Factors associated with DAA virological treatment failure and resistance-associated substitutions description in HIV/HCV coinfected patients

Dominique Salmon, Pascale Trimoulet, Camille Gilbert, Caroline Solas, Eva Lafourcade, Julie Chas, Lionel Piroth, Karine Lacombe, Christine Katlama, Gilles Peytavin, Hugues Aumaitre, Laurent Alric, François Boué, Philippe Morlat, Isabelle Poizot-Martin, Eric Billaud, Eric Rosenthal, Alissa Naqvi, Patrick Mialhès, Firouzé Bani-Sadr, Laure Esterle, Patrizia Carrieri, François Dabis, Philippe Sogni, Linda Wittkop; ANRS CO13 Hepavih study group
Marguerite, Service d’Immuno-hématologie clinique, Marseille 13274, France

Isabelle Poizot-Martin, Patrizia Carrieri, Sciences Economiques and Sociales de la Santé et Traitement de l’Information Médicale, UMR912 INSERM, Aix-Marseille Université, IRD, Marseille 13009, France

Eric Billaud, Department of Infectious Diseases, CHU de Nantes and CIC 1413, Inserm, Nantes 44000, France

Eric Rosenthal, Centre Hospitalier Universitaire de Nice, Service de Médecine Interne, Hôpital l’Arche, Nice 06202, France

Eric Rosenthal, Université de Nice-Sophia Antipolis, Nice 06100, France

Alissa Naqvi, Centre Hospitalier Universitaire de Nice, Service d’ Infectiologie, Hôpital l’Arche, Nice 06100, France

Patrick Mialhoes, Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon 69004, France

Firouze Bani-Sadr, Centre Hospitalier Universitaire de Reims, Service de Médecine Interne, Maladies Infectieuses et Immunologie Clinique, Reims 51100, France

Firouze Bani-Sadr, Faculté de Médecine EA-4684/SFR CAP-SAANTE, Université de Reims, Champagne-Ardenne, Reims 51100, France

Philippe Sogni, Assistance Publique des Hôpitaux de Paris, Hôpital Cochin, Service d’Hépatologie, Paris 75014, France

Philippe Sogni, Inserm U-1223 - Institut Pasteur, Paris 75015, France

Linda Wittkop, CHU de Bordeaux, Pôle de santé Publique, Service d’information médicale, Bordeaux F-33000, France

ORCID number: Dominique Salmon (0000-0002-6817-8951); Pascale Trimoulet (0000-0002-8371-381X); Camille Gilbert (0000-0003-3959-6174); Caroline Solas (0000-0002-0943-9648); Eva Lafourcade (0000-0001-8537-4201); Julie Chas (0000-0002-1001-9229); Lionel Piroth (0000-0003-4478-1032); Karine Lacombe (0000-0001-8772-9029); Christine Katlama (0000-0002-5862-3863); Gilles Peytavin (0000-0002-4359-537X); Hugues Aumaire (0000-0002-0023-7652); Laurent Alric (0000-0003-0676-7539); François Boué (0000-0003-0161-4533); Philippe Morlat (0000-0001-6474-383X); Isabelle Poizot-Martin (0000-0002-5676-5411); Eric Billaud (0000-0002-3420-1228); Eric Rosenthal (0000-0003-1010-0964); Alissa Naqvi (0000-0001-6474-383X); Patrick Mialhoes (0000-0002-7979-3829); Firouzé Bani-Sadr (0000-0001-8268-866X); Laure Esterle (0000-0002-1017-1327); Patrizia Carrieri (0000-0002-6794-4837); François Dabis (0000-0002-1614-8857); Philippe Sogni (0000-0003-3316-8785); Linda Wittkop (0000-0003-2403-0960).

Author contributions: All the authors contributed to this work

Supported by Inserm-ANRS (French National Institute for Health and Medical Research - ANRS/France REcherche Nord et Sud Sida-hiv Hépatites).

Institutional review board statement: The study was approved by the Institutional Review Board Ile de France III, Paris, France

Informed consent statement: A written informed consent was obtained from each participant to the study.

Conflict-of-interest statement: Dominique Salmon has been speaker and received invitation to conferences by Gilead, Abbott, and MSD. Laurent Alric received grant and personal fees from MSD, Gilead, Abbvie, Janssen and BMS outside the submitted work. Christine Katlama received consultancy fees and/or travel grants from MSD, Janssen, ViiV outside the submitted work. Karine Lacombe personal fees from Gilead, personal fees from Janssen, personal fees from Abbvie, personal fees from Merck outside the submitted work. Philippe Morlat received personal fees and non-financial support from GILEAD, Janssen, MSD and ViiV Health Care outside the submitted work. Gilles Peytavin received travel grants, consultancy fees or study grants from pharmaceutical companies including Abbvie, Bristol-Myers Squibb, Gilead sciences, Janssen, Merck and ViiV Healthcare outside the submitted work. Eric Rosenthal received personal fees from Gilead and Abbvie and travel grants, consultancy fees from Gilead, Abbvie, MSD and BMS outside the submitted work. Philippe Sogni received personal fees and non-financial support from Gilead, BMS, MSD Abbvie outside the submitted work. Caroline Solas received personal fees from Gilead, Abbvie, Janssen, MSD and ViiV Healthcare outside the submitted work. Linda Wittkop reports grants from ANRS during the conduct of the study; personal fees from Janssen, Gilead, MSD, outside the submitted work. Other authors had nothing to declare.

STROBE statement: The guidelines of the STROBE Statement have been adopted. The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Corresponding author to: Dominique Salmon, MD, PhD, Professor, Assistance Publique des Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Hôpital Hôtel Dieu, Unité des Maladies infectieuses et tropicales, Sorbonne Paris Cité, 1 place du Parvis Notre-Dame, Paris 75004, France. dominique.salmone@aphp.fr

Telephone: +33-1-42347956

Fax: +33-1-42348852

Received: June 15, 2018

Peer-review started: June 15, 2018

First decision: July 9, 2018

Revised: September 10, 2018

Accepted: October 10, 2018

Article in press: October 10, 2018

Published online: November 27, 2018
Abstract

AIM
To describe factors associated with treatment failure and frequency of resistance-associated substitutions (RAS).

METHODS
Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfected patients starting a first direct-acting antiviral (DAA) regimen before February 2016 and included in the French ANRS CO13 HEPAVIH cohort were eligible. Failure was defined as: (1) non-response [HCV-RNA remained detectable during treatment, at end of treatment (EOT)]; and (2) relapse (HCV-RNA suppressed at EOT but detectable thereafter). Sequencing analysis was performed to describe prevalence of drug class-specific RAS. Factors associated with failure were determined using logistic regression models.

