ON THE FIXED NUMBER OF GRAPHS

I. JAVAID*, M. MURTaza, M. ASIF, F. IFTIKHAR

Abstract. An automorphism on a graph G is a bijective mapping on the vertex set $V(G)$, which preserves the relation of adjacency between any two vertices of G. An automorphism g fixes a vertex v if g maps v onto itself. The stabilizer of a set S of vertices is the set of all automorphisms that fix vertices of S. A set F is called fixing set of G, if its stabilizer is trivial. The fixing number of a graph is the cardinality of a smallest fixing set. The fixed number of a graph G is the minimum k, such that every k-set of vertices of G is a fixing set of G. A graph G is called a k-fixed graph if its fixing number and fixed number are both k. In this paper, we study the fixed number of a graph and give construction of a graph of higher fixed number from graph with lower fixed number. We find bound on k in terms of diameter d of a distance-transitive k-fixed graph.

1. Introduction

Let $G = (V(G), E(G))$ be a connected graph with order n. The degree of a vertex v in G, denoted by $\deg_G(v)$, is the number of edges that are incident to v in G. We denote by $\Delta(G)$, the maximum degree and $\delta(G)$, the minimum degree of vertices of G. The distance between two vertices x and y, denoted by $d(x, y)$, is the length of a shortest path between x and y in G. The eccentricity of a vertex $x \in V(G)$ is $e(x) = \max_{y \in V(G)} d(x, y)$ and the diameter of G is $\max_{x \in V(G)} e(x)$. For a vertex $v \in V(G)$, the neighborhood of v, denoted by $N_G(v)$, is the set of all vertices adjacent to v in G.

An automorphism of G, $g : V(G) \rightarrow V(G)$, is a permutation on $V(G)$ such that $g(u)g(v) \in E(G) \Leftrightarrow uv \in E(G)$, i.e., the relation of adjacency is preserved under automorphism g. The set of all such permutations for a graph G forms a group under the operation of composition of permutations. It is called the automorphism group of G, denoted by $\text{Aut}(G)$ and it is a subgroup of symmetric group S_n, the group of all permutations on n vertices. A graph G with trivial automorphism group is called rigid or asymmetric graph and such a graph has no symmetries. In this paper, all the graphs (unless stated otherwise) are connected graphs.

Key words and phrases. Fixing set; Stabilizer; Fixing number; Fixed number
2010 Mathematics Subject Classification. 05C25, 05C60.

* Corresponding author: imran.javaid@bzu.edu.pk.
otherwise) have non-trivial automorphism group i.e., $\text{Aut}(G) \neq \{\text{id}\}$. Let $u, v \in V(G)$, we say u is similar to v, denoted by $u \sim v$ (or more specifically $u \sim^g v$) if there is an automorphism $g \in \text{Aut}(G)$ such that $g(u) = v$. It can be seen that similarity is an equivalence relation on vertices of G and hence it partitions the vertex set $V(G)$ into disjoint equivalence classes, called orbits of G. The orbit of a vertex v is defined as $O(v) = \{u \in V(G) | u \sim v\}$. The idea of fixing sets was introduced by Erwin and Harary in [5]. They used following terminology: The stabilizer of a vertex $v \in V(G)$ is defined as, $\text{stab}(v) = \{f \in \text{Aut}(G) | f(v) = v\}$. The stabilizer of a set of vertices $F \subseteq V(G)$ is defined as, $\text{stab}(F) = \{f \in \text{Aut}(G) | f(v) = v \text{ for all } v \in F\} = \bigcap_{v \in F} \text{stab}(v)$. A vertex v is fixed by an automorphism $g \in \text{Aut}(G)$ if $g \in \text{stab}(v)$. A set of vertices F is a fixing set if $\text{stab}(F)$ is trivial, i.e., the only automorphism that fixes all vertices of F is the trivial automorphism. The cardinality of a smallest fixing set is called the fixing number of G. We will refer a set of vertices $A \subset V(G)$ for which $\text{stab}(A) \setminus \{\text{id}\} \neq \emptyset$ as non-fixing set. A vertex $v \in V(G)$ is called a fixed vertex if $\text{stab}(v) = \text{Aut}(G)$. Every graph has a fixing set. Trivially the set of vertices itself is a fixing set. It is also clear that a set containing all but one vertex is a fixing set. Following theorem gives a relation between orbits and stabilizers.

