ON DEGREES OF BIRATIONAL MAPPINGS

SERGE CANTAT AND JUNYI XIE

ABSTRACT. We prove that the degrees of the iterates \(\deg(f^n) \) of a birational map satisfy \(\liminf(\deg(f^n)) < +\infty \) if and only if the sequence \(\deg(f^n) \) is bounded, and that the growth of \(\deg(f^n) \) cannot be arbitrarily slow, unless \(\deg(f^n) \) is bounded.

1. DEGREE SEQUENCES

Let \(k \) be a field. Consider a projective variety \(X \), a polarization \(H \) of \(X \) (given by hyperplane sections of \(X \) in some embedding \(X \subset \mathbb{P}^N \)), and a birational transformation \(f \) of \(X \), all defined over the field \(k \). Let \(k \) be the dimension of \(X \). The degree of \(f \) with respect to the polarization \(H \) is the integer

\[
\deg_H(f) = (f^*H) \cdot H^{k-1}
\]

where \(f^*H \) is the total transform of \(H \), and \((f^*H) \cdot H^{k-1} \) is the intersection product of \(f^*H \) with \(k-1 \) copies of \(H \). The degree is a positive integer, which we shall simply denote by \(\deg(f) \), even if it depends on \(H \). When \(f \) is a birational transformation of the projective space \(\mathbb{P}^k \) and the polarization is given by \(O_{\mathbb{P}^k}(1) \) (i.e. by hyperplanes \(H \subset \mathbb{P}^k \)), then \(\deg(f) \) is the degree of the homogeneous polynomial formulas defining \(f \) in homogeneous coordinates.

The degrees are submultiplicative, in the following sense:

\[
\deg(f \circ g) \leq c_{X,H} \deg(f) \deg(g)
\]

for some positive constant \(c_{X,H} \) and for every pair of birational transformations. Also, if the polarization \(H \) is changed into another polarization \(H' \), there is a positive constant \(c \) which depends on \(X, H \) and \(H' \) but not on \(f \), such that

\[
\deg_H(f) \leq c \deg_{H'}(f)
\]

We refer to [11, 16, 18] for these fundamental properties.

The degree sequence of \(f \) is the sequence \((\deg(f^n))_{n \geq 0} \); it plays an important role in the study of the dynamics and the geometry of \(f \). There are
DEGREE SEQUENCES

infinitely, but only countably many degree sequences (see [4, 19]); unfortunately, not much is known on these sequences when \(\dim(X) \geq 3 \) (see [3, 10] for \(\dim(X) = 2 \)). In this article, we obtain the following basic results.

- The sequence \((\deg(f^n))_{n \geq 0} \) is bounded if and only if it is bounded along an infinite subsequence (see Theorems A and B in § 2 and § 3).
- If the sequence \((\deg(f^n))_{n \geq 0} \) is unbounded, then its growth cannot be arbitrarily slow; for instance, \(\max_{0 \leq j \leq n} \deg(f^j) \) is asymptotically bounded from below by the inverse of the diagonal Ackermann function when \(X = \mathbb{P}^k \) (see Theorem C in § 4 for a better result).

We focus on birational transformations because a rational dominant transformation which is not birational has a topological degree \(\delta > 1 \), and this forces an exponential growth of the degrees: \(1 < \delta^{1/k} \leq \lim_{n} (\deg(f^n)^{1/n}) \) where \(k = \dim(X) \) (see [11] and [6], pages 120–126).

2. AUTOMORPHISMS OF THE AFFINE SPACE

We start with the simpler case of automorphisms of the affine space; the goal of this section is to introduce a \(p \)-adic method to study degree sequences.

Theorem A (Urech).— Let \(f \) be an automorphism of the affine space \(\mathbb{A}^k \). If \(\deg(f^n) \) is bounded along an infinite subsequence, then it is bounded.

2.1. Urech’s proof. In [19], Urech proves a stronger result. Writing his proof in an intrinsic way, we extend it to affine varieties:

Theorem 2.1. Let \(X = \text{Spec} \, A \) be an irreducible affine variety of dimension \(k \) over the field \(k \). Let \(f : X \to X \) be an automorphism. If \((\deg(f^n)) \) is unbounded there exists \(\alpha > 0 \) such that \(\# \{ n \geq 0 \mid \deg(f^n) \leq d \} \leq \alpha d^k \); in particular, \(\max_{0 \leq j \leq n} \deg(f^j) \) is bounded from below by \((n/\alpha)^{1/k} \).

Here, the degree of \(f^n \), depends on the choice of a projective compactification \(Y \) of \(X \) and an ample line bundle \(L \) on \(Y \). However, by Equation (1.3), the statement of Theorem 2.1 does not depend on the choice of \((Y, L) \). Since automorphisms of \(X \) always lift to its normalization, we may assume that \(X \) is normal. To prove this theorem, we shall introduce another equivalent notion of degree.

2.1.1. Degrees on affine varieties. Consider \(X \) as a subvariety \(X \subseteq \mathbb{A}^N \subseteq \mathbb{P}^N \). Let \(\bar{X} \) be the Zariski closure of \(X \) in \(\mathbb{P}^N \) and \(H_1 := \mathbb{P}^N \setminus \mathbb{A}^N \) be the hyperplane at infinity. Let \(\pi : Y \to \bar{X} \) be its normalization: \(Y \) is a normal projective
compactification of X. Since $\pi: Y \to \tilde{X}$ is finite, there exists $m \geq 1$ such (i) $H := \pi^*(mH|_{\tilde{X}})$ is very ample on Y and (ii) H is projectively normal on Y i.e. for every $n \geq 0$, the morphism $(H^0(Y, H))^\otimes n \to H^0(Y, nH)$ is surjective.

