The Position of Sagittarius A*.

M. J. Reid
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; reid@cfa.harvard.edu
K. M. Menten
Max-Planck-Institut für Radioastronomie, D-53121 Bonn, Germany; kmenten@mpifr-bonn.mpg.de
S. Trippe, T. Ott, and R. Genzel
Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany; trippe@mpe.mpg.de, ott@mpe.mpg.de, genzel@mpe.mpg.de

Received 2006 October 23; accepted 2006 December 5

ABSTRACT

In the first two papers of this series, we determined the position of Sgr A* on infrared images by aligning the positions of red giant stars with positions measured at radio wavelengths for their circumstellar SiO masers. In this paper, we report the detections of five new stellar SiO masers within 50" (2 pc) of Sgr A* and new and/or improved positions and proper motions of 15 stellar SiO masers. The current accuracies are ≈1 mas in position and ≈0.3 mas yr⁻¹ in proper motion. We find that the proper motion of the central stellar cluster with respect to Sgr A* is less than 45 km s⁻¹. One star, IRS 9, has a three-dimensional speed of ≈370 km s⁻¹ at a projected distance of 0.33 pc from Sgr A*. If IRS 9 is bound to the inner parsec, this requires an enclosed mass that exceeds current estimates of the sum of the mass of Sgr A* and luminous stars in the stellar cusp by ≈0.8 × 10⁶ M☉. Possible explanations include: (1) that IRS 9 is not bound to the central parsec and has “fallen” from a radius greater than 9 pc, (2) that a cluster of dark stellar remnants accounts for some of the excess mass, and/or (3) that R₀ is considerably greater than 8 kpc.

Subject headings: astrometry — Galaxy: center — masers — stars: AGB and post-AGB — stars: variables: other

1. INTRODUCTION

Sagittarius A* (Sgr A*), the compact radio source at the center of the Galaxy (Balick & Brown 1974), is almost surely a supermassive black hole. Infrared-bright stars orbit about the radio position of Sgr A* and require ≈3.9 × 10⁶ M☉ within a radius of ≈50 AU (Eisenhauer et al. 2005; Ghez et al. 2005). While orbiting stars move at thousands of km s⁻¹, Sgr A* is essentially stationary at the dynamical center of the Galaxy, moving <2 km s⁻¹ out of the Galactic plane, (Backer & Sramek 1999; Reid et al. 1999; Reid & Brunthaler 2004). This indicates that the radiative source Sgr A*, which is less than 1 AU in size (Reid et al. 2004; Krichbaum et al. 1998; Doeleman et al. 2001; Bower et al. 2004; Shen et al. 2005), contains a significant fraction (>10%) of the gravitational mass (Reid & Brunthaler 2004).

The Galactic center stellar cluster contains red giant stars that are both strong radio sources (from circumstellar SiO maser emission) and bright infrared sources. Because these stars are visible at both radio and infrared wavelengths, one can use their radio positions, measured with respect to Sgr A*, to determine accurate scale, rotation, and distortion corrections for an infrared image. This allows the highly accurate radio reference frame to be transferred to the infrared images, improving the quality of the infrared astrometry and precisely locating the position of Sgr A*. In Menten et al. (1997) and Reid et al. (2003), hereafter Papers I and II, we developed this technique and determined the position of Sgr A* on diffraction-limited 2.2 μm wavelength images of the Galactic center with an accuracy of ≈15 mas. Locating Sgr A* on infrared images has been important for determining its emission in the presence of confusing stellar sources and verifying that foci of stellar orbits coincide with the position of Sgr A*. This links the radiative (compact radio) source with the gravitational source.

We present new VLA observations of stellar SiO masers in the central cluster, updating their positions, and by more than doubling the observing time span, significantly improving their proper motion determinations. We place the proper motions of infrared stars in the central cluster in a reference frame tied to Sgr A*. In §2 we describe the radio measurements of the positions and proper motions of 15 SiO maser stars, and in §3 we present the latest infrared positions and proper motions of those stars within 20" of Sgr A*. In §4 we use these data to transfer the infrared proper motions to a reference frame tied to Sgr A*. Finally, in §5, we use the three-dimensional speeds and projected offsets of stars from Sgr A* to constrain the combined mass of Sgr A* and the central (luminous and dark) stellar cluster.

2. RADIO OBSERVATIONS

Over the period 1995–2006 we have searched for and mapped SiO masers associated with late-type stars that are projected near Sgr A*. We used the NRAO1 VLBA and VLA to accurately measure the relative positions of SiO maser stars and Sgr A*.

Red giant and supergiant stars of late M spectral class often exhibit SiO masers in their extended atmospheres. These masers are strongly variable over timescales of ~1 yr. SiO maser emission emanates from a typical radius of ~4 AU (e.g., Diamond & Kemball 2003), which corresponds to ~0.5 mas at the assumed 8.0 kpc distance of the Galactic center (Reid 1993). As our measurements were made over a time span much longer than the stellar cycle, we cannot track individual maser features, and we accept an intrinsic stellar position uncertainty of about ±0.5 mas.

1 NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
owing to possible variations across the maser shell. For a late-type supergiant, the stellar radius is considerably larger than for a red giant of similar spectral class, and its SiO masers are found at radii roughly an order of magnitude larger. Variation of the SiO masers in a supergiant can considerably degrade inferred stellar positions and proper motion measurements (see discussion of IRS 7 in § 2.1).

2.1. VLA Observations

Our VLA observations were conducted in the A-configuration in 1995 June (reported in Paper I), 1998 May and 2000 October/November (reported in Paper II), and 2006 March (reported here). Near the Galactic center, SiO masers are likely detectable over a very wide range of velocities, probably exceeding 700 km s\(^{-1}\). However, wide-band observations at the VLA are currently severely limited by the correlator. In order to obtain adequate spectral resolution and sensitivity, we chose to limit our velocity coverage and observe in seven 6.25 MHz bands (each covering \(\approx 40\) km s\(^{-1}\), excluding band edges). We observed in both right and left circular polarization for each band and obtained 64 spectral channels per band, resulting in uniformly weighted spectral channel spacings of about 98 kHz or 0.67 km s\(^{-1}\).

Our 2006 observations were conducted on March 5, 18, and 19. The VLA had 24 antennas in operation, and the synthesized beam toward Sgr A* was about 86 \(\times\) 33 mas elongated in the north-south direction. Except for occasional calibration sources, we pointed on the position of Sgr A*, allowing detection of masers within the primary beam of a VLA antenna (\(\approx 30''\) HWHM at 43 GHz). We observed by cycling among bands centered at LSR velocities of \(-346, -111, -73, -39, -1, +40,\) and \(+75\) km s\(^{-1}\); the latter six bands covered the LSR velocity range of \(-131\) to \(+95\) km s\(^{-1}\) with only two small gaps. This setup allowed for deeper integrations for the previously known, or suspected, SiO maser stars than would be possible for a “wide-open” search.

