Single metal four-electron reduction by U(II) and masked “U(II)” compounds

Dieuwertje K. Modder, Chad T. Palumbo, Iskander Douair, Rosario Scopelliti, Laurent Maron, and Marinella Mazzanti*

*a Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

*b LPCNO, Université de Toulouse, INSA Toulouse, Toulouse 31077, France

E-mail: mmazzanti@epfl.ch

* To whom correspondence should be addressed.

Supporting Information

Contents
Experimental Details.. 2
NMR Spectroscopy .. 6
IR spectroscopy... 10
X-ray Structure and Refinement Details.. 10
Computational details.. 12
References... 41
Experimental Details

General considerations
All manipulations were carried out under inert atmospheres using an MBraun glovebox equipped with a purifier unit and Schlenk line techniques. The water and oxygen levels were always kept at less than 1 ppm. Anhydrous solvents were purchased from Sigma Aldrich and vacuum distilled under potassium/benzophenone (THF, toluene) or sodium sand/benzophenone (hexane). Depleted uranium turnings were purchased from IBILABS, Florida (USA). Azobenzene and diphenylacetylene were purchased from Sigma Aldrich and dried under vacuum.

\[\text{[U\{N(SiMe}_3\}_2\}_3]}^{1}, \text{ KC}_8^{2}, \text{ [K(2.2.2-cryptand)][\{(Me}_3Si\}_2N\}_2U\}_2(\mu-O)]^{3} \] (complex 1) and \[\text{[K(2.2.2-cryptand)][U\{N(SiMe}_3\}_2\}_3]}^{4} \] (complex 2) were synthesized according to their respective literature procedures. Elemental analyses were performed under nitrogen by the “Analytische Laboratorien Prof. Dr. H. Malissa und G. Reuter GmbH” in Lindlar, Germany and with a Thermo Scientific Flash 2000 Organic Elemental Analyzer at EPFL.

1H NMR experiments were carried out using NMR tubes adapted with J. Young valves. 1H NMR spectra were recorded on a Bruker 400 MHz spectrometer and the chemical shifts are reported in ppm with residual proteo-solvent signals used as an internal reference.

Caution: Depleted uranium (primary isotope 238U) is a weak α-emitter (4.197 MeV) with a half-life of 4.47×10^9 years. Manipulations and reactions should be carried out in monitored fume hoods or in an inert atmosphere glovebox in a radiation laboratory equipped with α- and β-counting equipment.

Synthesis [K(2.2.2-cryptand)][U(η2-C$_2$Ph$_2$){N(SiMe$_3$)$_2$}$_3$], 3.

From complex 1 NMR scale. A cold (−80 °C) solution of diphenylacetylene (1.2 mg, 6.7 µmol, 1.0 eq) in THF-d$_8$ (0.5 mL) was added to cold (−80 °C) purple crystals of 1 (15.1 mg, 6.60 µmol, 1.0 eq), resulting in a brown solution. The 1H-NMR spectrum at −80 °C immediately showed full conversion of complex 1 and the appearance of signals corresponding to [K(2.2.2-cryptand)][U(O){N(SiMe$_3$)$_2$}$_3$]. At 0 °C and 25 °C additional paramagnetic signals were observed, assigned to complex 3. TMS$_2$O (1.5 µL, 6.7 µmol, 1.0 eq) was added and used as internal standard to determine a conversion of 66%.

From complex 1 preparatory scale. A cold (−80 °C) solution of diphenylacetylene (4.0 mg, 22.4 µmol, 1.0 eq) in THF (1 mL) was added to cold (−80 °C) purple crystals of 1 (49.9 mg, 21.8 µmol, 1.0 eq), resulting in a brown solution, which was left to react for 15 min at −80 °C. Slow diffusion of hexane into the THF reaction mixture at −40 °C gave a mixture of X-ray quality copper and pink colored crystals, consisting of complex 3 and [K(2.2.2-cryptand)][U(O){N(SiMe$_3$)$_2$}$_3$]. The crystals were washed with toluene until [K(2.2.2-cryptand][U(O){N(SiMe$_3$)$_2$}$_3$] was fully removed. This resulted in significant loss of complex 3. The final pure, copper-colored residue of 3 was dried and collected (7.3 mg, 25%).

Anal. Calcd. for C$_{50}$H$_{100}$KN$_3$O$_5$Si$_6$: C, 45.74; H, 7.68; N, 5.33. Found: C, 44.29; H, 7.45; N, 4.97.
From in situ complex 2 preparatory scale. A cold (−80 °C) solution of [U(N(SiMe₃)₂)₃] (50.0 mg, 69.5 µmol, 1.0 eq) and 2.2.2-cryptand (26.2 mg, 69.6 µmol, 1.0 eq) in THF (0.5 mL) was added to KC₈ (9.4 mg, 70 µmol, 1.0 eq). After a few minutes, the black mixture was filtered and added to cold (−80 °C) diphenylacetylene (12.4 mg, 69.6 µmol, 1.0 eq), resulting in a brown solution, which was left to react for 15 min at −80 °C. Slow diffusion of hexane into the THF reaction mixture at −4 °C, resulting in a red/brown solution. The THF reaction mixture was later assigned to complex 2, among other products. After 3 h, approximately 60% remains, after 12 h approximately 25% remains and after 40 h nearly all 3 was consumed.

Anal. Calcd. for C₅₀H₁₀₀KN₅O₆Si₆U: C, 45.74; H, 7.68; N, 5.33. Found: C, 44.82; H, 7.56; N, 5.29. The elemental analyses were reproduced several times in different places and conditions always giving low values of carbon probably due to combustion issues that could not be solved.

¹H-NMR (400 MHz, THF-d₈, 233K): δ 29.3 (s, 12H, CPh), 17.1 (s, 4H, CPh), 11.6 (s, 2H, CPh-p), 3.9 (s, 12H, 2.2.2-cryptand), 3.8 (s, 12H, 2.2.2-cryptand), 2.8 (s, 12H, 2.2.2-cryptand), −12.3 (s, 54H, NSiMe₃). ¹H-NMR (400 MHz, THF-d₈, 298K): δ 29.3 (s, 4H, CPh), 17.1 (s, 4H, CPh), 11.6 (s, 2H, CPh-p), 3.9 (s, 12H, 2.2.2-cryptand), 3.8 (s, 12H, 2.2.2-cryptand), 2.8 (s, 12H, 2.2.2-cryptand), −12.3 (s, 54H, NSiMe₃).

Synthesis [K(2.2.2-cryptand)][U(NPh)₂(N(SiMe₃)₂)₃], 4.

From complex 1 NMR scale. A cold (−80 °C) solution of azobenzene (1.3 mg, 7.1 µmol, 1.1 eq) in THF-d₈ (0.5 mL) was added to cold (−80 °C) purple crystals of 1 (15.0 mg, 6.56 µmol, 1.0 eq), resulting in a red/brown solution. The ¹H-NMR spectrum at −80 °C immediately showed full conversion of complex 1 and the appearance of signals corresponding to [K(2.2.2-cryptand)][U(O)(N(SiMe₃)₂)₃]. At −40 °C an additional paramagnetic signal was observed that was later assigned to complex 5. Upon warming up to room temperature, complex 5 immediately starts to transform into complex 4 and the color slowly changed to yellow/brown. After 2h at room temperature, the paramagnetic signals assigned to 5 had completely disappeared and a set of diamagnetic signals assigned to complex 4 was observed in the ¹H-NMR spectrum of the solution.

