First record of the genus *Phauloppia* Berlese, 1908 (Acari: Oribatida: Oribatulidae) with description of *Phauloppia lucorum* (C.L. Koch, 1841) from Korea

Jiwon Kim1,3, Badamdorj Bayartogtokh2 and Chuleui Jung3,*

1Apple Research Institute, National of Horticultural & Herbal Science, Rural Development Administration, Gunwi 39000, Republic of Korea
2Department of Zoology, School of Biology and Biotechnology, National University of Mongolia, Ulaanbaatar 210646, Mongolia
3Department of Bioresource Science, Graduate School, Andong National University, Andong 36729, Republic of Korea

*Correspondent: cjung@andong.ac.kr

From the soil biodiversity study, we found a species, *Phauloppia lucorum* (C.L. Koch, 1841) in the family of Oribatulidae (Acari: Oribatida) from the straw mat covering the cherry trees during winter in 2011. This species inhabiting litter and soil of forest, moss and lichens on tree and stones is distributed in the eastern Asia and western and central parts of Europe. In this paper, we illustrate the diagnostic features of a new species with detailed diagrammatic representations and its geographical distribution.

Keywords: cherry tree, Korea, Oribatida, Oribaulidae, *Phauloppia lucorum*, taxonomy

Ⓒ 2016 National Institute of Biological Resources
DOI:10.12651/JSR.2016.5.3.368

INTRODUCTION

The family Oribatulidae Thor, 1929 comprising 18 genera and more than 200 species is distributed worldwide (Subías, 2004, Online version 2012). They are common, and sometimes abundant in terrestrial ecosystems, especially in forest (Seniczak and Seniczak, 2012). The diagnostic characteristics of this family are considered to be the following: adult relatively medium or small in size, covers moderately sclerotized; lamellae of different shapes, translamella absent or present; notogaster with 13-14 pairs of setae, four pairs of true pore fields; pteromorph not developed; tridactylous legs (Bayartogtokh, 2010). The genus *Phauloppia* Berlese, 1908 under the family Oribatulidae Thor, 1929 is established with the type species *Zetes lucorum* C.L. Koch, 1841 (= *Oppia conformis* Berlese, 1895) and about 25 species are assigned to this genus (Subías, 2004, Online version 2012). *P. lucorum* was the most abundant in lichens covering the tree trunks (André, 1984; 1985). They are known to phoretic on the fir bark beetle *Pityokteines curvidens* (Coleoptera: Curculionidae) (Pernek et al., 2012).

In Korea, Oribatulidae is represented by four genera, namely *Dometorina* Grandjean, 1951, *Oribatula* Berlese, 1896, *Lucoppia* Berlese, 1908 (= *Romanobates* Feider Vasiliu and Calugar, 1970) and *Zygoribatula* Berlese, 1916 (Kim and Jung, 2012; NIBR, 2013). The genus *Dometorina* has been described under the family Hemileiidae by Subías (2004, Online version 2012).

We found new genus and species to Korean inventory compared to the existed checklist of oribatid mite from NIBR (2013) or other list (Kim and Jung, 2012). In this work, we present a taxonomic diagnosis of the genus and species, and morphological characteristics with detailed illustration.

MATERIALS AND METHODS

The specimen was collected from the straw mat covering the cherry trees in Andong National University, Andong, Gyeongsangbuk-do in January, 2012. Oribatid mites were extracted by using a modified-Tullgren funnel for 72 hrs with 30-watt bulb (Kim and Jung, 2008; Jung et al., 2010; Kim et al., 2010; Kim et al., 2011). The extracted mites were mounted on the slides using polyvinyl alcohol (PVA) mounting medium (Downs, 1943; BioQuip, Rancho Dominquez, CA, USA). The
terminology and measurement were used following the standard methods described by Mahunka (1991) and Bayartogtokh (2010).

RESULTS AND DISCUSSION

Description of a new record to Korean inventory

Genus *Phauloppia* Berlese, 1908 민지게응애속 (신칭)

Calvoppia Jacot, 1934

Eporibatula Sellnick, 1928

Imparatoppia Jacot, 1934

Paraliodes Hall, 1911

Trichoribatula Balogh, 1961

Type species. *Zetes lucorum* C.L. Koch, 1841: Vol. 31 (18).

= *Oppia conformis* Berlese, 1895: Vol. 7(77).

Diagnosis. Adult relatively large in size; lamella very thin, located in the middle of prodorsum; 14 pairs of setae, four and five pairs of porose area in notogaster; pteromorpha not developed; five pairs of genital setae; legs usually tridactylous (Weigmann, 2006; Bayartogtokh, 2010).

Distribution. Holarctic region, Australia and Neotropical region Australian (as described in Subías, Online version 2012).

