Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

Tetsuya Ido, Thomas H. Loftus, Martin M. Boyd, Andrew D. Ludlow, Kevin W. Holman, and Jun Ye
JILA, National Institute of Standards and Technology and University of Colorado
Boulder, Colorado 80309-0440, U.S.A.

(Dated: October 30, 2018)

By varying the density of an ultracold 88Sr sample from 10^9 cm$^{-3}$ to $>10^{12}$ cm$^{-3}$, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the $^1S_0 - ^3P_1$ optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88Sr $^1S_0 - ^3P_1$ optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is $(43482912334 \pm 20_{stat} \pm 33_{sys})$ Hz.

PACS numbers: 42.62.Eh; 32.80-t; 32.70.Jz; 42.62.Fi

Neutral-atom-based optical frequency standards are becoming serious contenders for the realization of highly stable and accurate optical atomic clocks. Progress in this field is rapid, with significant advances in experimental techniques from several related fields including laser cooling to ultracold temperatures, trapping configurations suitable for highly accurate clocks, the development of high quality optical local oscillators, and precise frequency measurement and distribution enabled by femtosecond optical combs.

Several systems have been proposed for neutral-atom-based optical clocks, each emphasizing narrower intercombination transitions in alkaline earth and Yb atoms. High resolution spectroscopic techniques employed to date include recoil-free absorption inside 1-D optical lattices, free space Ramsey interrogation and atom interferometry, and free space saturated absorption. The fermionic strontium isotope, 87Sr, offers a weakly allowed $^1S_0 - ^3P_0$ optical clock transition with a potential resonance quality factor exceeding 10^{15} and reduced polarization dependence and collisional shifts of the clock frequency when the atoms are confined inside magic-wavelength optical lattices. However, the large nuclear spin ($I = 9/2$) brings complexity in state preparation and field control. Recently new schemes have emerged that take advantage of the most abundant spin-zero isotope (88Sr) by engineering a $^1S_0 - ^3P_0$ clock transition with a perfect scalar nature.

In this Letter, we present precision spectroscopy of ultracold 88Sr in free space. With reference to the Cs primary standard and with a detailed investigation of systematic frequency shifts, we determine the absolute frequency of the $^1S_0 - ^3P_1$ clock transition with a statistical (systematic) uncertainty of $20(33)$ Hz. This level of measurement precision represents an improvement of more than 200 times over recent studies performed with thermal atomic beams. Collision-related frequency shifts can significantly impact both the stability and accuracy of microwave and optical frequency standards. These effects have been studied in detail for both Cs and Rb microwave clocks. For optical frequency standards based on intercombination transitions in alkaline earth atoms, it is expected that the dependence of the fractional frequency shift on the atomic density is reduced by more than three orders of magnitude in comparison to Cs clocks. Previous efforts to measure this effect in Ca, however, were hampered by low sample densities $\sim 10^9$ cm$^{-3}$, resulting in measured shift coefficients with errors exceeding their associated absolute values. To overcome this limitation, we have performed absolute frequency measurements with $\sim 1 \mu$K 88Sr atoms for densities spanning three orders of magnitude, from 10^9 cm$^{-3}$ to 10^{12} cm$^{-3}$. For the first time we report definitive density-related line center shifts and spectral broadening of an optical clock transition in ultracold atoms. We find the density-dependent fractional frequency shift is 250 times smaller than that of Cs.

Figure 1 shows a simplified view of the ultracold 88Sr spectrometer. Components pertaining to atom cooling and trapping are described elsewhere. Measurements reported here utilize 10^6 to 10^7 atoms cooled to $\sim 1.3 \mu$K. Spectroscopic probing of the $^1S_0 - ^3P_1$ clock transition is performed in free space after the trapping
laser beams and the quadrupole magnetic field are extinguished. The atomic density \(n \) during spectroscopic probing is varied by changing either the initial atom number in the trap or the free-flight time after the atom are released to free space. The typical free-flight time range from 5 to 20 ms. Spatial densities are determined from calibrated fluorescence images. The probe laser linewidth is <100 Hz. The laser’s absolute frequency is measured continuously via a femtosecond optical comb that is locked to a Cs-referenced hydrogen maser via an optical fiber before delivery to the atomic cloud. The probe laser is split into two counter-propagating beams, each coupled respectively into a single-mode, polarization-maintaining optical fiber before delivery to the atomic cloud. The probe beams have 1/e diameters of 3 mm, > 50 m rad radius of curvature at the atom cloud, and are precisely overlapped (<50 μrad mutual tilt angle) by back coupling each beam into the opposing beam’s fiber launcher. Both beams are normal to gravity to within 1 mrad. To selectively probe the \(^1S_0 \) \((m_f = 0) \) to \(^3P_1 \) \((m'_{f'} = 0) \) transition, the linear probe beam polarization is parallel (within 10 mrad) to a 4.6(2)×10⁻⁴ T bias magnetic field turned on during the measurement cycle. The counter-propagating beam intensities are balanced to within 2.5% by monitoring atomic fluorescence signals. The single point in a given trace of the atomic resonance is independently normalized by the simultaneously measured atom number.

