Loss of heterozygosity at 9q33 and hypermethylation of the DBCCR1 gene in oral squamous cell carcinoma

S Gao1, J Worm2, P Guldberg2, H Eiberg3, A Krogdahl4, JA Sørensen5, C-J Liu6, J Reibel1 and E Dabelsteen1,∗

1Department of Oral Diagnostics, School of Dentistry, University of Copenhagen, Nørre Alle 20, DK-2200 Copenhagen, Denmark; *Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen, Denmark; 2Institute of Medical Biochemistry and Genetics, University of Copenhagen, DK-2200 Copenhagen, Denmark; 3Department of Pathology, Odense University Hospital, DK-5000 Odense, Denmark; 4Department of Plastic Surgery, Odense University Hospital, DK-5000 Odense, Denmark; 5Department of Dentistry, Mackay Memorial Hospital, Taipei

Oral cancer comprises about 3% of all newly diagnosed cancer cases in the Western countries. Despite advances in therapy, the 5-year survival rate after diagnosis is still poor and remains ~50% (Landis et al., 1999; Silverman, 2001). Clinically, oral carcinomas often develop in a two-step process. The first step is characterised by the appearance of potentially malignant lesions such as leukoplakias and erythroplakias, and the second step is characterised by the development of carcinomas. However, clinical and histopathological features are insufficient measures for predicting the prognosis of potentially malignant lesions (Warnakulasuriya, 2000, 2001). Furthermore, a recent study indicated that clinically and histologically normal mucosa adjacent to tumours may harbour patches of genetically altered cells (Braakhuis et al., 2003). It is, therefore, important to find molecular markers for identifying the minor fraction of oral lesions that will develop into carcinoma.

Loss of heterozygosity (LOH) at multiple chromosome regions and genetic and epigenetic alterations of several proto-oncogenes and tumour suppressor genes have been demonstrated in oral carcinomas, including alterations of the TP53, p16, p15, MGMT, E-cadherin genes and RAS (Califano et al., 1996; Partridge et al., 1999; Williams, 2000; Ogi et al., 2002; Viswanathan et al., 2003). In addition, our previous study showed that hypermethylation of the ABO gene promoter was associated with loss of expression of A/B antigen in approximately one-third of oral squamous cell carcinomas (Gao et al., 2004). LOH at 9q34, in which the ABO gene is located, was also a frequent event in these tumours. However, a number of tumours from AO and BO heterozygotes showed deletion of the O allele, which does not encode a functional glycosyltransferase, suggesting the existence of an additional tumour suppressor gene on chromosome 9q. The DBCCR1 (deleted in bladder cancer chromosomal region candidate 1) gene at chromosome 9q33 was identified as a putative tumour suppressor gene that is frequently targeted by hypermethylation in transitional cell carcinomas of the bladder (Habuchi et al., 1997, 1998, 2001; Nishiyama et al., 1999). There are, at present, no reports of DBCCR1 alterations in other cancers. The aim of this study was to examine for LOH at the 9q33 region and determine the methylation status of DBCCR1 in oral squamous cell carcinomas and potentially malignant oral lesions.

MATERIALS AND METHODS

Sample preparation

Surgical specimens of oral lesions were obtained from School of Dentistry, National Yang-Ming University, Taipei, and Odense University Hospital, Denmark. The median age of the patients was 60 years (range 35–89 years); there were six women and 32 men. The materials included unfixed frozen tissues from 34 patients with oral squamous cell carcinoma and four patients with potentially malignant lesions (leukoplakia with epithelial dysplasia). A
laser microdissection system (PALM) was used to separate tumour cells or leukoplakia epithelium from normal connective tissue. In seven cases, tumour-adjacent epithelium was isolated as well. DNA was extracted by routine procedures using the DNeasy Kit (Qiagen). Informed consent and approval by the Ethics Committee were obtained according to Danish legislation.

