Dynamic simulation of red blood cell metabolism and its application to the analysis of a pathological condition

Yoichi Nakayama, Ayako Kinoshita and Masaru Tomita*

Address: Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
Email: Yoichi Nakayama - ynakayam@sfc.keio.ac.jp; Ayako Kinoshita - ayakosan@sfc.keio.ac.jp; Masaru Tomita* - mt@sfc.keio.ac.jp
* Corresponding author

Abstract

Background: Cell simulation, which aims to predict the complex and dynamic behavior of living cells, is becoming a valuable tool. In silico models of human red blood cell (RBC) metabolism have been developed by several laboratories. An RBC model using the E-Cell simulation system has been developed. This prototype model consists of three major metabolic pathways, namely, the glycolytic pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Like the previous model by Joshi and Palsson, it also models physical effects such as osmotic balance. This model was used here to reconstruct the pathology arising from hereditary glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is the most common deficiency in human RBC.

Results: Since the prototype model could not reproduce the state of G6PD deficiency, the model was modified to include a pathway for de novo glutathione synthesis and a glutathione disulfide (GSSG) export system. The de novo glutathione (GSH) synthesis pathway was found to compensate partially for the lowered GSH concentrations resulting from G6PD deficiency, with the result that GSSG could be maintained at a very low concentration due to the active export system.

Conclusion: The results of the simulation were consistent with the estimated situation of real G6PD-deficient cells. These results suggest that the de novo glutathione synthesis pathway and the GSSG export system play an important role in alleviating the consequences of G6PD deficiency.

Introduction

Many attempts have been made to simulate molecular processes in cellular systems. Perhaps the most active area of cellular simulation is the kinetics of metabolic pathways. Various software packages that quantitatively simulate cellular processes and are based on numerical integration of rate equations have been developed. These include GEPASI [1], which calculates steady states as well as reaction time behavior; V-Cell [2], a solver of non-linear PDE/ODE/Algebraic systems that can represent the cellular geometry; and DBsolve [3], which combines continuation and bifurcation analysis.

The E-Cell project [4,5], which aims to model and simulate various cellular systems, was launched in 1996 at Keio University. The first version of the E-Cell simulation system, a generic software package for cell modeling, was completed in 2001. E-Cell version2, which is a Windows
version of the first E-Cell system, is now also available [6]. E-Cell version 3, which enables multi-algorithm simulation, is the latest version [7]. The E-Cell system allows the user to define spatially discrete compartments such as membranes, chromosomes and the cytoplasm. The collections of molecules in all cellular compartments are represented as numbers of molecules, which can be converted to concentrations, and these can be monitored and/or manipulated by employing the various graphical user interfaces. In addition, the E-Cell system enables the user to model not only deterministic metabolic pathways but also other higher-order cellular processes, including stochastic processes such as gene expression, within the same framework. By using the E-Cell system, a virtual cell with 127 genes that are sufficient for "self-support" [4] was developed. This gene set was selected from information about Mycoplasma genitalium genomic sequences and includes genes for transcription, translation, the glycolysis pathway for energy production, membrane transport, and the phospholipid biosynthesis pathway for membrane production.

On the basis of existing models of single pathways and enzymes, various in silico models of human red blood cell (RBC) metabolism were first developed by Joshi and Palsson [8-11]. Subsequently, other groups developed RBC models [12-15]. The RBC is thought to be a good target for biosimulation because extensive studies over the last three decades have generated extensive biochemical data on its enzymes and metabolites. Moreover, the RBCs of many species, including humans, do not contain a nucleus or carry genes. This means that gene expression can be excluded from the model, which greatly simplifies the biosimulation. RBCs take up glucose from the plasma and process it by glycolysis, which generates the ATP molecules that are used in other cellular metabolic processes. The ATP molecules are mostly consumed by the ion transport systems that maintain the osmotic balance of the cell.

