ON PIECEWISE CONTINUOUS MAPPINGS OF METRIZABLE SPACES

SERGEY MEDVEDEV

ABSTRACT. Let $f : X \to Y$ be a resolvable-measurable mapping of a metrizable space X to a regular space Y. Then f is piecewise continuous. Additionally, for a metrizable completely Baire space X, it is proved that f is resolvable-measurable if and only if it is piecewise continuous.

In an old question Lusin asked if any Borel function is necessarily countably continuous. This question was answered negatively by Keldiš [K34], and an example of a Baire class 1 function which is not decomposable into countably many continuous functions was later found by Adyan and Novikov [AN]; see also the paper of van Mill and Pol [vMP].

The first affirmative result was obtained by Jayne and Rogers [JR, Theorem 1].

Theorem JR (Jayne–Rogers). If X is an absolute Souslin-\mathcal{F} set and Y is a metric space, then $f : X \to Y$ is Δ^0_2-measurable if and only if it is piecewise continuous.

Later Solecki [Sol, Theorem 3.1] proved the first dichotomy theorem for Baire class 1 functions. This theorem shows how piecewise continuous functions can be found among Σ^0_2-measurable ones.

Theorem S (Solecki). Let $f : X \to Y$ be a Σ^0_2-measurable function from an analytic set X to a separable metric space Y. Then precisely one of the following holds:

(i) f is piecewise continuous,

(ii) one of L, L_1 is contained in f, where L and L_1 are two so-called Lebesgue’s functions.

Kačena, Motto Ros, and Semmes [KMS, Theorem 1] showed that Theorem JR holds for a regular space Y. They also got [KMS, Theorem 8] a strengthening of Solecki’s theorem from an analytic set X to an absolute Souslin-\mathcal{F} set X.

On the other hand, Banakh and Bokalo [BB, Theorem 8.1] proved among other things that a mapping $f : X \to Y$ from a metrizable completely Baire space X to a regular space Y is piecewise continuous if and only if it is Π^0_2-measurable. Under some set-theoretical assumptions, examples of Π^0_2-measurable mappings which are not piecewise continuous were constructed in the work [BB].

Recently, Ostrovsky [Ost] proved that every resolvable-measurable function $f : X \to Y$ is countably continuous for any separable zero-dimensional metrizable spaces X and Y.

2010 Mathematics Subject Classification. Primary 54H05; Secondary 03E15, 54C10.

Key words and phrases. Resolvable-measurable mapping, piecewise continuous mapping, Σ^0_2-measurable mapping, completely Baire space.
The main result of the paper (see Theorem 4) states that every resolvable-measurable mapping \(f: X \to Y \) of a metrizable space \(X \) to a regular space \(Y \) is piecewise continuous. Comparison of our result and the Banakh and Bokalo theorem shows that the condition on \(X \) is weakened but \(f \) is restricted to the class of resolvable-measurable mappings. Notice also that Theorem 4 generalizes and strengthens the Ostrovsky theorem.

In completely metrizable spaces, resolvable sets coincide with \(\Delta^0_2 \)-sets, see [Kur1, p. 418]. Lemma 6 shows that every metrizable completely Baire space has such a property. This enables us to refine the above result of Banakh and Bokalo, see Theorem 7.

Theorem 9 states that in the study of \(\Sigma^0_2 \)-measurable mappings defined on metrizable completely Baire spaces it suffices to consider separable spaces. In a sense, Theorem 9 is similar to the non-separable version of Solecki’s Theorem S.

Notation. For all undefined terms, see [Eng].

A subset \(E \) of a space \(X \) is resolvable if it can be represented as

\[
E = (F_1 \setminus F_2) \cup (F_3 \setminus F_4) \cup \ldots \cup (F_\xi \setminus F_{\xi+1}) \cup \ldots,
\]

where \(\langle F_\xi \rangle \) forms a decreasing transfinite sequence of closed sets in \(X \).

A metric space \(X \) is said to be an absolute Souslin-\(F \) set if \(X \) is a result of the \(A \)-operation applied to a system of closed subsets of \(\hat{X} \), where \(\hat{X} \) is the completion of \(X \) under its metric. Metrizable continuous images of the space of irrational numbers are called analytic sets.

