Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light

M. Amazioug · M. Daoud · S. K. Singh · M. Asjad

Received: 4 February 2023 / Accepted: 13 July 2023 / Published online: 7 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
We study the behaviour of the second-order correlation function in a double-cavity optomechanical system, and a degenerate optical parametric amplifier is placed in each cavity. The first cavity is additionally driven by a weak classical laser field. The occurrence of strong photon antibunching effect in these two coupled cavities is observed. For suitable values of optomechanical coupling strength as well as photon hopping process, the system can exhibit a very strong photon antibunching effect. Our study also shows that the unconventional photon blockade occurs in both coupling, i.e. the weak coupling and the strong coupling regimes as compared to the conventional photon blockade which occurs only in the strong coupling regime. We get a very strong photon antibunching effect under the unconventional photon blockade mechanism than the conventional photon blockade mechanism. Our study can be also used for the generation of single photon in coupled nonlinear optomechanical systems.

S. K. Singh
singhshailendra3@gmail.com

M. Amazioug
amazioug@gmail.com

M. Daoud
m_daoud@hotmail.com

M. Asjad
asjad_qau@yahoo.com

1 LPTHE, Department of Physics, Faculty of sciences, Ibnou Zohr University, Agadir, Morocco
2 LPMS, Department of Physics, Faculty of Sciences, University Ibn Tofail, Kénitra, Morocco
3 Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11, 34151 Trieste, Italy
4 Department of Physics, Muffakham Jah College of Engineering and Technology, Hyderabad, Telangana 500034, India
5 Mathematics Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
Keywords Cavity optomechanics · Antibunching · Photon blockade · Photon hopping process · Optical parametric amplifier · Single photon

1 Introduction

Cavity optomechanics is a rapidly developing research area for exploring the radiation-pressure-mediated interaction between optical and mechanical degrees of freedom [1, 2]. Due to the nonlinear coupling between the optical mode to mechanical oscillations, cavity optomechanical system offers a robust platform for studying many interesting quantum phenomena such as quantum entangled states [3–12], weak force sensing [13–17], squeezing [18, 19], precision measurements [20], quantum teleportation and quantum communication [21, 22], optomechanical induced transparency [23–28], ground state cooling of macroscopic objects [29–31], normal mode splitting [32–34], and photon and phonon blockade [35–38]. Photon blockade (PB) is a nonlinear optical effect that suppresses completely the multiple-photon occupancy in a quantum mode and favours only the single-photon state [39]. The photon blockade mechanism also generates sub-Poissonian light when the system is driven by a classical light field. So far, the photon blockade effect is also one of the major experimental schemes to generate on demand single-photon sources and hence plays a significant role in present day quantum information technologies [40, 41].

Photon blockade phenomenon has been studied theoretically in various nonlinear quantum optical systems, e.g. cavity QED [42–44], Kerr-type interaction [45, 46], and cavity optomechanical systems [35, 47–49], whereas the experimental works investigated the trapped atom–cavity system [50] and a photonic crystal cavity coupled to a single quantum dot [51–53]. Moreover, we have two well-known mechanisms to realize a strong PB effect in any quantum system. The first one is (i) unconventional photon blockade (UCPB) [54–56] which is generated due to the destructive quantum interference between different quantum transition paths from the ground state to a two-photon excited state, and the second one is (ii) conventional photon blockade (CPB) [39, 57, 58] which depends on the larger nonlinearities to change the energy-level structure of the system. Both UCPB and CPB mechanisms have been implemented experimentally in [50, 51, 59–61] as well as theoretically studied in [62–69].

Motivated by the above-mentioned works, in this paper, we propose a scheme to generate a strong photon antibunching effect in a double-cavity optomechanical system. Each cavity also contains a degenerate optical parametric amplifier (OPA). These two cavities are also spatially separated and coupled through the single-photon hopping process. We investigate photon antibunching effect in both the weak and the strong coupling regimes through studying the second-order correlation function in this system. Here, the first cavity is also driven by a weak classical laser field as shown in Fig. 1. We also discuss the occurrence of the both types of photon blockade effect, i.e. unconventional photon blockade and conventional photon blockade as well as impact of various physical parameters for achieving a strong photon antibunching effect. This paper is organized as follows. In Sect. 2, we have introduced the model Hamiltonian of our proposed optomechanical system. In Sect. 3, we have obtained the analytical and numerical results related to the equal-time second-order correlation
function to discuss PB effect. In this same section, we also give the optimal parameter values to achieve the strong photon antibunching effect and we discuss the CPB and the UCPB mechanisms in both weak and strong coupling regimes. We conclude our results in Sect. 4.

