A Meta-Analysis of the Relationship Between NAT2 Polymorphism and Colorectal Cancer Susceptibility

Hong Liu, Zhong-xue Fu, Chun-yi Wang, Jiang Qian, Lei Xing, Yi-wu Liu
Department of General Surgery, the First Affiliated Hospital of Chongqing Medical University, Yuanchang, Yuzhong district, China

Key words: N-acetyltransferase 2; colorectal cancer; polymorphism; genetic susceptibility; meta-analysis.

Summary. Background and Objective. Although the association between N-acetyltransferase 2 (NAT2) polymorphism and colorectal cancer (CRC) susceptibility in humans has been extensively investigated, the results are contradictory. The aim of this study was to conduct a meta-analysis of published studies to quantitatively summarize the association between NAT2 polymorphism and risk of CRC.

Material and Methods. Relevant studies that had investigated NAT2 polymorphism and CRC susceptibility were identified through a comprehensive search of Pubmed, EMBASE, Medline, BIOSIS, Wiley-Blackwell, ISI Web of Knowledge, CNKI, and Chinese Biomedicine Database until October 2011. After selection based on the inclusion and exclusion criteria, the relevant data were extracted from each study, and finally a meta-analysis was performed.

Results. Eight phenotype studies (791 cases and 1158 controls) and 45 genotype studies (13 875 cases and 18 879 controls) were included in the present meta-analysis. The pooling of phenotype studies showed no significant association between the NAT2 acetylator status and CRC susceptibility (rapid acetylator, OR, 1.32; 95% CI, 0.92–1.89; \(P=0.14 \); slow acetylator, OR, 0.76; 95% CI, 0.53–1.09; \(P=0.14 \)). The combined ORs for rapid and slow acetylator status and CRC risk in genotype studies were 1.01 (95% CI, 0.94–1.08; \(P=0.86 \)) and 0.99 (95% CI, 0.93–1.06; \(P=0.86 \)), respectively. In the subgroup analysis by regions, no increased risks were found in Asians, Europeans, Americans, or Australasians. Pooling studies were also conducted on the groups of gender, specific tumor sites, and smoking status, but no significant association in genotype distribution between CRC and control was found as well.

Conclusions. These results of our meta-analysis suggest that there is no overall association between NAT2 polymorphism and CRC susceptibility.

Introduction
Colorectal cancer (CRC) is one of the most common cancers in the world. It is generally accepted that human colorectal carcinogenesis is a complex, multistep, and multifactorial process in which many factors, such as dietary and lifestyle habits and/or mild genetic predisposition, are implicated (1). Exposure to carcinogens, such as heterocyclic amines (HCAs), polycyclic aromatic hydrocarbons (PAHs), and other amine compounds, is regarded as a risk factor for developing CRC (2). Studies have shown that individual inherited susceptibility plays an important role in the pathogenesis of tumor. In the last 3 decades, genetic polymorphisms have also been extensively investigated to identify inherited genetic susceptibility for CRC.

N-acetyltransferase 2 (NAT2) is one of these susceptibility genes, which has been considered to have an association with CRC risk. It is a polymorphic gene located on chromosome 8p22 region that contains an 870–bp open reading frame and encodes a protein of 290 amino acids (3). Individuals can be divided into 3 different phenotypes based on the allelic variants of NAT2: fast, intermediate, and slow. These phenotypes are determined by single nucleotide polymorphisms in NAT2 (4). As one of the phase II enzymes, NAT2 plays an essential role in the detoxification and/or bioactivation of several carcinogenic compounds, such as HCAs and PAHs, found in meat and tobacco smoke (5). It is therefore conceivable that increased or decreased activities of this enzyme may be involved in susceptibility to CRC (6).

Since Lang et al. (7) first reported an association between the NAT2 acetylator status and CRC risk, a number of studies have been published to describe the association between NAT2 polymorphisms and CRC risk in humans (8–57). However, the results are not conclusive. Therefore, in the present study, a meta-analysis of all available published studies was carried out to summarize the results of the effect of NAT2 polymorphism on CRC.
Material and Methods

Search strategy

Papers published until October 2011 that had investigated NAT2 polymorphism and CRC susceptibility were identified through a comprehensive search of Pubmed, EMBASE, Medline, Biosis, Wiley–Blackwell, ISI Web of Knowledge, CNKI, and Chinese Biomedicine Database, using the following search key words: acetyltransferase or N-acetyltransferase 2 or NAT2, genetic polymorphism or single nucleotide polymorphism, colon or rectum or colorectal, cancer or carcinoma or tumor. The search was without language restriction and selected only those conducted on human subjects. In addition, the citations in relevant articles were also thoroughly examined to further ensure that all appropriate studies were collected. In situations when multiple studies were published using the same data source, only the one that contained the largest data was taken into account. Unpublished studies were not considered in this literature search.

Inclusion and Exclusion Criteria

All articles involving studies that investigated NAT2 and CRC susceptibility were included. The selection criteria were as follows: 1) case-control studies; 2) evaluation of the association between NAT2 polymorphism and CRC susceptibility; 3) enough information about the number of CRC cases and controls studied with the different NAT2 acetylation status; and 4) clearly description of CRC diagnoses and the sources of cases and controls. The major exclusion criteria were as follows: 1) no control group; 2) overlapping or republished studies; 3) no usable information reported; and 4) cases or controls suffered from other cancers or other colorectal diseases.

Classification of NAT2 Acetylation Status

Eligible studies were classified into two types— "phenotype" or "genotype" studies— because the methods for measuring NAT2 acetylation status is different-measuring phenotypes by using metabolic response to a particular compound or measuring alleles directly, and we did not combine these studies for analysis. In our study, phenotype frequencies were summarized as slow and rapid status. In genotype studies, rapid acetylators were defined as carriers of homozygous or heterozygous for rapid acetylator alleles; those individuals who had two slow acetylation alleles were classified as slow acetylators, consistent with the definition in most studies.

