Avaliação da função gonadal em pacientes do sexo masculino com lúpus eritematoso sistêmico

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutor em Ciências

Área de concentração: Reumatologia
Orientador: Dr. Clovis Artur Almeida da Silva

São Paulo
2006
Soares, Pollyana Maria Ferreira

Avaliação da função gonadal em pacientes do sexo masculino com lúpus eritematoso sistémico / Pollyana Maria Ferreira Soares. -- São Paulo, 2006.

Tese(doutorado) -- Faculdade de Medicina da Universidade de São Paulo.

Departamento de Clínica Médica.

Área de concentração: Reumatologia.

Orientador: Clovis Artur Almeida da Silva.

Descritores: 1. Lúpus eritematoso sistémico 2. Homens 3. Testículos 4. Sêmen 5. Hormônios 6. Ultra-sonografia

USP/FM/SBD-339/06
AGRADECIMENTOS
Ao Dr. Clovis Artur Almeida da Silva, Chefe da Unidade de Reumatologia Pediátrica do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, orientador deste trabalho, amigo e maior incentivador. Exemplo de competência, ética e profissionalismo.

À Profa. Dra. Eloísa Silva Dutra de Oliveira Bonfá, Titular da Disciplina de Reumatologia da Faculdade de Medicina da Universidade de São Paulo, pela oportunidade oferecida, confiança em mim depositadas e ajuda sempre disponível.

Ao Dr. Eduardo Ferreira Borba Neto, médico assistente da Disciplina de Reumatologia da Faculdade de Medicina da Universidade de São Paulo. Agradeço pela co-orientação e pelas contribuições fundamentais para a realização deste trabalho.

Ao Dr. Jorge Hallak e Dr. Marcelo Coccuza do Centro de Reprodução Assistida do HC-FMUSP pelos exames urológicos realizados nos pacientes.

Ao Dr. André Luiz Corrêa pela realização dos exames ultra-sonográficos.

Aos grandes amigos Ana Júlia Pantoja de Moraes e Marcos Jiro pela sua sincera amizade e apoio, essenciais na execução deste trabalho.

Às biomédicas do Centro de Reprodução Assistida do HC-FMUSP: Aline Braga, Rosa Casemiro e Kelly Athayde pela realização dos exames seminais.

Aos funcionários do Centro de Reprodução Humana Assistida do HC-FMUSP, pela sua simpatia e disponibilidade.
Aos meus pais, *Raimundo e Lilia*, pelo amor, dedicação, apoio, estímulo e compreensão. Agradeço pelo exemplo de ética e humanidade e por terem me oferecido todo o necessário para que chegasse até aqui.

Ao *Jefferson*, pelo amor, compreensão e estímulo que me ajudaram a perseverar e ter determinação para conclusão deste trabalho.

A *Pedro Barroso* e *Socorro Barroso*, por eu me encontrar hoje aqui entre vocês e poder ter realizado este trabalho.

À minha prima *Patrícia Borges* e *sua família* pelo acolhimento e apoio.

Aos colegas da *Unidade de Reumatologia Pediátrica*.

À equipe do SAME e arquivo médico pela aquisição dos prontuários.

Aos *pacientes* que foram a razão desta pesquisa e aos *controles voluntários*. Agradeço pela sua paciência e disponibilidade. Espero ter contribuído para oferecê-los melhor qualidade de vida.

À Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP, pelo auxílio financeiro ao presente trabalho e incentivo à pesquisa no nosso país.
Esta tese está de acordo com as seguintes normas, em vigor no momento desta publicação:

Referências: adaptado de *International Committee of Medical Journals Editors* (Vancouver)

Universidade de São Paulo. Faculdade de Medicina. Serviço de Biblioteca e Documentação. *Guia de apresentação de dissertações, teses e monografias*. Elaborado por Anneliese Carneiro da Cunha, Maria Julia de A. L. Freddi, Maria F. Crestana, Marinalva de Souza Aragão, Suely Campos Cardoso, Valéria Vilhena. 2ª ed. São Paulo: Serviço de Biblioteca e Documentação; 2005.

Abreviaturas dos títulos dos periódicos de acordo com *List of Journals Indexed in Index Medicus*.
Sumário

Lista de Tabelas
Resumo
Summary

1 INTRODUÇÃO ... 2
2 OBJETIVOS .. 5
3 MÉTODO .. 7
 3.1 Casuística ... 7
 3.2 Metodologia ... 8
 3.2.1 Avaliação neurológica ... 8
 3.2.2 Ultra-sonografia testicular com Döppler 9
 3.2.3 Análise seminal .. 9
 3.2.4 Anticorpos anti-espermatozoides 11
 3.6.5 Perfil hormonal .. 12
 3.3 Avaliação clínica, laboratorial e tratamento do LES 12
 3.4 Análise estatística .. 13
4 RESULTADOS .. 15
 4.1 Pacientes com LES ... 17
 4.2 Avaliação urológica e ultra-sonografia testicular com Döppler ... 17
 4.3 Anticorpos anti-espermatozóides 19
 4.4 Perfil hormonal ... 19
 4.5 Características demográficas, manifestações clínicas, atividade de doença e dano cumulativo 20
 4.6 Avaliação do tratamento prévio e atual 21
5 DISCUSSÃO .. 25
6 CONCLUSÕES ... 31
7 ANEXOS ... 33
8 REFERÊNCIAS ... 44
APÊNDICE
LISTA DE TABELAS
Tabelas

Tabela 1 – Análise do sêmen dos pacientes com LES e dos controles .. 16

Tabela 2 – Avaliação do volume testicular pelo Prader e pela ultra-sonografia, e varicocele nos pacientes com LES de acordo com as alterações do sêmen 18

Tabela 3 – Perfil hormonal dos pacientes com LES de acordo com as alterações do sêmen ... 20

Tabela 4 – Terapia medicamentosa nos pacientes com LES de acordo com as alterações do sêmen 22
RESUMO
Objetivo: Avaliar a função gonadal de pacientes do sexo masculino com lúpus eritematoso sistêmico (LES).

Métodos: 35 pacientes do sexo masculino com LES (critérios do Colégio Americano de Reumatologia) foram avaliados prospectivamente segundo características demográficas, manifestações clínicas, tratamento prévio e atual da doença, avaliação urológica, ultra-sonografia testicular com Döppler, perfil hormonal, análise do sêmen incluindo morfologia e detecção de anticorpos anti-espermatozóides, e esses pacientes foram comparados com 35 controles saudáveis pareados para idade.

Resultados: Os pacientes com LES apresentaram medianas reduzidas do: volume testicular em ambos os testículos (p=0,003 e p=0,004), número total de espermatozóides (p=0,002) e número total de espermatozóides móveis em relação aos controles. Assim como, a média de volume do sêmen e a percentagem de formas normais de espermatozóides foram menores nos pacientes com LES versus controles (p=0,015 e p=0,015). Todos os pacientes com LES apresentaram alterações do sêmen e por isso foram subdivididos de acordo com a gravidade destas alterações em: grupo A com 18 pacientes (teratozoospermia) e grupo B com 17 pacientes (azoospermia ou teratozoospermia, em associação com oligozoospermia e/ou astenozoospermia. A freqüência do uso da pulsoterapia com ciclofosfamida endovenosa (PCE) após a espermarca foi maior no grupo B em relação ao grupo A (p=0,001), assim como as medianas da dose cumulativa de PCE (p=0,005), número de pulsos (p=0,005) e duração da PCE (p=0,006). Além disso, as medianas dos volumes testiculares por ultra-sonografia, em ambos os testículos, foram menores no grupo B em relação ao grupo A (p=0,001 e p=0,001). Os níveis elevados de FSH foram também maiores no grupo B em relação ao A (p=0,018).
Conclusões: Pacientes com LES têm uma alta frequência de alterações do sêmen associadas a redução do volume testicular. A utilização de PCE após a espermarca foi o principal fator de uma potencial lesão testicular definitiva.

Descritores: 1. Lúpus eritematoso sistêmico; 2. Homens; 3. Testículo; 4. Sêmen; 5. Hormônios; 6. Ultra-sonografia
Objective: To assess gonadal function in male systemic lupus erythematosus (SLE) patients.

Methods: Thirty-five consecutive male SLE patients (American College Rheumatology criteria) were prospectively evaluated for demographic, clinical features, previous and current treatment, urologic evaluation, testicular Döppler ultrasound, hormone profile, semen analysis including morphology and anti-sperm antibodies, and to compare them to 35 age-matched healthy controls.

Results: SLE patients had a lower median testicular volume in both testes (p=0.003 and p=0.004), total sperm count (p=0.002) and total motile sperm count (p=0.004) compared to controls. Likewise, the mean sperm volume and percentage of normal sperm forms were lower in SLE versus controls (p=0.015 and p=0.015). Since all SLE patients (100%) had semen alterations they were further subdivided according to the severity of theses abnormalities in: group A with 18 patients (teratozoospermia) and group B with 17 patients (azoospermia or teratozoospermia in combination with oligozoospermia and/or asthenozoospermia). Of note, the frequency of intravenous cyclophosphamide (IVCYC) after the first ejaculation was higher in group B than in A (p=0.001), likewise the higher median cumulative dose (p=0.005), number of pulses (p=0.005), and duration of IVCYC (p=0.006). Moreover, the medians of testicular volume measured by ultrasound in both testicles were lower in group B compared to A (p=0.001 and p=0.001). Interestingly, elevated FSH levels were higher in group B compared to A (p=0.018).

Conclusions: SLE patients have a high frequency of sperm abnormalities associated with reduced testicular volume. The post-pubertal IVCYC use was the major factor of permanent potential damage to the testes.
Descriptors: 1. Systemic lupus erythematosus; 2. Male; 3. Gonadal; 4. Sperm; 5. Hormone; 6. Ultrasound
INTRODUÇÃO
1 Introdução

O lúpus eritematoso sistêmico (LES) é uma doença auto-imune de etiologia desconhecida que acomete principalmente mulheres em idade reprodutiva, com uma relação sexo feminino:masculino de aproximadamente 9:1 na maioria dos estudos \(^1\) \(^2\).

A sobrevida e o prognóstico de LES têm melhorado nas últimas décadas. Como estes estão sobrevivendo, há uma maior preocupação na melhora da qualidade de vida destes pacientes. Com isso, tornando-se adolescentes e adultos, os pacientes do sexo masculino com LES frequentemente apresentam questionamentos sobre sua sexualidade e fertilidade futura.

Muitos fatores são capazes de interferir na função gonadal de homens com LES. De fato, na população em geral as alterações do sêmen estão frequentemente relacionadas à idade \(^3\) \(^4\), anormalidades no sistema urogenital (por exemplo: varicocele, orquite, câncer testicular, caxumba) \(^5\), drogas [particularmente pulsoterapia com ciclofosfamida endovenosa (PCE)]
e menos frequentemente à presença de anticorpos anti-espermatozóides.

Embora estas condições sejam reconhecidas, existem poucos estudos na literatura avaliando a função gonadal de homens com LES, assim como a sua relevância nas alterações do sêmen, que podem ter correlação com um potencial de infertilidade. Nestes aspectos, nós recentemente avaliamos quatro pacientes adolescentes do sexo masculino com LES e identificamos teratospermia em dois pacientes e alterações mais graves nos espermatozóides em outros dois, nestes últimos as anormalidades do sêmen estiveram associadas ao uso de PCE no momento do estudo.

A atividade da doença pode ser um fator adicional que contribua para um possível dano testicular, no LES essa hipótese é reforçada pelo relato de um caso de vasculite testicular e pela presença de anticorpos anti-espermatozóides associados a anticorpos anti-DNA de dupla hélice em 42% desses pacientes. Além disso, disfunção do eixo hipotálamo-hipófise-pituitária [como níveis elevados de gonadotropinas (FSH, LH)] e hipoandrogenismo (baixos níveis de testosterona e níveis elevados de LH)] foram descritos no LES e podem ser uma conseqüência da lesão do epitélio seminífero.

Deste modo é importante a realização de uma análise seminal detalhada nos pacientes com LES para avaliar a função gonadal, assim como determinar sua associação com manifestações clínicas, atividade de doença, tratamento prévio e atual, bem como com avaliação urológica, ultra-
sonografia testicular com Doppler, perfil hormonal e presença de anticorpos anti-espermatozóides.
OBJETIVOS
2 Objetivos

1. Avaliar associação entre anormalidades dos parâmetros do sêmen e exame urológico em pacientes com LES e grupo controle.