Initial calibration of the VLA data was done in a standard manner recommended by the Astronomical Image Processing System (AIPS) documentation. The flux density scale was based on observations of 3C 286, assuming 1.49 Jy for interferometer baselines shorter than 300 k\(\lambda\). Amplitude and bandpass calibration was accomplished with observations of NRAO 530, which had a flux density of 2.8 Jy during the 2006 observations. The visibility data were then self-calibrated (amplitude and phase) on Sgr A* for each individual 10 s integration. This removed essentially all interferometer phase fluctuations, owing to propagation through the Earth’s atmosphere, and placed the phase center at the position of Sgr A*.

SGR A* is known to vary occasionally in flux density by \(\approx 10\%\) on hourly timescales (Yusef-Zadeh et al. 2006). Were this to happen during our observations, self-calibrating on Sgr A* would introduce false gain (amplitude) variations of a similar magnitude and degrade somewhat the dynamic range of the SiO maser images. However, this is unlikely to shift the measured position of the masers significantly, as the positions are determined almost entirely by the phase data.

We searched for new maser stars by making very large images, covering about \(\pm 50''\), or most of the primary beam of an individual VLA antenna at 43 GHz, about Sgr A*. This was done by limiting the range of \((u, v)\) data used and resulted in maps with a nearly circular beam of 0.15''. Typical rms noise levels in these images were near 9 mJy, allowing 6 \(\sigma\) detections of 54 mJy. Five new SiO maser stars were discovered: SiO-14, SiO-15, SiO-16, SiO-17, and IRS 19NW.

Once the approximate location of a maser was known, either from previous observations or from the large images, we mapped each band with up to five small subimages centered on known or suspected masers with emission in that band. These synthesized maps typically had single spectral-channel noise levels of \(\approx 5\) mJy. We always included a subimage for Sgr A* at the phase center of the interferometric data. By simultaneously imaging the stellar SiO masers and the continuum emission from Sgr A*, the strong continuum emission from Sgr A* did not degrade the detections of relatively weak SiO masers far from Sgr A*. A composite spectrum from all seven observing bands for the 1998, 2000, and 2006 observations is shown in Figure 1.

As described in Paper II, we obtained a single position for each star at each observing epoch by (1) fitting a two-dimensional Gaussian brightness distribution to each spectral channel with detectable SiO emission; (2) averaging, using variance weighting, to obtain a best stellar position and estimated uncertainty (if the reduced \(\chi^2\) was greater than unity, we increased the position uncertainties accordingly); and (3) correcting for differential aberration, an effect of \(< 1\) mas for stars \(< 15''\) from Sgr A*.

We list the positions of the SiO maser stars, relative to Sgr A*, in Table 1. We include the results from the 1995 VLA observations reported in Paper I, the 1998 and 2000 VLA observations reported in Paper II, and the 2006 results reported in this paper.

Fig. 1.—Composite spectrum of stellar SiO masers detected with the VLA in 1998 (blue), 2000 (green), and 2006 (red) observations. Stars are identified at the top of the spectrum at their approximate stellar velocities.
Table 1: SiO Maser Astrometry

Star	\(v_{\text{L}}\) (km s\(^{-1}\))	\(\Delta\alpha\) (mas)	\(\Delta\delta\) (mas)	Epoch (yr)	Telescope
IRS 9	-342	-6.3589 ± 0.0060	-6.3347 ± 0.0009	1998.39	VLA
	5.6515 ± 0.0048	5.6501 ± 0.0007	5.6589 ± 0.0011	1998.41	VLA
IRS 7	-114	5.5829 ± 0.0130	5.5676 ± 0.0049	1998.39	VLA
	0.0403 ± 0.0080	0.0378 ± 0.0043	0.0342 ± 0.0016	1998.41	VLA
SiO-14	-112	-28.4528 ± 0.0020	-28.4530 ± 0.0008	2000.85	VLA
IRS 12N	-63	-6.8814 ± 0.0005	-6.8877 ± 0.0006	1998.41	VLA
	-3.2519 ± 0.0005	-3.2541 ± 0.0005	-3.2543 ± 0.0010	1998.41	VLA
IRS 28	-55	-6.8936 ± 0.0012	-6.9073 ± 0.0019	2000.85	VLA
	10.4809 ± 0.0007	10.4809 ± 0.0007	10.4693 ± 0.0007	2000.85	VLA
SiO-15	-36	-11.0794 ± 0.0054	-11.0753 ± 0.0015	2000.85	VLA
IRS 10EE	-27	4.2125 ± 0.0050	4.2194 ± 0.0005	1998.41	VLA
	7.6821 ± 0.0005	7.6837 ± 0.0005	7.6841 ± 0.0005	1998.41	VLA
IRS 15NE	-12	11.3108 ± 0.0210	11.3135 ± 0.0005	1998.39	VLA
	1.2256 ± 0.0140	1.2249 ± 0.0017	1.2270 ± 0.0005	1998.39	VLA
SiO-16	+8	-34.4520 ± 0.0027	-34.4412 ± 0.0011	2000.85	VLA
	-26.4237 ± 0.0020	-26.4216 ± 0.0006	-26.4191 ± 0.0006	2000.85	VLA
SiO-6	+52	30.6567 ± 0.0140	30.6537 ± 0.0050	1995.49	VLA
	35.1982 ± 0.0090	35.2207 ± 0.0029	35.2323 ± 0.0006	1998.39	VLA
SiO-17	+53	30.6702 ± 0.0028	30.6753 ± 0.0010	2000.85	VLA
	8.0427 ± 0.0005	8.0624 ± 0.0005	8.0624 ± 0.0005	2000.85	VLA
SiO-11	+70	40.2614 ± 0.0060	40.2681 ± 0.0032	1998.39	VLA
	1.7121 ± 0.0040	1.7379 ± 0.0023	1.7401 ± 0.0005	2000.85	VLA
IRS 17	+73	5.5651 ± 0.0025	5.5611 ± 0.0021	2000.85	VLA
	13.1501 ± 0.0026	13.1415 ± 0.0013	13.1865 ± 0.0019	1998.39	VLA
SiO-12	+82	42.4905 ± 0.0029	42.4686 ± 0.0032	2000.85	VLA
IRS 19NW	+84	-18.4683 ± 0.0031	-18.4656 ± 0.0009	2000.85	VLA
	14.5532 ± 0.0015	14.5532 ± 0.0015	14.5532 ± 0.0015	1998.41	VLA
	14.5607 ± 0.0005	14.5607 ± 0.0005	14.5607 ± 0.0005	1998.41	VLA

Notes: VLBA positions are reported at a single reference epoch. VLA data have been corrected for differential aberration. \(\Delta\alpha\) and \(\Delta\delta\) are angular offsets relative to Sgr A* toward the east and north, respectively, in the J2000.0 coordinate system.
Since stellar SiO masers are variable in strength over the period of the stellar pulsation and the sensitivity of each epoch’s data differed somewhat, only the stronger sources are detected at all epochs.

