G Allele of the rs1801282 Polymorphism in PPARγ Gene Confers an Increased Risk of Obesity and Hypercholesterolemia, While T Allele of the rs3856806 Polymorphism Displays a Protective Role Against Dyslipidemia: A Systematic Review and Meta-Analysis

Shujin Li†, Chuan He‡, Haiyan Nie§, Qianyin Pang‖, Ruixia Wang‖, Zhifu Zeng‖ and Yongyan Song★

1 Central Laboratory, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China, 2 Department of Cardiology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, China, 3 Clinical Medical College of Chengdu University, Chengdu, China

Background: The relationships between the rs1801282 and rs3856806 polymorphisms in nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) gene and obesity indexes as well as serum lipid levels have been extensively investigated in various studies, but the results were inconsistent and even contradictory.

Methods: PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched for eligible studies. The random-effects model was used, and standardized mean difference (SMD) with 95% confidence interval (CI) was calculated to estimate the differences in obesity indexes and serum lipid levels between the subjects with different genotypes in a dominant model. Heterogeneity among studies was assessed by Cochran’s Q-statistic test. Publication bias was identified by using Begg’s test.

Results: One hundred and twenty studies (70,317 subjects) and 33 studies (18,353 subjects) were identified in the analyses for the rs1801282 and rs3856806 polymorphisms, respectively. The G allele carriers of the rs1801282 polymorphism had higher levels of body mass index (SMD = 0.08 kg/m², 95% CI = 0.04 to 0.12 kg/m², p < 0.001), waist circumference (SMD = 0.12 cm, 95% CI = 0.06 to 0.18 cm, p < 0.001) and total cholesterol (SMD = 0.07 mmol/L, 95% CI = 0.02 to 0.11 mmol/L, p < 0.01) than the CC homozygotes. The T allele carriers of the rs3856806 polymorphism had lower levels of low-density lipoprotein cholesterol (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, p < 0.01) and higher levels of high-density lipoprotein cholesterol (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, p < 0.01) than the CC homozygotes.
Conclusions: The meta-analysis suggests that the G allele of the rs1801282 polymorphism confers an increased risk of obesity and hypercholesterolemia, while the T allele of the rs3856806 polymorphism displays a protective role against dyslipidemia, which can partly explain the associations between these polymorphisms and cardiovascular disease.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier [CRD42022319347].

Keywords: peroxisome proliferator-activated receptor gamma, polymorphism, rs1801282, rs3856806, obesity, dyslipidemia

INTRODUCTION

Peroxisome proliferator activated receptors (PPARs), belonging to the nuclear receptor superfamily, are ligand-inducible transcription factors (1). PPARs have three members in human beings: PPARα, PPARβ/δ and PPARγ. Of them, PPARγ is the most important one and plays an intricate role in various biological processes (2). Eight PPARγ isoforms (PPARγ1, PPARγ2, PPARγ3, etc.) have been identified in human beings according to NCBI’s reference sequence database (http://www.ncbi.nlm.nih.gov/). Upon activation by exogenous and endogenous lipid ligands, PPARγ binds to retinoid X receptor (RXR) to form a regulatory complex and is capable of stimulating adipogenesis (3), promoting adipocyte differentiation (4), and increasing insulin sensitivity (5). PPARγ is closely related to lipid disorders and obesity based on its fundamental role in lipid and glucose metabolism.

Human PPARγ gene (namely PPARG) is located on chromosome 3p25.3 and consists of nine exons: exons A1, A2, B, and 1-6 (Figure 1) (2). According to NCBI’s RefSeq database, sixteen PPARG mRNA variants have been identified so far in human beings due to alternative splicing and differential promoter usage. PPARγ gene is highly polymorphic, and thousands of genetic variants have been recorded in NCBI’s dbSNP database. Among these variants, a missense variant (rs1801282, also known as p.Pro12Ala) located in exon B has been extensively explored with regard to its significant relationships with obesity indexes and serum lipid levels (Figure 1) (2). The rs1801282 polymorphism is formed by a single-nucleotide variance from cytosine (C) to guanine (G), resulting in a proline-to-alanine substitution in PPARγ2 polypeptide. Another genetic locus, the rs3856806 polymorphism (also known as p.His477His, c.161C>T or c.1431C>T), has also been investigated widely, although not as much as the rs1801282 polymorphism. The rs3856806 polymorphism is a synonymous variant and is located in exon 6 of PPARG (Figure 1). This genetic variation is formed by a single-nucleotide variance from C to thymine (T), but the corresponding amino acid residue in PPARγ2 polypeptide does not change after nucleotide substitution. Scientific reports of the associations between the rs1801282 and rs3856806 polymorphisms and obesity indexes as well as serum lipid levels were inconsistent and even conflicting (2). Some studies indicated that the G allele of the rs1801282 polymorphism was associated with higher levels of body mass index (BMI) (6–17), waist circumference (WC) (17–20), waist-to-hip ratio (WHR) (14–18), total cholesterol (TC) (21–27), low-density lipoprotein cholesterol (LDL-C) (24–29) and triglycerides (TG) (30–38), and lower levels of high-density lipoprotein cholesterol (HDL-C) (38–41), whereas the research data from other laboratories did not support these findings and even yielded contradictory results (42–61). There were also significant inconsistencies amongst published data in the
relationships between the rs3856806 polymorphism and obesity indexes as well as serum lipid levels in various populations (62–71).

Herein, a systematic review and meta-analysis was performed based on previous publications over the past two decades to determine the relationships between the rs1801282 and rs3856806 polymorphisms and obesity indexes as well as serum lipid levels. This work can provide an opportunity to unveil the interrelationships among PPARγ gene polymorphisms, metabolic disorders and cardiovascular disease.

METHODS

Literature Search Strategy
The present meta-analysis was registered in PROSPERO (registration number CRD42022319347) and conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. PubMed, Google Scholar, Embase, Cochrane Library, Web of Science, Wanfang, CNKI and VIP databases were searched comprehensively from inception to December 2021. The keywords used for the literature searches were (“peroxisome proliferator-activated receptor gamma” or “PPARγ” or “PPARG”), (“polymorphism” or “mutation” or “variant” or “variance” or “rs1801282” or “rs3856806” or “Pro12Ala” or “1431C>T” or “161C>T” or “His477His”) and (“body mass index” or “waist circumference” or “waist-to-hip ratio” or “BMI” or “WC” or “WHR”) and (“lipid” or “total cholesterol” or “low-density lipoprotein cholesterol” or “high-density lipoprotein cholesterol” or “triglyceride” or “TC” or “LDL-C” or “HDL-C” or “TG”). The variables of this meta-analysis were limited to three obesity indexes including BMI, WC and WHR, and four serum lipid parameters including TC, LDL-C, HDL-C and TG. All articles that reported the associations of the rs1801282 and rs3856806 polymorphisms with obesity indexes and serum lipid levels were reviewed and screened.

Inclusion and Exclusion Criteria
Inclusion criteria: 1) The sample size and genotype distribution were clearly provided; 2) At least one of the seven variables (i.e., BMI, WC, WHR, TG, TC, LDL-C, and HDL-C) was presented; 3) Data were displayed as mean ± standard deviation (SD) or standard error (SE). Exclusion criteria: 1) Animal studies; 2) Incomplete data; 3) Repeatedly published articles; 4) Case reports; 5) Conference abstracts.

Data Extraction
Data were extracted independently by three reviewers. The data from each included study were as follows: first author’s name, year of publication, ethnicity, age, gender, health status, sample size, mean obesity indexes, mean lipid variables, and the SD or SE values by genotypes. SD values were calculated if SE values were given. Unit used for lipid variables was “mmol/L” in this meta-analysis, and datum conversion was conducted if data were presented as “mg/dL” or other units. All data were double-checked after extraction. Any disagreements were resolved by careful examination and group discussion.

Meta-Analysis
The STATA software package (Version 10, StataCorp, USA) was used for the present meta-analysis. A dominant model was employed because most of the included studies reported results in a dominant way (i.e., CC vs [CG + GG] for the rs1801282 polymorphism; CC vs [CT + TT] for the rs3856806 polymorphism). If there were more than one subgroup in a study (e.g., the subgroups with different ethnicities or health conditions), each subgroup was treated as an independent comparison in the meta-analysis. The subgroup analyses were performed with at least 5 comparisons for the rs1801282 polymorphism, and 3 comparisons for the rs3856806 polymorphism to ensure adequate statistical power. Standardized mean difference (SMD) and 95% confidence interval (CI) were used to assess the differences in obesity indexes and serum lipid levels between the genotypes. The random-effects model was used in the meta-analysis for the reason that it provides a more conservative result than the fixed effects model. Heterogeneity among the included studies was assessed by Cochran’s I²-based Q-statistic test. Heterogeneity was considered statistically significant if p ≤ 0.05. Furthermore, subgroup analyses and Galbraith plots were applied to detect the potential sources of heterogeneity. Subgroup analyses were conducted according to ethnicities, health conditions, genders and ages of the subjects. The subgroups classified by ethnicity included European Caucasians, American Caucasians, Australian Caucasians, East Asians, South Asians, West Asians, South Americans, and Africans. The subgroups classified by health condition included coronary artery disease (CAD), type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), polycystic ovarian syndrome (PCOS), overweight/obesity, and general population/controls/healthy subjects; The subgroups classified by gender were males and females; The subgroups classified by age were adults (≥ 18 years) and children/adolescents (< 18 years). Publication bias was evaluated by using Begg’s test and visualized by Begg’s funnel plots, and p ≤ 0.05 the indicates the presence of a publication bias in the meta-analysis. The trim-and-fill method was used to adjust the results if a publication bias was present. All p values were two-tailed.