If $P \in A$ is a regular function on Y, we denote by $(P) = (P)_0 - (P)_\infty$ the divisor defined by P on Y, and we define

$$\Delta(P) = \min\{d \geq 0 \mid (P) + dH \geq 0 \text{ on } Y\},$$

$$A_d = \{P \in A \mid \Delta(P) \leq d\}, \quad (\forall d \geq 0).$$

Then $A = \bigcup_{d \geq 0} A_d$. Since $Y \setminus X$ is the support of H, we get an isomorphism $i_n : H^0(Y, nH) \to A_n \subseteq A$ for every $n \geq 0$. Thus, A_1 generates A and the morphism $A_1^\otimes n \to A_n$ is surjective. Now we define

$$\deg^H(f) = \min\{m \geq 0 \mid \Delta(f^*P) \leq m \text{ for every } P \in A_1\}. \quad (2.3)$$

For every $P \in A_n$, we can write $P = \sum_{i=1}^l g_{i,j} \cdots g_{1,n}$ for some $g_{i,j} \in A_1$. We get $f^*P = \sum_{i=1}^l f^*g_{i,j} \cdots f^*g_{1,n} \in A_{\deg^H(f)n}$ and

$$\Delta(f^*P) \leq \deg^H(f)\Delta(P). \quad (2.4)$$

Since A is generated by A_1, we get an embedding

$$\text{End}(A) \subseteq \text{Hom}_k(A_1, A) = \bigcup_{d \geq 1} \text{Hom}_k(A_1, A_d). \quad (2.5)$$

Set $\text{End}(A)_d = \text{End}(A) \cap \text{Hom}_k(A_1, A_d)$. For any automorphism $f: X \to X$, $\deg^H(f) \leq d$ if and only if $f \in \text{End}(A)_d$. By Riemann-Roch theorem, there exists $\gamma > 0$ such that $\dim A_n \leq \gamma d^k$, and this gives the upper bound

$$\dim \text{End}(A)_d \leq \text{Hom}_k(A_1, A_d) \leq (\gamma d^k) \dim A_1. \quad (2.6)$$

The following proposition, proved in the Appendix, shows that this new degree $\deg^H(f)$ is equivalent to the degree $\deg_H(f)$ introduced in Section 1.

Proposition 2.2. For every automorphism $f \in \text{Aut}(X)$ we have

$$\frac{1}{k} \deg^H(f) \leq \frac{1}{(H^k)} \deg_H(f) \leq \deg^H(f).$$

2.1.2. Proof of Theorem 2.1. By Proposition 2.2, the initial notion of degree can be replaced by \deg^H. Let γ be as in Equation (2.2). Set $\ell = (\gamma d^k) \dim A_1 + 1$, and assume that $\deg^H(f^{n_i}) \leq d$ for some sequence of positive integers $n_1 < n_2 < \ldots < n_\ell$. Each $(f^*)^{n_i}$ is in $\text{End}(A)_d$ and, because $\ell > \dim \text{End}(A)_d$, there is a non-trivial linear relation between the $(f^*)^{n_i}$ in the vector space $\text{End}(A)_d$:

$$(f^*)^n = \sum_{m=1}^{n-1} a_m (f^*)^m \quad (2.7)$$
for some integer \(n \leq n_\ell \) and some coefficients \(a_m \in k \). Then, the subalgebra \(k[f^\ast] \subseteq \text{End}(A) \) is of finite dimension and \(k[f^\ast] \subseteq E_B \) for some \(B \geq 0 \). This shows that the sequence \(\langle \deg^H(f^n) \rangle_{N \geq 0} \) is bounded.

Thus, if we set \(\alpha = \gamma \dim A_1 \), and if the sequence \(\langle \deg^H(f^n) \rangle \) is not bounded, we obtain \#\{ \(n \geq 0 \) \: \(\deg^H(f^n) \leq d \} \leq \alpha d^k \). This proves the first assertion of the theorem; the second follows easily.

2.2. The \(p \)-adic argument. Let us give another proof of Theorem A when \(\text{char}(k) = 0 \), which will be generalized in § 3 for birational transformations.

2.2.1. Tate diffeomorphisms. Let \(p \) be a prime number. Let \(K \) be a field of characteristic 0 which is complete with respect to an absolute value \(| \cdot |\) satisfying \(|p| = 1/p\); such an absolute value is automatically ultrametric (see [13], Ex. 2 and 3, Chap. I.2). Let \(R = \{ x \in K ; |x| \leq 1 \} \) be the valuation ring of \(K \); in the vector space \(K^k \), the unit polydisk is the subset \(U = R^k \).

Fix a positive integer \(k \), and consider the ring \(R[x] = R[x_1, \ldots, x_k] \) of polynomial functions in \(k \) variables with coefficients in \(R \). For \(f \) in \(R[x] \), define the norm \(\| f \| \) to be the supremum of the absolute values of the coefficients of \(f \):

\[
\| f \| = \sup_{I} |a_I|
\]

where \(f = \sum_{I=(i_1, \ldots, i_k)} a_I x^I \). By definition, the Tate algebra \(R(x) \) is the completion of \(R[x] \) with respect to this norm. It coincides with the set of formal power series \(f = \sum_{I} a_I x^I \) converging (absolutely) on the closed polydisk \(R^k \). Moreover, the absolute convergence is equivalent to \(|a_I| \to 0 \) as \(\text{length}(I) \to \infty \).

Every element \(g \) in \(R(x)^k \) determines a Tate analytic map \(g : U \to U \).

For \(f \) and \(g \) in \(R(x) \) and \(c \) in \(R_+ \), the notation \(f \in p^c R(x) \) means \(\| f \| \leq |p|^c \) and the notation \(f \equiv g \mod(p^c) \) means \(\| f - g \| \leq |p|^c \); we then extend such notations component-wise to \((R(x))^m \) for all \(m \geq 1 \).

For indeterminates \(x = (x_1, \ldots, x_k) \) and \(y = (y_1, \ldots, y_m) \), the composition \(R(y) \times R(x)^m \to R(x) \) is well defined, and coordinatewise we obtain

\[
R(y)^n \times R(x)^m \to R(x)^n.
\]

When \(m = n = k \), we get a semigroup \(R(x)^k \). The group of (Tate) analytic diffeomorphisms of \(U \) is the group of invertible elements in this semigroup; we denote it by \(\text{Diff}^\text{an}(U) \). Elements of \(\text{Diff}^\text{an}(U) \) are bijective transformations \(f : U \to U \) given by \(f(x) = (f_1, \ldots, f_k)(x) \) where each \(f_i \) is in \(R(x) \) with an inverse \(f^{-1} : U \to U \) that is also defined by power series in the Tate algebra.

The following result is due to Jason Bell and Bjorn Poonen (see [1, 17]).
Theorem 2.3. Let \(f \) be an element of \(R[x]^k \) with \(f \equiv \text{id} \mod (p^c) \) for some real number \(c > 1/(p-1) \). Then \(f \) is a Tate diffeomorphism of \(U = R^k \) and there exists a unique Tate analytic map \(\Phi: R \times U \to U \) such that

1. \(\Phi(n, x) = f^n(x) \) for all \(n \in \mathbb{Z} \);
2. \(\Phi(s+t, x) = \Phi(s, \Phi(t, x)) \) for all \(t, s \in R \).

