Effect of Hyperglycemia on the Excretory Ducts of the Submandibular Gland (Histologic Study)

Hanna Ersteniuk¹, Taras Kotyk¹*, Nilanjan Dey², Omelian Yurakh¹, Oksana Popadynets¹

Abstract
The paper highlights the peculiarities of histological changes in different subdivisions of the intralobular duct of the submandibular gland in rats in case of experimental hyperglycemia.

Materials and methods. The study included 40 male Wistar rats weighing 230 to 250g. Experimental hyperglycemia was induced by a single intraperitoneal administration of streptozotocin. Biochemical and morphological investigations were conducted; the morphometric analysis was carried out.

Results. Since the 28th day of the experiment, on the background of dynamic increase in the levels of glucose and glycated hemoglobin in the blood, there was observed the development of dystrophic changes in epithelial cells of the granular and striated ducts being accompanied by a gradual decrease in epithelial cell height by 10.28 – 29.46% and 10.77 – 28.28%, respectively. Morphological changes in the intercalated ducts were detected later – since the 42nd day of the experiment and the decrease in their epithelial cell height – by 15.60%, was seen on the 70th day only.

Conclusions. Morphological changes in different subdivisions of the intralobular duct are of dystrophic nature and can be histologically detected since the 28th day of the experiment; they depend on the duration of hyperglycemia and are accompanied by a dynamic decrease in epithelial cell height.

Keywords
hyperglycemia; submandibular gland; excretory ducts

Introduction
Diabetes mellitus, due to its morbidity rate as well as the frequency of diabetes-related deaths and disability worldwide is becoming a global epidemic [1-3]. The disease is mainly characterized by chronic hyperglycemia which is caused by insulin deficiency (type I diabetes mellitus) or a combination of factors reducing its activity (type II diabetes mellitus) [4, 5]. Hyperglycemia affects structural components of various organs and systems in different ways, namely through activating the sorbitol pathway and protein kinase C, increasing oxidative stress, reducing the levels of vasodilators, changing Na⁺, K⁺-ATPase activity or causing non-enzymatic glycation of proteins [6, 7]. The kidneys, micro- and macro-blood vessels, peripheral nerves and retina [8] are progressively damaged; salivary glands, the submandibular gland in particular, are damaged as well: it deteriorates dental status in patients due to the development of hyposalivation and xerostomia [9-11]. It should be noted that the composition of saliva and its buffering properties are changed by the excretory ducts of the gland [12-16]. However, the data on the effects of hyperglycemia on the histological structure of these components of the submandibular gland parenchyma are controversial [17, 18].

1. Materials and methods

The experiment was carried out in the Educational and Scientific Laboratory of Morphological Analysis and the Center of Bioelementology of the Ivano-Frankivsk National Medical University in accordance with EU Directive 2010/63/EU for animal experiments [19]. The study included 40 male Wistar rats weighing 230 to 250g (the experimental group – 20 animals, the control group – 20 animals) kept under standard vivarium conditions with free access to water. Experimental hyperglycemia was induced by a single intraperitoneal administration of streptozotocin (Sigma, USA) at a dose of 60 mg/kg body weight dissolved in citrate buffer (pH 4.5). Animals of the control group were injected with an equivalent amount of citrate buffer.

The samples were collected in the morning (on an empty stomach) every 2 weeks after streptozotocin administration. Biochemical investigation included the determination of the levels of glucose and glycated hemoglobin in the blood. Morphological investigation of the excretory ducts of the submandibular gland was done on histological sections stained with eosin and hematoxylin [20] and semi-thin sections stained with methylene blue (the fixation of the material in a 2.5% glutaraldehyde solution followed by post-fixation in a 2% osmium tetroxide (OsO₄) solution [21]).
The morphometric analysis (the determination of epithelial cell height in different subdivisions of the intralobular duct) was made on histological sections in ImageJ v. 1.48 [22]. Statistical analysis was conducted using the R software v. 3.0 [23]. The data of descriptive statistics are presented as the mean±standard deviation (Mean±SD). The data of the control and experimental groups were compared using the Mann-Whitney-Wilcoxon test; the difference was considered statistically significant at p<0.05.

