Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach

Gregory J. Crowther¹*, Dhanasekaran Shanmugam², Santiago J. Carmona³, Maria A. Doyle⁴a, Christiane Hertz-Fowler⁵b, Matthew Berrian⁵, Solomon Nwaka⁶, Stuart A. Ralph⁴k, David S. Roos²z, Wesley C. Van Voorhis¹z, Fernán Aguero³*

1 Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America, 2 Department of Biology and Penn Genomics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 3 Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, Buenos Aires, Argentina, 4 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia, 5 Wellcome Trust Sanger Institute, Hinxton, United Kingdom, 6 Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland

Abstract

Background: The increased sequencing of pathogen genomes and the subsequent availability of genome-scale functional datasets are expected to guide the experimental work necessary for target-based drug discovery. However, a major bottleneck in this has been the difficulty of capturing and integrating relevant information in an easily accessible format for identifying and prioritizing potential targets. The open-access resource TDR Targets.org facilitates drug target prioritization for major tropical disease pathogens such as the mycobacteria Mycobacterium leprae and Mycobacterium tuberculosis; the kinetoplastid protozoans Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi; the apicomplexan protozoans Plasmodium falciparum, Plasmodium vivax, and Toxoplasma gondii; and the helminths Brugia malayi and Schistosoma mansoni.

Methodology/Principal Findings: Here we present strategies to prioritize pathogen proteins based on whether their properties meet criteria considered desirable in a drug target. These criteria are based upon both sequence-derived information (e.g., molecular mass) and functional data on expression, essentiality, phenotypes, metabolic pathways, assayability, and druggability. This approach also highlights the fact that data for many relevant criteria are lacking in less-studied pathogens (e.g., helminths), and we demonstrate how this can be partially overcome by mapping data from homologous genes in well-studied organisms. We also show how individual users can easily upload external datasets and integrate them with existing data in TDR Targets.org to generate highly customized ranked lists of potential targets.

Conclusions/Significance: Using the datasets and the tools available in TDR Targets.org, we have generated illustrative lists of potential drug targets in seven tropical disease pathogens. While these lists are broadly consistent with the research community’s current interest in certain specific proteins, and suggest novel target candidates that may merit further study, the lists can easily be modified in a user-specific manner, either by adjusting the weights for chosen criteria or by changing the criteria that are included.

Introduction

Several strategies exist for the pursuit of drugs to treat neglected tropical diseases. Major approaches can generally be classified as: (A) label extension, extending the indications of existing drugs for other conditions to tropical diseases; (B) piggyback discovery, in which the discovery of new drugs is focused on one or a few classes of well-studied and validated targets; and (C) de novo drug discovery [1]. These strategies collectively seek to exploit two possible sets of drug targets: those that have been validated in other organisms and diseases, and those that have not – perhaps because they are unique to neglected-disease pathogens – but that nevertheless have potential as novel sites of action.

Since experimental investigations of possible drug targets are time-consuming and expensive, it is worthwhile to conduct in silico analyses [2–8] to identify the proteins most worthy of experimental follow-up. These analyses consider traits commonly thought to be
Author Summary

In cell-based drug development, researchers attempt to create drugs that kill a pathogen without necessarily understanding the details of how the drugs work. In contrast, target-based drug development entails the search for compounds that act on a specific intracellular target—often a protein known or suspected to be required for survival of the pathogen. The latter approach to drug development has been facilitated greatly by the sequencing of many pathogen genomes and the incorporation of genome data into user-friendly databases. The present paper shows how the database TDRtargets.org can identify proteins that might be considered good drug targets for diseases such as African sleeping sickness, Chagas disease, parasitic worm infections, tuberculosis, and malaria. These proteins may score highly in searches of the database because they are dissimilar to human proteins, are structurally similar to other “druggable” proteins, have functions that are easy to measure, and/or fulfill other criteria. Researchers can use the lists of high-scoring proteins as a basis for deciding which potential drug targets to pursue experimentally.

Materials and Methods

Database Infrastructure

We have previously described the construction of the TDRtargets.org database, as well as the formulation of searches (queries) to identify proteins meeting criteria of interest and the viewing, saving, and exporting of search results [14]. Since then, while the overall workflow of the database has remained the same, additional genomes and datasets have been included (see below), and several improvements have been implemented on the user interface side of the database. Although users have always been able to perform “weighted union” queries, with different weights (point values) assigned to different user-specified criteria, formulating these queries and viewing and adjusting their results has recently been made more convenient. To construct a weighted union query from the website’s target search page, a user (1) selects a pathogen (e.g., P. falciparum), (2) selects a criterion (e.g., functional category = enzyme) with which to query the pathogen genes, (3) enters a name and a weight for the query in the “Run this query” sub-menu at the bottom of the page, (4) clicks the “Next Query” button, and (5) repeats steps 2 to 4 until the last criterion is entered, at which point the user selects “Run this query” rather than “Next Query.” The search results are displayed on a page where users have the option of changing the previously entered weights for each criterion (Figure 1). (These results are archived on the user’s history page, where he/she can combine different subsets of previous queries with the Union function to obtain new ranked target lists.) The presentation of ranked lists has also been revised to display the criteria met by each protein (Figure 1). Further flexibility in data analysis is provided by an option to export the results to a dynamic spreadsheet so that proteins’ fulfillment of individual criteria can be viewed and the weights of the criteria can be adjusted offline.

Using External Data in TDRtargets.org

The TDRTargets.org web application lets users take advantage of datasets obtained externally or in-house. Lists of genes matching user-defined criteria may be saved as text files (each containing a column of gene identifiers – one per line – plus an optional second column for point values) assigned to different user-specified criteria, formulating these queries and viewing and adjusting their results has recently been made more convenient. To facilitate target-focused analyses for pathogens prioritized by the World Health Organization’s Special Programme for Research and Training in Tropical Diseases (TDR), TDRtargets.org [14] was created as a central repository of target-related data. The database may be used for two general scientific tasks: (A) analysis of individual proteins, finding information that relates to their potential as drug targets; and (B) genome-level analysis, sorting and ranking multiple proteins as drug target candidates according to user-specified criteria. The latter task is the main focus of this paper.

TDRtargets.org is designed to facilitate multiple approaches to target prioritization. Users can browse target lists that others have posted (http://tdrtargets.org/published), generate their own lists from standard criteria offered by the database, and/or extend the criteria used to rank prospective targets by uploading files representing additional published or unpublished data. A previous publication [14] has outlined the user interface and concepts underlying the possible queries. In this study, we provide examples of whole-genome prioritization of targets, focusing on key issues for the specific diseases covered. We use these prioritization tools to generate lists of promising drug targets for TDR organisms – lists which provide useful starting points for target characterization in these organisms, as well as illustrate the general utility and versatility of TDRtargets.org in identifying and ranking targets.

desirable in a drug target, including essentiality, druggability (whether drug-like molecules are likely to interact with the target), assayability, specificity/selectivity (potential for inhibiting the pathogen without harming the host), and importance in life-cycle stages of the pathogen relevant to human health. Inferring these traits from experimental data is a nontrivial task. For example, guesses at a target’s essentiality can be made from gene knockout experiments with the pathogen of interest [9] or related organisms [3,6], from naturally occurring gene deletions in clinical isolates [10], from microarray and/or proteomic data [11], and/or from metabolic chokepoint (flux balance) studies [12,13]. Since the best choices are partly a matter of opinion, there is a clear need for databases that are flexible enough to integrate datasets from different sources and to filter these datasets based on the preferences of individual researchers.

To facilitate target-focused analyses for pathogens prioritized by the World Health Organization’s Special Programme for Research and Training in Tropical Diseases (TDR), TDRtargets.org [14] was created as a central repository of target-related data. The database may be used for two general scientific tasks: (A) analysis of individual proteins, finding information that relates to their potential as drug targets; and (B) genome-level analysis, sorting and ranking multiple proteins as drug target candidates according to user-specified criteria. The latter task is the main focus of this paper.

TDRtargets.org is designed to facilitate multiple approaches to target prioritization. Users can browse target lists that others have posted (http://tdrtargets.org/published), generate their own lists from standard criteria offered by the database, and/or extend the criteria used to rank prospective targets by uploading files representing additional published or unpublished data. A previous publication [14] has outlined the user interface and concepts underlying the possible queries. In this study, we provide examples of whole-genome prioritization of targets, focusing on key issues for the specific diseases covered. We use these prioritization tools to generate lists of promising drug targets for TDR organisms – lists which provide useful starting points for target characterization in these organisms, as well as illustrate the general utility and versatility of TDRtargets.org in identifying and ranking targets.

Identification of Drug Targets

In Silico

Using External Data in TDRtargets.org

The TDRTargets.org web application lets users take advantage of datasets obtained externally or in-house. Lists of genes matching user-defined criteria may be saved as text files (each containing a column of gene identifiers – one per line – plus an optional second column for point values) assigned to different user-specified criteria, formulating these queries and viewing and adjusting their results has recently been made more convenient. To facilitate target-focused analyses for pathogens prioritized by the World Health Organization’s Special Programme for Research and Training in Tropical Diseases (TDR), TDRtargets.org [14] was created as a central repository of target-related data. The database may be used for two general scientific tasks: (A) analysis of individual proteins, finding information that relates to their potential as drug targets; and (B) genome-level analysis, sorting and ranking multiple proteins as drug target candidates according to user-specified criteria. The latter task is the main focus of this paper.

