A New Pentacyclic Triterpenoid from *Albizia lebbekoides* (DC) Benth (Leguminosae)

Yohannes N. Woldemariam, Irene M. Villaseñor*

Natural Products Research Laboratory, Institute of Chemistry, University of the Philippines, Diliman, Quezon City 1101

*Author to whom correspondence should be addressed; email: imvillasenor@up.edu.ph

ABSTRACT

Albizia lebbekoides (DC) Benth is one of the five species of the genus *Albizia* found in the Philippines. Not much is known about the chemistry and potential uses of this species. Solvent partition followed by sequential and repeated liquid chromatographic purification over silica led to the isolation of a compound from the hexane extract of *A. lebbekoides* leaves. A review of related literature and spectral analyses showed that the isolated compound is a new pentacyclic triterpenoid with an oleanane skeleton. Its structure was determined as 3β, 16α-dihydroxyolean-6(7),12(13)-dien-28-oic acid.

Keywords: echinocystic acid; 3β, 16α-dihydroxyolean-6(7),12(13)-dien-28-oic acid; leaves

INTRODUCTION

Albizia is a genus of about 150 species distributed throughout the world. They are mostly fast-growing subtropical and tropical trees and shrubs belonging to the subfamily *Mimosoideae* of the family *Leguminosae*. Five of them are found in the Philippines: *Albizia saman* (Jacq.) Merr., *Albizia lebbekoides* (DC) Benth, *A. lebbeck* (L.) Benth., *A. procera* (Roxb.) Benth., and *A. falcataria* (L.) Fosberg. *Albizia lebbekoides* (DC) Benth is commonly known as silk tree because its exotic flowers have delicate silky filaments and is locally known as “haluganit” (Tagalog), “maganhop-sa-bukid” (Bisaya), “lariskis” (Iloko) (https://uses.plantnet-project.org/en/Albizia_lebbekoides (PROSEA)).

There is a dearth of studies on *A. lebbeckoides* and its synonyms *Mimosa carisquis* Blanco and *Pithecellobium myriophyllum* Gagnep (http://www.theplantlist.org/tpl/record/ild-46234). Most of the studies were done by a research group from Chulalongkorn University. They documented the α-glucosidase inhibitory activity (Tunsaringkarn et al., 2008; Tunsaringkarn et al., 2009), antioxidant activity (Ramli et al., 2008), inhibition of Heinz body induction (Tunsaringkarn et al., 2012), and stimulation of white blood cell proliferation (Tunsaringkarn et al., 2014) of *A. lebbekoides* extracts. Another study showed the antibacterial and antioxidant activities of the leaf...
ethanol extract and the presence of alkaloids, saponins, tannins, phenolics, flavonoids, triterpenoids, and glycosides (Hajrawati et al., 2019). This research aims to isolate and characterize a chemical compound from *A. lebbekoides* leaves that might add new knowledge to existing literature.

METHODS

Materials and Equipment. Vacuum liquid chromatography (VLC) and gravity column chromatography (GCC) were done using Merck silica gel particle size < 55μm and 0.063-0.200 mm, respectively. Analytical thin-layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates (Merck KGaA, Germany). TLC plates were visualized using UV light (Analytik Jena US), I2 crystals, and vanillin-sulfuric acid followed by heating. All procedures were carried out at room temperature using distilled solvents purchased from commercial sources.

1H and 13C, DEPT, HSQC, HMBC, and DQF-COSY NMR spectra were recorded on a Bruker AVIII HD 600 NMR spectrometer (Scripps Research Institute USA). ESIMS was measured on an Agilent Q-TOF mass spectrometer in a positive-ion mode using an ESI ion source, with scan ranges (m/z) from 100 to 1000 (Scripps Research Institute USA). IR and UV spectra were recorded on a Nicolet Magna Infrared Spectrometer and UV-3101 PC double beam scanning spectrophotometer, respectively.

Leaves were collected from the University of the Philippines Diliman (UPD), Quezon City. A voucher specimen was submitted to the Jose Vera Santos Herbarium, Institute of Biology, UPD and was given accession number 14578.

Extraction and Isolation. The dried leaves of *A. lebbekoides* (741.38 g) were homogenized and soaked in methanol (1kg:10 L). The methanol extract (5.8% yield) was filtered and concentrated in vacuo. The resultant dried hexane extract (3.7% yield) was subjected to VLC over a silica gel column (8 x 15.44 cm) and eluted with gradient mixtures of 500 mL hexane, hexane in 10% increments of ethyl acetate, ethyl acetate, ethyl acetate in 25% increments of ethanol, and ethanol under reduced pressure. Fractions were pooled by TLC analysis to yield 8 combined fractions.

