Dealing with Interaction Between Bipolar Multiple Criteria Preferences in PROMETHEE Methods

Salvatore Corrente ‡, José Rui Figueira †, Salvatore Greco *

Abstract: In this paper we extend the PROMETHEE methods to the case of interacting criteria on a bipolar scale, introducing the bipolar PROMETHEE method based on the bipolar Choquet integral. In order to elicit parameters compatible with preference information provided by the Decision Maker (DM), we propose to apply the Robust Ordinal Regression (ROR). ROR takes into account simultaneously all the sets of parameters compatible with the preference information provided by the DM considering a necessary and a possible preference relation.

Keywords: PROMETHEE methods, Interaction between criteria, Bipolar Choquet integral.

1 Introduction

In many decision making problems (for a survey on Multiple Criteria Decision Analysis (MCDA) see [5]), alternatives are evaluated with respect to a set of criteria being not mutually preferentially independent (see [22]). In fact, in most cases, the criteria present a certain form of positive (synergy) or negative (redundancy) interaction. For example, if one likes sport cars, maximum speed and acceleration are very important criteria. However, since in general speedy cars have also a good acceleration, giving a high weight to both criteria can over evaluate some cars. Thus, it seems reasonable to give maximum speed and acceleration considered together a weight smaller than the sum of the two weights assigned to these criteria when considered separately. In this case we have a redundancy between the criteria of maximum speed and acceleration. On the contrary, we have a synergy effect between maximum speed and price because, in general, speedy cars are also expensive and, therefore, a car which is good on both criteria is very appreciated. In this case, it seems reasonable to give maximum speed and price considered together a weight greater than the sum of the two weights assigned to these criteria when considered separately. In

‡Department of Economics and Business, University of Catania, Corso Italia 55, 95129 Catania, Italy, e-mails: salvatore.corrente@unict.it, salgreco@unict.it

†CEG-IST, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal, e-mail: figueira@ist.utl.pt
these cases, the aggregation of the evaluations is done by using non-additive integrals the most known of which are the Choquet integral \[3\] and the Sugeno integral \[20\] (for a comprehensive survey on the use of non-additive integrals in MCDA see \[9, 12, 13\]).

In many cases, we have also to take into account that the importance of criteria may also depend on the criteria which are opposed to them. For example, a bad evaluation on aesthetics reduces the importance of maximum speed. Thus, the weight of maximum speed should be reduced when there is a negative evaluation on aesthetics. In this case, we have an antagonism effect between maximum speed and aesthetics.

Those types of interactions between criteria have been already taken into consideration in the ELECTRE methods \[6\]. In this paper, we deal with the same problem using the bipolar Choquet integral \[10, 11\] applied to the PROMETHEE I and II methods \[1, 2\].

This article extends the short paper published by the authors in \[4\] with respect to which we added the description of the bipolar PROMETHEE I method, the proofs of all theorems presented in \[4\] and a didactic example in which we apply the bipolar PROMETHEE methods and the Robust Ordinal Regression (ROR) \[16\] being a family of MCDA methods taking into account simultaneously all the sets of preference parameters compatible with the preference information provided by the Decision Maker (DM) using a necessary and a possible preference relation.

The paper is organized as follows. In the next section we recall the basic concepts of the classical PROMETHEE methods; in section 3 we introduce the bipolar PROMETHEE methods; the elicitation of preference information permitting to fix the value of the preference parameters of the model (essentially the bicapacities of the bipolar Choquet integral) is presented in section 4; in the fifth section we apply the ROR to the bipolar PROMETHEE methods; a didactic example is presented in section 6 while the last section provides some conclusions and lines for future research.

2 The classical PROMETHEE methods

Let us consider a set of actions or alternatives \(A = \{a, b, c, \ldots\}\) evaluated with respect to a set of criteria \(G = \{g_1, \ldots, g_n\}\), where \(g_j : A \to \mathbb{R}, j \in J = \{1, \ldots, n\}\) and \(|A| = m\). PROMETHEE \[1, 2\] is a well-known family of MCDA methods, among which the most known are PROMETHEE I and II, that aggregate preference information of a DM through an outranking relation. Considering for each criterion \(g_j\) a weight \(w_j\) (representing the importance of criterion \(g_j\) within the family of criteria \(G\)), an indifference threshold \(q_j\) (being the largest difference \(d_j(a, b) = g_j(a) - g_j(b)\) compatible with the indifference between alternatives \(a\) and \(b\)), and a preference threshold \(p_j\) (being the minimum difference \(d_j(a, b)\) compatible with the preference of \(a\) over \(b\)), PROMETHEE methods (from now on, when we shall speak of PROMETHEE methods, we
shall refer to PROMETHEE I and II) build a non decreasing function \(P_j(a, b) \) of \(d_j(a, b) \), whose formulation (see [1] for other formulations) can be stated as follows

\[
P_j(a, b) = \begin{cases}
0 & \text{if } d_j(a, b) \leq q_j \\
\frac{d_j(a, b) - q_j}{p_j - q_j} & \text{if } q_j < d_j(a, b) < p_j \\
1 & \text{if } d_j(a, b) \geq p_j
\end{cases}
\]

The greater the value of \(P_j(a, b) \), the greater the preference of \(a \) over \(b \) on criterion \(g_j \). For each ordered pair of alternatives \((a, b) \in A \times A\), PROMETHEE methods compute the value \(\pi(a, b) = \sum_{j \in J} w_j P_j(a, b) \) representing how much alternative \(a \) is preferred to alternative \(b \) taking into account the whole set of criteria.

It can assume values between 0 and 1 and obviously the greater the value of \(\pi(a, b) \), the greater the preference of \(a \) over \(b \).

In order to compare an alternative \(a \) with all the other alternatives of the set \(A \), PROMETHEE methods compute the negative and the positive net flow of \(a \) in the following way:

\[
\phi^-(a) = \frac{1}{m-1} \sum_{b \in A \setminus \{a\}} \pi(b, a) \quad \text{and} \quad \phi^+(a) = \frac{1}{m-1} \sum_{b \in A \setminus \{a\}} \pi(a, b).
\]

These flows represent how much the alternatives of \(A \setminus \{a\} \) are preferred to \(a \) and how much \(a \) is preferred to the alternatives of \(A \setminus \{a\} \). For each alternative \(a \in A \), PROMETHEE II computes also the net flow \(\phi(a) = \phi^+(a) - \phi^-(a) \). On the basis of the positive and the negative flows, PROMETHEE I provides a partial ranking on the set of alternatives \(A \), building a preference \((P^I)\), an indifference \((I^I)\) and an incomparability \((R^I)\) relation. In particular:

\[
\begin{align*}
\{ & aP^I b & \text{iff} & \{ & \Phi^+(a) & \geq & \Phi^+(b), \\
& aI^I b & \text{iff} & \{ & \Phi^+(a) = & \Phi^+(b), \\
& aR^I b & \text{otherwise} & \{ & \Phi^+(a) = & \Phi^+(b) - \Phi^-(b), \\
\end{align*}
\]

On the basis instead of the net flows, the PROMETHEE II method provides a complete ranking on the set of alternatives \(A \) defining, in a natural way, a preference \((P^{II})\) and an indifference \((I^{II})\) relation for which \(aP^{II} b \text{ iff } \Phi(a) > \Phi(b) \) while \(aI^{II} b \text{ iff } \Phi(a) = \Phi(b) \).
3 The bipolar PROMETHEE methods

In order to extend the classical PROMETHEE methods to the bipolar framework, we define for each criterion \(g_j, j \in \mathcal{J} \), the bipolar preference function \(P^B_j : A \times A \to [-1, 1], j \in \mathcal{J} \) in the following way:

\[
P^B_j(a, b) = P_j(a, b) - P_j(b, a) = \begin{cases}
P_j(a, b) & \text{if } P_j(a, b) > 0 \\ -P_j(b, a) & \text{if } P_j(a, b) = 0 \end{cases}
\]

(1)

It is straightforward proving that \(P^B_j(a, b) = -P^B_j(b, a) \) for all \(j \in \mathcal{J} \) and for all pairs \((a, b) \in A \times A\).

In this section we propose to aggregate the bipolar vector \(P^B(a, b) = [P^B_1(a, b), \ldots, P^B_n(a, b)] \) through the bipolar Choquet integral.

