Comparative proteomic analysis to annotate the structural and functional association of the hypothetical proteins of *S. maltophilia k279a* and predict potential T and B cell targets for vaccination

Md. Muzahid Ahmed Ezaj, Md. Sajedul Haque, Shifath Bin Syed, Md. Shakil Ahmed Khan, Kazi Rejvee Ahmed, Mst. Tania Khatun, S. M. Abdul Nayeem, Golam Rosul Rizvi, Mohammad Al-Forkan, and Laila Khaleda

1 Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh, 2 Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chittagong, Bangladesh, 3 Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh, 4 Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh

lkankhi@gmail.com

Abstract

Stenotrophomonas maltophilia is a multidrug-resistant bacterium with no precise clinical treatment. This bacterium can be a vital cause for death and different organ failures in immune-compromised, immune-competent, and long-time hospitalized patients. Extensive quorum sensing capability has become a challenge to develop new drugs against this pathogen. Moreover, the organism possesses about 789 proteins which function, structure, and pathogenesis remain obscured. In this piece of work, we tried to enlighten the aforementioned sectors using highly reliable bioinformatics tools validated by the scientific community. At first, the whole proteome sequence of the organism was retrieved and stored. Then we separated the hypothetical proteins and searched for the conserved domain with a high confidence level and multi-server validation, which resulted in 24 such proteins. Furthermore, all of their physical and chemical characterizations were performed, such as theoretical isoelectric point, molecular weight, GRAVY value, and many more. Besides, the subcellular localization, protein-protein interactions, functional motifs, 3D structures, antigenicity, and virulence factors were also evaluated. As an extension of this work, 'RTFAMS-SER' and 'PAAPQPSAS' were predicted as potential T and B cell epitopes, respectively. We hope our findings will help in better understating the pathogenesis and smooth the way to the cure.
Introduction

Stenotrophomonas maltophilia is a major emerging nosocomial pathogen [1] and is most commonly found in cystic fibrosis (CF) patients worldwide [2]. Among the multidrug-resistant organisms (MDROs), World Health Organization (WHO) enlisted *S. maltophilia* as one of the leading organisms found in the hospital settings [3] and causes nosocomial infection [4]. It is a Multi-Drug Resistant (MDR), gram-negative [5], ubiquitous [6], non-fermenting, bacilli [7] that form biofilms [8–11], which is responsible for 65% of infections that are acquired from hospitals [12]. *S. maltophilia* is generally found in plant roots, animals, and soils [13–19], dialysate sample and hemodialysis water [20], cannulae, nebulizer, dental units, prosthetic devices [21–26], ICU (Intensive Care Unit) [27] and airborne transmission can occur from the infected CF patients [28]. This pathogen causes a broad spectrum of infections including respiratory tract infections (RTIs), COPD (Chronic Obstructive Pulmonary Disease), pneumonia, biliary sepsis, bacteremia, bone and joint, soft tissues, and urinary tract infections, endocarditis, endophthalmitis, meningitis [28–43]. Recent studies showed that it is the third most occurring (about 9.1%) NFGNB (Nonfermenting Gram-Negative Bacilli) [44] with an extremely high death rate of 14 to 69% in bacteremia patients [45]. The prevalence of the infections associated with this organism has increased from 0.8 to 1.68% during 1997–2012 [44]. It is a life-threatening pathogen to immunocompromised individuals, ICU patients, cancer patients, graft transferred patients [32, 46, 47], and immunocompetent persons as well [6]. The main problem to fight this organism is the multi-drug resistance acquired through DSF (Diffusible Signal Factor)-mediated quorum sensing [48] or horizontal gene transfer [15]. Trimethoprim-sulfamethoxazole (SXT) is widely used to fight this organism, which has less efficacy [49]. So, it is quite important to develop new drugs to eliminate this pathogen.

After the first isolation in 1943, *S. maltophilia* was named *Bacterium bookeri*, and further characterization renamed it to *Pseudomonas maltophilia* [50]. Cistron analysis of rRNA renamed it as *Xanthomonas maltophilia* [51], but later it was changed to *Stenotrophomonas maltophilia* in 1993 based on the result of 16S rRNA genes [51, 52]. The complete genome of the well-characterized strain of *S. maltophilia* K279a was sequenced and analyzed in 2008 to improve our understanding of the biology of this low-grade pathogen [48]. The reference sequence of *S. maltophilia* 279A is stored in the NCBI (National Center for Biotechnology Information) database, which contains 4,851,126 bp long circular chromosome having 4490 genes encode 4332 proteins. The G+C content is 66.7, and it has 74 tRNAs [48].

When a protein is assumed to be encoded by a well-defined open reading frame (ORF), but no experimental protein product is identified or characterized, it is called Hypothetical Protein (HP) [53]. Most of the genomes contain about half of the HPs, which have proteomic and genomic significance [54, 55]. These HPs are believed to have crucial roles in the survival and progression of the diseases by the pathogens [53, 56]. New pathways, structures, functions cascades can be identified through precise annotation of these HPs [55], where novel ones can act as a marker or target for pharmaceutical uses [57, 58]. Among the proteins of *S. maltophilia*, about 789 proteins are of unknown functionalities and characters.

Several bioinformatics studies have been done on various microorganisms, i.e., *Candida dubliniensis* [56], *Haemophilus influenza* [59], *Clostridium tetani* [60], *Treponema pallidum ssp. Pallidum* [61] to analyze the HPs of these pathogens using the structure and sequence-based methods. But there is no evidence of such a study on *S. maltophilia*. As per our knowledge, this is the first study that provides a proper analysis of the functions and structures of conserved HPs of *S. maltophilia*.

Here we will be using different bioinformatics tools to predict the functions, structures, physicochemical properties, subcellular localizations, antigenicity, virulence factors, and some
other phenomena of the HPs of *S. maltophilia*. Furthermore, we will also predict the best epitope-based subunit vaccine candidate and different B and T cell epitopes.

Materials and methods

The complete framework and the tools used in this study are depicted in Fig 1 and Table 1, respectively. The whole process is comprised of three phases: Phase-I, Phase-II, and Phase-III. The genome analysis and characterization of the HPs are performed in Phase-I. Phase-II includes annotations of different functional properties using multiple servers and tools. Prioritization of targets to design a vaccine against the pathogen and validation of the findings are illustrated in Phase-III.

Phase-I

Sequence retrieval. The complete genome sequence of *S. maltophilia K279a* (GeneBank Assembly ID: GCF_000072485.1) (RefSeq: NC_010943.1) was retrieved from the NCBI database (http://www.ncbi.nlm.nih.gov/). There were about 789 Hypothetical Proteins (HPs) among the 4332 proteins, which were separated and stored as FASTA files using the Refseq accession number for further analysis. Different computational strategies were followed to predict various essential properties of those proteins.

Conserved domain search. The repetitive sequences or recurring structural units that have notable functional capabilities in many contexts of a protein and thought to modulate or signify different functions in different proteins through their unique re-combinational rearrangements can be called domains [62]. Throughout evolution, these domains work as building blocks that are rigidly conserved among the protein families rather than the whole protein sequences [63].

To classify the protein families and to predict the highly conserved and well-defined domains or folds in the HPs, we used four online bioinformatics tools, namely CDD-BLAST [64–66], SMART [67], PFAM [68], ScanProsite [69]. All the HPs were subjected to those web tools mentioned above, which resulted in variable predictions of the conserved domains among the HPs. Thereat, variability was observed in the confidence level of the cumulative predictions. Percentile confidence scores were given to determine a higher or lower confidence level, i.e., a combinatorial score of 100 is given to those proteins which are being predicted to have the same functional domains. After analyzing all the HPs, we have found 24 proteins that have a high confidence level (HCL) of 100 and considered them for further investigations.

To find out highly conserved domains of a query protein, NCBI’s online tool CDD-BLAST uses RPBLAST, which is derived from PSI-BLAST, scans the query sequence with the help of Position Specific Scoring Matrices (PSSMs) against the Conserved Domain Database. The SMART stands for Simple Modular Architecture Research Tool, which is a web-based server that predicts domain profiles and architectural similarities of the target protein using stable Ensembl [70], SP-TrEMBL [71], Swiss Prot [72], where direct similarities search among the sequences is avoided. Pfam database has two parts: Pfam-A and the Pfam-B. The Pfam-A is derived from Pfamseq, which is built from the updated release of UniProtKB at a particular time frame. Each family of Pfam-A contains three major elements, namely: A curated seed alignment, a full alignment that is automatically constructed, and Profile Hidden Markov Models (Profile HMMs). On the contrary, the Automatic Domain Decomposition Algorithm (ADDA) generates low-quality un-annotated Pfam-B families using nonredundant clusters [73]. Most of the proteins of a set of an enormous number of proteins that are functionally different can be grouped into a narrow range of families according to their sequence similarities. This principle is the core of the web-based prediction tool ScanProsite.
Fig 1. The complete framework of the study was used to annotate the functions of the 24 HPs from *S. maltophilia*.

https://doi.org/10.1371/journal.pone.0252295.g001
Phase-II

Physicochemical characterization. Different physicochemical properties of the HCL proteins were measured using Expasy’s ProtParam [74] server, i.e., theoretical isoelectric point (pI), molecular weight (MW), total amino acid number, Aliphatic index (AI) [75], extinction coefficient [76], grand average of hydropathy (GRAVY) [77], the total number of positive and negative charged residues and instability index [78].

Subcellular localization. Depending upon different positional orientations, a protein can be targeted for vaccines (structural or extracellular proteins) or drugs (cytoplasmic or...
intracellular proteins) [79], where UniProtKB can be useful for experimental proteins information [80]. There is an information gap about the HPs as they are not experimentally characterized. Hence, their subcellular localizations are also in concealment. To unveil this characteristic feature, online bioinformatics tools CELLO (v2.5) [81], which uses a system based on two-level SVM (Support Vector Machine) and PSORTb [82], which is the most reliable subcellular localization prediction tool for bacteria, was used. Besides, to predict signal peptide and secretory pathway (non-classical), we used the neural network-based system SignalP [83] and CBS server’s tool SecretomeP [84], respectively. Our study also used SOSUI [85], TMHMM [86], and HMMTOP [87] to predict the solubility and transmembrane topology of the proteins.

Domain and function assignment. To predict the precise functions of the proteins, we employed several servers for the accuracy of the work. CDD (Conserved Domain Database), ScanProsite, SMART, and Pfam were used earlier to search the domains. Furthermore, to assign functional motifs, the online tool MTIF (https://www.genome.jp/tools/motif/) was recruited where the output is very large. We also used InterProScan [88], which works in a combination of different signature recognition methods of proteins, utilizing InterPro consortium, where large databases like Pfam, SUPERFAMILY, SMART, PANTHER, ProSite are the integral parts.

Protein structure prediction. Along with the functional motif prediction of the HPs, it is crucial to predict the 3D structures as well [89]. Template-based protein structure prediction online tool PS square version 2, popularly known as PS2-v2 [90], was exploited to predict the tertiary structure of the proteins. Protein FASTA sequence is the input format for the query, which is analyzed using both Pair-wise and multiple sequence alignments in the combination of IMPALA [91], PSI-BLAST [64, 92], T-Coffee [93] through both target-template selection and alignment. By default, the best homologous template is selected based on scores to generate a 3D structure using the amino acid sequence of the target protein with the help of an integrated modeling package. However, the server failed to generate a 3D model for some proteins. To overcome this problem, we implemented the manual system to select a template from the suggested list of the server and generated the 3D models of those proteins. Though it was executed successfully still, there was an error in template selection and modeling for two proteins. We overcame this problem using the SWISS-MODEL [94]. All the predicted results for the HCL HPs were stored in PDB (Protein Data Bank) format.

