The phenomenon of liver regeneration is startling. In the healthy adult the rate of hepatocyte cell division is usually slow. In rats, for example, one cell in 300 may be in a state of DNA synthesis. But within a few hours of massive injury, over 30% of surviving cells may have entered DNA synthesis. After removal of 70% of the liver, normal liver mass is replaced in a few days. This phenomenon of rapid regeneration is not limited to experimental animals—or even to demigods like Prometheus whose liver was gnawed daily by vultures on the slopes of Mount Caucasus in retribution for having stolen fire from the gods for mankind. Rapid regrowth of the remnant liver also occurs after major hepatic resection in man (Fig 1).

The mechanisms that control the growth of the liver have been intensively investigated. Four general possibilities have been evoked to explain rapid regeneration.

- The greater metabolic load on the remaining liver cells might induce cell division.
- Positive growth factors might be released.
- Normally, liver growth might be actively restrained by an inhibitory factor (chalone) synthesised in the liver: reducing the liver mass would decrease synthesis and diminish the inhibitory drive until normal liver mass was restored.
- A neural drive to hepatic regeneration might occur after damage.

Cross-circulation experiments on dogs after partial hepatectomy demonstrated the presence in the circulation of substances that could initiate DNA synthesis in the liver of a parabiotic intact animal [1]. This demonstration of a positive growth promoter encouraged cell biologists to try to identify a single substance responsible for this action. It is now clear that more than one growth factor capable of initiating hepatocyte proliferation is generated at the time of partial hepatectomy. Nor is cessation of liver regeneration a passive process: it involves a set of negative growth factors that bring to an end the surge of hepatic DNA synthesis.

The search for positive growth factors

By the mid-1980s, much evidence suggested that the growth factor involved in initiating hepatocyte DNA synthesis after partial hepatectomy was epidermal growth factor (EGF) [2]. This 6,000 mol wt polypeptide is indeed a powerful mitogen for many epithelial cells, and when added to cultures of isolated hepatocytes stimulates them to synthesise DNA [3]. EGF receptors are present on hepatocytes. Following experimental hepatic resection these receptors are down-regulated and phosphorylated [4,5], and radio-labelled EGF administered to an animal at that time is internalised and transported to the nucleus [2]. Anti-EGF antibodies administered at the time of partial hepatectomy reduce the amount of DNA in the liver five days later [6]. However, conspicuously missing from the jigsaw is any evidence of a significant increase in EGF either in the circulation or within the liver at the time of partial hepatectomy.

The paradox of EGF receptor down-regulation without the presence of additional EGF was resolved when it became known that the EGF receptor can also bind the growth factor TGFα. TGFα is a polypeptide growth factor with 35 to 40% homology with EGF, and is also a powerful mitogen for hepatocytes. Furthermore, unlike EGF, it is produced in the liver, and TGFα mRNA increases strikingly within 12 hours of partial hepatectomy [7]. Mead and Fausto proposed an autocrine loop as a mechanism for the onset of hepatic regeneration—TGFα is generated by the hepatocyte and then acts on the TGFα/EGF receptor of that and presumably also of adjacent cells [7]. The evidence for this appears convincing. However, by the time this role for TGFα had been demonstrated, evidence strongly implicating another growth factor had been accumulating.

Nakamura et al found a high mol wt hepatocyte growth factor when they assessed the bioactivity of fractions of rat sera taken 24 hours after partial hepatectomy [8]. Sequential molecular sieving and heparin affinity chromatography led to partial purification of what is now called 'hepatocyte growth factor' (HGF). We demonstrated similar activity in human serum taken from patients 24 hours after hepatic lobectomy for tumour [9]. The factor was eventually purified from human plasma (from patients with fulminant hepatic failure [10]), rat platelets [11], and rabbit plasma.
plasma [12], all these isolations being reported between 1988 and 1989. Previous names under which the substance had been studied—hepatopoietin A [13]—and hepatotropin [8] were abandoned and replaced with the term ‘hepatocyte growth factor’. The predicted cDNA sequence for HGF was published in 1989 [14,15]. The molecule has one α and β chain, forming a shape reminiscent of an old-fashioned carpet sweeper, with mol wt of 70,000. It has some homology with plasminogen.

