The 1st Asia Oceania Algae Innovation Summit (AOAIS-1)

Biosynthesis of isoprene units in the C\textsubscript{34} botryococcene molecule produced by \textit{Botryococcus braunii} strain Bot-22

Atsushi Ishimatsua, Hiroshi Matsuuraa, Tomoharu Sanob Kunimitsu Kayaa, Makoto M. Watanabea*

aGraduate school of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai Tsukuba, Japan
bNational Institute for Environmental Studies, 16-2 Onogawa Tsukuba, Japan

Abstract

The colonial green alga \textit{Botryococcus braunii} produces a large amount of hydrocarbons. This alga is subclassified into three chemical races (A/B/L), according to the hydrocarbon structures. Strain Bot-22 isolated from a Japanese dam is classified as race B. The main product of the strain was C\textsubscript{34} botryococcene which was determined by nuclear magnetic resonance (NMR). The results of [1-13C] glucose feeding and NMR experiments showed that the compound was synthesized via the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. These results roughly agreed with a previous study. Unexpectedly, 13C-labeled methyl groups were detected in the 13C-incorporated compound suggesting that pathways besides MEP are playing a role in biosynthesis.

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of International Organizing Committee for AOAIS-1 Open access under CC BY-NC-ND license.

Keywords: \textit{Botryococcus braunii}; isoprenoid, botryococcene

1. Introduction

The colonial green alga \textit{Botryococcus braunii} produces large amounts of lipids containing many kinds of hydrocarbons, triglycerides, and pigments. It is considered as a promising biolium producer [1]. Lipids are mainly located at two sites in the cell; the aliphatic outer cell wall (socket wall) and the intracellular oil body [2] [3] and different lipids accumulate at each site [4]. \textit{B. braunii} is subclassified into three chemical races (A/B/L), according to the hydrocarbon structures: odd-carbon-numbered n-alkadienes

* Corresponding author. Tel.: +81-29-853-4301; fax: +81-29-853-4301
E-mail address: makoto@sakura.cc.tsukuba.ac.jp
and/or -triens and their derivatives are synthesized by race A. Specific C_{n}H_{2n-10} triterpenes (n = 30–37),
called botryococcenes, are synthesized by race B, and a tetraterpene called lycopadiene is synthesized by
race L.

Isoprenoids including triterpenoids are detected in most living organisms and are involved in many cell
processes as pigments, hormones, and membrane lipids. More than 30,000 isoprenoids have been
identified. Isoprenoids consist of branched C5 isoprenic units derived from isopentenyl diphosphate (IPP)
and its isomer dimethylallyl diphosphate (DMAPP). Repetition of the linkage reaction converts IPP and
DMAPP into many kinds of isoprenoids. Common precursors of isoprenoids are synthesized from some
putative precursors i.e., mevalonate, deoxyxylulose [5], some amino acids [6], and pentose phosphate
cycle substrates in *Synechocystis* [7]. The biosynthetic route from mevalonate is well known as the
mevalonate (MVA) pathway which is preserved in many organisms, including animals, fungi, bacteria,
and plant cell cytoplasm. The MVA pathway begins with three acetyl-CoA molecules. The rate
determining step is the reduction of 3-hydroxy-3-methylglutaryl-CoA to generate mevalonate. The route
from deoxyxylulose is called the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway and is associated
with the intermediates. This pathway has been found in some bacteria including cyanobacteria and
chloroplasts [8] [9]. Previous work has suggested that this is the sole pathway for isoprenoids in green
algae such as *Scenedesmus obliquus* [10], *Chlamydomonas reinhardtii*, and *Chlorella fusca* [11].

Glyceraldehyde 3-phosphate and pyruvate are starting materials for the MEP pathway. On the pathway
related to amino acids, the L-leucine skeleton is converted to IPP and DMAPP without the breakdown to
acetyl-CoA. There are common reaction steps to the MVA pathway, however the isoprenic units are
derived from two molecules of pyruvate and one molecule of acetyl-CoA [12]. The biosynthetic processes
of the pentose phosphate cycle substrates are not known in detail. However, it is known that pentose
phosphate cycle substrates are converted to downstream intermediates of the MEP pathway.

