Outline, Divergence Times, and Phylogenetic Analyses of Trechisporales (Agaricomycetes, Basidiomycota)

Zhan-Bo Liu¹, Ying-Da Wu¹,², Heng Zhao¹, Ya-Ping Lian¹, Ya-Rong Wang¹, Chao-Ge Wang¹, Wei-Lin Mao¹ and Yuan Yuan¹*

¹ School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China, ² Key Laboratory of Forest and Grassland Fire Risk Prevention, Ministry of Emergency Management, China Fire and Rescue Institute, Beijing, China

Phylogenetic analyses inferred from the nuc rDNA ITS1-5.8S-ITS2 (ITS) data set and the combined 2-locus data set [5.8S + nuc 28S rDNA (nLSU)] of taxa of Trechisporales around the world show that Sistotremastrum family forms a monophyletic lineage within Trechisporales. Bayesian evolutionary and divergence time analyses on two data sets of 5.8S and nLSU sequences indicate an ancient divergence of Sistotremastrum family from Hydnodontaceae during the Triassic period (224.25 Mya). Sistotremastrum family is characterized by resupinate and thin basidiomata, smooth, verruculose, or odontoid-semiporoid hymenophore, a monomitic hyphal structure, and generative hyphae bearing clamp connections, the presence of cystidia and hyphidia in some species, thin-walled, smooth, inamyloid, and acyanophilous basidiospores. In addition, four new species, namely, Trechispora dentata, Trechispora dimitiella, Trechispora fragilis, and Trechispora laevispora, are described and illustrated. In addition, three new combinations, namely, Brevicellicium daweishanense, Brevicellicium xanthum, and Sertulicium limonadense, are also proposed.

Keywords: Hydnodontaceae, phylogenetic analysis, Trechispora, taxonomy, wood-rotting fungi

INTRODUCTION

Trechisporales K.H. Larss. was established by Hibbett et al. (2007). Most species in this order are corticioid fungi with smooth, grandinioid, odontioid, or hydnoid hymenophores, and others are polypores. All species have a monomitic or dimitic hyphal system with generative hyphae bearing clamp connections, and many species have rhizomorphs (mycelial cords) (Larsson, 2007).

At present, there is only an acknowledged and a named family belonging to Trechisporales, i.e., Hydnodontaceae Jülich. Hydnodontaceae contains 11 genera now, namely, Brevicellicium K.H. Larss. and Hjortstam, Dextrinocystis Gilb. and M. Blackw., Fibrodontia Parmasto, Pteridomyces Jülich, Luellia K.H. Larss. and Hjortstam, Porponyces Jülich, Scytinopogon Singer, Subulicyctidium Parmasto, Suillusporium Pouzar, Trechispora P. Karst., and Tubulicium Oberw (Larsson, 2007; Spirin et al., 2021).

Trechispora is the genus type of Trechisporales and Hydnodontaceae. It is the largest genus in this order, with more than 50 accepted species (Meiras-Ottoni et al., 2021; Zhao and Zhao, 2021). Identification keys for Trechispora species recorded in China and Brazil have been provided by
some fungal taxonomists (Chikowski et al., 2020; Meiras-Ottoni et al., 2021; Zong et al., 2021). *Trechispora* was typified with *Trechispora onusta* P. Karst. [= *Trechispora hymenocystis* (Berk. and Broome) K.H. Larss.] (Karsten, 1890). It is characterized by the resupinate basidiomata (a few species have stipitate, flabellate, and effused–reflexed basidiomata) with smooth granulinioid, odontioid, hydnoid, or poroid hymenophores, a monomitic or dimitic hyphal structure with clamped generative hyphae and smooth to verrucose or aculate basidiopores (Larsson, 1992; Larsson et al., 2004). Most species in *Trechispora* are soil-dwelling (Larsson et al., 2004). One remarkable character is the presence of ampullate septa on the subicular and especially on some hyphae of the mycelial cords. Above all, ampullate septa are only known from *Scytinopogon*, *Trechispora*, and *Porpomyces mucidus* (Pers.) Jülich within Trechisporales (Furtado et al., 2021; Meiras-Ottoni et al., 2021).

Larson (2007) used the term "Sistotremastrum family" for the first time to accommodate *Sistotremastrum suecicum* Litsch. ex J. Erikss. and *Sistotremastrum niveocremeum* [= *Sertulicium niveocremeum* (Höhn. and Litsch.) Spirin and K.H. Larss.]. Since then, "Sistotremastrum" family has been adopted by some taxonomists (Tellieria et al., 2013; Liu et al., 2019). In this work, the phylogeny of Trechisporales is carried out based on combined 5.8S + nLSU sequences. In addition, Bayesian evolutionary and divergence time analyses are also carried out to indicate the divergence time of Trechisporales, Hydnodontaceae, and *Sistotremastrum* family. We outline the *Sistotremastrum* family and discuss the difference between *Hydnodontaceae* and *Trechisporales*.

During investigations on the diversity of wood-rotting fungi, seven resupinate specimens were collected from China and Malaysia. Their morphology corresponds to the concept of *Trechispora*. To confirm their affinity, phylogenetic analyses based on the ITS sequences are carried out. Both morphological characteristics and molecular evidence demonstrate that these seven resupinate specimens represent the four new species of *Trechispora*.

In addition, we downloaded the type sequences of *Trechispora daweishanensis* C.L. Zhao, *Trechispora xantha* C.L. Zhao, and *Sistotremastrum limonadense* G. Gruhn and P. Alvarado from GenBank. We also studied the type specimens of *T. daweishanensis* and *T. xantha*. In conclusion, *T. daweishanensis* and *T. xantha* were transferred to *Brevicellicium*, while *S. limonadense* was transferred to *Sertulicium*.

MATERIALS AND METHODS

Morphological Studies

Macro-morphological descriptions are based on field notes and dry herbarium specimens. Microscopic structures are photographed using a Nikon Digital Sight DS-L3 (Japan) or Leica ICC50 HD (Japan) camera. Microscopic measurements are made from slide preparations of dry tissues stained with 1% Phloxine B (C$_{20}$H$_{24}$Br$_{2}$Cl$_{2}$K$_{2}$O$_{3}$) (Fan et al., 2021). We also use other reagents, such as Cotton Blue and Melzer’s reagent following Dai’s (2010) study. Spore measurements include both with ornamentation and without ornamentation. The following abbreviations are used: KOH = 5% potassium hydroxide; CB = Cotton Blue; CB(+) = weakly cyanophilous; CB− = acyanophilous in Cotton Blue; IKI = Melzer’s reagent; IKI− = neither amyloid nor dextrinoid in Melzer’s reagent; L = mean spore length (arithmetic average of all spores including ornamentation); W = mean spore width (arithmetic average of all spores including ornamentation); Q = a variation in the L/W ratios between the specimens studied; $L′$ = mean spore length (arithmetic average of all spores excluding ornamentation); $W′$ = mean spore width (arithmetic average of all spores excluding ornamentation); $Q′$ = a variation in the $L′/W′$ ratios between the specimens studied; n (a/b) = the number of spores (a) measured from a given number of specimens (b). When presenting spore size variation, 5% of measurements are excluded from each end of the range and these values are given in parentheses. Special color terms follow Petersen (1996). Herbarium abbreviations follow Thiers (2018). The studied specimens are deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC), and the herbarium of Southwest Forestry University (SWFC).

