User Acceptance of Metaverse: Insights from Technology Acceptance Model (TAM) and Planned Behavior Theory (PBT)

Yavuz Toraman
Nisantasi University, Turkey | e-mail: yavuz.toraman@nisantasi.edu.tr

Abstract

Many innovations have entered human life with the rapid development of technology and its widespread use. The adaptation process of people to these innovations is very important in terms of efficiency and sustainability. In this research, the factors affecting the acceptance of metaverse technology, which is one of the most important innovations encountered in the last period, were examined. In this context, metaverse technology was analyzed with structural equation modeling (SEM) within the scope of PBT and TAM. For analysis, the Smart PLS 3 software was used. According to the hypothesis results, a significant positive correlation was found between PU, PEOU, AT, and Intention. In addition, a significant positive correlation was found between SN and AT, and PBC. It has been analyzed that the factors affecting the metaverse usage intention of the individuals participating in the research are parallel to the literature. When we assume that the usage area of metaverse technology will become widespread in the future, it is very important to expand the studies in this field in detail.

Keywords: Metaverse, Blockchain, E-Commerce, Technology Acceptance Model (TAM), Planned Behavior Theory (PBT)

New articles in this journal are licensed under a Creative Commons Attribution 3.0 United States License.
User Acceptance of Metaverse: Insights from Technology Acceptance Model (TAM) and Planned Behavior Theory (PBT)

Yavuz Toraman

I. Introduction

The technological development process has been continuing at an increasing rate for many years. Although the spread of technology in the 2000s encountered some resistance, digital devices, products and services are used in many areas in the current process. In this context, blockchain technology can be given as an example of such technology. Blockchain technology proposes a decentralized system with a distributed central structure.

Blockchain technology with a decentralized system allows fast transactions. On the other hand, irreversibly recorded transactions make a significant contribution to data security. Trust and speed-based blockchain technology first appeared in the financial field in 2009 in Nakamoto's article (Nakamoto, 2008). In the following process, blockchain has been used in different fields as Technology. Metaverse technology, on the other hand, enables the visuality to reach its users in 3D. At the same time, since it uses blockchain technology, people will be able to interact without any central authority. The most important feature of Metaverse technology in today's conditions is that objects can be displayed in real sizes in the virtual environment utilizing various technological wearable technologies (Kanematsu et al., 2014).

With the COVID-19 epidemic, the digitalization of many products and services as well as the use of digital channels have been observed more frequently than before. Also, the popularity of technologies that can host other digital products and services such as metaverse have increased. In this context, the analysis of people's attitudes, intentions, and behaviors towards metaverse technology has become an important issue.

In the present study are examined the attitudes and intentions of potential users of metaverse technology, which will occupy a wider place in human life in the future. It is a known fact that human behavior depends on certain causes. In the present study, people's attitudes and intentions towards the relevant technology were investigated through two theories that are frequently used in the literature. Technology Acceptance Model (TAM) and Planned Behavior Theory (PBT), which are frequently used in the adaptation process of technological innovations, were utilized in the current research to analyze the factors affecting the intention to use metaverse technology. However, due to the low number of active users of metaverse systems, the research focused on the intention to use rather than active use (Ajzen, 1991; Davis, 1989; Tan & Sundarakani, 2020; Berki-Kiss & Menrad, 2022).

II. Metaverse

Metaverse is one of the most important reflections of the developing technology today. There are different interpretations of Metaverse technology. A metaverse is a virtual environment created by combining virtual reality and augmented reality (Cho & Kim, 2017). Metaverse is defined as a new generation world built on blockchain (Dowling et al., 2021). The metaverse technology is also described as a virtual world, where individuals interact with each other using the avatars they created (Duan et al., 2021, Collins, 2021). The metaverse is a virtual reality that exists beyond reality (Kye, et al., 2021). The metaverse is a digital space created within the physical world where millions of people interact (Siyae, A. & Jo 2021).

