Daisuke Inotani1 · Manfred Sigrist2 · Yoji Ohashi1

Superfluid properties of one-component Fermi gas with an anisotropic \textit{p}-wave interaction

01.07.2012

Keywords ultracold Fermi gas, \textit{p}-wave superfluidity

Abstract We investigate superfluid properties and strong-coupling effects in a one-component Fermi gas with an anisotropic \textit{p}-wave interaction. Within the framework of the Gaussian fluctuation theory, we determine the superfluid transition temperature T_c, as well as the temperature T_0 at which the phase transition from the \textit{p}$_x$-wave pairing state to the \textit{p}$_x$ + \textit{i}p$_y$-wave state occurs below T_c. We also show that while the anisotropy of the \textit{p}-wave interaction enhances T_c in the strong-coupling regime, it suppresses T_0.

PACS numbers: 03.75.Ss,05.30.Fk,67.85.-d

1 Introduction

Since the realization of the \textit{s}-wave superfluid state in 40K and 6Li Fermi gases, the possibility of \textit{p}-wave superfluid Fermi gas has attracted much attention both theoretically and experimentally1,2,3,4,5,6,7,8,9,10,11,12,13. A tunable \textit{p}-wave pairing interaction associated with a \textit{p}-wave Feshbach resonance has been realized in 40K1,2 and 6Li3,4 Fermi gases. It has been also observed in a 40K Fermi gas that a magnetic dipole-dipole interaction lifts the degeneracy of the \textit{p}-wave Feshbach resonance, leading to different resonance magnetic fields between the \textit{p}$_x$-component and the other \textit{p}$_y$ and \textit{p}$_z$ components, under an external magnetic field applied in the \textit{x}-direction1,2. This split naturally leads to the anisotropy of the three \textit{p}-wave interaction channels as $U_x \neq U_y = U_z$ (where U_j is the interaction strength in the \textit{p}$_j$-channel). In this case, a phase transition from the \textit{p}$_x$-wave pairing state to the \textit{...
$p_x + ip_y$-wave one has been theoretically predicted. Since such a phase transition never occurs in the case of s-wave superfluid, the realization of the p-wave superfluid Fermi gas would be useful for the study of a phase transition between different pairing states, from the weak-coupling regime to the strong-coupling limit in a unified manner.

Pairing fluctuations are usually suppressed in the superfluid phase, because of the opening of single-particle excitation gap. However, in the present case, even in the p_x-wave superfluid phase below T_c, pairing fluctuations in the $p_x + ip_y$-channel would become strong near T_0, especially in the intermediate coupling regime. Thus, the p-wave superfluid Fermi gas is also an interesting system to study strong pairing fluctuations appearing in the superfluid phase.

In this paper, we investigate the phase transition between the p_x-wave state and $p_x + ip_y$-wave state in a superfluid Fermi gas with a p-wave pairing interaction. So far, this problem has been examined within the Ginzburg-Landau theory. In this paper, we employ a fully microscopic approach, including strong-coupling effects within the Gaussian fluctuation approximation. We determine the superfluid phase transition temperature T_c, as well as the transition temperature T_0 from the p_x-wave state to $p_x + ip_y$-wave state below T_c.

2 Gaussian fluctuation theory for p-wave superfluid Fermi gas

We consider a one-component Fermi gas with a p-wave pairing interaction, described by the Hamiltonian

$$H = \sum_p \xi p c_p^\dagger c_p - \frac{1}{2} \sum_{pp'q=x,y,z} p_i U_i p'_i c_p^\dagger - \frac{1}{2} c_{p+\frac{q}{2}}^\dagger c_{p+\frac{q}{2}} - \frac{1}{2} c_{p'-\frac{q}{2}}^\dagger c_{p'-\frac{q}{2}}. \quad (1)$$

Here, c_p^\dagger is the creation operator of a Fermi atom with the kinetic energy $\xi_p = p^2/(2m) - \mu$, measured from the chemical potential μ. $-p_i U_i p'_i$ ($i = x, y, z$) are the three components of an assumed p-wave pairing interaction. In this paper, we ignore detailed Feshbach mechanism, and simply treat U_i as a tunable parameter. However, we include the anisotropy of the interaction by the dipole-dipole interaction. That is, assuming that an external magnetic field is applied in the x-direction, we set $U_x > U_y = U_z$.

