Single Spin Dynamics and Decoherence in a Quantum Dot via Charge Transport

Hans-Andreas Engel* and Daniel Loss†
Department of Physics and Astronomy, University of Basel,
Klingelbergstrasse 82, CH-4056 Basel, Switzerland

We investigate the spin dynamics of a quantum dot with a spin-1/2 ground state in the Coulomb blockade regime and in the presence of a magnetic rf field leading to electron spin resonances (ESR). We show that by coupling the dot to leads, spin properties on the dot can be accessed via the charge current in the stationary and non-stationary limit. We present a microscopic derivation of the current and the master equation of the dot using superoperators, including contributions to decoherence and energy shifts due to the tunnel coupling. We give a detailed analysis of sequential and co-tunneling currents, for linearly and circularly oscillating ESR fields, applied in cw and pulsed mode. We show that the sequential tunneling current exhibits a spin satellite peak whose linewidth gives a lower bound on the decoherence time T_2 of the spin-1/2 state on the dot. Similarly, the spin decoherence can be accessed also in the cotunneling regime via ESR induced spin flips. We show that the conductance ratio of the spin satellite peak and the conventional peak due to sequential tunneling saturates at the universal conductance ratio of 0.71 for strong ESR fields. We describe a double-dot setup which generates spin dependent tunneling and acts as a current pump (at zero bias), and as a spin inverter which inverts the spin-polarization of the current, even in a homogeneous magnetic field. We show that Rabi oscillations of the dot-spin induce coherent oscillations in the time-dependent current. These oscillations are observable in the time-averaged current as function of ESR pulse-duration, and they allow one to access the spin coherence directly in the time domain. We analyze the measurement and read-out process of the dot-spin via currents in spin-polarized leads and identify measurement time and efficiency by calculating the counting statistics, noise, and the Fano factor.

I. INTRODUCTION

The coherent control and manipulation of the electron spin has become the focus of an increasing number of experiments. From measurements it has become evident that the phase coherence of electron spins in semiconductors can be robust over unusually long times, exceeding 100’s of nanoseconds. Thus, spins of electrons are suitable candidates for applications in the field of spintronics, in particular for quantum information processing. This has made it desirable to understand in more detail the coherent behavior of single electron spins which are confined to nanostructures such as quantum dots, molecules, or atoms, and to point to ways of how to access the coherence time of a single spin experimentally. It is the goal of this work to address this issue and to propose and analyze transport scenarios involving a quantum dot attached to leads and with a spin-1/2 ground state.

We first remind ourselves of some basic notions in spin dynamics. When the electron spin is exposed to an external magnetic field, this leads to a Zeeman splitting, and the spin dynamics is described by the standard Bloch equations. These are characterized by two time scales: the (longitudinal) relaxation time T_1 and the decoherence time T_2 (transverse relaxation). The spin relaxation time T_1 describes the lifetime of an excited spin state, aligned along the external field, and is classical in the sense that its definition does not involve the concept of quantum superpositions. Such a T_1 time of a spin in a single quantum dot was measured recently via transport and was shown to be longer than a few microseconds, in agreement with calculations. On the other hand, the spin decoherence time T_2 gives the time over which a superposition of opposite spin states of a single electron remains coherent. Thus, coherent manipulations of electron spins, e.g., gate operations for quantum computation, must be performed faster than T_2. We note that quite generally $T_2 \leq T_1$. Thus, from the sole knowledge of T_1 no lower bound for T_2 follows. It is thus of fundamental interest to investigate possibilities of how to gain access to the decoherence time T_2 for a single spin confined to a quantum dot.

The loss of phase coherence of many but independent spins is described by the dephasing time T_2^*, where inhomogeneities in the Zeeman terms lead to a further suppression of phase coherence for the ensemble but not necessarily for an individual spin, thus $T_2^* \leq T_2$. In recent experiments, T_2^* was measured in bulk GaAs by using ultrafast time-resolved optical methods, yielding values for T_2^* exceeding 100 ns.

However, the measurement of the decoherence time T_2 for a single spin has—to our knowledge—not been reported yet (although it is expected to be within experimental reach given the known single-photon sensitivity). A first step into this direction are spin echo measurements on an ensemble of spins, where dephasing due to inhomogeneities of the magnetic field is eliminated. Indeed, such measurements being performed more than thirty years ago on P donors in Si, reported T_2 times up to 500 µs. However, it appears desirable to have a more direct method for single spin measurements. To achieve this via direct coupling to the magnetic moment of the spin is rather challenging due to the extremely small magnetic moment, although it is believed to be within reach using cantilever techniques. Here we concentrate on a...
further approach based on transport measurements. The key idea is to exploit the Pauli principle which connects spin and charge of the electron so intimately that all spin properties can be accessed via charge and charge currents, especially in the Coulomb blockade regime, of a quantum dot attached to leads. Indeed, concrete scenarios based on such a spin-to-charge conversion have been proposed in the past, and it is our goal here to further elaborate on these concepts, and to report on a variety of new results we have obtained.

There are two classes of spin decoherence contributions we have to distinguish in the following. First, rare tunneling events of electrons onto and off the dot change the spin state of the dot and in this way contribute to the decoherence of the dot spin. We account for this decoherence microscopically in terms of a tunneling Hamiltonian. Second, there are intrinsic decoherence contributions from processes which persist even if the dot is completely isolated from the leads. This decoherence is taken into account phenomenologically in the master equation developed in this work, with an intrinsic decoherence rate T_2^{-1}. The goal then is to show that this T_2 time can be extracted via current measurements, regardless of the microscopic processes leading to T_2. Such a phenomenological approach to intrinsic decoherence makes the purpose of our considerations clearer and is applicable to different types of decoherence mechanisms e.g. based on hyperfine and spin-orbit couplings. The microscopic study of such intrinsic decoherence, being an important subject in its own right, is not addressed in the present work.

The outline of this paper is as follows. In Sec. II, we define the system of interest, a quantum dot with spin-1/2 ground state in the Coulomb blockade regime which has a spin-$\frac{1}{2}$ ground state. The dot is assumed to be tunnel-coupled to two Fermi-liquid leads $l = 1, 2$, at chemical potentials μ_l. We start from the full Hamiltonian

$$H = H_{\text{lead}} + H_{\text{dot}} + H_{\text{ESR}}(t) + H_T,$$

where describes leads, dot, ESR field, and the tunnel coupling between leads and dot, respectively. For the leads we take $H_{\text{lead}} = \sum_{l \sigma} \epsilon_{l} c_{l \sigma}^\dagger c_{l \sigma}$, where $c_{l \sigma}^\dagger$ creates an electron in lead l with orbital state k, spin σ, and energy $\epsilon_{l k}$. We describe the coupling with the standard tunnel Hamiltonian

$$H_T = \sum_{l p k \sigma} t_{lp}^\sigma c_{l k \sigma}^\dagger d_{p \sigma}^\dagger + \text{h.c.},$$

with tunneling amplitude t_{lp}^σ, and where $d_{p \sigma}^\dagger$ creates an electron on the dot in orbital state p. In Eq. (2), H_{dot} is time-independent and includes charging and interaction energies of the electrons on the dot and coupling to a static magnetic field B_z in z direction. The dot-spin is coupled to a magnetic ESR field, $B_z(t) = B_0^z \cos(\omega t)$, linearly oscillating in x direction with frequency ω, thus $H_{\text{ESR}} = -\frac{i}{\hbar} g \mu_B B_z(t) \sigma_x$. Such an oscillating field produces Rabi spin-flips when its frequency is tuned to resonance, $\omega = \Delta_z$, as shown below. Then, the total Zeeman coupling of the dot-spin is

$$-\frac{1}{2} g \mu_B B(t) \cdot \sigma = -\frac{1}{2} \Delta_z \sigma_z - \frac{1}{2} \Delta_x \cos(\omega t) \sigma_x,$$

with electron g factor g, Bohr magneton μ_B, and Pauli matrices σ. We have defined $\Delta_z = g \mu_B B_0^z$, and the
Zeeman splitting $\Delta_z = g\mu_B B_z$. Ideally, we assume that the Zeeman splitting of the leads $\Delta_{z,\text{leads}}$ is different from Δ_z, and $\Delta_{z,\text{leads}} \ll \varepsilon_F$, where ε_F is the Fermi energy, such that the effects of the fields B_x and $B_z(t)$ on the leads are negligible (see below). Such a situation can be achieved by using materials of different g factors and/or with local magnetic fields (B_x or B_z).

We are neglecting photon assisted tunneling (PAT) processes, in which oscillating electric potentials of the leads provide additional energy to electrons tunneling onto the dot. We note that PAT contributions to the current can be distinguished from ESR effects since the thermal fluctuations of the leads provide additional energy to electrons tunneling processes, (a) If the dot is initially in the spin ground state $|\uparrow\rangle$, sequential tunneling is blocked by energy conservation. (b) If the dot-spin is excited by an ESR field, spin up or down electrons can tunnel into lead 1 onto the dot, forming a singlet. Then, spin up or down electrons can tunnel into lead 2.

We shall give a brief overview of the energetics involved in tunneling through quantum dots in the Coulomb blockade regime and in the presence of the Zeeman splitting and an ESR field. For simplicity, we assume that there is no electron-electron interaction on the dot apart from the classical charging effect. (Our work is not restricted to such an assumption, since we only require a spin-1/2 ground state and a large enough singlet-triplet spacing on the dot.) The total ground state energy of a dot with antiferromagnetic filling is

$$U(N) = \sum_{k=1}^{N} \varepsilon_k^s + E_C^N,$$

for N electrons on the dot. Here, the single particle energy of the kth electron, $\varepsilon_k^s = \varepsilon_k + (-1)^s \Delta_z/2$, contains orbital and Zeeman energy contributions. The charging energy is $E_C^N = (Ne - Q_G)^2/2C$, with gate charge Q_G, and dot capacitance C. It is convenient to define the chemical potential of the dot, $\mu_{\text{dot}}(N+1) = U(N+1) - U(N)$, which is the energy required for an electron of lead 1 to tunnel onto the dot, which contains N electrons initially, i.e., tunneling onto the dot occurs for $\mu_1 > \mu_{\text{dot}}$. In the Coulomb blockade regime, $kT \ll \varepsilon_e^2/C$ (k: Boltzmann constant), no sequential tunneling current flows through the dot if the chemical potentials of dot and leads are such that $\mu_{\text{dot}}(N) < \mu_1, \mu_2 < \mu_{\text{dot}}(N+1)$. However, in the sequential tunneling regime $\mu_1 > \mu_{\text{dot}}(N+1) > \mu_2$, single electrons tunnel from lead 1 onto the dot and then on into lead 2, producing a sequential tunneling current.

In the presence of an ESR field, these concepts must be extended. Excitations of the dot states must be taken into account, since now the energy of the dot changes in time due to $B_z(t)$. A full analytical description of the current flow is derived in the following sections based on a time dependent master equation. Here, we just intend to give a qualitative picture to provide some intuition for the underlying physical mechanism (it will not be needed later on). We define a time-dependent chemical potential of the dot, given as the energy required to add an electron at time t. We consider the two chemical potentials μ_{dot}^e for initial spin-$\frac{1}{2}$ dot-state $|\sigma\rangle$, i.e., $\Delta_{S\uparrow} = \mu_{\text{dot}}^e(N+1) = E_S - E_{\uparrow}$, and $\Delta_{S\downarrow} = \mu_{\text{dot}}^e(N+1) = E_S - E_{\downarrow}$, which simplify to $\Delta_{S\uparrow} = E_S$, and $\Delta_{S\downarrow} = E_S - \Delta_z$, respectively, for $E_\uparrow = 0$. Note that the μ_{dot}^e is lowered if the dot is excited into state $|\downarrow\rangle$, since the Zeeman energy Δ_z has already been provided by a Rabi spin flip due to the ESR field. Therefore, we can identify the regime $\Delta_z > \mu_1 > \Delta_{S\downarrow} > \mu_2$, where a sequential tunneling current for odd number N of electrons on a dot with antiferromagnetic filling, the dot has a spin-$\frac{1}{2}$ ground state. The topmost (excess) electron can be either in the spin ground state, $|\uparrow\rangle$, (σ_z eigenstate) or in the excited state, $|\downarrow\rangle$ (see Fig. 4). This assumption is automatically satisfied if $N = 1$. Otherwise, to obtain antiferromagnetic filling, Hund’s rule must not apply. This can be achieved by breaking the orbital degeneracy on the dot, e.g., by using asymmetrically shaped dots or an appropriate magnetic field B_z. For an additional electron on the dot, we assume for $N + 1$ the ground state to be the singlet $|S\rangle = (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)/\sqrt{2}$, i.e., the triplet state $|T_+\rangle = |\uparrow\uparrow\rangle$ has higher energy, which again can be achieved by tuning B_z. The energy E_m of the dot, including charging energy, is defined by $H_{\text{dot}}(m) = E_m(m)$.
will flow through the dot only after exciting the dot-spin by a spin flip (see Fig. 1). In other words, the dot can be opened and closed via the ESR field, which thus allows to modulate the current. This (dynamical) dependence of the current on the dot-spin can be exploited to measure the T_2 time and the Rabi oscillations of the dot-spin, as we will explain in detail in the following.

C. Systematic Treatment of Sequential Tunneling

The electronic states on a quantum dot interact with their environment (heat bath), in particular with the Fermi leads, which provide and take up electrons. The state of the combined system, dot and environment, is given by the full density matrix $\rho(t)$. The states of interest are the electronic states on the dot, described by the reduced density matrix of the dot, $\rho_D = \text{Tr}_B \rho$. Here, Tr_B is the trace taken over the leads (environment), averaging over the (unobserved) degrees of freedom of the environment. The diagonal elements $\rho_{nn} = \langle n|\rho_D|n \rangle$ of the density matrix of the dot describe the occupation probabilities of the dot levels, with $H_{\text{dot}}|n \rangle = E_n|n \rangle$. The off-diagonal elements $\rho_{nm} = \langle n|\rho_D|m \rangle = \rho_{mn}$ describe the coherence and the phase of superpositions of dot-states.

