Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics

Supplementary figures and tables

Marek L. Borowiec
Supplementary Figure S1: Maximum likelihood tree obtained from the combined data matrix partitioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S2: Maximum likelihood tree obtained from the combined data matrix under k-means partitions. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S3: Maximum likelihood tree obtained from unpartitioned combined data matrix. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S4: Summary species tree obtained from all 2,166 loci using ASTRAL. Scale is in coalescent units. Nodal support in local posterior probabilities.
Supplementary Figure S5: Maximum likelihood tree obtained from high-bootstrap data matrix partitioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S6: Maximum likelihood tree obtained from high-bootstrap data matrix under k-means partitions. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S7: Maximum likelihood tree obtained from unpartitioned high-bootstrap data matrix. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S8: Summary species tree obtained from 271 highest bootstrap loci using ASTRAL. Scale is in coalescent units. Nodal support in local posterior probabilities.
Supplementary Figure S9: Maximum likelihood tree obtained from slow-evolving data matrix partitioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S10: Maximum likelihood tree obtained from slow-evolving data matrix under k-means partitions. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S11: Maximum likelihood tree obtained from unpartitioned slow-evolving data matrix. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S12: Summary species tree obtained from 580 slow-evolving loci using ASTRAL. Scale is in coalescent units. Nodal support in local posterior probabilities.
Supplementary Figure S13: Maximum likelihood tree obtained from compositionally homogeneous data matrix partitioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S14: Maximum likelihood tree obtained from compositionally homogeneous data matrix under k-means partitions. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S15: Maximum likelihood tree obtained from unpartitioned compositionally homogeneous data matrix. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S16: Maximum likelihood tree obtained from amino acid data matrix partitioned by locus. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S17: Maximum likelihood tree obtained under from complete data matrix with *Aenictus* removed under k-means partitioning. Scale is in number of substitutions per site. Nodal support in percent bootstrap.
Supplementary Figure S18: Bayesian posterior consensus tree obtained from complete data matrix under k-means partitioning. Scale is in number of substitutions per site. Nodal support in posterior probability.
Supplementary Figure S19: Summary tree with mean ages from 100 analyses under penalized likelihood in Chronos.
Supplementary Figure S20: Mean ages and their 95% confidence intervals on the consensus BEAST tree inferred under fossilized birth-death process. All ages in Ma.
Supplementary Figure S21: Posterior probabilities on the consensus BEAST tree inferred under fossilized birth-death process. Red dots reflect monophyly constraints used in the dating analysis. All ages in Ma.
Supplementary Figure S22: BAMM rate shift tree showing the overall best fit configuration. Red-filled circles signify placement of the shifts.
Supplementary Figure S23: BAMM rate shift tree showing net diversification rates. A: *Aenictus*, D: *Dorylus*, L: *Lioponera*, N: *Neivamyrmex*.
Supplementary Figure S24: BAMM plot showing nine most common shift configurations in the credible set. The "f" number corresponds to the proportion of the posterior samples in which this configuration is present. A: Aenictus, D: Dorylus, L: Lioponera, N: Neivamyrmex.
Supplementary Figure S25: BAMM cohort plot. Blocks signify comparisons of shift regimes among species and clades, except across the diagonal which represents the comparison of a species to itself. A: *Aenictus*, D: *Dorylus*, L: *Lioponera*, N: *Neivamyrmex*.
Supplementary Figure S26: Relative likelihoods of ranges estimations from BioGeoBEARS under DEC+J, averaged over 100 posterior BEAST trees. Pie charts at the nodes correspond to ancestral state estimations and pie charts on the corners correspond to ranges immediately following speciation. The region names are abbreviated as follows: Neotropical (T), Nearctic (N), Palearctic (P), Afrotropical (E), Malagasy (M), Indomalayan (O), and Australasian (A). All ages in Ma.
Supplementary Figure S27: Relative likelihoods of ranges from BioGeoBEARS under DEC+J estimated on the BEAST consensus tree. Pie charts at the nodes correspond to ancestral state estimations and pie charts on the corners correspond to ranges immediately following speciation. The region names are abbreviated as follows: Neotropical (T), Nearctic (N), Palearctic (P), Afrotropical (E), Malagasy (M), Indomalayan (O), and Australasian (A). All ages in Ma.
Supplementary Figure S28: Box plots comparison of properties of slow-evolving, compositionally homogeneous, and ”high signal” or high average bootstrap loci. A: Relative composition frequency variability (RCFV), B: Slope of regression of p-distances against distances on ML tree from a locus. Higher RCFV signifies more compositional heterogeneity and higher slope of regression signifies less potential for saturation.
Supplementary Table S1: Voucher specimens used in this study. CASENT numbers correspond to records on AntWeb.org.

