Inhibition of Ubc13-mediated ubiquitination by GPS2 regulates multiple stages of B cell development

Claudia Lentucci, Anna C. Belkina, Carly T. Cederquist, Michelle Chan, Holly E. Johnson, Sherry Prasad, Amanda Lopacinski, Barbara S. Nikolajczyk, Stefano Monti, Jennifer Snyder-Cappione, Bogdan Tanasa, M. Dafne Cardamone, and Valentina Perissi. Inhibition of Ubc13-mediated ubiquitination by GPS2 regulates multiple stages of B cell development. J. Biol. Chem. 2017 292: 2754-.
doi:10.1074/jbc.M116.755132
https://hdl.handle.net/2144/27020
Boston University
Inhibition of Ubc13-mediated ubiquitination by GPS2 regulates multiple stages of B cell development*

Received for publication, August 24, 2016, and in revised form, December 21, 2016 Published, JBC Papers in Press, December 21, 2016, DOI 10.1074/jbc.M116.755132

Claudia Lentucci‡, ‡ Anna C. Belkina§, ‡ Carly T. Cederquist†, † Michelle Chan‡, ‡ Holly E. Johnson‡, ‡ Sherry Prasad‡, ‡ Amanda Lopacinski‡, ‡ Barbara S. Nikolajczyk§, ‡ Stefano Monti, † Jennifer Snyder-Cappione*, ‡ Bogdan Tanasa**, ‡ M. Dafne Cardamone†, and ‡ Valentina Perissi‡

From the Departments of Biochemistry, Microbiology, and Medicine and the Flow Cytometry Core Facility, Boston University School of Medicine, Boston, Massachusetts 02118 and the Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305

Edited by George N. DeMartino

Non-proteolytic ubiquitin signaling mediated by Lys63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells.

Protein ubiquitination represents a key regulatory strategy for controlling both innate and adaptive immune responses (1–3). Ubiquitination is a reversible modification that is achieved via the sequential actions of several classes of enzymes, including an ubiquitin (Ub)-activating enzyme (E1), an Ub-conjugating enzyme (E2), and an Ub ligase (E3) (4, 5). Polyubiquitination of target proteins with chains of different topology can promote either protein degradation or serve, as in the case of other post-translational modifications, to influence protein functions and interactions (6, 7). Among others, the Lys63-linked ubiquitin chains synthesized by the E2-conjugating enzyme Ubc13 are non-proteolytic (8). In innate immunity, non-proteolytic ubiquitination events play a central role in multiple signaling pathways activated by the recognition of early response cytokines and infectious agents via cell surface or intracellular receptors (9–13). These include the TNF receptor (TNFR) superfamily, the Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs). Similarly, activation of the B cell antigen receptors (BCRs) and T cell receptors (TCRs) during adaptive immune responses results in the activation of complexes that rely on Lys63 ubiquitination for signal transduction (1, 3, 14–20). These ubiquitination events represent key nodes in the tight regulation of immune responses as indicated by the fact that multiple negative regulators impinge on these steps. These regulatory factors are often deubiquitinases (i.e. A20/TNFαIP3, CYLD, and the newly identified MYSM1) that help control the signal specificity and prevent the aberrant constitutive activation of pro-inflammatory responses by removing polyubiquitin chains from their substrates (1, 21–24). Importantly, genetic deletion experiments have confirmed their anti-inflammatory functions in vivo, and loss of negative regulation is consistently found associated with hyperactivation of downstream signaling mediators, including IKK and NF-κB (25–27). Also, based on frequent inactivation by deletions or somatic mutations in B cell lymphomas, A20/TNFαIP3 is described as a tumor suppressor required for preventing the constitutive activation of NF-κB signaling that is often used in hematological malignancies as a pro-survival strategy (28–31).

GPS2 (G-protein Pathway Suppressor 2) was originally identified while screening for suppressors of Ras activation in the yeast pheromone response pathway (32). Recent studies by our lab and others indicate that GPS2 plays an important anti-inflammatory role in adipose tissue and macrophages and is required for the expression of genes regulating cholesterol and triglyceride metabolism in liver and adipose tissue (33–38). Because of the multiple functional interactions observed
between GPS2 and transcriptional regulators, including the NCoR/SMRT corepressor complex, the histone acetyltransferase p300, and numerous DNA-binding transcription factors, GPS2 activity has been mainly studied in the context of its nuclear functions, including both transcriptional repression and activation (33–35, 37, 39–46). However, our recent work has also identified a non-transcriptional role for GPS2 in the cytoplasm, specifically linking GPS2 with the modulation of the TNFα signaling pathway and the activation of JNK (33). Interestingly, our findings reveal that distinct GPS2 functions in different cellular compartments rely on a conserved regulatory strategy based on the inhibition of ubiquitin-conjugating complexes that are responsible for the formation of non-degradative Lys63 ubiquitin chains (TRAF2/Ubc13 in the cytosol and RNF8/Ubc13 in the nucleus) (33, 37). This raises the questions of whether GPS2 inhibition of Ubc13-dependent ubiquitination events extends to other signaling pathways and to what extent GPS2-mediated regulation of ubiquitin signaling is required in vivo for the development and homeostasis of immune cells.

Here, we have addressed these questions using B cell–targeted deletion of GPS2 in mice. Our results indicate that in B cells, GPS2 regulates both the AKT/FOXO1 pathway and the TLR and BCR signaling pathways via direct inhibition of Ubc13 enzymatic activity. In vivo, GPS2 deletion results in a partial block in the maturation of bone marrow B cells past the pre-B cell stage and a significant decrease in splenic marginal zone (MZ) B cells and peritoneal and splenic B-1 cells caused by synergistic transcriptional and non-transcriptional effects.

Results

**Generation of B Cell-specific GPS2 Knockout (GPS2-BKO) Mice**—GPS2 plays a key anti-inflammatory role in both liver and adipose tissue (33, 35, 36). Its relatively high expression levels in human spleen and leukocytes suggest that it could also play an important role in regulating immune cell functions (47). However, its relevance in this context has not yet been investigated. To overcome the early embryonic lethality of global GPS2 deletion (45) and investigate GPS2 relevance in the regulation of B cells functions and development, we chose a conditional deletion approach. Mice specifically deleted for GPS2 in the B cell lineage were generated by crossing GPS2fl/fl-Cre mice with CD19-Cre mice (The Jackson Laboratory). Additional information on Cre disrupts the CD19 coding sequence, leading to a CD19 deficiency in the homozygous situation, the CD19-Cre+/Cre mice are phenotypically normal and can be used for B lineage–specific deletion (48). Overall, GPS2fl/fl-Cre+/Cre (GPS2-BKO) mice are viable, healthy, and fertile. To confirm the specificity and efficacy of our deletion strategy, B cells were isolated from the spleens of WT and GPS2-BKO littermates by negative selection. Visual observation of the spleens did not reveal any gross anatomical differences, as confirmed by a comparable splenic index (Fig. 1A). Comparable numbers of total splenocytes and isolated B cells were obtained from GPS2-BKO mice and WT littermates (Fig. 1B and C). GPS2-specific deletion in the B cell lineage was confirmed through genomic PCR analysis, quantitative RT-PCR, and Western blotting of the B cell–positive and B cell–negative splenocyte fractions (Fig. 1D–F).

