Spin polarization and magnetization of conduction-band dilute-magnetic-semiconductor quantum wells with non-step-like density of states

Constantinos Simserides1,2

1University of Athens, Physics Department, Solid State Section, Panepistimiopolis, Zografos, GR-15784, Athens, Greece

2Leibniz Institute for Neurobiology, Special Lab for Non-Invasive Brain Imaging, Brennekestr. 6, D-39118 Magdeburg, Germany

E-mail: csimseri@ifn-magdeburg.de, csimser@cc.uoa.gr

Abstract. We study the magnetization, M, and the spin polarization, ζ, of n-doped non-magnetic-semiconductor (NMS) / narrow to wide dilute-magnetic-semiconductor (DMS) / n-doped NMS quantum wells, as a function of the temperature, T, and the in-plane magnetic field, B. Under such conditions the density of states (DOS) deviates from the occasionally stereotypic step-like form, both quantitatively and qualitatively. The DOS modification causes an impressive fluctuation of M in cases of vigorous competition between spatial and magnetic confinement. At low T, the enhanced electron spin-splitting, U_{os}, acquires its bigger value. At higher T, U_{os} decreases, augmenting the influence of the spin-up electrons. Increasing B, U_{os} increases and accordingly electrons populate spin-down subbands while they abandon spin-up subbands. Furthermore, due to the DOS modification, all energetically higher subbands become gradually depopulated.

1. Introduction

During the last few years, the advancement of growth, characterization and understanding of transition-metal-doped III-V semiconductors has been impressive. In magnetic semiconductor heterostructures based e.g. on (Ga,Mn)As, Mn substitutes a small fraction of cations providing holes and local magnetic moments. Many new phenomena have been accordingly brought to light e.g. tunnel magnetoresistance, spin-dependent scattering, interlayer coupling due to carrier polarization, electrical electron and hole spin injection, and electric field control of ferromagnetism [1]. Most of the structures used are based on III-V magnetic semiconductors like (In,Mn)As and (Ga,Mn)As which utilize the valence band [1]. The highest ferromagnetic transition temperature, T_C, reported so far for III-V-based valence-band magnetic semiconductors is 110 K for (Ga,Mn)As and 60 K for (In,Mn)As, for bulk materials, while T_C can reach 150 K for some heterostructures [1].

On the other hand, in II-VI materials, Mn provides only local magnetic moments, and the corresponding heterostructures e.g. ZnSe/Zn$_{1-x}$Cd$_x$Mn$_y$Se/ZnSe utilize the conduction band.
Carriers are usually provided by donor-doping the barriers, e.g. with Cl. Magneto-optical experiments in ZnSe/Zn$_{1-x-y}$Cd$_x$Mn$_y$Se/ZnSe quantum wells have shown that the optical transitions are in the violet to blue range (\sim 410 nm to 470 nm) [2]. Furthermore, the existence of ferromagnetic order in n-doped (Cd,Mn)Te based structures -at extremely low temperatures- has been suggested both experimentally and theoretically [3, 4].

In the present article we investigate such a system where the conduction-band can be exploited for spintronic applications. Specifically, we analyze II-VI-based n-doped non-magnetic-semiconductor (NMS) / narrow to wide dilute-magnetic-semiconductor (DMS) / n-doped NMS quantum wells (QWs) like e.g. ZnSe/Zn$_{1-x-y}$Cd$_x$Mn$_y$Se/ZnSe. Moreover, we use an in-plane magnetic field as a tool, in order to achieve non-step-like density of states (DOS).

2. Theory

Under a magnetic field, applied parallel to the interfaces, the density of states deviates from the ideal step-like form both quantitatively and qualitatively [5], i.e. it becomes:

$$n(E) = \frac{A\sqrt{2m^*}}{4\pi^2\hbar} \sum_{i,\sigma} \int_{-\infty}^{+\infty} dk_x \Theta(E - E_{i,\sigma}(k_x)) \sqrt{E - E_{i,\sigma}(k_x)}.$$ \hspace{1cm} (1)

The QW is along the z axis and the magnetic field B is applied along the y axis. Θ is the step function, A is the xy area of the structure, m^* is the effective mass. $E_{i,\sigma}(k_x)$ are the spin-dependent xz-plane eigenenergies. We notice that in the general case, $E_{i,\sigma}(k_x)$ must be self-consistently calculated [7, 5, 6, 8]. Equation (1) is valid for any type of interplay between spatial and magnetic confinement i.e. for narrow as well as for wide QWs. The k_x dependence in Eq. (1) increases the numerical cost by a factor of $10^2 - 10^3$ in many cases. In the limit $B \to 0$, the DOS retains the occasionally stereotypic staircase shape with the ideal step $\frac{m^* A}{\pi \hbar^2}$ for each spin. The opposite asymptotic limit of Eq. (1) is that of a simple saddle point, where the DOS diverges logarithmically. The DOS modification significantly affects the physical properties e.g. the spin-subband populations, the internal and free energy, the entropy and the magnetization. We have lately calculated [5] these properties at very low temperature. We have also predicted an impressive fluctuation of the magnetization in cases of strong competition between spatial and magnetic confinement [5].