![Figure 1. Timeline of the Metaverse Development](image)

Source: (Duan et al., 2021)

Although it first emerged as a utopia in a science fiction novel, the metaverse is presented to users as a reflection of real life with the developing technological infrastructure and blockchain technology. But the absence of a single metaverse brings confusion. Although many metaverses have emerged in the future, as in Bitcoin, one of them will stand out (Kye, et al., 2021). The metaverse ecosystem, which will be most in demand by people, will be the common meeting point in the future.

Metaverse is the real world transferred to electronic environment. A feeling of spending time in the real world can be given by means of various wearable technologies. This situation leads to an increase in the range of activities that can be carried out in the electronic environment.

Metaverse is used in different fields as a new technology. For example health, finance, banking, social platforms and virtual stores created by companies, museums, exhibitions and tourism, etc. can be listed at that point. Travel restrictions due to the COVID-19 pandemic, accordingly, the 3-dimensional and realistic image of the metaverse ecosystem has paved the way for the shift of tourism activities to this area (Zaman et al., 2022). Studies using TAM and PBT models are shown below in Table 1.
Table 1: Literature Review

Author(s) and year	Sector	Hypotheses	Hypothesis Testing Result
Park & Kang (2021)	New Technology Acceptance: Metaverse	PEOU→PU Not Supported, PU→AT Supported, PEOU→AT Supported, AT→I Supported, PI→PU Supported, PI→PEOU Supported, PEOU→I Supported, PU→I Supported,	
Akour et. al. (2022)	New Technology Acceptance: Metaverse-Education	PI→PU Supported, PI→PEOU Supported, PU→I Supported, PEOU→I Supported,	
Almarzouqi et. al. (2022)	New Technology Acceptance: Metaverse-Medical Education	SE→AT Not Supported, SN→AT Supported, SN→PEOU Supported, PU→AT Not Supported, PEOU→AT Not Supported,	
Misirlis & Munawar (2022)	New Technology Acceptance: Metaverse-Education	PEOU→I Supported, PU→I Supported, SI→I Supported, T→I Supported,	
Mostafa, L. (2022)	New Technology Acceptance: Metaverse	PEOU→I Supported, PU→AT Supported, PEOU→AT Supported,	
Fussell & Truong (2021)	New Technology Acceptance: A Research on Virtual Reality Devices	PEOU→PU Supported, PU→AT Supported, PEOU→AT Supported, PBC→I Supported,	

Source: Authors’ own compilation

AT= Attitude Towards Use; I= Intention; PBC= Perceived Behavioral Control; PEOU= Perceived Ease of Use; PU=Perceived Usefulness; PI= Personal Innovativeness; SN=Subjective Norms; SE= Self Efficacy; SI= Social Influen; T= Trust

Park & Kang’s (2021) study empirically identifies the process of technology acceptance of the metaverse, a virtual world-based platform that has attracted attention due to the 4th industrial revolution and the COVID-19 pandemic. Akour et. al.’s (2022) study aims to investigate the students’ perceptions of the metaverse system for educational purposes in the Gulf area. Almarzouqi et. al. (2022) aims to evaluate students’ perception of the application of metaverse in the United Arab Emirates (UAE) for metaverse-medical-educational purposes. In this study, 1858 university students were surveyed to examine this model. Misirlis & Munawar’s (2022) study proposes a framework for university students’ metaverse technologies in education acceptance and intention to use. The study is based on the Technology Acceptance Model (TAM) Mostafa, L. (2022) aims to identify the factors affecting Egyptian users of new technologies such as Metaverse. The technology acceptance model (TAM) is used to measure user intention to accept and use technology. Fussell & Truong (2021) investigated students’ intentions to use Virtual Reality (VR) for training. The Technology Acceptance Model (TAM) was expanded to include two factors that are relevant to using VR in a dynamic learning environment.

As can be seen in the literature review (Table 1), the metaverse has generally been studied within the framework of TAM. There are not many studies conducted within the scope of PBT. For this reason, examining an important technology such as metaverse with a research model in which both TAM and PBT are used will make a positive contribution to the literature. Although the fact that metaverse technology has not become widespread harms the research process, it is important to analyze people’s attitudes, intentions and behaviors towards this technology in the future.

