A Novel Gene “Niban” Upregulated in Renal Carcinogenesis: Cloning by the cDNA-amplified Fragment Length Polymorphism Approach

Shuichi Majima,1, 2 Kazunori Kajino,1 Tomokazu Fukuda,1 Fujio Otsuka2 and Okio Hino1, 3

1Department of Experimental Pathology, Cancer Institute, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455 and 2Department of Dermatology, Tsukuba University, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-0005

A modified AFLP (amplified fragment length polymorphism) method was employed to isolate genes differentially expressed in renal carcinogenesis of Tsc2 gene mutant (Eker) rats. One gene, selected for further investigation, was named “Niban” (“second” in Japanese), because it is the second new gene to be found after Erc (expressed in renal carcinoma) in our laboratory. Importantly, “Niban” is well expressed even in small primary rat Eker renal tumors, more than in progressed cell lines, and is also expressed in human renal carcinoma cells, but not in normal human or rat kidneys. Chromosome assignment was to RNO 13 in the rat, and HSA 1. This “Niban” gene is a candidate as a marker for renal tumor, especially early-stage renal carcinogenesis.

Key words: Tsc2 gene mutant (Eker) rats — Multistep renal carcinogenesis — cDNA-AFLP — Tumor marker

Various tumor suppressor genes or anti-oncogenes have been identified by the study of hereditary human cancers.1) Although these genes are recessive, they render heterozygous carriers highly susceptible to particular cancers and so appear in pedigrees as dominantly inherited disorders. Such a dominantly inherited predisposition was described in rats by Eker.2) The hereditary renal carcinoma in the rat, originally reported in 1954, is an example of a Mendelian dominantly inherited predisposition to a specific cancer in an experimental animal. At the histological level, renal carcinomas develop through multiple stages from early preneoplastic lesions (e.g., phenotypically altered tubules, which begin to appear around 2 months of age), to adenomas in virtually all heterozygotes around the age of 1 year.3, 4) The homozygous mutant condition is lethal to the fetus.3) The fact that ionizing radiation induced additional tumors with a linear dose-response suggests that in heterozygotes two events (the first inherited and the second somatic) are necessary to produce tumors.5) The predisposing gene in the Eker rat was mapped to the proximal part of rat chromosome (RNO) 10.5, 6) We have established a new conserved linkage group on rat (RNO) 10q, whereby the Eker mutation was found to be tightly linked to the tuberous sclerosis (Tsc2) gene,7) and finally identified a germline mutation in the Tsc2 gene.8, 9)

Carcinogenesis consists of multiple steps and carcinoma development is associated with multi-gene alterations. To identify the genes associated with multi-step renal carci-no

genesis, we performed subtractive cDNA cloning for two renal carcinoma cell lines using the cDNA-AFLP (amplified fragment length polymorphism) approach. These cell lines, named LK9d(L) and LK9d(R) were established from the same Eker rat,10, 11) but differ in many aspects. First, LK9d(L), but not LK9d(R), can only be cultured on collagen-coated culture plates. Second, LK9d(R) is flat and round, whereas LK9d(L) is spindle-shaped. Third, growth of LK9d(R) is much faster. Fourth, loss of the p16/15 region (RNO5), reported for a number of carcinomas,12, 13) was only found in LK9d(R).

The modified AFLP method employed here was originally developed to isolate genomic markers in plant genetics.14, 15)

Cell and tissue materials: Total RNAs were extracted from cell lines and tissues by the acid guanidine phenol chloroform method using ISOGEN (Nippon Gene, Tokyo). Poly-A tailed RNA was isolated with Oligotex dT Super 30 (TaKaRa, Kyoto), and used as the material for cDNA synthesis. More detailed information is available in our previous reports.12, 16)

The strategy of the cDNA-AFLP method: The AFLP method adapted for cDNA was as described in our previous report.15) PCR products which were preferentially amplified in either of the cell lines were recovered. To prevent biased subcloning, we picked up five independent clones and sequenced them. Northern blotting was performed to confirm differential expression.

