Inflammaging is defined as a chronic, systematic, low-grade, subclinical proinflammatory environment that accelerates cellular aging [6] and occurs in various ARDs including neurodegeneration-related diseases, metabolic diseases, and atherosclerosis [6, 7]. Cellular senescence and SASPs have been suggested as the two major contributors to inflammaging [8]. Senescent cells produce interleukins, chemokines, growth factors, and proteases, which together constitute the SASP [8, 9]. Macrophages are prototypical immune cells expressing SASPs [10]. SASPs are critical for cell vitality and changes in macrophages. Macrophage’s polarization or function are associated with numerous disorders including ARDs [11–13].

IncRNAs regulate different biological phenomena. Numerous putative IncRNAs, which indeed encode micropeptides, have been reported [14], prompting studies on the complexity and importance of these previously disregarded molecules. Advancements in IncRNA-induced ARDs have been reported; however, the mechanism underlying IncRNA regulation of inflammaging remains unknown. This review discusses one potential mechanism wherein IncRNA triggers
cellular senescence and the SASP to exacerbate ARDs, thus potentially providing pathological evidence of ARDs and methods for their treatment.

2. Macrophage Senescence and Inflammaging: An Intimate Relationship

Cellular senescence is a particularly stable state of permanent cell cycle arrest. Macrophages, although terminally differentiated cells, do not undergo this type of replicative senescence and may hence undergo stress-induced senescence. This concept was first introduced in vitro, and it is widely accepted that stress (including reactive oxygen species [ROS] and autophagy defects) plays an important role in senescence in vivo [15]. Senescence occurs throughout an individual’s lifespan and plays diverse critical roles. Senescent cells undergo a characteristic alteration wherein morphological changes, functional impairment, and the expression of senescence-associated β-galactosidase (SA-β-GAL) and p16^Ink4a could be detected [16–18]. For immunocytes including macrophages, aging impairs their capabilities and induces immunodeficiency to some extent [19, 20], leading to reduced immunosurveillance and phagocytosis and resulting in immune evasion among malignant tumors. However, considering the decreased capability of recognizing and clearing senescent cells, the space that normal cells should have occupied is in turn occupied by senescent cells, characterized by a reduction in overall physiological function. Consequently, the organism would be more prone to ARDs.

In healthy conditions, macrophages maintain homeostasis; however, in pathological states, different stresses including DNA damage, telomere shortening, oncogene activation [21, 22], impairment of some key proteins [23], and infections activate the p53, AIM2, and NF-κB signal pathways [24, 25], initiating macrophage senescence. Telomeric DNA is prone to various types of damage including oxidative stress, which can induce telomere shortening [26]. Hence, even terminally differentiated macrophages undergo telomere dysfunction, triggering DNA damage response (DDR) pathways and finally causing cellular senescence [27]. When these damage-associated molecule patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) are highly intensive or temporarily irreversible, the balance between the production and clearance of proinflammatory factors is disrupted. At later stages of macrophage senescence, the net effect is SASP expression (Figure 1). These factors not only aggravate macrophage senescence but are also extracellularly released, thus impairing the functions of surrounding cells. This process is called “paracrine senescence” [28] and causes a wider range of inflammaging. With steady accumulation of senescent cells, senescence eventually occurs at the cellular level and then...
at the organ level, causing organ malfunction, consequently resulting in corresponding aging phenotypes.

Macrophage senescence is inextricably associated with inflamming, bridging SASPs and inflammasomes. p16\(^{ink4a}\) has been implicated in macrophage activation or polarization [29], and SASPs induce senescence-like phenotypes in macrophages [30]. Senescence-related changes in macrophages are speculated to generally represent their proinflammatory activation [31], i.e., proinflammatory effects of macrophages are accompanied by inflamming to some extent. SASPs induce a proinflammatory and aging-promoting environment. This constant detrimental stimulation potentially threatens various cellular components, including organelles and DNA [7]. By increasing SASP expression, these impaired components aggravate inflamming and consequently impair inflammatory homeostasis, thus accelerating senescence and the susceptibility to ARDs [32]. SASPs and inflammasomes simultaneously cause inflamming: they trigger inflamming, thus accelerating aging, and inflamming is manifested through inflammasome induction and SASP expression. Moreover, autophagy defects, oxidative stress, and DNA damage result in the assembly of inflammasomes and expression of SASPs [31–33].

3. IncRNA Triggers Macrophage Senescence in ARDs

Emerging data suggest that IncRNA plays a key role in regulating inflammatory responses. Alterations in various lncRNA expression levels are associated with a proinflammatory phenotype in various ARDs [34–36]. This leads to modification of cellular senescence through several diverse approaches, whether by mediating gene expression or protein function or functioning as competing endogenous RNA (ceRNA). Changes in IncRNAs in ARDs and the corresponding consequences have been widely studied, especially in cancer. However, the association between IncRNA and cellular senescence in ARDs remains an interesting and complex issue. Here, we consider macrophage senescence to investigate the mechanism underlying lncRNA-mediated induction and exacerbation of ARDs.

