Association Between the Extent of Resection and Prognosis in Adult Patients With WHO Grade III Gliomas: a Population-based Study

Dongjie He
Air Force Medical University 2nd Affiliated Hospital: Air Force Medical University Tangdu Hospital
https://orcid.org/0000-0002-4494-9950

Siying Zhu
Air Force Medical University

Peiwen Wu
Air Force Medical University

Qiming Wang
Air Force Medical University

Gaiyan Li
Air Force Medical University

Yuhong Qi
Air Force Medical University

Bing Zhang
Air Force Medical University

Hao Chang (jacky9703@163.com)
Air Force Medical University
https://orcid.org/0000-0002-4443-5167

Qiuju Shao
Air Force Medical University

Research Article

Keywords: anaplastic glioma, SEER, surgical resection, cause-specific survival, survival

Posted Date: December 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1138010/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Purpose

The role of surgical resection in the treatment of anaplastic glioma is poorly understood. The aim of the present retrospective study was to clarify the survival of patients with anaplastic gliomas.

Methods

We utilized the SEER database to assess the association between prognostic and demographic data, tumor characteristics, and treatment factors in adult patients with anaplastic glioma. Overall survival and cause-specific survival were analyzed using multivariable Cox regression and competing risk regression, respectively.

Results

A total of 3979 patients with anaplastic glioma who had undergone surgical intervention were included in the analysis. Patients who underwent gross total resection (GTR) had significantly better 5-year and 10-year overall survival (OS) (59.9% vs. 44.0%, 45.0% vs. 29.4%, p < 0.001) than those who did not. The 5-year and 10-year cumulative incidence rates of cancer-specific death in the GTR group were lower than those in the corresponding N-GTR group (36.6% vs.51.9%, 49.9% vs. 65.5%, p < 0.001). Multivariable analysis identified GTR as an independent significant predictor for prolonged OS (HR:0.72; 95% confidence interval [CI] 0.65-0.79, P<0.05) and cause-specific survival (CSS) (HR:0.72, 95% CI 0.65-0.80, P<0.05). Further subgroup analysis revealed a stable association between the extent of resection and OS (P values for interaction >0.05), except for tumor location and histologic type groups.

Conclusions

While the survival of patients with anaplastic glioma remains poor, GTR is associated with increased OS and CSS compared to N-GTR.

Introduction

Anaplastic gliomas account for 11%-20% of malignant brain and other central nervous system [1–3] and have poor prognosis despite active treatment. The 2016 World Health Organization (WHO) currently uses histological criteria to stratify anaplastic astrocytoma, oligodendroglioma, and oligoastrocytoma [4]. Most studies have reported the overall survival (OS) and predictors of survival in the anaplastic glioma population, of which several have revealed that surgery is associated with improved survival in WHO grade III gliomas [5–8]. The extent of resection for anaplastic gliomas has not been associated with survival [9, 10]. Therefore, the impact of the extent of resection (EOR) on improving survival in patients with this tumor type is currently unclear.
Few large-sample studies on surgery to facilitate long-term survival of WHO grade III gliomas have been conducted to date. Even if studies reported survival in this population, the follow-up time was short or the impact of other causes of death in this population was not considered [7, 11, 12]. Therefore, exploring trends in patients’ survival of these tumors is necessary, including OS and cause-specific survival (CSS) [13, 14].

To facilitate evidence-based clinical decisions regarding the use of surgery in anaplastic gliomas, we aimed to explore whether patients who underwent gross total resection (GTR) can gain survival benefits compared with N-GTR using data from the Surveillance, Epidemiology, and End Results (SEER) database.

Methods

Study population

The clinical information and treatment data of patients with anaplastic glioma diagnosed between 2006 and 2018 released in August 2021 were extracted from the SEER database (2000–2018). The data release time was August 20, 2021. First, we focused on adult (aged ≥20 years old) patients with the following ICD-O-3 histology codes: 9382/3 (anaplastic oligoastrocytoma), 9401/3 (anaplastic astrocytoma), 9451/3 (anaplastic oligodendroglioma); and positive histology. Second, patients with a pathological glioma diagnosis and those with tumors located in the central nervous system (code C70.0-72.9) were selected. Third, patients without important information, including radiation after surgery, chemotherapy after surgery, OS status, and CSS status were excluded. Lastly, patients treated with no surgical primary tumor and surgical data were excluded. The final study population included patients treated with N-GTR (code 20, code 21) and GTR (codes 30, 40, and 55) [15] (Supplement.1). Our study findings were reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology guidelines. This was a retrospective study; therefore, the requirement for ethical approval and informed consent was waived for the present study.

