The interplay between mitochondria and store-operated Ca$^{2+}$ entry: Emerging insights into cardiac diseases

Jinliang Nan1 | Jiamin Li1 | Yinuo Lin2 | Muhammad Saif Ur Rahman3,4 | Zhengzheng Li5 | Lingjun Zhu1

Abstract

Store-operated Ca$^{2+}$ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria-endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia-reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca$^{2+}$ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.

Keywords
cardiac hypertrophy, diabetic cardiomyopathy, endoplasmic reticulum, ischaemia-reperfusion injury, mitochondria, store-operated Ca$^{2+}$ entry
1 | INTRODUCTION

Calcium orchestrates the Ca\(^{2+}\)-rich organelles (endoplasmic reticulum [ER] and mitochondria) and Ca\(^{2+}\)-related signalling pathways involved in physio- and pathological processes of eukaryotic cells.\(^5\) The variations in its intracellular concentration represent a major determinant that controls related signalling pathways, resulting in the modulation of cellular secretion, motility, proliferation, cell division, excitation/contraction coupling, and apoptosis.\(^2,3\) Calcium is particularly vital for maintaining systolic and diastolic function through excitation-contraction coupling,\(^4\) and cytoplasmic Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{cyt}\)) is important for the activity of related signal pathways and nuclear gene expression in cardiomyocytes.\(^5,6\) Disturbances or deficits in Ca\(^{2+}\) signalling are closely related to hypertrophic cardiomyopathy, heart failure, diabetic cardiomyopathy, and cardiac ischaemia-reperfusion injury (IRI).

Since cells use Ca\(^{2+}\) as a messenger to drive many fundamental processes, it is necessary to clarify the Ca\(^{2+}\)-entry mechanisms. Voltage-gated Ca\(^{2+}\) channels (VGCCs) are the most studied plasma membrane (PM)-anchored channels, and store-operated Ca\(^{2+}\) entry (SOCE) channels on PM have received increasing attention.\(^7,8\) Ca\(^{2+}\) flows into electrically excitable and non-excitable cells via VGCC and SOCE, respectively. Cardiomyocytes are excitable cells, and previous studies have mainly focussed on their VGCCs. Recently, SOCE has received increased attention in cardiomyocytes; SOCE-dependent Ca\(^{2+}\) signalling is crucial for the development of the heart and the pathological processes of cardiovascular diseases.\(^9,10\)

L-type VGCC, a plasma membrane-localised voltage-dependent calcium channel, is critical for the excitation-contraction coupling of the heart.\(^11\) In cardiomyocytes, the dihydropyridine receptor (DHPR) is located near the ER-anchored protein, sarcoplasmic reticulum ryanodine receptor 2 (RyR2).\(^11\) This spatial proximity allows the conversion of the depolarized plasma membrane to the release of Ca\(^{2+}\) from ER stores.\(^12\) During the activation of voltage-dependent calcium entry, the periodic oscillation of Ca\(^{2+}\) concentration in the cytoplasm mediates the contraction and relaxation of cardiomyocytes. The intracellular calcium concentration is precisely regulated to avoid cellular injury. The calcium balance is maintained by Ca\(^{2+}\)-permeable channels (mainly DHPR and RyR2), calcium pumps, and Na\(^+\)-Ca\(^{2+}\) exchangers [regulating intracellular Ca\(^{2+}\) concentration via exchange of Ca\(^{2+}\) and Na\(^+\)].\(^12-15\) The malfunction of one machinery can be compensated for by others, helping maintain a physiological Ca\(^{2+}\) level during the activation of voltage-dependent calcium entry. Calcium oscillations during excitatory contractile coupling of cardiomyocytes do not change the overall intracellular calcium concentration. Compared with DHPR/RyR2, SOCE mediates sustained intracellular calcium influx resulting in a moderate increase in intracellular calcium concentration.\(^16\) In the heart, changes in the overall calcium concentration in the cytoplasm are directly related to mitochondrial function and dynamic changes; therefore, it is necessary to clarify the interaction pattern between SOCE and mitochondria rather than DHPR/RyR2.\(^17,18\)

Inositol 1,4,5-triphosphate (IP3) activation is critical for ER Ca\(^{2+}\) release, causing persistent SOCE events and continuous cytoplasmic Ca\(^{2+}\) entry. IP3 is activated in the heart under pathological conditions. G protein-coupled receptors, the plasma membrane receptors, are activated when binding to endothelin I and angiotensin II (two hormones that contribute to cardiac pathological changes), leading to phospholipase C-dependent release of IP3 from phosphatidylinositol 4,5-bisphosphate; then, IP3 binds to the IP3 receptor (IP3R), which is an ER Ca\(^{2+}\)-release channel, to activate it\(^19-21\); the interaction of IP3 and IP3R elicits Ca\(^{2+}\) depletion from the ER lumen to the cytosol\(^22\) (Figure 1).

In addition to their central role in metabolism, mitochondria are Ca\(^{2+}\) storage organelles; this function is enabled by the mitochondrial Ca\(^{2+}\) uniporter (MCU).\(^23-26\) SOCE is related to MCU activation and calcium accumulation in the mitochondrial matrix, leading to dramatic changes in mitochondrial function such as adenosine triphosphate (ATP) production, reactive oxygen species (ROS) production, location, motility, fission, and fusion.\(^25,27-33\) Conversely, these alterations in mitochondrial function are capable of regulating SOCE activity. The coupling of mitochondria and SOCE is essential for sustaining the constitutive activation of downstream signal pathways.\(^34\)

Accumulating evidences supports the existence of reciprocal regulation between mitochondria and SOCE in the physiological and pathological processes of the heart.\(^35-39\) In this review, we aim to show the potential interplay patterns between SOCE and mitochondria in the heart, thus providing a theoretical basis for future studies.

2 | MOLECULAR REGULATION OF SOCE

SOCE enables Ca\(^{2+}\) entry from the extracellular space into the cytosol.\(^40,41\) The SOCE machinery includes three major components: stromal interaction molecule 1 (STIM1), transient receptor potential channels (TRPCs), and calcium release-activated calcium channel protein (Orai). Based on the properties of biophysics, electrophysiology, and biochemistry, SOCE can be divided into two subgroups: Ca\(^{2+}\) release-activated Ca\(^{2+}\) channel (CRAC) is a Ca\(^{2+}\)-selective channel formed by Orai1;\(^42\) store-operated channels (SOC) are non-selective cation channels formed by TRPCs.\(^43\) CRAC and SOC are both implicated in cardiovascular pathological processes.

Orai and TRPCs are PM-anchored proteins; the channels formed by these two proteins induce Ca\(^{2+}\) influx from extracellular space to cytosol. Orai1, Orai2, and Orai3 are subfamily members of Orai. Orai proteins form Ca\(^{2+}\)-selective (PCa/PNa >1000) channels.\(^44\) Orai1 has been well studied; it forms a hexamer upon activation, but remains as a homodimer or homotetramer in its resting state.\(^45-49\) However, there is a lack of studies on SOCE regulation by Orai2 and Orai3. TRPCs form non-selective (PCa/PNa <10) cation channels, mediating inward flows that contain cations including Ba\(^{2+}\), Na\(^+\), Sr\(^{2+}\), and Ca\(^{2+}\). TRPCs contain six subgroups: TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7.\(^43\) SOCE events are activated by the discharge of Ca\(^{2+}\) from the ER.\(^50\) The key point here is how SOCE channels respond to the decreased Ca\(^{2+}\) concentration in the ER; the answer to this question was obscure until the discovery of STIM1, an endoplasmic Ca\(^{2+}\) depletion sensor protein.
NAN et al.

STIM1 oligomerization is initiated upon the release of Ca^{2+} from the ER lumen. STIM1 and STIM2 are two subfamily members of the STIM. STIM1 has been well studied and has been proven to be a Ca^{2+} sensor. However, the physiological role of STIM2 is much less clear.

STIM1 is a transmembrane protein of the ER; it consists of an intra-ER EF-hand domain, a transmembrane domain, a sterile α-motif domain, an extra-ER distal lysine-rich cytosolic tail, and an extra-ER coiled-coil domain. In the resting state (~500 μM Ca^{2+} in the ER), Ca^{2+} inhibits STIM1 when binding to its EF-hand domain. Calcium-binding in the EF-hand domain can inhibit STIM1 oligomer formation, whereas the reduction of Ca^{2+} content in the ER can promote STIM1 oligomer formation and expose the activating region within the coiled-coil domain.