Phauloppia lucorum (C.L. Koch, 1841) 민지게응애 (신칭)(Figs. 1, 2)

Zetes lucorum C.L. Koch, 1841: Vol. 31(18).

Notaspis lucorum Michael, 1888: 371, pl. 30, figs. 1-5.

Oppia conformis Berlese, 1895: Vol. 7(77).

Eremaeus schneideri Oudemans, 1900a: 89; 1900b: 136, pl. 8, figs. 41, 42.

Eremaeus conjunctus Oudemans, 1902: 54; 1905: 205, pl. 8, figs. 12, 13.

Phauloppia conformis Sellnick, 1928: 37, fig. 86; Mahunka and Mahunka-Papp, 1995: 166, figs. 82-84.

Phauloppia lucorum Grandjean, 1948: 24; 1950: 344; Sellnick, 1960: 126; Travé, 1961: 336; Moraza et al., 1980: 17, fig. 64; Mahunka, 1991: 764, figs. 74-77; Pérez-Iñigo, 1993: 236, fig. 84C; Weigmann, 2006: 431, abb. 231a, b.

Material examined. One mite marked on the slide. Straw mat covering the cherry tree, Andong National University, Andong, Gyeongsangbuk-do, Korea, 8. I. 2012.

Diagnosis. Length of body 690 μm and width 471 μm. Body color yellowish brown. Cerotegumental layer covering the cuticle surface, well foveolate on the notogaster. Some ribs on the posterior margin of body also well observable.

Fig. 1. Microscopic image of *Phauloppia lucorum* (C.L. Koch, 1841).

Prodorsum: tip of rostrum nasiform, it is well observable also in lateral view, rostral setae (ro) setiform; lamellar and interlamellar ones blunt at tip. Decurrent from outer side of interlamella setae (in) to inner side of lamellar setae (le), costula thin; sensillus (ss) short and head spherical with granular surface structure.

Notogaster: wide, nearly round; anterior border of notogaster convex and posterior outline sinusous; fourteen pairs of ciliate notogastral setae and no considerable differences among the notogastral setae; four pairs of porose areas visible and Aa ribbon-shaped, very long, much longer than the others.

Ventral side: epimeral borders characteristically fused, composing a transversal band in front of genital aperture. Setal formula of epimera: 3-1-3-3, all epimeral setae simple and thin. epimeral surface irregularly ornamented with spots or weak polygonal reticulation; a similar, but a more regular sculpture observable on the ventral plate, some longitudinal ribs also present on it laterally.

Legs: all leg homotridactylous; femur, tibia and tarsi with porose areas; two round areas present on the tarsi.

Distribution. Korea (new record), Western and central parts of Europe, Mongolia (as described in Bayartogtokh, 2010).

Remarks. All the known of the genus *Phauloppia* were described as having four or five pairs of the porose. This species is having four pairs of porose among which Aa is found longer and narrow in comparison to other species belonging to this genus.

Deposition. NIBR No. NIBRIV0000325964.

Identifiers. Jiwon Kim, Badamdorj Bayartogtokh and Chuleui Jung.
Key to genera of the family Oribatulidae
Thor, 1929 in Korea

1. Lamella and translamella fully developed; 4 or 5 pairs of genital setae
 - Without continuous translamella; lamella reduced significantly or on a vague line
 2
 - Lamella is little convergent extending significant (partly with Cuspides); Translamella is well developed; 13-14 pairs of notogatral seta; 4 pairs of genital seta
 3
 Zygribatula Berlese, 1916
 - Lamella strongly convergent without Cuspides; translamella designed narrow; 14 pairs of notogastral seta; 4-5 pairs of genital seta
 Lucippia Berlese, 1908
 - The lamellae are fine line, not connected to bothridium; c1 and c2 situated close together; strong with 14 pairs of notogastral seta
 Phauloppia Berlese, 1908
 - Lamellae wide often extended to the top; fine with 13-14 pairs of notogastral seta
 Oribautla Berlese, 1895

Acknowledgements
This work was supported by a grant from the National Institute of Biological Resources (NIBR), Ministry of Environment of the Republic of Korea (NIBR20151201), and the Agenda Research Grant PJ009970042016 of Rural Development Administration of Korea. JK was supported by BioBK21 plus, Andong National University from MEST.