The tunnel coupling H_T between leads and dot is switched on at $t = 0$. Prior to this, the dot and leads are assumed to be uncorrelated so that the full initial density matrix factorizes as $\rho(0) = \rho_D(0)\rho_B$, where ρ_B is the density matrix of the leads in thermal equilibrium at μ_1, and at temperature T. Next we derive the master equation for the reduced density matrix ρ_D by making use of the superoperator formalism. In the following, we set $\hbar = 1$. Starting from the von Neumann equation $\dot{\rho} = -i [H, \rho]$ for the full density matrix, and using standard manipulations, one finds the time evolution of the reduced density matrix

$$\dot{\rho}_D(t) = -i [H_{\text{dot}} + H_{\text{ESR}}(t), \rho_D(t)] - \int_0^t dt' M(t, t') \rho_D(t'),$$

$$M(t, t') = \text{Tr}_B \left(T e^{-i \int_t^{t'} dt'' Q_L(t'')} \right) L_T \rho_B^0,$$

with time-ordering T and the Liouville operators defined by $L(t)X = [H(t), X]$, $L_T X = [H_T, X]$, and equivalently for L_{dot}, L_{lead}, and L_{ESR}. The projectors are defined as $Q = 1 - P$, and $P X = \rho_B^0 \text{Tr}_B X$. The kernel M [Eq. (5)] is a superoperator describing processes involving tunneling of electrons to and from the leads. We consider here only sequential tunneling processes, and refer for a discussion of cotunneling contributions to Secs. IIIB and VIIA.

Thus, we work in Born approximation by retaining only the terms in lowest order of L_T, i.e., we replace L by $L_0 = L - L_T$ in Eq. (5). For further evaluation of M, it is self-consistent (see below) to neglect the effect of the ESR field, $L_{\text{ESR}}(t)$, i.e., we replace L_0 by $L_{\text{dot}} + L_{\text{lead}}$ in M.

This removes explicitly the time dependence of M, making it time translation invariant, $M(t, t') = M(t - t')$. We find that $M(\tau)$ decays on a time scale $\tau_c \sim 1/kT$, i.e., the correlations induced in the leads by H_T decay rapidly. Since this decay is typically much faster than the Rabi flips produced by the ESR field, $\tau_c \ll 1/\Delta_x$, we may indeed neglect the contribution of $L_{\text{ESR}}(t)$ to M. With these approximations, Eq. (5) becomes in the interaction picture

$$\dot{\rho}_D(t) = -i L_{\text{ESR}}(t)\rho_D(t) - \int_0^t dt' M(t', t)\rho_D(t' - \tau).$$

The rapid decay of $M(\tau)$ also justifies the Markovian assumption that the system has no memory about its past, i.e., that $\dot{\rho}_D(t)$ depends only on $\rho_D(t)$ and not on $\rho_D(t - \tau)$. This approximation is performed in the interaction picture, to keep track of the dynamical phase of the off-diagonal elements of ρ_D. Systematically we proceed as follows. Since the integrand in Eq. (7) only contributes for small τ, we may expand the integrand in τ, $M(\tau)\rho_D(t - \tau) = M(0)\rho_D(t) + O(\tau^2)$. We then replace $\rho_D(t)$ in the integrand by using Eq. (7) iteratively. However, since $M(\tau) \sim O(L_T^{-2})$, we can neglect the part of $\dot{\rho}_D(t)$ which is $O(L_T^{-2})$, since it corresponds to a higher order term in our Born approximation. The remaining part of $\dot{\rho}_D(t)$ results from L_{ESR}, which can also be disregarded since, in the integrand, the ESR field only acts on the time scale $\tau_c \ll 1/\Delta_x$. We then extend the upper integration limit in Eq. (7) to ∞, with negligible contributions due to the decay of $M(\tau)$. Therefore, the second term in Eq. (7) becomes

$$\int_0^\infty d\tau M_{\text{BE}}(\tau)\rho_D(t).$$

Next, we evaluate the matrix elements $M_{\text{BE}}(\tau) = \langle b| M(n)|m \rangle |c \rangle$ explicitly in the interaction picture, which yields

$$\int_0^\infty d\tau M_{\text{BE}}(\tau) = \delta_{bc} \delta_{nm} \left(W_{cn} - \delta_{bn} \sum_k W_{kn} \right) - (1 - \delta_{nm}) \delta_{bn} \delta_{nc} \left[i \delta_{en} + \frac{1}{2} \sum_k (W_{kn} + W_{km}) \right].$$

with the rates W (see below) and energy shifts δ_{en} (Stark shifts). These shifts are small; e.g., the one between $|\downarrow \rangle$ and $|\uparrow \rangle$ is given by

$$\delta_{\downarrow \uparrow} = \frac{1}{2} \sum_l \frac{P_l}{P} \int_0^\infty d\epsilon f_l(t) \left(\frac{\gamma^\uparrow - \gamma^\downarrow}{\epsilon - \Delta S\downarrow} \right) \delta_{\downarrow \uparrow},$$

and similarly for $\delta_{\downarrow \downarrow}$ and $\delta_{\uparrow \uparrow}$. For $|\mu_l - \Delta S\sigma| > kT$, the energy shift becomes

$$\delta_{\downarrow \uparrow} = \sum_l \left(\frac{\gamma^\uparrow}{2\pi} \log \frac{\Delta S\uparrow}{|\mu_l - \Delta S\uparrow|} - \frac{\gamma^\downarrow}{2\pi} \log \frac{\Delta S\downarrow}{|\mu_l - \Delta S\downarrow|} \right),$$

which, for $\gamma^\uparrow = \gamma^\downarrow$, reduces to $\delta_{\downarrow \uparrow} \approx \frac{\gamma}{2\pi} \log \frac{|\mu_l - \Delta S\uparrow|}{|\mu_l - \Delta S\downarrow|}$, and thus to a small correction $|\delta_{\downarrow \uparrow}| \lesssim \gamma \log(\Delta_x/kT)$, for $\Delta \mu < \Delta_x$.

The sequential tunneling rates in Eq. (8) are
\[
W_{S\downarrow} = \sum_l W^l_{S\downarrow}, \quad W^l_{S\downarrow} = \gamma^l \nu f_\downarrow(\Delta_{S\downarrow}),
\]
(11)
\[
W_{S\uparrow} = \sum_l W^l_{S\uparrow}, \quad W^l_{S\uparrow} = \gamma^l [1 - f_\downarrow(\Delta_{S\downarrow})],
\]
(12)
with the Fermi function \(f_\downarrow(\Delta_{S\downarrow}) = \left[1 + e^{(\Delta_{S\downarrow} - \mu)/kT}\right]^{-1} \) of lead \(l \). The rates \(W_{S\uparrow}, W_{S\downarrow}, W^l_{S\uparrow}, \) and \(W^l_{S\downarrow} \) are defined analogously as functions of \(\gamma^l \) and \(f_\downarrow(\Delta_{S\downarrow}) \). The transition rates,
\[
\gamma^\sigma = (\gamma^\uparrow + \gamma^\downarrow)/2, \quad \gamma = (\gamma^\uparrow + \gamma^\downarrow)/2.
\]
(13)
consist of (possibly) spin-dependent density of states \(\nu_{\uparrow,\downarrow} \) at the Fermi energy and tunneling amplitude \(t^1,^\downarrow \). (Spin-dependent density of states are considered in Sec. [13] for spin read-out.) For later convenience, we define for \(\sigma = \uparrow \), \(\downarrow \)
\[
\gamma^\sigma = (\gamma^\uparrow + \gamma^\downarrow)/2, \quad \gamma = (\gamma^\uparrow + \gamma^\downarrow)/2.
\]
(14)

D. Master Equation

So far we have considered only coupling to an environment consisting of Fermi leads. However, the electronic dot states are affected also by intrinsic degrees of freedom such as hyperfine coupling, spin-orbit interaction, or spin-phonon coupling, which lead to intrinsic spin relaxation and decoherence. Treating such couplings microscopically is beyond the present scope (see e.g., Ref. [20]). Thus, we treat these couplings phenomenologically by introducing corresponding rates in the master equation. First, the spin relaxation rates \(W_{\uparrow\downarrow} \) and \(W_{\downarrow\uparrow} \) describe processes in which the dot-spin is flipped. We can assume \(W_{\uparrow\downarrow} \gg W_{\downarrow\uparrow} \), for \(\Delta > kT \) (consistent with detailed balance, \(W_{\uparrow\downarrow}/W_{\downarrow\uparrow} = e^{\Delta_{S\downarrow}/kT} \)). These relaxation processes correspond to the phenomenological rate \(1/T_1 = W_{\uparrow\downarrow} + W_{\downarrow\uparrow} \), see also Sec. [11].

Second, the rate \(1/T_2 \) describes the intrinsic decoherence of the spin on the dot, which is present even in the absence of coupling to the leads. This type of decoherence destroys the information about the relative phase in a superposition of \(|\uparrow\rangle \) and \(|\downarrow\rangle \), without changing the populations of the opposite spin states. Formally, this leads to a decay of the off-diagonal matrix element \(\rho_{\uparrow\downarrow} \). Including the decoherence contribution of \(H_T \) [Eqs. (8), (11)], the total spin decoherence rate is
\[
\dot{\rho}_{\uparrow\downarrow} = -\left(W_{\uparrow\downarrow} + W_{\downarrow\uparrow}\right) \rho_{\uparrow\downarrow} + W_{\uparrow\downarrow} \rho_{\downarrow\uparrow} + W_{\downarrow\uparrow} \rho_{\uparrow\downarrow} - \Delta_x \cos(\omega t) \text{Im}[\rho_{\uparrow\downarrow}],
\]
(16)
\[
\dot{\rho}_{\downarrow\uparrow} = W_{\uparrow\downarrow} \rho_{\downarrow\uparrow} - \left(W_{\uparrow\downarrow} + W_{\downarrow\uparrow}\right) \rho_{\downarrow\uparrow} + W_{\downarrow\uparrow} \rho_{\uparrow\downarrow} + \Delta_x \cos(\omega t) \text{Im}[\rho_{\uparrow\downarrow}],
\]
(17)
\[
\dot{\rho}_{\uparrow\uparrow} = W_{\uparrow\downarrow} \rho_{\uparrow\uparrow} + W_{\downarrow\uparrow} \rho_{\downarrow\uparrow} - \left(W_{\uparrow\downarrow} + W_{\downarrow\uparrow}\right) \rho_{\uparrow\uparrow} - \Delta_z \rho_{\uparrow\downarrow} + i\Delta \cos(\omega t)(\rho_{\downarrow\uparrow} - \rho_{\uparrow\downarrow}) - V_{\uparrow\downarrow} \rho_{\uparrow\downarrow},
\]
(18)
\[
\dot{\rho}_{\downarrow\downarrow} = -i\Delta_z \rho_{\uparrow\downarrow} + i\Delta \cos(\omega t)(\rho_{\uparrow\downarrow} - \rho_{\downarrow\uparrow}) - V_{\uparrow\downarrow} \rho_{\uparrow\downarrow}.
\]
(19)

Here, the time evolution of the matrix elements \(\rho_{nm} = \langle n|\rho|m\rangle \) of the density matrix of the dot is described for the states \(|n\rangle = |\uparrow\rangle, |\downarrow\rangle \), e.g., for the diagonal element, \(\rho_{\uparrow\uparrow} = \langle S|\rho|\uparrow\rangle \), etc. The rate \(W_{nm} \) describes transitions from state \(|n\rangle \) to \(|m\rangle \). Equations (16)–(18) are rate equations with gain and loss terms, up to the contributions from the ESR field. Then, the population of, say, state \(|\uparrow\rangle \), is changed by \(\text{d}\rho_{\uparrow\uparrow}/\text{d}t \) by the following contributions [Eq. (16)]. The population \(\rho_{\uparrow\uparrow} \) is increased when the dot is previously in state \(|S\rangle \) (with probability \(\rho_{SS} \)), and a spin \(\downarrow \) electron tunnels out of the dot with probability \(W_{S\downarrow} \) \(dt \). However, the population \(\rho_{\uparrow\uparrow} \) is decreased when the system was already in state \(|\uparrow\rangle \), and a spin \(\downarrow \) electron tunnels onto the dot with probability \(W_{S\uparrow} \) \(dt \). The spin flip rates, \(W_{\uparrow\downarrow} \) and \(W_{\downarrow\uparrow} \), enter Eq. (16) analogously. In the absence of an ESR field, the off-diagonal elements [Eqs. (19)–(21)] of the density matrix decouple from the diagonal ones and decay with the decoherence rates \(V_{nm} = V_{mn} \).

In the presence of an ESR field, the diagonal [Eqs. (16) and (17)] and the off-diagonal [Eq. (19)] matrix elements become coupled by the term proportional to \(\Delta_x \). This coupling of populations (\(\rho_{\uparrow\uparrow} \) and \(\rho_{\downarrow\downarrow} \)) and coherence (\(\rho_{\uparrow\downarrow} \)) shows the coherent nature of Rabi spin-flips and makes it apparent that we are studying a resonant process, which requires that we take \(H_{ESR} \) fully into account.