**Gene Expression Profiling of Splenic B Cells by RNA Sequencing**—Based on the proposed role of GPS2 as both a regulator of cytosolic signaling pathways and a transcriptional cofactor for multiple transcription factors (34, 36, 37, 43, 45, 46), we predicted that GPS2 deletion might have a broad effect on the B cell transcriptome. To investigate the full profile of GPS2-regulated genes in our experimental model, we performed an open-ended transcriptomic analysis of the splenic B cells isolated from WT and GPS2-BKO littermates by RNA-Seq. Bioinformatic analysis of the RNA sequencing results revealed 716 differentially expressed (DE) genes (with 5% false discovery rate threshold) that were consistently identified in three biological replicates profiled in distinct sequencing experiments (either using Illumina or NEB kits for generating the cDNA library). Among the DE genes, 198 were found to be up-regulated, and 518 were found to be down-regulated (FC > 1.1) in GPS2-deficient cells, with GPS2 being as expected, the most down-regulated gene (FCs between −2.5 and −3.2) (Fig. 1G and supplemental Table S1).

Based on our previous work showing an inhibitory role for GPS2 toward TRAF2-dependent activation of the TNFR1 pathway (33), we expected the loss of GPS2 to associate with the up-regulation of genes downstream of TRAF2 and TNFα signaling. In agreement with this hypothesis, pathway analysis for potential upstream regulators of the DE genes predicted TRAF2/3 (activation score = 2.449) and MAPK4 (activation score = 2.714) to be up-regulated (supplemental Table S2). However, GO analysis of the biological processes and cellular and molecular functions associated with the DE genes revealed a significant enrichment in terms associated with ribosomal activity, protein translation, and mitochondrial functions rather than terms related to inflammation or immune-specific functions (graph in supplemental Table S3). Accordingly, with this analysis, the mTORC2 complex subunit RICTOR was also enriched among the potential upstream regulators of the DE genes (activation score = 4.123) (supplemental Table S2), and top canonical pathways associated with the DE genes (as identified by IPA analysis) included E1F2 signaling, mitochondrial dysfunction, and mTOR signaling (Fig. 1H). Together, these analyses confirmed unpublished observations in other cell models that support a general role for GPS2 in regulating energy metabolism in cells (111). More specifically relevant to the B cell model of this signature, IPA analysis of the top diseases and biological functions that are potentially affected by this altered gene expression profile predicted defects in “hematological system development and function” in GPS2-deficient mice, including an arrest in B-lymphocytes development and differentiation characterized by a potential decrease in “quantity of B-1 lymphocytes” and “quantity of marginal-zone B lymphocytes” and an increase in “pre-B lymphocytes” (Fig. 1I and supplemental Table S4).

**Defective B Cell Development in the Bone Marrow of GPS2-deficient Mice**—Based on these predictions, we investigated whether GPS2 deletion affects B cell development. To assess for potential defects during the maturation of B cells, we quantified

---

4 M. D. Cardamone and V. Perissi, unpublished data.
B cell subsets in WT and GPS2-BKO. For this we developed a 13-color multicolor flow cytometry panel that allowed us to identify developing B cell subsets in the bone marrow (pre pro B cells, pro B cells, pre B cells, immature B cells, and transitional B cells), the spleen (B-1a and B-1b; transitional T1, T2, and T3; marginal zone and marginal zone T2 precursors; and follicular B cells), and the peritoneal cavity (B-1a, B-1b, and conventional B-2 cells).

The total numbers of cells recovered from the bone marrow was not affected by GPS2 deletion (Fig. 2A). Overall, the expres-
tion of B cell markers in the bone marrow corresponded to a normal B cell phenotype (Fig. 2B), but the frequency of mature B cells was slightly reduced in GPS2 mutant mice relative to wild type as indicated by a decrease in IgM+ cells and a corresponding increase in B220− IgM− populations (Hardy’s Fractions B-D) (Fig. 2C). In particular, we observed a significant increase in the frequency of B220hi CD19+ CD93+ CD43− IgM− B cells (pre-B cells, Hardy’s Fraction D). In the IgM+ subset, it was the B220hi CD19+ CD93− CD23− IgD− transitional B cell population (Hardy’s fraction F) that was decreased, whereas the immature B cells (B220hi CD19+ CD93− CD23+ IgD+, fraction E) were comparable in WT and GPS2-BKO mice (Fig. 2D). Together these results reveal that the development of GPS2-BKO cells is impaired at the pre-BCR stage of the B cell maturation process in the bone marrow. Interestingly, a similar phenotype is promoted by the deletion of FOXO1 in pre-B/immature cells. Although earlier deletion of FOXO1 results in a block in B cell development at the pro-B cell stage, CD19-Cre-driven deletion of FOXO1 is associated with a later impairment at the pre-B cell stage, defective light κ chains rearrangement, and a lower number of recirculating mature cells (49). Among the genes significantly altered in splenic GPS2-BKO cells, the pre-BCR adaptor protein BLNK/SLP-65, the MAPK-activated kinase MK5, and the recombination activating gene RAG1 were all known to play key roles in FOXO1-mediated regulation of the rearrangement of immunoglobulin chains (50–56) (supplemental Table S1). This prompted us to investigate the possibility that lack of GPS2 affects the early stages of B cell differentiation through defective transcriptional regulation of key FOXO1 target genes. To confirm this hypothesis, we first measured by RT-qPCR analysis the expression of GPS2 putative target genes in B cell precursors isolated from the bone marrow of WT and GPS2-BKO mice. GPS2 gene deletion driven by the CD19-Cre proved less efficient in the bone marrow than the spleen (Fig. 2F), as expected based on the fact that CD19-Cre efficiency of recombination has been reported as close to 90% in mature B cells, 40% in immature B and pre-B cells, and less than 5% in pro B cells (57). However, this down-regulation was sufficient to drive a significant decrease in the expression of FOXO1 target genes RAG1, RAG2, and BLNK (Fig. 2F). Interestingly, the expression of FOXO1 gene itself was also found significantly down-regulated in GPS2-depleted cells (Fig. 2F). Thus, we asked whether GPS2 regulated the transcription of these genes directly or indirectly through FOXO1-mediated transcriptional events. Results of our ChIP analysis revealed significant GPS2 binding to the promoters of BLNK, RAG1, RAG2, and FOXO1 genes in B cells isolated from the bone marrow (Fig. 2G), thus suggesting a direct role for GPS2 in the transcriptional forward loop that regulate FOXO1 and some of its target genes in developing B cells. Interestingly, FOXO1 binding on each of these promoters was drastically reduced in GPS2-BKO cells (Fig. 2H). Although FOXO1 binding to chromatin is unlikely to require promoter priming via histone demethylation as previously reported for PPARy (37), it is well known that FOXO factors are negatively regulated by the PI3K/AKT pathway via phosphorylation and nuclear exclusion (50). Because we recently reported that GPS2 deletion in adipocytes leads to constitutive AKT activation (111), we asked whether GPS2-mediated regulation of AKT is conserved in B cells. Indeed, as shown in Fig. 2I, AKT phosphorylation was found to be increased in GPS2-BKO cells. Also, as expected in presence of enhanced AKT activation, we observed a striking up-regulation of FOXO1 phosphorylation, which is consistent with the loss of FOXO1 binding to DNA in GPS2-deficient cells (Fig. 2I).

