INTRODUCTION:
Medical biochemistry laboratories play an important role in modern-day diagnosis. Therefore, more importance is given to ensure the quality of laboratory tests. The errors in laboratory are classified into pre-analytical, analytical and post-analytical phase depending on the time of presentation. As per current literature, more than 70% of errors occur in the pre-analytical phase. Most of the errors occur in this phase and it is difficult to control and maintain because a lot of professionals are involved in this phase. Moreover, they are rarely covered by quality control programs. International federation of clinical chemistry and laboratory medicine working group for laboratory errors and patient safety (IFCC-WG-LEPS) has highlighted the most common pre-analytical errors in laboratory practice. The present study was undertaken to study the prevalence and types of pre-analytical errors in the clinical biochemistry emergency laboratory at a tertiary care hospital in New Delhi, India.

MATERIALS AND METHODS:
The current study was conducted at the Biochemistry laboratory of New emergency building of Safdarjung Hospital. This laboratory receives blood samples from all the emergency wards as well as non-routine samples for inpatient patients from rest of the wards of the hospital. Rejected samples in the emergency laboratory from September 2018 to August 2019 were reviewed retrospectively. Data was collected from entry registers and rejected samples registers. Statistical analysis was conducted using Microsoft Excel 2016 program. Calculations of rejected specimens of biochemistry lab was presented as number and percentage. Data of TAT was expressed as median and range. Bar diagrams and pie-charts were used to depict the data graphically.

RESULTS:
Out of total of 2,73,111 samples received in the laboratory, 28,904 were rejected owing to various reasons as shown in table 1. As can be seen in the table, 18,250 samples were rejected due to hemolysis, which is most common cause of rejection in this study. The findings have been shown graphically in Figure 1.

Figure 1: Bar diagram showing Frequencies of Different Pre-analytical errors observed (QNS: quantity not sufficient)

Table 1: Table showing frequencies of different pre-analytical errors observed

S.NO	Rejection Criteria	No. of Samples, n	Frequency (%)
1	Quantity not sufficient (QNS)	6,570	22.73
2	Hemolyzed samples	18,250	63.14
3	Lipemic samples	03	0.01
4	Labeling errors	1,825	6.31
5	Inappropriate tube	365	1.26
6	Test not done/ available	10	0.03
7	Clotted samples	348	1.20
8	Sample contaminated	730	2.52
9	Sample mix ups	803	2.77
TOTAL SAMPLES REJECTED	28,904	10.58 (total rejection rate)	
TOTAL SAMPLES RECEIVED	2,73,111		

CONCLUSION: Hemolysis was found to be the most common cause of rejection in the emergency biochemistry laboratory. Also, the most time-consuming step was analysis in auto-analyzer with respect to contribution to TAT.
was recorded as shown in Table 2 and figure 2.

Steps Involved	Sample received – sample loading into autoanalyzer	Analytical period (in autoanalyzer)	Reporting – dispatch of reports	Total TAT (minutes)
Average Time Taken In Minutes (n=48,031)	33 *(18-45)	46*(20-54)	29*(10-45)	108
% Of Each Stage	30.55%	42.59%	26.85%	100 %

TABLE 2: Table showing time taken to complete different steps of sample processing expressed as median and range; * median value

FIGURE 2: Pie-chart showing different steps of sample processing and their contribution towards TAT.

DISCUSSION:
In the present study, the incidence of the rejected specimens in the emergency biochemistry was 10.58 %. Previous studies have reported the incidence of biochemistry samples ranging from 0.3% to 6 %.

In the recent study, hemolysis was the most common reason for sample rejection. It was reported by Gokhan C. Similar findings were found by Goswami et al. Arul et al. ‘Incidence of hemolysis was reported to be 0.03%’. There can be various causes of hemolysis including using a needle that is too small, pulling the syringe plunger too fast, shaking the tube vigorously, or centrifuging the sample before clot formation. It also leads to increased turnaround time as fresh sampling is required, mostly.

The second most common error was inadequate samples. 6570 samples were rejected due to this reason(22.73%). As per available literature, insufficient samples can be accounted from pediatric, neonatal and oncology wards, as peripheral vascular access is difficult. Incorrect phlebotomy practices due to ignorance or increased workload could be another reason.

Incidence of misidentifications (including), labeling errors, incorrect vials, sample contaminated, sample mix-ups were observed to be 6.31 %, 1.26 %, 2.52 % and 2.77 % respectively. This can be attributed to excessive work-load due to large number of patients or sampling done by untrained staff. Incidence of test not done/available was 2.52%, which could be because of lack of information in the wards.