3.1. Diabetes Mellitus

Diabetes mellitus is among the most serious recent public health challenges. Changes in macrophage expression profiles exert local and systemic inflammatory stress. IncRNA E330013P06 regulates proximal genes involved in macrophage functions to increase IL-6, TNF-\(\alpha\), and NO2 levels while downregulating anti-inflammatory cytokines [37]. Besides gene regulation, Lethe and Dnm3os reportedly bind to the p65 subunit and induce epigenetic modifications, thus disrupting nuclear translocation of NF-\(\kappa\)B and enhanced inflammatory responses and oxidative stress [38, 39]. Moreover, changes in certain IncRNA expression levels potentially lead to higher, more lethal inflamming [40]. In diabetic complications, MALAT1 potentially triggers pyroptosis in macrophages, thus exacerbating the severe consequences of atherosclerosis [40]. These molecular alterations suggest the disruption of macrophage homeostasis with the direct outcome that pancreatic \(\beta\) cells and focal lesions may undergo harsher damage.

3.2. Cancer

As shown in Table 1, macrophage-associated cancers are mostly derived from epithelia. A recent theory states that tumor growth depends not only on tumor cells themselves but also on the peripheral cellular and noncellular components [41]. In cancers, macrophages are recruited to the lesion [42]. Such tumor infiltration and the immunosurveillance of macrophages render them an important cell type in cancer. IncRNAs regulate cancer primarily through direct alteration of gene expression. LNMAT1 recruits hnRNPL to the CCL2 promoter, thus altering its expression and mediating epigenetic alterations and activating and recruiting macrophages to the site of bladder cancer, promoting tumor invasion and lymphatic metastasis [43]. Furthermore, tumor cell-derived IncRNAs are released via exosomes and are internalized by the surrounding macrophages. Changes to downstream pathways disrupt their function, especially phagocytosis, which is critical for tumor clearance [44]. As ceRNA, NIFK-AS1 and CCAT1 decoyed microRNA to suppress macrophage M2 polarization and malignant behaviors [45, 46]. CCAT1 expression levels differ between M1 and M2 macrophages. Furthermore, IncRNA Cox2 potentially alters M1/M2 polarization, thus preventing immune evasion and metastasis [47]. These reports indicate that macrophage M2 polarization facilitates malignant behaviors and some IncRNAs are essential in maintaining the cellular phenotype.

3.3. Atherosclerosis and Related Heart Disease

Atherosclerosis is a chronic inflammatory disease. Macrophages have been recently reported to display marked inflammatory plasticity, particularly polarization. They perpetuate chronic inflammation and growth of atherosclerotic plaques, thus being central to the initiation, growth, and ultimately the rupture of arterial plaques [48]. Studies on atherosclerosis and macrophage have reported that IncRNAs majorly function as ceRNA in causing atherosclerosis. By sequestering microRNAs, MITA, GAS5, HOTAIR, and UCA1 promote M1 polarization, inducing proinflammatory cytokine, matrix metalloproteinase, and ROS levels [49–52]. Furthermore, MeXis and CDKN2B-AS1 interact with DDX17 and DNMT1 to modulate downstream gene expression, thus altering macrophage function and polarization [53, 54]. Atherosclerosis contributes to various lesions, especially cardiovascular disease. Current evidence suggests that the effect of IncRNAs on macrophages in coronary artery disease is the same as that on atherosclerosis [55], highlighting the consistency of its function and prompting its potential as a therapeutic target.

3.4. Other ARDs

Besides the aforementioned diseases, IncRNA regulation of macrophage senescence is also reflected in other ARDs, primarily osteoarthropathies. IncRNAs generally function in the same manner in these diseases as in diabetes, cancer, and atherosclerosis. They alter the expression or function of key proteins by targeting genes or proteins or functioning as ceRNAs to disrupt homeostasis and engage in cellular senescence. Although these are indeed phenotypes of aging cells, they are indirect. A study on
Gene/Protein	IncRNA	Disease	Expression of IncRNA in macrophage	Effects	Mechanism	Model	Ref.
Gene	E330013P06	Diabetes mellitus	Increased	Upregulation of IL-6, TNF-α, NOS2; downregulation of IL-10	E330013P06 regulate expression of nearby genes involved in macrophage function.	Human Mice	[37]
Protein	Lethe	Diabetes mellitus	Decreased	Production of ROS	Lethe binds to p65 subunit and inhibits the translocation of NF-κB to the nucleus.	Mice	[39]
Protein	Dnm3os	Diabetes mellitus	Increased	Enhancement of inflammation and phagocytosis. Upregulation of IL-6, TNF, NOS2.	Dnm3os promotes proinflammatory function by both cis- and tran-action, and possibly via changes in epigenetic histone modifications. This is modulated by nucleolin.	Human Mice	[38]
Unknown	MALAT1	Diabetic atherosclerosis	Increased	Induction of pyroptosis	Unknown.	Rats	[40]
ceRNA	NIFK-AS1	Endometrial cancer	Decreased	NIFK-AS1 overexpression suppresses the IL-4-induced M2 polarization of macrophages and malignant behaviors of endometrial cancer.	NIFK-AS1 downregulates miR-146a.	Human	[46]
ceRNA	CCAT1	Prostate cancer	Increased in M1	CCAT1 knockdown promoted M2 macrophage polarization.	CCAT1 targets miR-148a which regulates the expression of PKCζ.	Human Mice (in vitro)	[45]
Gene	TUC339	Hepatocellular carcinoma	Increased	TUC339 reduces IL-1β and TNF-α, decreases costimulatory molecule expression, and compromises phagocytosis. Knockdown of NEAT1 impairs the malignant progression of thyroid papillary carcinoma-1 and inhibits thyroid tumor growth in vivo.	Enriched TUC339 in PLC/PRF/5-derived exosomes is internalized by macrophage thus changes downstream pathways.	Human	[44]
Gene	NEAT1	Thyroid carcinoma	Increased	Knockdown of NEAT1 impairs the malignant progression of thyroid papillary carcinoma-1 and inhibits thyroid tumor growth in vivo.	NEAT1 decreases the expression of miR-214.	Human Mice	[58]
Gene	LNMAT1	Bladder cancer	Increased	LNMAT1 promotes invasiveness and lymphatic metastasis, and activates and recruits macrophages into the tumor, inducing lymph angiogenesis.	LNMAT1 recruits hnRNPL to CCL2 promoter leading to increased H3K4 trimethylation and CCL2 expression.	Human Mice	[43]
Table 1: Continued.

