SCATTERING OF ACOUSTIC WAVES BY A MAGNETIC CYLINDER: ACCURACY OF THE BORN APPROXIMATION

L. GIZON
Max-Planck-Institut für Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau, Germany

S. M. HANASOGO
W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305

AND

A. C. BIRCH
Colorado Research Associates Division, NorthWest Research Associates, Inc., 3380 Mitchell Lane, Boulder, CO 80301

Received 2005 November 13; accepted 2006 January 23

ABSTRACT

With the aim of studying magnetic effects in time-distance helioseismology, we use the first-order Born approximation to compute the scattering of acoustic plane waves by a magnetic cylinder embedded in a uniform medium. We show, by comparison with the exact solution, that the travel-time shifts computed in the Born approximation are everywhere valid to first order in the ratio of the magnetic to the gas pressures. We also show that for arbitrary magnetic field strength, the Born approximation is not valid in the limit where the radius of the magnetic cylinder tends to zero.

Subject headings: magnetic fields — MHD — scattering — Sun: helioseismology — Sun: magnetic fields — waves

1. INTRODUCTION

Time-distance helioseismology (Duvall et al. 1993) has been used to measure wave travel times in and around magnetic active regions and sunspots to estimate subsurface flows and wave-speed perturbations (e.g., Duvall et al. 1996; Kosovichev et al. 2000). A challenging problem is estimating the subsurface magnetic field from travel times. In order to do so, one must understand the dependence of the travel times on the magnetic field.

As discussed by, e.g., Cally (2005), the interaction of acoustic waves with sunspot magnetic fields is strong in the near surface layers. As a result, the effect of the magnetic field on the travel times is not expected to be small near the surface. Deeper inside the Sun, however, the ratio of the magnetic pressure to the gas pressure becomes small, and it is tempting to treat the effects of the magnetic field on the waves using perturbation theory. The hope is to eventually develop a linear inversion to estimate the subsurface magnetic field from travel times measured between surface locations that are free of magnetic field. Of particular interest is the search for a magnetic field at the bottom of the convection zone. Such a linear inversion scheme has been proposed by Kosovichev & Duvall (1997) for time-distance helioseismology using the ray approximation, but it needs to be extended to finite wavelengths.

As a first step, in this paper, we consider the scattering of small-amplitude acoustic plane waves by a magnetic cylinder embedded in a uniform medium. This simple problem has a known exact solution for arbitrary magnetic field strengths (Wilson 1980). The first-order Born and Rytov approximations have proved useful in the context of time-distance helioseismology in modeling the effects of small local perturbations in sound speed and flows (e.g., Birch et al. 2001; Jensen & Pijpers 2003; Birch & Felder 2004). Here we use the Born approximation to compute the scattering of a wave by a weak magnetic field. The validity of the Born approximation is not a priori obvious in this case, since the magnetic field allows additional wave modes. Because we have an exact solution, however, we can study the validity of the linearization of travel times on the square of the magnetic field. We note that the problem of the scattering of waves by a nonmagnetic cylinder with a sound speed that differs from the surrounding medium was investigated by Fan et al. (1995).

The outline of this paper is as follows. In §2 we specify the problem and write the equations of motion for small-amplitude waves. In §3 we review the exact solution to the scattering problem. In §4 we apply the first Born approximation to obtain the complex scattering amplitudes. In §5 we show that the Born approximation is an asymptote of the exact solution in the limit of infinitesimal magnetic field strength. In §6 we compare travel times computed exactly, in the Born approximation, and in the ray approximation. In §7 we provide a brief summary of our results and also discuss the limit where the magnetic tube radius tends to zero.

