PREMEDICATION EFFECT OF MELATONIN ON PROPOFOL INDUCTION DOSE FOR ANESTHESIA, ANXIETY, ORIENTATION AND SEDATION AFTER ABDOMINAL SURGERY: A DOUBLE-BLINDING RANDOMIZED TRIAL

Afsaneh Norouzi1, Shahin Fateh2, Hesameddin Modir1 1, Alireza Kamali1, Leila Akrami1
1 Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
2 Department of surgery, Arak University of Medical Sciences, Arak, Iran

*Correspondence to: Hesameddin Modir, MD, PhD, he_modir@arakmu.ac.ir.
orcid: 0000-0003-2870-2082 (Hesameddin Modir)

Abstract

The present study addressed the effect of melatonin premedication on propofol induction dose for anesthesia in abdominal surgery. This is a double-blinded clinical trial in which abdominal surgery patients admitted to the Valiasr Hospital, Iran (n = 88) were enrolled and individually randomized into two groups: melatonin and placebo groups sublingually administered 3 mg of melatonin and placebo, respectively, 50 minutes before surgery. Their anxiety, orientation, and sedation were recorded before melatonin administration, anesthesia induction, and recovery, while also we recorded the propofol induction dose required for general anesthesia. Anxiety was seen less in the melatonin group than the placebo group (P < 0.05), whereas orientation was significantly different before anesthesia induction (P < 0.044) and sedation was the same before the induction (P = 0.044) and recovery (P = 0.049) in both groups, with a better efficiency in the melatonin group in which a lower dose of propofol was used (P = 0.002). The sedation, anxiety, and propofol dose used were lower in the melatonin group than the placebo group.

Key words: abdominal surgery; anesthesia; induction; melatonin; premedication; propofol

doi: 10.4103/2045-9912.260646

How to cite this article: Norouzi A, Fateh S, Modir H, Kamali A, Akrami L. Premedication effect of melatonin on propofol induction dose for anesthesia, anxiety, orientation and sedation after abdominal surgery: a double-blind randomized trial. Med Gas Res. 2019;9(2):62-67.

Funding: The study was supported by a grant from Arak University of Medical Sciences, Arak, Iran.

INTRODUCTION

Melatonin (N-acetyl-5-methoxytryptamine) is a hormone naturally produced in the brain, secreted by the pineal gland, whose receptors are found throughout the central nervous system and other body tissues. It is known to be an effective hormone in sleep disorders, anxiety, and pain, as well as an anti-inflammatory antioxidant used as a premedication. Melatonin interacts with multiple receptors, including opioidergic, benzodiazepinergic, muscarinic, nicotinic, serotonergic, α1- and α2-adrenergic, and melatonergic receptors found in the spinal cord in the central nervous system. Premedication reduces the need for anesthetic induction agents during surgery. Melatonin, an effective hypnotic drug, is revealed to have the effect on both the onset and maintenance of sleep, while it is known as a natural hypnotic agent whose actions are activated by MT1 and MT2 receptors and a yet-unclarified physiologic mechanism underlying the analgesic actions of melatonin.

Several studies have been focused on the effects of various premedication on the induction and maintenance propofol dose in the human body. A dose range of melatonin premedication is used to provide sedation and analgesia without cognitive impairment and psychomotor skills, and without any increase in recovery time. Past studies have proven that melatonin is effective in the premedication of adults and children.

Anderson et al.’s review* which explored 24 clinical trials and 1749 participants suggested that melatonin decreases anxiety and pain, as compared to placebo. They performed three studies on anesthetic induction dose which reduced anesthetic dose but did not affect sevoflurane dose. While Turkistani et al.’s study suggested that melatonin 3 or 5 mg is recommended to reduce propofol dose to achieve bispectral index (BIS) 45, another which conducted on BIS and reducing the dose of anesthetic drugs by Evagelidis et al.’s study focused on the effect of melatonin premedication on the reduced administration of sevoflurane guided by BIS monitoring, reporting no effect on the reduction of anesthetic dose.

