RADIOCARBON IN ANNUAL CORAL RINGS FROM THE EASTERN TROPICAL PACIFIC OCEAN

Ellen M. Druffel
Department of Chemistry, University of California, San Diego
La Jolla, California 92038

Abstract

Sixty radiocarbon measurements were performed on aragonitic coral skeletons from three sites in the Galápagos Islands. Preanthropogenic Δ14C values of coral that grew around A.D. 1930 averaged -70‰. This is substantially lower than average values previously reported (-51‰) for corals from Florida and Belize in the western North Atlantic Ocean. A decrease of 6‰ was noticed in coral that grew from 1930 to 1954. This decrease could be interpreted as a Suess effect in surface ocean water. The 100‰ increase in Δ4C for coral that grew from 1954 to 1973 is the result of bomb-produced 14C that was introduced to the surface ocean waters. The 14C levels in corals that grew during El Niño years were considerably higher than those for normal years. These higher values are attributed to the absence of upwelling at the equator during El Niño events.

Introduction

Radiocarbon measurements of dissolved inorganic carbon (DIOC) in ocean waters began in the 1950's (Rubin and Suess, 1954). The values were used to identify water masses and trace their general circulation patterns within the oceans. All of the 14C measurements in surface ocean waters were done after the onset of nuclear weapons testing in the early 1950's. Thus, bomb-produced 14C was present in virtually all of the surface ocean water samples collected for 14C determinations. Corals contain the only known record of pre-bomb radiocarbon concentrations in surface ocean waters.

Radiocarbon concentrations were reported for Montastrea annularis from two areas in the Gulf Stream System: the Florida Straits (Druffel and Linick, 1978) and Glover Reef, Belize (Druffel, 1980a). Preanthropogenic Δ4C values for these corals averaged -51‰ during the nineteenth century. The input of dead CO2 to the atmosphere by the burning of fossil fuels decreased the Δ4C in these surface waters to -82‰ (Suess effect) by 1954. The uptake of bomb-produced 14C by these Gulf Stream waters increased the Δ4C values to 213‰ above normal by 1970. This rise is similar to those seen in Geosecs data for North Atlantic surface waters (Ostlund et al., 1974; Ostlund et al., 1976).

Corals

Hermatypic corals record significant ecological conditions and changes that occur in the area surrounding the reef. Knutson et al. (1972) were first to conclusively demonstrate as annual the periodic variations in bulk density of the accreted aragonite. They found excellent agreement between autoradiographs and x-ray negatives of annual growth bands in Montastrea annularis from the Florida Straits (Druffel and Linick, 1978) and Glover Reef, Belize (Druffel, 1980a). Preanthropogenic Δ4C values for these corals averaged -51‰ during the nineteenth century. The input of dead CO2 to the atmosphere by the burning of fossil fuels decreased the Δ4C in these surface waters to -82‰ (Suess effect) by 1954. The uptake of bomb-produced 14C by these Gulf Stream waters increased the Δ4C values to 213‰ above normal by 1970. This rise is similar to those seen in Geosecs data for North Atlantic surface waters (Ostlund et al., 1974; Ostlund et al., 1976).

Most calcium carbonate in hermatypic coral skeletons comes from dissolved inorganic carbon (DIOC) in sea water (Weber, 1974). The remainder, which originates as food (zooplankton) for the coral, contains essentially the same radiocarbon concentrations as the DIOC in the sea water (Druffel, 1980b). The 14C ratio within coral skeletons do not change with time, as aragonite does not exchange its carbon with other carbonates. Aragonite does not dissolve in surface ocean waters to any significant degree. Thus, coral skeletons are permanent records of the radiocarbon levels that were present in the DIOC in the sea water.

Glynn and Wellington (in preparation) studied Pavona clavus from the Galápagos Islands and revealed that dense aragonitic bands form during the warm water months of January through March. Thicker, less dense bands form during the cold, upwelling season, which usually is April through December. These workers observed that Pavona clavus exhibits increased growth rates during most El Niño years. An El Niño event is the appearance of warm, low salinity water to the surface in the eastern tropical Pacific Ocean (Wyrtki et al., 1976). Just as stress bands in Montastrea annularis from the Florida Straits depict recorded Cold Fronts that occur on the reef (Hudon, et al., 1976; Druffel, 1980b), unusually high rates of coral growth provide markers of growth during known El Niño years.

