Abstract

Quantum-mechanical wave equation for a particle with spin 1 is investigated in presence of external magnetic field in spaces with non-Euclidean geometry with constant positive curvature. Separation of the variable is performed; differential equations in the variable r are solved in hypergeometric functions. The study of z-dependence of the wave function has been reduced to a system of three linked ordinary differential 2-nd order equations; till now the system in z variable is not solved.

1. Introduction, setting the problem

In the present paper, we consider a quantum-mechanical problem a particle with spin 1 described by the Duffin–Kemmer in 3-dimensional Riemann space model in presence of the external magnetic field – relevant publications see in [1–30].

Initial matrix wave equation of Duffin–Kemmer for a spin 1 particle has the for (we adhere notation [31])

$$\left\{ \beta^\alpha \left[i\hbar \left(e_\alpha^\beta \partial_\beta + \frac{1}{2} f^{ab\gamma}_{\alpha} \gamma_{abc} \right) - \frac{e}{c} A_\alpha \right] - mc \right\} \Psi = 0 , \quad (1.1)$$
where γ_{abc} stand for Ricci rotation coefficients

$$
\gamma_{bac} = -\gamma_{abc} = -e^{\beta}_{(b)} e^{\alpha}_{(a)} e^{\alpha}_{(c)}.
$$

$A_a = e^\beta_{(a)} A_\beta$ are tetrad components of an electromagnetic 4-vector A_β; $J_{ab} = (\beta^a \beta^b - \beta^b \beta^a)$ stand for generators of 10-dimensional representation of the Lorentz group. Below we will use shortened notation $e/c \Rightarrow e$, $mc/h \Rightarrow M$.

In Olevsky paper [32] under the number XI the following coordinates are were specified

$$
dS^2 = c^2 dt^2 - \rho^2 \left[\cos^2 z (dr^2 + \sin^2 r d\phi^2) + dz^2 \right],
$$

$z \in [-\pi/2, +\pi/2]$, $r \in [0, +\pi]$, $\phi \in [0, 2\pi]$.

(1.2)

Generalization of the concept of an uniform magnetic field for the curved model S_3 is given by the following potential

$$
A_\phi = -2B \sin^2 \frac{r}{2} = B (\cos r - 1).
$$

(1.3)

To this potential there correspond a single non-vanishing component of the electromagnetic tensor $F_{\phi r} = \partial_\phi A_r - \partial_r A_\phi = B \sin r$; this tensor satisfies Maxwell equations in S_3.

Let us consider eq. (1.3) in the space S_3. To cylindric coordinates $x^\alpha = (t, r, \phi, z)$ there corresponds the tetrad

$$
e^\beta_{(a)}(x) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \cos^{-1} z & 0 & 0 \\
0 & 0 & \cos^{-1} z \sin^{-1} r & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
$$

(1.4)

Relevant Christoffel symbols and Ricci rotation coefficients are

$$
\Gamma^r_{jk} = \begin{pmatrix}
0 & 0 & -\tan z \\
0 & -\sin r \cos r & 0 \\
-\tan z & 0 & 0
\end{pmatrix},
$$

$$
\Gamma^\phi_{jk} = \begin{pmatrix}
0 & \cot r & 0 \\
\cot r & 0 & -\tan z \\
0 & -\tan z & 0
\end{pmatrix},
$$

$$
\Gamma^z_{jk} = \begin{pmatrix}
\sin z \cos z & 0 & 0 \\
0 & \sin z \cos z \sin^2 r & 0 \\
0 & 0 & 0
\end{pmatrix},
$$

2
\(\gamma_{122} = \frac{1}{\cos z \tan r}, \quad \gamma_{311} = -\tan z, \quad \gamma_{322} = -\tan z.\) \hspace{1cm} (1.5)

So, general covariant Duffin–Kemmer equation (1.1) takes the form

\[
\left\{ i\beta^0 \frac{\partial}{\partial t} + \frac{1}{\cos z} \left(i\beta^1 \frac{\partial}{\partial r} + \beta^2 \frac{i\partial \phi}{\sin r} - eB(\cos r - 1) + iJ^{12} \cos r \right) \right.
\]

\[
+ i\beta^3 \frac{\partial}{\partial z} + \frac{\sin z}{\cos z} \left(\beta^1 J^{13} + \beta^2 J^{23} \right) - M \right\} \Psi = 0,
\]

\hspace{1cm} (1.6)

In the limit of flat Minkowaki space, eq. (1.6) becomes simpler

\[
\left\{ i\beta^0 \frac{\partial}{\partial t} + i\beta^1 \frac{\partial}{\partial r} + \beta^2 \frac{i\partial \phi + eBr^2/2 + iJ^{12}}{r} + i\beta^3 \frac{\partial}{\partial z} - M \right\} \Psi = 0.
\]

\hspace{1cm} (1.7)

To separate the variable we will need an explicit representation for Duffin–Kemmer matrices \(\beta^a;\) most convenient for us is the cyclic representation; in particular, then \(J^{12}\) is diagonal (we will use blocks structure in accordance with the structure \(1 - 3 - 3 - 3\)):

\[
\beta^0 = \begin{vmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & 0 & 0
\end{vmatrix}, \quad \beta^i = \begin{vmatrix}
0 & 0 & e_i & 0 \\
0 & 0 & 0 & \tau_i \\
-e_i & 0 & 0 & 0 \\
0 & -\tau_i & 0 & 0
\end{vmatrix}, \hspace{1cm} (1.8)
\]

where \(e_i, e_i^t, \tau_i\) designate

\[
e_1 = \frac{1}{\sqrt{2}} (-i, 0, i), \quad e_2 = \frac{1}{\sqrt{2}} (1, 0, 1), \quad e_3 = (0, i, 0),
\]

\[
\tau_1 = \frac{1}{\sqrt{2}} \begin{vmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{vmatrix}, \quad \tau_2 = \frac{1}{\sqrt{2}} \begin{vmatrix}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{vmatrix}, \quad \tau_3 = \begin{vmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{vmatrix} = s_3.
\]

\hspace{1cm} (1.9)

Entering eq. (1.6), the matrix \(J^{12}\) is

\[
J^{12} = \beta^1 \beta^2 - \beta^2 \beta^1 =
\]

3
\[
\begin{vmatrix}
-e_1 e_2^+ + e_2 e_1^+ & 0 & 0 & 0 \\
0 & -\tau_1 \tau_2 + \tau_2 \tau_1 & 0 & 0 \\
0 & 0 & -e_1^+ e_2 + e_2^+ e_1 & 0 \\
0 & 0 & 0 & -\tau_1 \tau_2 + \tau_2 \tau_1
\end{vmatrix} = \\
-\tau_3 \begin{vmatrix}
0 & 0 & 0 \\
0 & \tau_3 & 0 \\
0 & 0 & \tau_3
\end{vmatrix} = -\tau S_3. \tag{1.8}
\]

2. Separation of the variables

Let us rewrite eq. (1.6) in the form

\[
\left[i \beta^0 \cos z \frac{\partial}{\partial t} + i \beta^1 \frac{\partial}{\partial r} + \beta^2 i \partial_\phi - e B (\cos r - 1) + i J^{12} \cos r \sin r \\
+ i \beta^3 \cos z \frac{\partial}{\partial z} + i \sin z (\beta^1 J^{13} + \beta^2 J^{23}) - \cos z M \right] \Psi = 0.
\tag{2.1}
\]

To separate the variables, we will use the following substitution for the wave function

\[
\Psi = e^{-i e t} e^{i m \phi} \begin{vmatrix}
\Phi_0 (r, z) \\
\Phi (r, z) \\
\vec{E} (r, z) \\
\vec{H} (r, z)
\end{vmatrix} . \tag{2.2}
\]

Eq. (2.1) leads us to (let \(m + B (1 - \cos r) = \nu (r) \))

\[
\left\{ i \beta^0 \cos z \beta^0 + i \beta^1 \frac{\partial}{\partial r} - \beta^2 \frac{\nu (r) - \cos r S_3}{\sin r} \\
+ i \beta^3 \cos z \frac{\partial}{\partial z} + i (\beta^1 J^{13} + \beta^2 J^{23}) \sin z - \cos z M \right\} \begin{vmatrix}
\Phi_0 (r, z) \\
\Phi (r, z) \\
\vec{E} (r, z) \\
\vec{H} (r, z)
\end{vmatrix} = 0 , \tag{2.3}
\]

