Galactic spiral patterns and dynamo action – I. A new twist on magnetic arms

Luke Chamandy,1* Kandaswamy Subramanian1 and Anvar Shukurov1,2

1Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India
2School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU

ABSTRACT
We generalize the theory of mean-field galactic dynamos by allowing for temporal non-locality in the mean electromotive force (emf). This arises in random flows due to a finite response time of the mean emf to changes in the mean magnetic field and small-scale turbulence, and leads to the telegraph equation for the mean field. The resulting dynamo model also includes the non-linear dynamo effects arising from magnetic helicity balance. Within this framework, coherent large-scale magnetic spiral arms superimposed on the dominant axially symmetric magnetic structure are considered. A non-axisymmetric forcing of the mean-field dynamo by a spiral pattern (either stationary or transient) is invoked, with the aim of explaining the phenomenon of magnetic arms. For a stationary dynamo forcing by a rigidly rotating material spiral, we find corotating non-axisymmetric magnetic modes enslaved to the axisymmetric modes and strongly peaked around the corotation radius. For a forcing by transient material arms wound up by the galactic differential rotation, the magnetic spiral is able to adjust to the winding so that it resembles the material spiral at all times. There are profound effects associated with the temporal non-locality, i.e. finite ‘dynamo relaxation time’. For the case of a rigidly rotating spiral, a finite relaxation time causes each magnetic arm to mostly lag the corresponding material arm with respect to the rotation. For a transient material spiral that winds up, the finite dynamo relaxation time leads to a large, negative (in the sense of the rotation) phase shift between the magnetic and material arms, similar to that observed in NGC 6946 and other galaxies. We confirm that sufficiently strong random seed fields can lead to global reversals of the regular field along the radius whose long-term survival depends on specific features of a given galaxy.

Key words: magnetic fields – MHD – galaxies: magnetic fields – galaxies: spiral – galaxies: structure.

1 INTRODUCTION
Nearby disc galaxies are known to typically have regular (or large-scale or mean) magnetic fields of 1–10 μG in strength, which are coherent on the scale of the galaxies themselves (see Fletcher 2010; Beck 2012, for reviews). In many cases, galactic magnetic fields exhibit significant deviations from axial symmetry, in particular where the regular field is enhanced in ‘spiral magnetic arms’ akin to the material arms. (By material arms, we specifically mean the regions where the densities of stars and gas are enhanced.) In most cases, there is clearly a relationship between the material spiral arms and regular magnetic field spiral arms. For instance, there exists a correspondence between the azimuthally averaged pitch angle of the regular field and that of the material spiral (Fletcher 2010). This would be of little surprise, as the material arms naturally leave their imprint on the magnetic field, if not for the intriguing relation between magnetic and material arms, first discovered in the nearby galaxy NGC 6946 (Beck & Hoernes 1996). Here the magnetic arms are located almost precisely between the material arms. (By material arms, we specifically mean the regions where the densities of stars and gas are enhanced.) In most cases, there is clearly a relationship between the material spiral arms and regular magnetic field spiral arms. For instance, there exists a correspondence between the azimuthally averaged pitch angle of the regular field and that of the material spiral (Fletcher 2010).

1.1 Magnetic arms and dynamo theory
Turbulent mean-field dynamo theory has been successful in explaining the properties of the axisymmetric mode of regular fields in...
galaxies (Ruzmaikin, Shukurov & Sokoloff 1988, hereafter RSS88). Although growing non-axisymmetric modes can arise in this theory (beyond a certain radius in the disc where the rotational velocity shear is sufficiently small), they always have a lower growth rate than the axisymmetric mode if the galactic disc is axially symmetric (Baryshnikova et al. 1987; Krasheninnikova et al. 1989). Thus, to explain non-axisymmetric modes as arising in an axisymmetric disc one must typically appeal to strongly non-axisymmetric seed fields and argue that the axisymmetric mode would not have had time to attain dominance.

An alternative, of course, is to appeal to the deviations of the galactic discs from axial symmetry. Mestel & Subramanian (1991, hereafter MS91) and Subramanian & Mestel (1993, hereafter SM93) explored analytically and numerically the growth of non-axisymmetric modes under an enhancement of dynamo action along a spiral (presumably, but not necessarily, co-spatial with the material spiral) with a constant global pattern speed. Subsequently, Moss (1996, hereafter M96; see also Moss 1998; Moss et al. 2001) carried out mean-field dynamo simulations to explore the effects of modulating various quantities, such as the α effect, turbulent diffusivity or the components of the mean velocity, along a spiral arm or bar. Some authors have also addressed directly the question of how the regular field could become enhanced in between the material arms (Rohde, Beck & Elstner 1999; Shukurov 2005), though none of these explained the phenomenon of a substantial negative phase shift across a wide range of galactocentric distances, including those far away from the corotation radius, as reported by Frick et al. (2000).

1.2 Advances in dynamo and spiral structure theories

Much of the recent work on mean-field dynamo theory has been focused on the non-linear regime, and the possible catastrophic quenching of the dynamo implied by magnetic helicity conservation. This has led to the development of the dynamical quenching theory (see the review of Brandenburg & Subramanian 2005a, hereafter BS05). In this theory, catastrophic quenching of the mean-field dynamo action is averted by a magnetic helicity flux, which transports small-scale magnetic helicity away from the region of dynamo action. Dynamical quenching theory has been applied to local galactic dynamo models (Kleeorin et al. 2000, 2002; Vishniac & Cho 2001; Shukurov et al. 2006; Sur, Shukurov & Subramanian 2007), and to axisymmetric discs (Kleeorin et al. 2002; Smith 2012; Smith, Fletcher & Shukurov, in preparation), but not yet to non-axisymmetric mean-field disc dynamos. Past work on the non-axisymmetric disc dynamos focused on the linear (kinematic) regime, or relied on an approximate algebraic quenching formalism.

Another recent development is the emergence of the minimal-τ approximation (MTA) as a more general closure for mean-field electrodynamics that includes the quasi-linear or first-order smoothing approximation (FOSA) as a limiting case (Vainshtein & Kitchatinov 1983; Kleeorin, Mond & Rogachevskii 1996; Rogachevskii & Kleeorin 2000; Blackman & Field 2002, BS05). MTA is physically more appealing than FOSA because it takes into account the finite response time of the mean electromotive force (emf) to changes in the mean magnetic field and small-scale turbulence. This closure leads to new terms in the mean induction equation, which becomes a telegraph-type equation (Courant & Hilbert 1989), with second-order time derivative of the mean magnetic field. Separate considerations, motivated in part by the need to incorporate the non-locality in the dynamo coefficients, lead to essentially the same telegraph-type equation (Rheinhardt & Brandenburg 2002, see also Hughes & Proctor 2010). Such non-locality in time can lead to important astrophysical effects (Hubbard & Brandenburg 2009, and references therein). In disc galaxies, in particular, we expect memory effects to be important because the product of the gas angular velocity ω and correlation time of the turbulence τ_η may be of the order unity.

Yet another significant development has been the emergence of strong evidence that spiral patterns are not, at least in some cases, long-lived features rotating at a single constant pattern speed (Shetty et al. 2007; Dobbs et al. 2010; Dobbs 2011; Kawata, Grand & Cropper 2011; Khoperskov et al. 2011; Quillen et al. 2011; Roskar et al. 2012; Sellwood 2011; Wada, Baba & Saitoh 2011). Theory, observations and especially simulations of isolated and interacting galaxies point to a wide spectrum of possibilities, from relatively rigidly rotating and long-lived patterns with fairly constant pattern speeds, to composite spirals comprised of multiple pattern speeds dominating in different radial ranges, to material arms that appear to rotate with the local gas velocity and thus quickly wind up.

The goal of the present work is to draw together these recent developments in dynamo and spiral structure theories and apply the new ideas to examine non-axisymmetric regular magnetic fields in disc galaxies. Here we focus on modes that are enslaved to the axisymmetric mode (and thus have the same growth rate in the kinematic regime); for a two-armed material spiral this would mean the quadrissymmetric mode (or $m = 2$ mode of the Fourier expansion) that corotates with the spiral pattern, as well as other even-m corotating modes, which are weaker. We focus on numerical models, while Chamandy, Subramanian & Shukurov (in preparation, hereafter Paper II) presents a semi-analytical treatment of such modes. We leave the bisymmetric ($m = 1$) mode and other odd-m corotating modes for future work. Where the present work differs importantly from previous work is that here we

(i) incorporate MTA and explore the effects of a finite dynamo relaxation time;
(ii) include dynamical quenching with an advective helicity flux for non-axisymmetric modes and
(iii) explore the effects of both steady and transient material arms on the mean magnetic field.

In addition to this work on non-axisymmetric mean-field dynamos, we also briefly report on some new results from mean-field dynamo simulations which use an axisymmetric disc.

The plan of the paper is as follows. We present in Section 2 the basic equations and introduce our mathematical approach. We outline the numerical model in Section 3. In Section 4 we discuss the findings from simulations of axisymmetric discs, while in Sections 5 and 6 we describe the results of simulations of non-axisymmetric discs. A discussion of results and our conclusions are presented in Section 7.

2 THE MEAN-FIELD DYNAMO

Consider the induction equation given by

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B} - \eta \nabla \times \mathbf{B}),$$

where \mathbf{B} is the magnetic field, \mathbf{U} is the velocity field and η is the magnetic diffusivity. We follow the mean-field approach where the velocity and magnetic fields are each written as the sum of an average and a random component,

$$\mathbf{B} = \overline{\mathbf{B}} + \mathbf{b} \quad \text{and} \quad \mathbf{U} = \overline{\mathbf{U}} + \mathbf{u}.$$
Here an overbar formally represents ensemble averaging but for practical purposes can be thought of as spatial averaging over scales larger than the turbulent scale but smaller than the system size. Substituting equation (2) into the induction equation leads to the mean-field induction equation (Moffatt 1978; Krause & Raedler 1980):

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{U} \times \mathbf{B} + \mathcal{E} - \eta \nabla \times \mathbf{B}),$$

(3)

where

$$\mathcal{E} = u \times b$$

(4)

is the mean emf.

Expressing \(\mathcal{E} \) in terms of the mean field is a standard closure problem. A relatively simple and widely used closure is the quasi-linear approximation, also known as the first-order smoothing approximation (FOSA; Moffatt 1978; Krause & Raedler 1980, BS05). In the quasi-linear theory or FOSA, one neglects non-linear terms in the evolution equation for \(u \) and \(b \), which, however, are retained if an evolution equation for \(\mathcal{E} \) is used instead (see below). For isotropic, helical turbulence, it leads to an expansion whose lowest order terms are given by

$$\mathcal{E} = \alpha \mathbf{B} - \eta \nabla \times \mathbf{B},$$

(5)

where, in the kinematic limit, \(\alpha = \alpha_k \) with

$$\alpha_k = \frac{1}{3} \tau_u \mathbf{u} \cdot \nabla \mathbf{u}, \quad \eta \equiv \frac{1}{3} \tau_u u^2$$

(6)

and \(\tau_u \) is the correlation time of the random flow. The turbulent transport coefficients \(\alpha \) and \(\eta \) are proportional, respectively, to the mean kinetic helicity and mean energy density of the turbulence. Below, we refer to the application of FOSA as the ‘standard prescription’.

An alternative treatment, suggested by Rogachevskii & Kleo- orin (2000) and Blackman & Field (2002) was to replace the triple correlations which arise in the evolution equation for \(\mathcal{E} \) by a damping term proportional to \(\mathcal{E} \) itself (see also Vainshtein & Kitchatinov 1983; Kleo- orin et al. 1996, BS05). Under this approximation, called the minimal-\(\tau \) approximation (MTA) by BS05, one obtains, instead of (5), an evolution equation for \(\mathcal{E} \), given by

$$\frac{\partial \mathcal{E}}{\partial t} = \frac{1}{\tau} \left(\alpha \mathbf{B} - \eta \nabla \times \mathbf{B} \right) - \frac{\mathcal{E}}{\tau},$$

(7)

where again in the kinematic limit, \(\alpha \) and \(\eta \) are given by equation (6) and \(\tau \) is a relaxation time. For simplicity, this equation has been derived assuming that \(\tau \) is scale independent. When one takes into account the Lorentz force, the \(\alpha \)-coefficient acquires an additional term proportional to the electric current helicity (Pouquet, Frisch & Leorat 1976; Kleo- orin & Ruzmaikin 1982; Gruzinov & Diamond 1994; Blackman & Field 2000; Rüdler, Kleo- orin & Rogachevskii 2003, BS05), and then

$$\alpha = \alpha_k + \alpha_m = \frac{1}{3} \tau_c \left[\mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{4\pi \rho} \mathbf{b} \cdot \nabla \times \mathbf{b} \right].$$

(8)

where \(\rho \) is the density.

