Vegetation resilience to absorbing carbon dioxide emissions in the Gajahmada Street

Miftachurahma Widanirmala1,3*, Maryono Maryono2,3, and Fuad Muhammad1,3

1 Master Program of Environmental Science, School of Postgraduate, Diponegoro University, Indonesia
2 Department of Urban and Regional Planning, Faculty Engineering, Diponegoro University, Indonesia
3 Centre for Green Infrastructure Resilience and Development, School of Postgraduate, Diponegoro University, Indonesia

Abstrak. Gajahmada Street is one of the main streets in the city of Semarang. The location is very strategic, which connects the Golden Triangle Region in Semarang City which is the center of the city. As a city center, transportation activities in the area are very high. Transportation activities produce carbon dioxide emissions. The accumulation of carbon dioxide emissions is dangerous for health and the environment. Semarang City Government provides green open space along the road section to reduce carbon dioxide emissions. The purpose of this study was to determine the vegetation resilience to absorbing carbon dioxide at that location. The data collection method uses literature collection and field observations. The results showed the ability of green open space to absorb carbon dioxide emissions is 1.218.7 tons/ha/year. While the emissions produced are 6.832 tons/year, meaning that there is residual carbon dioxide that is not absorbed, that is 5.613,3 tons/year.

Keywords: vegetation resilience, carbon absorption, emissions, Gajahmada Street

1 Introduction

Global warming is an increase in the earth's average temperature due to the concentration of greenhouse gases (GHGs) [1]. Increase in average temperature - based on increasing concentrations of GHGs [2]. GHGs consists of CO2, N2O, NO2, CH4, CFC, etc. The gas will accumulate in the earth and form a transparent layer in the earth's atmosphere which is likened to the glass layer. As a result, sunlight cannot be reflected and becomes trapped on earth. This causes an increase in the temperature of the earth.
Carbon dioxide is the gas that can last the longest in the atmosphere. CO$_2$ can last 50-200 years, N$_2$O for 114-120 years, CH$_4$ and CFC substitutes for 12 years [3]. Basically, carbon dioxide is an important gas for photosynthesis. However, excessive levels can be dangerous for the environment, which triggers global warming, acid rain, etc. For health, exposure to low levels of carbon dioxide gas can cause dizziness, hyperventilation, eye and throat irritation, minor lung disorders, central nervous system injuries, etc. While exposure to high levels can cause oxygen supply to be obstructed, which can cause seizures - even death.

Based on IPCC data at 2007, from 1970 to 2004 there has been an increase in carbon dioxide equivalent of 77%, from 21 Gt of CO2-eq to 31 Gt of CO2-eq [2]. In Indonesia, based on the 2018 Greenhouse Gas inventory report by the Ministry of Environment and Forestry, during the last 17 (seventeen) years there was an increase in carbon dioxide of 124,879 Gg (124,879,000 Tons). Transportation activities were the second largest contributor to the increase in carbon dioxide, which amounted to 17.20%.

For modern urban society, transportation is a vital means of movement that cannot be separated from daily activities. Especially in Indonesia, almost all of the cities are developed based on the pattern of land transportation networks. This creates a dilemma, on the one hand the land transportation system has become a dependency for the community, but on the other hand land transportation is suspected to threaten urban ecological conditions.

Green open space is one solution to reduce global warming [4]. Green open space is an area that extends or lines and or groups, the use of which is more open, a place to grow plants, both naturally and intentionally planted. The provision of green open space is suspected to reduce carbon dioxide [5]. Green open space has an important role to improve the quality of life in urban areas, one of them as a very effective air purifier [6]. Green vegetation, especially trees, has the ability to absorb large amounts of carbon dioxide. One tree has the ability to absorb carbon dioxide of 569 tons / ha / year.

Trees are vegetation that have an important role in the process of reducing the concentration of CO2 in the air through the process of photosynthesis. Trees have the highest CO2 absorption compared to other types of vegetation (shrubs and groundcovers), because they have greater biomass compared to other vegetation. The part of the tree in charge of absorbing CO2 is the leaves through the stomata. Then the carbon will be stored in the biomass, namely in the stems and leaves. Compared to leaves, stems can deviate far more carbon [5]. Even 50% of the total dry stem consists of carbon. The amount of carbon stored in biomass is called carbon storage. While the ability of plants to absorb carbon is called carbon sequestration [7].

