Electron spin, nutation, and wave-particle duality

Gregory Light (gLlight@providence.edu)
Providence College
https://orcid.org/0000-0002-3734-470X

Research Article

Keywords: spin 3-D geometry, electric quadrupole, field energy

Posted Date: February 16th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1153013/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Electron spin, nutation, and wave-particle duality

Gregory L. Light*

*Department of Finance, Providence College

1 Cunningham Square, Providence, Rhode Island, 02918 USA; glight@providence.edu
Electron spin, nutation, and wave-particle duality

Abstract We present a diagonal spacetime 4-manifold to model the wave-particle duality with two derivations of the energy ratio of wave to particle to be 1 to 3, by which we calculate the least time for an electron nutation as based on its quadrupole spin states in a 720-degree rotation of its associated electromagnetic wave in a model of Zitterbewegung.

Keywords: spin 3-D geometry; electric quadrupole; field energy

1. Introduction and motivation

The pursuit of ever faster computing speed in juxtaposition with an increasingly acute environmental concern has motivated the search for more efficient uses of electricity, such as through a better manipulation of the electron spin, as the information (0,1)-bits correspond to the magnetic dipoles, so that the higher the speed of electron nutation, the quicker the information processing (cf. [1,2]). Meanwhile, nano science with its engagement in electromagnetic waves has been more and more entwined with quantum mechanics, resulting in a mixed field of quantum nanoscience, e.g., [3,4]. Yet herein lies a geometric incongruence: whereas spin polarization as practiced by the former targets the physical 3-space, e.g., [5,6], the construct of spin as originated from Dirac’s spinor of period 4π

$$4\pi \text{ turn (cf. [1,2,10] for electric quadrupole): that is, relative to a fixed reference frame, its associated wave begins with a semi-circular rotation from } (0, -1, 0) \equiv S \text{ to } (-1, 0, 0) \equiv W \text{ and to } (0, 1, 0) \equiv N, \text{ entailing an initial spin axis } -z, \text{ and then at } N \text{ the wave, altering its spin axis to } x, \text{ begins with another semi-circular rotation from } N \text{ to } (0, 0, 1) \equiv T \text{ and back to } S, \text{ or a linear transformation of } (x, y, z) \overset{x}{\rightarrow} (-x, -y, z) \overset{y}{\rightarrow} (-x, y, -z) \text{ 2}\pi \text{ motion, the wave then resumes as}$$
\((-x, y, -z) \xrightarrow{\frac{\pi}{z}} (x, y, -z) \xrightarrow{\frac{\pi}{-z}} (x, y, z)\), whence returning to its initial state. As such, for every \(4\pi - \text{spin}\) the spinning axes undergo the following succession:

\(-z \rightarrow x \rightarrow z \rightarrow -x\), or ‘\((\text{down, right, up, left})\),' with four distinct \(90' - \text{nutation's}\).

This departure from the standard 2-state spin presents the possibility of manipulating electronic spins for more rapid nutation’s. We now calculate the least time for such a \(90' - \text{nutation}\) from the above-described motion. Consider the relation

\[
m = \frac{m_0}{\sqrt{1 - \left(\frac{|v|}{c}\right)^2}}, |v| < c,
\]

or

\[
m^2c^4 = m_0^2c^4 + m^2c^2|v|^2
= m_0^2c^4 + m^2c^2|iv|^2,
\]

where \(i\) as applied to \(v\) alters linear momentum into angular momentum to reflect the wave rotation of \(m\). Then \(mc^2 = m_0c^2 \mp imc|v|\)

since \(mc^2 \cdot mc^2 = (m_0c^2 - imc|v|)(m_0c^2 + imc|v|)\) (cf. [11] for imaginary mass); as such,

\[
mc^2 = m_0c^2 \mp imc|v|
= mc^2\sqrt{1 - \left(\frac{|v|}{c}\right)^2} \mp imc|v|,
\]

where the first term corresponds to the particle of \(m\) and the second term, the wave of \(m\); assuming the energy ratio of particle to wave being \(3:1\) (to be derived below), then one has

