MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Wenhao Wu1, Dongliang He1, Tianwei Lin1, Fu Li1, Chuang Gan2, Errui Ding1

1Department of Computer Vision Technology (VIS), Baidu Inc.
2MIT-IBM Watson AI Lab

AAAI 2021
Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.
Task

Video Recognition: classify the short clip or untrimmed video into pre-defined class.

- More than simply recognizing objects
- Complex person-person interaction & people-object interactions
- Videos bring motions
Key Observations

• Efficient spatial-temporal modeling is the key to action recognition

• Classical C2D: temporal modeling unexplored but simple

• 3D CNN, e.g., SlowFast or SlowOnly: effective but expensive

• TSM enables C2D to model temporal relationship at nearly zero cost
 • fixed channel-wise 3x1x1 conv
 • kernel of [0,0,1] for forward shift and [1,0,0] for backward shift
Is TSM our ultimate choice?

NO!
We CAN have better choice:

- From the regular viewpoint of HW-T: TSM can be improved to have arbitrary learnable “shift” kernels
- Why not model relationships from other viewpoints of WT-H and TH-W?
- With careful designing, better effectiveness-efficiency trade-off is possible
Key Innovation

MVFNet = Learnable Temporal "Shift" + Learnable Horizontal "Shift" + Learnable Vertical "Shift"

Viewpoint of HW-T
Viewpoint of WT-H
Viewpoint of TH-W
Why MVFNet will work

MVFNet is a **generalized** architecture of existing frameworks

- $\alpha = 0$, MVFNet specializes to be C2D
- $\alpha = 1, \beta_H = \beta_W = 0$, MVFNet is a channel-wise 3x1x1 Conv version of SlowOnly/C3D
- $\alpha = 1/4, \beta_H = \beta_W = 0$, and half of channel-wise 3x1x1 conv kernels are [0,0,1] and the rest kernels are [1,0,0], then MVFNet becomes TSM
Ablation Experiments

Design choice of α: MVFBlock is inserted into res_4 and res_5

Setting	Sth-sth v1	Kinetics-400						
	#F	Top-1	Top-5	FLOPs	#F	Top-1	Top-5	FLOPs
$\alpha=0$	8	17.12	43.46	32.88G	4	71.87	90.02	16.44G
$\alpha=1/8$	8	49.74	78.09	32.90G	4	74.21	91.34	16.45G
$\alpha=1/4$	8	49.24	77.91	32.92G	4	74.18	91.46	16.46G
$\alpha=1/2$	8	50.48	79.14	32.96G	4	74.21	91.42	16.48G
$\alpha=1$	8	49.73	77.94	33.04G	4	73.75	91.40	16.52G

(a) Parameter choices of α. Backbone: R-50.
Ablation Experiments

Design choice of how many and where MVFBlocks are inserted:
\[\alpha = 1/2 \text{ and } 1/8 \text{ for Sth-v1 and K400, respectively} \]

Stages	Blocks	Sth-sth v1, \(\alpha=1/2 \)	Kinetics-400, \(\alpha=1/8 \)
None	0	#F 17.12 43.46 32.88G	#F 71.87 90.02 16.44G
res\{5\}	3	8 46.02 75.60 32.90G	4 73.46 91.09 16.44G
res\{4,5\}	9	8 **50.48** 79.14 32.96G	4 74.21 91.34 16.45G
res\{3,4,5\}	13	8 49.72 78.82 33.04G	4 74.08 91.51 16.46G
res\{2,3,4,5\}	16	8 49.95 77.96 33.12G	4 **74.22** 91.56 16.47G

(b) The number of MVF Blocks inserted into R-50.
Ablation Experiments

Design choice of fusing multiple viewpoints:
\[\alpha = \frac{1}{2} \text{ and } \frac{1}{8} \text{ for Sth-v1 and K400, respectively;} \]

MVFblocks in res_4, res_5

Views	Sth v1 #F Top-1	K400 #F Top-1
	Sth-v1	K400
T	8 49.13	4 73.72
T-H	8 49.22	4 74.01
T-W	8 49.31	4 73.88
T-H-W	8 50.48	4 74.21
T-H-W (S)	8 47.21	4 73.81