Here we describe our computer model of the human RBC, which we developed on the basis of previous models [8-13]. Our prototype model of the human RBC consisted only of glycolysis, the pentose phosphate pathway, nucleotide metabolism and simple membrane transport systems such as the Na+/K+ antiport channel. Here, we have employed this prototype model to reproduce the pathological condition of glucose-6-phosphate dehydrogenase (G6PD) deficiency. This is the most common hereditary enzyme deficiency in RBCs; it causes anemia, and more than 400 varieties of G6PD deficiency have been identified [16]. The deficiency is known to exert only mild effects as it does not cause clinically significant problems in most cases, except upon exposure to medications and foods that cause hemolysis. Computer simulations for analyzing this deficiency have been reported [17-19], but these simulation models consisted only of glycolysis and the pentose phosphate pathway. We found that including the glutathione (GSH) biosynthesis pathway and the glutathione disulfide (GSGS) export system, which are involved in suppressing oxidative stress, improved the ability of the model to reflect the real diseased RBC. This suggests that these pathways may compensate for the consequences of G6PD deficiency in human RBCs.

Methods

Development of the prototype model and simulation experiments

The E-Cell system version 1.1 was used as the simulation platform in this work. The software can be downloaded from http://www.e-cell.org/. Our prototype model of the RBC was developed on the basis of the whole-cell model of Joshi and Palsson [8-11] with slight modifications (Figure 1). We modified the model to represent the oxidant-induced decrease of hexokinase and pyruvate kinase, and the maximum activity of these enzymes was allowed to change according to the ratio of GSH and GSGS. The equations and parameters used are derived from the literature [17]. The parameters and kinetic equations in the original model of Joshi and Palsson were replaced with those obtained from the literature [17,20,21] (Table 1) in order to fit the model to the measured concentrations during the calculation of the steady state. The steady state obtained had concentrations of several metabolites that were very close to those in real RBCs (Table 2). However, the concentrations of several metabolites, namely adenosine, hypoxanthine, inosine, 5-phosphoribosyl 1-phosphate and ribose 1-phosphate, differed from the experimental values. These differences were due to the kinetic parameters and equations used, and because the nucleotide metabolism in the original model was represented as simple first-order kinetics or equilibrium.

The parameters from the work of Jacobasch et al. [30] were used in the experiments simulating G6PD deficiency (Table 3). Since the rate equation of G6PD deficiency is the same as that in the normal cell, the parameters were simply replaced in the deficiency experiment. We adopted the We.G variant of G6PD deficiency because its parameters are well described in the literature and its phenotype is rather severe. As with the original model, the oxidative load is represented as the conversion of GSH to GSGS, and the equation is expressed as a simple first-order kinetics.

Expansion of the prototype model and simulation experiments

The de novo GSH synthesis and GSSG export pathways (Figure 3) were added to the prototype model. The kinetic equations and parameters of these pathways were obtained from the literature [31-33] (Table 4). Since these pathways have very low activity in normal cells, the
concentrations of metabolites at the steady state were almost unchanged in the expanded model. The concentrations listed in Table 2 were used as the steady state concentrations. The conditions employed to simulate G6PD deficiency using this expanded model were the same as those of the prototype model. It is known that multidrug resistance-associated proteins (MRP1) and the cystic fibrosis transmembrane conductance regulator (CFTR) are expressed in human RBC and involved in GSH and/or GSH conjugates transport [35]. However, their rate equations and parameters are unavailable, so these proteins were not included in this model.

Results and Discussion

Simulation of G6PD deficiency using the prototype model

The prototype model was used to simulate the effects of G6PD deficiency. G6PD is a key enzyme in the pentose phosphate pathway that converts glucose 6-phosphate into gluconolactone 6-phosphate (GL6P); this simultaneously generates NADPH. The metabolic intermediate GL6P is then metabolized into ribulose 5-phosphate (Ru5P) acid via gluconate 6-phosphate (GO6P). This process also generates NADPH. This reduction power is employed by various other intracellular processes, in particular the reduction of GSSG. A major function of GSH in
the RBC is to eliminate superoxide anions and organic hydroperoxides. Peroxides are eliminated through the action of glutathione peroxidase, which yields GSSG.