A mapping \(f: X \to Y \) is said to be

- **resolvable-measurable** if \(f^{-1}(U) \) is a resolvable subset of \(X \) for every open set \(U \subset Y \),
- **\(\Delta^0_2 \)-measurable** if \(f^{-1}(U) \in \Delta^0_2(X) \) for every open set \(U \subset Y \),
- **\(\Sigma^0_2 \)-measurable** if \(f^{-1}(U) \in \Sigma^0_2(X) \) for every open set \(U \subset Y \),
- **\(\Pi^0_2 \)-measurable** if \(f^{-1}(U) \in \Pi^0_2(X) \) for every open set \(U \subset Y \),
- **countably continuous** if \(X \) can be covered by a sequence \(X_0, X_1, \ldots \) of sets such that the restriction \(f \upharpoonright X_n \) is continuous for every \(n \in \omega \),
- **piecewise continuous** if \(X \) can be covered by a sequence \(X_0, X_1, \ldots \) of closed sets such that the restriction \(f \upharpoonright X_n \) is continuous for every \(n \in \omega \).

Obviously, every piecewise continuous mapping is countably continuous. Notice that every resolvable-measurable mapping of a metrizable space \(X \) is \(\Sigma^0_2 \)-measurable because, by [Kur1, p. 362], every resolvable subset of a metrizable space \(X \) is a \(\Delta^0_2 \)-set, i.e., a set that is both \(F_\sigma \) and \(G_\delta \) in \(X \). The following example shows that there exists a \(\Delta^0_2 \)-measurable mapping which is not resolvable-measurable.

Example. Let \(f: \mathbb{Q} \to D \) be a one-to-one mapping of the space \(\mathbb{Q} \) of rational numbers onto the countable discrete space \(D \). Clearly, \(f \) is piecewise continuous and \(\Delta^0_2 \)-measurable. Gao and Kientenbeld [GK, Proposition 4] got a characterization of nonresolvable subsets of \(\mathbb{Q} \). In particular, they showed that there exists a nonresolvable subset \(A \) of \(\mathbb{Q} \). Since \(A = f^{-1}(f(A)) \), the mapping \(f \) is not resolvable-measurable.
The closure of a set \(A \subset X \) is denoted by \(\overline{A} \). Given a mapping \(f : X \to Y \), let us denote by \(\mathcal{I}_f \) the family of all subsets \(A \subset X \) for which there is a set \(S \in \Sigma_2^0(X) \) such that \(A \subset S \) and the restriction \(f \upharpoonright S \) is piecewise continuous. In particular, \(f \) is piecewise continuous if and only if \(X \in \mathcal{I}_f \). From [HZZ, Proposition 3.5] it follows that the family \(\mathcal{I}_f \) forms a \(\sigma \)-ideal which is \(F_\sigma \) supported and is closed with respect to discrete unions, see also [KMS].

To prove Theorem [4] we shall use the technique due to Kačena, Motto Ros, and Semmes [KMS]. Therefore, the terminology from [KMS] is applied. The sets \(A, B \subset Y \) are strongly disjoint if \(\overline{A} \cap \overline{B} = \emptyset \). Let \(f : X \to Y \) be a mapping. Put \(A^f = f^{-1}(Y \setminus \overline{A}) \). As noted in [KMS], if \(A, B \) are strongly disjoint and \(A^f, B^f \in \mathcal{I}_f \), then \(X \in \mathcal{I}_f \).

Let \(x \in X, X' \subset X \), and \(A \subset Y \). The pair \((x, X') \) is said to be \(f \)-irreducible outside \(A \) if for every open neighborhood \(V \subset X \) of \(x \) we have \(A^f \cap X' \cap V \notin \mathcal{I}_f \). Otherwise we say that \((x, X') \) is \(f \)-reducible outside \(A \), i.e., there exist a neighborhood \(V \) of \(x \) and a set \(S \in \Sigma_2^0(X) \) such that \(A^f \cap X' \cap V \subset S \) and \(f \upharpoonright S \) is piecewise continuous. Clearly, \(x \in \overline{A^f \cap X'} \) if \((x, X') \) is \(f \)-irreducible outside \(A \).

Lemma 1 ([KMS, Lemma 3]). Let \(X \) be a metrizable space and \(Y \) a regular space. Suppose \(f : X \to Y \) is a \(\Sigma_2^0 \)-measurable mapping, \(X' \) is a subset of \(X \), and \(A \subset Y \) is an open set such that \(X' \subset A^f \). Then the following assertions are equivalent:

(i) \(X' \notin \mathcal{I}_f \),

(ii) there exist a point \(x \in \overline{X'} \) and an open set \(U \subset Y \) strongly disjoint from \(A \) such that \(f(x) \in U \) and the pair \((x, X') \) is \(f \)-irreducible outside \(U \).

