Existence of positive equilibria for quasilinear models of structured population

Stefano Bertoni∗

September 9, 2015

Abstract

In this paper I prove the existence of a positive stationary solution for a generic quasilinear model of structured population. The existence is proved using Schauder’s fixed point theorem. The theorem is applied to a hierarchically size–structured population model.

Keywords: structured population model, stationary solution, net reproduction function, compactness, Schauder’s fixed point theorem.

1 Introduction

The size–structured population model IBVP (Initial Boundary Value Problem, see [3]), in the autonomous case, has the following general form:

\[
\begin{aligned}
 u_t + (g(x, u(t, \cdot)) u_x + \mu(x, u(t, \cdot)) u &= 0 \\
 g(0, u(t, \cdot)) u(t, 0) &= \int_J \beta(x, u(t, \cdot)) u(t, x) \, dx,
\end{aligned}
\]

(1)

where \(x \in J = [0, \infty) \) represents age or size, \(t \geq 0 \) is time, \(u \) is the population density, \(u(t, \cdot) \in L^1(J) \) for each \(t \geq 0 \).

The model equations involve the following vital rates: \(\mu = \mu(x, u) \) — mortality, \(\beta = \beta(x, u) \) — fertility and \(g = g(x, u) \) — growth rate. These coefficients depend on the size \(x \) and on the total population behaviour through \(u \) in a general (also nonlinear) way.

The total population at the instant \(t \) is given by \(P(t) = \int_J u(t, x) \, dx \), the flow of the newborns is \(B(t) = \int_0^\infty \beta(x, u(t, \cdot)) u(t, x) \, dx \). In this paper we obtain for Pbm. (1) a theorem of existence of a positive equilibrium.

∗Dipartimento di Matematica, Università di Trento (Italy). E-mail: bertoni@science.unitn.it
In general, however, the well-posedness of this class of PDE models is still an open question ([4], Introduction).

The first nonlinear population model was introduced and analysed in the seminal paper [8] of Gurtin and MacCamy in 1974, with nonlinearities depending only on $P(t)$. It was followed in the eighties by several other papers with generic nonlinearities in u for the case $g = 1$ e.g. by J. Prüss that gave some sufficient conditions for the existence of a positive equilibrium [9] [10] [11].

In 2003 Diekmann et al. [5] managed the case of nonconstant g and n scalar biomasses $S_1, S_2, \ldots S_n$ depending on u, using a very different mathematical formulation; they proved the existence of nonzero equilibria and gave bifurcation conditions.

In 2006 Farkas e Hagen [7] studied the stability of stationary solutions of the IBVP, in the case of nonlinear dependence on the total population P, via linearization and semigroup and spectral methods. They give stability criteria in terms of a modified net reproduction rate.

In this paper I establish Thm. 5, that gives sufficient conditions for the existence of a positive equilibrium for Pbm. (1), under generic dependence on u. I use a compactness hypothesis. I set also preliminarily some positivity and boundedness hypotheses on the coefficients μ and g.

The problem is transformed in a fixed point problem and the existence of a solution is obtained through Schauder’s fixed point theorem.

However there is no uniqueness in general. I give a made–up counterexample. I give also a condition for the non–existence of positive equilibria using suitable assumptions of monotonicity on the coefficients μ, g and β.

At the end of Sec. 3 I show as application the existence of a positive stationary solution for a nonlinear model of structured population of Ackleh and Ito [2].

In the Appendix, I resume some propositions on compactness.

2 Preliminaries

2.1 Notations

$J = [0, \infty)$ is the interval of definition of x.

$<g, f> = \int_J g(x) f(x) \, dx$ for $f \in L^1(J)$ and $g \in L^\infty(J)$.

$L^1_+(J) = \{ \phi \in L^1(J) \mid \phi(x) \geq 0 \mathrm{\ a.e.\ } x \in J \}$ is the positive cone of $L^1(J)$.

Given two functions $u_1, u_2: [0, \infty) \to [0, \infty)$, we will write $u_1 < u_2$ if $0 \leq u_1(x) \leq u_2(x)$ and $u_1 \neq u_2 \mathrm{\ a.e.\ } x \in J$. The relation $<$ is a partial order on the cone $L^1_+(J)$.

If $e_1, e_2 \in L^1(J)$ and $e_1 < e_2$, then write

$[e_1, e_2] = \{ \phi \in L^1(J) \mid e_1(x) \leq \phi(x) \leq e_2(x) \mathrm{\ a.e.\ } x \in J \}$.

