Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness?

Natalia Jaworska1,2, Sylvia M. Cox1, Kevin F. Casey2, Isabelle Boileau4, Mariya Cherkasova5, Kevin Larcher6, Alain Dagher6, Chawki Benkelfat1, Marco Leyton1*

1 Department of Psychiatry, McGill University, Montreal, Quebec, Canada, 2 Institute of Mental Health Research, Ottawa, Ontario, Canada, 3 Le Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada, 4 Centre for Addiction & Mental Health (CAMH), Toronto, Ontario, Canada, 5 University of British Columbia, Division of Neurology, Vancouver, British Columbia, Canada, 6 Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada

* marco.leyton@mcgill.ca

Abstract

Background

Novelty-seeking (NS) and impulsive personality traits have been proposed to reflect an interplay between fronto-cortical and limbic systems, including the limbic striatum (LS). Although neuroimaging studies have provided some evidence for this, most are comprised of small samples and many report surprisingly large effects given the challenges of trying to relate a snapshot of brain function or structure to an entity as complex as personality. The current work tested a priori hypotheses about associations between striatal dopamine (DA) release, cortical thickness (CT), and NS in a large sample of healthy adults.

Methods

Fifty-two healthy adults (45M/7F; age: 23.8 ± 4.93) underwent two positron emission tomography scans with [11C]raclopride (specific for striatal DA D2/3 receptors) with or without amphetamine (0.3 mg/kg, p.o.). Structural magnetic resonance image scans were acquired, as were Tridimensional Personality Questionnaire data. Amphetamine-induced changes in [11C]raclopride binding potential values (ΔBP_{ND}) were examined in the limbic, sensorimotor (SMS) and associative (AST) striatum. CT measures, adjusted for whole brain volume, were extracted from the dorsolateral sensorimotor and ventromedial/limbic cortices.

Results

BP_{ND} values were lower in the amphetamine vs. no-drug sessions, with the largest effect in the LS. When comparing low vs. high LS ΔBP_{ND} groups (median split), higher NS2 (impulsiveness) scores were found in the high ΔBP_{ND} group. Partial correlations (age and gender as covariates) yielded a negative relation between ASTS ΔBP_{ND} and sensorimotor CT; trends for inverse associations existed between ΔBP_{ND} values in other striatal regions and frontal CT. In other words, the greater the amphetamine-induced striatal DA response, the thinner the frontal cortex.
Conclusions

These data expand upon previously reported associations between striatal DA release in the LS and both NS related impulsiveness and CT in the largest sample reported to date. The findings add to the plausibility of these associations while suggesting that the effects are likely weaker than has been previously proposed.

Introduction

Impulsive novelty seeking (NS) traits have been proposed to reflect individual differences in meso-striatal dopamine (DA) transmission [1],[2] and aspects of cortical morphometry, including grey matter volume and cortical thickness (CT) [3],[4]. The model is compelling. Limbic DA transmission potently influences the incentive salience of rewarding and potentially rewarding (novel) stimuli [5],[6],[7], and cortical projections densely innervate the striatum [8],[9] further modulating the planning of approach and avoidance behaviors [1],[10]. In humans, individual differences in CT, striatal DA D_2 receptor availability and striatal DA responses to a drug challenge (e.g., amphetamine) have been reported to account for a substantial proportion of the variance in temperamental features such as NS (Tables 1–3). However, given the noise inherent to both neuroimaging data and personality trait measurements, it seems surprising that a single snapshot of a neurobiological feature can account for so much variation in temperament [11]. Since much of this work has been conducted in small samples, and rarely with the same measure of impulsivity, in the current study, we investigated—for the first time—the relation between NS, CT and amphetamine-induced striatal DA release (via regression analyses) in the largest sample of healthy adults reported to date. Based on the previous studies, we predicted, a priori, that greater DA release would be associated with higher impulsivity-related NS scores and thinner frontal cortices. Additionally, since the association between CT and DA release has only been previously reported once in a smaller cohort [12], we sought to replicate this finding in a substantially larger sample. The same is true for reproducing the association between striatal DA release and NS, which was reported only once previously [13].

Materials and methods

Overview

Data were pooled from five previously reported studies [12],[13],[29],[33],[34], involving healthy adults (N = 52) who underwent two positron emission tomography (PET) [^{11}C]raclopride scans, with and without amphetamine. Structural magnetic resonance image (MRI) scans and Tridimensional Personality Questionnaire (TPQ) data were also acquired [35], with a focus on the relation between neuroimaging variables and NS, including NS_Total scores and the constituent subscales of exploratory excitability (NS1), impulsiveness (NS2), extravagance (NS3) and disorderliness (NS4).

Participants

Participants were healthy men (n = 45) and women (n = 7). Following a telephone screen, volunteers underwent an in-person physical exam, standard laboratory tests and a psychiatric assessment (Structured Clinical Interview for DSM-IV-TR [SCID-IV-TR], non-patient edition [36]). Inclusion criteria were as follows: a) absence of axis I disorder, b) no first-degree relative
Table 1. Associations between baseline meso-striatal dopamine function & externalizing personality traits.

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
*Lee et al., 2009 [14]	N = 51 methamphetamine-dependent adults (33.6±8.8, 21F/30M; PET N = 22) N = 66 (31.3±8.3, 32F/34M; PET N = 30) healthy adults	Questionnaire: BIS-11	[18F]fallypride (D2/3 DAAR) -Relations between BIS & baseline BPND (controlling for age)	Negative correlation between baseline BPND in left caudate nucleus/right lateral putamen/claustrum & BIS (greater effect in dependent adults).	Low baseline striatal DRA availability → higher impulsiveness.
Giedde et al., 2009 [15]	N = 18 healthy M (30.1±7.1)	Questionnaire: Zuckerman scale (SS assessment)	[11C]raclopride (striatal D2/3 DAAR) -Relations between SS & baseline BPND	Inverted-U shape best fit BPND values in ventral striatum/putamen & entire range of SS.	Striatal baseline DRA availability is lower in those with more or less SS than average.
Reeves et al., 2012 [16]	N = 23 healthy adults (47±11; 4F/19M)	Questionnaire: BIS-11	[11C]raclopride -Associations with personality & BPND	After excluding those with high dissimulation scores: baseline limbic striatum BPND correlated positively with non-planning impulsivity (N = 14; r = .58).	Increased baseline striatal D2/3 DAAR → higher non-planning impulsivity.
*Boileau et al., 2013 [17]	N = 13 M with problematic gambling (32.5±8.5) N = 12 healthy M (33.8±11.2)	Slot machine game --- not during imaging -Questionnaire: EPI	[11C](-)-PHNO (D2 DAAR) & [11C]raclopride -Associations between BPND & personality, performance	In healthy M, baseline dorsal striatum [11C]raclopride BPND correlated inversely with impulsiveness & reinforcing effects of slot machine game (r = -.70).	Low baseline dorsal striatal DRA availability → higher impulsiveness & gambling liking.
Kim et al., 2014 [18]	N = 21 healthy adults (34.6±8.8; 13F/8M)	Questionnaire: BIS-11 & TCI (HA & NS)	[11C]raclopride -Relations between NS & baseline BPND (HA & NS controlled for) -BPND comparisons between high vs. low BIS groups	Greater BPND in pre-commissural dorsal caudate in high vs. low BIS group. Non-planning/attentional impulsiveness correlated positively (r = .65/.61) with pre-commissural dorsal caudate BPND.	Increased baseline DAAR availability in associative striatum → higher impulsiveness.
Robertson et al., 2015 [19]	N = 31 healthy adults (30.7±8.3; 16F/15M)	Tasks: SST & CPT (motor inhibition) --- not during imaging	[11C]NCC-112 (D1 DAAR) & [18F]fallypride -Correlations between performance & baseline BPND in striatum	SST RT negatively correlated with baseline striatal BPND (r = -.42 to -.62).	Low baseline striatal DAAR availability → more impulsive actions (which have been related to impulsivity traits)
*Oberlin et al., 2015 [20]	N = 10 alcoholics (33.3±6.8, 3F/7M) N = 13 (33.2±7.4, 6F/7M) healthy social drinkers	Monetary delay-discounting task (impulsive choice) --- not during imaging -Questionnaire: I7	[11C]raclopride in LS-Correlations between performance & baseline BPND	Greater impulsive choice for $20 correlated with lower right LS BPND. Positive correlation between impulsiveness & left posterior putamen BPND; between disinhibition & right anterior putamen BPND.	Low baseline LS DAAR availability → greater impulsive choice. Increased baseline putamen DAAR availability → higher impulsive & disinhibitory traits.

