ИЗВОД: У раду је представљен флористички диверзитет леве обале Дунава и мреже канала Проградских насеља Београда, као и фактори који га угрожавају. На истраживаном подручју забележено је 216 аутохтоних и алохтоних врста биљака. Забележен је велики број инвазивних врстава које се брзо и лако шире формирајући стабилне популације које потискују аутохтоне биљке. Неке од њих су: *Amorpha fruticosa* L., *Robinia pseudoacacia* L., *Ailanthus altissima* (Mill.) Swingle, *Asclepias syriaca* L., *Ambrosia artemisiifolia* L. и др. По себи је значајно присуство 6 врста које су ретке и угрожене на подручју Србије, као и 5 реликтних врста. Током истраживања идентификовани су фактори који утичу на деградацију природних станишта, и смањења аутохтоног флористичког диверзитета. У складу са тим препоручене су мере за заштиту и очување аутохтоног флористичког диверзитета.

КЛЮЧНЕ РЕЧИ: флористички диверзитет, форланд, мрежа канала, фактори угрожавања флоре, мере заштите флористичког диверзитета.

УВОД

Флористички диверзитет и распрострањење биљака су један од индикатора еколошких услова одређеног екосистема (Kojić et al., 1994). Такође, биљне врсте су важан биолошки и економски ресурс сваке земље. С тога је очување аутохтоне флоре сваке области веома важно. Према званичним проценама Међународне уније за заштиту природе (IUCN), 70 % свих познатих биљака је угрожено и прети им нестанак (www.iucn.org).

Фактори који утичу на смањење и на губитак флористичког диверзитета су многобројни, а неки од њих су: урбанизација, експлоатација аутохтоних и интродукција алохтоних врста, загађење воде, земљишта и ваздуха и др. Урбанизацијом се природна станишта потпуно уништају, настају полуприродна или вештачка станишта која су неповољна за опстанак аутохтоних врста. Чак и да се станишта не промене у потпуности, већ да само дође до њихове фрагментације, дешавају се значајни поремећаји унутар екосистема (Stevanović, Vasić, 1995). Још један од фактора који утиче на смањење и/или губитак флористичког диверзитета, посебно у урбаним и субурбаним срединама је интродукција инвазивних врста. Да би се очувао биодиверзитет било ког подручја, а посебно антропогених срединама, од посебног значаја је прописати и спроводити одређене мере заштите. Мере заштите биодиверзитета, самим тим и флористичког диверзитета, могу бити превентивне и репресивне.
Важан предуслов за конзервацију биљних врста јесте конзервација њихових станишта. Посебно су значајни станишта која су највише угрожена на глобалном нивоу, као што су влажна станишта. Влажна станишта су фрагилни екосистеми који се налазе под више декеном притиском, као што су иригациони радови и исушивање, али и изградња насипа уз речне обале. Ове активности наметнуо је савремен начин живота, Јер се исушивањем влажних станишта добија простор за поширење урбаних насеља, пољопривредних површина и др. Међутим, то доводи до драстичних промена услова станишта и изчезавања великог броја врста.

Плавне површине уз речна корита представљају изузетно важна подручја са аспекта заштите биодиверзитета и природних вредности. Основне вредности овог простора везују се за очување специфичне појаве периодичног плављења у речном приобаљу (Zavod za zaštitu prirode Srbije, 2013).

Предмет истраживања рада јесте стање флористичког диверзитета форланда леве обале Дунава код Београда и мреже канала приградских насеља Борча и Крњача. Форланд представља саставни део еколошког коридора од међународног значаја. Коридор чине река Дунав и зелене појасеве који се протежу уз њега. Форланд као пролаз зелених појасева уз реку Дунав представља важну тачку у оквиру коридора која значајно потпомаже миграцију биљних и животињских врста. Форланд леве обале Дунава код Београда је, поред Горњег Подунавља и Ковиљско - Петроварадинског рита, једна од највећих планинских зона у целој Србији. Ово пространо планинско подручје врши функцију ублажавања последица високих вода на становништво и привреду у околним површинама. Поред тога природна и популарна станишта у форланду кроз биолошке процесе прешали ублажавања воде. На истраживаном терenu планинско подручје су сведена на уске појасеве уз реку Дунав, што је довело до знатног смањења биолошке разноврсности.

У складу са наведеним чињеницама, циљ рада јесте да се истражи стање флористичког диверзитета наведеног подручја и утврде фактори који га угрожавају како би се дефинисале мере заштите аутохтоног флористичког диверзитета.