Oligomerized STIM1 binds to SOCE channels (Orai) at the ER-PM junction site to elicit Ca^{2+} influx. In short, in response to decreased Ca^{2+} levels in the ER lumen, STIM1 oligomerizes and interacts with SOCE channels to elicit Ca^{2+} influx. Ca^{2+} entry will persist as long as Ca^{2+} levels remain low in the ER.

During SOCE, calcium removed from the ER can be replenished again with SOCE-mediated Ca^{2+} influx. SOCE increases Ca^{2+} concentration in the cytoplasm, thereby activating calcium-dependent signalling pathways. The ER membrane-localised sarco/endoplasmic reticulum Ca^{2+}-ATPase (SERCA) uptakes Ca^{2+} from the cytosol to the ER lumen. Following SOCE activation, SERCA pumps are aggregated around STIM1 oligomers; SERCA re-uptake Ca^{2+} ions as soon as they cross the SOCE channels and reach the cytosol, avoiding the diffusion of Ca^{2+} ions in the cytosol and efficiently refilling the ER Ca^{2+} store.

Both the Na^{+}/Ca^{2+} exchanger (NCX) and plasma membrane Ca^{2+} ATPase (PMCA) are capable of inducing Ca^{2+} extrusion from the cytosol. NCX has low Ca^{2+} affinity but a high capacity for Ca^{2+} transport, whereas PMCA exhibits the opposite properties. Large cytosolic Ca^{2+} variations (both amplitude and content changes) have been observed when cardiomyocytes undergo excitation-contraction coupling, mainly achieved by dynamic regulation of NCX, but not by PMCA. By comparison, PMCA counteracts the mild and persistent Ca^{2+} elevation elicited by SOCE in the cytosol. Therefore, PMCA activation is the main factor that mediates Ca^{2+} extrusion during SOCE.

3 | RECIPROCAL REGULATIONS BETWEEN MITOCHONDRIA AND SOCE

SOCE induces Ca^{2+} influx from regions adjacent to Ca^{2+} entry sites with high Ca^{2+} concentrations, referred to as calcium concentration microdomains (CCMs). When the Ca^{2+} level in CCMs is high, it inhibits the activity of SOCE channels via a process called
Ca^{2+}-dependent SOCE inactivation. This property of the SOCE channel is crucial for the interplay between SOCE and mitochondria.

Mitochondrial function is closely related to the activity of SOCE. Mitochondrial depolarization by FCCP mediates STIM1 clustering, resulting in enhanced store-operated channels activity. Mitochondria support most of the physiological actions of cells by producing ATP. ATP can buffer Ca^{2+}, relieving the inhibitory effect of incoming Ca^{2+} on SOCE activity. We can thus infer that the metabolic status of mitochondria fine-tunes intracellular ATP content, which is in turn key to determining SOCE activity. Various diseases, including cardiovascular, neurological, and immune diseases, exhibit changes in both Ca^{2+} signalling and ROS production in cells. Both Ca^{2+} signals and ROS are mainly handled by the mitochondria and are linked to SOCE activity. Thus, mitochondria regulating SOCE activity may also be dependent on mitochondrial Ca^{2+} ([Ca^{2+}]_{m}) handling and ROS generation. Moreover, location, motility, and dynamics of mitochondria are also determinants of SOCE activity.

Conversely, SOCE plays a vital role in regulating mitochondria. SOCE-induced Ca^{2+} influx can affect the concentration of [Ca^{2+}]_{m} and subsequently modulate mitochondrial energy metabolism (ATP production) and mitochondrial stress response (ROS generation). MCU responds to increased SOCE activity and initiates [Ca^{2+}]_{m} handling and ROS production in cells. Both Ca^{2+} signals and ROS are mainly handled by the mitochondria and are linked to SOCE activity. Thus, mitochondria regulating SOCE activity may also be dependent on mitochondrial Ca^{2+} ([Ca^{2+}]_{m}) handling and ROS generation. Moreover, location, motility, and dynamics of mitochondria are also determinants of SOCE activity. Focussed ion beam scanning electron microscopy has helped to achieve 3D rendering of cardiac mitochondria. Using this approach, the inter-mitochondrial junction has been found to exist between two adjacent mitochondria, enabling rapid communication and distribution of potential energy through the cell (Figure 2). A proactive mechanism involving the separation of dysfunctional mitochondria from the mitochondrial network allows mitochondrial damage to be confined. Due to the paucity of research regarding Ca^{2+} diffusion between individual mitochondria via inter-mitochondrial junctions, it is still not clear whether the whole mitochondrial network can freely share the Ca^{2+} ion. Presumably, as with the segregation of mitochondrial damage, SOCE-related mitochondrial Ca^{2+} uptake may also be limited without spreading throughout the mitochondrial network (Figure 2).

Based on the distance between mitochondria and the PM, mitochondria are divided into two subgroups: sub-PM mitochondria (close to SOCE channels) and interfibrillar mitochondria (far from SOCE channels) in cardiomyocytes. Sub-PM mitochondria are more likely to interact with SOCE but not with interfibrillar mitochondria. Nevertheless, there is evidence of regulation between the interfibrillar mitochondria and SOCE. The proposed mechanism of interplay between SOCE and interfibrillar mitochondria in cardiomyocytes is as follows: the ER uptakes the incoming Ca^{2+} upon SOCE activation and transports those Ca^{2+} ions to the interfibrillar mitochondria by directly interacting with interfibrillar mitochondria; these in turn can continuously uptake Ca^{2+} through opened SOCE channels and export them through IP3Rs, thus affecting Ca^{2+} uptake of mitochondria in deep cytosol. In contrast, interfibrillar mitochondria can modulate SOCE activity. Research has confirmed that the disruption of mitochondrial potential with antimycin A/oligomycin, rotenone/oligomycin, and uncouplers reduces the amplitude of SOCE. The mitochondrial potential is correlated with increased SOCE activity, suggesting that fully functional mitochondria are essential for SOCE activity regardless of mitochondrial localization. However, the specific mechanism underlying these observations remains unclear. It is tempting to speculate that mitochondria-released metabolites and byproducts of cellular respiration may disperse to the vicinity of SOCE channels and subsequently influence their activity.
3.2 | Crosstalk between mitochondria and SOCE

3.2.1 | Mitochondrial Ca^{2+} transporters and SOCE activity

Since the mitochondrial inner membrane is impermeable to Ca^{2+}, calcium depends on transporters to accumulate in the mitochondria. MCU, a Ca^{2+} transporter, can be activated by increased $[\text{Ca}^{2+}]_c$ (cytosolic Ca^{2+}) and subsequently uptake Ca^{2+} from the cytoplasm to the mitochondrial matrix; uncoupling protein 2 (UCP2) is also a Ca^{2+} transporter on the mitochondrial inner membrane. Their specific roles in Ca^{2+} handling differ. MCUs can respond well to increased Ca^{2+} levels regardless of the source of Ca^{2+}, whereas UCP2 uptake from the intracellular released Ca^{2+} but not that of incoming through SOCE channels. However, both are essential for maintaining SOCE activity.

SOCE102 MCU- or UCP2-knockdown hampers STIM1 oligomerization and subsequently inhibits SOCE upon IP3-generating agonist treatment.25 In short, mitochondrial Ca^{2+} transporters (MCU and UCP2) are essential for maintaining SOCE activity.