13C-labelled positions on the products was convenient, as the isoprenic units are converted to products
without reformation of the carbon skeleton. A previous report suggested that the MEP pathway is mainly
used to produce botryococcenes and methylated squalene in the Berkeley strain. $[^{1-13}$C] glucose-
incorporated positions derived from the MEP pathway show about an 80% higher isotopic abundance than
other strains [15]. Moreover, a 14C substrate-feeding experiment showed that only a small amount of
mevalonate was incorporated into botryococene [16]. Thus, the MVA pathway was considered not to be
associated with botryococcene synthesis. In the course of 13C-labelling studies on the biosynthetic route of
isoprenic units in a new strain of *B. braunii* race B, Bot-22, unexpected 13C-labelled methyl groups were
detected in the 13C-incorporated compound, suggesting the possibility that pathways besides MEP are
involved in botryococcene biosynthesis. In this study, we show the details of the 13C-labelling experiments
and discuss the origin of the methyl group donor.

Since *B. braunii* race B accumulates a large amount of triterpenoids, up to 86% of dried cell weight
[13], the biosynthetic system is required to generate IPP and DMAPP. 13C-labeled substrates have usually
been used in research to survey the origin of isoprenic units [14]. A labeled substrate is incorporated into
different positions of the isoprenic units in response to each biosynthetic route (Scheme 1). Analysis of
13C-labeled positions on the products was convenient, as the isoprenic units are converted to products
without reformation of the carbon skeleton. A previous report suggested that the MEP pathway is mainly
used to produce botryococcenes and methylated squalene in the Berkeley strain. $[^{1-13}$C] glucose-
incorporated positions derived from the MEP pathway show about an 80% higher isotopic abundance than
other strains [15]. Moreover, a 14C substrate-feeding experiment showed that only a small amount of
mevalonate was incorporated into botryococene [16]. Thus, the MVA pathway was considered not to be
Scheme 1: Biosynthesis routes of isoprenic units. Close circles show positions with 13C isotope label by 1-13C glucose. Different label patterns were recorded according to mentioned three pathways.

associated with botryococcene synthesis. In the course of 13C-labelling studies on the biosynthetic route of isoprenic units in a new strain of *B. braunii* race B, Bot-22, unexpected 13C-labelled methyl groups were detected in the 13C-incorporated compound, suggesting the possibility that pathways besides MEP are
involved in botryococcene biosynthesis. In this study, we show the details of the 13C-labelling experiments and discuss the origin of the methyl group donor.

2. Method

2.1 Algal strain and culture condition

B. braunii Bot-22 strain, isolated by Dr. Kawachi, National Institute for Environmental Studies, Japan from a reservoir (Okinawa prefecture, Japan) was used. This strain has been maintained in our laboratory by subculturing using a screw-cap tube (18 mm $\Phi \times 150$ mm, Fujimoto Rika, Tokyo, Japan) with 10 mL of modified AF6 medium [17]. AF6 medium with glucose (10 mM) was used for the preculture in the labeling experiment, as the Bot-22 strain can take up glucose or other sugars as a carbon source.

Cells were grown in 1-L conical flasks with 500 mL of AF6 medium, which was aerated using sterile air at a flow rate of 100 mL/min, for hydrocarbon analysis. The cells were harvested in the stationary phase using GF/C filter paper (Whatman International Ltd, Maidstone, UK) , freeze-dried, and stored below -20°C.

For the 13C-labeling experiment, cells were grown in a 200 mL flask with 100 mL of AF6 medium and 10 mM [1-13C] glucose for 30 days. The culture was aerated using CO$_2$-omitted air which was prepared by bubbling air into a solvent saturated with NaOH and 95% H$_2$SO$_4$. All experiments were conducted at 25°C under a 12L-12D photoperiod cycle with a light irradiance of 100 µ mol photon/m2 s.

