MiR-142-3p Suppresses SOCS6 Expression and Promotes Cell Proliferation in Nasopharyngeal Carcinoma

Xiaoming Qi a Jianqiang Li a Changbo Zhou a Chunlei Lv a Min Tian b

a Department of E.N.T., The 88th Hospital of PLA, Tai’an, b Department of Orthopedics, The 88th Hospital of PLA, Tai’an, China

Key Words
Nasopharyngeal carcinoma • miR-142-3p • Proliferation • SOCS6

Abstract
Background/Aims: An increasing number of studies show that microRNAs (miRNAs) play crucial roles in nasopharyngeal carcinoma (NPC) tumorigenesis. The aim of our study was to investigate the biological roles and mechanisms of miR-142-3p in NPC. Methods: miR-142-3p expression was examined in NPC specimens and nasopharyngitis biopsy samples by quantitative real-time PCR. The biological functions of miR-142-3p were studied using a series of in vitro and in vivo approaches. Results: miR-142-3p is over-expressed in NPC tissues and cell lines. Knockdown of miR-142-3p significantly inhibited cell proliferation and cell cycle progression in vitro, and suppressed tumor growth in a mouse model. Suppressor of cytokine signaling 6 (SOCS6) was identified as a direct target of miR-142-3p, and miR-142-3p down-regulated the expression of SOCS6 by directly binding to its 3′untranslated region (UTR). Knockdown of SOCS6 abrogated the effects of miR-142-3p down-regulation. Conclusion: These findings indicate that miR-142-3p regulates NPC development by down-regulating SOCS6 expression and suggest that modulation of miR-142-3p expression could be a therapeutic strategy for NPC.

Introduction
Nasopharyngeal carcinoma (NPC) is a non-lymphomatoussquamous cell carcinoma arising from epithelial cells located in the nasopharynx [1]. The prevalence of NPC is low in most parts of the world, whereas it is high in southern China and other Southeast Asian
countries [2]. Despite significant advancements in the treatment of NPC, the average 5-year survival rate remains between 34% and 52% [3]. However, the mechanisms underlying the pathogenesis and progression of NPC remain unclear, underscoring the need for further study to improve our understanding of this disease.

MicroRNAs (miRNAs) are small (20–25 nucleotides) noncoding RNAs that function as negative regulators of gene expression via binding to the 3′-untranslated region (3′-UTR) of their target messenger RNAs (mRNAs) [4]. miRNAs play vital roles in many fundamental biological processes including cell proliferation, differentiation, apoptosis, migration, and invasion by suppressing their target genes [5-10]. Numerous studies have demonstrated that deregulation of specific miRNAs is associated with cancer initiation and progression in many malignancies including NPC, and miRNAs can function as oncogenes or onco-suppressors depending on their targets [11-15]. miR-142-3p is dysregulated in various human cancers, including thyroid carcinoma, hepatocellular carcinoma, osteosarcoma, colon cancer, esophageal cancer, head and neck squamous cell carcinoma, non-small cell lung cancer (NSCLC) and T-cell acute lymphoblastic leukemia [16-23]. Recently, Chen et al. reported that miR-142-3p is up-regulated in NPC [24]. However, the biological function of miR-142-3p remains largely unknown.

In the present study, we confirm that miR-142-3p is up-regulated in NPC tissues and cell lines, and show that it acts as an oncogene by promoting cell proliferation and cell cycle progression. Suppressor of cytokine signaling 6 (SOCS6) was identified as a direct target of miR-142-3p. Silencing of SOCS6 partially rescued the inhibitory effect of miR-142-3p down-regulation. Collectively, our data indicate that miR-142-3p may be a potential target for the treatment of NPC.

Materials and Methods

Clinical specimens and cell culture

NPC specimens (n = 26) and nasopharyngitis biopsy samples (n = 11) were obtained from patients undergoing complete or partial surgical resection at the 88th Hospital of PLA (Tai’an, China) and were frozen in liquid nitrogen for further study. All patients provided their written informed consent, and the research protocols were approved by the Ethics Committee of the 88th Hospital of PLA. Human NPC cell lines (HONE-1, C666-1, CNE-2 and SUNE-1) were maintained in RPMI-1640 (Invitrogen, Carlsbad, CA, USA). The normal nasopharyngeal epithelial cell line NP69 was grown in Keratinocyte-SFM (Invitrogen) supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY, USA) and 100 units/ml penicillin-streptomycin (Invitrogen). All cells were maintained in a humidified chamber with 5% CO₂ at 37°C.

