Impact of stature on non-communicable diseases: evidence based on Bangladesh Demographic and Health Survey, 2011 data

Md Erfanul Hoque*, Mahfuzur Rahman Khokan and Wasimul Bari

Abstract

Background: In this paper, an attempt has been made to explore the relationship between height and occurrence of the non-communicable diseases such as diabetes and hypertension.

Methods: For the purpose of analysis, Bangladesh Demographic and Health Survey (BDHS), 2011 data was used. Bivariate analysis along with a Chi-square test was performed to examine association between height and diseases. To measure the impact of stature on diabetes and hypertension, three different logistic regression models (Model I: considering only quartiles of height, Model II: covariates of model I along with demographic variables and Model III: covariates of model II along with clinical variable) were considered.

Results: Occurrence of diabetes and hypertension was found to be inversely related with the height of participants. This inverse association was statistically significant for all three models. After controlling the demographic and clinical variables simultaneously, the odds ratio for highest quartile compared to the lowest quartile was 0.82 with 95% confidence interval (0.69, 0.98) for diabetes; whereas it was 0.72 with 95% confidence interval (0.55, 0.95) for hypertension.

Conclusions: Findings of this paper indicate that persons with shorter stature are substantially more likely to develop diabetes as well as hypertension. The occurrence of non-communicable diseases like diabetes and hypertension can be reduced by controlling genetic and non-genetic (early-life and childhood) factors that may influence the height.

Keywords: Blood glucose level, Blood pressure, Diabetes, Hypertension, Stature

Background

A rapid increase of Non-communicable diseases (NCDs) is becoming an alarming threat for the achievement of global progress in the developed and developing countries. The NCDs kill more than 36 million people each year, among them 80% of NCD death occur in low- and middle-income countries like Bangladesh [1]. This death toll will rise unless proper measures are taken. If the current trend continues, by 2020, NCDs will be responsible for 73% of total death and 60% of disease burden in the developing countries [1]. The causal risk factors of NCD risk factors operate through intermediate risk factors such as high blood pressure, elevated blood glucose level and plasma lipid levels [2]. These are the most prevalent risk factors around the world [3]. Generally, these risk factors are modifiable and preventable. Therefore, early identification and preventive behavior for these risk factors can reduce the risk of developing cardiovascular disease by 80% and risk of type II diabetes by 90% [4]. Like other developing countries, Bangladesh is making a transition in the disease and death patterns from communicable diseases to NCDs [5,6]. The prevention and control NCDs depend on the availability of information about these diseases and the intermediate biological biomarkers. The 2011 BDHS is the first national survey to include biomarker measurements for blood pressure and fasting blood glucose. In this paper, an attempt has been made to identify potential factors associated with the occurrence of diabetes, which is based on blood glucose level and hypertension, which is based on blood pressure.

The association between height of respondent and diabetes risk has been investigated by several epidemiological
of the National Institute of Population Research and Training (NIPORT), ICF International (USA) and Mitra and Associates. The written informed consent was obtained from the participants prior to participation in the study and data collection was conducted confidentially. For this study, there is no need ethical approval since it is based on publically available secondary data.

Definitions of diseases

The 2011 BDHS uses WHO cut-off points for measuring fasting plasma glucose (FPG) [26]. The cut-off points correspond to the clinical classification for normal FPG levels, pre-diabetes and diabetes. If FPG is between 3.9 mmol/l (70 mg/dl) and 6.0 mmol/l (108 mg/dl), participants are considered to be normal. Participants with FPG value of 6.1-6.9 mmol/l (110–124 mg/dl) are classified as prediabetic, and individuals with FPG greater than or equal to 7.0 mmol/l (126 mg/dl) are considered as diabetic. In this paper, an individual is considered to be diabetic if his/her FPG value is greater than 6.1 mmol/l (110 mg/dl), otherwise he/she is considered to be in normal health state or non-diabetic [2].

The 2011 BDHS uses the American Heart Association guidelines for cut-off points for blood pressure measurements [27]. The cut-off points represent to the clinical classification for hypertension as they relate to the systolic and diastolic blood pressure measurement. For the purpose of analysis, in this paper, we divide individuals into two categories: having hypertension and not having hypertension. An individual is said to have hypertension if his/her systolic blood pressure is greater than 140 mmHg or his/her diastolic blood pressure is greater than 90 mmHg [28].

