Metabolic Syndrome: Findings from 20 Years of the Tehran Lipid and Glucose Study

Firoozeh Hosseini-Esfahani¹, Zahra Bahadoran¹, Nazanin Moslehi¹, Golaleh Asghari¹, Emad Yuzbashian¹, Somayeh Hosseinpour-Niazi¹, Parvin Mirmiran¹, ²*, and Fereidoun Azizi¹, ²*

¹Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
²Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
*Corresponding author: Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: azizi@endocrine.ac.ir
**Corresponding author: Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Email: parvin.mirmiran@gmail.com

Received 2018 September 01; Revised 2018 October 02; Accepted 2018 October 07.

Abstract

Context: In recent decades, investigations have been focused on the definition, incidence and predictors of metabolic syndrome (MetS) in Iranians. This study aimed to review systematically investigations on MetS, conducted among the Tehran lipid and glucose study (TLGS) participants.

Evidence Acquisition: Literature on MetS documented by TLGS studies published from 2000 to 2017 were searched using Pubmed and Scopus database in English language with a combination of following keywords: Metabolic syndrome, TLGS.

Results: The harmonized definition of MetS was confirmed, based on the estimated cut point of waist circumference (WC) ≥ 95 cm for both genders in Iran. The incidence rate was 550.9/10000 person/years, lower among women (433.5/10000) than men (749.2/10000). The prevalence of abdominal obesity, high triglycerides (TG), low high density lipoprotein cholesterol (HDL-C), high blood pressure (BP), and high fasting blood glucose (FBG) was 30, 46, 69, 34, and 12%, respectively. The prevalence of MetS in adolescents was 10.1% with no significant difference between boys and girls (10.3% in boys and 9.9% in girls). A strong association of WC (OR: 2.32, CI: 2.06 - 2.59) and TGs (OR: 1.95, CI: 1.65 - 2.11) with development of MetS was found. In adolescent boys, WC had the highest OR for MetS risk. WHO-defined MetS was a significant predictor of total and cardiovascular mortality both in men (HR: 1.66, CI: 1.23 - 2.24; HR:1.93, CI: 1.26 - 2.94) and women (HR: 2.01, CI: 1.39 - 2.88; HR:2.71, CI: 1.44 - 5.09).

Conclusions: Our results indicate high incidence of MetS in Tehranian adults and adolescents; high WC also appears to be a strong predictor of MetS. All definitions of MetS predicted cardiovascular disease.

Keywords: Metabolic Syndrome, Obesity, Hypertension, Hyperlipidemia, HDL-C, LDL-C, Tehran Lipid and Glucose Study

1. Context

Metabolic syndrome (MetS) is characterized as having 3 or more risk factors including abdominal obesity, hypertension, hyperglycemia, and dyslipidemia, is a pathological condition which increases risk of various non-communicable diseases (NCDs) (1). There is limited global data for prevalence of MetS but over a billion people around the world were estimated to have MetS. Its prevalence varies worldwide and it is highly associated with urbanization and lifestyle (2). A nationally representative study of Iranians living in both urban and rural area of 30 provinces of Iran, aged 25 - 64 years, showed a high prevalence for MetS in 2007 (3). In 1999 - 2001, it has been estimated that 30.1% adults living in Tehran have MetS (4). In addition to the variation in prevalence, the predictors of MetS also differ across populations (5).

The rate of MetS is also high among overweight/obese children and adolescent, and is simultaneously increasing with the prevalence of obesity. At least one criteria of MetS can be seen in 90% of obese children and adolescent (6). MetS in childhood is associated with higher risk of diabetes and coronary heart diseases in adulthood (7).

Tehran lipid and glucose study (TLGS) is an ongoing study started in 1999 with a representative sample of 15005 individuals aged ≥ 3 years, recruited from residence of district no.13 of Tehran, the capital of Iran (8). This prospective study provides an opportunity to study different aspects of NCDs in this Middle-Eastern population. This study aimed to review all findings of studies conducted in framework of TLGS regarding the prevalence and incidence of MetS and its predictors in different age groups, providing a deeper
insight into this syndrome in this population in order to design better preventive strategies for high risk individuals.

2. Evidence Acquisition

2.1. Methods

All English-language studies focused on the prevalence and incidence of MetS, and its potential predictors in different age groups in the framework of the TLGS, were searched using PubMed, Scopus, and Embase databases. A structured search strategy with using combination of keywords "metabolic syndrome AND Tehran lipid and glucose study" was conducted to identify records in each database. Eventually, 35 relevant papers were included in this review. Seven papers described different definition of MetS in the TLGS population; its prevalence and incidence were described in 10 papers. Prevalence, incidence and risk factors of MetS in children and adolescents were clarified in 8 articles. Ten studies focused on the potential usefulness of MetS in prediction of cardiovascular (CVD) events, all-cause and CVD mortality and type 2 diabetes in different age groups.