3.2.2 | SOCE promotes MCU-dependent mitochondrial calcium uptake and thus regulates mitochondrial function

It is known that Ca^{2+} uptake transporters (MCU and UPC2), Ca^{2+} extrude transporters, and Ca^{2+}-H^+- exchanger (Letm1) are essential for maintaining $[\text{Ca}^{2+}]_m$ homeostasis. SOCE can mediate the upregulation of MCU, thereby controlling mitochondrial Ca^{2+} uptake and regulating mitochondrial metabolism.90,103,104 There is no evidence showing that other transporters such as UCP2, Na^+-Ca^{2+} exchanger, and Ca^{2+}-H^+ exchanger respond to the SOCE event.
SOCE promotes the activation of MCU that facilitates $[\text{Ca}^{2+}]_{\text{m}}$ uptake.97,98 MCU-dependent $[\text{Ca}^{2+}]_{\text{m}}$ uptake is essential for mitochondrial ROS (mtROS) generation. A study has shown that MCU is associated with mtROS production, thereby promoting cellular skeletal response during wound healing in Caenorhabditis Elegans.105

MCU-dependent $[\text{Ca}^{2+}]_{\text{m}}$ uptake regulates ATP production via oxidative phosphorylation. In mitochondria, calcium ions activate three key enzymes related to the TCA cycle: pyruvate dehydrogenase, ketoglutarate dehydrogenases, and isocitrate dehydrogenases.106-108 These three dehydrogenases respond to increased Ca^{2+} concentration in the mitochondrial matrix to increase NADH availability, drive electrons to flow through the respiratory chain, and ultimately enhance ATP synthesis. In addition, the SOCE-mediated increase in cytosolic Ca^{2+} ([Ca$^{2+}]_{c}$) enhances the activity of aralar1 and citrin (two inner mitochondrial membrane-anchored aspartate/glutamate exchangers) to accelerate the supply of α-ketoglutaric acid (α-KG) to the tricarboxylic acid cycle (TCA cycle), and ultimately promote ATP synthesis.109-111

3.3 Mitochondrial ATP, ROS, and metabolic status influence SOCE activity

ATP is a potent Ca^{2+} buffer besides mitochondria67; aggregation of ATP at the regions adjacent to Ca^{2+} entry sites attenuates Ca^{2+}-dependent inactivation of SOCE. Energetic mitochondria are necessary to produce sufficient ATP to buffer Ca^{2+} in CCMs. ATP can diffuse in the space surrounding the ER-PM junction to buffer the incoming Ca^{2+} through SOCE channels; since mitochondria are not able to reach the site of the ER-PM junction, mitochondria exert their buffering action in an ATP-dependent manner. Alternatively, ATP may exert its effects on SOCE activity by targeting Ca^{2+} ion pumps on either the
PM or ER membrane. PMCA is a transport protein on PM and functions to remove Ca\(^{2+}\) from cells. SERCA uptakes Ca\(^{2+}\) from the cytosol, leading to Ca\(^{2+}\) accumulation in the ER lumen. SERCA and PMCA are powered by ATP that results in a low Ca\(^{2+}\) concentration surrounding the SOCE channels to maintain SOCE activity.\(^{114-116}\) Moreover, mtROS generated by mitochondria under stress conditions are unlikely to diffuse to the regions where these modification sites are located, and direct regulation of mtROS on SOCE components, including STIM1 and Orai1, seems difficult to implement.\(^{114-116}\) However, mtROS can regulate SOCE events and activity at the transcriptional level. Nuclear factor kappa B (NF-kB) can be activated by mtROS under stress conditions; it is a transcription factor that upregulates the protein levels of SOCE components (Orai1 and STIM1).\(^{114,116,117}\) Moreover, mtROS also regulate SOCE activity by modulating the Ca\(^{2+}\) concentration in the ER. MtROS increase the sensitivity of IP3R to release Ca\(^{2+}\) from the ER that then keeps the ER-Ca\(^{2+}\) level low enough to maintain SOCE activity in a STIM1-dependent manner.\(^{118,119}\) (Figure 4).

Similar to ATP, pyruvic acid can also buffer Ca\(^{2+}\) in CCMs.\(^{120}\) Pyruvic acid is produced from glucose via glycolysis. Aerobic respiration (by cells with sufficient oxygen) allows pyruvic acid to take part in the TCA cycle; fermentation (by cells with insufficient oxygen) transforms pyruvic acid into lactate. Therefore, metabolic status affects the level of intracellular pyruvic acid and subsequently modulates SOCE activity.

3.4 Mitochondrial dynamics, mitochondrial motility, and SOCE

SOCE-dependent regulation of mitochondrial motility in immune cells has been previously discussed.\(^{92}\) Mitochondria move to the CCMs at the Ca\(^{2+}\) entry sites during SOCE activation; then, mitochondria take up Ca\(^{2+}\) to reduce the size of CCMs and protect SOCE channels from Ca\(^{2+}\)-dependent inactivation.\(^{30,31,121}\) In brief, mitochondria can be immobilised at Ca\(^{2+}\) entry sites and buffer Ca\(^{2+}\) in CCMs, resulting in sustained SOCE activity. Cardiac mitochondria are tightly packed between myofibrils, thus hampering mitochondrial motility. However, mitochondrial transport does exist in cardiomyocytes, and the high concentration of intracellular Ca\(^{2+}\) regulates Miro 1/2 proteins to hamper the motility of mitochondria, implying that mitochondrial motility plays a role in SOCE activity in the heart.\(^{122}\)

Mitochondrial morphology is determined by their dynamic events (fusion and fission); these events are also called mitochondrial dynamics. Several proteins were determined to be pro-fusion proteins that induce mitochondrial fusion, such as Mfn1/2 and OPA1, that are tightly regulated by pro-fission proteins such as Drp1 and hFis1. Mitochondrial dynamics are correlated with SOCE amplitude. Overexpression of hFis1 induces mitochondrial fission that results in decreased accumulation of sub-PM mitochondria and subsequently attenuated SOCE activity.\(^{86,93,124}\) Mfn2, a pro-fusion protein, is necessary for the trafficking of STIM1 to the ER-PM junction to open the SOCE channels. Knockdown of Mfn2 can decrease SOCE activity, thereby reducing cellular Ca\(^{2+}\) overload.\(^{33}\)

Conversely, SOCE activity has a profound impact on mitochondrial dynamics. STIM1 knockout promotes mitochondrial fusion and increases metabolic activity in mouse embryonic fibroblasts,\(^{28}\) demonstrating that SOCE is implicated in the modulation of mitochondrial dynamics and metabolism. Research data support that SOCE-induced Ca\(^{2+}\) influx modulates mitochondrial dynamics by activating pathways that are downstream of [Ca\(^{2+}\)]\(_{c}\). It is well established that increased [Ca\(^{2+}\)]\(_{c}\) levels activate calcineurin/Drp1 and CaMKI\(_{a}/\)Drp1 pathways to promote mitochondrial fission.\(^{18,125}\)

4 SOCE MACHINERY IN HEART

4.1 SOCE is involved in cardiac development

SOCE is essential for both physiological and pathological heart regulation. The protein expression of the STIM, Orai, and TRPC subfamilies is influenced by the corresponding cell types. Determining the characteristics of the expression of these proteins in cardiac myocytes is necessary to understand the specific mechanism of myocardial SOCE. STIM1 and STIM1L (a splice variant of STIM1) transcripts are both present in neonatal cardiomyocytes but diminish with maturation. STIM1 and STIM1L have been found to be upregulated in myocardial cells under stress (e.g. phenylephrine treatment),\(^{8}\) whereas STIM2 has not been studied in the heart. The Orai protein family comprises three members (Orai1 - Orai3); the most studied subfamily is Orai1 in the heart. TRPC1, TRPC3, TRPC4, and TRPC6 channels contribute to cardiac hypertrophy.\(^{126-129}\) SOCE events are highly selective for Ca\(^{2+}\) in neonatal cardiomyocytes. We infer that Orai1 but not TRPCs mediated SOCE events that contributed to the postnatal development of cardiomyocytes.\(^{10}\) In the adult heart, STIM1-Orai1 is implicated in SOCE activation, inducing pathologic changes in the heart.\(^{130}\)

4.2 SOCE is involved in cardiac excitation and conduction

The regulation of Ca\(^{2+}\) is essential for the excitation and conduction of the heart. It was confirmed that STIM1 was expressed in coronary sinus cardiomyocytes (CSCs) in a tract from the sinoatrial node to the coronary sinus.\(^{131}\) The deletion of STIM1 from CSCs slowed interatrial conduction and increased susceptibility to atrial fibrillation. These data support the physiological role of the STIM1 pathway in CSCs that contributes to interatrial conduction to avoid
SOCE may also be involved in arrhythmogenesis in mouse ventricular myocytes. Caffeine, thapsigargin, and cyclopiazonic acid treatment induce the depletion of sarcoplasmic reticulum (SR) Ca\(^{2+}\) that effectively elicits the SOCE event in mouse ventricular myocytes. When cardiomyocytes were pretreated with anti-TRPC 1, 3, and 6 antibodies, the SOCE events and cardiac arrhythmias were significantly reduced.