III. Technology Acceptance Model (TAM)

TAM has been frequently used in the adoption processes of new technologies as the process was brought to the literature by Davis in 1986. TAM is based on the Reasoned Action Theory (GET), which is frequently used to explain human behavior. According to GET, human behavior is carried out for certain reasons. In our world where technology is developing rapidly, it is very important to investigate the factors that affect people’s attitudes and intentions to use important technologies (Davis, 1989).

The world has become more and more digitalized with each passing day, with technological devices increasing rapidly after the industrial revolution, primarily working life and then individual use. In this context, technological innovations were first used in businesses for commercial purposes. After TAM was introduced to the literature in 1986, the analysis of the factors affecting the acceptance of company employees to use new technologies has become important (Venkatesh & Bala, 2008).
relationship between PEOU and PU has been examined in parallel with the literature.

H1: Perceived Ease of Use is positively related to Perceived Usefulness

Perceived usefulness is the degree to which people believe in the benefit and performance improvement they will get when they use the technology in question. According to TAM, in the process that people will use new technology, the benefit they will perceive from the relevant technology directly affects their intentions (Venkatesh & Davis, 2000; Park & Kang, 2021). The relationship between PU and I has been studied in parallel with the literature.

H2: Perceived Usefulness is positively related to Intention

TAM, which is a frequently used model in the adoption processes of new technologies, was used in the research. Other studies conducted in the literature are shown in Table 1. When examined in other studies, some deficiencies were observed. For this reason, metaverse technology is analyzed together with Planned Behavior Theory (PBT) in addition to TAM. The fact that PBT is also an important model for explaining human behavior has been a remarkable factor in creating the research model.

IV. Planned Behavior Theory (PBT)

PBT is a frequently used theory in the literature trying to explain human behavior. It is based on the motivation that people do with their behaviors (Ajzen & Madden, 1986). PBT emphasizes the importance of perceived behavioral control variables, in addition, to GET in the process of shaping human behavior. While exhibiting the behavior of people, the level of control over the behavior in question is important (Ajzen, 1991).

![Figure 3. Planned Behavior Theory (PBT)](image)

Source: (Ajzen 1991)

It is very important how much control people have over their behavior. For example, people may say that they want to buy organic foods to eat healthy, but they will not be able to do this if there are no organic product sales points around. In the current research, PBT was also used in addition to TAM while constructing the model. The reason is to analyze in detail what factors people are affected by using the metaverse technology.

PBT has 5 main variables. These are attitude towards use, perceived behavioral control, subjective norm, intention and actual use. Attitude towards use refers to a person having a positive or negative assessment or evaluation of that behavior. Attitude towards use was obtained as a result of the analysis in which intention was one of the leading symptoms, and the same results were obtained in the studies in the literature. The attitude towards metaverse technology is an important variable of the research model when determining people’s intentions (Ajzen, 1991). In the research, the relationship between AT and I has been examined in parallel with the literature.

H3: Attitude Towards Use is positively related to Intention

Perceived behavioral control emphasizes people’s perception of the ease or difficulty of performing the behavior of interest (Ajzen & Sheikh, 2013). The perception of control towards metaverse technology is an important variable added to the research model during the analysis of the factors affecting people’s intentions. In the study, the relationship among PBC, I and AT was examined in parallel with the literature.

H4: Perceived Behavioral Control is positively related to Intention

Subjective norm is a social factor. It refers to the perceived social pressure to perform or not perform the behavior (Ajzen, 1991). According to Ajzen, the more positive the behavioral attitude and subjective norm towards behavior and the greater the perceived behavioral control, the stronger the person’s intention to perform the behavior in question should be (Taylor & Todd, 1995). Because Metaverse technology is new, the fact that too many people do not have knowledge about the subject or think in this way brings about the inability of people to be affected by their environment. In the study, the relationship among SN, I, PBC and AT was examined in parallel with the literature.

