Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-Riemannian manifolds

Mehmet Öndera, Evren Zıplarb

aCelal Bayar University, Faculty of Arts and Sciences, Department of Mathematics, Muradiye Campus, 45047 Muradiye, Manisa, Turkey.
E-mail: mehmet.onder@cbu.edu.tr

bÇankırı Karatekin University, Faculty of Science, Department of Mathematics, Çankırı, Turkey
E-mail: evrenziplar@karatekin.edu.tr

Abstract

In this study, we give definitions and characterizations of eikonal slant helices, eikonal Darboux helices and non-normed eikonal Darboux helices in 3-dimensional pseudo-Riemannian manifold M. We show that every eikonal slant helix is also an eikonal Darboux helix for timelike and spacelike curves. Furthermore, we obtain that if the non-null curve α is a non-normed eikonal Darboux helix, then α is an eikonal slant helix if and only if $\varepsilon_2 \kappa^2 + \varepsilon_3 \tau^2 = \text{constant}$, where κ and τ are curvature and torsion of α, respectively. Finally, we define null-eikonal helices, slant helices and Darboux helices. Also, we give their characterizations.

MSC: 53B40, 53C50.
Key words: Eikonal slant helix; eikonal Darboux helix; null slant helix.

1. Introduction

In the nature and science, some special curves have an important role and many applications. The well-known of such curves is helix curve. In the Euclidean 3-space E^3, a general helix is defined as a special curve whose tangent line makes a constant angle with a fixed straight line which is called the axis of the helix [4]. This definition gives that the tangent indicatrix of a general helix is a planar curve. Moreover, the classical result for the helices first was given by Lancret in 1802 and proved by B. de Saint Venant in 1845 as follows: A necessary and sufficient condition that a curve to be a general helix is that the ratio of the first curvature to the second curvature be constant i.e., κ / τ is constant along the curve, where κ and τ denote the first and second curvatures of the curve, respectively [20]. The same definition is also valid in Lorentzian space and spacelike, timelike and null helices have been studied by some mathematicians [7-9].

Furthermore, there exist more special curves in the space such as slant helix which first introduced by Izumiya and Takeuchi by the property that the normal lines of curve make a constant angle with a fixed direction in the Euclidean 3-space E^3 [14]. Slant helices have been studied by some mathematicians and new kinds of these curves also have been introduced [1,11,16,17,19]. Moreover, these curves have been considered in Lorentzian spaces [2,3].
Later, a new kind of helices has been defined by Zıplar, Şenol and Yaylı according to the Darboux vector of a space curve in E^3. They have called this new curve as Darboux helix which is defined by the property that the Darboux vector of a space curve makes a constant angle with a fixed direction and they have given the characterizations of this new special curve [22].

Let M be a Riemannian manifold with the metric g and $f : M \to \mathbb{R}$ be a function with gradient ∇f. The function f is called eikonal if $\| \nabla f \|$ is constant [5]. There exist many applications of ∇f in mathematical physics and geometry. For instance, if f is non-constant on connected M, then the Riemannian condition $\| \nabla f \|^2 = 1$ is precisely the eikonal equation of geometrical optics. So, on a connected M, a non-constant real valued function f is Riemannian if f satisfies this eikonal equation. In the geometrical optical interpretation, the level sets of f are interpreted as wave fronts. The characteristics of the eikonal equation (as a partial differential equation), are then the solutions of the gradient flow equation for f (an ordinary differential equation), $x' = \nabla f$, which are geodesics of M orthogonal to the level sets of f, and which are parameterized by arc length. These geodesics can be interpreted as light rays orthogonal to the wave fronts (See [10] for details). Later, Şenol, Zıplar and Yaylı have defined eikonal helices and eikonal slant helices by considering a space curve with a function $f : M \to \mathbb{R}$ where M is a Riemannian manifold [21].

In this study, we define and give the characterizations of f-eikonal slant helices and f-eikonal Darboux helices for non-null and null curves in a pseudo-Riemannian manifold. For this purpose, we need the following definitions.

Definition 1.1. ([18]) A metric tensor g in a smooth manifold M is a symmetric non-degenerate $(0, 2)$ tensor field in M.

On the other hand if TM is the tangent bundle of M, then for all $X, Y \in TM$, $g(X, Y) = g(Y, X)$ and at each point p of M, if $g(X_p, Y_p) = 0$ for all $Y_p \in T_p(M)$, then $X_p = 0$ (non-degenerate) where $T_p(M)$ is the tangent space of M at the point p and $g : T_p(M) \times T_p(M) \to \mathbb{R}$.

Definition 1.2. ([18]) A pseudo-Riemannian manifold (or semi-Riemannian manifold) is a smooth manifold M furnished with a metric tensor g. That is, a pseudo-Riemannian manifold is an ordered pair (M, g).

Definition 1.3. Let M be a pseudo-Riemannian manifold and g be its metric. For the function $f : M \to \mathbb{R}$, it is said that f is eikonal if $\| \nabla f \|$ is constant, where ∇f is gradient of f, i.e., $df(X) = g(\nabla f, X)$.
Lemma 1.1. ([18]) Let \((M, g)\) be a pseudo-Riemannian manifold and \(\nabla\) be the Levi-Civita connection of \(M\). The Hessian \(H^f\) of a \(f \in F(M)\) is the symmetric (0,2) tensor field such that
\[
H^f(X, Y) = g(\nabla_X (\text{grad} f), Y),
\]
where \(F(M)\) shows the set of differentiable functions defined on \(M\).

From Lemma 1.1, we have the following corollary.

Corollary 1.1. The Hessian \(H^f\) of a \(f \in F(M)\) is zero, i.e., \(H^f = 0\) if and only if \(\nabla f\) is parallel in \(M\).