Along with two outcome variables diabetes and hypertension, we consider height as categorical variable based on quartiles, gender (male, female), education level (no education, primary, secondary, higher), wealth index (poorest, poorer, middle, richer, richest), place of residence (rural, urban), division (Dhaka, Barisal, Chittagong, Khulna, Rajshahi, Rangpur, Shylhet), body mass index (BMI) category [thin (BMI < 18.5), normal (BMI 18.5-24.9), overweight (BMI > 24.9)] as determinants of these outcomes [11-13,25,28].

To examine the relationship between different determinants and having diabetes and hypertension, first we conduct a bivariate analysis along with a Chi-square test and then we examine the effects of covariates that are found to be statistically significant in the bivariate analysis by fitting logistic regression model [29]. Since the main concern of this paper is to find a relationship between height and having diabetes and hypertension, at the stage of regression analysis, we consider three logistic regression models. These are Model 1: considering only the quartiles of height to examine the gross effect of the height; Model II: covariate of Model I along with
demographic variables (education level, wealth index, place of residence, division) to examine the effect of height after controlling the demographic variables; and Model III: covariates in Model II along with clinical variable (BMI) to examine the effect of height after controlling the demographic as well as the clinical variables. For the purpose analysis, the SPSS for Windows (SPSS Inc., Chicago, IL, USA) is used.

Results

Univariate analysis

The mean height of respondent is found to be 1.57 meter with standard deviation 0.091 meter. The minimum and maximum heights are 1.09 and 1.87 meters, respectively. Among the participants, 51.21% are male and 48.79% are female. It is observed that 34.6% of participants have no education and 32.4%, 24.2%, and 8.8% of respondents have primary, secondary and higher education, respectively. Most of the respondents (66.43%) are found to reside in the rural area. The distribution of respondents among the divisions Dhaka, Barisal, Chittagong, Khulna, Rajshahi, Rangpur, Shylet are 17.12%, 11.71%, 17.11%, 13.53%, 13.46%, 13.33%, and 13.74%, respectively. More than half of the participants (57.45%) are in the normal category of BMI measurement scale. It is found that 30.49% are thin and 12.06% are overweight. Around 20% of respondents fall in the each category of wealth index. One-third of respondents (33.3%) are found to be diabetic and 21.4% of respondents have hypertension.

Bivariate analysis

Diabetes

The background characteristics of the study participants by diabetes status are shown in Table 1. It is interesting to observe that prevalence of diabetes increase as height of participant decreases. Individuals who belong to the lower quartile of height are more likely to be diabetic compared to their counterparts. The percentage of diabetes is almost equal among men (33.0%) and women (33.6%). Considering education level it can be mentioned that if education level increases the percentage of diabetes also increases. Among the wealth index, the richest group has higher proportion of diabetics (40.4%) whereas the other groups are more or less similar (around 31%). Prevalence of diabetes is more in urban area (35.4%) compared to the rural area (32.2%). Among the divisions, participants from Chittagong are most likely to have diabetes (42.0%), whereas this is least in the Rangpur division (28.0%). It is observed that overweighted and thin participants are more prone to be diabetic than normal weighed participants. Among the overweighted participants, the rate of occurrence of diabetes is 50.5%, whereas it is 33.6% and 30.6% for the thin and normal categories of BMI, respectively. Note that height of participants is significantly associated with the occurrence of diabetes at 5% level of significance. The associations between diabetes levels and education level, wealth index, place of residence, division and BMI category are found to be highly significant (at 1% level of significance). Only gender of participant shows insignificant association with levels of diabetes.