The bipolar Choquet integral is based on a bicapacity \([10][11]\), being a function \(\hat{\mu} : P(\mathcal{J}) \to [-1, 1] \), where \(P(\mathcal{J}) = \{(C, D) : C, D \subseteq \mathcal{J} \text{ and } C \cap D = \emptyset\} \), such that:

\begin{itemize}
 \item \(\hat{\mu}(\emptyset, \mathcal{J}) = -1, \hat{\mu}(\mathcal{J}, \emptyset) = 1, \hat{\mu}(\emptyset, \emptyset) = 0 \) (boundary conditions),
 \item for all \((C, D), (E, F) \in P(\mathcal{J})\), if \(C \subseteq E \) and \(D \supseteq F \), then \(\hat{\mu}(C, D) \leq \hat{\mu}(E, F) \) (monotonicity condition).
\end{itemize}

According to \([13][15]\), we consider the following expression for a bicapacity \(\hat{\mu} \):

\[
\hat{\mu}(C, D) = \mu^+(C, D) - \mu^-(C, D), \quad \text{for all } (C, D) \in P(\mathcal{J})
\]

(2)

where \(\mu^+, \mu^- : P(\mathcal{J}) \to [0, 1] \) such that:

\[
\begin{align*}
\mu^+(\mathcal{J}, \emptyset) &= 1, & \mu^+(\emptyset, B) &= 0, & \forall B \subseteq \mathcal{J}, \\
\mu^-(\emptyset, \mathcal{J}) &= 1, & \mu^-(B, \emptyset) &= 0, & \forall B \subseteq \mathcal{J},
\end{align*}
\]

(3)

\[
\begin{align*}
\mu^+(C, D) \leq \mu^+(C \cup \{j\}, D), & \quad \forall (C \cup \{j\}, D) \in P(\mathcal{J}), \forall j \in \mathcal{J}, \\
\mu^+(C, D) \geq \mu^+(C, D \cup \{j\}), & \quad \forall (C, D \cup \{j\}) \in P(\mathcal{J}), \forall j \in \mathcal{J}
\end{align*}
\]

(5)

\[
\begin{align*}
\mu^-(C, D) \leq \mu^-(C, D \cup \{j\}), & \quad \forall (C, D \cup \{j\}) \in P(\mathcal{J}), \forall j \in \mathcal{J}, \\
\mu^-(C, D) \geq \mu^-(C \cup \{j\}, D), & \quad \forall (C \cup \{j\}, D) \in P(\mathcal{J}), \forall j \in \mathcal{J}
\end{align*}
\]

(6)

Let us observe that \([5]\) are equivalent to the constraint

\[
\mu^+(C, D) \leq \mu^+(E, F), \quad \text{for all } (C, D), (E, F) \in P(\mathcal{J}) \text{ such that } C \subseteq E \text{ and } D \supseteq F,
\]

\[
\mu^-(C, D) \leq \mu^-(E, F), \quad \text{for all } (C, D), (E, F) \in P(\mathcal{J}) \text{ such that } C \subseteq E \text{ and } D \supercirc{\supseteq} F,
\]
We give also the following definitions:

The bipolar Choquet integral of \(P_B(a, b) \) with respect to the bicapacity \(\hat{\mu} \) can be written as follows:

\[
Ch^B(P_B(a, b), \hat{\mu}) = \int_0^1 \hat{\mu}(\{j \in J : P^B_j(a, b) > t\}, \{j \in J : P^B_j(a, b) < -t\}) dt,
\]

while the bipolar comprehensive positive preference of \(a \) over \(b \) and the comprehensive negative preference of \(a \) over \(b \) with respect to the bicapacity \(\hat{\mu} \) are respectively:

\[
Ch^B+(P_B(a, b), \hat{\mu}) = \int_0^1 \mu^+(\{j \in J : P^B_j(a, b) > t\}, \{j \in J : P^B_j(a, b) < -t\}) dt,
\]

\[
Ch^B-(P_B(a, b), \hat{\mu}) = \int_0^1 \mu^-(\{j \in J : P^B_j(a, b) > t\}, \{j \in J : P^B_j(a, b) < -t\}) dt,
\]

where \(\mu^+ \) and \(\mu^- \) have been defined before.

From an operational point of view, the bipolar aggregation of \(P_B(a, b) \) can be computed as follows: for all the criteria \(j \in J \), the absolute values of these preferences should be re-ordered in a non-decreasing way, as follows: \(|P^B_{(1)}(a, b)| \leq |P^B_{(2)}(a, b)| \leq \ldots \leq |P^B_{(j)}(a, b)| \leq \ldots \leq |P^B_{(n)}(a, b)|\).

The bipolar Choquet integral of \(P_B(a, b) \) with respect to the bicapacity \(\hat{\mu} \) can now be determined:

\[
Ch^B(P_B(a, b), \hat{\mu}) = \sum_{j \in J^>} |P^B_{(j)}(a, b)| \left[\hat{\mu} \left(C_{(j)}(a, b), D_{(j)}(a, b) \right) - \hat{\mu} \left(C_{(j+1)}(a, b), D_{(j+1)}(a, b) \right) \right] \tag{7}
\]

where \(P^B(a, b) = \left[P^B_j(a, b), j \in J \right], J^> = \{j \in J : |P^B_{(j)}(a, b)| > 0\}, C_{(j)}(a, b) = \{i \in J^> : P^B_i(a, b) \geq |P^B_{(j)}(a, b)|\}, D_{(j)}(a, b) = \{i \in J^> : -P^B_i(a, b) \geq |P^B_{(j)}(a, b)|\} \) and \(C_{(n+1)}(a, b) = D_{(n+1)}(a, b) = \emptyset \).

We give also the following definitions:
\[Ch^B(P^B(a, b), \mu^+) = \sum_{j \in J^>} |P^B_{(j)}(a, b)| \left[\mu^+ (C_{(j)}(a, b), D_{(j)}(a, b)) - \mu^+ (C_{(j+1)}(a, b), D_{(j+1)}(a, b)) \right], \quad (8) \]

\[Ch^B(P^B(a, b), \mu^-) = \sum_{j \in J^>} |P^B_{(j)}(a, b)| \left[\mu^- (C_{(j)}(a, b), D_{(j)}(a, b)) - \mu^- (C_{(j+1)}(a, b), D_{(j+1)}(a, b)) \right], \quad (9) \]

\[Ch^B(P^B(a, b), \hat{\mu}) \] gives the comprehensive preference of \(a \) over \(b \) and it is equivalent to \(\pi(a, b) - \pi(b, a) = P^C(a, b) \) in the classical PROMETHEE method while \(Ch^B+(P^B(a, b), \mu^+) \) and \(Ch^B-(P^B(a, b), \mu^-) \) give, respectively, how much \(a \) outranks \(b \) (considering the reasons in favor of \(a \)) and how much \(a \) is outranked by \(b \) (considering the reasons against \(a \)).

From the definitions above, it is straightforward proving that, for all \(a, b \in A \),

\[Ch^B(P^B(a, b), \hat{\mu}) = Ch^B+(P^B(a, b), \mu^+) - Ch^B-(P^B(a, b), \mu^-) \quad (10) \]

Using equations (11), (13) and (13), we can define for each alternative \(a \in A \) the bipolar positive flow, the bipolar negative flow and the bipolar net flow as follows:

\[\phi^B+(a) = \frac{1}{m-1} \sum_{b \in A \setminus \{a\}} Ch^B+(P^B(a, b), \mu^+) \quad (11) \]

\[\phi^B-(a) = \frac{1}{m-1} \sum_{b \in A \setminus \{a\}} Ch^B-(P^B(a, b), \mu^-) \quad (12) \]

\[\phi^B(a) = \frac{1}{m-1} \sum_{b \in A \setminus \{a\}} Ch^B(P^B(a, b), \hat{\mu}) \quad (13) \]

By equation (10), it follows that \(\phi^B(a) = \phi^B+(a) - \phi^B-(a) \) for each \(a \in A \).

Analogously to the classical PROMETHEE I and II methods, using the positive, the negative and the net bipolar flows we propose the bipolar PROMETHEE I and the bipolar PROMETHEE II methods. Given a pair of alternatives \((a, b) \in A \times A\), the bipolar PROMETHEE I method defines a partial order on the set of alternatives \(A \) considering a preference \((P^I_B)\), an indifference \((I^I_B)\) and an incomparability \((R^I_B)\) relation defined as follows:
Given a pair of alternatives \((a, b) \in A \times A\), the bipolar PROMETHEE II method provides, instead, a complete order on the set of alternatives \(A\), defining the a preference \((P^I_B)\) and an indifference \((I^I_B)\) relations as follows: \(aP^I_B b\) iff \(\Phi^B(a) > \Phi(b)\), while \(aI^I_B b\) iff \(\Phi^B(a) = \Phi^B(b)\).

3.1 Symmetry conditions

Because \(Ch^B(P^B(a, b), \hat{\mu})\) is equivalent to \(\pi(a, b) - \pi(b, a) = P^C(a, b)\) in the classical PROMETHEE method, it is reasonable expecting that, for all \(a, b \in A\), \(Ch^B(P^B(a, b), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})\). The following Proposition gives conditions to satisfy such a requirement:

Proposition 3.1. \(Ch^B(P^B(a, b), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})\) for all possible \(a, b\), iff \(\hat{\mu}(C, D) = -\hat{\mu}(D, C)\) for each \((C, D) \in P(\mathcal{J})\).