From complex 1 preparatory scale. A cold (−80 °C) solution of azobenzene (4.0 mg, 22 µmol, 1.0 eq) in THF (1 mL) was added to cold (−80 °C) purple crystals of 1 (50.0 mg, 21.9 µmol, 1.0 eq), resulting in a red/brown solution. It was left at low temperature for 5 min and then stirred at room temperature for 2h, causing the color to change to yellow/brown. Slow diffusion of hexane into the THF reaction mixture at −40 °C gave a mixture of X-ray quality brown and pink crystals, consisting of complex 4 and the terminal oxo complex [K(2.2.2-cryptand)][U(O)(N(SiMe₃)₂)₃]. Washing with toluene (6 x 0.5 mL) removed [K(2.2.2-cryptand)][U(O)(N(SiMe₃)₂)₃]. The final pure, brown residue of 4 was dried and collected (19.8 mg, 69%).

Anal. Calcd for C₄₈H₁₀₀KN₇O₆Si₆U: C, 43.78; H, 7.65; N, 7.44. Found: C, 43.27; H, 7.61; N, 7.51.
From complex 2 NMR scale. A cold (−80°C) solution of [U{N(SiMe$_3$)$_2$)$_3$] (10.0 mg, 13.9 µmol, 1.0 eq) and 2.2.2-cryptand (5.3 mg, 14 µmol, 1.0 eq) in THF-d_8 (0.5 mL) was added to KC$_8$ (1.9 mg, 14 µmol, 1.0 eq). After a few minutes, the black mixture was filtered and added to cold (−80°C) azobenzene (2.6 mg, 14 µmol, 1.0 eq), resulting in a red/brown solution. At −40 °C an additional paramagnetic signal was observed that was later assigned to complex 5. Upon warming up to room temperature, complex 5 immediately starts to transform into complex 4 and the color slowly changed to yellow/brown. After 2h at room temperature, the paramagnetic signals assigned to 5 had completely disappeared and a set of diamagnetic signals assigned to complex 4 was observed in the 1H-NMR spectrum of the solution.

From complex 2 preparatory scale. A cold (−80°C) solution of [U{N(SiMe$_3$)$_2$)$_3$] (50.0 mg, 69.5 µmol, 1.0 eq) and 2.2.2-cryptand (26.3 mg, 69.9 µmol, 1.0 eq) in THF-d_8 (0.5 mL) was added to KC$_8$ (9.4 mg, 70 µmol, 1.0 eq). After a few minutes, the black mixture was filtered and added to cold (−80 °C) azobenzene (12.7 mg, 69.9 µmol, 1.0 eq), resulting in a red/brown solution. It was left at low temperature for 5 min and then stirred at room temperature for 2h, causing the color to change to yellow/brown. Slow diffusion of hexane into the THF reaction mixture at −40 °C gave X-ray quality brown crystals consisting of 4 (33.8 mg, 37%).

Anal. Calcd for C$_{48}$H$_{100}$KN$_7$O$_6$Si$_8$U: C, 43.78; H, 7.65; N, 7.44. Found: C, 43.11; H, 7.66; N, 7.45. The elemental analyses were reproduced several times in different places and conditions always giving low values of carbon probably due to combustion issues and/or the formation of silicon carbides that could not be solved.

1H-NMR (400 MHz, THF-d_8, 298K): δ 6.97 (dd, 4H, NPh-o), 5.52 (m, 4H, NPh-m), 5.44 (dd, 2H, NPh-p), 3.57 (s, 12H, 2.2.2-cryptand), 3.53 (t, 12H, 2.2.2-cryptand), 2.54 (t, 12H, 2.2.2-cryptand), 0.45 (s, 54H, NSiMe$_3$). IR (Nujol mull): 1579 (m), 1464 (br s), 1377 (s), 1362 (m), 1355 (m), 1298 (m), 1245 (br s), 1164 (w), 1133 (m), 1104 (s), 1079 (m), 1059 (w), 1022 (w), 996 (s), 939 (s), 852 (m), 843 (br s), 773 (w), 753 (m), 722 (m), 695 (m), 665 (m), 600 (m), 565 (w), 522 (w).

Isolation of [K(2.2.2-cryptand)][U(N$_2$Ph$_2$)(N(SiMe$_3$)$_2$)$_3$], 5.

From complex 1. A cold (−80 °C) solution of azobenzene (1.3 mg, 7.1 µmol, 1.1 eq) in THF-d_8 (0.5 mL) was added to cold (−80 °C) purple crystals of 1 (15.1 mg, 6.6 µmol, 1.0 eq), resulting in a red/brown solution. Slow diffusion of cold hexane into the reaction mixture at −40 °C resulted in a mixture of pink and dark red crystals, characterized as [K(2.2.2-cryptand)][U(O)(N(SiMe$_3$)$_2$)$_3$] by NMR and complex 5 by X-ray crystallography, respectively. Complex 5 has a similar solubility as [K(2.2.2-cryptand)][U(O)(N(SiMe$_3$)$_2$)$_3$], and is temperature sensitive rendering separation impossible.

From complex 2. A cold (−80 °C) solution of [U(N(SiMe$_3$)$_2$)$_3$] (25.0 mg, 34.8 µmol, 1.0 eq) and 2.2.2-cryptand (13.1 mg, 34.8 µmol, 1.0 eq) in THF (0.5 mL) was added to KC$_8$ (4.7 mg, 35 µmol, 1.0 eq). After a few minutes, the black mixture was filtered and added to cold (−80 °C) azobenzene (6.4 mg, 35 µmol, 1.0 eq), resulting in a red/brown solution, which was left to react for 15 min at −80 °C. Slow diffusion of hexane into the THF reaction mixture at −40 °C

S4
allowed to isolate a few crystals of complex 5. Upon warming up a THF solution of complex 5 to room temperature, it immediately starts to transform into complex 4.

1H-NMR (400 MHz, THF-d$_8$, 233K): δ 28.5 (s, 2H, NPh), 19.2 (s, 2H, NPh), 17.8 (s, 2H, NPh), 10.2 (s, 2H, NPh), 3.8 (s, 12H, 2.2.2-cryptand), 3.7 (s, 12H, 2.2.2-cryptand), 2.8 (s, 12H, 2.2.2-cryptand), –14 (br s, 54H, NSiMe$_3$). 1H-NMR (400 MHz, THF-d$_8$, 273K): δ 38.7 (s, 2H, NPh), 23.8 (s, 2H, NPh), 16.1 (s, 4H, NPh), 9.1 (s, 2H, NPh), 3.7 (s, 12H, 2.2.2-cryptand), 3.6 (s, 12H, 2.2.2-cryptand), 2.7 (s, 12H, 2.2.2-cryptand), –12.0 (s, 54H, NSiMe$_3$). 1H-NMR (400 MHz, THF-d$_8$, 298K): δ 15.1 (s, 4H, NPh), 8.6 (s, 2H, NPh), 3.6 (s, 12H, 2.2.2-cryptand), 3.5 (s, 12H, 2.2.2-cryptand), 2.6 (s, 12H, 2.2.2-cryptand), –10.7 (s, 54H, NSiMe$_3$).
NMR Spectroscopy

Figure S1 Variable temperature 1H-NMR spectra of the reaction mixture of 1 and diphenylacetylene in 1:1 ratio in THF-d_8.

Figure S2 Variable temperature 1H-NMR spectra of the reaction mixture of 2 and diphenylacetylene in 1:1 ratio in THF-d_8.

Complex 3
THF
$[K(2.2.2$-cryptand)$][U(O)[N(SiMe$_3$)$_3$]]$
Figure S3 Variable temperature 1H-NMR spectra of complex 3 in THF-d_8.

Figure S4 1H-NMR spectra of complex 3 at room temperature in THF-d_8 over time.
Figure S5 Variable temperature 1H-NMR spectra of the reaction mixture of 1 and azobenzene in 1:1 ratio in THF-d_8.

Figure S6 Variable temperature 1H-NMR spectra of the reaction mixture of [K(2.2.2-cryptand)][U(O){N(SiMe$_3$)$_2$}] and azobenzene in 1:1 ratio in THF-d_8.
Figure S7 \(^1^H\)-NMR spectrum of complex 4 in THF-\(d_8\) at room temperature.