HGF is produced in the liver within a few hours of damage. Our experiments, using a cDNA constructed to the β chain of HGF, demonstrated high mRNA production in the rat liver 10 hours after partial hepatectomy [16]. When recombinant HGF became available, experiments on human hepatocytes demonstrated that on a molar basis HGF is a more powerful hepatocyte mitogen than TGFα [17]. Its role in liver growth is unlikely to be limited merely to the response to damage, because we also found high levels of HGF mRNA in human fetal liver [15]. We demonstrated that the gene coding for human HGF is situated on the long arm of chromosome 7 [18].

The full role of HGF remains to be defined. Recombinant HGF acts on a spectrum of cell types: for example, kidney epithelial cells and melanocytes, although not fibroblasts [19]. But hepatocytes still appear to be the most sensitive cell line. Within the liver, HGF is generated in non-parenchymal cells, particularly the lipocytes [20], but it is also found demonstrable in other tissues, including the placenta, brain, skin, and gastrointestinal tract [21]. Furthermore, it now appears that HGF has another set of properties, appreciated when it was realised it has the same structure as the previously described substance ‘scatter factor’, which influences intercellular organisation and can affect cell movement and tissue architecture [22]. In other cell lines, however, HGF displays antiproliferative activity [23]. The phrase ‘mitogen, motogen, morphogen’ has been used to summarise the wide range of potential actions of HGF-scatter factor [24].

The HGF receptor is a tyrosine kinase. It had previously been described as a product of the c-met oncogene, and until early 1991 was a tyrosine kinase in search of a function [25]. The liver expresses a considerable number of mRNA transcripts of the c-met gene, but their role is as yet uncertain [26]. Following hepatic resection, the expression of mRNA for the HGF receptor increases in the remaining liver, suggesting renewal of surface receptors that have been occupied by HGF [27].

Clinical relevance of HGF

Apart from its role in repair after damage, and in fetal development, a role for HGF in liver growth might be sought in the benign hyperplasia of the liver that is characteristic of chronic liver disease, or in tumour development. There is yet no direct evidence of its involvement in hyperplasia and chronic liver disease, although HGF serum levels are higher in patients with active cirrhosis than in patients with inactive cirrhosis [28]. They are much higher in patients with fulminant hepatic failure [28]. While this supports the putative role of HGF as the growth factor involved in regenerative repair, the presence of a high circulating level in fulminant hepatitis dampens enthusiasm for the concept that it might usefully be given to patients to enhance regeneration in severe liver disease. It may well be that, at least in this form of severe hepatitis, the cells are damaged beyond repair and cannot respond to this regenerative stimulus. There are, however, types of subacute hepatitis in which progressive severe liver disease emerges over a long time course, for which one synonym is ‘regeneration defective hepatitis’. If in this subgroup there was a relative deficiency of HGF, HGF might play a therapeutic role.

In a small series of patients with hepatocellular cancers (HCC) we were unable to demonstrate higher HGF mRNA levels within the tumour than in adjacent
normal liver [29]. It may be that in liver tumours the expression of the receptor is of greater relevance, and we have defined both increased and decreased expression of a variety of c-met transcripts in this context [30].

Other growth factors

HGF and TGFα are both generated at the time of partial hepatectomy and each is a powerful mitogen able to initiate hepatocyte regeneration. It seems naive, however, to believe that production of these two substances in the liver explains all the phenomena of hepatic regeneration. Other growth factors have been implicated, acting either alone (as complete mitogens), or in an association with others [31]. They include acidic fibroblast growth factor [32], a low mol wt growth factor hepatopoietin B [13], and an incompletely characterised hepatic stimulatory substance, partially purified from remnant liver after partial hepatectomy [33]. An albumin-bilirubin complex—which might be expected to be present in greater amounts in the circulation in hepatic failure—can also act as a hepatomitogen [34]. Factors such as insulin and glucagon can enhance the action of complete mitogens, although in vitro studies indicate that they cannot act alone. Adrenaline, released from the local hepatic nerve supply, can also enhance regeneration [35].

The precise stimuli to the generation of even the best characterised hepatomitogens, HGF and TGFα, remain unclear. Evidence is emerging for a spleen-derived HGF stimulator [36]. Extra-hepatic sources of HGF may contribute to the very early increase in circulating HGF, within a few hours of partial hepatectomy [37], although matrix-bound HGF already sequestrated in the liver may contribute to an early surge, being liberated by alterations in extracellular adhesion following trauma [38].

What turns it off?