Data Extraction and Analysis

One of the authors extracted and summarized the following information from each article: first author, publication year, country of origin, study type, study population, number of cases and controls, and numbers of cases and controls of different acetylation status, phenotyping and genotyping technique, location of tumors, matching, exposure assessment, and results of studies. This was checked by a second independent investigator to avoid input errors. Any disagreement was resolved by discussion; a third investigator adjudicated the disagreements if they could not come to an agreement.

Statistical Analysis

A meta-analysis was performed separately for phenotype and genotype studies. The strength of the associations between the NAT2 polymorphism and CRC susceptibility was estimated by odds ratio (OR) with 95% confidence intervals (CI). Heterogeneity was analyzed among the studies using the Cochran’s Q test and I² test. Fixed effects model was used when I² was less than 30%. Otherwise, the random effects model was used (I² >30%). We constructed a funnel plot to test the influence of publication bias. Sensitivity analysis was performed by deselecting studies with extreme findings to test the robustness of the results. Statistical analysis was performed using the Review Manager 5.1. P<0.05 was considered statistically significant.

Results

Study Characteristics

Fig. 1 shows the literature selection process. Overall, 51 studies of NAT2 acetylator status and CRC risk were eligible for our final analyses. They were published between 1986 and 2011. The size of study population ranged from 72 to 3587 individuals (14666 cases and 20037 controls). Of the included studies, 2 studies evaluated NAT2 acetylator status by phenotyping and genotyping separately, 6 studies by phenotyping only, and 43 studies by genotyping only. Characteristics of the included studies in this meta-analysis are presented in Tables 1 and 2.

Main Results

Phenotype Studies. Of the 8 phenotype studies, 4 studies identified acetylation phenotype via administration of sulfamethazine, 1 via administration of p-aminobenzoic acid (PABA), 4-aminobiphenyl (ABP), 2-aminofluorene (AF), and β-naphthylamine (BNA), and other 3 used the caffeine test. For the meta-analysis, the test for heterogeneity was statistically significant (I²=60%, P=0.01). Figs. 2 and 3 show the summary odds ratio (rapid acetylator, OR, 1.32; 95% CI, 0.92–1.89; P=0.14; slow acetylator, OR, 0.76; 95% CI, 0.53–1.09; P=0.14) for the combined rapid or slow acetylator phenotype studies separately, using the random-effect model. It is noteworthy that a plot of the rapid or slow acetylator status and CRC risk showed a trend toward a less significant association in the studies.
Of the 45 genotyping studies, 14 studies were carried out in Asian countries, 16 in European countries, 14 in American countries, and 1 in Australia. In some studies, the authors classified individuals into 3 categories (slow, intermediate, and rapid acetylators), and in our meta-analysis, intermediate acetylators were reclassified as fast acetylators.

For the meta-analysis, ORs were calculated from the reported frequencies of genotype by NAT2 status. Overall, the combined results based on all studies indicated that no significantly elevated CRC risk was associated with fast or slow NAT2 genotypes between cases and controls (rapid acetylator, OR, 1.01; 95% CI, 0.94–1.08, \(P = 0.86 \); slow acetylator, OR, 0.99; 95% CI, 0.93–1.06; \(P = 0.86 \), and there

Table 1. Characteristics of Studies Included in the Meta-Analysis for Phenotype

Author and Year	Country	Study Type	No. of Cases	No. of Controls	Rapid Cases	Rapid Controls	Slow Cases	Slow Controls	Method for Phenotype Determination	Matching
Lang et al. (7), 1986	USA	Case-control	43	41	23	13	20	28	Sulfamethazine	Age
Ilett et al. (8), 1987	Australia	Case-control	49	86	28	26	21	60	Sulfamethazine	Age, sex, and racial origin
Wohlleb et al. (9), 1990	USA	Case-control	43	41	23	13	20	28	Sulfamethazine	–
Kirlin et al. (10), 1991	USA	Case-control	25	12	12	9	13	3	PABA, ABP, AF, and BNA	–
Ladero et al. (11), 1991	Spain	Case-control	109	96	49	40	60	56	Sulfamethazine	Age
Lang et al. (12), 1994	USA	Case-control	34	205	14	92	20	113	Caffeine test	–
Le Marchand et al. (13), 2001	USA	Case-control	348	466	272	346	76	120	Caffeine test	Sex, ethnicity, age
Ishibe et al. (14), 2002	USA	Case-control	140	211	65	106	75	105	Caffeine test	Gender and age in 5-year intervals

PABA, \(p \)-aminobenzoic acid; ABP, 4-aminobiphenyl; AF, 2-aminofluorene; BNA, \(\beta \)-naphthylamine.

Genotype Studies

Of the 45 genotyping studies, 14 studies were carried out in Asian countries, 16 in European countries, 14 in American countries, and 1 in Australia. In some studies, the authors classified individuals into 3 categories (slow, intermediate, and rapid acetylators), and in our meta-analysis, intermediate acetylators were reclassified as fast acetylators.
Table 2. Characteristics of Studies Included in the Meta-Analysis for Genotype