In conclusion, GPS2 deletion in the mid-late stages of bone marrow differentiation causes a mild defect in the transition from pre-B to immature B cells. In particular, our data indicate that GPS2 is required during this developmental transition for the expression of a number of genes that play a key role in the recombination of immunoglobulin chains and receptor editing. Intriguingly, GPS2 appears to regulate these genes through combinatorial genomic and non-genomic functions, including direct transcriptional regulation via promoter binding and indirect regulation of the PI3K/AKT pathway. This may be a regulatory strategy conserved among distinct cell types as indicated by our recent work about the role of GPS2 in the regulation of insulin signaling in the adipose tissue and by previous ChIP-Seq data showing GPS2 binding to the FOXO1 promoter in both human 293 cells and mouse 3T3-L1 adipocytes (33, 37, 111) (Fig. 2F).

Targeting GPS2 Disrupts the B1 and MZ B Cell Compartments—To further characterize the development of B cells in GPS2-BKO mice, we followed the maturation pathway of B cells in the spleen, where they differentiate into either follicular (FO) or MZ B cells. FO cells represent the majority of mature B-2 cells circulating through blood and secondary lymphoid organs, whereas MZ cells are non-circulating mature B-2 cells residing in the marginal zone of splenic follicles (58). Macroscopically, there was no difference in spleen size between the animal groups, and the cell yield was consistently comparable (Fig. 1B). However, the cellular composition of the splenocyte populations was dramatically different (Fig. 3A). Resolution of the three different subsets of immature AA41+B-2 cells did not reveal any defect in the transition from...
T1 to T2 to T3 cells in GPS2-BKO mice (Fig. 3B). However, as predicted based on the RNA-Seq analysis (Fig. 1J), we observed almost a 3-fold reduction in the frequency of MZ B cells (B220⁺CD19⁺IgM⁺CD21⁺CD23⁻) in the spleen of GPS2-BKO mice compared with wild-type littermates (Fig. 3C). On the contrary, the frequency of FO B cells (B220⁺CD19⁺CD21⁻CD23⁻) shows a reciprocal increase in GPS2-BKO mice, indicating a switch between the two cell types in GPS2 mutant mice (Fig.

![Graphs and plots](image_url)

**FIGURE 2.** Defective B cell development in the bone marrow (BM) of GPS2-deficient mice. **A**, cell yield obtained from bone marrow preparation. White bars, WT; black bars, GPS2-BKO (n = 7). Bar graphs are ± S.E., and the p value is calculated by two-tailed t test. **B**, flow cytometry analysis and gating strategy. Representative plots are shown. Cells were pregated as described above. T1, T2, and T3, transitional B cell subpopulations; MZ, marginal zone B cells; FO, follicular B cells. **C**, flow cytometry showing the three different subset of transitional immature AA4.1⁺ B-2 cells (T1, T2, and T3, transitional B cell subpopulations) among CD19⁺ cells. However, as predicted based on the RNA-Seq analysis (Fig. 1J), we observed almost a 3-fold reduction in the frequency of MZ B cells (B220⁺CD19⁺IgM⁺CD21⁺CD23⁻) in the spleen of GPS2-BKO mice compared with wild-type littermates (Fig. 3C). On the contrary, the frequency of FO B cells (B220⁺CD19⁺CD21⁻CD23⁻) shows a reciprocal increase in GPS2-BKO mice, indicating a switch between the two cell types in GPS2 mutant mice (Fig. 3).

[![Graphs and plots](image_url)](image_url)
B Cell-specific Knockdown of Murine GPS2

In addition, the population of precursor marginal zone B cells (T2MZ; CD19+ IgM+highCD21+highCD23+highCD1d−) also appears increased in frequency in mutant mice, suggesting a developmental block at this stage (Fig. 3C). In agreement with the differences observed via flow cytometry analysis, H&E staining of spleen sections reveals that the spleen architecture is disrupted in GPS2-deficient mice compared with control littermates, with enlarged and not well defined follicular structures (Fig. 3D). Reduced thickness of the marginal zone and disrupted follicles architecture is also confirmed by staining for the MZ-specific macrophage marker CD169 (Moma-1) (Fig. 3E). These results together suggest that within the B-2 conventional B cell compartment, GPS2 is specifically required for the terminal differentiation of MZ B cells, in addition to B cell perturbations in the bone marrow.

Next, we assessed the B-1 cell population. This population was also predicted by RNA-Seq analysis to be reduced, and indeed the CD19+CD43+B220low B-1 pool was approximately three times smaller in frequency in the spleens of mutant mice than in their WT littermates (Fig. 4, A and B). Within this population, the observed decrease appears to be solely due to the drop in the percentages of B-1a cells (defined as CD19+CD43+B220lowCD5+CD23−), whereas B-1b cell populations (CD19+CD43+B220lowCD5−CD23+) were similar in frequencies between the two groups (Fig. 4B). Likewise, we found B-1a cells to be reduced in the bone marrow of GPS2-BKO mice (Fig. 4C). Because IL-10 production is a functional hallmark of B1 cells, we further confirmed this phenotype by measuring splenocyte IL-10 production in vitro. Most of B-1a and more than a half of B-1b cells produced IL-10 upon stimulation, confirming their immunophenotype (Fig. 4D), with no difference in the proportion of IL-10+ cells within the B-1a or B-1b populations (Fig. 4E). To complete our phenotypic analysis, we also analyzed the B cells circulating through the peritoneal cavity, where the B-1 population is highly enriched. Again total cell number was unaffected by GPS2 deletion (Fig. 4F), but we found a lower frequency of B-1a cells in the peritoneum of GPS2-BKO mice, similar to results from the spleen and the bone marrow (Fig. 4, G and H), whereas the B-1b portion of CD19+ cells was simultaneously more than 2-fold higher (Fig. 4H). The B-2 (conventional B cells) fraction of the peritoneal cavity B cells was similar between the two genotypes.

Lastly, to confirm the objectiveness of the manual flow cytometry data analysis, we subjected our flow cytometry data set to the automated data analysis by SPADE (59). Automated clustering was performed on CD19+ events in bone marrow, spleen, and peritoneal cavity based on the markers whose expression delineates B cell subsets in those tissues. Upon clustering, all B cell subsets were clearly separated and identified as such based on the levels of lineage marker expression, with quantitative differences in cell percentages closely following the ones identified by blinded manual gating (Fig. 4I and data not shown).

Together, these analyses confirmed that GPS2 deletion in the B cell lineage impairs the development of B cells in the bone marrow at the stage of pre-B cells, with a mild but significant reduction in the amount of Transitional B cells recirculating to the bone marrow. In addition, they revealed that GPS2-BKO mice are defective in splenic MZ B cells and B-1a B cell compartments known as innate-like B cells (ILB) in both the spleen and the peritoneal cavity.

