A distinguished Riemannian geometrization for quadratic Hamiltonians of polymomenta

Alexandru Oană and Mircea Neagu

Abstract

In this paper we construct a distinguished Riemannian geometrization on the dual 1-jet space $J^1(T, M)$ for the multi-time quadratic Hamiltonian function

$$H = h_{ab}(t)g^{ij}(t, x)p^a_i p^b_j + U_{(i)}(t, x)p^a_i + F(t, x).$$

Our geometrization includes a nonlinear connection N, a generalized Cartan canonical N-linear connection $\mathcal{C}^\Gamma(N)$ (together with its local d-torsions and d-curvatures), naturally provided by the given quadratic Hamiltonian function depending on polymomenta.

2010 Mathematics Subject Classification: 70S05, 53C07, 53C80.

Key words and phrases: dual 1-jet spaces, metrical multi-time Hamilton spaces, nonlinear connections, generalized Cartan canonical N-linear connection, d-torsions and d-curvatures.

1 Short introduction

In the last decades, numerous scientists were preoccupied by the geometrization of Hamiltonians depending on polymomenta. In such a perspective, we point out that the Hamiltonian geometrizations are achieved in three distinct ways:

♦ the multisymplectic Hamiltonian geometry — developed by Gotay, Isenberg, Marsden, Montgomery and their co-workers (see [10], [9]);

♦ the polysymplectic Hamiltonian geometry — elaborated by Giachetta, Mangiarotti and Sardanashvily (see [7], [8]);

♦ the De Donder-Weyl Hamiltonian geometry — studied by Kanatchikov (see [11], [12], [13]).

In such a geometrical context, the recent studies of Atanasiu and Neagu (see the papers [4], [5] and [6]) are initiating the new way of distinguished Riemannian geometrization for Hamiltonians depending on polymomenta, which is in fact a natural "multi-time" extension of the already classical Hamiltonian geometry on cotangent bundles synthesized in the Miron et al.’s book [16]. Note
that our distinguished Riemannian geometrization for Hamiltonians depending on polymomenta is different one by all three Hamiltonian geometrizations from above (multisymplectic, polysymplectic and De Donder-Weyl).

2 Metrical multi-time Hamilton spaces

Let us consider that $h = (h_{ab}(t))$ is a semi-Riemannian metric on the "multi-time" (temporal) manifold T^m, where $m = \dim T$. Let $g = (g^{ij}(t^c, x^k, p^c_k))$ be a symmetric d-tensor on the dual 1-jet space $E^* = J^1(T, M^n)$, which has the rank $n = \dim M$ and a constant signature. At the same time, let us consider a smooth multi-time Hamiltonian function $E^* \ni (t^a, x^i, p^a_i) \to H(t^a, x^i, p^a_i) \in \mathbb{R}$, which yields the fundamental vertical metrical d-tensor

$$G^{(i)(j)}_{(a)(b)} = \frac{1}{2} \frac{\partial^2 H}{\partial p^a_i \partial p^b_j},$$

where $a, b = 1, \ldots, m$ and $i, j = 1, \ldots, n$.

Definition 1 A multi-time Hamiltonian function $H : E^* \to \mathbb{R}$, having the fundamental vertical metrical d-tensor of the form

$$G^{(i)(j)}_{(a)(b)}(t^c, x^k, p^c_k) = \frac{1}{2} \frac{\partial^2 H}{\partial p^a_i \partial p^b_j} = h_{ab}(t^c)g^{ij}(t^c, x^k, p^c_k),$$

is called a **Kronecker h-regular multi-time Hamiltonian function**.

In such a context, we can introduce the following important geometrical concept:

Definition 2 A pair $\text{MH}^n_m = (E^* = J^1(T, M), H)$, where $m = \dim T$ and $n = \dim M$, consisting of the dual 1-jet space and a Kronecker h-regular multi-time Hamiltonian function $H : E^* \to \mathbb{R}$, is called a **multi-time Hamilton space**.

Remark 3 In the particular case $(T, h) = (\mathbb{R}, \delta)$, a "single-time" Hamilton space will be also called a **relativistic rheonomic Hamilton space** and it will be denoted by $\text{RRH}^n = (J^1(\mathbb{R}, M), H)$.

