SPIN GRAPHS

K. M. BUGAJSKA

Abstract. We show that on any Riemann surface Σ of genus $g > 1$ any non-singular even spin bundle ξ defines an ϵ-foliation of Σ. When a surface is hyperelliptic then all leaves of this foliation are finite and almost all of them consist of $2g + 2$ points. Moreover, each leaf carries an additional structure which allows us to view it as a concrete graph. We find the properties of these spin-graphs and we describe the classification of surfaces which is given by these properties. The classification is based on a finite number of exceptional graphs which have to be present on any surface Σ of genus $g \geq 2$.

1. INTRODUCTION

We will show that for any point $P \in \Sigma$ any non-singular even spin bundle ξ on Σ determines the spin-graph S_P. For almost all non-Weierstrass points of Σ the spin-graphs are isomorphic to each other, that is, they have the same generic form $S(g)$, where g is the genus of a surface Σ. In addition, there are two spin-graphs through the Weierstrass points and besides we must have "exceptional" spin graphs which involve "exceptional points" (at most $4g$ of them).

In this paper we will consider only hyperelliptic Riemann surfaces. The image of any point P of a surface Σ under the hyperelliptic involution is denoted by \tilde{P}. The set of the Weierstrass points (i.e. points with the property $P = \tilde{P}$) will be denoted by W.

Let S_P be a spin-graph through a point $P \in \Sigma$ and let $\{S_P\}$ denote the set of its vertices. Any spin-graph S_P consists of vertices, edges, faces and n-cells ($n \leq (g - 1)$). For each vertex $Q \in \{S_P\}$ the graph S_P allows us to read the divisor of the unique meromorphic section of ξ with the single, simple pole at Q. Besides, it is shown in [1], [2], that S_P carries a structure which allows us to associate to any of its vertex Q a group G_Q of permutations acting transitively on the set $\hat{Q} := \Phi_Q(\Sigma) \cap \Theta$. (Here $\Phi_Q : \Sigma \rightarrow \text{Jac} \Sigma$ denotes the Jacobi mapping with the origin at Q and Θ is the divisor of the theta function $\Theta(\xi)$ on $\text{Jac} \Sigma$. [3], [4])

A generic spin graph $S(g)$ has $2g + 2$ vertices and all edges between the appropriate points are simple and straight. Each of two graphs through the Weierstrass points has $g + 1$ vertices which are connected to each other by straight, simple edges. The vertices of an exceptional spin graph will be called ϵ-exceptional points. Any exceptional spin graph on a surface of genus g is characterized by an integer $0 \leq \epsilon \leq g - 1$.

We will find all possible isomorphic classes of exceptional spin-graphs on a surface of genus g and we will describe properties of such graphs that allow us to classify hyperelliptic surfaces. More precisely, to each surface Σ equipped with a nonsingular even spin structure ξ, we will associate an M-tuple of integers $m_{\epsilon,s}$ which have to satisfy some condition (see (4.1) and (4.6)). Here, $r = 0, 1, \ldots, g - 1$; $s = 0, 1, \ldots, N(r)$ with $N(r)$ equal to the number $\sigma_{r+1}(g+1)$ of unordered partitions
of $g + 1$ into $r + 1$ positive integers and

$$M = \sum_{r=0}^{g-1} N(r)$$

The general classification of exceptional spin-graps on a surface of genus g will be given. We will illustrate this by giving explicit examples of all classes of isomorphic exceptional graphs for g equal to $2, 3, 4$ and 5. There are exactly two classes of isomorphic exceptional spin graphs on a surface of genus 2 and hence exactly three different types of surfaces of genus 2. There are four isomorphic classes of possible exceptional graphs on a surface of genus 3 and hence, by the condition (1.1), there are exactly nine different types of surfaces of genus 3.

When $g = 4$ the number of isomorphic classes of exceptional spin graphs is six. Now, by the condition (4.1), each possible 6-tuple $(m_0, m_1, m_1, m_2, m_2, m_3)$ that satisfies $16 = 8m_0 + 6(m_1 + m_1) + 4(m_2 + m_2) + 2m_3$ determines a concrete type of a hyperelliptic Riemann surface equipped with a nonsingular spin structure ξ.

The number $M = \sum_{r=0}^{g-1} N(r)$ is the same for all surfaces of genus g and for all possible nonsingular even spin-structures. It is an open question whether, for a given surface Σ, the M-tuples (m_r,s), with $r = 0, \ldots, g-1; s = 0, \ldots, N(r)$; are the same or they are different for different non-singular even characteristics $[\epsilon]'s$.

More subtle classification of hyperelliptic Riemann surfaces which uses not only exceptional spin graphs but also exceptional spin groups associated to each vertex Q of an exceptional spin-graph S_p is given in the paper [2].

