Impact of dissipation on the energy spectrum of experimental turbulence of gravity surface waves

Antoine Campagne, Roumiasse Hassaini, Ivan Redor, Joël Sommeria, Thomas Valran, Samuel Viboud, Nicolas Mordant

1 Laboratoire des Ecoulements Géophysiques et Industriels, Université Grenoble Alpes, CNRS, Grenoble-INP, F-38000 Grenoble, France

We discuss the impact of dissipation on the development of the energy spectrum in wave turbulence of gravity surface waves with emphasis on the effect of surface contamination. We performed experiments in the Coriolis facility which is a 13-m diameter wave tank. We took care of cleaning surface contamination as well as possible considering that the surface of water exceeds 100 m². We observe that for the cleanest condition the frequency energy spectrum shows a power law decay extending up to the gravity capillary crossover (14 Hz) with a spectral exponent that is increasing with the forcing strength and decaying with surface contamination. Although slightly higher than reported previously in the literature, the exponent for the cleanest water remains significantly below the prediction from the Weak Turbulence Theory. By discussing length and time scales, we show that weak turbulence cannot be expected at frequencies above 3 Hz. We observe with a stereoscopic reconstruction technique that the increase with the forcing strength of energy spectrum beyond 3 Hz is mostly due to the formation and strengthening of bound waves.

The effect of an oil film spread on the sea to calm the waves has been reported since Antiquity. This phenomenon is used in practice to detect remotely oil spills by radar probing the roughness of the sea surface. Experiments show that the maximum damping occurs usually for frequencies between 1 and 10 Hz (i.e. for wavelengths between 1 cm to 1 m). In the laboratory, the dedicated wave tanks are of typical size equal to a few times 10 m. In order to fit enough wavelengths in the tank to observe significant phenomena, the typical excitation of waves occurs most often at wavelengths of the order of 1 m (about 1 Hz for deep water waves) or slightly larger. In the wave turbulence framework, energy is expected to cascade in wavelength space from forcing scales to small dissipative scales. It means that the range of wavelengths over which the cascade occurs is precisely the one in which the damping by surface contamination is supposed to be the most efficient. This damping is most likely impacting significantly the nonlinear cascade and it maybe one of the reasons that explain the discrepancy between laboratory observations and theoretical predictions from the weak turbulence theory. Indeed considering the surface of wave tanks covering several hundreds square meter, it is very challenging to achieve a perfect control of the quality of the water surface, so that surface contamination is hard to avoid. Dissipation is known to cause a steepening of turbulence wave elevation spectra as was reported for elastic waves in a thin plate and for capillary-gravity waves.

Here we report experiments dedicated to observe the impact of surface contamination on wave turbulence of surface gravity-capillary waves. We also discuss more generally the impact of dissipation of the development of the energy cascade due to wave turbulence of gravity surface waves.

I. WAVE DAMPING BY MOLECULAR FILMS AT THE SURFACE OF WATER

The physical mechanism hidden behind this spectacular phenomenon is the modification of the tangential stress boundary condition at the air/water interface. For a perfectly clean interface, the tangential stress should vanish due to the much lower density of air. When a monomolecular film is present at the interface, the tangential stress does not vanish anymore due to concentration gradients resulting from the elongation or compression of the film. In the presence of a film, the boundary layer can sustain longitudinal waves (referred to as Marangoni waves) due to the viscoelastic properties of the film. The consequence of the modification of the boundary condition is the appearance of strong velocity gradients in the boundary layer which are maximum when the Marangoni waves are resonant with the gravity-capillary waves. This resonance leads to a much stronger dissipation that the one of a perfectly clean surface. Following Alpers & Hünerfuss, let us write the wave vector as \(\kappa = k + i\Delta \). \(\kappa \) is complex due to the attenuation \((k \text{ and } \Delta \text{ are real numbers}) \). For a perfectly clean surface, the damping coefficient \(\Delta_0 \) is equal to

\[
\Delta_0 = \frac{4k^2\eta\omega}{\rho g + 3\gamma k^2},
\]

