A LYAPUNOV TYPE INEQUALITY FOR INDEFINITE WEIGHTS AND EIGENVALUE HOMOGENIZATION

JULIÁN FERNÁNDEZ BONDER, JUAN PABLO PINASCO, AND ARIEL MARTIN SALORT

(Communicated by Catherine Sulem)

Abstract. In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.

1. Introduction

In this paper we will consider the quasilinear eigenvalue problem

\begin{equation}
-(a(x)|u'|^{p-2}u')' = \lambda \rho(x)|u|^{p-2}u
\end{equation}

for \(x \in (0,L)\), with the boundary conditions

\begin{equation}
 u(0) = u(L) = 0,
\end{equation}

where \(1 < p < \infty\), \(\lambda\) is a real parameter, the weight \(\rho \in L^1([0,L])\) is allowed to change signs, and the coefficient \(a(x)\) belongs to the Muckenhoupt class \(A_p\).

Quasilinear eigenvalue problems with indefinite weights were studied first by Zeidler in [27], with \(a \equiv 1\), and the extension to general coefficients \(a \in A_p\) follows by using the techniques in [19] and [24]. There are several results concerning the existence and asymptotic behavior of two sequences of eigenvalues \(\{\lambda_k^+\}_{k \geq 1}\), \(\{\lambda_k^-\}_{k \geq 1}\), going to \(\pm \infty\), in both the linear and nonlinear case, in one and several dimensions; see for instance [1,5,8,12,16,23].

For one dimensional problems, it is known that the eigenvalues are simple, in the sense that \(\lambda_k^\pm\) has a unique (up to a multiplicative constant) associated eigenfunction \(u_k^\pm\) with exactly \(k + 1\) zeros in \([0,L]\). When \(a \equiv 1\), the asymptotic behavior of the eigenvalues is given by

\begin{equation}
\lambda_k^\pm = \left(\frac{\pi_p k}{\int_0^L (\rho^\pm(t))^{1/p} dt}\right)^p + o(k^p)
\end{equation}

as \(k \to \infty\), where \(\rho^+(x) = \max\{\rho(x), 0\}\), and \(\rho^- = (-\rho)^+\), and

\[\pi_p = 2(p-1)^{1/p} \int_0^1 \frac{ds}{(1-s^p)^{1/p}}.\]

Received by the editors December 27, 2014 and, in revised form, May 6, 2015.

2010 Mathematics Subject Classification. Primary 35P15, 35B27; Secondary 35P30.

Key words and phrases. Lyapunov’s inequality, eigenvalues, \(p\)-Laplacian, homogenization.

The authors are members of CONICET (Argentina). This work was partially supported by Universidad de Buenos Aires under grant 20020130100283BA, and ANPCyT PICT2012 0153.
The case of the nonconstant principal coefficient can be analyzed easily in exactly the same way by using a change of variable (see Section 2).

However, the asymptotic formula (1.3) cannot be used to derive precise bounds for \(\lambda_k^{\pm} \). A useful tool in order to obtain lower bounds for eigenvalues in one-dimensional problems is Lyapunov’s inequality: if there exists a nontrivial solution \(u \) of

\[
\begin{aligned}
-u'' &= \rho(x)u, \quad x \in (0, L), \\
u(0) &= u(L) = 0,
\end{aligned}
\]

then we must have

\[
\frac{4}{L} \leq \int_0^L |\rho(t)| dt,
\]

an inequality proved by Borg [2], and improved later by Wintner [26] who used \(\rho^+(t) \) instead of \(|\rho(t)| \). A similar inequality holds for \(p \)-Laplacian operators, and applying it in each nodal domain, we can bound the \(k \)-th eigenvalue as follows:

\[
\frac{2^p k^p}{L^{p-1}} \leq \lambda_k \int_0^L \rho^+(t) dt;
\]

see [21], and [22] for a recent survey.

Moreover, it is possible to obtain better bounds of the eigenvalues in the indefinite case, and we will prove the following Lyapunov type inequality which takes care of the negative part of the weight as well:

Theorem 1.1. Let \(u \) be a solution of problem (1.1)-(1.2) with \(\rho \in L^1([0, L]) \) and \(a \in \mathcal{A}_p \). Then

\[
\frac{1}{p} \left(\int_0^L a^{-\frac{1}{p-1}}(t) dt \right)^{1-p} \leq \sup_{0 \leq x \leq L} \left| \int_0^x \rho(t) dt \right|.
\]

As a consequence, we have the following bound for \(\lambda_k^{\pm} \):

Theorem 1.2. Let \(\lambda_k^{\pm} \) be the \(k \)-th eigenvalue of problem (1.1)-(1.2) with \(\rho \in L^1([0, L]) \) and \(a \in \mathcal{A}_p \). Then

\[
\frac{k^{p-1}}{p} \left(\int_0^L a^{-\frac{1}{p-1}}(t) dt \right)^{1-p} \leq \lambda_k^{\pm} \cdot \sup_{(a, b) \subset [0, L]} \left| \int_a^b \rho(t) dt \right|.
\]

