Direct conversion of methane to formaldehyde and CO on B$_2$O$_3$ catalysts

Jinshu Tian1,3, Jiangqiao Tan1,3, Zhaoxia Zhang1,3, Peijie Han1, Min Yin1, Shaolong Wan1, Jingdong Lin1, Shuai Wang1 & Yong Wang2

Direct oxidation of methane to value-added C$_1$ chemicals (e.g. HCHO and CO) provides a promising way to utilize natural gas sources under relatively mild conditions. However, a key selectivity challenge remains, resulting from the facile formation of undesired fully-oxidized CO$_2$. Here, we show that B$_2$O$_3$-based catalysts are selective in the direct conversion of methane to HCHO and CO (~94% selectivity with a HCHO/CO ratio of ~1 at 6% conversion) and highly stable (over 100 hour time-on-stream operation) conducted in a fixed-bed reactor (550 °C, 100 kPa, space velocity 4650 mL g$_{\text{cat}}$ h$^{-1}$). Combined catalyst characterization, kinetic studies, and isotopic labeling experiments unveil that molecular O$_2$ bonded to tri-coordinated BO$_3$ centers on B$_2$O$_3$ surfaces acts as a judicious oxidant for methane activation with mitigated CO$_2$ formation, even at high O$_2$/CH$_4$ ratios of the feed. These findings shed light on the great potential of designing innovative catalytic processes for the direct conversion of alkanes to fuels/chemicals.

1State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, China. 2Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA. 3These authors contributed equally: Jinshu Tian, Jiangqiao Tan, Zhaoxia Zhang. & Email: shuaiwang@xmu.edu.cn; yongwang@pnnl.gov
The catalytic transformation of methane to value-added chemicals is of significant interest for the efficient utilization of natural gas sources, especially due to the recent shale-gas revolution. In particular, the direct conversion of methane via selective oxidation to C1 chemicals (i.e. CH3OH, HCHO, and CO) is most attractive, because all of these products are important platform molecules/intermediates for the production of fuels and chemicals. Selective oxidation of methane involves the cleavage of C–H bonds and formation of C–O bonds, leading to CH3OH, HCHO, and CO as the desired partial oxidation products but also to CO2 as an undesired complete oxidation product. Such oxidation processes are induced by nucleophilic attack of active O species at the H or C atom in CH4 (or reactive intermediates) before electron transfer. Because the desired C1 partial oxidation products (i.e. CH3OH, HCHO, and CO) have much higher electrophilicity than CH4, they are kinetically more favored in oxidation, leading to dominant formation of undesired CO2 at methane conversions even less than 5% on conventional catalysts (e.g., V2O5, MoO3, and Fe2O3). Lattice O anions exposed on these oxide surfaces act as the nucleophilic and oxidative centers that can be regenerated fast via dissociative adsorption of gaseous O2 during catalytic cycles (also described as the Mars van Krevelen mechanism). To our best knowledge, high selectivities to the desired C1 partial oxidation products on these traditional metal oxide catalysts are able to be obtained merely at low methane conversions (<2%) or low O2/CH4 ratios (<0.5)7-15, making such oxidation processes impractical.

Directly using molecular O2 or derived O· radicals to oxidize CH4 instead of the more nucleophilic and reactive lattice O anions, would render facile control over the extent of CH4 oxidation. Recent studies have shown that nonmetallic B-based materials (e.g. BN19-21, B2C22, SiB23, and B2O324,25) can catalyze oxidative dehydrogenation of C2-C4 alkanes to alkenes with extraordinarily low selectivities to CO2, reflecting, in turn, that these catalysts probably use the moderate O2 or O·-oxidants to activate the alkane reactants. The BN catalyst has also been attempted for methane oxidation at temperatures above 690 °C, which yielded CO, CO2, and methane coupling products (i.e. C2H4 and C2H6) with respective selectivities of 76.6, 4.3, and 19.3 at 20.5% methane conversion. We expect that the selectivity of valuable C1 products for methane oxidation on the B-based catalysts can be significantly improved at milder temperatures under which HCHO and CH3OH can be better stabilized kinetically. Moreover, experiments of nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy have revealed that B(OH)2Ox−3 layers formed on the B-based catalysts act as the true active phase, irrespective of their bulk contents.