МАТЕРИЈАЛ И МЕТОДЕ РАДА

Флористичким и вегетацијским истраживањима обухваћена је лева обала Дунава, између речног корита Дунава и израђеног насеља, низводно посматрано од Пупиновог до Пачеваљског моста, у дужини од око 9 км, као и мрежа канала у насељима Борча и Крњача. Границе истраживаног подручја су одређене природним границама које чине Дунав и југозападне стране, северозападну границу чини нови пут ка Пупиновом мосту, а североисточну Зрењанински пут. У северном делу налази се петеља у којој се ова два пута спајају (Слика 1).
ФЛОРИСТИЧКИ ДИВЕРЗИТЕТ И ФАКТОРИ УГРОЖАВАЊА ФЛОРИСТИЧКОГ ДИВЕРЗИТЕТА ...
Сузана Петровић, Ивана Бједов, Драгица Обратов-Петковић, Верица Стојановић

176

сerasifera Ehrh., Rosa canina L., Rubus caesius L., Sambucus nigra L.

Канали приградских насеља Борча и Крњача поред своје основне функције одводњавања околног терена имају и битну улогу очувања одређених биљних врста. У флористичком саставу канала насеља Крњача и Борча доми-нирају рудералне врсте, као што су: Galium mollugo L., Plantago major L., P. lanceolata L., Urtica dioica L., Malva sylvestris L., Leontodon taraxacum L., Cichorium intybus L., Artemisia vulgaris L., Euphorbia cyparissias L., Calystegia sepium (L.) R. Br., Trifolium pratens L., Dactylis glomerata L. и др. Значајно је поменути да је на овим стаништима забележена и врста Iris pseudacorus, која представља ретку, рањиву и угрожену врсту флоре наше земље. У вода-ма канала констатоване су врсте Lemna minor L. и Ceratophyllum demersum L., Salvinia natans (L.) All., Trapa longicarpa Jankovic, Phragmites australis (Cav.) Steud. и Typha spp. Као и у случају барских екосистема, у каналима су некада ра-сле врсте Nuphar lutea (L.) Sm., Nymphaea alba L., међутим сада су пронађене у каналима се-верније од границе истраживаног подручја, али не и у оквиру истраживаног подручја. Неке од дрвенастих врста забележене уз канале су: Salix alba L., S. eurhina I. V. Belyaeva, Populus alba L., P. nigra L., Betula pendula Roth, Corylus avellana L., Junglans regia L., Sambucus nigra, Morus alba L., Prunus cerasifera Ehrh., Cornus mas, Rubus spp., Robinia pseudoacacia L., Amorpha fruticosa L., Acer platanoides L., Ulmus laevis Pall., Syringa vulgaris L., Ailanthus altissima (Mill.) Swingle и др. Amorpha fruticosa L. је и овде једна од нај-доминантнијих инвазивних врста, мада се у великом броју јављају и остали врсте, попут Robinia pseudoacacia и Ailanthus altissima (Mill.) Swingle (Слика 30). Поред наведених врста констатоване су и неке зељасте инвазивне вр-сте: Ambrosia artimisiifolia L., Solidago gigantea Aiton, Symphyotrichum lanceolatum (Willd.) G. L. Nesom, Erigeron canadensis L., Asclepias syriaca L. и др.

Реликтне врсте дају посебно обележје флоре сваке области, као значајан биолошки ресурс. На истраживаном подручју констато-вано је пет реликтних врста и то: Juglans regia L., Carpinus betulus L., Hedera helix L., Helleborus odorus Willd., Humulus lupulus L. Поред реликт-них врста, од великог значаја за флору овог подручја, јесу и врсте које су законом заштићене, као ретке, угрожене и рањиве, а то су: Iris pseudacorus L. (Слика 3а), Trapa longicarpa Jankovic (Слика 3б), Hypericum perforatum L., Althaea officinalis L., Crataegus monogyna Jacq. Ове врсте налазе се на листи Правилника о проглашењу и заштити строго заштићених и заштићених дивљих врста биљака, животиња и гљива (“Službeni Glasnik Republike Srbije”, br. 5/2010, 47/2011, 32/2016 и 98/2016).

Слика 3. а) Iris pseudacorus; б) Trapa longicarpa
Фактори угрожавања флористичког диверзитета

Интензивна вишедеценијска антропопреција на овом подручју условила је деградацију природних станишта. Станишта су деградирана урбанизацијом, исушивањем и подизањем насипа, уношењем алохтоних биљака од којих су многе инвазивне, подизањем плантажа европејских топола. Све то је довело до смањења распрострањења и нестајања алохтоних биљака.

