FANO SURFACES WITH 12 OR 30 ELLIPTIC CURVES

XAVIER ROLLEAU

MSC: 14J29 (primary); 14C22, 14J50, 14J70 (secondary).

Key-words: Surface of general type, Fano surface of a cubic threefold, Néron-Severi group, Maximal Picard number.

Introduction. A Fano surface is a surface of general type that parametrizes the lines of a smooth cubic threefold. First studied by Fano and then by many others, like Bombieri and Swinnerton-Dyer [4], Gherardelli [7], Tyurin [14], [15], Clemens and Griffiths [5], Collino [6], these surfaces carry many remarkable properties. In our previous paper [12], we classified Fano surfaces according to the configurations of their elliptic curves. The aim of the present paper is to give various applications of this study when the Fano surface contains 12 or 30 elliptic curves.

The main result of the first part of this paper is as follows:

Proposition 1. The Picard number $\rho_S$ of a Fano surface $S$ satisfies $1 \leq \rho_S \leq 25$ and is 1 for $S$ generic.
A Fano surface that contains 12 elliptic curves is a triple ramified cover of the blow-up of 9 points of an abelian surface.
The Néron-Severi group of such a surface has rank 12, 13 or 25 = $h^{1,1}(S)$.
For $S$ generic among Fano surfaces with 12 elliptic curves, the Néron-Severi group has rank 12 and is rationally generated by its 12 elliptic curves.
An infinite number of Fano surfaces with 12 elliptic curves have maximal Picard number 25 = $h^{1,1}(S)$.

Recall that among the K3 surfaces, the Kummer surfaces are recognized as those K3 having 16 disjoint $(-2)$-curves. They are the double cover of the blow-up over the 2-torsion points of an abelian surface (see [11]). Our theorem is the analogue for Fano surfaces that contains 12 elliptic curves among Fano surfaces.

In the second part, we study the Fano surface $S$ of the Fermat cubic threefold $F \rightarrow \mathbb{P}^4$:

$$F = \{x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 = 0\}.$$

Let $\mu_3$ be the group of third roots of unity and let $\alpha \in \mu_3$ be a primitive root. For $s$ a point of $S$, we denote by $L_s$ the line on $F$ corresponding to the point $s$ and we denote by $C_s$ the incidence divisor that parametrizes the lines in $F$ that cut the line $L_s$. 

1
Theorem 2. The surface $S$ is the unique Fano surface that contains 30 smooth curves of genus 1. These curves are numbered:

$$E^\beta_{ij}, \ 1 < i < j \leq 5, \ \beta \in \mu_3,$$

in such a way that for two such curves $E^\gamma_{ij}$ and $E^\beta_{st}$, we have:

$$E^\beta_{ij}E^\gamma_{st} = \begin{cases} 1 & \text{if } \{i, j\} \cap \{s, t\} = \emptyset \\ -3 & \text{if } E^\beta_{ij} = E^\gamma_{st} \\ 0 & \text{else.} \end{cases}$$

The Néron-Severi group $\text{NS}(S)$ of $S$ has rank $25 = \dim H^1(S, \Omega_S)$ and discriminant $3^{18}$. These 30 elliptic curves generate an index 3 sub-lattice of $\text{NS}(S)$ and with the class of an incidence divisor $C_s (s \in S)$, they generate the Néron-Severi group.

Given a smooth curve of low genus and with a sufficiently large automorphism group, it is sometimes possible to calculate the period matrix of its Jacobian [3]. In this paper, we calculate also the period lattice of the Albanese variety of the 2 dimensional variety $S$. This computation is used to determine the Néron-Severi group of $S$. We determine also the fibrations of $S$ onto an elliptic curve and the intersection numbers between the fibers of these fibrations and discuss on the more interesting fibrations.

Acknowledgement. A part of this paper done during the author’s stay at the Max Planck Institute of Bonn and at the University of Tokyo, under JSPS fellowship.

1. Preliminaries on Fano surfaces.

1.1. Tangent Bundle Theorem. Let $F \hookrightarrow \mathbb{P}^4$ be a smooth cubic threefold and let $S$ be its Fano surface of lines. We consider the following diagram:

$$\begin{array}{ccc} U & \xrightarrow{\psi} & F \\
\pi & \downarrow & \hookrightarrow \\
S & & \mathbb{P}^4 \end{array}$$

where $U$ is the universal family of lines and $\pi, \psi$ are the projections.

Theorem 3. (Tangent Bundle Theorem [5]). There is an isomorphism $\pi_*\psi^*\mathcal{O}(1) \simeq \Omega_S$, where $\Omega_S$ is the cotangent sheaf.
By this isomorphism, we can identify the spaces $H^0(F, \mathcal{O}(1))$ and $H^0(S, \Omega_S)$, the varieties $\mathbb{P}^4$ and $\mathbb{P}(H^0(S, \Omega_S)^*)$ and the varieties $U$ and $\mathbb{P}(T_S)$, where $T_S = \Omega^*_S$.

We always work with the identifications of the above Theorem. In particular, the line $L_s \hookrightarrow F$ corresponding to a point $s$ in $S$ is the projectivized tangent space to $S$ at $s$. 
1.2. Properties of Fano surfaces with an elliptic curve. Let us denote by \( C \) a cone on the cubic \( F \). The following lemmas come from [12]:

**Lemma 4.** The cone \( C \) is an hyperplane section of \( F \). The curve \( E \) parametrizing the lines on \( C \) is naturally embedded into \( S \) and is an elliptic curve. Conversely, if \( E \leftrightarrow S \) is an elliptic curve on \( S \), the surface \( \psi(\pi^{-1}(E)) \) is a cone.

Let \( E \leftrightarrow S \) be an elliptic curve.

**Lemma 5.** We can canonically associate to \( E \leftrightarrow S \) an involution \( \sigma_E : S \to S \) and a fibration \( \gamma_E : S \to E \).

Let us recall the construction of \( \sigma_E \) and \( \gamma_E \):

For a generic point \( s \) of \( S \), the line \( L_s \) cuts the hyperplane section \( \psi(\pi^{-1}(E)) \) into a point \( p_s \). The line between \( p_s \) and the vertex of the cone \( \psi(\pi^{-1}(E)) \) lies inside this cone and is represented by a point \( \gamma_E s \) in \( E \). The lines \( L_s \) and \( L_{\gamma_E s} \) lies on a plane, that plane cuts the cubic into a third residual line denoted by \( L_{\sigma_E s} \).

Let \( s \) be a point of \( E \) and let \( C_s \) the incident divisor parametrizing the lines in \( F \) that cut \( L_s \).

**Lemma 6.** The fiber \( \gamma_E^* s \) satisfies: \( C_s = \gamma_E^* s + E \). We have: \( C_s^2 = 5 \), \( C_s E = 1 \) and \( E^2 = -3 \).

Let \( A \) be the Albanese variety of the Fano surface \( S \); its tangent space is \( H^0(S, \Omega_S)^* \). We denote by \( \vartheta : S \to A \) the Albanese map. As \( \vartheta \) is an embedding [5], we consider \( S \) as a subvariety of \( A \). To the morphisms \( \sigma_E, \gamma_E \) correspond an involution \( \Sigma_E : A \to A \) of \( A \) and a morphism \( \Gamma_E : A \to E \) such that: \( \vartheta \circ \sigma_E = \Sigma_E \circ \vartheta \) and \( \Gamma_E \circ \vartheta = \vartheta \circ \gamma_E \).

