ON CONSTANT-MULTIPLE-FREE SETS CONTAINED IN A RANDOM SET OF INTEGERS

SANG JUNE LEE

Abstract. For a rational number \(r > 1 \), a set \(A \) of positive integers is called an \(r \)-multiple-free set if \(A \) does not contain any solution of the equation \(rx = y \). The extremal problem on estimating the maximum possible size of \(r \)-multiple-free sets contained in \([n] := \{1, 2, \ldots, n\} \) has been studied for its own interest in combinatorial number theory and for application to coding theory. Let \(a, b \) be positive integers such that \(a < b \) and the greatest common divisor of \(a \) and \(b \) is 1. Wakeham and Wood showed that the maximum size of \((b/a)\)-multiple-free sets contained in \([n]\) is \(\frac{b}{b+a} n + O(\log n) \).

In this note we generalize this result as follows. For a real number \(p \in (0, 1) \), let \([n]_p\) be a set of integers obtained by choosing each element \(i \in [n] \) randomly and independently with probability \(p \). We show that the maximum possible size of \((b/a)\)-multiple-free sets contained in \([n]_p\) is \(\frac{b}{b+a} pm + O(\sqrt{pn} \log n \log \log n) \) with probability that goes to 1 as \(n \to \infty \).

1. Introduction

In recent years a trend in extremal combinatorics concerned with investigating how classical extremal results in dense environments transfer to sparse settings, and it has seen to be a fruitful subject of research. Especially, in combinatorial number theory, the following extremal problem in a dense environment has been well-studied and successively extended to sparse settings: Fix an equation and estimate the maximum size of subsets of \([n] := \{1, 2, \ldots, n\} \) containing no non-trivial solutions of the given equation.

An example of this line of research is a version of Roth’s theorem \([10]\) on arithmetic progressions of length 3 (with respect to the equation \(x_1 + x_3 = 2x_2 \)) for random subsets of integers in Kohayakawa–Luczak–Rödl \([8]\). Also, Szemerédi’s theorem \([12]\) was transferred to random subsets of integers in Conlon–Gowers \([2]\) and Schacht \([11]\). The result of Erdős–Turán \([4]\), Chowla \([1]\), and Erdős \([3]\) in 1940s on the maximum size of Sidon sets in \([n]\) was extended in \([6, 7]\) to sparse random subsets of \([n]\), where a Sidon...
set is a set of positive integers not containing any non-trivial solution of \(x_1 + x_2 = y_1 + y_2 \).

In this paper we transfer the following extremal results to sparse random subsets. For a rational number \(r > 1 \), a set \(A \) of positive integers is called an \(r \)-multiple-free set if \(A \) does not contain any solution of \(rx = y \). An interesting problem on \(r \)-multiple-free sets is of estimating the maximum possible size \(f_r(n) \) of \(r \)-multiple-free sets contained in \([n] := \{1, 2, \ldots, n\}\). This extremal problem has been studied in [14, 9, 13] for its own interest in combinatorial number theory, and also was applied to coding theory in [5].

Wang [14] showed that \(f_2(n) = \frac{2}{3}n + O(\log n) \). Leung and Wei [9] proved that for every integer \(r > 1 \), \(f_r(n) = \frac{r}{r+1}n + O(\log n) \). Wakeham and Wood [13] extended it to rational numbers as follows. For positive integers \(a \) and \(b \), let \(\gcd(b, a) \) be the greatest common divisor of \(a \) and \(b \).

Theorem 1 (Wakeham and Wood [13]). Let \(a, b \) be positive integers with \(a < b \) and \(\gcd(b, a) = 1 \). Then

\[
 f_{b/a}(n) = \frac{b}{b + 1}n + O(\log n).
\]

We shall investigate the maximum size of constant-multiple-free sets contained in a random subset of \([n]\). Let \([n]_p \) be a random subset of \([n]\) obtained by choosing each element in \([n]\) independently with probability \(p \). Let \(f_r([n]_p) \) denote the maximum size of \(r \)-multiple-free sets contained in \([n]_p \). We are interested in the behavior of \(f_r([n]_p) \) for every rational number \(r > 1 \).

Theorem 1 gives the answer of the above question for the case \(p = 1 \). On the other hand, if \(p = o(1) \), then the usual deletion methods give that with high probability (that is, with probability that goes to 1 as \(n \to \infty \)) the maximum size of \((b/a)\)-multiple-free sets contained in \([n]_p \) is \(np(1 - o(1)) \). Hence, from now on, we consider \(p \) as a real number with \(0 < p < 1 \).

