Dry-cured ham *Kraški pršut* seasoning losses as affected by PRKAG3 and CAST polymorphisms

Martin Škrlep,¹ Marjeta Čandek-Potokar,¹ Véronique Santé-Lhoutellier,² Pere Gou³

¹Kmetijski inštitut Slovenije, Ljubljana, Slovenia
²UR 370 Qualité des produits animaux, Centre INRA, Saint Genès Champanelle, France
³Technología de los Alimentos, IRTA, Monells, Spain

Abstract

Association between polymorphisms on PRKAG3 (*Ile199Val*) and CAST (*Lys249Arg* and *Ser638Arg*) genes and dry ham seasoning losses was studied. A total of 724 green hams (same pig crossbreed, same pig producer) were selected, genotyped (PCR-RFLP) and processed according to the rules of consortium for dry-cured ham *Kraški pršut*. Weight losses after each processing phase were recorded. We observed significant effect of interaction between gene polymorphism and dry ham producer on seasoning losses, indicating that the effect of studied genes differ in relation to manufacturing practice or product type, despite narrow consortium constraints. The analysis was thus made separately for each producer; in case of producer B, PRKAG3 affected salting, resting and overall losses (*Val/Val* higher than *Ile/Ile* or *Ile/Val*) but in case of producer A, the effect of PRKAG3 was significant only for salting losses (*Ile/Val* lower than *Ile/Ile* or *Ile/Val*). Effects of CAST polymorphisms were significant only in case of producer A; CAST249 Arg/Arg hams showed the highest first salting, drying, and overall seasoning losses, whereas CAST638 Arg/Arg hams had the highest drying, ripening, and overall seasoning losses. In conclusion, PRKAG3 and CAST polymorphisms were associated with seasoning losses, important from economic viewpoint, but also for salt intake and product quality.

Introduction

A dynamics of ham dehydration and salt intake is important for activities of endogenous enzymes (Buscalihton and Monin, 1994; Tolrda and Flores, 1998) and consequently for the characteristics of the final product. There are two key factors determining production yields and quality of dry ham, the preservation technique and raw material properties (Tolrda, 2002). In general, according to Russo and Nanni Costa (1995), higher seasoning losses are associated with leaner hams or low quality (PSE) meat so there is an antagonism between leanness, seasoning yield and quality of dry ham. Recent reviews (Garnier et al., 2003; Rosenvoid and Anderson, 2003; Mancini and Hunt, 2005; Barbut et al., 2008) have documented the association between certain genetic polymorphisms and carcass properties or meat quality i.e. water holding capacity, pH, colour, fatness and ham weight. Among the investigated genes, PRKAG3 and CAST were considered as promising. PRKAG3 gene encodes a specific isoform of γ subunit of the adenosine monophosphate dependent protein kinase (AMPK), an enzyme with the key role in cell energy metabolism regulation. Five nonsynonymous substitutions in the PRKAG3 gene have been demonstrated (Milan et al., 2000). Besides the well known R¹¹¹⁷ mutation (*Arg200Gln* substitution), causing the so called acid meat (Sellier and Monin, 1994), the *Ile199Val* polymorphism has been proven to affect carcass leanness, meat colour properties, muscle glycogen content, muscle pH and water holding capacity (Ciobanu et al., 2001; Lindahl et al., 2004 a, b; Enfält et al., 2006; Otto et al., 2007; Ramos et al., 2008; Škrlep et al., 2009). The second gene (CAST) encodes for calpastatin, a physiological inhibitor of calpain enzymes (Goll et al., 2003) that are responsible for early post mortem muscle proteolysis (Koosmarae and Geesink, 2006) and meat tenderization (Koosmarae, 1992). Various polymorphisms on CAST gene have been associated to pork texture, backfat thickness, meat colour, leanness, pH value and also dry-cured ham weight, water content and colour (Emnett et al., 2000; Kuryt et al., 2003; Ciobanu et al., 2004; Stalder et al., 2005; Krzęcio et al., 2005; 2008). Although there is some evidence of PRKAG3 or CAST effect on pork quality, the information regarding the influence of these polymorphisms in regard to dry curing process is lacking. An association between PRKAG3 or CAST genetic polymorphisms and green ham properties was observed in our previous study (Škrlep et al., 2010), which could influence dry ham processing. For that reason we were interested in the evaluation of the effect of three polymorphisms, PRKAG3 *Ile199Val*, CAST *Arg249Iys* and CAST *Ser638Arg* on the dynamics of dry ham seasoning losses taking into consideration two different producers (processing techniques).

