Upon admission to our hospital, she complained of both visual and hearing loss. She also showed a grade II weakness of the right extremities. MRI revealed hydrocephalus and a 32×63×48-mm sized well-enhanced mass around the right thalamus. We also observed severe compression of the third ventricle and diffuse peritumoral edema. An enhanced MRI scan revealed a lobulated, heterogeneous enhanced tumor (Fig. 1). A computed tomography (CT) scan of her brain also showed a well-enhanced mass, as well as multiple lobulated spots with hypodensity within the mass. To decompress her increased intracranial pressure, we underwent operation to remove the mass completely, using a transcortical approach to the posterior horn of the left lateral ventricle. A left parietal craniotomy and a cortisectomy at the superior parietal lobule were performed. The tumor was brown in color, and the margin between the brain parenchyma and supporting tissue was clearly distinguishable. The tumor was hypervascularized, hard, and lobulated, and it was completely removed in piecemeal fashion. A frozen biopsy of the tumor suggested that it was a pilocytic astrocytoma. The tumor was found to be composed of strands or cords of oval and spindle cells embedded in abundant myxoid stroma (Fig. 2A).
Intracranial Myxoid Chondrosarcoma | JH Park, et al.

eral ventricle.

Preoperative imaging methods, including CT and MRI, revealed similar results in previous patients with intracranial extraskeletal myxoid chondrosarcomas. Precontrast CT scans have shown isodensity of tumors in five of the seven previously reported patients; however, it should be noted that the two remaining patients had preoperative tumor bleeding16,17). Most dispersed chromatin, and a moderate amount of eosinophilic cytoplasm that was often finely vacuolated (Fig. 2B). Mitotic figures were rarely observed.

The tumor cells were further examined by immunohistochemistry, and antibodies were used at the dilutions listed. Tumor cells were found to be focally and strongly positive for epithelial membrane antigen (1 : 25, Dako, Glostrup, Denmark) (Fig. 2C), weakly positive for class III β-tubulin (1 : 200, clone TU-20, Genetex, Irvine, CA, USA), diffusely positive for microtubule-associated protein 2 (1 : 200, clone AP18, Neomarkers, Fremont, CA, USA) (Fig. 2D), and positive for vimentin (1 : 250, Zymed, San Francisco, CA, USA) (Fig. 2E). In contrast, the tumor cells were negative for S-100 protein (1 : 1000, Zymed, San Francisco, CA, USA), cytokeratin (1 : 250, Zymed San Francisco, CA, USA), and glial fibrillary acidic protein (GFAP, 1 : 200, Biogenex, San Ramon, CA, USA). Final pathologic analysis of the above results led to a diagnosis of extraskeletal myxoid chondrosarcoma. Postoperative MRI showed no residual tumor. The patient then underwent adjuvant radiotherapy, at a total dose of 6080 cGy, as well as rehabilitation. After six months of treatment, the headache and weakness symptoms had improved to grade IV, but other neurologic deficits, including blindness and deafness, were unchanged.

DISCUSSION

Histologically, three subtypes of cranial and intracranial chondrosarcomas have been described: classic, mesenchymal, and myxoid15,79. Intracranial extraskeletal myxoid chondrosarcomas are extremely rare, with only seven cases previously reported to date2,5,8,13-16). A summary of these previous patients, including imaging results, the surgical extent of the tumor, postoperative radiation treatment, and patient outcomes is shown in Table 1.

Intracranial extraskeletal myxoid chondrosarcomas are thought to originate from the dura, leptomeninges, parenchyma, and choroid plexus2,5,13-16). Our findings in the present case suggest that the tumor originated from the choroid plexus of the lateral ventricle.

Preoperative imaging methods, including CT and MRI, revealed similar results in previous patients with intracranial extraskeletal myxoid chondrosarcomas. Precontrast CT scans have shown isodensity of tumors in five of the seven previously reported patients; however, it should be noted that the two remaining patients had preoperative tumor bleeding16,17). Most

Fig. 1. Imaging findings for the current patient. A: T1-weighted magnetic resonance imaging (MRI) showing homogeneous iso-signal intensity of a 63-mm tumor in the left lateral ventricle along with ventricular dilatation. B: T2-weighted MRI showing a heterogeneous high signal intensity tumor and peritumoral edema. C: T1-weighted enhanced MRI showing strong enhancement of the tumor.

