between Xpert SA and the culture results. Methicillin resistance was determined using conventional methods (susceptibility testing or detection of altered penicillin binding protein).

Results. When compared with culture for the identification of SA (n = 481), there was an agreement of 95.0% with specificity and sensitivity being 95.6% and 94.8%, respectively. Among those culture-confirmed and Xpert SA positive samples (n = 131), concordance between Xpert SA and conventional methods for detection of methicillin resistance was 97.0% with sensitivity and specificity being 100% and 96.3%, respectively. Four culture-confirmed methicillin-susceptible SA (MSSA) were identified as MRSA by Xpert SA. Among 504 nasal specimens, 23 (4.6%) samples had invalid or instrument failure results. Nasal swabs collected from pediatric patients (≤2-year-old) had a higher invalid/instrument failure rate (5.0%) than those from adults (0%) (P < 0.001).

Conclusion. Xpert SA Nasal Complete assay provides a rapid and sensitive method to detect and differentiate between MSSA and MRSA colonization. The higher invalid rate in pediatric patients and misidentification of MSSA as MRSA by Xpert SA warrant the confirmation by bacterial culture and conventional susceptibility test.

Disclosures. A. Leber, Nationwide Children’s Hospital: Research Contractor. Research support.

2005. T-SPOT. TB Test for Latent Tuberculosis Infection Diagnosis and Treatment Guidance in Thai Healthcare Professionals
Thana Khawcharoenporn, MD, MSc; Waralee Aksornchindarat, BSc; Napat Yodjini, BSc; Seep Suansoungngam, BSc; Jiraporn Ruadameksin, BSc; Supapree Bunchoo, BSc; Wiphat Klayut, BSc; Somchai Sangkitporn, MD1 and Benjamaw Phetsukun, PhD2

1Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
2Thammasat University, Pathumthani, Thailand, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand

Session: 228. Diagnostics: Bacteria and Mycobacteria
Saturday, October 6, 2018: 12:30 PM

Background. Data on efficacy of T-SPOT. TB Test (T-SPOT) in diagnosing latent tuberculosis infection (LTBI) and guiding isoniazid preventive therapy (IPT) among healthcare professionals (HCP) in tuberculosis (TB)-endemic settings are limited.

Methods. A prospective study was conducted among Thai HCP undergoing T-SPOT in June 2016 (initial screening) and June 2017 (follow-up). Nine-month isoniazid preventive therapy (IPT) was offered among the HCP with positive T-SPOT. The incidence of TB and the rates of conversion and reversion of T-SPOT were evaluated during the 1-year follow-up period (June 2016 to June 2017).

Results. A total of 140 HCP underwent initial T-SPOT; the median age was 27 years (IQR 25–31 years), 89% were female and 23 (16%) were T-SPOT-positive. Eighty-nine percent of these had both initial and follow-up T-SPOTs. Among the 89 HCP, the initial and follow-up rates of T-SPOT positivity were 19% (N = 17) and 24% (N = 21), respectively. The conversion and reversion rates were 10% (N = 9) and 6% (N = 5), respectively. All of the nine HCP (100%) with T-SPOT conversion reported significant contacts with patients who had active pulmonary TB without using appropriate personal protection equipment. During the 1-year follow-up period, incidence of TB was significantly higher among HCP with T-SPOT conversion compared with HCP with positive T-SPOT. HCP with T-SPOT reversion and HCP with persistent negative T-SPOT [22 vs. 8 vs. 0 vs. 0 cases/100 person-years; P = 0.001]. Of the 17 HCP with positive initial T-SPOT (84%) completely completed IPT. The incidence of TB was significantly lower and the T-SPOT reversion rate was significantly higher among HCP completing IPT compared with HCP with persistent positive T-SPOT, HCP with T-SPOT declining or not completing IPT (0 vs. 11 cases/100 person-years; P = 0.001 and 63% vs. 0.009, respectively).

Conclusion. T-SPOT could be used for diagnosing LTBI, guiding IPT and identifying HCP with subsequent risk for TB. The serial T-SPOT may be used for evaluating IPT efficacy.

Disclosures. All authors: No reported disclosures.

2006. Implementation of the T2 Biosystems T2Bacteria Panel in a Level-One Trauma Center, Safety Net Hospital
Cailtin Robinson, BS; Rebecca Jackson, MS; Angela Sualia, MD, PhD1,2 and Mitchell Cohen, MD, PhD1; Surgery, Denver Health and Hospital Authority, Denver, Colorado; 2Public Health and Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado

Session: 228. Diagnostics: Bacteria and Mycobacteria
Saturday, October 6, 2018: 12:30 PM

Background. Rapid detection and identification of sepsis causing pathogens are critical for optimizing antimicrobial therapy to improve patient survival and reduce healthcare costs. The T2Bacteria Panel RUO is a molecular diagnostic allowing detection of Gram-negative Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumaniii and Gram-positive Staphylococcus aureus and Enterococcus faecium within a few hours. The purpose of our study was to determine the feasibility and efficacy of the T2Bacterial Panel RUO in an Emergency Medicine (ED) and Surgical Intensive Care Unit (SICU) setting.

Methods. An IRB-approved, prospective, observational study was implemented at a Safety-Net, Level One Trauma Center in Denver, Colorado. Patients were enrolled who had an order for a blood draw from the ED or SICU. Patients who had blood drawn for cultures had a concurrent draw for testing with a T2Bacteria Panel RUO.

Results. Sixty-six patients were included in the present interim analysis. Mean patient age was 51 years old (19–84), 36% were female, 86% Caucasian (34% Hispanic/Latino), and 74% of patients were enrolled upon presentation to the ED, 13% from the SICU, and 15% from the wards. 90% of blood sampling (culture and T2Bacteria) was done from peripheral stick while 7% were from the initial stick of a peripheral IV and 3% were obtained from an anatomic site. 85% of blood cultures were negative. Of the 56 patients with negative blood culture, 53 had concordant negative T2Bacteria results, providing a specificity of 94.6%. 10 patients had positive blood cultures (15%) for T2Bacteria Panel RUO targets. Interestingly, only five of these (50%) had concordant positive T2Bacteria testing. Examining the discordant samples, all (5) blood culture positive, T2Bacteria negative were found to have clinically false-positive blood cultures. T2Bacteria positive samples were distributed as follows: two E.coli, one S. aureus, one K. pneumoniae, and one P. aeruginosa. No detections were made for E. fackomii or A. baumanii.

Conclusion. In this interim analysis, T2Bacteria Panel RUO provides feasible rapid diagnostics for ED and surgical ICU settings with a high specificity and much shorter time to result when compared with gold standard blood cultures.

Disclosures. C. Robinson, T2 Biosystems: Research Coordinator for funded study from T2 Biosystems, Research support. R. Jackson, T2 Biosystems: Research Assistant for funded study from T2 Biosystems, Research support. M. Cohen, T2 Biosystems: PI on study being funded by T2 Biosystems, not paying for any part of salary. Research support.