Integrated Ring Oscillators based on high-performance Graphene Inverters

Daniel Schall, Martin Otto, Daniel Neumaier & Heinrich Kurz

Advanced Microelectronic Center Aachen (AMICA), AMO GmbH, Otto-Blumenthal-Strasse 25, 52074 Aachen, Germany.

The road to the realization of complex integrated circuits based on graphene remains an open issue so far. Current graphene based integrated circuits are limited by low integration depth and significant doping variations, representing major road blocks for the success of graphene in future electronic devices. Here we report on the realization of graphene based integrated inverters and ring oscillators. By using an optimized process technology for high-performance graphene transistors with local back-gate electrodes we demonstrate that complex graphene based integrated circuits can be manufactured reproducibly, circumventing problems associated with doping variations. The fabrication process developed here is scalable and fully compatible with conventional silicon technology. Therefore, our results pave the way towards applications based on graphene transistors in future electronic devices.

High frequency and plastic electronics are expected to be among the first industrial entry points for graphene. These expectations are mainly driven by the high charge carrier mobility, the high saturation velocity and the possibility of fabricating graphene based transistors on plastic substrates. While the performance of single graphene transistors has already confirmed these expectations, the realization of complex integrated circuits involving several graphene transistors is still in its embryonic stage. So far, several groups have reported on the realization of integrated circuits with low complexity containing one or two graphene transistors including voltage amplifiers, inverters, or non-linear devices like mixers. Very recently, a ring oscillator consisting of eight graphene transistors was realized. There, however oscillation was only achieved by a device specific electrical compensation of the unintentional doping in the graphene using voltages up to 200 V. Up to now low integration depth and sample specific biasing are major road blocks for the success of graphene in real electronic devices. Here we report on the successful realization of functional inverters and ring oscillators containing up to 12 graphene transistors. By using a local back-gate structure high values of voltage gain and low levels of unintentional doping could be achieved, which are both essential for realizing integrated circuits. Compared to the conventional top-gate design, there are two distinct advantages to using a local back-gate structure in regard to voltage gain and unintentional doping. First, the number of lithography steps involving graphene is reduced. Secondly, a thin and uniform high quality gate oxide can be grown on the gate electrode by plasma assisted atomic layer deposition.

An inverter based ring oscillator is composed of an odd number of matched inverting stages, connected in a loop which is powered by a DC supply voltage. For stable oscillation, the phase difference for one circulation of a signal passing through the ring needs to be 2π and the gain of the individual inverting stages must be capable of compensating the losses. To fulfill these requirements, the inverting stages must provide voltage gain significantly larger than unity at matched input-output voltages. In complementary metal oxide semiconductor (CMOS) technology an inverting stage is comprised of one p- and one n-type transistor, generated by doping the transistors during the fabrication process. However, using graphene as channel material opens up radically new routes for designing integrated circuits due to the ambipolar operation of graphene based transistors. For instance, an inverter, the basic building block of a ring oscillator, can be simply derived from two undoped graphene transistors entirely avoiding complex doping techniques. This unique property of the ambipolar metal oxide graphene (AMOG) technology significantly reduces the complexity of the fabrication process.

Results
In figure 1a the schematic cross section of an inverter with local back gate electrode is depicted. The graphene channel is 1.8 μm long and 9 μm wide for each transistor, the Al2O3 dielectric thickness is 6 nm corresponding to an equivalent oxide thickness of approximately 3 nm. The resistance characteristics of two transistors of a reference inverter are plotted in figure 1b. In the low bias regime, both are nearly identical, showing intrinsic
behaviour. The field effect mobility in different transistors across the sample including contact resistances lies between 600 and 1200 cm²/Vs and the resistance modulation of the individual transistors ranges from 4 to 8. The hysteresis in the transfer-characteristic is typical for graphene based transistors and mainly related to charge traps in the oxide. In figure 1c a histogram of the transistor gate voltage at the charge neutrality point VCNP is shown. The average VCNP on our chip of 0.3 V, corresponding to a p-type doping level of \(1.7 \times 10^{12} \) cm⁻², is moderate compared to the operation voltages up to 4 V used here. A detailed analysis of the effect of the doping concentration on the inverter functionality is given later in this article.

The complementary properties of the transistors, required for inverting operation, are achieved by applying a high bias voltage, breaking the symmetry of the two transistors as shown in figure 1d. Finally in figure 1e, the inverting action is demonstrated in a Vout/Vin plot for a specific range of input voltages Vin at different supply voltages Vsup. The voltage gain \(|A| = \frac{dV_{\text{out}}}{dV_{\text{in}}} \) as well as the output voltage swing increase with Vsup. A voltage gain between 5 and 14 is observed at Vsup = 3 V for different inverters on the sample with 7 being the average value. The output voltage swing is 1.3 V at Vsup = 3 V on average. These voltage gains and output voltage swings are significantly larger than those reported previously in monolayer graphene based inverters. As discussed in more detail in the following paragraph, both are essential for cascading inverters because they are decisive for the matching of the in- and output of individual circuit components.