The simulation experiments were carried out with steady state concentrations corresponding to those in the normal RBC. Sequential changes in the quantities of NADPH, GSH and ATP were observed (Figure 2). There is a negative peak in ATP concentration before 10 h. This was due to the shutting down of the pentose phosphate pathway. The Ru5P produced was mainly converted to fructose 6-phosphate (F6P), and this metabolite consumed ATP to make fructose 1,6-diphosphate (FDP). The FDP production led to an accumulation of dihydroxy acetone phosphate (DHAP), and the metabolite was not used to provide ATP. The high GO6P concentration could sustain normal levels of GSH concentration at the first stage of the simulation, but after the depletion of GO6P the rate of Ru5P production was drastically reduced. This decrease in Ru5P concentration led to decreased F6P concentrations.

Table 1: Enzymes and rate equations of the prototype model
Enzymes

Glutathione turnover
Glutathione reductase (NADPH)
Glutathione reductase (NADH)
Glucose 6-phosphate dehydrogenase
6-Phosphoglucononactonase
6-Phosphogluconate dehydrogenase
Ribose 5-phosphate isomerase
Xylose 5-phosphate isomerase
Transketolase I
Transketolase II
Transaldolase
Hexokinase
Phosphoglucoisomerase
Phosphofructokinase
Aldolase
Triose phosphate isomerase
Glyceraldehyde phosphate dehydrogenase
Phosphoglycerate kinase
Diphosphoglycerate mutase
Diphosphoglycerate phosphatase
Phosphoglyceromutase
Enolase
Pyruvate kinase
Pyruvate transport process
Lactate dehydrogenase
Lactate transport process
Leak of Potassium
Leak of Sodium
Sodium/potassium pump
Adenosine transport process
AMP phosphohydrolase
Adenosine deaminase
Adenosine kinase
Adenylate kinase
Adenosine triphosphate phosphohydrolase
Adenosine monophosphate deaminase
Inosine monophosphatase
Purine nucleotide phosphorylase
Phosphoribosyl pyrophosphate synthetase
Adenine phosphoribosyl transferase
Hypoxantine-guanine phosphoril transferase
Hypoxantine transport process

PPP, Pentose phosphate pathway; NM, Nucleotide metabolism.
Table 2: Steady state of the RBC model.

