Dietary Preference and Digestive Enzyme Activities as Indicators of Trophic Resource Utilization by Six Species of Crab

DANIELLE JOHNSTON* AND JOEL FREEMAN*

School of Aquaculture, Tasmanian Aquaculture and Fisheries Institute, University of Tasmania, Launceston, Tasmania, Australia 7250

Abstract. The digestive physiology and stomach contents of six crab species from a variety of habitats were investigated to provide an indication of their digestive capability and dietary preferences. Stomach contents varied between species, but the key enzymes present were generally consistent with the types of dietary material being ingested. Nectocarcinus integrirostris (red rock crab) consumed large quantities of seagrass and had high cellulase activity (0.02 ± 0.004 units mg⁻¹) to digest the constituent cellulose. Petrolisthes elongatus (porcelain crab) ingested brown and green phytoplankton and algae and had considerable laminarinase (0.35 ± 0.08 units mg⁻¹) and β-glucosidase (0.025 ± 0.005 units mg⁻¹) activities to digest the laminarin in its diet. Leptograpsus variegatus (omnivorous swift-footed shore crab) had high activities of protease (1.2 ± 0.02 units mg⁻¹), α-glucosidase, and α-amylase and appeared well equipped to utilize both dietary protein and carbohydrate. Stomach contents in Nectocarcinus tuberculatus (velvet crab) and Carcinus maenas (green crab) also suggest that these species are omnivorous. N. tuberculatus had high cellulase and chitinase for digesting the cellulose in plants and the chitin in invertebrate shells respectively. C. maenas had intermediate digestive enzyme levels and may employ more of a generalist feeding strategy than other species. Plagusia chaubris (speedy crab) is carnivorous, consuming encrusting bryozoans, hydroids, crustaceans, and fish. It has high protease activity, particularly trypsin (0.73 ± 0.12 units mg⁻¹), to digest the protein in its animal prey. Each species of crab studied had a complex suite of digestive enzymes, the relative activities of which reflected individual and very different species-specific dietary niches.

Introduction

Crabs live in a variety of habitats with varying distributions and abundance of dietary items, so stomach contents typically include a diverse range of prey (Paul, 1981; Williams, 1982; Wear and Haddon, 1987). The variation in stomach contents between species from different habitats may reflect an opportunistic or versatile feeding nature where food items are consumed in proportion to their abundance in the surrounding habitat (Choy, 1986; Wolcott and Nancy, 1992), or it may indicate that crabs actively select habitat based on the presence of suitable food. Although most studies on the feeding habits of decapod crustaceans are based on the observation of stomach contents, stomach contents do not provide any information on dietary preference or the suitability of the diet for maintaining the animal. Similarly, stomach contents cannot help discriminate between generalist and targeted feeding strategies. Digestive enzymes however, may be a complementary tool useful for determining which dietary components are most effectively metabolized (Bréthes et al., 1994). By understanding the digestion and assimilation of specific dietary components, we could identify the type of prey that the animals prefer and those that they are best equipped to digest. For example, carnivorous species exhibit a wide range and high activity of proteolytic enzymes to digest their high-protein diet, whereas herbivores and omnivores that ingest large amounts of carbohydrates possess highly active carbohydrases. Previous studies on the enzymatic system of decapod crusta-
ceans have demonstrated this link between diet composition and the presence of digestive enzymes (Kristensen, 1972; Lee et al., 1984; Johnston and Yellowles, 1998; Hidalgo et al., 1999; Figueiredo et al., 2001). The measurement of digestive enzyme synthesis is a tool commonly used to study trophic relationships in many invertebrate groups (McClintock et al., 1991; Bréthes et al., 1994). However, these studies have typically been limited to a few enzymes within one species (McClintock et al., 1991; Bréthes et al., 1994; Johnston and Yellowles, 1998; Figueiredo et al., 2001) or just one enzyme in a number of species (Galgani et al., 1984). Our knowledge of crab digestive enzyme physiology is also limited. The few enzymes that have been documented include trypsin and carboxypeptidases A and B in Callinectes sapidus (blue crab) (Dendinger, 1987; Dendinger and O’Connor, 1990); α-amylase in Carcinus maenas (green crab) (Blandamer and Beechy, 1964); and α-glucosidase in Cancer borealis (jonah crab), Cancer irroratus (rock crab) (Brun and Wojtowicz, 1976), and C. sapidus (blue crab) (McClintock et al., 1991). From a dietary perspective, Norman and Jones (1990) used activity of laminarinase as an indicator of the ability of Liocarcinus puber (velvet swimming crab) to utilize the brown alga frequently found in its stomach. Bréthes et al. (1994) used laminarinase and other enzymes as an index of trophic resource utilization by Chionoecetes opilio (snow crab).