DNA Extraction, Polymerase Chain Reaction Amplification, and Sequencing

Total genomic DNA from the dried specimens is extracted by a CTAB rapid plant genome extraction kit (Aidlab Biotechnologies Company Limited, Beijing, China) according to the manufacturer’s instructions with some modifications (Liu and Yuan, 2020; Du et al., 2021). The ITS regions are amplified with the primers ITS4 and ITS5 (White et al., 1990). The nLSU regions are amplified with the primers LR0R and LR7 (Vilgalys and Hester, 1990).

The polymerase chain reaction (PCR) procedure for ITS is as follows: initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 58°C for 45 s, and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94°C for 1 min, followed by 35 cycles at 94°C for 30 s, 48°C for 1 min, and 72°C for 1.5 min, and a final extension of 72°C for 10 min (Zhao et al., 2015; Liu and Dai, 2021). The PCR products are purified and sequenced in the Beijing Genomics Institute, China, with the same primers used in the PCR reactions.

Phylogenetic Analyses

Two combined matrices, an ITS1-5.8S-ITS2 (ITS) data set and a two-gene data set (5.8S + nLSU), are used for phylogenetic analyses. Phylogenetic analyses are performed with maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI) methods in the ITS data set. Phylogenetic analyses are performed with ML and BI methods in the combined two-gene data set (5.8S + nLSU). Species and strain sequences are adopted partly from 28S- and ITS-based tree topologies established by Meiras-Ottoni et al. (2021) and Spirin et al. (2021). New sequences generated in this study, along with reference sequences retrieved from GenBank (Table 1), are
TABLE 1 Information of taxa used in phylogenetic analyses.

Species	Collector ID (herbarium ID)	GenBank accession no.	
		ITS	nLSU
Auricularia sp.	PBM 2295	DQ200918	AF634277
Breviceillium atlanticum	LISU 178566 (holotype)	HE963777	HE963774
Breviceillium atlanticum	LISU 178590	HE963775	HE963776
Breviceillium daweishanense	CLZhao 18255 (SWFC)	MW302338	MW293867
Breviceillium daweishanense	CLZhao 17860 (SWFC, holotype)	MW302337	MW293866
Breviceillium exile	MA-Fungi 26554 (holotype)	HE963777	HE963778
Breviceillium olivascens	KHL 8571 (GB)	HE963792	HE963793
Breviceillium olivascens	MA-Fungi 23498	HE963877	HE963878
Breviceillium xanthum	CLZhao 17781 (SWFC)	MW302340	MW293869
Breviceillium xanthum	CLZhao 2632 (SWFC, holotype)	MW302339	MW293868
Dextrinocystis calamicola	He 5700 (BJFC)	MK204534	MK204547
Dextrinocystis calamicola	He 5693 (BJFC)	MK204533	MK204546
Exidia recisa	EL 15-98 (GB)	AF347112	AF347112
Exidiopsis calcea	MW 331	AF291280	AF291326
Hyphodontia floccosa	TFMF 24944 (holotype)	KG282874	KG282875
Hyphodontia subalutacea	DAI 12692 (BJFC)	KG282874	KG282875
Porpomyces mucidus	Cui 5183 (BJFC)	KG282874	KG282875
Porpomyces submucidus	Cui 5183 (BJFC)	KG282874	KG282875
Pteridomyces gabini	GB0150230	KG282874	KG282875
Pteridomyces gabini	Berrinicha 8122 (GB)	KG282874	KG282875
Scytinopogon angulispinosus	TFB13611	KG282874	KG282875
Scytinopogon chartaceum	JQ684661	KG282874	KG282875
Scytinopogon pallescens	He 5192 (BJFC)	KG282874	KG282875
Sertulicium chilense	MA-Fungi 86368 (holotype)	KG282874	KG282875
Sertulicium granuliferum	He 3338	KG282874	KG282875
Sertulicium jacksonii	Spiro 10425 (H)	KG282874	KG282875
Sertulicium lateclavigerum	LY 13467	KG282874	KG282875
Sertulicium limonadense	LIP 0001683 (holotype)	MT180961	MT180978
Sertulicium limonadense	He 6276 (BJFC)	OK296849*	OK296847*
Sertulicium rivocremnereum	KHL13727 (GB)	MN937563	MN937563
Sertulicium vernale	Soderholm 3886 (H, holotype)	MT005311	MT064174
Sistotheastrum aculeatum	Mettinen 10360.1 (H)	MN937563	MN937563
Sistotheastrum aculeatum	Cui 8401 (BJFC)	MN937563	MN937563
Sistotheastrum aculeocrepitans	KHL 16004 (URM)	MN937563	MN937563
Sistotheastrum confusum	Motato-Vasquez 894 (SP, holotype)	MN937563	MN937563
Sistotheastrum denticulatum	LIP 0001413 (holotype)	MN937563	MN937563
Sistotheastrum fibrillosum	LY 13467	KG937563	KG937563
Sistotheastrum fibrillosum s. l.	GUY113-119 (GB)	KG937563	KG937563
Sistotheastrum fibrillosum s. l.	KHL 16988 (MG)	KG937563	KG937563
Sistotheastrum geminum	Mettinen 14333 (MAB, holotype)	KG937563	KG937563
Sistotheastrum induratum	Spiro 8598 (H, holotype)	MT002324	MT664173
Sistotheastrum mendax	KHL 12022 (O, holotype)	MN937570	MN937570
Sistotheastrum rigidum	Motato-Vasquez 833 (SP, holotype)	MN937570	MN937570
Sistotheastrum suecicum	Kunntu 5969 (H)	MT002335	MT002335
Sistotheastrum suecicum	Mettinen 14550.1 (H)	MT002335	MT002335
Sistotheastrum suecicum	KHL 11849 (GB)	MN937571	MN937571
Sistotheastrum suigerans	Fonneland 2011-78 (O, holotype)	MN937572	MN937572
Sistotheastrum suigerans	Spiro 8778 (H)	MN937572	MN937572
Subuckystinum tropicalum	He 3968 (BJFC)	MK204531	MK204544
Sulphoponum cystidiatum	Spiro 3830 (H)	MN937573	MN937573
Trechispora alnicola	AFTOL-ID 665	DG411529	AF347084
Trechispora araneosa	KHL8570 (GB)	AF347084	AF347084
Trechispora bambuicolora	CLZhao 3302 (SWFC)	MG546021	MG520171
Trechispora bispore	CBS 142.63 (holotype)	MG585241	MG58642
Trechispora cohaerens	TU 110332	UD808249	–
Trechispora cohaerens	TU 115568	UD8018241	–
Trechispora confinis	KHL11084 (GB)	AF347081	AF347081

