The Prevalence of Hepatitis B & C Among Hemodialysis Patients in Baghdad Medical City.

Mohammed Taher Abbas*, Zainab Hassan, Misk Satie Al-Marzook

† College of Medicine, University of Baghdad

Abstract

Background
Hepatitis B and C are infectious diseases caused by the hepatitis B and C viruses respectively, that affects the liver. Hepatitis viruses are transmitted by blood-to-blood contact associated with dialysis, poorly sterilized medical equipment, needle-stick injuries, blood transfusion, and intravenous drug users.

Methods
This is a cross-sectional study conducted in the Hemodialysis Unit of Baghdad Teaching Hospital between the period of April and September 2018. Ninety-eight patients were enrolled in this study after adopting informed consent. All patients were on regular hemodialysis as a renal replacement therapy with different durations. Full history was taken from them including age, gender, occupation, marital status, past medical, and surgical histories. Blood test results were also recorded. All data were analyzed using SPSS20 with 95% confidence which means a p-value less than 0.05 to be statistically significant.

Results
The percentage of Hemodialysis patients infected with Hepatitis C was (43%) while those infected with Hepatitis B was (3%). There is no statistically significant association between age and infection with Hepatitis B & C (P>0.05). The mean age of patients infected with Hepatitis B was (65.8±8.2), while for patients infected with Hepatitis C it was (45.3±14.7).

Conclusion
Hepatitis C is more prevalent than Hepatitis B in the Hemodialysis Unit and the infection was not statistically associated with the age or gender of the patients

Keywords: Hepatitis, Haemodialysis, Baghdad

*Correspondent author: Mohammed Taher Abbas. Email: Mohammedtaher522@gmail.com
1. Introduction

Hepatitis B and C are infectious diseases caused by the hepatitis B Virus (HBV) and C virus respectively, that affects the liver. They can cause both acute and chronic infections. Many people affected with hepatitis B virus have no symptoms during the initial infection. Some develop a rapid onset of sickness with vomiting, jaundice, tiredness, dark urine and abdominal pain. Often, these symptoms last a few weeks and rarely does the initial infection result in death. (1)(2) The virus is transmitted through contact with blood or other body fluids from an infected person. When transmission occurs vertically (from mother to child) or horizontally to small children (during play, from household contacts etc), the infection usually becomes chronic. By contrast, when transmission occurs in adolescents/adults—usually via sexual contact, contaminated needles (“sharps”), and less often from transfusion of blood products—the infection usually resolves unless the individual is immunocompromised (e.g., infected with human immunodeficiency virus). (3-6) Approximately 240 million people are chronic HBV surface antigen (HBsAg) carriers, with a large regional variation of HBsAg positive patients between low (2%) and high (8%) endemicity levels. (7,8) The prevalence is decreasing in several highly endemic countries due to improvements in the socioeconomic status, universal vaccination programs, and perhaps effective antiviral treatments. (9) During the initial infection people often have mild or no symptoms. Occasionally infection causes symptoms similar to HBV infection. The virus persists in the liver in about 75% to 85% of those initially infected. HCV is spread primarily by blood-to-blood contact associated with intravenous drug users, poorly sterilized medical equipment, needle-stick injuries in healthcare, and blood transfusion. The risk of infection from a transfusion is less than one per two million. It may also be spread from an infected mother to her baby during birth. (10)(11) It is estimated that 143 million people (2%) of people globally are living with chronic hepatitis C. About 3–4 million people are infected per year, and more than 350,000 people die yearly from hepatitis C related diseases. (12)(13) Dialysis (renal replacement therapy) is the process of removing excess water, solutes, and toxins from the blood in people whose kidneys can no longer perform these functions naturally. (14) Dialysis can be done through peritoneal or vascular approaches. (15) Dialysis represent a risk factor for transmission of hepatitis B&C virus which increases the burden of the disease. Those infected with these viruses have in increased morbidity and mortality due cirrhosis, hepatocellular carcinoma and cardiovascular disease. (16)(17) The incidence of hepatitis B virus infection in dialysis populations has declined over recent decades, largely because of improvements in infection control and widespread implementation of HBV vaccination. Regardless, outbreaks of infection continue to occur in dialysis units, and prevalence rates remain unacceptably high. For a variety of reasons, dialysis patients are at increased risk of acquiring HBV. (18) The aim of this study is to identify the prevalence of Hepatitis B & C among Hemodialysis patients and find associating factors among them.
2. Methods

