Research Article

Approximation by Szász-Jakimovski-Leviatan-Type Operators via Aid of Appell Polynomials

Md. Nasiruzzaman and A. F. Aljohani

Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box-4279, Tabuk 71491, Saudi Arabia

Correspondence should be addressed to Md. Nasiruzzaman; nasir3489@gmail.com

Received 18 July 2020; Revised 21 August 2020; Accepted 29 August 2020; Published 18 September 2020

Academic Editor: Syed Abdul Mohiuddine

Copyright © 2020 Md. Nasiruzzaman and A. F. Aljohani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The main purpose of the present article is to construct a newly Szász-Jakimovski-Leviatan-type positive linear operators in the Dunkl analogue by the aid of Appell polynomials. In order to investigate the approximation properties of these operators, first we estimate the moments and obtain the basic results. Further, we study the approximation by the use of modulus of continuity in the spaces of the Lipschitz functions, Peetre’s K-functional, and weighted modulus of continuity. Moreover, we study A-statistical convergence of operators and approximation properties of the bivariate case.

1. Introduction

In 1969, Jakimovski and Leviatan introduced a sequence of positive linear operators \(\{ L_n \}_{n \geq 1} \) [1], by using Appell polynomials [2] \(F(v)e^{vy} = \sum_{i=0}^{\infty} P_i(y)v^i \) and defined as

\[
L_n(h; y) = \frac{e^{-y}}{F(1)} \sum_{i=0}^{\infty} P_i(ny)h\left(\frac{s}{n} \right),
\]

(1)

where \(F(1) \neq 0 \), \(F(v) = \sum_{i=0}^{\infty} c_i v^i \), and \(P_i(y) = \sum_{s=0}^{\infty} c_i(y^{s+i}(s-i)) \). For all \(n \in \mathbb{N} \) and \(c_i/F(1) \geq 0 \), the positive linear operators \(L_n \) are defined on \([0, 1]\) given by Wood in [3]. If we take \(h \in \mathcal{E}(0, \infty) \), then an analogue of Szász operators was proved by Jakimovski and Leviatan, where \(\mathcal{E}(0, \infty) \) denotes the set of functions on \([0, \infty)\) such that \(|h(y)| \leq ae^{\nu y} \), where \(a, \kappa \) are positive constants. They established \(\lim_{n \to \infty} L_n(h; y) = h(y) \) uniformly on each compact subset of \([0, 1]\) (see [1, 4]). Precisely, for \(F(1) = 1 \) in (1), the well-known classical Szász operators [5] were obtained defined in 1950 such that

\[
S_n(h; y) = e^{-y} \sum_{s=0}^{\infty} \frac{(ny)^s}{s!} h\left(\frac{s}{n} \right).
\]

(2)

Recently, Szász-Mirakyan operators have been obtained by researchers via the Dunkl generalization in approximation process; for instance, we refer the readers to [6–12]. For more details, related results relevant to the present article in different functional spaces are seen in [13–19] and [20–23]. Sucu [24] introduced Szász-Mirakyan operators by using the new exponential function given in [25] as

\[
epsilon\lambda(y) = \sum_{s=0}^{\infty} \frac{y^s}{\gamma\lambda(s)},
\]

\[
g\lambda(2p) = \frac{2\beta p\lambda! \Gamma(p + \lambda + 1/2)}{\Gamma(\lambda + 1/2)},
\]

(3)

\[
g\lambda(2p + 1) = \frac{2\beta p + 1\lambda! \Gamma(p + \lambda + 3/2)}{\Gamma(\lambda + 1/2)}.
\]

For \(p = 0, 1, 2, \cdots \) a recursion of \(g\lambda \) is given as

\[
g\lambda(p + 1) = \frac{g\lambda(p + 1)}{p + 2\lambda \theta(p + 1)} = g\lambda(p),
\]

(4)

\[
\theta_p = \begin{cases} 0 & \text{if } p = 2s, \ s \in \mathbb{N}, \\ 1 & \text{if } p = 2s + 1, \ s \in \mathbb{N}. \end{cases}
\]
These types of generalizations gave rise to exponential function and generalization of Hermite-type polynomials, expressed in the form of the confluent hypergeometric function (see [25]).

2. Construction of Operators and Estimation of Moments

For every $h \in C_{\infty}[0, \infty) = \{ h \in C[0, \infty) : h(s) = O(s^\theta) \}$ as $s \to \infty$, and all $y \in [0, \infty)$, $\theta > n$, $n \in \mathbb{N}$, $F(1) \neq 0$, $\lambda \geq 0$, we define

$$J_{n\lambda}^*(h : y) = \frac{1}{F(1)e_\lambda(ny)} \sum_{i=0}^{\infty} P_i(ny)h\left(\frac{s + 2i\theta}{n}\right). \quad (5)$$

Lemma 1. For all $y \in [0, \infty)$, $P_i(y) \geq 0$, $\lambda \geq 0$, and $F(1) \neq 0$, if we define

$$F(1)e_\lambda(ny) = \sum_{i=0}^{\infty} P_i(ny),$$

$$\sum_{i=0}^{\infty} P_i(ny) = \left(F'(1) + nyF(1)\right)e_\lambda(ny),$$

$$\sum_{i=0}^{\infty} i^2P_i(ny) = \left(F''(1) + (2ny + 1)F'(1) + ny(ny + 1)F(1)\right)e_\lambda(ny),$$

$$\sum_{i=0}^{\infty} i^3P_i(ny) = \left(F'''(1) + 3(ny + 1)F''(1) + (3n^2y^2 + 6ny + 2)F'(1) + ny(n^2y^2 + 3ny + 2)F(1)\right)e_\lambda(ny),$$

$$\sum_{i=0}^{\infty} i^4P_i(ny) = \left(F''''(1) + (4ny + 6)F'''(1) + (6n^2y^2 + 18ny + 11)F''(1) + (4n^3y^3 + 18n^2y^2 + 22ny + 6)F'(1) + ny(n^3y^3 + 6n^2y^2 + 11ny + 6)F(1)\right)e_\lambda(ny). \quad (7)$$

Proof.

Lemma 2. Let $\lambda \in [0, \infty)$, $F(1) \neq 0$ and take $\phi_r = s^r$ for $r = 0, 1, 2, 3, 4$.

