Программа мониторинга и обучения использованию лекарств в многопрофильном учреждении здравоохранения: влияние на использование антибиотиков

Эльвира Григорьевна Александрова1, Татьяна Рудольфовна Абакумова1, Сергей Валентинович Евстигнеев2, Альбина Фаритовна Титаренко3, Вероника Николаевна Хазиахметова1, Лилия Евгеньевна Зиганшина3

1Казанский (Приволжский) федеральный университет, г. Казань, Россия; 2Пензенская областная клиническая больница им. Н.Н. Бурденко, г. Пенза, Россия; 3Казанский государственный медицинский университет, г. Казань, Россия

Реферат
Цель. Разработать программу мониторинга использования антибактериальных средств и обучения их рациональному использованию с применением сведений о потреблении и расходах в многопрофильном учреждении здравоохранения.
Методы. С 2011 по 2014 гг. группа клинических фармакологов разработала и внедрила программу мониторинга использования антибактериальных средств с использованием методологии ATC/DDD и ABC/VEN в ГБУЗ «Пензенская областная клиническая больница им. Н.Н. Бурденко». Проведено обучение врачей больницы принципам рационального использования лекарств и антибиотиков в рамках повышения квалификации по клинической фармакологии с применением результатов мониторинга — анализа затрат и потребления антибиотиков.
Результаты. За 4 года мониторинга и 3 года образовательных мероприятий наиболее выраженные изменения произошли в использовании фторхинолонов, аминогликозидов, макролидов и карбапенемов. Потребление фторхинолонов снижено в 2 раза, а расходы на закупку фторхинолонов — в 6 раз (от общих затрат на все антибиотики). Потребление аминогликозидов возросло в 3 раза, в основном за счёт амикацина, его потребление возросло в 5 раз. Снижение потребления макролидов в 3 раза, в основном за счёт снижения потребления кларитромицина. При этом антибактериальные средства группы цефалоспоринов были лидирующими по потреблению с уменьшением расходов на них в 2 раза. Однако потребление карбапенемов возросло в 3 раза с увеличением затрат на них в 7 раз.
Вывод. За трёхлетний период программы снижены расходы и потребление антибактериальных средств группы фторхинолонов и макролидов с увеличением потребления аминогликозидов и карбапенемов без изменений в потреблении цефалоспоринов, затраты на цефалоспорины и карбапенемы обусловили увеличение общих расходов на антибиотики; необходимости дальнейшие усилия и исследования по изучению использования антибактериальных средств.
Ключевые слова: фармакоэпидемиология, использование лекарств, антибиотики.

Для цитирования: Александрова Э.Г., Абакумова Т.Р., Евстигнеев С.В. и др. Программа мониторинга и обучения использованию лекарств в многопрофильном учреждении здравоохранения: влияние на использование антибиотиков. Казанский мед. ж. 2020; 101 (3): 403–411. DOI: 10.17816/KMJ2020-403.

Multidisciplinary health care monitoring and training program: impact on antibiotic use
E.G. Aleksandrova1, T.R. Abakumova1, S.V. Evstigneev2, A.F. Titarenko3, V.N. Khaziakhmetova1, L.E. Ziganshina3
1Kazan (Volga Region) Federal University, Kazan, Russia; 2Penza Regional Clinical Hospital named after N.N. Burdenko, Penza, Russia; 3Kazan State Medical University, Kazan, Russia

Адрес для переписки: Elvira_alex_75@mail.ru Поступила 02.03.2020; принята в печать 07.04.2020.
Abstract
Aim. To develop a program for monitoring the use of antibacterial agents and training in their rational use using the information on consumption and expenses in a multidisciplinary healthcare institution.

Methods. From 2011 to 2014, a group of clinical pharmacologists developed and implemented a monitoring program for the use of antibacterial agents using the ATC/DDD and ABC/VEN methodology in SBII “Penza Regional Clinical Hospital named after N.N. Burdenko”. Hospital doctors were trained in the principles of rational use of drugs and antibiotics as part of continuing education in clinical pharmacology using monitoring results — analysis of the costs and consumption of antibacterial agents.

Results. Over the four years of monitoring and three years of educational activities, the most pronounced changes have occurred in the use of fluoroquinolones, aminoglycosides, macrolides and carbapenems. Fluoroquinolones consumption reduced 2 times, and it cost of purchase reduced 6 times (of total). Aminoglycosides consumption increased 3 times, primarily due to amikacin 5 times consumption increase. Macrolides consumption reduced 3 times, primarily due to clarithromycin decrease in consumption. At the same time, the antibacterial agents of the cephalosporin group leading in consumption, with their cost had decreased 2-fold. However, carbapenems consumption increased 3 times, with their costs increase 7 times.

