Fatty acid profile and nutrient composition of muscle and adipose tissue from Malpura and fat-tailed Dumba sheep

R S BHATT, LALIT SONI, Y P GADEKAR, A SAHOO*, SROBANA SARKAR and DAVENDRA KUMAR

ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan 304 501 India

Received: 06 June 2019; Accepted: 21 August 2019

ABSTRACT

Fatty acid (FA) profile and nutrient composition of Longissimus dorsi (LD) muscle and various adipose tissues of adult Malpura sheep (4–6 years) and lambs (6 month), and fat tailed Dumba sheep (1 year) were evaluated. Compared to lamb, LD muscle of adult Malpura sheep had lower polyunsaturated FA (PUFA), \(\omega-6\), \(\omega-6/\omega-3\), desirable FA (DFA) and higher atherogenic index (AI), monounsaturated FA (MUFA), \(\omega-3\), MUFA:PUFA ratio, short-chain FA (SCFA) and conjugated linoleic acid (CLA). Similarly, adipose tissue fat had higher MUFA, MUFA:PUFA ratio and AI in adult than the lamb. Dumba sheep showed a different FA profile with higher SFA in caul fat and lower in LD muscle, while proportionally lower PUFA in caul fat and higher in LD muscle. Likewise, \(\omega-3\) and \(\omega-6\) FA was comparatively more in LD muscle while \(c9\) CLA was highest in the tail adipose tissue. Between Malpura and Dumba, the FA profile of LD muscle revealed higher SFA and \(cis-9\) trans-11 CLA but lower PUFA and \(\omega-6\) FA in Malpura. It can thus be concluded that Malpura lamb meat is healthier having improved PUFA, \(\omega-6:\omega-3\) ratio and AI than the adult. Furthermore, Dumba may also be considered a promising mutton breed with significant PUFA, \(\omega-3\) and \(\omega-6\) FA. Further studies are needed to ascertain the effects of different dietary regime on the FA profile of Dumba and Malpura sheep.

Keywords: Adipose tissue, Dumba, Fat quality, Malpura, Muscle

Recently, research is being focused on the quality improvement of sheep meat as the produce are considered as good source of polyunsaturated fatty acids (PUFA) especially, conjugated linoleic acid (CLA) (Allen 1993) which have wide range of health benefits (Enser 2001). Further, the quality of sheep meat is variably affected by many factors like age and breed. Hoffman et al. (2003) reported that there are differences in pH values and fatty acid (FA) composition of the meat among different breeds. The ratio of different FA in human diet must be optimum for synergy. The optimum ratio of PUFA to saturated FA (SFA) must be 0.45 or above in the diet (Warris 2000). The values of \(n-6: n-3\) ratio lower than 4 is most favourable in order to prevent cardiovascular diseases in human (Scollan et al. 2006). Hence there is a need to find ways to produce healthier meat with a higher ratio of PUFA to SFA and a more favourable balance between \(\omega-6\) and \(\omega-3\) (Wood et al. 2003). Hence it is important to have data regarding the FA and nutrient composition of meat from different breeds.

Malpura is native to North-Western semi-arid India and promises a meat-type breed besides wool, hence there is need to explore the nutrient composition and FA profile of mutton from Malpura sheep at different age groups. Additionally, fat-tailed Dumba sheep can also be a meat-type breed for the farmers. Dumba sheep is often crossbred with Patanwadi and Marwari ewes (Jyotsan et al. 2010). However, till date no reports are available regarding the nutritional profile and FA composition of Dumba meat. Therefore, the present study compares the nutrient composition and FA profile of Malpura \(vis-a-vis\) Dumba sheep so as to generate basic information for future research.

MATERIALS AND METHODS

The experiment was carried out at ICAR-Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India. The animal care, handling, slaughtering, and sampling procedures were approved by the CPCSEA, India. The Malpura finisher lambs (6 months) were kept under stall-fed conditions and offered \(ad lib\) legume roughage and concentrate mixture (CP16% and DE2, 700 Kcal). Similarly, adult Dumba sheep were also stall fed and offered \(ad lib\) Cenchrus hay and concentrate mixture at 500 g/day. Adult ewes were fed on concentrate mixture at 300 g/day and grazed on pasture for 6–8 h.