Then, for operators $J_{n\lambda}^*(\cdot; \cdot)$ by (5), we have the following estimates:

$$J_{n\lambda}^*(\phi_0; y) = 1,$$

$$J_{n\lambda}^*(\phi_1; y) = y + \frac{1}{n}\left(F'(1) + 2\lambda\right),$$

$$J_{n\lambda}^*(\phi_2; y) = y^2 + \frac{1}{n}\left(2F'(1) + 4\lambda + 1\right)y + \frac{1}{n^2}\left(3F''(1) + (1 + 4\lambda)F'(1) + 4\lambda^2\right),$$

$$J_{n\lambda}^*(\phi_3; y) = y^3 + \frac{3}{n}\left(F'(1) + 2\lambda + 1\right)y^2 + \frac{1}{n^2}\left(3F''(1) + 6(1 + 2\lambda)F'(1) + 2 + 6\lambda\right)y + \frac{1}{n^3}\left(3F''(1) + 3(1 + 2\lambda)F''(1) + 2\right),$$

$$J_{n\lambda}^*(\phi_4; y) = y^4 + \frac{1}{n}\left(F'(1) + 8\lambda + 6\right)y^3 + \frac{1}{n^2}\left(6F''(1) + 8(1 + 3\lambda)F'(1) + 11 + 24\lambda + 24\lambda^2\right)y^2 + \frac{1}{n^3}\left(6F''(1) + 8(1 + 3\lambda)F''(1) + 11 + 24\lambda + 24\lambda^2\right)y + \frac{1}{n^4}\left(F''(1) + 2(1 + 3\lambda + 6\lambda^2)\right). \quad (8)$$
(1) Take $h = \phi_0$, then
\[
J_{n,\lambda}^*(\phi_0 ; y) = \frac{1}{F(1)e_\lambda(ny)} \sum_{s=0}^{\infty} P_s(ny) = 1.
\]

(2) For $h = \phi_1$
\[
J_{n,\lambda}^*(\phi_1 ; y) = \frac{1}{F(1)e_\lambda(ny)} \sum_{s=0}^{\infty} P_s(ny) \left(\frac{s + 2\lambda \theta_s}{n} \right)
= \frac{1}{nF(1)e_\lambda(ny)} \sum_{s=0}^{\infty} sP_s(ny)
+ \frac{2\lambda}{nF(1)e_\lambda(ny)} \sum_{s=0}^{\infty} \theta_s P_s(ny) \text{ for } k = 0, 1, 2, 3, \ldots
\]
\[
= 0, 1, 2, 3, \ldots = \frac{1}{nF(1)e_\lambda(ny)} \cdot \left(F'(1) + nyF(1) \right) e_\lambda(ny) + \frac{2\lambda}{n}.
\]

(3) For $h = \phi_2$
\[
J_{n,\lambda}^*(\phi_2 ; y) = \frac{1}{F(1)e_\lambda(ny)} \sum_{s=0}^{\infty} P_s(ny) \left(\frac{s + 2\lambda \theta_s}{n} \right)^2
= \frac{1}{n^2F(1)e_\lambda(ny)} \sum_{s=0}^{\infty} s^2P_s(ny) + \frac{4\lambda}{n^2F(1)e_\lambda(ny)}
\cdot \sum_{s=0}^{\infty} sP_s(ny) \theta_s \text{ for } k = 0, 1, 2, 3, \ldots
+ \frac{4\lambda^2}{n^2F(1)e_\lambda(ny)} \sum_{s=0}^{\infty} P_s(ny) \theta_{s}^2 \text{ for } k
\]
\[
= 0, 1, 2, 3, \ldots = \frac{1}{F(1)e_\lambda(ny)} \left(F''(1) \right)
+ (2ny + 1)F'(1) + ny(ny + 1)F(1) \right) e_\lambda(ny)
+ \frac{4\lambda^2}{n^2F(1)e_\lambda(ny)} \left(F'(1) + nyF(1) \right) e_\lambda(ny)
+ \frac{4\lambda^2}{n^2}
+ \frac{4\lambda^2}{n^2F(1)e_\lambda(ny)}
+ \frac{4\lambda^2}{n^2}.
\]

Similarly, we can prove easily (4) and (5).

Lemma 3. Let $\psi_j = (\phi_j - y)^j$ for $j = 1, 2, 3$, be the central moments, then
\[
J_{n,\lambda}^*(\psi_j ; y) = \frac{1}{n} \left(F'(1) + 2\lambda \right)
\]
\[
J_{n,\lambda}^*(\psi_2 ; y) = \frac{y + \frac{1}{n^2} \left(F''(1) + (1 + 4\lambda) F'(1) + 4\lambda^2 \right)
\]
\[
J_{n,\lambda}^*(\psi_3 ; y) = \frac{1}{n} \left(4F'(1) + 8\lambda \right) y^3 + \frac{1}{n^2} \left(-10 F'(1) + 3 \right) y^3
+ \frac{1}{n^3} \left(-4F''(1) + 2(7 + 12\lambda) F'(1) + 16\lambda^2 \right)
+ (2 + 3y + 12\lambda^2) y^2 + \frac{1}{n^2} \left(F''(1) \right)
+ (2 + 3 + 12\lambda) F'(1) + (11 + 24\lambda + 24\lambda^2) F''(1) + 16\lambda^4
\]
\[
+ \frac{1}{n} \left(-4F'(1) \right) - 8\lambda
\]

3. Global Approximation

In the present section, we follow Gadžiev [11] and recall the weighted spaces of the functions on $[0, \infty)$, as well as additional conditions under which the analogous theorem of P.P. Korovkin holds for such a kind of functions. Take $y \rightarrow \phi(y)$ be continuous and strictly increasing function with $\sigma(y) = 1 + \phi'(y)$ and $\lim_{y \rightarrow \infty} \sigma(y) = \infty$. Let $B_o[0, \infty)$ be a set of functions defined on $[0, \infty)$, verifying the results
\[
B_o[0, \infty) = \{ h(y) : |h(y)| \leq K_o \sigma(y) \},
\]
where K_o is a constant and depending only on function h and $B_o[0, \infty)$ is space of all continuous as well as bounded functions on $[0, \infty)$. Let the set of all continuous functions on $[0, \infty)$ will be denoted by $C_o[0, \infty)$ and $B_o[0, \infty) \subset C_o[0, \infty)$ equipped with the norm $||h||_{o} = \sup_{y \in [0, \infty)} |h(y)/\sigma(y)|$.

