HCV Vaccine: How Far are We?

Abstract
Worldwide, hepatitis C (HCV) is considered as an important public health problem as it is associated with severe complications and high morbidity and mortality. Majority of infections are usually asymptomatic during initial phases, however majority of the infected individuals develop symptomatic disease during the latter phase of illness. Hepatitis C virus has seven genotypes and 67 subtypes and also different quasispecies are known to circulate in one particular individual. The diagnosis is usually established by serology/ molecular tests. HCV is a RNA virus, which is associated with high mutations rate. At present newer antivirals are available that are associated with good sustained virologic response, but these are very costly and are beyond the reach of common man in developing countries. Thus, vaccine candidates are required for preventing the infection. Though, different vaccine candidates are present, but all are in clinical trials and at present no commercially available vaccine is available. In the present mini-review, recent vaccine candidates have been discussed along with a summary of challenges being faced in the development of an ideal HCV vaccine.

Keywords: HCV; Vaccine; Immune response; Animal models; Hepatitis C virus; VIPs

Abbreviations: HCV: Hepatitis C Virus; HBV: Hepatitis B Virus; HCC: Hepatocellular Carcinoma; DAA: Directly Acting Antivirals; SVR: Sustained Virologic Response; NS5: Non-Structural Protein 5; ABIR: Antibody-Mediated Immune Response; CMIR: Cell-Mediated Immune Response; HIV: Human Immunodeficiency Virus; VLPS: Virus Like Particles; Th: T Helper Cells; HADV: Human Adeno Virus Rare Serotype 6; Chad3: Chimpanzee Ad 3; CMV: Cytomegalovirus

Commentary
Worldwide, hepatitis C (HCV) is an important public health problem. Earlier, it was mainly associated with transfusion of HCV infected blood in the developing countries. However, due to intravenous drug abuse, now it is well recognized in developed countries also. As per World Health Organization (WHO) data, approximately 170-185 million people are globally suffering from chronic HCV infection [1,2]. More than 3,50,000 individuals are expected to die every year from hepatitis C related liver diseases [3]. HCV causes more severe clinical complications as compared to other viral causes of hepatitis. Hepatitis B virus (HBV) and Hepatitis C virus shares similarity in that both are transmitted parenterally. However, the two viruses are totally dissimilar in their genetic properties, course of infection, treatment options and availability of effective vaccine. Among majority of the patients, HCV during the initial period illness is usually asymptomatic and it is only during the later course of infection that patient develops clinical manifestations.

About 15-45% of acute cases spontaneously clear the virus and around 55-85% in later period of their lives progress to chronic HCV infection, which further leads to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma (HCC) in 15-30% of those having chronic hepatitis C [4]. In suspected patients diagnosis is confirmed by serology and/or molecular methods. However, majority of the patients are not diagnosed during acute phase that contributed to a pool of patients who transmit the infection via high-risk behavior, intravenous drug abuse, blood transfusion and organ donations. The most common indication of liver transplantation is the decompensating chronic HCV infection that alone accounts for 40-50% of liver transplants [5].

There are seven different genotypes (1-7) of HCV and 67 subtypes exist in nature [6]. The genotyping is important for deciding the treatment regimen as response to treatment and duration of treatment depends upon the specific genotype. Super infection with more than one genotype can also occur especially among high-risk groups, like injection drug users. However, genotyping methods are not widely available in developing countries and are also not affordable by all in developing countries due to limitation of resources [7,8]. Thus, research is required in the field of developing newer diagnostic tests for detecting different genotypes and nanotechnology and micro fluids can be used to develop a point-of-care test [9,10].

Recent advances have been made in the treatment options due to the availability of new direct acting antiviral (DAA) drugs, which help in achieving sustained virologic response (SVR - a marker for cure) among 80-90% of patients after 12-24 weeks of therapy [11].