One of the stars, IRS 7, is a supergiant. As discussed in Paper II, it has SiO maser features spread over ≈20 km s\(^{-1}\) and is highly variable. We would expect its stronger SiO maser peaks could be spread over a region of at least 10 mas. Thus, the positions determined from the brightest SiO maser feature(s) in IRS 7 may not indicate the stellar position to better than ≈5 mas, and we have increased the position uncertainties for IRS 7 in Table 2 to allow for this possibility.

We constructed spectra at the pixel of peak brightness for SiO masers detected in the 1998, 2000, and 2006 VLA observations. These spectra are displayed in Figures 2 and 3. Most of these SiO spectra are as expected for Mira variables located at the distance of the Galactic center: they show flux densities ≤1 Jy covering a velocity range of 5–10 km s\(^{-1}\) and strong variability over timescales of years. Figure 4 shows the Galactic center region, with the positions and proper motions of the nine SiO maser stars that are projected within the inner 21\(^\prime\) displayed.

Table 2

Star	\(V_{\text{LSR}}\) (km s\(^{-1}\))	\(\Delta\theta_x\) (arcsec)	\(\Delta\theta_y\) (arcsec)	\(\mu_x\) (mas yr\(^{-1}\))	\(\mu_y\) (mas yr\(^{-1}\))	Epoch (yr)	Number of Epochs
IRS 9	-342	+5.6655 ± 0.0003	-6.3407 ± 0.0007	+3.06 ± 0.10	+2.11 ± 0.19	2003.34	3
IRS 7	-114	+0.0336 ± 0.0050	+5.5401 ± 0.0050	-0.58 ± 0.50	-3.52 ± 0.54	2003.37	4
IRS 14	-112	-7.6554 ± 0.0003	-28.4553 ± 0.0006	+2.08 ± 0.12	-0.94 ± 0.20	2002.89	3
IRS 12N	-63	-3.2537 ± 0.0003	-6.8684 ± 0.0003	-1.06 ± 0.10	-2.70 ± 0.17	1998.17	4
IRS 28	-55	+10.4784 ± 0.0011	-5.8190 ± 0.0010	+2.00 ± 0.38	-5.29 ± 0.42	2005.00	3
IRS 15	-36	-12.4372 ± 0.0011	-11.0757 ± 0.0015	-2.47 ± 0.98	+0.77 ± 2.10	2005.68	2
IRS 10EE	-27	+7.6840 ± 0.0003	+4.2114 ± 0.0003	-0.04 ± 0.07	-2.09 ± 0.07	2000.24	5
IRS 15NE	-12	+1.2257 ± 0.0003	+11.3171 ± 0.0004	-1.96 ± 0.07	-5.68 ± 0.12	1998.92	5
IRS 16	-8	-26.4207 ± 0.0004	-34.4478 ± 0.0043	0.49 ± 0.15	-1.84 ± 1.52	2002.82	3
IRS 6	+52	+35.3323 ± 0.0011	+30.6605 ± 0.0009	+2.58 ± 0.43	+1.99 ± 0.52	2001.43	4
IRS 17	+53	+8.0560 ± 0.0004	-27.6911 ± 0.0008	+2.53 ± 0.18	+2.34 ± 0.42	2003.68	2
IRS 11	+70	+1.7441 ± 0.0014	+40.2871 ± 0.0007	+1.30 ± 0.46	+2.45 ± 0.25	2003.38	4
IRS 17	+73	+13.1442 ± 0.0012	+5.5624 ± 0.0016	-1.61 ± 1.08	-0.75 ± 1.22	2004.49	2
IRS 12	+82	-18.8227 ± 0.0030	+42.4559 ± 0.0023	+0.77 ± 1.14	-4.24 ± 0.84	2003.83	3
IRS 19NW	+84	+14.5578 ± 0.0005	-18.4647 ± 0.0012	+1.19 ± 0.14	-0.43 ± 0.31	2003.79	3

Notes: For sources with VLBA detections, only a single position was used when fitting for proper motions. VLA data have been corrected for differential aberration. \(\Delta\theta_x\) and \(\Delta\theta_y\) are angular offsets at the listed epoch, and \(\mu_x\) and \(\mu_y\) are proper motions relative to Sgr A\(^*\) toward the east and north, respectively, in the J2000 coordinate system. IRS 7 was shifted by +0.010" northward to “center the star” between two maser positions; its position and proper motion uncertainties were increased to 0.005" and 0.5 mas yr\(^{-1}\). Formal proper motion uncertainties were doubled for the stars with only 2 epoch motions.

3. Infrared Observations

Near-IR observations were obtained on the 8.2 m UT4 (Yepun) of the ESO-VLT on Cerro Paranal, Chile, using the detector system NAOS/CONICA (hereafter NACO) consisting of the adaptive optics system NAOS (Rousset et al. 2003) and the 1024\(\times\)1024 pixel near-IR camera CONICA (Hartung et al. 2003). We obtained eight data sets in 2002 May, 2003 May, 2004 April, and 2005 May, 2006 April. Each image covers a field of view (FOV) of 28\('\)\(\times\)28\('\). During each observation the camera pointing was shifted so that the total FOV of a complete data set was between 35\('\)\(\times\)35\('\) and 40\('\)\(\times\)40\('\), centered on Sgr A\(^*\). In all cases the spatial resolution was (nearly) diffraction limited, leading to a typical FWHM of ~60 mas. Typical limiting magnitudes were 18 mag at K band and 20 mag at H band. All images were sky-subtracted, bad-pixel removed, and flat-field corrected. In order to obtain the best signal-to-noise ratios and maximum FOV coverages in single maps, we combined all good-quality images belonging to the same data set to mosaics after correcting for instrumental geometric distortion. Details of the distortion correction will be given in S. Trippe et al. (2007, in preparation).

