The evolution in the prioritization for liver transplantation

Evangelos Cholongitasa,b, Andrew K. Burroughsb

Hippokration General Hospital of Thessaloniki, Greece; Royal Free Hospital and UCL, London, UK

Introduction

Prioritization for liver transplantation (LT) has evolved over the past 20 years [1]. Until 2002 transplant candidates were prioritized to undergo LT based on their United Network of Organ Sharing (UNOS) status (2A, 2B and 3) based on their Child–Turcotte–Pugh (CTP) scores [2] and the waiting time on the list. The UNOS status 2A, 2B and 3 (Table 1) was replaced by the model for end-stage liver disease (MELD) score adopting the “sickest first” policy for organ allocation [3,4]. In 2006, MELD was adopted by Eurotransplant, (https://www.eurotransplant.org), which locates organs in seven countries of central Europe: Austria, Belgium, Croatia, Germany, Luxemburg, the Netherlands

Policies for organ allocation can be based on medical urgency, utility or transplant benefit. With an urgency policy, patients with worse outcomes on the waiting list are given higher priority for transplantation [based on the Child–Turcotte–Pugh score or the Model for End-stage Liver Disease (MELD) score, or United Kingdom model for End-stage Liver Disease (UKELD) score]. The MELD and UKELD scores have statistical validation and use objective and widely available laboratory tests. However, both scores have important limitations. Adjustments to the original MELD equation and new scoring systems have been proposed to overcome these limitations; incorporation of serum sodium improves its predictive accuracy and is part of the UKELD score. The utility-based systems are based on post-transplant outcome taking into account donor and recipient characteristics. MELD and UKELD scores poorly predict outcomes after liver transplantation due to the absence of donor factors. The transplant benefit models rank patients according to the net survival benefit that they would derive from transplantation. These models would be based on the maximization of the lifetime gained through liver transplantation. Well-designed prospective studies and simulation models are necessary to establish the optimal allocation system in liver transplantation, as no current model has all the best characteristics.

Keywords MELD score, UKELD score, liver transplantation, allocation, survival benefit

Ann Gastroenterol 2012; 25 (1): 6-13

Table 1 Classification of candidates for liver transplantation according to the old UNOS system

\begin{tabular}{|c|l|}
\hline
Status & Characteristics \\
\hline
1* & They have fulminant (sudden) liver failure or their newly LT did not function (life expectancy <7 days without a LT). \\
2A & They have chronic liver disease and are in the hospital’s critical care unit with a life expectancy <7 days without a LT. They have a CTP score ≥10 and meet other medical criteria \\
2B & They have chronic liver disease and are becoming more urgently in need of a LT but do not meet the criteria for Status 2A. They have a CTP score ≥10, or a CTP score ≥7 and meet at least 1 of the medical criteria \\
3 & They have chronic liver disease and are under continuous medical care, but are not in the hospital, except for possible short stays. These patients do not meet the criteria for Status 2B \\
\hline
\end{tabular}

*These patients are the most critical and include patients with fulminant hepatic failure, acute decompensated Wilson’s disease; primary non-function or hepatic artery thrombosis in a LT within 7 days of implantation. This category was not affected by the new allocation system.

LT, liver transplantation; CTP, Child–Turcotte–Pugh score

Conflict of Interest: None

Correspondence to: Evangelos Cholongitas, Senior Lecturer of Internal Medicine, 4th Department of Internal Medicine, Medical School of Aristotle University, Hippokration General Hospital of Thessaloniki, 49, Konstantinoupoleos Street, 54642 Thessaloniki, Greece, Tel: +30-2310892110, Fax: +30-2310992940, e-mail: echolog@auth.gr

Received 4 November 2011; accepted 20 November 2011

© 2012 Hellenic Society of Gastroenterology
and Slovenia. In the United Kingdom, the UKELD score (www.uktransplant.nhs.uk) has been adopted for several years and recently published [5].