Seer Coding And Covariates Included

The following demographic data were obtained for analysis: age at diagnosis (patients were divided into groups of 20-49 and 50+ years of age), gender, race (white, black, other, and unknown), marital status (single, married, other, and unknown), year of diagnosis (2006-2010, 2011-2015, and 2016-2018), and tumor location (supratentorial, infratentorial, brain overlap, and unknown). Regarding treatment options, the extent of surgery (N-GTR [biopsy and subtotal resection], GTR), and therapies after surgery (radiation [RT], chemotherapy [CT], no, and yes) were included. In the current study, OS was defined as the time from surgery to death from any cause, and CSS was defined as the time from surgery to death from anaplastic glioma.

Statistical analysis
Categorical data were compared using the chi-squared test or Fisher's exact test, as appropriate. The Kaplan–Meier curve (K-M) and log-rank test were utilized to provide univariable OS visualization, and multivariable Cox regression analysis of OS and subgroup analysis was also performed for each variable. Nelson-Aalen curve and Gray's test were utilized to provide univariable visualization of cause-specific death (CSD) when considering competing events, and Fine and Gray's competing risk regression was used to assess cause-specific survival.

All statistical analyses were performed using Free Statistics software version 1.3 (R Foundation for Statistical Computing, Version 3.3.2)[16]. Differences were considered statistically significant at p <0.05.

Results

Baseline demographic and clinical information

A total of 3979 patients with anaplastic gliomas were included in the present analysis. Supplement.1 presents a flow chart of the participants. Among them, 2064 (51.87%) and 1915 (48.13%) underwent N-GTR and GTR, respectively. The proportion of patients under 50 years of age (54.71%) was higher than that over 50 years of age (45.29%). Factors associated with the extent of resection included age at diagnosis, sex, race, marital status, year of diagnosis, location, histologic type, radiation, and chemotherapy (Table 1). Most patients were white and married. The most common tumor location and histologic type was supratentorial (85.47%) and anaplastic astrocytoma (54.96%), respectively. Most postoperative patients received RT (76.28%) and CT (70.95%) in both arms.
Table 1
Distribution of histology, demographics and tumor characteristics of adult WHO Grade III gliomas

Parameters	Total (n = 3979)	N-GTR\(^b\) (n = 2064)	GTR\(^b\) (n = 1915)	P value
Age at diagnosis n (%)				< 0.001\(^a\)
<50	2177 (54.71)	999 (48.40)	1178 (61.51)	
≥ 50	1802 (45.29)	1065 (51.60)	737 (38.49)	
Gender n (%)				0.617
Male	2285 (57.43)	1177 (57.03)	1108 (57.86)	
Female	1694 (42.57)	887 (42.97)	807 (42.14)	
Race n (%)				0.523
White	3428 (86.15)	1773 (85.9)	1655 (86.42)	
Black	237 (5.96)	123 (5.96)	114 (5.95)	
Other	285 (7.16)	156 (7.56)	129 (6.74)	
Unknown	29 (0.73)	12 (0.58)	17 (0.89)	
Marital status n (%)				0.120
Single	980 (24.63)	489 (23.69)	491 (25.64)	
Married	2387 (59.99)	1236 (59.88)	1151 (60.10)	
Other	455 (11.44)	246 (11.92)	209 (10.91)	
Unknown	157 (3.95)	93 (4.51)	64 (3.34)	
Year of diagnosis n (%)				< 0.001\(^a\)
2006-2010	1310 (32.92)	543 (26.31)	767 (40.05)	
2011-2015	1753 (44.06)	993 (48.11)	760 (39.69)	
2016-2018	916 (23.02)	528 (25.58)	388 (20.26)	
Location n (%)				< 0.001\(^a\)
Supratentorial	3401 (85.47)	1687 (81.73)	1714 (89.50)	
Infratentorial	93 (2.34)	63 (3.05)	30 (1.57)	

