A Study on Species distribution and Diversity of macro-fauna of River Tawa - A Tributary of River Narmada in Madhya Pradesh, India

CHARU TIWARI†, VIPIN VYAS‡ and MANIK SHARMA§

1Department of zoology, Barkatullah University, Bhopal, Madhya Pradesh, India.
2Department of bioscience, Barkatullah University, Bhopal, Madhya Pradesh, India.
3Department of zoology, Career College, Bhopal, Madhya Pradesh, India.

Abstract
This study is aimed to collect information about the macrofauna diversity of Tawa River. The Tawa River joins to Narmada at district Hoshangabad (Madhya Pradesh). During the study 8 sites were selected for the investigation. collections of samples were done from the eight sampling sites of the river. Collected samples were identified up to species level and their diversity and richness were analyzed. Shannon index for diversity and margalef index for richness were used for the study. Total 48 taxa of macrofauna have been recorded from the identified sampling stations. Benthic fauna of phylum Arthropoda was found in dominant position in the study and phylum Mollusca was found in second position.

Introduction
River ecosystems are most important lotic fresh water habitats for many aquatic animals and benthic animals are one of these animal. Benthic animals are generally found in both of fresh water habitats i.e. – lotic habitats and lentic habitats. Benthos spends their whole life in bottom of aquatic ecosystem because of their feeding nature. Basically they are detritus feeders and divided in to two types – microzoobenthos and macrozoobenthos. Macro benthos are those animals which can be seen with naked eyes. Their diversity and distribution are good indicators of water quality of an ecosystem that’s why they are known as bioindicators. In the present investigation diversity and distribution of Macroinvertebrates were recorded for the period of two years from July 2017 to June 2019. The study was focused on two main phyla of...
The macrozoobenthos community of arthropoda and mollusca. Macrozoobenthos show sessile and sedentary behavior. Aquatic organisms are common indicator of aquatic environmental conditions. Macrozoobenthic fauna serve as a biological indicator of aquatic ecosystem. Physicochemical quality of water is the factors that influence species composition of a water body. Macrobenthos are good source of fish food and their food chain. They are Ecological engineers of ecosystems. Fresh water ecosystem was the conservation priority during International decade Action and in the present time also. Periodical bioassessment of taxonomic diversity of aquatic ecosystem play an important role for nature and ecological protection. Different measures are used in bioassessment for fresh water. Macrobenthos due to their special characteristics are indicator of the water quality of an aquatic ecosystem. The abundance of macrozoobenthos are depending on its surrounding environment composition of benthic community is directly related to water quality. The present research was aimed to study the distribution of benthic macro fauna of Tawa river.

India	Madhya Pradesh	Hoshangabad

Fig. 1: Map showing position of Tawa River

Fig. 2: Map showing catchment area of River – Tawa
Material and Methods

Study area
Tawa River is one of the major tributaries of Narmada in the central India. The Tawa originates from Satpura hills of Betul district and flows towards Hoshangabad District of (Madhya Pradesh). The Tawa joins to Narmada river at Bandrabhan village of Hoshangabad. The preserve forest BORI is situated along the Tawa. Bori sanctuary of the preserve forest is very famous part of Biosphere of Panchmarhi of Hoshangabad district.

Study Sites
Total 8 sites were identified for the research. Their geographical positions are shown in the Table 1. These sites arranged from upstream to downstream and joins to Narmada in Bandrabhan village at district Hoshangabad.

Table 1: position of sampling stations

Sampling station	Name of sites	Latitude	Longitude
S1	Sarni (power plant area)	22.05068	78.1300
S2	Ghoradondri (banspur)	22.1610	77.9996
S3	Bhoura (khapa)	22.2620	77.927
S4	Ranipur(dam area)	22.5747	77.98004
S5	Maharghat	22.684	77.831
S6	Babai bridge	22.7104	77.83144
S7	Raipur	22.71785	77.7254
S8	Bandrabhan (Tawa-Narmada confluence point)	22.7441	77.7369

Protocol
Selected sites were visited periodically to gather samples of benthic macro-fauna. To collect samples, various types of gears like surber sampler, D-net sampler, kick net sampler, and grab sampler etc. were used according to river bed of the sites. 0.5 to 0.6 micron mesh sized sieve were used to collect benthic macro fauna. Separated fauna were washed carefully and stored in labeled plastic bottles. 4% formalin were used for benthos preservation. Collected animals were identified up to the species level. Microscope and hand lens were used to observe detailed features of the animals.

