Genetic Variants of CYP2D6 Gene and Cancer Risk: A HuGE Systematic Review and Meta-analysis

Li-Ping Zhou, Hong Luan, Xi-Hua Dong, Guo-Jiang Jin, Dong-Liang Man, Hong Shang*

Abstract

Objective: Genetic polymorphisms in metabolic enzymes are associated with numerous cancers. A large number of single nucleotide polymorphisms (SNPs) in the CYP2D6 gene have been reported to associate with cancer susceptibility. However, the results are controversial. The aim of this Human Genome Epidemiology (HuGE) review and meta-analysis was to summarize the evidence for associations. Methods: Studies focusing on the relationship between CYP2D6 gene polymorphisms and susceptibility to cancer were selected from the Pubmed, Cochrane library, Embase, Web of Science, Springerlink, CNKI and CBM databases. Data were extracted by two independent reviewers and the meta-analysis was performed with Review Manager Version 5.1.6 and STATA Version 12.0 software. Odds ratios (ORs) with 95% confidence intervals (95%CIs) were calculated. Results: According to the inclusion criteria, forty-three studies with a total of 7,089 cancer cases and 9,646 healthy controls, were included in the meta-analysis. The results showed that there was a positive association between heterozygote (GC) of rs1135840 and cancer risk (OR=1.92, 95% CI: 1.14-3.21, P=0.01). In addition, we found that homozygote (CC) of rs1135840 might be a protective factor for cancer (OR=0.58, 95% CI: 0.34-0.97, P=0.04). Similarly, the G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 had negative associations with cancer risk (OR=0.69, 95% CI: 0.48-0.99, P=0.04; OR=0.60, 95% CI: 0.38-0.94, P=0.03; OR=0.50, 95% CI: 0.26-0.95, P=0.03; respectively). Conclusion: This meta-analysis suggests that CYP2D6 gene polymorphisms are involved in the pathogenesis of various cancers. The heterozygote (GC) of rs1135840 in CYP2D6 gene might increase the risk while the homozygote (CC) of rs1135840, G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 might be protective factors.

Keywords: CYP2D6 - polymorphism - cancer - meta-analysis

Asian Pacific J Cancer Prev, 13, 3165-3172

Introduction

Cytochrome P450 (CYP450) is a large and diverse group of metabolic enzymes containing heme, consisted by many isozyme, also known as P450 gene superfamily (Wexler et al., 2004). CYP450 is mainly in the endoplasmic reticulum of liver, involved in the endogenous and exogenous substances with biological transformation (Lewis et al., 2004). To date, it has been found 17 CYP450 gene families, 36 gene subgroups in mammals. The research work mainly focus on CYP1A, CYP2A6, CYP2D6, CYP2C9, CYP2C19 and CYP3A (Foster et al., 2003; Agundez et al., 2004). Cytochrome P450 2D6 (CYP2D6), a member of the cytochrome P450 mixed-function oxidase system, is one of the most important enzymes involved in the metabolism of xenobiotics in the body (Lewis et al., 2004). CYP2D6 is the first identified P450 enzymes controlled by single gene, the gene encoding this protein located on the long arm of chromosome 22q13 (Zhou et al., 2009). Although CYP2D6 only accounts for 2% of the total liver CYP450 protein, it is the most genetic polymorphism of metabolic enzymes so far, metabolizing nearly 20%-25% drugs in clinically with large individual differences (Kimura et al., 1989; Wilkinson et al., 2005; Sistonen et al., 2007).

CYP2D6 has a number of mutants which are the consequence of insertion or deletion or null of allele (Meyer et al., 1997; Singh et al., 2011). At present, the number of the identified CYP2D6 allelic variant is 80 and is still growing. The allelic variant distribution differs among different ethnic groups (Lewis et al., 2004). CYP2D6*2, *3, *4, *5, *6, *10 & *41 are more common in Caucasians, *2 and *17 are more frequently observed in Africans and *10 is more prevalent in Asians (Garcia-Barcelo et al., 2000; Ji et al., 2002; Roberts et al., 2006;). CYP2D6 metabolic polymorphisms may have associations with some diseases susceptibility, such as cancers, Parkinson’s disease, Alzheimer’s disease, ankylosing
spondylitis and rheumatoid arthritis (Ouerhani et al., 2008). Metabolic activation of carcinogens might proceed via CYP2D6 which implies that a patient of extensive metabolism phenotype forms higher amounts of the active compounds. and therefore at a higher risk to develop cancer, such as bladder cancer, breast cancer, head cancer and neck cancer (Kroemer et al., 1995). Surekha et al have confirmed that that the CYP2D6*4 polymorphism plays an important role in breast cancer etiology (Surekha et al., 2010). However, the association between CYP2D6 alleles and cancer development is rather complicated. Abraham et al have found that common variants of CYP2D6 do not play a significant role in breast cancer susceptibility, but not including rare variants, such as CYP2D6* 6 which merit further investigation (Abraham et al., 2011). Besides, Morrow et al have demonstrated no significant effect of CYP2D6 genotype on risk of recurrence in breast cancer patients who received adjuvant tamoxifen therapy in a case-control study (Morrow et al., 2012). In addiction, a recent convey with 123 cases and 129 healthy controls has showed that no association was found between CYP2D6 and gastric cancer risk in Han ethnic population of Hunan Province (Luo et al., 2011). These studies reported a conflicting and inconclusive results. Given controversial results in those previous studies, we conducted a meta-analysis to explore the associations between CYP2D6 genetic polymorphisms and risk of cancer.