(Continued)
TABLE 1 | (Continued)

Species	Collector ID (herbarium ID)	GenBank accession no.	
		ITS	nLSU
Trechispora copiosa	AMO456	MN701019	MN687976
Trechispora copiosa	AMO422 (holotype)	MN701013	MN687971
Trechispora cyathæse	FR-0219442	UB024014	UB024014
Trechispora cyathæse	FR-0219443 (holotype)	UB024015	UB024015
Trechispora dentata	Dai 22565 (BJFC)	**OK298649**	**OM049408**
Trechispora dimitiella	Dai 21931 (BJFC)	**OK298649**	**OK298649**
Trechispora echinospora	MA-Fungi 02485 (holotype)	OK298492	OK298948
Trechispora echinospora	KHL 8793 (GB)	AF347089	AF347089
Trechispora echinospora	KHL 8451 (GB)	AF347082	AF347082
Trechispora fimbriata	CLZhao 9796 (SWFC)	MW544024	MW540174
Trechispora fimbriata	CLZhao 4154 (SWFC, holotype)	MW544023	MW540173
Trechispora fissurata	CLZhao 4571 (SWFC, holotype)	MW544027	MW540177
Trechispora fissurata	CLZhao 9795 (GB)	MW544026	MW540176
Trechispora fragilis	Dai 20535 (BJFC)	**OK298649**	**OK298650**
Trechispora gelatinosa	AMO1139 (holotype)	MN701021	MN687978
Trechispora gelatinosa	AMO824	MN701020	MN687977
Trechispora havencampi	SFSU DED8300 (holotype)	NR_154418	NG_059993
Trechispora hymenocystis	TL 11112 (holotype)	UB000078	UB000078
Trechispora hymenocystis	KHL 8795 (GB)	AF347090	AF347090
Trechispora incisa	GEBO090648	KU747095	KU747087
Trechispora incisa	GEBO090521	–	–
Trechispora kavinioides	KGN 181002 (GB)	AF347086	AF347086
Trechispora laevispora	Dai 21655 (BJFC)	**OK2986495**	**OM108710**
Trechispora miniapora	MEXU 28300 (holotype)	MK288868	MK328894
Trechispora miniapora	MEXU 28301	MK288869	MK328895
Trechispora mollis	URM 85884 (holotype)	MK184545	MK188003
Trechispora mollusca	DILL2011-186 (CFMP)	–	–
Trechispora mollusca	DILL2010-077 (CFMP)	–	–
Trechispora nivea	GEBO102684	KU747096	AY586720
Trechispora nivea	MA-Fungi 74044	JX082832	JX082833
Trechispora papillosa	AM0713	MN701022	MN687979
Trechispora papillosa	AM0785 (holotype)	MN701023	MN687981
Trechispora regularis	KHL10881 (GB)	AF347087	AF347087
Trechispora rigida	URM 85754	MT-006381	MH279999
Trechispora sp.	AMQ799	MN701008	MN687969
Trechispora sp.	AMQ440	MN701006	MN687967
Trechispora sp.	KHL16968 (C)	MH290763	MH290763
Trechispora sp.	Dai 22173 (BJFC)	**OK2986496**	**OK298651**
Trechispora sp.	Dai 22174 (BJFC)	**OK2986497**	**OK298652**
Trechispora stevensioni	TU 115499	UB016467	UB016467
Trechispora stevensioni	MA-Fungi 70669	JX082841	JX082842
Trechispora subsphaerospora	KHL 8511 (GB)	AF347080	AF347080
Trechispora termophilæ	AM0396 (holotype)	MN701025	MN687983
Trechispora termophilæ	AM0309	MN701024	MN687962
Trechispora torendæ	URM 85886 (holotype)	MK180004	MH180004
Tubulicium raphidisporum	He 3191 (BJFC)	MK204537	MK204545

*Newly generated sequences for this study. New species and new combinations or putatively new species are in bold.

aligned by MAFFT 7 (Katoh et al., 2019\(^1\)) using the “G-INS-i” strategy and manually adjusted in BioEdit (Hall, 1999). Unreliably aligned sections are removed before analyses and attempts are made to manually inspect and improve alignment. The data matrix is edited in Mesquite v3.70 software (Maddison and Maddison, 2021). The sequence alignment is deposited at TreeBase (submission ID 29141 and 29142). Sequences of *Auricularia* sp., *Exidia recisa* (Ditmar) Fr., and *Exidiopsis calcea* (Pers.) K. Wells are included in phylogenetic analyses. They belong to another order, Auriculariales Bromhead. The order is close to Trechisporales (Sulistyo et al., 2021). We add these three sequences in the combined two-gene data set (5.8S + nLSU) to demonstrate that Trechisporales forms a strongly supported sister clade to Auriculariales. Sequences of *Hyphodontia floccosa*
Brevicellicium atlanticum analysis. Two sequences of ∗ and the tree construction procedure is performed in PAUP.

Approaches to phylogenetic analysis follow Liu and Dai (2021), used as outgroups to root trees in the ITS analysis. Tellería, M. Dueñas and M.P. Martín obtained from GenBank are used as outgroups to root trees in the 5.8S analysis.

Liu et al. Outline of Trechisporales (Agaricomycetes, Basidiomycota)

Bayesian posterior probabilities (BPP) of the clades.

Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) are calculated for each maximum parsimony tree (MPT) generated.

Maximum likelihood research is conducted with RAxML-HPC v. 8.2.3 (Stamatakis, 2014) and RAxML-HPC through the CIPRES Science Gateway (Miller et al., 2009). Statistical support values (BS) are obtained using nonparametric bootstrapping with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) are calculated for each maximum parsimony tree (MPT) generated.

The optimal substitution models for the combined data set are determined using the Akaike information criterion (AIC) implemented in MrModeltest 2.3 (Posada and Crandall, 1998; Nylander, 2004) after scoring 24 models of evolution by PAUP* version 4.0 beta 10 software (Swofford, 2002). The selected model applied in the BI analyses and ML analyses is the model GTR + I + G.

Branches that received BT support for ML (BS), MP (BP), and BPP greater than 65% (BS), 70% (BP), and 0.9 (BPP) are considered as significantly supported, respectively. Additionally, the ML analysis results in the best tree, and only the ML tree is presented along with the support values from the MP and BI analyses. FigTree v1.4.4 (Rambaut, 2018) is used to visualize the resulting tree.

