Invited Commentary

Invited Commentary: Stress and Mortality

Matthew Hotopf1, Max Henderson1, and Diana Kuh2

1 Section of General Hospital Psychiatry, Department of Psychological Medicine, Institute of Psychiatry, King’s College London, London, United Kingdom.
2 MRC Unit for Lifelong Health and Ageing, University College London, London, United Kingdom.

Received for publication February 1, 2008; accepted for publication February 28, 2008.

In this issue of the Journal, Nielsen et al. (Am J Epidemiol 2008;168:481–91) use data from a large Danish study to provide evidence that self-reported stress is associated with increased all-cause mortality over the next 20 years. The finding is remarkable. In this commentary, the authors explore what is really meant by stress; they argue that it would be naïve to view stress as reported in this way, with some external exposure. It has to be seen through the lens of the participant’s personal experience, and this lens is likely to be clouded by personality, coping styles, and the common mental disorders—depression and anxiety. The authors discuss a wider literature concerning similar findings associating depression with mortality, suggesting three broad reasons for the association. First, the findings might be explained by the impact of stress or distress on well-established risk factors for cardiovascular disease and cancer. Second, there might be direct, underlying psychosomatic pathways by which stress or distress can affect immune or autonomic function. Third, there might be common causal pathways—shared genes or early adversities that predict both stress and mortality from other causes independently. The authors suggest that life course epidemiologic research is required to test these competing hypotheses.

cause of death; depressive disorder; mortality; prospective studies; stress, psychological

The finding by Nielsen et al. (1) that stress is associated with considerable increases in all-cause and some cause-specific mortality is remarkable. The investigators followed a large, random sample of the Danish population aged 20–93 years using baseline data collected in the early 1980s. The weak measure of stress (just two questions on duration and intensity) was associated with a significant increase in mortality over the next 20 years.

Is the finding valid? The authors (1) had a fair amount of additional baseline data on health and health-related risk behavior but only educational level and marital status as sociodemographic factors. Having accounted for these factors in multivariate models, estimates were reduced. As ever, residual confounding is a consideration. For example, socioeconomic circumstances are strong risk factors for mortality (2–4) but were incompletely controlled for in these analyses. A benefit of the study was that bias caused by sample attrition was minimized by very complete ascertainment of death using the Danish cohort. These findings are worthy of further exploration, particularly given that the answers to these questions on stress are likely to fluctuate within the same person over time, and some degree of misclassification error is likely to have attenuated the true underlying effect.

STRESS AND COMMON MENTAL DISORDERS

To interpret the findings, it is necessary to consider what the participants understood the stress measure to mean. Stress is a slippery concept with several meanings (5), the two main ones being 1) some form of objective pressure exerted on an individual, a meaning similar to epidemiologic exposures; and, alternatively, 2) a subjective internal experience, a sense of being unable to fulfill roles, of feeling anxious or depressed. Of course, the two may at times be different sides of the same coin, but they are not necessarily so. It is worth considering this possibility further because,
Stress and Mortality

According to the emphasis placed, the meaning of the questions used in this study may be quite different, which has implications if ever these findings were to be translated to a public health agenda.

As an external exposure—a set of experiences that happens to someone—reported stress would be expected to correlate closely with some kind of externally measured marker, but this does not seem to be the case (6). Stress, then, does not refer simply to how busy or overcommitted one is; an element of appraisal, influenced by personality and coping style, is always present. This might account for the gender differences reported because women, compared with men, may have interpreted the stress questions differently or taken into account their perceived level of support in a different way. The alternative meaning of stress is a mark of distress, a proxy for either emotional states such as anxiety and depression or emotional traits such as neuroticism. In clinical practice, the term “stress” is often used as a euphemism for negative emotions, which is acceptable to those who might otherwise be offended by psychiatric diagnostic labels, because it implies both a cause and effect: the person feels distressed because he or she is stressed, and the stress is something beyond his or her control. This meaning of stress is probably very close to lay understanding of anxiety and depression. It is certainly the case that subjectively reported stress is strongly associated with mental disorders in cross-sectional (7, 8) and longitudinal (9) studies.