RNA extraction and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from fresh frozen tissues and cultured cells using the TRIzol reagent and quantified with Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA). miRNAs were isolated with a miRNeasy Mini Kit (Qiagen, Hilden, Germany). The SuperScript III reverse transcription kit (Invitrogen) was used to synthesize the cDNA according to the manufacturer’s instructions. qRT-PCR reactions were performed using SYBR Green PCR Master Mix (Takara, Dalian, China) on the Applied Biosystems 7900 (Applied Biosystems, Foster City, CA, USA). U6 or β-actin was used as an internal control for miR-142-3p or SOCS6. The relative expression of target genes was calculated using the 2^(-ΔΔCT) equation. The PCR primers for miR-142-3p and U6 were purchased from RiboBio (Guangzhou, China). The PCR primers for SOCS6 and β-actin were as follows: SOCS6-forward: 5′-GCCTTGGTTCACTCT TC-3′, SOCS6-reverse: 5′-ATCATCGTGACCCGCTCT-3′; β-actin-forward: 5′-GGAAATCGTGCGTGACAT-3′, β-actin-reverse: 5′-AAGGAAGGCTGGAAGAGTG-3′. All reactions were run in triplicate.

Oligonucleotide transfection

AntagomiR-142-3p, miR-142-3p mimic, siRNAs targeting SOCS6 and their corresponding controls were purchased from RiboBio. Oligonucleotides were transfected into cells with Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. Cells were collected 48 h after transfection.
Plasmid construction
The 3′-UTR of SOCS6 containing the putative binding site for miR-142-3p was PCR-amplified from normal human cDNA. The related mutant construct was generated by mutating the miR-142-3p seed sequence (from ACACUAC to CCAAUGC). The wild-type and mutant 3′-UTRs of SOCS6 were cloned into the psiCHECK2 luciferase vector (Promega, Madison, WI, USA). The constructs were verified by DNA sequencing.

Cell viability assays
Cell viability assays were performed using the Cell Counting Kit-8 (CCK-8, Beyotime Institute of Biotechnology, Jiangsu, China) according to the manufacturer’s protocols. CNE-2 and SUNE-1 cells were seeded in 96-well cell culture plates at a density of 1.5 × 10^3 cells per well. CCK8 (20 μl) was added into each well after cells were maintained for 1, 2, 3, 4 and 5 days. Subsequently, the cells were incubated for another 4 h at 37°C, and the absorbance was measured at 490 nm. The results were averaged among three independent experiments.

Bromodeoxyuridine labeling of cultured cells
Cells (5 × 10^4) grown on coverslips were incubated with 10 μM bromodeoxyuridine (BrdU) for 2 h, and then fixed and labeled with an anti-BrdU antibody (Invitrogen) for 12 h according to the manufacturer’s instructions. Secondary antibody was added. DAPI was used for nuclear staining. The number of BrdU positive cells was counted in three random microscopic fields using NIH Image J software [25].

Flow cytometry analysis
Cells were harvested, washed and fixed in 75% ethanol at 4°C overnight. Then, cells were pelleted and resuspended in PBS at 1 × 10^6 cells/ml, and incubated with bovine pancreatic RNAse (Sigma, St. Louis, MO, USA) for 30 min at 37°C and propidium iodide for 30 min at room temperature. The cell cycle profiles were analyzed using a FACS Calibur flow cytometer (BD Biosciences, San Jose, CA, USA).

Tumor xenograft model
Healthy female BALB/c nude mice (4–5 weeks of age) were obtained from the Center of Experimental Animal of Guangzhou University of Chinese Medicine. All animal experiments were approved by the 88th Hospital of PLA Animal Care and Use Ethics Committee. The nude mice were randomly divided into two groups: negative control (antagomiR-NC) and antagomiR-142-3p (five mice per group). SUNE-1 cells (1 × 10^6 cells in 200 μl PBS) transfected with antagomiR-142-3p or antagomiR-NC were subcutaneously injected into the nude mice. Tumor size was monitored by measuring the length (A) and width (B) with a slide caliper every 3 days and tumor volume (V) was calculated as follows: V = (A×B^2) × 0.5. After 28 days, the mice were sacrificed and tumors were removed and weighed.

