Properties and Applications of Truncated Exponential Marshall Olkin Weibull Distribution

Nadia Hashim Al-Noor and Hadi Hassan Hadi

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq
E-mail: nadialnoor@uomustansiriyah.edu.iq

Abstract. A new flexible compound distribution with four parameters called Truncated Exponential Marshall Olkin Weibull (TEMOW) is proposed as a sub-model of a new generator of continuous distributions named Truncated Exponential Marshall Olkin-G family. Reliability characteristics with several main statistical properties are presented. The maximum likelihood estimation method is adopted to estimate the unknown parameters. Furthermore, to assess the usefulness and flexibility, the TEMOW distribution applied upon simulation study besides real application with two real data set. The simulation results clearly shown the flexible performance of the maximum likelihood estimators for the parameters. Also, the real application results clearly shown that the proposed distribution has outstanding performance than other considered distributions for all information criteria.

1. Introduction

Over the last decades, various statistical distributions have been used to model data in a variety of areas. However, in some areas of use, there is a strong need to construct expanded versions of these distributions to adapt to particular real-life data. Several new generalized distributions have recently been developed and studied. Moreover, attempts continue to identify new families of probability distributions that expand well-known distribution families and at the same time providing greater flexibility in the practice of modeling results. One of the most important distributions is the Weibull distribution. It has been applied in various fields, especially to fit lifetime data. However, some of these applications are limited partly and this limitation undoubtedly inspired researchers to develop different generalizations and many modifications of this distribution in order to improve its flexibility. So, in this paper, based on the existing Weibull distribution, we introduce a new family of probability distributions arising from composing the work of Marshall and Olkin[1] with the work of Eugene et al. [2].

Marshall and Olkin [1] used tilting parameter α ($\alpha \geq 0$) to proposed an elastic family of probability distributions named Marshall Olkin-G (MO-G) with the following cumulative distribution function (cdf) and probability density function (pdf)

$$M(x)_{MO} = \frac{G(x)}{\alpha + \bar{\alpha} G(x)} ; \alpha \geq 0 , \bar{\alpha} = 1 - \alpha$$

(1)

$$m(x)_{MO} = \frac{\alpha g(x)}{(\alpha + \bar{\alpha} G(x))^2}$$

(2)

where $G(x)$ and $g(x)$ are the cdf and pdf of any baseline distribution(see [3][4]).
Eugene et al. [2] introduced a new family built on the interval [0,1] beta distribution with the following cdf and pdf
\[
F(x) = \frac{1}{\beta(a,b)} \int_0^x (1 - z)^{a-1} (1 - (1 - z)^b) dz ; \quad 0 < a, b < \infty
\]
\[
f(x) = \frac{1}{\beta(a,b)} (1 - M(x))^{a-1} (1 - M(x))^{b-1} m(x)
\]
where \(\beta(a,b)\) is the Beta function, \(M(x)\) and \(m(x)\) are the cdf and pdf of any distribution. Then by taking \(M(x)\) to be the cdf of the normal distribution, Eugene et al. defined the beta normal distribution and also derived some properties of this new distribution (see [2][5]).

Based on the two works above, our new family called truncated exponential Marshall Olkin – G has been built (for truncated distribution see [6]). The rest of this paper is structured as follows: In Section 2, the truncated exponential Marshall Olkin – G family is introduced with some general expressions. Then, in Section 3, attention is given to the truncated exponential Marshall Olkin Weibull as a particular member of this new family. In Sections 4, and 5 reliability measures and various properties of new distribution along with its entropies, and reliability stress strength model are introduced. In Section 6, the maximum likelihood estimators (MLEs) of the unknown parameters are presented. In Section 7, a simulation study is carried out to exhibit the performances of the MLEs, as well as, real applications are adopted to illustrate the behavior of the new distribution with some existing distributions. Finally, conclusions are addressed in Section 8.