LOH analysis

DNA from tumour or leukoplakia lesions and matched normal tissues was screened for LOH at the 9q33 region using the three microsatellite markers, D9S195, D9S1872 (http://www.gdb.org) and 9-11407. The latter marker was designed by one of us (HE) and is located at 300 kb upstream of exon 1 of the DBCCR1 gene, according to GenBank accession no. AF027734). The primers for the unmethylated reaction were 5'-TTATGTTGTAATTGTGTTGTT-3' and 5'-CAACTCA-CATCCAAAAACACACAC-3', which amplify a 269-bp product (positions 15–283), and the primers for the methylated reaction were 5'-TTTGAATTGTGTTGTTGTT-3' and 5'-TCCGAACAC-GAGCGAAA-3', which amplify a 253-bp product (positions 22–274). PCR was carried out using the HotStarTaq Kit (Qiagen); the annealing temperatures for the unmethylated and methylated reactions were 60 and 62°C, respectively. Primer sequences and reaction conditions for MS-PCR analysis of the ABO gene promoter were as described (Kominato et al., 1999; Gao et al., 2004). The PCR products were resolved on 2% agarose gels. DNA treated with SssI methyltransferase (New England Biolabs) served as the methylated control.

For methylation-specific melting-curve analysis (MS-MCA) of DBCCR1, the primers were 5'-GGGAGGTAGGGAGGTAGG-3' and 5'-AAAATCCCTAACTCCTAAACACACAC-3', which amplify a 117-bp product (positions 127–243). PCR and subsequent MCA were carried out as previously described (Worm et al., 2001) using the LightCycler (Roche) and the FastStart DNA Master SYBR Green I Kit (Roche). Reactions were started by initial denaturation at 95°C for 10 min, followed by cycling at 95°C for 10 s, a transition from 72 to 66°C at 0.5°C cycle–1 for 10 s and 72°C for 20 s. Melting-curve analysis was performed immediately after amplification by measuring the fluorescence of SYBR Green I during a linear temperature transition from 70 to 95°C at 0.05°C s–1. Fluorescence data were converted into melting peaks by the LightCycler software.

Table 1 Hypermethylation of DBCCR1 and LOH at 9q33 in oral squamous cell carcinomas and leukoplakias with dysplasia

Case #	Sex	Age	DBCCR1	ABO	D9S1872	D9S195	9-11407	
Carcinomas								
1	CT5	M	54	+	–	–	–	+
2	CT6	M	56	–	–	–	–	–
3	CT7	M	60	+	–	–	–	–
4	CT8	M	62	–	–	–	–	–
5	CT10	M	57	–	+	NA	NA	NA
6	CT11	M	57	–	–	–	–	–
7	CT12	M	50	–	–	–	–	–
8	CT14	M	50	–	–	–	–	–
9	CT15	M	53	–	–	–	–	–
10	CT16	M	37	–	–	–	–	–
11	CT17	M	57	–	–	–	–	–
12	CT18	M	65	+	+	–	–	–
13	CT19	M	58	–	–	–	–	–
14	CT20	M	54	–	–	–	–	–
15	CT21	M	71	–	–	–	–	–
16	CT22	M	65	–	–	–	–	–
17	CT23	M	35	+*	+*	–	–	–
18	CTGx	F	57	+	+	+	+	+
19	30365	M	66	+	–	NA	NA	NA
20	19395	M	61	+	–	–	–	+
21	25941	M	65	+	–	–	–	+
22	15374	M	69	+	–	–	–	+
23	18034	M	76	–	–	NA	NA	NA
24	31572T1	F	55	+	+	–	–	+
25	31572T2			+	+	+	+	+
26	33379	M	84	–	–	–	–	–
27	28753	F	52	–	–	–	–	+
28	19274	M	61	–	–	+	+	+
29	2132	M	58	+*	+	–	–	–
30	1592	F	71	–	–	–	–	–
31	17093	M	60	–	–	+	+	+
32	29627	M	61	–	–	–	–	–
33	21394	M	69	+	–	–	–	+
34	33103	M	69	–	–	–	–	–