Author and Year	Country	Study Type	No. of Cases (M/F)	No. of Controls (M/F)	Rapid Cases (M/F)	Rapid Controls (M/F)	Slow Cases (M/F)	Slow Controls (M/F)	Location of the Tumors	Matching	Exposure Assessment
1 2 3	USA	Case-control	44	28	20	13	24	15	–	–	–
Rodriguez et al. (15), 1993	Japan	Case-control	36	36	33	3	33	3	–	–	Age
Shibuta et al. (17), 1994	Japan	Case-control	234	329	208	298	26	31	Colon and rectum	–	–
Bell et al. (18), 1995	UK	Case-control	202	112	96	50	106	62	–	Age	Meat consumption and cigarette smoking
Spurr et al. (19), 1995	UK	Case-control	103	96	32	34	71	62	–	–	–
Hubbard et al. (20), 1997	UK	Case-control	275	343	100	140	317	203	–	–	–
Welfare et al. (21), 1997	UK	Case-control	174 (102/72)	174 (102/72)	73 (41/32)	74 (41/33)	101 (61/40)	100 (61/39)	Right side and left side of colon	–	–
Chen et al. (22), 1998	USA	Nested Case-control	212	221	81	96	131	125	–	Age ±1 year and smoking	Red meat intake
Gil et al. (23), 1998	Portugal	Case-control	114	201	66	81	48	120	–	–	–
Lee et al. (24), 1998	Singapore	Case-control	216	187	156	134	60	53	Right and left side of colon, sigmoid and rectum	–	–
Kampman et al. (25), 1999	USA	Case-control	1624 (912/712)	1963 (1036/927)	694 (576/318)	807 (433/374)	930 (536/394)	1156 (603/553)	–	Sex and 5-year age group	Meat consumption
Yoshioka et al. (26), 1999	Japan	Case-control	106	100	101	93	95	7	–	–	–
Agüínez et al. (27), 2000	Spain	Nested Case-control	120	258	60	119	60	139	Non-sigmoid colon, Sigmoid colon, Rectum	–	–
Katoh et al. (28), 2000	Japan	Case-control	103	122	98	115	5	7	–	–	–
Butler et al. (29), 2001	Australia	Case-control	209	200	60	57	149	143	–	Gender	–
Le Marchand et al. (13), 2001	USA	Case-control	543	654	419	497	124	157	–	Sex, ethnicity, and age (2 years)	Diet, smoking, exercise, medical history, and occupational history
Ishibe et al. (14), 2002	USA	Case-control	143	208	64	98	79	110	Gender and age in 5-year intervals	–	Meat consumption
Table 2. Characteristics of Studies Included in the Meta-Analysis for Genotype (Continuation)

1	2	3	4	5	6	7	8	9	10	11	12	
	Tiemersma et al. (30), 2002	Netherlands	Nested Case-control	102	537	43	237	59	300	Gender, age (5-year intervals)	Meat consumption and cigarette smoking	
	Barrett et al. (31), 2003	UK	Case-control	490	592	186	243	304	349	Age- and sex-matched	Meat consumption and cigarette smoking	
	Slattery et al. (32), 2003	USA	Case-control	766 (451/315)	990 (561/429)	357 (204/153)	470 (255/215)	409 (247/162)	520 (306/214)	Sex and by 5-year age groups	Meat consumption and cigarette smoking	
	Van der Hel et al. (33), 2003*	Netherlands	Case-control	258	857	112	362	146	495	Colon and rectum	–	Cigarette smoking
	He et al. (34), 2004	China	Case-control	83	237	65	169	18	68	–	–	–
	Kiss et al. (35), 2004	Hungary	Case-control	500	500	233	182	267	318	–	Age, sex, smoking habits, and red meat consumption	Meat consumption and cigarette smoking
	Chan et al. (36), 2005*	USA	Nested Case-control	183	443	76	176	107	267	–	Year of birth, month/year of blood collection	Meat consumption and cigarette smoking
	Chen et al. (37), 2005	China	Case-control	139	343	119	293	20	50	–	–	–
	Landi et al. (38), 2005	Spain	Case-control	360	308	168	146	192	162	–	–	–
	Borlak and Reamon-Bueettner (39), 2006	Germany	Case-control	92	243	40	91	52	152	–	Healthy unrelated Caucasian	–
	Lilla et al. (40), 2006	Germany	Case-control	503	601	208	227	295	374	–	Sex, 5-year age groups, and county of residence	Meat consumption and cigarette smoking
	Mosleh et al. (41), 2006	USA	Case-control	685	693	272	317	413	376	–	Gender and age	Cigarette smoking
	Pistorius et al. (42), 2006	Germany	Case-control	226	107	83	48	143	59	–	–	–
	Huang et al. (43), 2007	China (Taiwan)	Case-control	244 (128/116)	299 (146/153)	197 (100/97)	220 (112/108)	47 (28/19)	79 (34/45)	–	Population	–
	Jiang (44) 2007	China	Case-control	168	204	96	135	72	69	Proximal and distal	–	–
	Luo et al. (45), 2007	China	Case-control	83	83	65	63	18	20	–	Gender, nation, occupation, living place, age (5-year intervals)	–
	Mahid et al. (46), 2007	USA	Case-control	122	222	54	96	68	126	–	–	–
	Yeh et al. (47), 2007	China (Taiwan)	Case-control	715	730	558	576	157	154	–	Age- and sex-matched	–
Table 2. Characteristics of Studies Included in the Meta-Analysis for Genotype (Continuation)

	1	2	3	4	5	6	7	8	9	10	11	12
Yoshida et al. (48), 2007	Japan	Case-control	66	121	64	112	2	9	–	–	Cigarette smoking	
Butler et al. (49), 2008	USA	Case-control	500	830	273	405	227	425	–	Race, age, and sex		
Cotterchio et al. (50), 2008	Canada	Case-control	832	1247	374	511	458	736	–	Sex-matched and age group-matched		
Sørensen et al. (51), 2008	Denmark	Nested Case-control	377	768	166	323	211	445	–	Gender and age		
Kobayashi et al. (52), 2009	Japan	Case-control	105	225	93	201	12	24	–	Gender, age (within 3 years), and area of residence		
Nöthlings et al. (53), 2009	USA	Nested Case-control	992	1493	656	996	336	497	–	Sex, ethnicity/race, and age		
Zupa et al. (54), 2009	Italy	Case-control	92 (51/41)	121 (56/65)	42 (26/16)	71 (33/38)	50 (25/25)	50 (23/27)	–	–	–	
Peng et al. (55), 2010	China	Case-control	286	286	230	257	56	29	–	Gender, nation, living place, age (3-year intervals)		
Silva et al. (56), 2011	Brazil	Case-control	147 (90/56)	212 (85/127)	59 (25/34)	102 (33/69)	88 (46/42)	110 (52/58)	–	Gender and age		
Wang et al. (57), 2011	USA	Case-control	301	355	20	35	281	320	–	Unaffected siblings and cousins in the family		

The individuals are all females.
Meta-analysis of NAT2 Rapid Acetylator Status and CRC Susceptibility Based on NAT2 Phenotypes