Based on the Spatial Planning Law, the green space requirements that must be met by the City are 30% of the total area, with the provisions that 20% are public and 10% are private. Semarang City is one of the cities in Indonesia that has fulfilled the provision of public green open space [8]. Based on information from the City of Semarang Department of Commerce, the number of green open space in the city of Semarang is 35%, which means it has exceeded the recommended minimum. Viewed in quantity, the presence of green open space in the city of Semarang has met the provisions. However, judging from its function, is the presence of green space effective enough to reduce the CO2 emissions produced? For this reason, this study aims to determine the ability of CO2 absorption by vegetation. Case study was carried out on the Jl. Gajah Mada. The location was chosen because transportation activities on the road section are quite high, resulting in considerable CO2 emissions. Gajahmada Street is one of the main streets in the city of Semarang. Its location is very strategic, which connects the Golden Triangle Region in Semarang City which is the center of the city. In addition, the use of land on these roads is also very complex, giving rise to high generation and pull

2 Method

2.1 Data collection methods

Data collection methods used in this study are literature studies, observations and interviews. Literature study is carried out by gathering literature related to the topic to be studied. Observations were made by observing daily traffic and inventorying the types of vegetation on Gajah Mada Street. Interviews were conducted with relevant agencies responsible for managing green open spaces on Gajah Mada Street.

2.2 Data analysis method

To find out the adequacy of green open space in absorbing CO\textsubscript{2} emissions in Gajahmada Street, it is done by: 1) calculating the CO\textsubscript{2} absorption by vegetation, 2) calculating CO\textsubscript{2} emissions resulting from transportation activities on Jl. Gajahmada, 3) analysis of the adequacy of green space to absorb emissions.

Analysis of vegetation resilience (carbon stocks by trees)

Plants need CO\textsubscript{2} to carry out photosynthesis. The results of the absorption of CO\textsubscript{2}, will be converted into carbohydrates which will then be spread and piled up in the body of the plant. The process is called C-sequestration. Therefore, measuring carbon still stored in the body of living plants (biomass) can describe the amount of CO\textsubscript{2} that can be absorbed by plants. According to the [9], half the biomass of trees is CO\textsubscript{2}. Calculation of CO\textsubscript{2} deposits in plant biomass is carried out using a formula developed by [9]:

\[
C = 0,5 \times W
\]

(1)

Note:
C : carbon stock (C/Ha)
W : biomass (kg)
0,5 : Coefficient of carbon in plants

Tree biomass is calculated using the allometric formula [5]:

\[
W = 0,11 \times D^{2,62}
\]

(2)

Note:
BK : biomass (kg)
D : diameter (cm)
\(\rho\) : BJ wood (g cm-3)

Furthermore, to find out the potential uptake of CO\textsubscript{2} will be done by adding up carbon stocks in each tree:

\[
(carbon \ stocks \ by \ A \ tree \ x \ number \ of \ A \ tree) + (carbon \ stocks \ by \ A \ tree \ x \ number \ of \ A \ tree) + ... \ (3)
\]

Quantity analysis of CO\textsubscript{2} emissions

Calculate CO\textsubscript{2} emissions generated using the Tier 2 Method [10], with the formula:
\[Q = N_i \times F_e i \times L \times K_l \]

(4)

Note:

\(Q \) : emission amount (g/hour)
\(N_i \) : number of vehicles (vehicles/hour)
\(F_e i \) : emission factor of vehicles (g/liter)
\(K_l \) : fuel usage (liter/100 km)
\(L \) : long road (km)

Table 1. Emission factor

Type of vehicles	Emission factor			
	\(\text{CH}_4 \)	\(\text{CO} \)	\(\text{N}_2\text{O} \)	\(\text{CO}_2 \)
Fuel				
Passenger vehicles	0,71	462,63	0,04	2597,86
Small commercial vehicle	0,71	295,37	0,05	2597,87
Big commercial vehicle	0,73	281,14	0,06	2597,88
Scooter	3,56	427,05	0,07	2597,89
Diesel				
Passenger vehicles	0,08	11,86	0,16	2924,90
Small commercial vehicle	0,04	15,83	0,16	2924,90
Big commercial vehicle	0,24	35,57	0,12	2924,90
Locomotive	0,24	24,11	0,08	2924,43

Sumber: [10]

Table 2. Fuel consumption of vehicles

No	Type of vehicles	Fuel consumption of vehicles
		(liter/100 km)
1	Passenger car	
	Fuel	11,79
	Diesel	11,36
2	Big bus	23,15
	Fuel	16,89
	Diesel	13,04
3	Medium bus	11,35
	Small bus	11,83
4	Fuel	10,99
	Diesel	10,88
5	Bemo or bajaj	6,25
	Taxi	15,82
6	Fuel	15,15
	Diesel	8,11
7	Tronton truck	10,64
8	Medium truck	2,66
9	Small truck	
	Fuel	
	Diesel	
10	Mototcycle	

Sumber: [10]
Analysis of the adequacy of green open space to absorb CO₂ emissions

An analysis of the adequacy of green space to absorb CO₂ emissions is done by comparing the carbon stock of green space on Gajahmada Street with CO₂ emissions resulting from transportation activities.