Samples

A total of four coral heads of Pavona clavus were collected by P. Glynn and G. Wellington from three sites in the Galápagos Islands (Figure 1). The Galápagos archipelago lies in the eastern tropical Pacific, about 1000 km west of the coast of Ecuador. Charts of average surface drift (Cromwell and Bennett, 1959) show a prevailing southerly or southeasterly flow through the islands (Figure 1). The water originates from the Peru Current which travels north along the coast of South America. Extensive upwelling of subsurface waters occurs in the area surrounding the Peru Current and the Galápagos Islands.

Two coral heads (HI-6 and HI-7) were collected from 4 m depth in February of 1976 from Gardner Bay, Hood Island (Figure 1). A third coral head (UB-16) came from Urvina Bay, Isabella Island. UB-16 was not collected live, but rather was found above sea level in May 1977. The shoreline was uplifted as a result of volcanic activity in March 1954 (Richards, 1957). Before the up-well, the coral grew at about 3 m depth. A fourth coral head (D-12) was collected off the northeast coast of Duncan Island in May 1977.

Slabs of the above mentioned coral heads (5 mm thick) were x-rayed to depict annual variations in the density of the aragonite. The x-ray positives of three of these slabs are shown in Figure 2. The annual nature of these density band pairs was established by using alizarin staining techniques, field observations (Glynn and Wellington, in prep.) and Δ14C/Δ34S and Δ14C/Δ18O measurements (Druffel, unpublished data).

The x-rays revealed that HI-6 grew from 1961 to 1976 and HI-7 grew from 1966 to 1976 (Figure 2). Fifteen samples, each of which represented growth during one individual year (midpoint July) were used from HI-6. Eleven samples were taken from HI-7; five of these samples consisted of growth during five individual years. The remaining six samples from HI-7 represented growth during individual six-month periods. This was done in order to detect seasonal fluctuations of the Δ14C/Δ34S ratio. The x-ray of UB-16 revealed that this head grew from 1929 to 1954. Twenty-one samples were run from this coral head. In some cases, coral that grew during consecutive years were combined in order to obtain enough material to perform the Δ14C analyses. The x-ray of D-12 revealed that this coral head grew from 1966 to 1977. Eleven samples were run from this coral head; each represented growth during a single year.
Radiocarbon Measurements

Each sample was acidified in hydrochloric acid. The evolved carbon dioxide was converted to acetylene gas, via lithium carbide. Gas proportional counting systems were used to analyze all acetylene samples produced in this project. Two quartz counters (2.0- and 2.4-liter volumes) and two stainless steel counters (1.0 and 0.4 liters) were used. Each acetylene sample was counted for two days in each of two counters at 900 mm pressure and 25°C. One-sigma counting errors of about 3.5% and 7% were obtained for contemporary samples counted in the quartz and stainless steel counters, respectively.

All countings were corrected for isotope fractionation (to a standard value (PDB) of δ¹³C = -25.0‰) and for decay since the time of formation (to A.D. 1950). The standard used was 95% of the net NBS oxalic acid count rate, which was corrected to a δ¹³C = -19.0‰. All results are reported in terms of Δ¹³C, which is the per mil (‰) deviation from the activity of nineteenth century wood:

\[\Delta^{13}C = \delta^{13}C - 2(\delta^{13}C + 25.0)(1 + \delta^{13}C/1000) \]

Results

Radiocarbon measurements of Pavona clavus from three sites in the Galápagos Islands are shown graphically in Figures 3 and 4 and are listed in Table 1. Radiocarbon results for coral that accreted from 1929 to 1954 (pre-bomb) and from 1961 to 1977 (post-bomb) are discussed separately.