**Lemma 7.** ([12], Lemma 29). The differentials \( d\Sigma_E \) and \( d\Gamma_E \) of \( \Sigma_E \) and \( \Gamma_E \) are endomorphisms of \( H^0(S, \Omega_S)^* \), they satisfy:

\[
I + d\Sigma_E + d\Gamma_E = 0
\]

where \( I \) is the identity. The eigenspace of the eigenvalue 1 of the involution \( d\Sigma_E \) is the tangent space \( T_E \) of the curve \( E \leftrightarrow A \) (translated in 0).

Let us denote by \( f \) the projectivization of \( d\Sigma_E \in \text{GL}(H^0(S, \Omega_S)^*) \) : it is an automorphism of \( \mathbb{P}^4 = \mathbb{P}(H^0(S, \Omega_S)^*) \). Let \( p_E \) be the point of \( \mathbb{P}^4 \) corresponding to the 1 dimensional space \( T_E \subset H^0(S, \Omega_S)^* \).

**Lemma 8.** The involution \( f \) preserves the cubic threefold \( F \leftrightarrow \mathbb{P}^4 \).

The point \( p_E \) is the vertex of the cone \( \psi(\pi^{-1}(E)) \). The hyperplane \( \mathbb{P}(\text{Ker}(d\Gamma_E)) \) and \( p_E \) are the closed set of fixed points of \( f \).

Conversely, let \( f \) be an involution of \( \mathbb{P}^4 \) acting on \( F \), fixing an isolated point and an hyperplane. The isolated fixed point is the vertex of a cone on \( F \).

We will use the above Lemma [7] as in the following example:
Example 9. Let $x_1, \ldots, x_5$ be homogenous coordinates of $\mathbb{P}^4$. The point
$(1 : 0 : \ldots : 0)$ is the vertex of a cone on the cubic threefold

$$F = \{x_1^2 x_2 + G(x_2, \ldots, x_5) = 0\}$$

(where $G$ is a cubic form such that $F$ is smooth). Let $E \hookrightarrow S$ be the elliptic
curve parametrizing the lines of that cone. By Lemma 7, we see that the
involution $d\Sigma_E$ satisfies:

$$d\Sigma_E : (x_1, x_2, \ldots, x_5) \to (x_1, -x_2, \ldots, -x_5)$$

and we deduce that $d\Gamma_E$ is defined by :

$$d\Gamma_E : (x_1, x_2, \ldots, x_5) \to (-2x_1, 0, \ldots, 0).$$

1.3. Theta polarization. Let $S$ be a Fano surface, let $A$ be its Albanese
variety and let $\vartheta : S \hookrightarrow A$ be the Albanese map. By [3], Theorem 13.4,
the image $\Theta$ of $S \times S$ under the morphism $(s_1, s_2) \to \vartheta(s_1) - \vartheta(s_2)$ is a
principal polarization of $A$. Let $\tau$ be an automorphism of $S$ and let $\tau'$ be
the automorphism of $A$ such that $\vartheta \circ \tau' = \tau' \circ \vartheta$. Let $(s_1, s_2)$ be a point of
$S \times S$, then: $\tau'((\vartheta(s_1) - \vartheta(s_2)) = \vartheta(\tau(s_1)) - \vartheta(\tau(s_2))$. Thus:

**Lemma 10.** The automorphism $\tau'$ preserves the polarization : $\tau'^*\Theta = \Theta$.

For a variety $X$, we denote by $H^2(X, \mathbb{Z})_f$ the group $H^2(X, \mathbb{Z})$ modulo
torsion. We denote by $\text{NS}(X) = H^{1,1}(X) \cap H^2(X, \mathbb{Z})_f$ its Néron-Severi
group and by $\rho_X$ its Picard number. For a divisor $D$ in $X$, we denote its
Chern class by $c_1(D)$.

The author wishes to thank Bert van Geemen for a useful discussion on the
following Theorem:

**Theorem 11.** a) If $D$ and $D'$ are two divisors of $A$, then:

$$\vartheta^*(D)\vartheta^*(D') = \int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge c_1(D) \wedge c_1(D').$$

b) The following sequence is exact:

$$0 \to \text{NS}(A) \xrightarrow{\vartheta^*} \text{NS}(S) \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

c) The Néron-Severi group of $S$ is generated by $\vartheta^*\text{NS}(A)$ and by the class of
an incidence divisor $C_s$ ($s \in S$). The class of $\vartheta^*(\Theta)$ is equal to $2C_s$.

d) We have $\rho_A = \rho_S \leq 25 = \dim H^1(S, \Omega_S)$ and $\rho_S = 1$ for $S$ generic.

**Proof.** The morphism $\vartheta$ is an embedding and the homological class of $\vartheta(S)$
is equal to $\frac{1}{3!}\Theta^3$ ([2] proposition 7), this proves a).

Since $\Theta$ is a polarization, the bilinear symmetric form

$$Q_\Theta : H^2(A, \mathbb{C}) \times H^2(A, \mathbb{C}) \to \mathbb{C}$$

defined by

$$Q_\Theta(\eta_1, \eta_2) = \int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \eta_1 \wedge \eta_2$$

is a polarization, the bilinear symmetric form
is non-degenerate (Hodge-Riemann bilinear relations, section 7 chapter 0 of \[8\]). That implies that the morphism
\[\vartheta^* : H^2(A, \mathbb{C}) \to H^2(S, \mathbb{C})\]
is injective, and since \(S\) and \(A\) have the same second Betti number \([7](2)\), it follows that the homomorphism
\[\vartheta^* : H_2(S, \mathbb{Z})_f \to H_2(A, \mathbb{Z})\]
is injective. By \([6], 2.3.5.1\), we have the following exact sequence:
\[H_2(S, \mathbb{Z})_f \xrightarrow{\partial} H_2(A, \mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z} \to 0,\]
thus
\[0 \to H_2(S, \mathbb{Z})_f \xrightarrow{\vartheta^*} H_2(A, \mathbb{Z}) \to \mathbb{Z}/2\mathbb{Z} \to 0\]
is exact. By duality, this yields:
\[0 \to H^2(A, \mathbb{Z}) \xrightarrow{\vartheta^*} H^2(S, \mathbb{Z})_f \to \mathbb{Z}/2\mathbb{Z} \to 0.\]
As the spaces \(H^{1,1}(A)\) and \(H^{1,1}(S)\) have dimension 25 (see \([5]\)), we have:
\[\vartheta^*(H^{1,1}(A)) = H^{1,1}(S).\]
This implies that the sequence:
\[0 \to \text{NS}(A) \xrightarrow{\vartheta^*} \text{NS}(S) \to \mathbb{Z}/2\mathbb{Z}\]
is exact. This sequence is exact on the right also because \(\vartheta^*\Theta = 2C_s\) by Lemma 11.27 of \([5]\) (\(\Theta\) is a principal polarization, it is not divisible by 2, hence the class of \(C_s\) and \(\vartheta^*\text{NS}(A)\) generate \(\text{NS}(S)\)). This proves b).