Leukoplakias with dysplasia

Case #	Sex	Age	DBCCR1	ABO	D9S1872	D9S195	
35	6042	F	60	–	–	–	–
36	24710	M	54	–	–	–	–
37	24722	M	53	+	–	–	–
38	16050	M	51	–	–	–	–

NA = no available information; T1 = well-differentiated tumour cells adjacent to normal epithelium; T2 = poorly-differentiated tumour cells far away from normal epithelium.

Table 1 Hypermethylation of DBCCR1 and LOH at 9q33 in oral squamous cell carcinomas and leukoplakias with dysplasia

Methylation analysis

Genomic DNA was treated with sodium bisulphite as described previously (Clark et al., 1994). For methylation-specific PCR (MS-PCR) analysis of the DBCCR1 promoter (GenBank accession no. AF027734), the primers for the unmethylated reaction were 5'-TTATGTTGTAATTGTGTTGTT-3' and 5'-CAACTCA-CATCCAAAAACACACAC-3', which amplify a 269-bp product (positions 15–283), and the primers for the methylated reaction were 5'-TTTGAATTGTGTTGTTGTT-3' and 5'-TCCGAACAC-GAGCGAAA-3', which amplify a 253-bp product (positions 22–274). PCR was carried out using the HotStarTaq Kit (Qiagen); the annealing temperatures for the unmethylated and methylated reactions were 60 and 62°C, respectively. Primer sequences and reaction conditions for MS-PCR analysis of the ABO gene promoter were as described (Kominato et al., 1999; Gao et al., 2004). The PCR products were resolved on 2% agarose gels. DNA treated with SssI methyltransferase (New England Biolabs) served as the methylated control.

For methylation-specific melting-curve analysis (MS-MCA) of DBCCR1, the primers were 5'-GGGAGGTAGGGAGGTAGG-3' and 5'-AAAATCCCTAACTCCTAAACACACAC-3', which amplify a 117-bp product (positions 127–243). PCR and subsequent MCA were carried out as previously described (Worm et al., 2001) using the LightCycler (Roche) and the FastStart DNA Master SYBR Green I Kit (Roche). Reactions were started by initial denaturation at 95°C for 10 min, followed by cycling at 95°C for 10 s, a transition from 72 to 66°C at 0.5°C cycle–1 for 10 s and 72°C for 20 s. Melting-curve analysis was performed immediately after amplification by measuring the fluorescence of SYBR Green I during a linear temperature transition from 70 to 95°C at 0.05°C s–1. Fluorescence data were converted into melting peaks by the LightCycler software.

Figure 1 LOH analysis of 9q33 in oral squamous cell carcinomas. T, tumour; N, normal tissue; T1, well-differentiated tumour cells adjacent to normal epithelium; T2, poorly-differentiated tumour cells far away from normal epithelium. Arrows indicate LOH.
(Ver.3.39) by plotting the negative derivative of fluorescence over temperature vs. temperature (−dF/dT vs. T).

Statistical analysis

Correlation analyses were performed using Fisher’s exact probability test.

RESULTS

LOH analysis of chromosome 9q33

LOH analysis of the 9q33 region using three microsatellite markers showed allelic loss in 10 of 31 (32%) informative cases of oral squamous cell carcinoma (Table 1; see Figure 1 for examples). Among these, four showed LOH at D9S1872, six at D9S195, and seven at 9-11407. Notably, three cases showed LOH at 9-11407 located ~300 kb upstream of *DBCCR1*, but retention of D9S195 located in intron 1 of *DBCCR1*. In one case, in which DNA was isolated from both well- and poor-differentiated tumour cells from the same tumour, LOH at D9S195 was found in both populations, but only the poor-differentiated tumour cells showed LOH at 9-11407 and D9S1872 (Figure 1). LOH at D9S1872 was also found in one of four leukoplakias with dysplasia. No LOH was found in epithelial tissues adjacent to the tumours.