where \(\eta \) is the dynamic viscosity, \(\rho \) is the density of the fluid, \(\gamma \) is the surface tension of pure water, \(g \) is the acceleration of gravity and \(\omega \) is the angular temporal frequency. Alpers & Hünerfuss reports the calculation of the extra dissipation factor \(\gamma(\omega) = \frac{1}{\Delta_0} \) due to the surface contamination.
of the resonance was confirmed experimentally by Cini & Lombardini [3]. The variation of interfacial surfactant concentration due to the interaction of surface waves with the surfactant layer was directly observed by Strickland et al. [17]. Note that dissipation occurs also through boundary layers at the bottom and at the vertical walls of the tank [18]. This contribution is expected to be significant for large wavelength and to be independent of the surface contamination.

II. THE ISSUE OF SPECTRA IN EXPERIMENTAL WAVE TURBULENCE

The weak turbulence theory (WTT) is aimed at describing the statistical properties of a wave assembly, notably in the out of equilibrium case in which waves are forced at relatively large scale and dissipated at the smallest scales [3, 7, 19]. It is based on the hypothesis of weak nonlinearity such that a scale separation exists between the period T of the wave and T_{NL} the time scale of the slow evolution of the wave energy due to the nonlinear coupling with the ensemble of all the other waves. T_{NL} can be seen as the timescale of the correlation of the wave amplitude modulation (see [20]). Under this hypothesis, a multiscale analysis can be developed that predicts the occurrence of an energy cascade. For waves propagating on a 2D surface, the energy cascade is direct i.e. it transfers energy to small scales. The WTT also provides estimates of the surface deformation spectrum $E^y(k)$ in either gravity or capillary regimes:

$$E^y(k) \propto g^{1/2} P^{1/3} k^{-5/2} \quad \text{(gravity waves)},$$

$$E^y(k) \propto \gamma^{1/4} P^{1/2} k^{-7/4} \quad \text{(capillary waves)},$$

where g is the gravity acceleration and P is the energy flux in the cascade. Using the dispersion relation

$$\omega_{LDR}^2 = gk + \frac{\gamma}{\rho} k^3$$

at either small or large k one can translate the k spectra prediction into frequency spectra as

$$E^y(\omega) \propto g P^{1/3} \omega^{-4} \quad \text{(gravity waves)},$$

$$E^y(\omega) \propto \left(\frac{2}{\rho}\right)^{1/6} P^{1/2} \omega^{-17/6} \quad \text{(capillary waves)}.$$
range of validity of the theoretical prediction for weak turbulence. Nazarenko et al. [8] report that it neither fits with the k and ω spectra proposed by Philips [31] or Kuznetsov [32] for singular or overturning waves respectively.

![Figure 2](image)

Figure 2. Measured spectral exponent α of the temporal spectrum as function of the typical steepness of the waves ϵ (changed by tuning the magnitude of the forcing and dependent as well on the surface contamination). Dark triangles are previous measurements reported by Deike et al. [9]. The blue and red squares are measurements by Aubourg [28, 30] with and without filtration. The single purple point is an in-situ measurement of gravity waves in the Black sea [21]. Our present data for the cleanest case are the two cyan dots.

![Diagram A](image)

