A surface with $q = 2$ and canonical map of degree 16

Carlos Rito

Abstract

We construct a surface with irregularity $q = 2$, geometric genus $p_g = 3$, self-intersection of the canonical divisor $K^2 = 16$ and canonical map of degree 16.

2010 MSC: 14J29.

1 Introduction

Let S be a smooth minimal surface of general type. Denote by $\phi : S \dashrightarrow \mathbb{P}^{p_g-1}$ the canonical map and let $d := \deg(\phi)$. The following Beauville’s result is well-known.

Theorem 1 (Be). If the canonical image $\Sigma := \phi(S)$ is a surface, then either:

(i) $p_g(\Sigma) = 0$, or

(ii) Σ is a canonical surface (in particular $p_g(\Sigma) = p_g(S)$).

Moreover, in case (i) $d \leq 36$ and in case (ii) $d \leq 9$.

Beauville has also constructed families of examples with $\chi(\mathcal{O}_S)$ arbitrarily large for $d = 2, 4, 6, 8$ and $p_g(\Sigma) = 0$. Despite being a classical problem, for $d > 8$ the number of known examples drops drastically: only Tan’s example [Ta, §5], with $d = 9$, the author’s [Ri] example with $d = 12$ and Persson’s example [Pe] with $d = 16$ are known. Du and Gao [DuGa] show that if the canonical map is an abelian cover of \mathbb{P}^2, then these examples with $d = 9$ and $d = 16$ are the only possibilities for $d > 8$. These three surfaces are regular, so for irregular surfaces all known examples satisfy $d \leq 8$. We get from Beauville’s proof that lower bounds hold for irregular surfaces. In particular,

$q = 2 \implies d \leq 18$.

In this note we construct an example with $q = 2$ and $d = 16$. The idea of the construction is the following. We start with a double plane with geometric genus $p_g = 3$, irregularity $q = 0$, self-intersection of the canonical divisor $K^2 = 2$ and singular set the union of 10 points of type A_1 (nodes) and 8 points of type A_3 (standard notation, the resolution of a singularity of type A_n is a chain of (-2)-curves C_1, \ldots, C_n such that $C_iC_{i+1} = 1$ and $C_iC_j = 0$ for $j \neq i \pm 1$). Then we take a double covering ramified over the points of type A_3 and obtain a surface with $p_g = 3$, $q = 0$ and $K^2 = 4$ with 28 nodes. A double covering ramified over 16 of these 28 nodes gives a surface with $p_g = 3$, $q = 0$ and $K^2 = 8$ with 24
nodes (which is a \mathbb{Z}_3^2-covering of \mathbb{P}^2). Finally there is a double covering ramified over these 24 nodes which gives a surface with $p_g = 3$, $q = 2$ and $K^2 = 16$ and the canonical map factors through these coverings, thus it is of degree 16.

Notation

We work over the complex numbers. All varieties are assumed to be projective algebraic. A $(-n)$-curve on a surface is a curve isomorphic to \mathbb{P}^1 with self-intersection $-n$. Linear equivalence of divisors is denoted by \equiv. The rest of the notation is standard in Algebraic Geometry.

Acknowledgements

The author thanks Thomas Baier for many interesting conversations. The author is a member of the Center for Mathematics of the University of Porto. This research was partially supported by FCT (Portugal) under the project PTDC/MAT-GEO/0675/2012 and by CMUP (UID/MAT/00144/2013), which is funded by FCT with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020.

2 \mathbb{Z}_3^2-coverings

The following is taken from [Ca], an alternative reference is [Pa].

Proposition 2. A normal finite $G \cong \mathbb{Z}_2^r$-covering $Y \to X$ of a smooth variety X is completely determined by the datum of

1. reduced effective divisors D_σ, $\forall \sigma \in G$, with no common components;

2. divisor classes L_1, \ldots, L_r, for χ_1, \ldots, χ_r a basis of the dual group of characters G^\vee, such that

$$2L_i \equiv \sum_{\chi_i(\sigma) = -1} D_\sigma.$$

Conversely, given 1. and 2., one obtains a normal scheme Y with a finite $G \cong \mathbb{Z}_2^r$-covering $Y \to X$.

The covering $Y \to X$ is embedded in the total space of the direct sum of the line bundles whose sheaves of sections are the $\mathcal{O}_X(-L_i)$, and is there defined by equations

$$u_{\chi_i} = u_{\chi_i} + x_\sigma \prod_{\chi_i(\sigma) = -1} x_\sigma,$$

where x_σ is a section such that $\text{div}(x_\sigma) = D_\sigma$. The scheme Y can be seen as the normalization of the Galois covering given by the equations

$$u_{\chi_i}^2 = \prod_{\chi_i(\sigma) = -1} x_\sigma.$$

The scheme Y is irreducible if $\{ \sigma | D_\sigma > 0 \}$ generates G. For the reader’s convenience, we leave here the character table for the group \mathbb{Z}_3^2 with generators x, y, z.

