Efficacy and safety of PERIOdontal treatment versus usual care for Nonalcoholic liver disease: protocol of the PERION multicenter, two-arm, open-label, randomized trial

Yohei Kamata1†, Takaomi Kessoku2†, Tomoko Shimizu1†, Takashi Kobayashi2, Takeo Kurihashi3, Satsuki Sato1, Syotaro Kuraji1, Norio Aoyama4, Tomoyuki Iwasaki5, Shogo Takashiba6, Nobushiro Hamada7, Toshiro Kodama8, Toshiyuki Tamura1, Satoshi Ino9, Takuma Higurashi2, Masataka Taguri10, Takeharu Yamanaka10, Masato Yoneda2, Haruki Usuda11, Koichiro Wada11, Atsushi Nakajima2 and Masato Minabe4*

Abstract

Background: We report the first protocol for a multicenter, randomized comparison study to compare the efficacies of periodontal scaling and root-planing treatment against that of tooth-brushing treatment for nonalcoholic fatty liver disease (NAFLD) (PERION: PERIOdontal treatment for NAFLD). Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD, which can progress to cirrhosis and hepatocellular carcinoma. Increased endotoxemia is associated with the progression of NAFLD. Periodontal bacteria possess endotoxins; Porphyromonas gingivalis is well-known as a major pathogenic bacterium in periodontitis, and serum antibody levels for P. gingivalis are high in patients with periodontitis. Several reports have indicated that P. gingivalis is related to NAFLD. This study aims to investigate the effect of periodontal treatment for liver damage, P. gingivalis infection, and endotoxemia on patients with NAFLD.

Methods: We will include adult patients (20–85 years old) with NAFLD, alanine aminotransferase (ALT) ≥ 40 IU/L, and equivalent steatosis grade ≥ 1 (target sample size, n = 40 patients; planned number of patients with outcome data, n = 32). Participants will be randomly assigned to one of two groups: a scaling and root-planing group or tooth-brushing as the usual group. The primary outcome will be the change in ALT levels from baseline to 12 weeks; the key secondary outcome will be the change in the serum immunoglobulin G (IgG) antibody titer for P. gingivalis at 12 weeks.

(Continued on next page)
Discussion: This study should determine whether periodontal treatment decreases liver damage, *P. gingivalis* infection, and endotoxemia in patients with NAFLD.

Trial registration: University Hospital Medical Information Network (UMIN) Clinical Trials Registry, ID: UMIN000022079.

Keywords: NAFLD, *Porphyromonas gingivalis*, Periodontal treatment, Lipopolysaccharides, Alanine aminotransferase, Immunoglobulin G

Background
The broad spectrum of fatty liver diseases in individuals who consume little-to-no alcohol is called nonalcoholic fatty liver disease (NAFLD) and includes nonalcoholic steatohepatitis (NASH). NASH is an increasingly common cause of chronic liver disease worldwide and is associated with increased liver-related mortality and hepatocellular carcinoma [1–3]. NASH progresses to cirrhosis in 15–20% of the affected individuals and is a rising indication for liver transplantation [4]. However, approved therapies for NASH have not yet been established; therefore, preventive therapies to inhibit the progression of fatty liver disease to NASH are required.

Periodontal disease is an infectious disease of the gums and tissues surrounding the teeth and causes tooth loss resulting from the destruction of tooth-supporting tissues. The incidence rate of periodontitis is > 47% in adults in the USA [5]. More than 700 bacterial species or phylotypes have been detected in the oral cavity [6]. Some species/complexes are closely associated with advanced periodontal lesions, such as *Porphyromonas gingivalis*, *Treponema denticola*, *Tannerella forsythia*, *Prevotella intermedia*, *Fusobacterium nucleatum*, and *Aggregatibacter actinomycetemcomitans* [7, 8]. Among them, *P. gingivalis*, a gram-negative anaerobic bacterium, is the major etiologic agent that contributes to periodontal disease progression and bone and tissue destruction [9, 10]. The lipopolysaccharide (LPS) cell-wall component of *P. gingivalis* is one of the virulence factors that trigger a wide range of host responses, including the production of proinflammatory cytokines, anti-inflammatory cytokines, and chemokines [11]. These cytokines and inflammatory mediators play important roles in the progression of periodontitis at the stage where host immune and inflammatory responses lead to the destruction of periodontal tissue under the influence of multiple behavioral, environmental, and genetic factors [12].

