TiO2 Nanofibers Decorated with Monodispersed WO3 Heterostructure Sensors for High Gas Sensing Performance Towards H2 Gas

M Kumaresan (kumaresan084@gmail.com)
Hindusthan College of Arts and Science https://orcid.org/0000-0001-6456-9181
M. Venkatachalam
Erode Arts and Science College
M. Saroja
Erode Arts and Science College
P. Gowthaman
Erode Arts and Science College

Research Article

Keywords: WO3, TiO2 nanofibers, Heterojunction, Chemical sensor, Hydrogen gas, High sensitivity

DOI: https://doi.org/10.21203/rs.3.rs-285097/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

A simple spin coating method was used to prepare the WO$_3$-TiO$_2$ heterostructural nanobers (HNFs). Various kinds of techniques, including XRD, SEM, TEM, EDS and XPS, have described the structures, chemical constitutions and morphologies of the samples. Following the decoration of the WO$_3$ nanocubes on the surface of TiO$_2$ nanofbers, XPS findings confirmed the presence of W$^{5+}$ and the excess proportion of both chemisorbed reactive oxygen and oxygen vacancies. WO$_3$ incorporated TiO$_2$ thin film sensor showed high sensing response (78%), rapid response (20 s) and recovery time (23 s) with respect to other gas molecules (NH$_3$, NO$_2$, LPG and SO$_2$). The finding demonstrates that the WO$_3$-TiO$_2$ sensor showed good selective response towards H$_2$ gas. A unique path was created by this work to build hetero-highly ordered mesoporous metal oxides junctions for applications in H$_2$ gas sensor based devices.

1. Introduction

With the need to identify the amount of toxic gases (NO, NO$_2$, CO, SO$_2$, H$_2$S, etc.) in the air in real time, the development of high-performance gas sensors in the manufacturing, ecological and health sectors is essential. Due to its benefits such as simple design, long lifetime, compact size and n, the semiconductor gas sensor is one of the most popular consistently applied sensors [1, 2]. The core part of the semiconductor gas sensor as a sensitive coating. A multitude of compounds, such as ZnO [3, 4], SnO$_2$ [5, 6] and Fe$_2$O$_3$ [7, 8], were used to manufacture gas-sensitive coatings. However these frameworks have some drawbacks, such as low response, high energy consumption, and some humidity and temperature volatility. WO$_3$ has exceptionally high sensitivity for NO$_2$ detection compared to the conventional materials above [9, 10], and is a suitable candidate for gas sensor coating materials. And it is also stated that the doping into WO$_3$ of another kind of oxides leads to the formation of semiconductor heterojunction, thereby increasing overall the coatings' gas sensitivity.

TiO$_2$ is well established to be a kind of semiconductor material with excellent electrical properties. Improvements have been documented in the gas sensitivity of semiconductor WO$_3$ induced by TiO$_2$ doping. However, the latest TiO$_2$ doping methods, which are not suitable for commercial development, are highly complex. In fact, the gas control problem of the TiO$_2$-doped coatings has still not been clearly established. The WO$_3$-based composite coatings doped with TiO$_2$ were prepared by liquid-phase plasma spraying in this paper as per that concern, and the gas-sensing process of TiO$_2$-WO$_3$ composite coatings was extensively investigated. As already mentioned, it is also proved to be a potential method is tested loaded on a support material due to its delicate conductivity, strong catalytic properties, and remarkable chemical inertness. Nanofber WO$_3$-TiO$_2$ may form n-n heterojunction, which can potentially present highly explosive localized areas and thus obtain unpredictable features for specific applications. In this analysis, we describe a simple and successful spin coating technique has been used to fabricated the quasi-1D WO$_3$ nanoparticles-decorated TiO$_2$ heterostructural nanofbers. High response, discern
specificity, quick response time and recovery time for H₂ gas were demonstrated by the as-prepared WO₃-TiO₂ material, making it a successful candidate for application in H₂ sensors. A sensor adsorption and reaction model has also been suggested. The increase in the efficiency of gas sensing can be due to the creation of heterojunctions seen between two material types.

2. Experimental Process

2.1. Chemicals and Reagents

Tungsten chloride (WCl₆), Titanium tetra-isopropoxide (TTIP) with a normal purity of 97% (Aldrich, UK), Ammonia solution (NH₄OH), Hydrochloric acid (HCl) was purchased and used as without extra purification.

