Tranexamic acid in hip fracture surgery:
A systematic review and meta-analysis

Bashar Haj-Younes1, Brahman S Sivakumar2, Michael Wang3,
Vincent VG An4, Peter Lorentzos5 and Sam Adie6

Abstract
Aims: The primary objective of this review was to determine whether tranexamic acid (TXA) reduces transfusion rates in patients undergoing surgery for hip fractures. The secondary objective was to assess the effects of TXA on mortality and thromboembolic events in the same cohort. Methods: A systematic review of electronic databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We included randomized controlled trials comparing perioperative TXA in patients treated surgically for hip/proximal femoral fractures against placebo. The primary outcome was the proportion of patients requiring blood transfusion. Secondary outcomes were blood loss, mortality, and complications. Meta-analysis was performed using inverse variance and random effects model. Results: The pooled data from 10 studies involving 842 patients showed that the proportion of patients requiring blood transfusion was significantly less in the TXA group (risk ratio (RR) 0.72, 95% confidence interval (CI) 0.59–0.88). There was no difference between TXA and control groups when comparing mortality (RR 1.17, 95% CI 0.65–2.10), deep venous thrombosis (RR 1.14, 95% CI 0.43–3.06), pulmonary embolism (RR 0.53, CI 0.09–3.02), acute coronary syndrome (RR 1.52, CI 0.18–12.98), cerebrovascular events (RR 0.78, CI 0.16–3.68), or wound complications (RR 1.61, CI 0.51–5.13). Conclusion: There is evidence that TXA reduces the proportion of patients requiring blood transfusions when undergoing hip fracture surgery. However, the small sample size and low event rates for adverse effects preclude any definitive conclusions from being established regarding adverse effects. Future trials should be powered to further assess potential complications and determine the ideal dosage and regime.

Keywords
hip fracture, meta-analysis, orthogeriatrics, tranexamic acid

Date received: 23 June 2019; Received revised 15 September 2019; accepted: 22 October 2019

Introduction
Hip fractures are common and debilitating, posing a significant burden to both the individual and society. There was an estimated 16,518 hip fractures among adult Australians in 2006–2007, and this incidence is expected to rise secondary to an aging population. Thus, evidence-based guidelines to direct optimal peri- and intraoperative management are crucial.1,2 Almost all these fractures are treated operatively and may result in significant blood loss. Increased surgical blood loss is associated with diminished functional recovery and increased long-term mortality (particularly in this susceptible subset of patients).3

1 Department of Orthopaedics, Westmead Hospital, Westmead, New South Wales, Australia
2 Department of Orthopaedics, Hornsby Hospital, Hornsby New South Wales, Australia
3 Austin Health, Heidelberg, Australia
4 Royal Prince Alfred Hospital, University of Sydney, Sydney Medical School, Camperdown, New South Wales, Australia
5 Department of Orthopaedics, Nepean Hospital, Kingswood, New South Wales, Australia
6 Department of Orthopaedics, St George Hospital, Kogarah, New South Wales, Australia

Corresponding author:
Brahman S Sivakumar, Department of Orthopaedics, Hornsby Hospital, Palmerston Road, Hornsby, New South Wales 2077, Australia.
Email: brahmansivakumar@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The etiology of blood loss is multimodal, with increased fibrinolytic activity implicated. Strategies to counteract bleeding include preoperative optimization; intraoperative hypotensive anesthesia, administration of antifibrinolytic agents, autologous reinfusion, and meticulous hemostasis; and postoperative transfusion. Many of the approaches aimed to reduce this risk remain cost-inefficient, supply-limited, and replete with their own adverse events (including cerebral sequelae, infection, and transfusion-related lung injury).

Tranexamic acid (TXA) is a simple and inexpensive antifibrinolytic agent. A synthetic derivative of the amino acid lysine exerts its action by reversibly blocking lysine-binding sites on plasminogen, reducing its conversion to the active metabolite plasmin and thus the dissolution of fibrin. TXA can be administered both topically and parenterally. Utilization of TXA has been shown to reduce allogenic blood transfusion in a range of surgical fields (including dental, cardiothoracic, urological, and arthroplasty procedures). A Cochrane review showed that in an emergency surgical setting, TXA reduced the probability of receiving an erythrocyte transfusion by 30% (risk ratio (RR) 0.70, 95% confidence interval (CI) 0.52–0.94). Previous literature suggests that the use of TXA in hip fracture surgery diminishes blood transfusion requirement with low quality evidence, suggesting no increased risk of thrombotic events. However, limited numbers have limited interpretation of cause and effect.

