Voltage-dependent dynamics of the BK channel cytosolic gating ring are coupled to the membrane-embedded voltage sensor

Pablo Miranda1*, Miguel Holmgren1, Teresa Giraldez2,3*

1National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States; 2Departamento de Ciencias Medicas Basicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain; 3Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain

Abstract

In humans, large conductance voltage- and calcium-dependent potassium (BK) channels are regulated allosterically by transmembrane voltage and intracellular Ca2+. Divalent cation binding sites reside within the gating ring formed by two Regulator of Conductance of Potassium (RCK) domains per subunit. Using patch-clamp fluorometry, we show that Ca2+ binding to the RCK1 domain triggers gating ring rearrangements that depend on transmembrane voltage. Because the gating ring is outside the electric field, this voltage sensitivity must originate from coupling to the voltage-dependent channel opening, the voltage sensor or both. Here we demonstrate that alterations of the voltage sensor, either by mutagenesis or regulation by auxiliary subunits, are paralleled by changes in the voltage dependence of the gating ring movements, whereas modifications of the relative open probability are not. These results strongly suggest that conformational changes of RCK1 domains are specifically coupled to the voltage sensor function during allosteric modulation of BK channels.

DOI: https://doi.org/10.7554/eLife.40664.001

Introduction

The open probability of large conductance voltage-and Ca2+-activated K+ (BK or slo1) channels is regulated allosterically by voltage and intracellular concentration of divalent ions (Barrett et al., 1982; Moczydlowski and Latorre, 1983; Horrigan and Aldrich, 2002; Latorre et al., 2017). This feature makes BK channels important regulators of physiological processes such as neurotransmission and muscular function, where they couple membrane voltage and the intracellular concentration of Ca2+ (Robitaille and Charlton, 1992; Hu et al., 2001; Wang et al., 2001; Raffaelli et al., 2004). The BK channel is formed in the membrane as tetramers of α subunits, encoded by the KCNMA1 gene (Shen et al., 1994; Quirk and Reinhart, 2001). Each α subunit contains seven transmembrane domains (S0 to S6), a small extracellular N-terminal domain and a large intracellular C-terminal domain (Wallner et al., 1996; Meera et al., 1997; Tao et al., 2017) (Figure 2a). Similar to other voltage-gated channels, the voltage across the membrane is sensed by the voltage sensor domain (VSD), containing charged amino acids within transmembrane segments S2, S3 and S4 (Díaz et al., 1998; Ma et al., 2006; Pantazis and Olcese, 2012; Tao et al., 2017). The sensor for divalent cations is at the C-terminal region and is formed by two Regulator of Conductance for K+ domains (RCK1 and RCK2) per α subunit (Wei et al., 1994; Moss and Magleby, 2001; Xia et al., 2002; Zeng et al., 2005; Wu et al., 2010). In the tetramer, four RCK1-RCK2 tandems pack against each
other in a large structure known as the gating ring (Wu et al., 2010; Yuan et al., 2011; Giraldez and Rothberg, 2017; Tao et al., 2017; Zhou et al., 2017). Two high-affinity Ca\(^{2+}\) binding sites are located in the RCK2 (also known as 'Ca\(^{2+}\) bowl') and RCK1 domains, respectively. Additionally, a site with low affinity for Mg\(^{2+}\) and Ca\(^{2+}\) is located at the interface between the VSD and the RCK1 domain (Shi and Cui, 2001; Zhang et al., 2001; Bao et al., 2002; Xia et al., 2002; Yang et al., 2007; Yang et al., 2008a; Tao et al., 2017) (Figure 2a). The high-affinity binding sites show structural dissimilarity (Zhang et al., 2010; Tao et al., 2017) and different affinity for divalent ions (Zeng et al., 2005). Apart from Ca\(^{2+}\), it has been described that Cd\(^{2+}\) selectively binds to the RCK1 site, whereas Ba\(^{2+}\) and Mg\(^{2+}\) show higher affinity for the RCK2 site (Xia et al., 2002; Zeng et al., 2005; Yang et al., 2008b; Zhou et al., 2012; Miranda et al., 2016). Thus, intracellular concentrations of Ca\(^{2+}\), Cd\(^{2+}\), Ba\(^{2+}\) or Mg\(^{2+}\) can shift the voltage dependence of BK activation towards more negative potentials. Using patch clamp fluorometry (PCF), we have shown that these cations trigger independent conformational changes of RCK1 and/or RCK2 within the gating ring, measured as large changes in the efficiency of Fluorescence Resonance Energy Transfer (FRET) between fluorophores introduced into specific sites in the BK tetramer. These rearrangements depend on the specific interaction of the divalent ions with their high-affinity binding sites, showing different dependences on cation concentration and membrane voltage (Miranda et al., 2013; Miranda et al., 2016). To date, the proposed transduction mechanism by which divalent ion binding increases channel open probability was a conformational change of the gating ring that leads to a physical pulling of the channel gate, where the linker between the S6 transmembrane domain and the RCK1 region acts like a passive spring (Niu et al., 2004). Such a mechanism would be analogous to channel activation by ligand binding in glutamate receptor or cyclic nucleotide-gated ion channels, also tetramers (Sobolevsky et al., 2009; James et al., 2017). Our previous results do not support this as the sole mechanism underlying coupling of divalent ion binding to channel opening, since the gating ring conformational changes that we have recorded: 1) are not strictly coupled to the opening of the channel's gate, and 2) show different voltage dependence for each divalent ion. In addition, the recent cryo-EM structure of the full slo1 channel of Aplysia californica (Hite et al., 2017; Tao et al., 2017) shows that the RCK1 domain of the gating ring is in contact with the VSD, predicting that changes in the voltage sensor position could be reflected in the voltage dependent gating ring reorganizations.

Understanding the nature of the voltage dependence associated with individual rearrangements produced by binding of divalent ions to the gating ring is essential to untangle the mechanism underlying the role of such rearrangements in BK channel gating. To this end, we have now performed PCF measurements with human BK channels heterologously expressed in Xenopus oocytes, including a range of VSD mutations or co-expressed with different regulatory subunits. Here we provide evidence for a functional interaction between the gating ring and the voltage sensor in full-length, functional BK channels at the plasma membrane, in agreement with the structural data from Aplysia BK. Moreover, these data support a pathway that couples to divalent ion binding to channel opening through the voltage sensor.