Divergence Time Estimation

Divergence time is estimated with the BEAST v2.6.5 software package (Bouckaert et al., 2019) with 5.8S and nLSU sequences representing all main lineages in Basidiomycota (Table 2). Sequences of the species are adopted partly from the topology established by Wang et al. (2021). *Neurospora crassa* Shear and B.O. Dodge from Ascomycota are designated as outgroup taxon

![Table 2](http://www.phylo.org)

Species	Specimen no.	ITS	nLSU
Amylocorticium cebennense	HHH-2808	GU187505	GU187561
Anomoloma mycelosum	MUL-4413	GU187500	GU187559
Athelia arachnoidea	CBS 418.72	GU187504	GU187557
Auricularia heimuer	XIAHEIMAO	LT178074	KY141890
Auricularia sp.	PB2295	DQ200918	AY634277
Australovulnemia cocconeae	MG79	HM046875	HM046931
Boletopsis leucomelegana	AFTOL-ID 1527	DQ484064	DQ154112
Bondarzewia montana	AFTOL-ID 452	DQ200923	DQ234539
Brevicellicium atlanticum	LISU 178666	NR_119820	HE063774
Brevicellicium atlanticum	LISU 178690	HE063775	HE063776
Brevicellicium daweishanense	CLZhao 17860	MW302337	MW293866
Brevicellicium daweishanense	CLZhao 18255	MW302328	MW293867
Brevicellicium exile	MA-Fungi 26554	HE063777	HE063778
Brevicellicium olvascens	KHL8571	HE063792	HE063793
Brevicellicium olvascens	MA-Fungi 23496	HE063787	HE063788
Brevicellicium xanthum	CLZhao 17781	MW302340	MW293869
Brevicellicium xanthum	CLZhao 2632	MW302339	MW293868
Bridgeoporus senonis	Cu10013	KY131832	KY131891
Calicera cornea	AFTOL-ID 438	AY789083	AY701526
Coltricia perennis	Cu10319	KU306067	KU306063
Coltricia defensens	Dai 10944	KY963737	KY693737
Corticium roseum	MG34	GU590877	AY463401
Craterocolla cerasi	TUB 020203	KF061265	KF061265
Cryptococcus_humicola	AFTOL-ID 1552	DG645516	DG645514
Dacryopinax spathulata	AFTOL-ID 454	AY854070	AY701525
Dextraunicots calamicalica	He 5700	MK204534	MK204547
Dextraunicots calamicalica	He 5693	MK204533	MK204546
Eridria excida	EL 15-98	AF347112	AF347112
Exidiplosis calceae	MW 331	AF291280	AF291236
Fasciodontia brasiliensis	MSK-F 7245a	MK572024	MK598734
Fasciodontia bugellensis	MSK-F 5548	MK572024	MK598736
Fibrodontia alba	TNME 24944	KC928274	KC928275
Fibrodontia gossypina	AFTOL-ID 599	DG249274	AY646100
Fomitiporia hartigii	MUCL 5555	JX093799	JX093833
Fomitiporia mediterraneana	AFTOL 888	AY854080	AY684157
Gloeophyllum sepiarium	Wilcox-3BB	HMB36091	HMB36061
Gloeophyllum striatum	ARIZAN 027866	HMB36092	HMB36063
Grimmola frondosa	AFTOL-ID 701	AY854084	AY629318
Gymnopolis plicatus	ZRL 135501	LT716066	KY141882
Hymenochaete rubiginosa	He1049	JQ716407	JQ729667
Hyphodontia densispora	LWZ 20170098-5	MT319426	MT319160
Hyphodontia zhixiangi	LWZ 20170818-13	MT319420	MT319151
Jaspiella argilaceae	CBS 252.74	GU187524	GU187581
Gomphidius roseus	MB 95-036	DO534570	DO534699
Kneiffia barba-jovis	KHL 11730	DO783609	DO876360
Kneiffia subalutacea	LWZ 20170816-9	MT319407	MT319139
Lepista cristata	ZRL 20151133	LT716026	KY141884
Leptosporomyces raunkeiseri	HHH-7628	GU187528	GU187588
Leucocephellus hobsoni	Cu 6468	KT203288	KT203309
Lyomyces macrorosus	LWZ20170817-2	MT319459	MT319194
Multitubula mucida	AFTOL-ID 1130	DQ521417	AY885613
Neotrodelgia gyeepsi	Cu 10372	KT203290	MT319196
Neotrodelgia thujae	Dai 5065	KT203293	MT319197
Neurospora crassa	OR74A	HO271348	AF296411

(Continued)
Phylogenetic Analyses

The concatenated 5.8S + nLSU data set contains 50 5.8S and 50 nLSU sequences from 52 fungal specimens representing 35 taxa in Trechisporales. The data set has an aligned length of 1,528 characters, of which 1,126 are constant, 89 are variable but parsimony-uninformative, and 313 are parsimony-informative. The average standard deviation (SD) of split frequencies is 0.005271 (BI). Three new combinations, namely, Breviscellium daweishanense, Breviscellium xanthum, and Sertulicium limonadense, are proposed based on the examination of type materials and phylogenetic analyses of type sequences (Figure 1).

The ITS data set contains sequences from 58 fungal specimens representing 36 Trechispora taxa (4 new species and another 32 Trechispora taxa). The data set has an aligned length of 753 characters, of which 284 are constant, 72 are variable but parsimony-uninformative, and 397 are parsimony-informative. MP analysis yields 13 equally parsimonious trees (TL = 2,318, CI = 0.39, RI = 0.638, RC = 0.254, and HI = 0.602). The average SD of split frequencies in BI analyses is 0.006959 (BI). The phylogenetic tree (Figure 2) reveals four new and independent lineages represented by our specimens, indicating that they are phylogenetically distinct from the species currently known in the genus. In addition, another taxon (Dai 22173 and Dai 22174) is treated as Trechispora sp.

The combined data set for the molecular clock analysis includes 100 collections, of which 47 belonged to Trechisporales. This data set results in a concatenated alignment of 1,588 characters with GTR as the best-fit evolutionary model. The MCC tree is used to study divergence time. The tree shows that Trechisporales occurs in a mean stem age of 270.85 Mya with a 95% highest posterior density (HPD) of 234.1–307.93 Mya (Figure 3). The tree also shows that the Sistotremastrum family and Hydnodontaceae occur in a mean stem age of 224.25 Mya with a 95% posterior probability (PP) = 0.8) with a 95% HPD of 182.47–266.75 Mya.

Taxonomy

Sistotremastrum family

Type genus: Sistotremastrum J. Erikss.

Habitat: It grows on rotten angiosperm and gymnosperm wood.