These observations suggest that SOCE events in mouse ventricular myocytes are mediated by TRPC channels that may be involved in cardiac arrhythmogenesis by enhancing spontaneous Ca\(^{2+}\) waves. The arrhythmogenic role of SOCE was verified by another research group using a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). They demonstrated that transient Ca\(^{2+}\) entry events comprise cardiac SOCE and can be effectively prevented by SOCE inhibition. The specific locations of SOCE events were also confirmed to be intercalated disc compartments.

5 | MITOCHONDRIA AND SOCE IN CARDIAC HYPERTROPHY

TRPCs and Orai1 are upregulated, and STIM1 is activated, during the progression of cardiac hypertrophy. Since STIM1, Orai1, and TRPCs are central mediators of SOCE, directly interfering with their expressions through the corresponding knockdowns and knockouts can help to elucidate the specific role of SOCE during the progression of cardiac hypertrophy. Using these approaches, studies have confirmed that angiotensin II and endothelin-1 enhance...
the SOCE event that then activates the calcineurin/NFAT signalling pathway to induce cardiac hypertrophy.22,127,134-138 Phenylephrine-induced cardiomyocyte hypertrophy is mediated by SOCE-dependent CaMKII\textsubscript{δ} activation.139 Using STIM1 transgenic mice, SOCE was shown to be the major contributor to the cardiac hypertrophic response. These mice developed heart failure with hypertrophy and exhibited increased expression of hypertrophic genes.37 Moreover, STIM1 oligomerization promotes the formation of CCMs that are essential for remodelling cytoskeletal myofilaments during the hypertrophic progression of the heart. STIM1 knockout alleviates cardiac hypertrophic response upon pressure overload.140 SOCE activation is the primary cause of cardiac hypertrophy.

Hypertrophic transformation of the heart can be divided into three stages: developing hypertrophy (stage 1), compensatory hypertrophy (stage 2), and overt heart failure (stage 3).141 In stages 2 and 3, the reversion of metabolic preference has been observed (from fatty acid oxidation to glucose), leading to enhanced activity of AMP-kinase (AMPK).145 Studies have confirmed that AMPK is associated with SOCE activity. AMPK induces the phosphorylation of STIM1 to inhibit its oligomerization and activation and subsequently attenuates SOCE activity.142 On the other hand, AMPK can activate Nedd4-2 (a ubiquitin ligase) that then targets Orai1 for its degradation.143 Taken together, we can infer that the metabolic status in cardiac hypertrophy (stages 2 and 3) activates AMPK and subsequently negatively regulates SOCE activity (Figure 3). This may be the mechanism by which AMPK activation reduces cardiac hypertrophy.144

During the progression of cardiac hypertrophy, mtROS generation is moderately increased that subsequently activates its downstream signalling pathway, NF-κB.145-149 NF-κB is a transcription factor that enhances the expression of STIM1 and Orai1, thereby promoting SOCE activity.114,116 Taken together, we hypothesise that mtROS-NF-κB promotes calcineurin/NFAT signalling pathway-dependent cardiac hypertrophy by mediating the increase in SOCE. It should be mentioned that SOCE increases [Ca2+]\textsubscript{i} levels to induce mtROS-NF-κB signalling and, in turn, mtROS-NF-κB signal enhances SOCE activity to form a positive feedback loop.105,116 (Figure 3).

In hypertrophic cardiomyocytes, mitochondrial metabolic status (which activates AMPK) and mitochondrial ROS generation (which activates NF-κB) oppositely modulate SOCE activity. AMPK attenuates and NF-κB facilitates SOCE activity. In short, mitochondria can either promote or inhibit SOCE activity in the hypertrophic heart.

6 | MITOCHONDRIA AND SOCE IN HEART FAILURE

6.1 | Mitochondria and SOCE in heart failure with reduced ejection fraction (HFrEF)

Changes in the components of the SOCE machinery were observed in patients who were diagnosed with heart failure in the NYHA III-IV class. Orai1 was decreased by 30% in failing myocardium, whilst Orai2 and Orai3 expression remained normal. The STIM2.1 levels are significantly reduced to enhance SOCE activity in end-stage heart failure.150 SOCE alterations have been shown to contribute to the progression of dilated heart failure in animal models. Cardiac-specific deletion of STIM1 in mice promotes left ventricular dilatation and decreased contractility.160 Cardiac STIM1 knockout and mutant STIM1 (R429C) expression exhibited mitochondrial abnormalities (>12 weeks of age) and contractile dysfunction (between 20 and 36 weeks of age).36,151 The R140W mutation of muscle-related coiled-coil protein (MURC) disrupts SOCE activation and contributes to human dilated cardiomyopathy.152 Cardiac Orai1+ mice develop dilated cardiomyopathy that cannot compensate for the overload and results in an earlier death.153 Orai1R93W knock-in mice that express a non-functional Orai1 channel protein exhibited markedly swollen mitochondria with an abnormal cristae structure in the heart.154 In a zebrafish model, inactivation of Orai1 resulted in the development of dilated heart failure and progressive loss of myofiber integrity.155 Overall, these human and animal studies strongly support the crucial role of SOCE inactivation and mitochondrial dysfunction in regulating dilated heart failure. However, further investigations are necessary to explore the specific mechanism of reciprocal regulation between SOCE and mitochondria.

In the dilated heart, the metabolic substrate preference of mitochondria converts fatty acids to glucose. Interestingly, SOCE events dramatically decrease during the transition of the heart from compensatory hypertrophy to dilated heart failure. Thorough investigations of the relationship between SOCE and mitochondrial metabolism have been conducted to elucidate their reciprocal regulation in heart failure. In the failing heart, compromised SOCE activity reduces lipid metabolism in a mitochondria-dependent manner that is crucial for the mobilisation of fatty acids from lipid droplets and mitochondrial fatty acid oxidation; SOCE controls cAMP-dependent induction of PGC-1α/PPARα expression and lipolysis.154 Additionally, SOCE regulates mitochondrial metabolism by stimulating mitochondrial Ca2+ uptake, and SOCE-dependent activation of Ca2+-regulated transcription factor promotes MCU expression, in turn controlling the Ca2+ uptake capability of mitochondria and hence regulating mitochondrial metabolism.156

6.2 | Mitochondria and SOCE in heart failure with preserved ejection fraction (HFpEF)

CRU, formed by DHPR and RyR2, elicits the accumulation of CCMs adjacent to myofilaments, providing a coupling mechanism that enables Ca2+-dependent myofilament activation, also referred to as excitation-contraction coupling. NCX- and SERCA-dependent dissipation of CCMs is a prerequisite for cardiac excitation-contraction uncoupling. Therefore, the malfunction of the dissipation-machinery of CCMs causes the retention of Ca2+ in the cytoplasm, resulting in HFpEF. Recent studies have demonstrated that SOCE and mitochondria contribute to HFpEF; SOCE improves the elevation of cytosolic Ca2+ and the development of
cellular hypercontracture; aldosterone/MR signalling enhanced SOCE is associated with increased diastolic $[\text{Ca}^{2+}]_i$ that may inhibit the diastolic function of cardiomyocytes. The interplay between SOCE and mitochondria maintains $[\text{Ca}^{2+}]_i$ entry during the diastolic period of cardiomyocytes, resulting in sustained elevation of cytosolic Ca^{2+} and HFrEF.

7 | MITOCHONDRIA AND SOCE IN DIABETIC CARDIOMYOPATHY

Diabetes is characterised by hyperglycaemia and insulin resistance. The attachment of O-linked N-acetylglucosamine to proteins (O-GlcNAcylation) is observed under hyperglycaemic conditions. In cardiomyocytes, hyperglycaemia-mediated STIM1 O-GlcNAcylation decreases SOCE activity\(^{10,159}\) (Figure 5). However, the potential role of insulin in SOCE activity still needs to be explored.\(^{160}\)

$[\text{Ca}^{2+}]_i$ uptake is vital for maintaining SOCE activity, and MCU is critical for inducing $[\text{Ca}^{2+}]_i$ uptake.\(^{102,161,162}\) However, changes in the MCU members in the diabetic heart impair the capacity of $[\text{Ca}^{2+}]_i$ uptake.\(^{160}\) In mice with diabetes, impairment of glucose consumption and a compensatory increase in free fatty acid levels promotes mitochondrial stress and activate UCP2, leading to the collapse of mitochondrial potential ($\Delta\psi$) and reduced ATP production.\(^{163-166}\) Since ATP can diffuse to the vicinity of SOCE channels to buffer the incoming Ca^{2+} counteracting the inhibitory effects of Ca^{2+} on SOCE activity, the paucity of ATP attenuates the SOCE activity in the diabetic heart.

