Tensile modeling of titanium-aluminum composite with a wave profile of a welded joint and local melts

L M Gurevich, V F Danenko, D V Pronichev, S P Pisarev
Department of Materials Science and Composite Materials, Volgograd State Technical University, 28 Lenin Avenue, Volgograd, Russia

Abstract. Finite element simulation of tensile deformation of titanium-aluminum composite D20 – AD1 – VT6 was carried out. The joint boundary had a wave profile and local melts. 3D modeling of deformation of the composite D20 – AD1 – VT6 with a wave profile of the welded joint was carried out using the SIMULIA / Abaqus software. The relative thickness of the AD1 interlayer and the area of the melt were varied during the simulation. To determine for metal hardening during plastic deformation and the failure deformations for aluminum and aluminum alloy both Johnson-Cook deformation and fracture models was used. The influence of the size of the local melting zone and thickness of the soft interlayer on the distribution of stresses and strains in the composite is shown. The wave profile of the boundaries junction leads initially to localization of plastic deformation in the aluminum interlayer in the zone of free surfaces of the sample near the interface with the titanium alloy. A change in the length of vortices with areas of local melting near the tops of the wave profile from 0.3 to 0.8 mm had little effect on the profile of the curves "equivalent stress - absolute elongation of the sample”.

1. Introduction
Explosion-welded bi-metal connecting elements are widely used for joining parts made of titanium and aluminum alloys, which are difficult to weld by fusion welding [1, 2]. The reliability of new technology structures made of titanium-aluminum composites operating in difficult conditions is determined by the structural strength of such adapters. Explosion-welded adapters contain intermediate soft interlayers that act as a “plasticity buffer” and extend the range of process parameters between the lower and upper limits of weldability.

In addition, soft interlayers increase the temperature-time operating conditions, under which brittle intermetallic compounds are not formed. The boundary profile between titanium alloy and aluminum can be rectilinear [3-5] or wavy [6-10]. Local melted zones (LMZs) are formed near depressions and protrusions of the wave-shaped Ti / Al joint boundary at overestimated technological parameters of explosion welding [11-16]. The degree of fusion in compounds welded by the explosion is determined by the level of plastic deformation of the surface layers, and, consequently, by the specific energy \(W_2 > 0.7 \text{MJ/m}^2 \), zones of intense mixing of materials appear in the form of «vortices» in the direction of the shock front [17]. Local melts are often observed within vortices. Studies by a number of authors of the joint zone of explosion-welded Ti / Al composites have shown that they consist of intermetallic compounds such as TiAl_3, TiAl and metastable TiAl_2 [17 -19].

The mechanical strength of the composition depends on the relative thickness of the soft layer \(\chi=\delta/d \), \(\delta \) – thickness of the soft layer, \(d \) – transverse dimension of the tested [20]. With the advent of high-performance computer technology, computer methods for modeling the behavior of dissimilar joints under various loading options, based on the finite element method, began to actively develop [20, 21]. In a number of works performed at the Volgograd State Technical University, the results of
modeling the deformation of layered composites were verified on the basis of accumulated experimental data [20, 21]. The purpose of this work was to determine by the finite element method the change in the strength of an explosion-welded titanium-aluminum composite material with a wavy soft interlayer and local zones of melting under tension.

2. Materials and finite element model

Prismatic samples of the simulated three-layer titanium-aluminum composite VT6-AD1-D20 had a thickness and width of the working part, respectively, 6 and 10 mm. The joint boundary profile was symmetric sinusoidal waves with a wavelength $\lambda = 2$ mm and a swing value of $2a = 0.5$ mm. The von Mises criterion determined the change in the nature of material deformation from elastic to plastic. The materials of the layers of the deformable solid were set isotropic.

To determine for metal hardening during plastic deformation and the failure deformations for aluminum and aluminum alloy both Johnson-Cook deformation [22] and fracture [23] models was used. Strengthening of materials under plastic deformation was described by the Johnson-Cook plasticity model

$$
\sigma_y = (A + B\varepsilon_p^n)(1 + C\ln\dot{\varepsilon})[1 - T^{*m}]
$$

where ε_p – is an effective plastic strain; T_m – is a melting point; T_r – is a room temperature; A – is a yield strength of non-hardened material; B – is the hardening modulus; C – is the strain rate sensitivity coefficient, n, m, ε_0 – are model parameters; $\dot{\varepsilon}_0$ and $\dot{\varepsilon}_p$ – are the first time derivatives of ε_0 and ε_p.