Results

Voltage dependence of gating ring rearrangements is associated to activation of the RCK1 binding site

BK α subunits labeled with fluorescent proteins CFP and YFP in the linker between the RCK1 and RCK2 domains (position 667) retain the functional properties of wild-type BK channels (Miranda et al., 2013; Miranda et al., 2016). This allowed us to use PCF to detect conformational rearrangements of the gating ring measured as changes in FRET efficiency (E) between the fluorophores (Miranda et al., 2013; Miranda et al., 2016). Binding of Ca\(^{2+}\) ions to both high-affinity binding sites (RCK1 and Ca\(^{2+}\) bowl) produces an activation of BK channels, coincident with an increase in E from basal levels reaching saturating values at high Ca\(^{2+}\) concentrations (Miranda et al., 2013 and Figure 1a). In addition, we observed that the E signal has the remarkable property that in intermediate Ca\(^{2+}\) concentrations (from 4 μM to 55 μM) it shows voltage dependence besides its Ca\(^{2+}\) dependence (Miranda et al., 2013 and Figure 1a). As discussed previously (Miranda et al., 2013), these changes in E with voltage are not conformational dynamics of the gating ring that simply follow the
Figure 1. Voltage dependence of gating ring rearrangements is associated to activation of the RCK1 binding site. G-V (left panels) and E-V curves (right panels) obtained simultaneously at several Ca2+ concentrations from (a) the BK667CY construct, (b) mutation of the RCK1 high-affinity site (D362A/D367A), (c) mutation of the Ca2+ bowl (SD5A), or (d) both (D362A/D367A 5D5A). Note that the voltage dependence of the E signal is only abolished after

Figure 1 continued on next page
mutating the RCK1 high-affinity binding site (b) or both (d). Data corresponding to each Ca\(^{2+}\) concentration are color-coded as indicated in the legend at the bottom. Solid curves in the G-V graphs represent Boltzmann fits. For reference, grey shadows in (a–d) left panels represent the full range of G-V curves corresponding to non-mutated BK667CY channels from 0 µM Ca\(^{2+}\) to 95 µM Ca\(^{2+}\) (indicated with colored dashed lines). Data points and error bars represent average ± SEM (n = 3–14, N = 2–8). Part of the data in (a, b and c) are taken from (Miranda et al., 2013) and (Miranda et al., 2016).

DOI: https://doi.org/10.7554/eLife.40664.002

The voltage-dependent conformational changes of the gating ring are not related to the opening and closing of the pore domain

To test whether the voltage-dependent FRET signals relate to the opening and closing of the channel (intrinsic gating) we used two modifications of BK channel function in which the relative probability of opening is shifted in the voltage axis, yet the actual dynamics of voltage sensor are expected to be unaltered (Figure 2b). We reasoned that, if the voltage-dependent FRET signals of the gating ring are coupled to the opening and closing, they should follow a similar displacement with voltage. The first BK channel construct is the α subunit including the single point mutation F315A, which has been described to shift the voltage dependence of the relative conformational change of the channel to more positive potentials, by uncoupling the voltage sensor activation from the gate opening (Figure 2c) (Carrasquel-Ursulaez et al., 2015). Figure 2d shows the relative conductance and E vs. voltage for the BK667CY\(^{F315A}\) mutant at various Ca\(^{2+}\) concentrations. Our results show that the shift of the
relative probability of opening to more positive potentials (Figure 2d, left panel) does not lead to changes in the voltage dependence of the gating ring FRET signals (Figure 2d, right panel).

The second modification of BK function consisted in co-expressing the wild type \(\alpha \) subunit with the auxiliary subunit \(\gamma_1 \) (Yan and Aldrich, 2010; Yan and Aldrich, 2012; Gonzalez-Perez et al., 2014; Li and Yan, 2016). In this case, the relative probability of opening is shifted to more negative potentials by increasing the coupling between the voltage sensor and the gate of the channel.
shows the relative conductance and Li and Yan, 2016 Contreras et al., 2012
Sweet and Cox, 2009 Xia et al., Yang et al.,
Sweet and Cox, 2009 Orio and Latorre, 2005
Behrens et al., 2000 Lingle et al., 2001
Bao and Cox, 2005 Bao and Cox, 2005
Cox and Aldrich, 2000 Sweet and Cox, 2009
Structural Biology and Molecular Biophysics Figure 4 Castillo et al., 2015
Castillo et al., 2015 Contreras et al., 2012 and Brenner et al., 2000
et al. eLife 2018;7:e40664.
Research article
comparable to those observed for BK667CY due to inactivation (except that at extreme positive potentials the values of relative conductance at the tails decrease
different blockade kinetics (see b with
Using the allosteric HA model of BK channel function, Horrigan and Aldrich (2002) proposed that Ca2+ binding to the Ca2+ bowl is coupled to the voltage sensor activation. Yet, the strength of that interaction (allosteric constant E) was smaller than those corresponding to Ca2+- or V-sensors with channel opening (Horrigan and Aldrich, 2002). Interestingly, when E was derived from gating currents data, a larger value was obtained (Carrasquel-Ursulaez et al., 2015). Further, Ca2+ binding to the RCK1 domain (but not to the Ca2+ bowl) is voltage-dependent (Sweet and Cox, 2008), which as the authors hypothesized might originate from physical interactions between the voltage sensors and the RCK1 domains. Additionally, using the cut-open oocyte voltage-clamp fluorometry approach, Savalli et al. (2012) showed that fluorescence emission from reporters within the VSD could change upon uncaged Ca2+ stimuli. This evidence indicates that the VSD is coupled to the gating ring, but none of these approaches directly monitored the conformational changes of the gating ring structure. Therefore, we decided to explore whether the voltage dependence of the gating ring movements is attributable to the voltage sensor activation. To this end we modified the voltage dependence of the VSD activation by co-expression with β auxiliary subunits or by introducing specific mutations in the VSD (Figure 3 and Figure 4). The effects of co-expressing BK α subunit with the four different types of auxiliary β subunits have been extensively studied (Tseng-Crank et al., 1996; Behrens et al., 2000; Brenner et al., 2000; Cox and Aldrich, 2000; Uebele et al., 2000; Lingle et al., 2001; Zeng et al., 2001; Bao and Cox, 2005; Orio and Latorre, 2005; Yang et al., 2008a; Sweet and Cox, 2009; Contreras et al., 2012; Li and Yan, 2016). β1 subunit has been previously proposed to alter the voltage sensor-related voltage dependence, as well as the intrinsic opening of the gate and Ca2+ sensitivity (Figure 3a) (Cox and Aldrich, 2000; Bao and Cox, 2005; Orio and Latorre, 2005; Sweet and Cox, 2009; Contreras et al., 2012; Castillo et al., 2015). Recordings from BK667CYα co-expressed with β1 subunits reveal the expected modifications in the voltage dependence of the relative conductance, that is an increase in the apparent Ca2+ sensitivity (Figure 3b, left panel) (Wallner et al., 1995; Cox and Aldrich, 2000; Bao and Cox, 2005; Orio and Latorre, 2005; Sweet and Cox, 2009; Contreras et al., 2012). In addition, it has been reported that β1 subunit alters the function of the VSD (Orio and Latorre, 2005; Castillo et al., 2015). Notably, the E-V curves are shifted to more negative potentials (Figure 3b, right panel), similarly to the described modification (Castillo et al., 2015). The structural determinants of the β1 subunit influence on the VSD reside within its N-terminus, which has been shown by engineering a chimera between the β3b subunit (which does not influence the VSD) and the N-terminus of the β1 (β3bNβ1) (Castillo et al., 2015). We recapitulated this strategy. First, we co-expressed BK667CY α subunits with β3b and observed the expected activation of the ionic currents at positive potentials, yet with different blockade kinetics (see Figure 3—figure supplement 1 (Uebele et al., 2000; Xia et al., 2000; Lingle et al., 2001). The relative open probability of this complex is like BK667CYα alone, except that at extreme positive potentials the values of relative conductance at the tails decrease due to inactivation (Figure 3—figure supplement 1b, left panel). The values of E vs V remained comparable to those observed for BK667CYα (Figure 3—figure supplement 1b, right panel). We then co-expressed the β3bNβ1 chimera (Castillo et al., 2015) with BK667CYα (Figure 3c). This complex did not modify the relative conductance vs. voltage relationship (Figure 3d, left panel) as compared with BK667CYα alone (Figure 3d, grey shadow). On the other hand, while the magnitude of the FRET change is the same as in BK667CYα, the voltage dependence of E values at [Ca2+] of 4 μM, 12 μM and 22 μM shifted to more negative potentials compared to the values of BK667CYα alone (Figure 3d, right panel, compare dashed to solid lines). Altogether, these results indicate that
the alteration of the voltage dependence of the voltage sensor induced by the amino terminal of β1 within the β3bNβ1 chimera underlies the modification of the voltage dependence of the gating ring conformational changes, reinforcing the hypothesis that this voltage dependence is directly related to VSD function.

