Symmetries and Conservation Laws for Hamiltonian Systems

Estomih Shedrack Massawe

Department of Mathematics, University of Dar es Salaam, Dar es Salaam, Tanzania

Email address: emassawe2@gmail.com, estomihmassawe@yahoo.com

1. Introduction

Symmetries are among the most important properties of dynamical systems when they exist [1]. The study of symmetries is very important in the sense that they are equivalent to the existence of conservation laws. [2] has shown that in Hamiltonian system, symmetries are very close to the constants of the motion. Noether’s theorem has also advocated this concept. Also [3] applied symmetries and constants of motion and derived the reduced Hamiltonian system. Generally, symmetry of a physical system is a transformation which may be applied to the state space without altering the system or its dynamical interaction in any way. Consider for example motion of a particle in a central force field with potential \(U(x) \) where \(x \) is the position vector of the particle. This system is not affected by rotations and they are referred to as a symmetry. The existence of such symmetries gives insight into the structure of the system i.e. any solution of the system must reflect these symmetries. Thus it is useful to make use of any symmetry information available in obtaining solutions of the system i.e. constants of the motion (conservation laws) which are defined as mappings \(I:TM \to \mathbb{R} \) such that \(dI/dt = 0 \).

Think for example, the energy of the system. It is usually a mapping on the tangent bundle and it is usually constant of the motion. The connection between the symmetry of a system and its corresponding conservation law is summarized in Noether’s theorem which follows later. It is therefore intended to formulate and analyse Symmetries and Conservation Laws for Hamiltonian Systems which finally summarized by the generalized Noether’s theorem.

2. Formulation of the Concept of Symmetry

Let \(M \) be the configuration manifold for a physical system. Let \(L(q, \dot{q}, t) \) be the Lagrangian of the system i.e. \(L:TM \to \mathbb{R} \) is a smooth function on the tangent bundle \(TM \) of the system. Let \(h:M \to M \) be a smooth map on \(M \) and \(h:TM \to TM \) the corresponding bundle map. A Lagrangian \(L \) is said to be invariant under the mapping \(h \) if \(L \circ h = L \) for any tangent vector \(v \in TM \) i.e. \(L(h,v) = L(v) \) [1]. The extension of the symmetry of a physical system to dynamical systems yields the following: [4].

Definition 1

(a) A symmetry for time-invariant external dynamical system \(\sum_{\tau} \subset W^{\tau} \) is a map \(\psi:W \to W \) which leaves \(\sum_{\tau} \) invariant i.e. if \(w(\cdot) \in \sum_{\tau} \) then also \(\psi(w(\cdot)) \in \sum_{\tau} \), and if \(w(\cdot) \in \sum_{\tau} \) then there exists \(\tilde{w}(\cdot) \in \sum_{\tau} \) such that \(\psi(\tilde{w}(\cdot)) = w(\cdot) \). In short
The consequence of the commutativity of the above diagram is that the one-parameter group \((S_t, T_t)\) acting on \(X\times W\) takes a feasible state/external signal trajectory into a similar pair.

Since the objective of this paper is to relate symmetries when they exist to conservation laws, we shall next define a conservation law.

Definition 4

Let \(\sum_c (X \times W)^R\) be a dynamical system in state space form and let \(\sum_e W^R\) be its external behaviour. Let \(F_\tau : W \rightarrow \mathbb{R}\) be such that for every \(w \in \sum_e\), \(F_\tau (w(t))\) is locally integrable vector-valued functions on \(\mathbb{R}\), and let \(F : X \rightarrow \mathbb{R}\). The pair \((F, F_\tau)\) is called a conservation law if

\[
F(x(t)) - F(x(t_1)) = \int_{t_1}^{t_2} F_\tau (w(\tau)) d\tau
\]

(1)

Holds for all \((x, w) \in \sum_c\) and for all \(t_1 \geq t_2\). \(F\) is called the conserved quantity. \([4]\).

The interpretation of equation (1) is that the change of \(F\) along a trajectory \(x\) is a function of the external trajectory \(w\) only.

We use the differential geometry to equation (1). Let \(F : X \rightarrow \mathbb{R}\) be a smooth function. Define \(F : TX \rightarrow \mathbb{R}\) by \(\hat{F}(v) = dF (v)\) for \(v \in TX\) \([4]\).

Definition 5
Let $\sum (X, W, B, f)$ be a nonlinear dynamical system with $f = (g, h)$ such that $g : B \to TX$ and $h : B \to W$. Let $F : X \to \mathbb{R}$ and $F_c : W \to \mathbb{R}$ be smooth functions. Then the pair (F, F_c) is called a conservation law if $F \circ g = F_c \circ h$ [4].

