The asymptotics of a generalised Beta function

R. B. Paris
Division of Computing and Mathematics,
University of Abertay Dundee, Dundee DD1 1HG, UK

Abstract

We consider the generalised Beta function introduced by Chaudhry et al. [J. Comp. Appl. Math. 78 (1997) 19–32] defined by

\[B(x, y; p) = \int_0^1 t^{x-1}(1-t)^{y-1} \exp\left[-\frac{p}{4t(1-t)}\right] dt, \]

where \(\Re(p) > 0 \) and the parameters \(x \) and \(y \) are arbitrary complex numbers. The asymptotic behaviour of \(B(x, y; p) \) is obtained when (i) \(p \) large, with \(x \) and \(y \) fixed, (ii) \(x \) and \(p \) large, (iii) \(x, y \) and \(p \) large and (iv) either \(x \) or \(y \) large, with \(p \) finite. Numerical results are given to illustrate the accuracy of the formulas obtained.

Mathematics Subject Classification: 30E15, 33B15, 34E05, 41A60

Keywords: Generalised Beta function, asymptotic expansion, Mellin-Barnes integral, method of steepest descents

1. Introduction

In [1], Chaudhry et al. introduced a generalised beta function defined by the Euler-type integral

\[B(x, y; p) = \int_0^1 t^{x-1}(1-t)^{y-1} \exp\left[-\frac{p}{4t(1-t)}\right] dt, \quad (1.1) \]

where \(\Re(p) > 0 \) and the parameters \(x \) and \(y \) are arbitrary complex numbers. When \(p = 0 \), it is clear that when \(\Re(x) > 0 \) and \(\Re(y) > 0 \) the generalised function reduces to the well-known beta function \(B(x, y) \) of classical analysis. The justification for defining this extension of the beta function is given in [1] and an application of its use in defining extensions of the Gauss and confluent hypergeometric functions is discussed in [2]. It is evident from the definition in (1.1) that \(B(x, y; p) \) satisfies the symmetry property

\[B(x, y; p) = B(y, x; p). \quad (1.2) \]

A list of useful properties of \(B(x, y; p) \) is detailed by Miller in [4], where it is established that \(B(x, y; p) \) may be expanded as an infinite series of Whittaker functions or Laguerre polynomials; see (A.1). He also obtained a Mellin-Barnes integral representation for

\footnote{The factor 4 is introduced in the exponential for presentational convenience.}
\[B(x, y; p), \text{ which we exploit in Section 2, and expressed } B(x, x \pm n; p) \text{ and } B(1 \pm n, 1; p), \]

where \(n \) is an integer, as finite sums of Whittaker functions.

Our aim in this note is to derive asymptotic expansions for \(B(x, y; p) \) for large \(x, y \) and \(p \). We consider (i) \(|p| \to \infty \) in \(|\arg p| < \frac{1}{2}\pi \), with \(x \) and \(y \) fixed, (ii) \(x \) and \(p \) large, (iii) \(x, y \) and \(p \) large and (iv) either \(x \) or \(y \) large, with \(p \) finite. The expansion for large \(p \) is obtained using a Mellin-Barnes integral representation for \(p \) functions; see \([4, \text{Eq. (1.6)}]\).

The integral may be evaluated by the well-known Cahen-Mellin integral given by (see, for example, \([8, \text{p. 90}]\))

\[
\int_{\arg z \to \pi} \frac{\Gamma(s + \alpha)z^{-s}ds}{\Gamma(\alpha)} = z^\alpha e^{-z} \quad (|\arg z| < \frac{1}{2}\pi, \ c > -\Re(\alpha))
\]