Conclusion. Over the three years of the program, expenses and consumption of antibacterial agents of the fluoroquinolone and macrolide group were reduced, with an increase in the consumption of aminoglycosides and carbapenems without changes in the consumption of cephalosporins; costs of cephalosporins and carbapenems led to an increase in overall antibiotic costs; further efforts and studies are needed to study the use of antibacterial agents.

Keywords: pharmacoepidemiology, drug use, antibiotics.

For citation: Aleksandrova E.G., Abakumova T.R., Evtigneev S.V. et al. Multidisciplinary health care monitoring and training program: impact on antibiotic use. Kazan medical journal. 2020; 101 (3): 403–411. DOI: 10.17816/KMJ2020-403.
Мероприятия, направленные на политику использования антибиотиков, сокращают продолжительность пребывания в стационаре на 1,12 дня (95% ДИ от 0,7 до 1,54 дня; 15 рандомизированных контролируемых исследований; 3834 участника; доказательства умеренной достоверности). Как ограничительные, так и образовательные методы были успешными для снижения необоснованного применения антибиотиков в стационарах. Доказательства, полученные в этом систематическом Кокрейновском обзоре, обосновывают необходимость принятия решений об использовании мероприятий такого рода для улучшения использования антибактериальных средств в больницах [13].

Образовательные мероприятия, корректировка больничного формуляра антибактериальных препаратов, правила назначения антибиотиков, внутренний аудит и оценка эффективности программы (с анализом затрат и потребления антибиотиков и контроля качества антибактериальной терапии) — важные этапы реализации стратегии контроля антимикробной терапии (программы СКАТ) при оказании стационарной медицинской помощи [10, 14].

Во многих медицинских учреждениях РФ врачи не владеют информацией об использовании антибактериальных препаратов в их учреждениях здравоохранения и даже в их отделениях. По этой причине важно не только получить показатели использования антибиотиков, но и вовремя и адекватно донести эту информацию до специалистов здравоохранения в качестве важного шага для улучшения стратегии использования антибиотиков [15].

Цель. Разработать программу мониторинга использования антибактериальных препаратов и обучения их рациональному использованию с применением сведений о потреблении и расходах в многопрофильном учреждении здравоохранения.

Материал и методы исследования. Группа клинических фармакологов при поддержке администрации проводила комплексную работу в ГБУЗ «Пензенская областная клиническая больница им. Н.Н. Бурденко» с 2011 по 2014 г. Мы на регулярной основе проводили анализ потребления лекарств и расходования денежных средств на закупку антибиотиков в течение 4 лет с использованием методологии ATC/DDD и ABC/VEN.

В 2011 г. мы оценили исходный уровень потребления антибиотиков и затрат на них в учреждении здравоохранения. На основе полученных данных мы разработали программу обучения врачей рациональному использованию лекарств и антибиотиков и проводили обучение врачей больницы, начиная с 2012 г., в рамках повышения квалификации по клинической фармакологии с использованием результатов мониторинга — анализа затрат и потребления антибактериальных средств как в целом по больнице, так и по каждому отделению в отдельности.

Образовательный модуль применяли по 2 раза в год в 2012–2014 гг. с лекционным курсом и практическим блоком с анализом лекарственных назначенений в ряде отделений больницы. В 2014 г. проведен выездной цикл повышения квалификации в больнице. В рамках программы мониторинга мы осуществили анализ рациональности использования антибактериальных препаратов в отделениях больницы как одного из ключевых факторов уменьшения распространения резистентных штаммов микроорганизмов.

При проведении анализа ABC/VEN вычисляли доли затрат лекарственного бюджета на закупку антибактериальных лекарственных средств. Использовали доли затрат, так как изучали большую совокупность сведений по затратам всех отделений больницы за 4 года, в связи с чем методы выборочной статистики здесь не приемлемы.

Для оценки потребления антибактериальных средств использовали методологию ATC/DDD (Anatomical Therapeutic Chemical classification/Defined Daily Dose), или ATX/УСД (анатомическая терапевтическая химическая классификация/установленная суточная доза).

О потреблении лекарственного средства на госпитальном этапе судили по показателю УСД/100 койко-дней, который рекомендован Всемирной организацией здравоохранения (ВОЗ) для изучения использования лекарств в стационарах и позволяет сравнивать потребление лекарств в учреждениях разной мощности и в разные временные интервалы [16]. Для этого использовали сведения, представленные аптекой учреждения.

