Normal intervertebral segment rotation of the subaxial cervical spine: An in vivo study of dynamic neck motions

Yan Yu a,b, Jing-Sheng Li c, Tao Guo a, Zhao Lang a, James D. Kang d, Liming Cheng b,**, Guoan Li a,*, Thomas D. Cha e

a Orthopaedic Bioengineering Research Center, Department of Orthopedic Surgery, Newton-Wellesley Hospital/Harvard Medical School, Wellesley, MA, USA
b Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
c College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, USA
d Department of Orthopaedic Surgery, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
e Department of Orthopaedic Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA

Received 18 September 2018; received in revised form 5 December 2018; accepted 11 December 2018
Available online 21 January 2019

Abstract Background: Accurate knowledge of the intervertebral center of rotation (COR) and its corresponding range of motion (ROM) can help understand development of cervical pathology and guide surgical treatment.
Methods: Ten asymptomatic subjects were imaged using MRI and dual fluoroscopic imaging techniques during dynamic extension-flexion-extension (EFE) and axial left-right-left (LRL) rotation. The intervertebral segment CORs and ROMs were measured from C34 to C67, as the correlations between two variables were analyzed as well.
Results: During the EFE motion, the CORs were located at 32.4°/C6 20.6%, -2.4°/C6 11.7%, 21.8°/C6 12.5% and 32.3°/C6 25.5% posteriorly, and the corresponding ROMs were 13.8°/C6 4.3°/C14, 15.1°/C6 5.1°/C14, 14.4°/C6 7.0°/C14 and 9.2°/C6 4.3°/C14 from C34 to C67. The ROM of C67 was significantly smaller than other segments. The ROMs were not shown to significantly correlate to COR locations (r = 0.243, p = 0.132). During the LRL rotation cycle, the average CORs were at 85.6° ± 18.2%, 32.3° ± 25.3%, 15.7° ± 12.3% and 82.4° ± 31.3% posteriorly, and the corresponding ROMs were 3.5°/C6 1.7°, 6.9° ± 3.8°, 9.6° ± 4.1° and 2.6° ± 2.5° from C34 to C67. The ROMs of C34

* Corresponding author. Orthopaedic Bioengineering Research Center, Department of Orthopaedic Surgery, Newton-Wellesley Hospital and Harvard Medical School, Newton, MA, USA.
** Corresponding author. Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
E-mail addresses: chlm.d@163.com (L. Cheng), gli1@partners.org (G. Li).

https://doi.org/10.1016/j.jot.2018.12.002
2214-031X/© 2019 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and C67 was significantly smaller than those of C45 and C56. A more posterior COR was associated with a less ROM during the neck rotation ($r = -0.583, p < 0.001$). The ROMs during EFE were significantly larger than those during LRL in each intervertebral level.

Conclusion: The CORs and ROMs of the subaxial cervical intervertebral segments were segment level- and neck motion-dependent during the in-vivo neck motions.

The translational potential of this article: Our study indicates that the subaxial cervical intervertebral CORs and ROMs were segment level- and neck motion-dependent. This may help to improve the artificial disc design as well as surgical technique by which the neck functional motion is restored following the cervical arthroplasty.

© 2019 The Authors. Published by Elsevier (Singapore) Pte Ltd on behalf of Chinese Speaking Orthopaedic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
excluded. Written consent was obtained from all patients before participation in the study. The CORs and ROMs of intervertebral segments (C34, C45, C56 and C67) of each patient were investigated.

Three-dimensional vertebral models

Each patient was scanned in a supine, relaxed position using a 3-T MRI scanner (MAGNETOM Trio; Siemens, Erlangen, Germany) with a spine coil and a proton density–weighted sequence. Three-dimensional (3D) models of the vertebrae from C3 to C7 were constructed using the magnetic resonance images [31] using a solid modelling software (3D slicer, MIT Artificial Intelligence Lab and Brigham and Women’s Hospital, Boston, MA) [32].

In vivo cervical spine kinematics

The dual fluoroscopic imaging system (DFIS) was used to capture the cervical spine motion [33,34]. The DFIS consists of two fluoroscopes (BV Pulsera; Phillips, Bothell, WA, USA) with their imaging intensifiers positioned perpendicular to each other. During the experiment, the patient sat and moved the neck within the field of view of the two fluoroscopes. The neck was imaged while the patient was performing two functional neck motions: 1) extension-flexion-extension (EFE) motion (from maximal extension position to maximal flexion and then extend to maximal extension position) and 2) left-right-left (LRL) rotation (axial rotation from maximal left position to maximal right position and then twisting back to maximal left position) (Figure 1). The images were captured with a frame rate of 30 Hz and an 8-ms pulse. Each patient was exposed to ~0.08-mSv radiation dosage in this study.