The association between common mental disorders (anxiety and depression) and mortality has been observed over many years, in various populations, and it applies to many causes of mortality (10). Most early studies relied on standardized mortality ratios calculated for samples recruited from psychiatric services. Because many individuals with psychiatric disorder never receive care from specialist services, these studies are limited to participants who were at the most extreme end of a continuum of distress present in the population, and results were also potentially confounded by medication use and other iatrogenic impacts. These fairly unsophisticated studies generally could do little more than control for age and sex. Some more recent studies have been population based and have taken account of a range of risk behaviors, again finding associations between emotional state and mortality (11). The excess in all-cause mortality is not due to only suicide (12) and seems—in most, but not all, studies (13)—to apply to cardiovascular mortality (14, 15) and mortality from external causes (16, 17) more than to all, studies (13)—to apply to cardiovascular mortality (14, 15) and mortality from external causes (16, 17) more than to other types of cause-specific mortality.

Another piece of evidence is the apparently elevated mortality rates for depressed patients with established physical disease, so depression has been observed to increase mortality following myocardial infarction (18, 19), heart failure (20, 21), stroke (22, 23), human immunodeficiency virus/acquired immunodeficiency syndrome (24), renal disease (25), and cancer (26). These effect sizes have, for some studies, been impressive and apparently independent of disease severity variables.

MECHANISMS

What mechanisms might apply? The first and most obvious to rule out is the role of other well-established risk factors for mortality. People who are stressed, depressed, and anxious may have different risk factor profiles; in particular, they may exercise less (27), smoke more (28), and be more obese (29) than the rest of the population. In individuals with established disease, depression reduces compliance with medication and participation in rehabilitation programs (30). These variables are often considered confounders but might, more correctly, be pathway variables: if stress or depression has such an impact on risk behaviors, high-risk-population preventive strategies might attempt to lessen the impact of depression on mortality by targeting these behaviors in people with common mental disorders.

The second group of mechanisms comprises those hypothesized in the study by Nielsen et al. (1). Stress and depression are associated with a range of physiologic changes; for example, people with depression have greater platelet aggregation, increased markers of inflammation, reduced heart rate variability indicating a change in vagal tone, and relative overactivity of the hypothalamic-pituitary-adrenal system (reviewed by Musselman et al. (31)). The important question is whether interventions to reduce depression (or stress) would impact these intermediary variables and in so doing reduce the impact of depression on mortality. This psychosomatic approach is appealing, but is it likely to work? Randomized controlled trials of treatments for depression in high-risk groups have produced essentially negative findings (e.g., Glassman et al. (32), Berkman et al. (33), van Melle et al. (34)). Thus, in myocardial infarction patients, treating depression with antidepressants or psychotherapeutic interventions does not reduce mortality, even if it does reduce depressive symptoms.

The third group of explanations concerns common cause. It is possible that the same “upstream” variables increase susceptibility to both stress or depression and mortality. For example, the same genes might be associated with depression and mortality if they were involved in regulation of inflammatory or serotonergic pathways (35). Susceptibility to stress, and depression itself, is moderately heritable (36), as are many of the traditional risk factors related to mortality (37). So, it could be that we are witnessing a shared genetic liability, which might require multivariable twin analyses to disentangle. Alternatively, the Barker hypothesis would suggest that both cardiovascular mortality and depression are associated with fetal malnutrition (38). There is indeed some evidence that suicide, and anxiety and depression, are associated with low birth weight (39–41), as well as the more widely studied association between low birth weight and metabolic disorders. Finally, common cause might come from social adversity in childhood and early adult life; stressful events such as abuse and neglect may have a long-term impact on the hypothalamic-pituitary-adrenal system and manifest in later life as stress symptoms or depression (42). Investigating such common causes and identifying likely pathways require a life course approach (43). Studies are needed that characterize lifetime patterns or trajectories of mental and physical health (44) and health-related behaviors, and lifetime exposure to physical and social hazards, and they should be related to long-term mortality risk.
These common causes lend a degree of caution to any interpretation of the findings presented here (1). The authors optimistically suggest that interventions to reduce stress might improve longevity in the sample. We suggest that such interventions, if they could be applied to a large-enough population, might make people feel better but would probably have no impact on mortality. Stress and common mental disorders have a sufficiently damaging impact on quality of life to make any such interventions highly desirable. However, we suspect that they may disappoint if they aim to reduce mortality.