By \([6]\), any Jacobian of an hyperelliptic curve of genus 5 is a limit of the Albanese varieties of Fano surfaces endowed with their principal polarization. By \([9]\), the endomorphism ring of a Jacobian of a generic hyperelliptic curve is isomorphic to \(\mathbb{Z}\). If the generic Albanese variety of Fano surface were not simple, then also its limit would be non-simple. This is a contradiction, hence \(\rho_A = 1\) for a generic Fano surface. \(\square\)

2. FANO SURFACES WITH 12 ELLIPTIC CURVES.

Let \(\lambda \in \mathbb{C}, \lambda^3 \neq 1\), the cubic threefold:
\[F_\lambda = \{x_1^3 + x_2^3 + x_3^3 - 3\lambda x_1 x_2 x_3 + x_4^3 + x_5^3 = 0\} \hookrightarrow \mathbb{P}^4\]
is smooth. Let \(e_1, \ldots, e_5\) be the dual basis of \(x_1, \ldots, x_5\). The 12 points:
\[\mathbb{C}(e_i - \beta e_5), \mathbb{C}(e_i - \beta e_j) \in \mathbb{P}^4, 1 \leq i < j \leq 3, \beta^3 = 1\]
are vertices of cones in \(F_\lambda\). Let \(S_\lambda\) be the Fano surface of \(F_\lambda\). We denote by \(E_{ij} \hookrightarrow S_\lambda\) the elliptic curve that parametrizes the lines of the cone of vertex \(\mathbb{C}(e_i - \beta e_j)\) (see Lemma \([1]\)). Let \((y_1 : y_2 : y_3)\) be projective coordinates of the plane. Let \(E_\lambda \hookrightarrow \mathbb{P}^2\) be the elliptic curve:
\[E_\lambda = \{y_1^3 + y_2^3 + y_3^3 - 3\lambda y_1 y_2 y_3 = 0\}.\]
with neutral element \((1 : -1 : 0)\). By [12], the 9 curves \(E^\beta_{ij}, 1 \leq i < j \leq 3, \beta^3 = 1\) are disjoint and isomorphic to \(E_0\); the 3 curves \(E_{45}^\beta, \beta^3 = 1\) are disjoint, isomorphic to \(E_\lambda\) and:

\[
E^\beta_{45} E^\gamma_{ij} = 1, \quad \forall 1 \leq i < j \leq 3, \quad \beta^3 = \gamma^3 = 1.
\]

Conversely, let \(S\) be a Fano surfaces with 12 elliptic curves, then:

**Lemma 12.** ([12], Parag. 3.3) There is a set of 3 disjoint elliptic curves on \(S\) isomorphic to \(E_\mu\) (for some \(\mu \in \mathbb{C}\)) such that the 9 remaining elliptic curves are disjoint and such that the surface \(S\) is isomorphic to \(S_\mu\).

Let \(Y\) be the surface \(Y = E_\lambda \times E_\lambda\). Let \(T_1\) and \(T_2\) be the elliptic curves:

\[
T_1 = \{x + 2y = 0/(x,y) \in E_\lambda \times E_\lambda\};
T_2 = \{2x + y = 0/(x,y) \in E_\lambda \times E_\lambda\}
\]

on \(Y\) and let \(\Delta \hookrightarrow Y\) be the diagonal. Any 2 of the 3 curves \(T_1, T_2, \Delta\) meet transversally at the 9 points of \(3\)-torsion of \(\Delta\). We denote by \(Z\) the blow-up of \(Y\) at these 9 points.

**Proposition 13.** The Fano surface \(S_\lambda\) is a triple cyclic cover of \(Z\) branched along the proper transform of \(\Delta + T_1 + T_2\) in \(Z\).

**Proof.** Let \(\alpha \in \mathbb{C}\) be a primitive root. The order 3 automorphism

\[
f : x \to (\alpha x_1 : \alpha x_2 : \alpha x_3 : x_4 : x_5)
\]

acts on \(F_\lambda\). The automorphism \(f\) acts on the Fano surface of lines of \(F_\lambda\) by an automorphism denoted by \(\tau\). As we know the action of \(f\), we can check immediately that the fixed locus of \(\tau\) is the smooth divisor \(E^1_{15} + E^3_{45} + E^2_{45}\).

The quotient of \(S_\lambda\) by \(\tau\) is a smooth surface \(Z'\) with Chern numbers \(c^2_1 = -9\) and \(c_2 = 9\) and the degree 3 quotient map \(\eta : S_\lambda \to Z'\) is ramified over \(E^1_{15} + E^3_{45} + E^2_{45}\).

For an elliptic curve \(E \hookrightarrow S\), we denote by \(\gamma_E : S \to E\) the associated fibration (Lemma 3). By Lemma 3 the morphism

\[
g = (\gamma_{E^1_{15}}, \gamma_{E^3_{45}}) : S_\lambda \to Y
\]

has degree \(3 = (C_s - E^1_{15})(C_s - E^3_{45}).\) Let be \(E = E^\beta_{45}\) (for \(\beta^3 = 1\)).

Let \(s\) be a generic point of \(S\). By definition (see Lemma 4), the line \(L_s\) cuts the line \(L_{\gamma_{E_s}}\). As \(L_{\gamma_{E_S}}\) is stable by \(f\), the line \(f(L_s) = L_{\tau s}\) cuts also the line \(L_{\gamma_{E_s}}\), thus, by definition of \(\gamma_E, \gamma_{E\tau s} = \gamma_{E_s}\). That proves that \(\gamma_E \circ \tau = \gamma_E\), and \(g \circ \tau = g\). Hence, by the property of the quotient map, there is a birational morphism:

\[
h : Z' \to Y
\]

such that \(g = h \circ \eta\).

Let \(t\) be the intersection point of \(E^1_{12}\) and \(E^1_{45}\) and let \(\vartheta : S_\lambda \to A_\lambda\) be the Albanese map such that \(\vartheta(t) = 0\). It is an embedding and we consider \(S_\lambda\) as a subvariety of \(A_\lambda\). The tangent space to the curve \(E^\beta_{45} \hookrightarrow A_\lambda\) (translated to
0) is $V_\beta = \mathbb{C}(\beta e_4 - \beta^2 e_5)$. The tangent space of $E_{45}^\alpha \times E_{45}^{\alpha^2}$ is $V_\alpha \oplus V_{\alpha^2}$. With the help of Lemma 7 and Example 9, it is easily checked that the images under $g$ of the curves $E_1^4 E_{45}^\alpha, E_{45}^{\alpha^2}$ are respectively $\Delta, T_1$ and $T_2$.

Moreover, the morphism $g$ has degree 1 on these 3 elliptic curves and contracts the 9 elliptic curves $E_{ij}^\beta$, $1 < i < j < 3$, $\beta^3 = 1$. This implies that the image under $g$ of $E_1^4 + E_{45}^{\alpha^2}$ is $T_1 + T_2 + \Delta$ and $Z'$ is isomorphic to $Z$.

Let $D$ be the proper transform of $\Delta + T_2 + T_2$ in $Z$. By the above Proposition 13 and [1], Chap. I, parag. 17 & 18, the divisor $D$ is divisible by 3 in $\text{NS}(Z)$.

As $Y$ is an Abelian surface, there exist 3 invertible sheaves $\mathcal{L}$ on $Z$ such that $\mathcal{L}^\otimes 3 = \mathcal{O}_Z(D)$. Let $S(\mathcal{L}) \to Z$ be the degree 3 cyclic cover of $Z$ branched over $D$ associated to such $\mathcal{L}$.

Corollary 14. The surface $S(\mathcal{L})$ contains 12 elliptic curves

$$E_i^\beta, E_j^\gamma, 1 < i < j < 3, \beta^3 = \gamma^3 = 1$$

that have the same configuration as for $S_\lambda$, moreover, the divisor

$$K = \sum_{\beta^3 = 1} 2E_{45}^\beta + E_{12}^\beta + E_{13}^\beta + E_{23}^\beta$$

is a canonical divisor of $S(\mathcal{L})$.