Using Chernoff bounds (for example, see Lemma 11), Theorem 1 easily implies the following:

Fact 2. Let \(p \in (0, 1) \) and let \(a, b \) be positive integers such that \(a < b \) and \(\gcd(a, b) = 1 \). Let \(\omega \) be a function of \(n \) that goes to \(\infty \) arbitrarily slowly as \(n \to \infty \). With high probability, there is a \((b/a)\)-multiple-free set in \([n]_p \) of size

\[
 \frac{b}{b + 1}pn + \omega \sqrt{pn}.
\]

Fact 2 gives a lower bound on \(f_{b/a}([n]_p) \) that is off from the right value of \(f_{b/a}([n]_p) \). The main result of this paper is the following:
Theorem 3. Let $p \in (0,1)$ and let a,b be positive integers such that $a < b$ and $\gcd(a,b) = 1$. Then, with high probability,

$$f_{b/a}([n]_p) = \frac{b}{b+p}pn + O\left(\sqrt{pn \log n \log \log n}\right).$$

The ratio $\frac{f_{b/a}([n]_p)}{np}$ goes from 1 to $\frac{b}{b+1}$ as p varies from 0 to 1 (See Figure 1). The proof of Theorem 3 is given in Sections 2 and 3 by using a graph theoretic method.

2. Proof of Theorem 3

In order to show Theorem 3, we use a graph theoretic approach that was used in Wakeham and Wood [13]. Let $r = \frac{b}{a} > 1$ be a rational number. Let $D = (V,E)$ be the directed graph with the vertex set $V = [n]$ in which the set E of arcs (or directed edges) is $\{(x,y): rx = y\}$. Let $D([n]_p)$ be the subgraph of D induced on $[n]_p$. Observe that $f_r([n]_p)$ is the same as the independence number $\alpha(D([n]_p))$ of $D([n]_p)$.

We consider structures of $D([n]_p)$. The indegree and outdegree of each vertex in D are at most 1. Also, there is no directed cycle in D because $(x,y) \in E$ implies $x < y$. Therefore, each component of D or $D([n]_p)$ is a directed path.

In order to obtain an independent set of $D([n]_p)$ of maximum size, we consider such an independent set componentwise. Let C be a component of $D([n]_p)$. As we mentioned above, C is a directed path. Let $V(C) = \{u_0, u_1, u_2, \cdots, u_i, \cdots, u_l\}$ be the vertex set of C such that $u_j < u_{j+1}$ and $(u_j, u_{j+1}) \in E$ for $0 \leq j \leq l-1$. Observe that $V^*(C) := \{u_0, u_2, u_4, \cdots\} \subset$
$V(C)$ forms an independent set of C of maximum size. Therefore, the set

$$T^* := \bigcup_C V^*(C),$$

where C is each component of $D[[n]_p]$, forms an independent set of $D[[n]_p]$ of maximum size. Hence, we have the following.

Lemma 4. $f_r([n]_p) = |T^*|.$

Thus, in order to show Theorem 3, it suffices to show the following.

Lemma 5. Let $p \in (0,1)$ and let a, b be natural numbers such that $a < b$ and $\gcd(a, b) = 1$. Then, with high probability,

$$|T^*| = \frac{b}{b + p}pn + O \left(\sqrt{pn \log n \log \log n} \right).$$

The proof of Lemma 5 is given in Section 3.

3. Proof of Lemma 5

From now on, we show Lemma 5. For positive integers b and k, let k be an i-th subpower of b if $k = b^i l$ for some $l \not\equiv 0 \pmod{b}$. Let T_i be the set of i-th subpowers of b in $[n]$. Let $T_i^* \subset T_i$ denote the set of i-th subpowers v of b in $[n]_p$ such that v is at an even distance from the smallest vertex of the component of $D[[n]_p]$ containing v. Observe that $T^* = \bigcup_i T_i^*$, and hence,

$$|T^*| = \sum_i |T_i^*|. \quad (1)$$

In Section 3.1 we estimate the expected value $\mathbb{E}(|T_i^*|)$. Section 3.2 deals with a concentration result of $|T^*|$ with high probability.

