Revealing the missing heritability via cross-validated genome-wide association studies

Xia Shen

Division of Computational Genetics, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7078, SE-750 07 Uppsala, Sweden.

Correspondence to: xia.shen@slu.se

Presented here is a simple method for cross-validated genome-wide association studies (cvGWAS). Focusing on phenotype prediction, the method is able to reveal a significant amount of missing heritability by properly selecting a small number of loci with implicit predictive ability. The results provide new insights into the missing heritability problem and the underlying genetic architecture of complex traits.

Recently, the case of missing heritability has drawn a lot of attention in genetics of complex traits. It has been widely noticed that for many complex traits, the loci uncovered by means of e.g. genome-wide association studies (GWAS) could only explain a minor proportion of the phenotypic variance, even though the observed heritability of the trait is much higher. Strategies have been proposed to search for the sources of such missing heritability, e.g. capturing additive genetic variance using polygenic effects across the genome and mapping quantitative trait loci (QTL) using a powerful design. However, even the use of all the genomic variants could not fully explain the missing heritability. Here, I propose a simple method to perform association mapping based on genomic variants’ predictive ability, explain the reason why the estimation of narrow sense heritability using all the markers across the genome is not reliable, and show that the underlying...
heritability can be much higher than the conventional estimate and can even be well captured by a rather small number of QTL.

Forty-nine traits in *Arabidopsis thaliana* (9 flowering, 21 developmental, 12 defense and 7 ionomics) were analyzed, with the sample size varied from 84 to 194 inbred lines. The *Arabidopsis* accessions were genotyped using a 250K SNP (single nucleotide polymorphism) array, where 216,130 SNPs were available in the analysis. Instead of screening the genome using ordinary GWAS *p*-values, each SNP was assessed for their individual predictive ability by a 5-fold cross validation, *i.e.* the samples were split into a training (80%) and a test (20%) set for five replicates, without overlap among the five test sets. A linear regression of the phenotype on the SNP genotype was fitted in the training set for each marker, and the estimated model was used to perform out-of-sample prediction in the test set. The predictive ability of an individual SNP was evaluated via an R^2, which is the squared correlation coefficient between the true phenotypic measurements and their predicted values in each of the five test sets. The mean of the five R^2 values, denoted as R^2_{SNP}, provided an estimate of the proportion of phenotypic variance captured by the SNP. It should be noted that such a predictive ability measurement is not a function of the *p*-value in ordinary GWAS (*e.g.* Fig. 1). Namely, the *p*-values obtained in GWAS tend to under-estimate the predictive performance of the SNPs. Comparison of the association results based on *p*-values and R^2_{SNP} for all the analyzed traits are given in Supplementary Figure 1-49.

For each trait, among the top 0.05% of the SNPs (*n* = 108) that had the highest R^2_{SNP}, the best subset with no more than 5 SNPs was selected by a forward stepwise selection procedure, based on a cross-validated assessment of their joint predictive power. In order to compare the narrow sense heritability explained by the selected subset of SNPs (h^2_{QTL}) with that explained by the entire genome (h^2_G), another 5-fold cross validation was conducted. Both a random effects model using
only the selected SNPs (the QTL) as explanatory variables and a whole-genome ridge regression (SNP-BLUP11,12) were fitted in the training sets and used for predicting the phenotypic values in the test sets. h^2_{QTL} and h^2_{G} were estimated as the mean of the corresponding five squared correlation coefficients between the true and the predicted values5. For most traits, as shown in Figure 2, the small number of QTL had substantial advantage over the whole genome in terms of captured narrow sense heritability. The results indicated similar genetic architecture for the traits that belong to the same type. For instance, the defense and ionomics traits showed rather sparse architecture, whereas the flowering traits tended to be more polygenic. Interestingly, two gene expression traits of \textit{FRI} and \textit{FLC}, although regarded as flowering-related, appeared to have sparse architectures. For all the analyzed traits, details about the selected QTL and the heritability estimates are provided in Supplementary Table 2.