According to the above considerations, we here study supported B2O3 catalysts for selective methane oxidation at relatively mild temperatures. Our results show that B2O3-based catalysts are highly selective in the direct conversion of methane to HCHO and CO, and these selectivities are unexpectedly insensitive to the O2/CH4 ratios. Structural characterization, kinetic measurements, and isotopic labeling experiments are combined to discern that molecular O2 bonded to coordinately unsaturated BO3 centers on the B2O3 surfaces is the crucial oxidant that accounts for the selective methane oxidation. The mechanistic understanding of methane oxidation on the unique B2O3 surfaces would inspire the design of the next generation of heterogeneous catalysts for selective oxidation of hydrocarbons.

Results

Performances of B2O3-based catalysts in methane oxidation. Catalysts containing 20 wt% B2O3 supported on various oxides (i.e. Al2O3, SiO2, ZnO, TiO2, and ZrO2) were prepared using the wetness impregnation method with boric acid (H3BO3) as the boron source (see Methods section). This high B2O3 loading was chosen to ensure that multiple B2O3 layers were formed on each oxide support (Supplementary Table 1). Under the conditions studied (O2/CH4 ratio of 1.0 and 550 °C), these oxide supports themselves were inactive for methane activation, whereas all supported catalysts with 20 wt% B2O3 selectively converted methane to HCHO and CO (~94 % selectivity with a HCHO/CO ratio of ~1), together with a trace amount of desired CH3OH and C2 products (C2H4 and C2H6), which are irrespective of the nature of the support (Fig. 1a). It is noteworthy that these observed conversions are mainly attributed to the catalytic processes on the B2O3 surface, instead of gas-phase radical reactions, because the conversion and selectivity of methane oxidation on the supported B2O3 catalysts had negligible changes whether the empty space of the reactor was fully filled with inert SiC material or not (Supplementary Fig. 1) and their sum did not obey the

![Fig. 1 Methane oxidation rates and selectivity on supported B2O3 catalysts. a Effects of oxide support on 20 wt% B2O3-based catalysts. b Effects of O2/CH4 ratio on 20 wt% B2O3/Al2O3. Reaction conditions: 550 °C, 32 kPa P_{CH4}, 32 kPa P_{O2} for (a) or 21-64 kPa P_{O2} for (b), gas composition balanced with N2. CH4 conversion was achieved by adjusting the space velocity within a range of 1500-50000 mL g_{cat}−1 h−1. The methane oxidation rates reported here were normalized by the exposed surface area of B2O3. The bars in a and b denote product selectivities (CO in black, HCHO in red, CH3OH in blue, C2H4 and C2H6 in magenta, and CO2 in green), and the red square in a and b denote methane oxidation rates.](https://www.nature.com/articles/s41467-020-19517-y)
empirical 100% rule \(^{28}\) that was observed in the previous gas phase chemistry (Supplementary Fig. 2).

