Implementation of GRNN for Evaluating the Pressure Drop and Heat Transfer in a Heat Exchanger

By Utilizing Triple Elliptical Leaf Angle Strips With Same Orientation and Opposite Direction

J. Bala Bhaskara Rao, Ramachandra Raju

Abstract: Heat exchangers are the basic devices which are used in many areas wherever applications of heat flow occurs. Its usage varies from common domestic devices to mighty industrial applications. The performance of the heat exchanger shows a very important role for its utilization in many aspects. This performance is not dependent on the design parameters in a particular relationship hence experimental values for thermal performance are taken by utilizing three elliptical leaf strips in a tube and pipe heat exchanger. The three elliptical leaves used in experiment has major to minor axes ratios as 2:1 and distance of 50 mm between two leaves are arranged at different angular orientations from 0° to 180° with 10° intervals. The leaves are placed in the tube side with same orientation and opposite direction of flow and experimentation is conducted to obtain the values. Based on these datasets available a statistical tool is utilized known as GRNN for the comparison between these obtained experimental values & GRNN values. From this comparison the percentage of error between the values is identified as result.

Keywords: Performance, opposite orientation, elliptical leaf strips, GRNN.

I. INTRODUCTION

Heat exchanger is an arrangement which has the capability of improving many industrial applications by enhancing the characteristics affecting its performance. [2] Using hexagonal & semicircular fins comparison was made between the shell and finned tube heat exchanger. The usage of corrugated twisted pipes in place of a normal pipe yields better results in tubular heat exchangers. Introduction of Turbulators in heat exchangers causes drop in fluid pressure. A study of nanoparticle concentration was done on Nusselt number and to find the heat exchange characteristics introducing the baffles and without it. [6] Heat transfer behavior with different boundary conditions of friction factor, pumping power, pressure drop variation were found by doing a numerical investigation. [7] In a heat exchanger the comparison between convective theoretical film coefficient & experimental film coefficient is done. Enhancing heat transfer by utilizing fins in a heat exchanger was discussed in this paper. Experimentation on triple tube heat exchanger was performed and heat transfer characteristics was found [4] [5]. The process of shot blasting was used in this experiment to increase the roughness of the internal pipe’s external diameter surface causing a change in performance in a double pipe heat exchanger. [8] Effect of triple tube heat exchanger having inner threaded pipe was performed and analyzed [1]. Tube in tube heat exchanger was numerically analyzed. The effect of plain twisted tapes, semicircular tapes, were compared with the performance in heat exchangers. Applications in industry based on counter or parallel flow was determined by using various graphs. Using Solid works, experimental and computational methods double pipe heat exchanger was studied [13] Concentric tube heat exchanger with various fins was studied [6]. Using enhancement liners double pipe heat exchangers was studied [9]. Investigation of heat transfer coefficient Using artificial neural networks was studied. [13] Cross flow heat exchanger was studied and analyzed using neural networks. Thermal characteristics of a plate fin heat exchangers was studied and based on these survey from various sources we implemented a passive form of elliptic leaf strip insertion method to find the thermal performance on a heat exchanger. The experimentation outcomes were compared based on the orientation of these elliptical leaf strips at various angles from 0 to 180 at 10 intervals. Heat transfer analysis using artificial neural networks approach was studied. [10] [11] [12] Heat transfer was analyzed using prediction tool on various heat exchangers. [14] The effect of generalized predictive control was studied [15]. The novelty of this investigation is on the use of a statistical tool named GRNN. (Generalized Regression Neural Network) uses neural network principles giving certain known inputs and finding the outputs. A comparison of the obtained experimental values and GRNN values are made to find the percentage of error from this technique.

II. EXPERIMENTAL SET UP

Here investigation is done on a heat exchanger with inside pipe made of copper and outer one made of steel connected with various accessories as shown in the fig.1. The experiment is conducted by placing three elliptical leaf strips with the following inputs.
The leaves strip inserted are designed with major to minor axis as 2:1 with thickness of 1 mm. For the entire length of the pipe with a distance of 50 mm the leaves are located with 90° rotation towards the shaft. All the leaves are placed along the same orientation and opposite direction along the flow of fluid. The working fluid used is water which is incompressible and turbulent in the pipes. The fluid flow is represented as water running from a tank is extracted and divided into two streams consisting of cold and hot fluid passing through annular side & tube side respectively. Before reaching the tube side the working fluid is heated in an electrical heater & made to enter as hot water in the tube side. The experiment is started once steady state is achieved. The experimental conditions at steady state are as following hot water inner pipe temperature is 348 K with different mass flows of 0.15785, 0.3827, 0.55763 & 0.7182 kg/s & the cold fluid mass rates to be 0.34589, 0.8403, 1.2245 & 1.5762 kg/s with inlet temperatures of 298 K.
To measure these the following devices are used thermocouples for temperature measurement, Flow meters for volume flow rates giving us the mass flows. All the devices were calibrated for obtaining accurate results. The pressure boundary at the outlet is considered as atmospheric pressure. For analysis purpose the heat content of the fluids are assumed to be constant throughout the experiment. Using turbulent flow in both the pipes calculations for thermal performance are done. Using Reynolds Number the mass flow rates for different turbulent conditions are identified and experiment is performed. Elliptical leafs are arranged at an inclination of 0° to 180° (0° – 180°) at 10° intervals as shown in Figure 2. The parameters are calculated by