Для выражения потребления использованного в стационаре препарата в единицах УСД общее количество лекарства в миллиграммах/граммах, использованное за год, делили на установленную суточную дозу этого антибиотика, принятую ВОЗ на данный год [17].

При расчёте показателя УСД/100 койко-дней проводили коррекцию числа койко-дней в соответствии с показателем занятости койки, что позволяет сравнивать потребление лекарств в лечебных учреждениях разной мощности — в разных больницах, в разные годы. Использо-
Таблица 1. Потребление основных групп антибактериальных средств ГБУЗ «Пензенская областная клиническая больница им. Н.Н. Бурденко» за 2011–2014 гг., установленная суточная доза/100 койко-дней

Наименование группы (ATX-группа)	2011 г.	2012 г.	2013 г.	2014 г.
Цефалоспорины (J01D A)	14,42	18,4	18,07	15,55
Фторхинолоны (J01M A)	11,43	9,23	7,22	5,62
Аминогликозиды (J01G)	4,18	3,89	17,33	14,09
Пенициллины (J01C)	4,09	3,99	3,7	2,9
Макролиды (J01F)	3,5	3,01	2,19	1,2
Карбапенемы (J01D H)	0,12	0,42	1,03	0,38
Другие	2,28	2,12	2,17	2,91
Потребление антибиотиков в целом	40,02	39,06	51,71	42,65

Таблица 2. Потребление антибактериальных средств системного действия группы фторхинолонов (J01M A), установленная суточная доза/100 койко-дней, 2011–2014 гг.

Наименование лекарственного средства (международное непатентованное наименование)	2011 г.	2012 г.	2013 г.	2014 г.
Ципрофлоксацин	8,42	7	3,04	2,81
Левофлоксацин	1,19	0,44	1,66	1,39
Норфлоксацин	1,05	1,11	0,92	0,7
Пефлоксацин	0,77	0,68	0,32	0,2
Офлоксацин	—	—	1,09	0,5
Моксифлоксаций	—	—	0,19	0,02
Итого	11,43	9,23	7,22	5,62

Ванный показатель потребления отражает долю (%) пациентов больницы, которые ежедневно получают терапию указанным препаратом, при условии, что назначенная суточная доза была равна одной УСД.

В этой работе мы изучили сведения об использовании антибактериальных средств системного действия (ATX-группа J01).

Частично результаты потребления антибактериальных средств были опубликованы в 2017 г. [18]. Настоящая публикация представляет собой комплексное исследование потребления антибиотиков и затрат на их закупку с детальным анализом использования отдельных антибиотиков, а также с изучением влияния образовательных мероприятий на их использование.

Результаты. С 2011 по 2014 г. потребление всех антибактериальных средств составило 40,02 УСД/100 койко-дней и 42,65 УСД/100 койко-дней соответственно [18]. Затраты на антибактериальные средства возросли с 13,92 до 22,14% всех расходов на лекарственные средства [19]. В структуре потребления преобладали антибиотические препараты группы цефалоспоринов (табл. 1).

Наша программа мониторинга и обучения позволила достичь определённых успехов в использовании фторхинолонов, аминогликозидов и макролидов. За 4 года мониторинга и 3 года образовательных мероприятий наиболее выраженные изменения произошли в использовании фторхинолонов, аминогликозидов, макролидов и карбапенемов.

Произошло снижение потребления фторхинолонов в 2 раза — с 11,4 до 5,6 УСД/100 койко-дней. Расходы на закупку фторхинолонов снизились в 6 раз — с 22% всех затрат на антибактериальные средства в 2011 г. до 3,5% в 2014 г. Особенно существенно уменьшился объем потребления ципрофлоксацина — с 8,4 до в 2011 г. до 2,8 УСД/100 койко-дней в 2014 г. Также заметно снизились затраты на него при расчёте его доли потребления и расходов от общих расходов на все антибактериальные средства (с 9,1% в 2011 г. до 1,3% в 2014 г.). Изучение использования других представителей группы фторхинолонов показало, что потребление левофлоксацина и норфлоксацина практически не менялось — 1,2 УСД/100 койко-дней и 1,04 УСД/100 койко-дней соответственно в 2011 г. и 1,4 УСД/100 койко-дней и 0,92 УСД/100 койко-дней соответственно в 2014 г. Снизилось потребление пефлоксацина более чем в 3 раза — с 0,77 до...
Примечание снижение потребления макролидов в 3 раза (с 3,5 в 2011 г. до 0,3 УСД/100 койко-дней). Моксифлоксацин был использован только в 2013–2014 гг. с показателем потребления 0,19 и 0,02 УСД/100 койко-дней соответственно (табл.2).