Basidioma are resupinate, thin, pruinose, or waxy. Hymenophores are smooth, verruculose, or odontiod-sepimorpid. The hyphal structure is monomitic; generative hyphae bear clamp connections, CB(+). Cystidia and hyphidia conducted for 10 billion generations, producing log files and trees files. The log file is analyzed in Tracer 1, and a maximum clade credibility (MCC) tree is interpreted in TreeAnnotator by trees file, removing the first 10% of the sampled trees as burn-in, and viewed in FigTree v1.4.2.
FIGURE 1 | Phylogeny of Trechisporales generated by maximum likelihood (ML) analyses based on combined 5.8S + nLSU sequences. Branches are labelled with ML bootstrap (BT) > 65%, and Bayesian posterior probabilities (BPP) > 0.90, respectively. New combinations, the sequence origin from holotype and the type status of the species in the genus are indicated in bold.
are present in some species. Basidia are clavate or cylindrical, often with a median constriction, mostly with 2–4 or 4–6 sterigmata, and rarely with 6–8 sterigmata. Basidiospores are narrowly ellipsoid, ovoid, or cylindrical, thin-walled (but the wall is distinct), smooth, inamyloid, and acyanophilous.

Notes: *Sistotremastrum* family accommodates the genera *Sistotremastrum* and *Sertulicium* in the order Trechisporales based on its distinct lineage in the phylogenetic analysis. The combined phylogeny of two-gene data (Figure 1) demonstrates that *Sistotremastrum* family forms a supported sister clade to *Hydnodontaceae*. Basidia of most species in the *Sistotremastrum* family have more than four sterigmata, and basidiospores are smooth, while basidia of species in *Hydnodontaceae* have four sterigmata and their basidiospores are smooth to verrucose or aculeate. In addition, ampullate septa are only present in *Scytinopogon*, *Trechispora*, and *P. mucida* in *Hydnodontaceae*.
Trechispora dentata Z.B. Liu and Yuan Yuan, sp. November

MycoBank number: MB 842865.

Type: China, Yunnan province, Sipsongpanna, Mengla County, XiShuangBanNa Tropical Botanical Garden, on soil, in southwestern China, ca. E 101° 25′, N 21° 41′, alt. 570 m. The vegetation is a natural tropical forest. 4 July 2021, Y.C. Dai 22565 (holotype BJFC 037139).

Etymology: Dentata (Lat.): It refers to the species having a dentate hymenophore.

Basidioma: They are annual, resupinate, soft when fresh, fragile when dry, easily separable from the substratum, up to 2.5-cm long, 2-cm wide, and less than 1-mm thick at the center; hymenial surface irpicoid, white when fresh, becoming cream (4A2/3) when dry; margin indistinct and fimbriate, mycelial cords absent; pores or aculei 3–4/mm; hymenophore lacerate to dentate; subiculum very thin to almost absent; tubes or aculei concolorous with a hymenial surface, less than 1 mm long.

Hyphal structure: Hyphal system is monomitic; generative hyphae bear clamp connections; ampullate septa occasionally present in subiculum and trama, up to 5-µm wide; all hyphae IKI−, CB− are unchanged in KOH; rhomboidal calcium oxalate crystals are scattered.

Subiculum: Generative hyphae hyaline, thin- to thick-walled, frequently branched, loosely interwoven, 2–4 µm in diameter.

Tubes or aculei: Generative hyphae in trama hyaline, thin- to thick-walled, frequently branched, loosely interwoven, 2–3 µm in diameter; cystidia and cystidioles are absent; basidia are clavate or barrel-shaped, hyaline, bearing four sterigmata and a basal clamp connection, 10–15 × 4–5 µm; basidioles are similar to basidia in shape but slightly shorter.

Basidiospores: They are ellipsoid, hyaline, thick-walled, aculeate, occasionally with one guttule, IKI−, CB−, (4.1–5 × (3–)3.2–4(–4.1) µm (including ornamentation), L = 4.46 µm, W = 3.66 µm, Q = 1.22 (n = 60/1); (2.2–)2.6–3.7(–3.8) × 2–2.5 µm (excluding ornamentation), L′ = 3.17 µm, W′ = 2.23 µm, and Q′ = 1.42 (n = 60/1).

Notes: *T. dentata* was discovered in the Yunnan Province of China. Phylogenetically, *T. dentata* is close to *Trechispora regularis* (Murrill) Liberta with strong support (96% BS, 96% BP, 1.00 BPP; Figure 2). However, *T. regularis* is strictly poroid (Liberta, 1973), and basidiospores of *T. dentata* are smaller than that of *T. regularis* [4.1–5 × 3.2–4 µm vs. 4–5.5 × 3.5–5 µm in *T. regularis* (including ornamentation); Liberta, 1973].

Trechispora dimitiella Z.B. Liu and Yuan, sp. November

Figure 5

MycoBank number: MB 842866.

Type: China, Hainan Province, Haikou, Jinniuling Park, on a rotten leaf, in southwestern China, ca. E 110° 19′, N 20° 1′, alt. 17 m. The vegetation is a plantation in tropical China. 7 November 2020, Y.C. Dai 21931 (holotype BJFC 035830).

Etymology: Dimitiella (Lat.): It refers to the species having a dimitic hyphal system.

Basidioma: They are annual, resupinate, soft when fresh, fragile when dry, easily separable from the substratum, up to 6-cm long, 4-cm wide, and approximately 3-mm thick at the center; the hymenial surface is poroid, pore surface white to cream (4A2/3) when fresh, becoming white to buff-yellow (4A4) when dry; margin indistinct, often with emerging mycelial cords; pores angular, 5–6/mm; dissepiments thin, lacerate; subiculum up to 1 mm thick; tubes concolorous with a poroid surface, up to 2 mm long.
FIGURE 4 | Trechispora dentata (holotype, Dai 22565). (A) A basidioma, (B) hyphae from subiculum, (C) hyphae from trama, (D) hyphae with ampullate septa (black arrow), (E) basidia and basidioles, and (F) basidiospores. Photo by Ya-Ping Lian and Zhan-Bo Liu.
FIGURE 5 | Trechispora dimitiella (holotype, Dai 21931). (A) A basidioma, (B) hyphae with ampullate septa from subiculum (black arrow), (C) hyphae from tubes, (D) basidia, (E) basidioles, and (F) basidiospores. Photo by Ya-Ping Lian and Zhan-Bo Liu.
Hyphal structure: Hyphal system is dimitic; generative hyphae bear clamp connections; ampullate septa occasionally present in subiculum and trama, up to 4.5 \(\mu \)m wide; all hyphae IKI–, CB– are unchanged in KOH; rhomboidal calcium oxalate crystals are scattered.

Subiculum: Generative hyphae hyaline, thin-walled, rarely branched, 2–3 \(\mu \)m in diameter; skeletal hyphae thick-walled with a wide lumen, unbranched, loosely interwoven, 2–4 \(\mu \)m diameter.

Tubes: Generative hyphae hyaline, thin-walled, rarely branched, 1.5–2.5 \(\mu \)m in diameter; skeletal hyphae thick-walled with a wide lumen, unbranched, loosely interwoven, 2–3 \(\mu \)m in diameter; cystidia and cystidioles are absent; basidia are barrel-shaped, hyaline, bearing four sterigmata and a basal clamp connection, 9.5–12 \(\times \) 4–5 \(\mu \)m; basidioles are similar to basidia in shape but slightly shorter.