2.2. Metabolic Syndrome Definitions

MetS is a complex accumulation of risk factors containing hypertension, central obesity, high fasting blood glucose (FBG) and dyslipidemia. The World Health Organization (WHO), Adult Treatment Panel (ATP) III, International Diabetes Federation (IDF), American Heart Association (AHA), and the National Health Lung and Blood Institute (NHLBI) have presented various definitions for MetS (Table 1). Considering the sharp rising trend in the prevalence of obesity and MetS in Iran, having a uniform and harmonized definition for waist circumference (WC) and MetS would facilitate the comparison of clinical and epidemiological investigations for trend studies; the Iranian national committee of obesity hence designated a cut point of WC ≥ 95 cm for both genders in Iranian adults (9).

3. Results

3.1. Prevalence and Incidence of Metabolic Syndrome in Adults

The prevalence of MetS in a study population of 10368 adults (4397 men and 5971 women), aged ≥ 20 years recruited at the initiation of TLGS (1999 - 2001), was 30.1% and age-standardized prevalence was 33.7% based on the ATP III definition (12). The prevalence of MetS rose 4-fold during 6.6 years in a normal weight adult population from 2.3% at initiation of the TLGS study to 9.6% in the third examination (2005 - 2008), an incremental trend significant only among men accompanied by an increasing trend in abdominal obesity, seen only in men (13).

The age-adjusted incident rate of MetS during a 3-year follow-up was estimated to be 20.4 (95% CI: 19.6 - 21.2) in 2217 Iranian participants, aged ≥ 20 years (14). The incidence rate of MetS during 9.3 years of follow-up was 550.9/10000 person/years, and risk of developing MetS was 50% lower in women, compared with men (749.2/10000 person/years in men and 433.5/10000 person/years in women) based on the Joint Interim Statement (JIS) definition (15).

The prevalence of MetS is high among Tehranian populations in all adult age groups, and is even higher among normal weight adults, and the increasing trend in prevalence of MetS and abdominal obesity especially, especially among men with normal weight, should be considered in future public health programs. The incidence of MetS was higher among men which may be due to the rising trend of abdominal obesity observed more among men than women.

Nationally representative study of prevalence of MetS also showed a high burden for MetS with age-adjusted prevalence of 34.7% (95% CI = 33.1 - 36.2%) based on the ATP III definition in 2007 on 3024 living in 30 provinces of Iran. Consistent with our findings, the prevalence reported for women in this study was higher than in men, and an increase in prevalence of MetS was observed by increasing age in both sexes. Low-HDL was the most prevalent of metabolic abnormalities as was seen in TLGS (3) (Table 2).

3.2. Predictors of Metabolic Syndrome

A 6.5-year cohort study on subjects aged 20 - 87 years aimed to resolve which constituent of the MetS is the best predictor of its progress; WC, HDL-C and TG predicted the development of MetS better than blood pressure (BP) or FBG; a model that comprised WC and TG or WC and HDL-C
Table 1. Important Definitions of Metabolic Syndrome in Adults

ID	IDF	ATP III	EGIR	WHO
Definitions	Abdominal obesity + two or more of these components	Presence of three or more of these components	Elevated plasma insulin (> 75th percentile) plus two other factors from among the following:	Glucose intolerance, impaired glucose tolerance (IGT) or diabetes mellitus (DM), and/or insulin resistance, together with two or more of the components listed below:
BMI, kg/m²	BMI is > 30	-	Body mass index (BMI) > 30	
WHR or WC, cm	Dependent to population if BMI is > 30 kg/m², central obesity can be assumed and waist circumference does not need to be measured	Dependent to population	Waist circumference (WC) ≥ 94 cm in men and ≥ 80 cm in women	Waist/hip ratio (WHR) > 0.9 in men and > 0.85 in women
TG, mg/dL	≥ 150 (1.7 mmol/L) or specific treatment for this lipid abnormality	> 150 or drug treatment for elevated triglycerides	≥ 150	≥ 150
HDL, mg/dL	< 40 (1.03 mmol/L) in males < 50 (1.29 mmol/L) in females or specific treatment for this lipid abnormality	Men: < 40 Women: < 50	< 39 for both men and women	< 35 in men and < 39 in women
BP, mm Hg	Systolic BP ≥ 110 or diastolic BP ≥ 85 or treatment of previously diagnosed hypertension	> 130/85 or drug treatment for elevated blood pressure	≥ 140/90 or on antihypertensive treatment	≥ 140/90
FBG, mg/dL	(FPG) ≥ 100 (5.6 mmol/L), or previously diagnosed type 2 diabetes if above 5.6 mmol/L or 100, OGTT is strongly recommended but is not necessary to define presence of the syndrome	> 100 or drug treatment for elevated glucose	Impaired fasting glucose (IFG) or IGT, but no diabetes	
Albuminuria, µg/min	-	-	Urinary albumin excretion rate ≥ 20 µg/minute or albumin/creatinine ratio ≥ 30 µg/mg.	