2 The model Hamiltonian

We consider an optomechanical system consisting of two Fabry–Pérot cavities coupled via the single-photon hopping process (Fig. 1). Each cavity \(j (j = 1, 2) \) has a movable end-mirror \(M_j \) and also contains inside a degenerate optical parametric amplifier (OPA) [70]. In our scheme, first cavity is also driven by a weak classical laser field with amplitude \(E \) and frequency \(\omega_L \). The mass and the frequency of the \(j \)th movable mirror \(M_j \) are, respectively, denoted by \(m_j \) and \(\omega_{M_j} \). The mirror \(M_j \) is coupled to the photons inside the cavity \(j \) via radiation pressure. The coupling rate is \(g_j = \frac{\omega_{a_j}}{L_j} \sqrt{\frac{\hbar}{m_j \omega_{M_j}}} \) with \(L_j \) denoting the length of the \(j \)th cavity [1]. The annihilation and creation operators of the \(j \)th cavity mode are denoted by \(\hat{a}_j \) and \(\hat{a}_j^\dagger \) with \([\hat{a}_j, \hat{a}_j^\dagger] = 1 \) (\(j = 1, 2 \)). The laser–cavity detuning is \(\Delta_j = \omega_L - \omega_{a_j} \) where \(\omega_{a_j} \) is the resonant frequencies of the cavity mode \(j \)th cavity. The coupling strength of the photon hopping process is denoted by \(J \). The total Hamiltonian describing the system in the rotating frame approximation is given by \(\hbar = 1 \)

\[
\hat{H} = \hat{H}_0 + \hat{H}_{PH},
\]

where

\[
\hat{H}_{PH} = J \left(\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1 \right)
\]

and the free Hamiltonian \(\hat{H}_0 \) is the sum of three terms given as

\[
\hat{H}_0 = \hat{H}_{\text{free}} + \hat{H}_{\text{om}} + \hat{H}_{\text{drive}},
\]

where the hermitian operators \(\hat{H}_{\text{free}}, \hat{H}_{\text{om}} \) and \(\hat{H}_{\text{drive}} \) are written as

\[
\hat{H}_{\text{free}} = \sum_{j=1}^{2} \left[-\Delta_j \hat{a}_j^\dagger \hat{a}_j + \omega_{M_j} \hat{b}_j^\dagger \hat{b}_j \right],
\]

\[
\hat{H}_{\text{om}} = -\sum_{j=1}^{2} g_j \hat{a}_j^\dagger \hat{a}_j \left(\hat{b}_j^\dagger + \hat{b}_j \right),
\]

\[
\hat{H}_{\text{drive}} = E e^{i\phi} \hat{a}_1^\dagger + E e^{-i\phi} \hat{a}_1,
\]

where \(E = \sqrt{\frac{2\kappa_1\varrho}{\hbar \omega_L}} \) and \(\phi \) are, respectively, the amplitude and the phase of the input coherent laser field. The quantity \(\varrho \) denotes the drive pump power of the input field.
The cavity decay rate of the jth cavity is κ_j. The annihilation and creation operators of the phonons mode of the jth movable mirrors are represented as \hat{b}_j and \hat{b}_j^\dagger and satisfy $[\hat{b}_j, \hat{b}_j^\dagger] = 1$ ($j = 1, 2$). We recall that the tunable photon statistics in parametrically amplified photonic molecules were studied in Ref. [62] without optomechanical interaction. In addition to optomechanical interaction, we take into account the degenerate optical parametric amplifier. This coupling is described by

$$\hat{H}_{\text{OPA}} = \sum_{j=1}^{2} \left(i \lambda_j \left(\hat{a}_j^\dagger \right)^2 e^{i\theta} - i \lambda_j \hat{a}_j^2 e^{-i\theta} \right),$$

where the nonlinear gain and the phase of the field driving the OPA inside the jth cavity are, respectively, given by λ_j and θ. The total Hamiltonian is now given by the sum of the Hamiltonian \hat{H} (Eq. (1)) and the interaction term given by

$$\hat{H}_{\text{tot}} = \hat{H} + \hat{H}_{\text{OPA}}.$$

The degenerate OPA is pumped by another laser field at frequency $2\omega_L$ [71, 72].

Using the following unitary transformation $\hat{U} = \exp[\hat{S}]$ with $\hat{S} = \sum_{j=1}^{2} \frac{g_j}{\omega_m j} \hat{a}_j^\dagger \hat{a}_j (\hat{b}_j^\dagger - \hat{b}_j)$, ($j = 1, 2$), the Hamiltonian \hat{H}_{tot} transforms under this transformation as $\hat{U}^\dagger \hat{H}_{\text{tot}} \hat{U} = \hat{H}_1$. To derive this equation, we have used the Baker–Campbell–Hausdorff formula together with the commutation values of the operators $\hat{a}^\dagger, \hat{a}, \hat{b}^\dagger$ and \hat{b}. The unitary transformation \hat{U} decouples the two mechanical and the optical modes in the special case of weak optomechanical coupling, i.e. $g_j/\omega_m j \ll 1$ ($j = 1, 2$) [63]. In fact, as we are interested by the photon statistic in the system, the Hamiltonian can be written as

$$\hat{H}_1 = \sum_{j=1}^{2} \left[-\Delta_j \hat{a}_j^\dagger \hat{a}_j - \mu_j \left(\hat{a}_j^\dagger \hat{a}_j \right)^2 + i \lambda \left(\hat{a}_j^\dagger \right)^2 e^{i\theta} - i \lambda \hat{a}_j^2 e^{-i\theta} \right]$$
\[+ \mathcal{E} e^{i\theta} \hat{a}_1^\dagger + \mathcal{E} e^{-i\phi} \hat{a}_1 + J \left(\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1 \right), \]
where \(\mu_j = g_j^2/\omega_{m_j} \) is the Kerr-type nonlinear strength.

