Hypothesis

Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis
Nikolai A Shevchuk*1 and Sasa Radoja2

Address: 1Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA and 2Center for Cancer and Immunology Research, Children's Research Institute, Washington DC, USA

Email: Nikolai A Shevchuk* - nshevchuk@comcast.net; Sasa Radoja - sradoja@cnmc.org
* Corresponding author

Abstract

Background: The phenomenon of hormesis, whereby small amounts of seemingly harmful or stressful agents can be beneficial for the health and lifespan of laboratory animals has been reported in literature. In particular, there is accumulating evidence that daily brief cold stress can increase both numbers and activity of peripheral cytotoxic T lymphocytes and natural killer cells, the major effectors of adaptive and innate tumor immunity, respectively. This type of regimen (for 8 days) has been shown to improve survival of mice infected with intracellular parasite Toxoplasma gondii, which would also be consistent with enhanced cell-mediated immunity.

Presentation of the hypothesis: This paper hypothesizes that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve survival rate of a non-lymphoid cancer. The possible mechanism of the non-specific stimulation of cellular immunity by repeated cold stress appears to involve transient activation of the sympathetic nervous system, hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axes, as described in more detail in the text. Daily moderate cold hydrotherapy is known to reduce pain and does not appear to have noticeable adverse effects on normal test subjects, although some studies have shown that it can cause transient arrhythmias in patients with heart problems and can also inhibit humoral immunity. Sudden immersion in ice-cold water can cause transient pulmonary edema and increase permeability of the blood-brain barrier, thereby increasing mortality of neurovirulent infections.

Testing the hypothesis: The proposed procedure is an adapted cold swim (5–7 minutes at 20 degrees Celsius, includes gradual adaptation) to be tested on a mouse tumor model. Mortality, tumor size, and measurements of cellular immunity (numbers and activity of peripheral CD8+ T lymphocytes and natural killer cells) of the cold-exposed group would be compared to those of control groups (warm swim and no treatment). Cold-water stress would be administered twice a day for the duration of several months.

Implications of the hypothesis: If the hypothesis is supported by empirical studies and the method is shown to be safe, this could lead to the development of an adjunctive immunotherapy for some (non-lymphoid) cancers, including those caused by viral infections.
Background

Numerous studies show that small amounts of harmful or stressful agents (e.g. heat stress, cold stress, hypergravity) can be beneficial for the health of laboratory animals, the phenomenon that became known as hormesis, although evidence for possible benefits in humans is lacking at present [1,2]. This paper presents theoretical evidence for immunomodulating properties of brief cold stress, as increasing evidence indicates that cold stress repeated daily can have a stimulating effect on cell-mediated immunity [3-6], while inhibiting humoral immunity to some extent [7,8]. There is a number of ways to administer cold stress and this may account for the different effects on the immune system reported by various studies [9-11]. The focus of this paper is brief whole-body exposure to cold water since it has been shown to increase activity and numbers of peripheral natural killer (NK) cells and CD8+ T lymphocytes [3,6,12-14]. This effect could be explained by transient activation of the sympathetic nervous system (SNS) [15,16], the hypothalamic-pituitary-adrenal (HPA) axis [17,18] as well as the hypothalamic-pituitary-thyroid (HPT) axis [19,20] resulting in a brief action of norepinephrine, adrenocorticotropic hormone (ACTH), beta-endorphin, and thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) on cytotoxic T lymphocytes (CTLs) and NK cells. As explained below, all of these neuroendocrine factors have been previously shown to promote expansion and/or cytolytic activity of CTLs and NK cells. Interestingly, brief cold swim stress repeated for 8 days was also reported to increase survival of mice infected with intracellular parasite Toxoplasma gondii [5], the situation that is consistent with enhancement of cellular immunity. Based on this evidence and given the fact that NK cells and CTLs are major components of an antitumor immune response [21], it seems logical to propose the following hypothesis.

Presentation of the hypothesis

The hypothesis is that brief cold-water stress repeated daily over many months could enhance anti-tumor immunity and improve cancer survival rate in a mouse (non-lymphoid) tumor model. While substantial efforts in the field of tumor immunology are devoted to finding ways to elicit a tumor-specific CTL response using tumor-derived antigens [22], this paper discusses a somewhat different approach of non-specific promotion of cell-mediated immune responses by increasing the total number and enhancing cytolytic potential of peripheral CTLs and NK cells. As a tide that lifts all boats, this approach could enhance endogenous (but possibly inadequate) CTL anti-tumor responses and thereby inhibit the development and growth of a tumor. Lymphocyte activation may also lead to autoimmunity, which does not appear to be the case for immunological changes associated with repeated cold stress [3,6,12,23,24]. A similar "broad activation" principle serves as a rationale for systemic interleukin-2 (IL-2) administration, which is currently used as anti-cancer immunotherapy in renal cell cancer and metastatic melanoma [25]. However, this approach proved to be rather inefficient, probably due to induction of T cell apoptosis and/or inability of the effector CD8+ T lymphocytes to infiltrate/home to the tumor site [25,26]. On the other hand, it has been demonstrated in several mouse tumor models that tumor-specific T cells are fully mature/activated and effectively infiltrate tumors but are not able to kill the cognate tumor cells *ex vivo* due to defective granule exocytosis-mediated cytotoxicity [27,28]. This defect is reversible as tumor-specific T cells that are isolated/purified from the tumor can regain lytic activity after brief *in vitro* culture [28]. The paper presented here hypothesizes that repeated cold stress could induce/enhance lytic activity of CD8+ T cells at the tumor site, and may also enhance innate anti-tumor immunity through expansion and activation of NK cells, all of which could result in more efficient tumor elimination. The detailed supporting evidence for this hypothesis is as follows.

