Association between PD-1 and PD-L1 Polymorphisms and the Risk of Cancer: A Meta-Analysis of Case-Control Studies

Mohammad Hashemi 1,2,*, Shima Karami 2, Sahel Sarabandi 2, Abdolkarim Moazeni-Roodi 3, Andrzej Malecki 4, Saeid Ghavami 5,6,*, and Emilia Wiechec 7,*

1 Genetics of Non-communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
2 Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743175, Iran
3 Department of Clinical Biochemistry, Iranshahr University of Medical Sciences, Iranshahr 9916643535, Iran
4 Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland
5 Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
6 Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
7 Department of Clinical and Experimental Medicine, Linköping University, 58183 Linköping, Sweden
* Correspondence: mhd.hashemi@gmail.com or hashemim@zaums.ac.ir (M.H.); saeid.ghavami@umanitoba.ca (S.G.); emilia.wiechec@liu.se (E.W.)

Received: 21 June 2019; Accepted: 7 August 2019; Published: 10 August 2019

Abstract: A number of case-control studies regarding the association of the polymorphisms in the programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) genes with the risk of cancer have yielded inconsistent findings. Therefore, we have conducted a comprehensive, updated meta-analysis study to identify the impact of PD-1 and PD-L1 polymorphisms on overall cancer susceptibility. The findings revealed that PD-1 rs2227981 and rs11568821 polymorphisms significantly decreased the overall cancer risk (Odds Ratio (OR) = 0.82, 95% CI = 0.68–0.99, p = 0.04, TT vs. CT+CC; OR = 0.79, 95% CI = 0.67–0.94, p = 0.006, AG vs. GG, and OR = 0.82, 95% CI = 0.70–0.96, p = 0.020, AG+AA vs. GG, respectively), while PD-1 rs7421861 polymorphism significantly increased the risk of developing cancer (OR = 1.16, 95% CI = 1.02–1.33, p = 0.03, CT vs. TT). The PD-L1 rs4143815 variant significantly decreased the risk of cancer in homozygous (OR = 0.62, 95% CI = 0.41–0.94, p = 0.02), dominant (OR = 0.70, 95% CI = 0.50–0.97, p = 0.03), recessive (OR = 0.76, 95% CI = 0.60–0.96, p = 0.02), and allele (OR = 0.78, 95% CI = 0.63–0.96, p = 0.02) genetic models. No significant association between rs2227982, rs36084323, rs10204525, and rs2890658 polymorphisms and overall cancer risk has been found. In conclusions, the results of this meta-analysis have revealed an association between PD-1 rs2227981, rs11568821, rs7421861, as well as PD-L1 rs4143815 polymorphisms and overall cancer susceptibility.

Keywords: apoptosis; PD-1; PD-L1; polymorphism; cancer; meta-analysis

1. Introduction
Cancer, a main public health issue is the leading cause of death globally. It was estimated that there will be about 18.1 million new cases of cancer and 9.6 million cancer deaths in 2018 [1]. Thus, the etiology and pathogenesis of cancer has not been elucidated completely and their understanding is
decisive. Genome-wide association studies (GWAS) have simplified the search for potential genetic variants that are implicated in many diseases including cancer and single nucleotide polymorphisms (SNPs) are well studied genetic variations found in human genome. The number of SNPs that have so far been identified to play an important role in cancer susceptibility is significant [2]. It has been proposed that the immune system plays a key role in resisting and eliminating cancer cells and can affect cancer susceptibility. One of the main hallmarks of cancer cells is the immune suppression and evasion [3].

Tumor cells express the programmed death-1-ligand 1 (PD-L1) as an adaptive, resistant mechanism to suppress the inhibitory receptor, namely programmed cell death-1 (PD-1) in order to evade host immunosurveillance [4]. PD-1, also known as PD1 and CD279, is a cell surface immunosuppressive receptor belonging to immunoglobulin superfamily and is encoded by the PDCD1 gene [5–7]. PD-1, is a negative regulator of the immune system and is expressed on CD4⁺ T cells, CD8⁺ T cells, NKT cells, B cells, and monocytes [8,9]. The antitumor CD8⁺ T cells exhibit preferential expression of PD-1 leading to their exhaustion and functional impairment, which in turns lead to attenuated tumor-specific immunity disseminating tumor progression [10,11]. The PD-1 blockade elevates the magnitude of T cell response such as proliferation of T cells and production of effector cytokines [12]. Additionally, PD-L1 signaling through conserved sequence motifs confers resistance of cancer cells towards proapoptotic interferon (IFN)-mediated cytotoxicity [13].

PD-1/PD-L1 axis is an important pathway to maintain immune tolerance and prevent autoimmune diseases in the evolution of immunity [14–16]. Furthermore, it influences the balance between tumor immune surveillance and immune resistance [17,18]. Elevated PD-L1 expression in tumor cells or tumor-infiltrating lymphocytes (TILs) leads to the exhaustion of T cells [19], and hence attenuated tumor-specific immunity disseminating tumor progression [20]. Gene polymorphisms might affect the normal process of gene activation and transcriptional initiation, hence influence the quantity of mRNA and encoded protein [21]. Both PD-1 and PD-L1 are polymorphic. Several studies investigated the association between genetic polymorphisms of PD-1 and PD-L1 genes and the risk of various cancers, but the finding are still inconclusive [5–7,22–52]. Thus, we performed a comprehensive meta-analysis in order to study the association of polymorphisms in PD-1 and PD-L1 genes with the risk of cancer. The locations and base pair positions of single nucleotide polymorphisms (SNPs) in PD-1 and PD-L1 genes are presented in Table 1.

Table 1. Locations and base pair positions of single nucleotide polymorphisms (SNPs) in PD-1 and PD-L1 genes.

Gene Name	db SNP rs # ID *	Chromosome Position	Location	Base Change	Amino Acid Change
PD-1	rs2227981	chr2:241851121	Upstream	C/T	
	rs2227982	chr2:241851281	Exon	C/T	Ala215Val
	rs7421861	chr2:241853198	Intron	G/A	
	rs11568821	chr2:241851760	Intron	G/A	-
	rs36084323	chr2:241859444	Upstream	G/A	
	rs10204525	chr2:241850169	3'UTR	A/G	
	rs4143815	chr9:5468257	3'UTR	G/C	-
	rs2890658	chr9:5465130	Intron	A/C	-

* db = databases; rs # = reference SNP #; UTR: untranslated region.

2. Results

2.1. Study Characteristics

A flow diagram of the study selection process is shown in Figure 1. For PD-1 polymorphisms, 54 case-control studies from a total of 26 articles [5–7, 22–43, 52] examining the associations of 6 widely
studied polymorphisms in PD-1 gene and cancer risk were included in this meta-analysis. There were 16 studies involving 5622 cases and 5450 controls that reported the association between PD-1 rs2227981 polymorphism and cancer. Eleven studies including 4766 cases and 5839 controls investigated the relationship between PD-1 rs2227982 polymorphism and cancer. Nine studies with 1846 cases and 1907 cases reported the association between PD-1 rs11568821 variant and cancer risk. Seven studies including 3576 cancer cases and 5277 controls studied the correlation between PD-1 rs7421861 polymorphism and cancer. Seven studies involving 3589 cases and 4314 controls examined the association between PD-1 rs36084323 polymorphism and cancer risk. Six studies including 3366 cancer cases and 4391 controls studied the relationship between PD-1 rs10204525 polymorphism and cancer.

Figure 1. Flow diagram of study selection for this meta-analysis.

For PD-L1 polymorphisms, 13 case-control studies from 10 articles [27,38,44–51] that assessed the impact of two polymorphisms of PD-L1 were included in the pooled analysis. Eight studies including 3030 cases and 4145 controls evaluated the association between PD-L1 rs4143815 polymorphism and cancer risk. Five studies with 1909 cases and 1970 controls assessed the correlation between PD-L1 rs2890658 variant and cancer risk. The characteristics of all these studies are shown in Table 2.
Table 2. Characteristics of the studies eligible for meta-analysis.