Materials and Methods

Literature search

We performed an electronic search of the Pubmed, Cochrane library, Embase, Web of science, Springerlink, CNKI and CBM databases extensively to identify relevant studies available up to May 20, 2012. The search terms were used, including (“Cytochrome P-450 CYP2D6” [Mesh] or “CYP2D6” or “CYP 2D6” or “Debrisoquine 4 Monooxygenase” or “Imipramine 2 Hydroxylase”) and (“SNPs” or “SNP” or “polymorphism, genetic” [Mesh]) and (“cancer” or “tumor” or “Neoplasms” [Mesh]). The references in the eligible studies or textbooks were also reviewed to check through manual searches to find other potentially eligible studies.

Inclusion and exclusion criteria

The included studies had to meet the following criteria: i) Case-control study focused on associations between CYP2D6 gene polymorphisms and cancer risk; ii) All patients with the diagnosis of malignant tumor confirmed by pathological examination of the surgical specimen; iii) The frequencies of alleles or genotypes in case and control groups could be extracted; iv) The publication was in English or Chinese. Studies were excluded when they were: i) Not case-control studies about CYP2D6 gene polymorphisms and cancer risk; ii) Based on incomplete data; iii) Useless or overlapping data were reported; iv) Meta-analyses, letters, reviews or editorial articles.

Data extraction

Using a standardized form, data from published studies were extracted independently by two reviewers to populate the necessary information. The following information was extracted from each of the articles included: first author, year of publication, country, language, ethnicity, study design, source of cases and controls, number of cases and controls, mean age, sample, cancer type, genotype method, allele and genotype frequency, and evidence of Hardy-Weinberg equilibrium (HWE) in controls. In case of conflicting evaluations, an agreement was reached following a discussion with a third reviewer.

Quality assessment of included studies

Two reviewers independently assessed the quality of papers according to modified STROBE quality score systems (von Elm et al., 2007; Zhang et al., 2011). Forty assessment items related with the quality appraisal were used in this meta-analysis, scores ranging from 0 to 40. Scores of 0-20, 20-30 and 30-40 were defined as low, moderate and high quality, respectively. Disagreement was resolved by discussion.

Statistical analysis

The odds ratio (OR) and 95% confidence interval (95%CI) were calculated using Review Manager Version 5.1.6 (provided by the Cochrane Collaboration, available at: http://ims.cochrane.org/revman/download) and STATA Version 12.0 (Stata Corp., College Station, TX) softwares. Between-study variations and heterogeneities were estimated using Cochran’s Q-statistic (Higgins et al., 2002; Zintzaras et al., 2005) (P≤0.05 was considered to be manifestation of statistically significant heterogeneity). We also quantified the effect of heterogeneity by using I2 test, which ranges from 0 to 100% and represents the proportion of inter-study variability that can be contributed to heterogeneity rather than by chance. When a significant Q-test (P≤0.05) or I2>50% indicated that heterogeneity among studies existed, the random effects model was conducted for meta-analysis. Otherwise, the fixed effects model was used. To establish the effect of heterogeneity on meta-analyses’ conclusions, subgroup analysis was operated. We tested whether genotype frequencies of controls were in HWE using the χ² test. Funnel plots are often used to detect publication bias. However, due to its limitations caused by varied sample sizes and subjective reviews, Egger’s linear regression test which measures funnel plot’s asymmetry using a natural logarithm scale of OR was used to evaluate the publication bias (Peters et al., 2006). When the P value is less than 0.1, publication bias is considered significant. All the P values were two-sided. To ensure the reliability and the accuracy of the results, two reviewers populated the data in the statistical software programs independently and obtained the same results.

