Scaling of hysteresis loops at phase transitions into a quasiasorbing state

Kazumasa A. Takeuchi

Department of Physics, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan and
Service de Physique de l’État Condensé, CEA-Saclay, 91191 Gif-sur-Yvette, France

(Dated: March 10, 2008)

Models undergoing a phase transition to an absorbing state weakly broken by the addition of a very low spontaneous nucleation rate are shown to exhibit hysteresis loops whose width $\Delta \lambda$ depends algebraically on the ramp rate r. Analytical arguments and numerical simulations show that $\Delta \lambda \sim r^\kappa$ with $\kappa = 1/(\beta' + 1)$, where β' is the critical exponent governing the survival probability of a seed near threshold. These results explain similar hysteresis scaling observed before in liquid crystal convection experiments. This phenomenon is conjectured to occur in a variety of other experimental systems.

PACS numbers: 05.70.Jk, 05.70.Ln, 05.20.-y

Directed percolation (DP) is an archetypical model of phase transitions into an absorbing state, i.e. a state from which a system can never escape. A vast literature of theoretical and numerical studies has enlarged the range of phenomena in the DP universality class, refining conditions for this prominent critical behavior, known as DP conjecture. Experimentally, the author and coworkers recently found that electrohydrodynamic convection of nematic liquid crystal shows the scaling behavior of DP at the transition between two turbulent states (DSM1-DSM2). Applying voltages V closely above the threshold, spatiotemporal intermittency (STI) occurs, in which DSM2 patches move around in a DSM1 background. As conjectured early by Pomeau, this STI was unambiguously mapped onto DP with DSM1 playing the role of the absorbing state. This constituted a clear experimental realization of a DP-class absorbing phase transition.

On the other hand, Kai et al. reported in 1989 hysteresis phenomena around this DSM1-DSM2 transition. Measuring the global light transmittance through the sample, increasing or decreasing the applied voltage V at a rate r, they found hysteresis loops of width ΔV scaling roughly like $\Delta V \sim r^\kappa$ with $\kappa \approx 0.5-0.6$. In particular, these loops disappear in the small-r limit, and it has been discussed whether the transition corresponds to a supercritical bifurcation or a subcritical one. This is in apparent contradiction with DSM1 being an absorbing state, since then one expects infinitely wide hysteresis loops. It is shown here that the scaling of hysteresis loops is in fact in full agreement with the DP framework in which the DSM1 state is only quasi-absorbing, i.e. with the existence of a small residual probability for spontaneous nucleation of DSM2 patches either in the bulk or at the boundaries.

As a first illustration, a probabilistic cellular automaton (PCA) version of the contact process (CP) is introduced, in which an extra, small probability h to create an active site spontaneously anywhere is added. Consider a two-dimensional (2D) square lattice of size $L \times L$ and assign a variable $s_{i,j}$ to each lattice point, encoding its local state, either inactive (absorbing, $s_{i,j} = 0$) or active ($s_{i,j} = 1$). Indices i and j denote Cartesian coordinates. The time evolution is as follows: randomly choose one site and stochastically flip it with probabilities

$$p_{i,j}(1 \to 0) = \frac{p_1}{4}(s_{i-1,j} + s_{i+1,j} + s_{i,j-1} + s_{i,j+1}) + h,$$

$$p_{i,j}(0 \to 1) = p_2,$$

where $p_1 = \lambda/(\lambda + 1)$ and $p_2 = 1/(\lambda + 1)$. The two terms in the first equation account for contamination by neighbors and spontaneous nucleation of active sites, respectively. Periodic boundary conditions $s_{i,j} = s_{i+L,j} = s_{i,j+L}$ are used throughout, and a time step (or Monte Carlo step, MCS) consists of L^2 flipping attempts. The $h = 0$ case is known as the PCA version of the original (2+1)D CP, which shows a DP-class transition at $\lambda_c = 1.64877(3)$ (the number in parentheses denotes the uncertainty in the last figure). In the present study, $L = 256$ and $h^2 = h L^2 = 10^{-2}$. Although, strictly speaking, even rare nucleation events wipe out the absorbing phase transition, in practice a significantly low nucleation rate allows us to observe the underlying critical behavior as we shall see in this study. The nucleation rate h theoretically corresponds to an external field, so a weak-field case is dealt with here.

