The double cover of cubic surfaces branched along their Hessian

Atsushi Ikeda

Abstract

We prove the relation between the Hodge structure of the double cover of a nonsingular cubic surface branched along its Hessian and the Hodge structure of the triple cover of \(\mathbb{P}^3 \) branched along the cubic surface. And we introduce a method to study the infinitesimal variations of Hodge structure of the double cover of the cubic surface. Using these results, we compute the Néron-Severi lattices for the double cover of a generic cubic surface and the Fermat cubic surface.

1 Introduction

Let \(X \subset \mathbb{P}^3 \) be a nonsingular cubic surface over the complex numbers \(\mathbb{C} \). It is well-known that \(X \) contains 27 lines in \(\mathbb{P}^3 \). A point \(p \in X \) is called an Eckardt point if there are three lines through \(p \) on \(X \). The classification of nonsingular cubic surfaces by the configuration of their Eckardt points is given in the book [1]. Although the configuration of the Eckardt points varies by a deformation of \(X \), the Néron-Severi lattice for \(X \) is constant. In order to detect the difference of the configuration of the Eckardt points, we consider the Néron-Severi lattice for the double cover of \(X \) branched along its Hessian. Let \(B \subset X \) be the zeros of the Hessian of the defining equation of \(X \). Then \(B \) has at most node as its singularities, and a point \(p \in X \) is a node of \(B \) if and only if \(p \) is an Eckardt point on \(X \). Therefore an Eckardt point on \(X \) corresponds to an ordinary double point on the finite double cover \(Y' \) over \(X \) branched along \(B \). Let \(\phi : Y \to X \) be the composition of the minimal resolution of \(Y' \) and the finite double cover. Then an Eckardt point \(e \) on \(X \) corresponds to the \((-2)\)-curve \(\phi^{-1}(e) \) on \(Y \), and a line \(L \) on \(X \) splits by the pull-back \(\phi^* \) into two \((-3)\)-curves \(L^+ \) and \(L^- \) on \(Y \), where

\[\text{2000 Mathematics Subject Classification.} \quad 14C22, 14C30, 14J29. \]

Partially supported by Grant-in-Aid for Young Scientists (B) 20740014, Japan Society for the Promotion of Science.
we can chose the component L^+ of ϕ^*L so that the union of 27 rational curves $\bigcup_{L} L^+$ is a disjoint union. We remark that Y is a minimal surface of general type with the geometric genus 4, and the double cover ϕ is the canonical morphism of Y. In this paper, we regard an Eckardt point e on X as the class $[\phi^{-1}(e)]$ in the Néron-Severi lattice of Y, and we compute the Hodge structure on $H^2(Y, \mathbb{Z})$.

There is another way to study cubic surfaces by using the Hodge structure of some associated variety. Let $\rho : V \to \mathbb{P}^3$ be the triple Galois cover branched along a cubic surface X. The Hodge structure on $H^3(V, \mathbb{Z})$ with the Galois action was considered by Allcock, Carlson and Toledo [11] to understand the moduli space of cubic surfaces as a ball quotient. In this paper, we investigate the relation between the Hodge structures $H^2(Y, \mathbb{Z})$ and $H^3(V, \mathbb{Z})$, and we prove that there is an isomorphism

$$\left(\bigwedge^2 H^3(V, \mathbb{Q})(1) \right)^{\text{Gal}(\rho)} \cong \frac{H^2(Y, \mathbb{Q}^+)}{\sum_{L} QL^+}$$

(1.1)

of Hodge structures. More precise statement in \mathbb{Z}-coefficients is given in Theorem 5.8. We remark that V is a nonsingular cubic 3-fold in \mathbb{P}^4, and the Hodge structures of cubic 3-folds were studied by Clemens-Griffiths [3] and Tjurin [12]. Let S be the set of lines on a nonsingular cubic 3-fold $V \subset \mathbb{P}^4$. It is a nonsingular projective surface, which is called the Fano surface of lines on V. Then the isomorphisms of Hodge structures $H^3(V, \mathbb{Z})(1) \cong H^1(S, \mathbb{Z})$ and $\bigwedge^2 H^1(S, \mathbb{Q}) \cong H^2(S, \mathbb{Q})$ are proved there. In order to relate the Hodge structure $H^2(Y, \mathbb{Q})$ with $H^2(S, \mathbb{Q})$, we regard the surface Y as a kind of variety of lines. Let $\Lambda(\mathbb{P}^3)$ be the Grassmannian variety of all lines in \mathbb{P}^3. We show that Y is isomorphic to the variety

$$Y_3 = \{(p, L) \in \mathbb{P}^3 \times \Lambda(\mathbb{P}^3) \mid L \text{ intersects } X \text{ at } p \text{ with the multiplicity } \geq 3\},$$

and the double cover $\phi : Y \to X$ corresponds to the first projection $Y_3 \to X; (p, L) \mapsto p$. Then the second projection $Y_3 \to \Lambda(\mathbb{P}^3); (p, L) \mapsto L$ is a birational morphism to its image $Z_3 \subset \Lambda(\mathbb{P}^3)$, and the Fano surface S of the triple cover V of \mathbb{P}^3 is a triple cover of Z_3 by $S \to Z_3; L \mapsto \rho(L)$. By the isomorphism $H^2(S, \mathbb{Q})^{\text{Gal}(\rho)} \cong H^2(Z_3, \mathbb{Q}) \cong \frac{H^2(Y, \mathbb{Q})}{\sum_{L} QL^+}$, we get the isomorphism (1.1).

By using this isomorphism (Theorem 5.8), we compute the Néron-Severi lattice $\text{NS}(Y)$ of Y. For a generic cubic surface X, we prove the theorem of Noether-Lefschetz type (Theorem 6.1), which says that $\text{NS}(Y)$ is generated by (-3)-curves on Y corresponding to lines on X for a generic cubic surface. We use the theory of the infinitesimal variations of Hodge structures [2] to compute that the rank of $\text{NS}(Y)$ is 28 for a generic cubic surface X. We introduce a method to compute the Hodge cohomology $H^2(Y, \Omega^1_Y)$ for Y, which is a generalization of the classical method by Griffiths [6]. And it enables us to compute the infinitesimal variations of Hodge structure of Y. In order to prove that the (-3)-curves on Y generate the Néron-Severi group over \mathbb{Z}, we need the computation of the determinant of the lattice, for which the identification in Theorem 5.8
is used. For a special cubic surface, the rank of \(\text{NS}(Y) \) is greater than 28. If \(X \) is the Fermat cubic surface, then \(\text{NS}(Y) \) is of rank \(h^1(Y, \Omega_Y^1) = 44 \), and the \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

The contents of this paper is the followings. In Section 2, we introduce the variety \(Y_3 \) for a nonsingular cubic surface \(X \), and compute the numerical invariants for the surface \(Y_3 \). In Section 3, we prove that the first projection \(Y_3 \rightarrow X \) is the double cover branched along the Hessian \(B \). And we compute the intersection number on \(Y = Y_3 \) of the curve \(\phi^{-1}(e) \) corresponding to an Eckardt point \(e \) on \(X \) and the curves \(L^\pm \) corresponding to \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

The contents of this paper is the followings. In Section 2, we introduce the variety \(Y_3 \) for a nonsingular cubic surface \(X \), and compute the numerical invariants for the surface \(Y_3 \). In Section 3, we prove that the first projection \(Y_3 \rightarrow X \) is the double cover branched along the Hessian \(B \). And we compute the intersection number on \(Y = Y_3 \) of the curve \(\phi^{-1}(e) \) corresponding to an Eckardt point \(e \) on \(X \) and the curves \(L^\pm \) corresponding to \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

The contents of this paper is the followings. In Section 2, we introduce the variety \(Y_3 \) for a nonsingular cubic surface \(X \), and compute the numerical invariants for the surface \(Y_3 \). In Section 3, we prove that the first projection \(Y_3 \rightarrow X \) is the double cover branched along the Hessian \(B \). And we compute the intersection number on \(Y = Y_3 \) of the curve \(\phi^{-1}(e) \) corresponding to an Eckardt point \(e \) on \(X \) and the curves \(L^\pm \) corresponding to \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

The contents of this paper is the followings. In Section 2, we introduce the variety \(Y_3 \) for a nonsingular cubic surface \(X \), and compute the numerical invariants for the surface \(Y_3 \). In Section 3, we prove that the first projection \(Y_3 \rightarrow X \) is the double cover branched along the Hessian \(B \). And we compute the intersection number on \(Y = Y_3 \) of the curve \(\phi^{-1}(e) \) corresponding to an Eckardt point \(e \) on \(X \) and the curves \(L^\pm \) corresponding to \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

The contents of this paper is the followings. In Section 2, we introduce the variety \(Y_3 \) for a nonsingular cubic surface \(X \), and compute the numerical invariants for the surface \(Y_3 \). In Section 3, we prove that the first projection \(Y_3 \rightarrow X \) is the double cover branched along the Hessian \(B \). And we compute the intersection number on \(Y = Y_3 \) of the curve \(\phi^{-1}(e) \) corresponding to an Eckardt point \(e \) on \(X \) and the curves \(L^\pm \) corresponding to \(\mathbb{Q} \)-vector space \(\mathbb{Q} \otimes \text{NS}(Y) \) is generated by \((-2)\)-curves corresponding to their Eckardt points and \((-3)\)-curves corresponding to lines on \(X \). More precisely, the generator of \(\text{NS}(Y) \) over \(\mathbb{Z} \) is given in Theorem 6.6. For the proof of Theorem 6.6 we use the computation of the Néron-Severi lattice of the Fano surface \(S \) for the Fermat cubic 3-fold by Roulleau [10].

2 Varieties of lines

We denote by \(\Lambda(\mathbb{P}^n) \) the Grassmannian variety of all lines in the projective space \(\mathbb{P}^n \) over the complex numbers \(\mathbb{C} \), and by \(\mathcal{O}_{\Lambda(\mathbb{P}^n)}(1) \) the line bundle which gives the Plücker embedding of \(\Lambda(\mathbb{P}^n) \). We denote by \(\Gamma(\mathbb{P}^n) \) be the flag variety of all pairs \((p,L) \) of a point \(p \in \mathbb{P}^n \) and a line \(L \subset \mathbb{P}^n \) which contains the point \(p \);

\[
\Gamma(\mathbb{P}^n) = \{(p,L) \in \mathbb{P}^n \times \Lambda(\mathbb{P}^n) \mid p \in L\}.
\]

We remark that their canonical bundles are given by \(K_{\Lambda(\mathbb{P}^n)} \simeq \mathcal{O}_{\Lambda(\mathbb{P}^n)}(-n-1) \) and \(K_{\Gamma(\mathbb{P}^n)} \simeq \Phi^* \mathcal{O}_{\mathbb{P}^n}(-2) \otimes \Psi^* \mathcal{O}_{\Lambda(\mathbb{P}^n)}(-n) \), where \(\Phi : \Gamma(\mathbb{P}^n) \rightarrow \mathbb{P}^n \) is the first projection and \(\Psi : \Gamma(\mathbb{P}^n) \rightarrow \Lambda(\mathbb{P}^n) \) is the second projection. Let \(\mathcal{Q}_{\Lambda(\mathbb{P}^n)} = \{H^0(L, \mathcal{O}_{\mathbb{P}^n}(1)|_L)\}_{L \in \Lambda(\mathbb{P}^n)} \) be the tautological bundle on \(\Lambda(\mathbb{P}^n) \), and let \(\mathcal{S} \) be the subbundle of \(\Psi^* \mathcal{Q}_{\Lambda(\mathbb{P}^n)} \) whose fiber at \((p,L) \in \Gamma(\mathbb{P}^n) \) is

\[
\mathcal{S}(p,L) = \text{Ker}(H^0(L, \mathcal{O}_{\mathbb{P}^n}(1)|_L) \longrightarrow H^0(p, \mathcal{O}_{\mathbb{P}^n}(1)|_p)).
\]

Then the Chow ring of \(\Gamma(\mathbb{P}^n) \) is

\[
\text{CH}(\Gamma(\mathbb{P}^n)) \simeq \mathbb{Z}[s,t]/(t^{n+1}, \sum_{i=0}^{n} s^{n-i}t^i),
\]
where \(s = c_1(S) \) and \(t = c_1(\Phi^*\mathcal{O}_P(1)) \) (cf. \[5\] (14.6)).

Let \(X \subseteq P^3 \) be a nonsingular cubic surface. We define subvarieties of \(\Gamma(P^3) \) by

\[
Y_m = \{(p, L) \in \Gamma(P^3) \mid L \text{ intersects } X \text{ at } p \text{ with the multiplicity } \geq m\}
\]

for \(1 \leq m \leq 3 \) and

\[
Y_\infty = \{(p, L) \in \Gamma(P^3) \mid L \text{ is contained in } X\}.
\]

By the first projection \(\Phi, Y_1 \) is a \(P^2 \)-bundle over \(X \), and \(Y_2 \) is a \(P^1 \)-bundle over \(X \). By \[5\] Theorem 3.5, \(Y_3 \) is a nonsingular projective irreducible surface, and the first projection \(\Phi|_{Y_3} \) is a generically finite morphism of degree 2 over \(X \). Since \(X \) contains 27 lines in \(P^3 \), \(Y_\infty \) is a disjoint union of 27 rational curves.

Let \(F \in H^0(P^3, \mathcal{O}_{P^3}(3)) \) be a section which define the cubic surface \(X \). The restriction \(F|_L \in H^0(L, \mathcal{O}_{P^3}(3)|_L) \) is contained in the image of the natural injective homomorphism

\[
S(p, L)^{\otimes m} \otimes H^0(L, \mathcal{O}_{P^3}(3 - m)|_L) \longrightarrow H^0(L, \mathcal{O}_{P^3}(3)|_L)
\]

if and only if the pair \((p, L)\) is contained in \(Y_m \). Hence, for \(1 \leq m \leq 3 \), the subvariety \(Y_m \) is defined as the zeros of a regular section of the vector bundle

\[
\frac{\Psi^* \text{Sym}^3 \mathcal{O}_{\text{A}(P^3)}}{\mathcal{S}^{\otimes m} \otimes \Psi^* \text{Sym}^{3-m} \mathcal{O}_{\text{A}(P^3)}} \cong \Phi^* \mathcal{O}_{P^3}(4 - m) \otimes \Psi^* \text{Sym}^{m-1} \mathcal{O}_{\text{A}(P^3)}
\]
on \(\Gamma(P^n) \), where the isomorphism is given in \[9\] \textsection 2.

Proposition 2.1. \(Y_3 \) is a minimal surface of general type with the geometric genus \(p_g(Y_3) = 4 \), the irregularity \(q(Y_3) = 0 \) and the square of the canonical divisor \(K_{Y_3}^2 = 6 \), and the first projection \(\Phi|_{Y_3} \) is the canonical map of the surface \(Y_3 \).

Proof. Since

\[
\begin{cases}
\mathcal{O}_{\Gamma(P^3)}(Y_1) \cong \Phi^* \mathcal{O}_{P^3}(3), \\
\mathcal{O}_{Y_1}(Y_2) \cong (\Phi^* \mathcal{O}_{P^3}(2) \otimes \mathcal{S})|_{Y_1} \cong (\Phi^* \mathcal{O}_{P^3}(1) \otimes \Psi^* \mathcal{O}_{\text{A}(P^3)}(1))|_{Y_1}, \\
\mathcal{O}_{Y_2}(Y_3) \cong (\Phi^* \mathcal{O}_{P^3}(1) \otimes \mathcal{S}^\otimes 2)|_{Y_2} \cong (\Phi^* \mathcal{O}_{P^3}(-1) \otimes \Psi^* \mathcal{O}_{\text{A}(P^3)}(2))|_{Y_2}
\end{cases}
\]

and \(K_{\Gamma(P^3)} = \Phi^* \mathcal{O}_{P^3}(-2) \otimes \Psi^* \mathcal{O}_{\text{A}(P^3)}(-3) \), we have

\[
\begin{cases}
K_{Y_1} \cong (\Phi^* \mathcal{O}_{P^3}(1) \otimes \Psi^* \mathcal{O}_{\text{A}(P^3)}(-3))|_{Y_1}, \\
K_{Y_2} \cong (\Phi^* \mathcal{O}_{P^3}(2) \otimes \Psi^* \mathcal{O}_{\text{A}(P^3)}(-2))|_{Y_2}, \\
K_{Y_3} \cong (\Phi^* \mathcal{O}_{P^3}(1))|_{Y_3}.
\end{cases}
\]

Since \(H^i(\Gamma(P^3), \Phi^* \mathcal{O}_{P^3}(-3)) = 0 \) and \(H^i(\Gamma(P^3), \Phi^* \mathcal{O}_{P^3}(-2)) = 0 \) for any \(i \), the restriction induces isomorphisms

\[
\begin{cases}
H^i(\Gamma(P^3), \mathcal{O}_{\Gamma(P^3)}) \cong H^i(Y_1, \mathcal{O}_{Y_1}), \\
H^i(\Gamma(P^3), \Phi^* \mathcal{O}_{P^3}(1)) \cong H^i(Y_1, (\Phi^* \mathcal{O}_{P^3}(1))|_{Y_1})
\end{cases}
\]
for any \(i\). Since \(H^i(\Gamma(\mathbb{P}^3), \Phi^*\mathcal{O}_{\mathbb{P}^3}(j) \otimes \Psi^*\mathcal{O}_{\Lambda(\mathbb{P}^3)}(-1)) = 0\) for any \(i\) and \(j\), we have \(H^i(Y_1, (\Phi^*\mathcal{O}_{\mathbb{P}^3}(j) \otimes \Psi^*\mathcal{O}_{\Lambda(\mathbb{P}^3)}(-1))|_{Y_1}) = 0\) for any \(i\) and \(j\), hence the restriction induces isomorphisms

\[
\begin{cases}
H^i(Y_1, \mathcal{O}_{Y_1}) \simeq H^i(Y_2, \mathcal{O}_{Y_2}), \\
H^i(Y_1, (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))|_{Y_1}) \simeq H^i(Y_2, (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))|_{Y_2})
\end{cases}
\]

for any \(i\), and the dimension of these cohomology groups are

\[
h^i(Y_2, \mathcal{O}_{Y_2}) = h^i(\Gamma(\mathbb{P}^3), \mathcal{O}_{\Gamma(\mathbb{P}^3)}) = \begin{cases} 1 & \text{if } i = 0, \\ 0 & \text{if } i \neq 0, \end{cases}
\]

and

\[
h^i(Y_2, (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))|_{Y_2}) = h^i(\Gamma(\mathbb{P}^3), (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))) = \begin{cases} 4 & \text{if } i = 0, \\ 0 & \text{if } i \neq 0. \end{cases}
\]

By the exact sequence

\[
0 \longrightarrow K_{Y_2} \longrightarrow (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))|_{Y_2} \longrightarrow K_{Y_3} \longrightarrow 0
\]

and the duality

\[
H^i(Y_2, K_{Y_2}) \simeq H^{3-i}(Y_2, \mathcal{O}_{Y_2})^\vee,
\]

we have \(p_g(Y_3) = 4\) and \(q(Y_3) = 0\), and \(\Phi|_{Y_3}\) is the canonical map. Since \(K_{Y_3} \simeq (\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))|_{Y_3}\) is nef and the image of the canonical map is the surface \(X\), the surface \(Y_3\) is a minimal surface of general type.