III. EXPERIMENTS IN THE CORIOLIS FACILITY

A. Experimental setup

The setup is very similar to that of Aubourg et al. (fig. 3 [28, 30]). The wave tank is circular with a diameter equal to 13 m and the water depth is $h = 0.9$ m. The water surface is maintained as clean as possible by pumping the surface through a skimmer located near the wall and by flowing the pumped water through an active carbon filter. The water is then reinjected near the wall at a location diametrically opposite to the skimmer. Wave are generated by two wedge wavemakers oscillating vertically at a randomly modulated frequency (fig. 3 b)). The wavemakers have been upgraded compared to Aubourg et al. They keep their wedge geometry but with round ends so that to have a less directional generation. Two conditions of forcing were studied: a center frequency f_0 either equal to 0.585 ± 0.15 Hz (called “weak” case, steepness $\epsilon = 0.11$) or 0.78 ± 0.15 Hz (called “strong” case, $\epsilon = 0.16$) with the same amplitude (2 cm) of vertical oscillation of the wavemaker. The filtration is not operating during the experiments so that it does not induce a spurious current in the tank. The surface elevation is recorded by using 10 capacitive wave gauges (their positions are shown in fig. 3). Surface tension is known to be very sensitive to surface contamination. Thus we measure surface tension by sampling the water surface regularly before and after the record once waves are damped. For reasons of convenience, the sample is taken at the periphery of the tank. The measured surface tension displays some variability due to sample collection and also due to a possible inhomogeneity of the surface contamination when waves are present. Indeed a weak but visible surface current is induced by the waves that can advect patches of surface films. Nevertheless our protocol allowed us to achieve a reasonable repeatability of the measurement. We estimate the confidence of the measurement close to $\pm 5 mN/m$. After several days of filtration the measured surface tension was $74 mN/m$ which was the value mea-
sured from fresh tap water at the same temperature. For clean water the repeatability of the measurement was actually significantly better ($\pm 2\text{mN/m}$).

B. Frequency spectra

![Figure 4](image4.png)

Figure 4. Spectra after several days of almost continuous filtration. Top: “strong” case, bottom: “weak” case. The spectra have been averaged over several capacitive probes. The dashed lines correspond to a decay $1/f^{3.2}$ (top) and $1/f^{4}$ (bottom). The gravity-capillarity crossover occurs at 14Hz which corresponds to the observed change of slope of the spectrum. The signal reaches the noise level at about 100 Hz.

Figure 4 shows typical spectra obtained after several days of almost continuous filtration of the surface. The weakest case displays a spectral exponent close to -6 and the strongest case an exponent close to -5. Although the duration of filtration was much longer than in Aubourg et al. [28, 30] the spectral exponents do not exceed the upper limit of the previous data (fig. 2).

In a first experiment, after a long cleaning of the surface, we stop the filtration and record the wave elevation over several hours (each record being one hour long). The evolution of the spectra with time is shown in fig. 5. The frequencies up to about 2 Hz are unaffected by the extra damping but higher frequencies are strongly diminished. A maximum damping efficiency is observed at about 6.5 Hz that can reach 60% for the latest spectra. The black curve is the variation of $1/y(f)$ for oleic acid with parameters taken from Alpers et al. [4] that happens to have a maximum at the same frequency. This is mostly a coincidence as no oleic acid has been added to the water surface. The physico-chemical nature of the contamination is unknown as the contamination comes from dust falling on the surface and solvants from paint and plastic parts immersed in the water. Nevertheless the shape of $y(f)$ for oleic acid is quite typical and this comparison supports the fact that the increasing damping of our spectra comes from surface contamination. The shape of the normalized spectra is actually qualitatively similar to that of $1/y(f)$ for oleic acid. Nevertheless the impact of surface damping is more complex than just filtering as it affects the nonlinear cascade that provides energy to waves. Damping at a given frequency must impact the waves at higher frequencies as the flux that feeds them must be reduced. Thus, in place...
of having a constant energy flux, the flux is progressively reduced as the frequency increases.

Figure 7 shows a collection of spectra for either weak or strong forcing in a stationary configuration. Each curve corresponds to a one hour record of the surface elevation. The typical experimental sequence is 1 hour-long filtration, then two successive 1 hour-long records then filtration again. After a day of recording the filtration is then operated overnight and the sequence restarts. We see that a quite strong variability of the spectra of the weak case is seen in spite of our efforts to cleanup the surface. By contrast, the variability of the spectra is much reduced in the strong case (although the cleaning sequence is the same) which is much less sensitive to the surface condition. This is reminiscent of the dispersion of the exponents in fig. 2 which is much more pronounced for low steepness than for the strongest ones.