Lemma 2 ([KMS, Lemma 4]). Let \(f : X \to Y \) be a mapping of a metrizable space \(X \) to a regular space \(Y \), \(x \in X, X' \subset X, A \subset Y \), and let \(U_0, \ldots, U_k \) be a sequence of pairwise strongly disjoint open subsets of \(Y \). If \((x; X') \) is \(f \)-irreducible outside \(A \), then there is at most one \(i \in \{0, \ldots, k\} \) such that \((x, X') \) is \(f \)-reducible outside \(A \cup U_i \).

Recall that a set \(A \subset Y \) is relatively discrete in \(Y \) if for every point \(a \in A \) there is an open set \(U \subset Y \) such that \(U \cap A = \{a\} \).

Lemma 3. Let \(X \) be a metrizable space and \(Y \) be a regular space. Suppose \(f : X \to Y \) is a \(\Sigma_2^0 \)-measurable mapping which is not piecewise continuous. Then there exists a subset \(Z \subset X \) such that:

1. \(Z \) is homeomorphic to the space of rational numbers,
2. the restriction \(f \upharpoonright Z \) is a bijection,
3. the set \(f(Z) \) is relatively discrete in \(Y \),
4. \(\dim Z = 0 \).

Proof. Fix a metric \(\rho \) on \(X \). Denote by \(2^{\leq \omega} \) the set of all binary sequences of finite length. The construction will be carried out by induction with respect to the order \(\preceq \) on \(2^{\leq \omega} \) defined by

\[
s \preceq t \iff \text{length}(s) < \text{length}(t) \lor (\text{length}(s) = \text{length}(t) \land s \leq_{\text{lex}} t),
\]

where \(\leq_{\text{lex}} \) is the lexicographic order on sequences.
where \leq_{lex} is the usual lexicographical order on $2^{\text{length}(s)}$. We write $s \prec t$ if $s \leq t$ and $s \neq t$.

We will construct a sequence $\langle x_s: s \in 2^{<\omega}\rangle$ of points of X, a sequence $\langle V_s: s \in 2^{<\omega}\rangle$ of subsets of X, and a sequence $\langle U_s: s \in 2^{<\omega}\rangle$ of open subsets of Y such that for every $s \in 2^{<\omega}$:

1. if $t \subset s$ then $V_s \subset V_t$,
2. V_s is an open ball in X with the centre x_s and radius $\leq 2^{-\text{length}(s)}$,
3. if $s = t^\emptyset\emptyset$ then $x_s = x_t$,
4. $f(x_s) \in U_s$,
5. (x_t, V_t) is f-irreducible outside A for every $t \leq s$, where $A = \bigcup_{u \preceq s} U_u$,
6. the family $\{V_t: t \in 2^n\}$ is pairwise strongly disjoint for every $n \in \omega$,
7. the family $\{U_t: t \leq s\}$ is pairwise strongly disjoint.

Since f is not piecewise continuous, we can apply Lemma 1 with respect to $X' = X$ and $A = \emptyset$ to obtain the point $x \in X$ and the open set $U \subset Y$. Then put $x_0 = x$ and $U_0 = U$. Let $V_0 = B(x_0, 1)$ be an open ball in X with the centre x_0 and radius 1.

Assume that x_t, V_t, and U_t have been constructed for any $t \leq s$. Put $x_{s^0} = x_s$ and $U_{s^0} = U_s$.

Let $A = \bigcup_{t \prec s} U_t$ and $O = Y \setminus \overline{A}$. By the inductive hypothesis, the pair (x_s, V_s) is f-irreducible outside A. Take a neighborhood W of x_s such that $\overline{W} \subset V_s$. Then (x_s, W) is f-irreducible outside A and $f^{-1}(O) \cap W = A^f \cap W \notin \mathcal{I}_f$. By Lemma 1 there exist a point $x' \in f^{-1}(O) \cap W$ and an open set $U_{x'} \subset Y$ strongly disjoint from A such that $f(x') \in U_{x'}$ and the pair $(x', f^{-1}(O) \cap W)$ is f-irreducible outside $U_{x'}$. Notice that $x' \neq x_s$ because $f(x_s) \in A$ and $\overline{U_{x'}} \cap \overline{A} = \emptyset$. If the pair $(x', f^{-1}(O) \cap W)$ is f-irreducible outside $A \cup U_{x'}$, put $x^* = x'$ and $U^* = U_{x'}$.