2. The expansion of \(B(x, y; p) \) for large \(p \) with \(x, y \) finite

We start with the Mellin-Barnes integral representation given by Miller \([4]\)

\[
B(x, y; p) = 2^{1-x-y-\frac{1}{2}} \frac{1}{2\pi i} \int_{c-\infty i}^{c+\infty i} \frac{\Gamma(s) \Gamma(x + s) \Gamma(y + s)}{\Gamma(\frac{1}{2} x + \frac{1}{2} y + s) \Gamma(\frac{1}{2} x + \frac{1}{2} y + \frac{1}{2} + s)} p^{-s} ds \quad (2.1)
\]

valid in \(|\arg p| < \frac{1}{2}\pi \), where \(c > \max\{0, -\Re(x), -\Re(y)\} \) so that the integration path lies to the right of all the poles of the integrand situated at \(s = -k, s = -x - k \) and \(s = -y - k, k = 0, 1, 2, \ldots \). Displacement of the integration path to the left over the poles followed by evaluation of the residues (assuming that no two members of the set \(\{0, x, y\} \) differ by an integer – thereby avoiding the presence of higher-order poles) yields the result that \(B(x, y; p) \) can be expressed as the sum of three \(\hypergeom{2}{1}{\frac{1}{2} p} \) hypergeometric functions; see \([4, \text{Eq. (1.6)}]\).

Since there are no poles in the half-plane \(\Re(s) > c \) it follows that displacement of the integration path to the right can produce no algebraic-type asymptotic expansion; see \([8, \text{§5.4}]\). We can therefore displace the path as far to the right as we please; on such a displaced path, which we denote by \(L \), the variable \(|s| \) is everywhere large. The ratio of gamma functions in the integrand in (2.1) may then be expanded as an inverse factorial expansion given by \([8, \text{p. 39, Lemma 2.2}]\)

\[
\frac{\Gamma(s) \Gamma(x + s) \Gamma(y + s)}{\Gamma(\frac{1}{2} x + \frac{1}{2} y + s) \Gamma(\frac{1}{2} x + \frac{1}{2} y + \frac{1}{2} + s)} = \sum_{j=0}^{M-1} (-)^j c_j \Gamma(s - j - \frac{1}{2}) + \rho_M(s) \Gamma(s - M - \frac{1}{2}),
\]

where \(M \) is a positive integer and \(\rho_M(s) = O(1) \) as \(|s| \to \infty \) in \(|\arg s| < \pi \). The coefficients \(c_j \equiv c_j(x, y) \) are discussed below where the leading coefficient \(c_0 = 1 \).

Substitution of the above inverse factorial expansion into the integral (2.1) then produces

\[
B(x, y; p) = 2^{1-x-y-\frac{1}{2}} \frac{1}{2\pi i} \int_{L} \Gamma(s - j - \frac{1}{2}) p^{-s} ds + R_M,
\]

where

\[
R_M = \frac{1}{2\pi i} \int_{L} \rho_M(s) \Gamma(s - M - \frac{1}{2}) p^{-s} ds.
\]

The integral may be evaluated by the well-known Cahen-Mellin integral given by (see, for example, \([8, \text{p. 90}]\))

\[
\frac{1}{2\pi i} \int_{c-\infty i}^{c+\infty i} \Gamma(s + \alpha)z^{-s}ds = z^\alpha e^{-z} \quad (|\arg z| < \frac{1}{2}\pi, \ c > -\Re(\alpha))
\]
to yield

\[B(x, y; p) = 2^{1-x-y} \pi^{\frac{1}{2}} \left\{ p^{-\frac{1}{2}} e^{-p} \sum_{j=0}^{M-1} (-)^j c_j p^{-j} + R_M \right\}. \]

A bound for the remainder \(R_M \) has been considered in [8, p. 71, Lemma 2.7], from which it follows that \(R_M = O(p^{-M-\frac{1}{2}} e^{-p}) \) as \(|p| \to \infty \) in \(|\arg p| < \frac{1}{2} \pi \).

Hence we obtain the asymptotic expansion

\[B(x, y; p) = 2^{1-x-y} \pi^{\frac{1}{2}} p^{-\frac{x+y}{2}} e^{-p} \left\{ \sum_{j=0}^{M-1} (-)^j c_j p^{-j} + O(p^{-M}) \right\} \quad (2.2) \]

valid as \(|p| \to \infty \) in the sector \(|\arg p| < \frac{1}{2} \pi \). The expansion of \(B(x, y; p) \) for large \(p \) is seen to be exponentially small in \(|\arg p| < \frac{1}{2} \pi \); this is a standard result when there are no poles on the right of the path in (2.1) and routine path displacement does not produce any useful asymptotic information [8, §5.4].