Study	Case	Control	Weight, %	Odds Ratio M-H, Random, 95% CI
Ilett et al. (8), 1987	28	49	26	86
Ishibe et al. (14), 2002	65	140	106	211
Kirlin et al. (10), 1991	12	25	9	12
Ladero et al. (11), 1991	49	109	40	96
Lang et al. (7), 1986	23	43	13	41
Lang et al. (12), 1994	34	34	92	205
Le Marchand et al. (13), 2001	272	348	346	466
Wohlleb et al. (9), 1990	23	43	13	41
Total (95% CI)	791	1158	100	1.32 (0.92, 1.89)

Total events 486 645

Heterogeneity: \(\chi^2 = 17.69, df = 7 \) \(P = 0.01; F = 60% \)

Test for overall effect: \(Z = 1.49 \) \(P = 0.14 \)

Meta-analysis of NAT2 Slow Acetylator Status and CRC Susceptibility Based on NAT2 Phenotypes

Study	Case	Control	Weight, %	Odds Ratio M-H, Random, 95% CI
Ilett et al. (8), 1987	21	49	60	86
Ishibe et al. (14), 2002	75	140	105	211
Kirlin et al. (10), 1991	13	25	3	12
Ladero et al. (11), 1991	60	109	56	96
Lang et al. (7), 1986	20	43	28	41
Lang et al. (12), 1994	20	34	113	205
Le Marchand et al. (13), 2001	76	348	120	466
Wohlleb et al. (9), 1990	20	43	28	41
Total (95% CI)	791	1158	100	0.76 (0.53, 1.09)

Total events 305 513

Heterogeneity: \(\chi^2 = 17.69, df = 7 \) \(P = 0.01; F = 60% \)

Test for overall effect: \(Z = 1.49 \) \(P = 0.14 \)

Interactions

Smoking. In terms of the main effect of NAT2 polymorphisms on CRC susceptibility associated with smoking, 6 of the 45 genotype studies analyzed the effect in detail by using a variety of exposure variables. Van der Hel et al. (33) and Silva et al. (56) showed significant evidence for the modification of NAT2 and CRC by smoking. Van der Hel et al. reported that rapid NAT2 acetylation in combination with smoking significantly increased the risk of CRC; meanwhile, Silva et al. indicated that cigarette smoking increased the risk of CRC among slow NAT2 acetylators. Lilla et al. (40) reported that exposure to environmental tobacco smoke was
Subtotal (95% CI) 13875 18879 100 1.01 (0.94, 1.08)

Test for overall effect: Z=0.09 (P=0.93)

Total events 7270 9804

Heterogeneity: $\chi^2=0.02$, $df=44$ ($P=0.005$); $I^2=39%$

Test for overall effect: Z=0.18 ($P=0.86$)

Test for subgroup differences: $\chi^2=50.5$, $df=3$ ($P=0.92$); $I^2=0%$

Fig. 4. Meta-analysis of NAT2 rapid acetylator status and CRC susceptibility based on NAT2 genotypes. Studies are stratified by regions.
NAT2 and Colorectal Cancer

Studies are stratified by regions.

Fig. 5. Meta-analysis of NAT2 slow acetylator status and CRC susceptibility based on NAT2 genotypes.
associated with an increased risk of CRC among NAT2 fast acetylators, but the elevated CRC risk associated with active smoking was not significantly modified by NAT2 genotype. Slattery et al. (32) found that current smokers who were fast acetylators were at slightly lower risk than current smokers who were slow acetylators; the risk was slightly less than would be expected on an additive scale. Chan et al. (36) reported that the interactions between genotype and either early or total lifetime smoking failed to achieve a statistical significance. Moreover, Yoshida et al. (48) found that the distribution of NAT2 genotypes was not associated with CRC risk in ever-smokers.

In order to evaluate the combined ORs of these studies, smoking status was reclassified as never or ever smoking since the definition of cutoff points for pack-years in these studies was a bit different. The combined results showed no significant evidence for the modification of CRC risk associated with NAT2 status by cumulative smoking exposure (Table 5), which agreed with the conclusion of a meta-analysis conducted by Raimondi et al. (59).

Meat Consumption

In an ecological study among 27 countries by Ognjanovic et al. (60), the authors concluded that in combination with meat intake, some proportion of the international variability in CRC incidence may be attributable to genetic susceptibility to heterocyclic amines, as determined by NAT2 genotype.

Of the 45 studies included in our meta-analysis, 15 investigated the interactions between NAT2 acetylator status and meat consumption. Of these 15 genotype studies that measured meat intake (13, 21, 22, 25, 30–32, 36, 40, 49–53, 56), 13 investigated the hypothesized interaction of meat intake and NAT2 acetylator genotype. Welfare et al. (21), Chen et al. (22), Kampman et al. (25), Chan et al. (36), Lilla et al. (40), and Silva et al. (56) showed significant evidence for the modification of NAT2 and CRC by meat consumption. Welfare et al. reported that fast acetylators consuming fried meat more than twice a week were at risk of CRC (21). Chen et al. observed a stronger association between red meat intake and cancer risk among NAT2 rapid acetylators, especially among men aged 60 years and more (22). Kampman et al. reported that the overall mutagen index for red and white meat together was significantly positively associated with colon cancer risk among intermediate and rapid acetylators (25). Chan et al. indicated that women with rapid acetylator genotypes experienced a greater risk associated with intake of ≥0.5 serving of beef, pork, or lamb as a main dish per day compared to intake of less meat (36). Lilla et al. reported that the frequent consumption of red meat significantly increased CRC risk for NAT2 fast acetylators (40). Silva et al. found

Gender	No. of Studies	No. of Cases	No. of Controls	NAT2 Status	OR	95% CI	P	Heterogeneity	I²	P	Model
Male	7	2118	2392	Fast	0.95	0.84–1.08	0.46	0%	0.46	0.96	Fixed
Female	9	2085	3397	Fast	1.04	0.88–1.24	0.61	43%	0.08	Random	

Tumor Sites	No. of Studies	No. of Cases	No. of Controls	NAT2 Status	OR	95% CI	P	Heterogeneity	I²	P	Model
Proximal	6	678	2009	Fast	1.05	0.86–1.28	0.62	0%	0.68	Fixed	
Distal	5	471	1805	Fast	0.98	0.77–1.25	0.86	14%	0.32	Fixed	

Smoking	No. of Studies	No. of Cases	No. of Controls	NAT2 Status	OR	95% CI	P	Heterogeneity	I²	P	Model
Never	5	682	1394	Fast	1.05	0.87–1.28	0.59	0%	0.44	Fixed	
Ever	6	827	1265	Fast	1.03	0.80–1.34	0.80	40%	0.14	Random	
that among NAT2 fast acetylators, meat consumption more than 3 times a week increased the risk of CRC (56). In contrast, Le Marchand et al. (13), Tiemersma et al. (30), Barrett et al. (31), Sørensen et al. (51), Butler et al. (49), Nöthlings et al. (53), and Kobayashi et al. (52) did not report any apparent effect of interaction between NAT2 genotypes and meat intake on CRC risk.