Results

Characteristics of included studies

We identified a total of 211 relevant publications after initial screening. According to the inclusion criteria, 43 studies (Agúndez et al., 1994; Wundrack et al., 1994; Agúndez et al., 1995; Agúndez et al., 1996; Ladona et al., 1996; Legrand et al., 1996; London et al., 1997; Agúndez et al., 1998; Febbo et al., 1998; González et al., 1998; Hu et
Table 1. Characteristics of Included Studies in this Meta-analysis

First author	Year	Country	Number Case	Control	Sample Type	Genotype method	Cancer Type	Quality scores
Agúndez et al. 1994	Spain	89 Blood	98		AS-PCR	Lung cancer	24	
Wundrack et al. 1994	Germany	31 Blood/Tissue	720 DNA sequencing	Menigioma	20			
Agúndez et al. 1995	Spain	75 Blood	200		PCR-RFLP	Liver cancer	20	
Agúndez et al. 1996	Spain	100 Blood	258		PCR-RFLP	Liver cancer	20	
Ladoma et al. 1996	Spain	187 Blood	151		AS-PCR	Breast cancer	23	
Legrand et al. 1996	France	249 Blood	265		PCR-SSCP	Lung cancer	27	
London et al. 1997	UK	158 Blood	246		AS-PCR	Lung cancer	20	
Agúndez et al. 1998	Spain	94 Blood	160		PCR-RFLP/AS-PCR	Prostate cancer	27	
Febbo et al. 1998	USA	571 Blood	767		PCR-RFLP	Prostate cancer	25	
González et al. 1998	Spain	75 Blood	200		PCR-RFLP	Head and neck cancer	22	
Hu et al. 1998	China	59 Blood	59		PCR-RFLP	Lung cancer	21	
Shaw et al. 1998	USA	98 Blood	110		DNA sequencing	Lung cancer	28	
Krajnovic et al. 1999	Spain	177 Blood	304		PCR-RFLP	Leukemia	28	
Lemos et al. 1999	Portugal	160 Blood	128		PCR-RFLP	Neoplasias	27	
Topić et al. 2000	Croatia	76 Blood	144		PCRSSCP	Breast cancer	21	
Butler et al. 2001	Australia	219 Blood	200		PCR-RFLP	Colorectal cancer	21	
Liu et al. 2002	China	84 Blood/Tissue	144 PCR-RFLP	Liver cancer	20			
Sobti et al. 2003	India	100 Blood	76		PCR-RFLP	Lung cancer	22	
Chen et al. 2004	China	50 Blood	50		PCR-RFLP	Lung cancer	24	
Fukatsu et al. 2004	Japan	147 Blood/Tissue	266 PCR-RFLP	Prostate cancer	22			
Li et al. 2004	China	217 Blood	200		PCR-RFLP	Lung cancer	27	
Gajecka et al. 2005	Poland	289 Blood	316		PCR-RFLP	Laryngeal cancer	28	
Gomes et al. 2005	Portugal	235 Blood	256		PCR-RFLP	Prostate tumor	25	
Guo et al. 2005	China	150 Blood	152		PCR-RFLP	Lung cancer	23	
Liang et al. 2005	China	227 Blood	227		PCR-RFLP	Lung cancer	27	
Mochizuki et al. 2005	Japan	44 Blood	577		PCR-RFLP	Lung cancer	26	
Sobti et al. 2005	India	100 Blood/Tissue	76 PCR-RFLP	Bladder cancer	25			
Aydin-Sayitoglu et al. 2006	Turkey	250 Blood/Marrow	140 PCR-RFLP	Leukemia	28			
Bonanni et al. 2006	Italy	46 Blood	136		TaqMan	Breast cancer	25	
Li et al. 2006	China	286 Blood	305		PCR-RFLP	Breast cancer	26	
Lemos et al. 2007	Portugal	187 Blood	256		PCR-RFLP	Thyroid cancer	27	
Chen et al. 2008	China	348 Blood	204		PCR-RFLP	Leukemia	26	
Khedhaier et al. 2008	Tunisia	314 Blood	246		PCR-RFLP	Breast cancer	30	
Majumdar et al. 2008	India	110 Blood	144		PCR-RFLP	Leukemia	30	
Ouerhani et al. 2008	Tunisia	80 Blood	109		PCR-RFLP	Bladder cancer	26	
Torresan et al. 2008	Brazil	102 Blood	102		PCR-RFLP	Breast cancer	30	
Yan et al. 2008	China	118 Blood	118		PCR-RFLP	Lung cancer	27	
Altayli et al. 2009	Turkey	135 Blood	128		PCR-RFLP	Bladder cancer	28	
Gutman et al. 2009	Israel	43 Blood	123		AS-PCR	Cervical cancer	27	
Surekha et al. 2010	India	230 Blood	250		PCR-RFLP	Breast cancer	25	
Lim et al. 2011	Singapore	165 Blood	228		DNA sequencing	Breast cancer	31	
Luo et al. 2011	China	123 Blood	129		PCR-RFLP	Gastric cancer	27	
Zhou et al. 2011	China	86 Blood	86		PCR-RFLP	Lung cancer	25	