RESULTS
Among 559 patients, 77% had suppressed plasma HIV-RNA < 50 copies/mL at DAA treatment initiation, 41% were cirrhotic, and 68% were HCV treatment-experienced. Virological treatment failures occurred in 22 patients and were mainly relapses (17, 77%) then undefined failures (3, 14%) and non-responses (2, 9%). Mean treatment duration was 16 wk overall. Post-treatment NS3, NS5A or NS5B RAS were detected in 10/14 patients with samples available for sequencing analysis. After adjustment for age, sex, ribavirin use, HCV genotype and treatment duration, low platelet count was the only factor significantly associated with a higher risk of failure (OR: 6.5; 95%CI: 1.8-22.6).

CONCLUSION
Only 3.9% HIV-HCV coinfected patients failed DAA regimens and RAS were found in 70% of those failing. Low platelet count was independently associated with virological failure.

Key words: Human immunodeficiency virus; Hepatitis C virus; Direct-acting antiviral; Treatment virological failure; Resistance associated mutations

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In co-infected human immunodeficiency virus-hepatitis C virus (HCV) patients, after adjustment for age, sex, ribavirin use, HCV genotype and treatment duration, low platelets count was the only factor significantly associated with a higher risk of failure.

INTRODUCTION
The treatment of hepatitis C virus (HCV) infection had been revolutionized with the recent development of direct-acting antiviral (DAA) combinations. Cure rates of over 90%, similar to those in HCV monoinfected patients, can now be achieved in human immunodeficiency virus (HIV)/HCV coinfected patients. This has been documented in clinical trials [1-5] as well as in real-life cohorts [6-9]. For the few patients failing treatment, resistance-associated substitutions (RAS) can emerge and emerging resistant strains appearing at viral rebound are a consequence rather than a cause of failure [10,11]. The real causes of failure to all-oral DAA regimens can be multiple. Several social and medical factors can jeopardize treatment adherence. Some first-generation regimens may not be optimal to treat difficult cases of hepatitis C, such as decompensated cirrhosis or genotype 3 HCV infection. In rare circumstances, especially for genotype 1a viruses, baseline mutations in the non-structural-5A (NS5A) gene can preexist in the viral species before treatment introduction and may have a potentially deleterious impact on sustained virological response (SVR) [12]. Drug-drug interactions between DAA and ARV therapy or other commonly prescribed medications in HIV/HCV coinfected patients are frequent and can decrease drug levels, thereby reducing the efficacy of therapy. Finally, adverse events, although rare with new DAA combinations, can occur and lead to treatment interruption and thus to treatment failure.

We aimed to describe the characteristics of patients failing first-line DAA treatment in the real-life French nationwide ANRS CO13 HEPAVIH cohort of HIV/HCV coinfected patients. Furthermore, we described the emergence of clinically relevant RAS to DAA classes upon DAA treatment failure, and report pharmacological drug monitoring results. Finally, we identified factors associated with the occurrence of virological treatment failure.

MATERIALS AND METHODS

Study population
The ANRS CO13 HEPAVIH cohort (ClinicalTrials.gov Identifier: NCT03324633) is a national multi-centre prospective hospital-based observational study of patients coinfected with HIV and viral hepatitis C that received approval by an Institutional Review board [Comité de Protection des Personnes (CPP) Ile de France III, Paris, France].

All patients included in the cohort gave their consent...
for study participation. In addition, patients from the 29 centers participating in the ANRS CO13 HEPAVIH cohort, who were not included in the cohort but who gave their consent for specific follow-up during and after DAA treatment, were also eligible. For this sub-study, patients were included if they had started an all-oral DAA-based regimen before January 2016 (3 mo treatment), February 2016 (2 mo treatment) or October 2015 (6 mo treatment). Patients who participated in completed and published clinical trials were included in the analysis. We did not include patients who were participating in an ongoing clinical trial (including those completed but not yet published), patients who were treated with combinations including Peg-interferon (PegIFN), or with the sofosbuvir (SOF) + ribavirin (RBV) combination. Patients with premature treatment interruption for intolerance or death were also excluded because we were specifically interested in a virological outcome. The DAA regimen was at the discretion of the patient’s physician[13-15].

Data collection and definitions
The following data were collected prospectively by each participating center, using an eCRF: Age, sex, risk factors for both HIV and HCV infections, HCV genotype, previous anti-HCV treatment, HIV-related characteristics, start and end dates of DAA treatment, initial doses of anti-HCV and anti-HIV drugs, any changes during follow-up, and HCV-RNA at each time point [baseline, week (W)2, W4, W8, W12 if treatment duration was 24 wk, EOT, follow-up W4 (FU-W4) and FU-W12]. Virological treatment failures were categorized as: (1) Non-response: HCV-RNA never undetectable during treatment; (2) Relapse: HCV-RNA undetectable at EOT and then detectable within the following 12 wk; and (3) Undefined failure: HCV-RNA unknown at end of treatment (EOT) and positive thereafter, without premature discontinuation of treatment. Cirrhotic status was based on liver biopsy (METAVIR fibrosis stage F4), liver stiffness \geq 12.5 kPa (FibroScan®, Echosens, France), a FibroTest® value \geq 0.75 (Biopredictive, France) or physical and biological signs of end-stage liver disease, as previously published[16,17].

Sequencing analysis
Patients with virological treatment failure, who provided specific consent for HCV genotype testing and who had HCV-RNA > 1000 IU/mL at the sequencing time point were included for HCV testing. Prevalence of drug class-specific RAS was evaluated at failure. The HCV NS3, NS5A and/or NS5B domains were amplified by reverse transcriptase nested polymerase chain reaction (PCR) using genotype and subtype-specific PCR primers to ensure successful amplification of the target gene(s). PCR products were purified and analyzed by population sequencing using an automated sequencer (ABI-3500xL Dx). The cutoff frequency for detecting variants with Sanger sequencing was approximately 15%. Sanger-derived sequences were aligned with Clustal\textsubscript{W}, version 1.74 (Conway Institute UCD, Dublin, Ireland). NS3, NS5A and NS5B RAS were defined as clinically relevant when inducing > 10-fold resistance to DAA[13,18-20].

Drug concentrations
Plasma drug concentrations for DAA and RBV were collected, when available, for patients included in the cohort as part of routine therapeutic drug monitoring performed in several centers. Drug concentrations were measured using liquid chromatography coupled with the tandem mass spectrometry method[21] Data were considered interpretable if concentrations were determined at steady-state and information regarding the time of the last drug intake was available.

A suboptimal concentration was defined as below the 2 μg/mL threshold for RBV[21,22], and when concentrations were below the reported expected range for DAA[24-27].