VSD activation can also be altered by introducing single point mutations that modify the voltage of half activation of the voltage sensor, \(V_{1/2i} \). This parameter is determined by fitting data to the HA allosteric model (Ma et al., 2006) or directly from gating current measurements (Zhang et al., 2014). Mutations of charged amino acids on the VSD have been reported to produce different modifications in the \(V_{1/2i} \) values. In some cases, other parameters related to BK channel activation are additionally affected by the mutations. Mutation R210E shifts the \(V_{1/2i} \) value from +173 mV to +25 mV at 0 Ca\(^{2+} \) in BK channels (Figure 4a) (Ma et al., 2006). Consistent with this, introduction of this...
mutation in BK667CYa (BK667CYR210E) caused a shift of the relative conductance vs. voltage dependence towards more negative potentials (Figure 4b, left panel) as compared to BK667CY (Figure 4b, left panel, grey shadow). Simultaneously measured E values showed a negative shift in the voltage dependence of the FRET signal at intermediate Ca2+ concentrations (Figure 4b, right panel). Mutation E219R had been previously shown to produce a large negative shift in $V_{h(j)}$ from +150 mV to +40 mV ($\Delta V_{h(j)} = -110$ mV; Figure 4c), additionally modifying the Ca2+ sensitivity.
and the coupling between the VSD and channel gate (Zhang et al., 2014). As previously reported, BK667CYE219R showed modified relative conductance vs. voltage relationships at different Ca2+ concentrations (Figure 4d, left panel) (Zhang et al., 2014). In addition, this construct revealed a shift to more negative potentials in the E vs. voltage dependence at intermediate Ca2+ concentrations (12 μM and 22 μM Ca2+; Figure 4d, right panel), paralleling the reported negative shift in \(V_h(j) \) (Ma et al., 2006; Zhang et al., 2014). Since mutations displacing the \(V_h(j) \) to more negative potentials induce equivalent shifts in the voltage dependence of the gating ring motion (measured as E), we tested if other mutations previously reported to induce positive shifts on \(V_h(j) \) (Ma et al., 2006) were also associated with changes of the E-V curves in the same direction. As shown by Ma et al., the largest effect on \(V_h(j) \) is induced by the R213E mutation, producing a shift of \(\Delta V_h(j) = +337 \) mV (Figure 4e) (Ma et al., 2006). The BK667CYR213E construct showed a significant shift in the voltage dependence of the relative conductance to more positive potentials (Figure 4f, left panel). Notably, this effect was paralleled by a large displacement in the E vs. voltage dependence towards more positive potentials (Figure 4f, right panel). Taken together, our data show that modifications of the \(V_h(j) \) values caused by mutating the VSD charged residues are reflected in equivalent changes in the voltage dependence of the gating ring conformational rearrangements, which occur in analogous directions and with proportional magnitudes at intermediate Ca2+ concentrations.

All these results on the VSD modifications and their corresponding changes in FRET signals support the existence of a direct coupling mechanism between the VSD function and the gating ring conformational changes.

Parallel alterations of the voltage dependence of VSD function and gating ring motions by selective activation of the RCK1 binding site

We have previously shown that specific interaction of Cd2+ with the RCK1 binding site leads to activation of the BK channel, which is accompanied by voltage-dependent changes in the E values at intermediate Cd2+ concentrations of 10 μM and 30 μM (Miranda et al., 2016). To further assess the role of the RCK1 binding site activation in the voltage dependence of the gating ring motions, we studied activation by Cd2+ of selected BK667CY VSD mutants (Figure 5). Addition of Cd2+ to the BK667CYE219R mutant (Figure 5a) shifted the voltage dependence of E towards more negative potentials at intermediate Cd2+ concentrations (10 μM and 30 μM; Figure 5b) when compared to non-mutated BK667CY (Figure 5b; dashed lines). This change in the E-V curves induced by selective activation of the RCK1 binding site with Cd2+ paralleled the large negative shift (\(\Delta V_h(j) = -110 \) mV) previously reported with the E219R mutant BK channels (Ma et al., 2006; Zhang et al., 2014). We also tested Cd2+ activation in the mutant BK667CYR201Q, which shifts the \(V_h(j) \) parameter by 47 mV towards positive potentials (Figure 5c) (Ma et al., 2006). Addition of Cd2+ rendered right-shifted E vs. voltage relationships (Figure 5d, right panel), following the direction of the predicted \(V_h(j) \) shift described for this mutant BK channel (Ma et al., 2006). Finally, addition of Cd2+ to the BK667CYF315A construct (Figure 5e) (Carrasquel-Ursulaæz et al., 2015) did not have any effect on the E-V relationship (Figure 5f). These results are consistent with a mechanism in which specific binding of Cd2+ to the RCK1 binding site allows voltage-dependent conformational changes in the gating ring that are directly related to VSD activation.

Voltage dependence of Ba2+-induced gating ring movement is related to function of the channel gate

Ca2+, Mg2+ and Ba2+ bind to the Ca2+ bowl and trigger conformational changes of the gating ring region (Miranda et al., 2016). However, the effects of these ions on BK function and gating ring motions are fundamentally different. Notably, Ba2+ induces a rapid blockade of the BK current after a transient activation that is measurable at low Ba2+ concentrations (Zhou et al., 2012; Miranda et al., 2016) (Figure 6a). In addition, we previously showed that the gating ring conformational motions induced by Ba2+ show a voltage-dependent component, which is not observed when Ca2+ or Mg2+ bind to the Ca2+ bowl (Miranda et al., 2013; Miranda et al., 2016) (Figure 6b). We combined mutagenesis with the cation-specific activation strategy to identify the structural source of the voltage dependence in Ba2+-triggered gating ring motions. In this case, alteration of VSD function by mutating charged residues (Figure 6c and e) was not reflected in any change of the E vs. voltage relationships, as shown in Figure 6d and f for constructs BK667CYR210E and BK667CYR213E, respectively. The BK667CYR213E construct showed a significant shift in the voltage dependence of the relative conductance to more positive potentials (Figure 6f, left panel). Notably, this effect was paralleled by a large displacement in the E vs. voltage dependence towards more positive potentials (Figure 6f, right panel). Taken together, our data show that modifications of the \(V_h(j) \) values caused by mutating the VSD charged residues are reflected in equivalent changes in the voltage dependence of the gating ring conformational rearrangements, which occur in analogous directions and with proportional magnitudes at intermediate Ca2+ concentrations.
respectively. These results indicate that the voltage dependence of Ba2+-induced gating ring conformational changes, unlike those induced by Ca2+ and Cd2+ through activation of the RCK1 binding site, may not be related to VSD activation. This conclusion is further supported by the lack of changes in Ba2+ responses when mutations in the VSD were made in a RCK1 Ca2+ binding site knockout (D362A D367A) background (Figure 6—figure supplement 1b & c). Next, we studied the effect of Ba2+ on BK667CY channels containing the F315A mutation (Figure 6g) (Carrasquel-Ursulaez et al., 2015). As shown in Figure 6h, the E values reached similar levels to those of non-mutated BK667CY channels at saturating Ba2+ concentrations. However, at intermediate
Figure 6. Voltage dependence of gating ring movements triggered by Ba\(^{2+}\). (a) The RCK2 site is selectively activated by Ba\(^{2+}\), which additionally induces pore block. (b) FRET efficiency (E) data obtained at several Ba\(^{2+}\) concentrations from BK667CY constructs (Miranda et al., 2016). (c) Effect of the VSD R210E mutation after selective activation of the RCK2 binding site by Ba\(^{2+}\). (d) E-V curves obtained at several Ba\(^{2+}\) concentrations from Figure 6 continued on next page.
concentrations of Ba\(^{2+}\) the E-V curves were shifted towards more positive potentials when compared with BK667CY channels (Figure 6h, dashed line). These results suggest that the voltage-dependent component of the conformational changes triggered by Ba\(^{2+}\) binding to the Ca\(^{2+}\) bowl are not directly related to VSD activation, but rather to the function of the channel gate.