First Author	Year	Country	Ethnicity	Cancer Type	Source of Control	Genotyping Method	Case/Control	Cases	Controls	HWE									
PD-1 rs2227981																			
Fathi	2019	Iran	Asian	Squamous Cell Carcinomas of Head and Neck	HB	PCR-RFLP	150/150	65	69	16	199	101	66	71	13	203	97	0.317	
Gomez	2018	Brazil	South American	Cutaneous Melanoma	PB	RT-PCR	250/250	87	126	37	300	200	85	130	35	300	200	0.188	
Haghshenas	2011	Iran	Asian	Breast cancer	PB	PCR-RFLP	435/328	194	191	50	579	291	137	145	46	419	237	0.446	
Haghshenas	2017	Iran	Asian	Thyroid cancer	PB	PCR-RFLP	105/160	40	51	14	131	79	99	51	13	249	71	0.331	
Hu	2011	China	Asian	Breast cancer	PB	PCR-RFLP	486/478	295	169	22	759	213	244	210	24	698	258	0.012	
Ivansson	2010	Sweden	Caucasian	Cervical cancer	PB	TaqMan	1300/810	471	603	226	1545	1055	257	375	178	889	731	0.064	
Li	2016	China	Asian	Cervical cancer	PB	PCR-RFLP	256/250	45	167	44	257	253	62	101	87	225	275	0.004	
Li	2017	China	Asian	Ovarian cancer	HB	PCR-LDR	620/620	351	233	36	935	305	137	257	89	36	239	161	0.837
Ma	2015	China	Asian	Lung cancer	PB	PCR-RFLP	528/600	244	216	68	704	352	256	246	98	758	442	0.004	
Mojtabehdi	2012	Iran	Asian	Color cancer	PB	PCR-RFLP	175/200	47	102	26	196	154	75	89	36	239	161	0.290	
Mojtabehdi	2012	Iran	Asian	Rectal cancer	PB	PCR-RFLP	25/200	12	7	6	31	19	75	89	36	239	161	0.290	
Namavar Jahromi	2017	Iran	Asian	Malignant Brain tumor	PB	PCR-RFLP	56/150	22	31	3	75	37	94	47	9	235	65	0.346	
Pirdelkhosh	2018	Iran	Asian	NSCLC	PB	PCR-RFLP	206/173	78	100	28	256	156	60	89	24	209	137	0.321	
Savabkar	2013	Iran	Asian	Gastric cancer	HB	PCR-RFLP	122/166	50	66	6	166	78	89	70	7	248	84	0.136	
Yin	2014	China	Asian	Lung cancer	PB	PCR-LDR	324/330	198	106	20	502	146	181	105	44	467	193	0.001	
Zhou	2016	China	Asian	ESCC	PB	PCR-LDR	584/585	291	241	52	823	345	310	229	46	849	321	0.683	
PD-1 rs2227982																			
Fathi	2019	Iran	Asian	Squamous Cell Carcinomas of Head and Neck	HB	PCR-RFLP	150/150	146	4	0	296	4	146	4	0	296	4	0.868	
Gomez	2018	Brazil	South American	Cutaneous Melanoma	PB	RT-PCR	250/250	227	21	2	475	25	225	25	0	475	25	0.405	
Hua	2011	China	Asian	breast cancer	PB	PCR-RFLP	487/306	111	249	127	471	503	95	268	143	458	554	0.121	
Ma	2015	China	Asian	Lung cancer	PB	PCR-RFLP	528/600	343	148	37	834	222	404	168	28	976	224	0.056	
Qiu	2014	China	Asian	esophageal cancer	HB	PCR-LDR	616/681	159	303	154	621	611	189	325	167	703	659	0.245	
Ramzi	2018	Iran	Asian	Leukemia	PB	PCR-RFLP	59/38	38	18	3	94	24	17	19	2	53	23	0.255	
Ren	2016	China	Asian	Breast Cancer	PB	MassARRAY	557/582	172	257	128	601	513	137	299	146	573	591	0.503	
Tan	2018	China	Asian	Ovarian cancer	PB	PCR-RFLP	164/170	87	60	17	234	94	111	48	11	270	70	0.075	
Tang	2015	China	Asian	Gastric cardia adenocarcinoma	HB	PCR-LDR	336/603	75	168	87	318	342	163	292	148	618	588	0.448	
Tang	2017	China	Asian	Esophagogastric junction adenocarcinoma	HB	SNPscan	1041/1674	220	549	272	989	1093	416	816	442	1648	1700	0.309	
Zhou	2016	China	Asian	ESCC	PB	PCR-LDR	584/585	149	305	130	603	565	150	297	138	597	573	0.702	
Table 2. Cont.

First Author	Year	Country	Ethnicity	Cancer Type	Source of Control	Genotyping Method	Case/Control	Cases	Controls	HWE								
PD-1 rs7421861																		
Ge	2015	China	Asian	Colon cancer	HB	PCR-RFLP	199/620	133	60	163	1043	197	0.685					
Ge	2015	China	Asian	Rectal cancer	HB	PCR-RFLP	362/620	241	114	128	440	163	1043	197	0.685			
Hua	2011	China	Asian	Breast cancer	PB	PCR-RFLP	490/512	333	146	186	370	130	870	154	0.885			
Qiu	2014	China	Asian	esophageal cancer	HB	PCR-LDR	603/673	411	168	21	990	210	460	188	25	1108	238	0.295
Ren	2016	China	Asian	Breast Cancer	PB	MassARRAY	560/580	341	196	23	878	242	347	205	28	899	261	0.746
Tang	2015	China	Asian	Gastric cardia adenocarcinoma	HB	PCR-LDR	324/598	226	91	7	543	105	408	168	22	984	212	0.368
Tang	2017	China	Asian	esophageogastric junction adenocarcinoma	HB	SNPscan	1041/1674	642	358	41	1642	440	1166	454	54	2786	562	0.232
PD-1 rs11568821																		
Bayram	2012	Turkey	Asian	liver cancer	HB	PCR-RFLP	236/236	191	45	42	45	180	56	0	416	56	0.039	
Fathi	2019	Iran	Asian	Squamous-Cell Carcinomas of Head and Neck	HB	PCR-RFLP	150/150	119	27	4	265	35	113	32	5	258	42	0.162
Haghbezas	2011	Iran	Asian	Breast cancer	PB	PCR-RFLP	436/290	365	63	8	793	79	231	55	4	517	63	0.726
Haghbezas	2017	Iran	Asian	Thyroid cancer	PB	PCR-RFLP	95/160	82	13	0	177	13	127	30	3	284	36	0.440
Ma	2015	China	Asian	lung cancer	PB	PCR-RFLP	528/600	426	102	0	954	102	456	142	2	1054	146	0.009
Namavar Jahromi	2017	Iran	Asian	Malignant Brain tumor	PB	PCR-RFLP	56/150	47	8	1	102	10	116	30	4	262	38	0.240
Pirdelkhoosh	2018	Iran	Asian	NSCLC	PB	PCR-RFLP	206/173	171	31	4	373	39	144	26	3	314	32	0.168
Ramzi	2018	Iran	Asian	Leukemia	PB	PCR-RFLP	59/38	38	18	3	94	24	21	13	4	55	21	0.373
Yousefi	2013	Asian	Asian	colon cancer	PB	PCR-LDR	80/110	18	27	35	63	97	43	45	22	131	89	0.114
PD-1 rs36084323																		
Gomez	2018	Brazil	South American	Cutaneous-Melanoma	PB	RT-PCR	230/250	226	18	6	470	30	225	25	0	475	25	0.405
Hua	2011	China	Asian	Breast cancer	PB	PCR-RFLP	490/512	103	271	116	477	503	140	260	112	540	484	0.673
Li	2017	China	Asian	Ovarian cancer	HB	PCR-LDR	620/620	150	305	169	601	639	168	323	129	659	581	0.251
Ma	2015	China	Asian	lung cancer	PB	PCR-RFLP	528/600	144	246	138	534	522	156	296	148	608	592	0.747
Shamsdin	2018	Iran	Asian	Colon cancer	PB	PCR-RFLP	76/73	60	15	1	135	17	18	28	27	84	82	0.059
Tang	2017	China	Asian	esophageogastric junction adenocarcinoma	HB	SNPscan	1041/1674	238	521	282	997	1085	430	800	444	1660	1688	0.071
Zhou	2016	China	Asian	ESCC	PB	PCR-LDR	584/585	147	303	134	597	571	145	298	142	588	582	0.649
First Author	Year	Country	Ethnicity	Cancer Type	Source of Control	Genotyping Method	Case/Control	Cases	Controls	HWE								
--------------	------	---------	-----------	-------------	------------------	------------------	--------------	-------	-----------	-----								
PD-1 rs10204525							AA AG GG A G	AA AG GG A G										
Li	2013	China	Asian	HCC	PB	TIANamp	271 318	80 83 8 443 99 160 130 28 450 186	0.828									
Qiu	2014	China	Asian	esophageal cancer	HB	PCR-LDR	600 651	317 240 43 874 326 345 243 63 933 369	0.039									
Ren	2016	China	Asian	Breast Cancer	PB	MassARRAY	559 582	257 248 54 762 356 291 240 51 822 342	0.880									
Tang	2015	China	Asian	Gastric cardia adenocarcinoma	HB	PCR-LDR	313 581	169 123 21 461 165 309 219 53 837 325	0.120									
Tang	2017	China	Asian	esophagogastric junction adenocarcinoma	HB	SNPscan	1039 1674	544 397 98 1485 593 870 672 132 2412 936	0.888									
Zhou	2016	China	Asian	ESCC	PB	PCR-LDR	584 585	325 226 33 876 292 296 238 51 830 340	0.749									
PD-L1 rs1413815							AA AG GG A G	AA AG GG A G										
Catalano	2018	Czech	Caucasian	Colon cancer	HB	TaqMan	824 1103	388 345 91 1121 527 514 467 122 1495 711	0.306									
Catalano	2018	Czech	Caucasian	Rectal cancer	HB	TaqMan	371 1103	167 162 42 496 246 514 467 122 1495 711	0.306									
Du	2017	China	Asian	NSCLC	HB	sequencing	320 199	52 145 123 249 391 40 80 79 160 238	0.021									
Tan	2018	China	Asian	Ovarian cancer	PB	PCR-RFLP	164 170	51 82 31 184 144 38 78 54 154 186	0.334									
Tao	2017	China	Asian	Gastric cancer	HB	Sequencing	346 300	123 153 70 399 293 317 117 223 160 457	0.543									
Wang	2013	China	Asian	Gastric cancer	HB	sequencing	205 393	88 72 45 248 162 70 188 135 326 458	0.746									
Xie	2018	China	Asian	HCC	HB	sequencing	225 200	74 101 50 249 201 31 104 65 166 234	0.316									
Zhou	2017	China	Asian	ESCC	PB	PCR-LDR	575 577	87 277 211 451 699 85 289 203 459 695	0.275									
PD-L1 rs2808038							AA AG GG A G	AA AG GG A G										
Chen	2014	China	Asian	NSCLC	HB	PCR-RFLP	292 293	242 48 3 532 54 266 26 1 538 28 0.671										
Cheng	2015	China	Asian	NSCLC	HB	PCR-RFLP	288 300	233 51 4 517 59 269 30 1 569 32 0.867										
Ma	2015	China	Asian	lung cancer	PB	PCR-RFLP	529 600	416 106 6 938 318 512 84 4 1108 92 0.785										
Xie	2018	China	Asian	HCC	HB	sequencing	225 200	170 49 6 389 61 129 55 6 333 67 0.844										
Zhou	2017	China	Asian	ESCC	PB	PCR-LDR	575 577	18 165 296 197 953 15 144 435 174 980	0.541									