With the help of auxiliary relations

\[
J^{13} = \beta^1 \beta^3 - \beta^3 \beta^1 =
\]
\[\begin{bmatrix} -e_1 e_3 + e_3 e_1^+ & 0 & 0 & 0 \\ 0 & -\tau_1 \tau_3 + \tau_3 \tau_1 & 0 & 0 \\ 0 & 0 & -e_1^+ \cdot e_3 + e_3^+ \cdot e_1 & 0 \\ 0 & 0 & 0 & -\tau_1 \tau_3 + \tau_3 \tau_1 \end{bmatrix} =
\]

\[= i \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \tau_2 & 0 & 0 \\ 0 & 0 & \tau_2 & 0 \\ 0 & 0 & 0 & \tau_2 \end{bmatrix} = i S_2 , \]

\[J^{23} = \beta^2 \beta^3 - \beta^3 \beta^2 =
\]

\[\begin{bmatrix} -e_2 e_3 + e_3 e_2^+ & 0 & 0 & 0 \\ 0 & -\tau_2 \tau_3 + \tau_3 \tau_2 & 0 & 0 \\ 0 & 0 & -e_2^+ \cdot e_3 + e_3^+ \cdot e_2 & 0 \\ 0 & 0 & 0 & -\tau_2 \tau_3 + \tau_3 \tau_2 \end{bmatrix} =
\]

\[= -i \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \tau_1 & 0 & 0 \\ 0 & 0 & \tau_1 & 0 \\ 0 & 0 & 0 & \tau_1 \end{bmatrix} = -i S_1 , \]

we get

\[(\beta^1 J^{13} + \beta^2 J^{23}) =
\]

\[= i \begin{bmatrix} 0 & 0 & e_1 & 0 \\ 0 & 0 & 0 & \tau_1 \\ -e_1^+ & 0 & 0 & 0 \\ 0 & -\tau_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \tau_2 & 0 & 0 \\ 0 & 0 & \tau_2 & 0 \\ 0 & 0 & 0 & \tau_2 \end{bmatrix} =
\]

\[= -i \begin{bmatrix} 0 & 0 & e_2 & 0 \\ 0 & 0 & 0 & \tau_2 \\ -e_2^+ & 0 & 0 & 0 \\ 0 & -\tau_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \tau_1 & 0 & 0 \\ 0 & 0 & \tau_1 & 0 \\ 0 & 0 & 0 & \tau_1 \end{bmatrix} =
\]

\[= i \begin{bmatrix} 0 & 0 & e_1 \tau_2 - e_2 \tau_1 & 0 \\ 0 & 0 & 0 & \tau_1 \tau_2 - \tau_2 \tau_1 \\ 0 & 0 & 0 & 0 \\ 0 & -\tau_1 \tau_2 + \tau_2 \tau_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & -2 e_3 \\ 0 & 0 & 0 & -\tau_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} =
\]

\[\frac{\partial}{\partial r} \]

eq. (2.3) can be presented as

\[
\begin{bmatrix} \epsilon \cos z \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}
\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + i
\begin{bmatrix} 0 & 0 & e_1 & 0 \\ 0 & 0 & 0 & \tau_1 \\ -e_1^+ & 0 & 0 & 0 \\ 0 & -\tau_1 & 0 & 0 \end{bmatrix}
\]
\[
\begin{pmatrix}
-\frac{1}{\sin r} & 0 & 0 & e_2 & 0 \\
0 & 0 & 0 & \tau_2 & 0 \\
-\tau_2 & 0 & 0 & 0 & 0
\end{pmatrix}
(\nu - \cos r \ S_3)
\]
\[+
\begin{pmatrix}
i \cos z & 0 & 0 & e_3 & 0 \\
0 & 0 & 0 & \tau_3 & \frac{\partial}{\partial z} \\
-e_3^+ & 0 & 0 & 0 & 0
\end{pmatrix}
\]
\[+
i \sin z
\begin{pmatrix}
0 & 0 & -2e_3 & 0 \\
0 & 0 & 0 & -\tau_3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\Phi_0 \\
\Phi \\
E \\
H
\end{pmatrix}
= 0.
\]

(2.4)

In block form it is written
\[
ie_1 \partial_r \vec{E} - \frac{1}{\sin r} e_2 (\nu - \cos r \ s_3) \vec{E} + i (\cos z \ \partial_z - 2 \sin z) e_3 \vec{E} = M \cos z \ \Phi_0,
\]
\[
ie \cos z \ \vec{E} + i \gamma \partial_r \vec{H} - \frac{\tau_2}{\sin r} (\nu - \cos r \ s_3) \vec{H} + i (\cos z \ \partial_z - \sin z) \tau_3 \vec{H} = M \cos z \ \vec{\Phi},
\]
\[
-\gamma \cos z \ \vec{\Phi} - ie_1^+ \partial_r \Phi_0 + \frac{\nu}{\sin r} e_3^+ \Phi_0 - i \cos z \ e_3^+ \partial_z \Phi_0 = M \cos z \ \vec{E},
\]
\[
-\gamma \tau_1 \partial_r \vec{\Phi} + \frac{(\nu - \cos r \ s_3)}{\sin r} \tau_2 \vec{\Phi} - i (\cos z \ \partial_z - i \sin z) \tau_3 \vec{\Phi} = M \cos z \ \vec{H}.
\]

(2.5)

After simple calculation, we arrive at a system of 10 equations (let \(\gamma = 1/\sqrt{2}\))
\[
\gamma \left(\frac{\partial E_1}{\partial r} - \frac{\partial E_3}{\partial r} \right) - \frac{\gamma}{\sin r} [(\nu - \cos r) E_1 + (\nu + \cos r) E_3] -
\]
\[
-(\cos z \ \partial_z - 2 \sin z) E_2 = M \cos z \ \Phi_0,
\]
\[
ie \cos z \ E_1 + i \gamma \frac{\partial H_2}{\partial r} + i \gamma \frac{\nu}{\sin r} H_2 + i (\cos z \ \partial_z - \sin z) H_1 = M \cos z \ \Phi_1,
\]
\[
ie \cos z \ E_2 + i \gamma \left(\frac{\partial H_1}{\partial r} + \frac{\partial H_3}{\partial r} \right) - i \gamma [(\nu - \cos r) H_1 -
\]
\[
-(\nu + \cos r) H_3] = M \cos z \ \Phi_2,
\]
\[+i\epsilon\cos zE_3 + i\gamma \frac{\partial H_2}{\partial r} - i\gamma \nu \sin r H_2 - i(\cos z \frac{\partial}{\partial z} - \sin z)H_3 = M \cos z\Phi_3 \]

\[-i\epsilon \cos z\Phi_1 + \frac{\partial \Phi_0}{\partial r} + \gamma \frac{\nu}{\sin r} \Phi_0 = M \cos zE_1 , \]
\[-i\epsilon \cos z\Phi_2 - \cos z \frac{\partial \Phi_0}{\partial z} = M \cos zE_2 , \]
\[-i\epsilon \cos z\Phi_3 - \frac{\partial \Phi_0}{\partial r} + \gamma \frac{\nu}{\sin r} \Phi_0 = M \cos zE_3 , \]

\[-i\gamma \frac{\partial \Phi_1}{\partial r} - i\gamma \nu \frac{\partial \Phi_2}{\partial r} - i(\cos z \frac{\partial}{\partial z} - \sin z)\Phi_1 = M \cos zH_1 , \]
\[-i\gamma \frac{\partial \Phi_2}{\partial r} + i\gamma \nu \frac{\partial \Phi_1}{\partial r} + i(\cos z \frac{\partial}{\partial z} - \sin z)\Phi_1 = M \cos zH_2 , \]
\[-i\gamma \frac{\partial \Phi_3}{\partial r} + i\gamma \frac{\nu}{\sin r} \Phi_2 + i(\cos z \frac{\partial}{\partial z} - \sin z)\Phi_3 = M \cos zH_3 . \]