2. THE PROBLEM

2.1. Governing Equations

We start with the ideal equations of magnetohydrodynamics. The equations of continuity, momentum, magnetic induction, and Gauss’s law for the magnetic field are

\[\frac{D \rho}{Dt} + \rho \nabla \cdot \mathbf{v} = 0, \]
\[\rho \frac{D \mathbf{v}}{Dt} + \nabla p - \frac{1}{4\pi} (\nabla \times \mathbf{B}) \times \mathbf{B} = 0, \]
\[\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0, \]
\[\nabla \cdot \mathbf{B} = 0, \]

where \(\frac{D}{Dt} = \partial_t + \mathbf{v} \cdot \nabla \) is the material derivative, \(\rho \) the density, \(\mathbf{v} \) the velocity, \(p \) the pressure, and \(\mathbf{B} \) the magnetic field. For the sake of simplicity, we use the simple energy equation

\[\rho C_v \frac{D T}{Dt} + p \nabla \cdot \mathbf{v} = 0, \]

where \(C_v \) is the specific heat at constant volume.
where \(T \) is the temperature, \(C_v = R(\gamma - 1) \) the uniform specific heat at constant volume, \(R \) the gas constant, and \(\gamma \) the ratio of specific heats. This equation neglects all forms of heat losses. In addition, we use the ideal gas equation of state

\[
p = \rho RT. \tag{6}
\]

2.2. Steady Background State

We consider a magnetic cylinder with radius \(R \) and uniform magnetic field strength \(B_0 \), embedded in an infinite, otherwise uniform, gravity-free medium with constant density \(\rho_0 \), gas pressure \(p_0 \), and temperature \(T_0 \). We use a cylindrical coordinate system \((r, \theta, z)\), where \(r \) is the radial coordinate, \(\theta \) is the azimuthal angle, and \(z \) is the vertical coordinate in the direction of the cylinder axis. We denote the corresponding unit vectors by \(\hat{r}, \hat{\theta}, \) and \(\hat{z} \). All steady physical quantities are denoted with an overbar. In particular, we have

\[
\begin{align*}
\bar{B} &= B_0 \Theta (R - r) \hat{z}, \\
\bar{p} &= \rho_0 \Theta (R - r) + \rho_0 \Theta (r - R), \\
\bar{p} &= \rho_0 \Theta (R - r) + \rho_0 \Theta (r - R),
\end{align*}
\]

where the Heaviside step function is defined by \(\Theta (r) = 0 \) if \(r < 0 \) and \(\Theta (r) = 1 \) if \(r > 0 \). The density and pressure inside the tube are \(\rho_t \) and \(p_t \), respectively. We assume that there is no mean flow in this problem, i.e., \(\mathbf{v} = 0 \).

We choose to study the case in which the background magnetic field is the same inside and outside the magnetized region, i.e., \(T = T_i = T_0 \). As a result, the sound speed, \(c = (\gamma RT)^{1/2} \), is constant everywhere. This choice is motivated by our desire to restrict ourselves, as much as possible, to the study of the effect of the Lorentz force on waves rather than the effect of a sound speed variation. Pressure balance across the magnetic tube boundary implies

\[
p_t + \frac{B_0^2}{8\pi} = p_0, \tag{10}
\]

where \(p_t \) is the background gas pressure inside the tube. The density inside the tube is given by \(\rho_t = \rho_0 \rho_t / p_0 \) as the temperature is the same inside and outside the tube.

2.3. Linear Waves

We want to study the propagation of linear waves on the steady background state defined above. Toward this end, we expand each physical quantity that appears in equations (1)–(6) into a time-varying component, denoted with a prime, and the steady component, denoted with an overbar. For example, we write \(p = \bar{p} + p' \). After subtraction of the steady state, we obtain

\[
\partial_t \rho' = -\nabla \cdot (\overline{p} \mathbf{v}), \tag{11}
\]

\[
\overline{p} \partial_t \mathbf{v}' + \nabla p' = \frac{1}{4\pi} [(\nabla \times \mathbf{B}') \times \bar{B} + (\nabla \times \bar{B}) \times \mathbf{B}'], \tag{12}
\]

\[
\partial_t \mathbf{B}' = \nabla \times (\mathbf{v}' \times \bar{B}'), \tag{13}
\]

\[
\nabla \cdot \mathbf{B}' = 0. \tag{14}
\]

The linearized energy equation, in combination with equation (11) and the linearized equation of state, can be simplified to

\[
\partial_t \rho' - c^2 \partial_r \rho' = \frac{\gamma - 1}{\gamma} c^2 \mathbf{v}' \cdot \nabla \bar{p}, \tag{15}
\]

which describes adiabatic wave motion.

