Pulmonary toxicities of immune checkpoint inhibitors

Magdalena Knetki-Wróblewska¹, Joanna Domagała-Kulawik²

¹Department of Lung Cancer and Chest Tumors, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
²Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of many malignancies. Toxicities of immunotherapy are variable, can involve almost every organ, therefore appropriate diagnosis and management of Immune Related Adverse Events (irAEs) is important. Immune-mediated pneumonitis is an uncommon, but potentially life-threatening toxicity of ICIs. Pre-existing lung disease, a history of lung radiotherapy, age >70 years and male gender are suggested as the risk factors of pneumonitis. Dyspnoea, dry cough, fever and chest pain are typical symptoms. Diagnostic algorithms recommend radiological investigation with a chest computed tomography scan. Additional diagnostic procedures – such as pulse oximetry, spirometry, measurement of carbon monoxide diffusing capacity, bronchoscopy with BAL may be helpful. The therapeutic approach is determined by the intensity of the symptoms and CT findings. Corticosteroids and antibiotics are the drugs of choice. Hospitalisation is necessary in severe cases, and other forms of immunosuppression (infliximab, mycophenolate mofetil) may be considered. Continuation of immunotherapy can be considered with caution in patients with G1-2 toxicity, when clinical improvement was achieved and steroids were tapered.

Key words: pneumonitis, immune related adverse events, immune checkpoint inhibitors

Introduction
In recent years, immune checkpoint inhibitors (ICIs) targeting cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1/ligand-1 (PD-1/PD-L1) have been accepted in the treatment of some malignant tumours. Ipilimumab (anti–CTLA-4 antibody), nivolumab, pembrolizumab (anti PD-1), atezolizumab and durvalumab (anti PD-L1) are widely used in clinical practice in the treatment such neoplasms as melanoma, non-small-cell lung cancer, head and neck squamous cancers, urothelial carcinoma, gastric adenocarcinoma, Hodgkin’s lymphoma, hepatocellular and renal cell carcinoma [1].

The ICIs affect the immune system – restore the T cell-mediated immune response – and in consequence can lead to autoimmune complications. A broad range of immune-related adverse events (irAEs) involve almost every organ but mostly affect the endocrine system, skin, digestive system, and lung [2]. Immune-mediated pneumonitis is an uncommon but potentially life-threatening toxicity of ICIs. 35–40% deaths of fatal irAEs are connected with pulmonary complications [3].

This paper discusses the issues concerning the pulmonary toxicity of ICIs-epidemiologic data, symptomatology and diagnostic and management recommendations.

Incidence of pneumonitis
Incidence of pneumonitis in clinical trials with anti–PD-1/PD-L1 was variable – from 0% to 10% and was less common reported in trials with anti-CTLA-4- 1% [1]. The incidence was higher when combined treatment was given – nivolumab plus...
The risk of pneumonitis is higher in patients with non-small-cell lung cancer (NSCLC) than in those with melanoma (odds ratio OR, 1.43; 95% CI, 1.08–1.89; p = 0.005) and higher in patients with renal cancer than with melanoma (OR, 1.59; 95% CI, 1.32–1.92; p = 0.001) [6].

A meta-analysis of 112 trials involving 19,217 patients showed all toxicity-related death rates of 0.36% (anti-PD-1), 0.38% (anti-PD-L1), 1.08% (anti-CTLA-4), and 1.23% (PD-1/PD-L1 plus CTLA-4). Pneumonitis was the most common cause of death in anti-PD-1/PD-L1-treated patients – 35% from 333 incidents [3]. Some data from clinical practice suggests that the incidence of pneumonitis related to ICPs can be more common than those reported in clinical trials. In a retrospective analysis of 205 patients with advanced NSCLC 39 (19%) patients experienced immune-related pneumonitis during follow-up and 8 of them died (20%) [7]. Another analysis of 167 NSCLC patients showed the incidences of all-grade and grade 3–4 pneumonitis at 13.2% and 4.2%, respectively, and the mortality rate was 18.2% [8]. Combined treatment has a higher risk. In NSCLC stage III, concurrent chemoradiotherapy and adjuvant immunotherapy with durvalumab is the new standard of care. The phase III PACIFIC showed significant clinical benefit, but pneumonitis occurrence was higher in durvalumab (33.6%) vs. placebo (24.9%) patients [9].