The model behaves similarly to the turbulence of liquid crystals in many aspects. For instance $\lambda \gg \lambda_c$ and initial conditions of $s_{i,j} = 0$ everywhere lead to a nucleus growth after sufficient time has passed, which faithfully reproduces experiments. In particular, the model exhibits hysteresis as shown in Fig. 1(a) and Movie S1 when λ is increased from $\lambda < \lambda_c$ to $\lambda > \lambda_c$ at a constant ramp rate r and then decreased at the same speed. The hysteretic process can be decomposed into three stages as indicated in the bottom of Fig. 2. Let us start from the uniformly inactive state and increase λ. First, active clusters do not emerge even for $\lambda > \lambda_c$.

*Electronic address: kazumasa@daisy.phys.s.u-tokyo.ac.jp
However, once a spontaneous nucleation occurs, the active nucleus grows and finally covers the whole system because of $\lambda > \lambda_c$ (2nd stage). The density of active sites, ρ, saturates at the steady state value $\rho_{\text{steady}}(\lambda)$. On the other hand, when λ is decreased, the number of active sites decreases gradually and homogeneously contrary to the growing process, approximately following $\rho_{\text{steady}}(\lambda)$ (3rd stage). This strikingly resembles what is observed in the liquid crystal experiments [Fig. 1(b), Movie S2 [11], Refs. [6, 12]]. Note that the observed hysteresis both in the experiments and in the simulations is not a stationary property of the system, as would imply a first order transition, but rather a dynamical effect owing to the sweep of the parameter.

The dependence on the ramp rate r is shown in Fig. 2 which is again very similar to the corresponding experiments [6, 12]. The widths of the hysteresis loops $\Delta \lambda$ and $\Delta \lambda^*$, defined as in Fig. 2, clearly exhibit the power law dependence $\Delta \lambda, \Delta \lambda^* \sim r^{\kappa}$ [Fig. 3 (disks and triangles)], with $\kappa = 0.61(1)$ for $\Delta \lambda$ and $\kappa = 0.56(3)$ for $\Delta \lambda^*$. Here the ranges of error correspond to 95% confidence intervals in the sense of Student’s t. They are in good agreement with the experimental value $\kappa = 0.5-0.6$ [6, 7].

Besides the agreement between the simulations and the experiments, the exponent κ can also be derived only by assuming DP criticality with a very low probability for spontaneous nucleation. For absorbing phase transitions, the probability P_∞ with which an active site survives forever grows algebraically as $P_\infty \sim \varepsilon^{\beta'}$ for $\varepsilon \equiv \lambda - \lambda_c > 0$, where β' constitutes one of the critical exponents characterizing these transitions. (Note that for the DP class the so-called “rapidity” symmetry implies $\beta' = \beta$ [1, 13], where β is the critical exponent corresponding to the stationary active site density ρ_{steady}.) Suppose ε is increased linearly as $\varepsilon(t) = rt$ and a nucleus appears and grows at time $t = t_c$, and assume that the ramp rate r is so slow that the finite-time survival probability converges...
The following relation then approximately holds:

\[t_n \sim T \lambda \cdot (1 + t_{\beta + 1}) \]

The inset shows the same data in logarithmic scales.

It gives the exponent for the hysteresis as \(\lambda \), \(\lambda^*\), \(\lambda_{\lambda}^* \sim r^\lambda\).

The inset shows the same data in logarithmic scales.

to \(P_\infty\) before the control parameter significantly changes, the following relation then approximately holds:

\[1 \sim \int_0^T h' P_\infty (\varepsilon(t)) dt \sim h' r^\beta T r^{\beta + 1}, \quad (2) \]

and thus the width of the hysteresis is

\[\Delta t^* \equiv r T \sim r^{1/(\beta + 1)}. \quad (3) \]