Since \(Y_3\) is defined as the zeros of a regular section of the vector bundle

\[
\frac{\Psi^*\text{Sym}^3 Q_{\Lambda(\mathbb{P}^3)}}{S \otimes 3} \simeq \Phi^*\mathcal{O}_{\mathbb{P}^3}(1) \otimes \Psi^*\text{Sym}^2 Q_{\Lambda(\mathbb{P}^3)},
\]

its class in the Chow ring of \(\Gamma(\mathbb{P}^3)\) is

\[
[Y_3] = c_3(\Phi^*\mathcal{O}_{\mathbb{P}^3}(1) \otimes \Psi^*\text{Sym}^2 Q_{\Lambda(\mathbb{P}^3)}) = 6s^2t + 15st^2 + 6t^3 \in \text{CH}^3(\Gamma(\mathbb{P}^3)),
\]

hence

\[
K_{Y_3}^2 = \deg (c_1(\Phi^*\mathcal{O}_{\mathbb{P}^3}(1))^2 \cdot [Y_3]) = 6.
\]

Remark 2.2. Proposition 2.1 implies that the Hodge number \(h^1(Y_3, \Omega^1_{Y_3}) = 44\). Minimal surfaces with such numerical invariants are classified by Horikawa, and \(Y_3\) is of type Ib in \([7]\). Since \(Y_3\) is simply connected by \([7\) Theorem 12.1], we have \(H_1(Y_3, \mathbb{Z}) = 0\), hence \(H^i(Y_3, \mathbb{Z})\) has no torsion element for any \(i\).
Since the cubic surface X is recovered as the image of the canonical map of Y_3, we have the following Torelli type theorem.

Corollary 2.3. The isomorphism class of the cubic surface X is uniquely determined by the isomorphism class of Y_3.

Proposition 2.4. Each component of Y_∞ is a (-3)-curve on Y_3.

Proof. Since $\mathcal{O}_{Y_3}(Y_\infty) \simeq S^{\otimes 3}|_{Y_3}$, the self intersection number of Y_∞ on Y_3 is

$$(Y_\infty, Y_\infty) = \deg \left(c_1(S^{\otimes 3})^2 \cdot [Y_3] \right) = -81.$$

The self intersection number of a component of Y_∞ is less than -1 because K_{Y_3} is nef, and the component is not a (-2)-curve because its image by the canonical map is a line in \mathbb{P}^3. Since Y_∞ is a disjoint union of 27 rational curves, each component of Y_∞ is (-3)-curve on Y_∞. \hfill \square

Remark 2.5. The second projection

$$\Psi|_{Y_3} : Y_3 \longrightarrow \Lambda(\mathbb{P}^3); (p, L) \longmapsto L,$$

is birational to its image $Z_3 = \Psi(Y_3)$, which induces an isomorphism $Y_3 \setminus Y_\infty \simeq Z_3 \setminus Z_\infty$, where $Z_\infty = \{ L \in \Lambda(\mathbb{P}^3) \mid L \subset X \}$ is equal to the singular locus of Z_3.

3 The double cover branched along Hessian

For simplicity, we denote the first projection $\Phi|_{Y_3} : Y_3 \to X$ by $\phi : Y \to X$. Let R be the ramification divisor of $\phi : Y \to X$. Since R is the zeros of the determinant of the differential $d\phi : T_Y \to \phi^*T_X$, its class in $\text{CH}^1(Y)$ is

$$[R] = c_1(K_Y \otimes \phi^*K_X) = c_1((\phi^*\mathcal{O}_{\mathbb{P}^3}(2))|_Y).$$

We denote by $B = \phi_*R$ the branch divisor of ϕ. Let $F(x_0, \ldots, x_3) \in \mathbb{C}[x_0, \ldots, x_3]$ be a cubic polynomial which defines the nonsingular cubic surface X.

Proposition 3.1. $B \subset X$ is the zeros of the Hessian

$$\det \left(\frac{\partial^2 F}{\partial x_i \partial x_j} \right)_{0 \leq i, j \leq 3} \in H^0(X, \mathcal{O}_{\mathbb{P}^3}(4)|_X).$$

Proof. For $p = [a_0 : a_1 : a_2 : a_3] \in \mathbb{P}^3$, if $a_0 \neq 0$, then there is an isomorphism

$$\mathbb{P}^2 \xrightarrow{\sim} \Phi^{-1}(p) \subset \Gamma(\mathbb{P}^3); \quad q = [b_1 : b_2 : b_3] \longmapsto (p, L_{(p,q)}),$$
where \(L_{(p,q)} \) denotes the line through the points \(p \) and \([0 : b_1 : b_2 : b_3] \) in \(\mathbb{P}^3 \);

\[
L_{(p,q)} = \{(a_0 t_0 : a_1 t_1 : \cdots : a_3 t_0 + b_3 t_1) \in \mathbb{P}^3 \mid [t_0 : t_1] \in \mathbb{P}^1 \}.
\]

For \(0 \leq i \leq 3 \), we set a polynomial \(F_i(x, z) \) on variables \((x_0, \ldots, x_3, z_1, \ldots, z_3) \) inductively by

\[
F_0(x, z) = F(x_1, \ldots, x_3)
\]

and

\[
F_i(x, z) = \frac{1}{i} \sum_{j=1}^{3} \frac{\partial F_{i-1}}{\partial x_j}(x, z) z_j.
\] \hspace{1cm} (3.1)

Since

\[
F(a_0 t_0, a_1 t_1, a_2 t_0 + b_2 t_1, a_3 t_0 + b_3 t_1)
= F_0(a, b)t_0^3 + F_1(a, b)t_0^2t_1 + F_2(a, b)t_0t_1^2 + F_3(a, b)t_1^3,
\]

if \(p \in X \), then

\[
\phi^{-1}(p) \simeq \{q = [b_1 : b_2 : b_3] \in \mathbb{P}^2 \mid F_1(a, b) = 0, \ F_2(a, b) = 0\}.
\]

\(p \in X \) is contained in \(B \) if and only if there exists \([b_1 : b_2 : b_3] \in \mathbb{P}^2 \) such that \(F_1(a, b) = F_2(a, b) = 0 \) and the rank of the matrix

\[
\begin{pmatrix}
\frac{\partial F_1}{\partial x_1}(a, b) & \frac{\partial F_1}{\partial x_2}(a, b) & \frac{\partial F_1}{\partial x_3}(a, b) \\
\frac{\partial F_2}{\partial x_1}(a, b) & \frac{\partial F_2}{\partial x_2}(a, b) & \frac{\partial F_2}{\partial x_3}(a, b)
\end{pmatrix}
= \begin{pmatrix}
\sum_{j=1}^{3} \frac{\partial F}{\partial x_j}(a) b_j & \sum_{j=1}^{3} \frac{\partial^2 F}{\partial x_j \partial x_j}(a) b_j & \sum_{j=1}^{3} \frac{\partial^2 F}{\partial x_j \partial x_j}(a) b_j
\end{pmatrix}
\]

is less than 2. Since \(\left(\frac{\partial F}{\partial x_1}(a), \frac{\partial F}{\partial x_2}(a), \frac{\partial F}{\partial x_3}(a) \right) \neq (0, 0, 0) \), the condition on the rank of the matrix is equivalent to the existence of \(b_0 \in \mathbb{C} \) such that

\[
b_0 \left(\frac{\partial F}{\partial x_1}(a) \right) + (b_1, b_2, b_3) \begin{pmatrix}
\frac{\partial^2 F}{\partial x_1 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_1 \partial x_3}(a) \\
\frac{\partial^2 F}{\partial x_2 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_2 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_2 \partial x_3}(a) \\
\frac{\partial^2 F}{\partial x_3 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_3 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_3 \partial x_3}(a)
\end{pmatrix}
= 0.
\]

Then \(F_1(a, b) = 0 \) implies \(F_2(a, b) = 0 \), because

\[
F_2(a, b) = \frac{1}{2} \begin{pmatrix} b_1 & b_2 & b_3 \end{pmatrix} \begin{pmatrix}
\frac{\partial^2 F}{\partial x_1 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_1 \partial x_3}(a) \\
\frac{\partial^2 F}{\partial x_2 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_2 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_2 \partial x_3}(a) \\
\frac{\partial^2 F}{\partial x_3 \partial x_1}(a) & \frac{\partial^2 F}{\partial x_3 \partial x_2}(a) & \frac{\partial^2 F}{\partial x_3 \partial x_3}(a)
\end{pmatrix}
\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}
\]

\[
= - \frac{b_0}{2} \begin{pmatrix} \frac{\partial F}{\partial x_1}(a) & \frac{\partial F}{\partial x_2}(a) & \frac{\partial F}{\partial x_3}(a) \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = - \frac{b_0}{2} F_1(a, b).
\]
Hence, \(p \in X \) is contained in \(B \) if and only if there exists \([b_0 : b_1 : b_2 : b_3] \in \mathbb{P}^3\) such that

\[
\begin{pmatrix} b_0 & b_1 & b_2 & b_3 \\ \frac{\partial F}{\partial x_1}(a) & \frac{\partial^2 F}{\partial x_1^2}(a) & \frac{\partial^2 F}{\partial x_1 x_2}(a) & \frac{\partial^2 F}{\partial x_1 x_3}(a) \\ \frac{\partial F}{\partial x_2}(a) & \frac{\partial^2 F}{\partial x_2^2}(a) & \frac{\partial^2 F}{\partial x_2 x_1}(a) & \frac{\partial^2 F}{\partial x_2 x_3}(a) \\ \frac{\partial F}{\partial x_3}(a) & \frac{\partial^2 F}{\partial x_3^2}(a) & \frac{\partial^2 F}{\partial x_3 x_1}(a) & \frac{\partial^2 F}{\partial x_3 x_2}(a) \end{pmatrix} = (0 \ 0 \ 0 \ 0),
\]

and it is equivalent to

\[
0 = \det \begin{pmatrix} \frac{\partial F}{\partial x_1}(a) & \frac{\partial^2 F}{\partial x_1^2}(a) & \frac{\partial^2 F}{\partial x_1 x_2}(a) & \frac{\partial^2 F}{\partial x_1 x_3}(a) \\ \frac{\partial F}{\partial x_2}(a) & \frac{\partial^2 F}{\partial x_2^2}(a) & \frac{\partial^2 F}{\partial x_2 x_1}(a) & \frac{\partial^2 F}{\partial x_2 x_3}(a) \\ \frac{\partial F}{\partial x_3}(a) & \frac{\partial^2 F}{\partial x_3^2}(a) & \frac{\partial^2 F}{\partial x_3 x_1}(a) & \frac{\partial^2 F}{\partial x_3 x_2}(a) \end{pmatrix} = \frac{a_0^2}{4} \cdot \det \begin{pmatrix} \frac{\partial^2 F}{\partial x_1 x_2}(a) & \frac{\partial^2 F}{\partial x_1 x_3}(a) & \frac{\partial^2 F}{\partial x_1 x_3}(a) \\ \frac{\partial^2 F}{\partial x_2 x_3}(a) & \frac{\partial^2 F}{\partial x_2 x_3}(a) & \frac{\partial^2 F}{\partial x_2 x_3}(a) \\ \frac{\partial^2 F}{\partial x_3 x_1}(a) & \frac{\partial^2 F}{\partial x_3 x_1}(a) & \frac{\partial^2 F}{\partial x_3 x_1}(a) \end{pmatrix}.
\]

Hence \(B \) is defined by the Hessian on \(X \setminus \{x_0 \neq 0\} \). In the same way, we can show that \(B \) is defined by the Hessian on \(X \setminus \{x_i \neq 0\} \) for \(1 \leq i \leq 3 \).

Let \(E \) be the sum of all components of \(R \) which contract to points by \(\phi \), and let \(D \) be the divisor such that \(R = D + E \). For a line \(L \) on \(X \), we denote by \(L^+ \) the corresponding component of \(Y_\infty \);

\[
L^+ = \{(p, L') \in \Gamma(\mathbb{P}^3) \mid L' = L\}.
\]

Let \(L^- \) be the other component of \(\phi^*(L) \) dominating \(L \) by \(\phi \), and let \(Y^-_\infty \) be the sum of \(L^- \) for all lines on \(X \). A point \(p \) on the cubic surface \(X \) is called an Eckardt point if there are three lines through \(p \) on \(X \).

Theorem 3.2. The divisor \(D \) is a disjoint union of nonsingular curves, \(E \) is a disjoint union of \((-2)\)-curves on \(Y \), and \(Y^-_\infty \) is a disjoint union of \((-3)\)-curves on \(Y \). The divisors \(R + Y_\infty \), \(R + Y^-_\infty \) and \(E + Y_\infty + Y^-_\infty \) are reduced simple normal crossing divisors. The branch divisor \(B \) has at most nodes as its singularities, and the singular locus of \(B \) is equal to the set of Eckardt points of \(X \). A line \(L \) on \(X \) intersects \(B \) at two points with each multiplicity 2, and

\[
\phi^* L = L^+ + L^- + \sum_{e \in L^- \cap \text{Sing}(B)} \phi^{-1}(e).
\]
Lemma 3.3. Let $F(x) = \sum c_{ijk}x_0^{3-i-j-k}x_1^ix_2^jx_3^k$ be an equation of a nonsingular cubic surface X, and let p be a point on X.

1. If $\phi^{-1}(p)$ is a set of distinct two points, then $F(x)$ is normalized by a transformation of the homogeneous coordinate to satisfy $p = [1 : 0 : 0 : 0]$, $c_{000} = c_{100} = c_{010} = c_{200} = c_{020} = 0$ and $c_{001} = c_{110} = 1$.

2. If $\phi^{-1}(p)$ is a point, then $F(x)$ is normalized by a transformation of the homogeneous coordinate to satisfy $p = [1 : 0 : 0 : 0]$, $c_{000} = c_{100} = c_{010} = c_{200} = c_{110} = 0$ and $c_{001} = c_{020} = c_{210} = 1$.

3. If $\phi^{-1}(p) \simeq \mathbb{P}^1$, then $F(x)$ is normalized by a transformation of the homogeneous coordinate to satisfy $p = [1 : 0 : 0 : 0]$, $c_{000} = c_{100} = c_{010} = c_{200} = c_{110} = c_{020} = c_{210} = c_{120} = 0$ and $c_{001} = 3c_{300} = 3c_{030} = 1$.

Proof. First, we can chose a homogeneous coordinate $[x_0 : \cdots : x_3]$ as $p = [1 : 0 : 0 : 0]$. Then $p \in X$ implies that $c_{000} = 0$. Since X is nonsingular at p, $(c_{100}, c_{010}, c_{001}) \neq (0, 0, 0)$. We may assume that $c_{001} \neq 0$. By the transformation

$$
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} \mapsto \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 c_{100} & c_{010} & c_{001}
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix},
$$

we may assume that $(c_{100}, c_{010}, c_{001}) = (0, 0, 1)$.

1. We consider the case where $\phi^{-1}(p)$ is a set of distinct two points. Then the quadratic form $c_{200}x_1^2 + c_{110}x_1x_2 + c_{020}x_2^2$ is factorized into independent linear forms:

$$
c_{200}x_1^2 + c_{110}x_1x_2 + c_{020}x_2^2 = (\alpha_1x_1 + \alpha_2x_2)(\beta_1x_1 + \beta_2x_2).
$$

By the transformation

$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix} \mapsto \begin{pmatrix}
 \alpha_1 & \alpha_2 \\
 \beta_1 & \beta_2
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix},
$$

$F(x)$ is normalized to satisfy $(c_{200}, c_{110}, c_{020}) = (0, 1, 0)$.