With the help of substitutions
\[H_1 = \frac{h_1}{\cos z} , \quad (\cos z \frac{\partial}{\partial z} - \sin z)H_1 = \frac{\partial h_1}{\partial z} , \]
\[H_3 = \frac{h_3}{\cos z} , \quad (\cos z \frac{\partial}{\partial z} - \sin z)H_3 = \frac{\partial h_3}{\partial z} , \]
\[\Phi_1 = \frac{\varphi_1}{\cos z} , \quad (\cos z \frac{\partial}{\partial z} - \sin z)\Phi_1 = \frac{\partial \varphi_1}{\partial z} , \]
\[\Phi_3 = \frac{\varphi_3}{\cos z} , \quad (\cos z \frac{\partial}{\partial z} - \sin z)\Phi_3 = \frac{\partial \varphi_3}{\partial z} , \]
\[E_2 = \frac{e_2}{\cos^2 z} , \quad (\cos z \frac{\partial}{\partial z} - 2 \sin z)E_2 = \frac{1}{\cos z} \frac{\partial e_2}{\partial z} , \]
\[E_1 = \frac{e_1}{\cos z} , \quad E_3 = \frac{e_3}{\cos z} , \]
\[\Phi_0 = \frac{\varphi_0}{\cos^2 z} , \quad \Phi_2 = \frac{\varphi_2}{\cos^2 z} , \quad H_2 = \frac{h_2}{\cos^2 z} , \]

we get a more simple system

(2.9)
\[\gamma \left(\frac{\partial e_1}{\partial r} - \frac{\partial e_3}{\partial r} \right) - \frac{\gamma}{\sin r} \left[(\nu - \cos r)e_1 + (\nu + \cos r)e_3 \right] - \frac{\partial e_2}{\partial z} = M\varphi_0, \]

\[+ i\epsilon e_1 + \frac{i \gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) h_2 + i \frac{\partial h_1}{\partial z} = M\varphi_1, \]

\[+ i\epsilon e_2 + i\gamma \frac{\partial h_1}{\partial r} + \frac{\partial h_3}{\partial r} - \frac{i \gamma}{\sin r} \left[(\nu - \cos r)h_1 - (\nu + \cos r)h_3 \right] = M\varphi_2, \]

\[+ i\epsilon e_3 + \frac{i \gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} - \frac{\nu}{\sin r} \right) h_2 - i \frac{\partial h_3}{\partial z} = M\varphi_3. \]

(2.10)

\[-i\epsilon \varphi_1 + \frac{\gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) \varphi_0 = Me_1, \]

\[-i\epsilon \varphi_2 - \left(\frac{\partial}{\partial z} + 2 \frac{\sin z}{\cos z} \right) \varphi_0 = Me_2, \]

\[-i\epsilon \varphi_3 - \frac{\gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} - \frac{\nu}{\sin r} \right) \varphi_0 = Me_3, \]

(2.11)

\[-i \frac{\gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) \varphi_2 - i \frac{\partial \varphi_1}{\partial z} = Mh_1, \]

\[-i \gamma \left(\frac{\partial \varphi_1}{\partial r} + \frac{\partial \varphi_3}{\partial r} \right) + \frac{i \gamma}{\sin r} \left[(\nu - \cos r)\varphi_1 - (\nu + \cos r)\varphi_3 \right] = Mh_2, \]

\[-i \frac{\gamma}{\cos^2 z} \left(\frac{\partial \varphi_2}{\partial r} - \frac{\nu}{\sin r} \right) \varphi_2 + i \frac{\partial \varphi_3}{\partial z} = Mh_3. \]

(2.12)

These equations can be transformed to the form

\[\gamma \left(\frac{\partial}{\partial r} - \frac{\nu - \cos r}{\sin r} \right) e_1 - \gamma \left(\frac{\partial}{\partial r} + \frac{\nu + \cos r}{\sin r} \right) e_3 - \frac{\partial e_2}{\partial z} = M\varphi_0, \]

\[i\gamma \left(\frac{\partial}{\partial r} - \frac{\nu - \cos r}{\sin r} \right) h_1 + i\gamma \left(\frac{\partial}{\partial r} + \frac{\nu + \cos r}{\sin r} \right) h_3 + i\epsilon e_2 = M\varphi_2, \]

\[i\gamma \left(\frac{\partial}{\partial r} - \frac{\nu - \cos r}{\sin r} \right) h_2 + i\epsilon e_1 + i \frac{\partial h_1}{\partial z} = M\varphi_1, \]

\[i\gamma \left(\frac{\partial}{\partial r} - \frac{\nu - \cos r}{\sin r} \right) h_2 + i\epsilon e_3 - i \frac{\partial h_3}{\partial z} = M\varphi_3. \]
\[
\gamma \cos^2 z \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) \varphi_0 - i \epsilon \varphi_1 = M e_1 ,
\]
\[
- \frac{i \gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) \varphi_2 - i \frac{\partial \varphi_1}{\partial z} = M h_1 ,
\]
\[
- \frac{\gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} - \frac{\nu}{\sin r} \right) \varphi_0 - i \epsilon \varphi_3 = M e_3 ,
\]
\[
- \frac{i \gamma}{\cos^2 z} \left(\frac{\partial}{\partial r} - \frac{\nu}{\sin r} \right) \varphi_2 + i \frac{\partial \varphi_3}{\partial z} = M h_3 ,
\]
\[
-i \epsilon \varphi_2 - \left(\frac{\partial}{\partial z} + 2 \frac{\sin z}{\cos z} \right) \varphi_0 = M e_2 ,
\]
\[
- i \gamma \left(\frac{\partial}{\partial r} - \frac{\nu - \cos r}{\sin r} \right) \varphi_1 - i \gamma \left(\frac{\partial}{\partial r} + \frac{\nu + \cos r}{\sin r} \right) \varphi_3 = M h_2 .
\]

Let us introduce a shortened notation
\[
\gamma \left(\frac{\partial}{\partial r} + \frac{\nu - \cos r}{\sin r} \right) = \hat{a}_-, \gamma \left(\frac{\partial}{\partial r} + \frac{\nu + \cos r}{\sin r} \right) = \hat{a}_+, \gamma \left(\frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) = \hat{a},
\]
\[
\gamma \left(- \frac{\partial}{\partial r} + \frac{\nu - \cos r}{\sin r} \right) = \hat{b}_-, \gamma \left(- \frac{\partial}{\partial r} + \frac{\nu + \cos r}{\sin r} \right) = \hat{b}_+, \gamma \left(- \frac{\partial}{\partial r} + \frac{\nu}{\sin r} \right) = \hat{b} ,
\]
then the above equations read
\[
- \hat{b}_- e_1 - \hat{a}_+ e_3 - \frac{\partial e_2}{\partial z} = M \varphi_0 ,
\]
\[
- i \hat{b}_- h_1 + i \hat{a}_+ h_3 + i \epsilon e_2 = M \varphi_2 ,
\]
\[
\frac{i}{\cos^2 z} \hat{a} h_2 + i \epsilon e_1 + i \frac{\partial h_1}{\partial z} = M \varphi_1 ,
\]
\[
- \frac{i}{\cos^2 z} \hat{b} h_2 + i \epsilon e_3 - i \frac{\partial h_3}{\partial z} = M \varphi_3 ,
\]
\[
\frac{1}{\cos^2 z} \hat{a} \varphi_0 - i \epsilon \varphi_1 = M e_1 ,
\]
\[
- \frac{i}{\cos^2 z} \hat{a} \varphi_2 - i \frac{\partial \varphi_1}{\partial z} = M h_1 ,
\]
\[
\begin{align*}
\frac{1}{\cos^2 z} \dot{b} \varphi_0 - i \epsilon \varphi_3 &= M e_3 , \\
\frac{i}{\cos^2 z} \dot{b} \varphi_2 + i \frac{\partial \varphi_3}{\partial z} &= M h_3 , \\
-ic \varphi_2 - \frac{\partial}{\partial z} + 2 \frac{\sin z}{\cos z} \varphi_0 &= M e_2 , \\
i \dot{b}_- \varphi_1 - i \dot{a}_+ \varphi_3 &= M h_2 ,
\end{align*}
\]

We can note that turning back to \(\Phi_0 \), we get a simple system as well

\[
\begin{align*}
-\dot{b}_- e_1 - \dot{a}_+ e_3 - \frac{\partial e_2}{\partial z} &= M \cos^2 z \Phi_0 , \\
-ib_+ h_1 + i \dot{a}_+ h_3 + i \epsilon e_2 &= M \varphi_2 , \\
\frac{i}{\cos^2 z} \dot{a} h_2 + i \epsilon e_1 + i \frac{\partial h_1}{\partial z} &= M \varphi_1 , \\
-\frac{i}{\cos^2 z} \dot{b} h_2 + i \epsilon e_3 - i \frac{\partial h_3}{\partial z} &= M \varphi_3 ,
\end{align*}
\]

\[
\begin{align*}
\dot{a} \Phi_0 - i \epsilon \varphi_1 &= M e_1 , \\
-\frac{i}{\cos^2 z} \dot{a} \varphi_2 - i \frac{\partial \varphi_1}{\partial z} &= M h_1 , \\
\dot{b} \Phi_0 - i \epsilon \varphi_3 &= M e_3 , \\
\frac{i}{\cos^2 z} \dot{b} \varphi_2 + i \frac{\partial \varphi_3}{\partial z} &= M h_3 , \\
-ic \varphi_2 - \cos^2 z \frac{\partial \Phi_0}{\partial z} &= M e_2 , \\
i \dot{b}_- \varphi_1 - i \dot{a}_+ \varphi_3 &= M h_2 .
\end{align*}
\]