Characteristics	Diabetes status	p value	
	Non-diabetes n (%)	Diabetes n (%)	
Height category			
Q1: (<1.51)	854 (63.8%)	485 (36.2%)	0.037
Q2: (1.51-1.583)	865 (65.7%)	452 (34.3%)	
Q3: (1.583-1.637)	906 (67.8%)	430 (32.2%)	
Q4: (≥1.673)	875 (67.2%)	429 (32.9%)	
Gender			
Female	2543 (66.4%)	1288 (33.6%)	0.558
Male	2503 (67.0%)	1231 (33.0%)	
Education level			<0.001
No education	2384 (69.5%)	1047 (30.5%)	
Primary	1377 (66.1%)	706 (33.9%)	
Secondary	915 (65.2%)	489 (34.8%)	
Higher	370 (57.2%)	277 (42.8%)	
Wealth index			<0.001
Poorest	929 (68.9%)	419 (31.1%)	
Poorer	935 (69.1%)	418 (30.9%)	
Middle	1010 (68.9%)	455 (31.1%)	
Richer	1090 (68.8%)	494 (31.2%)	
Richest	1082 (59.6%)	733 (40.4%)	
Place of residence			0.006
Urban	1607 (64.6%)	882 (35.4%)	
Rural	3439 (67.8%)	1637 (32.2%)	
Division			<0.001
Dhaka	929 (70.6%)	387 (29.4%)	
Barisal	669 (59.8%)	450 (40.2%)	
Chittagong	502 (58.0%)	364 (42.0%)	
Khulna	889 (73.8%)	316 (26.2%)	
Rajshahi	717 (67.1%)	351 (32.9%)	
Rangpur	769 (72.0%)	299 (28.0%)	
Shylet	571 (61.9%)	352 (38.1%)	
BMI category			<0.001
Thin	1062 (66.4%)	538 (33.6%)	
Normal	2075 (69.4%)	915 (30.6%)	
Overweight	310 (49.5%)	316 (50.5%)	
Hypertension
The distribution of background characteristics by the levels of hypertension is given in Table 2. Like diabetic patients, occurrence of hypertension is inversely related with the height of patient. The rates of having hypertension in the four quartiles of height are 32.8%, 22.4%, 16.2% and 17.4%, respectively. This association is statistically significant with \(p \) value <0.001. Unlike diabetes, gender of participant is significantly associated with the levels of hypertension (\(p \) value <0.001). Female participants are more likely to have hypertension than their counterpart (25.7% versus 17.0%). The pattern of associations between levels of hypertension and education level, wealth index and place of residence are almost similar to the pattern of associations observed for the occurrence of diabetes. The rate of occurrence of hypertension significantly (\(p \) value <0.001) changes with divisions. Participants from Rangpur are most likely to have hypertension (27.6%), whereas this is least in the Shylet division (16.0%). It is noticed that with the increase of BMI, the occurrence of hypertension is significantly increased (\(p \) value <0.001).

Characteristics	Hypertension status	\(p \) value		
Height category	No hypertension	Hypertension		
	n (%)	n (%)		
Q1: (≤1.51)	935 (67.2%)	456 (32.8%)	<0.001	
Q2: (1.51-1.583)	1068 (77.6%)	309 (22.4%)		
Q3: (1.583-1.637)	1168 (83.8%)	225 (16.2%)		
Q4: (≥1.673)	1138 (82.6%)	240 (17.4%)		
Gender	No education	2786 (77.6%)	804 (22.4%)	0.003
	Primary	1760 (81.1%)	411 (18.9%)	
	Secondary	1151 (79.1%)	305 (20.9%)	
	Higher	505 (75.4%)	165 (24.6%)	
Wealth index	Poorest	1171 (83.5%)	232 (16.5%)	<0.001
	Poorer	1171 (82.0%)	257 (18.0%)	
	Middle	1243 (81.3%)	286 (18.7%)	
	Richer	1267 (77.2%)	375 (22.8%)	
	Richest	1350 (71.6%)	535 (28.4%)	
Place of residence	No education	1940 (74.9%)	649 (25.1%)	<0.001
	Rural	4262 (80.4%)	1036 (19.6%)	
Division	Dhaka	1045 (77.5%)	304 (22.5%)	<0.001
	Barisal	757 (80.8%)	180 (19.2%)	
	Chittagong	992 (83.8%)	192 (16.2%)	
	Khulna	911 (73.6%)	327 (26.4%)	
	Rajshahi	892 (79.9%)	225 (20.1%)	
	Rangpur	794 (72.4%)	302 (27.6%)	
	Shylet	811 (84.0%)	155 (16.0%)	
BMI category	Thin	1374 (82.7%)	288 (17.3%)	<0.001
	Normal	2444 (78.0%)	690 (22.0%)	
	Overweight	441 (67.0%)	217 (33.0%)	