In order to establish an astrometric near-IR reference frame, we selected one high-quality mosaic (2005 May), extracted image positions for all detected stars and transformed them into astrometric coordinates using the positions of all nine maser stars in the FOV interpolated to the epoch of the image. To compare positions among images of different epochs, we chose an ensemble...
of ≈600 “well-behaved” stars (i.e., stars that are well separated from neighbors and are bright but not saturated) in the “master mosaic” and computed in each image all stellar positions relative to this ensemble. Due to varying FOVs, the number of stars usable for a given mosaic varied between about 400 to 600.

In each image, positions were extracted by fitting stars with two-dimensional elliptical Gaussian brightness distributions. Although over the entire FOV significant departures from isoplanicity occur, this effect elongates the stellar point-spread functions (PSFs) symmetrically and does not affect significantly the centroids of Gaussian-fitted positions. Proper motions were computed by fitting the positions versus times with straight lines. To assure statistically “clean” errors for the proper motions, outlier rejection and error rescaling were applied where possible. This led to

![Fig. 2. Eastward (left panels) and northward (middle panels) position offsets from Sgr A∗ vs. time for the eight SiO maser stars with negative LSR velocities. Solid lines are variance-weighted best-fit proper motions. The linear speed is indicated in each frame, assuming a distance of 8.0 kpc. Spectra from 1998 (blue), 2000 (green), and 2006 (red) observations are also shown (right panels). Star names are indicated in the upper right corner of the right panels.](image)
typical position accuracies of ≈1 mas and typical proper motion accuracies of ≈0.3 mas yr⁻¹. Unfortunately, this accuracy was not achieved for all maser stars, as some are very bright stars and are affected by detector nonlinearity/saturation in some images; also, the star most distant from Sgr A* (IRS 19NW) was observed only in the last two epochs. Thus, some of the maser stars have errors larger than typical.

4. RADIO AND INFRARED FRAME ALIGNMENTS

The proper motions of stars in the Galactic center cluster, measured from infrared images, are relative motions only. One can add an arbitrary constant vector to all of the stellar proper motions without violating observational constraints. Until now, the “zero points” of the motions have been determined by assuming isotropy and removing the average motion of the entire sample. Since the radio proper motions are inherently in a reference frame tied directly to Sgr A*, one can use any one of the SiO stars, or the mean motion of a group of them, to place the infrared proper motions in Sgr A*’s frame.

We have measured radio positions and proper motions, relative to Sgr A*, for the nine bright SiO maser stars that appear on the NACO images (i.e., within ≈20° of Sgr A*). The position and proper motion accuracies typically are ≈1 mas and ≈0.3 mas yr⁻¹, respectively. This allows us to align the radio and infrared frames, both in position and in proper motion. Thus, not only can the location of Sgr A* be accurately determined on infrared images,
but also stellar proper motions from infrared data can be referenced directly to Sgr A*, without assumptions of isotropy or homogeneity of the stellar motions.

The radio and infrared proper motions measured for the nine stars are listed in Table 4. The nine stars have weighted mean differences (and standard errors of the means) of $+0.66 \pm 0.21$ mas yr$^{-1}$ toward the east and -0.45 ± 0.28 mas yr$^{-1}$ toward the north. These results are qualitatively similar to those published in Paper II. Quantitatively, the differences between the IR motions of Paper II and this paper for some stars (notably IRS 12N) are greater than expected based on the quoted uncertainties. Since the IR motions in Paper II were based on 2 epochs only, which did not allow for an internal check on the formal motion uncertainties, we believe those uncertainties were somewhat optimistic.

Currently only one star, IRS 7, has a significant discrepancy between the radio and infrared motions in the both coordinates. This is the only supergiant star in the sample, and owing to its extreme brightness, the infrared measurements are compromised by detector saturation. In addition, the radio measurements are subject to significant uncertainty from the large SiO maser shell size. After removing IRS 7, the weighted mean differences between the radio and IR motions change only slightly and become $+0.63 \pm 0.21$ mas yr$^{-1}$ toward the east and -0.32 ± 0.18 mas yr$^{-1}$ toward the north.

When comparing how well the IR frame matches the radio frame, we need to consider the statistical uncertainty of the average IR motion, which has been removed. For most epochs, the average motion is based on ≈ 400 stars, each of which has a typical motion of ≈ 100 km s$^{-1}$. Thus, the mean IR motion should have an uncertainty of roughly $100/\sqrt{400} \approx 5$ km s$^{-1}$. Adopting the result with IRS 7 removed, converting to linear speeds for a distance of 8.0 kpc to the Galactic center (Reid 1993), and adding in quadrature a ≈ 5 km s$^{-1}$ uncertainty for the mean IR motion removed from each coordinate, implies that the infrared stellar cluster (the reference for the IR motions) moves -24 ± 9 km s$^{-1}$ toward the east and $+12 \pm 9$ km s$^{-1}$ toward the north, with respect to Sgr A*. The northward component motion does not deviate significantly from zero; the eastward component formally presents a 2.7σ significance. Combining these components in quadrature formally yields a speed difference of 27 ± 9 km s$^{-1}$. However, at this time, we do not consider that we have firmly detected motion of the stellar cluster, and we adopt a 2σ upper limit of 45 km s$^{-1}$ for the proper motion of the stellar cusp with respect to Sgr A*.

5. ENCLOSED MASS VERSUS RADIUS FROM SGR A*

Estimates of the enclosed mass versus projected radius from Sgr A*, based on infrared stellar motions, rely on relative motions not tied directly to Sgr A*. Since, the three-dimensional motions of the SiO masers in this paper are both very accurate and directly tied to Sgr A*, they provide valuable information on the enclosed mass within projected radii of $0.2-2$ pc of Sgr A*.

