Evaluating Aggression Identification in Social Media

Ritesh Kumar1, Atul Kr. Ojha2,3, Shervin Malmasi4, Marcos Zampieri5
1Dr. Bhimrao Ambedkar University, Agra, 2Charles University, Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics, Prague & 3Panlingua Language Processing LLP, New Delhi, 4Amazon Inc., USA, 5Rochester Institute of Technology, USA
ritesh78_llh@jnu.ac.in, shashwatup9k@gmail.com, shervin.malmasi@mq.edu.au, marcos.zampieri@rit.edu

Abstract
In this paper, we present the report and findings of the Shared Task on Aggression and Gendered Aggression Identification organised as part of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2) at LREC 2020. The task consisted of two sub-tasks - aggression identification (sub-task A) and gendered aggression identification (sub-task B) - in three languages - Bengali, Hindi and English. For this task, the participants were provided with a dataset of approximately 5,000 instances from YouTube comments in each language. For testing, approximately 1,000 instances were provided in each language for each sub-task. A total of 70 teams registered to participate in the task and 19 teams submitted their test runs. The best system obtained a weighted F-score of approximately 0.80 in sub-task A for all the three languages. While approximately 0.87 in sub-task B for all the three languages.

Keywords: Aggression, Gendered Aggression, English, Hindi, Bengali, TRAC

1. Introduction
In recent years, there have been several studies exploring the computational modelling and automatic detection of abusive content in social media focusing on toxic comment1 aggression (Kumar et al., 2018), cyberbullying (Xu et al., 2012), hate speech (Dadvar et al., 2013), and offensive content (Zampieri et al., 2019a) to name a few. Prior studies have tackled abusive language identification in content from different platforms such as Twitter (Xu et al., 2012), Burnap and Williams, 2015 Davidson et al., 2017 Wiegand et al., 2018, Wikipedia comments1, and Facebook (Kumar et al., 2018). A number of shared tasks have been organized focusing on the automatic detection of offensive language (Strüf et al., 2019 Zampieri et al., 2019b Mandl et al., 2019), hate speech Basile et al., 2019b and aggression Kumar et al., 2018. These have motivated the creation of for various languages such as English, German, Hindi, Italian, Spanish, and others.

In this paper, we discuss the results of the second iteration of the TRAC shared task, organized as part of the Workshop on Trolling, Aggression and Cyberbullying at LREC 2020. The task consisted of two sub-tasks - aggression identification and gendered aggression identification on YouTube comments in three languages: Bengali, Hindi and English.

To the best of our knowledge, TRAC received 30 submissions. TRAC received 30 submissions. The terms used in the literature have overlapping properties as discussed in Waseem et al. (2017) and Zampieri et al. (2019a). The most important differences concern their target (e.g. hate speech is typically targeted at groups whereas cyberbullying targets individuals), which is represented in TRAC-2 Task B, and types (e.g. veiled or direct abuse), represented in TRAC-2 Task A.

Most related studies focus on English, but significant amount of work has been carried out for other languages too. This includes languages such as Arabic (Mubarak et al., 2020), German (Strüf et al., 2019), Greek (Pitenis et al., 2020), Hindi (Mandl et al., 2019), and Spanish (Basile et al., 2019). TRAC-2 is the second iteration of the TRAC shared task on Aggression Identification (Kumar et al., 2018) hosted at the TRAC workshop at COLING 2018. The first edition of TRAC included English and Hindi data from Facebook and Twitter. It consisted of a three-way classification task with posts labelled as overtly aggressive, covertly aggressive, and non-aggressive. TRAC received 30 submissions and the results obtained by participants suggested that neural network-based systems and machine learning classifiers