As a proof of concept, the results clearly showed that assessing the total narrow sense heritability using a large number of markers across the genome5,7,8 is not a valid approach. The main reason is that one has to substantially sacrifice the precision of the estimated QTL effects when incorporating too many markers as explanatory variables. When the QTL effects or the effects of the SNPs tagging the causal loci are properly estimated, the heritability inherited by the causal loci can be much better revealed than the entire genome. The results indicated that most of the missing heritability was missed by improper analytical methods. Beyond statistical significance in GWAS, more functional loci of complex traits can actually be revealed via assessments based on predictive performance.
Methods

Software & URLs. The *Arabidopsis thaliana* GWAS data set is available at: https://
cynin.gmi.oeaw.ac.at/home/resources/atpolydb. All the analysis was conducted in R\(^{13}\): http://
www.R-project.org/. The association mapping based on cross-validated \(R^2_{SNP}\) has been
implemented in the “cvGWAS” package: https://r-forge.r-project.org/projects/cvgwas/. The forward
stepwise selection procedure was executed by the “FWDselect” package\(^{14}\): http://cran.r-project.org/
web/packages/FWDselect/. The random QTL effects model was fitted by the “hglm” package\(^{15}\):
http://cran.r-project.org/web/packages/hglm/. The whole-genome ridge regression (SNP-BLUP)
was fitted by the “bigRR” package\(^{12}\): http://cran.r-project.org/web/packages/bigRR/.
Figure Legends

Figure 1: Comparison of the SNPs predictive ability and p-values for FRI gene expression.
The predictive ability is assessed by R^2_{SNP} (“Proportion of phenotypic variance explained via CV”),
where CV stands for “cross validation”. The p-values were obtained using Wilcoxon test. The
horizontal line indicates the Bonferroni-corrected genome-wide significant threshold, and the
vertical line shows the cut-off that determines which SNPs are to be passed onto the forward
selection procedure.

Figure 2: Comparison of the narrow sense heritability captured by the selected QTL (h^2_{QTL})
and the whole genome (h^2_G). Each colored point represents an analyzed trait. The color of each
point shows the type of the trait, where blue, red, green and pink refer to flowering, developmental,
defense and ionomics traits, respectively. The size of each point is proportional to the number of
QTL selected (from 2 to 5). The cross on each point shows the standard error estimates based on the
cross validation. The dashed line indicates equality of h^2_{QTL} and h^2_{QTL} as a visual guide.

Supplementary Table 1-2 and Supplementary Figure 1-49 are available as Supplementary
Information from the journal website.
References

1. Maher, B. *Nature* **456**, 18-21 (2008)
2. Manolio, T. A. et al. *Nature* **461**, 747-753 (2009)
3. Slatkin, M. *Genetics* **182**, 845-850 (2009)
4. Eichler, E. E. et al. *Nat. Rev. Genet.* **11**, 446-450 (2010)
5. Makowsky, R. et al. *PLoS Genet.* **7**, e1002051 (2011)
6. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. *Proc. Natl. Acad. Sci. USA* **109**, 1193-1198 (2012)
7. Bloom, J. S. et al. *Nature* **494**, 234-237 (2013)
8. Yang, J. et al. *Nat. Genet.* **42**, 565-569 (2010).
9. Atwell, S. et al. *Nature* **465**, 627-631 (2010).
10. Miller, A. Chapman & Hall (2002).
11. Meuwissen, T. H. E., Hayes, B. J. and Goddard, M. E. *Genetics* **157**, 1819-1829 (2001).
12. Shen, X., Alam, M., Fikse, F. and Rönnegård, L. *Genetics* **193**, 1255-1268 (2013).
13. R Core Team. R Foundation for Statistical Computing, Vienna, Austria (2013).
14. Sestelo, M., Villanueva, N. M. and Roca-Pardinas, J. Discussion Papers in *Statistics and Operation Research*, 13/02 (2013).
15. Rönnegård, L., Shen, X. and Alam, M. *The R Journal* **2**(2), 20-28 (2010).
Acknowledgement

X.S. is funded by a Future Research Leaders grant from Swedish Foundation for Strategic Research (SSF) to Örjan Carlborg.
Proportion of phenotypic variance explained by the whole genome (SNP−BLUP)