Proof. Let us prove that if \(\hat{\mu}(C, D) = -\hat{\mu}(D, C)\) for each \((C, D) \in P(\mathcal{J})\), then \(Ch^B(P^B(a, b), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})\). As noticed, \(P^B_j(a, b) = -P^B_j(b, a)\) for all \(j \in \mathcal{J}\), and consequently \(|P^B_{(j)}(a, b)| = | -P^B_{(j)}(b, a)| = |P^B_{(j)}(b, a)|\) for all \(j \in \mathcal{J}\).

From this, it follows that:

(a) \(C_{(j)}(a, b) = \{i \in \mathcal{J}^\triangleright : P^B_i(a, b) \geq |P^B_{(j)}(a, b)|\} = \{i \in \mathcal{J}^\triangleright : -P^B_i(b, a) \geq |P^B_{(j)}(b, a)|\} = D_{(j)}(b, a); \)

(\beta) \(D_{(j)}(a, b) = \{i \in \mathcal{J}^\triangleright : -P^B_i(a, b) \geq |P^B_{(j)}(a, b)|\} = \{i \in \mathcal{J}^\triangleright : P^B_i(b, a) \geq |P^B_{(j)}(b, a)|\} = C_{(j)}(b, a). \)

From (a) and (\beta) we have that

(\gamma) \(Ch^B(P^B(a, b), \hat{\mu}) = \)

\[\sum_{j \in \mathcal{J}^\triangleright} |P^B_{(j)}(a, b)| \left[\hat{\mu}(C_{(j)}(a, b), D_{(j)}(a, b)) - \hat{\mu}(C_{(j+1)}(a, b), D_{(j+1)}(a, b)) \right] = \]

\[= \sum_{j \in \mathcal{J}^\triangleright} |P^B_{(j)}(b, a)| \left[\hat{\mu}(D_{(j)}(b, a), C_{(j)}(b, a)) - \hat{\mu}(D_{(j+1)}(b, a), C_{(j+1)}(b, a)) \right]. \]
Since $\hat{\mu}(C, D) = -\hat{\mu}(D, C)$, $\forall (C, D) \in P(J)$, from (γ) we have that,

\[(\delta) \ Ch^B(P^B(b, a), \hat{\mu}) =
= \sum_{j \in J_d} |P_{(j)}^B(b, a)| [\hat{\mu}(C_{(j)}(b, a), D_{(j)}(b, a)) - \hat{\mu}(C_{(j+1)}(b, a), D_{(j+1)}(b, a))] =
= \sum_{j \in J_d} |P_{(j)}^B(b, a)| [-\hat{\mu}(D_{(j)}(b, a), C_{(j)}(b, a)) + \hat{\mu}(D_{(j+1)}(b, a), C_{(j+1)}(b, a))] =
= -Ch^B(P^B(b, a), \hat{\mu}).
\]

Let us now prove that if $Ch^B(P^B(b, a), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})$, then $\hat{\mu}(C, D) = -\hat{\mu}(D, C)$. Let us consider the pair (a, b) such that,

\[
P_j^B(a, b) = \begin{cases}
1 & \text{if } j \in C \\
-1 & \text{if } j \in D \\
0 & \text{otherwise}
\end{cases} \quad (14)
\]

In this case we have that $Ch^B(P^B(a, b), \hat{\mu}) = \hat{\mu}(C, D)$ and $Ch^B(P^B(b, a), \hat{\mu}) = \hat{\mu}(D, C)$. Thus if $Ch^B(P^B(a, b), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})$, by (iv) we obtain that $\hat{\mu}(C, D) = -\hat{\mu}(D, C)$ and the proof is concluded.

Analogously, because $Ch^B+(P^B(a, b), \mu^+)$ represents how much a outranks b and $Ch^B-(P^B(b, a), \mu^-)$ represents how much b is outranked by a, it is reasonable expecting that $Ch^B+(P^B(a, b), \mu^+) = Ch^B-(P^B(b, a), \mu^-)$. Sufficient and necessary conditions to get this equality are given by the following Proposition.

Proposition 3.2. $Ch^B+(P^B(a, b), \mu^+) = Ch^B-(P^B(b, a), \mu^-)$ for all possible a, b, iff $\mu^+(C, D) = \mu^-(D, C)$ for each $(C, D) \in P(J)$.

Proof. Analogous to Proposition 3.1. □

Reminding equation (11), the Corollary follows.

Corollary 3.1. $Ch^B(P^B(a, b), \hat{\mu}) = -Ch^B(P^B(b, a), \hat{\mu})$ for all possible a, b, if $\mu^+(C, D) = \mu^-(D, C)$ for each $(C, D) \in P(J)$.

Proof. This can be seen as a Corollary both of Proposition 3.1 and Proposition 3.2. In fact,

- $\mu^+(C, D) = \mu^-(D, C)$ for each $(C, D) \in P(J)$ implies that $\hat{\mu}(C, D) = -\hat{\mu}(D, C)$ for each $(C, D) \in P(J)$, and by Proposition 3.1 it follows the thesis.

- $\mu^+(C, D) = \mu^-(D, C)$ for each $(C, D) \in P(J)$ implies that $Ch^B+(P^B(a, b), \mu^+) = Ch^B-(P^B(b, a), \mu^-)$ (by Proposition 3.2) and from this it follows obviously the thesis by equation (11). □
3.2 The 2-additive decomposable bipolar PROMETHEE methods

As seen in the previous section, the use of the bipolar Choquet integral is based on a bicapacity which assigns numerical values to each element $P(J)$. Let us remark that the number of elements of $P(J)$ is 3^n. This means that the definition of a bicapacity requires a rather huge and unpractical number of parameters. Moreover, the interpretation of these parameters is not always simple for the DM. Therefore, the use of the bipolar Choquet integral in real-world decision-making problems requires some methodology to assist the DM in assessing the preference parameters (bicapacities). Several studies dealing with the determination of the relative importance of criteria were proposed in MCDA (see e.g. [19]). The question of the interaction between criteria was also studied in the context of MAUT methods [17]. In the following we consider only the 2-additive bicapacities [10] [7], being a particular class of bicapacities.

3.3 Defining a manageable and meaningful bicapacity measure

According to [14], we give the following decomposition of the functions μ^+ and μ^- previously defined:

Definition 3.1.

- $\mu^+(C, D) = \sum_{j \in C} a^+(\{j\}, \emptyset) + \sum_{\{j,k\} \subseteq C} a^+(\{j,k\}, \emptyset) + \sum_{j \in C, k \in D} a^+(\{j\}, \{k\})$

- $\mu^-(C, D) = \sum_{j \in D} a^- (\emptyset, \{j\}) + \sum_{\{j,k\} \subseteq D} a^- (\emptyset, \{j,k\}) + \sum_{j \in C, k \in D} a^- (\{j\}, \{k\})$

The interpretation of each $a^\pm(\cdot)$ is the following:

- $a^+(\{j\}, \emptyset)$, represents the power of criterion g_j by itself; this value is always non negative;

- $a^+(\{j,k\}, \emptyset)$, represents the interaction between g_j and g_k, when they are in favor of the preference of a over b; when its value is zero there is no interaction; on the contrary, when the value is positive there is a synergy effect when putting together g_j and g_k; a negative value means that the two criteria are redundant;

- $a^+(\{j\}, \{k\})$, represents the power of criterion g_k against criterion g_j, when criterion g_j is in favor of a over b and g_k is against the preference of a over b; this leads always to a reduction or no effect on the value of μ^+ since this value is always non-positive.

An analogous interpretation can be applied to the values $a^- (\emptyset, \{j\})$, $a^- (\emptyset, \{j,k\})$, and $a^- (\{j\}, \{k\})$.

In what follows, for the sake of simplicity, we will use a^+_j, a^+_j, a^+_{jk} instead of $a^+(\{j\}, \emptyset)$, $a^+(\{j,k\}, \emptyset)$ and $a^+(\{j\}, \{k\})$, respectively and a^-_j, a^-_{jk}, a^-_{jk} instead of $a^- (\emptyset, \{j\})$, $a^- (\emptyset, \{j,k\})$ and $a^- (\{j\}, \{k\})$, respectively. In this way, the bicapacity $\hat{\mu}$, decomposed using μ^+ and μ^- of Definition 3.1, has the following expression:
\[
\hat{\mu}(C, D) = \mu^+(C, D) - \mu^-(C, D) =
\sum_{j \in C} a_j^+ - \sum_{j \in D} a_j^- + \sum_{\{j, k\} \subseteq C} a_{jk}^+ - \sum_{\{j, k\} \subseteq D} a_{jk}^- + \sum_{j \in C, k \in D} a_{jk}^+ - \sum_{j \in C, k \in D} a_{jk}^-
\]

We call such a bicapacity \(\hat{\mu}\), a \textit{2-additive decomposable bicapacity}. (An analogous decomposition has been proposed directly for \(\hat{\mu}\) without considering \(\mu^+\) and \(\mu^-\) in [8]).