PCR, polymerase chain reaction; RFLP, restriction fragment length polymorphism; AS, allele specific

Figure 1. Flow Chart Shows Study Selection Procedure
Table 2. The Genotype Distribution of CYP2D6 Polymorphisms in Case and Control Groups

First author	SNP	Total 1	1	2	1/1 2/1 1/2	1/1+2/1 2/2	HWE test		
Agúndez et al	rs3892097 (G/A)	112	56	54	0 16	0	2	0	0.01
rs35742686 (A/-)	324	159	161	34	17	54	2	0.00	
Butler et al	rs35742686 (A/-)	146	42	104	1 0	0	0	0.03	
Gomes et al	rs35742686 (A/-)	345	221	124	1 0	0	0.00		
Gao et al	rs35742686 (A/-)	225	40	185	1 0	0	0.00		
Li et al	rs35742686 (A/-)	288	162	2 0	0	0.00			
Moehl et al	rs35742686 (A/-)	207	40	167	1 0	0	0.00		
Moehl et al	rs5030656 (ins/del)	207	40	167	1 0	0	0.00		
Ouelhazi et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saavedra et al	rs35742686 (A/-)	37	3	34	0 1	0	0.00		
Saaved...									
Table 3. Meta-analysis of the Association between CYP2D6 Gene Polymorphisms and Cancer Susceptibility

Polymorphisms	Cancer	Control	OR [95%CI]	P	Heterogeneity	Effect model			
	n/N	n/N							
rs3892097 (G>A)	A allele	1629/10032	2271/13948	1.00	[0.93, 1.08]	0.92 <0.01	70% Random		
	A carrier	1364/4822	1913/6774	1.01	[0.84, 1.21]	0.94 <0.01	71%		
	AA	482/4822	253/6774	1.03	[0.84, 1.26]	0.75 <0.06	32%		
	GA	1182/4822	1678/6774	1.01	[0.84, 1.22]	0.93 <0.01	69%		
rs35742686 (A/del)	del allele	20/1352	38/1702	0.58	[0.23, 1.47]	0.26 0.07	53% Fixed		
	del carrier	14/766	31/851	0.55	[0.29, 1.04]	0.06 0.15	44%		
	del/del	6/32	7/851	1.11	[0.39, 3.15]	0.84 0.22	34%		
	A/del	14/766	32/851	0.50	[0.26, 0.95]	0.03 0.57	0%		
rs5030656 (ins/del)	del allele	40/2984	30/2478	1.90	[0.62, 5.83]	0.26 0.02	74% Random		
	del carrier	39/294	27/487	2.13	[0.74, 6.17]	0.16 0.04	69%		
	del/del	3/394	4/487	0.54	[0.12, 2.43]	0.42 0.39	0%		
	ins/del	38/294	23/487	2.33	[0.92, 5.87]	0.07 0.1	57%		
rs1065852 (C/T)	T allele	1851/3408	2334/4452	0.86	[0.73, 1.01]	0.07 <0.002	62% Fixed		
	T carrier	1299/1704	1608/2226	0.91	[0.77, 1.07]	0.24 0.26	19%		
	CT	552/1704	726/2226	0.82	[0.66, 1.01]	0.07 0.03	49%		
	I4001467 (C/T)	T allele	31/168	41/288	1.36	[0.82, 2.27]	0.23	- -	Fixed
	T carrier	31/84	32/144	1.57	[0.89, 2.80]	0.12	- -	-	
	TT	0/84	2/144	0.34	[0.02, 7.11]	0.48	- -	-	
	CT	31/84	37/144	1.69	[0.95, 3.02]	0.08	- -	-	
2D6*5 (ins/del)	del allele	29/418	83/1608	1.27	[0.77, 2.09]	0.35 0.2	38% Fixed		
	del carrier	26/165	24/227	1.58	[0.87, 2.87]	0.13	- -	-	
	del/del	0/165	0/227	-	- -	- -	-		
	ins/del	26/165	24/227	1.58	[0.87, 2.87]	0.13	- -	-	
Rs1135840 (G/C)	C allele	164/236	177/236	0.76	[0.51, 1.14]	0.18	- -	Fixed	
	C carrier	117/118	114/118	4.11	[0.45, 37.29]	0.21	- -	-	
	CC	47/118	63/118	0.58	[0.34, 0.97]	0.04	- -	-	
	GC	70/118	51/118	1.92	[1.14, 3.21]	0.01	- -	-	
Rs16947 (A/G)	G allele	57/278	108/396	0.69	[0.48, 0.99]	0.04	- -	Fixed	
	G carrier	47/139	91/198	0.60	[0.38, 0.94]	0.03	- -	-	
	GG	10/139	17/198	0.83	[0.37, 1.86]	0.64	- -	-	
	AG	37/139	74/198	0.61	[0.38, 0.98]	0.04	- -	-	
Rs1080985 (C/G)	G allele	40/278	76/406	0.73	[0.48, 1.11]	0.14	- -	Fixed	
	G carrier	34/139	67/203	0.66	[0.40, 1.07]	0.09	- -	-	
	GG	6/139	9/203	0.97	[0.34, 2.80]	0.96	- -	-	
	CG	28/139	58/203	0.63	[0.38, 1.05]	0.08	- -	-	
2D6*14 (G/A)	A allele	4/204	2/364	3.62	[0.66, 19.94]	0.14	- -	Fixed	
	A carrier	4/102	2/204	4.12	[0.74, 22.89]	0.11	- -	-	
	AA	0/204	0/204	-	- -	- -	-		
	GA	4/102	2/204	4.12	[0.74, 22.89]	0.11	- -	-	
Rs28371725 (G/A)	A allele	15/278	34/390	0.60	[0.32, 1.12]	0.11	- -	Fixed	
	A carrier	4/139	3/195	0.57	[0.29, 1.11]	0.1	- -	-	
	AA	1/139	2/195	0.70	[0.06, 7.79]	0.77	- -	-	
	GA	13/139	30/195	0.57	[0.28, 1.13]	0.11	- -	-	