Theorem 1.1. (Orbit-Stabilizer Theorem) Let G be a connected graph and $v \in V(G)$.

$$|\text{Aut}(G)| = |O(v)||\text{stab}_{\text{Aut}(G)}(v)|.$$

Boutin introduced determining set in [3]. A set $D \subseteq V(G)$ is said to be a determining set for a graph G if whenever $g, h \in \text{Aut}(G)$ so that $g(x) = h(x)$ for all $x \in D$, then $g(v) = h(v)$ for all $v \in V(G)$. The minimum cardinality of a determining set of a graph G, denoted by $\text{Det}(G)$, is called the determining number of G. Following lemma given in [7] shows equivalence between definitions of fixing set and determining sets.

Lemma 1.2. [7] A set of vertices is a fixing set if and only if it is a determining set.

Thus notions of fixing number and determining number of a graph G are same.

The notion of fixing set is closely related to another well-studied notion, resolving set, defined in the following way: A vertex $v \in G$ resolves vertices $x, y \in V(G)$ if $d(x, v) \neq d(y, v)$. A set $W \subseteq V(G)$ is called a resolving set for G if for every pair $x, y \in V(G)$, there exists a vertex $w \in W$ such that $d(x, w) \neq d(y, w)$. The idea of resolving set was introduced by Slater [15] and
he referred this set as a locating set. The cardinality of a minimum resolving set in a graph G, denoted by $\beta(G)$, is called the metric dimension of G. The resolving number $\text{res}(G)$ of G is the minimum k such that every k-set of vertices is a resolving set of G. The following proposition was independently proved by Erwin and Harary [5] (using fixing sets instead of determining sets) and Boutin [3].

Proposition 1.3. [3, 5, 8] If $S \subseteq V(G)$ is a resolving set of G then S is a fixing set of G. In particular, $\text{fix}(G) \leq \beta(G)$.

Jannesari and Omoomi have discussed the properties of resolving graphs and randomly k-dimensional graphs in [10] and [11] which were based on resolving number and metric dimension of G. In this paper, we define the fixed number of a graph, fixing graph and k-fixed graphs. We discuss properties of these graphs in the context of fixing sets and the fixing number.

The fixed number of a graph G, $\text{fxd}(G)$, is the minimum k such that every k-set of vertices is a fixing set of G. It may be noted that $0 \leq \text{fix}(G) \leq \text{fxd}(G) \leq n-1$. A graph is said to be a k-fixed graph if $\text{fix}(G) = \text{fxd}(G) = k$. In this paper, the fixed number k, remains in the focus of our attention. A path of even order is a 1-fixed graph. Similarly a cyclic graph of odd order is a 2-fixed graph. We give a construction of a graph with $\text{fxd}(G) = r + 1$ from a graph with $\text{fxd}(G) = r$ in Theorem 2.8. Also a characterization of k-fixed graphs is given in Theorem 3.7.

2. The Fixed Number

Consider the graph G in Figure 1. It is clear that $\text{Aut}(G) = \{e, (12)(34)(56)\}$. Also $\text{stab}(v) = \{id\}$ for all $v \in V(G)$. Thus $\{v\}$ for each $v \in V(G)$ forms a fixing set for G. Hence $\text{fix}(G) = \text{fxd}(G) = 1$ and G is 1-fixed graph. Thus we have following proposition immediately from definition of fixing set.

![Figure 1. Graph G](image-url)
Proposition 2.1. Let G be a connected graph and $fxd(G) = 1$, then

(i) $|O(v)| = |Aut(G)|$ for all $v \in V(G)$.

(ii) G does not have fixed vertices.

Proof. (i) Since $|stab(v)| = 1$ for all $v \in V(G)$ and result follows by Theorem 1.1. (ii) As $stab(v) = Aut(G)$ for a fixed vertex $v \in V(G)$ and hence $\{v\}$ does not form a fixing set for G. □

The problem of ‘finding the minimum k such that every k-subset of vertices of G is a fixing set of G’ is equivalent to the problem of ‘finding the maximum r such that there exist an r-subset of vertices of G which is not fixing set of G’. Thus, the cardinality of a largest non-fixing set in G helps in finding the fixed number of G. We can see $r = 0$ for the graph G in Figure 1. We have following remarks about non-fixing sets.

Remark 2.2. Let G be graph of order n.

(i) If r ($0 \leq r \leq n - 2$) be the cardinality of a largest non-fixing subset of G, then $fxd(G) = r + 1$.

(ii) Let A be a non-fixing set of G. For each non-trivial $g \in stab(A)$ there exist at least one set $B \subseteq V(G)$ such that $u \sim^g v$ for all $u, v \in B$.

Proposition 2.3. Let G be a graph and $u, v \in V(G)$ such that $N(v) \{u\} = N(u) \{v\}$. Let F be a fixing set of G, then u or v is in F.

