Some Topological Structures of Fractals and their Related Graphs

Abd El Fattah A. El Atika, Arafa A. Nasefb

aDepartment of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt.
bDepartment of Physics and Engineering Mathematics, Faculty of Engineering, Kafr El Sheikh University, Egypt.

Abstract. The aim of this paper is to introduce a topological model of fractals. Self similar fractals will be approached as inverse limit of finite one dimensional topological spaces with alpha continuous bonding functions. The second approach is to investigate topological graphs in terms nano topological spaces for Lellis Thivagar. From these approximations, the dynamics of Julia sets as a special type of self similar fractals will be studied and some physical properties of fractals through their nano topological graphs will be applied.

1. Introduction and Preliminaries

The Nobel prize 2016 in physics was gifted to three scientists in phase transitions and topological phases of matter, this event has directed the attention to the need of more knowledge about the topology. Topology is a branch of mathematics whose concepts exist not only in almost all branches of mathematics, but also in many real life applications and concerned with all questions directly or indirectly related to continuity. Many topologists suggested topological models in biology [10–12] and in medicine [28].

Graph theory [5, 6, 42] has recently emerged as a subject in its own right as well as being an important mathematical tool an such diverse subjects as operational research, chemistry, sociology and genetics.

A self-similar set is a set can be decomposed into subsets which are similar copies of the whole set. Cantor set, the Koch curve and the Sierpiński gasket are the first known examples of fractal sets. The basic ideas leading to the analysis of self-similar sets were originated in 1946 by Moran [26], and developed by Mandelbrot et al., in numerous papers [3, 23–25, 39, 40] and Hutchinson [13]. Hata [14] investigated the topological structure of self-similar sets and analyzed many classical sets and curves through the notion of self-similarity. El Atik [8] represented some of self-similar fractals by finite topological spaces. Barnsley; Hutchinson et al., [4] established properties of a new type of fractal which has partial self similarity at all scales. Julia sets of a quadratic polynomial has one critical point. Peitgen, Douady and Hubbard [33] studied the polynomial of degree 2 in a complex variable, specifically, \(p_c(z) = z^2 + c \) for \(z \) and \(c \) in \(\mathbb{C} \). For any such polynomial, the filled-in Julia set is defined as the sets of points \(z \) with bounded orbits under iteration. The Julia set is the boundary of the filled-in Julia set and denoted by \(J_c \). Julia set and filled-in Julia set are connected if and only if the only critical point \(0 \) has bounded orbit; otherwise, these sets coincide and are a Cantor set. Kameyama [17] proved that the self-similar sets are homeomorphic to quotient spaces of the symbolic dynamics with some equivalent relations. He studied the topology of the quotient spaces of the

\textit{2010 Mathematics Subject Classification.} Primary 54F15, 54F50, 54D05; Secondary 37B10

\textit{Keywords.} Graphs, \(\alpha \)-open sets, \(\alpha \)-closed sets, \(\alpha \)-Kolmogorov spaces, self-similar fractals, Julia sets, nano topological graph spaces.

Received: 18 March 2019; Revised: 05 August 2019; Accepted: 07 October 2019

Communicated by Biljana Popović

Email addresses: aelatik55@yahoo.com (Abd El Fattah A. El Atik), nasefa50@yahoo.com (Arafa A. Nasef)
symbolic dynamics, which may not be homeomorphic to self-similar sets. Also, Kameyama [18], proved a self-similar set K is homeomorphic to a Julia set if K is embedded in a sphere S^2 such that the dynamics of K can be extended to a postcritically finite branched covering. El Atik [7] et al., studied and investigated some properties of finite Kolmogorov or T_0 spaces with the existence of an ordered relation between their minimal neighborhoods. Sokol [41] gave a sufficient condition for function to be α-starlike function and some of its applications. García-Arenas and Sánchez-Granero [2] introduced and studied the concept of directed fractal structure which is a generalization of the concept of fractal structure. A subset A of X is said to be α-open [29] if $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$. The complement of an α-open set is called α-closed [29]. The family of all α-open sets of X is denoted by $\alpha(X)$. The family of all α-open sets of X containing a point $x \in X$ is denoted by $\alpha(X, x)$. The intersection of all α-closed sets of X containing A is called α-closure [29] of A and is denoted by $\alpha\text{Cl}(A)$. Each open set in a general topological space is α-open and the converse may not be true. An α-boundary [29] of a set U of a space X (Abb. $aB(U))$ is given by $aB(U) = \alpha\text{Cl}(U) - \alpha\text{Int}(U)$.

Definition 1.1. [20] Consider Figure 1. Let U be a nonempty finite set of objects called the universe and R be an equivalence relation on U named the indiscernibility relation. Elements belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$,

(i) The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$, that is $L_R(X) = \bigcup_{x \in U} \{ x : R(x) \subseteq X \}$ where $R(x)$ denotes the equivalence class determined by x.

(ii) The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $H_R(X)$, that is $H_R(X) = \bigcup_{x \in U} \{ x : R(x) \cap X \neq \emptyset \}$.

(iii) The boundary region of X with respect to R is the set of all objects, which can be classified neither as $-X$ nor as not X with respect to R and it is denoted by $B_R(X)$, that is $B_R(X) = H_R(X) - L_R(X)$.

According to Pawlak’s definition, X is called a rough set if $H_R(X) \neq L_R(X)$.

Definition 1.2. [21] Let $G(V, E)$ be a graph, S be a subgraph of G and $R(v)$ be a relation of v in V. Then we define

(i) The lower approximation operation induced by a graph as follows: $L : P(V(G)) \to P(V(G))$ such that $L_R(V(S)) = \bigcup_{v \in V(G)} \{ v : R(v) \subseteq V(S) \}$;
(ii) The upper approximation operation induced by a graph as follows: \(H : P(V(G)) \to P(V(G)) \) such that \(H_R(V(S)) = \bigcup_{\nu \in V(G)} \{ R(\nu) \cap V(S) \neq \emptyset \} \).

(iii) The boundary region is defined as \(B_R(V(S)) = H_R(V(S)) - L_R(V(S)) \).

Definition 1.3. [21] Let \(G(V, E) \) be a graph, \(R(\nu) \) be a relation of \(\nu \) in \(V \) and \(S \) be a subgraph of \(G \). Then \(\tau_R(V(S)) = \{ V(G), \phi, L_R(V(S)), H_R(V(S)), B_R(V(S)) \} \) forms a topology on \(V(G) \) called a nano topology on \(V(G) \) with respect to \(V(S) \).

We call \((V(G), \tau_R(V(S)))\) a nano topological graph space.