The pairs of fluoroscopic images captured during the neck motion were input into a solid modelling software (Rhinoceros; Robert McNeel & Associates, Seattle, WA, USA) and positioned as virtual imaging intensifiers for construction of a virtual DFIS that reproduces the actual DFIS setup [33–35]. The 3D magnetic resonance–based vertebral models were introduced into the virtual DFIS environment and viewed from two virtual cameras that represent the two X-ray sources of the actual DFIS. Each vertebral model could be translated and rotated independently in six degrees of freedom until their projections on the virtual imaging intensifiers matched the corresponding images captured during the experiment to reproduce the actual in vivo vertebral locations. The C1 and C2 vertebrae were not studied as their images were obscured by the skull and mandible. This technique has been validated by the roentgen stereophotogrammetric analysis technique as the gold standard to have a submillimeter accuracy in measurement of dynamic cervical motion [34].

Definition of the CORs and ROMs of the cervical intervertebral segments

The relative coordinate systems of the two endplate surfaces of each intervertebral segment (C34, C45, C56 and C67) (Figure 2-a) were used to calculate the intervertebral segment kinematics [34]. The x-axis was defined towards left, and the y-axis was posteriorly directed to spinous process as x-y plane was parallel to the endplate surface. The geometric centre of each endplate was chosen as the origin of the corresponding coordinate system. The z-axis was defined in the cephalic direction as perpendicular to the x-y plane. For each intervertebral segment, the coordinate system of the upper endplate surface of the inferior vertebra was used as a reference for calculation of the relative motion of the lower endplate of the superior vertebra (Figure 2-b). The static standing neutral posture was used as a reference for calculation of the intervertebral segment motion.

To define the intervertebral segment CORs, the anterior-posterior (AP) axis of the lower endplate of the superior vertebra was projected onto the primary motion plane of the reference coordinate system of the upper endplate of inferior vertebra. The intersection of the projections of the axes of two consecutive motions was represented as the COR of the intervertebral segment.
The COR location was measured as the distance to the geometric centre of the intervertebral segment. The COR was defined positive when posterior and negative when anterior to the intersegment centre. In this study, the COR was normalized to the AP dimension of the intervertebral disc [38] (Figure 2-b).

For the EFE neck motion, the CORs and ROMs were measured during the motion from full extension to flexion position, and the CORs and ROMs were also measured as the patients moved from the full flexion position to the full extension position. The averages of the CORs and ROMs of each intervertebral segment during the motion cycle were defined as the COR and ROM of the segment. The COR and ROM were similarly calculated for each intersegment during the LRL neck motion.

Statistics

To test the differences in COR locations and the ROMs of the 4 intervertebral segments during the EFE motion and LRL rotation, two-way repeated-measures analysis of variance and the Newman–Keuls post hoc test were performed. To test the difference in COR and ROM between motions,
Results

Intervertebral disc dimensions

The disc dimensions of C3 to C6 segments were similar in the AP direction (Table 1). In the medial-lateral direction, the C6 segment was significantly longer than other segments ($p < 0.001$). In the proximal-distal direction, the C6 segment was lower, but not significantly different compared with the other segments.

Intervertebral segmental CORs and ROMs

EFE motion

The average CORs were located at 32.4 ± 20.6, 2.4 ± 11.7, 21.8 ± 12.5 and 23.2 ± 25.5% posterior to the center of the vertebral body for C3, C4, C5 and C6 segments, respectively (Table 2) (Figure 2-a). The COR of C4 was significantly more anterior to its intervertebral center than the other intervertebral segments ($p < 0.001$). The ROMs of the 4 intervertebral segments were 13.8 ± 4.3, 11.1 ± 5.1, 14.4 ± 7.0 and 9.2 ± 4.3° (Table 2). The ROM of C6 segment was significantly less than the other 3 segments.

LRL rotation

The average CORs were located at 85.6 ± 18.2, 32.3 ± 25.3, 15.7 ± 12.3 and 82.4 ± 31.3% posterior to the center of the vertebral body for C3, C4, C5 and C6 segments, respectively (Table 2) (Figure 2-a). The COR of C5 was significantly closer to its intervertebral center than the other intervertebral segments ($p < 0.001$). The ROMs of the 4 intervertebral segments were 3.5 ± 1.7, 6.9 ± 3.8, 9.6 ± 4.1° and 2.6 ± 2.5° (Table 2). The ROM of C6 segment was significantly less than the other 3 segments.