The newly approved two new DAA drugs are Sofosbuvir and Simeprevir [11]. Former drug acts by inhibiting HCV NS5B polymerase enzyme and latter one is a protease inhibitor that blocks specific protein needed by the hepatitis C virus to replicate. Moreover, efficacy of Simeprevir is markedly reduced in patients infected with HCV genotype 1a with an NS3 Q80K polymorphism. Thus, prior to initiation of therapy, screening for this mutation...
is essential. However, the current treatment is very costly and is beyond the reach of common people in developing countries. Additionally these DAAs do not cure virus induced end stage liver infections. Currently, Sofosbuvir, Ledipasvir, Velpatasvir and Daclatasvir, the non-structural protein -5 (NS5) inhibitors are regarded as the most promising drugs for HCV treatment [11-15]. However, several patients have severe irreversible liver damage or possibly liver cancer, which are not cured by available antivirals.

Additionally the development of resistance in HCV in response to the currently used treatment modalities also of a major concern. Hence, the development of a prophylactic vaccine against HCV is the need of the hour.

The hope to develop HCV vaccine comes from the fact that spontaneous resolution occurs in 15% of the patients infected with HCV [16]. It occurs due to the strong innate immune response along with adaptive immune response mounted against HCV in the form of antibody-mediated immune response (ABIR) and the cell-mediated immune response (CMIR) [17-19]. Developing a pan-genotypic vaccine against HCV is a major challenge due to the high genetic divergence of the virus, which has seven distinct genotypes and at least 30% genetic sequence variability. However, development of a vaccine against a single predominant genotype will also be a breakthrough. HCV has evolved number of strategies to evade the antibody mediated neutralization such as E2 region of the envelope protein has two hypervariable regions, which are the major targets of neutralizing antibodies.

Therefore, research is required to find out the immunogenic conserved epitopes which is a challenging task. The same strategy has been applied in designing a vaccine against human immunodeficiency virus (HIV) [20]. Currently, many researchers are targeting the E2 region of HCV for designing monoclonal antibodies, with a hope of developing neutralizing antibodies against it [21-23]. The mechanisms of blocking the HCV entry into the hepatocytes by specific antibodies may provide a way for developing such vaccine candidates as many such receptors are known now [24]. Recently a genetically humanized mouse was developed, which facilitated the development of vaccine-induced humoral responses [25]. The key antibody epitopes of the E2 ectodomain of HCV along with their molecular structure has also been resolved [26]. Recently, Jong et al. [27] demonstrated that established HCV infection in human liver chimeric mice could be cured by neutralizing antibodies that have been expressed in recombinant adeno-associated virus.

It is a well-known fact that for effective vaccine development against HCV, generation of HCV specific T cell response is a major challenge. The protective role of CD8+ and CD4+ T cells in controlling HCV infection was supported by the studies of T cell depletion experiments in chimpanzee model, where a lack of either of these cells during exposure and early infection was associated with persistent viremia [28]. The lack of proliferation of HCV-specific CD4+ T cells that proliferate after antigenic stimulation in-vitro is the hallmark of persistent HCV infection. Several researchers reported that the frequency of proliferation of HCV-specific CD8+ T cells are much higher compared to CD4+ T cell responses.

There are different methodologies by which vaccine can be developed. These vary from conventional approaches to the use of reverse vaccinology. However, conventional approaches have failed in developing successful candidates and only tested with varying results among animal models. The different approaches used for development of HCV vaccine include the use of recombinant E1 and E2 proteins, synthetic peptide, virus like particles (VLPs), recombinant non-pathogenic live vectors, DNA vaccines, dendritic cell-based vaccination and prime-boost strategies [16]. However, till date no effective vaccines have been discovered against HCV that is commercially available. There are two different concepts behind HCV vaccine development, first is the development of a prophylactic vaccine, which can be administered prophylactically to prevent the acquisition of HCV infection [29]. Another type of HCV vaccine is the therapeutic vaccine, which can be administered to decrease the severity of illness in an already infected person. Therapeutic vaccines can also be used along with anti-viral treatment regimens so as to increase the chances of achieving the SVR [30].