Example 4 Let us consider the Kronecker h-regular multi-time Hamiltonian function $H_1 : E^* \to \mathbb{R}$ given by

$$H_1 = \frac{1}{mc} h_{ab}(t)\varphi^{ij}(x)p^a_i p^b_j,$$

where $h_{ab}(t) \ (\varphi_{ij}(x),$ respectively) is a semi-Riemannian metric on the temporal (spatial, respectively) manifold $T \ (M, \text{respectively})$ having the physical meaning of **gravitational potentials**, and m and c are the known constants from...
Theoretical Physics representing the mass of the test body and the speed of light. Then, the multi-time Hamilton space $G_{M^H_n} = (E^*, H_1)$ is called the multi-time Hamilton space of the gravitational field.

Example 5 If we consider on E^* a symmetric d-tensor field $g^{ij}(t, x)$, having the rank n and a constant signature, we can define the Kronecker h-regular multi-time Hamiltonian function $H_2 : E^* \to \mathbb{R}$, by setting

$$H_2 = h_{ab}(t) g^{ij}(t, x) p^a_i p^b_j + U^{(i)}_{(a)}(t, x) p^a_i + \mathcal{F}(t, x), \quad (2)$$

where $U^{(i)}_{(a)}(t, x)$ is a d-tensor field on E^*, and $\mathcal{F}(t, x)$ is a function on E^*. Then, the multi-time Hamilton space $G_{ED_{M^H_n}} = (E^*, H_2)$ is called the non-autonomous multi-time Hamilton space of electrodynamics. The dynamical character of the gravitational potentials $g_{ij}(t, x)$ (i.e., the dependence on the temporal coordinates t^c) motivated us to use the word "non-autonomous".

An important role for the subsequent development of our distinguished Riemannian geometrical theory for multi-time Hamilton spaces is represented by the following result (proved in the paper [4]):

Theorem 6 If we have $m = \dim T \geq 2$, then the following statements are equivalent:

(i) H is a Kronecker h-regular multi-time Hamiltonian function on E^*.

(ii) The multi-time Hamiltonian function H reduces to a multi-time Hamiltonian function of non-autonomous electrodynamic type. In other words we have

$$H = h_{ab}(t) g^{ij}(t, x) p^a_i p^b_j + U^{(i)}_{(a)}(t, x) p^a_i + \mathcal{F}(t, x). \quad (3)$$

Corollary 7 The fundamental vertical metrical d-tensor of a Kronecker h-regular multi-time Hamiltonian function H has the form

$$G_{(a)(b)}^{(i)(j)} = \frac{1}{2} \frac{\partial^2 H}{\partial p^a_i \partial p^b_j} = \begin{cases} h_{11}(t) g^{ij}(t, x^b, p^1_i), & m = \dim T = 1 \\ h_{ab}(t^c) g^{ij}(t^c, x^b), & m = \dim T \geq 2. \end{cases} \quad (4)$$

We recall that the transformations of coordinates on the dual 1-jet vector bundle $J^1(T, M)$ are given by

$$\tilde{t}^a = \tilde{t}^a(t^b), \quad \tilde{x}^i = \tilde{x}^i(x^j), \quad \tilde{p}_i^a = \frac{\partial x^j}{\partial x^i} \frac{\partial \tilde{t}^a}{\partial t^b} p^b_j,$$

where $\det \left(\frac{\partial \tilde{t}^a}{\partial t^b} \right) \neq 0$ and $\det \left(\frac{\partial \tilde{x}^i}{\partial x^j} \right) \neq 0$. In this context, let us introduce the following important geometrical concept:

Definition 8 A pair of local functions on $E^* = J^1(T, M)$, denoted by

$$N = \left(N_{(a)}^{(i)b}, N_{(a)}^{(i)j} \right),$$
whose local components obey the transformation rules

\[\tilde{N}^{(b)}_{1(j)c} \frac{\partial \tilde{c}}{\partial a} = N^{(c)}_{1(k)a} \frac{\partial \tilde{b}}{\partial \tilde{c}} \frac{\partial x^k}{\partial \tilde{x}^j} - \frac{\partial \tilde{p}^b}{\partial \tilde{t}}, \]

\[\tilde{N}^{(b)}_{2(j)k} \frac{\partial x^k}{\partial x^l} = N^{(c)}_{2(k)c} \frac{\partial \tilde{b}}{\partial \tilde{c}} \frac{\partial x^k}{\partial \tilde{x}^j} - \frac{\partial \tilde{p}^b}{\partial \tilde{x}^l}, \]

is called a nonlinear connection on \(E^* \). The components \(N^{(a)}_{1(i)b} \) (resp. \(N^{(a)}_{2(i)j} \)) are called the temporal (resp. spatial) components of \(N \).

Following now the geometrical ideas of Miron from [14], the paper [4] proves that any Kronecker \(h \)-regular multi-time Hamiltonian function \(H \) produces a natural nonlinear connection on the dual 1-jet space \(E^* \), which depends only by the given Hamiltonian function \(H \):

Theorem 9 The pair of local functions \(N = \left(N^{(a)}_{1(i)b}, N^{(a)}_{2(i)j} \right) \) on \(E^* \), where \((\chi^a_{bc}) \) are the Christoffel symbols of the semi-Riemannian temporal metric \(h_{ab} \)

\[N^{(a)}_{1(i)b} = \chi^a_{bc} \theta_c^i, \]

\[N^{(a)}_{2(i)j} = \frac{h_{ab}}{4} \left[\frac{\partial g_{ij}}{\partial x^l} \frac{\partial H}{\partial \tilde{p}^k_l} - \frac{\partial g_{ij}}{\partial x^l} \frac{\partial H}{\partial \tilde{p}^k_l} + g_{ik} \frac{\partial^2 H}{\partial x^j \partial \tilde{p}^k_l} + g_{jk} \frac{\partial^2 H}{\partial x^i \partial \tilde{p}^k_l} \right], \]

represents a nonlinear connection on \(E^* \), which is called the canonical nonlinear connection of the multi-time Hamilton space \(MH^m_n = (E^*, H) \).

Taking into account the Theorem 6 and using the generalized spatial Christoffel symbols of the d-tensor \(g_{ij} \), which are given by

\[\Gamma^k_{ij} = \frac{g^{kl}}{2} \left(\frac{\partial g_{ij}}{\partial x^l} + \frac{\partial g_{ij}}{\partial x^l} - \frac{\partial g_{ij}}{\partial x^l} \right), \]

we immediately obtain the following geometrical result:

Corollary 10 For \(m = \dim T \geq 2 \), the canonical nonlinear connection \(N \) of a multi-time Hamilton space \(MH^m_n = (E^*, H) \), whose Hamiltonian function is given by \((3) \), has the components

\[N^{(a)}_{1(i)b} = \chi^a_{bc} \theta_c^i, \]

\[N^{(a)}_{2(i)j} = -\Gamma^k_{ij} \theta^a_k + T^{(a)}_{(i)j}, \]

where

\[T^{(a)}_{(i)j} = \frac{h_{ab}}{4} \left(U_{ib} \theta_j + U_{jb} \theta_i \right), \]

and

\[U_{ia} = g_{ik} U^{(k)}_{(i)b}, \quad U_{kb \theta r} = \frac{\partial U_{kb \theta r}}{\partial x^l} - U_{sb} \Gamma^s_{kr}. \]
3 The Cartan canonical connection $CT(N)$ of a metrical multi-time Hamilton space

Let us consider that $MH^m_n = (J^1(T, M), H)$ is a multi-time Hamilton space, whose fundamental vertical metrical d-tensor is given by (4). Let $N = \left(\begin{array}{cc} N_{(a)}^{(i)b} & N_{(a)}^{(i)(j)} \\ \end{array} \right)$ be the canonical nonlinear connection of the multi-time Hamilton space MH^m_n.