- Figure 1

- Figure 2
This document contains the Supplementary Information for

Revealing the missing heritability via cross-validated genome-wide association studies

by Shen, X. (2013)

Remarks:

- The Excel table format of **Supplementary Table 2** can be downloaded at: https://docs.google.com/file/d/0B2ixEvB0Gwt6SWWhZcW1KQmx2Wmc/edit?usp=sharing

- In **Supplementary Figure 1-49**, the horizontal dashed line in each top panel is the Bonferroni-corrected genome-wide significance threshold, and the vertical is the cut-off for selecting candidate SNPs to be passed onto the forward selection procedure. The phenotypic variance explained in the bottom panels was estimated by R^2_{SNP}.

- The link provided in **Methods** for the package “cvGWAS” is the project home page. For package download: https://r-forge.r-project.org/R/?group_id=1694. If the package is being built on R-Forge, refer to https://r-forge.r-project.org/scm/viewvc.php/pkg/R/cvscore.R?view=markup&revision=2&root=cvgwas for the source code of the main function cvscore(), which is a directly usable add-on function for the GWA analysis package GenABEL (Aulchenko 2007 Bioinformatics).
Supplementary Table 1: Phenotypes analyzed.
Refer to Atwell et al. (2010) for further details about phenotype description and scoring.

Phenotype	ID	Type	Sample size	Description	Growth Conditions
SD	3	Flowering	162	Days to flowering time (FT) under Long Day (LD) and Short Day(SD) +/- vernalization.	18°C, 8 hrs daylight.
FT10	5	Flowering	194	Flowering time (FT)	10°C, 16 hrs daylight.
FT16	6	Flowering	193		16°C, 16 hrs daylight.
FT22	7	Flowering	193		22°C, 16 hrs daylight.
Emco5	9	Defense	86	Disease presence or absence following inoculation with each isolate.	20-22°C, 10 hrs daylight, 70% humidity.
Emwa1	10	Defense	85		
Hiks1	12	Defense	84		
Lithium (Li7)	14	Ionomics	93	In planta ion concentration.	20°C, 16 hrs daylight.
Sulfur (S34)	19	Ionomics	93		
Potassium (K39)	20	Ionomics	93		
Manganese (Mn55)	22	Ionomics	93		
Iron (Fe56)	23	Ionomics	93		
Cobalt (Co59)	24	Ionomics	93		
Zinc (Zn66)	27	Ionomics	93		
AvrRpm1	33	Defense	84	Hypersensitive response.	20°C, 12 hrs daylight.
FLC	43	Flowering	167	FLC and FRI gene expression.	Growth in greenhouse, ~20-22°C, 16 hrs daylight.
FRI	44	Flowering	164		
8W GH LN	46	Flowering	163	LN at FT.	20-22°C, natural light from the middle of October 2002 till March 2003, vernalized (8 wks, 4°C, 8 hrs daylight).
0W GH LN	48	Flowering	135		20-22°C, natural light from the middle of October 2002 till March 2003.
FT Diameter Field	58	Flowering	180	Plant diameter at flowering (field).	Growth in field or greenhouse (20°C, 16 hrs daylight), started in October.
Phenotype	ID	Type	Sample size	Description	Growth Conditions