The coefficients \(c_j \) for \(j \geq 1 \) can be generated by the algorithm described in [8, §2.2.4]. It is found that

\[c_1 = \frac{1}{4} (1 + x + y + 2xy - x^2 - y^2), \]
\[c_2 = \frac{1}{32} (9 + 6(2 + xy)(x + y + xy) - (7 + 4xy)(x^2 + y^2) - 6(x^3 + y^3) + x^4 + y^4 + 14xy), \]

which are symmetrical in \(x \) and \(y \) as required by (1.2). A closed-form representation for \(c_j \) is derived in the appendix, where it is shown that \(c_j \) can be expressed in terms of a terminating \(3F_2(1) \) hypergeometric function given by

\[c_j \equiv c_j(x, y) = \frac{(1/2)j}{j!} \gamma \left[-j, \frac{1}{2} y - \frac{1}{2} x, \frac{1}{2} y - \frac{1}{2} x + \frac{1}{2}; 1 \right], \quad (2.3) \]

where \((a)_j = \Gamma(a+j)/\Gamma(a) \) is the Pochhammer symbol. When \(x = y \), this reduces to the simpler expression

\[c_j(x, x) = \frac{(1/2)j(x + 1/2)_j}{j!}. \quad (2.4) \]

We remark that the asymptotic expansion of \(B(x, y; p) \) for \(p \to \infty \) could also have been obtained by application of the method of steepest descents, which we shall employ in the subsequent sections. See also the appendix for a different approach.

3. The expansion of \(B(x, y; p) \) for large \(x \) and \(p \) with \(y \) finite

We consider the expansion of \(B(x, y; p) \) for large \(x \) and \(p \), with \(y \) finite, when it is supposed that \(p = ax \), where \(a > 0 \) and \(|\arg x| < \frac{1}{2} \pi \). By the symmetry property (1.2), the same result will also cover the case of large \(y \) and \(p \), with \(x \) finite. From (1.1), we have

\[B(x, y; ax) = \int_0^1 f(t) e^{-x \psi(t)} dt \quad (|\arg x| < \frac{1}{2} \pi), \quad (3.1) \]

where

\[\psi(t) = \frac{a}{4t(1-t)} - \log t, \quad f(t) = \frac{(1-t)^y}{t}. \]

Saddle points of the exponential factor are given by \(\psi'(t) = 0 \); that is, at the roots of the cubic

\[t(1-t)^2 + \frac{1}{4} a(1-2t) = 0. \quad (3.2) \]
We label the three saddles \(t_0, t_1\) and \(t_2\). All three saddles lie on the real axis with \(t_0\) situated in the closed interval \([0,1]\), with \(t_1 > 1\) and \(t_2 < 0\). The \(t\)-plane is cut along \((-\infty,0]\). Paths of steepest descent through the saddles \(t_r\) \((r = 0,1)\) are given by

\[
\Im\{e^{i\theta}(\psi(t) - \psi(t_r))\} = 0, \quad \theta = \arg x;
\]

these paths terminate at \(t = 0\) and \(t = 1\) in the directions \(|\theta - \phi| < \frac{1}{2}\pi\) and \(\frac{1}{2}\pi < \theta - \phi < \frac{3}{2}\pi\), respectively, where \(\phi = \arg t\).

When \(x > 0\), the integration path coincides with the steepest descent path over the saddle \(t_0\); for complex \(x\) in the sector \(|\arg x| < \frac{1}{2}\pi\), the steepest descent path through \(t_0\) becomes deformed but still terminates at \(t = 0\) and \(t = 1\); see Fig. 1. Application of the saddle-point method then yields the leading behaviour

\[
B(x,y;ax) \sim \left[\frac{2\pi}{x\psi''(t_0)} \right] f(t_0) e^{-x\psi(t_0)}
\]

\[
= \sqrt{\frac{2\pi}{x\psi''(t_0)}} t_0^{x-1}(1-t_0)^{y-1} \exp\left[\frac{-ax}{4t_0(1-t_0)} \right]
\]

as \(|x| \to \infty\) in the sector \(|\arg x| < \frac{1}{2}\pi\), where some routine algebra combined with (3.2) shows that

\[
\psi''(t_0) = \frac{1-3t_0+4t_0^2}{t_0^2(1-t_0)(2t_0-1)}.
\]

We remark that the saddle \(t_0 \equiv t_0(a)\) has to be computed for a particular value of the parameter \(a\), either directly from (3.2) or as a cubic root.