ACKNOWLEDGMENTS

Matthew Hotopf is funded by the South London and Maudsley NHS Trust NIHR Biomedical Research Centre. Conflict of interest: none declared.

REFERENCES

1. Nielsen NR, Kristensen TS, Schnohr P, et al. Perceived stress and cause-specific mortality among men and women. Am J Epidemiol 2008;168:481–91.
2. Kuh D, Hardy R, Langenberg C, et al. Mortality in adults aged 26–54 years related to socioeconomic conditions in childhood and adulthood: post war birth cohort study. BMJ 2002;325:1076–80.
3. Kuh D, Richards M, Hardy R, et al. Childhood cognitive ability and deaths up until middle age: a post-war birth cohort study. Int J Epidemiol 2004;33:408–13.
4. Mackenbach JP, Kunst AE, Cavelaars AE, et al. The EU Working Group on Socioeconomic Inequalities in Health. Socioeconomic inequalities in morbidity and mortality in middle aged men in western Europe. Lancet 1997;349:1655–9.
5. Wilkinson G. Stress: another chimera. BMJ 1991;302:191–2.
6. Stansfeld S. Work, personality and mental health. Br J Psychiatry 1992;158:541–8.
7. Prince MJ, Harwood RH, Blizard RA, et al. The EU Working Group on Socioeconomic Inequalities in Health. Socioeconomic inequalities in morbidity and mortality in middle aged men in western Europe. Lancet 1997;349:1655–9.
8. Wang JL. Perceived work stress, imbalance between work and family/personal lives, and mental disorders. Soc Psychiatry Psychiatr Epidemiol 2000;35:541–8.
9. Brilman EI, Ormel J. Life events, difficulties and onset of depression in old age. The Gospel Oak Project VI. Psychol Med 1997;27:323–32.
10. Harris EC, Barraclough B. Excess mortality of mental disorder. Br J Psychiatry 1998;173:11–53.
11. Wulsin LR, Singal BM. Do depressive symptoms increase the risk for the onset of coronary disease? A systematic quantitative review. Psychosom Med 2003;65:201–10.
12. Wulsin LR, Vaillant GE, Wells VE. A systematic review of the mortality of depression. Psychosom Med 1999;61:6–17. (Comment in Psychosom Med 1999;61:18–20).
13. Myklesten A, Bjerkneset O, Dewey M, et al. Anxiety, depression, and cause-specific mortality: the HUNT study. Psychosom Med 2007;69:323–31.
14. Aromaa A, Raitasalo R, Reunanen A, et al. Depression and cardiovascular diseases. Acta Psychiatr Scand Suppl 1994;377:77–82.
15. Joukamaa M, Heliovaara M, Knekt P, et al. Mental disorders and cause-specific mortality. Br J Psychiatry 2001;179:498–502.
16. Hiroeh U, Appleby L, Mortensen PB, et al. Death by homicide, suicide, and other unnatural causes in people with mental illness: a population-based study. Lancet 2001;358:2110–12.
17. Black DW, Winokur G, Nasrallah A. Is death from natural causes still excessive in psychiatric patients? A follow-up of 1593 patients with major affective disorder. J Nerv Ment Dis 1987;175:674–80.
18. Frasure-Smith N, Lesperance F, Talajic M. Depression following myocardial infarction: impact on 6-month survival. JAMA 1993;270:1819–25.
19. Frasure-Smith N, Lesperance F, Gravel G, et al. Social support, depression, and mortality during the first year after myocardial infarction. Circulation 2000;101:1919–24.
20. Freedland KE, Carney RM, Rich MW, et al. Depression in elderly patients with congestive heart failure. J Geriatr Psychiatry 1991;24:59–71.
21. Jiang W, Alexander J, Christopher E, et al. Relationship of depression to increased risk of mortality and rehospitalization in patients with congestive heart failure. Arch Intern Med 2001;161:1849–56.
22. House A, Knapp P, Bamford J. Mortality at 12 and 24 months after stroke may be associated with depressive symptoms at 1 month. Stroke 2001;32:696–701.
23. Morris PLP, Robinson RG, Samuels J. Depression, introversion and mortality following stroke. Aust N Z J Psychiatry 1993;27:443–9.
24. Patterson TL, Shaw WS, Semple SJ, et al. Relationship of psychosocial factors to HIV disease progression. Ann Behav Med 1996;18:30–9.
25. Peterson RA, Kimmel PL, Sacks CR, et al. Depression, perception of illness and mortality in patients with end-stage renal disease. Int J Psychiatry Med 1991;21:343–54.
26. Schulz R, Bookwalta J, Knapp JE, et al. Pessimism, age, and cancer mortality. Psychol Aging 1996;11:304–9.
27. Farmer ME, Locke BZ, Moscicki EK, et al. Physical activity and depressive symptoms: the NHANES I Epidemiologic Follow-up Study. Am J Epidemiol 1998;128:1340–51.
28. Ismail K, Sloggett A, De Stavola B. Do common mental disorders increase cigarette smoking? Results from five waves of a population-based panel cohort study. Am J Epidemiol 2000;152:651–7.
29. Simon GE, VonKorff M, Saunders K. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 2008;65:824–30.
30. DiMatteo MR, Lepper HS, Crogham TW. Depression is a risk factor for noncompliance with medical treatment. Arch Intern Med 2000;160:2101–7.
31. Musselman DL, Evans DL, Nemeroff CB. The relationship of depression to cardiovascular disease: epidemiology, biology and treatment. Arch Gen Psychiatry 1998;55:580–92.
32. Glassman AH, O’Connor CM, Califf RM, et al. Sertraline treatment of major depression in patients with acute MI or unstable angina. JAMA 2002;288:701–9. (Erratum in JAMA 2002;288:1720; also refer to comments).
33. Berkman LF, Blumenthal J, Burg M, et al. Effects of treating depression and low perceived social support on clinical events after myocardial infarction: the Enhancing Recovery in Coronary Heart Disease Patients (ENRICHD) Randomized Trial. JAMA 2003;289:3106–16.
34. van Melle JP, de Jonge P, Honig A, et al. Effects of antidepressant treatment following myocardial infarction. Br J Psychiatry 2007;190:460–6.