Below we will work with equations (2.17) – (2.18).
3. Transition to a non-relativistic approximation

Excluding from (2.17)–(2.18) non-dynamical variables \(\Phi_0, h_1, h_2, h_3\):

\[
\frac{1}{\cos^2 z} (-\hat{b} - e_1 - \hat{a} + e_3 - \frac{\partial e_2}{\partial z}) = M \Phi_0 ,
\]

\[
-\frac{i}{\cos^2 z} \hat{a} \varphi_2 - i \frac{\partial \varphi_1}{\partial z} = M h_1 ,
\]

\[
\hat{b} - \varphi_1 - i \hat{a} + \varphi_3 = M h_2 ,
\]

\[
\frac{i}{\cos^2 z} \hat{b} \varphi_2 + i \frac{\partial \varphi_3}{\partial z} = M h_3 .
\]

we obtain 6 equations (grouping them in pair)

\[
\frac{i}{\cos^2 z} \hat{a} (\hat{b} - \varphi_1 - i \hat{a} + \varphi_3) + i \epsilon M e_1 + i \frac{\partial}{\partial z} (-\frac{i}{\cos^2 z} \hat{a} \varphi_2 - i \frac{\partial \varphi_1}{\partial z}) = M^2 \varphi_1 ,
\]

\[
\hat{a} \frac{1}{\cos^2 z} (-\hat{b} - e_1 - \hat{a} + e_3 - \frac{\partial e_2}{\partial z}) - i \epsilon M \varphi_1 = M^2 e_1 ,
\]

(3.2a)

\[
-\hat{b} - \left(-\frac{i}{\cos^2 z} \hat{a} \varphi_2 - i \frac{\partial \varphi_1}{\partial z} \right) + i \hat{a} + \left(\frac{i}{\cos^2 z} \hat{b} \varphi_2 + i \frac{\partial \varphi_3}{\partial z} \right) + i \epsilon M e_2 = M^2 \varphi_2 ,
\]

\[
-\epsilon M \varphi_2 - \cos^2 z \frac{\partial}{\partial z} \frac{1}{\cos^2 z} (-\hat{b} - e_1 - \hat{a} + e_3 - \frac{\partial e_2}{\partial z}) = M^2 e_2 ,
\]

(3.2b)

\[
-\frac{i}{\cos^2 z} \hat{b} (\hat{b} - \varphi_1 - i \hat{a} + \varphi_3) + i \epsilon M e_3 - i \frac{\partial}{\partial z} \left(\frac{i}{\cos^2 z} \hat{b} \varphi_2 + i \frac{\partial \varphi_3}{\partial z} \right) = M^2 \varphi_3 ,
\]

\[
\hat{b} \frac{1}{\cos^2 z} (-\hat{b} - e_1 - \hat{a} + e_3 - \frac{\partial e_2}{\partial z}) - i \epsilon M \varphi_3 = M^2 e_3 .
\]

(3.2c)

Now we should introduce big \(\Psi_1\) and small \(\psi_i\) components

\[
\varphi_1 = \Psi_1 + \psi_1 \quad \text{ie}_1 = \Psi_1 - \psi_1 ,
\]

11
\(\varphi_2 = \Psi_2 + \psi_2 , \quad i\epsilon_2 = \Psi_2 - \psi_2 , \)
\(\varphi_3 = \Psi_3 + \psi_3 , \quad i\epsilon_3 = \Psi_3 - \psi_3 , \)

and in the same time separate the rest energy by formal change \(\epsilon \mapsto (\epsilon + M) \)

so we arrive at

\[
- \frac{\hat{\epsilon}_b}{\cos^2 z} (\Psi_1 + \psi_1) + \frac{\hat{\epsilon}_a}{\cos^2 z} (\Psi_3 + \psi_3) + \frac{\hat{\epsilon}_a}{\cos^2 z} (\frac{\partial}{\partial z} + \frac{2\sin z}{\cos z})(\Psi_2 + \psi_2) \\
+ \frac{\partial^2}{\partial z^2} (\Psi_1 + \psi_1) + (\epsilon + M)M(\Psi_1 - \psi_1) = M^2(\Psi_1 + \psi_1) ,
\]

\[
- \frac{\hat{\epsilon}_b}{\cos^2 z} (\Psi_1 - \psi_1) - \frac{\hat{\epsilon}_a}{\cos^2 z} (\Psi_3 - \psi_3) - \frac{\hat{\epsilon}_a}{\cos^2 z} (\frac{\partial}{\partial z})(\Psi_2 - \psi_2) \\
+ (\epsilon + M)M(\Psi_1 + \psi_1) = M^2(\Psi_1 - \psi_1) ;
\] (3.3a)

\[
- \frac{\hat{\epsilon}_b}{\cos^2 z} (\Psi_2 + \psi_2) - \frac{\hat{\epsilon}_a}{\cos^2 z} (\Psi_1 + \psi_1) - \frac{\hat{\epsilon}_a}{\cos^2 z} (\Psi_3 + \psi_3) \\
+ (\epsilon + M)M(\Psi_2 - \psi_2) = M^2(\Psi_2 + \psi_2) ,
\]

\[
\hat{\epsilon}_b \cos^2 z \frac{\partial}{\partial z} \frac{1}{\cos^2 z} (\Psi_1 - \psi_1) + \frac{\hat{\epsilon}_a}{\cos^2 z} \frac{\partial}{\partial z} \frac{1}{\cos^2 z} (\Psi_3 - \psi_3) \\
+ \cos^2 z \frac{\partial}{\partial z} \frac{1}{\cos^2 z} \frac{\partial}{\partial z} (\Psi_2 - \psi_2) + (\epsilon + M)M(\Psi_2 + \psi_2) = M^2(\Psi_2 - \psi_2) ;
\] (3.3b)

\[
\hat{\epsilon}_b \cos^2 z (\Psi_1 + \psi_1) - \hat{\epsilon}_a (\Psi_3 + \psi_3) + \frac{\hat{\epsilon}_a}{\cos^2 z} (\frac{\partial}{\partial z} + \frac{2\sin z}{\cos z})(\Psi_2 + \psi_2) + \\
\frac{\partial^2}{\partial z^2} (\Psi_3 + \psi_3) + (\epsilon + M)M(\Psi_3 - \psi_3) = M^2(\Psi_3 + \psi_3) ,
\]

\[
- \frac{\hat{\epsilon}_b}{\cos^2 z} (\Psi_1 - \psi_1) - \frac{\hat{\epsilon}_a}{\cos^2 z} (\Psi_3 - \psi_3) - \frac{\hat{\epsilon}_b}{\cos^2 z} (\frac{\partial}{\partial z})(\Psi_2 - \psi_2) \\
+ (\epsilon + M)M(\Psi_3 + \psi_3) = M^2(\Psi_3 - \psi_3) .
\] (3.3c)

Summing equation for each pair and neglecting small components \(\psi_k \) in comparison with big ones \(\Psi_k \), we get
\[
\begin{align*}
&\left(-\frac{2}{\cos^2 z} \hat{a}\hat{b}_- + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_1 + 2 \frac{\sin z}{\cos^2 z} \hat{a} \Psi_2 = 0, \\
&\left(-\frac{2}{\cos^2 z} \hat{b}\hat{a}_+ + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_3 + 2 \frac{\sin z}{\cos^2 z} \hat{b} \Psi_2 = 0, \\
&\left(-\frac{1}{\cos^2 z} (\hat{b}_-\hat{a} + \hat{a}_+\hat{b}) + 2\epsilon M + \frac{\partial^2}{\partial z^2} + 2 \frac{\sin z}{\cos z} \frac{\partial}{\partial z} \right) \Psi_2 \\
&\quad + 2 \frac{\sin z}{\cos z} (\hat{b}_-\Psi_1 + \hat{a}_+\Psi_3) = 0. \tag{3.4a}
\end{align*}
\]

It is a needed system in Pauli approximation. In particular, for the case of flat space model we get much more simple system of three separated equations

\[
\begin{align*}
&\left(-2\hat{a}\hat{b}_- + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_1 = 0, \\
&\left(-2\hat{b}\hat{a}_+ + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_3 = 0, \\
&\left(-(\hat{b}_-\hat{a} + \hat{a}_+\hat{b}) + 2\epsilon M + \frac{\partial^2}{\partial z^2} \right) \Psi_2 = 0,
\end{align*}
\]

where in definitions for \(\hat{a}, \hat{b}, \hat{a}_-, \hat{b}_-, \hat{a}_+, \hat{b}_+ \) some simplifications are to be performed – see (2.14).