Regression analysis
Diabetes
One of the main purposes of this study is to examine the effect of height of participant on the occurrence of diabetes. For this purpose, we consider three logistic regression models. The results are given in Table 3. In Model I, only height of participants is considered to measure the unadjusted effect of height. It is observed that height is almost inversely related with the development of diabetes. For example, individual who is in the highest quartile of height are 14% less likely to develop diabetes compared to the individual who is in the lowest quartile of height. Odds ratios for the second and third quartiles are found to be statistically significant at 5% and 10% level of significance, respectively. It is interesting to observe from Model II and Model III that the relationship between height and developing diabetes is becoming strictly inversed when demographic and clinical variables are added to the Model I. In Model II and Model III, both odds ratios for the second and third quartiles are significant at 5% level of significance. It implies that height of participant plays an important role in developing the diabetes as it is found statistically significant even after controlling the demographic and clinical variables.

It is found from Model II that rate of occurring diabetes increases significantly with level of education and wealth index. For individual with highest education level, the occurrence of diabetes is 50% higher than the individual with no education. Those who are in the highest wealth index level are 60% more likely to have diabetes than who are in the middle level. Place of residence is not found to have statically significant effect, but regions have significant effects on diabetes. Similar results are found in the model when clinical variable BMI is added to Model II. Both thin and overweight individuals are positively associated with the development of diabetes than their counterpart normal weighed. These effects are statistically significant at 5% and 1% level of significance, respectively.
To determine the potential factors associated with the occurrence of hypertension, following the analysis for diabetes, three logistic regression models are fitted and the results are given in Table 4. The unadjusted effect of height on the hypertension is statistically significant for all three quartiles (second, third, and fourth). Like in diabetes, it is also found that height of participant is almost inversely related with the development of hypertension. This relation remains same in the other two models (in Model II and Model III) after adjusting for demographic and clinical variables. In Model I, the odds ratio (OR) for the highest quartile is found to be 0.43 with 95% confidence interval (CI) (0.36, 0.52) and this effect is statistically significant at 1% level of significance. The prevalence of hypertension is decreased by 57% for those individuals who belong to the highest quartile of height compared to individuals in the lowest quartile. This OR is 0.74 with 95% CI (0.57, 0.97) in the Model II; whereas it is 0.72 in the Model III with 95% CI (0.55, 0.95). It indicates that as the participant is taller, lower would be the rate of developing the hypertension. These

Table 3 Regression coefficients (Reg. Coef.) and odds ratios (OR) with 95% confidence intervals (95% CI) of explanatory variables for the occurrence of diabetes obtained from logistic regression model

Characteristics	Model I OR (95% CI)	Model II OR (95% CI)	Model III OR (95% CI)
Height category			
Q1: (≤1.51) (Ref)	1.00	1.00	1.00
Q2: (1.51-1.583)	0.92 (0.79, 1.08)	0.92 (0.78, 1.08)	0.93 (0.79, 1.10)
Q3: (1.583-1.637)	0.84 (0.71, 0.98)**	0.81 (0.68, 0.95)**	0.84 (0.71, 1.00)**
Q4: (≥1.673)	0.86 (0.74, 1.01)*	0.79 (0.67, 0.95)**	0.82 (0.69, 0.98)**
Education level			
No education (Ref)	1.00	1.00	1.00
Primary	1.06 (0.92, 1.23)	1.06 (0.91, 1.23)	
Secondary	1.01 (0.84, 1.21)	0.97 (0.81, 1.17)	
Higher	1.5 (1.2, 1.94)***	1.39 (1.09, 1.77)**	
Wealth index			
Poorest	1.12 (0.92, 1.36)	1.09 (0.89, 1.33)	
Poorer	1.15 (0.95, 1.39)	1.13 (0.93, 1.37)	
Middle (Ref)	1.00	1.00	1.00
Richer	1.05 (0.87, 1.27)	1.03 (0.85, 1.25)	
Richest	1.6 (1.3, 1.97)***	1.46 (1.18, 1.79)***	
Place of residence			
Rural (Ref)	1.00	1.00	1.00
Urban	1.06 (0.93, 1.23)	1.11 (0.96, 1.29)	
Division			
Dhaka (Ref)	1.00	1.00	1.00
Barisal	1.9 (1.54, 2.38)***	1.91 (1.53, 2.39)***	
Chittagong	1.7 (1.37, 2.05)***	1.63 (1.33, 2.00)***	
Khulna	0.85 (0.69, 1.05)	0.83 (0.67, 1.03)*	
Rajshahi	1.24 (1.0, 1.54)***	1.19 (0.96, 1.49)	
Rangpur	0.98 (0.79, 1.21)	0.95 (0.77, 1.18)	
Shylet	1.62 (1.31, 2.01)**	1.59 (1.28, 1.97)***	
BMI category			
Thin	1.17 (1.03, 1.34)**		
Normal (Ref)	1.00		
Overweight	2.09 (1.74, 2.52)***		