Definition 1.4. [27] A connected topological space is said to be tree-like if no two of its points are conjugated, that is, if for any two distinct points in the space there is a third point which separates them.

Definition 1.5. [16] A space \(X \) is said to be a connected ordered topological space (abb. COTS) if for every three point subset \(Y \) in \(X \), there exists \(y \in Y \) such that \(Y \) meets two connected components of \(X - \{ y \} \).

Definition 1.6. [8] If \(|a| = f_0(A) \cap f_1(A) \), there are \(i_k, j_k \in \{0, 1\} \) with
\[
|a| = f_0 \cdot f_i \cdot f_j \cdot f_n(A) \cap f_1 \cdot f_i \cdot f_j \cdot f_n(A) \text{ for } n = 1, 2, \ldots
\]
Then two addresses \(0\hat{a} = 0i_1 \cdots i_n \cdots \) and \(1\hat{b} = 1j_1 \cdots j_n \cdots \) of a point determine the topology of \(A \). For Julia sets, we get \(\hat{a} = \hat{b} \), and so \(\hat{a} \) is said to be a kneading sequence.

Definition 1.7. [8] For a compact(not necessarily completely regular) space \(X \). If \(\sim \) is an equivalence relation on \(X \) defined by \(x \sim y \iff f(x) = f(y) \) for every \(f \in C(X) \) where \(C(X) \) is the set of all continuous functions from \(X \) onto \(\mathbb{R} \). The quotient space \(X/\sim \) called a completely regular modification of \(X \).

Definition 1.8. [30] A function \(f : X \to Y \) is called:
(i) \(\alpha \)-continuous if \(f^{-1}(U) \in \alpha(X) \), for each open set \(U \) in \(Y \).
(ii) \(\alpha \)-open if \(f(V) \in \alpha(Y) \), for each open set \(V \) in \(X \).
(iii) \(\alpha \)-closed if \(f(V) \in \alpha(C(Y)) \), for each closed set \(V \) in \(X \).

In the present work, we suggest a new model of fractals in view point of finite topological spaces by the concept of \(\alpha \)-open sets which introduced by Njastad [29] and the definition of Tellis Thivagar for nano topological spaces [20]. We study upper(lower) \(\alpha \)-continuous multifunctions and its relation with other types of continuous multifunctions. Also, we focus on a self-similar set \(A \) with \(A = A_0 \cup A_1 \) and \(A_0 \cap A_1 \) a singleton, specially, for a tree-like [19, 27] set as a special case fractal structure in the sense that it does not topological circles and give an algorithm which approach these types of fractals in the plane. Also, we represent Julia sets \(J_f \) as the inverse limit of an inverse system which consist of one dimensional topological spaces \(\alpha(X_a) \) with bonding \(\alpha \)-continuous functions. We study the dynamics of \(\alpha(X_a) \) of Julia sets through upper(lower) \(\alpha \)-continuous multifunctions from each space into itself.

2. One dimensional of \(\alpha \)-Kolmogorov spaces

Definition 2.1. [30] A space \(X \) is said to be:
(i) \(\alpha \)-Kolmogorov or \(\alpha T_0 \) if for every \(x, y \in X \), \(x \neq y \), there exist an \(\alpha \)-open set \(U \) of \(X \) such that either \(x \in U \), \(y \notin U \) or \(x \notin U \), \(y \in U \).
(ii) \(\alpha T_2 \) if for every \(x, y \in X \), \(x \neq y \), there exist two disjoint \(\alpha \)-open sets \(U \) and \(V \) of \(X \) such that \(x \in U \), \(y \in V \).

Definition 2.2. In a space \(X \), the minimal \(\alpha \)-neighborhood (\(\alpha \)-nbd) of a point \(x \in X \) is given by \(U_x = \bigcap \{ U_x : x \in U_x \in \alpha(X) \} \). In other words, \(\alpha \)-nbd of a point \(x \) is the smallest \(\alpha \)-open set containing \(x \).
A topological space \(\alpha(X) \) of any space \(X \) is defined by the minimal \(\alpha \)-nbhd of \(\alpha \)-closed points.

Lemma 2.3. Any \(\alpha \)-Kolmogorov space contains at least one singular point.

Proof. Suppose that \(Y \) is an \(\alpha \)-Kolmogorov space with finite number of points less that \(k \) and contains a singular point. Then by induction, we find a space \(X \) with \(k + 1 \) of points. Now, let \(x, y \in X, x \neq y \). Set \(Y = U_x \) and \(y \notin U_y \). Then by hypothesis, \(U_x \) is \(\alpha \)-subspace of \(X \) and contain a singular point. Therefore \(X \) is also contain a singular point. \(\Box \)

Proposition 2.4. Every \(\alpha \)-open set in an \(\alpha \)-Kolmogorov space \(X \) contains at least one singular point.

Proof. Let \(U \in \alpha(X) \). Then \(U \) is an \(\alpha \)-open subspace of \(X \). By Lemma 2.3, we find an isolated point \(x \) of \(U \) in \(U \). Since \(U \) is an \(\alpha \)-open in \(X \), then \(x \) is an isolated point in \(X \). \(\Box \)

Lemma 2.5. Let \(X = C \cup V \) in which every \([c] \subseteq C \) is an \(\alpha \)-closed and \([v] \subseteq V \) is an \(\alpha \)-open. Then each of \(C \) and \(V \) is \(\alpha \)-discrete subspace of \(X \).

Proof. Since \(C \) is an \(\alpha \)-closed subspace of \(X \), then each \([c] \subseteq C \) is an \(\alpha \)-closed point in \(C \). Then \(C - [c] \) is an \(\alpha \)-closed subset in \(C \) and so \([c] \) is an \(\alpha \)-open point in \(C \). Therefore \(C \) is an \(\alpha \)-discrete subspace. Also, \(V \) is an \(\alpha \)-discrete in the same manner. \(\Box \)

Theorem 2.6. In an \(\alpha \)-Kolmogorov space \(X \), the following are equivalent:

(i) \(\dim X \leq 1 \),

(ii) Every singleton in \(X \) is either \(\alpha \)-open or \(\alpha \)-closed.