The current \(I_2 = \langle dq\rangle/\text{d}t \) from the dot into lead 2 is defined by the number of charges \(dq \) that accumulate in lead 2 after time \(dt \). With probability \(\rho_{SS} \), the dot is in state \(|S\rangle \) and a charge will tunnel into lead 2 with probability \(W_{S\uparrow}^2 + W_{S\downarrow}^2 \) \(dt \). However, if the dot is in state \(|\uparrow\rangle \) or \(|\downarrow\rangle \), a charge may tunnel from lead 2 onto the dot, reducing the number of charges in lead 2. Thus, in total we obtain for the current in lead 2
\[
I_2 = e(W_{S\uparrow}^2 + W_{S\downarrow}^2) \rho_{SS} - eW_{S\uparrow}^2 \rho_{\uparrow\uparrow} - eW_{S\downarrow}^2 \rho_{\downarrow\downarrow}.
\]
(22)

The current in lead 1, \(I_1 \), is obtained analogously and is given by Eq. (22) after changing sign and replacing the index 2 by 1. We show in Sec. [11] that \(I_1 = I_2 \) in the stationary limit, due to charge conservation.

Finally we note that Eqs. (21) and (22), which describe a superposition of an odd and an even number of electrons on the dot, decouple from Eqs. (16)–(19) and
are thus not of relevance for our considerations. Further, since the coupling to the leads is switched on only at \(t = 0 \), initially the number of particles on the dot is well defined. Therefore \(\rho_{S|L} \) and \(\rho_{S|L} \) vanish at \(t = 0 \) and all later times, as seen from Eqs. (21) and (24). In particular, no superposition of a state with an even and a state with an odd number of electrons on the dot is produced by the coupling to the leads, since this would require a coherent superposition of corresponding states in the leads, however, for times larger than \(\tau_c \) (which is typically the case), we can safely neglect any coherence in the Fermi liquid leads.

E. Decoherence and Measurement Process

We elucidate the connection between spin decoherence and measurement, first in the absence of leads and ESR field. We consider a coherent superposition \(\alpha|↑⟩ + \beta|↓⟩ \) as the initial state of the dot. This pure state corresponds to the reduced density matrix \(\rho_l(0) = |\alpha|^2 \), \(\rho_\uparrow(0) = |\beta|^2 \), and \(\rho_{↑↓}(0) = \alpha\beta^* \), and the master equation contains only the rates \(W_{↑↑}, W_{↓↓}, \) and \(W_{↑↓} = 1/T_s \). The off-diagonal terms \(\rho_{↑↓} = \rho_{↓↑}^{\text{eq}} \) decay with the decoherence time \(T_2 \), \(\rho_{↑↓}(t) = e^{-t/T_2-i\Delta_x} \rho_{↑↓}(0) \), while the diagonal terms (occupation probabilities) decay with the spin relaxation time \(T_1 = (W_{↑↑} + W_{↓↓})^{-1} \), \(\rho_\uparrow(t) = \rho_\uparrow^{\text{eq}} + e^{-t/T_1} (\rho_\uparrow(0) - \rho_\uparrow^{\text{eq}}) \), toward their stationary value \(\rho_\uparrow^{\text{eq}} = W_{↑↑}/(W_{↑↑} + W_{↓↑}) \), and \(\rho_\downarrow = 1 - \rho_\uparrow \). In total, for \(T_2 < T_1 \), we can picture the decay of \(\rho_D \) as

\[
\begin{pmatrix}
|\alpha|^2 & \alpha^*\beta \\
\alpha\beta^* & |\beta|^2
\end{pmatrix} \begin{pmatrix}
0 & 0 \\
0 & |\beta|^2
\end{pmatrix} \begin{pmatrix}
\rho_{↑↓}^{\text{eq}} & 0 \\
0 & \rho_{↓↑}^{\text{eq}}
\end{pmatrix},
\]

i.e., the off-diagonal terms vanish first on the timescale \(T_2 \), and then the diagonal ones equilibrate on the timescale \(T_1 \).

As shown in Sec. II C when electrons tunnel onto the dot, the decoherence rate \(V_{↑↓} \) [Eq. (15)] and thus the decay of the off-diagonal elements is increased further. We note now the formal equivalence to the quantum measurement process (in the \(\sigma_z \) basis), where the dot-spin is projected onto \(|↑⟩ \) or \(|↓⟩ \), and thus the off-diagonal matrix elements vanish. This projection can be understood as a decoherence process. Conversely, we can consider the decoherence due to tunneling as a measurement performed by the tunneling electrons. We note that this process is a weak measurement in the following sense. The electrons in the leads attempt to tunnel on the dot, but only with small probability \(\propto W_{S\sigma} \) these attempts are successful. Thus, the current \(I \), which carries away the information of the dot state to the observer, is formed by these successful electrons, while the unsuccessful electrons are not detected. Another way to say this is that a given electron from the lead has only a small probability \(\propto W_{S\sigma} \) to “measure” (i.e., decohere) the dot state.

F. Cotunneling Contribution to the Sequential Tunneling Regime

We work in the sequential tunneling regime, defined by \(\mu_1 > \Delta_{S↑} > \mu_2 \). One can see that higher order—cotunneling—contributions can be neglected\(^2\) for \(\gamma_l < \Delta_x, kT \), the regime of interest here. Most importantly, the cotunneling contributions to \(V_{↑↓} \) are of the order \(\gamma_l^2/\Delta_x \) (see Sec. VIII), i.e., they are compressed compared to the sequential tunneling contributions by a factor of \(\gamma_l/\Delta_x \approx 5 \times 10^{-5} \) for the parameters of Fig. 3. Formally, the cotunneling contributions to the master equation can be absorbed into \(T_1 \) and \(T_2 \). For a discussion of cotunneling currents away from the sequential tunneling resonance see Sec. VIII.

III. STATIONARY CURRENT

We now consider the stationary current \(I \) in the presence of a continuous wave (cw) ESR field. Therefore we calculate the stationary solution \(\rho(t \to \infty) \) of the master equation [Eqs. (16)–(21)]. We will apply the rotating wave approximation (RWA), \(^3\) where only the leading frequency contributions of \(H_{\text{ESR}} \) are retained. Higher order contributions would include simultaneous absorption of two photons and emission of another photon. In lowest order, only single photons can be absorbed or emitted, producing a spin flip on the dot. To perform this approximation, we write \(\Delta_x \cos(\omega t) = \frac{\Delta_x}{2} (e^{i\omega t} + e^{-i\omega t}) \), i.e., we decompose the linearly oscillating magnetic field into a superposition of a clockwise and an anti-clockwise rotating field. Integrating Eqs. (16), (17), and (19), one finds that for \(\omega \approx \Delta_x \), the anti-clockwise rotating field leads to rapidly oscillating terms in the integrands, which nearly average to zero. Therefore, we retain only the clockwise rotating field, which is given by the term proportional to \(e^{i\omega t} \) (see also Sec. VII). Note that since only one field component contributes, the field amplitude is halved. This leads to the period \(T_{1\Omega} \) of one Rabi oscillation,

\[
T_{1\Omega} = \frac{4\pi}{\Delta_x},
\]

The RWA is valid for \(\Delta_x, V_{↑↓}, |\Delta_x - \omega| \ll \omega \), see e.g., Ref. 35, and is well justified for the parameters considered here. In the stationary case and using the RWA, the dependence of \(\rho_{↑}\) and \(\rho_{↓} \) [Eqs. (16) and (17)] on \(\rho_{↑↓} \) is eliminated, leading to the effective spin-flip rate

\[
W_\omega = \frac{\Delta_x^2}{8} \frac{V_{↑↑}}{(\omega - \Delta_x)^2 + V_{↑↑}^2},
\]

which is a Lorentzian as function of \(\omega \) with maximum \(W_\text{max} = \Delta_x^2/8V_{↑↑} \) at resonance \(\omega = \Delta_x \). Now it is straightforward to find the stationary solution of the effective rate equations for \(\rho_{↑}, \rho_{↓} \) and \(\rho_{S\sigma} \),

\[
\rho_{↑} = \rho_{↓} = \frac{1}{2} \left[W_{↑↑} (W_{↑↑} + W_{↑↓}) (W_{S↑} + W_{S↓}) \right],
\]
\[
\rho_s = \eta \left[W_{S\downarrow} W_{S\uparrow} + (W_{S\uparrow} + W_{\omega}) (W_{S\downarrow} + W_{\omega}) \right],
\]
\[
\rho_\downarrow = \eta \left[W_{\downarrow\uparrow} W_{\downarrow\downarrow} + W_{\downarrow\uparrow} (W_{\downarrow\downarrow} + W_{\omega}) \right] + W_{S\downarrow} (W_{\uparrow\downarrow} + W_{\omega}),
\]
where the normalization factor \(\eta \) is such that \(\sum_n \rho_n = 1 \).

We see from Eqs. (26)-(28) that the effective spin flip rates are \(W_{\uparrow\downarrow} + W_{\omega} \), and \(W_{\downarrow\uparrow} + W_{\omega} \), i.e., the ESR field flips up and down spin with equal rate \(W_{\omega} \).

We can now calculate the spin-\(\uparrow \) polarized current in lead 2, \(I_2^\uparrow = e W_{S\downarrow}^2 \rho_s - e W_{S\downarrow}^2 \rho_\downarrow \) [cf. Eq. (22)]. The result is displayed in Eq. (A1) in the Appendix. The spin-\(\downarrow \) polarized current, \(I_2^\downarrow \), is obtained from Eq. (A1) by interchanging \(\uparrow \) with \(\downarrow \) in the numerator (the denominator remains unaffected by such an interchange). The currents in lead 1, \(I_1^{\uparrow,\downarrow} \), are obtained from the formulas for \(I_2^{\uparrow,\downarrow} \) by changing sign and interchanging indices 1 with 2. Note that generally \(I_1^\uparrow \neq I_2^\uparrow \), since the ESR field generates spin flips on the dot, and thus the spin on the dot is not a conserved quantity. However, the stationary charge current \(I = \sum_n I_n^\uparrow \) is the same in both leads, \(I = I_1 = I_2 \), due to charge conservation.

A. Spin Satellite Peak

In this subsection we discuss the stationary current \(I \) through the dot, in particular, its behavior as function of \(\mu = (\mu_1 + \mu_2)/2 \), or, equivalently, as function of the gate voltage \(V_g \). We will see that an additional sequential tunneling peak (satellite peak) will appear due to the ESR field. Before explicit evaluation of the current, we briefly describe this situation in qualitative terms. We assume a large Zeeman splitting, \(\Delta_z > \Delta \mu, kT \), with applied bias \(\Delta \mu = \mu_1 - \mu_2 > 0 \). If the potentials are such that \(\mu_1 > \Delta_{S \uparrow} > \mu_2 \), i.e., the chemical potential of the dot (relative to the ground state \(|\uparrow\rangle \)) is between the chemical potentials of the leads, the state on the dot changes between \(|\uparrow\rangle \) and \(|S\rangle \) due to sequential tunneling events, leading to the standard sequential tunneling peak in \(I(\mu) \) at \(\mu \approx \Delta_{S \uparrow} \).

However, we also have to consider the regime \(\Delta_{S \uparrow} > \mu_1 > \Delta_{S \downarrow} > \mu_2 \), as shown in Fig. 3. Without ESR field, the dot relaxes into its ground state \(|\uparrow\rangle \) (since \(W_{\uparrow\downarrow} \ll W_{\uparrow\uparrow} \)), and the sequential tunneling current through the dot is blocked since the chemical potential \(\Delta_{S \uparrow} \) of the dot is higher than those of the leads. However, if an ESR field generates Rabi spin-flips (on the dot only), the current flows through the dot involving the state \(|\downarrow\rangle \), since \(\Delta_{S \downarrow} \) is lower than \(\mu_1 \). Therefore, a sequential tunneling current appears also for gate voltages \(V_g \) corresponding to \(\Delta_{S \downarrow} \), i.e., \(I(\mu) \) exhibits a spin satellite peak due to the ESR field at \(\mu \approx \Delta_{S \downarrow} \). This new peak is shifted away from the main peak by \(\Delta_z \) (Fig. 2). The presence of such a satellite peak and its sensitivity to changes in \(B_z \) allows identification of spin effects. Further, we note that via the position of the peak in \(I(\omega_{\text{ESR}}) \), \(I(B_z) \), or \(I(\mu) \), the Zeeman splitting and also the \(g \) factor of a single dot can be measured. Such a measurement could provide a useful technique to study \(g \) factor modulated materials, where the \(g \) factor can be controlled by shifting the equilibrium position of the electron in the dot from one layer to another by electrical gating. Note that measurement of the peak position would also allow to access the Stark shifts.

![FIG. 2: The stationary current vs. \(\mu = (\mu_1 + \mu_2)/2 \) and ESR frequency \(\omega \). We take \(T = 70 \text{ mK}, \Delta \mu/e = 6 \mu \text{V}, B_z = 0.5 \text{ T}, g = 2, T_1 = 1 \mu s, T_2 = 100 \text{ ns}, \gamma_1 = 5 \times 10^8 \text{s}^{-1}, \text{and } \gamma_2 = 5 \gamma_1, \text{i.e., } \Delta_z = 10kT \text{ and } \Delta \mu = kT \). The width of the sequential tunneling peaks in \(I(\mu) \) is determined by the temperature, see Eq. (31). (a) The current \(I(\mu, \omega) \) shows a spin satellite peak near \(\mu = E_S - \Delta_z \) (for \(E_z = 0 \)) due to the ESR field. Note that the spin satellite peak is slightly shifted from this position, which is indicated by the line at \(E_S - \Delta_z \) (light gray line) in (a). Here, \(B_0^z = 1.4 \text{ G}, \text{i.e., } W_{\omega,\text{max}}^S = \gamma_1 \) at resonance and \(\mu = \Delta_{S \downarrow} \). (b) The current \(I(\mu) \) for \(\omega = 0 \) (dotted), \(\gamma_1/5 \) (solid), \(\gamma_1 \) (dashed), \(9\gamma_1 \) (dash-dotted). The position of the spin satellite peak as function of \(W_{\omega} \) is shown as black dots and the connecting solid line.]
rates, i.e., the width of Eq. (44) (see below) shows resonant behavior, i.e., a lower bound on the linewidth in resonances of the current, which allows us to measure it accurately.