Equations (3.4a) can be transformed to a more symmetrical form if one make a substitution

\[
\Psi_2 = \cos z \bar{\Psi}_2,
\]

\[
\left(\frac{\partial^2}{\partial z^2} + 2 \frac{\sin z}{\cos z} \frac{\partial}{\partial z} \right) \cos z \bar{\Psi}_2 = \cos z \left(\frac{\partial^2}{\partial z^2} - \frac{2}{\cos^2 z} \right) + 1) \bar{\Psi}_2, \tag{3.4b}
\]

Then, eqs. (3.4a) read

\[
\begin{align*}
&\left(-\frac{2}{\cos^2 z} \hat{b}_- + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_1 + 2 \frac{\sin z}{\cos^2 z} \hat{a} \Psi_2 = 0, \\
&\left(-\frac{2}{\cos^2 z} \hat{a}_+ + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) \Psi_3 + 2 \frac{\sin z}{\cos^2 z} \hat{b} \Psi_2 = 0, \\
&\left(-(\hat{b}_-\hat{a} + \hat{a}_+\hat{b}) + 2\epsilon M + \frac{\partial^2}{\partial z^2} \right) \bar{\Psi}_2 \\
&\quad + \frac{2}{\cos^2 z} (\hat{b}_-\Psi_1 + \hat{a}_+\Psi_3) = 0.
\end{align*}
\]
Let us introduce new functions

\[\hat{b}_- \Psi_1 = G_1, \quad \Psi_2 = G_2, \quad \hat{a}_+ \Psi_3 = G_3, \]

(3.5a)

eqs. (3.4a) will give

\[\left(-\frac{2}{\cos^2 z} \hat{b}_- \hat{a} + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) G_1 + 2\frac{\sin z}{\cos^2 z} \hat{b}_- \hat{a} G_2 = 0, \]

\[\left(-\frac{2}{\cos^2 z} \hat{a}_+ \hat{b} + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) G_3 + 2\frac{\sin z}{\cos^2 z} \hat{a}_+ \hat{b} G_2 = 0, \]

\[\left(\frac{1}{\cos^2 z} (\hat{b}_- \hat{a} + \hat{a}_+ \hat{b} + 2) + \frac{\partial^2}{\partial z^2} + 2\epsilon M + 1 \right) G_2 \]

\[+ 2\frac{\sin z}{\cos^2 z} (G_1 + G_3) = 0. \]

(3.5b)

Now we should define a factorized form for three functions

\[G_1 = Z_1(z) R_1(r), \quad G_2 = Z_2(z) R_2(r), \quad G_3 = Z_3(z) R_3(r); \]

(3.6a)

then eqs. (3.5b) read

\[\left(-\frac{2}{\cos^2 z} \hat{b}_- \hat{a} + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) Z_1 R_1 + 2\frac{\sin z}{\cos^2 z} \hat{b}_- \hat{a} Z_2 R_2 = 0, \]

\[\left(-\frac{2}{\cos^2 z} \hat{a}_+ \hat{b} + \frac{\partial^2}{\partial z^2} + 2\epsilon M \right) Z_3 R_3 + 2\frac{\sin z}{\cos^2 z} \hat{a}_+ \hat{b} Z_2 R_2 = 0, \]

\[\left(\frac{1}{\cos^2 z} (\hat{b}_- \hat{a} + \hat{a}_+ \hat{b} + 2) + \frac{\partial^2}{\partial z^2} + 2\epsilon M + 1 \right) Z_2 R_2 \]

\[+ 2\frac{\sin z}{\cos^2 z} (Z_1 R_1 + Z_3 R_3) = 0. \]

(3.6b)

Note that the first equation in (3.6b) does not change if one acts from the left by the operator \(\hat{b}_- \hat{a} \); similarly the second equation preserves its form if one acts from the left by the operator \(\hat{a}_+ \hat{b} \). Therefore, one can assume existence of the following radial relationships

\[\hat{b}_- \hat{a} R_1 = \lambda R_1, \quad \hat{b}_- \hat{a} R_2 = \lambda R_2, \quad R_1 = R_2 = R; \]

(3.7a)
and
\[
\hat{a}_+ \hat{b} R_3 = \lambda' R_3, \quad \hat{a}_+ \hat{b} R_2 = \lambda' R_2, \quad R_2 = R_3 = R. \quad (3.7b)
\]

Taking into account these restrictions from (3.6b) we obtain the system in \(z \) variable
\[
\left(-\frac{2\lambda}{\cos^2 z} + \frac{d^2}{dz^2} + 2\epsilon M \right) Z_1 + 2\lambda \frac{\sin z}{\cos^2 z} Z_2 = 0, \\
\left(-\frac{2\lambda'}{\cos^2 z} + \frac{d^2}{dz^2} + 2\epsilon M \right) Z_3 + 2\lambda' \frac{\sin z}{\cos^2 z} Z_2 = 0, \\
\left(-\frac{1}{\cos^2 z} (\lambda + \lambda' + 2) + \frac{d^2}{dz^2} + 2\epsilon M + 1 \right) Z_2 + 2\frac{\sin z}{\cos^2 z} (Z_1 + Z_3) = 0.
\]

(3.8)

With the use of explicit expressions for operators \(\hat{a}, \hat{a}_+, \hat{b}, \hat{b}_- \), we derive
\[
\hat{b}_- \hat{a} = \frac{1}{2} \left(-\frac{d^2}{dr^2} - \frac{\cos r}{\sin r} \frac{d}{dr} - B + \frac{\nu^2(r)}{\sin^2 r} \right), \\
\hat{a}_+ \hat{b} = \frac{1}{2} \left(-\frac{d^2}{dr^2} - \frac{\cos r}{\sin r} \frac{d}{dr} + B + \frac{\nu^2(r)}{\sin^2 r} \right), \\
\hat{a}_+ \hat{b} = \hat{b}_- \hat{a} - B,
\]
so the first radial equation for \(R_2 \) takes the form
\[
\hat{b}_- \hat{a} R_2 = \lambda R_2 \quad \Rightarrow \quad \left(\frac{d^2}{dr^2} + \frac{\cos r}{\sin r} \frac{d}{dr} + B - \frac{\nu^2(r)}{\sin^2 r} + 2\lambda \right) R_2 = 0; \quad (3.9a)
\]
the second equation for \(R_1 \) gives the same only if two parameters \(\lambda \) and \(\lambda' \) obey a special additional constraint
\[
\hat{a}_+ \hat{b} R_2 = \lambda' R_2 \quad \Rightarrow \quad \hat{b}_- \hat{a} R_2 = (\lambda' + B) R_2,
\]
that is
\[
\lambda' = \lambda - B. \quad (3.9b)
\]

Let us consider eq. (3.9a) in more detail
\[
\frac{d^2}{dr^2} R + \frac{1}{\tan r} \frac{dR}{dr} - \frac{1}{\sin^2 r} \left[m + B (1 - \cos r) \right]^2 R + (B + 2\lambda) R = 0.
\]

15
In a new variable

\[1 - \cos r = 2y , \quad y = \sin^2 \frac{r}{2} \in [0, 1], \]

\[
\left[y(1 - y) \frac{d^2}{dy^2} + (1 - 2y) \frac{d}{dy} - \frac{1}{4} \left(\frac{m^2}{y} - 4B^2 + \frac{(m + 2B)^2}{1 - y} \right) \right] R = 0 . \tag{3.10}
\]

With the substitution \(R = y^a(1 - y)^b \ F, \) eq. (3.10) gives

\[
y(1 - y) F'' + \left[a(1 - y) - by + a(1 - y) - by + (1 - 2y) \right] F' \\
+ \frac{1}{y} \left[a(a - 1) + a - \frac{m^2}{4} \right] F + \frac{1}{1 - y} \left[b(b - 1) + b - \frac{(m + 2B)^2}{4} \right] F \\
- [a(a + 1) + 2ab + b(b + 1) - B^2 - (B + 2\lambda)] F = 0 .
\]

If parameters obey restriction below

\[a = \pm \frac{|m|}{2}, \quad b = \pm \frac{m + 2B}{2} ; \tag{3.11a} \]

we arrive at a more simple equation

\[
y(1 - y) F'' + \left[(2a + 1) - 2(a + b + 1)y \right] F' \\
- [a(a + 1) + 2ab + b(b + 1) - B^2 - (B + 2\lambda)] F = 0 , \tag{3.11b}
\]

which is recognized as a hypergeometric one

\[
y(1 - y) F + \left[\gamma - (\alpha + \beta + 1)y \right] F' - \alpha \beta F = 0 . \tag{3.11c}
\]