TABLE 3

Star	V_{LSR} (km s$^{-1}$)	V_{e} (km s$^{-1}$)	V_{n} (km s$^{-1}$)	V_{total} (km s$^{-1}$)	R_{proj} (pc)	M_{encl} ($10^6 M_\odot$)
IRS 9	-342 \pm 3	116 \pm 4	80 \pm 7	370 \pm 3	0.33	>5.1
IRS 7	-114 \pm 3	-22 \pm 19	-133 \pm 20	177 \pm 16	0.21	>0.5
SiO-14	-112 \pm 3	79 \pm 5	-36 \pm 8	142 \pm 4	1.14	>2.4
IRS 12N	-63 \pm 3	-40 \pm 4	-102 \pm 6	127 \pm 6	0.30	>0.5
IRS 28	-55 \pm 3	76 \pm 14	-201 \pm 16	221 \pm 15	0.46	<2.0
SiO-15	-36 \pm 3	-94 \pm 37	29 \pm 80	105 \pm 40	0.65	>0.0
IRS 10EE	-27 \pm 3	2 \pm 3	-79 \pm 3	84 \pm 3	0.34	>0.2
IRS 15 NE	-12 \pm 3	-74 \pm 3	-215 \pm 5	228 \pm 4	0.44	>2.5
SiO-16	8 \pm 3	19 \pm 6	-70 \pm 58	73 \pm 55	1.68	>0.0
SiO-6	52 \pm 3	98 \pm 16	75 \pm 20	134 \pm 16	1.81	>2.2
SiO-17	53 \pm 3	96 \pm 7	89 \pm 16	141 \pm 11	1.12	>1.8
SiO-11	70 \pm 3	49 \pm 17	93 \pm 9	126 \pm 10	1.56	>2.1
IRS 17	73 \pm 3	-61 \pm 41	-28 \pm 46	99 \pm 29	0.55	>0.1
SiO-12	82 \pm 3	29 \pm 43	-160 \pm 32	183 \pm 29	1.80	>3.3
IRS 19NW	84 \pm 3	45 \pm 5	-16 \pm 12	97 \pm 4	0.91	>0.8

Notes.—V_{e} and V_{n} are proper motion speeds toward the east and north, respectively. $V_{total} = (V_{LSR}^2 + V_{e}^2 + V_{n}^2)^{1/2}$ is the total speed of the stars relative to Sgr A*. Proper motion speeds, projected distances, total speeds, and enclosed mass limits assume a distance to the Galactic center of 8.0 kpc.
In Paper II, we derived a lower limit to the enclosed mass at the projected radius of each star, assuming the stellar motions reflect gravitational orbits dominated by a central point mass. Given the three-dimensional speed, V_{total}, and projected distance from Sgr A*, r_{proj}, for each star, we obtained a strict lower limit to the mass enclosed, M_{encl}, within the true radius, r, of that star from Sgr A*. For a given enclosed mass, semimajor axis and eccentricity (e), the greatest orbital speed occurs at pericenter for $e \approx 1$. Since the projected pericenter distance cannot exceed the true distance, we obtained

$$M_{\text{encl}} \geq \frac{V_{\text{total}}^2 r_{\text{proj}}}{2G},$$

(1)

Note that this enclosed mass limit is a factor of 2 lower than would be obtained for a circular orbit. This lower limit approaches an equality only when three criteria are met: (1) $r_{\text{proj}} \approx r$, (2) the star is near pericenter, and (3) it has an eccentricity near unity. The a priori chance of any star satisfying all three of these criteria is small, especially since a star in a highly eccentric orbit spends very little time near pericenter. Thus, equation (1) provides a very conservative limit on enclosed mass.

We evaluate the lower limit to M_{encl} using equation (1) by adopting conservatively the smallest total velocity allowed by measurement uncertainties, i.e., by subtracting 2 σ from V_{total} in Table 3 before calculating a mass limit. The mass limits, given in Table 3, are mostly consistent with the enclosed mass versus projected distance from Sgr A* given by Genzel et al. (1997) and Ghez et al. (1998). For many of the stars, the lower mass limits are well below the estimated enclosed mass curves, as expected given the very conservative nature of the calculated limits.

Our most significant lower mass limit is from IRS 9. In Paper II, we arrived at a limit $>4.5 \times 10^6 M_\odot$, which exceeded the then-favored model of a $2.6 \times 10^6 M_\odot$ black hole (Genzel et al. 1997; Ghez et al. 1998), plus a $0.4 \times 10^6 M_\odot$ contribution from the central stellar cluster (Genzel et al. 2003), by about 50%. With our improved proper motions, we now find a more stringent limit of $>5.1 \times 10^6 M_\odot$ at a projected radius of 0.33 pc from Sgr A*.

Figure 5 displays our enclosed mass versus radius constraint based on the three-dimensional motion of IRS 9, along with other constraints in the recent literature. The current best estimate for the mass of the supermassive black hole (SMBH) (Sgr A*) is $(3.9 \pm 0.2) \times 10^6 M_\odot$ for the distance to the Galactic center, R_0, of 8.0 kpc. This mass estimate comes from an unweighted average of the results of Eisenhauer et al. (2005) and Ghez et al. (2005) based on stellar orbit determinations. Adding in a $0.4 \times 10^6 M_\odot$ contribution from the central stellar cluster, based on a density profile of $1.2 \times 10^6 (r/0.39 \text{ pc})^{-1.4} M_\odot \text{ pc}^{-3}$ by Genzel et al. (2003) yields $4.3 \times 10^6 M_\odot$, still leaving a discrepancy of $0.8 \times 10^6 M_\odot$ for $R_0 = 8$ kpc. Formally, this is about a 3 σ discrepancy, assuming an uncertainty of $\pm 0.2 \times 10^6 M_\odot$ in the mass estimate of Sgr A* and an estimated $\pm 30\%$ uncertainty in the mass of the stellar cusp.

Since we do not know the line-of-sight distance of IRS 9 from Sgr A*, one might be tempted to argue that $r \approx 2 r_{\text{proj}}$ and the star is simply sensing an enclosed mass of $1.0 \times 10^6 M_\odot$ from the central stellar cluster at that radius. However, the mass limit derived from equation (1) scales as r and would be approximately $10^7 M_\odot$ for $r = 2 r_{\text{proj}} = 0.66$ pc. Thus, the mass discrepancy only increases for $r > r_{\text{proj}}$, as shown by the slanted line in Figure 5 (but see § 5.2).

Table 4

Radio-Infrared Proper Motion Alignment

Star	μ_x^radio (mas yr$^{-1}$)	μ_y^radio (mas yr$^{-1}$)	μ_x^IR (mas yr$^{-1}$)	μ_y^IR (mas yr$^{-1}$)	μ_x^diff (mas yr$^{-1}$)	μ_y^diff (mas yr$^{-1}$)
IRS 9	3.06 ± 0.10	2.11 ± 0.19	4.44 ± 0.55	1.10 ± 0.58	1.38 ± 0.56	−1.01 ± 0.61
IRS 7	−0.58 ± 0.50	−3.52 ± 0.54	1.86 ± 1.18	−7.33 ± 0.72	2.44 ± 1.28	−3.81 ± 0.90
IRS 12N	−1.10 ± 0.16	−2.70 ± 0.17	−0.77 ± 0.66	−3.39 ± 0.39	0.29 ± 0.67	−0.69 ± 0.43
IRS 28	2.00 ± 0.38	−5.29 ± 0.42	2.27 ± 0.35	−5.85 ± 0.31	0.27 ± 0.52	−0.56 ± 0.52
SIO-15	−2.47 ± 0.98	0.77 ± 2.10	−2.18 ± 0.51	−0.56 ± 0.12	0.29 ± 1.10	−1.33 ± 2.10
IRS 10EE	0.04 ± 0.08	−2.09 ± 0.07	0.73 ± 0.23	−1.92 ± 0.27	0.69 ± 0.24	0.17 ± 0.28
IRS 15NE	−1.96 ± 0.07	−5.68 ± 0.12	−2.40 ± 0.48	−6.29 ± 0.35	−0.44 ± 0.49	−0.61 ± 0.37
IRS 17	−1.61 ± 1.08	−0.75 ± 1.22	0.20 ± 0.59	−1.67 ± 0.62	1.81 ± 1.23	−0.92 ± 1.37
IRS 19NW	1.19 ± 0.14	−0.43 ± 0.31	−0.60 ± 3.08	−0.54 ± 3.47	−1.79 ± 3.08	−0.11 ± 3.48

