Four new species of *Brueelia* Kéler, 1936 (Phthiraptera: Ischnocera) from African hosts, with a redescription of *Nirmus bicurvatus* Piaget, 1880

Daniel R. GUSTAFSSON¹,*, Fasheng ZOU², Lucie OSLEJSKOVA³, Tomas NAJER⁴ & Oldřich SYCHRA⁵

¹,² Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 105 Xingang West Road, Haizhu District, Guangzhou 510260, China.
³,⁵ Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic.
⁴ Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 00 Prague 6, Czech Republic.

* Corresponding author: kotatsu@fripost.org
 ² Email: zoufs@gdei.gd.cn
 ³ Email: loslejskova@gmail.com
 ⁴ Email: tomas.najer@gmail.com
 ⁵ Email: sychrao@vfu.cz

Abstract. Four new species of *Brueelia* Kéler, 1936 are described and illustrated. All of them parasitize African endemic host species in the families Passeridae, Ploceidae, and Estrildidae (Passeriformes). They are: *Brueelia pofadderensis* sp. nov. ex *Passer melanurus damarensis* Reichenow, 1902 and *P. m. vicinus* Clancey, 1958; *B. semiscalaris* sp. nov. ex *Granatina granatina* (Linnaeus, 1758); *B. sima* sp. nov. ex *Malimbus nitens* (Gray, 1831); *B. terpsichore* sp. nov. ex *Euplectes jacksoni* (Sharpe, 1891) and *E. progne delamerei* (Shelley, 1903). In addition, *Brueelia bicurvata* (Piaget, 1880) is redescribed and reillustrated from non-type material. A summary of all published records of lice in the *Brueelia* complex from Africa since 1980 is provided. We also estimate the unknown diversity of African species of *Brueelia* based on an index of host specificity calculated for each host family independently. The unknown diversity is estimated to be over 1000 species of *Brueelia* from African hosts, compared to the <50 species in this genus currently recorded from Africa.

Keywords. Phthiraptera, new species, *Brueelia* complex, species diversity, host specificity.
Introduction

The chewing lice of African songbirds have long been poorly known (Ledger 1980; Gustafsson & Bush 2015; Light et al. 2016; Takano et al. 2017, 2018). In particular, very few species of lice belonging to the Brueelia complex (sensu Gustafsson & Bush 2017) have ever been reported from Africa. In his summary of the chewing lice known from sub-Saharan Africa, Ledger (1980) listed only 3 species of Meropoecus Eichler, 1940, 36 species of Brueelia Kéler, 1936 and 16 species of Sturnidoecus Eichler, 1944 (note that Ledger overlooked the many African species of Sturnidoecus described in Ansari 1968). Of these, only 25 species have been recorded from birds that breed in sub-Saharan Africa; the remaining lice in the list in Ledger (1980) concern species known from hosts that migrate to Africa from Eurasia. In at least some cases, this list includes species of lice that have never been recorded in sub-Saharan Africa, but which occur on hosts that migrate to this region.

In recent decades, many new records of lice in the Brueelia complex have been published from African countries (e.g., Balakrishnan & Sorenson 2006; Sychra et al. 2010a, 2010b; Najer et al. 2012; Gustafsson & Bush 2015, 2017; Bush et al. 2016; Light et al. 2016; Takano et al. 2017, 2018; Gustafsson et al. 2018). However, in many of these reports, lice of the Brueelia complex have not been identified to species level, and few new species of lice in this complex have been described from Africa since 1980 (Fig. 1; Appendix). Data from several published phylogenies that include African lice of the Brueelia complex (Bush et al. 2016; Light et al. 2016; Takano et al. 2017, 2018) and from a morphological survey (D.R. Gustafsson and S.E. Bush, unpublished data) show that the diversity of lice in this complex is very high in Africa, and a vast number of species remain undescribed. The lack of descriptions, illustrations and identification keys for African lice of the Brueelia complex limits our understanding of the biogeography and evolution of these lice and their host associations.

Here, we provide descriptions of four new species of Brueelia from Africa, as well as a redescription of Nirmus bicurvatus Piaget, 1880. All five species treated here are from host species that are endemic to Africa, and all five hosts belong to families that are very speciose in this region.

Material and methods

All material examined is deposited as slide-mounted specimens at the Natural History Museum, London (NHML). Specimens were examined in an Olympus CX31 microscope. Illustrations were drawn by hand, using a drawing tube fitted to the microscope. Line drawings were scanned, collated and edited in GIMP (www.gimp.org). Grey lines in all illustrations denote the approximate extent of dark pigmentation; note that these patterns typically differ slightly between specimens of the same species, and sometimes between sides of the same specimen.

Measurements were made from photographs in Quick Photo Micro ver. 3.1 (Promicra, Prague, Czech Republic) and are given for the following dimensions (in mm):

\[
\begin{align*}
\text{AW} & = \text{abdominal width (at segment V)} \\
\text{HL} & = \text{head length (at midline)} \\
\text{HW} & = \text{head width (at temples)} \\
\text{PRW} & = \text{prothoracic width (at posterior end)} \\
\text{PTW} & = \text{pterothoracic width (at posterior end)} \\
\text{TL} & = \text{total length (at midline)}
\end{align*}
\]
Fig. 1. Map of Africa, showing the number of species of chewing lice in the *Brueelia* complex reported from each country since Ledger (1980), including the records published herein. The first number represents the total number of records of host–louse associations reported for each country, disregarding that some records from different host species may refer to the same louse species. The second number represents the number of louse species identified to species level. Countries with no records of lice of the *Brueelia* complex since 1980 are unmarked. References to lice in the *Brueelia* complex known from each country can be found in the Appendix. Note that as no precise collection locality is given on older slides, records for Sudan and South Sudan are here presented together. The numbers ‘2/2’ in the Gulf of Guinea refer to São Tomé and Príncipe, which is not visible on the map. The islands of Réunion (France) and St. Helena (United Kingdom) are also not visible on the map; both have 1 record of a louse of the *Brueelia* complex in the time period, in both cases identified to species level. In addition to the records shown here, one species was recorded from “Northern Africa” and one from “Congo”, with no more detailed locality given on the slide labels.
The terminology of chaetotaxy and morphological structures follows Gustafsson & Bush (2017), and includes:

\[
\begin{align*}
 \text{aps} & = \text{accessory post-spiracular setae} \\
 \text{ps} & = \text{paratergal setae} \\
 \text{psps} & = \text{principal post-spiracular setae} \\
 \text{pst1–2} & = \text{parameral setae 1–2} \\
 \text{pts} & = \text{post-temporal seta} \\
 \text{sts} & = \text{sternal setae} \\
 \text{tps} & = \text{tergal posterior setae} \\
 \text{vms} & = \text{vulval marginal setae} \\
 \text{vos} & = \text{vulval oblique setae} \\
 \text{vss} & = \text{vulval submarginal setae}
\end{align*}
\]

Counts of \text{vos} include the distal \text{vos} typically situated median to the \text{vss}. Setal characters are given in italics.

Host taxonomy follows Clements \textit{et al.} (2018).

An index of specificity (IS) was calculated for all host families from which \textit{Brueelia} are known in Africa, following Valim \& Weckstein (2013). Two estimates were calculated: one based only on the IS of identified species of \textit{Brueelia}, and one on the IS of identified species of \textit{Brueelia} plus unidentified species recorded from Africa (see Appendix). The latter IS was calculated under the assumption that all unidentified species listed as ‘\textit{Brueelia} sp.’ in the Appendix are accurately assigned to genus, which is likely not the case for many specimens.

\section*{Results}

The index of specificity was calculated for the genus \textit{Brueelia} in Africa, following Valim \& Weckstein (2013); from this index, two estimates of the diversity of this genus in Africa were calculated (Table 1). In Table 1, an IS of 1 means that all species of \textit{Brueelia} are host-specific within this host family. In host families for which IS > 1, each host species is on average parasitized by more than one species of \textit{Brueelia}; for instance, different host subspecies being parasitized by different species of \textit{Brueelia} would give an IS > 1. An IS < 1 indicates that at least some \textit{Brueelia} species parasitizing hosts in this family are not host-specific, but occur on more than one host species.

In almost all host families, the IS of \textit{Brueelia} is 1, suggesting that \textit{Brueelia} are generally host-specific. For nine host families, IS < 1; however, in most of these cases, the species of \textit{Brueelia} parasitizing hosts in this family have been poorly described, and some of these cases may represent misidentifications. Only one host family, Corvidae, has an IS > 1.

Our two calculations of IS are based of different sets of reported taxa, and thus the two estimates of diversity of \textit{Brueelia} are slightly different. However, both estimates suggest that well over 1000 species of \textit{Brueelia} may occur in Africa. Only 30 species of \textit{Brueelia} have been recorded from Africa since 1980 (Appendix). Using the IS estimate that includes unidentified specimens of \textit{Brueelia} suggests that only 2.24\% of the African diversity of \textit{Brueelia} is currently known; using the more conservative IS estimate, and ignoring unidentified \textit{Brueelia}, this number is 2.64\%.

\addcontentsline{toc}{section}{Results}
Table 1 (continued on next page). Estimate of the known and unknown diversity of *Brueelia* Kéler, 1936 in Africa based on an index of host specificity, following Valim & Weckstein (2013). Host taxonomy and species numbers follow Clements *et al.* (2018); louse numbers follow Gustafsson & Bush (2017) and Gustafsson *et al.* (2018). Host numbers in the African fauna includes residents, wintering migrants, introduced species and vagrants, following Lepage (2018). IS is the ‘index of specificity’ of Valim & Weckstein (2013), and represents #*Brueelia* species/host species of *Brueelia*. Estimates have been rounded off to the closest whole number. The second estimate includes the specimens listed as ‘*Brueelia* sp.’ in the Appendix, recorded from Africa after 1980 but not identified to species. Species are included in this estimate under the assumption that all species listed as ‘*Brueelia* sp.’ in the Appendix belong to the genus *Brueelia*; most likely, this is incorrect in some cases, and the numbers given are thus probably overestimates. The following host families (# African species in parentheses) are presently not known to be parasitized by any species of *Brueelia*, and are therefore not included in the list below: Aegithalidae (1), Bernieridae (11), Buphagidae* (2), Calyptomenidae (8), Campephagidae* (14), Certhiidae (2), Chaetopodidae (2), Cinclidae (1), Eurylaimidae* (1), Hirundinidae* (42), Hyliotidae (4), Hypocoliidae (1), Modulatricidae (3), Nicatoridae (3), Oriolidae* (9), Panuridae (1), Pellorneidae* (8), Philepittidae (4), Phylloscopidae (20), Picathartidae (2), Pittidae (2), Promeropidae (2), Stenostiridae (6), Tichodromidae (1), Vireonidae (1). Species in many of these families (marked with *) are known to be parasitized by other genera in the *Brueelia* complex (e.g., *Indoceoplanetes* Gustafsson & Bush, 2017, on hosts in the Campephagidae), which may replace *Brueelia* on these hosts.

Host family	Known world fauna	African fauna	Including unidentified after 1980						
	Bird species	*Brueelia* species	Host species for *Brueelia*	IS	Bird species	Estimate of African *Brueelia* species	Host species for *Brueelia*	IS	Estimate of African *Brueelia* species
Passeriformes									
Acrocephalidae	61 1 1 1	33 33	1 1 1 33						
Alaudidae	97 4 5	80 64	5 6 0.83 67						
Cisticolidae	145 1 1	131 131	6 6 1 131						
Corvidae	128 4 3	20 27	4 3 1.33 27						
Dicruridae	25 1 1	9 9	2 2 1 9						
Emberizidae	44 3 6	27 14	6 9 0.67 18						
Estrildidae	140 5 5	83 83	13 13 1 83						
Fringillidae	225 14 14	65 65	17 17 1 65						
Laniidae	33 6 6	24 24	6 6 1 24						
Leiothrichidae	146 5 5	23 23	5 5 1 23						
Locustellidae	61 1 1	18 18	1 1 1 18						
Macrosphenidae	21 0 0	18 0	1 1 1 18						
Malaconotidae	50 0 0	50 0	2 2 1 50						
Monarchidae	99 0 0	12 0	1 1 1 12						
Table 1 (continued). Estimate of the known and unknown diversity of *Brueelia* Kéler, 1936 in Africa based on an index of host specificity, following Valim & Weckstein (2013).