2. We consider the case where $\phi^{-1}(p)$ is a point. Then the quadratic form $c_{200}x_1^2 + c_{110}x_1x_2 + c_{020}x_2^2$ is the square of a nonzero linear form:

$$
c_{200}x_1^2 + c_{110}x_1x_2 + c_{020}x_2^2 = (\alpha_1x_1 + \alpha_2x_2)^2.
$$
and we may assume that \(\alpha_2 \neq 0 \). By the transformation

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 \\ \alpha_1 & \alpha_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},
\]

we may assume that \((c_{200}, c_{110}, c_{020}) = (0, 0, 1) \). If \(c_{210} \neq 0 \), then by the transformation

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{c_{210}} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},
\]

\(F(x) \) is normalized to satisfy \(c_{210} = 1 \). If \(c_{210} = 0 \) and \(c_{300} \neq 0 \), then by the transformation

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & -1/3c_{300} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},
\]

\(F(x) \) is normalized to satisfy \(c_{210} = 1 \). If \((c_{300}, c_{210}) = (0, 0) \), then \(X \) is singular at \([a : 1 : 0 : 0]\), where \(a \) is a root of the quadratic equation

\[
\frac{\partial F}{\partial x_3}(s, 1, 0, 0) = s^2 + c_{101}s + c_{201} = 0.
\]

3. We consider the case where \(\phi^{-1}(p) \simeq \mathbb{P}^1 \). Then we have \((c_{200}, c_{110}, c_{020}) = (0, 0, 0) \), and the cubic form \(c_{300}x_1^3 + c_{210}x_1^2x_2 + c_{120}x_1x_2^2 + c_{030}x_2^3 \) is factorized into nonzero linear forms;

\[
c_{300}x_1^3 + c_{210}x_1^2x_2 + c_{120}x_1x_2^2 + c_{030}x_2^3 = (\alpha_1x_1 + \alpha_2x_2)(\beta_1x_1 + \beta_2x_2)(\gamma_1x_1 + \gamma_2x_2).
\]

We have \(\alpha_1\beta_2 - \alpha_2\beta_1 \neq 0, \beta_1\gamma_2 - \beta_2\gamma_1 \neq 0, \) and \(\gamma_1\alpha_2 - \gamma_2\alpha_1 \neq 0, \) because for example if \(\alpha_1\beta_2 - \alpha_2\beta_1 = 0 \), then \(X \) is singular at \([a : -\alpha_2 : \alpha_1 : 0]\), where \(a \) is a root of the quadratic equation

\[
\frac{\partial F}{\partial x_3}(s, -\alpha_2, \alpha_1, 0) = s^2 + (c_{011}\alpha_1 - c_{101}\alpha_2)s + (c_{021}\alpha_1^2 - c_{111}\alpha_1\alpha_2 + c_{201}\alpha_2^2) = 0.
\]

Let \(\omega \in \mathbb{C} \) be a primitive 3-nd root of unity. By the transformation

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} \frac{\alpha_1\beta_2\gamma_1 + \alpha_1\beta_1\gamma_2 + \alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega}{\sqrt{d}} & -\frac{\alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega}{\sqrt{d}} \\ -\frac{\alpha_1\beta_2\gamma_1 + \alpha_1\beta_1\gamma_2 + \alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega}{\sqrt{d}} & \frac{\alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega}{\sqrt{d}} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix},
\]

where

\[
d = \det\left(\begin{array}{cc} \alpha_1\beta_2\gamma_1 + \alpha_1\beta_1\gamma_2 + \alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega \\ -\alpha_1\beta_2\gamma_1 + \alpha_2\beta_1\gamma_2 - \alpha_2\beta_2\gamma_1\omega - \alpha_1\beta_2\gamma_2\omega \end{array}\right) = (\omega - \omega^2)(\alpha_1\beta_2 - \alpha_2\beta_1)(\beta_1\gamma_2 - \beta_2\gamma_1)(\gamma_1\alpha_2 - \gamma_2\alpha_1),
\]

\(F(x) \) is normalized to satisfy \((c_{300}, c_{210}, c_{120}, c_{020}) = (\frac{1}{3}, 0, 0, \frac{1}{3}) \).
Proof of Theorem 3.2. For $p \in X$, by Lemma 3.3 we may assume that $p = [1:0:0:0]$, $c_{000} = c_{100} = c_{010} = 0$ and $c_{001} = 1$. Then

$$X \setminus \{x_0 \neq 0\} \approx \{(\xi_1, \xi_2, \xi_3) \in \mathbb{C}^3 \mid F(1, \xi_1, \xi_2, \xi_3) = 0\},$$

and (ξ_1, ξ_2) gives a local coordinate of X at p because $\frac{\partial F}{\partial x_3}(p) = c_{001} \neq 0$. For $[s_1 : s_2] \in \mathbb{P}^1$, we set a line on \mathbb{P}^3 by

$$L_{[s_1:s_2]} = \{[x_0 : \cdots : x_3] \in \mathbb{P}^3 \mid s_1x_2 = s_2x_1, \ x_3 = 0\},$$

which intersects X at p with multiplicity ≥ 2. For $0 \leq i \leq 3$, we set a polynomial by

$$f_i(\xi_1, \xi_2, \xi_3) = F_i(1, \xi_1, \xi_2, \xi_3),$$

where $F_i(x, z)$ is the polynomial defined in (3.1). Then Y is locally defined by these polynomials on a neighborhood of $(p, L_{[1:0]}) \in Y;

$$Y \approx \{(\xi_1, \xi_2, \xi_3) \in \mathbb{C}^3 \mid f_0(\xi, \zeta) = f_1(\xi, \zeta) = f_2(\xi, \zeta) = 0\}.$$

In order to give a local coordinate of Y, we divide the case into three types.

1. The case where $\phi^{-1}(p)$ is a set of distinct two points. By Lemma 3.3, we may assume that $c_{000} = c_{100} = c_{010} = c_{200} = c_{202} = 0$ and $c_{001} = c_{110} = 1$. Then we have $\phi^{-1}(p) = \{(p, L_{[1:0]}), (p, L_{[0:1]})\}$. Since

\[
\begin{vmatrix}
\frac{\partial f_0}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_0}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_0}{\partial \xi_3}(0,0,0,0) \\
\frac{\partial f_1}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_1}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_1}{\partial \xi_3}(0,0,0,0) \\
\frac{\partial f_2}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_2}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_2}{\partial \xi_3}(0,0,0,0)
\end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = -1 \neq 0,
\end{vmatrix}
\]

(ξ_1, ξ_2) gives a local coordinate of Y at $(p, L_{[1:0]})$ and ϕ is a local isomorphism in a neighborhood of $(p, L_{[1:0]})$. When $L_{[1:0]}$ is contained in X, $L_{[1:0]}^+ \subset Y$ is locally isomorphic to $\{(\xi_1, \xi_2) \mid \xi_2 = 0\}$, and when $L_{[0:1]}$ is contained in X, $L_{[0:1]}^- \subset Y$ is locally isomorphic to $\{(\xi_1, \xi_2) \mid \xi_1 = 0\}$. Hence, if $(p, L_{[1:0]}) \in L_{[1:0]}^+ \cap L_{[0:1]}^-$, then $L_{[1:0]}^+$ intersects $L_{[0:1]}^-$ transversally at $(p, L_{[1:0]}) \in Y$. In the same way, we can see the picture of a neighborhood of $(p, L_{[0:1]})$.

2. The case where $\phi^{-1}(p)$ is a point. By Lemma 3.3, we may assume that $c_{000} = c_{100} = c_{010} = c_{200} = c_{110} = 0$ and $c_{001} = c_{202} = c_{210} = 1$. Then $\phi^{-1}(p) = \{(p, L_{[1:0]})\}$. Since

\[
\begin{vmatrix}
\frac{\partial f_0}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_0}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_0}{\partial \xi_3}(0,0,0,0) \\
\frac{\partial f_1}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_1}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_1}{\partial \xi_3}(0,0,0,0) \\
\frac{\partial f_2}{\partial \xi_1}(0,0,0,0) & \frac{\partial f_2}{\partial \xi_2}(0,0,0,0) & \frac{\partial f_2}{\partial \xi_3}(0,0,0,0)
\end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ 0 & c_{010} & 1 \\ 1 & c_{202} & c_{101} \end{vmatrix} = 1 \neq 0,
\end{vmatrix}
\]
there are holomorphic functions \(\varphi_2(\xi_1, \zeta_2), \varphi_3(\xi_1, \zeta_2) \) and \(\mu_3(\xi_1, \zeta_2) \) on a neighborhood of \((\xi_1, \zeta_2) = (0, 0)\) such that

\[
\varphi_2(0, 0) = 0, \quad \varphi_3(0, 0) = 0, \quad \mu_3(0, 0) = 0
\]

and

\[
f_i(\xi_1, \varphi_2(\xi_1, \zeta_2), \varphi_3(\xi_1, \zeta_2), \zeta_2, \mu_3(\xi_1, \zeta_2)) = 0
\]

for \(0 \leq i \leq 2\). We remark that

\[
\varphi_2(\xi_1, \zeta_2) \equiv -3c_{300}\xi_1 + (-9c_{300}^2c_{101} + 9c_{300}c_{120}c_{101} + 9c_{300}c_{201} - 3c_{300}c_{101})\xi_1^2
\]

\[
+ (-6c_{300}c_{101} + 6c_{300}c_{120} - 2)\xi_1\zeta_2 - \zeta_2^2 \mod (\xi_1^3, \xi_1^2\zeta_2, \xi_1\zeta_2^2, \zeta_2^3),
\]

\[
\varphi_3(\xi_1, \zeta_2) \equiv -9c_{300}^2\xi_1 \mod (\xi_1^3, \xi_1^2\zeta_2, \xi_1\zeta_2^2, \zeta_2^3),
\]

\[
\mu_3(\xi_1, \zeta_2) \equiv (9c_{300}^2c_{101} - 9c_{300}c_{120} + 3c_{300})\xi_1^2 + 6c_{300}\xi_1\zeta_2 \mod (\xi_1^3, \xi_1^2\zeta_2, \xi_1\zeta_2^2, \zeta_2^3).
\]

Then \((\xi_1, \zeta_2)\) is a local coordinate of \(Y\) at \((p, L_{[1:0]}\)) and \(R = D\) is locally isomorphic to \(\{(\xi_1, \zeta_2) \mid \frac{\partial \varphi_2}{\partial \zeta_2}(\xi_1, \zeta_2) = 0\}\), and it is nonsingular at \((p, L_{[1:0]}\)) because

\[
\frac{\partial^2 \varphi_2}{\partial \xi_1^2}(0, 0) = -2 \neq 0.
\]

There is a holomorphic function \(\sigma(\xi_1)\) on a neighborhood of \(\xi_1 = 0\) such that \(\sigma(0) = 0\) and \(\frac{\partial \varphi_2}{\partial \zeta_2}(\xi_1, \sigma(\xi_1)) = 0\). Then \(B \subset X\) is locally isomorphic to \(\{(\xi_1, \xi_2) \mid \xi_2 = \varphi_2(\xi_1, \sigma(\xi_1))\}\), and it is nonsingular at \(p\). When \(L_{[1:0]}\) is contained in \(X\), we have \(c_{300} = 0\) and there is a holomorphic function \(\eta_2(\xi_1, \zeta_2)\) such that \(\varphi_2(\xi_1, \zeta_2) = \zeta_2\eta_2(\xi_1, \zeta_2)\). Then \(L_{[1:0]}^+ \subset Y\) is locally isomorphic to \(\{(\xi_1, \zeta_2) \mid \zeta_2 = 0\}\), and \(L_{[1:0]}^- \subset Y\) is locally isomorphic to \(\{(\xi_1, \zeta_2) \mid \eta_2(\xi_1, \zeta_2) = 0\}\).

Since

\[
\begin{pmatrix}
\frac{\partial^2 \varphi_2}{\partial \xi_1 \partial \zeta_2}(0, 0) & \frac{\partial \varphi_2}{\partial \xi_1}(0, 0) & \frac{\partial \varphi_2}{\partial \zeta_2}(0, 0) \\
\frac{\partial^2 \varphi_2}{\partial \zeta_2}(0, 0) & \frac{\partial \varphi_2}{\partial \xi_1}(0, 0) & \frac{\partial \varphi_2}{\partial \partial \zeta_2}(0, 0)
\end{pmatrix}
= \begin{pmatrix}
-2 & 0 & -2 \\
-2 & 1 & -1
\end{pmatrix},
\]

\(D\) intersects \(L_{[1:0]}^+\) and \(L_{[1:0]}^-\) transversally, and \(L_{[1:0]}^+\) intersects \(L_{[1:0]}^-\) transversally at \((p, L_{[1:0]}\)) \(Y\). Since \(L\) is locally isomorphic to \(\{(\xi_1, \xi_2) \mid \xi_2 = 0\}\) and

\[
\begin{aligned}
\varphi_2(\xi_1, \sigma(\xi_1))|_{\xi_1=0} &= 0, \\
\frac{d}{d\xi_1}(\varphi_2(\xi_1, \sigma(\xi_1)))|_{\xi_1=0} &= 0, \\
\frac{d^2}{d\xi_1^2}(\varphi_2(\xi_1, \sigma(\xi_1)))|_{\xi_1=0} &= 2 \neq 0,
\end{aligned}
\]

\(L\) intersects \(B\) at \(p\) with multiplicity 2.

3. The case where \(\phi^{-1}(p) \simeq \mathbb{P}^1\). By Lemma 3.3 we may assume that \(c_{000} = c_{100} =\)
there are holomorphic functions \(\varphi_1(\xi_2, \zeta_2), \varphi_3(\xi_2, \zeta_2) \) and \(\mu_3(\xi_2, \zeta_2) \) on a neighborhood of \(\{(\xi_2, \zeta_2) \mid \xi_2 = 0\} \) such that
\[
\varphi_1(0, \zeta_2) = 0, \quad \varphi_3(0, \zeta_2) = 0, \quad \mu_3(0, \zeta_2) = 0
\]
and
\[
f_i(\varphi_1(\xi_2, \zeta_2), \xi_2, \varphi_3(\xi_2, \zeta_2), \zeta_2, \mu_3(\xi_2, \zeta_2)) = 0
\]
for \(0 \leq i \leq 2 \). We remark that
\[
\begin{align*}
\varphi_1(\xi_2, \zeta_2) &\equiv -\xi_2^2 \xi_2 + (c_{101} + c_{011} \zeta_2 + c_{021} \zeta_2^2) \xi_2 \quad \text{mod} \ (\xi_2^3), \\
\varphi_3(\xi_2, \zeta_2) &\equiv 0 \mod (\xi_2^3), \\
\mu_3(\xi_2, \zeta_2) &\equiv (-\xi_2 - \xi_2^3) \xi_2 \quad \text{mod} \ (\xi_2^3).
\end{align*}
\]
There is a holomorphic function \(\eta_1(\xi_2, \zeta_2) \) such that
\[
\varphi_1(\xi_2, \zeta_2) = \xi_2 \eta_1(\xi_2, \zeta_2).
\]
Since \(R \) is locally isomorphic to \(\{(\xi_2, \zeta_2) \mid \xi_2 \neq 0\} \), \(E \) is locally isomorphic to \(\{(\xi_2, \zeta_2) \mid \xi_2 = 0\} \) and \(D \) is locally isomorphic to \(\{(\xi_2, \zeta_2) \mid \eta = 0\} \). We remark that \(L_{[1,\lambda]} \subset X \) if and only if \(\lambda^3 + 1 = 0 \). Hence \(p \) is an Eckardt point on \(X \).
We assume that \(\lambda^3 + 1 = 0 \). Then \(L_{[1,\lambda]} \) is locally isomorphic to \(\{(\xi_1, \xi_2) \mid \xi_2 = \lambda \xi_1\} \) and \(\phi^* L_{[1,\lambda]} \) is locally isomorphic to \(\{(\xi_2, \zeta_2) \mid \xi_2 \equiv \lambda \varphi(\xi_2, \zeta_2) \} \), hence \(L^{+}_{[1,\lambda]} + L^{-}_{[1,\lambda]} \) is locally isomorphic to \(\{(\xi_2, \zeta_2) \mid 1 = \lambda \eta_1(\xi_2, \zeta_2) \} \). Since \(\eta_1(0, \zeta_2) = -\xi_2^2 \),
\[
(0, \zeta_2) \in L^{+}_{[1,\lambda]} + L^{-}_{[1,\lambda]} \iff 1 = -\lambda \xi_2^2 \iff \xi_2^2 = \lambda^2.
\]
Then \(L^{+}_{[1,\lambda]} \) intersects \(E \) transversally at \((p, L^{+}_{[1,\lambda]}) \) by
\[
\frac{\partial}{\partial \xi_2}(1 - \lambda \eta_1) \bigg|_{(\xi_2, \zeta_2) = (0, \lambda)} = 2\lambda^2 \neq 0,
\]
and \(L^{-}_{[1,\lambda]} \) intersects \(E \) transversally at \((p, L^{-}_{[1,\lambda]}) \) by
\[
\frac{\partial}{\partial \xi_2}(1 - \lambda \eta_1) \bigg|_{(\xi_2, \zeta_2) = (0, -\lambda)} = -2\lambda^2 \neq 0.
\]
Since \(\frac{\partial n}{\partial \xi_2}(0, \zeta_2) = -2\zeta_2 \),
\[
(0, \zeta_2) \in D \iff \zeta_2 = 0.
\]
Then \(D \) intersects \(E \) transversally at \((p, L_{[1:0]})\) by
\[
\frac{\partial^2 n_1}{\partial \zeta_2^2}(0,0) = -2 \neq 0.
\]
There is a holomorphic function \(\sigma(\xi_2) \) on a neighborhood of \(\xi_2 = 0 \) such that \(\sigma(0) = 0 \) and \(\frac{\partial n}{\partial \xi_2}(\xi_2, \sigma(\xi_2)) = 0 \). Then the image \(B_1 \) of the local component of \(D \) at \((p, L_{[1:0]})\) by \(\sigma(\xi_2) \) is locally isomorphic to \(\{(\xi_1, \xi_2) \mid \xi_1 = \varphi_1(\xi_2, \sigma(\xi_2))\} \). Since
\[
\frac{\partial}{\partial \xi_2}(\varphi_1(\xi_2, \sigma(\xi_2)))|_{\xi_2=0} = 0,
\]
\(B_1 \) intersects \(L_{[1:1]} \) transversally at \(p \).
In the same way, we can show that \(D \) intersects \(E \) transversally at \((p, L_{[0:1]})\), and there is a holomorphic function \(\tau(\xi_1) \) on a neighborhood of \(\xi_1 = 0 \) such that \(\frac{d\tau}{d\xi_1}(0) = 0 \) and the image \(B_2 \) of the local component of \(D \) at \((p, L_{[0:1]})\) by \(\phi \) is locally isomorphic to \(\{(\xi_1, \xi_2) \mid \xi_2 = \tau(\xi_1)\} \). Then \(B_2 \) intersects \(L_{[1:1]} \) and \(B_1 \) transversally at \(p \). This implies that \(B \) has a node at \(p \), and \(L_{[1:1]} \) intersects \(B \) at \(p \) with multiplicity 2.