The median onset of pneumonitis symptoms ranges from 5 to 12 weeks, but it can be observed even after 24 months of therapy [1, 7]. There are no defined risk factors for irAE of respiratory tract to date, but some data are conflicting. A history of lung radiotherapy, age >70 years, male gender, smoking and low serum albumin are suggested as the risk factors for immune-mediated pneumonitis. [7, 8, 10]. In particular, interstitial lung diseases may form a background for CIP development as autoimmune mechanisms are related. In a prospective study, Fujimoto et al. presented safety of nivolumab in patients with defined mild lung fibrosis [11]. However, in another study the lung fibrosis score was found to implicate anti-PD-1 related pneumonitis [12]. The autoimmune diseases seem not to predict development of pneumonitis [13]. There was no relation between CIP incidence and the presence of antinuclear antibodies in the study on 83 NSCLC patients treated with single ICI [14].

Many patients with lung cancer suffer from chronic obstructive lung disease (COPD) and ILD, which are per se a risk for the development of NSCLC. The recognition of CIP in COPD or ILD is difficult, as the symptoms are very similar and may mimic exacerbation of primary disease. The doctor should know the patient and he must know himself. The course of the complication of treatment could be worse in patients with chronic lung diseases, especially in the elderly [15]. The help of a chest physician and a multidisciplinary team in patient management is essential.

Symptoms and diagnostics

Pulmonary toxicity is referred as checkpoint inhibitors pneumonitis (CIP) [16], ICI- pneumonitis (ICI-P) [4] or some authors prefer interstitial lung diseases (ILD) to underline similarity to the group of interstitial diseases [17]. The term CIP seems to be appropriate as it includes the relationship to ICIs and involvement of parenchymal tissue. The definition of CIP includes new symptoms from the respiratory tract and new changes in chest imaging. The clinical symptoms suggestive of CIP are not specific. Thus, it is highly important for proper diagnosis to connect new symptoms in the respiratory tract with ICI use and to state a time relationship.

The distressing respiratory symptoms of CIP are: dyspnoea and cough, fever, and chest pain. They may be accompanied by desaturation in effort. In about 30% of patients, the course of CIP is asymptomatic, with only new abnormalities visible in the chest CT [18]. In differential diagnosis of the symptoms like dyspnoea, chest pain, and fatigue, other respiratory tract diseases should be taken into account. Especially a patient history including COPD, asthma, ILD, risk factors for pulmonary embolism, previous tuberculosis, and any destructive changes need to be analysed. On the other hand, other types of irAE could be responsible for these symptoms, such as cardiovascular, neurological or endocrinological toxicity [19]. The more - pulmonary irAE could be accompanied by these.

In clinical status, assessment and the severity of symptoms are taken into account in the appropriate classification according to the Common Terminology Criteria for Adverse Events (CTCAE) grading (tab. I). The clinical signs like tachypnoea, tachycardia, cyanosis, a range of changes in auscultation – crackles and the time of changes developing are important. Oxygen saturation measurement (and a blood gas analysis if needed) is helpful in making a decision on medical care and hospitalisation.

Chest imaging with high-resolution computed tomography (HRCT) is of great importance in the recognition of respi-

Grade 1, mild	Asymptomatic or mild symptoms, intervention not required
Grade 2, moderate	Symptomatic, medical noninvasive intervention needed, limiting normal activity
Grade 3, severe	Respiratory symptoms limiting self-care ADL, hospitalisation, oxygen therapy indicated
Grade 4, life threatening	Required urgent intervention, intubation, ventilatory support
Grade 5	Death of irA
Interstitial Lung Toxicity of Immune Checkpoint Inhibitors

