0.966
		CGGCTGTGACAGTAGGG			
pfkA	Phosphofructokinase	CAAAGGCACTACCCCTACCACC	298	91.5	0.991
		CTCACAGGTGCTGTAACCACC			
TagL	TAG lipase	GCTGCTGGAACAACCAGATGC	357	105.6	0.965
		GCACCCGCTAGGTTGG			
glgB	1,4-glucan branching enzyme	GAGCCGATGACCTTGG	358	98.2	0.948
		TGGCCTGAGGCTACCACC			
Furthermore, although genes related to the other carotenoid production, such as β-carotene, and astaxanthin, were detected in this study, including the second step after β-ring hydroxylation which is ε-ring hydroxylation to α-carotenone: β-ring hydroxylation to zeinoxanthin followed by ε-ring hydroxylation to lutein or ε-ring hydroxylation to α-cryptoxanthin, followed by β-ring hydroxylation to lutein. In our transcriptome data, the second step after β-ring hydroxylation which is ε-ring hydroxylation was upregulated leading to lutein production was similarly found by Xiao et al. In terms of cultivation strategies, they used a two-step transition process from heterotrophic to photoautotrophic condition to increase lutein production—i.e. glucose as the carbon source in heterotrophic growth followed by illumination. The other study that used acetate as the carbon source from heterotrophic to photoautotrophic condition to increase lutein production—i.e. glucose as the carbon source.
C. sorokiniana isoprenoid biosynthesis. The transcriptome analysis supported the previous biochemical and morphological accumulation. Meanwhile, the mixotrophic condition could repress the starch synthesis, sucrose synthesis, and intensity were used. The findings point to several molecular mechanisms that potentially drive the overproduction of high-value metabolites such as carotenoids especially for lutein, unsaturated fatty acids synthesis, TAG accumulation. Meanwhile, the mixotrophic condition could repress the starch synthesis, sucrose synthesis, and isoprenoid biosynthesis. The transcriptome analysis supported the previous biochemical and morphological findings of C. sorokiniana cultured under photoautotrophic and mixotrophic conditions.

Materials and methods
Strain. The Chlorella sorokiniana (NIES-2168) used in this study was obtained from the Marine Biotechnology Lab at the Faculty of Agriculture, Universiti Putra Malaysia, which had originally obtained from NIES (National Institute of Environmental Studies, Japan).

Experimental design. The microalgae were cultured in Bold’s Basal Medium (BBM) (PhytoTechnology Laboratory®, USA). The stock medium was diluted from 50 × to 1 × using sterile distilled water, and adjusted to pH 6.6 using 1 M NaOH. Sterilisation was performed by autoclaving for 20 min at 121 °C. At the beginning of microalgae pre-culture preparation, the microalgae were first inoculated with 10% (vol/vol) of an exponentially growing culture, and allow to grow under continuous light with an intensity of approximately 10 µmol photons m⁻¹ s⁻¹ with a shaking speed of 30 rpm at 27 °C. These pre-culture microalgae were allowed to grow until mid-logarithmic phase at day 15, which produce approximately 2.5–3.0 × 10⁶ cells/mL. Then, the culture was divided into two flasks for normal, and mixotrophic conditions respectively. Each of the flasks contained 100 mL of 2 × 10⁶ cells/mL of C. sorokiniana culture. Cultures for the normal condition was allowed to grow under the same condition as pre-culture, whereas culture for mixotrophic condition was allowed to grow under moderate light intensity (100 µmol photons m⁻¹ s⁻¹), and supplemented with 2% glucose. Both cultures were allowed to continue growing for 7 days. The experiments were conducted in a shaking incubator, and a conical flask was used as the growth chamber. A white fluorescence light source was located above the cultures. All experiments were repeated independently in triplicates. The microalgae were harvested by separating the pellet from the medium by centrifugation at 10,000 rpm for 10 min. The pellet was then flash-frozen using liquid nitrogen, and stored at −20 °C prior to use.

