Gamma function method for the nonlinear cubic-quintic Duffing oscillators

Kang-Jia Wang and Guo-Dong Wang

Abstract
In this article, the gamma function method, for the first time ever, is used to solve the nonlinear cubic-quintic Duffing oscillators. The nonlinear cubic-quintic Duffing oscillators with and without the damped and quadratic terms are considered respectively. By the gamma function method, it only needs one-step to get the approximate solution. The comparisons with the existing solutions reveal that the proposed method is simple but effective in solving the small amplitude oscillation.

Keywords
Gamma function, small amplitude oscillation, Duffing oscillators, damped and quadratic terms

Introduction
Nonlinear oscillation can be seen everywhere in our daily life. The research on its vibration characteristics has always been a research hot spot. However, the explicit analytical solutions of nonlinear oscillator equations are few, and either numerical solutions or approximate analytical techniques are frequently used. Many scholars have made outstanding contributions and many different methods are obtained such as homotopy perturbation method,1–3 variational approach,4–9 variational iteration method,10–16 He’s frequency formulation,17–19 Hamiltonian approach,20 Taylor series method,21 and so on.22–24 The well-known Duffing oscillator equation was named after a German electrical engineer Georg Duffing who first proposed the equation in 1918,25 and then, it is developed into different forms to describe many physical, mechanical engineering, circuits and biological processes in various areas of science.26–28 Thus, the study of the Duffing oscillator equation is important. In this article, we consider the nonlinear small amplitude cubic-quintic Duffing oscillators, which is

\[v'' + av + \beta v^3 + \gamma v^5 = 0 \]

with the initial condition as

\[v(0) = \Lambda < 1, \quad v'(0) = 0 \]

Inspired by the recent study on the special functions and nonlinear oscillators,29,30 we will use a new method so called the gamma function method to seek its frequency–amplitude formulation of equation (1.1).

The overall structure of this article is arranged as follows. The gamma function and its properties are presented in the section The Gamma Function. In the section The Gamma Function Method, the gamma function method is proposed and used to solve the nonlinear cubic-quintic Duffing oscillators without the damped and the quadratic terms. In the section Considering the Damped and Quadratic Terms, the nonlinear cubic-quintic Duffing oscillators considering the damped and the quadratic terms are studied. And the conclusion is presented in the Conclusion section.
The Gamma function

The well-known gamma function is defined as

$$\Gamma(x) = \int_0^\infty e^{-t}t^{-x}dt$$ \hspace{1cm} (2.1)$$

And there are the following properties30

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$ \hspace{1cm} (2.2)$$

$$\Gamma(1 + x) = x\Gamma(x)$$ \hspace{1cm} (2.3)$$

$$\int_0^\frac{\pi}{2} \cos^m\theta \sin^n\theta d\theta = \frac{1}{2} \frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(1 + \frac{m+n}{2}\right)} \hspace{1cm} m, n \geq 0$$ \hspace{1cm} (2.4)$$

The Gamma function method

For obtaining the solution of equation (1.1), we first linearize equation (1.1) as30

$$v'' + \Omega^2 v = 0, \quad v(0) = \Lambda \ll 1, \quad v'(0) = 0$$ \hspace{1cm} (3.1)$$

And its solution is

$$v(t) = \Lambda \cos(\Omega t)$$ \hspace{1cm} (3.2)$$

The Galerkin technology is a general approximation method for seeking the solution via introducing the trial functions and weight function.31 Here, we select the trial function as $v(t) = \Lambda \cos(\Omega t)$ and the weight function as $\cos(\Omega t)$. By the condition of vanishing residual integrated over a quarter period implies that31

$$\int_0^{\frac{T}{4}} \{av + \beta v^3 + \gamma v^5 - \Omega^2 v\} \cos(\Omega t)dt = 0$$ \hspace{1cm} (3.3)$$

Substituting equation (3.2) into above equation, we have

$$\int_0^{\frac{T}{4}} \{ (a - \Omega^2)\Lambda \cos(\Omega t) + \beta \Lambda^3 \cos^3(\Omega t) + \gamma \Lambda^5 \cos^5(\Omega t) \} \cos(\Omega t)dt = 0$$ \hspace{1cm} (3.4)$$