In figure 2a the input-output matching is illustrated for this inverter at Vsup = 2 V and 3 V, respectively. The corresponding two inverter characteristics from figure 1e are plotted together with their mirrored traces, reduced for clarity to one branch of the hysteresis. The shaded area in between, the so called “eye”, indicates the region where signals are propagated in cascaded inverters. Therefore, in a ring oscillator the eye of an inverter is a measure for the stability and the maximum output power. For the higher supply voltage the likewise increased voltage swing delivers a larger eye. The acceptable tolerances for stability in cascaded inverters are clarified in figure 2b. An ideal inverter consists of two identical transistors with zero intrinsic doping, i.e. the charge neutrality point (CNP) is located at zero local backgate voltage \(V_{\text{gs}} \) in the low bias regime and the resistance of both transistors is identical. The ideal inverting characteristic in figure 2b is obtained from the inverting characteristic at Vsup = 2 V in figure 1e by subtracting the doping and compensating the different resistances of T1 and T2 so that \(V_{\text{in}} = V_{\text{out}} = V_{\text{ss}}/2 = 1 \) V. These corrections lead to an inverting characteristic where the midpoint voltage is at \(V_{\text{in}} = V_{\text{out}} = V_{\text{ss}}/2 \) with a maximum of the corresponding eye. The deviations from the ideal case lead to two different shifting directions of the inverting characteristic. A nonzero doping of the transistors shifts the inverting characteristics horizontally, while different resistances of the transistors shift it vertically and shrink the voltage swing. In figure 2b it is shown that the stability eye decreases significantly either for a shift of the CNP of VCNP = 0.4 V or for a resistance difference of a factor 2. The essence of this analysis is that low doping concentrations, low resistance variations, and a large output voltage swing are mandatory for realizing functional integrated circuits based on graphene transistors. These conditions are fulfilled by our inverters.

To assess the maturity of the technology, we fabricated ring oscillators composed of these inverters shown in a false colour
The micrograph in figure 3a with the corresponding circuit diagram shown in figure 3b. The integrated ring oscillators consist of five inverting stages plus one additional inverting stage, which is connected to the output of the ring oscillator to decouple the circuit from the measurement equipment. The whole circuit consists of 12 identical undoped graphene transistors utilizing AMOG technology, which represents so far the most complex integrated circuit based on graphene transistors. The output signal for 7 supply voltages, $V_{\text{sup}} = 1$ V to $V_{\text{sup}} = 4$ V in 0.5 V steps is plotted in figure 3c, demonstrating the successful realization of a graphene based ring oscillator. The maximum output voltage swing V_{pp} of the ring oscillator at $V_{\text{sup}} = 4$ V is 1.2 V at 1 MΩ termination of the scope, reflecting well the voltage swing of single inverters, while it was 130 mV at 50 Ω termination. The difference between the voltage swing observed at 50 Ω and 1 MΩ scope termination is related to the approximate 500 Ω resistance of the output stage. The detected output power at the fundamental oscillation frequency increases with V_{sup} from 237 dBm at $V_{\text{sup}} = 1$ V to 214 dBm at $V_{\text{sup}} = 4$ V.
(figure 3d). The dependency of the output power on the supply voltage reflects well the size of the eye in individual inverters emerging at $V_{sup} \sim 1$ V and further increasing with V_{sup}.

The oscillation frequency of a ring oscillator typically depends on the number of stages N, the effective field effect mobility μ, the supply voltage V_{sup} and the total capacitances C by $f_{OSC} \propto \mu V_{sup}/CN$. In the shown device an oscillation frequency of 18.5 MHz to 39.5 MHz, increasing with the supply voltage is observed (figure 3d). While long-channel CMOS based ring oscillators show a linear $f\cdot V_{sup}$ relation, our ring oscillator shows a sub-linear dependency, which has been observed previously in graphene based ring oscillators by E. Guerriero et al.18. This sub-linear dependency is due to the incomplete current saturation in graphene transistors, leading to a sub-quadratic $I\cdot V_{GS}$ relation, where V_{GS} is the gate voltage. In total we fabricated 23 functional ring oscillators, with a fundamental operation frequency ranging from 17 MHz to 35 MHz at $V_{sup} = 2$ V. The variation of the oscillation frequency is within a factor of two, coinciding well with the variation of the mobility in the transistors of the reference inverters reflecting the expected $f_{OSC} \propto \mu$ dependency.11