RNA extraction. Total RNA was extracted using TRIzol method. Briefly, 100 mg of frozen tissue was ground using a prechilled mortar, and pestle into a fine powder. 1 mL TRIzol reagent (Invitrogen, California) was added to the ground tissue, and homogenisation continued until no visible debris remains. The homogenised samples were incubated at room temperature for 5 min. Chloroform with 0.2 times the volume of Trizol solution was added to the solution, and the mixture was vortexed vigorously for about 15 s, and incubated at room temperature for 2 to 3 min. After centrifugation, the aqueous layer was transferred to a column of RNaseasy from Qiagen, Germany for further purification. The residual DNA was eliminated by performing a column DNase digestion at 37 °C for 30 min. The integrity of the extracted RNA was determined by gel electrophoresis, and its concentration was measured using a spectrophotometer (Eppendorf, Germany).

Library preparation, and Illumina sequencing. The library for RNA-sequencing was prepared using NEBNext Ultra Directional RNA Library Prep kit for Illumina from New England Biolabs (NEB, UK) according to the manufacturer’s protocol. The molarity, and libraries sizes were assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Germany). Sequencing of 100 bp paired-end reads was performed on the Illumina HiSeq 2000 at HR Central Lab High End Instrument, University of Malaya, Malaysia.

De novo transcriptome assembly, and annotation. Filtered paired-end reads of each sample were pooled, separated into their respective orientation, and collapsed further to retain only the unique non-redundant reads using the FASTX-toolkit (https://hannonlab.cshl.edu/fastx_toolkit/). The transcriptome de novo assembly was performed using Trinity (version 2.0.6) with default settings. Gene predictions, and protein-coding potential of the de novo assembled transcripts were determined using AUGUSTUS (version 2.5.3). To obtain an accurate gene model, the Chlamydomonas reinhardtii sequence (genes, and proteins), and gene structure was used to train AUGUSTUS. A comprehensive annotation of the protein-coding gene, and protein repertoire were performed using BLASTN, and BLASTX, respectively against the NCBI non-redundant, SwissProt (and UniProt), Refseq, KEGG (Kyoto Encyclopedia of Genes, and Genomes), and GO (Gene Ontology) databases using a threshold of E-value < 10⁻⁵ to define significant hits, and for ascribing potential gene function. Functional MapMan BIN categories were ascribed to predicted genes using the Mercator. Default parameters were used with additional ‘CHLAMY’, and ‘IPR’ settings enabled.
Differential gene expression and functional enrichment analysis. The alignment of filtered paired-end reads against the predicted protein-coding genes was performed using Subread aligner\(^2\), and counting of reads (read summarization) was performed with Feature Counts\(^3\) with default settings in R software\(^4\). Differential gene expression analysis was carried out using DESeq2\(^5\), and genes were defined as significantly different between treatment conditions, and controls at a false discovery rate (FDR) < 0.05. Transcript abundance was estimated using DESeq2 using the variance stabilization normalization (VST). Enrichment of MapMan BIN categories was determined by Fisher’s exact test adjusted with Bonferroni correction for multiple testing correction using the Corto tool\(^6\). MapMan BIN categories were deemed significantly enriched at an adjusted \(P\) value < 0.05.

Quantitative real-time PCR (RT-qPCR) validation. Quantitative real-time PCR (RT-qPCR) was carried out to validate the results of the RNA-seq. Total RNA was extracted using TRIzol method as described for RNA extraction. The reverse transcription step for the preparation of the cDNA library was performed using SensiFAST CDNA Synthesis Kit (Bioline, UK) according to the manufacturer’s instructions. Three-hundred nanograms of the RNA template from each sample were converted into cDNA in 20 µL. The control was prepared by using a similar amount of total RNA that was subjected to the cDNA synthesis reaction without the presence of reverse transcriptase. A 300 ng cDNA template pool produced from the reverse transcription reaction was subsequently used to assess housekeeping genes, and target genes transcript levels in real-time PCR assays. The information of primers used for housekeeping genes, and target genes are presented in Table 5.