![Figure 1](image1.png)
Figure 1. Magnetization, M, as a function of B for three characteristic well widths, L. For $L = 30$ nm, there is a strong competition between spatial and magnetic confinement.

![Figure 2](image2.png)
Figure 2. The spin polarization tuned by varying the temperature and the magnetic field: (a) $\zeta(T)$, $T = 0$ to 300 K, $B = 1$ or 10 or 20 Tesla, and (b) $\zeta(B)$, $B = 0$ to 20 Tesla, $T = 1$ or 5 or 20 or 100 K. $L = 10$ nm.
Figure 1 depicts the magnetization, M, as a function of B for three characteristic well widths, L, in a representative “low temperature” case. For $L = 10\, \text{nm}$ the spatial confinement dominates and the dispersion, $E_{i,\sigma}(k_z)$, is almost parabolic. The DOS is an “almost perfect staircase”. Increasing B, the “height” of its steps is slightly augmented. The $L = 10\, \text{nm}$ curve mirrors this gradual increase of the DOS by a few percent. For $L = 60\, \text{nm}$ the system is basically a spin-down bilayer one. On the contrary, for $L = 30\, \text{nm}$, there is a strong competition between spatial and magnetic confinement, resulting in a severe DOS modification, which leads to an impressive fluctuation of the magnetization. Another way to describe this transition, is that the “Fermi surface” (a sphere for very low B), is gradually distorted and split into two parts. The variation of the temperature, T, affects the spin polarization. The spin polarization is also influenced by the magnetic field, in an antagonistic manner i.e. B tends to align the spins. Furthermore, for each type of spin population, the in-plane magnetic field -via the distortion of the Fermi surface- redistributes the electrons between the subbands.

In the present system, the electron spin-splitting, U_{osr}, is enhanced i.e. it is not proportional to the cyclotron gap, $\hbar \omega_c$, i.e. \cite{9, 10}

$$U_{\text{osr}} = \frac{g^* m^*}{2m_e} \hbar \omega_c - y N_0 J_{\text{sp-d}} S B S(\xi) = \alpha + \beta. \quad (2)$$

$g^* = 1.37$ is the g-factor and $m^* = 0.16 m_e$ is the effective mass of the conduction-band electron in ZnSe \cite{11}. m_e is the electron mass. The term β arises from the exchange interaction between the conduction electron and the Mn$^{+2}$ cations. N_0 is the concentration of cations. $B_S(\xi)$ is the standard Brillouin function, while \cite{10, 12} $\xi = \frac{2 \mu_B B \frac{S}{2} J_{\text{sp-d}} S^2 n_{\text{down}}^2 - n_{\text{up}}^2}{k_B T}$. k_B is the Boltzmann constant. The g factor of Mn, $g_{\text{Mn}} = 2$. μ_B is the Bohr magneton. The spin of the Mn$^{+2}$ ion is $S = 5/2$. The coupling strength due to the spin-spin exchange interaction between the d electrons of the Mn$^{+2}$ ions and the s- or p-band electrons, $J_{\text{sp-d}}$, is negative for conduction band electrons. $n_{\text{down}}(r)$ and $n_{\text{up}}(r)$ are the spin-down and spin-up electron concentrations. Notice that $n_{\text{down}}(r) - n_{\text{up}}(r)$ is positive for conduction band electrons. Finally, for conduction band electrons, the spin polarization can be defined by $\zeta = \frac{N_{s,\text{down}} - N_{s,\text{up}}}{N_s}$. $N_s = N_{s,\text{down}} + N_{s,\text{up}}$ is the free carrier two-dimensional concentration.