GPS2 Restricts TLR Signaling through Inhibition of Ubc13 Activity—B-1 and MZ cells together are considered ILB, because of their ability to respond to thymus-independent antigens and produce large amounts of polyreactive antibodies. In normal mice, ILBs are the major source of natural antibodies at steady state, and following TLR stimulation, they increase their production of IgM and IL-10 (60). To confirm whether the reduced number of ILBs in GPS2-BKO mice corresponded to an altered titer of natural antibodies, we measured plasma levels of all major isotype classes in unchallenged mice using the Milliplex isotyping kit (Millipore). To our initial surprise, GPS2-KO mice showed a significant increase rather than a decrease, in IgM levels, in addition to a mild but significant increase in IgG1 and IgG2b (Fig. 5A). IgG2a and IgG3 also trended to increase (Fig. 5A). At the same time, we found a corresponding increase in surface IgM expression per cell on multiple B cell subsets in GPS2-BKO mice (Fig. 5B). Because B-1 are the major producers of natural IgM, together with MZ cells, the significant increase in basal levels of IgM indicated that the secretory ability of the reduced pool of ILB cells was substantially increased, thus suggesting that IgM-producing cells might be constitutively activated in GPS2-BKO mice. This hypothesis was in accord with our previous work identifying GPS2 as a negative regulator of the TNFR1 signaling pathway and potentially other pro-inflammatory pathways (33). Thus, we asked whether constitutive activation of TLR signaling was observed in splenic B cells from GPS2-BKO mice by measuring the activation of intracellular mediators of TLR signaling. As shown in Fig. 5C, constitutive activation of critical steps of the signaling cascade downstream of TLR receptor was indeed observed upon GPS2 depletion, including a significant increase in both basal and inducible IκB degradation and p38, JNK, and IκKβ phosphorylation. In accord with the prediction of constitutively active NFκB signaling, sustained basal activation of a number of NFκB target genes, including TNFα, iNOS, MCP1, IL6, and LTA, was also observed in GPS2-deficient resting B cells (Fig. 5D). Notably, the up-regulation observed in absence of TLR stimulation is quite small in term of fold changes, despite being significant, possibly explaining the lack of enrichment in GO terms associated with inflammation among the DE genes defined by RNA-Seq in unstimulated B cells. To further confirm increased activation of a functional pro-inflammatory transcriptional program in absence of GPS2, we then compared the activation of known TLRs target genes in response to different ligands upon GPS2 deletion/overexpression. To this end, we used the following ligands: synthetic triacylated lipopeptide Pam3CSK4 (Pam3) to activate TLR1/2, bacterial LPS to activate TLR4, imidazoquinoline compound gardiquimod (Gardi) to activate TLR7, and CpG oligodeoxynucleotides (ODN 2395) to activate TLR9, and we measured the expression of known TLR target genes. First, we analyzed splenic B cells isolated from wild-type and GPS2-BKO littermates. In the presence of TLR4, TLR7, and TLR9 stimulation, the activation of TLR target genes ccl3, ccl4, and IL6 is significantly increased in absence of GPS2 (Fig. 5E). The GPS2 gene itself was down-regulated upon TLR7
stimulation, similar to what previously observed upon TNFR activation (33). Next, we measured the activation of representative TLR target genes in bone marrow-derived macrophages from wild-type and GPS2 overexpressing transgenic mice (aP2-GPS2) (33). As shown in Fig. 5F, GPS2 overexpression inhibits the activation of target genes TNFα and CD14 (61–64) under most conditions, also in agreement with GPS2 overexpression in macrophages inhibiting the activation of pro-in-
B Cell-specific Knockdown of Murine GPS2

A flow cytometry analysis of splenic B-1 populations. Representative plots are shown, and the cells are pregated as described above. B, splenic B-1 populations comparison. White bars, WT; black bars, GPS2-BKO (n = 7). Bar graphs are ± S.E., and the p value is calculated by two-tailed t test. C, flow cytometry showing B-1A and B-1B cell population in the bone marrow. White bars, WT; black bars, GPS2-BKO (n = 4). D, IL-10 production by splenic B cells. Representative plots are shown for stimulated fully stained cells, stimulated fluorescence minus one control (no IL-10 antibody added), and non-stimulated fully stained cells. All cells were incubated with monensin. IL-10 production by different B cell subtypes is shown in histograms in the bottom row of plots. E, indirect quantification of IL-10+ B cell percentage by mean fluorescence intensity. White bars, WT; black bars, GPS2-BKO (n = 3). F, cell yield obtained from peritoneal cavity lavage. G, flow cytometry analysis of peritoneal cavity B-1 populations. Representative plots are shown, and the cells are pregated as described above. H, peritoneal cavity B-1 populations comparison. White bars, WT; black bars, GPS2-BKO (n = 7). I, automatic clustering representation of the cytometry data set. Unsupervised SPADE clustering into 30–40 nodes/tree was performed using CD1d/5/21/23/43/93/45RO/IgD/IgM lineage marker channels, and the nodes were annotated based on the known expression of lineage markers in various B cell subsets. A representative GPS2-BKO sample is shown. Fold increase of GPS2-BKO node percentages over averaged WT is shown as color.

Together, these results suggest that GPS2 inhibitory activity within different signaling complexes depends on GPS2 directly inhibiting the enzymatic activity of Ubc13 to prevent the synthesis of extended Lys63 ubiquitin chains. To confirm this hypothesis in the context of pro-inflammatory signaling pathways, we used a chemical inhibitor called NSC697923 to inhibit Ubc13. NSC697923 was previously validated in a model of diffuse large B cell lymphoma in which it was able to suppress constitutive NF-κB activation and cell proliferation/survival (65). As shown in Fig. 6 (E and F), both the hyperactivation of p38 and JNK, as well as the increased expression of pro-inflammatory target genes in GPS2-BKO cells, were rescued by NSC697923. These results confirm that Ubc13 hyperactivation is responsible for the phenotype observed in GPS2-deficient splenic B cells and suggest that Ubc13 unrestricted activation in absence of GPS2 underlies the misregulation of multiple signaling pathways in GPS2-BKO mice. Intriguingly, the most up-regulated gene in GPS2-null B cells is the HECT E3 ligase NEDD4 (supplemental Table S1 and Fig. 6G). HECT ligases promote ubiquitination through direct substrate ubiquitination rather than through E2-mediated synthesis of ubiquitin chains, and NEDD4, in particular, appears to have a preference for the synthesis of Lys63 ubiquitin chains (66–68). Thus, we are tempted to speculate that NEDD4 up-regulation might reflect an attempt at compensating for the misregulation of Ubc13-mediated Lys63 ubiquitination events.

Inhibition of BCR Signaling by GPS2 Is Required for Notch-mediated Differentiation of MZ Cells—In B cells, TLR and BCR signaling pathways present extensive cross-talk, including both TLR-mediated sensitization of BCR activation, as well as common regulatory strategies and shared signaling mediators. Among them, the use of Ubc13-dependent ubiquitination is a key signaling mechanism downstream of multiple receptors involved in immune responses (1, 31). Thus, based on GPS2 ability to inhibit Ubc13 activity in vitro, we asked whether its inhibitory role extended to BCR activation. Upon stimulation of splenic B cells with IgM, we observed a strong increase in both basal and inducible phosphorylation of p38 in B cells isolated from GPS2-BKO compared with WT littermates, suggesting that GPS2 is required for restricting signal transduction downstream of both BCR and TLR receptors (Fig. 7A). A smaller, but consistent, increase in JNK activation was observed only in basal conditions, whereas ERK phosphorylation upon IgM stimulation was slightly decreased (Fig. 7A). To confirm that the increase in p38 activation is caused by GPS2-mediated inhibition of ubiquitination, we asked whether activation of...
B Cell-specific Knockdown of Murine GPS2