With the development of diabetes, mitochondrial dynamic-related proteins could be another determinant of SOCE activity. In diabetic cardiomyocytes, pro-fusion proteins (OPA1 and Mfn2) are downregulated, and the pro-fission protein (Drp1) is activated to promote mitochondrial fission, leading to decreased $\Delta\psi$ and reduced production of ATP.\(^{167-170}\) Depolarized mitochondria and decreased ATP content can attenuate SOCE activity. Moreover, decreased Mfn2 expression is observed in diabetic cardiomyocytes.\(^{168,171,172}\) In addition to its pro-fusion activity, Mfn2 is essential for STIM1 trafficking to ER-PM junctions and subsequently promotes SOCE activity.\(^{173}\) Therefore, the reduced expression of Mfn2 in diabetes attenuates the activation of SOCE (Figure 5).

In brief, impaired mitochondrial Ca^{2+} handling, ATP insufficiency, and mitochondrial fragmentation hamper the opening of SOCE channels and reduce Ca^{2+} entry into diabetic cardiomyocytes (Figure 5).
Ischaemia-reperfusion (I/R) is characterised by Ca2+ overload that causes IRI. Studies have shown that SOCE activity is enhanced following reperfusion and then mediated Ca2+ overload, suggesting that the SOCE event is a major contributor to IRI.173,174 Inhibition of STIM1 alleviates H9C2 cell apoptosis by reducing calcium overload during hypoxic reperfusion.173 TRPC3 overexpressed mice exhibit increased apoptosis of cardiomyocytes in response to I/R, demonstrating the detrimental role of SOCE in IRI.173 SOCE inhibitors have been shown to alleviate cardiac injury following I/R. In both endothelial cells and cardiomyocytes, it has been found that gadolinium, SKF96365, and 2-aminoethoxydiphenyl borate, all of which are inhibitors of SOCE, significantly attenuate Ca2+ overload during I/R process176-178; moreover, resveratrol pretreatment alleviates myocardial IRI by inhibiting STIM1-mediated intracellular calcium accumulation.174

Transcription of Mfn2 is increased upon ROS insult during I/R, and increased protein levels of Mfn2 facilitate the aggregation of STIM1 at the site of the ER-PM junction to open the SOCE channels.179 Arrhythmia is a common complication of IRI, and the contribution of SOCE to arrhythmias has received increased attention; disordered Ca2+ cycling and Ca2+ overload resulting from SOCE activation are pivotal for the initiation and recurrent cardiac arrhythmia during I/R. Orai-mediated SOCE events contribute to the occurrence of atrial and ventricular arrhythmias following I/R.27,129,141,143 In short, the SOCE event occurs during I/R and contributes to I/R-induced Ca2+ overload and arrhythmias.

During I/R, SOCE is activated to induce Ca2+ overload in the cytosol.173,176,177 Then, the redundant Ca2+ transfers from the cytoplasm to the mitochondrial matrix in an MCU-dependent manner.105,180 Alternatively, upregulated protein levels of Mfn2 tether the mitochondria and ER together, facilitating a direct transfer of Ca2+ from the ER lumen to the mitochondrial matrix179,181 (Figure 4). Thereafter, [Ca2+]\textsubscript{m} accumulation causes overproduction of mtROS and activation of apoptosis pathways.182,183 In brief, I/R activates the SOCE-[Ca2+]\textsubscript{m}-mtROS pathway to deteriorate IRI. Intriguingly, I/R-mediated mtROS generation can increase the sensitivity of IP3R to maintain empty ER Ca2+ stores, thus stabilising the opening of SOCE channels.118,183

SOCE can mediate Ca2+ overload and promote mitochondrial fission in response to I/R. The increased [Ca2+]\textsubscript{c} during I/R activates calcineurin that targets drp1 (S637) for its de-phosphorylation.184 In addition to calcineurin, CaMK\textalpha, a downstream signal of [Ca2+]\textsubscript{c}, phosphorylates Drp1; both calcineurin and CaMK\textalpha promote translocation of Drp1 to mitochondria to induce mitochondrial fission.125 These studies indicate that I/R activates the SOCE-[Ca2+]\textsubscript{c}-Drp1 signal to promote mitochondrial fission (Figure 4). ATP production is impaired during I/R, leading to diminished SERCA activity and ensuing relatively empty ER Ca2+-stores185,186; hence, impairment of ATP production may contribute to increased and sustained SOCE activity in response to I/R.

9 | CONCLUSIONS

Mitochondria, the primary energy source for cardiomyocytes, occupy approximately 30% of the cardiomyocyte space. Apart from energy generation, mitochondria are major intracellular calcium stores, suggesting their potential role in Ca2+ regulation in cardiomyocytes. Numerous studies have revealed that the mitochondria and SOCE are reciprocally regulated. Nevertheless, the exact molecular mechanisms by which mitochondria determine SOCE and vice versa are still obscure. Herein, we discussed findings that intact respiring mitochondria are fundamental for the activation and maintenance of SOCE, and that Ca2+ entry induced by SOCE has recently been demonstrated to link mitochondrial metabolic functions with cellular signal transduction. Reciprocal regulation between mitochondria and SOCE is thus essential for cardiomyocyte homeostasis.

In different pathological states of the heart, SOCE is either enhanced or inhibited, and Ca2+ handling, dynamics, subcellular localization, and metabolism of mitochondria are dramatically altered. Thus, the communication between mitochondria and SOCE machinery is complex, subject to substantial alterations, and ultimately drives numerous cellular processes in cardiomyocytes. The interplay between mitochondria and SOCE may lead to either beneficial or detrimental effects in different pathological settings. The issues raised in this review may uncover the yet unrecognised interplay patterns between mitochondria and SOCE in different cardiac diseases. Our review provides potential targets for studying SOCE and mitochondria in the heart: blockade of SOCE may alleviate intracellular calcium overload and mitochondria-related apoptosis; intervention of MCU-dependent mitochondrial Ca2+ uptake, mitochondrial dynamics, and mitochondrial metabolism may counteract SOCE-induced Ca2+ entry, protecting cardiomyocytes against cardiac challenges.

ACKNOWLEDGEMENTS

This study was supported by the National Natural Science Foundation of China (No. 81800314 and 82170380 for J. Nan; No. 82070493 for Y. Lin) and the Zhejiang Provincial Natural Science Foundation (No. LY21H020008 for Y. Lin).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHOR CONTRIBUTIONS

Lingjun Zhu: Conceptualization (supporting); Supervision (lead). Jinliang Nan: Conceptualization (lead); Writing-original draft (equal). Jiamin Li: Writing-original draft (equal). Yinuo Lin: Writing-review & editing (equal). Muhammad Saif Ur Rahman: Writing-review & editing (equal). Zhengzhong Li: Writing-review & editing (equal).
REFERENCE

