New Physics / Resonances in Vector Boson Scattering at the LHC

Jürgen R. Reuter, DESY

based on work with A. Alboteanu, S. Brass, C. Fleper, W. Kilian, T. Ohl, M. Sekulla

w. EPJC [1807.02512] PRD93(16),3.036004 [1511.00022], PRD91(15) 096007 [1408.6207] JHEP 0811.010 [0806.4145]
Vector Boson Scattering after the Higgs Discovery

• Discovery of a light Higgs boson leaves still open questions:

1. **Nature of Electroweak Symmetry Breaking**
2. Higgs boson potential, all the way like the Standard Model!?
3. Does “the Higgs” fulfill the US-fermion/Europe-boson rule?
4. Is the 125 GeV state the only resonance in the system of EW vector bosons?
5. How do EW vector bosons scatter? (true heart of weak interactions)
6. Is there something related to the Little Hierarchy problem (strong or weak)
7. Look for deviations in intricate cancellations of VBS amplitudes
Anatomy of Vector Boson Scattering (VBS)

\[pp \rightarrow WWjj \rightarrow ℓννjj \]

- **Discovery for** \(W^+W^+jj \) (electroweak production)
 - ATLAS PRL 113(2014)14, 141803 [1405.6241] & 1611.02428; CMS PRL 114(2015), 051801 [1410.6315]

- **First limits on New Physics in** pure electroweak gauge/Goldstone sector
Anatomy of Vector Boson Scattering (VBS)

- Forward and high momentum jets
- Low central jet activity

VBS ZZjj Candidate Event from PLB 774 (2017) 682

shown by Kenneth Long, Seoul, ICHEP 2018
More channels came/coming up …

Post-fit background normalisations

\[\mu_{\text{WZ-QCD}} = 0.60 \pm 0.25 \]
\[\mu_{\text{tt\nu}} = 1.18 \pm 0.19 \]
\[\mu_{\text{ZZ}} = 1.34 \pm 0.29 \]

WZjj-EW measured signal strength:

\[\mu_{\text{EW}} = 1.77 \pm 0.41 \text{(stat.)} \pm 0.17 \text{(syst.)} = 1.77 \pm 0.45 \]

Corresponding sign.: \(5.6\sigma \) (3.3\(\sigma \) expected)

Corresponding fid. cross section:

\[
\sigma_{\text{WZjj} \rightarrow l\nu l\nu jj} = 0.57 \pm 0.15 \text{ fb} \\
= 0.57 \pm 0.14 \text{ (stat.)} \pm 0.05 \text{ (sys.)} \pm 0.04 \text{ (th.) fb}
\]

Observed (expected) of EW WZ 1.9\(\sigma \) (2.7\(\sigma \))

Observed (expected) of 5.5\(\sigma \) (5.7\(\sigma \))

Observed (expected) of 2.7\(\sigma \) (1.6\(\sigma \))
Deviations as EFT — Dim 8 Operators

Motivated by SMEFT:

\[
\mathcal{L} = \mathcal{L}_{SM} + \sum_i \left[\frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \cdots \right]
\]

Longitudinal operators

\[
\begin{align*}
\mathcal{L}_{S,0} &= F_{S,0} \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \\
\mathcal{L}_{S,1} &= F_{S,1} \text{tr} \left[(D_\mu H) \dagger (D_\mu H) \right] \text{tr} \left[(D_\nu H) \dagger (D_\nu H) \right]
\end{align*}
\]

Mixed operators

\[
\begin{align*}
\mathcal{L}_{M,0} &= -g^2 F_{M,0} \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \text{tr} \left[W_{\nu \rho} W^{\nu \rho} \right] \\
\mathcal{L}_{M,1} &= -g^2 F_{M,1} \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \text{tr} \left[W_{\nu \rho} W^{\nu \mu} \right] \\
\mathcal{L}_{M,2} &= -g^2 F_{M,2} \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \text{tr} \left[B_{\nu \rho} B^{\nu \rho} \right] \\
\mathcal{L}_{M,3} &= -g^2 F_{M,3} \text{tr} \left[(D_\mu H) \dagger (D_\nu H) \right] \text{tr} \left[B_{\nu \rho} B^{\nu \mu} \right] \\
\mathcal{L}_{M,4} &= -g g' F_{M,4} \text{tr} \left[(D_\mu H) \dagger W_{\nu \rho} (D_\mu H) B^{\nu \rho} \right] \\
\mathcal{L}_{M,5} &= -g g' F_{M,5} \text{tr} \left[(D_\mu H) \dagger W_{\nu \rho} (D_\nu H) B^{\nu \mu} \right] \\
\mathcal{L}_{M,7} &= -g^2 F_{M,7} \text{tr} \left[(D_\mu H) \dagger W_{\nu \rho} W^{\nu \mu} (D_\rho H) \right]
\end{align*}
\]