Let us denote
\[
C^{\infty}_{o}[0, \infty) = \left\{ h \in C_o : \lim_{y \rightarrow \infty} \frac{h(y)}{\sigma(y)} = k, k \text{ is positive constant } \right\}.
\]

It is well known that (see [26]) the sequence of linear positive operators $\{L_n\}_{n=1}^\infty$ maps $C_o[0, \infty)$ into $B_o[0, \infty)$ if and only if
Def. 4. For all \(h \in C[0, \infty) \), the modulus of continuity for a uniformly continuous function \(h \) defined by

\[
\omega(h; \delta) = \sup_{|s_1 - s_2| \leq \delta} |h(s_1) - h(s_2)|, \quad s_1, s_2 \in [0, \infty). \tag{16}
\]

For every \(\delta > 0 \) and uniformly continuous function \(h \in C[0, \infty) \), we suppose

\[
|h(s_1) - h(s_2)| \leq \left(1 + \frac{|s_1 - s_2|}{\delta} \right) \omega(h; \delta). \tag{17}
\]

Theorem 5. For all \(h \in [0, \infty) \cap \{ h : y \geq 0, h(y) / \sigma(y) \text{ is convergent as } y \to \infty \} \), operators \(\mathcal{F}_{n,\lambda}^* \) defined in (5) satisfy \(\mathcal{F}_{n,\lambda}^* h \) on each compact subset of \([0, \infty)\), with \(\sigma \) stands for uniform convergence.

Proof. From the well-known Korovkin’s theorem (see [27]), for all \(r = 0, 1, 2 \), it is sufficient to see that

\[
\mathcal{F}_{n,\lambda}^* (\phi_r ; y) \to y^r. \tag{18}
\]

In the view of Lemma 2, it is obvious that \(\mathcal{F}_{n,\lambda}^* (\phi_r ; y) \to y^r \) as \(n \to \infty, r = 0, 1, 2 \), which completes Theorem 5.

Theorem 6. Let \(\mathcal{F}_{n,\lambda}^* : C^m[0, \infty) \to B_c[0, \infty) \). Then for every \(h \in C^m[0, \infty) \), we have

\[
\lim_{n \to \infty} \| \mathcal{F}_{n,\lambda}^* (h ; y) - h \|_\sigma = 0. \tag{19}
\]

Proof. We prove this theorem by applying Korovkin’s theorem so it is sufficient to show that

\[
\lim_{n \to \infty} \| \mathcal{F}_{n,\lambda}^* (\phi_j ; y) - y^j \|_\sigma = 0, \quad \text{for } j = 0, 1, 2. \tag{20}
\]

From Lemma 2, we easily see that

\[
\| \mathcal{F}_{n,\lambda}^* (\phi_0 ; y) - y^0 \|_\sigma = \sup_{y \in [0, \infty)} \left| \mathcal{F}_{n,\lambda}^* (1 ; y) - 1 \right| / \sigma(y) = 0 \text{ for } j = 0. \tag{21}
\]

Similarly, for

\[
\| \mathcal{F}_{n,\lambda}^* (\phi_1 ; y) - y^1 \|_\sigma = \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \sup_{y \in [0, \infty)} \frac{1}{\sigma(y)}. \tag{22}
\]

which imply that \(\| \mathcal{F}_{n,\lambda}^* (\phi_1 ; y) - y \|_\sigma \to 0 \) as \(n \to \infty \). For \(j = 2 \)

\[
\| \mathcal{F}_{n,\lambda}^* (\phi_2 ; y) - y^2 \|_\sigma = \sup_{y \in [0, \infty)} \left| \mathcal{F}_{n,\lambda}^* (\phi_2 ; y) - y^2 \right| / \sigma(y) = \frac{1}{n^2} \left(\frac{2F'(1)}{F(1)} + 4\lambda + 1 \right) \sup_{y \in [0, \infty)} \frac{1}{\sigma(y)}.
\]

which clearly shows that \(\| \mathcal{F}_{n,\lambda}^* (\phi_2 ; y) - y^2 \|_\sigma \to 0 \), whenever \(n \to \infty \).

Theorem 7. For all \(h \in C_B[0, \infty) \), operators given by (5) satisfy

\[
\| \mathcal{F}_{n,\lambda}^* (\psi_2 ; y) - y^2 \|_\sigma \to 0, \quad \text{as } n \to \infty.
\]

Proof. We prove Theorem 7 by using the well-known Cauchy-Schwarz inequality and modulus of continuity. Thus, we see that

\[
\| \mathcal{F}_{n,\lambda}^* (\psi_2 ; y) - y^2 \|_\sigma \leq \frac{1}{F(1)} \sup_{y \in [0, \infty)} \left| \frac{\psi'(y)}{\sigma(y)} \right| \sup_{y \in [0, \infty)} \frac{1}{\sigma(y)}. \tag{23}
\]

If we take \(\delta = \delta_n = \sqrt{\mathcal{F}_{n,\lambda}^* (\psi_2 ; y)} \), we get the required result asserted by Theorem 7.

4. Some Direct Results of \(\mathcal{F}_{n,\lambda}^* \)

The present section gives some direct approximation results in the space of \(K \)-functional and in the Lipschitz spaces. We suppose the following.

Definition 8. For every \(\delta > 0 \) and \(h \in C[0, \infty) \), we define

\[
K_2(h; \delta) = \inf \left\{ \frac{\| h - \psi \|_{C_\lambda[0, \infty)} + \delta \| \psi' \|_{C_\lambda[0, \infty)}}{\psi, \psi' \in C_\lambda[0, \infty)} \right\}. \tag{26}
\]
where \(C^k_B(0, \infty) \) is defined by

\[
C^k_B(0, \infty) = \left\{ h : h \in C_B(0, \infty), k \in \mathbb{N}; \right. \\
\left. \text{such that } \lim_{y \to \infty} \frac{h(y)}{\sigma(y)} = k < \infty \right\}.
\] (27)

Now, there exists an absolute constant \(C > 0 \) such that

\[
K(h, \delta) < C \left\{ \omega_2 \left(h; \sqrt{\delta} \right) + \min \left(1, \delta \right) \|h\|_{C^2_B(0, \infty)} \right\},
\] (28)

where \(\omega_2(h; \delta) \) is the second-order modulus of continuity given by

\[
\omega_2(h; \delta) = \sup_{0 < \epsilon < \delta; y \in [0, \infty)} |h(y + 2\eta) - 2h(y + \eta) + h(y)|.
\] (29)

Moreover, the modulus of continuity of order one is

\[
\omega(h; \delta) = \sup_{0 < \epsilon < \delta; y \in [0, \infty)} \left| h(y + \eta) - h(y) \right|.
\] (30)

Theorem 9. Let \(h \in C^2_B[0, \infty) \), we define an auxiliary operators \(\mathcal{K}^*_n \) such that

\[
\mathcal{K}^*_n(h; \delta) = \mathcal{J}^*_n(h; \delta) + \lambda(h) - \lambda\left\{ \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right\}.
\] (31)

Then, for every \(\psi \in C^2_B[0, \infty) \), operators \(\mathcal{K}^*_n \) satisfy

\[
\left| \mathcal{K}^*_n(\psi; y) - \psi(\cdot) \right| \leq \Theta_n(\psi) ||\psi''||,
\] (32)

where \(\Theta_n(\psi) = (\delta_n(\psi))^2 + (1/n^2((F'(1)/F(1)) + 2\lambda)^2
\)

and \(\delta_n(\psi) \) are defined in Theorem 7.