1. Berridge MJ, Lipp P, Bootman MD. The versatility and universal-
ity of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11-21.
doi:10.1038/35036035.
2. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling:
dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol.
2003;4(7):517-529. doi:10.1038/nrm1155.
3. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb
Perspect Biol. 2011;3(8):a003947. doi:10.1101/cshperspect.a003947.
4. Bers DM. Cardiac excitation-contraction coupling. Nature.
2002;415(6868):198-205. doi:10.1038/415198a.
5. Erickson JR. Mechanisms of CaMKII Activation in the Heart. Front
Pharmacol. 2014;5:59. doi:10.3389/fphar.2014.00059.
6. Ljuboevic S, Bers DM. Nuclear calcium in cardiac myocytes.
J Cardiovasc Pharmacol. 2015;65(3):211-217. doi:10.1097/
FJC.0000000000000174.
7. Striessnig J, Pinggera A, Kaur G, Bock G, Tuluç P. L-type Ca
channels in heart and brain. Wiley Interdiscip Rev Membr Transp
Signal. 2014;3(2):15-38. doi:10.1002/wmt.102.
8. Luo X, Hojayev B, Jiang N, et al. STIM1-dependent store-
operated Ca(2+)-entry is required for pathological cardiac hy-
pertrophy. J Mol Cell Cardiol. 2012;52(1):136-147. doi:10.1016/j.
jmcc.2011.11.003.
9. Ohba T, Watanabe H, Murakami M, Sato T, Ono K, Ito H. Essential
role of STIM1 in the development of cardiomyocyte hypertrophy.
Biochem Biophys Res Commun. 2009;389(1):172-176. doi:10.1016/j.
bbrc.2009.08.117.
10. Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC.
Modification of STIM1 by O-linked N-acetylglucosamine (O-
GlcNAc) attenuates store-operated calcium entry in neo-
natal cardiomyocytes. J Biol Chem. 2012;287(46):39094-39106.
doi:10.1074/jbc.M112.383778.
11. Protasi F. Structural interaction between RYRs and DHPRs in
calcium release units of cardiac and skeletal muscle cells. Front
Biosci. 2002;7:d650-d658.
12. Treinys R, Jurevicus J. L-type Ca2+ channels in the heart: struc-
ture and regulation. Medicina. 2008;44(7):491-499.
13. Vittorini S, Storti S, Parvi MS, Cerillo AG, Clerico A, SERCA2a,
phospholamban, sarcolipin, and ryanodine receptors gene ex-
pression in children with congenital heart defects. Mol Med.
2007;13(1-2):105-111. doi:10.2119/2006-00054.Vittorini.
14. Hilge M, Aelen J, Vuister GW. Ca2+ regulation in the Na+/Ca2+
exchanger involves two markedly different Ca2+ sensors. Mol
Cell. 2006;22(1):15-25. doi:10.1016/j.molcel.2006.03.008.
15. Naranjo JR, Mellstrom B. Ca2+-dependent transcriptional control
of Ca2+ homeostasis. J Biol Chem. 2012;287(38):31674-31680.
doi:10.1074/jbc.R112.384982.
16. Shaw PJ, Feske S. Physiological and pathophysiological func-
tions of SOCE in the immune system. Front Biosci.
2012;17:4:2253-2268. doi:10.2741/s4.
17. Liu Y, Jin M, Wang Y, et al. MCU-induced mitochondrial calcium
uptake promotes mitochondrial biogenesis and colorectal cancer
growth. Signal Transduct Target Ther. 2020;5(1):59. doi:10.1038/s
41392-020-0155-5.
18. Cereghetti GM, Stangerlin A, Martins de Brito O, et al.
Dephosphorylation by calcineurin regulates translocation of Drp1
to mitochondria. Proc Natl Acad Sci. 2008;105(41):15803-15808.
doi:10.1073/pnas.0808249105.
19. Roderick HL, Bootman MD. Bi-directional signalling from the InsP3
receptor: regulation by calcium and accessory factors. Biochem Soc
Trans. 2003;31(Pt 5):950-953. doi:10.1042/bst0310950.
20. Kockskamper J, Zima AV, Roderick HL, Pieske B, Blatter LA,
Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate sig-
nalling in cardiac myocytes. J Mol Cell Cardiol. 2008;45(2):128-147.
doi:10.1016/j.yjmcc.2008.05.014.
21. Berridge MJ. Inositol trisphosphate and calcium signalling
mechanisms. Biochem Biophys Acta. 2009;1793(6):933-940.
doi:10.1016/j.bbamcr.2008.10.005.
22. Hulot JS, Fauconnier J, Ramanujam D, et al. Critical role for strom-
al interaction molecule 1 in cardiac hypertropy. Circulation.
2011;124(7):796-805. doi:10.1161/CIRCULATIONAHA.111.031229.
23. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding
of cytosolic calcium oscillations in the mitochondria. Cell.
1995;82(3):415-424.
24. Montero M, Alonso MT, Albillos A, Garcia-Sancho J, Alvarez J.
Mitochondrial Ca(2+)-induced Ca(2+) release mediated by the
Ca(2+)-unipporter. Mol Biol Cell. 2001;12(1):63-71.
25. Niescier RF, Hong K, Park D, Min KT. MCU interacts with miro1
and regulates Orai1-dependent Ca2+ entry in permeabilized rat
hearts via voltage-independent calcium channels. Eur J Pharmacol.
2012;681(1-3):60-67. doi:10.1016/j.ejphar.2012.01.045.
26. Henke N, Albrecht P, Pfeiffer A, Toutzaris D, Zanger K, Methner
A. Stromal interaction molecule 1 (STIM1) is involved in the reg-
ulation of mitochondrial shape and bioenergetics and plays a
role in oxidative stress. J Biol Chem. 2012;287(50):42042-42052.
doi:10.1074/jbc.M112.417212.
27. Wang P, Umeda PK, Sharifov OF, et al. Evidence that 2-aminoethoxydiphenylborate provokes fibrillation in perfused rat
hearts via voltage-independent calcium channels. Eur J Pharmacol.
2012;681(1-3):60-67. doi:10.1016/j.ejphar.2012.01.045.
28. Quintana A, Pasche M, Junker C, et al. Calcium-regulation of
mitochondrial respiration maintains ATP homeostasis and requires
ARALAR/AGC1-malate aspartate shuttle in intact cortical neu-
rons. J Neurosci. 2013;33(35):13957-13971. doi:10.1523/JNEURO
SCI.0929-13.2013.
29. Quintana A, Schwindling C, Wenning AS, et al. T cell activation
requires mitochondrial translocation to the immunological syn-
apse. Proc Natl Acad Sci USA. 2007;104(36):14418-14423. doi:10.1073/
pnas.0703126104.
30. Niessciar RF, Hong K, Park D, Min KT. MCU interacts with miro1
to modulate mitochondrial functions in neurons. J Neurosci.
2018;38(20):4666-4677. doi:10.1523/JNEUROSCI.0504-18.2018.
31. Singaravelu K, Nelson C, Bakowski D, et al. Mitofusin 2 reg-
ulates STIM1 migration from the Ca2+ store to the plasma
membrane in cells depolarized mitochondria. J Biol Chem.
2011;286(14):12189-12201. doi:10.1074/jbc.M110.174029.
32. Feldman B, Fedida-Metula S, Nita J, Sekler I, Fishman D. Coupling
of mitochondria to store-operated Ca(2+)-signaling sustains con-
stitutive activation of protein kinase B/Akt and augments survival
of malignant melanoma cells. Cell Calcium. 2010;47(6):525-537.
doi:10.1016/j.ceca.2010.05.002.
33. Parvinen M, Palomäki M, Slominski A, Miettinen P, Leinonen
A. Mitochondrial Ca2+ uptake and mitochondrial motility is required for STIM1-Orai1-dependent store-operated
Ca2+ entry. J Cell Sci. 2010;123(Pt 15):2553-2564. doi:10.1242/
jc.070151.
37. Correll RN, Goonasekera SA, van Berlo JH, et al. STIM1 elevation in the heart results in aberrant Ca(2+)(2+) handling and cardiomyopathy. *J Mol Cell Cardiol*. 2015;87:38-47. doi:10.1016/j.yjmcc.2015.07.032.

38. Eder P. Cardiac remodeling and disease: SOCE and TRPC signaling in cardiac pathology. *Adv Exp Med Biol*. 2017;993:505-521. doi:10.1007/978-3-319-57732-6_25.

39. Rosenberg P, Katz D, Bryson V. SOCE and STIM1 signaling in the heart: Timing and location matter. *Cell Calcium*. 2019;77:20-28. doi:10.1016/j.ceca.2018.11.008.

40. Putney JW Jr. A model for receptor-regulated calcium entry. *Cell Calcium*. 1986;7(1):1-12.

41. Takemura H, Putney JW Jr. Capacitative calcium entry in parotid acinar cells. *Biochem J*. 1989;258(2):409-412.

42. Liao Y, Erxleben C, Abramowitz J, et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/ICracs channels. *Proc Natl Acad Sci*. 2008;105(8):2895-2900. doi:10.1073/pnas.0712288105.

43. Zhu X, Jiang M, Peyton M, et al. A novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. *Cell*. 1996;85(5):661-671.

44. Serulle Y, Sugimori M, Llinas RR. Imaging synaptosomal calcium concentration microdomains and vesicle fusion by using total internal reflection fluorescent microscopy. *Proc Natl Acad Sci*. 2007;104(5):1697-1702. doi:10.1073/pnas.0610741104.

45. Demeure N, Frieden M. Measurements of the free luminal ER calcium as sensors and regulators of calcium signalling. *Adv Exp Med Biol*. 2007;8(3):228-232. doi:10.1038/scisignal.aaw00168.