General neuro-endocrine effects of brief cold stress

From available literature, one can distinguish immediate (or transient) effects of cold stress, lasting 1 to 2 hours, and longer-term (or sustained) effects of repeated (e.g. once daily) cold stress, lasting days and possibly weeks. The immediate/transient effects reported in mice and humans include: brief activation of the SNS [15,16], of the HPA axis [17,18] and of the HPT axis [19,20] with a significant increase in the metabolic rate [29] and in plasma levels of norepinephrine [15,16], ACTH [30,31], corticosterone [7], beta-endorphin [18,32], T3 [19,20], T4 [20], as well as a modest or undetectable increase in the plasma levels of interleukin-6 (IL-6) [12,13] and cortisol [33,34] (Table 1). The sustained/longer-term effects of cold stress repeated daily or almost daily (over the period of 5 days to 6 weeks) appear to include increased plasma levels of tumor necrosis factor-α (TNF-α) [12], IL-2 [3], IL-6 [12], ACTH [35], corticosterone [3], as well as a decreased plasma level of α1-antitrypsin [12] and testosterone [6] (Table 1).

Effects on maturation and peripheral recruitment of CTLs

Brief cold stress such as a cold swim has been reported to increase the level of peripheral T lymphocytes both in a transient manner after a single treatment (CD8+ T lymphocytes [11]) and in a sustained manner, when treatments are repeated daily or thrice per week (both CD4+ and CD8+ lymphocytes [3,12]). This could be mediated by the transient action of norepinephrine on β2-adrenergic receptors of CD8+ T lymphocytes [36-38] as a result of the activation of the SNS [39-41], which innervates both primary and secondary lymphoid organs and can stimu-
late lymphocyte proliferation, maturation, and peripheral recruitment via norepinephrine release in a non-synaptic fashion (reviewed in [42]). Additionally, the cold stress-induced expansion of CTLs could be mediated by changes in other neuroendocrine factors that are known to be caused by cold stress (Table 2).

Effects on activity of CTLs

Studies show that both single and repeated (daily) brief exposure to cold can enhance antigen-induced proliferative responses of T lymphocytes and the level of activated peripheral T lymphocytes in mammals [3,4,6,12,14]. This stimulatory effect could be mediated by the brief action of the SNS (via norepinephrine), of beta-endorphin, T3, or T4 or sustained action of ACTH and IL-2 (Table 2). There is also evidence of an increased phagocytic index following brief cold stress [43], suggesting that antigen (cross-)presentation may be enhanced. Unfortunately, it is not known if cold stress can enhance cytolytic activity of peripheral cytotoxic T lymphocytes, but there is indirect evidence that this may be the case (Table 2 and [5,24]).

Table 1: Known effects of cold stress. "Immediate/transient" means effects of a single brief exposure to cold that last less than 1–2 hours. "Sustained/longer-term" means effects (of repeated daily or several times per week cold-water stress) that can last one day or longer.

Immediate/transient effects	Sustained/longer-term effects
Activation of:	An increase in plasma levels of:
sympathetic nervous system	adrenocorticotropic hormone
[15,16]	[35]
hypothalamic-pituitary-adrenal axis [17,18]	corticosterone* [3]
hypothalamic-pituitary-thyroid axis [19,20]	interleukin-2 (modest/undetectable) [3,84]
Increased resting metabolic	interleukin-6 [12]
rate [29]	tumor necrosis factor-α [12]
	haptoglobin [12]
	hemopexin [12]
An increase in plasma levels of:	Decreased plasma levels of:
adrenocorticotropic hormone	α1-antitrypsin [12]
[30,31]	testosterone [6]
norepinephrine [15,16]	
beta-endorphin [18,32]	
corticosterone* [7]	
cortisol (modest/undetectable) [33,34,82,83]	
thyroid stimulating hormone [20]	
triiodothyronine [19,20]	
thyroxine [20]	
interleukin-6 [6,13]	Decreased plasma level of interleukin-2 [84,85]

* It is expected to have a negligible immunosuppressive effect [86,87].

Cytotoxic cells	NK cells*
Expansion/peripheral recruitment	brief action** of the SNS [39-41] (via norepinephrine) on β2-adrenergic receptors of CD8+ T lymphocytes [36-38]; elevated plasma levels of ACTH [88,89], T4 [90], and beta-endorphin [91]; brief action*** of the SNS (via norepinephrine) [36,39,96-98], beta-endorphin [91,99-101], T3 [102], or T4 [90,103,104] or sustained action of ACTH [88]; increased phagocytic index [43], downregulation of testosterone [105-107] or α1-antitrypsin [108]; upregulation of ACTH [88,89], beta-endorphin [109,110], IL-2 [111-113], IL-6 [114,115], TNF-α [116-118], combination of IL-2 + IL-6 [119,120], or IL-2 + TNF-α [121]; downregulation of α1-antitrypsin [122,123];
Activation	brief action*** of the SNS (via norepinephrine) on β2-adrenergic receptors of NK cells [37,42,44]; upregulation of beta-endorphin [92], IL-2 [93], T3 [94] and T4 [95];
Cytolytic activity	elevated plasma levels of IL-2 [93], beta-endorphin [124-126], ACTH [127,128], T3 [129,130] or T4 [131,132];

* Continuous hypothermia [133] (lowered core body temperature which cannot normally result from a brief exposure to cold in most mammals [52,53]) or continuous exposure to acute cold (4 hours or longer [134]) have been shown to reduce both the number and activity of peripheral NK cells.