Proof. Let $u, v \in V(G)$ such that $N(v) \{u\} = N(u) \{v\}$. Suppose on contrary both u and v are not in F. As u and v have common neighbors and $u, v \notin F$ so there exists an automorphism $g \in Aut(G)$ such that $g \in stab(F)$ and $g(u) = v$. Hence $stab(F)$ has a non-trivial automorphism, a contradiction. □

Theorem 2.4. Let G be a connected graph of order n. Then, $fxd(G) = n - 1$ if and only if $N(v) \{u\} = N(u) \{v\}$ for some $u, v \in V(G)$.

Proof. Let $u, v \in V(G)$ such that $N(v) \{u\} = N(u) \{v\}$. Suppose on contrary that $fxd(G) \leq n - 2$, then $V(G) \{u, v\}$ is a fixing set for G. But, by Proposition 2.3, every fixing set contains either u or v. This contradiction implies that, $fxd(G) = n - 1$.

Conversely, let $fxd(G) = n - 1$. Thus, there exists a non-fixing subset T of $V(G)$ with $|T| = n - 2$. Assume $T = V(G) \{u, v\}$ for some $u, v \in V(G)$. Our claim is that u, v are those vertices of G for which $N(u) \{v\} = N(v) \{u\}$. Suppose on contrary $N(u) \{v\} \neq N(v) \{u\}$, then there exists a vertex $w \in T$ such that w is adjacent to one of the vertices u or v. Without loss of generality, let w is adjacent to u but not adjacent to v. Let a non-trivial automorphism $g \in stab(T)$ (such a non-trivial automorphism exists because T
is not a fixing set). Since \(g \) is non-trivial and \(V(G) \setminus T = \{u, v\} \), so \(g(u) = v \).
But \(u \) cannot map to \(v \) under \(g \), because \(g \in \text{stab}(w) \) and \(w \) is adjacent to \(u \) and not adjacent to \(v \). Hence \(g \) also fixes \(u \) and \(v \), i.e., \(g \in \text{stab}\{u, v\} \) and consequently \(g \) becomes trivial. Hence \(\text{stab}(T) \) is trivial, a contradiction. Thus \(N(u) \setminus \{v\} = N(v) \setminus \{u\} \).

The following theorem given in [4] is useful for the proof of Corollary 2.6.

Theorem 2.5. [4] Let \(G \) be a connected graph of order \(n \). Then
\[\text{fix}(G) = n - 1 \text{ if and only if } G = K_n. \]

Corollary 2.6. Let \(G \) be a graph of order \(n \) and \(G \neq K_n \). If \(G \) is \((n - 1)\)-fixed graph, then for each pair of distinct vertices \(u, v \in V(G) \), \(N(u) \setminus \{v\} \neq N(v) \setminus \{u\} \).

Proof. Let \(N(u) \setminus \{v\} = N(v) \setminus \{u\} \) for some \(u, v \in V(G) \). Then by Theorem 2.4 \(\text{fxd}(G) = n - 1 \). Since \(G \neq K_n \), so by Theorem 2.5 \(\text{fix}(G) \neq n - 1 = \text{fxd}(G) \). Hence \(G \) is not \((n - 1)\)-fixed. \(\square \)

The fixing polynomial, \(F(G, x) = \sum_{i=\text{fix}(G)}^{n} \alpha_i x^i \), of a graph \(G \) of order \(n \) is a generating function of sequence \(\{\alpha_i\} \) \((\text{fix}(G) \leq i \leq n)\), where \(\alpha_i \) is the number of fixing subset of \(G \) of cardinality \(i \). For more detail about fixing polynomial see [12] where we discussed properties of fixing polynomial and found it for different families of graphs. For example \(F(C_3, x) = x^3 + 3x^2 \).

Theorem 2.7. Let \(G \) be a \(k \)-fixed graph of order \(n \).
\[F(G, x) = \sum_{i=k}^{n} \binom{n}{i} x^i \]

Proof. Since \(\text{fix}(G) = \text{fxd}(G) = k \) and superset of a fixing set is also a fixing set, therefore each \(i \)-subset \((k \leq i \leq n)\) is a fixing set. Hence \(\alpha_i = \binom{n}{i} \) for each \(i \), \((k \leq i \leq n)\). \(\square \)

Theorem 2.8. Let \(G \) be a graph of order \(n \) and \(\text{fxd}(G) = r \). We can construct a graph \(G' \) of order \(n + 1 \), from \(G \) such that \(\text{fxd}(G') = r + 1 \).