Given its simplicity, wide availability, and cheapness, it is important to evaluate the effect of TXA in hip fracture patients, as diminished bleeding in this population may be greatly advantageous. Newer evidence should be incorporated to provide current best practice guidelines. Thus, this study analyzes the contemporary literature regarding the utility of TXA in hip fracture surgery and provides guidelines for future clinical use. The primary objective was to determine whether TXA reduces transfusion rates in patients undergoing surgery for hip fractures. The secondary objective was to assess the effects of TXA on mortality and thromboembolic events in this patient group.

Methods
A thorough systematic search was performed by two separate authors using electronic databases and references of relevant articles during December 2018 and updated in March 2019 in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search was not limited by date, language, or publication status. Electronic databases search included the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ISI Web of Science: Science Citation Index Expanded, and the WHO International Clinical Trials Registry Portal (refer Online Appendix 1 for search strategy). The references of all relevant articles were also screened.

Studies eligible for inclusion were randomized controlled trials comparing the effects of perioperative intravenous TXA (in any dosage or formulation) to a placebo or no TXA, in human patients greater than 18 years old treated surgically for hip/proximal femoral fractures (AO types 31-A and 31-B). All titles and abstracts were screened for potential eligibility. Full texts of relevant trials were
obtained and their bibliographies were screened. Authors of the trials were contacted for missing data. Authors of incomplete and unpublished trials were also contacted and asked for data.

The Cochrane collaboration’s risk of bias tool was used to assess the quality of included studies. The domains assessed for bias were sequence generation, allocation concealment, blinding, incomplete outcome data reporting, and selective outcome reporting.

The primary outcome assessed was the proportion of patients requiring a blood transfusion. Secondary outcomes included the number of units of blood transfused, mortality, and morbidity (including deep venous thrombosis, pulmonary embolism, acute coronary events, cerebrovascular events, and wound complications). Blood loss was initially intended to be included, but heterogeneity in the manner of collection and reporting precluded inclusion in this meta-analysis. Data were extracted from the text, tables, and
figures of all included studies. Statistical analysis was performed using review manager 5.3 (RevMan, version 5.3, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). The RR and 95% CI were the measurement used for dichotomous outcomes, while mean difference with 95% CI was used for continuous data. Heterogeneity was assessed using a combination of visual inspection of the forest plot as well as the standard χ^2 (p value < 0.10) and the I^2 statistic. The data from the trials were pooled using the generic inverse variance method with random effects model.

Results

Search results

The search yielded 235 unique results. Following full-text screening, 10 studies were deemed appropriate for inclusion in this study13–22 (refer Figure 1). All trials had a predetermined transfusion protocol and these also differed (Table 1).

A total of 842 patients were included in the 10 trials eligible for meta-analysis, with 415 patients receiving TXA and 427 patients receiving placebo or control. Refer to Online Appendix 2 for forest plots of all analyses included below. Cochrane Risk of Bias demonstrated largely low risk, with high risk in select studies with relation to blinding and incomplete data (Figure 2 and 3).

Transfusion

Patients who received TXA had a statistically significantly lower risk of requiring transfusion (RR 0.72, CI 0.59–0.88, $p = 0.002$). Only one trial measured units of blood transfused in a manner able to be included, but this was not statistically significant (RR 0.79, CI 0.60–1.03, $p = 0.09$) (Table 2).

Blood loss

Total blood loss was significantly lower in the TXA group compared to placebo patients (mean difference -266.75, CI -367.8 to -165.8, $p < 0.0001$; Table 2).

Mortality

Mortality at any timepoint was not statistically significantly different when comparing TXA and placebo patients (OR 1.17, CI 0.65–2.10, $p = 0.59$; Table 2).

Thromboembolic sequelae

Deep vein thrombosis. Rates of deep vein thrombosis were not statistically significant between TXA and placebo (RR 1.14, CI 0.43–3.06, $p = 0.79$).

Figure 2. Cochrane risk of bias tool summary.