The Johnson-Cook fracture model can be written as follows [23]

$$
\varepsilon_f = D_1 + D_2\exp\left(D_3\frac{\sigma_m}{\sigma_{eq}}(1 + D_4\ln\dot{\varepsilon}_0^*)\right)(1 + D_5T^*)
$$

where D_1 to D_5 are the damage model constants, σ_m is the mean stress, and σ_{eq} is the equivalent stress. The fracture model describes the history of damage to each element using the damage parameter

$$
D = \sum \frac{\Delta\varepsilon}{\varepsilon_f}
$$

where $\Delta\varepsilon$ is the equivalent plastic strain increment, and ε_f is the equivalent strain to fracture under the present conditions of stress, strain rate and temperature. Element destroyed when $D > 1$. The parameters for the deformation and fracture models of layered composite components are shown in Tables 1 and 2 [20]. The effect of low strain rate (less than 0.0025 sec$^{-1}$) was not taken into account.

Material	Thickness [mm]	A [MPa]	B [MPa]	m	n	$\dot{\varepsilon}_0$ [sec$^{-1}$]	T_m [K]	T_r [K]
Aluminium alloy	D20	218,3	704,6	0,93	0,62	1	873	293
Алюминий АД1	0,25 -2	60,0	6,4	0,859	0,62	1	933	293
Titanium alloy VT6	5	420,0	52	1,00	0,48	1	1940	293
Local melting zone		290	1770	0,55	2,787	1	1720	293

Table 1. The coefficients for Johnson-Cook plasticity model
Table 2. The coefficients for Johnson-Cook fracture model

Material	D_1	D_2	D_3	D_4	D_5	\(\dot{\varepsilon}_0\) [sec^{-1}]	T_m [K]	T_r [K]
Aluminium alloy D20	0.178	0.389	-2.246	0	0	1	873	293
Local melting zone	-0.09	0.25	-0.5	0.014	3.87	1	1720	293
Aluminium AD1	0.071	1.428	-1.142	0.0097	0	1	933	293

The C3D10M-type cells (three-dimensional ten-node tetrahedrons) with a side size of 0.1 mm were used for all elements of the composite. The thickness of the AD1 interlayer varied from 2 (\(\chi_{AD1} = 0.334\)) to 0.25 mm (\(\chi_{AD1} = 0.042\)). Discrete rigid plates were attached to the free ends of D20 and VT6S alloys layers. The plate attached to the D20 aluminum alloy layer is stationary, and the plate attached to the titanium alloy moved along the sample axis at a speed of 2 mm / s.

3. Results and Discussion

The curves “equivalent stress - absolute elongation of the sample” obtained during the simulation under tension of the specimens of the D20 – AD1 – VT6S composite with different relative thicknesses \(\chi_{AD1}\) of the aluminum interlayer without local melting zones are shown in figure 1.

![Figure 1. Curves "equivalent stress - absolute elongation of the sample" under tension of composite samples D20-AD1-VT6 without local melting zones with different relative thicknesses of the interliner \(\chi_{AD1}\): 1 – \(\chi_{AD1}=0.041\); 2 – \(\chi_{AD1}=0.083\); 3 – \(\chi_{AD1}=0.167\); 4 – \(\chi_{AD1}=0.333\)](image)

The shapes of the curves "equivalent stress - absolute elongation of the sample" are close for all simulated thicknesses of the soft interlayer. A decrease in the thickness of the soft layer led to an increase in the maximum values of the equivalent stress which is associated with the effect of contact hardening [19, 20]. Plastic deformations in AD1 are restrained by stronger adjacent layers D20 and VT6S. Shear stresses arise and increase on the contact surfaces, the stress state in the interlayer
becomes triaxial. This causes an increase in strength characteristics.

The maximum values of plastic deformation in the aluminum interlayer with elongation of the sample with $\chi_{AD1} = 0.083$ are localized near the interface with the titanium alloy on the free surfaces of the prismatic sample. They are typical for the places of contact with the protrusions of the wavy surface of the titanium plate (figure 2, a).

During the elongation of the sample, the zone with high equivalent plastic deformation gradually covers almost the entire aluminum soft layer near the free surface. In this case, the maximum plastic deformation is concentrated in the aluminum interlayer near the free surfaces at the border of the protrusions of the wavy connection with the titanium alloy. In the axial part of the sample, plastic deformation develops in a stronger aluminum alloy.