For expression analysis, we used cell line RNAs obtained from LK9d(L), LK9d(R), ERC (Eker rat Renal Carcinoma) 33, S-LK9d(L)-SLMs, Hep G2, and human renal carcinoma cells (hRCCs). Tissue RNAs were also

1To whom all correspondence should be addressed. E-mail: ohino@ims.u-tokyo.ac.jp
obtained from Eker rat small renal tumors and normal Wistar rat organs such as the kidney. LK9d(L) is a slow-growing cell line, but LK9d(R) and ERC33 are fast-growing cell lines.\(^{17, 18}\) S-LK9d(L)-SLM (selected lung metastasis) cell lines were established from LK9d(L) \textit{in vivo} using nude mice and are slightly faster-growing than LK9d(L).\(^{19, 15}\) Human renal carcinoma cells (hRCCs) were established from human renal carcinomas obtained at surgery (manuscript in preparation). Hep G2 is a commonly employed cell line established from a hepatoblastoma. To check the expression of “Niban” in human normal organs, we used Clontech human multiple tissue northern blots membrane.

The cloned cDNAs were \(^{32}\)P-labeled by a random hexamer method, and used as probes for northern and Southern blotting. Two hundred nanograms of poly-A tailed RNA or 5 \(\mu\)g of total RNA derived from LK9d(L) and LK9d(R) was run on formalin denaturing gels and transferred to Biodyne B nylon membranes (Pole, East Hills, NY).

BLAST and FASTA homology searches were performed with the nucleotide sequence information. For the unknown clones, longer cDNAs were obtained using the Marathon cDNA amplification system (Clontech, Palo Alto, CA) based on rapid amplification of cDNA ends (RACE) with long distance PCR or the ZAP-cDNA synthesis system (Stratagene, La Jolla, CA).\(^{15}\)

\textbf{Genomic DNA isolation and Southern blot analysis:} DNAs were isolated from LK9d(L) and LK9d(R) by the sodium dodecyl sulfate (SDS)/proteinase K method with phenol extraction. After restriction enzyme digestion, the DNAs were hybridized with probes corresponding to the cloned cDNAs. Northern blot analysis was performed as described above.

\textbf{Fig. 1.} Northern blot analysis of “Niban.” A human glyceraldehyde-3 phosphate dehydrogenase (GAPDH) probe was utilized as the loading control for northern blot analysis. (A) Note the strong expression in LK9d(L), the intermediate level expression in S-LK9d(L)-SLM, but very faint bands for LK9d(R) and ERC33. (B) In tissues, there is strong expression in Eker rat small renal tumors, but none in Wistar rat normal kidney and Eker rat normal liver. (C) In human renal carcinoma cells, there is strong-moderate expression, while Hep G2 cells are negative.

\textbf{Fig. 2.} Northern blot analysis with poly-A rich RNAs in normal tissues. (A) In the normal Wistar rat, there is expression in brain, lung, spleen, and skeletal muscle, but not in kidney, pituitary gland, heart, uterus, ovary, and liver. LK9d(L) is the positive control. (B) In normal human tissues, there is expression in heart, skeletal muscle, pancreas, white blood cell (WBC) and prostate, moderate expression in colon and spleen and none in thymus, testis, ovary, small intestine, brain, placenta, lung, liver, or kidney.
were separated on 1% agarose gels and transferred onto nylon membranes under alkaline conditions. Pre-hybridization and hybridization were performed in 0.2 M phosphate buffer (pH 7.2), 1 mM EDTA, 1% bovine serum albumin, and 7% SDS, at 65°C. After addition of 32P-labeled probes, hybridization was performed in the same solution at 65°C. The filters were then washed twice in 1× standard saline citrate (SSC; 0.15 M NaCl and 15 mM sodium citrate) and 0.1% SDS for 15 min at room temperature and then washed once in 1× standard saline citrate and 0.1% SDS for 30 min at 65°C. The filters were exposed to X-ray film with an intensifying screen at −50°C for 1–3 days. More detailed information is available in our previous reports.19)

Cloning of differentially expressed genes in LK9d(L): Comparison of cDNA-AFLP patterns revealed different cDNA fragments between LK9d(L) and LK9d(R). These bands were excised from gels and cloned into the plasmid. We picked out and further analyzed one fragment that exhibited especially prominent differences, with greater expression in LK9d(L). Three other bands are obviously not novel genes, resembling mitochondrial DNA, atrial natriuretic peptide and ribosomal RNA in a homology search. So we focused only on the “Niban” gene.

