Security proof of practical quantum key distribution with detection-efficiency mismatch

Yanbao Zhang
NTT Research Center for Theoretical Quantum Physics
NTT Basic Research Lab, Japan

Based on the joint work arXiv:2004.04383 with Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus
Why detection-efficiency mismatch matters?

- Detection-efficiency mismatch due to manufacturing and setup

 It is difficult to build two detectors with identical efficiency.
 *Detectors considered in this work are threshold detectors.

- Detection-efficiency mismatch induced by Eve

 spatial-mode-dependent

 temporal-mode-dependent

Rau et al., IEEE J. Quantum Electron. 21, 6600905 (2014)
Sajeed et al., Phys. Rev. A 91, 062301 (2015)
Zhao et al., Phys. Rev. A 78, 042333 (2008)
Chaiwongkhot et al., Phys. Rev. A 99, 062315 (2019)
Problems caused by efficiency mismatch

- Efficiency mismatch helps Eve to attack QKD systems.

- Efficiency mismatch can cause fake violations of an entanglement witness.

 In the presence of efficiency mismatch, the detection events are not fair samples. If only detection events are used, a Bell inequality can be violated even using classical light [Gerhardt et al., Phys. Rev. Lett. 107, 170404 (2011)].

Lydersen et al., Nat. Photon. 4, 686 (2010)
Gerhardt et al., Nat. Commun. 2, 349 (2011)
Protocol analyzed in this work

Prepare & Measure BB84
[Bennett and Brassard (1984)]

\[x \in \{0,1,2,3\} \]

Random number \(x \) \(\{p_x = 1/4, |\varphi_x\rangle\} \)
\(\varphi_x \in \{H, V, D, A\} \)

Alice

Single-photon source

\(A' \) sent to Bob

POVM
\(\{M_x^A = |\varphi_x\rangle\langle\varphi_x|\} \)

Alice

Entanglement source

\(\rho_{AA'} \rightarrow \rho_{AB} \).

1) Alice’s measurements are ideal.

2) System \(A' \) is two-dimensional, but the system \(B \) arriving at Bob can be infinite-dimensional.

• Assumption: Alice’s and Bob’s labs are secure and trusted.

• Use of the entanglement-based scheme for security analysis.

• Warning: Detection-efficiency mismatch exists in Bob’s measurement setup.

Source-replacement description
[Bennett, Brassard, Mermin, PRL 68, 557 (1992);
Curty, Lewenstein, Lütkenhaus, PRL 92, 217903 (2004);
Ferenczi, Lütkenhaus, PRA 85, 052310 (2012)]
Bob’s measurements & efficiency mismatch

PR – Polarization Rotator
PBS – Polarizing Beam Splitter
50/50 BS – 50/50 Beam Splitter

Random bit
Mode 1
Mode 2
PR
PBS
V/A
H/D

Active Detection

Efficiency mismatch model considered

Mode	H/D	V/A
1	\(\eta_1\)	\(\eta_2\)
2	\(\eta_2\)	\(\eta_1\)

Efficiency mismatch model considered

Mode	H	V	D	A
1	\(\eta_1\)	\(\eta_2\)	\(\eta_2\)	\(\eta_2\)
2	\(\eta_2\)	\(\eta_1\)	\(\eta_2\)	\(\eta_2\)
3	\(\eta_2\)	\(\eta_2\)	\(\eta_1\)	\(\eta_2\)
4	\(\eta_2\)	\(\eta_2\)	\(\eta_2\)	\(\eta_1\)

Our method works for arbitrary, characterized efficiency mismatch.
Obstacle to proving security with efficiency mismatch

• Without efficiency mismatch, the squashing model exists. → A qubit-based security proof still applies.

 Mutiphoton state → Squashing → Single-photon state

[Beaudry, Moroder, Lütkenhaus, Phys. Rev. Lett. 101, 093601 (2008); Tsurumaru and Tamaki, Phys. Rev. A 78, 032302 (2008)]

• With efficiency mismatch, the above squashing model doesn’t work.

• Previous security proofs with efficiency mismatch assume that the system arriving at Bob contains at most one photon.