The present study investigates stomach contents and digestive enzyme activities in six species of crab that inhabit a variety of habitats and specialized dietary niches. We examined the following crabs: Nectocarcinus integrifrons (Lateerreille) (red rock crab), Petrolisthes elongatus (Milne Edwards) (porcelain crab), Leptograpsus variegatus (Fabricius) (swift-footed shore crab), Carcinus maenas (Linnaeus) (green crab), Plagusia chabrus (Linnaeus) (speedy crab), and Nectocarcinus tuberculatus (Milne Edwards) (velvet crab). The objectives of this study were (1) to determine dietary preferences for each of the six crab species, using stomach content analysis, (2) to quantify the activities of a range of digestive proteases and carbohydrases in each crab species to determine how various food sources available to the crabs are utilized, and (3) to use dietary preferences and substrate utilization to help identify the position of the crabs in the trophic network of the coastal environment.

Materials and Methods

Collection

Crabs were collected from a number of sites in Tasmania by hand or by trapping. Collection was standardized to adults of each species during their periods of active feeding. When baited traps were used, the bait was positioned such that crabs could not ingest it and thereby bias the analysis of stomach contents. Nectocarcinus tuberculatus was collected at night by scuba at Recherche Bay (43°0′S, 147°24′E) or in baited traps set overnight at Georges Bay (41°19′S, 148°15′E). Petrolisthes elongatus and Leptograpsus variegatus were collected by hand from the intertidal zone at Little Beach (41°31′S, 148°16′E) and in the Derwent River (42°53′S, 147°19′E) respectively. Carcinus maenas and Nectocarcinus integrifrons were collected in baited traps set overnight at Georges Bay (41°19′S, 148°15′E). Plagusia chabrus was collected at night from the research vessel RV Challenger, using baited traps at Great Oyster Bay (42°15′S, 148°16′E). Following collection, each crab was placed on ice for 10–20 min, after which its carapace, digestive gland, and stomach were removed. Digestive glands were frozen in liquid nitrogen and stored at −20 °C; stomachs were fixed in 10% formalin in 35 ppt seawater.

Stomach content verification

Each stomach was visually assessed for fullness (1 = empty, 2 = 25%, 3 = 50%, 4 = 75%, 5 = 100% full), and those with a score of 3 to 5 were dissected. The contents were examined using dissecting and compound microscopes and identified to the lowest possible taxonomic grouping by using appropriate keys. The stomachs of specimens of L. variegatus were not collected in this study, preventing a stomach content analysis.

Enzyme analysis

Individual digestive glands were thawed and homogenized for 5 min in chilled 100 mM Tris, 20 mM NaCl buffer, pH 7.0, using an UltraTurrax homogenizer. The homogenate was centrifuged at 968 g, and the supernatant containing digestive gland extract was transferred into microfuge tubes and stored at −20 °C.

Detailed procedures for enzyme assays are discussed elsewhere (Johnston, 2003). Briefly, total protease activity was measured using the casein hydrolysis method (Kunitz, 1947) as modified by Walter (1984) using tyrosine as the standard. Trypsin activity was measured using N-α-benzoylarginine-β-nitroanilide (BAPNA) as substrate using the molar absorption coefficient, ε, of 9300 M−1 · cm−1 for β-nitroaniline (Stone et al., 1991). β-Amylase activity was determined using the method of Briesiot and Capuzzo (1990), modified after Bernfeld (1955), α-Glucosidase, β-glucosidase, and chitinase activities were measured using the substrates β-nitrophenyl α-D-glucopyranoside, β-nitrophenyl β-D-glucopyranoside, and β-nitrophenol N-acetyl β-D-glucosaminide, respectively (Erlanger et al., 1961). Cellulase activity was measured using the substrate sodium carboxymethyl cellulose (CM-cellulose). Laminarinase activity was measured using laminarin as the substrate.

We defined one enzyme unit (U) as the amount of en-
zyme that catalyzed the release of 1 μmol of product per minute, which we calculated using the appropriate molar extinction coefficient (ε) or a standard curve. Specific activity was defined as enzyme activity (U) per milligram of digestive gland protein (U mg protein⁻¹). Protein concentration was determined using the method of Bradford (1977), using bovine serum albumin as the standard. Enzyme assays were performed at 30 °C and the absorbances read using a TECAN Spectro Rainbow Thermo microplate reader (trypsin, α-amylase, α-glucosidase, β-glucosidase, chitinase) or a UNICAM 8625 UV/visible spectrophotometer (total protease, cellulase, laminarinase). Data points are the mean of duplicate assays accounting for the appropriate blanks, and each assay reports the mean ± standard error of five replicate crabs for each species, with the exception of N. tuberculosus, for which 10 individuals were used.

