Survival of SARS-CoV-2 in artificial seawater and on the surface of inanimate materials

Zhi-Ping Sun1 | Si-Yu Yang1 | Xia Cai1 | Wen-Dong Han1 | Gao-Wei Hu1 | Yun Qian1 | Yu-Yan Wang2 | Rong Zhang2 | You-Hua Xie2 | Di Qu1,2

1BSL-3 laboratory of Fudan University, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China
2Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, China

Correspondence
Youhua Xie, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University.
Email: yhxie@fudan.edu.cn
Di Qu, BSL-3 laboratory of Fudan University, School of Basic Medical Sciences, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Medical College, Fudan University.
Email: dqu@shmu.edu.cn

Funding information
Project of Novel Coronavirus of Fudan University; Development Programs for COVID-19 of Science and Technology Commission of Shanghai Municipality, Grant/Award Number: 20431900401; National Major Science and Technology Projects of China, Grant/Award Numbers: 2018ZX10734401, 2018ZX10301208, 2019ZX09721001

Abstract

There is a potential risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread through human contact with seafood and the inanimate materials contaminated by the virus. In this study, we examined the stability of the virus in artificial seawater (ASW) and on the surface of selected materials. SARS-CoV-2 (3.75 log10 TCID50) in ASW at 22°C maintained infectious about 3 days and at 4°C the virus survived more than 7 days. It should be noticed that viable virus at high titer (5.50 log10 TCID50) may survive more than 20 days in ASW at 4°C and for 7 days at 22°C. SARS-CoV-2 on stainless steel and plastic bag maintained infectious for 3 days, and on nonwoven fabric for 1 day at 22°C. In addition, the virus remained infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days at 4°C. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection.

KEYWORDS
biostatistics and bioinformatics, epidemiology, SARS coronavirus, survival analysis, virus classification

According to the World Health Organization Commentaries, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mainly transmitted through contact (<1.0 m) as well as droplet, airborne, fomite, fecal-oral, bloodborne, mother-to-child, and animal-to-human transmission. Direct and close contact transmission occur by respiratory secretions or droplets (>5–10 μm in diameter). Indirect contact transmission may be possible by contacting with a contaminated object or surface (fomite transmission). The virus may transmit via virus-contaminated surfaces and hands. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months depending on environment temperature. In our previous study, we have found that SARS-CoV-2 (1.2 × 10^3 PFU) was able to survive for 3 days in liquid medium or on dry filter paper at 22°C. In addition, SARS-CoV-2 (1.2 × 10^3 PFU) can persist in acidic condition (pH 2.2) for 60 min. SARS-CoV-2 have been isolated from a seafood package and a chopping board in the seafood market in China, underscoring risk assessment of SARS-CoV-2 transmission in environment. Furthermore, WHO pointed out that crowded beaches or swimming pools did pose a risk of spreading SARS-CoV-2 through close contact with infected people or
Contaminated surfaces. Sala-Comorera et al. found that SARS-CoV-2 (4.00 log$_{10}$ TCID$_{50}$/ml) declined 1 log titer in seawater for 1.1 days at 20°C and for 7.7 days at 4°C. It suggested the risk of SARS-CoV-2 in seawater for the disease spreading. However, how long SARS-CoV-2 can survive in seawater remains to be investigated. In the present study, we examined the stability of SARS-CoV-2 in seawater (artificial seawater, ASW) and on the surface of selected materials (stainless steel, plastic bag, non-woven fabric, etc.), which would provide evidence for COVID-19 epidemic control.

SARS-CoV-2 early cases have been linked to wholesale seafood markets in Wuhan, and SARS-CoV-2 nucleic acid have been detected in the imported frozen seafood in Qingdao. It suggests that the virus may survive in seawater and frozen seafood. We, therefore, evaluated the stability of the virus in artificial seawater (The chemical composition of ASW in Table S1 by Dr J Floor Anthoni). The titer of plaque-purified SARS-CoV-2 strain nCoV-SH01 (Genbank MT121215) was determined using 50% cell culture infectious dose assay (TCID$_{50}$). The viruses in ASW or medium as control were added into each well of 48-well plates (Corning costar) and incubated in a humidified chamber with 5% CO$_2$ at 37°C. The cytopathic effects (CPE) were checked daily under a microscope for 5 days and viral titers were checked daily under a microscope for 5 days and viral titers were performed by TCID$_{50}$ assay at Day 1, 3, 5, 7, or 14.