Figure S8 Variable temperature \(^1^H\)-NMR spectra of complex 5 in THF-\(d_8\).
IR spectroscopy

The imido substituents in 4 show a band at 1245 cm\(^{-1}\) in the infrared spectrum, consistent with a U=N-C moiety. The energy of this absorption is similar to that found in previously reported uranium(VI) imido complexes.\(^6\)

X-ray Structure and Refinement Details

The diffraction data for the analysed crystal structures were collected at low temperature using Cu \(K\alpha\) radiation on a Rigaku SuperNova dual system in combination with Atlas type CCD detector. The data reduction and correction were carried out by CrysAlis\(^\text{Pro}\).\(^7\)

The solutions and refinements were performed by SHELXT\(^8\) and SHELXL\(^9\), respectively. The crystal structures were refined using full-matrix least-squares based on \(F^2\) with all non-H atoms defined in anisotropic manner. Hydrogen atoms were placed in calculated positions by means of the “riding” model.

The refinement of the crystal structure of compound 3 was quite straightforward, although the anisotropic behaviour of the \([\text{K}(2.2.2\text{-cryptand})]^+\) was far from being ideal and some restraints were needed (SIMU card) to get reasonable ADPs. The raw data of the crystal structure of 4 were treated for twinning (2 major domains were found) and the refinement was completed by using the HKLF 5 format (MREG 0, BASF = 0.192(2)).
The crystal structure of compound 5 displayed several problems; the data were treated for twinning (2 major domains were observed) and the final model showed disordered solvent (1 THF per ionic pair). The solvent was removed by using the SQUEEZE algorithm of PLATON and the refinement was completed by employing the HKLF 5 format (MERG 0, BASF = 0.342(2)). Some geometries and ADPS were corrected by restraints (SADI and RIGU cards, respectively).

Compound	Formula	3	4	5
		C₅₀H₁₀₀KN₃O₆Si₆U	C₄₈H₁₀₀KN₃O₆Si₆U	C₄₈H₁₀₀KN₃O₆Si₆U
Dₐₑₑₑ / g cm⁻³	1.321	1.351	1.264	
μ / mm⁻¹	9.065	8.476		
Formula Weight	1313.01	1317.01	1317.01	
Colour	clear intense orange	lustrous intense black	clear dark brown	
Shape	plate	needle	prism	
Size / mm³	0.20×0.20×0.04	0.14×0.09×0.04	0.28×0.18×0.11	
T / K	140.00(10)	139.9(6)	140.00(10)	
Crystal System	monoclinic	monoclinic	triclinic	
Space Group	P 2₁ / c	I 2 / a		
a / Å	15.66789(14)	22.6297(5)	11.4770(3)	
b / Å	17.47136(16)	23.9733(5)	16.6790(8)	
c / Å	24.16489(19)	23.9063(5)	19.0067(8)	
α / °	90	90	103.478(4)	
β / °	93.6596(8)	92.9909(18)	101.463(3)	
γ / °	90	90	90.908(3)	
V / Å³	6601.39(10)	12951.7(5)	3460.2(3)	
Z	4	8	2	
Z'	1	1	1	
Wavelength / Å	1.54184	1.54184	1.54184	
Radiation type	Cu Kα	Cu Kα	Cu Kα	
θₘᵢₙ /	3.123	3.688	3.938	
θₘₐₓ /	72.677	72.788	72.725	
Measured Refl's.	33861	14444	14136	
Ind't Refl's	12806	14444	14136	
Refl's with I > 2σ(I)	11775	7639	13270	
Rₑₑₑ	0.0210	.	.	
Parameters	640	642	617	
Restraints	162	0	934	
Largest Peak	1.943	4.553	5.937	
Deepest Hole	-1.067	-1.422	-5.122	
GoOF	1.040	0.841	1.147	
wR₂ (all data)	0.0665	0.1328	0.2818	
wR₂	0.0648	0.1186	0.2799	
R₁ (all data)	0.0306	0.0934	0.1104	
R₁	0.0273	0.0502	0.1069	
Computational details

All calculations were performed using the Becke’s 3-parameter hybrid functional11 combined with the non-local correlation functional provided by Perdew/Wang12 using Gaussian09 suite of programs.13 The U and Si atoms were represented with a small-core Stuttgart-Dresden relativistic effective core potential associated with their adapted basis set.14-16 Additionally, the Si basis set was augmented by a d-polarization function ($\alpha = 0.284$)17 to represent the valence orbitals. All the other atoms C, H, O and N were described with a 6-31G (d,p), double ζ quality basis set.18 The nature of the extrema (minimum) was established with analytical frequencies calculations and geometry optimizations were computed without any symmetry constraints. Intrinsic Reaction Paths (IRPs)19 were traced from the various transition structures to obtain the connected intermediates and the enthalpy energies were computed at $T = 298$ K in the gas phase.

Spin density

\begin{align*}
U_1 &= 3.129196 \\
U_2 &= 3.128229 \\
\end{align*}

Figure S10 Frontier molecular orbitals of complex 1.
Figure S1 Frontier molecular orbitals of azobenzene.
Spin Density
U1 = 2.393774
U2 = 2.954623
N-N = 0.79449

Figure S12 Frontier molecular orbitals of the transition state TS1 in the reaction of complex 1 with azobenzene.
Spin Density
U1 = 2.196227

Figure S13 Frontier molecular orbitals of complex 5.
Spin Density
\(U_1 = 2.158650 \)

Figure S14 Frontier molecular orbitals of [K(2.2.2-cryptand)][U(O)(N(SiMe$_3$)$_2$)$_2$].
Figure S15 Frontier molecular orbitals of the transition state TS2 in the reaction of complex 1 or 2 with azobenzene.
Figure S16 Frontier molecular orbitals of complex 4.
Figure S17 Molecular orbital diagram of complex 2.
Figure S18 Unpaired spin density plot of complex 2 showing spin density centered on the uranium: U = 4.10.
Figure S19 Molecular orbital diagram of the transition state TS1 in the reaction of complex 2 with azobenzene.
Figure S20 Unpaired spin density plot of the transition state TS1 in the reaction of complex 2 with azobenzene, showing spin density shared between the uranium and the nitrogen: U1 = 3.10, N-N=0.70.
Cartesian coordinates of all optimized structures

Complex	U-O-U		
C	10.05322000	14.994433000	1.204168000
Si	10.194999000	13.507342000	2.403679000
C	10.062687000	11.972387000	1.270273000
N	9.078062000	13.531901000	3.751316000
U	9.976519000	13.860897000	6.005537000
O	11.625026000	12.495802000	6.422622000
U	13.269898000	11.127162000	6.857563000
N	14.137411000	11.434268000	9.133345000
Si	15.837659000	11.644321000	9.500265000
C	16.362390000	13.480830000	9.537389000
Si	7.386705000	13.256469000	1.689958000
C	6.938966000	11.400788000	3.359410000
Si	7.357627000	14.798166000	8.506679000
C	7.374928000	16.455695000	7.579739000
Si	10.668050000	16.205552000	6.215312000
C	11.613270000	16.705594000	7.603790000
C	13.222591000	17.643617000	7.166425000
C	5.492885000	14.535507000	8.885007000
C	8.156487000	15.080423000	10.218878000
C	5.507069500	11.887520000	7.928951000
C	7.475430000	11.430501000	9.785309000
C	8.070594000	10.604639000	7.122353000
C	5.824467000	11.458919000	7.263143000
Si	10.336351000	17.432024000	5.009605000
C	11.747176000	17.630573000	3.735573000
C	8.733518000	17.086299000	4.050437000
C	10.065667000	19.208394000	5.687288000
N	15.120291000	11.442906000	5.282645000
Si	15.693555000	13.068839000	4.977562000
C	17.449473000	13.463846000	5.637240000
N	12.545329000	8.786671000	6.651976000
Si	12.820251000	7.565406000	7.875160000
C	11.379423000	7.415236000	9.121591000
C	14.406166000	7.882433000	8.871232000
C	13.067916000	5.778665000	7.215627000
Si	15.884483000	10.153959000	4.375685000
C	15.847253000	8.499596000	5.307496000
C	17.751273000	10.405282000	4.003474000
C	15.092898000	9.883531000	2.658718000
Si	11.621584000	8.295793000	5.246853000
C	9.990519000	7.378510000	5.644610000
C	11.156289000	9.792795000	4.181767000
C	12.531203000	7.114188000	4.042299000
C	12.115924000	15.219900000	8.667130000
C	10.712953000	17.875506000	8.826145000
C	16.966018000	10.747847000	8.263298000
C	16.412663000	10.949422000	11.195868000
C	15.774911000	13.552619000	3.128357000
S24