Summary: Greater striatal DAAR availability may be associated with higher externalizing traits in healthy populations, though notable exceptions suggest the opposite or an inverted U-shaped association between DAAR availability and externalizing traits.

Baseline striatal DA transporter availability, DA synthesis capacity & externalizing personality traits

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
Lawrence & Brooks, 2014 [21]	N = 12 healthy males (38±7)	Questionnaire: Disinhibition measured with TPQ NS2 (impulsivity) & NS3 (extravagance)	FDOPA (DA striatal synthesis capacity) -Correlations between disinhibition (controlling for HA) & baseline BPND	Positive relation between NS3 & DA activity in LS (r = .78).	Greater DA synthesis capacity in LS → greater disinhibition (extravagance).

(Continued)
Table 1. (Continued)

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
*Ishii et al., 2016 [22]	N = 16 patients with Parkinson’s Disease (66.3±7.2; 10F/6M) N = 28 healthy adults (10F/18M; 63.4±5.6; N = 17 in PET analysis)	Questionnaire: TCI (focus on NS & HA)	[11C]CFT (DA transporter availability) - Baseline BPND in striatum, limbic system & frontal lobe - DTI analysis	No correlations between NS/HA & baseline striatal ([11C]CFT BP. NS correlated positively with connectivity between striatum-hippocampus/amygdala (both groups) & between striatum-DLPFC/left PFC (controls).	No relation between NS/HA & striatal DA transporter availability.
Smith et al., 2016 [23]	N = 16 healthy adults (28±2.7; 8F/8M)	Delay-discounting (DD) task (impulsive choice) → not during imaging	FMT (DA synthesis capacity) - Median split of baseline BPND in putamen & midbrain (VTA/SN)	Lower putamen FMT predicted greater ‘Now’ bias, more rapidly declining discount rate with increased delay & reduced willingness to accept better delayed rewards. Lower midbrain FMT predicted greater sensitivity to increasing magnitude of ‘Later’ reward.	Lower baseline putamen DA synthesis → greater impulsivity. Lower baseline midbrain DA synthesis → less impulsivity.

Summary: Inconclusive evidence for an association between DA transporter availability as well as DA synthesis capacity and externalizing traits in healthy populations.

Baseline midbrain autoreceptor DAβ availability & externalizing personality traits

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
Zald et al., 2008 [24]	N = 34 healthy adults (23.4; 16F/18M)	Questionnaire: TPQ (NS)	[18F]fallypride-SN/VTA baseline BPND - Relations between NS & baseline BPND	Inverse correlation between NS & DAβ in SN/VTA (r = -.44).	Decreased baseline midbrain DAβ availability (autoreceptor) → increased NS.
*Savage et al., 2014 [25]	N = 8 normal weight females (38) N = 19 obese females (38)	Questionnaire: TPQ (NS)	[18F]fallypride-Baseline BPND in SN - Correlations between NS & baseline BPND	In normal weight group: Negative correlation between NS & baseline SN D2/3 DAβ BPND (r = -.70).	Decreased baseline midbrain DAβ availability (autoreceptor) → increased NS.

Summary: Emerging evidence for an inverse association between midbrain autoreceptor DAβ availability and externalizing traits in healthy populations.

*Focus on healthy-controls or findings across all groups; Means ± standard deviations presented. CFT: 2β-carbomethoxy-3β-(4-fluorophenyl)β-[N-11C-methyl]tropane; CPT: Continuous performance task; BIS-11: Barratt Inhibition scale; BPND: Binding potential, non-dissociable; Dβ3 DAβ: Dopamine (DA) receptors–subtypes 2 & 3; DTI: Diffusion tensor imaging; HA: Harm-avoidance; EPI: Eysenck Personality Inventory; FDOPA: 6-[18F]fluoro-L-DOPA; FMT: 6-[18F]fluoro-l-m-tyrosine; I7: Impulsiveness-Venturesomeness-Empathy questionnaire; LS: Limbic striatum; M/F: Male/female; NS: Novelty-seeking; PHNO: [11C]-(+)-propyl-hexahydro-naphtho-oxazin; PET: Positron emission tomography; SN: Substantia nigra; SS: Sensation-seeking; SST: Stop-signal task; TCI: Temperament & Character Inventory; TPQ: Tridimensional Personality Questionnaire; VTA: Ventral tegmental area

https://doi.org/10.1371/journal.pone.0174219.t001

with a substance use disorder, c) no major medical conditions, d) no current/past neurological issues (e.g., no loss of consciousness for >5 min), e) negative seropositive pregnancy test in females. Volunteers with modest alcohol and infrequent recreational drug use (e.g., hallucinogens, marijuana) were not excluded (see individual papers for further details). All participants provided written informed consent prior to starting the studies, which were carried out in accordance with the Declaration of Helsinki and approved by the Research Ethics Committee of the Montreal Neurological Institute (MNI), McGill University.

Neuroimaging acquisition

PET scans were carried out on two separate days (inter-scan time: 23.6 days±26.9; range: 1–104 days). Participants were asked to abstain for a minimum of 7 h and 24 h from tobacco.
Table 2. Associations between amphetamine-induced striatal dopamine release & externalizing personality traits.

