Effects of depression on parameters of cell-mediated immunity in patients with digestive tract cancers

Ke-Jun Nan, Yong-Chang Wei, Fu-Ling Zhou, Chun-Li Li, Chen-Guang Sui, Ling-Yun Hui, Cheng-Ge Gao

AIM: To evaluate the effects of depression on parameters of cell-mediated immunity in patients with cancers of the digestive tract.

METHODS: One hundred and eight adult patients of both sexes with cancers of the digestive tract admitted between March 2001 and February 2002 in the Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University were randomly enrolled in the study. The Zung self-rating depression scale (SDS), Zung self-rating anxiety scale (SAS), numeric rating scale (NRS) and social support rating scale (SSRS) were employed to evaluate the degree of depression and their contributing factors. In terms of their SDS index scores, the patients were categorized into depression group (SDS≥50) and non-depression group (SDS<50). Immunological parameters such as T-lymphocyte subsets and natural killer (NK) cell activities in peripheral blood were determined and compared between the two groups of patients.

RESULTS: The SDS index was from 33.8 to 66.2 in the 108 cases, 50% of these patients had a SDS index more than 50. Cubic curve estimation showed that the depression was positively correlated with anxiety and negatively with social support. Furthermore, the depression correlated with the tumor type, which manifested in a descending order as stomach, gallbladder, pancreas, intestine, esophagus, duodenum and rectum, according to their correlativity. Stepwise regression analysis suggested that hyposexuality, disspitment, agitation, palpitation, low CD8 and anxiety were the significant factors contributing more to depression. More severe anxiety (49.7±7.5 vs 45.3±6.9, P<0.05), pain (6.5±2.8 vs 4.6±3.2, P<0.05), poor social support (6.8±2.0 vs 7.6±2.1, P<0.05), as well as decline of lymphocyte count (0.33±0.09 vs 0.39±0.87, P<0.05) and CD8 (0.26±0.11 vs 0.29±0.11, P<0.05) were noted in the depression group compared with those of the non-depression patients. However, fewer obvious changes in CD8/CD4 ratio and other immunological parameters were found between the two groups.

CONCLUSION: Depression occurs with a high incidence in patients with cancers of the digestive tract, which probably is not the sole factor leading to the impairment of immunological functions in these cases. However, comprehensive measures including psychological support should be taken in order to improve the immunological function, quality of life and clinical prognosis of these patients.

INTRODUCTION
Cancers of the digestive tract continue to be one of the most common malignancies in human worldwide[11-14], in which gastric, esophagal, colorectal and liver cancers are among the top ten malignant tumors in China and account for 63% of total cancer mortality[11]. Depressive symptoms such as pervasive senses of hopeless, helpless, valueless, despair, guilty, punishment and self-deprecatory thinking are often found in cancer patients. When severely enough, it may cause negative effects on the antitumor therapy, immunological function, prognosis, as well as the quality of life[15,16]. However, up to the present, much attention has been paid to the effects of depression on patients with several kinds of malignancies[17-20] except that of the digestive tract. Besides, despite mounting evidence that psychiatric depression heightens risk for cancerous morbidity and mortality, little is known about the detailed mechanisms responsible for this association, which is no doubt of importance in the improvement of therapy for cancer patients.

In the present study, we therefore investigated the effects of depression on cell-mediated immunity and its contributing factors in 108 patients with cancers of the digestive tract by SDS[21] and other questionnaires, as well as immunological parameters including T-lymphocyte subsets and natural killer (NK) cell activities in peripheral blood, in an attempt to provide evidence for the necessities of psychological therapy of these cancer patients.

MATERIALS AND METHODS
Patients
One hundred and eight adult patients of both sexes with cancers of the digestive tract including 24 esophageal, 36 gastric, 4 duodenal, 4 gallbladder, 4 pancreatic, 28 colonic and 8 rectal cancer cases admitted between March 2001 and February 2002 in the Department of Medical Oncology, First Affiliated Hospital of Xi’an Jiaotong University were randomly enrolled in the study. The medical records of these patients were reviewed by investigators and their characteristics such as the family history of cancer and main symptoms were abstracted. Subjects with a history of abnormal mentality or cognitive disorders were excluded from the investigation. All the cancer cases were finally verified by histopathological examinations.
and clinically diagnosed as stage I in 14, stage II in 34, stage III in 28 and stage IV in 32 according to TNM classification and the Union International Center of Cancer (UICC) system. The average disease course of the patients was 14±11 months and the average age was 58±9 years with the education background of 7 being graduated from primary school, 25 from junior high school and 76 from senior high school or above. Their performance status (PS) was defined by Eastern Cooperative Oncology Group (ECOG) and social information such as marital and employment status was obtained through an interview. The patients were categorized into depression group and non-depression group in terms of their SDS index scores. The study protocol was in accordance with the guideline for clinical research and approved by the Ethical and Research Committee of the hospital.