Animals were slaughtered by Halal method in the Experimental Abattoir of the Institute. Samples of Longissimus dorsi (LD) muscle and adipose tissue were collected from the loin area. Additionally, fat samples from tail, kidney and caul region were collected from Dumba. They were processed for nutrient composition (AOAC 1990)
Meat samples of adult sheep and lambs were compared for analysis of variance using Tukey’s test. Similarly, FA profile between Dumba and adult Malpura sheep was compared. The fat samples from different portions (except LD muscle) of Dumba sheep were compared statistically.

Results and Discussion

Nutrient composition of LD muscle revealed significantly higher (P<0.05) CP in lamb and higher EE in adult sheeps.

Nutrient	Longissimus dorsi muscle	Adipose tissue
DM	29.81	28.19
TA	1.31	1.14
CP	22.34b	24.79b
EE	5.16b	2.15b
Water	70.19	71.81

Values bearing different superscripts in a row (within the box) differ significantly (P<0.05). DM, dry matter; TA, total ash; CP, crude protein; EE, ether extract.

Fatty acid	Longissimus dorsi muscle	Adipose tissue
SFA	49.13	49.06
MUFA	45.18b	38.78b
PUFA	5.40a	11.71b
ω-6	4.12a	10.96b
ω-3	2.86b	0.75a
ω-6/ω-3	1.44a	14.61
PUFA/SFA	0.11	0.24
MUFA/PUFA	8.36b	3.31a
SCFA	41.56b	33.3a
LCFA	56.26b	65.1
AI value	2.46	1.28
TI value	1.39	1.68

Conjugated linoleic acid

c9t11t9c11	1.06b	0.19a
t10c12	0.02	0.07
t9t11	0.69b	0.09a
C17 CLA	1.77b	0.35a

Individual fatty acids

C12	1.62	1.72
C14:0	2.48	1.85
C14:1	2.58b	0.27a
C15:1	2.47b	0.05a
C16:0	30.99	26.84
C18:0	9.61	15.05
C18:1n9t	3.42	2.02
C18:1n9c	32.02	33.21
C18:2n6t	0.11	2.98
C18:2n6c	2.78	5.36
C20:0	0.11	0.24
C18:3n6	7.61b	0.09b
C20:1	1.30b	0.03a
C18:3n3	0.24	0.31

Values bearing different superscripts in a row (within the box) differ significantly (P<0.05). SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DFA, desirable fatty acids; SCFA, short chain fatty acids; LCFA, long chain fatty acids; AI, atherogenic index; TI, thrombogenic index.
adult sheep (Table 1). Lambs accrued tissue protein for growth and hence produced lean meat whereas adult sheep accumulated more fat compared to tissue protein. Similar results were reported in finisher lambs by Bhatt et al. (2017). The LD muscle fat of adult sheep had lower (<0.05) PUFA, ω-6, ω-6 : ω-3 ratio and higher (>0.05) monounsatated fatty acids (MUFA), ω-3, MUFA:PUFA, desirable FA (DFA) and short-chain FA (SCFA) as compared to lamb (Table 2). Similarly, the proportion of CLA was also higher (>0.05) in fat of adult animal as compared to that of lamb. Individual FA in LD muscle revealed higher (<0.05) in C14:1, C15:1 and C18:3n-6 and C20:1 in adult while C18:0, C18:2n-6c and C18:2n-6t were higher in lamb.

Fatty acid analysis of adipose tissue revealed higher (>0.05) proportion of SFA, ω-6, ω-3, ratio of ω-6/ω-3 and LCFA in lambs whereas in adult sheep MUFA, MUFA:PUFA ratio and atherogenic index (AI) were higher (Table 2). The observed inverse relation in PUFA:SFA ratio between adult and lamb meat was in line with Raes et al. (2004). At par with our results Scerra et al. (2011) reported that independent of feed type, the PUFA:SFA ratio in sheep meat is around 0.1–0.26. Proportion of different (except 18:1n7) and total CLA was higher in adipose tissue of adult animal. Individual fatty acids revealed higher (>0.05) content of C12, C16:0, C18:1n9t and C18:1n9c in adipose tissue of adult animal and C14:0, C18:2n-6t, C18:2n-6c, C20:0 and C18:3n3 in that of lamb. In agreement to the present findings, Al-Suwaiegh and Al-Shathri (2013) reported that C14:0, C15:0, C17:0, C16:1, C17:1, C18:1n9t, ω-6/ω-3 ratio, and SFA were significantly higher (>0.05) in sheep at higher slaughter age. From these results, it appears that the fat of lamb is healthier than that of adult sheep due lower C12:0, C14:0 and C16:0 as these increase LDL in blood while the other SFA are found to neutralize their effect since they increase HDL level (Parodi 2009). In addition, adult sheep fat has higher AI than lambs which renders it more detrimental to human health (Ulbricht and Southgate 1991).