3.1. Expectation

We first estimate $\mathbb{E}(|T_i^*|)$ and their sum $\mathbb{E}(|T^*|)$. Recall that T_i denotes the set of i-th subpowers of b in $[n]$. Note that since $1 \leq b^i \leq n$, the range of i is $0 \leq i \leq \log_b n$. It is clear that

$$T_i = \left\{ b^i x \mid 1 \leq x \leq \frac{n}{b^i}, \quad x \not\equiv 0 \pmod{b} \right\}. $$

Hence we have the following:

Fact 6.

$$|T_i^*| = \frac{b - 1}{b^{1+i}} n \pm 1. \quad (2)$$

We consider two cases separately, based on the parity of i.

Lemma 7. For $0 \leq j \leq (\log_b n)/2$, we have

$$\mathbb{E}(|T^*_i|) = \frac{b - 1}{b(1+p)}pn \left(\frac{1}{b^{2j}} + \left(\frac{p}{b} \right)^{2j} p \right) \pm 1.$$
Proof. First we consider $\Pr \left[v \in T_{2j} \right]$. Let $\{v_0, v_1, v_2, \cdots\}$, where $v_i < v_{i+1}$, be the vertex set of the component of D containing v. Observe that $v_i \in T_i$, and hence, $v = v_{2j}$. The event that $v \in T_{2j}$ is in T^*_{2j} happens only when one of the following holds:

- There is some r with $0 \leq r \leq j - 1$ such that $v_{2j-1-2r} \notin [n]_p$ and $v_i \in [n]_p$ for all $2j - 2r \leq i \leq 2j$.
- The vertices v_0, v_1, \cdots, v_{2j} are in $[n]_p$.

Hence, we have

$$\Pr \left[v \in T_{2j} \right] = p \left(1 - p \right) + p^2 \left(1 - p \right) + \cdots + p^{2j-2} \left(1 - p \right) + p^{2j}.$$

Thus we infer

$$\mathbb{E} \left(|T^*_{2j}| \right) = |T_{2j}| \cdot \Pr \left[v \in T_{2j} \right]$$

$$\mathbb{E} \left(|T^*_{2j}| \right) = \frac{b-1}{b(1+p)} p \left(1 - p \right) \left(1 - p \right)^{\frac{b}{2j}} + p^{2j}$$

$$\mathbb{E} \left(|T^*_{2j}| \right) = \frac{b-1}{b(1+p)} p \left(1 - p \right) \left(1 - p \right)^{\frac{b}{2j}} + p^{2j}$$

which completes the proof of Lemma 7.

Lemma 8. For $1 \leq j \leq (\log_b n)/2$, we have

$$\mathbb{E} \left(|T^*_{2j-1}| \right) = \frac{b-1}{b(1+p)} p \left(1 - p \right) \left(1 - p \right)^{\frac{b}{2j-1}} + p^{2j-1} \pm 1.$$

Proof. Using an argument similar to the proof of (3), one may obtain that

$$\Pr \left[v \in T_{2j-1} \right] = p \left(1 - p \right) + p^2 \left(1 - p \right) + \cdots + p^{2j-2} \left(1 - p \right) + p^{2j}.$$

Thus we infer

$$\mathbb{E} \left(|T^*_{2j-1}| \right) = |T_{2j-1}| \cdot \Pr \left[v \in T_{2j-1} \right]$$

$$\mathbb{E} \left(|T^*_{2j-1}| \right) = \frac{b-1}{b(1+p)} p \left(1 - p \right) \left(1 - p \right)^{\frac{b}{2j-1}} + p^{2j-1} \pm 1,$$

which completes the proof of Lemma 8.

Corollary 9. For $0 \leq i \leq \log_b n$, we have

$$\mathbb{E} \left(|T^*_i| \right) = \frac{b-1}{b(1+p)} p \left(1 - p \right)^{\frac{b}{2j}} + p^{2j} \pm 1.$$

Summing over all i with $0 \leq i \leq \log_b n$, we have the following.