 [Fung et al., Quantum Inf. Comput. 9, 131 (2009); Lydersen and Skaar, Quant. Inf. Comp. 10, 0060 (2010); Bochkov and Trushechkin, Phys. Rev. A 99, 032308 (2019); Ma et al., Phys. Rev. A 99, 062325 (2019)]

Our contribution: We develop a method to handle the infinite-dimensional system received by Bob.

*In parallel with us, Trushechkin recently developed an alternative method [arXiv:2004.07809].
Brief introduction to a numerical approach for security proof

QKD protocol

Key rate: $K = \alpha - H(A|B)$, where α for privacy amplification and $H(A|B)$ for error correction. *Collective attacks are considered, and the key is defined by Alice.

$$\alpha = \min_{\rho_{AB}} D(\mathcal{G}(\rho_{AB})) || \mathcal{Z}(\mathcal{G}(\rho_{AB}))$$

subject to:

- $\rho_{AB} \geq 0$,
- $\text{Tr}(\rho_{AB}) = 1$,
- $\text{Tr}(M^A_x \otimes M^B_y \rho_{AB}) = p_{AB}(x, y)$

Key-rate calculation

1. A protocol can be described by a set of POVMs $\{M^A_x \otimes M^B_y\}$ (measurements), Kraus operator \mathcal{G} (announcements and sifting), and Key map \mathcal{Z} (forming key). The state ρ_{AB} is constrained by observations $p_{AB}(x, y)$ --- the expectation values of POVMs.

2. Once description is given, the key rate (privacy amplification part) takes the form of $\min f(\rho_{AB})$, where one needs to minimize f depending on ρ_{AB} (Eve’s attack).

3. As f is a convex function, we can calculate both a lower bound and an upper bound on $\min f(\rho)$.

Coles, Metodiev, Lütkenhaus, Nat. Commun. 7, 11712 (2016)

Winick, Lütkenhaus, Coles, Quantum 2, 77 (2018)
Dimension reduction by flag-state squasher

- **Key observation:** Each POVM element M_y^B, $y \in \{1,2, \ldots, J\}$, is block-diagonal with respect to various photon-number subspaces.

- For a photon-number cutoff $k \Rightarrow (n \leq k)$- and $(n > k)$-photon subspaces

\[
M_y^B = \begin{pmatrix} M_{y,n\leq k}^B & 0 \\ 0 & M_{y,n> k}^B \end{pmatrix}
\]

\[
\tilde{M}_y^B = \begin{pmatrix} M_{y,n\leq k}^B & 0 \\ 0 & |y\rangle\langle y| \end{pmatrix}
\]

For an arbitrary input state ρ_B, $\text{Tr} \ (M_y^B \rho_B) = \text{Tr} \ (\tilde{M}_y^B \Lambda(\rho_B))$, $\forall y$.

- Two equivalent descriptions of the measurement process.
- The description using the squasher Λ is pessimistic, as it allows Eve to completely learn Bob’s outcome when $n > k$.

- A lower bound on $p_{n\leq k}$ is required when using the squasher Λ.
Overview of our method

Step 1: Reducing the dimension

Step 2: Bounding the photon-number distribution

Accordingly, we need only to solve a finite-dimensional convex optimization problem, and so we can obtain non-trivial lower bounds of the secret key rate.

\[
\begin{align*}
\min_{\rho_{AB}} & \quad D(\mathcal{G}(\rho_{AB})||\mathcal{Z}(\mathcal{G}(\rho_{AB}))) \\
\text{subject to} & \quad \rho_{AB} \succeq 0, \quad \text{Tr}(\rho_{AB}) = 1 \\
& \quad \text{Tr}(M^A_x \otimes \tilde{M}^B_y \rho_{AB}) = p_{AB}(x,y) \\
& \quad \text{Tr}(\Pi_{\leq k} \rho_{AB}) \geq b_k
\end{align*}
\]

*\(\rho_{AB}\) is finite-dimensional;
* The operators \(\tilde{M}^B_y\) depend on efficiency mismatch.
* \(\Pi_{\leq k}\) is the projector onto the \((\leq k)\)-photon subspace.

Our key-rate calculation
Photon-number distribution bounds

- Let T be an observable that depends on both the photon number n and the efficiency mismatch (e.g., double click or cross click).

- T is block-diagonal. \(\Rightarrow \) WLOG ρ_{AB} is block-diagonal, i.e., $\rho_{AB} = \sum_{n=0}^{\infty} p_n \rho_{AB}^{(n)}$.

 p_n --- the probability that the system arriving at Bob has n photons.