C 14.576459000 14.343878000 5.822350000
Si 13.028579000 11.541155000 10.485436000
C 13.272836000 12.073507000 11.607305000
C 13.083509000 10.056328000 11.694710000
C 11.226759000 11.609411000 10.905629000
H 9.112202000 14.995658000 0.647171000
H 10.872630000 14.947951000 0.475001000
C 12.239430000 12.708233000 3.654849000
H 12.653048000 13.537710000 2.143718000
H 9.077517000 11.885495000 0.799716000
H 10.253850000 11.051760000 1.832265000
H 7.278904000 13.446021000 0.835270000
H 5.708423000 13.711940000 1.602390000
H 7.160824000 10.925987000 4.319564000
H 7.517663000 10.875983000 2.592176000
C 9.760264000 10.763592000 0.631575000
H 9.411430000 9.608381000 7.480700000
C 5.738029000 11.658764000 6.191278000
H 5.640367000 10.387941000 7.418909000
H 7.181002000 10.378498000 9.888808000
H 10.722526000 10.609758000 4.764878000
H 12.020723000 12.195655000 3.641013000
H 10.417213000 9.479522000 3.434929000
H 11.929290000 7.000169000 3.131387000
H 10.164689000 6.437852000 6.178325000
C 9.328532000 7.998218000 6.254316000
H 9.463533000 7.136463000 4.712876000
C 10.452025000 7.129951000 8.614541000
H 10.131485000 15.948017000 1.733239000
H 12.214212000 14.476350000 3.568901000
H 6.922280000 15.000444000 1.609968000
H 6.275958000 15.208602000 4.470235000
H 6.532020000 13.920434000 5.659286000
H 5.199569000 13.797402000 4.484478000
H 5.030008000 12.010736000 7.773773000
H 6.739266000 12.033563000 10.327579000
H 8.445662000 11.557322000 10.271930000
C 5.290795000 13.671993000 9.526426000
H 4.916751000 14.415322000 7.961600000
H 5.113842000 15.427269000 9.401028000
H 9.220899000 15.314301000 10.127013000
H 8.807115000 14.183194000 10.840210000
H 7.673462000 15.910165000 10.750562000
H 8.071946000 16.405480000 6.716887000
H 8.376676000 16.699232000 7.217499000
H 7.028903000 17.265016000 8.235299000
H 9.744410000 17.469671000 9.131359000
H 10.544652000 18.873374000 8.411174000
H 7.868035000 17.268807000 4.695379000
H 8.688178000 16.049158000 3.706503000
H 8.655758000 17.749123000 3.179292000
H 10.952389000 19.634822000 6.166936000
H 9.240271000 19.241617000 6.405929000
H	9.800180000	19.861400000	4.845581000
H	11.940138000	16.697496000	3.198988000
H	11.498500000	9.873695000	8.400380000
H	12.934713000	11.940138000	7.230456000
H	10.885411000	11.498500000	8.425089000
H	16.225130000	12.934713000	5.094147000
H	16.884288000	10.885411000	2.576490000
H	16.931070000	12.934713000	3.360294000
H	18.012946000	15.931070000	6.163441000
H	18.234287000	17.012946000	5.681330000
H	16.510289000	18.234287000	4.652727000
H	14.801833000	16.510289000	2.647855000
H	17.957683000	10.326432000	3.489606000
H	18.126879000	9.511399000	2.042209000
H	14.027314000	18.126879000	2.741063000
H	15.187078000	14.027314000	6.702331000
H	15.577413000	15.187078000	6.528748000
H	16.528870000	15.577413000	8.067678000
H	14.844048000	16.528870000	6.933016000
H	16.170606000	14.844048000	6.657565000
H	13.507741000	16.170606000	8.079076000
H	12.684735000	13.507741000	4.467067000
H	15.284708000	12.684735000	8.245090000
H	14.453812000	15.284708000	9.226796000
H	14.454923000	14.453812000	9.737352000
H	12.190069000	14.454923000	6.702331000
H	13.918871000	12.190069000	6.528748000
H	13.284497000	13.918871000	8.067678000
H	11.195928000	13.284497000	6.933016000
H	11.596961000	11.195928000	9.885170000
H	12.529845000	11.596961000	8.079076000
H	11.268475000	12.529845000	9.238640000
H	12.878266000	11.268475000	9.387739000
H	11.327445000	12.878266000	9.728813000
H	13.020030000	11.327445000	6.658354000
H	13.866740000	13.020030000	6.519183000
H	13.782719000	13.866740000	8.081849000
H	12.678321000	13.782719000	4.230131000
H	14.027601000	12.678321000	12.242936000
H	12.275424000	14.027601000	12.430106000
H	11.055744000	12.275424000	9.142706000
H	10.593799000	11.055744000	10.769429000
H	14.246604000	10.593799000	12.108504000
H	13.180837000	14.246604000	11.032315000
H	12.500680000	13.180837000	12.386320000
H	15.940383000	12.500680000	12.052896000
H	17.496145000	15.940383000	11.282712000
H	16.172378000	17.496145000	8.574791000
H	15.801191000	16.172378000	10.299016000
H	17.431812000	15.801191000	9.761319000
H	13.523014000	17.431812000	5.557757000
H	14.654043000	13.523014000	6.914104000
H	14.890965000	14.654043000	5.513550000
H	17.548660000	14.890965000	6.698851000
H	17.637447000	17.548660000	5.522675000
Complex Azobenzene