Clinical symptoms and lung changes visible in CT scan in patients treated with ICI sometimes need rapid diagnosis and an immediate decision. The main direction of differential diagnosis is progression of malignant disease or infection (Fig. 1). In the first step, the analysis of CT is needed to refer to the last imaging and possible progression of the primary tumour or metastases from another body site. An analysis of possible toxicity of previous treatment: chemotherapy and radiotherapy is needed. Next, a broad spectrum of microbiological tests of sputum/material from bronchoscopy or blood should be performed. After exclusion of infection, the recognition of pneumonitis is probable. The course of pulmonary complications is very often rapid, demanding an urgent therapeutic decision. Thus, a bronchoalveolar lavage (BAL) fluid examination might be very helpful [20]. BAL is a relatively low invasive method of respiratory tract examination, and is realised by instillation to the airways and next immediate aspiration of 100–200 mL of saline via bronchofiberscope. BAL fluid analysis allows the recognition of infection (also opportunistic), the presence of malignant cells, and confirmation of interstitial lung disorder [20]. The normal constituents of BALF are macrophages, lymphocytes and granulocytes in the following proportions: 80, <20, <5%. The predominance of lymphocytes is suggestive of active non-infectious inflammation. Delauney et al performed BAL in 55% of patients with pulmonary complications and in 80% of them lymphocytic alveolitis was observed [17]. In our experience, the BALF evaluation by microscopic examination of slides stained with haematological and histological methods could be very helpful in the differential diagnosis of new lung infiltrations in the course of ICI administration. The more frequent use of flow cytometry allows the local immune response to be characterised, which could be helpful in the choice of treatment [21, 22, 23]. Very importantly, conclusive results are obtained during some hours (unpublished data).

Treatment

The therapeutic approach is determined by the intensity of the symptoms according the CTCAE – table I [24]. Extensiveness of lung changes in the CT scans might be considered an additional risk factor [25]. Careful observation of patients and an appropriate therapy started immediately after occurrence

Figure 1. Diagnosis and differential diagnosis of checkpoint inhibitors pneumonitis (CIP). HRCT – high resolution computed tomography, BAL – bronchoalveolar lavage, SP02 – oxygen blood saturation, DLCO – diffusing capacity, ILD – interstitial lung disease, NSCLC – non-small-cell lung cancer.
of the symptoms enable radiological regression and an improvement in the clinical status in most patients [18].

Several oncological societies have developed diagnostic and therapeutic recommendations. These are summarised in Table II [1, 19, 24, 25].

Generally in asymptomatic patients with CT abnormalities (confined to one lobe of the lung or, 25% of lung parenchyma) observation and repeated CT scans are recommended. Immunotherapy can be continued or held until the resolution of radiological changes [1, 19, 24, 25].

In patients with moderate symptoms (grade 2) or abnormalities involving more than one lobe of the lung or 2550% of lung parenchyma, temporary holding of the ICI is indicated. [1, 19, 24, 25]. Chest X-ray, blood tests and microbiological tests (for viral, opportunistic or specific bacterial – such as mycoplasma and legionella) should be considered [24]. In the case of inflammatory suspicion (fever, CRP, neutrophil counts) empirical antibiotics should be given. [24]. Empirical antibiotics can be used based on local guidelines – amoxicillin or levofloxacin might be a first option for outpatients [26]. If no evidence of infection –

steroids treatment with dose tapering by 5–10 mg/week over 4–6 weeks in case of clinical improvement. Clinical evaluation of the patient’s state should be repeated after 72 hours of treatment. If no clinical improvement is achieved – hospitalisation is recommended, with intravenous corticosteroids and further diagnostic procedures. The continuation of ICI therapy is possible when complete clinical improvement was reached (and the prednisone dose reduced to 10 mg/day) [1, 19, 24, 25].

In patients with extensive CT changes involving all lung lobes or 50% of lung parenchyma and in patients with severe or life-threatening symptoms – CTCAE grades 3 and 4 – hospitalisation is mandatory (also in the Intensive Care Unit). Bronchoscopy with BAL, and microbiological testing should be performed. Empirical antibiotics and steroids intravenously are necessary. In case of clinical improvement, the dose of steroids should be slowly reduced and finally stopped after at least another 6–8 weeks. If no clinical improvement in the patient’s clinical status is observed after 48 hours of therapy with steroids, the administration of immunosuppressive agents should be considered (infliximab or mycophenolate mofetil).

Table II. Management of pneumonitis in patients treated with ICPs [1, 19, 24, 25]
SITC
– Consider holding ICI
– Monitoring symptoms and oxygen saturation every 2–3 days; weekly clinic visits
– CT prior to every cycle of ICI treatment (at least every 3 weeks)
– Resolution of radiographic findings – consider continuation of therapy
– No new change or symptoms – consider continuation of therapy with close follow-up
– Hold ICI
– Pulmonary consultation for bronchoscopy with bronchoalveolar lavage methyprednisolone 1 mg/kg/day (i.v. or oral equivalent)
– Improvement – steroid taper over >4 weeks
– Worsening – treat as grade 3–4
– Consider continuation ICI when symptoms and imaging abnormalities resolve
– Discontinue ICI
– Bronchoscopic and respiratory review
– Pulmonary consultation for bronchoalveolar lavage methyprednisolone 1 mg/kg/day (i.v. or oral equivalent)
– Improvement – steroid taper over >4 weeks
– Worsening – treat as grade 3–4
– Consider continuation ICI when symptoms and imaging abnormalities resolve
– Permanently discontinue ICI
– Bronchoscopic and respiratory review
– Discontinue ICI