Am J Epidemiol 2008;168:492–495
35. McCaffery JM, Frasure-Smith N, Dube MP, et al. Common genetic vulnerability to depressive symptoms and coronary artery disease: a review and development of candidate genes related to inflammation and serotonin. Psychosom Med 2006; 68:187–200.
36. Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 2000;157:1552–62.
37. Souren NY, Paulussen AD, Loos RJ, et al. Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities. Diabetologia 2007; 50:2107–16.
38. Barker DJ, Osmond C, Golding J, et al. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989;298:564–7.
39. Barker DJ, Osmond C, Rodin I, et al. Low weight gain in infancy and suicide in adult life. BMJ 1995;311:1203.
40. Thompson C, Syddall H, Rodin I, et al. Birth weight and the risk of depressive disorder in late life. Br J Psychiatry 2001;179:450–5.
41. Coleman I, Ploubidis GB, Wadsworth MEJ, et al. A longitudinal typology of symptoms of depression and anxiety over the life-course. Biol Psychiatry 2007;62:1265–71.
42. Weiss EL, Longhurst JG, Mazure CM. Childhood sexual abuse as a risk factor for depression in women: psychosocial and neurobiological correlates. Am J Psychiatry 1999;156:816–28.
43. Kuh D, Ben-Shlomo Y. A life course approach to chronic disease epidemiology: tracing the origins of ill-health from early to adult life. 2nd ed. Oxford, United Kingdom: Oxford University Press, 2004.