It seems likely that a similar complexity will involve the processes that lead to the ending of hepatic regeneration, dictating that it takes place when normal liver mass has been restored. One possibility is that hepatocytes that enter DNA synthesis during regeneration are programmed to go through only one or two cell cycles and then return to the quiescent state, but the evidence for a more active control system involving the generation of negative growth factors seems compelling. At least three factors putatively fulfil this role: all have been identified in the non-parenchymal cell population of the liver, predominantly Kupffer cells and sinusoidal endothelial cells.

TGFβ

TGFβ is a widely distributed 28,000 mol wt polypeptide, with a wide range of biological properties that include stimulation of angiogenesis, enhancement of extracellular matrix formation, modulation of cell differentiation, and inhibition of cell growth in various cell types. In vitro, TGFβ can inhibit the response of hepatocytes to mitogens such as TGFα, EGF and HGF [39]. It is generated within the liver after partial hepatectomy, rising progressively between 28 and 96 hours [40]. It has been noted [2] that the time of peak TGFβ transcription, four days after partial hepatectomy, seems somewhat late for a role for TGFβ in inhibiting hepatocyte proliferation which peaks within 24 hours. Other actions of TGFβ, particularly its role in extracellular matrix production, may be more appropriately explained by this relatively late peak of production [40].

14 kD protein

Another inhibitor transiently generated in the liver between 24 and 72 hours after partial hepatectomy, appeared when we investigated the effects of co-culturing different liver cell subpopulations to reproduce the complex interrelationships between different liver-cell populations after partial hepatectomy [41]. We cultured hepatocytes, stimulated to proliferate by HGF, TGFα or EGF, in the presence of non-parenchymal cells isolated from either normal liver or regenerating liver. Normal parenchymal cells had no effect on the proliferative response of hepatocytes to mitogens. However, non-parenchymal cells taken from regenerating liver strikingly inhibited the proliferative responses of hepatocytes to all these mitogens. Further investigations demonstrated that the mechanism of this inhibition was the secretion of a soluble, heat-labile polypeptide, mol wt between 14 and 17 kD, from the non-parenchymal cells. Appropriate antibody inhibition studies indicated that this was not TGFβ or other candidate cytokines such as TBF, IL6 or ILα or β. The 14 kD protein inhibits the response of both normal and regenerating hepatocytes to hepatomitogen, as would be required for a role in controlling regeneration. It has some similarities to an inhibitory factor derived in small quantities from intact normal liver, but which to date has been only incompletely characterised [42].

IL1β

The Kupffer cell-derived cytokine IL1β also inhibits the hepatocyte response to mitogens in vitro [43], but it is not clear whether it exerts this role during the off phase of the proliferative response to partial hepatectomy.

One explanation for the presence of at least three potentially inhibitory factors during the off phase of partial hepatectomy is that this reflects other functions of these molecules. In addition, attention has thus far concentrated exclusively on the parenchymal cells of the liver. The role of all these factors, both inhibitory and excitatory, in modulating the proliferation of the
non-parenchymal cell population after hepatocyte prolifera
tion is relatively ill understood; one may anticipate
substantial progress in this area in the next few years.

Further horizons

Our understanding of the processes controlling both
benign and malignant cell growth has clear, although
futurist, applications in enhancing liver growth when
liver-cell function is deficient, or inhibiting growth
when malignant transformation occurs. Another field
in which an understanding of the cell biology of liver
growth may produce clinical dividends in the not-too-
distant future is the field of isolated cell transplantation.
Isolated hepatocyte transplantation has been
explored since the 1970s, initially intended as a means
of treating inborn errors of metabolism, or of providing
acute rescue in hepatic failure [44]. Work in the
1970s established that isolated hepatocytes could be
implanted either into the original donor or a syngeneic
animal in a variety of sites. Hepatocytes would sur-
vive in fat pads, in skin, but most dramatically within
the spleen [45]. It is probable that the reticuloendothelial
matrix of the spleen, reminiscent of that in the
liver, provides a particularly appropriate medium
[46]; other sites include the pancreas and the liver
itself [47], or the peritoneum which will support cells,
particularly if they are implanted on a matrix [48].
Growth of implanted hepatocytes is slow, but prolifera-
tion does occur in some sites, and one can speculate
on the potential of exogenous growth factors to
enhance this. Evidence that this is a promising
approach comes from the demonstration that the prolifera-
tion of isolated hepatocytes in the spleen increases
when partial hepatectomy is performed [49]. Initial
hopes, based on the relatively low expression of HLA
antigens on hepatocytes, that cells would survive long
term without immunosuppression when transplanted
outside syngeneic systems, turned out to be ill-founded;
without immunosuppression there was a rapid
rejection of isolated hepatocytes transplanted between
strains [50]. Continuous, but not short-term,
cyclosporin administration can prevent this.