Discussion

Using fluorescently labeled BK\(\alpha\) subunit constructs reporting protein dynamics between the RCK1 and RCK2 domains, we previously demonstrated that the channel high-affinity binding sites can be independently activated by different divalent ions, inducing energetically-additive rearrangements of the gating ring measured as changes in the FRET efficiency values, \(E\) (Miranda et al., 2013; Miranda et al., 2016). Further, the effects of Ca\(^{2+}\), Cd\(^{2+}\) and Ba\(^{2+}\) on the \(E\) values showed a voltage-dependent component, for which we could not provide an explanation. Voltage dependence of Ca\(^{2+}\)-induced rearrangements seemed to be specifically related to RCK1 activation, since only the mutation of that binding site resulted in voltage-independent \(E\) signals (Miranda et al., 2016 and Figure 1). One possibility to explain this result is the existence of direct structural interactions of the RCK1 domain and the VSD. Interestingly, the recently obtained cryo-EM full BK structure from *Aplysia californica* revealed the existence of specific protein-protein interfaces formed by the amino terminal lobes of the RCK1 domains facing the transmembrane domain and the VSD/\(S4-S5\) linkers (Hite et al., 2017). According to the structural data obtained in saturating Mg\(^{2+}\) and Ca\(^{2+}\) concentrations, gating of the channel by Ca\(^{2+}\) was proposed to be mediated, at least partly, by displacement of these interfaces causing the VSD/\(S4-S5\) linkers to move, contributing to pore opening ((Hite et al., 2017; Tao et al., 2017); but see also (Zhou et al., 2017)). Our work provides functional data supporting this mechanism. Our data show that mutations altering the voltage dependence of BK VSD are reflected in the voltage dependence of the gating ring movements triggered by activation of the RCK1 binding site by Ca\(^{2+}\) or Cd\(^{2+}\). Mutations altering VSD function by inducing large leftward shifts in the \(V_n^{(j)}\) values (Ma et al., 2006; Zhang et al., 2014) strongly correlate with negative shifts in the voltage dependence of the \(E\) signals. Likewise, mutations inducing positive shifts in the VSD voltage dependence of the voltage sensor function are reflected in E-V shifts towards more positive membrane voltages. Interestingly, we also observe a correlation between the changes in the slope of the G-V curves and that of the E-V curves (e.g. Figure 4f; see also Supplementary file 1), suggesting the existence of an interaction between the VSD and the gating ring. This idea is further supported by the effect of \(\beta1\) which has been proposed to alter the voltage dependence of VSD function (Wallner et al., 1995; Cox and Aldrich, 2000; Nimigean and Magleby, 2000; Bao and Cox, 2005; Orio and Latorre, 2005; Conrreras et al., 2012; Castillo et al., 2015). We observed that \(\beta1\) and \(\beta3bN\beta1\) induce a leftward shift in the E-V curves. Conversely, two experimental strategies known to influence the G-V curves without direct interference with the VSD did not affect the voltage dependence of \(E\). The lack of effect on the E-V curves of the mutation F315A can be explained because the shift in the G-V curves arises from the influence of this mutation in the C----O transition with minor effects on the voltage dependence of the gating currents (Carrasquel-Ursulaez et al., 2015). Analogously, no change in the voltage dependence of \(E\) was observed after

Figure 6 continued

BK667CY\(^{R210E}\) constructs. (a) Effect of the VSD R213E mutation after selective activation of the RCK2 binding site by Ba\(^{2+}\). (b) E-V curves obtained at several Ba\(^{2+}\) concentrations from BK667CY\(^{R210E}\) constructs. (c) Effect of the F315A mutation after selective activation of the RCK2 binding site by Ba\(^{2+}\) (h) E-V curves obtained at several Ba\(^{2+}\) concentrations from BK667CY\(^{F315A}\) constructs. Data corresponding to each Ba\(^{2+}\) concentration are color-coded according to the legend at the bottom. For reference, the curve corresponding to 100 \(\mu\)M Ba\(^{2+}\) from the BK667CY construct shown in (b) is also shown as a colored dashed line in panels (b, d, f and h). Data points and error bars represent average ± SEM (\(n = 4–6\), N = 2–3).

DOI: https://doi.org/10.7554/eLife.40664.008

The following figure supplement is available for figure 6:

Figure supplement 1. Additional experiments to characterize voltage dependence of gating ring movements triggered by Ba\(^{2+}\).

DOI: https://doi.org/10.7554/eLife.40664.009
co-expression of BKα with the γ1 subunit, which shifts the voltage dependence of pore opening by enhancing its allosteric coupling with the voltage sensor activation (Yan and Aldrich, 2010). As with the mutation F315A, the presence of γ1 subunit produces a minor shift in the Q-V distributions, not paralleling the large shift in the G-V curves (Carrasquel-Ursulaeza and Ramon Latorre, personal communication).

A puzzling result from our previous study was the observation that Ba^{2+} binding to the Ca^{2+} bowl triggers voltage-dependent conformational changes (Miranda et al., 2016). Even though we still do not know the mechanisms of this unique response to Ba^{2+}, here we learned that it is not related to the dynamics of VSD, but rather influenced by perturbations affecting the opening and closing of the channel at the pore domain. Why Ba^{2+} but not Ca^{2+}? A possible answer for this question is that Ba^{2+} has the additional property of blocking the permeation pathway (Miller, 1987; Neyton and Miller, 1988; Zhou et al., 2012), which could somehow be transmitted allosterically to the gating ring. If simply ion permeation blockade is what matters, then we might expect that blocking permeation with the high affinity quaternary ammonium derivative N-(4-[benzoyl]benzyl)-N,N,N-tributylammonium (bb-TBA) (Tang et al., 2009) should produce a voltage dependent FRET signal with Ca^{2+} activation. But, it does not (Figure 6—figure supplement 1d). Another possibility for the Ba^{2+} effect could be a direct allosteric interaction between the intrinsic gating in the pore and the divalent binding site in RCK2, which needs to be tested further.

