INTRODUCTION

Antigonon leptopus Hook. and Arn. is a woody, perennial member of the buckwheat (Polygonaceae) family commonly found in tropical Asia, Africa, the Caribbean and the Americas. Its common names include cadena de amor, flores kadena, bride’s tears, chain-of-love and confederate vine. It is propagated by seeds or cuttings and is mostly used as an ornament. The bark, fruit, leaves, and seeds of this plant also have widespread applications in folkloric medicine. In the Philippines, the aerial parts of the plant are used as an anti-inflammatory agent and for wound healing.[1,2] In Trinidad and Tobago, the leaves are used for diabetes, urinary problems and low blood pressure.[3] Preliminary studies on the activity of crude extracts of A. leptopus in inhibiting the action of xanthine oxidase (XO) had been done. Results of phytochemical profiling included cardiac glycosides, steroids, tanins and terpenoids among possible types of compound responsible for this bioactivity.[4] Being a traditional medication used for inflammation and pain, these compounds may potentially find application as new XO inhibitors.

The only commercially available XO inhibitor to date is allopurinol (1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one), a purine analog in clinical use for >30 years.[5] Despite generally acceptable efficacy and safety profiles, very rare but serious adverse reactions of allopurinol administration occur including interstitial nephritis, renal failure, hepatotoxicity, vasculitis, and an array of skin rashes varying from mild to very severe and life-threatening allopurinol hypersensitivity syndrome.[6,7] The recurrence and severity of gout has been reportedly increasing over the last decades and it continues to be a major health problem due to shifts in diets and lifestyles.[8]

As part of our effort to search for new biologically active compounds from local herbal remedies, a new saponin, with a steroidal backbone was isolated from A. leptopus. In this paper, we present the result of the isolation, structure elucidation and XO inhibitory activity of this new compound.

MATERIALS AND METHODS

Materials and instruments

Absorbance measurements were done using Thermo Scientific Multiskan Go®. Shimadzu LC-10 high performance liquid chromatography (HPLC) system with ultraviolet (UV)-visible detector and Phenomenex semi-prep reverse phase column (00G-4461-E0) were used in HPLC analyses. Infrared spectra were obtained using a Shimadzu Fourier transform infrared (FTIR)
A total of 50 g of Sephadex LH-20 was swelled in analytical grade MeOH for 24 h prior to loading (2 g). A glass column with diameter of 3 cm was packed up to a height of 60 cm. Isocratic elution with MeOH was performed. Eluates were collected per 5 mL volume in 20 mL scintillation vials. Column was regenerated by thoroughly washing with MeOH after elution of each batch of extracts. Eluates were dried in vacuo using a Senti-Vac™ system. UV-visible profiles of all eluates were determined from 200 to 700 nm using MeOH as solvent. Fractions with similar profiles and maximum absorption were pooled.

Isolates were further purified using reversed phase HPLC (RP-HPLC), gradient elution with H₂O and ACN. Fractions with the same retention times were collected. Peaks at 5, 20, 34 and 43 min were collected and pooled. Optimized parameters are as follows: λ_{max} = 254 nm; total flow rate: 2 mL/min; gradient: 0.01 min = 5% ACN, 5.01 min = 5% ACN, 11.01 min = 11% ACN, 60.01 min = 50% ACN, 75.01 min = 100% ACN, 80.01 min = 5% ACN, 85.01 min = 5% can.

Characterization
Uncorrected melting point was determined. For FTIR analyses, samples were prepared by spread-plate technique using KBr plates. UV-visible spectra and maximum absorption of all fractions were obtained by dissolving in MeOH and recording absorbance from 200 to 700 nm. Mass spectra were obtained using a MALDI-CID-TOF/TOF machine operated with laser intensity set at 4100-4300, using 2,5-dihydroxybenzoic acid as matrix.

¹H and ¹³C-NMR, distortion less enhancement by polarization transfer (DEPT), hetero nuclear multiple quantum correlation (HMQC), heteronuclear multiple-bond correlation spectroscopy (HMBC), double quantum filtered-correlated spectroscopy (DFQ-COSY), total correlation spectroscopy (TOCSY), and nuclear over hauser effect spectroscopy (NOESY) were all obtained using a 600 MHz NMR with D₂O as solvent. NMR spectra were analyzed using MestReNova 7 by Mestrelab Research.