Recently, several studies have reported the relationship between NAFLD and periodontal disease [13, 14]. Yoneda et al. [15] reported that the detection frequency of *P. gingivalis* in the saliva of patients with NAFLD and patients with NASH was significantly higher than that in non-NAFLD control subjects. Moreover, they presented preliminary evidence to suggest that nonsurgical periodontal treatments in 10 patients with NAFLD for 3 months ameliorated the liver function parameters, such as the serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Consequently, it is thought that infection with a periodontal pathogen, mainly *P. gingivalis*, is associated with fibrosis severity in patients with NAFLD and that the prevention and elimination of *P. gingivalis* infection by periodontal treatment may have a beneficial effect on the management of NASH (Fig. 1).

Therefore, we hypothesized that the elimination of oral infection, including *P. gingivalis* infection, by periodontal treatment in patients with NAFLD would ameliorate NAFLD-related clinical markers. We performed a clinical study to confirm the preliminary finding under collaborative medical and dental care.

Thus, we have devised a prospective, multicenter, randomized comparison trial to evaluate periodontal treatment as a candidate for NAFLD treatment. This is the first protocol for a randomized comparison trial for periodontal treatment against NAFLD in humans.

Methods
Design
The PERION trial is designed as a prospective, multicenter, two-arm, randomized comparison study to test the efficacy of the 12-week scaling and root-planing group versus the tooth-brushing group in NAFLD with moderate periodontitis. The study will recruit 40 adults and evaluate the efficacy and safety of periodontal treatment for 60 weeks, with the primary endpoint at 12 weeks. The study design is shown in Fig. 2.

Recruitment process and allocation
The PERION trial patient population will be derived from the Kanagawa Dental University Yokohama Clinic, Kanagawa Dental University, Iwasaki Internal Medicine Clinic, and the Yokohama City University Hospital Cohort. The randomized allocation will be conducted at Yokohama City University. Eligible patients will be screened by the principal and sub-investigator (gastroenterologists and periodontists). Patient recruitment will be performed 8 h a day, 5 days a week.

(Continued from previous page)
Endpoint detection

In the short-term studies (Phases I and IIa), aimed primarily at detecting wasted signals to make direct decisions on further development, a sustained improvement in AST and ALT levels will be useful as the endpoint of PERION (Fig. 3) [16]. While the use of ALT as a surrogate marker for NAFLD is controversial, studies have shown that ALT reduction is associated with reduced hepatocyte damage and liver inflammation [17], but not steatosis [18]. Because there are no other commonly established noninvasive biomarkers for use in the NAFLD/NASH clinical trial, ALT reduction was selected as the primary endpoint of this trial. To assist the primary endpoint, several secondary endpoints were selected to assess the pathogenesis of NAFLD using noninvasive methods (Fig. 3). Therefore, the primary endpoint of PERION is set as a change in ALT levels from baseline after 12 weeks of intervention. Also, the PERION study will evaluate periodontal treatment as a candidate for the first treatment to improve NAFLD pathogenesis via decreasing *P. gingivalis* count. Therefore, the key secondary endpoint is the serum immunoglobulin G (IgG) antibody titer of *P. gingivalis* [19].

Periodontal disease examination

The subject will be examined to assess the amount of periodontal disease bacteria (*P. gingivalis*, etc.), degree of infection, and periodontal disease severity. All examinations will be performed by two periodontal disease specialists enrolled at Kanagawa Dental University Hospital and Kanagawa Dental University Yokohama Clinic. The amount of *P. gingivalis* in saliva is measured by quantitative polymerase chain reaction (qPCR), and the infection level of periodontal disease is examined using a serum IgG antibody titer test for *P. gingivalis* FDC381 by enzyme-linked immunosorbent assay (ELISA). The severity of periodontal disease will be examined by probing depths, clinical attachment levels, gingival bleedings on probing (BOP) at six sites per tooth using a calibrated periodontal probe, and the stability of the teeth.

Periodontal treatment

The primary purpose of nonsurgical periodontal treatment is to control periodontal infection of
microorganisms by removing bacterial biofilm, calculus, and toxins from the root surface. According to a review of the scientific literature, mechanical nonsurgical periodontal treatment significantly reduces the inflammation level and the probing pocket depth and increases the clinical attachment level [20]. The successful treatment of plaque-induced periodontitis will recover periodontal health, but gingival recession often occurs. At first, instruction on correct brushing of the teeth will be given to patients with periodontal disease (tooth-brushing group). Then, the removal of supra- and sub-gingival bacterial plaque/biofilm and calculus by periodontal scaling and root-planing will be performed. Quadrant/sextant-wise instrumentation (conventional staged debridement, CSD) will be performed (scaling and root-planing group).

