Haemophagocytosis in bone marrow aspirates in patients with COVID-19

A 78-year-old man with haemorrhagic signs (epistaxis and purpura) presented with severe thrombocytopenia, lymphopenia and circulating neutrophil precursors. A bone marrow aspirate showed increased plasma cells and an increase in pleomorphic megakaryocytes, consistent with peripheral thrombocytopenia. A few macrophages showing haemophagocytosis were also revealed (Fig 1A). Considering the outbreak of COVID-19, the combination of thrombocytopenia, lymphopenia and neutrophil precursors led to consideration and detection of SARS-CoV-2, although the patient did not have fever, cough, dyspnoea, diarrhoea, myalgia or headache. The diagnosis was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) assay and chest X-ray (CXR). Apart from thrombocytopenia and haemophagocytosis, this patient did not have other features of secondary haemophagocytic lymphohistiocytosis (sHLH). Clinical and laboratory features of the H-score were not met (Table I). Numerous large megakaryocytes in the bone marrow aspirate and the presence of platelet antibodies led to a diagnosis of autoimmune thrombocytopenic purpura (ITP), potentially related to COVID-19. The platelet count increased after treatment with intravenous immunoglobulin (from 6 to 87 \times 10^9/l in 5 days). Corticosteroids were avoided in the context of COVID-19.

Two other patients with severe COVID-19 confirmed by RT-PCR also had haemophagocytosis demonstrated in a bone marrow aspirate performed for cytopenia (Fig 1B,C). One of them (patient 2) was a 67-year-old obese woman with worsening of her general state, cough and fever, with a known SARS-CoV-2 contact. On admission, she had dyspnoea and tachycardia. CXR showed diffuse bilateral pulmonary infiltrates, and SARS-CoV-2 infection was confirmed by RT-PCR. A bone marrow aspirate also revealed increased
pleomorphic megakaryocytes and increased plasma cells, but with more prominent haemophagocytosis in this case (Fig 1B). Interestingly, haemophagocytosis often involved platelets. The H-score (Table I) showed a low probability of sHLH (<1%). The patient died of refractory acute respiratory distress syndrome (ARDS). Patient 3 was a 63-year-old obese man with the same symptoms as patient 2 at disease onset. He was hospitalised in the intensive care unit for respiratory and renal failure. A bone marrow aspirate performed for cytopenia showed, once again, increased pleomorphic megakaryocytes, increased plasma cells and numerous haemophagocytic macrophages (Fig 1C). The high H-score probability of 92% as well as the multiorgan failure leading to death confirmed a sHLH diagnosis in this setting.

Discussion

COVID-19 may show varying presentation.6 Our report highlights the presence of haemophagocytosis in these three cases of COVID-19 presenting with different clinical features and severity: one ITP, one ARDS and one sHLH. Haemophagocytosis is neither necessary nor mandatory for the diagnosis of sHLH.7 The H-score,3 including underlying immunosufficiency, body temperature, organomegaly, cytopenias, serum ferritina, triglycerides, fibrinogen and aspartate aminotransferase should be taken into account. Cytopenia, hyperferritinaemia and coagulopathy are described in many severe COVID-19 pneumonia cases, suggesting that a subgroup of cases may have a macrophage activation syndrome.8 In COVID-19, the lungs are mainly involved, and the classical organomegaly pattern of sHLH is uncommonly reported.9,10 Paradoxically, we found haemophagocytosis in the bone marrow aspirates of the two patients without features of sHLH. One of these patients did not have evidence of inflammation (low C-reactive protein; see Table I). The macrophage activation in the bone marrow could partially explain the cytopenia in patient 2, with severe thrombocytopenia and activated macrophages engulfing mainly platelets. Furthermore, an autoimmune process may be involved, as in patient 1 with ITP.

Apart from these pathophysiological considerations, in laboratory practice haemophagocytosis in the bone marrow is usually observed in infection, autoimmune disease, myeloproliferative neoplasms, bone marrow failure and haemolysis.11 Henceforth, whatever the clinical presentation, SARS-CoV-2 infection should be considered among the causes when haemophagocytosis is observed, probably even outside the context of a pandemic.

Fig 1. Haemophagocytosis in bone marrow aspirate. May–Grünwald–Giemsa staining of bone marrow aspirate shows histiocytes with engulfed nucleated cells or platelet.
Author contributions

A.D. and I.H. performed data analysis. A.D. wrote the first draft. I.H., B.D. and J.Y.M. reviewed the manuscript. J.M., P.A., G.L., A.M., M.L. and K.K. provided patient care and data. All the authors reviewed the manuscript and provided final approval.

Agathe Debliquis1
Inès Harzallah1
Joy Y. Mootien2
Antoine Poidevin2
Guylaine Labro2
Amira Mejri1
Mathilde Lamarque1

Khalidoun Kuteifan2
Bernard Drénon1
1Département d’Hématologie, Groupe Hospitalier de la région Mulhouse Sud Alsace, Mulhouse, France and 2Service de Réanimation médicale, Groupe Hospitalier de la région Mulhouse Sud Alsace, Mulhouse, France.
E-mail: debliquisa@ghrmsa.fr

Keywords: haemophagocytic syndrome, COVID-19, bone marrow morph, infection

First published online 12 June 2020
doi: 10.1111/bjh.16860

Table I. Demographic, clinical characteristics and laboratory findings.