Abbreviations: AACE, American Association of Clinical Endocrinologists; AHA/NHLBI, American Heart Association/National Heart, Lung and Blood Institute; BMI, body mass index; BP, blood pressure; EGIR, European Group for Study of Insulin Resistance; FBG, fasting blood glucose; HDL, high density lipoprotein-cholesterol; IDF, International Diabetes Federation; INCO, Iranians National Committee of Obesity; NCEP ATP III, National Cholesterol Education Program Adult Treatment Panel III; TG, triglyceride; WC, waist circumference; WHO, World Health Organization; WHR, waist to hip ratio.

predicted MetS, like a model that constituted all five MetS components (19).

A 6.6 year-cohort study investigating the effect of changes in WC on MetS status and its parameters in adults concluded that waist gain, although mild, was a risk factor of the development of MetS and its components (20). During a three year follow-up, weight gain > 1.3% initial weight in women and > 4% in men were related to increased risk of MetS (14). A population-based cohort study confirmed the importance of BP, WC and lipid measurements in risk stratification of MetS in adulthood (21).

These findings are in agreement with previous study conducted among Iranian populations (22). Obesity, especially central obesity, increased risk of developing MetS 19-fold among 15 - 65 years participants (23), which could be due to WC being strongly associated with chronic systemic low-grade inflammation (24), which is considered to be the underlying cause of MetS (25), indicating that greater decreases in WC with medical weight loss are related to significant improvement in components of MetS, independent of sex (26).

The independent predictors of MetS include all components of MetS, obesity, family history of diabetes and age. Moreover individuals in the 4th quartile of HOMA-IR had significant risk for MetS in both genders (15). The independent association of family history of diabetes with MetS indicates that genetic susceptibility plays a role in the risk of MetS (27).

The incidence of MetS among 433 healthy obese individuals was 44.0% (36.8 - 55.0) over 10 years of follow-up; predictors of MetS in healthy obese subjects included hypertension, high TG, low HDL-C and insulin resistance; WC was also a weak predictor of MetS in these subjects (5). In spite of short-term follow-up studies reporting no relation between metabolically healthy obesity and cardiovascular disease, long-term follow-up studies showed an increased...
Table 2. Prevalence and Incidence of Metabolic Syndrome in the Tehran Lipid and Glucose Study

Year	Reference No.	Number of Participants	Age, y	BMI Group, kg/m²	Criteria of Diagnosis	Prevalence, %	Incidence, %	Incidence Rate
1999 - 2001	(4)	10368	≥ 20	-	ATP	33.7	-	-
1999 - 2001	(10)	10368	≥ 20	-	ATP	32.1	-	-
1999 - 2001	(10)	10368	≥ 20	-	IDF	31.2	-	-
1999 - 2001	(10)	10368	≥ 20	-	WHO	18.4	-	-
1999 - 2001	(11)	720	≥ 65	-	ATP	50.8	-	-
1999 - 2001	(11)	720	≥ 65	-	IDF	41.9	-	-
1999 - 2001	(12)	3444	≥ 20	18.5-24.9	ATP	9.0 (men)	-	-
						11 (women)		
1999 - 2001	(13)	5269	≥ 20	18.5-24.9	IDF	2.3	-	-
2002 - 2005	(13)	5269	≥ 20	18.5-24.9	IDF	4.0		
2005 - 2008	(13)	5269	≥ 20	18.5-24.9	IDF	9.6	-	-
From 1999 - 2001 to 2002 - 2005	(14)	2217	≥ 20	> 18.5	ATP	-	20.4	-
From 1999 - 2001 to 2008 - 2011	(15)	2858	≥ 20	-	JIS	-	-	550.9/10000
1999 - 2001	(16)	3036	10-19	-	ATP	10.1	-	-
From 1999 - 2001 to 2003 - 2005	(17)	932	10-19	-	ATP	-	5.2	-
From 1999 - 2001 to 2003 - 2005	(17)	932	10-19	-	IDF	-	6.8	-
From 1999 - 2001 to 2003 - 2005	(17)	932	10-19	-	AHA	-	8.3	-
From 1999 - 2001 to 2003 - 2005	(17)	932	10-19	-	NHANES	-	8.8	-
1999 - 2001	(18)	1424	11-18	-	Cook	11.1	-	-
1999 - 2001	(18)	1424	11-18	-	de Ferranti	26.4	-	-
1999 - 2001	(18)	1424	11-18	-	Pediatric NCEP	11.7	-	-
1999 - 2001	(18)	1424	11-18	-	Pediatric IDF	8.4	-	-