Melatonin-mediated analgesic effects may be involved in two melatonin receptors, γ-aminobutyric acid receptor, and opioid receptors. Melatonin can increase β-endorphins levels in the receptor MT2 in spinal cord and is effective as a premedication due to the sedative, hypnotic, analgesic, anti-inflammatory, anti-oxidative and chronobiologic properties. The review has revealed that melatonin is effective as a premedication in adults, but with controversial anesthetic effects. Premedication with sublingually and orally administered melatonin (0.05, 0.1, or 0.2 mg/kg) has been proven to reduce anxiety and to provide problem-free sedation in surgery and psychomotor skill test, or a negative impact on the quality of recovery. Ismail and Mowafi studied the effect of melatonin on the induction and maintenance propofol dose for anesthesia, anxiety, orientation and sedation after abdominal surgery.
of orally administered melatonin 10 mg as a premedication at 90 minutes before cataract surgery and found that it provided better operating conditions, including decreased intraocular pressure and enhanced analgesia, and it was also effective in reducing the pain caused by injuries.

However, there are few quantitative studies addressing melatonin premedication for reducing the dose of anesthetic agent used during surgery, whereas in Naguib et al.’s trial, 45 patients undergoing various surgeries received melatonin 100 minutes prior to surgery and only sufficed for eyelash reflex and verbal command, but in the present study we intended to perform, BIS was also used. Contrarily, the studies are limited and cannot be generalized to the entire community, while not considering all in each case, and the subject still needs to be reviewed. Thus, we designed a study to compare the effect of melatonin versus placebo as the premedication on propofol induction dose for anesthesia in abdominal surgeries in Arak, Iran.

Subjects and Methods

This is a double-blinded clinical trial in which abdominal surgery patients admitted to the Valiasr Hospital, Iran (n = 88) were included after completing the informed consent form. The patients were informed about the objectives of study and signed the informed consent form. Moreover, the protocol of study was approved by the Ethical Committee of Arak University of Medical Sciences with IR.ARAKMU.REC.1395.432 code in July 2016. In addition, it was registered in Iranian Registry of Clinical Trials with IRCT2014120920258N98 in September 2016. The flow chart is shown in Figure 1.

![Flow Chart](image_url)

Figure 1: CONSolidated Standards of Reporting Trials (CONSORT) diagram showing the flow of participants throughout a randomized trial

The inclusion criteria included American Society of Anesthesiologists status I–II, age 15–55 years, non-emergency abdominal surgery, both genders, surgery time from 30 minutes to 1 hour and a half, body mass index > 19 to < 25 kg/m², and non-use of narcotics during the previous week. Exclusion criteria were including lack of patient cooperation and use of benzodiazepine-derived drugs within the past 72 hours.

Subjects were randomized into two groups: melatonin group (n = 44), sublingually administered 3 mg of melatonin (Webber, Naturals, Canada) dissolved in 3 mL of distilled water 50 minutes before surgery; and placebo group (n = 44), administered placebo (3 mL of distilled water) 50 minutes before surgery. The treatment was implemented by an anesthesiologist resident who was blinded to drugs. A nurse anesthetist prepared anesthetics and provided them with the resident. Afterwards, the subjects were transferred to the operating room, while recording vital signs, including oxygen saturation (SaO2), and attaching the BIS monitor to him/her. The monitor electrodes were placed on three points: the middle of the forehead above the glabella, upper corner of the left eye, and left mastoid region.

Midazolam (Boroujerd Eksir Co, Broujerd, Iran) 0.2 mg/kg and fentanyl (Rash Caspian Co., Iran) 2 mg/kg were injected into both groups, and then the induction of general anesthesia propofol Lipuro (B. Braun Medical) 1 mg/kg was started by the anesthesiologist resident and finally continued until the BIS reached 40. The total propofol dose was recorded to achieve the BIS to lose eyelash reflex and to prevent response to verbal stimulation. Then atracurium (Rash Caspian Co., Iran) 0.5 mg/kg was injected and anesthesia continued by isoflurane, and nitrogen-oxygen (at 50:50), as well as and fentanyl injected at an appropriate dose for the time of surgery.

Anxiety, orientation and sedation were recorded before melatonin administration, before anesthesia induction and during recovery by the resident who then recorded mean arterial pressure (MAP), heart rate (HR), SaO2, and end-tidal carbon dioxide (EtCO2) before induction, every 10 minutes during and after surgery, and every 15 minutes after arrival in the recovery room until achieving a score of > 8 on the Aldrete scoring11 when the monitoring device was attached to the end of a nasal mask. Visual Analogue Scale score was used to assess patients’ anxiety17,18 and then was completed by the resident. A 10 cm ruler was used to assess anxiety, in which zero stood for no anxiety and 10 stood for a severe anxiety.