| **ASCO** |
| – Hold ICI |
| – Consider bronchoscopy with BAL |
| – Prednisone 1–2 mg/kg/d and taper by 5–10 mg/kg/wk over 4–6 weeks |
| – Consider empirical antibiotics |
| – Monitor every 3 days |
| – No clinical improvement after 48–72 hours of prednisone – treat as G3 |
| – Improvement – steroid taper over >4 weeks |
| – Improve – taper corticosteroids over 4–6 weeks |
| – Permanently discontinue ICI |
| – Bronchoscopic and respiratory review |
| – Discontinue ICI |
| – (methyl) prednisolone i.v. 1–2 mg/kg/d |
| – No improvement after 48 hours – infliximab, methylprednisolone i.v. 1–2 mg/kg/d |
| – Improvement – steroid taper over >8 weeks |
| – Continuation ICI – G3, consider carefully only if symptoms and imaging abnormalities resolve |
| – G4 – Permanently discontinue ICI |
| – Bronchoscopic and respiratory review |

| **NCCN** |
| – Consider holding ICI |
| – Reassess in 1–2 weeks |
| – Monitor symptoms and pulseoximetry |
| – Consider CT scan in 4 weeks |
| – Consider CT scan in 4 weeks |
| – Continuation of ICI after radiographic improvement |
| – Hold ICI |
| – Consider bronchoscopy with BAL |
| – Prednisone 1–2 mg/kg/d and taper by 5–10 mg/kg/wk over 4–6 weeks |
| – Consider empirical antibiotics |
| – Monitor every 3 days |
| – No clinical improvement after 48–72 hours of prednisone – treat as G3 |
| – Improvement – steroid taper over >4 weeks |
| – Improvement – taper corticosteroids over 4–6 weeks |
| – Discontinue ICI |
| – Bronchoscopic and respiratory review |
| – Permanently discontinue ICI |
| – (methyl) prednisolone i.v. 2–4 mg/kg/day, taper corticosteroids ≥6 weeks |
| – High resolution CT and respiratory review |
| – Bronchoscopic and BAL |
| – Empirical antibiotics |
| – If no improvement after 48 hours – infliximab, methylprednisolone i.v. 2–4 mg/kg/day, taper corticosteroids ≥6 weeks |
| – Improvement – taper corticosteroids over 4–6 weeks |

| **ESMO** |
| – Consider delay of treatment |
| – Monitor symptoms every 2–3 days |
| – If worsens – treat as grade 2 or 3–4 |
| – Hold ICI |
| – Empirical antibiotics if suspicion of infection |
| – If no evidence of infection or no improvement with antibiotics after 48h – add in prednisolone 1 mg/kg/day orally, taper corticosteroids ≥6 weeks |
| – Discontinue ICI |
| – (methyl) prednisolone i.v. 2–4 mg/kg/day, taper corticosteroids ≥8 |
| – High resolution CT and respiratory review |
| – Consider bronchoscopy and BAL |
| – Empirical antibiotics |

| Grade | 1 | 2 | 3/4 |
In the case of CIP grade 3 or 4, a continuation of the immunotherapy is contraindicated. [1, 24, 25].

In the case of patients with toxicity G1–2 who continued treatment, the occurrence of a second episode of toxicity G ≥ 2 is an indication to persistence discontinuation of ICI [4].

Prolonged use of steroids is associated with the increased risk of complications (osteoporosis, gastritis, diabetes and others) and bacterial, fungal or viral infections [27]. Prophylaxis of pneumocystis pneumonia (PCP) with cotrimoxazol (480 mg twice daily Monday/Wednesday/Friday) is indicated for patients receiving at least 20 mg methylprednisolone or equivalent for ≥4 weeks [24, 25, 27]. Prophylaxis of fungal infections is questionable, some recommendations suggest fluconazol for patient who receiving at least 20 mg methylprednisolone or equivalent for ≥6 weeks [25].