So we have (to obtain solutions for bound states we must assume positive \(a \) and \(b \))

\[y = \sin^2 \frac{r}{2} , \quad y \in [0, +1], \quad r \in [0, +\pi], \]

\[
R = \left(\sin \frac{r}{2} \right)^{|m|} \left(\cos \frac{r}{2} \right)^{|m+2B|} F(\alpha, \beta, \gamma; -\sin^2 \frac{r}{2}); \tag{3.11d}
\]

parameters \((\alpha, \beta, \gamma)\) are determined by

\[\gamma = + |m| + 1 , \quad a = + \frac{|m|}{2} , \quad b = + \frac{m + 2B}{2} . \]

\[
\begin{align*}
\alpha + \beta &= 2a + 2b + 1, \\
\alpha \beta &= (a + b)(a + b + 1) - B^2 - (B + 2\lambda); \tag{3.12a}
\end{align*}
\]

that is

\[
\gamma = + |m| + 1, \quad a = + \frac{\left| m \right|}{2}, \quad b = + \frac{\left| m + 2B \right|}{2},
\]

\[
\alpha = a + b + \frac{1}{2} - \sqrt{\left(B + \frac{1}{2} \right)^2 + 2\lambda},
\]

\[
\beta = a + b + \frac{1}{2} + \sqrt{\left(B + \frac{1}{2} \right)^2 + 2\lambda}. \tag{3.12b}
\]

To obtain solutions in polynomials, we must assume positivity of the expression under the sign of square root and must impose restriction on the \(\alpha \)

\[
\alpha = a + b + \frac{1}{2} - \sqrt{\left(B + \frac{1}{2} \right)^2 + 2\lambda} = -n = 0, -1, -2, \ldots,
\]

from whence it follows the quantization rule

\[
2\lambda + \left(B + \frac{1}{2} \right)^2 = (a + b + \frac{1}{2} + n)^2 > 0, \tag{3.13b}
\]

solutions corresponding to bound states are given by

\[
R = (\sin \frac{r}{2})^{+\left| m \right|} (\cos \frac{r}{2})^{+\left| m + 2B \right|} \\
\times F(-n, \left| m \right| + 1 + \left| m + 2B \right| + 1 + n, \left| m \right| + 1; -\sin^2 \frac{r}{2}). \tag{3.13c}
\]

Below, we will use notation

\[
\Lambda = \Lambda - \frac{B}{2}, \tag{3.14a}
\]

then the formula for spectrum (3.13b) will read

\[
2\Lambda + B^2 = N(N + 1), \quad N = a + b + n. \tag{3.13b}
\]
4. Behavior of solutions in \(z \) variable near singular points

Let us turn to the system (3.8)

\[
\begin{align*}
\left(\frac{d^2}{dz^2} - \frac{2\lambda}{\cos^2 z} + 2\epsilon M \right) Z_1 + 2\lambda \frac{\sin z}{\cos^2 z} Z_2 = 0 , \\
\left(\frac{d^2}{dz^2} - \frac{2\lambda'}{\cos^2 z} + 2\epsilon M \right) Z_3 + 2\lambda' \frac{\sin z}{\cos^2 z} Z_2 = 0 , \\
\left(\frac{d^2}{dz^2} - \frac{\lambda + \lambda' + 2}{\cos^2 z} + 2\epsilon M + 1 \right) \bar{Z}_2 + 2\frac{\sin z}{\cos^2 z} (Z_1 + Z_3) = 0 .
\end{align*}
\]

In the variable
\[
\sin z = x , \quad x \in [-1, +1] ,
\]

we get

\[
\begin{align*}
\left((1 - x^2) \frac{d^2}{dx^2} - x \frac{d}{dx} - \frac{2\lambda}{1 - x^2} + 2\epsilon M \right) Z_1 + \frac{2\lambda x}{1 - x^2} \bar{Z}_2 = 0 , \\
\left((1 - x^2) \frac{d^2}{dx^2} - x \frac{d}{dx} - \frac{2\lambda'}{1 - x^2} + 2\epsilon M \right) Z_3 + \frac{2\lambda' x}{1 - x^2} \bar{Z}_2 = 0 , \\
\left((1 - x^2) \frac{d^2}{dx^2} - x \frac{d}{dx} - \frac{2 + \lambda + \lambda'}{1 - x^2} + 2\epsilon M + 1 \right) \bar{Z}_2 + \frac{2x}{1 - x^2} (Z_1 + Z_3) = 0 .
\end{align*}
\]

Near the point \(z = +\pi/2 \) we have

\[
\begin{align*}
\left(2(1 - x) \frac{d^2}{dx^2} - \frac{d}{dx} - \frac{\lambda}{1 - x} \right) Z_1 + \frac{\lambda}{1 - x} Z_2 = 0 , \\
\left(2(1 - x) \frac{d^2}{dx^2} - \frac{d}{dx} - \frac{\lambda'}{1 - x} \right) Z_3 + \frac{\lambda'}{1 - x} Z_2 = 0 , \\
\left(2(1 - x) \frac{d^2}{dx^2} - \frac{d}{dx} - \frac{2 + \lambda + \lambda'}{1 - x} \right) \bar{Z}_2 + \frac{1}{1 - x} (Z_1 + Z_3) = 0 ;
\end{align*}
\]

so the possible solution is

\[
Z_1 = A_1 (1 - x)^\alpha , \quad \bar{Z}_2 = A_2 (1 - x)^\alpha , \quad Z_3 = A_3 (1 - x)^\alpha .
\]
Substituting (4.3b) into (4.3a), we obtain linear system with respect to \(A_1, A_2, A_3\):

\[
\begin{align*}
(2a^2 - a - \lambda)A_1 + \lambda A_2 &= 0, \\
(2a^2 - a - \lambda')A_3 + \lambda' A_2 &= 0, \\
(2a^2 - a - \frac{2 + \lambda + \lambda'}{2})A_2 + A_1 + A_3 &= 0.
\end{align*}
\] (4.3c)

In similar manner consider behavior of solution near the second singular point

\[
\begin{align*}
Z_1 &- \lambda B_1 = 0, \\
Z_2 &- \lambda B_2 = 0, \\
Z_3 &- \lambda B_3 = 0.
\end{align*}
\] (4.4a)

that is

\[
Z_1 = B_1(1 + x)^b, \quad Z_2 = B_2(1 + x)^b, \quad Z_3 = B_3(1 + x)^b. \] (4.4b)

and coefficients \(B_1, B_2, B_3\) obey the linear system as well

\[
\begin{align*}
(2b^2 - b - \lambda)B_1 - \lambda B_2 &= 0, \\
(2b^2 - b - \lambda')B_3 - \lambda' B_2 &= 0, \\
(2b^2 - b - \frac{2 + \lambda + \lambda'}{2})B_2 - B_1 - B_3 &= 0.
\end{align*}
\] (4.4c)

With the notation

\[
\begin{align*}
2a^2 - a &= A, & 2b^2 - b &= B, \\
a &= \frac{1 \pm \sqrt{1 + 8A}}{4}, & b &= \frac{1 \pm \sqrt{1 + 8B}}{4};
\end{align*}
\] (4.5a)

two linear system are written as

\[
\begin{align*}
(A - \lambda)A_1 + \lambda A_2 &= 0, \\
(A - \lambda')A_3 + \lambda' A_2 &= 0.
\end{align*}
\]
\[(A - \frac{2 + \lambda + \lambda'}{2})A_2 + A_1 + A_3 = 0; \quad (4.5b)\]

and
\[(B - \lambda)B_1 - \lambda B_2 = 0,\]
\[(B - \lambda')B_3 - \lambda'B_2 = 0,\]
\[(B - \frac{2 + \lambda + \lambda'}{2})B_2 - B_1 - B_3 = 0; \quad (4.5c)\]

Further we get one the same eigenvalue equation for values \(A\) and \(B\)

\[(A - \lambda)\lambda' + (A - \lambda')\lambda - (A - \lambda)(A - \lambda')(A - \frac{2 + \lambda + \lambda'}{2}) = 0,\]
\[(B - \lambda)\lambda' + (B - \lambda')\lambda - (B - \lambda)(B - \frac{2 + \lambda + \lambda'}{2}) = 0; \quad (4.6)\]

respective solutions are given as

\[A_1 = (A_2) \frac{\lambda}{\lambda' - A}, \quad A_3 = (A_2) \frac{\lambda'}{\lambda' - A}; \quad (4.7a)\]
\[B_1 = (-B_2) \frac{\lambda}{\lambda' - B}, \quad B_3 = (-B_2) \frac{\lambda'}{\lambda' - B}. \quad (4.7b)\]

Now, let us examine a third order equation (4.6) – for definiteness consider the case of \(A\):

\[2(A - \lambda)\lambda' + 2(A - \lambda')\lambda - (A - \lambda)(A - \lambda')(2A - 2 - \lambda - \lambda') = 0; \quad (4.8)\]

the equation arising is symmetric with respect to formal replacement \(\lambda \leftrightarrow \lambda'\).