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
Leyton et al., 2002 [13]	N = 8 healthy M (29.9 ±8.7)	d-amphetamine challenge (.3 mg/kg p.o.) & placebo -Questionnaire: TPOQ	[11C]raclopride (striatal D_{2/3} DA _PND (no-drug vs. drug) -Associations between TPOQ & ΔBP_{ND}	Amphetamine decreased LS BP_{ND}, ΔBP_{ND} Correlated positively with NS & NS- exploratory excitability (r = .56 & .55).	Greater drug-induced striatal DA responses → higher NS.
Riccardi et al., 2006 [26]	N = 14 healthy adults (25.9; 6F/7M)	d-amphetamine challenge (.43 mg/kg, p.o.) -Questionnaire: SS Scale Form V	[18F]fallypride (D_{2/3} DA _PND (no-drug vs. drug) -Associations between SS & ΔBP_{ND}	SS correlated positively with DA response in left LS in M (r = .90); opposite in F (r = -.71).	Differential relations between DA activity depending on region & sex.
Oswald et al., 2007 [27]	N = 20 healthy adults—high impulsivity (21.6 ±3.3; 9F/11M) N = 20—low impulsivity (22.4 ±3.0; 5F/15M)	d-amphetamine challenge (.3 mg/kg i.v.) -Questionnaire: NEO-PI—high/low impulsivity groups	[11C]raclopride -ΔBP_{ND} (no-drug vs. drug) -High vs. low impulsivity comparisons	High vs. low impulsivity subjects had lower right LS DA under conditions of low/ moderate stress.	High trait impulsivity → blunted right LS DA release (moderated by stress).
Buckholtz et al., 2010 [28]	N = 32 healthy adults (22.6; 16F/16M)	d-amphetamine challenge (.43 mg/kg oral) & placebo -Questionnaire: BIS-11	[18F]fallypride -ΔBP_{ND} (no-drug vs. drug) in SN/VTA & striatum -Associations between BIS & ΔBP_{ND}	BIS-11 predicted midbrain baseline DA _PND (greater scores, fewer receptors). Greater BIS-11 scores → greater LS DA release.	Greater striatal DA response → greater impulsiveness. Lower midbrain DA autoreceptor availability may lead to impulsivity by enhancing striatal DA release (mediation).
*Cherkasova et al., 2014 [29]	N = 15 M with ADHD (29.4±8.7) N = 18 healthy M (25.4±6.8)	d-amphetamine challenge (.3 mg/kg p.o.) -Task: SST	[11C]raclopride -ΔBP_{ND} (no-drug vs. drug) -Associations between performance & ΔBP_{ND}	Entire group: larger striatal ΔBP_{ND} decreases (AST/ SMST) → higher inattention scores (r = .47 & .43). RTs tended to positively correlate with AST/SMST ΔBP_{ND}.	Greater striatal DA response → greater inattention & poorer response inhibition.
Oswald et al., 2015 [30]	N = 45 healthy adults (22.7±3.0; 18F/27M)	d-amphetamine challenge (.3 mg/kg i.v.) -Iowa Gambling Task — not during imaging	[11C]raclopride -ΔBP_{ND} (no-drug vs. drug) -Associations between performance & ΔBP_{ND}	Riskier decisions → greater right LS DA release (adjusted for stress & sex).	Greater LS DA release → riskier decision making.

Summary: Most evidence suggests that higher externalizing traits and behaviors in healthy individuals are associated with an increased striatal DA response to an amphetamine challenge.

*Focus on healthy-controls or findings across all groups; Means ± standard deviations presented. ADHD: Attention deficit hyperactivity disorder; AST: Associative striatum; BIS-11: Barratt Inhibition Scale; BP_{ND}: Binding potential, non-dissociable; D_{2/3} DA_{PND}: Dopamine receptors—dopamine 2 & 3 receptor subtypes; LS: Limbic striatum; M/F: Male/female; NEO-PI: Neuroticism, Extroversion, Openness Personality Inventory; NS: Novelty-seeking; SMST: Sensorimotor striatum; SN: Substantia nigra; SS: Sensation-seeking; SST: Stop-signal task; TPOQ: Tridimensional Personality Questionnaire; VTA: Ventral tegmental area.

https://doi.org/10.1371/journal.pone.0174219.t002

and alcohol, respectively. Preliminary evidence suggests that there is not an effect of menstrual phase on [11C]raclopride BP_{ND} values [37], but females were tested during the follicular phase of their cycle. All participants tested negative on a urine drug screen (Triage Drugs of Abuse Panel, Biosite Diagnostics) prior to each scan.
PET scans were acquired, with and without ingesting a capsule filled with amphetamine (0.3 mg/kg, p.o.) 60 min prior to tracer injection, with a Siemens ECAT HR+ PET scanner (CTI/Siemens, Knoxville, TN, USA; 63 slice coverage; maximum resolution of 4.2 mm; full-width half-maximum [FWHM] in the center of the field of view). In three of the studies, a placebo capsule was administered, while in two studies a baseline scan was obtained (i.e., no placebo capsule; study was used as a covariate, when appropriate, and details are provided in the following sections). Immediately after the transmission scan (for attenuation correction), 11C]raclopride (8–10 mCi) was injected as a bolus into the antecubital vein. Emission data were collected over 60 min in 26 time frames of progressively longer durations.

For anatomical co-registration with PET scans and CT analysis, T1-weighted MRIs were acquired with a 1.5 T Siemens scanner (1 mm slice thickness; TR = 9.7 ms, TE = 4 ms, flip angle = 12˚, 256×256 matrix or TR = 22 ms, TE = 9.2 ms, flip angle = 30˚, 256 × 256 matrix).

PET analysis

Region of interest (ROI) analysis.

The striatum was divided into 6 functional ROIs, defined on each participant’s MRI (automated segmentation using in-house Automatic Non-linear Image Matching and Anatomical Labeling [ANIMAL]; ROI-MRI overlap was visually inspected). ROIs were the left/right sensorimotor striatum (SMS; post-commissural putamen), associative striatum (ASTS; pre-commissural dorsal caudate and dorsal putamen, post-commissural caudate) and ventral limbic striatum (LS) [38]. Parametric images were generated by deriving $^{[11]}C$]raclopride BP$_{ND}$ values from each ROI using a simplified kinetic model that uses the cerebellum as a reference tissue devoid of DA D$_{2/3}$ receptors to describe the kinetics of the free and specifically bound ligand [39]. Mean BP$_{ND}$ values were extracted from each ROI in the conditions with and without amphetamine. During rest, BP$_{ND}$ is proportional to the

Table 3. Associations between frontal cortical thickness & externalizing personality traits.

Study	Participant Characteristics	Task/Questionnaire	Neuroimaging Measure	Findings	Interpretation
Schilling et al., 2012 [31]	N = 32 healthy adults (35.2 ±10.5; 18F/14M)	Questionnaire: BIS-11	Associations between CT & personality measures	Negative correlation between left middle frontal gyrus CT & BIS. OFC/superior frontal gyrus CT inversely correlated with BIS.	Thinner frontal cortices → greater impulsiveness.
Schilling et al., 2013 [3]	N = 1620 healthy youth (14.4±0.39; 866F/754M)	Questionnaire: TCI	Associations between CT & personality measures	Inverse correlation between impulsiveness & left superior frontal CT.	Thinner frontal cortices → greater impulsiveness.
*Jiang et al., 2015 [32]	N = 30 healthy youth (15.1 ±0.6; 9F/21M) N = 28 youth with conduct disorder (14.8±0.8; 6F/22M)	Questionnaire: BIS-11	Associations between CT & personality measures	All participants: negative correlation between BIS & lateral OFC ($r = -.43$, corrected for multiple comparisons).	Thinner OFC cortices → greater impulsivity in adolescents.
Holmes et al., 2016 [4]	N = 1234 healthy adults (18–35)	Questionnaire: BIS-11 SS composite score: TCI-NS & fun-seeking (BIS/BAS) & risk-taking (Domain-Specific Risk-Attitude Scale)	Associations between CT & personality measures	Increased composite score SS & motor impulsivity were associated with reduced CT in regions implicated in cognitive control (ACC & middle frontal gyrus; $r = -.11$ to -.15).	Thinner CT in cognitive control circuitry → greater SS & motor impulsivity.

Summary:

Most evidence suggests that higher externalizing traits are associated with thinner frontal cortices in healthy individuals.

*Focus on healthy-controls or findings across all groups; Means ± standard deviations presented. BIS/BAS: Behavioral Inhibition & Behavioral Activation Scales; BIS-11: Barratt Inhibition Scale; CT: Cortical thickness; M/F: Male/female; NS: Novelty-seeking; OFC: Orbitofrontal cortex; SS: Sensation-seeking; TCI: Temperament & Character Inventory

https://doi.org/10.1371/journal.pone.0174219.t003
concentration of available D_{2/3} receptors; during stimulation, decreases in BP_{ND} are proportional to increases in extracellular DA. Amphetamine-induced change in BP_{ND} (ΔBP_{ND}) was calculated as follows: [(placebo-amphetamine)/placebo]×(100). The greater the positive ΔBP_{ND} values, the greater the amphetamine-induced DA release [40].