Statistical analysis

Based on the activities for each enzyme within a species, differences between species were analyzed using a multivariate analysis of variance (MANOVA). Unlike univariate analyses, this analysis allows for the simultaneous comparison of species means for each enzyme while maintaining the chosen magnitude of type 1 error (P = 0.05) as well as considering the correlation between enzymes within a species. Following MANOVA, significant differences were explored using a canonical discriminant analysis (CDA). Each species was plotted in the reduced multivariate space, in which the new axes (CDA 1, CDA 2, and CDA 3) explain a proportion of the total variability in the data. Group centroids were plotted using the unstandardized canonical discriminant functions evaluated at group means, and each circle indicates the 95% confidence ellipses. Superimposed on this plot is the association between the new axes and the enzymes that were measured. This is displayed as a vector diagram in which the direction and length of the vector is a measure of the association between the enzyme and the axes. Those groups in which ellipsoids are not overlapping signify differences between species. The correlation between the position of each species relative to the vector diagram determines the enzyme or enzymes responsible for its separation.

Results

Stomach contents

Stomachs of all crabs had a large proportion of unidentifiable material that was either semi-digested or detritivorous in nature. Stomachs of Nectocarcinus integris and Petrolisthes elongatus contained no animal material. N. integrifrons had large quantities of vascular plant material removed from either living or recently detached plants, whereas the stomachs of P. elongatus consisted largely of brown and green phytoplankton and larger algal pieces (Table 1). Stomachs of Carcinus maenas and Nectocarcinus tuberculosus had both plant and animal material (Table 1). Stomachs completely full of gastropod shells and bivalves were common in both crab species. Plant material was less common and consisted of small pieces of vascular material. Stomachs of Plagusia chaubris had very little identifiable

Species	Stomach content items	Literature diet	Reference	Classification
Nectocarcinus integris	Animal parts	Feeds predominantly on the seagrass *Posidonia oceanica*	Khunpp & Nichols (1993)	Herbivore
Petrolisthes elongatus	Brown and green phytoplankton and algal pieces	Filter feeding — phytoplankton (e.g., diatoms); Deposit feeding — detritus	Achtur & Pedrotti (1999); Kropp (1981)	Herbivore
Leptograpsus variegatus	No stomachs collected	Limpets and barnacles; green and red algae	Skilleter & Anderson (1986); Griffin (1971)	Omnivore
Carcinus maenas	Molluscs	Bivalves, crustaceans, gastropods, and algae	Elner (1981)	Omnivore
Nectocarcinus tuberculosus	Molluscs, unidentifiable animal parts	—	—	Omnivore
Plagusia chaubris	Unidentifiable animal parts and small crustaceans	Encrusting animals — bryozoa, sponges, and hydroids	Edgar (2000)	Carnivore

Table 1: Gut content items that were identified in the stomach of individual crabs with a stomach fullness greater than 3 (≥50% full), and the corresponding diet from the literature.

![Vector diagram](vector_diagram.png)
plant matter and contained fragments of animal material, possibly small encrusting species of bryozoans and hydrodroids, as well as exoskeletons of small crustaceans and some fish parts (Table 1).

Digestive enzyme activity

Proteases. The highest protease activity was displayed by *Leptograpsus variegatus* (1.19 ± 0.02 units mg⁻¹) and *P. chabrus* (0.99 ± 0.05 units mg⁻¹). Lowest activity was measured in *N. integrifons* (0.34 ± 0.05 units mg⁻¹), *N. tuberculosus* (0.39 ± 0.02 units mg⁻¹), and *C. maenas* (0.46 ± 0.02 units mg⁻¹), with less than half the activity of *L. variegatus* and *P. chabrus* (Fig. 1A). The highest trypsin activity was exhibited by *P. chabrus* (0.73 ± 0.12 units mg⁻¹) and *L. variegatus* (0.46 ± 0.03 units mg⁻¹) and the lowest activity by *N. integrifons* (0.14 ± 0.03 units mg⁻¹) (Fig. 1B).

Carbohydrases. Carbohydrase activity was present in all crabs, with hydrolysis of both α- and β-linked substrates recorded in all species. α-Amylase activity was about three times higher in *Petrolisthes elongatus* (0.29 ± 0.04 units mg⁻¹) than in *N. tuberculosus* (0.09 ± 0.02 units mg⁻¹) (Fig. 2A). α-Glucosidase specific activity was highest in *L. variegatus* (0.0022 ± 0.0002 units mg⁻¹) and was about twice the level recorded for all other species. *Petrolisthes elongatus* had negligible α-glucosidase activity (Fig. 2B).