The asymptotic expansion of \(B(x,y;ax)\) is given by [7, p. 47]

\[
B(x,y;ax) \sim 2e^{-x\psi(t_0)} \sum_{n=0}^{\infty} \frac{C_{2n}\Gamma(n+\frac{1}{2})}{x^{n+\frac{3}{2}}} \quad (|x| \to \infty, \ |\arg x| < \frac{1}{2}\pi).
\]
The coefficients C_n can be obtained by an inversion process and are listed for $n \leq 8$ in [3, p. 119] and for $n \leq 4$ in [9, p. 13]. Alternatively, they can be obtained by an expansion process to yield Wojdylo’s formula [10] given by

$$C_n = \frac{1}{2a_0^{(n+1)/2}} \sum_{k=0}^{n} b_{n-k} \sum_{j=0}^{k} \frac{(-)^j(jn + \frac{j}{2})_j}{j! a_0^j} B_{kj}; \quad (3.5)$$

see also [5, 6]. Here $B_{kj} \equiv B_{kj}(a_1, a_2, \ldots, a_{k-j+1})$ are the partial ordinary Bell polynomials generated by the recursion

$$B_{kj} = \sum_{r=1}^{k-j+1} a_r B_{k-r,j-1}, \quad B_{k0} = \delta_{k0},$$

where δ_{mn} is the Kronecker symbol, and the coefficients a_r and b_r appear in the expansions

$$\psi(t) - \psi(t_0) = \sum_{r=0}^{\infty} a_r (t - t_0)^{r+2}, \quad f(t) = \sum_{r=0}^{\infty} b_r (t - t_0)^r \quad (3.6)$$

valid in a neighbourhood of the saddle $t = t_0$.

In numerical computations we choose a value of the parameter a and compute the saddle t_0 from (3.2). With a value of y, Mathematica is used to determine the coefficients a_r and b_r for $0 \leq r \leq n_0$. The coefficients C_{2n} can then be calculated for $0 \leq n \leq n_0$ from (3.5). We display the computed values of C_{2n} for different values of a and y in Table 1. In Table 2, the values of the absolute relative error in the computation of $B(x, y; ax)$ from (3.4) are presented as a function of the truncation index n when $x = 100$.

n	$a = 1, \ y = 1$	$a = \frac{1}{2}, \ y = \frac{3}{2}$	$a = \frac{3}{2}, \ y = \frac{5}{2}$	$a = 2, \ y = \frac{1}{2}$
0	$+0.2668661228\,$	$+0.1364219142\,$	$+0.2036093538\,$	$+0.3909054941\,$
1	$+0.0982652355\,$	$+0.2683883846\,$	$+0.0762869817\,$	$-0.0309094064\,$
2	$-0.0636566665\,$	$-0.1085963949\,$	$-0.0456489054\,$	$-0.0039290092\,$
3	$+0.018602666\,$	$+0.0151339630\,$	$+0.0137423943\,$	$+0.0024209801\,$
4	$-0.0039253710\,$	$-0.0003383888\,$	$-0.0026770977\,$	$-0.0005115807\,$
5	$+0.0012059654\,$	$+0.0004533741\,$	$+0.0003423270\,$	$+0.0009299402\,$

4. The expansion of $B(x, y; p)$ for large x, y and p

We consider the expansion of $B(x, y; p)$ for large x, y and p, when it is supposed that $p = ax$ and $y = bx$, where $a > 0$, $b > 0$ and $|\arg x| < \frac{1}{2}\pi$. From (1.1), we have

$$B(x, y; p) = \int_0^1 f(t)e^{-x\psi(t)} dt \quad (|\arg x| < \frac{1}{2}\pi), \quad (4.1)$$

*For example, this generates the values $B_{41} = a_4$, $B_{42} = a_4^2 + 2a_1a_3$, $B_{43} = 3a_2^2a_2$ and $B_{44} = a_4^2$.