Considering these decompositions for the functions \(\mu^+\) and \(\mu^-\), the monotonicity conditions (5), (6) and the boundary conditions (3), (4) have to be expressed in function of the parameters \(a_j^+, a_{jk}^+, a_j^-, a_{jk}^-, a_{jk}^-\) as follows:

Monotonicity conditions

1) \(\mu^+(C, D) \leq \mu^+(C \cup \{j\}, D), \ \forall j \in J, \ \forall (C \cup \{j\}, D) \in P(J)\)

\[\Leftrightarrow a_j^+ + \sum_{k \in C} a_{jk}^+ \leq 0, \ \forall j \in J, \ \forall (C \cup \{j\}, D) \in P(J)\]

2) \(\mu^+(C, D) \geq \mu^+(C, D \cup \{j\}), \ \forall j \in J, \ \forall (C, D \cup \{j\}) \in P(J)\)

\[\Leftrightarrow \sum_{k \in C} a_{kj}^+ \leq 0, \ \forall j \in J, \ \forall (C, D \cup \{j\}) \in P(J)\]

being already satisfied because \(a_{kj}^+ \leq 0, \ \forall k, j \in J, k \neq j\).

3) \(\mu^-(C, D) \leq \mu^-(C, D \cup \{j\}), \ \forall j \in J, \ \forall (C, D \cup \{j\}) \in P(J)\)

\[\Leftrightarrow a_j^- + \sum_{k \in D} a_{jk}^- \leq 0, \ \forall j \in J, \ \forall (C, D \cup \{j\}) \in P(J)\]

4) \(\mu^-(C, D) \geq \mu^-(C \cup \{j\}, D), \ \forall j \in J, \ \forall (C \cup \{j\}, D) \in P(J)\)

\[\Leftrightarrow \sum_{k \in D} a_{jk}^- \leq 0, \ \forall j \in J, \ \forall (C \cup \{j\}, D) \in P(J)\]

being already satisfied because \(a_{jk}^- \leq 0, \ \forall j, k \in J, j \neq k\).

Conditions 1), 2), 3) and 4) ensure the monotonicity of the bi-capacity, \(\hat{\mu}\), on \(J\), obtained as the difference of \(\mu^+\) and \(\mu^-\), that is,
∀ (C, D), (E, F) ∈ P(J) such that C ⊇ E, D ⊆ F, \(\hat{\mu}(C, D) \geq \hat{\mu}(E, F) \).

Boundary conditions

1. \(\mu^+(\emptyset, \emptyset) = 1 \), i.e., \(\sum_{j \in J} a_j^+ + \sum_{\{j, k\} \subseteq J} a_{jk}^+ = 1 \)

2. \(\mu^- (\emptyset, J) = 1 \), i.e., \(\sum_{j \in J} a_j^- + \sum_{\{j, k\} \subseteq J} a_{jk}^- = 1 \)

3.4 The 2-additive bipolar Choquet integral

The following theorem gives an expression of \(Ch^{B^+}(x, \mu^+) \) and \(Ch^{B^-}(x, \mu^-) \) considering a 2-additive decomposable bicapacity \(\mu \).

Theorem 3.1. Given a 2-additive decomposable bicapacity \(\hat{\mu} \), then for all \(x \in \mathbb{R}^n \)

1. \(Ch^{B^+}(x, \mu^+) = \sum_{j \in J, x_j > 0} a_j^+ x_j + \sum_{j, k \in J, j \neq k, x_j, x_k > 0} a_{jk}^+ \min\{x_j, x_k\} + \sum_{j, k \in J, j \neq k, x_j > 0, x_k < 0} a_{jk}^+ \min\{x_j, -x_k\} \)

2. \(Ch^{B^-}(x, \mu^-) = -\sum_{j \in J, x_j < 0} a_j^- x_j - \sum_{j, k \in J, j \neq k, x_j, x_k < 0} a_{jk}^- \max\{x_j, x_k\} - \sum_{j, k \in J, j \neq k, x_j > 0, x_k < 0} a_{jk}^- \max\{-x_j, x_k\} \)

Proof. We shall prove only part 1. Proof of part 2 can be obtained analogously.

If the bicapacity \(\hat{\mu} \) is 2-additive decomposable, then

\[
Ch^{B^+}(x, \mu^+) = \sum_{j \in J^>} |x(j)| \left[\mu^+(C_{(j)}, D_{(j)}) - \mu^+(C_{(j+1)}, D_{(j+1)}) \right] = \\
= \sum_{j \in J^>} |x(j)| \left(\sum_{k \in J^>, x_k \geq |x(j)|} a_k^+ - \sum_{k \in J^>, x_k \geq |x(j+1)|} a_k^+ \right) + \\
+ \left(\sum_{h, k \in J^>, h \neq k, x_h, x_k \geq |x(j)|} a_{hk}^+ - \sum_{h, k \in J^>, h \neq k, x_h, x_k \geq |x(j+1)|} a_{hk}^+ \right) + \\
+ \left(\sum_{h, k \in J^>, h \neq k, x_h, -x_k \geq |x(j)|} a_{hk}^+ - \sum_{h, k \in J^>, h \neq k, x_h, -x_k \geq |x(j+1)|} a_{hk}^+ \right) \]

Let us remark that,

\[
a) \left(\sum_{k \in J^>, x_k \geq |x(j)|} a_k^+ - \sum_{k \in J^>, x_k \geq |x(j+1)|} a_k^+ \right) = \begin{cases}
\sum_{k \in J^>, x_k = |x(j)|} a_k^+ & \text{if } |x(j)| < |x(j+1)| \\
0 & \text{otherwise}
\end{cases}
\]
Proof. First, let us prove that

\[
\chi(j) = \sum_{j \in J^+, \ |x(j)| < |x(j+1)|} \left[\sum_{k \in J^+, \ |x_k| = |x(j)|} a_k^- + \sum_{h,k \in J^+, \ h \neq k, \ \min\{x_h, x_k\} = |x(j)|} a_{hk}^+ + \sum_{h,k \in J^+, \ h \neq k, \ \min\{x_h, -x_k\} = |x(j)|} a_{hk}^- \right]
\]

and from this it follows the thesis. \(\square\)

In the following, we provide the symmetry conditions of Propositions 3.1 and 3.2 in function of the parameters \(a_j^+, a_j^-, a_{jk}^+, a_{jk}^-, a_{j|k}^+\) and \(a_{j|k}^-\).

Proposition 3.3. Given a 2-additive decomposable bicapacity \(\hat{\mu}\), then \(\hat{\mu}(C, D) = -\hat{\mu}(D, C)\) for each \((C, D) \in P(J)^+\) iff

1. for each \(j \in J\), \(a_j^+ = a_j^-\),

2. for each \(\{j, k\} \subseteq J\), \(a_{jk}^+ = a_{jk}^-\),

3. for each \(j, k \in J\), \(j \neq k\), \(a_{j|k}^+ - a_{j|k}^- = a_{k|j}^- - a_{k|j}^+\).

Proof. First, let us prove that

(a) \(\hat{\mu}(C, D) = -\hat{\mu}(D, C)\)

implies 1., 2. and 3. For each \(j \in J\),

(b) \(\hat{\mu}(\{j\}, \emptyset) = a_j^+\) and \(\hat{\mu}(\emptyset, \{j\}) = -a_j^-\)

From (a) and (b) we have,

\[a_j^+ = \hat{\mu}(\{j\}, \emptyset) = -\hat{\mu}(\emptyset, \{j\}) = a_j^-\]
which is 1.

For each \(\{j, k\} \subseteq \mathcal{J}\) we have that,

\[
\hat{\mu}(\{j, k\}, \emptyset) = a_j^+ + a_k^+ + a_{jk}^+ \quad \text{and} \quad \hat{\mu}(\emptyset, \{j, k\}) = -a_j^- - a_k^- - a_{jk}^-
\]

Being \(\hat{\mu}(\{j, k\}, \emptyset) = -\hat{\mu}(\emptyset, \{j, k\})\), and being \(a_j^+ = a_j^-\) and \(a_k^+ = a_k^-\) by 1., we have that for each \(\{j, k\} \subseteq \mathcal{J}\), \(a_j^+ = a_j^-\), i.e. 2.