Among these 81 invertible sheaves, there exists a unique $\mathcal{L}$ such that $S(\mathcal{L})$ is a Fano surface, it is then isomorphic to $S_\lambda$.

Proof. See [1], Chap. I, parag. 17 & 18. For the uniqueness of the invertible sheaf $\mathcal{L}$: suppose that $S(\mathcal{L})$ and $S(\mathcal{L}')$ are Fano surfaces. By construction, they contain 12 elliptic curves, 3 of them are isomorphic to $E_3$ and cut the 9 others, thus by Lemma 12 $S(\mathcal{L})$ and $S(\mathcal{L}')$ are isomorphic to $S_\lambda$, therefore: $\mathcal{L} = \mathcal{L}'$. □

Remark 15. The remaining 80 surfaces $S(\mathcal{L})$ are thus “fake” Fano surfaces and are on different components of the moduli space of surfaces with $c_1^2 = 45$ and $c_2 = 27$.

Let $\alpha$ be a third primitive root of unity. Let us now study the Néron-Severi group of $S$.

Proposition 16. 1) Suppose that $E_\lambda$ has no complex multiplication. The Néron-Severi group of $S_\lambda$ has rank 12. The sub-lattice generated by the elliptic curves and the class of an incidence divisor $C_s$ has rank 12 and discriminant $2.3^{10}$.

2) If $E_\lambda$ has complex multiplication by a field different from $\mathbb{Q}(\alpha)$, then the Néron-Severi group of $S_\lambda$ has rank 13.

3) If $E_\lambda$ has complex multiplication by $\mathbb{Q}(\alpha)$ then the Néron-Severi group of $S_\lambda$ has rank 25.
We can easily compute the Picard number of the Abelian variety $E_0^3 \times E_2^2$. By [12], the Albanese variety $A$ of $S_\lambda$ is isogenous to $E_0^3 \times E_2^2$, thus their Néron-Severi groups have same rank and according to the cases 1), 2) and 3), this rank is 12, 13 or 25. Then, Theorem [11] implies that the Picard number of $S_\lambda$ is 12, 13 or 25 respectively. 

3. The Fano surface of the Fermat cubic.

3.1. Elliptic curve configuration of the Fano surface of the Fermat cubic. Let $S$ be the Fano surface of the Fermat cubic $F \hookrightarrow \mathbb{P}^4 = \mathbb{P}(H^0(S, \Omega_S)^*)$:

$$x_1^3 + x_2^3 + x_3^3 + x_4^3 + x_5^3 = 0.$$

Let $e_1, \ldots, e_5 \in H^0(S, \Omega_S)^*$ be the dual basis of bases of $x_1, \ldots, x_5$. Let $\mu_3$ be the group of third roots of unity, let $1 \leq i < j \leq 5$ and let $\beta \in \mu_3$. The point:

$$p_{ij}^\beta = \mathbb{C}(e_i - \beta e_j) \in \mathbb{P}^4$$

is the vertex of a cone on the cubic $F$. We denote by $E_{ij}^\beta \hookrightarrow S$ the elliptic curve that parametrizes the lines on that cone. The complex reflection group $G(3,3,5)$ (in the basis $e_1, \ldots, e_5$ of $H^0(\Omega_S)^*$) is the group generated by the permutation matrices and the matrix with diagonal elements $\alpha, \alpha, \alpha, \alpha, \alpha^2$ (where $\alpha \in \mu_3$ is a primitive root).

We recall the following:

**Proposition 17.** The Fano surface of the Fermat cubic possesses 30 smooth curves of genus 1 numbered:

$$E_{ij}^\beta, 1 \leq i < j \leq 5, \beta \in \mu_3.$$

1) Each smooth genus 1 curve of the Fano surface is isomorphic to the Fermat plane cubic $E := \{x^3 + y^3 + z^3 = 0\}$.

2) Let $E_{ij}^\gamma$ and $E_{st}^\beta$ be two smooth curves of genus 1. We have :

$$E_{ij}^\beta E_{st}^\gamma = \begin{cases} 1 & \text{if } \{i, j\} \cap \{s, t\} = \emptyset \\ -3 & \text{if } E_{ij}^\beta = E_{st}^\gamma \\ 0 & \text{else.} \end{cases}$$

3) Let $E \hookrightarrow S$ be a smooth curve of genus 1. The fibration $\gamma_E$ has 20 sections and contracts 9 elliptic curves.

4) The automorphism group of $S$ is isomorphic to the complex reflection group $G(3,3,5)$.

**Proof.** See [12]. For 4), we use the fact that an automorphism of $F$ must preserve the configuration of the 30 vertices of cones and the 100 lines that contain 3 such vertices. 

3.2. The Albanese variety of the Fano surface of the Fermat cubic. Let $S$ be the Fano surface of the Fermat cubic $F$. Our main aim is to compute the full Néron-Severi group of $S$: this will be done in the next paragraph. We first need to study the Albanese variety $A$ of $S$.
3.2.1. **Construction of fibrations.** In order to know the period lattice of the Albanese variety of $S$, we construct morphisms of the Fano surface onto an elliptic curve and we study their properties.

Let $\vartheta : S \to A$ be a fixed Albanese map. It is an embedding and we consider $S$ as a sub-variety of $A$. 

Recall that if $\tau$ is an automorphism of $S$, we denote by $\tau' \in \text{Aut}(A)$ the unique automorphism such that $\tau' \circ \vartheta = \vartheta \circ \tau$.

By [12], the reflection group $G(3,3,5)$ is the analytic representation of the automorphisms $\tau'$, $\tau \in \text{Aut}(S)$. The ring $\mathbb{Z}[G(3,3,5)] \subset \text{End}(H^0(\Omega_S)^*)$ is then the analytic representation of a sub-ring of endomorphisms of the Abelian variety $A$.

Let us denote by $\Lambda^*_A$ the rank 5 sub-$\mathbb{Z}[\alpha]$-module of $H^0(\Omega_S)$ generated by the forms:

$$x_i - \beta x_j \ (i < j, \beta \in \mu_3).$$

Let $\ell$ be an element of $\Lambda^*_A$. The endomorphism of $H^0(\Omega_S)^* = H^0(S, \Omega_S)^*$ defined by $x \mapsto \ell(x)(e_1 - e_2)$ is an element of $\mathbb{Z}[G(3,3,5)]$. Let us denote by $\Gamma_\ell : A \to E$ the corresponding morphism of Abelian varieties where $E \hookrightarrow A$ is the elliptic curve with tangent space $\mathbb{C}(e_1 - e_2)$. We denote by $\gamma_\ell : S \to E$ the morphism $\Gamma_\ell \circ \vartheta$.

For $1 \leq i < j \leq 5$ and $\beta \in \mu_3$, the space:

$$\mathbb{C}(e_i - \beta e_j) \subset H^0(\Omega_S)^*$$

is the tangent space to the elliptic curve $E_{ij}^\beta \hookrightarrow A$ translated to 0 (Lemma 7).