The \(\tau \)-approximation is motivated by the observation that if, hypothetically, the mean fields were suddenly switched off then one would expect the mean emf to decay gradually, over a finite damping time \(\tau \). This approximation has been tested in direct numerical simulations of forced turbulence (BS05; Brandenburg & Subramanian 2005b, 2007). These simulations of MTA find that \(\tau \) is positive and the associated Strouhal number is of order unity, \(\tau \sigma_0 k_0 \simeq 1 \), where \(k_0 \) is the wavenumber corresponding to the correlation scale of the random flow, and \(u_0 \) is its rms velocity. In principle, the damping or relaxation time \(\tau \) can be different from the correlation time \(\tau_c \). For example, if \(\tau_c \) is determined by the frequency with which expanding supernova shocks encounter a given point in space then it could be shorter than \(\tau \simeq (\alpha_0 k_0)^{-1} \) (Skukov 2004). Thus, we keep the ratio \(c_\tau = \tau / \tau_c \) as a dimensionless free parameter in the equations; for the numerical solutions we set it to unity. We then have

$$\left(\frac{\partial}{\partial t} + \frac{1}{\tau} \right) \mathcal{E} = c_\tau \left(\alpha \mathbf{B} - \eta \nabla \times \mathbf{B} \right).$$

(9)

If the explicit time derivative is neglected (valid if \(\mathcal{E} \) varies on time-scales long compared to the relaxation time \(\tau \)), and \(\tau \) is approximated as \(\tau_c \), then equation (9) reduces to the expression (5) obtained from the standard prescription. An alternative way of arriving at equation (9) (with \(c_\tau = 1 \)) is by keeping a time derivative of \(\mathbf{B} \) in the expression (5) for \(\mathcal{E} \) in order to introduce non-locality in time (Rheinhardt & Brandenburg 2012).

We now apply the mean-field approach to the induction equation with the MTA closure. Operating on equation (3) with \(\partial / \partial t + 1 / \tau \), using equation (9), assuming \(\mathbf{U} \) to be independent of time and taking \(\eta \) and \(\tau \) to be spatially uniform, we arrive at

$$\left(\frac{\partial}{\partial t} + \frac{1}{\tau} \right) \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{U} \times \frac{\partial \mathbf{B}}{\partial t} \right) + \frac{\eta \tau}{\tau^2} \nabla \times \mathbf{B} + \frac{1}{\tau} \left[\nabla \times \left(\mathbf{U} \times \mathbf{B} + c_\tau \alpha \mathbf{B} \right) + \left(\eta + c_\tau \eta \right) \nabla^2 \mathbf{B} \right].$$

(10)

After multiplying through by \(\tau \), this leaves us with an equation containing new terms proportional to \(\tau \) that do not emerge under the standard prescription,

$$\frac{\tau \partial \mathbf{B}}{\partial t^2} + \frac{\partial \mathbf{B}}{\partial t} = \tau \nabla \times \left(\mathbf{U} \times \frac{\partial \mathbf{B}}{\partial t} \right) + \tau \eta \nabla \times \mathbf{B} + \nabla \times \left(\mathbf{U} \times \mathbf{B} + c_\tau \alpha \mathbf{B} \right) + \left(\eta + c_\tau \eta \right) \nabla^2 \mathbf{B}. $$

(11)

The same approach applied with the standard prescription gives the familiar result,

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left(\mathbf{U} \times \mathbf{B} + \alpha \mathbf{B} \right) + \left(\eta + \eta \right) \nabla^2 \mathbf{B}. $$

(12)

which is the \(\tau \rightarrow 0 \) limit of equation (10) with \(c_\tau = 1 \). Equation (10) contains a second-order as well as first-order time derivatives and belongs to the class of equations known as the telegraph equation (e.g. Courant & Hilbert 1989). The second time derivative can lead to wave-like properties, with \(1 / \tau \) as a damping coefficient. Unlike the mean induction equation (11), the telegraph equation (10) is not invariant under transformation to a rotating frame (see Paper II).

The dynamics of \(\alpha_m \) is described by the helicity evolution equation (Subramanian & Brandenburg 2006):

$$\frac{\partial \chi}{\partial t} = -2 \mathcal{E} \cdot \mathbf{B} - 2 \eta \mathbf{b} \cdot \nabla \times \mathbf{b} - \nabla \cdot \mathbf{F},$$

(12)

where \(\chi \) is the small-scale magnetic helicity density and \(\mathbf{F} \) is its flux. It is argued in Shukurov et al. (2006) that

$$\alpha_m = \frac{\eta \chi}{E_{\text{eq}}} \frac{\mathbf{b} \cdot \nabla \times \mathbf{b}}{B_{\text{eq}}^2},$$

(13)

where \(l \) is the energy-carrying scale of the turbulence and \(B_{\text{eq}} = \sqrt{4 \pi \rho / l} \) is the equipartition field strength. Using equation (13), equation (12) can be rewritten as an evolution equation for \(\alpha_m \):

$$\frac{\partial \alpha_m}{\partial t} = -\frac{2 \eta}{l^2} \left(\frac{\mathbf{E} \cdot \mathbf{B}}{B_{\text{eq}}^2} + \frac{\alpha_m}{\alpha_m} \right) - \nabla \cdot \mathbf{F}. $$

(14)
where $R_m = \eta_\phi/\eta$ is the magnetic Reynolds number. Here we consider a flux of the form

$$F_\alpha = \frac{\eta_\phi}{\mu_0 B_\alpha} F = \alpha U - \kappa \nabla \alpha_m,$$

(15)

where the first term is related to the advective flux of magnetic helicity (Shukurov et al. 2006), while the second term leads to a Fickian diffusion of α_m (Kleeorin et al. 2002; Brandenburg, Candelaresi & Chatterjee 2009). The latter term has been argued to exist on physical and phenomenological grounds, and it has been found in direct numerical simulations that $\kappa \approx 0.3 \eta_c$ (Hubbard & Brandenburg 2010; Mitra et al. 2010, see also Candelaresi et al. 2011). It is worth noting that an alternate quenching formalism has recently been suggested in the literature (Hubbard & Brandenburg 2011, 2012), but the question of its applicability to the galactic dynamo problem (with e.g. non-periodic boundary conditions) requires further consideration which is beyond the scope of this paper. Our aim is not to investigate different quenching formalisms, but rather to study magnetic arms in a saturated state that is realistic.

3 NUMERICAL SOLUTIONS

3.1 Method and approximations used

We now examine the evolution of the mean magnetic field numerically. We solve equation (10) when τ is finite, while equation (11) is solved for the case $\tau \to 0$. The components of equation (10) in cylindrical coordinates are given in Appendix A1. The saturation of the dynamo action is controlled by the helicity conservation.

For convenience we define $F = \nabla \times \mathbf{E}$, and assume that η, η_ϕ, τ, and c_r, are constants. The quantity F has been introduced in addition to \mathbf{E} because this allows us to avoid having to impose boundary conditions on the components of \mathbf{E} and also to avoid applying the no-z approximation to the components of $\nabla \times \mathbf{E}$ (see below). Alternatively, we could have solved for the vector potential \mathbf{A} and \mathbf{E}, so the choice of using \mathbf{B} and \mathbf{F} is a matter of preference.

We make the thin-disc approximation, which implies $r^{-1} \partial/\partial \phi \ll \partial/\partial \zeta$ and $\partial/\partial r \ll \partial/\partial \zeta$. We also assume that the variations of the rotational and radial velocities along the z-axis are negligible. Then we can neglect $\mathbf{B}_r \partial U_\phi/\partial r$ in the equation for \mathbf{B}_r and $\mathbf{B}_z \partial U_\phi/\partial \zeta$ in the equation for \mathbf{B}_ϕ. The thin-disc approximation and the condition $V \cdot \mathbf{B} = 0$ together imply that $\mathbf{B}_r/\|\mathbf{B}\| \ll 1$. This approximation also allows us to ignore terms containing the ϕ- and r-derivatives of $\alpha \mathbf{B}$, in equations (A4) and (A5), and of \mathbf{B}, in equations (A7) and (A8), as well as the term $\mathbf{E} \times \mathbf{B}$, in equation (14) for α_m. Thus, the evolution equation for \mathbf{E} is no longer needed, and all terms containing \mathbf{E}, are eliminated from all the relevant evolution equations. (We note in passing that for solutions with quadrupolar geometry, $\mathbf{B}_r = 0$ at the midplane, but not elsewhere.) We can estimate the magnitude of \mathbf{B}_r from $\nabla \cdot \mathbf{B} = 0$. Within this framework, we do not have to worry about satisfying $\nabla \cdot \mathbf{F} = 0$ numerically.

Further, we write $U_\phi = r \omega$, and take ω to be independent of ϕ. We also adopt $U_r = 0$. However, a vertical velocity U_z, perhaps due to a galactic fountain flow, can be essential for the dynamo action, so it is retained. Note that gas outflowing from the disc can be replenished by the fountain flow from the gaseous halo or accretion from the intergalactic medium (Putman, Peek & Joung 2012). The vertical flow advects magnetic field as well as magnetic helicity (Shukurov et al. 2006). Crucially, a magnetic helicity flux away from the dynamo region is required to alleviate the catastrophic quenching of the α effect (BS05).

The no-z approximation (SM93; Moss 1995; Phillips 2001) is used as discussed in detail in Appendix B, to approximate the z-derivatives of the mean magnetic field. This reduces the three-dimensional problem to that in two dimensions (r and ϕ), thus greatly reducing the computational time required. The no-z approximation provides remarkably accurate solutions in one-dimensional dynamical quenching models (compare Shukurov et al. 2006; Sur et al. 2007) and we have also confirmed that it performs equally well in higher dimensional problems (see Appendix B5). Under this approximation, \mathbf{U}_r represents a vertically averaged, mass-weighted vertical velocity.

3.2 Dimensionless governing equations

The values of the key parameters for our models are given in Table 1. These can be found, for example, in RSS88; Beck et al. (1996); M96. We adopt the length scale and rms velocity of the largest turbulent eddies to be $l = 100\, \text{pc}$ and $u = 10\, \text{km\,s}^{-1}$, respectively. These parameters are taken to be constant in space and time. This leads to the following estimate for the turbulent diffusivity: $\eta_* \approx lu/3 = 10^{26}\, \text{cm}^2\,\text{s}^{-1}$. It is convenient to use dimensionless variables, with distance along the z-axis measured in the unit of the characteristic

Table 1. List of parameters and key-dependent quantities for all models (except Model D).