The chemical composition of LD muscle in fat tailed Dumba sheep revealed similar value like that of adult Malpura sheep (Table 3). The value of nutrient composition was similar in all the fat depots of Dumba sheep. The composition of FA from fat-tailed sheep revealed significant (<0.05) differences for SFA, MUFA, PUFA, ω-6, ω-3, ω-6:ω-3 ratio, PUFA:SFA ratio, DFA, SCFA, long-chain FA (LCFA), AI and thrombogenic index (TI) among different tissues (Table 4). The composition of fat from LD muscle was similar to that of Malpura sheep. While comparing the proportion of FA from different fat depots of Dumba sheep with that of Malpura sheep it can be inferred that fat of Dumba is low in SFA and ω-3 FA having higher ω-6:ω-3 and MUFA:PUFA ratio and a similar proportion of CLA. Significant (<0.05) differences were also observed in the proportion of C18, C18:1n9c, C18:2n6t, C18:2n6c, C20:3n3 and C20:4n6 FA among fat of different tissues in Dumba sheep. Proportion of C18 FA was lower (<0.05) in subcutaneous and higher (>0.05) in caul fat; C18:1n9c higher (<0.05) in LD and kidney fat and lower in caul fat; C18:2n6c, C20:3n3 FA were higher (<0.05) in LD fat and low in caul fat whereas C20:4n6 FA is highest in LD and lower in subcutaneous fat. In agreement to these results, Yousefi et al. (2012) reported almost similar values for FA profile in LD muscle of traditional fat-tailed and non-tail fat Iranian sheep. It has been shown that as the deposition of intramuscular fat (IMF) increases, the ratio of PUFA to SFA decreases (Webb and O’Neil 2008) which also hold true in this experiment as the ratio of PUFA:SFA was lower in fat-tailed Dumba due to more IMF deposition compared to Malpura sheep.

A comparative analysis of LD muscle FA profile between adult Malpura ewe and Dumba sheep has been presented in Table 5. Adult Malpura ewes contained proportionally more SFA than Dumba sheep while Dumba had more unsaturated fatty acids than Malpura ewes. Total ω-6 ΦA were higher in Dumba sheep in comparison to Malpura ewes. The increased ω-6 ΦA content in Dumba may be due to feeding of high concentrate diet (Lorenz et al. 2002; Nürnberg et al. 2002). Therefore, the quantity of DFA was also higher in Dumba than Malpura. Index of atherogenicity (AI) indicates a relationship between the sum of the main SFA and that of the main classes of unsaturated, the former being considered pro-atherogenic and the latter anti-atherogenic (Ulbright and Southgate 1991). Typical AI value of animal fat should not be more than 2.0 (Bobe et al. 2004). In the present study, it was observed that AI value of LD muscle in adult Malpura ewes was greater than 2.0 whereas in Dumba sheep it lies within the maximum limit indicating better quality FA profile. However, no significant

Table 3. Composition of carcass of fat tailed Dumba sheep

Nutrient	Longissimus dorsi muscle	Fat source	SEM	P-value			
	Tail	Subcutaneous	Kidney	Caul			
DM	27.46	90.52	88.67	83.78	88.68	2.471	0.673
CP	21.83	1.56	1.95	1.72	0.32	2.112	0.452
EE	4.08	80.01	77.53	80.83	81.84	3.827	0.219
TA	0.43	5.40	5.49	1.03	5.31	2.785	0.117
OM	27.04	85.13	83.19	82.75	85.56	1.932	0.546

Values bearing different superscripts in a row (within the box) differ significantly (<0.05). DM, dry matter; TA, total ash; CP, crude protein; EE, ether extract.
Table 4. Profile of different fatty acid in fat from different parts of Dumba sheep