For all \(j, k \in \mathcal{J}\) with \(j \neq k\), we have:

\[
\hat{\mu}(\{j\}, \{k\}) = a_j^+ - a_k^- + a_{jk}^+ - a_{jk}^-
\]

\[
\hat{\mu}(\{k\}, \{j\}) = a_k^+ - a_j^- + a_{kj}^+ - a_{kj}^-
\]

Being \(\hat{\mu}(\{j\}, \{k\}) = -\hat{\mu}(\{k\}, \{j\})\) and having proved that \(a_j^+ = a_j^-\), \(\forall j\), we obtain that \(a_{j|k}^+ - a_{j|k}^- = -a_{k|j}^+ + a_{k|j}^-\), i.e. 3.

It is straightforward to prove that 1., 2., and 3. imply \(\hat{\mu}(C, D) = -\hat{\mu}(D, C)\).

\[\square\]

Corollary 3.2. Given a 2-additive decomposable bicapacity \(\hat{\mu}\), \(\text{Ch}^B(P^B(a, b), \hat{\mu}) = -\text{Ch}^B(P^B(b, a), \hat{\mu})\) for all \(a, b \in A\) iff

1. for each \(j \in \mathcal{J}\), \(a_j^+ = a_j^-\),
2. for each \(\{j, k\} \subseteq \mathcal{J}\), \(a_{jk}^+ = a_{jk}^-\),
3. for each \(j, k \in \mathcal{J}\), \(j \neq k\), \(a_{j|k}^+ - a_{j|k}^- = a_{k|j}^- - a_{k|j}^+\).

Proof. It follows by Propositions 3.3 and 3.1. \[\square\]

Proposition 3.4. Given a 2-additive decomposable bicapacity \(\hat{\mu}\), then \(\mu^+(C, D) = \mu^-(D, C)\) for each \((C, D) \in P(\mathcal{J})\) iff

1. for each \(j \in \mathcal{J}\), \(a_j^+ = a_j^-\),
2. for each \(\{j, k\} \subseteq \mathcal{J}\), \(a_{jk}^+ = a_{jk}^-\),
3. for each \(j, k \in \mathcal{J}\), \(j \neq k\), \(a_{j|k}^+ - a_{j|k}^- = a_{k|j}^- - a_{k|j}^+\).

Proof. Analogous to Proposition 3.3. \[\square\]

Corollary 3.3. Given a 2-additive decomposable bicapacity \(\hat{\mu}\), \(\text{Ch}^{B^+}(P^B(a, b), \mu^+) = \text{Ch}^{B^-}(P^B(b, a), \mu^-)\) for all \(a, b \in A\) iff
1. for each \(j \in J \), \(a_j^+ = a_j^- \),

2. for each \(\{j, k\} \subseteq J \), \(a_{jk}^+ = a_{jk}^- \),

3. for each \(j, k \in J \), \(j \neq k \), \(a_{j[k]}^+ = a_{k[j]}^- \).

Proof. It follows by Propositions 3.4 and 3.2.

Because the first two conditions of Proposition 3.1 are the same of the first two conditions of Proposition 3.2, but the third condition of Proposition 3.2 implies the third one of Proposition 3.1 in order to get both \(\text{Ch}^B(P^B(a, b), \hat{\mu}) = -\text{Ch}^B(P^B(b, a), \hat{\mu}) \) and \(\text{Ch}^{B+}(P^B(a, b), \mu^+) = \text{Ch}^{B-}(P^B(b, a), \mu^-) \) for all \(a, b \in A \), we impose that should be fulfilled the conditions in Proposition 3.2.

4 Assessing the preference information

On the basis of the considered 2-additive decomposable bicapacity \(\hat{\mu} \), and holding the symmetry condition in Corollary 3.3, we propose the following methodology which simplifies the assessment of the preference information.

We consider the following information provided by the DM and their representation in terms of linear constraints:

1. **Comparing pairs of actions locally or globally.** The constraints represent some pairwise comparisons on a set of training actions. Given two actions \(a \) and \(b \), the DM may prefer \(a \) to \(b \), \(b \) to \(a \) or be indifferent to both:

 (a) the linear constraint associated with \(a \mathcal{P} b \) (\(a \) is locally preferred to \(b \)) is:

 \[
 \text{Ch}^B(P^B(a, b), \hat{\mu}) > 0;
 \]

 (b) the linear constraints associated with \(a \mathcal{P}^I b \) (\(a \) is preferred to \(b \) with respect to the bipolar PROMETHEE I method) are:

 \[
 \begin{align*}
 &\Phi^{B+}(a) \geq \Phi^{B+}(b), \\
 &\Phi^{B-}(a) \leq \Phi^{B-}(b), \\
 &\Phi^{B+}(a) - \Phi^{B-}(a) \geq \Phi^{B+}(b) - \Phi^{B-}(b).
 \end{align*}
 \]
(c) the linear constraint associated with $a \mathcal{P}^{II} b$ (a is preferred to b with respect to the bipolar PROMETHEE II method) is:

$$\Phi^B(a) > \Phi^B(b)$$

(d) the linear constraint associated with $a \mathcal{I} b$ (a is locally indifferent to b) is:

$$Ch^B(P^B(a, b), \hat{\mu}) = 0$$

(e) the linear constraints associated with $a \mathcal{I}^I b$ (a is indifferent to b with respect to the bipolar PROMETHEE I method) are:

$$\begin{cases}
\Phi^{B+}(a) = \Phi^{B+}(b), \\
\Phi^{B-}(a) = \Phi^{B-}(b)
\end{cases}$$

(f) the linear constraint associated with $a \mathcal{I}^{II} b$ (a is indifferent to b with respect to the bipolar PROMETHEE II method) is:

$$\Phi^B(a) = \Phi^B(b)$$

2. **Comparison of the intensity of preferences between pairs of actions.** The constraints represent some pairwise comparisons between pairs of alternatives on a set of training actions. Given four actions a, b, c and d:

(a) the linear constraints associated with $(a, b) \mathcal{P} (c, d)$ (the local preference of a over b is larger than the local preference of c over d) is:

$$Ch^B(P^B(a, b), \hat{\mu}) > Ch^B(P^B(c, d), \hat{\mu})$$

(b) the linear constraints associated with $(a, b) \mathcal{I} (c, d)$ (the local preference of a over b is the same of local preference of c over d) is:

$$Ch^B(P^B(a, b), \hat{\mu}) = Ch^B(P^B(c, d), \hat{\mu})$$

3. **Importance of criteria.** A partial ranking over the set of criteria \mathcal{J} may be provided by the DM:

(a) criterion g_j is more important than criterion g_k, which leads to the constraint $a_j > a_k$;

(b) criterion g_j is equally important to criterion g_k, which leads to the constraint $a_j = a_k$.

4. **The sign of interactions.** The DM may be able, for certain cases, to provide the sign of some interactions. For example, if there is a synergy effect when criterion g_j interacts with criterion g_k, the following constraint should be added to the model: $a_{jk} > 0$.

5. **Interaction between pairs of criteria.** The DM can provide some information about interaction between criteria:

a) if the DM feels that interaction between g_j and g_k is greater than the interaction between g_p and g_q, the constraint should be defined as follows: $|a_{jk}| > |a_{pq}|$ where in particular:

- if both couples of criteria are synergic then: $a_{jk} > a_{pq}$,
- if both couples of criteria are redundant then: $a_{jk} < a_{pq}$,
- if (j, k) is a couple of synergic criteria and (p, q) is a couple of redundant criteria, then: $a_{jk} > -a_{pq}$,
- if (j, k) is a couple of redundant criteria and (p, q) is a couple of synergic criteria, then: $-a_{jk} > a_{pq}$.

b) if the DM feels that the strength of the interaction between g_j and g_k is the same of the strength of the interaction between g_p and g_q, the constraint will be the following: $|a_{jk}| = |a_{pq}|$ and in particular:

- if both couples of criteria are synergic or redundant then: $a_{jk} = a_{pq}$,
- if one couple of criteria is synergic and the other is redundant then: $a_{jk} = -a_{pq}$,

6. **The power of the opposing criteria.** Concerning the power of the opposing criteria several situations may occur. For example:

a) when the opposing power of g_k is larger than the opposing power of g_j, with respect to g_h, which expresses a positive preference, we can define the following constraint: $a_{jh}^+ < a_{jk}^+$ (because $a_{jh}^+ \leq 0$ and $a_{jk}^- \leq 0$ for all j, k with $j \neq k$);

b) if the opposing power of g_k, expressing negative preferences, is larger with g_j rather than with g_h, the constraint will be $a_{jk}^+ < a_{hk}^+$.