IV. DISCUSSION OF TIME SCALES

The core of the Weak Turbulence Theory is the hypothesis of scale separation between the linear period of the wave \(T \) and the nonlinear time scale \(T_{NL} \) over which the non linearity operates. In the theory the dissipation is supposed to occur only at vanishing scales so that the dynamics is conservative over most scales leading for gravity waves to the theoretical prediction:

\[
E(\omega) = C g^2 P^{1/3} \omega^{-4/3}
\]

where \(C \) is a constant, \(g \) is the gravity acceleration and \(P \) is the energy flux \[4\].

In actual physical systems, viscosity operates at any scale but is most efficient at the smallest scales. One may expect the predictions of the Weak Turbulence theory to be valid if an additional scale separation exists between \(T_{NL} \) and the dissipative time scale \(T_d \) so that

\[
T \ll T_{NL} \ll T_d
\]

at least in an inertial range of scales.

If one assumes that the dissipative time is much larger than the nonlinear time scale, the energy flux is progressively but only slightly depleted as the cascade proceeds to small scales. In that case the overall structure of the KZ spectrum should be preserved so that the energy spectrum may keep the form:

\[
E(\omega) = C g^2 P(\omega)^{1/3} \omega^{-4/3}
\]

where the energy flux \(P(\omega) \) is slowly decaying with \(\omega \). If the nonlinear coupling is very local in scale then the
The kinetic equation can be written in frequency space (see Ref. [4] for instance) and for frequencies higher than that of the forcing as

$$\frac{\partial E(\omega)}{\partial t} = -\frac{\partial P}{\partial \omega} - 2\gamma(\omega)E(\omega),$$

(12)

with the inclusion of dissipation. $\nu = \frac{2}{\rho}$ is the kinematic viscosity and $\gamma(\omega) = 2\nu k^2 = 2\omega^2 / g^2$ is the dissipation rate. With the above shape of the energy spectrum, this equation can be rewritten in the stationary case as

$$\frac{\partial P}{\partial \omega} = -4\nu CP^{1/3} / g$$

(13)

The flux is thus obviously decaying with ω. This equation can be integrated as

$$P(\omega) = \left(P(\omega_f)^{2/3} - \frac{8\nu C}{3g} (\omega - \omega_f) \right)^{3/2}$$

(14)

with ω_f being the frequency of the energy injection (supposed to be narrow band around ω_f). Using Eqs. (11) and (13), the spectrum is then

$$E(\omega) = C \frac{\omega^3}{\omega^4} \left(P(\omega_f)^{2/3} - \frac{8\nu C}{3g} (\omega - \omega_f) \right)^{1/2}.$$

(15)

The spectrum is thus expected to be slightly steeper than the KZ prediction in the limit $T_d \gg T_{NL}$. Unfortunately we cannot test directly this prediction as P is unknown in our experiments as it is extremely difficult to measure it.

Figure 8(a) shows the dissipative length scale expressed in terms of the wavelength i.e. the ratio k/Δ. In the frequency interval $[1, 10]$ Hz, for a perfectly clean surface, the ratio decays from 10^5 wavelengths down to about 400. In terms of time scales, the imaginary part of the angular frequency is $2\nu k^2$ (Δt is actually computed by multiplying this value by the group velocity $[4]$). Figure 8(b) shows the ratio $T_d/T = \omega / 2\nu k^2$. The variation of the time scale ratio takes naturally similar values to that of length scales. When the surface contamination is taken into account, the scale ratio is unchanged up to 2 Hz but may decay by more than one order of magnitude at the peak of $y(f)$ (the actual value depends on the pollutant) and falls below 100.

In the framework of the WTT, due to the 4-wave interactions of gravity waves, the ratio T_{NL}/T is expected to scale as ϵ^{-3} i.e. should be of order 10000 for $\epsilon = 0.1$ [33]. This can be achieved for frequencies below 2 Hz but not for higher frequencies even for a perfectly clean surface. For instance at 5 Hz ($\lambda \approx 7$ cm), the waves can propagate only over 1000 periods (with clear water) before being damped and over 100 periods for contaminated water. Thus one expects a very strong impact of dissipation over most frequencies even for very clean water and thus even the corrected spectrum [15] should not be valid.