IncRNA	Disease	Expression of IncRNA in macrophage	Effects	Mechanism
Unknown	Cox2	Hepatocellular carcinoma	Increased in M1	Change of Cox2 alters M1/M2 polarization, regulating immune evasion and metastasis of HCC. Knockdown of MIAT attenuates atherosclerosis progression, promotes atherosclerotic plaque stability, and improves efferocytosis.
ceRNA MIAT	Atherosclerosis	Increased	MIAT acts as ceRNA to positively regulate CD47 expression by sponging miR-149-5p.	Unknown. Mice [47]
ceRNA GSA5	Atherosclerosis	Increased	GSA5 directly binds and suppresses miR-221 expression.	Human Mice [52]
ceRNA HOTAIR	Atherosclerosis	Increased	HOTAIR serves as a sponge of miR-330-3p.	Human Mice [50]
ceRNA UCA1	Atherosclerosis	Increased	UCA1 sponges miR-206.	Human Mice [49]
Gene H19	Atherosclerosis	Increased	H19 upregulates the expression of miR-130b.	Human Mice (in vitro) [59]
Protein MeXis	Atherosclerosis	Increased	Loss of MeXis impairs macrophage Abca1 expression and accelerates atherosclerosis.	Human Mice [54]
Protein CDKN2B-AS1	Atherosclerosis	Decreased	CDKN2B-AS1 inhibits inflammatory response and promotes cholesterol efflux.	Human Mice [53]
Unknown	ENST00000444488.1 and Uc010yfd.1	Coronary artery disease	Increased (ENST00000444488.1); decreased (Uc010yfd.1)	Silencing of ENST00000444488.1 and Uc010yfd.1 decreases or increases proinflammatory cytokines, respectively. Knockdown of NEAT1 disturbs monocyte-macrophage differentiation and its function.
Unknown	NEAT1	Myocardial infarction	Increased	Unknown. Mice [55]

5Mediators of Inflammation
IncRNA	Disease	Expression of IncRNA in macrophage	Effects	Mechanism	Model	Ref.	
ceRNA	CHRF	Pulmonary fibrosis	Increased	CHRF promotes silica-induced pulmonary fibrosis and upregulates IL-1β, TGF-1β.	Human Mice	[61]	
ceRNA	KCNQ1OT1	Osteolysis	Decreased in M1	Overexpression of KCNQ1OT1 induces M2 polarization to ameliorate PMMA-induced osteolysis.	Mice	[62]	
Gene	HIF1A-AS1	Liver failure	Increased	HIF1A-AS1 promotes TNF-α-induced apoptosis.	Mice (in vitro)	[63]	
Protein	NTT	Rheumatoid arthritis	Increased	Rheumatoid arthritis lead to overexpression of PBOV-1 in macrophage, resulting in cell cycle arrest.	Human	[56]	
Unknown	H19	Rheumatoid arthritis; osteoarthritis	Increased	Unknown.	Unknown.	Human	[64]
Unknown	HOTAIR	Rheumatoid arthritis	Increased	HOTAIR induces the migration of active macrophage.	Unknown.	Human	[65]
rheumatoid arthritis reported that NNT regulates downstream gene PBOV-1 via HnRNP-U binding and ultimately alters cellular senescence, i.e., cell cycle arrest [56]. This is a direct testimony to the potential of lncRNA to regulate cell lifespans.

Macrophage polarization is a fundamental phenomenon. Through the mutual transformation of macrophages M1 and M2, macrophages exert opposite functions and participate in different physiological phenomena. M1 polarization is proinflammatory and is associated with inflammaing, while M2 polarization is anti-inflammatory [57]. Increasing evidence indicates that M1 macrophages are at a higher risk of aging-related stress and display senescence phenotypes. lncRNA initiates senescence and ARD pathogenesis by altering macrophage polarization.

4. Three Targets of lncRNA to Regulate Macrophage Senescence

lncRNA alters cellular senescence by mediating gene expression or protein function or functioning as ceRNA. Genes regulated by lncRNA during aging are primarily those involved in the p53 pathway [66]. Furthermore, the expression of cellular senescence-related proteins including p21, p27, and p16Ink4a is influenced [67, 68]. lncRNA generally functions in cis- or trans-action where the former regulates various proximal genes, while the latter regulates distal genes. However, the detailed mechanism underlying lncRNA-gene interactions remains unclear; however, studies have reported certain advancements. lncRNA H19 promotes antiaging effects through miR-675. The latter downregulates p53 and p21 by targeting the 3’UTR of USP10. However, it remains to be elucidated whether there is any mediator in this interplay, along with the mechanism underlying H19 and miR-675 interactions [66]. Furthermore, lncRNA GUARDIN is indispensable for genomic stability by preventing chromosome end-to-end fusion through maintenance of the expression of telomeric repeat-binding factor 2 via sequestering of miR-23a. Moreover, GURADIN downregulation potentially triggers apoptosis and senescence [69]. Certain lncRNAs are involved in genomic stability. R loop formation and cellular senescence have reportedly occurred after alteration of the expression of certain lncRNAs [70]. Moreover, lncRNA CAIF potentially displays transcription factor-like functions trough blocking of p53-mediated myocardin transcription [71].