Proof. Take \(\psi \in C^2_B[0, \infty) \); then, we easily conclude that

\[
\mathcal{K}^*_n(\phi_0; y) = 1
\]

and

\[
\mathcal{K}^*_n(\phi_1; y) = \mathcal{J}^*_n(\phi_1; y) + \psi(\cdot) + \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right).
\] (33)

We also know easily

\[
\left\| \mathcal{J}^*_n(h; \delta) \right\| \leq \|h\|.
\] (34)

Therefore,

\[
\left| \mathcal{K}^*_n(h; \delta) \right| \leq \left| \mathcal{J}^*_n(h; \delta) \right| + \|h\|
\]

\[
+ \left\{ \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right\} \leq 3\|h\|.
\] (35)

From the Taylor series we see

\[
\psi(s) = \psi(y) + (s - y)\psi'(y) + \int_y^s (s - \mu)\psi''(\mu) \, d\mu.
\] (36)

Applying \(\mathcal{K}^*_n \), we have

\[
\left| \mathcal{K}^*_n(\psi; y) - \psi(y) \right| \leq \left| \mathcal{J}^*_n(\psi; y) \right| + ||\psi''||
\]

\[
+ \left| \int_y^s \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \psi''(\mu) \, d\mu \right|.
\] (37)

Since we know

\[
\left| \int_y^s (s - \mu)\psi''(\mu) \, d\mu \right| \leq (s - y)^2 ||\psi''||,
\]

\[
\left| \int_y^s \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \psi''(\mu) \, d\mu \right| \leq \left(\frac{F'(1)}{F(1)} + 2\lambda \right) ||\psi''||.
\] (38)

Therefore, we get

\[
\left| \mathcal{K}^*_n(\psi; y) - \psi(y) \right| \leq \left(\frac{F'(1)}{F(1)} + 2\lambda \right) ||\psi''||.
\] (39)

This gives the complete proof.
Theorem 10. Let \(h \in C_{\beta}[0, \infty) \) and any \(\psi \in C_{\beta}^2[0, \infty) \). Then, there exists a constant \(\Theta > 0 \) such that

\[
|J_{n,\lambda}^*(h; y) - h(y)| \leq \Theta \left(\frac{\sqrt{\Theta_n(y)}}{2} \right) + \min \left(1, \frac{\Theta_n(y)}{4} \right) \| h \|_{C_{\beta}[0, \infty)} + \omega \left(h; \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right),
\]

(40)

where \(\Theta_n(y) \) is defined by Theorem 9.

Proof. We prove the result asserted by Theorem 10 in the light of Theorem 9. Therefore, for all \(h \in C_{\beta}[0, \infty) \) and \(\psi \in C_{\beta}^2[0, \infty) \), we get

\[
|J_{n,\lambda}^*(h; y) - h(y)|
\]

\[
= |J_{n,\lambda}^*(h; y) - h(y) + h\left(y + \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right) - h(y)|
\]

\[
\leq |J_{n,\lambda}^*(h - \psi; y)| + |J_{n,\lambda}^*(\psi; y) - \psi(y)| + |\psi(y) - h(y)|
\]

\[
+ \left| h\left(y + \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right) - h(y) \right|
\]

\[
\leq 4\| h - \psi \| + \Theta_n(y)\| \psi'' \| + \omega \left(h; \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right) \right). \tag{41}
\]

Taking infimum over all \(\psi \in C_{\beta}^2[0, \infty) \) and using (26), we get

\[
|J_{n,\lambda}^*(h; y) - h(y)|
\]

\[
\leq 4K_2 \left(h; \frac{\Theta_n(y)}{4} \right) \omega \left(h; \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right) \omega \left(h; \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right)
\]

\[
\leq \Theta \left\{ \omega \left(h; \frac{\sqrt{\Theta_n(y)}}{4} \right) \omega \left(h; \frac{\Theta_n(y)}{4} \right) \right\} + \min \left(1, \frac{\Theta_n(y)}{4} \right) \| h \|_{C_{\beta}[0, \infty)}
\]

\[
+ \omega \left(h; \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right) \right) \right). \tag{42}
\]

Theorem 11. Let \(0 < \theta \leq 1 \), then for all \(h \in C_{\beta}[0, \infty) \), operators \(J_{n,\lambda}^* \) satisfy

\[
|J_{n,\lambda}^*(h; y) - h(y)| \leq \omega(h; y)(\delta_n(y))^\theta, \tag{44}
\]

where \(\omega(h; y) \) is the Lipschitz maximal function defined by (43) and \(\delta_n(y) \) by Theorem 7.

Proof. To prove Theorem 11, we use the well-known Hölder inequality by applying (43)

\[
|J_{n,\lambda}^*(h; y) - h(y)|
\]

\[
\leq J_{n,\lambda}^*(|h(s) - h(y)| ; y) \leq \omega(h; y)|J_{n,\lambda}^*\left(|s - y|^\theta ; y \right)
\]

\[
\leq \omega(h; y)\left(J_{n,\lambda}^*\left(\phi_1 |y_1 - y|^\theta ; y \right) \right)^{\frac{2}{\theta}} \left(J_{n,\lambda}^*\left(|y_1 - y|^\theta ; y \right) \right)^{\frac{\theta}{\theta}}
\]

\[
= \omega(h; y)\left(J_{n,\lambda}^*\left(\psi_1 |y| ; y \right) \right)^{\frac{2}{\theta}}. \tag{45}
\]

The proof is complete.

From [28] for an arbitrary \(h \in C_{\beta}[0, \infty) \), the weighted modulus of continuity is introduced such that

\[
\Omega(h; \delta) = \sup_{y \in [0, \infty), \| h \| \leq \delta} \frac{|h(y + \eta) - h(y)|}{(1 + \eta^2)(1 + y^2)}. \tag{46}
\]

The two main properties of this modulus of continuity are \(\lim_{\delta \rightarrow 0} \Omega(h; \delta) = 0 \) and

\[
|h(s) - h(y)| \leq 2 \left(1 + \frac{|s - y|}{\delta} \right)(1 + \delta^2)(1 + y^2) \cdot (1 + (s - y)^2) \Omega(h; \delta), \tag{47}
\]

where \(s, y \in [0, \infty) \).