2
3 The construction

Step 1
Let $T_1, \ldots, T_4 \subset \mathbb{P}^2$ be distinct lines tangent to a smooth conic H_1 and

$$\pi : X \rightarrow \mathbb{P}^2$$

be the double cover of the projective plane ramified over $T_1 + \cdots + T_4$. The curve $\pi^*(H_1)$ is of arithmetic genus 3, from the Hurwitz formula, and has 4 nodes, corresponding to the tangencies to $T_1 + \cdots + T_4$. Hence $\pi^*(H_1)$ is reducible,

$$\pi^*(H_1) = A + B$$

with A, B smooth rational curves. From $AB = 4$ and $(A + B)^2 = 8$ we get $A^2 = B^2 = 0$. Now the adjunction formula

$$2g(A) - 2 = AK_X + A^2$$

gives $AK_X = -2$ and then the Riemann-Roch Theorem implies

$$h^0(X, \mathcal{O}_X(A)) \geq 1 + \frac{1}{2}A(A - K_X) = 2.$$

Therefore there exists a smooth rational curve C such that $C \neq A, C \equiv A$ and $AC = 0$. The curve

$$H_2 := \pi(C)$$

is smooth rational. The fact $\pi^*(H_2)^2 > C^2$ implies that $\pi^*(H_2)$ is reducible, thus H_2 is tangent to the lines T_1, \ldots, T_4. As above, there is a smooth rational curve D such that

$$\pi^*(H_2) = C + D$$

and $C^2 = D^2 = 0$. Since $A \equiv C$ and $A + B \equiv C + D$, then $B \equiv D$.

\[
\begin{bmatrix}
 -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & x*y*z \\
 -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & z \\
 -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & y \\
 -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & x \\
 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & y*z \\
 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & x*z \\
 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & x*y \\
 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text{Id}
\end{bmatrix}
\]
Step 2
Let x, y, z be generators of the group \mathbb{Z}_3^2 and

$$\psi : Y \longrightarrow \mathbb{P}^2$$

be the \mathbb{Z}_2^2-covering defined by

$$D_1 := D_{xyz} := H_1, D_2 := D_z := H_2, D_3 := D_y := T_1 + T_2, D_4 := D_x := T_3 + T_4,$$

$$D_{yz} := D_{xz} := D_{xy} := 0.$$

Let d_i be the defining equation of D_i. According to Section 2, the surface Y is obtained as the normalization of the covering given by equations

$$u_1^2 = d_1 d_2 d_3 d_4, u_2^2 = d_1 d_2, \ldots, u_7^2 = d_3 d_4.$$

Since the branch curve $D_1 + \cdots + D_4$ has only negligible singularities, the invariants of Y can be computed directly. Consider divisors $L_{i...h}$ such that $2L_{i...h} \equiv D_i + \cdots + D_h$ and let T be a general line in \mathbb{P}^2. We have

$$L_{1234}(K_{\mathbb{P}^2} + L_{1234}) = 4T \cdot T = 4,$$

$$L_{ij}(K_{\mathbb{P}^2} + L_{ij}) = 2T(-T) = -2,$$

thus

$$\chi(Y) = 8 \chi(\mathbb{P}^2) + \frac{1}{2} (4 + 6 \times (-2)) = 4,$$

$$p_g(Y) = p_g(\mathbb{P}^2) + h^0(\mathbb{P}^2, O_{\mathbb{P}^2}(T)) + 6h^0(\mathbb{P}^2, O_{\mathbb{P}^2}(-T)) = 3.$$

So a canonical curve in Y is the pullback of a line in \mathbb{P}^2 and then

$$K_Y^2 = 8.$$

Step 3
Notice that the points where two curves D_i meet transversely give rise to smooth points of Y, hence the singularities of Y are:

- 16 points p_1, \ldots, p_{16} corresponding to the tacnodes of $D_1 + \cdots + D_4$;
- 8 nodes p_{17}, \ldots, p_{24} corresponding to the nodes of D_3 and D_4.

We want to show that p_1, \ldots, p_{24} are nodes with even sum.

The surface X defined in Step 1 is the double plane with equation $u_7^2 = d_3 d_4$, thus the covering ψ factors trough a \mathbb{Z}_2^2-covering

$$\varphi : Y \longrightarrow X.$$

The branch locus of φ is $A + B + C + D$ plus the 4 nodes given by the points in $D_3 \cap D_4$. The points p_1, \ldots, p_{16} are nodes because they are the pullback of nodes of $A + B + C + D$.

The divisor $\varphi^*(A + C)$ is even ($A + C \equiv 2A$), double ($A + C$ in the branch locus of φ), with smooth support ($A + C$ smooth) and $p_1, \ldots, p_{16} \in \varphi^*(A + C)$,
Consider the minimal resolution of the singularities of Y

$$\rho : Y' \rightarrow Y$$

and let $A_1, \ldots, A_{24} \subset Y'$ be the (-2)-curves corresponding to the nodes p_1, \ldots, p_{24}. The divisor $(\varphi \circ \rho)^*(A + C)$ is even and there exists a divisor E such that

$$(\varphi \circ \rho)^*(A + C) = 2E + \sum_{i=1}^{16} A_i.$$

Thus there exists a divisor L_1 such that $\sum_{i=1}^{16} A_i \equiv 2L_1$.