RESULTS

Characteristics of the Enrolled Studies
The flow diagram of the literature search process is shown in Figure 2. A total of 137 studies (6–142) were identified and included in this meta-analysis. Characteristics of the included studies are presented in Tables S1 and S2. The enrolled articles were published between 1998 and 2021, and written either in English (132 articles, 96.35%) or in Chinese (5 articles, 3.65%). Forty-eight studies, 5 studies, 2 studies, 44 studies, 9 studies, 8 studies, 7 studies, 7 studies and 7 studies involved European Caucasians, American Caucasians, Australian Caucasians, East Asians, South Asians, West Asians, South Americans, Africans and other ethnicities, respectively. Eleven studies, 29 studies, 4 studies, 10 studies, 23 studies and 77 studies involved CAD patients, T2DM patients, MetS patients,
PCOS patients, overweight/obesity patients and general population/control subjects/healthy subjects, respectively. Six studies only involved males, 20 studies only involved females, and the rest studies involved both genders. One hundred and twenty-five studies involved adults, and the rest 12 studies involved children or adolescents. The subjects from 68 studies were divided into subgroups according to health conditions, genders or ethnicities, and each subgroup was considered as an independent comparison.

One hundred and twenty studies were enrolled in the meta-analysis for the rs1801282 polymorphism. Among them, 100 studies, 44 studies, 40 studies, 104 studies, 83 studies, 103 studies and 104 studies presented the data for BMI, WC, WHR, TC, LDL-C, HDL-C and TG, respectively (Tables S3 and S4). Thirty-three studies were enrolled in the meta-analysis for the rs3856806 polymorphism, and 27 studies, 10 studies, 9 studies, 28 studies, 24 studies, 30 studies and 30 studies presented the data for BMI, WC, WHR, TC, LDL-C, HDL-C and TG, respectively (Tables S5 and S6).

Summary Statistics
One hundred and seventy-six comparisons (70,137 subjects) and 53 comparisons (18,353 subjects) were distinguished for the rs1801282 and rs3856806 polymorphisms, respectively. One hundred and fifty comparisons, 168 comparisons, 54 comparisons, 142 comparisons, 117 comparisons, 146 comparisons and 151 comparisons were enrolled to compare the differences in BMI, WC, WHR, TC, LDL-C, HDL-C and TG levels, respectively, for the rs3856806 polymorphism, and 27 studies, 10 studies, 9 studies, 117 comparisons, 146 comparisons and 151 comparisons were enrolled to compare the differences in BMI, WC, WHR, TC, LDL-C, HDL-C and TG levels for the rs1801282 polymorphism, respectively (Tables S3 and S4). Forty-five comparisons, 16 comparisons, 14 comparisons, 46 comparisons, 41 comparisons, 49 comparisons and 50 comparisons were enrolled to compare the differences in BMI, WC, WHR, TC, LDL-C, HDL-C and TG levels, respectively, for the rs3856806 polymorphism (Tables S5 and S6). For the rs1801282 polymorphism, 83.32% of the subjects had CC genotype (58,438 subjects), and 16.94% of the subjects had CG or GG genotype (11,879 subjects). Regarding the rs3856806 polymorphism, 66.06% of the subjects had CC genotype (12,124 subjects), and 33.94% of the subjects had CT or TT genotype (6,229 subjects).

Associations of the PPARG rs1801282 Polymorphism With Obesity Indexes and Serum Lipid Levels
The associations between the rs1801282 polymorphism and obesity indexes are shown in Table 1. The pooled analyses in the whole population showed that the G allele carriers had significantly higher levels of BMI (SMD = 0.12 kg/m², 95% CI = 0.03 to 0.20 kg/m², p = 0.01), WC (SMD = 0.14 cm, 95% CI = 0.02 to 0.25 cm, p = 0.03), WHR (SMD = 0.23, 95% CI = 0.09 to 0.37, p < 0.01), TC (SMD = 0.11 mmol/L, 95% CI = 0.02 to 0.20 mmol/L, p = 0.02) and TG (SMD = 0.11 mmol/L, 95% CI = 0.01 to 0.21 mmol/L, p = 0.03) than the CC homozygotes. In West Asians, the G allele carriers had higher levels of TC (SMD = 0.19 mmol/L, 95% CI = 0.02 to 0.36 mmol/L, p = 0.03) and TG (SMD = 0.33 mmol/L, 95% CI = 0.09 to 0.57 mmol/L, p = 0.01) than the CC homozygotes. The G allele carriers had higher levels of BMI (SMD = 0.23 kg/m², 95% CI = 0.02 to 0.45 kg/m², p = 0.03) and WC (SMD = 1.02 cm, 95% CI = 0.09 to 1.94 cm, p < 0.03) than non-carriers in South Asians and Africans, respectively. Notably, no significant associations between the rs1801282 polymorphism and obesity indexes or serum lipid levels were detected in European Caucasians and American Caucasians. In patients with T2DM, the G allele carriers had higher levels of BMI (SMD = 0.13 kg/m², 95% CI = 0.02 to 0.23 kg/m², p = 0.02), WC (SMD = 0.33 cm, 95% CI = 0.14 to 0.52 cm, p = 0.001), WHR (SMD = 0.25, 95% CI = 0.08 to 0.43, p < 0.01) and TC (SMD = 0.11 mmol/L, 95% CI = 0.03 to 0.20 mmol/L, p = 0.01) than the CC homozygotes. In patients with MetS, the G allele carriers had higher levels of TC (SMD = 0.26 mmol/L, 95% CI = 0.02 to 0.51 mmol/L, p = 0.04) and LDL-C (SMD = 0.26 mmol/L, 95% CI = 0.02 to 0.49 mmol/L, p = 0.03) than the CC homozygotes. The G allele carriers had higher levels of BMI (SMD = 0.16 kg/m², 95% CI = 0.01 to 0.31 kg/m², p = 0.04) and TC (SMD = 0.48 mmol/L, 95% CI = 0.15 to 0.82 mmol/L, p = 0.01) than non-carriers in overweight/obesity patients and CAD patients, respectively. In general population/control subjects/healthy subjects, the G allele carriers had higher levels of BMI (SMD = 0.05 kg/m², 95% CI = 0.01 to 0.09 kg/m², p = 0.02) and WC (SMD = 0.06 cm, 95% CI = 0.01 to 0.11 cm, p = 0.02) than the CC homozygotes.

Significant interactions between the rs1801282 polymorphism and age as well as gender on obesity indexes or serum lipid levels have been detected. The G allele carriers had higher levels of BMI (SMD = 0.09 kg/m², 95% CI = 0.05 to 0.13 kg/m², p < 0.001), WC (SMD = 0.14 cm, 95% CI = 0.07 to 0.21 cm, p < 0.001), WHR (SMD = 0.10, 95% CI = 0.001 to 0.19, p = 0.05) and TC (SMD = 0.08 mmol/L, 95% CI = 0.03 to 0.13 mmol/L, p < 0.01) than the CC homozygotes in adults, but not in children and adolescents. Higher levels of BMI (SMD = 0.08 kg/m², 95% CI = 0.004 to 0.16 kg/m², p = 0.04) in the G allele carriers than in the CC homozygotes were observed only in males, and higher levels of WC (SMD = 0.24 cm, 95% CI = 0.04 to 0.44 cm, p = 0.02) in the G allele carriers than in the CC homozygotes were present only in females.

Associations of the PPARG rs3856806 Polymorphism With Obesity Indexes and Serum Lipid Levels
As shown in Table 3, no significant associations between the rs3856806 polymorphism and obesity indexes were found in the
pooled analyses in the whole population or in the subgroups according to ethnicities, health conditions or genders of the subjects. The associations between the rs3856806 polymorphism and serum lipid levels are shown in Table 4. The pooled analyses in the whole population showed that the T allele carriers had lower levels of LDL-C (SMD = -0.09 mmol/L, 95% CI = -0.15 to -0.03 mmol/L, \(p < 0.01 \)) and higher levels of HDL-C (SMD = 0.06 mmol/L, 95% CI = 0.02 to 0.10 mmol/L, \(p < 0.01 \)) than the CC homozygotes. There were no significant differences in TC or TG levels between the subjects with different genotypes of the rs3856806 polymorphism (Table 4). Subgroup analyses were conducted according to ethnicities, health conditions and genders of the subjects. Reduced levels of TC (SMD = -0.22 mmol/L, 95% CI = -0.35 to -0.08 mmol/L, \(p < 0.01 \)), LDL-C (SMD = -0.26 mmol/L, 95% CI = -0.49 to -0.03 mmol/L, \(p = 0.03 \)) and TG (SMD = -0.14 mmol/L, 95% CI = -0.26 to -0.02 mmol/L, \(p = 0.02 \)) in the T allele carriers than in the CC homozygotes were detected in Australian Caucasians, but not in European Caucasians, American Caucasians or other ethnicities. The T allele carriers had higher levels of HDL-C (SMD = 0.15 mmol/L, 95% CI = 0.04 to 0.27 mmol/L, \(p = 0.01 \)) than
TABLE 2 | Meta-analysis between the rs1801282 polymorphism in PPARG and serum lipid levels.

| Groups or subgroups | Comparisons (Subjects) | SMD (95% CI) | PHeterogeneity | P