NAFLD treatment

We will provide standard lifestyle modification recommendations that each site can provide to the patients at the time that the informed consent document is signed. We will recommend a hypocaloric diet (daily calorie reduction of 500–1000 kcal) with reduced consumption of processed carbohydrates and fructose-containing beverages and will recommend the performance of moderate-intensity exercise for 30–45 min three to four times/week. This diet and exercise therapy will be performed without changing the prescription.

Sample size determination

Our previous pilot study showed that nonsurgical periodontal treatments on 10 NAFLD patients for 3 months ameliorated the liver function parameters, such as the serum levels of AST and ALT [15]. It showed a mean...
ALT change of ~25.0 (IU/L), with a standard deviation of 25. On the basis of these data, the sample size is determined to guarantee the power of the analysis of variance F test. Assuming the mean changes in ALT in the no-treatment group and active treatment groups to be 0 and -25, respectively, with a common standard deviation of 25, the required number of patients per group with a power of 80% and a two-sided significance level of 5% was calculated to be 16. We aim to recruit a total of 40 patients (scaling and root-planing treatment, 20, tooth-brushing treatment, 20) to compensate for the dropout patients.

Eligibility criteria

Patients with NAFLD who will be recruited in this study must satisfy the inclusion and exclusion criteria presented in Tables 1 and 2. Fatty liver, steatosis grade and fibrosis stage will be assessed using noninvasive methods (ultrasound, vibration-controlled transient elastography (VCTE), and magnetic resonance imaging (MRI)).

Table 1 Efficacy and safety of PERIODontal treatment versus usual care for Nonalcoholic liver disease (PERION) inclusion criteria

Criteria type	Description of inclusion criteria
Sex and age	Men and women: 20–85 years of age
Diet and exercise therapy	Patients with NAFLD who did not respond to 3-month diet and exercise therapy
ALT levels	Patients with an ALT level of $>$ 40 IU/L at the start of this study
Fatty liver	Patients with a diagnosis of fatty liver based on abdominal ultrasonography^4
Steatosis grade	Patients with the equivalent of steatosis grade ≥ 1 on CAP (using FibroScan) and/or PDFF (using MRI)^5
Fibrosis stage	Patients with the equivalent of fibrosis stage < 4 on TE (FibroScan) and/or MRE^6
Alcohol consumption	Patients with no habitual alcohol consumption (i.e., consumption of ethanol > 30 g/day in men and > 20 g/day in women)
Periodontitis	Patients with chronic moderate periodontitis (holding rate of periodontal pocket depth of > 4 mm is > 10 sites)
Other	Patients who can provide written consent to participate in this research in person, follow instructions during participation in this research, undergo protocol-specified physical examination and other examinations, and report symptoms or events

ALT alanine aminotransferase, CAP controlled attenuation parameter, MRE magnetic resonance elastography, MRI magnetic resonance imaging, NAFLD nonalcoholic fatty liver disease, PERION PERIODontal treatment for NAFLD, PDFF proton density fat fraction, VCTE vibration-controlled transient elastography.

^4Criteria of fatty liver, as defined by the existence of hepatorenal echo contrast. ^5Defined by CAP ≥ 236 dB/m and/or PDFF $\geq 5.2\%$. ^6Defined by VCTE < 14 kPa and/or MRE < 6.7 kPa
Randomization
Before providing informed consent, patients will undergo a screening test as a first step to determine whether they meet the inclusion criteria for the study and none of the exclusion criteria. For patients determined to be eligible, the principal investigator or co-investigator will complete a Patient Enrollment Form with the necessary information, which is sent by fax or e-mail to the Patient Enrollment Center (Yokohama City University). The Patient Enrollment Center will then confirm the eligibility of the patient based on the enrollment form, enroll and randomize the patient, and notify the principal investigator or co-investigator of the Patient ID number and the allocation number via fax or e-mail. After an eligibility check, patients will be randomly assigned to receive periodontal treatment or no treatment at the Central Registration Center by a computer program, using a stratified block randomization method, adjusting for age (≥ 65/< 65 years) and sex (male/female). Therefore, the patient assignment is concealed from the investigator.

Study procedures
The schedule of assessments for the study procedures is summarized in Table 3.