Fig. 2. Histologic features of the tumor in the current patient. A: The tumor consists of strands or cords of oval cells and abundant myxoid stroma (H&E, ×100). B: The tumor cells interconnected to form cords and had relatively uniform oval nuclei and a moderate amount of eosinophilic cytoplasm (H&E, ×400). C, D and E: These tumor cells are positive for epithelial membrane antigen (original magnification ×400) (C), microtubule-associated protein 2 (original magnification ×400) (D), and vimentin (original magnification ×100) (E) by immunohistochemical staining.
We describe a case of intracranial extraskeletal myxoid chondrosarcoma and review the literature on these rare tumors. Despite their malignant nature, these tumors have well-defined margins and are clearly distinct from normal brain tissue. Intracranial extraskeletal myxoid chondrosarcoma has a high rate of leaving calcifications behind and is associated with a low risk of local recurrence. In this report, we present a case of intracranial extraskeletal myxoid chondrosarcoma with complete resection and no recurrence, and we discuss the treatment options for these rare tumors.

Table 1. The characteristics of previous cases of intracranial myxoid chondrosarcoma

Authors	Reference, year	Age (years)/sex	Location/origin	Size	Surgical extent	Postoperative radiotherapy, dose	CT	MRI	Postoperative course
Scott et al.	(15), 1976	39/male	4th ventricle, choroid plexus	Not described	STL	Not done	Not done	STL	13 days died d/t ventriculitis
Salcman et al.	(13), 1992	28/female	Left parafalcine & dura of falx	70×50×40 mm	TR	Not done	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive and local recurrence
Sato et al.	(14), 1993	43/female	Pineal gland & dura	Not described	PR	Yes, 6000 cGy	Enhancement (+)	Not done	3 years d/tumor progression
Chaskis et al.	(2), 2002	69/male	Right F. cortex	Not described	TR	Not done	Not described	Enhancement (+)	1 months died with septic shock d/t diverticulitis
González et al.	(5), 2002	17/female	Right F-P cortex	23×20 mm	TR	No, 6000 cGy RTx was performed after 1st recurrence	Not described	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive, twice had tumor recurrence
Im et al.	(8), 2003	43/male	Left P. cortex	20 mm	TR	Yes, 5940 cGy	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	3 years alive, no recurrence
Sorimachi et al.	(17), 2008	37/female	Pineal region	Not described	1st : PR 2nd : TR	Not done	Mixed dense enhancement (+)	T1 : mixed intensity enhancement (+)	1st : 13 months recurrence 2nd : 7 months alive, no tumor recurrence
Present case	2011	21/female	Left lateral ventricle/choroid plexus	32×63×48 mm	TR	6080 cGy	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive, twice had tumor recurrence

Conclusion

We describe a case of intracranial extraskeletal myxoid chondrosarcoma and review the literature on these rare tumors. Despite their malignant nature, these tumors have well-defined margins and are clearly distinct from normal brain tissue. Intracranial extraskeletal myxoid chondrosarcoma has a high rate of leaving calcifications behind and is associated with a low risk of local recurrence. In this report, we present a case of intracranial extraskeletal myxoid chondrosarcoma with complete resection and no recurrence, and we discuss the treatment options for these rare tumors.

Table 1. The characteristics of previous cases of intracranial myxoid chondrosarcoma

Authors	Reference, year	Age (years)/sex	Location/origin	Size	Surgical extent	Postoperative radiotherapy, dose	CT	MRI	Postoperative course
Scott et al.	(15), 1976	39/male	4th ventricle, choroid plexus	Not described	STL	Not done	Not done	STL	13 days died d/t ventriculitis
Salcman et al.	(13), 1992	28/female	Left parafalcine & dura of falx	70×50×40 mm	TR	Not done	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive and local recurrence
Sato et al.	(14), 1993	43/female	Pineal gland & dura	Not described	PR	Yes, 6000 cGy	Enhancement (+)	Not done	3 years d/tumor progression
Chaskis et al.	(2), 2002	69/male	Right F. cortex	Not described	TR	Not done	Not described	Enhancement (+)	1 months died with septic shock d/t diverticulitis
González et al.	(5), 2002	17/female	Right F-P cortex	23×20 mm	TR	No, 6000 cGy RTx was performed after 1st recurrence	Not described	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive, twice had tumor recurrence
Im et al.	(8), 2003	43/male	Left P. cortex	20 mm	TR	Yes, 5940 cGy	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	3 years alive, no recurrence
Sorimachi et al.	(17), 2008	37/female	Pineal region	Not described	1st : PR 2nd : TR	Not done	Mixed dense enhancement (+)	T1 : mixed intensity enhancement (+)	1st : 13 months recurrence 2nd : 7 months alive, no tumor recurrence
Present case	2011	21/female	Left lateral ventricle/choroid plexus	32×63×48 mm	TR	6080 cGy	Isodense enhancement (+)	T1 : hypointense T2 : hyperintense enhancement (+)	20 months alive, twice had tumor recurrence