The use of MELD and UKELD scores reflects the adoption of mathematical models of prognosis for decompensated cirrhosis. However, as not all patients can be transplanted due to the shortage of available organs, prioritization of patients is necessary, but it strongly depends on the policy that is used for allocation of donor organs (Table 2). There are three possible policies for organ allocation [6]: a) medical urgency: patients with highest waiting list mortality have the higher priority for transplantation, b) utility system, based on expected post-transplant outcomes, and c) transplant benefit, in which both the waiting list and post-transplantation outcomes are taken into account. In the latter 2 policies, donor quality is an additional parameter for assessing transplant outcome [7]. In the following sections, we summarize the advantages and limitations of the current systems.

Urgency-based allocation systems (Table 3)

The CTP score

The CTP score [8] is based on 5 empirically selected variables (ascites, encephalopathy, serum bilirubin, albumin and prothrombin time), with a range of 5 to 15 points derived originally for predicting the outcome of portal-caval shunt surgery and later transported to assess prognosis of cirrhosis across all etiologies. Although the CTP-based system represented a great improvement, its use for prioritization of candidates for LT had several drawbacks [9,10]. Firstly, ascites and encephalopathy are subjective variables. Secondly, patients were not sufficiently differentiated so that waiting time had great impact on prioritization; this was due to a "ceiling and floor effect" (minimum and maximum of laboratory values used in the scores). Thirdly, there was no variable reflecting renal function, a well-established prognostic marker in end-stage cirrhosis [11].

The MELD score

The MELD model was first published in 2000 to predict survival in patients undergoing transjugular intra-hepatic porto-systemic shunt (TIPS) [12]. In 2001, the same group [13], slightly modified this score to predict mortality for cirrhosis: the MELD score had discriminative ability for 3-month survival of greater than 80%, regardless of the severity of liver disease, without any significant improvement by adding etiology or complications of cirrhosis. The MELD was adopted in the USA from 27 February 2002 and has evolved following close audit and validation [14]. However, as we have published, CTP and MELD are equivalent in terms of their discriminative capacity as prognostic scores whether in LT candidates [15] or for cirrhosis in general [2], even with the addition of new studies [16,17]. Recent changes in UNOS policy require liver donor offers first to patients with MELD scores ≥15 within a region, before offers to local candidates with MELD <15 (Share 15 Policy) [18]. Patients are ranked according to their MELD score and stratified by blood type. MELD score may either increase or decrease with time and individual patient scores are forwarded regularly by each transplant center (http://www.unos.org). Despite its wide spread adoption, data on calibration of MELD score have not been published.

The advantages of the MELD score are its statistical validation, in contrast to CTP score, and use of objective and widely available laboratory tests [serum bilirubin, serum creatinine and the international normalized ratio of prothrombin time (INR)] [19] (Table 3). Several online calculators are available for calculating MELD. In addition, the “ceiling effect” is minimized, since the ‘upper cap’ is set to 40 points. Furthermore, after adoption of MELD score, post-LT survival in the USA, remained unchanged [20], but more hepatocellular carcinoma (HCC) patients underwent LT (because of allocation of extra points) [19], and there was a small reduction in mortality on the waiting list (Table 4).

The disadvantages of MELD are firstly that it mainly reflects a “justice” system [15] (Table 4), and there are significant variations of MELD score due to different laboratory methodologies for INR [21,22], which may lead to differences of as much as 7 points in MELD score, and creatinine (Cr) measurements [23,24], leading to inequalities in prioritization of candidates, especially in those with the highest priority for LT (more jaundiced and greater renal dysfunction). Standardization of laboratory techniques would be necessary to avoid systematic biases.

Although the major advantage of MELD is the inclusion of renal dysfunction [10], Cr may weigh too heavily within the MELD score [25]. A further issue is that Cr provides only a rough estimation of renal function [i.e. glomerular filtration rate (GFR)] [26], since it is influenced by several extrarenal factors, such as total muscle mass, ethnicity and gender [27]. The latter has been highlighted by us [28], and found also by

Table 2 The three possible policies for organ allocation

Medical urgency models	Utility-based scores	Transplant Benefit models
• Child–Turcotte–Pugh score	• Donor risk index (DRI)	MELD, Model for End-stage Liver Disease; UKELD, United Kingdom model for End-stage Liver Disease
• MELD score	• D-MELD (D for donor age)	
• Modifications of MELD score	• Model based on the European Liver Transplantation Registry	

MELD, Model for End-stage Liver Disease; UKELD, United Kingdom model for End-stage Liver Disease
E. Cholongitas, A.K. Burroughs