β-Glucosidase activity was highest in *P. elongatus* (0.025 ± 0.005 units mg⁻¹), about three times greater than in *L. variegatus* (0.007 ± 0.0008 units mg⁻¹) (Fig. 3A). Although variable, laminarinase activity was highest in *P. elongatus* (0.35 ± 0.08 units mg⁻¹), and *L. variegatus* also had substantial activity (0.18 ± 0.02 units mg⁻¹) (Fig. 3B). The other four species had comparatively lower activity, ranging between 0.058 ± 0.01 (N. tuberculosus) and 0.016 ± 0.003 (C. maenas) units mg⁻¹. Cellulase activity was highest for *N. integrifons* (0.019 ± 0.004 units mg⁻¹) and lowest in *C. maenas* (0.0014 ± 0.0006 units mg⁻¹) and *Plagusia chabrus* (0.0019 ± 0.0014 units mg⁻¹) (Fig. 4A). Chitinase activity was similar for most species, ranging between 0.023 ± 0.003 (P. chabrus) and 0.041 ± 0.005 (L. variegatus) units mg⁻¹. The exception was *Petrolisthes elongatus*, which had a substantially lower chitinase activity (0.006 ± 0.001 units mg⁻¹) (Fig. 4B).

Relationship between enzyme complement and crab species

Significant differences were found between crab species when the specific activities of all enzymes were compared using MANOVA (Pillai’s Trace = 3.347; F(40,130) = 6.581, P < 0.001). The CDA explained 72.2% of the variation on the first and second axes (CDA 1 and CDA 2) and 39.6% on the second and third axes (CDA 2 and CDA 3) (Figs. 5 and 6). The greatest difference among the species was along the first axis, CDA 1 (x axis), which explained 51% of the variation (Fig. 5). This difference was largely due to separation between the species on the basis of the high activity of laminarinase and β-glucosidase in *P. elongatus*, and the high activity of α-glucosidase displayed by *L. variegatus*. The second axis, CDA 2 (y axis) also showed differences between the species and accounted for 21.2% of variation, with *Plagusia chabrus* being separated from other species by its high activity of trypsin and total protease, while *N. integrifons* and *N. tuberculosus* were separated by their activity of cellulase and chitinase (Fig. 5). The third axis (CDA 3) explained 18.4% of the variation and, when plotted with CDA 2, shows a separation between *N. integrifons* and *N. tuberculosus* (Fig. 6). These two species are still separated along CDA 2 by their cellulase and chitinase activity, but are now separated from each other along CDA 3 by the higher activity of cellulase in *N. integrifons* and the higher activity of chitinase displayed by *L. variegatus*.
trypsin activity of N. tuberculosus. The C. maenas lies central on both plots, only being separated in Figure 6 by its relative activity of α-glucosidase.

Discussion

We investigated the dietary preference of six species of crab on the basis of their stomach contents and used analysis of digestive enzymes to determine which dietary components are most likely being assimilated. Digestive enzyme activities are an effective tool for identifying particular components of an animal’s diet. High proteolytic activity reflects a diet high in protein, high carbohydrase activity reflects a diet high in starch or cellulose, and high lipase activities reflect a diet high in fat (Lee et al., 1984; Johnston and Yellowlees, 1998; Johnston, 2003). Multivariate analyses (MANOVA) simultaneously compared the relative activities of proteases and carbohydrases within each species, as well as individual enzymes between species, and separated the six crab species into separate dietary preferences. For each species, one enzyme (i.e., laminarinase, β-glucosidase, cellulase, trypsin, total protease, and α-glucosidase) was responsible for separating each species from the other five (Figs. 5, 6), suggesting that each species occupies a different dietary niche.

Plagusia chabrus (speedy crab)

Stomachs of P. chabrus contained fragments of animal material, possibly of small encrusting species of bryozoans and hydroids (see Edgar, 2000) (Table 1). *Plagusia chabrus* had very little identifiable plant matter within its stomach and appears to be almost totally carnivorous. However, red and coralline algae have previously been found in the stomach of this species (Griffin, 1971). This apparent discrepancy may be due to differences in the abundance and structure of potential prey communities (Paul, 1981; Haefner, 1990; Freire, 1996). Stomach contents of *P.
Figure 4. Specific activity of (A) β-glucosidase and (B) laminarinase measured from crude digestive gland extract of six crab species with different feeding habits. Values are mean (units mg$^{-1}$) ± S.E., where units are in μmol p-nitrophenol min$^{-1}$ for β-glucosidase and in μmol glucose min$^{-1}$ for laminarinase. Key to crab species: Int = Nectocarcinus integrifrons ($n = 5$), Por = Pelrolisthes elongatus ($n = 5$), Lep = Leptograpsus variegatus ($n = 5$), Velv = Nectocarcinus tuberculosus ($n = 10$), Eur = Carcinus maenas ($n = 5$), Flag = Plagusia chabrus ($n = 5$).