\[
\sqrt{1 - \left(\frac{|v|}{c}\right)^2} = \frac{3}{4}, \text{ or}
\left(\frac{|v|}{c}\right) = \frac{\sqrt{7}}{16} = 0.66.
\]
This shows that an electron by way of Breit–Wheeler pair production may be described as an electromagnetic wave of length λ spinning along a pair of perpendicular semicircles, stopping at the two intersection points (for altering the angular momentum, cf. Zitterbewegung [12]), whence slowing down the otherwise speed c to $0.66c$ [9]. Therefore, at either stopping point the duration Δt is

$$\frac{\lambda/c}{\lambda/c + 2\Delta t} = 0.66, \quad \text{or} \quad \Delta t = \frac{0.34\lambda}{1.32c} = \frac{2 \times 10^{-12}}{3 \times 10^3} = 1.7 \times 10^{-21} s$$

(λ = electron Compton wave length),

and as such the least time for an electron nutation is

$$\frac{1}{2} \left(\frac{\lambda}{c} + 2\Delta t \right) = 5 \times 10^{-21} s \quad \text{(in [1] the observed nutation period was about } 10^{-12} \text{ second).}$$

We now address the energy ratio of particle to wave. Consider a singular photon γ with an electromagnetic wavelength λ as contained in a ball B of radius $R = \lambda/2$ in a flat spacetime; denoting the mass/energy of B by M and performing an integration of the divergence of the gravitational field $\frac{GM/4}{r^2}$ over a compact annular volume of B (where the validity of the Newton’s formulation is accounted for by the weak gravitational field as associated with GM, in details below), one arrives at an angular momentum of mass $3M/4$, with the interpretation that the spinning wave inside B containing $M/4$ draws in (due to the negative divergence), through the spherical boundary of B radially toward its centre, a mass of $3M/4$ that appears as a point particle γ traveling at speed c in the negative spin direction of a separate (yet coincidental) spacetime - - separate by assuming that the ball centre serves as a boundary point of B for the mass $3M/4$ to escape by Gauss divergence theorem). In summary, the identity

$$M/4 \text{ as wave} = 3M/4 \text{ as particle}$$

dictates an energy entity M that has dual representations, hence the wave-particle duality, and either has a Euclidean ambient spacetime. In the following we shall derive the energy distribution of M.

2. Derivations for wave-particle energy ratio

We begin with an evaluation of gravitational effect of the waves in \(B \):

\[
\int \int \int dV \left(\frac{GM}{r^2} \right) \frac{dx dy dz}{r^2}
\]

\[
= R^3 \int_{r=a}^{r=b} \left(\int \int_{S^2} dA \left(\frac{GM}{r^2} \right) \right) dr
\]

\[
= R^3 \int_{r=a}^{r=b} \left(-2 \cdot \frac{GM}{r^3} \cdot 4\pi r^2 \right) dr
\]

\[
= -R^3 \cdot 2\pi GM \int_{r=a}^{r=b} \frac{dr}{r}
\]

\[
= -R^3 \cdot 2\pi GM = -\left(\pi R^3 \right) \frac{2GM}{c^2} \cdot c^2
\]

\[
\equiv \# \quad \text{(to connect to the particle aspect below),}
\]

where \(2GM/c^2 = R = \text{Schwarzschild radius} \) for a confinement of the field energy \(M/4 \) from dissipating, inside which the metric tensor of Einstein field equations \(g_{11} < 0 \) engenders imaginary spacetimes (instead of the usual treatment of a signature flip [13]) and thus time \(t \) runs in a circle of \(\mathbb{S}^2 \) by a Wick rotation in \(\mathbb{S}^2 \) and then an embedding of \(\mathbb{T} \times \mathbb{S}^1 \subset \mathbb{S}^3 \), i.e.,

\[
e^{it} = \cos t + i \sin t \leftrightarrow (\cos t, \sin t) \in \mathbb{S}^2.
\]

Now consider the angular momentum of \(3M/4 \),

\[
\frac{3}{4} McR = \frac{3}{4} M \left(2GM \right) = \frac{3}{4} \cdot 2GM^2,
\]

\[
\text{where } c = 1.
\]