TC				
All subjects	141 (48,494)	0.07 (0.02, 0.11)	< 0.001	0.01
East Asians	39 (13,645)	0.11 (0.02, 0.20)	< 0.001	0.02
South Asians	10 (7,328)	0.07 (-0.01, 0.14)	0.41	0.07
West Asians	11 (1,777)	0.19 (0.02, 0.36)	0.03	0.03
European Caucasians	48 (16,667)	0.01 (-0.04, 0.06)	0.04	0.67
South Americans	10 (1,929)	-0.06 (-0.25, 0.13)	0.05	0.52
Africans	9 (1,442)	0.68 (-0.03, 1.39)	< 0.001	0.06
CAD patients	8 (1,658)	0.48 (0.15, 0.82)	< 0.001	0.01
T2DM patients	23 (7,657)	0.11 (0.03, 0.20)	0.07	0.01
Overweight/obesity patients	22 (5,333)	0.07 (-0.02, 0.16)	0.19	0.11
MetS patients	5 (648)	0.26 (0.02, 0.51)	0.54	0.04
PCOS patients	9 (1,314)	0.58 (-0.13, 1.28)	< 0.001	0.11
General population/control subjects/healthy subjects	61 (27,499)	0.01 (-0.04, 0.06)	< 0.001	0.73
Adults	124 (43,583)	0.08 (0.03, 0.13)	< 0.001	< 0.01
Children/adolescents	14 (4,911)	-0.03 (-0.11, 0.05)	0.36	0.43
Males	15 (5,218)	0.01 (-0.06, 0.08)	0.42	0.79
Females	33 (8,869)	0.08 (-0.07, 0.23)	< 0.001	0.31
LDL-C				
All subjects	117 (37,849)	0.02 (-0.02, 0.07)	< 0.001	0.28
East Asians	28 (8,004)	0.07 (-0.04, 0.17)	< 0.01	0.21
South Asians	7 (6,029)	0.02 (-0.06, 0.09)	0.83	0.65
West Asians	9 (1,465)	0.14 (-0.02, 0.31)	0.14	0.09
European Caucasians	45 (14,672)	-0.03 (-0.08, 0.03)	0.02	0.36
South Americans	7 (1,102)	-0.20 (-0.41, 0.02)	0.15	0.07
Africans	8 (1,200)	-0.46 (-0.01, 0.94)	< 0.001	0.06
CAD patients	7 (1,440)	0.39 (0.08, 0.87)	< 0.001	0.11
T2DM patients	19 (4,301)	0.01 (-0.10, 0.13)	0.02	0.80
Overweight/obesity patients	20 (4,831)	0.05 (-0.03, 0.12)	0.80	0.23
MetS patients	5 (882)	0.26 (0.02, 0.49)	0.87	0.03
PCOS patients	8 (1,130)	0.33 (-0.15, 0.81)	< 0.001	0.18
General population/control subjects/healthy subjects	48 (21,623)	0.004 (-0.04, 0.04)	0.14	0.86
Adults	100 (32,938)	0.03 (-0.02, 0.08)	< 0.001	0.22
Children/adolescents	14 (4,911)	-0.03 (-0.10, 0.04)	0.69	0.40
Males	15 (5,142)	-0.04 (-0.16, 0.07)	0.01	0.45
Females	30 (7,983)	0.08 (-0.03, 0.19)	< 0.001	0.14
HDL-C				
All subjects	144 (52,515)	0.004 (-0.04, 0.04)	< 0.001	0.85
East Asians	34 (9,600)	-0.02 (-0.13, 0.08)	< 0.001	0.64
South Asians	11 (7,579)	-0.09 (-0.25, 0.08)	< 0.001	0.31
West Asians	11 (1,777)	-0.09 (-0.28, 0.11)	< 0.01	0.38
European Caucasians	57 (22,402)	0.03 (-0.03, 0.08)	< 0.001	0.36
American Caucasians	5 (3,835)	0.04 (-0.04, 0.12)	0.55	0.38
South Americans	10 (1,923)	0.08 (-0.06, 0.19)	0.73	0.33
Africans	7 (2,198)	0.09 (0.08, 0.26)	0.37	0.31
CAD patients	7 (1,440)	-0.10 (-0.42, 0.23)	< 0.001	0.56
T2DM patients	21 (5,403)	0.06 (-0.02, 0.17)	0.08	0.11
Overweight/obesity patients	24 (6,204)	-0.11 (-0.24, 0.02)	< 0.001	0.11
MetS patients	5 (648)	0.04 (-0.23, 0.30)	0.34	0.79
PCOS patients	8 (1,214)	0.44 (0.03, 0.90)	< 0.001	0.07
General population/control subjects/healthy subjects	61 (28,523)	0.01 (-0.02, 0.05)	0.40	0.40
Adults	129 (48,016)	0.01 (-0.04, 0.05)	< 0.001	0.74
Children/adolescents	13 (4,999)	-0.01 (-0.08, 0.08)	0.41	0.99
Males	18 (5,765)	-0.04 (-0.11, 0.03)	0.54	0.28
Females	34 (9,411)	0.09 (-0.01, 0.18)	< 0.001	0.07
TG				
All subjects	146 (53,204)	0.04 (-0.02, 0.11)	< 0.001	0.18
East Asians	36 (11,861)	0.11 (0.01, 0.21)	< 0.001	0.03
South Asians	11 (7,359)	0.004 (-0.16, 0.16)	< 0.001	0.96
West Asians	11 (1,777)	0.33 (0.09, 0.57)	< 0.001	0.01
European Caucasians	52 (20,331)	-0.04 (-0.16, 0.09)	< 0.001	0.58
American Caucasians	5 (3,635)	-0.02 (-0.09, 0.07)	0.94	0.72
South Americans	9 (1,208)	-0.10 (-0.30, 0.11)	0.10	0.37

(Continued)
the CC homozygotes in patients with CAD, but not in patients with other clinical symptoms or in general population/control subjects/healthy subjects.

Heterogeneity Analysis

Galbraith plots were employed to analyze the heterogeneity in the present meta-analysis. For the rs1801282 polymorphism, there was significant heterogeneity in the pooled analyses in the whole population for all three obesity indexes (Table 1) and four lipid variables (Table 2). Twelve comparisons, 7 comparisons, 6 comparisons, 6 comparisons, 6 comparisons, 11 comparisons and 18 comparisons were identified as the main contributors to the heterogeneity for the analyses of BMI, WC, WHR, TC, LDL-C, HDL-C and TG, respectively (Table S7). The heterogeneity was significantly decreased or removed after exclusion of the outlier comparisons, while the results of the pooled analyses in the whole population did not change significantly (BMI: SMD = 0.04 kg/m², 95% CI = 0.02 to 0.07 kg/m², \(P_{\text{SMD}} < 0.01 \), \(P_{\text{Heterogeneity}} = 0.30 \); WC: SMD = 0.06 cm, 95% CI = 0.02 to 0.09 cm, \(P_{\text{SMD}} < 0.01 \), \(P_{\text{Heterogeneity}} = 0.22 \); WHR: SMD = 0.03 kg/m², 95% CI = -0.02 to 0.08 kg/m², \(P_{\text{SMD}} = 0.20 \), \(P_{\text{Heterogeneity}} = 0.15 \); TC: SMD = 0.02 mmol/L, 95% CI = 0.01 to 0.04 mmol/L, \(P_{\text{SMD}} = 0.02 \), \(P_{\text{Heterogeneity}} = 0.44 \); LDL-C: SMD = 0.01 mmol/L, 95% CI = -0.02 to 0.03 mmol/L, \(P_{\text{SMD}} = 0.66 \), \(P_{\text{Heterogeneity}} = 0.64 \); HDL-C: SMD = 0.01 mmol/L, 95% CI = -0.01 to 0.01 mmol/L, \(P_{\text{SMD}} = 0.01 \), \(P_{\text{Heterogeneity}} = 0.10 \).

Table 2 | Continued

Groups or subgroups	Comparisons (Subjects)	SMD (95% CI)	\(P_{\text{Heterogeneity}} \)	\(P_{\text{SMD}} \)
Africans	12 (3,141)	0.14 (-0.13, 0.40)	< 0.001	0.31
CAD patients	9 (1,897)	0.09 (-0.07, 0.25)	0.17	0.25
T2DM patients	22 (6,261)	0.13 (-0.39, 0.12)	< 0.001	0.30
Overweight/obesity patients	23 (6,031)	0.05 (-0.08, 0.17)	< 0.001	0.47
PCOS patients	8 (1,130)	0.32 (-0.15, 0.78)	< 0.001	0.18
General population/control subjects/healthy subjects	64 (28,505)	0.07 (-0.02, 0.16)	< 0.001	0.14
Adults	129 (48,449)	0.05 (-0.02, 0.12)	< 0.001	0.15
Children/adolescents	13 (4,499)	-0.01 (-0.10, 0.07)	0.32	0.79
Males	17 (5,910)	0.03 (-0.06, 0.10)	0.33	0.50
Females	32 (7,502)	0.07 (-0.05, 0.18)	< 0.001	0.29

PPARG, peroxisome proliferator-activated receptor gamma gene; SMD, standardized mean difference; CI, confidence interval; TC, total cholesterol; CAD, coronary artery disease; T2DM, type 2 diabetes mellitus; MetS, metabolic syndrome; PCOS, polycystic ovarian syndrome; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride.

Table 3 | Meta-analysis between the rs3856806 polymorphism in PPARG and obesity indexes.

