Minimizers of L^2-Subcritical Inhomogeneous Variational Problems with A Spatially Decaying Nonlinearity

Yongshuai Gao∗, Yujin Guo† and Shuang Wu‡
School of Mathematics and Statistics,
Hubei key Laboratory of Mathematical Sciences,
Central China Normal University,
Wuhan 430079, People’s Republic of China

December 2, 2021

Abstract

We study the minimizers of L^2-subcritical inhomogeneous variational problems with spatially decaying nonlinear terms, which contain $x = 0$ as a singular point. The limit concentration behavior of minimizers is proved as $M \to \infty$ by establishing the refined analysis of the spatially decaying nonlinear term.

Keywords: L^2-subcritical variational problems; Spatially decaying nonlinearity; Minimizers; Mass concentration

1 Introduction

In this paper, we consider the minimizers of the following L^2-subcritical constraint inhomogeneous variational problem

$$I(M) := \inf_{\{u \in H, \|u\|_2^2 = 1\}} E_M(u), M > 0,$$

where the Gross-Pitaevskii (GP) energy functional $E_M(u)$ contains a spatially decaying nonlinearity and is defined by

$$E_M(u) := \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)|u|^2)\,dx - \frac{2M^{p-1}}{p+1} \int_{\mathbb{R}^N} \frac{|u|^{p+1}}{|x|^b}\,dx, \quad N \geq 1,$$

∗Email: ysgao@mails.ccnu.edu.cn.
†Email: yguo@ccnu.edu.cn. Y. J. Guo is partially supported by NSFC under Grant 11931012.
‡Email: swu@mails.ccnu.edu.cn.
and the space \mathcal{H} is defined as

$$ \mathcal{H} := \left\{ u(x) \in H^1(\mathbb{R}^N) : \int_{\mathbb{R}^N} V(x)|u(x)|^2 \, dx < \infty \right\} $$

with the associated norm $\|u\|_{\mathcal{H}} = \left\{ \int_{\mathbb{R}^N} \left(|\nabla u(x)|^2 + |u(x)|^2 + V(x)|u(x)|^2 \right) \, dx \right\}^{\frac{1}{2}}$. Here positive constants $b > 0$ and $p > 0$ of (1.1) satisfy

$$ 0 < b < \min\{2, N\}, \quad 1 < p < 1 + \frac{4 - 2b}{N}, \quad \text{where} \quad N \geq 1, \quad (1.3) $$

so that $E_M(u)$ admits $x = 0$ as a singular point in its nonlinear term. We always assume that the trapping potential $V(x) \geq 0$ satisfies

(V). $V(x) \in L^\infty(\mathbb{R}^N) \cap C^\alpha_{loc}(\mathbb{R}^N)$ with $\alpha \in (0, 1)$, $\{x \in \mathbb{R}^N : V(x) = 0\} = \{0\}$ and

$$ \lim_{|x| \to \infty} V(x) = \infty. $$

The variational problem (1.1) arises in various physical contexts, including the propagation of a laser beam in the optical fiber, Bose-Einstein condensates (BECs), and nonlinear optics (cf. [1, 3, 28]), where the constant $M > 0$ often represents the attractive interaction strength, and $V(x) \geq 0$ denotes an external potential. The variational problem (1.1) and its associated elliptic equation have attracted a lot of attentions over the past few years, due to the appearance of the singular point $x = 0$ in the nonlinear term, see [2, 8, 9, 12, 13, 15, 30] and the references therein.

When $b = 0$, (1.1) is a homogeneous constraint variational problem, for which there are many existing results (1.1) (cf. [6, 14, 18, 20, 22, 26, 27, 29, 34]), including the existence and nonexistence of minimizers, and their quantitative properties of all kinds. More precisely, when $p > 1 + \frac{4}{N}$, one can use the energy estimates to obtain the nonexistence of minimizers for (1.1) with $b = 0$ as soon as $M > 0$ (cf. [6, 7]), which is essentially in the L^2-supercritical case. However, if $p = 1 + \frac{4}{N}$, then (1.1) with $b = 0$ reduces to the L^2-critical case, which was addressed widely by the second author and his collaborators, see [18, 20, 22] and the references therein. As for the case where $1 < p < 1 + \frac{4}{N}$, (1.1) with $b = 0$ is in the L^2-subcritical case and admits generally minimizers for all $M \in (0, \infty)$. In this case, the uniqueness, symmetry breaking and concentration behavior of minimizers were investigated recently as $M \to \infty$, see [21, 26, 29] and the references therein.