Transversal operators

\[
\begin{align*}
\mathcal{L}_{T,0} &= g^4 F_{T,0} \text{tr} \left[W_{\mu \nu} W^{\mu \nu} \right] \text{tr} \left[W_{\alpha \beta} W^{\alpha \beta} \right] \\
\mathcal{L}_{T,1} &= g^4 F_{T,1} \text{tr} \left[W_{\alpha \nu} W^{\mu \beta} \right] \text{tr} \left[W_{\mu \beta} W^{\alpha \nu} \right] \\
\mathcal{L}_{T,2} &= g^4 F_{T,2} \text{tr} \left[W_{\alpha \mu} W^{\mu \beta} \right] \text{tr} \left[W_{\beta \nu} W^{\nu \alpha} \right] \\
\mathcal{L}_{T,5} &= g^2 g^2 F_{T,5} \text{tr} \left[W_{\mu \nu} W^{\mu \nu} \right] \text{tr} \left[B_{\alpha \beta} B^{\alpha \beta} \right] \\
\mathcal{L}_{T,6} &= g^2 g^2 F_{T,6} \text{tr} \left[W_{\alpha \nu} W^{\mu \beta} \right] \text{tr} \left[B_{\mu \beta} B^{\alpha \nu} \right] \\
\mathcal{L}_{T,7} &= g^2 g^2 F_{T,7} \text{tr} \left[W_{\alpha \mu} W^{\mu \beta} \right] \text{tr} \left[B_{\beta \nu} B^{\alpha \nu} \right] \\
\mathcal{L}_{T,8} &= g^4 F_{T,8} \text{tr} \left[B_{\mu \nu} B^{\mu \nu} \right] \text{tr} \left[B_{\alpha \beta} B^{\alpha \beta} \right] \\
\mathcal{L}_{T,9} &= g^4 F_{T,9} \text{tr} \left[B_{\alpha \mu} B^{\mu \beta} \right] \text{tr} \left[B_{\beta \nu} B^{\nu \alpha} \right]
\end{align*}
\]

S. Weinberg, 1979
Buchmüller/Wyler, 1986
Grzadkowski/Iskrzynski/Misiak/Rosiek, 2010
Eboli/Gonzalez-Garcia/Mizukoshi, 2006
Alboteanu/Kilian/JRR, 2008
Kilian/Ohl/JRR/Sekulla, 2014
Deviations as EFT — Dim 8 Operators

Motivated by SMEFT:

\[\mathcal{L} = \mathcal{L}_{SM} + \sum_i \left[\frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} \right] + \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \frac{c_i^{(7)}}{\Lambda^3} \mathcal{O}_i^{(7)} + \frac{c_i^{(8)}}{\Lambda^4} \mathcal{O}_i^{(8)} + \ldots \]

Longitudinal operators

\[\mathcal{L}_{S,0} = F_{S,0} \text{tr} \left[(D_{\mu} H) \dagger (D_{\nu} H) \right] \text{tr} \left[(D^{\mu} H) \dagger (D^{\nu} H) \right] \]
\[\mathcal{L}_{S,1} = F_{S,1} \text{tr} \left[(D_{\mu} H) \dagger (D^{\mu} H) \right] \text{tr} \left[(D_{\nu} H) \dagger (D^{\nu} H) \right] \]

Mixed operators

\[\mathcal{L}_{M,0} = g^2 F_{M,0} \text{tr} \left[(D_{\mu} H) \dagger (D^{\mu} H) \right] \text{tr} \left[W_{\nu\rho} W^{\nu\rho} \right] \]
\[\mathcal{L}_{M,1} = g^2 F_{M,1} \text{tr} \left[(D_{\mu} H) \dagger (D^{\rho} H) B^{\nu\mu} \right] \]
\[\mathcal{L}_{M,4} = g^2 g' F_{M,4} \text{tr} \left[(D_{\mu} H) \dagger W_{\nu\rho} (D^{\mu} H) B^{\nu\rho} \right] \]
\[\mathcal{L}_{M,5} = g^2 g' F_{M,5} \text{tr} \left[(D_{\mu} H) \dagger W_{\nu\rho} (D^{\rho} H) B^{\nu\mu} \right] \]
\[\mathcal{L}_{M,7} = g^2 F_{M,7} \text{tr} \left[(D_{\mu} H) \dagger W_{\nu\rho} W^{\nu\mu} (D^{\rho} H) \right] \]
\[\mathcal{L}_{M,8} = g^4 F_{M,8} \text{tr} \left[B_{\mu\nu} B^{\mu\nu} \right] \]
\[\mathcal{L}_{M,9} = g^4 F_{M,9} \text{tr} \left[B_{\alpha\beta} B^{\alpha\beta} \right] \]