Comparison of EFE motion and LRL rotation

The CORs of C3, C4 and C6 were more posteriorly positioned during the LRL rotation than during the EFE motion ($p < 0.05$) (Table 2). The positions of the CORs of C5 were not significantly different during the two neck motions ($p > 0.05$). The ROMs of each intervertebral

Table 2 The average intervertebral segment COR locations (%) and angular ROMs (°) of the cervical spine during the EFE motion and LRL rotation.

Segment	EFE motion (a, d, e)	LRL rotation (a, b, d, e, f)
COR	C34	C45
	32.4 ± 20.6	-2.4 ± 11.7
	21.8 ± 12.5	23.2 ± 25.5
ROM	C34	C45
	85.6 ± 18.2	32.3 ± 25.3
	15.7 ± 12.3	82.4 ± 31.3

Significant differences between different intervertebral segments when $p < 0.05$: a for C3 vs. C4, b for C3 vs. C5, c for C3 vs. C6, d for C4 vs. C5, e for C4 vs. C6 and f for C5 vs. C6.

\bullet Represents the statistically significant difference between EFE motion and LRL rotation.

Figure 3 (A) The correlations between the COR locations (%) and corresponding ROMs (°) during the EFE motion of the neck; (B) the correlations between the COR locations (%) and corresponding ROMs (°) during the LRL rotation of the neck. The "0" on the COR axis represents the location of disc center. The -50% represents the anterior edge of disc, whereas the +50% represents the posterior edge of disc. EFE = extension-flexion-extension; LRL = left-right-left; ROM = range of motion.
segment during the EFE motion were significantly larger than during the LRL rotation \(p < 0.05\) (Table 2).

Correlation of COR locations and corresponding ROMs during EFE and LRL neck motions

Generally, a closer COR to the disc centre corresponds to a larger ROM (Figure 3). There was no significant correlation \(r = -0.243, p = 0.132\) between the posterior COR positions and the corresponding ROMs of all intervertebral segments of C34 to C67 during the EFE neck motion (Figure 3-a). During the LRL neck rotation, there was a negative correlation \(r = -0.583, p < 0.001\) between these two variables (Figure 3-b).

Discussion

This study found that the CORs of C45 and C56 are closer to the intervertebral centres than those of C34 and C67 during the EFE motion and LRL rotation of the neck. The CORs are more posteriorly positioned during the LRL rotation than during the EFE motion at all segments except the C56 level. The ROM of each intervertebral segment is larger during the EFE motion than during the LRL rotation. Generally, a closer position of the COR to the intervertebral centre corresponds to a larger ROM. These data were consistent with our hypothesis that the locations of the CORs are segment specific and neck motion dependent in asymptomatic healthy cervical spines.

Previous studies have investigated the CORs of the cervical vertebral columns primarily during the flexion-extension motion of the neck [22–28]. The CORs were generally shown to be close but posterior to the endplate centres via measurement of plain radiographs captured at static flexion and extension postures [22,23]. In a recent study of the instantaneous CORs of the cervical vertebrae during dynamic neck flexion-extension motion, the mean locations of the CORs measured from the inferior vertebral body centres were found to change increasingly posteriorly from C34 to C67 during the flexion-extension of the neck [28]. In general, our data were consistent with the data reported in literature on neck flexion-extension. However, our data showed that the mean intervertebral segmental COR of the C45 was slightly anterior to the disc centre \(-2.4\%) during the flexion-extension of the neck. It is difficult to make a direct comparison between various studies of cervical spine because different studies used different experimental setups and measured the intervertebral motion using different methods. No data have been reported on the cervical intervertebral segment rotation during neck axial rotation.

The data found in this study may have interesting clinical implications. Most contemporary TDRs were designed using the ball–socket joint concept that has designed articulation path of the device [39–41]. This mechanical design concept may not be compatible to the large range of COR location variations as shown at different intervertebral segments and during different neck motions. For example, Duggal et al. [42] found that a TDR at C56 could result in significant increases in global spinal ROM compared with preoperative evaluations in a patient follow-up study. Skepholm et al. [43] investigated the intervertebral ROM using an in vivo computed tomography study and reported that the treated intervertebral ROM of the C56 was similar to that of the C45 but statistically larger than that of the C67. This could be explained by the fact that the CORs of C56 were located close to the intervertebral centre. Our data and the findings of Dvorak et al. [44] also showed that the C56 and C45 were the more mobile than other levels in the subaxial cervical spine.