[2]
Saddle points of the exponential factor are given by the roots of the cubic
\[t(1 - t)\{1 - (b + 1)t\} + \frac{1}{4}a(1 - 2t) = 0. \]
Routine examination of this cubic shows that, when \(a > 0, b > 0 \), all roots are real, with one root greater than 1, one in the interval \([0, 1]\) and one negative root. The distribution of the saddles is thus similar to that in Section 3, where we continue to label the saddle situated in \([0, 1]\) by \(t_0 \). The topology of the path of steepest descent through the saddle \(t_0 \), given by \(\Im\{e^{i\theta}(\psi(t) - \psi(t_0))\} = 0 \) where \(\theta = \arg x \), is also similar to that depicted in Fig. 1.

Accordingly, the expansion of \(B(x, y; p) \) when \(p = ax \) and \(y = bx \), with \(a > 0, b > 0 \), is given by
\[B(x, bx; ax) \sim 2e^{-x\psi(t_0)} \sum_{n=0}^{\infty} \frac{C_{2n}\Gamma(n + \frac{1}{2})}{x^{n+\frac{1}{2}}} \ \ (|x| \to \infty, |\arg x| < \frac{1}{2}\pi), \]
where the coefficients \(C_{2n} \) can be determined from (3.5) when the coefficients \(a_r \) and \(b_r \) in (3.6) are evaluated from the definitions of \(\psi(t) \) and \(f(t) \) in (4.2).

The leading behaviour is
\[B(x, bx; ax) \sim \sqrt{\frac{2\pi}{x^{b}(t_0)}} f(t_0)e^{-x\psi(t_0)} \]
\[= \sqrt{\frac{2\pi}{x^{b}(t_0)}} t_0^{x-1}(1 - t_0)^{b-1} \exp \left[\frac{-ax}{4t_0(1-t_0)} \right] \]
(4.5)
as \(|x| \to \infty \) in the sector \(|\arg x| < \frac{1}{2}\pi \), where
\[\psi''(t_0) = \frac{1}{t_0^2(1-t_0)(2t_0-1)} \left(1 - \frac{bt_0}{1-t_0} \right) + \frac{b}{t_0(1-t_0)^2} \]
and \(t_0 \equiv t_0(a, b) \) is the root of (4.3) situated in \(t \in [0, 1] \).

We note that when \(b = 1 \) we have the result [1, 4]
\[B(x, x; p) = 2^{1-2x} \pi^{\frac{1}{2}} p^{(x-1)/2} e^{-\frac{x}{2p}} W_{-\frac{1}{2}, \frac{1}{2}, x} (p) \]
in terms of the Whittaker function \(W_{\kappa, \mu}(z) \); see (A.1).

Table 2: Values of the absolute relative error in \(B(x, y; ax) \) when \(x = 100 \) for different truncation index.

n	\(a = 1, y = 1 \)	\(a = \frac{1}{2}, y = \frac{3}{2} \)	\(a = \frac{3}{2}, y = \frac{5}{4} \)	\(a = 2, y = \frac{1}{2} \)
0	1.838 × 10^{-3}	9.682 × 10^{-3}	1.853 × 10^{-3}	3.963 × 10^{-4}
1	1.770 × 10^{-5}	5.892 × 10^{-5}	1.666 × 10^{-5}	7.426 × 10^{-7}
2	1.295 × 10^{-7}	2.058 × 10^{-7}	1.255 × 10^{-7}	1.153 × 10^{-8}
3	9.506 × 10^{-10}	1.517 × 10^{-10}	8.562 × 10^{-10}	8.568 × 10^{-11}
4	1.295 × 10^{-11}	9.526 × 10^{-12}	5.011 × 10^{-12}	2.332 × 10^{-13}
5	3.688 × 10^{-12}	1.933 × 10^{-13}	5.472 × 10^{-14}	6.917 × 10^{-15}
5. The behaviour of $B(x, y; p)$ for large x and finite y and p

In this final section, we examine the behaviour of $B(x, y; p)$ for large complex $x = |x|e^{i\theta}$, with $0 \leq \theta \leq \pi$, when y and $p > 0$ are finite. The situation when $-\pi \leq \theta \leq 0$ is analogous and, in the case of real y, $B(x, y; p)$ assumes conjugate values. This case has been discussed in [2, Appendix], but is repeated (with minor corrections) here for completeness. By the symmetry property (1.2), the same result will also cover the case of large y, with x and p finite.