Along with genes, lncRNA mediates cellular senescence by functioning as ceRNA or by directly targeting proteins. CeRNA competes with microRNAs and regulates their effects on other genes, RNAs, and proteins. lncRNA regulates cellular senescence primarily in this manner. By sequestering various microRNAs, lncRNA prevents them from binding to targets, thus impairing their function [72]. Except for the regulation of gene expression, sponging potentially results in a direct functional change in proteins by attenuating key protein degradation triggered by microRNAs or relieving functional restraints of microRNAs on certain proteins [73, 74].

In a more direct and albeit less frequent manner, proteins become the primary target of lncRNA binding, thus altering their conformation and epigenetic modifications and initiate alterations in their downstream pathways. lncRNA potentially binds to transcription factors or RNA-binding proteins and forms polycomb repressive complexes to regulate downstream genes [75, 76].

5. Mechanisms of lncRNA-Induced Macrophage Inflammaing in ARDs

Through three targets, lncRNA manipulates complex biological behaviors. As shown in Table 1, secretome changes induced by lncRNA include SASP expression, i.e., upregulation of matrix metalloproteinase, IL-1β, IL-6, and TNF-α, and downregulation of IL-4 and IL-10, which contributes to inflammaing and is one of the hallmarks of macrophage senescence [77]. Another notable phenotype is oxidative stress in macrophages. ROS induction is not a rare event in these ARDs. The oxidative stress signal is in a network comprising mitochondria, the endoplasmic reticulum, and numerous mutually regulated signaling pathways. Oxidative stress and autophagy defects are probably the most prominent mutually regulated phenomena. Autophagy inhibition triggered by the induction of oxidative stress [78] causes the accumulation of damaged mitochondria and aggregative proteins and rodex homeostasis disequilibrium, leading to impaired protein-folding capacity, unstable lysosomes, and ROS [32, 79]. This cyclic pathway results in the aging-inducing inflammaing and promotes the expression of SASPs. On combining existing evidence with this theory, lncRNA triggers either ROS, SASPs, or both, thus presenting a self-amplification system targeting genes, microRNA, or proteins to induce inflammaing, which accelerates cellular senescence and eventually leads to the exacerbation of ARDs. This deteriorative cycle occurs not only in disease models but also in the simple aging process [32], highlighting the viewpoint that inflammaing is a ubiquitous phenomenon that boosts senescence in aging or the proaging status and is a promising therapeutic target of ARDs.

DAMPs and PAMPs induce cellular senescence primarily through the p53 signaling pathway, AIM2 signaling pathway, and the NF-κB signaling pathway [24, 25]. Upon activation, normal cellular homeostasis is prone to disruption in the presence of downstream gene products, wherein the disruption of the balance between production and clearance leads to increased SASP expression and increased inflammaingosomes. Excessive proinflammatory factors accelerate aging and increase the risk of ARDs. More importantly, SASPs include two vicious cycles, thus forming the cascade (Figure 2): (1) the SASP is an important pathogenic factor and attribute of inflammaing. Therein, IL-1, IL-6, IL-8, MMP-3, and other particular factors can trigger inflammaing, while cells in this proinflammatory condition express SASPs via activation of Rcor2 and the NF-κB signaling pathway [80], resulting in the first deteriorative cycle. (2) Macrophage senescence is inevitably accompanied by a functional decline in organelles. Increasing evidence indicates that autophagy is reduced when cells enter the late stage of senescence [81, 82].
at one complex regulatory network comprising numerous other organelles, autophagy defects consequently trigger inflammaging, forming the second deteriorative cycle. These data undoubtedly depict a mutual association between them and insinuate the significant promoting effects of inflammaging on macrophage senescence. Recent studies on NLRP3 inflammasomes had proved this cascade model [83]. NLRP3 is assembled upon the detection of PAMPs or DAMPs. Thereafter, it activates the corresponding signaling pathway, usually NF-κB, inducing the expression of SASPs and pyroptotic cell death [84]. lncRNA regulates the activation and expression of NLRP3 by sequestering microRNA or inhibiting NF-κB phosphorylation in uric acid nephropathy or in the inflammatory response [85, 86]. Indeed, some studies have reported that inflammaging can cause certain diseases [87], although studies in this field are relatively few. Thus, inflammaging may be a potential target in counteracting ARDs and delaying aging. Another intriguing aspect is the regulation of the intensity of inflammaging, probably through effects on lncRNAs, such that organisms safely survive the aging process and do not result in disorders [5].