References
André, H.M. 1984. Notes on the ecology of corticolous epiphyte dwellers. 3. Oribatida. Acarologia 25:385-395.
André, H.M. 1985. Association between corticolous microarthropod communities and epiphytic cover on bark. Holarctic Ecology 8:113-119.
Bayartogtokh, B. 2010. Oribatid mites of Mongolia (Acari: Oribatida). KMK Scientific Press, Moscow (in Russian).
Berlese, A. 1895. Acari, Myriapoda et Scorpiones hucusque in Italia reperta 77.
Downs, W.G. 1943. Polyvinyl alcohol: a medium for mounting and clearing biological specimens. Science 97:539-540.
Grandjean, F. 1948. Au sujet des aires poreuses respiratoires porteées par les pattes chez les Oribates (Acariens). Bulletin du Muséum National d’histoire Naturelle 22(2): 344-351.
Jung, C., J.W. Kim, T. Marquardt and S. Kaczmarek. 2010. Species richness of soil gamasid mites (Acari: Mesostigmata) in fire-damaged mountain sites. Journal of Asia-Pacific Entomology 13:233-237.
Kim, J.W. and C. Jung. 2008. Abundance of soil microarthropods associated with forest fire severity in Samcheok, Korea. Journal of Asia-Pacific Entomology 11:77-81.
Kim, J.W. and C. Jung. 2012. List of oribatid mites in Korea. Korean Journal of Soil Zoology 16:58-71.
Kim, J.W., E.S. Keum and C. Jung. 2010. Comparison of soil microarthropods fauna with emphasis on oribatid mite in Pinus densiflora and Larix leptolepis forest stands in Bonghwa, Korea. Korean Journal of Soil Zoology 14:5-11.
Kim, J.W., E.S. Keum and C. Jung. 2011. Comparison of soil microarthropod composition and oribatid mite communities relative to the disturbance gradient. Korean Journal of Soil Zoology 15:14-20.
Koch, C.L. 1841. Deutschlands Crustaceen, Arachniden und Myriopoden, Regensburg, 31(18).
Mahunka, S. 1991. The oribatid (Acari: Oribatida) fauna of the Bátorliget nature reserves (NE Hungary). In: S. Mahunka (ed.), The Bátorliget Nature Reserves (after forty years). Hungarian Natural History Museum. pp. 727-783.
Mahunka, S. and L. Mahunka-Papp. 1995. The Oribatid species described by Berlese (Acari). Budapest: Hungarian Natural History Museum.
Michael, A.D. 1888. British Oribatidae. Vol. II. Ray Society. London.
Moraza, M.L., L. Herrera and C. Pérez-Iñigo. 1980. Estudio faunístico del macizo de Quinto Real. I. Acaros Oribatídios (Acari, Oribatei). Publicaciones de Biología de la Universidad de Navarra 1:1-24.
NIBR. 2013. National list of Korea [Inverterbrate III]. National Institute of Biological Resources.
Oudemans, A.C. 1900a. Zwei neue Acariden. Zoologischer Anzeiger 23:89-91.
Oudemans, A.C. 1900b. Bemerkungen über Sanremeser Acari. Tijdschrift voor Entomologie 43:129-139.
Oudemans, A.C. 1902. New list of Dutch Acari. 2nd part. Tijdschrift voor Entomologie 45:50-64.
Oudemans, A.C. 1905. Notes on Acari. XII series (Prarasitidae, Oribatidae, Tyroglyphidae). Tijdschrift der Nederlandsche Dierkundige Vereeniging 8:202-239.
Pérez-Iñigo, C. 1993. Fauna Iberica. Vol. 9. Acari, Oribatei, Poronata. Madrid: Museo Nacional de Ciencias Naturales.
Pernek, M., S. Wirth, S. Blomquist, D. Avtzis and J. Moser. 2012. New associations of phoretic mites on Pityokteines curvidens (Coleoptera, Curculionidae, Scolytinae). Open Life Sciences 7(1):63-68.
Sellnick, M. 1928. Formenkreis: Hornmilben, Oribatei. In: P. Brohmer, P. Ehrmann, G. Ulmer (eds.), Die Tierwelt Mitteleuropas. Leipzig: Quelle und Meyer. pp. 1-42.
Sellnick, M. 1960. Formenkreis: Hornmilben, Oribatei. Nachtrag. In: P. Brohmer, P. Ehrmann, G. Ulmer (eds.), Die Tierwelt Mitteleuropas. Leipzig: Quelle und Meyer. pp. 45-134.
Seniczak, S. and A. Seniczak. 2012. Differentiation of external morphology of Oribatulidae (Acari: Oribatida) in light of the ontogeny of three species. Zootaxa 3184:1-34.
Subías, L.S. 2004. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (1758-2002). Graellsia 60:3-305.
Subías, L.S. 2012. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (Excepto fósiles). [Available from: http://www.ucm.es/info/zoo/Artropodos/Catalogo.pdf, online version accessed in April 2012].
Travé, J. 1961. Contribution a l’étude des Oribatulidae (Oribates, Acariens). Vie et Milieu 12:315-351.
Weigmann, G. 2006. Acari, Actinochaetida. Hornmilben (Oribatida). Goecke & Evers, Keltern (in German).

Submitted: August 3, 2016
Revised: September 30, 2016
Accepted: October 13, 2016