We further investigated virus survival at 4°C by inoculated with low titer (3.75 log$_{10}$ TCID$_{50}$) or high titer (5.50 log$_{10}$ TCID$_{50}$) virus. By keeping in ASW (4°C) till Day 14, the viral titer decreased from 5.50 to 3.00 log$_{10}$ TCID$_{50}$, and in medium (4°C) dropped to 2.75 log$_{10}$ TCID$_{50}$ (Table 1, Figure 1A). When the virus with 3.75 log$_{10}$ TCID$_{50}$ kept in ASW (4°C), by Day 7 the viral titer dropped to 1.38 log$_{10}$ TCID$_{50}$ (ASW) and 1.50 log$_{10}$ TCID$_{50}$ (medium), and no CPE was observed on Day 14 (Table 1, Figure 1B).

Salinity has previously been demonstrated to have a negative effect on stability of an enveloped RNA virus such as influenza virus. Sala-Comorera et al. found that infectious SARS-CoV-2 titers (4.00 log$_{10}$ TCID$_{50}$) remained stable for 24 h in river water at both 4 or 20°C and in seawater at 4°C. By 20 days at either 4 or 20°C the virus RNA in both river water and seawater were detected with no decline. In the present study, we found that SARS-CoV-2 (3.75 log$_{10}$ TCID$_{50}$) in ASW and liquid medium at 22°C maintained infectious for about 3 days, and at 4°C the virus survived more than 7 days. When we put the viral survival times in high titer group and low titer group together, it suggested that the virus at a high titer (5.50 log$_{10}$ TCID$_{50}$) may survive more than 20 days in ASW at 4°C. At either 4 or 20°C, there was no significant difference of the SARS-CoV-2 stability between in ASW and in liquid medium. It suggested that the viability of the virus was not significantly affected by seawater and has similar risk of infection. Therefore, it is necessary to pay attention to protect those in contact with seafood and the environment contaminated by SARS-CoV-2.

Since SARS-CoV-2 nucleic acids have been detected on the surface of agricultural products, package of imported goods or cold chain products, and farmer’s market environment, there is a potential risk for virus spread through human contact with these inanimate materials. We, therefore, determined survival of SARS-CoV-2 on the surface of selected materials including stainless steel, plastic bag, nonwoven fabric, rubber glove, cardboard, and wood board. 4.0 log$_{10}$ TCID$_{50}$ of nCoV-SH01 in 10 µl was inoculated on a square piece (1 cm × 1 cm) of the material in 12-well plates.

Table 1: Survival of SARS-CoV-2 in artificial seawater (ASW) or medium.

Virus	Temperature (°C)	Titer (log$_{10}$ TCID$_{50}$) of virus kept for days*	Day 1	Day 3	Day 5	Day 7	Day 14
Low titer	22	ASW	2.00	1.75	UD	UD	UD
(3.75 log$_{10}$ TCID$_{50}$)	4	ASW	2.25	1.50	UD	UD	UD
		Medium	2.75	2.25	2.00	1.50	UD
		ASW	2.75	2.50	1.75	1.38	UD
High titer	22	ASW	3.25	3.00	2.00	1.75	UD
(5.50 log$_{10}$ TCID$_{50}$)	4	ASW	3.50	3.25	3.25	3.25	2.75
		Medium	3.25	3.25	3.00	3.00	3.00

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; UD, under detectable level.