2. Avaliar associação entre as alterações do sêmen nos pacientes com LES e: características demográficas, manifestações clínicas, atividade da doença, dano cumulativo, terapêuticas utilizadas, exame urológico, ultra-sonografia testicular, perfil hormonal e presença de anticorpos anti-espermatozóides.
MÉTODO
3 Método

3.1 Casuística

Setenta e cinco pacientes do sexo masculino com idade entre 15 e 45 anos, regularmente acompanhados na Unidade de Reumatologia Pediátrica e no Ambulatório de Lúpus da Divisão de Reumatologia do Hospital das Clínicas da Universidade de São Paulo, foram selecionados para este estudo entre janeiro de 2003 e janeiro de 2006. Todos os pacientes preencheram os critérios de classificação do Colégio Americano de Reumatologia para o diagnóstico de LES. Os critérios de exclusão foram hidrocele, hipospádia, criptorquidia, infecção testicular (como caxumba), câncer testicular, orquite, vasculite testicular, lesão uretral, histórico de cirurgia testicular ou inguinal (tais como: varicocelectomia, vasectomia ou herniorrafia), diabetes mellitus, história anterior ou atual de alcoolismo e tabagismo. Ao final do estudo, 35 pacientes foram incluídos e 41 foram excluídos: recusa do paciente (n=31), avaliação incompleta (n=9) e vasectomia prévia (n=2). O grupo controle foi formado por 7 adolescentes saudáveis regularmente acompanhados na Unidade de Adolescentes e 28
adultos saudáveis antes da realização de vasectomia na Divisão de Urologia do Hospital das Clínicas da Universidade de São Paulo. A Comissão de Pesquisa e Ética do Hospital das Clínicas da Faculdade de Medicina aprovou o estudo e consentimento informado foi obtido de todos os participantes e quando necessário de seus responsáveis.

3.2 Metodologia

3.2.1 Avaliação urológica

Exame clínico sistemático da genitália foi realizado pelo mesmo urologista e incluiu avaliação dos testículos, epidídimos, vasos deferentes, escroto e pênis. As características sexuais secundárias foram avaliadas de acordo com os critérios de Marshall e Tanner para modificações pubertárias 19. Os volumes testiculares foram obtidos utilizando-se o orquidômetro de Prader, que consiste de 12 modelos elipsóides que variam de 1 a 25 ml 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20 e 25. O volume testicular normal em adolescentes pós-púberes e adultos brasileiros varia de 12 a 25 ml 21. Os pacientes foram examinados em uma sala quente, com temperatura superior a 22°C, nas posições deitada e supino, com e sem manobra de Valsalva. Varicocele foi classificada em graus de acordo com os critérios: grau I (pequena) palpável apenas com manobra de Valsalva, grau II (média)
palpável com paciente em pé, e grau III (grande) palpável e visível através da pele da bolsa escrotal com paciente em pé 22.

3.2.2 Ultra-sonografi a testicular com Döppler

Ultra-sonografia foi realizada pelo mesmo ultra-sonografista utilizando sonda de 14-MHz (Logic 9-GE- Montana). Este desconhecia o resultado da análise do sêmen dos pacientes. Os testículos foram medidos nos planos axial e longitudinal e foram obtidas no mínimo duas medidas de largura, comprimento e espessura. A maior medida em cada dimensão foi registrada e usada para calcular o volume testicular de acordo com a fórmula para uma elipse (largura X comprimento X espessura X 0,52). O valor normal do volume testicular em adolescentes pós-púberes e adultos é de 15 ± 8 ml 23.

3.2.3 Análise seminal

A análise do sêmen foi realizada de acordo com os critérios da Organização Mundial de Saúde (OMS) 5, 24. Todos os pacientes com LES e os controles forneceram no mínimo uma amostra de sêmen, que foi obtida por auto-masturbação em sala de coleta no laboratório e processada dentro de uma hora de liquefação após abstinência sexual de 48 a 72 horas, com intervalo de um mês entre a primeira e segunda coletas. Aliquotas de sêmen
foram liquefeitas a 37°C por 30 minutos, concentração e motilidade dos espermatozóides foram determinadas manualmente sob microscópio com objetiva de fase-contraste com aumento de 20X e uma ampliação de 200X. Imagens microscópicas foram transferidas através de um sistema de vídeo para um analisador de sêmen assistido por computador, acoplado a um microscópio óptico e digitalizado, de acordo com um programa de software especial. As amostras foram analisadas por contagem manual assim como por um Sistema de Análise Seminal Assistido por Computador (CASA) sob uma amplificação de 400X, utilizando o Hamilton Thorne Research (HTM-2030, USA). Cada slide foi escaneado para estimar o número de espermatozoídes por campo equivalente a 1 ml, para se obter uma concentração de espermatozóides aproximada em milhões de espermatozóides por ml de sêmen. Esta estimativa foi usada para determinar os critérios de diluição que seguem: <15 espermatozóides, diluição 1:5; 15-40 espermatozóides, diluição 1:10; 40-200 espermatozóides, diluição 1:20; e >200 espermatozóides, diluição 1:40. A motilidade dos espermatozóides foi determinada pela análise de no mínimo cinco campos microscópicos de maneira sistemática para classificar 200 espermatozóides. A motilidade de cada espermatozóide foi graduada em: grau “a” (progressiva rápida), “b” (progressiva lenta), “c” (não progressiva) e “d” (imóvel). A morfologia dos espermatozóides incluiu avaliação em duplicata da cabeça, pescoço, peça intermediária e cauda por duas biomédicas que não sabiam o diagnóstico dos pacientes. O paciente foi considerado com azoospermia quando não foram encontrados espermatozóides no ejaculado.
Oligozoospermia foi definida como uma concentração de espermatozóides menor que 20 milhões/ml. Astenozoospermia foi definida como motilidade dos espermatozóides ("a" + "b") menor que 50%. Teratozoospermia foi definida como morfologia normal dos espermatozóides menor que 30% e oligoastenoteratozoospermia como alteração das três variáveis. Morfologia dos espermatozóides também foi determinada pelo critério estricto de Kruger com um ponto de corte de 14% de formas normais dos espermatozóides.

3.2.4 Anticorpos anti-espermatozóides

A determinação da presença de anticorpos anti-espermatozóides foi realizada nas primeiras amostras de sêmen pelo teste direto com Immunobead utilizando kits de imunoglobulina de coelho anti-humana Immunobead® (IgA, IgG e IgM) (Irvine Scientific, Santa Ana, CA). O teste direto com Immunobead detecta anticorpos que se ligam à superfície celular do espermatozóide (cabeça, peça intermediária e/ou cauda do espermatozóide). No mínimo 50% dos espermatozóides móveis ("a" + "b") devem estar ligados com os Immunobeads para que o teste seja considerado de importância clínica.
3.2.5 Perfil hormonal

Determinações hormonais foram realizadas no início do estudo e resultados anormais foram repetidos e confirmados. Hormônio folículo estimulante (FSH), hormônio luteinizante (LH), prolactina, testosterona total, triiodotironina (T3), tetraiodotironina (T4), T4 livre e hormônio estimulante da tireóide (TSH) foram determinados por fluoroimunoensaio utilizando kits DELPHIA® (WALLAC Ou, Turku, Finland).

3.3 Avaliação clínica, laboratorial e tratamento do LES

A avaliação clínica foi realizada pelo mesmo reumatologista (PMFS) e consistiu na revisão de dados sobre manifestações clínicas, achados laboratoriais e terapêuticas utilizadas. Os dados foram obtidos dos prontuários e registrados em protocolo específico. As manifestações clínicas do LES foram definidas como: lesões cutâneas (rash malar, lúpus discóide, úlceras orais, vasculites e fotosensibilidade), comprometimento articular (artralgias ou artrites não-erosivas), doença neuropsiquiátrica (convulsão, psicose, depressão ou neuropatia periférica), envolvimento renal (proteinúria ≥ 0,5g/24h, presença de cilindros celulares, hematúria persistente com ≥ 10 hemácias/campo ou insuficiência renal), doença cardió-pulmonar (serosites, miocardite, doença pulmonar restritiva e hipertensão pulmonar) e alterações hematológicas (anemia hemolítica, leucopenia com contagem de leucócitos
< 4.000/mm³, linfopenia < 1.500/mm³ e trombocitopenia com contagem de plaquetas < 100.000/mm³ na ausência de drogas ou infecção). No início do estudo, atividade de doença e dano cumulativo foram determinados em todos os pacientes utilizando-se Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) ²⁶ e Systemic Lupus International Collaborating Clinics/ACR - Damage Index (SLICC/ACR-DI) ²⁷. Anticorpos contra o DNA de dupla hélice (anti-DNA ds) foram detectados por imunofluorescência indireta utilizando o protozoário Crithidia luciliae como antígeno.

Os dados referentes ao período de terapêutica (uso pré ou pós espermarca), doses atuais e doses cumulativas das drogas (prednisona, difosfato de cloroquina, metotrexate, azatioprina, PCE, ciclosporina e micofenolato mofetil) foram determinados. O tempo de duração do tratamento com PCE também foi avaliado.

3.4 Análise estatística

Os resultados são apresentados como média ± desvio padrão (DP), mediana e percentagem. Os dados foram comparados através de teste “t” e teste de Mann-Whitney para avaliar diferenças entre os pacientes com LES e grupo controle e entre os pacientes com LES de acordo as alterações encontradas no sêmen. Os valores em percentagem entre os grupos foram comparados através do testes exato de Fisher e qui-quadrado de Pearson. A significância estatística foi estabelecida como p < 0,05.
RESULTADOS
4 **Resultados**

A média de idade foi semelhante nos 35 pacientes com LES e 35 controles (28,9 ± 8,8 versus 29,1 ± 8,9 anos, p=0,914). Todos os pacientes com LES e os controles eram P5 e G5 de acordo com os critérios de Marshall e Tanner para avaliação dos estágios de puberdade (18). Além disso, não foi observada diferença significativa entre pacientes com LES e controles com relação à presença de varicocele (23% versus 37%, p=0,19).

Por sua vez, as medianas dos volumes testiculares em ambos os testículos foram significativamente menores nos pacientes com LES comparados aos controles (15 versus 20 ml no testículo direito, p=0,003; 15 versus 20 ml no testículo esquerdo, p=0,004; respectivamente).

O exame macroscópico do sêmen (Tabela 1) evidenciou uma média de volume do sêmen menor nos pacientes com LES comparados aos controles (2,3 ± 1,0 versus 3,2 ± 1,7 ml, p=0,015), entretanto houve uma mediana semelhante do pH seminal entre os dois (p=0,553). A avaliação microscópica (Tabela 1) demonstrou que pacientes com LES tiveram menor mediana do número total de espermatozóides (70 X 10^6 versus 172 X 10^6, p=0,002) e menor mediana do número total de espermatozóides móveis (32
X 10^6 versus 119 $X 10^6$, p=0,004) comparados aos controles. A análise mais detalhada dos graus de motilidade dos espermatozóides mostrou que apenas a mediana da motilidade progressiva rápida foi significativamente menor nos pacientes comparados aos controles (0% versus 5%, p=0,004).

Avaliação da morfologia dos espermatozóides segundo a OMS evidenciou uma média significativamente menor da percentagem de formas

Tabela 1 – Análise do sêmen dos pacientes com LES e dos controles

Variáveis do sêmen	Valores referência	LES (n=35)	Controles (n=35)	p
Exame macroscópico				
Abstinência sexual, dias	≥ 2	3 (2-75)	4 (2–10)	0,675
Volume de sêmen, ml	≥ 2	2,3 ± 1,0	3,2 ± 1,7	0,015
pH do sêmen	≥7,2	7,5 (7,0-8,0)	7,5 (7,0-8,0)	0,553
Concentração e número				
Conc. de espermatozóides, X 10^6/ml	≥ 20	42 (0-892)	50 (8-362)	0,109
N° total de espermatozóides, X 10^6	≥ 40	70 (0-1024)	172 (13-735)	0,002
Motilidade				
Número total de espermatozóides móveis, X 10^6	≥ 10	32 (0-577)	119 (8-536)	0,004
Motilidade dos espermatozóides, %	≥ 50	58,0 (0-78,5)	65,0 (10,0-84,0)	0,065
Valores reduzidos, n (%)		12 (34)	6 (17)	0,176
Motilidade progressiva rápida (grau “a”), %		0 (0-32)	5,0 (0-38)	0,004
Motilidade progressiva lenta (grau “b”), %		29,5 (0-51,0)	34 (4-58)	0,050
Motilidade não progressiva (grau “c”), %		21 (0-57,5)	20 (6-44)	0,851
Imóveis (grau “d”), %		36,5 (0-89,5)	34 (16-90)	0,810
Morfologia				
Formas normais por Kruger, %	≥ 14	2,5 (0-27,0)	5,0 (0-19,0)	0,075
Valores reduzidos, n (%)		34 (97)	31 (88,5)	0,356
Formas normais pela OMS, %	≥ 30	11,2 ± 8,3	17,4 ± 11,3	0,011
Valores reduzidos, n (%)		35 (100)	30 (85,7)	0,053

Valores expressos em média ± desvio padrão ou mediana (variação), n – número de pacientes, LES – lupus eritematoso sistémico, OMS – Organização Mundial de Saúde, N° - Número, Conc. - Concentração, grau “a” – motilidade progressiva rápida, grau “b” – motilidade progressiva lenta, grau “c” – motilidade não progressiva, grau “d” – imóveis.
normais de espermatozóides nos pacientes com LES (11,2 ± 8,3 versus 17,4 ± 11,3%, p=0,011), e o mesmo foi observado segundo o critério estrito de Kruger (2.5% versus 5.0%, p=0,075), embora este resultado não apresentou significância estatística (Tabela 1).