Host family	Known world fauna	African fauna	Including unidentified after 1980							
	Bird species	*Brueelia* species	Host species for *Brueelia*	IS	Estimate of *Brueelia* species	Bird species	Host species for *Brueelia*	IS	Estimate of *Brueelia* species	
Passeriformes (continued)										
Motacillidae	67	5	7	0.71	43	31	7	9	0.78	33
Muscicapidae	317	2	2	1	158	158	4	4	1	158
Nectariniidae	139	1	1	1	93	93	2	2	1	93
Paridae	63	7	7	1	19	19	7	7	1	19
Passeridae	42	5	7	0.71	28	20	10	12	0.83	23
Ploceidae	116	5	6	0.83	113	94	13	14	0.93	105
Prunellidae	13	2	2	1	2	2	2	2	1	2
Pycnonotidae	143	3	3	1	74	74	10	10	1	74
Regulidae	6	1	1	1	3	3	1	1	1	3
Remizidae	11	2	2	1	7	7	2	2	1	7
Scotocercidae	36	1	1	1	6	6	1	1	1	6
Sittidae	27	5	5	1	2	2	5	5	1	2
Sturnidae	122	15	16	0.94	53	50	19	20	0.95	50
Sylvidae	33	4	5	0.80	30	24	5	6	0.83	25
Troglodytidae	85	1	1	1	1	1	1	1	1	1
Turdidae	170	7	9	0.78	33	26	8	10	0.80	26
Vangidae	39	0	0	0	31	0	1	1	1	31
Viduidae	20	1	1	1	20	20	4	4	1	20
Zosteropidae	130	0	0	0	25	0	1	1	1	25
Piciformes										
Lybiidae	41	0	0	0	41	0	1	1	1	41
Picidae	232	3	7	0.43	35	15	3	7	0.43	15
Total	3127	115	131	1410	1136	177	193	1337		
GUSTAFSSON D.R. et al., Four new Brueelia (Phthiraptera: Ischnocera) from Africa

Order Phthiraptera Haeckel, 1896
Suborder Ischnocera Kellogg, 1896
Family Philopteridae Burmeister, 1838
Brueelia complex sensu Gustafsson & Bush 2017

Genus *Brueelia* Kéler, 1936

Philopterus Nitzsch, 1818: 288 partim.
Nirmus Nitzsch, 1818: 291 partim.
Degeeriella Neumann, 1906: 60 partim.
Brueelia Kéler, 1936: 257.
Painjunirmus Ansari, 1947: 285.
Allobrueelia Eichler, 1951: 36 partim.
Nigronirmus Zlotorzycka, 1964: 248.
Spironirmus Zlotorzycka, 1964: 261.
Serinirmus Soler Cruz et al., 1987: 244.

Type species
Brueelia rossittensis Kéler, 1936: 257 (= *Nirmus brachythorax* Giebel, 1874: 134) by original designation.

Remarks

Clay (1954) discussed the use of the *post-spiracular sensillum* in determining homology in the abdominal chaetotaxy of Ischnocera. She stated that in *Brueelia*, these sensilla are known from segments III–VII, whereas in all other groups of ischnoceran lice, they are never found posterior to segment V. Gustafsson & Bush (2017) included these sensilla in their illustrations, but neglected to discuss their importance in the text. Based on our investigation of several hundred species of lice in the *Brueelia* complex, it seems that these sensilla occur on segments II–III only in the following genera: *Brueelia*, *Teinomordeus* Gustafsson & Bush, 2017, *Acronirmus* Eichler, 1953 and *Sychraella* Gustafsson & Bush, 2017. In all other genera of the *Brueelia* complex, these sensilla only occur on segments IV–V. However, they are typically very hard to see, especially in species with reduced tergopleurites.

Gustafsson & Bush (2017) also neglected to explicitly state that it is the position of post-spiracular setae in relationship to this sensillum that determines whether they are *psps* or *aps*. Any setae positioned laterally to the sensillum are *aps*, whereas any setae situated immediately median to this sensillum are *psps*. Note that *aps* and *psps* on the first abdominal segment bearing post-spiracular setae (often segment V or VI in *Brueelia*) may be similar in length. Moreover, in some species of, e.g., *Olivinirmus* Zlotorzycka, 1964 there may be more than one *psps* per side on some segments. To our knowledge, no species in the *Brueelia* complex has more than one *aps* per side on any segment.

Several of the species here belong to a group of pied *Brueelia* species found mainly on African hosts in the families Ploceidae, Estrildidae and Paridae. The only species of this group known from hosts outside Africa is *Brueelia plocea* (Lakshminarayana, 1968), from India. We have seen many additional species in this group, all from African hosts; however, suitable hosts in the same genera are found in South Asia. We here refer to this group as the “African pied *Brueelia*” group, to distinguish it from the New World *ornatissima* group which have similar pigmentation patterns. This group comprises the following species: *Brueelia plocea* (Lakshminarayana, 1968); *B. queleae* Sychra & Barlev in Sychra et al., 2010a; *B. cantans* Sychra in Sychra et al., 2010b; *B. agularae* Gustafsson & Bush, 2017; *B. mpumalangensis* Gustafsson et al., 2018; *B. semiscalaris* sp. nov.; *B. terspichore* sp. nov.; *B. sima* sp. nov.
The main characteristic of this group is the striking pigmentation pattern. This varies slightly between species, but typically includes having dark pigmentation on the anterior and posterior margins of sternites III–VI, the female tergopleurite IX + X, along the lateral margins of the abdomen, around the distal section of femora I–III and on the subgenital plates. The dark areas are generally at least dark brown, but may appear black in some species; both sternal and subgenital plates typically have distinct translucent fenestrae in both sexes.

In the phylogeny of Bush et al. (2016), members of this group (e.g., Brueelia queleae and Brueelia sp. (= B. mpumalangensis) ex Melaniparus niger) were placed in different parts of the tree, suggesting that they do not form a natural group; however, these placements received no statistical support. Apart from pigmentation patterns, the morphological characters of this group are also very diverse, suggesting that the division of this group in the phylogeny of Bush et al. (2016) may be correct.

Nevertheless, for the purposes of identification and keying, we consider the ‘African pied Brueelia’ group a useful grouping to help sort out the vast diversity of species of Brueelia on African hosts. As more species of Brueelia from African hosts become known, the relationships of the species in this informal group may have to be revised, and the group may be found to be artificial. We provide a key to the described species in this group below.

Key to the ‘African pied Brueelia’

Note that the dorsal abdominal setae in the original illustration of Brueelia plocea have been translocated to the ventral side (Lakshminarayana 1968). No dorsal setae are given in the original description (ibid.: table II), but multiple setae are illustrated on some segments; we interpret all setae on these segments except the sts as dorsal setae. The female of B. plocea is undescribed.

1. Male ... 2
 – Female .. 9

2. Accessory post-spiracular setae present on tergopleurite V (Fig. 9) 3
 – Accessory post-spiracular setae absent on tergopleurite V (Fig. 23) 6

3. Tergal posterior setae present on tergopleurites V–VI ... 4
 – Tergal posterior setae absent on tergopleurites V–VI (Fig. 9) 5

4. Frons rounded; aps present on tergopleurite IV .. Brueelia queleae Sychra & Barlev in Sychra et al., 2010a
 – Frons flattened; aps absent on tergopleurite IV .. Brueelia cantans Sychra in Sychra et al., 2010b

5. Tergal posterior setae present on tergopleurite VII (Fig. 9); dark pigmentation of subgenital plate limited to anterior margin (Figs 9, 40) .. Brueelia semiscalaris sp. nov.
 – Tergal posterior setae absent on tergopleurite VII; dark pigmentation of subgenital plate extensive along lateral margins, reaching distal end of subgenital plate .. Brueelia aguilarae Gustafsson & Bush, 2017

6. Preantennal head narrowly rounded .. Brueelia plocea (Lakshminarayana, 1968)
 – Preantennal head broad, frons either rounded or flattened (Fig. 25) 7

7. Tergal posterior setae present on tergopleurite VI (Fig. 23) (absent in single examined specimen from E. p. delamerei); 2 ps on each side of abdominal segment IV (Fig. 23) ... Brueelia terpsichore sp. nov.
 – Tergal posterior setae absent on tergopleurite VI (Fig. 30); 1 ps on each side of abdominal segment IV (Fig. 30) .. 8
8. Preantennal area roughly trapezoidal, with flattened frons (Fig. 32); tps present on tergopleurite VII (Fig. 30) .. Brueelia sima sp. nov.
 - Preantennal area roughly semioval, with rounded frons; tps absent on tergopleurite VII Brueelia mpumalangensis Gustafsson et al., 2018

9. Frons rounded ..10
 - Frons flattened (Fig. 31) ..11

10. Subgenital plate largely translucent, with lateral areas of dark pigmentation clearly separated from anterior band of dark pigmentation Brueelia queleae Sychra & Barlev in Sychra et al., 2010a
 - Subgenital plate largely dark, with lateral and anterior sections of dark pigmentation fused
 ... Brueelia mpumalangensis Gustafsson et al., 2018

11. Pleural setae present on abdominal segment IV (Fig. 10) ..12
 - Pleural setae absent on abdominal segment IV (Fig. 31) ... Brueelia sima sp. nov.

12. Subgenital plate with largely dark pigmentation apart from a central more or less T-shaped translucent fenestra (sections of this fenestra may be interrupted as in Fig. 29)13
 - Subgenital plate largely translucent, but with central arched section of dark pigmentation connected to anterior band of dark pigmentation as in Figs 15, 39 Brueelia semiscalaris sp. nov.

13. Vulval margin with distinct median point Brueelia aguilarae Gustafsson & Bush, 2017
 - Vulval margin without distinct median point (Fig. 29) ..14

14. Subgenital plate almost entirely dark, with translucent areas small and isolated from each other (Figs 29, 41) .. Brueelia terpsichore sp. nov.
 - Subgenital plate with clear central T-shaped translucent fenestrum .. Brueelia cantans Sychra in Sychra et al., 2010b

Brueelia pofadderensis sp. nov.

urn:lsid:zoobank.org:act:374AAEBC-FB7D-455F-86A9-D3BC2360AD78

Figs 2–8, 37–38

Type host
Passer melanurus damarensis Reichenow, 1902 – Cape sparrow (Passeridae).

Type locality
Pofadder, Cape Province, South Africa.

Other hosts
Passer melanurus vicinus Clancey, 1958.

Diagnosis
Brueelia pofadderensis sp. nov. is a fairly typical species of Brueelia from hosts in the genus Passer Brisson, 1760. This informal group of Brueelia parasitizing Passer spp. is characterized by long, slender heads with convex lateral margins of the preantennal area, elongated parameres and the presence of *aps* but not *psps* on the male tergopleurite V. We have seen several undescribed species of this group (D.R. Gustafsson and S.E. Bush, in prep.), but the only described species in this group is *Brueelia cyclothorax* (Burmeister, 1838) (including *N. subtilis* Nitzsch in Giebel, 1874 and *B. obligata* Eichler, 1954). No adequate illustrations or descriptions of *B. cyclothorax* have been published, but partial illustrations
were published by Eichler (1954) and Złotorzycka (1964, 1977). Note that the illustration in Eichler (1954) of the female abdomen mixes dorsal and ventral setae and characters on the same side. The frons in his illustrations are also incorrectly illustrated, as the hyaline margin has collapsed in his specimens.

Brueelia pofadderensis sp. nov. can be separated from *B. cyclothorax* by the following characters: abdominal segment III in both sexes without *ps* in *B. pofadderensis* sp. nov. (Figs 2–3), but with 1 *ps* on each side in *B. cyclothorax*; male tergopleurite IV without *aps* in *B. pofadderensis* sp. nov. (Fig. 2), but with *aps* in *B. cyclothorax*; antero-lateral corners of mesosomal lobes blunt in *B. pofadderensis* sp. nov. (Figs 5–6), but acute in *B. cyclothorax*; distal section of mesosome almost square-shaped in *B. pofadderensis* sp. nov. (Figs 5–6), but with more convergent lateral margins in *B. cyclothorax*; parameres more elongated in *B. cyclothorax* than in *B. pofadderensis* sp. nov. (Fig. 7).

Etymology
The specific epithet is derived from the type locality.

Material examined

Holotype

SOUTH AFRICA • ♂, ex *Passer melanurus damarensis*; Cape Province, Pofadder; May 1949; R. Meinertzhagen leg.; NHML 19050.

Paratypes

SOUTH AFRICA • 3 ♂♂; same data as for holotype; NHML 19050.

UNKNOWN COUNTRY • 1 ♂, 1 ♀, ex *Passer melanurus demarensis*; locality unknown; Mar. 1913; J. Waterston Collection, formerly South Africa Museum; British Museum; NHML 1930-232.

Other material

SOUTH AFRICA • 1 ♂, 1 ♀, ex *Passer melanurus vicinus*; West Transvaal, Potchefstroom; May 1953; British Museum; NHML 1955-660 • 2 ♂♂, 1 ♀, ex *Passer melanurus vicinus*; Transvaal, Ventersdorf; 12 Jul. 1954; H.E. Paterson leg.; British Museum; NHML 1955-660.

Description

Head slenderly rounded, dome-shaped (Fig. 4), lateral margins of preantennal area convex, frons slightly convex. Marginal carina narrow, with shallowly undulating median margins, displaced and widened at osculum. Ventral anterior plate large, with flat to shallowly concave anterior margin. Head chaetotaxy and pigmentation patterns as in Fig. 4; head sensilla and *pts* not visible in examined specimens. Pre- and postocular nodi of similar size. Marginal temporal carina slender, with undulating median margin. Gular plate broad, lanceolate. Thoracic and abdominal segments and pigmentation patterns as in Figs 2–3, 37–38.