** Continuous elevated levels of norepinephrine or other β2-adrenergic agonists (3 hours or longer) appear to have an opposite effect: reduction in peripheral CTLs and NK cells and inhibition of their activity [42,135,136].

Table 2: Possible mechanisms underlying the stimulatory effects of repeated cold stress on cell-mediated immunity

CTLs and other cytotoxic immune cells	NK cells*
Expansion/peripheral recruitment	brief action*** of the SNS (via norepinephrine) on β2-adrenergic receptors of NK cells [37,42,44]; upregulation of beta-endorphin [92], IL-2 [93], T3 [94] and T4 [95];
Activation	elevated plasma levels of IL-2 [93], beta-endorphin [124-126], ACTH [127,128], T3 [129,130] or T4 [131,132];

* Continuous hypothermia [133] (lowered core body temperature which cannot normally result from a brief exposure to cold in most mammals [52,53]) or continuous exposure to acute cold (4 hours or longer [134]) have been shown to reduce both the number and activity of peripheral NK cells.

** Continuous elevated levels of norepinephrine or other β2-adrenergic agonists (3 hours or longer) appear to have an opposite effect: reduction in peripheral CTLs and NK cells and inhibition of their activity [42,135,136].
Effects on maturation and peripheral recruitment of NK cells

Single brief exposure to cold appears to transiently increase the level of peripheral NK cells [11,13]. This could be due to the increased peripheral recruitment and/or expansion of these cells, which are known to be mediated by the action of the SNS (via norepinephrine) on β2-adrenergic receptors of NK cells [37,42,44]. This effect could also be mediated by elevated levels of beta-endorphin, IL-2, T3 and T4 (Table 2).

Effects on activity of NK cells

Both single and repeated (daily) brief cold stress has been shown to enhance cytolytic activity of NK cells [3,13]. This could be the result of elevated plasma levels of IL-2, beta-endorphin, ACTH, T3 or T4 (Table 2).

Other effects

Daily moderate cold water stress does not appear to have noticeable adverse effects on normal test subjects either short-term or long-term [12,15,24,45] and, interestingly, in a near-life-time experiment on healthy rats, where the animals had to stand in 23°C water 4 hours per day 5 days per week, the repeated cold stress extended the lifespan by statistically insignificant 5% and somewhat reduced spontaneous incidence of tumors, especially sarcomas [24]. Based on the evidence presented earlier, more frequent exposure to cold of shorter duration, for example 5-minute cold swim stress twice per day (>7 hours apart), could have a more significant immunostimulatory effect and a less pronounced effect on metabolism compared to the above experiment. Cold water stress is also known to have an analgesic effect [32,46,47], which is often relevant in cancer.

Possible adverse effects

1) Water colder than 14°C can cause cutaneous pain [48,49] and therefore would be best avoided.

2) Exposure to acute cold for extended periods of time can cause a significant drop of core body temperature (hypothermia) which can be associated with such adverse effects on health as ataxia, hypovolemia, atrial dysrhythmias, cold diuresis, and mental confusion [50,51]. Immersion in moderately cold water in the range of 16–23°C does not appear to cause hypothermia (core temperature of 35°C or lower) in healthy human subjects, even when it lasts for several hours [52]. During this procedure, core body temperature stays virtually unchanged during the first hour [52] due to unusual efficiency of the human thermoregulatory system [53]. It should be noted that the elderly or people with certain metabolic disorders may develop hypothermia under these conditions, and thus body temperature should be monitored in these groups of people if they use cold hydrotherapy [50,51].

3) Coldest months of the year have been shown to be associated with a higher incidence of acute heart failure and stroke [54-56]. In the landmark experiment by Hollószy and Smith described above, where rats were standing in cold water 4 hours per day, the prevalence of cardiovascular problems was increased according to post-mortem examination, although the average lifespan was increased insignificantly and the prevalence of malignancies declined [24]. It is not known if daily brief exposure to moderately cold water (20°C, under 15 minutes) with gradual adaptation will have similar cardiovascular effects in the long run. Studies also show that immersion in cold water can cause transient arrhythmias in some patients with heart problems [57-59], although short-term cardiovascular effects of cold water immersion seem to be benign in normal test subjects [15].

4) Upper respiratory tract infections such as the flu and common cold occur predominantly although not exclusively during the cold time of the year, i.e. late fall/winter [60]. It is not known if this is due to exposure to cold, dietary patterns, or some other factors [61]. Near-life-time exposure of rats to cold water (23°C) for several hours per day was not reported to increase incidence of respiratory infections [24], as was the case for 1-hour cold water immersions (14°C) repeated 3 times per week for 6 weeks in humans [12,15]. On the other hand, some studies show that inhalation of cold air can inhibit cell-mediated immunity in the mucosa of the respiratory tract and thus possibly increase susceptibility to respiratory viral infections [62].

5) Swimming in ice-cold water can cause transient pulmonary edema in humans [63-65], which may be due to severe hypothermia among other things [51].