As we study linear waves on a steady background, we can consider one temporal Fourier mode at a time. The magnetic field \(\mathbf{B} \) and all other background quantities do not depend on \(z \). Thus, a wave with a \(z \) dependence of the form \(e^{ik_z z} \) will have the same \(z \) dependence after interacting with the magnetic cylinder. As a result, we study solutions for which the pressure fluctuations are of the form

\[
p'(r, z, t) = \tilde{p}(r) \exp (ik_z z - i\omega t), \tag{16}
\]

where \(r = (r, \theta) \) is a position vector perpendicular to the tube axis. All the other wave variables, \(\rho', \mathbf{v}', \mathbf{B}' \), are written in the same form as in equation (16). Quantities with a tilde only depend on \(r \).

3. Exact Solution

For the sake of completeness, we briefly review an exact solution obtained by Wilson (1980) to equations (11)–(15). We consider a plane wave incident on the magnetic tube, with pressure fluctuations of the form

\[
\tilde{p}_{inc}(r) = P \exp (ik \cdot r), \tag{17}
\]

where \(P \) is an amplitude and \(k \) is the component of the wavevector perpendicular to the tube axis. In order for the incident wave to be a solution to the nonmagnetic problem, the horizontal wavenumber \(k = \| k \| \) must satisfy

\[
k(\omega) = \frac{\sqrt{\omega^2 - k_z^2}}{c}. \tag{18}
\]

In the rest of this paper, unless otherwise stated, we use \(k \) to denote \(k(\omega) \). In cylindrical coordinates, this plane wave can be expanded as a sum over azimuthal components (index \(m \)) according to (e.g., Bogdan 1989)

\[
\tilde{p}_{inc}(r) = P \sum_{m=-\infty}^{\infty} \hat{r}^m J_m(k r) e^{im \phi}, \tag{19}
\]

where \(J_m \) denotes the Bessel function of the order of \(m \) and \(\phi \) is the angle between \(k \) and \(r \).

The total wave pressure, hydrodynamic plus magnetic, and the radial velocity must be continuous across the tube boundary. Applying these boundary conditions, Wilson (1980) showed that the total pressure wave field is

\[
\tilde{p}(r) = \begin{cases} P \sum_m \hat{r}^m B_m J_m(k r) e^{im \phi}, & r < R, \\ P_{inc} + P \sum_m \hat{r}^m A_m H_m(k r) e^{im \phi}, & r > R, \end{cases} \tag{20}
\]

where \(H_m = H_m^{(1)} \) is the Hankel function of the first kind of the order of \(m \). The quantity \(k_i \) is the horizontal wavenumber inside the tube, given by

\[
k_i = k \left[\frac{(\omega^2 - k_z^2 a^2)}{(1 + a^2/c^2)(\omega^2 - s^2 k_z^2)} \right]^{1/2}, \tag{21}
\]

where \(a = B_0/(4\pi \rho_0)^{1/2} \) is the Alfvén wave speed and \(s = ac(a^2 + c^2)^{-1/2} \) is the tube velocity. The coefficients \(A_m \) and \(B_m \) are given in Appendix A. This exact solution is valid for arbitrarily large values of \(B_0 \) and \(R \). We note that the gas pressure fluctuations are discontinuous at the tube boundary.
Likewise, we write the steady component of pressure as

$$ p = p_0 + \epsilon p_1. \quad (25) $$

These changes are related to the magnetic field through equation (10) and the equation of state:

$$ p_1 = -\frac{\rho_0 c^2}{2} \Theta(R - r), \quad (26) $$
$$ \rho_1 = -\frac{\gamma \rho_0}{2} \Theta(R - r). \quad (27) $$