Irrespective of the fluorescent construct (Miranda et al., 2013) or the divalent ion used to activate the BK channel (Miranda et al., 2016), we have consistently observed that the conformational changes monitored as changes in the FRET efficiency are not strictly coupled to the intrinsic gating of the channel. In this study, we have found that the consequences of the voltage dependence of the intrinsic gating by manipulations of the VSD and the pore region are paralleled by the FRET efficiencies. These results rule out the possibilities that FRET signals derive from conformational changes in an unknown Ca^{2+} binding site or that they are completely uncoupled to the intrinsic gating.

In conclusion, our functional data show a strong correlation between the VSD function and the RCK1 conformational changes, suggesting a transduction mechanism from ion binding to change the channel activation. This transduction mechanism is in agreement with the existence of structural interactions between the RCK1 domain and the VSD. The correlation between VSD function and the RCK1 conformational changes is not observed between RCK2 and VSD, suggesting the existence of a different transduction mechanism that may include an indirect mechanism through the RCK1 or RCK1-S6 linker.

Materials and methods

Molecular biology and heterologous expression of tagged channels

Fluorescent BK α subunits were labelled with CFP or YFP using a transposon-based insertion method (Giraldez et al., 2005). Subunits labelled in the position 667 were subcloned into the pGEMHE oocyte expression vector (Liman et al., 1992). RNA was transcribed in vitro with T7 polymerase (Ambion, Thermo Fisher Scientific, Waltham, USA), and injected at a ratio 3:1 of CFP: YFP into Xenopus laevis oocytes, giving a population enriched in 3CFP:1YFP labelled tetramers (BK667CY) (Miranda et al., 2013; Miranda et al., 2016). Individualized Oocytes were obtained from Xenopus laevis extracted ovaries (Nasco, Fort Anderson, WI, USA). Neutralization of the Ca^{2+} bowl was achieved by mutating five consecutive aspartate residues to alanines (5D5A: 894–899) (Zhou et al., 2012), which could somehow be transmitted allosterically to the gating ring. Even though we still do not know the mechanisms of this unique response to Ba^{2+}, here we learned that it is not related to the dynamics of VSD, but rather influenced by perturbations affecting the opening and closing of the channel at the pore domain. Why Ba^{2+} but not Ca^{2+}? A possible answer for this question is that Ba^{2+} has the additional property of blocking the permeation pathway (Miller, 1987; Neyton and Miller, 1988; Zhou et al., 2012), which could somehow be transmitted allosterically to the gating ring. If simply ion permeation blockade is what matters, then we might expect that blocking permeation with the high affinity quaternary ammonium derivative N-(4-[benzoyl]benzyl)-N,N,N-tributylammonium (bb-TBA) (Tang et al., 2009) should produce a voltage dependent FRET signal with Ca^{2+} activation. But, it does not (Figure 6—figure supplement 1d). Another possibility for the Ba^{2+} effect could be a direct allosteric interaction between the intrinsic gating in the pore and the divalent binding site in RCK2, which needs to be tested further.

Irrespective of the fluorescent construct (Miranda et al., 2013) or the divalent ion used to activate the BK channel (Miranda et al., 2016), we have consistently observed that the conformational changes monitored as changes in the FRET efficiency are not strictly coupled to the intrinsic gating of the channel. In this study, we have found that the consequences of the voltage dependence of the intrinsic gating by manipulations of the VSD and the pore region are paralleled by the FRET efficiencies. These results rule out the possibilities that FRET signals derive from conformational changes in an unknown Ca^{2+} binding site or that they are completely uncoupled to the intrinsic gating.

In conclusion, our functional data show a strong correlation between the VSD function and the RCK1 conformational changes, suggesting a transduction mechanism from ion binding to change the channel activation. This transduction mechanism is in agreement with the existence of structural interactions between the RCK1 domain and the VSD. The correlation between VSD function and the RCK1 conformational changes is not observed between RCK2 and VSD, suggesting the existence of a different transduction mechanism that may include an indirect mechanism through the RCK1 or RCK1-S6 linker.

Materials and methods

Molecular biology and heterologous expression of tagged channels

Fluorescent BK α subunits were labelled with CFP or YFP using a transposon-based insertion method (Giraldez et al., 2005). Subunits labelled in the position 667 were subcloned into the pGEMHE oocyte expression vector (Liman et al., 1992). RNA was transcribed in vitro with T7 polymerase (Ambion, Thermo Fisher Scientific, Waltham, USA), and injected at a ratio 3:1 of CFP: YFP into Xenopus laevis oocytes, giving a population enriched in 3CFP:1YFP labelled tetramers (BK667CY) (Miranda et al., 2013; Miranda et al., 2016). Individualized Oocytes were obtained from Xenopus laevis extracted ovaries (Nasco, Fort Anderson, WI, USA). Neutralization of the Ca^{2+} bowl was achieved by mutating five consecutive aspartate residues to alanines (5D5A: 894–899) (Bao et al., 2002) on the BK667CY background. Elimination of RCK1 high-affinity Ca^{2+} sensitivity was achieved by double mutation D362A and D367A (Xia et al., 2002; Zeng et al., 2005; Zhang et al., 2010). Mutations were performed using standard procedures (Quickchange, Agilent Technologies, Santa Clara, USA). Auxiliary subunits (β3b, γ1 and chimera β3bNβ1) were co-injected with the BK667CFP/BK667YFP RNA mix at a 5:1 wt ratio, giving molar ratios above 20:1.

Patch-clamp fluorometry and FRET

Borosilicate pipettes with a large tip (0.7–1 MΩ in symmetrical K⁠+) were used to obtain inside-out patches excised from Xenopus laevis oocytes expressing BK667CY. Currents were recorded with the Axopatch 200B amplifier and Clampex software (Axon Instruments, Molecular Devices, Sunnyvale,
USA). Recording solutions contained (in mM): pipette, 40 KMeSO₃, 100 N-methylglucamine-MeSO₃, 20 HEPES, 2 KCl, 2 MgCl₂, 100 μM CaCl₂ (pH 7.4); bath solution, 40 KMeSO₃, 100 N-methylglucamine-MeSO₃, 20 HEPES, 2 KCl, 1 EGTA, and MgCl₂ or BaCl₂ to give the appropriate divalent concentration previously estimated using Maxchelator software (maxchelator.standford.edu) (Bers et al., 1994). Solutions containing Cd²⁺ were prepared with a bath solution containing KF instead of K-Mes to precipitate the contaminant Ca²⁺ previously to the administration of the proper concentration of CdCl₂ estimated with Maxchelator. Solutions containing different ion concentrations were exchanged using a fast solution-exchange system (BioLogic, Claix, France). All experiments were performed in various batches of oocytes, using different Ca²⁺ solutions prepared over time.

