Data Article

Gene expression data of inflammatory mediators in apical periodontitis in 129 (wild type) and 5-lipoxygenase knockout mice

Thaise Mayumi Tairaa, Vítor Luís Ribeirob, Yuri Jivago Silva Ribeiroa, Raquel Assed Bezerra da Silvaa, Léa Assed Bezerra da Silvaa, Marília Pacífico Lucisano Politia, Lúcia Helena Facciolic, Francisco Wanderley Garcia Paula-Silvaa,∗

a Department of Pediatric Clinics, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Café s/n, 1st andar, sala M-28, CEP, São Paulo 14040-904, Brazil
b Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
c Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil

\textbf{ABSTRACT}

Apical periodontitis is an immune inflammatory response around periapical tissues as a result of pathogens invasion into the root canal. The host immunoinflammatory response could determine the progression of this disease, which involves the recruitment of immune cells, and the release of several cytokines in the lesion site. The 5-lipoxygenase pathway has been activated in some osteolytic diseases due to its capacity to interfere in the proliferation and differentiation of bone cells, including the osteoclasts. As mean to understand the inflammatory genes regulation in the apical periodontitis progression, we evaluated the network of 66 genes related to cytokines, chemokines and other inflammatory mediators and receptors in the wild-type (WT) and 5-lipoxygenase enzyme genetically deficient mice (KO). This article presents data not published but related to the research article “Effects of 5-lipoxygenase gene

* Corresponding author.

\textit{E-mail address:} franciscogarcia@forp.usp.br (F.W.G. Paula-Silva).

Social media: \texttt{F.W.G. Paula-Silva}

https://doi.org/10.1016/j.dib.2021.107787

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
disruption on inflammation, osteoclastogenesis and bone resorption in polymicrobial apical periodontitis”.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Dentistry, Oral Surgery and Medicine
Specific subject area	Endodontics
Type of data	Gene expression (fold change) relative to control
How data were acquired	RNA extraction followed by reverse transcription
	Amplification in qRT-PCR machine (40 cycles)
	Instruments: Step one Plus (Applied Biosystems), GeNeCK web server and Software R
Data format	Raw, Graphs, Figures, Table in Excel datasheet, Report relative expression, Analyzed
Parameters for data collection	Jaw samples with apical periodontitis and control (contralateral jaw with healthy teeth without lesion) from 5-lipoxygenase enzyme knockout mice and wild-type mice were collected as described [1,2]. Several inflammatory mediators were evaluated by qRT-PCR [1].
Description of data collection	Inflammatory mediators gene expression array was compared at different time points of apical periodontitis in the 5-lipoxygenase enzyme knockout mice and compared to wild-type mice.
Data source location	Institution: Universidade de São Paulo
	City/Town/Region: Ribeirão Preto
	Country: Brazil
Data accessibility	Full data is host in a public repository. Repository name: Universidade de São Paulo. Direct URL to data: http://repositorio.uspdigital.usp.br/handle/item/336
Related research article	Paula-Silva, F., Arnez, M., Petean, L., Almeida-Junior, L. A., da Silva, R., da Silva, L., & Faccioli, L. H. (2020). Effects of 5-lipoxygenase gene disruption on inflammation, osteoclastogenesis and bone resorption in polymicrobial apical periodontitis. Archives of oral biology, 112, 104,670. 10.1016/j.archoralbio.2020.104670

Value of the Data

- The data shows a panorama of inflammatory genes profile in the apical periodontitis progression in the wild-type and 5-lipoxygenase enzyme knockout mice.
- This data provides a valuable tool for studying the apical periodontitis development by comparing the inflammatory genes expression modulation in both animals using heatmap and gene regulatory networks in both models.
- The data could contribute to interpretation of 5-lipoxygenase enzyme to the inflammatory genes expression network during the apical periodontitis development.
1. Data Description

The 5-lipoxygenase enzyme deficiency in mice can result in changes in the immunoinflammatory markers gene expression during the apical periodontitis development. Furthermore, the absence of this enzyme affects gene interaction resulting in a broader network at 28 days of the disease. Table 1 integrates symbol and nomenclature of genes evaluated by qRT-PCR. The raw data of qRT-PCR analysis of each gene can be found in the Supplementary file. Fig. 1 shows a heatmap with 66 inflammatory mediator genes evaluated in the apical periodontitis of WT and KO at different stages of the disease, after 7, 14, 21 and 28 days of apical periodontitis. Gene regulatory network was evaluated in wild type (Fig. 2) and in knockout mice (Fig. 3), both at 28 days after apical periodontitis induction. In Figs. 2 and 3, the regulatory genes (Hub gene) and connected genes (nodes genes) of each group were shown.