6) Some studies show that sudden immersion in ice-cold water can increase permeability of the blood-brain barrier in mice [66,67], and when repeated daily can also increase mortality of neurovirulent infections (e.g. West Nile virus, Sindbis virus) due to propagation of the infection to the brain of the mice [68,69]. Increased permeability of the blood-brain barrier can be due to the distress associated with a dive into ice-cold water because a different treatment which also causes distress to the animals, namely, isolation, has very similar adverse effects [67]. In addition, immersion in ice-cold water can rapidly cause severe hypothermia in mice [70] and hypothermia is known to increase permeability of the blood brain barrier in healthy animals [71]. The proposed adapted cold swim procedure at 20°C is not expected to compromise the blood-brain barrier in mice because it is designed to be minimally stressful (contains a gradual adaptation phase) and is brief, such that the core body temperature of the animals would remain above 35°C. The methods described in the
“Testing the hypothesis” section could verify this assumption.

In summary, the review of literature suggests that winter swimming (in other words, sudden immersion in ice-cold water) may pose serious risks to health and it is possible that exposure to cold can be safer if it is brief and does not involve psychological distress, inhalation of cold air, and hypothermia. Further studies would be needed to assess the safety of the relatively non-stressful regimen of cold hydrotherapy that is proposed in this paper. At the same time, minimally stressful exposure to moderate cold still seems to have significant physiological and immunological effects [6,13,33,34], which may be useful for enhancing anti-tumor immunity according to our hypothesis.

Testing the hypothesis
The hypothesis can be tested using a treatment that consists of an adapted cold swim procedure which begins with a slow and gradual lowering of a cage with laboratory animals into stirred cold water (20°C) over the period of 4–5 minutes followed by a 1- or 2-minute cold swim. The adaptation phase is expected to minimize stress and discomfort for the animals. The cage would be lifted out of the water to discontinue cold exposure and placed on proper bedding (certain cooling may still occur due to subsequent evaporation of water from the fur of the animals). The procedure is estimated to cause the core body temperature of mice to decline by approximately 2°C based on data from Wan R. et al. [70], and may have to be tested and optimized in order to avoid inducing significant hypothermia in the animals. Manual handling of individual mice would be best avoided. Cold water stress would be administered twice per day (more than 7 hours apart) according to a schedule described below. A syngeneic orthotopic mouse tumor model can be tested, for example, intradermal injection of MEB4 melanoma cell line (4 × 10⁴ cells) in C57BL/6 mice [72] or subcutaneous injection of 6-1 tumor cell line (2 × 10⁵ cells) in C3H/HeN mice [73]. Sixty mice can be used for a single experiment with a no-treatment control.

If the adapted cold swim is shown to be beneficial and safe in mouse tumor models, a similar regimen can be tested on human subjects, namely, adapted cold showers, 20°C, 2–5 minutes, preceded by a 5-minute gradual adaptation phase (expansion of the area of contact with water from the feet up), performed twice per day (morning and afternoon). The shower format is preferable in humans because the setup appears to take less time and effort compared to cold baths.

Implications of the hypothesis
If the theory is confirmed by empirical studies and the proposed approach is shown to be safe, then some form of cold hydrotherapy could potentially become a treatment option for some (non-lymphoid) cancers as an adjunctive immunotherapy.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
Both NAS and SR contributed to formulating the idea and drafting of the manuscript. Both authors have read and approved the final manuscript.

Acknowledgements
The authors thank Stephan Ladisch, M.D., whose critical comments about the method prompted them to come up with the concept of gradual adaptation. Funding was in part derived from the Children’s National Medical Center/GWU Fellowship (to NAS).
References

1. Arumugam TV, Gleichmann M, Tang SC, Mattson MP. Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev 2006, 5(2):165-178.

2. Leslie M. How can we use moderate stresses to fortify humans and slow aging? Sci Aging Knowledge Environ 2005, 2005(26):pof49.

3. Shu J, Stevenson JR, Zhou X. Modulation of cellular immune responses by cold water swim stress in the rat. Dev Comp Immunol 1993, 17(4):357-371.

4. Klaasen LF, Suhovoy TE, Fisher TA. Specific and nonspecific reactions of mouse immune system under the effect of short-term exposure in warm and/or cold water. Bull Exp Biol Med 2005, 140(6):720-722.

5. Janjai N, Suwita W, Oeh N, Yoshimura S, Iwama T, Shinoda J, Saki N, Takami T. Interleukin-2 activated microglia engulf tumor infiltrating lymphocytes in the central nervous system. Int J Mol Med 2002, 14(4):497-503.

6. Koneru M, Schrae D, Monu N, Ayala A, Frey AB. Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte function. J Immunol 2005, 174(4):1830-1840.

7. Konji N, Sato M, Oyama S, Frey AB. CD8(+) tumor-infiltrating T cells are deficient in perforin-mediated cytolytic activity due to defective microtubule-organizing center mobilization and lytic granule exocytosis. J Immunol 2001, 167(9):5042-5051.

8. Nakamura M. Responses of sympathetic nervous system to cold exposure in vibration syndrome subjects and age-matched healthy controls. Arch Occup Environ Health 1990, 62(2):177-181.

9. Nakane T, Audhya T, Kanie N, Hollandar CS. Evidence for a role of endogenous corticotropin-releasing factor in cold, ether, immobilization, and traumatic stress. Proc Natl Acad Sci U S A 1985, 82(4):1247-1251.

10. Giannios G, Santagostino A, Senini R, Fumagalli P, Gori E. Cold stress in the rat induces parallel changes in plasma and pituitary levels of endorphin and ACTH. Pharmacol Res Commun 1983, 15(1):15-21.

11. Reed HL, Quesada M, Hesslink RL Jr, D’Aleandro MM, Hays MT, Christopherson RJ, Turner BV, Young BA. Changes in serum triiodothyronine and thyroxine type I S-deiodinase activity of cold-exposed swine. Am J Physiol 1994, 266(5 Pt 1):E786-95.