Male

Thoracic and abdominal chaetotaxy as in Fig. 2; 1–2 *tps* on tergopleurite VI. Basal apodeme broad, with shallowly concave lateral margins (Fig. 5). Proximal mesosome broadly trapezoidal, widening slightly distally (Fig. 6). Mesosomal lobes wide, angular, with extensive rugose area along distal margin. Gonopore oval, slightly longer than wide. Penile arms reach beyond distal margin of mesosome. Parameres slender, elongated distally (Fig. 7); *pst1–2* as in Fig. 7. Measurements ex *P. m. damarensis* (n = 5): TL = 1.30–1.40; HL = 0.34–0.35; HW = 0.26–0.27; PRW = 0.16–0.18; PTW = 0.27; AW = 0.35–0.38. Measurements ex *P. m. vicinus* (n = 3): TL = 1.39–1.51; HL = 0.34–0.36; HW = 0.26–0.30; PRW = 0.16–0.19; PTW = 0.27–0.31; AW = 0.36–0.41.
Figs 2–3. Brueelia pofadderensis sp. nov. ex Passer melanurus damarensis Reichenow, 1902. 2. ♂, holotype (NHML 19050), habitus, dorsal and ventral views. 3. ♀, habitus, dorsal and ventral views.
Figs 4–8. *Brueelia pofadderensis* sp. nov. ex *Passer melanurus damarensis* Reichenow, 1902. 4–7. ♂, holotype (NHML 19050). 4. Head, dorsal and ventral views. 5. Genitalia, dorsal view. 6. Mesosome, ventral view. 7. Paramere, dorsal view. 8. ♀, subgenital plate and vulval margin, ventral view.
Female
Thoracic and abdominal chaetotaxy as in Fig. 3. Subgenital plate rounded trapezoidal, with moderately wide connection to cross piece (Fig. 8). Vulval margin convergent to rounded median point, in specimen from type host subspecies with 2–3 short, slender vms and 3 short, thorn-like vss on each side; 3 short, slender vos on each side of subgenital plate; distal 1 vos median to vss. In material from P. m. vicinus, with 4 short, slender vms and 3–5 short, thorn-like vss on each side of vulval margin, and 2–3 short, slender vos on each side of subgenital plate, with distal 1 vos situated median to vss. Measurements ex P. m. damarensis (n = 1): TL = 1.66; HL = 0.40; HW = 0.30; PRW = 0.20; PTW = 0.31; AW = 0.46. Measurements ex P. m. vicinus (n = 2): TL = 1.69–1.81; HL = 0.37–0.40; HW = 0.29–0.34; PRW = 0.17–0.21; PTW = 0.29–0.33; AW = 0.40–0.47.

Remarks
Specimens from the Transvaal host subspecies, Passer melanurus vicinus, differ from the specimens from the type host subspecies by having proportionately shorter and more rounded preantennal heads, in size and in the female genital chaetotaxy; the latter character may be different only due to the small number of specimens examined. The male genitalia and abdominal chaetotaxy are essentially similar between the two populations. We presently do not consider these differences substantial enough to warrant the erection of a new taxon for the specimens from Transvaal, but note that in some other cases, different host subspecies are parasitized by different species of Brueelia (D.R. Gustafsson and S.E. Bush, in prep.).

Brueelia semiscalaris sp. nov.
urn:lsid:zoobank.org:act:FB13FA53-0431-4E3B-9050-04D1BDEA14C5
Figs 9–15, 39–40

Type host
Granatina granatina (Linnaeus, 1766) – violet-eared waxbill (Estrildidae).

Type locality
Mahalapye, Botswana.

Diagnosis
Brueelia semiscalaris sp. nov. belongs to the “African pied Brueelia” group (see above), but is the palest described member of this group. Within this group, B. semiscalaris sp. nov. is most similar to B. aguilarae Gustafsson & Bush, 2017, with which it shares the following characters: head relatively slender (Fig. 11), with flattened frons and only slightly convex lateral margins of the preantennal area; mesosome with nearly parallel lateral margins and somewhat angular postero-lateral corners (Fig. 13); aps absent on male tergopleurite IV (Fig. 9); tps absent on male tergopleurites V–VI (Fig. 9); ps present on female abdominal segment IV (Fig. 10).

Brueelia semiscalaris sp. nov. can be separated from B. aguilarae by the following characters: tps present on male tergopleurite VII in B. semiscalaris sp. nov. (Fig. 9), but absent in B. aguilarae; parameres broad and roughly oval in B. semiscalaris sp. nov. (Fig. 14), but slender and elongated in B. aguilarae; proximal mesosome with convex lateral margins in B. aguilarae, but with concave lateral margins in B. semiscalaris sp. nov. (Fig. 13); gonopore about as long as wide and penile arms reaching beyond distal margin of mesosome in B. semiscalaris sp. nov. (Fig. 13), but gonopore very short and penile arms not reaching posterior margin of mesosome in B. aguilarae; female subgenital plate with central translucent, T-shaped fenestra in B. aguilarae, but with arched central dark pigmentation in B. semiscalaris sp. nov.
Figs 9–10. *Brueelia semiscalaris* sp. nov. ex *Granatina granatina* (Linnaeus, 1766). 9. ♂, holotype (NHML 1956-561), habitus, dorsal and ventral views. Antennae distorted in original, and not illustrated. 10. ♀, habitus, dorsal and ventral views.
Figs 11–15. *Brueelia semiscalaris* sp. nov. ex *Granatina granatina* (Linnaeus, 1766). 11–14. ♂, holotype (NHML 1956-561). 11. Head, dorsal and ventral views; a–b. Antennae from ♀, dorsal and ventral views. 12. Genitalia, dorsal view. 13. Mesosome, ventral view. 14. Paramere, dorsal view. 15. ♀, subgenital plate and vulval margin, ventral view.
(Figs 15, 39); vulval margin with flattened median section in *B. semiscalaris* sp. nov. (Fig. 15), but with median point in *B. aguilarae*.

Etymology

The specific epithet is derived from the Latin ‘*semi*’ for ‘partial, incomplete’ and ‘*scalaris*’ for ‘ladder’, referring to the pigmentation pattern of the abdomen.

Type material

Holotype

BOTSWANA • ♂; Bechuanaland (= Botswana), Mahalapye; 21 Dec. 1955; British Museum; NHML 1956-561.

Paratype

BOTSWANA • ♀; same data as for holotype.

Description

Head rounded trapezoidal (Fig. 11), lateral margins of preantennal area slightly convex proximally and slightly concave distally, frons concave. Marginal carina moderate, deeply displaced and much widened at osculum, with almost even median margin. Ventral anterior plate large, with deeply concave anterior margin. Head chaetotaxy and pigmentation patterns as in Fig. 11. Preantennal nodi elongated. Preocular nodi much larger than postocular nodi. Marginal temporal carina moderate in width, with undulating median margin. Gular plate slender, lanceolate. Thoracic and abdominal segments and pigmentation patterns as in Figs 9–10, 39–40.

Male

Antennae folded ventrally in single examined male and cannot be illustrated accurately. Seemingly similar to female antennae (Fig. 11a–b) in shape and proportions, but paler. Thoracic and abdominal chaetotaxy as in Fig. 9; *aps* present on tergopleurite V; *tps* present on tergopleurite VII. Proximal basal plate almost entirely translucent, exact extent hard to ascertain; here illustrated tentatively (Fig. 12); slender with concave lateral margins. Proximal mesosome rounded trapezoidal, rather broad (Fig. 13). Mesosomal lobes with nearly parallel lateral margins and somewhat angular postero-lateral corners; rugose area extensive at distal end. Gonopore arched, about as wide as long. Penile arms long, reaching beyond distal margin of mesosome. Parameres broadly oval, not much elongated distally, with *pst1–2* as in Fig. 14. Measurements (n = 1): TL = 1.51; HL = 0.35; HW = 0.28; PRW = 0.18; PTW = 0.28; AW = 0.38.

Female

Thoracic and abdominal chaetotaxy as in Fig. 10; *ps* present on abdominal segment IV. Subgenital plate rounded triangular, with broad connection to cross piece and unique pigmentation pattern (Fig. 15). Vulval margin flattened, median section somewhat concave, with 6–7 short, slender *vms* and 7–8 short, thorn-like *vss* on each side; 3 short, slender *vos* on each side of subgenital plate; distal 1 *vos* just anterior to *vss*. Measurements (n = 1): TL = 1.91; HL = 0.40; HW = 0.31; PRW = 0.20; PTW = 0.32; AW = 0.46.

Brueelia bicurvata (Piaget, 1880)

Figs 16–22

Nirmus bicurvatus Piaget, 1880: 159, pl. 13, fig. 8.

Degeeriella bicurvata – Harrison 1916: 109.

Brueelia bicurvata – Hopkins & Clay 1952: 53. — Gustafsson & Bush 2017: 38.
Type host

Vidua paradisaea (Linnaeus, 1758) – long-tailed paradise whydah (Ploceidae).

Type locality

Original material from the Leiden Museum, but no type locality given by Piaget (1880).

Material examined

ZAMBIA • 2 ♂♂, 2 ♀♀, ex *Vidua paradisaea* obtusa; North Rhodesia [= Zambia], Luanshya; 26 May 1955; British Museum; NHML 1955-486, ML/121.

Description

Head rounded trapezoidal (Fig. 18), lateral margins of preantennal area slightly convex proximally, but slightly concave distally, frons broadly flattened to slightly concave. Marginal carina slender, deeply displaced and much widened at osculum, and with median margin slightly undulating. Ventral anterior plate oblong, with rounded posterior margin. Head chaetotaxy and pigmentation pattern as in Fig. 18. Preantennal nodi elongated. Preocular nodi larger than postocular nodi. Marginal temporal carina slender, with slightly undulating median margin. Gular plate slenderly lanceolate. Thoracic and abdominal segments and pigmentation patterns as in Figs 16–17.

Male

Male subgenital plate does not reach terminal end of abdomen (Fig. 16). Thoracic and abdominal chaetotaxy as in Fig. 16. Basal apodeme broad, with concave lateral margins (Fig. 19). Proximal mesosomal broad, convergent to median point, and with lateral extensions, making entire structure somewhat arrow-shaped (Fig. 20). Mesosomal lobes long and broad, with almost parallel lateral margins, rounded postero-lateral corners, and extensive rugose area along distal margin. Gonopore roughly semi-oval, about as long as wide. Penile arms long, reaching beyond distal margin of mesosome. Parameres long and broad, distal section elongated, with pst1–2 as in Fig. 21. Measurements (n = 2): TL = 1.48–1.51; HL = 0.36; HW = 0.30; PRW = 0.20; PTW = 0.29–0.31; AW = 0.40–0.41.

Female

Thoracic and abdominal chaetotaxy as in Fig. 17; psps present on tergopleurites IV–VII. Subgenital plate shaped as in Fig. 22, with broad connection to cross piece. Vulval margin somewhat convergent to median point, with 3–5 short, slender vms and 5–8 short, thorn-like vss on each side; 2–4 short, slender vos on each side of subgenital plate; distal 1 vos median to vss. Measurements (n = 2): TL = 1.76–1.81; HL = 0.37–0.39; HW = 0.31–0.34; PRW = 0.20–0.21; PTW = 0.30–0.33; AW = 0.44–0.47.

Remarks

The presence of *psps* on the female tergopleurites IV–V is unusual in *Brueelia*. No examples of females with *psps* on these segments were included in the list of variation in abdominal chaetotaxy of *Brueelia* published by Gustafsson & Bush (2017: table 3). We know of no other species of *Brueelia in which psps* are present on the female tergopleurite IV, but *psps* are present on the female tergopleurite V in several species of *Brueelia* found on icterid hosts (Cicchino & Castro 1996). Carriker (1963) illustrated setae on female tergopleurites III–VII in the position of *psps* in *B. mirabile* Carriker, 1963, but did not illustrate any *sts*. It is therefore doubtful whether these setae represent *psps* or *sts* translocated to the dorsal side; we have not examined Carriker’s material. In females of most genera in the *Brueelia* complex, *psps* are absent on tergopleurites IV–V, and the general absence of these setae in *Brueelia* (except in *B. bicurvata*, which is unusual for the complex (Gustafsson & Bush 2017: table 2).

A specimen of *Brueelia* from *Vidua macroura* was included in the phylogeny of Bush *et al.* (2016), but its placement as sister to the remaining *Brueelia* s. str. received no statistical support. As *psps* are
Figs 16–17. Brueelia bicurvata (Piaget, 1880) ex Vidua paradisaea (Linnaeus, 1758) (NHML 1955-486, ML/121). 16. ♀, habitus, dorsal and ventral views. 17. ♂, habitus, dorsal and ventral views.
Figs 18–22. *Brueelia bicurvata* (Piaget, 1880) ex *Vidua paradisaea* (Linnaeus, 1758) (NHML 1955-486, ML/121). 18. ♂, head, dorsal and ventral views. 19. ♂, genitalia, dorsal view. 20. ♂, mesosome, ventral view. 21. ♂, paramere, dorsal view. 22. ♀, subgenital plate and vulval margin, ventral view.
commonly found on female tergopleurites IV–V in many other genera of the Brueelia complex (see Gustafsson & Bush 2017), it is possible that this represents the ancestral condition in the Brueelia complex, and that this placement as sister to the remaining Brueelia is correct.