2. Truncated exponential Marshall Olkin-G family

Consider the cdf and pdf of the [0,1] truncated exponential (TE) distribution as
\[
W(x)_{TE} = \frac{1}{1 - e^{-\theta x}} ; \quad 0 < x < 1, \theta > 0
\]
\[
w(x)_{TE} = \frac{\theta e^{-\theta x}}{1 - e^{-\theta}}
\]
Now, composing the two continuous cdfs, i.e., \(W\) and \(M\), so that the cdf \(F(x) = W(M(x))\) and pdf \(f(x) = \frac{\partial}{\partial x} F(x)\) will be
\[
F(x) = \int_0^{M(x)} \frac{\theta e^{-\theta u}}{1 - e^{-\theta}} du = \frac{1 - e^{-\theta M(x)}}{1 - e^{-\theta}}
\]
\[
f(x) = \frac{\theta m(x)e^{-\theta M(x)}}{1 - e^{-\theta}}
\]
Substituting (1) and (2) in (7) and (8), a new family of probability distributions called Truncated Exponential Marshall Olkin-G (TEMO-G) can be proposed with the following cdf and pdf
\[
F(x)_{TEMO-G} = \frac{1 - e^{-\theta \frac{G(x)}{\alpha + \bar{G}(x)}}}{1 - e^{-\theta}}
\]
\[
f(x)_{TEMO-G} = \frac{\theta \alpha g(x)e^{-\theta \frac{G(x)}{\alpha + \bar{G}(x)}}}{(1 - e^{-\theta})(\alpha + \bar{G}(x))^2}
\]
The formula of the pdf in (10) can be expansion by using the expressions \(e^{-x} = \sum_{i=0}^{\infty} \frac{(-1)^i}{i!} x^i\) and \((1 - x)^{-a} = \sum_{i=0}^{\infty} \frac{\Gamma(a+i)}{\Gamma(a)} \frac{x^i}{i!}, |x| < 1, a > 0\) with performing some simple mathematical steps as
\[
f^E(x)_{TEMO-G} = \delta g(x) (G(x))^{1+j}
\]
where
\[
\delta = \frac{1}{1 - e^{-\theta}} \sum_{i,j=0}^{\infty} \frac{(-1)^{i+j} \Gamma(i+j+2) \theta^{i+1} (\bar{G})^j}{\Gamma(i+2) \alpha^{i+j+1}}
\]
3- Truncated exponential Marshall Olkin Weibull distribution

Let \(G(x) \) and \(g(x) \) in (9), (10), and (11) be the cdf and pdf of the Weibull distribution [7] with two non-negative parameters \(\lambda \) and \(\beta \), a new proposed distribution named Truncated Exponential Marshall Olkin Weibull (TEMOW) distribution is attained as a member of TEMO-G family with the cdf, pdf and expanded pdf respectively given by

\[
F(x)_{TEMOW} = 1 - e^{-\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{\alpha}(1 - e^{-\lambda x^\beta})}}
\]

\[
f(x)_{TEMOW} = \frac{\theta \alpha \beta x^{\beta-1} e^{-\lambda x^\beta} e^{-\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{\alpha}(1 - e^{-\lambda x^\beta})}}}{(1 - e^{-\beta})(\alpha + \tilde{\alpha}(1 - e^{-\lambda x^\beta}))^2}
\]

and

\[
f^E(x)_{TEMOW} = \delta \lambda \beta x^{\beta-1} e^{-\lambda x^\beta} \left(1 - e^{-\lambda x^\beta}\right)^{1+j}
\]

with \(\delta \) as in (12).

The plots of some possible shapes of the cdf and pdf of the TEMOW distribution for specific values of four parameters are presented in figures 1 and 2. Figure 1 clearly shows the characteristics of the cdf that are \(0 \leq F(x)_{TEMOW} \leq 1 \), strictly increasing, and continuous. Figure 2 shows some of the possible shapes of TEMOW pdf such as decreasing, right-skewed, symmetric, and semi-symmetric. So, it is very flexible to model positive data.

4- Reliability measures and properties of TEMOW distribution

The reliability measures (reliability, hazard, reverse hazard, and cumulative hazard functions) (see [8]) of the proposed TEMOW distribution easily can be found respectively as follows

\[
R(x)_{TEMOW} = 1 - F(x)_{TEMOW} = 1 - \frac{1 - e^{-\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{\alpha}(1 - e^{-\lambda x^\beta})}}}{1 - e^{-\beta}}
\]
The plots of some possible shapes of the reliability and hazard functions of the TEMOW distribution for specific values of four parameters are presented in figures 3 and 4. Figure 3 clearly shows the characteristics of the reliability that are $0 \leq R(x)_{TEMOW} \leq 1$, strictly decreasing, and continuous. Figure 4 shows some of the possible shapes of TEMOW hazard function such as monotonically increasing, monotonically decreasing, bathtub, right-skewed, left-skewed, and semi-constant.