If (x, u) are fibre respecting coordinates for B, then $F(x, u) = \sum \frac{\partial F}{\partial u_i}$ [5]. Therefore $F \circ g(x, u) = \sum \frac{\partial F}{\partial u_i} g_i(x, u)$.

But $F \circ g(x, u)$ is the time derivative of F in x along a trajectory of the vectorfield $g(\cdot, u)$. Equation (3) therefore yields $\frac{d}{dt} F(x, u) = F_c(h(x, u))$. We note that $\frac{dF}{dt}$ is the Lie derivative $\mathcal{E}_g F$.

If the external influence to a system is absent then $F_c(w(t)) = 0 \quad \forall w \in \sum_c$. The conservation law amounts to $F(x(t_i)) = F(x(t_j))$ $\forall t_i \geq t_j$ and $\frac{dF}{dt} = 0$.

Various laws of conservation are particular cases of Noether's theorem. Noether's theorem relates the symmetries of the configuration manifold of a Lagrangian system to conservation laws. The consequence of the existence of symmetries is the existence of symmetries of a first integral of the equations of motion. This is the content Noether's theorem and we shall state it. For simplicity only the autonomous case shall be considered.

Theorem 1: (Noether's theorem)

Let (M, L) be a Lagrangian system and let $h' : M \to M$, $s \in \mathbb{R}$ be a one-parameter group of diffeomorphism. If the system (M, L) admits symmetry under the mapping h', then the Lagrangian system of equations corresponding to the Lagrangian L has a first integral $I : TM \to \mathbb{R}$. In local coordinates of M, I is given by $I(q, \dot{q}) = \frac{\partial I}{\partial q} \frac{\partial \psi^i}{\partial \dot{q}^s}(q)|_{\psi^i}$ [4].

Proof

Let $M = \mathbb{R}^n$ be the coordinate space. Denote the solution of the Lagrange’s equations by $q = \Psi(t)$ where $\Psi : \mathbb{R} \to M$. It is easy to see that since $h' : M \to M$, it follows that the Lagrangian L is invariant under the mapping $h' : TM \to TM$. Consequently, the mapping $h' \circ \Psi : \mathbb{R} \to M$ which is just a translation of the solution of the Lagrange’s equations for any s.

Now define the mapping $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^n$ by $q = \phi(s, t) = h'(\Psi(t))$. By the hypothesis of invariance of L under the mapping h', we have

$$0 = \frac{\partial L}{\partial q} \frac{\partial \phi}{\partial \dot{q}} + \frac{\partial L}{\partial q} \frac{\partial \phi}{\partial q} \bigg|_{\psi^i(s, \dot{s})}$$

The mapping $\phi|_{\text{constant}} : \mathbb{R} \to \mathbb{R}^n$ for fixed s satisfies

Lagrange’s equations

$$\frac{\partial}{\partial t} \left[\frac{\partial L}{\partial \dot{q}} (\phi(s, t), \dot{\phi}(s, t)) \right] = \frac{\partial L}{\partial q} (\phi(s, t), \dot{\phi}(s, t)) \right]. \quad (3)$$

Define $F(s, t) = \left(\frac{\partial L}{\partial \dot{q}} \right) (\phi(s, t), \dot{\phi}(s, t))$ and substitute

$$\frac{\partial F}{\partial t}$$

in (2) equation to get

$$0 = \left(\frac{d}{dt} \frac{\partial L}{\partial \dot{q}} \right) \frac{\partial \phi}{\partial \dot{q}} + \frac{\partial L}{\partial q} \left(\frac{d}{dt} \frac{\partial \phi}{\partial q} \right)$$

$$= \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) \frac{\partial \phi}{\partial \dot{q}}$$

$$= \frac{dL}{dt}$$

3. Symmetries and Conservation Laws for Hamiltonian Systems

In this section we specialize the concept of symmetries to Hamiltonian systems. In this case it becomes stronger for the reason that we shall want it to preserve the symplectic structure. Define a symmetry for a Hamiltonian system as follows:

Definition 6

Let $\sum (M, W, B, f)$ be a full Hamiltonian system. An internal symmetry (φ, ψ, ϕ) is called Hamiltonian if φ and ψ are symplectomorphism i.e.

(i) $\varphi \circ \omega = \omega$

(ii) $\psi' \circ \omega = \omega'$

with φ' and ψ' the pullbacks of ω and ω' by φ and ψ respectively. [7] has pointed out that for minimal systems we don’t have to assume a priori that $\varphi : M \to M$ is a symplectomorphism. φ is implied by the external symmetry ψ as shown by the following proposition.

Proposition 1

Let $\sum (M, W, B, f)$ be a full Hamiltonian and minimal system. Let (φ, ψ, ϕ) be an internal symmetry and ψ a symplectomorphism. Then ϕ is necessarily also a symplectomorphism [6].