Metabolic intermediate	Abbreviation	Steady statea	Literaturec
1,3-Diphosphoglycerate	13DPG	1.83E-04	4.00E-04
2-Phosphoglycerate	2PG	4.16E-03	1.40E-02 ± 5.00E-03
3-Phosphoglycerate	3PG	4.62E-02	4.50E-02
Adenosine	ADO	8.93E-06	1.20E-03 ± 3.00E-04
Dihydroxy aceton phosphate	DHAP	1.35E-01	1.40E-01 ± 8.00E-02
Erythrose 4-phosphate	E4P	1.17E+00	
Fructose 6-phosphate	F6P	6.39E-02	1.60E-02 ± 3.00E-03
Fructose 1,6-diphosphate	FDP	1.14E-02	7.60E-03 ± 4.00E-03
Glucose 6-phosphate	G6P	1.96E-01	3.80E-02 ± 1.20E-02
Glyceraldehyde 3-phosphate	GA3P	6.24E-03	6.70E-03 ± 1.00E-03
Gluconolactone 6-phosphate	GL6P	7.62E-06	-
Gluconate 6-phosphate	GO6P	2.72E+00	-
Glutathione	GSH	3.21E+00	3.21E+00 ± 1.50E+00
Hypoxanthine	HXi	9.32E-06	2.00E-03
Inosine monophosphosphate	IMP	5.03E-03	1.00E-02
Inosine	INO	3.32E-08	1.00E-03
Potassium	Ki	1.26E+02	1.35E+02 ± 1.00E+01
Lactate	LACi	1.20E+00	1.10E+00 ± 5.00E-01
Nicotinamide adenine dinucleotide	NAD	8.87E-024	-
Nicotinamide adenine dinucleotide	NADH	3.13E-044	-
Nicotinamide adenine phosphate	NADP	8.06E-054	-
Nicotinamide adenine phosphate	NADPH	6.58E-024	6.58E-02
Sodium	Na	2.27E+01	1.00E+01 ± 6.00E+00
Phosphoenolpyruvate	PEP	1.89E-02	1.70E-02 ± 2.00E-03
5-Phosphoribosyl 1-phosphate	PRPP	6.91E-05	5.00E-03 ± 1.00E-03
Pyruvate	PYRi	6.00E-02	7.70E-02 ± 5.00E-02
Inorganic phosphate	Pi	1.30E-01	1.00E+00
Ribose 1-phosphate	R1P	2.12E-05	6.00E-02
Ribose 5-phosphate	R5P	2.81E-04	-
Ribulose 5-phosphate	RUSP	1.48E-04	-
Sedoheptulose 7-phosphate	ST7	7.49E-02	-
Xylulose 5-phosphate	X5P	4.30E-04	-
2,3-Diphosphoglycerate	2,3-DPG	4.21E+00	4.50E+00 ± 5.00E-01
Adenosine diphosphate	ADP	2.20E-01	2.70E-01 ± 1.20E-01
Adenosine monophosphate	AMP	2.42E-02	8.00E-02 ± 9.00E-03
Adenosine triphosphate	ATP	1.57E+00	1.54E+00 ± 2.50E-01

The values are given in scientific notation; E-01 denotes multiplication by 10⁻¹.

aThe initial data set was from experimental data in the literature and from predictions of previous simulation models [12].
bThe simulation was run for more than 1,000,000 seconds in simulation time until the model reached steady state.
cBiochemical experimental data taken from the literature and reported in Joshi and Palsson [11].
dNAD(H) and NADP(H) pools are kept constant.

Table 3: Parameters for normal and deficient enzymes

	t/2 (day)	Vmax (mkat/l cells)	KmG6P	KmNADP (mM)	KiNADPH	KiATP	Ki2,3DPG
Normal	27	575	67	3.7	3.1	749	2289
We.G.	2.5	10	152	3.8	0.62	180	520

These values are based on experimental data taken from the literature [10]
At around 20 h, ATP was rapidly consumed and depleted. Since ATP concentrations less than half the normal concentration have never been observed in enzyme deficiencies [36], cells in this condition will probably be destroyed. Although the half-life of the real G6PD-deficient We.G type RBC is known to be 2.5 days [30], the longevity of our computer model turned out to be much shorter (Table 3). Since data on the concentration of metabolites in RBCs with G6PD deficiency are not available, it was not possible to determine whether the metabolite concentrations arising in our simulation experiments reflected those observed in real cells.

Simulation of G6PD deficiency using the expanded model

It is obvious that decreased pentose phosphate pathway activity leads to faster cell death, and that the difference between the simulated cell and the real cell regarding the timing of cell death could be caused by the lack of a pathway producing GSH. This pathway may compensate for the decrease in GSH. A mature RBC normally contains 2 mM GSH but contains only several µM GSSG. Although GSSG reductase plays a prominent role in maintaining a stable GSH/GSSG ratio, other processes, including de novo GSH synthesis and GSSG export pathways, may generate GSH in the G6PD-deficient cell.