Explicitly the equation read

\[2A(\lambda + \lambda') - 4\lambda \lambda' + [A^2 - A(\lambda + \lambda') + \lambda \lambda'][-2A + 2 + (\lambda + \lambda')] = 0 \quad \Rightarrow \]

\[2A(\lambda + \lambda') - 4\lambda \lambda' - 2A^3 + 2A^2 + A^2(\lambda + \lambda') + 2A^2(\lambda + \lambda') - 2A(\lambda + \lambda')^2 - 2A\lambda \lambda' + 2\lambda \lambda' + \lambda \lambda'(\lambda + \lambda') = 0 \quad \Rightarrow \]

\[-2A^3 + A^2 [2 + 3(\lambda + \lambda')] - A [2(\lambda + \lambda')^2 + 2\lambda \lambda'] + \lambda \lambda' [2(\lambda + \lambda') - 2] = 0. \quad (4.9a)\]
Remembering on \(\lambda' = \lambda - B \), one can introduce other parameters

\[
\lambda' - \frac{B}{2} = \lambda + \frac{B}{2} \equiv \Lambda ,
\]

\[
\lambda + \lambda' = 2\Lambda , \quad \lambda \lambda' = \Lambda^2 - \frac{B^2}{4} .
\] (4.9b)

Then eq. (4.9a) reads

\[
A^3 - A^2 (3\Lambda + 1) + A \left(3\Lambda^2 - \frac{B^2}{4}\right) - (\Lambda^2 - \frac{B^2}{4}) (\Lambda - 1) = 0 .
\] (4.9c)

It can be presented symbolically as

\[
A^3 + aA^2 + bA + c = 0 ,
\] (4.10a)

where

\[
a = -(3\Lambda + 1) ,
\]

\[
b = (3\Lambda^2 - \frac{B^2}{4}) ,
\]

\[
c = -(\Lambda^2 - \frac{B^2}{4}) (\Lambda - 1) .
\] (4.10b)

Through change in the variable \(A \rightarrow Y \)

\[
A = Y - \frac{a}{3} = Y + \Lambda + \frac{1}{3}
\] (4.11a)

we remove a quadratic term

\[
Y^3 + pY + q = 0 ,
\] (4.11b)

where

\[
p = -\frac{a^2}{3} + b = -(2\Lambda + \frac{B^2}{4} + \frac{1}{3}),
\]

\[
q = \frac{2a^3}{27} - \frac{ab}{3} + c = -\left(\frac{2}{3}\Lambda + \frac{B^2}{3} + \frac{2}{27}\right) .
\] (4.11c)

Note substantial inequalities

\[
p < 0 , \quad q < 0 , \quad |p| > |q| .
\]

Formulas, giving solutions of eq. (4.11b) are well known
\[Y = \left[-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \right]^{1/3} + \left[-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \right]^{1/3}. \] (4.12a)

Applying (4.12a), one must use correlated roots
\[\alpha = \left[-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \right]^{1/3} \] (4.12b)
and
\[\beta = \left[-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3} \right]^{1/3} \] (4.12c)
so that the following restriction hold
\[\alpha \beta = -\frac{p}{3}. \] (4.12d)

Besides, the roots can be searched according to the formulas
\[Y_1 = \alpha_1 + \beta_1, \]
\[Y_2 = -\frac{1}{2}(\alpha_1 + \beta_1) + i\frac{\sqrt{3}}{2}(\alpha_1 - \beta_1) \]
\[Y_3 = -\frac{1}{2}(\alpha_1 + \beta_1) - i\frac{\sqrt{3}}{2}(\alpha_1 - \beta_1) \] (4.13a)
where \(\alpha_1 \) stands for any root in (4.12b), but a root \(\beta_1 \) in (4.12c) must obey
\[\alpha_1\beta_1 = -\frac{p}{3}. \] (4.13b)

Let us additionally detail expressions (4.13a,b) for three roots. Allowing for
\[\alpha = \left[-\frac{q}{2} + i\sqrt{\left(-\frac{p}{3}\right)^3 - \left(\frac{q}{2}\right)^2} \right]^{1/3} \]
\[= \left[\left(-\frac{p}{3}\right)^{3/2}(\cos \phi + i \sin \phi) \right]^{1/3} \]
\[= \sqrt{-\frac{p}{3}} \left\{ e^{i\phi/3}, e^{i(\phi/3+2\pi/3)}, e^{i(\phi/3+4\pi/3)} \right\}, \] (4.14a)
where
\[
\cos \phi = \frac{-q/2}{(-p/3)^{3/2}}, \quad \sin \phi = \frac{\sqrt{(-p/3)^3 - (q/2)^2}}{(-p/3)^{3/2}}. \quad (4.14b)
\]

It is readily to specify the quantity \(\beta \):

\[
\beta = \left[-\frac{q}{2} - i\sqrt{(-p/3)^3 - (q/2)^2} \right]^{1/3} = \\
= \left[(-p/3)^{3/2} \left(\cos \phi - i \sin \phi \right) \right]^{1/3} = \\
= \sqrt{-p/3} \left\{ e^{-i\phi/3}, e^{i(-\phi/3+2\pi/3)}, e^{i(-\phi/3+4\pi/3)} \right\}, \quad (4.14a)
\]

where

\[
\cos \phi = \frac{-q/2}{(-p/3)^{3/2}}, \quad \sin \phi = \frac{\sqrt{(-p/3)^3 - (q/2)^2}}{(-p/3)^{3/2}}. \quad (4.14b)
\]

As \(\alpha_1 \) and \(\beta_1 \) we will take

\[
\alpha_1 = \sqrt{-p/3} e^{+i\phi/3}, \quad \beta_1 = \sqrt{-p/3} e^{-i\phi/3};
\]

\[
\cos \phi = \frac{-q/2}{(-p/3)^{3/2}}, \quad \sin \phi = \frac{\sqrt{(-p/3)^3 - (q/2)^2}}{(-p/3)^{3/2}}. \quad (4.15a)
\]

And further we readily find

\[
\alpha_1 + \beta_1 = 2\sqrt{-p/3} \cos \frac{\phi}{3}, \quad \alpha_1 - \beta_1 = 2i \sqrt{-p/3} \sin \frac{\phi}{3}. \quad (4.15b)
\]

Thus, three different (real-valued) roots are determined by the formulas

\[
Y_1 = \sqrt{-p/3} \left(2 \cos \frac{\phi}{3} \right), \\
Y_2 = \sqrt{-p/3} \left(- \cos \frac{\phi}{3} - \sqrt{3} \sin \frac{\phi}{3} \right), \\
Y_3 = \sqrt{-p/3} \left(- \cos \frac{\phi}{3} + \sqrt{3} \sin \frac{\phi}{3} \right). \quad (4.16)
\]

One can additionally check the results: from the identity

\[
Y^3 + pY + q = (Y - Y_1)(Y - Y_2)(Y - Y_3)
\]
it follows
\[0 = Y_1 + Y_2 + Y_3, \]
\[p = Y_1 Y_2 + Y_1 Y_3 + Y_2 Y_3, \quad q = -Y_1 Y_2 Y_3. \]
(4.17)

First we readily verify two identity
\[0 = Y_1 + Y_2 + Y_3, \quad p = Y_1 Y_2 + Y_1 Y_3 + Y_2 Y_3. \]

Turning to the third ine, let us calculate
\[-Y_1 Y_2 Y_3 = -\frac{2\sqrt{3}}{9} (-p)^{3/2} \left[4 \cos^2 \frac{\phi}{3} - 3 \right] \cos \frac{\phi}{3}; \]
(4.18a)

further with the help of elementary relation
\[\cos \alpha \cos \beta = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}, \]
we get
\[\left[4 \cos^2 \frac{\phi}{3} - 3 \right] \cos \frac{\phi}{3} = (-1 + 2 \cos \frac{2\phi}{3}) \cos \frac{\phi}{3} = \cos \phi; \]
(4.18b)

and thus we prove the third identity (remembering on (4.15a))
\[-Y_1 Y_2 Y_3 = -\frac{2\sqrt{3}}{9} (-p)^{3/2} \cos \phi = \frac{2\sqrt{3}}{9} (-p)^{3/2} \frac{-q/2}{(-p/3)^{3/2}} = -q. \]
(4.18c)

Unfortunately we have not gained success in solving the main system of 3 equation in \(z \) variable
\[\left(1 - x^2 \right) \frac{d^2}{dx^2} - x \frac{dx}{dx} - \frac{2\lambda}{1 - x^2} + 2\epsilon M \right) Z_1 + \frac{2\lambda x}{1 - x^2} \bar{Z}_2 = 0, \]
\[\left(1 - x^2 \right) \frac{d^2}{dx^2} - x \frac{dx}{dx} - \frac{2\lambda'}{1 - x^2} + 2\epsilon M \right) Z_3 + \frac{2\lambda' x}{1 - x^2} \bar{Z}_2 = 0, \]
\[\left(1 - x^2 \right) \frac{d^2}{dx^2} - x \frac{dx}{dx} - \frac{2 + \lambda + \lambda'}{1 - x^2} + 2\epsilon M + 1 \right) \bar{Z}_2 + \frac{2x}{1 - x^2} (Z_1 + Z_3) = 0. \]

So this analysis can be considered as completed.