Functions $f(u(\cdot))$ defined for $u \in L^1_+(J)$ will be usually briefly denoted as $f(u)$.

2
2.2 Hypotheses and definitions

Hypothesis (A)

a) The functions \(x \mapsto g(x,u), \mu(x,u) \) are \(L^\infty(J) \) for each \(u \in L_1^+(J) \) and there exist constants \(\underline{g}, \bar{g}, \underline{\mu}, \bar{\mu} \):

\[
0 < \underline{g} \leq g(x,u) \leq \bar{g}, \quad 0 < \underline{\mu} \leq \mu(x,u) \leq \bar{\mu}
\]

for each \(u \in L_1^+(J) \), a. e. \(x \in J \).

b) \(\beta(x,u) \geq 0 \) for a.e. \(x \in J \), for each \(u \geq 0 \) and there exists a constant \(\bar{\beta} > 0 \):

\[
\beta(x,u) \leq \bar{\beta} \text{ for each } u \geq 0, \text{ a.e. } x \in J.
\]

c) \(u \mapsto g(x,u), \mu(x,u), \beta(x,u) \) are continuously depending on \(u \in L_1^+(J) \) for a.e. \(x \in J \).

Auxiliary functions. For \(x \in J, u \in L_1^+(J) \), we set:

\[
\Pi(x,u) := \frac{1}{g(x,u)} e^{-\int_0^x \frac{\mu(y,u)}{g(y,u)} \, dy}.
\]

Under the boundedness assumptions of Hyp. (A), we define the auxiliary functions \(e_1, e_2 \):

\[
e_1(x) := e^{-(\bar{\mu}/\bar{g}) x} \frac{x}{\bar{g}}, \quad e_2(x) := e^{-(\underline{\mu}/\underline{g}) x} \frac{x}{\underline{g}}.
\]

Lemma 1 (Properties of \(\Pi \)) Using the assumptions on the lower and upper bounds of \(\mu \) and \(g \), given in Hyp. (A), we obtain for each \(x, u \):

\[
e_1(x) \leq \Pi(x,u) \leq e_2(x).
\]

Moreover \(\Pi(\cdot, u) \in L^1(J) \cap L^\infty(J) \) for each \(u \in L_1^+(J) \).

The interval \([e_1, e_2]\) is a closed convex subset of \(L_1^+(J) \).

"Onion" set. Set \(U := \bigcup_{\lambda > 0} [\lambda e_1, \lambda e_2] \).

It is simple to prove that the sets \(U \) and \(\overline{U} = U \cup \{0\} \) are convex.

Hypothesis (C) (Uniformly bounded variation).

\[
\forall T > 0 : \lim_{h \to 0} \sup_{u \in U} \int_0^T |g(x+h,u) - g(x,u)| \, dx = 0.
\]

We mean that \(g \) is extended as 0 for \(x < 0 \).

Remark 1 Condition (C) means that \(\sup \) has to be considered on functions of the form \(u = \lambda v \), with \(v \in [e_1, e_2] \). Since \(U \neq L_1^+(J) \) (e.g. \(x^{-1/2} e^{-x} \notin U \)) this is an effective reduction of the requests.

Under Hyp. (A), Condition (C) is satisfied also for \(u = 0 \) (therefore it holds for \(u \in \overline{U} \)) because \(g(x,u) \) is continuous in \(u \).
Hypothesis (D)

∀T > 0 : ∃kT > 0 : |g(x, u)| ≤ kT, for each u ∈ U and a.e. x ∈ [0, T].

Hyp. (D) implies Hyp. (C).

Hypothesis (Lβ) (Limit of β). For each x ≥ 0,

\[
\lim_{\|u\|_1 \to +\infty, u > 0} \beta(x, u) = 0.
\]

Definition 2 (Net reproduction function) (Cmp. ([10], p. 330) For u ∈ L^1(J)

\[
R(u) := \int_J \beta(x, u) \Pi(x, u) \, dx.
\]

Under Hyp. (A), R(u) is well-defined and if also (Lβ) holds, then

\[
\lim_{\|u\|_1 \to \infty, u \geq 0} R(u) = 0.
\]

2.3 Compactness

The (closed, convex) interval [e_1, e_2] ⊆ [0, e_2] ⊆ L^1(J) is invariant with respect to Π, i.e. Π(·, [e_1, e_2]) ⊆ Π(·, [0, e_2]) ⊆ [e_1, e_2].