The strength of the p-wave interaction is conveniently measured in terms of the scattering volume v_i ($i = x, y, z$) and the effective range k_0, that are given by, respectively,

$$\frac{4\pi v_i}{m} = -\frac{U_i}{3 - U_i \sum_p \frac{p^2}{2\xi_p}}, \quad (2)$$

$$k_0 = -\frac{4\pi}{m^2} \sum_p \frac{p^2}{2\xi_p^2} = -\frac{4}{\pi} p_c, \quad (3)$$

where p_c is a momentum cutoff. We also introduce the anisotropy parameter,

$$\delta v_p^{-1} = v_x^{-1} - v_y^{-1}.$$
Fluctuation correction Ω_{Gauss} to the thermodynamic potential Ω in the p-wave Gaussian fluctuation theory. The solid line and the dashed line describe the 2×2-matrix single-particle thermal Green’s function G_0 in the mean field theory, and the p-wave interaction $-p_i U_j p'_j$ ($i = x, y, z$), respectively. τ_{\pm} is given by $\tau_{\pm} = \tau_1 \pm i \tau_2$, where τ_j is the Pauli matrix.

We include pairing fluctuations in the p-wave Cooper channel within the Gaussian fluctuation theory. In this strong-coupling theory, the thermodynamic potential Ω consists of the mean field part Ω_{MF} and the fluctuation part Ω_{Gauss}. Ω_{MF} is given by

$$\Omega_{\text{MF}} = \frac{1}{2} \sum_{i=x,y,z} d_i^\dagger U_i^{-1} d_i + \frac{1}{2} \sum_p (\xi_p - E_p) - \frac{1}{\beta} \sum_p \ln \left[1 + e^{-\beta E_p} \right].$$ (4)

Here, $d = (d_x, d_y, d_z)$ is the p-wave superfluid order parameter, and $E_p = \sqrt{\xi_p^2 + |d \cdot p|^2}$ describes Bogoliubov single-particle excitations. The fluctuation part, Ω_{Gauss}, is diagrammatically given in Fig. 1. Summing up these diagrams, one has

$$\Omega_{\text{Gauss}} = \frac{1}{2\beta} \ln \det \left[1 + \hat{W}^{\alpha\beta}(q, i\nu_n) \right],$$ (5)

where $\hat{W}^{\alpha\beta}_{ij} = U_i \delta_{ij} \delta_{\alpha\beta}$ ($\alpha, \beta = 1, 2$ and $i, j = x, y, z$). $\hat{\pi}^{\alpha\beta}_{ij}$ is the correlation function, having the form,

$$\pi_{ij}^{11}(q, i\nu_n) = \frac{1}{\beta} \sum_p p_i p_j \text{Tr} \left[\tau_- G_0 \left(p + \frac{q}{2}, i\omega_n \right) \tau_+ G_0 \left(p - \frac{q}{2}, i\omega_n - i\nu_n \right) \right],$$ (6)

$$\pi_{ij}^{12}(q, i\nu_n) = \frac{1}{\beta} \sum_p p_i p_j \text{Tr} \left[\tau_- G_0 \left(p + \frac{q}{2}, i\omega_n \right) \tau_- G_0 \left(p - \frac{q}{2}, i\omega_n - i\nu_n \right) \right],$$ (7)

$$\pi_{ij}^{22}(q, i\nu_n) = \pi_{ij}^{11}(q, i\nu_n),$$ (8)

$$\pi_{ij}^{21}(q, i\nu_n) = \pi_{ij}^{12}(q, i\nu_n).$$ (9)

Here, $G_0(p, i\omega_n)$ is the 2×2-matrix single-particle thermal Green’s function in the mean field theory, given by

$$G_0(p, i\omega_n) = \frac{1}{i\omega_n - \xi_p \tau_3 + \text{Re}(d \cdot p) \tau_1 + \text{Im}(d \cdot p) \tau_2},$$ (10)

where τ_j ($j = 1, 2, 3$) are the Pauli matrices acting on the particle-hole space, and $\tau_{\pm} = \tau_1 \pm i \tau_2$.