The greater abundance of these algae may make them a more attractive food source or more likely to be incidentally ingested.

Reflecting its carnivorous nature, P. chabrus displayed high protease and trypsin activity, and it was this high activity of protease and trypsin that separated P. chabrus from the other crab species in the MANOVA. P. chabrus had the highest trypsin activity encountered in any of the species studied. The trypsin activity was similar in value to that of the slipper lobster, Themis orientalis (0.54 units mg$^{-1}$), and the karuma prawn, Penaeus japonicus (0.73 units mg$^{-1}$), two species whose diets also contain considerable amounts of protein (Maugle, 1982; Johnston and Yellowlees, 1998) (Table 2).

The low plant content in the diet of P. chabrus is reflected by its low activity of cellulase, an enzyme that breaks down the cellulose in plants. The high α-amylase activity is likely to reflect the high glycogen content of animal prey consumed by P. chabrus. Similarly high amylase activity in the carnivorous American lobster Homarus americanus (1.5 units mg$^{-1}$) also reflects digestion of glycogen in animal prey (Wojtowicz and Brockerhoff, 1972; Table 2). However, α-amylase is also involved in the digestion of starch in plant tissue (see P. elongatus below), so the relationship between amylase activity and carnivory is not ubiquitous.

Leptograpsus variegatus (swift-footed shore crab)

Two comprehensive dietary studies of L. variegatus revealed a mixture of plant material (the green alga Ulva lactuca, the coralline alga Corallina officinalis, and the red algae Polysiphonia sp. and Ceramium sp.) and animal material (limpets and barnacles) within its stomach (Skilleter and Anderson, 1986; Griffin, 1971). These studies suggest that L. variegatus is an omnivore that actively scavenges in the intertidal zone for invertebrates and algae (Table 1). We found L. variegatus to have the highest protease activity of all species studied, an observation not immedi-
D. JOHNSTON AND J. FREEMAN

Consistent with a diet low in protein (seagrass is only 7% protein), protease and trypsin activities were high for all species evaluated at group means. Group means are central to the 95% confidence ellipses. In the bottom right corner of each graph is a vector diagram for the enzymes measured. The direction and length for each enzyme is an indication of the association between the enzyme and the axes and can be used to interpret differences among the species. Key to vector diagram: α-GLU = α-glucosidase, AMYL = α-amylase, β-GLU = β-glucosidase, CELL = cellulase, CHIT = chitinase, LAM = laminarinase, PROT = total protease, TRYP = trypsin.

Figure 6. Results of the canonical discriminant analysis are displayed for the second (CDA 2) and third (CDA 3) canonical discriminant functions evaluated at group means. Group means are central to the 95% confidence ellipses. In the bottom right corner of each graph is a vector diagram for the enzymes measured. The direction and length for each enzyme is an indication of the association between the enzyme and the axes and can be used to interpret differences among the species. Key to vector diagram: α-GLU = α-glucosidase, AMYL = α-amylase, β-GLU = β-glucosidase, CELL = cellulase, CHIT = chitinase, LAM = laminarinase, PROT = total protease, TRYP = trypsin.

Nectocarcinus integrifons (red rock crab)

Herbivory is common in crabs—the consumption of vascular plants has been observed in several species (Giddins et al., 1986; Kyomo, 1992; Woods and Schiel, 1997). The stomachs of N. integrifons contained no animal material but did contain large quantities of vascular plant material (Table 1). Klumpp and Nichols (1983) found the seagrass Posidonia australis to occur in the stomachs of 93% of the N. integrifons individuals sampled and to occupy 85% of stomach volume. Consistent with a diet low in protein (seagrass is only 7% protein), protease and trypsin activities were
Table 2
Comparison of specific activities of crustacean proteases and carbohydrases from crude digestive gland extracts

Species	Prot	Tryp	α-Am	α-Glu	β-Glu	Cell	Lam	Chit	Reference
Nectocarcinus integripus	0.47	0.14	0.12	0.0010	0.0003	0.019	0.037	0.038	This study
Petrolisthes elongatus	0.87	0.31	0.29	Neg	0.0250	0.009	0.35	0.006	(1964)
Leptograpsus variegatus	1.2	0.46	0.19	0.0022	0.0067	0.007	0.18	0.041	(1976)
Nectocarcinus tuberculatus	0.55	0.33	0.09	0.0008	0.0009	0.005	0.058	0.036	(1991)
Carcinos maenas	0.57	0.23	0.12	0.0012	0.0013	0.001	0.017	0.023	(1976)
Plagulae clausus	0.99	0.73	0.20	0.0011	0.0037	0.002	0.052	0.023	(1976)