Proof. Since \(\text{fxd}(G) = r \), so \(G \) has a largest non-fixing set \(A \) of cardinality \(|A| = r - 1 \). By Remark 2.2(ii) for each non-trivial \(g \in \text{stab}(A) \), there exist at least one set \(B \subset V(G) \) such that \(u \sim^g v \) for all \(u, v \in B \). Consider \(B = \{v_1, v_2, \ldots, v_l\} \). Take a \(K_1 = \{x\} \) and join \(x \) with \(v_1, v_2, \ldots, v_l \) by edges \(xv_1, xv_2, \ldots, xv_l \). We call new graph \(G' \). This completes construction of \(G' \). We will now find a largest non-fixing subset of \(G' \). Since \(v_i \sim^g v_j \) \((i \neq j, 1 \leq i, j \leq l)\), then \(\text{fxd}(G') = r + 1 \).
l) in G and x is adjacent to v1, v2, ..., vl in G′. So we can find a g′ ∈ Aut(G′) such that

\[g′(u) = \begin{cases}
 x & \text{if } u = x, \\
 g(u) & \text{if } u \neq x
\end{cases} \]

in G′. Clearly, g′ ∈ stab(x) ∩ stab(A) = stab({x} ∪ A) and vi ∼ g′ vj (i ≠ j, 1 ≤ i, j ≤ l) in G′. Since g′ is non-trivial and A is a largest non-fixing set in G, so A ∪ {x} is a largest non-fixing set in G′. Hence by Remark 2.2(i),

\[fxd(G′) = |A ∪ \{x\}| + 1 = r + 1 \]

The following lemma is useful for finding the fixing number of a tree.

Lemma 2.9. Let T be a tree and F ⊂ V(T), then F fixes T if and only if F fixes the end vertices of T.

Theorem 2.10. For every integers p and q with 2 ≤ p ≤ q, there exists a graph G with fix(G) = p and fxd(G) = q.

Proof. For p = q, G = Kp+1 will have the desired property. So we consider 2 ≤ p < q. Consider a graph G obtained from a path w1, w2, ..., wp−p. Add p + 1 vertices u1, u2, ..., up+1 and p + 1 edges w1u1, w1u2, ..., w1up+1 with w1. Thus |V(G)| = q + 1. Consider set F ⊂ V(G), F = {u1, u2, ..., up} , then F fixes the set of end vertices \(\{u_1, u_2, ..., u_p, u_{p+1}\}\) of G. As G is a tree and \(w_{p-q}\) is a fixed end vertex, hence F fixes G by Lemma 2.9. Since F is a minimum fixing set for G, so fix(G) = |F| = p. Also fxd(G) = q because U = \(\{w_1, w_2, ..., w_{q-p}, u_1, u_2, ..., u_{p-1}\}\) is the largest non-fixing set with cardinality q − 1.

3. The Fixing Graph

Let G be a connected graph. The set of fixed vertices of G has no contribution in constructing the fixing sets of G, therefore we define a vertex set

\[S(G) = \{v \in V(G) : v \sim u \text{ for some } u(\neq v) \in V(G)\} \]

(set of all vertices of G which are more than one in their orbits). Also consider \(V_s(G) = \{(u, v) : u \sim v (u \neq v) \text{ and } u, v \in V(G)\}\). Also, if G is an asymmetric graph, then \(V_s(G) = \emptyset\). Let x ∈ V(G), an arbitrary automorphism \(g \in \text{stab}(x)\) is said to fix a pair \((u, v) \in V_s(G)\) if \(u \sim g^u v\). If \((u, v) \notin V_s(G)\), then \(u \not\sim v\) and hence question of fixing pair \((u, v)\) by a \(g \in \text{stab}(x)\) does not arise. In this section, we use r and s to denote \(|S(G)|\) and \(|V_s(G)|\) respectively. It is clear that \(r ≤ n\) and \(\frac{n}{2} ≤ s ≤ \binom{n}{2}\) where s attains its lower bound in later inequality in case when r is even and pair \((u, v)\) is only fixed by automorphisms in \(\text{stab}(u, v)\) for all \((u, v) \in V_s(G)\). Consider the graph \(G_1\) in Figure 2 where \(r = 6\) and \(s = 7\). \(G_1\) has a fixed vertex \(v_1\) and \(S(G_1) = \{v_2, v_3, v_4, v_5, v_6, v_7\}\)
and $V_s(G_1) = \{(v_2, v_3), (v_4, v_5), (v_4, v_6), (v_4, v_7), (v_5, v_6), (v_5, v_7), (v_6, v_7)\}$. Since superset of a fixing set is also a fixing set, so we are interested in fixing set of minimum cardinality. Following remarks tell us the relation between a fixing set F and $S(G)$.