Theorem 11 (the generalized Cartan canonical N-linear connection)

On the multi-time Hamilton space $MH^m_n = (J^1(T, M), H)$, endowed with the canonical nonlinear connection N, there exists an unique h-normal N-linear connection $C\Gamma(N) = \left(\chi^a_{bc}, A^i_{jc}, H^i_{jk}, C^{ij(k)}_{j(c)} \right)$, having the metrical properties:

(i) $g_{ij|k} = 0$, $g^{ij|k}_{(c)} = 0$,

(ii) $A^i_{jc} = g^{il}_{(i)} \frac{\delta g_{lj}}{\delta t^c}$, $H^i_{jk} = H^j_{ik}$, $C^{ij(k)}_{j(c)} = C^{ji(k)}_{j(c)}$,

where $\nabla^a_{|c}$, $\nabla^i_{|c}$ and $\nabla^{ij(k)}_{|c}$ represent the local covariant derivatives of the h-normal N-linear connection $CT(N)$.

Proof. Let $CT(N) = \left(\chi^a_{bc}, A^i_{jc}, H^i_{jk}, C^{ij(k)}_{j(c)} \right)$ be an h-normal N-linear connection, whose local coefficients are defined by the relations

\[
A^a_{bc} = \chi^a_{bc}, \quad A^i_{jc} = g^{il}_{(i)} \frac{\delta g_{lj}}{\delta t^c},
\]

\[
H^i_{jk} = g^{ir}_{(i)} \left(\frac{\delta g_{jr}}{\delta x^k} + \frac{\delta g_{kr}}{\delta x^j} - \frac{\delta g_{jk}}{\delta x^r} \right),
\]

\[
C^{ij(k)}_{j(c)} = - g^{ir}_{(i)} \left(\frac{\partial g^{jr}}{\partial p^k} + \frac{\partial g^{kr}}{\partial p^j} - \frac{\partial g^{jk}}{\partial p^r} \right).
\]

Taking into account the local expressions of the local covariant derivatives induced by the h-normal N-linear connection $CT(N)$, by local calculations, we deduce that $CT(N)$ satisfies conditions (i) and (ii).

Conversely, let us consider an h-normal N-linear connection

\[
\hat{C}T(N) = \left(\hat{A}^a_{bc}, \hat{A}^i_{jc}, \hat{H}^i_{jk}, \hat{C}^{ij(k)}_{j(c)} \right)
\]

which satisfies conditions (i) and (ii). It follows that we have

\[
\hat{A}^a_{bc} = \chi^a_{bc}, \quad \hat{A}^i_{jc} = g^{il}_{(i)} \frac{\delta g_{lj}}{\delta t^c}.
\]
Moreover, the metrical condition $g_{ij|k} = 0$ is equivalent with

$$\frac{\delta g_{ij}}{\delta x^k} = g_{rj} \tilde{H}_{rk}^i + g_{ir} \tilde{H}_{jk}^r.$$

Applying now a Christoffel process to indices $\{i, j, k\}$, we find

$$\tilde{H}_{jk}^i = \frac{g_{ir}^j}{2} \left(\frac{\delta g_{jr}}{\delta x^k} + \frac{\delta g_{kr}}{\delta x^j} - \frac{\delta g_{jk}}{\delta x^r} \right).$$

By analogy, using the relations $C_{j(c)}^{i(k)} = C_j^{k(c)}$ and $g_{ij|c} = 0$, together with a Christoffel process applied to indices $\{i, j, k\}$, we obtain

$$\overline{C}_{j(c)}^{i(k)} = -\frac{g_{ir}}{2} \left(\frac{\delta g_{jr}}{\delta p^c_k} + \frac{\delta g^{jr}}{\delta p^c_j} - \frac{\delta g^{jk}}{\delta p^c_r} \right).$$

In conclusion, the uniqueness of the generalized Cartan canonical connection $CT(N)$ on the dual 1-jet space $E^* = J^1(T, M)$ is clear.

Remark 12 (i) Replacing the canonical nonlinear connection N of the multi-time Hamilton space MH^n_m with an arbitrary nonlinear connection \hat{N}, the preceding Theorem holds good.