Parameter	LD Muscle	Tail	Subcutaneous	Kidney	Caul	SEM	P-value
Total Fat (g/kg)	40.8	800.1b	775.3b	808.3b	816.3b	10.893	0.071
Σ SFA	43.90	52.05b	44.58a	53.24a	66.34a	2.562	0.032
Σ MUFA	44.21b	42.46b	51.53c	42.17b	30.33a	2.609	0.038
Σ PUFA	9.85c	3.73b	2.39ab	3.01b	1.68b	0.202	0.035
Σ ω-6	6.02c	2.54b	1.27a	2.34b	1.15a	0.258	0.027
Σ ω-3	3.83b	0.30a	0.17a	0.42a	0.38a	0.026	0.029
ω-6/ω-3	1.57a	8.46d	7.47d	5.57c	3.02b	0.412	0.012
PUFA/SFA	0.24b	0.08a	0.06a	0.06a	0.03a	0.024	0.068
MUFA/PUFA	4.46a	11.38b	21.54a	14.02b	13.99b	0.080	0.031
DFA	70.59a	60.49a	61.87a	64.36b	59.58a	1.125	0.041
Σ SCFA	28.37a	44.09b	51.06c	36.30b	39.76b	2.665	0.039
Σ LCFA	69.26c	53.65a	46.73a	61.87b	58.17b	2.679	0.035
AI value	0.53a	1.36b	1.55b	0.96b	1.23b	0.096	0.037
TI value	1.28a	1.83b	1.32a	2.14b	3.78c	0.165	0.043

Conjugated Linoleic acid

c9t11 and c11t9 0.72a 1.68c 1.22b 1.26b 0.81a 0.172 0.048
t10c12 0.03 0.05 0.07 0.02 0.03 0.007 0.435

Individual Fatty acid

C16:0 22.99 28.27 26.88 26.93 30.26 2.757 0.712
C16:1 2.57 3.00 3.60 2.25 6.23 0.241 0.038
C18:0 16.53b 14.30b 7.95c 19.18b 27.57c 2.032 0.039
C18:1n9c 39.26b 31.92a 33.13b 37.60b 26.95b 1.781 0.027
C18:2n6c 0.25 0.40 0.13 0.22 0.16 0.035 0.082
C18:2n6a 4.05c 2.12b 2.56b 2.12b 0.98c 0.246 0.058
C18:3n6 0.13 0.02 0.01 0.06 0.07 0.027 0.083
C20:1 0.44 0.14 0.14 0.50 0.01 0.014 0.062
C20:3n6 0.27 0.22 0.14 0.23 0.15 0.066 0.053
C20:3n9c 3.35c 0.88b 0.93b 0.21a 0.07b 0.051 0.032
C20:4n6c 1.45c 0.06a 0.03a 0.12b 0.16b 0.043 0.029

Values bearing different superscripts in a row differ significantly (P<0.05). SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; DFA, desirable fatty acids; SCFA, short chain fatty acids; LCFA, long chain fatty acids; CLA, conjugated linoleic acid; AI, atherogenic index; TI, thrombogenic index.

Table 5. Comparison of LD muscle fatty acid profile between adult Malpura ewe and Dumba sheep

Parameter	Malpura	Dumba	SEM	P value
SFA	49.13b	43.90a	1.25	0.006
MUFA	45.17	44.21	0.41	0.285
PUFA	5.39a	9.85b	1.01	<0.001
ω-6	4.12a	6.02b	0.45	0.003
ω-3	2.86	3.83	0.29	0.101
ω-6/ω-3	1.44	1.57	0.31	0.664
DFA	60.19b	70.59b	2.41	0.002
SCFA	41.56b	28.37a	2.99	<0.001
LCFA	56.26b	69.26c	2.93	<0.001
AI value	2.46b	0.53a	0.44	0.001
TI value	1.39	1.28	0.06	0.432
C18:2 c9 t11 CLA	1.06b	0.72a	0.08	0.006

Values bearing different superscripts in a row differ significantly (P<0.05). SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA; polyunsaturated fatty acids; DFA, desirable fatty acids; SCFA, short chain fatty acids; LCFA, long chain fatty acids; AI, atherogenic index; TI, thrombogenic index.

difference was seen in TI value of LD muscle in case of Dumba sheep and Malpura ewes. Furthermore, the content of c9t11 CLA was more in LD muscle of Malpura ewe than Dumba sheep. The high content of c9t11 CLA in Malpura could be the result of pasture grazing unlike that of Dumba which were mainly kept stall-fed. Likewise, several studies (Valvo et al. 2005; Scerra et al. 2007) reported that IMF of lambs fed on pasture have shown a significant increase in c9t11 CLA.

On the basis of the present findings, it can be concluded that Malpura lamb meat is healthier than adult ewes due to high PUFA value, ω-6/ω-3 ratio and low AI. The FA composition of muscle and adipose tissue of Dumba sheep is similar to that of other sheep breeds. However, while comparing muscle FA profile of Dumba with adult Malpura ewes it was observed that Malpura ewes had more SFA in meat, whereas Dumba had relatively more PUFA. However, further studies are needed to ascertain the effect of dietary intervention on FA profile of Dumba and Malpura sheep for producing healthier meat.
ACKNOWLEDGEMENTS

The authors thank DBT, GOI, New Delhi and Director of ICAR-CSWRI, Avikanagar for providing necessary facilities for carrying out this study.