Because the categorizations and criteria of meat consumption varied, there were no matching data for combinations, and we did not evaluate the combined ORs of these studies in this meta-analysis.

Sensitivity Analysis and Publication Bias

Sensitivity analysis was performed subsequently, and it showed similar results when deleting a single study involved in the meta-analysis each time, indicating that our results were statistically robust.

A funnel plot was performed to evaluate the publication bias of the literature. There does not appear to be an obvious publication bias among all the genotype studies extracted to this meta-analysis, for the shape of the funnel plot is symmetry, similar to an invert funnel (Fig. 6). However, in the phenotype studies, there may be a publication bias because the plot was asymmetrical (Fig. 7).

Discussion

NAT2 is involved in the metabolism of various potential carcinogens, such as HCAs and PAHs, and it has been hypothesized that NAT2 genetic polymorphism may contribute to risk of CRC. A series of studies have been published, but no clear consensus has been reached.

In 2002, Ye and Parry (61) conducted a meta-analysis using the published data from 20 case-control studies. They reported that the pooling of studies based on phenotyping methods indicated that the overall odds ratio of colon cancer risk associated with rapid acetylator was 1.51 (95% CI, 1.07–2.12). However, the calculated overall odds ratio of colon cancer risk associated with rapid acetylator from the studies based on genotyping was 1.03 (95% CI, 0.94–1.12), consistent with what was observed in this larger analysis. Pooling studies were also conducted on specific tumor sites and ethnic groups. The results showed that the effect of rapid acetylator on colon cancer risk was not obviously different. Therefore, the authors concluded that NAT2 alone was not an important risk factor for colon cancer, and NAT2 rapid acetylation status had no specific effect on the risk of developing colon cancer.

In the same year, de Jong et al. (62) also performed a meta-analysis to detect low-penetrance genes and their involvement in CRC susceptibility. The pooled analysis for phenotype studies revealed a positive association between fast acetylatorship and CRC, but genotype studies detected neither an association between CRC and presumed fast acetylatorship overall nor in subgroup analyses for ethnicity, gender, and tumor localization.

Three years later, Chen et al. (63) conducted a meta-analysis to clarify the influence of genetic polymorphisms on CRC. They found that NAT2 rapid acetylator phenotype (pooled OR, 1.15), but not NAT2 rapid acetylator genotype (pooled OR, 1.05), had a significantly increased risk of CRC ($P<0.05$).

Why does the pooled analysis of the phenotype-based studies conducted by Ye and Parry tend to be positive and that by de Jong et al. and Chen et al. negative? It is likely that methodological differences, such as different criteria of including a study for analysis, may underlie the somewhat different observations across the meta-analysis studies. For example, Ye and Parry, and de Jong et al. reported different results, which are likely due to the fact that Ye and Parry included additional studies by Wohlleb et al. (64) and Lang et al. (1994), and de Jong et al. included additional studies by Robers-Thomson et al. (65), which contained the patients with colorectal adenomatous polyps, and by Lang et al. (1986), though both studies of Ye and Parry, and de Jong et al. included the same 2 studies (8, 11). In the meta-analysis of Chen et al., a study (66) inves-

Fig. 6. Funnel plot of genotype studies

Fig. 7. Funnel plot of phenotype studies
tigating NAT (not only NAT2) polymorphism and gastrointestinal carcinoma (containing gastric carcinoma) and also 2 studies based on genotype (17, 25) were included. Comparing to the study of Ye and Parry, our meta-analysis included 4 more studies (10, 12–14) and still found a less significant association between the rapid or slow acetylator status and CRC risk.

Furthermore, phenotype is an expression of the actual ability to metabolize the relevant chemicals. There is some evidence that the alteration of acetylation phenotype was influenced by a number of the following factors: 1) disease status; 2) liver and renal functions; 3) selection or participation bias of case and/or controls and analytical method used; and 4) overlapping activity of NAT1, and in addition, misclassification may also be important because different xenobiotics and methods were used to assess NAT2 activity. Therefore, it is likely that genotype studies more accurately reflect the risk attributable to NAT2 acetylation status, which was shown by the consistent results of genotype studies in the present 4 meta-analyses.

Our study was built upon these previous meta-analyses with a more comprehensive and thorough assessment of NAT2 polymorphism and CRC susceptibility and included some new studies published after 2005. Importantly, we also did a pooled analysis of raw data from a large sample size (phenotype studies, 791 cases and 1158 controls; genotype studies, 13 875 cases and 18 879 controls) to corroborate the meta-analysis. The pooling of phenotype studies showed no significant association between the NAT2 acetylator status and CRC risk (rapid acetylator, OR, 1.32; 95% CI, 0.92–1.89, \(P = 0.14 \); slow acetylator, OR, 0.76; 95% CI 0.53–1.09; \(P = 0.14 \)). The combined ORs for rapid and slow acetylator status and CRC risk in genotype studies were 1.01 (95% CI, 0.94–1.08, \(P = 0.86 \)) and 0.99 (95% CI, 0.93–1.06, \(P = 0.86 \)), respectively. In the subgroup analysis by regions, no increased risks were found in Asians, Europeans, Americans, or Australians. Pooling studies were also conducted on the groups of gender and specific tumor sites, but results showed no significant association in genotype distribution between CRC and control as well. It is possible that the results would be more confidence in the meta-analysis because of the larger numbers of cases and controls.