H 16.063465000 14.606801000 3.031897000

24

TS U-O-U-Azo

U 10.091145364 13.723010080 5.904935245
U 13.507500000 10.766400000 7.307600000
Si 13.716100000 6.953400000 7.761100000
Si 15.775300000 13.011000000 5.699500000
Si 11.441271790 16.651469945 7.584732535
Si 7.366198830 15.058115609 8.146487810
Si 16.786350941 10.364158607 9.139045216
Si 10.939420837 13.108059813 2.451994697
Si 15.622500000 10.512900000 4.100300000
Si 14.765779250 11.584751753 10.857444151
Si 6.726362513 12.462793442 7.002138161
Si 7.979696870 13.106786635 2.813205261
Si 10.846990057 17.219971906 4.717062944
Si 11.810100000 8.048400000 5.759400000
O 11.522300000 12.449600000 6.700800000
N 15.083200000 11.404200000 5.513500000
N 15.123471423 10.929568149 9.262517550
N 7.932110260 13.716937825 7.178216430
N 9.567500864 13.301126861 3.512436535
N 10.817820440 16.090550973 6.053485653
N 13.058600000 8.369200000 6.960100000
N 11.731900000 10.750900000 9.354700000
N 11.303912737 9.701582261 8.781503476
C 14.334000000 7.348800000 9.516500000
C 12.475400000 5.514300000 8.053200000
Element	X	Y	Z
C	15.136900000	6.080500000	6.825900000
C	15.623000000	14.201200000	4.214800000
C	17.662600000	13.045700000	6.048000000
C	14.925400000	13.878400000	7.157600000
C	11.457506178	15.224209388	8.829372048
C	13.224182280	17.340844407	7.505632947
C	10.426862964	18.021156924	8.462396264
C	5.464330270	15.163526782	8.408411858
C	17.085629575	9.431176420	7.379287756
C	11.14631437	11.747713422	9.227828867
C	13.66864593	9.132044489	10.497110674
C	9.08641535	11.45587668	1.489387651
C	11.49938312	14.43922623	1.086210911
C	12.519687096	13.25068561	3.476174207
C	13.983078389	10.303154060	12.034267981
C	16.245727226	12.285115348	11.869166724
C	11.438400000	9.627100000	4.789100000
C	10.154700000	7.411900000	6.473000000
C	17.439900000	10.838300000	3.565600000
C	9.461824699	16.88884896	3.460841876
C	12.508136968	17.229911736	3.771536360
C	7.357893636	10.807424089	6.331992508
C	6.146572353	11.645094174	8.637186986
C	8.118398604	13.436057355	0.924655550
C	6.841128663	14.489722603	3.445611654
C	14.646600000	10.865500000	2.497900000
C	13.651110096	13.11830346	10.824114645
C	5.111940050	13.001686403	6.120139274
C	7.311591402	11.328630452	3.038642908
C	10.585529118	19.063430939	5.191568563
C	12.264700000	6.738700000	4.355000000
C	10.20278212	9.038405455	9.38772989
C	8.899452380	9.354126677	9.002845634
C	10.427541560	8.016027530	10.311427952
C	7.822320398	8.648052039	9.538081245
C	9.350180256	7.308861661	10.846128189
C	8.047784366	7.624755331	10.459660166
C	11.003600000	11.004300000	10.548700000
C	10.898700000	10.048200000	11.559300000
C	10.446500000	12.270700000	10.726100000
C	10.236400000	10.358300000	12.746900000
C	9.784700000	12.581300000	11.914500000
C	9.679500000	11.625400000	12.924700000
H	16.197900000	15.109900000	4.435700000
H	17.909300000	13.945800000	6.625000000
H	18.009500000	12.180600000	6.615700000
H	15.314200000	14.897800000	7.263300000
H	15.109600000	13.352900000	8.101500000
H	13.843700000	13.948800000	6.993000000
H	18.997947778	11.456588875	8.646335351
H	18.440164610	11.922461074	10.257371456
H	17.747874774	12.694185324	8.823564967
H	18.438890070	8.942450714	10.352282515
X	Y	Z	
----	----	----	
17.237107561	9.514587025	11.513815598	
15.828955714	12.663698306	12.811779609	
16.717584134	13.129194060	11.356749583	
17.025420623	11.562418056	12.123144638	
14.160035108	13.948292000	10.319395784	
12.694903857	12.663698306	10.328071808	
13.920981676	10.747684534	13.018427856	
14.653677442	9.448080163	12.172056917	
13.356883594	17.463952219	4.448144380	
15.963829898	17.560343285	8.514010249	
13.899321217	16.613975730	7.046947899	
12.776555130	18.266826041	6.922509412	
10.834834759	18.17311177	9.470791042	
11.877471551	15.552431322	9.786583350	
10.426078973	14.850038289	9.020452540	
12.555619960	14.388173994	8.458742073	
12.990500000	4.743800000	9.816533500	
11.593400000	5.829200000	8.620500000	
15.482000000	5.197000000	7.392800000	
16.008300000	6.722100000	6.676300000	
14.805900000	5.745600000	5.837800000	
13.535300000	7.204200000	10.252000000	
14.673000000	8.384500000	9.606100000	
15.159600000	6.681800000	9.791100000	
12.429700000	5.742700000	4.860300000	
13.159100000	7.020500000	3.873100000	
15.542200000	8.110600000	3.401300000	
14.727200000	8.323900000	4.970100000	
16.487600000	8.306600000	4.887200000	
15.024500000	10.224600000	1.690900000	
14.769900000	11.906900000	2.185200000	
13.574500000	10.680800000	2.600600000	
17.677000000	10.148100000	2.745500000	
18.147800000	10.648300000	4.377400000	
17.607200000	11.855200000	3.197200000	
14.586000000	14.491800000	4.027800000	
16.029000000	13.772900000	3.291900000	
18.236000000	13.082000000	5.115300000	
18.144250537	9.155633064	7.435544147	
16.80739384	10.04533009	6.65775354	
16.496643690	8.510928994	7.480047292	
16.847678449	8.172690352	10.43207622	
13.439178307	13.432226133	11.853931627	
13.035732576	9.921715141	11.646185498	
12.498372645	17.984585215	2.974549906	
12.721842784	16.261362336	3.311573815	
10.555419782	19.657698767	4.26867959	
9.634406162	19.209996737	5.713705251	
11.385952935	19.470397635	5.818420341	
9.617620842	17.479059624	2.54980520	
9.416893821	15.829116372	3.19206980	
8.494814598	17.172103993	3.88916668	
10.461766115	18.982316614	7.94267328	
9.376741724	17.732756542	8.567242153	
7.576147425	17.555238454	8.09491561	
8.817523649	16.800648089	7.060909141	
	X	Y	Z
-----	-----------	-----------	-----------
H	7.142439939	16.910911243	6.498954588
H	7.671898046	15.877547163	10.516469119
H	7.810418575	14.111331183	10.436778398
H	9.163761095	15.131349666	9.926021304
H	5.248922590	16.054217215	9.013927113
H	4.941180798	15.278611610	7.453307596
H	5.036891763	14.300588191	8.928362856
H	6.977412730	11.182382959	9.174002689
H	5.665161957	12.364186256	9.308917347
H	4.522055266	13.700627408	6.719670886
H	5.808182206	14.337400437	3.108560406
H	6.852450340	14.51879358	4.537508143
H	7.189057470	15.452588542	3.056306336
H	8.464275014	14.454418313	0.719602686
H	12.531117640	14.191896061	4.039975025
H	11.137592980	15.450908662	1.502512731
H	12.130100000	5.044200000	7.127000000
H	9.366000000	7.548100000	5.723800000
H	9.852800000	7.961200000	3.768000000
H	10.199200000	6.347600000	6.720900000
H	11.432200000	6.658200000	3.724900000
H	10.560600000	9.453100000	4.156100000
H	12.271600000	9.891300000	4.130600000
H	11.208000000	10.500700000	5.413200000
H	5.414317158	10.858063497	8.415502135
H	4.494255145	12.111283772	5.942774386
H	5.306711121	13.469511572	5.152529208
H	6.578378383	10.04624700	6.441865305
H	7.602915034	10.870111022	5.266298334
H	8.253629827	10.459781764	6.852296426
H	6.275503065	11.242595549	2.687113430
H	7.923087358	10.624498214	2.46326741
H	7.341117377	11.010856165	4.084341506
H	7.120547579	13.32647623	0.479845729
H	8.786890459	12.738730180	0.408719292
H	11.925708812	11.36054393	0.930127042
H	10.913278590	10.600347749	2.166218351
H	10.163383557	11.387801474	0.768737069
H	13.387094812	13.264499194	2.809590389
H	12.656283852	12.439326839	4.194626254
H	12.122378401	14.290077702	0.599252383
H	10.378878663	14.383846957	0.312800920
H	8.722020427	10.160838884	8.276884666
H	11.454182369	7.766885620	10.616317354
H	6.795405936	8.897249581	9.233606595
H	9.528232032	6.502507237	11.572401903
H	7.198315387	7.068089762	10.881427741
H	11.314200000	9.104000000	11.42700000
H	10.529100000	13.024500000	9.929800000
H	10.153200000	9.604500000	13.54330000
H	9.345900000	13.580100000	12.05430000
H	9.157300000	11.869600000	13.86110000