\(^a\) Statistical significance (p < 0.05)

\(^b\) Abbreviation: N-GTR, Non-Gross total resection; GTR, Gross total resection.
Overall Survival and cause specific death of patients

The impact of patient OS was graphically presented in the K-M survival curves. The median survival was 45 and 101 months for the N-GTR and GTR patients, respectively. The 5-year and 10-year OS in the GTR group were 59.9% and 45.0%, respectively, which were higher than the corresponding values of 44.0% and 29.4% in the N-GTR group, respectively (Supplement.2). The five-year and ten-year OS of those who underwent N-GTR and those who underwent GTR differed significantly (P<0.001) (Fig. 1). The cumulative incidence curve of the GTR group is illustrated in Fig. 2, accounting for causes of death as a competing risk. The 5-year and 10-year cumulative incidence rates of cancer-specific death in the N-GTR group were 51.9% and 65.5%, respectively, which were higher than the corresponding values of 36.6% and 49.9% in the GTR group, respectively (Supplement.3). The cumulative incidence function (CIF) was lower in patients who underwent GTR for cause-specific death (P < 0.001), and did not differ significantly between the N-GTR and GTR groups for other causes of death (P = 0.689).
Multivariable analysis for OS and CSS among patients with grade III gliomas

We employed multivariate Cox regression to adjust for confounding bias caused by unbalanced baseline variables and examine the prognostic effect of patients for OS and used competing risk regression to examine the prognostic effects of factors affecting CSS in our study (Table 2). We adjusted for known confounding variables between the two groups, including age, sex, race, marital status, year of diagnosis, location, histologic type, RT, and CT. Multivariate Cox regression analysis showed that these variables were independent influencing factors for OS. We found extent of resection was associated with an improved OS (HR: 0.72, 95% CI: 0.65-0.79, P<0.001). Similar results were observed for CSS. Multivariate competing risk regression analysis revealed that age, gender, marital status, year of diagnosis, location, histologic type, extent of resection, RT, and CT influenced CSS independently. We also found extent of resection was associated with an improved CSS (HR: 0.72, 95% CI: 0.65-0.80, P<0.001).
Table 2
Multivariable analysis for overall survival and cause-specific survival

Parameters	Overall survival	Cause-specific survival				
	HR	95%CI	p value	HR	95%CI	p value
Age (versus < 50 years)						
≥ 50	3.65	(3.30, 4.04)	< 0.001^a	3.24	(2.91, 3.60)	< 0.001^a
Gender (versus Male)						
Female	0.85	(0.78, 0.94)	< 0.001^a	0.85	(0.76, 0.94)	0.005^a
Race (versus White)						
Black	1.23	(1.02, 1.48)	0.029^a	1.13	(0.93, 1.38)	0.210
Other	0.84	(0.69, 1.02)	0.085	0.82	(0.66, 1.02)	0.077
Unknown	0.71	(0.32, 1.59)	0.411	0.78	(0.35, 1.76)	0.550
Marital status (versus Single)						
Married	1.06	(0.93, 1.20)	0.385	1.06	(0.93, 1.22)	0.360
Other	1.65	(1.40, 1.94)	< 0.001^a	1.46	(1.22, 1.76)	< 0.001^a
Unknown	1.09	(0.84, 1.40)	0.513	1.02	(0.76, 1.37)	0.910
Year of diagnosis (versus 2006-2010)						
2011-2015	0.90	(0.81, 0.99)	0.040^a	0.89	(0.80, 0.99)	0.031^a
2016-2018	0.74	(0.62, 0.87)	< 0.001^a	0.68	(0.57, 0.81)	< 0.001^a
Location (versus Supratentorial)						
Infratentorial	1.65	(1.28, 2.13)	< 0.001^a	1.44	(1.05, 1.99)	0.031^a
Brain overlap	1.34	(1.15, 1.55)	< 0.001^a	1.37	(1.16, 1.62)	< 0.001^a