After the expansion of the prototype model to include de novo GSH synthesis and GSSG export, the ATP levels were maintained at 80% of normal and the cell was longer lived (Figure 4). In addition, the GSH/GSSG ratio was higher (Figure 5). This indicates that the de novo GSH synthesis pathway can partially compensate for the lowered GSH concentrations resulting from G6PD deficiency, and that the concentration of GSSG can be kept at a very low level due to the active export system. These observations suggest that these reactions could alleviate the anemia resulting from G6PD deficiency. It is known that people with this deficiency are not normally anemic and display no evidence of the disease until the RBCs are exposed to oxidant stress. The compensatory effect of the de novo GSH synthesis and GSSG export pathways may thus help to explain why many varieties of G6PD deficiency have no evident phenotype. Moreover, it has been proposed that the high frequency of G6PD deficiency may be due to its ability to protect against malaria. Our observations suggest that the compensatory mechanism we have elucidated may have aided this spread of G6PD deficiency, as it counterbalances the worst effects of the deficiency, thus decreasing its severity and promoting the propagation of the disease during evolution.
Determination of a range of metabolic pathways for modeling

These results showed that the de novo GSH synthesis pathway and the GSSG export system are essential for accurate simulation of G6PD deficiency in human RBCs. Previous simulations of this deficiency have not included these pathways [17] and the results they generated were similar to those obtained using our prototype model (Figure 2). Our prototype model and the previous models developed by others contain only three metabolic pathways, namely, the glycolysis pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Although these models are sufficient for representing the normal state of the human RBC, they are not adequate for simulating irregular conditions such as deficiencies, because they lack alternative pathways that may normally not be particularly active but can compensate for the deficiency to some extent. Indeed, our results indicate that all the metabolic

Table 4: Rate equations and parameters of GSH synthesis and GSSG export that were used in the expanded model.

Rate equation for γ-glutamyl cysteine synthetase
\[
 v = \frac{V_{\text{max}}[\text{ATP}][\text{Glu}][\text{Cys}]}{K_m^{\text{ATP}}K_m^{\text{Glu}}K_m^{\text{Cys}}} + \frac{[\text{Glu}][\text{Cys}]}{K_m^{\text{Glu}}K_m^{\text{Cys}}[\text{ATP}]} + \frac{[\text{Glu}][\text{Cys}][\text{ATP}]}{K_m^{\text{Glu}}K_m^{\text{Cys}}K_m^{\text{ATP}}}
\]

(Ordered Ter Mechanism)

Parameters for γ-glutamyl cysteine synthetase	Value	Reference
V_{\text{max}}	141.57 mM/h	31, 32
α	0.2	31
K_{m_{\text{Glu}}}	1.8 mM	31
K_{m_{\text{Cys}}}	0.1 mM	31
K_{m_{\text{GSH}}}	3.4 mM	31
K_{m_{\text{ATP}}}	0.4 mM	31

Rate equation for glutathione synthetase
\[
 v = \frac{V_{\text{max}}[\gamma GC][\text{Gly}][\text{ATP}]}{K_m^{\gamma GC}K_m^{\text{Gly}}K_m^{\text{ATP}}} + \frac{[\gamma GC][\text{Gly}][\text{ATP}]}{K_m^{\gamma GC}K_m^{\text{Gly}}K_m^{\text{ATP}}} + \frac{[\gamma GC][\text{Gly}][\text{ATP}]}{K_m^{\gamma GC}K_m^{\text{Gly}}K_m^{\text{ATP}}}
\]

(Ordered Ter Mechanism)

Parameters for glutathione synthetase	Value	Reference
K_{m_{\gamma GC}}	0.99 mM	33
K_{m_{\text{Gly}}}	1.37 mM	33
K_{m_{\text{ATP}}}	0.23 mM	33
α	2.6	33
V_{\text{max}}	88.4 mM/h	33

Rate equation for GSSG export
\[
 v = V_{\text{max}}\left(\frac{[\text{GSSG}]}{GSSG + K_m^{\text{GSSG}}_1}\right)\left(\frac{[\text{MgATP}]}{\text{MgATP} + K_m^{\text{ATP}}_1}\right)
\]