2. Non-null Eikonal Slant Helices and Non-null Eikonal Darboux Helices

Let \((M, g)\) be a time-oriented 3-dimensional pseudo-Riemannian manifold and \(\alpha: I \to M\) be a unit speed curve on \(M\), i.e., \(g(\alpha', \alpha') = \varepsilon = \pm 1\) is satisfied along \(\alpha\) where \(\alpha'\) is the velocity vector filed of the curves and \(g\) shows the metric tensor (or Lorentzian metric) given by \(g(a, b) = -a_i b_i + a_j b_j\), for the vectors \(a = (a_1, a_2, a_3)\), \(b = (b_1, b_2, b_3) \in TM\). The constant \(\varepsilon = \pm 1\) defined by \(\varepsilon = g(\alpha', \alpha')\) is called the causal character of \(\alpha\). Then, a unit speed curve \(\alpha\) is said to be spacelike or timelike if its causal character is 1 or -1, respectively. The curve \(\alpha\) is said to be a Frenet curve if \(g(\alpha', \alpha'', \alpha''') \neq 0\).

Like Euclidean geometry, every Frenet curve \(\alpha\) on \((M, g)\) admits an orthonormal Frenet frame field \(\{V_1, V_2, V_3\}\) along \(\alpha\) such that \(V_1 = \alpha'(s)\). The vector fields \(V_1, V_2, V_3\) are called tangent vector field, principle normal vector field and binormal vector field of \(\alpha\), respectively and \(\{V_1, V_2, V_3\}\) satisfies the following Frenet-Serret formula:
\[
\begin{bmatrix}
\nabla_{V_1} V_1 \\
\nabla_{V_2} V_2 \\
\nabla_{V_3} V_3
\end{bmatrix} =
\begin{bmatrix}
0 & \varepsilon_2 \kappa & 0 \\
-\varepsilon_2 \kappa & 0 & -\varepsilon_3 \tau \\
0 & \varepsilon_3 \tau & 0
\end{bmatrix}
\begin{bmatrix}
V'_1 \\
V'_2 \\
V'_3
\end{bmatrix},
\]
where \(\nabla\) is the Levi-Civita connection of \((M, g)\)\([12,13,15]\). The functions \(\kappa \geq 0\) and \(\tau\) are called the curvature and torsion, respectively. The constants \(\varepsilon_2\) and \(\varepsilon_3\) are defined by
\[
\varepsilon_i = g(V_i, V_i), \quad i = 2, 3.
\]
and called second causal character and third causal character of \(\alpha\), respectively. Note that \(\varepsilon_3 = -\varepsilon_1 \varepsilon_2\) and \(V_i \times V_j = \varepsilon_{ijk} V_k\), where \((i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2)\).

The vector \(W = \tau V_1 - \kappa V_3\) is called Darboux vector of the curve \(\alpha\). Then for the Frenet formulae we have \(\nabla_i V_j = W \times V_i, (i = 1, 2, 3)\); where "\(\times\)" shows the vector product in \(M\).

As in the case of Riemannian geometry, a Frenet curve \(\alpha\) is a geodesic if and only if \(\kappa = 0\). A circular helix is a Frenet curve whose curvature and torsion are constants. If the curvature \(\kappa\) is constant and the torsion \(\tau\) is zero, then the curve is called a pseudo circle.
Pseudo circles are regarded as degenerate helices. Helices, which are not circles, are frequently called proper helices.

Definition 2.1. Let M^3 be a 3-dimensional pseudo-Riemannian manifold with the Lorentzian metric g and let $\alpha(s)$ be a non-null Frenet curve with the Frenet frame $\{V_1, V_2, V_3\}$ in M^3. Let $f : M^3 \to \mathbb{R}$ be an eikonal function along curve α, i.e. $\|\nabla f\| = \text{constant}$ along the curve α. If the function $g(\nabla f, V_2)$ is a non-zero constant along α, then α is called a non-null f-eikonal slant helix. And, ∇f is called the axis of the f-eikonal slant helix α.

Definition 2.2. Let M^3 be a pseudo-Riemannian manifold with the Lorentzian metric g and α be a non-null Frenet curve in M^3 with Frenet frame $\{V_1, V_2, V_3\}$, non-zero curvatures κ, τ and Darboux vector $W = \tau V_1 - \kappa V_3$. Also, let $f : M^3 \to \mathbb{R}$ be an eikonal function along α. If the unit Darboux vector

$$W_0 = \frac{\tau}{\sqrt{\epsilon_1 \kappa^2 + \epsilon_1 \tau^2}} V_1 - \frac{\kappa}{\sqrt{\epsilon_1 \kappa^2 + \epsilon_1 \tau^2}} V_3,$$

of the curve α makes a constant angle φ with the gradient of the function f, that is $g(W_0, \nabla f)$ is constant along α, then the curve α is called a non-null f-eikonal Darboux helix.

Especially, if $g(W, \nabla f) = \text{constant}$, then α is called a non-normed non-null f-eikonal Darboux helix. Then, we have the following Corollary.

Corollary 2.1. A non-normed non-null f-eikonal Darboux helix is a non-null f-eikonal Darboux helix if and only if $\epsilon_1 \kappa^2 + \epsilon_1 \tau^2$ is constant.