An important figure of merit of inverters is the propagation delay time, which results from the oscillation frequency by $\tau_{pd} = (2Nf_{osc})^{-1}$, where N is the number of stages. In our inverter we observe a propagation delay of 2.5 ns at $V_{sup} = 4$ V. Taking into account the different carrier mobilities and the large parasitic capacitances associated to the large overlap between the gate and source drain in our design, the propagation delay observed here are in excellent agreement to those observed recently by E. Guerriero et al. at 2 μm gate length.24

Discussion

To enter the high frequency regime, scaling of the physical gate length below 100 nm is compulsory.23 However, achieving voltage gain at such short gate lengths is still an unsolved issue in graphene transistors and circuits. So far, the shortest channel in a graphene based circuit where voltage gain was measured is 500 nm with a DC voltage gain of -3 and a -3 dB frequency of ~ 1.5 GHz.24 To achieve sufficient voltage gain in shorter channels, several characteristics of the devices need to be improved including the increase of the dielectric coupling, the reduction of oxide charge traps and finally a reduction of the contact resistance.24,25 Additionally, as shown in our previous manuscript, band gap engineering significantly improves the voltage gain and supports obtaining a gain for shortest channels down to 40 nm.26 Hence, the route towards high-frequency applications of graphene based circuits is clear, but remains challenging.

In plastic electronics, the situation changes significantly in favour of graphene because gate lengths in the order of 1 μm are typically used. Furthermore, one of the most limiting parameters is the temperature budget of the involved materials, requiring a stringent process technology. These constraints are satisfied for the devices shown here because we used CVD grown graphene that can be transferred to plastic substrates and the maximum process temperature is 300 °C, which can be further reduced by modifying the deposition of the gate dielectric. An overview of the characteristic parameters for inverters in the field of plastic electronics τ_{pd}, V_{sup}, V_{pp} and L_g fabricated from polycrystalline Si, polymers, Ga2O3-In2O3-ZnO, Carbon Nanotubes and the recent values for graphene are given in table 1. For a reasonable comparison of the different technologies we introduce the figure of merit $z = \tau_{pd}/V_{sup}\cdot L_g$, which accounts for the different gate lengths L_g and supply voltages V_{sup}. The favourable low τ_{pd} and z values, surpassing existing technologies by far, and the large output voltage swing for the graphene based inverters demonstrate the potential of graphene in high-speed plastic electronic applications.

In conclusion, our results demonstrate that an optimized process technology delivers high performance graphene devices which are mature enough for realizing complex integrated circuits. The road to high frequency electronics is clearly defined, but paved with serious stumbling blocks arising from device scaling. As shown in this letter, the performance of conventional micron scale devices used in plastic electronics is already surpassed by corresponding graphene based devices. For that reason, we expect this field of application not only among the first industrial entry points, but also to act as incubator for graphene based transistors.

Methods

The inverters and ring oscillators were fabricated on 300 nm thermally grown SiO2 on Si substrate with a size of 2*2 cm². The whole fabrication process is based on photo lithography yielding 100 nominal identical inverters and oscillators per die. The local back gates and the loop path metallization consist of 150 nm AlSi and 10 nm Ti which is patterned by reactive ion etching. Plasma enhanced atomic layer deposition of 6 nm Al2O3 at 300 °C was used as dielectric. Etching of the Al2O3 by diluted buffered HF is used to form the vias to the local back gates. On the same resist mask a subsequent reverse sputter step followed by a deposition of 20 nm Ni without breaking the vacuum is performed. The metal was lifted with acetone in ultrasonic.

The graphene (commercially available graphene grown on Cu foil by CVD and supplied by GrapheneSquare) was transferred to the sample using PMMA as supporting layer and patterned by optical lithography and oxygen plasma etching. Ni contacts (20 nm) were fabricated by sputter deposition and lift-off. In total four lithography steps were required for realizing the integrated ring oscillators in AMOG technology.

All measurements were performed in a needle probe station (Cascade Microtech Summit 12000) under N2 atmosphere at room temperature. The static characterization of the inverters was performed using a HP 4156B semiconductor parameter analyzer. The output signal of the ring oscillator was measured with a Tektronix TDS 3052 scope having 50 Ω and 1 MΩ termination as stated in the text. The power spectrum was recorded using the FFT-function of the Tektronix TDS 3052 scope at 50 Ω termination. DC bias was applied to the ring oscillators by the HP 4156B semiconductor parameter analyzer.

1. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).
2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
4. Bolotin, K. S. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351 (2008).
5. Avouris, P. Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 10, 4285 (2010).
6. Schwierz, F. Graphene transistors. Nat. Nano. 5, 487–496 (2010).
7. Nayfeh, O. M. Graphene Transistors on Mechanically Flexible Polyimide Incorporating Atomic-Layer-Deposited Gate Dielectric. IEEE Electron Device Lett. 32, 1349 (2011).
8. Sire, C. et al. Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184 (2012).