A number of studies in the 1980s demonstrated that
metabolic defects could be treated by this means in
experimental animals. The biochemical abnormalities
improved in rats with bilirubin transport defects
[44, 51], and serum albumin increased in rats with an-
albuminaemia [48]. But as a means of treating acute
experimental hepatic failure, enthusiasm was tempo-
rary curbed when it was demonstrated that in
some systems dead hepatocytes, or a cytosolic hepatoc-
yte extract, seemed as effective in enhancing survival as
did liver cells [52]. Progress in molecular genetics,
however, now opens new applications for isolated
hepatocyte transplantation with the potential develop-
ment of somatic gene therapy.

The approach is, in principle at least, theoretically
straightforward. Transfection techniques, involving
either physical means such as calcium or cationic lipo-
somes, or biological means such as adenoviruses or
retroviruses, are available for introducing defective or
missing genes into cells. In combination with a liver-
specific promoter such as the albumin or transferrin
promoter, in vitro expression of genes transfected into
hepatocytes has been achieved [53, 54]. Current evi-
dence indicates that for successful transfection to
occur, with integration of DNA into the host genome
to allow long-term expression, a degree of hepatocyte
dedifferentiation is required, most readily achieved by
inducing hepatocyte proliferation [55]. Treatment of
genetic disorders of the hepatocyte might therefore
involve harvesting cells by a partial hepatectomy, grow-
ing them in cell culture to allow dedifferentiation
during which cell transfection would be performed,
followed by reimplantation of the transfected cells.
The list of inborn errors of metabolism that might be treat-
ed in this way is long—glycogen storage diseases, ura-
ary cycle defects, lipoprotein receptor defects, and so
on. Indeed, this is an area where the future is already
with us: the hypercholesterolaemic Watanabe rabbit
has been treated by reimplantation of hepatocytes in
which the missing LDL receptor gene has been trans-
ferred using a retroviral vector [56]. The result was a
prolonged three-to-four months reduction in serum
cholesterol levels, although it is too soon to say how
long this improvement will be maintained, and in par-
ticular whether the newly integrated DNA will remain
effective for the rest of the animal’s life. At present it
is known that one patient has been similarly treated,
although full details remain unpublished.

Prometheus, contemplating with anguish the night-
ly return of his hepatophagous vulture, would indeed
have been amazed.

References

1 Moolten FL, Bucher NLR. Regeneration of rat liver: transfer of
humoral agents by cross circulation. Science 1967;158:272–9.
2 Raper SE, Burwen SJ, Jones AL. Biological effects of epidermal
growth factor, with emphasis on the gastrointestinal tract and
liver: an update. Hepatology 1989;9:126–38.
3 McGowen JA, Strain AJ, Bucher NLR. DNA synthesis in primary
cultures of adult rat hepatocytes in a defined medium: effect of
epidermal growth factor, insulin, glucagon and cyclic-AMP. J Cell
Physiol 1981;108:353–63.
4 Earp HS, O’Keefe EJ. Epidermal growth factor receptor number
decreases during rat liver regeneration. J Clin Invest 1981;67:
1580–3.
5 Marti U, Burwen SJ, Jones AL. Biological effects of epidermal
growth factor, with emphasis on the gastrointestinal tract and
liver: an update. Hepatology 1989;9:126–38.
6 Skov Olsen P, Boebye S, Kirkegaard P, et al. Influence of epider-
mal growth factor on liver regeneration after partial hepatecto-
my in rats. Hepatology 1988;8:992–6.
7 Mead JE, Fausto N. Transforming growth factor-α may be a
physiological regulator of liver regeneration by means of an
autocrine mechanism. Proc Natl Acad Sci USA 1989;86:7558–62.
8 Nakamura T, Nawa K, Ichihara A. Partial purification and char-

Journal of the Royal College of Physicians of London Vol. 27 No. 3 July 1993 281
acterisation of hepatocyte growth factor from serum of hepatotomised rats. *Biochem Biophys Res Commun* 1984;11:450–9.