6. Conclusion

This review discusses a delicate complement of inflammaging, which emphasizes on the disruption of the cellular onset of systemic inflammatory homeostasis. Increasing evidence indicates that lncRNA regulates inflammation. Alterations in the expression levels of various lncRNAs are associated with a proinflammatory phenotype in various ARDs. By directly binding to proteins or genes or indirectly serving as ceRNA, lncRNA regulates anti-inflammatory and proinflammatory processes (Figure 3). Upon disruption of macrophage homeostasis, SASPs, ROS, and other components would form a self-amplifiable aging-promoting environment to accelerate macrophage senescence and paracrine senescence and worsen ARDs. Defective autophagy, deleterious oxidative stress, and DNA damage SASP expression are the primary pathogenic mechanisms of inflammaging. Their roles are mutual, and it is largely unclear how they trigger inflammaging. Autophagy defects reduce ROS scavenging; ROS accumulation damages mitochondria, resulting in excessive deleterious oxidative stress. Inflammasomes assemble upon the recognition of DAMPs and activate downstream proinflammatory signals, inducing the expression of SASPs, including interleukin and matrix metalloproteinase secretion.

Owing to the marked inflammatory plasticity of macrophage, aberrant activation or functional alterations potentially induce ARDs. The incidence of diabetes mellitus, cancer, and atherosclerosis continues to increase. These ARDs and their complications impose a huge burden on global public health. Although numerous studies have suggested and some have proved the association between macrophage inflammaging and ARDs, the intermediate details warrant further study. Current studies are attempting to harness macrophage inflammaging in ARDs. Future researches require deeper and broader work. Theories put forward in this review link lncRNA to ARDs and summarize in detail the molecular mechanism of this linkage. They also shed light on the relationship of cellular inflammaging and macroscopic senescent phenotypes. These theories would be helpful guidance in finding novel targets for ARDs and other inflammaging-related disorders. Given that new functions of lncRNA are constantly being discovered, they shall always be considered in the pathogenic mechanism of ARDs and more lncRNA shall be found in this process. Furthermore, pharmacotherapeutic intervention of macrophage senescence by
senolytic compounds, like metformin, polyphenols, aspirin, and epigallocatechin gallate [88], may be a novel method to prevent or treat ARDs. However, considering the diverse functions of senescent macrophages under different conditions, it remains to be determined whether this intervention is beneficial, probably by utilizing clodronate liposomes or INK-ATTAC [89, 90] to eliminate senescent macrophages.

In conclusion, the effect of lncRNA on macrophage senescence warrants further investigation, with numerous gray areas to be investigated. Targeting lncRNA during inflamming would be an intriguing and promising approach to understand inflamming and would help identify methods to treat ARDs.

Conflicts of Interest

The authors declare that they have no potential conflicts of interest relevant to this study.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81870779), the International Scientific Cooperation and Exchanges Project of Sichuan Province (2017HH0078), and the International Cooperation Project of Chengdu Municipal Science and Technology Bureau (2015-GH02-00035-HZ).

References

[1] F. Olivieri, F. Prattichizzo, J. Grillari, and C. R. Balistreri, “Cellular senescence and inflamming in age-related diseases,” Mediators of Inflammation, vol. 2018, Article ID 9076485, 6 pages, 2018.
[2] T. Eggert, K. Wolter, J. Ji et al., “Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression,” Cancer Cell, vol. 30, no. 4, pp. 533–547, 2016.
[3] J. I. Jun and L. F. Lau, “The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing,” Nature Cell Biology, vol. 12, no. 7, pp. 676–685, 2010.
[4] D. Munoz-Espin, M. Canamero, A. Maraver et al., “Programmed cell senescence during mammalian embryonic development,” Cell, vol. 155, no. 5, pp. 1104–1118, 2013.
[5] K. S. Szicvcl, K. Declerck, M. Vidaković, and W. Vanden Berghe, “From inflamming to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?,” Clinical Epigenetics, vol. 7, no. 1, p. 33, 2015.
[6] T. Fulop, J. M. Witkowski, F. Olivieri, and A. Larbi, “The integration of inflamming in age-related diseases,” Seminars in Immunology, vol. 40, pp. 17–35, 2018.
[7] R. Büttner, A. Schulz, M. Reuter et al., “Inflamming impairs peripheral nerve maintenance and regeneration,” Aging Cell, vol. 17, no. 6, article e12833, 2018.
[8] N. Frey, S. Venturelli, L. Zender, and M. Bitzer, “Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics,” Nature Reviews Gastroenterology & Hepatology, vol. 15, no. 2, pp. 81–95, 2018.
G. P. Dimri, X. Lee, G. Basile et al., “Senescence and the p16 INK4a-Rb pathway cooperate to enforce irreversible cellular senescence,” *Cell*, vol. 169, no. 6, pp. 1000–1011, 2017.

F. Prattichizzo, V. De Nigris, E. Mancuso et al., “Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages,” *Redox Biology*, vol. 15, pp. 170–181, 2018.

M. M. Kaneda, P. Cappello, A. V. Nguyen et al., “Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression,” *Cancer Discovery*, vol. 6, no. 8, pp. 870–885, 2016.

T. T. P. Seijkens, K. Poels, S. Meiler et al., “Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death,” *European Heart Journal*, vol. 40, no. 4, pp. 372–382, 2019.

Y. Zhou, X. Yu, H. Chen et al., “Leptin deficiency shifts mast cells toward anti-inflammatory actions and protects mice from obesity and diabetes by polarizing M2 macrophages,” *Cell Metabolism*, vol. 22, no. 6, pp. 1045–1058, 2015.