3 Results and Discussion

3.1 Type of vegetation in green open spaces pedestrians on Gajahmada Street

Gajahmada street is located in Sekayu Village, Central Semarang District. The location is very strategic, which is located in the city center and connects the golden triangle of the City of Semarang. Based on the Minister of Public Works Regulation No: 05 / PRT / M / 2008, the type of green open space in the study location is pedestrian open space. Green open spaces is provided as one with the pedestrian space along Jalan Gajahmada. The dominance of vegetation in the form of shade vegetation which has the function to provide shade for pedestrians, while reducing CO₂. However, it is very regrettable that the density of trees in this green space is still low.

The type of tree that is on the Gajahmada Street consists of 14 species with a total of 141 trees. The vegetation types are Angsana, Ordinary Glodokan, Mahogany, Pulai, Asa, Java, Glodokan Pole, Tabebuya, Squirrel Tail Palm, Sawo Duren, Cambodia, Acacia, Mango Apple, Mango, and Yellow Coconut. Existing vegetation is dominated by Angsana Tree and Ordinary Glodokan. Vegetation in the study area is included in the category of medium and large trees with varying diameters. Medium category trees have an average diameter of 21 cm, while large category trees are 60 cm.

3.2 Analysis of vegetation resilience (carbon stocks by trees)

Vegetation Resilience of carbon absorption is the ability of trees to absorb CO₂ in their bodies. The following is presented the potential for carbon uptake in the pedestrian green space on Gajahmada Street.
Table 3. CO2 absorption by vegetation

No.	Local name	Latin name	Total of tree	Absorption CO2 on Gajahmada Street (kg/year)
1.	Angsana	Pterocarpus indicus	52	98,950,3
2.	Glodokan Biasa	Polyalthia sp.	14	16,148,4
3.	Mahoni	Swietenia macrophylla	23	5,382
4.	Pulai	Alstonia scholaris	20	9,699,5
5.	Asam Jawa	Tamarindus indica	11	2,950,8
6.	Glodokan Tiang	Polyalthia longifolia	8	1,052,2
7.	Tabebuya	Handroanthus sp.	2	313
8.	Palem Ekor Tupai	Wodyetia bifurcata	3	119,4
9.	Sawo Duren	Chrysophyllum cainito	1	16,3
10.	Kamboja	Plumeria	1	14,2
11.	Akasia	Acacia sp.	3	4,918
12.	Mangga Apel	Mangifera indica	1	6,403
13.	Mangga	Mangifera sp.	1	138,9
14.	Kelapa Kuning	Cocos nucifera	1	136,8
	Total		141 tree	146,243,4 kg/year or 146,3 tons/year

Wide open green space: 1,2 x 1000 m = 1,200 m² / 0,12 Ha = 1,218,7 tons/ha/year

Table 3, potential CO2 uptake on Gajahmada Street is 1,218.7 tons/ha/year. Basically, plants need CO2 gas for photosynthesis. Plants need CO2 to carry out photosynthesis. The results of the absorption of CO2 will be converted into carbohydrates which will then be spread and piled up in the body of the plant. Each type of vegetation has the ability to absorb different CO2. According to Hidayati et al (2013), the ability of carbon dioxide uptake from each tree is influenced by the number of stomata and the ability of stomata to open a plant. The greater the opening of the stomata, the greater the ability of carbon dioxide absorption. In addition, the size of the rod also affects the carbon storage capacity. Because 50% of the carbon stock is stored in the trunk.

3.3 CO2 emissions on Gajahmada Street

CO2 emissions on Gajahmada Street is sourced from transportation activities. Gajahmada Street is the main road that connects the Golden Triangle Region of Semarang City. In addition, the use of surrounding land is quite complex, namely: settlement, trade and services, education, and worship. As a result, the generation and pull of traffic in this area is quite high. The rise and pull of traffic can be seen from the high volume of vehicles passing through this road section. The following is the vehicle volume on Gajahmada Street:
The rise and pull of traffic can be seen from the high volume of vehicles passing through this education, and worship. As a result, the generation and pull of traffic in this area is quite high. In addition, the use of surrounding land is quite complex, namely: settlement, trade and services, etc. Gajahmada Street is the main road that connects the Golden Triangle Region of Semarang City. In CO2 emissions on Gajahmada Street is sourced from transportation activities. Gajahmada Street known to have residual CO2. That is equal to 5,613.3 tons / year. That is, the amount of green open space provided is insufficient so there is left over. Basically, plants need CO2 gas for photosynthesis. However, excess CO2 levels cannot be absorbed and can survive in the atmosphere for up to 200 years. Long-term accumulation of CO2 gas can cause environmentally and health problems. For the environment it can cause global warming, acid rain, etc. For health, exposure to low levels of CO2 gas can cause dizziness, hyperventilation, eye and throat irritation, mild lung disorders, central nervous system injuries, etc. While exposure to high levels can cause oxygen supply to be obstructed, which can cause seizures - even death.