OR, odds ratio; 95%CI, 95% confidence interval

Figure 3. Begger’s Funnel Plot of Publication Bias Based on rs3892097, rs5030656, rs1065852 and rs35742686 in CYP2D6 Gene

DOI:http://dx.doi.org/10.7314/APJCP.2012.13.7.3165

Asian Pacific Journal of Cancer Prevention, Vol 13, 2012 3169
Publication bias

Publication bias of the literatures was accessed based on rs3892097, rs5030656, rs1065852 and rs35742686 in CYP2D6 gene by Egger’s funnel plot and Egger’s linear regression test. Egger’s linear regression test was used to measure the asymmetry of the funnel plot. All graphical funnel plots of included studies appeared to be symmetrical (Figure 3). Egger’s test also showed that there was no statistical significance for all evaluations of publication bias (all P>0.05). Findings of Egger’s publication bias test are shown in Table 4.

Discussion

CYP450 is a enzymes superfamily of which function is to catalyze the oxidation of organic substances, and are the major enzymes involved in drug metabolism and bio-activation (Agundez et al., 2004). CYP2D6, located on chromosome 22, is one of the most important CYP450 enzymes involved in the metabolism of xenobiotics in the body (Jin et al., 2005; Singh et al., 2011). CYP2D6 gene polymorphisms are susceptibility factors to various diseases, including cancers, Parkinson’s disease, Systemic Lupus Erythematosus (SLE), nephropathy and ankylosing spondylitis (Surekha et al., 2010). According to the published studies, the association between CYP2D6 and cancer risk is not precise and very controversial. Agúndez et al have showed that individuals who were homozygous for functional CYP2D6 genes appear to be at higher risk of developing primary liver cancer (Agúndez et al., 1995). Gajecka et al have found that CYP2D6*4 allele and CYP2D6*4/*4 genotype might increase the risk of laryngeal cancer (Gajecka et al., 2005). However, Gutman et al have indicated that CYP2D6 mutations are not related to an increased risk for cervical cancer in the Jewish Israeli population (Gutman et al., 2009).

In this meta-analysis, we quantitatively assessed the association between CYP2D6 gene polymorphisms and cancer risk. Finally, 43 case-control studies were included with a total of 7009 cancer cases and 9646 healthy controls. We examined eleven polymorphisms of CYP2D6 gene, including rs3892097, rs5030656, rs1065852, rs35742686, i4001467, 2D6*5, rs1135840, rs16947, rs1080985, 2D6*14, rs28371725. The meta-analysis results showed a positive association between the heterozygote (GC) of rs1135840 and cancer risk, which indicated that heterozygote (GC) of rs1135840 might be a potential risk factor for cancer. In addiction, the G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 in CYP2D6 gene were found negative associations with cancer risk, which suggested that these SNPs of CYP2D6 gene might decrease the risk of cancer. Interestingly, we also found that the homozygote (CC) of rs1135840 in CYP2D6 gene might decrease the risk of cancer, suggesting rs1135840 might also be a protective factor for cancer. In the subgroup analysis by ethnicity, we found that the A carrier and heterozygote (GA) of rs3892097 might increase the risk of cancer in Asian population, but not in Caucasian and African populations. Sensitivity analysis was performed by omitting any single study and non-HWE studies, no influence was found.