Furthermore, the most essential statistical properties of TEMOW distribution can be found as follows: The r^{th} moment can be found regarding to (15) as follows

$$E(X^r)_{TEMOW} = \int_0^\infty x^r f(x)_{TEMOW} dx = \delta \int_0^\infty x^r \lambda \beta x^{\beta-1} e^{-\lambda x^\beta} \left(1 - e^{-\lambda x^{\beta}}\right)^i e^{-\theta} dx$$

Using the expression $(1 - x)^a = \sum_{i=0}^\infty (-1)^i \Gamma(a+1) \Gamma(a-i+1) x^i$, $|x| < 1, a > 0$, the $E(X^r)_{TEMOW}$ will be
\[E(X^r)_{TEMOW} = \delta \int_0^\infty x^r \lambda^\beta \ x^{\beta-1} e^{-\lambda x^\beta} \frac{\Gamma(i + j + 1)}{m!} \frac{\sum_{m=0}^\infty \frac{(-1)^m \Gamma(i + j + 1)}{m!} \Gamma(i + j - m + 1)}{m!} \int_0^\infty x^r \lambda^\beta \ x^{\beta-1} e^{-\lambda x^{\beta+1}} \ dx \]

\[= \delta \sum_{m=0}^\infty \frac{(-1)^m \Gamma(i + j + 1)}{m!} \Gamma(i + j - m + 1) \frac{1}{m!} \frac{\Gamma(i + j - m + 1)}{\lambda^{i+1}} \Gamma\left(\frac{r}{\beta}\right) (m + 1)^\beta \]

But \(\int_0^\infty x^r \lambda m \ x^{\beta-1} e^{-\lambda x^\beta} \ dx \) represent the \(r^{th} \) moment of Weibull distribution with parameters \(\lambda(m + 1) \) and \(\beta \), i.e. \(\int_0^\infty x^r \lambda m \ x^{\beta-1} e^{-\lambda x^\beta} \ dx \) is defined by Moors \[10\], as

\[E(X^r)_{TEMOW} = \delta \sum_{m=0}^\infty \frac{(-1)^m \Gamma(i + j + 1)}{m!} \Gamma(i + j - m + 1) \frac{1}{m!} \frac{\Gamma(i + j - m + 1)}{\lambda^{i+1}} \Gamma\left(\frac{r}{\beta}\right) (m + 1)^\beta \]

5. The entropies, reliability stress strength and order statistics of TEMOW distribution

Shannon entropy: Regarding to (14), the TEMOW Shannon entropy can be achieved as follows

\[SE_{TEMOW} = -\int_0^\infty \ln(f(x)_{TEMOW}) f(x)_{TEMOW} \ dx \]

\[\ln(f(x)_{TEMOW}) = \ln\left(\frac{\theta \alpha \lambda^\beta}{1 - e^{-\theta}}\right) + (\beta - 1) \ln(x) - \lambda x^\beta - \theta \frac{1 - e^{-\lambda x^\beta}}{\alpha + \bar{\alpha} (1 - e^{-\lambda x^\beta})} \]

\[- 2 \ln\left(\alpha + \bar{\alpha} (1 - e^{-\lambda x^\beta})\right) \]

Then

\[SE_{TEMOW} = \ln\left(\frac{1 - e^{-\theta}}{\theta \alpha \lambda^\beta}\right) - (\beta - 1) E(\ln(X)) + \lambda E(X^\beta) + \theta E\left(\frac{1 - e^{-\lambda x^\beta}}{\alpha + \bar{\alpha} (1 - e^{-\lambda x^\beta})}\right) + 2E\left(\ln\left(\alpha + \bar{\alpha} (1 - e^{-\lambda x^\beta})\right)\right) \]

where \(E(X^\beta) \) as in (20) with \(r = \beta \), and
\[E(\ln(X)) = \int_0^\infty \ln(x) f(x)_{\text{TEMOW}} \, dx = \delta \int_0^\infty \ln(x) \lambda \beta x^{\beta-1} e^{-\lambda x^\beta} \left(1 - e^{-\lambda x^\beta} \right)^{i+j} \, dx \]

Since \(\left(1 - e^{-\lambda x^\beta} \right)^{i+j} = \sum_{m=0}^\infty \frac{(-1)^m \Gamma(i+j+1)}{m! \Gamma(i+j-m+1)} e^{-\lambda m x^\beta} \), then

\[E(\ln(X)) = \delta \sum_{m=0}^\infty \frac{(-1)^m \Gamma(i+j+1)}{\beta(m+1)! \Gamma(i+j-m+1)} \left[\psi(1) - \ln(\lambda(m+1)) \right] \] (25)

and

\[E \left(\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{a} (1 - e^{-\lambda x^\beta})} \right) = \int_0^\infty \frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{a} (1 - e^{-\lambda x^\beta})} f(x)_{\text{TEMOW}} \, dx \]