Statistical analysis
We included all patients who met the inclusion criteria, as described in the study population section. Variables are described as number and percentages, or median and IQR [or mean (SD)], as appropriate. Patient characteristics are reported upon initiation of DAA treatment. The Wilcoxon-Mann-Whitney test and Fisher’s exact test were used to compare quantitative and qualitative variables between groups, respectively. Factors associated with virological treatment failure were determined using logistic regression models. In order to identify new independent predictors of virological treatment failure, we systematically adjusted for a fixed set of potential confounders based on literature reports. The following variables were thus forced in all models: age, sex, RBV use, and prescribed treatment duration[28]. We then tested the following variables in the model containing the forced variables: HCV genotype (3 vs others), cirrhosis (Yes vs No), severe cirrhosis (Yes vs No, and defined by a B or C or an elastometry value ≥ 20 kPa), plasma HIV-RNA (detectable vs undetectable), and platelet count (< 100 Giga/L vs ≥ 100 Giga/L). The effect of RBV on virological treatment failure and other potential factors was assessed by a marginal structural model (MSM) in order to consider a potential indication bias for the prescription of RBV. Sensitivity analyses, including patients with premature treatment discontinuations for intolerance/death, were also performed. The statistical methods of this study were reviewed by Linda Wittkop from Bordeaux Population Health Research Center, Bordeaux. SAS software version 9.4 (SAS Institute Inc., Cary, North Carolina) was used for all analyses.

RESULTS

General characteristics at DAA initiation
Among 877 patients treated with DAA-combination, 559 met the inclusion criteria and were included in the analysis (318 were not included for the following reasons: Treatment with PegIFN ($n = 30$), inclusion...
in an ongoing clinical trial (n = 2), treatment after the period of analysis (n = 190), no available treatment result (n = 32), treatment with Sofosbuvir + Ribavirin (n = 60), premature treatment interruption for intolerance (n = 3), and one patient died while on treatment). Mean treatment duration was 16 wk overall (15 wk in patients who failed DAA therapy and 16 wk in those with SVR). The characteristics of the 559 patients are summarized in Table 1.

Table 1. Patient characteristics at treatment initiation according to virological response

	Overall (n = 559)	SVR (n = 537)	Virological treatment failure (n = 22)	P value
Male sex	431 (77)	414 (77)	17 (27)	0.985
Age (yr)	52 (49-56)	52 (49-56)	53 (51-57)	0.586
CD4 (/mm³)	618 (426-850)	619 (429-861)	527 (364-704)	0.040
Undetectable HIV-RNA (n = 558)	486 (87)	469 (88)	17 (27)	0.186
ARV treatment	549 (98)	527 (98)	22 (100)	1.000
PI	127 (23)	122 (23)	5 (23)	0.613
NNRTI	98 (18)	95 (18)	3 (14)	0.537
II	204 (37)	197 (37)	7 (32)	0.294
Others	120 (22)	113 (21)	7 (32)	0.475
Active tobacco consumption (n = 263)	153 (58)	148 (58)	5 (21)	0.703
Active alcohol consumption (n = 266)	135 (51)	132 (51)	3 (43)	0.719
Active drug consumption (n = 257)	7 (3)	7 (3)	0 (0)	1.000
HCV genotype (n = 558)				
1 without precision	26 (5)	24 (5)	2 (9)	
1a	232 (42)	221 (41)	11 (50)	
1b	64 (12)	64 (12)	0 (0)	
2	6 (1)	6 (1)	0 (0)	
3	62 (11)	60 (11)	2 (9)	
4	165 (30)	158 (30)	7 (32)	
5	1 (0)	1 (0)	0 (0)	
6	2 (0)	2 (0)	0 (0)	
Cirrhosis (n = 555)	209 (38)	200 (38)	9 (41)	0.748
Child Pugh, if cirrhosis (n = 189)				0.537
A	172 (91)	165 (91)	7 (88)	
B/C	17 (9)	16 (9)	1 (12)	
FIB-4 (n = 405)	2.1 (1.4-3.7)	2.1 (1.4-3.7)	3.3 (1.9-7.3)	0.313
FIB-4 > 3.25 (n = 405)	120 (98)	113 (89)	7 (50)	0.132
Elastometry (kPa) (≥ 115)	9 (6)	9 (6)	10 (67)	0.942
Elastometry > 12.5 kPa (≥ 115)	32 (28)	30 (27)	2 (50)	0.309
Elastometry ≥ 20 kPa (≥ 115)	17 (15)	16 (14)	1 (25)	0.478
HCV treatment history				0.570
Naïve	210 (38)	203 (38)	7 (32)	
Pretreated	349 (62)	334 (62)	15 (68)	
HCV viral load (log10 IU/mL) (n = 558)	6.09 (5.59-6.51)	6.09 (5.59-6.51)	6.04 (5.72-6.49)	0.886
Prothrombin rate (n = 298)	99 (89-100)	99 (89-100)	92 (82-100)	0.116
Prothrombin rate < 85% (n = 298)	54 (18)	50 (17)	4 (40)	0.087
Platelets (Giga/L) (n = 408)	171 (131-219)	171 (131-219)	148 (97-184)	0.168
Albumin (g/L) (n = 301)	41 (38-44)	41 (38-44)	42 (37-45)	0.939
Albumin < 35 g/L (n = 301)	26 (9)	24 (8)	2 (25)	0.146
DAA-combination				
Sofosbuvir + DCV + RBV	240 (43)	231 (43)	9 (41)	
Sofosbuvir + LDV + RBV	271 (49)	261 (49)	10 (46)	
Sofosbuvir + SMV + RBV	26 (4)	23 (4)	3 (14)	
Others	22 (4)	22 (4)	0 (0)	
Mean (SD) DAA treatment durationa	16 (6)	15 (5)	16 (6)	

Results are presented as number (as percentages in brackets) or median (IQR in brackets) unless stated otherwise. PI was boosted in 98 patients with SVR and in five patients with treatment failure; NNRTI molecule was rilpivirine in 60 patients with SVR and three with failure, and was efavirenz in 25 patients with SVR. PI molecule was raltegravir in 153 patients with SVR and four patients with failure, and was dolutegravir in 38 patients with SVR and two with treatment failure; Initial doses of DCV were 30, 60, 90 mg/d in respectively 57, 159 and 21 patients. The dose was unknown for the five other patients. NA: not applicable, no formal statistical comparison was performed as the prescription of the DAA regimen was chosen by each patient’s physician. SVR: Sustained virological response; ARV: Antiretroviral; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; DAA: All-oral direct-acting antiviral; Sofosbuvir; Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir.