Virulence factor analysis. Virulence Factors (VF) are related to the intensity or severity of an infection and are targeted for drug development. More the virulence, more the potency as the target for drugs [95]. To determine the VF of HCL HPs, VirulentPred [96] with an accuracy of 81.8% and VICMpred [97] with the corresponding accuracy of 70.75% were used in this study. Both servers use a fivefold cross-validation strategy with the SVM method.

Functional protein association and PPI prediction. STRING [98] uses four sources: Previous Knowledge, (Conserved) Co-expression, High-throughput Experiment, and Genomic Context to predict Protein-Protein Interactions (PPI). We completed the prediction with STRING v11 [99], where only the highest scored protein was taken as a functionally associated partner. Besides, this study also showed the PPI network and gene co-occurrence for the highest antigenic and all the virulent proteins.

Identification of antigenic protein. All the previous analyses helped us to select 11 proteins among the entire set of HCL HPs, which are predicted to be connected to classical or non-classical分泌ary pathways or localized in the extracellular space/periplasm/plasma membrane by CELLO prediction server or possessed one or more transmembrane topology. These types of proteins are generally targeted for subunit vaccines. To check the probability of these proteins as potential protective antigens, we used the VaxiJen v2.0 [100] server at a
threshold of 0.5 for a very high precision level. Besides, we also checked the antigenicity of the rest of the proteins as they can also induce cell-mediated and humoral immunity [101], and we found about 15 proteins to be antigenic out of the 24. Among them, the most antigenic protein was taken to predict potential B cell and T cell epitopes.

Phase-III

T cell epitope identification. To induce cell-mediated and humoral immunity, identifying potential epitopes for T cell and B cell is essential. A tool from the CBS server, NetCTL 1.2 [102], was used at threshold 0.5 with a sensitivity of 0.89 and specificity of 0.94 to predict probable epitopes. The prediction is based on the peptide to MHC-I (Major Histocompatibility Complex class I) binding, C terminal proteasomal cleavage, and TAP (Transporter associated with Antigen Processing) transport efficiency using 12 prominent supertypes of MHC-I. This server uses ANN (Artificial Neural Network) based method to predict MHC-I binding and C terminal proteasomal cleavage where TAP transport efficiency is calculated using the Weight Matrix method.

For peptide to MHC-I binding prediction, the Stabilize Matrix Method (SMM) [103] was selected in a tool from IEDB (Immune Epitope Database) [104], which was employed to determine the IC\(_{50}\) (Half Maximal Inhibitory Concentration) value. All the available alleles were selected with the peptide length of 9.0 before the prediction. Finally, selected epitopes were analyzed using the T cell epitopes-processing prediction tool that calculates a combinatorial score for TAP transport, proteasomal cleavage, and MHC-I binding [105]. We used the SMM method in this case as well.

Prediction of population coverage. Among the different ethnicity, the coverage of our proposed epitopes with corresponding HLAs was calculated using the population coverage tool [106] from the IEDB server.

Allergenicity appraisal. Two web-based tools were used to predict the allergenicity of the epitopes with very high specificity, namely: AllerTOP v2.0 [107] with an accuracy of 85.3% and AllerCatPro [108] with 84% accuracy.

Molecular docking simulations. Before docking, the 3D structure of the epitope RTFAMSSER was built using PEP-FOLD3 [109], and the PDB (Protein Data Bank) structure of the HLA-C*03:03 (PDB ID: 1EFX) was retrieved from the RCSB database [110] where it was complexed with human natural killer cell receptor KIR2DL2. Then the complex was opened using Discovery Studio [111] to remove the receptor and recover the simplified HLA-C*03:03.

Autodock Vina [112] was used to calculate the binding energy between the target epitope and the corresponding HLA. The docked complex was visualized using PyMol [113] and UCSF Chimera [114].

However, the rest of the epitopes and HLA alleles were also subjected to molecular docking simulation following the similar procedure in order to estimate the relation between the docking score, IC\(_{50}\) value, and combined score of proteasome score, TAP score, MHC-I score, processing score.

Linear and conformational b cell epitope identification. B lymphocytes play a crucial role in the induction of immune response mediated by B cell epitopes [115]. We used IEDB B cell epitope prediction tools to identify the B cell epitopes. Bepipred linear epitope prediction analysis [116], Kolaskar and Tongaonkar antigenicity scale [117], Karplus and Schulz flexibility prediction [118], Emini surface accessibility prediction [119], Parker hydrophilicity prediction [120] were performed to predict and confirm the linear antigenic B cell epitope properties. As beta-turn regions of a protein are found in the antigenic portions [121], we utilized the Chou and Fasman beta-turn prediction tool in this regard [122].
Furthermore, the conformational or discontinuous B cell epitopes were also predicted using the IEDB tool Elipro [123]. For this prediction, the 3D structure of the protein was built using PS2-v2 and validated. Then the valid, optimized structure was submitted to the server, and the scoring criteria were set at 0.5, where less than that value is rejected, and the most stringent score is considered to be at 1.0. To calculate the residue clusters, 6.0 \text{Å} (Angstrom) was selected as the maximum distance parameter.

Result and discussion

Sequence evaluation

The implementation of advanced technologies in DNA sequencing techniques enables us to reveal the exact sequence of an immense number of bacterial genomes in a short time with a considerably low cost. Many genes are found to be conserved in a broad spectrum of bacterial genomes throughout the evolutionary process. As a result, the precise annotations and functions of these genes are assigned using sequence homology or similarity search against functionally specified genes [124]. Although, one-third of the sequenced genes have no specified functional assignment due to the rapid deviations of functions between the similar gene sequences in the road to evolution [125, 126]. Consequently, only sequence homology or similarity search cannot predict or ascertain the proper function of a gene, which ultimately results in faulty functional allocation [127].

To overcome this crux and lessen the proportion of HPs, it is recommended to use multiple bioinformatics tools for discovering appropriate functions of the hypothetical proteins. On account of this, the current study focused on annotating the functions of the hypothetical proteins of *Stenotrophomonas maltophilia* by recruiting diverse bioinformatics methods and tools. At first, the conserved domains for the 789 hypothetical proteins were searched with the help of four bioinformatics web tools, namely Pfam, CDD-BLAST, ScanProsite, SMART. Based on these results, the proteins were classified into five groups where 24 proteins showed a specific consensus functional domain in all the tools and hence are grouped into high confidence level (HCL) proteins. The tools did not find any domain for 479 proteins, and the combined confidence level was zero. Remaining HPs (286 proteins) showed hit in one, two, or three of the four tools mentioned above, which resulted in different confidence levels (i.e., 25% for 172, 50% for 59, and 75% for 55 proteins). The result is summarized in the S1 Table. However, further analysis is required to reveal the proper functions of these proteins. We considered only the 24 HCL HPs for downstream study because these proteins showed at least one conserved domain in all four servers. To avoid false-positive results and increase the accuracy of the study, we excluded all the other four confidence level proteins.

The theoretical pI, molecular weight, extinction coefficient, total number of negative and positive charged residues, instability index, GRAVY value, and other physiochemical properties of the HCL HPs were measured by the online bioinformatics tool ProtParam, and the result is shown in S2 Table. The cumulative value of hydropathy for all the amino acid residues of a protein chain is divided by the total number of residues of that protein sequence to calculate the GRAVY value [77]. The lower GRAVY value indicates the possibility of a protein being hydrophilic (globular), where the higher value confirms the hydrophobic (membranous) nature of the proteins.

We found the GRAVY values of our concerned proteins ranging from -0.958 to -0.044, which points towards the hydrophilic properties of the proteins and helps in predicting the localization. Functional motifs of these hypothetical proteins were discovered using web-based tools MOTIF and InterProScan for further confirmation about the functions. Using the tertiary structural information, we can validate the predicted biochemical functions of a protein.
So, we assigned the PS2-v2 server for the resolution of the 3D structure of HCL HPs, which generates a PDB file in a template-based manner and fold recognition scheme. Then all the sequence evaluation data were collated, and the HCL HPs were sorted into different functional groups, which consist of eleven enzymes, three binding proteins, four regulatory proteins, two inhibitors, two transporters, and two proteins of manifold functions. These groups are described below:

Enzymes. Bacterial enzymes are crucial for their pathogenesis in the host. They also provide essential nutrients and control various metabolic pathways, which helps in the growth and survival of the organism [129]. In our study, we found 11 enzymes among the 24 annotated HCL HPs that have different physiological and pathological importance to *S. maltophilia*. Among them, WP_005408386.1 and WP_012479842.1 are phosphotransferases (catalyze phosphorylation reactions), which play a key role in the bacterial PTS (Phosphotransferase System) in transporting sugar [130]. Besides, WP_012479842.1 is a member of the chloramphenicol phosphotransferase-like protein family. This protein phosphorylates and inactivates the lethal chloramphenicol metabolites in bacteria, which inhibits ribosomal peptidyl transferase and thus shuts protein production down [131, 132].

We found WP_005409007.1 protein to be a member of the SmrA superfamily. Member of this family contains the Smr domain, which is thought to participate in crossing over, mismatch repair, or segregation, and it also has nicking endonuclease activity [133, 134]. Vicinal Oxygen Chelate (VOC) is a family of proteins that are involved in sequestering and localizing metal ions. This type of domain or fold consists of two β-α-β-β-β units, which are responsible for the formation of the partially closed beta-sheet barrel around the metal ions [135]. The protein WP_005414366.1 was found to be a member of the VOC superfamily. So, we assume this protein may involve in the metal resistance trait in the organism. The protein WP_012478637.1 contains the Haloacid Dehydrogenase or HAD domain superfamily, which participates in various cellular processes, i.e., detoxification, amino acid biosynthesis, and many more [136, 137]. X-ray crystallography revealed the conserve hydrolase fold analogous to the Rossmann fold found in the members of this superfamily [138]. This fold contains two subdomains, where the large one remains strictly conserved, and the small domain shows structural variations among the classes [139]. WP_012480920.1 protein belongs to the Isoprenoid Biosynthesis Enzymes Class-I.

Protein WP_012478648.1 was found to maintain the protein tyrosine phosphatase superfamily, which is homologous to the dual-specificity protein phosphatase known as Cyclin-Dependent Kinase Inhibitor-3 (CDKN3) [140]. WP_012480806.1 glycosidase enzyme possesses six helical hairpin structures in a closed circular order and hence are included in the six-hairpin glycosidase superfamily [141]. We found the CheB domain in WP_012481043.1 protein, which is a strong indication for this protein of being a member of methyltransferase CheB, C-terminal superfamily. The members of this superfamily consist of parallel β sheet with the α-β-α array in seven strands and remove the methyl group from the methyl-accepting chemotaxis proteins (MCP) [142, 143]. Among the enzymes, we were able to identify only one protease enzyme (WP_044570756.1) containing DUF2268 (DUF is annotated as Domain of Unknown Function) domain, which is predicted as a Zn-dependent protease.

Binding proteins. We have characterized two (WP_005412620.1 and WP_005413412.1) calcium ion binding proteins containing the EF-hand domain, and the rest is a DNA binding protein. EF-hand Ca$^{2+}$-binding motifs are found in pairs. Each of them comprises a loop that is 12 residues long where a 12 residue α-helix flanks the loop on either side [144]. The conformation of the EF-hand motif changes upon the binding of the Ca$^{2+}$ ion. The ion is positioned in the loop in a pentagonal bipyramidal fashion [145, 146]. The DNA binding protein WP_012479848.1 belongs to the Bro-N family proteins which function is unknown. But the
Experimental shreds of evidence of Bro-A and Bro-C suggest its ability to regulate host DNA replication and/or transcription by binding with it directly [147].