Sequencing and homology evaluation with the BLAST and FASTA programs in DDBJ were performed. The size of “Niban” transcript was about 6.5 kb (Fig. 1A). Northern blot analysis revealed strong expression in LK9d(L), very low expression in LK9d(R) and ERC33, and an intermediate level in S-LK9d(L)-SLM (Fig. 1A). Importantly strong expression was also found in Eker rat small renal tumors, but not in normal Wistar kidney or Eker rat liver (Fig. 1B). Furthermore human renal carcinoma cells (hRCCs) were positive with a rat probe, while the Hep G2 line was negative (Fig. 1C).

Northern blot analysis with poly-A rich RNAs demonstrated expression in normal brain, lung, spleen, and skeletal muscle, but not in kidney, pituitary gland, heart, uterus, ovaries and liver of Wistar rats. LK9d(L) was the positive control in this experiment (Fig. 2A). In normal human tissues, strong expression was found in heart, skeletal muscle, pancreas, white blood cells, and prostate, moderate in colon and spleen and none in thymus, testis, ovary, small intestine, brain, placenta, lung, liver or kidney (Fig. 2B).

To define “Niban” as a single gene, we performed Southern blot analysis. If it were a multi-gene complex, a “smear” or “ladder” might be expected on Southern blot analysis. With LK9d(R) and LK9d(L), as rat sources of DNA, we observed three clear bands on EcoRI digestion (Fig. 3A). With human kidney DNAs, we observed two or three bands on PstI, NcoI, AvaI, and XbaI digestion (Fig. 3B).
Fig. 5. The cDNA sequence containing the open reading frame (ORF) and the amino acid sequence.
ORF of revealed several sequences with some homology to the to be 6.5 kb by northern blotting. Homology search codes for 737 amino acid. The mRNA size was estimated If the first A TG at nt 634 is the initiation codon, this gene open reading frame (ORF) of 2748 bp (Fig. 4 and Fig. 5). cDNA clones (2.3 kb and 3.0 kb) contained a complete reactions based on long-distance PCR. Two overlapping ligand protein (BL00435A, similarity score 1062). Peroxidases PH ligand is peroxidases proximal heme-cpn60 is chaperonins cpn60 protein (BL00296E, similarity score 1014). S54 ATP-binder is Sigma-54 interaction domain ATP-kinase substrate family proteins (BL00826A, similarity score 1020). MARCKS is myristoylated alanine-rich C-ribose)polymerase zinc finger domain protein (BL00347B, similarity score 1010). PP zinc finger is poly(ADP-ribose)polymerase zinc finger domain protein (BL00347B, similarity score 1020). MARCKS is myristoylated alanine-rich C-kinase substrate family proteins (BL00826A, similarity score 1015). S54 ATP-binder is Sigma-54 interaction domain ATP-binding region A (BL00675D, similarity score 1006). Chaperon cpn60 is chaperonins cpn60 protein (BL00296E, similarity score 1014). Peroxidases PH ligand is peroxidases proximal heme-ligand protein (BL00435A, similarity score 1062).

The chromosomal assignment of the “Niban” gene was determined by Southern blot analysis of a human/rat somatic cell hybrid panel. The membrane filters for hybrid cell panel analysis were kindly provided by Dr. G. Levan (University of Goteborg, Goteborg, Sweden). The chromosome assignment was to RNO13 in the rat and HSA1 in the human case (data not shown).