Virological treatment failure

The virological treatment failure rate was 3.9% (95% CI: 2.5-5.9). Overall, 22 virological treatment failures were observed: Two non-responses, 17 relapses and three undefined virological treatment failures (HCV-RNA unknown at EOT). By univariate analysis (Table 1...)
Table 2 Adjusted logistic regression for factors associated with virological treatment failure

Covariables	Model 1		Model 2		Model 3		Model 4	
	OR (95% CI)	P value						
Age at treatment initiation (per 10 yr)	1.2 (0.6-2.4)	0.58	1.3 (0.7-2.5)	0.48	1.2 (0.6-2.4)	0.53	1.6 (0.7-4.0)	0.29
Ribavirin vs no ribavirin	1.0 (0.3-3.0)	0.97	1.1 (0.3-3.2)	0.93	1.0 (0.3-3.0)	0.97	1.4 (0.4-5.5)	0.61
Male sex vs female	1.0 (0.4-2.8)	0.98	0.9 (0.3-2.7)	0.92	1.0 (0.3-2.6)	0.97	0.8 (0.2-2.7)	0.69
Treatment duration 24 wk vs 12 wk	0.4 (0.1-1.4)	0.15	0.5 (0.2-1.5)	0.21	0.4 (0.1-1.4)	0.16	0.2 (0.0-1.0)	0.05
Platelet count < 100 Giga/L vs ≥ 100	6.5 (1.8-22.6)	0.004						
Cirrhosis vs no cirrhosis		1.4 (0.5-3.9)	0.51					
HIV-RNA detectable vs undetectable		2.1 (0.7-5.9)	0.17					
Severe cirrhosis vs no severe cirrhosis		2.1 (0.4-10.3)	0.35					
HCV genotype 3 vs others		0.9 (0.1-7.5)	0.91					

HCV: Hepatitis C virus; HIV: Human immunodeficiency virus.

1), patients with virological treatment failure had a significantly lower CD4 cell count (median 527 cells/mm3) compared to patients with SVR (619 cells/mm3; P = 0.040). They also more frequently had a platelet count below 100 Giga/L (P = 0.007) and a trend for more frequently having a prothrombin time < 85% (40% vs 17%, P = 0.087) and albumin < 35 g/L (25% vs 8%, P = 0.146). They also had a non-significant trend for less frequent HIV-RNA suppression (77% vs 88%, P = 0.186).

Factors associated with treatment failure

In adjusted models (Table 2), platelet count < 100 Giga/L was significantly associated with a higher probability of virological treatment failure (Model 4). However, clinical cirrhosis status (Model 1), severe cirrhosis status (Model 3) or blood albumin (data not shown) were not associated with a higher probability of failure. Neither HIV-RNA (Model 2) nor CD4 cell count (data not shown) were associated with virological treatment failure. In addition, in the model containing platelet count, a prescribed treatment duration of 24 wk was associated with a lower risk of virological treatment failure (Model 4). RBV use was not associated with outcome in adjusted logistic regression models, and this result was confirmed by an analysis using MSMs (data not shown).

Sensitivity analyses, including patients with premature treatment discontinuations for intolerance/death, showed similar results (data not shown).

HCV resistance at virological treatment failure

The results of RAS analysis in the 14 patients with virological treatment failure, in whom either mutation NS3, NS5A or NS5B could be sequenced, are presented in Table 3. Almost three quarters of patients with available data (10/14; 71%) had at least one detectable RAS at the time of virological treatment failure. In patients receiving an NS5A inhibitor-based regimen, 55% (6/11) had at least one detectable RAS at failure of DAA in real-world studies, and no study to date has focused on HIV coinfection. In studies of HCV among six treated with ledipasvir (LDV) with available NS5A RAS result, two developed resistance to LDV. Overall, in all patients with available genotype (n = 14), six (43%) presented at least one NS5A RAS, leading to a high level of resistance to NS5A inhibitors (> 10-fold resistance). In patients receiving NS3 protease inhibitors, 2/2 patients with available data had NS3 RAS upon virological treatment failure. The substitutions detected at failure were 80K, 170T, 174N and 168V, leading to a high level of resistance to most protease inhibitors.

Multiple RAS conferring a higher level of resistance were detected in three (21%) patients, including two with NS3 + NS5A RAS and one with NS3 + NS5A + NS5B RAS. These three patients were previously treated with PegIFN + RBV and were exposed to NS5A inhibitors but not NS3 inhibitors.

Pharmacological data

Nine of the 22 (41%) patients who had DAA therapy failure had measurements of DAA and/or RBV concentration at W2 or W4 of treatment, seven of which were interpretable. Among these seven patients, suboptimal concentrations were reported in two (29%). These low concentrations concerned either DCV (in a patient treated with SOF + DCV, whose ARV treatment was rilpivirine + raltegravir), or RBV (in a patient treated with SOF/LDV + RBV who was taking rilpivirine + dolutegravir).

DISCUSSION

In this cohort of HIV/HCV coinfected patients, who were treated with an interferon-free DAA regimen with or without RBV, we report a low virological treatment failure rate of 3.9%. Our results are similar to those observed in clinical trials[28] or previous real-world studies of HIV/HCV coinfection[6,7]. Most of these virological treatment failures were due to relapse (77%) followed by non-response (9%), while 14% were due to undefined virological treatment failures (HCV-RNA unknown at EOT).

Due to very high rates of SVR, it has been difficult to identify factors associated with virological treatment failure of DAA in real-world studies, and no study to date has focused on HIV coinfection. In studies of HCV and/or non-responders.
monoinfected patients, however, several factors have been found to be associated with virological treatment failure: severity of cirrhosis (assessed by presence of ascites), low albumin, low platelet count/high total bilirubin\(^1\ to \(^3\)), male sex\(^10,30,31\), and the preexistence of baseline RAS\(^{34,36}\).

In our study, we found that low platelet count was significantly associated with a higher rate of virological treatment failure. It is likely that low platelet count is a surrogate marker of cirrhosis, since we found an association between low albumin levels and low PT time by univariate analysis. However, we failed to observe a significant relationship between severe cirrhosis and failure. This might be due to the fact that in cases of severe cirrhosis, physicians adapted the treatment to each complex situation by extending the duration or by using RBV. This was the case for the SOF/LDV combination.

Regarding RAS in our study, we did not determine pretreatment RAS and we cannot exclude the possibility that some failures may be due to pre-existing RAS. However, at a population level, the effects of baseline RAS should not be performed for naïve patients but instead considered when retreatment is anticipated and wider-scale assessment of pharmacological data. Regarding RAS in our study, we did not determine pretreatment RAS and we cannot exclude the possibility that some failures may be due to pre-existing RAS. Nonetheless, this result did not remain significant by multivariable analysis and thus may also simply reflect a biased estimate.

Moreover, among seven patients with failure and interpretable pharmacological data, suboptimal blood concentrations of DAA were measured in two of them. These results could reflect different situations (drug interactions, suboptimal dosing errors, suboptimal adherence) and warrant both further investigation and wider-scale assessment of pharmacological data. However, a trend (by univariate analysis only) of velpatasvir/SOF vs SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution; NS3: Non-structural-3; NS5A: Non-structural-5A; NS5B: Non-structural-5B; SOF: Sofosbuvir; RBV: Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution; NS3: Non-structural-3; NS5A: Non-structural-5A; NS5B: Non-structural-5B; SOF: Sofosbuvir; RBV: Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution.