Example 2.1. We consider the pseudo-Riemannian manifold $M^3 = \mathbb{R}^3_1$ with the Lorentzian metric g. Let

$$f : M^3 \to \mathbb{R}$$

$$(x, y, z) \to f(x, y, z) = x^2 + y^2 + z$$

be a function defined in M^3 and consider the spacelike curve
\[\alpha : I \subset \mathbb{R} \rightarrow M^3 \]
\[s \rightarrow \alpha(s) = \left(a \cosh \frac{s}{\sqrt{a^2 + b^2}}, a \sinh \frac{s}{\sqrt{a^2 + b^2}}, \frac{bs}{\sqrt{a^2 + b^2}} \right); \quad a, b > 0 \]
in \(M^3 \). If we compute \(\nabla f \), we find out \(\nabla f \) as \(\nabla f = (2x, 2y, 1) \). Then, we have
\[\| \nabla f \| = \sqrt{1 + 4\left(-x^2 + y^2\right)}, \]
and, along the curve \(\alpha \), we find out
\[\| \nabla f \| = \sqrt{1 - 4a^2} = \text{constant}. \]
That is, \(f \) is an eikonal function along \(\alpha \). Moreover, by a simple computation we have that the principal normal of the curve is
\[V_2(s) = \left(\cosh \frac{s}{\sqrt{a^2 + b^2}}, \sinh \frac{s}{\sqrt{a^2 + b^2}}, 0 \right). \]
Since
\[\nabla f = \left(2a \cosh \frac{s}{\sqrt{a^2 + b^2}}, 2a \sinh \frac{s}{\sqrt{a^2 + b^2}}, 1 \right), \]
along \(\alpha \), we easily see that \(g(\nabla f, V_2) = -2a = \text{constant} \) which means that \(\alpha \) is a non-null \(f \)-eikonal slant helix in \(M^3 \).

On the other hand, non-normed Darboux vector of \(\alpha \) is
\[W = \left(-\frac{a(a^2 + b^2)^2 + ab^2}{b(a^2 + b^2)^{3/2}} \sinh \frac{s}{\sqrt{a^2 + b^2}}, \right. \]
\[\left. -\frac{a(a^2 + b^2)^2 + ab^2}{b(a^2 + b^2)^{3/2}} \cosh \frac{s}{\sqrt{a^2 + b^2}}, \right. \]
\[\left. \frac{a^2 - (a^2 + b^2)^2}{(a^2 + b^2)^{3/2}} \right) \]
and curvatures are \(\kappa = \frac{a}{a^2 + b^2}, \quad \tau = -\frac{a^2 + b^2}{b}, \) respectively. Then we obtain that
\[g(\nabla f, W) = \frac{a^2 - (a^2 + b^2)^2}{(a^2 + b^2)^{3/2}} = \text{constant}, \]
along \(\alpha \). So, \(\alpha \) is a non-null \(f \)-eikonal non-normed Darboux helix curve in \(M^3 \). Since \(\kappa, \tau \) are constants \(\alpha \) is also a non-null \(f \)-eikonal Darboux helix curve in \(M^3 \).
Now, we give some theorems concerned with non-null \(f \)-eikonal slant helices and \(f \)-eikonal Darboux helices in pseudo-Riemannian manifold. Whenever we write \(M^3 \), we will consider \(M^3 \) as a 3-dimensional pseudo-Riemannian manifold with the Lorentzian metric \(g \).

Theorem 2.1. Let \(\alpha : I \subset \mathbb{R} \to M^3 \) be a non-null curve in \(M^3 \) with non-zero curvatures \(\kappa, \tau \) and assume that \(\alpha(s) \) is not a helix. Let \(f : M^3 \to \mathbb{R} \) be an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). If \(\alpha(s) \) is a non-null \(f \)-eikonal slant helix curve in \(M^3 \), then the following properties hold:

i) The function

\[
\frac{\kappa^2}{(\epsilon_1 \tau^2 + \epsilon_3 \kappa^2)^{3/2}} \left(\frac{\tau'}{\kappa} \right),
\]

is a real constant.

ii) The axis of \(f \)-eikonal slant helix is obtained as

\[
\nabla f = \frac{n\tau}{\sqrt{|\epsilon_1 \tau^2 + \epsilon_3 \kappa^2|}} V_1 + c V_2 - \frac{n\kappa}{\sqrt{|\epsilon_1 \tau^2 + \epsilon_3 \kappa^2|}} V_3,
\]

where \(c \) and \(n \) are non-zero constants.

Proof. i) Since \(\alpha \) is a non-null \(f \)-eikonal slant helix, we have \(g(\nabla f, V_2) = c = \text{constant} \). So, there exist smooth functions \(a_i = a_i(s), \ a_2 = a_2(s) = c \) and \(a_3 = a_3(s) \) of arc length \(s \) such that

\[
\nabla f = a_1 V_1 + c V_2 + a_3 V_3,
\]

where \(\{V_1, V_2, V_3\} \) is a basis of \(TM^3 \) (tangent bundle of \(M^3 \)).

From Corollary 1.1, \(\nabla f \) is parallel in \(M^3 \), i.e., \(\nabla_i \nabla f = 0 \) along \(\alpha \). Then, if we take the derivative in each part of (2) in the direction \(V_1 \) in \(M^3 \) and use the Frenet equations, we get

\[
(V_1[a_i] - \epsilon_i \kappa c) V_i + (\epsilon_i a_i \kappa + \epsilon_3 a_i \tau) V_2 + (V_1[a_3] - \epsilon_i \tau c) V_3 = 0,
\]

where \(V_1[a_i] = a_i'(s), \ (i = 1, 2, 3) \) in (3) and the Frenet frame \(\{V_1, V_2, V_3\} \) is linearly independent, we have

\[
\begin{align*}
a_i' - \epsilon_i \kappa c &= 0, \\
a_i \kappa + a_3 \tau &= 0, \\
a_3' - \epsilon_3 \tau c &= 0.
\end{align*}
\]

From the second equation of the system (4) we obtain
\[a_i = -\left(\frac{\tau}{\kappa} \right) a_3. \]