List of Abbreviations: HCC: Hepatocellular carcinoma; PB: Population-based; HB: Hospital-based; ESCC: Esophageal squamous cell carcinoma; LDR: Ligase Detection Reaction; NSCLC: non-small cell lung cancer; PCR-RFLP: PCR-Restriction fragment length polymorphism; HWE: Hardy-Weinberg equilibrium; MassARRAY® System: Nonfluorescent detection platform utilizing mass spectrometry to accurately measure PCR-derived amplicons.
2.2. Main Analysis Results

2.2.1. Association of PD-1 Polymorphisms with Cancer Risk

The pooled analysis involving PD-1 rs2227981 polymorphism revealed that this variant significantly decreased the overall cancer risk in recessive (OR = 0.82, 95% CI = 0.68–0.99, p = 0.04, TT vs. CT+CC) genetic models (Table 3 and Figure 2).

![Figure 2](image-url)

Figure 2. Forest plot for the association between PD-1 rs2227981 polymorphism and cancer susceptibility for CT vs. CC (A), TT vs. CC (B), CT+TT vs. CC (C), TT vs. CT+TT (D), and T vs. C (E).
Table 3. The pooled ORs and 95% CIs for the association between PD-1 and PD-L1 polymorphisms and cancer susceptibility.

Polymorphism	n	Genetic Model	Association Test	Heterogeneity Test	Publication Bias Test					
			OR (95% CI)	Z	χ² (%)	p	Egger’s Test p	Begg’s Test p		
PD-1 rs2227981	16	CT vs. CC	1.11 (0.93–1.33)	1.16	61.22 75	<0.00001	0.032	0.031		
		TT vs. CC	0.86 (0.72–1.04)	1.51	27.39 45	0.03	0.034	0.024		
		CT+TT vs. CC	1.05 (0.89–1.24)	0.64	58.58 74	<0.00001	0.019	0.005		
		TT vs. CT+CC	0.82 (0.68–0.99)	2.04	31.12 52	0.008	0.155	0.150		
		T vs. C	0.98 (0.87–1.09)	0.43	51.48 71	<0.00001	0.020	0.012		
PD-1 rs2227982	11	CT vs. CC	1.01 (0.85–1.19)	0.09	24.53 59	0.006	0.359	0.186		
		TT vs. CC	1.05 (0.87–1.26)	0.51	17.10 47	0.050	0.288	0.180		
		CT+TT vs. CC	1.02 (0.86–1.20)	0.22	26.49 62	0.003	0.469	0.484		
		TT vs. CT+CC	1.00 (0.90–1.10)	0.04	7.52 0	0.581	0.184	0.211		
		T vs. C	1.02 (0.92–1.12)	0.38	20.50 51	0.025	0.927	0.715		
PD-1 rs11568821	9	AG vs. GG	0.79 (0.67–0.94)	2.73	3.89 0	0.87	0.499	0.409		
		AA vs. GG	1.01 (0.47–2.14)	0.01	13.19 47	0.07	0.015	0.091		
		AG+AA vs. GG	0.82 (0.70–0.96)	0.24	11.30 29	0.19	0.613	0.835		
		AA vs. AG+GG	1.07 (0.54–2.13)	0.19	11.79 41	0.11	0.010	0.095		
		A vs. G	0.88 (0.68–1.15)	0.92	24.39 67	0.002	0.822	0.835		
PD-1 rs7421861	7	CT vs. TT	1.16 (1.02–1.33)	2.20	0.01 46	0.09	0.215	0.881		
		CC vs. TT	1.00 (0.79–1.28)	0.03	4.76 0	0.57	0.116	0.881		
		CT+CC vs. TT	1.14 (0.99–1.31)	1.81	12.93 54	0.04	0.196	0.453		
		CC vs. CT+TT	0.96 (0.75–1.22)	0.37	3.49 0	0.75	0.101	0.652		
		C vs. T	1.09 (0.97–1.23)	1.42	13.02 54	0.04	0.200	0.652		
PD-1 rs36084323	7	AG vs. GG	0.92 (0.71–1.20)	0.60	27.83 78	0.0001	0.042	0.051		
		AA vs. GG	1.08 (0.77–1.52)	0.45	28.21 79	<0.0001	0.079	0.188		
		AG+AA vs. GG	0.88 (0.64–1.21)	0.79	47.46 87	<0.0001	0.081	0.293		
		AA vs. AG+GG	1.06 (0.83–1.36)	0.46	22.86 74	0.0008	0.137	0.348		
		A vs. G	0.89 (0.70–1.14)	0.92	66.01 91	<0.00001	0.160	0.453		
Polymorphism	n	Genetic Model	OR (95% CI)	Z	p	χ²	I² (%)	p	Egger’s Test	Begg’s Test
------------------	---	---------------	-------------	-------	-------	------	--------	-------	-------------	------------
PD-1 rs10204525	6	AG vs. AA	0.94 (0.80–1.10)	0.76	0.45	13.13	62	0.02	0.640	0.851
		GG vs. AA	0.76 (0.53–1.09)	1.48	0.14	19.40	74	0.002	0.031	0.091
		AG+GG vs. AA	0.90 (0.75–1.08)	1.10	0.27	18.41	73	0.002	0.399	0.188
		GG vs. AG+AA	0.78 (0.57–1.09)	1.46	0.14	16.64	70	0.005	0.020	0.039
		G vs. A	0.89 (0.76–1.05)	1.38	0.17	23.71	79	0.0002	0.172	0.091
PD-L1 rs4143815	8	CG vs. GG	0.75 (0.55–1.01)	1.89	0.06	43.76	84	<0.0001	0.230	0.322
		CC vs. GG	0.62 (0.41–0.94)	2.28	0.02	52.19	87	<0.00001	0.188	0.138
		CG+CC vs. GG	0.70 (0.50–0.97)	2.15	0.03	43.20	84	<0.00001	0.184	0.138
		CC vs. CG+GG	0.76 (0.60–0.96)	2.30	0.02	25.19	72	0.0007	0.070	0.138
		C vs. G	0.78 (0.63–0.96)	2.33	0.02	61.68	89	<0.00001	0.100	0.138
PD-L1 rs2890658	5	AC vs. AA	1.36 (0.92–2.01)	1.53	0.13	13.83	71	0.008	0.757	0.624
		CC vs. AA	1.12 (0.68–1.84)	0.45	0.65	4.31	7	0.37	0.032	0.050
		AC+CC vs. AA	1.35 (0.89–2.04)	1.43	0.15	16.24	75	0.003	0.736	1.000
		CC vs. AC+AA	0.90 (0.71–1.15)	0.83	0.41	4.25	6	0.37	0.041	0.050
		C vs. A	1.30 (0.88–1.91)	1.32	0.19	25.96	85	<0.0001	0.248	0.142
In regard to PD-1 rs11568821 polymorphism, the findings indicated that this variant significantly decreased the overall cancer risk in heterozygous (OR = 0.79, 95% CI = 0.67–0.94, p = 0.006, AG vs. GG) and dominant (OR = 0.82, 95% CI = 0.70–0.96, p = 0.020, AG+AA vs. GG) genetic models (Table 3).