12. Quintanar-Stephano JL, Quintanar-Stephano A, Castillo-Hernandez L. Effect of the exposure to chronic-intermittent cold on the thyrotropin and thyroid hormones in the rat. Cytobiology 1991, 28(4):400-403.

13. Wallace ME, Smyth MJ. The role of natural killer cells in tumor control--effectors and regulators of adaptive immunity. Springer Semin Immunopathol 2005, 27(4):496-514.

14. Knutsen KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005, 54(8):721-728.

15. Metzger D, Zwingmann C, Prozt W, Jackel WH. Whole-body cryotherapy in rehabilitation of patients with rheumatoid diseases-- pilot study. Rehabilitation (Stuttg) 2000, 39(2):93-100.

16. Holloszy JO, Smith EK. Longevity of cold-exposed rats: a reevaluation of the "rate-of-living theory". J Appl Physiol 1986, 61(5):1656-1660.

17. Panelli MC, White R, Foster M, Martin B, Wang E, Smith K, Marincola FM. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2004, 2(1):17.
42. Elkenov IJ, Wilder RL, Chrousos GP, Vizi ES: The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000, 52(4):595-638.

43. Sundaresan G, Suthanthiran N, Namasivayam A: Certain immunological parameters in subacute cold stress. Indian J Physiol Pharmacol 1990, 34(1):57-60.

44. Scheldowsk M, Hosch W, Oberbeck R, Benschop RJ, Jacobs R, Raab HR, Schmidt RE: Catecholamines modulate human NK cell circulation and function via spleen-independent beta 2-adrenergic mechanisms. J Immunol 1996, 156(1):93-99.

45. Castellani JW, Ik MB. Rhind SG: Cold exposure: human immune responses and intracellular cytokine expression. Med Sci Sports Exerc 2002, 34(12):2013-2030.

46. Kenunen OG, Prakh'e IV, Kozlovskii BL: Sympathoadrenal responses to repeated brief exposure to cold. Scand J Clin Lab Invest 2001, 61(4):365-371.

47. LaFoy J, Geden EA: Postepistiosismy pain: warm versus cold sitz bath. J Obstet Gynecol Neonatal Nurs 1989, 18(5):399-403.

48. Julien N, Marchand S. Endogenous pain inhibitory systems activated by spatial summation are opioid-mediated. Neurosci Lett 2005, 401(3):256-260.

49. Misasi S, Morin G, Kemler D, Olmstead PS, Pryzgocki K: The effect of a toe cap and bias on perceived pain during cold water immersion. J Athl Train 1995, 30(1):49-52.

50. Day MP: Hypothermia: a hazard for all seasons. Nursing 2006, 36(12 Pt.1):44-47.

51. McCullough L, Arora S: Diagnosis and treatment of hypothermia. Am Fam Physician 2004, 70(12):2325-2332.

52. Tikuisis P. Heat balance precedes stabilization of body temperatures during cold water immersion. J Appl Physiol 2003, 94(3):989-993.

53. Doufas AG, Sessler DI: Physiology and clinical relevance of induced hypothermia. Neurocrit Care 2004, 1(4):489-498.

54. Milo-Cotter O, Sette I, Uriei N, Kaluski E, Vered Z, Golik A, Cotter G: The daily incidence of acute heart failure is correlated with low minimal night temperature: cold immersion pulmon eda edema revisited? J Card Fail 2006, 12(2):114-119.

55. Myint PK, Vowler SL, Woodhouse PR, Redmayne O, Fulcher RA: Winter excess in hospital admissions, in-patient mortality and length of hospital stay in adults; a hospital database study over six seasonal years in Norfolk, UK. Neuroepidemiology 2007, 28(2):79-85.

56. Sheeh T, Nair C, Muller J, Yusuf S: Increased winter mortality from acute myocardial infarction and stroke: the effect of age. J Am Coll Cardiol 2009, 53(7):1916-1919.

57. Doubt Tj, Mayers DL, Flynn ET: Transient cardiac sinus dysrhythmia occurring after cold water immersion. Am J Cardiol 1989, 57(5):1421-1422.

58. Houdas Y, Deklunder G, Lecroart JL: Cold exposure and ischemic heart disease. Int J Sports Med 1992, 13 Suppl 1:S79-81.

59. Lader EW, Kronzon I: Ice-water-induced arrhythmias in a patient with ischemic heart disease. Ann Intern Med 1982, 96(5):614-615.

60. Fiore AE, Stash DK, Haber P, Iskander JK, UyeKI TM, Mooney G, Bressee BS, Cox NJ: Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2007. MMWR Recomm Rep 2007, 56(RR-6):1-54.

61. Reichert TA, Simonsen L, Sharma A, Pardo SA, Fadlon DS, Miller MA: Influenza and the winter increase in mortality in the United States, 1959-1999. Am J Epidemiol 2004, 160(5):492-502.

62. Davis MS, Willimas CC, Meinkoth JH, Malayer JR, Royer CM, Williamson KK, McKenzie EC: Influx of neutrophils and persistence of cytokine expression in airways of horses after performing exercise while breathing cold air. Am J Vet Res 2007, 68(2):185-189.

63. Roeggla M, Roeggla G, Seidler D, Mullner M, Laggner AN: Self-limiting pulmonary edema with alveolar hemorrhage during diving in cold water. Am J Emerg Med 1996, 14(3):333.