H5: Subjective Norm is positively related to Intention

H6: Subjective Norm is positively related to Perceived Behavioral Control

H7: Subjective Norm is positively related to Attitude Towards Use

H8: Perceived Behavioral Control is positively related to Attitude Towards Use

The intention is the most important variable of Intent to use. The reason is that, prerequisite for any behavior is the intention to perform the behavior in question. The stronger a person’s intention, the more likely that person is expected to try that behavior, and therefore the more likely the behavior will be performed (Ajzen and Madden, 1986; Ajzen, 1991).

V. Methodology

Since the metaverse can be used by all segments of the society by the scope and purpose of the research, the universe of the research consists of individuals over the age of 18 who use smart devices (phones, tablets, etc.) and have blockchain technology. Since Metaverse is a blockchain-based system, people who know blockchain technology will be able to adapt faster (Ozdamar, 1999).
Convenience sampling methods were used in the study. Convenience sampling is the inclusion of only those who can be reached among the people within the scope of the research (Kurtuluş, 2010).

The research was carried out in Istanbul for the convenience of data collection. Due to COVID-19, the data of the study were collected by an online survey method instead of a face-to-face method. The data of the research were collected through Google Forms between 05.01.2022 and 10.03.2022. The questionnaire the research was sent to 436 people and 214 responses were received. When the data were organized before the analysis of the research, a usable data set of 183 people were obtained.

Concerning the multicollinearity of the research, when the Variance Inflation Factors (VIF) values are examined briefly in terms of multiple connections, the highest VIF value is 4.250. VIF values between 1 and 5 are accepted in the literature. When the sub-dimensions of the model are examined, the values are between 2 and 3.8 (Daoud, 2017).

VI. Results

The data of the research were first checked for the assumption of normality before the reliability and validity analysis. The skewness and kurtosis values of the research data were found between -1.5 and +1.5. In this context, it can be said that the data of the research exhibit a normal distribution (Tabachnick et al. 2007; Hair et al., 2017; Hair et al., 2010).

Table 2: Results of Measurement Model

Construct	Items measured	Mean	Factor Loading	AVE	CR	Cronbach’s Alpha
PU	3.865	0.934				
Usefulness	3.919	0.951	0.859	0.961		
PEOU	4.176	0.937				
PEOU	3.741	0.901				
Base of	3.662	0.945				
Use	3.716	0.942	0.859	0.961		
PEOU	3.323	0.908				
Attitude	3.591	0.900				
Towards	3.741	0.900	0.930	0.975		
Use	3.754	0.956				
PEOU	3.855	0.815				
Behavioral	4.180	0.865	0.673	0.861		
Control	3.959	0.779				
Subjective	2.878	0.800				
SN	2.341	0.850	0.707	0.879	0.794	
SN	2.660	0.861				
I	4.054	0.959				
Intention	4.054	0.987				

Source: Smart PLS 3 Software

A Items measured on a 5-point Likert scale (1= strongly disagree; 5= strongly agree); AVE: Average Variance Extracted; CR: Composite Reliability

In analysis, perceived usefulness, perceived ease of use, attitude towards use, perceived behavioral control, subjective norm and intention Cronbach’s alpha’s composite reliability should be higher than 0.70. AVE values should be higher than 0.50 (Hair et al., 2014). The results are shown in Table 2 above.

Table 3: Discriminant Validity Analysis based on Fornell-Larcker Criterion

AT	0.964	0.834	0.476	0.569	0.781	0.661
I	0.968	0.968	0.821	0.927	0.946	0.841
PBC	0.604	0.604	0.605	0.656	0.604	
PEOU	0.644	0.644	0.605	0.927		
PU	0.606	0.606	0.656			
SN	0.631	0.631	0.607	0.604		

Source: Smart PLS 3 Software

AT= Attitude Towards Use; I= Intention; PBC= Perceived Behavioral Control; PEOU= Perceived Ease of Use; PU=Perceived Usefulness; SN=Subjective Norm.

