LETTER TO THE EDITOR

Rejection of paternal vs maternal fully matched bone marrow grafts in children with thalassemia

Bone Marrow Transplantation (2017) 52, 1585–1586; doi:10.1038/bmt.2017.199; published online 18 September 2017

The bidirectional passage of cells across the placenta during fetal life is a well-described phenomenon which may result in a state of reciprocal persistent tolerance towards unshared histocompatibility antigens.1,2 On the other hand sera of multiparous women were pivotal in the initial discovery of new HLA antigens and donor parity may increase the risk of GvHD.3 In the partially matched related (haploidentical) context many centers may prefer the mother as a donor for T-cell depleted grafts4,5 and for non-malignant conditions,6,7 while for T-replete grafts for malignancies the mother might be the last choice.8 This could be related to the much lower likelihood of observing rejection in the latter context while a graft vs malignancy effect may confer a survival advantage. We are not aware of any recommendations as to who might be the preferable fully matched related non-sibling donor. In fact, in regions with high consanguinity or close-ethnicity rates, 10–20% of cases may find a fully matched donor among family members other than siblings, particularly parents.9,10

We have reviewed the occurrence of both rejection and GvHD in a group of 12 patients with severe thalassemia transplanted from fully matched parents, 7 from the father and 5 from the mother. BMTs where performed between August 2015 and July 2016 in 4 collaborating institutions, 3 in India (People Tree Hospital in Bangalore, South East Asia Institute for Thalassemia in Jaipur and Kokilaben Dhirubhai Ambani Hospital in Mumbai) and one in Sri Lanka (Nawaloka Hospital in Colombo). Liver biopsy for degree of fibrosis was not performed but none of these patients had a liver palpable more than 2 cm below the costal margin and would thus be considered Pesaro class I–II. The spleen was also below 2 cm in all patients A uniform regime was employed consisting of anti-thymocyte globulin (ATG; rabbit-thymoglobulin) 4 mg/kg total dose on day −12 to −10, oral busulfan 3.5 mg/kg/day in 4 divided doses on days −9 to −6 (total dose 14 mg/kg, not adjusted to blood levels) and cyclophosphamide 50 mg/kg/day once daily on days −5 to −2 (total dose 200 mg/kg) followed by the infusion of freshly harvested HLA-compatible marrow on day 0. Bone marrow was G-CSF-primed in all cases by treating the donor with filgrastim 5 μg/kg/dose twice daily for either 3 or 5 days prior to harvest. GvHD prophylaxis consisted of cyclosporin A combined with methotrexate or mycophenolate mofetil.11 All patients and parental donors had sequence-based high-resolution extended 6-loci HLA typing (DKMS Life Science Lab, Dresden, Germany, www.dkms-lab.de) which was confirmed in a second independent laboratory (Jeevan’s HLA Laboratory, Chennai, India, http://www.jeevan.org/ngs-hla-lab/).10 Patients’ characteristics are summarized in Table 1. Sibling number and gender were included since the mother may have developed immunization against inherited paternal minor histocompatibility antigens during previous pregnancies.12 This retrospective study was approved by institutional review boards.

With all the limitations of a very small patient series, we noticed a striking outcome difference, albeit of borderline significance by log-rank statistics, between maternal and paternal grafts with an actuarial rejection rate of 20 and 86%, respectively (Figure 1). The only patient who did not reject the graft from the father developed severe GvHD.

Previous reports of HLA-compatible grafts from a non-sibling related donor have included very small numbers of parental transplants: Gaziev et al.13 described 6 paternal and 2 maternal pheno-identical transplants in thalassemia patients with no rejections observed after conditioning with fludarabine, busulfan, thiotepa, cyclophosphamide and ATG (Protocol 26.1). Hamidieh et al.14 reported a total of 109 non-sibling HLA-compatible BMTs, of which 37 were maternal and 25 were paternal grafts, in patients with different malignant and non-malignant disorders conditioned with standard intensity regimens, mostly busulfan cyclophosphamide and ATG, and infused peripheral blood or marrow grafts; the authors found no appreciable differences between maternal and paternal graft outcomes but a separate subset analysis of non-malignant conditions was not included in the report.

A number of factors might have contributed to our observation of a possible difference in rejection rate between maternal and paternal HLA-compatible grafts such as the relatively non-aggressive myeloablative regime employed and the use of G-CSF-primed marrow which is known to be associated with a