64. Biswas R, Shibu PK, James CM: Pulmonary oedema precipitated by cold water swimming. Br J Sports Med 2004, 38(6):e36.

65. Wilmshurst PT: Pulmonary oedema induced by emotional stress, by sexual intercourse, and by exertion in a cold environmment in people without evidence of heart disease. Heart 2004, 90(7):806-807.

66. Aryan N, Kaya M, Kalayci R, Kucuk M, Cimen V, Elnas I: Effects of acute cold exposure on blood-brain barrier permeability in acute and chronic hyperglycemic rats. Forensic Sci Int 2002, 125(2-3):137-141.

67. Ben-Nathan D, Lustig S, Danenberg HD: Stress-induced neuroinvasiveness of a neuroviral noninvasive Sindbis virus in cold or isolation subjected mice. Life Sci 1991, 48(15):1493-1500.

68. Ben-Nathan D, Lustig S, Feuerstein G: The influence of cold or isolation stress on neuroinvasiveness and virulence of an attenuated variant of West Nile virus. Arch Virol 1989, 109(1-2):1-10.

69. Ben-Nathan D, Lustig S, Kobiler D, Danenberg HD, Lupu E, Feuerstein G: Dehydroepiandrosterone protects mice inoculated with West Nile virus and exposed to cold stress. J Med Virol 2004, 78(3):383-386.

70. Wang R, Camandola S, Mattson MP: Dietary supplementation with 2-deoxy-D-glucose improves cardiovascular and neuroendocrine stress adaptation in rats. Am J Physiol Heart Circ Physiol 2004, 287(3):H1169-9.

71. Elnas I, Kucuk M, Kalayci RB, Cevik A, Kaya M: Effects of profound hypothermia on the blood-brain barrier permeability in acute and chronically ethanol treated rats. Forensic Sci Int 2001, 119(2):212-216.

72. Weiss M, Hettmer S, Smith P, Ladisch M: Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res 2003, 63(3):3654-3658.

73. Radoja S, Rao TD, Hillman D, Frey AB: Mice bearing late-stage tumors have normal functional systemic T cell responses in vitro and in vivo. J Immunol 2000, 164(5):2619-2628.

74. Giai W, Borman A, Badke P, StojeK W, Orlikowska A, Tokarski J: Amphetamine enhances Natural Killer cytotoxic activity via beta-adrenergic mechanism. J Physiol Pharmacol 2006, 57 Suppl 1:115-132.

75. Melamed R, Bar-Yosef S, Shakkar G, Shakkar K, Ben-Elyahu S: Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopeptil, and halothane, but not by propofol: mediating mechanisms and pharmacokinetic measures. Anesth Analg 2003, 97(5):1331-1339.

76. Zhang Z, Song Y, Wang X: Hypotaurine-induced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats. World J Gastroenterol 2003, 11(32):5040-5046.

77. Afanasieva M, Wang T, Kaya S, Stafford EA, Dehnen KM, Sadighi Akha AA, Rose NR, Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-gamma-independent pathway. Circula tion 2001, 104(25):3145-3151.

78. Franck A, Castellone C, Castell M: Blood lymphocyte subsets in rats with adjuvant arthritis. Am Rheum Dis 1994, 53(7):461-466.

79. Biller H, Bade B, Mathys H, Luttmann W, Vircrnow JC: Interferon-gamma secretion of peripheral blood CD8+ T lymphocytes in patients with bronchial asthma: in vitro stimulus determines cytokine production. Clin Exp Immunol 2001, 126(3):199-205.

80. Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, Wagner DD: Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 2006, 107(2):591-593.

81. Verbruggen AW, Dobrogowska DH, Lossinsky AS: Ultrastructural studies of the effects of aluminum on the blood-brain barrier of mice. J Histochem Cytochem 1994, 42(2):203-212.

82. Marino F, Sockler JM, Fry JM: Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2007. MMWR Recomm Rep 2007, 56(RR-6):1-54.
96. Spengler RN, Allen RM, Remick DG, Strieter RM, Kunkel SL: Mariani E, Ravaglia G, Forti P, Meneghetti A, Tarozzi A, Maioli F, Hemmick LM, Bidlack JM:

94. Wiegens GN, Sieg JE, Linnkert W, Lipton AC, Reul J: Bidirectional effects of corticosterone on splenic T cell activation: critical role of cell density and culture time. Neuroendocrinology 2001, 73(2):139-148.

98. Gonsalkorale WM, Dasscombe MJ, Hutchinson IV: Adrenocorticotropic hormone as a potential enhancer of T-lymphocyte function in the rat mixed lymphocyte reaction. Int J Immunopharmac 1995, 17(3):197-206.

99. Johnson EW, Hughes TK Jr., Smith EM: Aoki N, Wakisaka G, Nagata I: Boyadjieva NI, Dokur M, Advis JP, Meadows GG, Sarkar DK: Jin X, Zhao H, Wang JF, Fang LB, Lin JY, Gao Y: Ong ML, Malkin DG, Malkin A: Chiappelli F, Yamashita N, Faisal M, Kemeny M, Bullington R, Nguyen L, Clement LT, Fahey JL: D’Amelio R: Boschi F, Pratelli L, Pizzoferrato A, Piras F, Facchini A: Vitamin D, Neuroimmunomodulation 2005, 139-148.

100. Fattorossi A, Matricardi PM, Pizzolo JG, Le Moli S, Antonelli G, Caro R, Cremaschi GA: S公f K, Kerkvliet NI: D’Ambrosio PM, Malkova NV, Zargara TA, Lepikudla TN, Krasnova SB, Lipkin VM: Effect of synthetic beta-endorphin-like peptide immunorphin on human T lymphocytes. Biochemistry (Moscow) 2002, 67(3):357-363.