4.1 A linear programming model

All the constraints presented in the previous section along with the symmetry, boundary and monotonicity conditions can now be put together and form a system of linear constraints. Strict inequalities can be converted into weak inequalities by adding a variable ε. It is well-known that such a system has a feasible
solution if and only if when maximizing ε, its value is strictly positive [17]. Considering constraints given by Corollary 3.3 for the symmetry condition, the linear programming model can be stated as follows (where $j \mathcal{P} k$ means that criterion g_j is more important than criterion g_k; the remaining relations have a similar interpretation):

Max ε

$$Ch^B(P^B(a, b), \hat{\mu}) \geq \varepsilon \text{ if } a \mathcal{P} b,$$

$$\begin{align*}
\Phi^{B+}(a) &\geq \Phi^{B+}(b), \\
\Phi^{B-}(a) &\leq \Phi^{B-}(b), \\
\Phi^{B+}(a) - \Phi^{B-}(a) &\geq \Phi^{B+}(b) - \Phi^{B-}(b) + \varepsilon \\
\Phi^{B}(a) &\geq \Phi^{B}(b) + \varepsilon \text{ if } a \mathcal{P} |B| b \\
Ch^B(P^B(a, b), \hat{\mu}) &\geq Ch^B(P^B(c, d), \hat{\mu}) + \varepsilon \text{ if } (a, b) \mathcal{P} (c, d),
\end{align*}$$

$$a_j - a_k \geq \varepsilon \text{ if } j \mathcal{P} k,$$

$$|a_{jk} - |a_{pq}| \geq \varepsilon \text{ if } \{j, k\} \mathcal{P} \{p, q\}, \text{ (see point 5.a) of the previous subsection)}$$

$$|a_{jk}| = |a_{pq}| \text{ if } \{j, k\} \mathcal{I} \{p, q\}, \text{ (see point 5.b) of the previous subsection)}$$

$$a_{jk} \geq \varepsilon \text{ if there is synergy between criteria } j \text{ and } k,$$

$$a_{jk} \leq -\varepsilon \text{ if there is redundancy between criteria } j \text{ and } k,$$

$$a_{jk} = 0 \text{ if criteria } j \text{ and } k \text{ are not interacting},$$

Power of the opposing criteria of the type 6:

$$a_{jk}^{+} - a_{jp}^{+} \geq \varepsilon,$$

$$a_{jk}^{-} - a_{pj}^{-} \geq \varepsilon,$$

Symmetry conditions (Proposition 3.3):

$$a_{jk}^{+} = a_{kj}^{-} \quad \forall j, k \in \mathcal{J}, j \neq k$$

Boundary and monotonicity conditions:

$$\sum_{j \in \mathcal{J}} a_j + \sum_{(j, k) \subseteq \mathcal{J}} a_{jk} = 1,$$

$$a_j \geq 0 \quad \forall j \in \mathcal{J},$$

$$a_j^{+} + \sum_{k \in \mathcal{C}} a_{jk}^{+} \geq 0, \quad \forall j \in \mathcal{J}, \forall (C \cup \{j\}, D) \in P(\mathcal{J}),$$

$$a_j^{-} + \sum_{k \in \mathcal{D}} a_{jk}^{-} \geq 0, \quad \forall j \in \mathcal{J}, \forall (C, D \cup \{j\}) \in P(\mathcal{J}).$$

4.2 Restoring PROMETHEE

The condition which allows to restore the classical PROMETHEE methods is the following:

1. $\forall j, k \in \mathcal{J}, \ a_{jk} = a_{jk}^{+} = a_{jk}^{-} = 0.$

If Condition 1. is not satisfied and the following condition holds

2. $\forall j, k \in \mathcal{J}, a_{jk}^{+} = a_{jk}^{-} = 0,$
then the comprehensive preference of \(a\) over \(b\) is calculated as the difference between the Choquet integral of the positive preferences and the Choquet integral of the negative preferences, with a common capacity \(\mu\) on \(J\) for the positive and the negative preferences, i.e. there exists \(\mu : 2^J \rightarrow [0, 1]\), with \(\mu(\emptyset) = 0\), \(\mu(J) = 1\), and \(\mu(A) \leq \mu(B)\) for all \(A \subseteq B \subseteq J\), such that

\[
Ch^R(P^R(a, b), \hat{\mu}) = \int_0^1 \mu(\{j \in J : P^R_j(a, b) > t\}) dt - \int_0^1 \mu(\{j \in J : P^R_j(a, b) < -t\}) dt.
\]

We shall call this type of aggregation of preferences, the symmetric Choquet integral PROMETHEE method.

If neither 1. nor 2. are satisfied, but the following condition holds

3. \(\forall j, k \in J, a_{j|k}^+ = a_{k|j}^-\),

then we have the Bipolar PROMETHEE methods.

4.3 A constructive learning preference information elicitation process

The previous Conditions 1.-3. suggest a proper way to deal with the linear programming model in order to assess the interactive bipolar criteria coefficients. Indeed, it is very wise trying before to elicit weights concordant with the classical PROMETHEE method. If this is not possible, one can consider a PROMETHEE method which aggregates positive and negative preferences using the Choquet integral. If this is not possible, one can consider the bipolar symmetric PROMETHEE method. If, by proceeding in this way, we are not able to represent the DM’s preferences, then we can take into account a more sophisticated aggregation procedure by using the bipolar PROMETHEE method. This way to progress from the simplest to the most sophisticated model can be outlined in a four steps procedure as follows:

1. Solve the linear programming problem

\[
\begin{align*}
\text{Max } \varepsilon = \varepsilon_1 \\
E^{A_R} \\
a_{j|k} = a_{j|k}^+ = a_{k|j}^- = 0, \; \forall j, k \in J
\end{align*}
\]

adding to \(E^{A_R}\) the constraint related to the previous Condition 1. If \(E_1\) is feasible and \(\varepsilon_1 > 0\), then the obtained preferential parameters are concordant with the classical PROMETHEE method. Otherwise,

2. Solve the linear programming problem
adding to E^AR the constraint related to the previous Condition 2. If E_2 is feasible and $\varepsilon_2 > 0$, then the information is concordant with the symmetric Choquet integral PROMETHEE method having a unique capacity for the negative and the positive part. Otherwise,

3. Solve the linear programming problem

$$\begin{align*}
\text{Max } \varepsilon = \varepsilon_2 \\
E^AR \\
a^+_j|k = a^-_j|k = 0, \ \forall j, k \in J
\end{align*}$$

If E_3 is feasible and $\varepsilon_3 > 0$, then the information is concordant with the bipolar PROMETHEE method. Otherwise,

4. We can try to help the DM by providing some information about inconsistent judgments, when it is the case, by using a similar constructive learning procedure proposed in [18]. In fact, in the linear programming model some of the constraints cannot be relaxed, that is, the basic properties of the model (symmetry, boundary and monotonicity conditions). The remaining constraints can lead to an infeasible linear system which means that the DM provided inconsistent information about her/his preferences. The methods proposed in [18] can then be used in this context, providing to the DM some useful information about inconsistent judgments.

5 **ROR and Bipolar PROMETHEE methods**

In the above sections we dealt with the problem of finding a bicapacity restoring preference information provided by the DM in case where multiple criteria evaluations are aggregated by Bipolar PROMETHEE method. Generally, there could exist more than one model (in our case the model will be a bicapacity, but in other contexts it could be a utility function or an outranking relation) compatible with the preference information provided by the DM on the training set of alternatives. Each compatible model restores the preference information provided by the DM but two different compatible models could compare the other alternatives not provided as examples by the DM in a different way. For this reason, the choice of one of these models among those compatible could be considered arbitrary. In order to take into account not
only one but the whole set of models compatible with the preference information provided by the DM, we consider the ROR [16]. This approach considers the whole set of models compatible with preference information provided by the DM building two preference relations: the weak necessary preference relation, for which alternative \(a \) is necessarily weakly preferred to alternative \(b \) (and we write \(a \gtrsim^N b \)), if \(a \) is at least as good as \(b \) for all compatible models, and the weak possible preference relation, for which alternative \(a \) is possibly weakly preferred to alternative \(b \) (and we write \(a \gtrsim^P b \)), if \(a \) is at least as good as \(b \) for at least one compatible model.

Considering the bipolar flows \((11)-(13)\) and the comprehensive Choquet integral in equation \((10)\), given the alternatives \(a, b \in A \), we say that \(a \) outranks \(b \) (or \(a \) is at least as good as \(b \)):

- locally, if \(Ch^B(P^B(a, b), \hat{\mu}) \geq 0 \);
- globally and considering the bipolar PROMETHEE I method, if \(\Phi^B(a) = \Phi^B(b), \Phi^B(a) \leq \Phi^B(b) \);
- globally and considering the bipolar PROMETHEE II method, if \(\Phi^B(a) = \Phi^B(b) \).