3 Photon statistics

In this section, we focus on the analytical solution of the non-Hermitian Schrödinger equation as well as numerical solution using master equation. In addition, we discuss the generation of a strong photon antibunching effect in the weak and the strong coupling regimes. The non-Hermitian Hamiltonian is directly written by adding phenomenologically the imaginary decay terms as

\[\hat{\mathcal{H}}_2 = \hat{\mathcal{H}}_1 - i \frac{\kappa_1}{2} \hat{a}_1^\dagger \hat{a}_1 - i \frac{\kappa_2}{2} \hat{a}_2^\dagger \hat{a}_2. \]

The analytical expression of the correlation function can be obtained by solving the Schrödinger equation in the weak driving condition (\(\mathcal{E} \ll \kappa_1 \)), i.e. \(i \frac{\partial |\psi(t)\rangle}{\partial t} = \hat{\mathcal{H}}_2 |\psi(t)\rangle \), where \(|\psi(t)\rangle \) is the state of the system. The evolution space can be limited in the low-excitation subspace, up to 2, i.e. \(\mathcal{B} = \{ |n_1, n_2\rangle / n_1 + n_2 \leq 2 \} \). The state of the system with the bare-state bases is

\[|\psi(t)\rangle = \sum_{n_1, n_2} C_{n_1 n_2}(t) |n_1, n_2\rangle, \]

where \(C_{n_1 n_2}(t) \) is the probability amplitude of the bare state \(|n_1, n_2\rangle \) with \(n_1 \) representing the photons being in the cavity (1) and \(n_2 \) representing the photons being in the cavity (2). For two identical cavities, \(\kappa_1 = \kappa_2 = \kappa, m_1 = m_2 = m, \omega_{m_1} = \omega_{m_2} = \omega_m, \omega_{a_1} = \omega_{a_2} = \omega_a, L_1 = L_2 = L, \lambda_1 = \lambda_2 = \lambda, \Delta_1 = \Delta_2 = \Delta \) and \(g_1 = g_2 = g \). Under the weak driving condition, the probability amplitudes satisfy the relation \(|C_{00}| \simeq 1 \gg |C_{01}|, |C_{10}| \gg |C_{11}|, |C_{02}|, |C_{20}| \). To simplify our purpose, we consider \(\theta = \phi = 0 \). The Schrödinger equation leads to the following set of linear differential equations for the probability amplitudes \(C_{n_1 n_2}(t) \)

\[i \frac{\partial C_{00}}{\partial t} = \mathcal{E} C_{10} - i\lambda (C_{02} + C_{20}), \]

\[i \frac{\partial C_{01}}{\partial t} = \mathcal{E} C_{11} - \Lambda C_{01} + J C_{10}, \]

\[i \frac{\partial C_{10}}{\partial t} = \mathcal{E} C_{00} + J C_{10} - \Lambda C_{01} + \sqrt{2} \mathcal{E} C_{20}, \]

\[i \frac{\partial C_{11}}{\partial t} = \mathcal{E} C_{01} - 2\Lambda C_{11} + \sqrt{2} J C_{02} + \sqrt{2} J C_{20}, \]

\[i \frac{\partial C_{02}}{\partial t} = -2\Gamma C_{02} + \sqrt{2} J C_{11} + i \sqrt{2} \lambda C_{00}, \]
\[
\frac{i}{\partial t} \frac{\partial C_{20}}{\partial t} = -2\Gamma C_{20} + \sqrt{2E}C_{10} + \sqrt{2J}C_{11} + i\sqrt{2}\lambda C_{00},
\]

(17)

where \(\Lambda = \Delta + i\xi + \mu \) and \(\Gamma = \Delta + i\eta + 2\mu \). Equations (12)–(17) can be solved analytically to obtain the dynamical state. Moreover, the steady-state result can be obtained by solving \(\partial C_{n_1n_2}/\partial t = 0 \), which can be simplified using some appropriate approximations as for instance ignoring those higher-order terms in the case of weak coupling interaction. The coefficients associated with one-photon \((n_1 + n_2 = 1)\) state are given by

\[
C_{01} = \frac{JE}{\Lambda^2 - J^2},
\]

(18)

\[
C_{10} = \frac{\Lambda E}{\Lambda^2 - J^2},
\]

(19)

and the coefficients associated with two-photon \((n_1 + n_2 = 2)\) states are written as

\[
C_{11} = \frac{J(-E^2\Gamma - 2iJ^2\lambda + E^2\Lambda + 2i\lambda\Lambda^2)}{2(\Gamma\Lambda - J^2)(\Lambda^2 - J^2)},
\]

(20)

\[
C_{02} = \frac{J^2E^2\Gamma + J^2E^2\Lambda - 2iJ^2\lambda\Gamma\Lambda + 2i\lambda\Gamma\Lambda^3}{2\sqrt{2}\Gamma(\Gamma\Lambda - J^2)(\Lambda^2 - J^2)},
\]

(21)

\[
C_{20} = \frac{J^2E^2\Gamma - J^2E^2\Lambda - i2J^2\lambda\Gamma\Lambda + 2E^2\Gamma\Lambda^2 + i2\lambda\Gamma\Lambda^3}{2\sqrt{2}\Gamma(\Gamma\Lambda - J^2)(\Lambda^2 - J^2)}.
\]