Using the expressions \((1-x)^{-\alpha}, (1-x)^{\alpha}, \) and \(e^{-x}\) that mentioned previously, we obtain

\[E \left(\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{a} (1 - e^{-\lambda x^\beta})} \right) = \sum_{m,l,t=0}^\infty \frac{(-1)^{m+l+t} \Gamma(m+2) \tilde{a}^m}{(m+2)!! \Gamma(m-l+2)} (\lambda l)^t E(X^t) \beta \] (26)

and

\[E \left(\ln \left(\alpha + \tilde{a} (1 - e^{-\lambda x^\beta}) \right) \right) = \int_0^\infty \ln \left(\alpha + \tilde{a} (1 - e^{-\lambda x^\beta}) \right) f(x)_{\text{TEMOW}} \, dx \]

Using the expressions \(\ln(1-x) = -\sum_{i=0}^\infty \frac{x^{i+1}}{i+1}; |x| < 1, (1-x)^{\alpha}, \) and \(e^{-x}\) we obtain

\[E \left(\ln \left(\alpha + \tilde{a} (1 - e^{-\lambda x^\beta}) \right) \right) = \ln(\alpha) + \sum_{m,l,t=0}^\infty \frac{(-1)^{m+l+t+2} \Gamma(m+2) \tilde{a}^m}{(m+1)!! \Gamma(m-l+2)} (\lambda l)^t E(X^t) \beta \] (27)

where \(E(X^t)\beta\) as in (20) with \(r = t \beta\).

Relative entropy: The relative entropy of the TEMOW distribution can be obtained by taking the mathematical expectation of \(\ln \left(\frac{f(x)_{\text{TEMOW}}}{f_1(x)_{\text{TEMOW}}} \right)\) where \(f(x)_{\text{TEMOW}}\) is the pdf with parameters \((\theta, \alpha, \lambda, \beta)\) as in (14) and \(f_1(x)_{\text{TEMOW}}\) is the pdf with parameters \((\theta_1, \alpha_1, \lambda_1, \beta_1)\) as

\[\ln \left(\frac{f(x)_{\text{TEMOW}}}{f_1(x)_{\text{TEMOW}}} \right) = \ln \left(\frac{\theta \alpha \beta (1 - e^{-\theta_1})}{\theta_1 \alpha_1 \beta_1 (1 - e^{-\theta_1})} + (\beta - \beta_1) \ln(x) - \lambda x^\beta + \lambda_1 x^{\beta_1} - \theta \frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{a} (1 - e^{-\lambda x^\beta})} \right) \]

\[\quad + \frac{1 - e^{-\lambda x^\beta}}{\alpha_1 + \tilde{a_1} (1 - e^{-\lambda_1 x^{\beta_1}})} \ln \left(\alpha + \tilde{a} (1 - e^{-\lambda x^\beta}) \right) \]

\[\quad + 2 \ln \left(\alpha_1 + \tilde{a_1} (1 - e^{-\lambda_1 x^{\beta_1}}) \right) \]

Thus, the TEMOW relative entropy is given by

\[RE_{\text{TEMOW}} = E \left(\ln \left(\frac{f(x)_{\text{TEMOW}}}{f_1(x)_{\text{TEMOW}}} \right) \right) = \ln \left(\frac{\theta \alpha \beta (1 - e^{-\theta_1})}{\theta_1 \alpha_1 \beta_1 (1 - e^{-\theta_1})} + (\beta - \beta_1) E(\ln(X)) \right) \]

\[- \lambda E(X^\beta) + \lambda_1 E(X^{\beta_1}) - \theta E \left(\frac{1 - e^{-\lambda x^\beta}}{\alpha + \tilde{a} (1 - e^{-\lambda x^\beta})} \right) + \theta_1 E \left(\frac{1 - e^{-\lambda_1 x^{\beta_1}}}{\alpha_1 + \tilde{a_1} (1 - e^{-\lambda_1 x^{\beta_1}})} \right) \]

\[- 2E \left(\ln \left(\alpha + \tilde{a} (1 - e^{-\lambda x^\beta}) \right) \right) + 2E \left(\ln \left(\alpha_1 + \tilde{a_1} (1 - e^{-\lambda_1 x^{\beta_1}}) \right) \right) \] (28)

where \(E(X^\beta)\) and \(E(X^{\beta_1})\) as in (20) with \(r = \beta\) and \(\beta_1\). The other mathematical expectations as in (25), (26) and (27) with indicated parameters.