Notes:
***p value < 0.001, **p value < 0.05, *p value < 0.10.
results establish the fact that short stature is a potential risk factor for developing hypertension.

In Model II, the effects of demographic variables on the occurrence of hypertension are also examined along with the effect of height of respondents. It is observed that female is less likely to have hypertension compared to male. In this case, the OR is found to be 0.44 with 95% CI (0.36, 0.54). Only higher education level is found to have significant impact on the hypertension. The odds of developing hypertension is 26% higher for an individual with higher education compared to an individual with no education. It is interesting to observe that the development of hypertension increases with the level of wealth index. For example, ORs are 0.77 [95% CI: (0.61, 0.97)] for the poorest, 0.78 [95% CI: (0.62, 0.99)] for the poorer, and 0.78 [95% CI: (0.62, 0.99)] for the richest.

Table 4 Regression coefficients (Reg. Coef.) and odds ratios (OR) with 95% confidence intervals (95% CI) of explanatory variables for the occurrence of hypertension obtained from logistic regression model

Characteristics	Model I OR (95% CI)	Model II OR (95% CI)	Model III OR (95% CI)
Height category	1.00	1.00	1.00
Q1: ≤1.51 (Ref)			
Q2: (1.51-1.583)	0.59 (0.50, 0.70)***	0.89 (0.72, 1.08)	0.88 (0.72, 1.08)
Q3: (1.583-1.637)	0.39 (0.33, 0.47)***	0.71 (0.55, 0.92)**	0.69 (0.53, 0.90)***
Q4: ≥1.673	0.43 (0.36, 0.52)***	0.74 (0.57, 0.97)**	0.72 (0.55, 0.95)**
Gender	Male (Ref) 1.00	Female 0.44 (0.36, 0.54)***	Male 0.45 (0.36, 0.56)***
Education level	No education (Ref) 1.00		1.00
	Primary 0.90 (0.76, 1.07)	0.87 (0.73, 1.04)	
	Secondary 0.96 (0.78, 1.19)	0.92 (0.75, 1.15)	
	Higher 1.26 (0.96, 1.65)*	1.14 (0.87, 1.50)	
Wealth index	Poorest 0.77 (0.61, 0.97)**	0.78 (0.62, 0.99)**	
	Poorer 0.84 (0.67, 1.05)	0.86 (0.68, 1.08)	
	Middle (Ref) 1.00		1.00
	Richer 1.19 (0.97, 1.47)	1.14 (0.92, 1.41)	
	Richest 1.63 (1.3, 2.04)***	1.5 (1.19, 1.9)***	
Place of residence	Rural (Ref) 1.00		1.00
	Urban 0.92 (0.79, 1.08)	0.94 (0.80, 1.11)	
Division	Dhaka (Ref) 1.00		1.00
	Barisal 0.82 (0.63, 1.06)	0.84 (0.65, 1.1)	
	Chittagong 0.67 (0.52, 0.85)***	0.67 (0.52, 0.86)***	
	Khulna 1.44 (1.15, 1.79)***	1.45 (1.16, 1.81)***	
	Rajshahi 0.97 (0.77, 1.24)	0.98 (0.77, 1.26)	
	Rangpur 1.45 (1.15, 1.82)***	1.48 (1.73, 1.87)***	
	Shylet 0.71 (0.55, 0.92)	0.73 (0.56, 0.95)**	
BMI category	Thin 0.72 (0.61, 0.85)***	1.33 (1.1, 1.63)***	
	Normal (Ref) 1.00		
	Overweight	1.00	

Notes.