Lemma 3 (Compactness) Under Hyp. (A) and (C), the function u ↦ Π(·, u), defined on U and U in L^1(J), is compact.

The lemma of compactness is proved in Appendix, Sec. [B].

3 Existence of equilibria

In this section we prove the existence of a positive stationary solution u^* for Pbm. ([1]) as fixed point of a suitable transformation of L^1(J).

3.1 Stationary solutions

The equilibria are the time-independent solutions u = u^*(x) of Problem ([1]). These are determined from

\[
\left\{ \begin{array}{l}
\frac{\partial}{\partial x} \left(g(x, u^*(\cdot)) u^*(x) \right) + \mu(x, u^*(\cdot)) u^*(x) = 0 \\
g(0, u^*(\cdot)) u^*(0) = \int_0^\infty \beta(x, u^*(\cdot)) u^*(x) \, dx
\end{array} \right.
\]

and (see [10], Eq. (8)) they corresponds to the solutions of the functional equation

\[
u(x) = \int_0^\infty \beta(x', u) u(x') \, dx' \frac{\mu(x, u)}{\mu(x, u)} e^{-\int_0^x \frac{\mu(y, u)}{\mu(y, u)} \, dy} \quad \text{for } x \in J,
\]

the only premises being g > 0, \(\frac{\mu(x, u)}{\mu(y, u)} \in L^1_{\text{loc}}(J) \).

This equation is translated immediately in a fixed point problem.
Proposition 4 Under Hyp. (A) the stationary solutions of Pbm. (1) are the fixed points of the functional $T: L^1(J) \to L^1(J)$ defined as

$$
(T \phi)(x) = \frac{G(\phi)}{g(x, \phi)} e^{-\int_0^x \frac{g(x, \phi(y))}{\phi(y)} dy}
$$

and vice versa, where $G: L^1(J) \to \mathbb{R}$ is given by

$$
G(\phi) = \int J \beta(x, \phi(\cdot)) \phi(x) dx,
$$

for $\phi \in L^1(J)$. The functional equation $u = Tu$ can be written in a more compact form as

$$
u(x) = G(u(\cdot)) \Pi(x, u(\cdot)),
$$

that we discuss.

Theorem 5 (Existence of equilibria) Assume Hyp. (A) and (C). Suppose there is a constant $\rho_0 > 0$ such that for $u \in L^1(J)$, $\|u\|_1 \geq \rho_0$ implies $R(u) \leq 1$. If $R(0) > 1$ then Problem (1) admits at least a positive stationary solution. The solution satisfies the functional equation

$$
u^*(x) = \lambda^* \Pi(x, u^*(\cdot)),
$$

where $\lambda^* > 0$ is a suitable number and the corresponding population is constant and given by $P^* = \lambda^* \|\Pi(\cdot, u^*)\|_1$.

From (6) we have the following statement:

Corollary 6 Under Hyp. (A), (C) and (L$_\beta$), if $R(0) > 1$ then Problem (1) admits a positive stationary solution.

3.2 Proof of Thm. 5

Prop. 4 reduces the search for equilibria of Pbm. (1) to Eq. (10).

$G(0) = 0$ gives the trivial equilibrium $u = 0$ so we exclude this case. The proof is divided into two steps.

(i) Splitting variables. Consider Eq. (10): assume that u is a solution of

$$
\begin{align*}
\lambda &= G(u) (\neq 0) \\
v &= \frac{1}{\lambda} u.
\end{align*}
$$

By substitution we obtain: $\lambda v = \lambda \Pi(x, \lambda v)$ and $\lambda = \int_0^\infty \beta(x, \lambda v) \lambda \Pi(x, \lambda v) dx$ so that $1 = \int_0^\infty \beta(x, \lambda v) \Pi(x, \lambda v) dx$. Hence $(v, \lambda) \in [e_1, e_2] \times (0, \infty)$ is a solution of the system:

$$
\begin{align*}
v(x) &= \Pi(x, \lambda v(\cdot)), \\
R(\lambda v) &= 1.
\end{align*}
$$

5
Vice versa, if \((v, \lambda)\) is a solution of (12), then \(u = \lambda v\) is a solution of the equation
\[u = G(u) \Pi(\cdot, u). \]

The condition \(R(0) > 1\) implies that \(\lambda^* \neq 0\). For each solution \((v, \lambda)\) of Pbm. (12) we have \((v, \lambda) \in [e_1, e_2] \times (0, \infty)\).