Transversal operators

\[\mathcal{L}_{T,0} = g^4 F_{T,0} \text{tr} \left[W_{\mu\nu} W^{\mu\nu} \right] \text{tr} \left[W_{\alpha\beta} W^{\alpha\beta} \right] \]
\[\mathcal{L}_{T,1} = g^4 F_{T,1} \text{tr} \left[W_{\alpha\nu} W^{\mu\beta} \right] \text{tr} \left[W_{\mu\beta} W^{\alpha\nu} \right] \]
\[\mathcal{L}_{T,7} = g^2 g'^2 F_{T,7} \text{tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \text{tr} \left[B_{\beta\nu} B^{\nu\alpha} \right] \]
\[\mathcal{L}_{T,8} = g^4 F_{T,8} \text{tr} \left[B_{\mu\nu} B^{\mu\nu} \right] \text{tr} \left[B_{\alpha\beta} B^{\alpha\beta} \right] \]
\[\mathcal{L}_{T,9} = g^4 F_{T,9} \text{tr} \left[B_{\alpha\mu} B^{\mu\beta} \right] \text{tr} \left[B_{\beta\nu} B^{\nu\alpha} \right] \]

Energy rise of operators lead to unitarity violation

Unitarity violation cancels between operators in UV-complete Theory

S. Weinberg, 1979
Buchmüller/Wyler, 1986
Grzadkowski/Iskrzynski/Misiak/Rosiek, 2010
Eboli/Gonzalez-Garcia/Mizukoshi, 2006
Alboteanu/Kilian/JRR, 2008
Kilian/Ohl/JRR/Sekulla, 2014
Procedures to treat unitarity violations

Cut-off (a.k.a. “Event clipping”) \(\theta(\Lambda_C^2 - s) \)

- Unitarity bound (0th partial wave) at \(\Lambda_C \)
- No continuous transition beyond
- Effect on BDT training not clear
Procedures to treat unitarity violations

Cut-off (a.k.a. “Event clipping”) \(\theta(\Lambda_C^2 - s) \)

unitarity bound (0th partial wave) at \(\Lambda_C \)
o no continuous transition beyond
Effect on BDT training not clear

Form factor

\[
\frac{1}{\left(1 + \frac{s}{\Lambda_{FF}}\right)^n}
\]

Applicable for arbitrary operators, tuning in 2 parameters: \(n \) damps unitarity violation, \(\Lambda_{FF} \)
highest value to satisfy 0th partial wave
Procedures to treat unitarity violations

Cut-off (a.k.a. “Event clipping”) \(\theta(\Lambda^2_C - s) \)

- Unitarity bound (0th partial wave) at \(\Lambda_C \)
- No continuous transition beyond
- Effect on BDT training not clear

Form factor

\[\frac{1}{(1 + \frac{s}{\Lambda_{FF}^2})^n} \]

- Applicable for arbitrary operators, tuning in 2 parameters: \(n \) damps unitarity violation, \(\Lambda_{FF} \)
- Highest value to satisfy 0th partial wave

\(K/T\)-matrix saturation

\[a = \frac{1}{\text{Re}(\frac{1}{a_0}) - i} \]

- Saturates amplitude [projection to unitarity circle], also for complex ampl., no additional parameters

Alboteanu/Kilian/JRR, 2008 Kilian/Ohl/JRR/Sekulla, 2014
VBS diboson spectra

General cuts: $M_{jj} > 500$ GeV; $\Delta \eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\Delta \eta_j| < 4.5$

J.R. Reuter

New Physics in VBS @ LHC

LHCP 2019, Puebla, 24.5.19
General cuts: \(M_{jj} > 500 \, \text{GeV}; \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \, \text{GeV}; \ |\Delta \eta_j| < 4.5 \)
VBS diboson spectra

General cuts:
\[M_{jj} > 500 \text{ GeV}; \quad \Delta \eta_{jj} > 2.4; \quad p_T^j > 20 \text{ GeV}; \quad |\Delta \eta_j| < 4.5 \]
General cuts: \(M_{jj} > 500 \text{ GeV}; \ \Delta \eta_{jj} > 2.4; \ \ p_T^j > 20 \text{ GeV}; \ \ |\Delta \eta_j| < 4.5 \)

