OPTIMAL QUOTIENTS AND SURJECTIONS OF
MORDELL–WEIL GROUPS

EVERETT W. HOWE

Abstract. Answering a question of Ed Schaefer, we show that if J is the
Jacobian of a curve C over a number field, if s is an automorphism of J
coming from an automorphism of C, and if u lies in $\mathbb{Z}[s] \subseteq \text{End} J$ and has
connected kernel, then it is not necessarily the case that u gives a surjective
map from the Mordell–Weil group of J to the Mordell–Weil group of its image.

1. Introduction

Let J be the Jacobian of a curve C over a number field. If the automorphism
group G of J is nontrivial, one can use idempotents of the group algebra $\mathbb{Q}[G]$ to
decompose J (up to isogeny) as a direct sum of abelian subvarieties. This
decomposition can be useful, for example, if one would like to compute the rational
points on C, because one of the subvarieties may satisfy the conditions necessary
for Chabauty’s method even when J itself does not.

In this context, Ed Schaefer asked the following question in an online discussion:

Question 1. Let C be a curve over a number field k, let σ be a nontrivial auto-
morphism of C, let s be the associated automorphism of the Jacobian J of C, and
let u be an element of $\mathbb{Z}[s] \subseteq \text{End} J$. Let $A \subseteq J$ be the image of u, and suppose
the kernel of u is connected. Is it always true that map of Mordell–Weil groups
$J(k) \rightarrow A(k)$ induced by u is surjective?

An optimal quotient of an abelian variety A is a surjective morphism $A \rightarrow A'$ of
abelian varieties whose kernel is connected (see [1, §3]), so Schaefer’s question asks
whether an optimal quotient of a curve’s Jacobian “coming from” an automorphism
of the curve necessarily induces a surjection on Mordell–Weil groups.

The purpose of this paper is to show by explicit example that the answer to
Schaefer’s question is no. In Section 2 we show that if $\varphi : C \rightarrow E$ is a degree-2
map from a genus-2 curve to an elliptic curve, and if σ is the involution of C that
fixes E, then the endomorphism $1 + s$ of J has connected kernel and its image is
isomorphic to E. In fact, the map $J \rightarrow E$ determined by $1 + s$ is isomorphic to
the push-forward $\varphi_* : J \rightarrow E$. To show that the answer to Question 1 is no, it
therefore suffices to find a double cover $\varphi : C \rightarrow E$ of an elliptic curve by a genus-2
curve such that φ_* is not surjective on Mordell–Weil groups. We provide one such
example in Section 3, and show in Section 4 that there are in fact infinitely many
examples.
2. GENUS-2 DOUBLE COVERS OF ELLIPTIC CURVES

In this section we review some facts about genus-2 double covers of elliptic curves over an arbitrary field of characteristic not 2. In Section 3 we will return to the case where the base field is a number field.

The general theory of degree-n maps from genus-2 curves to elliptic curves is explained by Frey and Kani [2]. Over the complex numbers, the complete two-parameter family of genus-2 double covers of elliptic curves was given in 1832 by Jacobi ([4, pp. 416–417], [5, pp. 380–382]) as a postscript to his review of Legendre’s *Traité des fonctions elliptiques* [6]; Legendre had himself given a one-parameter family of genus-2 double covers of elliptic curves (see Remark 3, below). In [3, §3.2], Jacobi’s construction is modified so that it works rationally over any base field of characteristic not 2, as follows:

Let k be an arbitrary field of characteristic not 2 and let K be a separable closure of k. Suppose we are given equations $y^2 = f$ and $y^2 = g$ for two elliptic curves E and F over k, where f and g are separable cubics in $k[x]$, and suppose further that we are given an isomorphism $\psi: E[2](K) \to F[2](K)$ of Galois modules such that ψ is not the restriction to $E[2]$ of a geometric isomorphism $E_K \to F_K$. Then [3, Proposition 4, p. 324] gives an explicit equation for a genus-2 curve C/k such that the Jacobian J of C is isomorphic to the quotient of $E \times F$ by the graph Γ of ψ. (We say that C is the curve obtained by gluing E and F together along their 2-torsion using ψ.) Let ω be the quotient map from $E \times F$ to J. The construction from [3] also shows that if $\lambda: J \to \hat{J}$ is the canonical principal polarization on J, then there is a diagram

\[
\begin{array}{ccc}
E \times F & \overset{(2:2)}{\longrightarrow} & E \times F \\
\omega \downarrow & & \omega \downarrow \\
J & \longrightarrow & J \\
& \lambda & \\
\end{array}
\]

The automorphism $(1, -1)$ of $E \times F$ fixes Γ and respects the product polarization on $E \times F$, so it descends to give an automorphism s of the polarized variety (J, λ). By Torelli’s theorem [8, Theorem 12.1, p. 202], the automorphism s comes from an automorphism σ of C. Clearly σ has order 2, and the quotient of C by the order-2 group $\langle \sigma \rangle$ is isomorphic to E. Let $\varphi: C \to E$ be the associated double cover.