Observation of adverse events
All adverse events (AEs) during the study will be recorded with regard to the following: date of onset and date of completion (if applicable), severity of AEs, investigator’s view on the relationship to periodontal treatment, information on actions taken, information on the treatment of the AE, the cause of the event (if known), and the solution or outcome. AEs classified as serious will be recorded in the serious adverse event reporting tool and reported to the sponsor. AE intensities are graded according to the National Cancer Institute’s Adverse Event Common Terminology (NCI CTCAE) version 4.03, including the AE-intensity classifications shown in Table 4.

Additional study procedures
Patients must be fasted for at least 8 h prior to the visit. The study visits will be at 0, 4, 8, 12, and 60 weeks.

Criteria for discontinuation of study treatment
The study must be discontinued under the following conditions: drug-induced liver injury, unacceptable toxicity, acute viral hepatitis B and C, autoimmune or alcoholic hepatitis, hypoxic or ischemic liver injury, biliary tract disease, or pregnancy.

Outcome measures
Evaluation of efficacy
The efficacy endpoints for this study are shown in Fig. 3.

Evaluation of safety
The safety and tolerability of periodontal treatment will be evaluated over the 60 weeks of treatment in NAFLD patients with periodontitis. This will include the evaluation of AEs, clinical laboratory tests, physical examination, and vital signs. The clinical laboratory tests will include liver and fasting metabolic parameters. Liver parameters will include alkaline phosphatase (ALP), AST, ALT, total bilirubin (T-Bil), and γ-glutamyltransferase (GGT).

Statistical analyses
The Full Analysis Set (FAS) will be the primary analysis set for efficacy. We define FAS to include any subjects who receive any amount of the study medication without a lack of information on the primary endpoint (complete case analysis). For the blood liver function test using ALT, the summary statistics (mean, standard deviation) will be calculated at baseline and 12 weeks. Details of the statistical design will be described in the Statistical Analysis Plan. In this study, statistical analysis will be
performed mainly for the following items. For the primary analysis, (ALT after treatment – ALT at baseline) will be sought for each subject and the corresponding Wilcoxon test will be performed. The significance level will be 5% on both sides. In addition to \(p \) values, we will provide point estimates with 95% confidence intervals.

As a sensitivity analysis, the two groups would be compared using the analysis of covariance using the primary endpoint as an outcome, adjusting for ALT at baseline as a covariate. For the key secondary endpoint, \(P. gingivalis \) IgG antibody titer in the blood (values after treatment – values at baseline) will be sought for each subject and the paired Wilcoxon test will be performed. Subgroup analysis will be conducted. Stratified analysis will be performed using \(P. gingivalis \) bacterial content, proton density fat fraction (PDFF), magnetic resonance

Table 3 Objectives and procedures of the Efficacy and safety of PERIOdontal treatment versus usual care for Nonalcoholic liver disease (PERION) study

Study objectives	Study time point (weeks)						
	Screening period	Treatment period	Follow-up period				
Study objectives	–	4	0	4	8	12	60
Primary objective							
Change in ALT levels from baseline	o						
Key secondary objective							
Change in serum IgG antibody titer for \(P. gingivalis \)	o						
Other secondary objectives							
Change in blood endotoxin activity by EAA	o			o	o	o	o
Change in liver fat content using \(\text{CAP and MRI-PDFF} \)	o			o			
Change in liver stiffness using VCTE and MRE	o			o			
Change in oral bacterial counts using NGS and qPCR	o				o		
Change in blood parameters for liver function (AST, GGT, ALP, and T-Bil)	o			o	o	o	o
Change in blood lipid parameters (T-Chol, LDL-C, TG, and HDL-C)	o			o	o	o	o
Change in blood parameters related with inflammation in NAFLD (ferritin, CK-18, TNF-\(\alpha \), IL-6, and h-CRP)	o			o			
Change in blood parameters related with fibrotic marker in NAFLD (type IV collagen 7S)	o				o		
Change in blood diabetic factors (blood glucose, insulin, and HOMA-IR)	o			o	o	o	o
Change in BMI	o			o	o	o	o
Assessment of periodontal treatment safety	o			o	o	o	o
Dropout ratio in each group	o			o	o	o	o
Tertiary objectives							
Change in blood parameters for renal function (BUN, Cr, eGFR)	o			o	o	o	o
Change in HRQOL using SF-8™	o			o	o	o	o