Parameters for GSSG export
K_{m_{\text{GSSG}}}_1
K_{m_{\text{ATP}}}_1
V_{m_1}

Determinative of a range of metabolic pathways for modeling

These results showed that the de novo GSH synthesis pathway and the GSSG export system are essential for accurate simulation of G6PD deficiency in human RBCs. Previous simulations of this deficiency have not included these pathways [17] and the results they generated were similar to those obtained using our prototype model (Figure 2). Our prototype model and the previous models developed by others contain only three metabolic pathways, namely, the glycolysis pathway, the pentose phosphate pathway and the nucleotide metabolic pathway. Although these models are sufficient for representing the normal state of the human RBC, they are not adequate for simulating irregular conditions such as deficiencies, because they lack alternative pathways that may normally not be particularly active but can compensate for the deficiency to some extent. Indeed, our results indicate that all the metabolic pathways examined in this study are essential for the accurate simulation of G6PD deficiency in human RBCs.
pathways in the cell will be needed to develop a general purpose model that can be used to simulate any condition. However, dynamic simulation based on kinetic equations requires a large variety of rate equations and kinetic parameters, and unfortunately, such data are rarely available as a complete set. Recently, our laboratory proposed a novel simulation method that reduces the need for this kind of information [37]. This hybrid dynamic/static simulation method combines dynamic rate equations with a flux-based approach and as a result reduces the numbers of rate equations and parameters that are needed by up to 70–80%. It may solve the problems associated with developing a model that simulates all the cellular metabolic pathways.

The mathematical steady state may not be the normal state of real cells

During this simulation analysis, we realized that the longevity of enzymes should be considered in long-term simulation experiments. While in our model the activities of enzymes are decreased by oxidants, enzymes also generally become degraded over time. This natural decrease is not included in our model. As shown in this work, the prototype model was able to achieve a steady state. However, this mathematical steady state, which is when the rates of the production and consumption of all metabolic intermediates become equal, may not exactly represent the condition of the RBCs in the human body. Such a "mathematical steady state" never occurs in living organisms, especially in higher multicellular organisms. Rather,
Figure 4
Simulation of G6PD deficiency using the expanded model. Changes in the concentrations of ATP (A), G6P (B), GSH (C), GSSG (D), NADP (E) and NADPH (F) during RBC simulation. Broken lines are the results of the prototype model, while solid lines are the results of the expanded model during the same parameter shift as described in Figure 2. The simulation was run for 200,000 seconds (Approx. 55 h) in simulation time.

Figure 5
The GSH/GSSG ratio of the prototype and expanded models. The prototype model (A) and the expanded model (B).
homeostasis in multicellular organisms is maintained by replacing the loss of disposable cells with additional cells. It is possible that these disposable cells never reach a mathematical steady state. Thus, a model that can tolerate long-term simulation for analyzing the pathology of human diseases should not approximate the “mathematical steady state”. Moreover, in the case where the system reaches a steady state with a certain oscillation, it is impossible to obtain a mathematical steady state using an accurate model. It is known, for example, that some key enzymes in glycolysis bind to the Band III protein, an abundant membrane protein in the human RBC [38-40]. The interaction between glycolytic enzymes and Band III varies depending on the ratio of oxyhemoglobin to deoxyhemoglobin, and it is believed that this interaction is responsible for some oscillations in metabolic pathways in the human RBC.

Conclusion
We developed a computer model of the human RBC that is based on a previous model but was expanded by introducing a GSH synthesis pathway and a GSSG export system. With this expansion, the model maintained high ATP concentrations in G6PD deficiency. It also indicates that these pathways may play an important role in alleviating the consequences of G6PD deficiency. It also indicates that sub-pathways that are normally not particularly highly activated may play important roles in abnormal conditions such as deficiencies.

Authors’ contributions
Nakayama contributed mostly to the model development, Kinoshita contributed to the analysis, and Tomita developed the basic ideas and directed the project.

Competing interests
The author(s) declare that they have no competing interests.