When $b \neq 0$, the variational problem (1.1) contains the inhomogeneous nonlinear term $m(x)|u|^{p+1}$, where $m(x) = \frac{1}{|x|^b}$ admits $x = 0$ as a singular point. We remark that the inhomogeneous L^2-constraint variational problems were analyzed recently in [10, 11, 29] and the references therein. However, as far as we know, the above mentioned works handle mainly with the inhomogeneous nonlinear term $m(x)|u|^{p+1}$ where $m(x)$ satisfies $m(x) \in L^\infty(\mathbb{R}^N)$ without any singular point. On the other hand,
Ardila and Dinh obtained recently in \cite{2} the existence of minimizers and the stability of the standing waves, for which they studied the associated constraint variational problem (1.1), in the L^2-subcritical case where the harmonic potential satisfies $V(x) = \gamma^2|x|^2(\gamma > 0)$, $b > 0$ and $p > 0$ satisfy (1.3).

Under the assumptions \ref{V} and (1.3), we comment that it is standard to obtain the existence of minimizers for $I(M)$ for all $M > 0$, see \cite[Theorem 1.8]{2} and the related argument. Motivated by above mentioned works, in this paper we mainly study the limit behavior of minimizers u_M for $I(M)$ as $M \to \infty$, and the main purpose of this paper is to investigate the impact of the singular point $x = 0$ on the behavior of u_M as $M \to \infty$.

We now assume that u_M is a minimizer of $I(M)$ for any $M > 0$. It then follows from the variational theory that u_M satisfies the following Euler-Lagrange equation

$$ - \Delta u_M + V(x)u_M - M^{\frac{p-1}{2}} \frac{u_M^p}{|x|^b} = \mu_M u_M \text{ in } \mathbb{R}^N, $$

where $\mu_M \in \mathbb{R}^N$ is a suitable Lagrange multiplier associated to u_M. By the form of the energy functional $E_M(\cdot)$, one can obtain from \cite[Theorem 6.17]{25} that $E_M(u) = E_M(|u|)$ holds for any $u \in \mathcal{H}$, which implies that $|u_M|$ is also a minimizer of $I(M)$. By the strong maximum principle, one can further derive from (1.4) that $|u_M| > 0$ holds in \mathbb{R}^N. Therefore, u_M must be either positive or negative. Without loss of generality, in the following we only consider positive minimizers $u_M > 0$ of $I(M)$.

Under the assumption (1.3), we next recall the following sharp Gagliardo-Nirenberg (GN) inequality (cf. \cite[Theorem 1.2]{13}):

$$ \int_{\mathbb{R}^N} \frac{|u|^{p+1}}{|x|^b} dx \leq C_{GN}^{-1} \|
abla u\|^{\frac{N(p-1)}{2}} \|u\|^{p+1-\frac{N(p-1)}{2}} - b, \quad u \in H^1(\mathbb{R}^N), $$

where $C_{GN} > 0$ satisfies

$$ C_{GN} = \left(\frac{N(p-1) + 2b}{2(p+1) - N(p-1) - 2b} \right)^{\frac{N(p-1)+2b}{2(p+1) - N(p-1) - 2b}} \frac{2(p+1) - N(p-1) - 2b}{2(p+1)} \|w\|^{p-1}, $$

and w is the unique positive radially symmetric solution (cf. \cite{4,15,16,24,33}) of

$$ - \Delta w + w - \frac{w^p}{|x|^b} = 0 \text{ in } \mathbb{R}^N, \quad w \in H^1(\mathbb{R}^N). $$