http://bit.ly/2FhLMVz

1

2. Related Work
 Automatically identifying the various forms of abusive language online has been studied from different angles. Examples include trolling Cambria et al., 2010 Kumar et al., 2014 Mojica, 2016 Mihaylov et al., 2015 flaming / insults Sax, 2016 Nitin et al., 2012, radicalization (Agarwal and Sureka, 2015 Agarwal and Sureka, 2017), racism (Greven and Smeaton, 2004 Greven, 2004), misogyny (Menczer et al., 2015 Frenna et al., 2019, Hewitt et al., 2016 Fersini et al., 2018 Anzovino et al., 2018 Sharifirad and Matwin, 2019), online aggression (Kumar et al., 2018), cyberbullying (Xu et al., 2012 Dadvar et al., 2013), hate speech Kwok and Wang, 2013 Djuric et al., 2015 Burnap and Williams, 2015 Davidson et al., 2017 Malmasi and Zampieri, 2017 Malmasi and Zampieri, 2018), and offensive language Wiegand et al., 2018 Zampieri et al., 2019b. The terms used in the literature have overlapping properties as discussed in Waseem et al. (2017) and Zampieri et al. (2019a). The most important differences concern their target (e.g. hate speech is typically targeted at groups whereas cyberbullying targets individuals), which is represented in TRAC-2 Task B, and types (e.g. veiled or direct abuse), represented in TRAC-2 Task A.
(e.g. SVMs) achieved comparable performance. Shared tasks similar to TRAC have been organized in recent years. One such example is OffensEval (SemEval-2019 Task 6) ([Zampieri et al., 2019b]) which focused on offensive language identification. OffensEval featured three sub-tasks: offensive language identification, offensive type identification, and offense target identification building on the annotation model introduced in the OLID dataset ([Zampieri et al., 2019a]) for English. This multiple sub-task model has been adopted by other shared tasks such as GermEval for German ([Siruš et al., 2019], HASOC ([Mandl et al., 2019]) for English, German, and Hindi, and HatEval ([Basile et al., 2019]) for English and Spanish.

3. Task Setup and Schedule

Participants enrolled to participate in any combination of tracks and languages. The registered participants were sent the links to the annotated datasets along with a description of the format of the dataset. The participants were allowed to use additional data for training the system, with the condition that the additional dataset should be either publicly available or make available immediately after submission. Use of non-public additional data for training was not allowed. The participants were given around 6 weeks to experiment and develop the system. After the 6 weeks of release of train and development sets, the test set was released and the participants had 7 days to test and upload their system. The complete timeline of the shared task is given in Table 2.

Date	Event
December 30, 2019	Announcement and registration
January 25, 2020	Train and dev set release
March 5, 2020	Test set release
March 12, 2020	System submission
March 11, 2020	Declaration of results
March 31, 2020	System description paper

Table 2: TRAC-2 timeline.

We made use of CodaLab for the evaluation. Each team was allowed to submit up to 3 system runs for evaluation and their best run was included in the final ranking presented in this report.

4. Dataset

The participants of the shared task were provided with a dataset of approximately 5,000 randomly sampled YouTube comments for training and approximately 1,000 comments for development in each of Bengali, Hindi and English. For the sub-task on aggression identification, it annotated with 3 levels of aggression - Overtly Aggressive (OAG), Covertly Aggressive (CAG) and Non-Aggressive (NAG). For the second sub-task on gender identification, it was marked as gendered (GEN) or non-gendered (NGEN). For test, over 1,000 comments were provided. The statistics of the complete dataset in each language is given in Table 1.

Language	Train Sub-task A	Train Sub-task B	Test Set
	TOTAL NAG CAG OAG	TOTAL NGEN GEN	NAG CAG OAG NGEN GEN
Bengali	4,783 2,600 1,116 1,067	4,783 3,880 903 903	789 169 242 1005 195
English	5,329 4,211 370 548	5,329 4,947 382 4,211 570 548 4,168 813	4,783 4,981 5,329
Hindi	4,981 2,823 1,040 1,118	4,981 4,168 813 316 215 669 700 500	2,823 1,040 1,118 4,783 5,329

Table 1: Number of instances in each class in the TRAC-2 datasets.

5. Participants and Approaches

A total of 70 participants registered for the shared task, with most of the teams registering to participate in both tracks and all the languages. Out of these, finally a total of 19 teams submitted their systems. All the teams who submitted their system were invited to submit the system description paper, describing the experiments conducted by them. Table 3 lists the participating teams and the language they took part in. Next we give a short description of the approach taken by each team for building their system. More details about the approaches could be found in the paper submitted by the respective teams.