The ratio T/T_{NL} actually depends on the frequency. In the gravity range and in the kinetic regime, if the wave spectrum follows the Kolmogorov-Zakharov spectrum, then following Newell et al. [33, p. 544] one should have:

$$\frac{T}{T_{NL}} \approx \frac{1}{\omega n_k} \frac{\partial n_k}{\partial t} = CP^{2/3} k / g$$

(16)

where n_k is the wave action spectrum. $\frac{\partial n_k}{\partial t}$ is estimated with the kinetic equation (see [33] for details). The ratio T_d should be in the gravity range

$$\frac{T}{T_d} = \frac{4\pi g}{\rho g^{1/2} k^{3/2}}$$

(17)

so that the ratio T_{NL}/T_d is

$$\frac{T_{NL}}{T_d} = \frac{4\pi g^{1/2}}{C \rho g^{2/3} k^{1/2}}$$

(18)

This ratio must remain much smaller than one but is increasing a $k^{1/2}$ so that at a given value of the nonlin-
is that the attenuation is not as fast when the nonlinearity is decreased. Furthermore it should be very sensitive to a slight contamination of the water surface that further reduces the dissipative time scale. These observations suggest that the frequencies of the waves in our experiment are beyond the critical frequency. The above scaling suggests that one should recover the KZ spectrum when increasing the nonlinearity. This appears consistent with the observation of spectral exponent becoming closer to the KZ prediction at larger steepness (Fig. 2). The issue is then that the steepness may become so large that the hypothesis of small nonlinearity is broken and the waves are whitecapping. In this case one has $T \sim T_{NL}$ and the theory is not established in this limit.

At frequencies above the gravity-capillarity crossover the issue of time scale separation will be present as well. The pure capillary cascade is then a 3-wave process so that, in the kinetic regime and for the KZ spectrum,

$$T/T_{NL} \approx \frac{1}{\omega_n} \frac{\partial n_k}{\partial t} \propto P^{1/2} k^{-3/4}$$

and

$$T_{NL}/T_d \propto k^{5/4} P^{-1/2}$$

Although the ratio T/T_{NL} is getting smaller with k (the cascade is getting less nonlinear as it proceeds), the ratio T_{NL}/T_d is increasing faster with k. The critical wavenumber is thus

$$k_c \propto P^{2/5}$$

$P^{1/2}$ is scaling as ϵ^2 so that $k_c \propto \epsilon^{8/5}$. Thus, as for the case of gravity waves, k_c is also decaying (although not as fast) when the nonlinearity is decreased.

When the nonlinear time scale estimated from the kinetic equation (equations (16) & (21)) becomes comparable to T_d, the hypotheses underlying the computation of the collision term are not valid. Indeed, the obtention of the collision term involves taking a limit of large times that cannot be operated anymore if there is no scale separation. The frequency resonance condition results from the fact that only resonant waves can exchange a significant amount of energy, by a cumulative process, as ϵ goes to zero. Here we see that at weak enough nonlinearity, the energy exchange can operate at most over a time T_d which strongly reduces the efficiency of the energy transfers and thus should steepen the spectra. A distinct statistical theory must be developed. Based on the still existing scale separation $T/T_d \ll 1$ a multiscale development may be relevant. For the kinetic theory to be valid one must have $T \ll T_{NL} \ll T_d$ which is possible in laboratories only with very large flumes and most likely over a very narrow range of frequencies up to a few Hz (even with a clean water surface). Note that another limit exists which is the size of the wave tank which should be much larger than the wavelength which is not the case for meter wavelengths. We take advantage of reflexions on the walls to increase the effective propagation length at the expense of the presence of discrete modes (see 20 and references therein for a discussion of finite size effects in another system supporting wave turbulence).