Incidence of clotted samples was found to be 1.2 %. The chief reason could be improper handling of blood samples including poor mixing, keeping at horizontal position. Gokhan C reported incidence of clotted samples to be 45.6% in hematology laboratory. Arul et al. reported that 0.12 % samples were clotted in biochemistry laboratory.

Pre-analytical errors can adversely affect treatment of patients. Most of the errors can be reduced by proper training of the staff and checking competency through by conduction of practical and theory assessment at frequent intervals.

LIMITATIONS:
The limitations of this study include that only samples received in emergency were included and routine samples were not included in the study. Also, no comparison was made between day , evening and night shifts.

CONCLUSIONS:
In the current study, incidence of pre-analytical errors was found to be 10.58% in the emergency lab. Hemolysis of blood samples was the most common cause of rejection. Total Turnaround time (median value) was found to be 108 minutes and the time taken for analysis in the auto-analyzer was the main contributing factor towards TAT. It is recommended that to avoid these errors, adequate and continuous training of hospital staff including lab personnel should be ensured.

REFERENCES:
1. Comes MP, Atherton J, Poumahatiram G, Bothwick H, Kyle B, West J, et al. Monitoring and reporting of preanalytical errors in laboratory medicine: the UK situation. Ann Clin Biochem. 2016 Mar;53(Pt 2):279–84.
2. Sciaccovelli L, Plebani M. The IFCC Working Group on laboratory errors and patient safety. Clin Chim Acta. 2009 Jun;404(1-2):79–85.
3. Mohamedaleh ZM, Mohamedaleh F. A review article of the reduce errors in medical laboratories. Glob J Health Sci. 2014;7:46–51.
4. Carraro P, Plebani M. Errors in a start laboratory: Types and frequencies 10 years later. Clin Chem. 2007;53:1338–42.
5. Kalfa J. Medical errors: Impact on clinical laboratories and other critical areas. Clin Biochem. 2004;37:1052–62.
6. Astion ML, Shojiang IA, Hamill TR, Kim S, Ng VL. Classifying laboratory incident reports to identify problems that jeopardize patient safety. Am J Clin Pathol. 2001;119:128–26.
7. Dale JC, Novis DA. Outpatient phlebotomy success and reasons for specimen rejection. Arch Pathol Lab Med. 2002;126(4):416–9.
8. Sinici Lay I, Pinar A, Akbiyik F. Causes of rejection of blood samples handled in the clinical laboratory of a University Hospital in Porto Alegre. Clin Biochem. 2012;45(1-2):121–6.
9. Sinici Lay I, Pinar A, Akbiyik F. Classification of reasons for rejection of biological specimens based on pre-anaesthetical procedures to identify quality indicators at a university hospital clinical laboratory in Turkey. Clin Biochem. 2014;47(12):1082–5.
10. Arul P, Pushparaj M, Kannani Pandian K, Lingsamy Chennimalai L, Karthika Rajendran K, et al. Prevalence and types of preanalytical error in hematology laboratory of a tertiary care hospital in South India. J Lab Physicians. 2018 Apr-Jun;10(2):237–249.
11. Calikci G. The Evaluation of Error Types and Turnaround Time of Preanaesthetical Phase in Biochemistry and Hematology Laboratories. Iran J Pathol. 2018 Spring; 13(2): 173–178.
12. Goswami B, Singh B, Chawla R, Malikia V. Evaluation of errors in a clinical laboratory: a one-year experience. Clin Chem Lab Med. 2010;48(1):63–6.
13. Carraro P, Servidio G, Plebani M. Hemolyzed specimens: A reason for rejection or a clinical challenge? Clin Chem. 2003;120:18–26.
14. Chawla R, Goswami V, Tayal D, Malikia V. Identification of the types of preanalytical errors in the clinical chemistry laboratory: 1-year study of G.B. Pant Hospital. Lab Med. 2010;41:89–92.
15. Detaillie T, Pirotte T, Veyckemans F. Vascular access in the neonate. Best Pract Res Clin Anaesthesiol. 2010;24(3):403–18.
16. Gallieni M, Pitirrani M, Biffi R. Vascular access in oncology patients. CACancer J Clin. 2008;58(6):323–46.
17. Dikmen ZG, Pinar A, Akbiyik F. Specimen rejection in laboratory medicine: Necessary for patient safety? Biochem Med (Zagreb) 2015;25(3):377–85.
18. Najat D. Prevalence of Preanalytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan. PL Ab One. 2017 Jan;20(1)