It is widely recognized that not only the main effect of a gene, but also the influence of gene–environmental or gene–diet interactions on cancer risk are important.

An interaction between NAT2 genetic polymorphism and smoking in cancer risk received great attention in some pieces of research. NAT2 is a phase II metabolizing enzyme detoxifying arylamines, some of which are derived from tobacco smoke (67). The action of NATs on these carcinogens can generate electrophilic ions capable of inducing DNA point mutations, so smoking may interact with NAT2 polymorphism. However, the results of epidemiologic studies were incompatible as described previously, and it may be partly explained by the complexity of tobacco smoke constituents, variation in metabolism of smoking, and differences in a study design. In a meta-analysis conducted by Raimondi et al. (59), the authors made a pooling and found a nonsignificant positive interaction between NAT2 genetic polymorphism and smoking for CRC risk, consistent with our results.

Another factor that has been investigated as a potential modifier of the NAT2 and CRC association is meat consumption. The consumption of meat, especially cooked at high temperature, is associated with exposure to HCAs. It has been shown that after absorption, they need to be bioactivated or detoxicated by N-acetyltransferase enzymes or enzymes of other family, such as cytochrome P450 (CYP), glutathione S-transferase (GST), and sulfotransferase (SULT), before they can damage DNA (68). Therefore, the effect modification of the association between meat consumption and CRC risk by NAT2 polymorphisms has been suggested. However, the associations were not consistent across studies. The role of NAT2 polymorphisms in the effect modification of environmental carcinogens should be assessed in well-designed, large-scale epidemiological studies with comprehensive information on risk factors for better understanding the etiologic role of dietary factors.

Regarding NAT2, the results of our meta-analysis of the genotype studies failed to show a significant association between NAT2 polymorphism and CRC risk. Molecular biologically, because the products of several genes interact, NAT2 polymorphisms may not be associated with CRC alone, and an association with CRC is still possible in combination with polymorphisms of other genes. For two of these combinations, an association with CRC was shown with the combined high-risk genotypes of CYP1A2 and NAT2 (12) and of GSTT1 and NAT2 (69). Only with specific knowledge of whether other genes are involved, it will be possible to recognize epidemiologically the exact estimate of risk conferred via one particular gene. Future studies should also measure the interaction of NAT2 and other genes in studies involving large numbers of patients and controls.

Several limitations of this meta-analysis should be interpreted with caution. Firstly, some included studies and stratified analyses were limited by the relatively small sample size. Secondly, our results were based on unadjusted estimates, and a more precise analysis would have been performed if all

Medicina (Kaunas) 2012;48(3)
individual raw data had been available. Thirdly, gene polymorphisms could modify the association between smoking and CRC only in specific categories of smokers such as long-term smokers (70), and other factors such as age at initiation of smoking and years since smoking cessation for former smokers could play a role. In our analysis, smoking status was reclassified as never or ever smoking, and it might be that this classification was not accurate and did not reflect the real association between NAT2 polymorphism and smoking in colorectal cancer. Finally, as in most meta-analyses, publication bias must be considered because only published studies were included in the meta-analysis. Following the construction of a funnel plot (Fig. 7), we conclude that there is some degree of publication bias in the phenotype studies. Therefore, we cannot exclude this probability in our meta-analysis, and such a situation may lead to incorrect conclusions.

In spite of these limitations, our meta-analysis had some strengths. First, the sufficient number of cases and controls were pooled from multiple studies, which significantly increased the statistical power of our analysis. Second, the symmetry of the funnel plot among all the genotype studies (Fig. 6) suggests that in these publications, bias is less likely to have appeared, indicating that the pooled results of genotype studies may be unbiased. Third, when comparing with previous meta-analyses (61–63), we considered not only association between NAT2 polymorphism and CRC susceptibility by phenotype and genotype studies separately and stratified to subgroup analyses for regions, gender, and tumor localization, but also paid attention to the impact of NAT2 and environmental factors, such as smoking and meat consumption, on CRC. We could therefore give a more complete picture on the role of NAT2 polymorphisms contributing to CRC risk.

Conclusions
Findings from this meta-analysis and pooled analysis indicate that there is no overall association between NAT2 polymorphism and CRC susceptibility. It is of great important to conduct large-scale studies using standardized unbiased phenotyping or genotyping methods, homogeneous CRC patients, and well-matched controls. Moreover, future studies evaluating smoking and meat intake should try to collect and use standardized exposure measures, which would greatly help summarize the results of related studies.

Statement of Conflicts of Interest
The authors state no conflict of interest.