2.2 Extraction and purification of hydrocarbons

Lipids were extracted from a wet biomass harvested at room temperature using 2:1 CHCl$_3$/MeOH (v/v). The extracts were concentrated under reduced pressure, and non-lipid materials were removed by adding one-fifth volume of 0.9% NaCl solution (w/w). After salting out, the CHCl$_3$ fraction was concentrated. The CHCl$_3$ solution was applied to a silica gel column prepared with CHCl$_3$, and four bed volumes of CHCl$_3$ were applied to the column. After evaporating the eluate, the remaining residue was dissolved with n-hexane. The hexane solution was applied to a silica gel column prepared with n-hexane, and then four bed volumes of n-hexane were applied to the column. The eluate was used for botryococcene analysis. A homolog of botryococcene was analyzed using a gas chromatography system (GC-2010, Shimadzu, Kyoto, Japan) equipped with a DB-5MS column which was programmed to heat from 130 to 270°C (20°C/min) and then from 270 to 300°C (4°C/min). The flame ionization detector and sample injector were programmed to maintain 320°C. The gas entered the column at 49 cm/s. High resolution GC-electron impact mass spectrometry (EIMS) analysis was also performed to determine the molecular weight of the main compound.

2.3 Identification of main component of hydrocarbon from BOT-22 strain

1H and 13C nuclear magnetic resonance (NMR) spectroscopy including information from distortionless enhancement by polarization transfer (DEPT), H-H correlation spectroscopy (COSY), heteronuclear multiple quantum correlation (HMQC), and heteronuclear multiple bond correlation (HMBC) were performed to identify the main compound. Assignment of 13C-labelled botryococcene was performed by matching with the 13C-NMR spectra of non-labelled botryococcene produced by this strain. 1H NMR (500 MHz) and 13C NMR (125 MHz) spectra were recorded using a JEOL JNM-ECA500 spectrometer (JEOL ltd, Tokyo, Japan). CHCl$_3$ was used as the solvent and internal standard ($\delta$$_H$ 7.26 or δ_c 77.0). 13C conversion was evaluated by comparing the peak heights from 13C NMR. However, as it was difficult to
compare the peak height of the 13C NMR directly because of signal enhancement by H-C decoupling and a concentration difference, a relative value was established as the division of signal heights from the 13C feeding and control (value = feeding/control). Although this value has no significance for a quantitative analysis, it reflects the relative abundance of 13C label between peaks.

Table 1. NMR spectra of main component of C34 botryococcene.

Position	H	C	DEPT	HMBC(C→H)
1	4.7 (brs)	a109.5	CH2	3 27
2	b150.0	C		3 28
3	2.17 (m)	c41.1	CH	1 4 5 27 28
4	1.45 (m)	33.5	CH2	3 5
5	1.9 (m)	d31.8	CH2	3 4 23
6	155.0	C		5 23 29
7	2.05 (m)	40.2	CH	23 29
8	1.38 (m)	30.2	CH2	9 29
9	1.31 (m)	39.2	CH2	11 30
10	41.9	C	9 11 12 24 25 30	
11	5.3 (d 15)	135.9	CH	9 12 25 30
12	5.15 (dd 15,8)	133.8	CH	11 14 31
13	2.02 (m)	37.3	CH	11 12 14 31
14	1.25 (m)	35.1	CH2	31
15	1.45 (m)	33.6	CH2	32
16	2.01 (m)	40.7	CH	26 32
17	154.8	C	18 26 32	
18	1.9 (m)	d31.8	CH2	19 20 26
19	1.45 (m)	33.5	CH2	18 20 33
20	2.17 (m)	c41.1	CH	18 19 22 33 34
21	b150.0	C		20 33 34
22	4.7 (brs)	a109.5	CH2	20 34
23	4.7 (brs)	107.4	CH2	
24	4.94 (dd 10,2)	111.0	CH2	
25	4.91 (dd 17,2)	147.0	CH	9 11 24 30
26	4.7 (brs)	107.3	CH2	
27	1.67 (s)	19.0	CH3	1 3
28	1.03 (d 7)	19.8	CH3	3
29	0.99 (d 7)	20.3	CH3	8
30	1.04 (s)	23.7	CH3	9 11 25
31	0.96 (d 7)	21.2	CH3	14
32	0.99 (d 7)	20.4	CH3	
33	1.03 (d 7)	19.8	CH3	20
34	1.67 (s)	19.0	CH3	20
3. Result and discussion