Crabs
Carcinus maenas
Chionoecetes opilio
Callinectes sapidus
Cancer irroratus
Cancer borealis

Prawns
Penaeus vannamei
P. monodon
P. keraturs
P. japonicus
P. indicus

Lobsters and Crayfish
Homarus americanus
Thenus orientalis
Cherax quadricarinatus
C. quadricarinatus

Prot = Total protease; Tryp = Trypsin; α-Am = α-Amylase; α-Glu = α-Glucosidase; β-Glu = β-Glucosidase; Cell = Cellulase; Lam = Laminarinase; Chit = Chitinase. Substrates and units are identical with those used in this study, with values in units mg⁻¹ where units are μmol min⁻¹ except for protease, which is μg tyrosine min⁻¹ Neg. = no activity detected.

lower in N. integripus than in the other species. Nectocarcinus integripus had the highest level of cellulase activity, and it is this enzyme that is responsible for separating this crab from other species in the MANOVA. Cellulase is required to digest cellulose, the primary structural component of vascular seagrass. Klumpp and Nichols (1983) also found high cellulase activity in both the digestive gland and stomach contents of N. integripus. Using chemical analysis, they determined that with combined enzymatic and mechanical action, N. integripus is able to digest up to 40% of ingested plant fiber (Klumpp and Nichols, 1983). Red-claw crayfish C. quadricarinatus also consumes significant amounts of plant material and has cellulase activity comparable to that of the red rock crab (0.03 units mg⁻¹) (Xue et al., 1999).

Petrolisthes elongatus (porcelain crab)
Like N. integripus, P. elongatus is herbivorous. Stomach contents contained no traces of animal matter and consisted largely of brown and green phytoplankton and larger algal pieces. Porcelain crabs are able to use their setose third maxillipeds to filter plankton from the water column (Caine, 1975). Although zooplankton could be captured in this fashion, they were not evident in the stomachs of crabs sampled. Alternative feeding methods, such as direct use of
the chelipeds to chop pieces of algae for ingestion or the feeding on detritus, may account for the occurrence of multicellular algae and detritus in the stomachs of P. elongatus (Kropp, 1981).

Surprisingly, the herbivorous P. elongatus had high total protease activity (Table 2). There are two explanations for this. Firstly, high protease activity may be a physiological adaptation to maximize digestion of small amounts of protein from large volumes of ingested plankton. Microphagous feeding in adult porcelain crabs is similar to planktivorous (phytoplankton) feeding by larval crustaceans. Comparative studies on the digestive enzymes of crustacean larvae indicate that protease activities may be higher in animals that consume phytoplankton than in carnivorous larvae. High protease activity may enable these species to rapidly extract the relatively small protein component from large volumes of food, so there is a net energy gain despite a relatively low overall assimilation efficiency (Kumlu and Jones, 1997; Le Vay et al., 2001). Secondly, it is possible that P. elongatus is actually omnivorous and that zooplankton could have been ingested during filter feeding. However, zooplankton was not identified in the stomachs of animals sampled in this study. Furthermore, P. elongatus had substantially lower chitinase activity than the other species studied here, suggesting a poor capacity to break down chitin, a structural component of the exoskeleton of zooplankton and other invertebrates. Omnivorous species that do ingest shelled invertebrates, such as L. variegatus and N. tuberculosis, possess considerable chitinase performance.

The activities of the carbohydrases (indicative of plant digestion) were mixed, giving us an insight into the specific carbohydrates assimilated by P. elongatus. a-Amylase activity was very high, about three times higher than in N. tuberculosis. High a-amylase activity reflects the high proportion of starch in plants ingested by P. elongatus (Sabapathy and Teo, 1993). Interestingly, a-glucosidase activity was negligible, which suggests that although P. elongatus is highly efficient at digesting large structural polysaccharides such as starch using a-amylase, it is less effective at digesting smaller oligosaccharides, which are broken down using a-glucosidase.