Proof. (i)\(\Rightarrow \) (ii): Let \(X \) be an \(\alpha \)-Kolmogorov space. By Lemma 2.3, \(X \) has an \(\alpha \)-open point say \(x_0 \) and \(U_{x_0} = \{x_0\} \). Since \(\dim X \leq 1 \), then \(\dim aB(\{x_0\}) = 0 \) and so \(aB(\{x_0\}) \) is \(\alpha \)-discrete. Then each \(y_0 \in aB(\{x_0\}) \) is an \(\alpha \)-closed in \(aB(\{x_0\}) \). Since \(aB(\{x_0\}) \) is an \(\alpha \)-closed in \(X \), then \(\{y_0\} \) is so in \(X \). Set \(X' = X - aCl(\{x_0\}) \) which is an \(\alpha \)-open \(\alpha \)-Kolmogorov subspace of \(X \). By Proposition 2.4, \(X' \) has an \(\alpha \)-open point set say \(U_{x_0} = \{x_1\} \) which is also \(\alpha \)-open in \(X \). Also \(\dim aB(\{x_1\}) = 0 \), then \(aB(\{x_1\}) \) is an \(\alpha \)-discrete. So each \(y_1 \in aB(\{x_1\}) \) is an \(\alpha \)-closed in \(aB(\{x_1\}) \). Then \(\{y_1\} \) is an \(\alpha \)-closed in \(X \). Put \(X'' = X - aCl(\{x_0, x_1\}) \). By continue, in the same manner, we prove that each singleton is either \(\alpha \)-open or \(\alpha \)-closed.

(ii)\(\Rightarrow \) (i): suppose that each singleton in \(X \) is either \(\alpha \)-open or \(\alpha \)-closed. By Lemma 2.5, we have an \(\alpha \)-discrete subspaces of \(X \). So the dimension of each subspace is less than 1 and hence \(\dim X \leq 1 \). \(\Box \)

3. Mutual relationships

Definition 3.1. [31] A multifunction \(F : X \to Y \) is said to be:

(i) upper \(\alpha \)-irresolute at a point \(x \in X \) if for each \(\alpha \)-open set \(V \) containing \(F(x) \), there exists \(U \in \alpha(X, x) \) such that \(F(U) \subseteq V \).

(ii) lower \(\alpha \)-irresolute at a point \(x \in X \) if for each \(\alpha \)-open set \(V \) such that \(F(x) \cap V \neq \emptyset \), there exists \(U \in \alpha(X, x) \) such that \(F(u) \cap V \neq \emptyset \) for every \(u \in U \).

(iii) upper (lower) \(\alpha \)-irresolute if \(F \) has this property at every point of \(X \).

Definition 3.2. A multifunction \(F : X \to Y \) is said to be:

(i) upper precontinuous [35] (resp. upper quasi continuous [36], upper \(\alpha \)-continuous [37]), upper \(\beta \)-continuous ([38], [37]) if for each \(x \in X \) and each open set \(V \) of \(Y \) containing \(F(x) \), there exists \(U \in PO(X, x) \) (resp. \(U \in SO(X, x) \), \(U \in \alpha(X, x) \), \(U \in \beta(X, x) \)) such that \(F(U) \subseteq V \).

(ii) lower precontinuous (resp. lower quasi continuous, lower \(\alpha \)-continuous, lower \(\beta \)-continuous) if for each \(x \in X \) and each open set \(V \) of \(Y \) such that \(F(x) \cap V \neq \emptyset \), there exists \(U \in PO(X, x) \) (resp. \(U \in SO(X, x) \), \(U \in \alpha(X, x) \), \(U \in \beta(X, x) \)) such that \(F(u) \cap V \neq \emptyset \) for every \(u \in U \).
Example 3.4. Let $X = \{a, b, c, d\}$ and $Y = \{1, 2, 3\}$. Define a topology $\tau = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$ on X and a topology $\sigma = \{\phi, Y, \{1\}\}$ on Y. A multifunction $F : (X, \tau) \to (Y, \sigma)$ is defined as follows:

$$F(x) = \begin{cases}
\{1\}, & \text{if } x = a; \\
Y, & \text{if } x = b \text{ or } c; \\
\{1, 2\}, & \text{if } x = d.
\end{cases}$$

It can be easily observed that F is upper α-continuous. But F is not upper α-irresolute, since $\{1, 2\} \in \sigma^a$ while $F^+(\{1, 2\}) = \{a, b\}$ is not α-open in (X, τ).

Example 3.5. Let $X = \{a, b, c\}$ and $Y = \{y : y \in [0, 1, 0, 1, -2]\}$. Define a topology $\tau = \{\phi, X, \{b\}, \{c\}, \{a, b, c\}\}$ on X and a topology $\sigma = \{\phi, Y, \{0, 1, -1, -2\}\}$ on Y. Consider the following multifunction $F : (X, \tau) \to (Y, \sigma)$

$$F(x) = \begin{cases}
\{0\}, & \text{if } x = a; \\
\{1, -1\}, & \text{if } x = b; \\
\{2, -2\}, & \text{if } x = c.
\end{cases}$$

Then F is upper β-continuous, but not upper precontinuous, since $[0, 1, -1, -2] \in \sigma$ but $F^+(\{0, 1, -1, -2\}) = \{a, b\}$ is not preopen in (X, τ).

Example 3.6. Let X and Y be as in Example 3.5 with two topologies $\tau = \{\phi, X, \{b\}, \{c\}, \{a, b, c\}\}$ on X and $\sigma = \{\phi, Y, \{0, 1, -1, -2\}\}$ on Y. Define a multifunction $F : (X, \tau) \to (Y, \sigma)$ as shown in Example 3.5. one can deduce that F is upper precontinuous but not upper α-continuous.

Example 3.7. Let X, Y and τ be as in Example 3.4. Define a topology $\sigma = \{\phi, Y, \{1, 3\}\}$ on Y. A multifunction $F : (X, \tau) \to (Y, \sigma)$ is defined as follows: $F(a) = \{1\}, F(b) = \{3\}, F(c) = \{2, 3\}$ and $F(d) = \{1, 2\}$. Then F is upper β-continuous but not upper quasi-continuous because $\{1, 3\} \in \sigma$ but $F^+(\{1, 3\}) = \{a, b\}$ is not open in (X, τ).

4. Finite topological structures of fractals

We consider each point of the topology σ of Julia sets as in figure 2 as a kneading sequence $\hat{\sigma}$ which is the set of all $0 - 1$ sequences and represents in the following definition. We focus on a self-similar set A with $A = A_0 \cup A_1$ and $A_0 \cap A_1$ is a singleton, specially, for a tree-like [19, 27] set in the sense that it does not topological circles.