4.1 Pacientes com LES

Todos os 35 pacientes (100%) apresentaram alterações nos parâmetros do sêmen de acordo com os critérios da OMS (5,24). Os pacientes foram subdivididos de acordo com a gravidade das alterações dos espermatozóides em: grupo A – apenas teratozoospermia (n=18) e grupo B - azoospermia ou teratozoospermia em associação com oligozoospermia e/ou astenozoospermia (n=17). No grupo B oligoastenoteratozoospermia ocorreu em 6 pacientes, oligoteratozoospermia em 5, astenoteratozoospermia em 3 e azoospermia em outros 3 pacientes.

4.2 Avaliação urológica e ultra-sonografia testicular com Döppler

A avaliação do volume testicular pelo Prader e pela ultra-sonografia, bem como a frequência de varicocele nos pacientes com LES de acordo com as alterações do sêmen são mostradas na Tabela 2. Na avaliação dos volumes testiculares pelo Prader não foram observadas diferenças
significativas entre os pacientes dos grupos A e B com relação às medianas dos volumes testiculares direito e esquerdo (15 versus 15ml, p=0,153; 15 versus 12ml, p=0,067; respectivamente). Entretanto, a avaliação pela ultra-sonografia revelou que as medianas dos volumes testiculares direito e esquerdo foram significativamente menores no grupo B comparado ao grupo A (9 versus 13ml, p=0,001; e 9,4 versus 13,6ml, p=0,001; respectivamente).

Por outro lado, diferenças significativas não foram encontradas com relação à freqüência de varicocele pelo exame clínico (16,6% versus 29,4%, p=0,443) e pela ultra-sonografia testicular com Döppler (38,8% versus 35,2%, p=1,0) comparando os grupos A e B. Varicoceles graus I ou II ocorreram em 3 pacientes de cada grupo (p=1,0).

Tabela 2 – Avaliação do volume testicular pelo Prader e pela ultra-sonografia, e varicocele nos pacientes com LES de acordo com as alterações do sêmen

Variáveis	Grupo A (n=18)	Grupo B (n=17)	p
VT pelo Prader, ml			
Direito			
Reduzido (<12), n (%)	0	2 (11,7)	0,228
Esquerdo			
Reduzido (<12), n (%)	1 (5,5)	4 (23,5)	0,177
VT pelo US, ml			
Direito			
Reduzido (<7), n (%)	1 (5,5)	5 (29,4)	0,087
Esquerdo			
Reduzido (<7), n (%)	2 (11)	5 (29,4)	0,398
Varicocele			
Clínica, n (%)	3 (16,6)	5 (29,4)	0,443
US, n (%)	7 (38,8)	6 (35,2)	1,0

Valores expressos em mediana (variação), Grupo A (teratozoospermia), Grupo B (azoospermia ou teratozoospermia em associação com oligozoospermia e/ou astenozoospermia), LES – lúpus eritematoso sistêmico, US – ultra-sonografia, VT – volume testicular.
4.3 Anticorpos anti-espermatozóides

A aparente maior freqüência de anticorpos anti-espermatozóides positivos no grupo A comparado ao grupo B não apresentou significância estatística (55,5% versus 23,5%, p=1,0). Além disso, não foi encontrada associação significativa entre a freqüência de pacientes com anticorpos anti-espermatozóides positivos (n=14) e negativos (n=8) com anticorpos anti-DNAds (14% versus 25%, p=0,48) ou níveis elevados de FSH (7% versus 12,5%, p=1,0).

4.4 Perfil hormonal

Interessantemente, a mediana dos níveis de FSH foi significativamente maior no grupo B comparado ao grupo A (10,9 versus 3,3 IU/L, p=0,0001) como mostrado na Tabela 3. Além disso, níveis elevados de FSH foram detectados em 41,1% dos pacientes do segundo grupo comparados aos 5,5% dos pacientes do primeiro grupo (p=0,018). Por outro lado, correlações significantes não foram encontradas entre as medianas e freqüências dos níveis alterados dos demais hormônios nos dois grupos estudados: LH, prolactina, testosterona total, T3, T4, T4 livre e TSH. Níveis elevados de FSH e LH com redução da testosterona total foram observados em apenas um paciente do grupo B (5,8%) e em nenhum do grupo A (0%) (p=0,485).
Tabela 3 – Perfil hormonal dos pacientes com LES de acordo com as alterações do sêmen

Variáveis	Grupo A (n=18)	Grupo B (n=17)	p
FSH (IU/L)			
Pacientes com níveis	3,3 (1-17,9)	10,9 (3,9-25)	0,0001
elevados, n (%)	1 (5,5)	7 (41,1)	
LH (IU/L)			
Pacientes com níveis elevados, n (%)	4,8 (1,4-15,1)	5,5 (1,7-15,6)	0,386
Prolactina (ng/ml)			
Pacientes com níveis elevados, n (%)	8,8 (1,9-36,5)	9,3 (3,8-36,2)	0,858
Testosterona total (ng/dl)	560 (147-1259)	468 (80-728)	0,207
Pacientes com níveis reduzidos, n (%)	5 (27,7)	4 (23,5)	1,0
T3 (ng/dl)			
Pacientes com níveis elevados, n (%)	143 (85-177)	131 (109-210)	0,381
T4 (µg/dl)			
Pacientes com níveis elevados, n (%)	9,0 (6,2-13,3)	8,9 (6,2-7,1)	0,716
T4 livre (ng/dL)			
Pacientes com níveis reduzidos, n (%)	1,0 (0,75-1,3)	1,1 (0,7-1,46)	0,268
TSH (µU/ml)			
Pacientes com níveis reduzidos, n (%)	1,89 (0,27-2,99)	1,46 (0,57-5,38)	0,690

Valores dos hormônios expressos em mediana (variação), Grupo A (teratozoospermia), Grupo B (azoospermia ou teratozoospermia em associação com oligozoospermia e/ou astenozoospermia), n – número de pacientes; variações normais: FSH (1 0 – 10,5), LH (1 – 8,4), Prolactina (2 - 10), Testosterona total (271 - 965), T3 (70 - 204), T4 (4,3 – 12,5), T4 livre (0,4 – 1,6), TSH (0,5 - 6), LES – lúpus eritematoso sistêmico.

4.5 Características demográficas, manifestações clínicas, atividade de doença e dano cumulativo

A distribuição das características demográficas mostrou que os grupos A e B foram similares em relação à média da idade atual (28,5 ± 7,6 versus 29,2 ± 10 anos, p=0,967), idade de início da doença (20,3 ± 8,6 versus 20,5 ± 10,8 anos, p=0,952), e duração da doença (8,15 ± 6,2 versus...
8,7 ± 5,9 anos, p=0,972). Assim como, os grupos A e B foram idênticos nas freqüências das manifestações clínicas estudadas: comprometimento articular (94,4% versus 94,1%, p=1,0), alterações hematológicas (94,4% versus 94,1%, p=1,0), acometimento cutâneo (88,8% versus 76,4%, p=0,402), acometimento renal (61,1% versus 82,3%, p=0,160), doença cário-pulmonar (44,4% versus 52,9%, p=0,615) e doença neuropsiquiátrica (27,7% versus 29,4%, p=0,915).

As medianas dos escores do SLEDAI [0 (0-14) versus 0 (0-16), p=0,883] e do SLICC/ACR-DI [0 (0-2) versus 0 (0-3), p=0,660] foram similares nos dois grupos. Assim como, a percentagem do escore do SLEDAI ≥ 4 (33% versus 29,4%, p=1,0), do escore do SLEDAI ≥ 8 (16,6% versus 11,7%, p=1,0) e do escore do SLICC/ACR-DI > 1 (27,7% versus 41%, p=0,487) foram comparadas nos grupos A e B.

4.6 Avaliação do tratamento prévio e atual

A análise da terapêutica do LES de acordo com as alterações do sêmen nos dois grupos é mostrada na Tabela 4. A freqüência do uso de PCE após a primeira ejaculação foi significantemente maior no grupo B comparado ao grupo A (70,5 versus 11%, p=0,001). Assim como, as medianas da dose cumulativa (12 versus 0 gramas, p=0,005), número de pulsos (12 versus 0, p=0,005) e duração da terapia com PCE (1 ano versus 0, p=0,006) foram também significantemente maiores no grupo B em
relação ao grupo A. Todos os 14 pacientes que foram tratados com PCE receberam esta droga após a primeira ejaculação, com uma média de intervalo de 5,11 ± 3,72 anos (0,4 – 12 anos) antes da avaliação do sêmen, e no momento do estudo nenhum recebia essa medicação.

Tabela 4 – Terapia medicamentosa nos pacientes com LES de acordo com as alterações do sêmen

	Grupo A (n=18)	Grupo B (n=17)	p
PCE			
Uso atual, n (%)	0	0	-
Uso após espermarca, n (%)	2 (11)	12 (70,5)	0,001
Dose cumulativa, g	0 (0-39)	12 (0-32,8)	0,005
Número de pulsos, n	0 (0-31)	12 (0-23)	0,005
Duração da PCE, anos	0 (0-3,6)	1 (0-4)	0,006
Azatioprina			
Uso atual, n (%)	6 (33)	4 (23,5)	0,71
Uso após espermarca, n (%)	14 (77,7)	8 (47)	0,086
Dose atual, mg	0 (0-250)	0 (0-300)	0,708
Dose cumulativa, g	57,9 (0-133,7)	0 (0-138,3)	0,049
Prednisona			
Uso atual, n (%)	10 (55,5)	10 (58,8)	1,0
Dose atual, mg	5 (0-60)	5 (0-40)	0,732
Dose cumulativa, g	26,5 (3,3-76)	25,5 (4,5-60,7)	0,909
Difosfato de cloroquina			
Uso atual, n (%)	12 (66,6)	14 (82,3)	0,44
Uso após espermarca, n (%)	16 (88,8)	17 (100)	0,486
Dose atual, mg	250 (0-250)	250 (0-250)	0,568
Dose cumulativa, g	205 (0-1337,25)	425,7 (45,5-1478)	0,503
Metotrexato			
Uso atual, n (%)	2 (11)	0	0,48
Uso após espermarca, n (%)	4 (22)	6 (35)	0,55
Dose cumulativa, g	0 (0-2,4)	0 (0-5,6)	0,47
Micofenolato mofetil			
Uso atual, n (%)	4 (22,2)	0	1,0
Uso após espermarca, n (%)	5 (27,7)	1 (5,8)	0,177
Dose atual, mg	0 (0-3000)	0	0,273
Dose cumulativa, g	0 (0-2447)	0 (0-503)	0,273

Valores expressos em mediana (variação), Grupo A (teratozoospermia), Grupo B (azoospermia ou teratozoospermia em associação com oligozoospermia e/ou astenozoospermia), g – gramas, PCE – pulsoterapia com ciclofosfamida endovenosa, mg – milligramas, n – número de pacientes, LES – lúpus eritematoso sistêmico.

Níveis elevados de FSH foram detectados em 42,8% dos pacientes submetidos a PCE comparado a 9,5% dos que não receberam essa droga (p=0,038). Além disso, a média dos níveis elevados de FSH foi
Resultados

significamente maior nos que receberam PCE comparado aos pacientes que não utilizaram este medicamento (11,81 ± 1,64 versus 5,45 ± 0,98 IU/L, p=0,0013). Assim como, as medianas dos volumes testiculares direito e esquerdo, aferidos pela ultra-sonografia, foram significamente menores nos pacientes que receberam PCE em relação aos que não utilizaram esta droga [9,5 (3,8-14,6) versus 12,1 ml (5,13-21,8), p=0,0147; 9,27 (3,28-12,4) versus 12,8 ml (4,96-22), p=0,0008; respectivamente)]. Entretanto, não foi observada diferença significativa na distribuição de frequências de anticorpos anti-espermatozóides positivos nos pacientes com e sem PCE (21% versus 52%, p=0,088).

Por sua vez, não foram encontradas diferenças estatísticas em relação ao uso de prednisona, difosfato de cloroquina, metotrexate e micofenolato mofetil nos dois grupos. Entretanto, a mediana da dose cumulativa de azatioprina foi maior no grupo A comparado ao grupo B (57,9 versus 0g, p=0,049) (Tabela 4). Um paciente de cada grupo recebeu ciclosporina (p=1,0).
DISCUSSÃO
5 Discussão

Esta é a primeira avaliação sistemática que estudou especificamente as alterações do sêmen em pacientes com LES e demonstrou claramente anormalidades nos espermatozóides de acordo com os critérios da OMS. Também foi identificado que o uso de PCE após a espermarca foi o maior fator de uma potencial lesão testicular definitiva.