As a result of the analysis of research data, after observing that it was reliable and valid, the correlation analysis among the variables of research was carried out. Analysis results are shown in Table 3 above. Correlation analysis, also known as the Fornell-Larcker Criteria Table, is obtained by taking the square root of AVE values. When the correlations among the variables were examined, no variable that would pose a problem was found based on the literature (Davis, 1989; Hair et. al., 2017). It is
mentioned that there is a positive relationship among the variables of the research.

Table 4: Results of the Hypothesized Structural Model

Hypotheses	Path Coefficient	Standard Error	t-Value	p-Value	Hypothesis Test Result
H1: FEOU→PU	0.616	0.205	3.072	0.002	Supported
H2: PU→I	0.431	0.094	4.624	0.000	Supported
H3: AT→I	0.388	0.117	3.395	0.001	Supported
H4: PB→I	0.122	0.041	2.913	0.012	Not Supported
H5: SN→I	0.037	0.067	0.550	0.583	Not Supported
H6: SN→PB	0.474	0.122	3.885	0.000	Supported
H7: SN→AT	0.562	0.125	4.511	0.000	Supported
H8: PB→AT	0.210	0.134	1.572	0.165	Not Supported

Source: Smart PLS 3 Software

Table 5: Results of R² and R² Adjusted

Source	R²	R² Adjusted
Attitude Towards Use	0.472	0.457
Perceived Behavioral Control	0.225	0.214
Perceived Usefulness	0.430	0.422
Intention	0.819	0.808

Source: Smart PLS 3 Software

The R² values of research are shown in Table 5 above. Since the metaverse technology, which is the focus of the research, is new, the intention to use has become more important than its active use. The R² value of the Intention to use the dependent variable of research was found to be 0.819; and the Radj² value was found to be 0.808. R² values above 0.70 indicate that it has a strong explanation percentage. In this context, it can be said that a significant part of the factors that affect people's acceptance of their motivation to use metaverse are included in the model (Agustina, 2019).
In accordance with the Planned Behavior Theory (PBT), hypotheses H3, H4, H5, H6, H7 and H8 were formed. While no significant relationship could be found between subjective norm and behavioral control variables as well as intention, attitude towards use affects intention positively and significantly. The new use of metaverse technology and the lack of knowledge of many people on the subject led to the rejection of H4 and H5 hypotheses. The positive effect of attitude towards use variable, which is one of the most important determinants of usage intention, is one of the important results of the research. Adaptation processes will accelerate with the positive effect of people’s attitudes towards metaverse technology (Ajzen, 1991; Arkorfult, 2022; Javid et. al., 2022).

In addition, according to the results of research, it can be mentioned that the subjective norm variable, perception, has a significant positive effect on behavioral control and attitude towards use. This situation expresses the positive thoughts of the close environment of potential metaverse users in the usage processes, despite the fact that the metaverse technology is new. Finally, there is no significant effect of the behavioral control variable on attitude towards use. This situation can be explained by the fact that the technology is new. The widespread use of metaverse causes people to have limited control over technology. The lack of knowledge of using the relevant technology is an important factor here. Therefore, the H8 hypothesis was rejected (Ajzen, 1991; Javid et al., 2022).

Blockchain has found use in many sectors due to its decentralized structure, fast transaction opportunity, encrypted transfer of information, and 24/7 operation. Since Metaverse uses blockchain technology as an infrastructure, it is in an advantageous position in the process of adapting to people in the future. It is assumed that the metaverse technology discussed in the current research will be used by many people in the future. However, it cannot be said that it has widespread use in terms of individual and commercial use at the moment. With Adidas, Gucci, Is bank, etc. companies investing in the metaverse ecosystem and the widespread use of cryptocurrencies, people will be able to actively use the metaverse to meet their needs (Is Bank, 2022; Adidas, 2022; Gucci, 2022).

