A Note on the Longest Common Compatible Prefix Problem for Partial Words

M. Crochemorea,b, C. S. Iliopoulosa,c, T. Kociumakad, M. Kubicad, A. Langiua, J. Radoszewskid, W. Rytterd,e, B. Szrederd, T. Waleńd,f

aKing’s College London, London WC2R 2LS, UK
bUniversité Paris-Est, France
cDigital Ecosystems & Business Intelligence Institute, Curtin University of Technology, Perth WA 6845, Australia
dFaculty of Mathematics, Informatics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
eFaculty of Mathematics and Computer Science, Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
fLaboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Poland

Abstract

For a partial word w the longest common compatible prefix of two positions i, j, denoted $lccp(i, j)$, is the largest k such that $w[i, i + k - 1] \uparrow w[j, j + k - 1]$, where \uparrow is the compatibility relation of partial words (it is not an equivalence relation).

The LCCP problem is to preprocess a partial word in such a way that any query $lccp(i, j)$ about this word can be answered in $O(1)$ time. It is a natural generalization of the longest common prefix (LCP) problem for regular words, for which an $O(n)$ preprocessing time and $O(1)$ query time solution exists.

Recently an efficient algorithm for this problem has been given by F. Blanchet-Sadri and J. Lazarow (LATA 2013). The preprocessing time was $O(nh + n)$, where h is the number of “holes” in w. The algorithm was designed for partial words over a constant alphabet and was quite involved.

We present a simple solution to this problem with slightly better runtime that works for any linearly-sortable alphabet. Our preprocessing is in time $O(n\mu + n)$, where μ is the number of blocks of holes in w. Our algorithm uses ideas from alignment algorithms and dynamic programming.

Keywords: partial word, longest common compatible prefix, longest common prefix, dynamic programming
Let \(w \) be a partial word of length \(n \). That is, \(w = w_1 \ldots w_n \), with \(w_i \in \Sigma \cup \{\diamond\} \), where \(\Sigma \) is called the alphabet (the set of letters) and \(\diamond \notin \Sigma \) denotes a hole. A non-hole position in \(w \) is called solid. By \(h \) we denote the number of holes in \(w \) and by \(\mu \) we denote the number of blocks of consecutive holes in \(w \).

By \(\uparrow \) we denote the compatibility relation: \(a \uparrow \diamond \) for any \(a \in \Sigma \) and moreover \(\uparrow \) is reflexive. The relation \(\uparrow \) is extended in a natural letter-by-letter manner to partial words of the same length. Note that \(\uparrow \) is not transitive: \(a \uparrow \diamond \) and \(\diamond \uparrow b \) whereas \(a \nleftrightarrow b \) for any letters \(a \neq b \).

Motivation on partial words and their applications can be found in the book [1].

Example 1. Let \(w = a \ b \diamond \diamond \ a \diamond \diamond \ b \ c \ a \ b \diamond \). There are 7 solid positions in \(w \), \(h = 6 \) and \(\mu = 3 \).

By \(w[i, j] \) we denote the subword \(w_i \ldots w_j \). The longest common compatible prefix of two positions \(i, j \), denoted \(lccp(i, j) \), is the largest \(k \) such that \(w[i, i+k-1] \uparrow w[j, j+k-1] \).

Example 2. For the word \(w \) from Example 1, we have \(lccp(2, 9) = 3 \), \(lccp(1, 2) = 0 \), \(lccp(3, 6) = 8 \).

In [2] F. Blanchet-Sadri and J. Lazarow provide a data structure that is constructed in \(O(nh + n) \) time and space and allows computing LCCP for any two positions in \(O(1) \) time. Their data structure is based on suffix dags which are a modification of suffix trees and requires \(\Sigma \) to be a fixed alphabet (i.e. \(|\Sigma| = O(1) \)).

We show a much simpler data structure that requires only \(O(n\mu + n) \) construction time and space and also allows constant-time LCCP-queries. Our algorithm is based on alignment techniques and suffix arrays for full (regular) words and works for any integer alphabet (that is, the letters can be treated as integers in a range of size \(n^{O(1)} \)).