Proof

Let $f = (g, h)$. Because (φ, ψ, ϕ) is a symmetry, $f(B)$ is mapped by ψ and φ, onto $f(B)$ where φ_* is the derivative map of φ. Therefore $\sum (M, W, B, \tilde{f})$ with $\tilde{f} = (\varphi \circ g, \psi \circ h)$ is again a Hamiltonian system. Hence
\[g'(\varphi)\dot{\omega} = h'(\varphi, \omega') \] and
\[g'\omega = h'\omega = h'\varphi \omega' = g'(\varphi)\omega' \]
where we have used \(\psi' \omega' = \omega' \). This yields \(g'\omega = 0 \) with
\[\omega = \omega - \varphi \omega' \]. [4] has derived that \(\sum \) satisfies the
minimality rank condition, then \(\omega = 0 \) and \(\varphi \omega = \omega \).

We shall now consider the case of the infinitesimal
symmetries for Hamiltonian systems.

A vectorfield \(S \) on a symplectic manifold \((M, \omega)\) is called
a symmetry for Hamiltonian vectorfield \(X_H \) on \(M \) if [6].

(i) The Lie derivative \(\mathcal{L}_S \omega = 0 \),
(ii) \(S(H) = 0 \) where \(H \) is the Hamiltonian function.

From (i) it follows that \(S \) has locally a corresponding
Hamiltonian function \(F : M \to \mathbb{R} \) and so (ii) implies that
\(X_H(F) = 0 \) and therefore \(F \) is a conserved quantity for
\(X_H \). Conversely for \(F : M \to \mathbb{R} \) such that \(X_H(F) = 0 \) it follows
that \(S = X_F \) satisfies (i) and (ii) and so \(S \) is a
Hamiltonian symmetry.

The generalization of the above to the Hamiltonian system
yields the following definition:

Definition 7

Let \(\sum (M, W, B, f) \) be a full Hamiltonian system. An
infinitesimal symmetry \((R, S, T) \) for \(\sum \) is called
Hamiltonian if \(S \) and \(T \) are locally Hamiltonian
vectorfields i.e. \(\mathcal{L}_S \omega = 0 \) and \(\mathcal{L}_R \omega = 0 \) [9].

A conservation law for a Hamiltonian system can be
constructed in the following way:

Consider a Hamiltonian system with an input \(u \). For every
\(u \) we get a Hamiltonian vectorfield on \(M \) denoted by \(X^u \).
If \((R, S, T) \) is a Hamiltonian symmetry for
\(\sum (M, W, B, f) \) then there exists functions \(F : M \to \mathbb{R} \)
and \(F^r : M \to \mathbb{R} \) with \(X_S = X_F \) and \(T = X_{F^r} \) such that
\(\forall x \in M \) and \((x, u) \in B \), \(X^u (F(x)) = F'(h(x, u)) \) where
\((g, h) = f : B \to TM \times W \) [9] We note that \(S = X_F \) and
\(T = X_{F^r} \) implies that \(F \) and \(F^r \) are Hamiltonian functions.

The pair \((F, F^r) \) is the conservation law for the
Hamiltonian system \(\sum (M, W, B, f) \).

The interpretation of the above construction is that the
change of \(F \) along the trajectories of the system is a function of the
external variables. Knowledge of the external variables together with
the initial conditions can determine the behaviour of \(F \) as a function of time.

We conclude with the generalized Noether’s theorem.

Theorem 2: (Generalized Noether’s theorem)

Let \((R, S, T) \) be an infinitesimal symmetry for a full
Hamiltonian system \(\sum (M, W, B, f) \). Then locally there
exists a conservation law \((F, F^r) \). Conversely if \((F, F^r) \)
is a conservation law, then there exists a Hamiltonian

symmetry \((R, S, T) \) such that \(S = X_F \) and \(T = X_{F^r} \). [4]

The following proposition will be needed for the proof of
Noether’s theorem.

Proposition 2

Let \(\sum (M, W, B, f) \) be a nonlinear dynamical system
with \(f = (g, h) \). Then \((R, S, T) \) is an infinitesimal symmetry iff

i. \(g \circ R = S \)

ii. \(h = T \).

\(g \) and \(h \) are derivative maps of \(g \) and \(h \) respectively.

Proof

We note that \((R, S, T) \) is an infinitesimal symmetry iff
diagram (1) commutes for every \((R, S, T)\) with \(t \) small.
This is equivalent to

(a) \(S \circ g = g \circ R \)

(b) \(T \circ h = h \circ R \)

Differencing (a) and (b) with respect to \(t \) at \(t = 0 \) we get
(i) and (ii).

Now we proceed with the Generalized Noether’s theorem.