Description	Symbol	Expression	Value	Dimensionless
Radial location of disc boundary	R		20 kpc	R
Disc half-thickness at $r = R/2$	h_0		0.5 kpc	h_0
Characteristic field strength at $r = 0$	B_0		-	B_0
Scale length of the turbulence	l		0.1 kpc	$l/5h_0$
rms velocity of the turbulence	u		10 km s$^{-1}$	$15h_0/\eta_0$
Turbulent diffusivity	η_τ	$lu/3$	$10^{26}\, \text{cm}^2\,\text{s}^{-1}$	$h_0^2\eta_\tau^{-1}$
Vertical diffusion time at $r = R/2$	t_0		0.73 Gyr	t_0
Correlation time of the turbulence	τ_τ	l/u	10 Myr	$t_0/75$
Disc flaring radius	r_{ϕ}		10 kpc	$R/2$
Disc half-thickness at $r = 0$	h_0		0.35 kpc	$h_0/\sqrt{2}$
Brandt radius	r_{ϕ}		2 kpc	$R/10$
Angular velocity at $r = 0$	ω_0	$130\, \text{km\,s}^{-1}$	$96t_0^{-1}$	
Corotation radius	r_{ϕ}	8 kpc	2$R/5$	
Pattern speed of spiral	Ω	$\omega(r_{\phi})$	31 km s$^{-1}$ kpc$^{-1}$	23t_0^{-1}
Galactic spiral patterns and dynamo action I

half-thickness of the disc \(h_0 \), horizontal lengths measured in the radial disc scale length \(R \) and time measured in typical vertical turbulent diffusion time \(t_0 = h_0^2 / \nu \). We take as fiducial values \(h_0 = 500 \) pc and \(R = 20 \) kpc. For our purposes, it is not necessary to specify the magnetic field unit \(B_0 \), so we leave it arbitrary. The quantities \(h_0 \) and \(R \) enter only in the ratios \(\lambda = h_0 / R = \sqrt{2(h_0 / \nu)^2} \). The rotational shear is denoted \(G = r \, d\omega / dr \) and \(\kappa \) is the turbulent diffusivity for \(\alpha_m \). Then our set of equations can be written in dimensionless form as

\[
\frac{\partial B_r}{\partial t} = -\frac{\partial B_\phi}{\partial \phi} - \frac{U_r B_\phi}{h} + F_r, \tag{16}
\]

\[
\frac{\partial B_\phi}{\partial t} = G B_r - \frac{\partial B_\alpha}{\partial \phi} - \frac{U_r B_\phi}{h} + F_\phi, \tag{17}
\]

\[
\frac{\partial F_r}{\partial t} = \tau^{-1} \left[-\frac{2 c_\alpha}{\tau h} B_\phi - c_\tau \frac{\tau^2}{4 h^2} B_r + c_\lambda \left(\frac{\partial B_\alpha}{\partial \phi} - \frac{2}{r^2} \frac{\partial B_\phi}{\partial \phi} \right) - F_r \right], \tag{18}
\]

\[
\frac{\partial F_\phi}{\partial t} = \tau^{-1} \left[-\frac{2 c_\alpha}{\tau h} B_\phi - c_\tau \frac{\tau^2}{4 h^2} B_\phi + c_\lambda \left(\frac{\partial B_\alpha}{\partial \phi} + \frac{2}{r^2} \frac{\partial B_\phi}{\partial \phi} \right) - F_\phi \right], \tag{19}
\]

\[
\frac{\partial \alpha_m}{\partial t} = -K \left[\left(\frac{\epsilon \cdot B_r}{h} \right)^2 + \frac{\tau^2}{4 h^2} \right] - \frac{\alpha_m U_\phi}{h} - \omega \frac{\partial \alpha_m}{\partial \phi} + \kappa \left[\frac{\lambda^2}{r^2} \frac{\partial \alpha_m}{\partial r} + \frac{\lambda^2}{r^2} \frac{\partial^2 \alpha_m}{\partial \phi^2} - \frac{\tau^2}{4 h^2} \alpha_m \right], \tag{20}
\]

\[
\frac{\partial E_r}{\partial t} = \tau^{-1} \left[c_\alpha \alpha_m B_r + c_\tau \frac{\tau}{2 h} B_\phi - E_r \right], \tag{21}
\]

\[
\frac{\partial E_\phi}{\partial t} = \tau^{-1} \left[c_\alpha \alpha_m B_\phi + c_\tau \frac{\tau}{2 h} \left(1 + \frac{3}{4 \pi} \frac{\sqrt{-D}}{\pi} \right) B_r - E_\phi \right], \tag{22}
\]

where

\[
E \cdot B = E_r B_r + E_\phi B_\phi.
\]

We have also neglected terms proportional to the inverse magnetic Reynolds number \(\mathcal{R}_m^{-1} \) in equations (16) and (17), as \(\mathcal{R}_m \gg 1 \) in galaxies. We have retained such a term in equation (20); however, it can also be neglected if the flux is dominant, which is usually the case.

For \(\tau \to 0 \), these equations reduce to the three standard equations of the slab dynamo:

\[
\frac{\partial B_r}{\partial t} = \frac{2 c_\alpha}{\tau h} B_\phi - c_\tau \frac{\tau^2}{4 h^2} B_r
\]

\[
+ c_\lambda \left(\frac{\partial B_\alpha}{\partial \phi} - \frac{2}{r^2} \frac{\partial B_\phi}{\partial \phi} \right), \tag{23}
\]

3.3 Initial and boundary conditions

The boundary conditions are \(B_r = B_\phi = 0 \) at \(r = 0 \) and \(r = R \), where the former condition applies as long as we consider non-axisymmetric modes that are localized far away from the rotation axis. The components of \(\mathbf{E} \cdot \mathbf{B} \) are evaluated for the purpose of calculating \(\mathbf{E} \cdot \mathbf{B} \), but not for calculating the components of \(\nabla \times \mathbf{E} \). All variables vanish at \(t = 0 \) except for \(B_r \) and \(B_\phi \), whose seed values are chosen either to be Gaussian random fields for \(B_r \) and zero for \(B_\phi \), or to have the functional form

\[
B_\phi = \frac{r}{R} \left(1 - \frac{r}{R} \right)^2 \epsilon^{-1} (S_0 + S_1 \cos \phi) \quad \text{for } r > R_0,
\]

where \(S_0 \) and \(S_1 \) are dimensionless constants that control the amplitudes (relative to \(B_\phi \)) of the \(m = 0 \) and \(m = 1 \) components of the seed field. The solenoidality condition \(\nabla \cdot \mathbf{B} = 0 \) can be used to obtain the magnitude of \(B_\phi \). When we refer to the \(r = 0 \) seed, this means \(S_0 = 1 \) and \(S_1 = 0 \), while the \(m = 1 \) seed has \(S_0 = 0 \) and \(S_1 = 1 \).

The code uses sixth-order finite differences for the spatial derivatives and a third-order Runge–Kutta routine for the time derivatives, using the same algorithms as the publicly available \textsc{pencil} code.\(^1\) We have tested the code by reproducing various known results including those of M96.

3.4 The galaxy model

For the galactic rotation curve, we use the Brandt curve,

\[
\omega(r) = \frac{\omega_0}{\left[1 + (r/r_s)^2 \right]^{1/2}}, \tag{26}
\]

where \(\omega_0 \) and \(r_s \) are parameters, so that with this profile, \(\omega \to \text{const} \) as \(r \to 0 \) (solid body rotation) and \(\omega \propto 1/r \) for \(r \gg r_s \) (flat rotation curve). The rotational shear rate,\(\Gamma(r) = r \frac{d\omega}{dr} = -\omega(r) \left(r/r_s \right)^2 \),

\[
tends to zero as \(r \to 0 \) and \(\Gamma \propto r \) for \(r \gg r_s \), with the maximum magnitude of \(2\omega_0/(3\sqrt{3}) \) at \(r = \sqrt{3} r_s \).

\(^1\) http://pencil-code.googlecode.com (Brandenburg 2003).
We model the disc half-thickness as a hyperboloid (RSS88):

\[h(r) = h_0 \left[1 + (r/r_D)^2 \right]^{1/2}, \]

(28)

where \(h_0 \) is the scale height at \(r = 0 \) and \(r_D \) controls the disc flaring rate. With this form, \(h \to h_0 \) as \(r \to 0 \) and \(h \propto r \) for \(r \gg r_D \).

We take the kinematic part of the \(\alpha \)-coefficient to decrease with radius according to F. Krause's formula \(\alpha_k \sim F \omega/h \) (RSS88, BS05). For the models of non-axisymmetric disc, we usually impose a spiral profile on \(\alpha_k \). For a rigidly rotating spiral, we use

\[\alpha_k(r, \phi, t) = \alpha(r) \left[1 + \epsilon \cos \left[n(\phi - \Omega t - kr) \right] \right], \]

(29)

where the azimuthally averaged value of \(\alpha_k \), denoted with overbar, is given by

\[\overline{\alpha}(r) = I^2 \omega r/h(r), \]

(30)

\(\epsilon \) sets the degree of deviation from axial symmetry, \(n \) is the number of spiral arms, \(\Omega \) is the angular velocity of the spiral pattern (i.e. the pattern speed) and \(k \) negative for a trailing spiral, determines how tightly the arms are wound. The spiral modulation of \(\alpha \) could be due to a variety of different effects, including an increase in vorticity produced by spiral shocks (MS91), an increased turbulent velocity (Shukurov 1998), a different coherence scale in arm and interarm regions (Rohde et al. 1999) or even a new form of helicity flux (Vishniac 2012). We have therefore refrained from attempting to relate \(\epsilon \) to the other parameters of the model (e.g. \(l, n \)). Rather, for simplicity and ease of interpretation, we vary \(\alpha_k \) while holding other parameters constant along the spiral. For a spiral winding up with the differential rotation of the gas, we take

\[\alpha_k(r, \phi, t) = \overline{\alpha}(r) \left[1 + \epsilon' \cos \left[n(\phi - \phi_0 - \omega' t) \right] \right], \]

(31)

where we have included an arbitrary phase \(\phi_0 \) and defined \(t' = t - t_0 \), where \(t_0 \) is the time of onset of the \(\alpha \)-spiral. We have also taken \(k = 0 \), so that the \(\alpha \)-spiral actually starts off as a ‘bar’ at \(t' = 0 \). Wherever necessary, we also require that \(\alpha_k < \epsilon \).

The model also allows for a spiral modulation of the vertical advective velocity \(\overline{U_z} \) of a similar form

\[\overline{U_z} = U_0 \left[1 + \epsilon_U \cos [n(\phi - \Omega t) - kr] \right], \]

(32)

where \(U_0 \) is the azimuthally averaged value of \(\overline{U_z} \).

Following other authors (e.g. RSS88) we define the turbulent magnetic Reynolds numbers to quantify the strengths of the differential rotation, \(\alpha \)-effect and vertical velocity:

\[R_\omega = G h^2 / \eta_\epsilon, \quad R_\alpha = \alpha_0 h / \eta_\epsilon, \quad R_U = U_0 / h / \eta_\epsilon. \]

The local dynamo number,

\[D = R_\omega R_\alpha = \alpha_0 G h^3 / \eta_\epsilon^2. \]

is a dimensionless measure of the intensity of the \((\alpha \omega) \) dynamo action at a given radius. For a mean field to grow to dominate the local \(\alpha \omega \) dynamo action alone, it is required that \(D < D_\omega \approx 10 \) (RSS88, see also Paper II). In the limit \(r \gg r_\omega \), an axisymmetric disc has \(D \geq -9(\alpha \omega / \mu)^2 \).

The functional form of the characteristic magnetic field is adopted as

\[B_\epsilon = B_0 e^{-r/\epsilon}; \]

(33)

if appropriate, this can be identified with the magnetic field strength corresponding to the energy equipartition with the turbulence. Non-linear dynamo effects are expected to become pronounced as soon as \(|\overline{B}| \approx B_\epsilon \).

3.5 Models explored and the representation of the results

The various numerical models considered here are summarized in Table 2. We adopt \(r_\omega = 0.1 R = 2 \) kpc and set the circular speed to \(U_c = 375 h_0 \) kpc at \(r = R/2 = 10 \) kpc, which gives \(\eta_\epsilon = 96 \) kpc at \(130 \) kpc \(1 \) kpc. This implies that \(\epsilon = 18.75 h_0^{-1} = 25 \) kpc \(1 \) kpc. \(G \approx -16 \) kpc \(1 \) kpc. \(\overline{U_z} = 0.75 h_0^{-1} = 0.5 \) kpc \(1 \) kpc. and the azimuthally averaged dynamo number \(D \approx -13.5 \) at \(r = R/2 = 10 \) kpc. The resulting radial profiles of \(h, R_\omega, R_\alpha \) and \(D \) are shown in Fig. 1.