By \(\text{type}(i) \) we mean \(\text{hole} \) or \(\text{solid} \) depending on the type of \(w_i \). We add a sentinel position: \(w_0 = \diamond \) if \(w_1 \) is solid or \(w_0 = a \in \Sigma \) if \(w_1 \) is a hole. A position in \(w \) is called transit if it is a hole directly preceded by a solid position or a solid position directly preceded by a hole, see Fig. 1. Enumerate all transit positions \(T = \{i_1, i_2, \ldots, i_\kappa\} \). Note that \(\kappa \leq 2\mu \).

![Transit positions](image)

Figure 1: Illustration of transit positions, \(\mu = 3 \), \(\kappa = 6 \).
Example 3. Let \(w = a \circ b c a b \circ a \circ b c a b \circ \). Then \(T = \{1, 3, 5, 6, 9, 13\} \), see also Fig. 1.

Our data structure consists of two parts:

1. a data structure of size \(O(n) \) allowing to answer in \(O(1) \) time the longest common prefix, denoted \(\text{lcp}(i, j) \), between any two positions in the full word \(\hat{w} \), which results from \(w \) by treating holes as solid symbols

2. a \(n \times \mu \) table

\[
LCCP[i, j] = \text{lcp}(i, j) \quad \text{for } i \in \{1, \ldots, n\}, j \in T.
\]

For simplicity we assume \(LCCP[j, i] = LCCP[i, j] \) if \(i \in T, j \in \{1, \ldots, n\} \).

The data structure (1) consists of the suffix array for \(\hat{w} \) and Range Minimum Query data structure. A suffix array is composed of three tables: \textit{SUF}, \textit{RANK} and \textit{LCP}. The \textit{SUF} table stores the list of positions in \(\hat{w} \) sorted according to the increasing lexicographic order of suffixes starting at these positions. The \textit{LCP} array stores the lengths of the longest common prefixes of consecutive suffixes in \textit{SUF}. We have \(LCP[1] = -1 \) and, for \(1 < i \leq n \), we have:

\[
LCP[i] = \text{lcp}(\text{SUF}[i - 1], \text{SUF}[i]).
\]

Finally, the \textit{RANK} table is an inverse of the \textit{SUF} table:

\[
\text{SUF}[\text{RANK}[i]] = i \quad \text{for } i = 1, 2, \ldots, n.
\]

All tables comprising the suffix array for a word over a linearly-sortable alphabet can be constructed in \(O(n) \) time \[3, 5, 6\].

The Range Minimum Query data structure (RMQ, in short) is constructed for an array \(A[1, \ldots n] \) of integers. This array is preprocessed to answer the following form of queries: for an interval \([i, j]\) (where \(1 \leq i \leq j \leq n \)), find the minimum value \(A[k] \) for \(i \leq k \leq j \). The best known RMQ data structures have \(O(n) \) preprocessing time and \(O(1) \) query time \[4\].

To compute \(\text{lcp}(i, j) \) for \(i \neq j \) we use a classic combination of the two data structures, see also \[5\]. Let \(x \) be \(\min(\text{RANK}[i], \text{RANK}[j]) \) and \(y \) be \(\max(\text{RANK}[i], \text{RANK}[j]) \). Then:

\[
\text{lcp}(i, j) = \min\{LCP[x + 1], LCP[x + 2], \ldots, LCP[y]\}.
\]

This value can be computed in \(O(1) \) time provided that RMQ data structure for the table \(LCP \) is given.

For \(i \in \{1, \ldots, n\} \) define

\[
\text{NextChange}[i] = \min\{k > 0 : \text{type}(i + k) \neq \text{type}(i)\}.
\]

If no such \(k \) exists then \(\text{NextChange}[i] = n + 1 - i \). Clearly the \textit{NextChange} table can be computed in \(O(n) \) time. We denote

\[
\text{next}(i, j) = \min(\text{NextChange}[i], \text{NextChange}[j]).
\]
Lemma 1. Assume we have the data structures from points (1)-(2) above. Then \(\text{lccp}(i, j) \) for any \(1 \leq i, j \leq n \) can be computed in \(O(1) \) time.

Proof. If any of the positions \(i, j \) belongs to \(\mathcal{T} \) then we simply use the \(\text{LCCP} \) table. Otherwise we have two cases.