In contrast to these techniques, we are considering here a plot of I vs ω and μ and some explanations of its characteristics, see Fig. 2.

B. Spin Decoherence Time T_2

Around the spin satellite peak, it is possible to measure W_ω via the current and thereby access the spin decoherence time of the spin-$\frac{1}{2}$ state on the dot. For this, we identify a regime where the Rabi spin-flip on the dot becomes the bottleneck for electron transport through the quantum dot such that the current becomes proportional to the spin-flip rate W_ω. For $kT < \Delta \mu$ and $W_\omega^{\text{max}} < \max\{W_{\uparrow\downarrow}, \gamma_1\}$ we obtain for the stationary current [Eq. (29)],

$$I(\omega) = \frac{2e\gamma_1\gamma_2 (W_{\uparrow\downarrow} + W_\omega)}{\gamma_1(\gamma_1 + \gamma_2) + W_{\uparrow\downarrow}(\gamma_1 + 2\gamma_2)}, \quad (30)$$

see Fig. 3. We have used $W_{\uparrow\downarrow} < W_{\uparrow\downarrow}$ here. In the linear response regime, $kT > \Delta \mu$, and for $W_\omega^{\text{max}} < \max\{W_{\uparrow\downarrow}, \gamma_1\}$, the current is

$$I(\omega) = \frac{e\gamma_1\gamma_2 (W_{\uparrow\downarrow} + W_\omega) \Delta \mu}{2(\gamma_1 + \gamma_2) kT h(T)} \cos^{-2} \left(\frac{\Delta S_\downarrow - \mu}{2kT} \right). \quad (31)$$

The current $I(\mu)$ shows the standard sequential tunneling peak shape, determined by the usual cosh dependence on temperature, which is slightly modified by

$$h(T) = 2W_{\uparrow\downarrow} + (2\gamma - W_{\uparrow\downarrow}) f_1(\Delta S_\downarrow + \mu/2). \quad (32)$$

Most importantly, the current $I(\omega)$ of the satellite peak [Eqs. (30) and (31)] is proportional to the spin flip rate W_ω. Thus, $I(\omega)$, or equivalently $I(B_2)$, have a Lorentzian shape with resonance peak at $\omega = \Delta_\omega$ of width $2V_{\uparrow\downarrow}$. Since $V_{\uparrow\downarrow} \geq 1/T_2$, this width provides a lower bound on the intrinsic spin decoherence time T_2 of a single dot spin. For weak tunneling, $\gamma_1 < 2/T_2$, this bound saturates, i.e., the width $2V_{\uparrow\downarrow}$ becomes $2/T_2$. Note that also Eq. (33) (see below) shows resonant behavior, i.e., a lower bound for T_2 can also be measured via a current due to pumping.

We point out the similarity of our proposal to ESR spectroscopy [3] where absorption or emission linewidths of the ESR field provide information on decoherence. In contrast to these techniques, we are considering here linewidths in resonances of the current, which allows us to access even single spins, since very low currents can be measured accurately.

For Eqs. (30) and (31) we have assumed that W_ω is small compared to the tunneling or the spin relaxation

![FIG. 3: The stationary current $I(\omega)$ [Eq. (30)] for $kT < \Delta \mu$, $B_2 = 0.5 T$, $B_0'' = 0.45 G$, $T_1 = 1 \mu s$, $T_2 = 100 ns$, $\gamma_1 = 5 \times 10^6 s^{-1}$, and $\gamma_2 = 5\gamma_1$, i.e., satisfying $W_\omega^{\text{max}} < \gamma_1 < 1/T_2$. Here, the linewidth gives a lower bound for the intrinsic spin decoherence time T_2 (shown schematically by the arrow), while it becomes equal to $2/T_2$ for $B_0'' = 0.08 G$ and $W_\omega^{\text{max}} \ll \gamma_1 = 5 \times 10^5 s^{-1} \ll 2/T_2$, where $I(\omega = \Delta_\omega) \approx 1.5 fA$.

rates. Therefore, we have neglected the contributions of W_ω in the denominator of these expressions. To take these contributions into account, we note that $W_\omega/(\alpha + W_\omega)$ as a function of ω is still Lorentzian, but with an increased width $w = 2V_{\uparrow\downarrow} \sqrt{1 + W_\omega^{\text{max}}/\alpha}$. Therefore, the current $I(\omega)$ has the linewidth

$$w = 2V_{\uparrow\downarrow} \sqrt{1 + W_\omega^{\text{max}} \left[4 - f_1(\Delta S_\downarrow + \mu/2) \right]/h(T)}, \quad (34)$$

for $kT < \Delta \mu$ [Eq. (32)], and

$$w = 2V_{\uparrow\downarrow} \sqrt{1 + W_\omega^{\text{max}} / h(T)}, \quad (33)$$

for $kT > \Delta \mu$ [Eq. (31)]. Since the linewidth is increased by this correction, the inverse linewidth is still a lower bound for T_2.

C. Universal Conductance Ratio

For increasing W_ω, the satellite peak in the current $I(\mu)$ increases while the main peak decreases, as shown in Fig. 3(b). Further, as function of kT, the peak is slightly shifted. Explicitly, for $\gamma_1^+ = \gamma_1^E$ and $\Delta_\omega > \Delta \mu$, kT, we find from Eq. (25) the position of the satellite peak

$$\mu_{\text{ESR}} = \Delta S_\downarrow - \frac{kT}{2} \log \left\{ \frac{W_{\uparrow\uparrow} + 2W_{\uparrow\downarrow} + 3W_\omega/2 + \gamma}{W_{\uparrow\uparrow} + W_{\uparrow\downarrow} + 2W_\omega} \right\}. \quad (35)$$

The position of the main peak is

$$\mu_0 = \Delta S_\downarrow + \frac{kT}{2} \log \left\{ \frac{W_{\uparrow\uparrow} + 2W_{\uparrow\downarrow} + 3W_\omega + 2\gamma}{W_{\uparrow\uparrow} + W_{\uparrow\downarrow} + 2W_\omega + 2\gamma} \right\}. \quad (36)$$

An experimentally accessible quantity is the ratio of the two current peaks or, equivalently (for linear response
The stationary current at the gate voltages defined
\[\Delta \mu < kT, \]
the ratio of the conductances
\[r(W_\omega) = I(\mu_{\text{ESR}})/I(\mu_0) = G(\mu_{\text{ESR}})/G(\mu_0). \]
For this, we evaluate the stationary current at the gate voltages defined by Eqs. (35) and (36), and find, for \(\Delta \mu < kT \) and \(W_{\uparrow \downarrow} < W_\omega, \)

\[r(W_\omega) = \frac{2W_\omega \left(1 + \sqrt{1 + \frac{W_\omega}{2r_{\mu}}}\right)^2}{4\sqrt{W_\omega} \sqrt{3W_\omega + 2\gamma} + (7W_\omega + 2\gamma)}. \]

(37)

see Fig. 4. On the one hand, for small spin-flip rates, \(W_\omega < \gamma, \) the ratio \(r \) is \(4W_\omega/\gamma, \) i.e., at ESR resonance \(r(B^0_\omega) = (\gamma \mu B^0_\omega)^2/(2\nu \gamma) \). If the tunneling rates and field strengths are known, this provides a further method for measuring a lower bound of the single spin decoherence time. On the other hand, this peak ratio [Eq. (37)] can be used to measure the ratio \(W_\omega/\gamma, \) useful for estimating the additional peak broadening due to other limiting processes, as discussed in Sec. III B cf. Eqs. (33) and (34).

It is noteworthy that this ratio saturates for \(W_\omega \gg \gamma \) at the universal conductance ratio

\[r_0 = \frac{5 + 2\sqrt{6}}{7 + 4\sqrt{3}} \approx 0.71. \]

(38)

For a larger bias, but still \(\Delta \mu < \Delta \), and for \(W_\omega \gg \gamma, \) the ratio becomes

\[r_0 \left(\frac{\Delta \mu}{kT} \right) = \frac{(\sqrt{3} + \sqrt{2} e^{2\Delta \mu/kT})^2 \gamma_1 + (\sqrt{2} + \sqrt{3} e^{2\Delta \mu/kT})^2 \gamma_2}{(2 + \sqrt{3} e^{2\Delta \mu/kT})^2 \gamma_1 + (\sqrt{3} + 2 e^{2\Delta \mu/kT})^2 \gamma_2}. \]

(39)

For \(\gamma_1 = \gamma_2, \) the numerical value of \(r_0 \) remains 0.71 for all values \(\Delta \mu. \) Generally, \(r_0 \) is between 2/3 (for \(\gamma_1 \gg \gamma_2 \)) and 3/4 (for \(\gamma_1 \ll \gamma_2 \)), where \(r_0 \) takes these extremal values for \(\Delta \mu > kT. \)

Note that the current at the satellite peak is never larger than at the main peak. This asymmetry is best explained in the limit \(\Delta \mu > kT, \) when the ratio becomes

\[r_0(\infty) = (2\gamma_1 + 3\gamma_2)/(3\gamma_1 + 4\gamma_2). \]

Since \(W_\omega > \gamma, \) the Rabi spin flips equilibrate the populations \(\rho_\uparrow \) and \(\rho_\downarrow. \) Thus, the stationary populations of the states are \(\rho_S = \eta W_{\text{in}}, \)

and \(\rho_L = \eta W_{\text{out}}, \) where \(\eta = 1/(W_{\text{in}} + 2W_{\text{out}}) \) is a normalization factor, \(\eta_{\text{ESR}} \) at the satellite peak and \(\eta_0 \) at the main peak. The rates \(W_{\text{in(out)}} \) include all processes of electrons tunneling into (out of) the dot. Note that at the satellite peak, \(\mu = \mu_{\text{ESR}}, \) a spin-up electron tunneling from lead 1 is the only process where an electron tunnels onto the dot, i.e., \(W_{\text{in}}(\mu_{\text{ESR}}) = \gamma_1, \) whereas at the main peak, \(\mu = \mu_0, \) the only tunnel process out of the dot is an electron with spin down into the right lead, i.e., \(W_{\text{out}}(\mu_0) = \gamma_2. \) At the satellite peak, both spin up and down electrons can tunnel from the dot to lead 2, thus the current is given by \(I(\mu_{\text{ESR}}) = 2\gamma_2\rho_S = 2\gamma_2\eta_{\text{ESR}}, \) with \(\eta_{\text{ESR}} = 1/(3\gamma_1 + 4\gamma_2). \) At the main peak, electrons can tunnel from lead 1 onto the dot, and the current is \(I(\mu_0) = \gamma_1(\rho_\uparrow + \rho_\downarrow) = 2\gamma_1\gamma_2\rho_0, \) with \(\rho_0 = 1/(2\gamma_1 + 3\gamma_2). \) Thus, the conductance ratio is given as \(r_0 = \eta_{\text{ESR}}/\rho_0, \) and we immediately obtain \(r_0(\infty) \) in accordance with Eq. (39). Therefore, the reason for \(r_0 < 1 \) is that at the satellite peak three out of four tunnel processes contribute to \(W_{\text{out}}, \) and thus \(\eta_{\text{ESR}} < \rho_0, \) while only one contributes at the main peak.

IV. EVEN-TO-ODD SEQUENTIAL TUNNELING

Up to now we have considered sequential tunneling currents with odd-to-even transitions of the number of electrons on the dot. Now we consider a different filling on the dot, with even-to-odd transitions. The state with \(N \) even is \(|S\rangle \) (involving different orbital states as for \(|S\rangle \)), and the states with \(N+1 \) are \(|\uparrow\rangle \) and \(|\downarrow\rangle \). This system can be described with the same formalism as before, but with the tunneling rates \(W_{\tilde{S} \uparrow} = \sum_t W_{\tilde{S} \uparrow} \), \(W_{\tilde{S} \downarrow} = \sum_t W_{\tilde{S} \downarrow}, \)

\[W_{\tilde{S} \uparrow} = \gamma_1^* f_1(\Delta_{\tilde{S} \downarrow}), \quad W_{\tilde{S} \downarrow} = \gamma_1^* f_1(\Delta_{\tilde{S} \uparrow}). \]

(40)

and with \(W_{\tilde{S} \uparrow}, W_{\tilde{S} \downarrow}, W_{\tilde{S} \uparrow}, \) and \(W_{\tilde{S} \downarrow} \) defined analogously. The master equation of this system is given by Eqs. (16)-(21) upon replacing the subscripts \(S \) by \(\tilde{S}. \) Since \(W_{\tilde{S} \downarrow} \) describes an electron tunneling onto the dot, whereas \(W_{\tilde{S} \uparrow} \) describes an electron tunneling out of the dot, the stationary current through the dot is given by Eq. (22) after changing its sign and replacing the subscripts, resulting in

\[I_2 = -e(W_{\tilde{S} \uparrow}^2 + W_{\tilde{S} \downarrow}^2)\rho_\uparrow + eW_{\tilde{S} \downarrow}\rho_\downarrow + eW_{\tilde{S} \uparrow}^2\rho_\downarrow. \]

(41)

By comparing Eqs. (11), (12) with (40), and Eqs. (22) with (41), we find that the formulas for the current are modified by the replacements \(f_1(\Delta_{\tilde{S} \downarrow}) \rightarrow [1 - f_1(\Delta_{\tilde{S} \downarrow})], \)

\[\gamma_1^* \rightarrow \gamma_1^*, \quad I_2 \rightarrow -I_2, \]

and analogously for opposite spins. For completeness, we give in Appendix the formula for the stationary current \(I_2 \) [Eq. (A3)], which is obtained by applying the above replacements to Eq. (A1). In Sec. III B we have identified the regime of the spin satellite peak, which can be used to measure the decoherence time \(T_2. \) For the setup considered here, an analogous regime is \(\mu_1 > \Delta_{\tilde{S} \downarrow} > \mu_2 > \Delta_{\tilde{S} \uparrow}, \) see Fig. 5(a).
The current at the spin satellite peak is then given by Eqs. (30) and (31) in the corresponding regimes, after interchanging γ_1 with γ_2, replacing $f_1 \rightarrow (1 - f_1)$, and $\Delta S_i \rightarrow \Delta S_i^\perp$.