β-Glucosidase activity was highest in the porcelain crab—about three times greater than in the next highest species, L. variegatus. Laminarinase, an enzyme complex that includes exo- and endo-β-1,3 glucanases as well as β-glucosidase, was also the highest in P. elongatus. It was this high laminarinase and β-glucosidase activity that separated P. elongatus from all other species in the MANOVA. Lammarinase activity was highest in the porcelain crab P. chabrus. For the swift-footed shore crab L. variegatus, digestion of the starch in its predominantly red and green algal diet is achieved via high a-glucosidase and α-amylase activities. The velvet crab N. tuberculosis has high cellulase activity to digest the cellulose of its plant diet and high chitinase activity to digest the chitinous shells of the molluscs and other invertebrates that it also consumes. The specific nature of the enzymes in most crab species encountered here appears to favor a specific feeding behavior and dietary preference, and demonstrates different strategies of resource use. In contrast to the other species, the green crab C. maenas did not appear to have a dominant enzyme, which suggests that it is a generalist feeder that utilizes a broad range of dietary items, which may help to explain its incredible success in a range of diverse habitats.

Conclusions—digestive enzyme complement as indicator of diet type

Each species of crab studied had a complex suite of digestive enzymes, the relative activities of which reflected species-specific dietary niches. As opportunistic feeders, crabs have a wide range of digestive enzymes. However, it is clear from this study that the specific enzymes dominant within each crab species are consistent with their particular diets. The porcelain crab P. elongatus has high activities of laminarinase and β-glucosidase for digesting dietary brown algae (laminarin). High cellulase activity is necessary to digest the vascular seagrass (cellulose) diet of the red rock crab N. integrifrons. Significant trypsin and total protease activities break down the high-protein diet of the speedy crab P. chabrus. For the swift-footed shore crab L. variegatus, digestion of the starch in its predominantly red and green algal diet is achieved via high α-glucosidase and α-amylase activities.

Acknowledgments

We thank Sam Ibbott and Craig Mackinnon (Marine Research Laboratories, Tasmanian Aquaculture and Fisheries Institute), Rob Gurney (CSIRO), Dean Blunt and Barry Stewart (Tasmanian Clean Water Oysters) for their assistance in the collection of crab species from sites around Tasmania. We also thank Martin Lourey for critical review of final versions of this manuscript.

Literature Cited

Achituv, Y., and M. L. Pedrotti. 1999. Costs and gains of porcelain crab suspension feeding in different flow conditions. Mar. Ecol. Prog. Ser. 184: 161–169.

Biesiot, P. M., and J. M. Capuzzo. 1990. Changes in digestive enzyme activities during early development of the American lobster Homarus americanus. J. Exp. Mar. Biol. Ecol. 136: 107–122.

Blandamer, A., and R. B. Beechey. 1964. The identification of an alpha-amylase in aqueous extracts of the hepatopancreas of Carcinus maenas, the common shore crab. Comp. Biochem. Physiol. 13: 97–105.
Bradford, M. M. 1977. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

Brithies, J., B. Parent, and J. Pellerin. 1994. Enzymatic activity as an index of trophic resource utilization by the snow crab Chionoecetes opilio (O. Fabricius). J. Crustac. Biol. 14: 220–225.

Brun, G. L., and M. B. Wojtowicz. 1976. A comparative study of the digestive enzymes in the hepatopancreas of the jenah crab (Cancer borealis) and rock crab (Cancer irroratus). Comp. Biochem. Physiol. B 53: 387–391.

Caine, E. A. 1975. Feeding and masticatory structures of selected Anomura (Crustacea). J. Exp. Mar. Biol. Ecol. 18: 277–301.

Choy, S. C. 1986. Natural diet and feeding habits of the crabs Limocarcinus puber and L. holosatus (Decapoda, Brachyura, Portunididae). Mar. Ecol. Prog. Ser. 31: 87–99.

Cohen, A. N., J. T. Carlton, and M. C. Fountain. 1995. Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Mar. Biol. 122: 225–237.

Dendinger, J. E. 1987. Digestive proteases in the midgut gland of the Atlantic blue crab Callinectes sapidus. Comp. Biochem. Physiol. B 88: 503–506.

Dendinger, J. E., and K. L. O’Connor. 1990. Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. B 95: 525–530.

Edgar, G. J. 2000. Australian Marine Life: the Plants and the Animals of Temperate Waters, 2nd ed. Reed Books, Melbourne, Australia.

Elner, R. W. 1981. Diet of the green crab Carcinus maenas (L.) from Port Hebert, southwestern Nova Scotia. J. Shellfish Res. 1: 89–94.

Erlanger, B. F., N. Kokowsky, and W. Cohen. 1961. The preparation of microgram quantities of proteins utilizing the principle of protein-dye binding. J. Gen. Physiol. 30: 291–310.

Kristensen, J. H. 1972. Carbohydrates of some marine invertebrates with notes on their food and on the natural occurrence of carbohydrates studied. Mar. Biol. 4: 130–142.