Voxel-wise analysis. PET images were co-registered to MRIs and parametric [11C]raclopride BP_{ND} data were generated at each voxel using a simplified reference tissue model (cerebellum). Images were normalized into standardized (MNI) space. An 8 mm Gaussian smoothing kernel (FWHM) was applied to PET images (2 individuals excluded due to co-registration problems between BP_{ND} images/conditions; N = 47). A t-map was created to assess changes in [11C]raclopride BP_{ND} between scans with and without amphetamine using a residual t-statistic (BP_{ND} baseline>BP_{ND} amphetamine) [41]. In this approach, residuals are used to calculate the variance in parameter estimates; this method has been used extensively and validated using Monte Carlo simulations and real PET data [41],[42]. Significant voxels were identified by thresholding the t-map at t>4.1 (p<.05, Bonferroni corrected for multiple comparisons, search volume of the entire striatum).

Cortical thickness (CT) analysis

MRIs were processed using the CIVET 2.0.0 pipeline with CBRAIN (https://cbrain.mcgill.ca/). The pipeline involves: a) Normalizing each image to standardized space (MNI ICBM-152 template). b) Correction of intensity non-uniformity artifacts. c) Tissue type classification. d) Fitting images with a deformable mesh model to extract 2D inner (white/grey matter interface) and outer (pial) cortical surfaces using the CLASP algorithm [43]. This generates CT measurements at 40,962 vertices/hemisphere (distance between outer CSF/grey matter and grey/white matter interfaces). e) Surfaces are registered to the MNI ICBM-152 surface template. f) Reverse linear transformations allow CT estimations in native space. g) CT is calculated at each cortical point using the t_{link} metric [44]. h) Smoothing with a 20 mm FWHM kernel.

Subsequently, CT vertex values were averaged into 74 regions (37/hemisphere) using the AAL label set [45] [analyzed using SurfStat (http://www.math.mcgill.ca/keith/surfstat/), a toolbox that runs on MATLAB (The MathWorks, Inc., MA, USA; http://www.modelgui.org/mgui-neuro-civet-matlab)]. Further reduction of frontal CT regions was carried out based on precedent connectivity analyses between the striatum and fronto-cortical regions. Specifically, three frontal clusters were created: a) dorsolateral prefrontal cortex (DLPFC: superior frontal gyri, dorsolateral; middle frontal gyri; inferior frontal gyri—triangular part; inferior frontal gyri—opercular part), b) sensorimotor cortex (SM: supplementary motor area; paracentral lobule; pre- & post-central gyri) and c) ventromedial PFC (vmPFC) and limbic cortex (vmPFC/limbic: olfactory cortex; gyrus rectus; middle, superior & inferior frontal gyri—orbital part; anterior cingulate; paracingulate gyri), based on structural and functional connections with the ASTS, SMS and LS, respectively [46]. CT measures were adjusted by total brain volume (regional CT/total brain volume×10^6, as in Zhou et al., 2014); all CT statistics reflect adjusted CT [47].

Statistics

Unless stated otherwise, means, standard deviations (SD) and partial eta-squares (η^2_{partial}; effect sizes) are presented. To characterize the effect of amphetamine-induced DA release, repeated-measures analysis of covariance (rmANOCVA; study as covariate since preliminary analyses revealed a main effect of study on BP values) was carried out on BP_{ND} values with drug condition (no amphetamine, amphetamine) and striatal ROI (LS, ASTS, SMS) as within-subject factors. Since no hemisphere effects were seen in preliminary analyses, it was not included as a factor. rmANOVAs were carried out on ΔBP_{ND} values, with striatal ROI as the...
within-subject factor (study was not used as a between-subject factor since preliminary analyses yielded no main effect of study on ΔBP_{ND} values). Finally, we carried out a median split of ΔBP_{ND} in the LS, yielding high vs. low amphetamine responders, and univariate ANCOVAs tested for group (high vs. low responders) differences in NS scores (age as covariate). Since NS and other impulsivity traits generally decrease as adults grow older, age was used as a covariate [48] (although our sample was relatively young, we noted an inverse correlation between NS3 and age: \(r = -.33, N = 52, p = .017 \)).

Partial correlations were carried out between BP_{ND} values per drug condition in each striatal ROI (6 total) and NS scores (5 total: 4 subscales and NS_{Total}; age and study controlled for), only \(p < .005 \) results were reported (i.e., .05/11 = .0045). Partial correlations (age controlled for) were also carried out between ΔBP_{ND} in each striatal ROI (3 total) and NS scores (5 total); only \(p < .006 \) results were reported (i.e., .05/8 = .0063).

rmANCOVAs were carried out on CT measures with frontal region (DLPFC, SM, vmPFC/limbic) as the within-subject factor; age and gender were used as covariates [49]; preliminary analyses indicated no hemispheric effects, thus, it was not included as a factor). Study was not used as a factor as preliminary analyses yielded no effect of study on CT. Partial correlations (controlling for age and gender) were carried out between CT measures in the frontal regions (averaged across hemispheres) and NS scores (5 total); only correlations with \(p < .006 \) were reported (i.e., .05/8 = .006).

Partial correlations (controlling for age, gender, and study) were also carried out between frontal CT values (3 regions) and BP_{ND} measures (3 ROIs) in each drug condition (amphetamine, baseline/placebo); correlations between CT values and ΔBP_{ND} were also carried out (controlling for age and gender). Significance was set at \(p = .006 \) (i.e., .05/8) and \(p = .008 \) (i.e., .05/6), respectively.

Finally, we carried out stepwise multiple regressions to assess the influence of CT measures (3 regions) and NS scores (5 total) on ΔBP_{ND} in each striatal ROI. Age and gender were also included as predictor variables (stepwise). Multicollinearity was assessed using the variance inflation factor (VIF; <1.5 deemed acceptable); autocorrelations in the residuals were assessed using the Durbin Watson statistics (acceptable: 1.5-2.5). The significance of the ANOVA was \(p < .005 \) (i.e., \(p < .05/11 \) factors). Unstandardized beta coefficients are presented.

Results

Participant characteristics

Detailed participant characteristics can be found elsewhere [12],[13],[29],[33],[34]. CT data were available from all 52 participants (18–42 yr, Table 4); BP_{ND}/ΔBP_{ND} data were available from 49 participants (3 PET scans could not be used because of image quality/technical issues).

BP_{ND} & ΔBP_{ND} results

No sphericity violations existed, and there was no relation between inter-scan time duration (days) and ΔBP_{ND}. A main effect of study existed for BP_{ND} [\(F(1,44) = 3.55, p = .04, \eta^2_{\text{partial}} = .24 \)]; study was used as a covariate in BP_{ND} value analyses. The rmANCOVA of BP_{ND} values yielded main effects of drug condition [\(F(1,44) = 6.44, p = .02 \)], reflecting lower BP_{ND} values on the sessions with vs. without amphetamine (2.45±.40 vs. 2.55±.41, \(\eta^2_{\text{partial}} = .13 \), and ROI [\(F(2,88) = 55.29, p < .001, \eta^2_{\text{partial}} = .56 \)], reflecting a gradation of BP_{ND} values from LS to ASTS [\(p < .001 \); LS: 2.25±.40, ASTS: 2.52±.40, SMS: 2.73±.51]. In this case, lower BP_{ND} values indicated greater extracellular DA in the synapse (i.e., inverse relation between BP_{ND} values and DA). A drug condition×ROI interaction was also evident [\(F(2,88) = 3.73, p = .028, \eta^2_{\text{partial}} = .08 \)], reflecting significant effects of amphetamine in the LS (\(p < .001 \), placebo: 2.33±.38,
amphetamine: 2.17±.36) and ASTS (p = .045; placebo: 2.56±.38, amphetamine: 2.48±.36) but not SMS (placebo: 2.71±.46, amphetamine: 2.67±.47; Fig 1).

