Non-trivial Supersymmetry Correlations between ATLAS and CMS Observations

Tianjun Li,1,2 James A. Maxin,2 Dimitri V. Nanopoulos,2,3,4 and Joel W. Walker5
1State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
3Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA
4Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece
5Department of Physics, Sam Houston State University, Huntsville, TX 77341, USA

We present definite correlations between the CMS 5 fb⁻¹ all-hadronic search employing the transverse mass variable M_{T2} and the ATLAS 5 fb⁻¹ all-hadronic and multijet supersymmetry (SUSY) searches, suggesting the possibility that both the ATLAS and CMS experiments are already registering a faint but legitimate SUSY signal at the LHC. We isolate this prospective mutual productivity beyond the Standard Model in the framework of the supersymmetric No-Scale Flipped SU(5) grand unified theory, supplemented with extra vector-like matter (flippons). Evident overproduction is observed in three CMS M_{T2} and four ATLAS hadronic and multijet signal regions, where a χ^2 fitting procedure of the CMS 5 fb⁻¹ M_{T2} search establishes a best fit SUSY mass in sharp agreement with corresponding ATLAS searches of equivalently heightened signal significance. We believe this correlated behavior across two distinct experiments at precisely the same SUSY mass scale to be highly non-trivial, and potentially indicative of an existing 5 fb⁻¹ LHC reach into a pervasive physical supersymmetry framework.

PACS numbers: 11.10.Kk, 11.25.Mj, 11.25.-w, 12.60.Jv

The conclusion of the 2011 $\sqrt{s} = 7$ TeV run at the LHC has yielded several recent analyses by the ATLAS and CMS Collaborations of the nominal 5 fb⁻¹ data harvest. A rigorous cross-examination of these studies within the high-energy framework of a model known as F-$SU(5)$ (See Refs. [1, 2] and all references therein), which combines the No-Scale Flipped SU(5) grand unified theory (GUT) with extra vector-like particles (flippons), prompted our ensuing suggestion [8] that early indications of supersymmetry (SUSY) production may have already been accumulated at the LHC, and isolated, in particular, by ATLAS. The centrally intriguing aspects of the Ref. [8] analysis are the demonstration of distinct correlations in i) the SUSY scale favored by those search techniques displaying noticeable production beyond the data-driven Standard Model (SM) backgrounds, and ii) a precise upscaling from the event excesses realized within the historical 1 fb⁻¹ data sets in the transition to the much larger 4.7 fb⁻¹ data compilations. One vital ingredient absent from this analysis was any dynamic contribution by published CMS 5 fb⁻¹ studies to the subset of overproductive searches. The task of the present effort is to supplement the previously analyzed ATLAS searches exhibiting positive signal excesses with results from an intervening study released by CMS that shows similar excess event activity beyond the SM expectations.

The recent completion of a new 5 fb⁻¹ analysis by CMS [9] searching for SUSY in hadronic final states using the transverse mass variable M_{T2} triggered a detailed inspection by our group to discern whether any of these new individual searches demonstrate interesting event overproduction, and whether any such excesses could be explained within the No-Scale F-$SU(5)$ model in a manner consistent with our existing best fit against the ATLAS data [6]. This CMS search tactic segregates the results into two categories, one referred to as $M_{T2}(\geq 3j)$, and another dubbed $M_{T2}b (\geq 4j)$ and ≥ 1 b-jet), with two signal regions comprised of low $H_T (750 \leq H_T \leq 950$ GeV) and high $H_T (H_T > 950$ GeV) statistics, providing four discrete signal regions. Findings reveal that indeed three of the four search regions do show signs of excessive activity, in both the M_{T2} and $M_{T2}b$ low H_T signal regions with a cut on the variable M_{T2} implemented at 200 GeV, and also in the M_{T2} high H_T signal region with a cut on the variable M_{T2} of 150 GeV. An application of the cut at 200 GeV on the variable M_{T2} in the low H_T signal region may be motivated to ensure suppression of all QCD background. As a quantitative measure of comparison of diverse LHC search methodologies, we utilize the signal significance metric $S/\sqrt{B+1}$ to assess the strength of the event production exceeding the data-driven background estimates. For the CMS M_{T2} and $M_{T2}b$ searches noted above, we find $S/\sqrt{B+1} = 2.22$ for the M_{T2} low H_T, $S/\sqrt{B+1} = 2.06$ for the $M_{T2}b$ low H_T, and $S/\sqrt{B+1} = 1.36$ for the M_{T2} high H_T.