(ii) The generalized Cartan canonical connection $CT(N)$ of the multi-time Hamilton space MH^n_m verifies also the metrical properties

$$h_{ab/c} = h_{ab|k} = h_{ab|c} = 0, \quad g_{ij/c} = 0.$$

(iii) In the case $m = \text{dim } T \geq 2$, the coefficients of the generalized Cartan canonical connection $CT(N)$ of the multi-time Hamilton space MH^n_m reduce to

$$A_{bc}^a = \chi_{bc}^a, \quad A_{jc}^i = \frac{g_{il}^j}{2} \frac{\partial g_{lj}}{\partial t^c}, \quad H_{jk}^i = \Gamma_{jk}^i, \quad C_{j(c)}^{i(k)} = 0.$$

4 Local d-torsions and d-curvatures of the generalized Cartan canonical connection $CT(N)$

Applying the formulas that determine the local d-torsions and d-curvatures of an h-normal N-linear connection $D\Gamma(N)$ (see these formulas in [22]) to the generalized Cartan canonical connection $CT(N)$, we obtain the following important geometrical results:

Theorem 13 The torsion tensor T of the generalized Cartan canonical connection $CT(N)$ of the multi-time Hamilton space MH^n_m is determined by the local
where

(i) for $m = \dim \mathcal{T} = 1$, we have

$$T^r_{ij} = -A^r_{ji}, \quad P^r_{(j)i(1)} = C^r_{i(1)}, \quad P^{(1)}_{(r)i(1)} = \frac{\partial N^{(1)}_{r(1)}}{\partial p_j^r} + A^j_{r1} - \delta^j_{ri},$$

$$P^{(1)}_{(r)ij} = \frac{\delta N^{(1)}_{r(1)}}{\delta x^i} - \frac{\delta N^{(1)}_{r(1)}}{\delta x^j}.$$

(ii) for $m = \dim \mathcal{T} \geq 2$, using the equality (5) and the notations

$$\chi^c_{fab} = \frac{\partial \chi^c_{fa}}{\partial \theta^b} - \frac{\partial \chi^c_{fb}}{\partial \theta^a} + \chi^d_{fa} \chi^c_{db} - \chi^d_{fb} \chi^c_{da},$$

$$\Omega^{rc}_{ki} = \frac{\partial \Gamma^r_{ki}}{\partial x^j} - \frac{\partial \Gamma^r_{kj}}{\partial x^i} + \Gamma^p_{ki} \Gamma^r_{pj} - \Gamma^p_{kj} \Gamma^r_{pi},$$

we have

$$T^r_{aj} = -A^r_{ja}, \quad P^{(f)}_{(r)a(b)} = \delta^f_{b} A^r_{ia}, \quad P^{(f)}_{(r)ab} = \chi^f_{gab} \eta^g_r,$$

$$R^{(f)}_{(r)aj} = -\delta^r_{aj} T^{(c)}_{(r)cj}, \quad R^{(f)}_{(r)ij} = -\Omega^{k}_{r} T_{(r)ij}.$$

Theorem 14 The curvature tensor \mathcal{R} of the generalized Cartan canonical connection $CT(N)$ of the multi-time Hamilton space MB_m^N is determined by the
following adapted local curvature d-tensors:

h_T	h_M	v
$m \geq 1$	$m = 1$	$m \geq 2$
$m = 1$	$m = 1$	$m = 1$
$m \geq 2$	$m \geq 2$	$m \geq 2$

$h_T h_T$ χ^d_{abc} 0 R^l_{ibc} 0 $-R^{(d)(i)}_{(l)(a)bc}$

$h_M h_T$ R^l_{i1k} R^l_{ibk} $-P^{(1)(1)}_{(i)(1)1k} = -R^{(d)(i)}_{(l)(a)bk}$

vh_T $P^l_{i(i11)(k)}$ 0 $-P^{(1)(1)(1)}_{(i)(1)(1)(1)} = -P^{(k)}_{i(j)(1)(1)}$ 0

$h_M h_M$ R^l_{ijk} g^l_{ijk} $-P^{(1)(1)(1)}_{(i)(1)(1)jk} = -R^{(d)(i)}_{(l)(a)jk}$

vh_M $P^l_{i(k)(j)}$ g^l_{ijk} $-P^{(1)(1)(1)}_{(i)(1)(1)jk} = -R^{(d)(i)}_{(l)(a)jk}$

vv $S^l_{i(j)(k)}$ g^l_{ijk} $-S^{(1)(1)(1)}_{i(j)(1)(1)} = -S^{(d)(i)(k)}_{(l)(i)j}$

where, for $m \geq 2$, we have the relations

$-R^{(d)(i)}_{(l)(a)bc} = \delta^d_{abc} - \delta^d_u R^u_{ibc},$ $-R^{(d)(i)}_{(l)(a)bk} = -\delta^d_u R^u_{ibk},$ $-R^{(d)(i)}_{(l)(a)jk} = -\delta^d_u g^l_{ijk},$

and, generally, the following formulas are true:

(i) for $m = \dim T = 1$, we have $\chi_{111} = 0$ and

\[R^l_{i1k} = \frac{\delta A^l_{i1k}}{\delta x^k} - \frac{\delta H^l_{ik}}{\delta t} + A^l_{i1k} H^l_{rk} - H^l_{ik} A^l_{r1} + C^{(r)}_{(1)(1)} R^{(1)}_{(r)1k}, \]

\[R^l_{ijk} = \frac{\delta H^l_{ij}}{\delta x^k} - \frac{\delta H^l_{ik}}{\delta x^j} + H^l_{ij} H^l_{rk} - H^l_{ik} H^l_{rj} + C^{(r)}_{(1)(1)} R^{(1)}_{(r)jk}, \]

\[p^l_{i(i11)(k)} = \frac{\partial A^l_{i(i11)(k)}}{\partial p^l_k} - C^{(k)}_{i(i11)} + C^{(r)}_{i(i11)(r)} p^{(1)}_{i(i11)(1)}, \]

\[p^l_{i(j)(k)} = \frac{\partial H^l_{ij}}{\partial p^l_k} - C^{(k)}_{i(j)(1)} + C^{(r)}_{i(j)(r)} p^{(1)}_{i(j)(1)}, \]

\[g^l_{ij(k)(k)} = \frac{\partial C^{(k)}_{i(j)(1)}(1)}{\partial p^l_k} + \frac{\partial C^{(k)}_{i(j)(1)}(1)}{\partial p^l_j} + C^{(r)}_{i(j)(1)} C^{(k)}_{i(j)(r)} - C^{(k)}_{i(j)(1)} C^{(r)}_{i(j)(r)}(1), \]

(ii) for $m = \dim T = 2$, we have

\[\chi^d_{abc} = \frac{\partial A^d_{abc}}{\partial t^c} - \frac{\partial A^d_{abc}}{\partial t^b} + A^d_{abc} f^d_{fc} - r_{abc} f^d_{db}, \]

\[R^l_{ibc} = \frac{\partial A^l_{ibc}}{\partial t^c} - \frac{\partial A^l_{ibc}}{\partial t^b} + A^l_{ibc} A^l_{rc} - A^l_{ir} A^l_{cb}, \]

\[R^l_{ibk} = \frac{\partial A^l_{ibk}}{\partial x^k} - \frac{\partial A^l_{ibk}}{\partial x^b} + A^l_{ibk} r_{rk} - r_{ik} A^l_{rb}, \]

\[g^l_{ij(k)} = \frac{\partial r^l_{ij}}{\partial x^k} - \frac{\partial r^l_{ij}}{\partial x^j} + r^l_{ij} r_{rk} - r_{ik} r^l_{rj}, \]

Acknowledgements. The authors of this paper thank to Professor Gh. Atanasiu for our interesting and useful discussions on this research topic.
References

[1] G.S. Asanov, *Jet extension of Finslerian gauge approach*, Fortschritte der Physik, vol. 38, no. 8 (1990), 571-610.

[2] Gh. Atanasiu, *The invariant expression of Hamilton geometry*, Tensor N.S., vol. 47, no. 3 (1988), 225-234.

[3] Gh. Atanasiu, F.C. Klepp, *Nonlinear connections in cotangent bundle*, Publ. Math. Debrecen, Hungary, vol. 39, no. 1-2 (1991), 107-111.

[4] Gh. Atanasiu, M. Neagu, *Canonical nonlinear connections in the multi-time Hamilton geometry*, Balkan Journal of Geometry and Its Applications, vol. 14, no. 2 (2009), 1-12.