Groups or subgroups	Comparisons (Subjects)	SMD (95% CI)	\(P_{\text{Heterogeneity}} \)	\(P_{\text{SMD}} \)
BMI	45 (16,600)	-0.01 (-0.07, 0.05)	< 0.001	0.78
East Asians	20 (5,707)	0.04 (-0.08, 0.18)	< 0.001	0.56
South Asians	7 (5,333)	-0.05 (-0.17, 0.06)	0.03	0.35
West Asians	3 (307)	-0.16 (-0.39, 0.07)	0.36	0.18
European Caucasians	7 (2,772)	0.05 (-0.11, 0.21)	0.01	0.54
Australian Caucasians	3 (1,294)	-0.03 (-0.14, 0.09)	0.57	0.68
CAD patients	6 (1,863)	-0.04 (-0.24, 0.17)	< 0.01	0.73
T2DM patients	7 (1,375)	-0.06 (-0.24, 0.09)	0.10	0.36
Overweight/obesity patients	5 (666)	-0.11 (-0.85, 0.63)	< 0.001	0.77
General population/control subjects/healthy subjects	16 (9,450)	0.03 (-0.06, 0.11)	0.001	0.54
Males	6 (1,381)	0.39 (-0.04, 0.83)	< 0.001	0.08
Females	5 (1,087)	-0.16 (-0.45, 0.12)	< 0.001	0.27
WC	16 (5,787)	0.003 (-0.06, 0.07)	0.32	0.93
East Asians	4 (1,644)	0.01 (-0.14, 0.17)	0.09	0.87
South Asians	3 (1,021)	-0.11 (-0.37, 0.14)	0.15	0.39
Australian Caucasians	3 (1,294)	0.04 (-0.08, 0.16)	0.38	0.53
European Caucasians	3 (637)	0.01 (-0.20, 0.02)	0.26	0.92
General population/control subjects/healthy subjects	8 (3,352)	-0.01 (-0.09, 0.07)	0.79	0.77
Males	3 (1,003)	0.05 (-0.18, 0.28)	0.09	0.68
Females	5 (1,333)	0.02 (-0.12, 0.17)	0.24	0.77
WHR	14 (5,198)	-0.02 (-0.11, 0.06)	0.09	0.58
East Asians	3 (984)	0.00 (-0.13, 0.13)	1.00	1.00
Australian Caucasians	3 (1,294)	-0.11 (-0.37, 0.16)	0.01	0.42
European Caucasians	3 (1,090)	-0.03 (-0.13, 0.18)	0.31	0.73
General population/control subjects/healthy subjects	8 (3,485)	-0.02 (-0.12, 0.08)	0.17	0.72

PPARG, peroxisome proliferator-activated receptor gamma gene; SMD, standardized mean difference; CI, confidence interval; BMI, body mass index; CAD, coronary artery disease; T2DM, type 2 diabetes mellitus; WC, waist circumference; WHR, waist-to-hip ratio.

Li et al. PPARG Polymorphisms, Obesity and Dyslipidemia Frontiers in Endocrinology | www.frontiersin.org June 2022 | Volume 13 | Article 9190877
Regarding the rs3856806 polymorphism, there was significant heterogeneity in the pooled analyses in the whole population for BMI, TC, LDL-C and TG (Tables 3 and 4). Five comparisons, 6 comparisons, 4 comparisons and 7 comparisons were identified as the main contributors to the heterogeneity in the association analyses in the whole population between the rs3856806 polymorphism and BMI, TC, LDL-C and TG, respectively (Table S8). The heterogeneity was significantly decreased or removed after exclusion of the outlier studies, and the pooled results in the whole population did not change significantly for BMI (SMD = -0.001 kg/m², 95% CI = -0.04 to 0.04 kg/m², \(P_{SMD} = 0.96 \), \(P_{Heterogeneity} = 0.08 \)), TC (SMD = -0.02 mmol/L, 95% CI = -0.06 to 0.02 mmol/L, \(P_{SMD} = 0.26 \), \(P_{Heterogeneity} = 0.30 \)), and LDL-C (SMD = -0.05 mmol/L, 95% CI = -0.10 to 0.00 mmol/L, \(P_{SMD} = 0.54 \), \(P_{Heterogeneity} = 0.54 \)).

Groups or subgroups	Comparisons (Subjects)	SMD (95% CI)	\(P_{Heterogeneity} \)	\(P_{SMD} \)
TC				
All subjects	46 (15,716)	-0.04 (-0.09, 0.02)	< 0.001	0.18
East Asians	24 (6,996)	-0.03 (-0.10, 0.05)	< 0.01	0.52
South Asians	6 (5,059)	0.03 (-0.03, 0.09)	0.44	0.34
West Asians	4 (590)	-0.03 (-0.32, 0.27)	0.04	0.87
Australian Caucasians	3 (1,294)	-0.02 (-0.35, -0.08)	0.39	< 0.01
European Caucasians	4 (1,587)	0.03 (-0.14, 0.19)	0.16	0.57
CAD patients	8 (2,587)	-0.01 (-0.13, 0.12)	0.05	0.71
T2DM patients	7 (1,375)	-0.02 (-0.19, 0.16)	0.07	0.85
Overweight/obesity patients	5 (566)	0.06 (-0.19, 0.30)	0.28	0.66
General population/control subjects/healthy subjects	15 (9,143)	0.02 (-0.06, 0.09)	0.01	0.60
Males	3 (568)	-0.01 (-0.28, 0.27)	0.95	1.00
Females	5 (1,018)	-0.10 (-0.23, 0.03)	< 0.001	0.14
LDL-C				
All subjects	41 (14,279)	-0.09 (-0.15, -0.03)	< 0.001	< 0.01
East Asians	22 (6,067)	-0.08 (-0.16, 0.01)	< 0.01	0.08
South Asians	5 (4,373)	0.01 (-0.05, 0.09)	0.96	0.67
West Asians	4 (590)	-0.05 (-0.35, 0.24)	0.04	0.72
Australian Caucasians	3 (1,294)	-0.26 (-0.49, -0.03)	0.04	0.03
CAD patients	8 (2,182)	0.01 (-0.12, 0.13)	0.06	0.93
T2DM patients	6 (1,235)	-0.06 (-0.23, 0.11)	0.13	0.51
Overweight/obesity patients	4 (440)	0.03 (-0.23, 0.28)	0.57	0.83
General population/control subjects/healthy subjects	12 (8,962)	-0.09 (-0.18, 0.01)	0.02	0.04
Males	3 (568)	-0.02 (-0.64, 0.60)	0.02	0.95
Females	5 (1,018)	-0.11 (-0.24, 0.02)	0.96	0.10
HDL-C				
All subjects	49 (17,161)	0.06 (0.02, 0.10)	0.10	< 0.01
East Asians	25 (6,806)	0.06 (-0.02, 0.13)	0.02	0.12
South Asians	7 (4,911)	0.01 (-0.04, 0.07)	0.52	0.62
West Asians	4 (590)	0.02 (-0.18, 0.21)	0.28	0.86
European Caucasians	5 (1,653)	0.06 (-0.05, 0.17)	0.67	0.28
Australian Caucasians	3 (1,294)	0.11 (-0.01, 0.23)	0.91	0.08
CAD patients	8 (2,182)	0.15 (0.04, 0.27)	0.10	0.01
T2DM patients	7 (1,375)	0.12 (-0.04, 0.29)	0.09	0.15
Overweight/obesity patients	4 (440)	-0.12 (-0.38, 0.13)	0.86	0.35
General population/control subjects/healthy subjects	17 (9,105)	0.07 (0.02, 0.12)	0.33	< 0.01
Males	5 (1,087)	-0.05 (-0.21, 0.11)	0.30	0.56
Females	7 (1,664)	-0.03 (-0.13, 0.08)	0.90	0.65
TG				
All subjects	50 (17,357)	-0.06 (-0.12, 0.01)	< 0.001	0.10
East Asians	25 (6,806)	-0.06 (-0.18, 0.06)	0.001	0.34
South Asians	7 (5,327)	-0.02 (-0.08, 0.04)	0.76	0.49
West Asians	4 (590)	0.09 (-0.23, 0.41)	0.03	0.59
Australian Caucasians	3 (1,294)	-0.14 (-0.26, -0.02)	0.82	0.02
European Caucasians	6 (2,153)	0.02 (-0.08, 0.13)	0.67	0.68
CAD patients	8 (2,587)	-0.15 (-0.34, 0.04)	< 0.001	0.12
T2DM patients	7 (1,375)	-0.14 (-0.52, 0.24)	< 0.001	0.48
Overweight/obesity patients	5 (566)	-0.17 (-0.42, 0.08)	0.28	0.19
General population/control subjects/healthy subjects	17 (9,185)	0.06 (-0.03, 0.15)	< 0.001	0.21
Males	5 (1,087)	-0.01 (-0.14, 0.13)	0.48	0.92
Females	7 (1,664)	-0.03 (-0.15, 0.10)	0.22	0.69

PPARG, peroxisome proliferator-activated receptor gamma gene; SMD, standardized mean difference; CI, confidence interval; TC, total cholesterol; CAD, coronary artery disease; T2DM, type 2 diabetes mellitus; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
CI = -0.09 to -0.01 mmol/L, $P_{\text{SMD}} < 0.01$, $P_{\text{Heterogeneity}} = 0.46$. However, the pooled results for TG became significant after exclusion of the outlier studies ($SMD = -0.04$ mmol/L, 95% CI = -0.08 to -0.03 mmol/L, $P_{\text{SMD}} = 0.04$, $P_{\text{Heterogeneity}} = 0.23$).

Publication Bias

Begg’s test was conducted to identify the publication bias in the present meta-analysis. No publication bias was found in the association analyses between the rs1801282 polymorphism and obesity indexes as well as serum lipid variables, and no publication bias was detected for BMI (Z = 1.16, p = 0.24) (Figure S8), WCR (Z = 1.61, p = 0.11) (Figure S3), HDL-C, (Z = 1.60, p = 0.11) (Figure S4) or TG (Z = 1.06, p = 0.29) (Figure S5). Publication bias was observed in the association analyses between the rs1801282 polymorphism and WC (Z = 2.02, p = 0.04) (Figure S6) as well as TC (Z = 2.16, p = 0.03) (Figure S7). The trim-and-fill method was employed to adjust the publication bias, and the pooled results of both variables did not change after adjustment.