Let $H_1(A, \mathbb{Z}) \subset H^0(\Omega_S)^*$ be the period lattice of $A$. The elliptic curve $E$ has complex multiplication by the principal ideal domain $\mathbb{Z}[\alpha]$. There exists $c \in \mathbb{C}^*$ such that:

$$H_1(A, \mathbb{Z}) \cap \mathbb{C}(e_1 - e_2) = \mathbb{Z}[\alpha]c(e_1 - e_2).$$

Up to the basis change of $e_1, \ldots, e_5$ by $ce_1, \ldots, ce_5$, we may suppose $c = 1$. Since $G(3,3,5)$ acts transitively on the 30 spaces $\mathbb{C}(e_i - \beta e_j)$, we have:

$$H_1(A, \mathbb{Z}) \cap \mathbb{C}(e_i - \beta e_j) = \mathbb{Z}[\alpha](e_i - \beta e_j).$$

We define the Hermitian product of two forms $\ell, \ell' \in \Lambda^*_A$ by:

$$\langle \ell, \ell' \rangle := \sum_{k=1}^{k=5} \ell(e_k)\overline{\ell'(e_k)},$$

and the norm of $\ell$ by: $||\ell|| = \sqrt{\langle \ell, \ell \rangle}$. Let $C_s$ be an incidence divisor.

**Theorem 18.** Let $\ell$ be a non zero element of $\Lambda^*_A$ and let $F_\ell$ be a fibre of $\gamma_\ell$.  

1) The intersection number of $F_\ell$ and $E_{ij}^\beta \to S$ is equal to:

$$E_{ij}^\beta F_\ell = |\ell(e_i - \beta e_j)|^2.$$
2) We have: $F_\ell C_s = 2 \|\ell\|^2$ and the fibre $F_\ell$ has genus:
$$g(F_\ell) = 1 + 3 \|\ell\|^2 .$$

3) Let $\ell$ and $\ell'$ be two linearly independent elements of $\Lambda_A^* \subset H^0(\Omega_S)$. The morphism $\tau_{\ell,\ell'} = (\gamma_\ell, \gamma_{\ell'}) : S \to E \times E$ has degree equal to $F_\ell F_{\ell'}$ and:
$$F_\ell F_{\ell'} = \|\ell\|^2 \|\ell'\|^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle .$$

Remark 19. The known intersection numbers $F_\ell E_\beta^\ell$ and $E_\beta^\ell C_s$ enables us to write the numerical equivalence class of the fibre $F_\ell$ in the $\mathbb{Z}$-basis given in Theorem 29 below.

Let us prove Theorem 18. The part 1) is a trick:
For $1 \leq i < j \leq 5$ and $\beta \in \mu_3$, we can interpret geometrically the intersection number $E_{ij}^\beta F_\ell$ as the degree of the restriction of $\gamma_\ell$ to $E_{ij}^\beta \hookrightarrow S$. It is also the degree of the restriction of $\Gamma_\ell$ to $E_{ij}^\beta \hookrightarrow A$. As this restriction is the multiplication map by $\ell(e_i - \beta e_j)$, the degree of the morphism $\Gamma_\ell$ on $E_{ij}^\beta$ is equal to $|\ell(e_i - \beta e_j)|^2$. Thus $F_\ell E_{ij}^\beta = |\ell(e_i - \beta e_j)|^2$.

Let us study the genus of $F_\ell$:

**Lemma 20.** The fibre of $F_\ell$ has genus $1 + 3 \|\ell\|^2$ and $C_s F_\ell = 2 \|\ell\|^2$ (where $s$ is a point of $S$ and $C_s$ the incidence divisor).

**Proof.** Let $\Sigma$ be the sum of the 30 elliptic curves on $S$. We have:
$$\Sigma F_\ell = \sum_{i,j,\beta} F_\ell E_{ij}^\beta = \sum_{i,j,\beta} |\ell(e_i - \beta e_j)|^2 = 12 \|\ell\|^2 .$$

As $F_\ell$ is a fibre, we have $F_\ell^2 = 0$ and since $\Sigma$ is twice a canonical divisor [5], we deduce that $F_\ell$ has genus $1 + \frac{1}{2}(0 + \frac{1}{2} F_\ell) = 1 + 3 \|\ell\|^2$.

The divisor $3C_s$ is numerically equivalent to a canonical divisor [5]. Thus: $C_s F_\ell = 2 \|\ell\|^2$. 

We identify the Chern class of a divisor of the Abelian variety $A$ with an alternating form on the tangent space $H^0(\Omega_S)^* \subset A$ [5], Theorem 2.12). Let $\Theta$ be the principal polarization defined in paragraph 1.3.

**Lemma 21.** The Chern Class of $\Theta$ is equal to:
$$a \frac{i}{\sqrt{3}} \sum_{j=1}^5 dx_j \wedge dx_j$$

where $a$ is a scalar and $i^2 = -1$.

**Proof.** Let $H$ be the matrix (in the basis $e_1, \ldots, e_5$) of the Hermitian form associated to $c_1(\Theta)$ (see [5], Lemma 2.17). The automorphism $\tau'$ induced by $\tau \in \text{Aut}(S)$ preserves the polarization $\Theta$ (Lemma [10]). This implies that for all $M = (m_{jk})_{1 \leq j,k \leq 5} \in G(3,3,5)$, we have:
$$^\dagger M H \bar{M} = H$$
(where $\tilde{M}$ is the matrix $\tilde{M} = (\tilde{m}_{jk})_{1 \leq j, k \leq 5}$) and this proves that

$$H = \frac{2}{\sqrt{3}} a I_5$$

where $I_5$ is the identity matrix and $a \in \mathbb{C}$. Hence: $c_1(\Theta) = a \frac{i}{\sqrt{3}} \sum_{j=1}^5 dx_j \wedge d\bar{x}_j$.

Since $H_1(A, \mathbb{Z}) \cap \mathbb{C}(e_1 - e_2) = \mathbb{Z}[\alpha](e_1 - e_2)$, the Néron-Severi group of the elliptic curve $E$ is the $\mathbb{Z}$-module generated by

$$\eta = \frac{i}{\sqrt{3}} dz \wedge d\bar{z}$$

where $z$ is the coordinate on the space $\mathbb{C}(e_1 - e_2)$.

Let $\ell = a_1 x_1 + \cdots + a_5 x_5$ be an element of $\Lambda_A^*$. The pull back of the form $\eta$ by the morphism $\Gamma_\ell : A \to E$ is:

$$\Gamma_\ell^* \eta = \frac{i}{\sqrt{3}} \ell \wedge d\ell.$$

The form $\Gamma_\ell^* \eta$ is the Chern class of the divisor $\Gamma_\ell^* 0$ and $\gamma_\ell^* \eta = \partial^* \Gamma_\ell^* \eta$ is the Chern class of the divisor $F_\ell$.

**Lemma 22.** Let $\ell$ and $\ell'$ be two elements of $\Lambda_A^*$, then:

$$F_\ell F_{\ell'} = \|\ell\|^2 \|\ell'\|^2 - \langle \ell, \ell' \rangle \langle \ell', \ell \rangle$$

and $c_1(\Theta) = \frac{i}{\sqrt{3}} \sum_{i=1}^5 dx_i \wedge d\bar{x}_i$.

**Proof.** By the Theorem 11, $\partial^* c_1(\Theta)$ is the Chern class of the divisor $2C_s$ ($s \in S$) and:

$$2C_s F_\ell = \partial^* c_1(\Theta) \partial^* \Gamma_\ell^* \eta = \int_A \frac{1}{3!} \wedge^4 c_1(\Theta) \wedge \Gamma_\ell^* \eta$$

hence:

$$2C_s F_\ell = \left(\frac{i}{\sqrt{3}}\right)^5 \int_A \left(\sum a_j dx_j \wedge (\sum \bar{a}_j d\bar{x}_j) \wedge 4a^4 \sum_{1 \leq k \leq 5} (\wedge_{j \neq k} (dx_j \wedge d\bar{x}_j))\right)$$

and:

$$2C_s F_\ell = \left(\frac{4}{a} \sum_{k=1}^{k=5} a_k \bar{a}_k\right) \frac{1}{5!} \int_A \wedge^5 c_1(\Theta).$$

Since $\Theta$ is a principal polarization, we have $\frac{1}{5!} \int_A \wedge^5 c_1(\Theta) = 1$, hence: $2C_s F_\ell = \frac{4}{a} \|\ell\|^2$. We have seen in Lemma 20 that $C_s F_\ell = 2 \|\ell\|^2$. Thus we deduce that $a = 1$.