**Psychological measurements**

**Zung self-rating depression scale (SDS)** The Zung SDS system harbors 20 items of self-evaluation measurements for depressive symptoms[21]. In the study, the patients were asked to rate each of the items regarding how they felt during the preceding week by a 4-point Likert scale with the 4 representing the most unfavorable response. After the scores of 10 reversely-graded items were adjusted in line with that of the sequentially-scored items, a raw score that was turned out from the total value of 20 items was further converted into a depression-judging variable termed as SDS index, based on which the cases were categorized into 2 levels of psychological conditions. Level 1, SDS index below 50, was considered not significant psychopathologically. Level 2, SDS index equal to or above 50, was suggested the presence of depression. It was not meant for SDS index to offer a strict diagnostic guideline but rather denote levels of depression in symptomatology that might be of clinical significance. Overall, the SDS index was shown to be relatively valid with a high internal consistency that was exhibited by an alpha coefficient of 0.84[22].

**Zung Self-rating anxiety scale (SAS)** Just like Zung SDS system, Zung SAS also has 20 items to be scored with the 4-point Likert scale except that there are 5 reversely-scored items, in which the 4 represents the most unfavorable response[23]. After the scores of 5 reversely-graded items were adjusted in line with that of the sequentially-scored items, a raw score that was turned out from the total value of 20 items was further converted into an anxiety-judging variable termed as SAS index, based on which the cases were categorized into 2 levels of psychological conditions. Level 1, SAS index below 50, was considered not significant psychopathologically. Level 2, SAS index equal to or above 50, was suggested the presence of anxiety.

**Numeric rating scale (NRS)** NRS consisting of four questions covering pain, nausea, insomnia and appetite was evaluated by using a 0-10 scale, with 0 meaning without symptoms and 10 indicating the situation being as bad as imagined, which was found to be a simple and valid pain measurement in some disease states[24]. In this study, the patients were asked to circle the number that best described the symptom at its worst during a one-week period.

**Social support rating scale (SSRS)** SSRS was employed to evaluate the levels of objective, subjective and total social support, as well as the utility of this support[25].

**Study protocols**

Two days before the investigation, each item for the psychological measurements was explained by specialized doctors in order to make the patients understand and complete the questionnaires correctly by themselves in a quiet condition to exclude any possible influence. If it could not be completed by the patients for some reasons as sickness or poor education, family members or physicians in charge were prescribed to do it instead.

On the experimental day, 3.5 ml of peripheral blood was drawn from each patient and anticoagulated by ethylenediaminetetra-acetic acid (EDTA), in which 50 μl of blood was quantified with the Sysmes KX-21 blood counter (Japan) for the measurement of white blood cells, erythrocytes, thrombocytes, and fractions of lymphocytes, granulocytes and monocytes. The other 3.0 ml of blood sample was used to determine natural killer cells (CD8+) and T lymphocyte subsets with the EPICS ELITE flow cytometer (American) by individuals blinded to the clinical data of the patients in our immunology laboratory.

**Statistical analysis**

Experimental data were expressed as x̄±s. Comparisons between experimental groups were performed by t-test to examine the variables with normal distribution and by Mann-Whitney U test to assess the other kinds of numerical values. Demographic variables were analyzed by descriptive statistics to evaluate the clinical and sociodemographic characteristics of the studied samples. Curve estimation, stepwise multiple or univariate linear regression and Pearson correlations were adopted to assess the correlation of depression with its possible contributing factors. A P value less than 0.05 was considered statistically significant. All statistical procedures were performed with statistical package of SPSS for social science (2000).