Fusing multi-view information is beneficial

Channel-wise 3x1x1 temporal / horizontal / vertical convolution must have independent kernels

(c) Study on the different views of MVF module. Backbone: R-50. S denotes weight sharing.
Ablation Experiments

Impact of MVFBlocks when different backbones are used:
\(\alpha = 1/2 \) and \(1/8 \) for Sth-v1 and K400, respectively; MVFblocks in res_4, res_5

Model	Top-1 FLOPs
Mb-V2	64.4 1.25G
MVF	67.5 1.25G

Model	Top-1 FLOPs
Mb-V2	71.9 16.44G
MVF	74.2 16.48G

(e) Advanced backbones for MVFNet on Kinetics-400.
(f) Different backbones for MVFNet on Kinetics-400. Mb-V2 denotes MobileNet-V2.
Comparison with Similar Variants

$\alpha = 1/2$ and 1/8 for Sth-v1 and K400, respectively; MVFblocks in res_4, res_5

Method	Sth v1 Top-1	K400 Top-1	FLOPs	Params
C2D	17.1	71.4	32.9G	24.3M
TSM	47.2	74.1	32.9G	24.3M
SlowOnly	-	74.9	41.9G	32.4M
CoST*	-	-	45.8G	24.3M
MVFNet	**50.5**	**76.0**	32.9G	24.3M