![Heatmap and cluster analysis of kinetic of 66 genes expression](image)

Fig. 1. Heatmap and cluster analysis of kinetic of 66 genes expression in the apical periodontitis of WT and KO mice at 7, 14, 21 and 28 days of lesion and their respective control groups. Color codes in each panel refer to blue for low expression and red for the highest expression levels.
Unigene	GeneBank	Symbol	Nomenclature
NM_013854	NM_009744	Abcf1	ATP-binding cassette, sub-family F (GCN20), member 1
NM_009778	NM_098907	Casp1	Caspase 1
NM_011330	NM_009117	Ccl11	Chemokine (C-X-C motif) ligand 11
NM_011331	NM_011332	Ccl12	Chemokine (C-X-C motif) ligand 12
NM_011333	NM_011334	Ccl17	Chemokine (C-X-C motif) ligand 17
NM_011888	NM_011333	Ccl19	Chemokine (C-X-C motif) ligand 19
NM_011330	NM_011333	Ccl2	Chemokine (C-X-C motif) ligand 2
NM_009145	NM_009960	Ccl20	Chemokine (C-X-C motif) ligand 20
NM_009117	NM_011327	Ccl22	Chemokine (C-X-C motif) ligand 22
NM_019577	NM_009178	Ccl24	Chemokine (C-X-C motif) ligand 24
NM_091938	NM_009138	Ccl25	Chemokine (C-X-C motif) ligand 25
NM_013654	NM_011338	Ccl7	Chemokine (C-X-C motif) ligand 7
NM_009912	NM_011325	Ccl9	Chemokine (C-X-C motif) ligand 9
NM_009915	NM_009912	Ccr1	Chemokine (C-C motif) receptor 1
NM_009915	NM_009915	Ccr2	Chemokine (C-C motif) receptor 2
NM_009914	NM_009914	Ccr3	Chemokine (C-C motif) receptor 3
NM_009916	NM_009916	Ccr4	Chemokine (C-C motif) receptor 4
NM_009917	NM_009917	Ccr5	Chemokine (C-C motif) receptor 5
NM_009835	NM_009835	Ccr6	Chemokine (C-C motif) receptor 6
NM_007719	NM_007719	Ccr7	Chemokine (C-C motif) receptor 7
NM_007720	NM_007720	Ccr8	Chemokine (C-C motif) receptor 8
NM_009913	NM_009913	Ccr9	Chemokine (C-C motif) receptor 9
NM_007768	NM_007768	Crp	C-reactive protein, pentraxin-related
NM_008176	NM_008176	Cxcl1	Chemokine (C-X-C motif) ligand 1
NM_021704	NM_011333	Cxcl2	Chemokine (C-X-C motif) ligand 12
NM_009936	NM_011337	Pf4	Platelet factor 4
NM_009910	NM_009910	Cxcr3	Chemokine (C-X-C motif) receptor 3
NM_007721	NM_007721	Cxcr10	Chemokine (C-C motif) receptor 10
NM_008337	NM_008337	Ilfg	Interferon gamma
NM_008348	NM_008348	Il10ra	Interleukin 10 receptor, alpha
NM_008349	NM_008349	Il10rb	Interleukin 10 receptor, beta
NM_008350	NM_008350	Il1l	Interleukin 11
NM_133990	NM_008357	Il13ra1	Interleukin 13 receptor, alpha
NM_010551	NM_010551	Il14	Interleukin 15
NM_019508	NM_019508	Il17b	Interleukin 17B
NM_008360	NM_008360	Il18	Interleukin 18
NM_019450	NM_019450	Il1f6	Interleukin 1 family, member 6
NM_027163	NM_027163	Il1f8	Interleukin 1 family, member 8
NM_008362	NM_008362	Il1r1	Interleukin 1 receptor, type I
NM_010555	NM_010555	Il1r2	Interleukin 1 receptor, type II
NM_008368	NM_008368	Il2rb	Interleukin 2 receptor, beta chain
NM_013563	NM_013563	Il2rg	Interleukin 2 receptor, gamma chain
NM_010556	NM_010556	Il3	Interleukin 3
NM_021283	NM_021283	Il4	Interleukin 4
NM_008370	NM_008370	Il5ra	Interleukin 5 receptor, alpha
NM_010559	NM_010559	Il6ra	Interleukin 6 receptor, alpha
NM_008404	NM_008404	Il7g2	Interleukin 7g2
NM_010735	NM_010735	Lta	Lymphotoxin A
NM_008518	NM_008518	Ltb	Lymphotoxin B
NM_009909	NM_009909	Cxcr2	Chemokine (C-X-C motif) receptor 2
NM_007926	NM_007926	Aimp1	Aminocaclyl RNA synthetase complex-interacting
NM_009263	NM_009263	Spp1	Multifunctional protein 1