By Theorem 11 for $\ell = a_1 x_1 + \cdots + a_5 x_5$ and $\ell' = b_1 x_1 + \cdots + b_5 x_5 \in \Lambda_A^*$,

$$F_\ell F_{\ell'} = \int_A \frac{1}{3!} \wedge^3 c_1(\Theta) \wedge \Gamma_\ell^* \eta \wedge \Gamma_{\ell'}^* \eta.$$
Since
\[ \frac{1}{3!} \left( \frac{i}{\sqrt{3}} \right)^2 \lambda \cdot \lambda \cdot \Omega \wedge \lambda \wedge \Omega \wedge (\lambda \cdot 3 \cdot c_1(\Theta)) = \sum_{k \neq j} a_k b_k b_j - a_k b_j b_k \frac{1}{5!} \Lambda^5 c_1(\Theta), \]
the result follows. \( \square \)

Let \( \ell \) and \( \ell' \) be two linearly independent elements of \( \Lambda_A^* \). The degree of the morphism \( \tau_{\ell, \ell'} = (\gamma_{\ell}, \gamma_{\ell'}) \) is equal to \( F_{\ell} F_{\ell'} \) because \( \tau_{\ell, \ell'}^*(\mathbb{E} \times \{0\}) = F_{\ell'} \in \text{NS}(S), \tau_{\ell, \ell'}^*(\{0\} \times \mathbb{E}) = F_{\ell} \in \text{NS}(S) \) and the intersection number of the divisors \( \{0\} \times \mathbb{E} \) and \( \mathbb{E} \times \{0\} \) is equal to 1.

This completes the proof of Theorem 18. \( \square \)

3.2.2. Period lattice of \( A \). We compute here the period lattice of the Albanese variety \( A \) in the basis \( e_1, \ldots, e_5 \).

**Theorem 23.** The lattice \( H_1(A, \mathbb{Z}) \) is equal to:
\[ \mathbb{Z}[\alpha](e_1 - e_5) + \mathbb{Z}[\alpha](e_2 - e_5) + \mathbb{Z}[\alpha](e_3 - e_5) + \mathbb{Z}[\alpha](e_4 - e_5) + \mathbb{Z}[\alpha](\alpha^2 e_1 + \alpha^2 e_2 + \alpha e_3 + \alpha e_4 + e_5). \]

The variety \( A \) is isomorphic to \( \mathbb{E}^4 \times \mathbb{E}' \) where \( \mathbb{E} = \mathbb{C}/\mathbb{Z}[\alpha] \) and \( \mathbb{E}' = \mathbb{C}/\mathbb{Z}[3\alpha] \). The image of the morphism \( \vartheta^* : \text{NS}(A) \rightarrow \text{NS}(S) \) is the sub-lattice of rank 25 and discriminant \( 2^2 3^1 18 \) generated by the divisors:
\[ F_{i, j} = C_5 - E_{ij}^3, \ 1 \leq i < j \leq 5, \beta \in \mu_3 \text{ and } \sum_{i<j} E_{ij}^1. \]

**Proof.** The group \( G(3, 3, 5) \) acts on \( H_1(A, \mathbb{Z}) \) and:
\[ H_1(A, \mathbb{Z}) \cap \mathbb{C}(e_i - \beta e_j) = \mathbb{Z}[\alpha](e_i - \beta e_j), \]
hence \( H_1(A, \mathbb{Z}) \) contains the lattice \( \Lambda_0 = \sum_{i\leq j, \beta \in \mu_3} \mathbb{Z}[\alpha](e_i - \beta e_j). \)
For \( 1 \leq i < j \leq 5, \beta \in \mu_3 \), the differential of \( \Gamma_{x_i, x_j}(\beta) \) is the morphism \( x \rightarrow (x_i - \beta x_j)(e_1 - e_2) \). Thus:
\[ \forall \lambda = (\lambda_1, \ldots, \lambda_5) \in H_1(A, \mathbb{Z}), \lambda_i - \beta \lambda_j \in \mathbb{Z}[\alpha]. \]

Let us define
\[ \Lambda = \{ x = (x_1, \ldots, x_5) \in \mathbb{C}^5 / x_i - \beta x_j \in \mathbb{Z}[\alpha], 1 \leq i < j \leq 5, \beta \in \mu_3 \}. \]
This lattice \( \Lambda \) contains \( H_1(A, \mathbb{Z}) \) and is equal to
\[ \mathbb{Z}[\alpha] e_1 \oplus \cdots \oplus \mathbb{Z}[\alpha] e_4 \oplus \frac{1}{\alpha - 1} \mathbb{Z}[\alpha] w, \]
where \( w = e_1 + \cdots + e_5 \). Let \( \phi : \Lambda \rightarrow \Lambda / \Lambda_0 \) be the quotient map. The group \( \Lambda / \Lambda_0 \) is isomorphic to \( (\mathbb{Z}/3\mathbb{Z})^2 \) and contains 6 sub-groups. The reciprocal images of these groups are the lattices
\[
\begin{align*}
\Lambda_0 &= \phi^{-1}(0) \\
\Lambda_1 &= \Lambda_0 + \frac{1}{\alpha - 1} Z w \\
\Lambda_\alpha &= \Lambda_0 + \frac{\alpha}{\alpha - 1} Z w \\
\Lambda_\lambda &= \Lambda_0 + \frac{2}{\alpha - 1} Z w \\
\Lambda_\mu &= \Lambda_0 + \frac{3}{\alpha - 1} Z w \\
\Lambda_\nu &= \Lambda_0 + \frac{4}{\alpha - 1} Z w \\
\Lambda_a &= \Lambda_0 + \frac{5}{\alpha - 1} Z w.
\end{align*}
\]
These are the 6 lattices $\Lambda'$ which verify $\Lambda_0 \subset \Lambda' \subset \Lambda$, thus the lattice $H_1(A,\mathbb{Z})$ is equal to one of these.

Let $\omega$ be the alternating form $\omega = \frac{i}{\sqrt{3}} \sum_{k=1}^{5} dx_k \wedge d\bar{x}_k$ (see Lemma 22). We have

$$\frac{1}{\alpha-1}w, \frac{\alpha}{\alpha-1}w \in \Lambda.$$ 

However

$$\omega\left(\frac{1}{\alpha-1}w, \frac{\alpha}{\alpha-1}w\right) = -\frac{5}{3}$$

is not an integer, hence $\Lambda$ is different from $H_1(A,\mathbb{Z})$.

The Pfaffian of $c_1(\Theta)$ relative to $H_1(A,\mathbb{Z})$ is equal to 1 because $\Theta$ is a principal polarization. The Pfaffian of $\omega$ relative to the lattice $\Lambda_0$ is equal to 9, hence $\Lambda_0$ is different from $H_1(A,\mathbb{Z})$.