J.R. Reuter
New Physics in VBS @ LHC
LHCP 2019, Puebla, 24.5.19
VBS diboson spectra

General cuts: \(M_{jj} > 500 \text{ GeV} \); \(\Delta \eta_{jj} > 2.4 \); \(p_T^j > 20 \text{ GeV} \); \(|\Delta \eta_j| < 4.5 \)

J.R.Reuter
New Physics in VBS @ LHC
LHCP 2019, Puebla, 24.5.19
VBS diboson spectra

Much more leeway for new physics in transversal gauge bosons and di-Higgs

General cuts: $M_{jj} > 500$ GeV; $\Delta \eta_{jj} > 2.4$; $p_T^j > 20$ GeV; $|\Delta \eta_j| < 4.5$

J.R. Reuter
New Physics in VBS @ LHC
LHCP 2019, Puebla, 24.5.19
(In)Validity of (In)Effective Field Theories

- Resonances in direct reach (not clear: strongly interacting models [e.g. σ resonance])

- Estimate of operator coefficients (difficult for strongly coupled models)

\[\mathcal{A}_{SM} \times \mathcal{A}_{\text{dim}-6} \gtrsim |\mathcal{A}_{\text{dim}-6}|^2 \]
\[\mathcal{A}_{SM} \times \mathcal{A}_{\text{dim}-8} \gtrsim |\mathcal{A}_{\text{dim}-8}|^2 \]
\[\mathcal{A}_{SM} \times \mathcal{A}_{\text{dim}-6} \gtrsim \mathcal{A}_{SM} \times \mathcal{A}_{\text{dim}-8} \]

- Partial wave unitarity: gives guidance on maximally possible event numbers

- Positivity constraints on operator coefficients

- Size of coefficients: dichotomy between validity and detectability

- EFT better/best[?] suited in intensity frontier [example: HEFT @ $\mathcal{O}(100 \text{ GeV})$]

- EFT borderline in VBS/energy frontier physics
Bumps vs. Tails
Simplified signal models: generic resonances

- Rise of amplitude: is Taylor expansion below a resonance
- Resonances might be in direct reach of LHC
- EFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin 1 has (partially) different physics (mixing with W/Z)

	isoscalar	isotensor
scalar	σ^0	$\phi_t^-, \phi_t^-, \phi_t^0, \phi_t^+, \phi_t^{++}$, $\phi_v^-, \phi_v^0, \phi_v^+$, ϕ_s^0
tensor	f^0	$(X_t^-, X_t^-, X_t^0, X_t^+, X_t^{++})$, $(X_v^-, X_v^0, X_v^+, X_v^{++})$, (X_s^0)

$32\pi \Gamma / M^5$
σ
$F_{S,0}$
$F_{S,1}$

Translation into Wilson coefficients below resonance
Comparison: Simplified Models & EFT

Black dashed line: saturation of $A_{22}(W^+W^+)/A_{00}(ZZ)$

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

$M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; p_T^j > 20 \text{ GeV}; |\Delta \eta_j| < 4.5$
Comparison: Simplified Models & EFT

Kilian/Ohl/JRR/Sekulla: PRD93(16),3.036004 [1511.00022]

Brass/Fleper/Kilian/JRR/Sekulla: w. EPJC [1807.02512]

Black dashed line: saturation of \(A_{22}(W^+W^+)/A_{00}(ZZ) \)

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars

\[
M_{jj} > 500 \text{ GeV}; \quad \Delta \eta_{jj} > 2.4; \quad p_T^j > 20 \text{ GeV}; \quad |\Delta \eta_j| < 4.5
\]
Comparison: Simplified Models & EFT

$M_{jj} > 500 \text{ GeV}; \Delta \eta_{jj} > 2.4; \ p_T^j > 20 \text{ GeV}; |\Delta \eta_j| < 4.5$

- EFT fails at resonance
- aQGC describe rise of resonance
- Unitarization applied
- Tensor resonances better visible than scalars
Triple [multiple] Vector Boson Production?

Evidence at ATLAS at 4σ level: smallest SM cross section

Relate to?