(22)

The equal-time second-order correlation functions are defined by \(g_{j}^{(2)}(0) = \langle \hat{a}_j^\dagger \hat{a}_j^\dagger \hat{a}_j \hat{a}_j \rangle / \langle \hat{a}_j^\dagger \hat{a}_j \rangle^2 \) \((j = 1, 2)\). It also describes the probability to observe two photons in the \(j \)th cavity at the same time and is given as follows

\[
g_{1}^{(2)}(0) = \frac{2|C_{20}|^2}{\bar{n}_1^2}, \quad g_{2}^{(2)}(0) = \frac{2|C_{02}|^2}{\bar{n}_2^2},
\]

(23)

where \(\bar{n}_1 = |C_{10}|^2 + |C_{11}|^2 + 2|C_{20}|^2 \simeq |C_{10}|^2 \) and \(\bar{n}_2 = |C_{01}|^2 + |C_{11}|^2 + 2|C_{02}|^2 \simeq |C_{01}|^2 \) represents the average photon occupations. The condition \(g_{j}^{(2)}(0) > 1 \) corresponds to the photon bunching effect, whereas \(g_{j}^{(2)}(0) < 1 \) leads to the photon antibunching effect and is characterized by the sub-Poissonian photon statistics \([35–37]\). Furthermore, the strong photon antibunching effect holds in the cavity \((1) \) when \(g_{1}^{(2)}(0) = 0 \), i.e. \(C_{20} = 0 \). On the other hand, the strong photon antibunching effect can be realized in the cavity \((2) \) when \(g_{2}^{(2)}(0) = 0 \), i.e. \(C_{02} = 0 \). The master equation approach which allows us to numerically calculate has the following expression

\[
\frac{d\rho}{dt} = -i[\hat{H}_1, \rho] + \hat{L}_{\hat{a}_j}(\rho),
\]

(24)
where $\hat{L}_{\alpha j}(\rho) = \frac{\kappa}{2} \left(2\hat{a}_j \rho \hat{a}_j^\dagger - \hat{a}_j^\dagger \hat{a}_j \rho - \rho \hat{a}_j^\dagger \hat{a}_j \right)$ and \hat{H}_1 is the Hamiltonian given by Eq. (9).

3.1 Weak coupling regime

In this subsection, we investigate the evolution of the equal-time second-order correlation function $g_j^{(2)}(0) (j = 1, 2)$. We discuss the realization of the strong photon antibunching effect in weak coupling regime ($J < \kappa$ and $g \ll \omega_m$). The achieved photon blockade effect belongs to the UCPB (destructive quantum interference).

The optimal parameter pairs λ (the gain) and Δ (the cavity–laser detuning) can be obtained together with the other fixed parameters by solving the equation $g_j^{(2)}(0) = 0$ ($j = 1, 2$). Here we also employ the parameters value considered in Ref. [63]: $J = 0.95\kappa, \omega_m = 2\pi \times 75 \times 10^6$ Hz, $g = 0.042\omega_m$, $\mathcal{E} = 0.02\kappa$ and $\kappa = 2\pi \times 0.15 \times 10^6$ Hz.

The solution in the cavity (1) is $\{\Delta^{(1)}_{\text{opt}} = 0.73 \times 10^{-4}\omega_m, \lambda^{(1)}_{\text{opt}} = 0.93 \times 10^{-6}\omega_m\}, \{\Delta^{(1)} = -0.15 \times 10^{-2}\omega_m, \lambda^{(1)} = -0.20 \times 10^{-6}\omega_m\}, \{\Delta^{(1)}_{\text{opt}} = -33 \times 10^{-4}\omega_m \text{ Hz, and } \lambda^{(1)}_{\text{opt}} = 1.47 \times 10^{-6}\omega_m\}$. Moreover, the real solution of the optimal parameter pairs value in the cavity (2) is $\{\Delta^{(2)}_{\text{opt}} = 7.4 \times 10^{-4}\omega_m, \lambda^{(2)}_{\text{opt}} = 0.33 \times 10^{-6}\omega_m\}, \{\Delta^{(2)} = -0.21 \times 10^{-2}\omega_m, \lambda^{(2)} = -0.80 \times 10^{-6}\omega_m\}, \{\Delta^{(2)}_{\text{opt}} = -0.47 \times 10^{-2}\omega_m \text{ Hz, and } \lambda^{(2)}_{\text{opt}} = 0.40 \times 10^{-6}\omega_m\}$.

We plot in Fig. 2 the equal-time second-order correlation function $g_j^{(2)}(0)$ as a function of the cavity–laser detuning Δ for different values of λ by using analytic and numerical solutions. We note that the analytic and the numerical solution is obtained by solving master equation (Eq. 24) which is the same as shown in Fig. 2a and b which means that our results are correct. We remark that a strong photon antibunching effect occurs when we use the optimal values of parameter pairs $\{\Delta, \lambda\}$ listed above, i.e. $g_j^{(2)}(0) (j = 1, 2)$ is much smaller than unity ($g_j^{(2)}(0) \ll 1$) at $\Delta^{(1)}_{\text{opt}} = 0.73 \times 10^{-4}\omega_m$ with $\lambda^{(1)}_{\text{opt}} = 0.93 \times 10^{-6}\omega_m$ in Fig. 2a and $\Delta^{(2)}_{\text{opt}} = -0.47 \times 10^{-2}\omega_m$.