Regulatory proteins. In this study, we were successfully able to characterize a novel regulatory protein (WP_012479796.1) of *S. maltophilia* that is crucial for its extensive multi-drug resistance nature. This protein is a member of the LuxR transcription regulatory protein family, which is one of the most important proteins in Quorum Sensing (QS). It also plays key roles in plasmid transfer, motility, biofilm formation, nodulation, and the expression of many genes that includes the antibiotics and virulence factors encoding genes [148]. This family protein has an autoinducer binding domain at the N-terminal that generally binds to the N-acyl homoserine lactones (AHL). Binding with autoinducer results in the dismantling of the C-terminal DNA-binding domain that promotes it to bind with the DNA and actuate the transcription [149].

WP_012479125.1 and WP_012480949.1 protein contains the structural motif Tetratrico Peptide Repeat (TPR). This protein domain consists of 34 amino acids that are repeated 3–16 fold and occur in a helix-turn-helix array with the nearby TPRs in a parallel manner, which results in anti-parallel α-helices [150, 151]. These proteins are engaged in many biological processes, such as the regulation of transcription, cell cycle, protein transport, and folding [152].

The functional analysis disclosed a vital protein (WP_012478875.1) that can act as a regulatory protein and immune protein both at the same time due to the presence of Ankyrin repeat-containing domain and NTF2 fold domain. NTF2 domain-containing proteins are found in the polymorphic toxin system of bacteria [153]. This domain is always fused with ankyrin repeats, which is a multi-repeat β_2-α_2 motif of 33 amino acid residues [154]. Proteins of these domains can participate in a variety of functions, including the initiation of transcription, ion transportation, cell-cycle regulation, and signal transduction [155].

Inhibitor proteins. Two HCL HPs among the annotated 24 showed similarities with lysozyme inhibitors. Lysozymes are the hydrolase enzymes recruited by the innate immune system of animals for the degradation of bacterial major cell wall component peptidoglycan [156]. WP_005413200.1 is a C-type lysozyme inhibitor superfamily protein, more specifically membrane-bound lysozyme inhibitor of C-type lysozyme (MliC), which are well known for their conferring support in extensive lysozyme tolerance to the gram-negative bacteria [157]. This protein forms ionic and hydrogen bonds with its invariant loop to the lysozyme at the active site cleft [158]. The second inhibitor (WP_044569343.1) is of the IVY (Inhibitor of Vertebrate Lysozyme) superfamily, which is also known as a virulence factor [159, 160]. IVY proteins consist of three layers of α_2-β_5-α_2 topology and a crucial 5-residue long loop for the inhibitory function [161].

Transporter proteins. Maintenance and assembly of outer membrane (OM) components play a vital role in bacterial survival and pathogenesis. To aid this process, many transport proteins are involved in bacteria. We found two such proteins, namely the LPS-assembly lipoprotein LptE (WP_005410539.1) and Curli production assembly/transport component CsgG (WP_032966398.1). During the assembly through the beta-barrel assembly machine, LptE interacts with LptD and forms a complex [162] that is involved in lipopolysaccharides (LPS) assembly at the outer region of OM [163–165]. Along with them, LptA, LptB, and LptC are also involved in the LPS transport machinery. Blocking any of them disrupts the LPS assembly system as a whole and creates the same type of OM biogenesis defects [164]. On the other hand, CsgG is a lipoprotein that works as the stabilizer for CsgA and CsgB during the Curli assembly [166]. The Curli protein is amyloid fiber in nature and promotes cell to cell communication via biofilm formation [167].

We found two proteins showing miscellaneous functions. One of them (WP_024956629.1) contains the DUF2329 domain, which is a domain of unknown functionality. But
WP_005410716.1 proteins were found to have a CheW like domain associated with the chemotaxis process of the bacteria [168]. The domain is about 150 residues long and is made up of two \(\beta \) -sheet subdomains. Every beta-sheet is comprised of a five-stranded loose beta-barrel centering a hydrophobic core component [169].

The MOTIF and InterProScan servers were used to validate the predicted functions of the proteins by the blast servers (Table 2). Web-based tool STRING was employed to predict the possible functional partners of the HCL HPs (S3 Table).

Structure prediction

All of the 24 HCL HPs were subjected to the PS2-v2 server to generate the 3D structure of the proteins. The server effectively produced a PDB file for each of the 22 proteins. In the case of the rest two proteins, it showed an error message, which is due to the inappropriate or unavailability of a suitable template for the prediction. To solve this problem, we used the SWISS-MODEL and generated the 3D structure. The result is depicted in the S3 Table.

Subcellular localization prediction

The subcellular localization of the HCL HPs was predicted using various bioinformatics tools, which predicted not only their cellular locus but also their solubility and secretion or signaling ability along with possible membrane helices. Among the 24 HCL HPs we found about 10 proteins (WP_005412620.1, WP_005413200.1, WP_005413412.1, WP_012479125.1, WP_012480806.1, WP_012480949.1, WP_024956629.1, WP_032966398.1, WP_044569343.1, WP_044570756.1) that are in or near the outer membrane or the periplasmic space of *S. maltophilia*. All of them have at least one transmembrane helix to anchor the membrane. The remaining 14 proteins were predicted as cytoplasmic soluble proteins with no transmembrane helices. An exception of them is the protein WP_005410539.1. This protein possesses one transmembrane helix, which was further verified by all three tools (HMMTOP, TMHMM, and SOSUI). The result of subcellular localization is shown in the S4 Table.

Virulent protein prediction

Virulentpred and VICMpred were used to predict the virulence factor of the high confidence level hypothetical proteins. These web tools predicted two HPs among the 24 proteins as virulent, and the other proteins were either non-virulent or predicted virulent by only one server. The result is shown in Table 3. It is thought that the virulence factors can be potentially good candidates and can provide comparatively better therapeutic interposition in case of bacterial infections [170]. Characterized virulent HPs can yield a dynamic target-based therapy against the infections and can be a subsidiary therapy to the antibiotics or can work as effector molecules to the immune response of the host [171].

Antigenic protein prediction

Antigenicity of a protein is the primary requirement of being targeted by the host immune system [172]. Vaxijen server 2.0 predicted about 15 proteins as a probable antigen candidate with a threshold of 0.50 for higher sensitivity and accuracy. The scores of the remaining nine proteins were below the threshold value, and thus, they were excluded. The result is shown in Table 4.

Protein-protein interaction

Interaction between various proteins plays a crucial role in all most all biological processes. One protein mutually interacts with others to perform common cellular functions. For
Table 2. Functional domains present in the HCL HPs.

Serial No.	Protein Accession No.	UniProt Id	MOTIF INTERPROSCAN
1	WP 005408386.1	J7V4Q1	PTS system fructose IIA component
2	WP 005409007.1	J7VKL1	Smr Domain
3	WP 005410539.1	B2FPR6	Lipopolysaccharide-assembly, Prokaryotic membrane lipoprotein lipid attachment site
4	WP 005410716.1	J7VVQ8	CheW-like domain
5	WP 005411349.1	B2FKP0	Variant SH3 domain, Bacterial SH3 domain, Protein of unknown function (DUF2442)
6	WP 005412620.1	B2FTC2	EF-hand, Secreted protein acidic and rich in cysteine Ca binding region, Dockerin type I domain
7	WP 005413200.1	B2FQ57	Membrane-bound lysozyme-inhibitor of c-type lysozyme
8	WP 005413412.1	B2FS21	EF-hand, Secreted protein acidic and rich in cysteine Ca binding region, Bacillus PapR protein, Peptidase propeptide, and YPEB domain
9	WP 005414366.1	T5KJF3	Glyoxalase/Bleomycin resistance protein/Dioxygenase superfamily, Glyoxalase-like domain, YtxH-like protein
10	WP 012478637.1	B2FT99	NLI interacting factor-like phosphatase
11	WP 012478648.1	B2FU04	Cyclin-dependent kinase inhibitor 3 (CDKN3), Protein-tyrosine phosphatase, Dual specificity phosphatase, catalytic domain, Tyrosine phosphatase family
12	WP 012478875.1	B2FJ12	Ankyrin repeat, NTF2 fold immunity protein
13	WP 012479125.1	B2FNJ7	Bacteriophage N adsorption protein A C-term, TPR repeat, Tetratricopeptide repeat, Alkyl sulfatase dimerization
14	WP 012479796.1	B2FLZ2	Bacterial regulatory proteins; LuxR family, Autoinducer binding domain, Sigma-70; region 4, Helix-turn-helix domain, Homeodomain-like domain, HTH DNA binding domain, ECF sigma factor, PucR C-terminal helix-turn-helix domain, LexA DNA binding domain, Winged helix-turn-helix DNA-binding
15	WP 012479842.1	B2FM42	D5 N terminal like, Chloramphenicol phosphotransferase-like protein
16	WP 012479848.1	B2FM48	BRO family, N-terminal domain, Phage antirepressor protein KiiAC domain, Protein of unknown function DUF99
17	WP 012480806.1	B2FM94	F5/8 type C domain, Amylo-alpha-1,6-glucosidase
18	WP 012480920.1	B2FP37	Polypropenyl synthetase
19	WP 012480949.1	B2FPT9	Tetraicopeptide repeat, Transglutaminase-like superfamily, TPR repeat, MIT (motorubule interacting and transport) domain, BRO1-like domain, Anaphase-promoting complex, cyclosome, subunit 3
20	WP 012481043.1	B2FR32	CheB methyltransferase
21	WP 024956629.1	A0A0USDG84	Putative glucoamylase
22	WP 032966398.1	UPI0002E8A010	Curli production assembly/transport component CsgG, Peptidoglycan-synthase activator LpoB, Flagellar assembly protein T; middle domain

(Continued)
example, the activation of transcription includes multiple transcription factors that work together in gene expression. Moreover, the functions of proteins can be predicted using their PPI information because it is very rare for a protein to interact with different biomolecules. Therefore, PPI databases have become an important resource to study biological networks and pathways [173]. We predicted the PPI and gene co-occurrence for three annotated HCL HPs (highest antigenic protein and two virulent protein), which are thought to be vital players in the pathogenesis of the organism (Fig 2). Gene Co-occurrence network is the graphical visualization of a particular gene network that is possibly present, not necessarily conserved, in a variety of biological organisms. Here in the figure, A1, B1, and C1 are the PPI network of the protein WP_012479796.1, WP_012480949.1, and WP_005413200.1, respectively, while A2, B2, and C2 depicted their corresponding gene co-occurrences. The colored nodes of the PPI network represent functionally associated first shell proteins, and each edge shows the type of interactions.

Table 2. (Continued)

Serial No.	Protein Accession No.	UniProt ID	MOTIF	INTERPROSCAN
23	WP_044569343.1	UPI00031F6529	Inhibitor of vertebrate lysozyme (Ivy)	Inhibitor vert lysozyme sf
24	WP_044570756.1	UPI00031EA029	Predicted Zn-dependent protease (DUF2268)	DUF2268

Table 3. The virulence factor prediction result of the HPs of S. maltophilia.