Tube side Reynolds number

$$ (\text{Ret}) = \frac{\rho \cdot V \cdot D_e}{\mu} \tag{1} $$

Where
- ρ = Density of inner fluid in Kg/m3
- V = Velocity of inner fluid in m/sec
- D_e = Hydraulic diameter of pipe in meters
- $d = \frac{4 \cdot A_e}{P_h}$
- P_h = Inner diameter of inner pipe in meters
- μ = Dynamic viscosity of inner fluid Kg/m-sec

Annual side pressure drop

$$ \text{Annual side pressure drop} = \frac{1}{f} \cdot \frac{\rho \cdot u^2}{2} \cdot A_e \tag{2} $$

Where
- f = friction factor
- A_e = Minimum flow area in m2
- P_h = Wetted perimeter in meters
- μ = Dynamic viscosity of annual side fluid Kg/m-sec

The heat transfer rate is calculated by the subsequent equation.

$$ \text{Heat transfer rate} = \frac{Q}{\Delta T_m} \tag{3} $$

Where $Q = (Q_c + Q_h)/2$

$$ Q_c = m_c \cdot c_{pc} \cdot (T_{co} - T_{ci}) \tag{4} $$

$$ Q_h = m_h \cdot c_{ph} \cdot (T_{hi} - T_{ho}) \tag{5} $$

m_c, m_h mass flow rates of fluids in kg/sec.
c_{pc}, c_{ph} are specific heats in kj/kg k.

A = surface area in m2

ΔT_m = logarithm mean temperature difference for hot and cold fluid in (kelvins)

Tube side pressure drop

$$ (\Delta P_t) = f \cdot \frac{2 \cdot \rho \cdot u^2}{d_e} \cdot A_e \tag{6} $$

Annulus side pressure drop

$$ (\Delta P_a) = f \cdot \frac{2 \cdot \rho \cdot u^2}{d_e} \cdot A_e \tag{7} $$

Where $(f) = (3.64 \cdot \log_{10} Re - 3.28)^2$ \tag{8}

Where f = friction factor and N_{hp} = number of hair pin
Implementation of GRNN for Evaluating the Pressure Drop and Heat Transfer in a Heat Exchanger

By Utilizing Triple Elliptical Leaf Angle Strips With Same Orientation and Opposite Direction

Fig. 2 Fluent results of pressure variation at different elliptical leaf angles

Fig. 3 Annual and Tube side drop variation at different elliptical leaf angles
III. MODELLING OF GRNN

In Generalized Regression Neural Network the regression of reliant variable Y (outputs) on X (inputs) which are independent variables computes the most appropriate values of Y for each value of X. Assumption of some unknown parameters in the function form is required for system identification. The input and output data sets are considered on fluent results from Fig.2 and Fig.5. Hence the modelling is done by the following equation

\[E(y/X) = \frac{\int_{y_{lower}}^{y_{upper}} y f(X,y)dy}{\int_{y_{lower}}^{y_{upper}} f(x,y)dy} \]

\[(X) = \frac{\sum_{i=1}^{n} \exp[-\frac{(X - X_i)^T(X - X_i)}{2\sigma^2}]}{\sum_{i=1}^{n} \exp[-\frac{(X - X_i)^T(X - X_i)}{2\sigma^2}]} \int_{-\infty}^{\infty} y \exp\left[-\frac{(Y - Y_i)^2}{2\sigma^2}\right]dy \]

In combination with the artificial neural network a new assumption is made to find a linear relation between the output and inputs which is given by
As this experiment deals with finding the performance so in this regression method taking the values of temperatures and mass flow rates outputs of pressure drop is found out. Hence in this model we used “68” experimental data sets “trainee data” sets are chosen & “8” “test data “sets are chosen randomly to find the results and to match them and get the results more accurately. Based on the equation used the pressure drops at both the pipes and temperatures at cold and hot fluid are represented as outputs. Once the values are calculated they are checked with the experimental results to find the accuracy of this regression analysis. From the graphs the value obtained between the experimental sets and regression analysis gave us good accuracy.