The corotation radius for models with steady spiral forcing is chosen as \(r_\omega = 8 \) kpc, which is close to the observational estimates for the Milky Way (Acharova, Mishurov & Rasulova 2011; Gerhard 2011). Moreover, a reasonable estimate for \(\epsilon \) is given by \(\tau = \mu / \mu = (L^2 / 3 h_0^2) = h_0 / \mu \). It is possible that \(\tau \) is much smaller than our simple estimate for some galaxies and much larger for others. Therefore, we also consider the \(\tau \to 0 \) case, as well as \(\tau = 2 \mu / \mu \) for some models.

Table 2. List of numerical models. Resolution is given as \(n_x \times n_y \). The value of \(R_U \) is given at \(r = R/2 = 10 \) kpc. \n
Model	Resolution	Seed	\(l \) (kpc)	\(\mu \) (kpc s\(^{-1}\))	\(R_U \)	\(U_0 \) (kpc s\(^{-1}\))	\(\epsilon \)	\(\epsilon_U \)	\(-kR \)	\(n \)
A	100 × 60	0	0.1	10	0	0	0	0	0	0
B	100 × 60	0	0.1	10	0.45	0.3	0	0	0	0
C	100 × 60	R	0.1	10	0.45	0.3	0	0	0	0
D	200 × 120	1	0.15	5	0.45	0.3	0	0	0	0
E	200 × 120	0	0.1	10	0.45	0.3	0	0	0	0
F	100 × 60	0	0.1	10	0.90	0.6	0	0.5	0	20
G	100 × 60	R	0.1	10	0.45	0.3	0	0.5	0	20
H	100 × 60	0	0.1	10	0	0	0	0.5	0	20
I	200 × 120	0	0.1	10	0.45	0.3	0	0	0	20
J	200 × 120	0	0.1	10	0.45	0.3	0	0	0	20
K	200 × 120	0	0.1	10	0.45	0.3	0	0	0	20
L	200 × 120	0	0.1	10	0.45	0.3	0	0	0	20
M	200 × 120	0	0.1	10	0.45	0.3	0	0	0	20
N	200 × 120	0	0.1	10	0.45	0.3	0	0.5	0	20
O	200 × 120	0	0.1	10	0	0	0.3	0.5	0	20
P	400 × 240	0	0.1	10	0.45	0.3	0	0.5	0	20
and, for \(m > 0 \),
\[
\bar{E}^{(m)}(r, t) = \frac{1}{16\pi} \left\{ \left[\tilde{B}_i^{(m)}(r, t) \right]^2 + \left[\tilde{B}_\phi^{(m)}(r, t) \right]^2 \right\},
\]
(39)
where the additional factor 1/2 in the latter equation arises from averaging \(\cos^2[m(\phi - \phi_0^{(m)})] \) over the interval \((0, 2\pi)\). Averaging over the area of the disc, we obtain the average normalized magnetic energy in mode \(m \),
\[
\left\langle \bar{E}^{(m)}(t) \right\rangle = \frac{2}{R^2} \int_0^R \frac{\bar{E}^{(m)}(r, t)}{B_{eq}^2(r)} \, r \, dr.
\]
(40)

4 DYNAMO IN AN AXISYMMETRIC DISC

A number of interesting questions can be addressed by considering dynamo action in an axisymmetric disc. One of them is how a whole young galaxy becomes magnetized with a coherent field given that the radial diffusion time across a galaxy, \(t_R \approx 3 \times 10^2 \) Gyr, is typically larger than the age of the Universe. We examine this in the context of the dynamical quenching model of the galactic dynamo.

4.1 Axisymmetric solutions

In local dynamo models the presence of magnetic helicity fluxes has been shown to alleviate the catastrophic quenching of the dynamo (Kleeorin et al. 2002; Shukurov et al. 2006). In the absence of any helicity flux, the mean magnetic field does grow to a fraction of the equipartition value, until \(\alpha_m \) cancels \(\alpha_s \), after which magnetic field decays. The result which obtains when the radial dimension is included is more interesting, even in the absence of a helicity flux. The evolution of the radial profile of the mean-field strength for such a case (Model A) is shown in Fig. 2 adopting \(\tau \rightarrow 0 \). No notable differences exist between the \(\tau \rightarrow 0 \) and \(\tau = l/u \) cases; for example, the kinematic global growth rate \(\Gamma = 5.710^{-1} \approx 7.8 \) Gyr\(^{-1}\).
Evolution of the magnetic field that starts as a random seed $\alpha B/B_l$ at 10 kpc and $\alpha = 0).$ Times plotted are as in Fig. 2, with $t = 3.1$ Gyr omitted since B/B_0 is too small to be visible.

is virtually the same.\(^2\) Since the local growth rate of the field depends on the dynamo number which in turn depends on r, the field maximum travels in radius. More specifically, the maximum is first localized where the dynamo number is the largest (τ_M, say), but, at later time, at radii $r_M = \Delta r$ and $r_M + \Delta r$, etc. This leads to two rings of enhanced mean field, one moving inward and the other moving outward (the outer ring is more prominent in Model A). Because of the catastrophic α-quenching, the mean field eventually becomes negligible. (See Moss, Shukurov & Sokoloff 1998 for a discussion of propagating magnetic fronts in disc galaxies.)

On the other hand, if a vertical advective flux or diffusive flux is present, catastrophic quenching is averted. Then magnetic field can persist at about the same strength in a wide radial range, gradually spreading out until it occupies the entire region of the disc where the local dynamo number is supercritical. This is the situation illustrated with Model B, as shown in Fig. 3 ($\tau \to 0$ case), for $R_U = 0.45$ at $r = R/2 = 10$ kpc and $U_\phi = 0.3$ km s\(^{-1}\) at all r. In this model, both $\tau \to 0$ and $\tau = 1/\omega$ cases are again very similar, and the kinematic global growth rate for both cases is $\Gamma = 5.1U_\phi^{-1} \approx 7.0$ Gyr\(^{-1}\). This is slightly smaller than for Model A, since the vertical flux removes large-scale magnetic field, rendering the dynamo less efficient in the kinematic stage. The results are also similar if we replace the advective flux of α_M with a turbulent diffusive flux. This model clarifies how the whole disc becomes magnetized. It does so by first reaching significant strengths in regions where the dynamo number is largest. Growth then saturates at each radius r to lead to a magnetic structure growing at a single rate. Importantly, the entire disc becomes magnetized over a time-scale much shorter than the radial diffusion time.

Figure 4. Evolution of the magnetic field that starts as a random seed magnetic field (Model C) in the $\tau \to 0$ case. Curves show \bar{B}_ϕ at the azimuth $\phi = 0$ at various times, with the exception of the field at $t = 0$, where \bar{B}_ϕ is shown (since $\bar{B}_\phi = 0$). Otherwise, \bar{B}_ϕ is omitted for the sake of clarity, but vanishes at the same set of radii \bar{B}_ϕ, indicating reversals of the field at these locations. For the final time, the solution obtained with an $m = 0$ seed is shown as a thin dotted line for reference.

4.2 Reversals of the magnetic field

We find that if the seed magnetic field is weak enough, the steady-state magnetic configuration is independent of its form and strength. However, a relatively strong initial magnetic field can affect the steady-state magnetic configuration if non-linear dynamo effects become important before the leading dynamo eigenfunction (normally represented by an axisymmetric magnetic field without any reversals along the radius) can become dominant (Shukurov 2005; Moss et al. 2012). In particular, a random seed magnetic field can lead to long-lived reversals in the (quasi-)steady state magnetic configuration, either global (Poedz, Shukurov & Sokoloff 1993) or localized in both radius and azimuth (Bykov et al. 1997). A suitable random seed magnetic field can be readily provided by the fluctuation dynamo action (Poedz et al. 1993). Earlier results in this area have been obtained with a heuristic algebraic non-linearity in the mean-field dynamo equation. Here we revisit this idea, but now with the physically motivated dynamic non-linearity and finite τ.

In Model C, we have chosen a random seed specified as a two-dimensional Gaussian random field with the root-mean-square value of about one-tenth the equipartition value (i.e. a fraction of μG in the solar neighbourhood).\(^3\) We also tried 10 times larger seeds and found almost identical results. The number of radial grid points in this model is $n_r = 100$, corresponding to a resolution 0.2 kpc in radius, comparable to the correlation scale of the interstellar turbulence. The results are shown in Fig. 4. First, large-scale fields can develop over kpc scale regions, even in the outer disc, on Gyr time-scales. More interestingly, it can be seen that reversals develop and persist

\(^2\) That there is not much difference between the two cases is expected because in an axisymmetric disc, axisymmetric modes are dominant, and effects of a finite relaxation time in the axisymmetric problem are of order $1/G \ll 1$; only in the non-axisymmetric case do effects of order $\Omega \tau \ll 1$ play a role in our model.

\(^3\) The solenoidality of the seed field is ensured by an appropriate choice of \bar{B}_ϕ.\(^4\)
for several Gyr in the non-linear regime. (Because of the random nature of the problem, other random seeds of the same strength or different resolutions can result in field configurations without reversals.) The reversals are also apparent in a time sequence of the magnetic field of Model C shown in Fig. 5. At least one reversal in the regular magnetic field has been observed in the Milky Way (Van Eck et al. 2011). It can be seen from both figures that as time goes on, the reversals become global in nature, propagate outward on a time-scale of several Gyr, and in the process decrease in number. By \(t = 600 \) \(7 \) Gyr all reversals inside \(r = 16 \) kpc are global in nature (i.e. occur at all azimuth for a given radius). In the \(t = 1/2 \) case, the noise from the random seed takes much longer to dissipate, and global reversals are only apparent much later on, at large radii where the field is very weak. Poezd et al. (1993) found that the persistence of the reversals at the galactic lifetime scale strongly depends on the rotation curve. Our experiments reported here suggest that memory effects (finite \(r \)) are also important.

4.3 Non-axisymmetric magnetic fields in an axisymmetric disc

We find that the non-axisymmetric modes decay in an axisymmetric disc for the parameters used in most of our numerical models (see Table 1). However, the \(m = 1 \) mode (easiest non-axisymmetric mode to excite) can grow for somewhat modified parameters (Model D of Table 2), with \(\alpha_k \) truncated in the central region to \(u/2 \).

In Model D, we focus on the case \(\tau \to 0 \). The results of runs with \(\tau \neq 0 \) do not show notable differences. The \(m = 1 \) mode is readily excited with the kinematic growth rate \(\Gamma_1 = 1.7t_0^{-1} \approx 3.5 \) Gyr\(^{-1} \). The growth rate for the axisymmetric mode for these parameters is \(\Gamma_0 = 4.7t_0^{-1} \approx 9.6 \) Gyr\(^{-1} \). Since \(\Gamma_0 > \Gamma_1 \) with a significant margin, magnetic field in a mature dynamo hosted by an axisymmetric disc will be axisymmetric unless the seed magnetic field is strongly non-axisymmetric. The latter is, in fact, quite plausible if the seed field arises, for example, from a putative intergalactic field captured as the disc galaxy forms. In order to address this point, we have run Model D, starting from a purely \(m = 1 \) seed, with the \(m = 0 \) mode being seeded only by the numerical noise, as in M96. We adjust the strength of the seed such that non-linear dynamo effects become significant at various important stages: (i) when the \(m = 0 \) mode has already come to dominate, (ii) when it is still weaker than the \(m = 1 \) mode and (iii) right from \(t = 0 \).

The results are shown in Fig. 6. Thick lines correspond to the normalized magnetic field strength (averaged over the area of the disc) in the \(m = 0 \) mode while thin lines correspond to that in the \(m = 1 \) mode. In Case (i), shown by the solid lines, the saturation of the (essentially axisymmetric) field clearly causes the \(m = 1 \) mode to decay since its growth requires a stronger (unquenched) dynamo action. In Case (ii) (dashed lines), the early saturation of the (stronger) \(m = 1 \) mode still does not prevent the \(m = 0 \) mode from growing and evolving as in Case (i). This happens because the magnetic field in between the extrema of the non-axisymmetric magnetic field remains relatively weak when the \(m = 1 \) mode ceases to grow. Therefore, the growing \(m = 0 \) mode is supported by the local dynamo action in those regions, to fill the gaps until the field is saturated everywhere to become nearly axisymmetric. However, the \(m = 1 \) mode, though subdominant, does not immediately decay but remains strong for several Gyr. This is because the outward spreading of the dominant \(m = 0 \) mode is preceded by the outward spreading of the \(m = 1 \) mode. Eventually, the axisymmetric mode comes to dominate everywhere and the \(m = 1 \) decays more quickly (for \(t \geq 8 \) Gyr). In Case (iii) (dash–dotted lines), we find that the \(m = 1 \) mode first decays and then remains much weaker than the \(m = 0 \) mode.