Serial No.	Accession No	UniProt ID	VICMpred	Virulentpred
1	WP_005408386.1	J7V4Q1	Metabolism Molecule	Virulent
2	WP_005409007.1	J7VKL1	Metabolism Molecule	Non-Virulent
3	WP_005410539.1	B2FPR6	Metabolism Molecule	Virulent
4	WP_005410716.1	J7VVQ8	Cellular process	Virulent
5	WP_005413549.1	B2FKP0	Metabolism Molecule	Virulent
6	WP_005412620.1	B2FTC2	Metabolism Molecule	Virulent
7	WP_005413200.1	B2FQ57	Cellular process	Non-Virulent
8	WP_005413412.1	B2FS21	Metabolism Molecule	Virulent
9	WP_005414366.1	T5KJF3	Cellular process	Non-Virulent
10	WP_012478637.1	B2FT99	Metabolism Molecule	Non-Virulent
11	WP_012478648.1	B2FU04	Metabolism Molecule	Non-Virulent
12	WP_012478875.1	B2FJ12	Cellular process	Non-Virulent
13	WP_012479125.1	B2FNI7	Information and storage	Non-Virulent
14	WP_012479796.1	B2FLZ2	Virulence factors	Virulent
15	WP_012479842.1	B2FM42	Cellular process	Non-Virulent
16	WP_012479848.1	B2FM48	Cellular process	Non-Virulent
17	WP_012480806.1	B2FM94	Virulence factors	Non-Virulent
18	WP_012480920.1	B2FP37	Metabolism Molecule	Virulent
19	WP_012480949.1	B2FPT9	Virulence factors	Virulent
20	WP_012481043.1	B2FR32	Cellular process	Non-Virulent
21	WP_024956629.1	A0A0U5DG84	Metabolism Molecule	Non-Virulent
22	WP_032966938.1	UPI0002EAA010	Cellular process	Non-Virulent
23	WP_044569343.1	UPI00031F6529	Metabolism Molecule	Non-Virulent
24	WP_044570756.1	UPI00031EA029	Metabolism Molecule	Non-Virulent

https://doi.org/10.1371/journal.pone.0252295.t002

https://doi.org/10.1371/journal.pone.0252295.t003
On the other hand, Gene co-occurrence is presented as a phylogenetic tree where the topmost part contains the proteins of the specific network, and the left side contains the organisms. Right-sided color denotes the similarities for a particular gene of interest in a given genome. Higher the color intensity, the higher the sequence similarity or conservancy. For a clade that is collapsed in the tree, the highest and lowest similarities are indicated by two distinct colors.

Epitope prediction for vaccine target

For the prediction of subunit vaccine candidates, the outer membrane proteins of the bacteria are the target of choice. We have selected only the outer membrane/periplasmic/extracellular proteins predicted by the CELLO prediction tool. We have found 11 such proteins (S4 Table). Though each of them can induce the immune response in the host, we selected only the highest antigenic protein (WP_005413200.1 scored 1.1056 in VaxiJen) for this purpose.

T cell epitope prediction. NetCTL server identified potential T cell epitopes with preselected criteria using the selected antigenic protein. Seven epitopes that have a combinatorial score of more than 1.5 were selected, and the data is presented in Table 5.

Using the SMM method, we predicted the MHC-I binding affinity for all of the seven epitopes. A broad range of MHC Class I alleles was screened for interaction with the epitopes. The lower or higher IC50 value measured the affinity. The lower the IC50 higher the affinity.
and vice versa. We allowed only those MHC-I alleles that interacted with the epitopes with an IC\textsubscript{50} value of less than 250nM (Table 6).

The IEDB tool predicted MHC-I processing (TAP transport, proteasomal cleavage, and MHC-I combined predictor) with a combined score for individual epitopes from the submitted protein sequence. Peptides are formed due to the cleavage of peptide bonds with the help of the proteasome complex. Then these peptides bind to the MHC Class I molecules and are transported by the TAP proteins to the plasma membrane and presented to the CD4+ T cells or helper T lymphocytes. Higher the combinatorial score higher the processing potency (Table 6).

The 9 mer peptide RTFAMSSER interacted with the maximum number of alleles among the seven epitopes. The interacted alleles include HLA-Aa31:01, HLA-Aa68:01, HLA-Cb12:03,

![Image](https://doi.org/10.1371/journal.pone.0252295.g002)

Table 5. NetCTL T cell epitope prediction with the combinatorial score.

Serial No.	Epitopes	Overall Score (nM)
1	RRFDVAQPT	2.3005
2	ERAASGAKY	1.8535
3	VPSLLAASL	1.8151
4	RQYHGCGNF	1.8062
5	RATGNEPGW	1.7780
6	WTKGSDDGL	1.7301
7	RTFAMSSER	1.7202

https://doi.org/10.1371/journal.pone.0252295.t005
Table 6. Promising T cell epitopes with their properties: IC₅₀ value, docking score (kcal/mol), combinatorial processing score.

Serial No.	Peptide	Interacting MHC class-I allele	Docking Score & Binding affinity (kcal/mol)	IC50 Value <250nM	The combined score of Proteasome score, TAP score, MHC-I score, processing score	Allergenicity
1	RRFDVAQPT	HLA-C*12:03	8.2, 16.72	-0.70	NON-ALLERGEN	
		HLA-C*03:03	-8.4, 104.86	-1.50		
		HLA-C*14:02	-7.1, 113.66	-1.53		
		HLA-B*27:05	-7.1, 115.50	-1.54		
		HLA-C*07:02	-8.4, 165.26	-1.70		
		HLA-C*07:01	-8.3, 194.16	-1.77		
2	ERAASGAKY	HLA-C*03:03	-8.9, 32.78	1.02	NON-ALLERGEN	
		HLA-C*12:03	-8.2, 44.38	0.89		
		HLA-B*15:02	-8.8, 49.46	0.85		
3	VPSLLAASL	HLA-C*03:03	-7.1, 25.98	0.37	NON-ALLERGEN	
		HLA-B*07:02	-7.1, 45.28	0.13		
		HLA-C*12:03	-8.1, 75.03	-0.09		
		HLA-B*15:02	-9.4, 132.20	-0.34		
4	RQYHGCNFL	HLA-B*15:01	-8.7, 31.48	1.05	NON-ALLERGEN	
		HLA-C*12:03	-9.4, 59.32	0.77		
		HLA-C*03:03	-8.8, 72.21	0.68		
		HLA-A*32:01	-9.7, 121.32	0.46		
		HLA-B*15:02	-9.3, 159.30	0.34		
		HLA-C*14:02	-8.1, 197.07	1.62		
5	RATGNEPGW	HLA-C*03:03	-10.4, 5.96	1.07	NON-ALLERGEN	
		HLA-B*58:01	-9.8, 12.34	0.76		
		HLA-C*12:03	-10, 13.78	0.71		
		HLA-B*57:01	-9, 53.07	0.12		
		HLA-B*53:01	-8.6, 164.77	-0.37		
6	WTKGSDGL	HLA-C*12:03	-8, 17.43	0.54	ALLERGEN	
		HLA-B*15:02	-9.4, 25.42	0.38		
		HLA-C*03:03	-8, 29.35	0.32		
7	RTFAMSSER	HLA-A*31:01	-8.4, 7.20	0.79	NON-ALLERGEN	
		HLA-A*68:01	-8.4, 13.92	0.51		
		HLA-C*12:03	-6.9, 15.28	0.47		
		HLA-C*15:02	-8.8, 40.97	0.04		
		HLA-C*03:03	-7.8, 48.71	-0.04		
		HLA-A*11:01	-8.6, 92.11	-0.31		
		HLA-A*30:01	-8, 117.75	-0.42		
		HLA-C*14:02	-7.4, 217.58	-0.69		
		HLA-A*03:01	-7, 234.86	-0.72		

Allergenicity results of these epitopes are also included.

https://doi.org/10.1371/journal.pone.0252295.t006

HLA-C*15:02, HLA-C*03:03, HLA-A*11:01, HLA-A*30:01, HLA-C*14:02 and HLA-A*03:01 (Table 6).

Allergenicity assessment and population coverage. To avoid cross-reactivity, all the epitopes were subjected to AllerTOP v2.0, and AllerCatPro and six epitopes were predicted as non-allergens by these servers where epitope WTKGSDGL found to have allergic activity (Table 6). So, we excluded that epitope for further analysis.

Population coverage is a crucial parameter in vaccine development. Hence, the cumulative population coverage percentage was measured using the IEDB population coverage tool for all
the non-allergenic epitopes. We found the maximum coverage in Europe, which was 90.03%, followed by Northeast Asia 85.65%, and South Asia 84.06%. Besides, we also measured the population coverage for North America (82.53%) and Southeast Asia (80.64%). The cumulative World population coverage was 85.30%. The results are summarized in Table 7 and Fig 3.

Molecular docking analysis. Molecular docking is the most common method used in reverse vaccinology to analyze the interaction pattern between epitopes and MHC molecules. We performed molecular docking in general for all the epitopes and the respective alleles (Table 6). The ranges of docking score, i.e., binding affinity was between -6.9 to -10.4 kcal/mol, respectively. The IC\textsubscript{50} values were taken for the study were <250 nM, which is an indication of strong binding affinity between alleles and their respective epitopes. The higher the IC50, the lower the affinity [105]. Along with that, the combined scores of proteasome score, TAP score, MHC-I score, processing score are a quantity-based prediction that is proportional to the total amount of peptides presented by the MHC molecules on the surface of the cells. Higher the value, the higher the amount of presented peptides [105]. The IC50 value, combined scores, and docking scores cumulatively showed a strong interaction pattern between the epitopes and the HLA with an average binding affinity of -8.4 kcal/mol. Though all the non-allergen epitopes can individually induce an immune response, we took only the RTFAMSSER epitope for post docking interaction analysis because it interacted with the maximum number of alleles as compared to others. To check the interaction modes between the predicted T-cell epitope and the HLA-C\alpha 03:03, molecular docking was performed using Autodock Vina. The result comes with a binding affinity of -7.8 kcal/mol. In addition, our study about the HLA-C\alpha 03:03 suggests that the binding cleft of the MHC molecule is located near the \alpha\textsubscript{1} helix region between residues 70–77 and \alpha\textsubscript{2} helix region between residues 144–152 [174]. Post docking interaction was analyzed (Fig 4), and the nonbonding interaction data are tabulated in Table 8.

Post docking analysis of the docked complex shows that our potent epitope formed 12 hydrophobic, nine electrostatic, and 15 hydrogen bonds with the MHC molecule. Half of the hydrophobic interaction was formed within the binding cleft, which is an indication of the stable binding pattern as combined hydrophobic interaction plays a vital role in protein stability. In hydrophobic interaction, epitope interacted with the MHC molecule only in \alpha\textsubscript{2} binding cleft where interestingly hydrogen bond was formed in both \alpha\textsubscript{1} and \alpha\textsubscript{2} binding cleft. Interestingly, Lys146 showed both alkyl and pi-alkyl type hydrophobic interaction along with conventional hydrogen bond, whereas Glu152 exhibited salt bridge and conventional hydrogen bond along with attractive charge type electrostatic interaction. Experimental evidence shows that the dimorphic amino acid Asn80 generally interacts with both NK cell receptors and the foreign antigens (epitopes) [174]. Interestingly, this docking result shows two conventional hydrogen bonds between Asn80 and the epitope.

B cell epitope prediction. Linear B cell epitope prediction. Several authentic tools were recruited to identify potential linear B-cell epitopes (Fig 5). Kolaskar and Tongaonkar

Table 7. Population coverage results of the epitopes using IEDB resource.