Fraction 2 (0.74% yield) was chromatographed over a silica gel column (3.5 x 15 cm) and eluted with gradient mixtures of 300 mL hexane, hexane in 1% increments of ethyl acetate, ethyl acetate, ethyl acetate in 25% increments of ethanol, and ethanol. Test tubes with similar TLC profiles were pooled together and 10 sub-fractions were obtained. Sub-fraction 7 (0.132% yield) was purified by GCC over a silica gel column (2 x 41 cm), eluted with 200 mL hexane, hexane in 1% increments of ethyl acetate, and ethyl acetate, to yield a whitish isolate 7 (0.003% yield) with a single TLC spot with Rf 0.68 in 25% ethyl acetate in hexane as developing solvent: UV (MeOH) λmax 204.5 nm; IR (KBr disc) νmax 3409, 2927, 2866, 1698, 1606, 1242, 1158, 1039, 955, 837 cm⁻¹; NMR data (CDCl3), Table 1; positive ion HRESIMS m/z 447.3450

RESULTS AND DISCUSSION

Sequential and repeated normal phase column chromatographic techniques led to the isolation of a TLC pure compound. The 13C NMR spectrum (Table 1) showed 29 carbon resonances and comprising seven methyls, seven methylenes, eight methines and seven quaternary carbons. The IR spectrum showed the presence of C=O at 1698 cm⁻¹ but signals were absent in the NMR spectra.
Table 1. NMR Spectral Data for Isolated Compound

C	13C NMR (ppm)	DEPT	HSQC (1H NMR)	HMBC (1H NMR)
1	39.6	CH2	1.24	
2	21.7	CH2	1.08	
3	71.1	CH	3.63, dd, J=12.6 Hz	
4	43.4	C	0.54, 1.01	
5	56.0	CH	0.54, 1.08	
6	129.5	CH	5.02, dd, J=12.6 Hz	5.14
7	138.3	CH	5.14	1.24
8	40.9	C	1.52	
9	51.3	CH	1.52, 0.78, 1.03, 1.24, 5.14	1.52
10	23.1	C	1.52	
11	32.0	CH2	1.52	
12	117.6	CH	5.14	
13	139.7	C		
14	34.3	C		
15	49.5	CH2		
16	71.2	CH	3.57	1.24
17	55.2	C		
18	40.4	CH	2.02	0.84
19	37.2	CH2	1.72	0.78, 0.84
20	28.6	C		0.84, 1.72
21	25.5	CH2	1.15, 1.38	0.84
22	38.1	CH2	1.24	0.78
23	12.2	CH3	0.54	1.01
24	13.2	CH3	1.01	
25	12.4	CH3	0.78	
26	21.5	CH3	1.03	
27	29.7	CH3	1.24	
29	19.1	CH3	0.78	0.84
30	21.2	CH3	0.84	0.78

1 Data (δ) measured in CDCl3 at 150 MHz and referenced to the solvent residual peak at ~δ 77
2 Overlapped 1H NMR signals are reported without designated multiplicities

HRESIMS data showed a sodiated pseudo molecular ion peak at m/z 447.3450. The HRESIMS data is accounted for by [M-H+Na-COOH] (calcd 447.3238). The COOH proton at 10-12 ppm is usually very broad, often to the point of being hard to see above the baseline. The carboxyl carbon at 160-185 ppm is often weak because of nOe effects on other carbons in a proton-decoupled spectrum. In conjunction with the DEPT, HSQC, and IR data, a molecular formula of C30H46O4 was deduced.