Definition 4.1. Let $X = \{0, 1\}^\mathbb{N}$ be a space of kneading sequences with product topology. Each piece of Julia sets J_c can approximate by an α-subspace $X_\alpha = \{0, 1\}^\mathbb{N} \cup (\bigcup_{k < \alpha} \{0, 1\}^k \times \{a\})$, where a denote to a connecting α-closed point, such that

(i) Each $u \in \{0, 1\}^\mathbb{N}$ is an α-open point.
Figure 2: Some types of Julia sets[8]

(ii) Each $v = v_1v_2 \cdots v_k a \in \bigcup_{k<n}[0,1]^k \times \{a\}$ is an α-closed point with a minimal α-nbd. With a bonding α-continuous function $h_n : X_n \rightarrow X_{n-1}$ such that

$h(u_1u_2 \cdots u_n) = u_1u_2 \cdots u_{n-1}$

$h(v_1v_2 \cdots v_m a) = v_1v_2 \cdots v_m$, $m = n - 1$

$h(v_1v_2 \cdots v_m a) = v_1v_2 \cdots v_m a$, $m < n - 1$

The one dimensional finite topological spaces $\alpha(X_i)$, for each i, can be illustrated as a structure similar to trees consisting of α-open and α-closed points.

Definition 4.2. An α-continuous function $f : X \rightarrow Y$ is an α-monotone if $f^{-1}(\{y\})$ is connected for each $y \in Y$.

Theorem 4.3. Let J_c be a tree-like connected Julia set, for each complex number $c \in \mathbb{C}$. Then for each $n \in \mathbb{N}$, there exists a space X_n with an α-continuous function $h_n : X_{n+1} \rightarrow X_n$ defined by

(i) $h_n(x_{n+1}) = x_n$.

(ii) Each of h_n is an α-monotone relative X_{n+1}.

for each point $x_n \in X_n$, and the inverse limit $\lim_{\leftarrow} X_n$ is a completely regular modification to J.

Proof. By Definition 4.1, set $X_n = [0,1]^n \cup \bigcup_{j<n} [0,1]^j \times \{a\}$. Now for each $n \in \mathbb{N}$, the base of a topology $\alpha(X_n)$ is given by the smallest α-nbd of each point $x_n \in X_n$. The inverse limit $\lim_{\leftarrow} X_n$ is the set of all strings $\tilde{u} = u_1u_2 \cdots$ which correspond to either $\forall a = h_a(\forall a) = h_2(h_a(\forall a))$ or $u_1 = h_2(u_1u_2) = h_3(u_1u_2u_3) = \cdots$. Then the topology of $\lim_{\leftarrow} X_n$ is generated by the base of α-open sets \tilde{U} which is given by all α-open sets $U \subset X_k$, for $k = 1,2,3,\cdots$ with minimal α-nbd. So \tilde{U} consists of the all strings with initial part in U and there is some strings \tilde{u} and $\forall a$ which can not be separated by two disjoint α-open sets in the sense of αT_2 spaces. By Definition 1.7, these points can be identified. Therefore the points in $\lim_{\leftarrow} X_n$ having the same α-nbd mapped onto the same piece in J_c. Hence J_c is a completely regular modification of $\lim_{\leftarrow} X_n$. \Box

Now, we study the dynamics α-Kolmogorov spaces and give some examples.
Definition 4.4. [22] A function \(f : X \to Y \) is called:

(i) \(\alpha \)-irresolute if \(f^{-1}(U) \in \alpha(X) \), for each \(\alpha \)-open set \(U \) in \(Y \).

(ii) \(\alpha \)-open if \(f(V) \in \alpha(Y) \), for each \(\alpha \)-open set \(V \) in \(X \).

(iii) \(\alpha \)-closed if \(f(V) \in \alpha(C(Y)) \), for each \(\alpha \)-closed set \(V \) in \(X \).

Definition 4.5. Two spaces \(X \) and \(Y \) are \(\alpha \)-homeomorphic if there exists a bijective, \(\alpha \)-irresolute and \(\alpha \)-open function \(f : X \to Y \).

Each homeomorphic space is \(\alpha \)-homeomorphic, but the converse may not be true, in general.

Example 4.6. Let \(X = \{1, 2, 3, 4, 5, 6, 7, 8\} \) and \(Y = \{a, b, c, d, x, y, e, f\} \) be spaces of vertices in trees \(G_1 \) and \(G_2 \), respectively, such that \(\text{deg}[3] = \text{deg}[4] = \text{deg}[x] = \text{deg}[y] = 3 \). The function \(h : X \to Y \) is an \(\alpha \)-homeomorphism when either \(h(3) = x, h(4) = y \) or \(h(3) = y, h(4) = x \). While there is no \(\alpha \)-homeomorphism \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) such that \(f(V) = V \) where \(V \) is the set of vertices. Because of the embedding of trees \(G_1 \) and \(G_2 \) in \(\mathbb{R}^2 \) by connecting vertices 1, 7 in \(G_1 \) and \(a, f \) in \(G_2 \), respectively. So the topological structure for the two planar graphs will be denote by \(X \) and \(Y \). Therefore there is no \(\alpha \)-homeomorphism \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) with \(f(X) = X' \).

Lemma 4.7. [27] Every tree-like Julia sets can be embedded into \(\mathbb{R}^2 \).

Corollary 4.8. Any two graphs are \(\alpha \)-homeomorphic if they obtained from the same graph by adding vertices of degree 2 into edges.

Theorem 4.9. Each tree can be \(\alpha \)-homeomorphic to some subset in the plane.

Proof. Let \(G \) be an arbitrary tree with \(n \) vertices. It is clear that any vertex is a point in the plane and any edge can be view as an arc in the plane. Now by induction assume that every tree with \(k \) vertices can be embed into a subset of the plane and \(T \) is a tree with \(k + 1 \) vertices. There exists at least a vertex \(v_k \) with \(\text{deg}(v_k) = 1 \) and its edge is \(v_k v_{k+1} \). By the connectedness of \(T \) and each path must be finish with such vertex after at most \(k \) proceeds, then we remove the edge \(v_k v_{k+1} \) from \(T \). By assumption, the remainder of \(T \) is a subset in the plane. We add an edge, by Corollary 4.8, it does not affect on graph’s topology which is a subset in \(\mathbb{R}^2 \).

In the following, we approximate the quadratic tree-like Julia sets using the concepts of upper (lower) \(\alpha \)-continuous multifunctions.

Theorem 4.10. For a topology \(\alpha(X_n) \) of Julia sets \(X_n \). If a multifunction \(F : X_n \to X_n \) defined by:

(i) \(F(u_1 u_2 \cdots u_n) = \{u_2 \cdots u_n, u_2 \cdots u_n a, u_2 \cdots u_n 1\} \),

(ii) \(F(v_1 v_2 \cdots v_k a) = v_2 v_3 \cdots v_k a \) for \(k < n \).