Data availability

The authors declare that all the data in this manuscript are available.

Received: 8 June 2020; Accepted: 1 October 2020
Published online: 15 October 2020

References

1. Priyadarshani, I. & Rath, B. Commercial and industrial applications of micro algae—a review. J. Algal Biomass Utili. 3, 89–100 (2012).
2. Borowitza, M. A. Microalgae as a sources of pharmaceuticals and other biologically active compounds. J. Appl. Physiol. 7, 3–15 (1995).
3. Mayer, A. M. & Hamann, M. T. Marine pharmacology in 2001–2002: marine compounds with anthelmintic, antibacterial, anticoagulant, anti-diabetic, antifungal, anti-inflammatory, antimarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities: affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 140, 265–286 (2005).
4. Mostafa, S. S. Microalgal biotechnology: prospects and applications. INTECH Open Access Publisher. Retrieved from https://www.intechopen.com/books/plant-science on 4 September 2019 (2012).
5. Del Campo, J. A. et al. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 76, 51–59 (2000).
6. Del Campo, J. A. et al. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl. Microbiol. Biotechnol. 64, 848–854 (2004).
7. Ip, P.-F., Wong, K.-H. & Chen, F. Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 39, 1761–1766 (2004).
8. Del Campo, J. A., Garcia-Gonzalez, M. & Guerero, M. G. Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotechnol. 74, 1163–1174 (2007).
9. Ip, P.-F. & Chen, F. Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem. 40, 733–738 (2005).
10. Sharma, R. Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. J. Plant Pathol. Microbiol. 3, 100131 (2012).
11. Choi, H.-J. & Lee, S.-Y. Advances in microalgae biomass/bioenergy production with agricultural by-products: analysis with various growth rate models. Environ. Eng. Res. 24, 271–278 (2018).
12. Sharma, A. K., Sahoo, P. K., Singhal, S. & Patel, A. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech. 6, 116 (2016).
13. Xu, Y., Ibrahim, J. M. & Harvey, P. J. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. Plant Physiol. Biochem. 106, 305–315 (2016).
14. Singh, S. & Singh, P. Effect of temperature and light on the growth of algae species: a review. Renew. Sustain. Energy Rev. 50, 431–444 (2015).
15. Gururanu, M., Venkatesh, J. & Tran, L. S. P. Regulation of photosynthesis during abiotic stress-induced photohombre. Mol. Plant 8, 1304–1320 (2015).
16. Hemalatha, A., Girioka, K., Parthibhan, C., Saranya, C. & Anantharaman, P. Antioxidant properties and total phenolic content of a marine diatom, green microalgae. Adv. Appl. Sci. Res. 4, 115–157 (2013).
17. Mulders, K. J. M. et al. Nitrogen-depleted Chlorella zofingiensis produces astaxanthin, ketolutein and their fatty acid esters: a carotenoid metabolism study. J. Appl. Physiol. 27, 125–140 (2014).
18. Xiao, Y. et al. Photosynthetic accumulation of lutein in Auxenochlorella protothecoides after heterotrophic growth. Mar. Drugs 16, 283 (2018).
19. Wan, L. et al. De novo transcriptomic analysis of an oleaginous microalga: pathway description and gene discovery for production of next-generation biofuels. PLoS ONE 7, e35142 (2012).
20. Carrier, G. et al. Comparative transcriptome of wild type and selected strains of the microalga Tisochrysis lutea provides insights into the genetic basis, lipid metabolism and the life cycle. PLoS ONE 9, e86889 (2014).
21. Rismani-Yazdi, H., Haznedaroğlu, B. Z., Bibby, K. & Peccia, J. Transcriptomic sequencing and annotation of the microalga Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genom. 12, 148 (2011).
22. Howde, B. T. et al. Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxio- phyceae). Algal Res. 35, 449–461 (2018).
23. Malavasi, V. et al. Deep genomic analysis of the Chlorella sorokiniana SAG 211–8k chloroplast. Eur. J. Phycol. 52, 320–329 (2017).
24. Lowe, B., Shirley, N., Bleackley, M., Dolan, S. & Shafer, T. Transcriptomics technologies. *PLoS Comput. Biol.* 13, e1005457 (2017).