Fig. 1 Fluctuation correction Ω_{Gauss} to the thermodynamic potential Ω in the p-wave Gaussian fluctuation theory. The solid line and the dashed line describe the 2×2-matrix single-particle thermal Green’s function G_0 in the mean field theory, and the p-wave interaction $-p_i U_j p'_j$ ($i = x, y, z$), respectively. τ_{\pm} is given by $\tau_{\pm} = \tau_1 \pm i \tau_2$, where τ_j is the Pauli matrix.
As usual, we determine the superfluid order parameter \(d \) by solving the gap equation

\[
d_i = \sum_p U_p d \cdot p \frac{\text{tanh} \beta E_p}{2},
\]

(11)

together with the equation for the number \(N \) of Fermi atoms,

\[
N = -\frac{\partial \Omega}{\partial \mu} = \frac{1}{2} \sum_p \left[1 - \frac{\xi_p}{E_p} \text{tanh} \frac{\beta E_p}{2} \right]
- \frac{1}{2\beta} \sum_{q,i} \text{Tr} \left[(W^{-1} + \hat{\pi}(q,i)\nu_n)^{-1} \frac{\partial \hat{\pi}(q,i)\nu_n}{\partial \mu} \right],
\]

(12)

and determine \(d \) and the Fermi chemical potential \(\mu \) self-consistently.

Since we are taking \(U_x > U_y = U_z \), the superfluid phase transition first occurs in the \(p_x \)-wave Cooper channel. Thus, the equation for the superfluid phase transition temperature \(T_c \) is given by setting \(i = x \) and \(d \to 0 \) in Eq. (11), as

\[
1 = U_x \sum_p \frac{p_x^2}{2\xi_p} \text{tanh} \frac{\beta \xi_p}{2}.
\]

(13)

We solve this equation, together with the number equation (12) with \(q = 0 \), to determine \(T_c \).
Fig. 3 (Color online) Effects of anisotropy \((\delta v^{-1}_p - v^{-1}_x - v^{-1}_y)\) on the superfluid transition temperature \(T_c\) and the phase transition temperature \(T_0\) from the \(p_x\)-wave state to the \(p_x + ip_y\)-wave state. The solid triangle and circle, respectively, show the critical value of \((\delta v_p p_F^3)^{-1}\) where \(T_0\) vanishes with \((v_x p_F^3)^{-1} = 4.0, -4.0\), calculated within the mean field theory.

3 Superfluid phase transition and transition between \(p_x\)-wave and \(p_x + ip_y\)-wave states

Figure 2 shows \(T_c\) as a function of the interaction strength. In this figure, the increase of the inverse scattering volume \((v_x p_F^3)^{-1}\) corresponds to the increase of the interaction strength. Starting from the weak-coupling regime, \(T_c\) gradually increases with increasing the strength of the pairing interaction, and it approaches a constant value when \((v_x p_F^3)^{-1} > \sim 0\). Apart from the values of \(T_c\), the overall behavior of \(T_c\) is close to the \(s\)-wave case.

In the weak-coupling regime, Fig. 2 shows that the anisotropy of the pairing interaction (which is described by the anisotropy parameter \(\delta v^{-1}_p = v^{-1}_x - v^{-1}_y\)) is not crucial for \(T_c\). In this regard, we note that, since the \(T_c\) equation (13) does not explicitly involve \(U_y\) nor \(U_z\), they only affect \(T_c\) through the Fermi chemical potential \(\mu\) determined by the number equation (12). However, the magnitude of \(\mu\) is actually close to the Fermi energy in the weak-coupling regime because of weak pairing fluctuations. Thus, the superfluid phase transition in this regime is only dominated by \(U_x\) (or \(v_x\)), so that \(T_c\) is insensitive to \(\delta v^{-1}_p = v^{-1}_x - v^{-1}_y\).