For antiferromagnetic filling of the dot, one can use particle-hole symmetry to show that the two cases, odd-to-even and even-to-odd transitions, are equivalent. Indeed, the tunneling from, say, a spin \uparrow electron from the dot into the lead, $|\uparrow\rangle \rightarrow |\uparrow\rangle$, can be regarded as a spin \uparrow hole which tunnels from the lead onto the dot, which was initially occupied by a spin \downarrow hole and now forms a hole singlet, i.e., $|\downarrow\rangle \rightarrow |\downarrow\rangle$. With this picture in mind, above modifications become obvious.

V. SPIN INVERTER

In this section we describe a setup with which spin-dependent tunneling, $\gamma_1^\dagger \neq \gamma_1^\perp$, can be achieved. Alternatively, spin-polarized leads (see Sec. IX for details) or spin-dependent tunneling barriers could be used. This setup, shown in Fig. 3, consists of two dots, “dot 1” and “dot 2”, which are coupled in series with an inter-dot tunneling amplitude t_{DD}. Dot 2 acts as a spin filter as it is important for the description of the spin inverter. If the dot is initially in state $|\uparrow\rangle$, only a spin \downarrow electron can tunnel onto the dot, forming a singlet. Most importantly, the Zeeman splitting in the dot should be such that $\Delta_\pi > \Delta S_i - \mu_2$. This ensures proper operation of the spin filter: because of energy conservation only the electron with spin \downarrow can tunnel from the dot to the lead, leaving the dot always in state $|\uparrow\rangle$ after an electron has passed. Therefore, the sequential tunneling current is spin \downarrow polarized. There is a small spin-\uparrow cotunneling current, however, which is suppressed by a factor $\gamma \max\{|kT, \Delta\mu|/(E_{T_+} - E_S)|^2$. Note that for efficient spin filtering, it is favorable to have the singlet state $|S\rangle$ as ground state with an even number of electrons on the dot, since the denominator of the suppression factor can become large, i.e., $E_{T_+} - E_S > \Delta_\pi$. Otherwise, if the triplet state $|T_+\rangle = |\uparrow\uparrow\rangle$ is the ground state, only spin-\uparrow sequential tunneling current can flow through the dot. However, the spin-\downarrow cotunneling current involves the triplet state $|T_0\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}$, and the suppression factor is given by $\gamma \max\{|kT, \Delta\mu|/(\Delta_\pi)|^2$. Therefore, the cotunneling current is not suppressed efficiently.

A. Spin Filter

We briefly review the concept of using a quantum dot as spin filter [24] as it is important for the description of the spin inverter. If the dot is initially in state $|\uparrow\rangle$, only a spin \downarrow electron can tunnel onto the dot, forming a singlet. Most importantly, the Zeeman splitting in the dot should be such that $\Delta_\pi > \Delta S_i - \mu_2$. This ensures proper operation of the spin filter: because of energy conservation only the electron with spin \downarrow can tunnel from the dot to the lead, leaving the dot always in state $|\uparrow\rangle$ after an electron has passed. Therefore, the sequential tunneling current is spin \downarrow polarized. There is a small spin-\uparrow cotunneling current, however, which is suppressed by a factor $\gamma \max\{|kT, \Delta\mu|/(E_{T_+} - E_S)|^2$. Note that for efficient spin filtering, it is favorable to have the singlet state $|S\rangle$ as ground state with an even number of electrons on the dot, since the denominator of the suppression factor can become large, i.e., $E_{T_+} - E_S > \Delta_\pi$. Otherwise, if the triplet state $|T_+\rangle = |\uparrow\uparrow\rangle$ is the ground state, only spin-\uparrow sequential tunneling current can flow through the dot. However, the spin-\downarrow cotunneling current involves the triplet state $|T_0\rangle = (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}$, and the suppression factor is given by $\gamma \max\{|kT, \Delta\mu|/(\Delta_\pi)|^2$. Therefore, the cotunneling current is not suppressed efficiently.

B. Implementation of Spin Inverter

For implementations of the spin inverter, the Zeeman splitting in dot 2 should be such that $\Delta_\pi > \Delta S_i - \mu_2$, ensuring that dot 2 acts as a spin filter. The coupling of dot 2 to the lead shall be strong such that electrons escape rapidly from dot 2 into lead 2. This leads to resonant tunneling with resonance width $\Gamma_2 = 2\pi\nu_{21}|t_{DD}|^2$.

![Diagram of spin inverter setup](https://example.com/diagram.jpg)
We require \(\Gamma_2 < \Delta_{ST} - \mu_2 \), i.e., that the broadened level of dot 2 is above \(\mu_2 \). This excludes contributions from electrons tunneling from lead 2 onto dot 2, as shown in Ref. [5].

We calculate the rates \(\dot{\gamma}_1^\dagger \) and \(\dot{\gamma}_2^\dagger \) for tunneling from dot 1 via dot 2 into lead 2 in a \(T \)-matrix approach. [5,8] We use the tunnel Hamiltonian \(H_T = H_{DD} + H_{DL2} \), where \(H_{DD} \) describes tunneling from dot 1 to dot 2 and \(H_{DL2} \) from dot 2 to lead 2. The transition rates are \(W_{T\ell_1} = 2\pi |\langle f | T(\varepsilon_1) | \ell_1 \rangle|^2 \delta(\varepsilon_f - \varepsilon_1) \), where lead 2 is initially at equilibrium and with the \(T \) matrix

\[
T(\varepsilon_1) = \lim_{\eta \to +0} H_T \sum_{n=0}^\infty \left(\frac{1}{\varepsilon_1 + i\eta - H_{dot} - H_{lead}} \right)^n.
\]

We take the leading order in \(H_{DD} \) and sum up the contributions from all orders in \(H_{DL2} \). We then integrate over the final states in lead 2 and obtain the Breit-Wigner transition rate of an electron with spin \(\uparrow \) to tunnel from dot 1 to lead 2 via the resonant level \(E_S^2 \) of dot 2,

\[
\dot{\gamma}_1^\dagger = \frac{|t_{DD}|^2 \Gamma_2}{(\Delta_{S1}^1 - \Delta_{S1}^2)^2 + (\Gamma_2/2)^2}.
\]

In the spin filter regime considered here, dot 2 is always in state \(|\uparrow\rangle \). Thus, tunneling of an electron with spin \(\uparrow \) would involve the triplet level \(E_{T\uparrow} \) on dot 2, which is out of resonance, and thus \(\dot{\gamma}_1^\dagger \) is suppressed to zero (up to cotunneling contributions, see Sec. III F). The state of dot 1 and the current through the setup is again described by the master equation [Eqs. (16)–(21)] with the tunneling rates \(W_{S1}^2 = W_{S2}^2 = W_{S2}^1 = 0 \) and \(W_{S1}^2 = \dot{\gamma}_1^\dagger \). Thus, we can use all previous results for one dot in Sec. III A, but with \(\gamma_2^\dagger \to \dot{\gamma}_1^\dagger \), \(\gamma_2^\dagger \to 0 \), and \(f_2(\Delta_{ST}) = 0 \). Note that even for zero bias \(\Delta_{ST} = 0 \), a pumping current flows from lead 1 via the dots 1 and 2 to lead 2, see Eq. (14) and Sec. VI. We point out that this setup, see Fig. 1, acts as a spin inverter, i.e., only spin \(\uparrow \) electrons are taken as input (lead 1), while the output (lead 2) consists of spin \(\downarrow \) electrons. In particular, the spin inverter does not require a change in the direction of the external magnetic field.

\[H_{ESR} = -\frac{1}{4} \Delta_{\perp} [\sigma_x \cos(\omega t) - \sigma_y \sin(\omega t)],[45]\]

where \(\Delta_{\perp} = 2g_{\mu B} B^\perp \). Thus, for \(\Delta_{x} = \Delta_{\perp} \) we have chosen the amplitude of the rotating field to be only half the amplitude of the linearly oscillating field, since both lead to the same effective spin flip rate \(W_{\uparrow \downarrow} \). Using Eq. (2) we immediately obtain the master equation, which is given by Eqs. (16)–(21) after the following replacements. The last terms in Eqs. (14) and (17) become \(\mp (\Delta_{2}/2) \Im \left[e^{i\omega t} \rho_{\uparrow \dagger} \right] \), respectively. Equation (19) is replaced by

\[
\dot{\rho}_{\uparrow \dagger} = -i \Delta_{\perp} \rho_{\uparrow \dagger} + \frac{\Delta_{\perp}}{4} e^{-i\omega t} (\rho_{\uparrow \dagger} - \rho_{\downarrow \dagger}) - V_{\uparrow \downarrow} \rho_{\uparrow \dagger}.
\]

We transform to the rotating frame, \(|\uparrow\rangle_r = e^{i\omega t/2} |\uparrow\rangle \), and \(|\downarrow\rangle_r = e^{-i\omega t/2} |\downarrow\rangle \), such that \(\rho_{\uparrow \dagger} = e^{-i\omega t} \rho_{\uparrow \dagger} \). This transformation removes the time-dependence of the coefficients in the master equation, which we shall now write as \(\dot{\rho}_M = H \rho \). The equations for \(\rho_{\uparrow \dagger} \) and \(\rho_{\downarrow \dagger} \) decouple and we write the remaining part of the superoperator \(H \) as matrix in the basis \(\{ \rho_{\uparrow \dagger}, \rho_{\downarrow \dagger}, \rho_{\uparrow \dagger}, \rho_{\downarrow \dagger}, \rho_{\uparrow \dagger}, \rho_{\downarrow \dagger} \} \).
The master equation can now be solved exactly by calculating the eigenvalues \(\lambda_i \) of \(\mathcal{M} \). Since the total probability is conserved, \(\sum_n \rho_n = 0 = \sum_{nm} \mathcal{M}_{nm} \rho_m \), where \(n \) is summed over the diagonal elements, and \(m \) over diagonal and off-diagonal elements of \(\rho_D \). By considering linearly independent initial conditions for \(\rho_D \), we see that \(\sum_n \mathcal{M}_{nm} = 0 \), for every \(m \). Thus, adding up the rows in \(\mathcal{M} \) for the diagonal elements of \(\rho_D \) gives zero, which is satisfied explicitly by adding the first three rows in Eq. (47). Therefore, \(\mathcal{M} \) does not have full row rank and there is an eigenvalue \(\lambda_0 = 0 \) with eigenspace describing the stationary solution. The eigenvalues of \(\mathcal{M} \) are

\[
\begin{align*}
0, -V_{↓↑}, -3W, \\
-\frac{1}{2} \left(\Sigma_W + V_{↓↑} \pm \sqrt{(\Sigma_W - V_{↓↑})^2 - \Delta_z^2} \right),
\end{align*}
\]

with \(\Sigma_W = W + W_{↑↓} + W_{↑↑} \), and where we have considered \(W = W_{↑↓} = W_{↓↑} = W_{↑↑} = W_{↓↓} \), and resonance \(\Delta_z = \omega \) for simplicity. If all \(\lambda_i \) are different, the time evolution of the density matrix is \(\rho_D(t) = \sum_i c_i e^{\lambda_i t} \rho_i \). The decay of the contribution of the eigenvectors \(\rho_i \) is exponential and generally all decay rates \(\lambda_i \) are involved. Further, we see from the last two eigenvalues in Eq. (48) that the decay rates of \(\rho_D \) may be a nontrivial function of the rates involved in the master equation. This should be kept in mind when one uses time dependent ensemble properties, i.e., \(\rho_D(t) \), to measure intrinsic rates, e.g., \(T_1 \) and \(T_2 \). We point out that the presence of very small decay rates does not necessarily prevent a decay of the initial conditions. If, say, the tunneling rates are smaller than the spin relaxation rate, \(W \ll W_{↑↓} \), it would be interesting to study a density matrix which is described as a linear combination of the eigenvector with eigenvalue \(-3W \) [Eq. (48)] and the stationary solution \(\rho_S \), i.e., \(\rho_D(t) = \rho_S + c e^{-3W t} \rho_{3W} \), which is independent of \(W_{↑↓} \). However, such an initial condition always contains contributions from state \(|S\rangle \) such that, in particular, it is not possible to construct an initial spin-\(\frac{1}{2} \) state which would decay only with the slow rate \(3W \).

The (exact) stationary solution of the master equation can be readily obtained from Eq. (47). By eliminating \(\rho_{\sigma'\sigma} \), from the coupled equations, we obtain the effective spin flip rate

\[
W_\omega = \frac{\Delta_z^2}{8} \left(\frac{V_{↓↑}}{(\omega - \Delta_z)^2 + V_{↓↑}^2} \right),
\]

which is equivalent to Eq. (25). Thus, all the results for the stationary currents from Sec. II apply and are exact for the case of rotating magnetic fields.