The pooled analysis proposed that PD-1 rs7421861 polymorphism significantly increased the risk of overall cancer in heterozygous (OR = 1.16, 95% CI = 1.02–1.33, p = 0.03, CT vs. TT) genetic models (Table 3).

No significant association was found between PD-1 rs2227982, rs36084323, and rs10204525 polymorphisms and cancer susceptibility (Table 3).

We performed stratified analyses and the findings are summarized in Table 4. We observed that PD-1 rs2227981 significantly decreased the risk of gastrointestinal (GI) cancer (OR = 0.68, 95% CI = 0.56–0.84, p = 0.000, TT vs. CC; OR = 0.60, 95% CI = 0.40–0.89, p = 0.011, TT vs. CT+CC; OR = 0.83, 95% CI = 0.75–0.91, p = 0.000, T vs. C), lung cancer (OR = 0.65, 95% CI = 0.44–0.97, p = 0.030, TT vs. CC; OR = 0.84, 95% CI = 0.71–0.99, p = 0.043, CT+TT vs. CC; OR = 0.83, 95% CI = 0.72–0.95, p = 0.009, T vs. C), and breast cancer (OR = 0.82, 95% CI = 0.70–0.96, p = 0.012, T vs. C).

Furthermore, we found that the PD-1 rs2227982 was associated with an increased risk of cancer in hospital based studies (OR = 1.22, 95% CI = 1.06–1.40, p = 0.006, CT vs. CC; OR = 1.20, 95% CI = 1.05–1.37, p = 0.008, CT+TT vs. CC). We also found a negative correlation between the PD-1 rs2227982 polymorphism and the risk of gastrointestinal cancer (OR = 1.18, 95% CI = 1.04–1.34, p = 0.011, CT vs. CC; OR = 1.16 (95% CI = 1.03–1.30, p = 0.017, CT+TT vs. CC) and breast cancer risk (OR = 0.73, 95% CI = 0.59–0.90, p = 0.004, CT vs. CC; OR = 0.73, 95% CI = 0.57–0.93, p = 0.010, TT vs. CC; OR = 0.73, 95% CI = 0.60–0.89, p = 0.002, CT+TT vs. CC; OR = 0.85, 95% CI = 0.76–0.96, p = 0.010, T vs. C). With reference to the PD-1 rs7421861, our finding proposed that this variant significantly increased the risk of cancer in hospital based studies (OR = 1.89, 95% CI = 1.01–1.40, p = 0.042, CT vs. TT) as well as gastrointestinal cancer (OR = 1.19, 95% CI = 1.01–1.40, p = 0.042, CT vs. CC). Moreover, a significantly reduce cancer risk in population-based studies (OR = 0.80, 95% CI = 0.66–0.97, p = 0.020, AG vs. GG) was observed regarding PD-1 rs11568821 variant. The PD-1 rs36084323 variant was however associated with an increased risk of cancer in hospital-based studies (OR = 1.17, 95% CI = 1.01–1.35, p = 0.042, AG+AA vs. GG).
Variable	No.	CT vs. CC	TT vs. CC	CT+TT vs. CC	TT vs. CT+CC	T vs. C					
PD-1 rs227961	14	1.16 (0.94–1.43)	0.173	0.89 (0.71–1.12)	0.312	1.09 (0.98–1.32)	0.393	0.83 (0.66–1.04)	0.106	1.00 (0.87–1.14)	0.953
Population-based	13	1.12 (0.91–1.39)	0.276	0.88 (0.80–1.07)	0.175	1.08 (0.87–1.38)	0.571	0.81 (0.66–1.01)	0.060	0.97 (0.85–1.10)	0.611
Hospital-based	3	1.06 (0.72–1.61)	0.714	0.91 (0.53–1.59)	0.749	1.04 (0.68–1.57)	0.875	0.85 (0.57–1.26)	0.421	1.03 (0.76–1.41)	0.839
Gastrointestinal cancer	3	1.13 (0.73–1.76)	0.588	0.68 (0.56–0.84)	0.000	0.95 (0.71–1.27)	0.713	0.60 (0.40–0.99)	0.011	0.83 (0.75–0.91)	0.000
Lung cancer	3	0.91 (0.76–1.10)	0.324	0.65 (0.44–0.97)	0.020	0.84 (0.71–0.99)	0.043	0.69 (0.45–1.04)	0.079	0.83 (0.72–0.95)	0.009
Breast cancer	2	0.78 (0.56–1.08)	0.136	0.76 (0.53–1.10)	0.147	0.80 (0.59–1.08)	0.058	0.83 (0.59–1.17)	0.291	0.82 (0.76–0.89)	0.012

PD-1 rs2227962	CT vs. CC	TT vs. CC	CT+TT vs. CC	TT vs. CT+CC	T vs. C						
Population-based	10	1.02 (0.85–1.21)	0.845	1.04 (0.87–1.26)	0.655	1.02 (0.86–1.22)	0.790	1.00 (0.90–1.10)	0.921	1.02 (0.92–1.22)	0.708

PD-1 rs7421861	CT vs. TT	CC vs. TT	CT+CC vs. TT	CC vs. CT+TT	C vs. T						
Hospital-based	5	1.89 (1.01–1.40)	0.042	1.05 (0.79–1.39)	0.745	1.16 (0.98–1.38)	0.096	0.99 (0.74–1.31)	0.916	1.11 (0.95–1.29)	0.192
Population-based	2	1.09 (0.86–1.39)	0.478	0.89 (0.56–1.43)	0.630	1.07 (0.84–1.37)	0.565	0.88 (0.55–1.40)	0.586	1.04 (0.85–1.28)	0.692
Gastrointestinal cancer	5	1.19 (1.01–1.40)	0.042	1.05 (0.79–1.39)	0.745	1.16 (0.97–1.38)	0.096	1.00 (0.75–1.32)	0.979	1.11 (0.95–1.29)	0.192
Breast cancer	2	1.09 (0.86–1.39)	0.478	0.89 (0.56–1.43)	0.630	1.07 (0.84–1.37)	0.565	0.88 (0.55–1.40)	0.586	1.04 (0.85–1.28)	0.692

Table 4. Stratified analysis of PD-1 and PD-L1 polymorphisms with cancer susceptibility.
2.2.2. *PD-L1* Polymorphisms and Cancer Risk

The pooled ORs results for the relationship between the *PD-L1* rs4143815 and rs2890658 polymorphisms and the risk of cancer are shown in Table 3. The *PD-L1* rs4143815 variant significantly decreased the risk of cancer in homozygous (OR = 0.62, 95% CI = 0.41–0.94, *p* = 0.02), dominant (OR = 0.70, 95% CI = 0.50–0.97, *p* = 0.03), recessive (OR = 0.76, 95% CI = 0.60–0.96, *p* = 0.02), and allele (OR = 0.78, 95% CI = 0.63–0.96, *p* = 0.02) genetic models (Table 3 and Figure 3). The pooled analysis did not support an association between *PD-L1* rs2890658 polymorphism and risk of cancer susceptibility (Table 3).

We did stratified analysis (Table 4) and the findings revealed that *PD-L1* rs4143815 polymorphism significantly reduced the risk of gastrointestinal cancer (OR = 0.68, 95% CI = 0.48–0.97, *p* = 0.032, CC vs. GG; OR = 0.64, 95% CI = 0.53–0.76, *p* = 0.003, CC vs. GG; OR = 0.95, 95% CI = 0.76–1.18, *p* = 0.58, CC vs. GG; OR = 0.64, 95% CI = 0.43–0.95, *p* = 0.028, CG+CC vs. GG; OR = 0.76, 95% CI = 0.59–0.98, *p* = 0.034, C vs. G) and hospital-based studies (OR = 0.75, 95% CI = 0.58–0.97, *p* = 0.030, CC vs. CG+GG; OR = 0.76, 95% CI = 0.58–0.99, *p* = 0.043, C vs. G). In regard to *PD-L1* rs2890658, a positive correlation between this variant and the risk of lung cancer (OR = 1.74, 95% CI = 1.37–2.19, *p* = 0.000, AC vs. AA; OR = 1.77, 95% CI = 1.41–2.23, *p* = 0.000, AC+CC vs. AA; OR = 1.72, 95% CI = 1.39–2.13, *p* = 0.000 C vs. A) was observed (Table 4).