83
Complex U=O
C 7.332285000 16.905065000 0.339528000
Element	x-coordinate	y-coordinate	z-coordinate
Si	7.261324000	15.664398000	1.791334000
C	7.158158000	13.928017000	1.002242000
N	5.964445000	15.988134000	2.928063000
U	6.571012000	16.483392000	5.643261000
O	8.963106000	15.761368000	2.631214000
Si	4.292983000	15.786733000	2.453141000
C	3.149955000	16.700296000	3.669487000
C	3.862096000	16.483518000	0.725776000
N	4.891073000	15.859525000	6.781992000
Si	8.747792000	18.906723000	4.280734000
C	4.901691000	13.637421000	8.942030000
C	5.716690000	13.061387000	6.014680000
Si	2.803416000	13.622520000	6.718530000
C	7.361302000	19.894161000	4.280734000
C	8.721547000	19.986712000	2.945119000
C	5.720198000	19.616523000	3.357896000
C	7.235248000	21.663225000	4.996130000
C	9.107917000	17.332928000	7.779070000
C	8.107733000	20.169620000	8.069300000
H	7.341408000	13.246962000	6.231330000
H	5.570612000	13.231256000	4.941796000
H	5.484594000	12.007651000	6.213766000
H	2.541666000	13.892311000	5.643317000
H	2.070587000	12.533995000	6.767713000
H	4.794803000	12.551404000	9.005080000
H	2.341408000	17.936874000	0.705335000
H	9.107733000	16.754643000	3.043157000
H	4.180170000	17.525926000	0.624192000
H	3.287880000	17.784565000	3.601104000
H	3.328059000	16.390901000	4.706011000
H	2.101865000	16.482113000	3.431550000
H	2.066528000	14.084645000	7.335199000
H	4.196547000	14.110943000	9.586358000
H	5.915613000	13.911064000	9.204077000
H	2.205148000	15.900945000	8.889267000
Atom	x	y	z
------	------------	------------	------------
H	1.728077000	16.644168000	7.353474000
H	1.946840000	17.647682000	8.798320000
H	6.124248000	18.117380000	10.074382000
H	5.053062000	19.050460000	10.058596000
H	6.124248000	19.550320000	9.314406000
H	5.053062000	19.879213000	8.431208000
H	8.031171000	21.183849000	7.665157000
H	4.865627000	19.724651000	4.034273000
H	5.674997000	18.624960000	2.893204000
H	5.610929000	22.013624000	5.419667000
H	6.470546000	21.726975000	5.777156000
H	6.956098000	23.580600000	4.194581000
H	8.081656000	19.042938000	2.397099000
H	8.497217000	20.778316000	2.194280000
H	9.482628000	16.526184000	7.145293000
H	8.215970000	19.950707000	8.286997000
H	9.852140000	17.570390000	8.550200000
H	8.783771000	20.200323000	8.930494000
H	10.375812000	20.544512000	5.726126000
H	10.896406000	18.870817000	5.469665000
H	11.134535000	19.645382000	7.046086000
H	9.701433000	20.199372000	3.835610000

106
Complex U-Azo

Atom	x	y	z
U	13.732880000	9.962291000	8.010746000
Si	13.965937000	6.391523000	8.007384000
Si	14.580289000	13.262829000	7.223609000
Si	17.160995000	9.530890000	8.930505000
Si	14.746586000	11.491467000	4.805929000
Si	15.579376000	10.690300000	11.184238000
Si	12.139154000	7.473534000	5.892195000
N	14.396835000	11.642604000	6.527017000
N	15.580196000	10.065457000	9.523968000
N	13.311074000	7.812565000	7.182132000
N	11.688170000	10.570404000	8.079920000
N	11.872030000	10.067861000	9.306979000
C	14.267353000	6.763609000	9.845644000
C	12.845303000	4.845915000	8.060415000
C	15.574922000	5.770004000	7.192862000
C	13.887354000	14.675529000	6.146080000
C	16.400799000	13.690624000	7.578551000
C	16.656382000	13.431297000	8.872987000
C	17.138599000	9.367557000	7.047680000
C	18.624066000	10.703960000	9.303979000
C	17.747547000	7.843690000	9.610123000
C	13.851892000	10.758280000	11.968466000
C	16.597214000	9.622818000	12.403428000
C	11.540162000	9.052343000	5.030668000
C	10.531500000	6.631711000	6.468962000
C	16.326919000	12.407010000	4.238815000
C	15.048946000	9.675600000	4.300517000
	13.364887000	12.173140000	3.680462000
---	--------------	--------------	-------------
C	16.313902000	12.445267000	11.341793000
C	12.882420000	6.360429000	4.530180000
C	10.820460000	9.212739000	9.765973000
C	9.613573000	9.078887000	9.158315000
C	11.119541000	6.360429000	4.530180000
C	10.630749000	8.465468000	10.942519000
C	9.226829000	7.492400000	10.150240000
C	10.805297000	11.468072000	10.078340000
C	9.775840000	13.397105000	9.613573000
C	9.059166000	14.069467000	9.078887000
H	13.985060000	15.616131000	7.853660000
H	14.777580000	16.935420000	8.015695000
H	16.810109000	12.977936000	8.299209000
H	13.813652000	12.601390000	9.569117000
H	12.580654000	13.535475000	8.715915000
H	19.518110000	10.297384000	8.814563000
H	18.845195000	10.785593000	10.372390000
H	18.460781000	11.711321000	8.911047000
H	18.696950000	7.581045000	9.126457000
H	17.921018000	7.865797000	10.689280000
H	16.444540000	10.015668000	13.416459000
H	17.673598000	9.639969000	12.205884000
H	16.262314000	8.580387000	12.397551000
H	17.361478000	12.488381000	11.032273000
H	15.758303000	13.174296000	10.747019000
H	13.852797000	11.505526000	12.771004000
H	13.609669000	9.791197000	12.421484000
H	13.374064000	4.079999000	8.643231000
H	11.897114000	5.051982000	8.562212000
H	15.968527000	4.901188000	7.734385000
H	16.358164000	6.531439000	7.166730000
H	15.379636000	5.460744000	6.160429000
H	13.299172000	6.816479000	10.353954000
H	14.802457000	7.700019000	10.030331000
H	14.845666000	5.950647000	10.301275000
H	13.175954000	5.375776000	4.913320000
H	13.775288000	6.818914000	4.082342000
H	14.651959000	9.493653000	3.295200000
H	14.583653000	8.951589000	4.975347000
H	16.122002000	9.462184000	4.282459000
H	13.623126000	11.993876000	2.629277000
H	13.235067000	13.250580000	3.814097000
H	12.401050000	11.694713000	3.873839000
H	16.490078000	12.193951000	3.174814000
H	17.211882000	12.063588000	4.784347000
H	16.259538000	13.493461000	4.350381000
H	12.823943000	14.519856000	5.941967000
H	14.414022000	14.799909000	5.194960000
H	17.021955000	13.665219000	6.679046000
H	18.094570000	8.947356000	6.712416000
Atom	Cartesian Coordinates (Å)		
------	--------------------------		
H	17.009368000 10.346306000 6.579282000		
H	16.351413000 8.705254000 6.679064000		
H	17.035303000 7.042691000 9.401366000		
H	16.262084000 12.760462000 12.391498000		
H	13.052672000 10.997265000 5.692190000		
H	12.633867000 8.705254000 5.692190000		
H	12.343170000 9.620513000 5.692190000		
H	11.021617000 9.701999000 5.740780000		
H	10.641724000 5.560047000 6.648020000		
H	10.832869000 11.261854000 11.439269000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
H	10.832869000 8.765642000 5.692190000		
H	10.641724000 5.560047000 6.648020000		
H	10.327220000 7.060051000 12.373666000		
H	8.141224000 10.549058000 11.310745000		
H	14.921653000 12.196088000 10.119490000		
H	11.191653000 7.276070000 9.946852000		
C	11.446336000	9.631518000	5.435604000
C	16.397539000	10.419930000	12.599768000
C	13.675990000	9.387368000	12.046509000
C	18.097646000	8.703699000	10.304064000
C	18.107472000	11.671796000	9.537104000
C	17.442944000	9.508207000	7.499025000
C	14.634553000	13.476194000	8.075941000
C	16.931922000	13.538471000	6.152704000
C	14.108859000	14.088515000	5.135326000
C	15.613548000	5.829831000	6.378133000
C	12.986943000	4.961514000	7.775264000
C	14.840401000	6.651416000	9.236351000
H	8.915726000	14.970590000	10.051646000
H	9.607836000	14.915732000	7.657680000
H	9.768248000	13.214640000	11.600134000
H	11.117332000	13.107960000	6.835028000
H	11.298115000	11.457541000	10.783507000
H	7.575792000	7.253477000	10.207044000
H	9.729791000	6.395807000	11.137018000
H	7.617967000	9.264825000	8.734173000
H	11.851744000	7.537095000	10.625311000
H	9.729561000	10.386403000	8.200154000
H	10.755913000	9.935924000	6.225133000
H	12.223355000	10.398931000	5.353190000
H	10.895172000	9.630392000	4.487093000
H	11.680404000	7.039560000	3.437888000
H	10.694520000	5.808348000	6.235680000
H	10.281549000	7.117803000	5.360230000
H	9.718475000	7.174844000	5.685309000
H	12.651828000	4.605767000	6.599054000
H	12.720846000	9.475087000	11.527933000
H	14.029640000	12.506046000	12.534881000
H	17.536268000	7.765089000	10.348588000
H	17.005344000	8.525655000	7.293645000
H	17.016308000	10.221510000	6.790922000
H	18.521429000	9.431946000	7.314069000
H	17.223464000	13.750163000	5.121393000
H	14.422903000	13.979460000	4.091834000
H	13.039171000	13.862352000	5.191203000
H	16.523092000	12.624159000	3.297419000
H	17.649088000	11.577405000	4.182549000
H	16.967837000	11.047966000	2.638458000
H	13.071015000	10.148612000	3.259687000
H	13.417536000	11.879462000	3.183389000
H	14.273591000	10.755668000	2.114312000
H	16.834633000	8.754211000	4.748767000
H	15.155858000	8.238633000	4.976195000
H	15.797299000	8.489843000	3.336766000
H	13.342923000	7.644030000	3.563776000
H	12.922252000	6.057849000	4.222982000
H	15.528102000	5.829792000	9.468453000
H	15.363323000	7.596290000	9.409722000
H	14.010755000	6.609882000	9.949029000
H	15.284769000	5.656353000	5.348160000
H	16.448398000	6.535935000	6.341291000
H	15.991901000	4.879689000	6.775264000