To check if \(a \) is necessarily preferred to \(b \), we look if it is possible that \(a \) does not outrank \(b \). Locally, this means that it is possible that there exists a bicapacity \(\hat{\mu} \) such that \(Ch^B(P^B(a, b), \hat{\mu}) < 0 \); globally, considering the bipolar PROMETHEE I this means that \(\Phi^B(a) < \Phi^B(b) \) or \(\Phi^B(a) > \Phi^B(b) \), while considering the bipolar PROMETHEE II this means that \(\Phi^B(a) < \Phi^B(b) \).

Given the following set of constraints,

\[
E^{AR}
\]

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

\[
\Phi^B(a) + \epsilon \leq \Phi^B(b)
\]

if exploited in the way of the bipolar PROMETHEE I method, then:

\[
\Phi^B(a) + \epsilon \leq \Phi^B(b) + 2M_1 \quad \text{and} \quad \Phi^B(a) + 2M_2 \geq \Phi^B(b) + \epsilon
\]

where \(M_i \in \{0, 1\}, i = 1, 2 \), and \(\sum_{i=1}^{2} M_i \leq 1 \)

if one verifies the truth of local outranking:

\[
Ch^B(P^B(a, b), \hat{\mu}) + \epsilon \leq 0
\]

we say that \(a \) is weakly necessarily preferred to \(b \) if \(E^N(a, b) \) is infeasible or \(\epsilon^* \leq 0 \) where \(\epsilon^* = \max \epsilon \) s.t. \(E^N(a, b) \).

To check if \(a \) is possibly preferred to \(b \), we check if it is possible that \(a \) outrank \(b \) for at least one bicapacity \(\hat{\mu} \). Locally, this means that there exists a bicapacity \(\hat{\mu} \) such that \(Ch^B(P^B(a, b), \hat{\mu}) \geq 0 \); globally, considering
PROMETHEE I this means that $\Phi^B_+(a) \geq \Phi^B_+(b)$ and $\Phi^B_-(a) \leq \Phi^B_-(b)$, while considering PROMETHEE II this means that $\Phi^B(a) \geq \Phi^B(b)$. Given the following set of constraints,

$$E^{AR}$$

if one verifies the truth of global outranking:

if exploited in the way of the bipolar PROMETHEE II method, then:

$$\Phi^B(a) \geq \Phi^B(b)$$

if exploited in the way of the bipolar PROMETHEE I method, then:

$$\Phi^B_+(a) \geq \Phi^B_+(b) \text{ and } \Phi^B_-(a) \leq \Phi^B_-(b)$$

if one verifies the truth of local outranking:

$$Ch^B(P^B(a,b), \mu) \geq 0$$

we say that a is weakly possibly preferred to b if $E^P(a,b)$ is feasible and $\varepsilon^* > 0$ where $\varepsilon^* = \max \varepsilon$ s.t. $E^P(a,b)$.

6 Didactic Example

Inspired by an example in literature [9], let us consider the problem of evaluating High School students according to their grades in Mathematics, Physics and Literature. In the following we suppose that the Director is the DM, while we will cover the role of analyst helping and supporting the DM in (her)his evaluations.

The Director thinks that scientific subjects (Mathematics and Physics) are more important than Literature. However, when students a and b are compared, if a is better than b both at Mathematics and Physics but a is much worse than b at Literature, then the Director has some doubts about the comprehensive preference of a over b.

Mathematics and Physics are in some sense *redundant* with respect to the comparison of students, since usually students which are good at Mathematics are also good at Physics. As a consequence, if a is better than b at Mathematics, the comprehensive preference of the student a over the student b is stronger if a is better than b at Literature rather than if a is better than b at Physics.

Let us consider the students whose grades (belonging to the range $[0, 20]$) are represented in Table 1 and the following formulation of the preference of a over b with respect to each criterion g_j, for all $j = (M)$ Mathematics, (Ph) Physics, (L) Literature.
Students	Mathematics	Physics	Literature
s_1 | 16 | 16 | 16
s_2 | 15 | 13 | 18
s_3 | 19 | 18 | 14
s_4 | 18 | 16 | 15
s_5 | 15 | 16 | 17
s_6 | 13 | 13 | 19
s_7 | 17 | 19 | 15
s_8 | 15 | 17 | 16

Table 1: Evaluations of the students

\[P_j(a, b) = \begin{cases}
0 & \text{if } g_j(b) \geq g_j(a) \\
(g_j(a) - g_j(b))/4 & \text{if } 0 < g_j(a) - g_j(b) \leq 4 \\
1 & \text{otherwise}
\]

From the values of the partial preferences \(P_j(a, b) \), we obtain the positive and the negative partial preferences \(P_j^B(a, b) \) with respect to each criterion \(g_j \), for \(j = M, Ph, L \) using the definition (1). Thus, to each pair of students \((s_i, s_j)\) is associated a vector of three elements:
\[P^B(s_i, s_j) = [P_{M}^B(s_i, s_j), P_{Ph}^B(s_i, s_j), P_{L}^B(s_i, s_j)] \]; for example, to the pair of students \((s_1, s_2)\) is associated the vector \(P^B(s_1, s_2) = [0.25, 0.75, -0.5] \).

Let us suppose that the Dean provides the following information regarding some pairs of students:

- student \(s_1 \) is preferred to student \(s_2 \) more than student \(s_3 \) is preferred to student \(s_4 \),
- student \(s_7 \) is preferred to student \(s_8 \) more than student \(s_5 \) is preferred to student \(s_6 \).

As explained in section 4 these two information are translated by the constraints:

\[Ch^B(P^B(s_1, s_2), \hat{\mu}) > Ch^B(P^B(s_3, s_4), \hat{\mu}), \text{ and } Ch^B(P^B(s_7, s_8), \hat{\mu}) > Ch^B(P^B(s_5, s_6), \hat{\mu}) \]

Following the procedure described in section 4.3 at first we check if the classical PROMETHEE method and the symmetric Choquet integral PROMETHEE method are able to restore the preference information provided by the Dean; solving the optimization problems 15 and 16 we get \(\varepsilon_1 < 0 \) and \(\varepsilon_2 < 0 \) and therefore neither the classical PROMETHEE method nor the symmetric Choquet integral PROMETHEE method are able to explain the preference information provided by the Dean. Solving the optimization problem 17 we get this time \(\varepsilon_3 > 0 \); this means that the information provided by the Dean can be explained by the Bipolar PROMETHEE method.

In order to better understand the problem at hand, we suggested to the Dean to use the ROR applied to
the bipolar PROMETHEE method as discussed in the previous section. Using the first piece of preference information, we get the necessary and possible preference relations shown in Table 2 at local level and considering PROMETHEE II and PROMETHEE I. In Table 2(a) the value 1 in position \((i, j)\) means that \(s_i \) is necessarily locally preferred to \(s_j\) while the viceversa corresponds to the value. An analogous meaning have the values 1 and 0 in in Tables 2(b) and 2(c) respectively.

Table 2: Necessary preference relations after the first piece of preference information

	\(s_1\)	\(s_2\)	\(s_3\)	\(s_4\)	\(s_5\)	\(s_6\)	\(s_7\)	\(s_8\)
\(s_1\)	0	1	0	0	1	0	0	0
\(s_2\)	0	0	0	0	0	0	0	0
\(s_3\)	1	1	0	1	0	1	0	0
\(s_4\)	0	1	0	0	0	0	0	0
\(s_5\)	0	1	0	0	1	0	0	0
\(s_6\)	0	0	0	0	0	0	0	0
\(s_7\)	1	1	0	1	1	0	1	0
\(s_8\)	0	1	0	0	1	1	0	0

Table 3: Possible preference relations after the first piece of preference information

	\(s_1\)	\(s_2\)	\(s_3\)	\(s_4\)	\(s_5\)	\(s_6\)	\(s_7\)	\(s_8\)
\(s_1\)	0	1	0	1	1	1	0	1
\(s_2\)	0	0	0	0	1	0	0	0
\(s_3\)	1	1	0	1	1	1	1	1
\(s_4\)	1	1	0	0	1	1	1	1
\(s_5\)	1	1	1	1	1	0	1	1
\(s_6\)	0	1	0	1	0	0	0	0
\(s_7\)	1	1	1	1	1	1	0	0
\(s_8\)	1	1	1	1	1	1	0	0

Looking at Tables 2, we underline that \(s_7\), \(s_3\) and \(s_5\) are surely the best among the eight students considered. In fact, \(s_7\) is necessarily preferred to five out of the other seven students both locally and considering the bipolar PROMETHEE II method and, at the same time, (s)he is the only student being necessarily preferred to some other student using the bipolar PROMETHEE I method. \(s_3\) is necessarily preferred to four out of the other seven students locally, and (s)he is necessarily preferred to \(s_4\) considering the bipolar PROMETHEE II method. At the same time, (s)he is locally possibly preferred to \(s_7\) (see Table 3). \(s_5\) is necessarily preferred to \(s_2\) and \(s_6\) considering the bipolar PROMETHEE II method. In order to get a more insight on the problem at hand, we suggest to the Dean to provide other information (s)he is sure about. For this reason, the Dean states that, locally, \(s_2\) is preferred to \(s_6\) and \(s_8\) is preferred to \(s_1\).