Pat	HCV treatment history	Treatment received	HCV genotype	Cirrhosis	ARV treatment	RAS	NS3	NS5A	NS5B
A	Pretreated	SOF + SMV 12 wk	1a	Yes	II	Q80K, I170T,	Abs	Abs	
B	Pretreated	SOF + SMV 12 wk	1a	Yes	II	D168V	Abs	Abs	
C	Pretreated	SOF + LDV 12 wk	4	No	PI	Abs	Abs	Abs	
G	Pretreated	SOF + DCV 10 wk\(^2\)	4	No	Others	Abs	Abs	Abs	
	Pretreated	SOF + LDV 12 wk	1a	No	PI	Abs	Abs	Abs	
I	Pretreated	SOF + DCV 13 wk\(^2\)	1a	Yes	NNRTI	Q80K	Abs	Abs	
M	Pretreated	SOF + LDV 12 wk	4	No	PI	ND	Abs	A421V	
N	Pretreated	SOF + LDV + RBV 12 wk	1a	No	PI	A168V	30E, 58D	Abs	
P	Pretreated	SOF + DCV + RBV 12 wk\(^2\)	1a	No	PI	Abs	Y93N	Abs	
Q	Pretreated	SOF + DCV + RBV 24 wk\(^2\)	1a	No	Others	T54S	Q30R	Abs	
R	Pretreated	SOF + DCV 24 wk\(^2\)	1a	Yes	II	Q80K	Y93C	Y448H	
W	Pretreated	SOF + DCV 24 wk\(^2\)	1a	Yes	II	Abs	Q30H	Abs	

1^Initial dose of DCV: 30 mg/d; 1^Initial dose of DCV: 60 mg/d; 1^Initial dose of DCV: 90 mg/d. Pat: Patient; ARV: Antiretroviral; RAS: Resistance-associated substitution; NS3: Non-structural-3; NS5A: Non-structural-5A; NS5B: Non-structural-5B; SOF: Sofosbuvir; RBV: Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution; NS5A: Non-structural-5A; NS5B: Non-structural-5B; SOF: Sofosbuvir; RBV: Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution.

The table above represents the resistance-associated substitution results in 14 patients with virological treatment failure for whom sequencing was performed in routine care. Patients were categorized based on their HCV treatment history, the treatment received, their HCV genotype, cirrhosis status, ARV treatment, and the presence of resistance-associated substitutions (RAS) in NS3, NS5A, and NS5B.

\[^1\]Initial dose of DCV: 30 mg/d; \[^2\]Initial dose of DCV: 60 mg/d; \[^3\]Initial dose of DCV: 90 mg/d. Pat: Patient; ARV: Antiretroviral; RAS: Resistance-associated substitution; NS3: Non-structural-3; NS5A: Non-structural-5A; NS5B: Non-structural-5B; SOF: Sofosbuvir; RBV: Ribavirin; DCV: Daclatasvir; LDV: Ledipasvir; SMV: Simeprevir; ND: Not done; PI: Protease inhibitor; NNRTI: Non-nucleoside reverse-transcriptase inhibitor; II: Integrase inhibitor; Abs: No substitution.

Table 3 Resistance-associated substitution results in 14 patients with virological treatment failure for whom sequencing was performed in routine care.
prescriptions were dependent on drug availability (with variations over time) and known efficacy with regards to HCV genotypes. Those results were obtained with second generation DAA (LDV, DCV, elbasvir/grazoprevir), and those results may not be entirely applicable to the newer, pangenotypic regimens such as velpatasvir/SOF or pibrentasvir/glecaprevir. Our analysis is limited by the small number of subjects with virological treatment failure, and thus likely has limited power to identify all potential risk factors. All patients with virological treatment failure could not be explored by genotyping to investigate the emergence of RAS due to the need to obtain patient consent. Furthermore, baseline genotyping was not available routinely, since this test is not recommended in France for treatment-naïve patients. Finally, Sanger sequencing was used for the detection of RAS, which may not be sensitive enough to detect minor populations of RAS (< 15%). The strengths of our study include prospective data collection with regular monitoring and high quality data.

In conclusion, our study identified that low platelet count is associated with a higher probability of DAA failure. This parameter likely reflects hepatic insufficiency, and our results are concordant with previously published findings on HCV monoinfected patients. We also speculate that some degree of low adherence could explain some cases of failure, since suboptimal drugs levels were observed in 29% of the cases that could be explored, and HIV viral load was often detectable in patients with virological treatment failure to DAA. This study confirms the very low rate of treatment failure with all-oral DAA in HIV/HCV coinfected patients, as well as the high risk of the emergence of non-structural NS3 or NS5A RAS in patients with virological DAA failure.

ARTICLE HIGHLIGHTS

Research background
In human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfected patients, all-oral direct-acting antiviral (DAA) regimens achieve virological cures in > 95% of patients.

Research motivation
Risk factors for failure are mainly related to severity of cirrhosis in HCV monoinfected patients, but are unknown in the population of HIV HCV coinfected patients. We wanted to know whether additional factors related to non-adherence or HIV status could be involved in the occurrence of failures. We believed that identifying the risk factors for failure would allow for the adaptation of treatment to patients with higher risk of failure.

Research objectives
The main objectives were to determine the risk factors for virological treatment failure to DAA in HIV/HCV coinfected patients and to describe the frequency of RAS.

Research methods
HIV/HCV coinfected patients who started the first DAA regimen before February 2016 and who were included in the French ANRS CO13 HEPAVIH cohort were eligible. Failure was defined as: i) Non-response (HCV-RNA remained detectable during treatment, at end of treatment (EOT)), ii) relapse (HCV-RNA suppressed at EOT but detectable thereafter). Sequencing analysis was performed to describe prevalence of drug class specific RAS. Factors associated with failure were determined using logistic regression models.

Research results
Research findings: Among 559 patients, 77% had suppressed plasma HVRNA < 50 copies/mL at DAA treatment initiation, 41% were cirrhotic, and 68% were HIV treatment-experienced. Virological treatment failures occurred in 22 patients and were mainly relapses (17, 77%) then undefined failure (3, 14%) and non-responses (2, 9%). Mean treatment duration was 16 wk overall. Post-treatment NS3, NS5A or NS5B RAS were detected in 10/14 patients with samples available for sequencing analysis. After adjustment for age, sex, RBV use, HCV genotype and treatment duration, low platelet count was the only factor significantly associated with a higher risk of failure (OR: 6.5; 95%CI: 1.8-22.6). Contributions to the field: In HIV/HCV coinfected patients, the risk factors of failure were more related to the severity of cirrhosis than to HIV immunovirological status or non-adherence issues. Problems that remain to be solved: It remains to be determined whether the low platelet count associated with a higher probability of failure reflects the severity of cirrhosis.