We expand each of the wave field variables into an incident component (subscript “inc”) and a scattered component (subscript “sc”):

$$ p' = p'_\text{inc} + \epsilon p'_\text{sc}, \quad (28) $$
$$ \rho' = \rho'_\text{inc} + \epsilon \rho'_\text{sc}, \quad (29) $$
$$ \mathbf{v}' = \mathbf{v}'\text{inc} + \epsilon \mathbf{v}'\text{sc}, \quad (30) $$
$$ \mathbf{B}' = \epsilon^{1/2} \mathbf{B}'\text{sc}. \quad (31) $$

By inserting the above expansions into equations (11)–(15) and retaining the terms of the order of \(\epsilon \) we obtain

$$ -i\omega p'_\text{sc} + \rho_0 \nabla \cdot \mathbf{v}'\text{sc} = -\nabla \cdot (\rho_1 \mathbf{v}'\text{inc}), \quad (32) $$
$$ -i\omega \rho_0 \mathbf{v}'\text{sc} + \nabla p'_\text{sc} = i\omega \rho_1 \mathbf{v}'\text{inc} + \frac{1}{4\pi} (\nabla \times \mathbf{B}_1) \times \mathbf{B}'\text{sc} $$
$$ + \frac{1}{4\pi} (\nabla \times \mathbf{B}'\text{sc}) \times \mathbf{B}_1, \quad (33) $$
$$ -i\omega (p'_\text{sc} - c^2 \rho'_\text{sc}) = \frac{(\gamma - 1)c^2}{\gamma} \mathbf{v}'\text{inc} \cdot \nabla \rho_1, \quad (34) $$
$$ -i\omega \mathbf{B}'\text{sc} = \nabla \times (\mathbf{v}'\text{inc} \times \mathbf{B}_1). \quad (35) $$

The terms on the right-hand sides of the above equations act as sources for the scattered waves: this is the Born approximation. Writing all wave variables in the form of equation (16) and using the fact that the magnetic field is solenoidal, the above equations reduce to a forced Helmholtz equation for the \((k_z, \omega)\) Fourier component of the scattered pressure field, \(\tilde{p}_\text{sc}\):

$$ (\Delta_r + k_z^2)\tilde{p}_\text{sc}(r) = \tilde{S}(r), \quad (36) $$

where \(\Delta_r\) is the two-dimensional Laplacian with respect to \(r\) and the source function \(\tilde{S}(r)\) is given by

$$ \tilde{S}(r) = \frac{\gamma - 1}{2} \delta(r - R) \partial_r \tilde{p}_\text{inc}(r) $$
$$ - \frac{c^2 k_z^2}{\omega^2} (\Delta_r - k_z^2) [\Theta(r - R)\tilde{p}_\text{inc}(r)] $$
$$ - \frac{c^2}{2\omega^2} (\Delta_r - 3k_z^2) [\delta(r - R)\partial_r \tilde{p}_\text{inc}(r)]. \quad (37) $$

The first term in \(\tilde{S}\) is due to the density jump at the tube boundary, and the other two terms are due to the direct effect of the Lorentz force on the wave. For the incoming wave, \(\tilde{p}_\text{inc}\), we take the same plane wave as in the exact solution (eq. [17]).
The solution to the inhomogeneous Helmholtz equation (36) is

\[\tilde{p}_{sc}(r) = \int \int G(r|r') \tilde{S}(r') \, dr', \]

(38)

where \(G(r|r') \) is Green’s function, defined by

\[(\Delta_r + k^2) G(r|r') = \delta(r-r') \]

and explicitly given by (e.g., Morse & Ingard 1986)

\[G(r|r') = -\frac{i}{4} \sum_{m=-\infty}^{\infty} H_m(kr_r) J_m(kr_r e^{im(\theta-\theta')}), \]

(40)

where \(r = (r, \theta), r' = (r', \theta'), r_+ = \max(r, r'), \) and \(r_- = \min(r, r') \).