Consider the case when the pair $(x', f^{-1}(O) \cap W)$ is f-reducible outside $A \cup U_{x'}$. Take a neighborhood W' of x' such that $\overline{W'} \subset V_s$. Let

$$O' = Y \setminus (\overline{A} \cup \overline{U_{x'}})$$

Then the pair (x', X') is f-irreducible outside $U_{x'}$ and $X' \notin \mathcal{I}_f$. As above, by Lemma 1 there exist a point $x'' \in X'$ and an open set $U_{x''} \subset Y$ strongly disjoint from $A \cup U_{x'}$ such that $f(x'') \in U_{x''}$ and the pair (x'', X') is f-irreducible outside $U_{x''}$. Notice that $x'' \neq x_s$ and $x'' \neq x'$. From Lemma 2 it follows that the pair (x'', X') is f-irreducible outside $A \cup U_{x''}$. Then put $x^* = x''$ and $U^* = U_{x''}$.

Let $k = |\{t \in 2^{<\omega}: t \prec s^1\}|$, $z_0 = x^*$, and $U_0 = U^*$. Repeating the above construction, for $j = 0, \ldots, k$ recursively construct $z_j \in V_s$ and U_j such that $f(z_j) \in U_j$, U_j is strongly disjoint from $A_j = A \cup \bigcup_{i < j} U_i$, and the pair $(z_j, V_s \cap (A_j)^f)$ is f-irreducible outside $A \cup U_j$. From Lemma 2 it follows that for each $t \prec s^1$ there is at most one $j \in \{0, \ldots, k\}$ such that (x_t, V_t) is f-reducible outside $A \cup U_j$. The pigeonhole principle implies that there exists $\ell \in \{0, \ldots, k\}$ such that the pair $(z_\ell, V_s \cap (A_\ell)^f)$ is f-irreducible outside $A \cup U_\ell$ and (x_ℓ, V_ℓ) is f-irreducible outside $A \cup U_\ell$ for each $t \prec s^1$. Finally, set $x_{s^1} = z_\ell$ and $U_{s^1} = U_\ell$.

Since x_{s^0} and x_{s^1} are two distinct points from V_s, we can choose their neighborhoods V_{s^0} and V_{s^1}, respectively, according to (1),(2), and (6).
One readily verifies that conditions (1)–(7) are satisfied.

The set \(Z = \bigcup \{ x_s : s \in 2^{<\omega} \} \) is countable and has no isolated points by (1) and (2). According to the Sierpiński theorem [Eng, Exercise 6.2.A], \(Z \) is homeomorphic to the space of rational numbers. By construction, the set \(\bigcup \{ f(x_s) : s \in 2^{<\omega} \} \) consists of isolated points. From conditions (4) and (5) it follows that the restriction \(f \mid Z \) is a bijection.

From conditions (1) and (2) it follows that the family \(\mathcal{V}_n = \{ V_t : t \in 2^n \} \) forms a cover of \(Z \) by open sets of diameter \(\leq 2^{1-n}\) for each \(n \in \omega \). Then
\[
\overline{Z} \subset \bigcap \{ \bigcup \{ V_t : t \in 2^n \} : n \in \omega \}.
\]

Since the family \(\mathcal{V}_n \) is finite and pairwise strongly discrete, we can find a pairwise strongly discrete open family \(\mathcal{W}_n = \{ W_t : t \in 2^n \} \) such that \(\text{diam}(W_t) < 2^{-n} \) and \(V_t \subset W_t \) for each \(t \in 2^n \). Without loss of generality, each \(\mathcal{W}_{n+1} \) is a refinement of \(\mathcal{W}_n \). Every family \(\{ W \cap Z : W \in \mathcal{W}_n \}, n \in \omega \), forms a discrete open cover of \(\overline{Z} \). From the Vopěnka theorem (see [Eng, Theorem 7.3.1]) it follows that \(\dim(\overline{Z}) = 0 \). \(\square \)

Theorem 4. Every resolvable-measurable mapping \(f : X \to Y \) of a metrizable space \(X \) to a regular space \(Y \) is piecewise continuous.

Proof. Suppose towards a contradiction that there is a resolvable-measurable mapping \(f : X \to Y \) which is not piecewise continuous. Using Lemma 3 we can find a subset \(Z \subset X \) such that \(Z \) is homeomorphic to the space of rational numbers, the restriction \(f \mid Z \) is a bijection, and \(f(Z) \) is relatively discrete. Since \(f \) is a resolvable-measurable mapping, \(f \mid Z \) is the same. On the other hand, \(f \mid Z \) fails to be resolvable-measurable as shown in Example. \(\square \)

Corollary 5. Let \(f : X \to Y \) be a bijection between metrizable spaces \(X \) and \(Y \) such that \(f \) and \(f^{-1} \) are both resolvable-measurable mappings. Then \(\dim X = \dim Y \).