Summary

Incidence of CIP in clinical trials have been reported <10%, higher rates have been reported for combinations of PD-L1 and CTLA-4 inhibitors. Some data suggest that incidence in clinical practice may be higher (about 20%). Unfortunately, this complication of immunotherapy brings with it the highest mortality. Preexisting lung disease, a history of lung radiotherapy, age >70 years, male gender, smoking and low serum albumin are suggested as the risk factors for CIP. The risk of pneumonitis is higher in patients with non-small cell lung cancer (NSCLC) than in those with melanoma or renal cell cancer. Early detection of CIP is crucial, but differential diagnosis can be problematic. Additional diagnostic procedures – such as pulse oximetry, spirometry, measurement of carbon monoxide-diffusing capacity, bronchoscopy with BAL may be helpful [28]. In the CT scans, parenchymal infiltrations with ground-glass opacities, consolidations, interlobular septal thickening and intralobular lines and micronodules are described. In most cases maintaining ICP and systemic corticosteroid therapy are effective (general guidelines are summarised in table III).

Continuation of immunotherapy can be considered with caution in patients with G1–2 toxicity when clinical improvement was achieved and steroids were tapered (dose <10 mg prednison/day). Pulmonary and infectious disease consultations should be considered in all symptomatic patients, especially in patients with G3–4 toxicity.

Conflict of interest: none declared

References

1. Brahmer JR, Laczetti C, Schneider BJ, et al. Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2018; 36(17): 1714–1768, doi: 10.1200/JCO.2017.77.9385, indexed in Pubmed: 29442540.

2. Liu YH, Zang XY, Wang JC, et al. Diagnosis and Management of Immune-Related Adverse Events (irAEs) in Cancer Immunotherapy. Biomed Pharmacother. 2019; 120: 109437, doi: 10.1016/j.biopha.2019.109437, indexed in Pubmed: 31590992.

3. Wang DY, Salem JE, Cohen JV, et al. Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-analysis. JAMA Oncol. 2018; 4(12): 1721–1728, doi: 10.1001/jamaoncol.2018.3923, indexed in Pubmed: 30242316.

4. Cadranel J, Canellas A, Matton L, et al. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall cell lung cancer. Eur Respir Rev. 2019; 28(153), doi: 10.1183/16000617.0058-2019, indexed in Pubmed: 31597674.

5. Su Q, Zhu EC, Wu JB, et al. Risk of Pneumonitis and Pneumonia Associated With Immune Checkpoint Inhibitors for Solid Tumors: A Systematic Review and Meta-Analysis. Front Immunol. 2019; 10: 108, doi: 10.3389/fimmu.2019.00108, indexed in Pubmed: 30778352.
6. Nishino M, Gobbbie-Hurder A, Hatabu H, et al. Incidence of Programmed Cell Death 1 Inhibitor-Related Pneumonitis in Patients With Advanced Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2016; 2(12): 1607–1616, doi: 10.1001/jamaoncol.2016.2453, indexed in Pubmed: 27568650.

7. Suresh K, Voong KR, Shankar B, et al. Pneumonitis in Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Immunotherapy: Incidence and Risk Factors. J Thorac Oncol. 2018; 13(12): 1930–1939, doi: 10.1016/j.jtho.2018.08.2035, indexed in Pubmed: 30267842.

8. Cho JY, Kim J, Lee JS, et al. Characteristics, incidence, and risk factors of immune checkpoint inhibitor-related pneumonitis in patients with non-small cell lung cancer. Lung Cancer. 2018; 125: 150–156, doi: 10.1016/j.lungcan.2018.09.015, indexed in Pubmed: 30429014.

9. Gray JE, Villegas A, Daniel D, et al. PACIFIC Investigators. Overall Survival with Durvalumab after Chemosradiotherapy in Stage III NSCLC. N Engl J Med. 2018; 379(24): 2342–2350, doi: 10.1056/NEJMoa1809697, indexed in Pubmed: 30280658.

10. Fujimoto D, Morimoto T, Ito J, et al. A pilot trial of nivolumab treatment for advanced non-small cell lung cancer patients with mild idiopathic interstitial pneumonia. Lung Cancer. 2017; 111: 1–5, doi: 10.1016/j.lungcan.2017.06.008, indexed in Pubmed: 28838777.