3.1 Identification of main component of hydrocarbon from Bot-22 strain

Further isolation was not performed, as the preliminary GC analysis suggested that the hexane elution contained a botryococcene with a sufficiently high purity (>95%) to be analyzed by NMR. In the high resolution EIMS analysis, the main botryococcene was observed at m/z. 466.4543 [M⁺] (calculated for C₃₄H₅₈, D + 0.4 mmu).

The NMR spectra results are shown in Table 1. The main hydrocarbon of strain Bot-22 was identified as shown in Figure 1. The structure was the same as that of C₁₄ botryococcene [18]. In the ¹³C NMR spectrum, four signals at 109.5, 150.0, 41.1, and 31.8 ppm completely overlapped, indicating that the structure contained symmetric moieties.

The chemical formula suggests that the molecule has six double bonds. Twelve double bond carbons were confirmed by the NMR spectrum (δC > 100 ppm). The NMR spectra with DEPT and HMQC provided information about the carbon classes. Five unsaturated methylene carbons were found at 109.5, 109.5, 107.4, 111.0, and 107.3 ppm [C-1, 22, 23, 24, 26]. Apparently, one consisted of a vinyl group, as the coupling constants between H-24 (δH 4.94, 4.91) and H-25 (δH 5.77) were 17 Hz and 10 Hz each, and additionally that of H-24 was 2 Hz. Moreover, a double bond in the main chain existed at H-11 (δH 5.3 d) and H-12 (δH 5.15 d). The coupling constant between H-11 and H-12 (15 Hz) suggested a trans double bond linked to a quaternary and tertiary carbon. These couplings were confirmed by H-H COSY spectra. For coupling of the ¹H NMR [H-1, 22, 23, 26] singlet, all other saturated methylenes were double bonded with quaternary carbons [C-2, 6, 17, 21]. A quaternary carbon without a double or triple bond was also detected in C-10 (δC 41.8). Eight primary carbons [C-27, 28, 29, 30, 31, 32, 33, 34] indicated a near chemical shift on ¹³C NMR; however, the ¹H NMR spectra of H-27 and H-34 (δH 1.67 s) clearly showed
that C-27 and C-34 were linked to quaternary carbons with double bonds. Moreover, C-30 (δH 1.04 s) was clearly linked to C-10 as a quaternary carbon without a double bond. Others [C-28, 29, 31, 32, 33] showing 1H NMR coupling as doublet were linked to tertiary carbons without double bonds. The HMBC spectra allowed conversion of those carbons into two large moieties, as shown in Fig. 2. Several pairs of H-C couplings could not be separated due to signal overlaps. Nevertheless, it did not influence the identification results, as C-3 to H-22 duplicated to H-1. Finally, two parts were connected at C-14 and C-15 as the only two remaining nodes; hence, the main component was identified as C34 botryococcene.