An increase in the thickness of the soft interlayer practically does not affect the deformation of the VT6 layer, but it leads to a decrease in the deformation of the D20 alloy layer (figure 3); practically all deformation develops in the AD1 interlayer.

![Figure 2](image_url)

Figure 2. Development of plastic deformation in the aluminum interlayer as the sample is stretched with $\chi_{AD1}=0.083$: 1 – sample elongation 0.2 mm; 2 - 0.6 mm; 3 - 0.8 mm (D20 the layer is at the bottom, a quarter of the sample is conventionally cut out)

![Figure 3](image_url)

Figure 3. Changes in the nature of plastic deformation in samples D20 – AD1 – VT6S with an absolute elongation of 2 mm of a sample with different relative thicknesses of the aluminum interlayer: 1 – $\chi_{AD1}=0.042$; 2 – $\chi_{AD1}=0.083$; 3 – $\chi_{AD1}=0.167$ (D20 the layer is at the bottom, a quarter of the sample is conventionally cut out)
Modeling the tensile behavior of D20 – AD1 – VT6 composite samples with local melted zones showed that even with a zone length of about 0.8 mm, no plastic deformation is observed in titanium (figure 4) at thicknesses of the AD1 interlayer from 0.25 mm to 1.0 mm.

However, the appearance of zones of local melting led to the formation of von Mises stresses in the VT6 titanium alloy up to 1000 MPa near these zones (figure 5) and nonuniform stress distribution on free surfaces. The used strain values did not lead to the achievement of the fracture criteria according to the Johnson-Cook fracture model.

The bands of equivalent stress concentration in titanium up to 1000 MPa are clearly visible both at the tops of the wavy profile and near the "vortices" with areas of local melting after conditional removal of AD1 aluminum and D20 aluminum alloy layers at the interface in a stretched sample (figure 6). This appeared for all simulated thicknesses of the AD1 interlayer.

Figure 4. Plastic deformation in samples D20 – AD1 – VT6 with a local fusion zone length of 0.8 mm at an absolute specimen elongation of 2 mm: 1 – \(\chi_{AD1}=0.042 \); 2 – \(\chi_{AD1}=0.167 \) (D20 the layer is at the bottom, a quarter of the sample is conventionally cut out)

Figure 5. Bands of equivalent stresses concentration up to 1000 MPa in titanium at the tops of the wave profile and near the "vortices" with areas of local melting: 1 – \(\chi_{AD1}=0.042 \); 2 – \(\chi_{AD1}=0.167 \) (layers AD1 and D20 are conditionally removed)

A change in the length of the vortices with areas of local melting near the tops of the wave profile from 0.3 to 0.8 mm had little effect on the nature of the curves "equivalent stress - absolute elongation"
of the sample”, similar to the curves in figure 1. Varying in the specified range of vortex lengths with a constant thickness of the aluminum interlayer changed the force value by no more than 1% with comparable deformations. This is true in the absence of crystallization defects (cracks, large pores) in the zones of local melts. Earlier studies [17 -19] indicated the absence of such defects in a wide range of technological parameters of explosion welding.

4. Conclusions

3D modeling of deformation of the composite D20 – AD1 – VT6 with a wave profile of the welded joint was carried out using the SIMULIA / Abaqus software. The relative thickness of the AD1 interlayer varied in the range 0.042 ≤ \(z_{AD1} \) ≤ 0.167. A decrease in the thickness of the aluminum interlayer leads to an increase in the maximum values of the equivalent stress, after which the formation of a neck begins. The wave profile of the boundaries of the VT6S – AD1 and AD1 – D20 junction leads initially to localization of plastic deformation in the aluminum interlayer in the zone of free surfaces of the sample near the interface with the titanium alloy. The maximum deformation values are typical for the places of contact with the protrusions of the titanium plate.