Especially after COVID-19, e-commerce activities have increased. Metaverse will attract the attention of companies and individual users in the future due to 3D product selection, crypto money payment option, 24/7 transaction opportunity, etc. In the literature, metaverse technology has been limitedly studied with TAM. In the current research, it is expected to contribute to this field by using PBT, which helps to explain human behaviors. The research was carried out with the theory of planned behavior and the technology acceptance model. Metaverse studies can also be investigated with models used in other technology adoption processes. In particular, a metaverse study using Everett Rogers's Diffusion of Innovation Theory (DIT) will present a different perspective to the literature. A separate study can be conducted on the metaverse and the use of cryptocurrencies.

In the case of Turkey, Digital Turkish Lira (DTL) trial work continues. After the DTL's launch, its usage area will quickly become widespread. In this context, DTL can be used in future metaverse ecosystems. This will accelerate the adoption of metaverse usage.

References

Adidas. (2022). In to the metaverse. Official Website of Adidas. https://www.adidas.com/into_the_metaverse Access Date: 17.04.2022

Agustina, D. (2019). Extension of technology acceptance model (Etam): Adoption of cryptocurrency online trading technology. Jurnal Ekonomi, 24(2), 272-287.

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes. 50(2), 179-211.

Ajzen, I., & Madden, T. J. (1986). Prediction of goal-directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of experimental social psychology, 22(3), 453-474.

Ajzen, I., & Sheikh, S. (2013). Action versus inaction: Anticipated affect in the theory of planned behavior. Journal of Applied Social Psychology, 43(1), 155-162.

Akour, I. A., Al-Marooof, R. S., Alfaaisal, R., & Salloum, S. A. (2022). A conceptual framework for determining metaverse adoption in higher institutions of gulf area: An empirical study using hybrid SEM-ANN approach. Computers and Education: Artificial Intelligence, 3, 100052.

Almarzouqi, A., Aburayya, A., & Salloum, S. A. (2022). Prediction of user’s intention to use metaverse system in medical education: A hybrid SEM-ML learning approach. IEEE Access, 10, 43421-43434.

Arkorfult, V. E. (2022). Unravelling electricity theft whistleblowing antecedents using the theory of planned behavior and norm activation model. Energy Policy, 160, 112680.

Berki-Kiss, D., & Menrad, K. (2022). The role emotions play in consumer intentions to make pro-social purchases in Germany - An augmented theory of planned behavior model. Sustainable Production and Consumption, 29, 79-89.

Choi, H.-S.; Kim, S.H. (2017). A content service deployment plan for metaverse museum exhibitions - Centering on the combination of Beacons and HMDs. Int. J. Inf. Manag. 37, 1519-1527.
Collins, B. (2021). The metaverse: How to build a massive virtual world. Forbes Magazine. Available online: https://www.forbes.com/sites/barrycollins/2021/09/25/the-metaverse-how-to-build-a-massive-virtual-world/?sh=60735badf6d1c Access Date: 23 06 2022.

Daoud, J. I. (2017). Multicollinearity and regression analysis. In Journal of Physics: Conference Series (Vol. 949, No. 1, p. 012009). IOP Publishing.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.

Dowling, M. (2021). Fertile land: Pricing non-fungible tokens. Financ. Res. Lett. 44, 102096. Available online: https://www.sciencedirect.com/science/article/pii/S1574061019308708 Access Date: 20.05.2022.

Duan, H.; Li, J.; Fan, S.; Lin, Z.; Wu, X.; Cai, W. (2021). Metaverse for social good: A university campus prototype. In Proceedings of the 29th ACM International Conference on Multimedia, Nice, France, 21–25 October 2021, 153-161.

Fussell, S. G., & Truong, D. (2021). Using virtual reality for dynamic learning: An extended technology acceptance model. Virtual Reality, 19, 1-19.

Gucci. (2022). Metaverse. Gucci Website. https://vault.gucci.com/en-US/story/metaverse Access Date: 20.05.2022.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis, 7th Edn Harlow,2.

Hair, J. F., Hult, G. T., Ringle, C. M. and Sarstedt, M. (2017). A primer on partial least squares structural equation modelling (PLS-SEM). Los Angeles: Sage Publication. Second Edition (2017).