Из группы аминогликозидов были использованы два препарата — амикацин и гентамицин. Потребление аминогликозидов возросло в 3 раза — с 4,18 до 14,09 УСД/100 койко-дней. Это произошло в основном за счёт амикацина: его потребление возросло в 5 раз — с 2,4 до 13 УСД/100 койко-дней, а потребление гентамицина уменьшилось с 1,8 до 1,0 УСД/100 койко-дней (рис. 1). Эти изменения потребления произошли, несмотря на тот факт, что затраты на их закупку снизились с 4,5 до 2,7% всех затрат на антибиотики.

Выведено снижение потребления макролидов в 3 раза (с 3,5 в 2011 г. до 1,2 УСД/100 койко-дней в 2014 г.). Самым используемым антибиотиком этой группы был кларитромицин. Его потребление снизилось в 4,5 раза — с 3,2 до 0,7 УСД/100 койко-дней. Потребление азитромицина и эритромицина практически не изменилось. Рокситромицин использовали только в 2011 и 2013 гг. (табл.3). Уменьшение потребления макролидов служит также положительным моментом, так как они имеют ограниченные показания к применению на госпитальном этапе.

При этом антибиотические препараты группы цефалоспоринов сохраняли лидирующие позиции по их потреблению: 14,4 и 15,6 УСД/100 койко-дней в 2011 и 2014 гг. соответственно. Однако при этом произошло уменьшение расходов на них в 2 раза — с 51 до 22% всех расходов на антибиотики. Не всегда потребление лекарств коррелирует с расходами на их закупку. Уменьшение расходов на закупку при повышении потребления свидетельствует о предпочтительных закупках дженериков. Из цефалоспоринов чаще использовали препараты III поколения — цефтриаксон и цефотаксим. За годы внедрения программы произошло изменение соотношения потребления этих двух препаратов: потребление цефтриаксона составило 5,6 УСД/100 койко-дней в 2011 г. и 8,8 УСД/100 койко-дней в 2014 г., а потребление цефотаксима составило 4 УСД/100 койко-дней в 2011 г. и 2,7 УСД/100 койко-дней в 2014 г. при снижении затрат на закупку обоих препаратов. Мы показали сокращение затрат на цефепим (цефалоспориновый антибиотик IV поколения) с 16,8 до 4,32% общих затрат на антибиотики, а также уменьшение и его потребления с 1,1 до 0,3 УСД/100 койко-дней.

Несмотря на положительные моменты нашей программы мониторинга и обучения, появились новые проблемы в использовании антибиотиков, которые требуют внимания: повышение потребления карбапенемов в 3 раза — с 0,12 до 0,38 УСД/100 койко-дней. В 2013 г. был прямой показатель потребления карбапенемов — 1,03 УСД/100 койко-дней, в первую очередь за счёт эртапенема (0,48 УСД/100 койко-дней). В 7 раз возросли затраты на закупку карбапенемов — с 6,75 до 47,42% общих затрат на все антибиотики. Потребление дорипенема возросло с 0,01 до 0,19 УСД/100 койко-дней, расходы на его закупку возросли с 1,18 до 31,57% затрат на все антибиотики! Потребле-

Таблица 3. Потребление антибактериальных средств системного действия группы макролидов (J01F), установленная суточная доза/100 койко-дней, 2011–2014 гг.

Наименование лекарственного средства (международное непатентованное наименование)	2011 г.	2012 г.	2013 г.	2014 г.
Кларитромицин	3,23	2,58	1,24	0,75
Азитромицин	0,26	0,43	0,94	0,44
Эритромицин	0,01	0,002	0,007	0,01
Рокситромицин	0,002	—	0,0003	—
Итого	3,5	3,01	2,19	1,21

Рис. 1. Потребление антибактериальных средств системного действия группы аминогликозидов (J01G), установленная суточная доза/100 койко-дней, 2011–2014 гг.
ние эртапенема возросло в 2 раза — с 0,03 до 0,06 УСД/100 койко-дней, расходы на его закупку возросли с 0,69% до 3,69% всех затрат на антибиотики. Использование меропенема существенно не изменилось — потребление его в 2011 г. составило 0,01 УСД/100 койко-дней, в 2014 г. — 0,08 УСД/100 койко-дней, а затраты на его закупку составили 2,5 и 3,76% в 2011 и 2014 гг. соответственно (рис. 2).