Materials and methods

Animals and slaughter

The hams included in the present study (*n* = 724) were harvested from commercial pig fatteners (198±9 days old) originating from one pig producer and one crossing (maternal Landrace×Large White and paternal line Duroc×Hampshire). Pigs from this herd were previously demonstrated to be free of *RYR1* and *RN* mutations (*Škrlep et al., 2009*). Pigs were slaughtered in one commercial abattoir in ten batches within ten weeks period (from October to January) according to the routine slaughter procedure i.e. CO₂ stunning, vertical exsanguination, vapour scalding, dehairing and evisceration followed by veterinary inspection and carcass classification. Carcasses were...
cooled (by storage at 0-2°C) overnight. The following day the hams were cut off the carcass between 6th and 7th lumbar vertebra and sent to the producer of dry ham. Two producers of dry hams participated in the present study and received hams in alternating weeks giving in total five batches of hams per each producer.

Genotype determination
Small pieces of skin tissue were taken from each animal for genotyping. After the final selection of hams, the samples were genotyped using PCR-RFLP method according to Ciobanu et al. (2001; 2004) for PRKAG3 He139Val and for CAST Arg249Lys and CAST Ser638Arg polymorphisms.

Green ham evaluation
Upon arrival to the producer (second day after the slaughter) the hams were trimmed into a prescribed shape and selected according to consortium rules for dry ham Kraški pršut i.e. for green ham weight (≥9.5 kg), subcutaneous fat thickness below caput ossis femoris (≥10 mm) and acceptable visual appearance (absence of skin lesions, good muscle cohesion, without soft, pale, exudative aspect). The measurements of pH value 48 hours post-mortem were taken with pH Meter MP120 (Mettler-Toledo GmbH, Schwarzenbach, Switzerland) in semimembranosus muscle (SM). An average of measurements (pH SM) on two locations was calculated; first measurement was taken on the caudal edge of the open surface of SM muscle and the second on the inner edge of SM muscle next to the caput ossis femoris.

Ham processing
Seasoning losses were registered after each processing step (first salting, second salting, resting, drying, and ripening). They were calculated as percentage of ham weight prior to each processing step. Overall seasoning losses were expressed as percentage of trimmed ham weight. According to the consortium rules for dry ham Kraški pršut only sea salt is allowed as the conservation additive. Duration and steps of the seasoning are presented in Figure 1. Green hams were first put to salting for 2-3 weeks at 2-4°C with two salting stages; the first salting (salting 1) lasted 7 days and the second salting (salting 2) 7 or 14 days, depending on the processor. After the salting had been completed, the hams were left to rest for about 9-10 weeks at 4-6°C and 70-85% of relative humidity. Following this equilibration period, the hams were submitted to drying at 14-20°C and 60-80% relative air humidity. When hams (lot average) attained a required weight loss (25%), the open surface of the hams was coated with a mixture of fat, flour and spices to permit ripening while preventing further major desiccation. According to the consortium rules for dry ham Kraški pršut a minimum of 33% weight losses (lot average) and 12 months of age is required. In this experiment, the hams were boned and prepared for sale after 60 weeks of processing.

Statistical analysis
Analysis of variance was performed using procedure GLM of statistical package SAS (2001). The model consisted of the fixed effects of dry-cured ham producer, batch within dry-cured ham producer, marker genotype, and interaction between marker genotype and dry-cured ham producer. No significant interaction between marker genotype and dry-cured ham producer was observed in case of raw material traits. Due to the detected significant effect of interaction marker genotype×dry-cured ham producer on seasoning losses, the effect of individual gene was analysed within dry-cured ham producer (SLICE option). In case of significant effects, least squares means were compared (LSMEANS, PDIFF and Tukey-Kramer option). Additionally, CAST haplotypes were compared. Haplotypes inferred between CAST249 and CAST638 were analysed considering animals having 0, 1 or 2 copies of the haplotype in question using equivalent model to the one applied for single marker tests. Here also, the significant effect of the interaction between dry-cured ham producer and two haplotypes (Arg249/Arg638 and Arg249/Ser638) was detected so the results were presented within dry-cured ham producer.