We insert this expression for \(G \) into equation (38) and use integration by parts as appropriate. The solution can be written in terms of integrals over bilinear combinations of Bessel and Hankel functions. These integrals can be evaluated using equations (B1) and (B2). Upon simplification, we find that the pressure of the scattered wave is

\[\epsilon \tilde{p}_{sc}(r) = P \sum_{m=-\infty}^{\infty} J_m(kr_r) \left(C_m H_m(kr_r) - \frac{k^2}{2} J_m(kr_r) \right), \]

(41)

where the coefficients \(A_{m}^{\text{Born}} \) and \(C_{m} \) are given in Appendix C.

The diagram shows the real and imaginary parts of the scattered pressure field in the Born approximation (dashed line) and the exact solution (solid line). In this case the incoming wave is of the form \(p_{inc} = J_0(kr) \) \((m=0) \), and we used \(B = 1 \) kG, \(R = 2 \) Mm, \(k_0 = 0 \), and \(\omega^2 = 3 \) mHz.

5. BORN TENDS TO THE EXACT SOLUTION AS \(\epsilon \rightarrow 0 \)

In this section we show that to first order in \(\epsilon \), the exact solution (§ 3) and the Born solution (§ 4) are identical. We expand the exact solution (eqs. [20], [A1], and [A2]) in a Taylor series up to first order in \(\epsilon \). To do this, we use

\[\frac{a^2}{c^2} = \frac{\epsilon}{1 + \gamma \epsilon/2}, \]

(42)

which, together with equation (21), gives the first-order perturbation to the wavenumber inside the tube,

\[k_t(\epsilon) = k \left(1 - \frac{\epsilon}{2} \right) + O(\epsilon^2). \]

(43)

Let us first consider the exact scattering coefficient \(A_m \) outside the tube \((r > R) \) given by equation (A1). Denoting the numerator and denominator of \(A_m \) by \(N \) and \(D \), respectively, and performing a Taylor expansion, we obtain

\[N = \frac{1}{2} \epsilon \left[\left(\gamma + \frac{2 r^2}{\omega^2} \frac{J_m'(kr)J_m(kR) + kr J_m^2(kR)}{J_m(kR)H_m(kR) - J_m'(kR)H_m(kR) + O(\epsilon)} \right) - k R J_m(kR) J_{m-1}(kR) \right] + O(\epsilon^2), \]

(44)

\[D = J_m(kR)H_m'(kR) - J_m'(kR)H_m(kR) + O(\epsilon) \]

\[= \frac{2i}{\pi k R} + O(\epsilon). \]

(45)
Hence, the exact and Born coefficients outside the tube match to first order in ϵ:

$$A_m = A_m^{\text{Born}} + O(\epsilon^2).$$

Similarly, it can be demonstrated that the coefficient B_m that gives the exact total wave field inside the tube ($r < R$) is

$$B_m - 1 = C_m + O(\epsilon^2).$$

The -1 on the left-hand side comes from the fact that the B_m coefficient relates to the full wave field, whereas C_m is for the scattered wave field only. Together, equations (46) and (47) imply that the Born approximation is identical to the exact solution outside and inside the magnetic tube, to first order in ϵ. Figure 3 shows the fractional error $\eta_m = |A_m^{\text{Born}} - A_m|/|A_m|$ as a function of ϵ for $m = 0, 1, 2$. We see that the fractional error of the Born approximation tends to zero as ϵ tends to zero.