Урбанизација је процес који доводи до промена флористичког састава свих станишта неког подручја. Број биљних врста не опада, али се однос, тј. удео аутохтоних врста у укупном броју биљака смањује (Youhua et al., 2012).

Други фактор који негативно утиче на аутохтони флористички диверзитет је интродукција странних врста, од којих су многе инвазивне. Инвазивне стране врсте ширењем угрожавају друге врсте и укупну биолошку разноврсност (Obratov-Petković et al., 2009). У барама форланда и у каналима приградских насеља на истраживаном подручју констатовано је присуство веома агресивне инвазивне акватичне врсте Elodea canadensis. Реч је о врсти северноамеричког порекла која је у многим земљама Европе брзо колонизовала водена станишта и изазвала појаву озбиљних еколошких, социјалних и економских проблема (Kolada, Kutyła, 2016). Присуство поменуте врсте можда би да буде један од узрока повлачења врста Nymphaea alba L. и Nuphar lutea (L.) Sm. са ових станишта, на којима су раније забележена (Zavod za zaštitu prirode Srbije, 2013). Поред врсте Erigeron canadensis L., на истраживаном подручју забележене су следеће инвазивне биљке: Amorpha fruticosa L., Acer negundo L., Fraxinus pennsylvanica Marshall, Ailanthus altissima (Mill.) Swingle, Robinia pseudoacacia L., Asclepias syriaca L., Vitis riparia Michx., Echinocystis lobata (Michx.) Torr. & A. Gray, Ambrosia artemisiifolia L., Solidago gigantea Aiton, Symphyotrichum lanceolatum (Willd.) G. L. Nesom, Erigeron canadensis L. Теренским истраживањима је запажено да је обнављање шума беле врбе (Salix alba), отежено ширењем инвазивних врста, а посебно ширењем врста Fraxinus pennsylvanica и Amorpha fruticosa L. (Слика 9 и 10). Такође, по ређењем теренских истраживања и ранијих истраживања (Zavod za zaštitu prirode Srbije, 2013), установљено је да су врсте Populus alba L. и P. nigra L. имале много шире распрострањење на овим просторима. Један од разлога је сече ових врста због подизања плантажа европејских топола (Populus x euramericana), али и притисак инвазивних биљака на станишта алохтоних врста рода Populus. На овом подручју станиште Fraxinus angustifolia Vahl је угрожено ширењем инвазивне врсте Fraxinus pennsylvanica која је сачувана као брзорастућа врста. Врста Fraxinus angustifolia Vahl је у тој мери потиснута да је потребно размислјати о заштити њених станишта на овом подручју (Puhalo et al., 2010). Quercus robur L. је најзаступљенији у централном делу форланда. Ширење ове врсте је ограничено сечом и подизањем плантажа топола, искусивањем поплавних подручја и ширењем дрвенастих инвазивних биљака.

На истраживаном подручју велике површине налазе се под пољопривредним засадима. То значи да су те површине у прошлости промениле намену, тако што су природна станишта у потпуности деградирала и уточног врста потиснуте са истих. Подизање плантажа европејских топола је условило деградацију станишта великог броја алохтоних врста на подручју форланда (Слика 4). Подизање плантажа топола и њихова чиста сеча доводе до значајних промена флористичког састава одређеног станишта, најчешће у смислу смањења флористичког и вегетацијског диверзитета (Jurišić, 2015).

Такође, један од разлога повлачења и нестајања аутохтоних биљака јесте и загађење каналима приградских насеља, пестицидима којима се третирају пољопривредне културе, али и отпадом који се баца у канали.

Ниска свест јавности о значају очувања одређених екосистема је још један од значајних негативних фактора који утичу на смањење флористичког диверзитета истраживаног подручја.
Мере заштите флористичког диверзитета

Према Генералном плану Београда до 2021. године предвиђено је да ово подручје остане зелена површина (Službeni list Beograda, br. 27/2003, 25/2005, 34/2007 и 63/2009). Зелени појас ублажава негативне утицаје повећаног водостаја река, представља станиште многобројним угроженим и заштићеним биљним врстама, чини равнотежу насупрот урбаном ткиву и део је зеленог коридора. Међутим, као што је већ написано, на овом подручју доминирају измењена и нарушена природна станишта. С обзиром на континуирани и стални антропогени притисак важно је предузети одговарајуће мере које би водиле ка очувању биодиверзитета. То пре свега подразумева ревитализацију природних станишта или очување постојећих природних станишта. Како би мере имале адекватне резултате, требало би предузети низ социоекономских мера које захтевају организационо и материјално ангажовање локалне самоуправе, надлежних служби и привредних субјеката.