TDRtargets.org is designed to facilitate multiple approaches to target prioritization. Users can browse target lists that others have posted (http://tdrtargets.org/published), generate their own lists from standard criteria offered by the database, and/or extend the criteria used to rank prospective targets by uploading files representing additional published or unpublished data. A previous publication [14] has outlined the user interface and concepts underlying the possible queries. In this study, we provide examples of whole-genome prioritization of targets, focusing on key issues for the specific diseases covered. We use these prioritization tools to generate lists of promising drug targets for TDR organisms – lists which provide useful starting points for target characterization in these organisms, as well as illustrate the general utility and versatility of TDRtargets.org in identifying and ranking targets.

Materials and Methods

Database Infrastructure

We have previously described the construction of the TDRtargets.org database, as well as the formulation of searches (queries) to identify proteins meeting criteria of interest and the viewing, saving, and exporting of search results [14]. Since then, while the overall workflow of the database has remained the same, additional genomes and datasets have been included (see below), and several improvements have been implemented on the user interface side of the database. Although users have always been able to perform “weighted union” queries, with different weights (point values) assigned to different user-specified criteria, formulating these queries and viewing and adjusting their results has recently been made more convenient. To construct a weighted union query from the website’s target search page, a user (1) selects a pathogen (e.g., P. falciparum), (2) selects a criterion (e.g., functional category = enzyme) with which to query the pathogen genes, (3) enters a name and a weight for the query in the “Run this query” sub-menu at the bottom of the page, (4) clicks the “Next Query” button, and (5) repeats steps 2 to 4 until the last criterion is entered, at which point the user selects “Run this query” rather than “Next Query.” The search results are displayed on a page where users have the option of changing the previously entered weights for each criterion (Figure 1). (These results are archived on the user’s history page, where he/she can combine different subsets of previous queries with the Union function to obtain new ranked target lists.) The presentation of ranked lists has also been revised to display the criteria met by each protein (Figure 1). Further flexibility in data analysis is provided by an option to export the results to a dynamic spreadsheet so that proteins’ fulfillment of individual criteria can be viewed and the weights of the criteria can be adjusted offline.

Using External Data in TDRtargets.org

The TDRTargets.org web application lets users take advantage of datasets obtained externally or in-house. Lists of genes matching user-defined criteria may be saved as text files (each containing a column of gene identifiers – one per line – plus an optional second column for point values) assigned to different user-specified criteria, formulating these queries and viewing and adjusting their results has recently been made more convenient. To facilitate target-focused analyses for pathogens prioritized by the World Health Organization’s Special Programme for Research and Training in Tropical Diseases (TDR), TDRtargets.org [14] was created as a central repository of target-related data. The database may be used for two general scientific tasks: (A) analysis of individual proteins, finding information that relates to their potential as drug targets; and (B) genome-level analysis, sorting and ranking multiple proteins as drug target candidates according to user-specified criteria. The latter task is the main focus of this paper.

TDRtargets.org is designed to facilitate multiple approaches to target prioritization. Users can browse target lists that others have posted (http://tdrtargets.org/published), generate their own lists from standard criteria offered by the database, and/or extend the criteria used to rank prospective targets by uploading files representing additional published or unpublished data. A previous publication [14] has outlined the user interface and concepts underlying the possible queries. In this study, we provide examples of whole-genome prioritization of targets, focusing on key issues for the specific diseases covered. We use these prioritization tools to generate lists of promising drug targets for TDR organisms – lists which provide useful starting points for target characterization in these organisms, as well as illustrate the general utility and versatility of TDRtargets.org in identifying and ranking targets.
dium vivax, Schistosoma mansoni, Toxoplasma gondii, Trypanosoma brucei, and Trypanosoma cruzi) and one endosymbiont bacterium (Wolbachia, endosymbiont of B. malayi). The depth of data coverage in various functional datasets (searchable at http://tdrtargets.org/search) varies for different organisms; wherever possible, gaps in coverage are compensated for by mapping relevant information from orthologous proteins in other organisms. (For example, protein structure data available for P. falciparum proteins were mapped to P. vivax proteins.) Ortholog identification on whole genomes was carried out using tools available from OrthoMCL.org [18]. Data recently added to TDRtargets.org include curated data on production of recombinant proteins and activity assays from BRENDA [19]; three-dimensional models of proteins from B. malayi and its endosymbiont Wolbachia, M. leprae, and S. mansoni, obtained from ModBase [20]; and phylogenetic information on Arabidopsis thaliana (so that users can search for proteins with or without orthologs in plants).

Ranking Target Genes via Weighted Unions

TDRtargets.org has a flexible ranking system for prioritizing target proteins. In multi-criteria searches, it is possible to take a Boolean intersection of the criteria so that only those proteins with all of the desired traits (e.g., essentiality AND druggability AND assayability, etc.) are selected. However, a protein may lack one or more preferred properties and still be the target of an effective drug (Table 1). Therefore the prioritization queries presented below are devised as weighted unions (see “Database infrastructure” above), in which each criterion is assigned a subjective weight (point value) and targets earn points for each criterion they meet. (Less important and undesirable criteria are given small and negative weights, respectively.) These queries return ranked lists of all potential targets, ordered by cumulative score. Target lists can then be re-ranked, if desired, by changing the weights and/or adding additional criteria (see “Database infrastructure” above).

Overview of Queries Presented in This Paper

The criteria used in generating the lists presented below are summarized in Figure 2. As a starting point, a basic set of criteria of general interest were chosen to frame a “standard” query for identifying targets in L. major (see Query 2 in Figure 2). In compiling this basic set of criteria, we included most datasets that are commonly available for organisms with complete genomic information so that the standard query could be easily applied to different pathogens. Queries 3, 4, and 5 of Figure 2 are examples of extending the standard query. Queries 6, 7, 8, and 9 of Figure 2 are framed in a pathogen-specific manner to prioritize target proteins from a particular metabolic pathway, subcellular location, or life-cycle stage. These queries make use of criteria based on external datasets uploaded to TDRtargets.org. (Readers can explore the upload tool at http://tdrtargets.org/history.) Queries 10 and 11 of Figure 2 were based heavily on data obtained by manual curation of the literature [21] and homology/orthology analysis for protein-specific information, illustrating how even incompletely annotated genomes are amenable to target identification. Additional details of these queries are noted below.

Results

Searching for Candidate Drug Targets in Leishmania

An example of the weighted-union approach to target prioritization (see Methods) is shown in Query 2 of Figure 2, which covers the Leishmania major genome. In this example, points are awarded for many of the criteria covered in Table 1, plus some additional conditions. From these criteria a list of prioritized targets is generated (Table 2). Such a list is hardly the final word in Leishmania target selection, however. The researchers who generated the list in Table 2 may subsequently decide that, since essentiality data for Leishmania genes are very limited, they will...
Table 1. Primary targets of drugs used clinically against TDR-prioritized pathogens.

Target	Gene ID	Pathogen	Drug	Molecular weight (kDa)	Transmembrane domains	PDB structures	ModBase models	Ortholog in humans	Druggability	Compound Desirability	Assay-ability
Cytochrome b	cytb	*P. falciparum*	Atovaquone	43	8	N	N	Y			
Cytochrome P-450 14 alpha-demethylase	LmjF11.1100	*L. major*	Fluconazole	54	0	N	Y	Y	0.8	0.43	N
Dihydrofolate reductase	PFD0830w	*P. falciparum*	Pyrimethamine, Cycloguanil/ Proguanil	72	0	Y	Y	Y	1	0.56	Y
Dihydrofolate reductase	S0.m00016	*T. gondii*	Pyrimethamine	69	0	N	N	Y	0.8	0.56	Y
Dihydropteroate Synthase	ML0224	*M. leprae*	Dapsone	29	ND	Y	Y	N			
Dihydropteroate Synthase	PF08_0095	*P. falciparum*	Sulfadoxine	83	0	N	Y	N	0.8		Y
Dihydropteroate Synthase	S5.m00011	*T. gondii*	Sulfadiazine	83	0	N	N	N	0.8		N
InhA (NADH-dependent enoyl ACP reductase)	Rv1484	*M. tuberculosis*	Isoniazid	29	0	Y	Y	N	0.7	0.64	Y
Ornithine decarboxylase	Tb11.01.5300	*T. brucei*	Efflornithine (DMF0)	49	0	Y	Y	Y	1	0.43	Y
RNA Polymerase	ML1891	*M. leprae*	Rifampicin	130	ND	N	Y	Y	0.29		Y
RNA Polymerase	Rv00667	*M. tuberculosis*	Rifampicin	129	0	N	N	Y	0.7	0.29	Y

In general, the following might be considered desirable target traits: a low molecular weight and a lack of transmembrane (TM) domains (to favor expression and solubility of recombinant protein), existence of 3D crystal structures and ModBase models (for structure-based drug design), absence of orthologs from humans (to favor selectivity), high druggability and compound desirability scores (0-to-1 scale), and a precedent for assayability. Abbreviations: PDB, Protein Data Bank; Y, yes; N, no; ND, not determined. Note that each target has some desirable features, but few are “perfect.”