In order to broaden the spectrum of overproductive 5 fb⁻¹ searches at the LHC which we include in our analysis, we opt here for a softer lower boundary on signal significance of $S/\sqrt{B+1} = 1.0$, such that a more evenly distributed number of admissible active searches from both ATLAS and CMS can be evaluated and potentially linked. As a consequence, in addition to the three CMS M_{T2} and $M_{T2}b$ searches noted above, we further find four ATLAS searches that surpass our mini-
num threshold for signal significance: the 7-jet pT > 80 GeV (7[80]) \(S/\sqrt{B + 1} = 2.07\) and 8-jet pT > 55 GeV \((8[55]) \(S/\sqrt{B + 1} = 1.18\) cases of the ATLAS multijets \([10]\), and the SRC Tight \(S/\sqrt{B + 1} = 3.22\) and SRE Loose \(S/\sqrt{B + 1} = 2.65\) cases of the ATLAS hadronic 0-lepton search \([11]\). We believe that the resulting four 5 fb\(^{-1}\) ATLAS and three 5 fb\(^{-1}\) CMS search strategies represent a reasonable comparative test bed from which to probe whether notable correlations are emerging between the distinct LHC experiments.

Our curiosity is piqued at the outset to note a correlation between the types of ATLAS and CMS searches that demonstrate event overproduction in the first place. In particular, we are interested in comparing the ATLAS hadronic observed statistics and signal significances of Refs. \([6,8]\) upon all the CMS 5 fb\(^{-1}\) searches which we must observe if the LHC is in fact producing the LHC hadronic observed statistics and signal significances of Ref. \([11]\) and the CMS SUSY searches \([12]\). Considering that both ATLAS and CMS all-hadronic searches are targeting those multijet regimes where the \(\mathcal{F}-\mathcal{S}/\mathcal{U}(5)\) model space is dominated by, the observed tracking in signal strength is in keeping with what we must observe if the LHC is in fact producing the \(\mathcal{F}-\mathcal{S}/\mathcal{U}(5)\) supersymmetric events. Both the ATLAS hadronic search of Ref. \([11]\) and the CMS \(M_{T2}\) hadronic search of Ref. \([8]\) are targeting squark and gluino pair-production through \(\tilde{q} \rightarrow q\tilde{g}\) and \(\tilde{q} \rightarrow q\tilde{g}_1\), albeit via independent discriminators, with ATLAS isolating the effective mass \(M_{eff}\), while CMS employs the transverse mass \(M_{T2}\). This compelling surface order continuity in the signal strength across these parallel all-hadronic studies has proved to be a precursor of the excellent agreement observed in the deeper analysis, to which we next turn attention, of a comparative best fitting of the respectably favored SUSY particle mass scale.

We implement the multi-axis \(\chi^2\) fitting procedure of Refs. \([6,8]\) upon all the CMS 5 fb\(^{-1}\) analyses to date \([6,12,13]\). For our 5 fb\(^{-1}\) \(\chi^2\) fit, we partition all the CMS searches into two groups, one including only those 5 fb\(^{-1}\) searches that generate a minimum signal significance of \(S/\sqrt{B + 1} > 1\), and all the remaining CMS cases that cannot achieve this minimum threshold into a separate group. Likewise, we split all the ATLAS 5 fb\(^{-1}\) analyses completed thus far \([10,11,14]\) into one set with \(S/\sqrt{B + 1} > 1\), with the residual cases into a separate distinct set. We quadratically merge a statistical factor of \(\sqrt{S + B + T}\) with the quoted collaboration estimates on the background uncertainty to account for Poisson fluctuations in the net experimental observation. Searches demonstrating an anomalous under-production with respect to the data-driven background observations are zeroed out to allow the full error width for post-SM physics. All 5 fb\(^{-1}\) ATLAS and CMS SUSY searches are then evaluated against the entire \(\mathcal{F}-\mathcal{S}/\mathcal{U}(5)\) model space presently consistent with all the latest experimental constraints, particularly the requirement of a 124-126 GeV Higgs boson mass, but excluding the ATLAS and CMS SUSY constraints that are the target of this analysis. The narrow strip of otherwise viable model parameterizations ranging from \(400 \leq M_{1/2} \leq 900\) GeV is generously sampled at 22 representative benchmark combinations of \(M_{1/2}, M_\nu, m_\chi\) and \(\tan \beta\).