Then \(F \) is lower \(\alpha \)-continuous multifunction.

Proof. Let each \(\alpha \)-open point \(u = u_1 u_2 \cdots u_n \) has a minimal \(\alpha \)-nbd \(U_u = \{u\} \). Then \(F(u) = \{u', 0, u' a, u' 1\} \) where \(u' = u_2 \cdots u_n \). Then for each \(x \in F(u), F(u) \cap \{x\} \neq \phi \). Therefore \(F(u) \cap U_u \neq \phi \). Now for every \(v a \in X_n \) where \(v = v_1 \cdots v_n \), \(U_{va} = \{0 v_1 v_2 \cdots v_n, 0, v_1 v_2 \cdots v_n a, v_1 v_2 \cdots v_n 1\} \) and \(F(U_{va}) = F(\{0 v_1 v_2 \cdots v_n\}) \cup F(va) \cup F(v_1 v_2 \cdots v_n) \). Therefore \(F(U_{va}) = \{v_1 0 v_2 0 v_3 0 \cdots 0 v_n 0, v_1 0 v_2 0 v_3 0 \cdots 0 v_n 1, v_1 0 v_2 0 v_3 0 \cdots 0 v_n a, v_1 0 v_2 0 v_3 0 \cdots 0 v_n 1\} \). Since \(y \in F(U_{va}) \), then \(F(U_{va}) \cap \{y\} \neq \phi \). So \(F(U_{va}) \cap U_{vy} \neq \phi \) for each \(y \in F(U_{va}) \). This can also be proved for only \(a \in X_n \). Therefore \(F \) is lower \(\alpha \)-continuous multifunction.

A multifunction in Theorem 4.10 is not upper \(\alpha \)-continuous. This can be shown in the following example.

Example 4.11. Consider an \(\alpha \)-closed point \(a \in X_3 \). Let \(F : X_3 \to X_3 \) define as in Theorem 4.10. Since \(F(a) = \{001\} \), \(U_{001} = \{000\} \) and \(U_a = \{000, a, 100\} \), then \(F(U_a) = F(000) \cup F(a) \cup F(100) = \{000, 00 a, 001\} \). Therefore \(F(U_a) \cup \bigcup_{y \in F(a)} U_y \). Then \(F \) is not upper \(\alpha \)-continuous.
5. An approach of fractals by nano topological graphs

A tree is a simple graph that contains no cycles [42]. In any tree a vertex v is said to be an end vertex if $\deg v = 1$. The edge which has an end vertex is called a branch. Self-similar sets consist of pieces which are similar to each other and similar to the whole structure. Each of which is a compact metric space, say A, consists of pieces A_i which are similar to each other. In other words, $A = A_1 \cup A_2 \cup \cdots \cup A_m$ assigned with a homeomorphism functions $f_i : A \to A_i = f_i(A)$. This setting leads to smaller and smaller parts, so the same maps can be applied on these smaller pieces by other homeomorphism functions $f_j : A_i \to f_j(A_i) = f_j(A_i)$, where $A_i \subseteq A$ and $A_j \subseteq A_j$, where $i, j \in \mathbb{N}$. In Figures 2, there are some fractal structures with one connected point. In the following, we write the following algorithm which explain how to create nano topological graphs $(G_n, \tau_R(V(G_{n-1})))$ on self similar fractals through the definition of Lellis Thivagar.

Example 5.1. If we take $V(S_0) = \{v_1\}$ in G_1, then $R(v_1) = \{v_1, v_2\}$ and $R(v_2) = \{v_1, v_2\}$. So $L_R(V(S_0)) = \phi$, $H_R(V(S_0)) = V(G_1)$ and $B_R(V(S_1)) = V(G_1)$. Therefore a nano topology induced by a subgraph S_0 is $\tau_R(V(S_0)) = \{\phi, V(G_1)\}$. It is clear that a subgraph S_0 is homomorphic to any graph with only one vertex.

Example 5.2. If we take $V(S_1) = \{v_{11}, v_{21}\}$ in G_2, then $R(v_{12}) = \{v_{12}, v_{11}\}$, $R(v_{11}) = \{v_{12}, v_{11}, v_{21}\}$, $R(v_{21}) = \{v_{11}, v_{21}, v_{22}\}$ and $R(v_{22}) = \{v_{21}, v_{22}\}$. So $L_R(V(S_1)) = \phi$, $H_R(V(S_1)) = V(G_2)$ and $B_R(V(S_1)) = V(G_2)$. Therefore a nano topology induced by a subgraph S_1 is $\tau_R(V(S_1)) = \{\phi, V(G_2)\}$. It is clear that a subgraph S_1 is homomorphic to G_1.

Observation 5.3. From Example 5.1 and Example 5.2, we observe that the induced topologies coincide with a Pawlak rough topology.

Example 5.4. If we take $V(S_2) = \{v_{121}, v_{111}, v_{211}, v_{221}\}$ in G_2, then $R(v_{111}) = \{v_{111}, v_{121}, v_{112}, v_{212}\}$, $R(v_{211}) = \{v_{111}, v_{211}, v_{221}, v_{212}\}$, $R(v_{121}) = \{v_{121}, v_{121}, v_{211}, v_{222}\}$, $R(v_{221}) = \{v_{121}, v_{221}, v_{222}, v_{211}\}$, $R(v_{112}) = \{v_{112}, v_{111}, v_{212}, v_{211}\}$, $R(v_{212}) = \{v_{212}, v_{211}, v_{222}, v_{211}\}$ and $R(v_{222}) = \{v_{212}, v_{221}, v_{222}\}$. So $L_R(V(S_2)) = \{v_{121}, v_{211}, v_{221}, v_{211}\}$, $H_R(V(S_2)) = V(G_3)$ and $B_R(V(S_2)) = \{v_{111}, v_{121}, v_{212}, v_{221}, v_{221}\}$. Therefore the nano topology induced by a subgraph S_2 is $\tau_R(V(S_2)) = \{\phi, V(G_3), [v_{121}, v_{212}, v_{221}]\}$. It is clear that a subgraph S_2 is homomorphic to G_3.

6. Dynamics of Julia sets via its topological structures

The branching structure of Julia sets studied by Penrose in [32]. El-Atik [8] defined a prefix tree T of some kneading sequences as $\sigma_1 = 00100011$, $\sigma_2 = 010011$ and $\sigma_3 = 01000011$ and gave their topological space structures. There is an orientation preserving at a definite point in the topology of σ_1 and σ_3. While there is no an orientation preserving at a definite point of σ_2.