Неке од мера за очување биодиверзитета које се предлажу су:
- повећање површине под аутохтоним биљним заједницама,
- обнављање и очување барских екосистема,
- уклањање инвазивних биљака са станишта, пре свега оних која су у највећој мери колонизоване, што ће омогућити природно обнављање популација аутохтоних биљних врста,
- опоравак девастираних шумских станишта. Делимично очуване природне поплавне шуме и ливаде треба ставити под такав степен заштите који би спречио њихову даљу деградацију,
- значајно смањити површине које су под засадима клонских еуроамеричких топола. У том смислу је неопходна сарадња са ЈП „Србијашуме“;
- спречавање загађивања канала, као и њихово редовно чишћење,
- спречавање непланске изградње и решавања статуса бесправно изграђених објеката,
- едукација и информисање локалног становништва и надлежних служби о значају очувања природних станишта и аутохтоних врста,
- јачање свести и воље грађана за очување целокупне животне средине, па тако и флористичког диверзитета,
- прогласавање подручја заштићеним.

ЗАКЉУЧЦИ

На истраживаном подручју је евидентирано 216 биљних врста, међу којима је 5 заштићено законом и 5 врста су реликтне. Истраживано подручје одликује се значајном деградацијом
природних станишта што је условило повлаче-
ње и нестанак одређених аутохтоних биљака. Урбанизација, интродукција и ширење инва-
зивних биљака, подизање плантажа еуроаме-
ричке тополе, исушивање влажних станишта и
подизање пољопривредних површина су фак-
тори који угрожавају аутохтони флористички диверзитет.
Како би се спречило даље повлачење или
губитак аутохтоних врста на истраживаном по-
дручју, потребно је применити одговарајуће
mere. Те mере подразумевају низ активности,
као што су ревитализација природних станишта,
смањење површина под засадом еуроамерич-
ских топола, спречавање уношења и уклањање
инвазивних биљака са свих станишта, чишћење
мреже канала, као и јачање свести грађана о
значају очувања природних станишта и аутох-
тоних биљака.

РЕЗИМЕ
У раду је представљено истраживање флоре
форланда леве обале Дунава у Београду и ка-
nалске мреже у приградским насељима Крњача
и Борча. Циљ рада је био да се испита флори-
стички диверзитет и његова угроженост на ис-
траживаном подручју са циљем утврђивања
адекватних мера заштите и очувања аутохтоне
флоре.
Природна станишта истраживаног подручја
су највећим делом деградирана. То је утицало
на нестајање и повлачење одређених биљних
vrsta на ovom подручју. Распрострањење мно-
гих аутохтоних биљака је значајно ограничен.
С обзиром на вишестеченијску антропопресију,
на истраживаном подручју идентификовани су
фактори деградације станишта, а то су: урбани-
зација, исушивање влажних станишта, форми-
рање великих површина под пољопривредним
засадима, подизање плантажа клонских еуро-
америчких топола, интродукција инвазивних
биљака и загађење мреже канала. Станишта су
у тој мери деградирана да је угро жен биоди-
верзитет читавог подручја. Поред негативног
утицаја на биодиверзитет, сви ови фактори на-
рушили су и естетику предела, као и квалитет
живота. У складу са тренутним стањем пре-
dложене су и адекватне мере које је реално
спровести у циљу заштите и очувања аутохтоне
флоре, а самим тим и биодиверзитета у цели-
ni. Неке од мера су: ревитализација природ-
nих станишта, спречавање уношења и ширења
инвазивних биљака, смањење површина под
плантажама клонских еуроамеричких топола,
чистење канала и едукација и информисање
јавности о значају очувања аутохтоних врста.

179
INTRODUCTION

Floristic diversity and plant distribution are one of the indicators of ecological conditions of a certain ecosystem (Kojić et al., 1994). Also, plant species are an important biological and economic resource of every country. Therefore, the preservation and conservation of the autochthonous flora of each area is very important. According to official estimates by the International Union for Conservation of Nature (IUCN), 70% of all known plants are endangered and threatened with extinction (www.iucn.org).