Notes.—μ_x and μ_y are proper motions relative to Sgr A* toward the east and north, respectively. Differenced motions (infrared minus radio) are indicated with the superscript “diff.” Radio motions are in a reference frame tied to Sgr A*; infrared motions are relative motions, with an average of \approx400 star motions removed.

Fig. 5.— Constraints on the enclosed mass as a function of radius (R) from Sgr A*. The estimates labeled “E” and “G” are from fitting stellar orbits by Eisenhauer et al. (2005) and Ghez et al. (2005), respectively, and the estimate labeled “B” is from a statistical analysis of the “clockwise stellar disk” by Beloborodov et al. (2006). Our lower limit on enclosed mass from the three-dimensional motion of IRS 9, assuming that it is bound in the region dominated gravitationally by Sgr A* (see § 5.2), is indicated by a sloping line and arrow. The minimum distance of IRS 9 from Sgr A* is its projected distance of 0.33 pc. The sloping line corresponds to the mass limit for reasonable values of the unknown line-of-sight distance of IRS 9 from Sgr A*; this increases both the radius and the mass limit linearly. The dashed line indicates the combined contribution of a point mass of $3.9 \times 10^6 M_\odot$ and a central stellar cusp (Genzel et al. 2003). The uncertainty in the dashed line is dominated by the uncertainty of $\pm 0.2 \times 10^6 M_\odot$ in the point mass, with a smaller contribution of $\pm 0.1 \times 10^6 M_\odot$ from the central stellar cusp at $R = 0.33$ pc. All values assume $R_0 = 8.0$ kpc; the discrepancy between the dashed line and the IRS 9 limit cannot be removed for values of $R_0 < 9$ kpc.
How can the lower limit to the enclosed mass provided by IRS 9 be explained? We now discuss some possibilities.

5.1. Dark Matter in the Central Stellar Cluster

One could explain the motion of IRS 9, if the central stellar cluster contains dark matter (in addition to Sgr A*) whose mass exceeds $0.8 \times 10^6 M_\odot$ within $r = 0.33$ pc. Morris (1993) estimates that $\sim 10^6 M_\odot$ of “dark” stellar remnants (e.g., white dwarfs, neutron stars, black holes) could have accumulated in the inner few tenths of a parsec of the Galaxy. Mouawad et al. (2005) show that, with data available at the time, the orbital fit of star S2 allowed for (but does not require) $0.2 \times 10^6 M_\odot$ of dark matter distributed within 0.001 pc of Sgr A*. Should such a dark component exist and extend to greater radii, it might explain some of the IRS 9 mass discrepancy. However, other estimates of the total mass in black holes in the central few tenths of a parsec do not exceed $\sim 0.2 \times 10^6 M_\odot$ (Miralda-Escudé & Gould 2000; Freitag et al. 2006). Given these estimates and the evidence from other enclosed mass indicators that do not support $\sim 10^6 M_\odot$ of dark matter within ≈ 1 pc of Sgr A* (Genzel et al. 2000), it seems unlikely that a dark component could explain more than a modest fraction of the IRS 9 mass discrepancy.

5.2. IRS 9 Not Bound to the Central Parsec

A critical assumption for calculating the minimum enclosed mass using IRS 9’s space velocity (eq. [1]) is that it is in a bound orbit dominated by a central point mass. If IRS 9 is in a highly eccentric orbit with a semimajor axis greater than a few parsecs, this assumption can break down. In such a case, the star’s space velocity could exceed the “local” escape velocity, based on the mass enclosed at its current radius, but still be bound at a larger radius. For example, a star could be bound by mass within ≈ 10 pc of Sgr A*, but observed plunging into the inner few tenths of a parsec at a speed that makes it appear unbound. This could happen via gravitational scattering starting either at small radii and increasing orbital energy, or at large radii and removing angular momentum. van Langevelde et al. (1992) suggest a similar explanation for three OH/IR stars with large radial velocities; these stars are seen projected tens of parsecs from Sgr A* and would require semimajor axes of a few kpc.

Consider a Galactic center star with a large semimajor axis and little angular momentum ($e \approx 1$), so that it essentially “falls” toward the center. We derive the infall velocity for a star that starts “falling” at a radius r_{max} and reaches a radius of r_0. Assume a central point mass, M_{BH}, plus an extended component with density, $\rho(r)$. The kinetic energy gained by a star falling from r to r_0 is equal to the difference in gravitational potential energy at those radii. Gravitational potential energy per unit mass, U_m, for a spherically symmetric mass distribution has the properties that for mass interior to r

$$U_m = -\frac{G}{r} \int_0^r \rho(r)4\pi r^2 \, dr,$$

and for mass exterior to r

$$U_m = -G \int_{r_{\text{max}}}^r \rho(r) \frac{r}{r^2} 4\pi r^2 \, dr.$$

(For spherically symmetric systems, interior mass acts identically as a point mass equal to the enclosed mass located at the center of the distribution, while exterior mass results in zero gravitational force and a “constant” gravitational potential dependent on its radial position, but independent of the position of a “test” mass.)