The rotation system is used for embedding of each approximation space G_n in the plane. This depend on the branching point in each approximation of degree more than 3. The following proposition give the necessary condition for existence of rotation system at arbitrary approximation.

Definition 6.1. A surjective function $f : X \to Y$ between two compact spaces X and Y is said to be local α-homeomorphism if for each $x \in X$, there exists an α-open α-nbd U of x such that $f(U)$ is α-open α-nbd.

Definition 6.2. Given a kneading sequence $\hat{\sigma} = \sigma_1\sigma_2\cdots$, a prefix tree T of $\hat{\sigma}$ with a vertex set $N = \{1, 2, 3, \cdots\}$ construct as: Each point n is the initial point of an edge. If $\sigma_{n+1} = 1$, the endpoint of the edge is $n + 1$. If $\sigma_{n+1} = 0$, set the maximal k such that $\sigma_k = \sigma_{n+1}\cdots\sigma_{n+k}$ and $n + k + 1$ will be the endpoint of the edge.

Proposition 6.3. If G_{n-1} has a rotation system, then there exists a unique rotation system on G_n.

A. A. El-Atik, A. A. Nasef / Filomat 34:1 (2020), 153–165
The degree of a vertex \(x \) for graphs is preserved under a homomorphism.

Prove. Let \(n \) be the number of elements in \(G_{n-1} \). Define a relation \(R' \) on \(G_{n-1} \) by \(sR't \) if and only if \(isR'it \) for every \(s, t \in G_{n-1} \) and \(i \in \{0, 1\} \). Consider \(G_n = G_{n0} \cup G_{n1} \), \(G_{n0} \cap G_{n1} = \{a\} \) such that \(G_{n0} = \{0s : s \in G_{n-1}\} \) and \(G_{n1} = \{1s : s \in G_{n-1}\} \). This means \(G_n \) consists of two similar copies of \(G_{n-1} \) such that \(G_{n1} \) is the rotation of \(G_{n0} \) at \(a \) with degree \(\pi \). Therefore \(G_n \) has \(2n \) elements. Describe the rotation system of \(G_n \) as follows: begin at \(\hat{a} \) in \(G_{n-1} \) and walk through the edges in counter-clockwise sense. If the point \(\hat{a} \) is of degree \(2 \), then the walk will be in the direction of the endpoint. Secondly, begin with \(0\hat{a} \) in \(G_n \) in the same counter-clockwise sense of \(G_{n-1} \). Define \(\sigma : G_n \rightarrow G_{n-1} \) by \(\sigma(0s) = s \forall s \in G_n \) and \(i \in \{0, 1\} \). Since \(\sigma(0\hat{a}) = \sigma(1\hat{a}) = \sigma(a) = \hat{a} \), then \(\sigma^{-1}(0\hat{a}, a, 1\hat{a}) = \hat{a} \). When we reach to \(0\hat{a} \) in the first part of \(G_n \), we begin at \(1\hat{a} \) in the second part. Continue in the same manner is completely define the rotation system of \(G_n \).

Theorem 6.4. The number of disjoint branches at \(\sigma_i \) in a prefix tree \(T \), for some \(i \), is the degree of \(\sigma \) in some topological space \(a(X_i) \) structure.

Proof. Let \(\hat{\sigma} = \sigma_1| \sigma_2| \cdots | \sigma_n \) be a kneading sequence. Consider at \(\sigma_i \) there exists \(k \) disjoint branches. By the branching structure, \(\hat{\sigma}_i = \sigma_1| \sigma_2| \cdots | \sigma_i \in \{0, 1\}^i \subseteq X_i \) which is an \(\alpha \)-open point in \(X_i \). The \(\alpha \)-closed points which are the \(\alpha \)-nbds of \(\hat{\sigma}_i \) can be defined from the definition of \(\alpha \)-nbds in each \(a(X_i) \), the point \(\sigma_1| \sigma_2| \cdots | \sigma_i-1 | a \) corresponds to the edge which starts with \(i \). The other \(\alpha \)-nbds has the form \(\sigma_1| \sigma_2| \cdots | \sigma_{j-1} | a \) if \(\sigma_{j+1} | \sigma_{j+2} \cdots | \sigma_i \) each of these \(\alpha \)-nbds correspond to the edge which starts in \(j \) and goes to some \(k \geq j + 1 \).

Theorem 6.5. Let \(F : \alpha_1(X_i) \rightarrow \alpha_2(X_i) \), for some approximation structure \(X_i \), of Julia sets \(J_i \). Then all embeddings of \(F \) can not be extended to an \(\alpha \)-continuous function. More generally, \(F \) can not be extended to local \(\alpha \)-homeomorphism in \(R^2 \).

Proof. By Lemma 6.8, each Julia set has embedding in the plane, we embed it by the kneading sequence \(\hat{\sigma} \) which consist of branching points. By Definition 6.2, we generate the set of \(\alpha \)-nbds of a branching point \(0\hat{\sigma}_i \). By similarity of embeddings, the degree of the branches of \(1\hat{\sigma} \) has the same kind of branches \(0\hat{\sigma} \). We assume that the rotation of \(\alpha \)-nbds of all branching points is in anticlockwise sense. In a prefix tree \(T \), we begin with a branching point \(0\hat{\sigma}_1 \), in some \(a(X_i) \). By recursion, we continue to generate more branching points and their \(\alpha \)-nbds until having one embedding with \(0\hat{\sigma}_i \) of degree \(\leq 2 \) such that \(l < k \). Now it is enough to investigate a local \(\alpha \)-homeomorphism function \(F : \alpha_1(X_i) \rightarrow \alpha_2(X_i) \) for these embeddings. Let \(F_0 \) and \(F_1 \) be the inverse branches of the doubling map or quadratic map for Julia sets and \(E_{\hat{\sigma}} \) be a subspace of \(a(X_i) \) which consists of a branching point and its \(\alpha \)-nb. Define a function \(h = F_{\hat{\sigma}1| \sigma_2| \cdots | \sigma_i} = F_{\sigma_1}F_{\sigma_2} \cdots F_{\sigma_i} \) from a branch \(E_{\hat{\sigma}} \) onto a branch \(E_{\hat{\sigma}_i} \) of each \(x \in E_{\hat{\sigma}_i} \). \(h \) is an \(\alpha \)-homeomorphism, since the branching points of the same degree. Then \(h \) is a graph \(\alpha \)-homeomorphism. We extend \(h \) : \(R^2 \rightarrow R^2 \) such that \(h(E_{\hat{\sigma}}) = E_{\hat{\sigma}_i} \). There are two cases: Case 1, if the rotation system of images of \(E_{\hat{\sigma}} \) have the same sense, then \(h \) is still \(\alpha \)-homeomorphism. Case 2, if images have reverse direction, then \(h \) is not \(\alpha \)-homeomorphism. In case 2, \(F \) is not local \(\alpha \)-homeomorphism. Therefore in Case 2, the kneading sequence can not be realized a tree-like Julia set in the plane.