A grande vantagem do nosso estudo foi utilizar definições estabelecidas mundialmente para as alterações do sêmen. A padronização dos parâmetros seminais foi definida pela primeira vez em 1951 pela Sociedade Americana de Fertilidade mas também foram seguidas por outras publicações como a dos critérios da OMS para parâmetros normais do sêmen. De interesse, todos os nossos pacientes com LES tinham análise seminal alterada e poderiam ser diagnosticados como tendo um potencial reduzido de fertilidade. Por outro lado, Eggert-Kruse et al. mostraram que teratozoospermia, mesmo com menos de 4% de formas normais de espermatozóides, não excluiu fertilidade.

Em contraste, não foi identificada orqui-epididimite no mesmo grupo de pacientes. Ressaltamos haver somente um relato de caso na literatura de
orqui-epididimite unilateral em um homem de 58 anos com LES, com confirmação histopatológica de túbulos seminíferos sem espermatogênese. Do mesmo modo, uma baixa percentagem de varicocele foi detectada em nossos pacientes com LES e foi similar nos dois grupos estudados. Embora varicocele seja reconhecida como uma das causas mais comuns de fertilidade masculina reduzida, muitos homens não apresentam alterações do sêmen e nem do eixo hipotálamo-hipófise-pituitária, particularmente nos graus I ou II de varicocele.

É importante enfatizar que a avaliação do volume testicular é uma etapa essencial na avaliação da função gonadal uma vez que os túbulos seminíferos representam 95% do volume testicular. A importante redução dos volumes testiculares observadas na ultra-sonografia, e não pela orquidometria de Prader, correlacionadas à gravidade das alterações do sêmen encontradas, sugere uma lesão grave aos túbulos seminíferos no lúpus. A medida pelo orquidômetro de Prader foi capaz de discriminar o reduzido volume testicular dos pacientes com LES comparados aos controles, embora este método apresente menor sensibilidade.

Os níveis de FSH foram maiores nos pacientes com LES com as alterações no sêmen mais graves do que nos pacientes com teratozoospermia apenas, e nós especulamos que este achado deva estar relacionado à redução do volume testicular detectado nesses pacientes. De fato, FSH é o principal marcador de função do epitélio seminífero e níveis elevados sugerem lesão testicular. Além disso, a discordância entre níveis normais de LH e níveis elevados de FSH no presente estudo pode refletir
uma deficiência de inibina B devido à disfunção das células de Sertoli no LES, uma vez que este peptídeo está primariamente envolvido na regulação do *feed-back* negativo da secreção do FSH \(^{30}\). Por sua vez, a gravidade das alterações dos espermatozóides não esteve associada com níveis de testosterona, embora relatos prévios tenham sugerido uma maior freqüência de redução de testosterona no LES \(^2, 16, 17, 33\). Além disso, este estudo sugere que hipogonadismo primário é uma condição rara em homens com lúpus, como também foi anteriormente observado por nós em mulheres com LES \(^{34}\).

Um possível papel dos anticorpos anti-espermatozóides como um marcador precoce de lesão testicular não pode ser descartado, embora a diferença encontrada não tenha tido significância estatística. Um estudo desenvolvido no nosso grupo mostrou que auto-anticorpos dirigidos contra o corpo lúteo estavam associados com estágios precoces de disfunção ovariana (ciclos menstruais normais ou irregulares e níveis elevados de FSH) e anticorpos anti-corpo lúteo foram negativos em pacientes com falência ovariana prematura \(^{34}\). Por sua vez, Reichlin *et al.* \(^{13}\) relataram a presença de anticorpos anti-espermatozóides da classe IgG em aproximadamente metade de 24 pacientes lúpicos, os quais estavam relacionados com os títulos de anticorpos anti-DNAds e atividade de doença. Em nosso estudo, anticorpos anti-espermatozóides não estavam relacionados com a presença de anticorpos anti-DNAds ou escores de SLEDAI e esta discrepância deve ser explicada pelo uso de uma metodologia diferente que detecta não apenas anticorpos contra o
acrossomo13, mas também contra as outras partes do espermatozóide como a cabeça, peça intermediária e cauda.

Nossos dados também enfatizam que os testículos são fortemente suscetíveis aos efeitos tóxicos de terapia com PCE, que induz uma lesão persistente ou de longa duração das células espermáticas primordiais levando a alterações do sêmen. Estas anormalidades também estiveram relacionadas à maior dose cumulativa, número de pulsos, e duração do tratamento com PCE. Do mesmo modo, Meistrich \textit{et al.}35 mostraram que dose cumulativa de PCE maior que 7,5 g/ m2 esteve associada com azoospermia. Nossos achados estão em concordância com estudos prévios realizados em pacientes com câncer e síndrome nefrótica que mostraram uma diminuição da produção de espermatozóides durante tratamento com PCE devido a disfunção do epitélio germinativo7, 8. Além disto, tem sido mostrado que a espermatogênese é suprimida dentro de 90-120 dias pela ciclofosfamida resultando em análise do sêmen alterada36.

Embora não seja possível predizer quais pacientes terão sua fertilidade comprometida8, a persistência de função testicular alterada aproximadamente 5 anos após o uso de ciclofosfamida, associada a níveis elevados de FSH e volumes testiculares reduzidos observados neste estudo, corrobora a possibilidade de uma lesão testicular irreversível e reforçam a necessidade de criopreservação do sêmen37, 38 dos pacientes com LES que serão submetidos à terapia com PCE. Por outro lado, em quase um terço dos pacientes com graves alterações do sêmen um fator causal não foi
identificado e nós estamos investigando o possível papel da inibina B e do fator genético no LES.

Os achados sugerem que a função gonadal nos homens com LES é gravemente afetada em decorrência de lesão testicular e conseqüentes distúrbios hormonais. Considerando que este estudo ocorreu principalmente durante os anos reprodutivos dos pacientes, uma abordagem multidisciplinar é essencial para propiciar a identificação de potenciais fatores de risco para infertilidade e oferecer medidas preventivas a estes pacientes.
CONCLUSÕES
6 Conclusões

1. Os pacientes com LES apresentaram reduções dos volumes testiculares e das variáveis do sêmen em relação ao grupo controle.

2. Os homens com LES que utilizaram PCE tiveram maiores alterações dos espermatozóides, enquanto os que utilizaram azatioprina apresentaram alterações discretas. Assim como, os pacientes que apresentaram reduções dos volumes testiculares na ultra-sonografia e elevações dos níveis séricos de FSH tiveram maiores alterações dos espermatozóides. Por sua vez, anormalidades do sêmen não apresentaram associação com: características demográficas, manifestações clínicas, atividade de doença, dano cumulativo, achados do exame urológico e presença de anticorpos anti-espermatozóides.
ANEXOS
ANEXO 1

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

HOSPITAL DAS CLÍNICAS
DA
FACULDADE DE MEDICINA DA UNIVERSIDADE DE SÃO PAULO

TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO
(Instruções para preenchimento no verso)

I - DADOS DE IDENTIFICAÇÃO DO SUJEITO DA PESQUISA OU RESPONSÁVEL LEGAL

1. NOME DO PACIENTE
 DOCUMENTO DE IDENTIDADE Nº: SEXO: M ☐ F ☐
 DATA Nascimento:/....../......
 ENDEREÇO: .. Nº APTO:
 BAIRRO: .. CIDADE ..
 CEP: .. TELEFONE: DDD(............) ..

2. RESPONSÁVEL LEGAL
 NATUREZA (grau de parentesco, tutor, curador etc.) ..
 DOCUMENTO DE IDENTIDADE : SEXO: M ☐ F ☐
 DATA Nascimento:/....../......
 ENDEREÇO: .. Nº APTO:
 BAIRRO: .. CIDADE ..
 CEP: .. TELEFONE: DDD(............) ..

II - DADOS SOBRE A PESQUISA CIENTÍFICA

1. TÍTULO DO PROTOCOLO DE PESQUISA Avaliação da função gonadal em pacientes do sexo masculino com lupus eritematoso sistêmico
 PESQUISADOR: Pollyana Maria Ferreira Soares
 CARGO/FUNÇÃO: Médica Pós-graduanda da Disciplina de Reumatologia do HC-FMUSP
 INSCRIÇÃO CONSELHO REGIONAL: CRM 95807
 UNIDADE DO HCFMUSP: Unidade de Reumatologia Pediátrica do ICR e Disciplina de Reumatologia do HC-FMUSP
2. AVALIAÇÃO DO RISCO DA PESQUISA:

SEM RISCO □ RISCO MÍNIMO X RISCO MÉDIO □
RISCO BAIXO □ RISCO MAIOR □

(probabilidade de que o indivíduo sofra algum dano como conseqüência imediata ou tardia do estudo)

3. DURAÇÃO DA PESQUISA : 3 anos

III - REGISTRO DAS EXPLICAÇÕES DO PESQUISADOR AO PACIENTE OU SEU REPRESENTANTE LEGAL SOBRE A PESQUISA, CONSIGNANDO:

1. Justificativa e os objetivos da pesquisa: Avaliar os testículos e os espermatozóides dos pacientes com lúpus eritematoso sistêmico.

2. Procedimentos que serão utilizados e propósitos, incluindo a identificação dos procedimentos que são experimentais: Avaliação dos testículos e espermatozóides dos pacientes com lúpus eritematoso sistêmico através de exame feito pelo urologista, ultra-sonografia dos testículos feita pelo radiologista, avaliação do esperma (sêmen) realizada no laboratório do Centro de Reprodução Humana e coleta de sangue (para avaliação dos hormônios) realizada no Laboratório Central do Hospital das Clínicas.

3. Desconfortos e riscos esperados: Os pacientes coletarão sêmen por masturbação própria em um local reservado no Centro de Reprodução Humana. Também será coletado sangue para realização de exames de sangue. Os pacientes poderão, eventualmente, apresentar um hematoma no local da picada da agulha, regredindo com o tempo.

4. Benefícios que poderão ser obtidos: Os pacientes ficarão sabendo se tem alguma alteração nos testículos ou espermatozóides e serão encaminhados para seguimento no Centro de Reprodução Humana do Hospital das Clínicas.

5. Procedimentos alternativos que possam ser vantajosos para o indivíduo: Acompanhamento no Centro de Reprodução Humana do Hospital
das Clínicas, caso se encontre alterações nos testículos ou espermatozóides.

IV - ESCLARECIMENTOS DADOS PELO PESQUISADOR SOBRE GARANTIAS DO SUJEITO DA PESQUISA:

1. Acesso, a qualquer tempo, às informações sobre procedimentos, riscos e benefícios relacionados à pesquisa, inclusive para dirimir eventuais dúvidas: Todo paciente que participar do estudo pode se informar, a qualquer momento, dos exames, riscos e vantagens do estudo, e sempre poderá tirar dúvidas com os responsáveis pela pesquisa.

2. Liberdade de retirar seu consentimento a qualquer momento e de deixar de participar do estudo, sem que isto traga prejuízo à continuidade da assistência: O paciente pode deixar de participar da pesquisa a qualquer momento e isto não causará nenhum prejuízo ao seu tratamento realizado no Hospital das Clínicas.

3. Salvaguarda da confidencialidade, sigilo e privacidade: Os resultados do estudo são confidenciais, não podendo ser contadas para nenhuma outra pessoa além dos responsáveis pela pesquisa.

4. Disponibilidade de assistência no HCFMUSP, por eventuais danos à saúde, decorrentes da pesquisa: Caso aconteça algum dano à saúde do paciente, ele terá o tratamento adequado, completo e gratuito no Hospital das Clínicas.

5. Viabilidade de indenização por eventuais danos à saúde decorrentes da pesquisa: Caso aconteça algum dano à saúde do paciente, este será atendido no Hospital das Clínicas da FMUSP.
V. INFORMAÇÕES DE NOMES, ENDEREÇOS E TELEFONES DOS RESPONSÁVEIS PELO ACOMPANHAMENTO DA PESQUISA, PARA CONTATO EM CASO DE INTERCORRÊNCIAS CLÍNICAS E REAÇÕES ADVERSAS.