As far as the overall survival of non-axisymmetric modes in an axisymmetric disc is concerned, we can conclude that (i) a rather special parameter combination is needed for a non-axisymmetric mode to grow; (ii) for a non-axisymmetric mode to persist for several

Figure 5. The strength of the mean magnetic field (colour coded) at (a) \(t = 0.7 \), (b) 2.8, (c) 7.3 and (d) 11.0 Gyr in Model C (random seed field) for the case \(\tau \to 0 \). The colour of the central region has been saturated to enhance visibility of the magnetic structure in the outer disc. Field vectors are also shown, with tail length proportional to the magnitude of magnetic field, for \(r > 5 \) kpc only, to avoid clutter. Reversals which evolve with time are visible (e.g. the central dark ring which moves out with time).

Figure 6. Evolution of the normalized magnetic field strength averaged over the disc, in the \(m = 0 \) (thick) and \(m = 1 \) (thin) modes, for a purely bisymmetric \((m = 1) \) seed magnetic field (Model D) with \(\tau \to 0 \). Different line styles show three cases with identical parameters, except for the magnitude of the seed field, so that the dynamo action saturates (i) when the \(m = 0 \) mode dominates (solid), (ii) when \(m = 1 \) dominates (dashed) and (iii) right from \(t = 0 \) (dash–dotted).
Gyr in the non-linear stage, it must reach the saturation strength before the \(m = 0 \) mode can do so; given that non-axisymmetric modes have smaller growth rates, this implies that they must be much stronger initially and (iii) in any case, all non-axisymmetric modes eventually decay in an axisymmetric disc. These conclusions make it all the more reasonable to suggest that deviations from perfect axial symmetry of the underlying disc are required to explain the prevalence of non-axisymmetric regular fields in many galaxies. It is the mechanism of ‘spiral forcing’ of the dynamo to which we now turn.

5 MAGNETIC ARMS ENSLAVED TO A STATIONARY SPIRAL PATTERN

In this section, we consider the evolution of the mean magnetic field in a non-axisymmetric disc where the \(\alpha \) effect is modulated by a stationary spiral pattern. As above, our analysis includes the dynamic non-linearity, thus extending fully into the saturated states of the dynamo action, and allows for a finite dynamo relaxation time \(\tau \).

As a consistency check, we have first made sure that the standard dynamo solutions, obtained by solving equation (11), are obtained when solving equation (10) with \(\tau \) approaching zero. Indeed, we found good agreement with them for \(\tau = 10^{-3} \). To ensure that the results are not sensitive to the location of the outer boundary, we compared solutions with outer radius of \(R = 15 \) and 30 kpc, with the standard value \(R = 20 \) kpc (with the radial resolution modified proportionately). The results are not sensitive to this adjustment.

Our standard model is labelled E, with parameters given in Table 2. To explore the parameter space, we have also considered Models F–L.

The evolution of the normalized magnetic field strength in various even-\(m \) modes, averaged over the area of the disc, is shown, for Model E, in Fig. 7. In the kinematic regime, all modes have about the same growth rate \(\Gamma \sim 5.1 \Gamma_0^{-1} \sim 7.0 \) Gyr\(^{-1} \) for both \(\tau \rightarrow 0 \) and \(\tau = 1/\mu \) cases. This growth rate is also in close agreement with the growth rate for the axisymmetric case (Model B). This is not surprising because the average field in the disc is used to calculate the growth rate, and the field is dominated by the axisymmetric field at \(r \ll r_{corr} \). The even-\(m \) modes grow together with the \(m = 0 \) mode because they are driven by (enslaved to) it. The \(m = 2 \) and \(m = 4 \) modes corotate with the spiral pattern.

We illustrate in Fig. 8 various aspects of the solution in the kinematic stage at 3\(\Gamma_0 \) after the simulation has begun (or \(\tau = -5.8 \) Gyr in the plots). Some aspects of the solution after the dynamo has saturated are given in Fig. 9. In Figs 8(a) and 9(a), \(B_{\phi} \) (solid), \(-B_r \) (dashed) and \(|B_{\phi}| \) (dotted) have been plotted for both \(\tau \rightarrow 0 \) (red) and \(\tau = 1/\mu \) (black) cases, at \(\phi = \phi_{corr} \), one of the two azimuthal angles where the \(\alpha \)-spiral crosses the corotation circle. As expected, the field is strongest inside the corotation radius, where the magnitude of the dynamo number is largest. Importantly, however, there is an excess of magnetic energy near the corotation radius, as compared to what is obtained in an axisymmetric disc, mainly due to the presence of strong additional \(m = 0 \) and \(m = 2 \) components near \(r = r_{corr} \). This excess is present at early enough times in the kinematic stage (like we have shown in Fig. 8a), disappears at later times, but reappears on saturation.

The presence of the non-axisymmetric component near corotation can be more clearly seen in Fig. 8(b). There we plot the ratio of the non-axisymmetric part of \(B_{\phi} \) to the axisymmetric part,

\[
\delta = \frac{B_{\phi} - B_{\phi}^{(0)}}{B_{\phi}^{(0)}},
\]

at the azimuth \(\phi = \phi_{corr} \). For both vanishing and finite \(\tau \), \(\delta \) is important within an annulus of width \(\approx 4 \) kpc, centred near the corotation circle. Note that in both cases, the radial phase varies

Figure 7. Magnetic field strength in the \(m = 0 \) (solid), \(m = 2 \) (dashed) and \(m = 4 \) (dash–dotted) parts of the mean magnetic field, normalized to the equipartition field strength \(B_{eq} \) and averaged over the entire disc, for Model E. Results obtained for \(\tau = 1/\mu \) are shown in thick black, while those for \(\tau \rightarrow 0 \) are in thin red. All modes have exponential kinematic growth rate \(\Gamma^{(m)} = 7.0 \) Gyr\(^{-1} \). For the convenience of presentation, time has been rescaled so that the simulation in fact starts from \(t = -8 \) Gyr.

Figure 8. Properties of the field in the kinematic regime for Model E at a time \(3\Gamma_0 \) after the simulation is begun. Thick black illustrates the \(\tau = 1/\mu \) case while thin red illustrates \(\tau \rightarrow 0 \). In all plots, the corotation radius is shown as a dashed vertical line. (a) The normalized azimuthal (solid), radial (dashed) and vertical (dotted) components of the field at the azimuth \(\phi = \phi_{corr} \) for which the \(\alpha \)-spiral crosses corotation. (b) The ratio \(\delta \) of the non-axisymmetric to axisymmetric component of the field at \(\phi_{corr} \) (solid), and at azimuthal extrema (dashed). The quantity \(\alpha_\phi(r_{corr}) \) is shown as a thin dash–dotted line for reference. (c) The phase of the \(\phi \)-component (solid) or \(r \)-component (dashed) of the magnetic spiral minus the phase of the \(\alpha \)-spiral (smoothed over five radial grid points, or 0.5 kpc). The radius \(r_{max} \) at which the global maximum of \(\delta \) occurs is plotted as a vertical dotted line for each \(\tau \) case. (d) Negative of the pitch angle at \(\phi = \phi_{corr} \) (solid), with azimuthal mean (dashed).

Downloaded from https://academic.oup.com/mnras/article-abstract/428/4/1005753 on 28 July 2018
Figure 9. Same as Fig. 8 (Model E), but now for \(t = 10 \text{Gyr} \) (see Fig. 7), when the field has reached equilibrium as a result of dynamical quenching. Note that in (a) the scale is now linear instead of logarithmic. The long dashed curve is equal to \(0.1B_{\text{eq}}/B_0 \), shown for reference.

much more rapidly than that of \(\alpha \) (plotted as a thin dash–dotted line in the figure). This indicates that the magnetic arms are much more tightly wound than the material arms. The effect of a finite \(\tau \) is to strengthen the non-axisymmetry, and also to slightly increase the variation of the radial phase. In addition, \(\delta \) extends out to somewhat larger radius in the \(\tau = 1/\mu \) case than it does for \(\tau \to 0 \). This is illustrated by the second maximum with \(\delta > 0 \) at \(r \approx 10 \text{kpc} \) that occurs when \(\tau = 1/\mu \), and is caused by the tail of the spiral magnetic field wrapping around an extra half-circle from where it crosses the corotation circle. Also shown in Figs 8(b) and 9(b) as dashed lines is the envelope of the solid lines as \(\phi \) changes.\(^4\)

The shift between the azimuthal positions where \(\overline{B}_\phi \) (or \(\overline{B}_r \)) is maximum and where \(\alpha \) is maximum, denoted \(\Delta \phi \) (or \(\Delta \alpha \)), is shown in Figs 8(c) and 9(c).\(^5\) Positive values of these quantities imply that the magnetic arms lead the material arms, while negative values imply that they trail them. The position \(r_{\text{max}} \) of the global maximum of \(\delta \) (maximum of the dashed envelope in Figs 8b and 9b), which is the radius at which the non-axisymmetric component of the field is most important relative to the axisymmetric component, is indicated with a vertical dotted line (red for \(\tau \to 0 \) and black for \(\tau = 1/\mu \)): \(r_{\text{max}} \approx 8.3 \text{kpc (kinematic)} \) and \(8.0 \text{kpc (saturated)} \) for \(\tau \to 0 \), and \(8.7 \text{kpc (kinematic)} \) and \(8.6 \text{kpc (saturated)} \) for \(\tau = 1/\mu \). One can see that \(r_{\text{max}} \) is nearer \(r_{\text{core}} \) for \(\tau \to 0 \) than for \(\tau = 1/\mu \).

In the \(\tau \to 0 \) case, studied by MS91 and SM93, it was found that \(\Delta \phi = \Delta \alpha = 0 \) at \(r = r_{\text{core}} \) and \(r_{\text{max}} \approx r_{\text{core}} \). In the vanishing \(\tau \) case in our model, \(r_{\text{max}} \) is slightly larger than \(r_{\text{core}} \) in the kinematic regime, and \(\Delta \phi \) and \(\Delta \alpha \) are not precisely zero at \(r_{\text{max}} \) nor at \(r_{\text{core}} \). These differences arise due to interference from the dominant axisymmetric eigenmode, which is concentrated at smaller radius near where the dynamic number peaks, in our model. In any case, for both \(\tau \to 0 \) and \(\tau = 1/\mu \), the magnetic and \(\alpha \)-spiral arms intersect in the vicinity of corotation, and the magnetic arms are also strongest in the vicinity of corotation, as in the earlier models.

What is more noteworthy, however, is the phase shift in the magnetic arms, at \(r_{\text{max}} \), where they are strongest, resulting from a finite \(\tau \). We find, initially, \(\Delta \phi(r_{\text{max}}) = \Delta \alpha(r_{\text{max}}) = -3^\circ \) because of interfer-

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]

\[r / \Delta \phi / \Delta \alpha \text{ and } l / \tau \text{ for } \tau = 10 \text{Gyr (see Fig. 7)}, \]

\[0 \text{ because of interfer-} \]
is not large enough in our model for such wave-like behaviour to dominate.

The magnitude of the pitch angle is displayed in the lower panels of the figures, and clearly also has a spiral pattern. The pitch angle, as opposed to the field magnitude, does not vary strongly with radius. Because of this, the spiral morphology of the field is more clearly visible in the pitch angle. However, an accuracy of a few degrees would be required to measure the differences.

Another quantity that can be obtained is the pitch angle of the magnetic ridges, i.e. of the magnetic arms themselves as opposed to the magnetic field that constitutes them. This can then be compared with the pitch angle of the α-spiral arms. We find this pitch angle to be quite small as compared to that of the α-spiral. One must keep in mind, however, that the pitch angle of the magnetic ridges is sensitive to the shear near corotation.