Modern technologies involving the concept of reverse vaccinology may provide success in short span of time as by using bioinformatics tools, large number of HCV peptides can be searched which appear to be present at surface of HCV and are found to be immunogenic by B cell and T cell epitope prediction [31-33]. Later on these can be tested in vivo for their immunogenicity and efficacy. Other technologies may involve use of nanotechnology to increase the immunogenic potential of the vaccine candidates as compared to conventionally used adjuvants [34,35].

An ideal HCV vaccine should be able to induce strong cellular immune response, including both CD4+ and CD8+ T cells and a strong-cross-neutralizing antibody response against HCV envelope proteins. Thus, for developing effective prophylactic vaccine, structural proteins such as core, E1 and E2 should be selected in such a way that they must induce high titer of neutralizing antibodies, which help in blocking the viral access to the target cells. The non-structural proteins such as NS3, NS4 and NS5 must also be selected so as to mount a strong T-cell response targeting infected cells [30,36,37].

Though, efforts are being made to develop a successful HCV vaccine but only few HCV vaccine candidates have reached clinical phase trials. The synthetic peptide vaccine IC41 (proposed by Intercell AG; Vienna, Austria) containing 7 relevant HCV T-cell epitopes and the helper cell (Th1)/Th17 adjuvant poly-L-arginine can induce HCV-specific IFNγ secreting CD4+ and CD8+ T cells in healthy volunteers and among patients who are difficult to treat [38,39]. This vaccine has successfully completed phase II trial. Another peptide vaccine consisting of HCV core region (C35-44) along with ISA51, an emulsified incomplete Freud adjuvant has also been selected so as to mount a strong T-cell response targeting infected cells [30,36,37].

The recombinant E1E2 vaccine derived from HCV1a was also approved for phase I clinical trial in humans [41]. Another HCV vaccine tested in Phase I human clinical trials is based on the use of human adeno virus rare serotype 6 (HADV6) and chimpanzee Ad 3 (ChAd3) expressing the HCV non-structural proteins [42]. T cell responses targeted multiple proteins and were able to recognize heterologous strains. Booster dose with heterologous
HCV Vaccine: How Far are We?

To date, a few vaccine candidates have been progressed to phase I/II trials, but published data on both the efficacy and safety of these vaccines is limited, and none of them has yet reached a phase III clinical trial. Thus, we still are far away from an ideal HCV vaccine candidate.

References

1. Sy T, Jamal MM (2006) Epidemiology of hepatitis C virus (HCV) infection. Int J Med Sci 3(2): 41-46.
2. Mohd Hanafiah K, Greger J, Flaxman AD, Wiersma ST (2013) Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology 57(4): 1333-1342.
3. Averhoff FM, Glass N, Holtzman D (2012) Global burden of hepatitis C: considerations for healthcare providers in the United States. Clin Infect Dis 55 (Suppl 1): S10-S15.
4. WHO (2015) Hepatitis C. Media centre.
5. Brown RS (2005) Hepatitis C and liver transplantation. Nature 436(7053): 973-978.
6. Smith DB, Bukh J, Kuiken C, Muerhoff AS, Rice CM, et al. (2014) Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology 59(1): 318-327.
7. Greenman J, Roberts T, Cohn J, Messac L (2015) Dried blood spot in the genotyping, quantification and storage of HCV RNA: a systematic literature review. J Viral Hepat 22(4): 353-361.
8. Yang YC, Wang DY, Cheng HF, Chuang EY, Tsai MH (2015) A reliable multiplex genotyping assay for HCV using a suspension bead array. Microb Biotechnol 8(1): 93-102.
9. Qasim M, Lim DJ, Park H, Na D (2014) Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol 14(10): 7374-7387.
10. Lee WG, Kim YG, Chung BG, Demirci U, Khademhosseini A (2010) Nano/Microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62(4-5): 449-457.
11. McConachie SM, Wilhelm SM, Kale-Pradhan PB (2016) New direct-acting antivirals in hepatitis C therapy: a review of sofosbuvir, ledipasvir, daclatasvir, simprevir, paritaprevir, ombitasvir and dasabuvir. Expert Rev Clin Pharmacol 9(2): 287-302.
12. Nakamura M, Kanda T, Haga Y, Sasaki R, Wu S, et al. (2016) Sofosbuvir treatment and hepatitis C virus infection. World J Hepatol 8(3): 183-190.
13. Rivauro-Juarez A, Rivero A (2016) Sustained virological response with sofosbuvir and ledipasvir for hepatitis C virus genotype 1. Lancet Infect Dis 16(3): 309-316.
14. Feld JJ, Jacobson IM, Hézode C, Asselah T, Ruane PJ, et al. (2015) Sofosbuvir and Velpatasvir for HCV Genotype 1, 2, 4, 5, and 6 Infection. N Engl J Med 373(27): 2599-2607.
15. Kahveci AM, Taham V (2014) Daclatasvir plus sofosbuvir regimen sheds promising light on future hepatitis C virus genotype 3 therapies. Turk J Gastroenterol 27(1): 89-90.
16. Abdelwahab KS, Ahmed Said ZN (2016) Status of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. J Viral Hepat 23(7): 741-747.
17. Linder C, Toporovski R, Yan J, Pankhong P, Morrow MP, et al. (2014) Strong HCV NS3/4a, NS4b, NS5a, NS5b-specific cellular immune responses induced in Rhesus macaques by a novel HCV genotype
HCV Vaccine: How Far are We?