If we can find n-dependent bounds

$$t_{\text{obs},n} = \text{Tr} \left(\rho_{AB}^{(n)} T \right) \geq \begin{cases} t_{\text{obs},n \leq k}, & \forall n \leq k, \\ t_{\text{obs},n > k}, & \forall n > k, \end{cases}$$

then we have

$$t_{\text{obs}} = \sum_{n=0}^{\infty} p_n \text{Tr} \left(\rho_{AB}^{(n)} T \right) \geq p_{n \leq k} t_{\text{obs},n \leq k} + (1 - p_{n \leq k}) t_{\text{obs},n > k}.$$
The observable T can be the double-click operator D or the effective-error operator.

$$d_{\text{obs},n} = \text{Tr} \left(\rho_{AB}^{(n)} D \right) \geq \begin{cases} \frac{n}{2} \left(1 - \sqrt{\frac{2}{n}} \right), & n \text{ is even;} \\ \frac{n}{2} \left(1 - \sqrt{\frac{1}{n}} \right), & n \text{ is odd.} \end{cases}$$

*The numerical results are obtained by solving SDPs [Y Z and N. Lütkenhaus, PRA 95, 042319 (2017)].

*The analytical bounds are motivated and improve the results in [Trushechkin, arXiv:2004.07809].

Due to the monotonic behavior of $d_{\text{obs},n}^{\min}$,

$$p_{n \leq k} \geq \frac{d_{\text{obs}, n}^{\min}}{d_{\text{obs}, (k+1)}^{\min}} - d_{\text{obs}, n}^{\min}, \forall k.$$
$p_{n \leq k}$ for passive detection

- The observable T can be the cross-click operator C.

\[
C_{\text{obs}, n} = \text{Tr} \left(\rho_{AB}^{(n)} C \right) \geq 1 + (1 - \eta)^n - 2 \left(1 - \frac{\eta}{2}\right)^n.
\]

*The numerical results are obtained by solving SDPs [Y Z and N. Lütkenhaus, PRA 95, 042319 (2017)].

*The numerical bounds coincide with the analytical ones.

Mode	H	V	D	A
1	$\eta_1 = 1$	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_2 = \eta$
2	$\eta_2 = \eta$	$\eta_1 = 1$	$\eta_2 = \eta$	$\eta_2 = \eta$
3	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_1 = 1$	$\eta_2 = \eta$
4	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_1 = 1$

Efficiency mismatch model considered

Due to the monotonic behavior of $C_{\text{obs}, n}^{\min}$,

\[
p_{n \leq k} \geq \frac{C_{\text{obs}, (k+1)}^{\min} - C_{\text{obs}, n}^{\min}}{C_{\text{obs}, (k+1)}^{\min}}, \forall k.
\]

*Our method works for arbitrary, characterized efficiency mismatch.
Data simulation

We simulate experimental observations $p_{AB}(x, y)$ according to a toy model

- at each round Alice prepares a signal state (according to the protocol),
- the channel between Alice and Bob is specified by
 - t --- the single-photon transmission probability,
 - ω --- the depolarization noise,
 - r --- the multiphoton probability, i.e., the probability that a single photon randomly depolarized m photons (in our simulation $m = 2$),
- Bob performs a measurement (according to the protocol).
 *If Bob’s detectors are coupled to several spatial-temporal modes, the optical signal is distributed uniformly at random over these modes.

Task: Lower-bound the key rate given $p_{AB}(x, y)$ and characterized efficiency mismatch.

*For this particular case, $p_{AB}(x, y)$ are determined by the channel parameters (t, ω, r) as well as the detector model.

*Our security analysis doesn’t require characterizing the channel between Alice and Bob (i.e., Eve’s attack). Particularly, we don’t assume that the system received by Bob is finite-dimensional.
Key rates with trusted loss (in the absence of mismatch)

For these particular results, our security analysis

- assumes that at most two photons are received by Bob (and so a flag-state squasher is not used).
- when $\eta = 1$, returns the same key rates as using the usual squashing model [Beaudry, Moroder, Lütkenhaus, Phys. Rev. Lett. 101, 093601 (2008); Tsurumaru and Tamaki, Phys. Rev. A 78, 032302 (2008)].
- suggests that more secret keys can be distilled when the trusted loss inside of Bob’s lab, $(1 - \eta)$, increases and the untrusted loss over transmission, $(1 - t)$, decreases.