*The nCoV-SH01 at TCID$_{50}$ 5.50 log$_{10}$ or 3.75 log$_{10}$ were treated with medium or artificial seawater for days at 22°C or 4°C, and the titers were detected by TCID$_{50}$ assay at Day 1, 3, 5, 7, or 14.
were eluted with DMEM and viral titers were determined by TCID$_{50}$ assay 4 days after air dry in a biosafety cabinet. After the incubation, viruses could be detected (1.25 log$_{10}$ TCID$_{50}$) on Day 3, respectively and no CPE was observed on Day 12, while that from stainless steel, 83.18% (10$^{3.92}$/10$^{4.00}$) from plastic bag, 6.76% (10$^{2.83}$/10$^{4.00}$) from nonwoven fabric and 0.18% (10$^{1.25}$/10$^{4.00}$) from rubber glove respectively. Since the elution efficiencies of cardboard and plastic bag dropped to 1.50 log$_{10}$ TCID$_{50}$ and 0.52 log$_{10}$ TCID$_{50}$ by Day 9, respectively, and no CPE was observed on Day 3. No viable virus was detected in the eluent from the rubber glove by Day 1, although after 2-h incubation virus could be detected (1.25 log$_{10}$ TCID$_{50}$) (Table 2, Figure S1A).

At 4°C, the eluted viruses from stainless steel and non-woven fabric dropped to 1.50 log$_{10}$ TCID$_{50}$ and 0.52 log$_{10}$ TCID$_{50}$ by Day 9, respectively, and no CPE was observed on Day 12, while that from plastic bag dropped to 1.75 log$_{10}$ TCID$_{50}$ by Day 12 and no CPE was observed on Day 14. Loss of viral infectivity was confirmed by passing the culture supernatant blindly for three generations. Thus, the virus can survive much longer on stainless steel, nonwoven fabric, and plastic bag (>9 days) at 4°C (Table 2, Figure S1B).

Chin et al. have reported that SARS-CoV-2 (6.8 log$_{10}$ TCID$_{50}$) remained viable after 14 days at 4°C in the transport medium with a reduction of a 0.6 log$_{10}$ TCID$_{50}$ in viral titer by 7 days at 22°C, and 1 day at 37°C. They also found that the virus is extremely stable (with no significant decrease in titer) under a wide range of pH values (pH 3–10) for 60 min at room temperature.17 Doremalen et al. compared SARS-CoV-2 and SARS-CoV-1, and found that both viruses were more stable on surfaces of plastic and stainless steel (3 days) than on copper and cardboard (1 day).15 Many factors may affect the viral survival on the surface of various materials, including virus inactivation by materials and virus adsorption by porous materials. Hirose et al. found that SARS-CoV-2 could survive 59.8 h on the surface of plain paper, and paper surface treatments that enable the rapid evaporation of liquid might reduce the stability of virus.15 Additionally, Hirose et al. found that the survival times of SARS-CoV-2 VOCs (Variants of Concern) on the plastic surface were much longer than on the human skin, and the Omicron variant (5.0 × 104 TCID$_{50}$) survived for 193.5 h on the plastic surface and only 21.1 h on the human skin.20,21 The importance of surface-mediated transmission was demonstrated by Rawlinson et al. who used a DNA oligonucleotide surrogate for contaminated bodily fluid to determine how SARS-CoV-2 would spread within a clinical surface environment. It showed that within 10 h, the surrogate moved from the isolation room and transferred to 41% of all surfaces sampled.22 We found that at 22°C SARS-CoV-2

![FIGURE 1](A) Survival of SARS-CoV-2 (high titer) in artificial seawater (ASW) or medium at 4°C. The nCoV-SH01 at 5.50 log$_{10}$ TCID$_{50}$ were treated with artificial seawater or medium for days at 4°C, and the titers were detected by TCID$_{50}$ assay at Day 1, 3, 5, 7, or 14. (B) Survival of SARS-CoV-2 (low titer) in artificial seawater (ASW) or medium at 4°C. The nCoV-SH01 at 3.75 log$_{10}$ TCID$_{50}$ were treated with artificial seawater or medium for days at 4°C, and the titers were detected by TCID$_{50}$ assay at Day 1, 3, 5, 7, or 14. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