- Yes, same Feynman rule as in VBS, but …
- one external $W/Z/\gamma$ always far off-shell
- Unitarization: work in progress (needs $2 \rightarrow 3$ unitarizations, inelastic channels) [Kilian/Kreher/JRR, w.i.p.]
- Different Wilson coefficients dominate (particularly for resonances)
- Important physics (partially) independent from VBS (“different fiducial vol.”)
Conclusions / Summary

- Vector boson scattering a flagship measurement of Runs II/III (and FCC-hh !)
- EFT provides well-defined (and very limited) framework for SM deviations

- There is not really a true model-independent parameterization!
- Unitarization for theoretically sane description (allows reliable BDT analysis)
- T-matrix unitarization universal scheme for EFT and resonances
- Simplified models: generic electroweak resonances
- Limits from LHC still quite limited: $\Lambda_{\text{new physics}} \sim 700–800$ GeV
7th Workshop on Multi-Boson Interactions

August 26-28, 2019
Aristotle U., Thessaloniki

1. TU Dresden
2. BNL (Brookhaven Ntl. Lab)
3. DESY
4. U. of Wisconsin — Madison
5. KIT Karlsruhe
6. U. of Michigan — Ann Arbor
7. Aristotle U. Thessaloniki
BACKUP SLIDES
Anatomy of Vector Boson Scattering (VBS)

\[pp \rightarrow WWjj \rightarrow \ell \nu \nu jj \]

Backgrounds:
- \(tt \rightarrow WbWb \)
- \(W + \) jets
- single top, misreconstructed jet
- \(WWjj \) QCD production
- \(ll + X + \text{Emiss} \) ("prompt")

Fiducial phase space volume:
- \(lljj \) tag
- \(m_{jj} > 500 \text{ GeV} \) ("jet recoil")
- \(|\Delta y_{jj}| > 2.4 \) ("rapidity distance")
- Cuts on \(E_{\text{j}}, p_{Tj} \)
- No mini jet vetoes

CMS Preliminary

May 2018

Production Cross Section, \(\sigma \) [pb]
Differential spectra in VBS

\[pp \rightarrow e^+ \mu^+ \nu_e \nu_\mu jj \quad \sqrt{s} = 14 \text{ TeV} \quad \mathcal{L} = 1 \text{ ab}^{-1} \]

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]
Differential spectra in VBS

\[pp \to e^+ \mu^+ \nu_e \nu_\mu jj \quad \sqrt{s} = 14 \text{ TeV} \quad \mathcal{L} = 1 \text{ ab}^{-1} \]

Simulations with WHIZARD \(\text{[http://whizard.hepforge.org, Kilian/Ohl/JRR]} \)

\[\mathcal{L}_{HD} = F_{HD} \text{tr} \left[H^\dagger H - \frac{\nu^2}{4} \right] \cdot \text{tr} \left[(D_\mu H)^\dagger D_\mu H \right] \]

\[F_{HD} = 30 \text{ TeV}^{-2} \]
Differential spectra in VBS

\[pp \rightarrow e^+ \mu^+ \nu_e \nu_\mu jj \quad \sqrt{s} = 14 \text{ TeV} \quad \mathcal{L} = 1 \text{ ab}^{-1} \]

Simulations with WHIZARD \[\text{[http://whizard.hepforge.org, Kilian/Ohl/JRR]}\]

\[\mathcal{L}_{S,0} = F_{S,0} \frac{v^4}{16} \text{Tr}[\nu_\mu \nu_\nu] \text{Tr}[\nu_\mu \nu_\nu] \]

\[\mathcal{L}_{S,1} = F_{S,1} \frac{v^4}{16} \text{Tr}[\nu_\mu \nu_\mu] \text{Tr}[\nu_\nu \nu_\nu] \]

\[F_{S,0} = 480 \text{ TeV}^{-4} \]

\[M_{jj} > 500 \text{ GeV}; \quad \Delta \eta_{jj} > 2.4; \quad p_T^j > 20 \text{ GeV}; \quad |\Delta \eta_j| < 4.5; \quad p_T^\ell > 20 \text{ GeV} \]

J.R.Reuter

New Physics in VBS @ LHC

LHCP 2019, Puebla, 24.5.19
Differential spectra in VBS

\[pp \rightarrow e^+ \mu^+ \nu_e \nu_\mu jj \quad \sqrt{s} = 14 \text{ TeV} \quad \mathcal{L} = 1 \text{ ab}^{-1} \]

Simulations with WHIZARD [http://whizard.hepforge.org, Kilian/Ohl/JRR]

\[
\mathcal{L}_{S,0} = F_{S,0} \frac{v^4}{16} \text{Tr}[V_\mu V_\nu] \text{Tr}[V^\mu V^\nu]
\]

\[
\mathcal{L}_{S,1} = F_{S,1} \frac{v^4}{16} \text{Tr}[V_\mu V^\mu] \text{Tr}[V_\nu V^\nu]
\]

\[F_{S,1} = 480 \text{ TeV}^{-4} \]

\[M_{jj} > 500 \text{ GeV}; \quad \Delta \eta_{jj} > 2.4; \quad p_T^j > 20 \text{ GeV}; \quad |\Delta \eta| < 4.5; \quad p_T^\ell > 20 \text{ GeV} \]
How to get EFTs from New Physics