9. Selden AC, Jones M, Wade D, Hodgson HJF. Hepatotropin mRNA expression in human fetal liver development and in liver regeneration. *FEBS Lett* 1990;270:81–4.

10. Gohda E, Tsuobuchi H, Nakayama H, et al. Purification and characterisation of hepatocyte growth factor from plasma in a patient with fulminant hepatic failure. *J Clin Invest* 1988;81:414–9.

11. Nakamura T, Nawa K, Ichihara H, et al. Purification and subunit structure of hepatocyte growth factor from rat platelets. *FEBS Lett* 1992;294:31–6.

12. Zarnegar R, Michalopoulos G. Purification and biochemical characterization of human hepatopoietin A, a polyprotic growth factor for hepatocytes. *Cancer Res* 1989;49:3314–20.

13. Michalopoulos G, Hock K, Dolan ML, et al. Control of hepatocyte replication by two serum factors. *Cancer Res* 1984;44:4414–9.

14. Gohda E, Daikuahara Y, Kitamura N. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. *Biochem Biophys Res Commun* 1989;163:967–73.

15. Nakamura R, Nishizawa T, Hagiya M, et al. Molecular cloning and expression of human hepatocyte growth factor. *Nature* 1989;342:440–3.

16. Selden AC, Johnstone R, Darby G, et al. Human serum does contain a high molecular weight hepatocyte growth factor: studies pre- and post-hepatic resection. *Biochem Biophys Res Comm* 1986;139:561–6.

17. Strain AJ, Ismail T, Tsuobuchi H, et al. Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes. *J Cell Biol* 1991;87:1555–7.

18. Laguda B, Selden C, Jones M, et al. Assignment of the hepatocyte growth factor (HGF) to chromosome 7q22-qter. *Ann Hum Genet* 1991;55:213–6.

19. Iwaga T, Kanda S, Kanetake H, et al. Hepatocyte growth factor is a potent mitogen for cultured rabbit renal tubular epithelial cells. *Biochem Biophys Res Commun* 1991;174:831–8.

20. Schirmerer P, Geerts A, Pietrangelo A, et al. Hepatocyte growth factor/hepatopoietin A is expressed in fat-storing cells from rat liver but not myofibroblast-like cells derived from fat-storing cells. *Hepatology* 1992;15:5–11.

21. Selden C, Hodgson HJF. Role of hepatocyte growth factor (HGF) in human ontogeny. *Clin Sci* 1991;80:6P.

22. Stoker M, Perryman M. An epithelial scatter factor released by embryob fibroblasts. *J Cell Sci* 1985;77:209–23.

23. Tajima H, Matsumoto K, Nakamura T. Hepatocyte growth factor has potent anti-proliferative activity in various tumour cell lines. *FEBS Lett* 1991;291:229–32.

24. Gherardi E, Stoker M. Hepatocyte growth factor scatter factor—mitogen, motogen, and met. *Cancer Cell Mon Rev* 1991;3:297–32.

25. Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor as a c-met proto-oncogene product. *Science* 1991;251:802–4.

26. Selden AC, Ding S, Hodgson HJF. Hepatocyte growth factor—receptor expression in normal liver and hepatocellular cancer. *Hepatology* 1991;14:180A.

27. Selden C, Daiikuahara Y, Hodgson HJF. Increased gene expression of hepatocyte growth factor receptor in hepatocytes in response to HGF stimulation. *Proc Intl Asst Study of Liver Disease* 1992;OP:55.

28. Tsuobuchi H, Hiroto S, Gohda E, et al. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. *Hepatology* 1989;9:875–81.

29. Selden C, Ding SF, Habib N, Hodgson HJF. Expression of hepatocyte growth factor associated with hepatocellular cancer. *Gut* 1991;32:AS77.

30. Selden AC, Ding S, Farnaud S, et al. c-met mRNA transcripts (hepatocyte growth factor receptor) in normal and malignant human liver. *Gut* 1992;33:SS7.

31. Michalopoulos GK. Liver regeneration: molecular mechanisms of growth control. *FASEB* 1990;4:176–87.

32. Kan M, Huang J, Mansson P-E, et al. Heparin-binding growth factor type I (acidic fibroblast growth factor): a potential biphasic mitogen and p53-regulator of hepatocyte regeneration. *Proc Natl Acad Sci USA* 1989;86:7432–36.