![Figure 2](image-url)
Fig. 3

(a) Plot of the equal-time second-order correlation function \(g^{(2)}_1(0) \) versus the cavity–laser detuning \(\Delta \) for various values of the optomechanical coupling strength \(g \) with \(\lambda_{\text{opt}}^{(1)} = 0.93 \times 10^{-6} \omega_m \) Hz and \(J = 0.95 \kappa \).

(b) Plot of the equal-time second-order correlation function \(g^{(2)}_1(0) \) in the weak coupling region versus the cavity–laser detuning \(\Delta \) for various values of the photon hopping coupling strength \(J \) with \(\lambda_{\text{opt}}^{(1)} = 0.93 \times 10^{-6} \omega_m \) and \(g = 0.042 \omega_m \) Hz. The dashed horizontal line delimits the region which represents the photon antibunching effect in the cavity (1).

We plot in Fig. 3a the equal-time second-order correlation function \(g^{(2)}_1(0) \) versus the cavity–laser detuning \(\Delta/\omega_m \) for various values of the optomechanical coupling strength \(g \). This figure shows that \(g^{(2)}_1(0) \) is very small when \(g = 0.042 \omega_m \), i.e. strong photon antibunching effect occurs when \(g = 0.042 \omega_m \). We remark that a strong photon antibunching effect is achieved for the exact value of \(\Delta = 34304.2 \) Hz as it is precisely predicted by the optimal parameters when \(g = 0.042 \omega_m \) with \(\lambda = 437.053 \) Hz. We notice that the equal-time second-order correlation function \(g^{(2)}_1(0) \) is greater than 1 (the photon bunching effect) when \(g = 0 \). This means that the achieved photon antibunching effect is related to the optomechanical coupling \(g \).
We plot in Fig. 3b the equal-time second-order correlation function $g_1^{(2)}(0)$ versus the cavity–laser detuning for different values of the coupling J. This figure exhibits a strong photon antibunching effect for the value $\Delta_{\text{opt}}^{(1)} = -1.54229 \times 10^6 \text{ Hz}$. This exactly the value expected via the parameter optimization when $J = 0.95$ Hz with $\lambda_{\text{opt}}^{(1)} = 692.709$ Hz. The equal-time second-order correlation function $g_1^{(2)}(0)$ is less than 1 when $J = 0$ (the photon antibunching effect) for a wide range value of Δ as reported in Fig. 3b. This can be explained by the two-photon excitation path of the tunnelling-mediated transition, i.e. $|1, 0 \rangle \xrightarrow{\frac{\Delta}{\omega}} |0, 1 \rangle \xrightarrow{\frac{\epsilon}{\omega}} |1, 1 \rangle \leftrightarrow |2, 0 \rangle$. This means the coupling J influences the occurrence of the photon antibunching effect.

3.2 Strong coupling regime

In this subsection, we will discuss both conventional and unconventional photon blockade mechanisms in the strong coupling regime. Moreover, the conventional photon blockade phenomenon would become obvious because the energy-level splitting induced by the strong coupling causes a large transition detuning between single-photon and two-photon states. Hence, to discuss the conventional photon blockade in terms of the energy spectrum of different excitations, we consider the Hamiltonian of the system without the laser driving term, i.e. \(\hat{H}_{\text{ND}} = \sum_{j=1}^{2}(-\Delta_j \hat{a}_j^\dagger \hat{a}_j - \mu_j (\hat{a}_j^\dagger \hat{a}_j)^2 + i \lambda (\hat{a}_j^\dagger)^2 e^{i\theta} - i \lambda \hat{a}_j^2 e^{-i\theta}) + J (\hat{a}_1^\dagger \hat{a}_2 + \hat{a}_2^\dagger \hat{a}_1) \). The locations of CPB can be obtained using the theory of conventional blockade mechanism (resonant transition between the zero and single excitations). Here, we consider the following values [63]: photon hopping coupling $J = 8\kappa$, $\omega_m = 2\pi \times 75 \times 10^6 \text{ Hz}$, $g = 0.2\omega_m$, $\epsilon = 0.02\kappa$ and $\kappa = 2\pi \times 0.15 \times 10^6 \text{ Hz}$. The parameter optimization of the pair of the parameter {\(\Delta, \lambda \)} in the cavity (1) gives the following results \{\(\Delta_{\text{opt}}^{(1)} = -2.4 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(1)} = 1.1 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(1)} = -4.0 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(1)} = -0.8 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(1)} = -6.0 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(1)} = 1.5 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(1)} = -8.0 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(1)} = -0.12 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(1)} = -8.2 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(1)} = -0.02 \times 10^{-6}\omega_m \)\}. Moreover, in the cavity (2) the optimal parameter pairs are \{\(\Delta_{\text{opt}}^{(2)} = -2.4 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(2)} = 0.51 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(2)} = -4.0 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(2)} = -0.80 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(2)} = -5.6 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(2)} = 0.12 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(2)} = -5.9 \times 10^{-2}\omega_m, \lambda_{\text{opt}}^{(2)} = 0.01 \times 10^{-6}\omega_m \), \(\Delta_{\text{opt}}^{(2)} = -8 \times 10^{-2}\omega_m, and \lambda_{\text{opt}}^{(2)} = 0.15 \times 10^{-6}\omega_m \)\}.