(5)

Since \(f \) is an eikonal function along \(\alpha \), we have \(\|\nabla f\| \) is constant. Then (2) and (5) give that

\[\left[e_1 \left(\frac{\tau}{\kappa} \right)^2 + e_3 \right] \alpha_i^2 + e_\epsilon c^2 = \text{constant}, \]

(6)

and from (6) we can write

\[\left[e_1 \left(\frac{\tau}{\kappa} \right)^2 + e_3 \right] \alpha_i^2 = n^2, \]

(7)

where \(n^2 \) is a constant. Since \(\alpha \) is not a helix curve in \(M^3 \) and curvatures are not zero, we have that \(n \) is a non-zero constant. Then, from (7) we have

\[a_3 = \pm \frac{n}{\sqrt{e_1 \left(\frac{\tau}{\kappa} \right)^2 + e_3}}. \]

(8)

By taking the derivative of (8) with respect to \(s \) and using the third equation of the system (4), we get that the function

\[\frac{\kappa^2}{(e_1 \tau^2 + e_\epsilon \kappa^2)^{3/2}} \left(\frac{\tau}{\kappa} \right)^', \]

(9)

is a constant, which is desired function.

\begin{itemize}
 \item \textit{ii}) By direct calculation from (5) and (8), we have
\end{itemize}

\[a_i = \frac{n \tau}{\sqrt{e_1 \tau^2 + e_\epsilon \kappa^2}} \quad \text{and} \quad a_3 = \frac{n \kappa}{\sqrt{e_1 \tau^2 + e_\epsilon \kappa^2}}, \]

where \(n \) is a non-zero constant. Then, from (2) the axis of \(f \)-eikonal slant helix is

\[\nabla f = \frac{n \tau}{\sqrt{e_1 \tau^2 + e_\epsilon \kappa^2}} V_1 + c V_2 - \frac{n \kappa}{\sqrt{e_1 \tau^2 + e_\epsilon \kappa^2}} V_3. \]

(10)

The above Theorem has the following corollary.

\textbf{Corollary 2.2.} Let \(\alpha : I \subset \mathbb{R} \rightarrow M^3 \) be a non-null curve in \(M^3 \) with non-zero curvatures \(\kappa, \tau \) and assume that \(\alpha(s) \) is not a helix. Let \(f : M^3 \rightarrow \mathbb{R} \) be an eikonal function along curve \(\alpha \)
and the Hessian \(H^f = 0 \). If \(\alpha(s) \) is a non-null \(f \)-eikonal slant helix curve in \(M^3 \), then, the curvatures \(\kappa \) and \(\tau \) satisfy the following non-linear equation system:

\[
\begin{align*}
\left(\frac{n\tau}{\sqrt{\epsilon_1\tau^2 + \epsilon_2\kappa^2}} \right)' - \epsilon_1\kappa c &= 0, \\
\left(\frac{n\kappa}{\sqrt{\epsilon_1\tau^2 + \epsilon_2\kappa^2}} \right)' - \epsilon_2\tau c &= 0.
\end{align*}
\]

(11)

Theorem 2.2. Let \(\alpha : I \subset \mathbb{R} \to M^3 \) be a non-null curve in \(M^3 \) with non-zero curvatures \(\kappa, \tau \) and assume that \(\alpha(s) \) is not a helix. Let \(f : M^3 \to \mathbb{R} \) be an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). Then, every non-null \(f \)-eikonal slant helix in \(M^3 \) is also a non-null \(f \)-eikonal Darboux helix in \(M^3 \).

Proof. Let \(\alpha \) be a non-null \(f \)-eikonal slant helix in \(M^3 \). Then, from Theorem 2.1, the axis of \(\alpha \) is

\[
\nabla f = \frac{n\tau}{\sqrt{\epsilon_1\tau^2 + \epsilon_2\kappa^2}} V_1 + c V_2 - \frac{n\kappa}{\sqrt{\epsilon_1\tau^2 + \epsilon_2\kappa^2}} V_3.
\]

(12)

Considering the unit Darboux vector \(W_0 \), equality (12) can be written as follows

\[
\nabla f = nW_0 + c V_2,
\]

(13)

which shows that \(\nabla f \) lies on the plane spanned by \(W_0 \) and \(V_2 \). Since \(n \) is a non-zero constant, from (13), we have \(g(\nabla f, W_0) = n \) is constant along \(\alpha \), i.e., \(\alpha \) is a non-null \(f \)-eikonal Darboux helix in \(M^3 \).

Theorem 2.3. Let \(\alpha : I \subset \mathbb{R} \to M^3 \) be a non-null curve in \(M^3 \) with non-zero curvatures \(\kappa, \tau \) and assume that \(\alpha(s) \) is not a helix. Let \(f : M^3 \to \mathbb{R} \) be an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). Let \(\alpha \) be a non-normed non-null \(f \)-eikonal Darboux helix with Darboux vector \(W \). Then \(\alpha \) is a non-null \(f \)-eikonal slant helix if and only if \(\|W\| \) is a non-zero constant.