Publication bias was also evaluated for the association analyses between the rs3856806 polymorphism and obesity indexes as well as serum lipid variables, and no publication bias was detected for BMI (Z = 1.16, p = 0.82) (Figure S9), WHR (Z = 1.31, p = 0.19) (Figure S10), TC (Z = 0.40, p = 0.69) (Figure S11), LDL-C (Z = 0.01, p = 0.99) (Figure S12), HDL-C (Z = 0.03, p = 0.98) (Figure S13) and TG (Z = 1.20, p = 0.23) (Figure S14).

DISCUSSION

PPARγ plays an essential role in the regulation of lipid metabolism. Being activated by endogenous and exogenous lipid ligands, PPARγ exerts its function as a transcription factor and mainly up-regulates the transcription of enzymes or transporters that play key roles in lipid metabolic pathways such as reverse cholesterol transport (143, 144), cholesterol transformation (143, 144), lipogenesis (145, 146), and fatty acid oxidation (147, 148). Therefore, variations in PPARG may lead to abnormal expression of this gene and/or dysfunction of PPARγ, resulting in aberrant expressions of PPARγ-targeted genes. The relationships between the rs1801282 and rs3856806 polymorphisms and CAD have been clarified by several previous meta-analyses (149–151). Wu et al. (149) performed a meta-analysis enrolled 22 studies and 23,375 subjects, and found that the GG genotype of the rs1801282 polymorphism conferred a higher risk of CAD than the CC genotype (OR = 1.30, 95% CI = 1.01 to 1.68, p = 0.04). Qian et al. (150) did a meta-analysis enrolled 9 studies and 3,878 subjects, and the results suggested that the T allele carriers of the rs3856806 polymorphism had a lower CAD risk than the CC genotype (OR = 1.30, 95% CI = 1.01 to 1.68, p = 0.04). Qian et al. (150) did a meta-analysis enrolled 9 studies and 3,878 subjects, and the results suggested that the T allele carriers of the rs3856806 polymorphism had a lower CAD risk than the CC genotype (OR = 1.30, 95% CI = 1.01 to 1.68, p = 0.04). Qian et al. (150) did a meta-analysis enrolled 9 studies and 3,878 subjects, and the results suggested that the T allele carriers of the rs3856806 polymorphism had a lower CAD risk than the CC genotype (OR = 1.30, 95% CI = 1.01 to 1.68, p = 0.04). Qian et al. (150) did a meta-analysis enrolled 9 studies and 3,878 subjects, and the results suggested that the T allele carriers of the rs3856806 polymorphism had a lower CAD risk than the CC genotype (OR = 1.30, 95% CI = 1.01 to 1.68, p = 0.04).
levels by Li and colleagues (156) in 2015. However, Li’s meta-analysis (156) mistakenly treated c.161C>T and c.1431C>T as two polymorphic loci. In fact, they are the same polymorphic locus with different names. c.161C>T was named according to the position of this variant in exon 6 of PPARγ gene since it is located at 161 bp downstream of the first nucleotide of exon 6 of PPARγ (Figure 3A), and c.1431C>T was defined based on the position of this variant in PPARγ2 mRNA, as it is located at 1,431 bp downstream of the start genetic codon (Figure 3B). In addition, the present meta-analysis enrolled more studies (138 articles vs. 74 articles) and had larger sample size (78,652 vs. 54,953), and thereby had a higher statistical power and more reliable results than Li’s meta-analysis (156).

In terms of the mechanisms underlying the associations between the rs1801282 and rs3856806 polymorphisms and obesity indexes as well as serum lipid levels, the first idea that comes to our mind is that the two polymorphisms lead to abnormal expression of PPARγ and/or dysfunction of PPARγ, resulting in aberrant expressions of PPARγ-targeted genes. Indeed, Pihlajamäki et al. (157) examined the PPARγ gene expression pattern of different genotypes of the rs1801282 polymorphism in human adipose tissues, and observed that the GG genotype was associated with a significantly higher mRNA expression level compared to the CC genotype. Other polymorphic loci in PPARγ gene have also been reported to modulate the gene expression of PPARγ. The rs10865710 polymorphism (c.-681C>G) is located in the upstream promoter region of PPARγ gene and formed by a transversion from C to G. Lu et al. (158) observed that G allele of the rs10865710 polymorphism significantly reduced the DNA-binding activity of transcription factor CREB2 to PPARγ promoter. The rs948820149 polymorphism (c.-807A>C) is located in PPARγ2 promoter and C allele of this polymorphism was found to significantly down-regulate PPARγ expression by modulating the DNA-binding activity of transcription factor GRβ to PPARγ2 promoter (159). Another two promoter polymorphisms c.-1633C>T and c.-1572G>A in PPARγ were also verified to regulate the expression efficiency of PPARγ in Erhualian pigs (160). So far, there is no direct evidence that the PPARγ polymorphisms affect the function of PPARγ.

Significant heterogeneity was detected in the association analyses between the rs1801282 polymorphism and obesity indexes as well as serum lipid levels. The outlier studies were identified by using Galbraith plots, and no significant changes in SMD values as well as their 95% CIs were found after excluding the outlier studies, which indicates that the associations between the rs1801282 polymorphism and the obesity indexes as well as serum lipid levels are robust. There are some limitations to the current study. First, this meta-analysis only enrolled the studies published in English and Chinese as it was difficult to get the full articles published in other languages. Second, the subgroup analyses were only conducted for ethnicities, health conditions, genders and ages of the subjects due to limitation on the amount of accessible data.

CONCLUSIONS

The G allele carriers of the PPARγ rs1801282 polymorphism had higher levels of BMI, WC and TC than the CC homozygotes; the T allele carriers of the PPARγ rs3856806 polymorphism had lower levels of LDL-C and higher levels of HDL-C than the CC homozygotes; the effects of the PPARγ rs1801282 and rs3856806 polymorphisms on obesity indexes and/or serum lipid levels are modulated by ethnicities, health conditions, genders and ages of the subjects.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

YS, SL, and CH conceived of the systematic review and meta-analysis, participated in the design, and drafted the manuscript. HN, QP, RW, and ZZ carried out the literature searches and
collected the data. YS and SL performed the statistical analyses. All authors reviewed and approved the final manuscript.

FUNDING

This project was supported by the Medical Science and Technology Project of Sichuan Provincial Health Commission [21PJ124], and the Scientific Research Project of Chongqing Medical College and Affiliated Hospital of Chengdu University [Y2021010].

REFERENCES

1. Franque S, Szabo G, Abdelmalek MF, Byrne CD, Cusi K, Dufour JF, et al. Nonalcoholic Steatohepatitis: The Role of Peroxisome Proliferator-Activated Receptors. *Nat Rev Gastroenterol Hepatol* (2021) 18(1):24–39. doi: 10.1038/s41575-020-00366-5
2. Song Y, Li SJ, He C. Ppar Gene Polymorphisms, Metabolic Disorders, and Coronary Artery Disease. *Front Cardiovasc Med* (2022) 9:808929. doi: 10.3389/fcmed.2022.808929
3. Fujimori K, Uno S, Kuroda K, Matsumoto C, Maehara T. Leukotriene C4 Synthase is a Novel Ppar Target Gene, and Leukotriene C4 and D4 Activate Adipogenesis Through Cysteinyl LT1 Receptors in Adipocytes. *Biochim Biophys Acta Mol Cell Res* (2021) 1869(3):119203. doi: 10.1016/j.bbamcr.2021.119203
4. Lai F, Wang J, Tang H, Biao X, Lu K, He G, et al. Adipogenic Differentiation was Inhibited by Downregulation of Ppar Signaling Pathway in Aging Tendon Stem/Progenitor Cells. *J Orthop Surg Res* (2021) 16(1):614. doi: 10.1186/s13018-021-02720-y
5. Liu J, Zhao H, Yang L, Wang X, Yang L, Xing Y, et al. The Role of CD36-Fabp4-Ppar in Skeletal Muscle Involves Insulin Resistance in Intratherine Growth Retardation Mice With Catch-Up Growth. *BMC Endocr Disord* (2022) 22(1):10. doi: 10.1186/s12902-021-00921-4
6. Tai ES, Corella D, Deurenberg-Yap M, Adiconis X, Chew SK, Tan CE, et al. Differential Effects of the C1431T and Pro12Ala PPARgamma Gene Variants on Plasma Lipids and Diabetes Risk in an Asian Population. *J Lipid Res* (2004) 45(4):674–85. doi: 10.1194/jlr.M303633-JLR200
7. Danawati CW, Nagata M, Moriyama H, Hara K, Yasuda H, Nakayama M, et al. A Possible Association of Pro12Ala Polymorphism in Peroxisome Proliferator-Activated Receptor Gamma2 Gene With Obesity in Native Javanese in Indonesia. *Diabetes Metab Res Rev* (2005) 21(3):465–9. doi: 10.1002/dmrr.543
8. Mattevi VS, Zembrzuski VM, Hutz MH. Effects of a PPAR Gene Variant on Obesity Characteristics in Brazil. *Braz J Med Biol Res* (2007) 40(7):927–32. doi: 10.1590/S0100-879X2007000500011
9. Morini E, Tassi V, Capponi D, Ludovico O, Dallapiccola B, Trischitta V, et al. Interaction Between PPARgamma2 Variants and Gender on the Modulation of Body Weight. *Obes (Silver Spring)* (2008) 16(6):1467–70. doi: 10.1038/oby.2008.225
10. Yaffe K, Kanaya AM, Lindquist K, Huseh WC, Cummings SR, Beamer B, et al. Health ABC Study. PPAR-Gamma Pro12Ala Genotype and Risk of Cognitive Decline in Elders. *Neurobiol Aging* (2008) 29(1):78–83. doi: 10.1016/j.neurobiolaging.2006.09.010
11. Ben Ali S, Ben Yahia F, Sediri Y, Kallel A, Fhoui B, Feki M, et al. Gender-Specific Effect of Pro12Ala Polymorphism in Peroxisome Proliferator-Activated Receptor Gamma-2 Gene on Obesity Risk and Leptin Levels in a Tunisian Population. *Clin Biochem* (2009) 42(16-17):1642–7. doi: 10.1016/j.clinbiochem.2009.08.019
12. Passaro A, Dalla Nora E, Marcello C, Di Vecce F, Morieri ML, Sanz JM, et al. Ppar Pro12Ala and ACE ID Polymorphisms Are Associated With BMI and Fat Distribution, But Not Metabolic Syndrome. *Cardiovasc Diabetol* (2011) 10:112. doi: 10.1186/1475-2840-10-112
13. Hsiao TJ, Lin E. The Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor Gamma (PPARG) Gene in Relation to Obesity and Metabolic Phenotypes in a Taiwanese Population. *Endocrine* (2015) 48(3):786–93. doi: 10.1007/s12020-014-0407-7