Trait	Producer A	LSM±SE	Producer B	P
Raw material				
Ham, kg	15.0±0.1	15.0±0.1	0.845	
Trimmed ham, kg	11.1±0.1	10.6±0.1	0.007	
Ham fat, mm	13.6±0.2	13.4±0.2	0.578	
SM pH	5.71±0.01	5.80±0.01	0.000	
Seasoning loss				
Salting 1	2.3±0.03	2.3±0.02	0.279	
Salting 2	1.9±0.02	1.6±0.02	0.000	
Resting	18.0±0.08	17.1±0.08	0.000	
Drying	7.9±0.05	6.3±0.05	0.000	
Ripening	12.0±0.11	13.8±0.11	0.000	
Overall	36.3±0.17	35.6±0.17	0.006	

*Ham was weighed when cut off the carcass and after the trimming into a prescribed shape. Ham fat thickness was measured on a trimmed ham below caput ossis femoris. The value of pH is an average of two measurements taken at two different sites in m. semimembranosus. Seasoning loss is expressed as % of ham weight prior to each processing step. Overall seasoning loss is expressed as % of trimmed ham weight. SM, semimembranosus muscle.

Results and discussion
Differences between dry-cured ham producers
Due to the absence of any significant interaction between marker genotype and dry-cured ham producer on raw material traits, these are presented only in relation to the producer. Moreover, the influence of studied genetic polymorphisms on raw material quality has been presented and discussed in our previous article (Škrlep et al., 2010). In spite of the fact that two producers respected the same general consortium rules regarding raw material quality, processing duration and constraints on seasoning loss, we could note differences between them (Table 1).
meat (Maggi and Oddi, 1988; Griot et al., 1998). It can also be further supported with our observation during the experiment, that producer B was stricter in selection according to ham aspect and muscle cohesion (Candek-Potokar et al., 2007), thus very likely rejecting more hams with lower pH. Although overall processing duration was similar for both producers, differences in duration of individual processing steps could be observed (Figure 1). Thus producer A, compared to producer B, practices longer salting, resting and drying, but shorter ripening period. As a result, the rate of ham dehydration is different for two producers (Figure 2); we could observe that producer A maintained lower dehydration rate compared to producer B.

In case of producer A we observed higher second salting, resting and drying losses (Table 1), due to longer duration of these steps. Only the ripening losses were higher in case of producer B, in agreement with longer ripening period. Ham seasoning losses are not important just from the economic point of view, but also for dry ham properties. The extent of weight loss at the end of seasoning is a key factor for water content, an attribute that is important for sensory properties of dry ham such as saltiness and texture (Ruiz-Ramirez et al., 2005) and also differentiates the products of the same type. For example, in the case of Italian prosciutto, final processing losses can vary from 20 to 30% (Russo and Nanni Costa, 1995) with the average values about 27% (Nanni Costa et al., 1993), while in the case of Slovenian Kraski prišt seasonal losses reported are higher and in the range of 34-37% (Candek-Potokar et al., 2002). Since the Slovenian consortium of Kraski prišt producers prescribes minimal extent of dehydration losses (33%) and minimal processing duration (12 months), the options for product differentiation between the producers are limited. As observed in the present study, the way that producers manage to give certain uniqueness to their products is trough water loss dynamics, which can be expected to influence the activity of endogenous enzymes and consequently sensory quality (Toldra, 2006).

Effect of PRKAG3

Significant interaction between Ile199Val polymorphism and producer were found for seasoning losses for the initial seasoning steps (salting, resting) and consequently at the end of seasoning (data not shown). This result implies that the genotype of PRKAG3 could be affected by processing technique and intensity of raw material selection. Therefore, the effect of the PRKAG3 genotype was observed separately for each producer (Table 2).