Research conclusions
In our study of HIV/HCV patients receiving all-oral DAA, only 3.9% HIV-HCV coinfected patients failed DAA regimens. RAS were found in 70% of those failing. Low platelet count was independently associated with virological failure. We think that this low platelet count reflects the severity of cirrhosis.

Research perspectives
As the treatment failure number is low, it would be useful to build international collaborations and gather data for several cohorts in order to gain significance power. The results obtained with first generation all-oral DAA could be compared with the newer, pangenotypic drug regimen.

ACKNOWLEDGMENTS
Patients of the ANRS CO13 HEPAVIH Cohort. Scientific Committee: Salmon D (co-Principal Investigator), Wittkop L (co-Principal Investigator), Sogni P (co-Principal Investigator), Esterle L (project manager), Trimboulet V, Izopet J, Serfaty L, Paradis V, Spire B, Carrière P, Valantin MA, Pialoux G, Chas J, Poizot-Martin I, Zaegel O, Laroche H; Virologie: Fourati S); APHP Cochin, Paris (Médecine Interne et Maladies Infectieuses: Bouchaud O, Gervais A, Lascoux-Combe C, Goujard V, Lacombe K, Duvivier C, Vittecoq D, Neau D, Morlat P, Bani-Sadr F, Meyer L, Boufassa F, Dominguez S, Autran B, Roque AM, Solas C, Fontaine H, Costagliola D, Piroth L, Simon A, Zucman D, Boué F, Miailhes P, Billaud E, Aumaître H, Rey D, Peytavin G, Petrov-Sanchez V, Pailhe A. Clinical Centres: APHP Cochin, Paris (Médecine Interne et Maladies Infectieuses: Salmon D, Usubillaga R; Hépato-gastro-entérologie: Sogni P; Anatomopathologie: Terris B; Virologie: Tremeaux P); APHP Pitié-Salpêtrière, Paris (Maladies Infectieuses et Tropicales: Kattama C, Valantin MA, Stitou H; Hépato-gastro-entérologie: Benhamou Y; Anatomopathologie: Charlotte F; Virologie: Fourati S); APHP Pitié-Salpêtrière, Paris (Médecine Interne: Simon A, Cacoub P, Nafissa S); APHP Sainte-Marguerite, Marseille (Service d’Immunono-Hématologie Clinique: Poizot-Martin I, Zaelgel O, Laroche H; Virologie: Tamea C); APHP Tenon, Paris (Maladies Infectieuses et Tropicales: Pialoux G, Chas J; Anatomopathologie: Callard P, Bendjaballah F; Virologie: Le Pendeven C); CHU Purpan, Toulouse (Maladies Infectieuses et
Tropicales: Marchoub B; Hépato-gastro-entérologie: Alric L, Barange K, Metivier S; Anatomo-pathologie: Selves J; Virologie: Larroquette F); CHU Archet, Nice (Médecine interne: Rosenthal E; Infectiologie: Naqv A, Rio V; Anatomopathologie: Haudebourg J, Saint-Paul MC; Virologie: Partouche C); APHP Avicenne, Bobigny (Médecine Interne - Unité VIH: Bouchaud O; Anatomopathologie: Ziol M; Virologie: Baazia Y); Hôpital Joseph Ducuing, Toulouse (Médecine Interne: Uzan M, Bicart-See A, Garipuy D, Ferro-Collados MJ; Anatomopathologie: Selves J; Virologie: Nicot F); APHP Bichat - Claude-Bernard, Paris (Maladies Infectieuses: Gervais A, Yazdanpanah Y; Anatomopathologie: Adle-Biassette H; Virologie: Alexandre G); APHP Saint-Louis, Paris (Maladies infectieuses: Lascoum-Combe C, Molina JM; Anatomopathologie: Bertheau P; Virologie: Chaix ML, Delaugerre C, Maylin S); APHP Saint-Antoine (Maladies Infectieuses et Tropicales: Lacombe K, Bottero J, Krause J, Girard PM; Anatomopathologie: Wendum D, Cervera P, Adam J; Virologie: Viala C); APHP Bicêtre, Paris (Médecine Interne: Goujard C, Quertainmont Y, Teicher E; Virologie: Pallier C; Maladies Infectieuses: Vitecco D); APHP Necker, Paris (Maladies Infectieuses et Tropicales: Lortholary O, Ruane PJ, Sulkowski MS, Townsend K, Kohli A, Nelson A, Seamon C, Meissner EG, Bon D, Silk R, Gross C, Price A, Sadiqi M, Siddharth S, Sims Z, Herrmann E, Hogan J, Teifer G, Talwani R, Proshan M, Jenkins V, Kleiner DE, Water BJ, Subramanian GM, Pang PS, McHutchinson JG, Polis MA, Fauci AS, Masur H, Kottili S; Virologie response following combined ledipasvir and sofosbuvir administration in patients with HCV genotype 1 and HIV co-infection. JAMA 2015; 313: 1232-1239 [PMID: 25706232 DOI: 10.1001/jama.2015.1373]

REFERENCES

1. Osinski A, Townsend K, Kohli A, Nelson A, Seamon C, Meissner EG, Bon D, Silk R, Gross C, Price A, Sadiqi M, Siddharth S, Sims Z, Herrmann E, Hogan J, Teifer G, Talwani R, Proshan M, Jenkins V, Kleiner DE, Water BJ, Subramanian GM, Pang PS, McHutchinson JG, Polis MA, Fauci AS, Masur H, Kottili S; Virologic response following combined ledipasvir and sofosbuvir administration in patients with HCV genotype 1 and HIV co-infection. JAMA 2015; 313: 1232-1239 [PMID: 25706232 DOI: 10.1001/jama.2015.1373]

2. Rockstroh JK, Nelson M, Katlama C, Lalzeri J, Mallolas J, Bloch M, Matthews GV, Saag MS, Zamor PJ, Orkin C, Gress J, Klopfer S, Shaugnessy M, Wahl J, Nguyen BY, Barr E, Plat HL, Robertson MN, Sulkowski MS. Efficacy and safety of grazoprevir and elbasvir (MK-8742) in patients with hepatitis C virus and HIV co-infection (C-EDGE CO-INFECTION): a non-randomised, open-label trial. Lancet HIV 2015; 2: e39-e47 [PMID: 26423374 DOI: 10.1016/S2352-3018(15)00114-149]