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.919087/full#supplementary-material
68. Chia PP, Fan SH, Say YH. Screening of Peroxisome Proliferator-Activated Receptors (PPARs)
69. Grygiel-Gorniak B, Mosor M, Marcinkowska J, Przyslawski J, Nowak J.
73. Oh EY, Min KM, Chung JH, Min YK, Lee MS, Kim KW, et al. Significance of Pro12Ala Mutation in Peroxisome Proliferator-Activated Receptor Gamma Gene Polymorphisms, Obesity and Dyslipidemia
71. Haseeb A, Iliyas M, Chakrabarti S, Farooqui AA, Naik SR, Ghosh S, et al. The Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Is Associated With Premature Acute Myocardial Infarction in Japanese Patients. J Biosci (2016) 41(3):427–37. doi: 10.1007/s12038-016-9633-x
72. Meirhaeghe A, Fajas L, Helbecque N, Cottel D, Lebel P, Dallongeville J, et al. Evidence for Genetic Epistasis in Human Insulin Resistance: The French Three City Study. J Clin Endocrinol Metab (2003) 88(6):2390–9. doi: 10.1210/jc.2003-00154
77. Vaccaro O, Mancini FP, Ruffa G, Sabatino L, Iovine C, Masulli M, et al. Fasting Plasma Free Fatty Acid Concentrations and Pro12Ala Substitution and Coronary Heart Disease. J Cardiovasc Med (2002) 3(4):279–85. doi: 10.1007/s11033-001-1068-6
78. Yamamoto Y, Hirose H, Miyashita K, Nishikai K, Saito I, Taniyama M, et al. The Common PPAR-Gamma2 Pro12Ala Variant Is Associated With Lipoprotein Lipase Activity In Vivo. Diabetes (2002) 51(3):867–70. doi: 10.2337/diabetes.51.3.867
79. Song, J, Sakamoto M, Narita I, Goto S, Omori K, Takada T, et al. Peroxisome Proliferator-Activated Receptor-Gamma2 Gene C161T Substitution Alters Lipid Profiles in Nondiabetic and Type 2 Diabetic Subjects. J Mol Med (Berl) (2003) 81(11):781–8. doi: 10.1007/s00154-003-0389-1
80. Eriksson J, Lindi V, Uusitupa M, Forsén T, Laakso M, Osmond C, et al. The Effects of the Pro12Ala Polymorphism of the PPAR-Gamma-2 Gene on Lipid Metabolism and Coronary Artery Disease in a Chinese Population. Postgrad Med J (2021). postgradmedj-2021-140354. doi: 10.1136/postgradmedj-2021-140354
81. Eriksson J, Lindi V, Uusitupa M, Forsén T, Laakso M, Osmond C, et al. The Effects of the Pro12Ala Polymorphism of the PPAR-Gamma-2 Gene on Lipid Metabolism and Coronary Artery Disease in a Chinese Population. Postgrad Med J (2021). postgradmedj-2021-140354. doi: 10.1136/postgradmedj-2021-140354
82. Wang XL, Oosterhof J, Duarte N. Peroxisome Proliferator-Activated Receptor Gamma C161T Polymorphism on Lipid Profile in Brazilian Patients With Type 2 Diabetes Mellitus. J Endocrinol Invest (2005) 28(2):199–206. doi: 10.1007/s00154-003-0355-5
83. Haseeb A, Iliyas M, Chakrabarti S, Farooqui AA, Naik SR, Ghosh S, et al. Single-Nucleotide Polymorphisms in Peroxisome Proliferator-Activated Receptor Gamma and Their Association With Plasma Levels of Resistin and the Metabolic Syndrome in a South Indian Population. J Biosci (2009) 34(3):405–14. doi: 10.1007/s12038-009-0047-x
84. Meinhaeghe A, Fajas L, Helbecque N, Cottel D, Lebel P, Dallongeville J, et al. A Genetic Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene Influences Plasma Leptin Levels in Obese Humans. Hum Mol Genet (1998) 7(3):435–40. doi: 10.1093/hmg/7.3.435
85. Oh EY, Min KM, Chung JH, Min YK, Lee MS, Kim KW, et al. Significance of Pro12Ala Mutation in Peroxisome Proliferator-Activated Receptor Gamma Gene Polymorphisms for Obesity and Type 2 Diabetes. Mol Biol Rep (2000) 27(3):373–9. doi: 10.1007/s12038-000-00026-x
86. Chao TH, Li YH, Chen JH, Wu HL, Shi GY, Liu PY, et al. The 161TT Substitution and Coronary Heart Disease. Chin Circ J (2002) 17(5):370–3. doi: CNKI:SUN:ZGXH.0.2002-05-021
87. Schneider J, Kreuzer J, Hamann A, Nawrot PP, Dugi KA. The Proline 12 Alanine Substitution in the Peroxisome Proliferator–Activator Receptor-Gamma2 Gene Is Associated With Lower Lipoprotein Lipase Activity In Vivo. Diabetes (2002) 51(3):867–70. doi: 10.2337/diabetes.51.3.867
88. Pinte L, Cerna M, Kolostova J, Novota P, Cimburova J, Pekarova V, et al. The Frequency of Alleles of the Pro12Ala Polymorphism in the Periostatin Gene Is Associated With Higher Serum Interleukin-6 Concentrations in Patients With Type 2 Diabetes. J Clin Endocrinol Metab (2003) 88(6):2390–9. doi: 10.1210/jc.2003-00154
89. Buzzetti R, Petrone A, Ribaudo MC, Alemanno I, Zavarella S, Mein CA, et al. The Common PPAR-Gamma2 Pro12Ala Variant Is Associated With Development of Diabetes in the General Population: Possible Involvement in Impairment of Insulin Secretion in Individuals With Type 2 Diabetes. Diabetes (2003) 52(8):889–91. doi: 10.23737.diabetes.52.8.889
90. Peng, D, Zhao S, Li J, Nie S. Relationship Between PPAR C161-T Substitution and Coronary Heart Disease. Chin Circ J (2002) 17(5):370–3. doi: CNKI:SUN:ZGXH.0.2002-05-021
91. Schneider J, Kreuzer J, Hamann A, Nawrot PP, Dugi KA. The Proline 12 Alanine Substitution in the Peroxisome Proliferator–Activator Receptor-Gamma2 Gene Is Associated With Lower Lipoprotein Lipase Activity In Vivo. Diabetes (2002) 51(3):867–70. doi: 10.2337/diabetes.51.3.867
92. Vaccaro O, Mancini FP, Ruffa G, Sabatino L, Iovine C, Masulli M, et al. Fasting Plasma Free Fatty Acid Concentrations and Pro12Ala Substitution and Coronary Heart Disease. J Cardiovasc Med (2002) 3(4):279–85. doi: 10.1007/s11033-001-1068-6
93. Meirhaeghe A, Fajas L, Helbecque N, Cottel D, Lebel P, Dallongeville J, et al. Evidence for Genetic Epistasis in Human Insulin Resistance: The French Three City Study. J Clin Endocrinol Metab (2003) 88(6):2390–9. doi: 10.1210/jc.2003-00154
94. Orlo F, Palomba S, Cascella T, Di Biase S, Labella D, Russo T, et al. Lack of Association Between Peroxisome Proliferator-Activated Receptor-Gamma Gene Pro12Ala Polymorphism and Adiponectin Levels in the General Population: Possible Involvement in Impairment of Insulin Secretion in Individuals With Type 2 Diabetes. Diabetes (2003) 52(8):889–91. doi: 10.23737.diabetes.52.8.889
95. Pintrová D, Černá M, Kolostová K, Novotá P, Cimburková M, Romzová M, et al. The Frequency of Alleles of the Pro12Ala Polymorphism in PPARgamma2 is Different Between Healthy Controls and Patients With Type 2 Diabetes. Folia Biol (Prague) (2004) 50(3):153–6. doi: 10.1142/ 9789812703057_0014
96. Buzzetti R, Petrone A, Ribaudo MC, Alemanno I, Zavarella S, Mein CA, et al. The Common PPAR-Gamma2 Pro12Ala Variant Is Associated With
Greater Insulin Sensitivity. *Eur J Hum Genet* (2004) 12(12):1050–4. doi: 10.1038/sj.ejhg.5201283