Reliability stress strength model: Consider \(f_X(x)\) the pdf of the strength random variable \(X\) as in (14) and \(F_Y(x)\) the cdf of the stress random variable \(Y\) as in (13) with parameters \((\theta_1, \alpha_1, \lambda_1, \beta_1)\). The
reliability stress strength model associated with two independent TEMOW random variables can be achieved as follows

$$SS_{TEMOW} = P(Y < X) = \int_0^{\infty} f_X(x) F_Y(x) \, dx = \frac{1}{1 - e^{-\theta_1}} \left(1 - e^{-\frac{1-e^{-\lambda x \beta_1}}{\alpha_1 + \bar{\alpha}(1-e^{-\lambda x \beta_1})}} \right) f_X(x) \, dx$$

After using the expansion formulas of $e^{-x} \cdot (1-x)^{-a}$ and $(1-x)^a$ along with some simplification steps we get

$$SS_{TEMOW} = \frac{1}{1 - e^{-\theta_1}} \left[1 - \sum_{i,j,l,t=0}^{\infty} (-1)^{i+j+i+t} \frac{\Gamma(i+j)\Gamma(i+j+1)}{i!j!l!t!} \frac{\Theta(i)}{\Gamma(i+j-l+1)} \frac{\Theta_1^j}{\alpha_1^i} (\lambda l)^t x^t \beta_1 \right] f_X(x) \, dx$$

Then

$$SS_{TEMOW} = \frac{1}{1 - e^{-\theta_1}} \left[1 - \sum_{i,j,l,t=0}^{\infty} (-1)^{i+j+i+t} \frac{\Gamma(i+j)\Gamma(i+j+1)}{i!j!l!t!} \frac{\Theta(i)}{\Gamma(i+j-l+1)} \frac{\Theta_1^j}{\alpha_1^i} (\lambda l)^t E(X^t \beta_1) \right]$$

where $E(X^t \beta_1)$ as in (20) with $r = t \beta_1$.

Order statistics: Let $x_{1:n}, x_{2:n}, \ldots, x_{n:n}$ be the corresponding order statistics of a random sample X_1, X_2, \ldots, X_n of size n taken independently from TEMOW distribution. The pdf and the joint pdf of order statistics can be found based on (13) and (14) via the following standard formulas (see [11])

$$f_{k:n}(x) = \frac{n!}{(k-1)! (n-k)!} (F(x))^{k-1} (1 - F(x))^{n-k} f(x) ; 0 \leq x_{k:n} < \infty, k \leq n$$

$$f_{j,k:n}(x, y) = \frac{n!}{(j-1)! (k-j-1)! (n-k)!} (F(x))^{j-1} (F(y) - F(x))^{k-j-1} (1 - F(y))^{n-k} f(x) f(y) ; 1 \leq j \leq k, 0 \leq y < \infty$$

As follows

$$f_{k:n}(x) = \frac{n!}{(k-1)! (n-k)!} \left(1 - e^{-\frac{1-e^{-\lambda x \beta_1}}{\alpha + \bar{\alpha}(1-e^{-\lambda x \beta_1})}} \right)^{k-1} \left(-\frac{1-e^{-\lambda x \beta_1}}{\alpha + \bar{\alpha}(1-e^{-\lambda x \beta_1})} e^{-\theta} - e^{-\theta} \right)^{n-k}$$

$$\theta \alpha \lambda \beta x_{\beta-1} e^{-\lambda x \beta} \frac{\Theta(1-e^{-\lambda x \beta})}{(1 - e^{-\theta})^n (\alpha + \bar{\alpha}(1-e^{-\lambda x \beta}))^2} ; 0 \leq x_{k:n} < \infty, k \leq n$$

$$f_{j,k:n}(x, y) = \frac{n!}{(j-1)! (k-j-1)! (n-k)!} \left(1 - e^{-\frac{1-e^{-\lambda x \beta_1}}{\alpha + \bar{\alpha}(1-e^{-\lambda x \beta_1})}} \right)^{j-1}$$

$$\left(-\frac{1-e^{-\lambda y \beta_1}}{\alpha + \bar{\alpha}(1-e^{-\lambda x \beta_1})} e^{-\theta} - e^{-\theta} \right)^{n-k}$$

$$\Theta^2 \alpha^2 \lambda^2 \beta^2 x_{\beta-1} y_{\beta-1} e^{-\lambda(x+y) \beta} \frac{\Theta(1-e^{-\lambda x \beta} + 1-e^{-\lambda y \beta})}{(1 - e^{-\theta})^n (\alpha + \bar{\alpha}(1-e^{-\lambda x \beta}))^2 (\alpha + \bar{\alpha}(1-e^{-\lambda y \beta}))^2} ; 1 \leq j \leq k, 0 \leq x \leq y < \infty$$
6. Maximum likelihood estimators of TEMOW parameters