Hair, J. F., William C. B., Barry J. B. and Rolph E. A (2010). Multivariate data analysis. 7th ed. Pearson Education,(2010).

Is Bank (İş Bankası), (2022). Türkiye İş Bankası’ndan metaverse evenyelerinden olan Roblox'a bir ilk! @Roblox evenınde dolasırken İş Bankası her an karsınıza çikabilir. İş Bankası Twitter. https://twitter.com/isbaskisi/status/1486680977812426763?ref_src=twsrc%5Etfw%7Ctwtcam p%5EEtweetembbed%7Ctwtterm%5E1486680977 812426763%7Ctswgr%5E7ctwcon%5E1_& ref_url=https%3A%2F%2Fwww.marketingturkiye.com.tr%2Fkampanyalar%2Fis-bankasi-roblox%2F Access Date: 10.05.2022

Javid, M. A., Abdullah, M., Ali, N., Shah, S. A. H., Joyklad, P., Hussain, Q., & Chaiyasarn, K. (2022). Extracting travelers’ preferences toward electric vehicles using the theory of planned behavior in Lahore, Pakistan. Sustainability, 14(3), 1909.

Kanematsu, H., Kobayashi, T., Barry, D. M., Fukushima, Y., Dharmawansa, A., & Ogawa, N. (2014). Virtual STEM class for nuclear safety education in metaverse. Procedia Computer Science, 35, 1253-1261.

Kurtuluş, K. (2010). Araştırma yöntemleri. Türkmen Publication.

Kye, B., Han, N., Kim, E., Park, Y., & Jo, S. (2021). Educational applications of metaverse: possibilities and limitations. Journal of Educational Evaluation for Health Professions, 18.

Misirlis, N., & Munawar, H. B. (2022). An analysis of the technology acceptance model in understanding university students’ behavioral intention to use metaverse technologies. 12th International Conference: The Future of Education. 159-163.

Mostafa, L. (2022). Measuring technology acceptance model to use metaverse technology in Egypt. Measuring technology acceptance model in understanding university students’ behavioral intention to use metaverse technologies. 12th International Conference: The Future of Education. 159-163.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized Business Review, 21260.

Ozdamar, K. (1999). Paket programlar ile istatistiksel veri analizi. Kaan Publication.

Park, S., & Kang, Y. J. (2021). A Study on the intentions of early users of metaverse platforms using the technology acceptance model. Journal of Digital Convergence, 19(10), 275-285.

Sagnier, C., Loup-Escande, E., Lourdeaux, D., Thouvenin, I., & Valléry, G. (2020). User acceptance of virtual reality: an extended technology acceptance model. International Journal of Human–Computer Interaction, 36(11), 993-1007.
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic commerce research and applications, 9(3), 209-216.

Siyaev, A. & Jo, G.S. (2021). Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality. Sensors 2021, 21, 2066.

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics. Pearson. 5th Edition. Boston, MA, 481-198.

Tan, W. K. A., & Sundarakani, B. (2020). Assessing blockchain technology application for freight booking business: A case study from Technology Acceptance Model perspective. Journal of Global Operations and Strategic Sourcing. 1-34.

Taylor, S., & Todd, P. (1995). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International journal of research in marketing, 12(2), 137-155.

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.

Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451-481.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204.

Venkatesh, V., & Morris, M. G. (2000). Why don't men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS quarterly, 115-139.

Yorulmaz, M. & Alınpak, S. (2020). Yönetici Düzyindeki Gemi Adamlarının Elektronik Seyir Teknolojileri Kullanımının Teknoloji Kabul Modeli İle İncelenmesi . OPUS International Journal of Society Researches , 16 (29) , 1928-1954 . Retrieved from https://dergipark.org.tr/tr/pub/opus/issue/56333/689259

Zaman, U., Koo, I., Abbasi, S., Raza, S. H., & Qureshi, M. G. (2022). Meet your digital twin in space? Profiling international expat’s readiness for metaverse space travel, tech-savviness, COVID-19 travel anxiety, and travel fear of missing out. Sustainability, 14(11), 6441.