Exercise-Induced Changes in Metabolic Intermediates, Hormones, and Inflammatory Markers Associated With Improvements in Insulin Sensitivity

Kim M. Huffman, MD, PhD
Cris A. Slentz, PhD
Lori A. Bateman, MS
Dana Thompson, PhD
Michael J. Muehlbauer, PhD
James R. Bain, PhD

Robert D. Stevens, PhD
Brett R. Wenner, PhD
Virginia Byers Kraus, MD, PhD
Christopher B. Newgard, PhD
William E. Kraus, MD

OBJECTIVE — To understand relationships between exercise training-mediated improvements in insulin sensitivity (S_I) and changes in circulating concentrations of metabolic intermediates, hormones, and inflammatory mediators.

RESEARCH DESIGN AND METHODS — Targeted mass spectrometry and enzyme-linked immunosorbent assays were used to quantify metabolic intermediates, hormones, and inflammatory markers at baseline, after 6 months of exercise training, and 2 weeks after exercise training cessation ($n = 53$). A principal components analysis (PCA) strategy was used to relate changes in these intermediates to changes in S_I.

RESULTS — PCA reduced the number of intermediates from 90 to 24 factors composed of biologically related components. With exercise training, improvements in S_I were associated with reductions in by-products of fatty acid oxidation and increases in glycine and proline ($P < 0.05, R^2 = 0.39$); these relationships were retained 15 days after cessation of exercise training ($P < 0.05, R^2 = 0.34$).

CONCLUSIONS — These observations support prior observations in animal models that exercise training promotes more efficient mitochondrial β-oxidation and challenges current hypotheses regarding exercise training and glycine metabolism.

Diabetes Care 34:174–176, 2011

From 1Physical Medicine and Rehabilitation, Veterans Affairs Medical Center, Durham, North Carolina; the 2Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, North Carolina; the 3Division of Rheumatology, Department of Medicine, Duke University Medical Center, Durham, North Carolina; the 4Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina; and the 5Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.

Corresponding author: Kim M. Huffman, huffman07@mc.duke.edu.

Received 20 April 2010 and accepted 24 September 2010. Published ahead of print at http://care.diabetesjournals.org on 4 October 2010. DOI: 10.2337/dc10-0709. Clinical trial reg. nos. NCT00200993 and NCT00275149, clinicaltrials.gov.

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Factors 1 (free fatty acids and by-products of fatty acid oxidation), factor 11 (glycine and proline), factor 22 (C20, acylcarnitine), and factor 23 (C18:1, hydroxy-acylcarnitine) (Table 1). **Table 1—Linear regression models for change in insulin sensitivity using backward stepwise variable selection controlling for age, sex, and waist circumference**

Parameter	Partial R^2	P value	F value	SE	R^2	estimate
Age	0.030	0.035	0.01	0.74	0.00	0.010
Sex (men = 0; women = 1)	-0.003	0.023	0.00	0.91	0.04	-0.081
Waist circumference	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 1: free fatty acids and by-products of fatty acid oxidation	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 11: glycine and proline	0.030	0.035	0.01	0.74	0.00	0.010
Factor 22: C20, acylcarnitine	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 23: C18:1, hydroxy-acylcarnitine	0.030	0.035	0.01	0.74	0.00	0.010

Listed metabolite factors are those that remained significant in multivariable regression models. Models were forced to include age, sex, and waist circumference.

RESULTS

Comparing exercise groups with inactivity

Supplementary Table 1 (available in an online appendix at http://care.diabetesjournals.org/cgi/content/full/dc10-0709/DC1) demonstrates mean baseline to posttraining changes in clinical, metabolic, and inflammatory analytes. Significant changes were noted for arachidoyl carnitine (C20), lepntin, and monocyte chemoattractant protein 1 (supplementary Fig. 1, available in an online appendix).

Relationships between changes in metabolic intermediates and S_I

Because we observed a broad range of S_I changes across exercisers (supplementary Fig. 2, available in an online appendix), when evaluating relationships between changes in concentrations of metabolic intermediates and S_I, we chose to focus only on those individuals ($n = 53$) randomly assigned to exercise training.

PCA identified 24 factors, consisting of groups of metabolites and other analytes that changed similarly from baseline to posttraining (supplementary Table 2, available in an online appendix). We found four change factors that were independently associated with change in S_I: factor 1 (free fatty acids and by-products of fatty acid oxidation), factor 11 (glycine and proline), factor 22 (C20, acylcarnitine), and factor 23 (C18:1, hydroxy-acylcarnitine) (Table 1). **Table 1—Linear regression models for change in insulin sensitivity using backward stepwise variable selection controlling for age, sex, and waist circumference**

Parameter	Partial R^2	P value	F value	SE	R^2	estimate
Age	0.030	0.035	0.01	0.74	0.00	0.010
Sex (men = 0; women = 1)	-0.003	0.023	0.00	0.91	0.04	-0.081
Waist circumference	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 1: free fatty acids and by-products of fatty acid oxidation	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 11: glycine and proline	0.030	0.035	0.01	0.74	0.00	0.010
Factor 22: C20, acylcarnitine	-0.003	0.023	0.00	0.91	0.04	-0.081
Factor 23: C18:1, hydroxy-acylcarnitine	0.030	0.035	0.01	0.74	0.00	0.010

Listed metabolite factors are those that remained significant in multivariable regression models. Models were forced to include age, sex, and waist circumference.