Theorem 12. Let the operators \(J_{n,\lambda}^* \) be defined by (5); then for every \(h \in C_{\beta}[0, \infty) \), there exists a constant \(C > 0 \) such that

\[
\sup_{y \in (0, \infty)} \frac{|J_{n,\lambda}^*(h; y) - h(y)|}{\sigma(y)} \leq C \left(1 + O \left(\frac{1}{n} \right) \right) \Omega \left(h; \sqrt{\frac{1}{n}} \right), \tag{48}
\]

where \(\sigma(y) = 1 + y^2 \) and \(C = (2 + C_1 + 2C_2) \) with \(C_1 > 0, C_2 > 0 \).
Proof. In light of (46), (47), and Cauchy-Schwarz inequality, we prove this theorem. Thus, we see
\[
\left| J_{n,\lambda}^*(h ; y) - h (y) \right|
\leq 2 \left(1 + \delta^2 \right) \left(1 + y^2 \right) O(h ; \delta) \left(1 + J_{n,\lambda}^* \left((\phi_1 - y)^2 ; y \right) \right.
\]
\[+ J_{n,\lambda}^* \left(\left(1 + (\phi_1 - y)^2 \right) \frac{\phi_1 - y}{\delta} ; y \right) \left. \right) \right)
\]
(49)
\[
J_{n,\lambda}^* \left(\left(1 + (\phi_1 - y)^2 \right) \frac{\phi_1 - y}{\delta} ; y \right)
\leq 1 + 2 \left(J_{n,\lambda}^* \left((\phi_1 - y)^4 ; y \right) \right)^{\frac{1}{2}} \left(J_{n,\lambda}^* \left(\left(\frac{\phi_1 - y}{\delta^2} \right) ; y \right) \right)^{\frac{1}{2}}.
\]
(50)

From Lemma 3, we easily conclude that for any positive C_1 and C_2
\[
J_{n,\lambda}^* \left((\phi_1 - y)^2 ; y \right) = O \left(\frac{1}{n} \right) (y + 1)^2 \leq C_1 (y + 1)^2 \text{ as } n \to \infty,
\]
(51)
\[
J_{n,\lambda}^* \left((\phi_1 - y)^4 ; y \right) = O \left(\frac{1}{n} \right) (y + 1)^4 \leq C_2 (y + 1)^4 \text{ as } n \to \infty.
\]
(52)

Therefore,
\[
\left(J_{n,\lambda}^* \left(\frac{(\phi_1 - y)^2}{\delta^2} ; y \right) \right)^{\frac{1}{2}} = \frac{1}{\delta} \sqrt{O \left(\frac{1}{n} \right) (1 + y)}.
\]
(53)
\[
\left(J_{n,\lambda}^* \left((\phi_1 - y)^4 ; y \right) \right)^{\frac{1}{2}} \leq C_2 (1 + y)^2.
\]
(54)

Hence, in light of (49), (50), (51), (52), (53) and (54) and choosing $\delta \sqrt{O(1/n)}$, if we take the supremum $y \in [0, O(1/n)]$, we get the result.

5. A-Statistical Convergence

Here, we obtain the A-statistical convergence for the operators $J_{n,\lambda}$ by (5). From [29], we recall the needed notations and notions for A-statistical convergence. Take $G = (D_{nk})$ be a nonnegative infinite summability matrix. For a given sequence $y = (y_k)$, the A-transform of y is denoted by $Gy : (Gy)_n$, where the series converges for each n and defined by
\[
(Gy)_n = \sum_{k=1}^{\infty} y_k D_{nk}.
\]
(55)

The matrix G is said to be regular if $\lim(Gy)_n = L$ whenever $\lim x = L$ and $y = (y_n)$ are said to be a A-statistical convergently to L, i.e., $st_G \lim_{n} y_n = L$ if for each $\varepsilon > 0$
\[
\lim_{n} \sup_{|y-L|>\varepsilon} D_{nk} = 0.
\]

The recent work on statistical convergence and statistical approximation, we refer to [30–37].

Theorem 13. Let operators $J_{n,\lambda}$ be defined by 1 and a nonnegative regular summability matrix be $G = (D_{nk})$, then, for every $h \in C_0^\infty(0, \infty)$
\[
st_G \lim_{n} \left\| J_{n,\lambda}^* (h ; y) - h \right\|_{\sigma} = 0.
\]
(56)

Proof. It is enough to show that
\[
st_G \lim_{n} \left\| J_{n,\lambda}^* \left(\phi_j ; y \right) - y^j \right\|_{\sigma} = 0, \text{ for } j = 0, 1, 2.
\]
(57)

From Lemma 2, we conclude that
\[
\left\| J_{n,\lambda}^* \left(\phi_j ; y \right) - y^j \right\|_{\sigma} = \frac{1}{n} \left(F'(1) + 2\lambda \right) \sup_{y \in (0,\infty)} \frac{1}{\sigma(y)}
\]
(58)
\[
\leq \frac{1}{n} \left(F'(1) + 2\lambda \right).
\]

which implies that
\[
st_G \lim_{n} \left(\frac{1}{n} \left(F'(1) + 2\lambda \right) \right) = 0.
\]
(59)

Similarly for $j = 2$
\[
\left\| J_{n,\lambda}^* \left(\phi_2 ; y \right) - y^2 \right\|_{\sigma}
\]
\[
= \frac{1}{n} \left(2F'(1) + 4\lambda + 1 \right) \sup_{y \in (0,\infty)} \frac{y}{\sigma(y)}
\]
\[+ \frac{1}{n^2} \left(F'(1) + 1 + 4\lambda \right) \frac{F'(1) + 4\lambda}{F(1)} \sup_{y \in (0,\infty)} \frac{1}{\sigma(y)}
\]
\[
\leq \frac{1}{2} \left(\frac{2F'(1) + 4\lambda + 1}{F(1)} \right) + \frac{1}{n} \left(F'(1) + 2\lambda \right).
\]
(60)
which shows that

$$\begin{align*}
st_G - \lim_{n \to \infty} \frac{1}{n} \left(\frac{2F'(1)}{F(1)} + 4\lambda + 1 \right)
&= st_G - \lim_{n \to \infty} \frac{1}{n} \left(\frac{F'(1)}{F(1)} + 2\lambda \right)
&= 0.
\end{align*}$$

Lemma 14 as follows:

For all $y, y_1 \in \mathbb{R}_+^2$ and sufficiently large $n, m \in \mathbb{N}$, we have

$$\mathcal{F}_{n,m}^*(s-y)^2; y, y_1) = O\left(\frac{1}{n} (y + 1)^2\right)$$

$$\leq M(y + 1)^2 as n, m \to \infty,$$

$$\mathcal{F}_{n,m}^*(t-y_1)^2; y, y_1) = O\left(\frac{1}{m} (y_1 + 1)^2\right)$$

$$\leq M(y_1 + 1)^2 as n, m \to \infty,$$

$$\mathcal{F}_{n,m}^*(s-y)^2; y, y_1) = O\left(\frac{1}{n} (y + 1)^4\right)$$

$$\leq M(y + 1)^4 as n, m \to \infty,$$

$$\mathcal{F}_{n,m}^*(t-y_1)^4; y, y_1) = O\left(\frac{1}{m} (y_1 + 1)^4\right)$$

$$\leq M(y_1 + 1)^4 as n, m \to \infty.$$ \hfill \text{(66)}

Lemma 15. If we let

$$\mathcal{H}_{n,\lambda}(g; y, y_1) = \frac{1}{F(1)e_{\lambda}(ny)} \sum_{i=0}^{\infty} P_i(ny) g\left(\frac{s + 2\lambda\theta_i}{n}, y_1\right),$$

$$\mathcal{L}_{m,\eta}(g; y, y_1) = \frac{1}{G(1)e_{\eta}(my)} \sum_{i=0}^{\infty} P_i(my) g\left(y, \frac{t + 2\eta\theta_i}{m}\right).$$ \hfill \text{(67)}

Then, it follows that

$$\mathcal{F}_{n,m}(g; y, y_1) = \mathcal{H}_{n,\lambda}(\mathcal{L}_{m,\eta}(g; y, y_1))$$

$$= \mathcal{L}_{m,\eta}(\mathcal{H}_{n,\lambda}(g; y, y_1)).$$ \hfill \text{(68)}

Proof. We easily see that

$$\mathcal{H}_{n,\lambda}(\mathcal{L}_{m,\eta}(g; y, y_1))$$

$$= \mathcal{H}_{n,\lambda}\left(\frac{1}{G(1)e_{\eta}(ny)} \sum_{i=0}^{\infty} P_i(my) g\left(y, \frac{t + 2\eta\theta_i}{m}\right)\right)$$

$$= \frac{1}{G(1)e_{\eta}(ny)} \sum_{i=0}^{\infty} P_i(my) g\left(y, \frac{t + 2\eta\theta_i}{m}\right) P_i(my_1)$$

$$= \frac{1}{F(1)e_{\lambda}(ny)} G(1)e_{\lambda}(my) \sum_{i=0}^{\infty} P_i(ny) P_i(my) g\left(\frac{s + 2\lambda\theta_i}{n}, \frac{t + 2\eta\theta_i}{m}\right) = \mathcal{F}_{n,m}^*(g; y, y_1).$$ \hfill \text{(69)}
Similarly, we can see \(\mathcal{L}^*_m (\mathcal{H}^*_{n;\lambda} (g; y, y_1)) = \mathcal{L}^*_m (g; y, y_1) \).

Let the weighted function \(\rho \) be \(\rho (y, y_1) = 1 + y^2 + y_1^2 \). Take \(B_\rho (\mathbb{R}^2) = \{ g : |g(y, y_1)| \leq M \rho(y, y_1), \quad M > 0 \} \). We denote the set of \(k \)-times continuously differentiable functions on \(\mathbb{R}^2 = \{ (y, y_1) \in \mathbb{R}^2 : y, y_1 \in [0, \infty) \} \) by \(C^k (\mathbb{R}^2) \). We also denote the class of functions such that

\[
C_\rho (\mathbb{R}^2) = \{ g : g \in B_\rho \cap C_\rho (\mathbb{R}^2) \},
\]

\[
C^k_\rho (\mathbb{R}^2) = \left\{ g : g \in C^k_\rho (\mathbb{R}^2) : \lim_{(y,y_1) \to (\infty, \infty)} \frac{g(y, y_1)}{\rho(y, y_1)} = k, \quad k < \infty \right\},
\]

\[
C^0_\rho (\mathbb{R}^2) = \left\{ g : g \in C^0_\rho (\mathbb{R}^2) : \lim_{(y,y_1) \to (\infty, \infty)} \frac{g(y, y_1)}{\rho(y, y_1)} = 0 \right\}. \tag{70}
\]

Let the norm on \(B_\rho \) be defined as \(\| g \|_\rho = \sup_{(y,y_1) \in \mathbb{R}^2} |g(y, y_1)|/\rho(y, y_1) \).

For all \(g \in C^0_\rho (\mathbb{R}^2) \) and \(\delta_1, \delta_2 > 0 \), the weighted modulus of continuity is given as

\[
\omega_\rho (g; \delta_1, \delta_2) = \sup_{(y,y_1) \in [0,\infty) \times [0,\infty]} \sup_{\delta_1 \leq \delta \leq \delta_2} |g(y + \alpha, y_1 + \beta) - g(y, y_1)|/\rho(y, y_1), \tag{71}
\]

and for any \(r_1, r_2 > 0 \) satisfying the inequality

\[
\omega_\rho (g; r_1 \delta_1, r_2 \delta_2) \leq 4 (1 + r_1) (1 + r_2) (1 + \delta_1^2) (1 + \delta_2^2) \omega_\rho (g; \delta_1, \delta_2), \tag{72}
\]

it also follows that

\[
|g(s, t) - g(y, y_1)| \leq \rho(y, y_1) \rho(|s - y|, |t - y_1|) \omega_\rho (g; |s - y|, |t - y_1|) \leq (1 + y^2 + y_1^2) (1 + (s - y)^2) (1 + (t - y_1)^2) \omega_\rho (g; |s - y|, |t - y_1|). \tag{73}
\]

Theorem 16. For all \(g \in C^0_\rho (\mathbb{R}^2) \) and sufficiently large \(n, m \in \mathbb{N} \),

\[
\left| \mathcal{F}^*_n (g; y, y_1) - g(y, y_1) \right| \leq \frac{\xi_{y, y_1}}{\rho(y, y_1)} \left(1 + O(n^{-1}) \right) \left(1 + O(m^{-1}) \right) \omega_\rho \tag{74}
\]

where \(\xi_{y, y_1} = (1 + (y + 1) + M_1 (y + 1)^2 + \sqrt{M_1} (y + 1)^3) (1 + (y_1 + 1) + M_2 (y_1 + 1)^2 + \sqrt{M_2} (y_1 + 1)^3) \), and \(M_1, M_2, M_3, M_4 > 0 \).