^a Statistical significance (p < 0.05)

^b Multivariable model selected all parameters was forced into the model
Parameters	Overall survival	p value	Cause-specific survival			
	HR	95%CI		HR	95%CI	
Unknown	1.89	(1.51,2.36)	< 0.001a	1.73	(1.29,2.31)	< 0.001a
Histologic type (versus Oligodendroglioma, anaplastic)						
Astrocytoma, anaplastic	2.30	(2.01,2.62)	< 0.001a	2.19	(1.89,2.53)	< 0.001a
Aligoastrocytoma, anaplastic	1.03	(0.89,1.20)	0.677	1.06	(0.89,1.26)	0.510
Extent of resection (versus N-GTR)						
GTR	0.72	(0.65,0.79)	< 0.001a	0.72	(0.65,0.80)	< 0.001a
Radiation (versus No)						
Yes	0.79	(0.70,0.90)	< 0.001a	0.80	(0.69,0.93)	0.003a
Chemotherapy (versus No)						
Yes	0.65	(0.58,0.73)	< 0.001a	0.81	(0.71,0.93)	0.002a

a Statistical significance (p < 0.05)

b Multivariable model selected all parameters was forced into the model

Results of multivariate Cox analysis for overall survival in different subgroups

In the full cohort, GTR was associated with improved OS (HR: 0.72; 95% CI, 0.65-0.79; P<0.001) (Fig. 1, Fig. 3). Considering that age, tumor location, histologic type, radiation, and CT may influence the extent of resection in patients, we divided the cohort into five subgroups to perform subgroup analysis (Fig. 3). Data showed that tumor location and histologic type played an interactive role in the association between the extent of resection and OS (both P for interaction<0.001). Patients with an infratentorial phenotype exhibited lower OS, but the differences were not statistically significant (HR: 1.32, 95% CI, 0.75-2.32, P =0.332). However, subgroup analysis was performed according to the confounders including age,
radiation, and chemotherapy, we did not found any significant interaction in these subgroups (P for interaction>0.05 for all).

Discussion

With the power of the SEER database, data from 3979 patients with anaplastic glioma were included, including 2064 who underwent either biopsy or partial excision and 1915 who underwent GTR, which enabled us to perform multivariable OS and CSS analyses. In the present study, we found a significant association between GTR and prolonged survival. We employed multivariate Cox regression and competing risk models to reduce confounding bias, and our findings remained valid in these multivariate models.

The prognosis for anaplastic glioma remains poor despite combination treatment with surgery, RT, and CT [6]. In our cohort, 48.13% of patients with anaplastic glioma underwent complete resection, and our findings were consistent with those of previous studies, in which the percentage ranged from 30-60% in different reported cohorts [5, 17, 18]. Randomized controlled trials (RCTs) have shown that patients with anaplastic glioma are more likely to benefit from postoperative adjuvant treatment [19, 20]. We also found that anaplastic astrocytomas accounted for approximately 54.96% of cases, making them the highest proportion among all patients with anaplastic glioma. Most postoperative patients included in our study had received radiation (76.28%) and CT (70.95%) in both arms. A possible explanation is that AA has a relatively high proportion, while adjuvant RT can improve survival [3], and CT prolongs survival for cases of AO or AOA [21, 22].