Orientation scoring was based on: No orientation (0), orientation about place where patient is located (1), and orientation in both time and place (2).14 The sedation scoring was as follows: Awake (1), drowsy (2), asleep but arousable (3), and asleep and not arousable (4).14 It should be noted that the data were measured by an anesthesiologist resident, unaware of the groupings, to double-blinded the study and then data were analyzed using descriptive and analytical statistics through SPSS 20 (IBM Corp., Armonk, NY, USA). Independent t-test and chi-square test were used in data analysis.

Results

This double-blinded clinical trial was conducted in abdominal surgery patients (n = 88) admitted to the Arak Valiasr Hospital,
who were randomly assigned to two groups with a minimum age of 24 years, a maximum age of 55 years, and a mean age of 43.97 ± 7.40 years. No significant difference was seen in age between two groups (P = 0.568) who were matched for age. They showed no significant difference in gender (P = 0.856) and were gender matched.

Based on the results in Table 2, a significant difference was found in MAP between the groups at 10, 20 and 70 minutes, and recovery time (P < 0.05). The MAP level was lower in the melatonin group than in the placebo group at all times. Based on the below chart, the lowest MAP is related to the melatonin group, whereas MAP had also a sharp increase in the placebo group at the time of extubation, but is low in the melatonin group. Figure 1 shows the repeated measurement analysis for trend of MAP between two groups. Melatonin caused lower MAP in patients for all times.

Based on Table 3, no statistically significant difference was seen in HR between the two groups (P < 0.05). Though no statistically significant difference was between them, the HR was lower in the melatonin group. Moreover, the repeated measurement test showed that no difference was observed in HR, but it was lower in the melatonin group (P > 0.05).

Table 1: Baseline characteristics of abdominal surgery patients

Item	Melatonin (n = 44)	Placebo (n = 44)	P-value
Age (year)	43.34±7.69	44.25±7.16	0.568
Sex (male/female)	21/23	22/22	0.586
Time to surgery (minute)	89.25±12.5	91.18±15.45	0.435

Note: Data in age and time to surgery are expressed as the mean ± SD, and analyzed by independent t-test.

Table 2: Comparison of mean arterial pressure (mmHg) between the patients in melatonin and placebo groups

	Melatonin (n = 44)	Placebo (n = 44)	P-value
Before anesthesia induction	78.60±68.04	79.80±75.02	0.183
10 minutes post-operation	74.60±22.32	76.80±31.48	0.007
20 minutes post-operation	73.60±22.33	76.70±73.04	0.041
30 minutes post-operation	74.02±6.18	76.27±7.61	0.084
40 minutes post-operation	73.50±22.33	76.70±65.95	0.082
50 minutes post-operation	73.60±25.95	76.80±25.49	0.140
60 minutes post-operation	74.50±43.0	76.70±97.03	0.95
70 minutes post-operation	74.50±21.70	76.70±23.93	0.016
80 minutes post-operation	74.50±40.34	77.70±20.39	0.023
90 minutes post-operation	76.50±47.87	77.60±50.82	0.292
After tracheal extubation	76.50±84.76	80.70±61.05	0.283
Recovery	76.50±73.04	77.70±79.51	0.040

Note: Data are expressed as the mean ± SD, and analyzed by independent t-test. Melatonin group: administered 3 mg of melatonin at 50 minutes before surgery; placebo group: administered 3 mL of distilled water at 50 minutes before surgery.

Based on Table 4, there was a significant difference in SaO₂ between the groups after recovery and the mean of SaO₂ was higher in melatonin than placebo group. But there was no significant between two groups in other time after operation. Figure 2 shows the trend of SaO₂ in two groups. Moreover, no significant difference was found in mean of EtCO₂ between groups (P < 0.05; Figure 3).