According to the properties of the gamma function in equation (2.4), equation (3.4) can result in

$$\frac{1}{2} (a - \Omega^2)\Lambda \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(2)} + \frac{1}{2} \beta \Lambda^3 \frac{\Gamma\left(\frac{4}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(3)} + \frac{1}{2} \gamma \Lambda^5 \frac{\Gamma\left(\frac{5}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(4)} = 0$$ \hspace{1cm} (3.5)$$

That is

$$\left(\frac{3}{4} a - \Omega^2\right) + \frac{3}{8} \beta \Lambda^2 + \frac{5}{8} \gamma \Lambda^4 = 0$$ \hspace{1cm} (3.6)$$

So the frequency–amplitude formulation of equation (1.1) can be obtained as

$$\Omega^2 = a + \frac{3}{4} \beta \Lambda^2 + \frac{5}{8} \gamma \Lambda^4, \quad \Lambda \ll 1$$ \hspace{1cm} (3.7)$$

With this, the solution of equation (1.1) can be written as

$$Wang and Wang 217$$
By using He’s frequency formulation, we can get the solution of equation (1.1) as
\[\Omega^2 = \alpha + \frac{3}{4}\beta \Lambda^2 + \frac{5}{16}\gamma \Lambda^4 \tag{3.9} \]
which has a good agreement with the solution given in equation (3.7) for \(\Lambda \ll 1 \).

By equation (3.9), we obtain the solution of equation (1.1) as
\[v(t) = \Lambda \cos \left(\sqrt{\alpha + \frac{3}{4}\beta \Lambda^2 + \frac{5}{16}\gamma \Lambda^4} \, t \right) \tag{3.10} \]

For \(\alpha = 1, \beta = 1, \) and \(\gamma = 1 \), the comparison between the gamma function method in equation (3.8) and Ref. 32 with different \(\Lambda \) is plotted in Figure 1. It shows that the different methods agree well when \(\Lambda \ll 1 \). The comparison of the approximate periods with the exact one is given in Table 1.

Considering the damped and quadratic terms

In this section, we use the gamma function method to solve the cubic-quintic Duffing oscillators with the damped and the quadratic terms as
\[v'' + av + \varepsilon_1 v' + \varepsilon_2 v^2 + \beta v^3 + \gamma v^5 = 0 \tag{4.1} \]
with the initial condition as
\[v(0) = \Lambda \ll 1, \quad v'(0) = 0 \tag{4.2} \]

Here, we assume its solution is
\[v(t) = \Lambda \cos(\Omega t) \tag{4.3} \]

Similarly, we aim to seek the frequency as
\[\int_0^\pi \{ av + \varepsilon_1 v' + \varepsilon_2 v^2 + \beta v^3 + \gamma v^5 - \Omega^2 v \} \cos(\Omega t) \, dt = 0 \tag{4.4} \]
which is
\[\int_0^\pi \{ (a - \Omega^2) \Lambda \cos(\Omega t) - \varepsilon_1 \Omega \Lambda \sin(\Omega t) + \varepsilon_2 \Lambda^2 \cos^2(\Omega t) + \beta \Lambda^3 \cos^3(\Omega t) + \gamma \Lambda^5 \cos^5(\Omega t) \} \cos(\Omega t) \, dt = 0 \tag{4.5} \]

According to the properties of the gamma function, equation (4.5) can result in
\[\frac{1}{2}(a - \Omega^2) \Lambda \frac{\Gamma\left(\frac{3}{2}\right)}{\Gamma(2)} \frac{\Gamma\left(\frac{1}{2}\right)}{\Gamma(2)} \frac{1}{2} \varepsilon_1 \Omega \Lambda \frac{\Gamma(1)\Gamma(1)}{\Gamma(2)} + \frac{1}{2} \varepsilon_2 \Lambda^2 \frac{\Gamma(2)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{5}{2}\right)} \]
\[+ \frac{1}{2} \beta \Lambda^3 \frac{\Gamma\left(\frac{5}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(3)} + \frac{1}{2} \gamma \Lambda^5 \frac{\Gamma\left(\frac{7}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(4)} = 0 \tag{4.6} \]
That is
\[(a - \Omega^2) \pi - 2\varepsilon_1 \Omega + \frac{8}{3} \varepsilon_2 \Lambda + \frac{3}{4} \beta \Lambda^2 \pi + \frac{5}{8} \gamma \Lambda^4 \pi = 0 \tag{4.7} \]
which leads to
\[\Omega = \sqrt{\frac{\varepsilon_1^2}{\pi^2} + \frac{64\alpha + 2424 + 18\pi^2 + 15\pi^2 + 15\pi^2 + 15\pi^2}{24\pi} - \frac{\varepsilon_1}{\pi}} \] (4.8)

With this, the solution of equation (4.1) can be obtained as

Table 1. Comparison of the approximate frequency with different \(\Lambda \).