Consider \(x_1, x_2, \ldots, x_n\) a complete random sample of size \(n\) follow TEMOW distribution with the vector of parameters \(\Delta = (\theta, \alpha, \lambda, \beta)^T\). Then natural logarithm likelihood function based on (14) is

\[
\ell(\Delta | x) = n \ln \left(\frac{\partial a \lambda \beta}{1 - e^{-\beta + \lambda x_i}} \right) + (\beta - 1) \sum_{i=1}^{n} \ln(x_i) - \lambda \sum_{i=1}^{n} x_i^\beta - \theta \sum_{i=1}^{n} \frac{1 - e^{-\lambda x_i^\beta}}{\alpha + \lambda (1 - e^{-x_i^\beta})} - 2 \sum_{i=1}^{n} \ln \left(\frac{1 - e^{-\lambda x_i^\beta}}{\alpha + \lambda (1 - e^{-x_i^\beta})} \right)
\]

(32)

The maximum likelihood estimators of four parameters can be attained either directly by using the package (AdeqeuityModel) in R software or by solving the nonlinear four likelihood equations

\[
\frac{\partial \ell(x | \delta)}{\partial \delta} = \left(\frac{\partial \ell(x | \delta)}{\partial \alpha}, \frac{\partial \ell(x | \delta)}{\partial \lambda}, \frac{\partial \ell(x | \delta)}{\partial \beta}, \frac{\partial \ell(x | \delta)}{\partial \theta} \right)^T = 0
\]

through computational iterative techniques.

In AdeqeuityModel package, there exists various maximization algorithms such as Newton-Raphson (NR), Broyden-Fletcher-Goldfarb-Shanno (BFGS), Berndt-Hall-Hall-Hausman (BHHH), Limited-Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B), Nelder-Mead (NM), and Simulated-Annealing (SANN). Here, the MLEs are computed directly by using the package (AdeqeuityModel) in R software with BFGS method.

7. Simulation and real application

In this section, numerical illustrations (simulation and real application) are presented to exhibit the abilities of the proposed distribution.

7.1. Simulation process

The first step of the simulation process is to generate i.i.d. random samples (1000 times) follow TEMOW distribution each with size \(n = 25,50,100,200\) and 300 where the true or initial values of parameters are chosen to be as in table 1 (also see figure 2). Then, for each parameter, calculate the Bias and root mean squared error (RMSE) as

\[
\text{Bias}(\hat{\eta}) = \frac{1}{1000} \sum_{i=1}^{1000} (\hat{\eta}_i - \eta)
\]

\[
\text{RMSE}(\hat{\eta}) = \sqrt{\frac{1}{1000} \sum_{i=1}^{1000} (\hat{\eta}_i - \eta)^2}
\]

where \(\eta\) can be \(\theta, \alpha, \lambda,\) or \(\beta\).

It clearly appears from the simulation results (table 1) that RMSE values decrease as the sample size increases.

| Table 1. The Bias and RMSE of the TEMOW parameters estimation using MLE. |
|----------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|
\(n\)	Par.	Init.	Bias	RMSE	Init.	Bias	RMSE	Init.	Bias	RMSE
25	\(\theta\)	3.3	-0.213	0.871	9.1	0.405	1.520	3.5	-0.096	0.640
	\(\alpha\)	1.2	0.312	1.098	2.8	0.448	1.690	1	0.048	0.689
	\(\lambda\)	0.8	0.209	0.360	2.1	0.567	1.305	0.5	0.348	0.381
	\(\beta\)	2.1	0.136	0.502	0.9	0.056	0.193	0.39	0.221	0.771
50	\(\theta\)	3.3	-0.103	0.649	9.1	0.395	1.388	3.5	-0.032	0.493
	\(\alpha\)	1.2	0.173	0.781	2.8	0.302	1.277	1	-0.022	0.502
	\(\lambda\)	0.8	0.157	0.271	2.1	0.379	0.948	0.5	0.335	0.356
	\(\beta\)	2.1	0.065	0.338	0.9	0.023	0.128	3.9	0.134	0.538
100	\(\theta\)	3.3	-0.007	0.534	9.1	0.288	1.152	3.5	0.034	0.347
	\(\alpha\)	1.2	0.094	0.565	2.8	0.144	0.793	1	-0.097	0.378
	\(\lambda\)	0.8	0.123	0.202	2.1	0.255	0.617	0.5	0.318	0.330
	\(\beta\)	2.1	0.034	0.242	0.9	0.013	0.087	3.9	0.116	0.383
200	\(\theta\)	3.3	0.051	0.410	9.1	0.284	0.989	3.5	0.054	0.253
7.2. Real Application

In this subsection, we include applications for two real data sets (right-skewed and semi-symmetric) to exhibit the abilities and flexibility of the TEMOW distribution.