All objectives will be compared between the periodontal scaling and root-planing treatment group and the tooth-brushing treatment group. **ALP** alkaline phosphatase, **ALT** alanine transaminase, **AST** aspartate transaminase, **BMI** body mass index, **BUN** blood urea nitrogen, **CAP** controlled attenuation parameter, **CK-18** cytokeratin 18, **Cr** creatinine, **EAA** endotoxin activity assay, **eGFR** estimated glomerular filtration rate, **FBS** fasting blood sugar, **GGT** \(\gamma \)-glutamyl transferase, **h-CRP** high-sensitivity C-reactive protein, **HDL-C** high-density lipoprotein-cholesterol, **HOMA-IR** homeostasis model assessment of insulin resistance, **HRQOL** health-related quality of life, **IL-6** interleukin-6, **LDL-C** low-density lipoprotein-cholesterol, **MRE** magnetic resonance elastography, **MRI** magnetic resonance imaging, **NAFLD** nonalcoholic fatty liver disease, **NGS** next-generation sequencer, **PERION** PERIODontal treatment for NAFLD, **PDFF** proton density fat fraction, **qPCR** quantitative polymerase chain reaction, **SF-8** short form-8, **T-Bil** total bilirubin, **T-Chol** total cholesterol, **TG** triglycerides, **TNF-\(\alpha \)** tumor necrosis factor-\(\alpha \).

Table 4 Classifications of adverse event (AE) intensity

Grade	Description
Grade 1 (mild)	Asymptomatic or mild symptoms; clinical or diagnostic observations only; intervention not indicated
Grade 2 (moderate)	Minimal, local, or noninvasive intervention indicated; limiting age-appropriate instrumental ADL
Grade 3 (severe)	Medically significant but not immediately life-threatening; hospitalization or prolongation of hospitalization indicated; disabling; limiting self-care ADL
Grade 4 (life-threatening)	Life-threatening consequences; urgent intervention indicated
Grade 5 (death)	Death related to AE

ADL activities of daily living, AE adverse event
elastography (MRE), and periodontal pocket as indices. Stratified analysis will be performed using above/below the median of P. gingivalis bacterial content, endotoxin, PDFF, MRE, and periodontal pocket depth. We hypothesizes a larger reduction in ALT with the intervention in the patient group with high P. gingivalis bacterial content, high endotoxin levels, high PDFF, low MRE, and deep periodontal pockets at baseline. Therefore, we conducted multivariable linear regression with difference in ALT between groups as dependent variable and at least the treatment group, the respective subgroup variable (categorized), and the interaction term (treatment group×subgroup variable) as independent variables. The significance level will be 5% on both sides. In addition to p values, we will provide point estimates with 95% confidence intervals. As a sensitivity analysis, the two groups will be compared using analysis of covariance using the key secondary endpoint as an outcome adjusting for P. gingivalis IgG antibody titer at baseline as a covariate. As the safety analysis, the incidence and severity of AEs and reactions will be calculated.

Trial Steering Committee and Data Monitoring Committee

The Trial Steering Committee is integrated and consists of three persons appointed by independent clinical and basic investigators (a general internist in primary care, a palliative care specialist and a statistician from Yokohama City University School of Medicine). They provide overall supervision and ensure that all registered trials. These investigators are anonymous and randomly selected. The Independent Data Monitoring Committee will be established with two persons from the Department of Biostatistics, Yokohama City University School of Medicine. The management team will observe progress and data monthly by phone call, mail, and/or web-conferencing. If the Monitoring Committee decides that on-site monitoring is necessary, monitoring members will visit the site for face-to-face monitoring.

Discussion

This is the first study proposed to explore the effect of periodontal treatment on NAFLD patients with periodontitis. The primary endpoint used in previous studies was the liver histology, which was evaluated by a liver biopsy (Pivens, Flint, and Golden study) [21–24]. Liver histology endpoints, such as the complete resolution of NASH, are considered surrogates for preventing cirrhosis (i.e., they are thought to predict a clinical benefit but are not direct measurements of it). However, due to increased cost, possible risk, inter- and intra-observer bias, and healthcare resource utilization, an invasive liver biopsy is poorly suited as a diagnostic test for such a prevalent condition [25]. Furthermore, the histological lesions of NASH are unevenly distributed throughout the liver parenchyma; therefore, liver biopsy sampling error can result in substantial stratification and staging inaccuracies [26]. Currently, the noninvasive methods used to assess NASH progression are not robust enough to replace liver biopsy. We considered that it is important to perform noninvasive, safe, low-cost, and short-term clinical trials as proof-of-concept studies. Many studies reported that the steatosis grade can be evaluated using controlled attenuation parameter (CAP) [27–32], which is based on the properties of ultrasonic signals acquired by VCTE, and MRI-PDFF [33, 34], which is an MRI-based method for quantitatively assessing hepatic steatosis and is available from several manufacturers of MRI scanners. Moreover, VCTE and MRE have superior diagnostic ability to evaluate steatosis and fibrosis in patients with NAFLD [35, 36]. Therefore, we consider that noninvasive evaluation of NAFLD pathogenesis using VCTE and MRI could replace invasive methods, such as liver biopsy, as a proof-of-concept study. Therefore, noninvasive methods, such as VCTE and MRI, to assess NASH/NAFLD progression, were included as secondary endpoints to compare against liver biopsy.