doi:10.1371/journal.pntd.0000804.t001
Attribute used to rank targets	Well	No. of targets	In silico	In vitro	In vivo
Identification of Drug Targets	37	37	All proteins	-	-
			(a) Enzymes	-	-
			(b) Conserved in taxonomy	-	-
			Number of paragons > 3	-	-
			Not in T. brucei	-	-
			In C. elegans	-	-
			Any genetic validation	-	-
			Any essentiality evidence	-	-
			(1) Druggability score	-	-
			(2) Cumulative drugliability score	-	-
			Similar to known targets	-	-
			Assay by assay expression	-	-
			Recombinant expression	-	-
			Apicoplast (predicted)	-	-
			Glycolysis/glucose metabolism	-	-
			Enzymes controlling flux	-	-
			Hasan et al. 2006	-	-
			Murphy & Brown 2007	-	-
			Amastigote promastigotes	-	-
			Any RBC stage (80-100%)	-	-
			Adult worms	-	-
			Egg stage	-	-
			Schistosoma stage	-	-
			Expression in any stage	-	-
			Sterile phenotype	-	-
			Morphology defect	-	-
			Growth defect	-	-
			Embryonic lethal arrest	-	-
			Larval/adult lethal arrest	-	-
			Lethal phenotype (fruit flies)	-	-
			Neurophys. defect (fruit flies)	-	-
			Metabolic checkpoints	-	-
			Identified in starlite search	-	-
			Similar to human drug target	-	-

Table:

Query number	Query 2 + essanties	Query 3 applied to	Query 4 applied to	Query 5 applied to	Query 6 applied to	Query 7 applied to	Query 8 applied to	Query 9 applied to	Query 10 applied to	Query 11 applied to
2	8317 (1)	8317 (1)	5420 (1)	3999 (1)	9153 (1)	5420 (1)	25013 (1)	3999 (1)	11508 (1)	13167 (1)
3	696 (100)	696 (100)	576 (100)	1228 (100)	576 (100)	5474 (20)	637 (10)	693 (10)	-	-
4	459 (35)	459 (35)	412 (35)	695 (35)	568 (20)	412 (20)	461 (25)	-	212 (2)	-
5	7722 (20)	7722 (20)	4076 (20)	3942 (20)	4076 (20)	22872 (25)	-	-	-	-
6	7645 (20)	7645 (20)	3886 (20)	3197 (20)	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-	-
consider the presence of an essential ortholog in at least one other organism to be an acceptable predictor of essentiality. Orthologous proteins usually have the same function [22], and several studies indicate that having essential orthologs is predictive of essentiality [23,24]. The researchers could then amend their initial query so that, for example, 50 additional points are awarded to targets whose orthologs are essential in C. elegans, E. coli, M. tuberculosis, and/or S. cerevisiae (the four organisms for which genome-wide essentiality data are available in TDRtargets.org). Such a revision can easily be made by running a new query using the “Any essentiality data are available in TDRtargets.org). Such a revision can easily be made by running a new query using the “Any essentiality data are available in TDRtargets.org) option within the Essentiality subsection of the Search For Genes/Targets page and then using the query history page to find the union of this query and the previous one. The results are similar to but distinct from the previous results (Table 3).

Now consider a more drastic revision of the Leishmania search: application of the previous criteria (Figure 2, Query 3) to two other pathogens, namely P. falciparum and M. tuberculosis. This too is readily done within TDRtargets.org – there is a “Change species” option on the Query History page – again highlighting the ease of modifying previous searches. While use of exactly the same criteria to prioritize targets in different species might seem naive, the results (Tables 4 and 5) are instructive. First of all, the top-ranked proteins of each species are rather different, showing that this search strategy is sensitive to species differences, as opposed to being unalterably biased toward the same proteins in every species. Second, many of the top-ranked targets in each species appear to be appealing options. For example, the three top-scoring targets from each species – dihydrofolate reductase/thymidylate synthase, enoyl-ACP reductase, and triose-phosphate isomerase in

Table 2. Preliminary genome-wide prioritization of Leishmania major targets.

Ranking	Gene_name	Gene product	Weight
1	LmjF29.0820	cysteine peptidase C (CPC), CPC cysteine peptidase, Clan CA, family C1, Cathepsin B-like	416
2	LmjF05.0350	trypanothione reductase	386
2	LmjF06.0860	dihydrofolate reductase-thymidylate synthase	386
2	LmjF23.0050	cyclophilin, putative, peptidyl-prolyl cis-trans isomerase, putative	386
2	LmjF25.0910	cyclophilin a	386
2	LmjF06.0120	cyclophilin	386
2	LmjF18.0270	protein kinase, putative, glycogen synthase kinase, putative	386
8	LmjF36.1960	phosphomannomutase, putative	386
8	LmjF23.0270	pteridine reductase 1	366
10	LmjF30.2970	glyceraldehyde 3-phosphate dehydrogenase, glycosomal	351
10	LmjF12.0220	hydroxyacylglutathione hydrolase, putative, glyoxalase II, putative	351
10	LmjF24.0850	triosephosphate isomerase	351
13	LmjF27.1870	trypanothione synthetase, putative	341
13	LmjF06.0550	deoxyxynucleotriphosphatase, putative, dUTP diphosphatase	341
15	LmjF21.0250	hexokinase, putative	336
15	LmjF25.1320	serine/threonine protein phosphatase, putative	336
15	LmjF19.0550	methionine aminopeptidase, putative, metallo-aminopeptidase, Clan MG, Family M24	336
15	LmjF34.1260	mitochondrial DNA polymerase I protein A, putative	336
15	LmjF30.0880	adenosine kinase, putative	336
15	LmjF33.1630	cyclophilin, putative	336
15	LmjF10.0890	FKBP-type peptidyl-prolyl cis-trans isomerase, putative	336
15	LmjF04.1160	fructose-1,6-bisphosphatase, cystolic, putative	336
15	LmjF23.0950	cystolic leucyl aminopeptidase, metallo-aminopeptidase, Clan MF, Family M17	336
15	LmjF32.1580	phosphomannose isomerase, putative	336
25	LmjF36.2380	sterol 24-c-methyltransferase, putative	326
25	LmjF36.2390	sterol 24-c-methyltransferase, putative	326

Top targets according to the criteria shown in Query 2 of Figure 2. Complete genome-wide rankings for this example and all other examples discussed in the paper (Tables 3–11) are available online at http://www.tdrtargets.org/published/browse/366. Please note that multiple targets often receive the same total weight, and that the order in which these “tied” targets are displayed has no significance.

doi:10.1371/journal.pntd.0000804.t002
P. falciparum and enoyl-ACP reductase (InhA), glutamine synthetase, and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) in M. tuberculosis – have all attracted interest as proven or prospective targets [25–30]. It is interesting that legitimate candidates such as these rise to the top of the target rankings despite certain quirks of this “one set of criteria fits all species” example. In the M. tuberculosis prioritization, for instance, many of the top-ranked targets are essential even though the genome-wide mutagenesis data available for this species were not queried. Thus, although these lists are imperfect, they generally suggest that rational choices of criteria lead to plausible and informative rankings of target desirability across species.

T. brucei and P. falciparum: Metabolic Pathway- and Organelle-Specific Targets

While TDRtargets.org integrates numerous datasets relevant to target prioritization, it cannot possibly anticipate every possible prioritization strategy that could be used by any given researcher. Accordingly, users can upload (weighted or unweighted) lists of targets meeting any criteria for which they have relevant data; these may then be combined with other queries covered by TDRtargets.org. Supplementation of standard TDRtargets.org criteria with a user-provided criterion is illustrated in the following example. Researchers specializing in the T. brucei glycolytic pathway are convinced that this pathway is essential in these parasites and wish to rank the enzymes within this pathway for their suitability as drug targets. Since they already assume the pathway to be essential and know glycolysis is also present in host cells, they may not address these issues in their search criteria, but may instead award points as listed in Query 6 of Figure 2. The query shown there combines criteria addressing integral TDRtargets.org data (such as availability of structural models) with a user-generated list of “bonus points” to some T. brucei enzymes in proportion to their relative control over the glycolytic flux [31]. The rationale for such a scoring might be that the greater an enzyme’s flux control, the less completely it must be inhibited for flux through the entire pathway to be affected (and thus the better a target it is). In this example, the inclusion of flux control as a criterion lifts the two glycosomal orthologs of glyceraldehyde-3-phosphate dehydrogenase, the enzyme with the highest control

Table 3. Revised L. major rankings after incorporating an essential-in-other-species criterion.
Ranking
1
2
2
2
2
2
2
8
9
9
11
11
11
11
11
11
11
18
18
18
18
18
18
18
18
18
18
18
18
18

Top targets according to the criteria shown in Query 3 of Figure 2. Italicized targets are those that were not top-ranked in the list shown in Table 2. doi:10.1371/journal.pntd.0000804.t003

Identification of Drug Targets In Silico
coefficient, to the top of the priority list (Table 6). The recent genetic validation of this enzyme [32] likewise identifies it as a possible target of interest. Interestingly, hexokinase was thought to have a much lower control coefficient [31] but may also have promise as a drug target [33].

The next scenario also employs a user-provided list, which in this case permits scrutiny of a specific organelle rather than a specific metabolic pathway. Consider a newly independent crystallographer with a special interest in *Plasmodium* apicoplasts, which are absent from the human host and thus are likely to contain many appealing drug targets [34]. The PlasmoAP algorithm [35] predicts that 485 proteins are localized to the apicoplast; the user can download this list from PlasmoDB.org [36], manually delete proteins that seem unlikely to reside in the apicoplast, and then upload the modified list to TDRtargets.org. In sorting through the ~400 proteins likely to reside in the apicoplast, the user may decide to minimize competition with labs already working on apicoplast biology by penalizing well-studied proteins (e.g., subtracting 100 points from targets whose 3D structures have already been solved) while rewarding other desirable characteristics such as those discussed above (likely essentiality, lack of orthologs in humans, etc.). Finally, a previous publication [37] has convinced the hypothetical user that a low molecular weight and low isoelectric point (pI) improve the odds of successful expression of soluble *Plasmodium* proteins, so those factors are weighted accordingly (Query 7 of Figure 2). The most highly ranked proteins in this example (Table 7) include some proteins (e.g., pseudouridine synthetase and cysteine desulfurase) that are rarely mentioned in the *Plasmodium* literature, consistent with this researcher’s desire to explore truly novel target options.