Country/Region	Coverage	Average hit	PC90
World	85.30%	2.81	0.68
Europe	90.03%	3.25	1
Northeast Asia	85.65%	2.92	0.7
South Asia	84.06%	2.46	0.63
North America	82.53%	2.32	0.57
Southeast Asia	80.64%	2.29	0.52

https://doi.org/10.1371/journal.pone.0252295.t007
antigenicity prediction tool assessed the conserve regions considering the Physico-chemical properties of the protein. The threshold value was set at 1.00, which determines the possibility of a conserved region being a potential antigen scoring more than that. The minimum and maximum antigenic propensity values were 0.920 and 1.240, where the average was 1.058. We were able to identify such regions that can induce a humoral immune response presented in Fig 5A and Table 9.
We were ascertained of the region 35–42 amino acid residues as surface accessible by the Emini Surface Accessibility prediction tool that can act as B cell epitope (Fig 5B and Table 10).

Moreover, it is well known about the surface accessibility or hydrophilicity of the beta-turn regions of a protein, which was predicted by Chou and Fasman Beta-turn prediction tool. The predicted beta-turn regions were 20–57, 87–107, and 171–188 (Fig 5C). The antigenicity of the peptide is strongly correlated with its flexibility [100]. Karplus and Schulz flexibility prediction tool identified 21–51 as the most flexible regions (Fig 5D). In the end, Bepipred linear epitope prediction tool suggested the probable linear B-cell epitopes (Fig 5E and Table 11).

Parker Hydrophilicity prediction tool was recruited for further confirmation about the hydrophilic nature of our predicted B cell epitopes (Fig 5F). Analysis of the data from B cell epitope prediction tools revealed the most potent B cell-mediated immunity inducing conserved epitope ‘PAAPQPSAS’ in the region of 34–42.

Conformational B cell epitope prediction

Most of the epitopes for B cells are discontinuous or conformational rather than linear [175]. To predict the discontinuous B cell epitopes, the 3D structure of the protein was generated and validated, and submitted to the Ellipro server. This server identified eight different epitopes for the protein WP_005413200.1 (Table 12).

Hydrophobic	Pi-Alkyl	Hydrophobic	Salt Bridge	Electrostatic	Attractive Charge	Pi-Anion
LYS146 (4.225)	LYS146 (5.329)	GLU152 (2.757)	GLU152 (2.131)	GLU152 (2.131)	LYS146 (2.352)	TYR99 (3.990)
LEU81 (5.296)	ALA120 (3.880)	THR93 (2.893)	ARG99 (2.621)	ARG99 (2.621)	LEU81 (2.621)	LEU81 (2.621)
ILE95 (4.974)	TRP47 (4.293)	ASN90 (2.390)	ARG99 (2.451)	ARG99 (2.451)	ILE95 (2.451)	ILE95 (2.451)
	TRP47 (5.492)	LYS94 (2.157)	GLU93 (2.882)	GLU93 (2.882)	TRP47 (2.882)	TRP47 (2.882)
	TYR114 (4.653)	ASN90 (2.118)	GLU93 (2.581)	GLU93 (2.581)	TYR114 (2.581)	TYR114 (2.581)
	TYR123 (5.237)	TYR116 (2.699)	ARG99 (2.389)	ARG99 (2.389)	TYR123 (2.389)	TYR123 (2.389)
	TRP47 (5.366)	TYR116 (2.015)	ARG99 (2.471)	ARG99 (2.471)	TRP47 (2.471)	TRP47 (2.471)
	TYR159 (4.428)	ARG99 (2.389)	GLN90 (2.352)	GLN90 (2.352)	TYR159 (2.352)	TYR159 (2.352)
	TYR9 (4.617)	GLN90 (2.352)				

https://doi.org/10.1371/journal.pone.0252295.t008
Fig 5. Prediction of B cell epitope properties for the conserved antigenic region. Region 34–42 (PAAPQPSAS) possessed the maximum antigenic criteria as a potential B cell epitope. (A) Kolaskar and Tongaonkar antigenicity prediction, (B) Emini surface accessibility prediction, (C) Chou and Fasman beta-turn prediction, (D) Karplus and Schulz flexibility prediction, (E) Bepipred linear epitope prediction, (F) Parker hydrophilicity prediction. The regions with antigenic nature are shown in yellow color.

https://doi.org/10.1371/journal.pone.0252295.g005
Table 9. Predicted epitope from Kolaskar and Tongaonkar antigenicity prediction tool.

Serial No	Start	End	Peptide Sequence	Length
1	1	25	VPSLLAASGLYLAACQPAQPP	22
2	2	40	PAAQPS	7
3	3	60	TYQCGDLSVRA	11
4	4	74	ATVYVG	7
5	5	111	GLSLK	6
6	6	122	ECHAVE	6
7	7	150	WLVYVDG	7
8	8	160	GQLYEVD	7
9	9	172	DVAQT	6
10	10	195	DYKLSFQRT	9
11	11	213	DAKYNLT	7

https://doi.org/10.1371/journal.pone.0252295.t009

Table 10. Results from Emini surface accessibility prediction.

Serial No	Start	End	Peptide Sequence	Length
1	1	25	VPSLLAASGLYLAACQPAQPP	22
2	2	40	PAAQPS	7
3	3	60	TYQCGDLSVRA	11
4	4	74	ATVYVG	7
5	5	111	GLSLK	6
6	6	122	ECHAVE	6
7	7	150	WLVYVDG	7
8	8	160	GQLYEVD	7
9	9	172	DVAQT	6
10	10	195	DYKLSFQRT	9
11	11	213	DAKYNLT	7

https://doi.org/10.1371/journal.pone.0252295.t010

Table 11. Bepipred linear epitope prediction result.

Serial No	Start	End	Peptide Sequence	Length
1	1	25	VPSLLAASGLYLAACQPAQPP	22
2	2	40	PAAQPS	7
3	3	60	TYQCGDLSVRA	11
4	4	74	ATVYVG	7
5	5	111	GLSLK	6
6	6	122	ECHAVE	6
7	7	150	WLVYVDG	7
8	8	160	GQLYEVD	7
9	9	172	DVAQT	6
10	10	195	DYKLSFQRT	9
11	11	213	DAKYNLT	7

https://doi.org/10.1371/journal.pone.0252295.t011

Table 12. Amino acid residues of the conformational B cell epitopes.

Serial No	Conformational B cell epitope residues	Number of residues	Score
1	MET1, ARG1, GLN2, ASN3, LEU4, ALA5, GLY6	12	0.796
2	ALA7, SER8, GLY9, LYS10, ALA11, SER12, ASP13, GLY14, THR15, ILF16, GLY17, THR18, ARG19	35	0.714
3	ALA20, GLN21, PRO22, PRO23, ALA24, GLY25, GLY26, ASP27, ALA28, THR29, PRO30, ALA31, ARG32, GLN33	19	0.676
4	THR34, TYR35, GLN36, CYS37, GLY38, ASP39, LEU40, SER41, VAL42, ARG43, VAL44, ILE45, GLY46, GLU47, ARG48, THR49, PHE50, ASP51, SER52, ARG53, GLN54, GLY55, THR56, ARG57	35	0.646
5	GLY58, LYS59, GLY60, ARG61, GLN62	4	0.642
6	GLN63, TYR64, HIS65, GLY66, GLY67	4	0.626
7	GLY68, ASP69, GLY70, SER71, GLY72, LEU73, GLN74, VAL75, GLU76, THR77, ASP78, TYR79, GLY80, GLU81, ARG82, PHE83, ASP84, VAL85, ALA86, GLN87, GLY88, THR89, ARG90	22	0.582
8	GLY91, ASN92, PHE93	3	0.503

https://doi.org/10.1371/journal.pone.0252295.t012
The 3D structures of these epitopes were visualized using Jmol (integrated service of the server), which demonstrates their particular positions in the protein. The epitope residues were predicted using the full-length protein, where they were scattered throughout the surface. The scores of the predicted epitopes reside between 0.503 to 0.796, where the cutoff score was previously selected 0.50 by default. The detailed view of these conformational epitopes is illustrated in Fig 6.

Fig 6. Conformational or discontinuous B cell epitopes of WP_005413200.1 predicted from the PDB structure (homology). Here, A-H, the yellow balls represent the residues of the corresponding epitopes, and sticks in white color are the structure of the core residues.

https://doi.org/10.1371/journal.pone.0252295.g006
There are still some limitations in epitopes prediction using different bioinformatics tools, and therefore, improvements are required in the prediction methods. Improving the incorrectly delineated epitope databases can result in higher accuracy prediction [176]. It is more suitable to include multiple tools for more accurate and consistent outcomes as the results obtained from different tools and methods may differ [177].

Conclusions

At first, we resolved all the 789 HPs from S. maltophilia K279a and predicted the functions with precision and confidence for 24 proteins. Next, the characterization was carried out, followed by the functional validation with different approaches, including structure-based methods. The physical and chemical parameters and the subcellular localization information helped to distinguish the HPs from the others. The PPI also gave an idea about their corresponding metabolic pathways. Besides, we were able to detect two virulence-associated proteins vital for the pathogenesis and survival of this organism. Among the HPs, we predicted the T cell and B cell epitopes for the highest antigenic protein, which is located in the periplasmic membrane of the pathogen. Pieces of evidence of our study suggest the potency of these epitopes as good targets against the bacteria. Nevertheless, clinical experiments are needed to ensure the efficacy of these candidates as vaccines.

Supporting information

S1 Table. The conserved domain analysis result of all the 789 HPs of S. maltophilia. (XLSX)

S2 Table. The predicted physico-chemical properties of the proteins using Expasy’s ProtParam. (XLSX)

S3 Table. Structural and functional association prediction by PS2 v-2 and STRING. (XLSX)

S4 Table. Predicted result for subcellular localization using various servers. (XLSX)

Acknowledgments

The authors are grateful to Abdullah Al Nahian Rafi for his suggestions and tremendous support. We are also thankful to Apon Islam Megh, and Md. Junaid, Principal Investigator, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Bangladesh, for their technical supports.

Author Contributions

Conceptualization: Md. Muzahid Ahmed Ezaj.

Data curation: Md. Muzahid Ahmed Ezaj, Md. Sajedul Haque, Shifath Bin Syed, Md. Shakil Ahmed Khan, Kazi Rejvee Ahmed, Mst. Tania Khatun, S. M. Abdul Nayeem, Golam Rosul Rizvi.

Formal analysis: Md. Muzahid Ahmed Ezaj, Md. Sajedul Haque, Mohammad Al-Forkan.

Methodology: Md. Muzahid Ahmed Ezaj.