Table 3 Prognostic models for urgency-based allocation systems

Model	Mathematical formula	Comments
Child–Turcotte–Pugh [8]	Ascites, encephalopathy, bilirubin, albumin, prothrombin time	Simple but subjective, not inferior accuracy compared to MELD
MELD [13]	9.6 x ln (creatinine mg/dL) + 3.8 x ln (bilirubin mg/dL) + 11.20 x ln (INR) + 6.4.	Lower limits of the components are bound by 1 and creatinine is capped at 4 mg/dL
MELD-Na [38]	MELD-Na = (0.025) * X MELD-X (140 - Na) + 140	Serum sodium between 125 and 140 mmol/L
iMELD [39]	MELD+ (ageX0.3) - (0.7XNa) + 100	Age of recipient was an independent factor Needs further evaluation
UKELD [40]	[(5.395Xln(INR)) + (1.485Xln(creatinine)) + (3.13Xln(bilirubin)) - (81.56Xln(Na))] + 435	Minimal listing criteria: projected 1 year liver disease mortality without transplantation of >9% (UKELD >49)
MELD-XI [43]	5.11Xln(bilirubin) + 11.76Xln(creatinine) + 9.44	Exclusion of INR. Bilirubin and creatinine with different coefficients Suitable in patients under anticoagulation therapy
MELD-gender [31]	11.2Xln(INR) + 9.57Xln([186X(Age) - 0.203/female GFR(1/1.154)] + 3.78Xln[bilirubin (mg/dL)] + 6.43	Needs further evaluation
Re-weighted MELD [25]	1.266Xln(1 + creatinine, mg/dL) + 0.939Xln(1 + bilirubin, mg/dL) + 1.658Xln(1 + INR)	Lower weight for creatinine and INR coefficients and a higher weight for bilirubin coefficient No set upper and lower limits of the coefficients of each component
Re-Fit-MELDNa [47]	4.258 xLoge (bilirubin) + 6.792 xLoge (creatinine) + 8.290xLoge (INR) + 0.652 x(140 - Na) - 0.194x(140-Na)xBil + 6.327	The new score had a statistically significant gain in discrimination (c statistic: 0.878 vs 0.865; P<0.01) Utilization of the new score could affect up to 12% of patients

INR, international normalized ratio; MELD, Model for End-stage Liver Disease; UKELD, United Kingdom model for End-stage Liver Disease; Na, Sodium

Proposed modifications of MELD score (Tables 3 and 5)

MELD-serum sodium score

Serum sodium has long been associated with hepatorenal syndrome, ascites and death in patients with decompensated cirrhosis [35,36]. In the LT setting, serum sodium is an independent factor of mortality, particularly for lower sodium values (120-135 mEq/L): within this range, a decrease of 1 mEq/L corresponds to a 12% increase in 3-month mortality independently of MELD score [37]. In addition, the MELD-Na, compared to standard MELD, provided better statistical performance for the risk of death among LT candidates: 7% of waiting-list deaths could be averted using MELD-Na score [38]. In Spain, MELD score, serum sodium, and recipient age were independently associated with mortality on the waiting list [39]: the new score integrating these variables into MELD (iMELD) was superior than standard MELD [39]. In 2008, the UK Liver Transplant Units developed a new scoring system (United Kingdom model for End-stage Liver Disease, UKELD score) [40], now instituted nationally. The constituent variables are serum bilirubin, Cr, sodium and INR (web-based calculator at www.uktransplant.nhs.uk). A UKELD score greater than 49 predicts a 1-year mortality of...
However, there are concerns with using serum sodium in allocation systems, since the new scores (except for UKELD) were validated retrospectively, and although serum sodium measurement is considered objective and is widely available, it is also subject to laboratory variation [42] just as INR and Cr and can be altered by therapeutic interventions (e.g. vaptans and diuretics).

MELD-XI (MELD without INR)

A MELD-XI score (MELD excluding INR) has been proposed, which relies only on serum bilirubin and Cr, but with different coefficients for both variables [43]. However, the performance of this score is questionable and further validation is needed. Standardization of INR with a “liver INR” is impractical [44].

