Diagnostic Next-generation Sequencing Frequently Fails to Detect MYD88^{L265P} in Waldenström Macroglobulinemia

Amanda Kofides¹, Zachary R. Hunter¹,², Lian Xu¹, Nicholas Tsakmaklis¹, Maria G. Demos¹, Manit Munshi¹, Xia Liu¹, Maria Luisa Guerrera¹, Carly R. Leventoff¹, Timothy P. White¹, Catherine A. Flynn¹, Kirsten Meid¹, Christopher J. Patterson¹, Guang Yang¹,², Andrew R. Branagan²,³, Shayna Sarosiek¹,², Jorge J. Castillo¹,², Steven P. Treon¹,², Joshua N. Gustine¹,⁴

Correspondence: Steven P. Treon (steven_treon@dfci.harvard.edu).

Mutations in MYD88 (MYD88^{MUT}) are present in approximately 93%–97% of patients with Waldenström macroglobulinemia (WM), nearly all of which correspond to the c.978T>C transversion resulting in a p.Leu265Pro (L265P) substitution at the protein level.¹,² MYD88^{MUT} helps support the diagnosis of WM and differentiates from other IgM-secreting B-cell malignancies, such as marginal zone lymphoma and IgM myeloma, where it is absent or rarely expressed.³ The presence of MYD88^{MUT} is also associated with a better prognosis, lower risk of histological transformation, and predicts response to the BTK inhibitor ibrutinib in WM patients.³,⁴ These findings prompted the World Health Organization, National Comprehensive Cancer Network, and WM Workshop guidelines to recommend MYD88^{MUT} testing for all suspected WM cases.⁵

Despite the importance of MYD88^{MUT}, a uniform means for identifying them is currently lacking. The original studies that established the incidence of MYD88^{L265P} used an allele-specific polymerase chain reaction (AS-PCR) with CD19-selected bone marrow (BM) aspirates to maximize sensitivity.² However, pre-sorting B-cells before AS-PCR is not feasible for most clinical laboratories; hence, unselected BM aspirates are routinely used for the clinical detection of MYD88^{L265P}.² Additional testing with Sanger sequencing is recommended in patients with wild-type (WT) MYD88 by AS-PCR to evaluate for rare non-L265P MYD88^{MUT}.³ Targeted next-generation sequencing (NGS) has emerged as an alternative to AS-PCR to identify MYD88^{L265P}, but the sensitivity of NGS for MYD88^{L265P} detection in WM patients is unknown. This prompted us to compare the results for MYD88^{L265P} detection by NGS against AS-PCR in 414 consecutive WM patients who had both assays performed synchronously.

We used CD19-selected BM aspirate to detect MYD88^{L265P} by quantitative AS-PCR, followed by Sanger sequencing to evaluate for non-L265P MYD88^{MUT} in patients with MYD88^{WT} by AS-PCR as previously described.⁶,⁷ Qualitative AS-PCR (lower limit of detection ~1%) for MYD88^{L265P} was also performed on unselected BM aspirate in the Molecular Diagnostics Laboratory, Brigham & Women’s Hospital (Boston, MA). The findings for MYD88^{L265P} were compared against a clinically validated and targeted NGS assay (Rapid Heme Panel) using unselected BM aspirate from the same patients.⁸ The NGS assay has an average coverage of 1500X with <5% of the amplicons with 50X coverage, and reproducibly could detect single nucleotide variants at allele frequencies of ≥5%.⁹ The median coverage of the MYD88 amplicon was 1521X (range 305–3707X). Calculations were performed with R (R Foundation for Statistical Computing, Vienna, Austria). The Dana-Farber/Harvard Cancer Center IRB approved this study, and all patients provided written consent for the use of their samples.

Clinical characteristics at the time of MYD88^{MUT} testing are shown in Supplemental Digital Table 1, http://links.lww.com/HSA/A180. Using AS-PCR with CD19-selected BM samples, 391 patients (94.4%) had MYD88^{L265P} identified. Sanger sequencing of the 23 patients with MYD88^{WT} by AS-PCR revealed that one patient had a dinucleotide substitution that resulted in MYD88^{L265P}, while another had a MYD88^{L241P} mutation. Overall, the prevalence of MYD88^{MUT} in this cohort was 393/414 (95%), and did not differ between treatment-naïve and previously treated WM patients (94% versus 96%, respectively; P = 0.37).