We use our given approximations to some physical properties of fractal structures via topological properties of its topological space induced by its graph. In the following, we give some characterizations simple graphs, specially, in trees.

Proposition 6.6. (i) The homomorphism between two trees maps endpoints into endpoints and each branching point of degree \(\geq 3 \) into branching point of the same degree.

(ii) The degree of a vertex \(x \) for graphs is preserved under a homomorphism.

Proof. (i) Let \(f : G_1 \rightarrow G_2 \) be a homomorphism function between graphs \(G_1 \) and \(G_2 \). Then for every a point \(x \in G_1 \) and a relation \(R(f(x)) \) of \(f(x) \). By continuity condition, there exists a relation \(R(x) \) of \(x \) in \(G_1 \) such that \(f(R(x)) \subseteq R(f(x)) \). Then \(R(x) \) and \(f(R(x)) \) are homomorphic subgraphs. Also, \(R(x) \setminus \{x\} \) and \(f(R(x)) \setminus \{f(x)\} \) are also homomorphic subgraphs and each of them have the same number of components. That means \(x \) and \(f(x) \) have the same number of degree.
(ii) Let \(f : G_1 \rightarrow G_2 \) be a homeomorphism and for \(x \in G_1 \). Since \(f \) is homomorphism, then there exists \(R(x) \) with \(f(R(x)) = R(f(x)) \). Then \(R(x) \) and \(f(R(x)) \) are homeomorphic subgraphs. That means \(R(x) - \{x\} \) and \(f(R(x)) - \{f(x)\} \) are also homeomorphic subgraphs and so they must have the same number of components.

From Proposition 6.6, one can deduce that any two graphs are homomorphic if they can made isomorphic by inserting (contracting) vertices of degree 2 into edges. Also, if any graph has no vertices of degree 2, then the homomorphic is a graph isomorphic.

Proposition 6.7. Every tree is homomorphic to a subspace of the topology on \(\mathbb{R}^2 \).

Proof. We use the mathematical induction to prove this theorem. Let \(T \) be a tree with \(n \) vertices. The theorem is true for \(n = 1 \), for any vertex is a point in the plane. Also, at \(n = 2 \) give an edge which can be marked as an arc in the plane. Assume that every tree with \(k \) vertices embed in a subspace of \(\mathbb{R}^2 \). Now consider a tree \(T \) with \(k + 1 \) vertices. Since there exists at least a vertex \(v_k \) of degree 1 with an edge \(v_k v_{k+1} \). This vertex must be exist since every tree is connected and each path must finish with such vertex after at most \(k \) steps. We remove the edge \(v_k v_{k+1} \) from \(T \). By assumption, the remaining is a subspace of \(\mathbb{R}^2 \). Finally, we add an edge to this embedding does not change the graph’s topology and give also a subspace of \(\mathbb{R}^2 \).

Therefore the theorem is true for all \(k \in \mathbb{N} \).

Lemma 6.8. Every self similar structure \(J \) can be embedded into \(\mathbb{R}^2 \) through a nano topological spaces which defined on it.

Proof. It is straightforward through Propositions 6.6 and 6.7.

Theorem 6.9. Let \((V(G_{n-1}), \tau_k(V(G_{n-1}))) \) be a nano topological graph induced by a subgraph of \(V(G_n) \). Let \(F : V(G_n) \rightarrow V(G_n) \). Then all embeddings of \(F \) can be extended to a continuous function. More generally, \(F \) can not be extended to a local homomorphism.

Proof. By Lemma 6.8, each self similar structure \(J \) can be embedded into \(\mathbb{R}^2 \) through a nano topological spaces trees which consist of branching points. We evaluate the set of relations of each branch point and assume the rotation of all branching points is in anticlockwise sense. Begin with a branching point, say, \(v_{i_1i_2\cdots i_m} \) in some \(G_n \) generated by algorithm in Section 7. By recursion, we continue to generate more branching points and their relations until having one embedding with \(v_{i_1i_2\cdots i_m} \) in \(G_n \) of degree \(\leq 2 \) such that \(m < n \). This means there are two similar subspaces in \(G_n \), each of them is homeomorphic to \(G_{n-1} \). Each topology on \(G_n \) is topologically homeomorphic with a nano topological graph of \(V(G_n) \). Now, we find a local homeomorphism function \(F : V(G_n) \rightarrow V(G_n) \), for these approximation structures \(G_n \). Let \(F_1(v_{i_1i_2\cdots i_m}) \) and \(F_2(v_{i_1i_2\cdots i_m}) \), where \(i_1i_2\cdots i_m \in \{1, 2\}^m \) are the inverse branches of the doubling map and \(R(v_{i_1i_2\cdots i_m}) \) is a subspace of \(V(G_n) \). Define a function \(h = F_1 \circ F_2 \circ \cdots \circ F_k \) from a branch \(R(v_{i_1i_2\cdots i_m}) \) onto a branch \(R(v_{i_1i_2\cdots i_m}) \) defined by \(h(x) = F_1(x) = F_2(x) = \cdots = F_k(x) \) for each \(x \in R(v_{i_1i_2\cdots i_m}) \). If the rotation of images of \(R(v_{i_1i_2\cdots i_m}) \) have the same sense, then \(h \) is still homeomorphism. Otherwise, if images have reverse direction, then \(h \) is not a homeomorphism.

Corollary 6.10. \(G_i \) and \(G_j \) are isomorphic graphs if and only if their nano topological graphs of \(V(G_i) \) and \(V(G_j) \) are homeomorphism for \(i, j \in \mathbb{N} \).

Proof. Clearly by Theorem 6.9.

Observation 6.11. We observe that if a self similar fractal has a rotation, then fourth approximation of \(G_4 \) will be \(G_5 \) as shown in Figure 3. It is clear that \(G_4 \) is homomorphic to \(G_5 \).
7. Algorithm

For finite topological spaces and nano topological spaces, we introduce the following algorithm.

Step (1): Represent a fractal part A_1 with a vertex v_1 and part A_2 with v_2. The connected point between A_1 and A_2 will be represented by an edge v_1v_2. This can be shown in a Figure 4, where $V(G_1) = \{v_1, v_2\} = \bigcup\{v_i : i \in \{1, 2\}\}$ and $|E(G_1)| = |V(G_1)| - 1 = 1$.