2.2. Preparation of WO₃/TiO₂ thin films

The process of making WO₃/TiO₂ films involves two step synthesis processes. Hydrothermal and spin coating technique has been used to fabricate the bare WO₃ and TiO₂ thin films, respectively. Firstly, WCl₆ was distributed in 30 mL deionized water through magnetic stirring for 20 min. Later, 5 mL of HCl aqueous solution was added and the reaction mixture was fully dissolved by thoroughly mixing for another 10 min. the reaction mixture was adapted to hydrothermal reaction (180 °C/12 h) and finally dried (80 °C/12 h) for further use. Spin coating method was used to fabricate the TiO₂ nanotubes. FTO substrate was used to deposit the thin films. The raw materials of TiO₂ precursors (5 mL TTIP with 1:1 ratio of ethanol and DI water) was deposited on FTO glass substrate at speed of 2000 rpm for 1 min. The films after drying at 120 °C for 5 min are subsequently heat-treated at 450 °C for 30 min in nitrogen flow. In the process of WO₃/TiO₂ composite. The prepared WO₃ nanopowder (0.5 g) was dispersed in the 0.5 g of TiO₂ nanofibers and same experimental process of spin coating method has been repeated for each concentrations. The films with WO₃ nanoparticles, TiO₂ nanofibers and WO₃/TiO₂ heterostructures were labeled as WO₃ NPs, TiO₂ NFs and WO₃/TiO₂ Hs, respectively.

2.3. Gas sensor set up with sensor region

The gas sensor of the resistive form was constructed and the schematic view is being shown in Fig. 1. The detailed description of the sensor was mentioned already our previous reported work [11]. The mass flow controller (MFC) was used to modify gas concentrations at various ppm levels (0-1000 ppm). The gases were connected to the mass flow controller with a mixer from different cyclinder. The diluted gases were then evenly located in the testing reactor. The gas sensing response (S) was stated as (R_G-R_A)/R_A x 100% [12], where the air resistance value and the corresponding gas were R_G and R_A, respectively.

3. Results And Discussion

3.1. X-ray diffraction (XRD) analysis
Figure 2 shows the XRD pattern of WO$_3$ NPs, TiO$_2$ NFs and WO$_3$/TiO$_2$ Hs films respectively. The pattern clearly expose the bare WO$_3$ and TiO$_2$ are monoclinic (JCPDS card No. 43-1035) and anatase phase tetragonal rutile type structure (JCPDS card No. 21-1272). Sharp intense peaks without any contaminant suggest that fabricated films are high order crystalline nature. The diffraction peaks of the WO$_3$-TiO$_2$ can be indexed to the mixed WO$_3$ and TiO$_2$ with different phases and no apparent peak change relative to the pure materials, which shows that the end product contains of it rather than alloy WO$_3$ and TiO$_2$ nanocomposites.

3.2. Morphological studies

The morphological detection of the sensors was examined by SEM and TEM. Figure 2 (a-c) shows the SEM images of WO$_3$ NPs, TiO$_2$ NFs and WO$_3$/TiO$_2$ Hs films respectively. Monodispered spherical of WO$_3$ and tubes like TiO$_2$ morphologies are recognized by the SEM images. Further the clear morphological view was identified their corresponding TEM images. The TEM image of WO$_3$ and TiO$_2$ clearly demonstrate that less aggregated nanoparticles with uniform tube like morphologies were found. In the WO$_3$/TiO$_2$ heterostructure composite, the nanoparticles are uniformly grown on the surface of the TiO$_2$ nanotubes. Without obvious aggregation and combining, the framework of TiO$_2$ nanofibers is advantageous for getting high surface area and improving the catalytic process of gas sensing. The elemental mapping of WO$_3$/TiO$_2$ Hs films shows W, Ti and O elements on the surface of the images (Fig. 3g-i).

3.3. Surface and elemental composition studies

Brunauer–Emmett–Teller (BET) method was used to describe the porous structure and clear surface areas of sensors through their N$_2$ adsorption-desorption analysis as well as pore size distribution curve (Fig. 4a & b). All the samples display category IV nitrogen isotherm with a hysteresis loop, suggesting the features of mesopores [13–17]. Due to the heterostructure combination of WO$_3$ nanoparticles and TiO$_2$ nanofibers can deliver the high surface area (104.7 m2/g and pore size (17.4 nm)) than that of bare WO$_3$ (54.3 m2/g and 37.4 nm) and TiO$_2$ (77 m2/g and 30.2 nm). The chemical state and composition of elemental configuration was analyzed by XPS. The survey XPS of WO$_3$/TiO$_2$ Hs shows the chief elements of W, Ti and O (Fig. 5a). Figure 5 (b-d) displays the high resolution spectrum of the W 4f, Ti 2p and O 1s spectra. The divided peaks based at the binding energies of 34.9 and 36.8 eV correspond to the standard binding energies of W$^{5+}$ [18, 19] in the W 4f XPS spectrum. With binding energies at 465.2 eV and 459.6 eV, the Ti 2p XPS spectrum can be deconvoluted into two major peaks, corresponding to Ti 2p$_{1/2}$ and Ti 2p$_{3/2}$. The distinctiveness peaks of O$_2^-$ and O$^-$ are located with equivalent binding energies of 530.4 eV and 531.5 eV, respectively [20, 21].