3. Results and discussion

At low enough T, $B_{5/2}(\xi) \simeq 1$. If $-y N_0 J_{\text{sp-d}} (y = 0.035)$ is taken \cite{9} 0.13 Hartree*, then $\beta = 0.325$ Hartree*. For ZnSe, 1 Hartree$^* \approx 70.5$ meV, thus $\beta \approx 23$ meV. For ZnSe, $\alpha \approx \tau 10^{-3}$ Hartree*, where τ is the arithmetic value of B in Tesla. Thus the term α is one or two orders of magnitude smaller than the term β. If the conduction band offset is 1 Hartree* \cite{9}, then the spin splitting is $\sim \frac{1}{3}$ of the conduction band offset. ZnSe has a sphalerite-type structure and the lattice constant is $\sim 0.567 \, \text{nm}$. Hence, $-J_{\text{sp-d}} \approx 12 \times 10^{-3}$ eV nm3. This is one order of magnitude smaller than the value commonly used for the III-V Ga(Mn)As valence band system ($J_{pd} = 15 \times 10^{-2}$ eV nm3) \cite{10, 12}. Due to the small value of $J_{\text{sp-d}}$ the influence of the feed-back mechanism due to the difference between spin-down and spin-up concentrations is negligible in the present system. At higher temperatures, $B_{5/2}(\xi)$ cannot be approximated with 1. As $k_B T$ increases, ξ decreases, and consequently $B_{5/2}(\xi) < 1$. In other words, increasing T, the spin-splitting decreases allowing enhanced contribution of the spin-up electrons to the system’s properties \cite{13}. Figure 2 depicts the spin polarization of a $L = 10\, \text{nm}$ structure, tuned by varying the temperature and the magnetic field. The case of a narrow $L = 10\, \text{nm}$ structure with almost parabolic dispersion is presented here.

Figure 3 and Fig. 4 depict the subband populations as a function of B, for two different well widths, namely Fig. 3 for $L = 30\, \text{nm}$ and Fig. 4 for $L = 60\, \text{nm}$. $T = 20\, \text{K}$, in both cases. We use the symbols 00 for the ground-state spin-down-subband, 10 for the 1st excited...
spin-down-subband, 01 for the ground-state spin-up-subband and finally 11 for the 1st excited spin-up-subband. We observe that there are two mechanisms which cause depopulations: (a) The Fermi surface distortion (or equivalently the DOS modification) which depopulates all excited states, regardless of their spin [7]. (b) The increase of spin-splitting which eliminates spin-up electrons. For the very wide quantum well (L = 60 nm), as expected, the four spin-subbands are almost equally populated for B = 0.

4. Synopsis

We have described how the spin polarization and the magnetization are influenced by the temperature and the in-plane magnetic field in conduction-band, narrow to wide, n-doped non-magnetic-semiconductor (NMS) / dilute-magnetic-semiconductor (DMS) / n-doped NMS structures. It is our opinion that these structures offer a valuable field for spintronics and enhanced attention to their properties under in-plane magnetic field is recommended.

Acknowledgments

I would like to thank Professor Georgios Triberis for support, and Professors Kyung-Soo Yi and J. J. Quinn for illuminating correspondence.

References

[1] Ohno H 2004 J. Magn. Magn. Mater. 272-276 1 : 2003 J. Crystal Growth 251 285
[2] Syed M, Yang G L, Furdyna J K, Dobrowolska M, Lee S and Ram-Mohan L R 2002 Phys. Rev. B 66 075213
[3] Teran F J, Potemski M, Maude D K, Plantier D, Hassan A K, Sachrajda A, Wilamowski Z, Jaroszynski J, Wojtowicz T and Karczewski G 2003 Phys. Rev. Lett. 91 077201
[4] König J and MacDonald A H 2003 Phys. Rev. Lett. 91 077202
[5] Simserides C 2004 Phys. Rev. B 69 113302
[6] Simserides C 2004 Physica E 21 956
[7] Simserides C D 1999 J. Phys.: Condens. Matter 11 5131
[8] Makarovskii O N, Smrčka L, Vašek P, Jungwirth T, Cukr M and Jansen L 2000 Phys. Rev. B 62 10908
[9] Hong S P, Yi K S and Quinn J J 2000 Phys. Rev. B 61 13745
[10] Kim H J and Yi K S 2002 Phys. Rev. B 65 193310
[11] Venghaus H 1979 Phys. Rev. B 19 3071
[12] Lee B, Jungwirth T and MacDonald A H 2000 Phys. Rev. B 61 15606
[13] Simserides C 2004 submitted for publication by the American Institute of Physics in the Proceedings of ICPS27; Proceedings of the 16th International Conference on High Magnetic Fields in Semiconductor Physics, accepted for publication in International Journal of Modern Physics B