Diversity and Richness Index

collected samples were recorded in a manner of tabulation chart. After the collection of data, statistical analysis was done. In the present paper two important diversity index were analysed.

Diversity Index of Shannon

Shannon index is very common index which is used for diversity calculation of a habitat.\(^1\) The index value ranges between 0.0 and 5.00.

The diversity index value is calculated using the formula:

\[
H' = \sum \left(\frac{n_i}{N} \log \frac{n_i}{N} \right)
\]

where:
- \(H'\): Shannon Diversity Index
- \(n_i\): number of individuals belonging to \(i\) species
- \(N\): Total number of individuals of all species

Table 3: index value and diversity of Shannon index

Index value	Diversity
1.5 to 3.5	Common
3.6 to 4.5	Rich
4.5 to 5.0	Very rich

Richness Index of Margalef
The margalef index formula is used to calculate richness of species.\(^2\) This index shows richness of species in a habitat.

\[
d = \frac{(S - 1)}{\ln N}
\]

where:
- \(d\): Margalef Diversity Index
- \(S\): Total number of species
- \(N\): Total number of individuals
Result and Discussion

During the study, total 48 taxa of macrozoobenthos belonging to phylum Mollusca and Arthropoda were noted from eight sampling stations of the study area. Out of these 48 taxa, 17 taxa of class Gastropoda represented by two orders Megastropoda and Hygrophila with 4 and 1 families respectively. Class Bivalvia was represented by three orders with four families Amblemidae, Unionidae, Corbiculidae and Lymnaeidae. Phylum Arthropoda has been recorded with two classes Insecta and Malacostraca. Class Insecta were represented by 6 orders and 17 families with 25 taxa while class Malacostraca represented by one order with a family. Class Insecta of phylum Arthropoda and class Gastropoda of phylum Mollusca were main representatives of macrozoobenthos of the river. Similar observations were recorded at Ganjal River, Ken River and Streams of Yedigoller National Park. \(^{14,15,16}\) *Bellamya bengalensis* of mollusca is a dominant species and found at all eight sampling stations and Total 41 individuals were collected. More than 20 taxa of phylum arthropoda and mollusca were recorded from four sampling sites S-1, S-2, S-3, and S-5. Maximum taxa varieties were noted from site 1 and 5. Lowest number of taxa was observed from site 4 and 6. *Bellamya bengalensis* (family-Viviparidae) and *Brotia costula* (family-Thiaridae) of phylum mollusca were recorded from all the sampling stations. Phylum Arthropoda are dominant in position than Mollusca. Dominancy of phylum arthropoda in the river ecosystem was reported by Vyas, et al., Sharma, et al. and Khan. \(^{17,18,19}\) It may be due to favorable habitat conditions and food availability for Arthropods in the river. The finding of this study reports the current position of macrozoobenthos diversity of river Tawa.
Table 2: Diversity of Macrozoobenthos of Tawa River

S.No.	Taxa	Sampling Stations							
		S1	S2	S3	S4	S5	S6	S7	S8
Phylum	Mollusca								
Class	Gastropoda								
Order	Megastropoda								
Family	Viviparidae								
1	Bellamya bengalensis	+	+	+	+	+	+	+	+
2	Bellamya dissimilis	-	+	-	+	+	+	+	+
3	Bellamya heliciformis	-	+	-	-	-	-	-	+
4	Bellamya crassa	-	-	+	-	-	-	-	-
5	Angulyagra microchaetophora	-	-	+	-	-	+	+	-
Family	Thiaridae								
6	Melanoides tuberculata crebra	+	+	-	+	+	+	-	+
7	T. Melanoides tuberculata	-	+	+	+	+	-	+	-
8	Tarebia granierea	-	-	+	-	-	+	-	-
9	Thiara (M.) tigrina raoi	+	+	-	+	-	-	-	-
10	Brotia costula	+	+	+	+	+	+	+	+
11	Brotia costula juvenile	+	+	+	-	-	+	-	+
Family	Bithyniidae								
12	Gabbia travancorica	-	+	+	-	-	-	+	-
13	Digoniostoma cerameopoma	-	-	+	-	-	-	-	+
Family	Pilidae								
14	Pila globosa	+	-	-	+	+	-	-	-
Order	Hygrophila								
Family	Planorbidae								
15	Gyraulus velifer	+	+	+	+	-	-	+	-
16	Gyraulus rotula	+	-	+	+	-	-	+	-
17	Indoplanorbis exustus	-	-	+	-	-	-	-	-
Class	Bivalve								