2.2.2. Second proof of Theorem A. Denote by \(S \) the finite set of all the coefficients that appear in the polynomial formulas defining \(f \) and \(f^{-1} \). Let \(R_S \subseteq k \) be the ring generated by \(S \) over \(\mathbb{Z} \), and let \(K_S \) be its fraction field:

\[
\mathbb{Z} \subset R_S \subset K_S \subset k. \tag{2.10}
\]

Since \(\text{char}(k) = 0 \), there exists a prime \(p > 2 \) such that \(R_S \) embeds into \(\mathbb{Z}_p \) (see [15], §4 and 5, and [1], Lemma 3.1). We apply this embedding to the coefficients of \(f \) and get an automorphism of \(\mathbb{A}^k_p \) which is defined by polynomial formulas in \(\mathbb{Z}_p[x_1, \ldots, x_k] \); for simplicity, we keep the same notation \(f \) for this automorphism (embedding \(R_S \) in \(\mathbb{Z}_p \) does not change the value of the degrees \(\deg(f^n) \)). Since \(f \) and \(f^{-1} \) are polynomial automorphisms with coefficients in \(\mathbb{Z}_p \), they determine elements of \(\text{Diff}^{an}(U) \), the group of analytic diffeomorphisms of the polydisk \(U = \mathbb{Z}_p^k \).

Reducing the coefficients of \(f \) and \(f^{-1} \) modulo \(p^2 \mathbb{Z}_p \), one gets two permutations of the finite set \(\mathbb{A}^k_p(\mathbb{Z}_p/p^2\mathbb{Z}) \) (equivalently, \(f \) and \(f^{-1} \) permute the balls of \(U = \mathbb{Z}_p^k \) of radius \(p^{-2} \), and these balls are parametrized by \(\mathbb{A}^k_p(\mathbb{Z}_p/p^2\mathbb{Z}) \); see [7]). Thus, there exists a positive integer \(m \) such that \(f^m(0) \equiv 0 \mod (p^2) \). Taking some further iterate, we may also assume that the differential \(D_{f^m} \) satisfies \(D_{f^m} \equiv \text{id} \mod (p) \). We fix such an integer \(m \) and replace \(f \) by \(f^m \). The following lemma follows from the submultiplicativity of degrees (see Equation (1.2) in Section 1). It shows that replacing \(f \) by \(f^m \) is harmless if one wants to bound the degrees of the iterates of \(f \).

Lemma 2.4. If the sequence \(\deg(f^{mn}) \) is bounded for some \(m > 0 \), then the sequence \(\deg(f^n) \) is bounded too.

Denote by \(x = (x_1, \ldots, x_k) \) the coordinate system of \(\mathbb{A}^k \), and by \(m_p \) the multiplication by \(p \): \(m_p(x) = px \). Change \(f \) into \(g := m_p^{-1} \circ f \circ m_p \); then \(g \equiv \text{id} \mod (p) \) in the sense of Section 2.2.1. Since \(p \geq 3 \), Theorem 2.3 gives a Tate analytic flow \(\Phi: \mathbb{Z}_p \times \mathbb{A}^k_p(\mathbb{Z}_p) \to \mathbb{A}^k_p(\mathbb{Z}_p) \) which extends the action of \(g \): \(\Phi(n, x) = g^n(x) \) for every integer \(n \in \mathbb{Z} \). Since \(\Phi \) is analytic, one can write

\[
\Phi(t, x) = \sum_j A_j(t)x^j \tag{2.11}
\]
where J runs over all multi-indices $(j_1, \ldots, j_k) \in (\mathbb{Z}_{\geq 0})^k$ and each A_J defines a p-adic analytic curve $Z_p \rightarrow \mathbb{A}^k(\mathbb{Q}_p)$. By submultiplicativity of the degrees, there is a constant $C > 0$ such that $\deg(g^n) \leq CB^m$. Thus, we obtain $A_J(n_i) = 0$ for all indices i and all multi-indices J of length $|J| > CB^m$. The A_J being analytic functions of $t \in Z_p$, the principle of isolated zeros implies that $A_J = 0$ in $Z_p \langle t \rangle$, $\forall J$ with $|J| > CB^m$. (2.12)

Thus, $\Phi(t, x)$ is a polynomial automorphism of degree $\leq CB^m$ for all $t \in Z_p$, and $g^n(x) = \Phi(n, x)$ has degree at most CB^m for all n. By Lemma 2.4, this proves that $\deg(f^n)$ is a bounded sequence.

3. **BIRATIONAL TRANSFORMATIONS**

Theorem B.— Let k be a field of characteristic 0. Let X be a projective variety and $f: X \dashrightarrow X$ be a birational transformation of X, both defined over k. If the sequence $(\deg(f^n))_{n \geq 0}$ is not bounded, then it goes to $+\infty$ with n:

$$\liminf_{n \rightarrow +\infty} \deg(f^n) = +\infty.$$

This extends Theorem A to birational transformations. With a theorem of Weil, we get: if f is a birational transformation of the projective variety X, over an algebraically closed field of characteristic 0, and if the degrees of its iterates are bounded along an infinite subsequence f^{n_i}, then there exist a birational map $\psi: Y \dashrightarrow X$ and an integer $m > 0$ such that $f_Y := \psi^{-1} \circ f \circ \psi$ is in $\text{Aut}(Y)$, and f_Y^m is in the connected component $\text{Aut}(Y)^0$ (see [5] and references therein).

Urech’s argument does not apply to this context; the basic obstruction is that rational transformations of \mathbb{A}^k_k of degree $\leq B$ generate an infinite dimensional k-vector space for every $B \geq 1$ (the maps $z \in \mathbb{A}^1_k \mapsto (z - a)^{-1}$ with $a \in k$ are linearly independent); looking back at the proof in Section 2.1.2, the problem is that the field of rational functions on an affine variety X is not finitely generated as a k-algebra. We shall adapt the p-adic method described in Section 2.2.2. In what follows, f and X are as in Theorem B; we assume, without loss of generality, that $k = \mathbb{C}$ and X is smooth. We suppose that there is an infinite sequence of integers $n_1 < \ldots < n_j < \ldots$ and a number B such that $\deg(f^{n_j}) \leq B$ for all j. We fix a finite subset $S \subset \mathbb{C}$ such that X, f and f^{-1} are defined by equations and formulas with coefficients in S, and we embed the ring $R_S \subset \mathbb{C}$ generated by S in some Z_p, for some prime number $p > 2$. According to [7, Section 3], we may assume that X and f have good reduction modulo p.
3.1. **The Hrushovski’s theorem and \(p \)-adic polydisks.** According to a theorem of Hrushovski (see [12]), there is a periodic point \(z_0 \) of \(f \) in \(X(\mathbf{F}) \) for some finite field extension \(\mathbf{F} \) of the residue field \(\mathbf{F}_p \), the orbit of which does not intersect the indeterminacy points of \(f \) and \(f^{-1} \). If \(\ell \) is the period of \(z_0 \), then \(f^\ell(z_0) = z_0 \) and \(Df^\ell_{z_0} \) is an element of the finite group \(\text{GL}((TX_{\mathbf{F}_q})_{z_0}) \simeq \text{GL}(k, \mathbf{F}_q) \). Thus, there is an integer \(m > 0 \) such that \(f^m(z_0) = z_0 \) and \(Df^m_{z_0} = \text{Id} \).