CONCLUSIONS—After 6 months of exercise training in a group of 53 middle-aged, overweight and moderately obese, inactive men and women with a significant burden of metabolic syndrome, improvements in S_I with exercise training were associated with reductions in concentrations of circulating free fatty acids and fatty acid by-products and with increased plasma levels of the amino acid glycine and, to a lesser significant extent, proline. Of importance, these relationships were sustained despite 2 weeks of exercise cessation. These findings suggest that by providing an increased energy demand, exercise training either promotes more efficient mitochondrial function and β-oxidation (7) or reduces lipolysis via enhanced insulin action.

Consistent with the former (improved mitochondrial efficiency) is the strong effect on glycine, for which improvements in insulin sensitivity were associated with recovery of glycine concentrations. Glycine conjugates, specifically acylglycines, are used as a means to purge excess metabolic fuels via the urine (8). Thus, one might expect that in an attempt to relieve overload, inefficient mitochondria, glycine-adduct formation depletes the glycine pool as evidenced by our prior reports of cross-sectional associations between lower glycine concentrations and poorer S_I in this population (2). The recovery of glycine in exercising subjects may therefore serve as an index of a return of metabolic effi-
Exercise-induced changes in metabolites

ciency and clearing of incompletely oxidized substrates from the mitochondria.

Acknowledgments — This work was supported by the National Institutes of Health (NIH) National Heart, Lung, and Blood Institute (grant R01-HL-57354 [W.E.K., principal investigator]) and National Institute on Aging (grants P30-AG-028716-01 [Harvey J. Cohen, principal investigator] and AG-028930-01 [Deborah M. Muoio, principal investigator]) and by the Atkins Foundation. K.M.H. was supported by the NIH National Institute of Arthritis & Musculoskeletal & Skin Diseases (grant K23-AR-059404) and by an American College of Rheumatology Research and Education Foundation (ACR-REF)/Association of Specialty Professors (ASP) Junior Career Development Award in Geriatric Medicine funded via Atlantic Philanthropies, ACR-REF, the John A. Hartford Foundation, and ASP.

No potential conflicts of interest relevant to this article were reported.

K.M.H. performed data analysis, participated in conceptual design, participated in key discussions, and wrote the manuscript. C.A.S. and L.A.B. participated in primary data collection, participated in key discussions, and revised/edited the manuscript. D.T., M.J.M., J.R.B., R.D.S., and B.R.W. performed laboratory analyses, participated in key discussions, and revised/edited the manuscript. V.B.K., C.B.N., and W.E.K. participated in conceptual design, participated in key discussions, and revised/edited the manuscript.

We thank the rest of the STRRIDE research team at East Carolina University and Duke University. We appreciate technical support from Lauren C. Nahloff and Erin Chu and helpful discussions from Dr. Deborah M. Muoio, all affiliated with the Sarah W. Stedman Nutrition and Metabolism Center at Duke University Medical Center.

References

1. Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes 2009;58:2429–2443
2. Hullman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese inactive men and women. Diabetes Care 2009;32:1678–1683
3. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlott O, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009;9:311–326
4. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, Goh DL, Ilkayeva OR, Wenner BR, Bain JR, Lee JJ, Lim SC, Khoo CM, Shah SH, Newgard CB. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 2010;53:757–767
5. Shah SH, Hauser ER, Bain JR, Muehlbauer MJ, Haynes C, Stevens RD, Wenner BR, Dowdy ZE, Granger CB, Ginsburg GS, Newgard CB, Kraus WE. High heritability of metabolomic profiles in families burdened with premature cardiovascular disease. Mol Syst Biol 2009;5:258
6. Houmard JA, Tanner CJ, Slentz CA, Duscha BD, McCartney JS, Kraus WE. Effect of the volume and intensity of exercise training on insulin sensitivity. J Appl Physiol 2004;96:101–106
7. Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM. Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005;280:33588–33598
8. Costa CG, Guérand WS, Struys EA, Holwerda U, ten Brink HJ, Tavares de Almeida I, Duran M, Jakobs C. Quantitative analysis of urinary acylglycines for the diagnosis of β-oxidation defects using GC-NCl-MS. J Pharm Biomed Anal 2000;21:1215–1224