We did stratified analysis (Table 4) and the findings revealed that *PD-L1* rs4143815 polymorphism significantly reduced the risk of gastrointestinal cancer (OR = 0.68, 95% CI = 0.48–0.97, *p* = 0.032, CC vs. GG; OR = 0.64, 95% CI = 0.53–0.76, *p* = 0.003, CC vs. GG; OR = 0.95, 95% CI = 0.76–1.18, *p* = 0.58, CC vs. GG; OR = 0.64, 95% CI = 0.43–0.95, *p* = 0.028, CG+CC vs. GG; OR = 0.76, 95% CI = 0.59–0.98, *p* = 0.034, C vs. G) and hospital-based studies (OR = 0.75, 95% CI = 0.58–0.97, *p* = 0.030, CC vs. CG+GG; OR = 0.76, 95% CI = 0.58–0.99, *p* = 0.043, C vs. G). In regard to *PD-L1* rs2890658, a positive correlation between this variant and the risk of lung cancer (OR = 1.74, 95% CI = 1.37–2.19, *p* = 0.000, AC vs. AA; OR = 1.77, 95% CI = 1.41–2.23, *p* = 0.000, AC+CC vs. AA; OR = 1.72, 95% CI = 1.39–2.13, *p* = 0.000 C vs. A) was observed (Table 4).

Figure 3. Forest plot of the relationship between *PD-L1* rs4143815 polymorphism and cancer susceptibility for CG vs. GG (A), CC vs. GG (B), CG+CC vs. GG (C), CC vs. CG+GG (D), and C vs. G (E).
2.3. Heterogeneity

As shown in Table 3, heterogeneity between the studies regarding the PD-1 rs2227981, PD-1 rs36084323, PD-1 rs10204525, and PD-L1 rs4143815 was observed in all genetic models. For PD-1 rs2227982 polymorphism, our results showed no evidence of heterogeneity in the recessive model (TT vs. CT+CC). Regarding PD-1 rs11568821, heterogeneity was not observed in the heterozygous, homozygous, dominant, and recessive genetic models. Similarly, no evidence of heterogeneity in the heterozygous, homozygous, and recessive genetic models of PD-1 rs7421861 was found. Heterogeneity was not detected in the homozygous and recessive genetic models of the PD-L1 rs2890658.

2.4. Publication Bias

The potential publication bias of the studies included in the present meta-analysis was examined by Begg’s funnel plot and Egger’s test. The results of publication bias are summarized in Table 3. Based on the above analysis, no publication bias for the association of PD-1 rs2227982, PD-1 rs7421861, and PD-L1 rs4143815 variants in all genetic models and cancer risk was demonstrated (Table 3 and Figure 4).

Figure 4. The funnel plot of PD-L1 rs4143815 for the test of publication bias for CG vs. GG (A), CC vs. GG (B), CG+CC vs. GG (C), CC vs. CG+GG (D), and C vs. G (E).
As presented in Table 3 and Figure 5, no publication bias was observed in recessive genetic model of PD-1 rs2227981. Obvious publication bias was not found in the heterozygous, dominant, and allele genetic models of the PD-1 rs11568821 and PD-L1 rs2890658 (Table 3). Moreover, the publication bias was not observed in heterozygous, dominant, recessive, and allele genetic models of the PD-1 rs36084323 and PD-1 rs10204525. (Table 3).

Figure 5. The funnel plot of PD-1 rs2227981 polymorphism for the test of publication bias for CT vs. CC (A), TT vs. CC (B), CT+TT vs. CC (C), TT vs. CT+TT (D), and T vs. C (E).

2.5. Sensitivity Analysis

Sensitivity analysis was conducted by replicating analysis after neglecting one study at a time to estimate the effect of quality of studies on the final findings. Taken together, our findings from the meta-analysis of the correlation between analyzed polymorphisms and cancer susceptibility remained unchanged in the heterozygous (PD-1 rs2227982, PD-1 rs36084323 and PD-1 rs10204525), homozygous (PD-1 rs2227982, PD-1 rs7421861, PD-1 rs36084323, PD-1 rs10204525 and PD-L1 rs2890658), dominant (PD-1 rs36084323 and PD-1 rs10204525), recessive (PD-1 rs2227982, PD-1 rs7421861, PD-1 rs10204525, and PD-L1 rs2890658).
rs36084323 and PD-L1 rs2890658), and allele (PD-1 rs2227982, PD-1 rs7421861 PD-1 rs10204525 and PD-L1 rs2890658) genetic models (Figure 6). In regard to PD-L1 rs4143815, the findings changed in the heterozygous, homozygous, dominant, recessive, and allele genetics models (Figure 7).

![Figure 6. Sensitivity analyses for studies on PD-1 rs2227981 polymorphism and cancer susceptibility for CG vs. GG (A), CC vs. GG (B), CG+CC vs. GG (C), CC vs. CG+GG (D), and C vs. G (E).]
3. Discussion

It has been proposed that environmental and genetic factors contribute to cancer development [53,54]. Single nucleotide polymorphisms (SNPs) can be considered as biological markers that help scientists to recognize genes that are related to cancer [55]. PD-1 and PD-L1 are involved in the regulation of programmed cell death, which is the regulator of cancer cell proliferation as well as primary response in many cancer therapy strategies. Several studies have investigated the association between PD-1 as well as PD-L1 polymorphisms and the risk of various types of cancers; however, the findings remain discrepant. This meta-analysis provides, for the first time a quantitative estimated of the association between six SNPs of PD-1 and two SNPs of PD-L1 gene and cancer susceptibility. The findings indicated that PD-1 rs2227981 and rs11568821 polymorphisms as well as PDL-1 rs4143815 variant significantly decreased the overall cancer risk, while PD-1 rs7421861 polymorphism significantly increased the risk of overall cancer. Our findings revealed no significant association between PD-1 rs2227982, PD-1 rs36084323, PD-1 rs10204525, and PD-L1 rs2890658 polymorphisms and overall cancer risk.
We performed stratified analyses and our findings indicate that PD-1 rs2227981 significantly decreased the risk of gastrointestinal cancer, lung cancer and breast cancer. The PD-1 rs2227982 was associated with increased risk of cancer in hospital-based studies and lower risk of gastrointestinal and breast cancer. Similarly to PD-1 rs7421861, the PD-1 rs7421861 and PD-1 rs36084323 variants significantly increased the risk of cancer in hospital-based studies. The PD-1 rs11568821 was linked to reduce risk of cancer in population-based studies. Moreover, our findings revealed that PD-L1 rs4143815 polymorphism significantly reduced the risk of gastrointestinal cancer and hospital-based studies. A positive correlation between PD-L1 rs2890658 variant and the risk of lung cancer was observed.

Recently, Zou et al. [56] performed a meta-analysis of the association between PD-L1 rs4143815 polymorphism and the risk of cancer and found also a significant association between this variant and cancer risk, which is in line with our findings. Like our results, a meta-analysis conducted by Da et al. [57] revealed no significant association between PD-1 rs36084323 polymorphism and overall cancer susceptibility. Similar to previous meta-analysis conducted by Zhang et al. [58], we have also found that PD-1 rs2227981 and rs11568821 polymorphisms were associated with decreased cancer susceptibility. In another study, Dong et al. [59] conducted a meta-analysis aimed to inspect the associations between PD-1 rs2227981, rs2227982, rs7421861, and rs11568821 polymorphisms and cancer risk. There were seven studies involving 3395 cases and 2912 controls for PD-1 rs2227981, four studies including 1961 cases and 2390 controls for PD-1 rs2227982, four studies with 1975 cases and 2403 controls for PD-1 rs7421861, and four studies for PD-1 rs11568821 variant and cancer risk. They have found that rs2227981 and rs11568821 polymorphisms significantly decreased the risk of cancer. Mamat et al. [60] conducted a meta-analysis of six studies involving 1427 cases and 1811 controls and have observed no significant association between PD-1 rs2227981 polymorphism and the risk of cancer.

Nevertheless, the number of cases and controls as well as the number of polymorphisms in our meta-analysis is higher than in those previously published meta-analysis studies.

It has been proposed that gene expression could be potentially affected by genetic polymorphisms [21,61–63]. Alterations in the expression of PD-1 and PD-L1 were detected in many cancer types including gastric cancer, lung cancer, thyroid cancer, laryngeal carcinoma, extrapulmonary small cell carcinoma, and breast cancer [63–69].

PD-1/PD-L1 axis impairs T cell activation by preventing Ras-Raf-MEK-ERK and PI3K-AKT signaling pathways, which are mainly believed to promote proliferation and differentiation of T cell [70]. The inhibitory regulation of PD-1/PD-L1 is typically compared to a brake in T cell activation [71]. PD-L1 is exerted by tumors to escape from immune system. Tumor-specific PD-L1-expression was not prognostic in colorectal cancer, while high immune cell-specific PD-1 expression was associated with a prolonged overall survival [72]. It has been revealed that high expression of PD-1 on peripheral blood T cell subsets is correlated with poor prognosis of metastatic gastric cancer [73]. Fang et al. [74] reported that the peripheral blood PD-1 expression was significantly higher in breast cancer patients than benign breast tumors. PD-1 and PD-L1 expression have been shown to be associated with adverse clinicopathological features in clear cell renal carcinoma [75].