Taxon Name	Specimen Code	Country	Year Collected
Acanthostichus AZ M277	CASENT0324689	United States	2010
Acanthostichus AZ M278	CASENT0324880	United States	2009
Acanthostichus BR M252	CASENT0732106	Brazil	2014
Acanthostichus GF M208	CASENT0732074	French Guiana	2006
Acanthostichus serratulus M166	CASENT0732042	Ecuador	2003
Aenictogiton UG M189	CASENT0317577	Uganda	2012
Aenictogiton ZM02 M181	CASENT0732056	Zambia	2005
Aenictus bobaiensis M197	CASENT0732068	China	2014
Aenictus camposi M222	CASENT0732087	Malaysia	2014
Aenictus cornutus M230	CASENT0732089	Malaysia	2014
Aenictus curax M245	CASENT0732104	Papua New Guinea	2010
Aenictus fergusoni M223	CASENT0732088	India	2001
Aenictus fuchuanensis M201	CASENT0732072	China	2013
Aenictus gracilis M199	CASENT0732070	Malaysia	2008
Aenictus hodgsoni M198	CASENT0732069	China	2012
Aenictus hoeldobleri M200	CASENT0732071	China	2013
Aenictus laeviceps M269	CASENT0702955	Malaysia	2014
Aenictus latifemoratus M266	CASENT0392370	Malaysia	2014
Aenictus levior M231	CASENT0732090	Malaysia	2014
Aenictus rotundicollis M232	CASENT0732091	Malaysia	2014
Aenictus silvestrii M221	CASENT0732086	Malaysia	2014
Aenictus turneri M135	CASENT0732016	Australia	2004
Aenictus UG M143	CASENT0732021	Uganda	2012
Aenictus yamanei M265	CASENT0385898	Malaysia	2014
Aenictus ZA M228	CASENT0764132	South Africa	2011
Cerapachys antennatus M263	CASENT0384548	Malaysia	2014
Cerapachys MY M264	CASENT0384921	Malaysia	2014
Cerapachys sulcinodis M243	CASENT0732102	China	2015
Cerapachys TH M203	CASENT0268115	Thailand	2006
Chelioniomyrmex cf andicola M174	CASENT0732049	Ecuador	2009
Chelioniomyrmex cf morosus M217	CASENT0732082	Honduras	2010
Chelioniomyrmex sp M146	CASENT0732024	Peru	2013
Chrysapace cf crawleyi M262	CASENT0391566	Malaysia	2014
Chrysapace cf sauteri M261	CASENT0385026	Malaysia	2014
Chrysapace MG M155	CASENT0304584	Madagascar	2013
Chrysapace TH M156	CASENT0278856	Thailand	2006
Cylindromyrmex brasiliensis M140	CASENT0731132	Venezuela	2008
Cylindromyrmex brasiliensis M72	CASENT0731132	Venezuela	2008
Cylindromyrmex darlingtoni M211	CASENT0756069	Dominican Republic	2015
Cylindromyrmex whymperi M271	CASENT0732116	Costa Rica	2003
Dorylus affinis M177	CASENT0732052	Kenya	2004
Dorylus braunsi M289	CASENT0732037	Kenya	2004
Dorylus cf fulvus M149	CASENT0732026	Uganda	2012
Dorylus conradi M178	CASENT0732053	Kenya	2004
Dorylus fimbriatus M288	CASENT0732036	Kenya	2004
Dorylus fulvus M179	CASENT0732054	Kenya	2008
Dorylus kohli M180	CASENT0732055	Kenya	2007
Dorylus laevigatus M157	CASENT0202245	Malaysia	2010
Dorylus mayri M291	CASENT0732123	Nigeria	2005
Dorylus molestus M290	CASENT0732122	Uganda	2012
Dorylus orientalis M244	CASENT0732103	China	2015
Supplementary Table S1: Continued. Voucher specimens used in this study. CASENT numbers correspond to records on AntWeb.org.