Simultaneous fluorescent and electrophysiological recordings were obtained as previously described (Miranda et al., 2013; Miranda et al., 2016). Conductance-voltage (G-V) curves were obtained from tail currents using standard procedures. The G-V relations were fit with the Boltzmann function: \(G/G_{\text{max}} = 1/(1 + \exp(-zF(V-V_{\text{half}})/RT)) \), where \(G_{\text{max}} \) is the maximum tail current, \(z \) is the voltage dependence of activation, \(V_{\text{half}} \) is the half-activation voltage of the ionic current. \(T \) is the absolute temperature (295K), \(F \) is the Faraday’s constant and \(R \) the universal gas constant. Fit parameters are provided in Supplementary file 1. Conformational changes of the gating ring were tracked as intersubunit changes of the FRET efficiency between CFP and YFP as previously reported (Miranda et al., 2013; Miranda et al., 2016). Analysis of the FRET signal was performed using emission spectra ratios. We calculated the FRET efficiency as \(E = \frac{\text{Ratio}_A - \text{Ratio}_{A_0}}{\text{Ratio}_{A_1} - \text{Ratio}_{A_0}} \), where \(\text{Ratio}_A \) and \(\text{Ratio}_{A_0} \) are the emission spectra ratios for the FRET signal and the control only in the presence of acceptor respectively (Zheng and Zagotta, 2003); \(\text{Ratio}_{A_1} \) is the maximum emission ratio that we can measure in our system (Miranda et al., 2013; Miranda et al., 2016). This value of \(E \) is proportional to FRET efficiency (Zheng and Zagotta, 2003). The \(E \) value showed is an average of the \(E \) value corresponding to each tetramer present in the membrane patch and represent an estimation of the distance between the fluorophores located in the same position of the four subunits of the tetramer. Where possible, the \(E \)-V relations were fit with the Boltzmann function: \(E = 1/(1 + \exp(-zF(V-V_{\text{half}})/RT)) \), where \(z \) is the voltage dependence of the gating ring movement (E) and \(V_{\text{half}} \) is the half-activation voltage of the fluorescent signal. Fit parameters are provided in Supplementary file 1.

Acknowledgments

MH and PM were supported by the intramural section of the National Institutes of Health (NINDS). TG was funded by the Spanish Ministry of Economy and Competitivity (grants SAF2013-50085-EXP and RyC-2012–11349) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 648936). We thank Deepa Srikumar for technical assistance and Andrew Plested for useful comments on the manuscript. The γ1 clone and the β3bNβ1 chimera were kind gifts from Chris Lingle and Ramon Latorre, respectively.

Additional information

Funding

Funder	Grant reference number	Author
National Institute of Neurological Disorders and Stroke	ZIA-NS002993	Pablo Miranda Miguel Holmgren
H2020 European Research Council	ERC-CoG-2014-648936	Teresa Giraldez
Ministerio de Economia y Competitividad	SAF2013-50085-EXP	Teresa Giraldez
Ministerio de Economia y Competitividad	RyC-2012-11349	Teresa Giraldez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Author contributions
Pablo Miranda, Conceptualization, Resources, Data curation, Formal analysis, Investigation, Visualization, Writing—original draft, Project administration, Writing—review and editing; Miguel Holmgren, Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition, Visualization, Writing—original draft, Project administration, Writing—review and editing; Teresa Giraldez, Conceptualization, Formal analysis, Supervision, Funding acquisition, Visualization, Methodology, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs
Teresa Giraldez http://orcid.org/0000-0002-4096-810X

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.40664.013
Author response https://doi.org/10.7554/eLife.40664.014

Additional files
Supplementary files
- Supplementary file 1. Fit parameters of data shown in Figures 1–6. The G-V and E-V relations were fit with Boltzmann functions $G/G_{\text{max}} = 1/(1 + \exp(-zF(V-V_{\text{half}})/RT))$, $E = 1/(1 + \exp(-zF(V-V_{\text{half}})/RT))$, where G_{max} is the maximum tail current, z is the voltage dependence of activation (G) or gating ring movement (E), V_{half} is the half-activation voltage of the ionic current or the fluorescent signal. T is the absolute temperature (295K), F is the Faraday’s constant and R the universal gas constant. DOI: https://doi.org/10.7554/eLife.40664.010
- Transparent reporting form
DOI: https://doi.org/10.7554/eLife.40664.011

Data availability
All data generated and analysed during this study are included in the manuscript.

References
Bao L, Rapin AM, Holmstrand EC, Cox DH. 2002. Elimination of the BK(Ca) channel’s high-affinity Ca(2+) sensitivity. The Journal of General Physiology 120:173–189. DOI: https://doi.org/10.1085/jgp.20028627, PMID: 12149279
Bao L, Cox DH. 2005. Gating and ionic currents reveal how the BKCa channel’s Ca2+ sensitivity is enhanced by its beta1 subunit. The Journal of General Physiology 126:393–412. DOI: https://doi.org/10.1085/jgp.200509346, PMID: 16186565
Barrett JN, Magleby KL, Pallotta BS. 1982. Properties of single calcium-activated potassium channels in cultured rat muscle. The Journal of Physiology 331:211–230. DOI: https://doi.org/10.1113/jphysiol.1982.sp014370, PMID: 6296366
Behrens R, Nolting A, Reimann F, Schwarz M, Waldschütz R, Pongs O. 2000. hKCNMB3 and hKCNMB4, cloning and characterization of two members of the large-conductance calcium-activated potassium channel beta subunit family. FEBS Letters 474:99–106. DOI: https://doi.org/10.1016/S0014-5793(00)01584-2, PMID: 10828459
Bers DM, Patton CW, Nuccitelli R. 1994. A practical guide to the preparation of Ca2+ buffers. Methods in Cell Biology 40:3–29. DOI: https://doi.org/10.1016/S0091-679X(08)60827-6, PMID: 8201981
Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. 2000. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. Journal of Biological Chemistry 275:6453–6461. DOI: https://doi.org/10.1074/jbc.275.9.6453, PMID: 10692449
Carrasquel-Ursuaez W, Contreras GF, Sepúlveda RV, Aguayo D, González-Nilo F, González C, Latorre R. 2015. Hydrophobic interaction between contiguous residues in the S6 transmembrane segment acts as a stimuli integration node in the BK channel. The Journal of General Physiology 145:61–74. DOI: https://doi.org/10.1085/jgp.201411194, PMID: 25548136
Castillo K, Contreras GF, Pupo A, Torres YP, Neely A, González C, Latorre R. 2015. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels. PNAS 112:4809–4814. DOI: https://doi.org/10.1073/pnas.1504378112, PMID: 25825713
Structural Biology and Molecular Biophysics

Contreas GF, Neely A, Alvarez O, Gonzalez C, Latorre R. 2012. Modulation of BK channel voltage gating by different auxiliary β subunits. PNAS 109:18991–18996. DOI: https://doi.org/10.1073/pnas.1216953109, PMID: 23112204

Cox DH, Aldrich RW. 2000. Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+)-sensitivity. The Journal of General Physiology 116:411–432. DOI: https://doi.org/10.1085/jgp.116.3.411, PMID: 10962074

Diaz L, Meera P, Amigo J, Stefani E, Alvarez O, Toro L, Latorre R. 1998. Role of the S4 segment in a voltage-dependent calcium-sensitive potassium (hSlo) channel. Journal of Biological Chemistry 273:32430–32436. DOI: https://doi.org/10.1074/jbc.273.49.32430, PMID: 9829973

Giraldez T, Hughes TE, Sigworth FJ. 2005. Generation of functional fluorescent BK channels by random insertion of GFP variants. The Journal of General Physiology 126:429–438. DOI: https://doi.org/10.1085/jgp.200509368, PMID: 16260837

Giraldez T, Rothberg BS. 2017. Understanding the conformational motions of RCK gating rings. The Journal of General Physiology 149:431–441. DOI: https://doi.org/10.1085/jgp.201611726, PMID: 28246116

Gonzalez-Perez V, Xia XM, Lingle CJ. 2014. Functional regulation of BK potassium channels by γ1 auxiliary subunits. PNAS 111:4868–4873. DOI: https://doi.org/10.1073/pnas.1322123111, PMID: 24639523