Let $u = 1 + s \in \text{End } J$. Then we have a diagram

\[
\begin{array}{ccc}
E \times F & \overset{(2,0)}{\longrightarrow} & E \times F \\
\omega \downarrow & & \omega \downarrow \\
J & \longrightarrow & J \\
& u & \\
\end{array}
\]

We claim that the kernel of u is connected. To see this, note that the kernel of $\omega \circ (2, 0)$ is simply $E[2] \times F$. The image of $E[2] \times F$ in J (under the map ω) is equal to the image of $0 \times F$ in J because every element of $E[2] \times 0$ is congruent modulo Γ to an element of $0 \times F[2]$. Also, since Γ intersects $0 \times F$ only in the identity, the image of F in J is isomorphic to F, so the kernel of u is isomorphic to F.

On the other hand, we see from diagram (2) that the image of u is equal to the image of $E \times 0$ in J. Since Γ has trivial intersection with $E \times 0$, the image of u is isomorphic to E. The induced map $J \to E$ is nothing other than φ_*.
Likewise, the involution \(-s\) on \(J\) corresponds to an involution \(\sigma'\) of \(C\). The quotient of \(C\) by the group \((\sigma')\) is isomorphic to \(F\), and gives us a double cover \(\varphi' : C \to F\). If we set \(v = 1 - s\), then \(v\) has kernel isomorphic to \(E\) and image isomorphic to \(F\), and the map \(J \to F\) induced by \(v\) is \(\varphi'_*\).

Remark 2. Frey and Kani prove a more general result: Given two elliptic curves \(E\) and \(F\) over an algebraically closed field \(k\), an integer \(n > 1\), and an isomorphism \(\psi : E[n] \to F[n]\) of group schemes that is an anti-isometry with respect to the Weil pairings on \(E[n]\) and \(F[n]\), there is a possibly-singular curve \(C\) over \(k\) of arithmetic genus 2 whose polarized Jacobian \((J, \lambda)\) fits into a diagram analogous to (1), but with the 2's on the top arrow replaced with \(n\)'s. The curve \(C\) has degree-\(n\) maps to both \(E\) and \(F\), and arguments like the one given above show that the corresponding push-forward maps from \(J\) to \(E\) and from \(J\) to \(F\) are optimal.

Remark 3. Legendre’s family of genus-2 curves with split Jacobians [6, Troisième Supplément, §XII, pp. 333–359] is the family over \(C\) obtained from the construction above by taking \(F = E\) and by taking \(\psi : E[2](C) \to E[2](C)\) so that it fixes one point of order 2 and swaps the other two.

In Sections 3 and 4, we will use the construction that we have just described to produce genus-2 curves with involutions that we can use to show that the answer to Question 1 is no. As part of our analyses, we will need to know how to tell whether a point of \((E \times F)(k)\) lies in the image of \(J(k)\) under the map \((\varphi_*, \varphi'_*) : J \to E \times F\). Such a criterion is given in Proposition 12 (p. 338) of [3]. For the reader’s convenience, we review that criterion here. We continue to use the notation set earlier in the section: \(E\) and \(F\) are elliptic curves given by equations \(y^2 = f\) and \(y^2 = g\), respectively; \(\psi : E[2](K) \to F[2](K)\) is an isomorphism of Galois modules; and \(C\) is a genus-2 curve whose Jacobian \(J\) is isomorphic the quotient of \(E \times F\) by the graph of \(\psi\). The curve \(C\) comes provided with covering maps \(\varphi : C \to E\) and \(\varphi' : C \to F\) of degree 2, and the quotient map \(E \times F \to J\) followed by \((\varphi_*, \varphi'_*)\) is multiplication-by-2 on \(E \times F\).

Let \(L\) be the 3-dimensional \(k\)-algebra \(k[x]/(f)\) and let \(X\) be the image of \(x\) in \(L\). Note that \(L\) is a product of fields, one for each Galois orbit of 2-torsion points in \(E(K)\). The norm from \(L\) to \(k\) induces a map from \(L^*/L^{*2}\) to \(k^*/k^{*2}\) that we continue to call the norm, and we let \(\hat{L}\) be the kernel of the norm \(L^*/L^{*2} \to k^*/k^{*2}\).