In Model P, the run described in this section was performed with the resolution doubled for the cases $\tau = l/u$ and $2l/u$, and the results were found to be consistent with those of the standard resolution runs.

In Model O, the advective flux of α_m was replaced with the diffusive flux, and the results in the steady state are illustrated in Fig. 12. The magnetic arms are almost identical (middle row), but the overall field strength is about twice as large (top row; as discussed in Section 4.1), and magnetic field pitch angles are slightly smaller (bottom row). The strength of the saturated field just outside of the corotation radius falls off somewhat more slowly with radius than for Model E, which gives the appearance of wider magnetic arms in the top row of Fig. 12. The enhancement of α_m near corotation, mentioned above, is still present, though the feature is smoothened somewhat by the diffusive flux. We emphasize that the qualitative features of the solutions obtained in both cases (Models E and O) are very similar.

5.1 Exploring alternative models and the parameter space

Modulation of the α effect is just one of the mechanisms through which the spiral pattern can affect the dynamo action. Model F has the vertical advection velocity enhanced along a spiral (with the α-spiral turned off), to model stronger galactic outflows from the spiral arm regions, where star formation is enhanced. We use $R_U = 0.90$ at $r = R/2 = 10$ kpc and $\epsilon_U = 0.5$ so that the outflow speed within the arms, corresponding to $R_U = 1.35$, is too large for the optimal field growth near corotation, while the interarm value of $R_U = 0.45$ is close to being optimal. This mechanism for producing magnetic arms located between the material spiral arms was first suggested by Sur et al. (2007). We find that this mechanism can indeed lead to a non-axisymmetric field which peaks in the interarm regions. For the region of parameter space explored, the effect is, however, too weak to be of much consequence, though it might still be important for different parameter values.

The characteristic strength of magnetic field at which non-linear dynamo effects become pronounced, B_{eq}, can also be affected by...
Galactic spiral patterns and dynamo action

Figure 11. (a) The profile of α for Model E ($\tau \to 0$ case), in the saturated state, for $\phi = 0$ (solid), azimuthal mean (dash–dotted) and envelope for all azimuth (dotted). (b) Same as (a) but now for $-\alpha_m$. (c) Same as (a) but now for Model H, at the time $t = 4.4$ Gyr, when the outgoing ring is passing the corotation circle. (d) Same as (c) but now for $-\alpha_m$.

The spiral pattern, e.g. through the variation in the turbulent energy density. We considered a model with B_{eq} enhanced along a spiral in the same way as above for α_k and U_z. Since $B_{eq} = (4\pi \rho)^{1/2}u$, and we keep u constant, this is tantamount to modulating ρ. Although an enslaved spiral does result, we find the effect to be too weak to be of much consequence, at least for the parameter space explored. Other possibilities have been explored in the literature, e.g. the modulation of the turbulent magnetic diffusivity η, but a more extensive study of these effects is left for a future work.

We have also run Models G–L to test the results under reasonable variations of parameters. We have varied the strength of the seed field, the mean vertical velocity U_z, the strength and the pitch angle of the spiral pattern via ϵ and k, respectively, and the number of material spiral arms n. In Model G, we use a seed field that is random Gaussian noise. Model G differs from Model C in that the underlying disc is non-axisymmetric. We find reversals to occur in more or less the same locations as in that model. However, a strong quadrisymmetric magnetic field component is now present, superimposed on an axisymmetric pattern with reversals. The morphology of the magnetic spiral arms is significantly affected by the reversals, as the horizontal magnetic field is necessarily zero wherever a reversal occurs.

The effect of vanishing helicity flux is considered in Model H, which differs from Model E only in that it has $U_z = 0$. This situation can occur in galaxies after the end of a burst of star formation, when the galactic fountain or wind ceases and the mean-field dynamo action is choked by the magnetic helicity conservation to

Figure 12. Same as Fig. 10 but now for the steady-state solution of Model O (diffusive flux of α_m instead of advective flux). Note the change in plotting range in the top row.
leave magnetic field decaying, assuming no other flux is important. As expected, the mean field decays after a period of temporary growth. An expanding annular magnetic structure (see Section 4.1) is prominent, but develops strong deviations from axial symmetry as the ring approaches and then passes through the corotation circle. As this happens, the amplitude of α_{in} becomes enhanced there, as can be seen in Figs 11(c) and (d), and then remains enhanced subsequently. The magnetic ring fades in intensity and becomes more and more axisymmetric as it moves out.

In Model I, ϵ_{in} is increased from 0.5, as in Model E, to $\epsilon_{\text{in}} = 1$, so that now $\alpha_{\text{in}} = 0$ between the spiral arms. As could be expected, this enhances the deviation of the mean magnetic field from axial symmetry, manifested in more pronounced magnetic arms and a larger azimuthal variation in the magnetic pitch angle. The magnitude of the non-axisymmetric part of the magnetic field mode slightly exceeds the axisymmetric part near $r = r_{\text{max}}$ when $\tau = l/u$. This produces small regions of positive pitch angle just outside of the corotation, where the magnetic lines locally have the shape of a leading spiral. Putting $\tau = l/u$ with $\epsilon_{\text{in}} = 1$ also results in a somewhat larger phase shift compared to the $\tau = l/u$, $\epsilon_{\text{in}} = 0.5$ case in Model E. We obtain $\Delta_p(r_{\text{max}}) = \Delta_p(r_{\text{max}}) = -36^\circ$ for $\tau = l/u$, whereas for Model E we had -27°. For $\tau \to 0$, the phase shifts are both equal to $+3^\circ$, the same as in Model E so the overall phase difference is -39°, larger than for Model E. The trailing part of the magnetic spiral is significantly enhanced when τ is finite.

In Models I and K we make the α-spiral less tightly wound by reducing the magnitude of k. It is evident from Fig. 13 that changing the value of k from $-20R^{-1}$ [$p_{\alpha}(r_{\text{cor}}) = -14^\circ$, Model E] to $-8R^{-1}$ [$p_{\alpha}(r_{\text{cor}}) = -32^\circ$, Model J] does not have any significant qualitative effect on the magnetic field. Even replacing the material spiral with a bar ($k = 0$, Model K) does not lead to a drastic change in the saturated magnetic field, so that bars also lead to spiral magnetic fields. This happens because of the differential rotation of the gas, which shears out the enhancement of the field due to the bar. An important effect of a more open spiral pattern, visible in Figs 13(a) and (b), is that magnetic spiral arms are now mostly in between the material arms, although still confined to an annular region around corotation. The values of $\Delta_p(r_{\text{max}})$ and $\Delta_p(r_{\text{max}})$ are both -33° for $\tau = l/u$, and $+3^\circ$ for $\tau \to 0$, for an overall phase difference of -36°. The pattern of variation of the magnetic pitch angle is strongly modified from the case of the more tightly wound α-spiral of Model E, though its range is almost the same.

We tried various values of n, both odd and even, and found, unsurprisingly, that the number of magnetic arms is equal to the number of material arms. The results of Model L ($n = 4$) are plotted in Fig. 14. The magnetic arms are largely located in between the material arms, especially for $\tau = l/u$. They are also much stronger and more well defined in the finite τ case.

The possibility of ‘mode switching’ in the non-linear regime has been pointed out by Hubbard, Rheinhardt & Brandenburg (2011). We do not find such solutions in the present framework, but it would be worthwhile to revisit this issue in the context of three-dimensional models which include the galactic halo.

6 MAGNETIC RESPONSE TO TRANSIENT SPIRAL PATTERNS

6.1 A rigidly rotating spiral pattern

As galactic spiral patterns may be transient in nature, we now explore, in Model M, how the magnetic field responds to sudden changes in the spiral forcing. The runs are identical to Model B (axisymmetric disc) up until the α-spiral is turned on, at the time $t_{\text{on}} = 5.1$ Gyr, when the dynamo is already in its non-linear phase. Subsequently, the parameters of the model are identical to those of Model E (standard spiral forcing) up until the time $t_{\text{off}} = 7.3$ Gyr, when the spiral modulation of α is turned off.

The evolution of the magnetic field strength in each Fourier mode, averaged over the area of the disc, is shown in Fig. 15. The $m = 2$ mode, which initially is present solely because of numerical noise, responds rapidly to the onset of the α-spiral, and then behaves almost exactly as in Model E (compare with Fig. 7). In fact, for $\tau = l/u$, magnetic energy in the $m = 2$ part of the mean field slightly exceeds that in Model E before being reduced to the latter. The time-scale of the adjustment of the magnetic field, i.e. the time from the onset of the α-spiral, taken for the $m = 2$ part in Model M to grow up to that in Model E, is as short as ~ 0.2 Gyr.

Fig. 16 shows characteristic magnetic configurations for $\tau = l/u$ (the $\tau \to 0$ case is qualitatively similar so only $\tau = l/u$ is shown). After a short period of 0.22 Gyr after the onset of the spiral forcing, the deviation from axial symmetry in the magnetic field is strongest somewhat inside of the corotation circle (see Fig. 16a). This is explained by the dynamo responding more rapidly to sudden changes in the disc at locations where the dynamo number is larger. At $t = t_{\text{on}} + 0.44$ Gyr, the non-axisymmetric component of the
time compared with the time it had taken for them to arise. This can be seen in Figs 16(d) and (h), where we show the field at $t = t_{\text{off}} + 0.37$ Gyr. The energy in the $m = 2$ part declines to a quarter of its value at t_{off} within 0.2 and 0.3 Gyr, respectively, for $\tau \to 0$ and $\tau = 1/\mu$. Therefore, ‘ghost’ magnetic spiral arms remain after the demise of the material spiral arms, and survive longer when τ is finite. We find an extra delay of about 0.1 Gyr due to the finite τ, larger than the delay $\tau \simeq 0.01$ Gyr that might naively be expected. Similar results were seen in Otmanowska-Mazur et al. (2002) using a quite different model.

6.2 A winding-up spiral pattern

The models described so far had a rigidly rotating spiral with a constant pattern speed. As discussed in the introduction, models with a spiral winding up with the differential rotation may be more suitable for some galaxies – in any case rigidly rotating steady spirals and winding-up transient spirals plausibly represent two extreme cases.

We now consider the case of an α-spiral that winds up with the gas. In this model every radius effectively becomes a corotation radius, so based on our results for a rigidly rotating spiral, we would expect the non-axisymmetric part of the magnetic field to be more extended radially, as seen in some observations. In Model N, the field evolves as in Model B (axisymmetric disc) until the time t_0. After t_0, we switch on the α_k modulation, but now let the spiral wind up starting from the ‘bar’ stage ($k = 0$) at $t = t_0 = 6.6$ Gyr, when the $m = 0$ field is already saturated. We find that strong deviations from axial symmetry in the magnetic field develop during the first ~ 150 Myr after t_0. In Figs 17 and 18 we show the properties of the resulting field at two times, $t = t_0 + 0.1 t_0 = t_0 + 73$ Myr and $t_0 + 0.2 t_0 = t_0 + 146$ Myr, respectively.

As can be seen by comparing panels (a) and (b) of Fig. 17 ($t = t_0 + 73$ Myr) and also by comparing panels (a) and (b) of Fig. 18 ($t = t_0 + 146$ Myr), the non-axisymmetric and axisymmetric parts of the magnetic field are the strongest at about the same radii, so that the magnetic field is essentially non-axisymmetric. This can also be seen from the 2D plot of Fig. 19 ($t = t_0 + 73$ Myr). In addition, the magnetic spiral arms are extended throughout the disc over a much larger range of radii than with a rigidly rotating spiral pattern (where the non-axisymmetric field concentrates around the corotation circle).