2. Results and Discussion

On the 14th day after streptozotocin administration, on the background of dynamic increase in the levels of glucose and glycated hemoglobin in the blood (by 2.83 and 3.32 times compared to the control group; p<0.05), at the light-optical level there were no changes in the structure of the excretory ducts. The aforementioned data were confirmed by the investigation of semi-thin sections as well: moderate intensity of staining the epithelial cell cytoplasm in the excretory ducts with methylene blue was found; most epithelial cells of the granular ducts were filled with dark granules; in the striated ducts, basal striation was preserved (Fig. 1). The height of epithelial cells in the intercalated and granular ducts remained unchanged compared to the control group while the height of epithelial cells in the striated ducts increased by 8.66% (p<0.05) (Table 1) that may serve as evidence of changes in their morphofunctional state [24].

![Figure 1](image1.png)

Figure 1. Relatively unchanged structure of the excretory ducts of the submandibular gland in a rat on the 14th day of the experiment at the microscopic and sub-microscopic levels.

A – staining with hematoxylin and eosin;
B, C – semi-thin sections stained with methylene blue.

Scale bar 20 μm.

On the 28th day after streptozotocin administration, the levels of glucose and glycated hemoglobin in the blood exceeded those in the control group by 3.84 and 4.19 times, respectively (p>0.05). Despite this fact, changes in the histological structure of the intercalated ducts were not observed; epithelial cell height did not differ from that in the control group (p<0.05). Epithelial cells of the granular ducts were characterized by the presence of fine eosinophilic granules while epithelial cells of the striated ducts were characterized by slightly pronounced basal striation (Fig. 2). Epithelial cell height in these ducts reduced by 10.28 and 10.77% (p<0.01 – 0.001) (Table 1). The disruption of the structural organization of the aforementioned subdivisions of the intralobular duct in the early stages of hyperglycemia development was observed by L. S. Cutler et al. as well [25]. At the same time, the authors noted that changes were of a focal nature. In our opinion, changes in the structure and morphometric parameters are caused by both direct effect of hyperglycemia and indirect one due to diabetic microangiopathy [8, 26-28]. The development of the latter is explained by the occurrence of perivascular swelling being observed at the sub-microscopic level. It should be mentioned that the excretory ducts are characterized by low water permeability [29]. Thus, detected dystrophic changes, probably, lead to the alterations in electrolyte composition of secondary saliva [3, 15].

![Figure 2](image2.png)

Figure 2. Histological structure of the intralobular duct subdivisions of the rat submandibular gland on the 28th day after streptozotocin administration.

Staining with hematoxylin and eosin.

Scale bar 20 μm.

On the 42nd day after streptozotocin administration, the studied biochemical parameters continued to increase in comparison with the control group, namely the level of glucose in blood increased by 4.54 times and the level of glycated hemoglobin increased by 4.79 times (p<0.05). At the same time, in the excretory ducts, vacuolization of epithelial cell cytoplasm was observed indicating their damage [30]. In addition, in the granular ducts, a decrease in filling with secretory granules was visually observed which is consistent with the data obtained by L. C. Anderson et al [17]. In comparison with the control group, epithelial cell height in the intercalated ducts remained unchanged while epithelial cell height in the granular and striated ducts continued to reduce (by 20.71 and
Table 1. Epithelial cell height (µm) in the ducts of the rat submandibular gland during different time periods (Mean±SD)

Time period, day	Animals	Intercalated	Granular	Striated
14th	Control	4.36±0.87	16.98±2.35	13.97±2.30
	Experimental	4.22±0.70	17.60±2.17	15.18±2.51*
28th	Control	4.34±0.91	17.02±2.26	14.02±2.24
	Experimental	4.21±0.89	15.27±2.90**	12.51±1.48***
42nd	Control	4.35±0.90	16.95±2.55	13.96±2.45
	Experimental	4.43±0.78	13.43±1.59***	11.54±1.75***
56th	Control	4.28±0.86	17.67±2.50	14.53±2.35
	Experimental	4.17±0.93	12.50±1.93***	11.81±2.61***
70th	Control	4.23±0.87	17.65±2.32	14.57±2.60
	Experimental	3.57±0.53***	12.45±2.59***	10.65±2.07***

Note.
* *, **, *** – p<0.05, p<0.01, p<0.001 compared to the control group.