1. This is a cross-sectional study conducted in the Hemodialysis Unit of Baghdad Teaching Hospital between the period of April and September 2018. Ninety-eight patients were enrolled in this study after adopting informed consent. All patients were on regular hemodialysis. As a renal replacement therapy with different durations for the procedure. Full history was taken from them including age, gender, occupation, marital status, and past medical and surgical histories. Blood test results were also recorded. The data was collected using pre-designed collection sheets for each patient enrolled. Patients who were involved comprised 58 males and 40 females. Inclusion criteria for patients were to have been previously diagnosed as having end stage renal failure and in hemodialysis as a renal replacement therapy. No restriction was done for particular age or sex or ethnicity and patients were excluded only if they refuse to participate or not having complete blood test results. All data were analyzed using statistical analysis SPSS v.20. Student t-test was used to compare means. The tests were done with 95% confidence which means a p-value less than 0.05 to be statistically significance. The disadvantage is that it requires long-term adherence. There is risk of systemic toxicity in children so should be used in limited areas and in lower concentrations.

3. Results

The characteristics of patients and their demographic data are shown in table (1). Table (2) shows that 42% of Hemodialysis patients were infected with HCV, 57% of which were males and 43% were females. While 3% of Hemodialysis patients were infected with HBV and were all males. 2% of the study patients had co-infection, and 52% were sero-ve for Hepatitis. Age and sex distribution of HBV serodiagnosis among study patients are shown in Table (3). The Table shows that HBV tends to infect 4 men for each woman. Age and sex distribution of HCV serodiagnosis among study patients are shown in table (4). The Table shows that for every 4 men infected with HCV, there are 3 women. After comparing the sex of the patients with Hepatitis B, it was found that there is no statistically significant difference between them. (Table 5) After comparison the sex of the patients with Hepatitis C, it was found that there is no statistically significant difference between them. (Table 6) Table 7 shows that Hepatitis B occurs more often in people aged (70-80) years, while Hepatitis C tends to occur more often in people aged (20-60) years.
Table 1: Demographic data of patients.

	Number	%
Gender		
Male	58	59
Female	40	41
Job		
Retired	53	54
Employee	38	39
Student	7	7
Educational Level		
Primary	46	47
Intermediate	29	30
Secondary	8	8
Bachelor	11	11
Diploma	4	4
Marital Status		
Single	12	12
Married	76	78
Divorced	6	6
Widow	4	4
Total number	98	100

Table 2: The frequencies and percentages of Hepatitis B & C among Hemodialysis patients.

	No. (%) Hep. B	No. (%) Hep. C	No. (%) Hep. B & C	No. (%) Sero -ve
Gender				
Male	3 (100)	24 (57)	1 (50)	22 (43)
Female	Zero (0)	18 (43)	1 (50)	29 (57)
Total	3 (100)	42 (100)	2 (100)	51 (100)

Table 3: Age and sex distribution of HBV.

Patients	No.	Age (mean ± SD)	Age range	M:F (sero +ve)
Sero +ve HBV	5	65.8±8.2	17-75 years	4:1
Sero –ve HBV	93	47.3±15.3		
Total	98			
Table 4: Age and sex distribution of HCV.

Patients	No.	Age (mean ± SD)	Age range	M:F (sero +ve)
Sero +ve HCV	44	45.3±14.7	17-75 years	4:3
Sero –ve HCV	54	50.7±16		
Total	98			

Table 5: comparison between sex and HBV.