Table 3: Comparison of heart rate (beats/min) between the patients in melatonin and placebo groups

	Melatonin (n = 44)	Placebo (n = 44)	P-value
Before anesthesia induction	85.13±6.41	86.40±7.49	0.711
10 minutes post-operation	79.72±6.12	80.63±7.11	0.732
20 minutes post-operation	77.63±6.26	79.20±6.79	0.263
30 minutes post-operation	76.93±5.66	78.65±6.70	0.195
40 minutes post-operation	77.56±5.90	79.85±6.82	0.311
50 minutes post-operation	77.72±5.95	78.81±6.89	0.429
60 minutes post-operation	77.60±12.02	78.60±70.72	0.217
70 minutes post-operation	77.60±68.01	78.60±56.53	0.510
80 minutes post-operation	77.50±77.84	78.60±70.97	0.397
90 minutes post-operation	78.60±88.00	79.60±56.98	0.625
After tracheal extubation	83.50±59.34	83.70±50.50	0.984
Recovery	79.60±13.89	80.70±77.77	0.356

Note: Data are expressed as the mean ± SD, and analyzed by independent t-test. Melatonin group: administered 3 mg of melatonin at 50 minutes before surgery; placebo group: administered 3 mL of distilled water at 50 minutes before surgery.

Based on the results depicted in Table 5, no significant difference was seen in anxiety between both before melatonin administration (P = 0.07), but it was significantly different between in both groups before the induction (P = 0.013) and in recovery (P = 0.034) and less in the melatonin group.

In addition, no significant difference was found in orientation between both before melatonin administration and in recovery (P > 0.05), while it was statistically significant before anes-
Norouzi et al. / Med Gas Res

Medical Gas Research ¦ June ¦ V olume 9 ¦ Issue 2

Norouzi et al. / Med Gas Res www.medgasres.com

Anesthesia induction ($P = 0.44$) and lower in the melatonin group before the induction. Though no significant difference was seen in orientation at the recovery time, it was higher in the melatonin group. In addition, there was no significant difference in the sedation between the two groups before melatonin administration ($P < 0.05$), before anesthesia induction ($P = 0.44$) and recovery ($P = 0.049$). A statistically significant difference was observed in propofol dose between both groups ($P = 0.002$), whereas the dose was lower in the melatonin group than the placebo group (Table 5).

DISCUSSION

The results of the double-blinded clinical trial showed that MAP was lower in the melatonin group than in another group at all times and did not have a sudden increase in the placebo group at the time of extubation, but low in the melatonin group, while no statistically significant difference was found in HR between both groups ($P < 0.05$), but HR was lower in the melatonin group. Based on the results, no significant difference was seen in SaO_2 ($P < 0.05$) and in EtCO_2 ($P > 0.05$) between both. Though anxiety was less in the melatonin group before anesthesia induction ($P = 0.013$) and recovery ($P = 0.034$), orientation was less in melatonin group than another before the induction ($P = 0.44$). Though no significant difference was found in orientation at recovery time, it was higher in the melatonin group whose sedation was better before anesthesia induction ($P = 0.044$) and recovery ($P = 0.049$) and whose propofol dose used was lower than the placebo group ($P = 0.002$).

Here, we continue to explore some concerned studies: Anderson’s results were consistent with ours, whereby anxiety and pain were less in the melatonin group. Ionescu et al.’s study aimed at assessing the effect of melatonin premedication in laparoscopic cholecystectomy suggested that sedation was lower in the melatonin group than that in midazolam and

Table 5: Comparison of anxiety, orientation, sedation and propofol dose between the patients in melatonin and placebo groups

	Melatonin ($n = 44$)	Placebo ($n = 44$)	P-value
Anxiety			
Before melatonin administration	6.15±1.42	6.06±0.04	0.070
Before anesthesia induction	5.29±1.75	6.65±0.37	0.013
Recovery	2.13±0.82	2.75±1.03	0.034
Orientation			
Before melatonin administration	1.99±0.15	2.00±0.00	0.060
Before anesthesia induction	1.97±0.15	2.00±0.00	0.044
Recovery	1.84±0.37	1.77±0.42	0.108
Sedation			
Before melatonin administration	1.0±0.0	1.0±0.0	1
Before anesthesia induction	1.02±0.15	1.0±0.0	0.044
Recovery	2.06±0.54	2.34±0.52	0.049
Propofol dose (mg/kg)	49.88±14.48	77.38±23.56	0.002

Note: Data are expressed as the mean ± SD, and analyzed by independent t-test. Melatonin group: administered 3 mg of melatonin at 50 minutes before surgery; placebo group: administered 3 mL of distilled water at 50 minutes before surgery. Anxiety, orientation, and sedation were assessed by Visual Analogue Scale score, orientation scoring, and sedation scoring, respectively.
that melatonin can be successfully used as a premedication in cholecystectomy surgery. Their results were consistent with ours. Isik et al.22 conducted an interventional study to compare melatonin and midazolam premedication in child anxiety, which was done in children undergoing dental treatment, showing that placebo, like melatonin, had no effect on the anxiety. Their results were not consistent with ours. This could be due to small sample size in each group in the Isik study and while the target group was children, adults (> 15 and < 55 years) were targeted in our study.