Taxon Name	Specimen Code	Country	Year Collected
Dorylus rubellus M287	CASENT0732035	Nigeria	2005
Dorylus spininodis M292	CASENT0732124	Uganda	2012
Dorylus UG M153	CASENT0732030	Uganda	2012
Eburopone CM02 D0788	CASENT0178891	Cameroon	2000
Eburopone MG M130	CASENT0732012	Madagascar	2013
Eburopone MG M195	CASENT0732066	Madagascar	2013
Eburopone MG M213	CASENT0732077	Madagascar	2013
Eburopone MG M214	CASENT0732078	Madagascar	2013
Eburopone UG M259	CASENT0352799	Uganda	2012
Eciton burchellii M273	CASENT0732118	United States	2007
Eciton hamatum M293	CASENT0732125	Mexico	2014
Eciton lucanooides M239	CASENT0732098	Panama	2015
Eciton mexicanum M238	CASENT0732097	Costa Rica	2013
Eciton quadrigrilume M254	CASENT0732108	Brazil	2011
Eciton rapax M145	CASENT0732023	Peru	2013
Eciton vagans M184	CASENT0732059	Costa Rica	2004
Eusphinctus TH M158	CASENT0285681	Thailand	2006
Labidus coecus M173	CASENT0732048	Ecuador	2009
Labidus praedator M152	CASENT0732029	Mexico	2014
Labidus spininodis M172	CASENT0732047	Ecuador	2009
Leptanilloides erinys M246	CASENT0234600	Ecuador	2009
Leptanilloides femorals M188	CASENT0732063	Venezuela	2008
Leptanilloides gracilis M187	CASENT0732062	Mexico	2008
Leptanilloides mckennae D0228	CASENT0106086	Costa Rica	2003
Leptanilloides nubecula M167	CASENT0732043	Ecuador	2004
Lioponera cf suscitata M267	CASENT0386895	Malaysia	2014
Lioponera longitarsus M193	CASENT0732064	Bangladesh	2014
Lioponera marginata M249	CASENT0219054	Papua New Guinea	2009
Lioponera MY M268	CASENT0389090	Malaysia	2014
Lioponera nr kraepelinii M131	CASENT0732013	Madagascar	2013
Lioponera nr mayri M215	CASENT0732079	Madagascar	2013
Lioponera PG M250	CASENT0215868	Papua New Guinea	2009
Lioponera princeps M137	CASENT0732018	Australia	2006
Lioponera ruficornis M165	CASENT0732041	Australia	2005
Lioponera vesupla M210	CASENT0234847	Uganda	2012
Lividopone MG M132	CASENT0732014	Madagascar	2013
Lividopone MG M194	CASENT0732065	Madagascar	2013
Lividopone MG M216	CASENT0732080	Madagascar	2013
Lividopone MG M294	CASENT0732126	Madagascar	2013
Neivamyrmex adnepos M236	CASENT0732095	Costa Rica	2006
Neivamyrmex alfari M240	CASENT0732099	Costa Rica	2013
Neivamyrmex asper M233	CASENT0732092	Costa Rica	2014
Neivamyrmex californicis M272	CASENT0732117	United States	2004
Neivamyrmex cf nyensis M296	CASENT0249496	United States	2003
Neivamyrmex compressinodis M235	CASENT0732094	Nicaragua	2011
Neivamyrmex distans M242	CASENT0732101	Costa Rica	1998
Neivamyrmex EC M175	CASENT0732050	Ecuador	2009
Neivamyrmex gibbatus M139	CASENT0732019	Venezuela	2008
Neivamyrmex impudens M237	CASENT0732096	Guatemala	2009
Neivamyrmex kiowapach M275	CASENT0732120	United States	2015
Neivamyrmex melanocephalus M154	CASENT0732031	Mexico	2014
Supplementary Table S1: Continued. Voucher specimens used in this study. CASENT numbers correspond to records on AntWeb.org.