Figs 17(b) and 18(b) show that δ (solid lines) and α_k (dash–dotted line) are well correlated, demonstrating that the dynamo responds rather quickly to the spiral forcing. From Figs 17(c) and 18(c), we see that for $\tau \to 0$ the phase difference between the magnetic and material spiral arms is negligible at radii where the magnetic spiral arms are strong. However, for finite $\tau = 1/\mu$, the magnetic arms lag the material ones by a large angle, $\Delta \sim \Delta \sim -15^\circ$ to -25° over a range of radius of order 10 kpc. The values vary somewhat with radius and with time. This phase shift is strikingly apparent when comparing panels (a) and (d) of Fig. 19 for $\tau \to 0$ with, respectively, panels (b) and (e) for $\tau = 1/\mu$. Only in panels (b) and (e) do the yellow–orange regions of high field strength lag the black centres of the α-spiral arms by a significant amount but overlap with the grey spiral phase shifted by the angle $-\omega \tau$.

As might be expected, the phase shift is larger for $\tau = 21/\mu (-20^\circ$ to -30°), as can be seen from the third column of Fig. 19 (but not as large as $2\omega l/\mu$). However, as τ is increased, the non-axisymmetric part of the magnetic field tends to weaken, as the spreading of the response of the dynamo in time due to the finite dynamo relaxation time is translated into an effective blurring of the α-spiral in space.
Figure 16. Evolution of the magnetic field under the action of a transient, rigidly rotating α-spiral (Model M) for $r = l/u$. Each column shows the ratio of non-axisymmetric to axisymmetric part of B_ϕ, as in Fig. 8(b) (top) and magnitude of the field as in Fig. 10(b) (bottom) at the following times after the emergence of the α-spiral: (a, c) 0.22, (b, f) 0.44, (c, g) 2.2, followed by (d, h) 0.37 Gyr after the α-spiral is turned off.

Figure 17. Similar to Fig. 9, but now for Model N (the α_k-spiral winding up with the gas). The figure shows the field at $0.1t_0 = 73$ Myr after the sudden onset of an α_k bar when the dynamo action has already saturated. (the effect is most evident when comparing panels d–f of Fig. 19). When the advective flux is replaced by a diffusive flux with $\kappa = 0.3\eta$, we find almost identical results, save for the fact that the strength of the field is larger by about 75 per cent.

Figure 18. Same as Fig. 17, but at $0.2t_0 = 146$ Myr after the onset of the α_k bar (which subsequently winds up into a spiral).

This model, which incorporates a spiral pattern that seems to wind up with the differentially rotating gas, along with a dynamo relaxation time $\tau \gtrsim l/u$, seems to be the most successful, among the models explored in the present work, at explaining the large phase shifts between magnetic and material arms, roughly constant over a large radial range, observed in some galaxies, such as NGC 6946.
Figure 19. Winding-up spiral of Model N. The figure is similar to Fig. 10 but now grey spirals represent \(\alpha \) maxima shifted by \(-\omega t \). All panels are snapshots at \(0.1t_0 = 73 \) Myr after the sudden onset of the \(\alpha \) “bar”.

7 DISCUSSION AND CONCLUSIONS

We have presented a set of models of the mean-field galactic dynamo action that include (i) dynamo forcing by stationary and transient spiral structure, (ii) time delay in the response of the mean emf to changes in the mean magnetic field and small-scale turbulence (finite relaxation time \(\tau \)) and (iii) dynamo non-linearity based on magnetic helicity balance.

Whilst some aspects of (i) have been explored earlier in simpler galactic dynamo models, the latter two features present significant generalizations of the galactic dynamo theory which, we believe, make it more realistic and physically appealing. In particular, (ii) affects the mathematical nature of the mean-field dynamo equation, which now has the form of the telegraph equation admitting diffusive wave-like solutions. Solutions presented here do not have any pronounced wave-like properties, but this does not preclude that such solutions of the generalized dynamo equation do exist. Feature (iii) incorporates a physically justifiable form of non-linearity into galactic dynamo equations (in the form of advective or diffusive helicity fluxes), thus making our solutions significantly more realistic than those explored earlier.

Within this framework, we explore the behaviour of the mean magnetic field in both axisymmetric and non-axisymmetric galactic discs. A novel aspect of this paper is the introduction of a finite relaxation time into the galactic mean-field theory and a detailed exploration of its effects, particularly on the non-axisymmetric dynamo modes. We discuss how the imprints of the galactic spiral pattern on the morphology of the mean magnetic field are affected by the finite relaxation time of the dynamo. Unlike many earlier studies of galactic dynamos, we approach these problems from the evolutionary viewpoint and consider the magnetic response to both steady and transient spiral patterns, and briefly discuss the diverse ways in which galactic spiral arms can affect the dynamo action.

We have confirmed, in the new framework, earlier results on the evolution of axisymmetric magnetic fields in axisymmetric discs, including the spreading of magnetic fronts along radius and the occurrence of reversals. As expected, the magnetic field is able to spread radially to encompass the whole disc within the galactic lifetime, as long as the magnetic helicity flux is sufficient. What is new is that in the absence of any helicity flux, contracting and expanding rings of magnetic field, emanating from the region where the magnitude of the dynamo number is largest, can propagate for several Gyr in the non-linear regime. This is due to the variation along radius of the time taken for the magnetic field to reach saturation.

The lifetimes of reversals in the galactic disc have been known to be sensitive to the details of the galactic rotation curve, the geometric shape of the gas layer, details of the turbulent energy distribution in the galaxy, etc. We have added another important parameter to this list, the dynamo relaxation time. We also find that such reversals can have non-trivial effects on the morphology of non-axisymmetric magnetic structures in a non-axisymmetric disc. It would be interesting to carry out a more detailed study of magnetic fronts and the possibility of long-lived reversals in the context of the above framework.

We have also shown that it is difficult to maintain non-axisymmetric magnetic structures in an axisymmetric disc, which leaves one little choice but to try to explain such structures as arising from a non-axisymmetric disc. Most of our effort was then directed...
to the response of the mean magnetic field to the galactic spiral pattern. The focus in this part of our work is the nature of the so-called magnetic arms, spiral-shaped regions of enhanced regular magnetic field (traced by polarized radio emission and Faraday rotation) that are located in between the gaseous and stellar spiral arms in some galaxies (e.g. NGC 6946 and IC 342) but can overlap with or cross the material arms in other galaxies (e.g. M51). We model the effect of the spiral pattern on the dynamo by assuming that the α effect or the galactic/fountain outflow or the equipartition field is enhanced within the spiral arms. A non-axisymmetric α effect, in particular, does lead to strong magnetic arms.

When the dynamo relaxation time $\tau \to 0$, the magnetic and material arms almost coincide at corotation, as expected from earlier work (MS91, SM93, M96). However, a finite relaxation time causes a significant azimuthal lag between the magnetic and material arms at the radius where the magnetic arms are strongest (near corotation). In this respect, our model can explain a wider range of observations than earlier models. However, we concur with the earlier authors in that the non-axisymmetric parts of the mean magnetic field driven by the spiral pattern are mainly localized around the corotation radius, extending about 4 kpc in radius. The radial extent is, of course, model dependent and can be larger in regions with weaker rotational velocity shear.

The corotation radius is also approximately where each magnetic arm crosses the corresponding material arm, going from leading (with respect to the direction of the galactic rotation) the material arm inside the corotation circle to trailing it outside the corotation. The primary effect of the finite relaxation time, in the case of a steady, rigidly rotating spiral pattern, is to suppress the leading part of the magnetic spiral arms and to enhance, and extend azimuthally, the trailing part. Thus, this effect produces a prominent ‘tail’ of large-scale magnetic field in between the material arms. This is even more true when the number of arms is increased from two, to say, four.

The magnetic arms of the spiral galaxy NGC 6946 are ‘interlaced with’ (in between) the material arms (Beck & Hoernes 1996; Beck 2007), and have been called ‘phase-shifted images’ of the preceding (in the sense of the rotation) material arms (Frick et al. 2000). Although the implied phase shifts are more constant with radius than in our model, we have obtained a shift of approximately the same magnitude ($30^\circ \sim 40^\circ$) and in the same direction. More generally, the shift is of order $\Omega \tau$, where Ω is the pattern angular velocity of the material spiral. Larger values of τ thus lead to larger phase shifts. This is caused by the delay in the α effect of order τ, so that by the time the dynamo has had the chance to respond to the enhancement in α along the material arm, the arm has already rotated by an angle $\approx \Omega \tau$.

Spiral density waves may be transient and we consider how quickly the regular magnetic field can respond to changes in the galactic spiral structure. We find that the response time is small. On the other hand, we find that magnetic spiral arms survive for several hundred Myr following the destruction of the material spiral arms in the dynamo non-linear regime. Moreover, a finite dynamo relaxation time is found to significantly prolong the life of such lingering magnetic arms. This opens the intriguing possibility of ‘ghost’ magnetic arms, which were produced by material arms that have since disappeared.

Despite the wide range of models considered, our success in reproducing magnetic arms interlaced with the material arms as perfectly as it is believed to happen in NGC 6946 is admittedly limited in models assuming forcing of the dynamo by a steady, rigidly rotating spiral. In addition, this type of spiral forcing leads to magnetic arms concentrated over a smaller range in radius than is observed in many galaxies. Another possibility, rendered more likely by several recent studies (e.g. Dobbs et al. 2010; Quillen et al. 2011; Sellwood 2011), is that the spiral patterns of many galaxies, rather than being rigidly rotating, as is usually assumed in galactic dynamo models, in fact wind up (at least to some extent). This may happen if, for instance, there are interfering two- and three-armed spirals rotating at different angular frequencies (Comparetta & Quillen 2012). The two-arm grand design spiral pattern of the galaxy M51 (NGC 5194), thought to be caused by tidal forcing by its neighbour, NGC 5195, is also found to wind up in detailed N-body simulations that are able to accurately reproduce its spiral morphology (Dobbs et al. 2010).

With these recent advances in spiral structure theory in mind, we also investigated the opposite extreme to rigidly rotating patterns: material arms that are wound up by the galactic differential rotation. The non-linear dynamo responds very quickly to such forcing, and for vanishing dynamo relaxation time the mean magnetic field more or less traces the spiral arms over a large range in radius (as seen in many observations) and winds up with them. On the other hand, for finite dynamo relaxation time there is a large azimuthal lag of each magnetic spiral arm compared to the corresponding material arm over a large range in radius. Magnetic arms trail the material arms by $15^\circ \sim 25^\circ$ (for $\tau = 1/\alpha$), varying somewhat with time and radius over the disc. This shift is of order $\omega \tau$, where ω is the angular velocity of the gas, and we have shown that, larger, but still plausible, values of τ, lead to even larger phase shifts. Increasing the number of spiral arms also causes the (equal number of) magnetic arms to be located closer to the centres of the interarm regions, so that they may be described as interlaced with the material arms. Therefore, allowing for the possibility of the spiral winding up can drastically improve agreement with observations of the regular magnetic fields in some galaxies, but with the trade-off that the magnetic arms (that in this model, either trace or interlace the material arms) are almost as short lived as the spiral patterns that presumably generate them.

In summary, we have incorporated into galactic dynamo theory several well-studied physical effects not previously considered, including (i) non-locality in time and (ii) forcing by both spiral arms which steadily rotate and those which wind up due to differential rotation. This allows several observed features of magnetic arms to be more naturally reproduced. Particularly interesting are the models we have presented in which magnetic arms extend over a large range of radii and either trace material arms over several kpc, or else are phase-shifted images of material arms, trailing them in the sense of the galactic rotation. It would be interesting and important to test these ideas by applying them to specific galaxies, for which the rotation curve, velocity dispersion, spiral structure, etc. can be constrained by existing data from observation and simulation.

ACKNOWLEDGMENTS

We are grateful to Sharanya Sur for sharing with us his preliminary results on incorporating MTA into the galactic mean-field dynamo equations and for many useful discussions. LC wishes to thank Axel Brandenburg for initial help with the simulations and for generously sharing his many routines, as well as for useful discussions. We also thank Nishant Singh for reading an early draft of the manuscript and providing valuable suggestions. AS is grateful to IUCAA for financial support. KS acknowledges partial support from NSF Grant PHY-0903797 while at the University of Rochester. KS thanks Eric Blackman at Rochester for warm hospitality and both him and Alice Quillen for interesting discussions. We thank the referee for...
insightful comments and suggestions that helped to improve the paper.