---------------	-----	-----------------	-------------	------------------------------------	---
At1	65		175		
At1 CFU2	66		175		
As CFU2	68		175		
Bs	69		175		
Bs CFU2	70		175		
At2	71		175		
At2 CFU2	72		175		
As2	73		175		
DW	76	Developmental	95	Dry weight of plants.	Plants were grown for 7 weeks at 23°C.
Silique 22	159	Developmental	95	Silique length.	20°C, 16 hrs daylight.
Germ 10	161	Developmental	177	Days to germination.	Stratified for 3 days at 4°C in the dark, followed by growth at 10°C with 16 hrs daylight.
Germ 16	162	Developmental	176		Stratified for 3 days at 4°C in the dark, followed by growth at 16°C with 16 hrs daylight.
Width 10	164	Developmental	176	Plant diameter.	10°C, 16 hrs daylight.
Width 16	165	Developmental	175		16°C, 16 hrs daylight.
Width 22	166	Developmental	175		22°C, 16 hrs daylight.
Chlorosis 16	168	Developmental	176	Visual chlorosis presence.	16°C, 16 hrs daylight.
Anthocyanin 10	170	Developmental	177	Visual anthocyanin presence.	10°C, 16 hrs daylight.
Anthocyanin 16	171	Developmental	176		16°C, 16 hrs daylight.
Anthocyanin 22	172	Developmental	177		22°C, 16 hrs daylight.
Leaf serr 10	173	Developmental	174	Level of leaf serration.	10°C, 16 hrs daylight.
Leaf roll 16	177	Developmental	176	Level of roll presence.	16°C, 16 hrs daylight.
Rosette Erect 22	179	Developmental	176	Presence of rosette erectness.	22°C, 16 hrs daylight.
Seedling Growth	272	Developmental	101	Seedling growth rate.	Seeds were grown for one week in the greenhouse under long day (16 hours light).
Phenotype	ID	Type	Sample size	Description	Growth Conditions
--------------------	-----	---------------	-------------	---	---
Vern Growth	273	Developmental	111	Vegetative growth rate during vernalization.	Seeds were grown for one week in the greenhouse under long day (16 hours light), vernalized for 4 weeks (4°C, 16h light, 50% relative humidity).
After Vern Growth	274	Developmental	111	Vegetative growth rate after vernalization.	Seeds were grown for one week in the greenhouse under long day (16 hours light), vernalized for 4 weeks (4°C, 16 hrs light, 50% relative humidity) and then returned to greenhouse.
Secondary Dormancy	277	Developmental	94	Decrease in germination rate after prolonged exposure to cold temperature.	Fully after-ripened seeds were treated with a 1 and 6-week long exposure to 4°C.
Germ in dark	278	Developmental	94	Germination in the dark.	4°C, in the dark.
DSDS50	279	Developmental	110	Duration of seed dry storage required for 50% of the seeds to germinate.	Dry storage, followed by 25°C, 12 hrs day, 20°C, 12 hrs night for 1 week.
Storage 56 days	283	Developmental	111	Primary dormancy.	56 days dry storage.
Summary of selected QTL for each analyzed trait and the heritability estimates compared to those by the whole genome.