**RESULTS**

**Incidence of depression in cancer patients**

Questionnaires answered by the enrolled patients were correctly filled in according to the experimental protocol. The scores of SDS 4 grade evaluation are listed in Table 1. In the present study, SDS index was approximately a normal distribution in the 108 cases, ranging from 33.8 to 66.2 and averaging at 50.4±8.8. Fifty percent of the patients had a SDS index score more than 50. Similarly, SAS index of all the patients ranged from 35.0 to 62.0 and averaged at 46.9±7.7, 46.3% of the cases had a SAS index score above 50, 29.6% of the enrolled patients had scores above 50 simultaneously for both SDS and SAS indexes. The social support score was between 28 and 56 and averaged at 43.8±7.2. Curve estimation showed that the depression was positively correlated with anxiety and negatively with social support. Furthermore, the depression correlated with the tumor type, which manifested in a descending order as stomach, gallbladder, pancreas, intestine, esophagus, duodenum and rectum, according to their correlativity.

**Factors contributing to depression**

Many factors were associated with depression such as cancer pain, anxiety, poor economic status, tumor type, anorexia (X5: I eat as much as I used to), hyposexuality (X6: I enjoy looking at, talking to and being with attractive men/women), dispiritment (X1: I feel downhearted, blue and sad), agitation (X13: I am restless and can not keep still), palpitation (X9: My heart beats faster than usual), fatigue without apparent reasons (X10: I get tired for no reason), CD8+, etc. However, step-wise regression analysis suggested that hyposexuality, dispiritment, agitation, palpitation, CD8 and anxiety were the significant factors contributing to depression (Table 2).

**Effects of depression on cell-mediated immunity**

More severe anxiety and poor social support were noted in the depression group compared with those of the non-depression patients. As for the parameter changes of cell-mediated immunity in peripheral blood, an increase of granulocyte count and a decline in T-lymphocyte subsets (CD4, CD8 and CD4/CD8), erythrocyte and monocyte counts were observed in depression cases, but did not reach a significant level. Lymphocyte count
and CD56 were significantly decreased in the depression group compared with those of the non-depression patients (P<0.05) as shown in Table 3. However, fewer changes in CD3/CD4 ratio and other immunological parameters were found between the two groups.

**Table 3 Multiple factors between depression and nondepression groups (X±s)**

| Parameters                   | Depressive state | Non-depressive state | P     |
|------------------------------|------------------|----------------------|-------|
| Anxiety                      | 49.7±5.7         | 45.3±6.9             | 0.003 |
| Pain                         | 6.5±2.0          | 4.6±3.2              | 0.025 |
| Social support               | 44.0±6.8         | 44.6±7.7             | 0.670 |
| Objective support            | 11.9±3.0         | 12.5±3.0             | 0.360 |
| Subjective support           | 24.8±3.8         | 24.5±4.4             | 0.630 |
| Utilization of support       | 6.8±2.0          | 7.6±2.1              | 0.043 |
| Cells in peripheral blood    |                  |                      |       |
| Erythrocyte (10^12/L)        | 3.4±1.2          | 3.8±1.8              | 0.460 |
| Lymphocyte (0.00)            | 0.33±0.09        | 0.39±0.87            | 0.032 |
| Granulocyte (0.00)           | 0.61±0.12        | 0.56±0.88            | 0.240 |
| Monocyte (0.00)              | 0.04±0.01        | 0.06±0.05            | 0.900 |
| Thrombocyte (10^9/L)         | 137.5±12.5       | 167.7±13.2           | 0.020 |
| T lymphocyte subsets         |                  |                      |       |
| CD3 (0.00)                   | 0.53±0.11        | 0.59±0.11            | 0.070 |
| CD4 (0.00)                   | 0.27±0.07        | 0.30±0.11            | 0.440 |
| CD8 (0.00)                   | 0.32±0.10        | 0.35±0.10            | 0.240 |
| Natural killer               |                  |                      |       |
| CD56 (0.00)                  | 0.26±0.11        | 0.29±0.11            | 0.041 |

**DISCUSSION**

Depression is a psychotic or neurotic condition characterized by inability to concentrate, insomnia, and feelings of extreme sadness, dejection and hopelessness, which commonly occur in cancer patients. It has been estimated that the incidence of severe depression in these patients is about 3%-50% depending on tumor site, stage, assessment methods, and a lot of other contributing factors, with an average overall incidence of approximately 20%[18,26,27]. However, depression remains an often unrecognised source of suffering among cancer patients, which is partially because of the lack of recognition by clinical physicians. Under such circumstances, particularly when the depression was confused with symptoms resulted from the underlying disease, clinicians were usually inclined to dismiss even severe depression on the assumption that these “symptoms” are understandable[27]. In fact, untreated depression in these patients might cause more frequent clinic visits, higher medical costs, longer hospital stay, as well as incompliance with therapeutic measures, poor quality of life, bad prognosis, and even accidental death[25,28,29].