We have $\Lambda_{1-\alpha} = \oplus \mathbb{Z}[\alpha]e_i$ and the principally polarized Abelian variety $(\mathbb{C}^5/\Lambda_{1-\alpha},\omega)$ is isomorphic to a product of Jacobians. Since $(A,c_1(\Theta))$ cannot be isomorphic to a product of Jacobians (5, 0.12), $H_1(A,\mathbb{Z}) \neq \Lambda_{1-\alpha}$.

The lattice $\Lambda_{\alpha}$ is equal to:

$$\mathbb{Z}[\alpha](e_1 - e_5) + \mathbb{Z}[\alpha](e_2 - e_5) + \mathbb{Z}[\alpha](e_3 - e_5) + \mathbb{Z}[\alpha](e_4 - e_5) + \frac{\alpha^2}{\alpha-\alpha} \mathbb{Z}[\alpha](\alpha^2 e_1 + \alpha^2 e_2 + \alpha e_3 + \alpha e_4 + e_5).$$

The lattices $\Lambda_1$ and $\Lambda_\alpha$ depend upon the choice of $\alpha$ such that $\alpha^2 + \alpha + 1 = 0$, hence the lattice $H_1(A,\mathbb{Z})$ is equal to $\Lambda_{\alpha^2}$.

Let be

$$u_1 = e_1 - e_2, u_2 = e_2 - e_3, u_3 = e_3 - e_4, u_4 = e_4 - e_5,$$

$$u_5 = \frac{\alpha^2}{\alpha-\alpha} (\alpha^2 e_1 + \alpha^2 e_2 + \alpha e_3 + \alpha e_4 + e_5)$$

The Hermitian form $H' = \frac{2}{\sqrt{3}} I_5$ in the basis $u_1, \ldots, u_5$ defines a principal polarization of $A$. Let $\text{End}^s(A)$ be the group of symmetrical morphisms for the Rosati involution associated to $H'$. An endomorphism of $A$ can be represented by a size 5 matrix $M$ in the basis $u_1, \ldots, u_5$. The symmetrical endomorphisms satisfy $\hat{t}' M H' = H' \hat{M}$ i.e. $\hat{t}' A = \hat{A}$. As we know $H_1(A,\mathbb{Z})$, we can easily compute a basis $B$ of $\text{End}^s(A)$.

By [3], Proposition 5.2.1 and Remark 5.2.2., the map:

$$\phi_{H'} : \text{End}^s(A) \rightarrow \text{NS}(A)$$

$$M \mapsto \Im(\hat{t}' M H')$$

is an isomorphism of groups. We obtain the base of the Néron-Severi group of $A$ by taking the image by $\phi_{H'}$ of the base $B$. Then we get the image of the morphism $\theta^* : \text{NS}(A) \rightarrow \text{NS}(S)$.

\[\square\]

Remark 24. By Theorem 23 the variety $A$ is biregular to $E^4 \times E'$, but by [5] (0.12), this cannot be an isomorphism of principally polarized Abelian varieties.
3.2.3. Study of some fibrations, remarks. Let $X$ be a smooth surface, $C$ a smooth curve, $\gamma : X \to C$ a fibration with connected fibres. A point of $X$ is called a critical point of $\gamma$ if it is a zero of the differential:

$$d\gamma : T_X \to \gamma^* T_C.$$ 

A fibre of $\gamma$ is singular at a point if and only if this point is a critical point (Chapter III, section 8).

Let us suppose that $C$ is an elliptic curve. The critical points of $\gamma$ are then the zeros of the form $\gamma^* \omega \in H^0(X, \Omega_X)$ where $\omega$ is a generator of the trivial sheaf $\Omega_C$.

Let us assume that the cotangent sheaf of $X$ is generated by global sections. There are morphisms:

$$\mathbb{P}(T_X) \xrightarrow{\psi} \mathbb{P}(H^0(X, \Omega_X)^*)$$

where $\pi$ is the natural projection and the morphism $\psi$, called the cotangent map [13], is defined by $\pi_{*}\psi^*\mathcal{O}(1) = \Omega_X$.

A point $x$ of $X$ is a critical point of $\gamma$ if and only if the line $L_x = \psi(\pi^{-1}(x))$ lies in the hyperplane

$$\{ \gamma^* \omega = 0 \} \hookrightarrow \mathbb{P}(H^0(X, \Omega_X)^*).$$

The initial motivation for studying Fano surfaces is the fact that for those surfaces, the cotangent map is known: it is the projection map of the universal family of lines. The example of Fano surfaces gives an illustration that the knowledge of the image of the cotangent map is powerful for the study of a surface.

Let $S$ be the Fano surface of the Fermat cubic $F$.

Notation 25. For $1 \leq i < j \leq 5$, we define $B_{ij} = B_{ji} = \sum_{\beta \in \mu_3} E_{ij}^\beta$.

Let $1 \leq i \leq 5$ and $j < r < s < t$ be such that $\{i, j, r, s, t\} = \{1, 2, 3, 4, 5\}$. We define $\ell_i = (1 - \alpha)x_i \in \Lambda^*_A$.

Corollary 26. The fibration $\gamma_{\ell_i} : S \to \mathbb{E}$ is stable, has connected fibres of genus 10 and its only singular fibres are:

$$B_{jr} + B_{st}, B_{js} + B_{rt}, B_{jt} + B_{rs}.$$ 

The 27 intersection points of the curves $E_{jr}^\beta$ and $E_{st}^\gamma$ ($\beta, \gamma \in \mu_3$) constitute the set of critical points of this fibration.

Proof. By Theorem [15 1], a fibre of $\gamma_{\ell_i}$ has genus $1 + 3|1 - \alpha|^2 = 10$.

Let $\beta \in \mu_3, h, k \in \{j, r, s, t\}, h < k$. The form $\ell_i$ is zero on the space $\mathbb{C}(e_h - \beta e_k)$, hence $E_{hk}^\beta$ is contracted to a point and is a component of the fibre of $\gamma_{\ell_i}$.

The divisor $D_t = B_{jr} + B_{st}$ is connected, satisfies $(B_{jr} + B_{st})^2 = 0$ and has genus 10. Its irreducible components are contracted by $\gamma_{\ell_i}$. Hence, it is a
fibre and $\gamma_{\ell_1}$ has connected fibres. Likewise, the divisors $D_2 = B_{j_2} + B_{r_2}$ and $D_3 = B_{j_3} + B_{r_3}$ are fibres of $\gamma_{\ell_1}$.

The 27 lines inside the intersection of the Fermat cubic and the hyperplane \{\ell_i = 0\} correspond to the 27 intersection points of the curves $E_{ij}^d$ and $E_{lm}$ such that: $h < k, l < m$ and \{\,i, h, k, l, m\} = \{1, 2, 3, 4, 5\}. These 27 critical points lie in the fibres $D_1, D_2, D_3$. These 3 fibres are thus the only singular fibres of $\gamma_{\ell_1}$.

The singularities of $D_1, D_2$ and $D_3$ are double ordinary and the surface possesses no rational curve, the fibration is thus stable. □

\[\begin{align*}
\bullet \text{ Let } (a_1, \ldots, a_5) &\in \mu_3^5 \text{ be such that } a_1 \cdots a_5 = 1 \text{ and let } \\
\ell &\in (1 - \alpha)(a_1x_1 + \cdots + a_5x_5) \in \Lambda_A^*.
\end{align*}\]

**Corollary 27.** The divisor

\[D = \sum_{1 \leq i < j \leq 5} E_{ij}^{a_i/a_j}\]

is a singular fibre of the Stein factorization of $\gamma_\ell$.