***p value < 0.001, **p value < 0.05, *p value < 0.10.
0.97]) and 1.63 [95% CI: (1.30, 2.04)] for the poorest and richest groups, respectively. Like in the case of diabetes, place of residence of respondent is found to have no significant effect on the hypertension. Individuals from Rangpur and Khulna divisions are more prone to the hypertension compared to individuals from other divisions. In Model III, effect of BMI is examined controlling demographic variables as well as height of individuals. The pattern of effects of demographic variables in Model III is same as the pattern found in Model II. There exists a positive linear relationship between the levels of BMI and occurrence of hypertension. Thin is less likely [OR: 0.72; 95% CI: (0.61, 0.85)] and overweight is more likely to have hypertension compared to the individual with normal weight.

Discussion and conclusions
The aim of this study is to find out the relationship between height of respondent and the occurrence of diabetes and hypertension. For this purpose, we conduct, first, bivariate analysis and then regression analysis by fitting three different logistic regression models. In Model I, only the quartiles of height on individual is considered to examine the unadjusted effect of height on diabetes and hypertension. Effect of height is also examined in Model II by controlling demographic variables and in Model III by controlling demographic and clinical variables. From both bivariate analysis and all three logistic regression models, it is found that occurrence of diabetes and hypertension is inversely related with the height of participants and this association is statistically significant. That is, chance of developing diabetes and hypertension decreases with the increase of height of participant.

It is not clear how height is inversely related with the occurrence of diabetes. One of explanations of this inverse relation is that taller individuals have more muscle mass and muscle is the major tissue involved in uptake of glucose, against the fixed glucose load of 75 grams [7]. The dilution effect of total body water may contribute in establishing the results [7]. The possible explanations for the inverse relationship between height and the occurrence of hypertension were discussed by Lawlor et al. [24]. These are: genetic factors determining growth patterns may be associated with hypertension [30]; coronary artery vessel diameter increases with height and vessel with smaller diameters may result in clinical disease outcome with relatively smaller amounts of atherosclerosis.

Besides height of respondents, regression analyses of large databases have shown that education level, wealth index, place of residence, division, and body mass index are associated with the occurrence of diabetes. Along with the factors associated with diabetes, gender is also associated with the occurrence of hypertension.

One of the strengths of this study is the use of a nationwide large sample with comprehensive information on the occurrence of diabetes and hypertension, anthropometric and demographic variables. Anthropometric variables are collected by using direct measurement rather than self-reporting. This data set is collected through a reliable and uniform procedure, which minimize the measurement error and bias. The response rates of this study are high.

The main limitation of this paper is to use a cross-sectional study and hence it may produce selection and information bias. Moreover, from this study, it may not be possible to assess the changes in the association between height and occurrence of diabetes as well as hypertension over the time. In our It suggests that shorter individuals may be at higher risk of metabolic disturbance [31]. Controlling factors which may have an influence on height could therefore result in a reduction of NCDs such as diabetes and hypertension. study, we only consider individuals of age 35 years or more since in 2011 BDHS study, men and women of age 35 or older were only considered to provide the biomarker information. Therefore, results of this study may not be extended to the other age groups. Though the variables on life styles such as diet, physical exercise, and smoking are the potential confounders for the diabetes and hypertension, these were not included in the analysis since these are not available in the 2011 BDHS data.

The result of this study reveals the fact that there exists an inverse relationship between height and the occurrence of diabetes as well as hypertension. That is, the shorter height is associated with a higher occurrence of diabetes as well as hypertension. The height may be controlled by genetic and non-genetic (early-life and childhood) factors [32-34]. Naturally, if most of the members of a family are of short stature, the next generation is likely to have short stature. But, genetic factors are entirely beyond the control of human. The non-genetic factors which may affect the height include: maternal smoking during pregnancy, prenatal and postnatal, ill health during childhood and adolescence, birth weight, mental condition during childhood and adolescence. Non-genetic factors can be controlled to some extent by following a healthy life style from the childhood.

In future studies, a cohort should be followed with longitudinal data collected at an early age prior to development of illness to establish the relationship between the stature of an individual and occurrence of non-communicable disease. One may also take the genetic and non-genetic factors of stature into account for further analysis.