In the present study, we investigated the effects of depression on the parameters of cell-mediated immunity and its contributing factors in patients with cancers of the digestive tract. To our knowledge, it is one of the few clinical reports in recent years concerning depression in patients with digestive tract cancers. It was revealed that depression occurred in 50% of the cases, which was higher than the average total incidence among all tumor patients. Besides, there was also a higher percentage of cases with both SDS and SAS scores equal to or more than 50 in our study, accounting for 29.6% of the investigated patients. The exact reason for this has not yet been fully elucidated, it
is probably because the gut function relates so closely to people’s daily life that a malignant disorder in the digestive tract might affect the psychological status of patients more easily compared with tumors of the other sites.

Lots of factors are closely related to the depression of cancer patients including physiological, immunological and psychosocial impacts. Although this correlation has been established as a whole in tumor cases,[33,34] however, little is known about the contributing factors to the depression in patients with cancer of the digestive tract according to the new bio-psycho-social model. Our study revealed that despite many factors such as cancer pain, poor economic status, tumor type, anorexia (X5), fatigue without apparent reasons (X10) might play a role, hyposexuality (X6), dispiritment (X1), agitation (X13), palpitation (X9), CD8 and anxiety were the significant factors contributing to the depression of these patients by stepwise regression analysis.

Impairment of immunologic functions has been noted to be one of the major negative effects exerted by depression in cancer patients[35]. Some immunological parameters such as T lymphocyte subsets and natural killer (NK) cells have been believed to be the major effectual mechanism against tumors[36-41]. For instance, the growth of malignancies was inhibited by activated tumor-specific T cells[36,37] and the depressed activity of NK cells was probably related to tumor enlargement and dissemination[38,39]. Papadopoulos and his associates[40] reported that the depletion of cytotoxic T cell (CD8) and NK cell (CD56) in advanced papillary ovarian cancer might in part explain the poor clinical outcomes of those patients. However, in our study, although significantly reduced NK cells (CD56) and thrombocyte count were found in the depressive patients, T lymphocyte subset, CD4/CD8 ratio and other immunological parameters did not exhibit significant alterations between the two groups, suggesting that depression was probably not a necessarily factor leading to impairment of immune functions in patients with cancers of the digestive tract.

In summary, our study reveals that the incidence of depression is as high as 50% in patients with cancers of the digestive tract. Hyposexuality, dispiritment, agitation, palpitation, low CD8 and anxiety are the significant factors contributing to the depression. Although significantly reduced NK cells (CD56) and thrombocyte count are found in the depressive patients, T lymphocyte subset, CD4/CD8 ratio and other immunological parameters do not exhibit significant alterations between the depressive and non-depressive patients. Comprehensive measures including psycho-logical support therefore should be taken in order to improve their immunological functions, quality of life and clinical prognosis of cancer patients.