B. R. Nelson, C. A. Makarewich, D. M. Anderson et al., “A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle,” *Science*, vol. 351, no. 6270, pp. 271–275, 2016.

J. P. de Magalhaes and J. F. Passos, “Stress, cell senescence and organismal aging,” *Mechanisms of Ageing and Development*, vol. 170, pp. 2–9, 2018.

G. P. Dimri, X. Lee, G. Basile et al., “A biomarker that identifies senescent human cells in culture and in aging skin in vivo,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 92, no. 20, pp. 9363–9367, 1995.

M. Narita, S. Nunez, E. Heard et al., “Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence,” *Cell*, vol. 113, no. 6, pp. 703–716, 2003.

A. Takahashi, N. Ohtani, K. Yamakoshi et al., “Mitogen signaling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence,” *Nature Cell Biology*, vol. 8, no. 11, pp. 1291–1297, 2006.

S. Jaiswal, M. P. Chao, R. Majeti, and I. L. Weissman, “Macrophages as mediators of tumor immunosurveillance,” *Trends in Immunology*, vol. 31, no. 6, pp. 212–219, 2010.

C. L. Lucas, H. S. Kuehn, F. Zhao et al., “Dominant-activating germline mutations in the gene encoding the Pli(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency,” *Nature Immunology*, vol. 15, no. 1, pp. 88–97, 2014.

U. Herbig, M. Ferreira, L. Condol, D. Carey, and J. M. Sedivy, “Cellular senescence in aging primates,” *Science*, vol. 311, no. 5765, p. 1257, 2006.

Y. Zhao, A. Tyshkovskiy, D. Munoz-Espin et al., “Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 115, no. 8, pp. 1801–1806, 2018.

J. B. Baell, D. J. Leaver, S. J. Hermans et al., “Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth,” *Nature*, vol. 560, no. 7717, pp. 253–257, 2018.

L. Gong, H. Gong, X. Pan et al., “p53 isoform Δ113p53/Δ133p53 promotes DNA double-strand break repair to protect cell from death and senescence in response to DNA damage,” *Cell Research*, vol. 25, no. 3, pp. 351–369, 2015.

A. W. Shao, H. Sun, Y. Geng et al., “Bclaf1 is an important NF-κB signaling transducer and C/EBPβ regulator in DNA damage-induced senescence,” *Cell Death and Differentiation*, vol. 23, no. 5, pp. 865–875, 2016.

A. R. Bonfigli, L. Spazzafumo, F. Prattichizzo et al., “Leukocyte telomere length and mortality risk in patients with type 2 diabetes,” *OncoTarget*, vol. 7, no. 32, pp. 50835–50844, 2016.

V. Kordinas, A. Ioannidis, and S. Chatzipanagiotou, “The telomere/telomerase system in chronic inflammatory diseases. Cause or effect?,” *Genes*, vol. 7, no. 9, p. 60, 2016.

J. C. Acosta, A. Banito, T. Wuestefeld et al., “A complex secretory program orchestrated by the inflammasome controls paracrine senescence,” *Nature Cell Biology*, vol. 15, no. 8, pp. 978–990, 2013.

B. M. Hall, V. Balan, A. S. Gleiberman et al., “Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells,” *Aging*, vol. 8, no. 7, pp. 1294–1315, 2016.

F. Prattichizzo, M. Bonafe, F. Olivieri, and C. Franceschi, “Senescence associated macrophages and “mackroph-aging”: are they pieces of the same puzzle?,” *Aging*, vol. 8, no. 12, pp. 3159–3160, 2016.

A. A. van Beek, J. Van den Bossche, P. G. Mastroberardino, M. P. J. de Winther, and P. J. M. Leenen, “Metabolic alterations in aging macrophages: ingredients for inflamaging?,” *Trends in Immunology*, vol. 40, no. 2, pp. 113–127, 2019.

A. Salminen, K. Kaarniranta, and A. Kauppinen, “Inflamming: disturbed interplay between autophagy and inflammasomes,” *Aging*, vol. 4, no. 3, pp. 166–175, 2012.

H. Yao and I. Rahman, “Perspectives on translational and therapeutic aspects of SIRT1 in inflamaging and senescence,” *Biochemical Pharmacology*, vol. 84, no. 10, pp. 1332–1339, 2012.

M. Anderson Douglas, M. Anderson Kelly, C.-L. Chang et al., “A micropeptide encoded by a putative long noncoding RNA regulates muscle performance,” *Cell*, vol. 160, no. 4, pp. 595–606, 2015.

H. Geng, H. F. Bu, F. Liu et al., “In inflamed intestinal tissues and epithelial cells, interleukin 22 signaling increases expression of H19 long noncoding RNA, which promotes mucosal regeneration,” *Gastroenterology*, vol. 155, no. 1, pp. 144–155, 2018.

B. Liu, B. Ye, L. Yang et al., “Long noncoding RNA _lncKdm2b_ is required for ILC3 maintenance by initiation of Zfp292 expression,” *Nature Immunology*, vol. 18, no. 5, pp. 499–508, 2017.

M. A. Reddy, Z. Chen, J. T. Park et al., “Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA,” *Diabetes*, vol. 63, no. 12, pp. 4249–4261, 2014.

S. Das, M. A. Reddy, P. Senapati et al., “Diabetes mellitus-induced long noncoding RNA Dnm3os regulates macrophage functions and inflammation via nuclear mechanisms,” *Arteriosclerosis, Thrombosis, and Vascular Biology*, vol. 38, no. 8, pp. 1806–1820, 2018.