Another observation in fig. 6 is that the attenuation is not as strong for frequencies higher than 10 Hz i.e. for capillary waves. If the cascade would be strongly local in wavenumber space, one would expect that the attenuation is a decaying function of the scale which is not what is observed. A non local nonlinear coupling mechanism has been reported by Aubourg & Mordant 33 at the gravity-capillary crossover. This crossover occurs at $f = 13.5$ Hz ($\lambda = 1.7$ cm). This coupling has been observed to be quite strong because it involves only 3 waves. It is also nonlocal and couples short gravity waves ($1 - 2$ Hz) and capillary waves. The increase of the observed attenuation at frequencies larger that 7 Hz is most likely due to this mechanism that pumps energy directly from gravity waves. Note that being a 3-wave process, the nonlinear time of this mechanism is expected to be much shorter than that of the 4-wave process (scaling as ϵ^2 rather than ϵ^4). Thus the 3-wave crossover coupling is likely to remain efficient even for contaminated water. Actually the next section reports space and time resolved measurements that show a very different explanation.

It must be noted also that another feature is operating in laboratory experiments which is the effect of the finite size of the flume. As mentioned in 21, in finite basins, the linear modes are discrete. In order for a truly kinetic regime to develop (i.e. with continuous frequencies and wavenumbers) the nonlinear spectral widening must compensate for the mode separation. Thus the nonlinearity must be large enough, typically $\epsilon \geq 1/k_p L$ where L is the size of the flume and k_p is the value of the wavenumber at the peak of the spectrum. In our case the values are similar to that of refs. 33, 23 i.e. $\epsilon \geq 0.4$. We obviously do not reach such high values of the nonlinearity and this explains most likely that the spectral exponent does not reach the kinetic prediction as predicted in 33 even in the cleanest conditions.

V. $k-\omega$ SPECTRUM

In order to check in more details the structure of the wave field, we use a stereoscopic technique to obtain a
fully resolved (in space and time) measurement of the water surface (see [30, 31] for information on the technique). We seed the surface of water with small (700 µm) buoyant particles to make the surface visible. The first question is the impact of the particles on the wave statistics. Strickland et al. [17] suggested that a mechanism similar to Marangoni damping could be operating when particles are floating at the surface. Figure 9 displays the comparison between surface elevation spectra obtained with clean water and with floating particles (at a surface concentration about 10 particles/cm²). At the weakest forcing the spectrum seems actually slightly amplified. By contrast it is very weakly damped at the strongest forcing. This damping is weaker than that due to surface contamination and occurs at higher frequencies. Thus the mechanism of surface alteration due to floating particles seems quite distinct to that of chemical surface contamination. The weakness of the effect of adding the particles makes us confident that the particles do not alter the wave dynamics for scales much larger than the particle size.

The space-time spectrum $E^0(k, \omega)$ is shown in Fig. 10(a). The spectrum is obtained by performing a Fourier transform in both space and time (over time window of duration 125 s) providing $\eta[k, \omega]$. The squared modulus of the Fourier transform is averaged over successive time windows (Welch method) and integrated over directions of the wavevector k to give $E^0(k, \omega)$. The main energy component is a continuous line of energy on the dispersion relation that extends up to 4 Hz as expected for weak turbulence. Secondary energy lines are also visible on each side of the dispersion relation (highlighted by dashed lines) that correspond to so-called bound waves, which are not freely propagating waves following the quasilinear dispersion relation. They result from a triadic interaction between freely propagating waves. In our case, the observed lines can be ob-
tained by assuming that the forcing peak at \((k_f, \omega_f)\) is interacting with all free waves on the dispersion relation propagating in the same direction. The equation of the first line on the right of the dispersion relation in Fig. 10(a) is thus: \(\omega^{(1)} = \omega_{LDR}(k-k_0) + \omega_0\) where \(\omega(k)\) is the dispersion relation \((\text{6})\). The line on the left follows \(\omega^{(-1)} = \omega_{LDR}(k+k_0) - \omega_0\). The lines further from the dispersion relation can be obtained assuming a similar interaction with successive harmonics of the forcing peak: \(\omega^{(\pm m)} = \omega_{LDR}(k \mp nk_0) \pm n\omega_0\). It is worth noting that at frequencies higher than 4 Hz, almost all the energy lies in the bound waves. Fig. 10(b) shows the construction of the full frequency spectrum when adding progressively the energy lying on the bound waves (for \(n > 0\)). It confirms that the contribution to the spectrum at frequencies higher than 4 Hz comes from those bound waves and not from an extension of the weakly non linear cascade to higher frequencies. The wave cascade seems to stop at 4 Hz in agreement with the above discussion on time scales. Fig. 10(c) shows a similar construction for the wavenumber spectrum when adding the bound waves (with \(n < 0\)). It can be seen that the \(k\)-spectrum is much less sensitive to the bound waves than the frequency spectrum. This is due to the fact that the extension in \(k\) of the bound waves is about the same than the main energy line lying on the linear dispersion relation and the energy of the bound waves remains smaller than that of the dispersion relation.