Dr. Clovis Artur Almeida da Silva, Dra. Pollyana Maria Ferreira Soares

Dr. Eduardo Ferreira Borba Neto

Unidade de Reumatologia Pediátrica / Disciplina de Reumatologia da FMUSP – Av. Dr. Enéas Carvalho de Aguiar, 647 CEP 05403-900 – São Paulo- SP Telefones: (0xx11) 30698510/ 30698512/ 30698675 FAX: (0xx11) 30698503

VI. OBSERVAÇÕES COMPLEMENTARES:

VII. CONSENTIMENTO PÔS-ESCLARECIDO

Declaro que, após convenientemente esclarecido pelo pesquisador e ter entendido o que me foi explicado, consinto em participar do presente Protocolo de Pesquisa

São Paulo, de ... de 2........

assinatura do sujeito da pesquisa ou responsável legal

assinatura do pesquisador

(carimbo ou nome Legível)
ANEXO 2

PROTOCOLO DE AVALIAÇÃO DA FUNÇÃO GONADAL EM PACIENTES DO SEXO MASCULINO COM LÚPUS ERITEMATOSO SISTÊMICO

A – IDENTIFICAÇÃO E CARACTERÍSTICAS DEMOGRÁFICAS

Nome:__
Registro:________________________
Pai:__
Mãe:_____________________________________
Data de nascimento:________ Idade de início do LES:_________________________
Idade atual:______________ Tempo de duração do LES:_________________________
Data da 1ª consulta:________ Data avaliação:______________________________
Raça:________ Sexo:______________ Procedência atual:_______________________
Naturalidade:________________________
Telefone:________________________
Endereço:___
CEP:________ Bairro_____________ Cidade:____________
Estado________
Escolaridade:________________________
Profissão:_________________________
B – MANIFESTAÇÕES CLÍNICAS DO LES

• Sintomas constitucionais
 · Febre
 · Perda de peso

• Sistema retículo-endotelial
 · Adenomegalia
 · Hepatomegalia
 · Esplenomegalia

• Cutâneo-mucoso
 · Eritema malar
 · Vasculite cutânea
 · Fotosensibilidade
 · Lúpus dioscóide
 · Úlceras orais

• Músculo-esquelético
 · Artrite não erosiva
 · Artalgia
 · Osteonecrose

• Cardíaco
 · Pericardite
 · Miocardite
 · Valvulite

• Pulmonar
 · Pleurite
 · Doença pulmonar restritiva
 · Hipertensão pulmonar

• Sistema nervoso central
 · Cefaléia importante
 · Convulsão
 · Distúrbio do comportamento
 · Acidente vascular cerebral
 · Psicose
 · Coréia
 · Neuropatia periférica
 · Coma
 · Depressão

• Rim
 · Hipertensão arterial

sim () não ()

C - ACHADOS LABORATORIAIS DO LES

- Renal
 - Hematuria ≥ 10 hm/cp
 - Leucocitúria
 - Cilindrúria
 - Proteinúria ≥ 0,5g/dia
 - Insuficiência renal

- Biopsia Classe histológica OMS
 - I () IIa () IIb () III () IV () V () VI ()

- Hematológico
 - Anemia hemolítica
 - Leucopenia
 - Linfopenia
 - Plaquetopenia
 - Alterações de coagulação ↓ C3, ↓ C4, ↓ CH50

- Autoanticorpos
 - FAN
 - anti-DNAd
 - anti-Sm
 - anti-RNP
 - anti-RO
 - anti-La
 - anti P
 - anti Clp IgM
 - anti Clp IgG
 - anticoagulante lúpico

D – ATIVIDADE DE DOENÇA E DANO CUMULATIVO

- SLEDAI atual__
- SLICC/ACR-DI___
E - TRATAMENTO UTILIZADO

- **corticosteróides (prednisona/deflazacort/metilprednisolona/hidrocortisona)**

 *dose total________ tempo de uso____________________________
 efeitos colaterais__

- **pulsoterapia com ciclofosfamida**

 *n° pulsos (dose/indução)__________________________
 n° pulsos (dose/manutenção)__________________________
 dose total________________ tempo de uso____________________
 indicação__
 efeitos colaterais__

- **metotrexate**

 *dose semanal:_____________ dose total:______________________
 via de administração (VO,IM,SC):________ tempo de uso:_______
 efeitos colaterais:__

- **azatioprina**

 *dose diária:______________ dose total:_______________________
 tempo de uso:___
 efeitos colaterais:__

- **ciclosporina**

 *dose diária:______________ dose total:_______________________
 tempo de uso:___
 efeitos colaterais:__

- **micofenolato mofetil**

 *dose diária:______________ dose total:_______________________
 tempo de uso:___
 efeitos colaterais:__

- **cloroquina/ hidroxicloroquina**

 *dose diária:______________ dose total:_______________________
 tempo de uso:___
 efeitos colaterais:__

- **outras drogas:**

 *dose diária:______________ dose total:_______________________
 tempo de uso:___
 efeitos colaterais:__
F - AVALIAÇÃO UROLÓGICA, ANÁLISE SEMINAL, PERFIL HORMONAL E ANTICORPOS ANTI-ESPERMATOZÔIDES

Criptorquidia: ____ Hidrocele:____ Caxumba: ____ Infecções: _____ DST:_______
Dor testicular: ____ orquite/epididimite: ____ alterações urinárias: ______________
Cirurgia: ______________ Hipospádia____________ Epispádia_____________
Tumores:

Primeira ejaculação: masturbação () poluição noturna () atividade sexual ()
Idade da primeira ejaculação ________________________________
Tanner: __

EXAME FÍSICO	EXAMES LABORATORIAIS
Pênis	T3/T4 livre/TSH
Escroto	FSH
Epidídimos	LH
Testículos (Prader)	Cons/alt: Testosterona
Vaso deferente	Cons/alt: Prolactina
Sêmen:	Sêmen:
	Volume/ pH/ cor/ viscosidade/ liquefação
Varicocele/grau	Cons/alt: Motilidade
Orquidometria (Prader)	Cons/alt: Morfologia (Kruger)
	E AAE
G – ULTRA-SONOGRAFIA TESTICULAR COM DOPPLER

Hidrocele: ______ Varicocele: ______ Cordões espermáticos: _________________
Testículos (orquidometria): _______ Epidídimos: _______________________
Fluxometria com Döppler da artéria testicular ___________________________
Outras alterações: ___
Referências
8 Referências

1. Pistiner M, Wallace DJ, Nessim S, Metzger AL, Klinenberg JR. Lupus erythematosus in the 1980s: a survey of 570 patients. *Semin Arthritis Rheum*. 1991;21(1):55-64.

2. McMurray RW, May W. Sex hormones and systemic lupus erythematosus: review and meta-analysis. *Arthritis Rheum.* 2003;48(8):2100-10.

3. Turner HE, Wass JA. Gonadal function in men with chronic illness. *Clin Endocrinol (Oxf).* 1997;47(4):379-403.

4. Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, Moore L, Young S, Moore D. The association of age and semen quality in healthy men. *Hum Reprod.* 2003;18(2):447-54.

5. World Health Organization (WHO) for the standardized investigation, diagnosis and management of the infertile men. Cambridge: Cambridge University Press; 2000. p.1-86.

6. Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. *Mutat Res.* 1995;330(1-2):115-81.

7. Kenney LB, Lauter MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. *Cancer.* 2001;91(3):613-21.
8. Latta K, Von Schnakenburg C, Ehrich JH. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. *Pediatr Nephrol*. 2001;16(3):271-82.

9. Clements PJ, Davis J. Cytotoxic drugs: their clinical application to the rheumatic diseases. *Semin Arthritis Rheum*. 1986;15(4):231-54.

10. Aziz N, Agarwal A, Nallella KP, Thomas AJ Jr. Relationship between epidemiological features and aetiology of male infertility as diagnosed by a comprehensive infertility service provider. *Reprod Biomed Online*. 2006;12(2):209-14.

11. Silva CA, Hallak J, Pasqualotto FF, Barba MF, Saito ML, Kiss MH. Gonadal function in adolescents and young men with systemic lupus erythematosus. *J Rheumatol*. 2002;29(9):2000-5.

12. Walker G, Merry P, Sethia K, Ball RY. A case of testicular lupus. *Lupus*. 2000;9(5):397-8.

13. Reichlin M, Gilbert G, Haas GG Jr. Association of anti-sperm antibodies with systemic lupus erythematosus. *Arthritis Rheum*. 1985;28(1):76.

14. [No authors listed]. Impotence in systemic lupus erythematosus. *J Rheumatol*. 1990;17(1):117-8.

15. Athreya BH, Rafferty JH, Sehgal GS, Lahita RG. Adenohypophyseal and sex hormones in pediatric rheumatic diseases. *J Rheumatol*. 1993;20(4):725-30.

16. Vilarinho ST, Costallat LT. Evaluation of the hypothalamic-pituitary-gonadal axis in males with systemic lupus erythematosus. *J Rheumatol*. 1998;25(6):1097-103.

17. Mok CC, Lau CS. Profile of sex hormones in male patients with systemic lupus erythematosus. *Lupus*. 2000;9(4):252-7.
18. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. *Arthritis Rheum.* 1997;40(9):1725.

19. Tanner JM. *Growth at adolescence*. 2nd ed. Oxford: Blackwell Scientific Publications; 1962.

20. Prader A. Testicular size: assessment and clinical importance. *Triangle*. 1966;7(6):240-3.

21. Colli AS, Berquió ES, Marques RM. Crescimento e desenvolvimento pubertário em crianças e adolescentes brasileiros. In: Colli AS, Berquió ES, Marques RM. editores. *Volume testicular*. São Paulo: Brasileira de Ciências Ltda; 1984.

22. Bong GW, Koo HP. The adolescent varicocele: to treat or not treat. *Urol Clin N Am.* 2004;31(3):509-15.

23. Atkinson GO, Patrick LE, Ball TI, Stephenson CA, Broecker BA, Woodward JR. The normal and abnormal scrotum in children: evaluation with color Doppler sonography. *Am J Roentgenol.* 1992;158:613-7.

24. World Health Organization (WHO). *Laboratory manual for the examination of human semen and sperm-cervical mucus interaction*. 4th ed. New York: Cambridge University Press; 1999. p.1-128.

25. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in vitro fertilization. *Fertil Steril.* 1988;49(1):112-7.

26. Bombardieri C, Gladman DD, Urowitz MB, Karon D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. *Arthritis Rheum.* 1992;35(6):630-40.
27. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, Bacon P, Bombardieri S, Hanly J, Hay E, Isenberg D, Jones J, Kalunian K, Maddison P, Nived O, Petri M, Richter M, Sanchez-Guerrero J, Svaith M, Sturfelt G, Symmons D, Zoma A. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index for systemic lupus erythematosus. *Arthritis Rheum*. 1996;39(3):363-9.

28. Overstreet JW, Katz DF. Semen analysis. *Urol Clin North Am*. 1987;14(3):441-9.

29. Eggert-Kruse W, Schwarz H, Rohr G, Demirakca T, Tilgen W, Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. *Hum Reprod*. 1996;11(1):139-46.

30. Griffin JE, Wilson JD. Disorders of the testes and the male reproductive tract. In: Larsen PD, Kronenberg HM, Melmed S, Polonsky KS. eds. *Williams textbook of endocrinology*. Philadelphia: Saunders; 2003. p.709-69.

31. Diamond DA, Paltiel HJ, DiCanzio J, Zurakowski D, Bauer SB, Atala A, Ephrain PL, Grant R, Retik AB. Comparative assessment of pediatric testicular volume: orchidometer versus ultrasound. *J Urol*. 2000;164(3 Pt 2):1111-4.

32. Behre HM, Nashan D, Nieschlag E. Objective measurement of testicular volume by ultrasonography: evaluation of the technique and comparison with orchidometer estimates. *Int J Androl*. 1989;12(6):395-403.

33. Chang DM, Chang CC, Kuo SY, Chu SJ, Chang ML. Hormonal profiles and immunological studies of male lupus in Taiwan. *Clin Rheumatol*. 1999;18(2):158-62.

34. Pasoto SG, Viana VS, Mendonca BB, Yoshinari NH, Bonfa E. Anti-corpus luteum antibody: a novel serological marker for ovarian dysfunction in systemic lupus erythematosus? *J Rheumatol*. 1999;26(5):1087-93.
35. Meistrich M, Wilson G, Brown BW, da Cunha MF, Lipshultz LI. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. *Cancer*. 1992;70(11):2703-12.

36. Meistrich ML. Stage-specific sensitivity of spermatogonia to different chemotherapeutic drugs. *Biomed Pharmacother*. 1984;38(3):137-42.

37. Hallak J, Kolettis PN, Sekhon VS, Thomas AJ Jr, Agarwal A. Sperm cryopreservation in patients with testicular cancer. *Urology*. 1999;54(5):894-9.

38. Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. *Fertil Steril*. 2005;83(6):1622-8.
APÊNDICE
APPENDIX 1

TRABALHO ENCAMINHADO PARA PUBLICAÇÃO NA REVISTA

ARTHРИTIS & RHEUMATISM
Gonadal evaluation in SLE

Research Article

GONADAL EVALUATION IN MALE SYSTEMIC LUPUS ERYTHEMATOSUS

Pollyana Maria F. Soares¹, Eduardo Ferreira Borba², Eloisa Bonfa³, Jorge Hallak⁴, André Luiz Corrêa⁵, Clovis Artur A. Silva⁶

From Rheumatology Division, Pediatric Rheumatology Unit of the Department of Pediatrics, Divisions of Urology and Radiology, University of São Paulo, São Paulo, Brazil.