In all cases, the sum of the selectivities to these desired \(C_1\) and \(C_2\) products were above 96%, while the selectivity to undesired \(CO_2\) was below 4% at ~6% methane conversion (controlled by the space velocity for rigorous selectivity comparison among the examined catalysts). Such high selectivities to the partial oxidation products reflect the superior control of the oxidation extent within the kinetic regime, brought forth by the unique property of the \(B_2O_3\)-based catalysts as described below, otherwise the fully oxidized \(CO_2\) would be predominant among the products if the thermodynamic equilibrium is established (e.g., 53.5% methane conversion and 72.8% \(CO_2\) selectivity at 550 °C and 100 kPa with an initial \(CH_4/O_2\) molar ratio of 1/1; Supplementary Fig. 3). This highly selective methane oxidation process could be scaled up by combining efficient separation of the products from the effluent and recycling of the unconverted \(CH_4\) and \(O_2\) reagents\(^{29}\). Moreover, the fact that the molar ratio of \(HCHO\) to \(CO\) in the products is ~1.0 makes them potentially desired for the downstream acetic acid synthesis via hydrogenation of \(HCHO\) to methanol and its subsequent carboxylation\(^{10,31}\) and also for glycolic acid synthesis via direct carboxylation of \(HCHO\)\(^{32}\). The detected \(C_2H_6\) and \(C_2H_4\) products are likely ascribed to methane oxidative coupling as we reported previously\(^{21,26}\), reflecting the ability of \(B_2O_3\)-based catalysts to produce \(C_2\) molecules from direct methane oxidation. Similar methane oxidation rates (mmol methane converted per surface area of the exposed \(B_2O_3\) phase per hour) were obtained for the examined catalysts. These results suggest a negligible effect of the oxide supports on catalytic performance, a result that is consistent with formation of the multiple \(B_2O_3\) layers on each oxide support at 20 wt% \(B_2O_3\) loading (the loading threshold for forming a \(B_2O_3\) monolayer for each of the oxide supports are shown in Supplementary Table 1).

We further studied the effects of \(O_2/CH_4\) partial pressure ratios on the performances of the 20 wt% \(B_2O_3/Al_2O_3\) catalyst at 550 °C, where methane conversions were kept ~6% via adjusting the space velocity for rigorous comparison of reactivity and selectivity. As shown in Fig. 1b, nearly constant selectivities (i.e., >95% selectivity to desired \(C_1\) and \(C_2\) products with <5% selectivity to undesired \(CO_2\)) were obtained at ~6% methane conversion over a wide range of \(P_{O_2}/P_{CH_4}\) ratios (0.67–2.00), reflective of the unique ability of \(B_2O_3\) in preventing complete oxidation of the desired \(C_1\) and \(C_2\) products to \(CO_2\) and thus the potential of high-pressure operation for this catalytic process. Such remarkable selectivities to the desired \(C_1\) and \(C_2\) products and a negligible effect of the \(P_{O_2}/P_{CH_4}\) ratio on activity makes this system superior to conventional oxide catalysts (e.g. supported \(V_2O_5\) and \(MoO_3\) in Supplementary Table 2), which must operate at much lower \(P_{O_2}/P_{CH_4}\) ratios (0.1–0.5) to minimize the over-oxidation of \(C_1\) and \(C_2\) products by the strongly nucleophilic lattice \(O\) anions on metal oxide surfaces\(^{16,33}\). Figure 1b also shows that methane oxidation rates increased with increasing the \(O_2/CH_4\) ratio, indicating a positive reaction order with respect to \(O_2\). In addition, these \(B_2O_3\)-based catalysts exhibited exceptional stability at 550 °C as illustrated over 100 h time-on-stream stable methane oxidation for the \(B_2O_3/Al_2O_3\) catalyst (Supplementary Fig. 4).

Active sites of \(B_2O_3\)-based catalysts for methane oxidation. To provide insight into the nature of active sites on these supported \(B_2O_3\) catalysts, \(^{11}B\) solid state nuclear magnetic resonance (NMR) was used. Two boron oxide species with chemical shifts centered at 67.9 and 57.1 ppm were observed for these samples (using \(NaBH_4\) as the reference compound, NMR spectra shown in Supplementary Fig. 5). These are ascribed to tri-coordinated \(BO_3\) and tetra-coordinated \(BO_4\) units, respectively\(^{34}\). Previous studies\(^{35,36}\) suggest that the \(BO_4\) units are derived from the additional bonding of lattice \(O\) anions of the oxide support to the \(BO_3\) units in \(B_2O_3\). The \(BO_4/BO_3\) molar ratio of the supported \(B_2O_3\) catalysts increased with increasing basic strength of the oxide support (e.g. 0.46 for \(B_2O_3/SiO_2\), 1.45 for \(B_2O_3/Al_2O_3\), and 1.65 for \(B_2O_3/ZrO_2\) in Supplementary Fig. 5) that can be explained by increased coordination of the \(B\) center to more basic lattice \(O\) anions of the oxide support. On the other hand, these \(BO_4/BO_3\) ratios did not affect the methane oxidation rates of the supported \(B_2O_3\) catalysts that were almost identical when normalized by the exposed \(B_2O_3\) surface area (Fig. 1a). These results might indicate that the \(BO_3\) and \(BO_4\) units have similar catalytic activities.