Analogously one shows that the nodes p_{17}, \ldots, p_{24} have even sum, i.e. there exists a divisor L_2 such that $\sum_{i=1}^{24} A_i \equiv 2L_2$. This follows from $\psi^*(T_1 + T_3)$ even, double, and with support of multiplicity 1 at p_{17}, \ldots, p_{24} and of multiplicity 2 at 8 of the nodes p_1, \ldots, p_{16}.

Step 4

So there is a divisor $L := L_1 + L_2$ such that

$$\sum_{i=1}^{24} A_i \equiv 2L.$$

Consider the double covering $S \rightarrow Y$ ramified over p_1, \ldots, p_{24} and determined by L. More precisely, given the double covering $\eta : S' \rightarrow Y'$ with branch locus $\sum_{i=1}^{24} A_i$, determined by L, S is the minimal model of S'. We have

$$\chi(S') = 2\chi(Y') + \frac{1}{2} L(K_{Y'} + L) = 8 - 6 = 2.$$

Since the canonical system of Y is given by the pullback of the system of lines in \mathbb{P}^2, the canonical map of Y is of degree 8 onto \mathbb{P}^2. We want to show that the canonical map of S' factors through η.

One has

$$p_g(S') = p_g(Y') + h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L)),$$

so the canonical map factors if

$$h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L)) = 0.$$

Let us suppose the opposite. Hence the linear system $|K_{Y'} + L|$ is not empty and then $A_i(K_{Y'} + L) = -1, i = 1, \ldots, 24$, implies that $\sum_{i=1}^{24} A_i \equiv 2L$ is a fixed component of $|K_{Y'} + L|$. Therefore

$$h^0(Y', \mathcal{O}_{Y'}(K_{Y'} + L - 2L)) = h^0(Y', \mathcal{O}_{Y'}(K_{Y'} - L)) > 0$$

and then

$$h^0(Y', \mathcal{O}_{Y'}(2K_{Y'} - 2L)) = h^0\left(Y', \mathcal{O}_{Y'}\left(2K_{Y'} - \sum_{i=1}^{24} A_i\right)\right) > 0.$$

5
This means that there is a bicanonical curve B through the 24 nodes of Y. We claim that there is exactly one such curve. In fact, the strict transform in Y' of the line T_1 is the union of two double curves $2T_a, 2T_b$ such that

$$T_a \sum_{i=1}^{24} A_i = T_b \sum_{i=1}^{24} A_i = 6$$

and $T_a \rho^*(B) = T_b \rho^*(B) = 4$. This implies that $\rho^*(B)$ contains T_a and T_b. Analogously $\rho^*(B)$ contains the reduced strict transform of T_2, T_3 and T_4. There is only one bicanonical curve with this property, with equation $u_7 = 0$ (the bicanonical system of Y is induced by $O_{\mathbb{P}^2}(2)$ and u_2, \ldots, u_7).

As

$$h^0(Y', O_{Y'}(2K_{Y'} - 2L)) = 1 \implies h^0(Y', O_{Y'}(K_{Y'} - L)) = 1,$$

then such bicanonical curve is double. This is a contradiction because the curve given by $u_7 = 0$ is not double.

So $h^0(Y', O_{Y'}(K_{Y'} + L)) = 0$ and we conclude that the surface S has invariants $p_g = 3$, $q = 2$, $K^2 = 16$ and the canonical map of S is of degree 16 onto \mathbb{P}^2.

References

[Be] A. Beauville, *L’application canonique pour les surfaces de type général*, Invent. Math., 55 (1979), no. 2, 121–140.

[Ca] F. Catanese, *Differentiable and deformation type of algebraic surfaces, real and symplectic structures, Symplectic 4-manifolds and algebraic surfaces*, vol. 1938 of Lecture Notes in Math., Springer, Berlin (2008), 55–167.

[DuGa] R. Du and Y. Gao, *Canonical maps of surfaces defined by abelian covers*, Asian J. Math., 18 (2014), no. 2, 219–228.

[Pa] R. Pardini, *Abelian covers of algebraic varieties*, J. Reine Angew. Math., 417 (1991), 191–213.

[Pe] U. Persson, *Double coverings and surfaces of general type*, Algebraic geometry (Proc. Sympos., Univ. Tromsø, Tromsø, 1977), vol. 687 of Lecture Notes in Math., Springer, Berlin (1978), 168–195.

[Ri] C. Rito, *New canonical triple covers of surfaces*, P. Am. Math. Soc., to appear (2015).

[Ta] S.-L. Tan, *Surfaces whose canonical maps are of odd degrees*, Math. Ann., 292 (1992), no. 1, 13–29.

Carlos Rito

Permanent address:
Universidade de Trás-os-Montes e Alto Douro, UTAD
Quinta de Prados
5000-801 Vila Real, Portugal
www.utad.pt
crito@utad.pt

Current address:
Departamento de Matemática
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto, Portugal
www.fc.up.pt
crito@fc.up.pt