REFERENCES

Acharova I. A., Mishurov Y. N., Rasulova M. R., 2011, MNRAS, 415, L11
Baryshnikova I., Shukurov A., Ruzmaikin A., Sokoloff D. D., 1987, A&A, 177, 27
Beck R., 2007, A&A, 470, 539
Beck R., 2012, Space Sci. Rev., 166, 215
Beck R., Hoernes P., 1996, Nat., 379, 47
Beck R., Brandenburg A., Moss D., Shukurov A., Sokoloff D., 1996, ARA&A, 34, 155
Blackman E. G., Field G. B., 2000, ApJ, 534, 984
Blackman E. G., Field G. B., 2002, Phys. Rev. Lett., 89, 260007
Brandenburg A., 2003, in Computational Aspects of Astrophysical MHD and Turbulence. Taylor & Francis, London, p. 269
Brandenburg A., Subramanian K., 2005a, Phys. Rep., 417, 1 (BS05)
Brandenburg A., Subramanian K., 2005b, A&A, 439, 835
Brandenburg A., Subramanian K., 2007, Astron. Nachr., 328, 507
Brandenburg A., Subramanian K., Cancellation S., Chatterjee P., Tavakol R., Brandenburg A., 2010, in European Physical Journal Web of Conferences, Vol. 19, Stellar dynamics around transient co-rotating spiral arms, p. 7006
Khoperskov A. V., Eremin M. A., Khoperskov S. A., Butenko M. A., Mozorov A. G., 2012, Astron. Rep., 56, 16
Kleeorin N., Ruzmaikin A. A., 1982, Magnetohydrodynamics, 18, 116
Kleeorin N., Mond M., Rogachevskii I., 1996, A&A, 308, 381 (M96)
Kleeorin N., Moss D., Rogachevskii I., Sokoloff D., 2000, A&A, 361, 55
Kleeorin N., Ruzmaikin A. A., 1982, Magnetohydrodynamics, 18, 116
Kleeorin N., Ruzmaikin A. A., Sokoloff D., 1998, MNRAS, 299, L21
Kleeorin N., Ruzmaikin A. A., Sokoloff D., 1999, MNRAS, 308, 381 (M96)
Kleeorin N., Ruzmaikin A. A., Sokoloff D., 2000, MNRAS, 318, 925
Krasheninnikova I., Shukurov A., Sokoloff D., 1989, A&A, 231, 19
Krause F., Ruedler K.-H., 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon Press, Oxford
Mestel L., Subramanian K., 1991, MNRAS, 248, 677 (MS91)
Mitra D., Candelaresi S., Chatterjee P., Tavakol R., Brandenburg A., 2010, Astron. Nachr., 331, 130
Moffatt H. K., 1989, Methods of Mathematical Physics. Wiley, New York
Pac., San Francisco, p. 197
Prickett J. B., 2000, ApJ, 534, 984
Pirke A. M., 2006, A&A, 458, L83
Smith A., 2012, PhD thesis, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne.
Smith A., Sokoloff D., Subramanian K., Brandenburg A., 2006, A&A, 448, 133
Smith A., 2012, PhD thesis, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne.
Subramanian K., Brandenburg A., 2000, ApJ, 548, L71
Subramanian K., Mestel L., 1993, MNRAS, 265, 649 (SM93)
Sur S., Shukurov A., Subramanian K., 2007, MNRAS, 377, 874
Vainshtein S. I., Kitchatinov L. L., 1983, Geophys. Astrophys. Fluid Dyn., 24, 273
Van Eck C. L. et al., 2011, ApJ, 728, 97
Vishniac E. T., 2012, Am. Astron. Soc. Meeting Abstr., 220, 308.05
Vishniac E. T., Cho J., 2001, ApJ, 550, 752
Wada K., Baba J., Saitoh T. R., 2011, ApJ, 735, 1

APPENDIX A: A MORE GENERAL FORM OF THE BASIC EQUATIONS

A1 The telegraph equation

Having defined

\[F \equiv \nabla \times \mathbf{E}, \]

and assuming that \(\eta, \eta, \tau \) and \(c_s \) are constants, the cylindrical polar components of equation (3) can be written as

\[\frac{\partial \mathbf{B}_r}{\partial t} = \frac{1}{r} \frac{\partial}{\partial \phi} \left(\mathbf{U} \cdot \mathbf{B}_r - \mathbf{U}_0 \mathbf{B}_r - \mathbf{U}_0 \mathbf{B}_r \right) - \frac{\partial}{\partial z} \left(\mathbf{U}_0 \mathbf{B}_r - \mathbf{U}_0 \mathbf{B}_r \right) + F_r, \]

\[+ \eta \left\{ \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{B}_r) \right] + \frac{\partial^2 \mathbf{B}_r}{\partial r^2} + \frac{\partial^2 \mathbf{B}_r}{\partial \phi^2} + \frac{\partial^2 \mathbf{B}_r}{\partial z^2} - \frac{2}{r^2} \frac{\partial \mathbf{B}_r}{\partial \phi} \right\}, \quad (A1) \]

\[\frac{\partial \mathbf{B}_\phi}{\partial t} = \frac{\partial}{\partial r} \left(\mathbf{U}_0 \mathbf{B}_r - \mathbf{U}_0 \mathbf{B}_r \right) - \frac{\partial}{\partial r} \left(\mathbf{U}_0 \mathbf{B}_r - \mathbf{U}_0 \mathbf{B}_r \right) + F_\phi, \]

\[+ \eta \left\{ \frac{\partial}{\partial r} \left[\frac{1}{r} \frac{\partial}{\partial r} (r \mathbf{B}_\phi) \right] + \frac{\partial^2 \mathbf{B}_\phi}{\partial r^2} + \frac{\partial^2 \mathbf{B}_\phi}{\partial \phi^2} + \frac{\partial^2 \mathbf{B}_\phi}{\partial z^2} + \frac{2}{r^2} \frac{\partial \mathbf{B}_\phi}{\partial \phi} \right\}, \quad (A2) \]
The sign must be chosen so that the α effect can contribute to a positive dynamo growth rate. This logic leads to the adoption of the approximations

$$\frac{\partial}{\partial z}(\alpha \overline{B}_\phi) \simeq -\frac{\alpha|\overline{B}_\phi|}{h}, \quad \frac{\partial}{\partial z}(\alpha \overline{B}_r) \simeq -\frac{\alpha|\overline{B}_r|}{h}.$$ \hfill (B1)

The second of these is only relevant when the α^2 effect is taken into consideration.

Furthermore, Phillips (2001) has shown that the no-z approximation can be made more accurate with the additional numerical factor $2/\pi$, at least for the $\alpha\omega$ dynamo. As a matter of symmetry, we include the same numerical factor in front of both α terms, so that we may write

$$-\frac{\partial}{\partial z}(\alpha \overline{B}_\phi) \simeq -\frac{2|\alpha|\overline{B}_\phi}{\pi h}, \quad \frac{\partial}{\partial z}(\alpha \overline{B}_r) \simeq -\frac{2|\alpha|\overline{B}_r}{\pi h}. \hfill (B1)$$

It may be asked whether extending the no-z approximation to include the α term in the evolution equation for \overline{B}_ϕ (through equation A5), as we have done here for the first time, actually helps to improve the accuracy of the solution. To answer this, we compared the kinematic solutions obtained using simple two-dimensional (in $r - z$) $\alpha\omega$ and $\alpha^2\omega$ galactic dynamo models with those obtained from the corresponding one-dimensional (in r, with no-z models). Interestingly, we found significantly better agreement between the 1D and 2D solutions when the α^2 effect was included in both models than when it was left out.

B3 Vertical advection

The terms $-\nabla \cdot \overline{U}$ (divergence) and $-\overline{U} \cdot \nabla \overline{B}$ (advection) are approximated as

$$\frac{\partial \overline{B}_i}{\partial t} = \cdots = \frac{\partial \overline{U}_i}{\partial z} \overline{B}_r - \overline{U}_r \frac{\partial \overline{B}_i}{\partial z} \simeq \cdots = -\frac{\overline{U}_r \overline{B}_i}{h}. \hfill (B2)$$

For the flux term $-\partial(\alpha \overline{U}_r)/\partial z$ in equation (14), we have

$$\frac{\partial \alpha \overline{U}_r}{\partial t} = \cdots = -\frac{\alpha \overline{U}_r}{h}. \hfill (B3)$$

B4 Approximation for $\mathbf{E} \cdot \mathbf{B}$

For $\tau \to 0$, we have

$$\mathbf{E} \cdot \mathbf{B} = c_t \alpha \left(\overline{B}_{r} \overline{B}_r + \overline{B}_\phi \overline{B}_\phi \right) + c_r \eta \left(\overline{B}_r \frac{\partial \overline{B}_\phi}{\partial z} - \overline{B}_\phi \frac{\partial \overline{B}_r}{\partial z} \right), \hfill (B4)$$

and the second bracketed term arising from the mean current helicity vanishes in the no-z approximation. Therefore, a more precise method must be used to estimate this term. With this in mind, Sur et al. (2007) substituted the one-dimensional perturbation solution of the dynamo equations,

$$\overline{B}_r = R_s C_0 \left(\cos \frac{\pi z}{2h} + \frac{3}{4\sqrt{\pi}} \frac{-\overline{D}}{\sqrt{\pi}} \cos \frac{3\pi z}{2h} \right), \hfill (B5)$$

$$\overline{B}_\phi = -2C_0 \sqrt{-\overline{D}} \frac{\pi}{2h} \cos \frac{\pi z}{2h}, \hfill (B6)$$

and its derivatives with respect to z into equation (B4). The resulting expression for $\mathbf{E} \cdot \mathbf{B}$ was then averaged over $0 \leq z \leq h$. In this way they obtained a non-zero estimate for $c_t \eta \langle \overline{B}_r \partial \overline{B}_\phi / \partial z - \overline{B}_\phi \partial \overline{B}_r / \partial z \rangle$, which stems from the term of order $\sqrt{-\overline{D}}$ in equation (B5).
In the general case of finite τ, the correction must come in the evolution equations (A7) and (A8) for E_r and E_ϕ. Averaging equations (B5) and (B6) and also their z-derivatives over $0 \leq z \leq h$, we find
\[
\frac{\partial B_r}{\partial z} \simeq -\frac{\pi}{2h} \left(1 + \frac{3 \sqrt{-D}}{4\pi^{3/2}} \right) B_r, \tag{B7}
\]
\[
\frac{\partial B_\phi}{\partial z} = -\frac{\pi}{2h} B_\phi. \tag{B8}
\]
These expressions are used in equations (A7) and (A8) for calculating $\mathbf{E} \cdot \mathbf{B}$ in equation (14).

Substituting expressions (B7) and (B8) into equation (B4), we find for the $\tau \to 0$ limit,
\[
\mathbf{E} \cdot \mathbf{B} \simeq c_r \alpha \left(B_r^2 + B_\phi^2 \right) + c_r \eta t \frac{3 \sqrt{-D}}{8\pi^{3/2} h} B_r B_\phi. \tag{B9}
\]

The term involving ηt used here is smaller by a factor π than that of Sur et al. (2007) since we have taken the scalar product of the z-averages of \mathbf{E} and \mathbf{B}, whereas those authors used the average of the scalar product. This difference does not appear to be important.

B5 Testing the validity of the no-z approximation

We have performed 2D simulations in r-z with the same parameters as our r-ϕ-'no-z' simulation with an axisymmetric disc (as Models A and B but without disc flaring). For the r-z runs, we adopted the profiles $\alpha_k = \alpha \sin(\pi z/h)$, $U_z = U_0 z/h$, as well as boundary conditions $B_r = B_\phi = 0$ at $z = \pm h$. Comparing the solution of the r-z model (averaged over the vertical extent of the disc) with that of the r-ϕ-'no-z' model, we find good qualitative agreement. We do, however, find that the saturation strength of the magnetic field is larger by a factor of ~ 2 in the r-z model, which suggests that this quantity is underestimated somewhat in the solutions presented in this paper.

This paper has been typeset from a TeX/LaTeX file prepared by the author.