Table 1. Patient characteristics

Age at BMT (years)	Sex	Siblings	Donor age (years)	Donor	Consanguinity	Donor/recipient blood type	Cell dose (TNCx 10⁸/Kg)	GvHD	Status
1.1	M	1S	25	Father	Yes	B+/B+	14.6	No	Rej
1.0	F	1S	34.7	Father	Yes	B+/B+	8.6	No	Rej
4.1	M	1S	42.1	Father	Yes	0+/A+	5.4	No	Rej
2.8	M	1B	32.9	Father	Yes	AB+/AB+	9.0	No	Rej
1.0	F	2B	32.9	Father	Yes	AB+/A+	9.6	No	Rej
1.9	M	1S	29.1	Father	Yes	B−/B+	7.2	No	Rej
9.0	F	1S	41.2	Father	Yes	0+/A+	8.5	Grade III	A&C
11.2	M	1B	37.2	Mother	Yes	A+/A+	4.1	No	Rej
13.2	M	1B	32.6	Mother	Yes	A+/A+	5.2	Grade I	A&C
2.5	F	1S	29.5	Mother	Yes	B+/B+	9.4	Grade IV	TRM
1.1	F	1S	31.4	Mother	No	O+/O+	9.9	No	A&C
1.7	M	2S	37.4	Mother	Yes	B+/B+	6.1	No	A&C

Abbreviations: A&C = alive and cured; B = brother; F = female; M = male; Rej = rejection; S = sister.
CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank the patients, their parents, and all the nurses and physicians at collaborating institutions. This work was partially supported by Sankalp India Foundation, Bangalore, India and Cure2Children Foundation, Florence, Italy. We are also grateful to DKMS, Tübingen, Germany for providing free HLA typing.

S Ramprakash1, RK Agarwal2, R Dhanya2, A Sedai2, A Kumari2, L Parmar2, R Srinivas2, VR Kakulamari2, P Marwah2, R Soni3, S Williams4, W Rathnayake5, S Sen5, S Tulpule5 and L Faulkner6

1Bone Marrow Transplant Unit, People Tree Hospitals, Bangalore, India;
2Sankalp India Foundation, Bangalore, India;
3Bone Marrow Transplant Unit, South East Asia Institute for Thalassemia, Jaipur, India;
4Bone Marrow Transplant Unit, Nawaloka Hospital, Colombo, Sri Lanka;
5Bone Marrow Transplant Unit, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India

REFERENCES

1 Bianchi DW, Zickwolf G, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci USA 1996; 93: 705–708.
2 van Rood JJ, Loberiza FR, Zhang MJ, Oudshoorn M, Claas F, Cairo MS et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood 2002; 99: 1572–1577.
3 Ichinohe T, Uchiyama T, Shinazaki C, Matsuo K, Tamaki S, Hino M et al. Feasibility of HLA-haploidentical hematopoietic stem-cell transplantation between non-inherited maternal antigen (NIMA)-mismatched family members linked with long-term feto-maternal microchimerism. Blood 2004; 104: 3821–3828.
4 Loren AW, Bunin GR, Boudreau C, Champlin RE, Cnaan A, Horowitz MM et al. Impact of donor and recipient sex and parity on outcomes of HLA-identical sibling allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006; 12: 758–769.
5 Stern M, Ruggeri L, Mancusi A, Bernardo ME, de AC, Buccher C et al. Survival after T-cell depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood 2006; 112: 2990–2995.
6 Sodani P, Isgro A, Gazi Z, Polchi P, Paciaroni K, Marziali M et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia. Blood 2010; 115: 1296–1302.
7 Anurathapan U, Hongeng S, Pakakasama S, Sirachainan N, Songdej D, Chuansumrit A et al. Hematopoietic stem cell transplantation for homzygous β-thalassemia and β-thalassemia/hemoglobin E patients from haploidentical donors. Bone Marrow Transplant 2016; 51: 813–818.
8 Wang Y, Chang Y J, Xu L P, Liu K Y, Liu D H, Zhang X H et al. Who is the best donor for a related HLA haplo-type-mismatched transplant? Blood 2014; 124: 843–850.
9 Hamidieh AA, Dehagh MO, Paragomi P, Navasai S, Jalali A, Elsami GG et al. Efficiency of allogeneic hematopoietic SCT from HLA fully-matched non-sibling relatives: a new prospect of exploiting extended family search. Bone Marrow Transplant 2013; 50: 545–552.
10 Agarwal RK, Kumari A, Sedai A, Parmar L, Dhanya R, Faulkner L. The case for high resolution extended 6-loci hla typing for identifying related donors in the Indian subcontinent. Biol Blood Marrow Transplant 2017; 22: 1592–1596.
11 Faulkner L, Uderzo C, Khalid S, Marwah P, Soni R, Yaqub N et al. ATG vs thiotepa with busulfan and cyclophosphamide in matched-related bone marrow transplantation for thalassemia. Blood Adv 2017; 1: 792–801.
12 Verdijk RM, Kloosterman A, Pool J, van de KM, Naipal AM, van Halteren AG et al. Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells: implications for stem cell transplantation and immunotherapy. Blood 2004; 103: 1961–1964.
13 Gaziev J, Marziali M, Isgrò A, Sodani P, Paciaroni K, Gallucci C et al. Bone marrow transplantation for thalassemia from alternative related donors: improved outcomes with a new approach. Blood 2013; 122: 2751–2756.
14 Deotare U, Al-Dawsari G, Couban S, Lipton JH. G-CSF-primed bone marrow as a source of stem cells for allografting: revisiting the concept. Bone Marrow Transplant 2015; 50: 1150–1156.