Compound AF0501, C₂₆H₃₄O₁₄ White amorphous powder, soluble in water. RP-HPLC retention time: 43.1 min MP: 168°C. IR: ~3600-3000/cm (broad strong), 2900-2800/cm, 1300.00/cm, 1700 (strong)/cm. MALDI-CID-TOF/TOF: m/z 743.6430. ¹H NMR (600 MHz, D₂O): δ 4.14 (dd, J = 7.7, 6.3 Hz, 1H), 4.07 (dt, J = 4.9, 2.6 Hz, 1H), 4.00 (m, 1H), 3.99 (m, 1H), 3.91 (m, 1H), 3.85 (bd, 1H), 3.76 (dt, J = 4.7, 2.7 Hz, 1H), 3.68 (dd, J = 12.86, 3.23 Hz, 1H), 3.66 (dd, J = 9.8, 4 Hz, 1H), 3.60 (dd, J = 7.3, 3.2 Hz, 1H), 3.53 (dd, J = 4.5, 2.3 Hz, 3H), 3.29 (s, 1H), 3.27 (d, J = 3.2 Hz overlap, 1H), 3.06 (td, J = 13.51, 13.43, 3.20 Hz, 1H), 2.52 (dd, J = 13.31, 3.2 Hz, 2H), 2.35 (m, 1H), 2.26 (dd, J = 13.5, 2.3 Hz, 1H), 2.24 (d, J = 7.5 Hz, 1H), 2.17 (dd,
Apaya and Chichioco-Hernandez: New steroidal saponin from A. leptopus

The pure compound was obtained as white amorphous powder with \(\lambda_{\text{max}} \) at 220 nm, characteristic of an isolated C = C bond. Uncorrected melting point was determined to be 168°C. The infrared spectrum was obtained and observed peaks were assigned to corresponding functional groups. Molecular formula was determined to be \(C_{38}H_{62}O_{14} \) m/z 743.6430, [M + H]+ by positive ion MALDI-CID-TOF/TOF. Fragmentation pattern showed major peaks at 663.6703, 602.3524, 522.3897, 442.4178 (base peak), 303.1420 and 221.1722.

Direct correlations \((J) \) were established using HMQC. Related spin systems and long range homonuclear bond correlations were established using data extracted from DFQ-COSY \((|J|) \) and TOCSY \((|J|) \) spectra. Heteronuclear (C-H) correlations, from \(J \) to \(J \), were verified using HMBC. Spatial correlations were established using data from the NOESY spectrum.

The \(^{13} \text{C}-\text{NMR} \) spectrum gave 37 carbon signals and analysis of the DEPT spectra (DEPT 90 and DEPT 135) showed three quaternary carbons, twenty-two methines, four methyl and eight methylene carbons. Signal at \(C_{173.37} \) indicates an acyl carbon with olefinic carbons at \(C_{136.73} \) and \(C_{124.09} \). Several carbon atoms connected to oxygen(s) were observed with chemical shifts ranging between 60 ppm and 100 ppm. The presence of the two methyl groups at \(C_{17.9} \) and six hydrogens at around 1.05-1.00 ppm, supported by the two-dimensional-NMR correlations, suggested that the isolated compound indeed has 38 carbons.

The \(^1 \text{H} \) NMR displayed two anomic signals at \(H_{4.14} \) and \(H_{4.0} \), with corresponding carbons at \(C_{100.01} \) and \(C_{98.67} \) respectively. These, together with the \(^1 \)H shifts connected to carbons between 60 and 100 ppm suggests that the compound has two sugar moieties. The monosaccharide units were identified as rhamnopyranose by correlations derived from TOCSY to COSY correlations and was further supported by the presence of the methyl groups as doublets at \(C_{17.9} \) and \(C_{10.05} \) \((J = 6.99 \text{ Hz}) \). Comparison with reported literature values\(^{9-14}\) and the data obtained from the \(^1 \)H NMR coupling constant for the anomic proton between 4 and 8 Hz are consistent with the \(\beta \)-configuration for L-rhamnose.\(^{9-13}\) In contrast, the coupling constants for the \(\alpha \)-configuration of L-rhamnose is <3.0 Hz.\(^{15-18}\) Hence, the rhamnopyranoside units of the isolated compound were determined to be in \(\beta \)-configuration.