(d) Study on the effectiveness of MVFNet. Backbone: R-50, 8f input. * indicates our implementation.
Method	Backbone	Frames × Crops × Clips	GFLOPs	Top-1	Top-5	
I3D (Carreira et al. 2017)	Inception V1	64×N/A×N/A	108×N/A	72.1%	90.3%	
S3D-G (Xie et al. 2018)	Inception V1	64×3×10	71.4×30	74.7%	93.4%	
TSN (Wang et al. 2016)	Inception V3	25×10×1	80×10	72.5%	90.2%	
ECO-RGB_{En} (Zolfaghari et al. 2018)	BNIncep+Res3D-18	92×1×1	267×1	70.0%	-%	
R(2+1)D (Tran et al. 2018)	ResNet-34	32×1×10	152×10	74.3%	91.4%	
X3D-M (Feichtenhofer 2020)	-	16×3×10	6.2×30	76.0%	92.3%	
STM (Jiang et al. 2019)	ResNet-50	16×3×10	67×30	73.7%	91.6%	
TSM (Lin, Gan, and Han 2019)	ResNet-50	8×3×10	33×30	74.1%	91.2%	
SlowOnly (Feichtenhofer et al. 2019)	ResNet-50	8×3×10	41.9×30	74.9%	91.5%	
TEInet (Liu et al. 2020)	ResNet-50	8×3×10	33×30	74.9%	91.8%	
TEA (Li et al. 2020b)	ResNet-50	8×3×10	33×30	75.0%	91.8%	
Slowfast (Feichtenhofer et al. 2019)	R50+R50	(4+32)×3×10	36.1×30	75.6%	92.1%	
NL+I3D (Wang et al. 2018b)	ResNet-50	32×3×10	70.5×30	74.9%	91.6%	
NL+I3D (Wang et al. 2018b)	ResNet-50	128×3×10	282×30	76.5%	92.6%	
MVNet	ResNet-50	8×3×10	32.9×30	76.0%	92.4%	
MVNet	ResNet-50	16×3×10	65.8×30	77.0%	92.8%	
ip-CSN (Tran et al. 2019)	ResNet-101	32×3×10	82×30	76.7%	92.3%	
SmallBig (Li et al. 2020a)	ResNet-101	32×3×4	418×12	77.4%	93.3%	
SlowOnly (Feichtenhofer et al. 2019)	ResNet-101	16×3×10	185×30	77.2%	-%	
NL+I3D (Wang et al. 2018b)	ResNet-101	128×3×10	359×30	77.7%	93.3%	
Slowfast (Feichtenhofer et al. 2019)	R101+R101	(8+32)×3×10	106×30	77.9%	93.2%	
Slowfast (Feichtenhofer et al. 2019)	R101+R101	(16+64)×3×10	213×30	78.9%	93.5%	
TPN (Yang et al. 2020)	ResNet-101	32×3×10	374×30	78.9%	93.9%	
MVNet	ResNet-101	8×3×10	62.7×30	77.4%	92.9%	
MVNet	ResNet-101	16×3×10	125.4×30	78.4%	93.4%	
MVNet_{En}	R101+R101	(16+8)×3×10	188.1×30	79.1%	93.8%	
Method	Backbone	Frames × Crops × Clips	FLOPs	Pre-train	V1 Val Top-1 (%)	V2 Val Top-1 (%)
---------------------	-------------------------	------------------------	-------------	-----------	------------------	------------------
I3D (Wang et al. 2018)	3D ResNet50	32 × 3 × 2	153G × 3 × 2	ImageNet	41.6	-
NL I3D (Wang et al. 2018)	3D ResNet50		168G × 3 × 2	+	44.4	-
NL I3D+GCN (Wang et al. 2018)	3D ResNet50+GCN		303G × 3 × 2	K400	46.1	-
ECO (Zolfaghari et al. 2018)	BNIncep+3D Res18	81 × 1 × 1	32G × 1 × 1	K400	39.6	-
ECO_{En} (Zolfaghari et al. 2018)	Inception	92 × 1 × 1	267G × 1 × 1	K400	46.4	-
S3D-G (Xie et al. 2018)	Inception	64 × 1 × 1	71G × 1 × 1	K400	48.2	-
TSN (Wang et al. 2016)	ResNet50	8 × 3 × 2	33G × 3 × 2	ImageNet	20.5	30.4
TSM (Lin et al. 2019)	ResNet50	8 × 3 × 2	33G × 3 × 2	ImageNet	47.2	61.2
STM (Jiang et al. 2019)	ResNet50	8 × 3 × 10	33G × 3 × 10	ImageNet	49.2	62.3
TEInet (Liu et al. 2020)	ResNet50	8 × 3 × 10	33G × 3 × 10	ImageNet	49.2	62.3
TEA (Li et al. 2020b)	ResNet50	8 × 3 × 10	35G × 3 × 10	ImageNet	51.0	64.7
MVFNet	ResNet50	8 × 1 × 1	33G × 1 × 1	ImageNet	48.8	60.8
		8 × 3 × 2	33G × 3 × 2	ImageNet	50.5	63.5
		16 × 1 × 1	66G × 1 × 1	ImageNet	51.0	62.9
		16 × 3 × 2	66G × 3 × 2	ImageNet	52.6	65.2
		(16+8) × 3 × 2	99G × 3 × 2		54.0	66.3
Mean class accuracy of RGB modality is reported, RGB models are pretrained on Kinetics400

Method	Backbone	UCF-101	HMDB-51
ECO\textsubscript{En}	BNIncep+Res3D-18	94.8%	72.4%
ARTNet	ResNet-18	94.3%	70.9%
I3D	Inception V1	95.6%	74.8%
R(2+1)D	Inception V1	96.8%	74.5%
S3D-G	Inception V1	96.8%	75.9%
TSN	BNInception	91.1%	-
StNet	ResNet-50	93.5%	-
TSM	ResNet-50	95.9%	73.5%
STM	ResNet-50	96.2%	72.2%
TEINet	ResNet-50	96.7%	72.1%
MVFNet	ResNet-50	96.6%	75.7%
Conclusion

• Upgrading fixed shift kernels of TSM to be learnable is more flexible

• Relationship modeling from multiple viewpoints is a strong boost

• MVFNet consistently outperforms existing solutions on Kinetics400, Something-Something-v1/v2

• Codes & models will be available

 https://github.com/whwu95/MVFNet
Thank you!

MVFNet: Multi-View Fusion Network for Efficient Video Recognition

Contact: Wenhao Wu
wuwenhao17@mails.ucas.edu.cn
https://github.com/whwu95/MVFNet