Before proceeding further it is important to emphasize that the counter-propagating beam configuration is essential to obtaining accurate values for the \(^1S_0 - ^3P_1 \) line center frequency. The ultracold \(^{88}\)Sr temperature offers an advantage in reducing systematic frequency shifts associated with atomic motion. However, we find that due to trapping-beam-intensity imbalance the atomic cloud acquires typical drift velocities along the probe beam axis of \(\sim 1 \) mm/s after release from the trap. Although small, this drift corresponds to a frequency shift of 1.5 kHz if a single probe beam is used for the spectroscopy. This frequency offset is canceled without perturbing the line shape if the atomic sample is illuminated by two equal intensity, counter-propagating probe beams. The presence of both beams also enables cancellation of the first-order gravity-induced Doppler shift. For the more realistic \(\pm 2.5\% \) intensity balance achieved here, the line shape is unperturbed but the true line center remains uncertain by \(\pm 20 \) Hz, an effect that could be eliminated in future measurements by using an optical cavity to establish the two probe beams. Although the two beam configuration described here resembles traditional saturated absorption, the saturation effect is greatly reduced since the excitation pulse length is comparable to the spontaneous decay time (21 µs) while, for the ultra-cold temperatures employed here, the homogeneous and inhomogeneous linewidths are comparable. We estimate the saturation effect causes a slight reduction of \(\sim 1\% \) of the fluorescence signal peak at \((\omega_0 + \omega_R)\), where \(\omega_R \) is the one-photon-recoil frequency (\(2\pi 4775 \) Hz) and \(\omega_0 \) the original atomic resonance. At the location of stimulated emission at \((\omega_0 - \omega_R)\), the reduction of fluorescence signal is estimated to be \(< 0.1\% \). Such a small deviation from the originally symmetrical lineshape causes a systematic shift in the measured resonance frequency by \(\sim +4(20) \) Hz. Note also that Ramsey interrogation is not well suited to free-space measurements of the \(^{88}\)Sr \(^1S_0 - ^3P_1 \) transition as its linewidth is slightly larger than the single-photon recoil frequency. Hence the Ramsey time required to align the recoil components exceeds the excited state lifetime.

Figure 2 illustrates the dependence of the \(^1S_0 - ^3P_1 \) transition linewidth on the peak density \(n \) for \(10^9 \) cm\(^{-3} \) < \(n \) < \(10^{12} \) cm\(^{-3} \). (a) Resonance profiles obtained for two different \(n \). Circles represent data and the solid lines are fits to Voigt profiles. \(f_c \), \(w_L \), and \(w_G \) are the line center frequency, the Lorentzian linewidth, and the Gaussian linewidth, respectively. (b) \(w_L \) and \(w_G \) vs \(n \), indicating a constant \(w_L \) and a linearly broadened \(w_G \). The inset is a semi-log plot of the same data.
The inset is a semi-log plot of the same data.

FIG. 3: Dependence of the $^1S_0 - ^3P_1$ transition line center on n. Filled circles (the solid line) are data (a linear fit). A fractional frequency shift of $-2.9(7) \times 10^{-24}$ cm3 is determined. The inset is a semi-log plot of the same data.

The frequency of the transition line center on n increases by a factor of ~ 80, both f_c and w_L change significantly beyond the associated measurement uncertainties. As expected, however, w_G remains essentially constant across the entire density range, as confirmed by the flat linear fit to the open circles in Fig. 2(b). The measured w_L, shown as filled circles in Fig. 2(b), demonstrates a significant linear broadening coefficient of $2.8(3) \times 10^{-8}$ Hz cm3. The zero-density extrapolated linewidth of 14.5(5) kHz (Fig. 2(b) inset) agrees with the predicted linewidth of 13.6(5) kHz after considering power and interaction-time broadenings. In addition, we find that the integrated area under the Voigt profile, which is proportional to the number of photons per atom that contribute to the observed fluorescence signal, remains constant within the measurement uncertainty for $n < 5 \times 10^{10}$ cm$^{-3}$. For $n \geq 5 \times 10^{11}$ cm$^{-3}$ (peak optical density of ~ 4.5), however, the Voigt profile area decreases steadily with n, an effect that arises from probe beam attenuation and possibly radiation trapping.