From (1.1), we have upon interchanging x and y (by virtue of (1.2))

$$B(x, y; p) = \int_0^1 f(t)e^{-|x|\psi(t)}dt,$$

(5.1)

where

$$\psi(t) = \frac{\alpha}{t(1-t)} - e^{i\theta}\log(1-t), \quad f(t) = \frac{ty^{-1}}{1-t}, \quad \alpha := \frac{p}{4|x|}.$$

(5.2)

Because $p > 0$ is a fixed parameter, the integral (5.1) is valid for arbitrary complex values of x and y. Saddle points of the exponential factor arise when $\psi'(t) = 0$; that is, when

$$t^2(t-1) + \alpha e^{-i\theta}(1-2t) = 0.$$

(5.3)

We label the three saddles t_0, t_1 and t_2 as in Section 3. When $\theta = 0$, all three saddles are situated on the real axis with $t_0 \in [0, 1]$ and $t_1 > 1$, $t_2 < 1$. As θ increases, the saddles t_0 and t_2 rotate about the origin and t_1 rotates about the point $t = 1$. The result of this rotation is that, when $\theta = \pi$, t_0 and t_2 become a complex conjugate pair near the origin and t_1 is situated in the interval $[0, 1]$; see Fig. 2.

Figure 2: The steepest descent and ascent paths through the saddles t_0 and t_1 (heavy dots) when $\alpha = 1/3$ and (a) $\theta = 0.25\pi$, (b) $\theta = \theta_0 = 0.65595\pi$, (c) $\theta = 0.69\pi$, (d) $\theta = \theta_1 = 0.71782\pi$, (e) $\theta = 0.80\pi$ and (f) $\theta = \pi$. The arrows indicate the integration path. The steepest ascent paths spiral round $t = 1$ out to infinity passing onto adjacent Riemann surfaces. The saddle t_2 is not shown. The t-plane is cut along $[1, \infty)$.

Asymptotics of a Generalised Beta Function

When $\theta = 0$, the integration path coincides with the steepest descent path passing over the saddle t_0 given approximately by
\[t_0 \simeq \alpha \frac{1}{2} - \frac{1}{2} \alpha \quad (x \to \infty). \]

Then, with the estimates
\[x\psi(t_0) \simeq (px)^{1/2} + \frac{3}{8}p, \quad \psi''(t_0) \simeq 2\alpha^{-\frac{1}{2}}, \]
we find by application of the saddle-point method the leading behaviour
\[B(x, y; p) \sim \sqrt{\frac{\pi}{x}} \left(\frac{p}{4x} \right)^{\frac{1}{2}} \exp \left[-\left(px \right)^{1/2} - \frac{3}{8}p \right] \quad (\theta = 0, \ x \to +\infty). \quad (5.4) \]

When $\theta = \pi$, we find from (5.3) that the saddle t_1 close to the point $t = 1$ is given by
\[t_1 \simeq 1 - \alpha + \alpha^3 \quad (|x| \to \infty) \]

and
\[|x| \psi(t_1) \simeq |x| + \frac{1}{4}p - |x| \log \alpha, \quad \psi''(t_1) \simeq \alpha^{-2}. \]

The integration path again coincides with the steepest descent path through t_1, and so we obtain the behaviour
\[B(x, y; p) \sim i \sqrt{\frac{\pi}{x}} \left(\frac{p}{4x} \right)^{x} e^{\pi x} \exp \left[x - \frac{1}{4}p \right] \quad (\theta = \pi, \ x \to -\infty) \]
\[= \sqrt{\frac{2\pi}{|x|}} \left(\frac{p}{4|x|} \right)^{|x|} \exp \left[|x| - \frac{1}{4}p \right]. \quad (5.5) \]

The leading terms in (5.4) and (5.5) were given in [2, Appendix].