2. PRELIMINARIES

Let Σ be a compact, hyperelliptic Riemann surface of genus $g \geq 2$ and let ξ be a nonsingular even spin bundle over Σ. For any point $P \in \Sigma$ there exists (see [5], [6]) a unique point-like representation of ξ, namely:

$$\xi \cong \xi_P^{-1} \otimes \xi_{P_1} \otimes \ldots \otimes \xi_{P_g}; \quad P \notin \{P_1, P_2, \ldots, P_g\}$$

with the property that the index of specialty of the divisor

$$A_P^\epsilon := P_1 P_2 \ldots P_g$$

vanishes. (Here the points P_1, \ldots, P_g are not necessarily distinct.) Equivalently, there exists unique (up to a nonzero multiplicative constant) section σ_P of the line bundle ξ, with a single, simple pole at P and hence with the divisor given by $(\sigma_P) := div \sigma_P = P^{-1} A_P^\epsilon$.

Let D be any integral divisor on Σ. By $\{D\}$ we will denote the set of all distinct points of the divisor D. Moreover, for any divisor U on a hyperelliptic surface Σ the divisor that is obtained from U by replacing all of its points by their conjugate respectively, will be denoted by \tilde{U}.

Suppose that we have fixed a point $P \in \Sigma$. Let $P_i \in \{A_P^\epsilon\}$. Now, for each $i = 1, \ldots, g$, the point P_i determines a new set of points $P_{i,j}, j = 1, \ldots, g$, which form the divisor $A_P^{\epsilon_{P_i}}$ respectively. We will continue this process for all such points obtained in the previous step.

Definition 1. The set of all points of Σ containing a point P and obtained in the way described above starting from the set $\{A_P^\epsilon\}$ will be denoted by $\{S_P^\epsilon\}$.
Lemma 3. For any Weierstrass point we have
\[P \in \{ \tilde{P} \} \]
Proof. The property (1) follows immediately when we consider a meromorphic differential given by the product of two sections \(\sigma_p \) and \(\sigma_{\tilde{p}} \). Analogously, by considering a section \(\sigma_p \sigma_{\tilde{p}} \), we obtain the property (2).

Corollary 1.

(1) When a point \(P \in \Sigma \) has \(\epsilon \)-degree equal to \(g \) then we have \(\tilde{D}_k^P = \tilde{D}_k^P \).

(2) When \(\deg_{,} P = g \) then the divisors
\[P^{-1}A_p = P^{-1}P_1\ldots P_g \quad \text{and} \quad P_k^{-1}P_{\tilde{P}_1}\ldots P_{\tilde{P}_k}\ldots P_g \]
are equivalent to each other. (Here the hat means that the point \(\tilde{P}_k \) is omitted.

Lemma 2. Suppose that point \(P \in \Sigma \) has \(\epsilon \)-degree equal to \(g \).

(1) When \(\tilde{P} \notin \{ A_p \} \) then each point \(Q \in \{ S_p \} \) has \(\epsilon \)-degree equal to \(g \) and we must have \(Q \notin \{ A_Q \} \).

(2) When \(\tilde{P} \in \{ A_p \} \) then there exists \(Q \in \{ S_q \} \) with \(\epsilon \)-degree necessarily less than \(g \); \(\deg, Q < g \).

Proof. Simple.

Corollary 2. When the \(\epsilon \)-degree of a non-Weierstrass point \(P \in \Sigma \) is equal to \(g \) and when \(\tilde{P} \notin \{ A_p \} \) then the cardinality of the set \(\{ S_p \} \) is \(2g + 2 \). More precisely we have
\[\{ S_p \} = \{ P, P_k, \tilde{P}, \tilde{P}_k; k = 1 \ldots g \} \]

Lemma 3. For any Weierstrass point \(P \in W \subset \Sigma \) we have \(\deg, P = g \). Moreover, all points \(P_k \in \{ A_p \} \) are also the Weierstrass points.

Proof. Since \(P = \tilde{P} \) we have \(A_p = A_{\tilde{P}} = \tilde{A}_p \) and hence the set \(\{ A_p \} \) is contained in the set \(\mathcal{W} \) of the Weierstrass points of \(\Sigma \). Now, since the \(\epsilon \)-degree of \(P \) less than \(g \) implies that the divisor of the section \(\sigma_p \) is an integral divisor (what is impossible for a non-singular even characteristic \([\epsilon] \) we immediately obtain \(\deg, P = g = \deg, P_k \).

3. STANDARD AND WEIERSTRASS SPIN-GRAPHS

Let us fix a non-singular spin bundle \(\xi \) on a hyperelliptic surface \(\Sigma \). Let \(Q \) be any point of the set \(\{ S_p \} \subset \Sigma \) introduced by the definition 1 above. (From now on the index \(\epsilon \) may be omitted.) Notice that we must have \(\{ S_p \} = \{ S_Q \} \). Moreover, lemma 1 implies that when \(P' \in A_Q \) for some point \(P' \in \{ S_p \} \) then \(Q \in \{ A_{P'} \} \). We will say that points \(P' \) and \(Q \) are \(\epsilon \)-connected (or mutually connected by \(\xi \)).
Definition 4. Let P be an arbitrary point of Σ. The spin graph S_P through P has vertices given by all points of the set $\{S_P\}$ and it has edges which connect only vertices that are ϵ-connected. Suppose that vertices Q and R of the graph S_P are ϵ-connected. When $n_1 \geq 1$ is the maximal integer such that the divisor $Q^{n_1} < A_R$ and when $n_2 \geq 1$ is the maximal integer such that $R^{n_2} < A_Q$ and, for example, $n_1 \leq n_2 = n_1 + k; k \geq 0$, then the straight edge between Q and R has the multiplicity equal to n_1 and the spin-graph S_P has the additional, oriented arc edge from R to Q labelled by $k = n_2 - n_1$.