Figure 3 summarizes the frequency shift of the $^1S_0 - ^3P_1$ transition vs n for $n < 1 \times 10^{12}$ cm$^{-3}$. Filled circles (the solid line) are experimental data (a linear fit). From the fit we determine a fractional frequency shift of $-2.9(7) \times 10^{-24}$ cm3, ~ 250 times smaller than the density shift for Cs [24]. For $n \geq 10^{12}$ cm$^{-3}$ (not shown), observed frequency shifts deviate significantly from the linear dependence displayed for $n < 5 \times 10^{11}$ cm$^{-3}$. Resolving this deviation requires further investigation.

The density-related frequency shift and linewidth-broadening coefficients described above both exceed predicted values based on general S-matrix calculations of s-wave collisions [28, 30]. According to Ref. 28, the clock shift (in Hz) is $\Delta \nu = 4n(h/m)L_s$, where m is the atomic mass, $2\pi \hbar$ is Planck’s constant, and L_s is a length that for finite collision temperatures is bound to the order of $1/k$. Here $\hbar = \sqrt{mE}$ is the thermal collision momentum and E is the collision energy. The bound for the magnitude of the S-matrix is unity. The maximum fractional frequency shift is thus predicted to be -0.5×10^{-24} cm3, $\sim 1/6^{th}$ of the measured shift. In the low temperature limit and in the absence of resonant scattering, L_s is directly related to the scattering lengths of the two atomic states associated with the clock transition.

Elastic collisions do not account for the relatively large linewidth (w_L) broadening observed here. For inelastic contributions, quenching of the 3P_1 excited state was expected to be dominated by $^3P_1 + ^3P_1$ rather than $^3P_1 + ^1S_0$ collisions. The quenching rate constant for $^3P_1 + ^3P_1$ collisions has not been determined previously. An estimate based on the S-matrix formalism described above, however, limits the linewidth broadening coefficient to $\sim 2 \times 10^{-10}$ Hz cm3, or 140 times smaller than the measured value. Other mechanisms are then most likely responsible for the observed linewidth broadening. This conclusion is supported by the experimental observation that changing the fractional 3P_1 density does not significantly alter w_L, indicating $^3P_1 + ^3P_1$ quenching collisions are not the primary broadening mechanism. We have also experimentally ruled out any significant linewidth contributions due to depolarization of 3P_1 to the lower Zeeman level by 1S_0 collisions in the presence of the bias magnetic field. Note, however, that the relatively large Sr C_1 coefficient leads to non-negligible p-wave contributions to the $^3P_1 + ^1S_0$ process even at a temperature ~ 400 nK. Thus higher order partial waves may make significant contributions to the scattering process. Another experimental observation reveals that for a given range of n, a longer free-flight time (compensated by using a larger initial number of atoms) gives rise to a larger broadening coefficient. Here it is likely that the effec-
TABLE I: Systematic corrections and associated uncertainties for the absolute frequency of the $^1S_0 - ^3P_1$ clock transition.

Contributor	Correction (Hz)	Uncertainty (Hz)
mutual beam tilt	0	5
position offset	0	2
velocity	0	4
2nd order Doppler	$0 - 2 \times 10^{-4}$	
1st order Zeeman	0.02	
2nd order Zeeman	0.3	
light shift	0.01	
blackbody shift	0.1	
recoil shift	$-4775 < 1 \times 10^{-3}$	
stimulated emission dip	-4	20
probe power balance (I)	-5	15
probe power balance (II)	0	20
density shift	0.2	
maser calibration	0.1	

Systematic totals -4779 ± 33

tive thermal collision momentum k among neighboring atoms is reduced due to their directional correlations in the free-flight expansion, resulting in a larger bound for L_s since the bound is set by $1/k$. We note that the linear fit in Fig. 2 includes the entire data set taken at various free-flight times (5 ms the shortest time).