Let us mention that inequalities (1.4) and (1.5) are closely related to the ones introduced by Harris and Kong in [14] and generalized in [15] for quasilinear equations like (1.1) with \(a \equiv 1 \). However, a mixed boundary condition was involved in these inequalities: suppose that \(u'(0) = u(L) = 0 \); then

\[
1 \leq L^{p-1} \sup_{0 \leq x \leq L} \int_0^x \rho(t) dt,
\]

and, for \(u(0) = u'(L) = 0 \),

\[
1 \leq L^{p-1} \sup_{0 \leq x \leq L} \int_x^L \rho(t) dt.
\]

These inequalities were proved by using Riccati equation techniques, that is, by introducing the function \(v = u'/u \), and studying a first order nonlinear differential
equation for \(v \), with the initial condition \(v(0) = 0 \) and using the fact that \(v \) blows up when \(x \to L \) in the first case, and when \(x \to 0 \) in the second one.

This approach cannot be used for higher order equations, so our proofs of Theorems 1.1, 1.2, and 1.3 are based on variational arguments, and we give the following extension to higher order differential equations:

Theorem 1.3. Let \(u \in W^{m,p}_0(0,L) \) be a nontrivial solution of
\[
\begin{cases}
(-1)^m (a(x)|u^{(m)}|^{p-2}u^{(m)})^{(m)} = \rho(x)u, & x \in (0, L), \\
u^{(j)}(0) = u^{(j)}(L) = 0, & 0 \leq j \leq m - 1,
\end{cases}
\]
where \(m \geq 1, \ a \in \mathcal{A}_p, \) and \(\rho \in L^1 \). Then
\[
\frac{(m-1)^{p-1}[(m-2)!]^p}{pL^{mp-p}} \left(\int_0^L a^{-\frac{1}{p-1}}(t)dt \right)^{1-p} \leq \sup_{0 \leq x \leq L} \int_0^x \rho(t)dt.
\]

Remark 1.4. When \(p = 2, \ a \equiv 1, \) and \(\rho \geq 0 \), the constant obtained by Das and Vatsala in [8] for the classical Lyapunov’s inequality is given by
\[
\frac{24^{m-1}(2m-1)!^2}{2L^{2m-1}}.
\]
For \(p \neq 2 \) and \(m > 1 \) the determination of the best constant remains open even for the classical Lyapunov’s inequality with positive weights; see [25].

Although the constant in Theorem 1.3 is worse than the one in the classical inequality, we will see in the applications that the cancelation of the positive and negative parts of the weight \(\rho \) in the integral gives much better bounds in several cases. Hence, the true contribution of this kind of inequality comes from the right-hand side.

Let us focus now on applications of Theorem 1.2. Let us consider first the following periodic homogenization problem:
\[
\begin{cases}
-(a(x)\xi)|u_\varepsilon|^{p-2}u_\varepsilon)' = \lambda_\varepsilon \rho(\xi)|u_\varepsilon|^{p-2}u_\varepsilon, & x \in (0, L), \\
u_\varepsilon(0) = u_\varepsilon(L) = 0,
\end{cases}
\]
where \(\varepsilon \) is a positive small parameter, and we assume that \(a, \rho \) are \(L \)-periodic functions. For each fixed \(\varepsilon \), the results for problem (1.1)–(1.2) hold: we have two sequences of simple eigenvalues \(\{\lambda_{\varepsilon,k}^\pm\}_{k \geq 1} \), and their corresponding eigenfunctions satisfy the same nodal properties as before.

We are interested in the behavior of \(\{\lambda_{\varepsilon,k}^\pm\}_\varepsilon \) when \(\varepsilon \to 0^+ \) for each \(k \) fixed. For nonnegative weights \(\rho \), it is known (see [8],[9],[10]) that \(\lambda_{\varepsilon,k}^+ \to \lambda_{0,k}^+ \) when \(\varepsilon \to 0^+ \), where \(\lambda_{0,k}^+ \) is the \(k \)-th eigenvalue of the limit problem
\[
\begin{cases}
-(a^*|u|^{p-2}u)' = \lambda_{0,k}^+ |u|^{p-2}u, & x \in (0, L), \\
u(0) = u(L) = 0,
\end{cases}
\]
where \(\bar{\rho} \) is the average of \(\rho \) in the interval \((0, L) \) and \(a^* \) is given by
\[
a^* := \left(\int_0^L \bar{\rho}(t)^{-\frac{1}{p-1}} dt \right)^{1-p},
\]
see [10] for a proof. Remarkably, observe that \(a^* \) is the constant appearing in Lyapunov’s inequality (1.4), and the existence of this integral follows since \(a \in \mathcal{A}_p \).
We may ask what happens when ρ is an indefinite weight, and our next theorem generalizes to the one dimensional quasilinear setting the answer for second order linear problems (in arbitrary spatial dimension) obtained recently by Nazarov, Pankratova, and Piatnitski in [18,20]:

Theorem 1.5. Let $\{\lambda_{\varepsilon,k}^\pm\}_{k \geq 1}$ be the eigenvalues of problem (1.8), with L-periodic functions $\rho \in L^1([0,L])$ and $a \in A_p$. Let $\{\lambda_{0,k}\}_{k \geq 1}$ be the eigenvalues of problem (1.9). Then:

1. If $\bar{\rho} = 0$, then $\lambda_{\varepsilon,k}^\pm \to \pm \infty$ as $\varepsilon \to 0^+$.
2. If $\bar{\rho} < 0$, then $\lambda_{\varepsilon,k}^- \to \lambda_{0,k}$ and $\lambda_{\varepsilon,k}^+ \to +\infty$ as $\varepsilon \to 0^+$.
3. If $\bar{\rho} > 0$, then $\lambda_{\varepsilon,k}^+ \to \lambda_{0,k}$ and $\lambda_{\varepsilon,k}^- \to -\infty$ as $\varepsilon \to 0^+$.

Let us remark that in the first case, after a suitable renormalization $\mu_{\varepsilon,k}^\pm = \varepsilon^\alpha \lambda_{\varepsilon,k}^\pm$, the convergence to the eigenvalues of a different limit problem was obtained in [18,20]. Their proofs were based on linear tools such as orthogonality of eigenfunctions and corrector terms obtained by asymptotic expansions in powers of ε, which are not available here.

The higher dimensional problem can be treated by variational methods; see [11]. Nevertheless, the results obtained are not as sharp as the one dimensional counterpart that we get here.

The paper is organized as follows: In Section 2 we introduce some necessary facts about the eigenvalue problem for the p-Laplace operator. In Section 3 we prove Theorems 1.1, 1.2, and 1.3. Section 4 is devoted to the proof of Theorem 1.5.

2. Preliminary Results

2.1. Eigenvalues of p-Laplacian operators.

The eigenvalue problem for the p-Laplacian operator started with the pioneering results of Browder in the 1960s. A recent survey including more general quasilinear homogeneous operators in $\Omega \subset \mathbb{R}^N$ can be found in [10], tracing back the study of the p-Laplacian to a beautiful paper of Euler [7].

We will need here the following variational characterization of eigenvalues:

Theorem 2.1. There exists a double sequence of variational eigenvalues $\{\lambda_k^\pm\}_{k \geq 1}$ of problem (1.1)-(1.2), given by

\[
\lambda_k^\pm = \inf_{C \in C_k} \sup_{u \in C} \int_0^L a(t)|u'|^p \, dt,
\]

where

- $C_k = \{C \subset M^\pm : C \text{ is compact}, C = -C, \gamma(C) \geq k\}$,
- $M^\pm = \left\{u \in W_0^{1,p}(0,L) : \int_0^L \rho(t)|u|^p \, dt = \pm 1\right\}$,

and γ is the Krasnoselskii genus.

The proof is identical to the one in [13] for positive weights.
Remark 2.2. Sometimes we will work with an equivalent definition (due to the homogeneity of the operator),

\[(2.2) \quad \lambda_k^\pm = \inf_{C \in C_k} \sup_{u \in C} \frac{\int_0^L a(t)|u'|^p \, dt}{\int_0^L \rho(t)|u|^p \, dt}, \]

where now

\[M^+ = \left\{ u \in W^{1,p}_0(0,L) : \int_0^L \rho(t)|u|^p \, dt > 0 \right\}, \]

\[M^- = \left\{ u \in W^{1,p}_0(0,L) : \int_0^L \rho(t)|u|^p \, dt < 0 \right\}. \]

We need also the following results from the Sturm-Liouville theory for the \(p\)-Laplacian:

Theorem 2.3. Let \(\{u_k^\pm\}_{k \geq 1} \) be a sequence of normalized eigenfunctions corresponding to \(\{\lambda_k^\pm\}_{k \geq 1} \). Then \(u_k^\pm \) has exactly \(k + 1 \) zeros in \([0,L]\) which determine \(k \) nodal domains.

Theorem 2.4. Let \(\rho_1, \rho_2 \in L^1([0,L]) \), with \(\rho_1(x) \leq \rho_2(x) \). Then

\[\lambda_k^+(\rho_1) \geq \lambda_k^+(\rho_2), \quad \lambda_k^-(\rho_1) \leq \lambda_k^-(\rho_2), \]

whenever \(\lambda_k^+(\rho_1) \) and \(\lambda_k^+(\rho_2) \) exist.