To further confirm or disapprove our hypothesis, \(B\)-substituted \(ZSM-5\) zeolite (\(B-ZSM-5\)) was prepared, where the \(B\) atoms embedded in the silicate framework were all tetra-coordinated by lattice \(O\) anions as confirmed by the single chemical shift of \(B\) at 54.1 ppm (Supplementary Fig. S5)\(^{37,38}\). Compared with the supported \(B_2O_3\) catalysts (e.g., 20 wt% \(B_2O_3/Al_2O_3\)), the \(B-ZSM-5\) sample showed negligible activity in catalyzing methane oxidation with near 45% selectivity to \(CO_2\) (Supplementary Fig. 6). It is thus concluded that the \(BO_3\) units with full coordination of \(B\) centers are catalytically inactive. The fact that the methane oxidation rates of the supported \(B_2O_3\) catalysts are independent of the \(BO_4/BO_3\) ratio measured by \(^{11}B\) NMR is likely due to that NMR is a bulk technique and that the top layer \(B_2O_3\) is not bonded to the oxygen anions of oxide supports on these catalysts with multilayered \(B_2O_3\), leading to exclusively active surface \(BO_3\) units for methane oxidation.

Mechanism of methane oxidation on \(B_2O_3\)-based catalysts. Kinetic studies were carried out to provide molecular-level insights into the mechanism of methane activation on supported \(B_2O_3\) catalysts. The conversion-selectivity relationship for methane oxidation on 20 wt% \(B_2O_3/Al_2O_3\) (Supplementary Fig. 7) showed that the selectivities to \(HCHO\) and \(CH_3OH\) both monotonically decreased as the conversion of \(CH_4\) increased from 2 to 10%, concomitant with increased selectivities to \(CO\) and \(CO_2\). These selectivity trends indicate that both \(HCHO\) and \(CH_3OH\) are primary products formed from methane conversion. It has been proposed that the initial activation of methane by active \(O\) species on oxide surfaces forms bonded methoxy intermediates (\(CH_3O\)) via cleaving a \(-CH\) bond in methane, which undergo further dehydrogenation to form \(HCHO\) or recombine the cleaved \(H\) atom to form \(CH_2OH\)\(^{39,40}\). On \(B_2O_3\) surfaces, methane selective oxidation to \(HCHO\) is the predominant reaction channel for methane activation, as evidenced by the high \(HCHO/CH_2OH\) selectivity ratios obtained at low methane conversions (e.g. ~17 at 2% conversion, Supplementary Fig. 7). The secondary dehydrogenation of \(HCHO\) leads to the formation of \(CO\), whereas the \(CO_2\) product comes from \(CO\) oxidation.

Figure 2a depicts that the methane oxidation rate increased with \(O_2\) pressure (0–80 kPa; 550 °C), but the dependence became weaker at higher \(O_2\) pressure that is indicative of higher \(O_2\) coverages on the \(B_2O_3\) surface. In contrast, the methane oxidation rate increased linearly with the \(CH_4\) pressure in the same pressure range, suggesting that \(CH_4\) barely adsorbs on the \(BO_3\) sites during catalysis (Fig. 2b), which is consistent with the unfavorable adsorption of \(CH_4\) on solid surfaces brought forth by its highly symmetrical geometry and weakly polarized \(-CH\) bonds\(^{41}\). These effects of reactant concentrations on the oxidation rates are indicative of the Eley-Rideal mechanism\(^{41}\) on catalytic surfaces, in
which one molecule adsorbed on the active site directly reacts with another one from the gas phase. Because of this, we propose that methane oxidation occurs between a gaseous CH$_4$ molecule and an O$_2$ molecule bonded to the BO$_3$ sites. Similar Eley-Rideal-type pathways have been found for methane oxidation on Pd and Pt surfaces at high temperatures42,43, which unveils that two adsorbed O atoms formed from the dissociation of a O$_2$ molecule on the catalyst surface are required to act concertedly in order to cleave the strong C–H bond of CH$_4$.