A pentacyclic system was inferred from eight degrees of unsaturation implied by the molecular formula and the unsaturated groups indicated by the NMR and IR spectroscopic data. Two oxygenated moieties were apparent at δC 71.1 (CH, δH 3.63) and δC 71.2 (CH, δH 3.57). The presence of a diene was inferred by the presence of signals at δC 117.6 (CH, δH 5.14), δC 129.5 (CH, δH 5.02), δC 138.3 (CH, δH 5.14) and δC 139.7 (C). An oleanane skeleton was deduced from the geminal methyl groups shown by HMBC cross peaks between δH 0.78 (H29) with δC 21.2 (C30) and δH 0.84 (H30) with δC 19.1 (C30) (Fig. 1). The structure of the E ring of oleanane skeleton was further established by the following HMBC cross peaks: δH 0.78 with δC 37.2 (C19), δC 38.1 (C22); δH 0.84 with δC 25.5 (C21), δC 28.6 (C20), δC 37.2 (C19), δC 40.4 (C18); δH 1.72 (H19) with δC 28.6 (C20); and δH 1.24 (C22) with δC 71.2 (C16-OH).
The proposed structure of the isolated compound (Fig. 2) was supported by the HMBC correlations of H23 with C4 and C5; H2 with C5; H9/H11 with C10; and H1/H12/H25/H26/H27 with C9. A diagnostic HMBC cross peak between H27 and C7 established the second double bond at C6-C7.

Oleanane triterpenoids are the largest group within the triterpenes with a huge number of biologically active compounds. They are structurally classified as olean-12-ene and 11-keto-olean-12-ene (Rios et al., 2000). The Albizia genus contained triterpenoid saponins, consisting mainly of glycosides of oleanolic acid (3β-hydroxyolean-12-en-28-oic acid), echinocystic acid (3β, 16α-dihydroxy-olean-12-en-28-oic acid), and acacic acid (3β, 16α, 21β-trihydroxy-12-en-28-oic acid) (Note et al., 2017). Glycosides of echinocystic acid have been isolated from A. chevalieri.
A New Pentacyclic Triterpenoid from *Albizia lebbekoides* (DC) Benth…

(Nota et al., 2017), *A. adianthifolia* (Haddad et al., 2004), *A. zygia* (Note et al., 2016), *A. grandibracteata* (Krief et al., 2005), *A. chinensis* (Liu et al., 2009), *A. gummifera* (Cao et al., 2007).

For oleananes with two double bonds, the positions of the double bonds are at C9-C11 and C12-C13 (Jayalakshmi et al., 2016; Sun et al., 2005); C11-C12 and C13-C18 (Zeng et al., 2015; Sun et al., 2005; Karliner and Djerassi, 1966); and C1-C2 and C12-C13 (Ren et al., 2015). This is the first report of an olean-12-ene triterpene with a second double bond at C6-C7.

CONCLUSION

Normal phase chromatographic separation of the hexane extract from the leaves of *A. lebbekoides* yielded 3β, 16α-dihydroxyolean-6(7),12(13)-dien-28-oic acid, a new pentacyclic triterpene.

ACKNOWLEDGEMENT

Mr. Woldemariam was a scholar of the Ethiopian Adventist College, Ethiopian Union Mission, and the East African Central Division in his pursuit of graduate study. This research was funded by the Natural Science Research Institute, UP Diliman. NMR and MS spectra were obtained from Scripps Research Institute, USA.

REFERENCES

Cao S, Norris A, Miller JS, Ratovoson F, Razafitsalama J, Andriantsiferana R et al. Cytotoxic triterpenoid saponins of *Albizia gummifera* from the Madagascar Rain Forest. J. Nat. Prod. 2007 Jan; 70(3):361–366. https://doi.org/10.1021/np060506g

Haddad M, Miyamoto T, Lacaille-Dubois M-A. New triterpenoidal saponins acylated with monoterpene acid from *Albizia adianthifolia*. Helv. Chim. Acta. 2004 May; 87:1228-1238. https://doi.org/10.1002/hlca.200490112

Hajrawati, Nuraini H, Arief II, Sajuthi D. Antibacterial and antioxidant activities in Cemba (*Albizia lebbeckoides* [DC.] Benth) leaf extracts from Enrekang District, South Sulawesi, Indonesia. Pak. J. Nutr. 2019 Mar; 18(4):364-371. https://doi.org/10.3923/pjn.2019.364.371

https://uses.plantnet-project.org/en/Albizia_lebbeckoides_(PROSEA)

http://www.theplantlist.org/tpl/record/ild-46234

Jayalakshmi G, Anuradha V, Ratnakumari S, Kalyani K and Sivaram Babu S. A novel pentacyclic triterpenoid isolated from *Caralluma attenuata* root. EJMPR. 2016 Jun; 3(6):342-344. Retrieved from https://www.researchgate.net/publication/349110064