5. References

[1] Trykov Yu P, Gurevich L M, and Gurulev D N 1999 Special features of deformation of explosion-welded, titanium-aluminium composite Welding international 13(7) 567–70
[2] Chulist R, Fronczek D M, Szulc Z and Wojewoda-Budka J 2017 Texture transformations near the bonding zones of the three-layer Al/Ti/Al explosively welded clads Mater. Charact. 129 242–246
[3] Malakhov A Y, Saikov I V, Denisov I V and Niyezbekov N N 2020 AlMg6 to Titanium and AlMg6 to Stainless Steel Weld Interface Properties after Explosive Welding Metals 10(11) 1500
[4] Mahmood Y, Dai K, Chen P, Zhou Q, Bhatti A A and Arab A 2019 Experimental and numerical study on microstructure and mechanical properties of Ti-6Al-4V/Al-1060 Explosive Welding Metals 9(11) 1189
[5] Najwer M and Niesłony P 2016 Microhardness and strength properties of metallic joint AA2519-AA1050-Ti6Al4V after various heat treatments Procedia Engineer. 149 346–351
[6] Trykov Yu P, Gurevich L M and Gurulev D N 1999 Effect of rolling at elevated temperatures on the properties of a titanium-aluminium composite produced by explosion welding Welding international 13(12) 980–983
[7] Galka A and Najwer M 2015 Explosive Cladding of Titanium and Aluminium Alloys on the Example of Ti6Al4V-AA2519 Joints. Arch. Metall. Mater. 60
[8] Sniezek L, Szachogłuchowicz I, Torzewski J and Grzelak K 2016 Fatigue Cracking of AA2519-Ti6Al4V Laminate Bonded by Explosion Welding. Sol. St. Phen. 250 182–190
[9] Szachogłuchowicz I, Sniezek L, and Hutsaylyuk V 2016 Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding Eng. Fail. Anal. 69 77–87
[10] Xia H B, Wang S G and Ben H F 2014. Microstructure and mechanical properties of Ti/Al explosive cladding Mater. Design 2014 56 1014–19
[11] Pei Y, Huang T, Chen F, Pang B, Guo J, Xiang N et al. 2020 Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding Vacuum 181 109596
[12] Lazurenko D V, Bataev I A, Mali V I, Bataev A A, et al. 2016 Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment Mater. Design 102 122–130
[13] Gurevich L M, Trykov Yu P and Kiselev O S 2014 Formation of structural and mechanical inhomogeneities in explosion welding of aluminium to titanium Welding International 28(2) 128–132
[14] Fang Z, Shi C, Shi H and Sun Z 2019 Influence of explosive ratio on morphological and structural properties of Ti/Al clads Metals 9(2) 119
[15] Patselov A, Greenberg B, Gladkovskii S, Lavrikov R and Borodin E 2012 Layered metal-intermetallic composites in Ti-Al system: strength under static and dynamic load AASRI Procedia 3 107–112

[16] Bazarnik P, Adamczyk-Cieślak B, Galka A, Płonka B, Snieżek L, Cantoni M and Lewandowska M 2016 Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding Mater. Design 111 146–157

[17] Gurevich L M, Pronichev D V, Bogdanov A I, Toan V Q and Hung N N 2019 Structure and micromechanical properties of bimetal VT1-0+ AMg6 obtained by explosion welding. IOP Conf. Ser.-Mat. Sci. 537(2) 022053

[18] Fronczek D M, Chulist R, Litynska-Dobrzynska L, Szulc Z, Zieba P and Wojewoda-Budka J 2016 Microstructure changes and phase growth occurring at the interface of the Al/Ti explosively welded and annealed joints. J. Mater. Eng. Perform. 25(8) 3211–17

[19] Fronczek D M, Chulist R, Litynska-Dobrzynska L, Lopez G A, et al. 2017 Microstructural and phase composition differences across the interfaces in Al/Ti/Al explosively welded clads Metall. Mater. Trans. A 48(9) 4154–65

[20] Gurevich L M, Pronichev D V and Novikov R E 2018 The Effect of Soft Interlayers on the Behavior of a Four-Layer Titanium-Steel Composite at High Temperatures Sol. St. Phen. 284 152–157

[21] Gurevich L M, Shmorgun V G, Pronichev D V and Novikov R E 2017 The Simulation of Titanium-Aluminium Composite with Intermetallic Inclusions Behavior under Compression Key Eng. Mat. 743 176–180

[22] Johnson G R 1983 A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. Proc. 7th Inf. Sympo. Ballistics, 541–547

[23] Vijay Sekar K S and Pradeep Kumar M 2011 Finite Element Simulations of Ti6Al4V Titanium Alloy Machining to Assess Material Model Parameters of the Johnson-Cook Constitutive Equation. J. of the Braz. Soc. of Mech. Sci. & Eng. 33(2) 203–211

[24] Johnson G R and Cook W H 1985 Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1) 31–48

Acknowledgments
The reported study was performed with support of the state assignment of the Ministry of Science and Higher Education of the Russian Federation No. 0637-2020-0006.