PRKAG3 effect was more pronounced in producer B, which did a more severe trimming and had higher SM pH. In case of producer A, the effect of PRKAG3 genotype was significant only for the first salting phase, with Ile/Val hams exhibiting higher salting losses as Ile/Ile or Val/Val. As a result, we could observe a bit lower (P<0.10) overall seasoning losses for Ile/Val hams. In case of producer B, the PRKAG3 genotype affected significantly higher weight losses during initial steps (first salting and resting), and consequently accumulated losses at the end of seasoning, with Val/Val hams exhibiting the highest losses after salting, resting and consequently overall losses. It is noteworthy that both producers received equivalent material (insignificant interaction between PRKAG3 genotype and producer on raw material), so the effect of PRKAG3 genotype may be related to its effect on green ham traits (fat thickness, meat quality) presented and discussed in our previous study (Škrlep et al., 2010). Namely, in the mentioned study, Ile/Val pigs had hams with the thickest fat, while Val/Val pigs exhibited the lowest meat quality. Contrary to our results, in the few comparable studies on US country dry hams (Stalder et al., 2005; Ramos et al., 2008) no significant effect of PRKAG3 genotype was observed on processing yields. However, in agreement with our results, a bit lower yield was reported by Stalder et al. (2005) for Val/Val genotype. Regarding the effect of PRKAG3 genotype on pork quality, the available literature indicates a favourable effect of the allele Ile199Val (or unfavourable allele of Ile199Val) on pH or drip loss (Cloban et al., 2001; Lindahl et al., 2004a; Otto et al., 2007; Skrlep et al., 2009) and the association of allele Ile with higher fatness (Enfält et al., 2006) which can help in explaining why higher seasoning losses were observed for Val/Val hams. Namely, research reports demonstrate that higher seasoning losses are associated with lower fat thickness (Čandek-Potokar et al., 2002; Bosi and Russo, 2004), lower pH value (Arnau et al., 1987) or PSE meat (Maggi and Oddi, 1988; Griot et al., 1998). However, in the range of normal pH values, this relationship is not very strong.
(Čandek-Potokar et al., 2002; Ramos et al., 2007). Our results also indicate that the effect of PRKAG3 genotype on seasoning losses was producer dependent, and was more pronounced in case of higher rate of dehydration (e.g. first steps in processing, in case of producer B).

Effect of CAST

Here again, no interaction between dry-cured ham producer and CAST gene on green ham traits was detected, whereas significant interactions between genotype (and haplotype) and dry ham producer were observed for seasoning losses. Due to detected significant interactions, which imply that CAST effect on seasoning losses is likely to depend on product type or manufacturing practice, the effects of CAST polymorphisms (and haplotypes) were investigated separately for each producer. Moreover, in the present study two CAST polymorphisms Lys249Arg (Table 3), and Ser638Arg (Table 4) were examined and results presented separately. However, it is noteworthy that they are not independent. As shown in our previous article (Škrlep et al., 2010), certain genotype combination was never identified i.e. 249Lys/638Ser, which is consistent with the results of Ciobanu et al. (2004) reporting only three haplotypes on CAST gene (249Lys/638Arg, 249Arg/638Arg, 249Arg/638Ser).

Looking at CAST249 (Table 3), we could observe significant differences between polymorphic variants in case of producer A (first salting, drying and overall seasoning losses), but not in case of producer B. The effect of CAST638 (Table 4) was also more pronounced in case of producer A (resting, drying, ripening phase) compared to producer B (second salting phase only). Comparison of genotypes at CAST249 shows the highest seasoning losses for Arg/Arg hams in case of producer A, but no differences in case of producer B. Regarding CAST638, the highest seasoning losses were observed for Arg/Arg hams in case of producer A, and no differences in case of producer B. According to these results, the haplotype 249Arg/638Arg would be the least acceptable (expected to give the lowest seasoning yields) which was also confirmed by haplotype analysis (Tables 5 and 6). Haplotype analysis also indicated a tendency for lower seasoning losses associated with 249Arg/638Ser haplotype.