Clinical research in Japanese university students has suggested that having periodontal disease in young men was significantly associated with an increased level of ALT [37]. In addition, the incidence of periodontal disease in healthy Japanese women was reported to be significantly increased with elevated serum levels of AST, ALT, and cholinesterase [38]. Furthermore, an observational study with annual workplace health check-ups at a company in Japan reported an association between periodontal condition and the combination of elevated ALT and metabolic syndrome (MetS) in men [39]. Besides, it has been suggested that more severe periodontal disease is associated with increased serum levels of GGT, a liver biochemical parameter, in Japanese adults with no alcohol-drinking habits [40]. In an in-vivo mouse study, it was demonstrated that areas of fibrosis with proliferation of hepatic stellate cells and collagen formation were observed in mice with P. gingivalis infection fed on a high-fat diet. In addition, in steatotic hepatocytes, the expression of toll-like receptor 2 (TLR2), one of the P. gingivalis-LPS receptors, was upregulated. P. gingivalis-LPS further increased messenger ribonucleic acid (mRNA) levels of palmitate-induced inflammasome and proinflammatory cytokines in steatotic hepatocytes [41]. That is to say, the dental infection of P. gingivalis exacerbated the pathological progression of NASH from simple steatohepatitis to steatohepatitis with fibrosis through the upregulation of the P. gingiva-lis-LPS-TLR2 pathway and activation of inflammasomes. Recently, evidence in mice has shown that disturbance of the gut microbiota composition by orally derived periodontopathic bacteria, such as P. gingivalis, may be a
causal mechanism linking periodontitis and systemic disease including NAFLD [42–44].

In conclusion, this study should determine whether periodontal treatment to decrease endotoxin levels and treat P. gingivalis infection improves the disease status of patients with NAFLD. The PERION study is the first randomized controlled study suppressing hyper-endotoxemia in NAFLD with periodontitis. This study should allow the assessment of the efficacy and safety of periodontal treatment in a larger population of NAFLD patients with periodontitis.

Strengths
To our knowledge, no direct comparison has been made between randomized controlled groups of patients with NAFLD with periodontitis. The strength of this study is that non-invasive MRI-PDFF will be used to assess changes in hepatic fat mass, as opposed to liver biopsy. Importantly, improved laboratory tests for periodontal disease and P. gingivalis removal may correlate with improved liver fat mass and liver function.

Limitations
There are several limitations in our study. First, the small sample size and short treatment period (3 months) limit our findings. Second, it is important to differentiate NASH in NAFLD patients; however, at present, the gold standard for such differentiation is liver-tissue diagnosis by liver biopsy. In this study, NAFLD patients would not have undergone liver biopsy. Third, our protocol is open-label. Fourth, the specified primary and key secondary outcomes are only surrogate outcomes. The extent of decrease in ALT or IgG antibody titers will translate into improved quality of life (QOL) or any other more patient-relevant outcomes of NAFLD patients will not be determined in the present trial.

Trial status
Recruitment of participants begun in August 2015 and will be open until March 2020.

Current approved protocol: Version 1.3, 24 January 2018.

Acknowledgements
We would like to express our gratitude to the patients, their families, the study coordinators, and investigators, as well as the PERION study team.

Authors’ contributions
YY, T Kesokou, AN, and MM conceived the study idea. TS, NA, and TK Kobayashi conducted feasibility phase work. Recruitment of participants and follow-up will be performed by TK Kurihashi, SS, SK, TI, T Kodama, TT, and SI. Analysis and interpretation of data will be conducted by TH, MT, TF, and MY. HU and KW will perform the bioinformatics analysis. ST and NH will measure periodontal pathogens. All authors have read and approved the final manuscript.