VIII. COTUNNELING

We now consider the cotunneling regime \(\Delta_{ST}, \Delta_{SL} > \mu_1, \mu_2 \gg E_{\uparrow L}, E_{\downarrow L} \), where the number of electrons on the dot is odd, thus the state on the dot is described by \(|\uparrow\rangle \) and \(|\downarrow\rangle \). The leading order tunnel processes is now the tunneling of electrons from lead \(l \) onto the dot, forming a virtual state \(|n\rangle \), followed by tunneling into lead \(l' \). The spin state of the dot changes \(\sigma \rightarrow \sigma' \). This process is called elastic cotunneling for \(\sigma = \sigma' \) and inelastic cotunneling for \(\sigma \neq \sigma' \). Note that in the absence of an ESR field, the dot relaxes into its spin ground state and no inelastic cotunneling processes, exciting the dot spin, occur for \(\Delta_{\mu} < \Delta_z \). However, if an ESR field is present, the dot-spin can be excited by spin flips. Then, inelastic cotunneling processes, which relax the dot-spin, can occur. These processes either contribute to transport or produce a particle-hole excitation in lead 1 or 2 [see Fig. 7(b) and (c)].

These cotunneling rates are calculated in a “golden rule” approach \(\rho \), which is known to be consistent with a microscopic derivation \(\left(\rho \right) \)

\[
W_{\sigma'\sigma} = 2\pi \nu^2 \int d\epsilon f_1(\epsilon) \left| 1 - f_1(\epsilon - \Delta_{\sigma'\sigma}) \right|^2 \sum_n \frac{t_{\sigma'\sigma}\tau_{\sigma'\sigma}}{\Delta_{\sigma'\sigma} - \epsilon},
\]

where the possible spin-dependence of \(\nu \) has been absorbed into \(t \), and \(\Delta_{\sigma'\sigma} = E_{\sigma'} - E_{\sigma} \) is the change of Zee-}

man energy on the dot, and \(\Delta_{\sigma'\sigma} = E_n - E_{\sigma} \) is the energy cost of the virtual intermediate state. Here, \(t_{\sigma'\sigma} \) are the tunneling amplitudes, where \(t_{LL} = t_{↑↑} \) has already been introduced in Eq. (13). The cotunneling current through the dot can be calculated by summing up the contributing tunneling rates, as we have done for Eq. (22).

\[
I_{CT} = e \sum_{\sigma'\sigma} (W_{\sigma'\sigma} - W_{\sigma'\sigma}) \rho_{\sigma}.
\]

We point out that by treating the cotunneling processes with golden rule rates, only classically allowed dot-states are considered. Thus, the number of charges on the dot is fixed and no charge can temporally accumulate as for sequential tunneling. In particular, we have neglected quantum charge fluctuations on the dot. Therefore,
within our master equation approach for cotunneling, the charge currents in both leads are equal, $I_1(t) = I_2(t)$. This equality is valid for “coarse-grained” expectation values of the current (and other physical observables). In this approximation, one smoothes out the quantum fluctuations by averaging over the short-time behavior, i.e., one considers only the behavior on time scales larger than the lifetime $1/(\Delta_{S\downarrow} - \mu)$ of the virtual states on the dot. However, when the charge imbalance due to the virtual states is taken into account in a microscopic treatment, one can find pronounced peaks in the noise $S(\omega)$ for $|\omega|$ corresponding to the virtual energy cost, as it was shown in Ref. [12].

The inelastic cotunneling provides spin relaxation processes in addition to those contributing to T_1, totaling in $W_{CT}^{\uparrow\downarrow} = W_{CT}^{\uparrow\downarrow} + \sum_{l'} W_{CT}^{l'l'}$. For processes with $l' = l$, particle-hole excitations are produced in lead l. We are interested in the regime $\Delta \mu < \Delta_{S\downarrow}$, where (inelastic) cotunneling does not excite the dot-spin, i.e., $W_{CT}^{\uparrow\downarrow} = W_{\uparrow\downarrow}$. In analogy to Eq. (13), we take a phenomenological total spin decoherence rate

$$W_{CT}^{\uparrow\downarrow} = \frac{1}{T_2} + \frac{1}{2} \sum_{l'\sigma'\sigma} W_{l'\sigma'}^{\uparrow\downarrow} \rho_{l'\sigma'},$$

where all spin relaxation and cotunneling processes are taken into account. The master equation for the dot in the cotunneling regime and in the presence of a linearly polarized ESR field becomes

$$\dot{\rho}_\downarrow = -i\Delta_\downarrow\rho_\downarrow + i\frac{\Delta_\downarrow}{2}\cos(\omega t)\text{Im}[\rho_\uparrow],$$

$$\dot{\rho}_\uparrow = W_{CT}^{\uparrow\downarrow}\rho_\downarrow - W_{CT}^{\uparrow\downarrow}\rho_\downarrow + \Delta_\downarrow\cos(\omega t)\text{Im}[\rho_\uparrow\downarrow].$$

Note that away from the sequential tunneling regime, the master equation becomes much simpler while the formulas for the rates are more involved.

For the time-averaged current we evaluate the stationary solution of the master equation in the rotating wave approximation (see Sec. II) for linearly or exactly (see Sec. IV) for circularly polarized ESR fields. This yields an effective spin-flip rate W_ω [Eqs. (23) and (33)], respectively, and eliminates Eq. (55). We obtain

$$\rho_\downarrow = \frac{W_\omega + W_{CT}^{\uparrow\downarrow}}{2W_\omega + W_{CT}^{\uparrow\downarrow} + \sum_{l'} W_{CT}^{l'l'}}$$

and $\rho_\uparrow = 1 - \rho_\downarrow$. We consider the case close to a sequential tunneling resonance (but still in the cotunneling regime), $\Delta_{S\sigma} - \mu < E_{T\uparrow} - E_{S\downarrow}$, such that the virtual energy cost of an intermediate triplet state is much higher than that for a singlet state, since $(E_{T\uparrow} - E_{S\sigma} - \mu)/(E_{S\downarrow} - E_{S\sigma} - \mu) < 1$, with $\mu = (\mu_1 + \mu_2)/2$, we have to consider only cotunneling processes involving state $|S\rangle$ in Eq. (60). For $\Delta_\mu, kT < \Delta_{S\downarrow} - \mu < E_{T\uparrow} - E_{S\downarrow}$, the relevant elastic rates are

$$W_{CT}^{\uparrow\downarrow} = \frac{\Delta_\mu}{2\pi(\Delta_{S\sigma} - \mu)^2}.$$
Thus, the intrinsic spin decoherence time \(T_2 \) is accessible in the cotunneling current as well as in the sequential tunneling current, and thus it might seem more difficult to detect \(T_2 \) in the cotunneling regime. However, since current and decoherence rate due to tunneling are proportional to \(\gamma \), the small currents can be compensated by choosing more transparent tunnel barriers, i.e., larger \(\gamma \).

Then, current and decoherence rate in the cotunneling regime can become comparable to the sequential tunneling values given in Sec. \[\text{III}\]. For illustration we give the following estimates. For \(B_z = 1 \, \text{T}, B_0^y = 2 \, \text{G}, \) \(g = 2, \gamma_1 = \gamma_2 = 5 \times 10^9 \, \text{s}^{-1}, T_1 = 1 \, \mu\text{s}, T_2 = 100 \, \text{ns}, \Delta_{S\downarrow} - \mu = \Delta_z, \) and \(\Delta\mu = \Delta_z/5, \) the cotunneling current as function of the ESR frequency \(\omega \) is 0.17 \(\text{pA} \), away from resonance and exhibits a resonance peak of \(I_{\text{CT}}^{\text{max}} = 0.31 \, \text{pA} \), with half-width \(V_{\text{CT}}^{\text{1/2}} = 3.41 \times 10^7 \, \text{s}^{-1}. \)

IX. SPIN READ-OUT WITH SPIN-POLARIZED LEADS

An electron spin on a quantum dot can be used as a single spin memory (or as a quantum bit for quantum computation)\[3\]. If the spin state of the quantum dot can be measured, it was shown that a quantum dot connected to fully spin-polarized leads, \(\Delta_{S\downarrow} > e_F > \Delta_z, \) can be used for reading the spin state of the quantum dot via the charge current\[4\]. Such a situation can be realized with magnetic semiconductors (with effective \(g \)-factors exceeding 100)\[5\] or in the quantum Hall regime where spin-edge states are coupled to a quantum dot\[6\]. If the spin polarization in both leads is \(\uparrow, \) no electron with spin \(\downarrow \) can be provided or taken by the leads (since \(\nu_1 = 0, \) and the rates \(W_{\uparrow\uparrow} \) and \(W_{\uparrow\downarrow} \) vanish. Thus, if the dot is initially in state \(|\uparrow\rangle \), no electron can tunnel onto the dot (the formation of the triplet is forbidden by energy conservation) and \(I = 0, \) up to negligible cotunneling contributions. However, if the dot is in state \(|\downarrow\rangle \), a current can flow via the sequential tunneling transitions \(|\downarrow\rangle \rightarrow |\uparrow\rangle \rightarrow |\downarrow\rangle \uparrow \). Therefore, the initial spin state of the quantum dot can be detected by measuring the current through the dot. Note that for this read-out scheme, it is not necessary to have \(\Delta_z > kT \) on the dot, the constraint of having spin-polarized leads is already sufficiently strong.

In the stationary regime and for \(\Delta_z > kT, \) the current becomes blocked due to spin relaxation \((W_{\uparrow\uparrow}) \). However, this blocking can be removed by the ESR field producing spin flips on the dot (with rate \(W_\omega \)). For \(W_\omega < W_{\uparrow\uparrow}, \) this competition leads again to a stationary current with resonant structure,

\[
I(\omega) = e (W_{\uparrow\uparrow} + W_\omega) \frac{\gamma_1 \gamma_2}{\gamma_2 W_{\uparrow\downarrow} + (\gamma_1 + \gamma_2) W_{\uparrow\uparrow}},
\]

from which \(V_{\uparrow\uparrow} \) (and \(1/T_2 \)) can be measured. Note that the relaxation rate \(W_{\uparrow\downarrow} \) is rather small, thus only small ESR fields can be used, which leads to small currents.

A. Counting Statistics and Signal-to-Noise Ratio

We analyze now the time-dynamics of the read-out of a dot-spin via spin-polarized currents. The goal is to obtain the full counting statistics and to characterize a measurement time \(t_{\text{meas}} \) for the spin read-out. While we have considered only averaged currents so far, we now need to keep track of the number of electrons \(q \) which have accumulated in lead 2 since \(t = 0.\) The time evolution of \(\rho_D(q, t), \) now charge-dependent, is described by Eqs. \[16\]–\[21\], but with replacements \(W_{\uparrow\downarrow}^2 \rho_S(q) \rightarrow W_{\downarrow\uparrow}^2 \rho_S(q-1) \) in Eq. \[17\], and \(W_{\uparrow\uparrow}^2 \delta q_D(q) \rightarrow W_{\downarrow\uparrow}^2 \rho_D(q+1) \) in Eq. \[18\]. Next, we consider the distribution function \(P_D(q, t) = \sum_n \rho_n(q, t) \) that \(q \) charges have accumulated in lead 2 after time \(t \) when the dot was in state \(|\uparrow\rangle \) at \(t = 0. \) For a meaningful measurement of the dot-spin, the spin flip times \(W_{\uparrow\downarrow}^{-1}, W_{\downarrow\uparrow}^{-1}, \) and \(1/\Delta_z \) must be smaller than \(t_{\text{meas}} \) and are neglected. Eqs. \[16\]–\[21\] then decouple except Eqs. \[13\] and \[14\], which we solve for \(\rho_\uparrow = 1, \) and for \(\rho_\downarrow = 1 \) at \(t = 0. \) The general solution follows by linear combination. First, if the dot is initially in state \(|\uparrow\rangle, \) no charges tunnel through the dot, and thus \(P_{\uparrow}(q, t) = \delta q_0. \) Second, for the initial state \(|\downarrow\rangle, \) we consider \(kT < \Delta\mu \) and equal rates \(W_{\downarrow\uparrow} = W_{\uparrow\downarrow} = W. \) We relabel the density matrix \(\rho_\downarrow(q) \rightarrow \rho_{m=2q}, \) and \(\rho_S(q) \rightarrow \rho_{m=2q+1}, \) and Eqs. \[17\] and \[18\] become

\[
\dot{\rho}_m = W (\rho_{m-1} - \rho_m), \tag{63}
\]

with solution \(\rho_m(t) = (Wt)^m e^{-Wt}/m! \) (Poissonian distribution). We obtain the counting statistics

\[
P_\downarrow(q, t) = \frac{(Wt)^{2q} e^{-Wt}}{(2q)!} \left(1 + \frac{Wt}{2q+1} \right). \tag{64}
\]

Experimentally, \(P_\downarrow(q, t) \) can be determined by time series measurements or by using an array of independent dots (see Sec. \[X.\]). The inverse signal-to-noise ratio is defined as the Fano factor\[42,43\] which we calculate as

\[
F_\downarrow(t) = \frac{(\delta q(t)^2)}{\langle q(t)^2 \rangle} = \frac{1}{2} + \frac{3 - 2e^{-2Wt}(4Wt+1) - e^{-4Wt}}{4(2Wt-1) + e^{-2Wt}}, \tag{65}
\]

with \(F_\downarrow \) decreasing monotonically from \(F_\downarrow(0) = 1 \) to \(F_\downarrow(t \rightarrow \infty) = \frac{1}{2}. \) Note that for dot-spin \(|\uparrow\rangle \) only weak cotunneling occurs with Fano factor \(F_\uparrow = 1\) \[44\].

If we are interested in the current and noise for long times \(t > W^{-1}, \) we can follow the steps used in Ref. \[50\]. We decouple the differential equations with respect to \(q \) by taking the inverse Fourier transform. \(\rho_D(k) = \sum_q e^{-ikq} \rho_D(q). \) Note that, for \(k = 0, \) we recover the density matrix \(\rho_D \rightarrow \rho_D(k = 0), \) where the accumulated charge is not taken into account. The probability \(P_\downarrow(q, t) \) is approximated by a Gaussian wave packet in \(q \)-space.
with group velocity \(I/e = W_{S\uparrow}^2 W_{S\downarrow}^2/(W_{S\uparrow}^2 + W_{S\downarrow}^2)\), and width \(\sqrt{2F(I/e)t}\), and

\[
F = \frac{(W_{S\uparrow}^2 + W_{S\downarrow}^2)^2}{(W_{S\uparrow}^2 + W_{S\downarrow}^2)^2}
\]

is the Fano factor. However, within this approximation, valid for \(Wt > 1\), we cannot access the short time behavior where only a few electrons have tunneled through the dot, which is of importance for the read-out process considered here.