S34
H 12.103484000 5.197401000 8.178427000
H 13.518022000 4.134057000 8.065694000
H 14.006467000 8.345376000 11.979820000
H 13.528065000 9.627325000 13.106666000
H 13.521119000 12.557523000 10.839099000
H 15.159522000 9.382554000 12.779900000
H 17.294346000 10.998428000 12.362330000
H 17.694230000 9.382554000 12.779900000
H 17.294346000 10.998428000 12.362330000
H 15.996746000 10.813274000 13.542652000
H 18.326507000 9.011979000 11.326412000
H 19.048916000 8.495786000 9.798416000
H 17.674021000 12.463613000 8.919281000
H 18.091311000 12.015767000 10.575755000
H 19.157303000 11.551351000 9.242853000
H 13.556530000 13.549659000 8.227796000
H 15.044565000 12.795508000 8.820775000
H 15.069757000 14.465113000 8.266381000
H 17.628668000 12.793816000 6.549598000
H 17.067183000 14.460498000 6.730872000
H 14.245320000 15.140212000 5.415418000

106
Final product U-N5
H 20.530536000 20.954786000 -0.289173000
U 20.386110000 24.033844000 6.171136000
Si 17.254709000 22.333049000 6.754148000
Si 22.038558000 20.812526000 6.608492000
N 20.770049000 23.295464000 4.456987000
N 18.072743000 23.589933000 5.836529000
N 21.833054000 22.480938000 7.149494000
C 20.713980000 22.692511000 3.214887000
C 21.832770000 22.663210000 2.355980000
H 22.751658000 23.141436000 2.681022000
C 21.759491000 22.048107000 1.114740000
C 22.637400000 22.041060000 0.468837000
C 20.580678000 21.436739000 0.683738000
C 19.468128000 21.450745000 1.526698000
H 18.651373000 20.974773000 1.213384000
C 19.529573000 22.065576000 2.772350000
H 18.672741000 22.076010000 3.438035000
C 18.297213000 21.816062000 8.257837000
H 18.208609000 22.561786000 9.053672000
H 17.932596000 20.857494000 8.646934000
H 19.364282000 21.709020000 8.040034000
C 15.544993000 22.817163000 7.463507000
H 14.806537000 23.007393000 6.677827000
H 15.169528000 21.982883000 8.069364000
H 15.592188000 23.698984000 8.108681000
C 16.881284000 20.770860000 5.720383000
H 17.766345000 20.401484000 5.196976000
H 16.516198000 19.967488000 6.372317000
H 16.106225000 20.968617000 4.973525000
C 15.970221000 23.472705000 3.559593000
H 15.162108000 23.005149000 4.132187000
H 16.497808000 22.683710000 3.012387000
C 22.038478000 22.543301000 10.184771000
Element	X	Y	Z
H	21.923740000	21.459956000	10.294742000
H	21.044798000	22.992560000	10.264544000
C	20.534910000	20.983150000	5.700017000
H	20.220683000	20.688213000	4.837992000
H	19.866692000	19.983813000	6.380040000
C	22.209739000	19.570100000	8.060290000
H	21.305043000	19.596749000	8.677982000
H	22.293092000	18.557194000	7.646347000
Si	17.136315000	24.509891000	4.667808000
Si	20.824527000	27.648684000	6.034531000
N	19.983517000	24.776700000	7.878305000
C	19.375024000	26.049659000	5.553231000
H	17.972156000	25.401289000	9.019748000
H	17.392797000	25.113859000	8.214525000
H	17.356233000	25.897032000	10.229456000
C	18.279333000	25.440795000	3.464817000
H	18.650180000	24.756780000	2.694824000
C	17.114703000	26.239722000	2.968968000
H	15.901850000	25.643143000	12.141600000
C	18.123840000	25.651015000	10.147444000
C	15.958530000	25.555350000	10.112196000
H	16.466301000	26.407190000	6.211171000
H	15.536572000	26.438513000	4.706114000
H	15.123623000	25.279633000	5.976659000
C	18.279333000	25.440795000	3.464817000
H	18.119330000	26.273281000	11.340704000
C	17.627520000	26.661420000	12.232896000
C	17.356233000	25.897032000	10.229456000
H	17.972156000	25.401289000	9.019748000
H	17.392797000	25.113859000	8.214525000
H	17.356233000	25.897032000	10.229456000
C	19.500185000	26.146655000	11.286329000
C	19.155240000	25.897404000	3.940882000
H	15.504364000	24.136838000	2.820565000
C	18.968441000	27.719304000	6.419962000
H	18.734629000	28.727790000	6.783797000
H	18.370633000	27.549597000	5.519121000
H	18.655945000	27.011370000	7.188647000
C	20.961087000	28.953000000	4.636390000
H	20.354734000	28.644598000	3.777716000
H	20.549635000	29.901769000	5.004123000
H	21.974106000	29.149543000	4.278048000
C	21.714394000	28.340040000	7.567325000
H	21.369119000	29.364455000	7.773692000
C	21.485504000	27.730643000	8.444243000
H	22.481251000	26.244932000	2.714453000
H	22.048272000	27.231615000	2.522754000
H	21.767063000	25.490731000	2.372440000
Si	22.841514000	22.976962000	8.514261000
H	23.326486000	23.532324000	4.874780000
H	22.647591000	22.907967000	11.020926000
C	24.591615000	22.192135000	8.524847000
H	25.145758000	22.485665000	7.626863000
H	25.136270000	22.592939000	9.389526000
C	24.614967000	21.102409000	8.596036000
H	23.529799000	20.567355000	5.450120000
H	24.461200000	20.940294000	5.884673000
H	5.623286 13.607006 1.196170		
H	7.045567 10.974769 4.179072		
H	7.482220 10.843149 2.472197		
H	5.799970 11.160337 2.932765		
H	10.094861 11.250802 7.205202		
H	8.968506 11.158210 5.849279		
H	8.913532 9.923649 7.116832		
H	5.858814 11.430973 6.430257		
H	6.108910 10.154310 7.631276		
H	8.116949 10.431054 9.876002		
H	10.222261 15.779570 1.498108		
H	11.913568 14.574037 3.960686		
H	6.825723 14.907844 1.255867		
H	5.899233 15.152257 4.182976		
H	6.090225 13.835896 5.350162		
H	4.891825 13.695115 4.050714		
H	5.285717 11.655039 8.086907		
H	7.327018 11.914177 10.428067		
H	9.069329 11.909067 10.107790		
H	4.682756 14.184718 8.138923		
H	106.015961 17.572344 9.212312		
H	11.044396 18.825898 8.509492		
H	7.868087 17.710729 4.560267		
H	8.714333 16.637179 3.439263		
H	8.760783 18.391721 3.183738		
H	11.154749 19.788027 6.326606		
H	9.413200 19.552539 6.547115		
H	10.031560 20.264763 5.046194		
H	11.889214 16.953893 3.201873		
H	11.653769 18.704846 3.081439		
H	12.134789 14.102292 7.750010		
H	10.762471 14.511260 8.783881		
H	12.399369 14.977618 9.275115		
H	11.699654 17.731683 9.738505		
H	13.415585 18.068908 6.655235		
H	13.759932 16.372911 6.278800		
H	14.020917 16.991073 7.920407		
H	12.754293 18.035467 4.298702		