Isotopic labeling experiments were further used to confirm the above hypothesis (i.e. BO$_3$-surface-bonded O$_2$ directly activates CH$_4$). Pulses of a small amount of 18O$_2$ into flowing 16O$_2$ on the supported B$_2$O$_3$ catalysts at 550 °C did not lead to the formation of isotope-exchanged 18O16O species, excluding the presence of dissociative adsorption of O$_2$ molecules on the B$_2$O$_3$ surface (Fig. 3a). In contrast, when CH$_4$ was co-fed with 16O$_2$ and pulses of 18O$_2$ over the surface of the same B$_2$O$_3$ catalysts, a significant amount of 18O16O was detected (Fig. 3b). We thus infer that the O–O bond in the adsorbed O$_2$ molecule is cleaved concertedly when it activates the C–H bond of CH$_4$.

The above kinetic and isotopic assessments are combined to give a plausible pathway for the formation of HCHO from CH$_4$ oxidation on B$_2$O$_3$-based catalysts as described in Fig. 4a. First, O$_2$ adsors on two vicinal BO$_3$ units with each O atom in O$_2$ bound to one of the electron-deficient B centers (Step 1, Fig. 4a). A gaseous CH$_4$ molecule then attacks this adsorbed O$_2$ reactant, resulting in concurrent formations of hydroxy and methoxy species (Step 2, Fig. 4a). Formaldehyde and H$_2$O are further produced from hydrogen abstraction of the methoxy moiety by a hydroxyl (Step 3, Fig. 4a). Desorption of these products from the active BO$_3$ sites completes a catalytic turnover for methane partial oxidation on B$_2$O$_3$ (Step 4, Fig. 3a). The measurable O-exchange between O$_2$ molecules in the presence of CH$_4$ (Fig. 3b) indicates the reversibility of Steps 1 and 2 on B$_2$O$_3$ under reaction conditions. This suggests, in turn, that Step 3 is kinetically relevant. This finding is consistent with a previous report6 that...
the electronegativity of oxide catalysts affects the selectivity to HCHO. These elementary steps, taken together with the pseudo-steady-state approximation for all bound species and the quasi-equilibrated nature of all steps except Step 3, lead to an equation for methane conversion rates (r):

$$r = \frac{k_1 K_1 P_{O_2} P_{CH_4}}{1 + K_2 P_{O_2}} \tag{1}$$

Here, K_1 and K_2 are the respective equilibrium constants for Steps 1 and 2, whereas k_3 is the kinetic constant for Step 3. The functional form of Equation 1 accurately describes all methane oxidation rate data measured within a wide reactant pressure range (Fig. 4b; regression-fitted parameters shown in Supplementary Table 3), supporting the proposed methane activation mechanism on the B$_2$O$_3$ surfaces (Fig. 4a).

Discussion

In summary, nonmetallic B$_2$O$_3$-based catalysts are selective and stable in the partial oxidation of methane to HCHO and CO. Surface tri-coordinated BO$_3$ units are the active sites for methane oxidation. O$_2$ molecules bound to the electron-deficient B centers of these BO$_3$ units are moderate oxidants for methane activation, exhibiting strong suppression of the formation of thermodynamically favored CO$_2$. Further exploitation of such nonmetallic oxide catalysts will bring innovative strategies and catalyst systems for efficient and selective oxidation of methane (and other alkanes) to valuable chemicals.