17.34%, respectively; p<0.001) (Table 1).

Figure 3. Vacuolization of the intercalated, granular and striated ducts of the submandibular gland on the 42nd day of the experiment.

Semi-thin sections stained with methylene blue.
Scale bar 20µm.

In the last observation periods (on the 56th and 70th days), the levels of glucose (23.88 – 21.34 mmol/l; p>0.05) and glycated hemoglobin (9.52 – 9.94%; p>0.05) in the blood remained stable compared to the 42nd day of the experiment. As during the previous observation period, basal striation of the striated ducts was slightly pronounced; in the granular ducts, epithelial cell cytoplasm contained fine eosinophilic granules. However, vacuolization of different subdivisions of the intralobular duct was less intense (Fig. 4). In addition, epithelial cell height in the intercalated, granular and striated ducts reduced by 15.60, 29.46 and 28.28%, respectively (p<0.001) compared to the control group (Table 1).

Figure 4. Structural reorganization of the excretory ducts of the rat submandibular gland of the 70th day of the development of experimental hyperglycemia.

Staining with hematoxylin and eosin.
Scale bar 20µm.

3. Conclusions
Morphological changes in different subdivisions of the intralobular duct are of dystrophic nature and can be histologically detected since the 28th day of the experiment; they depend on the duration of hyperglycemia and are accompanied by a dynamic decrease in epithelial cell height.

4. Prospects for further research
An important aspect of understanding salivary gland dysfunction is the establishment of mechanisms of developing detected changes which will serve as a subject for further research.
References

[1] Alberti KGMM, Zimmet P. Global burden of disease–where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–260. DOI: http://doi.org/10.1038/nrendo.2013.54

[2] Ginter E, Simko V. Type 2 diabetes mellitus, pandemic in 21st century. Adv Exp Med Biol. 2012;771:42–50. [PMid: 23393670]

[3] Srivastava PK, Srivastava S, Singh AK, Dwivedi KN. Role of ayurveda in management of diabetes mellitus. Int Res J Pharm. 2015;6(1):S8–S16. DOI: http://doi.org/10.7897/2230-8407.0613

[4] Bakris G, Blonde L, Boulton AJM, de Groot M, Greene EL, Henry R, et al. 2. Classification and Diagnosis of Diabetes. Diabetes Care. 2015;38(Supplement 1):S8–S16. DOI: http://doi.org/10.2337/dc15-S005

[5] Moore PA, Guggenheimer J, Etzel KR, Weyant RJ, Orchard T. Type 1 diabetes mellitus, xerostomia, and salivary flow rates. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92(3):281–291. DOI: http://doi.org/10.1067/moe.2001.117815

[6] De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130(5):963–974. DOI: http://doi.org/10.1038/sj.bjp.0703393

[7] Hadi HAR, Suwaidi JAl. Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag. 2007;3(6):853–876. [PMid: 18200806]

[8] Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–188. DOI: http://doi.org/10.1152/physrev.00045.2011

[9] Busato IMS, Ignácio SA, Brancher JA, Grégoire AMT, Machado MAN, Azevedo-Alanis LR. Impact of xerostomia on the quality of life of adolescents with type 1 diabetes mellitus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108(3):376–382. DOI: http://doi.org/10.1016/j.tripleo.2009.05.005

[10] Fedirko NV, Kruglikov IA, Kopach OV, Vats JA, Kostyuk PG, Voitenko NV. Changes in functioning of rat submandibular salivary gland under streptozotocin-induced diabetes are associated with alterations of Ca2+ signaling and Ca2+ transporting pumps. Biochim Biophys Acta. 2006;(3)1762:294–303. DOI: http://doi.org/10.1016/j.bbadis.2005.12.002

[11] Lamster IB, Evanthia L, Borgnakke WS, Taylor GW. The relationship between oral health and diabetes mellitus. J Am Dent Assoc. 2008;139:19–24

[12] Wang Di, Yuan Z, Inoue N, Cho G, Shono M, Ishikawa Y. Abnormal subcellular localization of AQP5 and downregulated AQP5 protein in parotid glands of streptozotocin-induced diabetic rats. Biochim Biophys Acta - Gen Subj. 2011;1810(5):543–554. DOI: http://doi.org/10.1016/j.bbagen.2011.01.013