106

TS UII- Azo

U	9.797122674 13.950015155 6.309662270
Si	7.672461674 13.040319155 3.460092070
Si	7.679860674 12.174402155 8.684301270
Si	6.865680674 15.013206155 8.259859270
Si	11.257452674 16.588405155 8.065392270
Si	10.565943674 17.435107155 5.244624270

S38
Element	X	Y	Z
Si	10.576346674	13.481406155	2.867356270
N	7.970376674	13.703266155	7.854871270
N	10.563711674	16.201519155	6.499325270
N	9.245868674	13.579966155	4.018983270
N	12.011208326	12.542501845	6.895282730
N	11.228759326	11.669947845	6.258561730
N	5.018058674	14.521326155	8.187300270
N	10.5417994674	14.841601155	1.525633270
C	6.273310674	13.751659155	4.526111270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
C	12.176994674	17.458920155	4.223525270
C	6.273310674	13.751659155	4.056988270
C	7.228426674	13.564839155	1.674080270
C	7.466253674	11.144584155	3.508828270
H	8.222543674	10.637750155	2.903005270
H	6.476456674	10.850204155	3.138860270
H	10.037967674	11.719141555	9.476582270
H	9.754599674	10.916281555	7.928772270
H	9.070022674	10.236016155	9.415016270
H	6.806510674	10.838939155	6.752452270
H	6.313034674	10.109306155	8.291498270
H	6.936840674	11.310224155	10.889178270
H	10.632050674	15.840631555	1.962532270
H	12.307438674	14.430025155	4.494230270
H	7.264267674	14.653192155	1.558608270
H	6.174044674	14.831283155	4.374502270
H	6.44742674	13.565874155	5.590602270
H	5.320609674	13.284486155	4.249167270
H	5.476267674	11.544951155	7.671043270
H	6.058789674	12.804500155	10.550842270
H	7.737987674	12.870862155	11.12106270
H	4.764756674	13.709742155	8.876375270
H	4.73352674	14.207423155	7.178128270
H	4.399427674	15.387084155	8.454712270
H	8.194234674	15.986438155	10.171500270
H	6.820067674	15.067854155	10.797043270
H	6.566519674	16.676935155	10.107316270
H	6.747137674	16.208375155	6.048566270
H	8.056810674	16.862952155	7.043802270
H	6.367637674	17.289729155	7.397282270
H	9.281962674	17.822406155	9.045938270
H	10.558736674	18.968562155	8.618475270
H	8.176627674	17.561910155	4.535383270
H	8.96035674	16.171837155	3.764590270
H	9.250550674	17.813062155	3.149050270
H	11.258317674	19.568357155	6.461746270
H	9.496316674	19.369520155	6.487748270
H	10.310463674	19.895364155	5.007264270
H	12.342143674	16.521668155	3.686569270
H	12.148194674	18.269519155	3.484862270
H	11.837601674	14.262661155	8.899573270
H	10.150356674	14.673420155	9.288358270
H	11.473149674	15.374010155	10.22156270
H	10.715296674	17.973003155	10.07133270
H	13.183746674	18.107378155	7.477927270
H	13.684988674	16.413837155	7.403559270
H	13.518447674	17.222082155	8.972534270
H	13.043271674	17.627473155	4.872282270
References

(1) R. A. Andersen, Inorg. Chem., 1979, 18, 1507–1509.
(2) D. E. Bergbreiter and J. M. Killough, J. Am. Chem. Soc., 1978, 100, 2126–2134.
(3) D. K. Modder, C. T. Palumbo, I. Douair, F. Fadaii-Tirani, L. Maron and M. Mazzanti, Angew. Chem. Int. Ed., 2020, 59. doi.org/10.1002/anie.202013473
(4) A. J. Ryan, M. A. Angadol, J. W. Ziller and W. J. Evans, Chem. Commun., 2019, 55, 2325–2327.
(5) O. Bënaud, J.-C. Berthet, P. Thuéry and M. Ephritikhine, Inorg. Chem., 2010, 49, 8117–8130.
(6) N. H. Anderson, H. L. Yin, J. J. Kiernicki, P. E. Fanwick, E. J. Schelter and S. C. Bart, Angew. Chem. Int. Ed. Engl., 2015, 54, 9386-9389.
(7) CrysAlisPRO, Rigaku Oxford Diffraction, release 1.171.40.84a, 2020.
(8) SHELXT - Integrated space-group and crystal-structure determination, G. M. Sheldrick, Acta Crystallogr., Sect. A, 2015, 71, 3–8.
(9) SHELXL - Crystal structure refinement, G. M. Sheldrick, Acta Crystallogr., Sect. C, 2015, 71, 3–8.
(10) PLATON, A. L. Spek, Acta Crystallogr., Sect. D, 2009, 65, 148–155.
(11) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.
(12) K. Burke, J. P. Perdew and Y. Wang, In Electronic Density Functional Theory: Recent Progress and New Directions; J. F. Dobson, G. Vignale, M. P. Das, Eds.; Plenum: New York, 1998.
(13) Gaussian 09 Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ransinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
(14) W. Küchle, M. Dolg, H. Stoll and H. Preuss, J. Chem. Phys., 1994, 100, 7535–7542.
(15) X. Cao, M. Dolg and H. Stoll, J. Chem. Phys., 2003, 118, 487–496.
(16) X. Cao and M. Dolg, J. Molec. Struct. (Theochem), 2004, 673, 203–209.
(17) A. Höllwarth, M. Böhme, S. Dapprich, A. W. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, and G. Frenking, Chem. Phys. Lett., 1993, 208, 237–240.
(18) A. D. McLean, and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.; (b) W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
(19) C. Gonzalez and H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.; (b) C. Gonzalez and H. B. Schlegel, J. Phys. Chem., 1990, 94, 5523–5527.