Definition 5. A non-Weierstrass point P will be called a standard point of Σ when $\deg_{\epsilon} P = g$ and $\tilde{P} \notin \{A_P\}$.

Lemma 2 implies that all vertices of the spin-graph S_P through a standard point P are also standard points of Σ as well as that all edges of S_P must be simple straight edges. The spin-graph through a standard point will be called a standard graph.

Corollary 3. All standard spin-graphs on any hyperelliptic Riemann surface Σ of genus g equipped with any non-singular spin bundle ξ_ϵ are isomorphic to each other. In other words, the isomorphic class of standard spin-graphs depends only on the genus g of a surface.

The standard graphs for genus $g = 2$ and $g = 3$ are given by the Pict1a and Pict1b respectively.

Let P be a Weierstrass point. We already know that the ϵ-degree of P must be equal to g and that all points of the divisor A_P are also Weierstrass points. Since we have the property that $P \in \{A_Q\}$ if and only if $Q \in \{A_P\}$ the graph S_P through a point P has $g + 1$ vertices (which all are Weierstrass points) and all of them are mutually connected by straight, simple (i.e. with multiplicity equal to 1) edges. The examples of such graphs for genus $g = 2$ and for genus $g = 3$ are given by the Pict2a and by Pict2b respectively.
4. EXCEPTIONAL SPIN-GRAPHS

4.1. Generalities. Any non Weierstrass point \(Q \in \Sigma \) that is not a standard point will be called an exceptional point of \(\Sigma \). It occurs that on any hyperelliptic Riemann surface we must have points whose \(\epsilon \)-degree is equal to \(\rho < g \) (i.e. exceptional points). To show this let us consider the unique (up to a non zero multiplicative constant) meromorphic function \(f_P \) which connects two sections \(\sigma_P \) and \(\tilde{\sigma}_P \) of the line bundle \(\xi_\epsilon \); here \(P \) is an arbitrary, fixed standard point of \(\Sigma \). From the relation \(\tilde{\sigma}_P = f_P \sigma_P \) we see that the function \(f_P \) has degree equal to \(g + 1 \) and its divisor is

\[
(f_P) = (\frac{\sigma_{\tilde{P}}}{\sigma_P}) = \frac{P\tilde{P}_1\ldots\tilde{P}_g}{PP_1\ldots P_g}
\]

We see immediately that the ramification number of the mapping \(f_P : \Sigma \to \hat{\mathbb{C}} \) at any standard or at any Weierstrass point of \(\Sigma \) is equal to 1.

Let \(Q \) be any point of \(\Sigma \). Let \(A_Q \) denote the integral divisor \(QA_Q \) and let \(\{A_Q\} \) denote, as usually, the set of its distinct points.

Lemma 4. Let \(P \) be a standard point and let \(f_P \) be the meromorphic function on \(\Sigma \) introduced above. Then

1. For each point \(Q \in \Sigma \) the function \(f_P \) is constant on the set \(\{A_Q\} \).
2. If \(Q \) is any standard point different than \(P \) than functions \(f_P \) and \(f_Q \) are related by some Moebius transformation.
3. There are points on \(\Sigma \) whose \(\epsilon \)-degree is equal to \(\rho < g \). There are at most \(4g \) such points.

Proof.

1. Suppose that \(f_P(Q) = z_1 \in \mathbb{C}^* \) (i.e. point \(Q \notin \{S_P\} \)). Since the index of specialty \(i(A_P) = 0 \) we see that the zero divisor of the function \(f_P - z_1 \) is \((f_P - z_1)^0 = QA_Q \). This means that we have \(f_P(R) = z_1 = f_P(Q) \) for each point \(R \in \{A_Q\} \).
2. It is a simple consequence of the fact that whenever \(Q \) is a standard point with \(f_P(Q) = z_1 \neq 0 \) then \(f_P(Q) = z_2 \in \mathbb{C}^* \) and \(z_1 \neq z_2 \). Hence the divisor of the function \((\frac{f_P}{f_P - z_2}) \) is equal to the divisor \(\frac{A_Q}{\epsilon_Q} = (f_Q) \).
By the Hurwitz-Riemann theorem the total branch number B of the function f_P is $B = 4g$. Since neither the Weierstrass points nor standard points can be ramification points of f_P we must have some other points which have non-zero branching numbers. However, a non-zero branching number at a point $Q \in \Sigma$ means that this point occurs with the multiplicity $m > 1$ in the divisor A_R for some point $R \in \{A_Q\}$. In other words, the ϵ-degree of R must be smaller than g. So, on any hyperelliptic surface Σ there are exceptional points and there are at most $4g$ of them.

The spin-graph through an exceptional point will be called an exceptional graph. The number of such graphs is restricted by the value of the total branching number $B = 4g$. Contrary to the fact that all standard graphs belong to exactly one isomorphic class of graphs (depending only on the genus g of Σ) and that the same is true for the Weierstrass spin graphs, the exceptional spin graphs may belong to distinct isomorphic classes.