(ii) **Fixed point.** In this step we apply Schauder’s fixed point theorem — see [6], [12]. We write Pbm. (12) in the form
\[
\begin{align*}
\begin{bmatrix} v(-) = \Pi(\cdot, \lambda v), & v \in [e_1, e_2], \\
\lambda = \max\{\lambda + R(\lambda v) - 1; 0\}, & \lambda \geq 0
\end{bmatrix}
\end{align*}
\]
that is \((v, \lambda) = A((v, \lambda))\), with \((v, \lambda) \in [e_1, e_2] \times (0, \infty)\) and \(A\) defined by the second members of (13).

The map \(u \mapsto \Pi(\cdot, u)\) is continuous and compact on \(U\); the function \(R(u)\) is continuous and bounded from \(L^1_u(J)\) to \((0, \infty)\), since \(0 < R(u) \leq \beta \|e_2\|_1\); therefore \(A: [e_1, e_2] \times (0, \infty) \to L^1(J) \times (0, \infty)\) is continuous and compact.

\(A_1(v, \lambda) := \Pi(\cdot, \lambda v)\) has image in \([e_1, e_2]\).

Now prove that for a fixed \(M > \frac{\rho_0}{\|e_1\|_1}, \frac{\rho_0}{\|e_1\|_1} + \beta \|e_2\|_1 - 1\), then
\(A_2(v, \lambda) := \max\{\lambda + R(\lambda v) - 1; 0\}\) maps \([e_1, e_2] \times [0, M]\) on \([0, M]\).

If \(\frac{\rho_0}{\|e_1\|_1} \leq \lambda \leq M\), then \(\lambda \geq \frac{\rho_0}{\|v\|_1}\) and \(R(\lambda v) \leq 1\), so that
\[\lambda + R(\lambda v) - 1 \leq 1 + \lambda - 1 = \lambda \leq M. \]

If \(0 \leq \lambda < \frac{\rho_0}{\|e_1\|_1}\), then \(\lambda + R(\lambda v) - 1 \leq \frac{\rho_0}{\|e_1\|_1} + \beta \|e_2\|_1 - 1 \leq M\).

So \(A\) maps \([e_1, e_2] \times [0, M]\), a closed convex subset of \(L^1(J) \times (0, \infty)\), in itself.

Since \(A\) is compact, by Schauder’s fixed point theorem, Eq. (13) has at least a fixed point \((v^*, \lambda^*) \in [e_1 e_2] \times [0, M]\) and it is different from 0 for the initial remark; \((v^*, \lambda^*)\) is a fixed point also for Eq. (12).

Finally, Eq. (10) is satisfied by \(u^* = \lambda^* v^*\) and the corresponding stationary population is
\[P^* = \int_J u(x) \, dx = \lambda^* \int_J v^*(x) \, dx. \]

Remark 2 \(R(0) > 1\) implies \(\beta \|e_2\|_1 > 1\), therefore in the proof it is possible to assume \(M = \frac{\rho_0}{\|e_1\|_1} + \beta \|e_2\|_1 - 1\) and to have the estimate \(P^* \leq M \|e_2\|_1\).

3.3 A counterexample

Thm. [5] is a sufficient condition but not a necessary one. We can have also \(R(0) < 1\) if there exists \(u_0 \in L^1_u(J)\) such that \(R(u_0) > 1\). In this case it is possible to need other conditions on \(u_0\) to prove a statement of existence. The idea is to construct explicitly an example with a positive equilibrium but \(R(0) < 1\).

Set \(\mu(x, u) = g(x, u) = g\) so that \(\Pi(x, u) = \frac{1}{g} e^{-x}\), independent of \(u\).
Define $e_0(x) := e^{-x}$. Take $F : L^+_1(J) \to \mathbb{R}$, $u \mapsto F(u)$, such that $F(0) < 1$, $F(e_0) = 1$ and $\lim_{\|u\|_1 \to \infty, u > 0} F(u) = 0$, F continuous but obviously nonmonotonic.

Now set $\beta(x, u) = 2g(1 - e^{-x})F(u)$ so that $R(u) = F(u)$.

Then $R(e_0) = 1$ and $u = e_0$ is a solution of the fixed point equation and a positive equilibrium.