25. Guarnieri, M. T. et al. Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. *PLoS ONE* 6, e25851 (2011).

26. Li, Q., Liu, J., Zhang, L. & Liu, Q. D. Novo transcriptome analysis of an aerial microalga *Trentepohlia jolithus*: pathway description and gene discovery for carbon fixation and carotenoid biosynthesis. *PLoS ONE* 9, e108488 (2014).

27. Gao, C. et al. Oil accumulation mechanisms of the oleaginous microalga *Chlorella protothecoides* revealed through its genome, transcriptomes, and proteomes. *BMC Genom.* 15, 582 (2014).

28. Sun, D. et al. De novo transcriptome profiling uncovers a drastic downregulation of photosynthesis upon nitrogen deprivation in the nonmodel green alga *Botryococcus braunii*. *BMC Genom.* 14, 715 (2013).

29. Chan, C. X. *Porphyra* (Bangiophyceae) transcriptomes provide insights into red algal development and metabolism. *J. Phycol.* 48, 1328–1342 (2012).

30. He, Y., Ma, Y., Yu, S. & Shen, S. Differential expression gene for carotenoid biosynthesis in a green alga *Ulva prolifera* based on transcriptome analysis. *BMC Genom.* 19, 916 (2018).

31. Azaman, S. N. A., Nagao, N., Yusoff, F. M., Tan, S. W. & Yeap, S. K. A comparison of the morphological and biochemical characteristics of *Chlorella sorokiniana* and *Chlorella zofingiensis* cultured under photoautotrophic and mixotrophic conditions. *Peer J.* 5, e4743 (2017).

32. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* 29, 644–652 (2011).

33. Paniagua-Michel, J., Olmos-Soto, J. & Ruiz, M. A. Microbial Carotenoids from Bacteria and Microalgae 1–12 (Springer, Berlin, 2012).

34. Ruiz-Sola, M. A. & Rodriguez-Concepcion, M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. *Arabidopsis Book* 10, e0158 (2012).

35. Ahrazyem, O., Gómez-Gómez, L., Rodrigo, M., Avalos, J. & Limón, M. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions. *Int. J. Mol. Sci.* 17, 1781 (2016).

36. Cui, H., Wang, Y. & Qin, S. Genomewide analysis of carotenoid cleavage oxygenases in unicellular and filamentous cyanobacteria. *Int J Genomics* 2012, 164690 (2012).

37. Schmidt, A. et al. A bifunctional geranyl and geranylgeranyl diposphosphate synthase is involved in terpene oleoresin formation in *Picea abies*. *Plant Physiol.* 152, 639–655 (2010).

38. Cagliari, A. et al. Biosynthesis of triacylglycerols (TAGs) in plants and algae. *Int. J. Plant Biol.* 2, 10 (2011).

39. Sasaki, Y. & Nagano, Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. *Biochim. Biotechnol. Biochem.* 68, 1175–1184 (2004).

40. Huang, W. et al. *Transcriptome analysis of Chlorella zofingiensis* to identify genes and their expressions involved in astaxanthin and triacylglycerol biosynthesis. *Algal Res.* 17, 236–243 (2016).

41. Wang, H., Fu, R. & Pei, G. A study on lipid production of the mixotrophic microalga *Phaeodactylum tricornutum* with various carbon sources. *Afr. J. Microbiol. Res.* 6, 1041–1047 (2012).

42. Zhan, J., Rong, J. & Wang, Q. Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. *Int. J. Hydrog. Energy* 42, 8505–8517 (2017).

43. Quinlan, R. F. et al. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. *Plant Physiol.* 160, 204–214 (2012).

44. Cecchin, M. et al. Molecular basis of autotrophic vs. mixotrophic growth in *Chlorella sorokiniana*. *Sci. Rep.* 8, 6465 (2018).