Notably, these setae are present in both Formicaphagus Carriker, 1957 (see Price & Clayton 1996) and Formicaricola Carriker, 1957 (see Price & Clayton 1995), two of the genera most closely related to the Brueelia complex in the phylogeny of Bush et al. (2016). In the closest relative, Neopsittaconirmus Conci, 1942, the distribution of psps varies, e.g., present on III–VII in N. albus (Le Souèf & Bullen, 1902) (Price & Emerson 1978), but present only on IV–V in many species (Guimarães 1974) and only on IV in N. gracilis Guimarães, 1974 (see also Sychra 2005).

Brueelia terpsichore sp. nov.
urn:lsid:zoobank.org:act:A5296B28-CC4A-430B-928B-9A92B2AC5E2B
Figs 23–29, 41–42

Type host
Euplectes jacksoni (Sharpe, 1891) – Jackson’s widowbird (Ploceidae).

Type locality
Kenya.

Other host
Euplectes progne delamerei (Shelley, 1903) – long-tailed widowbird.

Diagnosis
Brueelia terpsichore sp. nov. belongs to the informal ‘African pied Brueelia’ group (see above). Within this group, B. terpsichore sp. nov. is not particularly similar to any species. The extensive dark pigmentation of the sternites and subgenital plates of both sexes, the abdominal chaetotaxy, and the head shape suggests that B. aguilarae may be the closest relative of B. terpsichore sp. nov. These two species can be separated by the following characters: tps present on male tergopleurites VI–VIII in B. terpsichore sp. nov. (Fig. 23), but absent in B. aguilarae; male abdominal segment IV with 2 ps on each side in B. terpsichore sp. nov. (Fig. 23), but with 1 ps on each side in B. aguilarae; aps absent on male tergopleurite V in B. terpsichore sp. nov. (Fig. 23), but present in B. aguilarae; proximal mesosome broadly rounded in B. aguilarae, but trapezoidal in B. terpsichore sp. nov. (Fig. 27); translucent fenestra of female subgenital plate T-shaped in B. aguilarae, but divided into smaller, isolated fenestrae in B. terpsichore sp. nov. (Figs 29, 41; note that there is some variation between specimens in this species); vulval margin gently rounded in B. terpsichore sp. nov. (Fig. 29), but convergent to median point in B. aguilarae.

Etymology
The specific epithet is in honor of the Greek muse Terpsichore, goddess of dance; ultimately from the Greek ‘terpo’ for ‘I delight’ and ‘khoros’ for ‘dance’. This refers to the peculiar lekking behaviour of the type host, which includes the construction of a small stage on which the male dances by jumping high into the air and singing to attract females (Andersson 1989, 1991).

Material examined

Holotype
KENYA • ♂, ex Euplectes jacksoni (as Drepanoplectes jacksoni); Kenya; Jan. 1936; R. Meinertzhagen leg.; NHML 6084 (lower male on slide).
Paratypes
KENYA • 2 ♂♂, 10 ♀♀; same data as for holotype; NHML 6081, 6082, 6084 (not lower male on slide), 6210.

Other material
KENYA • 1 ♂, 1 ♀, ex Euplectes progne delamerei (as Drepanoplectes progne delamerei); Kenya; Jan. 1936; R. Meinertzhagen leg.; NHML 6714.

Description
Head rounded trapezoidal (Fig. 25), lateral margins of preantennal area slightly convex or almost straight, frons broadly flattened. Marginal carina broad, deeply displaced and much widened at osclum, with undulating median margin. Ventral anterior plate not visible. Head chaetotaxy and pigmentation pattern as in Fig. 25. Preantennal nodi large, bulging. Pre- and postocular nodi large. Marginal temporal carina broad, with distinctly undulating median margin. Gular plate slender, lanceolate. Thoracic and abdominal segments and pigmentation patterns as in Figs 23–24, 41–42.

Male
Thoracic and abdominal chaetotaxy as in Fig. 23. Anterior section of basal apodeme not pigmented and cannot be seen clearly in examined specimens; illustration here is approximate (Fig. 26). Proximal mesosome rounded trapezoidal, widening distally, with concave lateral margins (Fig. 27). Mesosomal lobes relatively slender, rounded distally, with rugose area limited to distal margin. Gonopore crescent-shaped, slightly wider than long. Penile arms short, not reaching beyond distal margin of mesosome. Parameres elongated, tapering gently (Fig. 28); pst1–2 as in Fig. 28. Measurements ex Euplectes jacksoni (n = 3): TL = 1.42–1.48; HL = 0.33–0.34; HW = 0.26–0.28; PRW = 0.19; PTW = 0.26–0.27; AW = 0.36–0.37. Measurements ex E. progne delamerei (n = 1): TL = 1.44; HL = 0.34; HW = 0.26; PRW = 0.19; PTW = 0.27; AW = 0.35.

Female
Thoracic and abdominal chaetotaxy as in Fig. 24. Pigmentation pattern of subgenital plate differing slightly between specimens; two variants shown in Fig. 29 (separated by grey line), one with anterolateral fenestra connected to antero-median fenestra and one with these fenestrae unconnected. Antero-median fenestra generally pale brown in pigmentation, may extend posteriorly to approach postero-median fenestra (not shown). Exact shape of postero-lateral fenestrae and translucent lateral borders of distal subgenital plate also differ between specimens. Subgenital plate rounded triangular, with moderate connection to cross piece. Vulval margin gently rounded, with 3–5 short, slender vms and 4–6 short, thorn-like vss on each side; 2–3 short, slender vos on each side of subgenital plate; distal 1 vos median to vss. Material from both host species with same vulval chaetotaxy. Measurements ex Euplectes jacksoni (n = 10): TL = 1.58–1.73 (1.66); HL = 0.36–0.38 (0.37); HW = 0.28–0.31 (0.30); PRW = 0.19–0.22 (0.21); PTW = 0.28–0.31 (0.30); AW = 0.40–0.44 (0.42). Measurements ex E. progne delamerei (n = 1): TL = 1.73; HL = 0.37; HW = 0.30; PRW = 0.21; PTW = 0.31; AW = 0.40.

Remarks
No significant differences have been found between specimens from the two host species, except that the single examined male from Euplectes progne delamerei lacks tps on tergopleurite VI. These are present in all specimens from the type host; however, the number varies between 1 and 2. As only one male from E. p. delamerei was examined, we presently do not attach any significance to this difference, as the psp on this segment is also missing on one side. The absence of these setae may thus be due to individual variation.
Figs 23–24. Brueelia terpsichore sp. nov. ex Euplectes jacksoni (Sharpe, 1891). 23. ♂, holotype (NHML 6084), habitus, dorsal and ventral views. 24. ♀, habitus, dorsal and ventral views.
Figs 25–29. *Brueelia terpsichore* sp. nov. ex *Euplectes jacksoni* (Sharpe, 1891). 25–28. ♂, holotype (NHML 6084). 25. Head, dorsal and ventral views. 26. Genitalia, dorsal view. 27. Mesosome, ventral view. 28. Paramere, dorsal view. 29. ♀, subgenital plate and vulval margin, ventral view.
Brueelia sima sp. nov.

Type host
Malimbus nitens (Gray, 1831) – blue-billed malimbe (Ploceidae).

Type locality
Batouri, Cameroon.

Diagnosis
Brueelia sima sp. nov. is part of the informal ‘African pied Brueelia’ group (see above). Within this group, B. sima sp. nov. does not appear to be particularly similar to any other species, but the head shape and proportions are most reminiscent of those in B. cantans Syhra in Syhra et al., 2010. These two species can be separated by the following characters: in B. cantans, aps and tps are present on male tergopleurites V–VI, but they are absent in B. sima sp. nov. (Fig. 30); multiple tps are present on male tergopleurite VII in B. cantans, but only a single tps is present on this segment in males of B. sima sp. nov. (Fig. 30); the mesosome has angular postero-lateral corners in B. cantans, but has rounded postero-lateral corners in B. sima sp. nov. (Fig. 34); parameres less elongated in B. sima sp. nov. (Fig. 35) than in B. cantans; the female subgenital plate with an anterior transversal fenestra, interrupted medianly, and with a large central fenestra separated from the anterior transversal fenestra in B. sima sp. nov. (Figs 36, 43), but with all these fenestrae continuous in B. cantans.

Etymology
The specific epithet is derived from the Latin ‘simus’ for ‘snub-nosed’, referring to the relatively short and broad preantennal area of this species.

Type material
Holotype
CAMEROON • ♂; French Cameroons [= Cameroon], Batouri; 15 May 1959; J. Mouchet leg.; British Museum; NHML 1960-295.

Paratype
CAMEROON • ♀; same data as for holotype; NHML 1960-295.

Description
Head rounded trapezoidal (Fig. 32), lateral margins of preantennal area slightly convex, frons broadly flattened. Marginal carina broad, deeply displaced and much widened at osculum, and with undulating median margin. Ventral anterior plate broad, shield-shaped. Head chaetotaxy and pigmentation pattern as in Fig. 32. Preantennal nodi bulging, elongated. Preocular nodi much larger than postocular nodi. Marginal temporal carina broad, with distinctly undulating median margin. Gular plate broad, with concave antero-lateral margins. Thoracic and abdominal segments and pigmentation patterns as in Figs 30–31, 43–44.

Male
Thoracic and abdominal chaetotaxy as in Fig. 30. Basal apodeme broad, lateral margins concave (Fig. 33). Proximal mesosome roughly trapezoidal, widening slightly distally, and with anterior margin convergent to median point (Fig. 34). Mesosomal lobes broad, rounded distally, with extensive rugose area at distal end. Gonopore crescent-shaped, slightly wider than long. Penile arms short, not reaching
Figs 30–31. *Brueelia sima* sp. nov. ex *Malimbus nitens* (Gray, 1831). 30. ♂, holotype (NHML 1960-295), habitus, dorsal and ventral views. 31. ♀, habitus, dorsal and ventral views.
Figs 32–36. Brueelia sima sp. nov. ex Malimbus nitens (Gray, 1831). 32–35. ♂, holotype (NHML 1960-295). 32. Head, dorsal and ventral views. 33. Genitalia, dorsal view. 34. Mesosome, ventral view. 35. Paramere, dorsal view. 36. ♀, subgenital plate and vulval margin, ventral view.
beyond distal margin of mesosome. Parameres broad, not much elongated distally; pst1–2 as in Fig. 35. Measurements (n = 1): TL = 1.56; HL = 0.36; HW = 0.32; PRW = 0.23; PTW = 0.31; AW = 0.43.

Female
Thoracic and abdominal chaetotaxy as in Fig. 31. Pigmentation pattern of subgenital plate as in Fig. 36; note that transition between brown and translucent areas of subgenital plate is gradual, and exact borders of translucent fenestra here approximate. Subgenital plate rounded triangular (Fig. 36), with broad connection to cross piece. Vulval margin gently rounded, with 1 short, slender vms and 4–5 short, thorn-like vss on each side; 3–6 short, slender vos on each side of subgenital plate; distal 1 vos median to vss. Measurements (n = 1): TL = 1.80; HL = 0.39; HW = 0.35; PRW = 0.24; PTW = 0.35; AW = 0.53.

Remarks
The abdomen of the single examined female is partially disrupted due to mounting; however, one side of every segment is undistorted. We have here illustrated the abdomen tentatively, based on the undistorted sides. However, the gonapophysal setae on segments VIII–X are absent on both sides of the specimen and are not illustrated here. These setae are present in all other species of the *Brueelia* complex, and when more specimens of *B. sima* sp. nov. are examined, it is likely that these setae will be found.

Discussion
The genetic data published by Bush *et al.* (2016), Light *et al.* (2016) and Takano *et al.* (2017, 2018) suggest that many of the *Brueelia* complex louse records from Africa represent distinct species, most of which appear to be host-specific. However, the vast majority of the species of chewing lice on African birds remain undescribed. We estimate that the potential *Brueelia* fauna of African passeriforms and piciforms comprises well over 1000 species (Table 1). The actual number of *Brueelia* recorded from Africa (including this report) is below 50 species. It is thus fair to say that the *Brueelia* fauna of Africa is almost entirely unknown, with less than 5% of the potential species described so far. These numbers are even worse when other genera in the *Brueelia* complex are included (data not shown).

For instance, 305 bird species that could potentially be parasitized by lice of the *Brueelia* complex (i.e., Passeriformes, Trogoniformes, Meropidae, Picidae) are listed as resident in South Africa by Sinclair *et al.* (2014). Chewing lice of the *Brueelia* complex have been reported from 51 of these potential host species since 1980, but only 18 of these reports are identified to species level (Appendix). Assuming that most of the lice of the *Brueelia* complex in South Africa are host-specific, and that most of the resident host species are infested with at least one louse species of the *Brueelia* complex, this suggests that the number of such species in South Africa may be underestimated by a factor of ten. The number of species of the *Brueelia* complex in all of Africa is most likely even more badly underestimated. The entirety of sub-Saharan West Africa has only 31 identified records of lice in the *Brueelia* complex (Appendix), but the region is home to over 560 species of potential host species (Borrow & Demey 2014). Note that these numbers do not include migrants to these regions, and the number of potential host species is therefore much higher if non-resident bird species are included.