P.M.F. Soares MD, Research Fellow, Rheumatology Division, University of São Paulo; E.F. Borba MD, PhD, Assistant Professor of Rheumatology, University of São Paulo; E. Bonfa MD, PhD, Professor of Rheumatology, University of São Paulo; J. Hallak, MD, PhD, Attending Physician, Division of Urology Clinic, University of São Paulo; A.L. Correa, MD, PhD, Attending Physician, Division of Radiology, University of São Paulo; C.A.A. Silva, MD, PhD, Head of Pediatric Rheumatology Unit of the Department of Pediatrics, University of São Paulo.

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (grants 04/07832-2 and 05/52668-9 to CAAS) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPQ (grants 304756/2003-2 to EB and 302469/2005-2 to CAAS).

Address correspondence and reprint requests to:
Clovis Artur Almeida Silva, MD, PhD, Disciplina de Reumatologia, Faculdade de Medicina da Universidade de São Paulo.
Av. Dr. Arnaldo 455, sala 3133, São Paulo, SP, Brazil. CEP: 01246-903
FAX: 55-11-30667490.
E-mail: reumato@usp.br
ABSTRACT

Objective: To assess gonadal function in male systemic lupus erythematosus (SLE) patients.

Methods: Thirty-five consecutive male SLE patients (ACR criteria) were prospectively evaluated for demographic, clinical features, previous and current treatment, urologic evaluation, testicular Doppler ultrasound, hormone profile, semen analysis including morphology and anti-sperm antibodies, and to compare them to 35 age-matched healthy controls.

Results: SLE patients had a lower median testicular volume in both testes (p=0.003 and p=0.004), total sperm count (p=0.002) and total motile sperm count (p=0.004) compared to controls. Likewise, the mean sperm volume and percentage of normal sperm forms were lower in SLE versus controls (p=0.015 and p=0.015). Since all SLE patients (100%) had semen alterations they were further subdivided according to the severity of these abnormalities in: group A with 18 patients (teratozoospermia) and group B with 17 patients (azoospermia or teratozoospermia in combination with oligozoospermia and/or asthenozoospermia). Of note, the frequency of intravenous cyclophosphamide (IVCYC) after the first ejaculation was higher in group B than in A (p=0.001) likewise the higher median cumulative dose (p=0.005), number of pulses (p=0.005), and duration of IVCYC (p=0.006). Moreover, the medians of testicular volume measured by ultrasound in both testicles were lower in group B compared to A (p=0.001 and p=0.001). Interestingly, elevated FSH levels were higher in group B compared to A (p=0.018).

Conclusions: SLE patients have a high frequency of sperm abnormalities associated with reduced testicular volume. The post-pubertal IVCYC use was the major factor of permanent potential damage to the testes.

Keywords: systemic lupus erythematosus; male; gonada;, sperm; hormone; ultrasound
INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology that mainly affects mainly females in reproductive years with a female to male incidence ratio of approximately 9 to 1 in most reported series.\(^1,2\)

The survival and prognosis of SLE has improved in the last decades. As SLE patients are living longer, clinical attention has begun to shift away from improving their quality of life. In this regard, upon becoming adolescents and adults, male SLE patients often have concerns about their sexuality and future fertility.

Several conditions should be evaluated in male patients in order to determine this issue. In fact, in the general population semen alterations are often related to age, abnormalities of the genital system (e.g., varicocele, orchitis, testicular cancer, mumps), drugs [particularly intravenous cyclophosphamide (IVCYC)]\(^6-9\) and less frequently anti-sperm antibodies\(^10\).

Despite the recognition of these conditions, there are no studies in the literature assessing the overall gonadal function in male SLE patients and its relevance for sperm abnormalities, which are related to a potential subfertility. In this regard, we have recently evaluated four young SLE males identifying teratozoospermia in two patients and a more severe semen abnormality in the other two which were associated to the current use of IVCYC\(^11\).

In SLE, disease activity may be an additional contributing factor for a possible testicular damage, supported by the report of one case of testicular vasculitis and by the presence of anti-sperm antibodies associated to anti-dsDNA antibodies in 42% of lupus patients\(^13\). Additionally, the hypothalamic-pituitary-axis dysfunction [elevated levels of gonadotrophins (FSH, LH)] and hypoandrogenism (low testosterone and elevated LH)]\(^14-17\) described in lupus may be a consequence of seminiferous epithelia injury.

Therefore, the aim of the present study was to perform a detailed semen analysis in SLE patients to evaluate the gonadal function and also determine their association with clinical features, disease activity, previous
and current treatment, as well as urologic evaluation, testicular Doppler ultrasound, hormone profile and presence of anti-sperm antibodies.

PATIENTS AND METHODS

Patients and controls: All seventy-seven SLE male patients with age between 15-45 years old regularly followed at the Pediatric Rheumatology Unit or the Lupus Clinics of the Rheumatology Division, University of São Paulo, were selected for this study from January 2003 to January 2006. All patients fulfilled the American College of Rheumatology (ACR) SLE classification criteria. Exclusion criteria were hydrocele, hypospadia, cryptorchidism, testicular infection (e.g., mumps), testicular cancer, orchitis, testicular vasculitis, ureteral impairment, previous history of any scrotal or inguinal surgery (e.g., varicocelectomy, vasectomy, hernia repair), diabetes mellitus, and previous or current history of alcohol or tobacco use. At the end, 35 male SLE patients were able to participate in the study since 41 were excluded: patient refusal (n=31), incomplete evaluation (n=9), and previous vasectomy (n=2). The control group consisted of 7 age-matched healthy male adolescents regularly followed at the Adolescent Unit and 28 adults prior their vasectomy at the Urology Division. The Local Ethical Committee approved this study and an informed consent was obtained from all participants and when necessary from their respective parents.

Urologic evaluation: A systematic clinical examination of the genitalia was performed by the same expert urologist and includes evaluation of testicles, epididymis, vas deferens, scrotum, and penis. The secondary sexual characteristics were evaluated according to Marshall and Tanner’s pattern criteria of pubertal changes. Testicular volumes were measured using the Prader orchidometer, which consists of 12 ellipsoid models graded from 1 to 25 ml. The normal testicular volume in Brazilian post-pubertal adolescents and adults ranges between 12 and 25 ml.
patients were examined in a warm room with temperature not inferior to 22º Celsius, in both the standing and supine positions, and with and without Valsalva maneuver. Varicocele was graded according to the following criteria: grade I (small) palpable only with concurrent Valsalva maneuver, grade II (medium) palpable with patient standing, and grade III (large) visible through scrotal skin, palpable with patient standing.

Testicular Doppler Ultrasound: Ultrasound was performed by an expert sonographer using a 14-MHz sector scanner (Logic 9-GE- Montana, USA) blinded to the semen analysis. Testes were scanned in axial and longitudinal planes, and at least two measurements of length, width, and thickness were obtained. The largest measurement in each dimension was recorded and used to calculate the testicular volume according to the formula for an ellipsoid (length X width X thickness X 0.52). The normal value in male post-pubertal adolescents and adults is 15 ± 8 ml.

Semen analysis: Semen analysis was performed according to the guidelines of the World Health Organization (WHO). All SLE patients and controls were asked to provide at least one semen sample collected by masturbation at the collection room in the laboratory and processed within one hour of liquefaction after 48 to 72 hours of sexual abstinence over a period of 1 month. Semen specimens were liquefied at 37°C for 30 minutes and sperm concentration and motility were checked manually under a microscope with a 20X positive phase-contrast objective, and an overall magnification of 200X. Microscopic images were transferred through a video system to a computer-assisted semen analyzer, attached to the optical microscope and digitized, according to a special software program. The specimens were analyzed by manual hand count as well as by a Computer Assisted Semen Analysis Systems (CASA) under 400X magnification, using the Hamilton Thorne Research (HTM-2030, USA). Each slide was scanned to estimate the number of spermatozoa per field equivalent to 1 ml, to obtain an approximate sperm concentration in millions of spermatozoa per milliliter of semen. This
estimate was used to determine dilution criteria as follows: < 15 spermatozoa, dilution 1:5; 15-40 spermatozoa, dilution 1:10; 40-200 spermatozoa, dilution 1:20; and >200 spermatozoa, dilution 1:40. Sperm motility was determined by analysis of at least five microscopic fields in a systematic way to classify 200 spermatozoa. The motility of each spermatozoa was graded "a" (rapid progressive motility), "b" (slow or sluggish progressive motility), "c" (non progressive motility), and "d" (non motility). Sperm morphology included evaluation of sperm head, neck, mid-piece, and tail by two Medical Technologists blinded to disease diagnosis. A patient was considered with azoospermia when no spermatozoa was found in the ejaculate\(^5\). Oligozoospermia was defined as a sperm concentration less than 20 million/ml. Asthenozoospermia was defined as normal sperm motility ("a"+"b") in less than 50%. Teratozoospermia was defined as normal sperm morphology in less than 30% by WHO criteria, oligoasthenoteratozoospermia as an alteration in all three variables. Sperm morphology was also determined by Kruger strict criteria with a cut off of 14\% of normal sperm morphology\(^24\).

Anti-sperm antibodies: Anti-sperm antibodies were performed at the study entry and were determined by direct Immunobead test using Immunobead\(^R\) rabbit anti-human Ig (IgA, IgG, and IgM) kits (Irvine Scientific, Santa Ana, CA, USA). The direct Immunobead binding test detects antibodies that bind to the sperm cell surface (sperm head, mid-piece, and/or tail). At least 50\% of the motile spermatozoa ("a"+"b") must be coated with Immunobeads before the test is considered to be clinically significant\(^24\).

Hormonal status: Hormonal determinations were performed at study entry and abnormal results were repeated for confirmation. Follicle stimulating (FSH), luteinizing hormone (LH), prolactin, total testosterone, triiodothyronine (T3), tetraiodothyronine (T4), free T4 and thyrotropin (TSH) were detected by fluoroimmunoassay using kits from DELPHIA\(^R\) time-resolved fluoroimmunoassay (WALLAC Ou, Turku, Finland).
Clinical evaluation, laboratory evaluation and treatment: An extensive clinical evaluation at entry by the same rheumatologist (PMFS) was followed by a careful chart review including previous clinical, laboratory and therapeutic data. SLE manifestations were defined as: cutaneous lesions (malar or discoid rash, oral ulcers, vasculitis or photosensitivity), articular involvement (arthralgia or nonerosive arthritis), neuropsychiatry disease (seizure, psychosis, depression, or peripheral neuropathy), renal involvement (proteinuria ≥ 0.5g/24h, presence of cellular casts, persistent hematuria ≥ 10 red blood cells per high power field, or renal failure), cardiopulmonary disease (serositis, myocarditis, restrictive lung disease, and pulmonary hypertension), and hematological abnormalities (hemolytic anemia, leukopenia with a white blood cell count < 4,000/mm³, lymphopenia < 1,500/mm³ on two or more occasions, and thrombocytopenia with platelet count < 100,000/mm³ in the absence of drugs or infection). SLE disease activity and cumulative damage at the time of study entry were measured in all patients, using the SLE Disease Activity Index (SLEDAI) and the Systemic Lupus International Collaborating Clinics/ACR (SLICC/ACR) Damage Index. Anti-double-stranded DNA (anti-dsDNA) antibodies were detected by indirect immunofluorescence using Crithidia luciliae as substrate.

Data concerning the period of therapy (pre or post pubertal period), the current dosage, and the drugs cumulative doses (prednisone, chloroquine diphosphate, methotrexate, azathioprine, IVCYC, cyclosporine and mycofenolate mofetil) were determined. The time and duration of IVCYC therapy were also determined.

Statistical analysis: Results are presented as the mean ± standard deviation (SD) or median for continuous and number (%) for categorical variables. Data were compared by t-tests or by the Mann-Whitney test in continuous variables to evaluate differences among SLE patients group and control group and among SLE patients according the semen abnormalities. For categorical variables differences were assessed by Pearson Chi-Square or Fisher’s exact test. Statistical significance was set as p < 0.05.
RESULTS

SLE patients versus controls: The mean age was similar in 35 SLE patients and 35 controls (28.9 ± 8.8 vs. 29.1 ± 8.9 yrs, p=0.914). Importantly, all SLE patients and controls were P5 and G5 according to Marshall and Tanner’s pattern criteria of pubertal changes. In addition, no significant difference was observed in SLE patients and controls regarding the presence of varicocele (23% vs. 37%, p=0.19).

On the other hand, the medians of the testicular volumes in both testes were significantly lower in SLE patients compared to controls (15 vs. 20 ml at the right testicle, p=0.003; and 15 vs. 20 ml at the left testicle, p=0.004; respectively).