90. Joshi T, Pai JK, Mansen JE, Hu FB, Rexrode KM, Hunter D, et al. Peroxisome Proliferator-Activated Receptor-γ2 P12A Polymorphism and Risk of Coronary Heart Disease in US Men and Women. *Arterioscler Thromb Vasc Biol* (2005) 25(8):1654–8. doi: 10.1161/01.ATV.0000171993.78135.7e

91. Hahn S, Fingerhut A, Khomstiv T, Khomstiv L, Tan S, Quadbeck B, et al. The Peroxisome Proliferator Activated Receptor Gamma Pro12Ala Polymorphism Is Associated With a Lower Hirsutism Score and Increased Insulin Sensitivity in Women With Polycystic Ovary Syndrome. *Clin Endocrinol (Oxf)* (2005) 62(5):573–9. doi: 10.1111/j.1365-2265.2005.02261.x

92. Vantitine M, Ntuittila P, Pihlajamäki J, Hallsten K, Virtanen KA, Lautamäki R, et al. The Effect of the Ala12 Allele of the Peroxisome Proliferator Activated Receptor-Gamma2 Gene on Skeletal Muscle Glucose Uptake Depends on Obesity: A Positron Emission Tomography Study. *J Clin Endocrinol Metab* (2005) 90(7):2429–54. doi: 10.1200/jc.2010.001101

93. Mossavinasab F, Tahtinen T, Jokelainen J, Koskela P, Vanhala M, Oikarinen J, et al. Common Polymorphisms in the PPARgama2 and IRS-1 Genes and Their Interaction Influence Serum Adiponectin Concentration in Young Finnish Men. *Mol Genet Metab* (2005) 84(4):344–8. doi: 10.1016/j.molgenet.2004.04.008

94. Scaglioni S, Verduci E, Salvioni M, Biondi ML, Radaelli G, Agostoni C, et al. Peroxisome Proliferator-Activated Receptor-gamma2 (PPARgama2) Pro12Ala Variant: Lack of Association With Type 2 Diabetes in Obese and non Obese Tunisian Patients. *Diabetes Metab* (2005) 31(2):119–23. doi: 10.1016/S1662-3636(07)70177-5

95. Moon MK, Cho YM, Jung HS, Park YJ, Yoon KH, Sung YA, et al. Genetic Polymorphisms in Peroxisome Proliferator-Activated Receptor Gamma is Associated With Type 2 Diabetes Mellitus and Obesity in the Korean Population. *Diabetes Med* (2005) 22(9):1161–6. doi: 10.1016/j.diabetmed.2004.11.008

96. Buzzetti R, Petrone A, Caiazzo AM, Alemanno I, Zavarella S, Capizzi M, et al. Common Polymorphisms of Peroxisome Proliferator-Activated Receptor-Gamma2 Gene and Susceptibility of Non-Alcoholic Fatty Liver Disease in Chinese People. *Liver Int* (2008) 32(10):1920–7. doi: 10.1016/j.jfliv.2008.04.008

97. Rhee EJ, Oh KW, Lee WY, Kim SY, Oh ES, Baek KH, et al. Effects of Dietary Intervention to the Blood Lipids Abnormalities. *Arch Med Res* (2005) 36(5):485–90. doi: 10.2147/amr.s2397

98. Li et al. The Effect of Peroxisome Proliferator-Activated Receptor-Gamma2 Gene Pro12Ala and C161T Polymorphisms With Metabolic Syndrome. *Circ J* (2008) 72(4):551–7. doi: 10.1253/circj.cj.72.551

99. Badii R, Benzer A, Zirrie M, Al-Rikabi A, Simsek M, Al-Hamao AQ, et al. Lack of Association Between the Pro12Ala Polymorphism of the PPAR-Gamma 2 Gene and Type 2 Diabetes Mellitus in the Qatari Consanguineous Population. *Acta Diabetol* (2008) 45(1):15–21. doi: 10.1007/s00592-007-0013-8

100. Scaglioni S, Verduci E, Salvioni M, Biondi ML, Radaelli G, Agostoni C, et al. The Peroxisome Proliferator-Activated Receptor-gamma2 Gene on Skeletal Muscle Glucose Uptake Depends on Obesity: A Positron Emission Tomography Study. *J Clin Endocrinol Metab* (2005) 90(7):2429–54. doi: 10.1200/jc.2010.001101

101. Hsu Y, Yu-Yuan L, Yu-Qiang N, Wei-Hong S, Yan-Lei D, Xiao-Bo L, et al. Effect of Peroxisome Proliferator-Activated Receptors-Gamma and Co-activator-1alpha Genetic Polymorphisms on Plasma Adiponectin Levels and Susceptibility of Non-Alcoholic Fatty Liver Disease in Chinese People. *Liver Int* (2008) 29(3):385–92. doi: 10.1111/j.1478-3231.2007.01623.x

102. Jorsal A, Tarnow L, Lajer M, Ek J, Hansen T, Pedersen O, et al. The PPAR Gamma 2 Pro12Ala Variant Predicts ESRD and Mortality in Patients With Type 1 Diabetes and Diabetic Nephropathy. *Mol Genet Metab* (2008) 94(3):347–51. doi: 10.1016/j.mgen.2008.03.014

103. Evangelisti L, Attanasio M, Lucarini L, Sofi F, Marcucci R, Giglioli C, et al. PPARgama2 Promoter Polymorphisms and Acute Coronary Syndrome. *Atherosclerosis* (2009) 205(1):86–91. doi: 10.1016/j.atherosclerosis.2008.11.009

104. Regeli JL, Jukema JW, Doevendans PA, Zwinderman AH, van der Graaf Y, Castelein J, et al. PPAR Gamma Variant Influences Angiographic Outcome and 10-Year Cardiovascular Risk in Male Symptomatic Coronary Artery Disease Patients. *Diabetes Care* (2009) 32(5):839–44. doi: 10.2337/dc08-1819

105. Kotronen A, Yki-Järvinen H, Aminoff A, Bergholm R, Pietiläinen KH, Jukema JW, et al. Common Polymorphisms in the PPARgamma2 and IRS-1 Genes and Type 2 Diabetes Mellitus and Obesity in the Korean Population. *Diabetes Med* (2005) 22(9):1161–6. doi: 10.1016/j.diabetmed.2004.11.008