In addition, many passeriform birds are parasitized by more than one species of chewing lice of the *Brueelia* complex (Gustafsson & Bush 2017). Moreover, there are indications that some host species are infested with different species of lice in the same genus in different parts of its range (e.g., *Brueelia* spp. on different subspecies of *Plocepasser mahali* (Smith, 1836); Gustafsson & Bush, in prep.). In some cases, multiple *Brueelia* species occur on the same host even in the absence of different host subspecies (e.g., *B. zohrae* Ansari, 1956 and *B. moreli* Ansari, 1957, both on *Ptilostomus afer* (Linnaeus, 1766)). By contrast, some species of lice in the *Brueelia* complex occur on multiple host species (e.g., Balakrishnan & Sorenson 2006; Bush *et al.* 2016), sometimes including host species from different families. Notably, four of the new genera described by Gustafsson & Bush (2017) are presently known only from African
Figs 37–44. Habitus photos of the species of *Brueelia* described as new herein, showing overall pigmentation patterns. 37. *B. pofadderensis* sp. nov., ♀. 38. *B. pofadderensis* sp. nov., ♂. 39. *B. semiscalaris* sp. nov., ♀. 40. *B. semiscalaris* sp. nov., ♂. 41. *B. terpsichore* sp. nov., ♀. 42. *B. terpsichore* sp. nov., ♂. 43. *B. sima* sp. nov., ♀. 44. *B. sima* sp. nov., ♂. All photographs are to scale.
endemic host groups. The undescribed diversity and host associations of African lice in the Brueelia complex may thus outweigh the known diversity significantly.

To a large extent, the lack of identifications to species level in these reports is due to the fact that very few chewing lice in the Brueelia complex have even been described from Africa. There is thus no framework of descriptions and illustrations with which to compare collected specimens. Here, we describe four new species of Brueelia from African hosts and redescribe one species. Three of these species belong to an apparently widely distributed informal group, characterised by their striking pigmentation patterns; a key to this informal group is provided. We hope that, together with those recently published by Gustafsson & Bush (2015, 2017) and Gustafsson et al. (2018), the descriptions, illustrations and key characters presented here will make future identifications and descriptions of African species of Brueelia easier, and help us better understand the biodiversity and evolutionary history of the Brueelia complex.

Acknowledgements

Work was supported by the Introduction of Full-time High-level Talent Fund of the Guangdong Academy of Sciences grant no. 2018GDASCX-0809 and Guangdong Academy of Science (GDAS) Special Project of Science and Technology Development grants (2017GDASCX-0107 and 2018GDASCX-0107) to DRG, and the Guangdong Forestry Special Project grant no. 0877-16GZTP01D060 and the National Natural Science Foundation of China grant no. 31672265 to FZ. Paul Brown (NHML) prepared the loan of some specimens, for which we are grateful. We would also like to thank two anonymous reviewers for their help in making the published version of this manuscript better.

References

Andersson S. 1989. Sexual selection and cues for female choice in leks of Jackson’s widowbird Euplectes jacksoni. Behavioral Ecology and Sociobiology 25: 403–410.

Andersson S. 1991. Bowers on the savanna: display courts and mate choice in a lekking widowbird. Behavioral Ecology 2: 210–218.

Ansari R.A.M. 1947. Mallophaga (Ischnocera) infesting birds in the Punjab (India). Proceedings of the National Institute of Science India 13: 253–303.

Ansari R.A.M. 1968. A review of the biting lice of the genus Sturnidoecus Elchler [sic], 1944 (Philopteridae: Mallophaga) found on the bird family Sturnidae (Passeriformes). Pakistani Journal of Health 17: 1–40.

Balakrishnan C.N. & Sorenson M.D. 2006. Dispersal ecology versus host specialization as determinants of ectoparasite distribution in brood parasitic indigobirds and their estrildid finch hosts. Molecular Ecology 16: 217–229. https://doi.org/10.1111/j.1365-294x.2006.03142.x

Borrow N. & Demey R. 2014. Birds of Western Africa. Christopher Helm, London.

Bush S.E., Weckstein J.D., Gustafsson D.R., Allen J., DiBlasi E., Shreve S.M., Boldt R., Skeen H.R. & Johnson K.P. 2016. Unlocking the black box of feather louse diversity: A molecular phylogeny of the hyper-diverse genus Brueelia. Molecular Phylogenetics and Evolution 94: 737–751. https://doi.org/10.1016/j.ympev.2015.09.015

Carriker Jr M.A. 1963. Neotropical Mallophaga (Insecta) miscellany no. 13. Revista Brasileira de Biologia 23: 293–316.

Cicchino A.C. & Castro D.C. 1996. Revisión preliminar de las especies del género Brueelia Kéler, 1936 (Phthiraptera, Philopteridae) parasitas de Icterinae (Aves, Passeriformes, Fringillidae). Graellsia 52: 3–30. https://doi.org/10.3989/graeellsia.1996.v52.i0.373
Clay T. 1954. The post-spiracular seta and sensillus in the Mallophaga (Insecta). Annals and Magazine of Natural History, Series 12 7 (81): 716–718. https://doi.org/10.1080/00222935408651780

Clements J.F., Schulenberg T.S., Iliff M.J., Roberson D., Fredericks T.A., Sullivan B.L. & Wood C.L. 2018. The eBird/Clements checklist of birds of the world: v. 2018. Available from http://www.birds.cornell.edu/clementschecklist/download/ [accessed 29 Oct. 2018].

Eichler W. 1951. Die Federling die Drosseln. Bedeutung der Vogelwelt in Forschung und Praxis. Vorträge der I. Ornithologische Tagung der DDR am 21–22 Oktober 1950 in Leipzig 3: 29–47.

Eichler W. 1954. Deutsche Federlinge. I. Genus Brueelia. Nachrichten des Naturwissenschaftliche Museums Aschaffenburg 42: 59–66.

Giebel C. 1874. Insecta Epizoica. Otto Wigand, Leipzig.

Guimarães L.R. 1974. Ischnocera (Mallophaga) infesting parrots (Psittaciformes) I. Genera Neopsittaconirmus Conci, 1942, and Psittaconirmus Harrison, 1915. Arquivos de Zoológica 25: 121–201.

Gustafsson D.R & Bush S.E. 2015. Four new species of Brueelia Kéler, 1936 (Phthiraptera: Ischnocera: Philopteridae) from African songbirds (Passeriformes: Sturnidae and Laniidae). Zootaxa 4013: 503–518. https://doi.org/10.11646/zootaxa.4013.4.2

Gustafsson D.R. & Bush S.E. 2017. Morphological revision of the hyperdiverse Brueelia-complex (Insecta: Phthiraptera: Ischnocera: Philopteridae) with new taxa, checklists and generic key. Zootaxa 4313: 1–443. https://doi.org/10.11646/zootaxa.4313.1.1

Gustafsson D.R., Chu X., Bush S.E. & Zou F. 2018. Ten new species of Brueelia Kéler, 1936 (Phthiraptera: Ischnocera: Philopteridae) from nuthatches (Aves: Passeriformes: Sittidae), tits and chickadees (Paridae), and goldcrests (Regulidae). Acta Parasitologica 63: 527–557. https://doi.org/10.1515/ap-2018-0063

Harrison L. 1916. The genera and species of Mallophaga. Parasitology 9: 1–156.

Hopkins G.H. & Clay T. 1952. A Check List of the Genera and Species of Mallophaga. British Museum (Natural History), London.

Johnson K.P., Adams R.J. & Clayton D.H. 2002. The phylogeny of the louse genus Brueelia does not reflect host phylogeny. Biological Journal of the Linnean Society 77: 233–247. https://doi.org/10.1046/j.1095-8312.2002.00107.x

Kéler S. von 1936. Über einige Mallophagen aus Rossitten. Arbeiten in morphologische und taxonomische Entomologie von Berlin-Dahlem 3: 256–264.

Lakshminarayana K.V. 1968. Mallophaga Indica. II. A new species of Philopteridae on Ploceus philippinus burmannicus Ticehurst from India. Oriental Insects 2: 97–102.

Ledger J.A. 1980. The arthropod parasites of vertebrates in Africa south of the Sahara. Volume IV. Phthiraptera (Insecta). Publications of the South African Institute for Medical Research 56: 1–327.

Lepage D. 2018. Avibase – Bird checklists of the world: Africa. In: Web page Avibase – the world bird database. Available from https://avibase.bsc-eoc.org/checklist.jsp?region=AFR&list=clements [accessed 3 Dec. 2018].

Light J.E., Nessner C.E., Gustafsson D.R., Wise S.R. & Voelker G. 2016. Remarkable levels of avian louse (Insecta: Phthiraptera) diversity in the Congo Basin. Zoologica Scripta 45: 538–551. https://doi.org/10.1111/zsc.12170

Mey E. 2017. Neue Gattungen und Arten aus dem Brueelia-Komplex (Insecta, Phthiraptera, Ischnocera, Philopteridae s.l.) Rudolstädter naturhistorische Schriften 22: 85–215.
Najer T., Syehra O., Literák, I., Procházka P., Capek M. & Koubek P. 2012. Chewing lice (Phthiraptera) from wild birds in Senegal, with descriptions of three new species of the genera Brueelia and Philopteroides. *Acta Parasitologica* 57: 90–98. https://doi.org/10.2478/s11686-012-0005-x

Neumann L.G. 1906. Notes sur les Mallophages. *Bulletin de la Société zoologique de France* 31: 54–60.

Nitzsch C.L. 1818. Die Familien und Gattungen der Thierinsekten (Insecta Epizoica); als prodromus einer Naturgeschichte derselben. *Magazin der Entomologie* 3: 261–316.

Piaget E. 1880. *Les Pédiculines. Essai Monographique*. Two volumes. E.J. Brill, Leiden.

Price R.D. & Clayton D.H. 1995. Review of *Formicaricola* (Phthiraptera: Philopteridae) from ground antbirds (Passeriformes: Formicariidae). *Annals of the Entomological Society of America* 88: 718–721.

Price R.D. & Clayton D.H. 1996. Revision of the chewing louse genus *Formicaphagus* (Phthiraptera: Philopteridae) from Neotropical antbirds and gnateteaters (Aves: Passeriformes). *Journal of the Kansas Entomological Society* 69: 346–356.

Price R.D. & Emerson K.C. 1978. The *Neopsittaconirmus* (Mallophaga: Philopteridae) from *Cacatua* (Aves: Psittaciformes). *Pacific Insects* 18: 33–36.

Sinclair I., Hockey P., Tarboton W. & Ryan P. 2014. *The Larger Illustrated Guide to Birds of Southern Africa*. Third edition. Struik Nature, Cape Town.

Soler Cruz M.D., Benítez Rodríguez R., Florido-Navío A. & Muñoz Parra S. 1987. Some Mallophaga (Brueeliinae) from birds of the family Fringillidae. *Acta Parasitologica Polonica* 31: 241–246.

Sychra O. 2005. Morphological variation of *Neopsittaconirmus gracilis* (Phthiraptera, Ischnocera) from budgerigar, *Melopsittacus undulatus*. *Biologia (Bratislava)* 60: 137–142.

Sychra O., Barlev E.M., Literák I., Capek M., Koubek P. & Procházka P. 2010a. The chewing lice (Phthiraptera) of red-billed quelea (*Quelea quelea*) in Senegal, with a description of a new species. *African Entomology* 18: 17–22. https://doi.org/10.4001/003.018.0103

Sychra O., Literák I., Najer T., Capek M., Koubek P. & Procházka P. 2010b. Chewing lice (Insecta: Phthiraptera) from estrildid finches (Aves: Passeriformes: Estrildidae) and louse-flies (Insecta: Diptera: Hippoboscidae) from birds in Senegal, with descriptions of three new species of the genus *Brueelia*. *Zootaxa* 2714: 59–68.

Takano O.M., Mitchell P.S., Gustafsson D.R., Adite A., Voelker G. & Light J.E. 2017. An assessment of host associations, geographic distributions, and genetic diversity of avian chewing lice (Insects: Phthiraptera) from Benin. *Journal of Parasitology* 103: 152–160. https://doi.org/10.1645/16-137

Takano O.M., Voelker G., Gustafsson D.R. & Light J.E. 2018. Molecular phylogeny and novel host associations of avian chewing lice (Insecta: Phthiraptera) from South Africa. *Systematic Entomology*. https://doi.org/10.1111/syen.12319

Tendeiro J. 1989. Nouvelle observations sur les genres *Meropoecus* Eichler 1940 et *Splendoroffula* Th. Clay et Menertzhagen [sic], 1941 (Mallophaga, Ischnocera). *Garcia de Orta, Séries Zoologia* 15: 99–104.

Tendeiro J. & Mendes L.F. 1994. Sobre a fauna terrestre e ribeirinha de República Democrática de São Tomé e Príncipe. Malófagos. II. Espécies encontradas e notas adicionais sobre a fauna malofágica de São Tomé e Príncipe. *Garcia de Orta, Séries Zoologia* 20: 113–130.