Произошло увеличение потребления антибактериального средства группы гликопептидов ванкомицина с 0,05 до 0,08 УСД/100 койко-дней, с высоким уровнем потребления в 2013 г. — 0,8 УСД/100 койко-дней (рис. 3). Расходы на его закупку также возросли с 0,52 до 2,18% всех расходов на антибиотики. Потребление линезолида возросло в 6 раз — с 0,009 УСД/100 койко-дней в 2011 г. до 0,056 УСД/100 койко-дней в 2014 г. (см. рис. 3). Затраты на его закупку возросли в 3 раза — с 1,38 до 4,1% всех расходов на антибиотики.

Обсуждение. Показатели потребления антибиотиков в больнице сопоставимы с их потреблением в многопрофильных стационарах РФ и Белоруссии [1, 20, 21]. Лидерами по назначениям так же, как и в подавляющем большинстве стационаров РФ, остаются цефалоспорины III поколения без антисинегнойной активности (цефтриаксон, цефотаксим). Доля их назначений в отдельных стационарах достигала от 28 до 60% всех назначений антибактериальных средств [7, 15, 20]. Злоупотребление цефалоспоринами опасно из-за возможного развития так называемого «параллельного ущерба», приводящего к селекции полирезистентных микроорганизмов [15]. В исследованиях типа случай-контроль использование цефалоспоринов было определено как единственный независимый фактор риска (отношение шансов 13,8; 95% ДИ 2,5–76,3; p=0,01) колонизации устойчивых к ванкомицину энтерококков [22].

Мы считаем определённым достижением уменьшение использования фторхинолонов в больнице. Потребление фторхинолонов в 2011 г. в больнице было выше, чем в ряде других стационаров РФ, например в хирургическом стационаре г. Хабаровска в 2011 г. потребление фторхинолонов составило 7,66 УСД/100 койко-дней [20]. Снижение потребления фторхинолонов в 2 раза с 11,4 до 5,6 УСД/100 койко-дней заслуживает внимания, так как фторхинолоны следует рассматривать как средства для лечения нозокomialных инфекций различных локализаций, вызванных устойчивыми микроорганизмами и внебольничных осложнённых инфекций [14]. Фторхинолоны используют с высокой частотой в российских стационарах, в частности в исследовании ЭРГИНИ выявлена частота их назначений 21%. Чаще всего используют ципрофлоксацин (12% всех назначений при нозокомиальных инфекциях) [7]. Новые исследования показали, что использование фторхинолонов способно привести к риску (отношение шансов 3,5) последующего возникновения инфекций, вызванных мета-β-лактамаза-продуцирующими штаммами P. aeruginosa, и, соответственно, к устойчивости к карбапенемам [14, 23]. Исследование, проведенное в Индии, показало возможную роль предшествующей терапии ципрофлоксацином в качестве одного из факторов риска инфекции, вызванной метициллин-резистентным золотым стафилококком (MRSA-инфекции —
от англ. Methicillin-resistant Staphylococcus aureus) [14, 24].

Потребление макролидов в стационарах РФ составило в 2010 г. в среднем 1,9 УСД/100 койко-дней, это меньше, чем в нашей больнице в 2011 г. (3,5 УСД/100 койко-дней) [1]. В многопрофильном хирургическом стационаре г. Хабаровска в 2011 г. также потребление макролидов было меньше — 0,96 УСД/100 койко-дней [20]. К 2014 г. мы снизили потребление макролидов, в основном за счёт кларитромицина, и в 2014 г. потребление макролидов составило 1,2 УСД/100 койко-дней, а кларитромицина — 0,7 УСД/100 койко-дней. В условиях стационара макролиды рекомендованы для комбинированной терапии тяжёлой внебольничной пневмонии и инфекций малого таза и лечения хламидийных и микоплазменных инфекций. Существенных различий в природной антимикробной активности макролидов нет, поэтому в стационаре достаточно наличия одного парентерального и двух энтеральных макролидов [14].

Повышение потребления аминогликозидов в 3 раза с 4,18 до 14,09 УСД/100 койко-дней обосновывает дополнительное изучение практики их использования. Потребление аминогликозидов в стационарах РФ в 2010 г. составило в среднем 2,5 УСД/100 койко-дней, в отделениях реанимации в среднем — 13,2 УСД/100 койко-дней, с наиболее высоким уровнем потребления в медицинском центре г. Ярославля (5 и 36,6 УСД/100 койко-дней соответственно), также с преимущественным использованием амикацина [1, 25]. Повышение потребления амикацина могло быть связано с изменением тактики лечения ряда инфекций или спектра устойчивости ряда возбудителей. Амикацин рекомендован при нозокomialных инфекциях для комбинированной терапии инфекций, вызванных P. aeruginosa [14]. При использовании аминогликозидов нельзя упускать возможные нежелательные реакции: необходим контроль диуреза, креатинина и остроты слуха, а длительность терапии должна быть не более 7 дней.