A.D. 1929-1954 As UB-16 grew from 1929 to 1954, all of the Δ¹³C results from this head are representative of the pre-bomb period. The average of twenty-one results is \(-72.2 \pm 5.0\)‰. A least squares analysis of these points yields a significant slope (Figure 3). A decline of \(-6.0\)‰ is observed from 1929 to 1954. It is unclear whether this decline in Δ¹³C is due to fossil fuel burning or is evidence of long term changes of vertical mixing patterns in the water column. In any case, the Suess effect in water laving this area is expected to be smaller than that exhibited in temperate
TABLE 1. Coral samples from the Galápagos Islands

L#	Coral	Years	Δ¹⁴C	Δ¹³C
4841	UB-16	1929-31	-2.5	-63 ± 7
4842	UB-16	1932-33	-2.0	-70 ± 6
4844	UB-16	1934-35	-2.4	-76 ± 7
4840	UB-16	1936-37	-2.0	-67 ± 5
4843	UB-16	1938-39	-1.7	-69 ± 4
4562	UB-16	1940	-1.2	-67 ± 7
4641	UB-16	1941	-2.4	-80 ± 7
4591	UB-16	1942	-3.1	-81 ± 4
4568	UB-16	1943	-1.4	-66 ± 5
4552	UB-16	1944-45	-3.0	-69 ± 5
4589	UB-16	1945	-2.1	-69 ± 3
4561	UB-16	1946	-2.7	-72 ± 4
4556	UB-16	1947	-3.3	-72 ± 4
4559	UB-16	1948	-2.9	-76 ± 5
4590	UB-16	1949	-2.8	-78 ± 4
4555	UB-16	1950	-2.5	-70 ± 4
4566	UB-16	1951	-2.6	-75 ± 3
4558	UB-16	1952	-2.1	-68 ± 3
4438	HI-6	1961	-2.5	-59 ± 9
4435	HI-6	1962	-1.5	-51 ± 8
4438	HI-6	1963	-2.5	-44 ± 8
4441	HI-6	1964	-1.9	-24 ± 6
4549	HI-6	1965	-2.2	-5 ± 3
4546	HI-6	1966	-3.3	-25 ± 6
4494	HI-6	1967	-1.9	+1 ± 3
5018	D-12	1967	+2.8	+16 ± 5
4437	HI-6	1968	+2.7	+13 ± 5
4637	HI-7	1968	+3.2	+16 ± 4
5019	D-12	1968	+2.3	+17 ± 6
4531	HI-6	1969	+1.7	+31 ± 4
5008	D-12	1969	+2.4	+13 ± 5
4595	HI-7	1969a	+3.5	+11 ± 4
5016	D-12	1969b	+2.2	+26 ± 8
4345	HI-6	1970	+2.4	+16 ± 5
4597	HI-7	1970	+3.7	+18 ± 4
5017	D-12	1970	+2.2	+16 ± 5
4347	HI-6	1971	+2.4	+25 ± 4
4639	HI-7	1971	+2.9	+30 ± 3
5013	D-12	1971	+2.2	+12 ± 3
4350	HI-6	1972	+2.2	+48 ± 3
4638	HI-7	1972a	+2.8	+28 ± 3
4636	HI-7	1972b	+3.0	+32 ± 4
5014	D-12	1972	+2.5	+45 ± 4
4439	HI-6	1973	+2.9	+16 ± 6
4654	HI-7	1973	+3.5	+17 ± 6
5008	D-12	1973	+2.4	+13 ± 5
4436	HI-6	1974	+2.5	+17 ± 5
4593	HI-7	1974a	+3.2	+17 ± 4
4562	HI-7	1974b	+3.8	+20 ± 4
5009	D-12	1974	+2.4	+28 ± 4
4348	HI-6	1975	+2.6	+39 ± 4
5007	D-12	1975	+2.4	+36 ± 4
4594	HI-7	1976	+3.5	+26 ± 3
5005	D-12	1976	+2.1	+46 ± 3
5006	D-12	1977	+2.7	+49 ± 5

The data show that the Δ¹³C values for the Galápagos Islands are generally lower than those for the North Atlantic and North Pacific regions (Druffel, 1980a) where waters have been at the surface for considerably longer.