The proof of the first one is a consequence of the alternative variational characterization (2.2), by observing that \(M^+(\rho_2) \subset M^+(\rho_1) \); after changing \(\rho \to -\rho \) the other one follows as well. Clearly, if one weight is negative, and the other one is positive, there are no eigenvalues to compare.

2.2. The Muckenhoupt class of \(A_p \) weights.

We say that \(a \) belongs to the Muckenhoupt \(A_p \)-class if \(a \) is a nonnegative function in \(L^1_{\text{loc}}(\mathbb{R}^N) \), such that

\[(2.3) \quad \left(\int_B a(x) \, dx \right) \left(\int_B a(x)^{-\frac{1}{p-1}} \, dx \right)^{p-1} \leq c_{p,a} |B|^p \]

for any ball \(B \in \mathbb{R}^N \), and a fixed positive constant \(c_{p,a} \).

Remark 2.5. Besides the fact that the bounds we will study below depend strongly on the existence of the second integral in equation (2.3), the most important fact is that \(A_p \) weights guarantee the density of smooth functions in \(W^{1,p}(\Omega) \) (see [17,24]), and then it is the right class of coefficients involved in different quasilinear problems. The \(A_p \) class contains several interesting weights, like powers of the distance to a point or the distance to the boundary, allowing both singular and degenerate operators.

In one dimensional problems we can avoid the coefficient \(a \) in equation (1.1) by performing a change of variables. For simplicity let us assume that \(L = 1 \), and let us define

\[P(x) = \int_0^x \frac{1}{a(t)^{1/(p-1)}} \, dt. \]

We perform the change of variables

\[(x,u) \to (y,v), \]
where
\[y = P(x), \quad v(y) = u(x), \]
and a simple computation gives
\[
\begin{cases}
- (|v|^{p-2} v) \cdot = \lambda Q(y)|v|^{p-2} v, & y \in [0, \ell], \\
v(0) = v(\ell) = 0,
\end{cases}
\]
where
\[\cdot = d/dy, \]
with
\[\ell = \int_0^1 \frac{1}{a(t)^{1/(p-1)}} dt \to \ell = a^{\frac{1}{p-1}}, \]
and
\[Q(y) = a(x)^{1/(p-1)} \rho(x) \]
\[= a(P^{-1}(y))^{1/(p-1)} \rho(P^{-1}(y)). \]

Observe that both \(P \) and \(\ell \) are well defined whenever \(a \in A_p \).

3. A Lyapunov type inequality

We prove in this section our main results. First, let us state and prove the following useful lemma:

Lemma 3.1. Let \(1 < p < \infty \), and let \(u \in C_0^{(m)}(0, L) \), with
\[u^j(a) = 0, \quad 0 \leq j \leq m - 1, \]
and \(a(x) \in A_p \). Then
\[
\|u\|_{L^{\infty}(0, L)} \leq \frac{L^{m-1}}{(m-1)!} \left(\int_0^L a(t)^{\frac{1}{p}} dt \right)^{\frac{p-1}{p}} \left(\int_0^L a(t) |u^{(m)}(t)|^p dt \right)^{\frac{1}{p}}.
\]

Proof. We apply Taylor’s expansion and the Cauchy expression for the remainder, obtaining
\[
u(x) = \sum_{j=0}^{m-1} \frac{u^j(0)}{j!} x^j + \int_0^x \frac{(x-t)^{m-1}}{(m-1)!} u^{(m)}(t) dt.
\]
However, since the derivatives of \(u \) at 0 are zero, we have
\[
u(x) = \int_0^x \frac{(x-t)^{m-1}}{(m-1)!} u^{(m)}(t) dt.
\]
Thus, bounding \(x - t < L \), and using Holder’s inequality,
\[
|u(x)| \leq L^{m-1} \int_0^x a^{\frac{1}{p}}(t) a^{-\frac{1}{p}}(t) \left(\int_0^x a(t) |u^{(m)}(t)|^p dt \right)^{\frac{1}{p}},
\]
and the inequality is proved. \(\square \)

We are ready to prove Theorem 1.1.
Proof of Theorem 1.1. By multiplying equation (1.1) by \(u \), and integrating by parts, we get

\[
\int_0^L a(x)|u'|^p \, dx = \int_0^L \rho(x)|u|^p \, dx.
\]

Let us introduce now the function \(Q(x) = \int_0^x \rho(t) \, dt \). Hence,

\[
\int_0^L \rho(x)|u|^p \, dx = \int_0^L Q'(x)|u|^p \, dx = - \int_0^L Q(x)p|u|^{p-2}u'^2 \, dx.
\]