Basidiospores: They are ellipsoid, hyaline, thick-walled, aculeate, IKI–, CB–, (3.5–)3.6–4\(\times \) (4–4.2) \(\times \) (2.5–)2.7–3.1 (3.2) \(\mu \)m (including ornamentation), \(L = 3.84 \mu m, W = 2.92 \mu m, Q = 1.31–1.33 (n = 60/2); (2.6–)2.7–3.4 (3.7) \(\times \) 2.6–(2.9) \(\mu \)m (excluding ornamentation), \(L' = 3.04 \mu m, W' = 2.18 \mu m, and Q' = 1.38–1.4 (n = 60/2).

Additional specimen examined (paratypes): China, Yunnan Province, Jinghong, Primeval Forest Park, on soil, 7 July 2021, Y.C. Dai 22601 (BJFC), Dai 22602 (BJFC). Malaysia, Selangor, Kota Damansara, Community Forest Reserve, on rotten angiosperm wood, 7 December 2019, Y.C. Dai 21181 (BJFC 032835).

Notes: *T. dimitiella* was discovered in China and Malaysia. Most species in *Trechispora* are corticioid fungi with a monomitic hyphal structure, but *T. dimitiella* is different. Morphologically, *T. dimitiella* and *Trechispora brasiliensis* (Corner) K.H. Larss. share the poroid hymenophore with a dimitic hyphal system and aculeate basidiospores. However, the basidiospores of *T. dimitiella* are smaller than that of *T. brasiliensis* [3.6–4 \(\times \) 2.7–3.1 \(\mu \)m vs. 4–4.5 \(\times \) 3–4 \(\mu \)m in *T. brasiliensis* (including ornamentation), Larsson, 1992]. Phylogenetically, *T. dimitiella* is close to *Trechispora incisa* K.H. Larss. (80% BS, 0.99 BPP; **Figure 2**), but *T. dimitiella* can be easily distinguished from *T. incisa* due to its poroid hymenophore with a dimitic hyphal system because *T. incisa* has arachnoid to farinose or minutely granulose hymenophore with a monomitic hyphal system (Larsson, 1996).

Trechispora fragilis Z.B. Liu and Yuan Yuan, sp. November **Figure 6**

Mycobank number: MB 842867.

Type: China, Yunnan Province, Sipsongpanna, Mengla County, XiShuangBanNa Tropical Botanical Garden, on the ground of the forest, in southwestern China, ca. E 119\(^\circ\) 56’, N 21\(^\circ\) 41’, alt. 570 m. The vegetation is a natural tropical forest. 18 August 2019, Y.C. Dai 20535 (holotype BJFC 032203).

Etymology: *Fragilis* (Lat.): It refers to the species having fragile basidioles.

Basidioma: They are annual, resupinate, soft when fresh, fragile when dry, easily separable from the substratum, up to 3 cm long, 2 cm wide, and less than 1 mm thick at the center; the hymenial surface is odontoid, white when fresh, becoming cream (4A2/3) to buff-yellow (4A4) when dry; margin is indistinct and fimbriate, often with emerging mycelial cords; aculei sparse, 4–6/mm; subiculum very thin to almost absent; aculei concolorous with a hymenial surface, less than 1 mm long.

Hyphal structure: Hyphal system monomitic; generative hyphae bear clamp connections; ampullate septa occasionally present in subiculum and aculei, up to 7 \(\mu \)m wide; all hyphae IKI–, CB– are unchanged in KOH; rhomboidal calcium oxalate crystals are scattered.

Subiculum: Generative hyphae hyaline, thin- to thick-walled, frequently branched, loosely interwoven, 1.5–4 \(\mu \)m in diameter.

Aculei: Generative hyphae in trama hyaline, thin- to thick-walled, frequently branched, loosely interwoven, 1.5–3 \(\mu \)m in diameter; cystidia and cystidioles are absent; basidia are clavate shaped, hyaline, bearing four sterigmata, and a basal clamp connection, 12–14 \(\times \) 3.5–4 \(\mu \)m; basidioles are similar to basidia in shape but slightly shorter.

Basidiospores: Ellipsoid, hyaline, thick-walled, aculeate, IKI–, CB–, (3.2–)3.8–4\(\times \) (4–2.5) \(\times \) 2.4–2.5 \(\mu \)m (including ornamentation), \(L = 3.53 \mu m, W = 2.79 \mu m, Q = 1.27 (n = 60/1); (2.6–2.8–3.7 (4) \(\times \) 1.9–2.7 (3.1) \(\mu \)m (excluding ornamentation), \(L' = 3.16 \mu m, W' = 2.26 \mu m, and Q' = 1.40 (n = 60/1).

Notes: *T. fragilis* was discovered in the Yunnan Province of China. Phylogenetically, *T. fragilis* groups with *Trechispora termitophila* Meiras-Ottoni and Gibertoni and *Trechispora havencampii* (Desjardin and B.A. Perry) Meiras-Ottoni and Gibertoni (69% BS, 0.92 BPP; **Figure 2**). *T. termitophila* can be easily distinguished from *T. fragilis* due to its coralloid basidioma. In addition, the basidiospores of *T. fragilis* are smaller than that of *T. termitophila* [6.5–7.5 \(\mu \)m vs. 4.5–5 \(\mu \)m in *T. termitophila* (including ornamentation), Meiras-Ottoni et al., 2021]. *T. havencampii* can also be easily distinguished from *T. fragilis* due to its coralloid basidioma. In addition, basidiospores of *T. fragilis* are smaller than that of *T. havencampii* [3.8–4 \(\times \) 2.5–3 \(\mu \)m vs. 5.2–6.5 \(\times \) 3.5–4.2 \(\mu \)m in *T. havencampii* (including ornamentation), Desjardin and Perry, 2015].

Trechispora laevispora Z.B. Liu, Y.D. Wu and Yuan Yuan, sp. November **Figure 7**

Mycobank number: MB 842868.

Type: China, Inner Mongolia Autonomous Region, Arxan, Bailang Feng Scenic Spot, on the charred trunk of *Larix*, in southwestern China, ca. E 119\(^\circ\) 56’, N 47\(^\circ\) 10’, alt. 1,511 m. The vegetation is a natural boreal forest. 25 August 2020, Y.C. Dai 21655 (holotype BJFC 035556).

Etymology: *Laevispora* (Lat.): It refers to the species having smooth basidiospores.

Basidioma: They are annual, resupinate, soft when fresh and dry, up to 8 cm long, 3 cm wide, and less than 1 mm thick at the center; the hymenial surface is smooth, white when fresh and dry; margin is indistinct and fimbriate, often with emerging mycelial cords; subiculum very thin to almost absent.

Hyphal structure: Hyphal system monomitic; generative hyphae bear clamp connections; ampullate septa frequently present in subiculum and hymenium, up to 7 \(\mu \)m wide; all hyphae...
Subiculum: Generative hyphae hyaline, thin-walled, frequently branched, loosely interwoven, 1.5–3 µm in diameter.