A.D. 1961-1977 Radiocarbon results obtained from HI-6, HI-7 and D-12 clearly show bomb-produced Δ¹⁴C (Figure 4). Values for the years 1965, 1969, 1972, 1975, 1976, and 1977 are unusually high; this is attributed to El Niño events that occurred during these years (see below). Values for the non-El Niño years steadily rose from -59‰ in 1961 to +25‰ in 1972. If -75‰ is taken to be the pre-bomb Δ¹⁴C value (Figure 3), an overall rise of 100% is observed by 1972. Atmospheric ¹⁴CO₂ concentration nearly doubled by 1963 due to the input of bomb-produced ¹⁴C. By 1972, the Δ¹⁴C value had decreased to about 50% and at present (1980) is about 300‰. The increase in Δ¹⁴C due to bomb ¹⁴C in the eastern tropical Pacific is much smaller than that observed for North Atlantic corals (214‰ increase) (Figure 5) (Druffel and Linick, 1978; Druffel, 1980a). The smaller rise is attributable to the undefined thermocline in equatorial areas, which allows increased mixing with subsurface waters that contain lower Δ¹⁴C values than those at the surface.

El Niño The appearance of warm, low salinity waters to the surface in the equatorial Pacific is known as El Niño (Wyrtki, et al., 1976). These waters come from north of the equator and contain higher levels of Δ¹⁴C than the upwelled surface waters normally present in the Galápagos area. El Niño events start in January of certain years and last up to nine months. Results from seasonal samples were used to observe the difference of Δ¹⁴C concentrations between the normal upwelled and El Niño surface waters.

The Δ¹⁴C value for growth from HI-6 during 1969 was 31‰ (Figure 4). Analyses of the first and second halves of growth from HI-7 during 1969 reveal values of 36‰ and 11‰, respectively. The average of these two values corresponds to the annual value of 31‰. The high value for growth during the early part of 1969 reflects the Δ¹⁴C of the El Niño waters. The El Niño of 1969 was a minor event that lasted only about five months. Upwelling returned during the second half of the year, as indicated by the low value of 11‰ for this period. The Δ¹⁴C value for growth from HI-6 during 1972 (an El Niño year) was 48‰, clearly higher than the values for adjacent non-El Niño years. The values for seasonal samples from HI-7, however, were 28‰ and 32‰ for growth during the first and second halves of 1972, respectively. These values do not agree well with that of the annual sample from HI-6. The reason for this is unclear at this time.

Seasonal samples were taken for growth during the non-El Niño year of 1974. The Δ¹⁴C value for growth from HI-6 during 1974 was 17‰. Results for growth from HI-7 during the first and second halves of 1974 were 17‰ and 18‰, respectively. These results corroborate the 1974 value from HI-6. As warm, tropical waters remain north of the equator during non-El Niño years, there should be no noticeable difference between the Δ¹⁴C levels of summer and winter waters in the Galápagos Islands. This was indeed observed for the 1974 coral growth.

Figure 5. Radiocarbon measurements for coral that grew in the Galápagos Islands, Belize and Florida from 1925 to 1978. A considerable difference is apparent between the North Atlantic data (Belize and Florida) and the eastern tropical Pacific data. This is attributed to the source of surface waters for each area.
Interpretation

The Δ14C results for coral from the Galápagos Islands and from the North Atlantic Ocean differ considerably (Figure 5). Pre-bomb levels of 14C were about 14‰ lower at the Pacific site than at either the Florida or Belize sites. By 1970, Δ14C values in the North Atlantic corals had risen twice as much as those in the Galápagos corals.

The differences between the Δ14C records for tropical Pacific coral and North Atlantic coral are due to varying degrees of upwelling for the two sites. The density structure of waters near the Galápagos Islands allows subsurface waters from 60 to 180 m depth to rise to the surface (Eastopac Atlas, 1971, 1972, 1975). Equatorial surface waters have been in contact with the atmosphere for relatively short periods of time. This is characterized by the low oxygen content and the high nutrient concentrations in these waters (Eastopac Atlas, 1971, 1972, 1975). Waters laving the Galápagos coral are subsurface most of the time, and as a result, have not received their full share of bomb 14CO2 by exchange with the atmosphere. Waters in the Gulf Stream System exhibit horizontal layers of constant density and contain high oxygen and low nutrient concentrations (Oceanographic Atlas of the North Atlantic Ocean, 1967; Morrison, et al., 1973). These observations illustrate that surface waters in the Gulf Stream System have been in contact with the atmosphere for extended periods of time. The higher Δ14C values in corals from Florida and Belize confirm this.