Valim M.P. & Weckstein J.D. 2013. A drop in the bucket of the megadiverse chewing louse genus *Myrsidea* (Phthiraptera, Amblycera, Menoponidae): ten new species from Amazonian Brazil. *Folia Parasitologica* 60: 377–400. https://doi.org/10.14411/fp.2013.040
Williams N.S. 1981. The *Brueelia* (Mallophaga: Philopteridae) of the Meropidae (Aves: Coraciiformes). *Journal of the Kansas Entomological Society* 54: 510–518.

Złotorzycka J. 1964. Mallophaga parasitizing Passeriformes and Pici. II. Brueeliinae. *Acta Parasitologica Polonica* 12: 239–282.

Złotorzycka J. 1977. Wszoły – Mallophaga, Zeszyt 4. Nadrodzina Philopteroidea: rodzina Philopteridae. *Klucze do Ozaczania Owasów Polski* 15: 1–124.

Złotorzycka J., Madrzejewska M. & Kopij G. 1999. A preliminary study on Mallophaga in South African birds. *Polskie Pismo Entomologiczne* 68: 9–21.

Manuscript received: 14 December 2018

Manuscript accepted: 11 February 2019

Published on: 19 March 2019

Topic editor: Gavin Broad

Desk editor: Danny Eibye-Jacobsen

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the *EJT* consortium: Muséum national d’Histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Real Jardín Botánico de Madrid CSIC, Spain; Zoological Research Museum Alexander Koenig, Bonn, Germany.
Appendix (continued on next 15 pages). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger (1980). Louse taxonomy follows Gustafsson & Bush (2017); however, many of the specimens identified only to genus level have not been examined, and may in fact belong to a different genus than listed below. For brevity, louse subgenera have been excluded, and host subspecies are included only if reported in the original publication. Host taxonomy follows Clements *et al.* (2018).

Host species	Louse species	Country	Reference
Cuculiformes			
Cuculidae			
Coua caerulea	*Couala angulata* (Piaget, 1880)	Madagascar	Gustafsson & Bush 2017
	Koanirmus koaphilus Mey, 2017	Madagascar	Mey 2017
Coua cristata pyropyga Grandidier, 1867	*Couala dodekopter* Gustafsson & Bush, 2017	Madagascar	Gustafsson & Bush 2017
Coua serriana Pucheran, 1845	*Couala goniodes* (Piaget, 1880)	Madagascar	Gustafsson & Bush 2017
	Tesonirmus teso Mey, 2017	Madagascar	Mey 2017
Coua sp.	*Couala angulata* (Piaget, 1880)	Madagascar	Mey 2017
Piciformes			
Lybiidae			
Buccanodon duchaillui (Cassin, 1856)	*Guimaraesiella* sp.	Malawi	*Bush et al.* 2016
Tricholaema leucomelas (Boddart, 1783)	*Brueelia* sp.	South Africa	*Takano et al.* 2018
Picidae			
Dendropicos goertae (Müller, 1776)	*Brueelia* goertae Dalgleish, 1971	Cameroon	Gustafsson & Bush 2017
Coraciiformes			
Brachypteracidae			
Brachypteracias leptosomus (Lesson, 1833)	*Buerelius longiceps* (Piaget, 1880)	Madagascar	*Bush et al.* 2016; Gustafsson & Bush 2017
	Buerelius subsimus Clay & Tandan, 1967	Madagascar	Gustafsson & Bush 2017
Meropidae			
Merops albicollis Vieillot, 1817	*Meropsiella erythropteri* (Piaget, 1885)	Cameroon	Williams 1981; Gustafsson & Bush 2017
	Ghana	Bush *et al.* 2016; Gustafsson & Bush 2017	
	Sierra Leone	Williams 1981; Gustafsson & Bush 2017	
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Merops apiaster Linnaeus, 1758	*Meropoecus meropis* (Denny, 1842)	Egypt	Gustafsson & Bush 2017
South Africa		Morocco	Gustafsson & Bush 2017
Uganda		Ugandan	Gustafsson & Bush 2017
Meropsiella apiasti (Denny, 1842)		Egypt	Williams 1981
		Malawi	Bush et al. 2016; Gustafsson & Bush 2017
		Morocco	Gustafsson & Bush 2017
		South Africa	Gustafsson & Bush 2017
		Sudan	Gustafsson & Bush 2017
		Uganda	Williams 1981; Gustafsson & Bush 2017
		Zambia	Gustafsson & Bush 2017
Merops bullocki Vieillot, 1817	*Meropoecus emersoni* Tendeiro, 1961	Ghana	Gustafsson & Bush 2017
Senegal		Najer et al. 2012	
Meropsiella erythropteri (Piaget, 1885)		Ghana	Williams 1981; Gustafsson & Bush 2017
Senegal		Najer et al. 2012	
Merops bullockoides (Smith, 1834)	*Meropoecus mossambicensis* Tendeiro, 1989	Mozambique	Tendeiro 1989
Meropsiella bullockoda (Williams, 1981)		Kenya	Williams 1981; Gustafsson & Bush 2017
Mozambique		Williams 1981; Gustafsson & Bush 2017	
South Africa		Williams 1981	
Zambia		Williams 1981	
Merops gularis gularis Shaw, 1798	*Meropsiella erythropteri* (Piaget, 1885)	Ghana	Bush et al. 2016; Gustafsson & Bush 2017
Merops hirundineus Lichtenstein, 1793	*Meropsiella erythropteri* (Piaget, 1885)	Mozambique	Williams 1981
Tanzania		Williams 1981; Gustafsson & Bush 2017	
Zimbabwe		Williams 1981; Gustafsson & Bush 2017	
Merops mubicoides De Murs & Pucherans, 1846	*Meropoecus eichleri* Tendeiro, 1989	Mozambique	Tendeiro 1989
		Zimbabwe	Williams 1981; Gustafsson & Bush 2017

1 Almost all specimens from Sudan were collected by Richard Meinertzhagen, who was stationed in Kenya. It thus seems likely that at least some of these specimens were collected in what is today South Sudan; however, the only locality information given on the slides is “Sudan”.

Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Merops nubicus Gmelin, 1788	*Meropsiella erythropteri* (Piaget, 1885)	Sudan	Williams 1981; Gustafsson & Bush 2017
Merops oreobates (Sharpe, 1892)	*Meropsiella erythropteri* (Piaget, 1885)	Kenya	Williams 1981; Gustafsson & Bush 2017
Merops orientalis cleopatra Nicoll, 1910	*Meropsiella erythropteri* (Piaget, 1885)	Egypt	Gustafsson & Bush 2017
Merops orientalis viridissimus Swainson, 1837	*Meropoecus debeauxi* Conci, 1941	Nigeria	Gustafsson & Bush 2017
Merops persicus persicus Pallas, 1773	*Meropsiella erythropteri* (Piaget, 1885)	Sudan	Williams 1981; Gustafsson & Bush 2017
Merops persicus persicus Pallas, 1773	*Meropoecus meropis* (Denny, 1842)	Egypt	Gustafsson & Bush 2017
Merops pusillus cyanocticus Cabanis, 1869	*Meropsiella erythropteri* (Piaget, 1885)	Somalia	Gustafsson & Bush 2017
Merops pusillus meridionalis (Sharpe, 1892)	*Meropsiella erythropteri* (Piaget, 1885)	Malawi	Bush *et al.* 2016; Gustafsson & Bush 2017
Merops pusillus pusillus Müller, 1776	*Meropoecus debeauxi* Conci, 1941	South Africa	Gustafsson & Bush 2017
Merops revoilii Oustalet, 1882	*Meropsiella erythropteri* (Piaget, 1885)	Mozambique	Williams 1981
Merops revoilii Oustalet, 1882	*Meropoecus debeauxi* Conci, 1941	Somalia	Gustafsson & Bush 2017
Merops variegatus loringi (Mearns, 1915)	*Meropsiella erythropteri* (Piaget, 1885)	Somalia	Williams 1981; Gustafsson & Bush 2017
Merops variegatus variegatus Vieillot, 1817	*Meropsiella erythropteri* (Piaget, 1885)	Uganda	Gustafsson & Bush 2017

Passeriformes

Acrocephalidae

Iduna similis Richmond, 1897 | *Guimaraesiella* sp. | Malawi | Bush *et al.* 2016 |

Alaudidae

Alauda arvensis cantarellia Bonaparte, 1850 | *Brueelia parviguttata* (Blagoveschensky, 1940) | Morocco | Gustafsson & Bush 2017 |
| *Mirafra africana* Smith, 1836 | *Brueelia* sp. | South Africa | Takano *et al.* 2018 |

Bernieridae

Bernieria madagascariensis (Gmelin, 1789) | *Guimaraesiella* sp. | Madagascar | Bush *et al.* 2016 |
| *Randia pseudozosterops* Delacour & Berlio, 1931 | *Aratricerca* sp. | Madagascar | Bush *et al.* 2016 |
| *Xanthomicis cinereiceps* Sharpe, 1881 | *Guimaraesiella* sp. | Madagascar | Bush *et al.* 2016 |
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Louse species	Country	Reference
Buphagoecus husaini (Ansari, 1968)	Kenya	Gustafsson & Bush 2017
Buphagoecus prominens (Ansari, 1968)	Ethiopia	Gustafsson & Bush 2017
Indoceoplanetes sp.	Malawi	Bush et al. 2016
Indoceoplanetes sp.	Ghana	Bush et al. 2016
Indoceoplanetes lobocapatrix	“Congo”	Gustafsson & Bush 2017
Brueelia sp.	South Africa	Takano et al. 2018
Sturnidoccus sp.	South Africa	Takano et al. 2018
Guimaraesia sp.	South Africa	Takano et al. 2018
Sturnidoccus sp.	Senegal	Najer et al. 2012
Brueelia sp.	South Africa	Takano et al. 2018
Brueelia sp.	South Africa	Takano et al. 2018
Sturnidoccus sp.	Senegal	Najer et al. 2012
Brueelia sp.	South Africa	Takano et al. 2018
Brueelia priniae	Senegal	Najer et al. 2012
Corvonirmus leucocephalus (Nitzsch in Giebel, 1866)	Kenya	Gustafsson & Bush 2017
	Lesotho	Gustafsson & Bush 2017
	Nigeria	Gustafsson & Bush 2017
	Tanzania	Gustafsson & Bush 2017
	Uganda	Gustafsson & Bush 2017
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Corvus albus Müller, 1776	*Corvonirmus* sp.?	Ghana	Bush *et al.* 2016
	Corvonirmus quadrangularis (Rudow, 1869)	Botswana	Gustafsson & Bush 2017
		Kenya	Gustafsson & Bush 2017
		Liberia	Gustafsson & Bush 2017
		Mozambique	Gustafsson & Bush 2017
		Namibia	Gustafsson & Bush 2017
		South Africa	Gustafsson & Bush 2017
		Sudan	Gustafsson & Bush 2017
		Tanzania	Gustafsson & Bush 2017
		Uganda	Gustafsson & Bush 2017
Corvus capensis capensis Lichtenstein, 1823	*Hecatrichula bipunctata* (Rudow, 1870)	Sudan	Gustafsson & Bush 2017
	Corvonirmus variegatus (Ansari, 1957)	South Africa	Gustafsson & Bush 2017
	Hecatrichula nawabi (Ansari, 1957)	Namibia	Gustafsson & Bush 2017
Corvus capensis kordofanensis Laubmann, 1919	*Corvonirmus variegatus* (Ansari, 1957)	Ethiopia	Gustafsson & Bush 2017
		Somalia	Gustafsson & Bush 2017
Corvus corax tingitanus Irby, 1874	*Corvonirmus argulus* (Burmeister, 1838)	Egypt	Gustafsson & Bush 2017
		Morocco	Gustafsson & Bush 2017
		“Northern Africa”	Gustafsson & Bush 2017
Corvus cornix pallescens (Madarasz, 1904)	*Corvonirmus uncinosus* (Burmeister, 1838)	Egypt	Gustafsson & Bush 2017
Corvus rhipidurus Hartert, 1918	*Corvonirmus theresae* (Ansari, 1957)	Ethiopia	Gustafsson & Bush 2017
		Kenya	Gustafsson & Bush 2017
		Uganda	Gustafsson & Bush 2017
Garrulus glandarius whitakeri Hartert, 1903	*Olivinirmus glandarius* (Denny, 1842)	Morocco	Gustafsson & Bush 2017
Ptilostomus afer (Linnaeus, 1766)	*Brueelia moreli* Ansari, 1957	Senegal	Gustafsson & Bush 2017
		Uganda	Gustafsson & Bush 2017
	Brueelia zohrae Ansari, 1956	Guinea-Bissau	Gustafsson & Bush 2017
		Sudan	Gustafsson & Bush 2017
	Brueelia sp.	Ghana	Bush *et al.* 2016
Pica pica mauritanica Malherbe, 1845	*Olivinirmus agadirensis* Mey, 2017	Morocco	Mey 2017
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Pyrrhocorax pyrrhocorax barbarus Vaurie, 1954	*Hecatrichula docilis* (Ansari, 1956)	Morocco	Gustafsson & Bush 2017
Zavattariornis stresemanni Moltoni, 1938	*Brueelia zavattariornis* Ansari, 1956	Ethiopia	Gustafsson & Bush 2017

Dicuridae

Dicurus adsimilis (Bechstein, 1794)