For a Hamiltonian system \(\sum (M, W, B, f) \) we have
\(g'\omega = h'\omega' \) (By proof of Proposition 1)
\[g'\omega(R, -) = h'\omega'(R, -), \]
\[\Leftrightarrow \omega(g, R, g, -) = \omega(h, R, h, -), \text{(By proposition 2)} \]
\[\Leftrightarrow dF(g, -) = dF^r(h, -), \]
\[\Leftrightarrow d(F \circ g) = d(F^r \circ h). \]

We have used the fact that \(\omega(\dot{S}, -) = dF \) when
\(\omega(S, -) = dF \) [4]. We have thus obtained
\[F \circ g = F^r \circ h. \]

Therefore \((F, F^r) \) is a conservation law. (c.f. definition 4)

Conversely:

Let \((F, F^r) \) be a conservation law. This is equivalent to
\(F - F^r \) restricted to \(f(B) \) equal to zero. For \((x, \dot{x}) \in TM \)
and \(w \in W \) we set \(\dot{F}(F^r - F)(x, \dot{x}, w) = \dot{F}(x, \dot{x}) - F^r(w) \)
such that \(\dot{F} - F^r : TM \times W \to \mathbb{R} \). \(\dot{F} - F^r \) is therefore a
Hamiltonian function. Hence we can define the Hamiltonian
vectorfield \(X_{F^r} \) on the symplectic manifold
\((TM \times W, \pi_1^*\omega - \pi_2^*\omega) \). With \(X_F \) the Hamiltonian
vectorfield on \(TM \) and \(X_{F^r} \) the Hamiltonian vectorfield on
we have
\[X_{F_{p,f}} = (X_F, X_{f'}) \]. Because \(F - F' \) restricted to \(f(B) \) is zero, it follows that
\[\pi^* \omega - \pi^* (\theta X_{F_{p,f}}) = X_F (F - F') = 0 \] on \(f(B) \) for all Hamiltonian vectorfield \(X_F \) tangent to \(f(B) \).
\[X_{F_{p,f}} = (X_F, X_{f'}) \] is also tangent to \(f(B) \) since \(f(B) \) is Lagrangian. If we denote \(X_F \) by \(S \) and \(X_{f'} \) by \(T \) then we say \((S, T) \) is tangent to \(f(B) \) and for \(t \) small we obtain
\[(S_t, T_t) f(B) = f(B) \]

We construct a Hamiltonian symmetry \((R, S, T)\) by defining a 1-parameter family \(\phi: B \to B \) such that
\[(S_t, T_t) f = f \circ \phi \] for \(t \) small and a vectorfield \(R \) on \(B \) by
\[R(x) = \frac{d\phi}{dt} \bigg|_{t=0} (x). \]

4. Conclusion

The concept of symmetry for Hamiltonian systems has been formulated and analysed. It was shown that symmetry of a physical system is a transformation which may be applied to the state space without altering the system or its dynamical interaction in any way. Symmetries and conservation laws with external to Hamiltonian systems with external forces has been analysed. The conservation law for a Hamiltonian system was constructed and which was concluded by generalized Noether’s theorem.

References

[1] V. I. Arnold, Mathematical Methods of Classical Mechanics (Translation of the 1974 Russian Edition), Springer, New York, 1978.
[2] C. M. Marle, On Symmetries and Constants of Motion in Hamiltonian Systems with Non-Holonomic Constraints.
[3] J. E. Marsden and A. Weinstern, Reduction of symplectic manifolds with symmetry, Reports on Mathematical Physics, 5, pp. 121-130, 1974.
[4] A. J. Van der Schaft, Symmetries and Conservation Laws for Hamiltonian Systems with Inputs and Outputs: A Generalization of Noether’s Theorem, Systems & Control Letters, Vol 1, pp. 108-115, 1981.
[5] L. P. Landau and E. M. Lifschitz, Mechanics, Pergamon Press, Oxford, 1976.
[6] A. J. Van der Schaft, System Theoretic Description of Physical System, Doctoral Thesis, Mathematical Centrum, Amsterdam, 1984.
[7] V. I. Arnold and S. P. Novikov, Dynamical Systems IV, Springer-Verlag, Berlin, Heidelberg, 1990.
[8] A. J. Van der Schaft, Symmetries, Conservation Laws and Time Reveribility for Hamiltonian Systems with External Forces, Journal of Mathematical Physics, Vol 24, pp. 2095-2101.
[9] J. C. Willems and A. J. Van der Schaft, Modelling of Dynamical Systems Using External and Internal Variables with Application to Hamiltonian Systems, Dynamical Systems and Microphysics, pp. 233-263, Academic Press, New York, 1982.
[10] S. P. Banks, Mathematical Theories of Nonlinear Systems, Prentice Hall, New York, 1988.