Suppose that on a surface Σ of genus g we have some number M of possible isomorphic classes of exceptional spin graphs. Let B_i, $i = 1, \ldots, N$ denote the total branch number carried by the i-th class of such graphs. This number is uniquely determined by the multiplicities of edges occurring in the graph. Let m_i denote the number of exceptional graphs on Σ that belong to the i-th class. We observe that we may classify hyperelliptic Riemann surfaces of genus g equipped with a non-singular even spin structure ξ by an ordered array of M nonnegative integers (m_1, m_2, \ldots, m_M) which satisfy

\begin{equation}
4g = \sum_{i=1}^{M} m_i B_i
\end{equation}

From our general considerations above we may notice that for any point $Q \in \Sigma$ and for any vertex R of the graph S_Q we have

\begin{equation}
\text{either } A_R = A_Q \text{ or } A_R = A_{\tilde{Q}}
\end{equation}

Lemma 5. Suppose that the integral divisor A_Q corresponding to an exceptional point $Q \in \Sigma$ is given by

$$A_Q = \tilde{Q}^{k_0-1} Q_1^{k_1} \ldots Q_r^{k_r}; \quad k_0 \geq 1 \quad (k_0 - 1) + k_1 + \ldots + k_r = g$$

with $r < g$. The total branch number carried by the spin graph S_Q is equal to $B(S_Q) = 2(g - r)$.

Proof. The form of the divisor A_Q implies that the divisor $\kappa_Q := QA_{\tilde{Q}}$ may be written as follows

\begin{equation}
\kappa_Q = Q^{k_0} \tilde{Q}_1^{k_1} \tilde{Q}_2^{k_2} \ldots \tilde{Q}_r^{k_r} \quad \text{with} \quad k_0 + k_1 + k_2 + \ldots + k_r = g + 1
\end{equation}

The relation (4.2) implies that for each vertex $R \in \{S_Q\}$ the divisor κ_R (which has the same form as (4.3)) may have distinct values of $k_i; i = 0, 1, \ldots, r$, but the number r of the remaining points (different than R) in the set $\{\kappa_R\}$ is exactly the same for every vertex R. This means that we may characterize any exceptional spin graph S_P by an integer $r < g$. Besides, we see that to evaluate the total branch number $B(S_Q)$ we may use an arbitrary vertex of the graph S_Q. More precisely we have

\begin{equation}
B(S_Q) = 2[(k_0 - 1) + (k_1 - 1) + \ldots +(k_r - 1)] = 2(g - r)
\end{equation}
Suppose that

Example 1. for graphs with a given

Conversely, the equality of such graphs that occur on a given hyperbolic surface Σ. According to (4.3) it is called the order of a graph. However, exceptional graphs with the same order must have an M that we may classify hyperelliptic Riemann surfaces by associating to each of them $\{A^*_r; Q \in \{\Sigma_Q\}\}$

Lemma 6. Let Σ^*_P and Σ^*_Q be two different exceptional graphs with heads P and Q respectively. These graphs are isomorphic if and only if, after eventually change of the enumerations of their vertices, $\hat{k}(P) = (k_0, k_1, \ldots, k_r)$ coincides with $\hat{k}(Q) = (k'_0, k'_1, \ldots, k'_s)$.

Proof. When the graphs are isomorphic then obviously we have $\hat{k}(P) = \hat{k}(Q)$. Conversely, the equality $\hat{k}_P = \hat{k}_Q$ means that $r = s$ and that $k_l(P) = k_l(Q)$ for $l = 0, 1, \ldots, r$. Equivalently, the divisors of the sections σ_P and σ_Q are: $\sigma_P = P^{-1}P^{s_0}P^{s_1} \ldots P^{s_r}$ and $\sigma_Q = Q^{-1}Q^{s_0}Q^{s_1} \ldots Q^{s_r}$. Now the isomorphism between the graphs Σ^*_P and Σ^*_Q follows immediately.

For any vertex Q of any spin graph Σ^*_P the integer $r \geq 0$ denotes the number of points of the set $\{A_Q\}$ that are different than the conjugate point \tilde{Q}. Although the ϵ-degree $\deg Q \geq r$ may be different for different vertices of a given exceptional graph Σ^*_P, the integer r is for all vertices exactly the same and, by the definition 6, it is called the order of a graph. However, exceptional graphs with the same order r, $0 \leq r < g$, may belong to different classes of isomorphic spin graphs that are possible on a given surface of genus g.

This means that the integer r does not define uniquely a class of isomorphic spin graphs. More precisely, the lemma 6 implies that the number of possible different classes of isomorphic spin graphs with a given $0 \leq r < g$ is equal to the number $N(r)$ of representations of $g + 1$ as a sum $g + 1 = k_0 + k_1 + \ldots + k_r$ of non-decreasing integers $1 \leq k_0 \leq k_1 \leq \ldots k_r \leq g - r - 1$ i.e. $N(r) = \sigma_{r+1}(g + 1)$.

Now, $N(0) = 1$ and it corresponds to the unique class of isomorphic graphs with $\hat{k} = (k_0)$ where $k_0 = g + 1$. The value of $N(g - 1)$ is also one and it corresponds to the unique class with $\hat{k} = (k_0, k_1, \ldots, k_{g-1}) = (1, 1, \ldots, 1, 2)$.