It gives the exponent for the hysteresis as \(\lambda = 1/(\beta + 1) = 0.632(2)\) for the (2+1)D DP [14]. Of course the assumed nucleation process is stochastic, so that, strictly, one should deal with the average width \(\langle \Delta t^* \rangle\) based on the probabilistic distribution. This more rigorous approach is also straightforward. With \(P_0(t)\) being the probability that a nucleus does not appear and grow until time \(t\), the probability that such a nucleation first occurs between time \(t \) and \(t + dt\) is written as

\[-dP_0(t) = P_0(t) \cdot h' P_\infty (\varepsilon(t)) dt = C h' r^\beta t^\beta \exp \left(-\frac{Ch' r^\beta}{\beta + 1} t^{\beta + 1} \right) dt, \quad (4)\]

where \(C\) is defined by \(P_\infty = Ce^{\beta^*}\). This gives the average of the hysteresis width as

\[\langle \Delta t^* \rangle = r \int_0^\infty t \left(-\frac{dP_0(t)}{dt} \right) dt = \Gamma \left(\frac{\beta + 2}{\beta + 1} \right) \left(\frac{\beta + 1}{Ch'} \right)^{1/(\beta + 1)}, \quad (5) \]

which confirms Eq. (4). Note that the standard deviation also obeys the same power law (with a different coefficient), since the stochastic process at play is essentially Poissonian.

The derived value of \(\lambda = 0.632(2)\) is slightly larger than the numerical and experimental values. This stems from the use of different definitions for the lower bound of the loop: the merging point of the two curves defining the loop is used for the experiments and simulations (\(\Delta \lambda\) and \(\Delta \lambda^*\)), whereas, theoretically, the exact critical point \(\lambda_c\) is used to define the lower bound. Adopting the latter definition for the simulations (\(\Delta \lambda^*\) in Fig. 2), \(\lambda = 0.64(5)\) is obtained (Fig. 3, which is in close agreement with the theoretical value. Thus the picture based on DP with a weakly broken absorbing state quantitatively explains the observed hysteresis. The above derivation also indicates that the scaling of hysteresis loops is seen for such values of \(h'\) and \(r\) that nucleations, including those with a short lifetime, occur several times within the range where the scaling \(P_\infty \sim \varepsilon^{\lambda^*}\) holds.

Given that the only assumption was criticality of an absorbing transition together with very rare spontaneous nucleations, the observed scaling of hysteresis with the exponent \(\lambda = 1/(\beta + 1)\) is expected to be found universally in systems that exhibit quasi-absorbing transitions. This is confirmed by performing simulations in different dimensions and for different models and universality classes [Table I and Fig. 4(a,b)]. In all cases, the measured \(\lambda\) values for \(\Delta \lambda^*\) are in good agreement with those derived by Eq. (4). The loop scaling is also robust to situations when the ramp rate \(r\) and/or the nucleation probability \(h'\) vary with time or the control parameter. As long as they are nonzero and analytic at criticality, this gives only higher order corrections to Eq. (2) and does not affect the final result when \(r \to 0\). Even if this condition is not satisfied, the corrected form of Eq. (4) can be calculated, for example in the case of nonlinear ramping \(\varepsilon(t) = r t^\nu\); the hysteresis exponent becomes

\begin{table}[h]
\centering
\caption{Hysteresis exponent \(\lambda\) for several models.}
\begin{tabular}{|c|c|c|c|c|}
\hline
Model & \(\Delta \lambda\) & \(\Delta \lambda^*\) & \(1/(\beta + 1)\) & \(\lambda\) \\
\hline
\hline
\(2+1\)D CP (PCA) & 0.61(1) & 0.56(3) & 0.64(5) & 0.632(2) \\
\hline
\(2+1\)D CP & 0.61(2) & 0.64(4) & 0.65(7) & 0.632(2) \\
\hline
\(1+1\)D CP (PCA) & 0.69(1) & 0.73(3) & 0.81(4) & 0.783 \\
\hline
\hline
\hline
\hline
\(2+1\)D site DP & 0.68(2) & 0.71(5) & 0.82(7) & 0.783 \\
\hline
\hline
\hline
\(2+1\)D voter-like & 0.465(14) & 0.460(17) & 0.47(4) & 0.5 \\
\hline
\hline
\end{tabular}
\end{table}
Hysteresis loops in Fig 2 should be compared with Fig. See EP APS Document No. 122 by

then \(\kappa = 1/(a \beta' + 1) \), which is numerically confirmed [Fig. 2(c)(d)].