By the above observation, we have
\[
\phi^* L = L^+ + L^- + \sum_{e \in L \cap \text{Sing}(B)} \phi^{-1}(e)
\]
for a line \(L \) on \(X \), and \(B \cap L \) is a set of distinct two point because \((B, L) = 4\). Hence we have
\[
(L^-. L^-) = (L^-. \phi^* L - L^+ - \sum_{e \in L \cap \text{Sing}(B)} \phi^{-1}(e))
\]
\[
= (L. L) - (L^-. L^+ + \sum_{e \in L \cap \text{Sing}(B)} \phi^{-1}(e)) = -1 - 2 = -3.
\]
Each component of \(E \) corresponds to an Eckardt point on \(X \), and it is a \((-2)\)-curve on \(Y \), because \(\phi \) is the canonical map of \(Y \) by Proposition 2.1.

Remark 3.4. There are at most two Eckardt points on a line \(L \subset X \), hence there are at most 18 Eckardt points on \(X \). If \(X \) has 18 Eckardt points, then \(X \) is isomorphic to the Fermat cubic surface \([11]\).

Remark 3.5. Let \(\phi' : Y' \to X \) be the finite double cover of \(X \) branched along \(B \). Then \(Y' \) may have ordinary double points, and \(Y \) is the minimal resolution of \(Y' \).

Remark 3.6. By Theorem 3.2 for lines \(L_1, L_2, L \) on \(X \) and Eckardt points \(e_1, e_2, e \) on
X, the intersection numbers on Y are computed by

$$(L_1^.L_2^+) = (L_1^.L_2^-) = \begin{cases} 0 & \text{if } L_1 \neq L_2, \\ -3 & \text{if } L_1 = L_2, \end{cases}$$

$$(L_1^.L_2^-) = \begin{cases} 0 & \text{if } L_1 \cap L_2 = \emptyset, \\ 1 & \text{if } L_1 \cap L_2 \text{ is a point which is not an Eckardt point,} \\ 0 & \text{if } L_1 \cap L_2 \text{ is a point which is an Eckardt point,} \\ 0 & \text{if } L_1 = L_2 \text{ and there are two Eckardt points on } L_1 = L_2, \\ 1 & \text{if } L_1 = L_2 \text{ and there is only one Eckardt point on } L_1 = L_2, \\ 2 & \text{if } L_1 = L_2 \text{ and there are no Eckardt points on } L_1 = L_2, \end{cases}$$

$$(\phi^{-1}(e_1).\phi^{-1}(e_2)) = \begin{cases} 0 & \text{if } e_1 \neq e_2, \\ -2 & \text{if } e_1 = e_2, \end{cases}$$

$$(L^+.\phi^{-1}(e)) = (L^-.\phi^{-1}(e)) = \begin{cases} 0 & \text{if } e \notin L, \\ 1 & \text{if } e \in L. \end{cases}$$

Proposition 3.7. Any (-2)-curve on Y is a component of E, and any (-3)-curve on Y is a component of $Y_\infty + Y^-_\infty$.

Proof. Let C be a (-2)-curve on Y. Since $(\phi_*C. \mathcal{O}_\mathbb{P}^3(1)|_X) = (C, K_Y)$, the image of C by the morphism ϕ is a point on X, hence C is a component of E. Let C be a (-3)-curve on Y. Since $(\phi_*C. \mathcal{O}_\mathbb{P}^3(1)|_X) = (C, K_Y)$, the image of C by the morphism ϕ is a line on X, hence C is a component of $Y_\infty + Y^-_\infty$. \hfill \square

Remark 3.8. We can check that the divisor $Y_\infty + Y^-_\infty$ is connected. Hence, if a divisor W on Y is a disjoint union of irreducible components of $Y_\infty + Y^-_\infty$, and W contains a component of ϕ^*L for any line L on X, then $W = Y_\infty$ or $W = Y^-_\infty$.

Let $\psi = \psi|_Y : Y \to Z = Z_3 \subset \lambda(\mathbb{P}^3)$ be the second projection in Remark 2.5, and let $[\mathcal{O}_Z(1)] \in H^2(Z, \mathbb{Z})$ be the class of a hyperplane section by the Plücker embedding $\Lambda(\mathbb{P}^3) \subset \mathbb{P}^5$. Let Z_∞ be the set of all lines on the cubic surface X. For a line $L_0 \in Z_\infty$, we set $Z_\infty(L_0) = \{L \in Z_\infty \mid L_0 \neq L, \ L_0 \cap L \neq \emptyset\}$, which is a set of 10 lines.

Proposition 3.9. There are the following relations in the Néron-Severi group $\text{NS}(Y)$:

$$\psi^*[\mathcal{O}_Z(3)] = \phi^*[\mathcal{O}_X(3)] + \sum_{L \in Z_\infty} L^+ \quad (3.2)$$

and

$$\psi^*[\mathcal{O}_Z(1)] = 3\phi^*L_0 - L_0^+ + \sum_{L \in Z_\infty(L_0)} L^+ \quad (3.3)$$

for any line $L_0 \in Z_\infty$.

15
Proof. Since $Y_{\infty} = \bigsqcup_{L \in Z_{\infty}} L^+$, the relation (3.2) is given by

$$\mathcal{O}_Y(Y_{\infty}) \simeq S^{\otimes 3}|_Y \simeq \psi^* \mathcal{O}_Z(3) \otimes \phi^* \mathcal{O}_X(-3).$$

For $L_0 \in \Lambda(\mathbb{P}^3)$,

$$H_{L_0} = \{ L \in \Lambda(\mathbb{P}^3) \mid L_0 \cap L \neq \emptyset \}$$

is a hyperplane section by the Plücker embedding $\Lambda(\mathbb{P}^3) \subset \mathbb{P}^5$. We prove that

$$\psi^* H_{L_0} = 2L_0^+ + 3L_0^- + 3 \sum_{e \in L_0 \cap \text{Sing}(B)} \phi^{-1}(e) + \sum_{L \in Z_{\infty}(L_0)} L^+$$

for $L_0 \in Z_{\infty}$. It gives the relation (3.3) by the relation in Theorem 3.2. For $(p, L) \in \psi^{-1}(H_{L_0}) \subset Y$, if $p \in L_0$ then

$$(p, L) \in \phi^{-1}(L_0) = L_0^+ \cup L_0^- \cup \bigcup_{e \in L_0 \cap \text{Sing}(B)} \phi^{-1}(e),$$

and if $p \notin L_0$ then $L \subset X$. Hence the support of $\psi^* H_{L_0}$ is

$$\psi^{-1}(H_{L_0}) = L_0^+ \cup L_0^- \cup \bigcup_{e \in L_0 \cap \text{Sing}(B)} \phi^{-1}(e) \cup \bigcup_{L \in Z_{\infty}(L_0)} L^+.$$

We compute the multiplicity of each component.

1. The case where there are no Eckardt points on the line L_0. We set integers a_+, a_- and a_L by

$$\psi^*[\mathcal{O}_Z(1)] = \psi^* H_{L_0} = a_+ L_0^+ + a_- L_0^- + \sum_{L \in Z_{\infty}(L_0)} a_L L^+. $$

Since $(\psi^*[\mathcal{O}_Z(1)]. L^+) = 0$ for $L \in Z_{\infty}$,

$$0 = (\psi^* H_{L_0}. L^+) = \begin{cases} -3a_+ + 2a_- & \text{if } L = L_0, \\ a_- - 3a_L & \text{if } L \in Z_{\infty}(L_0). \end{cases}$$

By the relation (3.2),

$$(\psi^*[\mathcal{O}_Z(3)]. L_0^-) = (\phi^*[\mathcal{O}_X(3)]. L_0^-) + (L_0^+. L_0^-) + \sum_{L \in Z_{\infty}(L_0)} (L^+. L_0^-) = 3 + 2 + 10,$$

hence we have

$$5 = (\psi^* H_{L_0}. L_0^-) = 2a_+ - 3a_- + \sum_{L \in Z_{\infty}(L_0)} a_L.$$

These equations imply that $a_+ = 2$, $a_- = 3$ and $a_L = 1$ for $L \in Z_{\infty}(L_0)$.

16
2. The case where there is only one Eckardt point \(e \). We denote by \(Z_\infty(e, L_0) \subset Z_\infty(L_0) \) the set of two lines through the point \(e \). We set integers \(a_+, a_-, b \) and \(a_L \) by

\[
\psi^*[OZ(1)] = \psi^* H_{L_0} = a_+ L_0^+ + a_- L_0^- + b\phi^{-1}(e) + \sum_{L \in Z_\infty(L_0)} a_L L^+.
\]

Since \((\psi^*[OZ(1)]. L^+) = 0 \) for \(L \in Z_\infty \),

\[
0 = (\psi^* H_{L_0}, L^+) = \begin{cases}
-3a_+ + a_- + b & \text{if } L = L_0, \\
2a_- - 3a_L & \text{if } L \in Z_\infty(L_0) \setminus Z_\infty(e, L_0), \\
b - 3a_L & \text{if } L \in Z_\infty(e, L_0).
\end{cases}
\]

By the relation (3.2),

\[
(\psi^*[OZ(3)]. L^-) = (\phi^*[OX(3)]. L^-) + (L_0^+. L^-) + \sum_{L \in Z_\infty(L_0)} (L^+. L^-) = 3 + 1 + 8
\]

and

\[
(\psi^*[OZ(3)]. \phi^{-1}(e)) = (\phi^*[OX(3)]. \phi^{-1}(e)) + (L_0^+. \phi^{-1}(e)) + \sum_{L \in Z_\infty(L_0)} (L^+. \phi^{-1}(e))
\]

\[
= 0 + 1 + 2,
\]

hence we have

\[
4 = (\psi^* H_{L_0}, L^-) = a_+ - 3a_- + b + \sum_{L \in Z_\infty(L_0) \setminus Z_\infty(e, L_0)} a_L
\]

and

\[
1 = (\psi^* H_{L_0}, \phi^{-1}(e)) = a_+ + a_- - 2b + \sum_{L \in Z_\infty(e, L_0)} a_L.
\]

These equations imply that \(a_+ = 2, a_- = 3, b = 3 \) and \(a_L = 1 \) for \(L \in Z_\infty(L_0) \).

3. The case where there are two Eckardt points \(e_1, e_2 \) on the line \(L_0 \). We set integers \(a_+, a_-, b_1, b_2 \) and \(a_L \) by

\[
\psi^*[OZ(1)] = \psi^* H_{L_0} = a_+ L_0^+ + a_- L_0^- + b_1\phi^{-1}(e_1) + b_2\phi^{-1}(e_2) + \sum_{L \in Z_\infty(L_0)} a_L L^+.
\]

Since \((\psi^*[OZ(1)]. L^+) = 0 \) for \(L \in Z_\infty \),

\[
0 = (\psi^* H_{L_0}, L^+)
\]

\[
= \begin{cases}
-3a_+ + b_1 + b_2 & \text{if } L = L_0, \\
a_- - 3a_L & \text{if } L \in Z_\infty(L_0) \setminus (Z_\infty(e, L_0) \cup Z_\infty(e_2, L_0)), \\
b_1 - 3a_L & \text{if } L \in Z_\infty(e_1, L_0).
\end{cases}
\]
By the relation 3.2,
\[(\psi^*[\mathcal{O}_Z(3)]. L_0^-) = (\phi^*[\mathcal{O}_X(3)]. L_0^-) + \sum_{L \in Z_{\infty}(L_0^\perp)} (L^+. L_0^-) = 3 + 0 + 6 \]
and
\[(\psi^*[\mathcal{O}_Z(3)]. \phi^{-1}(e_i)) = (\phi^*[\mathcal{O}_X(3)]. \phi^{-1}(e_i)) + \sum_{L \in Z_{\infty}(L_0^\perp)} (L^+. \phi^{-1}(e_i)) \]
= 0 + 1 + 2,

hence we have
\[3 = (\psi^* H_{L_0^-}. L_0^-) = -3a_- + b_1 + b_2 + \sum_{L \in Z_{\infty}(L_0) \setminus (Z_{\infty}(e_1, L_0) \cup Z_{\infty}(e_2, L_0))} a_L \]
and
\[1 = (\psi^* H_{L_0^-}. \phi^{-1}(e_i)) = a_+ + a_- - 2b_i + \sum_{L \in Z_{\infty}(e_i, L_0)} a_L. \]

These equations imply that \(a_+ = 2, a_- = 3, b_1 = 3, b_2 = 3\) and \(a_L = 1\) for \(L \in Z_{\infty}(L_0)\).

\[\square\]

4 Periods of cubic 3-folds

We review some works on cubic 3-folds by Clemens-Griffiths \[3\] and Tjurin \[12\]. Let \(V \subset \mathbb{P}^4\) be a nonsingular cubic 3-folds. We define a subvariety \(W\) of \(\mathbb{P}^4 \times \Lambda(\mathbb{P}^4)\) by
\[W = \{(p, L) \in \mathbb{P}^4 \times \Lambda(\mathbb{P}^4) \mid p \in L \subset V\},\]
and we define a subvariety \(S\) of \(\Lambda(\mathbb{P}^4)\) by
\[S = \{L \in \Lambda(\mathbb{P}^4) \mid L \subset V\},\]
which is a nonsingular surface and called the Fano surface of lines on \(V\). The first projection \(\phi : W \to V\) is a generically finite morphism of degree 6, and the second projection \(\psi : W \to S\) is a \(\mathbb{P}^1\)-bundle.

Theorem 4.1 (Clemens-Griffiths \[3\], Theorem 11.19). The homomorphism
\[\phi_* \circ \psi^* : H^3(S, \mathbb{Z}) \longrightarrow H^3(V, \mathbb{Z})\]
is an isomorphism of Hodge structures.
Let J be the intermediate Jacobian of the Hodge structure $H^3(V, \mathbb{Z})$. Then the complex torus J is a principally polarized abelian variety of dimension 5. We denote by $\theta \in H^2(J, \mathbb{Z})$ the class of the polarization. Let A be the Albanese variety of S, and $\iota : S \to A$ the Albanese morphism. By Theorem 4.3, there is a natural isomorphism $A \simeq J$ of abelian varieties. Let us denote by $\theta \in H^2(A, \mathbb{Z})$ the corresponding principal polarization on A. The primitive part of $H^2(A, \mathbb{Z})$ is defined as the space

$$H^2_{\text{prim}}(A, \mathbb{Z}) = \ker (\theta^{\otimes 4}: H^2(A, \mathbb{Z}) \to H^{10}(A, \mathbb{Z}); \alpha \mapsto \theta^{\otimes 4} \cup \alpha),$$

and the primitive part of $H^2(S, \mathbb{Z})$ is defined as the space

$$H^2_{\text{prim}}(S, \mathbb{Z}) = \ker ([\mathcal{O}_S(1)]: H^2(S, \mathbb{Z}) \to H^4(S, \mathbb{Z}); \beta \mapsto [\mathcal{O}_S(1)] \cup \beta),$$

where $[\mathcal{O}_S(1)] \in H^2(S, \mathbb{Z})$ is the class of a hyperplane section by the Plücker embedding $\Lambda(P^4) \subset P^9$. We define a symmetric form on $H^2(A, \mathbb{Z})$ by

$$\langle , \rangle_A : H^2(A, \mathbb{Z}) \times H^2(A, \mathbb{Z}) \to \mathbb{Z}; (\alpha_1, \alpha_2) \mapsto \deg \left(\left(\frac{\theta^{\otimes 3}}{3!} \cup \alpha_1 \cup \alpha_2 \right) \cap [A] \right),$$

and a symmetric form on $H^2(S, \mathbb{Z})$ by

$$\langle , \rangle_S : H^2(S, \mathbb{Z}) \times H^2(S, \mathbb{Z}) \to \mathbb{Z}; (\beta_1, \beta_2) \mapsto \deg ((\beta_1 \cup \beta_2) \cap [S]).$$

We remark that these symmetric forms give polarizations of Hodge structures on the primitive part $H^2_{\text{prim}}(A, \mathbb{Z})$ and $H^2_{\text{prim}}(S, \mathbb{Z})$.