This meta-analysis has however several limitations. Firstly, there are relatively small sample sizes of studies for some polymorphisms that should be expanded. Secondly, we have included in this meta-analysis only studies published in English, thus publication bias may have occurred. Thirdly, obvious heterogeneities were found in certain polymorphisms. Differences in ethnic background, type of cancer, and other baseline characteristics of participants may contribute to between-study heterogeneities. Lastly, gene-gene and gene-environment interactions which may affect cancer susceptibility were not evaluated in this meta-analysis due to lack of sufficient data. Therefore, the results of this meta-analysis should be cautiously interpreted.

In conclusion, the current meta-analysis suggests that rs2227981 and rs11568821 polymorphisms of PD-1 and the rs4143815 polymorphism of PD-L1 were associated with protection against cancer, while PD-1 rs7421861 polymorphism significantly increased cancer risk.
4. Methods

4.1. Literature Search

We searched PubMed, Web of Science, Scopus, and Google Scholar databases for publications that studied the association between PD-1 and PD-L1 polymorphisms and cancer risk. The last search was updated on 18 December 2019. The following search terms were used: “programmed cell death 1 or PDCD1 or PD-1, or CD279, or programmed death-1-ligand 1 or CD274 or B7-H1” and “polymorphism or single nucleotide polymorphism or SNP or variation” and “cancer or carcinoma, or tumor”.

The process of recognizing eligible studies is presented in Figure 1. The inclusion and exclusion criteria were as follows. (1) The studies evaluated the association between the PD-1 and PD-L1 polymorphisms and cancer risk, (2) studies with necessary information on genotype or allele frequencies to estimate ORs and 95% CIs, (3) studies with human subjects, and (4) case-control design. We excluded reviews, conference papers, and other studies that were published as abstracts only.

4.2. Data Extraction

The data were recovered from eligible articles independently by two authors. Disagreements were discussed with the third investigator. The following information was recorded for each study: first author’s name, publication year, patient’s nationality, genotypes, and allele frequencies.

4.3. Statistical Analysis

We performed a meta-analysis to assess the association between PD-1 and PD-L1 polymorphisms and cancer susceptibility. The observed genotype frequencies in the controls were tested for Hardy-Weinberg equilibrium (HWE) using the chi-squared test.

Odds ratio (OR) and 95% confidence interval (CI) were calculated to evaluate the association between PD-1 and PD-L1 polymorphisms and cancer risk in five genetic models, which were heterozygous, homozygous, dominant, recessive, and allele. The strength of the association between each polymorphism and cancer risk was assessed by pooled odds ratios (ORs) and their 95% confidence intervals (CIs). The Z-test was used for statistical significance of the pooled OR. We estimated the between-study heterogeneity by the Q-test and I² test: if I² < 50% and P > 0.1, the fixed effects model was used to estimate the ORs and the 95% CI; otherwise, the random effects model was applied.

We evaluated publication bias using funnel plots for visual inspection and conducting quantitative estimations with Egger’s test.

Sensitivity analysis was achieved by excluding each study in turn to assess the stability of the results. All analyses were achieved by STATA 14.1 software (Stata Corporation, College Station, TX, USA).

5. Conclusions

The findings of our meta-analysis proposed that PD-1 rs2227981, rs11568821, rs7421861, as well as PD-L1 rs4143815 polymorphisms associated with overall cancer susceptibility. Further well-designed studies with large sample sizes are warranted to confirm our findings.

Author Contributions: M.H. conceptualized and designed the study, conducted statistical analysis, and proofread the final draft. S.S., S.K., and A.M.-R. searched the literature, extracted the data, and prepared the figures. S.G. and E.W. conducted the final proofread, discussed the results, and prepared the final draft of manuscript. A.M. conducted the final proofread and provided information about cancer involvement. All authors reviewed the manuscript.

Funding: This research received no external funding.

Acknowledgments: Andrzej Malecki was supported by Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice. Saeid Ghavami was supported by Research Manitoba New Investigators Operating Grant and CancerCare Manitoba Operating grant.

Conflicts of Interest: The authors declare no conflicts of interest.
References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef] [PubMed]

2. Stadler, Z.K.; Thom, P.; Robson, M.E.; Weitzel, J.N.; Kauff, N.D.; Hurley, K.E.; Devlin, V.; Gold, B.; Klein, R.J.; Offit, K. Genome-wide association studies of cancer. J. Clin. Oncol. 2010, 28, 4255–4267. [CrossRef] [PubMed]

3. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]

4. Redd, P.S.; Lu, C.; Klement, J.D.; Ibrahim, M.; Zhou, G.; Kumai, T.; Celis, E.; Liu, K. H3K4me3 mediates the NF-κB p50 homodimer binding to the pdcd1 promoter to activate PD-1 transcription in T cells. Oncoimmunology 2018, 7, e1483302. [CrossRef] [PubMed]

5. Hua, Z.; Li, D.; Xiang, G.; Xu, F.; Jie, G.; Fu, Z.; Jie, Z.; Da, P.; Li, D. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res. Treat. 2011, 129, 195–201. [CrossRef]

6. Ivansson, E.L.; Juko-Pecirep, I.; Gyllensten, U.B. Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol. Oncol. 2010, 116, 544–548. [CrossRef]

7. Li, Z.; Li, N.; Zhu, Q.; Zhang, G.; Han, Q.; Zhang, P.; Xun, M.; Wang, Y.; Zeng, X.; Yang, C.; et al. Genetic variations of PD1 and TIM3 are differentially and interactively associated with the development of cirrhosis and HCC in patients with chronic HBV infection. Infect. Genet. Evol. 2013, 14, 240–246. [CrossRef]

8. Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [CrossRef]

9. Chamoto, K.; Al-Habsi, M.; Honjo, T. Role of PD-1 in Immunity and Diseases. Curr. Top. Microbiol. Immunol. 2017, 410, 75–97.

10. Thommen, D.S.; Schumacher, T.N. T Cell Dysfunction in Cancer. Cancer Cell 2018, 33, 547–562. [CrossRef]

11. He, Q.F.; Xu, Y.; Li, J.; Huang, Z.M.; Li, X.H.; Wang, X. CD8+ T-cell exhaustion in cancer: Mechanisms and new area for cancer immunotherapy. Brief. Funct. Genom. 2019, 18, 99–106. [CrossRef] [PubMed]

12. Memarnejadian, A.; Meilleur, C.E.; Shaler, C.R.; Khazaie, K.; Bennink, J.R.; Schell, T.D.; Haeryfar, S.M.M. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8(+) T Cell Responses by Preventing Fratricidal Death of Subdominant Clones to Relieve Immunodomination. J. Immunol. 2017, 199, 3348–3359. [CrossRef] [PubMed]

13. Gato-Canas, M.; Zuazo, M.; Arasanz, H.; Ibanez-Vea, M.; Lorenzo, L.; Fernandez-Hinojal, G.; Vera, R.; Smerdou, C.; Martisova, E.; Arozarena, I.; et al. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity. Cell Rep. 2017, 20, 1818–1829. [CrossRef] [PubMed]

14. Dougan, M. Checkpoint Blockade Toxicity and Immune Homeostasis in the Gastrointestinal Tract. Front. Immunol. 2017, 8, 1547. [CrossRef] [PubMed]

15. Kuol, N.; Stojanovska, L.; Nurgali, K.; Apostolopoulos, V. PD-1/PD-L1 in disease. Immunotherapy 2018, 10, 149–160. [CrossRef] [PubMed]

16. Juchem, K.W.; Sacirbegovic, F.; Zhang, C.; Sharpe, A.H.; Russell, K.; McNiff, J.M.; Demetris, A.J.; Shlomchik, M.J.; Shlomchik, W.D. PD-L1 Prevents the Development of Autoimmune Heart Disease in Graft-versus-Host Disease. J. Immunol. 2018, 200, 834–846. [CrossRef] [PubMed]

17. Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018, 553, 91–95. [CrossRef]

18. Ribas, A. Adaptive Immune Resistance: How Cancer Protects from Immune Attack. Cancer Discov. 2015, 5, 915–919. [CrossRef]

19. Witt, D.A.; Donson, A.M.; Amani, V.; Moreira, D.C.; Sanford, B.; Hoffman, L.M.; Handler, M.H.; Levy, J.M.M.; Jones, K.L.; Nellan, A.; et al. Specific expression of PD-L1 in RELA-fusion supratentorial ependymoma: Implications for PD-1-targeted therapy. Pediatr. Blood Cancer 2018, 65, e26960. [CrossRef]

20. Zheng, B.; Ren, T.; Huang, Y.; Sun, K.; Wang, S.; Bao, X.; Liu, K.; Guo, W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 2018, 11, 16. [CrossRef]
21. De Vooght, K.M.; van Wijk, R.; van Solinge, W.W. Management of gene promoter mutations in molecular diagnostics. *Clin. Chem.* 2009, 55, 698–708. [CrossRef] [PubMed]