REFERENCES

1. Newnham A, Quinn MJ, Babp P, Kang JY, Majeed A. Trends in oesophageal and gastric cancer incidence, mortality and survival in England and Wales 1971-1998/1999. Aliment Pharmacol Ther 2003; 17: 655-664
2. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: I. Results for the global burden of disease 2000. Cancer 2002; 88: 321-327
3. Ke L. Mortality and incidence trends from esophageal cancer in selected geographic areas of China from 1970-1990. Int J Cancer 2002; 102: 271-274
4. Le Vu B, de Vathaire F, de Vathaire CC, Paolafite J, Roda L, Soubiran G, Lhoumeau F, Laudon F. Cancer incidence in French Polynesia 1985-1995. Trop Med Int Health 2000; 5: 722-731
5. Mohandas KM, Jagannath P. Epidemiology of digestive tract cancers in India. VI. Projected burden in the new millennium and the need for primary prevention. Indian J Gastroenterol 2000; 19: 74-78
6. Zhang YL, Zhang ZS, Wu BP, Zhou DY. Early diagnosis for colorectal cancer in China. World J Gastroenterol 2002; 8: 21-25
7. Shen ZY, Shen WY, Chen MH, Shen J, Cai WJ, Yi Z. Nitric oxide and calcium ions in apoptotic esophageal cancer cells induced by arsenite. World J Gastroenterol 2002; 8: 40-43
8. Gu ZP, Wang YJ, Li JG, Zhou YA. VEGF-165 antisense RNA suppresses oncogenic properties of human esophageal squamous cell carcinoma. World J Gastroenterol 2002; 8: 44-48
9. Chen K, Cai J, Liu XY, Ma XY, Yao KY, Zheng S. Nested case-control study on the risk factors of colorectal cancer. World J Gastroenterol 2003; 9: 103-109
10. Tsukuma A, Jikji W, Oshima A. Time-trends in cancer incidence and mortality in Japan. Gan To Kagaku Ryoho 2003; 1: 137-141
11. Sun X, Mu R, Zhou Y, Dai X, Qiao Y, Zhang S, Huang X, Sun J, Li L, Lu F. 1990-1992 mortality of stomach cancer in China. Zhonghua Zhongliu Zazhi 2002; 24: 4-8
12. Zhang S, Li L, Lu F. Mortality of primary liver cancer in China from 1990 through 1992. Zhonghua Zhongliu Zazhi 1999; 21: 245-249
13. Zheng S, Liu XY, Ding KF, Wang LB, Qiu PL, Ding XF, Shen YZ, Shen GF, Sun QR, Li WD, Dong Q, Zhang SZ. Reduction of the incidence and mortality of rectal cancer by polypectomy: a prospective cohort study in Haining County. World J Gastroenterol 2002; 8: 489-492
14. Wan J, Zhang QZ, Zhu C, Wang MW, Zhao DH, Fu YH, Zhang JP, Wang YH, Wu BY. Colonoscopic screening and follow-up for colorectal cancer in the elderly. World J Gastroenterol 2002; 8: 267-269
15. Murr C, Widner B, Sperner-Unterberger B, Ledochowski M, Schubert C, Fuchs D. Immune reaction links disease progression in cancer patients with depression. Med Hypotheses 2000; 54: 137-140
16. Skarstei J, Aaes N, Fossa SD, Skovlund E, Dahl AA. Anxiety and depression in cancer patients: relation between the Hospital Anxiety and Depression Scale and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire. Psychosom Res 2000; 49: 27-34
17. Sarna L, Padilla G, Holmes C, Tashkin D, Brehl ML, Evangelista L. Quality of life of long-term survivors of non-small-cell lung cancer. J Clin Oncol 2002; 20: 2002-2029
18. Hopwood P, Stephens RJ. Depression in patients with lung cancer: prevalence and risk factors derived from quality-of-life data. Clin Oncol 2003; 10: 893-903
19. Gallagher J, Parle M, Cairns D. A appraisal and psychological distress six months after diagnosis of breast cancer. Br J Health Psychol 2002; 7(3): 365-376
20. Hjøris J, Andersen EW, Keiding N, Mouridsen HT, Mortensen PB, Jorgensen T. Depression as a prognostic factor for breast cancer mortality. Psychosomatics 2003; 44: 24-30
21. Passik SD, Lundberg JC, Rosenfeld B, Kirsh KL, Donaghy K, Theobald D, Lundberg E, Dugan W. Factor analysis of the Zung Self-Rating Depression Scale in a large ambulatory oncology sample. Psychosomatics 2000; 41: 121-127
22. Dugan W, McDonald MV, Passik SD, Rosenfeld BD, Theobald D, Edgerton S. Use of the Zung Self-Rating Depression Scale in cancer patients: feasibility as a screening tool. Psychooncology 1998; 7: 483-493
23. Zung WW. A rating instrument for anxiety disorders. Psychosomatics 1971; 12: 371-379
24. Paice JA, Cohen FL. Validity of a verbally administered numeric rating scale to measure cancer pain intensity. Cancer Nurs 1997; 20: 89-93
25. Hu MY, Zhou CJ, Xiao SY. Psychological health level and related psychosocial factors of nurses in Changsha. Zhonghua Hu Li Za Zhi 1997; 32: 192-196
26. Chochinov HM. Depression in cancer patients. Lancet 2003; 1: 499-505
27. Goldman LS, Nielsen NH, Champion HC. Awareness, diagnosis, and treatment of depression. J Gen Intern Med 1999; 14: 569-580
28. DiMatteo MR, Lepper HS, Crogan TW. Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med 2000; 160: 2101-2107
29. Watson M, Haviland JS, Greer S, Davidson J, Bliss JM. Influence of psychological response on survival in breast cancer: a population-based cohort study. Lancet 1999; 354: 1331-1336
30. Breitbart W, Rosenfeld B, Pesin H, Kaim M, Funesti-Esch J, Galietta M, Nelson CJ, Brescia R. Depression, hopelessness, and desire for hastened death in terminally ill patients with cancer. JAMA 2000; 284: 2907-2911