The effect of CAST is difficult to comment since there is a lack of comparable literature. The extent of seasoning loss in dry-cured ham production is related mainly to fat thickness and to pH (Russo and Nanni Costa, 1995; Čandek-Potokar and Škrlep, 2011). In the present study the key factor, ham thickness was not

Table 3. Ham seasoning losses as affected by CAST Lys249Arg polymorphism.

Trait	Producer A LSM ± SE	Producer B LSM ± SE								
	number	Lys/Lys	Lys/Arg	Arg/Arg	P	number	Lys/Lys	Lys/Arg	Arg/Arg	P
Salting 1	49	2.3±0.06 & 2.2±0.03 & 2.4±0.03	0.011	2.3±0.05	2.4±0.03	2.3±0.03	0.272			
Salting 2	192	1.9±0.05	1.9±0.03	1.9±0.03	0.173	1.5±0.04	1.5±0.03	1.6±0.03	0.067	
Resting	179	17.9±0.18	18.0±0.10	18.2±0.11	0.231	17.1±0.15	17.1±0.11	17.1±0.10	0.909	
Drying	75	7.8±0.11	7.8±0.06	8.2±0.07	0.001	6.3±0.10	6.3±0.07	6.3±0.06	0.889	
Ripening	11	11.7±0.25	11.9±0.13	12.3±0.15	0.064	13.8±0.21	13.7±0.15	14.0±0.14	0.538	
Overall	35.9±0.39	36.1±0.21	36.9±0.23	0.019	35.6±0.33	35.6±0.23	35.8±0.22	0.79		

Seasoning loss is expressed as % of ham weight prior to each processing step; overall seasoning loss is expressed as % of trimmed ham weight; LSM, least squares means; *P* with different superscripts are significantly different (*P*<0.05).

Table 4. Ham seasoning losses as affected by CAST Ser638Arg polymorphism.

Trait	Producer A LSM ± SE	Producer B LSM ± SE								
	number	Lys/Lys	Lys/Arg	Arg/Arg	P	number	Lys/Lys	Lys/Arg	Arg/Arg	P
Salting 1	172	2.2±0.06	2.3±0.03	2.3±0.03	0.283	2.4±0.05	2.3±0.03	2.3±0.03	0.130	
Salting 2	192	1.8±0.05	1.9±0.03	1.9±0.03	0.196	1.5±0.05a	1.6±0.03b	1.6±0.02ab	0.003	
Resting	179	17.8±0.18	18.0±0.11	18.4±0.10	0.005	17.1±0.17	17.2±0.10	17.0±0.09	0.484	
Drying	75	7.7±0.07	8.0±0.07b	8.1±0.06	0.004	6.3±0.11	6.4±0.06	6.3±0.06	0.271	
Ripening	11	11.5±0.25	12.0±0.15	12.4±0.14	0.013	13.9±0.24	13.9±0.15	13.7±0.12	0.722	
Overall	35.5±0.38	36.3±0.23	37.9±0.21	0.003	35.7±0.38	35.8±0.23	35.5±0.19	0.517		

Seasoning loss is expressed as % of ham weight prior to each processing step; overall seasoning loss is expressed as % of trimmed ham weight; LSM, least squares means; *P* with different superscripts are significantly different (*P*<0.05).

Table 5. Effect of CAST haplotypes on green ham traits or seasoning losses.

Trait	Lys/Lys	Lys/Arg	Arg/Arg	P
249Lys/638Arg	N	222	371	125
SM pH	5.77±0.01	5.76±0.01	5.81±0.02	0.024
Trimmed ham, kg	11.0±0.06	11.0±0.04	10.8±0.08	0.049
249Arg/638Arg	N	461	230	27
Drying, %	7.1±0.03	7.2±0.04	7.4±0.13	0.063
Overall, %	36.0±0.12	36.2±0.15	36.9±0.43	0.097
249Arg/638Ser	N	295	322	102
SM pH	5.79±0.01	5.76±0.01	5.76±0.02	0.037

The interaction between haplotype and producer was insignificant (*P*>0.10); only variables with *P*<0.05 are reported; haplotype classes 0, 1 or 2 denote number of copies of the haplotype in question; SM, semimembranosus muscle.

Table 6. Effect of CAST haplotypes on seasoning loss sliced by dry-cured ham producer.