C. Zgheib, M. M. Hodges, J. Hu, K. W. Liechty, and J. Xu, “Long non-coding RNA Lethe regulates hyperglycemia-induced reactive oxygen species production in macrophages,” *PLoS One*, vol. 12, no. 5, article e0177453, 2017.
[40] Y. Han, H. Qiu, X. Pei, Y. Fan, H. Tian, and J. Geng, “Low-dose sinapic acid abates the pyroptosis of macrophages by down-regulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis,” Journal of Cardiovascular Pharmacology, vol. 71, no. 2, pp. 104–112, 2018.

[41] Y. H. Lin, M. H. Wu, C. T. Yeh, and K. H. Lin, “Long non-coding RNAs as mediators of tumor microenvironment and liver cancer cell communication,” International Journal of Molecular Sciences, vol. 19, no. 12, p. 3742, 2018.

[42] S. L. Zhou, Z. J. Zhou, Z. Q. Hu et al., “Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib,” Gastroenterology, vol. 150, no. 7, pp. 1646–1658.e17, 2016, e1617.

[43] C. Chen, W. He, J. Huang et al., “LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment,” Nature Communications, vol. 9, no. 1, p. 3826, 2018.

[44] X. Li, Y. Lei, M. Wu, and N. Li, “Regulation of macrophage activation and polarization by HCC-derived exosomal IncRNA TUC339,” International Journal of Molecular Sciences, vol. 19, no. 10, p. 2958, 2018.

[45] J. Liu, D. Ding, Z. Jiang, T. Du, J. Liu, and Z. Kong, “Long non-coding RNA CCAF1/miR-148a/PI3Kα prevents cell migration of prostate cancer by altering macrophage polarization,” The Prostate, vol. 79, no. 1, pp. 105–112, 2019.

[46] Y. X. Zhou, W. Zhao, L. W. Mao et al., “Long non-coding RNA NIKF-AS1 inhibits M2 polarization of macrophages in endometrial cancer through targeting miR-146a,” The International Journal of Biochemistry & Cell Biology, vol. 104, pp. 25–33, 2018.

[47] Y. Ye, Y. Xu, Y. Lai et al., “Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization,” Journal of Cellular Biochemistry, vol. 119, no. 3, pp. 2951–2963, 2018.

[48] B. Aryal and Y. Suarez, “Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis,” Vascular Pharmacology, vol. 114, pp. 64–75, 2019.

[49] X. Hu, R. Ma, W. Fu, C. Zhang, and X. Du, “LncRNA UCA1 sponges miR-206 to exacerbate oxidative stress and apoptosis induced by ox-LDL in human macrophages,” Journal of Cellular Physiology, vol. 234, no. 8, pp. 14154–14160, 2019.

[50] J. Liu, G. Q. Huang, and Z. P. Ke, “Silence of long intergenic noncoding RNA HOTAIR ameliorates oxidative stress and inflammation response in ox-LDL-treated human macrophages by upregulating miR-330-5p,” Journal of Cellular Physiology, vol. 234, no. 4, pp. 5134–5142, 2019.

[51] J. Ye, C. Wang, D. Wang, and H. Yuan, “LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221,” Experimental Cell Research, vol. 369, no. 2, pp. 348–355, 2018.

[52] Z. M. Ye, S. Yang, Y. P. Xia et al., “LncRNA MIAT sponges miR-149-5p to inhibit effrocytosis in advanced atherosclerosis through CD47 upregulation,” Cell Death & Disease, vol. 10, no. 2, p. 138, 2019.

[53] H. Li, S. Han, Q. Sun et al., “Long non-coding RNA CDKN2B-AS1 reduces inflammatory response and promotes cholesterol efflux in atherosclerosis by inhibiting ADAM10 expression,” Aging, vol. 11, no. 6, pp. 1695–1715, 2019.

[54] T. Sallam, M. Jones, B. J. Thomas et al., “Transcriptional regulation of macrophage cholesterol efflux and atherogenesis by a long non-coding RNA,” Nature Medicine, vol. 24, no. 3, pp. 304–312, 2018.

[55] L. Li, L. Wang, H. Li et al., “Characterization of lncRNA expression profile and identification of novel lncRNA biomarkers to diagnose coronary artery disease,” Atherosclerosis, vol. 275, pp. 359–367, 2018.

[56] C. A. Yang, J. P. Li, J. C. Yen et al., “lncRNA NTT/PBOV1 axis promotes monocyte differentiation and is elevated in rheumatoid arthritis,” International Journal of Molecular Sciences, vol. 19, no. 9, p. 2806, 2018.

[57] Z. Wang and Y. Zheng, “lncRNAs regulate innate immune responses and their roles in macrophage polarization,” Mediators of Inflammation, vol. 2018, Article ID 8050956, 8 pages, 2018.

[58] J. H. Li, S. Q. Zhang, X. G. Qiu, S. J. Zhang, S. H. Zheng, and D. H. Zhang, “Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214,” International Journal of Oncology, vol. 50, no. 2, pp. 708–716, 2017.

[59] Y. Han, J. Ma, J. Wang, and L. Wang, “Silencing of H19 inhibits the adipogenesis and inflammation response in ox-LDL-treated Raw264.7 cells by up-regulating miR-130b,” Molecular Immunology, vol. 93, pp. 107–114, 2018.