References
1. de Jong MM, Nolte IM, te Meerman GJ, van der Graaf WT, de Vries EG, Sijmons RH, et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11(11):1332–52.
2. Cross AJ, Sinha R. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ Mol Mutagen 2004;44(1):44–55.
3. Blum M, Graat DM, McBride W, Heim M, Meyer UA. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 1990;9(3):193–203.
4. Wairavong JM, Zang Y, Trent JO, Hein DW. Structure/function evaluations of single nucleotide polymorphisms in human N-acetylation 2. Curr Drug Metab 2008;9(6):471-86.
5. Hengstler JG, Arand M, Herrero ME, Oesch F. Polymorphism of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res 1998;154:47-85.
6. Kiyohara C. Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of colorectal cancer. J Epidemiol 2000;10(5):349-60.
7. Lang NP, Chu DZ, Hunter CF, Kendall DC, Flammang TJ, Kadlubar FF. Role of aromatic amine acetyltransferase in human colorectal cancer. Arch Surg 1986;121(11):1259-61.
8. Bett KE, David BM, Detchoin P, Castleden WM, Kwa R. Acetylation phenotype in colorectal carcinoma. Cancer Res 1987;47(5):1466-9.
9. Wohllbe JC, Hunter CF, Blass B, Kadlubar FF, Chu DZ, Lang NP. Aromatic amine acetyltransferase as a marker for colorectal cancer: environmental and demographic associations. Int J Cancer 1990;46(1):22-30.
10. Kirlin WG, Ogolla F, Andrews AF, Trinidad A, Ferguson RJ, Yerokun T, et al. Acetylator genotype-dependent expression of arylamine N-acetyltransferase in human colon cytosol from non-cancer and colorectal cancer patients. Cancer Res 1991;51(2):549-55.
11. Ladero JM, González JF, Benitez J, Vargas E, Fernández MJ, Baki W, et al. Acetylator polymorphism in human colorectal carcinoma. Cancer Res 1991;51(8):2098-100.
12. Lang NP, Butler MA, Massengill J, Lawson M, Stotts RC, Hauer-Jensen M, et al. Rapid metabolic phenotypes for acetyltransferase and cytochrome P450IA2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomarkers Prev 1994;3(8):675-82.
13. Le Marchand L, Hankin JH, Wilkens LR, Pierce LM, Franke A, Kolonel LN, et al. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYPIA2 phenotypes in increasing colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2001;10(12):1259-66.
14. Ishibe N, Sinha R, Hein DW, Kullendorf M, Strickland P, Freeland AJ, et al. Genetic polymorphisms in heterocyclic amine metabolism and risk of colorectal adenomas. Pharmacogenetics 2002;12(2):145-50.
15. Rodríguez JW, Kirlin WG, Ferguson RJ, Doll MA, Gray K, Rustan TD, et al. Human acetylator genotype: relationship to colorectal cancer incidence and arylamine N-acetyltransferase expression in colon cytosol. Arch Toxicol 1993;67(7):445-52.
16. Oda Y, Tanaka M, Nakanishi I. Relation between the occurrence of K-ras gene point mutations and genotypes of polymorphic N-acetyltransferase in human colorectal carcinomas. Carcinogenesis 1994;15(7):1365-9.
17. Shibuta K, Nakashima T, Abe M, Mashimo M, Mori M, Ueo H, et al. Molecular genotyping for N-acetylation polymorphism in Japanese patients with colorectal cancer. Cancer 1994;74(12):3108-12.
18. Bell DA, Stephens EA, Castronio T, Umbach DM, Watson M, Deakin M, et al. Polycydenylation polymorphism in the acetyltransferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res 1995;55(16):3537-42.

19. Spurr NK, Gough AC, Chinegwundoh FI, Smith CA. Polymorphisms in drug-metabolizing enzymes as modifiers of cancer risk. Clin Chem 1995;41(12):1864-9.

20. Hubbard AL, Harrison DJ, Moyes C, Wylie AH, Cunningham C, Mannion E, et al. N-acetyltransferase 2 genotype in colorectal cancer and selective gene intake in cancers with chromosome 8p deletions. Gut 1997;41(2):229-34.

21. Welfare MR, Cooper J, Bassendine MF, Daly AK. Relationship between acetyltransfer status, smoking, diet and colorectal cancer risk in the northeast of England. Carcinogenesis 1997;18(7):1351-4.

22. Chen J, Stampfer MJ, Hough HL, Garcia-Closas M, Willett WC, Hennekens CH, et al. A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer. Cancer Res 1998;58(15):3307-11.

23. Gil JP, Lechner MC. Increased frequency of wild-type arylamine-N-acetyltransferase allele NAT2*4 homozygotes in Portuguese patients with colorectal cancer. Carcinogenesis 1998;19(1):37-41.

24. Lee ED, Zhao B, Seow-Choen F. Relationship between polymorphisms of N-acetyltransferase gene and susceptibility to colorectal carcinoma in a Chinese population. Pharmacogenetics 1998;8(6):513-7.

25. Kampman E, Slattery ML, Bigler J, Leppert M, Samowitz W, Caa Bj, et al. Meat consumption, genetic susceptibility, and colon cancer risk: a United States multicenter case-control study. Cancer Epidemiol Biomarkers Prev 1999;8(1):15-24.

26. Yoshikawa M, Katoh T, Nakano M, Takasawa S, Nagata N, Itoh H. Glutathione S-transferase (GST) M1, T1, P1, N-acetyltransferase (NAT) 1 and 2 genetic polymorphisms and susceptibility to colorectal cancer. J UOEH 1999;21(2):133-47.

27. Agúndez JAG, Lozano L, Ladero JM, Sastre J, Cerdán FJ, Diaz-Rubio M, et al. N-acetyltransferase 2 (NAT2) genotype and colorectal carcinoma: risk variability according to tumor site? Scand J Gastroenterol 2000;35(10):1087-91.

28. Katoh T, Boissy R, Nagata N, Kitagawa K, Kuroda Y, Itoh H, et al. Inherited polymorphism in the N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and susceptibility to gastric and colorectal adenocarcinoma. Int J Cancer 2000;85(1):46-9.

29. Butler WJ, Ryan P, Roberts-Thomson IC. Metabolic genotypes and risk for colorectal cancer. J Gastroenterol Hepatol 2001;16(6):631-5.

30. Tiemersma EW, Kampman E, Bueno de Mesquita HB, Bunschoten A, van SchoorH EM, KoFJ, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer; results from a Dutch prospective study. Cancer Causes Control 2002;13(4):833-93.

31. Barrett JH, Smith G, Waxon B, Goorderah N, Lightfoot T, Garner RC, et al. Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer. Carcinogenesis 2003;24(2):275-82.

32. Slattery ML, Edwards S, Curtin K, Schaffer D, Neuhansen S. Associations between smoking, passive smoking, GSTM1, and rectal cancer. Cancer Epidemiol Biomarkers Prev 2003;12(9):882-9.

33. van der Hel OL, Bueno de Mesquita HB, Sandkuijl L, van Noord PA, Pearson PL, Grobbée DE, et al. Rapid N-acetyltransferase 2 imputed phenotype and smoking may increase risk of colorectal cancer in women (Netherlands). Cancer Causes Control 2003;14(3):293-8.

34. He LJ, Yu YM, Qiao F, Liu JS, Sun XF, Jiang LL. Genetic polymorphisms of N-acetyltransferase 2 and colorectal cancer risk. World J Gastroenterol 2005;11(27):5268-71.

35. Kiss I, Németh A, Bogner B, Pajkos G, Orsós Z, Sándor J, et al. Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer. Anticancer Res 2004;24(6):3965-70.