3. Sulkowski MS, Eron JJ, Wyles D, Trinh R, Lalzeri J, Wang C, Slim J, Bhatti L, Gatte J, Ruane PJ, Elion R, Bredeker F, Brennan R, Blick G, Khatri A, Gibbons K, Hub YB, Fredrick L, Schnell G, Pilot-Matias T, Tripathi R, Da Silva-Tillmann B, Mcgeovan B, Campbell AL, Podsadecki T. Ombitasvir, paritaprevir co-dosed with ritonavir, dabavir, and rilpivirin for the Treatment of Hepatitis C Virus in Patients co-infected with HIV-1: a randomized trial. JAMA 2015; 313: 1123-1311 [PMID: 25706092 DOI: 10.1001/jama.2015.1328]

4. Wyles D, Bráu N, Kottili S, Daar ES, Ruane P, Workowski K, Luetkemeyer A, Adeyemi O, Kim AH, Doehle B, Huang KC, Mogalian E, Osinski A, McNally J, Brannsd DE, McHutchinson JG, Maggie S, Sulkowski M; ASTRAL-5 Investigators. Sofosbuvir and Velpatasvir for the Treatment of Hepatitis C Virus in Patients Coinfected With Human Immunodeficiency Virus Type 1: An Open-Label, Phase 3 Study. Clin Infect Dis 2017; 65: 6-12 [PMID: 28369210 DOI: 10.1093/cid/cix260]

5. Wyles DL, Ruane PJ, Sulkowski MS, Dietrich D, Luetkemeyer A, Morgan TR, Sherman KE, Dretler R, Fishbein D, Gatt CJ Firth, Henn S, Hestsestra F, Huynh C, Donald C, Mills A, Overton ET, Ramgopal M, Rashbaum B, Ray G, Scarsella A, Vozvick J, McPhe C, Liu Z, Hughes E, Yin PI, Noviello S, Ackerman P; ALLY-2 Investigators. Daclatasvir plus Sofosbuvir for HIV in Patients Coinfected With HIV-1. N Engl J Med 2015; 373: 714-725
European AIDS Clinical Society. Guidelines version 8.0, 2015. Available from: URL: http://www.eacsociety.org/files/guidelines_8.0.en-web.pdf

Loko MA, Salomé JD, Comerford R, Winnock M, Mora M, Merchadou L, Gillet S, Pambrou E, Delaune J, Valantin MA, Poizot-Martlin L, Neau D, Bonnard P, Rosenthal E, Barange K, Morlat P, Lacombe K, Gervais A, Rouges F, See AB, Lascoux-Combe C, Vittecoq D, Gouard C, Dubivier C, Spire B, Izeot J, Sogni P, Serfaty L, Benhamou Y, Bani-Sadr F, Dabis F; ANRS CO 13 HEPAVH Study Group. The French national prospective cohort of patients co-infected with HIV and HCV (ANRS CO13 HEPAVH): early findings, 2006-2010. BMC Infect Dis 2010; 10: 303 [PMID: 20969743 DOI: 10.1186/1471-2334-10-303]

Mailhes P, Gilbert C, Lacombe K, Arens JE, Puoti M, Rockstroh JK, Sogni P, Fontaine H, Rosenthal E, Winnock M, Loko MA, Wittkop L, Dabis F, Salmon D, ESCMID European Study Group on Viral Hepatitis. Triple therapy with boceprevir or telaprevir in a European cohort of cirrhotic HIV/HCV genotype 1-coinfected patients. Liver Int 2015; 35: 2090-2099 [PMID: 25650873 DOI: 10.1111/liv.12799]

European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2016. J Hepatol 2017; 66: 153-194 [PMID: 27667367 DOI: 10.1016/j.jhep.2016.09.001]

Lery V, Angus P, Bronovicki JP, Dore GJ, Hezode C, Pianko S, Pol S, Stuart K, Tse E, McPhee F, Bhore R, Jimenez-Exposito MJ, Thompson AJ. Daclatasvir, sofosbuvir, and ribavirin for hepatitis C virus genotype 5 and advanced liver disease: A randomized phase III study (ALLY-3+). Hepatology 2016; 63: 1430-1441 [PMID: 26822022 DOI: 10.1002/hep.28473]

European Association for the Study of the Liver. EASL Recommendations on Treatment of Hepatitis C 2018. J Hepatol 2018; 69: 461-511 [PMID: 29650333 DOI: 10.1016/j.jhep.2018.03.026]

Rezk MR, Bendas ER, Basilous EB, Karim IA. Development and validation of sensitive and rapid UPLC-MS/MS method for quantitative determination of daclatasvir in human plasma: Application to a bioequivalence study. J Pharm Biomed Anal 2016; 128: 66-6 [PMID: 27232512 DOI: 10.1016/j.jpba.2015.05.016]

Solas C, Paré M, Quaranta S, Stanke-Labesque F; pour le groupe Suivi Thérapeutique Pharmacologique de la Société Française de Pharmacologie et de Thérapeutique. [Not Available]. Therapie 2011; 66: 221-230 [PMID: 27393202 DOI: 10.2515/therapie/2011036]

Sanzone D, Ghois J, Cassard B, Melica G, Poizot-Martin L, Solas C, Lascoux-Combe C, Bossuyt-Alias M, Katlama C, Lévy Y, Peytavin G. Erythrocyte and plasma ribavirin concentrations in the assessment of early and sustained virological responses to pegylated interferon-alpha 2a and ribavirin in patients coinfected with hepatitis C virus and HIV. J Antimicrob Chemother 2012; 67: 1449-1452 [PMID: 22396433 DOI: 10.1093/jac/dks045]

Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Reviews. Copegus, 2002: 21-511. Available from: URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21-411_Strattera_biopharm_P3.pdf

Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Reviews. Daklinza 206843 Orig1s000, 2014. Available from: URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/206843Orig1s000ClinPharmR.pdf

Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Reviews. Harvoni 205834 Orig1s000, 2014. Available from: URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/205834Orig1s000MedR.pdf

Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Reviews. Sofosbuvir (GS-7977) 204671Orig1s000, 2013. Available from: URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204671Orig1s000ClinPharmR.pdf

Wenzel TM, Petersen J, Herzer K, Ferenczi P, Gschwantler M, Wedeneyer H, Berg T, Spengler U, Weiland O, van der Valk M, Rockstroh J, Peck-Radosavljevic M, Zhao Y, Jimenez-Exposito
Salmon D et al. DAA failure in HIV/HCV coinfected patients

MJ, Zeuzem S. Daclatasvir plus sofosbuvir, with or without ribavirin, achieved high sustained virological response rates in patients with HCV infection and advanced liver disease in a real-world cohort. Gut 2016; 65: 1861-1870 [PMID: 27605539 DOI: 10.1136/gutjnl-2016-312444]

29 Chang CY, Nguyen P, Le A, Zhao C, Ahmed A, Daugherty T, Garcia G, Lutuchman G, Kumari R, Nguyen MH. Real-world experience with interferon-free, direct acting antiviral therapies in Asian Americans with chronic hepatitis C and advanced liver disease. Medicine (Baltimore) 2017; 96: e6128 [PMID: 28178174 DOI: 10.1097/MD.0000000000001628]