46. Eiser DA, Caldwell JL, Kistamas K, Trafford AW. Calcium and excitation-contraction coupling in the heart. *Circ Res*. 2017;121(2):181-195. doi:10.1161/CIRCRESAHA.117.310230.

47. Go CK, Hooper R, Aronson MR, et al. The Ca(2+) export pump PMCA clears near-membrane Ca(2+) to facilitate store-operated Ca(2+) entry and NFAT activation. *Science Signaling*. 2019;12(602):eaaw2627. doi:10.1126/scisignal.aaw2627.

48. Brini M, Carafoli E. The plasma membrane Ca(2+)-ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. *Cold Spring Harb Perspect Biol*. 2013;3(2):a004168. doi:10.1101/cshperspect.a004168.

49. Demuro A, Penna A, Safrina O, et al. Subunit stoichiometry of STIM1-Orai1 involves an intramolecular switching mechanism. *Science*. 2010;330(6003):148-182. doi:10.1126/scisignal.2001122.

50. Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: dynamic calcium signal transducers. *Nat Rev Mol Cell Biol*. 2012;13(9):549-565. doi:10.1038/nrm3414.

51. Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca(2+)-entry. *Proc Natl Acad Sci*. 2008;105(8):2895-2900. doi:10.1073/pnas.0712288105.

52. Liou J, Kim ML, Heo WD, et al. STIM is a Ca2+ sensor essential for agonist-activated capacitative Ca2+ entry. *Cell Calcium*. 2012;47(2):179-185. doi:10.1016/j.ceca.2011.09.002.

53. Zheng L, Stathopulos PB, Li GY, Ikura M. Biophysical characterization of the EF-hand and SAM domain containing Ca2+ sensor region of STIM1 and STIM2. *Biochem Biophys Res Comm*. 2008;369(1):240-246. doi:10.1016/j.bbrc.2007.12.129.

54. Demaurex N, Frieden M. Measurements of the free luminal ER Ca(2+)-concentration with targeted "camelion" fluorescent proteins. *Cell Calcium*. 2003;34(2):109-119.

55. Covington ED, Wu MM, Lewis RS. Essential role for the CRAC activation domain in store-dependent oligomerization of STIM1. *Mol Biol Cell*. 2010;21(11):1897-1907. doi:10.1091/mbc.E10-02-0145.

56. Korzeniowski MK, Manjarres IM, Varmai P, Balla T. Activation of STIM1-Orai1 involves an intramolecular switching mechanism. *Science*. 2010;330(6003):148-182. doi:10.1126/scisignal.2001122.
75. Palty R, Raveh A, Kaminsky I, Meller R, Reuveny E. SARAF inactivates the store operated calcium entry machinery to prevent excess calcium refilling. *Cell*. 2012;149(2):425-438. doi:10.1016/j.cell.2012.01.055.

76. Bogeski I, Kilch T, Niemeyer BA. ROS and SOCE: recent advances and controversies in the regulation of STIM and Orai. *J Physiol*. 2012;590(17):4193-4200. doi:10.1113/jphysiol.2012.230565.

77. Cai T, Ottolini D, Brini M. Mitochondrial Ca(2+) and neurodegeneration. *Cell Calcium*. 2012;52(1):73-85. doi:10.1016/j.cacal.2012.04.015.

78. Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J. Modulation of Calcium Entry by Mitochondria. *Adv Exp Med Biol*. 2016;898:405-421. doi:10.1007/978-3-319-26974-0_17.

79. Dedkova EN, Blatter LA. Mitochondrial Ca(2+) and the heart. *Cell Calcium*. 2008;44(1):77-91. doi:10.1016/j.cacal.2007.11.002.

80. Nelson BR, Wu F, Liu Y, et al. Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca(2+) release and contractility. *Proc Natl Acad Sci*. 2013;110(29):11881-11886. doi:10.1073/pnas.1310571110.

81. Berridge MJ. Calcium microdomains: organization and function. *Cell Calcium*. 2006;40(5-6):405-412. doi:10.1016/j.cacal.2006.09.002.

82. Li X, Wu G, Yang Y, et al. Calmodulin dissociates the STIM1-Orai1 complex and STIM1 oligomers. *Nat Commun*. 2017;8(1):1042. doi:10.1038/s41467-017-01135-w.

83. Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Smani T, Rosado JA. TRPC Channels in the SOCE Scenario. *Cells*. 2020;9(1):126. doi:10.3390/cells9010126.

84. Varnai P, Toth B, Toth DJ, Hunyady L, Balla T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. *J Biol Chem*. 2007;282(40):29678-29690. doi:10.1074/jbc.M704339200.

85. Orci L, Ravazzola M, Le Coadic M, Shen WW, Damaurex N, Cosson P. STIM1-induced precontracted and cortical subdomains of the endoplasmic reticulum. *P Natl Acad Sci*. 2009;106(46):19358-19362. doi:10.1073/pnas.0911280106.

86. Poburko D, Liao CH, van Bremen C, Damaurex N. Mitochondrial regulation of sarcoplasmic reticulum Ca2+ content in vascular smooth muscle cells. *Circ Res*. 2009;104(1):104-112. doi:10.1161/CIRCRESAHA.108.180612.

87. Quintana A, Schwarz EC, Schwindling C, Lipp P, Kaestner L, Hoth M. Sustained activity of calcium release-activated calcium channels requires translocation of mitochondria to the plasma membrane. *J Biol Chem*. 2006;281(52):40302-40309. doi:10.1074/jbc.M607892200.

88. Varadi A, Cirilli V, Rutter GA. Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. *Cell Calcium*. 2004;36(6):499-508. doi:10.1016/j.cacal.2004.05.003.

89. Vincent AE, White K, Davey T, et al. Quantitative 3D mapping within the STIM1-Orai1 complex. *Cell Calcium*. 2010;47(5):433-440. doi:10.1016/j.cacal.2010.03.004.

90. Waldeck-Weiermair M, Malli R, Naghdi S, Trenker M, Kahn MJ, Graier WF. The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). *Cell Calcium*. 2010;47(5):433-440. doi:10.1016/j.cacal.2010.03.004.

91. Waldeck-Weiermair M, Jean-Quartier C, Rost R, et al. Leucine zipper EF hand-containing transmembrane protein 1 (Letm1) and uncoupling proteins 2 and 3 (UCP2/3) contribute to two distinct mitochondrial Ca2+ uptake pathways. *J Biol Chem*. 2011;286(32):28444-28455. doi:10.1074/jbc.M111.244517.

92. Parekh AB. Mitochondrial regulation of store-operated CRAC channels. *Cell Calcium*. 2008;44(1):6-13. doi:10.1016/j.cacal.2007.12.006.

93. Tang S, Wang X, Shen Q, et al. Mitochondrial Ca2(2+)/+unipporter is critical for store-operated Ca2(2+)/+entry-dependent breast cancer cell migration. *Biochem Biophys Res Comm*. 2015;458(186):186-193. doi:10.1016/j.bbrc.2015.01.092.

94. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. *Nature*. 2008;456(7222):605-610. doi:10.1038/nature07534.

95. Valero RA, Senvoliva L, Nunez L, Villalobos C. The role of mitochondrial potential in control of calcium signals involved in cell proliferation. *Cell Calcium*. 2008;44(3):259-269. doi:10.1016/j.ceca.2007.12.002.

96. Gilabert JA, Parekh AB. Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca2(2+) current (I(CRAC)). *EMBO J*. 2000;19(23):6401-6407. doi:10.1093/emboj/23.23.6401.

97. Waldeck-Weiermair M, Deak AT, Groschner LN, et al. Molecularly distinct routes of mitochondrial Ca2+ uptake are activated depending on the activity of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). *J Biol Chem*. 2013;288(21):15367-15379. doi:10.1074/jbc.M113.462259.

98. De Stefani D, Raffaello A, Tecdro O, Szabo I, Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. *Nature*. 2011;476(7360):336-340. doi:10.1038/nature10230.

99. Waldeck-Weiermair M, Malli R, Naghdi S, Trenker M, Kahn MJ, Graier WF. The contribution of UCP2 and UCP3 to mitochondrial Ca(2+) uptake is differentially determined by the source of supplied Ca(2+). *Cell Calcium*. 2010;47(5):433-440. doi:10.1016/j.cacal.2010.03.004.