CT: computed tomography, **MRI:** magnetic resonance image, **STL:** subtotal resection, **FM:** foramen magnum, **TR:** total resection, **CPA:** cerebropontine angle, **PR:** partial resection, **F:** frontal, **F-P:** frontoparietal, **P:** parietal, **d/t:** due to...
recurrence in previous reports. Here, we present a case report of this tumor treated with total tumor resection and adjuvant radiotherapy.

References
1. Bourgouin PM, Tampieri D, Robitaille Y, Robert F, Bergeron D, del Carpio R, et al. : J Compu Assit Tomogr 16 : 268-273, 1992
2. Ghaskis C, Michotte A, Goossens A, Stadnik T, Koerts G, D’Haens J : Primary intracerebral myxoid chondrosarcoma. Case illustration. J Neurosurg 97 : 228, 2002
3. Cummings TJ, Bridge JA, Fukushima T : Extraskeletal myxoid chondrosarcoma of the jugular foramen. Clin Neuropathol 23 : 232-237, 2004
4. Enzinger FM, Shiraki M : Extraskeletal myxoid chondrosarcoma. An analysis of 34 cases. Hum Pathol 3 : 421-435, 1972
5. González-Lois C, Cuevas C, Abdulla B, Rico J : Intracranial extraskeletal myxoid chondrosarcoma : case report and review of the literature. Acta Neurochir (Wien) 144 : 735-740, 2002
6. Grossman RJ, Davis KR : Cranial computed tomographic appearance of chondrosarcoma of the base of the skull. Radiology 141 : 403-408, 1981
7. Hassounah M, Al-Mefty O, Akhtar M, Jinkins JR, Fox JL : Primary cranial and intracranial chondrosarcoma. A survey. Acta Neurochir (Wien) 78 : 123-132, 1985
8. Im SH, Kim DG, Park IA, Chi JG : Primary intracranial myxoid chondrosarcoma : report of a case and review of the literature. J Korean Med Sci 18 : 301-307, 2003
9. Korten AG, ter Berg HJ, Spincemaille GH, van der Laan RT, Van de Wel AM : Intracranial chondrosarcoma : review of the literature and report of 15 cases. J Neurol Neurosurg Psychiatry 65 : 88-92, 1998
10. O’Brien J, Thornton J, Cawley D, Farrell M, Keohane K, Kaar G, et al. : Extraskeletal myxoid chondrosarcoma of the cerebellopontine angle presenting during pregnancy. Br J Neurosurg 22 : 429-432, 2008
11. Oliveira AM, Sebo TJ, McGrorey JE, Gaffey TA, Rock MG, Nascimento AG : Extraskeletal myxoid chondrosarcoma : a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol 13 : 900-908, 2000
12. Sala F, Talacchi A, Beltramello A, Iuzzolino P, Bricolo A : Intracranial myxoid chondrosarcoma with early intradural growth. J Neurosurg 42 : 159-163, 1998
13. Salcman M, Scholtz H, Kristt D, Numaguchi Y : Extraskeletal myxoid chondrosarcoma of the falx. Neurosurgery 31 : 344-348, 1992
14. Sato K, Kubota T, Yoshi K, Murata H : Intracranial extraskeletal myxoid chondrosarcoma with special reference to lamellar inclusions in the rough endoplasmic reticulum. Acta Neuropathol 86 : 525-528, 1993
15. Scott RM, Dickersin R, Wolpert SM, Twitchell T : Myxochondrosarcoma of the fourth ventricle. Case report. J Neurosurg 44 : 386-389, 1976
16. Smith TW, Davidson RI : Primary meningeal myxochondrosarcoma presenting as a cerebellar mass : case report. Neurosurgery 8 : 577-581, 1981
17. Sorimachi T, Sasaki O, Nakazato S, Koike T, Shibuya H : Myxoid chondrosarcoma in the pineal region. J Neurosurg 109 : 904-907, 2008