Trypanosoma cruzi: Candidate Targets Associated with an Intracellular Lifestyle

Unlike the bloodstream trypomastigotes of African Trypanosomes (Salivaria), the *T. cruzi* (Stercoraria) bloodstream forms do not replicate, and instead invade cells. In this parasitic strategy,
Table 5. Application of standard search criteria to *M. tuberculosis*.

Ranking	Gene name	Gene product	Weight
1	Rv1484	nadh-dependent enoyl-[acyl-carrier-protein] reductase inha (nadh-dependent enoyl-acp reductase)	511
2	Rv2220	glutamine synthetase glnA1 (glutamine synthase) (glnA-1)	451
3	Rv3227	3-phosphoshikimate 1-glycolvinyltransferase aroA (3-glycolylshikimate-3-phosphate synthase) (epsp synthase) (epspS)	426
4	Rv3581c	probable 2-c-methyl-d-erythritol 2,4-cyclopyrophosphate synthase ispF (mecps)	406
4	Rv2763c	dihydrofolate reductase dfrA (dihfr) (tetrahydrofolate dehydrogenase)	406
4	Rv2537c	3-dehydroquinate dehydratase aroQ (3-dehydroquinase) (type II dhaQ)	406
4	Rv3602c	probable pantoate—beta-alanine ligase panC (pantothenate synthetase) (pantoate activating enzyme)	406
4	Rv1293	probable diaminopimelate decarboxylase lysA (dap decarboxylase)	406
9	Rv0533c	3-oxoacyl-[acyl-carrier-protein] synthase III fabH (beta-ketoacyl-acp synthase III) (fas III)	401
9	Rv2861c	probable methionine aminopeptidase mapB (map) (peptidase M)	401
9	Rv2860c	probable glutamine synthetase glnA2 (glutamine synthase) (glnA-II)	401
9	Rv2222c	probable glutamine synthetase glnA3 (glutamine synthase) (glnA-III)	401
9	Rv1878	probable glutamine synthetase glnA4 (glutamine synthase)	401
14	Rv2870c	probable 1-deoxy-d-xylulose 5-phosphate reductoisomerase ddxR (dpx reductoisomerase) (1-deoxy-d-xylulose-5-phosphate reductoisomerase)	396
15	Rv3566c	arylamine N-acetyltransferase nat (arylamine acetylase)	391
15	Rv1207	probable dihydropteroate synthase 2 folP1 (dpsP2) (dihydropteroate pyrophosphorylase 2)	391
15	Rv2225	probable 3-methyl-2-oxobutanoate hydroxymethyltransferase panB (map) (peptidase M)	391
15	Rv3628	inorganic pyrophosphatase ppa (pyrophosphate hydrophosphohydrolase) (ppase) (inorganic diphosphatase) (diphosphate phospho-hydrolase)	391
15	Rv3014c	probable dna ligase (nucleidase) (nucleidase) (nucleidase)	391
20	Rv1483	3-oxoacyl-[acyl-carrier protein] reductase fabG1 (3-ketoacyl-acyl carrier protein reductase) (mco-c acid biosynthesis)	386
20	Rv1007c	probable methionyl-tRNA synthetase mets (metsR) (methionine—tRNA ligase)	386
20	Rv0014c	transmembrane serine/threonine-protein kinase b pknB (protein kinase b) (stpk b)	386
23	Rv2428	alkyl hydroperoxide reductase c protein aphC (alkyl hydroperoxide c)	381
24	Rv0764c	cytochrome p450 51 cyp1 (cyp11) (p450-11a1) (sterol 14-alpha demethylase) (lanosterol 14-alpha demethylase) (p450-14dm)	376

Top targets for *M. tuberculosis* according to the search criteria shown in Query 5 of Figure 2. Targets mentioned in the text are italicized.

doi:10.1371/journal.pntd.0000804.t005

which is shared with *Leishmania* spp., the replicative amastigotes are the intracellular parasite forms that persist and maintain the infection. Given the early evolutionary divergence of Salivarian trypansomes [38] and the different strategies used by Salivarian and Stercorarian parasites to mount and maintain an infection, these groups of parasites may exhibit numerous instances of (A) gene loss and (B) gene duplications followed by neofunctionalization [39]. Proteins that are orthologous between *T. cruzi* and *Leishmania* counterparts may represent proteins vital to intracellular survival and/or growth, which could be excellent targets for drug development.

To look for such proteins, we used a general strategy similar to that used for *Leishmania* (see Query 3 of Figure 2) but now focused on *T. cruzi*, with an extra phylogeny-based restriction: additional weight was added to proteins that have been conserved in *Leishmania* and *T. cruzi* but that have been lost or substantially changed in *T. brucei*. The attributes and weights used in this query are shown in Query 8 of Figure 2. The strategy also relies on proteomic evidence of expression in intracellular amastigotes [40]. However, because the proteomic data have a low coverage of the proteome, only a moderate weight has been assigned to this criterion. (This illustrates users’ ability to assign relative weights based not only on which characteristics they consider predictive of target desirability, but also on their confidence that available experimental datasets accurately reflect those characteristics.)

The results of this prioritization of *T. cruzi* targets are shown in Table 8. Because of the hybrid nature of the strain used to sequence the genome of *T. cruzi*, the list is somewhat redundant: most single copy genes appear twice in all genome databases. The top 32 targets include representatives of validated pathways — ergosterol biosynthesis, as represented by sterol C-24 reductase, and glycolysis, as represented by glucokinase — and other interesting alternatives for drug development. As suggested above, glycolysis is an essential pathway in trypanosomes, and the glycosome-localized glucokinase has attracted interest as a possible target since it was discovered in the sequenced *Leishmania* and *T. cruzi* genomes [41]. On the other hand, the top-ranked sterol C-24 reductase provides a good example of the attractiveness of the phylogenetic criteria used in this strategy. The ergosterol biosynthesis pathway is also present in *T. brucei*, although it is not essential for the bloodstream forms, which scavenge sterols from the host [42]. This highly ranked C-24 reductase belongs to the OrthoMCL ortholog group OG4_16988 (OrthoMCL version 4), which contains orthologs from the genomes of *T. cruzi*, *L. major*, and yeast (ERG4). However, this enzyme is apparently absent in the genomes of *T. brucei* TREU927, *T. brucei gambiense*, *T. vivax*, and
In yeast, ERG4 catalyzes the final step in ergosterol biosynthesis, and although mutants are viable, they show a number of abnormal phenotypes and decreased fitness (see http://www.yeastgenome.org/cgi-bin/locus.fpl?locus=ERG4).

Another top-ranking target in Table 8 is the T. cruzi serine acetyltransferase (TcSAT), involved in the de novo synthesis of cysteine, which is present in Leishmania and T. cruzi and absent in T. brucei [43]. Cysteine in these parasites is important for the biosynthesis of polyamines and for antioxidant metabolism based on trypanothione, the trypanosome equivalent of glutathione. Inhibitors of the E. coli SAT enzyme have recently been shown to inhibit the growth of Entamoeba histolytica, another pathogen that is highly sensitive to oxidative stress [44].

Table 6. Prioritization of glycolytic enzymes in T. brucei.

Ranking	Gene name	Gene product	Weight
1	Tb927.1.700	phosphoglycerate kinase	1101
1	Tb11.02.3210	triosephosphate isomerase	1101
1	Tb927.6.4300	glyceraldehyde 3-phosphate dehydrogenase, glycosomal	1101
1	Tb927.6.4280	glyceraldehyde 3-phosphate dehydrogenase, glycosomal	1101
5	Tb927.1.710	phosphoglycerate kinase	1081
5	Tb09.211.0540	fructose-1,6-bisphosphate, cytosolic	1081
5	Tb10.70.5800	hexokinase	1081
5	Tb10.70.5820	hexokinase	1081
9	Tb927.3.3270	ATP-dependent phosphofructokinase,6-phospho-1-fructokinase	1071
9	Tb10.70.1370	fructose-bisphosphate aldolase, glycosomal	1071
9	Tb927.1.3830	glucose-6-phosphate isomerase, glycosomal	1071
9	Tb10.70.4740	enolase	1071
13	Tb927.1.720	phosphoglycerate kinase	1061
13	Tb10.6k15.3850	glyceraldehyde 3-phosphate dehydrogenase, cytosolic	1061
15	Tb927.3.4390	dihydrolipoamide dehydrogenase, putative	1051
15	Tb11.01.8100	enolase, putative	1051
15	Tb10.61.2680	pyruvate kinase 1	1051
15	Tb09.211.1370	glyceraldehyde-3-phosphate dehydrogenase, putative	1051
15	Tb927.8.7380	dihydrolipoamide dehydrogenase, point mutation,acetoin dehydrogenase e3 component, putative	1051
15	Tb927.4.5040	dihydrolipoamide dehydrogenase, putative	1051
15	Tb927.5.3580	phosphoglycerate mutase protein, putative	1051
15	Tb11.01.8470	dihydrolipoyl dehydrogenase	1051
23	Tb10.6k15.2620	2,3-bisphosphoglycerate-independent phosphoglycerate mutase	1031
23	Tb927.8.2520	acetyl-CoA synthetase, putative	1031
25	Tb927.6.3050	aldehyde dehydrogenase family, putative	1011
25	Tb10.6k15.3080	dihydrolipoamide acetyltransferase precursor, putative	1011
25	Tb10.70.5380	dihydrolipoamide acetyltransferase, putative	1011
25	Tb10.389.0890	pyruvate dehydrogenase E1 component alpha subunit, putative	1011
25	Tb927.3.2030	acylphosphatase, putative	1011
25	Tb927.6.4210	aldehyde dehydrogenase, putative	1011
25	Tb927.3.1790	pyruvate dehydrogenase E1 beta subunit, putative	1011
32	Tb10.70.2900	2-oxoisovalerate dehydrogenase beta subunit, mitochondrial precursor, putative	1001

T. congolense. In yeast, ERG4 catalyzes the final step in ergosterol biosynthesis, and although mutants are viable, they show a number of abnormal phenotypes and decreased fitness (see http://www.yeastgenome.org/cgi-bin/locus.fpl?locus = ERG4).