Pulmonary embolism. Rates of pulmonary embolism were not statistically significant between TXA and placebo (RR 0.53, CI 0.09–3.02, $p = 0.48$).

Acute coronary syndrome. Rates of acute coronary syndrome were not statistically significant between TXA and placebo (RR 1.52, CI 0.18–12.98, $p = 0.70$).

Cerebrovascular accident. Rates of cerebrovascular accidents were not statistically significant between TXA and placebo (RR 0.78, CI 0.16–3.68, $p = 0.75$; Table 2).
Wound complications. The rate of wound complications was not significantly different between the two groups (RR 1.61, CI 0.51–5.13, \(p = 0.42 \); Table 2).

Discussion
Minimization of blood loss in the particularly susceptible population of the elderly undergoing surgical management of proximal femoral fractures is crucial. Although many trials have demonstrated a significant reduction of transfusion rates in elective hip surgery postutilization of TXA, little research has been performed in those undergoing emergency hip surgery. Hip fracture patients are very different from those undergoing elective hip surgery—they tend to be older and at higher risk of postoperative complications. Additionally, data regarding complications of TXA usage in any surgery are scarce (due to low occurrence rates), and it has been suggested that future trials be powered to focus on complications, rather than the established benefits.6

This review found a significant reduction in transfusion requirements in patients, where TXA was utilized, by 25%. A nonsignificant reduction in mean units transfused per patient was also noted, with no significant difference in mortality, thromboembolic events, or wound complications. These results are in keeping with prior research pertaining to elective hip surgery and all emergency operations.11,23

No significant differences in complications were noted between those receiving TXA and those that did not. Although not significant, a trend toward more frequent deep vein thrombosis, acute coronary syndromes, cerebrovascular events, and wound complications was noted in the TXA group; however, mortality and pulmonary emboli were diminished in this group. These results challenge previous suggestions that the utilization of TXA may promote a hypercoagulable state if used in hip fracture patients.21 Furthermore, it is unclear as to whether patients who did indeed suffer venous thromboembolic events had predisposing characteristics—future studies should aim to clarify this. Given their relatively low incidence, conclusions regarding these complications and the use of TXA are likely best drawn from registry-style studies.

A prior systematic review was identified, which reported moderate quality evidence that TXA reduces blood transfusion in hip fracture surgery, with low quality evidence, suggesting no increased risk of thrombotic events.24 However, low numbers do limit interpretation of cause and effect, and the current review has included a number of further studies that have since been published.

This systematic review is not without its limitations. Small sample size and low event rates limit the power of this review as well as the establishment of definitive recommendations. Although all included studies were randomized controlled and double blinded, only two performed an intention to treat analysis. Mortality and complications were included as secondary outcomes in only a subset of studies. Several papers reported incomplete outcome data, with resultant increased attrition bias. The dosage and frequency of TXA varied between trials, as did predetermined transfusion protocols and chemical thromboprophylaxis, which inevitably may have skewed the number of patients receiving transfusion. No mention was made of implementation of other blood minimization strategies (cell savers, and so on). Additionally, data were excluded from ongoing current trials, due to lack of communication from the authors, and may have altered the analysis.

Despite these limitations, this systematic review and meta-analysis demonstrate a significant reduction in transfusion requirements when TXA is utilized. Nonsignificant reductions in mean units transfused, mortality, deep venous thrombosis, and pulmonary emboli were also noted. This review supports the usage of TXA as an adjunct in the peri- and intraoperative management of patients with proximal femoral fractures. Future trials should be powered to further assess potential complications and determine the ideal dosage and regime.
Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Brahman S Sivakumar https://orcid.org/0000-0003-0890-2132
Vincent VG An https://orcid.org/0000-0002-9187-1252

Supplemental material
Supplemental material for this article is available online.