The equality in (1.5) is achieved at $u = w$. Moreover, w satisfies the following Pohozaev identity

$$ \|
abla w\|^2_2 = \frac{N(p-1) + 2b}{2(p+1)} \int_{\mathbb{R}^N} \frac{|w|^{p+1}}{|x|^b} dx = \frac{N(p-1) + 2b}{2(p+1) - N(p-1) - 2b} \|w\|^2_2. $$

3
Recall also from [13, Theorem 2.2] that there exist positive constants $\delta > 0$ and $C > 0$ such that $w(x)$ satisfies

$$w(x), \ |\nabla w(x)| \leq Ce^{-\delta|x|} \text{ as } |x| \to \infty.$$

(1.9)

All above properties of w are often used in the refined analysis of minimizers for $I(M)$ as $M \to \infty$.

Using above notations, the main result of the present paper can be stated as the following theorem.

Theorem 1.1. Under the assumptions (V) and \((1.3)\), let u_k be a positive minimizer of $I(M_k)$, where $M_k \to \infty$ as $k \to \infty$. Then there exists a subsequence, still denoted by $\{u_k\}$, of $\{u_k\}$ such that u_k satisfies

$$w_k(x) := \epsilon_k^N u_k(\epsilon_k x) \to \frac{w(x)}{\sqrt{a^*}} \text{ uniformly in } L^\infty(\mathbb{R}^N) \text{ as } k \to \infty,$$

(1.10)

where $\epsilon_k := \left(\frac{M_k}{a^*}\right)^{-\frac{4-N(p-1)-2\theta}{4-N(p-1)}} > 0$, $a^* := \|w\|_2^2 > 0$, and $w > 0$ is the unique positive solution of \((1.7)\). Moreover, u_k decays exponentially in the sense that for sufficiently large $k > 0$,

$$w_k(x) \leq Ce^{-\sqrt{\theta}|x|} \text{ and } |\nabla w_k(x)| \leq Ce^{-\theta|x|} \text{ as } |x| \to \infty,$$

(1.11)

where $0 < \theta < 1$ and $C > 0$ are independent of $k > 0$.

The proof of Theorem 1.1 shows essentially that as $M_k \to \infty$, u_k prefers to concentrate near the singular point $x = 0$ of $I(M_k)$, instead of a minimum point for $V(x)$. The proof of Theorem 1.1 depends on the refined estimate of $\int_{\mathbb{R}^N} V(x)|u_k|^2dx$ as $k \to \infty$, for which we shall consider the following constraint variational problem without the trap:

$$\bar{I}(M) := \inf_{\{u \in H^1(\mathbb{R}^N), \|u\|_2^2 = 1\}} \bar{E}_M(u), \quad N \geq 1,$$

(1.12)

where $\bar{E}_M(u)$ is defined by

$$\bar{E}_M(u) := \int_{\mathbb{R}^N} |\nabla u|^2dx - \frac{2M^{\frac{p+1}{2}}}{p+1} \int_{\mathbb{R}^N} |u|^{p+1}\left|\frac{x}{b}\right|dx.$$

(1.13)

By deriving the energy estimates between $\bar{I}(M_k)$ and $I(M_k)$ as $M_k \to \infty$, we shall verify that $I(M_k) - \bar{I}(M_k) \to 0$ as $M_k \to \infty$, which further implies that $\int_{\mathbb{R}^N} V(x)|u_k|^2dx \to 0$ as $M_k \to \infty$. Furthermore, the L^∞-uniform convergence of \((1.10)\), which is established by analyzing delicately the singular nonlinear term of $I(M_k)$, seems crucial in the further refined investigations on the minimizers of $I(M_k)$ as $M_k \to \infty$.

This paper is organized as follows. Section 2 is devoted to the refined energy estimates of $I(M)$ as $M \to \infty$, based on which we shall complete in Section 3 the proof of Theorem 1.1 on the limit behavior of minimizers for $I(M)$ as $M \to \infty$.