Proposition 4.2. The homomorphism $\iota^* : H^2(A, \mathbb{Z}) \to H^2(S, \mathbb{Z})$ induces the isomorphism

$$(H^2_{\text{prim}}(A, \mathbb{Z}), \langle , \rangle_A) \simeq (H^2_{\text{prim}}(S, \mathbb{Z}), \langle , \rangle_S)$$

of polarized Hodge structures.

Proof. By [3] Lemma 9.13 and (10.14), the homomorphism $\iota^* : H^2(A, \mathbb{Z}) \to H^2(S, \mathbb{Z})$ is injective with a finite cokernel. By [4] (2.3.5), the homology group $H_1(S, \mathbb{Z})$ has no torsion element, and the cokernel of $\iota_* : H_2(S, \mathbb{Z}) \to H_2(A, \mathbb{Z})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Hence $H^2(S, \mathbb{Z})$ has no torsion element, and the cokernel of $\iota^* : H^2(A, \mathbb{Z}) \to H^2(S, \mathbb{Z})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. Since $[\iota(S)] = \frac{\theta^{\otimes 3}}{6} \in H^6(A, \mathbb{Z})$ by [3] Proposition 13.1, we have

$$\iota_*((\iota^*\alpha_1 \cup \iota^*\alpha_2) \cap [S]) = (\alpha_1 \cup \alpha_2) \cap \iota_*[S] = (\alpha_1 \cup \alpha_2) \cap \left(\frac{\theta^{\otimes 3}}{6} \cap [A] \right) = \left(\frac{\theta^{\otimes 3}}{6} \cup \alpha_1 \cup \alpha_2 \right) \cap [A]$$

for $\alpha_1, \alpha_2 \in H^2(A, \mathbb{Z})$, hence the homomorphism ι^* is compatible with the symmetric forms. Let $\tau \in H^2(S, \mathbb{Z})$ be the class of an incidence divisor [3] §2. Since $3\tau = [\mathcal{O}_S(1)]$ by [3] §10, the primitive part $H^2_{\text{prim}}(S, \mathbb{Z})$ is equal to the space orthogonal to τ. Since $2\tau = \iota^*\theta$ by [3] Lemma 11.27, we have

$$\iota_*((2\tau \cup \iota^*\alpha) \cap [S]) = \iota_*((\iota^*\theta \cup \iota^*\alpha) \cap [S]) = \left(\frac{\theta^{\otimes 4}}{6} \cup \alpha \right) \cap [A]$$

19
for any $\alpha \in H^2(A,\mathbb{Z})$. Hence we have a commutative diagram of exact sequences

$$
\begin{array}{cccccc}
0 & & 0 & & \\
\downarrow & & \downarrow & & \\
H^2_{\text{prim}}(A,\mathbb{Z}) & \longrightarrow & H^2_{\text{prim}}(S,\mathbb{Z}) & \longrightarrow & \\
\downarrow & & \downarrow & & \\
0 & \longrightarrow & H^2(A,\mathbb{Z}) & \longrightarrow & H^2(S,\mathbb{Z}) & \longrightarrow & \mathbb{Z}/2\mathbb{Z} & \longrightarrow & 0 \\
\theta^{1/4} & \downarrow & \iota^* & \downarrow & \tau \\
\mathbb{Z} & = & \\
& & \\
\end{array}
$$

Since θ is a principal polarization, the image of the homomorphism

$$
\frac{\theta^{1/4}}{12} : H^2(A,\mathbb{Z}) \to \mathbb{Z}; \alpha \mapsto \deg \left(\left(\frac{\theta^{1/4}}{12} \cup \alpha \right) \cap [A] \right)
$$

is $2\mathbb{Z}$. And the image of the homomorphism

$$
\tau : H^2(S,\mathbb{Z}) \to \mathbb{Z}; \alpha \mapsto \deg \left((\tau \cup \alpha) \cap [S] \right)
$$

is not contained in $2\mathbb{Z}$, because $\deg (\tau^{1/2} \cap [S]) = 5 \notin 2\mathbb{Z}$ by [3, (10.8)]. Hence $\tau : H^2(S,\mathbb{Z}) \to \mathbb{Z}$ is surjective, and $\iota^* : H^2_{\text{prim}}(A,\mathbb{Z}) \to H^2_{\text{prim}}(S,\mathbb{Z})$ is an isomorphism.

\section{5 Periods of cubic surfaces}

Let $X \subset \mathbb{P}^3$ be a nonsingular cubic surface defined by $F(x_0,\ldots,x_3) \in \mathbb{C}[x_0,\ldots,x_3]$. Let $V \subset \mathbb{P}^4$ be the cubic 3-fold defined by $F(x_0,\ldots,x_3) + x_4^3 \in \mathbb{C}[x_0,\ldots,x_4]$. Then the projection

$$
\rho : V \to \mathbb{P}^3; \ [x_0 : \cdots : x_3 : x_4] \mapsto [x_0 : \cdots : x_3]
$$

is the triple Galois cover branched along the cubic surface X. Let S be the Fano surface of lines on V. Then the Galois group $\text{Gal}(\rho) \simeq \mathbb{Z}/3\mathbb{Z}$ of the cover ρ acts on the surface S.

\textbf{Lemma 5.1.} Let L be a line in \mathbb{P}^4. If L is contained in V, then its image $\rho(L) \subset \mathbb{P}^3$ by ρ is a line in \mathbb{P}^3, and it is contained in X or intersects X at only one point with multiplicity 3.

\textbf{Proof.} Let $H_4 \subset \mathbb{P}^4$ be the hyperplane defined by the equation $x_4 = 0$. If L is contained in $H_4 \cap V$, then it is clear that $\rho(L)$ is a line contained in X. We assume that $L \cap H_4$ is a point $[a_0 : \cdots : a_3 : 0] \in \mathbb{P}^4$. By taking a point $[b_0 : \cdots : b_3 : 1] \in L \setminus H_4$, the line L is written as

$$
L = \{ [a_0 t_0 + b_0 t_1 : \cdots : a_3 t_0 + b_3 t_1 : t_1] \in \mathbb{P}^4 \mid [t_0 : t_1] \in \mathbb{P}^1 \}.
$$
If $L \subset V$, then
\[
F(a_0t_0 + b_0t_1, \ldots, a_3t_0 + b_3t_1) + t_1^3 = 0 \in C[t_0, t_1].
\]
Since $F(b_0, \ldots, b_3) + 1 = 0$ and $F(a_0, \ldots, a_3) = 0$, we have $(b_1, \ldots, b_3) \neq (0, \ldots, 0)$ and $[a_0 : \cdots : a_3] \neq [b_0 : \cdots : b_3]$, hence
\[
\rho(L) = \{[a_0t_0 + b_0t_1 : \cdots : a_3t_0 + b_3t_1] \in P^3 \mid [t_0 : t_1] \in P^1\}.
\]
is a line in P^3. Since $F(a_0t_0 + b_0t_1, \ldots, a_3t_0 + b_3t_1) = -t_1^3$, the line $\rho(L)$ intersects X at the point $[a_0 : \cdots : a_3] \in P^3$ with multiplicity 3. \hfill \Box

Let $Z = Z_3$ be the surface in Remark 2.5. By Lemma 5.1, the line $\rho(L)$ represents a point of Z for a line L on V. Let us abuse notation by
\[
\rho : S \longrightarrow Z; \ L \longmapsto \rho(L).
\]
We set
\[
S_{\infty} = \{L \in \Lambda(P^4) \mid L \subset V \cap H_4\},
\]
which is a set of 27 points on S.

Lemma 5.2. $\rho : S \rightarrow Z$ is the quotient morphism by the Gal(ρ)-action, and S_{∞} is the set of the fixed point by the Gal(ρ)-action on S.

Proof. Let $\omega \in C$ be a primitive 3-rd root of unity. The automorphism
\[
\sigma : V \longrightarrow V; \ [x_0 : \cdots : x_3 : x_4] \longmapsto [x_0 : \cdots : x_3 : \omega x_4]
\]
is a generator of the Galois group Gal(ρ). For a line L on V, we have $\rho(L) = \rho(\sigma(L))$, and if $L = \sigma(L)$, then L is contained in H_4. Hence S_{∞} is the set of fixed points of the Gal(ρ)-action on S.

Let
\[
L' = \{[a_0t_0 + b_0t_1 : \cdots : a_3t_0 + b_3t_1] \in P^3 \mid [t_0 : t_1] \in P^1\}
\]
be a line in P^3 which intersects X at $[a_0 : \cdots : a_3]$ with multiplicity ≥ 3. Then there exists $c \in C$ such that
\[
F(a_0t_0 + b_0t_1, \ldots, a_3t_0 + b_3t_1) = ct_1^3.
\]
If a line
\[
L = \{[a_0t_0 + b_0t_1 : \cdots : a_3t_0 + b_3t_1 : a_4t_0 + b_4t_1] \in P^4 \mid [t_0 : t_1] \in P^1\}
\]
is contained in V, then
\[
-(a_4t_0 + b_4t_1)^3 = F(a_0t_0 + b_0t_1, \ldots, a_3t_0 + b_3t_1) = ct_1^3,
\]
hence $a_4 = 0$ and $b_4^3 = -c$. This imply that the morphism $\rho : S \rightarrow Z$ is surjective, and the fiber at $L' \in Z$ is contained in a Gal(ρ)-orbit. \hfill \Box
Remark 5.3. Each singularity of Z is isomorphic to the quotient of \mathbb{C}^2 by the cyclic group generated by the action $(a, b) \mapsto (\omega a, \omega b)$. Hence we have

$$H^i(Z, Z \setminus Z_\infty, Z) \simeq \begin{cases} (Z/3Z)^{\oplus 27} & \text{if } i = 3, \\ Z^{\oplus 27} & \text{if } i = 4, \\ 0 & \text{if } i \neq 3, 4. \end{cases}$$

Let $\phi : Y = Y_3 \to X$ be the double cover branched along its Hessian, and let Y_∞ be the distinguished divisor on Y which is introduced in Section 2. By Remark 5.3, the restriction homomorphism $H^2(Z, \mathbb{Z}) \to H^2(Z \setminus Z_\infty, \mathbb{Z}) \simeq H^2(Y \setminus Y_\infty, \mathbb{Z})$ is injective with a finite cokernel, hence $\psi^* : H^2(Z, \mathbb{Z}) \to H^2(Y, \mathbb{Z})$ is injective. Since $H^2(Y, \mathbb{Z})$ is torsion free, $H^2(Z, \mathbb{Z})$ is also torsion free. The period integral

$$H^0(Y, \Omega^1_Y((\log Y)_\infty)) \to \text{Hom}(H_2(Y \setminus Y_\infty, \mathbb{Z}), \mathbb{C}); \omega \mapsto [\gamma \mapsto \int_\gamma \omega]$$

defines Hodge structures of pure weight 2 on $H^2(Z, \mathbb{Z})$ and $H^2(Z \setminus Z_\infty, \mathbb{Z})$. For $\gamma \in H^2(Z \setminus Z_\infty, \mathbb{Z})$, there is a unique $\bar{\gamma} \in H^2(Z, \mathbb{Q})$ such that the restriction of $\bar{\gamma}$ to $H^2(Z \setminus Z_\infty, \mathbb{Q})$ is equal to the class of γ in the rational cohomology group. We define the primitive part of $H^2(Z, \mathbb{Z})$ and $H^2(Z \setminus Z_\infty, \mathbb{Z})$ by

$$H^2_{\text{prim}}(Z, \mathbb{Z}) = \text{Ker} \left([\mathcal{O}_Z(1)] : H^2(Z, \mathbb{Z}) \to H^4(Z, \mathbb{Z}); \gamma \mapsto [\mathcal{O}_Z(1)] \cup \gamma \right),$$

$$H^2_{\text{prim}}(Z \setminus Z_\infty, \mathbb{Z}) = \text{Ker} \left([\mathcal{O}_Z(1)] : H^2(Z \setminus Z_\infty, \mathbb{Z}) \to H^4(Z, \mathbb{Q}); \gamma \mapsto [\mathcal{O}_Z(1)] \cup \gamma \right).$$

We define symmetric forms on $H^2(Z, \mathbb{Z})$ and $H^2(Z \setminus Z_\infty, \mathbb{Z})$ by

$$\langle \cdot, \cdot \rangle : H^2(Z, \mathbb{Z}) \times H^2(Z, \mathbb{Z}) \to \mathbb{Z}; (\gamma_1, \gamma_2) \mapsto \text{deg}((\gamma_1 \cup \gamma_2) \cap [Z]),$$

$$\langle \cdot, \cdot \rangle : H^2(Z \setminus Z_\infty, \mathbb{Z}) \times H^2(Z \setminus Z_\infty, \mathbb{Z}) \to \mathbb{Q}; (\gamma_1, \gamma_2) \mapsto \text{deg}((\gamma_1 \cup \gamma_2) \cap [Z]).$$

These symmetric forms give polarizations of Hodge structures on the primitive part $H^2_{\text{prim}}(Z, \mathbb{Z})$ and $H^2_{\text{prim}}(Z \setminus Z_\infty, \mathbb{Z})$.

Proposition 5.4. The homomorphism

$$H^2(Z \setminus Z_\infty, \mathbb{Z}) \overset{\rho^*}{\to} H^2(S \setminus S_\infty, \mathbb{Z}) \simeq H^2(S, \mathbb{Z})$$

induces an isomorphism $H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}} \simeq H^2(S, \mathbb{Z})^{\text{Gal}(\rho)}$ of Hodge structures and an isomorphism

$$(H^2_{\text{prim}}(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}}, \langle \cdot, \cdot \rangle) \simeq (H^2_{\text{prim}}(S, \mathbb{Z})^{\text{Gal}(\rho)}, \langle \cdot, \cdot \rangle)$$

of polarized Hodge structures.
Proof. Since $\rho : S \backslash S_\infty \to Z \backslash Z_\infty$ is a finite étale Galois cover, we have the Cartan-Leray spectral sequence

$$E_2^{p,q} = H^p(\text{Gal}(\rho), H^q(S \backslash S_\infty, \mathbb{Z})) \Rightarrow H^{p+q}(Z \backslash Z_\infty, \mathbb{Z}).$$

Since the $\text{Gal}(\rho)$-action on $H^0(S \backslash S_\infty, \mathbb{Z}) \simeq H^0(S, \mathbb{Z}) \simeq \mathbb{Z}$ is trivial, we have

$$H^p(\text{Gal}(\rho), H^0(S \backslash S_\infty, \mathbb{Z})) \simeq \begin{cases} \mathbb{Z} & \text{if } p = 0, \\ 0 & \text{if } p \text{ is odd}, \\ \mathbb{Z}/3\mathbb{Z} & \text{if } p \neq 0 \text{ is even}. \end{cases}$$

Since $H^1(S \backslash S_\infty, \mathbb{Z}) \simeq H^1(S, \mathbb{Z}) \simeq H^2(V, \mathbb{Z})$ is a free \mathbb{Z}-module of rank 10 and the $\text{Gal}(\rho)$-action has no invariant part, it is regarded as a free $\mathbb{Z}[\omega]$-module of rank 5, where $\mathbb{Z}[\omega] \simeq \mathbb{Z}[\text{Gal}(\rho)]/(\sum_{\sigma \in \text{Gal}(\rho)} \sigma)$ is the ring of Eisenstein integers $[\mathbb{P} (2.2)]$. Hence we have

$$H^p(\text{Gal}(\rho), H^1(S \backslash S_\infty, \mathbb{Z})) \simeq \begin{cases} (\mathbb{Z}/3\mathbb{Z})^{\oplus 5} & \text{if } p \text{ is odd}, \\ 0 & \text{if } p \text{ is even}. \end{cases}$$

By the spectral sequence, the homomorphism

$$H^2(Z \backslash Z_\infty, \mathbb{Z}) \rightarrow H^0(\text{Gal}(\rho), H^2(S \backslash S_\infty, \mathbb{Z})) \simeq H^2(S, \mathbb{Z})^{\text{Gal}(\rho)}$$

is surjective, and its kernel is of order 3^6. Since $\rho^*\mathcal{O}_Z(1) = \mathcal{O}_S(1)$, we have

$$\rho_*(([\mathcal{O}_S(1)] \cup \rho^*\bar{\gamma}) \cap [S]) = ([\mathcal{O}_Z(1)] \cup \bar{\gamma}) \cap \rho_*[S] = ([\mathcal{O}_Z(1)] \cup \bar{\gamma}) \cap 3[\mathbb{Z}]$$

for $\gamma \in H^2(Z \backslash Z_\infty, \mathbb{Z})$, hence $\gamma \in H^2_{\text{prim}}(Z \backslash Z_\infty, \mathbb{Z})$ if and only if $\rho^*\bar{\gamma} \in H^2_{\text{prim}}(S, \mathbb{Q})$. And we have

$$\deg ((\rho^*\bar{\gamma}_1 \cup \rho^*\bar{\gamma}_2) \cap [S]) = \deg ((\bar{\gamma}_1 \cup \bar{\gamma}_2) \cap \rho_*[S]) = 3 \deg ((\bar{\gamma}_1 \cup \bar{\gamma}_2) \cap [Z])$$

for $\gamma_1, \gamma_2 \in H^2(Z \backslash Z_\infty, \mathbb{Z})$. \qed

Remark 5.5. In the similar way, we can prove that the coinvariant part of the $\text{Gal}(\rho)$-action on $H^2(S, \mathbb{Z})$ is isomorphic to $H^2(Z \backslash Z_\infty, \mathbb{Z})$. By the duality $H^2(Z \backslash Z_\infty, \mathbb{Z}) \simeq H_2(Z, \mathbb{Z}) \simeq H^2(Z, \mathbb{Z})$, we have a commutative diagram

$$\begin{array}{ccc}
H^2(S \backslash S_\infty, \mathbb{Z})^{\text{Gal}(\rho)} & \xleftarrow{\rho^*} & H^2(Z \backslash Z_\infty, \mathbb{Z})_{\text{free}} \simeq H_2(Z, \mathbb{Z})_{\text{free}} \\
\uparrow{\simeq} & & \uparrow{\simeq} \\
H^2(S, \mathbb{Z})^{\text{Gal}(\rho)} & \xleftarrow{\rho^*} & H^2(Z, \mathbb{Z}) \simeq H_2(Z \backslash Z_\infty, \mathbb{Z}) \xrightarrow{\nu} H^2(S \backslash S_\infty, \mathbb{Z})_{\text{Gal}(\rho)}.
\end{array}$$