11. Yamaguchi T, Shimizu J, Hasegawa T, et al. Pre-existing pulmonary fibrosis is a risk factor for anti-PD-1-related pneumonitis in patients with non-small cell lung cancer: A retrospective analysis. Lung Cancer. 2018; 125: 212–217, doi: 10.1016/j.lungcan.2018.10.001, indexed in Pubmed: 30429022.

12. Leonardi GC, Gainor JF, Altman M, et al. Safety of Programmed Death-1 Pathway Inhibitors Among Patients With Non-Small-Cell Lung Cancer and Preexisting Autoimmune Disorders. J Clin Oncol. 2018; 36(19): 1905–1912, doi: 10.1200/JCO.2017.77.0305, indexed in Pubmed: 29746230.

13. Yoneshima Y, Tanaka K, Shiraihata M, et al. Safety and efficacy of PD-1 inhibitors in non-small cell lung cancer patients positive for anti-nuclear antibodies. Lung Cancer. 2019; 130: 5–9, doi: 10.1016/j.lungcan.2019.01.014, indexed in Pubmed: 30883561.

14. Ma Ke, Lu Y, Jiang S, et al. The Relative Risk and Incidence of Immune Checkpoint Inhibitors Related Pneumonitis in Patients With Advanced Cancer: A Meta-Analysis. Front Pharmacol. 2018; 9: 1430, doi: 10.3389/fphar.2018.01430, indexed in Pubmed: 30618738.

15. Suresh K, Naidoo J, Lin CT, et al. Immune Checkpoint Immunotherapy for Non-Small Cell Lung Cancer: Benefits and Pulmonary Toxicities. Chest. 2018; 154(6): 1416–1423, doi: 10.1016/j.chest.2018.08.1048, indexed in Pubmed: 30189190.

16. Delaunay M, Cadzanel J, Lusique A, et al. Immune-checkpoint inhibitors associated with intestinal lung disease in cancer patients. Eur Respir J. 2017; 50(2), doi: 10.1183/13993003.00050-2017, indexed in Pubmed: 28798088.

17. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J Clin Oncol. 2017; 35(7): 709–717, doi: 10.1200/JCO.2016.68.2005, indexed in Pubmed: 27644942.

18. Puzanov I, Diab A, Abdallah K, et al. Society for Immunotherapy of Cancer Toxicity Management Working Group. Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer. 2017; 5(1): 95, doi: 10.1186/s40425-017-0300-z, indexed in Pubmed: 29162153.

19. Domagala-Kulawiak J. The relevance of bronchoalveolar lavage fluid analysis for lung cancer patients. Expert Rev Respir Med. 2019; 13(3): 329–337, doi: 10.1080/17476348.2020.1708720.

20. Suresh K, Naidoo J, Zhong Q, et al. The alveolar immune cell landscape is dysregulated in checkpoint inhibitor pneumonitis. J Clin Invest. 2019; 130: 4305–4315, doi: 10.1172/JCI128654, indexed in Pubmed: 31310589.

21. Tanaka K, Yanagihara T, Ikematsu Y, et al. Detection of identical T cell clones in peritumoral pleural effusion and pneumonitis lesions in a cancer patient during immune-checkpoint blockade. Oncotarget. 2018; 9(55): 30587–30593, doi: 10.18632/oncotarget.25743, indexed in Pubmed: 30093971.

22. Martins F, Sykiotis GP, Maillard M, et al. New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. Lancet Oncol. 2019; 20(1): e54–e64, doi: 10.1016/S1470-2045(18)30828-3, indexed in Pubmed: 30614479.

23. Haanen J, Carbonnel F, Robert C. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017; 28: 119–142.

24. https://www.nccn.org/professionals/physician_gls/pdf/immunotherapy.pdf.

25. http://antybiotyki.edu.pl/rekomendacje/rekomendacje-diagnostyki-i-terapii-zakazen/.

26. Caplan A, Fett N, Rosenbach M, et al. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: Infectious complications and vaccination recommendations. J Am Acad Dermatol. 2017; 76(2): 191–198, doi: 10.1016/j.jaad.2016.02.1240, indexed in Pubmed: 28088990.

27. O’Kane GM, Labbé C, Doherty MK, et al. Monitoring and Management of Immune-Related Adverse Events Associated With Programmed Cell Death Protein-1 Axis Inhibitors in Lung Cancer. Oncologist. 2017; 22(1): 70–80, doi: 10.1016/j.oncol.2016.01-164, indexed in Pubmed: 27534573.