Corollary 10.

$$\mathbb{E}(|T_i^*|) = \sum_{i=0}^{\log_b n} \mathbb{E}(|T_i^*|) = \frac{b}{b + p}pn + O(\log n).$$

Proof. One may easily see that for $|x| \geq b \geq 2$,

$$\sum_{i=0}^{\log_b n} \frac{1}{x^i} = \frac{x}{x-1} + O\left(\frac{1}{n}\right). \quad (6)$$

Corollary 9 yields that for $b \geq 2$

$$\sum_{i=0}^{\log_b n} \mathbb{E}(|T_j^*|) = \frac{b}{b - 1} \left[O\left(\frac{1}{n}\right) + \frac{b}{b - 1} \mathbb{E}\left(\frac{1}{b}\right) + \frac{-b/p}{b - 1} p + O\left(\frac{1}{n}\right) \right] + O(\log n) \quad (7)$$

which completes the proof of Corollary 10. \qed

3.2. Concentration

Next we consider a concentration result of $|T_i^*|$. In other words, we show that $|T_i^*|$ is around its expectation with high probability. We will apply the following version of Chernoff bounds.

Lemma 11 (Chernoff bound). Let X_i be independent random variables such that $\Pr[X_i = 1] = p_i$ and $\Pr[X_i = 0] = 1 - p_i$, and let $X = \sum_{i=1}^{n} X_i$. Then for any $\lambda \geq 0$,

$$\Pr[X \geq (1 + \lambda)\mathbb{E}(X)] \leq e^{-\frac{\lambda^2}{2}\mathbb{E}(X)}, \quad (8)$$

$$\Pr[X \leq (1 - \lambda)\mathbb{E}(X)] \leq e^{-\frac{\lambda^2}{2}\mathbb{E}(X)}. \quad (9)$$

In particular, for $0 \leq \lambda \leq 1$,

$$\Pr[|X - \mathbb{E}(X)| \geq \lambda\mathbb{E}(X)] \leq 2e^{-\frac{\lambda^2}{2}\mathbb{E}(X)}. \quad (10)$$

We first consider the case when $0 \leq i \leq 0.9 \log_b n$.

Lemma 12. For $0 \leq i \leq 0.9 \log_b n$, we have

$$|T_i^*| = \mathbb{E}(|T_i^*|) + O\left(\sqrt{pn \log \log n}\right) \quad (11)$$

with probability at least $1 - 2e^{-\frac{1}{3}(\log \log n)^2}$.

Proof. Fix i. If $k \in T_i \subset [n]$, then let

$$X_k = \begin{cases} 1 & \text{with probability } p^* \\ 0 & \text{with probability } 1 - p^* \end{cases}$$

where $p^* = \Pr[v \in T_i \text{ is in } T^*_i]$. Otherwise, let $X_k = 0$ with probability 1. Let $X = \sum_{k=1}^{n} X_k$. Observe that

$$X = |T^*_i|$$

as random variables.

Note that for each $k \in T_i$, the event that $k \in T^*_i$ depends only on the events that $v \in [n]$, where the vertices v are in the component of D containing k and $v \leq k$. Hence, X_k are independent for all $k \in T_i$. Therefore we are able to use Chernoff bounds (Lemma 11) for a concentration result of X.

Set $\lambda = \frac{\log \log n}{\sqrt{\mathbb{E}(X)}}$. Note that $0 \leq \lambda \leq 1$ for $0 \leq i \leq 0.9 \log_b n$ since

$$\mathbb{E}(X) \geq \Omega \left(\frac{pn \varepsilon_p}{b^i} \right) \geq \Omega \left(\frac{pn \varepsilon_p}{n^{0.9}} \right) = \Omega \left(\varepsilon_p n^{0.1} \right),$$

where ε_p is a positive constant such that $\varepsilon_p \to 0$ as $p \to 1$. The inequality (10) yields that

$$\Pr[X = \mathbb{E}(X) + 2(\log \log n)^2] \leq e^{-\frac{1}{3}(\log \log n)^2}. \quad (13)$$

(14) Corollary 9 yields that $\mathbb{E}(|X|) = O(pn)$, and hence, we infer that

$$X = \mathbb{E}(X) + O(\sqrt{p_n} \log \log n)$$

with probability at least $1 - 2e^{-\frac{1}{3}(\log \log n)^2}$. This together with (12) completes the proof of Lemma 12. \square

Next we consider the remaining case when $0.9 \log_b n \leq i \leq \log_b n$.

Lemma 13. For $0.9 \log_b n \leq i \leq \log_b n$, we have $|T^*_i| = O((pn)^{0.1})$, with probability at least $1 - e^{-O(\log \log n)^2}$.