References
1. Australian and New Zealand Hip Fracture Registry (ANZHFR) Steering Group. Australian and New Zealand Guideline for Hip Fracture Care: Improving Outcomes in Hip Fracture Management of Adults. Sydney: Australian and New Zealand Hip Fracture Registry Steering Group, 2014.
2. Sivakumar BS, McDermott LM, Bell JJ, et al. Dedicated hip fracture service: implementing a novel model of care. ANZ J Surg 2013; 83(7–8): 559–563.
3. Lawrence VA, Silverstein JH, Cornell JE, et al. Higher Hb level is associated with better early functional recovery after hip fracture repair. Transfusion 2003; 43(12): 1717–1722.
4. Mannucci PM and Levi M. Prevention and treatment of major blood loss. N Engl J Med 2007; 356(22): 2301–2311.
5. Keating EM. Preoperative evaluation and methods to reduce blood use in orthopedic surgery. Anesthesiol Clin North Am 2005; 23(2): 305–313.
6. Klein HG, Spahn DR, and Carson JL. Red blood cell transfusion in clinical practice. Lancet 2007; 370(9585): 415–426.
7. Zimmerman LH. Causes and consequences of critical bleeding and mechanisms of blood coagulation. Pharmacotherapy 2007; 27(9 Pt 2): 45S–56S.
8. Goochie SM, Meier PM, Pereira LM, et al. Efficacy of tranexamic acid in pediatric craniosternostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology 2011; 114(4): 862–871.
9. Thiagarajamurthy S, Levine A, and Dunning J. Does prophylactic tranexamic acid safely reduce bleeding without increasing thrombotic complications in patients undergoing cardiac surgery? Interact Cardiovasc Thorac Surg 2004; 3(3): 489–494.
10. Fawzy H, Elmistekawy E, Bonneau D, et al. Can local application of tranexamic acid reduce post-coronary bypass surgery blood loss? A randomized controlled trial. J Cardiothorac Surg 2009; 4: 25.
11. Perel P, Ker K, Morales Uribe CH, et al. Tranexamic acid for reducing mortality in emergency and urgent surgery. Cochrane Database Syst Rev 2013; 1: CD010245.
12. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 115(4): 264–269.
13. Baruah RK, Borah PJ, and Haque R. Use of tranexamic acid in dynamic hip screw plate fixation for trochanteric fractures. J Orthop Surg (Hong Kong) 2016; 24(3): 379–382.
14. Haghhighi M, Ettehad H, Mardani-Kivi M, et al. Does tranexamic acid reduce bleeding during femoral fracture operation? Arch Bone Jt Surg 2017; 5(2): 103–108.
15. Lei J, Zhang B, Cong Y, et al. Tranexamic acid reduces hidden blood loss in the treatment of intertrochanteric fractures with PFNA: a single-center randomized controlled trial. J Orthop Surg Res 2017; 12(1): 124.
16. Sadeghi M and Mehr-Aein A. Does a single bolus dose of tranexamic acid reduce blood loss and transfusion requirements during hip fracture surgery? A Prospectively Randomized Double Blind Study in 67 patients. Acta Medica Iranica 2007; 45(6): 6.
17. Tengberg PT, Foss NB, Palm H, et al. Tranexamic acid reduces blood loss in patients with extracapsular fractures of the hip: results of a randomised controlled trial. Bone Joint J 2016; 98-B(6): 747–753.
18. Tian S, Shen Z, Liu Y, et al. The effect of tranexamic acid on hidden bleeding in older intertrochanteric fracture patients treated with PFNA. Injury 2018; 49(3): 680–684.
19. Vijay BS, Bedi V, Mitra S, et al. Role of tranexamic acid in reducing postoperative blood loss and transfusion requirements in patients undergoing hip and femoral surgeries. Saudi J Anaesth 2013; 7(1): 29–32.
20. Watts CD, Houdek MT, Sems SA, et al. Tranexamic acid safely reduced blood loss in hemi- and total hip arthroplasty for acute femoral neck fracture: a randomized clinical trial. J Orthop Trauma 2017; 31(7): 345–351.
21. Zufferey PJ, Miquet M, Quenet S, et al. Tranexamic acid in hip fracture surgery: a randomized controlled trial. Br J Anaesth 2010; 104(1): 23–30.
22. Luo X, He S, Lin Z, et al. Efficacy and safety of tranexamic acid for controlling bleeding during surgical treatment of intertrochanteric fragility fracture with proximal femoral nail anti-rotation: a randomized controlled trial. Indian J Orthop 2019; 53(2): 263–269.
23. Ker K, Edwards P, Perel P, et al. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. Br Med J 2012; 344: e3054.
24. Farrow LS, Smith TO, Ashcroft GP, et al. A systematic review of tranexamic acid in hip fracture surgery. Br J Clin Pharmacol 2016; 82(6): 1458–1470.