100. Parekh AB. Mitochondrial regulation of store-operated CRAC channels. *Cell Calcium*. 2008;44(1):6-13. doi:10.1016/j.cacal.2007.12.006.
129. Sabourin J, Irimiik KM, Mallinskaraman K, et al. S-glutathionylation activates STIM1 and alters mitochondrial homeostasis. J Cell Biol. 2010;190(3):391-405. doi:10.1083/jcb.201004152.

131. Zhang H, Bryson V, Luo N, Sun AY, Rosenberg P. STIM1-Ca(2+)-signaling in coronary sinus cardiomyocytes contributes to interatrial conduction. Cell Calcium. 2020;87:102163. doi:10.1016/j.ceca.2020.102163.

132. Wen H, Zhao Z, Fefelova N, Xie LH. Potential arrhythmogenic role of TRPC channels and store-operated calcium entry mechanism in mouse ventricular myocytes. Front Physiol. 2018;9:1785. doi:10.3389/fphys.2018.01785.

127. Onohara N, Nishida M, Inoue R, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol. 2014;18(4):709-720. doi:10.1111/jcmcm.12220.

133. Bonilla IM, Belevych AE, Bain S, et al. Enhancement of cardiac store-operated calcium entry (SOCE) within novel intercalated disk microdomains in arrhythmic disease. Sci Rep. 2019;9(1):10179. doi:10.1038/s41598-019-44627-x.

122. Yi M, Weaver D, Hajnoczky G. Control of mitochondrial motility and ATP handling after pressure overload. Circulation. 2020;141(3):199-216. doi:10.1161/CIRCULATIONAHA.118.038891.

134. Rappold PM, Cui M, Grima JC, et al. Drp1 inhibition attenuates left ventricular systolic function and normal Ca(2+) handling after pressure overload. Circulation. 2020;141(3):199-216. doi:10.1161/CIRCULATIONAHA.118.038891.
148. Higuchi M, Manna SK, Sasaki R, Aggarwal BB. Regulation of the activation of nuclear factor kappaB by mitochondrial respiratory function: evidence for the reactive oxygen species-dependent and -independent pathways. *Antioxid Redox Signal*. 2002;4(6):945-955. doi:10.1089/152308602762197489.

149. Ji LL. Redox signaling in skeletal muscle: role of aging and exercise. *Adv Physiol Educ*. 2015;39(4):352-359. doi:10.1152/advan.00106.2014.

150. Cendula R, Dragan M, Gazova A, Kyselovic J, Hulman M, Matus M. Changes in STIM isoforms expression and gender-specific alterations in Orai expression in human heart failure. *Physiol Res*. 2019;68(Suppl 2):S165-S172. doi:10.33549/physirols.934300.

151. Choi JH, Huang M, Hyun C, et al. A muscular hypotonia-associated Cendula R, Dragun M, Gazova A, Kyselovic J, Hulman M, Matus M. Changes in STIM isoforms expression and gender-specific alterations in Orai expression in human heart failure. *Physiol Res*. 2019;68(Suppl 2):S165-S172. doi:10.33549/physirols.934300.

152. Malette J, Degrandmaison J, Giguere H, et al. MURC/CAVIN-4 facilitates store-operated calcium entry in neonatal cardiomyocytes. *Biochim Biophys Acta Mol Cell Res*. 2019;1866(8):1249-1259. doi:10.1016/j.bbamcr.2019.03.017.

153. Maus M, Cuk M, Patel B, et al. Store-Operated Ca(2+) Entry Controls Lipid Metabolism. *Cell Metab*. 2017;25(3):698-712. doi:10.1016/j.cmet.2016.12.021.

154. Horton JS, Buckley CL, Alvarez EM, Schorlemmer A, Stokes AJ. The calcium release-activated calcium channel Orai1 represents a crucial component in hypertrophic compensation and the development of dilated cardiomyopathy. *Channels*. 2014;8(1):35-48. doi:10.4161/ch.26581.

155. Volkers M, Dolatabadi N, Gude N, Most P, Sussman MA, Hassel D. Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. *J Cell Sci*. 2012;125(Pt 2):287-294. doi:10.1242/jcs.090464.

156. Mansor LS, Gonzalez ER, Cole MA, et al. Cardiac metabolism and mitochondrial uncoupling impair myocardial energetics in obesity. *Circulation*. 2005;112(17):2686-2695. doi:10.1161/CIRCULATION.105.554360.

157. Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. *Diabetes*. 2007;56(10):2457-2466. doi:10.2327/db07-0481.

158. Sabourin J, Bartoli F, Antigny F, Gomez AM, Benitah JP. Transient STIM1 mutant at R429 induces abnormalities in intracellular Ca(2+) and extracellular Ca(2+) entry in skeletal muscle. *Sci Rep*. 2019;9(1):19140. doi:10.1038/s41598-019-55745-z.

159. Yu T, Jhun BS, Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitochondria-activated protein kinase-mediated activation of mitochondrial fission. *Antioxid Redox Signal*. 2011;14(3):425-437. doi:10.1089/ars.2010.3284.

160. Patron M, Raffaello A, Granatiero V, et al. The mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. *PLoS One*. 2014;9(7):e101188. doi:10.1371/journal.pone.0101188.

161. He F, Wu Q, Xu B, et al. Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells. *Biosci Rep*. 2017;37(6):BRS20171249. doi:10.1042/BSR20171249.

162. Peters SC, Piper HM. Reoxygenation-induced Ca2+ rise is mediated via Ca2+ influx and Ca2+ release from the endoplasmic reticulum in cardiac endothelial cells. *Cardiovasc Res*. 2007;73(1):164-171. doi:10.1016/j.cardiores.2006.09.015.

163. Kojima A, Kitagawa H, Matsuma-Canbe M, Matsuura H, Nosaka S. Presence of store-operated Ca2+ entry in C57BL/6J mouse ventricular myocytes and its suppression by sevoflurane. *Br J Anaesth*. 2012;109(3):352-360. doi:10.1093/bja/aes212.

164. Suarez J, Cividini F, Scott B, et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. *J Biol Chem*. 2012;287(35):30024-30034. doi:10.1074/jbc.M112.390682.

165. Shanmughapriya S, Rajan S, Hoffman NE, et al. Ca2+ signals regulate mitochondrial biogenesis-mediated interventions. *Exp Diabetes Res*. 2012;2012:642038. doi:10.1155/2012/642038.

166. Xue H, Cheng J, Wang X, et al. Restorret pretreatment alleviates myocardial ischemia/reperfusion injury by inhibiting Stim1-mediated intracellular calcium accumulation. *J Physiol Biochem*. 2019;75(4):607-618. doi:10.1016/j.jphysiol.2019.07.007.4-5.

167. Peters SC, Piper HM. Reoxygenation-induced Ca2+ rise is mediated via Ca2+ influx and Ca2+ release from the endoplasmic reticulum in cardiac endothelial cells. *Cardiovasc Res*. 2007;73(1):164-171. doi:10.1016/j.cardiores.2006.09.015.

168. Suarez J, Cividini F, Scott B, et al. Restoring mitochondrial calcineurin and mitochondrial calcium handling and cardiac function. *J Biol Chem*. 2018;293(21):8182-8195. doi:10.1074/jbc.RA118.002666.

169. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impairs myocardial energetics in obesity.
180. Boyman L, Williams GSB, Lederer WJ. Mitochondrial Calcium and Ischemia: Reperfusion Injury in Heart. In: Hockenbery DM, ed. Mitochondria and Cell Death. New York; 2016:17-43.

181. Otera H, Mihara K. Mitochondrial dynamics: functional link with apoptosis. Int J Cell Biol 2012;2012:821676. doi:10.1155/2012/821676.

182. Yu S, Zheng S, Leng J, Wang S, Zhao T, Liu J. Inhibition of mitochondrial calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy. Neurosci Lett 2016;628:24-29. doi:10.1016/j.neulet.2016.06.012.

183. Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012;14(1):434-456. doi:10.3390/ijms14010434.

184. Sharp WW, Fang YH, Han M, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. Faseb J 2014;28(1):316-326. doi:10.1096/fj.12-226225.

185. Das A, Gur M, Cheng MH, Jo S, Bahar I, Roux B. Exploring the conformational transitions of biomolecular systems using a simple two-state anisotropic network model. PLoS Comput Biol 2014;10(4):e1003521. doi:10.1371/journal.pcbi.1003521.

186. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 2008;88(2):581-609. doi:10.1152/physrev.00024.2007.

How to cite this article: Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med. 2021;25:9496–9512. doi:10.1111/jcmm.16941