3.4 Adequacy of green open space to absorbing CO2 emissions on Gajahmada Street

Adequacy of green open space : CO2 absorption – CO2 emissions

: 1.218,7 ton/ha/year - 6.832 tons/year

- 5.613,3 ton/year

From the calculation of CO2 absorption by vegetation and CO2 emissions on Gajahmada Street is known to have residual CO2. That is equal to 5,613.3 tons / year. That is, the amount of green open space provided is insufficient so there is left over. Basically, plants need CO2 gas for photosynthesis. However, excess CO2 levels cannot be absorbed and can survive in the atmosphere for up to 200 years. Long-term accumulation of CO2 gas can cause environmentally and health problems. For the environment it can cause global warming, acid rain, etc. For health, exposure to low levels of CO2 gas can cause dizziness, hyperventilation, eye and throat irritation, mild lung disorders, central nervous system injuries, etc. While exposure to high levels can cause oxygen supply to be obstructed, which can cause seizures - even death.

Table 4. CO2 emissions on Gajahmada Street

No.	Type of vehicles	Volume of vehicles*	CO Emission (g/hour)
1.	Kendaraan Ringan (LV)	1142	175,805
2.	Kendaraan Berat (HV)	12	142
3.	Sepeda Motor	2253	320/164
4.	Angkutan Umum	14	166

Total emission of CO = 496,277 g/hour or 6,832 tons/year

Conversion CO to CO2

*Source: Field Observation (2017)
4 Conclusions and recommendations

The ability of CO\textsubscript{2} absorption by vegetation on Gajahmada Street of 1,218.7 tons / ha / year. While emissions resulting from transportation activities at these locations are 6,832 tons / year. It can be concluded that there are residual emissions as large as 5,613.3 tons / year, so that the presence of vegetation is not optimal in reducing CO\textsubscript{2}.

Suggestions given, it is necessary to add vegetation to the pedestrian green space on Gajahmada Street. It is very possible, seeing the density of trees is still low. In addition, the proposed selection of trees with high carbon absorption: such as trembesi.

Acknowledgement

The research is funded by Directorate Research and Community Services, Deputy of Research Development, Ministry of Research and Technology / National Research and Innovation Board with cooperation between Institute of Research and Community Services Diponegoro University taskforce letter No. 255-141/UN7.6.1/PP/2020

References

1. Rusbiantoro, D, Global warming for beginner (2008)
2. IPCC. Guidelines for National Greenhouse Gas Inventories. Volume 2: Energy (2008).
3. K. Sejati, Global Warming, Food, and Water Problems, Solutions, and The Changes of World Geopolitical Constellation (2011)
4. N. Kusumaningrum, Jurnal Permukiman, Potensi tanaman dalam menyerap CO\textsubscript{2}, dan CO untuk mengurangi dampak pemanasan global. Vol 3 (2) pp. 97-105 (2008).
5. K. Hairiah et all, Pengukuran cadangan karbon, Wolrd Agroforestry Centre (2011).
6. Law of Permen PU No.5/PRT/M, 2008 Tentang Pedoman Penyediaan dan Pemanfaatan Ruang Tebuka Hijau di Kawasan Perkotaan.
7. K. Hairiah, S. Rahayu, Pengukuran karbon tersimpan di berbagai penggunaan lahan, Wolrd Agroforestry Centre (2007).
8. Law No 26 of 2007 concerning Spatial planning
9. IPCC. Guidelines for National Greenhouse Gas Inventories (2006).
10. B.A. Laksono, Jurnal Teknik Lingkungan ITS, Analysis of the suffiency of vegetation in absorbing carbon monoxide (CO) due to motor vehicles activity on the Ahmad Yani Street Surabaya (2014)
11. Kementerian Lingkungan Hidup dan Kehutanan Direktorat Jenderal Pengendalian Perubahan Iklim Direktorat Inventarisasi Gas Rumah Kaca dan MPV. Laporan Inventarisasi Gas Rumah Kaca dan Monitoring, Pelaporan Verifikasi Tahun (2018)