31. Akechi T, Okamura H, Nishiwaki Y, Uchitomi Y. Predictive factors for suicidal ideation in patients with unresectable lung carcinoma. Cancer 2002; 95: 1085-1093

32. Nie J, Liu S, Di L. Cancer pain and its influence on cancer patients' quality of life. Zhonghua Zhongliu Zazhi 2000; 22: 432-434

33. Lissoni P, Cangemi P, Pirato D, Roselli MG, Rovelli F, Brivio F, Malugani F, Maestroni GJ, Conti A, Laudon M, Malysheva O, Giani L. A review on cancer-psychospiritual status interactions. Neuroendocrinol Lett 2001; 22: 175-180

34. Schussler G, Schubert C. The influence of psychosocial factors on the immune system (psychoneuroimmunology) and their role for the incidence and progression of cancer. Z Psychosom Med Psychother 2001; 47: 6-41

35. Mafune K, Tanaka Y. Influence of multimodality therapy on the cellular immunity of patients with esophageal cancer. Ann Surg Oncol 2000; 7: 609-616

36. Dhodapkar MV, Young JW, Chapman PB, Cox WI, Fonteneau JF, Ami gorena S, Houghton AN, Steinman RM, Bhardwaj N. Paucity of functional T-cell memory to melanoma antigens in healthy donors and melanoma patients. Clin Cancer Res 2000; 6: 4831-4838

37. Ochsenbein AF, Sierro S, Odermatt B, Percin M, Karrer U, Hermans J, Henmi S, Hengartner H, Zinkernagel RM. Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 2001; 411: 1058-1064

38. Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B. Tumor-specific CD8+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J Immunol 2000; 165: 6047-6055

39. Ferreira C, Bartholt T, Garcia S, Zamoyska R, Stockinger B. Differential survival of naive CD4 and CD8 T cells. J Immunol 2000; 165: 3689-3694

40. Echchakir H, Bagot M, Dorothee G, Martinvalet D, LeGouvello S, Bourniell L, Chouaib S, Benussan A, Mami-Chouaib F. Cutaneous T cell lymphoma reactive CD8+ cytotoxic T lymphocyte d correspondent a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. J Invest Dermatol 2000; 115: 74-80

41. Wolf AM, Wolf D, Steurer M, Gastl G, Gunstiljus E, Grubeck-Loebenstein B. Increase of Regulatory T Cells in the Peripheral Blood of Cancer Patients. Clin Cancer Res 2003; 9: 606-612

42. Papadopoulos N, Kotsini A, Cheva A, Jivannakis T, Mavris J, Alexiadis G, Lambropoulou M, Vavetsis S, Tamiolakis D. Gains and losses of CD8, CD20 and CD56 expression in tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from acetic fluid and lymphocytes from tumor draining lymph nodes in serous papillary ovarian carcinoma patients. Eur J Gynaecol Oncol 2003; 24: 533-536

43. Zhai SH, Liu JB, Zhu P, Wang YH. CD8, CD20, CD56 and HLA-ABC expressions in liver cirrhosis and hepatocarcinoma. Shijie Huaren Xiaohua Zazhi 2000; 8: 292-295

44. Pardoll D. T cells take aim at cancer. Proc Natl Acad Sci U S A 2002; 99: 15840-15842

45. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seppa CA, Rogers-Frenger L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850-854

46. Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K. Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol 2001; 96: 574-578

Edited by Zhu LH and Wang XL