In the study by Turkistani et al.16 addressing the effect of melatonin premedication and propofol dose for induction, 45 patients undergoing different surgeries were enrolled and randomized into three groups: The former two groups were given melatonin 3 mg and 5 mg, respectively, as a premedication at 100 minutes before surgery, while no drug was administered to the third group. Afterwards, 10 mg of propofol was given in the anesthetic process every 5 minutes to attain a BIS value of 45. Eye responses and eyelid reflexes were assessed and the total propofol dose was recorded, reporting the total dose for propofol 25 mg in the placebo group and 19.5 mg in melatonin 3 mg group and 20.9 mg in melatonin 5 mg group (\textit{P} < 0.05). The anxiety was higher in the placebo group than that in the other groups. No significant difference was found in recovery time among all groups. Melatonin 3 mg or 5 mg is recommended to reduce propofol dose to reach the BIS value of 45.16 Their results were consistent with ours.

Naguib et al.’s study19 compared melatonin and midazolam as a premedication in adults, where 84 women received 0.5, 1, and 2 mg/kg of midazolam, melatonin, and placebo, respectively, at 100 minutes before anesthesia. Sensation, anxiety, and orientation were then recorded at 10, 30, 60 and 90 minutes after premedication, and at 15, 30, 60 and 90 minutes in the recovery room. Subjects receiving midazolam and melatonin premedication showed a significant decrease in anxiety and sedation in the placebo group. Those who received midazolam 0.2 mg/kg had an increased level of sedation at 90 minutes after surgery, in comparison with those receiving melatonin 0.05 and 0.1 mg/kg at that time. Premeedications with melatonin 0.05 mg resulted in less anxiety, lower sedation, and enhanced recovery. Their results were consistent with ours.

The sedation, anxiety and propofol dose used were found to be lower in the melatonin group than in the placebo group. Melatonin 3 mg is recommended to reduce propofol dose to achieve the BIS of 40.

Acknowledgements
We would like to thank the Clinical Research Development Center in the Valiasr Hospital for their guidance and the research deputy of Arak University of Medical Sciences for his assistance.

Author contributions
Study conception: AN, SF, AK, LA; data collection: LA; data acquisition and analysis: HM; data interpretation: AN, AK; manuscript writing: HM. All authors approved the final version of the manuscript for publication.

Conflicts of interest
There is no conflict of interest.

Financial support
The study was supported by a grant from Arak University of Medical Sciences, Arak, Iran.

Institutional review board statement
The protocol of study was approved by the Ethical Committee of Arak University of Medical Sciences with IR.ARAKMU.REC.1395.432 code in July 2016. In addition, it was registered in Iranian Registry of Clinical Trials with IRTIC20141209020258N98 in September 2016.

Declaration of patient consent
The authors certify that they have obtained patients or their legal guardians consent forms. In the form, patients or their legal guardians have given their consent for the patients’ images and other clinical information to be reported in the journal. The patients or their legal guardians understand that the patients’ names and initials not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Reporting statement
The writing and editing of the article was performed in accordance with the CONsolidated Standards of Reporting Trials (CONSORT) Statement.

Biostatistics statement
The statistical methods of this study were reviewed by the biostatistician of Arak University of Medical Sciences, Iran.

Copyright license agreement
The Copyright License Agreement has been signed by all authors before publication.

Data sharing statement
The data could be shared if requested but the patients completed the informed consent.

Plagiarism check
Checked twice by iThenticate.

Peer review
Externally peer reviewed.