Trait	Producer A LSM ± SE	Producer B LSM ± SE										
	number	Haplotype class	Lys/Lys	Lys/Arg	Arg/Arg	P	number	Haplotype class	Lys/Lys	Lys/Arg	Arg/Arg	P
Resting	223	115	10	239	115	17						
Drying, %	8.0±0.08	18.1±0.10	18.8±0.32	0.028	17.2±0.08	17.1±0.10	17.0±0.25	0.857				
Overall, %	36.2±0.21	36.8±0.21	37.7±0.08	0.012	35.8±0.17	35.5±0.21	36.1±0.52	0.524				

*Haplotype effect was sliced by producer in case of interaction between haplotype and producer (*P*<0.10); haplotype classes 0, 1 or 2 denote number of copies of the haplotype in question; LSM, least squares means; *P* with different superscripts are significantly different (*P*<0.05).
affected by CAST, while slightly lower pH associated with haplotype 249Arg/638Ser could be expected to increase (not decrease) seasoning losses. Since CAST is a gene, encoding the calpastatin, a physiological inhibitor of calpain enzymes (Goll et al., 2003) responsible for early post mortem muscle proteolysis (Koohmaraie and Geesink, 2006) and meat tenderization (Koohmaraie, 1992), there may be a certain connection with proteolysis. According to some hypotheses (Morrison et al., 1998; Melody et al., 2004; Huff-Lonergan and Lonergan, 2005), the proteolysis of key muscle proteins minimizes the loss of water holding capacity caused by lateral shrinkage of myofibrils post mortem. Recent research reports (Kočwin-Podsiała et al., 2003; Ciobanu et al., 2004; Otto et al., 2007; Krzeció et al., 2005, 2008) demonstrated possible effect of CAST polymorphisms on pH value or drip loss, factors related to processing losses (Arnau et al., 1987). However, their results are difficult to compare with ours, due to the fact that they imply on different (intron) polymorphisms (Kočwin-Podsiała et al., 2003; Krzeció et al., 2005, 2008). There is a lack of literature dealing with CAST polymorphisms, especially in relation to dry-cured ham. In the only comparable study (Stalder et al., 2005) examining the CAST Ser638Arg, a significant effect on dry-cured muscle moisture content and a tendency (P<0.10) for total processing yield and salt content were reported. Contrary to our results, in that study Arg/Arg hams had the highest processing yield and consequently moisture.

Conclusions

Ham seasoning losses were affected by PRKAG3 and CAST polymorphisms and dry-cured ham producer despite narrow constraints imposed by consortium rules. In addition, significant interaction between dry-cured ham producer and genotype indicates that the manifestation of genotype in regard to dry ham processing is likely to depend on manufacturing technique or product type.

References

Arnau, J., Maneja, E., Monfort, J.M., 1987. Estudio de la influencia de la carne PSE en el proceso de curacion del jamon. Cárnicas 2000 48:77-84.

Barbut, S., Sosnicki, A.A., Lonergan, S.M., Knapp, T., Ciobanu, D.C., Gatcliffe, L.J., Huff-Lonergan, E., Wilson, E.W., 2008. Progress in reducing the pale, soft and exudative (PSE) problem in pork and pork try meat. Meat Sci. 79:46-63.

Bosi, P., Russo, V., 2004. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 3:399-401.

Buscailhon, S., Monin, G., 1994. Détermination des qualités sensorielles du jambon sec. Chapitre 1: Evolution de la composition et des qualités sensorielles du jambon au cours de la fabrication. Viande Prod. Carnês 15:23-34.

Čandek-Potokar, M., Monin, G., Žlender, B., 2002. Pork quality, processing and sensory characteristics of dry-cured hams as influenced by duroc crossing and sex. J. Anim. Sci. 80:988-996.

Čandek-Potokar, M., Škrljep, M., 2011. Dry ham (Kraska pršut) processing losses as affected by raw material properties and manufacturing practice. J. Food Process. Pres. 35:96-111.

Čandek-Potokar, M., Škrljep, M., Šegula, B., Kaltnekar, T., Bizjak, K., Šanté-Lhoutellier, V., 2007. Vzroki za izločitev pri odbirih stegen prokastnega pršutja na primeru slovenske surovine. Reja prašičev 10:12-14.

