THE TORSION GENERATING SET OF THE DEHN TWIST SUBGROUPS OF NON-ORIENTABLE SURFACES

XIAOMING DU

Abstract. Let \(N_g \) be the non-orientable surface with genus \(g \), \(\text{MCG}(N_g) \) be the mapping class group of \(N_g \), \(T(N_g) \) be the index 2 subgroup generated by all Dehn twists of \(\text{MCG}(N_g) \). We prove that for odd genus, \(T(N_g) \) can be generated by three elements of finite orders.

1. Introduction

Let \(N_g \) be the non-orientable surface with genus \(g \), \(\text{MCG}(N_g) \) be the mapping class group of \(N_g \). Lickorish was the first one to discover that all Dehn twists can only generate an index 2 subgroup of \(\text{MCG}(N_g) \) ([6]). We denote this subgroup as \(T(N_g) \). Outside \(T(N_g) \), there is a mapping class called “Y-homeomorphism” or “cross-cap slide”. A finite set of generators for \(\text{MCG}(N_g) \) and \(T(N_g) \) was given by Chillingworth ([2]). When \(g = 2 \), Lickorish found \(\text{MCG}(N_2) \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \), Chillingworth found \(T(N_2) \) can be generated by one Dehn twist. When \(g = 3 \), Birman and Chillingworth proved that \(\text{MCG}(N_3) \) can be generated by three involutions ([1]), Chillingworth found \(T(N_3) \) can be generated by two Dehn twists.

It is a natural question how to simplify the generating sets for \(\text{MCG}(N_g) \) and \(T(N_g) \) as much as possible when \(g \) is large. We want to reduce both the number and the orders of the generators. When \(g \geq 4 \), a generating set for \(\text{MCG}(N_g) \) consisting of four involutions was constructed by Szepietowski. Szepietowski also proved when \(g \geq 4 \), \(\text{MCG}(N_g) \) can be generated by three elements (See [3]). The first homology of \(\text{MCG}(N_g) \) has been calculated by Korkmaz. By Korkmaz’s result, when \(g = 4 \), the smallest number of generators for \(\text{MCG}(N_4) \) is at least 3, So the minimal number of the generators for \(\text{MCG}(N_3) \) is 3. About \(T(N_g) \), Stukow gave a finite presentation of \(T(N_3) \) in [3]. Omori reduced the number of Dehn twist generators for \(T(N_g) \) to \(g + 1 \) when \(g \geq 4 \) ([7]).

2010 Mathematics Subject Classification. 57N05, 57M20, 20F38.

Key words and phrases. mapping class group, non-orientable surface, generator, torsion.

The author would like to thank Szepietowski for telling him the generators of the index 2 Dehn twist subgroup and pointing out some generator was missing in the earlier version of the paper.
In [3], the author proved the following: when the genus \(g' \geq 5 \), the extended mapping class group \(\text{MCG}^\pm(S_{g'}) \) can be generated by two elements of finite order. One is of order 2 and the other is of order \(4g' + 2 \). In [4] (preprint), the author proved that the above result is also true for \(g' = 3, 4 \). We found that the method in [3] [4] can be used in the case of \(\mathcal{T}(N_g) \). We have the following result:

Theorem 1.1. Let \(\mathcal{T}(N_g) \) be the index 2 Dehn twist subgroup of the mapping class group of a non-orientable surface. If \(g \geq 5 \) is odd, \(\mathcal{T}(N_g) \) can be generated by three elements of finite order. One of the generators is of order \(2g \). The other two are of order 2.

2. Preliminary

Notations.

(a) We use the convention of functional notation, namely, elements of the mapping class group are applied right to left, i.e. the composition \(FG \) means that \(G \) is applied first.

(b) A Dehn twist means a right-hand Dehn twist.

(c) We denote the curves by lower case letters \(a, b, c, d \) (possibly with subscripts) and the Dehn twists about them by the corresponding capital letters \(A, B, C, D \). Notationally we do not distinguish a diffeomorphism/curve and its isotopy class.

Cross-cap slide.