Fig. 6: Graphical presentation of Shannon and Margalef Diversity index of sampling sites
Order	Trigonoinida
Family	Amblemidae
18	Parreysia radiatula crispisulcata + + + + + - - -
19	Parreysia R. caerulea + + + + + + - +
Family	Unionidae
20	Lamellidens narainporensis + - - + - + - -
Order	Veneroida
Family	Corbiculidae
21	Corbicula striatella + + - - + + + -
Order	Basomatophora
Family	Lymnaeidae
22	Lymnaea accuminata + - + + + + + +
Phylum	Arthropoda
Class	Insecta
Order	Odonata
Family	Gomphidae
23	Gomphus vastus - + - - - - - -
24	progomphus larva + + - - - - - -
Family	Aeshnidae
25	Anux sps. - + - + + + + -
	Lestidae
26	Lestes ssp. - + - - - - - -
Family	Libellulidae
27	Libellula luctuosa - + - + - - - -
28	Libellula larva - - - - + + - -
Family	Cordulegastridae
29	Cordulegaster larva - - - - - - - +
Family	Petalurdaei
30	Tachopteryx larva - - + - - - - -
Family	Coenagrionidae
31	Enallagma sps. - - + - - - - -
32	Enallagma larva - - + + + - + +
Family	Macromiidae
33	Macromia larva + - - - + + + +
Order	Hemiptera
Family	Nepidae
34	Ranatra sp. - + + - - + - +
35	Nepa sp. - - + + - - + +
Family	Corixidae
36	Sigara sp. - + - - - - - -
Order	Diptera
Family	Culicidae
37	Culicinae larva - - - - - + - -
38	Culex pipiens larva - - - - - - + +
39	wyemyia larva - - - - + - - -
Order	Lepidoptera
Family	Noctuidae
40	Bellura larva - + + - - - - +
Order	Ephemeroptera
Family	Baetidae
41	calibaetis larva - - - + - - - +
Family Siphlonuridae 42 *ameletus larva* - - + + - - - +
Family Behningiidae 43 *Dolamia larva* - - - - + - - -
Order Coleoptera
Family Carabidae 44 *Omophron adult* - - - + - - + +
45 *Bembidion adult* - - - + - - - -
Family Elmidae 46 *Optioservus adult* - - - - + + + -
47 *Stenelmis adult* - - + + - - - -
Class Malacostraca
Order Decapoda
Family Palaemonidae 48 *Palaemonetes sp.* - - - - - - + -

Sampling sites	No. of species	No. of individual	Shannon diversity index	Margalef diversity index
Site-1	24	87	2.74	5.15
Site-2	23	96	2.72	4.82
Site-3	21	111	2.29	4.24
Site-4	15	132	2.23	2.26
Site-5	24	64	2.93	5.53
Site-6	15	62	2.22	3.39
Site-7	17	61	2.28	3.89
Site-8	18	131	2.35	3.48

In the study, Diversity index was from 2.22 to 2.93. The diversity value of site no. 5 was highest and lowest value of index was noted at site 6. Site 1 and 2 shows similar diversity composition of species with index value 2.7. The Margalef index shows richness of species. The value margalef diversity index ranges between 5.53 to 2.26 and highest value was recorded at site 5. Taxonomic richness at sampling site 1 and 5 may be due to favorable habitats for macrozoobenthos. Similar conclusion was made by Vyas at Bama Stream and Mouri River by Khan et al.

Conclusion

In the present study of macrozoobenthos diversity of Tawa river, dominant phylum was Arthropoda followed by Mollusca. The range of Shannon diversity index was lies between 2.93 to 2.22 which are indicating moderate pollution level in the sampling sites. Species diversity value in the range of 1.00 to 3.00 indicates moderate pollution in the water. Margalef diversity index value varied from 2.26 to 5.53 in the study and indicates low species richness. Road connectivity increased human activities in the study area. Moreover, Agriculture activities, dam, activity of power plant, over exploitation and human disturbance in the study area may be cause to change habitat structure and low of species richness.

Acknowledgement

The authors are thankful to the Department of zoology and aquaculture and Department of Bioscience, Barkatullah University, Bhopal, (M.P) India, for providing necessary facilities for study as well as laboratory analysis. I also thank to my co-workers who helped in all the field studies. I am grateful to my Guide and Co-Guide for their guidance.
Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest
The authors do not have any conflict of interest.