We execute on each of the 22 benchmark samples an in-depth Monte Carlo collider-detector simulation of all 2-body SUSY processes based on the \textit{MadGraph} \([15,16]\) program suite, including the \textit{MadEvent} \([17]\), \textit{PYTHIA} \([18]\) and \textit{PGS4} \([19]\) chain. The SUSY particle masses are calculated with \textit{MicrOMEGAs} \([2.1,20]\), applying a proprietary modification of the \textit{SuSpect} \([2.34,21]\) codebase to run the flippon-enhanced RGEs. We implement a modified version of the default ATLAS and CMS detector specification cards provided with \textit{PGS4} that calls a newly available anti-kt jet clustering algorithm, indicating an angular scale parameter of \(\Delta R = 0.4\) and \(\Delta R = 0.5\), respectively. The resultant event files are filtered according to a precise replication of the selection cuts specified by the Collaborations, employing a script \textit{CutLHCO} \([2.0]\) of our own design \([22]\). Lastly, the sampled event counts are utilized to extrapolate a continuous functional dependence on the gaugino mass \(M_{1/2}\) that is suitable for the generation of a \(\chi^2\) fitting of the \(\mathcal{F}-\mathcal{S}/\mathcal{U}(5)\) event production against the experimental data.

For the realization of \(b\)-tagging efficiencies in \textit{PGS4}, we maintain the default usage of fifth order polynomial fits, though revising the numerical coefficients of the “Loose” \(b\)-tagging function as follows: \(b(pT) = 0.0883 + 0.0197 \times pT - 2.4872 \times 10^{-4} \times pT^2 + 1.47212 \times 10^{-6} \times pT^3 - 1.64848 \times 10^{-9} \times pT^4 + 4.14957 \times 10^{-12} \times pT^5\) and \(b(\eta) = 1.00885 - 0.04975 \times \eta + 0.0693 \times \eta^2 - 0.03611 \times \eta^3 - 0.02222 \times \eta^4 + 0.00798 \times \eta^5\). The default “Loose” \(b\)-tagging functions in \textit{PGS4} have accordingly been shifted to the “Tight” \(b\)-tagging role. As a result, these new \(b\)-tagging functions process a “Loose” \(b\)-tag of about 60% and a “Tight” \(b\)-tag of about 45%. The “Tight” \(b\)-tag is applied to the replication of the CMS analysis of Ref. \([8]\), while the “Loose” \(b\)-tag is applied to the duplication of the CMS analysis of Ref. \([12]\).

In Ref. \([8]\), we engaged in a consistent cross-calibration of our Monte-Carlo quantitative procedure with that of the ATLAS Collaboration through normalization of a common mSUGRA benchmark. However, we remark that ATLAS and CMS exercise different schemes for derivation of the mSUGRA SUSY benchmark cross-section and related uncertainties. This is observed in practice in our Monte-Carlo results via no systematic suppression of event counts for CMS benchmark data, though in contrast a small systematic suppression is seen in our Monte-Carlo quantitative procedure with that of the CMS analysis of Ref. \([12]\).
FIG. 1: We depict the χ^2 analysis of the ATLAS 4.7 fb$^{-1}$ 7j80, 8j55, SRC Tight, and SRE Loose Multijet search strategies from Refs. [10, 11] in the upper pane, and the CMS 4.73 fb$^{-1}$ M_{T2} low H_T, M_{T2b} low H_T, and M_{T2} high H_T of Ref. [9] in the lower pane. The thin dotted blue lines correspond to the individual χ^2 curves for each event selection, which are summed into the thick green cumulative multi-axis χ^2 curves. These searches are selected for the exhibition of a signal significance $S/\sqrt{B + 1}$ greater than 1 for the 5 fb$^{-1}$ class studies. A direct visual inspection of the correspondence of the signal strength and the fluctuation of the χ^2 minimum with increased luminosity is thus facilitated. Remarkably, we observe extreme stability in the favored mass scale between the two independent LHC experiments. Such correlations across diverse experiments continue to indicate the presence of a non-random structure. It remains highly improbable that the source of the SUSY mass correlation is arbitrary fluctuations of the data-driven background simultaneously inflicting the same point in the targeted SUSY spectrum.
FIG. 2: We depict a χ^2 analysis of the 5 fb$^{-1}$ class ATLAS (upper pane) and CMS (lower pane) studies from Refs. [9–14] that exhibit a signal significance $S/\sqrt{B + 1}$ less than 1. The thin dotted blue lines represent composite unit-strength χ^2 curves for each of the individual selections contained within the three search strategies analyzed for each collaboration, which are summed into the thick green cumulative multi-axis χ^2 curve. The intention of this study is the establishment of a lower bound on the \mathcal{F}-SU(5) SUSY mass scale. At 2σ (95% confidence), it appears that we may exclude gaugino masses $M_{1/2}$ below 608 GeV. This is comfortably consistent with the best fit for $M_{1/2}$ that is established by a parallel χ^2 analysis of those searches exhibiting post-SM physics at a signal significance greater than 1, as depicted in Figure 1.
relative correlation between the ATLAS and CMS SUSY search strategies with visible event excesses. We note that this strategy represents a mild deviation from the ATLAS normalization factor estimate adopted in Ref. [8], which we maintain to be an accurate reflection of the ATLAS normalization factor adopted in Ref. [8], all registering a signal significance $S/\sqrt{B+1} < 1$. In Figure 1, we adopt a single-sided cumulative distribution function, and are interested in the values of $M_{1/2}$ at the median, $+1\sigma$ and $+2\sigma$ intersections of the χ^2 statistic. Anticipating strong interdependence amongst parallel event selections within a single SUSY search strategy, we condense each family of selections under investigation into a single unit-strength composite degree of freedom. Evident in Figure 1 is that we may exclude values of $M_{1/2} \leq 614$ GeV for ATLAS and $M_{1/2} < 608$ GeV for CMS at 2σ (95% confidence) level. The 1σ and median intersections with the χ^2 curve for ATLAS occur at 653 and 671 GeV, respectively, and at 644 and 661 GeV for CMS. These ranges offer a very suitable overlap with the intersection boundaries of the median fit for the χ^2 wells of Figure 1, which occur at 603 and 769 GeV for ATLAS, and at 560 and 754 GeV for CMS.