Multiplying \# of Equation (1) by the mass density

\[
\rho = \frac{M}{\left(\frac{4\pi}{3} R^3 \right)}
\]

one arrives at
\[
\left(-R^3 \cdot 2\pi GM\right) \cdot \frac{M}{\left(\frac{4\pi}{3} R^3\right)} = -2GM^2 \cdot \frac{3}{4} = -\text{angular momentum of (}3M/4\text{)}
\]
of Equation (2). Thus,

\[M/4 \text{ as wave } \equiv 3M/4 \text{ as particle.}\]

The above derivation relied on one crucial assumption, namely, the integration range being \([R/e, R]\); here, we note that by a change of variable of \(r = e^{\theta/2\pi} \in \left[1, e\right]\), or \(\theta = 2\pi \ln r \in \left[0, 2\pi\right]\), one has

\[
\int_1^e \frac{1}{r} dr = \int_{e-1}^e e^{-\theta/2\pi} de^{\theta/2\pi} = \frac{1}{2\pi} \int_0^{2\pi} 1 \cdot d\theta = 1,
\]

with the meaning that the gravitational energy spread out from \(r = 1\) to \(e\) in a disk of radius \(e\) accounts for the entire 100\% energy of \(M/4\) (the integrand) and it is uniformly distributed from \(\theta = 0\) to \(2\pi\) (a configuration analogous to the displayed chart numbered as 6 in [3]). That is, \(M/4\) resides in the annular volume of ball \(B\) in the wave universe, and \(3M/4\) exists as the photon \(\gamma\) in the particle universe, which punctures a micro black hole \(b\) of radius 1 inside \(B\), with \(b - \{\gamma\}\) being the intersection of the two universes.

The above geometry arises from a departure from Dirac’s square-root approach to the mass-shell equation by taking instead the complex conjugates as in [14]; in doing so, the abstract Clifford algebra as involved in the spinor solution underlying the Standard Model (SM) is avoided (see [15] for the comment on quantum mechanics being ‘very ungeometric’) and the construct of intrinsic spin is replaced with a pair of perpendicular semi-circular rotations in the Euclidean space (cf. [14]). Here, amid many re-examinations of SM, it is noteworthy that the working equations for the strong force in particular are reckoned as ‘QCD inspired’ rather than derived [16], which has great significance however: it means that all the experimentally verified algebraic results continue to be of engineering value, as the above introduced spacetime provides only a geometric background. In the same vein, gauge invariance specializes to frame invariance for this Euclidean model. In this connection, the proposed geometry respects the CPT invariance, where a left-handed positron is identified with a right-handed electron via a spatial
transformation, hence providing an explanation of the anti-matter asymmetry and thereof a potentially more efficient way to produce and store anti-particles, benefiting medical technology for example [9], and otherwise it furnishes the quantum vacuum a physical space of wave energies, with their energy densities identified as probability densities via their formal resemblance.

Notwithstanding the above justification of the annular domain of integration, we present another derivation of the same result through a consideration of the gravitational effect of the point mass \(M_p \equiv \gamma \) and that of the wave mass \(M_w \equiv \lambda \), where \(M_p + M_w \equiv M \). To begin with, \(M_p \) is one singular energy point at the centre of \(B \) that draws any other energy entity (all the way) toward it, but \(M_w \), while having its centre of mass coinciding with \(M_p \), draws any other energy entity only up to the boundary of \(B \) for otherwise \(M_w \) would lose its identity. I.e., one is comparing the same amount of (gravitational) mass that is contained in the volume of \(B \) between (a) concentrated at the centre of \(B \) as one singular point and (b) spread out as a volume inside \(B \). For (a) one has:

\[
\frac{GM_p}{r^2} \bigg|_q \forall r \in (0,R] \forall q \in S_r^2, \quad (4)
\]

so that for each sphere \(S_r^2 \)

\[
\frac{a_{r,q}}{4\pi G} \cdot 4\pi r^2 = M_p, \quad (5)
\]