Proof. In view of the above explanation for all \(\delta_1, \delta_2 > 0 \), we see that

\[
|g(s, t) - g(y, y_1)| \leq 4 (1 + y^2 + y_1^2) (1 + (s - y)^2) (1 + (t - y_1)^2) \times \left(1 + \frac{|s - y|}{\delta_n} \right) \left(1 + \frac{|t - y_1|}{\delta_m} \right) \times \left(1 + \frac{|s - y|}{\delta_n} + (s - y)^2 + \frac{|s - y|}{\delta_n} + (s - y)^2 \right) \times \left(1 + \frac{|t - y_1|}{\delta_m} + (t - y_1)^2 + \frac{|t - y_1|}{\delta_m} + (t - y_1)^2 \right) \omega_\rho. \tag{75}
\]

On applying the operators \(\mathcal{F}^*_n \), we get

\[
\left| \mathcal{F}^*_n (g; y, y_1) - g(y, y_1) \right| \leq \mathcal{F}^*_n (|g(s, t) - g(y, y_1)|; y, y_1) 4 (1 + y^2 + y_1^2) \times \mathcal{F}^*_n \left(1 + \frac{|s - y|}{\delta_n} + (s - y)^2 + \frac{|s - y|}{\delta_n} + (s - y)^2 ; y, y_1 \right) \times \mathcal{F}^*_n \left(1 + \frac{|t - y_1|}{\delta_m} + (t - y_1)^2 + \frac{|t - y_1|}{\delta_m} + (t - y_1)^2 ; y, y_1 \right) \cdot \left(t - y_1 \right)^2 y_1 \cdot \left(1 + \delta_n^2 \delta_m^2 \omega_\rho(g; \delta_n, \delta_m) \right) \cdot \left(t - y_1 \right)^2 y_1 \times \left(1 + \delta_n^2 \delta_m^2 \omega_\rho(g; \delta_n, \delta_m) \right) \cdot \mathcal{F}^*_n (|s - y|; y, y_1) + \mathcal{F}^*_n (|s - y|; y, y_1) \times \mathcal{F}^*_n \left(1 + \frac{|s - y|}{\delta_n} + (s - y)^2 ; y, y_1 \right) \times \mathcal{F}^*_n \left(1 + \frac{|t - y_1|}{\delta_m} + (t - y_1)^2 ; y, y_1 \right) \cdot \mathcal{F}^*_n ((t - y_1)^2 ; y, y_1) \cdot \mathcal{F}^*_n ((t - y_1)^2 ; y, y_1). \tag{76}
\]
From Cauchy–Schwarz inequality, we see

\[
|J_{n,m}^*(g; y, y_1) - g(y, y_1)| \\
\leq 4 \left(1 + y^2 + y_1^2\right) \left(1 + \delta_n^2\right) \left(1 + \delta_m^2\right) \omega_p(g; \delta_n, \delta_m) \\
\times \left[1 + \frac{1}{\delta_n} \sqrt{J_{n,m}^* (y - y_1)^2; y, y_1} + J_{n,m}^* (y - y_1)^2; y, y_1 \right] \\
+ \frac{1}{\delta_n} \sqrt{J_{n,m}^* ((y - y_1)^2; y, y_1) \sqrt{J_{n,m}^* ((y - y_1)^4; y, y_1)}} \\
+ 1 \frac{1}{\delta_m} \sqrt{J_{n,m}^* ((y - y_1)^2; y, y_1) + 1} \\
+ 1 \frac{1}{\delta_m} \sqrt{J_{n,m}^* ((y - y_1)^2; y, y_1)} + 1 \\
+ \sqrt{J_{n,m}^* ((y - y_1)^4; y, y_1)} \right].
\]

(77)

From Lemma 14 we get

\[
|J_{n,m}^*(g; y, y_1) - g(y, y_1)| \\
\leq 4 \left(1 + y^2 + y_1^2\right) \left(1 + \delta_n^2\right) \left(1 + \delta_m^2\right) \omega_p(g; \delta_n, \delta_m) \\
\times \left[1 + \frac{1}{\delta_n} \sqrt{O\left(\frac{1}{n}\right)} (y + 1) + M_1(y + 1)^2 \\
+ \frac{1}{\delta_n} \sqrt{O\left(\frac{1}{n}\right)} \sqrt{M_3(y + 1)} \right] \\
\times \left[1 + \frac{1}{\delta_m} \sqrt{O\left(\frac{1}{m}\right)} (y_1 + 1) + M_2(y_1 + 1)^2 \\
+ \frac{1}{\delta_m} \sqrt{O\left(\frac{1}{m}\right)} \sqrt{M_4(y_1 + 1)} \right].
\]

(78)

By choosing \(\delta_n = O(n^{-1/2}) \) and \(\delta_m = O(m^{-1/2}) \), we arrived to our desired results.

7. Conclusion

The motivation of this present article is to provide the generalized error estimation of convergence rather than the classical Dunkl–Szász–Mirakyan operators. Here, we have defined Szász–Jakimovski–Leviatan operators by using the Appel polynomials with the aid of a new parameter \(\lambda \in [0,\infty) \). These types of approximation are able to give the generalized results and error estimation in comparison to earlier study demonstrations. We have obtained the approximations via the well-known weighted Korovkin’s spaces and investigated approximations in Peetre’s K-functional and Lipschitz spaces with the aid of modulus of continuity. Further, we have also obtained the approximation in \(A \)-statistical convergence. Lastly, we have studied the approximation properties for the bivariate case.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors are grateful to this manuscript and declare that have no competing interest.

Authors’ Contributions

All contents of this research article are checked and agreed to the integrity and accuracy of this manuscript.

Acknowledgments

The authors are extremely grateful to the reviewers for their valuable suggestions and leading a crucial role for better presentation of this manuscript.