As example of function F we can take $F(u) := f(\|u\|_1)$, where

$$f(a) := \begin{cases}
\frac{1}{2} + 3a & \text{for } 0 \leq a \leq \frac{1}{2}, \\
\frac{3}{2} - 2a & \text{for } \frac{1}{2} < a \leq \frac{5}{4}, \\
\frac{e^{-a}}{2} & \text{for } a > \frac{5}{4}.
\end{cases}$$

(14)

In this case we have two positive equilibria, $u(x) = e^{-x}$ and $u(x) = \frac{1}{6} e^{-x}$, corresponding to the two solutions of $f(a) = 1$, i.e. $a = 1$, $a = 1/6$.

3.4 A nonexistence result and a sufficient and necessary condition

Under suitable monotonicity hypotheses, $R(0) > 1$ becomes a necessary and sufficient condition.

A function f, defined on ordered spaces, is increasing if $u_1 < u_2$ implies $f(u_1) < f(u_2)$. The other monotonicity definitions are extended in the same ways.

Now assume $u \in L^+_1(J)$ in the following statements.

Assumption (M) (Monotonicity)

- $u \mapsto \mu(x, u)/g(x, u)$ is nondecreasing (or increasing) for each $x \geq 0$ (mortality–growth ratio),
- $u \mapsto \beta(x, u)/\mu(x, u)$ is decreasing (or nonincreasing) for each $x \geq 0$ (fertility–mortality ratio),
- $x \mapsto \beta(x, u)/\mu(x, u)$ is nondecreasing (or increasing) for each u.

The hypotheses between parentheses are in alternative: $u \mapsto \beta/\mu$ must be strictly decreasing and the other two functions are only nondecreasing, or, vice versa, $u \mapsto \beta/\mu$ nonincreasing and the others have to be two strictly increasing.

To prove the nonexistence condition we need the following statement:

Lemma 7 (Monotonicity) Assume Hypotheses (A), (C), (L_{β}) and Assumption (M).

Then the functional $R : L^+_1(J) \to (0, \infty)$ is continuous, decreasing and

$$\lim_{\|u\|_1 \to +\infty, u > 0} R(u) = 0.$$
I do not give the details of the proof of this lemma, but the main idea is to write \(R(u) \) as \(\int_J dx \frac{R(x,u)}{\mu(x,u)} \int_J dy \) and to study the properties of monotonicity of the integral \(\int_J dx \gamma(x) e^{-\int_{x_0}^x \mu(y)g(y) dy} \) with respect to suitable \(\gamma \) and \(h \).

For a detailed proof, see Bertoni [1].

Proposition 8 (Non existence of positive stationary solutions)

Under Hypotheses of Lemma 7, if \(R(0) \leq 1 \) then Pbm. [1] has no positive stationary solutions.

Proof. If \(R(0) \leq 1 \) then \(R(u) = 1 \) does not have positive solutions by monotonicity.

Since existence of positive equilibria is equivalent to positive solutions of \(u = G(u) \Pi(\cdot, u) \) and so of Eq. (12), the conclusion follows.

As consequence, Condition \(R(0) > 1 \) becomes a necessary and sufficient condition of existence of positive equilibria for Pbm. [1] under Hyp. (A), (C), (L\(\beta \)) and (M).

3.5 Applications

Ackleh e Ito [2] consider a hierarchically size-structured population model that can be reported to Eq. (1). They proved existence of measure-valued solutions for the Cauchy problem. We give a condition of existence of a stationary positive solution for a simple case of this model, by taking

\[
 g(x, u(\cdot)) = g + (\overline{g} - g) e^{-\int_{x_0}^x u(y) dy}.
\]

Hyp. (D) is equivalent to

\[
 \forall T > 0 : \sup_{u \in U} \sup_{0 \leq x \leq T} |g_x(x, u)| < \infty
\]

that is, for (15):

\[
 \forall T > 0 : \sup_{u \in U} \sup_{0 \leq x \leq T} |e^{-\int_{x_0}^x u(y) dy} \cdot u(x)| < \infty.
\]

For \(u = \lambda v \) with \(v \in [e_1, e_2] \) we use the inequality \(\sup_{\lambda > 0} \lambda e^{-\alpha \lambda} = \frac{1}{\alpha e} \): therefore

\[
 e^{-\int_{x_0}^x u(y) dy} \cdot u(x) = \lambda v(x) e^{-\lambda \int_{x_0}^x v(y) dy} \leq \frac{v(x)}{e \int_{x_0}^x v(y) dy} \leq \frac{e_2(x)}{e \int_{x_0}^x e_1(y) dy} < \infty.
\]