Interestingly, the initial macroscopic examination (Table 1) of the semen revealed a lower mean sperm volume in SLE patients compared to controls (2.3 ± 1.0 vs. 3.2 ± 1.7 ml, p=0.015) but a similar median sperm pH (p=0.553). The microscopic investigation (Table 1) demonstrated that SLE patients had a lower median total sperm count (70 X 10^6 vs. 172 X 10^6, p=0.002) and a lower median total motile sperm count (32 X 10^6 vs. 119 X 10^6, p=0.004) compared to controls. Further analysis of the grading system of each spermatozoon motility showed that only the median sperm rapid progressive motility was significantly lower in SLE compared to controls (0% vs. 5%, p=0.004).

Assessment of sperm morphology by WHO demonstrated a lower mean normal sperm forms in SLE (11.2 ± 8.3 vs. 17.4 ± 11.3%, p=0.011) as also observed by the Kruger strict criteria (2.5% vs. 5.0%, p=0.075), although this result did not reach statistical significance (Table 1).

SLE patients: All the 35 male SLE patients (100%) had semen abnormalities according to WHO guidelines. Patients were further subdivided according to the severity of sperm abnormalities: group A – only teratozoospermia (n=18) and group B - azoospermia or teratozoospermia in combination with oligozoospermia and/or asthenozoospermia (n=17). In the group B
oligoasthenoteratozoospermia occurred in 6 SLE patients, oligoteratozoospermia in 5, asthenoteratozoospermia in 3, and azoospermia in other 3 patients.

Urologic evaluation and testicular Doppler ultrasound: The evaluation of testicular volume by Prader and ultrasound, as well as the frequency of varicocele in SLE patients according to the semen abnormalities is shown in Table 2. In the Prader’s testicular volume evaluation, no significant differences were found between SLE patients of group A and B for the median right and left testicle volume (15ml vs. 15ml, p=0.153; 15ml vs. 12ml, p=0.067; respectively). In contrast, the more accurate assessment by ultrasound revealed that the median of testicular volumes in right and left testicles were lower in the group B compared to group A (9 vs. 13ml, p=0.001; and 9.4 vs. 13.6ml, p=0.001; respectively). On the other hand, no differences were observed regarding frequency of varicocele by clinical examination (16.6% vs. 29.4%, p=0.443) and by testicular Doppler ultrasound (38.8% vs. 35.2%, p=1.0) comparing groups A and B. Varicocele grades I or II occurred in 3 patients of each group (p=1.0).

Anti-sperm antibodies: The apparent higher frequency of positive anti-sperm antibodies in the group A compared to B did not reach significance (55.5% vs. 23.5%, p=1.0). In addition, no significant association was found between the frequency of SLE patients with positive (n=14) and negative (n=8) anti-sperm antibody with positive anti-dsDNA (14% vs. 25%, p=0.48) or elevated FSH levels (7% vs. 12.5%, p=1.0).

Hormonal evaluation: Interestingly, the median of FSH was significantly higher in group B compared to group A (10.9 vs. 3.3 IU/L, p=0.0001) as shown in Table 3. Moreover, elevated FSH levels were detected in 41.1% of the patients of group B compared to 5.5% in the group A (p=0.018). On the other hand, no significant correlations were found between median and frequency of altered levels of the other hormones in both studied groups: LH,
prolactin, total testosterone, T3, T4, free T4 and TSH. High FSH and LH with low total testosterone level were observed in only one patient in the group B (5.8%) but in no patient of group A (0%) (p=0.485).

Demographic, clinical features, SLE activity and damage: The distribution of demographic features showed that groups A and B were similar regarding mean current age (28.5 ± 7.6 vs. 29.2 ± 10 years, p=0.967), age at disease onset (20.3 ± 8.6 vs. 20.5 ± 10.8 years, p=0.952), and disease duration (8.15 ± 6.2 vs. 8.7 ± 5.9 years, p=0.972). In addition, frequencies of clinical findings were evenly observed in groups A and B: articular (94.4% vs. 94.1%, p=1.0), hematological abnormalities (94.4% vs. 94.1%, p=1.0), cutaneous (88.8% vs. 76.4%, p=0.402), renal (61.1% vs. 82.3%, p=0.160), cardiopulmonary (44.4% vs. 52.9%, p=0.615), neuropsychiatry (27.7% vs. 29.4%, p=0.915).

The medians of SLEDAI [0 (0-14) vs. 0 (0-16), p=0.883] and SLICC-ACR/DI [0 (0-2) vs. 0 (0-3), p=0.660] scores were similar in the comparison of group A and B. Likewise, percentage of SLEDAI score ≥ 4 (33% vs. 29.4%, p=1.0), SLEDAI score ≥ 8 (16.6% vs. 11.7%, p=1.0), and high SLICC-ACR/DI score > 1 (27.7% vs. 41%, p=0.487) were comparable in both groups.

Previous and current therapy evaluation: The analysis SLE therapy according to sperm abnormalities in both groups is shown in Table 4. Interestingly, the frequency of IVCYC use after the first ejaculation was higher in the group B compared to group A (70.5 vs. 11%, p=0.001). Reinforcing this finding, the median cumulative dose (12 vs. 0 gr, p=0.005), number of pulses (12 vs. 0, p=0.005), and duration of IVCYC therapy (1 vs. 0 yrs, p=0.006) were also higher in the group B in relation to group A. All 14 patients treated by IVCYC received this drug after the first ejaculation and none were under this therapy at study entry with a mean interval of 5.11 ± 3.72 years (0.4 - 12) before the semen evaluation.
Remarkably, elevated FSH levels were detected in 42.8% of the patients under IVCYC therapy compared to 9.5% without this treatment \((p=0.038)\). In addition, the mean FSH levels was significantly higher in patients that received IVCYC therapy compared to patients without this therapy \((11.81 \pm 1.64 \text{ vs. } 5.45 \pm 0.98 \text{IU/L}, p=0.0013)\). Moreover, the median of testicular volumes measured by ultrasound in right and left testicles were lower in the patients with IVCYC treatment compared to patients without this drug \([9.5 \text{ ml (3.8-14.6) vs. 12.1 ml (5.13-21.8), } p=0.0147; 9.27 \text{ ml (3.28-12.4) vs. 12.8 ml (4.96-22), } p=0.0008; \text{ respectively}\)]). On the other hand, no significant difference was observed in the frequency of positive anti-sperm antibodies in the patients with and without IVCYC therapy \((21\% \text{ vs. } 52\%, p=0.088)\).

In contrast, no significant differences were found in the use of prednisone, chloroquine diphosphate, methotrexate, and mycophenolate mofetil in the two groups, whereas the median cumulative dose of azathioprine was higher in the group A compared to group B \((57.9 \text{ vs. 0g, } p=0.049)\) (Table 4). One patient of each group was treated with cyclosporine \((p=1.0)\).

DISCUSSION

To our knowledge this is the first systematic evaluation that specifically addressed sperm abnormalities in SLE and clearly demonstrates severe alterations according to the WHO guidelines. It also identifies post-pubertal IVCYC as the major factor of permanent damage to the testes.

The great advantage of our study was to use established worldwide definitions for semen alterations. In fact, the semen parameters standards were first defined in 1951 by the American Fertility Society but were followed by other publications such as the WHO guidelines for normal sperm parameters \(^5, 24, 28\). Of interest, all our male SLE patients had an abnormal semen analysis and would be diagnosed as infertile. On the other hand,
Eggert-Kruse et al. showed that teratozoospermia, even less than 4% normal forms, did not exclude subsequent fertility.

In contrast, no epididymo-orchitis was identified in the same group of patients. Of note, there is only one case report in the literature of unilateral lupus epididymo-orchitis in a 58-year-old man with histopathological confirmation of aspermatogenic seminiferous tubules. Likewise, a low percentage of varicocele was detected in our SLE patients and was similar in both studied groups. Although varicocele is believed to be one of the most common causes of male subfertility, most men have no detectable abnormalities of semen and of the hypothalamic-pituitary-testicular axis, particularly in grades I or II.

It is important to emphasize that the testicular volume assessment is essential step in the evaluation of gonadal function since seminiferous tubules represent 95% of the testicular volume. In fact, the striking reduction of testicular volumes observed herein by ultrasound, and not by Prader orchidometer, paralleled the severity of sperm abnormalities, suggesting a severe damage to the seminiferous tubules in lupus. Reinforcing this hypothesis, Prader orchidometer measurement was able to discriminated the lower testicular volumes of SLE patients compared to controls, although this method is known to have a lower sensitivity.

Interestingly, elevated FSH levels were higher in SLE patients with severe sperm abnormalities than in patients with teratozoospermia and we speculate that this finding might be related to the decreased testicular volume detected in these SLE patients. Indeed, FSH is the major marker of seminiferous epithelia function and high levels suggest testicular damage. Moreover, the discordance between normal LH and high FSH in the present study may reflect an inhibin B deficiency due to Sertoli cell dysfunction in SLE since this peptide is primarily involved in the negative feed-back regulation of FSH secretion. In contrast, the severity of sperm abnormalities were not associated with testosterone levels, although previous reports have suggested a higher frequency of low testosterone in SLE.
Furthermore, this study suggests that primary hypogonadism is a rare condition in male lupus as also previously observed by us in female SLE. A possible role of anti-sperm antibodies as a marker for early testicular lesion should not be disregarded, although the difference did not reach statistical significance. In fact, one study carried out in our group showed that autoantibodies directed to corpus luteum were associated with early stages of ovarian dysfunction (normal or irregular menses and elevated FSH) and antibodies anti-corpus were uniformly negative in lupus patients with premature ovarian failure. Interestingly, Reichlin et al. reported IgG anti-sperm antibodies in approximately half of 24 SLE patients, which were related with anti-DNA titers and disease activity. In our study, anti-sperm antibodies were not associated with the presence of anti-DNA antibodies or SLEDAI scores and this discrepancy might be explained by the use of a different methodology which detects not only antibodies to the acrosome but also to the others parts of the spermatozoa such as the head, mid-piece, and/or tail.

Our data also emphasize that testis is highly susceptible to the toxic effects of IVCYC therapy which induces a persistent or long-lasting damage to primordial sperm cells leading to semen alterations. These abnormalities were also related to a higher cumulative dose, number of pulses, and duration of this therapy. Likewise, Meistrich et al. showed that the cumulative dose of IVCYC higher than 7.5 g/m² was associated with azoospermia. Moreover, our findings are in accordance with previous studies in cancer and nephrotic syndrome that showed a decrease spermatozoa production following IVCYC treatment due to a dysfunction of the germinal epithelium. In fact, it has been shown that spermatogenesis is suppressed within 90-120 days by IVCYC use resulting in abnormal semen analysis.

Although, it is not possible to predict which patients will become subfertile, the persistence of abnormal testicular function after approximately five years of IVCYC associated with elevated FSH levels and lower testicular volumes observed herein, supports the notion of an irreversible lesion and reinforces the need for sperm cryopreservation.
for male SLE that undergo cyclophosphamide therapy. On the other hand, in almost one third of the patients with severe semen alterations a causal factor has not been recognized and we are currently investigating the possible role of inhibin B and karyotype in lupus.

In conclusion, male gonadal function is severely affected in SLE patients due to testicular damage and consequent hormonal disturbances. Considering that this disease occurs mainly during reproductive age, a multidisciplinary approach is essential in order to identify the potential risks factors of infertility and offer preventive measures for these patients.

ACKNOWLEDGMENT
Our gratitude to Aline Braga and Kelly Athayde for technical support.
REFERENCES

1. Pistiner M, Wallace DJ, Nessim S, Metzger AL, Klinenberg JR. Lupus erythematosus in the 1980s: a survey of 570 patients. *Semin Arthritis Rheum.* 1991;21(1):55-64.

2. McMurray RW, May W. Sex hormones and systemic lupus erythematosus: review and meta-analysis. *Arthritis Rheum.* 2003;48(8):2100-10.

3. Turner HE, Wass JA. Gonadal function in men with chronic illness. *Clin Endocrinol (Oxf).* 1997;47(4):379-403.

4. Eskenazi B, Wyrobek AJ, Sloter E, Kidd SA, Moore L, Young S, Moore D. The association of age and semen quality in healthy men. *Hum Reprod.* 2003;18(2):447-54.

5. World Health Organization (WHO) for the standardized investigation, diagnosis and management of the infertile men. Cambridge: Cambridge University Press;2000:1-86.

6. Anderson D, Bishop JB, Garner RC, Ostrosky-Wegman P, Selby PB. Cyclophosphamide: review of its mutagenicity for an assessment of potential germ cell risks. *Mutat Res.* 1995;330(1-2):115-81.

7. Kenney LB, Lauter MR, Grant FD, Grier H, Diller L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. *Cancer.* 2001;91(3):613-21.

8. Latta K, Von Schnakenburg C, Ehrich JH. A meta-analysis of cytotoxic treatment for frequently relapsing nephrotic syndrome in children. *Pediatr Nephrol.* 2001;16(3):271-82.