Abbreviations: AHA: American Heart Association; ATP III: adult treatment panel III; IDF: International Diabetes Federation; JIS: joint interim statement; NHANES: National Health and Nutrition Examination Survey; WHO: World Health Organization.

Risk, since metabolic abnormalities occurred over longer follow-up periods (28). A cross sectional study conducted on 5720 women and 4040 men, reported that hip circumference is independently and inversely associated with high LDL-C, diabetes, hypertension, low HDL-C and abnormal glucose homeostasis (29, 30). This finding confirms the importance of hip circumference measurements in epidemiological studies which are in line with previous studies in Australian (31) and Canadian (32) populations. It seems this association is independent of race.

3.3. Metabolic Syndrome Studies in Children and Adolescents

Although MetS has been extensively studied in adults (33), limited attention has been focused on children and adolescents. To investigate the prevalence of MetS in Iranian adolescents based on the ATP definition, a cross sectional study (1999 - 2001) was conducted among adolescents, aged 10 - 19 years. The prevalence of MetS was 10.1% with no significant difference between boys and girls (10.3% in boys and 9.9% in girls), although those with a family history of diabetes and overweight had higher prevalence of MetS. Odds of MetS was higher in girls than boys [1.34 (1.03 -
the late-pubertal group (κ = 0.255), in which group, the power of prediction of adult MetS after 6.6 years of follow-up, using ATPIII criteria, was attained by de Ferranti’s definition (39). Furthermore, in a longer follow-up study of 10.4 years in TLGS, conclusions convey that higher BMI or WC are more exposed to MetS (42). However, when adolescents were followed to explore the best anthropometric parameter to predict early adulthood MetS, in boys, WC had the highest OR for the MetS risk, followed by waist-to-height ratio (WHeR). Adjusting BMI in addition to WC did not change the results in the 11 - 14-year age group, suggesting that WC may predict MetS risk above BMI. None of the anthropometric parameters were observed to have significant relationships with subsequent MetS risk in girls (43). In addition to anthropometric indices, several metabolic factors including high TGs/low HDL-C, high TG/high WC, high WC/low HDL, and high BP/low HDL-C phenotypes in adolescents predicted early adult MetS, independent of baseline BMI Z-Score and BMI change (44). An important finding was that adolescent MetS or higher weight gain were not able to predict early adult MetS, after controlling for adult BMI. In addition, the risk of developing MetS in early adulthood was higher among participants who were constantly obese or who became obese in adulthood than those who were overweight or obese during adolescence but non-obese in adulthood (45) (Table 2).

3.4. MetS Prediction for CVD and Diabetes

In a study conducted on 7932 subjects, aged ≥ 30 years who were followed for 9.0 ± 2.3 years, WHO-defined MetS was a significant predictor of total and cardiovascular mortality in men (HR = 1.66, 95% CI = 1.23 - 2.24, and HR = 1.93, 95% CI = 1.26 - 2.94) and women (HR = 2.01, 95% CI = 1.39 - 2.88 and HR = 2.71, 95% CI = 1.44 - 5.09) (46). WHO-defined MetS could also predict 10-year risk of CVD and all-cause mortality events (HR = 1.55, 95% CI = 1.15 - 2.09, and HR = 2.08 95% CI = 1.23 - 3.51, respectively) in 922 adults, aged ≥ 65 years (47); JIS-defined MetS showed a risk of CVD mortality (HR = 1.65 | Hosseini-Esfahani F et al. | Int J Endocrinol Metab. 2018; 16(4 (Suppl)):e84771. 5
(95% CI = 1.03 - 2.65) (47). In a 9.3 year follow-up of 598 non-diabetic individuals, aged ≥ 30 years (mean age 45.6 years, 45% men), the HRs of CVD events according to the NCEP-ATP III, AHA/NHLBI, IDF and JIS definitions of MetS were 1.55 (1.21 - 2.00), 1.73 (1.35 - 2.20), 1.54 (1.22 - 1.94) and 1.70 (1.34 - 2.17), respectively (48). Evaluation of agreement between different definitions of MetS and insulin resistance in 347 non-diabetic individuals (aged ≥ 20 years) also showed poor agreement between ATP III or JIS and HOMA-IR (Kappa = 0.14 and 0.16, respectively); both criteria had also low sensitivities and specificities for detecting insulin resistance (49).