The anisotropy of the \(p\)-wave pairing interaction gradually becomes important, as one goes away from the weak-coupling regime. To understand this, it is convenient to consider the strong coupling limit. In this extreme case, the system may be viewed as a Bose gas, consisting of three kinds of tightly bound molecules that are formed by \(U_x, U_y,\) and \(U_z\) pairing interactions. \(T_c\) is then dominated by the Bose-Einstein condensation of one of the three components having the largest number \(N_B\) of Bose molecules. While \(N_B = N/6\) in the isotropic case (where \(N\) is the number of the Fermi atoms), \(N_B\) approaches \(N/2\) with increasing the magnitude of \(U_x\) compared with the other two interactions. Since the BEC phase transition temper-
nature of an ideal Bose gas is proportional to $N_B^{2/3}$, T_c increases with increasing the anisotropy parameter $\delta v^{-1} = v_x^{-1} - v_y^{-1}$.

Although the p_x-wave superfluid phase is realized near T_c, this pairing symmetry changes into the $p_x + ip_y$-wave at a certain temperature ($\equiv T_0$) below T_c, as shown in Fig. 2. While T_c is larger for a larger value of the anisotropy parameter δv^{-1}, T_0 for $(\delta v p_B^3)^{-1} = 0.4$ is found to be lower than that for $(\delta v p_B^3)^{-1} = 0.1$.

To see this more clearly, we show the $(\delta v p_B^3)^{-1}$-dependence of T_0 in Fig. 3. When the p-wave interaction is very anisotropic ($U_x \gg U_y = U_z$), the p_x-wave pairing becomes more and more favorable, so that the $p_x + ip_y$-wave state is suppressed.

Although it is difficult to examine the region far below T_c based on the present strong-coupling theory because of computational problems, we briefly note that a critical value of δv^{-1} at which T_0 vanishes can be obtained within the mean field theory.

4 Summary

To summarize, we have investigated the superfluid properties of a one-component Fermi gas with an anisotropic p-wave interaction. Within the framework of the Gaussian fluctuation theory, we determined the superfluid transition temperature T_c, as well as the phase transition temperature T_0 from the p_x-wave pairing state to the $p_x + ip_y$-wave state. While the anisotropy of the p-wave pairing interaction ($U_x > U_y = U_z$) is not crucial for T_c in the weak-coupling regime, we showed that this anisotropy enhances T_c in the strong-coupling regime. We also showed that, in contrast to the case of T_c, the anisotropy of the pairing interaction suppresses T_0.

Acknowledgements We would like to thank R. Watanabe, S. Tsuchiya, S. Watabe, T. Kashimura and R. Hanai for useful discussions. This work was supported by Grant-in-Aid from JSPS. Y. O. was supported by Grant-in-Aid for Scientific research from MEXT in Japan (22540412, 23104723, 23500056).

References

1. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. 90, 053201 (2003).
2. C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev. A 69, 042712 (2004).
3. J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702(R) (2004).
4. C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach, W. Ketterle, A. Simon, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys. Rev. A 71, 045601 (2005).
5. V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett. 94, 230403 (2005).
6. V. Gurarie, L. Radzihovsky, Ann. Phys. 322, 2 (2007).
7. Y. Ohashi, Phys. Rev. Lett. **94**, 050403 (2005).
8. M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. **96**, 040402 (2006).
9. S. S. Botelho and C. A. R. Sá de Melo, J. Low Temp. Phys. **140**, 409 (2005).
10. T. L. Ho and R. B. Diener, Phys. Rev. Lett. **94**, 090402 (2005).
11. C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Nature (London) **424**, 47 (2003).
12. J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. **98**, 200403 (2007).
13. Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami, M. Ueda, and T. Mukaiyama, Phys. Rev. Lett. **101**, 100401 (2008).