B. Measurement Time

Using the counting statistics, we can now quantify the measurement efficiency. If, after time \(t_{\text{meas}}\), some charges \(q > 0\) have tunneled through the dot, the initial state of the dot was \(|\downarrow\rangle\) with probability 1 (assuming that single charges can be detected via an SET). However, if no charges were detected \((q = 0)\), the initial state of the spin memory was \(|\uparrow\rangle\) with probability

\[
1 - P_\downarrow(0, t) = 1 - \frac{W_{S\downarrow}^2 e^{-W_{S\downarrow}^2 t} - W_{S\uparrow}^2 e^{-W_{S\uparrow}^2 t}}{W_{S\downarrow}^2 - W_{S\uparrow}^2}
\]

which reduces to \(1 - e^{-Wt/(1+W)t}\), for equal rates. Thus, roughly speaking, we find that \(t_{\text{meas}} \geq 2W^{-1}\), as expected, while the Fano factor is \(0.5 < F_\downarrow \leq 0.72\). If, more generally, the threshold for detection is at \(m\) charges, \(m \geq 1\), Eq. (66) is replaced by

\[
1 - \sum_{q=0}^{m-1} P_q(q, t).
\]

We insert now realistic numbers to obtain an estimate of the fastest possible measurement time which can be achieved with this set-up. For a fast spin read-out, the tunneling rates and the current trough the dot should be large, limited by the fact that the conductance of the dot should not exceed the single-channel conductance \(e^2/h\). In the linear response regime and for a small bias \(\Delta \mu/e\), the current is

\[
I = e \gamma_1^\uparrow \Delta \mu / 8kT < (\Delta \mu/e) \times (e^2/h),
\]

for \(\gamma_1^\uparrow = \gamma_2^\uparrow\). Thus, the tunneling rates are limited by \(\gamma_1^\uparrow < 8kT/h = 1.76 \times 10^{11} (T/K) s^{-1}\). For \(W = \gamma_1^\uparrow = 1.25 \times 10^{10} s^{-1}\) (corresponding to \(kT < \Delta \mu\) and a current \(I = 1 \text{ nA}\)), and \(m = 1\), the spin state can be determined with more than 95% probability for a measurement time of \(t_{\text{meas}} = 400 \text{ ps}\), and with more than 99.99% probability for \(t_{\text{meas}} = 1 \text{ ns}\).

X. RABI OSCILLATIONS OF A SINGLE SPIN IN THE TIME DOMAIN

A. Observing Rabi Oscillations via Current

The ESR field generates coherent Rabi oscillations of the dot spin, leading to oscillations in \(\rho_D\) (t). Since the time-dependent currents \(I(t)\) in the leads are given by the populations \(\rho_n(t)\) [Eq. (23)], current measurements give access to these Rabi oscillations. First, we consider a dot coupled to unpolarized leads in the regime of the spin satellite peak (see Fig. 1 and Sec. III A). For \(kT < \Delta \mu\), the current in lead 2 is \(I_2(t) = e(\gamma_1^\uparrow + \gamma_1^\downarrow) \rho_S(t)\), i.e., \(\rho_S\) is directly accessible via measurement of \(I_2(t)\) [Eq. (23)]. Further, for \(\gamma_1^\uparrow = \gamma_1^\downarrow\), the current in lead 1 is \(I_1(t) = e \gamma_1^\uparrow (\rho_\uparrow - \rho_\downarrow)\), which gives access to \(\rho_\uparrow(t)\), if the ratio \(\gamma_1/\gamma_2\) is known. We calculate the oscillations of \(I_1, 2(t)\) explicitly by numerical integration of the master equation [Eqs. (10), (11)], see Fig. 8(b).

The measurement of \(\rho_D\) can be refined by using the spin read-out setup with spin-polarized leads (Sec. IX). For \(kT < \Delta \mu\), the current is \(I_1(t) = I_1^\uparrow(t) = e \gamma_1^\uparrow \rho_\uparrow(t)\) in lead 1, and \(I_2(t) = I_2^\downarrow(t) = e \gamma_2^\downarrow \rho_S(t)\) in lead 2 [Eq. (67)]. Thus, the time-dependence of \(\rho_\uparrow\) and \(\rho_S\) (and also of \(\rho_\uparrow = 1 - \rho_\downarrow\)) give access to these Rabi oscillations. First, we consider a dot coupled to unpolarized leads in the regime of the spin satellite peak (see Fig. 1 and Sec. III A). For \(kT < \Delta \mu\), the current in lead 2 is \(I_2(t) = e(\gamma_1^\uparrow + \gamma_1^\downarrow) \rho_S(t)\), i.e., \(\rho_S\) is directly accessible via measurement of \(I_2(t)\) [Eq. (23)]. Further, for \(\gamma_1^\uparrow = \gamma_1^\downarrow\), the current in lead 1 is \(I_1(t) = e \gamma_1^\uparrow (\rho_\uparrow - \rho_\downarrow)\), which gives access to \(\rho_\uparrow(t)\), if the ratio \(\gamma_1/\gamma_2\) is known. We calculate the oscillations of \(I_1, 2(t)\) explicitly by numerical integration of the master equation [Eqs. (10), (11)], see Fig. 8(b).
\(\rho_s - \rho_p \) can be directly measured via the currents \(I_{1,2} \), see Fig. 3(a).

Note that the electrons which tunnel onto the dot decohere the spin state of the dot (see Sec. 11). Thus, to observe Rabi oscillations in \(I_{1,2}(t) \) experimentally, the Rabi frequency \(\Delta_{x} \) must be larger than the coupling to the leads \(W_{S\uparrow} \), otherwise the strong decoherence (equivalent to a continuous measurement) suppresses the Rabi oscillations (Zeno effect, see Sec. 11C). Then, however, only very few electrons tunnel per Rabi oscillation period through the dot. To overcome the limitations of such a weak current signal and to obtain \(I_{1,2}(t) \) experimentally, an ensemble average is required.

There are two possibilities to obtain averages, namely using many dots or performing a time series measurement. First, many independent dots can be measured simultaneously by arranging the dots in parallel to increase the total current. For example, an array (ensemble) of dots and leads could be produced with standard techniques for defining nanostructures, or self-assembled or chemically synthesized dots could be placed within an insulating barrier between two electrodes. Second, time series measurement over a single dot can be performed. For this, the procedure of preparing the dot to the desired initial state, applying an ESR field and measuring the current has to be repeated many times (see Sec. 11A for counting statistics of the read-out process). Then, assuming ergodicity, the current average of all these individual measurements corresponds to the ensemble averaged value.

B. Decoherence in the Time Domain

In Fig. 8 we plot the numerical solution of Eqs. (16)–(19), showing the coherent oscillations of \(\rho_D \) and \(\bar{I} \), for (a) spin-polarized and (b) unpolarized leads. The decay of these oscillations is dominated by the spin decoherence rate \(\gamma_{\uparrow} \). Since this decay can be measured via the current, \(\bar{I}_{\uparrow} \) (and \(1/T_2 \)) can be accessed directly in the time domain (see also Sec. 11 Ref. 33 and Fig. 3).

C. Zeno Effect

When the rate for electrons tunneling onto the dot, \(W_{S\uparrow} \), is increased, the coherent oscillations of \(\rho_{\uparrow}, \rho_{\downarrow} \) become suppressed (see inset of Fig. 3(a)). This suppression is caused by the increased spin decoherence rate \(\gamma_{\uparrow} \) [Eq. (13)] and can be interpreted as a continuous strong measurement of the dot-spin, performed by an increased number of charges tunneling onto the dot. This suppression of coherent oscillations is known as Zeno effect. Since it is visible in \(\rho_D \), it can be observed via the currents \(I_{1,2}(t) \).

XI. PULSED ESR AND RABI OSCILLATIONS

We now show that it is possible to observe the coherent Rabi oscillations of a single electron spin even without the requirement of measuring time-resolved currents. This can be achieved by applying ESR pulses of length \(t_p \) and by measuring time-averaged currents (over arbitrarily long times). Then, the time-averaged current \(\bar{I}(t_p) \) as function of \(t_p \) gives access to the time evolution of the spin-state of the dot, for both, polarized and unpolarized leads. In particular, since arbitrarily long times, and thus a large number of electrons, can be used to measure \(\bar{I} \), the required experimental setups are significantly simpler compared to setups which aim at measuring time-dependent currents with high resolution.

We assume a rectangular envelope for the ESR pulse with length \(t_p \) and repetition time \(t_r \) (thus \(t_p < t_r \)). The time when no ESR field is present, \(t_r - t_p \), should be long enough such that the dot can relax into its ground state \(|\uparrow\rangle \), i.e., at the beginning of the next pulse we have \(\rho_{\uparrow} = 1 \). We calculate \(\bar{I}(t_p) \) by numerical integration of the master equation [Eqs. (16)–(19)] and by subsequently averaging the (time-dependent) current [Eq. (22)] over the time interval \([0, t_r] \). The results are shown in Fig. 9(b) for unpolarized leads at the spin satellite peak (see Sec. 11A); and in Fig. 9(c) for spin-polarized reads in the regime for spin-read out (see Sec. 11C). In both cases, \(\bar{I}(t_p) \) as function of pulse length \(t_p \) shows the Rabi oscillations of the dot spin, i.e., the Rabi oscillations can be observed in the time domain even without time-resolved measurements.

In addition to the exact numerical evaluation of the master equation (see Fig. 9), we now give an approximate analytical expression for \(\bar{I}(t_p) \). We first consider the case of unpolarized leads at the spin satellite peak (Sec. 11A); for the case of spin-polarized leads see below. For this, we need to evaluate the time-average of Eq. (22) for \(kT < \Delta_{\mu} \)

\[
\bar{I}(t_p) = e (\gamma_{\uparrow} + \gamma_{\downarrow}) \frac{1}{t_r} \int_0^{t_r} dt \, \rho_S(t) .
\]

First, we consider times \(t \) with \(0 \leq t \leq t_p \), for which an ESR field is present, and \(\rho_D \) oscillates with Rabi frequency \(\Delta_{x} \) (see Fig. 9(a)) for \(t \leq 200 \text{ ns} \). Qualitatively speaking, when \(\rho_S(t) \) (is integrated in Eq. (33)] up to \(t_p \), the oscillating contribution averages nearly to zero, and we obtain a background contribution \(\bar{I}_0 \) approximately proportional to \(e(\gamma_{\uparrow} + \gamma_{\downarrow})t_p/t_r \), i.e., linear in \(t_p \), in agreement with Fig. 9(b). For experiments, this linearity of \(\bar{I}_0 \) provides a first check that \(t_r \) is sufficiently long such that the dot has indeed relaxed into its ground state before the next pulse is applied. We also give an upper bound for \(\bar{I}_0 \) by using the inequality \(\rho_S \leq \rho_S^{\text{max}} = W_{S\downarrow}/(W_{S\downarrow} + W_{S\uparrow} + W_{\uparrow S}) \). This is seen as follows. For \(\rho_S(t) > \rho_S^{\text{max}} \), we would have \(\rho_S(t) < 0 \), and thus \(\rho_S(t') > \rho_S^{\text{max}} \), for all \(0 \leq t' \leq t \), which would be in contradiction to the initial condition \(\rho_S(0) = 0 \),
is switched off, and the dot state relaxes into its ground state $|\uparrow\rangle$. Making the reasonable assumption that the tunnel processes dominate the spin relaxation, $\gamma > W_{\uparrow\downarrow}$, we neglect $W_{\uparrow\downarrow}$ here. We then calculate the contribution for $t \geq t_p$ to the integral in Eq. (68) analytically, and obtain (up to \bar{I}_0)

$$\bar{I}(t_p) \approx \frac{e}{\gamma_{12}^s + \gamma_{12}^s} \left[\rho_{\uparrow}(t_p) + \rho_S(t_p) \right] \propto 1 - \rho_{\uparrow}(t_p).$$

We now give a physical explanation for Eq. (69). We consider different tunneling events (after the pulse is switched off) and their contributions to the current, $\int_{t_p}^{t_c} dt \rho_S(t)$. Since we assume that at t_r the dot has relaxed into its ground state $|\uparrow\rangle$, and thus $\rho_S(t_r) = \rho_{\uparrow}(t_r) = 0$, it is sufficient to consider only one pulse and to extend the upper integration limit to infinity. For the population $\rho_{\uparrow}(t_p)$ of state $|\downarrow\rangle$, the only allowed transition is $|\downarrow\rangle \rightarrow |S\rangle$ (neglecting again the intrinsic spin relaxation rate $W_{\uparrow\downarrow}$). Thus, eventually this population ρ_{\uparrow} will be transferred to ρ_S and thus to the current. Note that sequences with $|S\rangle \rightarrow |\downarrow\rangle$ contribute to the current at a later time again, since the only possible decay into the ground state $|\uparrow\rangle$ involves $|S\rangle$. Therefore, concerning current contributions, we introduce the effective population $\rho_{\uparrow} = \rho_{\uparrow} + \rho_S$, which is the probability that at some later time an electron can still tunnel from the dot to lead 2. This ρ_{\uparrow} decays to state $|\uparrow\rangle$ with the rate $\gamma_S = \gamma_{12}^s + \gamma_{12}^s$, i.e., with the rate for the process $|S\rangle \rightarrow |\uparrow\rangle$. In total, integrating over $\rho_S(t)$ for $t > t_p$ yields $\int_{t_p}^{t_c} dt \rho_{\uparrow}(t_p) e^{-\gamma_S t} = [\rho_{\uparrow}(t_p) + \rho_S(t_p)]/\gamma_S$, and with Eq. (68) we immediately recover Eq. (69), as expected.