3.5. Gas sensing test

The efficiency of the gas sensing performance of the H$_2$ gas was tested by using the WO$_3$, TiO$_2$ and WO$_3$/TiO$_2$ sensor materials. Before gas sensing test the sensor samples were exposed to air atmosphere
to identify the resistivity performance of the samples and the relevant graph illustrate that good resistive nature for all the sensor samples (Fig. 6a). The sensing response is shown in Fig. 6 (b). The dynamic response is drastically enhanced with the increase of H$_2$ gas concentration from 0 to 1000 ppm (Fig. 6c). The maximum sensitivity is achieved by WO$_3$/TiO$_2$ Hs (78%) than compared with bare WO$_3$ (27%) and TiO$_2$ (52%) sensor films. In addition, the impact of the degree of doping on the ordered quality of the porous channel and relative humidity (RH) on sensing characteristics was also investigated and the relevant plot is shown in Fig. 7 (a). The analysis indicate that the sensor based on WO$_3$/TiO$_2$ Hs offered the highest response, regardless of the test conditions. The high performance of the WO$_3$/TiO$_2$ Hs based sensor ought to be beneficial for the unique and powerful structure effect and doping effect because the mesoporous structure could provide both high surface area and prosperous for hydrogen gas adsorption and diffusion (structure effect) while doping means improving defects and active site. For industrial cases, the reaction and recovery time of gas sensors is quite important. The H$_2$ gas concentration I exposed to 1000 ppm at RT towards all the sensor films and the finding reveals that WO$_3$/TiO$_2$ Hs sensors gained rapid response (20s) and recovery time (23 s) than other sensors (Fig. 7b-d). The H$_2$ gas parameters of all the sensors are estimated and the values are displayed in Table 1. Finally, we carried out a response comparison of the sensors 1000 ppm of different target gases to affirm the progress in selectivity. Figure 8 (a-c) selectivity characterics graph of all the sensors, which is exposed to various target gases like, NH$_3$, NO$_2$, LPG and SO$_2$. The sensor stability is often continually monitored. As shown in Fig. 8d, the curve showed a remarkably stable tendency toward 1000 ppm H$_2$ gas throughout a 60-day long-term stability calculation. In addition, no noticeable decline in response pattern is found for detecting 1000 ppm H$_2$ gas after 50 successive tests (Fig. 8d). These findings show that the HNFs-based WO$_3$/TiO$_2$ sensor has strong reproducibility and long-term reliability. The sensing mechanism with graphical sketch of the proposed sensor is shown in Fig. 9. The improved sensing performance of the HNFs-based WO$_3$/TiO$_2$ sensor is due to the following reasons: On the one side, the Fermi level of WO$_3$ is lower for WO$_3$/TiO$_2$ HNFs than for TiO$_2$, which contributes to the transport of energy from TiO$_2$ to WO$_3$ till the level of Fermi energy is equivalent. As a consequence, on the side of WO$_3$, the electron diffusion surface will develop, that will make it much easier to accumulate oxygen or target gasses on the WO$_3$. Consequently, WO$_3$ nanospherical serve as a responsive active site on the surface of TiO$_2$ nanotubes and have a beneficial effect on H$_2$ sensor output. It is clearly suggest that the gas sensing efficiency of this sensor is obviously advantageous over that of other sensors.

4. Conclusions

In this report, the WO$_3$ nanoparticles incorporated TiO$_2$ heterostructure with mesoporous nature films sensors were fabricated and tested the gas sensing response towards H$_2$ gas with at RT. The heterostructure which facilitated the fabrication of a sensitive and porous shaped sensing film. WO$_3$/TiO$_2$ heterostructure thin film sensor showed high sensing response (78%), rapid response (20 s) and recovery time (23 s) with respect to other gas molecules (NH$_3$, NO$_2$, LPG and SO$_2$). In addition that the fabricated sensors also exhibits long term stability due no apparent loss in sensitivity after multiple cycle
experiments. The finding demonstrates that the WO$_3$-TiO$_2$ sensor showed good selective response towards H$_2$ gas. The WO$_3$-TiO$_2$ HNFs sensor's excellent performance could be related to the existence of n-n junctions as well as the redox of W$^{6+}$ and W$^{5+}$ states. The results confirmed that the significant insight WO$_3$-TiO$_2$ HNFs was a good approach for a high-performance H$_2$ sensor.