Immunohistochemistry
Formalin-fixed and paraffin-embedded tissues were cut into 4 mm-thick sections. The slides were deparaffinized with xylene, dehydrated with ethanol, boiled in 0.01 M citrate buffer (pH 6.0), and then treated with 3% H_2O_2 for 10 min to inactivate endogenous peroxidase activities and blocked with 10% goat serum in 0.2 M PBS for 30 min at 37°C and propidium iodide for 30 min at room temperature. The cell cycle profiles were analyzed using a FACS Calibur flow cytometer (BD Biosciences, San Jose, CA, USA).

Luciferase reporter assay
HEK 293T cells were maintained in 24-well plates and transfected with wild-type or mutant reporter vector together with miR-142-3p mimic or negative control using Lipofectamine 2000 (Invitrogen). After 48 h, cells were harvested and lysed. Firefly and Renilla luciferase activities were measured using the dual-luciferase reporter assay system (Promega) [8]. For each plasmid construct, the transfection experiments were performed in triplicate.

Western blotting
Protein extracts were separated using 10% SDS-PAGE gels and transferred onto polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA). Membranes were blocked with 5% non-fat milk and
probed with primary antibodies against SOCS6 (1:1000, Abcam, Cambridge, UK) and GAPDH (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. Secondary antibody was added and incubated for 2 h at room temperature. Bands were detected by enhanced chemiluminescence (Pierce, IL, USA).

Statistical analysis
Data were presented as the mean ± standard deviation (SD), and statistical analysis was performed using SPSS 16.0 software. Student’s t-test was used to analyze the differences between two groups. The correlation between miR-142-3p and SOCS6 expression was analyzed by Spearman’s correlation. \(P < 0.05 \) was defined as statistically significant.

Results

miR-142-3p is up-regulated in NPC tissues and cell lines
To validate the previously observed pattern of aberrant miR-142-3p expression in NPC, miR-142-3p expression was measured by qRT-PCR in 26 primary NPC tissues and 11 nasopharyngitis samples. As shown in Fig.1A, the mRNA levels of miR-142-3p were significantly higher in primary NPC tissues than in nasopharyngitis samples. Similarly, miR-142-3p levels were generally increased in NPC cell lines (HONE1, C666-1, CNE-2 and SUNE-1) compared with the normal nasopharyngeal epithelial cell line NP69 (Fig. 1B). These results indicate that miR-142-3p is up-regulated in NPC.

Inhibition of miR-142-3p reduces the proliferation of NPC cells
To explore the biological role of miR-142-3p in NPC progression, CNE-2 and SUNE-1 cells were transfected with antagoniR-142-3p or antagoniR-NC. As shown in Fig. 2A, the viability of cells transfected with antagoniR-142-3p was markedly decreased compared to that of the negative control. To further study the role of miR-142-3p in NPC cell growth promotion, BrdU incorporation was examined in cells subjected to miR-142-3p down-regulation. As observed in Fig. 2B, the percentage of BrdU positive cells was significantly lower in cells transfected with antagoniR-142-3p than in the controls (Fig. 2B). Furthermore, flow cytometric analysis showed that inhibition of miR-142-3p caused an increase in the proportion cells in G0/G1 phase and a decrease in the proportion cells in S phase (Fig. 2C). Collectively, these results suggest that miR-142-3p regulates cell growth and cell cycle progression at the G1/S transition in NPC cells.

Fig. 1. miR-142-3p is up-regulated in NPC tissues and cell lines. (A) Relative miR-142-3p expression in 26 primary NPC tissues and 11 nasopharyngitis samples, as detected by qRT-PCR. U6 was used as internal control. (B) qRT-PCR analysis of miR-142-3p expression in NPC cell lines and NP69 cells. Data represent the mean ± SD of three independent experiments. *\(P < 0.05 \).
Qi et al.: MiR-142-3p Promotes NPC Cell Proliferation

Cellular Physiology and Biochemistry

Down-regulation of miR-142-3p inhibits NPC tumorigenesis in vivo

Since our in vitro studies indicated that inhibition of miR-142-3p affected NPC cell proliferation, we investigated whether such an effect would occur in mouse xenograft models. SUNE-1 cells were transfected with antagomiR-142-3p or antagomiR-NC and subcutaneously injected into nude mice. Assessment of tumor growth showed that the average tumor volume in the antagomiR-142-3p group was drastically reduced compared with that of the control group (Fig. 3A). The tumors formed by antagomiR-142-3p-transfected SUNE-1 cells grew slower and had significant lower tumor weights than control tumors (Fig. 3B and C). IHC staining showed fewer Ki-67-positive cells in the tumors formed from SUNE-1-antagomiR-142-3p cells than in those formed from negative control cells. Collectively, these results suggest that inhibition of miR-142-3p represses NPC cell growth in vivo (Fig. 3D).