The first real data (Data-1) collection reflects the body fat percentage of 202 Australian athletes [12].

"19.75, 21.30, 19.88, 23.66, 17.64, 15.58, 19.99, 22.43, 17.95, 15.07, 28.83, 18.08, 23.30, 17.71, 18.77, 19.83, 25.16, 18.04, 21.29, 22.15, 16.15, 16.38, 19.35, 19.20, 17.89, 12.20, 23.70, 24.69, 16.58, 21.47, 20.12, 17.51, 23.70, 22.39, 20.43, 11.29, 25.16, 19.39, 19.63, 23.11, 16.86, 21.32, 26.57, 17.93, 24.97, 22.62, 15.01, 18.14, 26.78, 17.22, 26.50, 23.01, 30.10, 13.93, 26.65, 35.52, 15.59, 19.61, 14.52, 11.47, 17.71, 18.48, 11.22, 13.61, 12.87, 11.85, 13.35, 11.77, 11.07, 21.30, 20.10, 24.88, 19.26, 19.51, 23.01, 8.07, 11.05, 12.39, 15.95, 9.91, 16.20, 9.02, 14.26, 10.48, 11.29, 19.94, 13.91, 6.10, 7.52, 9.56, 6.06, 7.90, 6.46, 9.00, 12.61, 9.03, 9.66, 10.05, 9.56, 9.36, 10.81, 8.61, 9.53, 7.42, 9.79, 8.97, 7.49, 11.95, 7.35, 7.16, 8.77, 9.56, 14.53, 8.51, 10.64, 7.06, 8.87, 7.88, 9.20, 7.19, 6.06, 5.63, 6.59, 9.50, 13.97, 11.66, 6.43, 6.99, 6.00, 6.56, 6.03, 6.33, 6.82, 6.20, 5.93, 5.80, 6.56, 6.76, 7.22, 8.51, 7.72, 19.94, 13.91, 6.10, 7.52, 9.56, 6.06, 7.35, 6.00, 6.92, 6.33, 5.90, 8.84, 8.94, 6.53, 9.40, 8.18, 17.41, 18.08, 9.86, 7.29, 18.72, 10.12, 19.17, 17.24, 9.89, 13.06, 8.84, 8.87, 14.69, 8.64, 14.98, 7.82, 8.97, 11.63, 13.49, 10.25, 11.79, 10.05, 8.51, 11.50, 6.26".

The second real data (Data-2) collection reflects the strengths of 1.5 cm glass fibers of 63 observations [13].

"0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11, 1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48, 1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61, 1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64, 1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76, 1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, 2.24".

The fitting of TEMOW distribution is compared with the Beta Weibull (BW), Kumaraswamy Weibull (KuW), Exponentiated Generalized Weibull (EGW), Weibull Weibull (WW), Gompertz Weibull (GoW), and Weibull (W) distributions (see [14]-[18] for more details). The software R was used to calculate their negative log-likelihood (-LL), Consistent Akaike Information Criteria (CAIC), Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Hanan and Quinn Information Criteria (HQIC), besides MLEs of the parameters.

The findings are shown in tables 2 - 5. In addition to the plots of empirical cdfs, the histogram plot and the estimated densities are shown in figures 5 - 8. Based on the results, TEMOW has the lowest values of information criteria, making it the most fitting to represent two data sets compared to other distributions. In addition, this best fitting can be seen via the plots.

Table 2. The information criteria to fitting Data-1.
Dist.
TEMOW
BW
KuW
EGW
WW
GoW
W
Table 3. The MLE values to Data-1.

Dist.	$\hat{\theta}_{ML}$	$\hat{\alpha}_{ML}$	$\hat{\lambda}_{ML}$	$\hat{\beta}_{ML}$
TEMOW	-17.5717	0.0208	0.0557	2.1454
BW	1.7612	0.2322	0.1540	1.9505
KuW	7.9067	0.1593	0.2580	1.6154
EGW	1.3058	97.7112	1.1087	0.5177
WW	3.3540	1.7800	0.1485	0.7018
GoW	1.2484	-0.1433	0.0623	2.5427
W	---	---	0.0658	2.2554

Table 4. The information criteria to fitting Data-2.

Dist.	-LL	CAIC	AIC	BIC	HQIC
TEMOW	12.0290	32.748	32.058	40.631	35.430
BW	14.5926	37.875	37.185	45.758	40.557
KuW	13.3785	35.447	34.757	43.329	38.129
EGW	20.8999	50.489	49.800	58.372	53.171
WW	15.2068	39.103	38.414	46.986	41.785
GoW	14.7764	38.242	37.553	46.125	40.924
W	18.0609	40.355	40.155	44.441	41.840

Table 5. The MLE values to Data-2.