There is a homomorphism \(\iota : E(k)/2E(k) \to \hat{L}\) defined as follows: If \(P \in E(k)\) is a rational non-2-torsion point with \(x\)-coordinate \(x_P\), then \(\iota\) sends the class of \(P\) modulo \(2E(k)\) to the class of \(x_P - X\) modulo \(L^{*2}\). If \(P \in E(k)\) is a rational point of order 2, then \(x_P - X\) is nonzero in each component of \(L\) other than the one corresponding to \(P\); the value of \(\iota\) on the class of \(P\) is then the unique element of \(\hat{L}\) that agrees with \(x_P - X\) on the components where it is nonzero.

Similarly, we define a \(k\)-algebra \(L' = k[x]/(g)\) and a homomorphism \(\iota'\) from \(E(k)/2E(k)\) to \(\hat{L}'\). We note that the map \(\psi\) induces an isomorphism \(\psi^* : \hat{L}' \to \hat{L}\).

Proposition 4. A point \((P, Q) \in (E \times F)(k)\) lies in the image of \(J(k)\) under the map \((\varphi_*, \varphi'_*)\) if and only if the isomorphism \(\psi^*\) takes \(\iota'(Q)\) to \(\iota(P)\).

Proof. This follows immediately from [3, Proposition 12, p. 338].
3. A SMALL EXAMPLE

Let E and F be the elliptic curves over \mathbb{Q} defined by $y^2 = f$ and $y^2 = g$, respectively, where

$$f = x^3 + 5x^2 + 6x + 1 \quad \text{and} \quad g = x^3 - 6x^2 + 5x - 1.$$

Let K be the number field defined by the irreducible polynomial f. Let r be a root of f in K; then $-r^2 - 4r - 4$ and $r^2 + 3r - 1$ are also roots of f. Set $\alpha_1 = r, \quad \alpha_2 = -r^2 - 4r - 4, \quad \alpha_3 = r^2 + 3r - 1,$

and note that if we set $\beta_i = 1/\alpha_i$ then the β_i’s are the three roots of g.

Let $\psi: E[2](K) \rightarrow E[2](K)$ be the isomorphism that sends $(\alpha_i, 0)$ to $(\beta_i, 0)$, for $i = 1, 2, 3$. Using the formulas from [3, Proposition 4, p. 324], we see that the curve C over \mathbb{Q} defined by $y^2 = 7^8g(x^2)$ has Jacobian J isomorphic to the quotient of $E \times F$ by the graph of ψ. Rescaling y, we find that C has a model

$$y^2 = x^6 - 6x^4 + 5x^2 - 1.$$

The double cover $\varphi: C \rightarrow E$ is given by $(x, y) \mapsto (-1/x^2, y/x^3)$, and the double cover $\varphi': C \rightarrow F$ by $(x, y) \mapsto (x^2, y)$.

The curve E is isomorphic to the curve 196A1 from Cremona’s database; its Mordell–Weil group is generated by the point $P = (-2,1)$ of infinite order. The curve F is isomorphic to the curve 784F1 from Cremona’s database, and its Mordell–Weil group is trivial.

Let σ be the involution $(x, y) \mapsto (-x, -y)$ of C, so that σ generates the Galois group of the cover $C \rightarrow E$, and let s be the corresponding involution of J. We know from Section 2 that the endomorphism $u = 1 + s$ of J has connected kernel and has image isomorphic to E, and that the associated optimal cover $J \rightarrow E$ is simply φ_*. We claim that the point P is not in the image under φ_* of the Mordell–Weil group of J.

We prove this claim by contradiction. Suppose there were a point R of $J(\mathbb{Q})$ with $\varphi_*(R) = P$. The only possible image for R in $F(\mathbb{Q})$ is the identity element O, so we must have $(\varphi_*, \varphi'_*)(R) = (P, O)$. Now we apply Proposition 4. We see that the \mathbb{Q}-algebra L from the proposition is simply the field K, the group \bar{L} is the quotient of the subgroup of elements of K^* with square norm by the subgroup $K^{r,2}$, and the map $\iota: E(\mathbb{Q})/2E(\mathbb{Q}) \rightarrow \bar{L}$ sends the class of a nonzero point $(x, y) \in E(\mathbb{Q})$ to the class in \bar{L} of the element $x - r \in K^*$. (Note that $x - r$ does lie in the subgroup of K^* of elements whose norms are squares, because the norm of $x - r$ is equal to y^2.)