[13] Catalán MA, Nakamoto T, Melvin JE. The salivary gland fluid secretion mechanism. J Med Invest. 2009;56:192–196. [PMid: 20224180]

[14] Tandler B, Nagato T, Toyoshima K, Phillips CJ. Comparative Ultrastructure of Intercalated Ducts in Major Salivary Glands: A Review. Anat Rec. 1998;1998(91):February:64–91

[15] Proctor GB, Carpenter GH. Salivary secretion: Mechanism and neural regulation. Monogr Oral Sci. 2014;24:14–29. DOI: http://doi.org/10.1159/000358781

[16] Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin Exp Nephrol. 2009;13(2):107–117. DOI: http://doi.org/10.1007/s10157-008-0118-6

[17] Anderson LC, Suleiman AH, Garrett JR. Morphological effects of diabetes on the granular ducts and acini of the rat submandibular gland. Microsc Res Tech. 1994;27(1):61–70. DOI: http://doi.org/10.1002/jemt.1002/jemt072070105

[18] Yavorska-Skrabut IM, Herasymiuk Ile. Dynamika morfometrychnykh zmin struktur velykykh slynnykh zaloz shchuriv za umov eksperimentalnoi hiperhlikemii. Galic’kij likars’kij Visn. 2013;20(1 part 2):100–102

[19] Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes (Text with EEA relevance). Off J Eur Union. 2010;L 276:33–79

[20] García HF, García-Poblete E, Moro-Rodríguez E, Catalá-Rodríguez M, Rico-Morales M, García-Gómez de las Heras MS. Histomorphometrical study of the submandibular gland ductal system in the rat. Histol Histopathol. 2002;17:813–816

[21] Gresik E. The granular convoluted tubule (GCT) cell of rodent submandibular glands. Microsc Res Tech. 1994;27(1):1–24

[22] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. DOI: http://doi.org/10.1038/nmeth.2089

[23] R Core Team. R: A Language and Environment for Statistical Computing. 2015
Effect of Hyperglycemia on the Excretory Ducts of the Submandibular Gland (Histologic Study) — 5/5

[24] Yeroshenko HA, Tsukanov DV, Shepitko IV, Hnidets VA. Morfometrychna kharakterystyka slynnykh zaloz shchuriv pislia vvedennia prozerynu i platyfilinu. Svit Medytsyny Ta Biolohii. 2011;(3):7–10

[25] Cutler LS, Pinney HE, Christian C, Russotto SB. Ultrastructural studies of the rat submandibular gland in streptozotocin induced diabetes mellitus. Virchows Arch A. 1979;382(3):301–311

[26] Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes. 2011;29(3):116–122. DOI: http://doi.org/10.2337/diaclin.29.3.116

[27] Oikawa J, Ukawa S, Ohira H, Kawamura T, Wakai K, Ando M, et al. Diabetes Mellitus is Associated With Low Secretion Rates of Immunoglobulin A in Saliva. J Epidemiol. 2015;25(7):470–474. DOI: http://doi.org/10.2188/jea.JE20140088

[28] De Vriese AS, Stoenoiu MS, Elger M, Devuyst O, Vanholder R, Kriz W, et al. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. Kidney Int. 2001;60(1):202–210. DOI: http://doi.org/10.1046/j.1523-1755.2001.00787.x

[29] Ekström J, Khosravani N, Castagnola M, Messana I. Saliva and the Control of Its Secretion. In: Ekberg O, editor. Dysphagia, Med. Radiol. Diagnostic Imaging. Berlin Heidelberg: Springer-Verlag; 2011. p. 19–47. DOI: http://doi.org/10.1007/174_2011_481

[30] Ashrafi F, Nematbakhsh M, Nasri H, Talebi A, Mohsen Hosseini S, Ashrafi M. Vacuolization, Dilatation, Hyaline Cast, Debris or Degeneration: Which One Is the Most Correlated Item to Score the Kidney Damage Pathologically in Cisplatin Induced Nephrotoxicity Model? Nephrourol Mon. 2013;5(4):918–920. DOI: http://doi.org/10.5812/numphly.8623

Received: 26 October 2016

Revised: 1 November 2016

Accepted: 3 November 2016