In conclusion, this study suggests that natural disasters, such as typhoons, that engender large amounts of rainfall could result in epidemics of leptospirosis and melioidosis. More in-depth studies need to be conducted. Efforts need to be taken in advance to prevent possible transmission of these infectious diseases after typhoons.

Acknowledgment

We appreciate the administrative support that we received from the Centers for Disease Control, Taiwan.

Hsun-Pi Su, Ta-Chien Chan, and Chao-Chin Chang

Author affiliations: Centers for Disease Control–Department of Health, Taipei, Taiwan (H.-P. Su); China Medical University, Taichung, Taiwan (H.-P. Su); Kaohsiung Medical University, Kaohsiung, Taiwan (H.-P. Su); National Taiwan University, Taipei (T.C.-Chan); and National Chung Hsing University, Taichung (C.-C. Chang).

Address for correspondence: Chao-Chin Chang, School of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 402, Taiwan; email: changcc@dragon.nchu.edu.tw

DOI: 10.3201/eid1707.101050

Exposure to Lymphocytic Choriomeningitis Virus, New York, USA

To the Editor: Lymphocytic choriomeningitis virus (LCMV) is an arenavirus carried by the house mouse, Mus musculus. Human infections can range from mild febrile illness to severe encephalitis and disseminated disease (1). Infection during pregnancy is associated with teratogenic effects, including congenital hydrocephalus and chorioretinitis (2).

The overall occurrence of human exposure to LCMV is not known. Two large US serosurveys suggest that 3%–5% of persons tested had previous LCMV exposure as measured by immunoglobulin (Ig) G (3,4). In 2002, LCMV-associated congenital subependymal calcifications, hydrocephalus, and chorioretinitis were confirmed for 2 children in central Syracuse, Onondaga County, New York, USA. In 2009, the Centers for Disease Control and Prevention confirmed another case of LCMV-associated congenital hydrocephalus and chorioretinitis in a child from the same neighborhood. For each of the 3 cases, the mother’s history included exposure to mice during pregnancy.

One mother also had a pet guinea pig, which had negative results for LCMV by serologic testing and reverse transcription PCR of kidney tissue (5). Congenital LCMV is rarely reported to public health departments or in the literature. Therefore, to better understand the magnitude of LCMV exposure in the general population of Onondaga County, we conducted a serosurvey. The American Red Cross provided the Wadsworth Center of the New York State Department of Health with blood or serum samples collected from persons ≥16 years of age at blood drives during August 2009. Information about date of birth, sex, and county and ZIP code of residence was provided. A subset of samples from blood donors residing in Onondaga County were tested at the Centers for Disease and Prevention by ELISA for LCMV IgM and IgG as described (4). State and federal institutional review board approval was obtained for this study.

Samples from 562 blood donors were tested. Mean age of donors was 48 years (median 50 ± 15 SD, range 17–79 years). LCMV IgG was detected in 2 (0.4%) samples (titer ≥400) and was undetectable in all other samples. LCMV IgM was not detected in any samples. Of the 25 donors who reported residing in 1 of the 2 ZIP codes as the case-patients with congenital LCMV, none had positive test results.

Given our findings, little evidence supports a high level of human exposure to LCMV in Onondaga County. Compared with previously reported seroprevalences of 3%–5%, the proportion of persons exposed to LCMV was lower than expected (3,4). The same serologic assay was used in this study and the 2 previous US serosurveys, suggesting that the different results are not an artifact of different assays. Additionally, persons tested in the current survey were older than those tested in previous serosurveys (median 50 vs. 23 [3] and
are possible. Additional studies are needed to understand the incidence of LCMV-related disease and LCMV seroprevalence in the general population (10).

Barbara Knust, Adam MacNeil, Susan J. Wong, P. Byron Backenson, Aridth Gibbons, Pierre E. Rollin, and Stuart T. Nichol

Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (B. Knust, A. MacNeil, A. Gibbons, P.E. Rollin, S.T. Nichol); and New York State Department of Health, Albany, New York, USA (S.J. Wong, P.B. Backenson)

DOI: 10.3201/eid1707.101349

References

1. Peters CJ. Lymphocytic choriomeningitis virus—an old enemy up to new tricks. N Engl J Med. 2006;354:2208–11. doi:10.1056/NEJMp068021
2. Barton LL, Mets MB. Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. Clin Infect Dis. 2001;33:370–4. doi:10.1086/321897
3. Childs JE, Glass GE, Ksiazek TG, Rossi CA, Oro JG, Leduc JW. Human–rodent contact and infection with lymphocytic choriomeningitis and Seoul viruses in an inner-city population. Am J Trop Med Hyg. 1991;44:117–21.
4. Park JY, Peters CJ, Rollin PE, Ksiazek TG, Katholi CR, Waites KB, et al. Age distribution of lymphocytic choriomeningitis virus serum antibody in Birmingham, Alabama: evidence of a decreased risk of infection. Am J Trop Med Hyg. 1997;57:37–41.
5. Centers for Disease Control and Prevention. Notes from the field: congenital lymphocytic choriomeningitis—New York. MMWR Morb Mortal Wkly Rep. 2011;60:16.
6. Vazquez BE, Douglas RG, Betts RF, Bumann AW, Fraser DW, Himman AR. Lymphocytic choriomeningitis in university hospital personnel. Clinical features. Am J Med. 1975;58:803–9. doi:10.1016/0002-9343(75)90635-X
7. Childs JE, Peters CJ. Ecology and epidemiology of arenaviruses and their hosts. In: Salvato MS, editor. The Arenaviridae. New York: Plenum Press; 1993. p. 331–84.
8. Gregg MB. Recent outbreaks of lymphocytic choriomeningitis in the United States of America. Bull World Health Organ. 1975;52:549–53.
9. Centers for Disease Control and Prevention. Survey of lymphocytic choriomeningitis virus diagnosis and testing—Connecticut, 2005. MMWR Morb Mortal Wkly Rep. 2006;55:398–9.
10. Barton LL. Human infection with lymphocytic choriomeningitis virus. Emerg Infect Dis. 2010;16:1046–7.

Tickborne Relapsing Fever Caused by Borrelia persica, Uzbekistan and Tajikistan

To the Editor: Tickborne relapsing fever (TBRF) is caused by several Borrelia species and transmitted by argasid soft ticks of the genus Ornithodoros. The disease is endemic to many parts of the world, especially Africa (B. duttonii and B. crocidurae most prevalent), and the Mediterranean basin (B. hispanica most prevalent). In Eurasia, TBRF is mainly caused by B. persica (1–3). We report a patient who returned to France with B. persica infection after visiting Uzbekistan and Tajikistan.

In September 2008, a 32-year-old man sought care at the Saint Louis Hospital in Paris, France, for a fifth relapsing episode of fever. Three weeks earlier (July 31–August 18), he had trekked through Uzbekistan and Tajikistan and spent 7 nights in a tent in Uzbekistan. The day before his return to France, he had fever (39.5°C) that lasted 5 days without other symptoms. After a 4-day interval, fever recurred for 1 day, then relapsed 3 other times (every 2 days with fever for 12 hours). Laboratory