[5] Gh. Atanasiu, M. Neagu, *Distinguished tensors and Poisson brackets in the multi-time Hamilton geometry*, BSG Proceedings 16, Geometry Balkan Press, Bucharest (2009), 12-27.

[6] Gh. Atanasiu, M. Neagu, *Distinguished torsion, curvature and deflection tensors in the multi-time Hamilton geometry*, Electronic Journal "Differential Geometry-Dynamical Systems", vol. 11 (2009), 20-40.

[7] G. Giachetta, L. Mangiarotti, G. Sardanashvily, *Covariant Hamiltonian field theory*, http://arxiv.org/hep-th/9904062 (1999).

[8] G. Giachetta, L. Mangiarotti, G. Sardanashvily, *Polysymplectic Hamiltonian formalism and some quantum outcomes*, http://arxiv.org/hep-th/0411003 (2004).

[9] M. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, *Momentum maps and classical fields. Part I. Covariant field theory*, http://arxiv.org/physics/9801019 (2004).

[10] M. Gotay, J. Isenberg, J.E. Marsden, *Momentum maps and classical fields. Part II. Canonical analysis of field theories*, http://arxiv.org/math-ph/0411032 (2004).

[11] I.V. Kanatchikov, *Basic structures of the covariant canonical formalism for fields based on the De Donder-Weyl theory*, http://arxiv.org/hep-th/9410238 (1994).

[12] I.V. Kanatchikov, *On quantization of field theories in polymomentum variables*, AIP Conf. Proc., vol. 453, Issue 1 (1998), 356-367.

[13] I.V. Kanatchikov, *On the canonical structure of the De Donder-Weyl covariant Hamiltonian formulation of field theory I. Graded Poisson brackets and equations of motion*, http://arxiv.org/hep-th/9312162 (1993).

[14] R. Miron, *Hamilton geometry*, An. Şt. ”Al. I. Cuza” Univ., Iaşi, Romania, vol. 35 (1989), 33-67.
[15] R. Miron, M. Anastasiei, *The Geometry of Lagrange Spaces: Theory and Applications*, Kluwer Academic Publishers, 1994.

[16] R. Miron, D. Hrimiuc, H. Shimada, S.V. Sabău, *The Geometry of Hamilton and Lagrange Spaces*, Kluwer Academic Publishers, 2001.

[17] R. Miron, M.S. Kirkovits, M. Anastasiei, *A geometrical model for variational problems of multiple integrals*, Proc. Conf. Diff. Geom. and Appl., Dubrovnik, Yugoslavia, June 26-July 3, (1988), 8-25.

[18] M. Neagu, *Ricci and Bianchi identities for h-normal Γ-linear connections on J¹(T,M)*, Hindawi Publishing Corporation, International Journal of Mathematics and Mathematical Sciences, no. **34** (2003), 2177-2192.

[19] M. Neagu, *Riemann-Lagrange Geometry on 1-Jet Spaces*, Matrix Rom, Bucharest, 2005.

[20] M. Neagu, C. Udrişte, *Torsion, curvature and deflection d-tensors on J¹(T,M)*, Balkan Journal of Geometry and Its Applications, vol. **6**, no. **1** (2001), 29-45.

[21] M. Neagu, C. Udrişte, A. Oană, *Multi-time dependent sprays and h-traceless maps*, Balkan Journal of Geometry and Its Applications, vol. **10**, no. **2** (2005), 76-92.

[22] A. Oană, M. Neagu, *The local description of the Ricci and Bianchi identities for an h-normal N-linear connection on the dual 1-jet space J¹*(T,M)*, http://arxiv.org/math.DG/1111.4173 (2011).

[23] P.J. Olver, *Applications of Lie Groups to Differential Equations*, Graduate Texts in Mathematics, vol. **107**, Springer-Verlag, New York, 1986.

[24] D.J. Saunders, *The Geometry of Jet Bundles*, Cambridge University Press, New York, London, 1989.

Alexandru OANĂ and Mircea NEAGU
University Transilvania of Brașov,
Department of Mathematics - Informatics,
Blvd. Iuliu Maniu, no. 50, Brașov 500091, Romania.
E-mails: alexandru.oana@unitbv.ro, mircea.neagu@unitbv.ro