\(\Lambda \)	0.1	0.2	0.4	0.6	0.8	1	1.2
Equation (3.7)	1.003774	1.015382	1.065833	1.162325	1.317574	1.541104	1.837389
Ref. 27	1.003759	1.015135	1.062073	1.147711	1.268069	1.436141	1.651666
Relative error %	0.0015	0.0243	0.3540	1.5334	3.9040	7.3087	11.2445
\[v(t) = \Lambda \cos \left(\sqrt{\frac{\epsilon_1^2}{2} + \frac{64\Lambda\epsilon_2 + 24\alpha\pi + 18\beta\Lambda^2\pi + 15\gamma\Lambda^4\pi}{24\pi}} \frac{\epsilon_1}{\pi} \right) t \] \hspace{1cm} (4.9)

For \(\epsilon_1 = \epsilon_2 = 0 \), the solution becomes the solution of equation (1.1).

The solution of equation (4.1) can be obtained by the ancient Chinese algorithm (ACG), which is

\[\Omega = \sqrt{-\frac{32\epsilon_1 + 64\Lambda\epsilon_2 + 24\alpha\pi + 18\beta\Lambda^2\pi + 15\gamma\Lambda^4\pi}{8(2\epsilon_1 + 3\pi)}} \] \hspace{1cm} (4.10)

Figure 2. The comparison between the gamma function method and the ACG with different \(\Lambda \). (a) \(\Lambda = 0.2 \). (b) \(\Lambda = 0.4 \). (c) \(\Lambda = 0.6 \). (d) \(\Lambda = 0.8 \).

Table 2. Comparison of the approximate frequency with different \(\Lambda \).

\(\Lambda \)	0.1	0.2	0.4	0.6	0.8	1	1.2
Equation (4.8)	0.774286	0.82278	0.937418	1.08227	1.268000	1.505189	1.80205
Equation (4.10)	0.742353	0.80028	0.931188	1.08836	1.281471	1.519656	1.80974
Relative error %	4.301	2.811	0.6690	0.5595	1.5012	0.95199	0.42492
For $\alpha = 1, \beta = 1, \gamma = 1$, and $\varepsilon_1 = \varepsilon_2 = 1$, we compare the two different methods in Figure 2. Obviously, the two methods match well with each other. The comparison of the approximate frequency is shown in Table 2. These obtained results all strongly prove the correctness and effectiveness of our proposed method.

Conclusion

In this work, the gamma function method is used to solve the nonlinear cubic-quintic Duffing oscillators. It only takes one-step to obtain the amplitude–frequency relationship. Compared with the existing solution, it reveals that the gamma function method is remarkably accurate for the small amplitude oscillation. The obtained results in this article are expected to open up new horizons for the study of the small amplitude oscillation theory.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is supported by Program of Henan Polytechnic University (No. B2018-40), the Fundamental Research Funds for the Universities of Henan Province(NSRF210324), Innovative Scientists and Technicians Team of Henan Provincial High Education (21HRTSTHN016), and Key Project of Scientific and Technology Research of Henan Province (21ZD02210224).

ORCID iDs

Kang-Jia Wang https://orcid.org/0000-0002-3905-0844
Guo-Dong Wang https://orcid.org/0000-0001-6574-1668