The rmANOVA assessing ΔBP_{ND} values yielded a main effect of ROI [F(2,96) = 7.84, p = .001, η^2_{partial} = .14, study was not used as a covariate as there was no study effect on ΔBP_{ND}]. Follow-up comparisons indicated that ΔBP_{ND} values in the LS were larger than those in the ASTS (p = .017) and SMS (p = .001; Fig 2). Voxel-wise analysis confirmed reduced BP_{ND} following amphetamine administration in four clusters, with the greatest effect in the right LS (Table 5; Fig 3).

The univariate ANCOVA (age as a covariate) yielded a trend for a difference between the low vs. high LS ΔBP_{ND} groups on NS2 (impulsiveness) [F(1,46) = 3.20, p = .07, η^2_{partial} = .07; based on our a priori hypothesis: p = .035], with higher scores in the high LS ΔBP_{ND} group (3.63±1.88; low: 2.68±1.80; Fig 4).

Table 4. Participant Characteristics.

Characteristics	Mean (SD)
Sex	7F/45M
Age	23.77 (4.93)
NS1 (exploratory excitability)	6.44 (1.44)
NS2 (impulsiveness)	3.12 (1.85)
NS3 (extravagance)	4.27 (1.56)
NS4 (disorderliness)	5.69 (1.77)
NS Total	19.52 (4.52)

NS: Novelty seeking; F: Females; M: Males

https://doi.org/10.1371/journal.pone.0174219.t004

![Fig 1. Striatal binding potentials](https://doi.org/10.1371/journal.pone.0174219.g001)
Correlations between $BP_{ND}/\Delta BP_{ND}$ & NS scores

No significant partial correlations (significance was set at $p<.005/006$) existed between NS scores and ΔBP_{ND} values.

CT measures & correlations with NS scores

A rmANCOVA (age and gender as covariates) yielded a main effect of region [$F(2,98) = 4.05, p = .02, \eta^2_{\text{partial}} = .08$], with cortical thickness greatest in the limbic region and thinnest in the SM region ($ps<.001$). Study was not used as a covariate since preliminary analyses yielded no main effect of study on CT. No significant partial correlations between CT and NS scores emerged (gender and age were used as covariates, significance set at $p<.006$). When age and gender were not controlled for, exploratory Spearman’s correlations indicated that there was

Table 5. Voxel-wise analysis of $[^{11}\text{C}]$raclopride binding potential (BP_{ND}) difference values between placebo/baseline and amphetamine.

Region	Peak coordinates (MNI: x, y, z)	Peak T-value (p value)	Cluster size–voxels (mm3; p value)
Ventral Striatum (LS)			
Right	9, 18, -6	4.91 ($p = .003$)	67 (536; p)
Left	-15, 15, -7	4.4	16 (124; $p = .031$)
Putamen			
Left anterior putamen (ASTS)	-29, 1, -2–25, 12, -3	4.53 ($p = .017$) 4.49 ($p = .019$)	48 (387; $p = .001$)
Left posterior putamen (SMS)	-30, -2, -2	4.5 ($p = .019$)	
Right posterior putamen (SMS)	25, -5, -4	4.4 ($p = .028$)	20 (163; $p = .016$)

Corrected p values presented. LS: Limbic striatum; ASTS: Associative striatum; SMS: Sensorimotor striatum

https://doi.org/10.1371/journal.pone.0174219.t005
an inverse correlation between thickness in the vmPFC/limbic cortex and NS3 scores (extravagance; \(\rho = -0.38, \ p = .006, \ N = 52 \)).

Correlations between CT & BP\(_{\text{ND}}/\Delta\text{BP}_{\text{ND}} \)

Partial correlations (age and gender controlled for) yielded a negative relation between ASTS \(\Delta\text{BP}_{\text{ND}} \) and CT in the SM region (\(r = -0.38, \ df = 45, \ p = .008; \) Fig 5); a trend for an inverse
relation also existed between LS ΔBP_{ND} and CT in the SM region (r = -.36, p = .013) and between ASTS ΔBP_{ND} and CT in the DLPFC (r = -.35, p = .015). For each association, the thinner the cortex, the greater the amphetamine-induced DA response. No significant associations between baseline BP_{ND} values and CT were observed (age, gender and study controlled for).

Multiple regressions

No autocorrelation or multicollinearity violations were noted. Stepwise multiple regression analysis yielded no regressions at the p<.005 level. LS ΔBP_{ND} was weakly associated with CT in the SM cortex (F[1,37] = 5.88, p = .019; R^2 = .11, adjusted R^2 = .09; predicted LS ΔBP_{ND} = 56.84 + [-20.70][SM CT]). Similarly, ASTS ΔBP_{ND} scores were modestly associated with CT in the SM cortex (F[1,47] = 7.21, p = .01; R^2 = .13, adjusted R^2 = .12; predicted SMS ΔBP_{ND} = 46.22 + [-17.86][SM CT]).

Discussion

In the current study, we examined the relation between NS, frontal CT and striatal DA responses to an amphetamine challenge in a large sample of young healthy adults. The primary findings were that the greatest amphetamine-induced changes in BP_{ND} occurred in the ventral
limbic striatum (LS). Individuals with high vs. low LS ΔB_{ND} responses (high vs. low drug responders) had higher impulsiveness (NS2) scores. Partial correlations indicated that greater amphetamine-induced striatal DA responses are associated with thinner frontal cortices.

As expected, B_{ND} values decreased following amphetamine administration. Thanks to the greater statistical power afforded by the large sample size, this study was able to convincingly demonstrate regional differences in the magnitude of this effect, with larger ΔB_{ND} responses in the LS vs. other striatal regions, consistent with smaller PET studies in humans [13],[34],[46],[50],[51] and microdialysis studies in laboratory animals [52]. Via our voxel-wise analysis, we also confirmed that, with the d-amphetamine dose and route of administration used, there are no statistically significant changes in $[11C]$raclopride binding in voxels outside the striatum.

The mechanism accounting for the different magnitude of DA responses within striatal sub-regions requires more study, but limbic striatal inputs from the ventral tegmental area (VTA) and dorsal substantial nigra (SN) express fewer D$_2$ autoreceptors and DA transporters (DAT) than projections to other striatal regions [53]. Decreased D$_2$ autoreceptor expression may be associated with greater amphetamine-induced DA release in the LS (vs. other striatal regions) [28],[54], though the effect of fewer DATs is less clear [38],[55]. The LS also sends non-reciprocal GABAergic projections to the ASTS, as such, ASTS activity is regulated by LS GABAergic input (similarly, the ASTS appears to regulate the SMS via GABA projections) [38],[55]. Finally, the LS has extensive connections with the orbitofrontal cortex (OFC), vmPFC, and aspects of the anterior cingulate cortex (ACC) [46] as well as the amygdala and hippocampus [55]. Together, these systems play a pivotal role in the initiation and inhibition of approach toward rewarding and potentially rewarding stimuli [56].