Replace \(f \) by its iterate \(g = f^m \). Then, \(g \) fixes \(z_0 \) in \(X(\mathbf{F}) \), \(g \) is an isomorphism in a neighborhood of \(z_0 \), and \(Dg_{z_0} = \text{Id} \). According to [2] and [7, Section 3], this implies that there is

- a finite extension \(K \) of \(\mathbf{Q}_p \), with valuation ring \(R \subset K \);

- a point \(z \) in \(X(K) \) and a polydisk \(V_z \simeq R^k \subset X(K) \) which is \(g \)-invariant and such that \(g|_{V_z} \equiv \text{Id} \mod (p) \) (in the coordinate system \((x_1, \ldots, x_k)\) of the polydisk).

When the point \(z_0 \) is in \(X(\mathbf{F}_p) \) and is the reduction of a point \(z \in X(\mathbf{Z}_p) \), the polydisk \(V_z \) is the set of points \(w \in X(\mathbf{Z}_p) \) with \(|z - w| < 1 \); one identifies this polydisk to \(U = (\mathbf{Z}_p)^k \) via some \(p \)-adic analytic diffeomorphism \(\varphi: U \to V_z \); changing \(\varphi \) into \(\varphi \circ m_p \) if necessary, we obtain \(g|_{V_z} \equiv \text{Id} \mod (p) \) (see Section 2.2.2 and [7, Section 3.2.1]). In full generality, a finite extension \(K \) of \(\mathbf{Q}_p \) is needed because \(z_0 \) is a point in \(X(\mathbf{F}) \) for some extension \(\mathbf{F} \) of \(\mathbf{F}_p \).

3.2. **Controlling the degrees.** As in Section 2.2.1, denote by \(U \) the polydisk \(R^k \simeq V_z \); thus, \(U \) is viewed as the polydisk \(R^k \) and also as a subset of \(X(K) \). Applying Theorem 2.3 to \(g \), we obtain a \(p \)-adic analytic flow

\[
\Phi: R \times U \to U, \quad (t, x) \mapsto \Phi(t, x)
\]

(3.1)

such that \(\Phi(n, x) = g^n(x) \) for every integer \(n \). In other words, the action of \(g \) on \(U \) extends to an analytic action of the additive compact group \((R, +)\).

Let \(\pi_1: X \times X \to X \) denote the projection onto the first factor. Denote by \(\text{Bir}_D(X) \) the set of birational transformations of \(X \) of degree \(D \); once birational transformations are identified to their graphs, this set becomes naturally a finite union of irreducible, locally closed algebraic subsets in the Hilbert scheme of \(X \times X \) (see [5], Section 2.2, and references therein). Taking a subsequence, there is a positive integer \(D \), an irreducible component \(B_D \) of \(\text{Bir}_D(X) \), and a strictly increasing, infinite sequence of integers \((n_j)\) such that

\[
g^{n_j} \in B_D
\]

(3.2)

for all \(j \). Denote by \(\overline{B_D} \) the Zariski closure of \(B_D \) in the Hilbert scheme of \(X \times X \). To every element \(h \in \overline{B_D} \) corresponds a unique algebraic subset \(G_h \) of
Given any subset $t \subseteq h$ hence, Lemma 3.1. There is a finite subset $E \subset U \subset X(K)$ with the following property. Given any subset E of $U \times U$ with $\pi_1(E) = E$, there is at most one element $h \in \overline{B_D}$ such that $\bar{E} \subset G_h$.

Fix such a set E, and order it to get a finite list $E = (x_1, \ldots, x_{\ell_0})$ of elements of U. Let $E' = (x_1, \ldots, x_{\ell_0}, x_{\ell_0+1}, \ldots, x_\ell)$ be any list of elements of U which extends E. For every element h in $\overline{B_D}$, the variety G_h determines a correspondence $G_h \subset X \times X$. The subset of elements $(h, (x_i, y_i)_{1 \leq i \leq \ell})$ in $\overline{B_D} \times (X \times X)^{\ell}$ defined by the incidence relation

$$(3.3) \quad (x_i, y_i) \in G_h$$

for every $1 \leq i \leq \ell$ is an algebraic subset of $\overline{B_D} \times (X \times X)^{\ell}$. Add one constraint, namely that the first projection $(x_i)_{1 \leq i \leq \ell}$ coincides with E', and project the resulting subset on $(X \times X)^{\ell}$: we get a subset $G(E')$ of $(X \times X)^{\ell}$. Then, define a p-adic analytic curve $\Lambda: R \to (X \times X)^{\ell}$ by

$$(3.4) \quad \Lambda(t) = (x_i, \Phi(t, x_i))_{1 \leq i \leq \ell}.$$

If $t = n_j$, g^{n_j} is an element of B_D and $\Lambda(n_j)$ is contained in the graph of g^{n_j}; hence, $\Lambda(n_j)$ is an element of $G(E')$. By the principle of isolated zeros, the analytic curve $t \mapsto \Lambda(t) \subset (X \times X)^{\ell}$ is contained in $G(E')$ for all $t \in R$. Thus, for every t there is an element $h_t \in \overline{B_D}$ such that $\Lambda(t)$ is contained in the subset $G_{h_t}^{\ell}$ of $(X \times X)^{\ell}$. From the choice of E and the inclusion $E \subset E'$, we know that h_t does not depend on E'. Thus, the graph of $\Phi(t, \cdot)$ coincides with the intersection of G_{h_t} with $U \times U$. This implies that the graph of $g^n(\cdot) = \Phi(n, \cdot)$ coincides with G_{h_n}, and that the degree of g^n is at most D for all values of n.

4. Lower bounds on degree growth

We now prove that the growth of $(\deg(f^n))$ can not be arbitrarily slow unless $(\deg(f^n))$ is bounded. For simplicity, we focus on birational transformations of the projective space; there is no restriction on the characteristic of k.