Next, we consider the case for spin-polarized leads. Here, no spin relaxation process due to tunneling occurs after the pulse is switched off and the dot-spin can only relax via intrinsic spin flips, given by the rate $W_{\uparrow\downarrow}$ (corresponding to the relaxation time T_1; we neglect $W_{\downarrow\uparrow}$ since $W_{\downarrow\uparrow} \ll W_{\uparrow\downarrow}$). Thus, we now consider the relaxation rate $W_{\uparrow\downarrow}$ instead of γ_S. The relaxation occurs only from $|\downarrow\rangle$ to $|\uparrow\rangle$, i.e., the roles of $|S\rangle$ and $|\downarrow\rangle$ are interchanged compared to the case for unpolarized leads considered above. The above argument now applies analogously by considering the (spin-polarized) current in lead 1, $\bar{I}_1(t) = e \gamma_{12}^s \rho_{\uparrow}(t)$. We obtain

$$\bar{I}(t_p) \approx \frac{e}{\gamma_{12}^s} \left[1 - \rho_{\uparrow}(t_p) \right],$$

with equality for $t_p \ll T_1$. We point out that for $\gamma_{12}^s \gg 1/T_1$, the decoherence of the dot-spin occurs much faster than its relaxation. Then, for pulse lengths t_p, for which Rabi oscillations can be observed, are limited, $1/t_p \gtrsim V_{\uparrow\downarrow} > \gamma_{12}^s \gg W_{\uparrow\downarrow}$. In this case, the current contribution for $t \leq t_p$ can be neglected since they are suppressed by a factor of $t_p W_{\uparrow\downarrow} \ll 1$ compared to the contribution for $t \geq t_p$ [Eq. (70)], see Fig. 8(c). Note that for spin-polarized leads, the relaxation time, $W_{\uparrow\downarrow}^{-1}$, is usually much longer than for unpolarized leads, γ_{12}^s, thus the
required pulse repetition time $t_r > W^{-1}_{\downarrow\uparrow}$ might become very long. However, if one chooses a pulse repetition time $t_r = c/\gamma$, for $c > 1$, and with the relevant relaxation rate γ, the current is proportional to $(1/t_r) \int_0^\infty dt e^{-\gamma t} = 1/c$, i.e., independent of γ. Thus, roughly speaking, the slow relaxation rate in the case of spin-polarized leads has no influence on the attainable maximum current since the decay from ρ_\uparrow and ρ_\downarrow is much slower and thus per pulse there are more electrons passing the dot.

To conclude, we would like to emphasize again that the Rabi oscillations of the dot-spin can be observed directly in the time domain by using pulsed ESR and measuring time-averaged currents (see Fig. 9). Observing Rabi oscillations in the time domain by using pulsed ESR and measuring Rabi oscillations of the dot-spin can be observed directly there are more electrons passing the dot.

One apparent restriction of atomic or molecular systems is that it is difficult to apply a gate voltage to the particle, shifting its energy levels. However, the same effect can be achieved if the Fermi energies in the STM tip and the substrate can be shifted, such as by varying electron densities.

The coherent Rabi spin flips for strong decoherence (Zeno effect, Sec. X C). One apparent restriction of atomic or molecular systems is that it is difficult to apply a gate voltage to the particle, shifting its energy levels. However, the same effect can be achieved if the Fermi energies in the STM tip and the substrate can be shifted, such as by varying electron densities.

XIII. DISCUSSIONS

We have shown how single spin dynamics of quantum dots can be accessed by current measurements. We have derived and analyzed coupled master equations of a quantum dot, which is tunnel coupled to leads, in the presence of an ESR field. The current through the dot in the sequential tunneling regime shows a new resonance peak (satellite peak) whose linewidth provides a lower bound on the single spin decoherence time T_2. We have shown that also the cotunneling current has a resonant current contribution, giving access to T_2. The coherent Rabi oscillations of the dot-spin can be observed by charge measurements, since they lead to oscillations in the time-dependent current and in the time-averaged current as function of ESR pulse length. We have shown how the ESR field can pump current through a dot at zero bias if spin dependent tunneling or a spin inverter is available. We have discussed the concept of measuring a single spin via charge in detail. We have identified the measurement time of the dot-spin via spin-polarized leads. Finally, we have noted that the concepts presented here are not only valid for quantum dots but also for “real” atoms or molecules if they are contacted with an STM tip.

Acknowledgments

We thank C. Bruder, G. Burkard, S. De Franceschi, J.M. Elzerman, H. Gassmann, R. Hanson, L. Kouwenhoven, M. Leuenberger, F. Marquardt, F. Meier, S. Oberholzer, P. Recher, E. Sukhorukov, W.G. van der Wiel, and M.R. Wegewijs for discussions. We acknowledge support from the Swiss NSF, DARPA, and ARO.

APPENDIX A: STATIONARY CURRENT

Here, we give the various formulas for the stationary current through the dot in the sequential tunneling regime and in the presence of an ESR field. We have calculated the current by evaluating the stationary solution of the master equation (Sec. X) and with Eq. (22). For odd-to-even sequential tunneling, the spin \uparrow polarized current in lead 2 is
\[I^\uparrow_2 = e \gamma^\uparrow_2 \left(\sum_{l,l'} (-1)^l \gamma^\uparrow_l f_l(\Delta_{S4}) f_l(\Delta_{S1}) + \sum_l \frac{2W_\omega + W^{\uparrow\downarrow} + W^{\downarrow\uparrow}}{2} \left\{ (-1)^l \gamma^\uparrow_l f_l(\Delta_{S4}) + \gamma^\uparrow_l [f_2(\Delta_{S4}) - f_l(\Delta_{S1})] \right\} - \sum_l \frac{W^{\uparrow\downarrow} - W^{\downarrow\uparrow}}{2} \left\{ (-1)^l \gamma^\uparrow_l f_l(\Delta_{S4}) + \gamma^\uparrow_l [f_2(\Delta_{S4}) + f_l(\Delta_{S1}) - 2f_2(\Delta_{S4})f_l(\Delta_{S1})] \right\} \right) \times \left(\sum_{l,l'} \gamma^\uparrow_l \gamma^\uparrow_{l'} \left(1 - [1 - f_l(\Delta_{S4})][1 - f_{l'}(\Delta_{S1})] \right) + \sum_{l,\sigma \neq \sigma'} (W_\omega + W_{\sigma'\sigma}) \left\{ \gamma^\sigma_l + \gamma^\sigma_{l'} [1 - f_l(\Delta_{S\sigma})] \right\} \right)^{-1}. \]

\[\text{Eq. (A1)} \]

The spin \(\downarrow \) polarized current, \(I^\downarrow_2 \), is obtained from Eq. (A1) by exchanging all \(\uparrow \) and \(\downarrow \) in the numerator (the denominator remains unaffected by such an exchange). The currents in lead 1, \(I^\downarrow_1 \), are obtained from the formulas for \(I^\uparrow_2 \) by exchanging indices 1 and 2 and by a global change of sign. The charge current is \(I_t = \sum_\sigma I^\sigma_t \) and is equal in both leads, \(I_1 = I_2 = I \), due to charge conservation. For large Zeeman splitting \(\Delta_z > \Delta \mu, kT \) and around the spin satellite peak, \(\mu_1 > \Delta_{S4} > \mu_2 \) (see Sec. [III]), we have \(f_l(\Delta_{S1}) = 0 \), and the current is

\[I = e (W_\omega + W_{\uparrow\downarrow}) \left[(\gamma^\uparrow_1 \gamma^\uparrow_2 + \gamma^\downarrow_1 \gamma^\downarrow_2) f_1(\Delta_{S4}) - (\gamma^\uparrow_1 \gamma^\downarrow_2 + \gamma^\uparrow_2 \gamma^\downarrow_1) f_2(\Delta_{S4}) \right] \]

\[\text{for which we have given special cases in Eqs. (22), (30), (31) and (44).} \]

For completeness, we also give the results for even-to-odd sequential tunneling, as discussed in Sec. [IV]. By applying the replacements given in Sec. [IV] to Eq. (A1), we obtain the spin \(\downarrow \) polarized stationary current in lead 2,

\[I^\downarrow_2 = e \gamma^\downarrow_2 \left(\sum_{l,l'} (-1)^l \gamma^\downarrow_l f_l(\Delta_{S4}) f_l(\Delta_{S1}) + \sum_l \frac{2W_\omega + W^{\uparrow\downarrow} + W^{\downarrow\uparrow}}{2} \left\{ (-1)^l \gamma^\downarrow_l f_l(\Delta_{S4}) + \gamma^\downarrow_l [f_2(\Delta_{S4}) - f_l(\Delta_{S1})] \right\} - \sum_l \frac{W^{\uparrow\downarrow} - W^{\downarrow\uparrow}}{2} \left\{ (-1)^l \gamma^\downarrow_l f_l(\Delta_{S4}) - \gamma^\downarrow_l [f_2(\Delta_{S4}) + f_l(\Delta_{S1}) - 2f_2(\Delta_{S4})f_l(\Delta_{S1})] \right\} \right) \times \left(\sum_{l,l'} \gamma^\downarrow_l \gamma^\downarrow_{l'} \left(1 - [1 - f_l(\Delta_{S4})] f_{l'}(\Delta_{S1}) \right) + \sum_{l,\sigma \neq \sigma'} (W_\omega + W_{\sigma'\sigma}) \left\{ \gamma^\sigma_l + \gamma^\sigma_{l'} f_l(\Delta_{S\sigma}) \right\} \right)^{-1}. \]

\[\text{Eq. (A3)} \]

For references, see the table of references at the bottom of the page.
At this point, one usually makes a secular approximation.

P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165 314 (2001).

E. Merzbacher, Quantum Mechanics, 3rd ed. (Wiley, New York, 1998), Chap. 20.

For non-magnetic photon-assisted pumps see e.g., Ref. 23 and B.L. Hazelzet, M.R. Wegewijs, T.H. Stoof, and Yu.V. Nazarov, Phys. Rev. B 63, 165313 (2001).

Generically this is satisfied. However, if there is no complete basis of eigenvectors of M, there is power law admixtures. For instance, for $\Delta_\pm = \Sigma_{\pm} - V_{\pm}^{\nu}$, the last two eigenvalues, λ_\pm, in Eq. (42) are degenerate. Then, the time evolution of ρ_0 can contain terms proportional to t^{λ_\pm}. D.V. Averin and Yu.V. Nazarov, in Single Charge Tunneling, eds. H. Grabert, M. H. Devoret, NATO ASI Series B: Physics Vol. 294, Plenum Press, New York, 1992.

H. Schoeller and G. Schön, Phys. Rev. B 50, 18436 (1994); J. König, H. Schoeller, and G. Schön, Phys. Rev. B 58, 7882 (1998).

E. V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B 63, 125 315 (2001).

D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).

M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Julian, Y. Feng, and Z. Wasilewski, Phys. Rev. B 61, R16315 (2000).

M.J.M. de Jong, Phys. Rev. B 54, 8144 (1996).

Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

M.H. Devoret and R.J. Schoelkopf, Nature 406, 1039 (2000).

For measurement process in Josephson qubits, see Y. Makhlin, G. Schön, and A. Shnirman, Phys. Rev. Lett. 85, 4578 (2000).

Note that by using transport involving many states of the dot, the read-out current could be increased and thus the read-out time further decreased. Further, if instead resonant tunneling is considered, e.g., into an SET device, faster read-out could be achieved.

Note that in general $I_1(t) \neq I_2(t)$, since charge can accumulate on the dot for some typical time, which is limited from above by the inverse tunneling rates. Here, charge accumulation occurs with the period of the Rabi oscillations Δ_r^{-1}.

An alternative application of pulsed ESR for measuring T_2 is spin echo, where a well-defined sequence of pulses is applied.
plied to cancel the effect of dephasing. At the end of the sequence, the dot spin (in the σ_z basis) can be measured by one of the techniques discussed in Secs. IX, X, and XI. Here, spin echo compensates for dephasing of an array of quantum dots in an inhomogeneous magnetic field B_z, or in time series measurements (on a single dot), where the magnetic field B_z fluctuates in time. More care must be taken for inhomogeneities in the g factor (Rabi frequency Δ_x), since then a pulse does not rotate the spin by an equal angle for every dot. To compensate this, one could, e.g., use Carr-Purcell-Meiboom-Gill pulse sequences.

A. Peres, *Quantum Theory* (Kluwer, Amsterdam, 1993). We note that similar concepts have been used in recent experiments, however, with a separation of timescales, $T_0, t_p \ll \gamma^{-1}$. We show here that such concepts can be applied more generally for regimes where $T_0, t_p \lesssim \gamma^{-1}$.

C. Schönenberger, H. van Houten, and H.C. Donkersloot, Europhys. Lett. 20, 249 (1992). D. Porath and O. Millo, J. Appl. Phys. 81, 2241 (1996). C.J. Chen, *Introduction to Scanning Tunneling Microscopy*, (Oxford University Press, NY, 1993). J.A. Folk, R.M. Potok, A.C. Johnson, S.M. Cronenwett, C.M. Marcus, W.G. van der Wiel, and L.P. Kouwenhoven, APS March Meeting (2001) C25.4. C.P. Slichter, *Principles of Magnetic Resonance*, (Springer, Berlin, 1990). Y. Nakamura, Yu. A. Pashkin, and J.S. Tsai, Nature 398, 786 (1999).