6. TRAVEL TIMES

In this section, we study the interaction of solar-like wave packets with the magnetic cylinder. The aim is to compare seismic travel-time shifts computed in the Born approximation and from the exact solution. For the sake of simplicity, we fix $k_z = 0$. Using Cartesian coordinates $r = (x, y)$ for the horizontal plane, we choose an incoming Gaussian wave packet propagating in the positive x horizontal direction:

$$p'_{\text{inc}}(r, t) = \int_0^\infty e^{-(\omega - \omega_i)^2/(2\sigma^2)} \cos[k(\omega)x - \omega t] \, d\omega,$$

where $\omega/2\pi = 3 \text{ mHz}$ is the dominant frequency of solar oscillations and $\sigma/2\pi = 1 \text{ mHz}$ is the dispersion. Since we chose $k_z = 0$, we have $k(\omega) = \omega/c$. The wave packet is centered on the magnetic tube at time $t = 0$. The scattered wave packet can be calculated, exactly or in the Born approximation, from the previous sections.

Figures 4a–4c show snapshots of the incoming and scattered pressure fields at time $t = 8.9$ minutes. The parameters of the steady background at infinity are $\rho_0 = 5 \times 10^{-7} \text{ cgs}$ and $c = 11 \text{ km s}^{-1}$, which are roughly the conditions at a depth of 250 km below the solar photosphere. The incident wave packet is shown in Figure 4a. Figure 4b shows the scattered wave that results from a 1 kG magnetic flux tube with radius $R = 0.2 \text{ Mm}$. The smaller tube produces relatively more backscattering than the large tube in comparison with the forward scattering. The amplitude of the scattered wave is roughly 3 orders of magnitude smaller than the incoming wave. Figure 4c shows the scattered wave for a larger tube radius of 2 Mm; the scattering is predominantly in the forward direction and has an amplitude only 1 order of magnitude smaller than the incident wave.

We now define the travel-time shifts that are caused by the magnetic cylinder. By definition, the travel-time shift at location r is the time $\delta t(r)$ that minimizes the function

$$X(t) = \int dt' \left[p'(r, t') - p'_{\text{inc}}(r, t' - t) \right]^2,$$

where p' is the full wave field, which includes both the incident wave packet and the scattered wave packet caused by the magnetic field. The travel-time shifts can be computed in this way for either the exact solution or the Born approximation.

In addition, it is also interesting to compare with the ray approximation as given by equation (14) from Kosovichev & Duvall (1997). In our case, in which $k \cdot \mathbf{B} = 0$ and the magnetic field strength is constant inside the tube, the ray approximation becomes $\delta t(r) = -L(r) a^2/(2c^3)$, where $L(r)$ is the path length through the tube along the ray that goes from coordinates $(-\infty, y)$ to $r = (x, y)$.

Figure 5 shows travel-time shifts resulting from a flux tube of radius 2 Mm and field strength of 1 kG ($\epsilon = 0.13$). Figure 5a...
shows the exact, Born-, and ray-approximation travel times as a function of \(x \) at fixed \(y \). Inside the flux tube, both the Born- and ray-approximation travel times reproduce the exact travel times to within 20%. The ray approximation captures neither the finite-wavelength effects nor the basic behavior of the travel times; it can be inaccurate by many orders of magnitude for \(kR \) to zero. We find that, in Figure 5, the contribution of the density jump (first term in eq. [37]) to the travel-time shifts is negligible compared to the contribution from the Lorentz force.

7. DISCUSSION

We have computed, in the first Born approximation, the scattering of acoustic waves from a magnetic cylinder embedded in a homogeneous background medium. We showed that in the limit of weak magnetic field, the Born approximation to the scattered wave field is correct to first order in the parameter \(\epsilon = B^2/4\pi pc^2 \). For typical values of the solar magnetic flux, the Born approximation should be good at depths larger than a few hundred kilometers below the photosphere. The condition \(\epsilon \ll 1 \) is satisfied for a 1 kG magnetic fibril at a depth of 250 km (\(\epsilon \approx 0.1 \)) and for a 10 G magnetic flux tube at the base of the convection zone (\(\epsilon \approx 10^{-7} \)). Since the errors introduced by the Rytov and Born approximations are very similar (e.g., Woodward 1989), we suspect that a travel-time shift computed in the Rytov approximation would also tend to the exact solution as \(\epsilon \) tends to zero.