Abbreviations
BDHS: Bangladesh Demographic and Health Survey; FPG: Fasting plasma glucose; NCD: Non-communicable disease; WHO: World Health Organization.
Competing interests
The authors declare that they have no competing interest.

Authors’ contribution
EH had the original idea for the study. EH and MRK participated in the statistical analysis and helped to draft the manuscript. WB handled the supervision and prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgement
We would like to thank National Institute of Population Research and Training (NIPORT), Bangladesh for allowing us to use BDHS, 2011 data for our analysis. We also thank reviewers and editors for their valuable comments and suggestions that led to significant improvements in the presentation.

Received: 2 March 2014 Accepted: 16 September 2014
Published: 26 September 2014

References
1. World Health Organization (WHO, 2010): Global Status Report on Non-Communicable Diseases. Geneva: WHO, 2010.
2. Bangladesh Demographic Health Survey Report (BDHS), 2011.
3. World Health Organization (WHO, 2003): World Health Report 2002: Reducing Risks, Promoting Healthy Life. Geneva: WHO, 2003.
4. Centers for Disease Control and Prevention (CDC) and National Center for Chronic Disease Prevention and Health Promotion: The Power of Prevention: Chronic Disease: The Public Health Challenge of the 21st Century. Atlanta, GA: CDC, 2009. http://www.cdc.gov/chronicdisease/pdf/2009-Power-of-Prevention.pdf.
5. Zaman MM, Ahmed J, Chowdhury SR, Numan SM, Parvin K, Islam MS: Prevalence of Ischemic Heart Disease in a Rural Population of Bangladesh. Indian Heart J 2007, 59:239–41.
6. Karar ZA, Alam N, Streatfield PK: Epidemiological Transition in Rural Bangladesh, 1986–2006. North America: Glob Health Action; 2009. http://www.globalhealthaction.net/index.php/gha/article/view/1904.
7. Sircree RA, Zimmert PZ, Dunstan DW, Cameron AJ, Wel-born TA, Shaw JE: Differences in height explain gender differences in the response to the oral glucose tolerance test - the AusDab study. Diabet Med 2008, 25:296–302.
8. Snijder MB, Dekker JM, Visser M, Boutier LM, Staheuwer CD, Kostense PJ, Yudkin JS, Heine RJ, Nigges G, Seidell JC: Association of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn study. Am J Clin Nutr 2003, 77:1192–7.
9. Bozorgmamah E, Hadaiegh F, Zabetan A, Azizi F: Impact of hip circumference and height on incident diabetes: result from 6-year follow-up in the Tehran lipid and glucose study. Diabet Med 2011, 28:1330–6.
10. Wang SL, Pan WH, Hwu CM, Ho LT, Lo CH, Lin SL, Jong YS: Incidence of NIDDM and the effects of gender, obesity, and hyperinsulinemia in Taiwan. Diabetologia 1997, 40:1431–8.
11. Njotstad I, Amesen E, Lund-Larsen PG: Sex-differences in risk factors for clinical diabetes mellitus in a general population: a 12-years follow-up of the Finnmark Study. Am J Epidemiol 1998, 147:49–58.
12. Lorencz C, Williams K, Stem MP, Haffner SM: Height, ethnicity and the incidence of diabetes: the San Antonio Heart Study. Metabolism 2009, 58:1530–5.
13. Schulze MB, Heideman C, Schienkiewitz A, Bergmann MM, Hoffmann K, Boeing H: Comparison of anthropometric characteristics in predicting the incidence of type 2 diabetes in the EPIC-Potsdam Study. Diabetes Care 2006, 29:1921–3.
14. Olatunbosun ST, Bella AF: Relationship between height, glucose intolerance and hypertension in an urban African black adult population: A case for the “thifty phenotype” hypothesis? J Natl Med Assoc 2000, 92:265–8.
15. Christakis GT, Weisel RD, Buth KJ, Flemes SE, Rao V, Panagiotopoulous KP, Ivanov J, Goldman DS, Mathew KS: Is body size the cause for poor outcomes of coronary artery bypass operations in women? J Thorac Cardiovasc Surg 1995, 110:1344–56. discussion 1356–8.