101. Le Tulzo Y, Shenker R, Kaneko D, Moine P, Fantuzzi G, Dinarello CA, Abraham E: Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catabolic enzymes in the induction of cytokine production and lung transduction. J Clin Invest 1997, 99(7):1516-1526.

102. Livnat S, Madden KS, Felten DL, Felten SY: Regulation of the immune system by sympathetic neural mechanisms. Prog Neuro-psychopharmacol Biol Psychiatry 1987, 11(2-3):145-152.

103. Navolotskaya EA, Malkova NV, Zargara TA, Lepikudla TN, Krasnova SB, Lipkin VM: Effects of synthetic beta-endorphin-like immunorphin on human T lymphocytes. Biochemistry (Moscow) 2002, 67(3):357-363.

104. Fattorossi A, Macricardi PM, Pizolo JG, Le Moli S, Antonelli G, D’Ambrosio PM: Lack of specificity in the mechanisms involved in the enhancement of the concanavalin A driven human T lymphocyte stimulation by beta-endorphin: studies on activation marker expression, cell cycle and interleukin release. J Biol Regul Homeost Agents 1991, 5(3):91-97.

105. Hemmick LM, B Rice TP: Beta-endorphin stimulates rat T lymphocyte proliferation. J Neuroimmunol 1990, 29(1-3):239-248.

106. Balazs C, Leovey A, Szabo M, Bako G: Stimulating effect of triiodothyronine on cell-mediated immunity. Eur J Clin Pharmacol 1980, 17(1):41-45.

107. Ong ML, Malkin DG, Malkin A: Alteration of lymphocyte reactivities by thyroid hormones. Int J Immunopharmac 1986, 8(7):755-762.

108. Klecha AJ, Barreiro Arcos ML, Genaro AM, Gorelik G, Silberman DM, Caro R, Cremaschi GA: Different mitogen-mediated beta-adrenergic receptor modulation in murine T lymphocytes depending on the thyroid status. Neuroimmunomodulation 2005, 12(2):92-99.

109. Messingham KA, Shiraiz M, Duffner LA, Emanueley MA, Kovacs EJ: Testosterone receptor blockade restores cellular immunity in male mice after burn injury. J Endocrinol 2001, 169(2):299-308.

110. Benter WA, Bettenhaeuser U, Wunderlich F, Van Vliet E, Missett MH: Testosterone-induced abrogation of self-healing of Plasmomd chabaudi malaria in B10 mice: mediation by spleen cells. Infect Immun 1991, 59(12):4486-4490.

111. Maccio DR, Calfa G, Roth GA: Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis. Neuroimmunomodulation 2005, 12(4):246-254.

112. Lu Y, Tang M, Wasserfall C, Kau Z, Campbell-Thompson M, Garde-mann T, Crawford J, Atkinson M, Song S: Alpha1-antitrypsin gene therapy modulates cellular immunity and efficiently prevents type I diabetes in nonobese diabetic mice. Hum Gene Ther 2006, 17(6):625-634.

113. Gilmore W, Weiner LP: Beta-endorphin enhances interleukin-2 (IL-2) production in murine lymphocytes. J Neuroimmunol 1988, 18(2):125-138.

114. Chansky-Falett, F Yamashita N, Faisal M, Kemeny M, Bullington R, Nguyen L, Clement LT, Fahey JL: Differential effect of beta-endorphin on three human cytotoxic cell populations. Int J Immunopharmac 1999, 13(2-3):291-297.

115. Chansky-Falett, F, Yamashita N, Faisal M, Kemeny M, Bullington R, Nguyen L, Clement LT, Fahey JL: Differential effect of beta-endorphin on three human cytototoxic cell populations. Int J Immunopharmac 1999, 13(2-3):291-297.

116. Aoki N, Wakisaka G, Nagata I: Effect of beta-endorphin on rat lymphocyte proliferation: effects of corticosterone. Acta Endocr (Copenh) 1980, 98(1):9-23.

117. DeKrey GK, Kerkvliet NI: Adrenocorticotropic hormone as a potential enhancer of T-lymphocyte function in the rat mixed lymphocyte reaction. Int J Immunopharmac 1995, 17(3):197-206.

118. Johnson EW, Hughes TK Jr., Smith EM: Aoki N, Wakisaka G, Nagata I: Effect of beta-endorphin on rat lymphocyte proliferation: effects of corticosterone. Acta Endocr (Copenh) 1980, 98(1):9-23.

119. Jin X, Zhao H, Wang JF, Fang LB, Lin JY, Gao Y: Effect of beta-endorphin on T-cell function of immune system of patients with cerebral hemorhage. Zhonghua Yi Xue Za Zhi 2003, 83(15):1409-1412.

120. Boyadjiya NI, Dokur M, Advis JP, Meadows GG, Sarkar DK: Beta-endorphin modulation of lymphocyte proliferation: effects on murine T lymphocytes. Neuroimmunomodulation 2005, 13(2):139-148.

121. Miranda P, Ponti C, Gobbi G, Sponzilli I, Melloni E, Vitale M: The response of human natural killer cells to interleukin-2. J Endocrinol Invest 2004, 27(6 Suppl):146-150.

122. Mariani E, Ravaglia G, Forti P, Marighetti A, Tarozzi A, Majoili F, Balch F, Patrucco A, Pizzoferrato A, Piras F, Facchin A: Vitamin D, Adrenocorticotropic hormone and muscle mass influence natural killer (NK) innate immunity in healthy nonagenarians and centenarians. Clin Exp Immunol 1999, 116(1):19-27.