Увеличение использования карбапенемов характерно для многих медицинских учреждений РФ [1, 20, 21, 25]. В нашем учреждении их потребление возросло в 3 раза — с 0,12 до 0,38 УСД/100 койко-дней. Увеличению потребности в карбапенемах могло способствовать длительное широкое применение цефалоспоринов III поколения в стационаре. Показано, что терапия цефалоспоринами в предшествующие 30 дней — независимый фактор риска (отношение шансов 10,8) инфицирования стабильно

ВЫВОДЫ

1. С 2011 по 2014 гг. группа клинических фармакологов при поддержке администрации больницы разработала и внедрила программу мониторинга использования антибактериальных средств и обучения рациональному использованию лекарств врачей в многопрофильном учреждении здравоохранения.

2. За время действия программы мы добились заметного сокращения потребления и расхода антибактериальных средств группы фторхинолонов и макролидов с увеличением потребления аминогликозидов и карбапенемов без изменений в потреблении цефалоспоринов.

3. Затраты на цефалоспорины и карбапенемы обусловили увеличение общих расходов на антибиотики.
4. Необходимы дальнейшие усилия и исследований по изучению использования антибактериальных средств. При выборе программы по улучшению стратегии использования лекарств и антибиотиков, в том числе, важна обратная связь со специалистами здравоохранения, а также мультидисциплинарный подход с учётом потребностей и особенностей конкретного учреждения здравоохранения.

Участие авторов. Э.Г.А. — сбор и анализ результатов, написание текста статьи; Т.Р.А. — сбор и анализ результатов; С.В.Е. — сбор и анализ результатов; А.Ф.Т. — сбор и анализ результатов; В.Н.Х. — сбор и анализ результатов; Л.Е.З. — руководитель работы, проверка и глобальный анализ результатов.

Источник финансирования. Договор с ГБУЗ "Пензенская областная клиническая больница им. Н.Н. Бурденко" по приглашению администрации больницы (авторы получали заработную плату). Другого финансирования не было.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов по представленной статье.

ЛИТЕРАТУРА
1. Белькова Ю.А., Рачина С.А., Козлов Р.С. и др. Потребление и затраты на системные антигрибковые препараты в монопрофильных стационарах Российской Федерации и Республики Беларусь: результаты многоцентрового фармакоэпидемиологического исследования. Клин. микробиол. и антимикроб. химиотерап. 2012; 14 (4): 322–341. [Belkova Y.A., Ranchina S.A., Kozlov R.S. et al. Systemic antifungal consumption and expenditures in multi-profile hospitals in Russian Federation and Republic of Belarus: the results of multicenter clinical trial. Klinicheskaya mikrobiologiya i antimikrobnaia khimioterapiya. 2012; 14 (4): 322–341. (In Russ.)]

2. Friedrich M.J. Antibiotic consumption increasing globally. JAMA. 2018; 319 (19): 1973. DOI: 10.1001/jama.2018.5711.

3. Сухорукова М.В., Эйдельштейн М.В., Склеснова Е.Ю. и др. Антибиотикорезистентность нозокомиальных штаммов Enterobacteriaceae в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН в 2011–2012 гг. Клин. микробиол. и антимикроб. химиотерап. 2014; 16 (4): 254–265. [Sukhorukova M.V., Edelshtein M.V., Skleesova E.Yu. et al. Antimicrobial resistance of nosocomial Enterobacteriaceae isolates in Russia: results of national multicenter surveillance study MARATHON 2011–2012. Klinicheskaya mikrobiologiya i antimikrobnaia khimioterapiya. 2014; 16 (4): 254–265. (In Russ.)]

4. Сухорукова М.В., Эйдельштейн М.В., Склеснова Е.Ю. и др. Антибиотикорезистентность нозокомиальных штаммов Staphylococcus aureus в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН в 2011–2012 гг. Клин. микробиол. и антимикроб. химиотерап. 2014; 16 (4): 280–286. [Sukhorukova M.V., Edelshtein M.V., Skleesova E.Yu. et al. Antimicrobial resistance of nosocomial Staphylococcus aureus isolates in Russia: results of national multicenter surveillance study MARATHON 2011–2012. Klinicheskaya mikrobiologiya i antimikrobnaia khimioterapiya. 2014; 16 (4): 280–286. (In Russ.)]