If any of the positions \(i, j \) is a hole then the result is \(d + \text{lccp}(i + d, j + d) \), where \(d = \text{next}(i, j) \).

Otherwise, both \(i, j \) are solid. Let \(k = \text{lcp}(i, j) \). The result is \(d + \text{lccp}(i + d, j + d) \) if \(k \geq d \) or \(k \) otherwise.

\[\square \]

\textbf{Algorithm LCCP-Query}(w, i, j)
\begin{align*}
d &:= \text{next}(i, j); k := \text{lcp}(i, j);
\text{if } \text{type}(w_i) \neq \text{solid} \text{ or } \text{type}(w_j) \neq \text{solid} \text{ or } k \geq d \text{ then}
\text{return } d + \text{lccp}(i + d, j + d);
\text{else return } k
\end{align*}

Theorem 2. Let \(w \) be a partial word of length \(n \) over an integer alphabet. We can preprocess \(w \) in \(O(n\mu + n) \) time to enable \(\text{lccp} \)-queries in constant time.

Proof. The data structure (1) for \(\text{lcp} \)-queries is constructed in \(O(n) \) time from the suffix array for \(\hat{w} \) and the RMQ data structure for the \(\text{LCP} \) table. The construction of the data structure (2) is shown in the following \text{LCCP-Preprocess} algorithm. This algorithm is based on the dynamic programming technique and works in \(O(n\mu + n) \) time. Using the two data structures, by Lemma 1 we can answer \(\text{lccp}(i, j) \) queries in \(O(1) \) time. \[\square \]

\textbf{Algorithm LCCP-Preprocess}(w)
\begin{align*}
\text{for } i := 1 \text{ to } n + 1 \text{ do } & \quad \text{LCCP}[i, n + 1] := 0;
\text{foreach } (i, j) : i \in \{1, \ldots, n\}, j \in \mathcal{T} \text{ in decreasing lex. order do } & \quad \text{LCCP}[i, j] := \text{LCCP-Query}(w, i, j);
\end{align*}

Example 4. Let \(w = a b \diamond a \diamond \diamond b c a b \diamond \). The \(\text{LCCP} \) table computed by the algorithm \text{LCCP-Preprocess}(w) is as follows.

\begin{tabular}{c|cccccccccccc}
\hline
j & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
w_j & a & b & \diamond & \diamond & a & \diamond & \diamond & b & c & a & b & \diamond \\
\hline
1 & 13 & 0 & 8 & 1 & 4 & 4 & 7 & 4 & 0 & 0 & 3 & 0 & 1 \\
3 & 8 & 7 & 11 & 6 & 6 & 8 & 2 & 2 & 5 & 2 & 3 & 2 & 1 \\
5 & 4 & 0 & 6 & 5 & 9 & 4 & 4 & 6 & 0 & 0 & 3 & 0 & 1 \\
6 & 4 & 3 & 8 & 5 & 4 & 8 & 3 & 3 & 5 & 4 & 3 & 2 & 1 \\
9 & 0 & 3 & 5 & 1 & 0 & 5 & 2 & 1 & 5 & 0 & 0 & 2 & 1 \\
13 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
References

[1] F. Blanchet-Sadri. *Algorithmic Combinatorics on Partial Words.* Chapman & Hall/CRC Press, Boca Raton, FL, 2008.

[2] F. Blanchet-Sadri and J. Lazarow. Suffix trees for partial words and the longest common compatible prefix problem. In A. H. Dediu, C. Martín-Vide, and B. Truthe, editors, *LATA,* volume 7810 of *Lecture Notes in Computer Science,* pages 165–176. Springer, 2013.

[3] M. Crochemore, C. Hancart, and T. Lecroq. *Algorithms on Strings.* Cambridge University Press, 2007.

[4] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. *SIAM J. Comput.*, 13(2):338–355, 1984.

[5] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, *ICALP,* volume 2719 of *Lecture Notes in Computer Science,* pages 943–955. Springer, 2003.

[6] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In A. Amir and G. M. Landau, editors, *CPM,* volume 2089 of *Lecture Notes in Computer Science,* pages 181–192. Springer, 2001.