A detailed study of the topology of the steepest descent paths through the saddles t_0 and t_1 when $0 \leq \theta \leq \pi$ is summarised in Fig. 2 for the particular case $\alpha = \frac{1}{3}$. The t-plane is cut along $[1, \infty)$ and paths of steepest descent either terminate at $t = 0$ (with $|\arg t| < \frac{1}{2} \pi$), $t = 1$ (with $|\arg(1 - t)| < \frac{1}{2} \pi$) or at infinity. Paths that approach infinity spiral round the point $t = 1$ passing onto adjacent Riemann surfaces. The figures reveal that there are two critical values of the phase θ, where the saddles t_0 and t_1 become connected (via a Stokes phenomenon). We denote these values by $\theta_0 \equiv \theta_0(\alpha)$ and $\theta_1 \equiv \theta_1(\alpha)$, where α is defined in (5.2). The values of these critical angles are tabulated in Table 3 for different α.

When $0 \leq \theta < \theta_0(\alpha)$, the integration path can be deformed to coincide with the steepest descent path passing over t_0, so that the leading behaviour in (5.4) applies in this sector. When $\theta_0(\alpha) < \theta < \theta_1(\alpha)$, the integration path is deformed to pass over both saddles t_0 and t_1, where each steepest descent path spirals out to infinity. Finally, when $\theta_1(\alpha) < \theta \leq \pi$, the integration path is deformed to pass over only the saddle t_1.

Based on these considerations and on the approximation of the saddles $t_0 \simeq \alpha^{1/2} - \frac{1}{2} \alpha'$, $t_1 \simeq 1 + \alpha' - \alpha'^3$, where $\alpha' = p/(4x)$, the leading behaviour of $B(x, y; p)$ is found to be
\[B(x, y; p) \sim \begin{cases} J_0 & 0 \leq \theta < \theta_1(\alpha) \\ J_0 - J_1 & \theta_1(\alpha) < \theta < \theta_2(\alpha) \\ J_1 & \theta_2(\alpha) < \theta \leq \pi \end{cases} \quad (5.6) \]

The saddle t_2 does not enter into our consideration as it plays no role in the asymptotic evaluation of $B(x, y; p)$ when $0 \leq \theta \leq \pi$.

\[\]
the expansion (2.2). Miller [4, Eq. (2.3a)] has shown that

\[B \text{ convergent series of Whittaker functions in the form} \]

In this appendix we derive a closed-form expression for the coefficients... of (5.1). The parameter values chosen correspond to...\] of (5.1) the saddle \(t_0 \) is dominant, whereas when \(\theta > \theta^*(\alpha) \) the saddle \(t_1 \) is dominant in the large-\(|x|\) limit.

In Table 4 we present the results of numerical calculations using the asymptotic behaviour of \(B(x,y;p) \) in (5.6) compared to the values obtained by numerical integration of (5.1). The parameter values chosen correspond to \(\alpha = 0.01 \) and the saddles \(t_0 \) and \(t_1 \) are computed from (5.3), with the leading forms \(J_0 \) and \(J_1 \) computed from (5.7) and (5.8).

It is seen from Table 3 that the exchange of dominance between the two contributory... \(\theta \sim 0.60\pi \).

Appendix: A closed-form expression for the coefficients \(c_j \)

In this appendix we derive a closed-form expression for the coefficients \(c_j \) appearing in the expansion (2.2). Miller [4, Eq. (2.3a)] has shown that \(B(x,y;p) \) can be expressed as a convergent series of Whittaker functions in the form

\[B(x,y;p) = 2^{1-x-y}π^{\frac{3}{4}} p^{(y-1)/2} e^{-\frac{p}{4} x} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2} y - \frac{1}{2} x\right) k \left(\frac{3}{2} + \frac{1}{2} y - \frac{1}{2} x\right) k}{k!} W_{-k-\frac{1}{2} y, \frac{1}{2} x}(p), \]
Table 4: Values of the asymptotic behaviour of $B(x, y; p)$ in (5.6) with the calculated value when $|x| = 50$, $p = 2$ ($\alpha = 0.01$) and $y = \frac{1}{4}$ for different $\theta = \arg x$.