Limitations in our meta-analysis should be acknowledged. Firstly, the control subjects in our study might not be representative of the general population, necessitating well-designed population-based studies with large sample sizes and detailed exposure information to validate our findings. Secondly, although the funnel plot and Egger’s test did not show any publication bias, selection bias could have occurred because only studies published in English or Chinese were included. Thirdly, some relevant studies could not be included in our analysis due to incomplete raw data. Fourthly, we were not able to address the sources of heterogeneity among all studies. In addiction, although all cases and controls of each study were well defined with similar inclusion criteria, there may be potential factors that were not taken into account that may have influenced our results. Moreover, our meta-analysis was based on un-adjust ORs estimates because not all published presented adjusted ORs or when they did, the ORs were not adjusted by the same potential confounders.
such as ethnicity, gender, geographic distribution, etc. Given these results, additional investigation in these areas is needed, and our conclusions should be interpreted cautiously.

In conclusion, this meta-analysis of 43 case-control studies demonstrated that CYP2D6 gene polymorphisms are involved in the pathogenesis of variant cancer. The heterozygote (GC) of rs1135840 in CYP2D6 gene might increase the risk of cancer, while the homozygote (CC) of rs1135840, G allele and G carrier (AG + GG) of rs16947 and heterozygote (A/del) of rs35742686 might be protective factors for cancer.

Acknowledgements
The authors declare that they have no competing interests.