Tab.1 GRNN input and output weights

Demonstration	Input	Weight of input
X1	Elliptical leaf angle (θ)	(0° – 180°)
X2	Inlet cold water temperature (Tci)	298 K
X3	Inlet hot water temperature (Thi)	348 K
X4	Cold water mass flow rate (Mc)	0.223883 Kg/sec
X5	Hot water mass flow rate (Mh)	0.32683 Kg/sec

Demonstration	Output	Weight of output
Y1	Cold fluid outlet temperature (Tco)	As per investigation
Y2	Hot fluid outlet temperature (Tho)	As per investigation
Y3	Tube side pressure drop (API)	As per investigation
Y4	Annual side pressure drop (APa)	As per investigation

![Graphs showing tube side and annual side pressure drop](image_url)
IV. CONCLUSION

In this investigation statistical tool of generalized regression neural network is used which is an application of artificial neural network. Using GRNN various outputs can be obtained by adding few inputs. Here experimentation part was done by adding three elliptical leaves strips in the pipe with emphasis on increasing the heat transfer rate. From the results of experimentation a nonlinear relation was obtained between inputs and outputs hence GRNN was used to get a relationship between dependent & independent variables. Utilizing GRNN gave faster and better results with errors less than 2%. Hence this paper could be used to find the relationship for different types of heat exchangers with inputs and outputs which is the proposed future work. Hence to conclude with GRNN tool will be very helpful in finding
various outputs of many engineering applications in the near future.

REFERENCES

1. Ataollah Khanlari et al “Simulation and experimental analysis of heat transfer characteristics in plate type heat exchangers using tio2/water as nanofluid “International journal of numerical methods for heat and fluid flow .https://doi.org/10.1108/HFF-05-2018-0191, MAY 2018.

2. Stephen Raj V “DESIGN & ANALYSIS OF HEAT EXCHANGER FOR MAXIMUM HEAT TRANSFER RATE “ (MULTI MODEL OPTIMISATION TECHNIQUE) International Research Journal of Engineering and Technology (IRJET),e-ISSN: 2395 -0056,p-ISSN: 2395-0072,Volume: 05,pp.1137-1141, Issue: 01 JAN-2018.

3. Vikas Kamnjojya et.al “Performance Investigation Of A Double Pipe Heat Exchanger Under Different Flow Configuration By Using Experimental And Computational Technique” Department of Mechanical and Industrial Engineering, IIT Roorkee, VOL. LXV,pp.28-41.,2018.

4. Sagar Jagtap et.al “Review on triple tube heat exchanger with dimple on internal tube & internal threaded middle tube using CFD and Experimental analysis for heat transfer” Journal Of Information, Knowledge And Research In Mechanical Engineering, ISSN 0975 – 668X, VOLUME –04, pp.796-798,ISSUE – 02, October 2017.

5. K.V.R.Mansdeep et.al “Numerical and Experimental Analysis of Heat Transfer Through Twisted Pipe Heat Exchanger” International Journal for Modern Trends in Science and Technology (IJMNST), ISSN: 2455-3778, Volume: 03,pp.59-63, Issue No: 08, August 2017.

6. K.Saravanakumar et.al “Design and Experimental Analysis of Concentric Tube Heat Exchangers with Various Fins” International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET), ISSN(Online) : 2319-8753 or ISSN (Print) : 2347-6710, Vol. 6,pp.4551-4557, Issue 3, March 2017.

7. Ganesh V. Wafelkar et.al “Experimental Performance Analysis Of Triple Tube heat Exchanger With Dimple Tubing “International Journals of Advance Research in Science and Engineering(IFARSE), ISSN(O)2319-8354 or ISSN(P)2319-8346,Vol.no.06,pp.810-816,Issue 04,April 2017.

8. Peng H, Ling X, “Neural Networks Analysis of Thermal Characteristic on Plate-Fin Heat Exchangers with Limited Experimental Data”, Applied Thermal Engineering, volume 29, 2009:2251-2256.

9. Orlando Duran et.al [35], “Neural networks for cost estimation of shell and tube heat exchangers”. Expert Systems with Applications 36 (2009) 7435-7440.

10. G.N. Xie et al, “Heat transfer analysis for shell-and-tube heat exchangers with experimental data by artificial neural networks approach”, Applied Thermal Engineering 27 (2007) 1096–1104.

11. Q.W. Wang, G.N. Xie, M. Zeng, L.Q. Luo, “Prediction of heat transfer rates for shell-and-tube heat exchangers by artificial neural networks approach”, J. Thermal Science 15 (2006) 257–262.

12. Varshney, P.K. Panigrahi, “Artificial neural network control of a heat exchanger in a closed flow air circuit”, Appl. Soft Computer. 5(2005) 441-465.

13. Y. Islamoglu, A. Kurt, “Heat transfers analysis using ANNs with experimental data with air flow in corrugated channels”, Int. J. Heat Mass Transfer 47 (2004) 1361–1365.

14. Y. Islamoglu, “A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger-use of an artificial neural network model”, Appl. Thermal Eng. 23 (2003) 243–249.

15. M.Jaliili- Kharazjoo, B.N. Arabia, “Neuro-predictive control of a heat exchanger comparison with generalized predictive control”, IEEE Trans. (2003) 675–678.

AUTHORS PROFILE

Dr. J.Bala Bhaskara Rao is presently occupied as a Professor and Principal in Sri Sivani College of engineering-JNTU Kakinada, India. He received his M.Tech and Ph.D. in Mechanical Engineering from JNTUUK Kakinada. He has published more than 25 research articles in several peer reviewed journals of international repute. His area of interests are heat transfer, fluid dynamics and computational fluid dynamics.