Methods

Preparation of B$_2$O$_3$-based catalysts. B$_2$O$_3$ catalysts supported on various oxides (including Al$_2$O$_3$, TiO$_2$, ZnO, ZrO$_2$, and SiO$_2$) were prepared by wetness impregnation method using boric acid (Sinopharm chemical reagent co. LTD) as the boron source. The preparation method was described below using B$_2$O$_3$/Al$_2$O$_3$ as an illustrative example: a certain amount of H$_3$BO$_3$ was dissolved in deionized water (10 mL) and then the resulting aqueous solution was added dropwise to pure Al$_2$O$_3$ (0.5 g). After stirring vigorously for 1 h, the impregnated samples were heated to 65 °C and subsequently vacuumed at 65 °C for 8 h. The as-prepared products were then calcined at 600 °C for 5 h in air.

Preparation of B-ZSM-5 samples. B-ZSM-5 was synthesized according to a previously reported method37. Typically, NaOH, 1–6 hexadimethylenimine (HMDA) and tetrapropylammonium bromide (TPABr) were dissolved in 18.9 mL of deionized water. The solution was stirred for 30 min, and then 1.8 g of porous SiO$_2$ (Aladdin) and 0.3373 g H$_3$BO$_3$ were slowly added. The gel was stirred for 1 h and then transferred into a teflon-lined stainless-steel autoclave for crystallization at 180 °C for 48 h. The obtained samples were separated by filtration, washed with deionized water, dried at 90 °C for 12 h and finally calcined under static air at 550 °C for 5 h.

Measurement of catalytic performance. Catalytic methane oxidation was conducted using a fixed-bed quartz tubular reactor (7 mm inner diameter) with plug-flow hydrodynamics. The B$_2$O$_3$-based catalyst (0.15–0.18 mm sieved particles, ~200 mg, corresponding to a volume of 0.38 mL) was first pretreated in flowing O$_2$/N$_2$ (1/1 in volume) for 2 h under 580 °C and then cooled to the reaction temperature under N$_2$. CH$_4$/He (90/10%), O$_2$ (99.99%), and N$_2$ (99.99%) were individually controlled using three mass flow controllers (Sevenstar Technology Co., Ltd) to provide the reaction gas feed. The feed rate reported here is the weight hourly space velocity (WHSV), in which the gas volume refers to the standard ambient temperature and pressure. The concentrations of reaction products in the effluent were analyzed by an online gas chromatography (GC2060, Shanghai Ruimin GC Instruments, Inc). Samples in the quantitative range were separated by Porapak column (6 m×3 mm) and then quantified using a thermal conductivity detector (TCD) for He, CH$_4$, and CO$_2$.44 The other gases are introduced into a flame ionization detector (FID) and subsequently analyzed including CO, CH$_4$, CO$_2$, C$_2$H$_4$, C$_2$H$_6$, HCHO, and CH$_3$OH. Control experiments with SiC showed that there was negligible methane conversion without the catalyst. In all tests, carbon mass balances exceeded 98%. The CH$_4$ conversion (X_{CH4}) and the carbon selectivity of each product i (S_i) were calculated using a standard normalization method (He as internal standard gas) based on the carbon balance, which were defined as

$$X_{CH4} = \left(1 - \frac{P_{CH4}}{P_{CH4}} \right) \times 100\% \tag{2}$$

$$S_i = \frac{n_i P_{out}}{\sum_i n_i P_{out}} \times 100\% \tag{3}$$

Here, P_{CH4} and P_{CH4}' are the corresponding partial pressures of methane at the inlet and outlet of the reactor, while P_{out} and n_i are the outlet partial pressure and the carbon number of each product i formed from methane oxidation, respectively.