Assume \(\mu \) and \(\beta \) to satisfy Hyp. (A) and (L\(\beta \)). The other conditions on \(g \) of Cor. [6] are trivially satisfied, so we obtain the existence of at least one positive stationary solution if

\[
 \int_J dx \beta(x, 0) e^{-\int_{x_0}^x \mu(y, 0) dy} > \overline{g}.
\]
Appendix

A Compactness conditions

As well known, the conditions for the relative compactness of a set \(W\) in \(L^1(0, \infty)\) are given by the Riesz–Kolmogorov Theorem. We use the following version:

i) \(W\) is bounded;

ii) \(\lim_{T \to \infty} \sup_{w \in W} \int_{x > T} |w(x)| \, dx = 0.\)

iii) \(\lim_{h \to 0} \sup_{u \in W} \int_0^T |w(x + h) - w(x)| \, dx = 0\) for each \(T > 0.\)

Sets of continuous, uniformly bounded variation functions in \(L^1(0, \infty)\) are (relatively) compact.

B Compactness of \(\Pi\) (Proof of Lemma 3)

For each \(u \in L^1_+(J)\), the function \(\Pi(x, u)\) defined by (2) has the following properties:

1. \(\Pi(\cdot, u) \in [e_1, e_2]\), that implies (i) and (ii) of the Riesz–Kolmogorov Theorem;

2. \(x \mapsto \Pi(x, u)\) is continuous.

Now we prove (iii) for \(u \in \mathcal{U}\). Let be \(T > 0, h > 0:\)

\[
\int_0^T |\Pi(x+h, u) - \Pi(x, u)| \, dx \leq \\
\leq \int_0^T dx \left(e^{\int_0^x \frac{e^{y+h} \mu(y,u)}{g(y,u) g(x+y,u)} dy} - 1 \right) + \\
+ \int_0^T dx \left(e^{\int_0^x \frac{e^{y+h} \mu(y,u)}{g(y,u) g(x+y,u)} dy} - 1 \right) \\
\leq \frac{T \|T\|}{g^2} h + \frac{T \|T\|}{g^2} \int_0^T dx |g(x+h, u) - g(x, u)|,
\]

therefore, using Hyp. (C) for \(u \in \mathcal{U}\), this completes the proof. The case \(h < 0\) is managed analogously.

We obtain the \(\Pi\) sends \(U\) in a relatively compact subset of \([e_1, e_2]\) in the norm of \(L^1(J)\) i.e. the set \(\Pi(\cdot, U)\) is relatively compact.

Acknowledgements. I thank A. Pugliese (Univ. of Trento) for the discussions and the remarks, the example in Sec. 3.5 and a suggestion to simplify the proof of Thm. 3.
References

[1] S. Bertoni, *Monotonicity of a Class of Integral Functionals*, preprint \texttt{arXiv:1503.05390} (2015).

[2] A. S. Ackleh, Kazufumi Ito, *Measure–valued solutions for a hierarchically size–structured population*, J. Differential Equations 217 (2005), 431-455.

[3] A. Calsina, Joan Saldana, *A model of physiologically structured population dynamics with a nonlinear individual growth rate*, J. Math. Biol. 33 (1995), 335-364.

[4] –, *Basic Theory for a Class of Models of Hierarchically Structured Population Dynamics with Distributed States in the Recruitment*, Mathematical Models and Methods in Applied Sciences 16, No. 10 (2006), 1695–1722.

[5] O. Diekmann, M. Gyllenberg and J.A.J. Metz, *Steady-state analysis of structured population models*, Theoretical Population Biology 63 (2003), 309-338.

[6] L. C. Evans, “Partial Differential Equations”, American Mathematical Society, Providence, 1998.

[7] Jozsef Z. Farkas, Thomas Hagen, *Stability and regularity results for a size-structured population model* J. Math. Anal. Appl. 328 (2007), 119–136.

[8] M. E. Gurtin, R. C. MacCamy, *Nonlinear age–dependent population dynamics*, Arch. Rat. Mech. Anal. 54 (1974), 281–300.

[9] Jan Prüss, *Equilibrium solutions of age-specific population dynamics of several species*, J. Math. Biol. 11, 1 (1981), 65–84.

[10] –, *On the qualitative behaviour of populations with age-specific interactions*, Comp. Math. Appl. 9, 3 (1983), 327–339

[11] –, *Stability analysis for equilibria in age-specific population dynamics*, Nonlin. Analysis TMA 7, 12 (1983), 1291–1313.

[12] E. Zeidler, “Nonlinear Functional Analysis and its Applications, Vol. I – Fixed Point Theorems”, Springer–Verlag, New York, 1986.