Compact spacelike surfaces in the 3-dimensional de Sitter space.

A.A. Borisenko *

Kharkov National University, Faculty of Mathematics and Mechanics, Geometry Department, Svobodi sq., 4, Kharkov, 61077, Ukraine e-mail: borisenk@univer.kharkov.ua

In this paper we establish several sufficient conditions for a compact spacelike surface in the 3-dimensional de Sitter space to be totally geodesic or spherical.

Key words: De Sitter space, Compact spacelike surface, Second fundamental form, Gaussian curvature; Totally umbilical round sphere

Mathematics Subject Classification (2000) primary 53C42; secondary 53B30, 53C45

Let \(E_1^4 \) be a 4-dimensional Lorentz-Minkowski space, that is, the space endowed with the Lorentzian metric tensor \(\langle \cdot, \cdot \rangle \) given by

\[
\langle \cdot, \cdot \rangle = (dx_1)^2 + (dx_2)^2 + (dx_3)^2 - (dx_0)^2,
\]

where \((x_1, x_2, x_3, x_0) \) are the canonical coordinates of \(E_1^4 \). The 3-dimensional unitary de Sitter space is defined as the following hyperquadric of \(E_1^4 \).

\[
S_3^1 = \{ x \in \mathbb{R}^4 : \langle x, x \rangle = 1 \}
\]

As it is well known, \(S_3^1 \) inherits from \(E_1^4 \) a time-orientable Lorentzian metric which makes it the standard model of a Lorentzian space of constant sectional curvature one. A smooth immersion \(\psi : F \rightarrow S_3^1 \subset E_1^4 \) of a 2-dimensional connected manifold \(M \) is said to be a spacelike surface if the induced metric via \(\psi \) is a Riemannian metric on \(M \), which, as usual, is also denoted by \(\langle \cdot, \cdot \rangle \). The time-orientation of \(S_3^1 \) allows us to define a (global) unique timelike unit normal field \(n \) on \(F \), tangent to \(S_3^1 \), and hence we may assume that \(F \) oriented by \(n \). We will refer to \(n \) as the Gauss map of \(F \).

We note that Lobachevsky space \(L^3 \) is the set of points

\[
L^3 = \{ x \in E_1^4 : \langle x, x \rangle = -1, x_0 > 0 \}.
\]

It is well known that a compact spacelike surface in the 3-dimensional de Sitter space \(S_3^1 \) is diffeomorphic to a sphere \(S^2 \). Thus, it is interesting to look for additional assumptions for such a surface to be totally geodesic or totally umbilical round sphere.

There are two possible kinds of geometric assumptions: extrinsic, that is relative to the second fundamental form, and intrinsic, namely, concerning to the Gaussian curvature of the induced metric. As regards to the extrinsic approach, Ramanathan [10] proved that every compact spacelike surface in \(S_3^1 \) of constant mean curvature is totally umbilical. This result was generalized to hypersurface of any dimension by Montiel [9]. J.Aledo and A.Romero characterize the compact spacelike surfaces in \(S_3^1 \) whose second fundamental form defines a Riemannian metric. They studied the case of constant Gaussian curvature \(K_{II} \) of the second fundamental form, proving that the totally umbilical round spheres are the only compact spacelike surfaces in \(S_3^1 \) with \(K < 1 \) and constant \(K_{II} \) [2]. With respect to the intrinsic approach Li [8] obtained that compact spacelike surface of constant Gaussian curvature is totally umbilical. And he proved there is no complete spacelike surface in \(S_3^1 \) with constant Gaussian curvature \(K > 1 \). J.Aledo and A.Romero proved the same result without condition that Gaussian curvature is constant [2]. But it is true more general result.

*suported by research grant DFFD of Ukrainian Ministry of Education and Science, No 01. 07/ 00132.
Theorem. 1. Let \(F \) be a \(C^2 \)-regular complete spacelike surface in de Sitter space \(S^3_1 \). If Gaussian curvature \(K \geq 1 \) then the surface \(F \) is totally geodesic great sphere with Gaussian curvature \(K = 1 \).

S. N. Bershtein proved that an explicitly given saddle surface over a whole plane in the Euclidean space \(E^3 \) with slower than linear growth at infinity must be a cylinder. He proved this theorem for surfaces of class \(C^2 \) [4], and it was generalized to the non-regular case in [1].

A surface \(F^2 \) of smoothness class \(C^1 \) in \(S^3 \) may be projected univalently into a great sphere \(S_0^2 \) if the great spheres tangent to \(F^2 \) do not pass through points \(Q_1, Q_2 \) polar to \(S_0^2 \).