Structural characterization. Specific surface areas of catalysts were measured by the Brunauer–Emmett–Teller (BET) method, using a Micromeritics Tristar 3020 surface area and porosimetry analyzer. Prior to measurement, all samples were degassed at 150 °C for 6 h. 1H solid nuclear magnetic resonance (1H-NMR) analysis was recorded on a Bruker NMR 500 DRX spectrometer at 500 MHz and referenced to NaBH$_4$ (3.2 ppm). Isotopic labeling experiments were performed in a fixed-bed single-pass flow micro-reactor. A mixture of N$_2$ and 18O$_2$ (research grade, 99.99%) was fed to the 20 wt% B$_2$O$_3$/Al$_2$O$_3$ catalyst bed at 550 °C until the baseline was stabilized and then an 18O$_2$ (Cambridge Isotope Lab, 99%; 1 mL each time) pulse was injected into the flow using a syringe. The chemical and isotopic compositions of the reactor effluent were measured by online mass spectrometry (MS, Pfeiffer, OmninStar TM) at intervals of 10 s with a m/z scanning from 1 to 50. The m/z signals of 32, 34, and 36 represent 16O16O, 16O18O, and 18O16O, respectively.
Data availability
The datasets generated and analyzed during the current study are available from the corresponding authors upon a reasonable request.

Received: 16 June 2020; Accepted: 8 October 2020;
Published online: 10 November 2020

References

1. Angstvall, N. et al. Aquous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 358, 223–227 (2017).

2. Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation. Nat. Chem. 10, 325–332 (2018).

3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 4897–5820 (2017).

4. Zhong, L. et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538, 84–87 (2016).

5. Jiao, F. et al. Selective conversion of syngas to light olefins. Science 351, 1065–1068 (2016).

6. Otsuka, K. & Hatanou, M. The catalysts for the synthesis of formaldehyde by partial oxidation of methane. J. Catal. 108, 252–255 (1987).

7. Parmalana, A. & Arena, F. Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde. I. Catalytic behaviour of SiO2, MoO3/ SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2 systems. J. Catal. 167, 57–65 (1997).

8. Pitchai, R. & Klier, K. Partial oxidation of methane. Science 369, 162–167 (2020).

9. Mackie, J. C. Partial oxidation of methane: the role of the gas phase reactions. Catal. Rev. Sci. Eng. 33, 169–240 (1991).

10. Faraldos, M. et al. Comparison of silica-supported MoO3 and V2O5 catalysts in the selective partial oxidation of methane. J. Catal. 160, 214–221 (1996).

11. Fait, M. J. G. et al. Understanding trends in methane oxidation to formaldehyde: statistical analysis of literature data and based hereon. Catal. Sci. Technol. 18, 10936–10946 (2018).

12. Shi, L. et al. Progress in selective oxidative dehydrogenation of light alkenes to olefins promoted by boron nitride catalysts. Chem. Commun. 54, 10936–10946 (2018).

13. Venegas, J. M., McDermott, W. P. & Hermans, I. Serendipity in catalysis research: Boron-based materials for alkaline oxidative dehydrogenation. Acc. Chem. Res. 51, 2556–2564 (2018).

14. Shu, L. et al. Progress in selective oxidative dehydrogenation of light alkenes to olefins promoted by boron nitride catalysts. Chem. Commun. 54, 10936–10946 (2018).

15. Shu, L. et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 1570–1573 (2016).

16. Shi, L. et al. Edge hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene. ChemCatChem 9, 1788–1793 (2017).

17. Tian, J. et al. Propane oxidative dehydrogenation over highly selective hexagonal boron nitride catalysts: The role of oxidative coupling of methyl. Sci. Adv. 5, eaav8063 (2019).

18. Grant, J. T. & Shu, W. selectivity in oxidative dehydrogenation reactions on nanocarbons. J. Am. Chem. Soc. 135, 15425–15442 (2013).

19. Barbero, J., Barba, M., Pena, M. & Fierro, J. Partial oxidation of methane into C2-olefins: Role of homogeneous reactions and catalyst surface area. Catal. Today 71, 11–19 (2001).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 21922021, 21872113, 91945501, 191673189, and 91545114) and the Fundamental Research Funds for the Central Universities (No. 20720190036 and 20720160032).

Author contributions
Shu.W. and Y.W. conceived the idea for the project. J.Ti., J.Ta., and M.Y. conducted the material synthesis. P.H., M.Y., and J.Ta. performed the structural characterizations and requests for materials should be addressed to S.W. or Y.W. Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