Factors that affect the reduction and loss of floristic diversity are numerous, and some of them are: urbanization, exploitation of autochthonous and introduction of allochthonous species, pollution of water, soil and air, etc. Urbanization completely destroys native habitats, creating semi-natural or artificial habitats that are unfavorable for the survival of autochthonous species. Even if the habitats do not change completely, but only if they become fragmented, significant disturbances occur within the ecosystem (Stevanović, Vasić, 1995). Another factor which influences on the loss of floristic diversity, especially in urban and suburban areas, is the introduction of invasive species. In order to preserve the biodiversity of any area, especially anthropogenic habitats, it is of special importance to prescribe and implement certain protection measures. Measures to protect biodiversity, and therefore floristic diversity, can be preventive and repressive.

An important prerequisite for plant species conservation is the conservation of their habitats. Habitats that are most endangered globally, such as wetlands have particular importance. Wetlands are fragile ecosystems that have been under decades of pressure, such as irrigation and drainage, but also the construction of embankments along river banks. These activities were imposed by the modern way of life, because the drainage of wet
habitats provided space for the expansion of urban settlements, agricultural areas, etc. However, this leads to drastic changes in habitat conditions and the extinction of a large number of species.

Floodplains along riverbeds represent extremely important areas from the aspect of biodiversity protection and natural values. The basic values of this area are related to the preservation of the specific phenomenon of periodic flooding in the river bank (Institute for Nature Conservation of Serbia, 2013).

The subject of the research is floristic diversity of the Forland on the left bank of the Danube near Belgrade and the network of canals of the suburban settlements Borča and Krnjača. Forland is an integral part of the ecological corridor of international importance. The corridor consists of the Danube River and green belts that stretch along it. Forland, as an extension of green areas along the Danube, is an important locality within the corridor that significantly supports the migration of plant and animal species. Forland on the left bank of the Danube near Belgrade, Gornji Podunavlje and Koviljsko - Petrovaradinski rit are the largest flood zones in Serbia. This vast floodplain performs the function of mitigating the effects of high waters on the population and the surrounding economy. In addition, natural and semi-natural habitats in Forland filter and purify water through biological processes. In the investigated terrain, the floodplains were reduced to narrow belts along the Danube River, which led to a significant biodiversity loss.

In accordance with the stated facts, the aim of the paper is to investigate the floristic diversity of the mentioned area and to determine the factors that endanger plant diversity in order to define measures for the protection of native floristic diversity.

**MATERIAL AND METHODS**

Floristic and vegetation research includes the left bank of the Danube, between the riverbed of the Danube and the built embankment, observed downstream from Pupinovo to Pančevo’ bridge, in the length of about 9 km, as well as the network of canals in the Borča and Krnjača settlements. The borders of the investigated area are determined by the natural borders that make up the Danube on the southwest side, the northwest border is a new road to Pupin’s bridge, and the northeast is Zrenjanin road. In the northern part, there is a loop in which these two roads merge (Figure 1).

Field investigation was conducted in the period from November 2016 to August 2017. Plant material was determined by the standard floristic method, using relevant literature: Javorka, Csapody (1934), Josifović (ed.) (1970 - 1977).

**Figure 1.** 2D presentation of the investigated area with delineated borders (Source: https://www.google.co.in/maps/@44.7738844,20.4137812,3244a,35y,14.63h,71.25t/data=!3m1!1e3, 20.6.2017.)
RESULTS AND DISCUSSION

Floristic diversity of the investigated area

216 autochthonous and allochthonous plant species have been recorded in the wider Forland area during field research and the study of the existing literatures. From the middle of the 19th century until today, 2,000 plant species have been described on the territory of Belgrade. By comparing these data, we can say that 10.8% of the entire flora of Belgrade is recorded within investigation area.

In the Forland zone, autochthonous woody hygrophilous species which are characteristic for wet habitats have been observed. The most numerous are: *Alnus incana* (L.) Moench, *Salix alba* L., *S. triandra* L., *S. euxina* IV Belyaeva, *Populus alba* L., *P. nigra* L., *Fraxinus angustifolia* Vahl and *Quercus robur* L. However, adventitious, invasive plants are dominated within this area. Some of them are: *Fraxinus pennsylvanica* Marshall, *Acer negundo* L., *Amorpha fruticosa* L., *Robinia pseudoacacia* L., *Ailanthus altissima* (Mill.) Swingle, *Vitis riparia* Michx., *Ambrosia artemisiifolia* L., *Asclepias syriaca* L., *Solidago gigantea* Aiton etc. Invasive species *Amorpha fruticosa* L. forms the most numerous populations in the forland zone (Figure 2). It was noticed that all invasive plants spread very quickly in the researched area and displace the autochthonous flora.