We plot in Fig. 4 the equal-time second-order correlation function $g_j^{(2)}(0)$ (\(j = 1, 2 \)) versus the detuning Δ/ω_m for various values of the gain λ. We also make a remark here that the analytical and the numerical solution is obtained by solving master equation (Eq. 24) are the same as shown in this figure. The photon blockade locations are obtained from Fig. 4a for the values $\Delta = -2.4 \times 10^{-2}\omega_m$. The small dips located is associated the CPB mechanism, and the others dips are associated to the UCPB mechanism. We notice that the strong photon antibunching effect obtained under the UCPB mechanism is stronger than one obtained by the CPB mechanism. We remark that a strong antibunching effect is realized when $g_1^{(2)}(0)$ takes small values ($g_j^{(2)}(0) \ll 1$) ($j = 1, 2$). This can be explained by the unconventional photon blockade mechanism.
Fig. 4 Plot of the analytic (solid line) and numerical (dot) results in a double cavities of the equal-time second-order correlation function $g^{(2)}_j(0)$ ($j = 1, 2$) in the strong coupling regime versus the cavity–laser detuning Δ/ω_m for different values of the gain λ, a $\lambda_{\text{opt}}^{(1)} = 1.1 \times 10^{-6} \omega_m$ and b $\lambda_{\text{opt}}^{(1)} = 0.01 \times 10^{-6} \omega_m$, where $J = 8\kappa$ and $g = 0.2\omega_m$. The solid horizontal line delimits the region which represents the photon antibunching effect in the cavity (1) and (2).

Fig. 5 a Plot of the equal-time second-order correlation function $g^{(2)}_1(0)$ versus the gain λ for various values of the optomechanical coupling g with $J = 8\kappa$ and $\Delta = \Delta_{\text{opt}}^{(1)} = -2.4 \times 10^{-2} \omega_m$. b Plot of the equal-time second-order correlation function $g^{(2)}_1(0)$ versus the cavity–laser detuning Δ for various values of the photon hopping coupling strength J with $\lambda_{\text{opt}}^{(1)} = 1.1 \times 10^{-6} \omega_m$ and $g = 0.2\omega_m$. The dashed horizontal line delimits the region which represents the photon antibunching effect in the cavity (1).

We plot in Fig. 5a the equal-time second-order correlation function $g^{(2)}_1(0)$ versus the cavity–laser detuning Δ for various values of the optomechanical coupling g. This figure shows that $g^{(2)}_1(0)$ takes small values when $g = 0.2\omega_m$ in this case a strong photon antibunching effect is achieved in the cavity (1). A strong photon blockade effect occurs for $\Delta = -2.4 \times 10^{-2} \omega_m$ as it is predicted by the parameters optimization when $g = 0.2\omega_m$ with $\lambda = 1.1 \times 10^{-6} \omega_m$. We remark that when $g = 0$ the equal-time second-order correlation function became greater than 1 ($g^{(2)}_1(0) > 1$), i.e. the photon bunching effect for large values of λ. This means that the optomechanical coupling influences the generation of the photon antibunching. We plot in Fig. 5b the equal-time second-order correlation function $g^{(2)}_1(0)$ versus the cavity–laser detuning for different values of a photon hopping coupling J. We remark that a strong photon blockade effect occurs for various values of J and Δ as shown in Fig. 5b. For example, when $J = 8\kappa$ a strong photon antibunching effect is achieved for $\Delta = -2.4 \times 10^{-2} \omega_m$. In
agreement with the parameters optimization when $J = 8\kappa$ with $\lambda = 1.1 \times 10^{-6}\omega_m$, this shows the role of the photon hopping coupling J in the generation of a strong photon antibunching effect.

4 Conclusion

We have discussed a strong photon blockade effect through the analytical and numerical evaluation of the second-order correlation function in a double-cavity optomechanical system. Here the two optical cavities are also coupled through the single-photon hopping process. A degenerate optical parametric amplifier is placed inside each cavity. The first cavity is also driven by a weak classical laser field. We have obtained the conditions for strong photon antibunching effect in each optical cavity for which the second-order correlation function satisfies $g^{(2)}(0) \ll 1$. We have also analysed the photon blockade mechanisms in the weak as well as the strong coupling regimes for the conventional and unconventional photon blockade mechanisms. We have shown that the UCPB is achieved even for the weak coupling regime ($J < \kappa$ and $g \ll \omega_m$), whereas CPB occurs only in the strong coupling regime. We have discussed in detail the effect of the optomechanical coupling strength and the photon hopping coupling on the generation of strong photon antibunching effects. Our present study on the single-photon blockade and its generation in coupled optomechanical systems can be of significant interest for the various applications in quantum information processing and quantum communication.

Acknowledgements M. Asjad has been supported by the Khalifa University of Science and Technology under Award No. FSU-2023-014.

Data Availability All data used during this study are available within the article.