Methylation analysis

Hypermethylation of the *DBCCR1* gene promoter was present in 15 out of 34 (44%) oral squamous cell carcinomas, as determined by MS-PCR analysis (Table 1; see Figure 2 for examples). In three out of seven cases, *DBCCR1* hypermethylation was also found in tumour-adjacent tissues, including two hyperplastic and one histologically normal epithelium. To further characterise *DBCCR1* methylation patterns in oral carcinomas and to exclude possible false-positive MS-PCR results, all samples showing a positive signal for methylated *DBCCR1* alleles using MS-PCR were also examined using MS-MCA (Figure 2). Aberrant methylation was confirmed in all cases. However, in one case (#31572), well- and poor-differentiated tumour cells isolated from the same lesion showed different methylation patterns (Figure 2). Hypermethylation of the *DBCCR1* gene was also found in two of four leukoplakias with dysplasia, none of which showed LOH at 9q33 (Table 1).

Concomitant LOH at 9q33 and hypermethylation of the *DBCCR1* gene were found in seven carcinomas (*P* = 0.057); however, this...
and neck carcinomas have demonstrated LOH involving the 9q32-
eq et al

as a candidate tumour suppressor (Habuchi

DBCCR1

Methylation analysis of the

DBCCR1

frequently involved microsatellite marker D9S195, which is located

suppressor gene involved in oral carcinogenesis. Notably, LOH

suppressor genes known to be targeted by promoter hypermethy-

different techniques showed aberrant hypermethylation in 44% of

DISCUSSION

Substantial evidence suggests that aberrant hypermethylation of

promoter CpG islands may constitute an alternative mechanism to

intragenic mutations and deletions for inactivation of tumour

suppressor genes (Worm and Guldberg, 2002; Nephew and Huang,

2003). Hypermethylation of the DBCCR1 gene as well as LOH and

homozgyous deletions at the DBCCR1 locus have been shown to be

frequent events in bladder cancer (Fujiwara et al, 2004), but there was no correlation between the

DBCCR1 and ABO hypermethylation events (P = 0.11; Tables 1 and 2).

ACKNOWLEDGEMENTS

We would like to thank Ms Hanne Lykke Hansen, Ms Vibeka

Ahrenkiel, Ms Annemette Mikkelsen, Ms Lillian Rasmussen and

Ms Wei Wang for their expert technical assistance.

REFERENCES

Ah-See KW, Cooke TG, Pickford IR, Soutar D, Balmain A (1994) An

allelotype of squamous carcinoma of the head and neck using

microsatellite markers. Cancer Res 54: 1617–1621

Akanuma D, Uzawa N, Yoshida MA, Negishi A, Amagasa T, Ikeuchi T

(1999) Inactivation patterns of the p16 (INK4a) gene in oral squamous

cell carcinoma cell lines. Oral Oncol 35: 476–483

Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH (2003)

A genetic explanation of Slaughter’s concept of field carcinogenesis:

evidence and clinical implications. Cancer Res 63: 1727–1730

Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Pantadosi S,

Corio R, Lee D, Greenberg B, Koch W, Sidransky D (1996) Genetic

progression model for head and neck cancer: implications for field

carcinogenesis. Cancer Res 56: 2488–2492

Chang HW, Chow V, Lam KY, Wei WI, Yuen A (2002) Loss of E-cadherin

expression resulting from promoter hypermethylation in oral tongue

carcinoma and its prognostic significance. Cancer 94: 386–392

Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping

of methylated cytosines. Nucleic Acids Res 22: 2990–2997

Fujiwara H, Emi M, Nagai H, Ohgaki K, Imoto I, Akimoto M, Ogawa O, Habuchi T (2001) Definition of a 1-Mb homozygous deletion

at 9q32–q33 in a human bladder-cancer cell line. J Hum Genet 46:

372–377

Gao S, Worm J, Gulberg P, Eiberg H, Krogdahl A, Liu CJ, Reibel J,

Dabelsteen E (2004) Genetic and epigenetic alterations of the

blood group ABO gene in oral squamous cell carcinoma. Int J Cancer

109: 230–237

Table 2 Correlation analysis of LOH at 9q33 and DBCCR1 and ABO

hypermethylation

Methylation of DBCCR1	No	M (%)	U (%)	P-value	
Methylation of ABO	M	11	7 (63.6)	4 (36.4)	0.11
	U	23	8 (34.8)	15 (65.2)	
LOH at 9q33	+	10	7 (70.0)	3 (30.0)	0.057
	−	24	8 (33.3)	16 (67.7)	
at 9-11047	+	7	6 (85.7)	1 (14.3)	
	−	27	9 (33.3)	18 (66.7)	0.018
at D9S1872	+	4	2 (50.0)	2 (50.0)	
	−	30	13 (43.3)	17 (56.7)	0.60
at D9S195	+	6	4 (66.7)	2 (33.3)	
	−	28	11 (39.3)	17 (60.7)	0.22

M = hypermethylation; U = no methylation.

correlation was only significant for microsatellite marker 9-11407,

which is located ~ 300 kb upstream of exon 1 of the DBCCR1 gene

(Table 2). Hypermethylation of ABO was found in 11 out of 34

(32%) tumour samples and in three adjacent epithelia (Table 1)

(Gao et al, 2004), but there was no correlation between the

DBCCR1 and ABO hypermethylation events (P = 0.11; Tables 1 and 2).

Genetic and epigenetic alterations of the DBCCR1 gene were not

restricted to oral carcinomas. LOH at 9q33 was also demonstrated

in one of four patients with severe epithelial dysplasia, and

DBCCR1 hypermethylation was present in another two of these

cases. Abrupt hypermethylation levels were found even in tumour-

adjacent epithelia with no histopathological evidence of

malignancy, suggesting that it may represent an early event in oral

malignant development. In bladder cancer, field carcinisation has

been attributed to age-related methylation of

DBCCR1

epithelium (Habuchi et al, 2001). The presence of DBCCR1

hypermethylation in oral tumour-adjacent epithelium is of great

interest and should be further investigated in order to elucidate

whether local recurrence or field carcinisation in oral cancer

patients can be explained, at least in some cases, by the existence

of a DBCCR1-hypermethylated field in histologically normal

epithelium.

In the present work, we were not able to detect any divergence

between the two groups of patients, which were of different ethic

origin and exposed to different environmental factors (betel/

tobacco and alcohol/tobacco). However, the material is too limited

to make any firm conclusions. In a new prospective study, we are

investigating whether the methylation and LOH status have a

clinical significance.

There is still little information about the possible function of the

DBCCR1 gene in carcinogenesis. Unresolved issues include the

apparent lack of DBCCR1 expression in most normal tissues and the

unclear correlation between hypermethylation and transcriptional

silencing of this gene (Habuchi et al, 1998), questioning the role

of DBCCR1 as a tumour suppressor in the homeostasis of

normal cells. Previous cell cycle studies suggested that DBCCR1

growsuppressing and antiproliferative activities mediated via

modulation of the G1 checkpoint. Overexpression of DBCCR1

caused a slower G1 transition rather than G1 arrest and did not

affect apoptosis (Nishiyama et al, 2001). Although these functional

studies and the high rate of DBCCR1 hypermethylation in oral

squamous cell carcinomas support the candidacy of DBCCR1 as a

tumour suppressor at 9q33, additional studies are required to

unravel its possible role in oral malignant development.
Habuchi T, Luscombe M, Elder PA, Knowles MA (1998) Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32–q33. *Genomics* 48: 277–288