By combining these with Lemma 3.1 for \(m = 1 \), we obtain

\[
\int_0^L a(x)|u'|^p \, dx = \int_0^L \rho(x)|u|^p \, dx
\]

\[
\leq p \left(\sup_{0 \leq x \leq L} |Q| \right) \|u\|_{L^\infty(0,L)}^{p-1} \int_0^L |u'| \, dx
\]

\[
\leq p \left(\sup_{0 \leq x \leq L} |Q| \right) \left(\int_0^L a^{-\frac{1}{p-1}}(t) \, dt \right)^\frac{p-1}{p} \times \left(\int_0^L a(t)|u'(t)|^p \, dt \right) \int_0^L |u'| \, dx.
\]

Now, by inserting \(a^{\frac{1}{p}}(x)a^{-\frac{1}{p}}(x) \) in the last integral, and using again Holder’s inequality, we get after rearranging,

\[
\int_0^L a(x)|u'|^p \, dx \leq p \left(\sup_{0 \leq x \leq L} |Q| \right) \left(\int_0^L a^{-\frac{1}{p-1}}(t) \, dt \right)^{p-1} \int_0^L a(x)|u'(x)|^p \, dx,
\]

and, after canceling the integral in both sides, the theorem is proved. \(\square \)

In the next proof we use that the eigenfunction \(u_k \) associated to \(\lambda_k \) has exactly \(k \) nodal domains.

Proof of Theorem 1.2. We take \(\lambda_k^\pm \), for \(k \geq 1 \), and let \(0 = x_0 < x_1 < \cdots < x_k = L \) be the \(k+1 \) zeros of the associated eigenfunction \(u_k^\pm \). We can apply Theorem 1.1 in each nodal domain \((x_{i-1}, x_i) \), obtaining

\[
\frac{1}{p^{\frac{1}{p-1}}} \leq (\lambda_k^\pm)^{\frac{1}{p-1}} \left(\sup_{x_{i-1} \leq x \leq x_i} \left| \int_{x_{i-1}}^x \rho(t) \, dt \right| \right)^{\frac{1}{p-1}} \cdot \int_{x_{i-1}}^{x_i} a^{-\frac{1}{p-1}}(t) \, dt,
\]

and therefore,

\[
\frac{k}{p^{\frac{1}{p-1}}} \leq \left(\lambda_k^\pm \right)^{\frac{1}{p-1}} \sum_{i=1}^k \left(\sup_{x_{i-1} \leq x \leq x_i} \left| \int_{x_{i-1}}^x \rho(t) \, dt \right| \right)^{\frac{1}{p-1}} \cdot \int_{x_{i-1}}^{x_i} a^{-\frac{1}{p-1}}(t) \, dt
\]

\[
\leq (\lambda_k^\pm)^{\frac{1}{p-1}} \left(\sup_{(a,b) \subset [0,L]} \left| \int_a^b \rho(t) \, dt \right| \right)^{\frac{1}{p-1}} \cdot \sum_{i=1}^k \int_{x_{i-1}}^{x_i} a^{-\frac{1}{p-1}}(t) \, dt.
\]
Hence,
\[
\frac{1}{p} \left(\frac{k}{\int_a^L a^{-\frac{1}{p-1}}(t)dt} \right)^{p-1} \leq \lambda_k^\pm \sup_{(a,b)\subset[0,L]} \left| \int_a^b \rho(t)dt \right|
\]
and the proof is finished. \(\square\)

The proof of Theorem 1.3 is similar. Recall that in \(W_{m,p}^0(a,b)\) one can take the norm
\[
\|u\|_{m,p} := \|u^{(m)}\|_p.
\]

Proof of Theorem 1.3 Let us call \(Q(x) = \int_0^x \rho(t)dt\) as before. We start from
\[
\int_0^L a(x)|u^{(m)}|^pdx = \int_0^L Q(x)'|u|^pdx = -\int_0^L Q(x)p|u|^{p-2}uu'dx
\]
\[
\leq p\left(\sup_{0\leq x\leq L} |Q| \right) \int_0^L |u|^{p-1} |u'| \, dx,
\]
and let us call \(A = \|u\|_{L^\infty}^{p-1}, B = \|u'\|_{L^\infty}\). Since \(u \in W_{0}^{m,p}\) implies that \(u' \in W_{0}^{m-1,p}\), and using Lemma 3.1 we obtain
\[
A \leq \left[\frac{L^{m-1}}{(m-1)!} \left(\int_0^L a^{-\frac{1}{p-1}}(t)dt \right)^{\frac{p-1}{p}} \left(\int_0^L a(t) |u^{(m)}(t)|^p \, dt \right)^{\frac{1}{p}} \right]^{p-1},
\]
\[
B \leq \frac{L^{m-2}}{(m-2)!} \left(\int_0^L a^{-\frac{1}{p-1}}(x)dx \right)^{\frac{p-1}{p}} \left(\int_0^L a(t) |u^{(m)}(t)|^p \, dt \right)^{\frac{1}{p}}.
\]
Now, we can bound
\[
\int_0^L |u|^{p-1} |u'| \, dt \leq A \cdot B \cdot L
\]
\[
\leq C \left(\int_0^L a^{-\frac{1}{p-1}}(t)dt \right)^{p-1} \int_0^L a(x) |u^{(m)}(t)|^p \, dt,
\]
where
\[
C = \frac{L^{mp-p}}{(m-1)p-1[(m-2)!]^p},
\]
and the result follows. \(\square\)