REFERENCES

Allen L H. 1993. The Nutrition CRSP: What is the marginal malnutrition, and does it affect human function? Nutrition Reviews 51: 255–67.

Al-Suwaiegh S B and Al-Shathri A A. 2014. Effect of slaughter age on the fatty acid composition of intramuscular and subcutaneous fat in lamb carcass of awassi breed. Indian Journal of Animal Research 48: 162–70.

Association of Official Analytical Chemists. 2000. Official methods of analysis, 17th edn. AOAC, Washington.

Bhatt R S, Sahoo A, Soni L K and Gadekar Y P. 2017. Effect of protected fat as Ca-Soap and formaldehyde-treated full-fat soybean in the finisher diet of lambs on growth performance, carcass traits and fatty acid profile. Agriculture Research 6: 427–35.

Bobe G, Hammond E G, Freeman A E, Lindberg G L and Beitz D C. 2004. Texture of Butter from Cows with Different Milk Fatty Acid Compositions 1. Journal of Dairy Science 86(10): 3122–27.

Enser M. 2001. The role of fats in human nutrition, pp 77–122. (Ed) Rossell B. Oils and fats, Vol 2 Animal carcass fats. Leather head Publishing, Surrey.

Hoffman L, Muller M, Cloete S and Schmidt D. 2003. Comparison of six crossbred lamb types: sensory, physical and nutritional meat quality characteristics. Meat Science 65: 1265–74.

Jyotsana B, Jakhesara S, Prakash V, Rank D N and Vataliya P H. 2010. Genetic features of Pathanwadi, Marwari and Dumba sheep breeds (India) inferred by microsatellite markers. Small Ruminant Research 93(1): 57–60.

Lorenz S, Buettner A, Ender K, Nürnberg G, Papstein H J, Schieberle P and Nürnberg K. 2002. Influence of keeping system on the fatty acid composition in the longissimus muscle of bulls and odorants formed after pressure-cooking. European Food Research Technology 214: 112–18.

Nürnberg K, Nürnberg G, Ender K, Lorenz S, Winkler K, Rickert R and Steinhart H. 2002. n-3 fatty acids and conjugated linoleic acids of longissimus muscle in beef cattle. European Journal of Lipid Science Technology 104: 463–71.

Parodi P. 2009. Has the association between saturated fatty acids, serum cholesterol and coronary heart disease been over emphasized? International Dairy Journal 19: 345–61.

Raes K, De-Smet S and Demeyer D. 2004. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: a review. Animal Feed Science Technology 113: 199–221.

Scerra M, Caparra P, Foti F, Galofaro V, Sinatra M C and Scerra V. 2007. Influence of ewe feeding systems on fatty acid composition of suckling lambs. Meat Science 76(3): 390–94.

Scerra M, Luciano G, Caparra P, Foti F, Cilione C and Giorgi A. 2011. Influence of stall finishing duration of Italian Merino lambs raised on pasture on intramuscular fatty acid composition. Meat Science 89: 238–42.

Scollan N D, Hocquette J F, Nuernberg K, Dannenberger D, Richardson R I and Maloney A. 2006. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science 74: 17–33.

Ulbricht T L V and Southgate D A T. 1991. Coronary heart disease: seven dietary factors. The Lancet 338: 985–92.

Valvo M A, Lanza M, Bella M, Fasone V, Scerra, M and Biondi L. 2005. Effect of ewe feeding system (grass vs concentrate) on intramuscular fatty acids of lambs raised exclusively on maternal milk. Animal Science 81: 431–36.

Warris P D. 2000. Meat science: An introductory text. CABI Publishing, New York.

Webb E C and O’Neill H A. 2008. The animal fat paradox and meat quality. Meat Science 80: 28–36.

Wood J D, Richardson R I, Nute G R, Fisher A V, Campo M M, Kasapidou E P, Sheard R and Enser M. 2003. Effects of fatty acids on meat quality: a review. Meat Science 66: 21–32.

Yousefi A R, Kohram H, Shahnaz A Z, Nikkhhah A and Campbell A W. 2012. Comparison of the meat quality and fatty acid composition of traditional fat-tailed (Chali) and tailed (Zel) Iranian sheep breeds. Meat Science 92: 417–22.