References
Abraham JE, Maranian MJ, Driver KE, et al (2011). CYP2D6 gene variants and their association with breast cancer susceptibility. Cancer Epidemiol Biomarkers Prev, 20, 1255-8.
Agündez JA (2004). Cytochrome P450 gene polymorphism and cancer. Curr Drug Metab, 5, 211-24.
Agündez JA, Jiménez-Jiménez PJ, Luengo A, et al (1995). Association between the oxidation polymorphism and early onset of Parkinson’s disease. Clin Pharmacol Ther, 57, 291-8.
Agündez JA, Ledesma MC, Benítez J, et al (1999). Debrisoquine oxidation genotype and susceptibility to lung cancer. Clin Pharmacol Ther, 55, 10-4.
Agündez JA, Martínez C, Olivera M, et al (1998). Expression in human prostate of drug- and carcinogen-metabolizing enzymes: association with prostate cancer risk. Br J Cancer, 78, 1361-7.
Agündez JA, Olivera M, Ladero JM, et al (1996). Increased risk for hepatocellular carcinoma in NAT2-slow acetylators and CYP2D6-rapid metabolizers. Pharmacogenetics, 6, 501-12.
Altyai E, Gunes S, Yilmaz AF, et al (2009). CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol, 41, 259-66.
Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, et al (2006). Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol, 81, 162-70.
Bonanni B, Macis D, Maisonneuve P, et al (2006). Polymorphism in the CYP2D6 tamoxifen-metabolizing gene influences clinical effect but not hot flashes: data from the Italian Tamoxifen Trial. J Clin Oncol, 24, 3708-9.
Butler WJ, Ryan P, Roberts-Thomson IC (2001). Metabolic genotypes and risk for colorectal cancer. J Gastroenterol Hepatol, 16, 631-5.
Chen HC, Hu WX, Liu QX, et al (2008). Genetic polymorphisms of metabolic enzymes CYP1A1, CYP2D6, GSTM1 and GSTT1 and leukemia susceptibility. Eur J Cancer Prev, 17, 251-8.
Chen SQ, Xu L, Ma GJ, Xue KX (2004). Genetic polymorphism of CYP2D6 and its relation to lung cancer susceptibility. Tumor Mar, 24, 96-98.
Febbo PG, Kantoff PW, Giovannucci E, et al (1998). Debrisoquine hydroxylase (CYP2D6) and prostate cancer. Cancer Epidemiol Biomarkers Prev, 7, 1075-8.
Foster BC, Vandenhoek S, Hana J, et al (2003). In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. Phytomedicine, 10, 334-42.
Fukatsu T, Hirokawa Y, Araki T, et al (2004). Genetic polymorphisms of hormone-related genes and prostate cancer risk in the Japanese population. Anticancer Res, 24, 2431-7.
Gajecke M, Rydzanicz M, Jaskula-Sztul R, et al (2005). CYP1A1, CYP2D6, CYP2E1, NAT2, GSTM1 and GSTT1 polymorphisms or their combinations are associated with the increased risk of the laryngeal squamous cell carcinoma. Mutat Res, 574, 112-23.
Garcia-Barcelo M, Chow LY, Chiu HF, et al (2000). Genetic analysis of the CYP2D6 locus in a Hong Kong Chinese population. Clin Chem, 46, 18-23.
Gomes L, Lemos MC, Paiva I, et al (2005). CYP2D6 genetic polymorphisms are associated with susceptibility to pituitary tumors. Acta Med Port, 18, 339-43.
González MV, Alvarez V, Pello MF, et al (1998). Genetic polymorphism of N-acetyltransferase-2, glutathione S-transferase-M1, and cytochromes P450IIE1 and P450IIID in the susceptibility to head and neck cancer. J Clin Pathol, 51, 294-8.
Guo Z, Zhou Q, Zhu W, et al (2005). A case-control study on the association between genetic polymorphisms of metabolizing enzymes CYP2D6 and susceptibility to lung cancer. Zhongguo Fei Ai Za Zhi, 8, 89-94.
Gutman G, Morad T, Peleg B, et al (2009). CYP1A1 and CYP2D6 gene polymorphisms in Israeli Jewish women with cervical cancer. Int J Gynecol Cancer, 19, 1300-2.
Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat Med, 21, 1539-58.
Hu YL, Gao Y, Zhang Q (1998). Genetic polymorphisms of CYP1A1, 2D6 and GSTM1 related with susceptibility to lung cancer. Tumour, 18, 269-71.
Ji L, Pan S, Marti-Jaun J, et al (2002). Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *1B allele in mainland Chinese. Clin Chem, 48, 983-88.
Jin Y, Desta Z, Stearns V, et al (2005). CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst, 97, 30-9.
Khedhayer A, Hassen E, Bouaouina N, et al (2008). Implication of Xenobiotic Metabolizing Enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer, 8, 109.
Kimura S, Umeno M, Skoda RC, et al (1989). The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet, 45, 889-904.
Krajnovic M, Labuda D, Richer C, et al (1999). Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood, 93, 1496-501.
Kroemer HK, Eichelbaum M (1995). “It’s the genes, stupid”. Molecular bases and clinical consequences of genetic cytochrome P450 2D6 polymorphism. Life Sciences, 56, 2285-98.
Ladona MG, Abildua RE, Ladero JM, et al (1996). CYP2D6 genotypes in Spanish women with breast cancer. Cancer Lett, 99, 23-8.
Legrand M, Stucker I, Marez D, et al (1996). Influence of a mutation reducing the catalytic activity of the cytochrome P450 CYP2D6 on lung cancer susceptibility. Carcinogenesis,
Li-Ping Zhou et al
Asian Pacific Journal of Cancer Prevention, Vol 13, 2012

Lemos MC, Carrilho F, Rodrigues F, et al (2007). Genetic polymorphism of CYP2D6 influences susceptibility to papillary thyroid cancer. Clin Endocrinol (Oxf), 67, 180-3.

Lemos MC, Cabrila FJ, Silva HA, et al (1999). Genetic polymorphism of CYP2D6, GSTM1 and NAT2 and susceptibility to haematological neoplasias. Carcinogenesis, 20, 125-9.

Lewis DF (2004). Varieties: the human cytochromes P450. Pharmacogenomics, 5, 305-18.

Li H, Feng L, Xu Y, et al (2006). The association of CYP2D6 *10 polymorphism with breast cancer risk and clinico-pathologic characteristics in Chinese women. Acta Oncol, 45, 597-601.

Li WY, Lai BT, Zhan XP (2004). The relationship between genetic polymorphism of mebolizing enzymes and the genetic susceptibility to lung cancer. Chin J Epidemiol, 25, 1042-45.

Liang GY (2005). Studies on susceptibility genotypes of lung cancer in Chinese Han population and rapid detection techniques of single nucleotides polymorphisms. Southeast University, 1-108.

Lim JS, Chen XA, Singh O, et al (2011). Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol, 71, 737-50.

Liu CZ, Jiang F, Bian JC, et al (2002). Cytochrome P450 2D6 gene polymorphism and susceptibility to hepatocellular carcinoma research. Chinese Journal of Cancer, 21, 1016-17.

London SI, Daly AK, Leathart JB, et al (1997). Genetic polymorphism of CYP2D6 and lung cancer risk in African-Americans and Caucasians in Los Angeles County. Carcinogenesis, 18, 1203-14.