Step (2): Part A_1 is divided into similar parts A_{11} and A_{12}. We represent A_{11} with v_{11} and A_{12} with v_{12}. Connect between v_{11} and v_{12} by a vertex $v_{11}v_{12}$. By a similar way, represent A_{21} and A_{22} with vertices v_{21} and v_{22} and connect them by $v_{21}v_{22}$ as shown in Figure 4, where $V(G_2) = \{v_{11}, v_{12}, v_{21}, v_{22}\} = \bigcup\{v_{i_1i_2} : i_1, i_2 \in \prod\{1, 2\}\}$ and $|E(G_2)| = |V(G_2)| - 1 = 3$.
Step (3): Part A_{11} is divided into similar parts A_{111} and A_{112}. We represent A_{111} with v_{111} and A_{112} with v_{112}. Connect between v_{111} and v_{112} by a vertex $v_{111}v_{112}$. Also, represent A_{121} and A_{122} with vertices v_{121} and v_{122} and connect them by $v_{121}v_{122}$. By a similar way, part A_{21} is divided into similar parts A_{211} and A_{212}. We represent A_{211} with v_{211} and A_{212} with v_{212}. Connect between v_{211} and v_{212} by a vertex $v_{211}v_{212}$. This can be shown in Figure 4, where $V(G_3) = \{v_{111}, v_{112}, v_{121}, v_{122}, v_{211}, v_{212}, v_{221}, v_{222}\} = \bigcup\{v_{i_1i_2i_3} : i_1i_2i_3 \in \prod\{1, 2\}^3\}$ and $|E(G_3)| = |V(G_3)| - 1 = 2^3 - 1 = 7$.

Step (4): In the same manner, we represent Figure 5, where $V(G_4) = \{v_{1111}, v_{1112}, v_{1121}, v_{1122}, v_{1211}, v_{1212}, v_{1221}, v_{1222}, v_{2111}, v_{2112}, v_{2121}, v_{2122}, v_{2211}, v_{2212}, v_{2221}, v_{2222}\} = \bigcup\{v_{i_1i_2i_3i_4} : i_1i_2i_3i_4 \in \prod\{1, 2\}^4\}$ and $|E(G_4)| = |V(G_3)| - 1 = 2^4 - 1 = 17$, and so on.

Step (5): By n procedures, we have $V(G_n) = \bigcup\{v_{i_1i_2i_3\cdots i_n} : i_1i_2i_3\cdots i_n \in \prod\{1, 2\}^n\}$ with $|E(G_n)| = |V(G_n)| - 1 = 2^n - 1$.

8. Conclusion

The field of mathematical science which goes under the name of topology is concerned with all questions directly or indirectly related to continuity. Therefore, the theory of graphs and topological spaces became the most important mathematical subjects. On the other hand, a topology plays a significant role in quantum physics, high energy physics and superstring theory [9]. Thus, we study the approximations of self-similar sets by a relation which may have possible applications in quantum physics and superstring theory. Moreover, the concepts proposed in this paper can be extended in fuzzy topological structures [1] and thus one can get a more affirmative solution in decision making problems [15, 43–47] in real life solutions.

References

[1] M. Akram, m-Polar Fuzzy Graphs, Studies in Fuzziness and Soft Computing, Springer, (2019).
[2] F. G. Arenas and M. A. Sánchez-Granero, Directed GF-spaces, Applied General Topology, Vol.2, No.2 (2001).
[3] J. Barral, M. O.Coppens and B. B. Mandelbrot, Multiperiodic multifractal martingale measures, J. Math. Pures Appl., 82 (2003), 1555-1589.
[1] M. F. Barnsley, J. E. Hutchinson and O. Stenflo, V-variable fractals: Fractals with partial self similarity, Advances in Mathematics, 218 (2008), 2051-2088.
[2] J. A. Bondy and U.S.R. Murty, Graph theory with applications, Elsevier Science Publishing Co. Inc. (1975).
[3] P. Diestel, Graph theory II, Heidelberg, Springer-Verlag IV (2010).
[4] A. A. El-Atik, M. E. Abd El Monsief, E. I. Lashin, On finite T0 topological spaces, Proceedings of the Ninth Prague Topological Symposium Contributed papers from the symposium held in Prague, Czech Republic,(2001), 19-25.
[5] A. A. El-Atik, Some applications of finite topological spaces, PhD. Sci. Thesis, Tanta University Egypt (2002).
[6] M. S. El-Naschie, Topics in the mathematical physics of E-infinity theory, Chaos, Solitons and Fractals, 30(2006), 656-663.
[7] M. M. El-Sharkasy and M. S. Badr, Topological spaces via phenotype-genotype spaces, International Journal of Biomathematics. Vol.9, No.4 (2016), 1-16.
[8] M. M. El-Sharkasy and M. S. Badr, Modeling DNA and RNA mutation using mset and topology, International Journal of Biomathematics. Vol. 11, No. 04 (2018).
[9] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.
[10] M. M. El-Sharkasy and M. S. Badr, Topological spaces via phenotype-genotype spaces, International Journal of Biomathematics. Vol.9, No.4 (2016), 1-23.
[11] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math., 2 (1985), 381-414.
[12] H. Jiang, J. Zhan and D. Chen, Covering based variable precision (β-T)-fuzzy rough sets with applications to multi-attribute decision-making, IEEE Transactions on Fuzzy Systems, (2018), DOI: 10.1109/TFUZZ.2018.2883023.
[13] J. Sokół, On a condition for α-starlikeness, J. Math. Anal. Appl., 352(2009), 696-701.
[14] R. J. Wilson, Rough sets, Introduction to graph theory, Fourth Edition, Longmon Malaysia (1996).
[15] J. Zhan and J. C. R. Alcantud, A novel type of soft rough covering and its application to multicriteria group decision making, Artificial Intelligence Review, (2018), 1-30.
[16] J. Zhan, B. Sun and J. C. R. Alcantud, Covering based multigranulation (β-T)-fuzzy rough set models and applications in multi-attribute group decision-making, Information Sciences, Vol. 476, (2019), 290-318.
[17] K. Zhang, J. Zhan, W. Wu and J. C. R. Alcantud, Fuzzy β-covering based (β-T)-fuzzy rough set models and applications to multi-attribute decision-making, Computers & Industrial Engineering, Vol. 128, (2019), 605-621.
[18] L. Zhang, J. Zhan, Novel classes of fuzzy soft β-coverings-based fuzzy rough sets with applications to multi-criteria fuzzy group decision making, Soft Computing, 23(14),(2019), 5327-5351.