Re-weighting of MELD score components

Although the major advantage of MELD is the inclusion of serum Cr [10], transplant candidates with mild hepatic synthetic dysfunction and marked renal insufficiency may have “inappropriate” priority for LT, compared to those with severe liver disease, but “normal” renal function. Indeed, a higher proportion of patients with renal insufficiency have undergone LT in the post-MELD era [45,46]. Recently, the coefficients for the MELD components were re-estimated [25]. The proposed re-weighted MELD has lower relative weight for Cr and INR coefficients, and a higher relative weight for the bilirubin coefficient, compared to the original MELD score. This new MELD score had better performance than the standard MELD score to predict overall mortality (0.68 vs. 0.64), and 3-month waiting list mortality (0.77 vs. 0.75).

The recently published re-Fit-MELDNa score is another variation on the original MELD [47]. It is the only MELD variation which uses data from patients on LT waiting lists (as does UKELD), and also incorporates serum sodium. The co-efficients are changed in particular for Cr. However, as the accompanying Editorial points out, it does not resolve some of the inherent problems of MELD as outlined above.

Delta MELD

Changes in MELD score (ΔMELD) over time may add prognostic information. Although a rapid increase in MELD might be associated with worse outcome, compared to a stable or decreasing MELD score [48-52], data in the literature have given conflicting results [49,50].

Utility-based allocation systems (Table 2)

Utility-based systems are based on the expected post-

Table 4 Advantages and disadvantages of MELD score

Advantages
Statistically validated
Acceptable discriminative ability
Use of objective and widely available laboratory tests
Inclusion of renal dysfunction
Minimized “ceiling effect”
Limited effect on post-LT mortality

Disadvantages

- Medical “urgency” score
- Similar discriminative ability as the CTP score
- Less convenient to use at the bedside, compared to CTP score
- Interlaboratory variations for measurement of serum creatinine and INR
- Serum creatinine provides only a rough estimation of renal function
- Systematic adverse female gender bias
- Further refinement is needed (e.g. inclusion of serum sodium, re-weighting of MELD score components)
- Exclusion of complications of cirrhosis, some of which warrant transplantation at low MELD scores (e.g. hepatic encephalopathy)
- Weak predictor of mortality after LT (exclusion of donor characteristics)
- Further statistical evaluation is needed (particularly in terms of calibration)

LT, liver transplantation; CTP, Child-Turcotte-Pugh score; MELD, Model for End-stage Liver Disease; INR, international normalized ratio

Table 5 Proposed modifications of MELD score

MELD and serum Sodium (Na) incorporation
MELD-Na
Integrated MELD score (iMELD)
MESO
MELD-XI (without INR)
MELD-gender

Re-weighted MELD / re-Fit-MELDNa

ΔMELD (changes in MELD over time)

MELD, Model for End-stage Liver Disease; Na, Sodium; MESO, [MELD/ Na] ×100

9% or more without LT, and is the minimum score for listing for LT (current 1-year post-liver transplant mortality in the UK is approximately 9%) [5,41]. The UKELD score has had calibration as part of its validation [41].
transplant outcome. However, MELD and UKELD scores are weak predictors of mortality after LT [53-55], since post-LT outcomes depend on both the pre-LT parameters of recipient, and donor “quality.” In the face of organ shortage, optimization of donor/recipient pairing would have great importance for a better outcome after LT. A MELDD score - a second D for donor - [56] has been proposed by us for a utilitarian approach, which could lead to a transplant benefit model for allocation. A simple arithmetic product [57] of donor age and preoperative MELD (DMELD) has been proposed. A cut-off value of ≥1600 was derived for high-risk donor–recipient matches. However, implementation of DMELD could lead to waiting for ‘better’ donors for patients with high MELD scores and could potentially lead to an increase in waiting list mortality rates.

Donor risk index (DRI) has been developed based on seven donor factors to predict post-LT outcomes [7], which ranges from approximately 0.5 to 3.0 (with 3-year graft survival rates of 81% for organs with a DRI of less than 1.0 and 60% for organs with a DRI of greater than 2.0). However, this index is complex and it is not easily translated into clinical practice. To date, it has never been used as an allocation score, but just as a clinical decision-making tool.