Another top-ranking target in Table 8 is the T. cruzi serine acetyltransferase (TcSAT), involved in the de novo synthesis of cysteine, which is present in Leishmania and T. cruzi and absent in T. brucei [43]. Cysteine in these parasites is important for the biosynthesis of polyamines and for antioxidant metabolism based on trypanothione, the trypanosome equivalent of glutathione. Inhibitors of the E. coli SAT enzyme have recently been shown to inhibit the growth of Entamoeba histolytica, another pathogen that is highly sensitive to oxidative stress [44].

Other interesting targets in this list include a putative amine oxidase (Tc00.1047053511277.60) that belongs to an ortholog group with a very restricted phylogenetic distribution (OG4_29276), with members from many Leishmania species with complete genomes, Entamoeba histolytica (another pathogen), and two non-pathogenic species (Thalassiosira pseudonana and Aquifex aeolicus); a protein kinase (Tc00.1047053509287.20) whose yeast orthologs regulate endocytosis through the organization and function of the actin cytoskeleton; and a tyrosine protein phosphatase (Tc00.1047053506839.60) that also shows an unusual phylogenetic distribution, being almost exclusively present in T. cruzi, Leishmania spp., and metazoan.

Mycobacterium tuberculosis: Exploiting Previous Prioritizations

Previous target prioritization efforts [2–8] raise the question of how these efforts should be viewed in relation to TDRtargets.org. We consider TDRtargets.org to be complementary to others’ prioritization work, and anticipate that it can be used to combine

www.plosntds.org 10 August 2010 | Volume 4 | Issue 8 | e804
and apply the ranking methods of other target identification efforts. For instance, a recent paper on *M. tuberculosis* by Hasan and colleagues [4] provided an excellent synthesis of experimental data to rank targets by persistence in dormant stages. These data (available in [4] as Supplemental Dataset S1, and also at http://tdrtargets.org/published/browse/379) can be easily interrogated and combined with other queries using TDRtargets.org. For example, while Hasan et al.’s rankings considered proteins essential for growth on defined medium *in vitro* [45,46], they did not reward proteins thought to be essential for growth in macrophages or in the infection of mice [47,48], which may well be very relevant to human infection. In addition, because Hasan et al. awarded points to proteins with solved crystal structures, it seems apt to give points to proteins whose structures have been solved during the four years that have elapsed since the original analysis was published. TDRtargets.org was therefore used to make a few modifications to one set of Hasan et al.’s rankings: the set that emphasized targets’ likely importance in persistent-stage disease. We uploaded a modified version of this list that excluded points for PDB structures, then gave additional points to all genes represented in the Protein Data Bank of crystal structures [49] as of April 2010. To these subtotals, we added points based on an analysis of latent-stage infections by Murphy & Brown [7]. In that analysis, genes were given upregulation and downregulation scores based on their expression in various models of dormancy, thus offering a distinct estimate of genes’ importance during latency, and “attenuation” scores based on the effect of gene knockouts on growth in various contexts, including the macrophage and mouse studies noted above. (See “Additional file 1” from [7]; see also http://tdrtargets.org/published/browse/383.) The combined input of the two previous studies was thus used to create a “consensus list” (Table 9) that might be considered superior to either one alone. Combining the two previous analyses could also be done off-line using spreadsheets, but performing these operations within TDRtargets.org is considerably faster and facilitates retrieval of TDRtargets.org-compiled information on each individual target. Naturally, our “consensus list” reflects the limitations of the previous analyses, e.g., the low rankings of important persistent-stage proteins such as Rv0470c (mycolic acid synthase, PcaA) and Rv2583c (GTP pyrophosphokinase, RelA), as discussed by Hasan et al. [4].

Table 7. Possible novel drug targets in *P. falciparum* apicoplasts.

Ranking	Gene name	Gene product	Weight
1	PF13_0176	apurinic/apyrimidinic endonuclease Apn1	1286
2	PFA0225w	LytB protein	1276
3	MAL13P1.221	aspartate carbamoyltransferase	1261
3	PF0890c	pseudouridine synthetase, putative	1261
3	PF07_0068	cysteine desulfurase, putative	1261
3	PF10_0221	GcpE protein	1261
7	PF14_0063	ATP-dependent Clp protease, putative	1256
7	PF11_0270	threonine — tRNA ligase, putative	1256
9	PF1240c	prolyl-tRNA synthase, putative	1241
9	PFL1120c	DNA Gyrase a-subunit, putative	1241
9	PF10_0053	tRNA ligase, putative	1241
12	PFL0770w	seryl-tRNA synthetase, putative	1236
12	PF07_0129	ATP-dept. acetyl-coa synthetase	1236
12	PFE0475w	asparagin — tRNA ligase, putative	1236
12	PF10_0363	pyruvate kinase, putative	1236
12	PF13_0354	alanine—tRNA ligase, putative	1236
12	PF0695c	acyl-CoA synthetase	1236
12	PFE0205w	ATP-dependent helicase, putative	1236
12	PF13_0077	DEAD box helicase, putative	1236
20	MAL13P1.281	glutamate—tRNA ligase, putative	1231
20	PF14_0348	ATP-dependent Clp protease proteolytic subunit, putative	1231
22	PF14_0112	POM1, putative	1221
23	PF11_0174	hypothetical protein	1216
23	PF08_0108	pepsinogen, putative	1216
23	PFL2395c	dimethyladenosine transferase, putative	1216
23	PFE0195w	P-type ATPase, putative	1216

Top targets according to the search criteria shown in Query 7 of Figure 2. Proteins shown are likely to (A) be good drug targets, (B) be amenable to crystallization, and (C) reside in the apicoplast. Targets mentioned in the text are italicized.

doi:10.1371/journal.pntd.0000804.t007

Helminths: The Importance of Homology

Since many valuable helminth datasets are only starting to emerge, our attempts to prioritize helminth targets required some analysis beyond the standard TDRtargets.org queries. For example, *B. malayi* and *S. mansoni* proteins are not yet scored for druggability in TDRtargets.org, so we assessed their druggability...
by comparing their amino acid sequences to those of known drug targets in the StARLiTe/ChEMBL database [50]. The sequence similarity analysis was performed using BLAST; a helminth protein was considered druggable if (A) it is $\geq 80\%$ of the length of the corresponding druggable target, (B) it has an amino-acid sequence that aligns with $\geq 80\%$ of the druggable target, and (C) the BLAST expectation value of the alignment is less than 10^{-2} (database size: 11,508 genes for *B. malayi*, 13,331 genes for *S. mansoni*). In addition, proteins’ functional importance in helminths was inferred from knockout data taken from their orthologs in *C. elegans* and *D. melanogaster* (see Materials and Methods and Queries 10 and 11 of Figure 2). Being able to connect the helminth proteins to similar proteins in other species was thus critical in allowing us to evaluate their potential as drug targets.

Our strategy of relying heavily on orthology and sequence similarity to rank helminth targets is broadly similar to those used by Kumar et al. [6] to rank *Brugia* targets and by Caffrey et al. [3] to rank *Schistosoma* targets. However, these authors sought targets that met each of several desired criteria (Boolean “AND”); for example, Kumar et al. only considered *Brugia* proteins with orthologs in *C. elegans* but not in humans, and whose absence causes deleterious phenotypes (according to RNAi of *C. elegans* orthologs). In contrast, we again used the “weighted union” approach to avoid premature elimination of any proteins from consideration as targets. Kumar et al. also took a distinct approach to druggability, rewarding proteins with domains targeted by compounds obeying the Lipinski “Rule of 5” [51] and having EC numbers associated with druggability. Additionally, Kumar et al. penalized proteins for hydropathicity (which reduces the ease of recombinant expression) and rewarded them for being expressed (according to a small dataset of expressed sequence tags, or ESTs; encompassing 250 genes); in contrast, we gave additional points to all proteins having EC numbers (and therefore presumed to be enzymes), 3D structural models, and/or bibliographic references.