[60] M. Gast, B. Rauch, A. Haghikia et al., “Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients,” Cardiovascular Research, vol. 115, no. 13, pp. 1886–1906, 2019.

[61] Q. Wu, L. Han, W. Yan et al., “miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by IncRNA CHRF,” Scientific reports, vol. 6, no. 1, article 30921, 2016.

[62] X. Gao, J. Ge, W. Li, W. Zhou, and L. Xu, “LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p,” Biological Chemistry, vol. 399, no. 4, pp. 375–386, 2018.

[63] Y. Wu, J. Ding, Q. Sun et al., “Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells,” Medicine, vol. 97, no. 4, article e9483, 2018.

[64] B. Stuhlmueller, E. Kunisch, J. Franz et al., “Detection of onco-fetal h19 RNA in rheumatoid arthritis synovial tissue,” The American Journal of Pathology, vol. 163, no. 3, pp. 901–911, 2003.

[65] J. Song, D. Kim, J. Han, Y. Kim, M. Lee, and E. J. Jin, “PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis,” Clinical and Experimental Medicine, vol. 15, no. 1, pp. 121–126, 2015.

[66] B. Cai, W. Ma, C. Bi et al., “Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit +cardiac progenitor cells by promoting miR-675,” Journal of Pineal Research, vol. 61, no. 1, pp. 82–95, 2016.

[67] M. Montes, M. M. Nielsen, G. Maglieri et al., “The lncRNA MIR31HG regulates p16 INK4A expression to modulate senescence,” Nature Communications, vol. 8, no. 1, p. 9697, 2015.

[68] B. Sang, Y. Y. Zhang, S. T. Guo et al., “Dual functions for OVAAL in initiation of RAF/MEK/ERK prosurvival signals and evasion of p27-mediated cellular senescence,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 115, no. 50, pp. E11661–E11670, 2018.

[69] W. L. Hu, L. Jin, A. Xu et al., “GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability,” Nature Cell Biology, vol. 20, no. 4, pp. 492–502, 2018.

[70] T. Nojiima, M. Tellier, J. Foxwell et al., “Deregulated expression of mammalian IncRNA through loss of SPT6 induces R-loop formation, replication stress, and cellular senescence,” Molecular Cell, vol. 72, no. 6, pp. 970–984.e7, 2018, e977.

[71] C. Y. Liu, Y. H. Zhang, R. B. Li et al., “LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardial transcription,” Nature Communications, vol. 9, no. 1, p. 29, 2018.

[72] L. Yang, H. Wang, Q. Shen, L. Feng, and H. Jin, “Long non-coding RNAs involved in autophagy regulation,” Cell Death & Disease, vol. 8, no. 10, article e3073, 2017.

[73] H. Xiong, Z. Ni, J. He et al., “LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells,” Oncogene, vol. 36, no. 25, pp. 3528–3540, 2017.

[74] H. YiRen, Y. YingCong, Y. Sunwu et al., “Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer,” Molecular Cancer, vol. 16, no. 1, p. 174, 2017.

[75] C. Peng, W. Hu, X. Weng et al., “Over expression of long non-coding RNA PANDA promotes hepatocellular carcinoma by inhibiting senescence associated inflammatory factor IL8,” Scientific Reports, vol. 7, no. 1, p. 4186, 2017.

[76] A. Roth, K. Boulay, M. Gross et al., “Targeting LINC00673 expression triggers cellular senescence in lung cancer,” RNA Biology, vol. 15, no. 12, pp. 1499–1511, 2018.

[77] I. M. Rea, D. S. Gibson, V. McGilligan, S. E. McNerlan, H. D. Alexander, and O. A. Ross, “Age and age-related diseases: role of inflammation triggers and cytokines,” Frontiers in Immunology, vol. 9, p. 586, 2018.

[78] Q. Wang, W. Guo, B. Hao et al., “Mechanistic study of TRPM2-Ca(2+)-CAMK2-BECN1 signaling in oxidative stress-induced autophagy inhibition,” Autophagy, vol. 12, no. 8, pp. 1340–1354, 2016.

[79] J. R. Cubillos-Ruiz, S. E. Bettigole, and L. H. Glimcher, “Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer,” Cell, vol. 168, no. 4, pp. 692–706, 2017.

[80] M. J. Alvarez-López, P. Molina-Martinez, M. Castro-Freire et al., “Rcor2 underexpression in senescent mice: a target for inflamming?,” Journal of Neuroinflammation, vol. 11, no. 1, p. 126, 2014.

[81] L. Garcia-Prat, M. Martinez-Vicente, E. Perdiguer et al., “Autophagy maintains stemness by preventing senescence,” Nature, vol. 529, no. 7584, pp. 37–42, 2016.

[82] H. Tai, Z. Wang, H. Gong et al., “Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence,” Autophagy, vol. 13, no. 1, pp. 99–113, 2017.

[83] E. Sanzhez-Lopez, Z. Zhong, A. Stubelius et al., “Choline Uptake and Metabolism Modulate Macrophage II-1B and IL-18 Production,” Cell metabolism, vol. 29, no. 6, pp. 1350–1362.e7, 2019.

[84] S. M. Man and T. D. Kanneganti, “Converging roles of caspases in inflammasome activation, cell death and innate immunity,” Nature Reviews Immunology, vol. 16, no. 1, pp. 7–21, 2016.