Louse species	Country	Reference
Brueelia sp.	Senegal	Najar et al. 2012
Guimaraesiella sp.	Malawi	Bush *et al.* 2016

Dicurus modestus Hartlaub, 1849

Louse species	Country	Reference
Brueelia sp.	Ghana	Bush *et al.* 2016

Emberizidae

Emberiza cabanisi (Reichenow, 1875)

Louse species	Country	Reference
Brueelia sp.	Malawi	Bush *et al.* 2016

Emberiza flaviventris Stephens, 1815

Louse species	Country	Reference
Brueelia sp.	South Africa	Takano *et al.* 2018

Emberiza tahapisi Smith, 1836

Louse species	Country	Reference
Brueelia sp.	South Africa	Takano *et al.* 2018

Estrildidae

Amadinia fasciata (Gmelin, 1789)

Louse species	Country	Reference
Mirandofures fasciata	Senegal	Sychra *et al.* 2010b
*(Sychra in Sychra *et al.*, 2010b)*		

Amandava subflava (Vieillot, 1819)

Louse species	Country	Reference
Brueelia sp.	Cameroon	Balakrishnan & Sorenson 2006

Coccopygia melanotis (Temminck, 1823)

Louse species	Country	Reference
Mirandofures sp.	Malawi	Bush *et al.* 2016

Cryptospiza reichenowi (Hartlaub, 1874)

Louse species	Country	Reference
Mirandofures sp.	Malawi	Bush *et al.* 2016

Estrilda astrild (Linnaeus, 1758)

Louse species	Country	Reference
Mirandofures astrildae	São Tomé and Príncipe	Tendeiro & Mendes 1994
(Tendeiro & Mendes, 1994)		

Estrilda erythronotus (Vieillot, 1817)

Louse species	Country	Reference
Brueelia sp.	Malawi	Bush *et al.* 2016

Euodice cantans (Gmelin, 1789)

Louse species	Country	Reference
Brueelia cantans Sychra in Sychra *et al.*, 2010b	Senegal	Sychra *et al.* 2010b

Granatina granatina (Linnaeus, 1758)

Louse species	Country	Reference
Brueelia semiscalaris sp. nov.	Botswana	This report

Hypargos niveoguttatus Peters, 1868

Louse species	Country	Reference
Brueelia sp.	Malawi	Bush *et al.* 2016

Lagonosticta rara (Antinori, 1864)

Louse species	Country	Reference
Brueelia sp.	Cameroon	Balakrishnan & Sorenson 2006
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Lagonosticta rhodopareia (Heuglin, 1868)	*Mirandofures* sp.	Mozambique	*Bush et al.* 2016
	Brueelia sp.		
Lagonosticta rubricata (Lichtenstein, 1823)	*Brueelia* sp.	Cameroon	*Balakrishnan & Sorenson* 2006
Lagonosticta rubripuncta (Fraser, 1843)	*Brueelia* sp.	Cameroon	*Balakrishnan & Sorenson* 2006
Lagonosticta senegala (Linnaeus, 1766)	*Brueelia senegala* Sychra in *Sychra et al.*, 2010b	Senegal	*Sychra et al.* 2010b
Lonchura cucullata (Swainson, 1837)	*Mirandofures lonchurae* (Tendeiro & Mendes, 1994)	Benin	*Takano et al.* 2017
	Brueelia sp.	São Tomé and Príncipe	Tendeiro & Mendes 1994
Pytilia afra (Gmelin, 1789)	*Brueelia* sp.	Malawi	*Bush et al.* 2016
Pytilia hypogrammica Sharp, 1870	*Brueelia* sp.	Cameroon	*Balakrishnan & Sorenson* 2006
Pytilia melba (Linnaeus, 1758)	*Sturnidoecus* sp.	South Africa	*Takano et al.* 2018
Uraeginthus angolensis (Linnaeus, 1758)	*Brueelia* sp.	Malawi	*Bush et al.* 2016

Fringillidae

Host species	Louse species	Country	Reference
Crithagra gularis (Smith, 1836)	*Brueelia* sp.	South Africa	*Takano et al.* 2018
Crithagra mozambica (Müller, 1776)	*Brueelia* sp.	South Africa	*Takano et al.* 2018
Fringilla coelebs africana Levallant, 1850	*Brueelia kluzi* Balát, 1955	Morocco	*Gustafsson & Bush* 2017
Serinus canicollis (Swainson, 1838)	*Brueelia* sp.	Malawi	*Bush et al.* 2016
		South Africa	*Takano et al.* 2018

Hirundinidae

Host species	Louse species	Country	Reference
Cecropsis abyssinica puella (Temminck & Schlegel, 1845)	*Acronirmus gracilis* (Burmeister, 1838)	Ghana	*Gustafsson & Bush* 2017
Cecropsis abyssinica unitatis (Sclater & Mackworth-Preed, 1942)	*Acronirmus gracilis* (Burmeister, 1838)	Kenya	*Gustafsson & Bush* 2017
Cecropsis senegalensis saturatior (Bannemann, 1923)	*Acronirmus gracilis* (Burmeister, 1838)	Kenya	*Gustafsson & Bush* 2017
Delichon urbicum urbicum (Linnaeus, 1758)	*Acronirmus gracilis* (Burmeister, 1838)	Malawi	*Bush et al.* 2016; *Gustafsson & Bush* 2017
Hirundo aethiopicus amadoni White, 1956	*Acronirmus gracilis* (Burmeister, 1838)	Somalia	*Gustafsson & Bush* 2017
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Hirundo angolensis Bocage, 1868	*Acronirmus gracilis* (Burmeister, 1838)	Zambia	Gustafsson & Bush 2017
Hirundo rustica rustica Linnaeus, 1758	*Acronirmus gracilis* (Burmeister, 1838)	Morocco	Gustafsson & Bush 2017
Hirundo rustica savignii Stephens, 1817	*Acronirmus gracilis* (Burmeister, 1838)	Egypt	Gustafsson & Bush 2017

Laniidae

Host species	Louse species	Country	Reference
Corvinella melanoleuca (Jardine, 1831)	*Brueelia rigbyi* Gustafsson & Bush, 2015	South Africa	Gustafsson & Bush 2015, 2017
Corvinella melanoleuca expressa Clancey, 1961	*Sturnidecus australafricanus* Gustafsson & Bush, 2017	South Africa	Gustafsson & Bush 2017

Leiothrichidae

Host species	Louse species	Country	Reference
Turdoides aylmeri aylmeri (Shelley, 1885)	*Priceiella brueliodes* (Ansari, 1956)	Somalia	Gustafsson & Bush 2017
Turdoides fulva acaciae (Lichtenstein, 1823)	*Brueelia magnini* Ansari, 1956	Sudan	Gustafsson & Bush 2017
Turdoides hartlaubii (Bocage, 1868)	*Priceiella nivea* (Ansari, 1956)	Zimbabwe	Gustafsson & Bush 2017
Turdoides tenebrosa (Hartlaub, 1883)	*Priceiella koka* Gustafsson & Bush, 2017	Ethiopia	Gustafsson & Bush 2017

Locustellidae

Host species	Louse species	Country	Reference
Bradypterus cinnamomeus (Rüppell, 1840)	*Guimaraesiella* sp.	Malawi	Bush *et al.* 2016

Macrastheniidae

Host species	Louse species	Country	Reference
Sylvietta rufescens (Veillot, 1817)	*Brueelia* sp.	South Africa	Takano *et al.* 2018

Malaconotidae

Host species	Louse species	Country	Reference
Dryoscopus cubla (Shaw, 1809)	*Guimaraesiella* sp.	Malawi	Bush *et al.* 2016
Laniarius aethiopicus (Gmelin, 1789)	*Guimaraesiella* sp.	Malawi	Bush *et al.* 2016
Laniarius barbarus (Linnaeus, 1758)	*Brueelia* sp.	Senegal	Najer *et al.* 2012

Gustafsson & Bush (2017) reported *Brueelia cruciata* (Burmeister, 1838) from a South African *Lanius collaris* Linnaeus, 1758. This report is in error, and represents an undescribed species of *Brueelia* from *Lanius collaris* Linnaeus, 1766.
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference	
Laniarius erythrogaster (Cretzschmar, 1829)	*Titanomessor sexloba* Gustafsson & Bush, 2017	Uganda	Gustafsson & Bush 2017	
Laniarius ferrugineus (Gmelin, 1788)	*Guimaraesiella* sp.	Malawi	Bush et al. 2016	
Laniarius fuellborni (Reichenow, 1900)	*Guimaraesiella* sp.	Malawi	Bush et al. 2016	
Malaconotus blanchoti Stephens, 1826	*Sturnidoecus* sp.	Malawi	Bush et al. 2016	
Nilaus afer (Latham, 1801)	*Brueelia* sp.	South Africa	Takano et al. 2018	
Tchagra australis (Smith, 1836)	*Sturnidoecus wittei* Tendeiro, 1963	South Africa	Takano et al. 2018	
Tchagra senegalus (Linnaeus, 1766)	*Guimaraesiella* sp.	Malawi	Bush et al. 2016	
Tchagra senegalus armemus (Oberholser, 1906)	*Sturnidoecus wittei* Tendeiro, 1963	Democratic Republic of the Congo	Gustafsson & Bush 2017	
Tchagra senegalus habessinica (Hemprich & Ehrenberg, 1833)	*Sturnidoecus wittei* Tendeiro, 1963	Ethiopia	Gustafsson & Bush 2017	
Tchagra senegalus kalahari (Roberts, 1932)	*Sturnidoecus wittei* Tendeiro, 1963	Zimbabwe	Gustafsson & Bush 2017	
Tchagra senegalus orientalis (Cabanis, 1869)	*Sturnidoecus wittei* Tendeiro, 1963	Mozambique	Gustafsson & Bush 2017	
Tchagra tchagra natalensis (Reichenow, 1903)	*Sturnidoecus wittei* Tendeiro, 1963	Mozambique	Gustafsson & Bush 2017	
Telophorus sulfureopectus (Lesson, 1831)	*Guimaraesiella* sp.	Malawi	Bush et al. 2016	
Monarchidae	*Terpsiphone viridis* (Statius Müller, 1776)	Senegal	Najer et al. 2012	
	Brueelia sp.	South Africa	Takano et al. 2018	
Motacillidae	*Anthus* sp.	South Africa	Takano et al. 2018	
	Brueelia sp.	South Africa	Takano et al. 2018	
	Anthus trivialis trivialis (Linnaeus, 1758)	*Brueelia ferianci* Balát, 1955	Morocco	Gustafsson & Bush 2017
	Macronyx capensis (Linnaeus, 1766)	*Brueelia* sp.	South Africa	Takano et al. 2018
	Motacilla capensis Linnaeus, 1766	*Brueelia* sp.	South Africa	Takano et al. 2018
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Motacilla flava Linnaeus, 1758	*Brueelia kratochvili* Balát, 1958	Egypt	Gustafsson & Bush 2017

Musciapidae

Copsychus albospecularis (Eydoux & Gervais, 1836)

Cossypha anomal (Shelley, 1893)

Cossypha caffra (Linnaeus, 1771)

Cossypha heuglini Hartlaub, 1866

Melaenornis silens (Shaw, 1809)

Muscicap striata (Pallas, 1764)

Myrmecocichla arnotti (Tristram, 1869)

Pogonocichla stellata (Vieillot, 1818)

Pseudalethe fuelleborni (Reichenow, 1900)

Sheppardia sharpei (Shelley, 1903)

Nectariniidae

Chalcomitra senegalensis (Linnaeus, 1766)

Cinnyris chalybaeus (Linnaeus, 1766)

Nectarinia famosa (Linnaeus, 1766)

Nicatoridae

Nicator chloris (Valenciennes, 1826)

Oriolidae

Oriolus auratus Vieillot, 1817

Oriolus larvatus Lichtenstein, 1823

Oriolus oriolus (Linnaeus, 1758)
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Paridae			
Melaniparus niger (Vieillot, 1818)	*Brueelia mpumalangensis* Gustafsson *et al.*, 2018	South Africa	Gustafsson *et al.*, 2018
	Brueelia sp.	Malawi	Bush *et al.*, 2016
Parus major excelsus Buvry, 1857	*Brueelia picea* Gustafsson *et al.*, 2018	Morocco	Gustafsson *et al.*, 2018
Passeridae			
Gymnoris supercilialis Blyth, 1845	*Brueelia sp.*	Malawi	Bush *et al.*, 2016
Passer domesticus (Linnaeus, 1758)	*Brueelia cyclothorax* (Burmeister, 1838)	Réunion	Gustafsson & Bush 2017
	Rostrinirmus ruficeps (Nitzsch [in Giebel], 1866)	Egypt	Gustafsson & Bush 2017
Passer griseus (Vieillot, 1817)	*Brueelia sp.*	Malawi	Bush *et al.*, 2016
Passer melanurus (Statius Müller, 1776)	*Brueelia sp.*	South Africa	Takano *et al.*, 2018
	Rostrinirmus sp.	South Africa	Bush *et al.*, 2016; Takano *et al.*, 2018
Passer melanurus damarensis Reichenow, 1902	*Brueelia pofadderensis* sp. nov.	South Africa	This report
Petronia petronia barbata Erlanger, 1899	*Brueelia alexandrii* Eichler, 1953	Tunisia	Gustafsson & Bush 2017
Plocepasser mahali (Smith, 1836)	*Brueelia sp.*	South Africa	Takano *et al.*, 2018
Platysteiridae			
Batis capensis (Linnaeus, 1766)	*Guimaraesiella sp.*	Malawi	Bush *et al.*, 2016
Batis soror Reichenow, 1903	*Guimaraesiella sp.*	Mozambique	Bush *et al.*, 2016
Platysteira cyanea (Müller, 1776)	*Guimaraesiella sp.*	Malawi	Bush *et al.*, 2016
Ploceidae			
Amblyospiza albifrons (Vigors, 1831)	*Sturnidoecus cf. basilewskyi* Tendeiro, 1963	Benin	Takano *et al.*, 2017
Anaplectes rubriceps (Sundevall, 1850)	*Brueelia sp.*	Malawi	Bush *et al.*, 2016