- abaruah uses BERT, RoBERTa, DistilRoBERTa, and SVM-based classifiers for English. For Hindi and Bengali, multilingual BERT (M-BERT), XLM-RoBERTa and SVM classifiers were used.
- Al_ML_NIT_Patna uses Convolutional Neural Network and Long Short Term Memory with two different input text representations, FastText and One-hot embeddings. Their findings suggest that the LSTM model with FastText embedding performs better than other models for Hindi and Bengali datasets. On the other hand, the CNN model with FastText embedding gives better results for the English dataset.
- FlorUniTo uses word-embedding with an LSTM model.
- Julian uses multiple fine-tuned BERT models, based on bootstrap aggregating (bagging).
- IRIT uses the transformer-based language model BERT (Bidirectional Encoder Representation from Transformer) for two sub-tasks.
- lastus uses bidirectional Long Short Term Memory network (bi-LSTM) to build the purported model.
- MsqQxMbnjJMgYcw uses a single BERT-based system with two outputs for all tasks simultaneously.

3The complete dataset used for the shared task can be downloaded from the shared task website - https://sites.google.com/view/trac2/shared-task
Table 3: The teams that participated in the TRAC-2 shared task.

Team	Bengali	English	Hindi	System Description Paper
Julian	✓	✓	✓	[Risch and Krestel, 2020]
abaruah	✓	✓	✓	[Baruah et al., 2020]
sdhanshu	✓	✓	✓	[Mishra et al., 2020]
Ms8qQxMbnjjMgYcw	✓	✓	✓	[Gordeev and Lykova, 2020]
FlorUniTo	✓	✓	✓	[Koufakou et al., 2020]
na14	✓	✓	✓	[Samghabadi et al., 2020]
Al_ML_NIT_Patna	✓	✓	✓	[Kumari and Singh, 2020]
asking28	✓	✓	✓	[Datta et al., 2020]
Spyder	✓	✓	✓	[Altun et al., 2020]
zhixuan	✓		✓	[Liu et al., 2020]
lastus	✓		✓	[Ramiandrisoa and Mothe, 2020]
scmh5	✓		✓	[Pascucci et al., 2020]
IRIT	✓		✓	[Tawalbeh et al., 2020]
UniOr_ExpSys	✓			
SAJA	✓			
krishanthvs	✓			
bhanuprakash2708	✓	✓		
saikesav564	✓		✓	
debina	✓		✓	
Total	**10**	**16**	**11**	**13**

6. Results

In this section, we present the results of the experiments carried out by different teams during the shared task. In the task, the participants were allowed to use other datasets, in addition to the one provided by the organizers. However, because of the lack of similar alternative datasets, all the groups used only the dataset provided for the task. As we mentioned earlier, for for the final testing of the system, 1000 instances were given to participants in each language for each sub-task.

The teams’ result on Bengali, English and Hindi dataset is demonstrated in Table[3]. In sub-task A, the best system obtained a weighted F-score of approximately 0.82 for Bengali, 0.80 for English and 0.81 for Hindi. In other words, the best system obtained approximately 0.80 F-score for all the three languages. In sub-task B, the best system obtained a weighted F-score of approximately 0.93 for Bengali, 0.87 for English and and 0.87 for Hindi.

7. Conclusion

In this paper, we have presented the report of the Second Shared Task on Aggression Identification, organized with the TRAC-2 workshop at LREC-2020. The shared task feature two sub-tasks- aggression identification (sub-task A) in which systems were trained to discriminate between posts labeled as overtly aggressive, covertly aggressive, and non-aggressive, and gendered aggression identification (sub-task B) in which systems were trained to discriminate between gendered or non-gendered posts. Datasets in Bengali, Hindi and English were made available to participants. TRAC-2 received a very good response from the community which underlines the relevance of the task. More than 70 teams were registered and 19 teams submitted their systems. We found that most of the systems were developed using neural networks following the recent success of such approaches in recent related shared tasks (Zampieri et al., 2019b; Basile et al., 2019). The analysis of the performance of the best systems in the two sub-tasks shows that the three-way aggression identification task in sub-task A is still a challenging task for all languages in TRAC-2.