Glycosidic linkage to the corresponding two rhamnopyranosyl moieties was established at \(C_{95.59} \), and is esterified at \(C_{173.37} \). For the first spin system, HMBC correlations observed between \(C_{173.37} \) and \(H_{100.01} \) \((J) \) and \(H_{98.67} \) \((J) \) confirming the connectivities. For the aglycone backbone, extensive, and long range H-H correlations were identified based from TOCSY and the key HMBC correlations are as follows: \(H_{1.0} - C_{34.67} \) \((J) \), \(H_{1.0} - C_{99.41} \) \((J) \), \(H_{1.34} - C_{34.67} \) \((J) \), \(H_{1.29} - C_{38.71} \) \((J) \), \(H_{1.62} - C_{62.37} \) \((J) \) and \(H_{1.18} - C_{57.84} \) \((J) \). Figure 2 summarizes the key correlations. It was identified to be steroidal in nature as established by the core seventeen carbon-unit backbone (cyclopentanoperhydrophenanthrene). The \(\beta \)-configuration of the rhamnoid moiety were verified based from absence of NOESY correlation between \(H_{3.53} \) and neighboring H’s at 3.99 and 3.66 ppm for rhamnopyranose connected at \(C_{55.57} \) and \(H_{4.6} \) and H’s at 3.66 and 3.76 ppm for rhamnopyranose connected at \(C_{173.37} \). For the aglycone, NOESY correlations between \(H_{1.0} - H_{1.29} \), \(H_{1.62} - H_{2.24} \) and \(H_{3.25} - H_{1.64} \) verify the structure. Furthermore, fragments corresponding to the monoisotopic peaks derived from mass spectral data support the fragmentation of this structure. The base peak, m/z 442.4178, corresponds to the monoisotopic peak of the aglycone. The structure of the steroidal saponin is shown in Figure 1.

Saponins and related triterpenoids and steroids had been the focus of recent studies due to their potential efficacies. They had been widely used in many countries as traditional medicine. The most popular class of these compounds is the ginsenosides mainly found in Panax ginseng. Used in traditional Asian medicine, many studies had focused on the isolation,
structure elucidation and bioactivity of ginsenosides. Most notably studied are the activities of ginsenosides as antioxidants and as sources of anti-cancer compounds.\[19\]

The inhibitory activities of the crude MeOH, EtOAc, hexane and aqueous extracts of A. leptopus were determined. It has been reported previously that extracts having $>50\%$ enzyme inhibition at $50\ \mu \text{g/mL}$ warranted further investigation.\[20\] Of the four, the aqueous extract inhibited XO at this level as demonstrated by a percent inhibition of 52.19% at $33.3\ \mu \text{g/mL}$. A significant loss of inhibitory activity was observed after solvent partitioning of the methanolic extract with EtOAc and Hex with percent inhibitions at 21.86% and 22.41%, respectively at $33.3\ \mu \text{g/mL}$. Inhibitory activities of fractions further purified by column chromatography using Sephadex LH-20 were determined. Results show that the activity of the pure compound is 77.45% at the same concentration with IC$_{50}$ at $1.79\ \mu \text{g/mL}$. For comparison purposes, the IC$_{50}$ value of allopurinol under the same experimental conditions was $1.00\ \mu \text{g/mL}$.

The calculated experimental K_i is $2.53 \pm 0.001\ \mu \text{M}$. The values of V_{max}, on the other hand, decrease with increasing concentration of AF0501. Experimental values are indicative of a noncompetitive type of inhibition. The experimental K_i value for the pure compound is comparable to those obtained by other authors who performed similar experiments on possible noncompetitive inhibitors of xanthine oxidase.\[21\] This value is lower than the previously studied noncompetitive XO inhibitors, 2-alpha-bromo-benzimidazole ($K_i = 46\ \mu \text{M}$) and 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purinethiol (APT) at $5.78\ \mu \text{M}$ and $6.61\ \mu \text{M}$, respectively.\[21\] Since K_i is indicative of affinity of the inhibitor to the enzyme, a lower K_i value potentially means that AF0501 may inhibit XO more effectively. Furthermore, since the IC$_{50}$ of AF0501 is comparable to that of allopurinol, the isolated compound may represent a new class of XO inhibitors.

ACKNOWLEDGMENTS

We are grateful to the Department of Science and Technology-National Research Council of the Philippines for funding this work, Dr. Andrea Jocsing, Dr. Rofe Obena and Dr. Medel Zulueta for the NMR and MS spectra.