Sex/HBV	Sero +ve HBV (no.)	P-value
Male	4	>0.05
Female	1	

P is significant at <0.05

Table 6: comparison between sex and HCV.

Sex/HCV	Sero +ve HCV (no.)	P-value
Male	25	>0.05
Female	19	

P is significant at <0.05

Table 7: The frequencies of Hepatitis B & C in different age groups.

Age	Hep.B Positive Count	Hep.B Negative Count	Hep.C Positive Count	Hep.C Negative Count
10-20	0	3	0	3
20-30	0	13	10	3
30-40	0	16	8	8
40-50	0	22	10	12
50-60	1	18	9	10
60-70	1	14	4	11
70-80	3	7	3	7
4. Discussion
The decline in the incidence of hepatitis B virus infection is due to many factors including the application of universal infection precautions, vaccination and screening of transfused blood for HBV, which has led to hepatitis C virus (HCV) becoming the major form of hepatitis in HD patients.\(^{(19)(20)(21)}\) HCV infection is common in patients with end-stage renal disease undergoing maintenance HD or peritoneal dialysis. The prevalence of HCV antibody positivity in hemodialysis patients varies markedly from 5% in industrialized countries to 54% in some developing countries.\(^{(22)}\) On the other hand, serum HBV surface antigen (HBsAg) seropositivity ranges from less than 1% to 20% in patients on regular hemodialysis. However, outbreaks of acute HBV infection continue to occur in this setting.\(^{(23)}\) 45% of the patients in this study had hepatitis C, while 5% had hepatitis B and this very different from a study done recently in Iraq showed the prevalence of Anti-HCV antibodies to be positive in 7.1% of the patients.\(^{(24)}\)

Multiple studies had shown that the development of chronic hepatitis B after acquiring hepatitis B virus is dependent on the age of the patient. More than 90% of infants infected at birth by HBV-infected mothers suffer from persistent HBV infection. By contrast, more than 95% of adults infected with HBV during adulthood—primarily through sexual transmission—will eliminate HBV naturally. Among immunocompetent individuals infected with HBV in adulthood, the majority will have no apparent infection, while approximately 20–30% will initially develop acute hepatitis. In 95% of cases, detection of HBsAg will resolve within 6 months of infection.\(^{(25)(26)}\) The youngest patient in this study was 19 years old, so this can explain why only 5% had chronic hepatitis B infection. According to CDC, the vaccine of hepatitis B is 80% to 100% effective in preventing infection or clinical hepatitis in those who receive the complete vaccine series\(^{(27)}\), since most of the patients had received the vaccine, the prevalence of hepatitis B is much lower than hepatitis C. Hepatitis represents an increased threat and risks among hemodialysis patients as 1.9% of all deaths were related or a consequence of the infection.\(^{(28)}\) As hepatitis B is easier to control than HCV, it recommended to have optimum predialysis HBV vaccination, adherence to protective precautions, separation of the positive patients in an isolated area. As seroconversion with HBV vaccinesus less than in the general population due to lower renal function, those patients should receive either higher doses or more frequently.\(^{(29)}\)