Taxon Name	Specimen Code	Country	Year Collected
Neivamyrmex opacithorax M276	CASENT0732121	United States	2015
Neivamyrmex sumichrasti M151	CASENT0732028	Mexico	2014
Neivamyrmex swainsonii M169	CASENT0732045	United States	2004
Neivamyrmex texanus M274	CASENT0732119	United States	2015
Neocerapachys BR M295	CASENT0732127	Brazil	2014
Neocerapachys cf splendens M251	CASENT0732105	Brazil	2013
Neocerapachys neotropicus M134	CASENT0732015	Costa Rica	2014
Neocerapachys sp M209	CASENT0732075	Costa Rica	2004
Nomamyrmex esenbecki M129	CASENT0732011	Mexico	2013
Nomamyrmex hartigi M220	CASENT0732085	Costa Rica	2006
Ooceraea australis M138	CASENT0106146	Australia	2006
Ooceraea FJ06 M168	CASENT0732044	Fiji	2006
Ooceraea fragosa D0842	CASENT0106215	Sri Lanka	2005
Ooceraea MY M270	CASENT0722573	Malaysia	2014
Ooceraea PG M248	CASENT0187824	Papua New Guinea	2009
Parasyscia dohertyi M142	CASENT0732020	Malaysia	2010
Parasyscia MG M212	CASENT0732076	Madagascar	2013
Parasyscia PG M204	CASENT021652	Papua New Guinea	2009
Parasyscia UG M218	CASENT0732083	Uganda	2012
Parasyscia UG M219	CASENT0732084	Uganda	2012
Parasyscia UG M281	CASENT0352569	Uganda	2012
Parasyscia VN M207	CASENT0731211	Vietnam	2007
Parasyscia wittmeri M282	CASENT0263905	Saudi Arabia	2011
Simopone cf oculata D0792	CASENT0139634	Thailand	2006
Simopone conradti M144	CASENT0732022	Uganda	2012
Simopone dryas M224	CASENT0764130	Kenya	2006
Simopone grandidierti M186	CASENT0732061	Madagascar	2009
Simopone marleyi M171	CASENT0249324	South Africa	1986
Simopone rex M133	CASENT0731175	Madagascar	2013
Simopone trita M185	CASENT0732060	Madagascar	2003
Sphinctomyrmex marcoyi M202	CASENT073146	Argentina	2013
Sphinctomyrmex stali M253	CASENT0732107	Brazil	2013
Syscia augustae M196	CASENT0732067	United States	2015
Syscia GT M127	CASENT0732010	Guatemala	2009
Syscia MY M147	CASENT0732025	Malaysia	2014
Syscia MY M176	CASENT0732051	Malaysia	2009
Syscia typhla D0841	CASENT0106214	Sri Lanka	2006
Tanipone aglandula M280	CASENT0052407	Madagascar	2003
Tanipone hirsuta M279	CASENT0147732	Madagascar	2008
Tanipone scelesta M159	CASENT0229662	Madagascar	2010
Tanipone zona M182	CASENT0732057	Madagascar	2003
Vicinopone conciliatrix M128	CASENT0731168	Uganda	2012
Yunodorylus eguchii M247	CASENT0731166	Vietnam	2004
Yunodorylus paradoxus M190	CASENT0731165	Malaysia	2006
Yunodorylus TH M160	CASENT0139796	Thailand	2006
Yunodorylus TH M191	CASENT0134717	Thailand	2006
Zasphinctus imbecilis M170	CASENT0732046	Australia	2005
Zasphinctus MZ M229	MCZENT00512765	Mozambique	2012
Zasphinctus PG M285	CASENT0732033	Papua New Guinea	2000
Zasphinctus KE M227	CASENT0764121	Kenya	2012
Zasphinctus TH M192	CASENT0131746	Thailand	2006
Zasphinctus trux M136	CASENT0732017	Australia	2006
Supplementary Table S2: Statistics of data matrices used in this study.