θ / π	Asymptotic value	Calculated value
0	$+5.175 \times 10^{-06}$	$+5.187 \times 10^{-06}$
0.20	$-8.210 \times 10^{-06} + 2.081 \times 10^{-06}i$	$-8.223 \times 10^{-06} + 2.096 \times 10^{-06}i$
0.40	$+3.468 \times 10^{-05} - 6.934 \times 10^{-06}i$	$+3.470 \times 10^{-05} - 7.020 \times 10^{-06}i$
0.50	$+2.647 \times 10^{-06} - 9.853 \times 10^{-05}i$	$+2.402 \times 10^{-06} - 9.855 \times 10^{-05}i$
0.60	$-8.387 \times 10^{-04} - 3.821 \times 10^{-03}i$	$-8.781 \times 10^{-04} - 3.823 \times 10^{-03}i$
0.70	$-5.944 \times 10^{+28} + 1.659 \times 10^{+28}i$	$-5.952 \times 10^{+28} + 1.652 \times 10^{+28}i$
0.80	$+2.786 \times 10^{+54} + 3.451 \times 10^{+54}i$	$+2.786 \times 10^{+54} + 3.459 \times 10^{+54}i$
1.00	$+4.146 \times 10^{+77}$	$+4.154 \times 10^{+77}$

where $W_{\kappa, \mu}(x)$ is the Whittaker function. For $p \to \infty$ with bounded k, we have the expansion [7, Eq. (13.19.3)]

$$W_{-k-\frac{1}{2}, \frac{1}{2}}(p) = p^{-k-\frac{1}{2}} e^{-\frac{1}{2}p} \left\{ \sum_{n=0}^{N-1} (-)^n \frac{(\frac{1}{2} + k)_n (y + \frac{1}{2} + k)_n}{n! p^n} + O(p^{-N}) \right\},$$

where N is a positive integer. Then we obtain from (A.1)

$$B(x, y; p) = 2^{1-x-y} \pi^{\frac{1}{2}} p^{-\frac{1}{2}} e^{-p} \left\{ S(x, y; p) + O(p^{-N}) \right\},$$

(A.2)

where

$$S(x, y; p) = \sum_{k=0}^{N-1} \frac{1}{k!} p^k \left\{ \sum_{n=0}^{N-1} (-)^n \frac{(\frac{1}{2} + k)_n (y + \frac{1}{2} + k)_n}{n! p^n} \right\},$$

and we have made the change of summation index $n \to j - k$. Use of the fact that $(-j)_k = (-)^k j! / (j - k)!$, the above double sum can be written as

$$\sum_{k=0}^{N-1} \frac{1}{k!} \left\{ \sum_{n=0}^{N-1} \frac{(-)^j j! (\frac{1}{2} + k)_j (y + \frac{1}{2} + k)_j}{j! (k + \frac{1}{2})_j (y + \frac{1}{2} + k)_j p^j} \right\}$$

$$\sum_{j=0}^{N-1} \frac{(-)^j}{j!} \left\{ \sum_{k=0}^{N-1} \frac{(\frac{1}{2} + k)_k (y + \frac{1}{2} + k)_k}{j! (k + \frac{1}{2})_j (y + \frac{1}{2} + k)_j p^j} \right\}$$

upon reversal of the order of summation and identification of the inner sum over k as a terminating $3F_2$ series of unit argument.

Comparison of (A.2) and (A.3) with the expansion obtained in (2.2) then yields the final result

$$c_j = \frac{(\frac{1}{2} + k)_j (y + \frac{1}{2})_j}{j!} 3F_2 \left[-j, \frac{1}{2} y - \frac{1}{2} x, \frac{1}{2} + \frac{1}{2} y - \frac{1}{2} x ; 1 \right].$$

(A.4)
References

[1] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comp. Appl. Math. 78 (1997) 19–32.

[2] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comp. 159 (2004) 589–602.

[3] R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation, Academic Press, London, 1973.

[4] A. R. Miller, Remarks on a generalized beta function, J. Comp. Appl. Math. 100 (1998) 23–32.

[5] J. L. López and P. J. Pagola, An explicit formula for the coefficients of the saddle point method, Constr. Approx. 33 (2011) 145–162.

[6] G. Nemes, An explicit formula for the coefficients in Laplace’s method by Lagrange interpolation, Constr. Approx. 38 (2013) 471–487.

[7] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.

[8] R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, Cambridge, 2001.

[9] R. B. Paris, Hadamard Expansions and Hyperasymptotic Evaluation: An Extension of the Method of Steepest Descents, Cambridge University Press, Cambridge, 2011.

[10] J. Wojdylo, On the coefficients that arise from Laplace’s method, J. Comp. Appl. Math. 196 (2006) 241-266.