Remark 3.1. Let G be a graph. A set $F \subseteq V(G)$ is a minimum fixing set of G, if $F \subseteq S(G)$ and an arbitrary $g \in \text{stab}(F)$ fixes $S(G)$.

The Fixing Graph, $D(G)$, of a graph G is a bipartite graph with bipartition $(S(G), V_s(G))$. A vertex $x \in S(G)$ is adjacent to a pair $(u, v) \in V_s(G)$ if $u \not\sim^g v$ for $g \in \text{stab}(x)$. Let $F \subseteq S(G)$, then $N_{D(G)}(F) = \{(x, y) \in V_s(G) | x \not\sim^g y$ for $g \in \text{stab}(F)\}$. In the fixing graph, $D(G)$, the minimum cardinality of a subset F of $S(G)$ such that $N_{D(G)}(F) = V_s(G)$ is the fixing number of G. Figure 2(b) shows the fixing graph of graph G_1 given in Figure 2(a). As $N_{D(G_1)}\{v_4, v_6\} = V_s(G_1)$, thus $\{v_4, v_6\}$ is a fixing set of G_1 and hence $\text{fix}(G_1) = 2$.

Remark 3.2. Let G be graph and $F \subseteq S(G)$ be a fixing set of G, then $N_{D(G)}(F) = V_s(G)$.

Also $\{v_1, v_2, v_3, v_4, v_5\}$ is a largest non-fixing set of G_1. In fact every largest non-fixing set must have fixed vertex v_1. So we have following proposition

Proposition 3.3. Let G be a graph and A be a largest non-fixing subset of G. Then A contains all fixed vertices of G.

![Figure 2.](image-url)
Proof. Let $x \in V(G)$ be an arbitrary fixed vertex of G. Suppose on contrary $x \notin A$. Then $\text{stab}(A \cup \{x\}) = \text{stab}(A) \cap \text{stab}(x) = \text{stab}(A) \cap \text{Aut}(G) = \text{stab}(A) \neq \{id\}$ (A is non-fixing set). Consequently $A \cup \{x\}$ is non-fixing set, a contradiction that A is largest non-fixing set. \hfill \Box

Let t be the minimum number such that $1 \leq t \leq r$ and every t-subset F of $S(G)$ has $N_{D(G)}(F) = V_s(G)$, then t is helpful in finding the fixed number of a graph G. The following theorem gives a way of finding fixed number of a graph using its fixing graph.

Theorem 3.4. Let G be a graph of order n and t ($1 \leq t \leq r$) be the minimum number such that every t-subset of $S(G)$ has neighborhood $V_s(G)$ in $D(G)$. Then

$$f_{xd}(G) = t + |V(G) \setminus S(G)|$$

Proof. By Remark [2.2(i)], we find a largest non-fixing subset T of $V(G)$. By Proposition [3.3] $V(G) \setminus S(G)$ is a subset of largest non-fixing set T. Moreover, by hypothesis there is a $(t-1)$-subset U of $S(G)$ such that $N_{D(G)}(U) \neq V_s(G)$. Then U is non-fixing set for G and hence $\{V(G) \setminus S(G)\} \cup U$ is a non-fixing set. Also $\{V(G) \setminus S(G)\} \cup U$ is a largest non-fixing set of G, because by hypothesis, a t-subset of $S(G)$ forms a fixing set of G. Further $\{V(G) \setminus S(G)\} \cap U = \emptyset$. Hence by Remark [2.2(i)],

$$f_{xd}(G) = |V(G) \setminus S(G)| + |U| + 1 = |V(G) \setminus S(G)| + t$$

\hfill \Box

In [13], we found an upper bound on the cardinality of edge set $|E(D(G))|$ of fixing graph $D(G)$ of a graph G.

Proposition 3.5. [13] Let G be a k-fixed graph of order n, then

$$|E(D(G))| \leq n\left(\frac{n}{2} - k + 1\right).$$

Now we find lower bound on $|E(D(G))|$.

Proposition 3.6. If G is a k-fixed graph of order n, then

$$\left(\frac{r}{2}\right)(r - k + 1) \leq |E(D(G))|$$

Proof. Let $z \in V_s(G)$ and A be a set of vertices of $S(G)$ which are not adjacent to z. Since $N_{D(G)}(A) \neq V_s(G)$, therefore A is a non-fixing set of G. Our claim is $\text{deg}_{D(G)}(z) \geq r - k + 1$. Suppose $\text{deg}_{D(G)}(z) \leq r - k$, then $|A| \geq k$,
which contradicts that $fxd(G) = k$ (A is non-fixing set with $|A| \geq k$). Thus, $\text{deg}_{D(G)}(z) \geq r - k + 1$ and consequently,

$$\left(\frac{r}{2}\right)(r - k + 1) \leq s(r - k + 1) \leq |E(D(G))|.$$

Thus, on combining (1) and (2) we get

$$\left(\frac{r}{2}\right)(r - k + 1) \leq |E(D(G))| \leq n\left(\frac{r}{2}\right) - k + 1.$$

Theorem 3.7. If G is a k-fixed graph and $|S(G)| = r$, then $k \leq 3$ or $k \geq r - 1$.