Ubc13/TRAF6-dependent ubiquitin signaling downstream of BCR receptor activation is affected by the lack of GPS2. As shown in Fig. 7B, autoubiquitination of TRAF6 was indeed higher in GPS2-deficient B cells rather than WT splenic B cells stimulated with IgM. Together, our data confirm that GPS2-mediated inhibition of Lys63 ubiquitination plays a significant role in modulating the activation of both BCR and TLR signaling in B cells.
Intriguingly, the strength of BCR signaling has been shown to play a critical role in the cell fate decision between FO and MZ cell types in the spleen. In particular, weak BCR signaling was associated with MZ B cell development, whereas a strong BCR signaling is thought to facilitate the commitment toward the FO B cell lineage via inhibition of Notch2 signaling (69–72). Accordingly, Notch2 haploinsufficiency leads to a marked reduction in both MZ and B1 B cells (73). Based on Notch2...
target gene Deltex (Dtx1) being the second most significantly down-regulated gene after GPS2 in GPS2-BKO cells (supplemental Table S1), we hypothesized that aberrant activation of the BCR pathway and thus inhibition of Notch2 signaling could be the underlying mechanism of the reduced MZ phenotype in GPS2-BKO mice. In support of this hypothesis, we confirmed that not only Dtx1, but also other Notch2 target genes, such as Hes1 (Hair enhancer of split 1) and Hes5 (Hair enhancer of split 5), were down-regulated in splenic B cells from GPS2-BKO whereas the expression of Notch2 receptor itself was unchanged (Fig. 7C). Notably, the defect in gene expression was dependent on both p38 and Ubc13 activation because gene down-regulation was rescued by inhibiting either p38 or Ubc13 activity (Fig. 7C). Also, the down-regulation was specific to sorted MZ cells and not observed in the corresponding FO population (Fig. 7D). Thus, our results suggest that GPS2 requirement for MZ B cell differentiation in the spleen is likely tied to the regulation of BCR signaling, with GPS2 deletion causing exacerbated activation of BCR and therefore indirectly affecting the activation of important Notch2-dependent cell fate commitment genes.

Overall, we conclude that GPS2 plays a broad inhibitory effect over the activation of different signaling pathways via modulation of Ubc13 enzymatic activity (Fig. 7E). In particular, our findings indicate that the presence of GPS2 in murine B cells is essential for restricting the activation of the PI3K/AKT and TLR/BCR pathways. Conversely, loss of GPS2 leads to multiple defects during B cell development because of aberrant activation of Lys63 ubiquitination events and altered gene expression programs downstream of the misregulated signaling pathways.

Discussion

Stringent regulation of pro-inflammatory pathways is critical to allow for a rapid and effective response to infections and other external injuries while preventing the aberrant and damaging activation of autoimmune reactions and other forms of chronic inflammation. Non-proteolytic ubiquitination mediated by the E2-conjugating enzyme Ubc13 represents a critical component of multiple pro-inflammatory signaling pathways converging on the activation of the transcription factor NF-κB. Accordingly, it is an important regulatory step that can be negatively controlled by endogenous inhibitors of NF-κB activation, such as the deubiquitinases A20, CYLD, and MYSM1 (21, 23, 74, 75). In this manuscript, we characterize GPS2 as a novel, important negative regulator of non-proteolytic ubiquitination that acts directly on Ubc13 and inhibits the formation of extended Lys63 ubiquitin chains synthetized by the Ubc13/Uev1A complex. Mechanistically, our initial in vitro characterization of GPS2 inhibitory activity suggests possible similarities to the mechanism of action of another Ubc13 inhibitor that is critical for the regulation of DNA damage response, the deubiquitinating enzyme OTUB1 (76–78). However, more detailed structural studies will be required to fully elucidate the mechanistic details of GPS2 inhibition toward the Ubc13 complex.

The identification of GPS2 as an endogenous inhibitor of Ubc13 activity has critical implications not only for immune response pathways but also for other key cellular processes relying on Lys63 ubiquitination events. Further studies will be required for addressing each case individually with consideration of the cross-talks among different ubiquitin machineries. However, the initial observations presented here, together with previous reports, seem to confirm that GPS2-mediated inhibition of Lys63 ubiquitination is functionally critical for a number of pathways that utilize Ubc13, including TNFR1, TLR, BCR, and PI3K/AKT signaling pathways.

In the context of pro-inflammatory responses, here we have elucidated, in overexpressing macrophages and GPS2-deficient B cells, the role of GPS2 in the response to a number of TLR ligands. Overall, our data confirm GPS2 critical role in preventing the constitutive, basal activation of the signaling cascade that links liganded TLR receptors to the transcriptional regulation of NF-κB target genes. These results are consistent with studies published during the compilation of this manuscript reporting that GPS2 depletion in macrophages promotes a pro-inflammatory gene signature corresponding to enhanced TLR signaling (38). Intriguingly, our results indicate that the extent of the changes in gene expression associated with GPS2 reduction/deletion is likely reflective of broad effects on the pro-inflammatory signaling cascades rather than being limited to a sole transcriptional role for GPS2 as part of the NCoR/SMRT corepressor complexes.

Constitutive activation of NF-κB signaling is widely reported as a pro-survival strategy in cancer, and the transduction pathways upstream of NF-κB nuclear translocation are affected in a large number of hematological malignancies (29, 79–82). In particular, somatic mutations leading to constitutive NF-κB activation have been identified in negative regulators of non-proteolytic Lys63 ubiquitination events, such as the deubiquitinases and tumor suppressors CYLD and A20 (26, 30). Constitutive activation of the NF-κB pathway is also a component of the oncogenic program promoted by viral proteins, such as the human T cell leukemia virus (HTLV-1) activator Tax (83), that promote GPS2 down-regulation upon viral infection (84, 85). Because recent work indicates that Tax-induced NF-κB activation depends on viral hijacking of the endogenous RNF8 and Ubc13 enzymes to promote Lys63 ubiquitination (86), we are tempted to speculate that removal of GPS2-mediated inhibi-
tion of Ubc13 activity might be a critical component of the viral strategy for controlling the growth and survival of HTLV-infected cells. These observations together raise the intriguing possibility that GPS2 itself could serve a tumor suppressive role in cells where the aberrant constitutive activation of NF-κB signaling contributes to tumor development and progression. This hypothesis is in agreement with recent reports of GPS2 being mutated or deleted in different tumor types (47, 87–94), thus providing the rationale for further dedicated studies to assess the role of GPS2 in cancer.

Understandably, the proper integration of signals coming from multiple receptors that share Ubc13 as an important signaling mediator, including BCR, TLR, BAFF, and CD40, is critical for a number of functions, including the maturation and homeostasis of B cells, as well as their ability to mount proper immune responses. Although this study has focused on the role played by GPS2 during mouse B cell development, further studies will be required to investigate to what extent GPS2-deficient mice can respond to infections and injuries through normal innate and adaptive immune responses and whether the loss of GPS2 affects the development of autoimmune diseases.