Within Forland, the ponds represent ecosystems that especially contribute to the richness of native flora, but also biodiversity in general. Within the forests, or in some places near the embankment, ponds appear periodically or throughout the year. According to previous research (Institute for Nature Conservation of Serbia, 2013), two species of water lilies *Nymphaea alba* L. and *Nuphar lutea* (L.) Sm. have been recorded in the ponds. However, during the field research, they were not found in the forland ponds, but they were observed a little further north than the boundary of the study area. *Lemna minor* L. has been recorded on the surface of the ponds, and *Typha spp.* and *Rorippa amphibia* (L.) Besser have been recorded on the peripheral parts of the ponds. In the forland zone, a large number of native woody plant species have been recorded, such as: *Cornus mas* L., *Corylus avellana* L., *Juglans regia* L., *Prunus cerasifera* Ehrh., *Rosa canina* L., *Rubus caesius* L., *Sambucus nigra* L.

The main function of the canals of the suburban settlements (Borča and Krnjača) is draining the surrounding terrain, but these canals also play an important role in protection of plant species. The floristic composition of the Krnjača and Borča canals is dominated by ruderal species, such as: *Galium mollugo* L., *Plantago major* L., *P. lanceolata* L., *Urtica dioica* L., *Malva sylvestris* L., *Leontodon taraxacum* L., *Cichorium intybus* L., *Artemisia
vulgaris L., Euphorbia cyparissias L., Calystegia sepium (L.) R. Br., Trifolium pratens L., Dactylis glomerata L. etc. It is important to mention that the species Iris pseudacorus, which is a rare, vulnerable and endangered species in Serbia, was also recorded in these habitats. *Lemna minor* L. and *Ceratophyllum demersum* L., *Salvinia natans* (L.) All., *Trapa longicarpa* Jankovic, *Phragmites australis* (Cav.) Steud and *Typha* spp. were found in the canal waters. Species *Nuphar lutea* (L.) Sm., *Nymphaea alba* L. used to grow in the canals, but they are now found in the canals north of the study area, but not within the study area. Some of the woody species recorded along the canals are: *Salix alba* L., *S. euxina* IV Belyaeva, *Populus alba* L., *P. nigra* L., *Betula pendula* Roth, *Corylus avellana* L., *Junglans regia* L., *Sambucus nigra* L., *Morus alba* L., *Prunus cerasifera* Ehrh., *Cornus mas* L., *Rubus* spp., *Robinia pseudoacacia* L., *Amorpha fruticosa* L., *Acer platanoides* L., *Ulmus laevis* Pall., *Syringa vulgaris* L., *Ailanthus altissima* (Mill.) Swingle etc. *Amorpha fruticosa* L. is also one of the most dominant invasive species here. *Robinia pseudoacacia* L. and *Ailanthus altissima* (Mill.) Swingle also occur in large numbers (Fig. 30). In addition to the mentioned species, some herbaceous invasive species were also found: *Ambrosia artemisiifolia* L., *Solidago gigantea* Aiton, *Symphyotrichum lanceolatum* (Willd.) G. L. Nesom, *Erigeron canadensis* L., *Asclepias syriaca* L. and others.

Relict species give a special feature to the flora of each area, as a significant biological resource. Five relict species were found in the study area: *Juglans regia* L., *Carpinus betulus* L., *Hedera helix* L., *Helleborus odorus* Willd., *Humulus lupulus* L. In addition to relict species, species protected by law as rare, endangered and vulnerable are of great importance for the flora of this area. These are: *Iris pseudacorus* L. (Figure 3a), *Trapa longicarpa* Jankovic (Figure 3b), *Hypericum perforatum* L., *Althaea officinalis* L., *Crataegus monogyna* Jacq. These species are on the list of the strictly protected and protected wild species of plants, animals and fungi (“Official Gazette of the Republic of Serbia”, No. 5/2010, 47/2011, 32/2016 and 98/2016).

**Factors threatening floristic diversity**

Intensive anthropopression in this area have caused the degradation of natural habitats. Habitats have been degraded by urbanization, drainage and the raising of embankments, the introduction of allochthonous plants, many of which are invasive, and the planting of Euroamerican poplars plantations. All this has led to a decrease in the distribution and disappearance of some allochthonous plants.