4
2 Energy estimates of $I(M)$

This section is devoted to establishing the energy estimates of $I(M)$ as $M \to \infty$ by analyzing the energy of $\tilde{I}(M)$ defined in (1.12). Employing the concentration-compactness principle, one can deduce that $\tilde{I}(M)$ admits minimizers for any $M \in (0, \infty)$, see, e.g., [6] [26] [27]. Moreover, without loss of generality, we may consider positive minimizers of $\tilde{I}(M)$ defined in (1.12). We start with the following energy estimates of $\tilde{I}(M)$.

Lemma 2.1. Under the assumption (1.3), assume that $V(x)$ satisfies (V), and let \tilde{u}_M be a positive minimizer of $\tilde{I}(M)$. Then for any $M > 0$,

$$\tilde{I}(M) = -\lambda_0 \left(\frac{M}{a^*} \right)^{\frac{2(p-1)}{2(p-1)-2p}},$$

and

$$\tilde{u}_M(x) = \frac{1}{\sqrt{a^*}} \tilde{\alpha}_M^\frac{N}{2} w(\tilde{\alpha}_M x),$$

where $\tilde{\alpha}_M := \left(\frac{M}{a^*} \right)^{\frac{p-1}{2(p-1)-2p}} > 0$, $\lambda_0 := -\frac{N(p+1)+2b-1}{2(p+1)-N(p-1)-20b} > 0$ and $a^* := \|w\|^2_2$. Here $w > 0$ is the unique positive solution of the equation (1.7).

Proof. Assume that \tilde{u}_M is a positive minimizer of $\tilde{I}(M)$ and \tilde{u}_1 is a positive minimizer of $\tilde{I}(1)$. We claim that for any $M > 0$,

$$\tilde{I}(M) = M^{\frac{2(p-1)}{4-N(p-1)-2b}} \tilde{I}(1)$$

and

$$\tilde{u}_M(x) = \alpha_M^{-\frac{N}{2}} \tilde{u}_1(\alpha_M x),$$

where $\alpha_M := M^{\frac{p-1}{4-N(p-1)-2b}} > 0$. Indeed, setting $\tilde{w}_1(x) := \frac{N}{2} \tilde{u}_M(\alpha_M^{-1} x)$, one can deduce from (1.12) that

$$\tilde{I}(M) = \hat{E}_M(\tilde{u}_M) = \int_{\mathbb{R}^N} |\nabla \tilde{u}_M|^2 dx - \frac{2M^{\frac{p+1}{2}}}{p+1} \int_{\mathbb{R}^N} \frac{|\tilde{u}_M|^{p+1}}{|x|^b} dx$$

$$= \alpha_M^2 \int_{\mathbb{R}^N} |\nabla \tilde{w}_1|^2 dx - \frac{2M^{\frac{p+1}{2}}}{p+1} \cdot \alpha_M^{-\frac{N(p+1)}{2}} \cdot \alpha_M^{-\frac{N}{2}} \cdot \alpha_M^b \int_{\mathbb{R}^N} \frac{|\tilde{w}_1|^{p+1}}{|x|^b} dx$$

$$= M^{\frac{2(p-1)}{4-N(p-1)-2b}} \left[\int_{\mathbb{R}^N} |\nabla \tilde{w}_1|^2 dx - \frac{2}{p+1} \int_{\mathbb{R}^N} \frac{|\tilde{w}_1|^{p+1}}{|x|^b} dx \right]$$

$$\geq M^{\frac{2(p-1)}{4-N(p-1)-2b}} \tilde{I}(1).$$

(2.4)

Similarly, setting $\tilde{w}_M(x) := \alpha_M^{-\frac{N}{2}} \tilde{u}_1(\alpha_M x)$ as a test function of $\tilde{I}(M)$, one can get that

$$\tilde{I}(M) \leq \hat{E}_M(\tilde{w}_M) = M^{\frac{2(p-1)}{4-N(p-1)-2b}} \tilde{I}(1).$$

(2.5)