A comparison of our helminth prioritizations (Tables 10 and 11) with those of Kumar et al. [6] and Caffrey et al. [3] reveals

Ranking	Gene name	Gene product	Weight
1	Tc00.1047053508111.30	glutamate dehydrogenase, putative	466
1	Tc00.104705350879.80	serine acetyltransferase, putative	466
1	Tc00.1047053504013.40	serine acetyltransferase, putative	466
4	Tc00.1047053507875.20	glutamate dehydrogenase, putative	456
5	Tc00.1047053511277.600	hypothetical protein, conserved	436
6	Tc00.10470535101187.100	glucokinase 1, putative	421
7	Tc00.1047053503745.30	ascorbate-dependent peroxidase, putative	416
8	Tc00.1047053506193.60	ascorbate-dependent peroxidase, putative	406
8	Tc00.1047053507993.160	hypothetical protein, conserved	406
8	Tc00.1047053507349.5	pyrroline-5-carboxylate synthetase-like protein, putative	406
8	Tc00.1047053508699.120	dipeptidyl-peptidase, putative	406
8	Tc00.1047053509205.120	hypothetical protein, conserved	406
13	Tc00.1047053509073.70	phosphatidate cytidylyltransferase-like protein, putative	396
13	Tc00.1047053508601.141	dipeptidyl-peptidase, putative	396
13	Tc00.1047053508707.140	phosphatidate cytidylyltransferase-like protein, putative	396
16	Tc00.1047053509287.20	protein kinase, putative	388
16	Tc00.1047053506577.60	hypothetical protein, conserved	386
16	Tc00.1047053506953.30	protein kinase, putative	386
19	Tc00.1047053506839.60	tyrosine specific protein phosphatase, putative	381
19	Tc00.1047053506737.20	protein kinase, putative	381
19	Tc00.1047053511277.210	peroxisomal enoyl-coa hydratase, putative	381
19	Tc00.1047053508717.10	tyrosine specific protein phosphatase, putative	381
19	Tc00.1047053508637.90	phosphoglucolcume, putative	381
24	Tc00.1047053506725.20	hypothetical protein, conserved	376
24	Tc00.1047053508461.80	prostaglandin F2alpha synthase	376
24	Tc00.1047053506577.120	sterol C-24 reductase, putative	376
24	Tc00.1047053511761.60	hypothetical protein, conserved	376
24	Tc00.1047053507617.9	prostaglandin F2alpha synthase	376
24	Tc00.1047053508955.20	hypothetical protein, conserved	376
24	Tc00.1047053507089.170	hypothetical protein, conserved	376
24	Tc00.1047053506679.130	hypothetical protein, conserved	376
24	Tc00.1047053507709.60	hypothetical protein, conserved	376

Top targets according to the search criteria shown in Query 8 of Figure 2. Targets mentioned in the text are italicized.

doi:10.1371/journal.pntd.0000804.t008
relatively little concordance. Among our top 200 Brugia targets, none are also among the top 200 as ranked by Kumar et al. (see Supplementary Table S1 of [6], also available at http://tdrtargets.org/published/browse/282). This lack of overlap is likely due in part to (A) our emphasis on druggability, as inferred from sequence similarity against targets in the ChEMBL database, and (B) the fact that we didn’t penalize proteins with human orthologs (see Discussion subsection “No List is Canonical”). By adding two conditions to the weighted union to penalize proteins with orthologs in human and in mouse (with weights 2.40 and 2.20, respectively), some overlap between both lists can be observed: among our top 200 targets, 32 are also among the top 200 as ranked by Kumar et al. One unique aspect of our list is that it includes four tRNA synthetases among the top 39 proteins. These enzymes have been proposed as drug targets in Brugia, and are also considered good drug target candidates in other parasites such as trypanosomes [52], since they must be essential but often have major structural differences with respect to the human orthologs.

The list of 57 recommended Schistosoma targets generated by Caffrey and colleagues (see Table S1 of [3], also available at http://tdrtargets.org/published/browse/247) includes 18 targets they considered to be of the highest priority because they are druggable, are expressed in relevant life-cycle stages, yield deleterious phenotypes, and are homologous to proteins with solved crystal structures including co-crystallized ligands. Of these 18 targets, eight rank within our 170 top Schistosoma targets. An obvious difference between the two lists is that ours includes nine tubulins among the top 23 proteins. The prominence of the tubulins is consistent with beta-tubulin’s validation as a helminth drug target [53]. A number of ATPases also appear among our top targets. The top-ranked target in our list is the alpha (catalytic) subunit of a Na⁺/K⁺ ATPase (Smp_015020), which in mammals (and probably also in schistosomes) is the target of ouabain and other cardiac glycosides [54]. This target does not appear in the list of 57 targets published by Caffrey et al.; however, the beta subunit of this or a closely related Na⁺/K⁺ ATPase (Smp_124240) is ranked #52 in this study. Other attractive targets include a putative extracellular-signal-regulated kinase (ERK, Smp_142050), and a putative HMG-CoA reductase (Smp_138590), which is the target of cholesterol-lowering drugs like mevinolin [55].

Discussion

Stability of Ranked Lists

A relevant question for any ranked list of targets using any strategy is: how different would this list be if the weight given to a certain attribute is changed? Using the M. tuberculosis queries whose results are in Table 5, we analyzed the robustness of the final ranked targets according to the search criteria shown in Query 9 of Figure 2. In essence, previous analyses by Hasan et al. [4] and Murphy & Brown [7] were combined.

Ranking	Gene name	Gene product	Weight
1	Rv0885	conserved hypothetical protein	762
2	Rv3290c	probable L-lysine-epislon aminotransferase lat (L-lysine aminotransferase)	752
3	Rv2004c	conserved hypothetical protein	717
4	Rv2780	secreted L-alanine dehydrogenase ald (40 kda antigen) (tb43)	714
5	Rv2628	hypothetical protein	679
6	Rv2626c	conserved hypothetical protein	657
6	Rv2623	conserved hypothetical protein tb31.7	657
8	Rv3340	probable O-acetylhomoserine sulfhydrolase metc (homocysteine synthase)	631
9	Rv2497c	probable pyruvate dehydrogenase 1 component (alpha subunit) pdha (pyruvate decarboxylase)	615
10	Rv2629	conserved hypothetical protein	613
11	Rv2627c	conserved hypothetical protein	610
12	Rv3130c	conserved hypothetical protein	605
13	Rv2035	conserved hypothetical protein	602
14	Rv2624c	conserved hypothetical protein	601
15	Rv0678	conserved hypothetical protein	599
16	Rv2032	conserved hypothetical protein acg	596
17	Rv1813c	conserved hypothetical protein	594
18	Rv3131	conserved hypothetical protein	591
19	Rv2630	hypothetical protein	580
20	Rv0251c	heat shock protein hsp (heat-stress-induced ribosome-binding protein a)	579
21	Rv1285	probable sulfate adenyllyltransferase subunit 2 cyd	576
22	Rv2830c	conserved hypothetical protein	569
23	Rv0275c	possible transcriptional regulatory protein (possibly tetr-family)	566
24	Rv2711	iron-dependent repressor and activator ider	565
25	Rv3126c	hypothetical protein	556

The leading persistent-stage M. tuberculosis targets.

Leading persistent-stage *M. tuberculosis* targets. **Table 9.**

Top targets according to the search criteria shown in Query 9 of Figure 2. In essence, previous analyses by Hasan et al. [4] and Murphy & Brown [7] were combined. doi:10.1371/journal.pntd.0000804.t009
list, by selecting one attribute at a time and changing its weight from a very low (negative) score to a very high (positive) score. To assess the change observed in the ranked list we counted the number of curated targets (i.e., those with some level of validation) observed within the top 200 targets in the ranked list and used this value as our objective function (see panel B in Figure 3). Using this measure, we observed that a high score is obviously needed for those attributes that are enriched in validated targets (see panel A in Figure 3) in order to find well-known targets at the top of the list. In contrast, changing the weight of attributes that are not expected to be enriched in validated drug targets (e.g., low molecular weight) does not affect the final result. In these cases, the final lists are all different, but they are consistent in having the highest ranks of the list being enriched in validated targets. In general, of course, targets’ rankings within a list can be increasingly stabilized by including more and more relevant criteria in the prioritization.

Table 10. Rankings of possible *Brugia malayi* drug targets.

Ranking	Gene name	Gene product	Weight
1	Bm1_35945	Protein kinase domain containing protein	190
2	Bm1_25205	leucyl-tRNA synthetase, putative	188
2	Bm1_46445	vacuolar proton pump, putative	188
2	Bm1_31340	vacuolar proton pump, putative	188
5	Bm1_38680	tubulin alpha chain - mouse, putative	178
5	Bm1_20715	tubulin alpha-2 chain, putative	178
5	Bm1_25035	Tubulin alpha-2 chain, putative	178
5	Bm1_30720	KE2 family protein	178
5	Bm1_39900	Sex muscle abnormal protein 5, putative	178
5	Bm1_32860	Valyl-tRNA synthetase, putative	178
5	Bm1_14145	protein phosphatase PP2A regulatory subunit, putative	178
5	Bm1_44205	V-type ATPase 116 kDa subunit family protein	178
5	Bm1_48675	GTP-binding regulatory protein Gs alpha-S chain, putative	178
5	Bm1_28835	Transcription initiation factor IIa, gamma subunit, helical domain containing protein	178
5	Bm1_55400	Tubulin alpha-2 chain, putative	178
5	Bm1_46210	Protein kinase domain containing protein	178
5	Bm1_43680	T-complex protein 1, alpha subunit, putative	178
5	Bm1_30260	Tubulin alpha chain, putative	178
5	Bm1_44630	oxidoreductase, short chain dehydrogenase/reductase family protein	178
20	Bm1_10280	transketolase, putative	173
21	Bm1_20815	integrin-linked kinase, putative	170
21	Bm1_54155	Probable dimethyladenosine transferase, putative	170
23	Bm1_19675	Serine/threonine protein phosphatase F56C9.1 in chromosomell, putative	168
23	Bm1_50960	vacuolar ATP synthase catalytic subunit A, osteoclast isoform, putative	168
23	Bm1_52850	mannose-6-phosphate isomerase, class 1 family protein	168
23	Bm1_12165	methionyl-tRNA synthetase, putative	168
23	Bm1_48165	Adenosylhomocysteinase, putative	168
23	Bm1_32455	mannose-6-phosphate isomerase, class 1 family protein	168
23	Bm1_22825	Protein prenyltransferase alpha subunit repeat containing protein	168
23	Bm1_14125	preteasome subunit beta type 1, putative	168
23	Bm1_17330	succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial, putative	168
23	Bm1_45960	ATP synthase beta chain, mitochondrial precursor, putative	168
23	Bm1_12875	Serine/threonine protein phosphatase PP1-b beta catalytic subunit, putative	168
23	Bm1_41830	alanine-tRNA synthetase, putative	168
23	Bm1_38390	protein phosphatase 2A, putative	168
23	Bm1_24805	preteasome subunit beta type 3, putative	168
23	Bm1_41940	Glyceraldehyde 3-phosphate dehydrogenase, putative	168
23	Bm1_41510	FAD binding domain containing protein	168
23	Bm1_51640	Proteasome A-type and B-type family protein	168