Near the photosphere, \(\epsilon \) is not small. It has been suggested by many authors (e.g., Lindsey & Braun 2004) that in this case the Born approximation will fail. An exception is the claim by Rosenthal (1995) that the Born approximation will remain valid for kilogauss magnetic fibrils in the limit where the radius of the magnetic element is much smaller than the wavelength. We wish to test this last statement in our simple problem.

Assuming \(k_\epsilon = 0 \) for the sake of simplicity and taking the limit \(kR \to 0 \), we find that for all \(\epsilon \) we have

\[
\lim_{kR \to 0} \frac{A_m^{\text{Born}}}{A_m} = \begin{cases}
1 + (1 - \gamma/2)\epsilon & \text{if } m = 0, \\
1 - \gamma/4 \epsilon & \text{otherwise},
\end{cases}
\]

(50)

This shows that the Born approximation is not valid in the limit of small tube radius. Figure 6 shows the ratio \(A_m^{\text{Born}}/A_m \), for \(0 \leq m \leq 5 \), as a function of \(R \) where \(\epsilon = 1 \) and \(k = 3.7 \text{ Mm}^{-1} \).

We see that in the limit of small \(kR \), the fractional error in the

![Figure 6](attachment:image.png)
Born approximation is of the order of ϵ (the absolute error is of the order of ϵ^2). The Born approximation applied to completely evacuated solar magnetic fibrils in the photosphere is likely to be invalid by roughly a factor of 2. Note that the sign of the relative error in A_m^{Born} is different for $m = 0$ and >0.

The sensitivity of travel times to local perturbations in internal solar properties can be described through linear sensitivity functions, also called travel-time kernels. Gizon & Birch (2002) gave a general recipe for computing such travel-time kernels using the Born approximation, which has been applied to the case of sound-speed perturbations by Birch et al. (2004). The present work suggests that travel-time kernels for the subsurface magnetic field will be useful for probing depths greater than a few hundred kilometers beneath the photosphere, at least in the case in which the travel times are measured between surface points that are not in magnetic regions. One should be careful, however, not to draw definitive conclusions from the simple model we have studied, given the complexity of the real solar problem.

A. C. B. was supported by NASA contract NNN04CC05C and thanks the Max-Planck-Institut für Sonnensystemforschung for its hospitality.

APPENDIX A

EXACT SOLUTION COEFFICIENTS

The coefficients A_m and B_m are

$$A_m = -\frac{1}{2} \left[J_m^2(kR) - J_{m-1}(kR)J_{m+1}(kR) \right],$$

$$B_m = -\frac{2i}{\pi kR} \left[\frac{k}{k_0} \left(1 - \frac{\gamma^2}{4c^2} \right) J'_m(kR)H_m(kR) - \frac{k^2}{k_0^2} \left(1 - \frac{\gamma^2}{4c^2} \right) J_m(kR)H'_m(kR) \right]^{-1}.$$ \hspace{1cm} \text{(A1)}

In equations (A1) and (A2), the functions J'_m and H'_m denote the first derivatives of J_m and $H_m = H_m^{(1)}$, respectively.

APPENDIX B

USEFUL INTEGRALS

In order to compute scattering amplitudes in the Born approximation, we used (Watson 1944, chap. 5)

$$\int x' J_m^2(kx') \, dx' = \frac{x^2}{2} \left[J_m^2(kx) - J_{m-1}(kx)J_{m+1}(kx) \right],$$

$$\int x' J_m(kx')J_m(kx') \, dx' = \frac{x^2}{4} \left[2J_m(kx)H_m(kx) - J_{m-1}(kx)H_{m+1}(kx) - J_{m+1}(kx)H_{m-1}(kx) \right].$$ \hspace{1cm} \text{(B1)}

$$\int x' H_m(kx')J_m(kx') \, dx' = \frac{x^2}{4} \left[2J_m(kx)H_m(kx) - J_{m-1}(kx)H_{m+1}(kx) - J_{m+1}(kx)H_{m-1}(kx) \right].$$ \hspace{1cm} \text{(B2)}