Hite RK, Tao X, MacKinnon R. 2017. Structural basis for gating the high-conductance Ca(2+)-activated K+ channel. Nature 541:52–57. DOI: https://doi.org/10.1038/nature20775, PMID: 27974801

Horrigan FT, Cui J, Aldrich RW. 1999. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca(2+). The Journal of General Physiology 114:277–304. DOI: https://doi.org/10.1085/jgp.114.2.277, PMID: 10436003

Horrigan FT, Aldrich RW. 2002. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels. The Journal of General Physiology 120:267–305. DOI: https://doi.org/10.1085/jgp.20028605, PMID: 12198087

Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, Laake P, Knaus HG, Ottersen OP, Storm JF. 2001. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike propagation and regulation of transmitter release. The Journal of Neuroscience 21:9585–9597. DOI: https://doi.org/10.1523/JNEUROSCI.21-24-09585.2001, PMID: 11739569

James ZM, Borst AJ, Hainin Y, Frenz B, DiMaio F, Zagotta WN, Veesler D. 2017. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. PNAS 114:4430–4435. DOI: https://doi.org/10.1073/pnas.1700248114, PMID: 28396445

Latorre R, Castillo K, Carrasquel-Ursulaez W, Sepulveda RV, Gonzalez-Nilo F, Gonzalez C, Alvarez O. 2017. Molecular determinants of BK channel functional diversity and functioning. Physiological Reviews 97:39–87. DOI: https://doi.org/10.1152/physrev.00001.2016, PMID: 27807200

Li Q, Yan J. 2016. Modulation of BK channel function by auxiliary beta and gamma subunits. International Review of Neurobiology 128:51–90. DOI: https://doi.org/10.1016/bs.irn.2016.03.015, PMID: 27238261

Liman ER, Tytgart J, Hess P. 1992. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871. DOI: https://doi.org/10.1016/0896-6273(92)90239-A, PMID: 1419000

Lingle CJ, Zeng XH, Ding JP, Xia XM. 2001. Inactivation of BK channels mediated by the NH2 terminus of the beta3 auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade. The Journal of General Physiology 117:583–606. DOI: https://doi.org/10.1085/jgp.117.6.583, PMID: 11382808

Ma Z, Lou XJ, Horrigan FT. 2006. Role of charged residues in the S1–S4 voltage sensor of BK channels. The Journal of General Physiology 127:309–328. DOI: https://doi.org/10.1085/jgp.200509421, PMID: 16505150

Meera P, Wallmer M, Song M, Toro L. 1997. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9-S10) C terminus. PNAS 94:14066–14071. DOI: https://doi.org/10.1073/pnas.94.25.14066, PMID: 9391153

Miller C. 1987. Trapping single ions inside single ion channels. Biophysical Journal 52:123–126. DOI: https://doi.org/10.1016/S0006-3495(87)83196-X, PMID: 2440489

Miranda P, Contreras JE, Plesdet AJ, Sigworth FJ, Holmgren M, Giraldez T. 2013. State-dependent FRET reports calcium- and voltage-dependent gating-ring motions in BK channels. PNAS 110:5217–5222. DOI: https://doi.org/10.1073/pnas.1219611110, PMID: 23479636

Miranda P, Giraldez T, Holmgren M. 2016. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring. PNAS 113:14055–14060. DOI: https://doi.org/10.1073/pnas.1611415113, PMID: 27872281

Moczydlowski E, Latorre R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. The Journal of General Physiology 82:511–542. DOI: https://doi.org/10.1085/jgp.82.4.511, PMID: 6315857

Moss BL, Magleby KL. 2001. Gating and conductance properties of BK channels are modulated by the S9–S10 tail domain of the alpha subunit. A study of mSlo1 and mSlo3 wild-type and chimeric channels. The Journal of General Physiology 118:711–734. DOI: https://doi.org/10.1085/jgp.118.6.711, PMID: 11723163

Neyton J, Miller C. 1988. Discrete Ba2+ block as a probe of ion occupancy and pore structure in the high-conductance Ca2+-activated K+ channel. The Journal of General Physiology 92:569–586. DOI: https://doi.org/10.1085/jgp.92.5.569, PMID: 32265774

Nimigean CM, Magleby KL. 2000. Functional coupling of the beta1 subunit to the large conductance Ca(2+)- activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent
mechanism. *The Journal of General Physiology* **115**:719–736. DOI: https://doi.org/10.1085/jgp.115.6.719, PMID: 10828246

Niu X, Gao X, Magleby KL. 2004. Linker-gating ring complex as passive spring and Ca(2+)-dependent machine for a voltage- and Ca(2+)-activated potassium channel. *Neuron* **42**:745–756. DOI: https://doi.org/10.1016/j.neuron.2004.05.001, PMID: 15182715

Orlo P, Latorre R. 2005. Differential effects of beta 1 and beta 2 subunits on BK channel activity. *The Journal of General Physiology* **125**:395–411. DOI: https://doi.org/10.1085/jgp.200409236, PMID: 15767297

Pantazis A, Oclesse R. 2012. Relative transmembrane segment rearrangements during BK channel activation resolved by structurally assigned fluorophore-quencher pairing. *The Journal of General Physiology* **140**:207–218. DOI: https://doi.org/10.1085/jgp.201210807, PMID: 22802360

Quirk JC, Reinhart PH. 2001. Identification of a novel tetramerization domain in large conductance K(ca) channels. *Neuron* **32**:13–23. DOI: https://doi.org/10.1016/S0896-6273(01)00444-5, PMID: 11604135

Raffaelli G, Saviane C, Mohajerani MH, Pedarzani P, Cherubini E. 2004. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. *The Journal of Physiology* **557**:147–157. DOI: https://doi.org/10.1113/jphysiol.2004.062661, PMID: 15034127

Robitaille R, Charlton MP. 1992. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. *The Journal of Neuroscience* **12**:297–305. DOI: https://doi.org/10.1523/JNEUROSCI.12-01-00297.1992, PMID: 13703233

Savalli N, Pantazis A, Yusilov T, Sigg D, Oclesse R. 2012. The contribution of RCK domains to human BK channel allosteric activation. *Journal of Biological Chemistry* **287**:21741–21750. DOI: https://doi.org/10.1074/jbc.M112.346171, PMID: 22556415

Shen KZ, Lagrutta A, Davies NW, Standen NB, Adelman JP, North RA. 1994. Tetraethylammonium block of Slowpoke calcium-activated potassium channels expressed in Xenopus oocytes: evidence for tetrameric channel formation. *Pflugers Archiv European Journal of Physiology* **426**:440–445. DOI: https://doi.org/10.1007/BF00388308, PMID: 7517033

Shi J, Cui J. 2001. Intracellular Mg(2+) enhances the function of BK-type Ca(2+)-activated K+(+) channels. *The Journal of General Physiology* **118**:589–606. DOI: https://doi.org/10.1085/jgp.118.5.589, PMID: 11696614

Sobolevsky AI, Rosconi MP, Gouaux E. 2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. *Nature* **462**:745–756. DOI: https://doi.org/10.1038/nature08624, PMID: 19946266

Stefani E, Ottolia M, Noceti F, Oclesse R, Wallner M, Latorre R, Toro L. 1997. Voltage-controlled gating in a large conductance Ca2+-sensitive K+ channel (hslo). *PNAS* **94**:5427–5431. DOI: https://doi.org/10.1073/pnas.94.10.5427, PMID: 9144254