In [6], Lickorish proved that the Dehn twists of all the two-sided curves on the non-orientable surface generate \(\mathcal{T}(N_g) \) and \([\text{MCG}(N_g) : \mathcal{T}(N_g)] = 2 \). As an example of the mapping classes which do not lie in \(\mathcal{T}(N_g) \), he described a mapping class so-called "Y-homeomorphism" or "cross-cap slide" as shown in figure 1.

![Figure 1.](image_url)

Two points of view for the Möbius band partition of a non-orientable surface of odd genus.
If g is odd, we can decompose the non-orientable surface N_g into g Möbius bands. Figure 2 shows two points of view to do this.

(1) The left picture of figure 2 is a $2g$-gon, with a cross-cap in the middle and the opposite sides glued together pairwise. Under this gluing, the vertices of this $2g$-gon is divided into two equivalent classes. After the gluing, they form two points on N_g. We denote them as N and S. There are g arcs connecting pairs of antipodal vertices and passing the cross-cap in the middle of the $2g$-gon. They divide N_g into g Möbius bands. We call this is the $2g$-gon presentation of N_g.

![Figure 2](image1)

(2) The middle and the right picture of figure 2 show a 2-sphere with g projective planes attached. This is also N_g. Suppose the g projective plane sit on the equator. Denote the north pole and the south pole as N, S. There are g arcs connecting N and S. They divide N_g into g Möbius bands. We call this is the g-cross-cap presentation of N_g.

We can check the above two presentations of N_g are equivalent. In the following, we will go back and forth between such presentations.

Mapping classes supported on an Klein bottle with boundary

For the non-orientable surface N_g, there is a subsurface homeomorphic to a one-holed Klein bottle, see figure 3. We use the notation as those in [9]. The one-holed Klein bottle contains two cross-caps in its interior. Suppose U is the mapping class that exchanges the two cross-caps, which is like a half-twist generator of the braid group. There is a curve a which is two-sided and passes both cross-caps. Let A be the Dehn twist along a. The mapping class Y is a Y-homeomorphism, sliding one cross-cap along the one-sided curve which passes the other cross-cap once.

Szepietowski showed $Y = AU$. In other words, both the cross-cap exchanging map U and the cross-cap side Y do not lie in $\mathcal{T}(N_g)$. Moreover, it is not hard to check that both Y^2 and U^2 equals the Dehn twist along the boundary curve of the one-holed Klein bottle.
The curves needed for generating $T(N_g)$.

Omori construct a generating set consist of $g + 1$ Dehn twists for $T(N_g)$ ([7]). When we use the g-cross-cap presentation of N_g, the curves for those Dehn twists are $a_1, a_2, \ldots, a_g, b_0, c$ shown in figure 4. We can check $A_1^{-1}(e) = c$. Hence the Dehn twists along $a_1, a_2, \ldots, a_g, b_0, c$ can also generate $T(N_g)$.

We can also use the $2g$-gon presentation to see what these curves are. See figure 5.
3. The proof of the main theorem

We now give a proof for Theorem 1.1.

Proof of Theorem 1.1. We first give the torsion generators. Suppose \(g \) is odd. See figure 6.

Let \(\{a_1, \ldots, a_g, b_0, c\} \) be the set of curves whose Dehn twists generate \(\mathcal{T}(N_g) \), \(\sigma \) be the rotation in the \(2g \)-gon presentation, \(\tau_1 \) be a reflection of the \(2g \)-gon presentation that preserves the curve \(b_0 \), \(\tau_2 \) be a reflection of the \(g \)-cross-cap presentation that preserves \(c \). We can easily see that \(\sigma^{2g} = 1, (\tau_1 \circ B_0)^2 = 1, (\tau_2 \circ C)^2 = 1 \).

Let \(G = \langle \sigma, \tau_1 \circ B_0, \tau_2 \circ C \rangle \) be the subgroup of \(\text{MC}G(N_g) \) generated by these three elements of finite orders. We claim that when \(g \) is odd, \(G = \mathcal{T}(N_g) \).