(continued on next page)
Table 1 (continued)

Unigene	GeneBank	Symbol	Nomenclature
Mm.248380	NM_011577	Tgfb1	Secreted phosphoprotein 1
Mm.1293	NM_013693	Tnf	Transforming growth factor, beta 1
Mm.474976	NM_011609	Tnfrsf1a	Tumor necrosis factor
Mm.235328	NM_011610	Tnfrsf1b	Tumor necrosis factor receptor superfamily, member 1a
Mm.4861	NM_011616	Cd40lg	Tumor necrosis factor receptor superfamily, member 1b
Mm.103551	NM_023764	Tollip	CD40 ligand
Mm.390241	NM_011798	Xcr1	Toll interacting protein
Mm.3317	NM_010368	Gusb	Chemokine (C motif) receptor 1
Mm.299381	NM_013556	Hprt	Glucuronidase, beta
Mm.2180	NM_008302	Hsp90ab1	Hypoxanthine guanine phosphoribosyl transferase
Mm.304088	NM_008084	Gapdh	Heat shock protein 90 alpha, class B member 1
Mm.391967	NM_007393	Actb	Glyceraldehyde-3-phosphate dehydrogenase

Fig. 2. Gene regulatory network (GRN) using the Graphical Lasso ($\lambda = 0.300$) method of WT mice at 28 days of lesion. Yellow circles indicate regulatory genes (hub gene) and light blue circles indicate poorly connected genes (nodes genes). There is 1 hub gene: CXCL10 participates in gene regulation and biological processes.
Fig. 3. Gene regulatory network (GRN) using the Graphical Lasso ($\lambda = 0.300$) method of KO mice at 28 days of lesion. Yellow circles indicate regulatory genes (Hub gene) and light blue circles indicate poorly connected genes (nodes genes). There are 5 hub genes: IL-1\(\beta\), IL-3, IL-20, CXCL9 and CCL3 participate in gene regulation and biological processes.

2. Experimental Design, Material and Methods

2.1. Animals

Twenty four knockout (KO) mice for 5-lipoxygenase enzyme (129-Alox5tm1Fun; 129-Alox5-/-; The Jackson Laboratory, Bar Harbor, ME, USA) and 24 wild-type 129 mice for the control group were used in this study. Mice were male and adult (6–8 week-old). For the operative procedures the animals were anesthetized by intraperitoneal injections of ketamine hydrochloride (150 mg/kg, Ketamine 10%, Agener União Química Farmacêutica Nacional S/A, Embu-Guaçu, SP) and xylazine (7.5 mg/kg, Dopaser, Laboratorios Calier S/A, Barcelona, Spain).

2.2. Apical periodontitis model

The protocol of apical periodontitis was previously described in Da Silva et al. [2]. Mice were placed in a surgical table in order to promote the immobilization of the animals, maintenance of the mouth opened, and the visualization of the molar teeth. The upper first molar pulps were exposed using a 1011 spherical diamond tip (KG Sorensen Ind. Com. Ltda., Barueri, SP) and a type K file #06 (Les Fils d’Auguste Maillefer S/A, Switzerland). The exposed root canals were left open to the oral environment, as previously described [3]. The teeth without pulp exposure
were used as controls. Mice were euthanized on days 7, 14, 21 and 28 after experimental apical periodontitis induction ($n = 6$ teeth per period).

2.3. Evaluation of gene expression by global qRT-PCR arrays to demarcation of inflammatory event

A guanidine thiocyanate protocol (RNeasy® Mini, Qiagen Inc., Valencia, USA) was used for RNA extraction from two pools of three teeth each. The evaluation of the total RNA quality was performed by electrophoresis on 1% agarose gel (Sigma-Aldrich Corp.) containing ethidium bromide (Sigma-Aldrich Corp.) using 1x concentrated TBE buffer (Tris-Borate-EDTA). The estimate of the amount of nucleic acids and their purity were assessed by spectrophotometry in NanoDrop 1000 (Thermo Fisher Scientific Inc., Wilmington, USA). The synthesis cDNA via reverse transcription reaction was performed by using 2 μg of total RNA and the First Strand RT² kit (Qiagen Inc.).