✦ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993
How to get EFTs from New Physics

✦ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

✦ Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions

✦ Toy Example: two interacting scalar fields φ, Φ

Path integral

$$\mathcal{Z}[j, J] = \int D[\Phi] D[\varphi] \exp \left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi (\square + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j \varphi \right) \right]$$
How to get EFTs from New Physics

✦ Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

✦ Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions

✦ Toy Example: two interacting scalar fields φ, Φ

Path integral

$$Z[j, J] = \int D[\Phi] D[\varphi] \exp \left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi (\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J\Phi + j\varphi \right) \right]$$

Completing the square (Gaussian integration)

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \quad \Rightarrow \quad \text{Diagram}$$
How to get EFTs from New Physics

- Consider effects from heavy states by using (known) low-energy d.o.f.s

In addition to being a great convenience, effective field theory allows us to ask all the really scientific questions that we want to ask without committing ourselves to a picture of what happens at arbitrarily high energy.

H. Georgi, 1993

- Integrating out heavy d.o.f.s marginalizes over details of short-distance interactions
- Toy Example: two interacting scalar fields φ, Φ

Path integral

$$\mathcal{Z}[j, J] = \int D[\Phi] D[\varphi] \exp \left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi (\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j \varphi \right) \right]$$

Completing the square (Gaussian integration)

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \implies$$

In the Lagrangian remove the high-scale d.o.f.s:

$$\frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} M^2 \Phi^2 - \lambda \varphi^2 \Phi = -\frac{1}{2} \Phi' (M^2 + \partial^2) \Phi' + \frac{\lambda^2}{2M^2} \varphi^2 \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2$$

Irrelevant normalization of the path integral

Tower of higher and higher-dim. operators of light fields
1. **SM or weakly coupled physics (e.g. 2HDM):** amplitude remains close to origin

2. **Rising amplitude (at least one dim-8 operator):** rise beyond unitarity circle [unphys.], strongly interacting regime

3. **Inelastic channel opens (form-factor description):** new channels open out, multi-boson final states

4. **Saturation of amplitude:** maximal amplitude, strongly interacting continuum, K-/T-matrix unitarization

5. **New resonance:** amplitude turns over
Unitarity in vector boson scattering

Optical Theorem (Unitarity of the S(cattering) Matrix):

\[\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t = 0) \right] / s \quad t = -s(1 - \cos \theta)/2 \]

Partial wave amplitudes:

\[\mathcal{M}(s, t, u) = 32\pi \sum_\ell (2\ell + 1) A_\ell(s) P_\ell(\cos \theta) \] ("Power spectrum")
Unitarity in vector boson scattering

Optical Theorem (Unitarity of the S(cattering) Matrix):

\[\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t = 0) \right] / s \quad t = -s(1 - \cos \theta) \]

Partial wave amplitudes:

\[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_{\ell}(s) P_{\ell}(\cos \theta) \]

("Power spectrum")
Unitarity in vector boson scattering

Optical Theorem (Unitarity of the S(cattering) Matrix):
\[\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t = 0) \right] / s \quad t = -s(1 - \cos \theta) \]

Partial wave amplitudes:
\[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_\ell(s) P_\ell(\cos \theta) \quad \text{("Power spectrum")} \]

Assuming only elastic scattering:
\[\sigma_{\text{tot}} = \sum_\ell \frac{32\pi (2\ell + 1)}{s} |A_\ell|^2 = \sum_\ell \frac{32\pi (2\ell + 1)}{s} \text{Im} [A_\ell] \Rightarrow |A_\ell|^2 = \text{Im} [A_\ell] \]
Unitarity in vector boson scattering

Optical Theorem (Unitarity of the S(cattering) Matrix):
\[\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t = 0) \right] / s \quad t = -s(1 - \cos \theta) \]

Partial wave amplitudes:
\[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_\ell(s) P_\ell(\cos \theta) \]

(“Power spectrum”)

Assuming only elastic scattering:
\[\sigma_{\text{tot}} = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} |A_{\ell}|^2 = \sum_{\ell} \frac{32\pi(2\ell+1)}{s} \text{Im}[A_{\ell}] \Rightarrow |A_{\ell}|^2 = \text{Im}[A_{\ell}] \]