The ΔB_{ND} values in the current study are smaller than what has been reported previously with smaller samples [12],[13],[29],[33],[34]. This likely reflects that, in the current study, we used an automated PET analysis approach (i.e., an in-house PET analysis pipeline, involving few manual data corrections specifically with respect to co-registration between structural MRI and BP images; the pipeline employs an iterative co-registration process) that integrates Turku PET centre tools (http://www.turkupetcentre.net/) for ROI analysis, which relies on traditional non-linear fitting to estimate Simplified Reference Tissue Model [SRTM] parameters. This approach is different from those used by the individual studies, which calculated SRTM parameters for ROI analysis using a basis function [39]. Perhaps most importantly, the automated pipeline employed ROIs that were larger than those used in some of the other studies. As a result, the correction for multiple comparisons was greater. Finally, we applied double-erosion (2 voxels), which may have excluded peak activation in the inferior and ventral-most aspects of the LS. These methodological differences may have influenced our BP and ΔB_{ND} ROI values. However, given the large sample and different methods used previously, the automated pipeline improved the objectivity of the analyses, and the use of more stringent significance detection approaches in the ROI analyses minimized false positives.

Consistent with our a priori hypothesis [28],[13],[30] high vs. low amphetamine responders (i.e., those with greater DA release to amphetamine) exhibited higher NS2 (impulsiveness) scores. That this effect was subtle should not be surprising. There is inherent variability in neuroimaging indices, and a snapshot of a single aspect of function in a particular neural system (or morphometry) is unlikely to capture even an unvarying trait with minimal noise [11]. Measures of externalizing traits suffer from the same limitations. Moreover, any one measure of personality is unlikely to encapsulate the aspect most closely related to the neuroimaging metric being assessed; indeed, different aspects of externalizing traits may reflect various aspects of meso-striatal DA system function [57]. Nevertheless, the consistency with which measures of striatal DA transmission have been found to be associated with impulsive/externalizing traits...
(Table 2), along with the current study, suggests that individuals with higher impulsiveness scores are characterized by a more pronounced DA response to an amphetamine challenge.

Based on the extensive connections with cortical regions implicated in emotion regulation [46], greater LS DA responses may facilitate more disinhibitory, impulsive-like behaviours to novelty and rewards.

The most novel aspect of this study was our attempt to relate striatal DA activity, frontal CT and NS traits in a large, healthy population. Inconsistent with our hypotheses, however, regression analyses indicated that the combination of NS and CT did not yield a stronger statistical prediction of striatal DA responses, as compared to either variable alone (i.e., although CT was associated with ΔBP_{ND}, inclusion of NS did not improve the model). We found that greater DA responses in the ASTS were correlated with thinner sensorimotor cortices; similar tendencies existed between LS DA response and sensorimotor CT as well as between ASTS DA response and DLPFC CT. This is consistent with previous work by our group in a smaller sample, which was included in the current study [12]. To our knowledge, no other published data exist regarding the relation between striatal DA activity and cortical morphometry in healthy individuals. However, disease states characterized by striatal DA dysfunction, including Parkinson’s disease [58],[59], schizophrenia [60] and substance use disorders [61],[62], are typically associated with widespread cortical thinning as well as volume loss of the grey matter.

Although brain morphometric changes in such disorders can be accounted for by numerous factors, and are certainly not solely related to striatal DA activity modifications, these findings suggest, at least to a certain extent, a relation between cortex morphometry and striatal DA activity.

Previous work found that OFC metabolism was inversely associated with drug-induced striatal DA release in controls [63], consistent with the idea that the OFC plays an integral role in reward valuation by way of LS activity regulation. Additionally, thicker PFCs are generally associated with improved cognition [64]. As such, a thicker PFC may index functional integrity, including more effective engagement of regulatory processes in the presence of rewards and other salient cues. Given the significant overlap between cortico-striatal loops, it is perhaps not surprising that we did not see specific correlations between ΔBP_{ND} in distinct striatal regions (ASTS, LS, SMS) and CT in corresponding fronto-cortical regions.

Conclusion & limitations

This is the first known study to simultaneously assess *in vivo* striatal DA release in relation to CT and NS in humans. This noted, the results should be considered in light of the following. First, the no drug condition contained a placebo in some studies but not all. However, there were no differences in ΔBP_{ND} between studies with *vs* without a placebo capsule, and study was used as a covariate in the statistical analyses when appropriate. Second, although our sample size is large for a PET study, it is relatively small for CT assessments, and this may have decreased the probability of identifying a correlation between CT and NS. Large populations are generally required to account for the maturational variability that occurs throughout late adolescence and early adulthood (i.e. the age group we examined) [65]. Further, even in large healthy populations, the association between externalizing traits (and personality traits in general) and brain morphometric features is generally subtle [3],[4]. Third, CT can be adjusted by total brain volume (TBV)/intracranial volume (ICV), grey matter volume or not at all. In the current study, we adjusted CT by TBV, following the recommendations of Zhou et al., 2014 [47]. By not including TBV as a covariate or control variable (in the partial correlations), the degrees of freedom were affected. We compensated for the potential influence of this decision on significance by setting stringent p-value thresholds for the CT analyses. In comparison,
significant associations were not observed when using absolute CT values or CT values with TBV added as a covariate. It is plausible that the addition of TBV as a covariate decreased our power to detect effects, or that adjusted CT values are more sensitive in revealing a relation between striatal DA responses and cortical morphometry. Indeed, there is little consensus as to whether TBV/ICV should [66] or should not [4],[67],[68] be included as a covariate in CT analyses in the context of substance use research. More broadly, there is limited agreement as to how CT should be analyzed (i.e., absolute vs. corrected values). Thus, such methodological differences must be kept in mind when comparing and replicating future research. Further, we focused on TPQ-assessed NS, however, different externalizing measures may lead to different results, and should be investigated in future work. Finally, associations between NS, striatal DA release and CT may be nonlinear, and non-linear statistical approaches might reveal more complex associations. However, in our sample, exploratory non-linear correlations were not significant, and the current results strengthen the evidence for associations between striatal DA release, NS related impulsiveness and frontal cortical thickness in the largest known sample to date.

Supporting information
S1 Table. Excel table containing the dataset used in the analyses outlined in this manuscript.
(XLSX)

Author Contributions
Conceptualization: NJ ML.
Data curation: NJ SMC KL.
Formal analysis: NJ SMC KL.
Funding acquisition: ML.
Investigation: MC KFC IB ML.
Methodology: NJ SMC KL.
Project administration: AD CB ML SMC KFC MC IB.
Resources: KL.
Software: NJ SMC KL.
Supervision: ML AD CB.
Validation: NJ SMC.
Visualization: NJ SMC.
Writing – original draft: NJ SMC ML.
Writing – review & editing: NJ SMC KFC MC ML.

References
1. Depue RA, Collins PF. Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. Behav Brain Sci. 1999; 22: 491–517; discussion 518–69. PMID: 11301519
2. Ikemoto S, Panksepp J. The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Brain Res Rev. 1999; 31: 6–41. PMID: 10611493

3. Schilling C, Kuhn S, Paus T, Romanowski A, Banaschewski T, Barbot A, et al. Cortical thickness of superior frontal cortex predicts impulsiveness and perceptual reasoning in adolescence. Mol Psychiatry. 2013; 18: 624–630. https://doi.org/10.1038/mp.2012.56 PMID: 22665261

4. Holmes AJ, Hollinshead MO, Roffman JL, Smoller JW, Buckner RL. Individual differences in cognitive control circuit anatomy link sensation seeking, impulsivity, and substance use. J Neurosci. 2016; 36: 4038–4049. https://doi.org/10.1523/JNEUROSCI.3206-15.2016 PMID: 27053210

5. Leyton M. The neurobiology of desire: Dopamine and the regulation of mood and motivational states in humans. In: Kringelbach ML, Berridge KC, editors. Pleasures of the brain: Oxford University Press; 2010. pp. 222–243.