Alignment Name	Number of Taxa	Alignment Length	Percent Missing	Proportion of Parsimony Informative Sites	AT Content
Combined Data	164	892,761	15.476	0.478	0.530
"High-Signal" Loci	164	177,947	17.534	0.565	0.578
Slow-Evolving Loci	164	178,662	10.245	0.348	0.486
Homogeneous Loci	164	97,849	10.177	0.369	0.488
No *Aenictus*	146	892,761	15.006	0.469	0.528
BEAST Matrix	155	44,079	16.489	0.466	0.531
Amino Acids	164	89,483	16.104	0.138	-
Supplementary Table S3: Calibration scheme used for penalized likelihood analyses in chronos. MRCA column refers to the most recent common ancestor of two tip names in the maximum likelihood tree obtained from slow-evolving loci matrix.

Clade	MRCA	Minimum Age (Ma)	Maximum Age (Ma)	Notes
Root	Harpeg-nathos_salaria_genome, Acanthos-tichus_serratulus_M166	94	135	This calibration assumes that poneroids and formicoids shared the last common ancestor at least as early as Burmomyrma, a 94.3-99.7 Ma fossil from Burmese Amber. This taxon was has originally assigned to Anueretinae (Dhussky, 1996) but recently its placement has been questioned (LaPolla et al., 2013). Here I take a conservative view that it is at least a representative of stem formicoids. Maximum age is based on the upper bound of 95% confidence interval for this node in the time-calibrated phylogeny of the Formicidae by Moreau and Bell (2013).
crown Formicinae plus Myrmicinae	Camponotus_floridanus_genome, Atta_cephalotes_genome	89.3	120	Kryomyrma rufi (Grimaldi and Agosti, 2000) is a 89.3-94.3 Ma old fossil from New Jersey Amber that shows a clearly preserved acidopore, a unique formicine feature. Kryomyrma is universally treated as a stem Formicinae. Although the upper 95% confidence interval for this node was only 95 Ma in Moreau and Bell (2013), the maximum age assumed here is more conservatively placed at 120 Ma to accommodate the fact that Ward et al. (2015) inferred ages of one of the constituent clades, the Myrmicinae, up to 110 Ma.
crown Myrmicinae	Pogonomyrmex_barbatus_genome, Atta_cephalotes_genome	33.9	110	Crown Myrmicinae are here calibrated with the Baltic amber Myrmica (Radchenko et al., 2007) from the Priabonian age of Eocene (33.9-37.2 Ma). Although Pogonomyrmex was a lineage branching after Myrmica in the phylogeny by Ward et al. (2015), the latest UCE-based results (Branstetter et al. (2016), M.G. Branstetter pers. comm.) suggest that Pogonomyrmex and Myrmica form a clade within the Myrmicinae. The maximum age is based on the upper bound of 95% confidence interval in time-calibrated phylogeny of (Ward et al., 2015).
Cerapachys, Chrysapace, and Yunodorylus	Chrysapace_TH_M156, Yunodorylus_TH_M191	33.9	85	A recently discovered Baltic Amber fossil recognizable as Chrysapace (author’s personal observation) is used to calibrate the node of Cerapachys, Yunodorylus, and Chrysapace. Although the maximum likelihood tree places Cerapachys as sister to Chrysapace, this relationship has low support, so a conservative approach calibrates the next node down. Maximum age corresponds to the upper bound of 95% confidence interval in the time-calibrated tree of Brady et al. (2014).
crown Cylindromyrmex	Cylindromyrmex_meinerti_D778, Cylindromyrmex_darlingtoni_M211	13.7	43	Cylindromyrmex inopinitus from Dominican Amber is considered a sister species of extant C. longiceps (De Andrade, 2001) and thus used here to calibrate crown Cylindromyrmex. Maximum age is the upper bound of 95% confidence interval for Cylindromyrmex age in Brady et al. (2014).
crown New World army ants	Eciton_hamatum_M293, Neivamyrmex_californicus_M272	16	46	Neivamyrmex ectopus (Wilson, 1985) is a Dominican Amber species that is somewhat difficult to place in the extant Neivamyrmex diversity. A potentially older fossil of Neivamyrmex comes from Mexican Amber, 16-23 Ma (Coty et al., 2014). The ancestor of New World army ants is here dated with a minimum age of 16 Ma. Maximum age is based on upper bound of 95% confidence interval age for this clade in (Brady et al., 2014).
Supplementary Table S4: Calibration scheme used for fossilized birth-death process analyses in BEAST. Total group refers to fossil that could be placed in either stem or crown group.