Open access statement
This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

REFERENCES
1. Sultan SS. Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anesthesia in the elderly. Saudi J Anesth. 2010;4:169-173.
2. Stankov B, Fraschini F, Reiter RJ. Melatonin binding sites in the central nervous system. Brain Res Brain Res Rev. 1991;16:245-256.
3. Ebrahimi-Monfared M, Sharaftkhab M, Abdolrazaghejad A, Mohammadmbeigi A, Faraji F. Use of melatonin versus valproic acid in prophylaxis of migraine patients: A double-blind randomized clinical trial. Restor Neurol Neurosci. 2017;35:385-393.
4. Mohammadmbeigi A, Absari R, Valizadeh F, et al. Sleep quality in medical students; the impact of over-use of mobile cell- phone and social networks. J Res Health Sci. 2016;16:46-50.
5. Borazan H, Tuncer S, Yalcin S, Erol A, Otelcioglu S. Effects of preoperative oral melatonin medication on postoperative analgesia, sleep quality, and sedation in patients undergoing elective prostatectomy: a randomized clinical trial. J Anesth. 2010;24:155-160.
6. Gitto E, Romeo C, Reiter RJ, et al. Melatonin reduces oxidative stress in surgical neonates. J Pediatr Surg. 2004;39:184-189; discussion 184-189.
7. Andersen LP, Werner MU, Rosenberg J, Gögenur I. A systematic review of peri-operative melatonin. Anaesthesia. 2014;69:1163-1171.
8. Srinivasan V, Lauterbach EC, Ho KY, Acuña-Castroviejo D, Zakaria R, Brzezinski A. Melatonin in antioccipital: its therapeutic applications. Curr Neuropsychopharmacol. 2012;10:167-178.
9. Song J, Um YH, Kim TW, Kim SM, Kwon SY, Hong SC. Sleep and anesthesia. *Sleep Med Res*. 2018;9:11-19.

10. Cardinali DP, Srinivasan V, Brzozinski A, Brown GM. Melatonin and its analogs in insomnia and depression. *J Pineal Res*. 2012;52:365-375.

11. Sharan R, Bala N, Attri JP, Garg K. A comparison of dexmedetomidine with propofol versus esmolol with propofol to attenuate the hemodynamic stress responses after electroconvulsive therapy. *Indian J Psychiatry*. 2017;59:366-369.

12. Acil M, Basgul E, Celiker V, Karagoz AH, Demir B, Aypar U. Perioperative effects of melatonin and midazolam premedication on sedation, orientation, anxiety scores and psychomotor performance. *Eur J Anaesthesiol*. 2004;21:553-557.

13. Kain ZN, MacLaren JE, Herrmann L, et al. Perioperative melatonin and its effects on induction and emergence in children undergoing anesthesia and surgery. *Anaesthesiology*. 2009;111:44-49.

14. Gitto E, Marseglia L, D’Angelo G, et al. Melatonin versus midazolam premedication in children undergoing surgery: A pilot study. *J Paediatr Child Health*. 2016;52:291-295.

15. Impellizzeri P, Vinci E, Gugliandolo MC, et al. Premedication with melatonin vs midazolam: efficacy on anxiety and compliance in paediatric surgical patients. *Eur J Pediatr*. 2017;176:947-953.

16. Turkistani A, Abdullah KM, Al-Shaer AA, Mazen KF, Alkatheri K. Melatonin premedication and the induction dose of propofol. *Eur J Anaesthesiol*. 2007;24:399-402.

17. Evangelidis P, Paraskeva A, Petropoulos G, Staikou C, Fassoulaki A. Melatonin premedication does not enhance induction of anaesthesia with sevoflurane as assessed by bispectral index monitoring. *Singapore Med J*. 2009;50:78-81.

18. Yousaf F, Seet E, Venkatraghavan L, Abridhani A, Chung F. Efficacy and safety of melatonin as an anxiolytic and analgesic in the perioperative period: a qualitative systematic review of randomized trials. *Anesthesiology*. 2010;113:968-976.

19. Naguib M, Baker MT, Spadoni G, Gregerson M. The hypnotic and analgesic effects of 2-bromomelatonin. *Anesth Analg*. 2003;97:763-768.

20. Ismail SA, Mowafi HA. Melatonin provides anxiolysis, enhances analgesia, decreases intraocular pressure, and promotes better operating conditions during cataract surgery under topical anesthesia. *Anesth Analg*. 2009;108:1146-1151.

21. Ecoff L, Palomo J, Stichler JF. Design and testing of a post-anesthesia care unit readiness for discharge assessment tool. *J Perianesth Nurs*. 2017;32:389-399.

22. Ionescu D, Bădescu C, Ilie A, et al. Melatonin as premedication for laparoscopic cholecystectomy: a double-blind, placebo-controlled study. *Eur J Anaesthesiol*. 2005;14:4,8-11.

23. Isik B, Baygin O, Bodur H. Premedication with melatonin vs midazolam in anxious children. *Paediatr Anaesth*. 2008;18:635-641.

Received: February 19, 2019
Accepted: April 16, 2019