Here, the phenotypical characterization of the normal development of GPS2-BKO mice has revealed a broad role for GPS2 in early and late B cell developmental stages, with the conditional deletion of GPS2 in the B cell lineage leading to a mild accumulation of pre-B cells in the bone marrow and a significant decrease in splenic MZ and B-1 cells. Intriguingly, our data support a model in which both phenotypes are related to the loss of GPS2-mediated regulation of Ubc13 activity. Unrestricted activation of AKT in the earliest stages of B cell development, prior to mature BCR expression, appear to alter the activation of a FOXO1-dependent transcriptional network that is required for immunoglobulin chain recombination and receptor editing. Later defects are instead associated with the hyperactivation of pathways regulated by Ubc13-mediated Lys”ubiquitination leading to constitutive activation of BCR signaling, preventing Notch2-mediated cell fate decision events. Notably, in both instances the same target genes that are downstream targets of the pathways that are regulated by GPS2 in a non-genomic fashion through inhibition of Ubc13 activity are also directly regulated by GPS2 as a transcriptional cofactor. Thus, our results together support a comprehensive model in which the genomic and non-genomic actions of GPS2 in the cell are exquisitely coordinated.

To our initial surprise, the GPS2-BKO mice phenotype in regard to B1 and MZ cells is very similar to that of mice deleted of Ubc13 itself (95). However, similar defects are observed in mouse knock-out models of both activators and inhibitors of BCR/TLR signaling (96) (i.e. TAB2/3, A20, TRAF6, TAB2/3, and MALT1) (26, 97–100). We speculate that these apparent discrepancies are indicative of the fact that having constitutive or exacerbated signaling, at least during particular stages of development, can be as damaging as having a reduced or impaired response, thus supporting the importance of endogenous regulators, such as GPS2, to maintain tight regulation in both directions.

Lastly, it is noteworthy that naïve GPS2-BKO mice present increased plasma levels of natural antibodies, particularly IgM, despite the lower number of innate-like B cells. This is consistent with higher level of serum lgs observed in other models of BCR/TLR hyperactivation (26, 100–102), whereas the production of natural antibodies is usually impaired upon deletion of key mediators of both pathways (96, 99, 103). Thus, the increase in natural antibody production in vivo is in accord with the constitutive activation of TLR/BCR signaling observed in GPS2-null B cells. This suggests that the reduced number of innate-like B cells in GPS2-BKO mice might be functionally compensated by their enhanced activation. In addition, secreted IgM would further enhance BCR signaling while restricting the size of the B1 and MZ compartments, thus possibly establishing a forward feedback loop that influences B cell survival and homeostasis at steady state (104, 105).

In conclusion, the characterization of GPS2 B cell-specific conditional knock-out mice has confirmed in vivo the important role played by GPS2 in the regulation of Ubc13 enzymatic activity within multiple signaling pathways and revealed a comprehensive view of how the coordinated regulation of non-proteolytic ubiquitination in different signaling pathways converges in mediating key developmental steps during B cell development.

### Experimental Procedures

**Mice**—aP2-GPS2-overexpressing mice were previously described (33). Conditional Gps2fl/fl mice were generated by inGenious Targeting Laboratory. The 9.52-kb region used to construct the targeting vector was first subcloned from a positively identified C57BL/6 (RP23: 91G16) BAC clone into a ∼2.4-kb backbone vector (pSP72, Promega) containing an ampicillin selection cassette. The total size of the targeting construct (including vector backbone and Neo cassette) is ∼13.62 kb. The region was designed such that the short homology arm extends ∼2.55 kb 3’ to exon 6. The long homology arm ends 5’...
to exon 3 and is 6.07 kb long. A pGK-gb2loxP/FRT Neo cassette is inserted on the 3’ side of exon 6, and the single loxP site is inserted 5’ of exon 3. The target region is 0.90 kb and includes exon 3–6. The targeting vector was linearized by NotI and then transfected by electroporation to BA1 (C57BL/6 × 129/SvEv) hybrid embryonic stem cells. After selection with G418 antibiotic, surviving clones were expanded for PCR analysis to identify recombinant ES clones and control for retention of the third loxP site. Secondary confirmation of positive clones was performed by Southern blotting analysis prior to microinjection into C57BL/6 blastocysts. The resulting chimeras with a high percentage agouti coat color were mated to wild-type C57BL/6 mice to generate F1 heterozygous offspring. The Neo cassette was excised by crossing with FLP mice (The Jackson Laboratory) to generate F2 heterozygous mice with Neo deletion in germ cells. Homozygous Gps2flox/flox mice were then generated by Southern blotting analysis prior to microinjection into C57BL/6 blastocysts. The resulting chimeras with a third LoxP site. Secondary confirmation of positive clones was performed by PCR analysis to identify recombinant ES clones and control for retention of the known expression of signature markers.

**Cell Culture and Treatments**—B cells purified from spleen of Gps2−/− and wild-type littermates were cultured at 106 cells/ml in RPMI 10% FBS, 100× penicillin/streptomycin, and treated with 1 μg/ml LPS (TLR4 ligand), 1 μM of ODN 2395 (TLR9 ligand), or 1 μg/ml gardiquimod (TLR7 ligand) (Invivogen) for 4 h. Treatment with 10 μg/ml of purified rat anti-mouse IgM (BD Pharmingen) was performed in the same culture condition for different time courses. For IL-10 stimulation and phenotyping, spleen cells were stimulated for 5 h in the presence of 10 μg/ml LPS, 50 ng/ml phorbol 12-myristate 13-acetate, and 500 ng/ml ionomycin in presence of 2 μM monensin as described previously (108) stained for surface markers, fixed with IC fixation buffer (Biolegend), permeabilized with IC permeabilization/wash buffer (Biolegend), and stained for IL-10. 293T cells were cultured in 4.5 g DMEM/liter glucose, 10% FBS, and 100× penicillin/streptomycin. For cell transfection, Lipofectamine 2000 was used following the manufacturer’s protocol (Life Technologies). After 24 h, the cells were treated 1 μg/ml LPS for 5 or 10 min, lysated, and then subjected to IP/WB. Bone marrow-derived macrophages were isolated as differentiated in vitro as previously described (33). For gene expression analysis they were treated with 10 μg/ml lipopeptide Pam3CSK4 (Pam3) TLR1/2 activator, 1 μg/ml LPS TLR4 activator, 10 μg/ml imidazoquinoline compound Gardi TLR7 activator, or 1 μM CpG oligodeoxynucleotides (ODN 2395) TLR9 agonist for 4 h. In rescue experiments cells were treated for 4 h with chemical inhibitors at the following concentrations: NSC697923 2 μM (Sigma-Aldrich, Ubc13 inhibitor), SB203580 25 μM (Invivogen, p38 MAPK inhibitor).

**H&E and Immunohistochemistry Staining of Splenic Sections**—Cryosections from Gps2−/− mice were prepared at 10-μm thickness, fixed in 10% formalin solution, and stained with hematoxin (Fisherbrand) and eosin solution (Fisherbrand) according to standard protocols. For immunohistochemistry, sections were blocked with 10% donkey serum, 1% BSA and then stained with primary antibody overnight at 4°C and secondary antibody for 1 h at room temperature. The antibodies used are rat anti-mouse MOMA-1 (AbD Serotec-Bio-Rad) and HRP-conjugated anti-RAT (Cell Signaling). The reaction was developed using the DAB liquid substrate dropper system (Sigma) following the manufacturer instructions.