Since (P, O) lies in the image of $J(\mathbb{Q})$, Proposition 4 says $\iota(P)$ must be the trivial element of \bar{L}; that is, $-2 - r$ must be a square in K. But $-2 - r$ is not a square in K; this can be seen, for example, by looking modulo 13. Therefore P is not in the image of under φ_* of the Mordell–Weil group of J.

4. INFINITELY MANY EXAMPLES

The specific example given in Section 3 was chosen because the equations for the curves and the maps worked out to have small integer coefficients. In this section we present a method for producing infinitely many examples, without concerning ourselves about the simplicity of the equations we obtain.

Let E and F be two elliptic curves over \mathbb{Q} defined by equations $y^2 = f$ and $y^2 = g$, respectively, where f and g are monic cubic polynomials in $\mathbb{Q}[x]$ that split
completely over \(\mathbb{Q} \). Let \(P_1, P_2, P_3 \) be the points of order 2 in \(E(\mathbb{Q}) \) and let \(Q_1, Q_2, Q_3 \) be the points of order 2 in \(F(\mathbb{Q}) \). Let \(C \) be the genus-2 curve over \(\mathbb{Q} \) produced by gluing \(E \) and \(F \) together along their 2-torsion subgroups using the isomorphism \(\psi: E[2](K) \rightarrow F[2](K) \) that takes \(P_i \) to \(Q_i \), for \(i = 1, 2, 3 \). Let \(\varphi: C \rightarrow E \) and \(\varphi': C \rightarrow F \) be the degree-2 maps associated to this data and let \(J \) be the Jacobian of \(C \). Suppose \(P \) is a rational point on \(E \). We know that \(P \) is in the image of \(J(\mathbb{Q}) \) under \(\varphi_* \) if and only if there is a point \(Q \) of \(F(\mathbb{Q}) \) such that \((P, Q) \) is in the image of \(J(\mathbb{Q}) \) under the map \((\varphi_*, \varphi'_*) \).

Again Proposition 4 tells us whether such a \(Q \) exists. In this case, because the 2-torsion points of \(E \) and \(F \) are all rational, the answer takes a slightly different shape than it did in the preceding section. Let \(Z \) be the subgroup of \((\mathbb{Q}^* / \mathbb{Q}^{*2})^3 \) consisting of those triples \((r, s, t)\) whose product is equal to the trivial element of \(\mathbb{Q}^*/\mathbb{Q}^{*2} \). Then the group \(\hat{L} \) from Proposition 4 is isomorphic to \(Z \), and the isomorphism can be chosen so that the homomorphism \(\iota \) sends a non-2-torsion point \(P \) of \(E(\mathbb{Q}) \) to the class in \(Z \) of the triple

\[
(x(P) - x(P_1), x(P) - x(P_2), x(P) - x(P_3)).
\]

Likewise, \(\hat{L}' \) is isomorphic to \(Z \), and the isomorphism can be chosen so that the homomorphism \(\iota' \) sends a non-2-torsion point \(Q \) of \(F(\mathbb{Q}) \) to the class of

\[
(x(Q) - x(Q_1), x(Q) - x(Q_2), x(Q) - x(Q_3)).
\]

Under these identifications, the isomorphism \(\psi_* \) is nothing other than the identity on \(Z \). Thus, Proposition 4 says that a point \((P, Q) \) in \((E \times F)(\mathbb{Q}) \) is in the image of \((\varphi_*, \varphi'_*) \) if and only if \(\iota(P) = \iota'(Q) \).

Suppose we are given an arbitrary elliptic curve \(E/\mathbb{Q} \) with rational points \(Q_1, Q_2, Q_3 \) of order 2. We will show that there are infinitely many geographically distinct choices for \(E/\mathbb{Q} \) with rational points \(P_1, P_2, P_3 \) of order 2 such that if \(\varphi: C \rightarrow E \) is constructed as above, then there is a point of infinite order in \(E(\mathbb{Q}) \) that is not contained in the subgroup of \(E(\mathbb{Q}) \) generated by the torsion elements and the image of \(J(\mathbb{Q}) \) under \(\varphi_* \).