implying that for every \(r \in (0,R] \) the spherical area \(4\pi r^2 \) carries the same gravitational mass as \(4\pi R^2 \) of the ball boundary; thus, \(4\pi R^2 \cdot R = 3vol(B) \) measures the gravitational effect of \(M_p \). For (b) the calculation of the gravitational effect of \(M_w \) is of no difference from that of any matter of mass \(M_w \) occupying a volume of \(vol(B) \), where one can spread out \(M_w \) uniformly over the sphere (shell) \(S_R^2 \) and recover the same gravitational mass as if it were concentrated at the centre of \(B \). Since \(S_R^2 \) contains \(vol(B) \), the gravitational effect of \(M_w \) is measured by \(vol(B) \). Combining the above (a) and (b), one has
\[M = M_p + M_w = \frac{3}{4}M + \frac{1}{4}M \ (\text{correspondingly}). \] (6)

To be sure, the above argument essentially reduces to a comparison between

\[4\pi R^2 \int_0^R r \, dr = 4\pi R^3 \] (7)

for \(M_p \) as the volume of a (solid) cylinder of dimensions \(4\pi R^2 \times R \), and

\[4\pi \int_0^R r^2 \, dr = \frac{4\pi}{3}R^3 \] (8)

for \(M_w \) as the volume of a ball of radius \(R \); as such, the fraction \(\frac{1}{3} \) originates from the anti-derivative of \(r^2 \), and this issue had its presence in Feynman’s analysis of the electromagnetic mass [17].

3. Summary Remark

In this note we presented two derivations of the energy ratio of particle to wave to be \(3:1 \). By this relationship, we calculated the least nutation time for an electron, with a view to increasing the nutation frequency for more efficient use of electricity. We note that our model here is of a geometric nature, to serve as a supplement to SM. Yet this topic of wave-particle duality is so fundamental that it has been addressed since the early days of quantum mechanics such as [18-20]. Later treatments can be found in, e.g., [21-25]. Most of these analyses have been a reconfirmation of the principle of complementarity that no experiments are possible to measure both the wave and the particle attributes at the same time notwithstanding they have made contributions on the quantitative conditions for ‘which way (welcher-weg)’ the duality will assume [26]. In closing, we identify our model here with a diagonal spacetime manifold. ‘Diagonal manifold,’ artificial as it may resonate, nevertheless leads to a definition of the topological construct of the Euler characteristic.

Conflict of interest statement - - As the sole author of this paper, I declare that there is no conflict of interest.

Data availability statement - - The arguments contained in this paper go by mathematical derivations, hence entailing no data.
References

1. K. Neeraj, N. Awari, S. Kovalev, D. Polley, N. Zhou Hagström, S.S.P.K. Arekapudi, A. Semisalova, K. Lenz, B. Green, J.-C. Deinert, I. Ilyakov, M. Chen, M. Bawatna, V. Scalera, M. d’Aquino, C. Serpico, O. Hellwig, J.-E. Wegrowe, M. Gensch, and S. Bonetti, Inertial spin dynamics in ferromagnets, Nat. Phys. 17 (2021), pp. 245–250. Available at https://www.nature.com/articles/s41567-020-01040-y

2. P. Jönsson, C.-G. Wahlström, and C.F. Fischer, A program for computing magnetic dipole and electric quadrupole hyperfine constants from MCHF wavefunctions, Comput. Phys. Commun. 74 (1993), pp. 399—414. Available at https://doi.org/10.1016/0010-4655(93)90022-5

3. D.L. Gamacharige, S.D. Gunapala, M.I. Stockman, and M. Premaratne, Significance of the nonlocal optical response of metal nanoparticles in describing the operation of plasmonic lasers, Phys. Rev. B 99 (2019), pp. 115405 (1-13). Available at https://doi.org/10.1103/PhysRevB.99.115405

4. A. Martín-Jiménez, J. M. Gallego, R. Miranda, and R. Otero, Discrete electronic subbands due to Bragg scattering at molecular edges, Phys. Rev. Lett. 122 (2019), pp. 176801 (1-5). Available at https://doi.org/10.1103/PhysRevLett.122.176801

5. S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie, Spin-valve effects in a semiconductor field-effect transistor: A spintronic device, Phys. Rev. B 60 (1999), pp. 7764 (1-4) Available at https://doi.org/10.1103/PhysRevB.60.7764