9. Clements PJ, Davis J. Cytotoxic drugs: their clinical application to the rheumatic diseases. *Semin Arthritis Rheum.* 1986;15(4):231-54.

10. Aziz N, Agarwal A, Nallella KP, Thomas AJ Jr. Relationship between epidemiological features and aetiology of male infertility as diagnosed by a comprehensive infertility service provider. *Reprod Biomed Online.* 2006;12(2):209-14.
11. Silva CA, Hallak J, Pasqualotto FF, Barba MF, Saito MI, Kiss MH. Gonadal function in adolescents and young men with systemic lupus erythematosus. *J Rheumatol*. 2002;29(9):2000-5.

12. Walker G, Merry P, Sethia K, Ball RY. A case of testicular lupus. *Lupus*. 2000;9(5):397-8.

13. Reichlin M, Gilbert G, Haas GG Jr. Association of anti-sperm antibodies with systemic lupus erythematosus. *Arthritis Rheum*. 1985;28:76.

14. [No authors listed]. Impotence in systemic lupus erythematosus. *J Rheumatol*. 1990;17(1):117-8.

15. Athreya BH, Rafferty JH, Sehgal GS, Lahita RG. Adenohypophyseal and sex hormones in pediatric rheumatic diseases. *J Rheumatol*. 1993;20(4):725-30.

16. Vilarinho ST, Costallat LT. Evaluation of the hypothalamic-pituitary-gonadal axis in males with systemic lupus erythematosus. *J Rheumatol*. 1998;25(6):1097-103.

17. Mok CC, Lau CS. Profile of sex hormones in male patients with systemic lupus erythematosus. *Lupus*. 2000;9(4):252-7.

18. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. *Arthritis Rheum*. 1997;40(9):1725.

19. Tanner JM. Growth at adolescence. 2nd ed. Oxford: Blackwell Scientific Publications; 1962.

20. Prader A. Testicular size: assessment and clinical importance. *Triangle*. 1966;7(6):240-3.

21. Colli AS, Berquió ES, Marques RM. Crescimento e desenvolvimento pubertário em crianças e adolescentes brasileiros. In: Colli AS, Berquió ES, Marques RM. editores. *Volume testicular*. São Paulo: Brasileira de Ciências Ltda; 1984.

22. Bong GW, Koo HP. The adolescent varicocele: to treat or not treat. *Urol Clin N Am*. 2004;31(3):509-15.

23. Atkinson GO, Patrick LE, Ball TI, Stephenson CA, Broecker BA, Woodward JR. The normal and abnormal scrotum in children: evaluation with color Doppler sonography. *Am J Roentgenol*. 1992; 158:613-7.
24. World Health Organization (WHO). Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. New York: Cambridge University Press; 1999:1-128.

25. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S. Predictive value of abnormal sperm morphology in vitro fertilization. *Fertil Steril.* 1988;49(1):112-7.

26. Bombardieri C, Gladman DD, Urowitz MB, Karan D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. *Arthritis Rheum.* 1992;35(6):630-40.

27. Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, Bacon P, Bombardieri S, Hanly J, Hay E, Isenberg D, Jones J, Kalunian K, Maddison P, Nived O, Petri M, Richter M, Sanchez-Guerrero J, Svait M, Sturfelt G, Symmons D, Zoma A. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index for systemic lupus erythematosus. *Arthritis Rheum.* 1996;39(3):363-9.

28. Overstreet JW, Katz DF. Semen analysis. *Urol Clin North Am.* 1987;14(3):441-9.

29. Eggert-Kruse W, Schwarz H, Rohr G, Demirakca T, Tilgen W, Runnebaum B. Sperm morphology assessment using strict criteria and male fertility under in-vivo conditions of conception. *Hum Reprod.* 1996;11(1):139-46.

30. Griffin JE, Wilson JD. Disorders of the testes and the male reproductive tract. In: Larsen PD, Kronenberg HM, Melmed S, Polonsky KS. eds. *Williams textbook of endocrinology.* Philadelphia: Saunders; 2003:709-69.

31. Diamond DA, Paltiel HJ, DiCanzio J, Zurakowski D, Bauer SB, Atala A, Ephrain PL, Grant R, Retik AB. Comparative assessment of pediatric testicular volume: orchidometer versus ultrasound. *J Urol.* 2000;164(3 Pt 2):1111-4.

32. Behre HM, Nashan D, Nieschlag E. Objective measurement of testicular volume by ultrasonography: evaluation of the technique and comparison with orchidometer estimates. *Int J Androl.* 1989;12(6):395-403.

33. Chang DM, Chang CC, Kuo SY, Chu SJ, Chang ML. Hormonal profiles and immunological studies of male lupus in Taiwan. *Clin Rheumatol.* 1999;18(2):158-62.
34. Pasoto SG, Viana VS, Mendonca BB, Yoshinari NH, Bonfa E. Anti-corpus luteum antibody: a novel serological marker for ovarian dysfunction in systemic lupus erythematosus? *J Rheumatol.* 1999;26(5):1087-93.

35. Meistrich M, Wilson G, Brown BW, da Cunha MF, Lipshultz LI. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. *Cancer.* 1992;70(11):2703-12.

36. Meistrich ML. Stage-specific sensitivity of spermatogonia to different chemotherapeutic drugs. *Biomed Pharmacother.* 1984;38(3):137-42.

37. Hallak J, Kolettis PN, Sekhon VS, Thomas AJ Jr, Agarwal A. Sperm cryopreservation in patients with testicular cancer. *Urology.* 1999;54(5):894-9.

38. Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in cancer patients. *Fertil Steril.* 2005;83(6):1622-8.
APPENDIX 2

Table 1 – Semen analysis in SLE patients and controls

Variables	Reference value	SLE (n=35)	Control (n=35)	P
Macroscopic examination				
Sexual abstinence, days	≥ 2	3 (2-75)	4 (2-10)	0.675
Sperm volume, ml	≥ 2	2.3 ± 1.0	3.2 ± 1.7	0.015
Sperm pH	≥ 7.2	7.5 (7.0-8.0)	7.5 (7.0-8.0)	0.553
Concentration and count				
Sperm concentration, X 10^6/ml	≥ 20	42 (0-892)	50 (8-362)	0.109
Total sperm count, X 10^6	≥ 40	70 (0-1024)	172 (13-735)	0.002
Motility				
Total motile sperm count, X 10^6	≥ 10	32 (0-577)	119 (8-536)	0.004
Sperm motility, %	≥ 50	58.0 (0-78.5)	65.0 (10.0-84.0)	0.065
Decreased levels, n (%)		12 (34)	6 (17)	0.176
Rapid progressive motility (grade "a")				
Percentage		0 (0-32)	5.0 (0-38)	0.004
Slow progressive motility (grade "b")				
Percentage		29.5 (0-51.0)	34 (4-58)	0.050
Non progressive motility (grade "c")				
Percentage		21 (0-57.5)	20 (6-44)	0.851
Non motility (grade "d")				
Percentage		36.5 (0-89.5)	34 (16-90)	0.810
Morphology				
Kruger normal sperm forms, %	≥ 14	2.5 (0-27.0)	5.0 (0-19.0)	0.075
Decreased levels, n (%)		34 (97)	31 (88.5)	0.356
WHO normal sperm forms, %	≥ 30	11.2 ± 8.3	17.4 ± 11.3	0.011
Decreased levels, n (%)		35 (100)	30 (85.7)	0.053

Values expressed in mean ± standard deviation or median (range), n – number of patients, SLE – systemic lupus erythematosus, WHO – World Health Organization, grade "a" - rapid progressive motility, grade "b" - slow or sluggish progressive motility, grade "c" - non progressive motility, grade "d" - non motility.
APPENDIX 3

Table 2 – Evaluation of testicular volume by Prader and ultrasound, and varicocele in SLE patients according to semen abnormalities

Variables	Group A (n=18)	Group B (n=17)	p
Testicular volume by Prader, ml			
Right			
Decreased (<12), n (%)	0	2 (11.7)	0.228
Left			
Decreased (<12), n (%)	1 (5.5)	4 (23.5)	0.177
Testicular volume by US, ml			
Right			
Decreased (<7), n (%)	1 (5.5)	5 (29.4)	0.087
Left			
Decreased (<7), n (%)	2 (11)	5 (29.4)	0.398
Varicocele			
Clinical, n (%)	3 (16.6)	5 (29.4)	0.443
US, n (%)	7 (38.8)	6 (35.2)	1.0

Values expressed in median (range), Group A (teratozoospermia), Group B (azoospermia or teratozoospermia in combination with oligozoospermia and/or astenozoospermia), SLE – systemic lupus erythematosus, US – ultrasound.
Variables	Group A (n =18)	Group B (n =17)	p
FSH (IU/L)			0.0001
Patients with elevated	3.3 (1-17.9)	10.9 (3.9-25)	
levels, n (%)	1 (5.5)	7 (41.1)	
LH (IU/L)	4.8 (1.4-15.1)	5.5 (1.7-15.6)	0.386
Patients with elevated			
levels, n (%)	2 (11.1)	2 (11.7)	
Prolactin (ng/ml)			0.858
Patients with elevated	8.8 (1.9-36.5)	9.3 (3.8-36.2)	
levels, n (%)	5 (27.7)	4 (23.5)	
Total testosterone			0.207
(ng/dl)	560 (147-1259)	468 (80-728)	
Patients with decreased			
levels, n (%)	3 (16.6)	2 (11.7)	
T3 (ng/dl)	143 (85-177)	131 (109-210)	0.381
Patients with elevated			
levels, n (%)	0	1 (5.8)	
T4 (µg/dl)	9.0 (6.2-13.3)	8.9 (6.2-7.1)	0.716
Patients with elevated	1 (5.5)		
levels, n (%)		0	
Free T4 (ng/dL)	1.0 (0.75-1.3)	1.1 (0.7-1.46)	0.268
Patients with decreased			
levels, n (%)	1 (5.5)	0	
TSH (µU/ml)	1.89 (0.27-2.99)	1.46 (0.57-5.38)	0.690
Patients with decreased			
levels, n (%)	1 (5.5)	0	

Values of hormones expressed in median (range), Group A (teratozoospermia), Group B (azoospermia or teratozoospermia in combination with oligozoospermia and/or astenozoospermia), n – number of patients; normal ranges: FSH (1.0 - 10.5), LH (1 - 8.4), Prolactin (2 - 10), Total testosterone (271 - 965), T3 (70 - 204), T4 (4.3 - 12.5), free T4 (0.4 - 1.6), TSH (0.5 - 6), SLE – systemic lupus erythematosus.
APPENDIX 5

Table 4 – Drug therapy in SLE patients according to semen abnormalities

Variables	Group A (n=18)	Group B (n=17)	p
IVCYC			
Current use, n (%)	0	0	-
Use after first ejaculation, n (%)	2 (11)	12 (70.5)	0.001
Cumulative dose, g	0 (0-39)	12 (0-32.8)	0.005
Number of pulse therapy, n	0 (0-31)	12 (0-23)	0.005
Duration of IVCYC, yrs	0 (0-3.6)	1 (0-4)	0.006
Azathioprine			
Current use, n (%)	6 (33)	4 (23.5)	0.71
Use after first ejaculation, n (%)	14 (77.7)	8 (47)	0.086
Current dosage, mg	0 (0-250)	0 (0-300)	0.708
Cumulative dose, g	57.9 (0-133.7)	0 (0-138.3)	0.049
Prednisone			
Current use, n (%)	10 (55.5)	10 (58.8)	1.0
Current dosage, mg	5 (0-60)	5 (0-40)	0.732
Cumulative dose, g	26.5 (3.3-76)	25.5 (4.5-60.7)	0.909
Chloroquine diphosphate			
Current use, n (%)	12 (66.6)	14 (82.3)	0.44
Use after first ejaculation, n (%)	16 (88.8)	17 (100)	0.486
Current dosage, mg	250 (0-250)	250 (0-250)	0.568
Cumulative dose, g	205 (0-1337.25)	425.7 (45.5-1478)	0.503
Methotrexate			
Current use, n (%)	2 (11)	0	0.48
Use after first ejaculation, n (%)	4 (22)	6 (35)	0.55
Cumulative dose, g	0 (0-2.4)	0 (0-5.6)	0.47
Mycophenolate mofetil			
Current use, n (%)	4 (22.2)	0	1.0
Use after first ejaculation, n (%)	5 (27.7)	1 (5.8)	0.177
Current dosage, mg	0 (0-3000)	0	0.273
Cumulative dose, g	0 (0-2447)	0 (0-503)	0.273

Values expressed in median (range), Group A (teratozoospermia), Group B (azoospermia or teratozoospermia in combination with oligozoospermia and/or astenozoospermia), g – grams, IVCYC – intravenous cyclophosphamide, mg – milligram, n – number of patients, SLE – systemic lupus erythematosus, yrs – years.