Sweet TB, Cox DH. 2008. Measurements of the BKCa channel's high-affinity Ca2+ binding constants: effects of membrane voltage. *The Journal of General Physiology* **132**:491–505. DOI: https://doi.org/10.1085/jgp.200810094, PMID: 18955592

Sweet TB, Cox DH. 2009. Measuring the influence of the BKCa (beta1 subunit on Ca2+ binding to the BKCa channel. *The Journal of general physiology* **133**:139–150. DOI: https://doi.org/10.1085/jgp.200810129, PMID: 19139175

Tang QY, Zeng XH, Lingle CJ. 2009. Closed-channel block of BK potassium channels by bbTBA requires partial activation. *The Journal of General Physiology* **134**:409–436. DOI: https://doi.org/10.1085/jgp.200901251, PMID: 19858359

Tao X, Hite RK, MacKinnon R. 2017. Cryo-EM structure of the open high-conductance Ca^{2+}-activated K^+ channel. *Nature* **541**:46–51. DOI: https://doi.org/10.1038/nature20608, PMID: 27974795

Tseng-Crank J, Godinot N, Johansen TE, Ahring PK, Strobaek D, Mertz R, Foster CD, Olesen SP, Reinhart PH. 1996. Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain. *PNAS* **93**:9200–9205. DOI: https://doi.org/10.1073/pnas.93.17.9200, PMID: 8799178

Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, Mckenna E, Austin CP, Bennett PB, Swanson R. 2000. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. *Journal of Biological Chemistry* **275**:23211–23218. DOI: https://doi.org/10.1074/jbc.M910187199, PMID: 10766764

Wallner M, Meera P, Ottolia M, Kaczorowski GJ, Latorre R, Garcia ML, Stefani E, Toro L. 1995. Characterization of and modulation by a beta-subunit of a human maxi KCa channel cloned from myometrium. *Receptors & Channels* **3**:185–199. PMID: 8821792

Wallner M, Meera P, Toro L. 1996. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus. *PNAS* **93**:14922–14927. DOI: https://doi.org/10.1073/pnas.93.25.14922, PMID: 8962157

Wang ZW, Saifee O, Nonet ML, Salkoff L. 2001. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. *Neuron* **32**:867–881. DOI: https://doi.org/10.1016/S0896-6273(01)00522-0, PMID: 11738032

Wei A, Solaro C, Lingle C, Salkoff L. 1994. Calcium sensitivity of BK-type KCa channels determined by a separable domain. *Neuron* **13**:671–681. DOI: https://doi.org/10.1016/0896-6273(94)90034-5, PMID: 7917297

Wu Y, Yang Y, Ye S, Jiang Y. 2010. Structure of the gating ring from the human large-conductance Ca(2+)-gated K(+) channel. *Nature* **466**:393–397. DOI: https://doi.org/10.1038/nature09252, PMID: 20574420

Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ. 2000. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. *The Journal of Neuroscience* **20**:4890–4903. DOI: https://doi.org/10.1523/JNEUROSCI.20-13-04890.2000, PMID: 10864947
Xia XM, Zeng X, Lingle CJ. 2002. Multiple regulatory sites in large-conductance calcium-activated potassium channels. *Nature* **418**:880–884. DOI: https://doi.org/10.1038/nature00956, PMID: 12192411

Yan J, Aldrich RW. 2010. LRRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. *Nature* **466**:513–516. DOI: https://doi.org/10.1038/nature09162, PMID: 20613726

Yan J, Aldrich RW. 2012. BK potassium channel modulation by leucine-rich repeat-containing proteins. *PNAS* **109**:7917–7922. DOI: https://doi.org/10.1073/pnas.1205435109, PMID: 22547800

Yang H, Hu L, Shi J, Delaloye K, Horrigan FT, Cui J. 2007. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. *PNAS* **104**:18270–18275. DOI: https://doi.org/10.1073/pnas.0705873104, PMID: 17984060

Yang H, Shi J, Zhang G, Yang J, Delaloye K, Cui J. 2008a. Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains. *Nature Structural & Molecular Biology* **15**:1152–1159. DOI: https://doi.org/10.1038/nsmb.1507, PMID: 18931675

Yang H, Zhang G, Shi J, Lee US, Delaloye K, Cui J. 2008b. Subunit-specific effect of the voltage sensor domain on Ca2+ sensitivity of BK channels. *Biophysical Journal* **94**:4678–4687. DOI: https://doi.org/10.10159/biophysj.107.121590, PMID: 18339745

Yuan P, Leonetti MD, Hsiung Y, MacKinnon R. 2011. Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. *Nature* **481**:94–97. DOI: https://doi.org/10.1038/nature10670, PMID: 22139424

Zeng XH, Ding JP, Xia XM, Lingle CJ. 2001. Gating properties conferred on BK channels by the beta3b auxiliary subunit in the absence of its NH(2)- and COOH termini. *The Journal of General Physiology* **117**:607–628. DOI: https://doi.org/10.1085/jgp.117.6.607, PMID: 11382809

Zeng XH, Xia XM, Lingle CJ. 2005. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. *The Journal of General Physiology* **125**:273–286. DOI: https://doi.org/10.1085/jgp.200409239, PMID: 15738049

Zhang X, Solaro CR, Lingle CJ. 2001. Allosteric regulation of BK channel gating by Ca(2+) and Mg(2+) through a nonselective, low affinity divalent cation site. *The Journal of General Physiology* **118**:607–636. DOI: https://doi.org/10.1085/jgp.118.5.607, PMID: 11696615

Zhang G, Huang SY, Yang J, Shi J, Yang X, Moller A, Zou X, Cui J. 2010. Ion sensing in the RCK1 domain of BK channels. *PNAS* **107**:18700–18705. DOI: https://doi.org/10.1073/pnas.1010124107, PMID: 20937866

Zhang G, Yang H, Liang H, Yang J, Shi J, McFarland K, Chen Y, Cui J. 2014. A charged residue in S4 regulates coupling among the activation gate, voltage, and Ca2+ sensors in BK channels. *Journal of Neuroscience* **34**:12280–12288. DOI: https://doi.org/10.1523/JNEUROSCI.1174-14.2014, PMID: 25209270

Zhang G, Geng Y, Jin Y, Shi J, McFarland K, Magleby KL, Salkoff L, Cui J. 2017. Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels. *The Journal of General Physiology* **149**:373–387. DOI: https://doi.org/10.1085/jgp.201611646, PMID: 28196879

Zheng J, Zagotta WN. 2003. Patch-clamp fluorometry recording of conformational rearrangements of ion channels. *Science Signaling* **2003**:pl7. DOI: https://doi.org/10.1126/stke.2003.176.pl7, PMID: 12671191

Zhou Y, Zeng XH, Lingle CJ. 2012. Barium ions selectively activate BK channels via the Ca2+-bowl site. *PNAS* **109**:11413–11418. DOI: https://doi.org/10.1073/pnas.1204444109, PMID: 22733762

Zhou Y, Yang H, Cui J, Lingle CJ. 2017. Threading the biophysics of mammalian Slo1 channels onto structures of an invertebrate Slo1 channel. *The Journal of General Physiology* **149**:985–1007. DOI: https://doi.org/10.1085/jgp.201711845, PMID: 29025867