Species	Group Calibrated	Sampling Time (Ma)	Deposit Age (Ma)	Notes
Chrysapace sp.	total Chrysapace	36.6	33.9-37.2	See notes in Supplementary Table S3.
Neivamyrmex electopus	total Neivamyrmex	19.2	13.7-20.4	See notes in Supplementary Table S3.
Cylindromyrmex antillanus	total Cylindromyrmex	19.5	13.7-20.4	This species was described together with C. electrinus by De Andrade (1998a). Both are used to calibrate total group Cylindromyrmex. This fossil was described by De Andrade (1998b) as similar to A. skwarrae, A. quirozi and A. arizonensis. Although it is possible that one of the male Acanthostichus specimens sequenced here from Arizona corresponds to A. arizonensis, this fossil is used here to calibrate the total group Acanthostichus.
Acanthostichus hispapiolicus	total Acanthostichus	14.5	13.7-20.4	See C. antillanus notes above.
Cylindromyrmex electinus	total Cylindromyrmex	18.1	13.7-20.4	See C. antillanus notes above.
Cylindromyrmex inopinatus	Cylindromyrmex excl. C. meinerti	14.2	13.7-20.4	See notes in Supplementary Table S3.
Neivamyrmex sp.	total Neivamyrmex	19.3	16-23	Coty et al. (2014) reported a Neivamyrmex species from Chiapas Amber.
References

Brady, S. G., B. L. Fisher, T. R. Schultz, and P. S. Ward. 2014. The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evolutionary Biology 14:93.

Branstetter, M. G., J. T. Longino, J. Reyes-López, T. R. Schultz, and S. G. Brady. 2016. Into the tropics: phylogenomics and evolutionary dynamics of a contrarian clade of ants. bioRxiv.

Coty, D., C. Aria, R. Garroutse, P. Wils, F. Legendre, and A. Nel. 2014. The first ant-termite syn-inclusion in amber with CT-scan analysis of taphonomy. PLoS ONE 9:e104410.

De Andrade, M. 1998a. Fossil and extant species of Cylindromyrmex (Hymenoptera: Formicidae). Revue Suisse de Zoologie 105:581–664.

De Andrade, M. L. 1998b. First description of fossil Acanthostichus from Dominican amber (Hymenoptera: Formicidae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 71:269–274.

De Andrade, M. L. 2001. A remarkable Dominican amber species of Cylindromyrmex with Brazilian affinities and additions to the generic revision (Hymenoptera: Formicidae). Beiträge zur Entomologie 51:51–63.

Dlussky, G. M. 1996. Ants (Hymenoptera: Formicidae) from Burmese amber. Paleontological Journal. Pages 449–454.

Grimaldi, D. and D. Agosti. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences of the United States of America 97:13678–13683.

LaPolla, J. S., G. M. Dlussky, and V. Perrichot. 2013. Ants and the fossil record. Annual Review of Entomology 58:609–630.

Moreau, C. S. and C. D. Bell. 2013. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67:2240–2257.

Radchenko, A. G., G. W. Elmes, and G. Dlussky. 2007. The ants of the genus Myrmica (Hymenoptera, Formicidae) from Baltic and Saxonian amber (Late Eocene). Journal of Paleontology 81:1494–1501.

Ward, P. S., S. G. Brady, B. L. Fisher, and T. R. Schultz. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40:61–81.

Wilson, E. O. 1985. Ants of the Dominican amber (Hymenoptera: Formicidae). 2. The first fossil army ants. Psyche (Cambridge) Pages 11–16.