Habuchi T, Takahashi T, Kakinuma H, Wang L, Tsuchiya N, Satoh S, Akao T, Sato K, Ogawa O, Knowles MA, Kato T (2001) Hypermethylation at 9q32–33 tumor suppressor region is age-related in normal urothelium and an early and frequent alteration in bladder cancer. *Oncogene* 20: 531–537

Habuchi T, Yoshida O, Knowles MA (1997) A novel candidate tumour suppressor locus at 9q32-33 in bladder cancer: localization of the candidate region within a single 840 kb YAC. *Hum Mol Genet* 6: 913–919

Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. *Oncogene* 21: 4231–4236

Kim HS, Chung WB, Hong SH, Kim JA, Na SY, Jang HJ, Sohn YK, Kim JW (2000) Inactivation of p16INK4a in primary tumors and cell lines of head and neck squamous cell carcinoma. *Mol Cells* 10: 557–565

Kominato Y, Hata Y, Takizawa H, Tsuchiya T, Tsukada J, Yamamoto F (1999) Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region. *J Biol Chem* 274: 37240–37250

Landis SH, Murray T, Bolden S, Wingo PA (1999) Cancer statistics, 1999. *CA Cancer J Clin* 49: 8–31 1

Nephew KP, Huang TH (2003) Epigenetic gene silencing in cancer initiation and progression. *Cancer Lett* 190: 125–133

Nishiyama H, Gill JH, Pitt E, Kennedy W, Knowles MA (2001) Negative regulation of G(1)/S transition by the candidate bladder tumour suppressor gene DBCCR1. *Oncogene* 20: 2956–2964

Nishiyama H, Takahashi T, Kakehi Y, Habuchi T, Knowles MA (1999) Homozygous deletion at the 9q32–33 candidate tumor suppressor locus in primary human bladder cancer. *Genes Chromosomes Cancer* 26: 171–175

Ogi K, Toyota M, Ohe-Toyota M, Tanaka N, Noguchi M, Sonoda T, Kohama G, Tokino T (2002) Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. *Clin Cancer Res* 8: 3164–3171

Partridge M, Emilion G, Pateromichelakis S, Phillips E, Langdon J (1999) Location of candidate tumour suppressor gene loci at chromosomes 3p, 8p and 9p for oral squamous cell carcinomas. *Int J Cancer* 83: 318–325

Silverman Jr S (2001) Demographics and occurrence of oral and pharyngeal cancers, the outcomes, the trends, the challenge. *J Am Dent Assoc* 132(Suppl): 75–115

Viswanathan M, Tsuchida N, Shannmugam G (2003) Promoter hypermethylation profile of tumor-associated genes p16, p15, HMLH1, MGMT and E-cadherin in oral squamous cell carcinoma. *Int J Cancer* 105: 41–46

Warnakulasuriya S (2000) Lack of molecular markers to predict malignant potential of oral precancer. *J Pathol* 190: 407–409

Warnakulasuriya S (2001) Histological grading of oral epithelial dysplasia: revisited. *J Pathol* 194: 294–297

Williams HK (2000) Molecular pathogenesis of oral squamous carcinoma. *Mol Path* 53: 165–172

Worm J, Aggerholm A, Guldberg P (2001) In-tube DNA methylation profiling by fluorescence melting curve analysis. *Clin Chem* 47: 1183–1189

Worm J, Guldberg P (2002) DNA methylation: an epigenetic pathway to cancer and a promising target for anticancer therapy. *J Oral Pathol Med* 31: 443–449

Yakushiji T, Noma H, Shibahara T, Arai K, Yamamoto N, Tanaka C, Uzawa K, Tazawa H (2001) Analysis of a role for p16/CDKN2 expression and methylation patterns in human oral squamous cell carcinoma. *Bull Tokyo Dent Coll* 42: 159–168