Proof. Since \(\alpha \) is a non-normed non-null \(f \)-eikonal Darboux helix, we have \(g(W, \nabla f) = \text{constant} \). On the other hand, there exist smooth functions \(a_1 = a_1(s) \), \(a_2 = a_2(s) \) and \(a_3 = a_3(s) \) of arc length \(s \) such that

\[
\nabla f = a_1 V_1 + a_2 V_2 + a_3 V_3,
\]

(14)
where a_1, a_2, a_3 are assumed non-zero and $\{V_1, V_2, V_3\}$ is a basis of TM^3. From Corollary 1.1., ∇f is parallel in M^3, i.e., $\nabla_i \nabla f = 0$ along α. Then, if we take the derivative in each part of (14) in the direction V_i in M^3 and use the Frenet equations, we get

$$
(a'_i - \varepsilon_1 a_i \kappa) V_i + (\varepsilon_2 a_i \kappa + a'_2 + \varepsilon_3 a_i \tau) V_2 + (a'_3 - \varepsilon_3 a_i \tau) V_3 = 0,
$$

where $a'_i(s) = V_i[\dot{a}_i]$, $(i = 1, 2, 3)$. Since the Frenet frame $\{V_1, V_2, V_3\}$ is linearly independent, we have

$$
\begin{align*}
\dot{a}_1' - \varepsilon_1 \kappa a_2 &= 0, \\
\dot{a}_2' + \varepsilon_1 \kappa a_1 + \varepsilon_2 \tau a_2 &= 0, \\
\dot{a}_3' - \varepsilon_3 \tau a_2 &= 0.
\end{align*}
$$

Equality $g(W, \nabla f) = \text{constant}$ gives that

$$
\varepsilon_i a_i \tau - \varepsilon_j a_j \kappa = \text{constant}.
$$

Differentiating (17) and using the first and third equations of system (16) we obtain

$$
\varepsilon_i a_i \tau' - \varepsilon_j a_j \kappa' = 0
$$

From (18) and the second equation of system (16) it follows

$$
\dot{a}_2' = -\frac{\varepsilon_1(\varepsilon_2 \kappa^2 + \tau^2)}{2 \tau'} a_3.
$$

In (19) if $a_3 = 0$, from (16) we have $a_1 = a_2 = 0$, i.e., $\nabla f = 0$ which is a contradiction. Then we have $a_1 \neq 0$ and from (19) we see that $a_2 = a_2(s)$ is constant if and only if $\varepsilon_1 \kappa^2 + \tau^2 = \text{constant}$ which means that $\varepsilon_1 \tau^2 + \varepsilon_3 \kappa^2 = \text{constant}$, i.e, α is a non-null f-eikonal slant helix if and only if $\|W\|$ is a non-zero constant.

From Theorem 2.3 and Corollary 2.1, we have the following corollary.

Corollary 2.3. Let $\alpha : I \subset \mathbb{R} \to M^3$ be a non-null curve in M^3 with non-zero curvatures κ, τ and assume that $\alpha(s)$ is not a helix. Let $f : M^3 \to \mathbb{R}$ be an eikonal function along curve α and the Hessian $H^f = 0$. Let α be a non-normed non-null f-eikonal Darboux helix. Then α is a non-null f-eikonal slant helix if and only if α is a non-null f-eikonal Darboux helix.

3. Null Eikonal Helices, Slant Helices and Darboux Helices

Let α be a curve in 3-dimensional pseudo-Riemannian manifold (M, g). Then, the curve α is called a null curve if $g(V_i, V_i) = 0$. By a Cartan frame or Frenet frame $\{V_1, V_2, V_3\}$ of α,
we mean a family of vector fields \(V_1 = V_1(s), V_2 = V_2(s), V_3 = V_3(s) \) along the curve \(\alpha \) satisfying the following conditions:

\[
\begin{align*}
\alpha'(s) &= V_1, \quad g(V_1, V_1) = g(V_2, V_2) = 0, \quad g(V_1, V_2) = 1, \\
g(V_1, V_3) &= g(V_2, V_2) = 0, \quad g(V_3, V_3) = 1, \\
V_1 \times V_2 &= V_3, \quad V_2 \times V_3 = V_2, \quad V_3 \times V_1 = V_1.
\end{align*}
\]

([6]). Here \(V_1, V_2 \) and \(V_3 \) are called tangent vector field, binormal vector field and (principal) normal vector field of \(\alpha \), respectively. Then the derivative formula of the frame is given as follows

\[
\begin{bmatrix}
\nabla_{V_1} V_1 \\
\nabla_{V_2} V_2 \\
\nabla_{V_3} V_3
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & \kappa \\
0 & 0 & \tau \\
-\tau & -\kappa & 0
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2 \\
V_3
\end{bmatrix},
\]

where \(\kappa \) and \(\tau \) are called the curvature and torsion of \(\gamma \), respectively [6].

The vector \(W = \tau V_1 - \kappa V_2 \) is called Darboux vector of the curve \(\alpha \). Then for the Frenet formulae (21) we have \(\nabla_{V_i} V_i = W \times V_i, \quad (i = 1, 2, 3) \); where "\(\times \)" shows the vector product in \(M^3 \).

Definition 3.1. Let \(M^3 \) be a 3-dimensional pseudo-Riemannian manifold with the metric \(g \) and let \(\alpha(s) \) be a null Frenet curve with the Frenet frame \(\{ V_1, V_2, V_3 \} \) and Darboux vector \(W = \tau V_1 - \kappa V_2 \) in \(M^3 \). Let \(f : M^3 \to \mathbb{R} \) be an eikonal function along the curve \(\alpha \), i.e. \(\| \nabla f \| = \text{constant along } \alpha \). Then we define the followings,

i) If the function \(g(\nabla f, V_1) \) is a non-zero constant along \(\alpha \), then \(\alpha \) is called a null \(f \)-eikonal helix curve. And, \(\nabla f \) is called the axis of the null \(f \)-eikonal helix curve \(\alpha \).

ii) If the function \(g(\nabla f, V_i) \), \((i = 2, 3) \) is a non-zero constant along \(\alpha \), then \(\alpha \) is called a null \(f \)-eikonal \(V_i \)-slant helix curve. And, \(\nabla f \) is called the axis of the null \(f \)-eikonal slant helix curve \(\alpha \).

iii) If the function \(g(\nabla f, W) \) is a non-zero constant along \(\alpha \), then \(\alpha \) is called a null \(f \)-eikonal Darboux helix curve. And, \(\nabla f \) is called the axis of the null \(f \)-eikonal Darboux helix curve \(\alpha \).