RT-PCR arrays (Inflammatory Cytokines and Receptors PAMM-011Z, Qiagen Inc.) were used for the analysis of 66 target sequence genes (Table 1). As reference genes, Gusb, Hprt, Hsp90ab1, Actb and Gapdh were evaluated. Controls for detecting mouse genomic DNA contamination (MGDC), controls for the efficiency of the reverse transcription reaction (RTC) and the positive controls (PPC) consisting of a passive artificial DNA sequence to be detected during the reaction. The qRT-PCR reactions were performed using SybrGreen, consisting of a duplicate in an Eppendorf Mastercycler® ep Realplex (Eppendorf AG). Amplification was done under the following conditions: denaturation at 95 °C for 10 min; followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. The specificity of the primers was analyzed using the dissociation curve, considering the melting temperature of the amplicon under the following conditions: temperature increase to 95 °C for 15 s, followed by decrease the temperature to 60 °C for 15 s, gradually increasing the temperature to 95 °C for 20 min and maintained at 95 °C for 15 min. The $\Delta\Delta$Ct method was used for relative quantification.

2.4. Data presentation and analysis

The qRT-PCR data of 66 gene expressions were plotted in MS Excel for the data normalization. The relative quantification of all experimental groups were analyzed by R statistical package version 4.0.3. For data analysis, a heatmap was used in order to show the magnitude of the fold change of each gene in a color scale. The columns correspond to the experimental groups and the rows the genes evaluated.

2.5. Gene regulatory networks

The gene-gene association network of the same 66 genes was evaluated in the WT and KO group, both with 28 days of apical periodontitis, using the Graphical Lasso method ($\lambda = 0.300$) by GeneCK, a web server for building gene networks and visualization [4]. These graphs shows the nodes representing the genes and the edges representing the gene-gene interaction.

Ethics Statement

All experiments using animals were performed following the guidelines for animal research at University of São Paulo (USP). The experimental protocols were approved by the Ethics Committee on Animal Use from the School of Dentistry of Ribeirão Preto (process# 12.1.60.53.8).
Declaration of Competing Interest

The authors declare no conflict of interest for this article.

CRediT Author Statement

Thaise Mayumi Taira: Software, Data curation, Writing – review & editing; Vitor Luis Ribeiro: Software, Data curation, Writing – review & editing; Yuri Jivago Silva Ribeiro: Writing – review & editing; Raquel Assed Bezerra da Silva: Supervision, Writing – review & editing; Léa Assed Bezerra da Silva: Supervision, Writing – review & editing; Marília Pacifico Lucisano Politi: Supervision, Writing – review & editing; Lúcia Helena Faccioli: Conceptualization, Supervision; Francisco Wanderley Garcia Paula-Silva: Conceptualization, Methodology, Supervision, Writing – review & editing.

Acknowledgments

This study was supported by Grants from the São Paulo Research Foundation (FAPESP 2010/17611-4 and FAPESP 2019/00204-1) to FWGPS.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.dib.2021.107787.

References

[1] F. Paula-Silva, M. Arnez, I. Petean, L.A. Almeida-Junior, R. Da Silva, L. Da Silva, L.H. Faccioli, Effects of 5-lipoxygenase gene disruption on inflammation, osteoclastogenesis and bone resorption in polymicrobial apical periodontitis, Arch. Oral Biol. 112 (2020) 104670, doi:10.1016/j.archoralbio.2020.104670.
[2] R.A. Da Silva, P.D. Ferreira, A. De Rossi, P. Nelson-Filho, L.A. Silva, Toll-like receptor 2 knockout mice showed increased periapical lesion size and osteoclast number, J. Endod. 38 (6) (2012) 803–813, doi:10.1016/j.joen.2012.03.017.
[3] F.W. Paula-Silva, I.B. Petean, L.A. da Silva, L.H. Faccioli, Dual role of 5-lipoxygenase in osteoclastogenesis in bacterial-induced apical periodontitis, J. Endod. 42 (3) (2016) 447–454, doi:10.1016/j.joen.2015.12.003.
[4] M. Zhang, Q. Li, D. Yu, B. Yao, W. Guo, Y. Xie, G. Xiao, GeNeCK: a web server for gene network construction and visualization, BMC Bioinform. 20 (1) (2019) 12, doi:10.1186/s12859-018-2560-0.