Characteristic	Patient 1	Patient 2	Patient 3
Demographic and clinical characteristics			
Age (year)	78	67	63
Sex	Male	Female	Male
Body mass index kg/m²	27	49	36
Disease features at onset	Epistaxis, asthenia, anorexia	Worsening of the general state, cough, dyspnoea, fever	Worsening of the general state, cough, dyspnoea, hypoxaemia, fever
Imaging features	Diffuse bilateral pulmonary infiltrates	Diffuse bilateral pulmonary infiltrates	Diffuse bilateral pulmonary infiltrates
H-score parameters			
Fever	No	No	Yes
Hepatomegaly	No	No	No
Splenomegaly	No	No	No
Haemoglobin (g/l)	124	104	85
Leucocyte count (×10⁹/l)	5-84	12-65	23-65
Platelet count (×10⁹/l)	<5	26	89
Serum ferritin (µg/l)	624	620	4899
Triglycerides (mmol/l)	1-35	1-15	5-62
Fibrinogen (g/l)	6-6	1-6	2-1
Aspartate aminotransferase (units/l)	25	87	127
Known underlying immunosuppression	No	No	No
Haemophagocytosis in bone marrow	Yes	Yes	Yes
H-Score	35	84	207
Probability of sHLH (%)	<1	<1	92
Other laboratory findings			
Neutrophil count (×10⁹/l)	7-09	9-34	20-81
Lymphocyte count (×10⁹/l)	0-8	1-77	0-95
Monocyte count (×10⁹/l)	0-57	0-97	0-24
Neutrophil precursors count (×10⁹/l)	0-14	0-38	1-65
C-reactive protein (mg/l)	12	204	357
LDH (Units/l)	219	584	588
PT (%)	82	61	99
aPTT (sec)	32-7	35-9	28-4
D-Dimer (mg/l)	2177	>25 000	17 994

sHLH, secondary haemophagocytic lymphohistiocytosis; C-reactive protein, CRP; LDH, lactate dehydrogenase; PT, prothrombin time; aPTT, activated partial thromboplastin time.
Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19

Severe cases of coronavirus disease 2019 (COVID-19) are usually accompanied by an exuberant immune response comparable to cytokine release syndrome (CRS), with markedly elevated serum levels of pro-inflammatory cytokines that are thought to be a major drivers of morbidity and mortality for these patients. Several drugs with anti-inflammatory properties (tocilizumab, siltuximab, sarilumab, anakinra, among others) have been suggested as adjuncts to supportive care in the management of COVID-19, and several clinical trials are underway (ClinicalTrials.gov Identifier: NCT04315298, NCT04317092, NCT04306705).

The Bruton tyrosine kinase inhibitors (BTKi) ibrutinib, acalabrutinib and zanubrutinib are commonly used to treat chronic lymphocytic leukaemia (CLL), Waldenström macroglobulinaemia (WM), and chronic graft-versus-host disease (GvHD) and have been shown to have potent anti-inflammatory effects resulting in decreased levels of pro-inflammatory cytokines that are commonly elevated in severe COVID-19. Furthermore, these drugs may abate some noxious pulmonary effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other similar viruses, reducing the degree of lung injury and disease-related mortality. Clinical trials examining the potential benefit of BTKi in COVID-19 are underway (ClinicalTrials.gov Identifier: NCT04382586, NCT04346199).

A recent study described the outcomes of six patients with COVID-19 with WM receiving ibrutinib. Five of the six had mild symptoms, did not require hospitalisation, and recovered promptly. One of the six required hospitalisation and mechanical ventilation but eventually recovered fully. Acknowledging the limitations of this small study, the authors hypothesised that ibrutinib may protect against lung injury in patients infected with SARS-CoV-2, and therefore suggest BTKi continuation in patients with WM with COVID-19.

It is unclear if the proposed protective effect of BTKi applies to patients with CLL, who have immune deregulation secondary to the underlying disease process. Also, BTKi use in CLL is associated with increased risk of infection, especially viral. Considering the high prevalence of CLL, studying outcomes of BTKi in patients with CLL with COVID-19 and exploring whether to continue BTKi in this setting becomes highly relevant. We reviewed our institutional experience with this population, examining severity of disease and clinical outcomes. Our present study was approved by the Program for the Protection of Human Subjects at the Icahn School of Medicine at Mount Sinai.

Eight patients with CLL receiving a BTKi were hospitalised for COVID-19 within our healthcare system (seven ibrutinib, one acalabrutinib). The clinical characteristics of the patients are summarised in Table I. The median (range) age was 72 (49–88) years. BTKi was held in six of the eight patients (‘BTKi-held’) and continued in two (‘BTKi-cont’). Two of the eight patients in the ‘BTKi-held’ cohort developed severe respiratory failure and eventually died (Patient 6: ibrutinib for 3+ years, full dose of 420 mg daily, Patient 7: ibrutinib for <4 months, recommended reduced dose of 140 mg due to concomitant use of a strong cytochrome P450 3A4 [CYP3A4] inhibitor). All others had mild-to-moderate disease.

Notably, the two patients who continued on ibrutinib had short hospital stays, minimal oxygen requirements, and have...