Example 3.1. We consider the pseudo-Riemannian manifold \(M^3 = \mathbb{R}^3_1 \) with the Lorentzian metric \(g \). Let consider the function

\[
f : M^3 \to \mathbb{R} \\
(x, y, z) \to f(x, y, z) = x^2 + y^2 + z
\]

given in Example 2.1 and consider the null curve
\(\alpha : I \subset \mathbb{R} \to M^3 \)
\[s \rightarrow \alpha(s) = (\sinh s, \cosh s, s) \]
in \(M^3 \). If we compute \(\nabla f \), we find out \(\nabla f = (2x, 2y, 1) \). Then, we have
\[\| \nabla f \| = \sqrt{1 + 4 \left(-x^2 + y^2 \right)} , \]
and, along the curve \(\alpha \), we find out
\[\| \nabla f \| = \sqrt{5} = \text{constant} . \]
That is, \(f \) is an eikonal function along \(\alpha \). Moreover, by a simple computation we have that the tangent and binormal of the curve are
\[V_1(s) = (\cosh s, \sinh s, 1) , \]
\[V_2(s) = \left(\frac{1}{2} \cosh s, -\frac{1}{2} \sinh s, \frac{1}{2} \right) , \]
respectively. Since
\[\nabla f = (2 \sinh s, 2 \cosh s, 1) , \]
along \(\alpha \), we easily see that \(g(\nabla f, V_2) = \frac{1}{2} = \text{constant} \) and \(g(\nabla f, V_1) = 1 = \text{constant} \) which mean that \(\alpha \) is both a null \(f \)-eikonal helix and \(f \)-eikonal \(V_2 \)-slant helix in \(M^3 \).

On the other hand, the curvatures of curve are \(\kappa = 1, \quad \tau = -\frac{1}{2} \), respectively. Then the Darboux vector of \(\alpha \) is
\[W = (0, 0, -1) . \]
Then we obtain that
\[g(\nabla f, W) = -1 = \text{constant} , \]
along \(\alpha \). So, \(\alpha \) is also a null \(f \)-eikonal Darboux helix curve in \(M^3 \).

Then, we can give the following characterizations for a null curve.

Theorem 3.1. Let \(\alpha : I \subset \mathbb{R} \to M^3 \) be a null curve in \(M^3 \) with non-zero curvatures \(\kappa, \tau \) and let \(f : M^3 \to \mathbb{R} \) be an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). If \(\alpha(s) \) is a null \(f \)-eikonal helix curve in \(M^3 \), then the followings hold,
i) The function $\frac{\kappa}{\tau}$ is constant.

ii) The axis of null f-eikonal helix curve is $\nabla f = c \left(\frac{-\tau}{\kappa} V_1 + V_2 \right)$, where $g(\nabla f, V_1) = c$ is a non-zero constant.

Proof. Let $\alpha(s)$ be a null f-eikonal helix curve in M^3 with axis ∇f. Then, there exist smooth functions $a_1 = a_1(s)$, $a_2 = a_2(s)$ and $a_3 = a_3(s)$ of arc length s such that

$$\nabla f = a_1 V_1 + a_2 V_2 + a_3 V_3,$$

where $\{V_1, V_2, V_3\}$ is a basis of TM^3 (tangent bundle of M^3). From (22) we have

$$g(\nabla f, V_1) = a_2 = c = \text{constant}, \quad g(\nabla f, V_2) = a_1, \quad g(\nabla f, V_3) = a_3.$$ \hspace{1cm} (23)

Differentiating equalities given in (23), we have $a_3 = 0$, $a_i = \text{constant}$ and $\frac{\kappa}{\tau} = -\frac{a_2}{a_1} = \text{constant}$, respectively.

Moreover, from (23) the axis of the null helix is obtained as $\nabla f = c \left(\frac{-\tau}{\kappa} V_1 + V_2 \right)$, where $g(\nabla f, V_1) = c$ is a non-zero constant.

Theorem 3.2. Let $\alpha : I \subset \mathbb{R} \rightarrow \mathbb{R}^3_1$ be a null curve in \mathbb{R}^3_1 with non-zero curvatures κ, τ and let $f : \mathbb{R}^3_1 \rightarrow \mathbb{R}$ be an eikonal function along curve α and the Hessian $H^f = 0$. If $\alpha(s)$ is a null f-eikonal V_2-slant helix curve in \mathbb{R}^3_1, then $\alpha(s)$ is also a null f-eikonal helix curve in \mathbb{R}^3_1 with axis $\nabla f = c \left(\frac{-\tau}{\kappa} V_1 + V_2 \right)$ where $g(\nabla f, V_1) = c$ is a non-zero constant.

Proof: Let $\alpha(s)$ be a null f-eikonal V_2-slant helix curve in \mathbb{R}^3_1 with axis ∇f. Then we have $g(\nabla f, V_2) = \text{non-zero constant}$. By differentiation of last equality we get

$$g(\nabla f, V_1) = 0.$$ \hspace{1cm} (24)

On the other hand differentiation of $g(\nabla f, V_1)$ in the direction V_1 is

$$\nabla_{V_1} \left[g(\nabla f, V_1) \right] = \kappa g(\nabla f, V_1),$$

and from (24) we have $g(\nabla f, V_1)$ is a constant. Then $\alpha(s)$ is a null f-eikonal helix curve in \mathbb{R}^3_1 and from Theorem 3.1, the axis is $\nabla f = c \left(\frac{-\tau}{\kappa} V_1 + V_2 \right)$ where $g(\nabla f, V_1) = c$ is a non-zero constant.
Theorem 3.3. Let $\alpha : I \subset \mathbb{R} \rightarrow \mathbb{R}^3$ be a null curve in \mathbb{R}^3 with non-zero curvatures κ, τ and let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be an eikonal function along curve α and the Hessian $H^f = 0$. If $\alpha(s)$ is a null f-eikonal helix or V_2-slant helix in \mathbb{R}^3, then $\det(\nabla_{V_3} V_2, \nabla_{V_2}^2 V_2, \nabla_{V_1} V_2) = 0$ holds.