Ciobanu, D., Bastiaansen, J.M.W., Lonergan, S.M., Thomsen, H., Dekkers, J.C.M., Plastow, G.S., Rothschild, M.F., 2004. New alleles in calpastatin gene are associated with meat quality traits in pigs. J. Anim. Sci. 82:2829-2839.

Ciobanu, D., Bastiaansen, J. M. W., Malek, M., Helm, J., Woollard, J.G., Plastow, G.S., Rothschild, M.F., 2001. Evidence for new alleles in the protein kinase adenosine monophosphate activated y3 subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159:1151-1162.

Emmett, R., Moeller, S., Irvin, K., Rothschild, M.F., Plastow, G., Goodwin, R., 2000. An investigation into the genetic controls of pork quality. Proc. 25th Anniversary of the NSIF Conference and Annual meeting, Nashville, TN, USA. Available from: http://www.nsif.com/conferences/2000/contents.htm

Enfält, A.C., von Seth, G., Josell, Å., Hedebro-Velander, I., Andersson, H.J., Braunschweig, M., Andersson, L., Lundström, K., 2006. Effects of a second mutant allele (V199I) at PRKAG3 (RN) locus on carcass composition in pigs. Livest. Sci. 99:131-139.

Garnier, J.P., Klont, R., Plastow, G., 2003. The potential impact of current animal research on the meat industry and consumer attitudes towards meat. Meat Sci. 63:79-88.

Goll, D.E., Thompson, V.F., Li, H., Wei, W., Cong, J., 2003. The calpain system. Physiol. Rev. 83:731-801.

Griot, B., Bouyssiere, M., Boulard, J., Kerisit, R., 1998. Rendements au sechage, au tranche et qualité gustatives des jambons sel sec: Influence de la qualité de la matière première et de la congélation. Techniporc 21:31-37.

Huff-Lonergan, E., Lonergan S.M., 2005. Mechanisms of water holding capacity in meat: The role of postmortem biochemical and structural changes. Meat Sci. 71:194-204.

Kočwin-Podsiała, M., Kurył, J., Krzeció, E., Zybért, A., Przybalski, W., 2003. The interaction between calpastatin and RVRI genes for some pork quality traits. Meat Sci. 65:731-735.

Koohmaraie, M., 1992. The role of Ca2+ dependent proteases (calpains) in post-mortem proteolysis and meat tenderness. Biochimie 74:239-245.

Koohmaraie, M., Geesink, G.H., 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 74:34-43.

Krzeció, E., Kočwin-Podsiała, M., Kurył, J., Zybért, A., Sieczkowska, H., Antosik, K., 2008. The effect of interaction between genotype CAST/RsaI (calpastatin) and MYOG/MspI (myogenin) on carcass and meat quality in pigs free of RVRI allele. Meat Sci. 80:1106-1115.

Krzeció, E., Kočwin-Podsiała, M., Monin, G., 2005. Association of calpastatin (CAST/MspI) polymorphism with meat quality parameters fo fatteners and its interaction with RVRI genotypes. J. Anim. Breed. Genet. 122:251-258.

Kurył, J., Kapelanski, W., Pierzchala, M., Grajewska, S., Bocian, M., 2003. Preliminary observations on the effect of calpastatin gene (CAST) polymorphism on carcass traits in pigs. Anim. Sci. Pap. Rep. 21:87-95.

Lindahl, G., Enfält, A.C., von Seth, G., Josell, Å., Hedebro-Velander, I., Andersson, H.J., Braunschweig, M., Andersson, L., Lundström, K., 2004a. A second mutant allele (V199I) at the PRKAG3 (RN) locus – I. Effect on technological meat quality of pork loin. Meat Sci. 66:609-619.