References

1. He JH and El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. J Math Chem 2020; 58(10): 1632245–1632253.
2. He JH. Homotopy perturbation technique. Comput Methods Appl Mech Eng 1999; 178: 257–262.
3. Nadeem M, He JH, and Islam A. The homotopy perturbation method for fractional differential equations: part 1 Mohand transform. Int J Numer Methods Heat Fluid Flow 2021. DOI: 10.1108/HFF-11-2020-0703.
4. Wang KJ and Wang GD. Solitary and periodic wave solutions of the generalized fourth-order Boussinesq equation via He’s variational methods. Math Methods Appl Sci 2021; 44(7): 5617–5625.
5. Wang KJ and Wang GD. Periodic solution of the $(2 + 1)$-dimensional nonlinear electrical transmission line equation via variational method. Results Phys 2021; 20(20): 103666.
6. He JH. Variational approach for nonlinear oscillators. Chaos Solitons Fractals 2007; 34: 1430–1439.
7. Wang KJ and Wang GD. Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics. Fractals 2021; 29(5): 2150115.
8. Wang KJ, Zhu HW, Liu XL, et al. Constructions of new abundant traveling wave solutions for system of the ion sound and Langmuir waves by the variational direct method. Results Phys 2021; 26(26): 104375.
9. Wang KJ, Wang GD, and Zhu HW. A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. Fractals 2021; 29(5): 2150122.
10. He J. A new approach to nonlinear partial differential equations. Commun Nonlinear Sci Numer Simul 1997; 2(4): 230–235.
11. Wang KJ. Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. Fractals 2021; 29(2): 2150044.
12. Wang KJ and Wang GD. Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. Fractals 2021; 29(3): 2150075.
13. Nadeem M and He JH. He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics. J Math Chem 2021; 59: 1234–1245.
14. Nadeem M and Li F. Modified laplace variational iteration method for analytical approach of Klein-Gordon and Sine-Gordon equations. Iranian J Sci Technol Trans A Sci 2019; 43(4): 1933–1940.
15. Wang KL. A novel approach for fractal Burgers-BBM equation and its variational principle. Fractals 2021; 29(3): 2150059.
16. Wang KJ and Wang KL. Variational principles for fractal Whitham-Broer-Kaup Equations in Shallow Water. Fractals 2021; 29(2): 2150028.
17. Na Q, Hou WF, and He JH. The fastest insight into the large amplitude vibration of a string. Rep Mech Eng 2020; 2(No.1): 1–5. DOI: 10.31181/rme200102001q.
18. Wang KL. A new fractal transform frequency formulation for fractal nonlinear oscillators. Fractals 2021; 29(3): 2150062.
19. Wang K. He’s frequency formulation for fractal nonlinear oscillator arising in a microgravity space. Numer Methods Partial Differ Equations 2020; 37(2): 1374–1384.
20. He JH. Hamiltonian approach to nonlinear oscillators. Phys Lett A 2010; 374(23): 2312–2314.
21. Wang KJ. A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur Phys J Plus 2020; 135: 871.
22. Nadeem M, Yao SW, and Parveen N. Solution of Newell-Whitehead-Segel equation by variational iteration method with He’s polynomials. J Math Comput Sci 2020; 20: 21–29.
23. El-Dib YO and Elgazery NS. Effect of fractional derivative properties on the periodic solution of the nonlinear oscillations. Fractals 2020; 28(4): 2050095.
24. Wang KJ and Wang GD. Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation in optics. Phys Lett A 2021; 412(7): 127588.
25. Duffing G. Erzwungene schwingungen bei veränderlicher eigenfrequenz. Braunschweig: F. Vieweg u. Sohn, 1918.
26. Wang KL. Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system. Math Methods Appl Sci 2020. DOI: 10.1002/mma.6726.
27. Ali M, Anjum N, Ain QT, et al. Homotopy perturbation method for the attachment oscillator arising in nanotechnology. Fibers Polym 2021; 22: 1601–1606.
28. He CH, Liu C, He JH, et al. Low frequency property of a fractal vibration model for a concrete beam. Fractals 2021; 29(5): 2150117–2150133.
29. Yang XJ. An Introduction to Hypergeometric, Supertrigonometric, and Superhyperbolic Functions. London: Academic Press, 2021, Vol. 157.
30. He JH. Special functions for solving nonlinear differential equations. Int J Appl Comput Math 2021. DOI: 10.1007/s40819-021-01026-1.
31. Anderson D, Desaix M, Lisak M, et al. Galerkin approach to approximate solutions of some nonlinear oscillator equations. Am J Phys 2010; 78(9): 920–924.
32. He JH. The simplest approach to nonlinear oscillators. Results Phys 2019; 15: 102546.
33. Wang KJ. Periodic solution of the time-space fractional complex nonlinear Fokas-Lenells equation by an ancient Chinese algorithm. Optik 2021; 243: 167461.