However, our data also indicated that the COR locations of the C34 and C67 were more posterior than C45 and C56 during rotations of the neck. In general, a more posteriorly positioned COR corresponded to a smaller ROM. Therefore, to achieve a large ROM, the TDR may need to be positioned close to the intervertebral segment centre. Current TDRs may not be suitable for treatment of C34 and C67 as it is difficult to achieve the posterior CORs of the two segments using these devices. No study has compared the clinical outcome of cervical TDRs when applied to different segments. Future improvement of motion preservation treatments for cervical diseases may need to consider the variations of motion characteristics of different intervertebral segments during different neck motions.

There are several limitations to this study. First, C12 and C23 were not included in the analysis because of the obstruction of their images by the mandibular and occipital bones in certain postures along the neck motion path. Second, only 10 asymptomatic patients were investigated with age ranged from 30 to 59 years. Future studies should include more patients with a wider range of age to investigate the effects of age on cervical spine biomechanics. Finally, we investigated the intervertebral segment CORs of the cervical spine during two functional neck motions. In future, the cervical spine should also be investigated during dynamic walking, the most common loading condition experienced during daily life.

Conclusion

This study investigated the intervertebral segmental CORs and ROMs of the subaxial cervical spine during two neck functional motions. The locations of the CORs during the dynamic EFE motion and axial LRL rotation were shown to be segment level specific and neck motion dependent. The intervertebral segmental CORs of C45 and C56 were located closer to the geometrical centres than those of C34 and C67. The ROMs were larger during the EFE motion than during the LRL rotation at each intervertebral level. A more posteriorly positioned COR was corresponding to a smaller ROM during the LRL rotation. The data obtained in this study could provide insights into the improvement of motion preservation prosthesis design and surgical implantation techniques that is aimed to restore normal neck function and prevent adjacent segment degeneration after the cervical spine surgery.

Author contributions statement

Each of the coauthors has involved in the design of the study, data analyses, interpretation of data and writing of
the manuscript. All authors have read and approved the final submitted manuscript.

Ethical review committee statement

This research was approved by the Partners Human Research Committee (Protocol Number: 2012PO02508/MGH).

Conflicts of interest statement

There is no conflict of interest to declare.

Acknowledgements

This study has been supported by the National Institutes of Health (R21AR057989), K2M Group Holdings, Inc., National Natural Science Foundation of China (No. 81873774), Shanghai Rising-Star Program (No. 18QA1403800) and Guizhou provincial people’s hospital doctor’s fund (GZSYBS [2017]12).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jot.2018.12.002.

References

[1] Garringer SM, Sasso RC. Safety of anterior cervical discectomy and fusion performed as outpatient surgery. J Spinal Disord Tech 2010;23(7):439–43.
[2] Radcliff K, Coric D, Albert T. Five-year clinical results of cervical total disc replacement compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled, multicenter investigation device exemption clinical trial. J Neurosurg Spine 2016;25(2):213–24.
[3] Delamarter RB, Zigler J. Five-year reoperation rates, cervical total disc replacement versus fusion, results of a prospective randomized clinical trial. Spine (Phila Pa 1976) 2017;38(9):711–7.
[4] Robertson JT, Papadopoulos SM, Traynelis VC. Assessment of adjacent-segment disease in patients treated with cervical fusion or arthroplasty: a prospective 2-year study. J Neurosurg Spine 2005;3(6):417–23.
[5] Zigler JE, Delamarter R, Murrey D, Spivak J, Janssen M, Pro-Disc-C and anterior cervical disectomy and fusion as surgical treatment for single-level cervical symptomatic degenerative disc disease: five-year results of a Food and Drug Administration study. Spine (Phila Pa 1976) 2011;36(6):E393–400.
[6] Anderst WJ, Donaldson 3rd WF, Lee JY, Kang JD. Validation of a noninvasive technique to precisely measure in vivo three-dimensional cervical spine movement. Spine (Phila Pa 1976) 2011;36(6):E393–400.
[7] Anderst WJ. Bootstrap prediction bands for cervical spine intervertebral kinematics during in vivo three-dimensional head movements. J Biomech 2015;48(7):1270–6.
[8] Bogduk N, Mercer S. Biomechanics of the cervical spine. I: normal kinematics. Clin Biomech (Bristol, Avon) 1988;3(1):37–47.
[9] Amoeb C, Heger F, Sauer D, Kothe R, Korge A, Hitl Z, et al. Clinical and radiological outcome of a new total cervical disc replacement design. Spine (Phila Pa 1976) 2018. https://doi.org/10.1097/BRS.0000000000002799.
[10] Mo Z, Zhao Y, Du C, Sun Y, Zhang M, Fan Y. Does location of rotation center in artificial disc affect cervical biomechanics? Spine (Phila Pa 2016) 2015;40(8):E469–75.
[11] Penning L. Differences in anatomy, motion, development and aging of the upper and lower cervical disc segments. Clin Biomech (Bristol, Avon) 1998;3(1):37–47.
[12] Bogduk N, Mercer S. Biomechanics of the cervical spine. I: normal kinematics. Clin Biomech (Bristol, Avon) 2000;15(9):633–48.
[13] Liu B, Liu Z, VanHoeft T, Kalala J, Zeng Z, Lin X. Kinematic study of the relation between the instantaneous center of rotation and degenerative changes in the cervical intervertebral disc. Eur Spine J 2014;23(11):2307–13.
[26] Liu S, Lafage R, Smith JS, Protopsaltis TS, Lafage VC, Challier V, et al. Impact of dynamic alignment, motion, and center of rotation on myelopathy grade and regional disability in cervical spondylotic myelopathy. J Neurosurg Spine 2015;23(6):690–700.