A large and validated model predicting post-LT survival of 34,664 undergoing a first LT was published using the European Liver Transplantation Registry database from 23 European countries [58]. The derived prognostic models (based on donor age, total ischemic time, and other operative and recipient factors not included in MELD), significantly and independently had an impact on the outcomes post-LT with very good calibration for 3- and 12-month mortality. Thus, these models could aid the subjective decision on donor and recipient matching which occurs at the time of organ procurement, and give clinicians some robust data for allocation. Furthermore, this study emphasized that disease-specific models (along with donor characteristics) are needed because particular diseases recur, and affect medium- and long-term survival (e.g. hepatitis C and HCC), and donor characteristics, such as donor age, can affect the severity of recurrence of the primary disease [59]. These disease specific models are yet to be developed, but would be an essential component of transplant benefit models.

Transplant-benefit allocation systems

An allocation scheme based on transplant benefit represents the balance between waiting list and post-LT outcomes, i.e. a liver graft is donated to the patient who is predicted to have neither the greatest post-LT lifetime nor the lowest waiting list lifetime, but the greatest difference between the two. Hence, patients are ranked according to the net survival benefit that they would derive from the transplant.

Recently, Schaubel et al confirmed [60] that a “transplant benefit” system should take into account donor and/or operative factors, and matching of donor to recipient characteristics for optimal outcomes. Subsequently, the same group [61] showed that “matching” could have a great impact on survival benefit from LT. The authors created a waiting list survival model (utilizing recipient characteristics) with reasonable discriminative ability (c statistic 0.74), but the post-LT survival model (consisting of donor and recipient characteristics) had a poorer performance (c statistic 0.63). This suggests that accurate evaluation of risk of death before LT is more important than after LT, presumably because the risk of death is always higher without a transplant. Indeed, in a recent paper from a single center [62], patients with MELD scores higher than 20, always had a survival benefit with LT, regardless of any donor or recipient factors. Although further studies are needed, it is encouraging that a “transplant survival benefit” allocation system is currently under serious consideration in the USA in order to maximize lifetime gained through LT [61].

Conclusions

An ideal donor liver allocation model should not only be able to allocate according to the highest probability of dying before LT, but should also be able to predict which patients have the lowest post-LT mortality in order to improve utility (i.e. a survival benefit system) [56]. This policy is currently under serious consideration for LT in the USA, while it is already used for lung allocation in the USA [63]. MELD score was instituted in 2002 for liver organ allocation in the USA, and has been adopted in several European, Asian and South America countries. Although there is no clear evidence that MELD is superior to CTP score for prognosis (the latter remains more convenient to use at the bedside), MELD score is more suitable for liver allocation [2,15]. Scores that incorporate serum sodium such as UKELD and MELD-sodium have better prediction than the standard MELD [64,65].

However, the MELD score has several drawbacks. The accuracy of MELD score has been based on its discriminative ability, but the evaluation of its calibration (i.e., the observed versus predicted outcome), which is a better index of model performance, has seldom been performed [65]. This is in contrast to UKELD score which has had its calibration evaluated as part of its validation [41]. In addition, although the three components of the MELD score were selected statistically, the initial variables entered in the model were selected empirically. The application of an artificial neural network also needs further consideration [66-68]. In addition, end-points other than survival may also be important. The MELD score at the time of LT is not related to quality of life during the first months after LT [69]. Thus, quality of life requires different modeling to incorporate into well-designed prospective studies to optimize decisions about allocation [70-72].

Urgency-based allocation systems (such as MELD and UKELD scores) are weak predictors of mortality after LT, as they do not take into account donor characteristics or quality, which influence post-LT outcomes. In fact, MELD use may have adverse effect on post-LT outcomes, as has been shown
References

1. Adam R, Hoti E. Liver transplantation: the current situation. Semin Liver Dis 2009;29:3-18.

2. Cholongitas E, Papatheodoridis GV, Vangeli M, et al. Systematic review: the model for end-stage liver disease - should it replace Child-Pugh's classification for assessing prognosis in cirrhosis? Aliment Pharmacol Ther 2005;22:1079-1089.

3. Freeman RB, Jamieson N, Schauble DE, et al. Who should get a liver graft? J Hepatol 2009;50:664-673.

4. Durand F, Valla D. Assessment of prognosis of cirrhosis. Semin Liver Dis 2008;28:110-122.

5. Neuberger J, Gimson A, Davies M, et al. Selection of patients for liver transplantation and allocation of donated livers in the UK. Gut 2008;57:252-257.