Lindahl, G., Enfält, A.C., von Seth, G., Josell, Å., Hedebro-Velander, I., Andersson, H.J., Braunschweig, M., Andersson, L., Lundström, K., 2004b. A second mutant allele (V199I) at the PRKAG3 (RN) locus –
I/I. Effect on colour characteristics of pork loin. Meat Sci. 66:621-627.
Maggi, E., Oddi, P., 1988. Prosciutti “PSE”: possibilità di stagionatura. Indagini preliminari. Ind. Aliment. 27:448-450.
Mancini, R.A., Hunt, M.C., 2005. Current research in meat color. Meat Sci. 71:100-121.
Melody, J.L., Lonergan, S.M., Rowe, J.L., Huiatt, T.W., Mayes, M.S., Huff-Lonergan, E., 2004. Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. J. Anim. Sci. 82:1195-1205.
Milan, D., Jeon, J.-T., Looft, C., Anarger, V., Robic, A., Thelander, M., Rogel-Gaillard, C., Paul, S., Iannucelli, N., Rask, L., Ronne, H., Lundström, K., Reinsch, N., Gellin, J., Kalm, E., Le Roy, P., Chardon, P., Andersson, L., 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248-1251.
Morrison, E.H., Mielche, M.M., Purslow, PP., 1998. Immunolocalisation of intermediate filament proteins in porcine meat. Fiber type and muscle-specific variations during conditioning. Meat Sci. 50:91-104.
Nanni Costa, L., Lo Fiego, D.P., De Grossi, A., Russo, V., 1993. Relazioni tra attitudine alla stagionatura del prosciutti di Parma e contenuto di carne magra della carcassa in suini ibridi. Riv. Suinicolt. 34:79-84.
Otto, G., Roehe, R., Looft, H., Thoelking, L., Knap, PW., Rothschild, M.F., Plastow, G.S., Kalm, E., 2007. Associations of DNA markers with meat quality traits in pigs with emphasis on drip loss. Meat Sci. 75:185-195.
Ramos, A.M., Glenn, K.L., Serenius, T.V., Stalder, K.J., Rothschild, M.F., 2008 Genetic markers for the production of US country hams. J. Anim. Breed. Genet. 125:248-257.
Ramos, A.M., Serenius, T.V., Stalder, K.J., Rothschild, M.F., 2007. Phenotypic correlations among quality traits of fresh and dry-cured hams. Meat Sci. 77:182-189.
Rosenvold, K., Anderson, H.K., 2003. Factors of significance for pork quality – a review. Meat Sci. 64:219-237.
Ruiz-Ramirez, R., Arnau, J., Serra, X., Gou, P., 2005. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Sci. 70:579-587.
Russo, V., Nanni Costa, L., 1995. Suitability of pig meat for salting and the production of quality processed products. Pig News Inform. 16:17-26.
SAS, 2001. User’s Guide Statistics. Version 8.02, SAS Inst., Inc., Cary, NC, USA.
Sellier, P., Monin, G., 1994. Genetics of pig meat quality: a review. J. Muscle Foods 5:187-219.
Škrlep, M., Čandek-Potokar, M., Kavar, T., Zlender, B., Hortós, M., Gou, P., Arnau, J., Evans, G., Southwood, O., Diestre, A., Robert, N., Dutertre, C., 2010. Association of PRKAG3 and CAST genetic polymorphisms with traits of interest in dry cured ham production: comparative study in France, Slovenia and Spain. Livest. Sci. 128:60-66.
Škrlep, M., Kavar, T., Sante-Lhoutellier, V., Čandek-Potokar, M., 2009. Effect of I199V polymorphism at PRKAG3 gene on carcass and meat quality traits in Slovenian commercial pigs. J. Muscle Food. 20:367-376. Stalder, K.J., Rothschild, M.F., Lonergan, S.M., 2005. Associations between two gene markers and indicator traits affecting fresh and dry-cured ham processing quality. Meat Sci. 69:451-457.
Toldra, F., 2002. Dry-cured meat products. Food & Nutrition Press, Inc., Trumbull, CT, USA.
Toldra, F., 2006. Biochemical proteolysis basis for improved processing of dry-cured meats. In: L.M.L. Nollet and F. Toldra (eds.) Advanced technologies for meat processing. CRC Press, Taylor & Francis, Boca Raton, FL, USA, pp 329-351.
Toldra, F., Flores, M., 1998. The role of muscle proteases and lipases in flavour development during processing of dry-cured ham. Crit. Rev. Food Sci. 38:331-352.