Kropp, R. K. 1981. Additional porcelain crab feeding methods. Crustacea: Decapoda: Portunididae. Aquacult. 134: 121–135.

Kropp, R. K. 1984. Digestive proteases of Callinectes sapidus Rathbun: implications in utilization of plant-derived detritus as a trophic resource. J. Exp. Mar. Biol. Ecol. 148: 233–239.

Norman, C. P., and M. B. Jones. 1990. Utilisation of brown algae in the diet of the velvet swimming crab Liocarcinus bouchi (Brachyura: Portunididae). J. Exp. Mar. Biol. Ecol. 137: 47–53.

Saib, A., and L. H. Teo. 1993. A quantitative study of some digestive enzymes in the mouthparts of the slipper lobster, Penaeus monodon. J. Exp. Mar. Biol. Ecol. 175: 155–165.

Sahapathy, U., and L. H. Teo. 1993. A quantitative study of some digestive enzymes in the mouthparts of the slipper lobster, Penaeus monodon. J. Exp. Mar. Biol. Ecol. 175: 155–165.

Skillet, G. A., and D. T. Anderson. 1986. Functional morphology of the chelipeds, mouthparts and gastric mill of Ozias truncatus (Milne Edwards) (Xanthidae) and Leptograpsus variegatus (Fabricius) (Grapsidae). Brachyura. Aust. J. Mar. Freshw. Res. 37: 67–79.

Simpson, T. A., and T. A. D. C. 1994. Functional morphology of the mouthparts and prostomial appendages of the crab Grapsus grapsus. Comp. Biochem. Physiol. B 107: 325–334.
Stone, S. T., A. Betz, and J. Hofsteenge. 1991. Mechanistic studies on thrombin catalysis. *Biochemistry* **30**: 9841–9848.

Walter, H. E. 1984. Proteases: methods with hemoglobin, casein and azocoll as substrates. Pp. 270–277 in *Methods of Enzymatic Analysis*. Vol. 5. H. U. Bergmeyer, ed. Verlag Chemie, Weinheim, Germany.

Wear, R. G., and M. Haddon. 1987. Natural diet of the crab *Ovalipes cathanus* (Crustacea, Portunidae) around central and northern New Zealand. *Mar. Ecol. Prog. Ser.* **35**: 39–49.

Wigglesworth, J. M., and D. R. W. Griffith. 1994. Carbohydrate digestion in Penaeus monodon. *Mar. Biol.* **120**: 571–578.

Williams, M. J. 1982. Natural food and feeding in the commercial sand crab *Portunus pelagicus* Linnaeus, 1766 (Crustacea: Decapoda: Portunidae) in Moreton Bay, Queensland. *J. Exp. Mar. Biol. Ecol.* **59**: 165–176.

Wojtowicz, M. B., and H. Brockerhoff. 1972. Isolation and some properties of the digestive amylase of the American lobster (*Homarus americanus*). *Comp. Biochem. Physiol. B* **42**: 295–302.

Wolcott, D. L., and N. J. Nancy. 1992. Herbivory in crabs: adaptations and ecological considerations. *Am. Zool.* **32**: 370–381.

Woods, C. M. C., and D. R. Schiel. 1997. Use of seagrass *Zostera novazelandica* (Setchell, 1933) as habitat and food by the crab *Macropthalma birtipes* (Heller 1862) (Brachyura: Ocypodidae) on rocky intertidal platforms in southern New Zealand. *J. Exp. Mar. Biol. Ecol.* **214**: 49–65.

Xue, X. M., A. J. Anderson, N. A. Richardson, A. J. Anderson, G. P. Xue, and P. B. Mather. 1999. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (*Cherax quadricarinatus*). *Aquaculture* **180**: 373–386.
Johnston, Danielle and Freeman, Joel. 2005. "Dietary Preference and Digestive Enzyme Activities as Indicators of Trophic Resource Utilization by Six Species of Crab." The Biological bulletin 208, 36–46. https://doi.org/10.2307/3593099.

View This Item Online: https://www.biodiversitylibrary.org/item/17269
DOI: https://doi.org/10.2307/3593099
Permalink: https://www.biodiversitylibrary.org/partpdf/11649

Holding Institution
MBLWHOI Library

Sponsored by
MBLWHOI Library

Copyright & Reuse
Copyright Status: In copyright. Digitized with the permission of the rights holder.
Rights Holder: University of Chicago
License: http://creativecommons.org/licenses/by-nc-sa/3.0/
Rights: https://biodiversitylibrary.org/permissions

This document was created from content at the Biodiversity Heritage Library, the world's largest open access digital library for biodiversity literature and archives. Visit BHL at https://www.biodiversitylibrary.org.