SOCS6 is the direct downstream target of miR-142-3p

Analysis using different databases (TargetScan and miRanda) predicted that SOCS6 is a candidate miR-142-3p target (Fig. 4A). To investigate whether miR-142-3p directly targets SOCS6, 3′-UTR fragments of SOCS6 containing the miR-142-3p binding site and the corresponding mutant fragments were subcloned into the psiCHEK-2 vector and co-transfected with miR-142-3p mimic or miR-NC into 293T cells. Ectopic expression of miR-142-3p significantly decreased the luciferase activity of the reporter containing the SOCS6 3′-UTR, whereas the luciferase activity of the mutant 3′-UTR showed little change (Fig.
miR-142-3p promotes NPC cell growth by modulating SOCS6 expression

To further study the functional relationship between miR-142-3p and SOCS6, we explored whether miR-142-3p enhanced NPC growth by down-regulating SOCS6. For this purpose, SOCS6 siRNA and antagoniMIR-142-3p were co-transfected into SUNE-1 cells. Western blot analysis verified that SOCS6 expression was down-regulated by SOCS6 siRNA (Fig. 5A). Cell viability, BrdU, and cell cycle progression assays showed that down-regulation of miR-142-3p significantly inhibited the growth of NPC cells. However, knockdown of SOCS6 expression by SOCS6 siRNA in antagoniMIR-142-3p-transfected cells reversed the inhibitory effects of antagoniMIR-142-3p (Fig. 5B, C and D). Collectively, these data indicate that miR-142-3p inhibits cell growth by suppressing its target gene SOCS6.

Discussion

In the present study, we showed that miR-142-3p was significantly up-regulated in NPC clinical specimens and cell lines. Inhibition of miR-142-3p reduced NPC cell proliferation, induced cell cycle arrest, and inhibited tumor growth in nude mice. miR-142-3p down-regulated SOCS6 expression by directly binding to its 3′-UTR, and knockdown of SOCS6 significantly reversed the suppressive effect of miR-142-3p inhibition. Our study indicates...
that miR-142-3p acts as a novel proliferation promoter by directly targeting SOCS6 in NPC.

There are currently two opposing views on the role of miR-142-3p in human cancer. miR-142-3p is down-regulated in thyroid carcinoma, hepatocellular carcinoma (HCC), osteosarcoma and colon cancer [16-19]. Chai et al. reported that miR-142-3p over-expression inhibits the ability of CD133-expressing HCC cells to self-renew, initiate tumors, invade, migrate and resist chemotherapy [17]. Xu et al. showed that over-expression of miR-142-3p inhibits osteosarcoma cell proliferation, migration and invasion, whereas knockdown of miR-142-3p has the opposite effects [18]. On the other hand, miR-142-3p is up-regulated in esophageal cancer, head and neck squamous cell carcinoma, NSCLC and T-cell acute lymphoblastic leukemia [20-23]. High levels of miR-142-3p alleviated the suppressive effect of PKA on T-leukemic cell proliferation [23]. MiR-142-3p represses TGF-β-induced growth inhibition by down-regulating TGFβR1 in NSCLC [22]. Consistent with the latter observation, our data showed that miR-142-3p is over-expressed in NPC tissues and cell lines. Knockdown of miR-142-3p inhibited NPC cell proliferation, induced G1 arrest, and repressed the tumorigenesis of NPC cells. These results suggest that deregulation of miR-142-3p plays important roles in promoting carcinogenesis and progression of NPC. However, further study is needed to characterize the underlying molecular mechanisms.

We used online bioinformatics tools to identify SOCS6 as a potential target of miR-142-3p. Luciferase assays demonstrated that miR-142-3p could directly bind to the 3′-
UTR of SOCS6. SOCS6 is a member of the SOCS family and participates in negative feedback regulation of receptor tyrosine kinase signaling [26, 27]. Recently, SOCS6 was found to play essential roles in tumor development and tumorigenesis in various cancers. SOCS6 is down-regulated in gastric cancer (GC) samples and inhibits GC cell growth and colony formation [28, 29]. SOCS6 is also down-regulated in pancreatic cancer specimens, and was shown to inhibit the proliferation, migration and invasion of pancreatic cancer cells and to increase cell apoptosis [30]. Moreover, the expression of SOCS6 is markedly reduced in HCC, and SOCS6 down-regulation is correlated with aggressive tumor progression and poor prognosis [31]. In our study, we found that SOCS6 was down-regulated in NPC tissues and its expression was inversely correlated with that of miR-142-3p. Furthermore, miR-142-3p significantly suppressed the expression of SOCS6 in NPC cells. siRNA mediated knockdown of SOCS6 in SUNE-1/antagomiR-142-3p cells reversed the inhibitory effect of miR-142-3p silencing. Our results indicate that miR-142-3p up-regulation may be an important mechanism of down-regulation of SOCS6 in NPC cells that contributes to the malignancy of NPC.