Our study showed that there is no significant association between age and the occurrence of both hepatitis B & C. Other study held in north of Iraq showed that patients infected with HBV were significantly younger on average than non-infected patients, this observation was in agreement with that of a study conducted in Libya.\(^{(30)}\) On the other hand, patients infected with HCV were older on average than non-infected congruent with other studies\(^{(31)(32)}\) with no clear reason for that. This study showed more prevalence of hepatitis B and C infection among the male gender; however, this was not statistically significant. This insignificance finding was also reported in a study done in Iraq in 2017.
Hepatitis C infection was shown by a study conducted in Brazil to be more prevalent among males who have end stage renal disease in 56.1 %. No effective vaccine if available for preventing Hepatitis C, for that reason, patients who receives frequent hemodialysis are more prone to develop chronic hepatitis C than hepatitis B. Failures of HCV and HBV screening, excessive exposure to blood and blood products, nosocomial transmission, and long dialysis duration are the main determinants of increased risk of HCV and HBV infection in the HD patient group. Hepatitis represents an increased threat and risks among hemodialysis patients as 1.9% of all deaths were related or a consequence of the infection. As hepatitis B is easier to control than HCV, it is recommended to have optimum predialysis HBV vaccination, adherence to protective precautions, separation of the positive patients in an isolated area. As seroconversion with HBV vaccine is less likely in hepatitis patients than the general population due to lower renal function, those patients should receive either higher doses or more frequently.

Conclusion

Hepatitis C is more prevalent than Hepatitis B in the Hemodialysis Unit and the infection was not statistically associated with the age or gender of the patients. Hepatitis C represents an important risk in patients with renal disease who receive hemodialysis as a renal replacement therapy. The universal vaccination of the general population and those with hepatitis has led to a lower risk of infection with hepatitis B virus.

Recommendations

It is recommended to have optimum predialysis HBV vaccination, adherence to protective precautions, and separation of the positive patients in an isolated area.

Conflicts of interest

The authors declare no conflict of interest.

Funding

No source of funding was provided for the authors.
The Prevalence of Hepatitis B & C Among Hemodialysis Patients in Baghdad Medical City.

References

1. Hepatitis B. Fact sheet N!204. WHO Media centre; [Updated July 2015]. Available from URL: http://www.who.int/mediacentre/factsheets/fs204/en/

2. Rubin R; Strayer D. Rubin’s Pathology: clinicopathologic foundations of medicine (5.ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins. 2008.

3. Lok ASF, McMahon BJ. Chronic hepatitis B: update 2009. Hepatology 2009;50:661–2.

4. European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol 2012;57:167–85.

5. National Institute for Health and Care Excellence (NICE). Hepatitis B (chronic): diagnosis and management of chronic hepatitis B in children, young people and adults [Internet]. London: NICE; 2013. Available from: http://www.nice.org.uk/guidance/cg165/resources/guidancehepatitis-b-chronic-pdf

6. Liaw YF, Kao JH, Piratvisuth T, Chan HLY, Chien RN, Liu CJ, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol Int 2012;6:531–61.

7. Schweitzer A, Horn J, Nikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: A systematic review of data published between 1965 and 2013. Lancet 2015;386:1546–1555.

8. Ott JJ, Stevens GA, Groeger J, Wiersma ST. Global epidemiology of hepatitis B virus infection: New estimates of age-specific HBsAg seroprevalence and endemicity. Vaccine 2012;30:2212–2219.

9. Chen C-L, Yang J-Y, Lin S-F, Sun C-A, Bai C-H, You S-L, et al. Slow decline of hepatitis B burden in general population: Results from a population-based survey and longitudinal follow-up study in Taiwan. J Hepatol 2015;63:354–363.

10."Hepatitis C FAQs for Health Professionals". CDC. Available from: https://www.cdc.gov/hepatitis/hcv/hcvfaq.htm

11. Maheshwari A; Thuluvath PJ. "Management of acute hepatitis C". Clinics in liver disease. 2010;14 (1): 169–76, x

12. GBD 2015 Disease and Injury Incidence and Prevalence, Collaborators. "Global, regional, and national incidence, prevalence, and years lived with disability for 310
diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015”. Lancet.2016; 388 (10053): 1545–1602.

13. “Hepatitis C”. World Health Organization (WHO). Available from: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c

14. Pendse S, Singh A, Zawada E. Initiation of Dialysis. In: Handbook of Dialysis. 4th ed. New York, NY; 2008:14–21.

15. Ahmad S, Misra Hemodialysis Apparatus. In: Handbook of Dialysis. 4th ed. New York, NY; 2008:59-78.

16. Bose B, McDonald SP, Hawley CM, Brown FG, Badve SV, Wiggins KJ, Bannister KM, Boudville N, Clayton P, Johnson DW. Effect of dialysis modality on survival of hepatitis C-infected ESRF patients. Clin J Am Soc Nephrol. 2011; 6:2657–2661.