References

1. Franke ME, Koplin TJ, Simon U. Metal and metal oxiden anoparticles in chemiresistors: does the nanoscale matter? Small. 2 (2006) 36–50.
2. Tricoli A, Righettoni M, Teleki A. Semiconductor gas sensors: dry synthesis and application. Angew Chem Int Ed. 49 (2010) 7632–7659.
3. Wan Q, Li QH, Chen YJ, Wang TH, He XL, Li JP, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84 (2004) 3654–3656.
4. Zhang J, Wang S, Wang Y, Xu M, Xia H, Zhang S, et al. ZnO hollow spheres: preparation characterization, and gas-sensing properties. Sens Actuators B: Chem. 139 (2009) 411–417.
5. Wei F, Zhang H, Nguyen M, Ying M, Gao R, Jiao Z. Template-free synthesis of flower-like SnO$_2$ hierarchical nanostructures with improved gas sensing performance. Sens Actuators B: Chem. 215 (2015) 15–23.
6. Sun P, Cao Y, Liu J, Sun Y, Ma J, Lu G. Dispersive SnO$_2$ nanosheets: hydrothermal synthesis and gas-sensing properties. Sens. Actuators B: Chem. 156 (2011) 779–783.
7. Chen J, Xu LN, Li WY, Gou XG. α-Fe$_2$O$_3$ nanotubes in gas sensor and lithium-ion baterry applications. Adv. Mater. 17 (2005) 582–586.
8. Ouyang J, Pei J, Kuang Q, Xie Z, Zheng L. Supersaturation-controlled shape evolution of alpha-Fe$_2$O$_3$ nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces. 6 (2014) 12505–12514.
9. Espid E, Taghipour F. Development of highly sensitive ZnO/In$_2$O$_3$ composite gas sensor activated by UV-LED. Sens Actuators B. 241 (2016) 828–839.
10. Baranov A, Spirjakin D, Akbari S, Somov A. Optimization of power consumption for gas sensor nodes: a survey. Sens. Actuators A. 233 (2015) 279–289.
11. K.H. Kim, M. Yang, K.M. Cho, Y.S. Jun, S.B. Lee, H.T. Jung, High quality reduced graphene oxide through repairing with multi-layered graphene ball nanostructures, Nat. Sci. Rep. 3 (2013) 3251–3258.
12. S. Ryabtsev, A. Shaposhnick, A. Lukin, E. Domashevskaya, Sensors and Actuators B: Chemical. 59 (1999) 26.
13. M. Sumathi, A. Prakasam, PM. Anbarasan, High capable visible light driven photocatalytic activity of WO$_3$/g-C$_3$N$_4$ heterostructure catalysts synthesized by a novel one step microwave irradiation route, J. Mater. Sci. Mater. Electron. 30 (2019) 3294-3304.
14. M. Sumathi, A. Prakasam, P.M. Anbarasan, Fabrication of hexagonal disc shaped nanoparticles \(\text{g-C}_3\text{N}_4/\text{NiO} \) heterostructured nanocomposites for efficient visible light photocatalytic performance, Journal of Cluster Science 30 (2019) 757–766.

15. M. Parthibavarman, S. Sathishkumar, M. Jayashree, R. BoopathiRaja, Microwave Assisted Synthesis of Pure and Ag Doped \(\text{SnO}_2 \) Quantum Dots as Novel Platform for High Photocatalytic Activity Performance, Journal of Cluster Science 30 (2019) 351-363

16. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, R. BoopathiRaja, High visible light-driven photocatalytic activity of large surface area Cu doped \(\text{SnO}_2 \) nanorods synthesized by novel one-step microwave irradiation method, Journal of the Iranian Chemical Society 15 (2018) 2789-2801

17. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of \(\text{MnCo}_2\text{O}_4 \) nanoflakes@nanowires grown on Ni foam: Design, fabrication and applications in electrochemical energy storage, J. Alloy. Compd. 811 (2019) 152084

18. N. Feng, Q. Wang, A. Zheng, Z. Zhang, J. Fan, S.B. Liu, et al., Understanding the high photocatalytic activity of (B, Ag)-codoped \(\text{TiO}_2 \) under solar-light irradiation with XPS, solid-state NMR, and DFT calculations, J. Am. Chem. Soc. 135 (4) (2013) 1607–1616,

19. Y. Zhang, J. Chen, L. Hua, S. Li, X. Zhang, W. Sheng, et al., High photocatalytic activity of hierarchical \(\text{SiO}_2@\text{C} \)-doped \(\text{TiO}_2 \) hollow spheres in UV and visible light towards degradation of rhodamine B, J. Hazard. Mater. 15 (20170 309-318

20. J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides, Phys. Chem. Chem. Phys. 2 (2000) 1319–1324.

21. R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Investigation of X-ray photoelectron spectroscopic (XPS), cyclic voltammetric analyses of \(\text{WO}_3 \) films and their electrochromic response in FTO/\(\text{WO}_3/\text{electrolyte}/\text{FTO} \) cells, Smart Mater. Struct. 15 (2006) 877–888

Table

Due to technical limitations, table 1 is only available as a download in the Supplemental Files section.