Table 1 | Performance comparison of wafer scale TFT inverters fabricated at $T \leq 300$ °C. L_g: gate length, τ_{pd} delay time of a single inverter, V_{sup} supply voltage, V_{pp} output voltage swing

Material	L_g [μm]	τ_{pd} [ns]	V_{sup} [V]	z [nsV/\mu m]	V_{pp} [V]
Polycrystalline Si38	2	1	15	7.5	0.3
Ga2O3-In2O3-ZnO29	0.5	7	9	126	0.3
Polymer30	2	680	80	27,200	-
Carbon Nanotubes31	10	4,600	2	920	1.1
Graphene32	1	0.14	3.5	0.5	0.28
Graphene (this work)	1.8	2.5	4	5.6	1.2
9. Petrone, N., Meric, I., Hone, J. & Shepard, K. L. Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates. Nano Lett. 13, 121 (2013).

10. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305 (2010).

11. Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. PNAS 109, 11588 (2012).

12. Guerriero, F. et al. Graphene Audio Voltage Amplifier. Small 8, 357 (2012).

13. Wu, Y. et al. State-of-the-Art Graphene High-Frequency Electronics. Nano Lett. 12, 3062 (2012).

14. Traversi, F., Russo, V. & Sordan, R. Integrated complementary graphene inverter. Appl. Phys. Lett. 94, 223112 (2009).

15. Rizzi, L. G. et al. Cascading Wafer-Scale Integrated Graphene Complementary Inverters under Ambient Conditions. Nano Lett. 12, 3948 (2012).

16. Lin, Y.-M. et al. Wafer-Scale Graphene Integrated Circuit. Science 332, 1294 (2011).

17. Habibpour, O., Vukusic, J. & Stake, J. A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET. IEEE Trans. on Microwave Theo. and Tech. 61, 841 (2013).

18. Guerriero, E. et al. Gigahertz Graphene Ring Oscillators. ACS Nano, 7, 5588–5594 (2013).

19. Sordan, R., Traversi, F. & Russo, V. Logic gates with a single graphene transistor. Appl. Phys. Lett. 94, 073305 (2009).

20. Lafikoti, M. et al. Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression under Ambient Conditions. Nano Lett. 10, 1149–1153 (2010).

21. Kalon, G., Shin, Y. J., Truong, V. G., Kalitshov, A. & Yang, H. The role of charge traps in inducing hysteresis: Capacitance–voltage measurements on top-gated bilayer graphene. Appl. Phys. Lett. 99, 083109 (2011).

22. Weste, N. H. E. & Harris, D. A. CMOS VLSI Design: A Circuits and Systems Perspective. Third Edition. Addison Wesley Pub Co Inc (2004).

23. International Technology Roadmap for Semiconductors (ITRS), 2011 Edition Report www.itrs.net, accessed Aug 8th 2013 (2013).

24. Han, S.-J. et al. High-Frequency Graphene Voltage Amplifier. Nano Lett. 11, 3690–3693 (2011).

25. Meric, I. et al. Channel Length Scaling in Graphene Field-Effect Transistors Studied with Pulsed Current-Voltage Measurements. Nano Lett. 11, 1093–1097 (2011).

26. Szafranek, B. N., Fiori, G., Schall, D., Neumaier, D. & Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 12, 1324–1328 (2012).

27. Li, X. et al. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 9, 4359–4363 (2009).

28. Kane, M. G. et al. 100 MHz CMOS Circuits using Sequential Laterally Solidified Silicon Thin-Film Transistors on Plastic. Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 939 (2005).

29. Yin, H. et al. Bootstrapped ring oscillator with propagation delay time below 1.0 nsec/stage by standard 0.5 μm bottom-gate amorphous Ga2O3-In2O3-ZnO TFT technology. IEDM, 1–4 (2008).

30. Fix, W., Ullmann, A., Ficker, I. & Clemens, W. Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735–1737 (2002).

31. Ha, M. et al. Aerosol Jet Printed, Low Voltage, Electrolyte Gated Carbon Nanotube Ring Oscillators with Sub-5 μs Stage Delays. Nano Lett. 13, 954–960 (2013).

Acknowledgments
The authors want to thank Gianluca Fiori (University of Pisa) and Renato Negra (RWTH Aachen) for fruitful discussions. This work was financially supported by the German Science Foundation under the project Ultragraphen (BA3788/2-1) and by the European Commission under the project GRAFOL (285275).

Author contributions
D.N. and H.K. conceived the project. D.S. and D.N. designed the experiment. D.S. fabricated the sample. D.S. and M.O. performed the measurements. D.S. and M.O. analyzed the data. All authors discussed the results and contributed to writing the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Schall, D., Otto, M., Neumaier, D. & Kurz, H. Integrated Ring Oscillators based on high-performance Graphene Inverters. Sci. Rep. 3, 2592; DOI:10.1038/srep02592 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0