5. Сухорукова М.В., Эйдельштейн М.В., Склеснова Е.Ю. и др. Антибиотикорезистентность нозокомиальных штаммов Acinetobacter spp в стационарах России: результаты многоцентрового эпидемиологического исследования МАРАФОН в 2011–2012 гг. Клин. микробиол. и антимикроб. химиотерап. 2014; 16 (4): 266–272. [Sukhorukova M.V., Edelshtein M.V., Skleesova E.Yu. et al. Antimicrobial resistance of nosocomial Acinetobacter spp. isolates in Russia: results of national multicenter surveillance study MARATHON 2011–2012. Klinicheskaya mikrobiologiya i antimikrobnaia khimioterapiya. 2014; 16 (4): 266–272. (In Russ.)]

6. Gastmeier P., Behnek M., Breier A.C. et al. Healthcare-associated infection rates: measuring and comparing. Experiences from the German National Nosocomial Infection Surveillance System (KISS) and from other surveillance systems. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2012; 55 (11–12): 1363–1369. DOI: 10.1007/s00103-012-1551-y.

7. Яковлев С.В., Суворова Н.П., Белобородов В.В. и др. Распространённость и клиническое значение нозокомиальных инфекций в лечебных учреждениях России: исследование ЭРГИНИ. Антибиотики и химотерапия. 2016; 61 (5–6): 32–42. [Yakovlev S.V., Suvorova N.P., Beloborodov V.V. et al. Multicentre study of the prevalence and clinical value of hospital-acquired infections in emergency hospitals of Russia: ERGINI study team. Antibiotiki i khimioterapiya. 2016; 61 (5–6): 32–42. (In Russ.)]

8. Kraker M.E., Davey P.G., Grundmann H. Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Medicine. 2011; 8 (10): 1001–1104. DOI: 10.1371/journal.pmed.1001104.

9. Carlet J., Fabry J., Almaberti R., Delego L. The “Zero Risk” Concept for hospital-acquired infections: A risky business! Clin. Infect. Dis. 2009; 49 (5): 747–749. DOI: 10.1086/604720.

10. Белькова Ю.А., Рачина С.А., Козлов Р.С. и др. Управление антимикробной терапией: зарубежный опыт и перспективы внедрения в российских стационарах. Клин. фармакол. терап. 2019; 28 (4): 4–9. [Belkova Y.A., Ranchina S.A., Kozlov R.S. et al. Antimicrobial stewardship: international practices and implementation prospects in the Russian hospitals. Klinicheskaya farmakologiya i terapiya. 2019; 28 (4): 4–9. (In Russ.)] DOI: 10.32756/0869-5490-2019-4-4-9.

11. Dellit T.H., Owens R.C., McGowan J.E. et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin. Infect. Dis. 2007; 44: 159–177. DOI: 10.1086/510393.

12. Arnold S., Straus S. Interventions to improve antibiotic prescribing practices in ambulatory care. Cochrane Database of Systematic Reviews. 2005; 2005 (4): CD003539. DOI: 10.1002/14651858.CD003539.pub2.

13. Davey P., Marwick C.A., Scott C.L. et al. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database of Systematic Reviews. 2017; 2 (2): CD003543. DOI: 10.1002/14651858.CD003543.pub4.
14. Программа СКАТ (Стратегии Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи. Российские клинические рекомендации. М. 2017; 132 с. [Programma SKAT (Strategy of Antimicrobial Therapy) in hospital practice. Russian Clinical Guidelines.] 2017; 132 p. (In Russ.)

15. Рачина С.А., Захранков И.А., Белькова Ю.А. и др. Одномоментное исследование использования антибактериальных препаратов в многопрофильных стационарах Российской Федерации. Клин. микробиол. антимикроб. химотер. 2017; 26 (2): 62–69. [Rachina S.A., Zakharenkova I.A., Belkova Yu.A. et al. Point prevalence survey of antimicrobial utilization in Russian multi-field hospitals. Klinicheskaya mikrobiologiya i terapiya. 2017; 26 (2): 62–69. (In Russ.)]