45. Andre, C., Haslam, R. P. & Shanklin, J. Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1 acyl carrier protein in *Brassica napus*. *Proc. Natl. Acad. Sci.* 109, 10107–10112 (2012).

46. Sirikachornkit, A., Suttangkakul, A., Vuttipongchaikij, S. & Juntawong, P. De novo transcriptome analysis and gene expression profiling of an oleaginous microalga *Scenedesmus acutus* TISTR8540 during nitrogen deprivation-induced lipid accumulation. *Sci. Rep.* 8, 3668 (2018).

47. Alboresi, A. et al. Light remodels lipid biosynthesis in *Nannochloropsis gaditana* by modulating carbon partitioning between organelles. *Plant Physiol.* 171, 2468–2482 (2016).

48. Han, D. et al. Metabolic remodeling of membrane glycerolipids in the microalga *Nannochloropsis oceanica* under nitrogen deprivation. *Front. Mol. Sci.* 4, 242 (2017).

49. Fan, J. et al. Genomic foundation of starch to lipid switch in oleaginous *Chlorella* spp. *Plant Physiol.* 169, 2444–2461 (2015).

50. Work, V. H. et al. Increased lipid accumulation in the *Chlamydomonas reinhardtii* sta7-10 starchless isoamylase mutant and *Chlamydomonas reinhardtii* under nitrogen deprivation. *BMC Genom.* 18, 584–606 (2017).

51. De Jager, L. et al. Superior triacylglycerol (TAG) accumulation in starchless mutants of *Nannochloropsis oculata*: (I) mutant generation and characterization. *Biotecnol. Biofueles* 7, 69 (2014).

52. Ratnaparam, H. F., Vitukuru, S. & Vadavalli, R. Mixotrophic transition induced lipid productivity in *Chlorella pyrenoidosa* under stress conditions for biodiesel production. *Heliyon* 4, e00496 (2018).

53. Wang, Z. T., Ullrich, N., Joo, S., Wafschmidt, S. & Goodenough, U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless *Chlamydomonas reinhardtii*. *Eukaryot. Cell* 8, 1856–1868 (2009).

54. Li, Y., Han, D., Hu, G., Sommerfeld, M. & Hu, Q. Inhibition of starch synthesis results in overproduction of lipids in *Chlamydomonas reinhardtii*. *Biotecnol. Bioeng.* 107, 258–268 (2010).

55. Li, Y., Fei, X. & Deng, X. Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae *Microcystis aeruginosa*. *Bioenergit. Bioeng.* 42, 199–211 (2012).

56. Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic Acids Res.* 34, W435–W439 (2006).

57. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. *Nucleic Acids Res.* 37, 24–62 (2009).

58. Hornik, K. The R FAQ. https://CRAN.R-project.org/doc/FAQ/R-FAQ/html (2020). Accessed 1 May 2020.
Acknowledgements
We would like to thank Ms Boo Sok Yee, Ms Lily Boo and Ms Norlaily Mohd Ali, Ms Nancy Liew Woan Charn and Dr Hyunh Ky for their technical support and guidance on analyzing the data. The study was funded by Xiamen University Malaysia (Xiamen University Malaysia Research Fund; Grant no. XMUMRF/2018-C1/ICAM/0002) and Institute of Bioscience, Higher Institution Centre of Excellence (IBS HICoE) grant from the Ministry of Higher Education, Government of Malaysia (Vote No. 6369100).

Author contributions
S.N.A.A, Y.S.K, D.C.J.W: Conceptualization. S.N.A.A., D.C.J.W, T.S.W., Y.S.K.: Investigation; S.N.A.A., D.C.J.W: writing—original draft preparation; Y.S.K., T.S.W., F.M.Y, N.N.: writing—review and editing; Y.S.K., T.S.W., F.M.Y., N.N.: supervision; Y.S.K. and F.M.Y.: funding acquisition.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-74410-4.

Correspondence and requests for materials should be addressed to S.K.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020