Following (2.4) and (2.5), we conclude that the first equality of (2.3) holds. Furthermore, one can check that \tilde{w}_1 is a minimizer of $\tilde{I}(1)$ and \tilde{w}_M is a minimizer of $\tilde{I}(M)$. This proves the second equality of (2.3). Therefore, the claim (2.3) holds true.
We next prove that for any $M > 0$,

$$\tilde{I}(1) = -\lambda_0(a^*)^{-\frac{2(b-1)}{4-N(p-1)-2b}}, \text{ where } \lambda_0 := -\frac{N(p-1)+2b-4}{2(p+1)-N(p-1)-2b} > 0, \quad (2.6)$$

and

$$\tilde{u}_1(x) = (a^*)^{-\frac{2-b}{4-N(p-1)-2b}} w((a^*)^{-\frac{p-1}{4-N(p-1)-2b}} x). \quad (2.7)$$

Consider a test function $0 < \tilde{v}_0 \in H^1(\mathbb{R}^N)$ satisfying $||\tilde{v}_0||^2_2 = 1$. Set $\tilde{v}_\epsilon(x) := \epsilon^\frac{1}{2} \tilde{v}_0(\epsilon x)$, where $\epsilon > 0$ is small enough. One can get that for sufficiently small $\epsilon > 0$,

$$\tilde{I}(1) \leq \tilde{E}_1(\tilde{v}_\epsilon) = \int_{\mathbb{R}^N} |\nabla \tilde{v}_\epsilon|^2 \, dx - \frac{2}{p+1} \int_{\mathbb{R}^N} \frac{(|\tilde{v}_\epsilon|^{p+1})_x}{|x|^b} \, dx
\leq \epsilon^2 \int_{\mathbb{R}^N} |\nabla \tilde{v}_0|^2 \, dx - \frac{2\epsilon^{N(p-1)+b}}{p+1} \int_{\mathbb{R}^N} \frac{(|\tilde{v}_0|^{p+1})_x}{|x|^b} \, dx < 0, \quad (2.8)$$

due to the assumption (1.3). Let $\tilde{u}_1 > 0$ be a positive minimizer of $\tilde{I}(1)$. Then \tilde{u}_1 satisfies the following Euler-Lagrange equation

$$-\Delta \tilde{u}_1(x) = \tilde{\mu}_1 \tilde{u}_1(x) + \frac{\tilde{u}_1^p(x)}{|x|^b} \text{ in } \mathbb{R}^N, \quad (2.9)$$

where $\tilde{\mu}_1 \in \mathbb{R}$ is the Lagrangian multiplier associated to \tilde{u}_1. Applying (2.8) and (2.9), we get that

$$\tilde{\mu}_1 = \int_{\mathbb{R}^N} |\nabla \tilde{u}_1|^2 \, dx - \int_{\mathbb{R}^N} \frac{|\tilde{u}_1|^{p+1}}{|x|^b} \, dx
= \tilde{I}(1) - \frac{p-1}{p+1} \int_{\mathbb{R}} \frac{|\tilde{u}_1|^{p+1}}{|x|^b} \, dx < 0. \quad (2.10)$$

Since $w > 0$ is the unique positive solution of (1.7), one can conclude from (1.7) and (2.9) that

$$\tilde{u}_1(x) = (-\tilde{\mu}_1)^{\frac{2-b}{N(p-1)}} w((-\tilde{\mu}_1)^{\frac{1}{2}} x),$$

where $-\tilde{\mu}_1 < 0$ holds by (2.10). Moreover, since

$$1 = ||\tilde{u}_1||^2_2 = (-\tilde{\mu}_1)^{\frac{4-2b-2N(p-1)}{2(p+1)}} ||w||^2_2 = (-\tilde{\mu}_1)^{\frac{4-2b-N(p-1)}{2(p+1)}} a^*,$$

one can derive that

$$\tilde{\mu}_1 = -(a^*)^{2-2b-2N(p-1)} < 0 \text{ and } \tilde{u}_1(x) = (a^*)^{\frac{2-b}{N(p-1)}} w((a^*)^{\frac{1}{2}} x) > 0.$$