Hymenium: Generative hyphae in subhymenium hyaline, thin-walled, frequently branched, 1.5–3 µm in diameter; cystidia and cystidioles are absent; basidia are clavate shaped, hyaline, bearing four sterigmata and a basal clamp connection, 11.5–15 × 4–5 µm; basidioles are similar to basidia in shape but slightly shorter.

Basidiospores: Ellipsoid, hyaline, thin-walled, smooth, IKI−, CB−, (2.5−) 2.6–3.2(--3.3) × (1.8−)1.9–2.2(--2.5) µm, \(L = 2.92 \mu m, W = 2.04 \mu m \), and \(Q = 1.43 (n = 60/1) \).

Notes: *T. laevispora* was discovered in the Inner Mongolia Autonomous Region of China. Phylogenetically, *T. laevispora* groups with *Trechispora cohaerens* (Schwein.) Jülich and Stalpers...
with strong support (94% BS, 96% BP, 1.00 BPP; Figure 2). Both species share a smooth hymenophore, a monomitic hyphal system with smooth basidiospores. However, basidiospores of *T. cohaerens* are thick-walled and larger than that of *T. laevispora* (3.5–4 × 2.2–2.5 µm in *T. cohaerens*; Larsson, 1992).
B. daweishanense (C.L. Zhao) Z.B. Liu and Yuan Yuan, comb. November

*Mycobank number: MB 842869.

*Basionym: T. daweishanensis C.L. Zhao, Phytotaxa 479(2): 153 (2021).

Type: China. Yunnan Province, Honghe, Pingbian County, Daweishan National Nature Reserve, on the fallen branch of angiosperms, 1 August 2019, CLZhao 17860 (holotype SWFC).

Description: See Zong et al. (2021, as *T. daweishanensis*).

B. xanthum (C.L. Zhao) Z.B. Liu and Yuan Yuan, comb. November

*Mycobank number: MB 842870.

*Basionym: T. xantha C.L. Zhao, Phytotaxa 479(2): 155 (2021).

Type: China. Yunnan Province, Xuxi, Xinpeng County, Mopanshan National Forestry Park, on the trunk of *Albizia julibrissin*, 20 August 2017, CLZhao 2632 (holotype SWFC).

Description: See Zong et al. (2021, as *T. xantha*).

Notes: Zong et al. (2021) described *T. daweishanensis* and *T. xantha* as new species. However, in our phylogeny, they belong to the genus *Breviscillium* (98% BS, 1.00 BPP; Figure 1). The type specimens of abovementioned species are studied [CLZhao 17860 (SWFC); CLZhao 2632 (SWFC)]. We do not observe ampullate hyphae from type materials as mentioned by Zong et al. (2021). We suppose that Zong et al. (2021) confused basidioles with ampullate hyphae (ampullate septa on some generative hyphae), which are remarkable characters of *Trechispora*. In fact, *T. daweishanensis* and *T. xantha* have a smooth hymenophore, a monomitic hyphal structure with clamped generative hyphae, and the absence of ampullate septa. They fit Breviscillium well. Herein, we combine these two species in Breviscillium based on morphological and phylogenetic evidence (Figure 1).

S. limonadense (G. Gruhn and P. Alvarado) Z.B. Liu and Yuan Yuan, comb. November

*Mycobank number: MB 842871.

*Basionym: S. limonadense G. Gruhn and P. Alvarado, Phytotaxa 498(1): 36 (2021).

Type: French Guiana. On the bark of an unidentified dead trunk lying on the ground, October 22, 2013, LIP 0001683 (holotype).

Description: See Gruhn and Alvarado (2021, as *S. limonadense*).

Notes: Gruhn and Alvarado (2021) described *S. limonadense* as a new species. However, at the same time, Spirin et al. (2021) segregated the species around *S. niveocremeum*—(Höhn. and Litsch.) J. Erikss. into the new genus *Sertulicium*. In our phylogeny, *S. limonadense* groups with *Sertulicium granuliferum* (Hallenb.) Spirin and Volobuev *Sertulicium lateclavigerum* (Boidin and Gilles) Spirin and Viner (Figure 1). We did not study specimens, but *S. limonadense* is characterized by smooth to tuberculate hymenophore and basidia have 6–8 sterigmata (Gruhn and Alvarado, 2021) and fits *Sertulicium* better. Hence, we transfer *S. limonadense* to *Sertulicium*.

DISCUSSION

Larsson (2007) showed that *S. suecicum* and *S. niveocremeum* (≡ *S. niveocremeum*) formed a strongly supported sister clade (94% BS, 1.00 BPP) to Hydnodontaceae within Trechisporales. However, in his phylogenetic analysis of 5.8S + nLSU, there were a few species in Hydnodontaceae and Sistotremastrum to establish a new family for *S. suecicum* and *S. niveocremeum*. Hence, Larsson (2007) named this clade *Sistotremastrum* family. The same strongly supported topology was recovered by Telleria et al. (2013); Gruhn et al. (2018), and Meiras-Ottoni et al. (2021) by the nLSU phylogenetic analysis. Spirin et al. (2021) presented a comprehensive study of *Sistotremastrum* and *Sertulicium* with 17 species. They used the nLSU region to perform phylogenetic analyses of 16 species in the two genera (Figure 1 in Spirin et al., 2021), except for *Sertulicium chilense* (Telleria, M. Dueñas and M.P. Martin) Spirin and Volobuev because the nLSU sequences of *S. chilense* were absent. However, they were not able to generate high support values for the node connecting Sistotremastrum and Sertulicium (87% BS, 0.87 BPP, Figure 1 in Spirin et al., 2021). As a result, they gave up establishing a new family too.

ITS1-5.8S-ITS2 is an important marker used for the barcoding of fungal species (Liu et al., 2021; Wangsawat et al., 2021). However, the difficulty in aligning ITS sequences for fungi in Trechisporales is evident because it is a data set covering taxa in distinct taxonomic levels (Larsson, 2007). Therefore, it is not a good idea to run combined analyses of ITS + nLSU, so we use the most stable and conservative portion of ITS (5.8S) and nLSU to our phylogenetic analyses of *Sistotremastrum* and *Sertulicium* (5.8S + nLSU) (Figure 1). We add *S. chilense* and *S. limonadense* to phylogenetic analyses. Our results of the *Sistotremastrum* are the same as phylogenetic analyses by Spirin et al. (2021, Figure 1). However, our phylogenetic analyses of *Sertulicium* are a bit different from that by Spirin et al. (2021, Figure 1) because the data sets used in both studies are different. Above all, we generate high support values for the node connecting *Sistotremastrum* and *Sertulicium* from ML analysis (93% BS) based on 5.8S and nLSU sequences; however, BI fails to provide support for the node (0.76 BPP).