**Western Blotting and Abs**—Whole cell lysates were prepared in radioimmune precipitation assay buffer, and protein extracts were resolved by SDS-PAGE and then electrotransferred onto PVDF membrane. The following Abs were used: anti-GPS2 was generated in rabbit against a peptide representing amino acids 307–327 (33); anti-Ubc13 (YD-16), anti-JNK1/2 (FL), anti-TRA6 (H-274), and anti-EKR (K23) (Santa Cruz Biotechnology);
anti-phospho JNK (4668), anti-phospho p38 (4511S), anti-IkBα (9247), anti-p38 (9212), and anti-phospho ERK1/2 (E10) (Cell Signaling); mouse anti-B-tubulin (Sigma); mouse anti-α-HA (Upstate Biotechnology); and anti-polyubiquitin-Lys63 linkage-specific (Enzo Life Science).

In Vitro Ubiquitination and Protein Purification—Ubiquitination assays were carried out at 37 °C in 50 mM Tris-HCl, pH 7.6, 50 mM NaCl, 5 mM MgCl2, 5 mM ATP, 1× ubiquitin aldehyde, and 2 mM DTT. GPS2 was produced as a His tag fusion protein in BL21 Escherichia coli, resin-purified on nickel-nitrilotriacetic acid beads, and eluted accordingly to manufacturer’s protocol (Life Technologies). Purified recombinant enzymes and ubiquitin were purchased from Boston Biochem. The reaction was first assembled on ice with 50 nM recombinant E1, 1 μM Ubc13, 5 μg of tagged Ub (either Flag-tagged or biotin-tagged) with or without GPS2. Ubiquitination was then promoted by adding 1 μM Uev1A and unlabeled ubiquitin in excess (20 μg). The reactions were stopped after 5 or 10 min at 37 °C by boiling in DTT-containing SDS loading buffer, and proteins were resolved by SDS-PAGE and immunoblotted. For native gels, DTT was excluded from the reaction, we used DTT-free SDS loading buffer, and samples were not boiled.

Chromatin Immunoprecipitation, RNA Extraction, RT-qPCR, and RNA-Seq—ChIP was performed as previously described (37). Total RNA was prepared with RNAeasy® plus mini kit (Qiagen) according to the manufacturer’s protocol. RNA was retrotranscribed into cDNA using iScript® reverse transcription supermix for RT-qPCR (Bio-Rad), and qPCR was performed using the Fast SYBR® Green Master Mix (Life Technologies) according to the manufacturer’s protocol. All samples were run in triplicate using a ViiA7® qPCR machine (Applied Biosystems), and normalization was calculated to the housekeeping gene cyclophilin A. Significance of gene expression analyses was calculated by two-tailed, two-sample t test with unequal variance among replicate experiments as indicated in the figure legends. The sequences of oligonucleotides used for gene expression analysis are available upon request. For RNA-Seq experiments RNA quality was assessed on the Agilent 2100 Bioanalyzer (Boston University Medical Center Microarray Core). cDNA libraries were prepared either with the NEBNext ultra directional library preparation kit for Illumina or with the Illumina TruSeq stranded total RNA sample prep kit with rRNA depletion by RiboZero Gold and then sequenced on a HiSeq2500 (single-strand, 50-bp reads).

Bioinformatics Analysis of RNA-Seq Samples—The sequencing reads were aligned to the mouse genome mm8 by using bowtie (109), and the aligned sequencing reads were counted over gene exons by using HOMER that computed also the RPKM values. The differentially expressed genes between KO and WT samples were statistically defined by a two-tailed, two-sample t test between the replicates (p value < 0.05). The heat maps of differential expressed genes were displayed by using R packages “pheatmap” and “gplots” (heatmap.2() functions). To characterize the differential use of V, D, and J segments, we have downloaded the sequences from IMGT database, and their expression levels were computed with RSEM (110). The RNAseq data are available on the GEO website under accession number GSE92751.

Author Contributions—C. L. designed and performed most of the experiments with the help of C. T. C., H. E. J., A. L., and S. P.; C. L. and A. B. designed and carried out all FACS analyses; M. C. was responsible for the in vitro characterization of GPS2-Ubc13 activity; S. M. and B. T. carried out the bioinformatic analysis of RNA-Seq data; and V. P. conceived the project, supervised the research team, and wrote the manuscript with the help of C. L., M. D. C., A. B., J. C., and B. S. N.

Acknowledgments—We are grateful to Drs. X. Varelas, T. Kepler, and G. Denis for insightful comments and discussions and to all members of the Varelas, Garcia-Marcos, Ritter, and Perissi labs for useful suggestions, comments, and technical advice during joint lab meetings. We thank Drs. F. Raval and J. Defaria for teaching us how to isolate and culture murine B cells and for their helpful suggestions in designing FACS experiments. All flow cytometry experiments were performed at the Flow Cytometry Core Facility at Boston University School of Medicine. RNA-Seq was performed with support from the Genomic Science Institute at Boston University and through the services of the Genomics Core at Tufts University.

References
1. Bhoj, V. G., and Chen, Z. J. (2009) Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437
2. Popovic, D., Vucic, D., and Dikic, I. (2014) Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253
3. Malynn, B. A., and Ma, A. (2010) Ubiquitin makes its mark on immune regulation. Immunity 33, 843–852
4. Stringer, D. K., and Piper, R. C. (2011) Terminating protein ubiquitination: hasta la vista, ubiquitin. Cell Cycle 10, 3067–3071
5. Nagy, V., and Dikic, I. (2010) Ubiquitin ligase complexes: from substrate selectivity to conjugal specific. Biol. Chem. 391, 163–169
6. Pickart, C. M., and Eddins, M. J. (2004) Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72
7. Ikeda, F., Crosetto, N., and Dikic, I. (10) What determines the specificity and outcomes of ubiquitin signaling? Cell 143, 677–681
8. Chen, Z. J., and Sun, L. I. (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286
9. Bianchi, K., and Meier, P. (2009) A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell Biol. 29, 2769–2776
10. Wu, X., and Karin, M. (2015) Emerging roles of Lys63-linked polyubiquitylation in immune responses. Immunol. Rev. 266, 161–174
11. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical role in immune system and break-through in TNF-R1 signaling. Nat. Immunol. 2, 675–680
12. Chen, G., and Goeddel, D. V. (2002) TNF-R1 signaling: a beautiful pathway of NF-κB activation. EMBO Reports 10, 706–713
13. Habelhah, H. (2010) Emerging complexity of protein ubiquitination in the NF-κB pathway. Genes Cancer 1, 735–747
14. Liu, S., and Chen, Z. J. (2011) Expanding role of ubiquitination in NF-κB signaling. Cell Res. 21, 6–21
15. Wu, X., and Karin, M. (2015) Emerging roles of Lys63-linked polyubiquitylation in immune responses. Immunol. Rev. 266, 161–174
16. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680
17. Chen, G., and Goeddel, D. V. (2002) TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635
18. Dunne, A., and O’Neill, L. A. (2003) The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, re3
19. Skaug, B., Jiang, X., and Chen, Z. J. (2009) The role of ubiquitin in NF-κB regulatory pathways. Annu. Rev. Biochem. 78, 769–796
20. Davis, M. E., and Gack, M. U. (2015) Ubiquitination in the antiviral immune response. Virology 479–480, 52–65
21. Hayden, M. S., and Ghosh, S. (2008) Shared principles in NF-κB signal-
Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. *Nat. Med.* **22**, 780–791

39. Peng, Y. C., Kuo, F., Breiding, D. E., Wang, Y. F., Mansur, C. P., and Androphy, E. J. (2001) AMF1 (GPS2) modulates p53 transactivation. *Mol. Cell. Biol.* **21**, 5913–5924