C (Corning costar) and placed at 4°C or 22°C for 1, 3, 5, 7, 9, 12, or 14 days after air dry in a biosafety cabinet. Before the incubation, viruses were eluted with DMEM and viral titers were determined by TCID$_{50}$ assay. Before the testing, we first measured virus elution efficiencies from the different materials, and it showed that 100% (10$^{4.00}$/10$^{4.00}$) from stainless steel, 83.18% (10$^{3.92}$/10$^{4.00}$) from plastic bag, 6.76% (10$^{2.83}$/10$^{4.00}$) from nonwoven fabric and 0.18% (10$^{1.25}$/10$^{4.00}$) from rubber glove respectively. Since the elution efficiencies of cardboard and wood board used were too low (<0.1%), the two materials were excluded in the following study (Table S2). At 22°C, the titers of the viruses eluted from stainless steel and plastic bag were 1.33 log$_{10}$ TCID$_{50}$ (initial 4.00 log$_{10}$ TCID$_{50}$) and 2.00 log$_{10}$ TCID$_{50}$ (initial 3.92 log$_{10}$ TCID$_{50}$) on Day 3, respectively and no CPE was observed on Day 5. The titer of the viruses eluted from non-woven fabric decreased from the initial 2.83–1.08 log$_{10}$ TCID$_{50}$ on Day 1 and no CPE was observed on Day 3. No viable virus was detected in the eluent from the rubber glove by Day 1, although after 2-h incubation virus could be detected (1.25 log$_{10}$ TCID$_{50}$) (Table 2, Figure S1A).

At 4°C, the eluted viruses from stainless steel and non-woven fabric dropped to 1.50 log$_{10}$ TCID$_{50}$ and 0.52 log$_{10}$ TCID$_{50}$ by Day 9, respectively, and no CPE was observed on Day 12, while that from plastic bag dropped to 1.75 log$_{10}$ TCID$_{50}$ by Day 12 and no CPE was observed on Day 14. Loss of viral infectivity was confirmed by passing the culture supernatant blindly for three generations. Thus, the virus can survive much longer on stainless steel, nonwoven fabric, and plastic bag (>9 days) at 4°C (Table 2, Figure S1B).
TABLE 2 Stability of SARS-CoV-2 on the surface of materials at 4°C or room temperature (RT, 22°C).

Materials	Assay	Survived virus on the surface of the materials for days*	2 h**	Day 1	Day 3	Day 5	Day 7	Day 9	Day 12	Day 14
Stainless steel at 4°C	CPE	/	++++	++++	++++	++++	++++	++++	UD	UD
	logTCID$_{50}$ percentage (%)	/	3.50 ± 0.25 (31.62)	3.08 ± 0.29 (12.02)	2.83 ± 0.14 (6.76)	2.58 ± 0.14 (3.80)	1.50 ± 0.37 (0.32)	UD	UD	
Stainless steel at RT	CPE	++++	++++	++++	++++	++++	++++	++++	UD	UD
	logTCID$_{50}$ percentage (%)	/	4.00 ± 0.3-8	2.25 ± 0.25 (1.78)	1.33 ± 0.14 (0.21)	UD	UD	/	/	UD
Plastic bag at 4°C	CPE	/	++++	++++	++++	++++	++++	++++	++++	-
	logTCID$_{50}$ percentage (%)	/	3.25 ± 0.43 (21.38)	3.58 ± 0.14 (45.71)	2.83 ± 0.38 (8.13)	2.25 ± 0.43 (2.14)	2.51 ± 0.29 (3.89)	1.75 ± 0.57 (0.68)	UD	
Plastic bag at RT	CPE	++++	++++	++++	++++	++++	++++	++++	++++	-
	logTCID$_{50}$ percentage (%)	/	3.92 ± 0.3-8	2.50 ± 0.50 (3.80)	2.00 ± 0.50 (1.20)	UD	UD	/	/	UD
Nonwoven fabric at 4°C	CPE	/	++++	++++	++++	++++	+	++	-	-
	logTCID$_{50}$ percentage (%)	/	3.08 ± 0.58 (177.82)	2.42 ± 0.58 (38.90)	2.08 ± 0.58 (17.78)	0.58 ± 1.01 (0.56)	0.52 ± 0.47 (0.50)	UD	UD	
Nonwoven fabric at RT	CPE	++++	++++	-	-	-	/	/	/	/
	logTCID$_{50}$ percentage (%)	/	2.83 ± 1.1-3	1.08 ± 0.95 (1.77)	UD	UD	UD	/	/	UD
Rubber gloves at 4°C	CPE	/	++	-	/	/	/	/	/	/
	logTCID$_{50}$ percentage (%)	/	0.33 ± 0.47 (12.02)	UD	/	/	/	/	/	
Rubber gloves at RT	CPE	++++	-	-	/	/	/	/	/	/
	logTCID$_{50}$ percentage (%)	/	1.25 ± 2.1-6	UD	/	/	/	/	/	