- **h2**: Narrow-sense heritability estimated as the mean of the squared correlation coefficients between the true and the predicted phenotype in a 5-fold cross validation.
- **se**: Standard error estimated via a 5-fold cross validation.

TRAIT	TYPE	CHROMOSOME	POSITION	h2_QTL	se(h2_QTL)	h2_GENOME	se(h2_GENOME)		
SD	Flowering	1	1	4593289	0.6063	0.0690	0.6517	0.0355	
		1	3	18923922					
		1	3	18929030					
		4	1	16084919					
FT10	Flowering	2	2	13151174	0.5796	0.0432	0.5825	0.0370	
		4	5	16017869					
		4	5	6534392					
		5	5	18607728					
FT16	Flowering	1	1	6369609	0.6448	0.0771	0.6328	0.0758	
		1	2	9611587					
		1	3	23090917					
		1	4	12519944					
FT22	Flowering	1	1	6369765	0.5255	0.0701	0.6045	0.0690	
		4	5	12519944					
		5	5	2551768					
		5	5	2554284					
		5	5	6844135					
Emco5	Defense	1	1	1430178	0.4539	0.0138	0.0768	0.0355	
		2	2	4189247					
Emwa1	Defense	1	1	17250538	0.6452	0.0632	0.1221	0.0316	
		2	2	13008747					
		4	5	17934073					
		5	5	8196803					
Hiks1	Defense	1	1	22583408	0.4195	0.0971	0.1581	0.0652	
		1	5	9299223					
		5	5	10841701					
		5	5	17477817					
Li7	Ionomics	1	1	11096840	0.4292	0.1103	0.1824	0.0621	
		1	3	10620051					
		1	4	15226225					
S34	Ionomics	2	2	621979	0.4796	0.0691	0.0358	0.0143	
		2	3	5755893					
		2	4	23263260					
		2	5	7788807					
		5	5	10133357					
K39	Ionomics	1	1	10146885	0.5541	0.0468	0.1006	0.0493	
		1	4	17666204					
		1	5	28516934					
		4	5	6786084					
		5	5	11291662					
Mn55	Ionomics	1	1	8502187	0.5565	0.0329	0.1146	0.0414	
Element	Ionomics	Defense	Flowering	Field					
---------	---------	---------	-----------	-------					
Fe56			13853615	1					
			29966840	1					
			20599509	1					
			7092529	3					
			0.5229	3					
			0.0522	3					
			0.0425	3					
			0.0142	3					
Co59			13335745	3					
			20321272	3					
			5514273	3					
			7592626	3					
			8569114	3					
			0.5556	4					
			0.0998	4					
			0.0600	4					
			0.0251	4					
Zn66			21179549	1					
			6367225	2					
			7419526	2					
			9969573	2					
			26078291	2					
			0.6129	2					
			0.0855	2					
			0.0305	2					
			0.0067	2					
avrRpm1			17504634	2					
			2270902	2					
			0.3796	2					
			0.0636	2					
			0.1607	2					
			0.0729	2					
FLC			19790829	1					
			1507838	4					
			5883775	4					
			10172996	4					
			24786228	4					
			0.6054	4					
			0.1047	4					
			0.3710	4					
			0.0579	4					
FRI			5989995	1					
			268809	1					
			0.4252	1					
			0.0966	1					
			0.1771	1					
			0.0630	1					
BW GH LN			2009921	1					
			1977590	2					
			12358261	2					
			0.5711	2					
			0.0653	2					
			0.4772	2					
			0.0918	2					
OW GH LN			2009921	1					
			14131141	3					
			16309006	3					
			18625726	3					
			0.6312	3					
			0.0361	3					
			0.5086	3					
			0.0639	3					
FT Diameter Field			8401178	2					
			14616766	2					
			15770883	2					
			433959	2					
			26809133	2					
			0.3911	2					
			0.0424	2					
			0.1886	2					
			0.0262	2					
At1			16010365	1					
			2613557	3					
			10057494	3					
			19958648	3					
			0.3588	3					
			0.0551	3					
			0.0457	3					
			0.0218	3					
At1 CFU2			6629169	1					
			7898750	1					
			8237125	1					
			0.3444	1					
			0.0756	1					
			0.0375	1					
			0.0194	1					
As CFU2			2275779	1					
			22984248	4					
			5814807	4					
			17180545	4					
			0.3674	4					
			0.0308	4					
			0.0063	4					
			0.0045	4					
----	------	-----	-----	-----	-----	-----			
Bs	Defense	5	1	10058335	0.3664	0.0642	0.0251	0.0102	
		3	2898611	28757586	23000304	18459798			
Bs CFU2	Defense	1	1721115	0.3688	0.0847	0.0547	0.0230		