4. THE HOMOGENIZATION PROBLEM

Proof of Theorem 1.5 We prove only the assertions for the positive eigenvalues \(\{\lambda_{\varepsilon,k}^+\}_{k\geq1}\). For the negative ones the result follows by considering the weight \(-\rho\).

(1) Let \(\rho \in L^1\) be an \(L\)-periodic function with zero mean. Then, a simple computation gives
\[
\sup_{(a,b)\subset[0,L]} \left| \int_a^b \rho(\xi) \, d\xi \right| \leq \sup_{(a,b)\subset[0,L]} \int_a^b |\rho(\xi)| \, d\xi \leq \varepsilon \|\rho\|_{L^1(0,L)}.
\]
Now, Lyapunov’s inequality (1.5) gives

\[
\frac{k^{p-1}}{\varepsilon p\|\rho\|_{L^1(0,L)}} \left(\int_0^L a^{-\frac{1}{p-1}}(t) \, dt \right)^{1-p} \leq \lambda^+_{\varepsilon,k},
\]

which proves that the eigenvalues diverge as \(\varepsilon \to 0^+ \).

(2) Let us assume that \(\bar{\rho} < 0 \), and let us introduce the weight

\[\sigma = \rho - \bar{\rho}.\]

Now, \(\sigma > \rho \), and \(\bar{\sigma} = 0 \). So, from the Sturmian comparison theorem (Theorem 2.4), and part (1) we get

\[
\lambda^+_{\varepsilon,k}(\rho) \geq \lambda^+_{\varepsilon,k}(\sigma) \geq \frac{k^{p-1}}{\varepsilon p\|\sigma\|_{L^1(0,L)}} \left(\int_0^L a^{-\frac{1}{p-1}}(t) \, dt \right)^{1-p},
\]

and the result follows.

(3) Let us assume now that \(\bar{\rho} > 0 \), and let us show that the eigenvalues \(\lambda^+_{\varepsilon,k} \) converge to \(\lambda^+_{0,k} \). To this end, we need to show first that \(\{\lambda^+_{\varepsilon,k}\}_\varepsilon \) is uniformly bounded away from zero and infinity. Then, the remaining steps of the proof are the same as in the case of positive weights, and can be found in [3,10]: we extract a convergent sequence of eigenvalues, we choose a sequence of normalized eigenfunctions corresponding to these eigenfunctions, and Rellich-Kondrachov enables us to extract a convergent subsequence. The convergence of the full family follows from the simplicity of the eigenfunctions of problem (1.9); see [10] for details.

So, we only need to show that \(c < \lambda^+_{\varepsilon,k} < C \) for some positive constants \(c, C \) not depending on \(\varepsilon \).

The lower bound follows from Lyapunov’s inequality (1.5),

\[
\frac{k^{p-1}}{p} \left(\int_0^L a^{-\frac{1}{p-1}}(\frac{x}{\varepsilon}) \, dx \right)^{1-p} \leq \lambda^+_{\varepsilon,k} \cdot \sup_{(a,b) \subset [0,L]} \left| \int_a^b \rho(\frac{x}{\varepsilon}) \, dx \right| \leq \lambda^+_{\varepsilon,k} \int_0^L |\rho(\frac{x}{\varepsilon})| \, dx,
\]

and using that

\[
\int_0^L f(\frac{x}{\varepsilon}) \, dx = \varepsilon \int_0^{L/\varepsilon} f(x) \, dx \leq \varepsilon \left\lfloor \frac{L}{\varepsilon} \right\rfloor \int_0^L f(x) \, dx + \int_{\lfloor \frac{L}{\varepsilon} \rfloor}^{L/\varepsilon} f(x) \, dx \leq (L + 1) \int_0^L f(x) \, dx
\]

for any positive \(L \)-periodic function \(f \in L^1([0,L]) \), we get a lower bound for \(\lambda^+_{\varepsilon,k} \) independent of \(\varepsilon \). We have denoted by \(\lfloor s \rfloor \) the greatest integer less than or equal to \(s \).