Luo YP, Chen HC, Khan MA, et al (2011). Genetic polymorphisms of metabolic enzymes-CYP1A1, CYP2D6, GSTM1, and GSTT1, and gastric carcinoma susceptibility. Tumour Biol, 32, 215-22.

Majumdar S, Mondal BC, Ghosh M, et al (2008). Association of cytochrome P450, glutathione S-transferase and N-acetyl transferase 2 gene polymorphisms with incidence of acute myeloid leukemia. Eur J Cancer Prev, 17, 125-32.

Meyer UA, Zanger UM (1997). Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol, 37, 269-96.

Mochizuki J, Murakami S, Sanjo A, et al (2005). Genetic polymorphisms of cytochrome P450 in patients with hepatitis C virus-associated hepatocellular carcinoma. J Gastroenterol Hepatol, 20, 1191-7.

Morrow PK, Sema R, Broglia K, et al (2012). Effect of CYP2D6 polymorphisms on breast cancer recurrence. Cancer, 118, 1221-7.

Ouerhani S, Marrakchi R, Bouhaha R, et al (2008). The role of CYP2D6*4 variant in bladder cancer susceptibility in Tunisian patients. Bull Cancer, 95, E1-4.

Peters JL, Sutton AJ, Jones DR, et al (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA, 295, 676-80.

RobertsRL, KennedyMA (2006). Rapididdetection of common cytochrome P450 2D6 alleles in Caucasians. Clin Chmi Acta, 366, 348-51.

Shaw GL, Falk RT, Frame JN, et al (1998). Genetic polymorphism of CYP2D6 and lung cancer risk. Cancer Epidemiol Biomarkers Prev, 7, 215-9.

Singh D, Kashyap A, Pandey RV, Saini KS (2011). Novel advances in cytochrome P450 research. Drug Discov Today, 16, 793-9.

Singh MS, Francis PA, Michael M. (2011). Tamoxifen, cytochrome P450 genes and breast cancer clinical outcomes. Breast, 20, 111-8.

Sistonen J, Sajantila A, Lao O, et al (2007). CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics, 17, 93-101.

Sobti RC, Al-Badran AI, Sharma S, et al (2005). Genetic polymorphisms of CYP2D6, GSTM1, and GSTT1 genes and bladder cancer risk in North India. Cancer Genet Cytogenet, 156, 68-73.

Sobti RC, Sharma S, Joshi A, et al (2003). CYP1A1 and CYP2D6 polymorphism and risk of lung cancer in a North Indian population. Biomarkers, 8, 415-28.

Surekha D, Sailaja K, Rao DN, et al (2010). Association of a CYP17 gene polymorphism with development of breast cancer in India. Asian Pac J Cancer Prev, 11, 1653-7.

Surekha D, Sailaja K, Rao DN, et al (2010). CYP2D6*4 polymorphisms and breast cancer risk. Biology and Medicine, 2, 49-55.

Topić E, Stefanović M, Ivanisević AM, et al (2000). The cytochrome P450 2D6 (CYP2D6) gene polymorphism among breast and head and neck cancer patients. Clin Chim Acta, 296, 101-9.

Torresan C, Oliveira MM, Torrezan GT, et al (2008). Genetic polymorphisms in oestrogen metabolic pathway and breast cancer: a positive association with combined CYP/GST genotypes. Clin Exp Med, 8, 65-71.

t von Elm E, Altman DG, Egger M, et al (2007). STROBE Initiative: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology, 18, 800-804.

Wexler D, Courtney R, Richards W, et al (2004). Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci, 21, 645-53.

Wilkinson GR (2005). Drug metabolism and variability among patients in drug response. N Engl J Med, 352, 2211-21.

Wundrack I, Meese E, Müllenbach R, Blin N (1994). Debrisoquine hydroxylase gene polymorphism in meningioma. Acta Neuropathol, 88, 472-74.

Yang Z, Wu YM, Wu YJ (2008). CYP2D6*10 polymorphisms and lung cancer susceptibility. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 30, 564-8.

Zhang L, Liu JL, Zhang YJ, Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin Exp Rheumatol, 29, 285-92.

Zhou SF (2009). Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet, 48, 689-723.

Zhou JL, Yao ZJ, Zeng ZP, Zhao XR (2011). Case-control study for the relationship of CYP1A1 and CYP2D6 polymorphisms with the genetic susceptibility to lung cancer. J Guangdong Pharm, 27, 528-31.

Zintzaras E, Ioannidis JP (2005). Heterogeneity testing in meta-analysis. Drug Discov Today, 17, 295-98.