The patent correlations introduced here amid both ATLAS and CMS experiments set up the possibility of a compelling confirmation in 2012 when the \sqrt{s} = 8 TeV collision data begins arriving. With an expected yield of 15 fb$^{-1}$ in 2012 at this increased beam energy, the question of SUSY production or random background fluctuation will surely be resoundingly answered. With signal significances of the ATLAS and CMS searches explored in this work foreseen to approach and surpass the gold standard of $S/\sqrt{B+1} > 5$ in 2012, if in fact we inhabit a No-Scale F-$SU(5)$ universe, there will be little doubt as to the fate of the alluring scent of a signal that is already effusing from the first year of LHC collider operation data.

Conclusions In the time since proton-proton collisions initially began at the LHC in 2010, the mantra from the ATLAS and CMS experiments has been that there remains no evidence for supersymmetry. With early elevated expectations for a rapid and decisive discovery dashed, the demeanor of SUSY enthusiasts has become ensnared of late in a downward spiral tracking the lack of proof for SUSY at the LHC. This may be about to change.

We presented persuasive signs that confirmation of SUSY may in fact be just around the proverbial corner, thanks to an increased beam energy of 8 TeV. The obstruction all along may not have been an absence of SUSY in nature, but the exclusion of the naturally ubiquitous framework for our Universe from the experimental surveys of the supersymmetric landscape. Once the parallel hadronic searches of ATLAS and CMS are imbedded within a No-Scale F-$SU(5)$ structure, the SUSY mass spectrum and beautiful correlations across the LHC experiments appear to come to life.
Supplementing our previous work on ATLAS all-hadronic and multijet SUSY searches with newly available statistics from CMS also employing all-hadronic cuts in conjunction with the transverse mass variable M_T, we uncovered through a fresh χ^2 fitting procedure that corresponding 5 fb$^{-1}$ ATLAS and CMS searches are registering excess events that indeed do correlate to both experiments in the range of $M_{1/2} = 610 - 655$ GeV. This SUSY mass scale further precisely matches our prior combined ATLAS and CMS best fit SUSY mass of $M_{1/2} = 610$ GeV. The congruence of these findings across both LHC experiments renders as increasingly improbable an attribution of the observed excesses to coincidental random fluctuations of the data-driven background at the same SUSY mass scale.

We and many within the SUSY exploration community fervently await the next tranche of 8 TeV LHC collision data, presumed to be a minimum of an additional 5 fb$^{-1}$, and possibly more. If the early distant warning reverberating from the non-trivial correlations presented here is any indication, this next synthesis of ATLAS and CMS observations could resonate even louder.