40. Peng, Y. C., Breiding, D. E., Sverdrup, F., Richard, J., and Androphy, E. J. (2000) AMF-1/Gps2 binds p300 and enhances its interaction with papillomavirus E2 proteins. *J. Virol.* **74**, 5872–5879

41. Sanyl, S., Bävner, A., Haroniti, A., Nilsson, L. M., Lundåsen, T., Rehnmark, S., Witt, M. R., Einarsson, C., Talianidis, I., Gustafsson, J. A., and Treuter, E. (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 15665–15670

42. Lee, T. H., Yi, W., Griswold, M. D., Zhu, F., and Her, C. (2006) Formation of hMSH4-hMSH5 heterocomplex is a prerequisite for subsequent GPS2 recruitment. *DNA Repair* **5**, 32–42

43. Zhang, J., Kalkum, M., Chait, B. T., and Roeder, R. G. (2002) The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the INK pathway through the integral subunit GPS2. *Mol. Cell* **9**, 611–623

44. Zhang, D., Harry, G. J., Blackshear, P. J., and Zeldin, D. C. (2008) G-protein pathway suppressor 2 (GPS2) interacts with the regulatory factor X4 variant 3 (RFX4 v3) and functions as a transcriptional co-activator. *J. Biol. Chem.* **283**, 8580–8590

45. Guo, C., Li, Y., Gow, C. H., Wong, M., Zha, J., Yan, C., Liu, H., Wang, Y., Burris, T. P., and Zhang, J. (2015) The optimal corepressor function of nuclear receptor corepressor (NCOR) for peroxisome proliferator-activated receptor γ requires G-protein pathway suppressor 2. *J. Biol. Chem.* **290**, 3666–3679

46. Cheng, X., and Kao, H. Y. (2009) Protein pathway suppressor 2 (GPS2) is a transcriptional corepressor important for estrogen receptor α-mediated transcriptional regulation. *J. Biol. Chem.* **284**, 36395–36404

47. Diederichs, S., Bäumer, N., Ji, P., Metzelder, S. K., Idos, G. E., Cauvet, T., Wang, W., Møller, M., Pierschalski, S., Gromoll, J., Schradin, M. G., Koehler, H. P., Berdel, W. E., Serve, H., and Müller-Tidow, C. (2004) Identification of interaction partners and substrates of the cyclin A1-CDK2 complex. *J. Biol. Chem.* **279**, 32727–32741

48. Rickert, R. C., Roos, J., and Rajewsky, K. (1997) B lymphocyte-specific, Cre-mediated mutagenesis in mice. *Nucleic Acids Res.* **25**, 1317–1318

49. Denger, H. S., Baracho, G. V., Omori, S. A., Bruckner, S., Arden, K. C., Calistro, D. H., DePinho, R. A., and Rickert, R. C. (2008) Distinct functions for the transcription factor Foxo at various stages of B cell development. *Nat. Immunol.* **9**, 1388–1398

50. Szydłowski, M., Jablonska, E., and Jusczynski, P. (2014) FOXO1 transcription factor: a critical effector of the PI3K-akt axis in B-cell development. *Int. Rev. Immunol.* **33**, 146–157

51. Minegishi, Y., Rohrer, J., Coustan-Smith, E., Lederman, H. M., Pappu, R., Campana, D., Chan, A. C., and Conley, M. E. (1999) An essential role for BLNK in human B cell development. *Science* **286**, 1954–1957

52. Pappu, R., Cheng, A. M., Li, B., Gong, Q., Chiu, C., Griffin, N., White, M., Sleckman, B. P., and Chan, A. C. (1999) Requirement for B cell linker protein (BLNK) in B cell development. *Science* **286**, 1949–1954

53. Flemming, A., Brummer, T., Reth, M., and Jumaa, H. (2003) The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. *Nat. Immunol.* **4**, 38–43

54. Ochial, K., Maier-Steinlein, U., Mandal, M., Triggs, J. R., Bertolino, E., Sciammas, R., Diner, A. R., Clark, M. R., and Singh, H. (2012) A self-reinforcing regulatory network triggered by limiting IL-7 activates pre-BCR signaling and differentiation. *Nat. Immunol.* **13**, 300–307

55. Chow, K. T., Timblin, G. A., McWhirter, S. M., and Schlissel, M. S. (2013) Frequent inactivation of A20 in B-cell lymphoma. *Science* **344**, 33–38,

56. Schmidt-Supprian, M., Wunderlich, F. T., and Rajewsky, K. (2007) Excision of the Frt-flanked neo (R) cassette from the CD19cre pre-BCR signaling and differentiation is dependent on Ig rearrangement. *J. Immunol.* **175**, 644–651

57. Wasserman, R. L., Y. S., and Hardy, R. R. (1995) Differential expression of the blk and ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. *J. Immunol.* **155**, 644–651

58. Schmidt-Supprian, M., Wunderlich, F. T., and Rajewsky, K. (2007) Excision of the Frt-flanked neo (R) cassette from the CD19cre knock-in transgene reduces Cre-mediated recombination. *Trans-
B Cell-specific Knockdown of Murine GPS2

Shen, H., Hayat, S., Fieldhouse, R., Lester, S. C., et al. (2015) Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519

95. Yamamoto, M., Okamoto, T., Takeda, K., Sato, S., Sanjo, H., Uematsu, S., Saitoh, T., Yamamoto, N., Sakurai, H., Ishii, K. I., Yamaoka, S., Kawai, T., Matsuura, Y., Takeuchi, O., and Akira, S. (2006) Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat. Immunol. 7, 962–970

96. Ruland, J., Duncan, G. S., Wakeham, A., and Mak, T. W. (2003) Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758

97. Kobayashi, T., Kim, T. S., Jacob, A., Walsh, M. C., Kadono, Y., Fuentes-Panamá, E., Yoshioka, T., Yoshimura, A., Yamamoto, M., Kaisho, T., Akira, S., Monroe, J. G., and Choi, Y. (2009) TRAF6 is required for generation of the B-1a B cell compartment as well as T cell-dependent and -independent humoral immune responses. PLoS One 4, e4736

98. Touma, M., Keskin, D. B., Shiroki, F., Saito, I., Koyasu, S., Reinherz, E. L., and Clayton, L. K. (2011) Impaired B cell development and function in the absence of IκBNS. J. Immunol. 187, 3942–3952

99. Ori, D., Kato, H., Sanjo, H., Tartey, S., Mino, T., Akira, S., and Takeuchi, O. (2013) Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. J. Immunol. 190, 4037–4045

100. Chu, Y., Vahl, J. C., Kumar, D., Heger, K., Bertossi, A., Wójtowicz, E., Soberon, V., Schenten, D., Mack, B., Reutelshöfer, M., Bouchard, J., Horikawa, M., Minard-Colin, V., Matsushita, T., and Tedder, T. F. (2011) Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J. Clin. Invest. 121, 4268–4280

101. Langmead, B., Trapnell, C., Pachter, L., et al. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25

102. Li, B., and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323

103. Cederquist, C. T., Lentucci, C., Martinez-Calejman, C., Hayashi, V., Orofino, J., Guertin, D., Fried, S. K., Lee, M.-J., Cardamone, M. D., and Perissi, V. (2017) Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol. Metab. 6, 125–137