Declarations

Conflict of interest: The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)
2. Xiong, H., Si, L.G.: Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron. 58, 1 (2015)
3. Amazioug, M., Maroufi, B., Daoud, M.: Using coherent feedback loop for high quantum state transfer in optomechanics. Phys. Lett. A 384, 126705 (2020)
4. Amazioug, M., Maroufi, B., Daoud, M.: Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 19, 16 (2020)
5. Amazioug, M., Maroufi, B., Daoud, M.: Creating mirror–mirror quantum correlations in optomechanics. Eur. Phys. J. D 74, 9 (2020)
6. Asjad, M., Tombesi, P., Vitali, D.: Quantum phase gate for optical qubits with cavity quantum optomechanics. Opt. Express 23, 7786 (2015)
7. Singh, S.K., Peng, J., Asjad, M., Mazaheri, M.: Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B 54, 215502 (2021)
8. Amazioug, M., Nassik, M., Habiballah, N.: Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. Eur. Phys. J. D 72, 9 (2018)
9. Teklu, B., Byrnes, T., Khan, F.: Cavity-induced mirror–mirror entanglement in a single-atom Raman laser. Phys. Rev. A 97, 023829 (2018)
10. Asjad, M., Shahzad, M.A., Saif, F.: Quantum degenerate Fermi gas entanglement in optomechanics. Eur. Phys. J. D 67, 1 (2013)
11. Mazaheri, M., Jamasb, S.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. Quantum Inf. Process. 19, 1 (2020)
12. Gebremariam, T., Mazaheri, M., Zeng, Y., Li, C.: Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system. JOSA B 36, 168 (2019)
13. Huang, S., Agarwal, G.S.: Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier. Phys. Rev. A 95, 023844 (2017)
14. Motazedifard, A., Bemani, F., Naderi, M., Roknizadeh, R., Vitali, D.: Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection. New J. Phys. 18, 073040 (2016)
15. Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Khalid, M., Asjad, M.: Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Front. Phys. 11, 1142452 (2023)
16. Ghouabi, R., Gholizadeh, S., Mazaheri, M.: Weak force measurement in bistable optomechanical system. Int. J. Opt. Photon. 9, 19 (2015)
17. Gebremariam, T., Zeng, Y.X., Mazaheri, M., Li, C.: Enhancing optomechanical force sensing via precoupling and quantum noise cancellation. Sci. China Phys. Mech. Astron. 63, 1 (2020)
18. Collett, M.J., Walls, D.F.: Squeezing spectra for nonlinear optical systems. Phys. Rev. A 32, 2887 (1985)
19. Kundu, A., Singh, S.K.: Heisenberg–Langevin formalism for squeezing dynamics of linear hybrid optomechanical system. Int. J. Theor. Phys. 58, 2418 (2019)
20. Wang, Q.: Precision temperature measurement with optomechanically induced transparency in an optomechanical system. Laser Phys. 28, 075201 (2018)
21. Asjad, M., Zippilli, S., Tombesi, P., Vitali, D.: Large distance continuous variable communication with concatenated swaps. Phys. Scr. 90, 074055 (2015)
22. Asjad, M., Qasymeh, M., Eleuch, H.: A local area quantum teleportation network based on an array of electrically activated graphene waveguides. Opt. Express 30, 21016 (2022)
23. Weis, S., Riviere, R., Delleglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330, 1520 (2010)
24. Asjad, M.: Electromagnetically-induced transparency in optomechanical systems with Bose–Einstein condensate. J. Russ. Laser Res. 34, 159 (2013)
25. Singh, S.K., Parvez, M., Abbas, T., Peng, Jia-Xin., Mazaheri, M., Asjad, M.: Tunable optical response and fast (slow) light in optomechanical system with phonon pump. Phys. Lett. A 442, 128181 (2022)
26. Singh, S.K., Asjad, M., Raymond Ooi, C.H.: Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 18 (2022)
27. Qu, Kenan, Agarwal, G.S.: Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Phys. Rev. A 87, 031802 (2013)
28. Asjad, M.: Optomechanically dark state in hybrid BEC-optomechanical systems. J. Russ. Laser Res. 34, 278 (2013)
29. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Strong photon antibunching effect in a double cavity optomechanical system with squeezed driving. Phys. Rev. Lett. 99, 093901 (2006)
30. Asjad, M., Zippilli, S., Vitali, D.: Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Phys. Rev. A 94, 051801 (2016)
31. Rossi, M., Kralj, N., Zippilli, S., Natali, R., Borrielli, A., Pandraud, G., Serra, E., Di, G., Giuseppe, Vitali, D.: Enhancing sideband cooling by feedback-controlled light. Phys. Rev. Lett. 119, 123603 (2017)
32. Asjad, M.: Cavity optomechanics with a Bose–Einstein condensate: normal mode splitting. J. Mod. Opt. 59, 917 (2012)
33. Asjad, M., Saif, F.: Normal mode splitting in hybrid BEC-optomechanical system. Optik 125, 5455 (2014)
34. Singh, S.K., Mazaheri, M., Peng, J.-X., Sohail, A., Gu, Z., Asjad, M.: Normal mode splitting and optical squeezing in a linear and quadratic optomechanical system with optical parametric amplifier. Quantum Inf. Process. 22, 198 (2023)
35. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011)