Proof. For each $R \subseteq S(G)$, let $\overline{N}_{D(G)}(R) = V_s(G) \setminus N_{D(G)}(R)$. We claim that, if $R, T \subseteq S(G)$ with $|R| = |T| = k - 1$ and $R \neq T$, then $\overline{N}_{D(G)}(R) \cap \overline{N}_{D(G)}(T) = \emptyset$. Otherwise, there exists a pair $\{y, z\} \in \overline{N}_{D(G)}(R) \cap \overline{N}_{D(G)}(T)$. Therefore, $\{y, z\} \notin N_{D(G)}(R \cup T)$ and hence, $R \cup T$ is not a fixing set of G. Since, $R \neq T$, $|R \cup T| > |T| = k - 1$, which contradicts that $fxd(G) = k$. Thus, $\overline{N}_{D(G)}(R) \cap \overline{N}_{D(G)}(T) = \emptyset$.

Since, $\text{fix}(G) = k$, for each $R \subseteq S(G)$ with $|R| = k - 1$, $\overline{N}_{D(G)}(R) \neq \emptyset$. Now, let $\Omega = \{R \subseteq S(G) : |R| = k - 1\}$. Therefore,

$$|\bigcup_{R \in \Omega} \overline{N}_{D(G)}(R)| = \sum_{R \in \Omega} |N_{D(G)}(R)| \geq \sum_{R \in \Omega} 1 = \binom{r}{k-1}.$$

On the other hand, $\bigcup_{R \in \Omega} \overline{N}_{D(G)}(R) \subseteq V_s(G)$. Hence, $|\bigcup_{R \in \Omega} \overline{N}_{D(G)}(R)| \leq s \leq \binom{r}{k-1}$. Consequently, $\binom{r}{k-1} \leq \binom{r}{k-1}$. If $r \leq 4$, then $k \leq 3$. Now, let $r \geq 5$. Thus, $2 \leq \frac{r+1}{2}$. We know that for each $a, b \leq \frac{n+1}{2}$, $\binom{r}{a} \leq \binom{r}{b}$ if and only if $a \leq b$. Therefore, if $k - 1 \leq \frac{r+1}{2}$, then $k - 1 \leq 2$, which implies $k \leq 3$. If $k - 1 \geq \frac{r+1}{2}$, then $r - k + 1 \leq \frac{r+1}{2}$. Since $\binom{r}{k-1} = \binom{r}{k-1}$, we have $\binom{r}{r-k+1} \leq \binom{r}{2}$ and consequently, $r - k + 1 \leq 2$, which yields $k \geq r - 1$. □

4. **The Distance-Transitive Graph**

We now study the fixed number in a class of graphs known as the distance-transitive graphs. A graph G is called distance-transitive if $u, v, x, y \in V(G)$ satisfying $d(u, v) = d(x, y)$, then there exist an automorphism $g \in \text{Aut}(G)$ such that $u \sim^g x$ and $v \sim^g y$. For example, the complete graph K_n, the cyclic graph C_n, the Petersen graph, the Johnson graph etc, are distance-transitive. For more about distance transitive graphs see [2]. In this section, we use terminology as described in section 3 related to the fixing graph $D(G)$ of a graph G. Following proposition given in [2] tells that the distance transitive graph does not have fixed vertices.
Proposition 4.1. [2] A distance-transitive graph is vertex transitive.

Thus, if G is a distance transitive graph, then $S(G) = V(G)$, $r = n$ and $V_s(G)$ consists of all $\binom{n}{2}$ pairs of vertices of G (i.e., $s = \binom{n}{2}$).

Corollary 4.2. Let G be a distance-transitive graph of order n. If G is k-fixed, then $k \leq 3$ or $k \geq n - 1$.

Proof. Since $r = n$ for a distance-transitive graph, so result follows from Theorem 3.7.

Moreover an expression for bounds on $|E(D(G))|$ of a distance-transitive and k-fixed graph G can be obtained by putting $r = n$ and $s = \binom{n}{2}$ in (2) and use the result in (3), we get

$$\binom{n}{2} (n - k + 1) \leq |E(D(G))| \leq n\binom{n}{2} - k + 1.$$ (4)

Also, the following two results given in [10] are useful in our later work.