6. Berridge KC, Robinson TE. Parsing reward. Trends Neurosci. 2003; 26: 23–32. PMID: 12948663

7. Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016; 18: 23–32. PMID: 27069377

8. Morris LS, Kundu P, Dowell N, Mechelmans DJ, Favre P, Irvine MA, et al. Fronto-striatal organization: Defining functional and microstructural substrates of behavioural flexibility. Cortex. 2016; 74: 118–133. https://doi.org/10.1016/j.cortex.2015.11.004 PMID: 26673945

9. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol. 2012; 108: 2242–2263. https://doi.org/10.1152/jn.00270.2012 PMID: 22832566

10. Aupperle RL, Melrose AJ, Francisco A, Paulus MP, Stein MB. Neural substrates of approach-avoidance conflict decision-making. Hum Brain Mapp. 2015; 36: 449–462. https://doi.org/10.1002/hbm.22639 PMID: 25224633

11. Vui E, Harris C, Winkielman P, Pashler H. Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition. Perspect Psychol Sci. 2009; 4: 274–290. https://doi.org/10.1111/j.1745-6924.2009.01125.x PMID: 26158964

12. CaseyKF. Cherkasova MV, Larcher K, Evans AC, Baker GB, Dagher A, et al. Individual differences in frontal cortical thickness correlate with the d-amphetamine-induced striatal dopamine response in humans. J Neurosci. 2013; 33: 15285–15294. https://doi.org/10.1523/JNEUROSCI.5029-12.2013 PMID: 24048857

13. Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A. Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11 C]raclopride study in healthy men. Neuropsychopharmacology. 2002; 27: 1027–1035. https://doi.org/10.1016/S0893-133X(02)00366-4 PMID: 12464459

14. Lee B, London ED, Poldrack RA, Farahi J, Nacca A, Monterosso JR, et al. Striatal dopamine d2/d3 receptor availability is reduced in methamphetamine dependence and is linked to impulsivity. J Neurosci. 2009; 29: 14734–14740. https://doi.org/10.1523/JNEUROSCI.3765-09.2009 PMID: 19940168

15. Gjedde A, Kumakura Y, Cumming P, Linnet J, Moller A. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking. Proc Natl Acad Sci U S A. 2010; 107: 3870–3875. https://doi.org/10.1073/pnas.0912319107 PMID: 20133675

16. Reeves SJ, Polling C, Stokes PR, Lappin JM, Shottt PP, Mehta MA, et al. Limbic striatal dopamine D2/3 receptor availability is associated with non-planning impulsivity in healthy adults after exclusion of potential dissimulators. Psychiatry Res. 2012; 202: 60–64. https://doi.org/10.1016/j.psychres.2011.09.011 PMID: 22595510

17. Boileau I, Payer D, Chugani B, Lobo D, Behzadi A, Rusjan PM, et al. The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazine and [11C]raclopride. Addiction. 2013; 108: 953–963. https://doi.org/10.1111/add.12066 PMID: 23167711

18. Kim JH, Son YD, Kim HK, Lee SY, Kim YB, Cho ZH. Dopamine D(2/3) receptor availability and human cognitive impulsivity: a high-resolution positron emission tomography imaging study with [(11)C]-(+)-propyl-hexahydro-naphtho-oxazine and [11C]raclopride. Acta Neuropsychiatr. 2014; 26: 35–42. https://doi.org/10.1017/ajn.2013.29 PMID: 25142998

19. Robertson CL, Ishibashi K, Mandelkern MA, Brown AK, Gahreremani DG, Sallf, et al. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects. J Neurosci. 2015; 35: 5990–5997. https://doi.org/10.1523/JNEUROSCI.4850-14.2015 PMID: 25878272

20. Oberlin BG, Albrecht DS, Herring CM, Walters JW, Hile KL, Koredken DA, et al. Monetary discounting and ventral striatal dopamine receptor availability in nontreatment-seeking alcoholics and social drinkers. Psychopharmacology (Berl). 2015; 232: 2207–2216.
Novelty seeking, dopamine release & cortical thickness

21. Lawrence AD, Brooks DJ. Ventral striatal dopamine synthesis capacity is associated with individual differences in behavioral disinhibition. Front Behav Neurosci. 2014; 8: 86. https://doi.org/10.3389/fnbeh.2014.00086 PMID: 24672449

22. Ishii T, Sawamoto N, Tabu H, Kawashima H, Okada T, Togashi K, et al. Altered striatal circuits underlie characteristic personality traits in Parkinson's disease. J Neurol. 2016; 263: 1828–1839. https://doi.org/10.1007/s00415-016-8206-0 PMID: 27334907

23. Smith CT, Wallace DL, Dang LC, Aarts E, Jagust WJ, D'Esposito M, et al. Modulation of impulsivity and reward sensitivity in intertemporal choice by striatal and midbrain dopamine synthesis in healthy adults. J Neurophysiol. 2016; 115: 1146–1156. https://doi.org/10.1152/jn.00261.2015 PMID: 26683066

24. Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neuropsychol. 2008; 28: 14372–14378. https://doi.org/10.1523/JNEUROSCI.2423-08.2008 PMID: 19118170

25. Savage SW, Zald DH, Cowan RL, Volkow ND, Marks-Shulman PA, Kessler RM, et al. Regulation of novelty seeking by midbrain dopamine D2/D3 signaling and ghrelin is altered in obesity. Obesity (Silver Spring). 2014; 22: 1452–1457.

26. Riccardi P, Zald D, Li R, Park S, Ansari MS, Dawant B, et al. Sex differences in amphetamine-induced displacement of [18F]fallypride in striatal and extrastriatal regions: a PET study. Am J Psychiatry. 2006; 163: 1639–1641. https://doi.org/10.1176/ajp.2006.163.9.1639 PMID: 16946193

27. Oswald LM, Wong DF, Zhou Y, Kumar A, Brasic J, Alexander M, et al. Impulsivity and chronic stress are associated with amphetamine-induced striatal dopamine release. Neuroimage. 2007; 36: 153–166. https://doi.org/10.1016/j.neuroimage.2007.01.055 PMID: 17433881

28. Buckholtz JW, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, et al. Dopaminergic network differences in human impulsivity. Science. 2010; 329: 532. https://doi.org/10.1126/science.1185778 PMID: 20671181

29. Cherkasova MV, Faridi N, Casey KD, O’Driscoll GA, Hechtman L, Joober R, et al. Amphetamine-induced dopamine release and neurocognitive function in treatment-naive adults with ADHD. Neuropsychopharmacology. 2014; 39: 1498–1507. https://doi.org/10.1038/npp.2013.349 PMID: 24378745

30. Oswald LM, Wand GS, Wong DF, Brown CH, Kuwabara H, Brasic JR. Risky decision-making and ventral striatal dopamine responses to amphetamine: a positron emission tomography [(11)C]raclopride study in healthy adults. Neuroimage. 2015; 113: 26–36. https://doi.org/10.1016/j.neuroimage.2015.03.022 PMID: 25795343

31. Schilling C, Kuhn S, Romanowski A, Schubert F, Kathmann N, Gallinat J. Cortical thickness correlates with impulsiveness in healthy adults. Neuroimage. 2012; 59: 824–830. https://doi.org/10.1016/j.neuroimage.2011.07.058 PMID: 21827861

32. Jiang Y, Guo X, Zhang J, Gao J, Wang X, Situ W, et al. Abnormalities of cortical structures in adolescents-onset conduct disorder. Psychol Med. 2015; 45: 3467–3479. https://doi.org/10.1017/S0033291715001361 PMID: 26189512

33. Boileau I, Dagher A, Leyton M, Welfeld K, Booij L, Diksic M, et al. Conditioned dopamine release in humans: a positron emission tomography [11C]raclopride study with amphetamine. J Neurosci. 2007; 27: 3998–4003. https://doi.org/10.1523/JNEUROSCI.4370-06.2007 PMID: 17428975

34. Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, et al. Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry. 2006; 63: 1386–1395. https://doi.org/10.1001/archpsyc.63.12.1386 PMID: 17146013

35. Cloninger CR, Svrakic DM, Przybeck TR. A psychobiological model of temperament and character. Arch Gen Psychiatry. 1993; 50: 975–990. PMID: 8250684

36. First MB, Spitzer RL, Gibbon M, editors. Axis I Disorders. New York, USA: New York State Psychiatric Institute; 1995.