4.1. A family of integer sequences. Fix two positive integers k and d; k will be the dimension of \mathbb{P}_k, and d will be the degree of $f: \mathbb{P}^k \to \mathbb{P}^k$. Set

$$m = (d-1)(k+1).$$

(4.1)
Then, consider an auxiliary integer $D \geq 1$, which will play the role of the degree of an effective divisor in the next paragraphs, and define

$$q = (dD + 1)^m.$$ (4.2)

Thus, q depends on k, d and D because m depends on k and d. Then, set

$$a_0 = \binom{k + D}{k} - 1, \quad b_0 = 1, \quad c_0 = D + 1.$$ (4.3)

Starting from the triple (a_0, b_0, c_0), we define a sequence $((a_j, b_j, c_j))_{j \geq 0}$ inductively by

$$(a_{j+1}, b_{j+1}, c_{j+1}) = (a_j, b_j - 1, q c_j^2)$$ (4.4)

if $b_j \geq 2$, and by

$$(a_{j+1}, b_{j+1}, c_{j+1}) = (a_j - 1, q c_j^2, q c_j^2) = (a_j - 1, c_{j+1}, c_{j+1})$$ (4.5)

if $b_j = 1$. By construction, $(a_1, b_1, c_1) = (a_0 - 1, q c_0^2, q c_0^2)$.

Define $\Phi : \mathbb{Z}^+ \to \mathbb{Z}^+$ by

$$\Phi(c) = q c^2.$$ (4.6)

Lemma 4.1. Define the sequence of integers $(F_i)_{i \geq 1}$ recursively by $F_1 = q(D + 1)^2$ and $F_{i+1} = \Phi^{F_i}(F_i)$ for $i \geq 1$ (where Φ^{F_i} is the F_i-iterate of Φ). Then

$$(a_1 + F_1 + \cdots + F_i, b_1 + F_1 + \cdots + F_i, c_1 + F_1 + \cdots + F_i) = (a_0 - i - 1, F_{i+1}, F_{i+1}).$$

The proof is straightforward. Now, define $S : \mathbb{Z}^+ \to \mathbb{Z}^+$ as the sum

$$S(j) = 1 + F_1 + F_2 + \cdots + F_j$$ (4.7)

for all $j \geq 1$; it is increasing and goes to $+\infty$ extremely fast with j. Then, set

$$\chi_{d,k}(n) = \max \left\{ D \geq 0 \mid S\left(\binom{k + D}{k} - 2 \right) < n \right\}. $$ (4.8)

Lemma 4.2. The function $\chi_{d,k} : \mathbb{Z}^+ \to \mathbb{Z}^+$ is non-decreasing and goes to $+\infty$ with n.

Remark 4.3. The function S is primitive recursive (see [9], Chapters 3 and 13). In other words, S is obtained from the basic functions (the zero function, the successor $s(x) = x + 1$, and the projections $(x_i)_{1 \leq i \leq m} \to x_i$) by a finite sequence of compositions and recursions. Equivalently, there is a program computing S, all of whose instructions are limited to (1) the zero initialization $V \leftarrow 0$, (2) the increment $V \leftarrow V + 1$, (3) the assignment $V \leftarrow V'$, and (4) loops of definite length. Writing such a program is an easy exercise. Now, consider the diagonal Ackermann function $A(n)$ (see [9], Section 13.3). It grows asymptotically
faster than any primitive recursive function; hence, the inverse of the Ackermann diagonal function $\alpha(n) = \max\{D \geq 0 \mid \text{Ack}(D) \leq n\}$ is, asymptotically, a lower bound for $\chi_{d,k}(n)$. Showing that $\chi_{d,k}$ is in the L_6 hierarchy of [9], Chapter 13, one gets an asymptotic lower bound by the inverse of the function f_7 of [9], independent of the values of d and k.

4.2. Statement of the lower bound. We can now state the result that will be proved in the next paragraphs.

Theorem C.– Let f be a birational transformation of the complex projective space \mathbb{P}_k^d of degree d. If the sequence $(\max_{0 \leq j \leq n}(\deg(f^j)))_{n \geq 0}$ is unbounded, then it is bounded from below by the sequence of integers $(\chi_{d,k}(n))_{n \geq 0}$.

Remark 4.4. There are infinitely, but only countably many sequences of degrees $(\deg(f^n))_{n \geq 0}$ (see [4, 19]). Consider the countably many sequences

$$\left(\max_{0 \leq j \leq n}(\deg(f^j))\right)_{n \geq 0} \quad (4.9)$$

restricted to the family of birational maps for which $(\deg(f^n))$ is unbounded. We get a countable family of non-decreasing, unbounded sequences of integers. Let $(u_i)_{i \in \mathbb{Z}_{\geq 0}}$ be any countable family of such sequences of integers $(u_i(n))$. Define $w(n)$ as follows. First, set $v_j = \min\{u_0, u_1, \ldots, u_j\}$; this defines a new family of sequences, with the same limit $+\infty$, but now $v_j(n) \geq v_{j+1}(n)$ for every pair (j, n). Then, set $m_0 = 0$, and define m_{n+1} recursively to be the first positive integer such that $v_{n+1}(m_{n+1}) \geq v_n(m_n) + 1$. We have $m_{n+1} \geq m_n + 1$ for all $n \in \mathbb{Z}_{\geq 0}$. Set $w(n) := v_{r_n}(m_{r_n})$ where r_n is the unique non-negative integer satisfying $m_{r_n} \leq n \leq m_{r_n} + 1$. By construction, $w(n)$ goes to $+\infty$ with n and $u_i(n)$ is asymptotically bounded from below by $w(n)$.

In Theorem C, the result is more explicit. Firstly, the lower bound is explicitly given by the sequence $(\chi_{d,k}(n))_{n \geq 0}$. Secondly, the lower bound is not asymptotic: it works for every value of n. In particular, if $\deg(f^j) < \chi_{d,k}(n)$ for $0 \leq j \leq n$ and $\deg(f) = d$, then the sequence $(\deg(f^n))$ is bounded.

4.3. Divisors and strict transforms. To prove Theorem C, we consider the action of f by strict transform on effective divisors. As above, $d = \deg(f)$ and $m = (d-1)(k+1)$ (see Section 4.1).
4.3.1. **Exceptional locus.** Let \(X \) be a smooth projective variety and \(\pi_1, \pi_2 : X \to \mathbb{P}^k \) be two birational morphisms such that \(f = \pi_2 \circ \pi_1^{-1} \); then, consider the exceptional locus \(\text{Exc}(\pi_2) \subset X \), project it by \(\pi_1 \) into \(\mathbb{P}^k \), and list its irreducible components of codimension 1: we obtain a finite number

\[
E_1, \ldots, E_{m(f)}
\]

of irreducible hypersurfaces, contained in the zero locus of the jacobian determinant of \(f \). Since this critical locus has degree \(m \), we obtain:

\[
m(f) \leq m, \quad \text{and} \quad \deg(E_i) \leq m \quad (\forall i \geq 1).
\]

4.3.2. **Effective divisors.** Denote by \(M \) the semigroup of effective divisors of \(\mathbb{P}^k \). There is a partial ordering \(\leq \) on \(M \), which is defined by \(E \leq E' \) if and only if the divisor \(E' - E \) is effective.