Top targets according to the search criteria shown in Query 10 of Figure 2. Targets mentioned in the text are italicized.

doi:10.1371/journal.pntd.0000804.t010

This is also true for attributes that are not independent of these “good” attributes (e.g., availability of 3D structures). In contrast, changing the weight of attributes that are not expected to be enriched in validated drug targets (e.g., low molecular weight) does not affect the final result. In these cases, the final lists are all different, but they are consistent in having the highest ranks of the list being enriched in validated targets. In general, of course, targets’ rankings within a list can be increasingly stabilized by including more and more relevant criteria in the prioritization.
Old Targets Versus New Targets

In analyzing target candidates, we often wonder what sort of mix of well-studied and not-so-well-studied proteins might be most "desirable" at the top of a ranked list. On the one hand, having well-known targets or targets of known drugs at the top of our lists offers some assurance that our search strategies are reasonable (i.e., they serve as "positive controls" of the strategy). On the other hand, a method that only identifies well-established targets would not serve the important purpose of suggesting novel targets, so the presence of novel (even "hypothetical") targets near the top of a list is also welcome. With the deliberate exception of Table 7, our lists reflect a desire to spotlight both previously validated and newly emerging targets.

In addition to trying to achieve a mix of new and established targets in prioritization lists, users need also to robustly consider which established targets they should classify as "successful." Some targets enjoy long-held high esteem within the research community in the absence of any clinical validation, while other proteins, particularly for the organisms being studied here, are targets of clinically used drugs whose product profiles are unlikely to be acceptable in future drug development programs.

False Negatives

Previous bioinformatic analyses of drug targets [4] have suggested that certain established targets never rank highly unless given artificial boosts in points for that specific purpose. Examples of these "false negatives" are also apparent in the lists presented here. For instance, cytochrome b is the known target of the antimalarial drug atovaquone [56], yet it ranks in the bottom 25% of targets represented by Table 4 because it has transmembrane

Table 11. Rankings of possible *Schistosoma mansoni* drug targets.

Ranking	Gene name	Gene product	Weight
1	Smp_015020	no+/K+ - ATPase alpha subunit, putative	120
2	Smp_059790.2	transketolase, putative	119
2	Smp_059790.1	transketolase, putative	119
4	Smp_040790	cyclophilin B, putative	113
5	Smp_040970.1	vacuolar proton ATPases, putative	112
5	Smp_027920	tubulin alpha chain, putative	112
7	Smp_016780	tubulin alpha chain, putative	109
8	Smp_103140	alpha-tubulin, putative	106
8	Smp_029390	ATP synthase subunit beta vacuolar, putative	106
10	Smp_106150	carbamoyl-phosphate synthase large chain, putative	103
10	Smp_142050	erk1/2, putative	103
10	Smp_071840	6-phosphogluconate dehydrogenase, putative	103
10	Smp_030730	tubulin beta chain, putative	103
14	Smp_059340.1	Guanine nucleotide-binding protein G(s) subunit alpha (Adenylate	102
		cyclase-stimulating G alpha protein), putative	
14	Smp_090120.2	alpha tubulin, putative	102
14	Smp_090120.1	alpha tubulin, putative	102
14	Smp_059340.2	Guanine nucleotide-binding protein G(s) subunit alpha (Adenylate	102
		cyclase-stimulating G alpha protein), putative	
14	Smp_043670.1	6-phosphofructokinase (Phosphofructokinase) (Phosphohexokinase),	102
		putative	
14	Smp_155270	hydroxymethylglutaryl-CoA synthase, putative	102
20	Smp_079960	tubulin beta chain, putative	100
20	Smp_035760	tubulin beta chain, putative	100
20	Smp_078040	tubulin beta chain, putative	100
20	Smp_079870	tubulin beta chain, putative	100
24	Smp_165490	protein phosphatase-2a, putative	99
24	Smp_097590	valyl-tRNA synthetase, putative	99
24	Smp_096020.2	adenosylhomocysteinase, putative	99
24	Smp_096020.1	adenosylhomocysteinase, putative	99
24	Smp_028990.1	protein phosphatase-1, putative	99
24	Smp_096020.3	adenosylhomocysteinase, putative	99
24	Smp_028440.1	adenosylhomocysteinase, putative	99
24	Smp_028440.3	adenosylhomocysteinase, putative	99
24	Smp_034490	proteasome subunit beta type 6,9, putative	99
24	Smp_138590	hmg-CoA reductase, putative	99

Top targets according to the search criteria shown in Query 11 of Figure 2. Targets mentioned in the text are italicized.
doi:10.1371/journal.pntd.0000804.t011
domains (making recombinant expression difficult), is not easy to assay in isolation, lacks a known crystal structure, and so on. Likewise, certain targets of antihelminth drugs—such as the acetylcholine and GABA receptors, glutamate-gated chloride channel, and SLO-1 potassium channel [57,58]—do not appear near the top of our helminth lists. There are several possible (non-exclusive) explanations for this. First, some drugs were found through phenotypic screens and their targets do not meet many of the criteria required in a target-based approach, and thus might not be expected to rank highly. Second, current target prioritization strategies are generally based on the assumption that drugs will cause a loss-of-function phenotype, but most existing helminth drugs lead to gain-of-function phenotypes [57]. Ranking proteins according to their potential as gain-of-function targets might be a fruitful direction of future work. Finally, it is conceivable that the total number of viable drug targets vastly exceeds the number that have been clinically validated, such that the position of many non-validated targets ahead of some validated ones is appropriate.

False Positives

The failure of some validated targets to be highly ranked in our lists is not particularly surprising or troublesome, as discussed above. A more interesting issue is that of “false positives,” i.e., proteins that do rank highly but have not been validated as drug targets despite considerable effort. For instance, the Leishmania adenosine kinase ranks among the top 25 proteins in Tables 2 and 3, yet turns out to be nonessential in promastigotes [59]. Similarly, the Plasmodium enoyl-ACP reductase (FabI) ranks 2nd in Table 4, yet is nonessential for blood-stage growth [60]. Among M. tuberculosis proteins, pantothenate kinase (PanK or CoaA) is in the top 100 of the Query 5 rankings (though not among the top 24 and thus not shown in Table 5), yet screens targeting this enzyme yielded no leads active against wild-type M. tuberculosis cells (C. E. Barry, personal communication). PanK activity in vivo appears to be so far in excess of what is required for growth that killing M. tuberculosis cells by inhibiting this enzyme is virtually impossible.

Although such examples can be seen as discouraging, we can use them to ask whether the incidence of false positives can be reduced through the use of additional datasets and search strategies. The nonessentiality of the Plasmodium FabI during erythrocyte stages is perhaps suggested by the fact that expression of the enzyme is neither high nor tightly regulated during the erythrocyte life-cycle stages [61]. While TDRtargets.org does not currently offer a metric for the periodicity of gene expression in blood-stage Plasmodium, this could be added to future versions of the database.

No List Is Canonical

The target rankings presented here are meant to be illustrative rather than definitive. The lists presented here were sent to experts on relevant neglected diseases for evaluation, and, predictably, we encountered numerous reasonable differences of opinion. For helminths, arguments were made both for and against penalizing proteins with orthologs in humans. The presence of human orthologs suggests an increased likelihood of toxicity in the host; on the other hand, several existing drug targets do have human orthologs. For M. tuberculosis, it was noted that existing drugs tend to target information-processing enzymes (DNA and RNA polymerase, DNA gyrase) rather than metabolic enzymes, so searches for new drugs might pay special attention to that area. Generally applicable suggestions included penalties for proteins that are part of macromolecular complexes, since they are hard to study in isolation, and for proteins of unknown function, since they are hard to study with biochemical or biophysical methods.
In addition to legitimate differences of opinion among researchers, the relative appeal of individual targets will continue to change as additional data are gathered. Fortunately, the infrastructure of TDRtargets.org is flexible enough to accommodate different individuals’ interests (as seen especially in the lists focused on T. brucei glycolysis and Plasmodium apicoplasts) and the incorporation of new data (most prominent in the rankings for the helminths and for M. tuberculosis persistence). We therefore see TDRtargets.org as a tool that individual scientists may use to explore new research directions, rather than as a final arbiter of proteins’ potential as drug targets.

As noted, target prioritization with TDRtargets.org or any other computational method is probably most useful as a prelude to (rather than a replacement of) laborious experimental follow-up work. Experimental characterization of promising targets often requires chemical inhibitors of target activity; therefore lists of target-specific inhibitors would be of great value to the research community. Though TDRtargets.org currently includes a preliminary dataset of such inhibitor-target associations, future editions of the database should offer major expansions and refinements of this dataset.