In summary, we showed that miR-142-3p is over-expressed in NPC tissues and cell lines, and knockdown of miR-142-3p inhibited NPC cell growth by targeting SOCS6. The miR-142-3p-SOCS6 axis may provide insight into the mechanisms of NPC progression and suggests potential novel strategies for the treatment of NPC.

Disclosure Statement

None disclosed.
References

1. Zhang SX, Qiu QH, Chen WB, Liang CH, Huang B: Celecoxib enhances radiosensitivity via induction of G2-M phase arrest and apoptosis in nasopharyngeal carcinoma. Cell Physiol Biochem 2014;33:1484-1497.

2. Xie M, Yi X, Wang R, Wang L, He G, Zhu M, Qi C, Liu Y, Ye Y, Tan S, Tang A: 14-Thienyl methylene matrine (YY18), the derivative from matrine, induces apoptosis of human nasopharyngeal carcinoma cells by targeting MAPK and PI3K/Akt pathways in vitro. Cell Physiol Biochem 2014;33:1475-1483.

3. Colaco RJ, Betts G, Donnemann SA, Swindell R, Yap BK, Sykes AJ, Slevin NJ, Homer JJ, Lee LW: Nasopharyngeal carcinoma: A retrospective review of demographics, treatment and patient outcome in a single centre. Clin Oncol (R Coll Radiol) 2013;25:171-177.

4. Xue G, Ren Z, Chen Y, Zhu J, Du Y, Pan D, Li X, Hu B: A feedback regulation between mir-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation. Cancer Lett 2015 5. Shi Y, Luo X, Li P, Tan J, Wang X, Xiang T, Ren G: Mir-7-5p suppresses cell proliferation and induces apoptosis of breast cancer cells mainly by targeting reggamma. Cancer Lett 2015;358:27-36.

6. Zhang D, Xiao YE, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: Mir-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hert. Cancer Lett 2015;360:151-159.

7. Li Y, Xu D, Bao C, Zhang Y, Chen D, Zhao F, Ding J, Liang L, Wang Q, Liu L, Li J, Yao M, Huang S, He X: Microrna-135b, a hsfl target, promotes tumor invasion and metastasis by regulating rech and evi5 in hepatocellular carcinoma. Oncotarget 2015;6:2421-2433.

8. Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, Lin SX, Wang L, Chen HH, Xu X, Wang F, Li XP: Mir-124 suppresses tumor growth and metastasis by targeting foxq1 in nasopharyngeal carcinoma. Mol Cancer 2014;13:186.

9. Ni F, Zhao H, Cui H, Wu Z, Chen L, Hu Z, Guo C, Liu Y, Chen Z, Wang X, Chen D, Wei H, Wang S: Microrna-362-5p promotes tumor growth and metastasis by targeting cyld in hepatocellular carcinoma. Cancer Lett 2015;356:809-818.

10. Gong C, Nie Y, Qu S, Liao JY, Cui X, Yao H, Zeng Y, Su F, Song E, Liu Q: Mir-21 induces myofibroblast differentiation and promotes the malignant progression of breast phyllodes tumors. Cancer Res 2014;74:4341-4352.

11. Yang X, Ni W, Lei K: Mir-200b suppresses cell growth, migration and invasion by targeting Notch1 in nasopharyngeal carcinoma. Cell Physiol Biochem 2013;32:1288-1298.

12. Liu N, Jiang N, Guo R, Jiang W, He QM, Xu YF, Li YQ, Tang LL, Mao YP, Sun Y, Ma J: Mir-451 inhibits cell growth and invasion by targeting mif and is associated with survival in nasopharyngeal carcinoma. Mol Cancer 2013;12:123.

13. Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin W, Zhang Y: Microrna-218 inhibits glioma invasion, migration, proliferation, and cancer stem cell self-renewal by targeting the polycomb group gene bmi1. Cancer Res 2013;73:6046-6055.