36. Chan AT, Tranah GJ, Giovannucci EL, Willett WC, Hunter DJ, Fuchs CS. Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer. Int J Cancer 2005;115(4):648-52.

37. Chen K, Jin MJ, Fan CH, Song L, Jiang QT, Yu WP, et al. [A case-control study on the association between genetic polymorphisms of metabolic enzymes and the risk of colorectal cancer]. Zhonghua Liu Xing Bing Xue Za Zhi 2005;26(9):659-64.

38. Landi S, Gemignani F, Moreno V, Gioia-Patricola L, Chabrion A, Guino E, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics 2005;15(8):353-46.

39. Borlak J, Reamoon-Buettner SM. N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients. BMC Med Genet 2006;7:58.

40. Lilla C, Verla-Tebit E, Risch A, Jäger B, Hoffmeister M, Brenner H, et al. Effect of NAT1 and NAT2 genetic polymorphisms on colorectal cancer risk associated with exposure to tobacco smoke and meat consumption. Cancer Epidemiol Biomarkers Prev 2006;15(1):99-107.

41. Moslehi R, Chatterjee N, Church TR, Chen J, Yeager M, Weissfeld J, et al. Cigarette smoking, N-acetyltransferase genes and the risk of advanced colorectal adenoma. Pharmacogenomics 2006;7(6):819-29.

42. Pistorius S, Görögins H, Krüger S, Engel C, Mangold E, Pagenstencher C, et al. N-acetyltransferase (NAT) 2 acetylator status and age of onset in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Letters 2006;241(1):150-7.

43. Huang CC, Chien WP, Wong RH, Cheng YW, Chen MC, Chou MC, et al. NAT2 fast acetylator genotype is associated with an increased risk of colorectal cancer in Taiwan. Dis Colon Rectum 2007;50(7):981-9.

44. Yi J, Bing X, Zhan-xiong X, Jun-jié Z, Lai-fang S, Bo Z. [Association between N-acetyltransferase 2 gene polymorphisms and genetic susceptibility to sporadic colorectal adenocarcinoma]. Zhonghua Liu Xing Bing Xue Za Zhi 2007;27(1):15-8.

45. Rui-zhen L, Zhen-ya Z, Yue-ming Y, Lu-jun H, Fang Q. The relationship between NAT2 polymorphism and colorectal cancer susceptibility. J Pract Med Techn 2007;14(20):2705-7.

46. Mahid SS, Colliver DW, Crawford NP, Martini BD, Doll MA, Hein DW, et al. Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma. BMC Medical Genet 2007;8:28.

47. Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh LL. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci 2007;14(2):183-93.

48. Yoshida K, Osawa K, Kasahara M, Miyashita A, Nakashiki K, Hayamizu S, et al. Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer risk. Asian Pacific J Cancer Prev 2007;8:133-5.

49. Butler LM, Millikan RC, Sinha R, Keku TO, Winkel S, Rubin MA, Hein DW, et al. Characterization of N-acetyltransferase-1 and phase II metabolism gene polymorphisms with colorectal and lung cancer risk. Cancer Epidemiol Biomarkers Prev 2008;17(11):3098-107.
51. Sørensen M, Autrup H, Olsen A, Tjønneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Letters 2008; 266(2):186-93.

52. Kobayashi M, Otani T, Iwasaki M, Natsukawa S, Shaura K, Koizumi Y, et al. Association between dietary heterocyclic amine levels, genetic polymorphisms of NAT2, CYP1A1, and CYP1A2 and risk of colorectal cancer: a hospital-based case-control study in Japan. Scand J Gastroenterol 2009; 44(8):952-9.

53. Nøthlings U, Yamamoto JF, Wilkens LR, Murphy SP, Park SY, Henderson BE, et al. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2009;18(7):2098-106.

54. Zupa A, Sgambato A, Bianchino G, Improta G, Grieco V, LA Torre G, et al. Meat and heterocyclic amine intake, smoking, NAT1 and NAT2 polymorphisms, and colorectal cancer risk in the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev 2009;18(7):2098-106.

55. Xian-e P, Ying-ying J, Lin L, Zhi-min H, Zhi-jian H, Xi-shun S. Relationship between environmental exposures, genetic polymorphism of NAT2 and colorectal cancer. Cancer Res Clin 2010;22(2):89-91.

56. da Silva TD, Felipe AV, de Lima JM, Oshima CT, Forones NM. N-Acetyltransferase 2 genetic polymorphisms and risk of colorectal cancer. World J Gastroenterol 2011;17(6):760-5.

57. Wang J, Joshi AD, Corral R, Siegmund KD, Marchand LL, Martinez ME, et al. Carcinogen metabolism genes, red meat and poultry intake, and colorectal cancer risk. Int J Cancer 2011; doi: 10.1002/ijc.26199.

58. Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993;14(9):1821-4.

59. Raimondi S, Botteri E, Iodice S, Lowenfels AB, Maisonneuve P. Gene-smoking interaction on colorectal adenoma and cancer risk: review and meta-analysis. Mutation Research 2009;670(1-2):6-14.

60. Ognjanovic S, Yamamoto J, Maskarinec G, Le Marchand L. NAT2, meat consumption and colorectal cancer incidence: an ecological study among 27 countries. Cancer Causes Control 2006;17(9):1175-82.

61. Ye Z, Parry JM. Meta-analysis of 20 case-control studies on the N-acetyltransferase 2 acetylation status and colorectal cancer risk. Med Sci Monit 2002;8(8):CR558-65.

62. de Jong MM, Nolte IM, te Meeran GJ, van der Graaf WT, de Vries EG, Simons RH, et al. Low-penetration genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2002;11(11):1332-52.

63. Chen K, Jiang QT, He HQ. Relationship between metabolic enzyme polymorphism and colorectal cancer. World J Gastroenterol 2005;11(3):331-5.

64. Wohlleb JC, Hunter CF, Blass B, Kaldor FF, Chu DZ, Lang NP. Aromatic amine acetylation and colorectal cancer: environmental and demographic associations. Int J Cancer 1999;68(1):22-30.

Received 19 January 2012, accepted 13 February 2012

Medicina (Kaunas) 2012;48(3)