Divergence time is estimated with 5.8S and nLSU sequences representing all main lineages in Basidiomycota (Figure 3). The MCC tree shows that Basidiomycota occurs in a mean stem age of 509.57 Mya. Trechisporales occurs in a mean stem age of 270.85 Mya. The tree also shows that the *Sistotremastrum* family and Hydnodontaceae occur in a mean stem age of 224.25 Mya (PP = 0.8). Zhao et al. (2017) indicate that the divergence times of Basidiomycota are 530 Mya (the mean stem age). He et al. (2019) indicate that the divergence times of Trechisporales and Hydnodontaceae are 259 Mya (the mean stem age). Our experimental results agree with them. In this paper, we update the divergence times of Trechisporales and Hydnodontaceae and define the divergence time of the *Sistotremastrum* family.

Bayesian phylogenetic inference fails to provide support for the node of *Sistotremastrum* and *Sertulicium*, so we use the term “Sistotremastrum family” for the two genera without a formal description of the new family. In the future, we will sequence...
additional DNA regions or whole genomes, for a more robust phylogenetic analysis.

At present, there are only two species in the Sistotremastrum family ever been recorded from China, i.e., Sistotremastrum aculeatum Miettinen and Viner (Cui 8401) and S. granuliferum (He 3338; CLZhao 5531, 9771). Recently, we collected a specimen from the Yunnan Province of China (He 6276), and its morphological and DNA data demonstrated the specimen is S. limonadense. The species is a new record in China, and we have uploaded ITS and nLSU sequences of the specimen (He 6276) to GenBank. Above all, we study all the Chinese specimens of species in the Sistotremastrum family seriously, and their morphology fits the descriptions of Gruhn and Alvarado (2021) and Spriin et al. (2021). We also collected a specimen from the Hainan Province of China (Dai 17696). The ITS (OK298490) region is different from Sistotremastrum fibrillosum G. Gruhn and P. Alvarado by 6%, and morphologically it is similar to S. fibrillosum. However, we only have a single specimen, so for the time being we regard Dai 17696 as Sistotremastrum sp.

In this article, we use the whole ITS region in analyses of Trechispora to visualize the genetic distances among new taxa and those already described. T. dentata, T. dimitiella, T. fragilis, and T. laevispora are described as new to science based on morphological characteristics and molecular evidence (Figure 2).

Most of these new species are found in subtropical or tropical Asia and conform to the phenomenon that subtropical or tropical Asia harbors high taxonomic diversity for all wood-decaying fungi (Dai, 2012; Cui et al., 2019). We also collected two resupinate specimens (Dai 22173 and Dai 22174) from the Hainan Province of China. The morphology of the two specimens corresponds to the concept of Trechispora and forms a distinct lineage within the Trechispora clade (100% BS, 1.00 BPP; Figure 2). However, these specimens are sterile, so we regard Dai 22173 and Dai 22174 as Trechispora spp. temporarily here.

Molecular phylogenetic analyses in the present study show that Brevicicilium forms a monophyletic clade in which all Brevicicilium species are included (98% BS, 1.00 BPP; Figure 1). However, when we add sequences of T. xantha and T. daweishanensis, we find sequences of a two-species cluster with Brevicicilium with high support (100% BS, 1.00 BPP; Figure 1). We request and examine type specimens from Zhao and find T. xantha and T. daweishanensis corresponding to the concept of Brevicicilium and they should be transferred to the genus Brevicicilium (see the notes of B. daweishanense).

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/supplementary material.

AUTHOR CONTRIBUTIONS

Z-BL: design of the research, performance of the research, and writing and revising this manuscript. Z-BL, HZ, Y-PL, Y-RW, C-GW, and W-LM: data analysis and interpretation. Z-BL, YY, and Y-DW: a collection of the materials. All authors contributed to the article and approved the submitted version.

FUNDING

The research is supported by the National Natural Science Foundation of China (Project Nos. 31870007 and 32011540380).

ACKNOWLEDGMENTS

We thank Prof. Dr. Chang-Lin Zhao (SWFC, China) and Prof. Yu-Cheng Dai for allowing us to study their specimens.

REFERENCES

Berbee, M. L., and Taylor, J. W. (2010). Dating the molecular clock in fungi – how close are we? Fungal Biol. Rev. 24, 1–16. doi: 10.1016/j.fbr.2010.03.001

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., et al. (2019). BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PloS Comput. Biol. 15:e1006650. doi: 10.1371/journal.pcbi.1006650

Chikowski, R., Larsson, K. H., and Gibertoni, T. B. (2020). Taxonomic novelties in Trechispora (Trechisporales, Basidiomycota) from Brazil. Mycol. Prog. 19, 1403–1414. doi: 10.1007/s11557-020-01635-y

Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., et al. (2019). Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Divers. 97, 137–392. doi: 10.1007/s13225-019-00427-4

Dai, Y. C. (2010). Hymenochaetaeae (Basidiomycota) in China. Fungal Divers. 45, 131–343. doi: 10.1007/s13225-010-0066-9

Dai, Y. C. (2012). Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53, 49–80. doi: 10.1007/s10267-011-0134-3

Desjardin, D. E., and Perry, B. A. (2015). A new species of Scytinopogon from the island of príncipe, republic of são tomé and príncipe, West Africa. Mycosphere 6, 434–441. doi: 10.5943/mycosphere/6/4/5

Drummond, A. J., and Rambaut, A. (2007). BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214–221. doi: 10.1186/1471-2148-7-214

Du, P., Cao, T. X., Wu, Y. D., Zhou, M., and Liu, Z. B. (2021). Two new species of Hymenochaetaeae on Draecena cambodiana from tropical China. MycoKeys 80, 1–17. doi: 10.3897/mycokeys.80.63997

Fan, L. F., Alvarenga, R. L. M., Gibertoni, T. B., Wu, F., and Dai, Y. C. (2021). Four new species in the Tremella fibrulifera complex (Tremellales, Basidiomycota). MycoKeys 82, 33–56. doi: 10.3897/mycokeys.82.63241

Felsenstein, J. (1985). Confidence intervals on phylogenetics: an approach using bootstrap. Evolution 39, 783–791. doi: 10.2307/2408678

Furtado, A. N. M., Danils, P. P., Reck, M. A., and Neves, M. A. (2021). Scytinopogon caulocystidiatus and S. foetidus spp. nov. and five other species recorded from Brazil. Mycotaxon 136, 107–130. doi: 10.5248/136.107

Gruhn, G., Alvarado, P., Hallenberg, N., Roy, M., and Courtecuisse, R. (2018). Contribution to the taxonomy of Sistotremastrum (Trechisporales, Basidiomycota) and the description of two new species, S. fibrillosum and S. aculeocrepitans. Phytotaxa 379:1. doi: 10.11646/phytotaxa.379.1.2

Gruhn, G., and Alvarado, P. (2021). Sistotremastrum limonadense sp. nov. from French Guiana. Phytotaxa 498, 35–43. doi: 10.11646/phytotaxa.498.1.4

Hall,T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