37. Nordstrom AL, Olsson H, Hallidin C. A PET study of D2 dopamine receptor density at different phases of the menstrual cycle. Psychiatry Res. 1998; 83: 1–6. PMID: 9754700

38. Martinez D, Silfstein M, Broft A, Mawlawi O, Hwang DR, Huang Y, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab. 2003; 23: 285–300. https://doi.org/10.1097/01.WCB.0000048520.34839.1A PMID: 12621304

39. Gunn RN, Larmertsma AA, Hume SP, Cunningham VJ. Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage. 1997; 6: 279–287. https://doi.org/10.1006/nimg.1997.0303 PMID: 9417971

40. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab. 2000; 20: 423–451. https://doi.org/10.1097/00004647-200003000-00001 PMID: 10724107
41. Aston JA, Gunn RN, Worsley KJ, Ma Y, Evans AC, Dagher A. A statistical method for the analysis of positron emission tomography neuroreceptor ligand data. Neuroimage. 2000; 12: 245–256. https://doi.org/10.1006/nimg.2000.0620 PMID: 10944407

42. Ko JH, Reilhac A, Ray N, Rusjan P, Bloomfield P, Pellecchia G, et al. Analysis of variance in neuroreceptor ligand imaging studies. PLoS One. 2011; 6: e23298. https://doi.org/10.1371/journal.pone.0023298 PMID: 21858062

43. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, et al. Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage. 2005; 27: 210–221. https://doi.org/10.1016/j.neuroimage.2005.03.036 PMID: 15896981

44. Lerch JP, Evans AC. Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage. 2005; 24: 163–173. https://doi.org/10.1016/j.neuroimage.2004.07.045 PMID: 15588607

45. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15: 273–289. https://doi.org/10.1006/nimg.2001.0978 PMID: 11771995

46. Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotton P, et al. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex. 2014; 24: 1165–1177. https://doi.org/10.1093/cercor/bhs397 PMID: 23283687

47. Zhou Q, Goryawala M, Cabrerozio M, Barker W, Duara R, Adjouadi M. Significance of normalization on anatomical MRI measures in predicting Alzheimer’s disease. ScientificWorldJournal. 2014; 2014: 541802. https://doi.org/10.1155/2014/541802 PMID: 24550710

48. Josefsson K, Jokela M, Cloninger CR, Hintsanen M, Salo J, Hintsa T, et al. Maturity and change in personality: developmental trends of temperament and character in adulthood. Dev Psychopathol. 2013; 25: 713–727. https://doi.org/10.1017/S0954579413000126 PMID: 23880387

49. Drevets WC, Gautier C, Price JC, Kupfer DJ, Kinahan PE, Grace AA, et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry. 2001; 49: 81–96. PMID: 11164755

50. Brucka AR, Lappin JM, Reeves SJ, Mehta MA, Egerton A, Coulson M, Grasby PM. Dopamine release in the human striatum: motor and cognitive tasks revisited. J Cereb Blood Flow Metab. 2009; 29: 554–564. https://doi.org/10.1038/jcbfm.2008.146 PMID: 19088741

51. D’Amour-Horvat V, Leyton M. Impulsive actions and choices in laboratory animals and humans: effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Front Behav Neurosci. 2014; 8: 432. https://doi.org/10.3389/fnbeh.2014.00432 PMID: 25566001

52. Pereira JB, Ibarretxe-Bilbao N, Martí MJ, Compta Y, Junque C, Bargallo N, et al. Assessment of cortical degeneration in patients with Parkinson’s disease by voxel-based morphometry, cortical folding, and cortical thickness. Hum Brain Mapp. 2012; 33: 2521–2534. https://doi.org/10.1002/hbm.21378 PMID: 21898679
59. Shao N, Yang J, Shang H. Voxelwise meta-analysis of gray matter anomalies in Parkinson variant of multiple system atrophy and Parkinson’s disease using anatomic likelihood estimation. Neurosci Lett. 2015; 587: 79–86. https://doi.org/10.1016/j.neulet.2014.12.007 PMID: 25484255

60. Rimol LM, Nesvag R, Hagler DJ Jr, Bergmann O, Fennema-Notestine C, Hartberg CB, et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry. 2012; 71: 552–560. https://doi.org/10.1016/j.biopsych.2011.11.026 PMID: 22281121

61. Fortier CB, Leritz EC, Salat DH, Venne JR, Maksimovskiy AL, Williams V, et al. Reduced cortical thickness in abstinent alcoholics and association with alcoholic behavior. Alcohol Clin Exp Res. 2011; 35: 2193–2201. https://doi.org/10.1111/j.1530-0277.2011.01576.x PMID: 21919920

62. Durazzo TC, Tosun D, Buckley S, Gazdzinski S, Mon A, Fryer SL, et al. Cortical thickness, surface area, and volume of the brain reward system in alcohol dependence: relationships to relapse and extended abstinence. Alcohol Clin Exp Res. 2011; 35: 1187–1200. https://doi.org/10.1111/j.1530-0277.2011.01452.x PMID: 21410483

63. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Jayne M, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci. 2007; 27: 12700–12706. https://doi.org/10.1523/JNEUROSCI.3371-07.2007 PMID: 18003850

64. Yuan P, Raz N. Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neurosci Biobehav Rev. 2014; 42: 180–192. https://doi.org/10.1016/j.neubiorev.2014.02.005 PMID: 24568942

65. Vijayakumar N, Allen NB, Youssef G, Dennison M, Yucel M, Simmons JG, et al. Brain development during adolescence: A mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp. 2016; 37: 2027–2038. https://doi.org/10.1002/hbm.23154 PMID: 26946457

66. Jacobus J, Squeglia LM, Meruelo AD, Castro N, Brumbach T, Giedd JN, et al. Cortical thickness in adolescent marijuana and alcohol users: A three-year prospective study from adolescence to young adulthood. Dev Cogn Neurosci. 2015; 16: 101–109. https://doi.org/10.1016/j.dcn.2015.04.006 PMID: 25993106

67. Boulos PK, Dalwani MS, Tanabe J, Mikulich-Gilbertson SK, Banich MT, Crowley TJ, et al. Brain cortical thickness differences in adolescent females with substance use disorders. PLoS One. 2016; 11: e0152983. https://doi.org/10.1371/journal.pone.0152983 PMID: 27049765

68. Lange EH, Nerland S, Jorgensen KN, Morch-Johnsen L, Nesvag R, Hartberg CB, et al. Alcohol use is associated with thinner cerebral cortex and larger ventricles in schizophrenia, bipolar disorder and healthy controls. Psychiatr Med. 2016: 1–14.