Proof: Let $\alpha(s)$ be a null curve. Then from Frenet formulae (21) we have the followings

\[
\begin{align*}
\nabla_{V_2}^2 V_2 &= -\tau^2 V_1 - \tau \kappa V_2 + \tau V_3, \\
\nabla_{V_1} V_2 &= -3\tau \kappa V_1 - ((\tau \kappa)' + \kappa \tau') V_2 + (-2\kappa \tau^2 + \tau^3) V_3.
\end{align*}
\]

(25)

From (25) we have $\det(\nabla_{V_1} V_2, \nabla_{V_2}^2 V_2, \nabla_{V_3} V_2) = \tau^5 \left(\frac{\kappa'}{\tau} \right)$. Then by Theorem 3.2 and Theorem 3.1, we say that if $\alpha(s)$ is a null f-eikonal helix or V_2-slant helix curve in \mathbb{R}^3 then $\det(\nabla_{V_1} V_2, \nabla_{V_2}^2 V_2, \nabla_{V_3} V_2) = 0$ holds.

Theorem 3.4. Let $\alpha : I \subset \mathbb{R} \rightarrow M^3$ be a null curve in M^3 with curvatures κ, τ and let $f : M^3 \rightarrow \mathbb{R}$ be an eikonal function along curve α and the Hessian $H^f = 0$. If $\alpha(s)$ is a null f-eikonal V_3-slant helix curve in M^3, then the following properties hold:

i) $\kappa(s) \int_0^s \tau(s) ds + \tau(s) \int_0^s \kappa(s) ds = 0$ holds, where $g(\nabla f, V_3) = c$ is a non-zero constant.

ii) The axis of the V_3-slant helix is given by

\[
\nabla f = c \left[\int_0^s \tau(s) ds V_1 + \int_0^s \kappa(s) ds V_2 + V_3 \right]
\]

(26)

Proof: Since we assume that $\alpha(s)$ is a null f-eikonal V_3-slant helix curve in M^3, we have $g(\nabla f, V_3) = c$ is a non-zero constant. Then we can write

\[
\nabla f = a_1(s) V_1 + a_2(s) V_2 + c V_3,
\]

(27)

where $a_i = a_i(s); (i = 1,2)$ are the differentiable functions of s. From Corollary 1.1, ∇f is parallel in M^3, i.e., $\nabla_{V_i} \nabla f = 0$ along α. Then from (27) we obtain

\[
(a'_i - c \tau) V_1 + (a'_2 - c \kappa) V_2 + (a_1 \kappa + a_2 \tau) V_3 = 0,
\]

(28)

which gives the following system

\[
a'_1 - c \tau = 0, \quad a'_2 - c \kappa = 0, \quad a_1 \kappa + a_2 \tau = 0.
\]

(29)

And from (29) and (27), we have the followings immediately,
\[\nabla f = c \left[\int_0^s \tau(s)(0) \, ds \right] V_1 + \left[\int_0^s \kappa(s)(0) \, ds \right] V_2 + V_3, \]

\[\kappa(s) \int_0^s \tau(s)(s) \, ds + \tau(s) \int_0^s \kappa(s)(s) \, ds = 0. \]

Theorem 3.4 gives us the following corollary:

Corollary 3.1. Let \(\alpha : I \subset \mathbb{R} \rightarrow M^3 \) be a null curve in \(M^3 \) with curvatures \(\kappa, \tau \) and let \(f : M^3 \rightarrow \mathbb{R} \) be an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). If \(\alpha(s) \) is a null \(f \)-eikonal \(V_3 \)-slant helix curve in \(M^3 \). Then the followings holds,

i) \(\alpha(s) \) is a null \(f \)-eikonal helix curve if and only if \(\kappa(s) = 0 \).

ii) \(\alpha(s) \) is a null \(f \)-eikonal \(V_2 \)-slant helix curve if and only if \(\tau(s) = 0 \).

Proof: From Theorem 3.4, we have that the axis is given by

\[\nabla f = a_1(s)V_1 + a_2(s)V_2 + cV_3, \]

where \(c \) is a non-zero constant. Then we have that

\[g \left(\nabla f, V_1 \right) = a_2(s), \quad g \left(\nabla f, V_2 \right) = a_1(s), \quad (30) \]

and from (29) and (30) we have the followings,

i) \(g \left(\nabla f, V_1 \right) = a_2 \) is constant if and only if \(\kappa(s) = 0 \),

ii) \(g \left(\nabla f, V_2 \right) = a_1 \) is constant if and only if \(\tau(s) = 0 \),

which finish the proof.

Theorem 3.5. Let \(\alpha : I \subset \mathbb{R} \rightarrow M^3 \) be a null \(f \)-eikonal Darboux helix with Darboux vector \(W = \tau V_1 - \kappa V_2 \) in \(M^3 \) with non-zero curvatures \(\kappa, \tau \), where \(f : M^3 \rightarrow \mathbb{R} \) is an eikonal function along curve \(\alpha \) and the Hessian \(H^f = 0 \). Then \(\alpha \) is a null \(f \)-eikonal \(V_3 \)-slant helix if and only if \(\kappa \tau \) is constant.