23
Remark 5.6. The restriction \(H^2(Y, \mathbb{Z}) \to H^2(Y \setminus Y_\infty, \mathbb{Z}) \) induces an isomorphism

\[
\frac{H^2(Y, \mathbb{Z})}{\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+} \simeq H^2(Y \setminus Y_\infty, \mathbb{Z}) \simeq H^2(Z \setminus Z_\infty, \mathbb{Z}),
\]

and the injection \(\psi^* : H^2(Z, \mathbb{Z}) \to H^2(Y, \mathbb{Z}) \) induces an isomorphism

\[
H^2(Z, \mathbb{Z}) \simeq \left(\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \right)^{\perp} \subset H^2(Y, \mathbb{Z}),
\]

where \(\perp \) means the orthogonal complement in the unimodular lattice

\[
\langle \ , \ \rangle_Y : H^2(Y, \mathbb{Z}) \times H^2(Y, \mathbb{Z}) \to \mathbb{Z}; (\gamma_1, \gamma_2) \mapsto \deg ((\gamma_1 \cup \gamma_2) \cap [Y]).
\]

Proposition 5.7. The homomorphism

\[
H^2(X, \mathbb{Z}) \xrightarrow{\phi^*} H^2(Y \setminus Y_\infty, \mathbb{Z}) \simeq H^2(Z \setminus Z_\infty, \mathbb{Z})
\]

induces an isomorphism

\[
\frac{H^2_{\text{prim}}(X, \mathbb{Z})}{3H^2_{\text{prim}}(X, \mathbb{Z})} \simeq H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{tor}}
\]

of abelian groups.

Proof. Since \(\psi^*H^2(Z, \mathbb{Z}) = \left(\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \right)^{\perp} \subset H^2(Y, \mathbb{Z}) \), the primitive closure of the sublattice \(\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \) in \(H^2(Y, \mathbb{Z}) \) is \(\left(\psi^*H^2(Z, \mathbb{Z}) \right)^{\perp} \subset H^2(Y, \mathbb{Z}) \), hence the torsion part of \(H^2(Z \setminus Z_\infty, \mathbb{Z}) \) is

\[
H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{tor}} \simeq \left(\frac{H^2(Y, \mathbb{Z})}{\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+} \right)_{\text{tor}} \simeq \frac{\left(\psi^*H^2(Z, \mathbb{Z}) \right)^{\perp}}{\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+}.
\]

By the proof of Proposition 5.4, this is an abelian group of order \(3^6 \), hence the sublattice \(\left(\psi^*H^2(Z, \mathbb{Z}) \right)^{\perp} \subset H^2(Y, \mathbb{Z}) \) is of rank 27 and

\[
\det \left(\psi^*H^2(Z, \mathbb{Z}) \right)^{\perp} = (3^6)^{-2} \cdot \det \left(\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \right) = -3^{15}.
\]

Since \(H^2_{\text{prim}}(X, \mathbb{Z}) \) is generated by the difference of two lines on \(X \), by Proposition 3.9, we have \(3\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) \subset \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \) and \(\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) \subset \left(\psi^*H^2(Z, \mathbb{Z}) \right)^{\perp} \). By Remark 3.6, we can directly compute the determinant of the sublattice \(\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \subset H^2(Y, \mathbb{Z}) \), that is \(\det \left(\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ \right) = -3^{15} \). Hence we have

\[
\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+ = \psi^*H^2(Z, \mathbb{Z})^{\perp}.
\]
This implies that the homomorphism
\[(\mathbb{Z}/3\mathbb{Z})^{\oplus 6} \cong \frac{H^2_{\text{prim}}(X, \mathbb{Z})}{3H^2_{\text{prim}}(X, \mathbb{Z})} \rightarrow \frac{(\psi^*H^2(Z, \mathbb{Z}))}{\sum_{L \in \mathbb{Z}_\infty} ZL^+}\]
is surjective. Since the order of these groups are both equal to 3^6, it is an isomorphism.

By proposition \[5.7\] and Remark \[5.6\], we have the isomorphism
\[
\frac{H^2(Y, \mathbb{Z})}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} ZL^+} \cong H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}}.
\]
We denote by \((\bigwedge^2 H^3(V, \mathbb{Z}))_{\text{0}}\) the subspace of \((\bigwedge^2 H^3(V, \mathbb{Z}))\) orthogonal to \([\psi^*O_Z(1)] \in H^2(Y, \mathbb{Z})\). We denote by \((\bigwedge^2 H^3(V, \mathbb{Z}))_{\text{0}}\) the kernel of the homomorphism
\[
\bigwedge^2 H^3(V, \mathbb{Z}) \rightarrow \mathbb{Z}; \quad \alpha_1 \wedge \alpha_2 \mapsto \deg ((\alpha_1 \cup \alpha_2) \cap [V]),
\]
and denote by \(H^3(V, \mathbb{Z})(1)\) the Hodge structure of weight 1 which is defined from the Hodge structure \(H^3(V, \mathbb{Z})\) by the shift of the weight.

Theorem 5.8. There is a natural injective homomorphism
\[
\left(\bigwedge^2 H^3(V, \mathbb{Z})(1)\right)_{\text{Gal}(\rho)} \rightarrow \frac{H^2(Y, \mathbb{Z})}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} ZL^+}
\]
with the cokernel \(\mathbb{Z}/2\mathbb{Z}\), which induces an isomorphism
\[
\left(\bigwedge^2 H^3(V, \mathbb{Z})(1)\right)_{\text{0}} \cong \left(\frac{H^2(Y, \mathbb{Z})}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} ZL^+}\right)_{\text{0}}
\]
of Hodge structures.

Proof. By Theorem \[4.1\] [Lemma 9.13 and (10.14)], Proposition \[5.4\], Remark \[5.6\] and Proposition \[5.7\], we have the following sequence of homomorphisms of Hodge structures;
\[
\begin{align*}
\left(\bigwedge^2 H^3(V, \mathbb{Z})(1)\right)_{\text{Gal}(\rho)} & \cong \left(\bigwedge^2 H^1(S, \mathbb{Z})\right)_{\text{Gal}(\rho)} & & \cong \left(\bigwedge^2 H^1(A, \mathbb{Z})\right)_{\text{Gal}(\rho)} \\
H^2(S \setminus S_\infty, \mathbb{Z})_{\text{Gal}(\rho)} & \cong H^2(S, \mathbb{Z})_{\text{Gal}(\rho)} & & \supset H^2(A, \mathbb{Z})_{\text{Gal}(\rho)} \\
H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}} & \cong H^2(Y \setminus Y_\infty, \mathbb{Z})_{\text{free}} & & \supset \frac{H^2(Y, \mathbb{Z})}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} ZL^+}.
\end{align*}
\]
Since \((\wedge^2 H^3(V, \mathbb{Z})(1))_0\) corresponds to \(H^2_{\text{prim}}(A, \mathbb{Z})\), and \((\phi^* H^2_{\text{prim}}(X, \mathbb{Z})+\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+)\) corresponds to \(H^2_{\text{prim}}(S, \mathbb{Z})^{\text{Gal}(\rho)}\), by Proposition 4.2 we have the isomorphism
\[
\left(\bigwedge^2 H^3(V, \mathbb{Z})(1)\right)_0^{\text{Gal}(\rho)} \cong \left(\phi^* H^2_{\text{prim}}(X, \mathbb{Z})+\sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+\right)_0.
\]

We denote by \(A_i\) the positive definite root lattice of type \(A_i\), and by \(1\) the trivial lattice of rank 1.

Proposition 5.9. There are isomorphisms of lattices:
\[
(H^2(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}}, \langle , \rangle_Z) \simeq (\frac{1}{3} \cdot 1) \oplus (-\frac{1}{3} \cdot 1) \oplus (\frac{1}{3} A_2) \oplus (-\frac{1}{3} A_2)^6,
\]
\[
(H^2_{\text{prim}}(Z \setminus Z_\infty, \mathbb{Z})_{\text{free}}, \langle , \rangle_Z) \simeq (-\frac{1}{3} A_4) \oplus (\frac{1}{3} A_2) \oplus (-\frac{1}{3} A_2)^6,
\]
\[
(H^2(Z, \mathbb{Z}), \langle , \rangle_Z) \simeq (3 \cdot 1) \oplus (-3 \cdot 1) \oplus (\frac{1}{3} A_2) \oplus (-A_2)^6,
\]
\[
(H^2_{\text{prim}}(Z, \mathbb{Z}), \langle , \rangle_Z) \simeq (-3 A_4) \oplus A_2^6 \oplus (-A_2)^6.
\]

We define an alternating form on \(H^1(A, \mathbb{Z})\) by
\[
\langle , \rangle_A : H^1(A, \mathbb{Z}) \times H^1(A, \mathbb{Z}) \rightarrow \mathbb{Z}; (\alpha_1, \alpha_2) \mapsto \deg \left(\left(\frac{\theta^4}{4!} \cup \alpha_1 \cup \alpha_2 \right) \cap [A] \right).
\]

Lemma 5.10 ([1] (2.7)). There is a basis \((v_0, \ldots, v_4)\) of the \(\mathbb{Z}[\omega]\)-module \(H^1(A, \mathbb{Z})\) such that
\[
\left(\langle v_i, v_j \rangle_A \right)_{0 \leq i, j \leq 4} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]
\[
\left(\langle v_i, \omega v_j \rangle_A \right)_{0 \leq i, j \leq 4} = \begin{pmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

Proof of Proposition 5.9. Using the basis in Lemma 5.10, the class of the principal polarization is
\[
\theta = -v_0 \cup \omega v_0 + \sum_{i=1}^4 v_i \cup \omega v_i \in H^2(A, \mathbb{Z}).
\]

We set \(\tau = \frac{1}{2} \theta \in H^2(A, \mathbb{Q})\). Then \(\tau\) corresponds to the class of an incidence divisor on \(S\), and \(H^2(S, \mathbb{Z})\) is identified with the sublattice in \(H^2(A, \mathbb{Q})\) generated by \(\tau\) and \(H^2(A, \mathbb{Z})\). We define sublattices in \(H^2(A, \mathbb{Q})\) by
\[
U_0 = \bigoplus_{i=0}^4 \mathbb{Z}v_i \cup \omega v_i \subset H^2(A, \mathbb{Z}),
\]
\[\tilde{U}_0 = \mathbb{Z} \tau + U_0 = \mathbb{Z} \tau \bigoplus \bigoplus_{i=1}^{4} \mathbb{Z} v_i \cup \omega v_i \subset H^2(A, \mathbb{Q}), \]

\[U'_0 = \mathbb{Z} (v_0 \cup \omega v_0 + v_1 \cup \omega v_1) \bigoplus \bigoplus_{i=1}^{3} \mathbb{Z} (v_{i+1} \cup \omega v_{i+1} - v_i \cup \omega v_i) \subset H^2(A, \mathbb{Z}) \]

and

\[U_{i,j} = \mathbb{Z} v_i \cup v_j \bigoplus \mathbb{Z} v_i \cup \omega v_j \bigoplus \mathbb{Z} \omega v_i \cup v_j \bigoplus \mathbb{Z} \omega v_i \cup \omega v_j \subset H^2(A, \mathbb{Z}) \]

for \(0 \leq i < j \leq 4\). Then we have orthogonal decompositions of lattices

\[H^2(S, \mathbb{Z}) = \tilde{U}_0 \bigoplus \bigoplus_{0 \leq i < j \leq 4} U_{i,j}, \]

\[H^2_{\text{prim}}(S, \mathbb{Z}) \simeq H^2_{\text{prim}}(A, \mathbb{Z}) = U'_0 \bigoplus \bigoplus_{0 \leq i < j \leq 4} U_{i,j}, \]

which are compatible with the \(\text{Gal}(\rho) \)-action. The \(\text{Gal}(\rho) \)-action on \(\tilde{U}_0 \simeq 1 \oplus (-1)^{\oplus 4} \) and \(U'_0 \simeq (-A_4) \) are trivial, and the invariant parts of the \(\text{Gal}(\rho) \)-action on \(U_{i,j} \) are

\[U_{i,j}^\text{Gal}(\rho) = \mathbb{Z} (v_i \cup v_j + \omega v_i \cup \omega v_j) \bigoplus \mathbb{Z} (v_i \cup v_j + \omega v_i \cup \omega v_j + v_0) \simeq A_2 \]

for \(1 \leq j \leq 4\), and

\[U_{i,j}^\text{Gal}(\rho) = \mathbb{Z} (v_i \cup v_j + \omega v_i \cup \omega v_j + v_i \cup v_j) \bigoplus \mathbb{Z} (v_i \cup v_j + \omega v_i \cup \omega v_j + v_i) \simeq (-A_2) \]

for \(1 \leq i < j \leq 4\). Hence we have

\[(H^2(S, \mathbb{Z})^\text{Gal}(\rho), \langle , \rangle_S) \simeq 1 \oplus (-1)^{\oplus 4} \oplus A_2^{\oplus 4} \oplus (-A_2)^{\oplus 6} \]

and

\[(H^2_{\text{prim}}(S, \mathbb{Z})^\text{Gal}(\rho), \langle , \rangle_S) \simeq (-A_4) \oplus A_2^{\oplus 4} \oplus (-A_2)^{\oplus 6}. \]

By Proposition 5.4, we have the results for lattices \(H^2(Z \setminus Z_{\infty}, \mathbb{Z})_{\text{free}} \) and \(H^2_{\text{prim}}(Z \setminus Z_{\infty}, \mathbb{Z})_{\text{free}} \). In the similar way, the statements for lattices \(H^2(Z, \mathbb{Z}) \) and \(H^2_{\text{prim}}(Z, \mathbb{Z}) \) can be proved.

Proposition 5.11.

\[\phi^* H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in Z_{\infty}} \mathbb{Z} L^+ = (\psi^* H^2(Z, \mathbb{Z}))^\perp, \]

\[\phi^* H^2(X, \mathbb{Z}) + \sum_{L \in Z_{\infty}} \mathbb{Z} L^+ = (\psi^* H^2_{\text{prim}}(Z, \mathbb{Z}))^\perp. \]
Proof. The first equality has been proved in the proof of Proposition 5.7. Since
\[\psi^*H^2_{\text{prim}}(Z, Z) = (\phi^*H^2(X, Z) + \sum_{L \in \mathbb{Z}} ZL^+) \perp, \]
we have
\[\phi^*H^2(X, Z) + \sum_{L \in \mathbb{Z}} ZL^+ \subset (\psi^*H^2_{\text{prim}}(Z, Z)) \perp, \]
which are sublattices of rank 28. We compute the determinant of these lattices. By Proposition 5.9, we have
\[\det H^2_{\text{prim}}(Z, Z) = 3^{14} \cdot (\det (-A_4) \cdot (\det A_2)^4 \cdot (\det (-A_2))^6) = 3^{14} \cdot 5, \]
hence \(\det (\psi^*H^2_{\text{prim}}(Z, Z)) \perp = -3^{14} \cdot 5.\) On the other hand, by Remark 3.6, we can directly compute the determinant of the sublattice
\[\phi^*H^2(X, Z) + \sum_{L \in \mathbb{Z}} ZL^+ \subset H^2(Y, Z), \]
that is
\[\det \left(\phi^*H^2(X, Z) + \sum_{L \in \mathbb{Z}} ZL^+ \right) = -3^{14} \cdot 5, \]
hence we have the second equality.

\[\square \]

6 Néron-Severi lattice

The Néron-Severi group \(\text{NS}(Y)\) of the surface \(Y\) is the subgroup of \(H^2(Y, \mathbb{Z})\) generated by algebraic cycles. Since \(H^2(X, \mathbb{Z})\) is generated by algebraic cycles,
\[\text{NS}(Y)_0 = \phi^*H^2(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}} \mathbb{Z}L^+ \subset H^2(Y, \mathbb{Z}) \]
is contained in \(\text{NS}(Y)\). By the proof of Proposition 5.11, \(\text{NS}_0(Y)\) is a sublattice of rank 28 with the determinant \(-3^{14} \cdot 5.\) If there are no Eckardt points on \(X\), then \(\text{NS}(Y)_0 = \sum_{L \in \mathbb{Z}} (ZL^+ + ZL^-)\).

Theorem 6.1. \(\text{NS}(Y) = \text{NS}(Y)_0\) for a generic cubic surface \(X\).