SM longitudinal isospin eigenamplitudes \((A_{I,\text{spin}=J})\):
\[A_{I=0} = 2 \frac{s}{v^2} P_0(s) \quad A_{I=1} = \frac{t-u}{v^2} = \frac{s}{v^2} P_1(s) \quad A_{I=2} = -\frac{s}{v^2} P_0(s) \]
Unitarity in vector boson scattering

Optical Theorem (Unitarity of the S(cattering) Matrix):

\[\sigma_{\text{tot}} = \text{Im} \left[\mathcal{M}_{ii}(t = 0) \right] / s \quad t = -s(1 - \cos \theta), \]

Partial wave amplitudes:

\[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_{\ell}(s) P_\ell(\cos \theta) \text{ ("Power spectrum")}, \]

Assuming only elastic scattering:

\[\sigma_{\text{tot}} = \sum_{\ell} \frac{32\pi (2\ell + 1)}{s} |A_{\ell}|^2 = \sum_{\ell} \frac{32\pi (2\ell + 1)}{s} \text{Im} [A_{\ell}] \Rightarrow |A_{\ell}|^2 = \text{Im} [A_{\ell}] \]

SM longitudinal isospin eigenamplitudes (\(A_{I,\text{spin}=j}\)):

\[A_{I=0} = 2 \frac{s}{v^2} P_0(s) \quad A_{I=1} = \frac{t-u}{v^2} = \frac{s}{v^2} P_1(s) \quad A_{I=2} = -\frac{s}{v^2} P_0(s) \]

exceeds unitarity bound \(|A_{IJ}| \lesssim \frac{1}{2}\) at:

- \(I = 0\): \(E \sim \sqrt{8\pi v} = 1.2\ \text{TeV}\)
- \(I = 1\): \(E \sim \sqrt{48\pi v} = 3.5\ \text{TeV}\)
- \(I = 2\): \(E \sim \sqrt{16\pi v} = 1.7\ \text{TeV}\)

Higgs exchange:

\[A(s, t, u) = -\frac{M_H^2}{v^2} \frac{s}{s - M_H^2} \]

Unitarity:

\[M_H \lesssim \sqrt{8\pi v} \sim 1.2\ \text{TeV} \]
Different unitarity projections

- **K-matrix**: Cayley transform of S-matrix
 - Heitler, 1941; Schwinger, 1949; Gupta, 1950

- Stereographic projection to Argand circle

\[
S = \frac{1 + iK/2}{1 - iK/2} \quad a_K(s) = \frac{a(s)}{1 - ia(s)}
\]
Different unitarity projections

- **K-matrix**: Cayley transform of S-matrix
 Heitler, 1941; Schwinger, 1949; Gupta, 1950

- Stereographic projection to Argand circle

\[
S = \frac{1 + iK/2}{1 - iK/2} \quad a_K(s) = \frac{a(s)}{1 - i a(s)}
\]

- Stereographic projection to Argand circle

- Formalism does a partial resummation of perturbative series

- Need to construct (orig.) K-matrix as self-adjoint intermediate operator
 Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.
Different unitarity projections

- **K-matrix:** Cayley transform of S-matrix
 \[
 S = \frac{1+iK/2}{1-iK/2} \quad a_K(s) = \frac{a(s)}{1-ia(s)}
 \]
 Heitler, 1941; Schwinger, 1949; Gupta, 1950

 Stereographic projection to Argand circle

- **T-matrix:** Thales circle construction
 Defined via
 \[
 |a - \frac{a_K}{2}| = \frac{a_K}{2} \quad \Rightarrow \quad a = \frac{1}{\text{Re}(\frac{1}{a_0})-i}
 \]
 Kilian/Ohl/JRR/Sekulla, 2014

 Stereographic projection to Argand circle

 Formalism does a partial resummation of perturbative series

 need to construct (orig.) K-matrix as self-adjoint intermediate operator

 Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.
Different unitarity projections

- **K-matrix**: Cayley transform of S-matrix
 Heitler, 1941; Schwinger, 1949; Gupta, 1950

 Stereographic projection to Argand circle

 \[S = \frac{1 + iK/2}{1 - iK/2} \quad a_K(s) = \frac{a(s)}{1 - i a(s)} \]

- **Stereographic projection to Argand circle**

- **Formalism does a partial resummation of perturbative series**

- **need to construct (orig.) K-matrix as self-adjoint intermediate operator**

 Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.