3.2 Biosynthesis pathway of isoprenic units for C34 botryococcene

The 30 day feeding experiment using [1-13C] glucose with removal of CO2 allowed the product to achieve quite high signals of 13CNMR. It is possible that 13CO2 generated from [1-13C] glucose is reincorporated, disturbing the label pattern. However, the result shows that the ratio of recycle 13C carbon was not so high to disturb clear labelling. The results of the NMR spectra are shown in Table 2. A series of carbons influenced the amplitude strength by H-C decoupling. Additionally, signal overlaps also increased its amplitude. The 13C signal intensities of several carbons in the molecule increased when 13C was incorporated into botryococcene. The relative signal intensities were evaluated using a calculation (feeding/control on signal height). The results showed that, [C-1, 4, 8, 11, 15, 19, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33] were labelled remarkably with 13C, and the intensity was 4.5–9.9 times higher than those of the control. The labelling pattern of C34 botryococcene is shown in Fig. 3a. The labelling patterns predicted from the three well-known pathways MEP, MVA, and leucine-mediated, are shown in Figs. 4b,
Fig. 3. Comparison of label pattern. (a) Detected label pattern by [1-13C] feeding experiment. Arrows show the position of additional methyl base. (b) Label pattern predicted from the MEP pathway. C-1 and C-5 carbon on each isoprenic units were labelled. (c) Label pattern predicted from the MVA pathway. (d) Label pattern predicted from leucine mediate pathway.

e, and d. The labelling pattern completely coincided with the pattern that occurred when the MEP pathway was used to biosynthesize the isoprenic units. In contrast, the positions when the other two pathways were used showed fairly low signal peaks. We confirmed that the MEP pathway was used mainly for botryococcene biosynthesis in Bot-22 strain as well as the Berkeley strain.

It is unknown whether pentose phosphate cycle substrates participate in the biosynthesis of C_{34} botryococcene because this biosynthetic route has not been sufficiently investigated to anticipate the same labeling pattern from the reaction process. Further study will be needed to reveal the details of this pathway.

In this study, the 13C from [1-13C] glucose was detected at [C-28, 29, 32, 33] (Fig. 3a, indicated by the arrows). These carbons did not consist of any isoprenic units. The additional methyl groups were linked with the second carbons of the isoprenic units. These findings suggest that all botryococenes were synthesized from C_{30} botryococcene by methylation, and that methionine was possibly the important methyl group donor, as it has been revealed that a high concentration of [Me-13C] methionine was incorporated into botryococcene [16]. However, Sato et al. [15] reported that [1-13C] glucose is not labelled at either position with additional methyl groups because these positions showed 0.8 to 1.5% isotopic abundance, which is the same as non-labelled, whereas C-1 and C-5 of the isoprenic units were labelled at 1.7 to 2.0% of isotopic abundance. However, many differences in the methods existed between their and our experiments. In particular, the carbon source and photo-respirative condition were mainly different from the metabolic aspect. In our experiments, the carbon source was limited to only [1-13C] glucose, as compared to their experiment with CO₂ flue. The CO₂-omitted aeration we used might strongly induce photorespiration under a 12L: 12D photoperiod with a light irradiance of 100 μmol photon/m² s. Generally, the methyl group donor is methionine which obtains its methyl group from a one-carbon pool [19]. As the C-3 of serine and C-2 of glycine are recognized as important donors of the one-carbon pool in other organisms including humans [20] [21], the C-1 of glucose can be incorporated into both positions via the glycolytic and photorespiration pathways, respectively. The C-1 carbon on glucose selectively flows to a one-carbon pool on B. braunii. Obtaining more information on botryococcene methylation will provide important knowledge for further understanding the one-carbon metabolism.
4. Conclusion

In this study, 1-13C-labelled glucose was clearly converted to the position predicted by the MEP pathway. We confirmed that the isoprenic precursor of botryococcene was synthesized in the Bot-22 strain via the MEP pathway. Moreover, the findings showed that additional botryococcene methyl groups were labelled, contrary to a previous report. The affect of photorespiration is one of possible factors for this phenomenon. However, more evidence is necessary to further understand methyl group metabolism in Botryococcus.

Acknowledgement

We sincerely thank Dr. Yoshihisa Hirakawa of the University of Tsukuba for studying the isolation and purification of microalgae. We also express our appreciation to the staff and members of our laboratory at the University of Tsukuba for their help and support. This work was financially supported by the Core Research of Evolutional Science and Technology program (CREST) from the Japan Science and Technology Agency and the Special Funds for Next Generation Energy Development Project, MEXT, Japan.