22. Gomez, G.V.B.; Rinck, J.A.; Oliveira, C.; Silva, D.H.L.; Mamoni, R.L.; Lourenco, G.J.; Moraes, A.M.; Lima, C.S.P. PDCD1 gene polymorphisms as regulators of T-lymphocyte activity in cutaneous melanoma risk and prognosis. *Pigment Cell Melanoma Res.* 2018, 31, 308–317. [CrossRef] [PubMed]

23. Haghshenas, M.R.; Naeimi, S.; Talei, A.; Ghaderi, A.; Erfani, N. Programmed death-1 (PD1) haplotyping in patients with breast carcinoma. *Mol. Biol. Rep.* 2011, 38, 4205–4210. [CrossRef] [PubMed]

24. Haghshenas, M.R.; Dabbaghmanesh, M.H.; Miri, A.; Ghaderi, A.; Erfani, N. Association of PDCD1 gene markers with susceptibility to thyroid cancer. *J. Endocrinol. Invest.* 2017, 40, 481–486. [CrossRef] [PubMed]

25. Li, X.F.; Jiang, X.Q.; Zhang, J.W.; Jia, Y.J. Association of the programmed cell death-1 PD1.5 C>T polymorphism with cervical cancer risk in a Chinese population. *Genet. Mol. Res.* 2016, 15. [CrossRef] [PubMed]

26. Li, Y.; Zhang, H.L.; Kang, S.; Zhou, R.M.; Wang, N. The effect of polymorphisms in PD-1 gene on the risk of epithelial ovarian cancer and patients’ outcomes. *Gynecol. Oncol.* 2017, 144, 140–145. [CrossRef] [PubMed]

27. Ma, Y.; Liu, X.; Zhu, J.; Li, W.; Guo, L.; Han, X.; Song, B.; Cheng, S.; Jie, L. Polymorphisms of co-inhibitory molecules (CTLA-4/PD-1/PD-L1) and the risk of non-small cell lung cancer in a Chinese population. *Int. J. Clin. Exp. Med.* 2015, 8, 16585–16591.

28. Mojtahedi, Z.; Mohmedi, M.; Rahimifar, S.; Erfani, N.; Hosseini, S.V.; Ghaderi, A. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. *Gene* 2012, 508, 229–232. [CrossRef]

29. Namavar Jahromi, F.; Samadi, M.; Mojtahedi, Z.; Taghipour, M.; Erfani, N. Association of PD-1.5 C/T, but Not PD-1.3 G/A, with Malignant and Benign Brain Tumors in Iranian Patients. *Immunol. Investig.* 2017, 46, 469–480. [CrossRef]

30. Pirdelkhosh, Z.; Kazemi, T.; Haghshenas, M.R.; Ghayumi, M.A.; Erfani, N. Investigation of Programmed Cell Death-1 (PD-1) Gene Variations at Positions PD1.3 and PD1.5 in Iranian Patients with Non-small Cell Lung Cancer. *Middle East J. Cancer* 2017, 9, 13–17.

31. Savabkar, S.; Azimzadeh, P.; Chaleshi, V.; Nazemalhosseini Mojarad, E.; Aghdaei, H.A. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with gastric cancer. *Gastroenterol. Hepatol. Bed Bench* 2013, 6, 178–182. [PubMed]

32. Yin, L.; Guo, H.; Zhao, L.; Wang, J. The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population. *Int. J. Clin. Exp. Med.* 2014, 7, 5832–5836. [PubMed]

33. Yousefi, A.R.; Karimi, M.H.; Shamsdin, S.A.; Mehrabani, D.; Hosseini, S.V.; Erfani, N.; Bolandparvaz, S.; Bagheri, K. PD-1 Gene Polymorphisms in Iranian Patients with Colorectal Cancer. *Labmedicine* 2013, 44, 241–244.

34. Zhou, R.M.; Li, Y.; Wang, N.; Huang, X.; Cao, S.R.; Shan, B.E. Association of programmed death-1 polymorphisms with the risk and prognosis of esophageal squamous cell carcinoma. *Cancer Genet.* 2016, 209, 365–373. [CrossRef] [PubMed]

35. Qu, H.; Zheng, L.; Tang, W.; Yin, P.; Cheng, F.; Wang, L. Programmed death-1 (PD-1) polymorphisms in Chinese patients with esophageal cancer. *Clin. Biochem.* 2014, 47, 612–617. [CrossRef]

36. Ramzi, M.; Arandi, N.; Saadi, M.I.; Yaghobi, R.; Geramizadeh, B. Genetic Variation of Costimulatory Molecules, Including Cytotoxic T-Lymphocyte Antigen 4, Inducible T-Cell Costimulator, Cluster Differentiation 28, and Programmed Cell Death 1 Genes, in Iranian Patients with Leukemia. *Exp. Clin. Transpl.* 2018. [CrossRef]

37. Ren, H.T.; Li, Y.M.; Wang, X.J.; Kang, H.F.; Jin, T.B.; Ma, X.B.; Liu, X.H.; Wang, M.; Liu, K.; Xu, P.; et al. PD-1 rs2227982 Polymorphism Is Associated with the Decreased Risk of Breast Cancer in Northwest Chinese Women: A Hospital-Based Observational Study. *Medicine* 2016, 95, e3760. [CrossRef]

38. Tan, D.; Sheng, L.; Yi, Q.H. Correlation of PD-1/PD-L1 polymorphisms and expressions with clinicopathologic features and prognosis of ovarian cancer. *Cancer Biomark.* 2018, 21, 287–297. [CrossRef]

39. Tang, W.; Chen, S.; Chen, Y.; Lin, J.; Lin, J.; Wang, Y.; Liu, C.; Kang, M. Programmed death-1 polymorphisms is associated with risk of esophagogastric junction adenocarcinoma in the Chinese Han population: A case-control study involving 2740 subjects. *Oncotarget* 2017, 8, 39198–39208.

40. Tang, W.; Chen, Y.; Chen, S.; Sun, B.; Gu, H.; Kang, M. Programmed death-1 (PD-1) polymorphism is associated with gastric cardia adenocarcinoma. *Int. J. Clin. Exp. Med.* 2015, 8, 8086–8093.
41. Ge, J.; Zhu, L.; Zhou, J.; Li, G.; Li, Y.; Li, S.; Wu, Z.; Rong, J.; Yuan, H.; Liu, Y.; et al. Association between co-inhibitory molecule gene tagging single nucleotide polymorphisms and the risk of colorectal cancer in Chinese. *J. Cancer Res. Clin. Oncol.* 2015, 141, 1533–1544. [CrossRef] [PubMed]

42. Bayram, S.; Akkiz, H.; Ulger, Y.; Bekar, A.; Akgollu, E.; Yildirim, S. Lack of an association of programmed cell death-1 PD1.3 polymorphism with risk of hepatocellular carcinoma susceptibility in Turkish population: A case-control study. *Gene* 2012, 511, 308–313. [CrossRef] [PubMed]

43. Shamsdin, S.A.; Karimi, M.H.; Hosseini, S.V.; Geramizadeh, B.; Fattahi, M.R.; Mehrabani, D.; Moravej, A. Associations of ICOS and PD.1 Gene Variants with Colon Cancer Risk in The Iranian Population. *Asian Pac. J. Cancer Prev.* 2018, 19, 693–698. [PubMed]

44. Catalano, C.; da Silva Filho, M.I.; Frank, C.; Jiraskova, K.; Vymetalkova, V.; Levy, M.; Liska, V.; Vycital, O.; Naccarati, A.; Vodickova, L.; et al. Investigation of single and synergic effects of NLRC5 and PD-L1 variants on the risk of colorectal cancer. *PLoS ONE* 2018, 13, e0192385. [CrossRef] [PubMed]

45. Du, W.; Zhu, J.; Chen, Y.; Zeng, Y.; Shen, D.; Zhang, N.; Ning, W.; Liu, Z.; Huang, J.A. Variant SNPs at the microRNA complementary site in the B7-H1 3'-untranslated region increase the risk of non-small cell lung cancer. *Mol. Med. Rep.* 2017, 16, 2682–2690. [CrossRef]

46. Tao, L.-H.; Zhou, X.-R.; Li, F.-C.; Chen, Q.; Meng, F.-Y.; Mao, Y.; Li, R.; Hua, D.; Zhang, H.-J.; Wang, W.-P.; et al. A polymorphism in the promoter region of PD-L1 serves as a binding-site for SP1 and is associated with PD-L1 overexpression and increased occurrence of gastric cancer. *Cancer Immunol. Immunother.* 2016, 66, 309–318. [CrossRef] [PubMed]

47. Xie, Q.; Chen, Z.; Xia, L.; Zhao, Q.; Yu, H.; Yang, Z. Correlations of PD-L1 gene polymorphisms with susceptibility and prognosis in hepatocellular carcinoma in a Chinese Han population. *Gene* 2018, 674, 188–194. [CrossRef]

48. Zhou, R.M.; Li, Y.; Liu, J.H.; Wang, N.; Huang, X.; Cao, S.R.; Shan, B.E. Programmed death-1 ligand-1 gene rs2890658 polymorphism associated with the risk of esophageal squamous cell carcinoma in smokers. *Cancer Biomark.* 2017, 21, 65–71. [CrossRef]