In summary, the development of the weak energy cascade along the dispersion relation is strongly restricted by the viscous cutoff and even more restricted if the surface is contaminated. The extension of the frequency spectrum at higher frequencies observed for stronger forcing intensities is actually due to development of bound waves. In order to observe a weak turbulent cascade of gravity waves, one has to use much wider wave tanks in very large scale facilities in which a forcing could be achieved at lower frequency.

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 647018-WATU).

[1] V. Wismann, M. Gade, W. Alpers, and H. Huhnerfuss, “Radar signatures of marine mineral oil spills measured by an airborne multi-frequency radar,” International Journal of Remote Sensing 19, 3607–3623 (1998).
[2] W G Van Dorn, “Boundary dissipation of oscillatory waves,” Journal Of Fluid Mechanics 24, 769 (1966).
[3] R. Cini and P.P. Lombardini, “Experimental evidence of a maximum in the frequency domain of the ratio of ripple attenuation in monolayered water to that in pure water,” Journal of Colloid and Interface Science, 125 –131 (1981).
[4] W. Alpers and H. Huhnerfuss, “The Damping of Ocean Waves by Surface Films: A New Look at an Old Problem,” Journal of Geophysical Research 94, 6251–6265 (1989).
[5] V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence (Springer, Berlin, 1992).
[6] S. Nazarenko, Wave Turbulence (Springer, Berlin, 2011).
[7] A. C. Newell and B. Rumpf, “Wave turbulence,” Annu. Rev. Fluid Mech. 43 (2011).
[8] S. Nazarenko, S. Lukaschuk, S. McLelland, and P. Denis senko, “Statistics of surface gravity wave turbulence in the space and time domains,” J. Fluid Mech. 642, 395 (2009).
[9] L. Deike, B. Miquel, P. Gutierrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon, and F. Bonnefoy, “Role of the basin boundary conditions in gravity wave turbulence,” J. Fluid Mech. 781, 196–225 (2015).
[10] B. Miquel, A. Alexakis, and N. Mordant, “Role of dissipation in flexural wave turbulence: from experimental spectrum to kolmogorov-zakharov spectrum,” Phys. Rev. E 89, 062925 (2014).
[11] T. Humbert, O. Cadot, G. Düring, C. Josserand, S. Rica, and C. Toubé, “Wave turbulence in vibrating plates: the effect of damping,” EPL 102, 30002 (2013).
[12] L. Deike, M. Berhanu, and E. Falcon, “Decay of capillary wave turbulence,” Phys. Rev. E 85, 066311 (2012).
[13] L. Deike, M. Berhanu, and E. Falcon, “Energy flux measurement from the dissipated energy in capillary wave turbulence,” Phys. Rev. E 89, 023003 (2014).
[14] JW Miles, “Surface-wave damping in closed basins,” Proc. Roy. Soc. A 297, 459 (1967).
[15] D M Henderson and H Segur, “The role of dissipation in the evolution of ocean swell,” Journal Of Geophysical Research-Oceans 118, 5074–5091 (2013).
[16] A. Przaelka, B. Cabane, V. Pagneux, A. Maurel, and P. Petitjeans, “Fourier transform profilometry for water waves: how to achieve clean water attenuation with diffusive reflection at the water surface?” Exp. Fluids 52, 519–527 (2011).
[17] M. Strickland, S.L. and Shearer and K.E. Daniels, “Spatialtemporal measurement of surfactant distribution on gravity-capillary waves,” Journal Of Fluid Mechanics 777, 523–543 (2015).
[18] D M Henderson and John W Miles, “Single-mode Faraday waves in small cylinders,” Journal Of Fluid Mechanics 213, 95 (1990).
[19] K. Hasselmann, “On the non-linear energy transfer in gravity-wave spectrum. part 1. general theory,” J. Fluid Mech. 12, 481–500 (1962).
[20] B. Miquel and N. Mordant, “Non linear dynamics of flexural wave turbulence,” Phys. Rev. E 84, 066607 (2011).
[21] F. Leckler, F. Ardhuin, C. Peureux, A. Benetazzo, F. Bergamasco, and V. Dulov, “Analysis and Interpretation of Frequency-Wavenumber Spectra of Young Wind Waves,” J. Phys. Ocean. 45, 2484–2496 (2015).
[22] P.A. Hwang, D.W. Wang, E.J. Walsh, W.B. Krabill, and R.N. Swift, “Airborne Measurements of the Wavenumber Spectra of Ocean Surface Waves. Part I:
Spectral Slope and Dimensionless Spectral Coefficient,” J. Phys. Ocean. 30, 2753–2767 (2000).