123. Watanabe K, Iwazumi Y, Hidaka I, Watanabe M, Amino N: Long-term effects of thyroid hormone on lymphocyte subsets in spleens and thymuses of mice. Endocr J 1995, 42(5):561-668.

124. Spengler RN, Allen RM, Remick DG, Striefer RM, Kunkel SL: Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol 1990, 145(5):1430-1434.

125. Le Tulzo Y, Shenker R, Kaneko D, Moine P, Fantuzzi G, Dinarello CA, Abraham E: Hemorrhage increases cytokine expression in lung mononuclear cells in mice: involvement of catabolic enzymes in the induction of cytokine production and lung transduction. J Clin Invest 1997, 99(7):1516-1526.

126. Livnat S, Madden KS, Felten DL, Felten SY: Regulation of the immune system by sympathetic neural mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 1987, 11(2-3):145-152.

127. Navolotskaya EA, Malkova NV, Zargara TA, Lepikudla TN, Krasnova SB, Lipkin VM: Effect of synthetic beta-endorphin-like immunorphin on human T lymphocytes. Biochemistry (Moscow) 2002, 67(3):357-363.

128. Fattorossi A, Macricardi PM, Pizolo JG, Le Moli S, Antonelli G, D’Ambrosio PM: Lack of specificity in the mechanisms involved in the enhancement of the concanavalin A driven human T lymphocyte stimulation by beta-endorphin: studies on activation marker expression, cell cycle and interleukin release. J Biol Regul Homeost Agents 1991, 5(3):91-97.

129. Hemmick LM, B Rice TP: Beta-endorphin stimulates rat T lymphocyte proliferation. J Neuroimmunol 1990, 29(1-3):239-248.

130. Balazs C, Leovey A, Szabo M, Bako G: Stimulating effect of triiodothyronine on cell-mediated immunity. Eur J Clin Pharmacol 1980, 17(1):1-22.

131. Ong ML, Malkin DG, Malkin A: Alteration of lymphocyte reactivities by thyroid hormones. Int J Immunopharmac 1986, 8(7):755-762.
Grossi P, Dughetti S, Di Perri G, Vento S, Mondelli M: Direct immune response against hepatic antigens in patients with alpha-1-antitrypsin deficiency. Biol Ist Sieroter Milan 1986, 65(2):143-149.

Jonsdottir IH, Johansson C, Asea A, Hellstrand K, Thoren P, Hoffmann P: Chronic intracerebroventricular administration of beta-endorphin augments natural killer cell cytotoxicity in rats. Regul Pept 1996, 62(2-3):113-118.

Dokur M, Chen CP, Advis JP, Sarkar DK: Beta-endorphin modulation of interferon-gamma, perforin and granzyme B levels in splenic NK cells: effects of ethanol. J Neuroimmunol 2005, 166(1-2):29-38.

Boyadjieva N, Advis JP, Sarkar DK: Role of beta-endorphin, corticotropin-releasing hormone, and autonomic nervous system in mediation of the effect of chronic ethanol on natural killer cell cytolytic activity. Alcohol Clin Exp Res 2006, 30(10):1761-1767.

Gatti G, Masera RG, Pallavicini L, Sartori ML, Staurenghi A, Orlandi F, Angeli A: Interplay in vitro between ACTH, beta-endorphin, and glucocorticoids in the modulation of spontaneous and lymphokine-inducible human natural killer (NK) cell activity. Brain Behav Immun 1993, 7(1):16-28.

Martinez-Taboada V, Barzolone MJ, Amado JA, Blanco R, Garcia-Unzueta MT, Rodriguez-Valverde V, Lopez-Hoyos M: Changes in peripheral blood lymphocyte subsets in elderly subjects are associated with an impaired function of the hypothalamic-pituitary-adrenal axis. Mech Ageing Dev 2002, 123(11):1477-1486.

Kniec Z, Mysliwska J, Rachon D, Kotlarz G, Sworczak K, Mysliwski A: Natural killer activity and thyroid hormone levels in young and elderly persons. Gerontology 2001, 47(5):282-288.

Ingram KG, Crouch DA, Douez DL, Croy BA, Woodward B: Effects of triiodothyronine supplements on splenic natural killer cells in malnourished weaning mice. Int J Immunopharmacol 1995, 17(1):21-32.

Provinciali M, Muzzioli M, Fabris N: Thyroxine-dependent modulation of natural killer activity. J Exp Pathol 1987, 3(4):617-622.

Provinciali M, Muzzioli M, Di Stefano G, Fabris N: Recovery of spleen cell natural killer activity by thyroid hormone treatment in old mice. Nat Immun Cell Growth Regul 1991, 10(4):226-236.

Saito T, Otsuka A, Kurashima A, Watanabe M, Aoki S, Harada A: Study of lymphocyte and NK cell activity during mild hypothermia therapy. No Shinkei Geka 2001, 29(7):633-639.

Jiang XH, Guo SY, Xu S, Yin QZ, Ohshita Y, Naitoh M, Horibe Y, Hisamitsu T: Sympathetic nervous system mediate cold stress-induced suppression of natural killer cytotoxicity in rats. Neurosci Lett 2004, 358(1):1-4.

Kalnichenko VV, Mokyr MB, Graf LH Jr., Cohen RL, Chambers DA: Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. J Immunol 1999, 163(5):2492-2499.

Shakhar G, Ben-Eliyahu S: In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 1998, 160(7):3251-3258.