49. Chen, Y.B.; Mu, C.Y.; Chen, C.; Huang, J.A. Association between single nucleotide polymorphism of PD-L1 and non-small cell lung cancer susceptibility in a Chinese population. *Asia Pac. J. Clin. Oncol.* 2014, 10, e1–e6. [CrossRef]

50. Cheng, S.; Zheng, J.; Zhu, J.; Xie, C.; Zhang, X.; Han, X.; Song, B.; Ma, Y.; Liu, J. PD-L1 gene polymorphism and high level of plasma soluble PD-L1 protein may be associated with non-small cell lung cancer. *Int. J. Biol. Markers* 2015, 30, e364–e368. [CrossRef]

51. Wang, W.; Li, F.; Mao, Y.; Zhou, H.; Sun, J.; Li, R.; Liu, C.; Chen, W.; Hua, D.; Zhang, X. A miR-570 binding site polymorphism in the B7-H1 gene is associated with the risk of gastric adenocarcinoma. *Hum. Genet.* 2013, 132, 641–648. [CrossRef] [PubMed]

52. Fathi, F.; Faghiz, Z.; Khademi, B.; Kayedi, T.; Erfani, N.; Ghaheri, A. PD-1 Haplotyp Combinations and Susceptibility of Patients to Squamous Cell Carcinomas of Head and Neck. *Immunol. Invest.* 2019, 48, 1–10. [CrossRef] [PubMed]

53. Hashemi, M.; Bahari, G.; Tabasi, F.; Markowski, J.; Malecki, A.; Ghavami, S.; Los, M.J. LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis. *J. Cell Mol. Med.* 2018, 22, 6396–6400. [CrossRef] [PubMed]

54. Hashemi, M.; Moazeni-Roodi, A.; Ghavami, S. Association between CASP3 polymorphisms and overall cancer risk: A meta-analysis of case-control studies. *J. Cell Biochem.* 2019, 120, 7199–7210. [CrossRef] [PubMed]

55. Hashemi, M.; Moazeni-Roodi, A.; Bahari, G.; Taheri, M.; Ghavami, S. Association between miR-34b/c rs4938723 polymorphism and risk of cancer: An updated meta-analysis of 27 case-control studies. *J. Cell Biochem.* 2019, 120, 3306–3314. [CrossRef] [PubMed]

56. Zou, J.; Wu, D.; Li, T.; Wang, X.; Liu, Y.; Tan, S. Association of PD-L1 gene rs4143815 C>G polymorphism and human cancer susceptibility: A systematic review and meta-analysis. *Pathol. Res. Pract.* 2019, 215, 229–234. [CrossRef] [PubMed]

57. Da, L.S.; Zhang, Y.; Zhang, C.J.; Bu, L.J.; Zhu, Y.Z.; Ma, T.; Gu, K.S. The PD-1 rs36084323 A>G polymorphism decrease cancer risk in Asian: A meta-analysis. *Pathol. Res. Pract.* 2018, 214, 1758–1764. [CrossRef] [PubMed]

58. Zhang, J.; Zhao, T.; Xu, C.; Huang, J.; Yu, H. The association between polymorphisms in the PDCD1 gene and the risk of cancer: A PRISMA-compliant meta-analysis. *Medicine* 2016, 95, e4423. [CrossRef] [PubMed]
59. Dong, W.; Gong, M.; Shi, Z.; Xiao, J.; Zhang, J.; Peng, J. Programmed Cell Death-1 Polymorphisms Decrease the Cancer Risk: A Meta-Analysis Involving Twelve Case-Control Studies. *PLoS ONE* **2016**, *11*, e0152448. [CrossRef]
60. Mamat, U.; Arkinjan, M. Association of programmed death-1 gene polymorphism rs2227981 with tumor: Evidence from a meta analysis. *Int. J. Clin. Exp. Med.* **2015**, *8*, 13282–13288. [CrossRef]
61. Lim, Y.W.; Chen-Harris, H.; Mayba, O.; Lianoglou, S.; Wuster, A.; Bhangale, T.; Khan, Z.; Mariathasan, S.; Daemen, A.; Reeder, J.; et al. Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. *Proc. Natl. Acad. Sci. USA* **2018**, *115*, E11701–E11710. [CrossRef] [PubMed]
62. Wu, Y.; Zhao, T.; Jia, Z.; Cao, D.; Cao, X.; Pan, Y.; Zhao, D.; Zhang, B.; Jiang, J. Polymorphism of the programmed death-ligand 1 gene is associated with its protein expression and prognosis in gastric cancer. *J. Gastroenterol. Hepatol.* **2018**, *34*, 1201–1207. [CrossRef] [PubMed]
63. Salmaninejad, A.; Khoramshahi, V.; Azani, A.; Soltaninejad, E.; Aslani, S.; Zamani, M.R.; Zal, M.; Nesaei, A.; Hosseinii, S.M. PD-1 and cancer: Molecular mechanisms and polymorphisms. *Immunogenetics* **2018**, *70*, 73–86. [CrossRef] [PubMed]
64. Erdogdu, I.H. MHC Class 1 and PDL-1 Status of Primary Tumor and Lymph Node Metastatic Tumor Tissue in Gastric Cancers. *Gastroenterol. Res. Pract.* **2019**, 2019, 4785098. [CrossRef] [PubMed]
65. Yeo, M.K.; Choi, S.Y.; Seong, I.O.; Suh, K.S.; Kim, J.M.; Kim, K.H. Association of PD-L1 expression and PD-L1 gene polymorphism with poor prognosis in lung adenocarcinoma and squamous cell carcinoma. *Hum. Pathol.* **2017**, *68*, 103–111. [CrossRef] [PubMed]
66. Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. *JCI Insight* **2019**, *4*, 126908. [CrossRef] [PubMed]
67. Yu, D.; Cheng, J.; Xue, K.; Zhao, X.; Li, Q.; Xu, C. Expression of Programmed Death-Ligand 1 and its Effects on Immune Cell Subgroup Infiltration. *Pathol. Oncol. Res.* **2018**, *2018*, 1–7. [CrossRef]
68. Salhab, M.; Migdady, Y.; Donahue, M.; Xiong, Y.; Dresser, K.; Walsh, W.; Chen, B.J.; Liebmann, J. Immunohistochemical expression and prognostic value of PD-L1 in Extrapulmonary small cell carcinoma: A single institution experience. *J. Immunother. Cancer* **2018**, *6*, 42. [CrossRef]
69. Botti, G.; Collina, F.; Scognamiglio, G.; Rao, F.; Peluso, V.; De Cecio, R.; Piezzo, M.; Landi, G.; De Laurentiis, M.; Cantile, M.; et al. Programmed Death Ligand 1 (PD-L1) Tumor Expression Is Associated with a Better Prognosis and Diabetic Disease in Triple Negative Breast Cancer Patients. *Int. J. Mol. Sci.* **2017**, *18*, 459. [CrossRef]
70. Patsoukis, N.; Brown, J.; Petkova, V.; Liu, F.; Li, L.; Boussiotis, V.A. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. *Sci. Signal* **2012**, *5*, ra46. [CrossRef]
71. LaFleur, M.W.; Muroyama, Y.; Drake, C.G.; Sharpe, A.H. Inhibitors of the PD-1 Pathway in Tumor Therapy. *J. Immunol.* **2018**, *200*, 375–383. [CrossRef] [PubMed]
72. Berntsson, J.; Eberhard, J.; Nodin, B.; Leandersson, K.; Larsson, A.H.; Jirström, K. Expression of programmed cell death protein 1 (PD-1) and its ligand PD-L1 in colorectal cancer: Relationship with sidedness and prognosis. *Oncoimmunology* **2018**, *7*, e1465165. [CrossRef] [PubMed]
73. Shi, B.; Li, Q.; Ma, X.; Gao, Q.; Li, L.; Chu, J. High expression of programmed cell death protein 1 on peripheral blood T-cell subsets is associated with poor prognosis in metastatic gastric cancer. *Oncol. Lett.* **2018**, *16*, 4448–4454. [CrossRef] [PubMed]
74. Fang, J.; Shao, Y.; Su, J.; Wan, Y.; Bao, L.; Wang, W.; Kong, F. Diagnostic value of PD-1 mRNA expression combined with breast ultrasound in breast cancer patients. *Ther. Clin. Risk Manag.* **2018**, *14*, 1527–1535. [CrossRef] [PubMed]
75. Ueda, K.; Suekane, S.; Kurose, H.; Chikui, K.; Nakiri, M.; Nishihara, K.; Matsuo, M.; Kawahara, A.; Yano, H.; Igawa, T. Prognostic value of PD-1 and PD-L1 expression in patients with metastatic clear cell renal cell carcinoma. *Urol. Oncol.* **2018**, *36*, 499. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).