REFERENCES

1. Quisumbing E. Medicinal Plants of the Philippines. Quezon City, Philippines: Katha Publishing Incorporated; 1978. p. 90.
2. Wester J. The use of medicinal plants by Ifugao-migrants in the foothills of the Sierra Madre mountain range. van der Ploeg J, Persoon GA, Masipiqueña MD, editors. Ifugao Migrants in and Around the Northern Sierra Madre Natural Park. CML Student Report No. 225. Leiden; 2007. Available from: http://www.pine-and-sea.com/pine_articles/20081015213725The_use_of_medical_plants.pdf [Last accessed on 2013 Sep 25].
3. Lans CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006;2:45.
4. Chichioco-Hernandez C, Apaya K. Xanthine oxidase inhibition of selected Philippine medicinal plants. J Med Plants Res 2011;5:289-92.
5. Rundles RW, Wyngaarden JB, Hitchings GH, Elion GB, Silberman HR. Effects of a xanthine oxidase inhibitor on thiopurine metabolism, hyperuricemia and gout. Trans Assoc Am Physicians 1963;76:126-40.
6. Arellano F, Sacristán JA. Allopurinol hypersensitivity syndrome: A review. Ann Pharmacother 1993;27:337-43.
7. Sauve C, Pinquier JL, Boissonnad A, Sicard D, Christoforov B. Systemic allopurinol toxicity. Eur J Intern Med 1992;3:78-81.
8. Havlik J, Gonzalez de la Huebra R, Heltmanková K, Fernandez J, Simonova J, Melich M, et al. Xanthine oxidase inhibitory properties of Czech medicinal plants. J Ethnopharmacol 2010;132:461-5.
9. Deng J, Liao Z, Chen D. Marsdenosides A-H, polyoxygenylated glycosides from Marsdenia tenacissima. Phytochemistry 2005;66:1040-51.
10. Escobedo-Martínez C, Cruz-Morales S, Fragoso-Serrano M, Rahman MM, Gibbons S, Pereda-Miranda R. Characterization of a xylose containing oligosaccharide, an inhibitor of multidrug resistance in Staphylococcus aureus, from Ipomoea pes-caprae. Phytochemistry 2010;71:1796-801.
11. Eskander J, Lavaud C, Harakat D. Steroidal saponins from the leaves of Agave macroacantha. Fitoterapia 2010;81:371-4.

12. Horo I, Bedir E, Perrone A, Ozgökçe F, Piacente S, Alankuş-Calışkan O. Triterpene glycosides from Astragalus icmadophilus. Phytochemistry 2010;71:956-63.

13. Phan MG, Truong TT, Phan TS, Matsunami K, Otsuka H. Three new dammarane glycosides from Betula alnoides. Phytochem Lett 2011;4:179-82.

14. Pretsch E, Bühlmann P, Badertscher M. Structure Determination of Organic Compounds-Table of Spectra. New York: Springer, 2009.

15. Chaturvedula VS, Upreti M, Prakash I. Structures of the novel α-glucosyl linked diterpene glycosides from Stevia rebaudiana. Carbohydr Res 2011;346:2034-8.

16. Kamel MS, Assaf MH, Hasanean HA, Ohtani K, Kasai R, Yamasaki K. Monoterpene glucosides from Origanum syriacum. Phytochemistry 2001;58:1149-52.

17. Park EJ, Kong Y, Lee JS, Lee SH, Lee J. Exploration of SAR regarding glucose moiety in novel C-aryl glucoside inhibitors of SGLT2. Bioorg Med Chem Lett 2011;21:742-6.

18. Wang H, Nair MG, Strasburg GM, Booren AM, Gray JL. Antioxidant polyphenols from tart cherries (Prunus cerasus). J Agric Food Chem 1999;47:840-4.

19. Leung KW, Wong AS. Pharmacology of ginsenosides: A literature review. Chin Med 2010;5:20.

20. Sweeney AP, Wylie SG, Shalliker RA, Markham JL. Xanthine oxidase inhibitory activity of selected Australian native plants. J Ethnopharmacol 2001;75:273-7.

21. Kalra S, Jena G, Tikoo K, Mukhopadhyay AK. Preferential inhibition of xanthine oxidase by 2-amino-6-hydroxy-8-mercaptopurine and 2-amino-6-purine thiol. BMC Biochem 2007;8:8.

Cite this article as: Apaya ML, Chichioco-Hernandez CL. New steroidal saponin from Antigonon leptopus Hook. and Arn. Phcog Mag 2014;10:501-5.

Source of Support: We are grateful to the Department of Science and Technology - National Research Council of the Philippines for funding this work. Conflict of Interest: None declared.