We denote by \(\text{deg} : M \to \mathbb{Z}_{\geq 0} \) the degree function. For every degree \(D \geq 0 \), we denote by \(M_D \) the set \(\mathbb{P}(H^0(\mathbb{P}^k, \mathcal{O}_{\mathbb{P}^k}(D))) \) of effective divisors of degree \(D \); thus, \(M \) is the disjoint union of all the \(M_D \), and each of these components will be endowed with the Zariski topology of \(\mathbb{P}(H^0(\mathbb{P}^k, \mathcal{O}_{\mathbb{P}^k}(D))) \). The dimension of \(M_D \) is equal to the integer \(a_0 = a_0(D, k) \) from Section 4.1:

\[
\dim(M_D) = \binom{k + D}{k} - 1.
\]

Let \(G \subset M \) be the semigroup generated by the \(E_i \):

\[
G = \bigoplus_{i=1}^{m(f)} \mathbb{Z}_{\geq 0} E_i.
\]

The elements of \(G \) are the effective divisors which are supported by the exceptional locus of \(f \). For every \(E \in G \), there is a translation operator \(T_E : M \to M \), defined by \(T_E : E' \mapsto E + E' \); it restricts to a linear projective embedding of the projective space \(M_D \) into the projective space \(M_{D + \text{deg}(E)} \). We define

\[
M_D^\circ = M_D \setminus \bigcup_{E \in G \setminus \{0\}, \text{deg}(E) \leq D} T_E(M_{D - \text{deg}(E)}).
\]

Thus, \(M_D^\circ \) is the complement in \(M_D \) of finitely many proper linear projective subspaces. Also, \(M_D^\circ_0 = M_D^\circ \) is a point and \(M_D^\circ_1 \) is obtained from \(M_D^\circ_0 = (\mathbb{P}^k)^\vee \) by removing finitely many points, corresponding to the \(E_i \) of degree 1 (the hyperplanes contracted by \(f \)). Set \(M^\circ = \bigcup_{D \geq 0} M_D^\circ \). This is the set of effective divisors without any component in the exceptional locus of \(f \). The inclusion of \(M^\circ \) in \(M \) will be denoted by \(\iota : M^\circ \to M \). There is a natural projection \(\pi_G : M \to G \); namely, \(\pi_G(E) \) is the maximal element such that \(E - \pi_G(E) \) is effective.
We denote by $\pi: M \to M^o$ the projection $\pi = \text{id} - \pi_G$; this homomorphism removes the part of an effective divisor E which is supported on the exceptional locus of f.

Remark 4.5. The restriction of the map π to the projective space M_D is piecewise linear, in the following sense. Consider the subsets $U_{E,D}$ of M_D which are defined for every $E \in G$ with $\deg(E) \leq D$ by

$$U_{E,D} = T_E(M_D - \deg(E)) \setminus \bigcup_{E' > E, E' \in G, \deg(E') \leq D} T_{E'}(M_D - \deg(E')).$$

They define a stratification of M_D by (open subsets of) linear subspaces, and π coincides with the linear map inverse of T_E on each $U_{E,D}$. Moreover, $\pi_\circ Z$ is closed for any closed subset $Z \subseteq M_D$.

We say that a scheme theoretic point $x \in M$ (resp. M^o) is irreducible if the divisor of P_k corresponding to x is irreducible. In other words, x is irreducible, if a general closed point $y \in \{x\} \subseteq M$ is irreducible.

4.3.3. Strict transform. First, we consider the total transform $f^*: M \to M$, which is defined by $f^*(E) = (\pi_1)_1\pi_2^*(E)$ for every divisor $E \in M$. This is a homomorphism of semigroups; it is injective on non-closed irreducible points. Let $[x_0, \ldots, x_k]$ be homogeneous coordinates on \mathbb{P}^k. If E is defined by the homogeneous equation $P = 0$, then $f^*(E)$ is defined by $P \circ f = 0$; thus, f^* induces a linear projective embedding of M_D into $M_{D'}$ for every D.

Then, we denote by $f^\circ: M^o \to M^o$ the strict transform. It is defined by

$$f^\circ(E) = (\pi_\circ \circ f^* \circ \iota)(E).$$

This is a homomorphism of semigroups. If $x \in M$ is an irreducible point, its total transform $f^*(x)$ is not necessarily irreducible, but $f^\circ(x)$ is irreducible.

In general, $(f^\circ)^n \neq (f^n)^\circ$, but for non-closed irreducible point $x \in M$, we have $(f^\circ)^n(x) = (f^n)^\circ(x)$ for $n \geq 0$. Indeed, a non-closed irreducible point $x \in M$ can be viewed as an irreducible hypersurface on X which is defined over some transcendental extension of k, but not over k. Then $f^\circ(x)$ is the unique irreducible component E of $f^*(x)$, on which $f|_E$ is birational to its image. (Note that when k is uncountable, one can also work with very general points of M_D for every $D \geq 1$, instead of irreducible, non-closed points).

4.4. Proof of Theorem C. Let η be the generic point of M_1° (η corresponds to a generic hyperplane of \mathbb{P}^k_η). Note that η is non-closed and irreducible. The
degree of $f^*(\eta)$ is equal to the degree of f, and since η is generic, $f^*(\eta)$ coincides with $f^\circ(\eta)$. Thus, $\deg(f) = \deg(f^\circ(\eta))$ and more generally
\[
\deg(f^n) = \deg((f^\circ)^n\eta) \quad (\forall n \geq 1).
\] (4.16)

Fix an integer $D \geq 0$. Write $M^\circ_{\leq D}$ for the disjoint union of the $M^\circ_{D'}$ with $D' \leq D$, and define recursively $Z_D(0) = M^\circ_{\leq D}$ and
\[
Z_D(i + 1) = \{ E \in Z_D(i) \mid f^\circ(E) \in Z_D(i) \}
\] (4.17)
for $i \geq 0$. A divisor $E \in M^\circ_{\leq D}$ is in $Z_D(i)$ if its strict transform $f^\circ(E)$ is of degree $\leq D$, and $f^\circ(f^\circ(E))$ is also of degree $\leq D$, up to $(f^\circ)^i(E)$ which is also of degree at most D.