6. M.D. Petrović, P. Mondal, A.E. Feiguin, P. Plecháč, and B.K. Nikolić, Spintronics meets density matrix renormalization group: quantum spin-torque-driven nonclassical magnetization reversal and dynamical buildup of long-range entanglement, Phys. Rev. X 11 (2021), pp. 021062 (1-11) Available at https://doi.org/10.1103/PhysRevX.11.021062

7. V. Barone and P.G. Ratcliffe, Transverse Spin Physics, World Scientific, London, 2003.

8. D.M. Fradkin and R.H. Good, Jr., Electron polarization operators, Rev. Mod. Phys. 33 (1961), pp. 343-352. Available at https://doi.org/10.1103/RevModPhys.33.343

9. G.L. Light, Pauli matrices immersion, Mater. Sci. Eng: B 264 (2021), pp. 114910 (1-6). Available at https://doi.org/10.1016/j.mseb.2020.114910
10. L.D. Huff and W.V. Houston, The appearance of "forbidden lines" in spectra, Phys. Rev. 36 (1930), pp. 842-846. Available at https://doi.org/10.1103/PhysRev.36.842

11. A.H. Taub, Quantum equations in cosmological spaces, Phys. Rev. 51 (1937), pp. 512-525. Available at https://doi.org/10.1103/PhysRev.51.512

12. S.-Q. Shen, Spin transverse force on spin current in an electric field, Phys. Rev. Lett. 95 (2005), pp. 187203 (1-4). Available at https://doi.org/10.1103/PhysRevLett.95.187203

13. A. Davidson and I. Gurwich, Holographic entropy packing inside a black hole, Phys. Rev. Lett. 106 (2011), pp. 151301 (1-4). Available at https://doi.org/10.1103/PhysRevLett.106.151301

14. K. Greider, Relativistic quantum theory with correct conservation laws, Phys. Rev. Lett. 44 (1980), pp. 1718-1721. Available at https://doi.org/10.1103/PhysRevLett.44.1718

15. M. Atiyah, Quantum physics and the topology of knots, Rev. Mod. Phys. 67 (1995), pp. 977-981. Available at https://doi.org/10.1103/RevModPhys.67.977

16. S.L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018), pp. 015003 (1-58). Available at https://doi.org/10.1103/RevModPhys.90.015003

17. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2, Addison-Wesley, Reading, 1964.

18. N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121 (1928), pp. 580–590. Available at https://doi.org/10.1038/121580a0

19. L. De Broglie, On the theory of quanta, Ann. Phys. 10, 22 (1925), pp. 1-81. Available at https://aflb.minesparis.psl.eu/LDB-oeuvres/De_Broglie_Kracklauer.pdf
20. T. Levi-Civita, Some mathematical aspects of the new mechanics, Bull, Amer. Math. Soc. 39 (1933), pp. 535-563. Available at https://projecteuclid.org/euclid.bams/1183496843

21. G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51, 54 (1995), pp. 1-14. Available at https://doi.org/10.1103/PhysRevA.51.54

22. B-G., Englert, Fringe visibility and which-way information: An inequality, Phys. Rev. Lett. 77 (1996), pp. 2154 (1-4). Available at https://doi.org/10.1103/PhysRevLett.77.2154

23. G.R. Hoy and J. Odeurs, Interpretation of the photon: wave--particle duality, Can. J. Phys. 90 (2012), pp. 855-863. Available at https://doi.org/10.1139/p2012-083

24. X.-F. Qian and G.S. Agarwal, Quantum duality: A source point of view, Phys. Rev. Research 2, 012031(R) (2020), pp. 1-5. Available at https://link.aps.org/doi/10.1103/PhysRevResearch.2.012031

25. M. Schirber, Another step back for wave-particle duality, Physics 4, 102 (2011). Available at https://physics.aps.org/articles/v4/102

26. Y. Abranyos, M. Jakob, and J. Bergou, Interference and partial which-way information: A quantitative test of duality in two-atom resonance, Phys. Rev. A 61, 013804 (1999), pp. 13804 (1-9). Available at https://doi.org/10.1103/PhysRevA.61.013804