Although improved survival has been correlated with greater extent of resection in anaplastic glioma [12, 18, 23, 24], the longer survival benefit has not yet been determined. Other clinical studies have also suggested that patients with anaplastic glioma might not benefit from surgical resection [9, 10]. Two measures of survival were calculated for each resection group, namely OS and CSS, as each of these measures has unique strengths [25]. Some studies analyzed 5-year OS instead of 10-year OS, and did not assess specific survival. We found that the 5-year and 10-year OS rates of the GTR group (59.9% and 45.0%, respectively) were higher than those of the N-GRT group (44.0% and 29.4%, respectively) (p<0.001). This is consistent with the results of several other studies in which those who underwent GTR exhibited improved survival rates [5, 18]. However, OS analyses after tumor diagnosis may be heavily influenced by competing causes of death; therefore, the CSD rate was analyzed in the present study, taking deaths unrelated to anaplastic glioma and confounding bias into consideration. The 5-year and 10-year CSD rates of the GTR group were lower than those of the N-GRT group (59.9% and 45.0%, respectively) (p<0.001). This is consistent with the results of several other studies in which those who underwent GTR exhibited improved survival rates [5, 18]. However, OS analyses after tumor diagnosis may be heavily influenced by competing causes of death; therefore, the CSD rate was analyzed in the present study, taking deaths unrelated to anaplastic glioma and confounding bias into consideration. The 5-year and 10-year CSD rates of the GTR group were lower than those of the N-GRT group in our cohort (p=0.001), whereas the difference in death from other causes between the two groups was similar (p=0.689). After controlling for competitive risk [26], the extent of resection was not found to be associated with a decreased risk of CSD in patients with metastatic tumor. However, we found that the risk of CSD was higher in the N-GRT group than in the GTR group. We speculated that this might be related to the relatively long survival time of the patients in the present study. The results of our study demonstrated that GTR was associated with increased survival in these patients.
Several studies have analyzed the risk factors associated with survival among patients diagnosed with grade III gliomas, including age, sex, tumor location, histologic type, extent of resection, and postoperative adjuvant therapy \([27, 28, 29, 30]\). However, few studies have reported the relationship between CSS and the extent of surgical resection in patients with anaplastic glioma. The GTR group was significantly associated with improved OS (HR: 0.72, 95% CI, 0.65-0.79, < 0.001) and CSS (HR: 0.72, 95% CI, 0.65-0.80, < 0.001) compared with the N-GTR group in the present study.

Interestingly, the association between OS and the extent of resection was stable for other clinical subgroups with respect to age, radiation, and CT. This showed that the extent of resection was positively associated with better OS in younger (HR: 0.65, 95% CI,[0.56-0.76] in N-GTR) or older individuals (HR: 0.78, 95% CI, [0.70-0.88] in GTR), in those who did not undergo radiation (HR: 0.82, 95% CI, [0.68-0.99] in N-GTR) or in those who did (HR: 0.70, 95% CI, [0.63-0.78] in GTR), and in no-CT groups (HR: 0.76, 95% CI, [0.65-0.90] in N-GTR) or in CT groups (HR: 0.70, 95% CI, [0.62-0.78] in GTR). However, the associations in GTR were not observed in the infratentorial site and histologic type compared with N-GTR (both p for interaction <0.001). A possible explanation is that the aim of the surgical approach should be limited to infratentorial tumors due to the high incidence of surgery-related neurological impairment \([31]\). The benefit of maximal surgery may be attenuated in patients in AO or AOA-relevant subgroups because of the chemosensitivity of the histologic type \([32]\). GTR had OS benefits on cases of supratentorial tumors and AA subgroups \([28]\). The effect of surgical resection in patients with anaplastic glioma should be explored further.

This study had several limitations. First, information on tumor molecular data or patient functional performance, which are factors that affect survival, were missing from the SEER database. Second, the detailed CT regimen and RT dosage were not recorded in the SEER database. Third, EOR threshold values are important for anaplastic gliomas \([33]\). Fourth, the SEER database does not provide information on disease recurrence or subsequent treatment data.

Conclusion

In summary, the current study suggested that GTR could provide an OS and CSS advantage in cases of grade III glioma, particularly in patients with supratentorial tumors or anaplastic astrocytomas. This study provides valuable data for further clinical studies and highlights the need for more clinical studies on histologically diagnosed grade III gliomas.

Statements And Declarations

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and no relevant financial or non-financial interests.

Author contributions

Dongjie He and Siying Zhu analyzed the data and drafted the paper. QiMing Wang, Gaiyan Li and Bing Zhang collected the data, QiMing Wang and YuHong Qi analyzed the data. QiuJu Shao and Hao Chang conceived and designed the idea to this paper. All authors drafted the work/revised, provided final approval of the version, and agree to be accountable for all aspects of the study in ensuring that questions related to the accuracy or integrity of any part of the study.