Let us fix the genus g and let $\Sigma^*_r = \Sigma^*_r(g)$ denote a class of appropriate exceptional graphs with a given r and with $s \in \{1, 2, \ldots, N(r)\}$. Let $m_{r,s}$ denote the number of such graphs that occur on a given hyperbolic surface Σ. According to (4.1) we must have

$$4g = m_0B_0 + B_1(m_{1,1} + \ldots + m_{1,N(1)}) + \ldots + B_r(m_{r,1} + \ldots + m_{r,N(r)}) + \ldots + B_{g-1}m_{g-1}$$

Since M, given by the formula (1.1), determines the number of possible different classes of isomorphic exceptional spin graphs on a surface of the genus g we see that we may classify hyperelliptic Riemann surfaces by associating to each of them an M-tuple of non-negative integers $(m_{r,s}; r = 0, 1, \ldots, g - 1; s = 1, \ldots, N(r))$.

Example 1. Suppose that $g = 2$. Since we must have $r \in \{0, 1\}$ the possible classes Σ^*_r of exceptional graphs are Σ^*_0 and Σ^*_1. Hence, to any surface of genus
So, we have nine different types of surfaces of genus g. We see that we may have exactly three different types of such surfaces corresponding to (m_0, m_1) equal either to $(2, 0)$ or to $(1, 2)$ or to $(0, 4)$ respectively.

Example 2. Let $g = 3$. Now $r \in \{0, 1, 2\}$. A possible exceptional graph S_P with a head P may belong to the following classes: either to S^0 (when $A_P = \tilde{P}^1$), or to S^1_1 (when $A_P = P^1_1$), or to S^2_1 (when $A_P = \tilde{P}P^1_1$) or to the class S^3_1 (when $A_P = P^2_1P^1_1$). Since the condition (4.6) requires that $12 = 6m_0 + 4(m_{1,1} + m_{1,2}) + 2m_2$ any surface of genus $g = 3$ can be characterized by a quadruple $(m_0, m_{1,1}, m_{1,2}, m_2)_\epsilon$ of non-negative integers which belongs to the set:

$$\{(2, 0, 0, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 2, 0), (0, 2, 1, 0), (0, 11, 2), (0, 1, 0, 4), (0, 0, 1, 4), (0, 0, 0, 6)\}$$

So, we have nine different types of surfaces of genus $g = 3$ equipped with an even, non-singular spin structure ξ_e.

Example 3. Suppose that the genus of a hyperelliptic surface is $g = 4$. Now we may have $r \in \{0, 1, 2, 3\}$. A possible exceptional spin graph S_P with a head P belongs to one of the following classes of isomorphic graphs: to the class S^0 (when $A_P = \tilde{P}^1$), or to S^1_1 (when $A_P = P^1_1$), or to S^2_1 (when $A_P = \tilde{P}P^1_1$) or to the class S^3_1 (when $A_P = P^2_1P^1_1$), or to S^3_2 (when $A_P = P^2_2P^1_1$), or to S^3_2 (when $A_P = P^2_1P^2_2$), or to S^3_2 (when $A_P = P^1_1P^2_2$). Thus, to any surface of genus $g = 4$ we will associate a six-tuple $(m_0, m_{1,1}, m_{1,2}, m_{2,1}, m_{2,2}, m_3)_\epsilon$ of non-negative integers which satisfy

$$16 = 8m_0 + 6(m_{1,1} + m_{1,2}) + 4(m_{2,1} + m_{2,2}) + 2m_3$$

Each non-negative integer $m_{r,s}$ indicates the number of exceptional spin graphs that occurs on Σ which belong to the isomorphic class S^r_ϵ; where $r = 0, 1, 2, 3$ and $s = 1, \ldots, N(r)$.

4.2. Exceptional graphs for arbitrary genus g. Let S_P be an exceptional graph on a surface Σ of genus g whose head is P. Suppose that the divisor of the section σ_P of ξ_e is

$$\sigma_P = P^{-1}\tilde{P}^{1}P_1^{k_1} \ldots P_r^{k_r} \quad \text{with} \quad i = k_0 - 1, \quad 0 \leq r \leq g - 1$$

and with $k_0 \leq k_1 \leq \ldots \leq k_r$

We will introduce the following notation:

$$k_0 = 1 + i, \quad k_n = k_{n-1} + p_n; \quad n = 1, 2, \ldots, r$$

Now, the class $S^r_\epsilon = S^r_\epsilon(g)$ of isomorphic exceptional graphs will be denoted by S_{r, p_1, \ldots, p_r}. Since from (4.3) we have

$$g + 1 = (r + 1)(1 + i) + rp_1 + (r - 1)p_2 + \ldots + p_r$$

we see that the maximal possible value of $i = k_0 - 1$ is

$$i_{\text{max}} = \left\lfloor \frac{g - r}{r + 1} \right\rfloor$$
4.2.1. Let P be a head of an exceptional spin graph with $r = 1$ i.e. the divisor $k_P = P^{k_0} \tilde{P}^{k_1}$ (equivalently $A_P = \tilde{P}^i P^{k_1}$) and $g = i + k_1$. Since P is a head we must have $k_0 \leq k_1$ and hence

$$0 \leq i \leq \left\lfloor \frac{g - 1}{2} \right\rfloor$$

The class $S_{i,p_1}(g) = S_{i,p_1}$ of isomorphic graphs corresponds to $\hat{k} = (k_0, k_1) = (1 + i, 1 + i + p_1)$. When $i = 0$ then $k_1 = g$ and the graph $S_{0,g-1}$ is given on Pic3a.