Supporting Information

Alternative Language Abstract S1 Translation of the abstract into Spanish by Fernán Agüero. Found at: doi:10.1371/journal.pntd.0000804.s001 (0.02 MB DOC)

Acknowledgments

We thank Christopher Locher (Vertex Pharmaceuticals) and Omar Vandal (Bill & Melinda Gates Foundation) for discussions of M. tuberculosis targets, and Clifford Barry (National Institute of Allergy and Infectious Diseases), Michael Crawford (Divergence), David Fidock (Columbia University), Timothy Geary (McGill University), James McCarder (Divergence), Geoff McFadden (University of Melbourne), Samuel Sia (Columbia University), and Mark Schreiber (Novartis Institute for Tropical Diseases) for input on target selection strategies.

Author Contributions

Conceived and designed the experiments: GJC DS MB SN SAR DSR WCVV FA. Performed the experiments: GJC DS SJC FA. Analyzed the data: GJC DS SJC SAR FA. Contributed reagents/materials/analysis tools: GJC DS SJC MAD CHF DSR DSS WCVV FA. Wrote the paper: GJC DS SJC SN SAR DSR WCVV FA.

References

1. Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5: 941–953.
2. Anishetty S, Pulimi M, Prakashar G (2005) Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 29: 368–378.
3. Caffrey CR, Rohwer A, Orellan F, Marhorj RJ, Brachi S, et al. (2009) A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, Schistosoma mansoni. PlasOne 4: e4413.
4. Hasan S, Daugelat S, Rao PS, Schreiber M (2006) Prioritizing genomic drug targets in pathogens: application to Mycobacterium tuberculosis. PlasOne 2: e66.
5. Krasky A, Rohwer A, Schroeder J, Selzer PM (2007) A combined bioinformatics and cheminformatics approach for the development of new anti-parasitic drugs. Genomics 89: 36–43.
6. Kumar S, Chauhillary K, Foster JM, Novelli JF, Zhang Y, et al. (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PlasOne 2: e1189.
7. Murphy DJ, Brown JR (2007) Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7: 14.
8. Raman K, Yeniu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2: 109.
9. Murry JP, Sasse1t GM, Lane JM, Xie Z, Rubin EJ (2008) Transposon site hybridization in Mycobacterium tuberculosis. Methods Mol Biol 416: 45–59.
10. Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, et al. (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Nail Acad Sci U S A 101: 4863–4870.
11. Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, et al. (2008) A combined transcriptome and proteome survey of Plasmodium parasite liver stages. Proc Nail Acad Sci U S A 105: 305–310.
12. Yeh I, Altman RB (2006) Drug Targets for Plasmodium falciparum: a post-genome review/survey. Min Rev Med Biol 6: 177–202.
13. Chavali AK, Whitemore JD, Eddy JA, Williams KT, Papin JA (2009) Systems genomic review/survey. Mini Rev Med Chem 6: 177–202.
14. Aguero F, Al-Lazikani B, Ask F, Berriman M, Buckner FS, et al. (2008) Functional-scale prioritization of drug targets: the TDR Targets database. Nat Rev Drug Discov 7: 900–907.
15. Adent M, Arrascheebe C, Berriman M, Brezgel J, Brunk BP, et al. (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38: D457–D462.
16. Zeroflini A, Heiges M, Wang H, Moraes RL, Dominini AJ, et al. (2009) SchistoDB: a Schistosoma mansoni genome resource. Nucleic Acids Res 37: D579–582.
17. Tweedie S, Ashburner M, Falls K, Leyland P, McQuilton P, et al. (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37: D553–559.
18. Chen F, Mackey AJ, Stoeckert CJ Jr, Ross DS (2006) OrthoMCL-DE: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34: D563–D568.
19. Chang A, Scheer M, Grote A, Schomburg I, Schomburg D (2009) BRENDA, AMENDA and BRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res 37: 13508–509.
20. Pieper U, Esvar N, Webb BM, Eraniam B, Kelly L, et al. (2009) MODBASE, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 37: D347–354.
21. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, et al. (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460: 332–358.
22. Chen F, Mackey AJ, Vermunt JF, Ross DS (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PlasOne 2: e303.
23. Sakkarkar K, Sakkarkar MK, Chow VT (2004) A novel genomics approach for the identification of drug targets in pathogens, with special reference to Aspergillus aeruginosus. In Silico Biol 4: 335–360.
24. Doyle MA, Gasser RB, Woodcroft BJ, Hall RS, Ralph SA (2010) Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes. BMC Genomics 11: 222.
25. Adame I, Patel DS, Bharatam PV (2010) Shape- and chemical feature-based 3D-pharmacophore model generation and virtual screening: identification of potential leads for P. falciparum DHFR enzyme inhibition. Chem Biol Drug Des 75: 115–126.
26. Joubr F, Naka AW, Louw AI (2001) Structure-based inhibitor screening: a family of sulfonated dye inhibitors for malaria parasite triosephosphate isomerase. Proteins 45: 136–143.
27. Kapoor N, Banerjee T, Babu P, Maity K, Surolia N, et al. (2009) Design, development, synthesis, and docking analysis of 2-substituted triclosan analog as inhibitors for Plasmodium falciparum enoyl-ACP reductase. JUBMB Life 61: 1003–1019.
28. Subba Rao G, Vijayakrishnan R, Kumar M (2008) Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Chem Biol Drug Des 72: 444–449.
29. Nilsson MT, Krajewski WW, Vellagunda S, Prabhumurthy S, Chamaraally GN, et al. (2009) Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. J Mol Biol 395: 504–513.
30. Oliveira JS, Mendes MA, Palma MS, Basso LA, Santos DS (2003) One-step purification of 5-epoxyproplylhaloketiminate-phosphate synthase enzyme from Mycobacterium tuberculosis. Protein Expr Purif 28: 267–292.
31. Albert MA, Haanstra JR, Hamama V, Van Roy F, Oppersdor FR, et al. (2005) Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem 280: 23036–23053.
32. Caceros AJ, Michael PA, Hannaert V (2010) Genetic validation of aldolase and glyceraldehyde-3-phosphate dehydrogenase as drug targets in Trypanosoma brucei. Mol Biochem Parasitol 169: 50–54.
33. Sharlow ER, Lyda TA, Dorsan HC, Mustata G, Morrin MT, et al. (2010) A target-based high throughput screen yields Trypanosoma brucei hexokinase inhibitors and membrane inhibitors with antiparasitic activity. PlasOne 5: e659.
34. Tonkin CJ, Kalanom M, McFadden GI (2008) Protein targeting to the malaria parasite plastid. Traffic 9: 166–175.
Identification of Drug Targets *In Silico*

35. Foth BJ, Ralph SA, Tonkin CJ, Struck NS, Fraunholz M, et al. (2003) Dissecting apicoplast targeting in the malaria parasite *Plasmodium falciparum*. Science 299: 705–708.

36. Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, et al. (2009) PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: D539–543.

37. Mehlin C, Boni E, Buckner FS, Engel L, Feist T, et al. (2006) Heterologous expression of proteins from *Plasmodium falciparum*: results from 1000 genes. Mol Biochem Parasitol 148: 144–160.

38. Haag J, O’HUigin C, Overath P (1998) The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Mol Biochem Parasitol 91: 37–49.

39. Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20: 544–549.

40. Atwood JA, 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, et al. (2005) The *Trypanosoma cruzi* proteome. Science 309: 473–476.

41. Caceres AJ, Quinones W, Gualdron M, Cordeiro A, Avilan L, et al. (2007) Molecular and biochemical characterization of novel glucokinases from *Trypanosoma cruzi* and *Leishmania* spp. Mol Biochem Parasitol 156: 235–245.

42. Coppens I, Courtoy PJ (2000) The adaptative mechanisms of *Trypanosoma brucei* for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol 54: 129–156.

43. Williams RA, Westrop GD, Croombs GH (2009) Two pathways for cysteine biosynthesis in *Leishmania* major. Biochem J 420: 451–462.

44. Agarwal SM, Jain R, Bhattacharya A, Azam A (2008) Inhibitors of Escherichia coli serine acetyltransferase block proliferation of *Entamoeba histolytica* trophozoites. Int J Parasitol 38: 137–141.

45. Lanyiakhane G, Ziguel M, Blades NJ, Germain DE, Dougberry A, et al. (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to *Mycobacterium tuberculosis*. Proc Natl Acad Sci U S A 100: 7211–7216.

46. Sessetti CM, Rubin EJ (2005) Genetic requirements for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84.

47. Holden-Dye L, O’Connor V, Hopper NA, Walker RJ, Harder A, et al. (2007) SLO, SLO, quick, quick, slow: calcium-activated potassium channels as regulators of *Caenorhabditis elegans* behaviour and targets for anthelmintics. Invert Neurosci 7: 199–208.

48. Vaughn AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, et al. (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11: 506–520.

49. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moeh JK, et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503–1508.

50. Sassetti CM, Rubin EJ (2005) Genome-wide requirements for *Mycobacterium tuberculosis* adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102: 8327–8332.

51. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, et al. (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to *Mycobacterium tuberculosis*. Proc Natl Acad Sci U S A 100: 7211–7216.

52. Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100: 12893–12898.

53. Robinson MW, McFerran N, Trudgert A, Hoey L, Fairweather I (2004) A possible model of benzimidazole binding to beta-tubulin disclosed by invoking an inter-domain movement. J Mol Graph Model 23: 275–284.

54. Hwang HY, Ullman B (1997) Genetic analysis of purine metabolism in *Leishmania donovani*. J Biol Chem 272: 19488–19496.

55. Vaughan AM, O’Neill MT, Tarun AS, Camargo N, Phuong TM, et al. (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11: 506–520.

56. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moeh JK, et al. (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503–1508.