Data Availability

The data were abstracted from an open database, the Surveillance, Epidemiology, and End Results (SEER) 18 Registries Data (https://seer.cancer.gov/). Researchers should use the link to request access to study data.

Ethics approval

This was a retrospective study. Therefore, the requirement for ethical approval and informed consent was waived for the present study.

Acknowledgments

We thank the SEER database for providing valuable dataset and our colleagues from the department for their support of this study. We would like to thank Editage (www.editage.cn) for English language editing.

References

1. Ostrom QT, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2021) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol 23: iii1-iii105 doi:10.1093/neuonc/noab200
2. Izquierdo C, Joubert B, Ducray F (2017) Anaplastic gliomas in adults: an update. Curr Opin Oncol 29: 434-442 doi:10.1097/CCO.0000000000000409
3. Rusthoven CG, Carlson JA, Waxweiler TV, Dally MJ, Baron AE, Yeh N, Gaspar LE, Liu AK, Ney DE, Damek DM, Lillehei KO, Kavanagh BD (2014) The impact of adjuvant radiation therapy for high-grade gliomas by histology in the United States population. Int J Radiat Oncol Biol Phys 90: 894-902 doi:10.1016/j.ijrobp.2014.07.046
4. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131: 803-820 doi:10.1007/s00401-016-1545-1
5. Shin DW, Lee S, Song SW, Cho YH, Hong SH, Kim JH, Kim HS, Park JE, Nam SJ, Kim YH (2020) Survival outcome and prognostic factors in anaplastic oligodendroglioma: a single-institution study of 95 cases. Sci Rep 10: 20162 doi:10.1038/s41598-020-77228-2

6. Hong JB, Roh TH, Kang SG, Kim SH, Moon JH, Kim EH, Ahn SS, Choi HJ, Cho J, Suh CO, Chang JH (2020) Survival, Prognostic Factors, and Volumetric Analysis of Extent of Resection for Anaplastic Gliomas. Cancer Res Treat 52: 1041-1049 doi:10.4143/crt.2020.057

7. Carroll KT, Bryant AK, Hirshman B, Alattar AA, Joshi R, Gabel B, Carter BS, Harismendy O, Vaida F, Chen CC (2018) Interaction Between the Contributions of Tumor Location, Tumor Grade, and Patient Age to the Survival Benefit Associated with Gross Total Resection. World Neurosurg 111: e790-e798 doi:10.1016/j.wneu.2017.12.165

8. Minniti G, Scaringi C, Arcella A, Lanzetta G, Di Stefano D, Scarpino S, Bozzao A, Pace A, Villani V, Salvati M, Esposito V, Giangaspero F, Enrici RM (2014) IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy. J Neurooncol 118: 377-383 doi:10.1007/s11060-014-1443-0

9. Kizilbash SH, Giannini C, Voss JS, Decker PA, Jenkins RB, Hardie J, Laack NN, Parney IF, Uhm JH, Buckner JC (2014) The impact of concurrent temozolomide with adjuvant radiation and IDH mutation status among patients with anaplastic astrocytoma. J Neurooncol 120: 85-93 doi:10.1007/s11060-014-1520-4

10. Bush NAO, Young JS, Zhang Y, Dalle Ore CL, Molinaro AM, Taylor J, Clarke J, Prados M, Braunstein SE, Raleigh DR, Chang SM, Berger MS, Butowski NA (2021) A single institution retrospective analysis on survival based on treatment paradigms for patients with anaplastic oligodendroglioma. J Neurooncol 153: 447-454 doi:10.1007/s11060-021-03781-z

11. Fang JH, Lin DD, Deng XY, Li DD, Sheng HS, Lin J, Zhang N, Yin B (2019) Epidemiological trends, relative survival, and prognosis risk factors of WHO Grade III gliomas: A population-based study. Cancer Med 8: 3286-3295 doi:10.1002/cam4.2164

12. Shin JY, Diaz AZ (2016) Anaplastic astrocytoma: prognostic factors and survival in 4807 patients with emphasis on receipt and impact of adjuvant therapy. J Neurooncol 129: 557-565 doi:10.1007/s11060-016-2210-1