1a/1b consensu DNA vaccine. Hum Vaccin Immunother 10(8): 2357-2365.

20. Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, et al. (2012) A Blueprint for HIV Vaccine Discovery. Cell Host Microbe 12(4): 396-407.

21. Sandomenico A, Leonardi A, Berisio R, Sanguinio L, Focà G, et al. (2016) Generation and characterization of monoclonal antibodies against a cyclic variant of Hepatitis C Virus E2 epitope 412-422. J Virol 02397-15.

22. Suzuki S, Mori K, Higashino A, Iwasaki Y, Yasumori Y, et al. (2016) Persistent replication of a hepatitis C virus genotype 1b-based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey. MicrobiolImmunol 60(1): 26-34.

23. Liu X, Chen N, Lin S, Liu M (2016) Synthesized peptides 705-734 from hepatitis C virus E2 glycoprotein induce dendritic cell maturation by activating p38 MAPK signaling. Int Immunopharmacol 30: 194-201.

24. Lindenhagen BD, Rice CM (2013) The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol 11(10): 688-700.

25. Dorner M, Horwitz JA, Donovan BM, Labitt RN, Budell WC, et al. (2013) Completion of the entire hepatitis C virus life cycle in genetically humanized mice. Nature 501(7466): 237-241.

26. Khan AG, Whiddy J, Miller MT, Scarborough H, Zatorski AV, et al. (2014) Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509(7500): 381-384.

27. de Jong YP, Dorner M, Mommersteeg MC, Xiao JW, Balkes AB, et al. (2014) Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med 6(254): 254ra129.

28. Akazawa D, Moriyama M, Yokokawa H, Omi N, Watanabe N, et al. (2013) Neutralizing antibodies induced by cell culture-derived hepatitis C virus protect against infection in mice. Gastroenterology 145(2): 447-455.

29. Swadling L, Klenerman P, Barnes E (2013) Ever closer to a prophylactic vaccine for HCV. Expert Opin Biol Ther 13(8): 1109-1124.

30. Xue J, Zhu H, Chen Z (2014) Therapeutic vaccines against hepatitis C virus. Infect Genet Evol 22: 120-129.

31. Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T, et al. (2011) Improving reverse vaccinology with a machine learning approach. Vaccine 29(45): 8156-8164.

32. Van Regenmortel MH (2011) Two meanings of reverse vaccinology and the empirical nature of vaccine science. Vaccine 29(45): 7875.

33. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4): 530-541.

34. Plebanski M, Xiang SD (2013) Nanotechnology and vaccine development: methods to study and manipulate the interaction of nanoparticles with the immune system. Methods 60(3): 225.

35. Nasir A (2009) Nanotechnology in vaccine development: a step forward. J Invest Dermatol 129(5): 1055-1059.

36. Ghasesi F, Rostami S, Meshkat Z (2015) Progress in the development of vaccines for hepatitis C virus infection. World J Gastroenterol 21(42): 11984-2002.