16. Krah AD, Manfreda J, Tate RB, Mathewson FAL, Cuddy TE: Evidence that height is an independent risk factor for coronary artery disease (the Manitoba Follow-Up Study). Am J Cardiol 1994, 74:398–9.
17. Ness AR, Gunnell D, Hughes J, Elwood PC, Smith GD, Burr ML: Height, body mass index, and survival in men with coronary disease: follow up of the diet and reinfarction trial (DART). J Epidemiol Community Health 2002, 56:118–9.
18. Rosenberg CR, Shore RE, Pastemack BS: Height and mortality after myocardial infarction. J Community Health 1995, 20:335–45.
19. Paajanen AT, Oksala NK, Kuokkanen PJ, Karhunen PJ: Short stature is associated with coronary heart disease: a systematic review of the literature and a meta-analysis, Eur Heart J 2010, 31:1802–9.
20. Wang N, Zhang X, Xianget YB, Yang G, Li HL, Gao J, Cai H, Gao YT, Zheng W, Shu XO: Association of adult height and its components with mortality: a report from cohort studies of 13500 Chinese women and men. Int J Epidemiol 2011, 40:715–26.
21. Davey S, Greenwood R, Gunnell D, Sweetnam P, Yarnell J, Elwood P: Leg length, insulin resistance, and coronary heart disease risk: the Caerphilly Study. J Epidemiol Community Health 2001, 55:867–72.
22. Gunnell D, Whitley E, Upton M, McConnellie A, Davey S, Watt G: Associations of height, leg length, and lung function with cardiovascular risk factors in the Midspan Family Study. J Epidemiol Community Health 2003, 57:141–6.
23. Sichieri R, Siqueira KS, Pereira RA, Ascherio A: Short stature and hypertension in the city of Rio de Janeiro, Brazil, Public Health Nutr 2000, 3:77–82.
24. Lawler OA, Taylor M, Smith GD, Gunnell D, Ebrahim S: Associations of components of adult height with coronary heart disease in postmenopausal women: the British Women’s Heart and Health Study. Heart 2004, 90:745–9.
25. Schooling CM, Jang C, Lamm TH, Thomas GN, Heys M, Bmbs, Lao X, Zhang W, Adalp P, Cheng KN, Leung GM: Height, its components, and cardiovascular risk among older Chinese: a cross-sectional analysis of the Guangzhou Biobank Cohort Study. Am J Public Health 2007, 97:1834–1. doi:10.2105/AJPH.2006.089096.
26. World Health Organization (WHO, 2006): Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation. Geneva: WHO, 2006.
27. American Heart Association (AHA, 2003): http://www.heart.org/HEARTORG/.
28. Stockwell DH, Madhavan S, Cohen H, Gibson G, Alderman MH: The determinants of hypertension awareness, treatment, and control in an insured population. Am J Public Health 1994, 84:768–74.
29. Hosmer DW, Lemeshow S: Applied Logistic Regression. John Wiley & Sons Inc, 2000.
30. Palmer JR, Rosenberg L, Shapiro S: Stature and the risk of myocardial infarction in women. Am J Epidemiol 1990, 132:7–32.
31. Janghorbani M, Amini M: Association of hip circumference and height with incidence of type 2 diabetes: the isfahan Diabetes Prevention Study. Acta Diabetol 2012, 49(Suppl):107–14.
32. Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, Altshuler D, Parker A, Rioux JD, Platko J, Gaudet D, Hudson TJ, Groop LC, Landier ES, Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, Altschuler D, Parker A, Rioux JD, Platko J, Gaudet D, Hudson TJ, Groop LC, Landier ES: Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet 2001, 69:106–16.
33. Park HS, Yim KS, Cho ST: Gender differences in familial aggregation of obesity-related phenotypes and dietary intake pattern in Korean families. Ann Epidemiol 2004, 14:486–91.
34. Li J, Ng MC, So WY, Chiu CK, Ozaki R, Tong PC, Cockram CS, Chan JC: Phenotype and genetic clustering of diabetes and metabolic syndrome in Chinese families with type 2 diabetes mellitus. Diabetes Metab Res Rev 2006, 22:46–52.

Cite this article as: Hoque et al.: "Impact of stature on non-communicable diseases: evidence based on Bangladesh Demographic and Health Survey, 2011 data". BMC Public Health 2014 14:1007.