13. Milano MT, Johnson MD, Sul J, Mohile NA, Korones DN, Okunieff P, Walter KA (2010) Primary spinal cord glioma: a Surveillance, Epidemiology, and End Results database study. J Neurooncol 98: 83-92 doi:10.1007/s11060-009-0054-7

14. Liu Z, Feng S, Li J, Cao H, Huang J, Fan F, Cheng L, Liu Z, Cheng Q (2020) The Epidemiological Characteristics and Prognostic Factors of Low-Grade Brainstem Glioma: A Real-World Study of Pediatric and Adult Patients. Front Oncol 10: 391 doi:10.3389/fonc.2020.00391

15. Liu Z, Feng S, Li J, Cao H, Huang J, Fan F, Cheng L, Liu Z, Cheng Q (2021) The Survival Benefits of Surgical Resection and Adjuvant Therapy for Patients With Brainstem Glioma. Front Oncol 11: 566972 doi:10.3389/fonc.2021.566972
16. Yang Q, Zheng J, Chen W, Chen X, Wen D, Chen W, Xiong X, Zhang Z (2021) Association Between Preadmission Metformin Use and Outcomes in Intensive Care Unit Patients With Sepsis and Type 2 Diabetes: A Cohort Study. Front Med (Lausanne) 8: 640785 doi:10.3389/fmed.2021.640785

17. Kinslow CJ, Garton ALA, Rae AI, Marcus LP, Adams CM, McKhann GM, Sisti MB, Connolly ES, Bruce JN, Neugut AI, Sonabend AM, Canoll P, Cheng SK, Wang TJC (2019) Extent of resection and survival for oligodendroglioma: a U.S. population-based study. J Neurooncol 144: 591-601 doi:10.1007/s11060-019-03261-5

18. Navarra P, Pessina F, Clerici E, Rossini Z, Franceschini D, D’Agostino G, Franzese C, Comito T, Loi M, Simonelli M, Lorenzi E, Persico P, Politi LS, Grimaldi M, Bello L, Santoro A, Fornari M, Servadei F, Scorsetti M (2020) Is IDH status the only factor predicting prognosis in newly diagnosed anaplastic glioma patients? Outcome evaluation and prognostic factor analysis in a single-institution large series. J Neurosurg: 1-14 doi:10.3171/2020.5.JNS201116

19. van den Bent MJ, Carpentier AF, Brandes AA, Sanson M, Taphoorn MJ, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Haaxma-Reiche H, Kros JM, van Kouwenhoven MC, Vecht CJ, Allgeier A, Lacombe D, Gorlia T (2006) Adjuvant procarbazine, lomustine, and vincristine improves progression-free survival but not overall survival in newly diagnosed anaplastic oligodendrogliomas and oligoastrocytomas: a randomized European Organisation for Research and Treatment of Cancer phase III trial. J Clin Oncol 24: 2715-2722 doi:10.1200/JCO.2005.04.6078

20. van den Bent MJ, Tesileanu CMS, Wick W, Sanson M, Brandes AA, Clement PM, Erridge S, Vogelbaum MA, Nowak AK, Baurain JF, Mason WP, Wheeler H, Chinot OL, Gill S, Griffin M, Rogers L, Taal W, Ruda R, Weller M, McBain C, Reijneveld J, Enting RH, Caparrotti F, Lesimple T, Clenton S, Gijtenbeek A, Lim E, Herrlinger U, Hau P, Dhermain F, de Heer I, Aldape K, Jenkins RB, Dubbink HJ, Kros JM, Wesseling P, Nuyens S, Golfinopoulos V, Gorlia T, French P, Baumert BG (2021) Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol 22: 813-823 doi:10.1016/S1470-2045(21)00090-5

21. van den Bent MJ, Chang SM (2018) Grade II and III Oligodendroglioma and Astrocytoma. Neurol Clin 36: 467-484 doi:10.1016/j.ncl.2018.04.005

22. Lecavalier-Barsoum M, Quon H, Abdulkarim B (2014) Adjuvant treatment of anaplastic oligodendrogliomas and oligoastrocytomas. Cochrane Database Syst Rev: CD007104 doi:10.1002/14651858.CD007104.pub2