Acknowledgments

I thank Peter Glynn and Gerald Wellington for providing the coral heads used in this project. Thanks go to Sheila Griffin, Carol Hutto, Tim Linick, Don Sullivan and Paul Yeager for their technical services. Discussions with Drs. Bob Michel, Tim Linick, and Prof. Joseph Reid are appreciated. This project was funded by NSF Grant Numbers OCE-7917652 and EAR-78-15183 and constituted part of a doctoral dissertation with Prof. Hans E. Suess as the thesis advisor.

References

Buddemeier, R. W., J. E. Maragos and D. W. Knutson, Radiographic studies of reef coral exoskeletons, J. Exp. Mar. Biol. Ecol., 14, pp. 179–200, 1974.

Cromwell, T., and E. B. Bennett, Surface drift charts for the eastern tropical Pacific Ocean, Bull. Inter-Amer. Tuna Comm., 8, pp. 217–237, 1968.

Druffel, E. M., Radiocarbon in annual coral rings of Belize and Florida, Proc. Tenth Inter. Radiocarbon Conf., Bern, Radiocarbon, 22, pp. 363–371, 1980a.

Druffel, E. M., Radiocarbon in Annual Coral Rings of the Pacific and Atlantic Oceans, Doctoral thesis, University of California, San Diego, p. 18, 20, 1980b.

Druffel, E. M. and T. W. Linick, Radiocarbon in annual coral rings of Florida, Geophysical Research Letters, 5, pp. 913–917, 1978.

Eastopac Atlas, U.S. Dept. of Comm., N.O.A.A., National Mar. Fisher. Serv., Cuthbert M. Love, ed., Circular 330, Volumes 2 (1971), 5 and 6 (1972), 9 and 10 (1975).

Hudson, J. H., E. A. Shimm, R. B. Halley and B. Lidz, Sclerochronology: A tool for interpreting past environments, Geo-ology, 4, pp. 361–364, 1976.

Knutson, D. W., R. W. Buddemeier and S. V. Smith, Coral chronometers: Seasonal growth bands in reef corals, Science, 172, pp. 270–272, 1972.

MacIntyre, I. G. and S. V. Smith, X-radiographic studies of skeletal development in modern coral colonies, Proc. 2nd Inter. Symp. Coral Reefs, 2, pp. 277–287, 1974.

Morrison, J. M., J. Merrell, Jr. and W. D. Nowlin, Jr., Waters of the eastern Gulf of Mexico, J. Aliminos, Texas A&M Univ., Data Rep. 73–10-T, 330 p., 1973.

Oceanographic Atlas of the North Atlantic Ocean, Pub. No. 700, Sec. II, U.S. Naval Oceanographic Office, Theodore Frontenac, project supervisor.

Ostlund, H. G., H. G. Dorsey and C. G. Rooth, Geosecs North Atlantic radiocarbon and tritium results, Earth and Plane- tary Science Letters, 23, pp. 69–86, 1974.

Ostlund, H. G., H. G. Dorsey and C. G. Rooth, Geosecs North Atlantic radiocarbon and tritium results, H-3 Laboratory Data Report Number 5, University of Miami, Rosenstiel School of Atmospheric Sciences, 1976.

Richards, A. F., Volcanism in eastern Pacific Ocean basin, 1954–55, Intern. Geol. Congress, Mexico, Proc. X, 1, pp. 19–31, 1967.

Rubin, M. and H. E. Suess, U.S.G.S. C-14 dates II, Science, 121, pp. 481–488, 1955.

Weber, J. N., 13C/12C ratios as natural isotopic tracers elucidating calcification processes in reef-building and non-reef-building corals, Proc. 2nd Inter. Coral Reef Symp., Brisbane, December, pp. 289–286, 1974.

Wyrtki, K., E. Stoup, W. Patser, R. Williams and W. Quinn, Predicting and observing El Niño, Science, 191, pp. 343–346, 1976.

(Received October 2, 1980; accepted November 13, 1980.)