Cloning of longer cDNA fragments and identification of the “Niban” gene: We obtained longer cDNA fragments from conventional library screening and 5′ or 3′-RACE reactions based on long-distance PCR. Two overlapping cDNA clones (2.3 kb and 3.0 kb) contained a complete open reading frame (ORF) of 2748 bp (Fig. 4 and Fig. 5). We have not determined the initiation codon in this ORF. If the first ATG at nt 634 is the initiation codon, this gene codes for 737 amino acid. The mRNA size was estimated to be 65 kb by northern blotting. Homology search revealed several sequences with some homology to the ORF of “Niban.” These sequences are listed in the Genbank database as EST (expressed sequence tags) or HTG (high throughput genome). Among them, those coded by Genbank accession number AA191493 (EST; zp88e01.s1 Stratagene HeLa cell s3 <540 nt>, 86.296% identity in 540 nt overlap), AW503842 (EST: UI-HF-BN0-alb-c-07-0-UI.r1 NIH-MGC <436 nt>, 84.988% identity in 433 nt overlap) and AL136086 (HTG: human DNA sequence sequencing <97 777 nt>, 70.244% identity in 615 nt overlap) showed higher homology to “Niban,” but their functional significance has not yet been reported. Possible functional domains in “Niban” was searched by use of the MOTIF program (http://www.genome.ad.jp/). It revealed no known functional domains in “Niban,” but showed the existence of some similarity to known proteins by ungapped multiple sequence alignments (BLOCK program). Details are shown in Fig. 6.

The “Niban” gene showed unique band pattern in Southern blots. It was found to be well conserved between human and rat. We conclude that it is a new single gene.

The present study showed “Niban” to be expressed highly in the LK9d(L) line and at an intermediate level in S-LK9d(L)-SLM. The LK9d(R) and ERC33 cells, on the other hand, had low expression. The absence of expression in normal rat/human kidneys and in a large tumor (data not shown) and the results in cultured RCC cells suggest an inverse relation between expression of “Niban” and progression of renal carcinogenesis. We think “Niban” expression is most dramatically increased in the early stage of renal carcinogenesis and might decline during malignant progression. It would be worthwhile to do a function analysis of “Niban.”

In conclusion, the present study demonstrated that the cDNA-AFLP technique is a useful tool to search for additional genes specifically involved in Tsc2 gene mutant (Eker) renal carcinogenesis. Analysis of the molecular function of the “Niban” gene and of the relationship with Tsc2 gene mutation should provide new insights into multi-step carcinogenesis in the kidney. Thus, the Tsc2 mutant (Eker) rat provides a promising model for analyzing the key events of carcinogenesis at different stages.

We thank Drs. Haruo Sugano, Tomoyuki Kitagawa and Alfred G. Knudson for encouragement throughout this work, which was supported in part by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science, Sports and Culture of Japan and a grant from the Organization for Pharmaceutical Safety and Research (OPSR).

(Received May 30, 2000/Revised July 31, 2000/Accepted August 4, 2000)

REFERENCES

1) Knudson, A. G., Jr. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res., 45, 1437–1443 (1985).
2) Eker, R. and Mossige, J. A dominant gene for renal ade-
and Knudson, A. G. Spontaneous and radiation-induced renal tumors in the Eker rat model of dominantly inherited cancer. *Proc. Natl. Acad. Sci. USA*, 90, 327–331 (1993).

4) Everitt, J. L., Goldsworthy, T. L., Wolf, D. C. and Walker, C. L. Hereditary renal cell carcinoma in the Eker rat: a rodent familial cancer syndrome. *J. Urol.*, 148, 1932–1936 (1992).

5) Hino, O., Mitani, H., Nishizawa, M., Katsuyama, H., Kobayashi, E. and Hirayama, Y. A novel renal cell carcinoma susceptibility gene maps on chromosome 10 in the Eker rat. *Jpn. J. Cancer Res.*, 84, 1106–1109 (1993).