Karliner J, C. Djerassi C. Terpenoids. LVII. Mass spectral and nuclear magnetic resonance studies of pentacyclic hydrocarbons. J. Org. Chem. 1966 Jun; 31(6):1945-1956. https://doi.org/10.1021/jo01344a063

Krief S, Thoison O, Sévenet T, Wrangham RW, Lavaud C. Triterpenoid saponin anthranilates from *Albizia grandibracteata* leaves ingested by primates in Uganda. J. Nat. Prod. 2005 Jun; 68(6):897–903. https://doi.org/10.1021/np049576i
Liu R, Ma S, Yu S, Pei Y, Zhang S, Chen X, et al. Cytotoxic oleanane triterpene saponins from *Albizia chinensis*. J. Nat. Prod. 2009 Mar; 72(4):632–639. https://doi.org/10.1021/np800576s

Noté OP, Simo L, Mbing JN, Guillaume D, Azouaou SA, Muller CD, et al. Two new triterpenoid saponins from the roots of *Albizia zygia* (DC.) J.F. Macbr. Phytochem. Lett. 2016 Dec; 18:128-135. https://doi.org/10.1016/j.phytol.2016.09.010

Noté OP, Messi LM, Mbing JN, Azouaou SA, Sarr M, Guillaume D, et al. Pro-apoptotic activity of acylated triterpenoid saponins from the stem bark of *Albizia chevalieri* harms. Phytochem. Lett. 2017 Dec; 22:95-101. https://doi.org/10.1016/j.phytol.2017.09.008

Ramli S, Bunrathep S, Tunsaringkarn T, Ruangrungsi N. Screening for free radical scavenging activity from ethanolic extract of Mimosaceous plants endemic to Thailand. J. Health. Res. 2008 Mar; 22(2):55-59. Retrieved from https://he01.tci-thaijo.org/index.php/jhealthres/article/view/155574

Ren Y, VanSchoiack A, Chai H-B, Goetz M, Kinghorn AD. Cytotoxic barrigenol-like triterpenoids from an extract of *Cyrilla racemiflora* housed in a repository. J. Nat. Prod. 2015 Sept; 78(10):2440-2446. https://doi.org/10.1021/acs.jnatprod.5b00532

Rios JL, Recio MC, Maañez S, Giner RM. Natural triterpenoids as anti-inflammatory agents. In Atta-ur-Rahman, editor. Stud. Nat. Prod. Chem. The Netherlands: Elsevier Science B.V.; 2000:22 (Part C). p. 93-143. https://doi.org/10.1016/S1572-5995(00)80024-1

Sun S, Kong L-y, Zhang H-q, He S-a. Triterpenes from *Angelica cartilagino-marginata* var. foliate Yuan et Shan and their significance as chemosystematic characters. Biochem. Syst. Ecol. 2005 Nov; 33(11):1121-1129. https://doi.org/10.1016/j.bse.2005.03.010

Tunsaringkarn T, Suwansaksri J, Rungsioyiathin A, Palasuwan A. Cell proliferation activities *in vitro* model of Thai Mimosaceous extracts. J. Chem. Pharm. Res. 2014 Jan; 6(1):507-511. Retrieved from https://www.researchgate.net/publication/260985792

Tunsaringkarn T, Soogarun S, Rungsioyiathin A, Palasuwan A. Inhibitory activity of Heinz body induction in vitro antioxidant model and tannin concentration of Thai Mimosaceous plant extracts. J. Med. Plant Res. 2012 Jun; 6(24):4096-4101. https://doi.org/10.5897/JMPR12.304

Tunsaringkarn T, Rungsioyiathin A, Ruangrungsi N. α-Glucosidase inhibitory activity of water soluble extract from Thai Mimosaceous plants. The Public Health Journal of Burapha University. 2009 July; 4(2):54-63.

Tunsaringkarn T, Rungsioyiathin A, Ruangrungsi N. α-Glucosidase inhibitory activity of Thai Mimosaceous plant extracts. J. Health Res. 2008 Jan; 22(1):29-33 Retrieved from https://www.researchgate.net/publication/242753490_a-Glucosidase_inhibitory_activity_of_Thai_Mimosaceous_plant_extracts

Zeng B, Liu G-D, Zhang B-B, Wang S-S, Ma R, Zhong B-S. A new triterpenoid saponin from *Clinopodium chinense* (Benth.) O. Kuntze. Nat. Prod. Res. 2015 Oct; 30(9):1001-1008. https://doi.org/10.1080/14786419.2015.1095745