Resources: Md. Muzahid Ahmed Ezaj.
References

1. Huedo P, Coves X, Daura X, Gibert I, Yero D. Quorum sensing signaling and quenching in the multi-drug-resistant pathogen Stenotrophomonas maltophilia. Front. Cell. Infect. Microbiol. 2018; 8:122. https://doi.org/10.3389/fcimb.2018.00122 PMID: 29740543

2. Amin R, Jahnke N, Waters V. Antibiotic treatment for Stenotrophomonas maltophilia in people with cystic fibrosis. Cochrane Database Syst. Rev. 2020. https://doi.org/10.1002/14651858.CD009249.pub5 PMID: 32189337

3. Brooke JS. New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen, Taylor & Francis 2014.

4. Organization WHO. Public health importance of antimicrobial resistance. (2013).

5. Fernandes P. Antibacterial discovery and development—the failure of success? Nat. Biotechnol. 2006; 24:1497–503. https://doi.org/10.1038/nbt1206-1497 PMID: 17160044

6. Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an emerging ubiquitous pathogen: looking beyond contemporary antibiotic therapy. Front. Microbiol. 2017; 8:2276. https://doi.org/10.3389/fmicb.2017.00276 PMID: 29250041

7. Sader HS, Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int. J. Antimicrob. Agents 2005; 25:95–109. https://doi.org/10.1016/j.ijantimicag.2004.10.002 PMID: 15664479

8. De Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz AC, Alcântara N, Martinez MB, et al. Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell. Microbiol. 2003; 5:625–36. https://doi.org/10.1046/j.1462-5822.2003.00306.x PMID: 12925132

9. de Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz AC, Martinez MB, Girón JA. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg. Infect. Dis. 2002; 8:918. https://doi.org/10.3201/eid0809.010535 PMID: 12194767

10. Jucker BA, Harms H, Zehnder A. Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon. J. Bacteriol. 1996; 178:5472–9. https://doi.org/10.1128/jb.178.18.5472-5479.1996 PMID: 8888938

11. Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A, Guarnieri S, et al. Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 2010; 10:102. https://doi.org/10.1186/1471-2180-10-102 PMID: 20374629

12. Potera C. Forging a link between biofilms and disease, AAAS 1999.

13. Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 2005; 7:1673–85. https://doi.org/10.1111/j.1462-2920.2005.00891.x PMID: 16232283

14. Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 2009; 84:11–8. https://doi.org/10.1007/s00253-009-2092-7 PMID: 19568745

15. Furushita M, Okamoto A, Maeda T, Ohta M, Shibata T. Isolation of multidrug-resistant Stenotrophomonas maltophilia from cultured yellowtail (Seriola quinqueradiata) from a marine fish farm. Appl. Environ. Microbiol. 2005; 71:5598–600. https://doi.org/10.1128/AEM.71.9.5598-5600.2005 PMID: 16151156

16. Harris NB, Rogers DG. Septicemia associated with Stenotrophomonas maltophilia in a West African dwarf crocodile (Osteolaemus tetraspis subspp. tetraspis). J. Vet. Diagn. Invest. 2001; 13:255–8. https://doi.org/10.1177/10406387011300313 PMID: 11482606

17. Hejnar P, Bardoň J, Sauer P, Kolář M. Stenotrophomonas maltophilia as a part of normal oral bacterial flora in captive snakes and its susceptibility to antibiotics. Vet. Microbiol. 2007; 121:357–62. https://doi.org/10.1016/j.vetmic.2006.12.028 PMID: 17276020
Structural and functional annotation of the hypothetical proteins of *S. maltophilia k279a*: Computational study

19. Johnson E, Al-Busaidy R, Hameed M. An outbreak of lymphadenitis associated with *Stenotrophomonas (Xanthomonas) maltophilia* in Omani goats. J. Vet. Med., Ser. B 2003; 50:102–4. https://doi.org/10.1046/j.1439-0450.2003.00643.x PMID: 12675904

20. Arvanitidou M, Vayona A, Spanakis N, Tsakris A. Occurrence and antimicrobial resistance of Gram-negative bacteria isolated in haemodialysis water and dialysate of renal units: results of a Greek multi-centre study. J. Appl. Microbiol. 2003; 95:180–5. https://doi.org/10.1046/j.1365-2672.2003.01966.x PMID: 12807469

21. O’Donnell M, Tuttlebee C, Falkiner F, Coleman D. Bacterial contamination of dental chair units in a modern dental hospital caused by leakage from suction system hoses containing extensive biofilm. J. Hosp. Infect. 2005; 59:348–60. https://doi.org/10.1016/j.jhin.2004.10.001 PMID: 15749324

22. Hutchinson GR, Parker S, Pryor JA, Duncan-Skingle F, Hoffman PN, Hodson ME, et al. Home-use nebulizers: a potential primary source of *Burkholderia cepacia* and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis. J. Clin. Microbiol. 1996; 34:584–7. https://doi.org/10.1128/JCM.34.3.584-587.1996 PMID: 8904419

23. Lai C-H, Wong W-W, Chin C, Huang C-K, Lin H-H, Chen W-F, et al. Central venous catheter-related *Stenotrophomonas maltophilia* bacteremia and associated relapsing bacteremia in haematology and oncology patients. Clin. Microbiol. Infect. 2006; 12:986–91. https://doi.org/10.1111/j.1469-0691.2006.01511.x PMID: 16961365

24. Lidsky K, Høyen C, Salvador A, Rice LB, Toltzis P. Antibiotic-resistant gram-negative organisms in pediatric chronic-care facilities. Clin. Infect. Dis. 2002; 34:760–6. https://doi.org/10.1086/338957 PMID: 11850869

25. Metan G, Hayran M, Hascelik G, Uzun O. Which patient is a candidate for empirical therapy against *Stenotrophomonas maltophilia* bacteremia? An analysis of associated risk factors in a tertiary care hospital. Scand. J. Infect. Dis. 2006; 38:927–31.

26. Denton M, Raigopal A, Mooney L, Qureshi A, Kerr K, Keer V, et al. *Stenotrophomonas maltophilia* contamination of nebulizers used to deliver aerosolized therapy to inpatients with cystic fibrosis. J. Hosp. Infect. 2005; 59:180–3. https://doi.org/10.1016/j.jhin.2005.05.009 PMID: 15740418

27. Schable B, Villarino ME, Favero MS, Miller JM. Application of multilocus enzyme electrophoresis to epidemiologic investigations of *Xanthomonas maltophilia*. Infect. Control Hosp. Epidemiol. 1991; 12:163–7. https://doi.org/10.1086/646310 PMID: 2022862

28. Wainwright CE, France MW, O’Rourke P, Anuj S, Kidd TJ, Nissen MD, et al. Cough-generated aerosols of *Pseudomonas aeruginosa* and other Gram-negative bacteria from patients with cystic fibrosis. Thorax 2009; 64:926–31. https://doi.org/10.1136/thx.2008.112466 PMID: 19574243

29. Nseir S, Di Pompeo C, Cavestrì B, Jozefowicz E, Nyunga M, Soubrier S, et al. Multiple-drug–resistant *Stenotrophomonas maltophilia* bacteria in patients with severe acute exacerbation of chronic obstructive pulmonary disease: Prevalence, risk factors, and outcome. Crit. Care Med. 2005; 34:2959–66. https://doi.org/10.1097/01.CCM.0000245666.28867.C6 PMID: 17012911

30. Fujita J, Yamadori I, Xu G, Hojo S, Negayama K, Miyawaki H, et al. Clinical features of *Stenotrophomonas maltophilia* osteomyelitis. Clin. Infect. Dis. 2005; 40:1551–2. https://doi.org/10.1086/431292 PMID: 16135466

31. Lai C-H, Chi C-Y, Chen H-P, Chen T-L, Lai C-J, Fung C-P, et al. Clinical characteristics and prognostic factors of patients with *Stenotrophomonas maltophilia* bacteremia. J. Microbiol., Immunol., Infect. 2004; 37:350–8. PMID: 15599467

32. Abdullah AAB, Zimmerman V, Al Beirouti BT, Baddour LM, Tleyjeh IM. *Stenotrophomonas maltophilia* infections of intact skin: a systematic review of the literature. Diagn. Microbiol. Infect. Dis. 2009; 63:330–3. https://doi.org/10.1016/j.diagmicrobio.2008.11.003 PMID: 19070451

33. Landrum ML, Conger NG, Forgione MA. Trimethoprim-sulfamethoxazole in the treatment of *Stenotrophomonas maltophilia* osteomyelitis. Clin. Infect. Dis. 2005; 40:1551–2. https://doi.org/10.1086/429730 PMID: 15844086

34. Sakhnin E, Weissmann A, Oren I. Fulminant *Stenotrophomonas maltophilia* soft tissue infection in immunocompromised patients: an outbreak transmitted via tap water. Am. J. Med. Sci. 2002; 323:269–72. https://doi.org/10.1097/00000441-200205000-00008 PMID: 12018671

35. Varticarvan SE, Papadakis KA, Palacios JA, Manning JT, Anaisiie EJ. Muco-cutaneous and soft tissue infections caused by *Xanthomonas maltophilia*: a new spectrum. Ann. Intern. Med. 1994; 121:969–73. https://doi.org/10.7326/0003-4819-121-12-199412150-00011 PMID: 7978724
37. Lin H-C, Ma DH-K, Chen Y-F, Yeh L-K, Hsiao C-H. Late-onset intrascleral dissemination of Stenotrophomonas maltophilia scleritis after pterygium excision. Cornea 2011; 30:712–5. https://doi.org/10.1097/ICO.0b013e3182007ed PMID: 2117698

38. Maurer TF, Kuennen RA, Smith RH, Sawyer W. Acanthamoeba and Stenotrophomonas maltophilia keratitis with fungal keratitis in the contralateral eye. Clin. Ophthalmol. 2010; 4:1207–9. https://doi.org/10.2147/OPTH.S14507 PMID: 21060673

39. Wladis EJ. Dacryocystitis secondary to Stenotrophomonas maltophilia infection. Ophthalmic Plast. Reconstr. Surg. 2011; 27:e116–e7. https://doi.org/10.1097/IOP.0b013e318201ca3b PMID: 20733020

40. Katayama T, Tsuruya Y, Ishikawa S. Stenotrophomonas maltophilia endocarditis of prosthetic mitral valve. Intern. Med. 2010; 49:1775–7. https://doi.org/10.2169/internalmedicine.49.3701 PMID: 20720357

41. Takigawa M, Noda T, Kurita T, Okamura H, Suyama K, Shimizu W, et al. Extremely late pacemaker-infective endocarditis due to Stenotrophomonas maltophilia. Cardiology 2008; 110:226–9. https://doi.org/10.1159/000112404 PMID: 18073476

42. Akçakaya AA, Sargin F, Erbil HH, Yaylalı SA, Mesçici C, Ergin S, et al. A cluster of acute-onset postoperative endophthalmitis over a 1-month period: investigation of an outbreak caused by uncommon species. Br. J. Ophthalmol. 2011; 95:481–4. https://doi.org/10.1136/bjo.2009.177709 PMID: 20733020

43. Rojas P, Garcia E, Calderón GM, Ferreira F, Rosso M. Successful treatment of Stenotrophomonas maltophilia meningitis in a preterm baby boy: a case report. J. Medical Case Rep. 2009; 3:7389.

44. Chang YT, Lin CY, Chen YH, Hsueh P-R. Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options. Front. Microbiol. 2015; 6:893. https://doi.org/10.3389/fmicb.2015.00893 PMID: 26388847

45. Jang T, Wang F, Wang L, Liu C, Liu I. Xanthomonas maltophilia bacteremia: an analysis of 32 cases. J. Formos. Med. Assoc. 1992; 91:1170–6. PMID: 1363639

46. Labarca JA, Leber AL, Kern VL, Territo MC, Brankovic LE, Bruckner DA, et al. Outbreak of Stenotrophomonas maltophilia bacteremia in allogenic bone marrow transplant patients: role of severe neutropenia and mucositis. Clin. Infect. Dis. 2000; 30:195–7. https://doi.org/10.1086/313591 PMID: 10619754

47. Calza L, Manfredi R, Chiodo F. Stenotrophomonas (Xanthomonas) maltophilia as an emerging opportunistic pathogen in association with HIV infection: a 10-year surveillance study. Infection 2003; 31:155–61. https://doi.org/10.1007/s15010-003-3113-6 PMID: 12789473

48. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, et al. The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 2008; 9:R74. https://doi.org/10.1186/gb-2008-9-4-r74 PMID: 18419807

49. Wang YL, Scipione MR, Dubrovskaya Y, Papadopoulos J. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 2014; 58:176–82. https://doi.org/10.1128/AAC.01324-13 PMID: 24145530

50. Hugh R, Leifson E. A description of the type strain of Pseudomonas maltophilia1. Int. J. Syst. Evol. Microbiol. 1963; 13:133–8.

51. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int. J. Syst. Evol. Microbiol. 1993; 43:606–9.

52. Nesme X, Vanechoutte M, Orso S, Hoste B, Swings J. Diversity and genetic relatedness within genera Xanthomonas and Stenotrophomonas using restriction endonuclease site differences of PCR-amplified 16S rRNA gene. Syst. Appl. Microbiol. 1995; 18:127–35.

53. Desler C, Suravajhala P, Sanderhoff M, Rasmussen M, Rasmussen LJ. In Silico screening for functional candidates amongst hypothetical proteins. BMC Bioinf. 2009; 10:289. https://doi.org/10.1186/1471-2105-10-289 PMID: 19754976

54. Looenesteyn Y, Raimondo D, Redfern OC, Watson J, Frishman D, Linial M, et al. Protein function annotation by homology-based inference. Genome Biol. 2009; 10:1–8. https://doi.org/10.1186/gb-2009-10-2-207 PMID: 19226439

55. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in “hypothetical proteins” of known structure. Structure 2008; 16:755–63. https://doi.org/10.1016/j.str.2008.10.017 PMID: 19081051

56. Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI. Functional annotation of putative hypothetical proteins from Candida dubliniensis. Gene 2014; 543:93–100. https://doi.org/10.1016/j.gene.2014.03.060 PMID: 24704023
57. Lubec G, Afjehi-Sadat L, Yang J-W, John JPP. Searching for hypothetical proteins: theory and practice based upon original data and literature. Prog. Neurobiol. 2005; 77:90–127. https://doi.org/10.1016/j.pneurobio.2005.10.001 PMID: 16271823

58. Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, Swartzell SM, Mahairas GG. The genome sequence of Mycoplasma hominis strain 232, the agent of swine mycoplasmosis. J. Bacteriol. 2004; 186:7123–33. https://doi.org/10.1128/JB.186.21.7123-7133.2004 PMID: 15489423

59. Shahbaaz M, Imtaiyaz Hassan M, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS one 2013; 8:e84263. https://doi.org/10.1371/journal.pone.0084263 PMID: 24391926

60. Enany S. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. J. Infect. Public Health 2014; 7:296–307. https://doi.org/10.1016/j.jiph.2014.02.002 PMID: 24802661

61. Sinha A, Ahmad F, Hassan I. Structure based functional annotation of putative conserved proteins from treponema pallidum: search for a potential drug target. Lett. Drug Des. Discovery 2015; 12:46–59.

62. Galperin MY, Koonin EV. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res. 2004; 32:5452–63. https://doi.org/10.1093/nar/gkh885 PMID: 15479782

63. Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986; 5:823–6. PMID: 3709526

64. Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25 (17): 3389–402, Epub 1997/09/01. https://doi.org/10.1093/nar/25.17.3389 PMID: 9254694.

65. Eddy SR. Profile hidden Markov models. Bioinformatics 1998; 14:755–63. https://doi.org/10.1093/bioinformatics/14.9.755 PMID: 9918945

66. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, et al. CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res. 2007; 35:D237–D40. https://doi.org/10.1093/nar/gkl951 PMID: 17135202

67. Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012; 40:D302–D5. https://doi.org/10.1093/nar/gkr931 PMID: 22053084

68. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res. 2004; 32:D138–D41. https://doi.org/10.1093/nar/gkh121 PMID: 14681378

69. De Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006; 34:W362–W5. https://doi.org/10.1093/nar/gkl124 PMID: 16845026

70. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, et al. The Ensembl genome database project. Nucleic Acids Res. 2002; 30:38–41. https://doi.org/10.1093/nar/30.1.38 PMID: 11752248

71. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000; 28:45–8. https://doi.org/10.1093/nar/28.1.45 PMID: 10592178

72. Gasteiger E, Jung E, Bairoch A. SWISS-PROT: connecting biomolecular knowledge via a protein database. Curr. Issues Mol. Biol. 2001; 3:47–55. PMID: 11489411

73. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014; 42:D222–D30. https://doi.org/10.1093/nar/gkt1223 PMID: 24288371

74. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003; 31:3784–8. https://doi.org/10.1093/nar/gkg563 PMID: 12644118

75. Ikai A. Thermostability and aliphatic index of globular proteins. J. Biochem. 1980; 88:1895–8. PMID: 7462208

76. Gill SC, Von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 1989; 182:319–26. https://doi.org/10.1016/0003-2697(89)90602-7 PMID: 2610349

77. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157:105–32. https://doi.org/10.1016/0022-2836(82)90515-0 PMID: 7108955

78. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. Des. Sel. 1990; 4:155–61. https://doi.org/10.1093/protein/4.2.155 PMID: 2075190
79. Vetrivel U, Subramanian G, Dorairaj S. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. Hugo J. 2011; 5:25–34. https://doi.org/10.1007/s11568-011-9152-7 PMID: 23205162

80. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004; 32:D115–D9. https://doi.org/10.1093/nar/gkh131 PMID: 14681372

81. Hajiahmadi Z, Abedi A, Wei H, Sun W, Ruan H, Zhuge Q, et al. Identification, Evolution, Expression, and Docking Studies of Fatty Acid Desaturase Genes in Wheat (Triticum aestivum L.). 2020.

82. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010; 26:1608–15. https://doi.org/10.1093/bioinformatics/btq249 PMID: 20472543

83. Emanuelsen O, Brunak S, Von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007; 2:953. https://doi.org/10.1038/nprot.2007.131 PMID: 17446895

84. Bendtsen JD, Kiener L, Faussell A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005; 5:1–13. https://doi.org/10.1186/1471-2180-5-1 PMID: 15649330

85. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 1998; 14:378–9. https://doi.org/10.1093/bioinformatics/14.4.378 PMID: 9632836

86. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 2001; 305:567–80. https://doi.org/10.1006/jmbi.2000.4315 PMID: 11152613

87. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001; 17:849–50. https://doi.org/10.1093/bioinformatics/17.9.849 PMID: 11590105

88. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005; 33:W116–W20. https://doi.org/10.1093/nar/gki442 PMID: 15980438

89. Xu D, Xu Y, Uberbacher C. Computational tools for protein modeling. Curr. Protein Pept. Sci. 2000; 1:1–21. https://doi.org/10.2174/1389203003381469 PMID: 12369918

90. Chen C-C, Hwang J-K, Yang J-M. 2-v2: template-based protein structure prediction server. BMC Bioinform. 2009; 10:366. https://doi.org/10.1186/1471-2105-10-366 PMID: 19878598

91. Chen C-C, Hwang J-K, Yang J-M. 2: protein structure prediction server. Nucleic Acids Res. 2006; 34:W152–W7. https://doi.org/10.1093/nar/gkl187 PMID: 16844981

92. Schäffer AA, Aravind L, Madden TL, Scharf SM, Spouge JL, Wolf YI, et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001; 29:2994–3005. https://doi.org/10.1093/nar/29.14.2994 PMID: 11452024

93. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000; 302:205–17. https://doi.org/10.1006/jmbi.2000.4315 PMID: 11590105

94. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018; 46:W296–W303. https://doi.org/10.1093/nar/gky427 PMID: 29788355

95. Baron C, Coombes B. Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect. Disord. Drug Targets 2007; 7:19–27. https://doi.org/10.2174/187152607780090685 PMID: 17346208

96. Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform. 2009; 9:1–12. https://doi.org/10.1186/1471-2105-9-62 PMID: 18226334

97. Saha S, Raghava G. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics, Proteomics Bioinf. 2006; 4:42–7. https://doi.org/10.1081/1672-0229(06)60015-6 PMID: 16689701

98. Cv Mering, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003; 31:258–61. https://doi.org/10.1093/nar/gkg034 PMID: 12519996

99. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47:D607–D13. https://doi.org/10.1093/nar/gky1131 PMID: 30476243
100. Doytchina IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007; 8:4. https://doi.org/10.1186/1471-2105-8-4 PMID: 17207271

101. Rascón-Castelo E, Burgara-Estrealla A, Mateu E, Hernández J. Immunosological features of the non-structural proteins of porcine reproductive and respiratory syndrome virus. Viruses 2015; 7:873–86. https://doi.org/10.3390/v7030373 PMID: 25719944

102. Larsen MV, Lundegaard C, Lambeth K, Buus S, Lund O, Nielsen M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 2007; 8:424. https://doi.org/10.1186/1471-2105-8-424 PMID: 17973982

103. Peters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinform. 2005; 6:132. https://doi.org/10.1186/1471-2105-6-132 PMID: 15927070

104. Buus S, Lauemøller S, Worning P, Kesmir C, Frimurer T, Corbet S, et al. Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue antigens 2003; 62:378–84. https://doi.org/10.1034/j.1399-0039.2003.00112.x PMID: 14617044

105. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz M, et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol. Life Sci. 2005; 62:1025–37. https://doi.org/10.1007/s00018-005-4528-2 PMID: 15868101

106. Bui H-H, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinform. 2006; 7:1–5. https://doi.org/10.1186/1471-2105-7-153 PMID: 16545123

107. Dimitrov I, Bangov I, Flower DR, Doytchina I. AllerTOP v. 2—a server for in silico prediction of allergenicity. Allergy 2005; 60:1025–37. https://doi.org/10.1111/j.1398-9995.2005.00870.x PMID: 15868101

108. Neugebauer J, Reiher M, Kind C, Hess BA. Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for buckminsterfullerene. J. Comput. Chem. 2002; 23:895–910. https://doi.org/10.1002/jcc.10089 PMID: 11984851

109. Rose PW, Prilić A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016; 44:W449–W54. https://doi.org/10.1093/nar/gkw329 PMID: 27131374

110. van Joelingen WR, de Jong T, Lazonde r AW, Savelsbergh ER, Manlove S. Co-Lab: research and development of an online learning environment for collaborative scientific discovery learning. Comput. Hum. Behav. 2005; 21:671–88.

111. Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome 2014; 20:2278. https://doi.org/10.1007/s00894-014-2278-5 PMID: 24878803

112. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–12. https://doi.org/10.1002/jcc.20084 PMID: 15264254

113. Nair DT, Singh K, Siddiqui Z, Nayak BP, Rao KV, Salunke DM. Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. J. Immunol. 2002; 168:2371–82. https://doi.org/10.4049/jimmunol.168.5.2371 PMID: 11859128

114. Larsen JEP, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006; 2:1–7. https://doi.org/10.1186/1745-7580-2-1 PMID: 16426456

115. Kolaskar A, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990; 276:172–4. https://doi.org/10.1016/0014-5793(90)80535-q PMID: 1702393

116. Karplus P, Schulz G. Prediction of chain flexibility in proteins. Naturwissenschaften 1985; 72:212–3.

117. Emini EA, Hughes JV, Perlow D, Boger J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J. Virol. 1985; 55:836–9. https://doi.org/10.1128/JVI.55.3.836-839.1985 PMID: 2991600

118. Parker J, Guo D, Hodges R. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 1986; 25:5425–32. https://doi.org/10.1021/bi00367a013 PMID: 2430611
121. Rini JM, Schulze-Gahmen U, Wilson IA. Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 1992; 255:959–65. https://doi.org/10.1126/science.1546293 PMID: 1546293

122. Chou P, Fasman G. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978; 47:45–148. https://doi.org/10.1002/9780470122921.ch2 PMID: 364941

123. Ponomarenko J, Bui H-H, Li W, Fusseneder N, Bourne PE, Sette A, et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008; 9:514. https://doi.org/10.1186/1471-2105-9-514 PMID: 19055730

124. Lee D, Redfern O, Orengo C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 2007; 8:130–42. https://doi.org/10.1038/nrm2281 PMID: 18037900

125. Gerlt JA, Babbitt PC. Can sequence determine function? Genome Biol. 2000;1:review0005.1. https://doi.org/10.1186/gb-2000-1-2-comment1002 PMID: 11178226

126. Saghatelian A, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 2009; 5:e1000605. https://doi.org/10.1371/journal.pcbi.1000605 PMID: 20011109

127. Skolnick J, Fetrow JS. From genes to protein structure and function: novel applications of computational approaches in the genomic era. Trends Biotechnol. 2000; 18:34–9. https://doi.org/10.1016/s0167-7799(99)01398-0 PMID: 10631780

128. Bjornson HS. Enzymes associated with the survival and virulence of gram-negative anaerobes. Rev. Infect. Dis. 1984; 6:511–2. https://doi.org/10.1093/clinids/6.supplement_1.s21 PMID: 6326424

129. Saffon D, Presper K, Doering T, Roseman S. Sugar transport by the bacterial phosphotransferase system. Molecular cloning and structural analysis of the Escherichia coli ptsH, ptsI, and crr genes. J. Biol. Chem. 1987; 262:16241–53. PMID: 2960675

130. Izard T, Ellis J. The crystal structures of chloramphenicol phosphotransferase reveal a novel inactivation mechanism. EMBO J. 2000; 19:2690–700. https://doi.org/10.1093/emboj/19.11.2690 PMID: 10835366

131. Moreira D, Philippe H. Smr: a bacterial and eukaryotic homologue of the C-terminal region of the MutS2 family. Trends Biochem. Sci. 1999; 24:298–300. https://doi.org/10.1016/s0968-0004(99)01419-x PMID: 10431172

132. Malik HS, Henikoff S. Dual recognition–incision enzymes might be involved in mismatch repair and meiosis. Trends Biochem. Sci. 2000; 25:414–8. https://doi.org/10.1016/s0968-0004(00)01623-6 PMID: 10973051

133. Srinivasan B, Structure-function studies on three members of the haloacid dehalogenase (HAD) superfamily of enzymes. JNCASR 2011.

134. Koonin EV, Tatusov RL. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J. Mol. Biol. 1994; 244:125–32. https://doi.org/10.1006/jmbi.1994.1711 PMID: 7966317

135. He P, Moran GR. Structural and mechanistic comparisons of the metal-binding members of the vicinal oxygen chelate (VOC) superfamily. Journal of inorganic biochemistry 2011; 105:1259–72. https://doi.org/10.1016/j.jinorgbio.2011.06.006 PMID: 21820381

136. Koonin EV, Tatusov RL. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity: application of an iterative approach to database search. J. Mol. Biol. 1994; 244:125–32. https://doi.org/10.1006/jmbi.1994.1711 PMID: 7966317

137. Thiriet M. Signaling at the cell surface in the circulatory and ventilatory systems. Springer Science & Business Media 2011.

138. Campbell JA, Davies GJ, Bulone V, Henrisat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 1997; 326:929–39. https://doi.org/10.1042/bj3260929u PMID: 9334165
142. Djordjevic S, Stock AM. Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J. Struct. Biol. 1998; 124:189–200. https://doi.org/10.1006/jsbi.1998.4034 PMID: 10049806

143. West AH, Martinez-Hackert E, Stock AM. Crystal structure of the catalytic domain of the chemotaxis receptor methyltransferase, CheB. J. Mol. Biol. 1995; 250:276–90. https://doi.org/10.1006/jmbi.1995.0376 PMID: 7608974

144. Lewit-Bentley A, Réty S. EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 2000; 10:637–43.

145. Deckers D, Masschalck B, Aertsen A, Callewaert L, Van Tiggelen C, Atanassova M, et al. Periplasmic EF-hand protein superfamily. Proteins: Struct., Funct., Bioinf. 1999; 37:499–507. https://doi.org/10.1002/(sici)1097-0134(19991115)37:3<499::aid-prot17>3.0.co;2-y PMID: 10591109

146. Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem. Sci. 1996; 21:14–7. PMID: 8848832

147. Zemskov EA, Kang W, Maeda S. Evidence for nucleic acid binding ability and nucleosome association of Bombyx mori nucleopolyhedrovirus BRO proteins. J. Virol. 2000; 74:6784–9. https://doi.org/10.1128/jvi.74.15.6784-6789.2000 PMID: 10888617

148. Chen J, Xie J. Role and regulation of bacterial LuxR-like regulators. J. Cell. Biochem. 2011; 112:2694–702. https://doi.org/10.1002/jcb.23219 PMID: 21678467

149. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001; 55:165–99. https://doi.org/10.1146/annurev.micro.55.1.165 PMID: 1154353

150. D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem. Sci. 2003; 28:655–62. https://doi.org/10.1016/tibs.2003.10.007 PMID: 14659697

151. Das AK, Cohen PT, Barford D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein–protein interactions. EMBO J. 1998; 17:1192–9. https://doi.org/10.1093/emboj/17.5.1192 PMID: 9482716

152. Goebel M, Yanagida M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem. Sci. 1991; 16:173. https://doi.org/10.1016/0968-0004(91)90070-c PMID: 1882418

153. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 2012; 7:18. https://doi.org/10.1186/1745-6150-7-18 PMID: 22731697

154. Batchelor AH, Piper DE, De La Brousse FC, McKnight SL, Wolberge C. The structure of GABP α/β: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science 1998; 279:1037–41. https://doi.org/10.1126/science.279.5353.1037 PMID: 9461436

155. Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins: Struct., Funct., Bioinf. 1993; 17:363–74. https://doi.org/10.1002/prot.340170405 PMID: 8108379

156. Oliver W, Wells J. Lysozyme as an alternative to growth promoting antibiotics in swine production. J. Anim. Sci. Biotechnol. 2015; 6:1–7. https://doi.org/10.1186/2049-1891-6-1 PMID: 25838897

157. Callewaert L, Aertsen A, Decker s D, Vanoirbeek KG, Vanderkelen L, Van Herreweghe JM, et al. A new family of lysozyme inhibitors contributing to lysozyme tolerance in gram-negative bacteria. PLoS Pathog. 2008; 4:e1000019. https://doi.org/10.1371/journal.ppat.1000019 PMID: 18369469

158. Yum S, Kim MJ, Xu Y, Jin XL, Yoo HY, Park J-W, et al. Structural basis for the recognition of lysozyme by MiC, a periplasmic lysozyme inhibitor in Gram-negative bacteria. Biochem. Biophys. Res. Comm. 2009; 378:244–8. https://doi.org/10.1016/j.bbrc.2008.11.039 PMID: 19028453

159. Deckers D, Masschalck B, Aertsen A, Callewaert L, Van Tiggelen C, Atanassova M, et al. Periplasmic lysozyme inhibitor contributes to lysozyme resistance in Escherichia coli. Cell. Mol. Life Sci. 2004; 61:1229–37. https://doi.org/10.1007/s00018-004-4066-3 PMID: 15141308

160. Monchois V, Abergel C, Sturgis J, Jeudy S, Claverie J-M. Escherichia coli ykE ORFan gene encodes a potent inhibitor of C-type lysozyme. J. Biol. Chem. 2001; 276:18437–41. https://doi.org/10.1074/jbc.M010297200 PMID: 11278658

161. Abergel C, Monchois V, Byrne D, Chenivesse S, Lambo F, Lazzaroni J-C, et al. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria. Proc. Natl. Acad. Sci. U. S. A. 2007; 104:6384–9. https://doi.org/10.1073/pnas.0610191104 PMID: 17405861

162. Chimakalakonda G, Ruiz N, Chng S-S, Garner RA, Kahne D, Silhavy T.J. Lipoprotein LpE is required for the assembly of LpD by the β-barrel assembly machine in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2011; 108:2492–7. https://doi.org/10.1073/pnas.1019089108 PMID: 21257909
163. Wu T, McCandlish AC, Gronenberg LS, Chng S-S, Silhavy TJ, Kahne D. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2006; 103:11754–9. https://doi.org/10.1073/pnas.0604744103 PMID: 16861298

164. Speerande P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Dehò G, et al. Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J. Bacteriol. 2008; 190:4460–9. https://doi.org/10.1128 JB.00270-08 PMID: 18424520

165. Bos MP, Tefs en B, Geurtsen J, Tommassen J. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc. Natl. Acad. Sci. U. S. A. 2004; 101:9417–22. https://doi.org/10.1073/pnas.0402340101 PMID: 15192148

166. Loferer H, Hammar M, Normark S. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol. Microbiol. 1997; 26:11–23. https://doi.org/10.1046/j.1365-2958.1997.5231883.x PMID: 9383186

167. Barnhart MM, Chapman MR. Curli biogenesis and function. Annu. Rev. Microbiol. 2006; 60:131–47. https://doi.org/10.1146/annurev.micro.60.080805.142106 PMID: 16704339

168. Alexandre G, Zhulin IB. Different evolutionary constraints on chemotaxis proteins CheW and CheY revealed by heterologous expression studies and protein sequence analysis. J. Bacteriol. 2003; 185:544–52. https://doi.org/10.1128/jb.185.2.544-552.2003 PMID: 12511501

169. Griswold IJ, Zhou H, Matison M, Swanson RV, McIntosh LP, Simon MI, et al. The solution structure and interactions of CheW from Thermotoga maritima. Nat. Struct. Biol. 2002; 9:121–5. https://doi.org/10.1038/nrb753 PMID: 11799399

170. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 2007; 3:541–8. https://doi.org/10.1038/nchembio.2007.24 PMID: 17710100

171. Marra A. Targeting virulence for antibacterial chemotherapy. Drugs R&D 2006; 7:1–16. https://doi.org/10.2166/drds.2006.0016 PMID: 16620133

172. Chaplin DD. Overview of the immune response. J. Allergy Clin. Immunol. 2010; 125:S3–S23. https://doi.org/10.1016/j.jaci.2009.12.980 PMID: 20176265

173. Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 2003; 5:R6. https://doi.org/10.1186/gb-2003-5-1-r6 PMID: 14709178

174. Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature. 2000; 405:537–43. https://doi.org/10.1038/35014520 PMID: 10850706

175. Novotny JI, Handschumacher M, Haber E, Bruccoli RE, Carlson WB, Fanning DW, et al. Antigenic determinants in proteins coincide with surface regions accessible to large probes (antibody domains). Proc. Natl. Acad. Sci. U. S. A. 1986; 83:226–30. https://doi.org/10.1073/pnas.83.2.226 PMID: 2417241

176. Greenbaum JA, Andersen PH, Blythe M, Bui HH, Cachau RE, Crowe J, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit. 2007; 20:75–82. https://doi.org/10.1002/jmr.815 PMID: 17205610

177. Mahdavi M, Mohabatkar H, Keyhanfar M, Dehkhordi AJ, Rabban M. Linear and conformational B cell epitope prediction of the HER 2 ECD-subdomain III by in silico methods. Asian Pac. J. Cancer Prev. 2012; 13:3053–9. https://doi.org/10.7314/apjcp.2012.13.7.3053 PMID: 22994709