**Proof.** The connected divisor $D$ satisfies $D^2 = 0$, has genus 16 and by Theorem [18] the irreducible components of $D$ are contracted by $\gamma_{\ell_1}$.

Let $w \in H^0(\Omega_S)^*$ be $w = e_1 + \cdots + e_5$. We have

\[H^1(A, \mathbb{Z}) \cap \mathbb{C}w = \frac{a^2}{1 - \alpha} \mathbb{Z}[3\alpha] w.\]

The morphism $x \rightarrow (a_1x_1 + \cdots + a_5x_5)w \in \text{End}(H^0(\Omega_S)^*)$ is an element of $\mathbb{Z}[G(3, 3, 5)]$. It is the differential of a morphism $\Gamma'_\ell : A \rightarrow \mathbb{E}'$ where $\mathbb{E}' = (\mathbb{C}/\frac{a^2}{1 - \alpha} \mathbb{Z}[3\alpha])w$.

The morphism $\Gamma'_\ell$ has a factorization by $\Gamma'_\ell$ and a degree 3 isogeny between $\mathbb{E}'$ and $\mathbb{E}$. The divisor $D$ is a connected fibre of the morphism $\vartheta \circ \Gamma'_\ell$, the Stein factorization of $\gamma_{\ell_1}$. □

\[\begin{align*}
\bullet \text{ The curve } E_{ij}^{\beta_2} &\text{ is the closed set of critical points of the fibration } \\
\gamma_{(1 - \alpha)(x_1, \beta x_2)},
\end{align*}\]

This fibration has only one singular fiber and this fiber is not reduced.

\[\begin{align*}
\bullet \text{ We can construct an infinite number of fibrations with 9 sections and which contract 9 elliptic curves. Let us take } a \in \mathbb{Z}[\alpha] \text{ and } \\
\ell &\in (1 - \alpha)(x_1, \beta x_2) \in \Lambda_A^*.\n\end{align*}\]

**Corollary 28.** The 9 curves $E_{13}^\beta, E_{14}^\beta$ and $E_{15}^\beta$ ($\beta \in \mu_3$) are sections of $\gamma_{\ell_1}$.

The 9 curves $E_{34}^\beta, E_{35}^\beta$ and $E_{45}^\beta$ ($\beta \in \mu_3$) are contracted.

**Proof.** This follows from Theorem [18] and the fact that

\[\begin{align*}
|\ell(e_1 - \beta e_3)| = |\ell(e_1 - \beta e_4)| = |\ell(e_1 - \beta e_5)| = 1, & (\beta \in \mu_3) \\
|\ell(e_3 - \beta e_4)| = |\ell(e_3 - \beta e_5)| = |\ell(e_4 - \beta e_5)| = 0.
\end{align*}\]

As $F_\ell E_{12}^1 = 1$, the fibration $\gamma_{\ell_1}$ has connected fibres. □
3.3. The Néron-Severi group of the Fano surface of the Fermat cubic.

Let $S$ be the Fano surface of the Fermat cubic and $\text{NS}(S)$ the Néron-Severi group of $S$.

**Theorem 29.** The Néron-Severi group of $S$ has rank $25 = \dim H^1(S, \Omega_S)$. The 30 elliptic curves generate an index 3 sub-lattice of $\text{NS}(S)$. The group $\text{NS}(S)$ is generated by these 30 curves and the class of an incidence divisor $C_s$ ($s \in S$), it has discriminant $3^{18}$.

The relations between the 30 elliptic curves in $\text{NS}(S)$ are generated by the relations:

$$B_{jr} + B_{st} = B_{js} + B_{rt} = B_{jt} + B_{rs},$$

for indices such that $1 \leq j < r < s < t \leq 5$.

**Proof.** By Theorem [17] we know the intersection matrix $I$ of the 30 elliptic curves. As we can verify, the matrix $I$ has rank 25. The intersection matrix of the 25 elliptic curves different to the 5 curves $E_\alpha^{13}, E_\alpha^{15}, E_\alpha^{24}, E_\alpha^{34}, E_\alpha^{45}$ has determinant equal to $3^{20}$ and these 25 curves form a $\mathbb{Z}$-basis of the lattice generated by the 30 elliptic curves.

By Theorem [23] the image of the morphism

$$\text{NS}(A) \xrightarrow{\vartheta^*} \text{NS}(S)$$

is a lattice of discriminant $2^33^{18}$ generated by the class of $C_s - E_{ij}^\beta$ and by $\sum_{1 \leq i < j \leq 5} E_{ij}$. Theorem [14] implies that $\text{NS}(S)$ is generated by these classes and the class of an incidence divisor $C_s$. This lattice is also generated by the classes of the 30 elliptic curves and $C_s$. □

We remark that Corollary [26] gives a geometric interpretation of the numerical equivalence relations of Theorem [29].

**References**

[1] Barth W., Hulek K., Peters C., Van De Ven A., "Compact complex surfaces", volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 2nd edition, Springer-Verlag, Berlin, (2004).

[2] Beauville A., "Les singularités du diviseur $\Theta$ de la jacobienne intermédiaire de la cubique dans $\mathbb{P}^4$", Algebraic threefolds (Proc. Varenna 1981), LNM 947, Springer-Verlag, (1982), 190-208.

[3] Birkenhake C., Lange H., "Complex Abelian varieties", volume 302 of Grundlehren der Mathematischen Wissenschaften, 2nd edition, Springer-Verlag (2004).

[4] Bombieri E., Swinnerton-Dyer H.P.F., "On the local Zeta function of a cubic threefold", Ann. Scuola Norm. Sup. Pisa (3) 21 (1967), 1-29.

[5] Clemens H., Griffiths P., "The intermediate Jacobian of the cubic threefold", Annals of Math. 95 (1972), 281-356.

[6] Collino A., "The fundamental group of a Fano surface I, II", Algebraic threefolds, (Varennia, 1981), LNM 947, 209-218, 219-220, LNM 947, Springer, Berlin, (1982).

[7] Gherardelli F., "Un’osservazione sulla varietà cubica di $\mathbb{P}^4$", Rend. Sem. Mat. Fis. Milano, 37 (1967), 157-160.
[8] Griffiths P., Harris J., "Principles of algebraic geometry", Wiley, (1978).
[9] Mori S., "The endomorphism rings of some Abelian varieties", Japan. J. Math. 2 (1976), no. 1, 109-130.
[10] Murre J.P., "Algebraic equivalence modulo rational equivalence on a cubic threefold", Compositio Math., Vol 25, (1972), 161-206.
[11] Nikulin V., "On Kummer surfaces", Math. USSR Izvestija 9 (1975), 261-275.
[12] Roulleau X., "Elliptic curve configurations on Fano surfaces", Manus. Math. 129 (2009), 381-399.
[13] Roulleau X., "L’application cotangente des surfaces de type général", Geom. Dedicata 142 (2009), 151-171.
[14] Tyurin A.N., "On the Fano surface of a nonsingular cubic in $\mathbb{P}^4$", Math. Ussr Izv. 4 (1970), 1207-1214.
[15] Tyurin A.N., "The geometry of the Fano surface of a nonsingular cubic $F \subset \mathbb{P}^4$ and Torelli Theorems for Fano surfaces and cubics", Math. Ussr Izv. 5 (1971), 517-546.

Xavier Roulleau,
Graduate School of Mathematical Sciences,
University of Tokyo,
3-8-1 Komaba, Meguro, Tokyo,
153-8914 Japan