The idea of the proof is based on the theory of infinitesimal variations of Hodge structure [2, Section 3]. Let \(\mathcal{M} \subset \mathbf{P}(H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(3))^\vee)\) be the space of smooth cubic surfaces, and let \(\mathcal{Y} \to \mathcal{M}\) be the family of the surface \(Y\). We define a homomorphism by
\[\epsilon : H^1(Y, \Omega^1_Y) \to \text{Hom}(T_M([F]), H^2(Y, \mathcal{O}_Y)); \omega \mapsto [\xi \mapsto c(\kappa(\xi) \cup \omega)], \]
where \(T_M([F])\) is the tangent space of \(\mathcal{M}\) at \([F] \in \mathcal{M}, Y\) is the fiber of \(\mathcal{Y} \to \mathcal{M}\) at \([F] \in \mathcal{M}, \kappa(\xi) \in H^1(Y, T_Y)\) is the Kodaira-Spencer class of \(\xi \in T_M([F]),\) and
\[c : H^2(Y, T_Y \otimes \Omega^1_Y) \to H^2(Y, \mathcal{O}_Y) \]
is the contraction homomorphism. We remark that \(\mathbf{C} \otimes \mathbb{Z} \text{NS}(Y)\) is isomorphic to the kernel of \(\epsilon\) for a generic \([F] \in \mathcal{M}.\)
Proposition 6.2. The homomorphism $\epsilon : H^1(Y, \Omega^1_Y) \to \text{Hom} \left(T_M([F]), H^2(Y, \mathcal{O}_Y) \right)$ is of rank 16.

The computation of the infinitesimal variations of Hodge structure for Y is given in Section 7 and Proposition 6.2 will be proved there.

Proof of Theorem 6.1. By Proposition 5.11, $\frac{\text{NS}(Y)}{\text{NS}_0(Y)}$ has no torsion element, and by Proposition 6.2, the rank of $\text{NS}(Y)$ is 28 for a generic cubic surface X. Hence we have $\frac{\text{NS}(Y)}{\text{NS}_0(Y)} = 0$ for a generic X. \qed

Next we study the surface Y for the Fermat cubic surface X. Let $X \subset \mathbb{P}^3$ be the cubic surface defined by $F = x_0^3 + \cdots + x_3^3$. Then the triple Galois cover V of \mathbb{P}^3 branched along X is the Fermat cubic 3-fold defined by $\tilde{F} = x_0^3 + \cdots + x_3^3 + x_4^3$. We set a point $e_{i,j}^\alpha$ on V by

$$e_{i,j}^\alpha = \{ [x_0 : \cdots : x_4] \in \mathbb{P}^4 \mid x_i + \alpha x_j = 0, \ x_k = 0 \text{ for } k \in \{0, 1, \ldots, 4\} \setminus \{i, j\} \}$$

for $0 \leq i < j \leq 4$ and $\alpha \in \mathbb{C}$ with $\alpha^3 = 1$. The point $e_{i,j}^\alpha$ corresponds to an elliptic curve $E_{i,j}^\alpha$ on the Fano surface S of lines on $V \subset \mathbb{P}^4$ by

$$E_{i,j}^\alpha = \{ L \in S \mid e_{i,j}^\alpha \in L \}. $$

Theorem 6.3 (Roulleau [10], Theorem 3.13). For the Fermat cubic 3-fold V, the Néron-Severi lattice $\text{NS}(S)$ is of rank 25 with the determinant 3^{18}, and

$$\text{NS}(S) = \mathbb{Z} \tau + \sum_{0 \leq i < j \leq 4} (\mathbb{Z} E_{i,j}^1 + \mathbb{Z} E_{i,j}^\omega + \mathbb{Z} E_{i,j}^{\omega^2}),$$

where τ is the class of an incidence divisor.

By using Theorem 6.3, we compute the Néron-Severi lattice $\text{NS}(Y)$ for the Fermat cubic surface X. The branch divisor B of the double cover $\phi : Y \to X$ is the sum of the elliptic curves

$$B_k = \{ [x_0 : \cdots : x_3] \in X \mid x_k = 0 \}$$

for $0 \leq k \leq 3$, because the Hessian of F is $6^4 x_0 x_1 x_2 x_3$. Let D_k be the irreducible component of the ramification divisor R of $\phi : Y \to X$ which corresponds to B_k, and let $E_{i,j}^\alpha$ be the irreducible component of the ramification divisor R which corresponds to the Eckardt point

$$\rho(e_{i,j}^\alpha) = \{ [x_0 : \cdots : x_3] \in \mathbb{P}^3 \mid x_i + \alpha x_j = 0, \ x_k = 0 \text{ for } k \in \{0, 1, 2, 3\} \setminus \{i, j\} \}$$

for $0 \leq i < j \leq 3$ and $\alpha \in \mathbb{C}$ with $\alpha^3 = 1$. We remark that D_k is an elliptic curve, and the irreducible decomposition of the ramification divisor is

$$R = \sum_{k=0}^3 D_k + \sum_{0 \leq i < j \leq 3} (E_{i,j}^1 + E_{i,j}^\omega + E_{i,j}^{\omega^2}).$$
Remark 6.4. For a line \(L \) on the Fermat cubic surface \(X \) and an Eckardt point \(e \) on \(X \), the intersection numbers on \(Y \) are computed by

\[
(D_k, D_l) = \begin{cases}
0 & \text{if } k \neq l, \\
-3 & \text{if } k = l,
\end{cases}
\]

\[
(D_k, L^+) = (D_k, L^-) = 0,
\]

\[
(D_k, \phi^{-1}(e)) = \begin{cases}
0 & \text{if } e \notin B_k, \\
1 & \text{if } e \in B_k.
\end{cases}
\]

Lemma 6.5. There is an isomorphism

\[
\chi : \text{NS}(S)^{\text{Gal}(\rho)} \xrightarrow{\sim} \frac{\text{NS}(Y)}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+}
\]

such that

\[
\begin{align*}
\chi(\tau) &= \pi(\phi^* L) & \text{for a line } L \text{ on } X, \\
\chi(\mathcal{E}^\alpha_{i,j}) &= \pi(E^\alpha_{i,j}) & \text{for } 0 \leq i \leq j \leq 3 \text{ and } \alpha^3 = 1, \\
\chi(\mathcal{E}^1_{k,4} + \mathcal{E}^{\omega}_{k,4} + \mathcal{E}^{\omega^2}_{k,4}) &= \pi(D_k) & \text{for } 0 \leq k \leq 3,
\end{align*}
\]

where \(\pi \) denotes the natural surjective homomorphism

\[
\pi : \text{NS}(Y) \longrightarrow \frac{\text{NS}(Y)}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+}.
\]

Proof. By Proposition 5.4, Remark 5.6 and Proposition 5.7, we have the isomorphism of Hodge structures

\[
H^2(S, \mathbb{Z})^{\text{Gal}(\rho)} \xrightarrow{\sim} \frac{H^2(Y, \mathbb{Z})}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+},
\]

and this induces the isomorphism

\[
\chi : \text{NS}(S)^{\text{Gal}(\rho)} \xrightarrow{\sim} \frac{\text{NS}(Y)}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+}.
\]

Since \(3\tau = [\mathcal{O}_S(1)] = \rho^*[\mathcal{O}_Z(1)] \) by \cite{8}, §10, and \(\pi(\psi^*[\mathcal{O}_Z(1)]) = \pi(3\phi^* L) \) by Proposition 3.9, we have \(\chi(3\tau) = \pi(3\phi^* L) \). Since \(\frac{\text{NS}(Y)}{\phi^*H^2_{\text{prim}}(X, \mathbb{Z}) + \sum_{L \in \mathbb{Z}_\infty} \mathbb{Z}L^+} \) is torsion free, we have \(\chi(\tau) = \pi(\phi^* L) \). The triple cover \(\rho : S \rightarrow Z \) induces a triple cover \(\mathcal{E}^\alpha_{i,j} \rightarrow \psi(E^\alpha_{i,j}) \) for \(0 \leq i \leq j \leq 3 \), and an isomorphism \(\mathcal{E}^\alpha_{k,4} \sim \psi(D_k) \) for \(0 \leq k \leq 3 \). These imply that \(\chi(\mathcal{E}^\alpha_{i,j}) = \pi(E^\alpha_{i,j}) \) and \(\chi(\mathcal{E}^1_{k,4} + \mathcal{E}^{\omega}_{k,4} + \mathcal{E}^{\omega^2}_{k,4}) = \pi(D_k) \). \[\square\]
Theorem 6.6. For the Fermat cubic surface X, the Néron-Severi lattice $\text{NS}(Y)$ is of rank 44 with the determinant -3^{12}, and

\[
\text{NS}(Y) = \sum_{L \in \mathbb{Z}_\infty} (ZL^+ + ZL^-) + \sum_{0 \leq i < j \leq 3} (ZE_{i,j}^1 + ZE_{i,j}^\omega + ZE_{i,j}^{\omega^2}) + \sum_{0 \leq k \leq 3} ZD_k.
\]

Proof. By Theorem 6.3, we have

\[
\text{NS}(S)^{\text{Gal}(\rho)} = Z\tau + \sum_{0 \leq i < j \leq 3} (Z\mathcal{E}_{i,j}^1 + Z\mathcal{E}_{i,j}^\omega + Z\mathcal{E}_{i,j}^{\omega^2}) + \sum_{0 \leq k \leq 3} Z(\mathcal{E}_{k,4}^1 + \mathcal{E}_{k,4}^\omega + \mathcal{E}_{k,4}^{\omega^2}).
\]

By Lemma 6.5, we have

\[
\text{NS}(Y) = \phi^* \text{NS}(X) + \sum_{L \in \mathbb{Z}_\infty} ZL^+ + \sum_{0 \leq i < j \leq 3} (ZE_{i,j}^1 + ZE_{i,j}^\omega + ZE_{i,j}^{\omega^2}) + \sum_{0 \leq k \leq 3} ZD_k,
\]

and by Remark 6.6 and Remark 6.4, we can directly compute the determinant of the lattice. \qed

Remark 6.7. The sublattice

\[
\sum_{L \in \mathbb{Z}_\infty} (ZL^+ + ZL^-) + \sum_{0 \leq i < j \leq 3} (ZE_{i,j}^1 + ZE_{i,j}^\omega + ZE_{i,j}^{\omega^2})
\]

is of rank 44 with the determinant $-2^2 \cdot 3^{12}$, hence it is a sublattice of index 2 in $\text{NS}(Y)$.

7 Infinitesimal variations of Hodge structure

In this section, we compute the infinitesimal variations of Hodge structure for the surface $Y \subset \Gamma(\mathbb{P}^3)$, and we prove Proposition 6.2. The method is introduced in [9] as a theory of Jacobian rings. Let $Y = Y_3 \subset Y_2 \subset Y_1 \subset \Gamma(\mathbb{P}^3)$ be the varieties defined in Section 2. Let

\[
\begin{array}{c}
\mathcal{Y}_3 \subset \mathcal{M} \times \Gamma(\mathbb{P}^3) \\
\downarrow \searrow \\
\mathcal{M}
\end{array}
\]

be the family of the surface Y_3. Let

\[
\kappa : T_{\mathcal{M}}([F]) \longrightarrow H^1(Y_3, T_{Y_3}),
\]

be the Kodaira-Spencer map. By the duality, Proposition 6.2 is a corollary of the following proposition.
Proposition 7.1. The homomorphism

\[T_M([F]) \otimes H^0(Y_3, \Omega^2_{Y_3}) \rightarrow H^1(Y_3, \Omega^1_{Y_3}); \; \xi \otimes \omega \rightarrow c(\kappa(\xi) \cup \omega) \]

is of rank 16, where \(c \) is the contraction homomorphism

\[c : H^1(Y_3, T_{Y_3} \otimes \Omega^2_{Y_3}) \sim H^1(Y_3, \Omega^1_{Y_3}). \]

Let \(S_{p3} \) be the kernel of the homomorphism \(\mathcal{O}_{p3} \otimes V \rightarrow Q_{p3} \simeq \mathcal{O}_{p3}(1) \), where \(V = H^0(P^3, \mathcal{O}_{p3}(1)) \). Let \(S_{\Lambda(p3)} \) be the kernel of the homomorphism \(\mathcal{O}_{\Lambda(p3)} \otimes V \rightarrow Q_{\Lambda(p3)} \).

Then we have the natural exact sequence

\[0 \rightarrow \psi^* S_{\Lambda(p3)} \xrightarrow{\sigma} \phi^* S_{p3} \xrightarrow{\lambda} \psi^* Q_{\Lambda(p3)} \xrightarrow{\tau} \phi^* Q_{p3} \rightarrow 0 \]

of vector bundles on \(\Gamma(P^3) \), and we have the exact sequence

\[0 \rightarrow \mathcal{O}_{\Gamma(p3)} \xrightarrow{\lambda} \phi^* S_{p3} \otimes \psi^* Q_{\Lambda(p3)} \xrightarrow{\tau \times \sigma} \phi^* (S_{p3} \otimes Q_{p3}) \oplus \psi^* (S_{\Lambda(p3)} \otimes Q_{\Lambda(p3)}) \xrightarrow{\sigma \oplus (-\tau)} \psi^* S_{\Lambda(p3)} \otimes \phi^* Q_{p3} \rightarrow 0. \]

Since the homomorphism

\[T_{p3 \times \Lambda(p3)|\Gamma(p3)} \simeq \phi^* (S_{p3} \otimes Q_{p3}) \oplus \psi^* (S_{\Lambda(p3)} \otimes Q_{\Lambda(p3)}) \xrightarrow{\sigma \oplus (-\tau)} \psi^* S_{\Lambda(p3)} \otimes \phi^* Q_{p3} \]

is identified with the natural homomorphism to the normal bundle \(T_{p3 \times \Lambda(p3)|\Gamma(p3)} \rightarrow N_{\Gamma(p3)/p3 \times \Lambda(p3)} \), we have the exact sequence

\[0 \rightarrow \mathcal{O}_{\Gamma(p3)} \xrightarrow{\lambda} \phi^* S_{p3} \otimes \psi^* Q_{\Lambda(p3)} \rightarrow T_{\Gamma(p3)} \rightarrow 0. \tag{7.1} \]

Let \((x_0, \ldots, x_3) \) be a basis of the vector space \(V = H^0(P^3, \mathcal{O}_{p3}(1)) \), and let \((x_0^\vee, \ldots, x_3^\vee) \) be the dual basis of \((x_0, \ldots, x_3) \).

Lemma 7.2.

\[H^0(Y_2, T_{\Gamma(p3)}|Y_2) \simeq \frac{V^\vee \otimes V}{C \cdot \sum_{i=0}^3 x_i^\vee \otimes x_i} \]

Proof. The natural homomorphism \(\mathcal{O}_{\Gamma(p3)} \otimes V^\vee \otimes V \rightarrow \phi^* S_{p3}^\vee \otimes \psi^* Q_{\Lambda(p3)} \) induces the isomorphism \(V^\vee \otimes V \simeq H^0(\Gamma(P^3), \phi^* S_{p3}^\vee \otimes \psi^* Q_{\Lambda(p3)}) \). By the exact sequence (7.1), we have

\[H^0(\Gamma(P^3), T_{\Gamma(p3)}) \simeq \frac{V^\vee \otimes V}{C \cdot \sum_{i=0}^3 x_i^\vee \otimes x_i}, \]

and we can prove that \(H^0(\Gamma(P^3), T_{\Gamma(p3)}) \simeq H^0(Y_2, T_{\Gamma(p3)}|Y_2) \) by the restriction. \(\square \)
We define filtration on $\Psi^* \text{Sym}^3 \mathcal{Q}_{\Lambda(\mathbb{P}^3)}$ by

$$\text{Fil}^i = \text{Fil}^i \Psi^* \text{Sym}^3 \mathcal{Q}_{\Lambda(\mathbb{P}^3)} = S^i \otimes \Psi^* \text{Sym}^{3-i} \mathcal{Q}_{\Lambda(\mathbb{P}^3)} \subset \Psi^* \text{Sym}^3 \mathcal{Q}_{\Lambda(\mathbb{P}^3)},$$

where S denotes the line bundle defined as the kernel of the homomorphism $\Psi^* \mathcal{Q}_{\Lambda(\mathbb{P}^3)} \xrightarrow{\tau} \Phi^* \mathcal{Q}_{\mathbb{P}^3}$. For $G \in \text{Sym}^3 V$, we denote by $[G]_i$ the image of G by the natural homomorphism $\text{Sym}^3 V \rightarrow H^0(\Lambda(\mathbb{P}^3), \text{Fil}^0, \text{Fil}^i)$. We define the sheaf of $\mathcal{O}_{\mathbb{P}^2}$-modules \mathcal{N} as the cokernel of the homomorphism

$$\mathcal{O}_{\mathbb{P}^2} \xrightarrow{[F]_3, \mathbb{P}^2} \mathcal{N},$$

and denote by $[G]_{i,Y_j}$ its restriction to $H^0(Y_j, \text{Fil}^0, \text{Fil}^i|_{Y_j})$. We remark that Y_j is the zeros of the regular section $[F]_j$, and if $i \geq j$ then $[F]_{i,Y_j}$ is contained in $H^0(Y_j, \text{Fil}^0, \text{Fil}^i|_{Y_j})$. We define the sheaf of exact sequence

$$0 \rightarrow T_{Y_2}(-\log Y_3) \rightarrow T_{\Gamma(\mathbb{P}^3)|Y_2} \rightarrow \mathcal{N} \rightarrow 0.$$