We compared the results for MYD88^{L265P} by NGS with unselected BM aspirate against AS-PCR with CD19-selected BM. Among the 391 patients with MYD88^{L265P} identified by AS-PCR, only 239 patients (66%) had MYD88^{L265P} identified by the NGS method; the median variant allele fraction for MYD88^{L265P} was 5.95% (range 0.5%–86.5%). No patient had MYD88^{L265P} identified by NGS that AS-PCR did not also identify. The test performance statistics comparing the 2 methods are summarized in Table 1. We then evaluated factors that impacted the sensitivity of MYD88^{L265P} detection by NGS. Modeling the false negative results by age, sex, hemoglobin level, platelet count, serum IgM
Table 1. Test Performance of Targeted Next-generation Sequencing and Allele-specific PCR for MYD88\(^{L265P}\) in WM Patients

	AS-PCR	NGS	
	CD19-selected BM	Unselected BM	Unselected BM
True positive, no	391	377	259
True negative, no	24	24	24
False positive, no	0	0	0
False negative, no	0	14	132
Concordance (κ), %	Ref: 97 (0.76)	68 (0.19)	
Sensitivity (95% CI), %	Ref: 96 (94–98)	66 (61–71)	
Specificity (95% CI), %	Ref: 100 (83–100)	100 (83–100)	
PPV (95% CI), %	Ref: 100 (99–100)	100 (98–100)	
NPV (95% CI), %	Ref: 63 (46–78)	15 (10–22)	

Results from both AS-PCR and targeted NGS with unselected bone marrow aspirate samples were compared against AS-PCR with CD19-selected bone marrow aspirate samples for MYD88\(^{L265P}\). AS-PCR = allele-specific polymerase chain reaction; BM = bone marrow; CI = confidence interval; NGS = next-generation sequencing; PPV = negative predictive value; NPV = positive predictive value.

Figure 1. Impact of bone marrow involvement on false negative rates for MYD88\(^{L265P}\) with targeted next-generation sequencing. AS-PCR with CD19-selected bone marrow aspirate samples for MYD88\(^{L265P}\) was used as the reference assay for this analysis. AS-PCR = allele-specific polymerase chain reaction.

This study also provides important context for interpreting the iNOVATE trial that evaluated ibrutinib plus rituximab in WM patients. Compared to ibrutinib monotherapy in the pivotal trial, 6,7 ibrutinib plus rituximab induced a higher major response rate (73% versus 0%) and median PFS (4 versus 0.4 yrs) in MYD88\(^{WT}\) patients.19,20 However, the iNOVATE trial used an NGS assay (mean coverage >500X) with either unselected BM aspirate or formalin-fixed paraffin-embedded specimens to identify MYD88\(^{MUT}\), whereas the pivotal ibrutinib trial utilized AS-PCR and Sanger sequencing with CD19-selected BM aspirate.21,22 Given the high false negative rate with NGS, our findings suggest the iNOVATE trial results may be confounded by the inclusion of patients with MYD88\(^{MUT}\) in the MYD88\(^{WT}\) cohort. Indeed, the prevalence of MYD88\(^{WT}\) was at least two-fold higher in iNOVATE than the established prevalence in WM (16% versus 3%–7%), suggesting the presence of misclassified MYD88\(^{WT}\) patients.19,20 Preclinical studies have also demonstrated MYD88\(^{WT}\) tumors have intrinsic ibrutinib resistance due to NF-κB activating mutations downstream of BTK.22-24 It is therefore unlikely the addition of rituximab accounts for the high activity of ibrutinib reported with combination therapy, particularly since rituximab monotherapy only induced a major response rate of 22% and median PFS of 2 years in MYD88\(^{WT}\) patients.19,20 Nevertheless, our findings highlight the importance of using highly sensitive approaches when investigating MYD88\(^{MUT}\) as a treatment biomarker. Such an approach is also critical given MYD88\(^{WT}\) WM patients typically have low BM tumor burden,1 which adversely impacts the sensitivity of molecular testing. Our findings may also be important for molecular diagnostic testing in other B-cell malignancies, such as ABC DLBCL (30%–40%), primary Central Nervous System lymphoma (60%–80%), marginal zone lymphoma (5%–10%), and chronic lymphocytic leukemia (5%–10%), wherein MYD88\(^{MUT}\) is frequently observed.

In summary, our data show that targeted NGS frequently yields false negative results for MYD88\(^{L265P}\) in WM patients. Given the importance of MYD88\(^{MUT}\) status in the management of WM, our findings highlight the importance for standardized testing methods for MYD88\(^{MUT}\) in WM patients, as well as other diseases impacted by this mutation.

Acknowledgments

The authors would like to thank the Seigel Family Fund for WM Research, Orszag Family Fund for WM Research, Peter S. Bing, MD, International Waldenström’s Macroglobulinemia Foundation, Leukemia & Lymphoma Society (Grant: R6507-18), Kerry Robertson Fund for WM.
Disclosures
SPT, JJC, GY, and ZRH have received research funding and/or consulting fees from Pharmacyclics Inc., Jansen Pharmaceuticals Inc., the manufacturer of ibrutinib. SPT has received research funding from Bristol Myers Squibb, X4 Pharmaceuticals, and Beigene. JJC received research funding and/or consulting fees from Abbvie, Beigene, Kymera, and TG Therapeutics.