Proof. Since \(\alpha \) is a null \(f \)-eikonal Darboux helix, we have \(g(W, \nabla f) = \text{constant} \). On the other hand, there exist smooth functions \(a_1 = a_1(s), \quad a_2 = a_2(s) \) and \(a_3 = a_3(s) \) of arc length \(s \) such that

\[\nabla f = a_1 V_1 + a_2 V_2 + a_3 V_3, \quad (31) \]
where \(a_1, a_2, a_3 \) are assumed non-zero and \(\{V_1, V_2, V_3\} \) is a basis of \(TM^3 \). Since \(\nabla V_i \nabla f = 0 \) along \(\alpha \), if we take the derivative in each part of (31) in the direction \(V_i \) in \(M^3 \) and use the Frenet equations, we get

\[
(a'_1 - a_3 \tau) V_1 + (a'_2 - a_3 \kappa) V_2 + (a'_3 + a_1 \kappa + a_2 \tau) V_3 = 0, \tag{32}
\]

where \(a'_i(s) = V_i(a_i) \), \((i = 1, 2, 3) \). Since the Frenet frame \(\{V_1, V_2, V_3\} \) is linearly independent, we have the system

\[
\begin{align*}
n\quad a'_1 - a_3 \tau &= 0, \\
n\quad a'_2 - a_3 \kappa &= 0, \\
n\quad a'_3 + a_1 \kappa + a_2 \tau &= 0.
\end{align*}
\tag{33}
\]

Equality \(g(W, \nabla f) = \text{constant} \) gives that

\[
a_2 \tau - a_1 \kappa = \text{constant}. \tag{34}
\]

Differentiating (34) and using the first and second equations of system (33) we obtain

\[
a_2 \tau' - a_1 \kappa' = 0. \tag{35}
\]

From (35) and the third equation of system (33) it follows

\[
a'_3 = -\frac{(\kappa \tau)'}{\kappa} a_2. \tag{36}
\]

If \(a_2 = 0 \) in (36), from (33) we see that \(a_i = a_3 = 0 \) which is a contradiction. Then \(a_2 \neq 0 \) and we have that \(a_i = a_i(s) \) is a constant if and only if \(\kappa \tau \) is constant, which means that \(\alpha \) is a null \(f \)-eikonal \(V_3 \)-slant helix if and only if \(\kappa \tau \) is constant.

References

[1] Ali, A.T., Position vectors of slant helices in Euclidean Space \(E^3 \), J. of Egyptian Math. Soc., 20(1) (2012) 1-6.
[2] Ali, A.T., Lopez, R., Slant Helices in Minkowski Space \(E^3 \), J. Korean Math. Soc. 48(1) (2011) 159-167.
[3] Ali, A.T., Turgut, M., Position vector of a time-like slant helix in Minkowski 3-space, J. Math. Anal. Appl. 365 (2010) 559–569.
[4] Barros, M., General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125, no.5, (1997) 1503–1509.
[5] Di Scala, A.J., Ruiz-Hernandez, G., Higher codimensional euclidean helix submanifolds, Kodai Math. J. 33, (2010) 192-210.
[6] Duggal, K.L., Jin, D.H., Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific, 2007.
[7] Ekmeği, N., Hacısalıhoğlu, H.H., On Helices of a Lorentzian Manifold, Commun. Fac. Sci. Univ. Ank. Series A1, 45 (1996) 45-50.
[8] Ferrandez, A., Gimenez, A., Lucas, P., Null generalized helices in Lorentz-Minkowski spaces, J. Phys. A 35, no.39 (2002) 8243-8251.
[9] Ferrandez, A., Gimenez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J. Modern Phys. A. 16, no.30 (2001) 4845-4863.
[10] Fischer, A.E., Riemannian maps between Riemannian manifolds, Contemporary Math., Vol 182, (1992) 331-366.
[11] Gök, İ., Camcı, Ç, Hacisalihoğlu, H.H., V_n-slant helices in Euclidean n-space E^n, Math. Commun., 14(2) (2009) 317-329.
[12] Izumiya, S., Takiyama, A., A time-like surface in Minkowski 3-space which contain pseudo-circles, Proc. Edinburg Math. Soc., 40 (1997), 127-136.
[13] Izumiya, S., Takiyama, A., A time-like surface in Minkowski 3-space which contain light-like lines, Journal of Geometry, 64 (1999), 95-101.
[14] Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turk J. Math. 28, (2004) 153-163.
[15] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L^3, Tokyo J. Math., 6 (1983), 297-309.
[16] Kula, L. and Yaylı, Y., On slant helix and its spherical indicatrix, Appl. Math. and Comp., 169, (2005) 600-607.
[17] Kula, L., Ekmekçi, N., Yaylı, Y., İlarslan. K., Characterizations of Slant Helices in Euclidean 3-Space, Turk J Math., 33 (2009) 1–13.
[18] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983).
[19] Önder, M., Kazaz, M., Kocayiğit, H. Kılıç, O., B_2-slant helix in Euclidean 4-space E^4, Int. J. Contemp. Math. Sci. 3(29-32) (2008) 1433-1440.
[20] Struik, D.J., Lectures on Classical Differential Geometry, 2nd ed. Addison Wesley, Dover, (1988).
[21] Şenol, A., Ziplar, E., Yaylı, Y., On f-Eikonal Helices and f-Eikonal Slant Helices in Riemannian Manifolds, arXiv:1211.4960 [math.DG].
[22] Ziplar, E., Şenol, A., Yaylı, Y., On Darboux helices in Euclidean 3-space, Global J. of Sci. Frontier Res., 12(13) (2012) 72-80.