Following Genzel et al. (2003) $\rho(r) = \rho_0 (r/r_0)^\alpha$, where $\rho_0 = 1.2 \times 10^6 M_\odot$ pc$^{-3}$, $r_0 = 0.39$ pc, and $\alpha = -2.0$ for $r \geq r_0$ pc and $\alpha \approx -1.4$ for $r < r_0$ pc. This leads to an enclosed stellar mass within r_0 of $M_0/1.6$, where $M_0 = 4\pi \rho_0 r_0^3 = 0.9 \times 10^6 M_\odot$, plus a contribution of M_{BH} from Sgr A*. Adding the contributions to the potential from different mass components for a star at radius r (for $r \geq r_0$) gives

$$U_m = -\frac{G}{r} M_{\text{BH}} - \frac{G}{r} \int_0^r \rho(r)4\pi r^2 \, dr - \frac{G}{r} \frac{M_0}{r^{1.6}} - \frac{G}{r} \frac{M_0}{r_0} \left(\frac{r}{r_0} - 1 \right) - \frac{G}{r} \frac{M_0}{r_0} \left[\ln \left(\frac{r_{\text{max}}}{r_0} \right) - \ln \left(\frac{r}{r_0} \right) \right].$$

The first three terms on the right-hand side of equation (2) sum the effects of the mass components interior to r, and the fourth term is the contribution from the mass exterior to r. Evaluating equation (2) we find

$$U_m = -\frac{G}{r} M_{\text{BH}} - \frac{G}{r} \frac{M_0}{r^{1.6}} - \frac{G}{r} \frac{M_0}{r_0} \left(\frac{r}{r_0} - 1 \right) - \frac{G}{r_0} M_0 \left[\ln \left(\frac{r_{\text{max}}}{r_0} \right) - \ln \left(\frac{r}{r_0} \right) \right].$$

For a star falling from r_{max} to r_0, the kinetic energy per unit mass gained is equal to the difference in potential energy per unit mass. From equation (3) we find

$$\frac{1}{2} v^2 = U_m(r_{\text{max}}) - U_m(r_0),$$

where

$$U_m(r_{\text{max}}) = -\frac{G}{r_{\text{max}}} M_{\text{BH}} + M_0 \left(\frac{r_{\text{max}}}{r_0} - 0.38 \right),$$

and

$$U_m(r_0) = -\frac{G}{r_0} \left(M_{\text{BH}} + M_0 \left(0.62 + \ln \left(\frac{r_{\text{max}}}{r_0} \right) \right) \right).$$

Evaluating equation (4) for $r_0 = 0.39$ pc, which is a reasonable value for the three-dimensional radius of IRS 9, gives $v > 370$ km s$^{-1}$ for an initial radius $r_{\text{max}} > 9$ pc. Thus, if IRS 9 is in a highly eccentric orbit that takes it out to a radius of >9 pc, it could achieve its very high observed three-dimensional velocity without violating the enclosed masses estimated by other methods.

A priori it might seem very unlikely that even 1 of 15 stars with detectable SiO masers would have such an orbit and be observed near closest approach to Sgr A* (where it spends little time). However, it is beyond the scope of this paper to evaluate the likelihood, especially with the limited statistics available at this time.

5.3. The Distance to the Galactic Center (R_0) Exceeds 9 kpc

Were the mass of Sgr A*$ > 4.7 \times 10^6 M_\odot$, no mass discrepancy would exist. The best current mass estimates are based on fitting orbits for many stars and should be robust. However, the greatest uncertainty in the mass of Sgr A* comes from its strong dependence on the adopted value of $R_0 = 8.0$ kpc for the distance to the Galactic center. Eisenhauer et al. (2005) derive central masses from orbit fitting of $4.06 \times 10^6 M_\odot$ when adopting $R_0 = 8.0$ kpc and $3.61 \times 10^6 M_\odot$ for a best fit $R_0 = 7.62$ kpc. These values suggest an enclosed mass $M_{\text{end}} \propto R_0^3$. Our mass limit based on IRS 9's
three-dimensional motion would also increase with R_0, but more weakly. Since the LSR velocity is the dominant component in the three-dimensional motion for IRS 9 (and is not dependent on R_0), our minimum mass estimate (eq. [1]) scales approximately as $M_{\text{enc}} \propto R_0^{1/3}$, mostly through r_{proj}. Allowing R_0 to increase to about 9 kpc removes the mass discrepancy. However, such a large value for R_0 seems very unlikely (Reid 1993; Eisenhauer et al. 2005).

5.4. Nonzero V_{LSR} for Sgr A*

Were Sgr A* moving toward the Sun along the line of sight with a speed >30 km s$^{-1}$, this would lower r_{equlat} and hence, the M_{enc} limit to $>4.4 \times 10^6$. While it seems very unlikely that a supermassive object would have such a large motion (Reid et al. 2003), we now consider this possibility. One method to approach this problem is to average the velocities of large samples of stars very close to Sgr A*, assuming that this average would apply to Sgr A*.

Our sample of SiO maser stars, which should be nearly complete in the LSR velocity range of ~ 131 to +95 km s$^{-1}$, does not show any obvious bias. Infrared observations of CO band-head velocities from late-type stars in the central parsecs yield average LSR velocities that are not statistically different from zero. For example, the integrated CO-band head velocities (within a 20" diameter aperture) of McGinn et al. (1989) indicate positive (negative) velocities at positive (negative) Galactic longitude, consistent with the direction of Galactic rotation, and a value of -10 ± 25 km s$^{-1}$ at the position of Sgr A*. (However, these authors find possibly significant stellar velocities of -47 ± 8 km s$^{-1}$ for four pointing offsets perpendicular to the Galactic plane.) Individual stellar velocities compiled by Rieke & Rieke (1988) of 54 stars projected within ~ 6 pc of Sgr A* have a mean velocity of -20 ± 11 km s$^{-1}$. Alternatively, Winnberg et al. (1985) and Sjouwerman et al. (1998) measured velocities of OH masers for 33 and 229 OH/IR stars, respectively, within about ~ 40 pc of Sgr A*, which yield average velocities of $+7 \pm 11$ and $+4 \pm 5$ km s$^{-1}$. Overall, it appears that radial velocities of stars near Sgr A* suggest an average LSR velocity near zero, within ~ 20 km s$^{-1}$.

5.5. IRS 9 Is (Or Was) in a Binary

Were IRS 9 in a tight, massive binary, perhaps a significant portion of its space velocity might be contributed by internal orbital motion, possibly reducing its speed with respect to Sgr A*. However, we have observed IRS 9 for about 8 years and see no changes in its radial or proper motion velocity components. The spectra of IRS 9 shown in Figure 2 are characteristic of Mira variables, which show variable emission over a range of 5–10 km s$^{-1}$ about the stellar velocity. We estimate that the stellar radial velocity of IRS 9 has changed by <2 km s$^{-1}$ over 8 years. Also, the proper motion components are well fit by constant velocities, with 2σ upper limits to accelerations of 0.4 and 0.6 mas yr$^{-2}$ (15 and 23 km s$^{-1}$ yr$^{-1}$ at 8.0 kpc) for the eastward and northward components, respectively.