The surface \(F^2 \) in \(S^3 \) is called a saddle surface if any closed rectifiable contour \(L \), that is, in the intersection of \(F^2 \) with an arbitrary great sphere \(S^2 \) in \(S^3 \), lies in an open hemisphere, and is deformable to a point in the surface can be spanned by a two-dimensional simply connected surface \(Q \) contained in \(F^2 \cap S^2 \). In other words, from the surface it is impossible to cut off a crust by a great sphere \(S^2 \), that is, on \(F^2 \) there do not exist domains with boundary that lie in an open great hemisphere of \(S^2 \) and are wholly in one of the great hemispheres of \(S^3 \) into which it is divided by the great sphere \(S^2 \). In this case when \(F \) is a regular surface of class \(C^2 \), the saddle condition is equivalent to the condition that the Gaussian curvature of \(F^2 \) does not exceed one. We have the following result.

Theorem. 2. [5]/[6]/[7]. Let \(F \) be an explicitly given compact saddle surface of smoothness class \(C^1 \) in the spherical space \(S^3 \). Then \(F \) is a totally geodesic great sphere.

This theorem is a generalization of a theorem of Bernshtein to a spherical space. For regular space we obtain the following corollary.

Theorem. 3. [5]/[6] Let \(F \) be an explicitly given compact surface that is regular of class \(C^2 \) in the spherical space \(S^3 \). If the Gaussian curvature \(K \) of \(F \) satisfies \(K \leq 1 \) then \(F \) is a totally geodesic great sphere.

This theorem was stated in [6]. Really theorems 2,3 had been proved in [7] but were formulated there for a centrally symmetric surfaces. The final version was in [5].

It seems to us that the following conjecture must hold under a restriction on the Gaussian curvature of the surface. Suppose that \(F \) is an embedded compact surface, regular of class \(C^2 \), in the spherical space \(S^3 \). If the Gaussian curvature \(K \) of \(F \) satisfies \(0 < K \leq 1 \), then \(F \) is a totally geodesic great sphere.

A.D. Aleksandrov [3] had proved that an analytical surface in Euclidean space \(E^3 \) homeomorphic to a sphere is a standard sphere if principal curvatures satisfy the inequality

\[
(k_1 + c)(k_2 + c) \leq 0
\]

(1)

This result had been generalized for analytic surfaces in spherical space \(S^3 \) and Lobachevsky space \(L^3 \) [7]:

a) in \(S^3 \) with additional hypothesis of positive Gaussian curvature;

b) in \(L^3 \) under additional assumptions that principal curvatures \(k_1, k_2 \) satisfy \(|k_1|, |k_2| > c_0 > 1 \).

But in Lobachevsky space the result is true under weaker analytic restriction.

Theorem. 4. Let \(F \) be a \(C^3 \) regular surface homeomorphic to the sphere in the Lobachevsky space \(L^3 \). If \(|k_1|, |k_2| > c_0 > 1 \) and principle curvatures \(k_1 \) and \(k_2 \) satisfy (1), then the surface is an umbilical round sphere in \(L^3 \).

Analogical result it is true for surfaces in the de Sitter space \(S^3_1 \).

Theorem. 5. Let \(F \) be a \(C^3 \) regular compact spacelike surface in the de Sitter space \(S^3_1 \). If \(|k_1|, |k_2| < 1 \) and principal curvatures satisfy (1), then the surface is an umbilical round sphere in \(S^3_1 \).
Let S^3_1 be a simply-connected pseudo-Riemannian space of curvature 1 and signature $(+,+,+,-)$. It can be isometrically embedded in the pseudo-Euclidean space E^4_1 of signature $(+,+,+,-)$ as the hypersurface given by the equation $x_1^2 + x_2^2 + x_3^2 - x_0^2 = 1$. Together with E^4_1 we consider the superimposed Euclidean space E with unit sphere S^3 given by the equation $x_1^2 + x_2^2 + x_3^2 + x_0^2 = 1$. We specify a mapping of S^3_1 into S^3. To the point P of S^3_1 with position vector r we assign the point \tilde{P} with position vector $\tilde{r} = r/\sqrt{1 + 2x_0^2}$. Under the mapping, to a surface $F \subset S^3_1$ corresponds a surface $\tilde{F} \subset S^3$. Let b_{ij} and \tilde{b}_{ij} be the coefficients of the second quadratic forms of F and \tilde{F}, and $n = (n_1, n_2, n_3, n_0)$ be a normal vector field on F.

Lemma 1. [7] $\tilde{b}_{ij} = b_{ij}/\sqrt{1 + 2x_0^2}\sqrt{1 + 2n_0^2}$.