When $i \geq 1$ then all conjugate vertices must be connected and the general form of the graph S_{i,p_1} is given by Pic3b.

In particular, when the genus is odd then for $i_{\text{max}} = \frac{g-1}{2}$ we have $p_1 = 0$ i.e. $k_0 = k_1$. For the remaining values of $i \leq \frac{g-1}{2}$ we have $p_1 = 2i_{\text{max}} - 2i + 1$ and hence it is always odd. When the genus g is an even integer then $i_{\text{max}} < \frac{g-1}{2}$ and the corresponding to it p_1 must be equal to 1. For the remaining possible values of i we have $p_1 = 2i_{\text{max}} - 2i + 1$ which is always odd.

When $g = 3$ then there are two possible classes of isomorphic exceptional graphs corresponding to the values of (i, p_1) equal to $(0, 2)$ and to $(1, 0)$. When $g = 4$ then the possible graphs S_{i,p_1} correspond to $(i, p_1) \in \{(0, 3), (1, 1)\}$. When $g = 5$ then $(i, p_1) \in \{(04), (1, 2), (2, 0)\}$. For all of these values of the genus g we may use the pictures Pic3a and Pic3b to draw appropriate spin graphs.

For a general $g \geq 2$ the total number of possible isomorphic classes S_{i,p_1} is equal to

$$N(1) = \sigma_2(g + 1)$$

More precisely, when g is even then

$$\hat{k} = (k_0, k_1) \in \{(1, g), (2, g - 1), \ldots, \left(\frac{g}{2}, \frac{g}{2} + 1\right)\}$$
and when \(g \) is odd we have
\[
\hat{k} = (k_0, k_1) \in \{(1, g), (2, g - 1), \ldots, (1 + \left\lfloor \frac{g}{2} \right\rfloor, 1 + \left\lfloor \frac{g}{2} \right\rfloor)\}
\]

4.2.2. \(r=2 \). Suppose that \(S_P \) is an exceptional spin graph with a head \(P \). We have \(\hat{k}(P) = (k_0, k_1, k_2) = (1 + i, 1 + i + p_1, 1 + i + p_1 + p_2) \) with \(i, p_1, p_2 \geq 0 \) and with \(i + k_1 + k_2 = g \). The general form of a spin graph with \(r = 2 \) is given by Pict.4. Since
\[
3i + 2p_1 + p_2 + 2 = g
\]
such exceptional graph is possible only when the genus of a surface is \(g \geq 3 \). The maximal possible value of \(i \) is
\[
i_{\text{max}} = \left\lfloor \frac{g - 2}{3} \right\rfloor
\]

When \(r = 2 \) then, depending from the genus \(g \), we may have one or two possible isomorphic classes of graphs with the value \(i = i_{\text{max}} \). More precisely:

- When \(g \equiv 0 \mod 3 \) then \(i_{\text{max}} = \frac{g}{3} - 1 \) and the property \((4.10) \) implies that \(p_1 = 0, p_2 = 1 \). Hence there is only one class of exceptional graphs with such \(i_m \equiv i_{\text{max}} \), namely \(S_{i_m,0,1} \).
- When \(g \equiv 1 \mod 3 \) then \(i_{\text{max}} = \left\lfloor \frac{g-2}{3} \right\rfloor = \left\lfloor \frac{g}{3} \right\rfloor - 1 \) and we have \(2p_1 + p_2 = 2 \). There are two possible classes of isomorphic spin graphs with the maximal value of \(i = i_m \): \(S_{i_m,0,2} \) and \(S_{i_m,1,0} \).
- When \(g \equiv 2 \mod 3 \) then \(i_m = \left\lfloor \frac{g-2}{3} \right\rfloor = \left\lfloor \frac{g}{3} \right\rfloor \). Now we must have \(p_1 = p_2 = 0 \) and hence the unique class \(S_{i_m,0,0} \) of graphs with the maximal value \(i = i_m \).

From Pict.4 we see that when \(i = 0 \) then a head \(P \) of the exceptional graph \(S_P \in S_{0,p_1,p_2} \) is not connected to its conjugate \(\tilde{P} \). We may have a situation where either only one pair of conjugate vertices (i.e. \(P_2 \) and \(\tilde{P}_2 \)) is connected or two pairs \(\{P_i, \tilde{P}_i\} \) for \(i = 1, 2 \) are connected. In the first case \(S_P \) belongs to the unique class \(S_{0,0,2} \) and in the latter case we have \(\sigma_2^2(g) \) possible classes \(S_{0,p_1,p_2} \), (with \(p_1 \geq 1 \) and \(k_1 + k_2 = g; \ 2 \leq k_1 \leq k_2 \)) of isomorphic graphs. (Here \(\sigma_2^k(m) \) denotes the number of representations of \(m \) as a sum of \(k \) non-decreasing integers that are grater than or equal to \(l \).) Summarizing, the number of possible graphs with \(i = 0 \) is equal to \(\sigma_2(g) = 1 + \sigma_2^2(g) \).