Reference

1. McLusky D.S, Elliot D. The esturine ecosystem: ecology, threats and management.3rd edn. Oxford University press, Oxford, 2006; 214pp.
2. RAMP, Regional Aquatic Monitoring Program, benthos ramp online, RAMP Inc.s 2017.
3. Boyd CE, Water quality in warm water fish ponds. Auburn university, Agriculture experiment station, Auburn, Alabama, USA. 1979; 9-44.
4. Longhurst A.R. The food of the demersal fish of the west African estuary, Anim.Ecol. 1957; 26,369-378.
5. Asadujjaman M, Hossain MB, Shamsuddin M, Amin MA, Azam AKM. Occurrences and abundance of macrobenthos of Hatia and Nijhum Dweep Islands, Bangladesh, middle east, journal of science and research.2012; 11(2):184-188.
6. Dudgeon D. et al. Fresh water biodiversity : Importance, Threats, Status, and Conservation challenges. Biological reviews, 2006; 81: 163-182.
7. Pawel Koperski, Reduced diversity and stability of chironomid assemblages. (chironomidae, diptera) as the effects of moderate stream degradation. journal of ecology, 2009;57: 125-138.
8. Liebmann H. Die Bedeutung der mikroskopfschenuntersuchung fur die biologische wasseranalyse. Vom Wasser, 1942; 15,181-188.
9. Gordon C.Hypersaline lagoons as conservation habitats: macroinvertebrates at muni lagoon, Ghana,’ Biodivers,conserve. 2000;9(4),465-478.
10. Mehndi iqubal et al. Diversity asnd abundance of macrobenthos in a subtropical estuary, Bangladesh. Research journal of Species, 2018; vol.19, 140-150pp.
11. Shanon CE, WeaverW.:The mathematical theory of communication urbana :University of Illinois press,1948; 94-117.
12. Margalef R. Information Y diversidad especificated communicated the organism. Invest.pesq. 1966;3:99-106
13. Vyas V. Bhawsar A.Benthic community structure in Barna stream network of Narmada river basin. international journal of environmental biology, 2013; 3(2): 57-63.
14. Sharma,R.Kumar A. and Vyas V. diversity of macrozoobenthos in morand river-A tributary of Ganjal river in Narmada basin. International journal of advance fisheries and aquatic science. 2013;1(1):57-65.
15. Nautiyal P, and Mishra AS .Variation in benthic macroinvertebrate fauna as indicator of land use in the Ken River, central india. journal of Threatened Taxa. 2013; 5(7):4096-4105.
16. Turkmen G,and Kazanci N. application of various biodiversity indices to benthic macroinvertebrate assemblages in streams of a nation park in Turkey. Review of hydrobiology. 2010;3(2):111-125.
17. Vyas V, Bharose S,Yousuf S and Kumar A, .Distribution of macrozoobenthos in river Narmada near water intake point in india. journal of natural science and research, 2012 ;2(3):18-24
18. Sharma R.Kumar A. and Vyas V. diversity of macrozoobenthos in Morand River-A tributary of Ganjal River in Narmada basin. International journal of advance fisheries and aquatic science. 2013; 1(1):57-65.
19. Ishaq F.Khan A. Diversity pattern of macrozoobenthos and their relation with qualitative characteristics of River Yamuna in Doon valley Uttarakhand. American Eurasian journal of toxicological science. 2013; 5(1); 20-29. ISSN 2050-2079.
20. Khan A.N. Kamal D. Mahmud M.M. Rahman M.A. and Hossain M.A. Diversity, distribution and abundance of benthos in Mouri River Khulna Bangladesh. International journal of sustainable crop production. 2007; 2 (5); 19-23.
21. Adoni A.D, Joshi G,Ghosh K,Chourasia
22. S.K, Vaishya A.K, Yadav K, Verma H.G. Workbook on Limnology sagar, india. Pratibha publication, (1985).

23. Ahmad bhat Najeeb, Wanganeo Ashwani, Raina Rajni, spatio-temporal variation of the zooplankton community in a tropical wetland (Bhoj Wetland), Bhopal, India. *Journal of ecology and the natural environment*, 2014.

24. Marie Anne Eurie Forio, Koen Lock, Eve Daphne Radam, Marlito Bande, Victor Asio, Peter L.M. Goethals. Assessment and analysis of ecological quality, macroinvertebrate communities and diversity in rivers of a multifunctional tropical island. *Ecological indicators*, 2017.