By the method in [3] and [4], the Dehn twists \(A_1, \ldots, A_g, B_0 \) are in \(G \). Then \(\tau_1 \) is also in \(G \).

We can interpret some of the torsion elements in more geometric ways. See figure 7. We can check that \(\tau_1 \) is not only a reflection in the \(2g \)-gon presentation but also a reflection in the \(g \)-cross-cap presentation. Let \(\tau_3 \) be the north-south reflection of the \(g \)-cross-cap presentation of \(N_g \), \(t \) be an order \(g \) rotation. Then \(\sigma = t \circ \tau_3 \) and \(\tau_3 = \sigma^g \). Hence \(\tau_3 \) and \(t \) are also in \(G \).

Now \(\tau_2 \) is conjugated to \(\tau_1 \) by some power of \(t \). So \(\tau_2 \) also lies in \(G \). Hence \(C \) lies in \(G \). Since \(A_1, \ldots, A_g, B_0, C \) generate \(\mathcal{T}(N_g) \), \(\text{MC}G(N_g) \geq \mathcal{T}(N_g) \).
$G \geq \mathcal{T}(N_g)$. We want to prove G is not $\text{MCG}(N_g)$. We need to verify all the generators lie in $\mathcal{T}(N_g)$.

Since $\sigma = A_{2g} A_{2g-1} \ldots A_2 A_1$, σ is in $\mathcal{T}(N_g)$. So τ_3 and t also lies in $\mathcal{T}(N_g)$. When g is odd, in the g-cross-cap presentation of N_g, the composition of τ_1 and τ_3 is a rotation of the 2-sphere, fixing one cross-cap. If we look every cross-cap as a punctured point, then $\tau_1 \circ \tau_3$ becomes an element in the spherical braid group. It can be written as a product of the standard half-twist generators of the braid group. We can check the number of the half-twists in the product is an even number. Each half-twist corresponds to a mapping class exchanging two cross-caps and supported on a Klein bottle with one boundary. This means the half-twist generators in the braid group correspond to the mapping classes outside $\mathcal{T}(N_g)$. The number of half-twists in the product is even means $\tau_1 \circ \tau_3$ lies in $\mathcal{T}(N_g)$, hence τ_1 also lies in $\mathcal{T}(N_g)$. τ_2 is in $\mathcal{T}(N_g)$ because it is conjugated to τ_1. We get $G = \langle \sigma, \tau_2 \circ C, \tau_1 \circ B_0 \rangle = \mathcal{T}(N_g)$. \hfill \square

References

[1] J. S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable surface. Proc. Cambridge Philos. Soc. 71 (1972), 437-448.
[2] D. R. J. Chillingworth, A finite set of generators for the homeotopy group of a nonorientable surface. Proc. Cambridge Philos. Soc. 65 (1969), 409-430.
[3] X. Du, The extended mapping class group can be generated by two torsions. J. Knot Theory Ramifications, Volume No.26 (2017), Issue No. 11.
[4] X. Du, The torsion generators of the extended mapping class groups in low genus cases, preprint.
[5] M. Korkmaz, First homology group of mapping class groups of nonorientable surfaces. Proc. Cambridge Philos. Soc. 123 no. 3 (1998), 487-499.
[6] W. B. R. Lickorish, On the homeomorphisms of a non-orientable surface. Proc. Cambridge Philos. Soc. 61 (1965), 61-64.
[7] G. Omori, A small generating set for the twist subgroup of the mapping class group of a non-orientable surface by Dehn twists. Hiroshima Math. J. Volume 48, Number 1 (2018), 81-88.
[8] M. Stukow, A finite presentation for the twist subgroup of the mapping class group of a nonorientable surface, Bull. Korean Math. Soc. 53 (2016), no. 2, 601-614.
[9] B. Szepietowski, The mapping class group of a nonorientable surface is generated by three elements and by four involutions. Geom. Dedicata 117 (2006), 1-9.

South China University of Technology, Guangzhou 510640, P.R.China

E-mail address: scxmdu@scut.edu.cn