36. Liao, J.-Q., Nori, F.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Phys. Rev. A 88, 023853 (2013)
37. Singh, S.K., Muninandy, S.V.: Temporal dynamics and nonclassical photon statistics of quadratically coupled optomechanical systems. Int. J. Theor. Phys. 55, 287 (2016)
38. Singh, S.K., Raymond Ooi, C.H.: Quantum correlations of quadratic optomechanical oscillator. J. Opt. Soc. Am. B 31, 2390 (2014)
39. Imamoglu, A., Schmidt, H., Woods, G., Deutsch, M.: Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)
40. Kok, P., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46 (2001)
41. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135 (2007)
42. Grunwald, P., Singh, S.K., Vogel, W.: Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)
43. Singh, S.K.: Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)
44. Singh, S.K.: Optical feedback-induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)
45. Liao, J.-Q., Law, C.K.: Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity. Phys. Rev. A 82, 053836 (2010)
46. Ghosh, S., Liew, T.C.H.: Dynamical blockade in a single-mode bosonic system. Phys. Rev. Lett. 123, 013602 (2019)
47. Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Phys. Rev. A 92, 033806 (2015)
48. Zhu, G.-L., Lü, X.-Y., Wan, L.-L., Yin, T.-S., Bin, Q., Wu, Y.: Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Phys. Rev. A 97, 033830 (2018)
49. Zou, F., Fan, L.-B., Huang, J.-F., Liao, J.-Q.: Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Phys. Rev. A 99, 043837 (2019)
50. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005)
51. Faraon, A., Fushman, I., Englund, D., Stoltz, D.N., Petroff, P., Vuckovic, J.: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859 (2008)
52. Reinhard, A., Volz, T., Winger, M., Badolato, A., Hennessy, K.J., Hu, E.L., Imamoglu, A.: Strongly correlated photons on a chip. Nat. Photon. 6, 93 (2012)
53. Muller, K., Rundquist, A., Fischer, K.A., Sarmiento, T., Lagoudakis, K.G., Kelaita, Y.A., Sanchez Munoz, C., del Valle, E., Laussy, E.P., Vuckovic, J.: Coherent generation of nonclassical light on chip via detuned photon blockade. Phys. Rev. Lett. 114, 233601 (2015)
54. Liew, T.C.H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)
55. Bamba, M., Imamoglu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)
56. Bajcsy, M., Majumdar, A., Rundquist, A., Vuckovic, J.: Photon blockade with a four-level quantum emitter coupled to a photonic-crystal nanocavity. New J. Phys. 15, 025014 (2013)
57. Leonski, W., Tanas, R.: Possibility of producing the one-photon state in a kicked cavity with a nonlinear Kerr medium. Phys. Rev. A 49, R20 (1994)
58. Tian, L., Carmichael, H.J.: Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A 46, R6801 (1992)
59. Hoffmann, A.J., Srivivasan, S.J., Schmidt, S., Spiew, L., Aumentado, J., Türeci, H.E., Houck, A.A.: Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011)
60. Snijders, H.J.: Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018)
61. Vaneph, C., Morvan, A., Aiello, G., Féchant, M., Aprili, M., Gabeli, J., Esteve, J.: Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018)
62. Shen, S., Qu, Y., Li, J., Wu, Y.: Tunable photon statistics in parametrically amplified photonic molecules. Phys. Rev. A **100**(2), 023814 (2019)
63. Wang, D.Y., Bai, C.H., Liu, S., Zhang, S., Wang, H.F.: Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys. **22**, 093006 (2020)
64. Zou, F., Lai, D.G., Liao, J.Q.: Enhancement of photon blockade effect via quantum interference. Opt. Express **28**, 16175–16190 (2020)
65. Shen, H.Z., Zhou, Y.H., Yi, X.X.: Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A **91**, 063808 (2015)
66. Flayac, H., Savona, V.: Unconventional photon blockade. Phys. Rev. A **96**, 053810 (2017)
67. Liu, J.S., Yang, J.Y., Liu, H.Y., Zhu, A.D.: Photon blockade by enhancing coupling via a nonlinear medium. Opt. Express **28**, 18397–18406 (2020)
68. Shen, H.Z., Zhou, Y.H., Liu, H.D., Wang, G.C., Yi, X.X.: Exact optimal control of photon blockade with weakly nonlinear coupled cavities. Opt. Express **23**, 32835–32858 (2015)
69. Zhou, Y.H., Shen, H.Z., Shao, X.Q., Yi, X.X.: Strong photon antibunching with weak second-order nonlinearity under dissipation and coherent driving. Opt. Express **24**, 17332–17344 (2016)
70. Hu, C.S., Huang, X.R., Shen, L.T., Yang, Z.B., Wu, H.Z.: Enhancement of entanglement in distant micromechanical mirrors using parametric interactions. Eur. Phys. J. D **71**, 24 (2017)
71. Hu, C.S., Shen, L.T., Yang, Z.B., Wu, H., Li, Y., Zheng, S.B.: Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Phys. Rev. A **100**, 043824 (2019)
72. Amazioug, M., Daoud, M.: Measure and control of quantum correlations in optomechanics. Eur. Phys. J. D **75**, 178 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.