[27] Baillargeon E, Anderst WJ. Sensitivity, reliability and accuracy of the instant center of rotation calculation in the cervical spine during in vivo dynamic flexion-extension. J Biomech 2013;46(4):670–6.

[28] Anderst W, Baillargeon E, Donaldson W, Lee J, Kang J. Motion path of the instant center of rotation in the cervical spine during in vivo dynamic flexion-extension: implications for artificial disc design and evaluation of motion quality after arthrodesis. Spine (Phila Pa 1976) 2013;38(10):E594–601.

[29] Staudt MD, Das K, Duggal N. Does design matter? Cervical disc replacements under review. Neurosur Rev 2018;41(2):399–407.

[30] Galbusera F, Anasetti F, Bellini CM, Costa F, Fornari M. The influence of the axial, antero-posterior and lateral positions of the center of rotation of a ball-and-socket disc prosthesis on the cervical spine biomechanics. Clin Biomech (Bristol, Avon) 2010;25(5):397–401.

[31] Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE. In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 2005;33(1):102–7.

[32] Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30(9):1323–41.

[33] Mao H, Driscoll SJ, Li JS, Li G, Wood KB, Cha TD. Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension. Spine J 2016;16(4):540–6.

[34] Yu Y, Mao H, Li JS, Tsai TY, Cheng L, Wood KB, et al. Ranges of cervical intervertebral disc deformation during an in vivo dynamic flexion-extension of the neck. J Biomech Eng 2017;139(6).

[35] Liu Z, Tsai TY, Wang S, Wu M, Zhong W, Li JS, et al. Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity. J Biomech 2016;49(3):371–5.

[36] Dennis DA, Mahfouz MR, Komistek RD, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 2005;38(2):241–53.

[37] Moro-oka TA, Hamal S, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 2008;26(4):426–34.

[38] Xia Q, Wang S, Kozanek M, Passias P, Wood K, Li G. In vivo motion characteristics of lumbar vertebrae in sagittal and transverse planes. J Biomech 2010;43(10):1905–9.

[39] Obernauer J, Landscheidt J, Hartmann S, Schubert GA, Thome C, Lumenta C. Cervical arthroplasty with ROTAIO(R) cervical disc prosthesis: first clinical and radiographic outcome analysis in a multicenter prospective trial. BMC Musculoskelet Disord 2016;17:11.

[40] Heller JG, Sasso RC, Papadopoulos SM, Anderson PA, Fessler RG, Hacker RJ, et al. Comparison of BRYAN cervical disc arthroplasty with anterior cervical decompression and fusion: clinical and radiographic results of a randomized, controlled, clinical trial. Spine (Phila Pa 1976) 2009;34(2):101–7.

[41] Li J, Liang L, Ye XF, Qi M, Chen HU, Yuan W. Cervical arthroplasty with Discover prostheses: clinical outcomes and analysis of factors that may influence postoperative range of motion. Eur Spine J 2013;22(10):2303–9.

[42] Duggal N, Pickett GE, Mitsis DK, Keller JL. Early clinical and biomechanical results following cervical arthroplasty. Neurou surg Focus 2004;17(3):E9.

[43] Skeppholm M, Svedmark P, Noz ME, Maguire Jr GQ, Ollivcrona H, Olerud C. Evaluation of mobility and stability in the Discover artificial disc: an in vivo motion study using high-accuracy 3D CT data. J Neurosurg Spine 2015;23(3):383–9.

[44] Dvorak J, Panjabi MA, Novotny JE, Antinnes JA. In vivo flexion/extension of the normal cervical spine. J Orthop Res 1991;9(6):828–34.