Let us describe $Z_D(i + 1)$ more precisely. For each i, and each $E \in G$ of degree $\deg(E) \leq dD$ consider the subset $T_E(\{Z_D(i)\}) \cap M_{dD}$; this is a subset of M_{dD} which is made of divisors W such that $\pi_0(W)$ is contained in $Z_D(i)$, and the union of all these subsets when E varies is exactly the set of points W in M_{dD} with a projection $\pi_0(W)$ in $Z_D(i)$. Thus, we consider
\[
(f^*)^{-1}(T_E(\{Z_D(i)\})) = \{ V \in M_{\leq D} \mid f^*(V) \in T_E(\{Z_D(i)\}) \}.
\] (4.18)
These sets are closed subsets of $M_{\leq D}$, and
\[
Z_D(i + 1) = Z_D(i) \bigcap \bigcup_{E \in G, \deg(E) \leq dD} \pi_0\left((f^*)^{-1}(T_E(\{Z_D(i)\}))\right).
\] (4.19)
Since $Z_D(0)$ is closed in $M^\circ_{\leq D}$ and π_0 is closed on $M_{\leq D}$, by induction, $Z_D(i)$ is closed for all $i \geq 0$. The subsets $Z_D(i)$ form a decreasing sequence of Zariski closed subsets (in the disjoint union $M^\circ_{\leq D}$ of the $M^\circ_{D'}$, $D' \leq D$). The strict transform f° maps $Z_D(i + 1)$ into $Z_D(i)$. By Noetherianity, there exists a minimal integer $\ell(D) \geq 0$ such that
\[
Z_D(\ell(D)) = \bigcap_{i \geq 0} Z_D(i);
\] (4.20)
we denote this subset by $Z_D(\infty) = Z_D(\ell(D))$. By construction, $Z_D(\infty)$ is stable under the operator f°; more precisely, $f^\circ(Z_D(\infty)) = Z_D(\infty) = (f^\circ)^{-1}(Z_D(\infty))$.

Let $\tau : \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ be a lower bound for the inverse function of ℓ:
\[
\ell(\tau(n)) \leq n \quad (\forall n \geq 0).
\] (4.21)
Assume that $\max\{\deg(f^m) \mid 0 \leq m \leq n_0\} \leq \tau(n_0)$ for some $n_0 \geq 1$. Then $\deg((f^\circ)^i(\eta)) \leq \tau(n_0)$ for every integer i between 0 and n_0; this implies that η is in the set $Z_{\tau(n_0)}(\ell(\tau(n_0))) = Z_{\tau(n_0)}(\infty)$, so that the degree of $(f^\circ)^m(\eta)$ is
bounded from above by \(\tau(n_0) \) for all \(m \geq 0 \). From Equation (4.16) we deduce that the sequence \((\deg(f^n))_{m \geq 0}\) is bounded. This proves the following lemma.

Lemma 4.6. Let \(\tau \) be a lower bound for the inverse function of \(\ell \). If
\[
\max \{\deg(f^m) \mid 0 \leq m \leq n_0\} \leq \tau(n_0)
\]
for some \(n_0 \geq 1 \), then the sequence \((\deg(f^n))_{n \geq 0}\) is bounded by \(\tau(n_0) \).

So, to conclude, we need to compare \(\ell : \mathbb{Z}_{\geq 0} \to \mathbb{Z}^+ \) to the function \(S : \mathbb{Z}_{\geq 0} \to \mathbb{Z}^+ \) of paragraph 4.1 (recall that \(S \) depends on the parameters \(k = \dim(\mathbb{P}^k) \) and \(d = \deg(f) \) and that \(\ell \) depends on \(f \)). Now, write \(Z'_D(i) = Z_D(i) \setminus Z_D(\infty) \), and note that it is a strictly decreasing sequence of open subsets of \(Z_D(i) \) with \(Z'_D(j) = \emptyset \) for all \(j \geq \ell(D) \). We shall say that a closed subset of \(M_{\leq D} \setminus Z_D(\infty) \) for the Zariski topology is \textbf{piecewise linear} if all its irreducible components are equal to the intersection of \(M_{\leq D} \setminus Z_D(\infty) \) with a linear projective subspace of some \(M_D \), \(D' \leq D \). We note that the intersection of two irreducible linear projective subspaces is still an irreducible linear projective subspace.

Let \(\text{Lin}(a,b,c) \) be the family of closed piecewise linear subsets of \(M_{\leq D} \setminus Z_D(\infty) \) of dimension \(a \), with at most \(c \) irreducible components, and at most \(b \) irreducible components of maximal dimension \(a \). Then,
\begin{enumerate}
 \item \(Z'_D(i+1) = \{ F \in Z'_D(i) \mid f^*(F) \in Z'_D(i) \} = \pi_c(f^*Z'_D(i) \cap \bigcup E T_E(Z'_D(i))) \), where \(E \) runs over the elements of \(G \) of degree \(\deg(E) \leq dD \);
 \item in this union, each irreducible component of \(T_E(Z'_D(i)) \) is piecewise linear.
\end{enumerate}
Recall that \(q = (dD + 1)^m \) (see Section 4.1). If \(Z \) is any closed piecewise linear subset of \(M_{\leq D} \setminus Z_D(\infty) \) that contains exactly \(c \) irreducible components, the set
\[
\pi_c(f^*Z \bigcap \bigcup_{E \in G, \deg(E) \leq dD} T_E(Z)) = \bigcup_{E \in G, \deg(E) \leq dD} \pi_c(f^*Z \bigcap T_E(Z)) = \bigcup_{E \in G, \deg(E) \leq dD} T_E^{-1}(T_E(f^*Z \bigcap T_E(Z))
\]
has at most \(qc^2 = (dD + 1)^m c^2 \) irreducible components (this is a crude estimate: \(f^*Z \bigcap T_E(Z) \) has at most \(c^2 \) irreducible components, \(T_E^{-1}(T_E(f^*Z \bigcap T_E(Z)) \) is injective and the factor \((dD + 1)^m \) comes from the fact that \(G \) contains at most \((dD + 1)^m \) elements of degree \(\leq dD \). Let us now use that the sequence \(Z'_D(i) \) decreases strictly as \(i \) varies from 0 to \(\ell(D) \), with \(Z'_D(\ell(D)) = \emptyset \). If \(0 \leq i \leq \ell(D) - 1 \), and if \(Z'_D(i) \) is contained in \(\text{Lin}(a,b,c) \), we obtain
\begin{enumerate}
 \item if \(b \geq 2 \), then \(Z'_D(i+1) \) is contained in \(\text{Lin}(a,b-1,qc^2) \);
(2) if \(b = 1 \), then \(Z^2_f(i + 1) \) is contained in \(\text{Lin}(a - 1, qc^2, qc^2) \).

This shows that

\[
\ell(D) \leq S\left(\frac{k + D}{k} \right) - 2 + 1
\]

(4.22)

where \(S \) is the function introduced in the Equation (4.7) of Section 4.1. Since \(\chi_{d,k} \) satisfies \(\ell(\chi_{d,k}(n)) \leq n \) for every \(n \geq 1 \), the conclusion follows.