Observation 4.3. [10] Let $n_1, ..., n_r$ and n be positive integers, with $\sum_{i=1}^{r} n_i = n$. Then, $\sum_{i=1}^{r} \binom{n_i}{2}$ is minimum if and only if $|n_i - n_j| \leq 1$, for each $1 \leq i, j \leq r$.

Lemma 4.4. [10] Let $n, p_1, p_2, q_1, q_2, r_1$ and r_2 be positive integers, such that $n = p_i q_i + r_i$ and $r_i < p_i$, for $1 \leq i \leq 2$. If $p_1 < p_2$, then

$$(p_1 - r_1)\binom{q_1}{2} + r_1\binom{q_1+1}{2} \geq (p_2 - r_2)\binom{q_2}{2} + r_2\binom{q_2+1}{2}.$$ (5)

We define distance partition of $V(G)$ with respect to $v \in V(G)$, into distance classes $\Psi_i(v)$ ($1 \leq i \leq e(v)$) defined as: $\Psi_i(v) = \{x \in V(G)| d(v, x) = i \}$.

Proposition 4.5. Let G be a distance transitive graph and $v, x, y \in V(G)$. Then $x, y \in \Psi_i(v)$ for some i ($1 \leq i \leq e(v)$) if and only if v is non-adjacent to pair $(x, y) \in V_s(G)$ in $D(G)$.

Proof. Let $x, y \in \Psi_i(v)$ for some i ($1 \leq i \leq e(v)$), then $d(v, x) = d(v, y) = i$ and by definition of distance-transitive graph there exist an automorphism $g \in Aut(G)$ such that $v \sim^g v$ and $x \sim^g y$. Thus $x \sim^g y$ by an automorphism $g \in stab(v)$ and consequently the pair (x, y) is not adjacent to v in $D(G)$.

Conversely, suppose v is non-adjacent to pair $(x, y) \in V_s(G)$, then $x \sim^g y$ by an arbitrary $g \in stab(v)$. Since g is an isometry, therefore $d(v, x) = d(g(v), g(x)) = d(v, y) = i$ (say). Thus x, y are in same distance class $\Psi_i(v)$.

Proposition 4.6. Let G be a distance-transitive graph of order n. If G is k-fixed, then for each $v \in V(G)$, $\deg_{D(G)}(v) = \binom{n}{2} - \sum_{i=1}^{e(v)} \binom{\Psi_i(v)}{2}$.
Proof. By Proposition 4.5, the only pairs \((x, y) \in V_s(G)\) which are non-adjacent to \(v \in V(G)\) are those in which both \(x, y\) belong to same distance class \(\Psi_i(v)\) for each \(i \ (1 \leq i \leq e(v))\). So the number of such pairs in \(V_s(G)\) which are not adjacent to \(v\) is \(\sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2}\). Therefore, \(\deg_{D(G)}(v) = \binom{n}{2} - \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2}\) \(\square\)

Thus, an expression for \(|E(D(G))|\) can be obtained using Proposition 4.6 (5)

\[|E(D(G))| = \sum_{v \in V(G)} \left[\binom{n}{2} - \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2} \right] = n \binom{n}{2} - \sum_{v \in V(G)} \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2}\]

From (4) and (5) we obtain

(6) \[n(k-1) \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2} \leq \binom{n}{2}(k-1)\]

Theorem 4.7. Let \(G\) be a distance-transitive graph of order \(n\) and diameter \(d\). If \(G\) is \(k\)-fixed, then \(k \geq \frac{n-1}{d}\).

Proof. Note that, for each \(v \in V(G)\), \(|\bigcup_{i=1}^{e(v)} \Psi_i(v)\| = n-1\). For \(v \in V(G)\), let \(n-1 = q(v)e(v) + r(v)\), where \(0 \leq r(v) < e(v)\). Then, by Observation 4.3 \(\sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2}\) is minimum if and only if \(|\Psi_i(v)| - |\Psi_j(v)|\ | \leq 1\), where \(1 \leq i, j \leq e(v)\). This condition will be satisfied if there are \(r(v)\) distance classes having \(q(v) + 1\) vertices and \(e(v) - r(v)\) distance classes having \(q(v)\) vertices. Thus, the number of pair of vertices in \(\Psi_i(v)\) having \(q(v) + 1\) vertices is \(r(v)\binom{q(v)+1}{2}\) and the number of pair of vertices in \(\Psi_i(v)\) having \(q(v)\) vertices is \((e(v) - r(v))\binom{q(v)}{2}\). Thus,

(7) \[(e(v) - r(v))\binom{q(v)}{2} + r(v)\binom{q(v)+1}{2} \leq \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2}\]

Let \(w \in V(G)\) with \(e(w) = d\), \(r(w) = r\), and \(q(w) = q\), then \(n-1 = qd + r\). Since for each \(v \in V(G)\), \(e(v) \leq e(w)\), by Lemma 4.4 \(d-r)\binom{q}{2} + r\binom{q+1}{2} \leq (e(v) - r(v))\binom{q(v)}{2} + r(v)\binom{q(v)+1}{2}\).