17. Ozer Etik D, Ocal S, Boyacioglu AS. Hepatitis C infection in hemodialysis patients: A review. World J Hepatol. 2015;7(6):885-895.

18. Padmanabhan R. Hepatitis C virus infection in haemodialysis patients in Saudi Arabia. Saudi J Kidney Dis Transpl 1994;5(2):157-8.

19. Martin P, Friedman L. Chronic viral hepatitis and the management of chronic renal failure. Kidney Int 1995;47(5):1231-41.

20. Fabrizi F, Lunghi G, Poordad FF, Martin P. Management of hepatitis B after renal transplantation: An update. J Nephrol 2002; 15(2):113-22.

21. Wright TL, Pereira BJG. Hepatitis C Virus. Semin Dial. 2007;10(5):241–4.

22. Fabrizi F, Messa P, Martin P. Hepatitis B virus infection and the dialysis patient. Semin Dial. 2008;21(5):440–6.

23. Khattab OS. Prevalence and Risk Factors for Hepatitis C Virus Infection in Hemodialysis Patients in an Iraqi Renal Transplant Center. Saudi J Kidney Dis Transpl 2008;19:110-5.

24. Ganem D, Prince AM. Hepatitis B virus infection: Natural history and clinical consequences. N Engl J Med. 2004;350(11):1118–1129.

25. Liang TJ. Hepatitis B: The virus and disease. Hepatology. 2009;49(5):S13–S21.

26. "Epidemiology and Prevention of Vaccine-Preventable Diseases.” Centers for Disease Control and Prevention. Available from https://www.cdc.gov/vaccines/pubs/pinkbook/hepb.html.
27. Aghakhani A, Banifazl M, Eslamifar A, Ahmadi F, Ramezani A. Viral Hepatitis and HIV Infection in Hemodialysis Patients. *Hepat Mon.* 2012;12(7):463-464.

28. Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Goodkin DA, Bragg-Gresham JL, Koenig KG, Wolfe RA, Akiba T, Andreucci VE, Saito A, Rayner HC, Kurokawa K, Port FK, Held PJ, Young EW J Am Soc Nephrol. 2003; 14(12):3270-7.

29. Alashek WA, McIntyre CW, Taal MW. Hepatitis B and C infection in haemodialysis patients in Libya: prevalence, incidence and risk factors. BMC Infect Dis. 2012;12:265.

30. Fissell RB, Bragg JL, Woods JD, Jadoul M, Gillespie B, Hedderwick SA, et al. Patterns of hepatitis C prevalence and seroconversion in hemodialysis units from three continents: the DOPPS. Kidney Int. 2004;65(6):2335-42.

31. Ashkani S, Alavian SM, Salehi M. Prevalence of hepatitis C virus infection among hemodialysis patients in the Middle-East: A systematic review and meta-analysis. World J Gastroenterol. 2017;23(1):151-66.

32. Ribeiro Barbosa J, Sousa Bezerra C, Carvalho-Costa FA, et al. Cross-Sectional Study to Determine the Prevalence of Hepatitis B and C Virus Infection in High Risk Groups in the Northeast Region of Brazil. Int J Environ Res Public Health. 2017;14(7):793.

33. Goodkin DA, Bragg JL, Koenig KG, Wolfe RA, Akiba T, Andreucci VE, Saito A, Rayner HC, Kurokawa K, Port FK, Held PJ, Young EW . Association of comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and the United States: the Dialysis Outcomes and Practice Patterns Study (DOPPS). J Am Soc Nephrol. 2003; 14(12):3270-7.