Funding
This work was supported by the Ministry of Health, Labor, and Welfare, Japan (grant number 16 K11872).

Availability of data and materials
Not applicable

Ethics approval and consent to participate
The study protocol conforms to the Helsinki Declaration [45] and the Ethics Guidelines for Clinical Research notified by the Ministry of Health, Labor, and Welfare, Japan [46]. The study is projected and organized according to the Consolidated Standards of Reporting Trials 2010 guidelines [47]. This trial is registered at the University Hospital Medical Information Network (UMIN) Clinical Trials Registry as UMIN000022079. The study protocol was recognized by the Ethics Committees of Kanagawa Dental University, Kanagawa Dental University Yokohama Clinic, Iwasaki Internal Medicine Clinic, Yokohama City University Hospital, and Okayama University. The protocol and informed consent forms were accepted by the Ethics Committee at each of the participating institutions. Informed consent will be obtained from all participants prior to registration. During and after the trial, we are committed to complying with the requirements of all Institutional Review Boards/Independent Ethics Committees. The Ethics Committee of Kanagawa Dental University Hospital approved the study protocol on 21 August 2015. This trial is registered with the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (unique ID: UMIN000022079, date of registration: 15 July, 2015). Written informed consent will be obtained from all participants before enrollment. The protocol and any information supplied to gain informed consent were approved by a qualified Institutional Review Board/Independent Ethics Committee prior to subject enrollment.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Highly Advanced Oral Stomatology, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuuya-cho, Kanagawa, Yokohama, Kanagawa 221-0835, Japan. 2Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuraku, Kanazawa-ku, Yokohama 224-0004, Japan. 3Department of Internal Medicine, Yokohama Clinic, Kanagawa Dental University, 3-31-6 Tsuuya-cho, Kanagawa, Yokohama, Kanagawa 221-0835, Japan. 4Department of Periodontology, Department of Oral Interdisciplinary Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan. 5Iwasaki Internal Medicine Clinic, 1-1-5 Fururo-yokohomako Ich, Kamihoshikawa, Hodogaya-ku Yokohama, Kanagawa 240-0042, Japan. 6Department of Pathophysiology – Periodontal Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan. 7Division of Microbiology, Department of Oral Science Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan. 8Department of Implantology and...
Periodontology, Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa 221-0835, Japan.

1Department of Prosthetic Dentistry, Department of Highly Advanced Stomatology, Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa, Yokohama, Kanagawa 221-0835, Japan.

2Department of Biostatistics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.

3Department of Pharmacology, Shimane University School of Medicine, 89-1 Enya-cho Izumo, Shimane 693-0581, Japan.