Translating these preference information using the constraints \(CH^B(P^B(2,6),\hat{\mu}) > 0\) and \(CH^B(P^B(8,1),\hat{\mu}) > 0\), and computing again the necessary and possible preference relations locally and considering both the bipolar PROMETHEE methods, we get the results shown in Tables 4 and 5. In these Tables, yellow cells correspond to new information we have got using the second piece of information provided by the Dean.
In this paper we proposed a generalization of the classical PROMETHEE methods. A basic assumption of PROMETHEE methods is the independence between criteria which implies that no interaction between criteria is considered. In this paper we developed a methodology permitting to take into account interaction between criteria (synergy, redundancy and antagonism effects) within PROMETHEE method by using the bipolar Choquet integral. In this way we obtained a new method called the Bipolar PROMETHEE method.

7 Conclusions

In particular, in Tables 4 the cell in correspondence of the pair of students \((s_i, s_j)\) is yellow colored if \(s_i\) was not necessarily preferred to \(s_j\) after the first iteration, but \(s_i\) is necessarily preferred to \(s_j\) after the second iteration; in Tables 5 the cell in correspondence of the pair of students \((s_i, s_j)\) is yellow colored if \(s_i\) was possibly preferred to \(s_j\) after the first iteration but \(s_i\) is not necessarily preferred to \(s_j\) after the second iteration anymore. Looking at Tables 4 and 5, the Dean is addressed to consider \(s_7\) as the best student. In fact, also if \(s_7\) and \(s_3\) are locally necessarily preferred to all other six considered students, \(s_7\) is still the only one being necessarily preferred to someone else considering the bipolar PROMETHEE I method. Besides, looking at Tables 5 we get that \(s_3\) is the only student being possibly preferred to \(s_7\) locally and with respect to PROMETHEE I and PROMETHEE II but, at the same time, everyone except \(s_4\), is possibly preferred to \(s_3\) considering the bipolar PROMETHEE I method while four students \((s_5, s_6, s_7 \text{ and } s_8)\) are possibly preferred to \(s_3\) with respect to the bipolar PROMETHEE I method.

Table 4: Necessary preference relations after the second piece of preference information

\(s_i\)	\(s_2\)	\(s_3\)	\(s_4\)	\(s_5\)	\(s_6\)	\(s_7\)	\(s_8\)
\(s_1\)	0	0	0	0	0	0	0
\(s_2\)	0	0	0	0	0	1	0
\(s_3\)	1	1	1	0	0	1	0
\(s_4\)	0	0	0	0	0	0	0
\(s_5\)	0	0	0	0	0	0	0
\(s_6\)	1	0	0	0	0	0	0
\(s_7\)	1	1	0	0	0	0	0
\(s_8\)	1	0	0	0	0	0	0

Table 5: Possible preference relations after the second piece of preference information

\(s_i\)	\(s_2\)	\(s_3\)	\(s_4\)	\(s_5\)	\(s_6\)	\(s_7\)	\(s_8\)
\(s_1\)	0	0	0	0	0	1	0
\(s_2\)	0	0	0	0	0	0	0
\(s_3\)	0	0	0	0	0	0	0
\(s_4\)	0	0	0	0	0	0	0
\(s_5\)	0	0	0	0	0	0	0
\(s_6\)	0	0	0	0	0	0	0
\(s_7\)	0	0	0	0	0	0	0
\(s_8\)	0	0	0	0	0	0	0
The Decision Maker (DM) can give directly the preferential parameters of the method; however, due to their
great number, it is advisable using some indirect procedure to elicit the preferential parameters from some
preference information provided by the DM.

Since, in general, there is more than one set of parameters compatible with these preference information,
we proposed to use the Robust Ordinal Regression (ROR) to consider the whole family of compatible sets
of preferential parameters. We believe that the proposed methodology can be successfully applied in many
real world problems where interacting criteria have to be considered; besides, in a companion paper, we
propose to apply the SMAA methodology to the classical and to the bipolar PROMETHEE methods (for a
survey on SMAA methods see [21]).

References

[1] J. Brans and B. Mareschal. PROMETHEE Methods. In J. Figueira, S. Greco, and M. Ehrgott, editors,
Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, Berlin, 2005.

[2] J. Brans and Ph. Vincke. A preference ranking organisation method: The PROMETHEE method for
MCDM. Management Science, 31(6):647–656, 1985.

[3] G. Choquet. Theory of capacities. Annales de l’Institut Fourier, 5:131–295, 1953.

[4] S. Corrente, J.R. Figueira, and S. Greco. Interaction of criteria and robust ordinal regression in bi-polar
PROMETHEE methods. In S. Greco et al., editor, IPMU 2012, Part IV, CCIS 300, pages 469–479.
Springer, Berlin, 2012.

[5] J.R. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Analysis: State of the Art Surveys.
Springer, Berlin, 2005.

[6] J.R. Figueira, S. Greco, and B. Roy. Electre methods with interaction between criteria: An extension
of the concordance index. European Journal of Operational Research, 199(2):478–495, 2009.

[7] K. Fujimoto. New characterizations of k-additivity and k-monotonicity of bi-capacities. In SCIS-ISIS
2004, 2nd Int. Conf. on Soft Computing and Intelligent Systems and 5th Int. Symp. on Advanced
Intelligent Systems, 2004.

[8] K. Fujimoto and T. Murofushi. Some characterizations of k-monotonicity through the bipolar Möbius
transform in bi-capacities. J. Adv. Comput. Intell. Intell. Informatics, 9(5):484–495, 2005.

[9] M. Grabisch. The application of fuzzy integrals in multicriteria decision making. European Journal of
Operational Research, 89(3):445–456, 1996.
[10] M. Grabisch and C. Labreuche. Bi-capacities-I: definition, Möbius transform and interaction. *Fuzzy sets and systems*, 151(2):211–236, 2005.

[11] M. Grabisch and C. Labreuche. Bi-capacities-II: the Choquet integral. *Fuzzy sets and systems*, 151(2):237–259, 2005.

[12] M. Grabisch and C. Labreuche. Fuzzy measures and integrals in MCDA. In J. Figueira, S. Greco, and M. Ehrgott, editors, *Multiple Criteria Decision Analysis: State of the Art Surveys*, pages 563–604. Springer, Berlin, 2005.

[13] M. Grabisch and C. Labreuche. A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. *Annals of Operations Research*, 175(1):247–290, 2010.

[14] S. Greco and J.R. Figueira. Dealing with interaction between bi-polar multiple criteria preferences in outranking methods. *Research Report 11-2003*, INESC-Coimbra, Portugal, 2003. http://www.uc.pt/en/org/inescc/res_reports_docs/research_reports.

[15] S. Greco, B. Matarazzo, and R. Slowinski. Bipolar sugeno and choquet integrals. In *Proceedings of the EUROFUSE 02 Workshop on Information Systems*, pages 191–196, 2002.

[16] S. Greco, R. Słowiński, J.R. Figueira, and V. Mousseau. Robust ordinal regression. In M. Ehrgott, J. Figueira, and S. Greco, editors, *Trends in Multiple Criteria Decision Analysis*, pages 273–320. Springer, Berlin, 2010.

[17] J. Marichal and M. Roubens. Determination of weights of interacting criteria from a reference set. *European Journal of Operational Research*, 124(3):641–650, 2000.

[18] V. Mousseau, J. Figueira, L. Dias, C. Gomes da Silva, and J. Clímaco. Resolving inconsistencies among constraints on the parameters of an MCDA model. *European Journal of Operational Research*, 147:72–93, 2003.

[19] B. Roy and V. Mousseau. A theoretical framework for analysing the notion of relative importance of criteria. *Journal of Multi-Criteria Decision Analysis*, 5:145–159, 1996.

[20] M. Sugeno. *Theory of fuzzy integrals and its applications*. Ph.D. Thesis, Tokyo Institute of Technology, 1974.

[21] T. Tervonen and J. Figueira. A survey on stochastic multicriteria acceptability analysis methods. *Journal of Multi-Criteria Decision Analysis*, 15(1-2):1–14, 2008.
[22] P.P. Wakker. *Additive representations of preferences: A new foundation of decision analysis*, volume 4. Springer, 1989.