Dist.	$\hat{\theta}_{ML}$	$\hat{\alpha}_{ML}$	$\hat{\lambda}_{ML}$	$\hat{\beta}_{ML}$
TEMOW	-0.5754	12.2078	0.8896	3.2084
BW	0.6194	6.2381	0.4480	7.7638
KuW	0.4934	0.2121	0.7400	7.0644
EGW	0.1377	3.2010	1.048	2.6592
WW	3.4845	3.9363	1.4029	1.6589
GoW	0.0080	3.5273	1.0602	0.9752
W	---	---	0.6240	4.4768
8. Conclusions
In this paper, a newly generated family of continuous distributions with Marshall Olkin is introduced. Then a truncated distribution as a sub-model with four parameters called Truncated Exponential Marshall Olkin Weibull is proposed. Reliability analysis with several main statistical properties such as moments, characteristic function, quantile function, median, skewness, kurtosis, simulated data, Shannon entropy, relative entropy, reliability stress-strength model, and order statistics are presented. Furthermore, the maximum likelihood estimation method is used to estimate the unknown four parameters. To assess the usefulness and flexibility, the TEMOW distribution applied upon simulation study besides real application by the implementation of two real data sets (right-skewed and semi-symmetric) with different information criteria. The simulation results clearly shown the flexible and consistent performance of the maximum likelihood estimators for the parameters. Also, the real application results clearly shown that the proposed distribution has outstanding performance than other considered distributions for all information criteria. This flexibility allows using the TEMOW distribution in various application areas.

References
[1] Marshall A W and Olkin I 1997 A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families Biomet.84(3)pp 641-52
[2] Eugene N, Lee C and Famoye F 2002 Beta-normal distribution and its applications Comm. Stat.-The.Meth.31(4) pp 497-512
[3] Khaleel M A, Al-Noor N H and Hameed M Kh 2020 A Marshall Olkin exponential Gompertz distribution: properties and applications Per. Eng.Nat. Sci.8(1) pp 298-312
[4] Handique L, Chakraborty S and Hamedani G G 2017 The Marshall - Olkin - Kumaraswamy - G family of distributionsJ. Stat. The. Appl. 16(4) pp 427-47
[5] Gupta A K and Nadarajah S 2005 On the moments of the beta normal distribution Comm. Stat.-The.Meth.33(1) pp 1-13
[6] Abid S H, Al-Noor N H and Boshi M A A 2018 [0,1] Truncated generalized gamma – generalized gamma distribution J. Ir. Al-Kh. Soc.2 pp 135-48
[7] Ishaq A I and Abiodun AA 2020 The Maxwell–Weibull distribution in modeling lifetime datasets Ann. Data. Sci. 7 pp 639-62
[8] Shabbir M, Riaz A and Gu I 2018 Rayleigh Lomax distribution J Mid. E.Nor. Afr. Sci. 4(12) pp 1-4
[9] Galton F 1983 Enquiries into human faculty and its development (London: Macmillan Press)
[10] Moors J J 1988 A quantile alternative for kurtosis Statist. 37 pp 25-32
[11] Al-Noor N H and Assi N K 2020 Rayleigh-Rayleigh distribution: properties and applications J. Phys.: Conf. Series 1591 012038
[12] Oguntunde P E, Khaleel M A, Adejumo A O, Okagbue H I, Opanuga A A and Owolabi F O 2018 The Gompertz-inverse exponential (GoIE) distribution with applications Cog. Math. Stat. 5(1) pp 1-11
[13] Smith R L and Naylor J C 1987 A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution J. Roy. Stat. Soc. (Appl. Stat.) 36(3) pp 358-69
[14] Lee C, Famoye F and Olumolade O 2007 Beta-Weibull distribution: some properties and applications to censored data J. Mod. Appl. Stat. Meth. 6(1) pp 173-86
[15] Cordeiro G M, Ortega E M M and Nadarajah S 2010 The Kumaraswamy Weibull distribution with application to failure data J. Fran. Inst. 347(8) pp 1399-429
[16] Mudholkar G S, Srivastava D K and Freimer M 1995 The Exponentiated Weibull family Tech. 37(4) pp 436-45
[17] Al-Noor N H, Abid S H and Boshi M A A 2019 On the exponentiated Weibull distribution AIP Conf. Proc. 2183 110003
[18] Bourguignon M, Silva R B and Cordeiro G M 2014 The Weibull-G family of probability distributions J. Data. Sci. 12(1) pp 53-68