Urbanization is a process that leads to changes in the floristic composition of all habitats in an area. The number of plant species is not declining, but the proportion of native species in the total number of plants decreases (Youhua et al., 2012).
Introduction of alien species, and many of them are invasive, presents another factor that negatively affects the autochthonous floristic diversity. Spread of invasive alien species threatens other species and biodiversity generally (Obratov-Petković et al., 2009). Elodea canadensis, a very aggressive invasive aquatic species, was found in the forland ponds and in the canals of suburban settlements in the investigated area. It is a species of North American origin that rapidly colonized aquatic habitats in many European countries and caused serious environmental, sociological and economic problems (Kolada, Kutyła, 2016). The presence of the mentioned species could be one of the causes of Nymphaea alba L. and Nuphar lutea (L.) Sm. displacement from these habitats, where they were previously recorded (Institute for Nature Conservation of Serbia, 2013). The following invasive plants were recorded in the study area: Amorpha fruticosa L., Acer negundo L., Fraxinus pennsylvanica Marshall, Ailanthus altissima (Mill.) Swingle, Robinia pseudoacacia L., Asclepias syriaca L., Vitis riitis Michx., Echinocystis lobata (Michx.) Torr. & A. Gray, Ambrosia artemisiifolia L., Solidago gigantea Aiton, Symphyotrichum lanceolatum (Willd.) GL Nesom, Erigeron canadensis L. Field research has shown that restoration of native white willow (Salix alba) forests is hampered by the spread of invasive species, especially Fraxinus pennsylvanica and Amorpha fruticosa L. (Figures 9 and 10). Also, by comparing field research with previous research (Institute for Nature Conservation of Serbia, 2013), it was found that the species Populus alba L. and P. nigra L. had many wider distributions in these areas. One of the reasons is the cutting of these species due to the planting of Euroamerican poplars (Populus x euramericana) plantations, but also the pressure of invasive plants on the habitats of allochthonous Populus species. In this area, the habitat of Fraxinus angustifolia Vahl is threatened due to the spread of the invasive species Fraxinus pennsylvanica, which is planted as a fast-growing species. The species Fraxinus angustifolia Vahl has been displaced to such an extent that it is necessary to consider the protection of its habitats in investigated area (Puhalo et al., 2010). Quercus robur L. is most abundant in the central part of the forland. The spread of this species is limited by cutting and planting poplar plantations, draining floodplains and invasive woody plants introduction.

Within the studied area, large areas are under agricultural plantations. So, these areas have changed their purpose in the past, and natural habitats have been completely degraded and native species have been displaced. The planting of Euroamerican poplars plantations has caused the degradation of the habitats of a large number of autochthonous species in the forland area (Figure 4). Planting poplar plantations leads to significant changes in the floristic composition of a particular habitat, most often in terms of declining floristic and vegetation diversity (Jurišić, 2015).
Also, the pollution of the canals of suburban settlements, pesticides that are used to treat agricultural crops, but also waste that is thrown into the canals is one of the reasons for the displacement and disappearance of native plants.

Low public awareness of the importance of conservation certain species and their habitats also presents one of negative factors that affect the reduction of floristic diversity of the study area.

**Measures to protect floristic diversity**

According to the General Plan of Belgrade until 2021, it is envisaged that this area will remain a green area (Official Gazette of Belgrade, no. 27/2003, 25/2005, 34/2007 and 63/2009). The green belt mitigates the negative effects of the increased water level of the rivers, represents a habitat for many endangered and protected plant species, forms a balance against the urban tissue and is part of the green corridor. However, as already written, this area is dominated by altered and disturbed natural habitats. Given the continuous and constant anthropogenic pressure, it is important to take appropriate measures that would lead to biodiversity conservation. This primarily means the revitalization of natural habitats or the conservation of existing native habitats. In order to the measures have adequate results, different socio-economic measures that require organizational and material engagement by local self-government, competent services and economic entities should be undertaken.

Some of the measures that can be proposed for biodiversity conservation are:

- Increase of areas under autochthonous plant communities,
- Restoration and conservation of pond ecosystems,
- Removal of invasive plants from habitats, primarily those that are mostly colonized, which will enable natural regeneration of populations of native plant species,
- Restoration of devastated forest habitats. Partially preserved natural floodplain forests and meadows should be placed under such a level of protection that would prevent their further degradation,
- Significantly reduce the area under clonal Euroamerican poplar plantations. In that sense, cooperation with PE “Srbijasume” is necessary;
- Prevention of canal pollution, as well as their regular cleaning,
- Prevention of unplanned construction and resolving the status of illegally constructed facilities,
- Education and informing the local population and competent services about the importance of protection and conservation of natural habitats and autochthonous species,
- Strengthening the awareness and will of citizens to preserve the entire environment, including floristic diversity,
- declaring invasigated area as a protected area.