30 Dalgaard O, Weiland O, Noraberg G, Karlsen L, Hegelund L, Färkkilä M, Balslev U, Belard E, Överhus A, Skalski Kjær M, Krarup H, Thorup Raabe B, Hallager S, Madsen LG, Lund Laursen A, Løggen M, Weis N. Sofosbuvir based treatment of chronic hepatitis C genotype 3 infections-A Scandinavian real-life study. PLoS One 2017; 12: e0179764 [PMID: 28704381 DOI: 10.1371/journal.pone.0179764]

31 Ioannou GN, Beste LA, Chang MF, Green PK, Lowy E, Tsui JI, Su F, Berry K. Effectiveness of Sofosbuvir, Ledipasvir/Sofosbuvir, or Paritaprevir/Ritonavir/Ombitasvir and Dasabuvir Regimens for Treatment of Patients With Hepatitis C in the Veterans Affairs National Health Care System. Gastroenterology 2016; 151: 457-471.e5 [PMID: 27267053 DOI: 10.1053/j.gastro.2016.05.049]

32 Ippolito AM, Milella M, Messina V, Conti F, Cozzolongo R, Morisco F, Brancaccio G, Barone M, Santantonio T, Masetti C, Tundo P, Smedile A, Carretta V, Gatti P, Ternite AR, Valvano MR, Bruno G, Fabrizio C, Andreone P, Zappimbulso M, Gaeta GB, Napoli N, Fontanella L, Lauletta G, Cuccorese G, Metrangolo A, Francavilla R, Ciraci E, Rizzo S, Andriulli A. HCV clearance after direct-acting antivirals in patients with cirrhosis by stages of liver impairment: The ITAL-C network study. Dig Liver Dis 2017; 49: 1022-1028 [PMID: 28488083 DOI: 10.1016/j.dld.2017.03.025]

33 Jiménez-Macias FM, Cabanillas-Casafraña M, Maraver-Zamora M, Romero-Herrera G, García-García F, Correia-Varela-Almeida A, Cabello-Fernández A, Ramos-Lora M. Experience in real clinical practice with new direct acting antivirals in chronic hepatitis C. Med Clin (Barc) 2017; 149: 375-382 [PMID: 28416232 DOI: 10.1016/j.medcl.2017.03.007]

34 Kan H, Imamura M, Kawakami Y, Daijo K, Teraoka Y, Honda F, Nakamura Y, Morio K, Kobayashi T, Nakahara T, Nagaoka Y, Kawada T, Tsuge M, Aikata H, Haynes CN, Miki D, Ochi H, Honda Y, Mori N, Takaki S, Suzuki K, Chayama K. Emergence of drug resistance-associated variants and changes in serum lipid profiles in sofosbuvir plus ledipasvir-treated chronic hepatitis C patients. J Med Virol 2017; 89: 1963-1972 [PMID: 28657143 DOI: 10.1002/jmv.24885]

35 Terrault NA, Zeuzem S, Di Bisceglie AM, Lim JK, Pockros PJ, Frazier LM, Kuo A, Lok AS, Shiffman ML, Ben Ari Z, Akushevich L, Vainorius M, Sulikowski MS, Fried MW, Nelson DR; HCV-TARGET Study Group. Effectiveness of Ledipasvir-Sofosbuvir Combination in Patients With Hepatitis C Virus Infection and Factors Associated With Sustained Virologic Response. Gastroenterology 2016; 151: 1131-1140.e5 [PMID: 27565882 DOI: 10.1053/j.gastro.2016.08.004]

36 Sarrazin C, Dvory-Sobol H, Svarovskaia ES, Doehle BP, Pang PS, Chuang SM, Ma J, Ding X, Afldhal NH, Kowdle KY, Gane EJ, Lawitz E, Brailard MD, McHutchison JG, Miller MD, Mo H. Prevalence of Resistance-Associated Substitutions in HCV NS5A, NS5B, or NS3 and Outcomes of Treatment With Ledipasvir and Sofosbuvir. Gastroenterology 2016; 151: 501-512.e1 [PMID: 27296509 DOI: 10.1053/j.gastro.2016.06.002]

37 Charlton M, Gane E, Manns MP, Brown RS Jr, Curry MP, Kwo PY, Fontana RJ, Gilroy R, Teperman L, Muir AJ, McHutchison JG, Symonds WT, Brailard D, Kirby B, Dvory-Sobol H, Denning J, Arterburn S, Samuel D, Forns X, Terrault NA. Sofosbuvir and ribavirin for treatment of compensated recurrent hepatitis C virus infection after liver transplantation. Gastroenterology 2015; 148: 108-117 [PMID: 25304441 DOI: 10.1053/j.gastro.2014.10.001]

38 Rockstroh JK, Peters L, Grint D, Soriano V, Reiss P, Monforte Ad, Beniowski M, Losso MH, Kork O, Kupfer B, Mocroft A. EuroSIDA in EuroCoord. Does hepatitis C viremia or genotype predict the risk of mortality in individuals co-infected with HIV? J Hepatol 2013; 59: 213-220 [PMID: 23583272 DOI: 10.1016/j.jhep.2013.04.005]

39 Curry MP, O’Leary JG, Bzowej N, Muij AJ, Korenblat KM, Fenkel JM, Reddy KR, Lawitz E, Flamm SL, Schiano T, Teperman L, Fontana R, Schiff E, Fried M, Doehle B, An D, McNally J, Osinusi A, Brailard DM, McHutchison JG, Brown RS Jr, Charlton M; ASTRAL-4 Investigators. Sofosbuvir and Velpatasvir for HCV in Patients with Decompensated Cirrhosis. N Engl J Med 2015; 373: 2618-2628 [PMID: 26569658 DOI: 10.1056/NEJMoa1512614]

40 Bartolini G, Giombini E, Taibi C, Lionetti R, Montalbano M, Visco-Comandini U, D’Offizi G, Capobianchi MR, McPhee F, Garbuglia AR. Characterization of Naturally Occurring NS5A and NS5B Polymorphisms in Patients Infected with HCV Genotype 3a Treated with Direct-Acting Antiviral Agents. Viruses 2017; 9: pii: E212 [PMID: 28783119 DOI: 10.3390/v9080212]

41 Haflon P, Scholët C, Izojet P, Lrazar S, Trimmoulet P, Zoulain F, Afric L, Métivier S, Leroy V, Ouzan D, de Lédénghen V, Mohamed S, Pénaranda G, Khiri H, Thélou MA, Plazolles A, Chiche L, Boulitre M, Abbavanel F. Baseline and post-treatment hepatitis C NSSA resistance in relapsed patients from a multicentric real-life cohort. Antivir Ther 2018; 23: 307-314 [PMID: 28730994 DOI: 10.3851/IMP3184]