*For data simulation, $t\eta = 0.1$, $\omega = 0.05$, $r = 0.05$.

* $p_{AB}(x, y)$ doesn’t change with η.

Active detection

Passive detection

Identical efficiency η of Bob’s detectors
Key rates for active detection with efficiency mismatch

- When applying a flag-state squasher, we choose the photon-number cutoff \(k = 2 \).
- The larger the efficiency mismatch, the lower the key rate is.
- Making assumptions on Eve’s attack would overestimate the key rate.

For data simulation, \(t = 0.5, \omega = 0.05, r = 0.05 \).

Mode	H/D	V/A
1	\(\eta_1 = 0.2 \)	\(\eta_2 \)

Efficiency mismatch studied
Key rates for active detection with efficiency mismatch

- When applying a flag-state squasher, we choose the photon-number cutoff $k = 2$.
- The larger the efficiency mismatch, the lower the key rate is.
- Making assumptions on Eve’s attack would overestimate the key rate.
- Mode-dependent mismatch helps Eve to attack the QKD system.

*For data simulation, $t = 0.5$, $\omega = 0.05$, $\tau = 0.05$.

### Mode	H/D	V/A
1 | $\eta_1=0.2$ | η_2
2 | η_2 | $\eta_1=0.2$
Key rates for passive detection with efficiency mismatch

When applying a flag-state squasher, we choose a photon-number cutoff $k = 2$ (for one mode) or $k = 1$ (for four modes).

- The larger the efficiency mismatch, the lower the key rate is.
- Making assumptions on Eve’s attack would overestimate the key rate.

*For data simulation, $t = 0.5$, $\omega = 0.05$, $r = 0.05$.

Efficiency mismatch studied

Mode	H	V	D	A
1	$\eta_1 = 0.2$	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_2 = \eta$
Key rates for passive detection with efficiency mismatch

- When applying a flag-state squasher, we choose a photon-number cutoff $k = 2$ (for one mode) or $k = 1$ (for four modes).
- The larger the efficiency mismatch, the lower the key rate is.
- Making assumptions on Eve’s attack would overestimate the key rate.
- Mode-dependent mismatch helps Eve to attack the QKD system.

*For data simulation, $t = 0.5$, $\omega = 0.05$, $r = 0.05$.

Mode	H	V	D	A
1	$\eta_1 = 0.2$	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_2 = \eta$
2	$\eta_2 = \eta$	$\eta_1 = 0.2$	$\eta_2 = \eta$	$\eta_2 = \eta$
3	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_1 = 0.2$	$\eta_2 = \eta$
4	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_2 = \eta$	$\eta_1 = 0.2$

Efficiency mismatch studied

[Graph showing key rate vs η_2 with different assumptions and modes]
Summary

- Constructed a **flag-state squasher** to reduce the system dimension.
 The flag-state squasher can be applied to other protocols, see Li and Lütkenhaus, arXiv:2007.08662.

- Established **bounds on photon-number distribution** directly from experimental observations.

- Proved the security of a prepare & measure BB84 protocol in the presence of efficiency mismatch *without* a photon-number limit.

- Illustrated the individual effects of **trusted loss** and **untrusted loss** on the key rate.

Finite key analysis can also be handled by numerical approach (see the talk “**Numerical Calculations of Finite Key Rate for General Quantum Key Distribution Protocols**” by Ian George).
Summary

• Constructed a **flag-state squasher** to reduce the system dimension.
 The flag-state squasher can be applied to other protocols, see Li and Lütkenhaus, arXiv:2007.08662.

• Established **bounds on photon-number distribution** directly from experimental observations.

• Proved the security of a prepare & measure BB84 protocol in the presence of efficiency mismatch **without** a photon-number limit.

• Illustrated the individual effects of **trusted loss** and **untrusted loss** on the key rate.

Finite key analysis can also be handled by numerical approach (see the talk “**Numerical Calculations of Finite Key Rate for General Quantum Key Distribution Protocols**” by Ian George).

Thank you! yanbaoz@gmail.com