Proof. Theorem 4 implies that \(X = \bigcup_{n \in \omega} A_n \), where each \(A_n \) is closed in \(X \) and each restriction \(f \mid A_n \) is continuous. Similarly, \(Y = \bigcup_{k \in \omega} B_k \), where each \(B_k \) is closed in \(Y \) and each restriction \(f^{-1} \mid B_k \) is continuous. The sequence \((A_n \cap f^{-1}(B_k) : n \in \omega, k \in \omega) \) forms a cover of \(X \) by closed sets. Similarly, the sequence \((f(A_n) \cap B_k : n \in \omega, k \in \omega) \) forms a cover of \(Y \) by closed sets. Since \(f \mid (A_n \cap f^{-1}(B_k)) \) is a homeomorphism, we have
\[
\dim(A_n \cap f^{-1}(B_k)) = \dim(f(A_n) \cap B_k).
\]

The corollary follows from the countable sum theorem [Eng, Theorem 7.2.1]. \(\square \)

A topological space \(X \) is called a **Baire space** if the intersection of countably many dense open sets in \(X \) is dense; or equivalently every nonempty open set in \(X \) is not of the first category. A space \(X \) is **completely Baire** if every closed subspace of \(X \) is a Baire space. Recall that \(F \subset X \) is a **boundary set** in \(X \) if its complement is dense, i.e., if \(\overline{X \setminus F} = X \).

Lemma 6. For a metrizable space \(X \) the following conditions are equivalent:

(i) no closed subspace of \(X \) is homeomorphic to the space \(\mathbb{Q} \) of rational numbers,
(ii) X is a completely Baire space,
(iii) the $\Delta_2^0(X)$-sets coincide with the resolvable sets in X.

Proof. (i)\Rightarrow(ii): Suppose towards a contradiction that X is not a completely Baire space. Then there is a closed set $F \subset X$ which is not Baire. Hence we can find a nonempty open (in F) set $U \subset F$ of the first category in F. The closure \overline{U} is of the first category on itself. According to [M86, Corollary 1] (see also [DS7]) \overline{U} contains a closed copy of \mathbb{Q}, a contradiction.

(ii)\Rightarrow(iii): By [Kur1, p. 362], every resolvable set in a metrizable space is a Δ_2^0-set. Conversely, let $E \in \Delta_2^0(X)$ and F be an arbitrary non-empty closed set. According to [Kur1, p. 99], we have to show that that either $F \cap E$ or $F \setminus E$ is not a boundary set in F. Otherwise, the sets $F \cap E$ and $F \setminus E$ would be of the first category in F (because every boundary F_σ-set is of the first category), so their union $F = (F \cap E) \cup (F \setminus E)$ would be of the first category on F. This contradicts the fact that F is a Baire space.

(iii)\Rightarrow(i): Striving for a contradiction, suppose that X contains a closed set F which is homeomorphic to \mathbb{Q}. As shown in Example, there is a nonresolvable set $A \in \Delta_2^0(F)$. The set A is the same in X because F is closed in X. □

Theorem 7. Let $f : X \to Y$ be a mapping of a metrizable completely Baire space X to a regular space Y. Then the following conditions are equivalent:

(i) f is resolvable-measurable,
(ii) f is piecewise continuous,
(iii) f is Π_2^0-measurable.

Proof. The implication (i)\Rightarrow(ii) follows from Theorem [3].

(ii)\Rightarrow(i): By definition, there are closed sets $X_n \subset X$, $n \in \omega$, such that $\bigcup_{n \in \omega} X_n = X$ and each $f \mid X_n$ is continuous. Then

$$f^{-1}(A) = \bigcup \{X_n \cap f^{-1}(A) : n \in \omega\}$$

is an F_σ-set in X for every open (or closed) set $A \subset Y$. Hence $f^{-1}(U) \in \Delta_2^0(X)$ for every open $U \subset Y$. From Lemma [4] it follows that $f^{-1}(U)$ is a resolvable set in X.

Banakh and Bokalo [BB, Theorem 8.1] got (ii)\Leftrightarrow(iii). □

Corollary 8. Let X be a completely metrizable space and Y a regular space. Then $f : X \to Y$ is resolvable-measurable if and only if f is Π_2^0-measurable.