The observed changes in radial velocity (or proper motion components) would have different characteristics depending on the relative values of the time span of the observations, Δt, and the orbital period, P. For $\Delta t > P/4$, we would have sampled large changes in the orbital mean anomaly and hence would have seen quasi-random changes of magnitude equal to the orbital speed. Our limit of <2 km s$^{-1}$ change in the radial velocity over 8 yr, would place a limit of ≈ 2 km s$^{-1}$ for the radial component of any orbital velocity.

Alternatively, if $\Delta t < P/4$, then we could be sampling only a small portion of an orbit and detecting a velocity change might be difficult. However, setting $\Delta t = 8$ yr requires $P > 32$ yr. Since any bright companion for IRS 9 would have been observed, we adopt companion mass m of $\leq 10 M_\odot$. This would even allow for most black hole companions. For $m < 10 M_\odot$ and $P > 32$ yr, we find an upper limit for an orbital speed of <20 km s$^{-1}$. Thus, a binary orbital contribution to the observed space velocity of IRS 9 could not exceed >20 km s$^{-1}$ and likely would be considerably less. Thus, it is highly unlikely that the extreme velocity of IRS 9 could be explained as owing to a binary orbit.

Could IRS 9 have been in a binary system and come unbound (or bound at a much larger radius as discussed in § 5.2) after a close encounter with Sgr A*? A small number of “hypervelocity” stars are thought to have been ejected from the Galactic center in this manner (Hills 1988; Yu & Tremaine 2003; Brown et al. 2005). However, these are estimated to be very rare events (<1 in 105 yr), and we are statistically unlikely to be witnessing a newly created hypervelocity star so close to Sgr A*. All hypervelocity stars discovered to date are early-type main-sequence stars; they are found in the outer Galaxy and are moving at speeds of ~ 1000 km s$^{-1}$, even after climbing out of the gravitational potential of the inner Galaxy. Main-sequence stars can survive the strong tidal forces experienced during close encounters with Sgr A*. However, IRS 9 is an asymptotic giant branch (AGB) star, and thus, is a very extended (≈ 300 solar radii) and low surface gravity object. It is unclear if such a star could survive the ejection event without losing its extended atmosphere.

6. CONCLUSIONS

We have now measured the radio positions and proper motions of 15 late-type stars with SiO maser emission in the Galactic center stellar cluster. All but two of these stars have been detected at three or more epochs and have measurement accuracies of ≈ 1 mas in position and ≈ 0.3 mas yr$^{-1}$ in proper motion. Nine of these stars have multi-epoch measurements of proper motions at infrared wavelengths. A comparison of the radio motions, which are relative to Sgr A*, with the infrared motions indicates that the stellar cusp moves with Sgr A* to within 45 km s$^{-1}$.

The three-dimensional speeds and projected distances of individual stars from Sgr A* yield lower limits to the enclosed mass. The enclosed mass limit for one star, IRS 9, exceeds current estimates of the combined mass of Sgr A* and the luminous stars in the cusp within the central parsec. This result is puzzling, but might be explained, for example, by a combination of (1) a population of dark stellar remnants in the central parsec, (2) IRS 9 being on a plunging “orbit” with a semimajor axis $\gg 1$ pc, and/or (3) a value of $R_0 > 8$ kpc.

We thank S. Gillessen for comments on the paper, and A. Loeb and R. O’Leary for discussions on the extreme motion of IRS 9.

REFERENCES

Backer, D. C., & Sramek, R. A. 1999, ApJ, 524, 805
Balick, B., & Brown, R. L. 1974, ApJ, 194, 265
Beloborodov, A. M., Levin, Y., Eisenhauer, F., Genzel, R., Paumard, T., Gillessen, S., & Ott, T. 2006, ApJ, 648, 405
Bower, G. C., Falcke, H., Herrnstein, R. M., Zhao, J. -H., Goss, W. M., & Backer, D. C. 2004, Science, 304, 704
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, ApJ, 622, L33
Diamond, P. J., & Kemball, A. J. 2003, ApJ, 599, 1372
Doeleman, S. S., et al. 2001, AJ, 121, 2610
Eisenhauer, F., et al. 2005, ApJ, 628, 246
Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006, ApJ, 649, 91
Genzel, R., Eckart, A., Ott, T., & Eisenhauer, F. 1997, MNRAS, 291, 219
Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T. 2000, MNRAS, 317, 348
Genzel, R., et al. 2003, ApJ, 594, 812
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. 1998, ApJ, 509, 678
Ghez, A. M., et al. 2005, ApJ, 620, 744
Hartung, M., et al. 2003, Proc. SPIE, 4841, 425
Hills, J. G. 1988, Nature, 331, 687
Krichbaum, T. P., et al. 1998, A&A, 335, L106
McGinn, M. T., Sellgren, K., Becklin, E. E., & Hall, D. N. B. 1999, ApJ, 338, 824
Menten, K. M., Reid, M. J., Eckart, A. & Genzel, R. 1997, ApJ, 475, L111 (Paper I)
Miralda-Escudé, J., & Gould, A. 2000, ApJ, 545, 847
Morris, M. 1993, ApJ, 408, 496
Mosawad, N., Eckart, A., Pfalzner, S., Schödel, R., Moultaa, J., & Spurzem, R. 2005, Astron. Nachr., 326, 83
Reid, M. J. 1993, ARA&A, 31, 345
Reid, M. J., & Brunthaler, A. 2004, ApJ, 616, 872
Reid, M. J., Menten, K. M., Genzel, R. Ott, T., & Schödel, R. 2003, ApJ, 587, 208 (Paper II)
Reid, M. J., Readhead, A. C. S., Vermeulen, R. C., & Treuhaft, R. N. 1999, ApJ, 524, 816
Rieke, G. H., & Rieke, M. J. 1988, ApJ, 330, L33
Rogers, A. E. E., et al. 1994, ApJ, 434, L59
Rouset, G., et al. 2003, Proc. SPIE, 4839, 140
Shen, Z.-Q., Lo, K. Y., Liang, M.-C., Ho, P. T. P., & Zhao, J.-H. 2005, Nature, 438, 62
Sjouwerman, L. O., van Langevelde, H. J., Winnberg, A., & Habing, H. J. 1998, A&AS, 128, 35
van Langevelde, H. J., Brown, A. G. A., Lindqvist, M., Habing, H. J., & de Zeeuw, P. T. 1992, A&A, 261, L17
Winnberg, A, Baud, B., Matthews, H. E., Habing, H. J & Olonon, F. M. 1985, ApJ, 291, L45
Yu, Q., & Tremaine, S. 2003, ApJ, 599, 1129
Yusef-Zadeh, F., Roberts, D., Wardle, M., Heinke, C. O., & Bower, G. C. 2006, ApJ, 650, 189