16. Зиганшина Л.Е., Магсумова Д.Р., Кучаева А.В. и др. АТС/DDD — классификационная система в фармакоэкономических исследованиях. Ж. научных статей здоровье и образование в XXI веке. 2010; 28: 127–129. DOI: 10.4103/0255-2004; (1): 28–33. [Ziganshina L.E., Magsumova D.R., Kuchaeva A.V. et al. ATC/DDD — classification system in pharmaceutical economics research. Zhurnal nauchnykh statey zdorov'e i obrazovanie v XXI веке. 2010; 28: 127–129. DOI: 10.4103/0255-2004; (1): 28–33. (In Russ.)]

17. WHO Collaborating Centre for Drug Statistics Methodology. http://www.whocc.no/atc_ddd_index/ (access date: 10.02.2015).

18. Евстигнеев С.В., Александрова Э.Г., Абакумова Т.Р. и др. Оценка потребления антибактериальных лекарственных средств в многопрофильном стационаре, проведённая по методологии ATC/DDD анализа. Ж. научных статей: здоровье и образование в XXI веке. 2017; 19 (7): 131–137. [Yevstigneev S.V., Alexandrova E.G., Abakumova T.R. et al. Consumption of antimicrobials at a multi-disciplinary hospital: ATC/DDD methodology. Zhurnal nauchnykh statey: zdorov'e i obrazovanie v XXI веке. 2017; 19 (7): 131–137. (In Russ.)]

19. Yevstigneev S.V., Titarenko A.F., Abakumova T.R. et al. Towards the rational use of medicines. Int. J. Risk Saf. Med. 2015; 27 (1): 59–60. DOI: 10.3233/JRS-150690.

20. Красножон Т.В., Дьяченко С.В., Адаев А.М., Бондаренко О.А. Фармакоэкономический анализ использования антибактериальных препаратов в многопрофильном хирургическом стационаре. Дальневосточный мед. ж. 2013; (3): 118–121. [Krasnожон Т.В., Дьяченко С.В., Адаев А.М., Бондаренко О.А. Pharmacoeconomic analysis of antimicrobial drugs in a multi-disciplinary surgical hospital. Dal'nevostochnyy meditsinskij zhurnal. 2013; (3): 118–121. (In Russ.)]

21. Барканова О.Н., Реброва Е.В., Ильченко О.В. и др. Анализ потребления антибактериальных препаратов в хирургических отделениях стационаров г. Волгограда в 2014 г. Вестник ВолГМУ. 2015; (3): 93–96. [Bar- канова O.N., Rebрова E.V., Ilchenko O.V. et al. Analysis of antibiotic consumption in surgical departments of Volgograd hospitals in 2014. Vestnik VolGMU. 2015; (3): 93–96. (In Russ.)]

22. Loeb M., Salama S., Armstrong-Evans M. et al. A case-control study to detect modifiable risk factors for colonization with vancomycin-resistant enterococci. Infect. Control Hosp. Epidemiol. 1999; 20: 760–763. DOI: 10.1086/501580.

23. Messadi A.A., Lamia T., Kamel B., Capretta G. Association between antibiotic use and changes in susceptibility patterns of P. aeruginosa in an intensive care unit: a 5-year study, 2000–2004. Burns. 2008; 34: 1098–1102. DOI: 10.1016/j.burns.2008.03.014.

24. Sarma J.B., Ahmed G.U. Characterisation of methicillin resistant S. aureus strains and risk factors for acquisition in a teaching hospital in northeast India. Indian J. Med. Microbiol. 2010; 28: 127–129. DOI: 10.4103/0255-0857.62489.

25. Белькова Ю.А., Рачина С.А., Козлов Р.С. и др. Потребление и затраты на системные антимикробные препараты в отделениях реанимации и интенсивной терапии многопрофильных стационаров Российской Федерации и Республики Беларусь: результаты многоцентрового фармакоэкономического исследования. Клин. микробиол. антимикроб. химотер. 2014; 16 (4): 294–311. [Belkova Y.A., Rachina S.A., Kozlov R.S. et al. Systemic antimicrobials consumption and expenditures in intensive care units of hospitals in Russian Federation and Republic of Belarus: results of multicenter pharmacoeconomic study. Klinicheskaya mikrobiologiya i antimikrobnyaya khimioterapiya. 2014; 16(4): 294–311. (In Russ.)]

26. Park Y.S., Yoo S., Seo M.R. et al. Risk factors and clinical features of infections caused by plasmid-mediated AmpC beta-lactamase-producing Enterobacteriaceae. Int. J. Antimicrob. 2009; 34: 38–43. DOI: 10.1016/j.ijantimicag.2009.01.009.

27. Tacconelli E., De Angelis G., Cataldo M.A. et al. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J. Antimicrob. Chemother. 2008; 61: 26–38. DOI: 10.1093/jac/dkm416.