Acknowledgment

Authors are grateful to Professor A.L. Sanin and Professor D.V. Serov for warm welcome in Saint Petersburg State Polytechnical University, and for friendly encouragement and helpful advices.
References

[1] Rabi I.I. Das freie Electron in Homogenen Magnetfeld nach der Diracschen Theorie. // Z. Phys. 49, 507 – 511 (1928).

[2] Landau L., Diamagnetismus der Metalle, Ztshr. Phys. 64, 629–637 (1930).

[3] Plesset M.S. Relativistic wave mechanics of the electron deflected by magnetic field. // Phys.Rev. 12, 1728 – 1731 (1931).

[4] L.D. Landau, E.M. Lifshitz. Quantum mechanics. Addison Wesley, Reading, Mass., 1958.

[5] A. Comtet, P.J. Houston. Effective action on the hyperbolic plane in a constant external field. J. Math. Phys. 1985. Vol. 26, No. 1. P. 185 – 191

[6] Alain Comtet. On the Landau levels on the hyperbolic plane. Annals of Physics. 1987. Vol. Volume 173. P. 185 – 209.

[7] H. Aoki. Quantized Hall Effect. Rep. Progr. Phys. 1987. Vol. 50. P. 655 – 730.

[8] C. Groshe. Path integral on the Poincaré upper half plane with a magnetic field and for the Morse potential. Ann. Phys. (N.Y.), 1988. Vol. 187. P. 110 – 134.

[9] J.R. Klauder, E. Onofri. Landau Levels and Geometric Quantization. Int. J. Mod. Phys. 1989. Vol. A4. P. 3939 – 3949.

[10] J.E. Avron, A. Pnueli. Landau Hamiltonians on Symmetric Spaces. Pages 96 – 117 in: Ideas and methods in mathematical analysis, stochastics, and applications. Vol. II. S. Alverio et al., eds. (Cambridge Univ. Press, Cambridge, 1990).

[11] M.S. Plyushchay. The Model of relativistic particle with torsion. Nucl. Phys. 1991. Vol. B362. P. 54 – 72.

[12] M.S. Plyushchay. Relativistic particle with torsion, Majorana equation and fractional spin. Phys. Lett. 1991. Vol. B262. P. 71 – 78.

[13] G.V. Dunne. Hilbert Space for Charged Particles in Perpendicular Magnetic Fields. Ann. Phys. (N.Y.) 1992. Vol. 215. P. 233 – 263.
[14] M.S. Plyushchay. Relativistic particle with torsion and charged particle in a constant electromagnetic field: Identity of evolution. Mod. Phys. Lett. 1995. Vol. A10. P. 1463 – 1469; hep-th/9309147.

[15] M. Alimohammadi, A. Shafei Deh Abad. Quantum group symmetry of the quantum Hall effect on the non-flat surfaces. J. Phys. 1996. Vol. A29. P. 559.

[16] M. Alimohammadi, H. Mohseni Sadjadi Laughlin states on the Poincare half-plane and their quantum group symmetry, Jour. Phys. 1996. Vol. A29. P. 5551

[17] E. Onofri. Landau Levels on a torus. Int. J. Theoret. Phys., 2001, Vol. 40, no 2, P. 537 – 549; arXiv:quant-ph/0007055v1 18 Jul 2000

[18] J. Negro, M.A. del Olmo, A. Rodríguez-Marco. Landau quantum systems: an approach based on symmetry. arXiv:quantum-ph/0110152

[19] J. Gamboa, M. Loewe, F. Mendez, J. C. Rojas The Landau problem and noncommutative quantum mechanics. Mod. Phys. Lett. A. 2001. Vol. 16. P. 2075 – 2078.

[20] S.M. Klishevich, M.S. Plyushchay. Nonlinear holomorphic supersymmetry on Riemann surfaces. Nucl. Phys. 2002. Vol. B 640. P. 481 – 503; hep-th/0202077

[21] N. Drukker, B. Fiol, J. Simón. Gödel-type Universes and the Landau problem. hep-th/0309199. Journal of Cosmology and Astroparticle Physics (JCAP) 0410 (2004) Paper 012

[22] A. Ghanmi, A. Intissar. Magnetic Laplacians of fiffentila forms of the hyperbolic disk and Landau levels. African Journal Of Mathematical Physics. 2004. Vol. 1. P. 21 – 28.

[23] F. Correa, V. Jakubsky, M.S. Plyushchay. Aharonov-Bohm effect on AdS(2) and nonlinear supersymmetry of reflectionless Poschl-Teller system. Annals Phys. 2009. Vol. 324. P. 1078 – 1094,2009; arXiv:0809.2854

[24] P.D. Alvarez, J.L. Cortes, P.A. Horvathy, M.S. Plyushchay. Super-extended noncommutative Landau problem and conformal symmetry. JHEP. 2009. 0903:034; arXiv:0901.1021

26
[25] A.A. Bogush, V.M. Red’kov, G.G. Krylov. Schrödinger particle in magnetic and electric fields in Lobachevsky and Riemann spaces. // Nonlinear Phenomena in Complex Systems. 11, no 4, 403 – 416 (2008).

[26] A.A. Bogush, G.G. Krylov, E.M. Ovsiyuk, V.M. Red’kov. Maxwell electrodynamics in complex form, solutions with cylindric symmetry in the Riemann space. Doklady Natsionalnoi Akademii Nauk Belarusi. 33, 52 – 58 (2009).

[27] A.A. Bogush, V.M. Red’kov, G.G. Krylov. Quantum-mechanical particle in a uniform magnetic field in spherical space S_3. Proceedings of the National Academy of Sciences of Belarus. Ser. fiz.-mat. 2, 57 – 63 (2009).

[28] V.V. Kudryashov, Yu.A. Kurochkin, E.M. Ovsiyuk, V.M. Red’kov. Motion caused by magnetic field in Lobachevsky space. AIP Conference Proceedings. Vol. 1205, P. 120 – 126 (2010); Eds. Remo Ruffini and Gregory Vereshchagin. The sun, the stars, the Universe and General relativity. International Conference in Honor of Ya.B. Zeldovich. April 20-23, 2009, Minsk.

[29] V.V. Kudryashov, Yu.A. Kurochkin, E.M. Ovsiyuk, V.M. Red’kov. Motion of a particle in magnetic field in the Lobachevsky space. Doklady Natsionalnoi Akademii Nauk Belarusi. 53, 50–53 (2009).

[30] V.V. Kudryashov, Yu.A. Kurochkin, E.M. Ovsiyuk, V.M. Red’kov. Classical Particle in Presence of Magnetic Field, Hyperbolic Lobachevsky and Spherical Riemann Models. SIGMA 6, 004, 34 pages (2010).

[31] V.M. Red’kov. Fields in Riemannian space and the Lorentz group. Publishing House ”Belarusian Science”, Minsk, 2009 (in Russian).

[32] M.N. Olevsky. Three-orthogonal coordinate systems in spaces of constant curvature, in which equation $\Delta_2 U + \lambda U = 0$ permits the full separation of variables. Mathematical collection. 1950. Vol. 27. P. 379 – 426.

[33] H. Bateman, A. Erdélyi. Higher transcendental functions. Vol. I. (New York, McGraw-Hill) 1953.

[34] V.M. Red’kov, E.M. Ovsiyuk. Quantum mechanics in spaces of constant curvature. Nova Science Publishers. Inc. 2012.