Acknowledgements
We thank Ryo Matsushima and Kazunari Kaizu for providing technical advice. This work was supported in part by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology (the leading project of the 21st Century Center of Excellence (COE) Program: Understanding and Control of Life’s Function via Systems Biology), and in part by a grant from New Energy and Industrial Technology Development and Organization (NEDO) of the Ministry of Economy, Trade and Industry of Japan (Development of a Technological Infrastructure for Industrial Bioprocess Project).

References
1. Mendes P: GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 1993, 9:563-571.
2. Schaff J, Fink CC, Slepechenko B, Carson JH, Loew LM: A general computational framework for modeling cellular structure and function. Biophys J 1997, 73:1135-1146.
3. Goryanin I, Hodgman TC, Selkov E: Mathematical simulation and analysis of cellular metabolism and regulation. Bioinformatics 1999, 15:749-758.
4. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA 3rd: E-CELL: software environment for whole-cell simulation. Bioinformatics 1999, 15:72-84.
5. Tomita M: Whole-cell simulation: a grand challenge of the 21st century. Trends Biotechnol 2001, 19:205-210.
6. Takahashi K, Ishikawa N, Sadamoto Y, Sasamoto H, Ohta S, Shiozawa A, Miyoshi F, Naito Y, Nakayama Y, Tomita M: E-Cell 2: Multi-platform E-Cell simulation system. Bioinformatics 2003, 19:1727-1729.
7. Takahashi K, Kaizu K, Hu B, Tomita M: A multi-algorithm, multiscale method for cell simulation. Bioinformatics 2004, 20:538-546.
8. Joshi A, Palsson BO: Metabolic dynamics in the human red cell. Part I – A comprehensive kinetic model. J Theor Biol 1989, 141:515-528.
9. Joshi A, Palsson BO: Metabolic dynamics in the human red cell. Part II – Interactions with the environment. J Theor Biol 1989, 141:529-545.
10. Joshi A, Palsson BO: Metabolic dynamics in the human red cell. Part III – Metabolic reaction rates. J Theor Biol 1990, 142:41-68.
11. Joshi A, Palsson BO: Metabolic dynamics in the human red cell. Part IV – Data prediction and some model computations. J Theor Biol 1990, 142:69-85.
12. Ni TC, Savageau MA: Model assessment and refinement using strategies from biochemical systems theory: application to metabolism in human red blood cells. J Theor Biol 1996, 179:329-368.
13. Ni TC, Savageau MA: Application of biochemical systems theory to metabolism in human red blood cells. Signal propagation and accuracy of representation. J Biol Chem 1996, 271:7927-7941.
14. Jamshidi N, Edwards JS, Fahlund T, Church GM, Palsson BO: Dynamic simulation of the human red blood cell metabolic network. Bioinformatics 2001, 17:286-7.
15. Mulquiney PJ, Kuchel PW: Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis. Biochem J 1999, 343:537-540.
16. Fiorelli G, Martinez di Montemuros F, Cappellini MD: Chronic non-spherocytic haemolytic disorders associated with glucose-6-phosphate dehydrogenase variants. Baillieres Best Pract Res Clin Haematol 2000, 13:39-55.
17. Schuster R, Jacobsbach G, Holzthurer HG: Mathematical modelling of metabolic pathways affected by an enzyme deficiency. Energy and redox metabolism of glucose-6-phosphate-dehydrogenase-deficient erythrocytes. Eur J Biochem 1989, 182:605-612.
18. Schuster R, Jacobsbach G, Holzthurer H: Mathematical modelling of energy and redox metabolism of G6PD-deficient erythrocytes. Biomed Biochim Acta 1990, 49:S160-5.
19. Holzthurer HG, Schuster R, Buckwitz D, Jacobsbach G: Mathematical modelling of metabolic pathways affected by an enzyme deficiency. Biomed Biochim Acta 1990, 49:791-800.
20. Schauer M, Heinrich R, Rapoport SM: Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments. Acta Biol Med Ger 1981, 40:1659-1682.
21. Mulquiney PJ, Kuchel PW: Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte. Eur J Biochem 1997, 245:71-83.
22. Halestrap AP: Transport of pyruvate and lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J 1976, 156:193-207.
23. Henderson JF, Patterson ARP: Nucleotide Metabolism: An Introduction. Academic Press; 1973.
24. Thorburn DR, Kuchel PW: Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic
25. McIntyre LM, Thorburn DR, Bubb WA, Kuchel PW: Comparison of computer simulations of the F-type and L-type non-oxidative hexose monophosphate shunts with 31P-NMR experimental data from human erythrocytes. Eur J Biochem 1989, 180:399-420.