When \(i > 0 \) then all pairs of conjugate vertices are connected. Since we have \(k_0 = 1 + i \geq 2 \) and \(k_0 \leq k_1 \leq k_2; i + k_1 + k_2 = g \), it is easy to see that the number of all possible classes of exceptional graphs is now given by \(\sigma_3^2(g + 1) \).

The graph \(S_P \) is totally symmetric with respect to all of its vertices (see Pict.5) when \(k_0 = k_1 = k_2 = 1 + i \). This is possible only on a surface whose genus is \(g \equiv 2 \mod 3 \) and \(g = 3i + 2 \geq 5 \). In particular, for \(g = 5 \) this occurs when \(i = i_{\text{max}} = 1, \hat{k} = (k_0, k_1, k_2) = (2, 2, 2) \).

We notice that the cardinality of all possible classes of isomorphic exceptional spin graphs with \(r = 2 \) is
\[
N(2) = \sigma_2(g) + \sigma_3^2(g + 1) = \sigma_3(g + 1)
\]
as expected.
4.2.3. $r = 3$. Let P be a head of an exceptional spin graph S_P with $r = 3$. This means that the section σ_P of the holomorphic bundle ξ_ϵ has the divisor

$$(\sigma_P) = P^{-1}A_P = P^{-1}\tilde{P}^iP_1^{k_1}P_2^{k_2}P_3^{k_3} \quad \text{with} \quad i + k_1 + k_2 + k_3 = g$$

Each isomorphic class of graphs with $r = 3$ is uniquely determined by a quadruple (i, p_1, p_2, p_3) where $p_l = k_l - k_{l-1}$ for $l = 1, 2, 3$. Since

$$(4.12) \quad g = 4i + 3p_1 + 2p_2 + p_3 + 3$$

the genus of a surface that carries such graph must be $g \geq 4$ and the value of $i = k_0 - 1$ may vary from 0 to $i_{\text{max}} = i_m = \left\lfloor \frac{g-3}{4} \right\rfloor$. There are two or one (depending on the genus) isomorphic classes of graphs with $i = i_m$.

- When $g \equiv 3 \text{mod} 4$ then $i_m = \left\lfloor \frac{3}{4} \right\rfloor$ and we have only one class $S_{i_m,0,0,0}$.
- When $g \equiv 2 \text{mod} 4$ then $i_m = \left\lfloor \frac{3}{4} \right\rfloor - 1$ and possible classes with $i = i_m$ are $S_{i_m,1,0,0}$ and $S_{i_m,0,0,3}$.
- When $g \equiv 1 \text{mod} 4$ then $i_m = \left\lfloor \frac{3}{4} \right\rfloor - 1$ again but now we have two possible classes of graphs: $S_{i_m,0,1,0}$ and $S_{i_m,0,0,2}$.
- When $g \equiv 0 \text{mod} 4$ then $i_m = \frac{3}{4} - 1$ and there is unique possible class of exceptional graphs with $i = i_m$, namely $S_{i_m,0,0,1}$.
We observe that only on a surface of genus $g \equiv 3 \mod 4$, $g \geq 7$ we may have an exceptional spin graph whose all pairs of conjugate vertices are connected and the graph is symmetric with respect to all of its vertices (i.e. $k_0 = k_1 = k_2 = k_3 \geq 2$).

When $i = 0$, i.e. when a head P is not connected with its conjugate, then the number of all possible classes of equivalent graphs is equal to $\sigma_3(g)$. More precisely:

- When only one pair P_3 and \tilde{P}_3 of conjugate vertices is connected then we have $\tilde{k}(P) = (1,1,1,g-2) = (1,1,1,1+p_3)$ and $S_P \cong S_{0,0,0,g-3}$.
- When two pairs, P_2, \tilde{P}_2 and P_3, \tilde{P}_3 are connected then there are $\sigma_2(g-1) - 1$ possible isomorphic classes $S_{0,0,p_2,p_3}, p_2 > 0$, of exceptional spin graphs.
- When only a head of an exceptional graph is not connected with its conjugate (i.e. when $p_1 > 0$) then $\tilde{k}(P) = (1,1+p_1,1+p_1+p_2,1+p_1+p_2+p_3) = (k_0,k_1,k_2,k_3)$ with $2 \leq k_1 \leq k_2 \leq k_3$. The number of possible isomorphic classes of such graphs is $\sigma_3^2(g) = \sigma_3(g) - \sigma_2(g-1)$.

When $i > 0$ then all pairs of conjugate vertices are connected. Now, for each $1 \leq i \leq \left[\frac{g-3}{4}\right] = i_{\text{max}}$ there are $\sigma_3^{k_0}(g-i)$ possible classes of isomorphic spin graphs. The set $\{S_{i,p_1,p_2,p_3}\}, i > 0$, of all such classes has $\sigma_3^2(g+1)$ elements. (This number is equal to the number of representations of $g+1$ as a sum $k_0 + k_1 + k_2 + k_3$ of integers that satisfy $2 \leq k_0 \leq k_1 \leq k_2 \leq k_3$.)