33. Labrecque DR, Steele G, Fogerty S, et al. Purification and physical–chemical characterisation of hepatic stimulator substance. *Hepatology* 1987;7:100–6.

34. Diaz-Gill JJ, Gavilanes JC, Sanchez G, et al. Identification of a liver growth factor as an albumin-bilirubin complex. *Biochem J* 1987;243:443–8.

35. Cruise JL, Knechtle S, Bollinger RR, et al. Alpha-1 adrenergic effects and liver regeneration. *Hepatology* 1987;7:1189–94.

36. Matsumoto K, Tajima H, Hamanoue M, et al. Identification and characterisation of ‘injirin’, an inducer of expression of the gene for hepatocyte growth factor. *Proc Natl Acad Sci USA* 1992;89:3800–4.

37. Lindroos P, Zarnegar R, Michalopoulos G. Hepatic growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. *Hepatology* 1991;13:743–50.

38. Woodman AC, Selden AC, Hodgson HJF. Partial purification and characterisation of an inhibitor of hepatocyte proliferation derived from non-parenchymal cells after partial hepatectomy. *J Cell Physiol* 1992;151:405–14.

39. Chapaker MS, Huggett AC, Thorgerisson SS. Growth modulatory effects of a liver-derived growth inhibitor, transforming growth factor-β1, and recombinant human tumour necrosis factor–α, in normal and neonatal cells. *Exp Cell Res* 1989;185:247–57.

40. Nakamura T, Arakaki R, Ichihara A. Interleukin 1β is a potent growth inhibitor of long-term rat hepatocytes in primary culture. *Exp Cell Res* 1988:179:488–97.

41. Matas AJ, Sutherland DE, Maurer SM, et al. Hepatocellular transplantation for metabolic deficiencies: decrease of plasma bilirubin in Gunn rat. *Science* 1976;192:892–4.

42. Mito M, Ebata H, Kusano M, et al. Morphology and function of isolated hepatocytes transplanted into rat spleen. *Transplantation* 1979;28:499–505.

43. Darby H, Selden AC, Gupta S, et al. Observations on rat splenic reticulum during the development of syngeneic hepatocellular implants. *Brit J Exp Pathol* 1986;67:329–39.

44. Jaffé V, Darby H, Selden AC, Hodgson HJF. Growth and proliferation of transplanted hepatocytes in rat pancreas. *Transplantation* 1988;45:497.

45. Barbour R, Moscioni AD, Felcher A, et al. Survival and function in mutant rats of intraperitoneally transplanted hepatocytes attached to a biodegradable collagen matrix. *Gastroenterology* 1989;96:457.

46. Gupta S, Johnstone R, Soverymutt SU, et al. Transplanted isolated hepatocytes: Effect of partial hepatectomy on proliferation of long-term syngeneic implants in rat spleen. *Pathology* 1987;19:28–30.

47. Darby H, Selden AC, Hodgson HJF. Cyclosporin protects survival of allogeneic hepatocytes transplanted to spleen. *Transplantation* 1986;42:325–6.

48. Groth GC, Arboorh B, Bjirkenc K. Correction of hyperbilirubinaemia in the glucuronified transfere deficient rat by intraportal hepatocyte transplantation. *Transplant Proc* 1979;5313–9.

49. Makowka L, Rosenstein LE, Falk RE. Studies into the mechanism of reversal of experimental acute hepatic failure by hepatocyte transplantation. *Can J Surg* 1981;24:39–44.

50. Ferry N, Duplessis O, Housin D, et al. Retroviral-mediated gene expression of hepatocyte growth factor in normal liver and hepatocellular cancer. *Hepatology* 1991;14:180A.
transfer into hepatocytes in vivo. Proc Natl Acad Sci USA 1991;88:8377–81.
54 Wu GY, Wilson JM, Shalaby F, et al. Receptor-mediated gene delivery in vivo. J Biol Chem 1991;266:14332–8.
55 Friedmann T, Xu, L, Wolff J, et al. Retrovirus vector-mediated gene transfer into hepatocytes. Mol Biol Med 1989;6:117–25.
56 Chowdhury JR, Crossman M, Gupta S, et al. Long-term improvement of hypercholesterolemia after ex vivo gene therapy in LDLR-deficient rabbits. Science 1991;254:1802–5.

Address for correspondence: Professor H J F Hodgson, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 0NN.