Abbreviations: CPE, cytopathic effects; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

* The nCoV-SH01 (4.00 log$_{10}$ TCID$_{50}$) in 10 µl DMEM was added on the surface of each material and placed on the biosafety cabinet to dry naturally for 30 min at 22°C. The eluting virus was detected by CPE and TCID$_{50}$ at Day 1, 3, 5, 7, 9, 12, or 14. The experiments were carried out in triplicate wells for each dilution.

** The virus was naturally dried at room temperature for 2 h. Then the eluted virus activity and titer were measured to calculate the elution efficiency (stainless steel: 100%, plastic bag: 83.18%, nonwoven fabric: 6.76%, rubber gloves: 0.18%).

*** CPE of Vero E6 cells was checked under a microscope at 48 h post infected. Degree of CPE, "++++", >75% of cells; "+++", 50%–75%; "++", 25%–50%; "+", 0–25%; "±", not clear-cut; "", no CPE. The cytopathic effects were observed under a microscope daily for 5 days.

**** The titer of virus were determined for log TCID$_{50}$ presented as mean ± SD, and percentage (%): viral survival rate in percentages = 10$^{[\text{viral titer at day}]/10^\text{viral titer at 2 h} }$. UD: under detective level; /: not done.
(4.0 log\textsubscript{10} TCID\textsubscript{50}) on stainless steel and plastic bag maintained infectious for 3 days, and on non-woven fabric for 1 day. In addition, at 4°C the virus was more stable with remaining infectious for 9 days on stainless steel and non-woven fabric, and on plastic bag for 12 days. It suggests that virus-contaminated items and packaging surfaces pose a risk of infection by close contacts.

Taken together, the data suggest that contaminated viruses may survive on the surfaces of the materials in cold-chain shipping (e.g., stainless steel, plastic, and nonwoven fabric) for a long time. It is important to highlight the role of inanimate material surfaces as a source of infection and the necessity for surface decontamination and disinfection. In addition, more stringent personal protection, as well as hand hygiene, should be implemented on the personnel engaged in the transportation and handling of cold-chain shipped food.

AUTHOR CONTRIBUTIONS
Zhi-ping Sun, Si-yu Yang, and Xia Cai performed the viral experiment in BSL-3 lab, analyzed the data, and participated in writing the paper. Wen-dong Han, Gao-wei Hu, Yun Qian, Yu-yan Wang, and Rong Zhang participated in experiments in BSL-3 lab. Di Qu and You-hua Xie designed the experiments, planned the approach, and wrote and edited the paper.

ACKNOWLEDGMENTS
This study was supported by NSTMP (2018ZX10734401, 2018ZX10301208, and 2019ZX09721001), Development Programs for COVID-19 of Shanghai Science and Technology Commission (Grant No. 20431900401), and Project of Novel Coronavirus of Fudan University.