106. Zouari Bouassida K, Chouchane L, Jellouli K, Chefki L, Drider S, Kohda S, et al. Peroxisome Proliferator-Activated Receptor-Gamma2 Gene on Skeletal Muscle Glucose Uptake Depends on Obesity: A Positron Emission Tomography Study. *J Clin Endocrinol Metab* (2005) 90(7):2429–54. doi: 10.1200/jc.2010.001101
120. de Kort SW, Hokken-Koelega AC. The PPAR-Gamma Pro12Ala Polymorphism Associates With Weight Gain During GH-Treatment in Short Children Born Small for Gestational Age. Eur J Endocrinol (2010) 162 (5):697-705. doi: 10.1530/EJE-09-0631
121. Liu L, Zheng T, Wang F, Wang N, Song Y, Li M, et al. Pro12Ala Polymorphism in the PPARG Gene Contributes to the Development of Diabetic Nephropathy in Chinese Type 2 Diabetic Patients. Diabetes Care (2010) 33(1):144-9. doi: 10.2337/dc09-1258
122. Hsieh MC, Lin KD, Tien KJ, Tu ST, Hsiao JY, Chang SJ, et al. Common Polymorphisms of the Peroxisome Proliferator-Activated Receptor-Gamma (Pro12Ala) and Peroxisome Proliferator-Activated Receptor-Gamma Coactivator-1 (G) (482Ser) and the Response to Pioglitazone in Chinese Patients With Type 2 Diabetes Mellitus. Metabolism (2010) 59(8):1139-44. doi: 10.1016/j.metabol.2009.10.030
123. Dongiovanni P, Rametta R, Fracanzani AL, Benedan L, Borroni V, Maggioni P, et al. Lack of Association Between Peroxisome Proliferator-Activated Receptors Alpha and Gamma2 Polymorphisms and Progressive Liver Damage in Patients With Non-Alcoholic Fatty Liver Disease: A Case Control Study. BMC Gastroenterol (2010) 10:102. doi: 10.1186/1471-230X-10-102
124. Bouchard-Mercier A, Godin G, Lamarche B, Pe"russe L, Vohl MC. Effects of Peroxisome Proliferator-Activated Receptors, Dietary Fat Intakes and Gene-Diet Interactions on Peak Particle Diameters of Low-Density Lipoproteins. J Nutrigenet Nutrigenomics (2011) 4(1):36-48. doi: 10.1186/00324531
125. Dedoussis GV, Manios Y, Kourlaba G, Kanoni S, Lagou V, Butler J, et al. An Age-Dependent Diet-Modified Effect of the Ppar1 Pro12Ala Polymorphism in Children. Metabolism (2011) 60(4):467-73. doi: 10.1016/j.metabol.2010.04.007
126. Ramakrishnan L, Sachdev HS, Sharma M, Abraham R, Prakash S, Gupta D, et al. Relationship of APOA5, Ppary and HL Gene Variants With Serial Changes in Childhood Body Mass Index and Coronary Artery Disease Risk Factors in Young Adults. Lipids Health Dis (2011) 10:68. doi: 10.1186/1476-511x-10-68
127. Chen CH, Lu ML, Kuo PH, Chen PY, Lin PY, Chen PY, et al. Relationship of APOA5, Ppar1, Ppar2 and FTO Gene Variants With Serum Lipid Levels in Ischemic Stroke Patients With Type 2 Diabetes Mellitus. J Mol Neurosci (2014) 54(4):730-8. doi: 10.1007/s12031-014-0323-y
128. Rocha RM, Bara GR, Rosa EC, Garcia EC, Amato AA, Azevedo MF. Prevalence of the Rs1801282 Single Nucleotide Polymorphism of the PPARG Gene in Patients With Metabolic Syndrome. Arch Endocrinol Metab (2015) 59(4):297-302. doi: 10.1590/2359-3997200000086
129. Rotter I, Skonieczna-Zydecka K, Kosik-Bogacka D, Adler G, Ryl A, Laszczyska M. Relationships Between FTO Rs9939609, MCHR1 Rs17782331, and Ppar1 Rs1801282 Polymorphisms and the Occurrence of Selected Metabolic and Hormonal Disorders in Middle-Aged and Elderly Men - a Preliminary Study. Clin Interv Aging (2016) 11:1723-32. doi: 10.2147/CIA.S120253
130. Li X, Zhang BL, Zhang XG, Su XL. Correlation Between PPARg2 Gene Polymorphisms and Cerebral Infarction in an Inner Mongolian Han Chinese Population. Genet Mol Res (2016) 15(2):gmr7332. doi: 10.4238/ gmr.15027332
131. Priya SS, Sankaran R, Ramalingam S, Sairam T, Somasundaram LS. Genotype Phenotype Correlation of Genetic Polymorphism of PPAR Gamma Gene and Therapeutic Response to Pioglitazone in Type 2 Diabetes Mellitus- A Pilot Study. J Clin Diag Res (2016) 10(2):FC14-1-8. doi: 10.7860/JCDR/2016/16494.7331
132. Zheng JS, Chen J, Wang L, Yang H, Fang L, Yu Y, et al. Replication of a Gene-Diet Interaction at CD36, NO3S and PPARG in Response to Omega-3 Fatty Acid Supplementation on Blood Lipids: A Double-Blind Randomized Controlled Trial. EbioMedicine (2018) 31:150–6. doi: 10.1016/j.ebiom.2018.04.012
133. Chmurzynska A, Muzik A, Krzyżanowska-Jankowska P, Madry E, Walkowiak J, Bajerska J. PPARG and FTO Polymorphism can Modulate the Outcomes of a Central European Diet and a Mediterranean Diet in Centrally Obese Postmenopausal Women. Nutr Res (2019) 69-94–100. doi: 10.1016/j.nutres.2019.08.005
134. Garcia-Ricobaraza M, Garcia-Bermudez M, Torres-Espinola F, Segura Moreno MT, Bleyere MN, Diaz-Prieto LE, et al. Association Study of Rs1801282 PPARG Gene Polymorphism and Immune Cells and Cytokine Levels in a Spanish Pregnant Women Cohort and Their Offspring. J Bioched Sci (2020) 27:1-10. doi: 10.1186/s12292-020-00694-3
135. Carrillo-Venzor MA, Erives-Annondor NR, Moreno-Gonzalez JG, Moreno-Brito V, Líon-Trillo A, González-Rodríguez E, et al. Pro12Ala PPARγ-2 and +2947C/T PPAR-β Polymorphisms and Association With Metabolic Traits in Teenagers From Northern Mexico. Genes (Basel) (2020) 11(7):78. doi: 10.3390/gens11070776
136. Lv O, Wang L, Li J, Ma Q, Zhao W. Effects of Pomegranate Peel Polyphenols on Lipid Accumulation and Cholesterol Metabolic Transformation in L-02 Hepatic Cells via the PPAR-ABCG1/CYP7A1 Pathway. Food Funct (2016) 7(12):4976-83. doi: 10.1039/C6FO01261B
137. Zhang F, Liu P, He Z, Zhang L, He X, Liu F, et al. Crocin Ameliorates Atherosclerosis by Promoting the Reverse Cholesterol Transport and Inhibiting the Foam Cell Formation via Regulating Ppar/lXr-α. Cell Cycle (2022) 21(2):202–18. doi: 10.1080/15384101.2021.2056699
138. Jie J, Ling L, Yi Y, Tao L, Liao X, Gao P, et al. Tributyltin Triggers Lipogenesis and Induces Lipogenesis and Triglyceride Accumulation in Human Hepatic Cells via Ppara, Pparb, and Pparα Agonist Pioglitazone Reverses Pulmonary Hypertension and Prevents Right Heart Failure via Fatty Acid Oxidation. Sci Transl Med (2018) 10(438):eaao0303. doi: 10.1126/scitranslmed.aao0303
139. Schubert M, Becher S, Wallert M, Maß MB, Abhari M, Remetz K, et al. The Peroxisome Proliferator-Activated Receptor (Ppar)-γ Antagonist 2-Chloro-5-Nitro-N-Phenylbenzamide (GW9662) Triggers Perilipin 2 Expression via Pparγ and Induces Lipogenesis and Triglyceride Accumulation in Human THP-1 Macrophages. Mol Pharmacol (2020) 97(3):212–25. doi: 10.1124/mol.119.117887
140. Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snye E, Meier M, et al. Ppary Agonist Pioglitazone Reverses Pulmonary Hypertension and Prevents Right Heart Failure via Fatty Acid Oxidation. Sci Transl Med (2018) 10(438):eaa0303. doi: 10.1126/scitranslmed.aao0303
141. Tikker S, Shukla SK, Patel N, Singh H, Rafiq K. High Fat Diet Upregulates Fatty Acid Oxidation and Ketogenesis via Intervention of Ppar-γ. Cell Physio Biochem (2018) 48(3):1317-31. doi: 10.1159/000492091
142. Wu Z, Lou Y, Jin W, Liu Y, Lu L, Lu G. The Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor Gamma-2 Gene (Pparg2) is...
Associated With Increased Risk of Coronary Artery Disease: A Meta-Analysis. *PLoS One* (2012) 7(12):e53105. doi: 10.1371/journal.pone.0053105

150. Qian Y, Li P, Zhang J, Shi Y, Chen K, Yang J, et al. Association Between Peroxisome Proliferator-Activated Receptor-Alpha, Delta, and Gamma Polymorphisms and Risk of Coronary Heart Disease: A Case-Control Study and Meta-Analysis. *Medicine (Baltimore)* (2016) 95(32):e4299. doi: 10.1097/MD.0000000000004299

151. González-Castro TB, Tovilla-Zarate CA, Juárez-Rojop IE, Hernández-Díaz Y, López-Narváez ML, Rodríguez-Pérez C, et al. PON2 and PPARG Polymorphisms as Biomarkers of Risk for Coronary Heart Disease. *Biomark Med* (2018) 12(3):287–97. doi: 10.2217/bmm-2017-0227

152. Baghbani-Oskouei A, Gholampourdehaki M. Anthropometric Measures and the Risk of Coronary Artery Disease. *Caspian J Intern Med* (2020) 11(2):183–90. doi: 10.22088/cjim.11.2.183

153. Solymanzadeh F, Rokhafroz D, Asadizaker M, Dastoorpoor M. Prediction of Risk of Coronary Artery Disease Based on Framingham Risk Score in Association With Shift Work Among Nurses. *Int J Occup Saf Ergon* (2022) 1–6. doi: 10.1080/10803548.2021.2024403

154. Agrawal S, Klarqvist MDR, Emdin C, Patel AP, Paranjpe MD, Ellinor PT, et al. Selection of 51 Predictors From 13,782 Candidate Multimodal Features Using Machine Learning Improves Coronary Artery Disease Prediction. *Patterns (N Y)* (2021) 2(12):100364. doi: 10.1016/j.patter.2021.100364

155. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of Potentially Modifiable Risk Factors Associated With Myocardial Infarction in 52 Countries (the INTERHEART Study): Case-Control Study. *Lancet* (2004) 364(9438):937–52. doi: 10.1016/S0140-6736(04)17018-9

156. Li Q, Chen R, Bie L, Zhao D, Huang C, Hong J. Association of the Variants in the PPARG Gene and Serum Lipid Levels: A Meta-Analysis of 74 Studies. *J Cell Mol Med* (2015) 19(1):198–209. doi: 10.1111/jcmm.12417

157. Pihlajamäki J, Schwab U, Kaminska D, Agren J, Kuusisto J, Kohlemäinen M, et al. Dietary Polyunsaturated Fatty Acids and the Pro12Ala Polymorphisms of PPARG Regulate Serum Lipids Through Divergent Pathways: A Randomized Crossover Clinical Trial. *Genes Nutr* (2015) 10(6):43. doi: 10.1007/s12263-015-0493-z

158. Lu H, Wen D, Sun J, Zeng L, Du J, Du D, et al. Enhancer Polymorphism Rs10865710 Associated With Traumatic Sepsis is a Regulator of PPARG Gene Expression. *Crit Care* (2019) 23(1):430. doi: 10.1186/s13054-019-2707-z

159. Wu L, Song Y, Zhang Y, Liang B, Deng Y, Tang T, et al. Novel Genetic Variants of Ppar2 Promoter in Gestational Diabetes Mellitus and Its Molecular Regulation in Adipogenesis. *Front Endocrinol (Lausanne)* (2021) 11:499788. doi: 10.3389/fendo.2020.499788

160. Wang H, Xiong K, Sun W, Fu Y, Jiang Z, Yu D, et al. Two Completely Linked Polymorphisms in the PPARG Transcriptional Regulatory Region Significantly Affect Gene Expression and Intramuscular Fat Deposition in the Longissimus Dorsi Muscle of Erhualian Pigs. *Anim Genet* (2013) 44(4):458–62. doi: 10.1111/age.12025

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Li, He, Nie, Pang, Wang, Zeng and Song. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.