Received: 5 October 2019 Accepted: 24 February 2020

Published online: 23 March 2020

References

1. Page JM, Harrison SA. NASH, and HCC. Clin Liver Dis. 2009;13:631–641.
2. Jimba S, Nakagami T, Takahashi M, Wakamatsu T, Hirota Y, Iwamoto Y, et al. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet Med. 2005;22:1141–5.
3. Sanyal A, Polkpoprov A, Moyeur E, Barghout V. Population-based risk factors and resource utilization for HCC. US perspective. Curr Med Res Opin. 2010;26:283–91.
4. Apogian VG, Kaldas FM, Hong JC, Whitaker M, Holt C, Rana A, et al. Liver transplantation for nonalcoholic steatohepatitis: the new epidemic. Ann Surg. 2012;256:624–33.
5. Eke PI, Dye BA, Wei L, Thornton-Enans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res. 2012;91:914–20.
6. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721–32.
7. Bodet C, Chandad F, Grenier D. Pathogenic potential of Porphyromonas gingivalis. Inf Eng J Med. 2010;362:1675–89.
8. Perez-Chaparro PJ, Gonçalves C, Figueiredo LC, Faveri M, Lobão E, Tamashiro N, et al. Newly identified pathogens associated with complex associated with periodontitis. Pathol Biol (Paris). 2007;55:154–62.
9. Holt SC, Kesavalu L, Walker S, Genco CA. Virulence factors of Porphyromonas gingivalis. J Oral Sci. 2015;57:335–43.
10. How KY, Song KP, Chan KG. Prevalence of non-alcoholic fatty liver disease and its association with periodontitis on the metabolic system in rats with diet-induced obesity (DIO): an analysis of serum biochemical parameters. Odontology. 2018;106:1026–31.
11. Cadranel JF. Good clinical practice guidelines for fine needle aspiration biopsy of the liver, past and present and future. Gastroenterol Clin Biol. 2002;26:823–4.
12. Ratzu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:898–906.
13. Sasso M, Beugrand M, de Ledingen V, Douvin C, Marcellin P, Poupon R, et al. Controlled attenuation parameter (CAP): a novel VCETM guided ultrasonic attenuation measurement for the evaluation of hepatic steatosis: preliminary study and validation in a cohort of patients with chronic liver disease from various Ursaloud Med Biol. 2010;36:1825–35.
14. Obara N, Ueno Y, Fukushima K, Nakagome Y, Kakazu E, Kimura O, et al. Transient elastography for measurement of liver stiffness measurement can detect early significant hepatic fibrosis in Japanese patients with viral and nonviral liver diseases. J Gastroenterol. 2008;43:720–8.
15. Ali S, Pinzioni M, Nobili V. Diagnostic power of fibroscan in predicting liver fibrosis in nonalcoholic fatty liver disease. Hepatology. 2009;50:2048–9. author reply 2049–50.
16. Chang PE, Lui HF, Chau YY, Lim KH, Yap WM, Tan CK, et al. Prospective evaluation of transient elastography for the diagnosis of hepatic fibrosis in Asians: comparison with liver biopsy and aspartate transaminase platelet ratio index. Aliment Pharmacol Ther. 2008;28:651–6.
17. Chan WK, Nk Mustapha NR, Mahadeva S. Controlled attenuation parameter for the detection and quantification of hepatic steatosis in nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2014;29:1470–6.
18. de Ledinghen V, Vergniol J, Cadpermont M, Chermak F, Hirsch JB, Cassinotto C, et al. Controlled attenuation parameter (CAP) for the diagnosis of steatosis: a prospective study of 5323 examinations. J Hepatol. 2014;60:1026–31.
19. Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA, et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging. 2009;29:1332–9.
20. Permutt Z, Le TA, Peterson MR, Seki E, Brenner DA, Sirlin C, et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease – MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther. 2012;36:1022–3.
21. Imajo K, Kessoku T, Honda Y, Tomeno W, Ogawa Y, Mawatari H, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–37.
22. Yonedo M, Yonedo M, Fujita K, Inomori M, Tanemura M, Hiliishi H, et al. Transient elastography in patients with nonalcoholic fatty liver disease (NAFLD). Gut. 2007;56:1330–1.
23. Furuta M, Ikuni D, Yamamoto T, Irie K, Koyama R, Sanbe T, et al. Relationship between periodontitis and hepatic abnormalities in young adults. Acta Odontol Scand. 2010;68:27–31.
24. Sato T, Shimazaki Y, Koga T, Tsuzuki M, Orishima A. Relationship between periodontitis and hepatic condition in Japanese women. J Int Acad Periodontol. 2006;8:95–100.
25. Ahmad A, Furuta M, Shimakawa T, Takeuchi K, Takeshita T, Shimazaki Y, et al. Association of periodontal status with liver abnormalities and metabolic syndrome. J Oral Sci. 2015;57:335–43.
26. Morita T, Yamazaki Y, Fujiharu I, Ishii T, Seto M, Nishinoe N, et al. Serum γ-glutamyltransferase level is associated with periodontal disease independent of drinking habits in Japanese adults. Med Sci Monit. 2014;20:2109–16.
41. Furusho H, Miyauchi M, Hyogo H, Inubushi T, Ao M, Ouhara K, et al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J Gastroenterol. 2013;48:1259–70.
42. Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.
43. Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, et al. Oral administration of P gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PloS One. 2015;10:e0134234.
44. Matsuda Y, Kato T, Takahashi N, Nakajima M, Arimatsu K, Minagawa T, et al. Ligature-induced periodontitis in mice induces elevated levels of circulating interleukin-6 but shows only weak effects on adipose and liver tissues. J Periodontal Res. 2016;51:639–46.
45. The Helsinki Declaration of the World Medical Association (WMA). Ethical principles of medical research involving human subjects. Pol Merkur Lekarski. 2014;36:298–301.
46. Miyazawa Y. Diagnostic tests approved by Ministry of Health and Welfare (September/October 2011). Rinsho Byori. 2011;59:1055–62.
47. Schulz KF, Altman DG, Moher D, CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. Ann Inter Med. 2010;152:726–32.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.