Let us find an upper bound of the eigenvalues. We concentrate first on the first eigenvalue, and we construct a test function in order to bound the Rayleigh quotient (2.2). Let us choose \(h \) small, and we define a continuous function \(w \) which grows linearly from zero to one in \([0,h]\), remains constant in \([h,L-h]\), and decreases
linearly from one to zero in $[L - h, L]$. Now,

\[
\int_0^L a(\frac{x}{\varepsilon})|w'|^p \, dx \leq 2h^{-p} \int_0^L a(\frac{x}{\varepsilon}) \, dx
\]

\[
\leq 4Lh^{-p} \|a\|_{L^1([0, L])},
\]

\[
\int_0^L \rho(\frac{x}{\varepsilon})|w|^p \, dx \geq \left(\left\lfloor \frac{L - 2h}{\varepsilon} \right\rfloor - 2 \right) \varepsilon L \int_0^L \rho(t) \, dt - 2 \left\lfloor \frac{h}{\varepsilon} \right\rfloor + 2 \varepsilon L \int_0^L |\rho(t)| \, dt
\]

\[
\geq \frac{L^3}{2} \bar{\rho}
\]

for h fixed sufficiently small and any $\varepsilon < \varepsilon_0(h)$.

Therefore,

\[
\lambda^+_{\varepsilon,1} \leq \frac{8\|a\|_{L^1([0, L])}}{h^p L^2 \bar{\rho}},
\]

and the first eigenvalue is bounded above.

The same argument can be applied for higher eigenvalues. In fact let w be the previously defined function and introduce k bumps functions $\{w_i\}_{1 \leq i \leq k}$ defined on $[0, L]$, where

\[
w_i(x) = \begin{cases}
w(kx - (i - 1)L), & x \in [(i - 1)L/k, iL/k], \\
0, & x \in [0, L] \setminus [(i - 1)L/k, iL/k].
\end{cases}
\]

We consider the set $C = \text{span}\{w_1, \ldots, w_k\} \cap S$, where S is the unit ball in $W^{1,p}_{0}([0, L])$. Since $\gamma(C) = k$, and $C \subset M^+(\rho)$ for $\varepsilon < \varepsilon_0(k)$, it is an admissible set in the characterization of $\lambda^+_{\varepsilon,k}$. Thus, if $v = \sum c_iw_i \in C$, we have $\sum_{i=1}^k |c_i|^p = 1$ and

\[
\int_0^L a(\frac{x}{\varepsilon})|v'|^p \, dx \leq 2h^{-p} k^p \int_0^L a(\frac{x}{\varepsilon}) \, dx \sum_{i=1}^k |c_i|^p
\]

\[
\leq 4Lh^{-p} k^p \|a\|_{L^1([0, L])},
\]

\[
\int_0^L \rho(\frac{x}{\varepsilon})|v|^p \, dx = \sum_{i=1}^k |c_i|^p \int_0^L \rho(\frac{x}{\varepsilon})|w_i|^p \, dx
\]

\[
\geq \sum_{i=1}^k |c_i|^p \frac{L^3}{k^3 \bar{\rho}}
\]

\[
= \frac{L^3}{2k^3 \bar{\rho}},
\]

and we get

\[
\lambda^+_{\varepsilon,k} = \inf_{C \in C_k} \sup_{v \in C} \frac{\int_0^L a(\frac{x}{\varepsilon})|v'|^p \, dx}{\int_0^L \rho(\frac{x}{\varepsilon})|v|^p \, dx} \leq \frac{8k^{p+3}}{L^2 \bar{\rho}}.
\]

The proof is finished. \(\blacksquare\)

References

[1] Walter Allegretto and Yin Xi Huang, *Eigenvalues of the indefinite-weight p-Laplacian in weighted spaces*, Funkcial. Ekvac. 38 (1995), no. 2, 233–242. MR1356326 (96j:35184)

[2] Göran Borg, *On a Liapounoff criterion of stability*, Amer. J. Math. 71 (1949), 67–70. MR0028500 (10,456b)
[3] Thierry Champion and Luigi De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving \(p \)-Laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A \textbf{137} (2007), no. 6, 1179–1195, DOI 10.1017/S0308210506000667. MR2376876 (2009b:35315)

[4] Doina Cioranescu and Patrizia Donato, \textit{An introduction to homogenization}, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR1765047 (2001j:35019)

[5] Mabel Cuesta, Eigenvalue problems for the \(p \)-Laplacian with indefinite weights, Electron. J. Differential Equations (2001), no. 6, DOI 10.1016/j.jmaa.2004.12.019. MR2150123 (2007e:34159)

[6] K. M. Das and A. S. Vatsala, Green’s function for \(n - n \) boundary value problem and an analogue of Hartman’s result, J. Math. Anal. Appl. \textbf{51} (1975), no. 3, 670–677. MR0377161 (51 #13334)

(7) L. Euler, \textit{Nova methodus innumerabiles aequationes differentiales secundi gradus reducendi ad aequationes differentiales primi gradus}, Commentarii academiae scientiarum Petropolitanae 3 (1732), 124-137. English version, translated and annotated by I. Bruce, http://www.17centurymaths.com/contents/euler/e010tr.pdf.