Figure 4 shows a record of the absolute $^1S_0 - ^3P_1$ optical frequency accumulated over two months. Each entry represents the weighted average of multiple independent measurements. A majority of the measurements are performed in the low density regime ($n < 10^{10} \text{cm}^{-3}$) and all measurements are corrected for the density shift shown in Fig. 3. The final weighted mean is $434 829 121 317 113 \text{Hz}$, with a statistical uncertainty of 20Hz. A detailed list of the systematic frequency shifts and their uncertainties are given in Table I. The first four items detail the residual Doppler effect from the atomic motion in free space. The next four items describe frequency shifts due to residual electric and magnetic fields. All have negligible contributions to the present uncertainty. The photon recoil correction is known to 1Hz. To ensure that corrections for multiple photon recoils are unnecessary, we have verified that no significant shift to the line center occurs for a factor of two decrease in the overall optical power. Lineshape-asymmetry-related frequency shift caused by the stimulated-emission photon recoil is $\sim 4(20) \text{Hz}$. The other dominant systematic uncertainty arises from the probe beam intensity imbalance. Along with the 20Hz uncertainty described previously (Table 1, probe power balance II), intensity mismatch leads to preferential multiple scattering in favor of the stronger beam, resulting in a blue shift due to photon recoil of $5(15) \text{Hz}$ (probe power balance I). The overall correction to the measured frequency is therefore -4779Hz, with a conservatively estimated systematic uncertainty of $\sim 33 \text{Hz}$. Applying this correction, the $^1S_0 - ^3P_1$ transition frequency is $(434 829 121 317 334 \pm 20_{\text{stat}} \pm 33_{\text{sys}}) \text{Hz}$.

In summary, we have presented the most accurate frequency measurement of a Sr-based optical frequency standard with a detailed investigation of possible systematic sources of error. Using the dense, ultracold sample, we have also performed the first definitive measurement of density-related frequency shifts and linewidth broadening for an optical clock transition.

We thank R. J. Jones and T. Parker for help with absolute frequency measurements and P. Julienne, R. Ciurylo, C. Oates, and A. Gallagher for useful discussions. Funding is provided by ONR, NSF, NASA, and NIST.

[1] L. Hollberg et al., IEEE J. Quant. Electron. 37, 1502 (2001).
[2] G. Wilpers et al., Phys. Rev. Lett. 89, 230801 (2002).
[3] H. Katori et al., Phys. Rev. Lett. 91, 173005 (2003).
[4] H. Katori et al., Phys. Rev. Lett. 82, 1116 (1999).
[5] T. Binnewies et al., Phys. Rev. Lett. 87, 123002 (2001).
[6] T. Mukaiyama et al., Phys. Rev. Lett. 90, 113002 (2003).
[7] T. H. Loftus et al., Phys. Rev. Lett. 93, 073003 (2004).
[8] R. J. Rafac et al., Phys. Rev. Lett. 85, 2462 (2000).
[9] S. A. Diddams et al., Science 293, 825 (2001).
[10] J. Ye, L.S. Ma, and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).
[11] S. T. Cundiff and J. Ye, Rev. Mod. Phys. 75, 325 (2003).
[12] F. Ruschewitz et al., Phys. Rev. Lett. 80, 3173 (1998).
[13] T. Ido and H. Katori, Phys. Rev. Lett. 91, 053001 (2003).
[14] M. Takamoto and H. Katori, Phys. Rev. Lett. 91, 223001 (2003).
[15] X. Y. Xu et al., J. Opt. Soc. Am. B-Opt. Phys. 20, 968 (2003).
[16] C. Y. Park and T. H. Yoon, Phys. Rev. A 68, 055401 (2003).
[17] S. G. Porsey, A. Derevianko, and E. N. Fortson, Phys. Rev. A 69, 021403 (2004).
[18] T. Trebst et al., IEEE Trans. Instrum. Meas. 50, 533 (2001).
[19] C. W. Oates, G. Wilpers, and L. Hollberg, LANL arXiv, physics/0410111 (2004).
[20] T. Courtillot et al., Phys. Rev. A 68, 030501 (2003).
[21] X. Y. Xu et al., Phys. Rev. Lett. 90, 193002 (2003).
[22] T. Hong et al., LANL arXiv, physics/0409051 (2004).
[23] R. Santra et al., LANL arXiv, physics/0411197 (2004).
[24] G. Ferrari et al., Phys. Rev. Lett. 91, 243002 (2003). I. Courtillot et al., LANL arXiv, physics/0410108 (2004).
[25] C. Fertig and K. Gibble, Phys. Rev. Lett. 85, 1622 (2000).
[26] Y. Sortais, S. Bize, C. Nicolas, et al., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1093 (2000).
[27] P. J. Leo et al., Phys. Rev. Lett. 86, 3743 (2001).
[28] P. S. Julienne and R. Ciurylo, (private communications, 2004).
[27] G. Wilpers et al., Appl. Phys. B 76, 149 (2003). U. Sterr
et al., LANL arXiv, physics/0411094 (2004).
[28] T. H. Loftus et al., Phys. Rev. A 70, 063413 (2004).
[29] J. Werner, et al. J. Phys. B 26, 3063 (1993).
[30] P. J. Leo, C. J. Williams, and P. S. Julienne, Phys. Rev.
Lett. 85, 2721 (2000).
[31] J. Ye et al., J. Opt. Soc. Am. B-Opt. Phys. 20, 1459
(2003).