23. Shin JY, Diaz AZ (2016) Utilization and impact of adjuvant therapy in anaplastic oligodendrogliaoma: an analysis on 1692 patients. J Neurooncol 129: 567-575 doi:10.1007/s11060-016-2212-z

24. Fujii Y, Muragaki Y, Maruyama T, Nitta M, Saito T, Ikuta S, Iseki H, Hongo K, Kawamata T (2018) Threshold of the extent of resection for WHO Grade III gliomas: retrospective volumetric analysis of 122 cases using intraoperative MRI. J Neurosurg 129: 1-9 doi:10.3171/2017.3.JNS162383

25. Johnson DR, Brown PD, Galanis E, Hammack JE (2012) Pilocytic astrocytoma survival in adults: analysis of the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute.
26. Lian H, Daniels C, Han YP, Li QF, Zhao Y, Wang BC, Zhu CB, Mao WW, Taylor MD, Ma J (2019) Incidence of metastatic disease and survival among patients with newly diagnosed primary CNS tumors in the United States from 2004-2013. J Cancer 10: 3037-3045 doi:10.7150/jca.30624

27. Rajmohan KS, Sugur HS, Shwetha SD, Ramesh A, Thennarasu K, Pandey P, Arivazhagan A, Santosh V (2016) Prognostic significance of histomolecular subgroups of adult anaplastic (WHO Grade III) gliomas: applying the 'integrated' diagnosis approach. J Clin Pathol 69: 686-694 doi:10.1136/jclinpath-2015-203456

28. Nuno M, Birch K, Mukherjee D, Sarmiento JM, Black KL, Patil CG (2013) Survival and prognostic factors of anaplastic gliomas. Neurosurgery 73: 458-465; quiz 465 doi:10.1227/01.neu.0000431477.02408.5e

29. Krigers A, Demetz M, Thome C, Freyschlag CF (2021) Age is associated with unfavorable neuropathological and radiological features and poor outcome in patients with WHO grade 2 and 3 gliomas. Sci Rep 11: 17380 doi:10.1038/s41598-021-96832-4

30. Belyaev A, Usachev D, Ryzhova M, Gulida G, Skvortsova V, Pronin I, Kobiakov G (2021) Cerebellar anaplastic astrocytoma in adult patients: 15 consecutive cases from a single institution and literature review. J Clin Neurosci 91: 249-254 doi:10.1016/j.jocn.2021.07.010

31. Butenschoen VM, Hubertus V, Janssen IK, Onken J, Wipplinger C, Mende KC, Eicker SO, Kehl V, Thome C, Vajkoczy P, Schaller K, Gempt J, Meyer B, Wostrack M (2021) Surgical treatment and neurological outcome of infiltrating intramedullary astrocytoma WHO II-IV: a multicenter retrospective case series. J Neurooncol 151: 181-191 doi:10.1007/s11060-020-03647-w

32. Ding X, Wang Z, Chen D, Wang Y, Zhao Z, Sun C, Chen D, Tang C, Xiong J, Chen L, Yao Z, Liu Y, Wang X, Cahill DP, de Groot JF, Jiang T, Yao Y, Zhou L (2018) The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. J Neurooncol 140: 591-603 doi:10.1007/s11060-018-2985-3

33. Pessina F, Navarria P, Cozzi L, Ascolese AM, Simonelli M, Santoro A, Tomatis S, Riva M, Fava E, Scorsetti M, Bello L (2016) Value of Surgical Resection in Patients with Newly Diagnosed Grade III Glioma Treated in a Multimodal Approach: Surgery, Chemotherapy and Radiotherapy. Ann Surg Oncol 23: 3040-3046 doi:10.1245/s10434-016-5222-3

Figures
Figure 1

Kaplan–Meier survival curve of anaplastic glioma by extent of resection.
Figure 2

Cumulative incidence estimates of death of anaplastic glioma by extent of resection (red line and blue line: cancer-specific death; pink and black line: other cause of death).
Figure 3

Subgroup analyses of the association OS and extent of resection.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• supplement1.pdf
• supplement2.docx
• supplement3.docx