6. Asrani S, Kim WR. Organ allocation for chronic liver disease: model for end-stage liver disease and beyond. Curr Opin Gastroenterol 2010;26:209-213.

7. Feng S, Goodrich NP, Bragg-Gresham JL, et al. Characteristics associated with liver graft failure: the concept of a donor risk index. Am J Transplant 2006;6:783-790.

8. Pugh R, Murray-lyon I, Dawson J. Transsection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973;60:646-649.

9. Christensen E. Prognostic models including the Child-Pugh, MELD and Mayo risk scores - where are we and where should we go? J Hepatol 2004;41:344-350.

10. Durand F, Valla D. Assessment of the prognosis of cirrhosis: Child-Pugh versus MELD. J Hepatol 2005;42:Suppl(1):S100-S107.

11. Cholongitas E, Shusang V, Marelli L, et al. Review article: renal function assessment in cirrhosis - difficulties and alternative measurements. Aliment Pharmacol Ther 2007;26:969-978.

12. Malinchoc M, Kamath PS, Gordon FD, et al. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology 2000;31:864-871.

13. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001;33:464-470.

14. Wiesner R, Edwards E, Freeman R, et al. Model for end-stage liver disease (MELD) and allocation of donor livers. Gastroenterology 2003;124:91-96.

15. Cholongitas E, Marelli L, Shusang V, et al. A systematic review of the performance of the model for end-stage liver disease (MELD) in the setting of liver transplantation. Liver Transpl 2006;12:1049-1061.

16. Attia KA, Ckoundou-N'guessan KC, N'dri-Yoman AT, et al. Child-Pugh–Turcotte versus Meld score for predicting survival in a retrospective cohort of black African cirrhotic patients. World J Gastroenterol 2008;14:286-291.

17. Bourisier J, Cesbron E, Trophet AL, et al. Comparison and improvement of MELD and Child-Pugh score accuracies for the prediction of 6-month mortality in cirrhotic patients. J Clin Gastroenterol 2009;43:580-585.

18. Merion RM, Schauble DE, Dykstra DM, et al. The survival benefit of liver transplantation. Am J Transplant 2005;5:307-313.

19. Wiesner RH. Patient selection in an era of donor liver shortage: current US policy. Nat Clin Pract Gastroenterol Hepatol 2005;2:24-30.

20. Freeman R, Wiesner R, Edwards E. Results of the first year of the new liver allocation plan. Liver Transpl 2004;10:7-15.

21. Trotter JF, Brimhall B, Arjal R, et al. Specific laboratory methodologies achieve higher model for endstage liver disease (MELD) scores for patients listed for liver transplantation. Liver Transpl 2004;10:995-1000.

22. Porte RJ, Lisman T, Trippodi A, et al. The International Normalized Ratio (INR) in the MELD score: problems and solutions. Am J Transplant 2010;10:1349-1353.

23. Goulding C, Cholongitas E, Nair D, et al. Assessment of reproducibility of creatinine measurement and MELD scoring in four liver transplant units in the UK. Nephrol Dial Transplant 2010;25:960-966.

24. Cholongitas E, Marelli L, Kerry A, et al. Different methods of creatinine measurement significantly affect MELD scores. Liver Transpl 2007;13:523-529.

25. Sharma P, Schauble DE, Sima CS, et al. Re-weighting the model for end-stage liver disease score components. Gastroenterology 2008;135:1575-1581.

26. Perrone RD, Madias NE, Levey AS. Serum creatinine as an index of renal function: new insights into old concepts. Clin Chem 1992;38:1933-1953.

27. Levey AS, Perrone RD, Madias NE. Serum creatinine and renal function. Ann Rev Med 1988;39:465-490.

28. Cholongitas E, Marelli L, Kerry A, et al. Female liver transplant recipients with the same GFR as male recipients have lower MELD scores - a systematic bias. Am J Transplant 2007;7:685-692.

29. Moylan CA, Brady CW, Johnson JL, et al. Disparities in liver transplantation before and after introduction of the MELD score. JAMA 2008;300:2371-2378.