[8] Julián Fernández Bonder and Juan Pablo Pinasco, Eigenvalues of the \(p \)-Laplacian in fractal strings with indefinite weights, J. Math. Anal. Appl. 308 (2005), no. 2, 764–774, DOI 10.1016/j.jmaa.2004.12.019. MR2150123 (2007e:34159)

[9] Julián Fernández Bonder, Juan P. Pinasco, and Ariel M. Salort, Convergence rate for some quasilinear eigenvalues homogenization problems, J. Math. Anal. Appl. 423 (2015), no. 2, 1427–1447, DOI 10.1016/j.jmaa.2014.10.052. MR3278207

[10] J. Fernández Bonder, J. P. Pinasco, A. M. Salort, Quasilinear eigenvalues, Rev. Matemática de la UMA, 56 (2015), no. 1, 1–25.

[11] J. Fernández Bonder, J. P. Pinasco, A. M. Salort, Eigenvalue homogenisation problem with indefinite weights. arXiv:1504.03893, to appear in Bulletin of the Australian Mathematical Society.

[12] Jacqueline Fleckinger and Michel L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295 (1986), no. 1, 305–324, DOI 10.2307/2000158. MR831201 (87j:35282)

[13] Jesús García Azorero and Ireneo Peral Alonso, Comportement asymptotique des valeurs propres du \(p \)-laplacien (French, with English summary), C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 2, 75–78. MR954263 (89k:35171)

[14] B. J. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1831–1839, DOI 10.2307/2154978. MR1283552 (95h:34034)

[15] Huei-Lin Hong, Wei-Cheng Lian, and Cheh-Chih Yeh, The oscillation of half-linear differential equations with an oscillatory coefficient, Math. Comput. Modelling 24 (1996), no. 7, 77–86, DOI 10.1016/0895-7177(96)00129-X. MR1416945 (97h:34034)

[16] Peter Hess and Tosio Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), no. 10, 999–1030, DOI 10.1080/03605308008820162. MR588690 (81m:35026)

[17] Tero Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 95–113. MR1246890 (95h:46054)

[18] Sergey A. Nazarov, Iryna L. Pankratova, and Andrey L. Piatnitski, Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function, Arch. Ration. Mech. Anal. \textbf{200} (2011), no. 3, 747–788, DOI 10.1007/s00205-010-0370-2. MR2796132 (2012c:35024)

[19] B. Opic and A. Kufner, \textit{Hardy-type inequalities}, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR1069756 (92b:26028)

[20] I. Pankratova and A. Piatnitski, Homogenization of spectral problem for locally periodic elliptic operators with sign-changing density function, J. Differential Equations 250 (2011), no. 7, 3088–3134, DOI 10.1016/j.jde.2011.01.022. MR2771256 (2012a:35026)

[21] Juan Pablo Pinasco, Lower bounds for eigenvalues of the one-dimensional \(p \)-Laplacian, Abstr. Appl. Anal. 2 (2004), 147–153, DOI 10.1155/S108533750431002X. MR2058270 (2004m:34194)

[22] Juan Pablo Pinasco, Lyapunov-type inequalities, With applications to eigenvalue problems, Springer Briefs in Mathematics, Springer, New York, 2013. MR3100444
[23] Didier Smets, *A concentration-compactness lemma with applications to singular eigenvalue problems*, J. Funct. Anal. **167** (1999), no. 2, 463–480, DOI 10.1006/jfan.1999.3461. MR1716204 (2002c:35202)

[24] Bengt Ove Turesson, *Nonlinear potential theory and weighted Sobolev spaces*, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR1774162 (2002f:31027)

[25] Kohtaro Watanabe, *Lyapunov type inequality for the equation including 1-dim p-Laplacian*, Math. Inequal. Appl. **15** (2012), no. 3, 657–662, DOI 10.7153/mia-15-58. MR2962461

[26] Aurel Wintner, *On the non-existence of conjugate points*, Amer. J. Math. **73** (1951), 368–380. MR0042005 (13,37d)

[27] Eberhard Zeidler, *Lectures on Lyusternik-Schnirelman theory for indefinite nonlinear eigenvalue problems and its applications*, Nonlinear analysis, function spaces and applications (Proc. Spring School, Horni Bradlo, 1978), Teubner, Leipzig, 1979, pp. 176–219. MR578914 (81h:58025a)

Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina
E-mail address: jfbonder@dm.uba.ar

Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina.
E-mail address: jpinasco@dm.uba.ar

Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina.
E-mail address: asalort@dm.uba.ar