**CONCLUSIONS**

216 plant species have been recorded in the study area, of which 5 are protected by law and 5 species are relicts. The investigated area is characterized by significant degradation of native habitats, which caused the displacement and disappearance of certain autochthonous plants. Urbanization, introduction and spread of invasive plants, planting Euroamerican poplar plantations, draining wetlands and forming agricultural land are factors that threaten native floristic diversity.

In order to prevent further displace or loss of autochthonous species in the study area, appropriate measures should be undertaken. These measures include activities such as restoration of native habitats, reduction of areas under Euroamerican poplars plantations, prevention of introduction and removal of invasive plants from all habitats, cleaning of the canal network, as well as strengthening public awareness of the importance of conservation native habitats and autochthonous plants.

**SUMMARY**

The paper presents a study of the flora of Forland on the left bank of the Danube in Belgrade and the canal network in the suburbs Krnjača and
The aim of this study was to examine the floristic diversity and its endangerment in the study area in order to determine adequate measures for the protection and preservation of autochthonous flora.

The natural habitats of the investigated area are mostly degraded. This influenced the extinction and displacement of certain plant species from studied area. The distribution of many autochthonous plants is significantly limited. With regard to studied decades of anthropopression, habitat degradation factors have been identified in the study area: urbanization, drainage of wetlands, large areas under agricultural plantations, planting of clones of Euroamerican poplars, introduction of invasive plants and canal network pollution. Habitats have been degraded to such an extent that the biodiversity of the entire area is endangered. In addition to the negative impact on biodiversity, all these factors have disrupted the aesthetics of the landscape, as well as the quality of life. In accordance with the current situation, adequate measures have been proposed that are realistic to implement in order to protect and preserve the autochthonous flora, and biodiversity in general. Some of the measures are: restoration of natural habitats, prevention of introduction and spread of invasive plants, reduction of areas under plantations of clonal Euroamerican poplars, cleaning of canals and education and informing the public about the importance of protection of autochthonous species.

ЛИТЕРАТУРА / REFERENCES

Javorka S., Csapody V. (1934): Iconographia Florae Hungaricae, Budapest
Josifović M. (ed.) (1970-1977): Flora SR Srbije 1-9, Srpska Akademija Nauka i umetnosti, Beograd
Jurišić B. (2015): Diverzitet vaskularne flore nizijskih šuma Ravnog Srema, Doktorska disertacija, Univerzitet u Beogradu – Biološki fakultet 490 p.
Kojić M., Popović R., Karadžić, B. (1994): Fitoindikatori i njihov značaj u proceni ekoloških uslova staništa, Nauka, Beograd 140 p.
Kolada A., Kutyla S. (2016): Elodea canadensis (Michx.) in Polish lakes: a non-aggressive addition to native flora, Biological Invasions 18: 3251-3264
Obratov-Petković D., Bjdov I., Radulović S., Skočajić D., Đunisijević-Bojović D., Đukić M. (2009): Ekologija i rasprostranjenje invazivne vrste Aster lanceolatus Willd. Na vlažnim staništima Beograda, Glasnik šumarskog fakulteta 100, Beograd: 159 -178
Puhalo S., Dajo vić M., Simić D., Nikolić Antonijević J. (2010): Pripremni elaborat o biodiverzitetu plavne zone „Kožara“ i razmatranje mogućnosti i modaliteta njene zaštite, Liga za ornitološku akciju Srbije, Beograd
Službeni Glasnik Republike Srbije, br. 5/2010, 47/2011, 32/2016 i 98/2016: Pravilnik o proglasišenju i zaštiti strogo zaštićenih i zaštićenih divljih vrsta biljaka, životinja i gljiva.
Službeni list Beograda, br. 27/2003, 25/2005, 34/2007 i 63/2009. Generalni plan Beograda 2021
Stevanović V., Vasić V. (1995): Bipoverzitet Jugoslavije: sa pregledom vrsta od međunarodnog značaja, Biološki fakultet Univerziteta u Beogradu
Zavod za zaštitu prirode Srbije (2013): Studija zaštite “Forland leve obale Dunava kod Beograda” druga faza, Zavod za zaštitu prirode Srbije, Beograd
Yeab Y., Linab S., Wu J., Li L., Zou J., Yu D. (2012): Effect of rapid urbanization on plant species diversity in municipal parks, in a new Chinese city: Shenzhen, Acta Ecologica Sinica 32 (5): 221-226
www.iucn.org

© 2021 Authors. Published by the University of Belgrade, Faculty of Forestry. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/)