Proof. We define a random variable X as in (12), that is, $X = |T^*_i|$. Set $\lambda = \frac{2(\log \log n)^2}{\mathbb{E}(X)}$. The inequality (8) yields that

$$\Pr[X \geq (1 + \lambda)\mathbb{E}(X)] \leq e^{-\frac{1}{2} \mathbb{E}(X)} = e^{-O(\log \log n)^2},$$

and hence,

$$\Pr[X \geq \mathbb{E}(X) + 2(\log \log n)^2] \leq e^{-O(\log \log n)^2}. \quad (14)$$

In other words,

$$X \leq \mathbb{E}(X) + 2(\log \log n)^2 \quad (15)$$

with probability at least $1 - e^{-O(\log \log n)^2}$. 7
Corollary 9 gives that
\[E(X) = O \left(\frac{pn}{b^i} \right) = O \left(p^{0.1} \right) = O \left((pn)^{0.1} \right), \quad (16) \]
where the second inequality holds for \(i \geq 0.9 \log_b n \). Thus, combining (15) and (16) completes the proof of Lemma 13. □

Now we are ready to show Lemma 5.

Proof of Lemma 5. We have that
\[|T^*| = \sum_{i=1}^{\log_b n} |T^*_i| = \sum_{i=1}^{[0.9 \log_b n]} |T^*_i| + \sum_{i=[0.9 \log_b n]+1}^{\log_b n} |T^*_i|. \]

Lemmas 12 and 13 give that
\[|T^*| = \sum_{i=1}^{\log_b n} E(|T^*_i|) + O(\sqrt{pm \log n \log \log n}), \]
with probability at least
\[1 - (\log_b n) \cdot 2e^{-\frac{1}{2}(\log \log n)^2} = 1 - 2e^{\log \log n - \frac{1}{2}(\log \log n)^2} = 1 - o(1). \quad (17) \]

This together with Corollary 10 implies that with high probability
\[|T^*| = \frac{b}{b + p} pm + O(\sqrt{mn \log n \log \log n}), \]
which completes the proof of Lemma 5. □

Acknowledgement. The author thanks Yoshiharu Kohayakawa for his helpful comments and suggestions, and thanks Jaigyoung Choe for his support at Korea Institute for Advanced Study.

References

[1] S. Chowla. Solution of a problem of Erdős and Turan in additive-number theory. *Proc. Nat. Acad. Sci. India. Sect. A.*, 14:1–2, 1944.
[2] D. Conlon and W. T. Gowers. Combinatorial theorems in sparse random sets. submitted, 70pp, 2010.
[3] P. Erdős. On a problem of Sidon in additive number theory and on some related problems. *Addendum, J. London Math. Soc.*, 19:208, 1944.
[4] P. Erdős and P. Turán. On a problem of Sidon in additive number theory, and on some related problems. *J. London Math. Soc.*, 16:212–215, 1941.
[5] M. Jimbo, M. Mishima, S. Janiszewski, A. Y. Teymorian, and V. D. Tonchev. On conflict-avoiding codes of length \(n = 4m \) for three active users. *IEEE Trans. Inform. Theory*, 53(8):2732–2742, 2007.
[6] Y. Kohayakawa, S. Lee, and V. Rödl. The maximum size of a Sidon set contained in a sparse random set of integers. In *Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 159–171, Philadelphia, PA, 2011. SIAM.
Y. Kohayakawa, S. J. Lee, V. Rödl, and W. Samotij. The number of Sidon sets and the maximum size of sidon sets contained in a sparse random set of integers. Accepted to Random Structures & Algorithms.

Y. Kohayakawa, T. Łuczak, and V. Rödl. Arithmetic progressions of length three in subsets of a random set. Acta Arith., 75(2):133–163, 1996.

J. Y.-T. Leung and W.-D. Wei. Maximal k-multiple-free sets of integers. Ars Combin., 38:113–117, 1994.

K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104–109, 1953.

M. Schacht. Extremal results for random discrete structures. submitted, 27pp, 2009.

E. Szemerédi. On sets of integers containing no k elements in arithmetic progression. Acta Arith., 27:199–245, 1975. Collection of articles in memory of Jurii Vladimirovič Linnik.

D. Wakeham and D. Wood. On multiplicative Sidon sets. arXiv:1107.1073.

E. T. H. Wang. On double-free sets of integers. Ars Combin., 28:97–100, 1989.

School of Mathematics, Korea Institute for Advanced Study (KIAS), Seoul 130-722, South Korea

E-mail address: sjlee242@gmail.com