References

[1] A. Jakimovski and D. Leviatan, “Generalized Szász operators for the approximation in the infinite interval,” Mathematica, vol. 11, no. 34, pp. 97–103, 1969.
[2] P. Appell, “Sur une classe de polynômes,” Annales Scientifiques de l’École Normale Supérieure, vol. 9, pp. 119–144, 1880.
[3] B. Wood, “Generalized Szász operators for the approximation in the complex domain,” SIAM Journal on Applied Mathematics, vol. 17, no. 4, pp. 790–801, 1969.
[4] A. Çiğdem and I. Büyükyazıcı, “Approximation by modified integral type Jakimovski-Leviatan operators,” Filomat, vol. 30, no. 1, pp. 29–39, 2016.
[5] O. Szász, “Generalization of Bernstein’s polynomials to the infinite interval,” Journal of Research of the National Bureau of Standards, vol. 45, no. 3, pp. 239–245, 1950.
[6] A. Alotaibi, M. Nasiruzzaman, and M. Mursaleen, “A Dunkl type generalization of Szász operators via post-quantum calculus,” Journal of Inequalities and Applications, 2018, no. 1, 2018.
[7] G. V. Milovanovic, M. Mursaleen, and M. Nasiruzzaman, “Modified Stancu type Dunkl generalization of Szász–Kantorovich operators,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A, vol. 112, no. 1, pp. 135–151, 2018.
[8] M. Mursaleen, M. Nasiruzzaman, and A. Alotaibi, “On modified Dunkl generalization of Szász operators via \(q \)-calculus,” Journal of Inequalities and Applications, vol. 2018, Article ID 38, 2017.
[9] M. Mursaleen and T. Khan, “On approximation by Stancu type Jakimovski-Leviatan-Durrmeyer operators,” Azerbaycan Journal of Mathematics, vol. 7, no. 1, pp. 16–26, 2017.
[10] M. Mursaleen, A. A. H. Al-Abied, and M. A. Salman, “Chlodowsky type \((\lambda,q) \)-Bernstein-Stancu operators,” Azerbaycan Journal of Mathematics, vol. 10, no. 1, pp. 75–101, 2020.
[11] M. Nasiruzzaman and N. Rao, “A generalized Dunkl type modifications of Phillips-operators,” Journal of Inequalities and Applications, vol. 2018, no. 1, Article ID 323, 2018.
[12] N. Rao, A. Wafi, and A. M. Acu, “\(q \)-Szász–Durrmeyer type operators based on Dunkl analogue,” Complex Analysis and Operator Theory, vol. 13, no. 3, pp. 915–934, 2019.
[13] T. Acar, A. Aral, and S. A. Mohiuddine, “Approximation by bivariate (p,q)-Bernstein Kantorovich operators,” *Iranian Journal of Science and Technology, Transactions A: Science*, vol. 42, no. 2, pp. 655–662, 2018.

[14] T. Acar, M. Mursaleen, and S. A. Mohiuddine, “Stancu type (p; q)-Szász-Mirakyan-Baskakov operators,” *Communications Faculty of Science University of Ankara Series A1 Mathematics and Statistics*, vol. 67, no. 1, pp. 116–128, 2018.

[15] T. Acar, S. A. Mohiuddine, and M. Mursaleen, “Approximation by (p, q)-Baskakov–Durrmeyer–Stancu operators,” *Complex Analysis and Operator Theory*, vol. 12, no. 6, pp. 1453–1468, 2018.

[16] S. A. Mohiuddine and F. Özger, “Approximation of functions by a new family of Bernstein Kantorovich operators,” *Mathematical Methods in the Applied Sciences*, vol. 40, no. 18, pp. 7749–7759, 2017.

[17] F. Özger, H. M. Srivastava, and S. A. Mohiuddine, “Approximation of functions by a new class of generalized Bernstein–Schurer operators,” *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, vol. 114, no. 2, p. 70, 2020.

[18] H. Srivastava, F. Özger, and S. Mohiuddine, “Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ,” *Symmetry*, vol. 11, no. 3, pp. 316, 2019.

[19] A. Kajla and P. N. Agrawal, “Speck–Durrmeyer type operators based on Charlier polynomials,” *Applied Mathematics and Computation*, vol. 268, pp. 1001–1014, 2015.

[20] A. Kajla and P. N. Agrawal, “Approximation properties of Szász type operators based on Charlier polynomials,” *Turkish Journal of Mathematics*, vol. 39, pp. 990–1003, 2015.

[21] A. Kajla, “Statistical approximation of Szasz type operators based on Charlier polynomials,” *Kyungpook Mathematical Journal*, vol. 59, no. 4, pp. 679–688, 2019.

[22] A. Kajla and P. N. Agrawal, “Szász–Kantorovich type operators based on Charlier polynomials,” *Kyungpook Mathematical Journal*, vol. 56, no. 3, pp. 877–897, 2016.

[23] S. Sucu, “Dunkl analogue of Sza’ssz operators,” *Applied Mathematics and Computation*, vol. 244, pp. 42–48, 2014.

[24] M. Rosenblum, “Generalized Hermite polynomials and the Bose-like oscillator calculus,” *Operator Theory: Advances and Applications*, vol. 73, pp. 369–396, 1994.

[25] A. D. Gadziev, “Theorems of Korovkin type,” *Mathematical notes of the Academy of Sciences of the USSR*, vol. 20, no. 5, pp. 995–998, 1976.

[26] P. P. Korovkin, *Linear Operators and Approximation Theory*, Hindustan Publ. Co, Delhi, 1960.

[27] N. Ispir and Ç. Atakut, “Approximation by modified Szasz-Mirakjan operators on weighted spaces,” *Proceedings Mathematical Sciences*, vol. 112, pp. 571–578, 2002.

[28] J. S. Connor, “On strong matrix summability with respect to a modulus and statistical convergence,” *Canadian Mathematical Bulletin*, vol. 32, no. 2, pp. 194–198, 1989.

[29] C. Belen and S. A. Mohiuddine, “Generalized weighted statistical convergence and application,” *Applied Mathematics and Computation*, vol. 219, no. 18, pp. 9821–9826, 2013.

[30] U. Kadak and S. A. Mohiuddine, “Generalized statistically almost convergence based on the difference operator which includes the (p,q)-gamma function and related approximation theorems,” *Results in Mathematics*, vol. 73, no. 1, p. 9, 2018.

[31] S. A. Mohiuddine, A. Asiri, and B. Hazarika, “Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems,” *International Journal of General Systems*, vol. 48, no. 5, pp. 492–506, 2019.

[32] S. A. Mohiuddine, B. Hazarika, and M. A. Alghamdi, “Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems,” *Univerzitet u Nišu*, vol. 33, no. 14, pp. 4549–4560, 2019.

[33] S. A. Mohiuddine and B. A. S. Alamri, “Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems,” *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas*, vol. 113, no. 3, pp. 1955–1973, 2019.

[34] S. A. Mohiuddine, “Statistical weighted A-summability with application to Korovkin’s type approximation theorem,” *Journal of Inequalities and Applications*, vol. 2016, no. 1, Article ID 101, 2016.

[35] F. Ozger, “Weighted statistical approximation properties of univariate and bivariate ß-Kantorovich operators,” *Filomat*, vol. 33, no. 11, pp. 3473–3486, 2019.

[36] F. Ozger, “On new Bézier bases with Schurer polynomials and corresponding results in approximation theory,” *Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics*, vol. 69, no. 1, pp. 376–393, 2020.