37. Leroux-Roels G (2005) Development of prophylactic and therapeutic vaccines against hepatitis C virus. Expert Rev Vaccines 4(3): 351-371.

38. Klade CS, Wedemeyer H, Berg T, Hinrichsen H, Cholewinski G, et al (2008) Therapeutic vaccination of chronic hepatitis C nonresponder patients with the peptide vaccine IC41. Gastroenterology 134(5): 1385-1395.

39. Firbas C, Jilma B, Tauber R, Buerger V, Jelovcan S, et al. (2006) Immunogenicity and safety of a novel therapeutic hepatitis C virus (HCV) peptide vaccine: a randomized, placebo controlled trial for dose optimization in 128 healthy subjects. Vaccine 24(20): 4343-4353.

40. Yutani S, Komatsu N, Shichijo S, Yoshida K, Takedatsu H, et al. (2009) Phase I clinical study of a peptide vaccination for hepatitis C virus-infected patients with different leukocyte antigen-class I-A alleles. Cancer Sci 100(10): 1935-1942.

41. Kong L, Giang E, Nieuws M, Kadum R, Goburn KE, et al. (2013) Hepatitis C virus E2 envelope glycoprotein core structure. Science 342(6162): 1090-1094.

42. Barnes E, Folgori A, Capone S, Swadling L, Anton S, et al. (2012) Novel adenosivirus-based vaccines induce broad and sustained T cell responses to HCV in man. Sci Transl Med 4(115): 115ra1.

43. Ray K (2011) Vinal hepatitis: Promising phase I trial results for TG4040 vaccine in patients with chronic hepatitis C. Nat Rev Gastroenterol Hepatol 8(8): 420.

44. (2016) ClinicalTrials.gov Study of a Novel Therapeutic Vaccine Against Hepatitis C Using AddNSmut and MVA-NSmut in Chronically Infected Patients (HCV004). A service of the U.S. National Institutes of Health, USA.

45. Simmonds P (2004) Genetic diversity and evolution of hepatitis C virus—15 years on. J Gen Virol 85(Pt 11): 3173-3188.

46. Stumpf MP, Pybus OG (2002) Genetic diversity and models of viral evolution for the hepatitis C virus. FEMS Microbiol Lett 214(2): 143-152.

47. Duffy S, Shackleton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9(4): 267-276.

48. Cashman SB, Marsden BD, Dustin LB (2014) The Humoral Immune Response to HCV: Understanding is Key to Vaccine Development. Front Immunol 5: 550.

49. Vercauteren K, de Jong YP, Meuleman P (2015) Animal models for the study of HCV. Curr Opin Virol 13: 67-74.

50. Hong B, Lee SH, Song XT, Jones L, Machida K, et al. (2012) A super TLR agonist to improve efficacy of dendritic cell vaccine in induction of anti-HCV immunity. PLoS One 7(11): e48614.

51. Gowans EJ, Roberts S, Jones K, Dinatale I, Latour PA, et al. (2010) A phase I clinical trial of dendritic cell immunotherapy in HCV-infected individuals. J Hepatol 53(4): 599-607.

52. Bacardi D, Amador-Cañizares Y, Cosme K, Urquiza D, Sáez J, et al. (2009) Toxicology and biodistribution study of CIGB-230, a DNA vaccine against hepatitis C virus. Hum Exp Toxicol 28(8): 479-491.

53. Alvarez-Lajonchere L, Shoukry NH, Grá B, Amador-Cañizares Y, Helle F, et al. (2009) Immunogenicity of CIGB-230, a therapeutic DNA vaccine preaparation, in HCV-chronically infected individuals in a Phase I clinical trial. J Viral Hepat 16(3): 156-167.

54. Fourmiller A, Frelin L, Jacquier E, Ahlén G, Brass A, et al. (2013) A heterologous prime/boost vaccination strategy enhances the immunogenicity of therapeutic vaccines for hepatitis C virus. J Infect Dis. 208(6): 1008-1019.