6) Yeung, R. S., Buettow, K. H., Testa, J. R. and Knudson, A. G., Jr. Susceptibility to renal carcinoma in the Eker rat involves a tumor suppressor gene on chromosome 10. *Proc. Natl. Acad. Sci. USA*, 90, 8038–8042 (1993).

7) Hino, O., Kobayashi, T., Tsuchiya, H., Kikuchi, Y., Kobayashi, E., Mitani, H. and Hirayama, Y. The predisposing gene of the Eker rat inherited cancer syndrome is tightly linked to the tuberous sclerosis (TSC2) gene. *Biochem. Biophys. Res. Commun.*, 203, 1302–1308 (1994).

8) Kobayashi, T., Hirayama, Y., Kobayashi, E., Kubo, Y. and Hino, O. A germline insertion in the tuberous sclerosis (Tsc2) gene gives rise to the Eker rat model of dominantly inherited cancer [published erratum appears in *Nat. Genet.*, 1995 Feb; 9 (2): 218]. *Nat. Genet.*, 9, 70–74 (1995).

9) Yeung, R. S., Xiao, G. H., Jin, F., Lee, W. C., Testa, J. R. and Knudson, A. G. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the TSC2 gene. *Proc. Natl. Acad. Sci. USA*, 91, 11413–11416 (1994).

10) Fukuda, T., Kido, A., Kajino, K., Tsutsumi, M., Miyauchi, M., Konishi, Y. and Hino, O. Hepatocarcinogenesis in rodents and humans. *J. Cancer Res. Clin. Oncol.*, 121, 602–605 (1995).

11) Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Horres, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. AFLP: a new technique for DNA fingerprinting. *Nucleic Acids Res.*, 23, 4407–4414 (1995).

12) Hino, O., Kobayashi, E., Nishizawa, M., Kubo, Y., Kobayashi, T., Hirayama, Y., Takai, S., Kikuchi, Y., Tsuchiya, H., Orimoto, K., Kajino, K., Takahara, T. and Mitani, H. Renal carcinogenesis in the Eker rat. *J. Cancer Res. Clin. Oncol.*, 121, 602–605 (1995).

13) Wang, P., Ahsan, Y. T., Everitt, J. and Yuan, X. Renal cell carcinoma development in the rat independent of alterations at the VHL gene locus. *Tumori*, 84, 154–161 (1996).

14) Urakami, S., Tokuzen, R., Tsuda, H., Igawa, M. and Hino, O. Generation of metastatic variants of Eker renal carcinoma cell lines for experimental investigation of renal cancer metastasis. *Jpn. J. Cancer Res.*, 89, 1140–1148 (1998).

15) Orimoto, K., Tsuchiya, H., Kobayashi, T., Matsuda, T. and Hino, O. Suppression of the neoplastic phenotype by replacement of the Tsc2 gene in Eker renal carcinoma cells. *Biochem. Biophys. Res. Commun.*, 219, 70–75 (1996).

16) Hino, O., Kobayashi, E., Hirayama, Y., Kobayashi, T., Kubo, Y., Tsuchiya, H., Kikuchi, Y. and Mitani, H. Molecular genetic basis of renal carcinogenesis in the Eker rat model of tuberous sclerosis (Tsc2). *Mol. Carcinog.*, 14, 23–27 (1995).

17) Kitagawa, T., Miyasaka, K., Kanda, H., Yasui, H. and Hino, O. Suppression of the neoplastic phenotype by replacement of the Tsc2 gene in Eker renal carcinoma cells. *Biochem. Biophys. Res. Commun.*, 219, 70–75 (1996).

18) Fukuda, T., Kido, A., Kajino, K., Tsutsumi, M., Miyazaki, Y., Tsuchiya, T., Konishi, Y. and Hino, O. Cloning of differentially expressed genes in highly and low metastatic rat osteosarcomas by a modified cDNA-AFLP method. *Biochem. Biophys. Res. Commun.*, 261, 35–40 (1999).

19) Henikoff, J. G., Henikoff, S. and Pietrokovski, S. New features of the Blocks Database servers. *Nucleic Acids Res.*, 27, 226–228 (1999).