		1	19333698	17078909	10857336				
At2	Defense	1	16776084	0.3845	0.1021	0.0613	0.0158		
		1	18397234	6262900					
At2 CFU2	Defense	1	25379336	0.2893	0.0569	0.0124	0.0059		
		1	18040347						
As2	Defense	1	1801701	0.6587	0.0513	0.1186	0.0204		
		1	14997936	20154975					
DW	Developmental	3	2968159	0.5579	0.0354	0.2079	0.0453		
		1	17801496	403634	17364116				
SiliQue 22	Developmental	1	1429372	0.4449	0.0381	0.0581	0.0039		
		1	9687902	6487689	15305943				
Germ 10	Developmental	1	1551963	0.4554	0.0778	0.1082	0.0439		
		1	10488901	10188094	9061476	17648491			
Germ 16	Developmental	1	21041405	0.5254	0.0641	0.2292	0.0627		
		1	20976454	6373912	14131512	16952385			
Width 10	Developmental	1	12615860	0.4068	0.0359	0.1812	0.0651		
		1	15719656	20882629	18262951				
Width 22	Developmental	1	21752821	0.4021	0.0610	0.0991	0.0513		
		1	24461138						
Phenotype	Stage	Time 1	Time 2	Time 3	Time 4	Time 5	Time 6		
--------------	-------------	--------	--------	--------	--------	--------	--------		
Chlorosis 16	Developmental	3	4	4					
		1			23272710	0.4038	0.0305	0.0115	0.0048
Anthocyanin 10	Developmental	1	1	2					
		1			1921764	0.4588	0.0871	0.1232	0.0755
Anthocyanin 16	Developmental	3	3	3					
		3			7931982	0.3999	0.0442	0.0407	0.0188
Anthocyanin 22	Developmental	1	2	3					
		1			16933062	0.3841	0.0630	0.1058	0.0583
Leaf serr 10	Developmental	1	1	1					
		1			2186684	0.3992	0.0317	0.1721	0.0534
Leaf roll 16	Developmental	3	3	1					
		1			1543644	0.3579	0.0836	0.1223	0.0593
Rosette Erect 22	Developmental	4	4	4					
		4			10702954	0.4682	0.0760	0.1833	0.0574
Seedling Growth	Developmental	1	1	1					
		1			1409102	0.5260	0.0797	0.0298	0.0190
Vern Growth	Developmental	1	1	3					
		1			22861979	0.6022	0.0722	0.1161	0.0399
After Vern Growth	Developmental	3	4	5					
		3			11799463	0.3852	0.0926	0.0788	0.0207
Secondary Dormancy	Developmental	1	3	3					
		1			22945590	0.6968	0.0445	0.2840	0.0689
Condition	Development	Value1	Value2	Value3	Value4				
--------------------	-------------	--------	--------	--------	--------				
Germ in dark	Development	1	10725637	0.6287	0.0516	0.1960	0.0418		
		4	7403647						
		5	10511334						
		5	22310661						
DSDS50	Development	1	1045551	0.6611	0.0555	0.2830	0.0569		
		1	11593466						
		2	10750002						
		3	21285974						
		4	14688343						
Storage 56 days	Development	1	863771	0.6353	0.0230	0.3598	0.0424		
		1	19520347						
		2	883192						
		2	5713096						
		5	15859708						
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 1 - Results of GWAS \(p \)-values and cross-validated predictive ability for SD
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 2 - Results of GWAS \(p \)-values and cross-validated predictive ability for FT10
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 3 - Results of GWAS p-values and cross-validated predictive ability for FT16
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 4 - Results of GWAS p-values and cross-validated predictive ability for FT22
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 5 - Results of GWAS p-values and cross-validated predictive ability for Emco5
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 6 - Results of GWAS p-values and cross-validated predictive ability for Emwa1
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 7 - Results of GWAS p-values and cross-validated predictive ability for Hiks1
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 8 - Results of GWAS \(p \)-values and cross-validated predictive ability for Li7
Comparison of p-values and predictive ability