30. Cholongitas E, Germani G, Tsiochatzis E, et al. Towards a better...
liver allocation system. J Hepatol 2009;51:827–828.
31. Huo S, Huo T, Lin H, et al. Is the corrected-creatinine model for end-stage liver disease a feasible strategy to adjust gender difference in organ allocation for liver transplantation? Transplantation 2007;84:1406–1412.
32. Xiouchakis E, Marelli L, Cholongitas E, et al. Comparison of cystatin C and creatinine based glomerular filtration rate formulae with 125I-EDETA clearance in patients with cirrhosis. Clin J Am Soc Nephrol 2010;6:84–92.
33. Somouk M, Guy J, Biggins SW, et al. Ascites improves upon [corrected] serum sodium plus [corrected] model for end-stage liver disease (MELD) for predicting mortality in patients with advanced liver disease. Aliment Pharmacol Ther 2009;30:741–748.
34. Arvaniti V, D’Amico G, Fede G, et al. Artificial neural network is a rational approach to “sickest first” liver transplantation in cirrhotic patients laboratories of the same area. Liver Transpl 2009;15:300–305.
35. Asklund M, Paton A, Sherlock S. Control of ascites in hepatic cirrhosis. Lancet 1954;256:128–129.
36. Sherlock S, Summerkill WH, White LP, et al. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 1954;256:454–457.
37. Londono MC, Cardenas A, Guevara M, et al. MELD score and serum sodium in the prediction of survival of patients with cirrhosis awaiting liver transplantation. Gut 2007;56:1283–1290.
38. Kim WR, Biggins SW, Kremers WK, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med 2008;359:1018–1026.
39. Luca A, Angermayr B, Bertolini G, et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl 2007;13:1174–1180.
40. Barber K, Pioli S, Blackwell J. Development of a UK score for patients with end-stage liver disease. Hepatology 2007;46:510A.
41. Barber K, Madden S, Allen J, et al. Elective liver transplant list mortality: development of a United Kingdom end-stage liver disease score. Transplantation 2011;92:469–476.
42. Xioul X, Gines P, Castells L, et al. Clinically relevant differences in the model for end-stage liver disease and model for end-stage liver disease sodium-sodium scores determined at three university-based laboratories of the same area. Liver Transpl 2009;15:300–305.
43. Heuman DM, Mihas AA, Habib A, et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl 2007;13:30–37.
44. Tripodi A, Chantarangkul V, Primignani M, et al. The international normal ratio calibrated for cirrhosis (INR(liver)) normalizes prothrombin time results for model for end-stage liver disease calculation. Hepatology 2007;46:520–527.
45. Thuluvath PJ, Guidinger MK, Fung JJ, et al. Liver transplantation in the United States, 1999–2008. Am J Transplant 2010;10(4 Pt 2):1003–1019.
46. Gonwa TA, McBride MA, Anderson K, et al. Continued influence of preoperative renal function on outcome of orthotopic hepatic transplantation (OLTx) in the US: where will MELD lead us? Am J Transplant 2006;6:2651–2659.
47. Leise MD, Kim WR, Kremers WK, et al. A revised model for end-stage liver disease optimizes prediction of mortality among patients awaiting liver transplantation. Gastroenterology 2011;140:1952–1960.
48. Huo TI, Wu JC, Lin HC, et al. Evaluation of the increase in model for end-stage liver disease (DeltaMELD) score over time as a prognostic predictor in patients with advanced cirrhosis: risk factor analysis and comparison with initial MELD and Child-Turcotte-Pugh scores. J Hepatol 2005;42:826–832.
49. Merton RM, Wolfe RA, Dykstra DM, et al. Longitudinal assessment of mortality risk among candidates for liver transplantation. Liver Transpl 2003;9:12–18.
50. Bambha K, Kim WR, Kremers WK, et al. Predicting survival among patients listed for liver transplantation: an assessment of serial MELD measurements. Am J Transplant 2004;4:1798–1804.
51. Choi PC, Kim HJ, Choi WH, et al. Model for end-stage liver disease, model for end-stage liver disease sodium and Child-Turcotte-Pugh scores over time for the prediction of complications of liver cirrhosis. Liver Int 2009;29:221–226.