Summarizing, the total number $N(3)$ of isomorphic classes of possible exceptional spin graphs with $r = 3$ is equal

\[
N(3) = \sigma_3(g) + \sigma_3^2(g+1) = \sigma_4(g+1)
\]

4.2.4. $r > 3$. Keeping the same notation as above, an exceptional graph S_P on a surface Σ of genus $g \geq r + 1$ belongs to an isomorphic class S_{i,p_1,\ldots,p_r} where $i + k_1 + \ldots + k_r = g$, $1 + i \leq k_1 \leq \ldots \leq k_r$ and

\[
g = (r+1)i + rp_1 + \ldots + 2p_{r-1} + p_r + r
\]
where B_m negative integers and S graph which belongs to a class $\mathcal{S}_{r,p_1,...,p_r}$ class isomomorphic hyperelliptic Riemann surfaces of genus g on a surface Σ not all types of exceptional graphs have to occur. Thus, we may classify hyperelliptic Riemann surfaces of genus g.

$$4 = \sigma_r(g) + \sigma_{r+1}^2(g+1) = \sigma_{r+1}(g+1)$$

For the maximal possible value of r, i.e. for $r = g-1$ this formula gives $N(g-1) = \sigma_g(g+1) = 1$ as expected. We see that the number of all isomorphism classes of exceptional graphs that are possible on a surface Σ of genus g is

$$M = M(g) = \sum_{r=0}^{g-1} n(r) = 1 + \sum_{r=1}^{g-1} \sigma_r(g+1) = 1 + \sum_{m=2}^{g} \sigma_m(g+1)$$

5. Summary

Let Σ be a hyperelliptic Riemann surface and let ξ_e be any even, non singular spin bundle on this surface. The hyperelliptic involution results in the existence of interrelations between some sections of ξ_e. These relations always link merely finite number of meromorphic sections of this bundle, each with a single, simple pole.

In almost all cases the number of such related sections is equal to $2g+2$. In two cases this number is $g+1$ and besides of this, we have finite number of cases when the number of interrelated sections vary. In other words, the bundle ξ_e introduces ϵ-foliation of the surface Σ whose all leaves consist of finite number of points. These points are vertices of spin graphs. Each graph carries all informations about the sections of ξ_e with the unique simple pole at a given vertex of this graph (i.e. at a given point of the leaf).

Almost all leaves of the ϵ-foliation have $2g+2$ points that are vertices of standard graphs. These graphs are isomorphic to each other i.e. they all belong to the unique, (standard) class of spin graphs $\mathcal{S}(g)$. There are two leaves through the Weierstrass points \mathcal{W}, each consisting of $g+1$ points (they are vertices of Weierstrass graphs).

The remaining leaves of the ϵ-foliation are associated with exceptional graphs. The number of non-isomorphic classes of exceptional spin graphs that are possible on a surface of genus g is equal to $M(g)$ (see the formula (4.16)). However, on a given surface Σ not all types of exceptional graphs have to occur. Thus, we may classify hyperelliptic Riemann surfaces of genus g by giving an $M(g)$-tuple of non-negative integers $m_{r,s}$, $r = 0, 1, \ldots, g-1; s = 1, 2, \ldots, N(r)$. Each integer $m_{r,s}$ indicates how many exceptional graphs belonging to a given class of isomorphic graphs, are actually present on a surface. These integers must satisfy the conditions

$$4g = B_0m_0 + \ldots + B_r(m_{r,1} + \ldots + m_{r,N(r)}) + \ldots + B_{g-1}m_{g-1}$$

where $B_r = 2(g - r)$ is the total branch number produced by any exceptional spin graph which belongs to a class $\mathcal{S}_{r,p_1,...,p_r}$ with a given $r = 0, 1, \ldots, g-1$.

This ϵ-foliation of a hyperbolic Riemann surface Σ together with the spin-graph structure of each of its leaf will allow us (in []) to attach to each point P of Σ a concrete spin group G_P.
REFERENCES

[1] Bugajska, K., *Standard and Weierstrass spin groups on hyperelliptic Riemann surfaces*, submitted for publication

[2] Bugajska, K., *Exceptional spin groups on hyperelliptic Riemann surfaces*, submitted for publication

[3] Farkas, H. M., I. Kra, *Theta constants, Riemann Surfaces and the Modular Group*, AMS, GSM vol.37, 2001

[4] Mumford, D., *Tata Lectures on Theta II*, Birkhäuser, Progress in Mathematics vol.43, 1984

[5] Varolin, D., *Riemann surfaces by Way of Complex Analytic Geometry*, AMS, GSM vol.125, 2011

[6] Gunning, R., C., *Lecture on vector bundles over Riemann surfaces*, MNPUP, Princeton, 1967

[7] Miranda, R., *Algebraic curves and Riemann Surfaces*, AMS, GSM vol.5, 1995

[8] Farkas, H., M., I. Kra, *Riemann Surfaces*, Springer-Verlag, GTM vol.71, 1992

Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3