![Graph showing comparison of p-values and predictive ability.](image1)

Genome-wide association mapping via Wilcoxon test

![Graph showing genome-wide association mapping.](image2)

Predictive ability assessed by cross validation

![Graph showing predictive ability assessed by cross validation.](image3)

Supplementary Figure 9 - Results of GWAS p-values and cross-validated predictive ability for S34
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 10 - Results of GWAS p-values and cross-validated predictive ability for K39
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 11 - Results of GWAS p-values and cross-validated predictive ability for Mn55
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 12 - Results of GWAS \(p \)-values and cross-validated predictive ability for Fe56
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 13 - Results of GWAS \(p \)-values and cross-validated predictive ability for Co59
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 14 - Results of GWAS p-values and cross-validated predictive ability for Zn66
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 15 - Results of GWAS p-values and cross-validated predictive ability for avrRpm1
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 16 - Results of GWAS p-values and cross-validated predictive ability for FLC
Comparison of p-values and predictive ability

![Comparison of p-values and predictive ability](image1)

Genome-wide association mapping via Wilcoxon test

![Genome-wide association mapping via Wilcoxon test](image2)

Predictive ability assessed by cross validation

![Predictive ability assessed by cross validation](image3)

Supplementary Figure 17 - Results of GWAS p-values and cross-validated predictive ability for FRI
Comparison of p-values and predictive ability

Supplementary Figure 18 - Results of GWAS p-values and cross-validated predictive ability for 8W GH LN
Comparison of p-values and predictive ability

![Comparison of p-values and predictive ability](image1)

Genome-wide association mapping via Wilcoxon test

![Genome-wide association mapping via Wilcoxon test](image2)

Predictive ability assessed by cross validation

![Predictive ability assessed by cross validation](image3)

Supplementary Figure 19 - Results of GWAS p-values and cross-validated predictive ability for 0W GH LN
Comparison of p-values and predictive ability

Supplementary Figure 20 - Results of GWAS p-values and cross-validated predictive ability for FT Diameter Field
Comparison of p-values and predictive ability

Supplementary Figure 21 - Results of GWAS p-values and cross-validated predictive ability for At1
Comparison of \(p \)-values and predictive ability

Supplementary Figure 22 - Results of GWAS \(p \)-values and cross-validated predictive ability for At1 CFU2
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 23 - Results of GWAS p-values and cross-validated predictive ability for As CFU2
Comparison of p-values and predictive ability

Supplementary Figure 24 - Results of GWAS p-values and cross-validated predictive ability for Bs
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 25 - Results of GWAS p-values and cross-validated predictive ability for Bs CFU2
Comparison of \(p \)-values and predictive ability

![Comparison of \(p \)-values and predictive ability](image1)

Supplementary Figure 26 - Results of GWAS \(p \)-values and cross-validated predictive ability for At2
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 27 - Results of GWAS p-values and cross-validated predictive ability for At2 CFU2
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 28 - Results of GWAS p-values and cross-validated predictive ability for As2
Comparison of p-values and predictive ability

Supplementary Figure 29 - Results of GWAS p-values and cross-validated predictive ability for DW
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 30 - Results of GWAS \(p \)-values and cross-validated predictive ability for Silique 22
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 31 - Results of GWAS p-values and cross-validated predictive ability for Germ 10
Comparison of p-values and predictive ability

Supplementary Figure 32 - Results of GWAS p-values and cross-validated predictive ability for Germ 16
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 33 - Results of GWAS p-values and cross-validated predictive ability for Width 10
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 34 - Results of GWAS p-values and cross-validated predictive ability for Width 16
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 35 - Results of GWAS p-values and cross-validated predictive ability for Width 22
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 36 - Results of GWAS p-values and cross-validated predictive ability for Chlorosis 16
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 37 - Results of GWAS \(p \)-values and cross-validated predictive ability for Anthocyanin 10
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 38 - Results of GWAS p-values and cross-validated predictive ability for Anthocyanin 16
Comparison of p-values and predictive ability

Supplementary Figure 39 - Results of GWAS p-values and cross-validated predictive ability for Anthocyanin 22
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 40 - Results of GWAS p-values and cross-validated predictive ability for Leaf serr 10
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 41 - Results of GWAS p-values and cross-validated predictive ability for Leaf roll 16
Comparison of p-values and predictive ability

Supplementary Figure 42 - Results of GWAS p-values and cross-validated predictive ability for Rosette Erect 22
Comparison of p-values and predictive ability

Supplementary Figure 43 - Results of GWAS p-values and cross-validated predictive ability for Seedling Growth
Comparison of p-values and predictive ability

Supplementary Figure 44 - Results of GWAS p-values and cross-validated predictive ability for Vern Growth
Comparison of p-values and predictive ability

Supplementary Figure 45 - Results of GWAS p-values and cross-validated predictive ability for After Vern Growth
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 46 - Results of GWAS p-values and cross-validated predictive ability for Secondary Dormancy
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 47 - Results of GWAS p-values and cross-validated predictive ability for Germ in dark
Comparison of p-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 48 - Results of GWAS p-values and cross-validated predictive ability for DSDS50
Comparison of \(p \)-values and predictive ability

Genome-wide association mapping via Wilcoxon test

Predictive ability assessed by cross validation

Supplementary Figure 49 - Results of GWAS \(p \)-values and cross-validated predictive ability for Storage 56 days