- **T-matrix**: Thales circle construction
 Kilian/Ohl/JR/R/Sekulla, 2014

 Defined via
 \[|a - \frac{a_K}{2}| = \frac{a_K}{2} \implies a = \frac{1}{\text{Re} \left(\frac{1}{a_0} \right) - i} \]

 Identical to K matrix for real amplitudes

 Points on Argand circle left invariant

 Does not rely on perturbation theory

 Applicable for amplitudes with imaginary parts (models with resonances)
Different unitarity projections

- **K-matrix:** Cayley transform of S-matrix

 \[S = \frac{1+iK/2}{1-iK/2} \quad a_K(S) = \frac{a(s)}{1-ia(s)} \]

- Stereographic projection to Argand circle

- Formalism does a partial resummation of perturbative series

- Need to construct (orig.) K-matrix as self-adjoint intermediate operator

- Problems, if S-matrix non-diagonal, presence of non-perturbative contrib.

- **T-matrix:** Thales circle construction

- Defined via \(|a - \frac{a_K}{2}| = \frac{a_K}{2} \Rightarrow a = \frac{1}{\text{Re}(\frac{1}{a_0})} - i \)

- Identical to K matrix for real amplitudes

- Points on Argand circle left invariant

- Does not rely on perturbation theory

- Applicable for amplitudes with imaginary parts (models with resonances)
Complete LHC process at 14 TeV

$pp \rightarrow e^+ e^- \mu^+ \mu^- jj$ at 3 ab$^{-1}$

- $F_f = 17.4$ TeV$^{-1}$
- SM

$M_f = 1.0$ TeV

$M \left(e^+, e^-, \mu^+, \mu^- \right)$ [GeV]
Remark on alternative unitarizations

- Independent Amplitude Method (IAM) \cite{Truong, 1988; Dobado/Herrero/Truong, 1990}
- Padé Method \cite{Padé, 1890; Basdevant/Lee, 1970}
- N/D method \cite{Chew/Mandelstam, 1960}
- Focus on correct descriptions of certain explicit (known) resonance channels
- Tied to chiral perturbation theory and QCD \Rightarrow more model-dependence
- Unitarization is not a tool to predict resonances
Remark on alternative unitarizations

- Independent Amplitude Method (IAM) [Truong, 1988; Dobado/Herrero/Truong, 1990]
- Padé Method [Padé, 1890; Basdevant/Lee, 1970]
- N/D method [Chew/Mandelstam, 1960]
- Focus on correct descriptions of certain explicit (known) resonance channels
- Tied to chiral perturbation theory and QCD \(\Rightarrow\) more model-dependence
- Unitarization is not a tool to predict resonances

Unitarization of operators

- Clebsch-Gordan decomposition into spin–isospin eigenamplitudes
- Amplitudes should be modified only in \(s\)-channel configurations
 \[
 \mathcal{A}(I = 0) = 3\mathcal{A}(s, t, u) + \mathcal{A}(t, s, u) + \mathcal{A}(u, s, t)

 \mathcal{A}(I = 1) = \mathcal{A}(t, s, u) - \mathcal{A}(u, s, t)

 \mathcal{A}(I = 2) = \mathcal{A}(t, s, u) + \mathcal{A}(u, s, t)
 \]
- Evaluate modified Feynman rules off-shell
- Scale that is used for the diboson system in \(s\)-channel setups: \(\sqrt{\hat{s}} V V\)
Use spin-isospin eigenamplitudes exclusive in helicities:

\[\mathcal{A}_0(s, t, u; \lambda) \]

Can be obtained by using Wigner’s \(d \)-functions [Wigner, 1931]

\[\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \]
\[\lambda = \lambda_1 - \lambda_2 \quad \lambda' = \lambda_3 - \lambda_4 \]

Extract all partial waves:

\[A_{ij}(s; \lambda)/(g^4 s^2) = (c_0 F_{T_0} + c_1 F_{T_1} + c_2 F_{T_2}) \]

	0	1	2	\lambda
0	-6	-2	-3	+ + + + +
	0 0	0 0	-2/3	+ - + -
	0 0	0 0	-2/3	+ - + -
	-22/3	-14/3	-11/3	+ + - -
1	0 0	0 0	0 0	+ + + + +
	0 0	0 0	2/5	+ - + -
	0 0	0 0	-2/5	+ - - +
	0 0	2/5	-1/3	+ + - -
2	0 -2	-1	0 0	+ + + + +
	0 0	0 0	-2/5	+ - - +
	0 0	0 0	-2/5	+ - - +
	-4/3	-8/3	-1/3	+ + - -

Braß/Fleper/Kilian/JRR/Sekulla, 1807.02512