52. Bae WK, Lee JS, Kim NH, et al. [Usefulness of DeltaMELD/ month for prediction of the mortality in the first episode of variceal bleeding patients with liver cirrhosis: comparison with CTP, MELD score and DeltaCTP/month]. Korean J Hepatol 2007;13:51–60.
53. Jacob M, Copley LP, Lewsey JD, et al. Pretransplant MELD score and post liver transplantation survival in the UK and Ireland. Liver Transpl 2004;10:903–907.
54. Desai NM, Mange KC, Crawford MD, et al. Predicting outcome after liver transplantation: utility of the model for end-stage liver disease and a newly derived discrimination function. Transplantation 2004;77:99–106.
55. Nagler E, Van Vlierberghe H, Colle I, et al. Impact of MELD on short-term and long-term outcome following liver transplantation: a European perspective. Eur J Gastroenterol Hepatol 2005;17:849–856.
56. Burroughs AK, Marelli L, Cholongitas E, et al. Towards a better liver transplantation allocation system. Liver Transpl 2007;13:935–936.
57. Halldorsen JB, Bakhavatsalam R, Fix O, et al. D-MELD, a simple predictor of post liver transplant mortality for optimization of donorrecipient matching. Am J Transplant 2009;9:318–326.
58. Burroughs AK, Sabin CA, Rolles K, et al. 3-month and 12-month mortality after first liver transplant in adults in Europe: predictive models for outcome. Lancet 2006;367:225–232.
59. Ioannou GN. Development and validation of a model predicting graft survival after liver transplantation. Liver Transpl 2006;12:1594–1606.
60. Schaubel DE, Sima CS, Goodrich NP, et al. The survival benefit of deceased donor liver transplantation as a function of candidate disease severity and donor quality. Am J Transplant 2008;8:419–425.
61. Schaubel DE, Guidinger MK, Biggins SW, et al. Survival benefit-based deceased–donor liver allocation. Am J Transplant 2009;9(4 Pt 2):970–981.
62. Ravaoli M, Grazi GL, Dazzi A, et al. Survival benefit after liver transplantation: a single European center experience. Transplantation 2009;88:826–834.
63. Egan TM, Murray S, Bustami RT, et al. Development of the new lung allocation system in the United States. Am J Transplant 2006;6(5 Pt 2):1212–1227.
64. Huo TI, Lin HC, Huo SC, et al. Comparison of four model for end-stage liver disease-based prognostic systems for cirrhosis. Liver Transpl 2008;14:837–844.
65. Biselli M, Gitto S, Grameni A, et al. Six score systems to evaluate candidates with advanced cirrhosis for orthotopic liver transplant: which is the winner? Liver Transpl 2010;16:964–973.
66. Cucchetti A, Vivarelli M, Heaton ND, et al. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Gut 2007;56:253–258.
67. Lucey MR. How will patients be selected for transplantation in the future? Liver Transpl 2004;10(10 Suppl 2):S90–S92.
68. Martin AP, Bartels M, Hauss J, et al. Overview of the MELD score and the UNOS adult liver allocation system. Transplant Proc 2007;39:3169–3174.
69. Byrne T, Douglas D, Lopez J, et al. Does MELD score influence post-transplant quality of life? Hepatology 2004;40:765A.
70. Kamath PS, Kim WR. Is the change in MELD score a better indicator of mortality than baseline MELD score? Liver Transpl 2003;9:19–21.
71. Neuberger J. Allocation of donor livers--is MELD enough? Liver Transpl 2004;10:908–910.
72. Freeman RB. Mathematical models and behavior: assessing delta
MELD for liver allocation. Am J Transplant 2004;4:1735-1736.
73. Weismuller TJ, Negm A, Becker T, et al. The introduction
of MELD-based organ allocation impacts 3-month survival
after liver transplantation by influencing pretransplant patient
characteristics. Transpl Int 2009;22:970-978.
74. Foxton MR, Al-Freah MA, Portal AJ, et al. Increased model for
end-stage liver disease score at the time of liver transplant results
in prolonged hospitalization and overall intensive care unit costs.
Liver Transpl 2010;16:668-677.
75. Cholongitas E, Germani G, Burroughs AK. Prioritization for liver
transplantation. Nat Rev Gastroenterol Hepatol 2010;7:659-668.