Some experimental systems expected to belong to the DP class seem to lack strictly absorbing states due to residual nucleations [1 17]. This suggests that the same hysteresis may be observed in such systems, for example with different alignments or at other transitions in the electrohydrodynamic convection [18, 19]. A much more intriguing candidate can be found in the field of quantum turbulence [20]. Recently, a number of experimental studies on transitions to turbulence in superfluid \(^4\text{He}\) have reported hysteresis [21, 22, 23, 24] and temporal intermittency in local state of turbulence [22, 23, 24, 25]. The existence of a (quasi-)absorbing state is also expected due to the quantum topological constraint. All of these facts suggest that an absorbing transition to STI may take place in this superfluid system. Although it seems technically difficult to examine conventional critical phenomena of absorbing transitions directly there, scaling of hysteresis loops may be more easily accessible and would allow to decide about the corresponding universality class.

In conclusion, the hysteresis loop scaling experimentally observed before at the DSM1-DSM2 transition of liquid crystal convection was explained by assuming DP dynamics with very rare spontaneous nucleations. This implies that DSM1 is probably only quasi-absorbing in the liquid crystal system. Moreover, scaling of hysteresis loops \(\Delta \lambda \sim r^\kappa \) with \(\kappa = 1/(\beta' + 1) \) was demonstrated to be able to decide the universality class of transitions into a quasi-absorbing state. These results may also be used to analyze critical phenomena in systems where measurable quantities are so limited that usual approaches to absorbing phase transitions cannot be adopted, such as in superfluid turbulence.

I am grateful to M. Sano, H. Chaté, I. Dornic, S. Kai, M. Kobayashi, M. Kuroda, N. Oikawa, H. Park, M. Tsubota, and H. Yano for fruitful discussions. This work is partly supported by JSPS Research Fellowships for Young Scientists.

[1] H. Hinrichsen, Adv. Phys. 49, 815 (2000).
[2] H. K. Janssen, Z. Phys. B 42, 151 (1981).
[3] P. Grassberger, Z. Phys. B 47, 365 (1982).
[4] K. A. Takeuchi, M. Kuroda, H. Chaté, and M. Sano, Phys. Rev. Lett. 99, 234503 (2007).
[5] Y. Pomeau, Physica D 23, 3 (1986).
[6] S. Kai, W. Zimmermann, M. Andoh, and N. Chizumi, Phys. Rev. Lett. 64, 1111 (1990).
[7] S. Kai (private communication).
[8] T. E. Harris, Ann. Prob. 2, 969 (1974).
[9] R. Dickman, Phys. Rev. E 60, R2441 (1999).
[10] S. Lübeck, Int. J. Mod. Phys. B 18, 3977 (2004).
[11] See EPAPS Document No. [number will be inserted by publisher] for Movies S1 and S2. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[12] Hysteresis loops in Fig 2 should be compared with Fig. 1 in Ref. [6]. The global light transmittance is plotted in the latter, which can be roughly translated into \(\rho \) by turning the figure upside down.
[13] P. Grassberger and A. de la Torre, Ann. Phys. 122, 373 (1979).
[14] P. Grassberger and Y. C. Zhang, Physica A 224, 169 (1996); C. A. Voigt and R. M. Ziff, Phys. Rev. E 56, R6241 (1997).
[15] I. Jensen, J. Phys. A: Math. Gen. 32, 5233 (1999).
[16] I. Dornic, H. Chaté, J. Chave, and H. Hinrichsen, Phys. Rev. Lett. 87, 045701 (2001).
[17] P. Rupp, R. Richter, and I. Rehberg, Phys. Rev. E 67, 036209 (2003).
[18] D. E. Lucchetta, N. Scaramuzza, G. Strangi, and C. Versace, Phys. Rev. E 60, 610 (1999).
[19] N. Oikawa, Y. Hidaka, and S. Kai, Prog. Theor. Phys. Suppl. 161, 320 (2006).
[20] W. F. Vinen and R. J. Donnelly, Phys. Today 60(4), 43 (2007); W. F. Vinen and J. J. Niemela, J. Low Temp. Phys. 128, 167 (2002).
[21] J. Jäger, B. Schudeler, and W. Schoeppe, Phys. Rev. Lett. 74, 566 (1995).
[22] D. I. Bradley et al., J. Low Temp. Phys. 138, 493 (2005).
[23] N. Hashimoto et al., J. Low Temp. Phys. 148, 299 (2007).
[24] For a brief review, see R. Hänninen, M. Tsubota, and W. F. Vinen, Phys. Rev. B 75, 064502 (2007).
[25] M. Niemetz and W. Schoepe, J. Low Temp. Phys. 135, 447 (2004).