Sources of funding
SPT, ZRH, and GY are supported by an NIH SPORE in Multiple Myeloma (Grant: 2P50CA100707-16A1).

References
1. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med. 2012;367:826–833.
2. Xu L, Hunter ZR, Yang G, et al. MYD88 L265P in Waldenström Macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood. 2013;121:2051–2058.
3. Treon SP, Cao Y, Xu L, et al. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123:2791–2796.
4. Treon SP, Gustine J, Xu L, et al. MYD88 wild-type Waldenstrom macroglobulinaemia: differential diagnosis, risk of histological transformation, and overall survival. Br J Haematol. 2018;180:374–380.
5. Zanwar S, Abeykoon JP, Durot E, et al. Impact of MYD88L265P mutation status on histological transformation of Waldenstrom macroglobulinemia. Am J Hematol. 2020;95:274–281.
6. Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström's macroglobulinemia. N Engl J Med. 2015;372:1430–1440.
7. Treon SP, Meid K, Gustine J, et al. Long-term follow-up of ibrutinib monotherapy in symptomatic, previously treated patients with Waldenström macroglubulinemia. J Clin Oncol. 2021;39:565–575.
8. Castillo JJ, Advani RH, Branagan AP, et al. Consensus treatment recommendations from the tenth International Workshop for Waldenström macroglobulinemia. Lancet Haematol. 2020;7:e827–e837.
9. Treon SP, Xu L, Guerrero ML, et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. J Clin Oncol. 2020;38:1198–1208.
10. Kluk MJ, Lindsay RC, Aster JC, et al. Validation and implementation of a custom next-generation sequencing clinical assay for hematologic malignancies. J Mol Diagn. 2016;18:507–515.
11. Astle JM, Xu ML, Friedman T, et al. Limitations of poor bone marrow aspirations (for an accurate diagnosis) despite the multimodal analytical era: a longitudinal retrospective study. Am J Hematol. 2017;92:E600–E602.
12. Gustine J, Meid K, Xu L, et al. To select or not to select? The role of B-cell selection in determining the MYD88 mutation status in Waldenström macroglobulinemia. Br J Haematol. 2017;176:822–824.
13. Brandi D, Genuardi E, Dogliotti I, et al. Highly sensitive MYD88L265P mutation detection by droplet digital polymerase chain reaction in Waldenström macroglobulinemia. Haematologica. 2018;103:1029–1037.
14. Lo Schirico M, Ferrante M, Dogliotti I, et al. Droplet digital PCR assay for MYD88 L265P: clinical applications in Waldenström macroglobulinemia. HemaSphere. 2020;4:e324.
15. Bagratun T, Ntanasis-Stathopoulos I, Gavriatopoulou M, et al. Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies. Leukemia. 2018;32:2617–2625.
16. Ntanasis-Stathopoulos I, Bagratun T, Gavriatopoulou M, et al. Cell-free DNA analysis for the detection of MYD88 and CXCR4 mutations in IgM monoclonal gammopathies; an update with clinicopathological correlations. Am J Hematol. 2020;95:E148–E150.
17. Wu YY, Jia MN, Cai H, et al. Detection of the MYD88L265P and CXCR4S338X mutations by cell-free DNA in Waldenström macroglobulinemia. Ann Hematol. 2020;99:1763–1769.
18. Demos MG, Hunter ZR, Xu L, et al. Cell-free DNA analysis for detection of MYD88L265P and CXCR4S338X mutations in Waldenström macroglobulinemia. Am J Hematol. 2021;96:E250–E253.
19. Dimopoulos MA, Tedeschi A, Trotman J, et al; INNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia. Phase 3 trial of ibrutinib plus rituximab vs placebo plus rituximab for Waldenstrom’s macroglobulinemia. N Engl J Med. 2018;378:2399–2410.
20. Buske C, Tedeschi A, Trotman J, et al. Five-year follow-up of ibrutinib plus rituximab vs placebo plus rituximab for Waldenström's macroglobulinemia: final analysis from the randomized phase 3 INNOVATE Study. Blood. 2020;136(suppl 1):24–26.
21. Treon SP, Xu L, Hunter Z, MYD88 mutations and response to ibrutinib in Waldenström's macroglobulinemia. N Engl J Med. 2015;373:584–586.
22. Yang G, Zhou Y, Liu X, et al. A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia. Blood. 2013;122:1222–1232.
23. Yang G, Buhrlage SJ, Tan L, et al. HKC is a survival determinant trans-activated by mutated MYD88, and a direct target of ibrutinib. Blood. 2016;127:3237–3252.
24. Hunter ZR, Xu L, Tsakmakis N, et al. Insights into the genomic landscape of MYD88 wild-type Waldenström macroglobulinemia. Blood Adv. 2018;2:2937–2946.