[23] L. Romero and W K Melville, “Airborne Observations of Fetch-Limited Waves in the Gulf of Tehuantepec,” Journal Of Physical Oceanography 40, 441–465 (2010).

[24] W. K. Melville, L. Lenain, D. R. Cayan, M. Kahr, J. P. Kleissl, P. F. Linden, and N. M. Statom, “The modular aerial sensing system. Journal of atmospheric and oceanic technology,” Journal of Atmospheric and Oceanic Technology 33, 1169–1184 (2016).

[25] L. Lenain and W. K. Melville, “Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves.” Journal of Physical Oceanography 47, 2123–2138 (2017).

[26] P. Denissenko, S. Lukaschuk, and S. Nazarenko, “Gravity wave turbulence in a laboratory flume,” Phys. Rev. Lett. 99, 014501 (2007).

[27] S V Nazarenko and S Lukaschuk, “Wave Turbulence on Water Surface,” Annual Review of Condensed Matter Physics 7, 61–88 (2016).

[28] Q. Aubourg, Campagne A., C. Peureux, F. Ardhuin, J. Sommeria, S. Viboud, and N. Mordant, “3-wave and 4-wave interactions in gravity wave turbulence,” Phys. Rev. Fluids 2, 114802 (2017).

[29] M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P.A.E.M. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C. T. Stansberg, a. Toffoli, and K. Trulsen, “Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin,” J. Fluid Mech. 627, 235 (2009).

[30] Q. Aubourg, Étude expérimentale de la turbulence d’ondes à la surface d’un fluide. La théorie de la Turbulence Faible à l’épreuve de la réalité pour les ondes de capillarité et gravité, Ph.D. thesis, Université Grenoble Alpes (2016).

[31] O.M. Phillips, “The equilibrium range in the spectrum of wind generated waves,” Journal Of Fluid Mechanics 4, 426–434 (1958).

[32] E.A. Kuznetsov, “Turbulence spectra generated by singularities,” JETP Lett. 80, 83–89 (2004).

[33] A.C. Newell, S.V. Nazarenko, and L. Biven, “Wave turbulence and intermittency,” Physica D-Nonlinear Phenomena 152, 520–550 (2001).

[34] Quentin Aubourg and N. Mordant, “Nonlocal resonances in weak turbulence of gravity-capillary waves,” Phys. Rev. Lett. 114, 1–5 (2015).

[35] Sergey Nazarenko, “Sandpile behaviour in discrete water-wave turbulence,” J. Stat. Mech.: Theory and Experiment 02002, 1–8 (2013), 0510054 [nlin].

[36] Q. Aubourg, J. Sommeria, S. Viboud, and N. Mordant, “Combined stereoscopic wave mapping and particle image velocimetry,” submitted to Exp. Fluids (2017).