Therefore,

\[n[(d-r)\binom{q}{2} + r\binom{q+1}{2}] \leq \sum_{v \in V(G)} [(e(v) - r(v))\binom{q(v)}{2} + r(v)\binom{q(v)+1}{2}]\]

Thus, by relation (6) and (7)

\[n[(d-r)\binom{q}{2} + r\binom{q+1}{2}] \leq \sum_{v \in V(G)} \sum_{i=1}^{e(v)} \binom{|\Psi_i(v)|}{2} \leq \binom{n}{2}(k-1)\].
Hence, \(q[(d-r)(q-1)+r(q+1)] \leq (n-1)(k-1) \), which implies, \(q[(r-d)+(d-r)q+r(q+1)] \leq (n-1)(k-1) \). Therefore, \(q(r-d)+q(n-1) \leq (n-1)(k-1) \).

Since \(q = \left\lceil \frac{n-1}{d} \right\rceil \), we have

\[
k - 1 \geq q + q \frac{r - d}{n - 1} = q + \frac{qr}{n - 1} - \frac{qd}{n - 1} = q + \frac{qr}{n - 1} - \frac{\left\lceil \frac{n-1}{d} \right\rceil d}{n - 1} \geq q + \frac{qr}{n - 1} - 1.
\]

Thus, \(k \geq \left\lceil \frac{n-1}{d} \right\rceil + \frac{qr}{n-1} \). Note that, \(\frac{qr}{n-1} \geq 0 \). If \(\frac{qr}{n-1} > 0 \), then \(k \geq \left\lceil \frac{n-1}{d} \right\rceil \), since \(k \) is an integer. If \(\frac{qr}{n-1} = 0 \), then \(r = 0 \) and consequently, \(d \) divides \(n - 1 \).

Thus, \(\left\lfloor \frac{n-1}{d} \right\rfloor = \left\lceil \frac{n-1}{d} \right\rceil \). Therefore, \(k \geq \left\lceil \frac{n-1}{d} \right\rceil \geq \frac{n-1}{d} \).

\[\Box\]

References

[1] M. O. Albertson and D. L. Boutin, Using determining sets to distinguish Kneser graphs, The Electronic Journal of Combinatorics 14 (2007), R#20.
[2] N. Biggs, Algebraic Graph Theory (2nd ed.), Cambridge University Press, pp. 155 - 163, chapter 20.
[3] D. L. Boutin, Identifying graph automorphisms using determining sets, Electronic Journal of Combinatorics 13 (2006), R#78.
[4] J. Caceres and D. Garijo, On the determining number and the metric dimension of graphs, The Electronic Journal of Combinatorics 17 (2010), R#63.
[5] D. Erwin and F. Harary, Destroying automorphisms by fixing nodes, Discrete Mathematics, 306 (2006) pp. 3244 - 3252.
[6] R. Frucht, Herstellung von graphen mit vorgegebener abstrakter gruppe., Compositio Mathematica 6 (1939), pp. 239 - 250.
[7] C. R. Gibbons and J. D. Laison, Fixing numbers of graphs and groups, The Electronic Journal of Combinatorics 16 (2009), #R39.
[8] F. Harary, Methods of destroying the symmetries of a graph, Bulletin of the Malaysian Mathematical Sciences Society 24(2) (2001), pp. 183 - 191.
[9] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), pp. 191 - 195.
[10] M. Jannesari and B. Omoomi, Characterization of randomly k-dimensional graphs, http://arxiv.org/abs/1103.3169.
[11] M. Jannesari and B. Omoomi, On randomly k-dimensional graphs., http://arxiv.org/abs/1103.3169.
[12] I. Javaid and M. Fazil and U. Ali and M. Salman, On some parameters related to fixing sets in graphs, submitted for publication.
[13] I. Javed and H. Benish and U. Ali and M. Murtaza, On some automorphism related parameters in graphs, arXiv:1411.4922 [math.CO].
[14] Skiena S., Automorphism groups, 5.2.2 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Reading MA : Addison-Wesley, (1990) pp. 184 - 187.
[15] P. J. Slater, Leaves of trees, Congressus Numerantium 14 (1975) 549 - 559.