8. Acknowledgements

The dataset used in the shared task is being develop under a project title ‘Communal and Misogynistic Aggression’ (The ComMA Project), funded by an Unrestricted Research Gift by Facebook Research.
Table 4: Performance of teams on Bengali, English & Hindi Dataset

Team	Bengali Task A	Bengali Task B	English Task A	English Task B	Hindi Task A	Hindi Task B
Julian	0.821	0.938	0.802	0.851	0.812	0.878
abaruah	0.808	0.925	0.728	0.870	0.794	0.868
sdhanshu	0.780	0.927	0.759	0.857	0.779	0.849
MsQxMbnjJMGycw	0.771	0.929	0.756	0.871	0.776	0.838
FlorUniTo	0.745	0.868	0.677	0.837	0.726	0.770
na14	0.736	0.920	0.714	0.857	0.718	0.800
AL_ML_NIT_Patna	0.717	0.879	0.660	0.822	0.654	0.736
asking28	0.685	0.815	0.714	0.710	0.700	0.733
Spyder	0.448	-	0.430	-	0.594	-
zhxuan	-	-	0.739	0.856	-	-
lastus	-	-	0.724	0.819	-	-
scmhl5	-	-	0.663	0.851	-	-
IRT	-	-	0.635	0.820	-	-
UniOr_ExpSys	-	-	0.629	0.673	-	-
SAJA	-	-	0.607	0.856	-	-
krishanthvs	-	-	0.441	0.737	-	-
bhuprakash2708	-	-	-	-	0.140	0.413
saikesav564	0.468	-	-	-	-	-
debina	-	-	-	-	-	0.412

9. Bibliographical References

Agarwal, S. and Sureka, A. (2015). Using knn and svm based one-class classifier for detecting online radicalization on twitter. In International Conference on Distributed Computing and Internet Technology.

Agarwal, S. and Sureka, A. (2017). Characterizing linguistic attributes for automatic classification of intent based racist/radicalized posts on tumblr micro-blogging website.

Altun, L. S. M., Bravo, A., and Saggion, H. (2020). Las-tus/taln at trac - 2020 trolling, aggression and cyberbullying. In Ritesh Kumar, et al., editors, Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).

Anzovino, M., Fersini, E., and Rosso, P. (2018). Automatic identification and classification of misogynistic language on twitter. In Max Silberztein, et al., editors, Natural Language Processing and Information Systems.

Baruah, A., Das, K., Barbhuiya, F., and Dey, K. (2020). Aggression identification in english, hindi and bangla text using bert, roberta and svm. In Ritesh Kumar, et al., editors, Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo, F. M., Rosso, P., and Sanguinetti, M. (2019). SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter. In Proceedings of SemEval.

Burnap, P. and Williams, M. L. (2015). Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making. Policy & Internet, 7(2).

Cambria, E., Chandra, P., Sharma, A., and Hussain, A. (2010). Do not feel the trolls. In ISWC, Shanghai.

Dadvar, M., Trieschnigg, D., Ordelman, R., and de Jong, F. (2013). Improving cyberbullying detection with user context. In Advances in Information Retrieval.

Datta, A., Si, S., Chakraborty, U., and Naskar, S. K. (2020). Spyder: Aggression detection on multilingual tweets. In Ritesh Kumar, et al., editors, Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).

Davidson, T., Warmsley, D., Macy, M., and Weber, I. (2017). Automated Hate Speech Detection and the Problem of Offensive Language. In Proceedings of ICWSM.

Djuric, N., Zhou, J., Morris, R., Grbovic, M., Radosavljevic, V., and Bhamidipati, N. (2015). Hate Speech Detection with Comment Embeddings. In Proceedings of WWW.

Fersini, E., Nozza, D., and Rosso, P. (2018). Overview of the evalita 2018 task on automatic misogyny identification (AMI). In Tommaso Caselli, et al., editors, Proceedings of the Sixth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. (EVALITA 2018).

Frenda, S., Ghanem, B., Montes-y Gómez, M., and Rosso, P. (2019). Online hate speech against women: Automatic identification of misogyny and sexism on twitter. Journal of Intelligent & Fuzzy Systems, 36(5).

Gordeev, D. and Lykova, O. (2020). Bert of all trades, master of some. In Ritesh Kumar, et al., editors, Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying (TRAC-2020).

Greevy, E. and Smeaton, A. F. (2004). Classifying racist texts using a support vector machine. In Proceedings of the ACM SIGIR.

Greevy, E. (2004). Automatic text categorisation of racist webpages. Ph.D. thesis, Dublin City University.

Hewitt, S., Tiropinis, T., and Bokhove, C. (2016). The problem of identifying misogynist language on twitter (and other online social spaces). In Proceedings of the