5. Appendix: Proof of Proposition 2.2

We keep the notation from Section 2.1.1. Let \(f \) be an automorphism of \(X \). There exist a normal projective irreducible variety \(Z \) and two birational morphisms \(\pi_1: Z \to Y \) and \(\pi_2: Z \to Y \) such that \(\pi_1 \) and \(\pi_2 \) are isomorphisms over \(X \), and \(f = \pi_2 \circ \pi_1^{-1} \).

Lemma 5.1. We have \(\Delta(f^*P) \leq k(H^k)^{-1}\Delta(P)\deg_H(f) \) for every \(P \in A \).

Proof of Lemma 5.1. By Siu’s inequality (see [14] Theorem 2.2.15, and [8] Theorem 1), we get

\[
\pi_2^*H \leq \frac{k(\pi_2^*H \cdot (\pi_2^*H)^{k-1})}{((\pi_2^*H)^k)} \pi_1^*H = \frac{k\deg_H(f)}{(H^k)} \pi_1^*H. \tag{5.1}
\]

Since \((P) + \Delta(P)H \geq 0 \) we have \((\pi_2^*P) + \Delta(P)\pi_2^*H \geq 0 \). It follows that

\[
(\pi_2^*P) + \frac{\Delta(P)k\deg_H(f)}{(H^k)} \pi_1^*H \geq 0. \tag{5.2}
\]

Since \((\pi_1)_* \circ (\pi_1)^* = \text{Id} \) we obtain \((f^*P) + (k\Delta(P)(H^k)^{-1}\deg_H(f))H \geq 0 \). This implies \(\Delta(f^*P) \leq k(H^k)^{-1}\Delta(P)\deg_H(f) \). \(\square \)

Lemma 5.1 shows that \(\deg_H(f) \leq k(H^k)^{-1}\deg_H(f) \). We now prove the reverse direction: \(\deg_H(f) \leq (H^k)^{-1}\deg_H(f) \).

Since \(H \) is very ample, Bertini’s theorem gives an irreducible divisor \(D \in |H| \) such that \(\pi_2^*(E) \nsubseteq D \) for every prime divisor \(E \) of \(Z \). \(\pi_2^*D \) is equal to the strict transform \(\pi_2^*D \). By definition, \(D = (P) + H \) for some \(P \in A \). Thus, \((\pi_1)_* \pi_2^*D \) is linearly equivalent to \((\pi_1)_* \pi_2^*D = (\pi_1)_* \pi_2^*D \), and this irreducible divisor \((\pi_1)_* \pi_2^*D \) is the closure \(D_{f,P} \) of \(\{ f^*P = 0 \} \subseteq X \) in \(Y \). Writing \((f^*P) = D_{f,P} - F \) where \(F \) is supported on \(Y \setminus X \) we also get that \((\pi_1)_* \pi_2^*H \) is linearly equivalent to \(F \). Since \(\Delta(f^*P) \leq \deg_H(f)\Delta(P) = \deg_H(f) \), the definition of \(\Delta \) gives

\[
D_{f,P} - F + \deg_H(f)H = (f^*P) + \deg_H(f)H \geq 0. \tag{5.3}
\]

Thus, \(F \leq \deg_H(f)H \) because \(D_{f,P} \) is irreducible and is not supported on \(Y \setminus X \). Altogether, this gives \(\deg_H(f) = ((\pi_1)_* \pi_2^*H \cdot H^{k-1}) = (F \cdot H^{k-1}) \leq \deg_H(f)(H^k) \).
REFERENCES

[1] Jason P. Bell. A generalised Skolem-Mahler-Lech theorem for affine varieties. *J. London Math. Soc. (2)*, 73(2):367–379, 2006.

[2] Jason P. Bell, Dragos Ghioca, and Thomas. J. Tucker. The dynamical Mordell-Lang problem for étale maps. *Amer. J. Math.*, 132(6):1655–1675, 2010.

[3] Jérémy Blanc and Serge Cantat. Dynamical degrees of birational transformations of projective surfaces. *J. Amer. Math. Soc.*, 29(2):415–471, 2016.

[4] Araceli M. Bonifant and John Erik Fornæss. Growth of degree for iterates of rational maps in several variables. *Indiana Univ. Math. J.*, 49(2):751–778, 2000.

[5] Serge Cantat. Morphisms between Cremona groups, and characterization of rational varieties. *Compos. Math.*, 150(7):1107–1124, 2014.

[6] Serge Cantat, Antoine Chambert-Loir, and Vincent Guedj. *Quelques aspects des systèmes dynamiques polynomiaux*, volume 30 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris, 2010.

[7] Serge Cantat and Junyi Xie. Algebraic actions of discrete groups: the p-adic method. *Acta Math.*, 220(2):239–295, 2018.

[8] Steven Dale Cutkosky. Teissier’s problem on inequalities of nef divisors. *J. Algebra Appl.*, 14(9):1540002, 37, 2015.

[9] Martin D. Davis and Elaine J. Weyuker. *Computability, complexity, and languages*. Computer Science and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Fundamentals of theoretical computer science.

[10] Jeffrey Diller and Charles Favre. Dynamics of bimeromorphic maps of surfaces. *Amer. J. Math.*, 123(6):1135–1169, 2001.

[11] Tien-Cuong Dinh and Nessim Sibony. Une borne supérieure pour l’entropie topologique d’une application rationnelle. *Ann. of Math. (2)*, 161(3):1637–1644, 2005.

[12] Ehud Hrushovski. The elementary theory of the Frobenius automorphism. http://arxiv.org/pdf/math/0406514v1, pages 1–135, 2004.

[13] Neal Koblitz. *p-adic numbers, p-adic analysis, and zeta-functions*, volume 58 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1984.

[14] Robert Lazarsfeld. *Positivity in algebraic geometry. I*, volume 48 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.

[15] Christer Lech. A note on recurring series. *Ark. Mat.*, 2:417–421, 1953.

[16] Bac-Dang Nguyen. Degrees of iterates of rational transformations of projective varieties. arXiv, arXiv:1701.07760:1–46, 2017.

[17] Bjorn Poonen. *p-adic interpolation of iterates*. *Bull. Lond. Math. Soc.*, 46(3):525–527, 2014.

[18] Tuyen Trung Truong. Relative dynamical degrees of correspondances over fields of arbitrary characteristic. *J. Reine Angew. Math.*, to appear:1–44, 2018.

[19] Christian Urech. Remarks on the degree growth of birational transformations. *Math. Res. Lett.*, 25(1):291–308, 2018.

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
E-mail address: serge.cantat@univ-rennes1.fr, junyi.xie@univ-rennes1.fr