Proof. By the definition of \mathcal{N}, we have the exact sequence

$$0 \rightarrow \mathcal{N}_{Y_3/Y_2} \rightarrow \mathcal{N} \rightarrow \mathcal{N}_{Y_2/\Gamma(\mathbb{P}^3)} \rightarrow 0,$$

where we remark that $\mathcal{N}_{Y_2/\Gamma(\mathbb{P}^3)} \simeq \text{Fil}^0, \text{Fil}^2|_{Y_2}$, and \mathcal{N}_{Y_3/Y_2} is the cokernel of the homomorphism

$$\mathcal{O}_{\mathbb{P}^2} \xrightarrow{[F]_3, \mathbb{P}^2} \mathcal{N}. $$

Since the kernel of the composition $T_{\Gamma(\mathbb{P}^3)|Y_2} \rightarrow \mathcal{N} \rightarrow \mathcal{N}_{Y_3/Y_2}$ is identified with T_{Y_2}, we have the homomorphism $T_{Y_2} \rightarrow \mathcal{N}_{Y_3/Y_2}$ and its kernel is identified with $T_{Y_2}(-\log Y_3)$. \qed

Lemma 7.4.

$$H^0(Y_2, \mathcal{N}) \simeq \frac{V \otimes \text{Sym}^2 V}{C \cdot \sum_{i=0}^{3} x_i \otimes \frac{\partial F}{\partial x_i}},
Proof. By the homomorphism
\[\Psi^* \text{Sym}^2 Q_{\Lambda(P^3)} \to \Phi^* Q_{P^2} \otimes \Psi^* \text{Sym}^2 Q_{\Lambda(P^3)}; \ abc \mapsto \tau(a) \otimes bc + \tau(b) \otimes ca + \tau(c) \otimes ab, \]
we have the isomorphism
\[\frac{\text{Fil}^0}{\text{Fil}^3} \simeq \Phi^* Q_{P^2} \otimes \Psi^* \text{Sym}^2 Q_{\Lambda(P^3)}. \]
The natural homomorphism \(O_{\Gamma(P^3)} \otimes V \otimes \text{Sym}^2 V \to \Phi^* Q_{P^2} \otimes \Psi^* \text{Sym}^2 Q_{\Lambda(P^3)} \) induces the isomorphism
\[V \otimes \text{Sym}^2 V \simeq H^0(\Gamma(P^3), \Phi^* Q_{P^2} \otimes \Psi^* \text{Sym}^2 Q_{\Lambda(P^3)}), \]
and we can prove that
\[H^0(\Gamma(P^3), \frac{\text{Fil}^0}{\text{Fil}^3}) \simeq H^0(Y_2, \frac{\text{Fil}^0}{\text{Fil}^3}|_{Y_2}). \]

By the exact sequence in Lemma 7.3, we have the exact sequence
\[0 \to O_{Y_2} \xrightarrow{[F]_{3, Y_2}} \frac{\text{Fil}^0}{\text{Fil}^3}|_{Y_2} \to \mathcal{N} \to 0, \]
we have
\[H^0(Y_2, \mathcal{N}) \simeq \frac{V \otimes \text{Sym}^2 V}{C \cdot \sum_{i=0}^3 x_i \otimes \partial F \partial x_i}. \]

Lemma 7.5. The kernel of the homomorphism
\[H^1(Y_2, T_{Y_2}(- \log Y_3)) \to H^1(Y_2, T_{\Gamma(P^3)}|_{Y_2}) \]
is identified with the cokernel of the injective homomorphism
\[\delta \circ \nu : V^\vee \otimes V \to V \otimes \text{Sym}^2 V; \ x_j^\vee \otimes A \mapsto A \otimes \frac{\partial F}{\partial x_j} + \sum_{i=0}^3 x_i \otimes A \frac{\partial^2 F}{\partial x_i \partial x_j}. \]

Proof. By the exact sequence in Lemma 7.3, we have the exact sequence
\[H^0(Y_2, T_{\Gamma(P^3)}|_{Y_2}) \to H^0(Y_2, \mathcal{N}) \to H^1(Y_2, T_{Y_2}(- \log Y_3)) \to H^1(Y_2, T_{\Gamma(P^3)}|_{Y_2}). \]
By Lemma 7.2 and Lemma 7.4, we can check that \(H^0(Y_2, T_{\Gamma(P^3)}|_{Y_2}) \to H^0(Y_2, \mathcal{N}) \) is induced by the homomorphism
\[\frac{V^\vee \otimes V}{C \cdot \sum_{i=0}^3 x_i^\vee \otimes x_i} \to \frac{V \otimes \text{Sym}^2 V}{C \cdot \sum_{i=0}^3 x_i \otimes \frac{\partial F}{\partial x_i}}; \ x_j^\vee \otimes A \mapsto A \otimes \frac{\partial F}{\partial x_j} + \sum_{i=0}^3 x_i \otimes A \frac{\partial^2 F}{\partial x_i \partial x_j}. \]
We remark that the homomorphism $\delta \circ \nu$ is the composition of injective homomorphisms $\nu : V^\vee \otimes V \to \text{Sym}^3 V$ and

$$\delta : \text{Sym}^3 V \longrightarrow V \otimes \text{Sym}^2 V; \; G \longmapsto \sum_{i=0}^{3} x_i \otimes \frac{\partial G}{\partial x_i}.$$

\square

Remark 7.6. Since $H^1(Y_2, T_{Y_2}(-Y_3)) = 0$, the homomorphism

$$H^1(Y_2, T_{Y_2}(-\log Y_3)) \longrightarrow H^1(Y_3, T_{Y_3})$$

is injective.

Lemma 7.7. The Kodaira-Spencer map $\kappa : T_M([F]) \to H^1(Y_3, T_{Y_3})$ is computed by the homomorphism

$$\kappa : T_M([F]) \simeq \frac{\text{Sym}^3 V}{C \cdot F} \longrightarrow \frac{V \otimes \text{Sym}^2 V}{(\delta \circ \nu)(V^\vee \otimes V)} \subset H^1(Y_3, T_{Y_3}); \; G \longmapsto \sum_{i=0}^{3} x_i \otimes \frac{\partial G}{\partial x_i},$$

and its image $\kappa(T_M([F]))$ is identified with the cokernel of the injective homomorphism $\nu : V^\vee \otimes V \to \text{Sym}^3 V$.

Proof. Let (F, G_1, \ldots, G_{19}) be a basis of $\text{Sym}^3 V \simeq H^0(P^3, \mathcal{O}_{P^3}(3))$. We have a local coordinate of M at $[F] \in M \subset P(H^0(P^3, \mathcal{O}_{P^3}(3))^\vee)$ by

$$(\mu_1, \ldots, \mu_{19}) \longmapsto F - \sum_{i=1}^{19} \mu_i G_i,$$

and the tangent space of M at $[F]$ is identified with $\frac{\text{Sym}^3 V}{C \cdot F}$ by

$$T_M([F]) \simeq \frac{\text{Sym}^3 V}{C \cdot F}; \; \frac{\partial}{\partial \mu_j} \longmapsto G_j.$$

We have the commutative diagram of exact sequences

$$0 \longrightarrow T_{Y_3} \longrightarrow T_{Y_3}|_{Y_3} \longrightarrow \mathcal{O}_{Y_3} \otimes T_M([F]) \longrightarrow 0$$

$$0 \longrightarrow T_{Y_3} \longrightarrow T_{\Gamma(P^3)}|_{Y_3} \longrightarrow \mathcal{N}_{Y_3/\Gamma(P^3)} \longrightarrow 0,$$

where $T_{Y_3}|_{Y_3} \to T_{\Gamma(P^3)}|_{Y_3}$ is induced by the natural projection and $\tilde{\kappa}$ is defined by

$$\tilde{\kappa} : T_M([F]) \longrightarrow H^0(Y_3, \frac{\text{Fil}^0}{\text{Fil}^3}_{Y_3}) \simeq H^0(Y_3, \mathcal{N}_{Y_3/\Gamma(P^3)}); \; \frac{\partial}{\partial \mu_j} \longmapsto [G_j]_{3,Y_3}.$$
We can compute the homomorphism $\tilde{\kappa}$ by

$$\tilde{\kappa} : T_M([F]) \longrightarrow \frac{V \otimes \text{Sym}^2 V}{C \cdot F} \approx H^0(Y_2, N \cap Y_3) \subset H^0(Y_3, \mathcal{N}_{Y_3/\Gamma(P^3)});$$

and $\tilde{\kappa}$ induces the homomorphism

$$\kappa : T_M([F]) \approx \text{Sym}^3 V \longrightarrow V \otimes \text{Sym}^2 V \subset H^1(Y_2, T_{Y_2}(-\log Y_3)) \subset H^1(Y_3, T_{Y_3}).$$

\[\square\]

Lemma 7.8. $H^0(Y_2, (\Phi^* Q_{P^3} \otimes T_{\Gamma(P^3)})|_{Y_2})$ is naturally identified with the cokernel of the injective homomorphism

$$\alpha : V \oplus V \longrightarrow V \otimes V^\vee \otimes V; \quad A \oplus B \longmapsto \sum_{i=0}^3 (x_i \otimes x_i^\vee \otimes A + B \otimes x_i^\vee \otimes x_i)$$

Proof. By the exact sequence

$$0 \longrightarrow \Psi^* Q_{\Lambda(P^3)} \longrightarrow \Phi^* Q_{P^3} \otimes V^\vee \otimes \Psi^* Q_{\Lambda(P^3)} \longrightarrow \Phi^* (Q_{P^3} \otimes S_{P^3}^\vee) \otimes \Psi^* Q_{\Lambda(P^3)} \longrightarrow 0,$$

$H^0(Y_2, (\Phi^* (Q_{P^3} \otimes S_{P^3}^\vee) \otimes \Psi^* Q_{\Lambda(P^3)})|_{Y_2})$ is identified with the cokernel of the injective homomorphism

$$\lambda_0 : V \longrightarrow V \otimes V^\vee \otimes V; \quad A \longmapsto \sum_{i=0}^3 x_i \otimes x_i^\vee \otimes A.$$

By the exact sequence \((7.1)\), we have the exact sequence

$$0 \longrightarrow \Phi^* Q_{P^3} \longrightarrow \Phi^* (Q_{P^3} \otimes S_{P^3}^\vee) \otimes \Psi^* Q_{\Lambda(P^3)} \longrightarrow \Phi^* Q_{P^3} \otimes T_{\Gamma(P^3)} \longrightarrow 0,$$

and $H^0(Y_2, (\Phi^* Q_{P^3} \otimes T_{\Gamma(P^3)})|_{Y_2})$ is identified with the cokernel of the injective homomorphism

$$V \longrightarrow \frac{V \otimes V^\vee \otimes V}{\lambda_0(V)}; \quad B \longmapsto \sum_{i=0}^3 B \otimes x_i^\vee \otimes x_i.$$

\[\square\]

Lemma 7.9. $H^0(Y_2, (\Phi^* Q_{P^1})|_{Y_2} \otimes \mathcal{N})$ is naturally identified with the cokernel of the injective homomorphism

$$\beta : V \oplus V \longrightarrow \text{Sym}^2 V \otimes \text{Sym}^2 V; \quad A \oplus B \longmapsto \sum_{i=0}^3 \left(\frac{\partial F}{\partial x_i} \otimes A x_i + B x_i \otimes \frac{\partial F}{\partial x_i} \right)$$

\[36\]
Lemma 7.10. \(H^1(Y_2, \Omega^2_{Y_2}(\log Y_3)) \) is naturally identified with the cokernel of the injective homomorphism

\[\nu_1 : V \otimes V^\vee \otimes V \to \Sym^2 V \otimes \Sym^2 V; \quad A \otimes x_j^\vee \otimes B \mapsto AB \otimes \frac{\partial F}{\partial x_j} + \sum_{i=0}^3 A_{x_i} \otimes B \frac{\partial^2 F}{\partial x_i \partial x_j}. \]

Proof. Since

\[\Omega^2_{Y_2}(\log Y_3) \simeq \Omega^3_{Y_2}(Y_3) \otimes T_{Y_2}(\log Y_3) \simeq (\Phi^* \mathcal{Q}_{\mathcal{P}^3})|_{Y_2} \otimes T_{Y_2}(\log Y_3), \]

we have the exact sequence

\[0 \to \Omega^2_{Y_2}(\log Y_3) \to (\Phi^* \mathcal{Q}_{\mathcal{P}^3} \otimes T_{\Gamma(\mathcal{P}^3)})|_{Y_2} \to (\Phi^* \mathcal{Q}_{\mathcal{P}^3})|_{Y_2} \otimes \mathcal{N} \to 0 \]

by Lemma 7.3 and we can check that \(H^1(Y_2, (\Phi^* \mathcal{Q}_{\mathcal{P}^3} \otimes T_{\Gamma(\mathcal{P}^3)})|_{Y_2}) = 0 \). By Lemma 7.8 and Lemma 7.9 \(H^1(Y_2, \Omega^2_{Y_2}(\log Y_3)) \) is identified with the cokernel of the homomorphism

\[\frac{V \otimes V^\vee \otimes V}{\alpha(V \oplus V)} \to \frac{\Sym^2 V \otimes \Sym^2 V}{\beta(V \oplus V)}; \quad A \otimes x_j^\vee \otimes B \mapsto AB \otimes \frac{\partial F}{\partial x_j} + \sum_{i=0}^3 A_{x_i} \otimes B \frac{\partial^2 F}{\partial x_i \partial x_j}, \]

and it is injective because \(H^0(Y_2, \Omega^2_{Y_2}(\log Y_3)) = 0 \). Since the homomorphism \(\nu_1 \) induces an isomorphism \(\alpha(V \oplus V) \simeq \beta(V \oplus V) \), the homomorphism \(\nu_1 \) is injective. \(\square \)
Proof of Proposition 7.1. By Lemma 7.7 and Lemma 7.10 we have a commutative diagram of exact sequences

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
V \otimes V^\vee \otimes V & = & V \otimes V^\vee \otimes V \\
1 \otimes \nu & \downarrow & \downarrow \nu_1 \\
V \otimes \text{Sym}^3 V & \xrightarrow{\delta_1} & \text{Sym}^2 V \otimes \text{Sym}^2 V \\
\downarrow & & \downarrow \\
H^0(Y_3, \Omega^2_{Y_3}) \otimes \kappa(T_M([F])) & \to & H^1(Y_3, \Omega^1_{Y_3}) \\
0, & & \\
\end{array}
\]

where we remark that

\[
V \simeq H^0(Y_2, (\Phi^*Q_{P_3})|_{Y_2}) \simeq H^0(Y_2, \Omega^2_{Y_2}(Y_3)) \simeq H^0(Y_3, \Omega^2_{Y_3}),
\]

\[
\frac{\text{Sym}^2 V \otimes \text{Sym}^2 V}{\nu_1(V \otimes V^\vee \otimes V)} \simeq H^1(Y_2, \Omega^2_{Y_2}(\log Y_3)) \subset H^1(Y_3, \Omega^1_{Y_3})
\]

and the homomorphism \(\delta_1\) is defined by

\[
\delta_1 : V \otimes \text{Sym}^3 V \longrightarrow \text{Sym}^2 V \otimes \text{Sym}^2 V; \quad A \otimes B \longmapsto \sum_{i=0}^3 A x_i \otimes \frac{\partial B}{\partial x_i}.
\]

Since \(\delta_1\) is injective, the homomorphism \(H^0(Y_3, \Omega^2_{Y_3}) \otimes \kappa(T_M([F])) \to H^1(Y_3, \Omega^1_{Y_3})\) is also injective, hence the dimension of its image is equal to 16. \(\square\)

References

[1] D. Allcock, J. Carlson and D. Toledo, *The complex hyperbolic geometry of the moduli space of cubic surfaces*, J. Algebraic Geom. 11 (2002), 659–724.

[2] J. Carlson, M. Green, P. Griffiths and J. Harris, *Infinitesimal variations of Hodge structure (I)*, Compos. Math. 50 (1983), 109–205.

[3] H. Clemens and P. Griffiths, *The intermediate Jacobian of the cubic threefold*, Ann. of Math. (2) 95 (1972), 281–356.

[4] A. Collino, *The fundamental group of the Fano surface*, Algebraic threefolds. Lecture Notes in Mathematics 947 (1982), 209–218.

[5] W. Fulton, Intersection theory, second edition, Springer, 1998.
[6] P. Griffiths, *On the periods of certain rational integrals. I and II*, Ann. of Math. (2) 90 (1969), 460–495, 496–541.

[7] E. Horikawa, *Algebraic surface of general type with small c_1^2. III*, Invent. Math. 47 (1978), 209–248.

[8] A. Ikeda, *The varieties of tangent lines to hypersurfaces in projective spaces*, arXiv:1012.2186.

[9] A. Ikeda, *The varieties of intersections of lines and hypersurfaces in projective spaces*, “Higher dimensional algebraic varieties and vector bundles,” RIMS Kōkyūroku Bessatsu B9 (2008), 115–125.

[10] X. Roulleau, *Elliptic curve configurations on Fano surfaces*, arXiv:0804.1861 [math.AG] (2008).

[11] B. Segre, The Non-singular Cubic Surfaces, Calarendon Press, Oxford, 1942.

[12] A. Tjurin, *The geometry of the Fano surface of a nonsingular cubic $F \subset P^4$ and Torelli theorems for Fano surface and cubics*, Math. USSR Izv. 5 (1971), 517–546.

Graduate School of Science
Osaka University
Toyonaka, Osaka, 560-0043
Japan
E-mail address: atsushi@math.sci.osaka-u.ac.jp