APPENDIX C

BORN-APPROXIMATION COEFFICIENTS

The coefficients A_m^{Born} and C_m for the Born solution are

$$A_m^{\text{Born}} = -\epsilon \frac{i\pi kR}{4} \left[\left(\gamma + 2 \frac{\epsilon^2 k_0^2}{\omega^2} \right) J'_m(kR)J_m(kR) + kRJ'_m(kR) - kRJ_{m-1}(kR)J_{m+1}(kR) \right],$$

$$C_m = -\epsilon \frac{\epsilon^2 k_0^2}{\omega^2} - \epsilon \frac{i\pi kR}{4} \left[\left(\gamma + 2 \frac{\epsilon^2 k_0^2}{\omega^2} \right) J'_m(kR)H_m(kR) - \epsilon \frac{i\pi(kR)^2}{8} \right] \left[2J_m(kR)H_m(kR) - J_{m-1}(kR)H_{m+1}(kR) - J_{m+1}(kR)H_{m-1}(kR) \right].$$ \hspace{1cm} \text{(C1)}

$$A_m = -\frac{1}{2} \left[J_m^2(kR) - J_{m-1}(kR)J_{m+1}(kR) \right],$$

$$B_m = -\frac{2i}{\pi kR} \left[\frac{k}{k_0} \left(1 - \frac{\gamma^2}{4c^2} \right) J'_m(kR)H_m(kR) - \frac{k^2}{k_0^2} \left(1 - \frac{\gamma^2}{4c^2} \right) J_m(kR)H'_m(kR) \right]^{-1}.$$ \hspace{1cm} \text{(A2)}

REFERENCES

Birch, A. C., & Felder, G. 2004, ApJ, 616, 1261
Birch, A. C., Kosovichev, A. G., & Duvall, T. L., Jr. 2004, ApJ, 608, 580
Birch, A. C., Kosovichev, A. G., Price, G. H., & Schlottmann, R. B. 2001, ApJ, 561, L229
Bogdan, T. J. 1989, ApJ, 345, 1042
Cally, P. S. 2005, MNRAS, 358, 353
Duvall, T. L., Jr., D'Silva, S., Jefferies, S. M., Harvey, J. W., & Schou, J. 1996, Nature, 379, 235
Duvall, T. L., Jr., Jefferies, S. M., Harvey, J. W., & Pomerantz, M. A. 1993, Nature, 362, 430
Fan, Y., Braun, D. C., & Chou, D.-Y. 1995, ApJ, 451, 877
Gizon, L., & Birch, A. C. 2002, ApJ, 571, 966
Jensen, J. M., & Pijpers, F. P. 2003, A&A, 412, 257
Kosovichev, A. G., & Duvall, T. L., Jr. 1997, in Solar Convection and Oscillations and Their Relationship, ed. F. P. Pijpers, J. Christensen-Dalsgaard, & C. S. Rosenthal (Dordrecht: Kluwer), 241
Kosovichev, A. G., Duvall, T. L., Jr., & Scherrer, P. H. 2000, Sol. Phys., 192, 159
Lindsey, C., & Braun, D. C. 2004, ApJS, 155, 209
Morse, P. M., & Ingard, K. U. 1986, Theoretical Acoustics (Princeton: Princeton Univ. Press)
Nolet, G., & Dahlen, F. A. 2000, J. Geophys. Res., 105, 19043
Noory, C. S. 1995, ApJ, 438, 434
Watson, B. N. 1944, A Treatise on the Theory of Bessel Functions (2nd ed.; New York: Cambridge Univ. Press)
Wilson, P. R. 1980, ApJ, 237, 1008
Woodward, M. J. 1989, Ph.D. thesis, Stanford Univ.