1 These specimens have been examined, and are conspecific with *B. mpumalangensis* Gustafsson *et al.*, 2018, which had not been formally described at the time these phylogenies were published.
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Euplectes albonotatus (Cassin, 1848)	*Brueelia* sp.	Malawi	Bush *et al.* 2016
Euplectes ardens (Boddart, 1783)	*Sturnidoecus* sp.	Malawi	Bush *et al.* 2016
Euplectes fransiscanus (Isert, 1879)	*Brueelia* sp.	Malawi	Bush *et al.* 2016
Euplectes hordeaceus (Linnaeus, 1758)	*Sturnidoecus mon*	Ghana	Gustafsson & Bush 2017
Euplectes jacksoni (Sharpe, 1891)	*Brueelia terpsichore* sp. nov.	Kenya	This report
Euplectes progne delamerei (Shelley, 1903)	*Brueelia terpsichore* sp. nov.	Kenya	This report
Malimbus nitens (Gray, 1831)	*Brueelia sima* sp. nov.	Cameroon	This report
Ploceus capensis (Linnaeus, 1766)	*Brueelia* sp.	Malawi	Bush *et al.* 2016
Ploceus cucullatus (Müller, 1776)	*Brueelia* sp.	South Africa	Takano *et al.* 2018
Ploceus cucullatus bohndorfii Reichenow, 1887	*Sturnidoecus basilewskyi* Tendeiro, 1963	Democratic Republic of the Congo	Gustafsson & Bush 2017
Ploceus cucullatus cucullatus (Müller, 1776)	*Sturnidoecus basilewskyi* Tendeiro, 1963	Cameroon	Gustafsson & Bush 2017
Ploceus cucullatus nigriceps (Layard, 1867)	*Sturnidoecus basilewskyi* Tendeiro, 1963	Senegal	Gustafsson & Bush 2017
Ploceus melanocephalus (Linnaeus, 1758)	*Sturnidoecus textoris* Tendeiro, 1964	Democratic Republic of the Congo	Gustafsson & Bush 2017
Ploceus ocularis Smith, 1839	*Sturnidoecus* sp.	Mozambique	Bush *et al.* 2016
Ploceus velatus Viellot, 1819	*Brueelia* sp.	South Africa	Johnson *et al.* 2002; Bush *et al.* 2016; Takano *et al.* 2018
	Sturnidoecus sp.	Malawi	Bush *et al.* 2016
	Sturnidoecus sp.	South Africa	Takano *et al.* 2018
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Ploceus xanthops (Hartlaub, 1862)	*Sturnidoecus xanthops*	Democratic Republic of the Congo	Gustafsson & Bush 2017
	Sturnidoecus sp.	Malawi	Bush et al. 2016
Quelea quelea (Linnaeus, 1758)	*Brueelia quelea* Sycha & Barlev in Sycha et al., 2010a	Malawi	Bush et al. 2016; Gustafsson & Bush 2017
	Sturnidoecus sp.	Senegal	Sychra et al. 2010a
Quelea quelea quelea (Linnaeus, 1758)	*Sturnidoecus somnodraco*	South Africa	Takano et al. 2018
	Brueelia sp.	Malawi	Bush et al. 2016
Quelea quelea lathami (Smith, 1836)	*Sturnidoecus somnodraco*	Malawi	Gustafsson & Bush 2017
	Brueelia sp.	South Africa	Gustafsson & Bush 2017
Sporopipes squamifrons (Smith, 1836)	*Brueelia sp.*	South Africa	Takano et al. 2018
	Sturnidoecus sp.	Democratic Republic of the Congo	Light et al. 2016
	Guimaraesiella sp.	Malawi	Bush et al. 2016
Chlorocichla flaviventris (Smith, 1834)	*Brueelia sp.*	Ghana	Bush et al. 2016
	Guimaraesiella sp.	Ghana	Bush et al. 2016
Criniger barbatus (Temminck, 1821)	*Brueelia sp.*	Ghana	Bush et al. 2016
	Guimaraesiella sp.	Ghana	Bush et al. 2016
Eurillas latirostris (Strickland, 1844)	*Brueelia sp.*	Democratic Republic of the Congo	Light et al. 2016
	Guimaraesiella sp.	Ghana	Bush et al. 2016
Eurillas virens (Cassin, 1857)	*Mirandofures sp.*	Malawi	Bush et al. 2016

4 The host was recorded as *Bleda ugandae* van Someren, 1915, which was treated as a synonym of *B. notatus* (Cassin, 1856) by Clements *et al.* (2018).
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Phyllastrephus albigularis (Sharpe, 1881)	*Guimaraesiella* sp.	Ghana	Bush *et al.* 2016
Phyllastrephus flavostriatus (Sharpe, 1876)	*Guimaraesiella* sp.	Malawi	Bush *et al.* 2016
Phyllastrephus icterus (Bonaparte, 1850)	*Brueelia* sp.	Democratic Republic of the Congo	Light *et al.* 2016
		Ghana	Bush *et al.* 2016
Pycnonotus barbatus (Desfontaines, 1789)	*Brueelia* sp.	Malawi	Bush *et al.* 2016
Pycnonotus nigricans (Vieillot, 1818)	*Brueelia pseudognatha* Gustafsson & Bush, 2017	South Africa	Gustafsson & Bush 2017; Takano *et al.* 2018
	Brueelia sp. 5	South Africa	Johnson *et al.* 2002; Bush *et al.* 2016
Pycnonotus tricolor (Hartlaub, 1862)	*Brueelia* sp.	South Africa	Takano *et al.* 2018
Stelgidillas gracilirostris Strickland, 1844	*Guimaraesiella* sp.	Malawi	Bush *et al.* 2016
Sturnidae			
Acridotheres tristis tristis (Linnaeus, 1766)	*Brueelia chayanah* Ansari, 1955	St. Helena	Gustafsson & Bush 2017
Cinnyricinclus leucogaster (Boddaert,1783)	*Sturnidoecus* sp.	Malawi	Bush *et al.* 2016
Cinnyricinclus leucogaster verreauxii (Bocage, 1870)	*Sturnidoecus porphyrogenitus* Gustafsson & Bush, 2017	Mozambique	Gustafsson & Bush 2017
Creatophora cinerea (Meuschen, 1787)	*Brueelia coryliventer* Gustafsson & Bush, 2015	Kenya	Gustafsson & Bush 2015, 2017
Lamprotornis australis (Smith, 1836)	*Sturnidoecus azali* Ansari, 1968	Kenya	Gustafsson & Bush 2017
Lamprotornis bicolor Gmelin, 1789	*Brueelia clara* Gustafsson & Bush, 2015	Namibia	Gustafsson & Bush 2015, 2017
Lamprotornis chalybaeus chalybaeus Hemprich & Ehrenberg, 1828	“Brueeliinae”	South Africa	Zlotorzynka *et al.* 1999
	Sturnidoecus eichleri Ansari, 1968	Ethiopia	Gustafsson & Bush 2017
		Kenya	Gustafsson & Bush 2017
	Sturnidoecus eichleri Ansari, 1968	South Africa	Gustafsson & Bush 2017
		Malawi	Bush *et al.* 2016
	Sturnidoecus distinguidens Ansari, 1968	Uganda	Gustafsson & Bush 2017

5 This specimen has been examined and is conspecific with *B. pseudognatha* Gustafsson & Bush, 2017, which had not been formally described at the time this phylogeny was published.
Appendix (continued). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Lamprotornis mevesi (Wahlberg, 1856)	*Sturnidocus parvifrons* Ansari, 1968	Botswana	Gustafsson & Bush 2017
		Mozambique	Gustafsson & Bush 2017
		Zambia	Gustafsson & Bush 2017
		Zimbabwe	Gustafsson & Bush 2017
Lamprotornis nitens (Linnaeus, 1766)	*Brueelia* sp.	South Africa	Takano *et al*.
	Sturnidocus senegalensis (Rudow, 1869)	South Africa	Gustafsson & Bush 2017; Takano *et al*. 2018
Lamprotornis purpureus (Statius Müller, 1776)	*Brueelia* sp.	Ghana	Bush *et al*. 2016
	Sturnidocus sp.	Ghana	Bush *et al*. 2016
Lamprotornis splendidus bainundensis (Neumann, 1920)	*Sturnidocus meinertzhageni* Ansari, 1968	Zambia	Gustafsson & Bush 2017
Lamprotornis splendidus splendidus (Vieillot, 1822)	*Sturnidocus meinertzhageni* Ansari, 1968	Cameroon	Gustafsson & Bush 2017
		Uganda	Gustafsson & Bush 2017
Lamprotornis superbus (Rüppell, 1845)	*Sturnidocus theresae* Ansari, 1968	Somalia	Gustafsson & Bush 2017
Neocichla gutturalis (Bocage, 1871)	*Brueelia* sp.	Malawi	Bush *et al*. 2016
	Sturnidocus sp.	Malawi	Bush *et al*. 2016
Onychognathus blythii (Hartlaub, 1859)	*Sturnidocus clayae* Ansari, 1968	Somalia	Gustafsson & Bush 2017
Onychognathus morio (Linnaeus, 1766)	*Sturnidocus zahrae* Ansari, 1968	Kenya	Gustafsson & Bush 2017
Onychognathus tenuirostris (Rüppell, 1836)	*Brueelia* sp.	Malawi	Bush *et al*. 2016
Onychognathus tenuirostris theresae Meinertzhagen, 1937		Kenya	Gustafsson & Bush 2017
Speculipastor bicolor Reichenow, 1879	*Sturnidocus illustris* Ansari, 1968	Kenya	Gustafsson & Bush 2017
Spreo albicapillus albicapillus Blyth, 1856	*Brueelia tkachi* Gustafsson & Bush, 2015	Somalia	Gustafsson & Bush 2015, 2017
Sylviidae			
Sylvia subcaeruleum (Vieillot, 1817)	*Brueelia* sp.	South Africa	Johnson *et al*. 2002; Bush *et al*. 2016; Takano *et al*. 2018
Appendix (concluded). Species of chewing lice in the *Brueelia* complex (sensu Gustafsson & Bush 2017) reported from Africa since Ledger 1980.

Host species	Louse species	Country	Reference
Turdidae			
Geokichla gurneyi (Hartlaub, 1864)	Guimaraesiella sp.	Malawi	Bush et al. 2016
Neocossyphus poensis (Strickland, 1844)	Guimaraesiella sp.	Malawi	Bush et al. 2016
Turdus libonyana (Smith, 1836)	Sturnidoecus sp.	Malawi	Bush et al. 2016
Turdus merula syriacus Hemprich & Ehrenberg, 1833	Guimaraesiella *amsel* (Eichler, 1951)	Morocco	Gustafsson & Bush 2017
Turdus olivaceus pondoensis Reichenow, 1917	Guimaraesiella *ilmasae* (Ansari, 1956)	South Africa	Gustafsson & Bush 2017
Turdus pelios Bonaparte, 1850	Guimaraesiella *turdinulae* (Ansari, 1956)	Senegal	Najer et al. 2012
Turdus philomelos Brehm, 1831	Guimaraesiella *turdinulae* (Ansari, 1956)	Egypt	Gustafsson & Bush 2017
Turdus smithi Bonaparte, 1850	Brueelia sp.	South Africa	Takano et al. 2018
Vangidae			
Prionops plumatus (Shaw, 1809)	Brueelia sp.	Senegal	Najer et al. 2012
Vanga curvirostris (Linnaeus, 1766)	Guimaraesiella sp.	Malawi	Bush et al. 2016
Viduidae			
Vidua camerunensis Grote, 1922	Brueelia sp.	Cameroon	Balakrishnan & Sorenson 2006
Vidua macroura (Pallas, 1764)	Sturnidoecus sp.	Cameroon	Balakrishnan & Sorenson 2006
Vidua paradisaea (Linnaeus, 1758)	Brueelia *bicurvata* (Piaget, 1880)	Zambia	This report
Vidua wilsoni (Hartert, 1901)	Brueelia sp.	Cameroon	Balakrishnan & Sorenson 2006
Zosteropidae			
Zosterops senegalensis Bonaparte, 1850	Brueelia sp.	Malawi	Bush et al. 2016