Moreover, findings of a principal component analysis, of data of a 10-year follow-up performed to extract standardized factors from MetS components, identified three factors including BP, lipids and glycemia; WC was shared in three all factors (50); their results showed that BP, lipids and glycemia were related to the incidence of diabetes (OR = 2.23, 95% CI = 1.31 - 3.78, OR = 1.89, 95% CI = 1.27 - 3.67, and OR = 7.54, 95% CI = 4.09 - 13.91, respectively), in men and (OR = 2.13, 95% CI = 1.34 - 3.40, OR = 2.06, 95% CI = 1.35 - 3.15, and OR = 13.91, 95% CI = 7.29 - 26.51, respectively), in women, for the third versus the first tertile of these standardized factors (50).

All definitions of MetS were associated with cardiovascular disease (CVD). In a cross-sectional study, all definitions of MetS were related to CHD after adjustment for controlling factors in both genders (51). During 9.3 years of follow-up, the hazard ratios (HR) of MetS defined by JIS were 2.71 (1.57 - 4.68) and 2.07 (1.63 - 2.64) respectively for incident cardiovascular events and CHD; However, after controlling for MetS components, these relationships were no longer significant. In all definitions, high BP predicted both CVD and CHD events, and high FBS was also an independent predictor for CHD (52, 53). In subjects with diabetes, adding MetS did not change the CVD risk compared to individuals without MetS; however, the risk of CVD in IFG/IGT subjects increased 2.5 fold after addition of MetS, compared to IFG/IGT individuals without MetS (54).

Moreover, although all definitions of MetS seem to be predict type 2 diabetes, IGT had the highest predictive power for diabetes, compared to other definitions (55).

Previous studies confirmed the potential role and clinical usefulness of MetS for predicting CVD events and type 2 diabetes. A 18-year follow-up of Finnish males and females indicated that subjects with MetS had a 2.01-fold (95% CI = 1.46 - 2.77) higher risk for cardiovascular events, compared with subjects without MetS; compared with those without any components of MetS, having five components of MetS was related to hazards of 7.89 (2.26 - 27.60) for cardiovascular events (56). Having MetS was also related to incident diabetes, regardless of whether the MetS was defined according to NCEP ATP III (OR = 2.03, 95% CI = 1.10 - 3.75) or the IDF criteria (OR = 2.14, 95% CI = 1.29 - 3.55) (57). In a 20-year follow-up of adult men, baseline MetS was a predictor of developing CHD (RR = 1.64, 95% CI = 1.41 - 1.90), stroke (RR = 1.61, 95% CI = 1.26 - 2.06), and type 2 diabetes (RR = 3.57, 95% CI = 2.83 - 4.50); however MetS could not predict CHD as well as the Framingham risk score (58). Overall, current evidence indicates that MetS can be used as a simple and useful predictor of future risk of CVD and type 2 diabetes; however MetS seems to be a more accurate tool for identifying individuals at risk of type 2 diabetes.

4. Conclusions

This review indicates high incidence of MetS in Tehranian adults and adolescents, in which related factors like age and gender play a pivotal role. Increased WC was a strong predictor of MetS both in adults and adolescents.

More information about time trends of MetS is needed, in addition to a comprehensive understanding of the genetic determinants of MetS.

Acknowledgments

The authors wish to acknowledge Ms. Niloofar Shiva for critical editing of English grammar and syntax of this manuscript.

Footnotes

Authors’ Contribution: Firoozeh Hosseini-Esfahani, Zahra Bahadoran, Nazanin Moslehi, Golaleh Asghari, Emad Yuzbashian, Somaye Hosseinipour designed the study and interpreted the data, and drafting the manuscript; Fereidoun Azizi and Parvin Mirmiran supervised the study, Fereidoun Azizi critically revised the manuscript for important intellectual content and final approval of the version to be published.

Financial Disclosure: The authors declare that they have no competing interests.

Funding/Support: The study was supported by Research Institute for Endocrine Sciences, Iran.

References

1. Kassi E, Pervanidou P, Kaltas G, Chrousos G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011;9:48. doi: 10.1186/1741-7015-9-48. [PubMed: 21542944]. [PubMed Central: PMC3115896].

2. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. doi: 10.1007/s11906-018-0812-z. [PubMed: 29480368]. [PubMed Central: PMC5868440].

Hosseini-Esfahani F et al.