Acknowledgments

This research was supported in part by the DOE grant DE-FG03-95-ER-40917 (TL and DVN), by the Natural Science Foundation of China under grant numbers 10821504, 11075194, and 11135003 (TL), by the Mitchell-Heep Chair in High Energy Physics (JAM), and by the Sam Houston State University 2011 Enhancement Research Grant program (JWW). We also thank Sam Houston State University for providing high performance computing resources.

[1] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “The Ultrahigh jet multiplicity signal of stringy no-scale F-SU(5) at the $\sqrt{s} = 7$ TeV LHC,” Phys.Rev. D84, 076003 (2011), 1103.4160.
[2] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “Prospects for Discovery of Supersymmetric No-Scale F-SU(5) at The Once and Future LHC,” Nucl.Phys. B859, 96 (2012), 1107.3825.
[3] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “Has SUSY Gone Undetected in 9-jet Events? A Tenfold Enhancement in the LHC Signal Efficiency,” (2011), 1108.5169.
[4] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “Profumo di SUSY: Suggestive Correlations in the ATLAS and CMS High Jet Multiplicity Data,” (2011), 1111.4204.
[5] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “A Higgs Mass Shift to 125 GeV and A Multi-Jet Supersymmetry Signal: Miracle of the Flippons at the 7 TeV LHC,” Phys.Lett. B710, 207 (2012), 1112.3024.
[6] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “A Multi-Axis Best Fit to the Collider Supersymmetry Search: The Aroma of Stops and Gluinos at the $\sqrt{s} = 7$ TeV LHC,” (2012), 1203.1918.
[7] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “The Unification of Dynamical Determination and Bare Minimal Phenomenological Constraints in No-Scale F-SU(5),” Phys.Rev. D85, 056007 (2012), 1105.3988.
[8] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “Chanel $N^5(5fb^{-1})$: The Sweet Fragrance of SUSY,” (2012), 1203.3052.
[9] “Search for Supersymmetry in hadronic final states using M_T with the CMS detector at $\sqrt{s} = 7$ TeV,” (2012), SUS-12-002-pas, URL http://cdsweb.cern.ch.
[10] “Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in $\mathcal{L} \geq 4.7$ fb$^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collisions,” (2012), ATLAS-CONF-2012-037, URL http://cdsweb.cern.ch.
[11] “Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 4.7 fb$^{-1}$ of $\sqrt{s} = 7$ TeV proton-proton collision data,” (2012), ATLAS-CONF-2012-033, URL http://cdsweb.cern.ch.
[12] “Search for new physics in events with same-sign dileptons, b-tagged jets and missing energy,” (2012), CMS PAS SUS-11-020, URL http://cdsweb.cern.ch.
[13] S. Chatrchyan et al. (CMS Collaboration), “Search for physics beyond the standard model in events with a Z boson, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV,” (2012), 1204.3774.
[14] ATLAS, “Further search for supersymmetry at $\sqrt{s} = 7$ TeV in final states with jets, missing transverse momentum and one isolated lepton,” (2012), ATLAS-CONF-2012-041, URL https://atlas.web.cern.ch/.
[15] T. Stelzer and W. F. Long, “Automatic generation of tree level helicity amplitudes,” Comput. Phys. Commun. 81, 357 (1994), hep-ph/9401258.
[16] J. Alwall et al., “MadGraph/MadEvent Collider Event Simulation Suite,” (2011), URL http://madgraph.hep.uic.edu/.
[17] J. Alwall et al., “MadGraph/MadEvent v4: The New Web Generation,” JHEP 09, 028 (2007), 0706.2334.
[18] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 05, 026 (2006), hep-ph/0603175.
[19] J. Conway et al., “PGS4: Pretty Good Detector Simulation,” (2009), URL http://www.physics.ucdavis.edu/~conway/research/.
[20] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “Dark matter direct detection rate in a generic model with micrOMEGAs2.1,” Comput. Phys. Commun. 180, 747 (2009), 0803.2360.
[21] A. Djouadi, J.-L. Kneur, and G. Moulacta, “SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM,” Comput. Phys. Commun. 176, 426 (2007), hep-ph/0211331.
[22] T. Li, J. A. Maxin, D. V. Nanopoulos, and J. W. Walker, “CutLHCO: A Tool For Detector Selection Cuts,” (2011), URL http://www.joelwalker.net/code/cut_lhco.tar.gz.