26. Gerber G, Preissler H, Heinrich R, Rapoport SM: Hexokinase of human erythrocytes. Purification, kinetic model and its application to the conditions in the cell. Eur J Biochem 1974, 45:39-52.

27. Otto M, Heinrich R, Kuhn B, Jacobasch G: A mathematical model for the influence of fructose 6-phosphate, ATP, potassium, ammonium and magnesium on the phosphofructokinase from rat erythrocytes. Eur J Biochem 1974, 49:169-78.

28. Holzhütter HG, Jacobasch G, Bis dorff A: Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells. Eur J Biochem 1985, 149:101-11.

29. Lassen UV: Hypoxanthine transport in human erythrocytes. Biochim Biophys Acta 1967, 135:146-54.

30. Jacobasch G, Buckwitz D, Jurowski R, Gerth C, Plonka A, Kuckelkorn U: Heterogeneity of glucose-6-phosphate dehydrogenase enzymopathies in the GDR. Biomed Biochim Acta 1987, 46:S177-181.

31. Misra I, Griffith OW: Expression and purification of human gamma-glutamylcysteine synthetase. Protein Expr Purif 1998, 13:268-276.

32. Ristoff E, Augustsson C, Geisser J, de Rijk T, Carlsson K, Luo J, Andersson K, Weening RS, van Zwieten R, Larsson A, Roos D: A missense mutation in the heavy subunit of gamma-glutamyl-cysteine synthetase gene causes hemolytic anemia. Blood 2000, 95:2193-6.

33. Njalsson R, Carlsson K, Olin B, Carlsson B, Whitbread L, Polekhina G, Parker MW, Norgren S, Mannervik B, Board PG, Larsson A: Kinetic properties of missense mutations in patients with glutathione synthetase deficiency. Biochem J 2000, 349:275-279.

34. Kondo T, Dale GL, Beutler E: Glutathione transport by inside-out vesicles from human erythrocytes. Proc Natl Acad Sci U S A 1980, 77:6359-6362.

35. Homolya L, Varadi A, Sarkadi B: Multidrug resistance-associated proteins: Export pumps for conjugates with glutathione, glucuronate or sulfate. Biofactors 2003, 17:103-14.

36. Schuster R, Holzhütter HG: Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Application to enzyme deficiencies of red blood cells. Eur J Biochem 1995, 229:403-18.

37. Yugi K, Nakayama Y, Tomita M: A hybrid static/dynamic simulation algorithm: Towards large-scale pathway simulation [abstract]. Proceedings of the Third International Conference on Systems Biology: 13-15 December 2002, Stockholm:235.

38. Jenkins JD, Madden DP, Steck TL: Association of phosphofructokinase and aldolase with the membrane of the intact erythrocyte. J Biol Chem 1984, 259:9374-8.

39. Jenkins JD, Keddy FJ, Steck TL: Mode of interaction of phosphofructokinase with the erythrocyte membrane. J Biol Chem 1985, 260:10426-10433.

40. von Ruckmann B, Schubert D: The complex of band 3 protein of the human erythrocyte membrane and glyceraldehyde-3-phosphate dehydrogenase: stoichiometry and competition by aldolase. Biochim Biophys Acta 2002, 1559:43-55.