CONFLICTS OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES
1. Organization. WH. Transmission of SARS-CoV-2: implications for infection prevention precautions. [(https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions)](https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions).
2. Marques M, Domingo JL. Contamination of inert surfaces by SARS-CoV-2: persistence, stability and infectivity. A review. *Environ Res*. 2021;193:110559. doi:10.1016/j.envres.2021.110559
3. Bueckert M, Gupta R, Gupta A, Garg M, Mazumder A. Infectivity of SARS-CoV-2 and other coronaviruses on dry surfaces: potential for indirect transmission. *Materials*. 2020;13:22. doi:10.3390/ma13225211
4. Sun Z, Cai X, Gu C, et al. Survival of SARS-COV-2 under liquid medium, dry filter paper and acidic conditions. *Cell Discov*. 2020;6:57. doi:10.1038/s41421-020-00191-9
5. Liu P, Yang M, Zhao X, et al. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: Successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. *Biosaf Health*. 2020;2(4):199–201. doi:10.1016/j.bsheal.2020.11.003
6. Daily C. Experts see similarity in Beijing, Dalian outbreaks. 2020. https://www.chinadaily.com.cn/a/202007/30/W5f228da3a31083481725d32c.html
7. Times G. Beijing supermarkets stop selling salmon after wholesalers test positive for coronavirus. 2020a. https://www.globaltimes.cn/content/1191462.shtml
8. Organization. WH. Coronavirus disease (COVID-19): Environmental Surveillance. https://www.who.int/news-room/questions-and-answers/item/environmental-surveillance
9. Sala-Comorera L, Reynolds LJ, Martin NA, O’Sullivan JJ, Meijer WG, Fletcher NF. Decay of infectious SARS-CoV-2 and surrogates in aquatic environments. *Water Res*. 2021;201:117090. doi:10.1016/j.watres.2021.117090
10. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China. 2019. *N Engl J Med*. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017
11. Jia J, Yuan Q, Hui JW, et al. Investigation of contamination of SARS-CoV-2 in imported frozen seafood from a foreign cargo ship and risk factors for infection in stevedores in Qingdao. *Zhonghua Liu Xing Bing Xue Za Zhi*. 2021;42(8):1360–1364. doi:10.3760/cma.j.cn112338-20210209-00107
12. Anthoni JF. The chemical composition of seawater. http://www.seafriends.org.nz/oceano/seawater.htm
13. Zhang Rong YZ. Isolation of a 2019 novel coronavirus strain from a coronavirus disease 19 patient in Shanghai. *J Microbes Infect*. 2020;15:15–20.
14. Dublineau A, Batejat C, Pinon A, Burguier AM, Leclercq I, Manuguerra JC. Persistence of the 2009 pandemic influenza A (H1N1) virus in water and on non-porous surface. *PLoS One*. 2011;6(11):e28043. doi:10.1371/journal.pone.0028043
15. Times G. COVID-19 outbreaks in Wuhan, Beijing and Dalian share certain similarities: China's top epidemiologist. 2020b. https://www.globaltimes.cn/content/1196130.shtml
16. Han J, Zhang X, He S, Jia P. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. *Environ Chem Lett*. 2020;18:1–12. doi:10.1007/s10311-020-01101-x
17. Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. *Lancet Microbe*. 2020;1(1):e10. doi:10.1016/S2352-3315(20)30033-3
18. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. *N Engl J Med*. 2020;382(16):1564–1567. doi:10.1056/NEJMc2004973
19. Hirose R, Miyazaki H, Bandou R, et al. Stability of SARS-CoV-2 and influenza virus varies across different paper types. *J Infect Chemother*. 2022;28(2):252–256. doi:10.1016/j.jiac.2021.11.006
20. Hirose R, Ikegaya H, Naito Y, et al. Survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus on human skin: importance of hand hygiene in coronavirus disease 2019 (COVID-19). *Clin Infect Dis*. 2021;73(11):e4329–e4335. doi:10.1093/cid/ciaa1517
21. Ryohsi Hirose YI, Ikegaya H, Miyazaki H, et al. Differences in environmental stability among SARS-CoV-2 variants of concern: omicron has higher stability. *bioRxiv*. 2022. 2022.01.18.476607 doi:10.1101/2022.01.18.476607
SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

22. Rawlinson S, Ciric L, Cloutman-Green E. COVID-19 pandemic - let’s not forget surfaces. J Hosp Infect. 2020;105(4):790-791. doi:10.1016/j.jhin.2020.05.022

How to cite this article: Sun Z-P, Yang S-Y, Cai X, et al. Survival of SARS-CoV-2 in artificial seawater and on the surface of inanimate materials. J Med Virol. 2022;94:3982-3987. doi:10.1002/jmv.27807