According to [KMS, Corollary 6], for an absolute Souslin-\mathcal{F} set X, if $f : X \to Y$ is Σ_2^0-measurable and not piecewise continuous, then there is a copy $K \subset X$ of the Cantor space 2^ω such that $f \mid K$ has the same properties. The following theorem shows that a similar statement is valid for metrizable completely Baire spaces. However, such a set K from Theorem [6] need not be homeomorphic to the Cantor space. In fact, every Bernstein set is a metrizable completely Baire space but it contains no copy of the Cantor space.
Theorem 9. Let X be a metrizable completely Baire space and Y a regular space. If $f : X \to Y$ is Σ^0_2-measurable and not piecewise continuous, then there is a zero-dimensional separable closed set $K \subset X$ such that the restriction $f \upharpoonright K$ is the same.

Proof. Let $K = \overline{Z}$, where the set $Z \subset X$ is obtained by Lemma 3. Clearly, $f \upharpoonright K$ is Σ^0_2-measurable.

Suppose towards a contradiction that $f \upharpoonright K$ is piecewise continuous. Then there are closed sets $K_n \subset X$, $n \in \omega$, such that $\bigcup_{n \in \omega} K_n = K$ and $f \upharpoonright K_n$ is continuous. Since K is a Baire space, there exists a K_j with the nonempty interior V_j (in K). Clearly, $f \upharpoonright \overline{V_j \cap Z}$ is continuous. Take a point $q \in V_j \cap Z$. Fix a neighborhood $U_q \subset Y$ of $f(q)$ such that $U_q \cap f(Z) = f(q)$. From continuity of $f \upharpoonright \overline{V_j \cap Z}$ it follows that there is a neighborhood $V \subset V_j$ (in K) of q such that $f(V) \subset U_q$. Then $V \cap Z = \{q\}$, i.e., q is an isolated point of Z. This contradicts the fact that the set $V_j \cap Z$ has no isolated points. \(\square\)

The last theorem yields

Theorem 10. Let $f : X \to Y$ be an F_σ-measurable mapping of a metrizable completely Baire space X to a regular space Y. If the restriction $f \upharpoonright Z$ is piecewise continuous for any zero-dimensional separable closed subset Z of X, then f is piecewise continuous.

References

[AN] S.I. Adyan and P.S. Novikov, On a semicontinuous function, Zap. MPGI W.1.Lenina, 138 (1958), 3–10 (in Russian).
[BB] T. Banakh and B. Bokalo, On scatteredly continuous maps between topological spaces, Topol. Appl., 157 (2010), 108–122.
[D87] E. K. van Douwen, Closed copies of rationals, Comm. Math. Univ. Carol., 28 (1987), 137–139.
[Eng] R. Engelking, General topology, PWN, Warszawa, 1977.
[GK] S. Gao and V. Kieftenbeld, Resolvable maps preserve complete metrizability, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2245–2252.
[HZZ] P. Holicky, L. Zajicek, and M. Zeleny, A remark on a theorem of Soilecki, Comment. Math. Univ. Carolin. 46 (2005), no. 1, 43–54.
[JR] J.E. Jayne and C.A. Rogers, First level Borel functions and isomorphisms, J. Math. pures et appl., 61 (1982), 177–205.
[K34] L. Keldiš, Sur les fonctions premières measurables B, Dokl. Akad. Nauk. SSSR, 4 (1934), 192–197.
[KM3] M. Kačena, L. Motto Ros, and B. Semmes, Some observations on “A new proof of a theorem of Jayne and Rogers”, Real Analysis Exchange, 38 (2012/2013), no. 1, 121–132.
[Kur1] K. Kuratowski, Topology, Vol. 1. PWN, Warszawa, 1966.
[M86] S. V. Medvedev, On a problem for spaces of the first category, Vestn. Mosk. Univ., Ser. I, Mat. Mekh., 41, (1986), no. 2, 84–86 (in Russian). English transl.: Mosc. Univ. Math. Bull., 41 (1986), no. 2, 62–65.
[vMP] J. van Mill and R. Pol, Baire 1 functions which are not countable unions of continuous functions, Acta Math. Hungar., 66 (1995), 289–300.
[Ost] A. Ostrovsky, Luzin’s topological problem, preprint, (2016), 1–9.
[Sol] S. Solecki, Decomposing Borel sets and functions and the structure of Baire class 1 functions, J. Amer. Math. Soc. 11 (1998) no. 3, 521–550.