14. Zhang P, Bill K, Liu J, Young E, Peng T, Bolshakov S, Hoffman A, Song Y, Demico EG, Terrada DL, Creighton CJ, Andeson ML, Lazar AJ, Calin GG, Pollock RE, Lev D: Mir-155 is a liposarcoma oncogene that targets casein kinase-1alpha and enhances beta-catenin signaling. Cancer Res 2012;72:1751-1762.

15. Weng H, Huang H, Dong B, Zhao P, Zhou H, Qu L: Inhibition of mir-17 and mir-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing bim-s. Cancer Res 2014;74:4409-4419.

16. Colamaio M, Puca F, Ragozzino E, Gemeli M, Decausin-Petrucci M, Aiello C, Bastos AL, Federico A, Chiappetta G, Del Vecchio L, Torregrossa L, Battista S, Fusco A: Mir-142-3p down-regulation contributes to thyroid follicular tumorigenesis by targeting ash1l and mll1. J Clin Endocrinol Metab 2015;100:ES9-69.

17. Chai S, Tong M, Ng KY, Kwan PS, Chan YP, Fung TM, Lee TK, Wong N, Xie D, Yuan YF, Guan XY, Ma S: Regulatory role of mir-142-3p on the functional hepatic cancer stem cell marker cd133. Oncotarget 2014;5:5725-5735.

18. Xu G, Wang J, Jia Y, Shen F, Han W, Kang Y: Mir-142-3p functions as a potential tumor suppressor in human osteosarcoma by targeting hmg1a. Cell Physiol Biochem 2014;33:1329-1339.

19. Shen WW, Zeng Z, Zhu WX, Fu GH: Mir-142-3p functions as a tumor suppressor by targeting cd133, abcg2, and lgr5 in colon cancer cells. J Mol Med (Berl) 2013;91:989-1000.
1752

Qi et al.: MiR-142-3p Promotes NPC Cell Proliferation

20 Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O’Sullivan B, Waldron J, Gullane P, Cummings B, Liu FF: Comprehensive microRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 2010;16:1129-1139.
21 Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C, Shan S, Westra W, Sidransky D, Califano JA: MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 2008;123:2791-2797.
22 Lei Z, Xu G, Wang L, Yang H, Liu X, Zhao J, Zhang HT: Mir-142-3p represses TGF-beta-induced growth inhibition through repression of TGFbetaR1 in non-small cell lung cancer. FASEB J 2014;28:2696-2704.
23 Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, Hong M, Jiang T, Jiang Q, Lu J, Huang X, Huang B: An oncogenic role of mir-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-alpha and cAMP/PKA pathways. Leukemia 2012;26:769-777.
24 Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, Chang KB, Chang YS, Chen SJ: MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer 2009;100:1002-1011.
25 Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, Yu S, Zhao Y, Xie C, Zhang K, Zhu M, Shen H, Lin Z, Jiang C, Shen J, Zheng Y: MiR-603 promotes glioma cell growth via Wnt/beta-catenin pathway by inhibiting WIF1 and CTNNB1. Cancer Lett 2015;360:76-86.
26 Kabir NN, Sun J, Ronnstrand L, Kazi JU: Socs6 is a selective suppressor of receptor tyrosine kinase signaling. Tumour Biol 2014;35:10581-10589.
27 Fang Y, Sun B, Xiang J, Chen Z: MiR-301a promotes colorectal cancer cell growth and invasion by directly targeting socs6. Cell Physiol Biochem 2015;35:227-236.
28 Lai RH, Hsiao YW, Wang MJ, Lin HY, Wu CW, Chi CW, Li AF, Jou YS, Chen YJ: Socs6, down-regulated in gastric cancer, inhibits cell proliferation and colony formation. Cancer Lett 2010;288:75-85.
29 Wu Q, Luo G, Yang Z, Zhu E, An Y, Shi Y, Fan D: Mir-17-5p promotes proliferation by targeting socs6 in gastric cancer cells. FEBS Lett 2014;588:2055-2062.
30 Wu K, Hu G, He X, Zhou P, Li J, He B, Sun W: MicroRNA-424-5p suppresses the expression of socs6 in pancreatic cancer. Pathol Oncol Res 2013;19:739-748.
31 Qiu X, Zheng J, Guo X, Gao X, Liu H, Tu Y, Zhang Y: Reduced expression of socs2 and socs6 in hepatocellular carcinoma correlates with aggressive tumor progression and poor prognosis. Mol Cell Biochem 2013;378:99-106.