References

[1] Banerjee A, Sharma R, Chisti Y, Banerjee UC. *Botryococcus braunii*: a renewable source of hydrocarbons and other chemicals. *Crit Rev Biotechnol* 2002;22-3:245-79.
[2] Wolf FR, Nonomura AM, Bassham JA. Growth and branched hydrocarbon production in a strain of *Botryococcus braunii* chlorophyta. *J Phycol* 1985;21:388-96.
[3] Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P. Sites of accumulation and composition of hydrocarbons in *Botryococcus braunii*. *J Phytochem* 1980;19:1043-51.
[4] Achitouv E, Metzger P, Rager MN, Largeau C. C31–C34 methylated squalenes from a Bolivian strain of *Botryococcus braunii*. *Phytochem* 2004;65:3159-65.
[5] Rohmer M, Knani YM, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. *Biochem J* 1993;295:517-24.
[6] Ginger ML, Chance ML, Sadleri IH, Goad LJ. The biosynthetic incorporation of the intact leucine skeleton into sterol by the trypanosomatid *Leishmania mexicana*. *J Biol Chem* 2001;276-15, Issue of April 13:11674-82.
[7] Poliquin K, Ershov YV, Cunningham Jr FX, Woreta TT, Gantt RR, Gantt E. Inactivation of sll1556 in *Synechocystis* Strain PCC 6803 impairs isoprenoid biosynthesis from pentose phosphate cycle substrates in vitro. *J Bacteriol* 2004;186-14:4685-93.
[8] Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants, *NaturProduct Rep* 1999;16:565-74.
[9] Lichtenhalera HK, Schwendera J, Dischb A, Rohmerb M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. *FEBS Lett* 1997;400:271-4.
[10] Schwender J, Seemann M, Lichtenhaler HK, Rohmer M. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga *Scenedesmus obtusus*. *Biochem J* 1996;316:73-80.
[11] Disch A, Schwender J, Muller C, Lichtenhaler HK, Rohmer M. Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium *Synechocystis* PCC 6714, *Biochem J* 1998;333:381-8.
[12] Burns RO, Umbargar HE, Gross R. The Biosynthesis of Leucine. 111. The Conversion of a-hydroxy-p-carboxyisocaproate to a-ketoisocaproate. *Biochem* 1963;2:1053-8.
[13] Maxwell JR, Douglas AG, Eglinton G, McCormik A. The botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii. *Phytochem* 1968;7:2157-71.

[14] Rohmer M. The mevalonate-independent methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis, including carotenoids. *Pure Appl Chem* 1999;71-12:2279-84.

[15] Sato Y, Ito Y, Okada S, Murakami M, Abe H. Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of *Botryococcus braunii* via the non-mevalonate pathway. *Tetrahedron Lett* 2003;44:7035-37.

[16] Metzger P, David M, Casadevall E. Biosynthesis of triterpenoid hydrocarbons in the B-race of the green alga *Botryococcus braunii*. Sites of production and nature of the methylating agent. *Phytochem* 1987;26:129-34.

[17] Kasai F, Kawachi M, Erata M, Mori F, Yumoto K, Sato M, Ishimoto M. *NIES-collection List of Strains, 8th Edition*. *Jpn J Phycol* 2009;57:1-350.

[18] Cox RE, Burlingame AL, Wilson DM. Botryococcene-a tetramethylated acyclic triterpenoid of algal origin. *J Chem Soc Chem Commun* 1973:284-5.

[19] Appling DR. Compartmentation of folate-mediated one-carbon metabolism in eukaryote. *FESBE J* 1991;7:2645-51.

[20] Davis SR, Stacpoole PW, Williamson J, Kick LS, Quinlivan EP, Coats BS, Shane B, Bailey LB, Gregory III JF. Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. *J Am J Physiol Endocrinol Metabolism* 2004;286:E272–E279.

[21] Kikuchi G. The Glycine cleavage system: composition, reaction mechanism and physiological significance. *Mol Cell Biochem* 1973;1-2:169-87.

Received 27 June 2011; accepted 2 August 2011