If \(z \) is an element of \((\mathbb{Q}^*/\mathbb{Q}^{*2})^3 \), we say that a prime \(p \) occurs in \(z \) if one of the components of \(z \) has odd valuation at \(p \). If \(E \) is an elliptic curve over \(\mathbb{Q} \) with all of its 2-torsion rational over \(\mathbb{Q} \), we say that a prime \(p \) occurs in \(E(\mathbb{Q}) \) if it occurs in some element of \(\iota(E(\mathbb{Q})) \); note that only finitely many primes occur in \(E(\mathbb{Q}) \) because \(E(\mathbb{Q}) \) is a finitely-generated group. Let \(\ell_1 \) and \(\ell_2 \) be two distinct odd primes that do not occur in \(F(\mathbb{Q}) \) and that are congruent to \(\ell_1 + 1 \) modulo \(\ell_1^2 \) and to \(\ell_2 - 1 \) modulo \(\ell_2^2 \), and let \(E_p \) be the elliptic curve

\[
y^2 = x(x + p + 1)(x - p + 1).
\]

Let \(P_1, P_2, \) and \(P_3 \) be the 2-torsion points on \(E_p \) with \(x \)-coordinates \(0, -p - 1, \) and \(p - 1 \), respectively, and let \(P = (-1, p) \in E_p(\mathbb{Q}) \). We compute that the images of these points in \(Z \subset (\mathbb{Q}^*/\mathbb{Q}^{*2})^3 \) are as follows:

\[
\begin{align*}
\iota(P) &= (-1, p, -p) \\
\iota(P_1) &= (-p^2 + 1, p + 1, -p + 1) \\
\iota(P_2) &= (-p - 1, 2p(p + 1), -2p) \\
\iota(P_3) &= (p - 1, 2p, 2p(p - 1)).
\end{align*}
\]
We see that \(p \) occurs in \(\iota(P) \), that \(p \) occurs in \(\iota(P + P_1) \), that \(\ell_2 \) occurs in \(P + P_2 \), and that \(\ell_1 \) occurs in \(P + P_3 \).

Note that \(\iota(P_1) \), \(\iota(P_2) \), and \(\iota(P_3) \) are nontrivial, because either \(\ell_1 \) or \(\ell_2 \) occurs in each of them. This shows that none of the points \(P_1 \), \(P_2 \), and \(P_3 \) is the double of a rational point. Since we know the possible torsion structures of elliptic curves over \(\mathbb{Q} \) [7, Theorem 8, p. 35], we see that \(E_p \) has torsion subgroup isomorphic to either \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) or \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \). If there is a rational 3-torsion point \(T \) on \(E \), then \(\iota(T) = (1, 1, 1) \), because \(T \) is twice \(-T\). Combining this with what we have already shown, we find that \(\iota(P) \) is not contained in the group generated by \(\iota'(F(\mathbb{Q})) \) and the image under \(\iota \) of the torsion subgroup of \(E(\mathbb{Q}) \). From this, we see that \(P \) is not contained in the subgroup of \(E(\mathbb{Q}) \) generated by the torsion elements and the image of \(J(\mathbb{Q}) \) under \(\varphi_\ast \).

Finally, we note that the \(j \)-invariant of \(E_p \) is given by

\[
\begin{align*}
j(E_p) &= \frac{64(3p + 1)^3}{p^2(p - 1)^2(p + 1)^2},
\end{align*}
\]

so that, since \(p \) is odd, it is the largest prime for which \(j(E_p) \) has negative valuation. Therefore distinct odd primes \(p \) and \(q \) give geometrically nonisomorphic curves \(E_p \) and \(E_q \), so there are infinitely many curves \(E_p \) that we can glue to \(F \) as above to get examples showing that the answer to Schaefer’s question is no.

References

[1] Brian Conrad and William A. Stein, Component groups of purely toric quotients, Math. Res. Lett. 8 (2001), no. 5-6, 745–766.
[2] Gerhard Frey and Ernst Kani, Curves of genus 2 covering elliptic curves and an arithmetical application, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 153-176.
[3] Everett W. Howe, Franck Leprévost, and Bjorn Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three, Forum Math. 12 (2000), no. 3, 315–364.
[4] C. G. J Jacobi, Review of Legendre’s Traité des fonctions elliptiques, troisième supplément, J. Reine Angew. Math. 8 (1832), 413–417.
[5] C. G. J. Jacobi, Gesammelte Werke. Erster Band, Herausgegeben auf Veranlassung der Königlich Preussischen Akademie der Wissenschaften, Verlag von G. Reimer, Berlin, 1881.
[6] A. M. Legendre, Traité des fonctions elliptiques et des intégrales Eulériennes, Tome troisième, Huzard–Courcier, Paris, 1828.
[7] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33–186.
[8] J. S. Milne, Jacobian varieties, Arithmetic geometry (Storrs, Conn., 1984) (G. Cornell and J.H. Silverman, eds.), Springer, New York, 1986, pp. 167–212.

Center for Communications Research, 4320 Westerra Court, San Diego, CA 92121-1967, USA.

E-mail address: however@alumni.caltech.edu
URL: http://www.alumni.caltech.edu/~however/