Proof of theorem 1. From the condition $K \geq 1$ it follows that F is a compact spacelike surface in the de Sitter space S^3_1. Locally a spacelike surface is explicitly given over totally geodesic great sphere $S^2_0 \subset S^3_1$ and the orthogonal projection $p: F \to S^2_0$ in S^3_1 is covering. Indeed, p is a local diffeomorphism. The compactness of F and the simply connectedness of S^2_0 imply that p is a global diffeomorphism F on S^2_0 and the surface F is globally explicitly given over S^2_0.

We map a surface F in S^3_1 into a surface \tilde{F} in S^3. If F has a definite metric and Gaussian curvature $K \geq 1$, then \tilde{F} has Gaussian curvature not greater than 1. This follows immediately from Lemma 1, Gauss’s formula and the fact that $\langle n, n \rangle = -1$ for normals to F. In a pseudo-Euclidean space, the analogous correspondence between surfaces and their curvatures was used by Sokolov [11].

The surface \tilde{F} satisfies the conditions of theorem 3. It follows that \tilde{F} is a totally geodesic great sphere. By lemma 1 the ranks of the second quadratic forms of \tilde{F} and F coincide and we obtain that the surface F is a totally geodesic surface in S^3_1.

Proof of Theorem 4 and 5. The normal $n(u_1, u_2)$ to F is chosen so that the principal curvatures satisfy (1). In a neighborhood of an arbitrary nonumbilical point P we choose coordinate curves consisting of the lines of curvature, and an arbitrary orthogonal net in the case of umbilical point. At P the coefficients of the first quadratic form are $e = g = 1, f = 0$. Let F_1 be the surface with radius vector $\rho = (r - cn)/\sqrt{|c^2 - 1|}$.

In both cases the surface F_1 lies in S^3_1. Moreover

$$\rho_{u_1} = \frac{(1 + ck_1)}{\sqrt{|c^2 - 1|}} r_{u_1}, \quad \rho_{u_2} = \frac{(1 + ck_2)}{\sqrt{|c^2 - 1|}} r_{u_2}.$$

The unit normal $n_1 = \frac{c r - n}{\sqrt{|c^2 - 1|}}$. From the conditions on the principal curvatures of F in theorems 4, 5 it follows that

$$\langle \rho_{u_1}, \rho_{u_1} \rangle > 0, \quad \langle \rho_{u_2}, \rho_{u_2} \rangle > 0$$

and F_1 is a spacelike surface in S^3_1. The coefficients of the second quadratic form of the surface F_1 are

$$L_1 = \frac{(1 + ck_1)(k_1 + c)}{\sqrt{c^2 - 1}}, \quad N_1 = \frac{(1 + ck_2)(k_2 + c)}{\sqrt{c^2 - 1}}.$$

The Gaussian curvature of F_1 at the point P_1 is equal to

$$K = 1 - \frac{(k_1 + c)(k_2 + c)|c^2 - 1|}{(1 + k_1 c)^2(1 + k_2 c)^2} \geq 1$$

The same is true in umbilical points too. The surface F_1 satisfies the conditions of theorem 1. It follows that the surface F_1 is a totally geodesic great sphere in S^3_1 and F is an umbilical surface in L^3 or S^3_1.

3
References

[1] G.M. Adelson-Vel’sky, The generalization of one geometrical theorem of S. N. Berneishtein, Dokl. Acad. Nauk SSSR, 49(1945), 6 (Russian).

[2] J.A. Aledo, A. Romero, Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form, Differential Geometry and its Applications, 19 (2003), 97-111.

[3] A.D. Aleksanrdov, On the curvature of surfaces, Vestnik Leningrad. Univ., 1966, 19(Ser. Mat. Mech. Astrs, Vyp. 4, 5-11 (Russian)).

[4] S.N. Bernstein, Amplification of the theorem of surfaces with negative curvature. Sobranie Sochinenij, Vol.3. Publish house of Nation Academy USSR, 1960 (Russian).

[5] A.A. Borisenko, On explicitly given saddle surfaces in a spherical space, Uspekhi Mat. Nauk, 54 (1999), 5, 151-152; English transl., Russian Math. Surveys, 54 (1999), 5, 1021-1022.

[6] A.A. Borisenko, Complete l-dimensional surfaces of nonpositive extrinsic curvature in a Riemannian space, Mat. Sb., 104(1977), 559-576; English transl., Math. USSR-Sb. 33 (1977), 485-499.

[7] A.A. Borisenko, Surfaces of nonpositive extrinsic curvature in spaces of constant curvature, Mat. Sb. 114 (1981), 336-354; English transl., Math. USSR Sb., 42(1982), 3, 297-310.

[8] H.Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997) 327-351.

[9] S. Montiel, An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature, Indiana Univ. Math. J. 37 (1988) 909-917.

[10] J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-359.

[11] D.D. Sokolov, The structure of the limit cone of a convex surface in pseudo-Euclidean space, Uspehi Mat. Nauk 30(1975), 1(181), 261-262 (Russian).