Hence, (2.7) is proved. On the other hand, substituting (2.7) and (2.8) into (1.13), we
get that
\[
\tilde{I}(1) = \tilde{E}_1(\tilde{u}_1) = \int_{\mathbb{R}^N} |\nabla \tilde{u}_1|^2 \, dx - \frac{2}{p+1} \int_{\mathbb{R}^N} |\tilde{u}_1|^{p+1} \, dx
\]
\[
= (a^*)^{\frac{2(p-2)}{p-2-N(p-1)}} \cdot (a^*)^{\frac{2(1-p)}{p-2-N(p-1)}} \cdot (a^*)^{\frac{N(p-1)}{p-2-N(p-1)}} \int_{\mathbb{R}^N} |\nabla w|^2 \, dx
\]
\[
= (a^*)^{\frac{2(p-1)}{p-2-N(p-1)}} \cdot (a^*)^{\frac{2(p-1)}{2p+1-N(p-1)}} \cdot \frac{N(p-1) - 2b}{2(p+1) - N(p-1) - 2b} \cdot a^*
\]
\[
= -\lambda_0(a^*)^{-\frac{2(p-1)}{4-N(p-1)-2b}},
\]
which thus implies that (2.6) holds.

We finally conclude from (2.3)–(2.7) that for any \(M > 0 \),
\[
\tilde{I}(M) = M^{\frac{2(p-1)}{4-N(p-1)-2b}} \cdot (a^*)^{-\frac{2(p-1)}{4-N(p-1)-2b}} \cdot (-\lambda_0) = -\lambda_0 \left(\frac{M}{a^*} \right)^{\frac{2(p-1)}{4-N(p-1)-2b}}
\]
and
\[
\tilde{u}_M(x) = \tilde{a}_M \tilde{u}_1(\alpha_M x) = \alpha_M^{\frac{N}{4-N(p-1)-2b}} w \left(a^* \right)^{\frac{2b}{4-N(p-1)-2b}} \cdot \alpha_M x
\]
\[
= M^{\frac{4-N(p-1)-2b}{4-N(p-1)-2b}} \cdot \left(a^* \right)^{\frac{2b}{4-N(p-1)-2b}} \cdot w \left(\frac{M}{a^*} \right)^{\frac{4-N(p-1)-2b}{4-N(p-1)-2b}}
\]
\[
= \frac{1}{\sqrt{a^*} \tilde{a}_M} \tilde{a}_M w(\tilde{a}_M x).
\]
Therefore, the proof of Lemma 2.1 is completed.

Applying Lemma 2.1 we now establish the energy estimates of \(I(M) \).

Lemma 2.2. Under the assumption \((I.3) \), assume that \(V(x) \) satisfies \((V) \). Then we have
\[
\lim_{M \to \infty} \left(\frac{I(M)}{M^{\frac{2(p-1)}{4-N(p-1)-2b}}} \right) = -\lambda_0,
\]
where \(a^* := \|w\|_2^2 \), \(\lambda_0 := -\frac{N(p-1) + 2b - 4}{2(p+1) - N(p-1) - 2b} > 0 \), and \(w > 0 \) is the unique positive solution of the equation (1.7).

Proof. We first establish the lower bound of \(I(M) \) as \(M \to \infty \). Let \(u_M > 0 \) be a
Positive minimizer of $I(M)$. Under the assumption (V), we get from (1.12) that

$$I(M) = \int_{\mathbb{R}^N} |\nabla u_M|^2 dx + \int_{\mathbb{R}^N} V(x) u_M^2(x) dx - \frac{2M^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} |u_M|^{p+1} |x|^b dx$$

$$\geq \int_{\mathbb{R}^N} |\nabla u_M|^2 dx - \frac{2M^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} |u_M|^{p+1} |x|^b dx$$

(2.12)

$$\geq \overline{I}(M) = -\lambda_0 \left(\frac{M}{a^*} \right)^{\frac{2(p-1)}{(p-1)^2-2b}}$$ as $M \to \infty$.

where $\lambda_0 > 0$ is as in Lemma 2.1. This thus implies the lower bound of $I(M)$ as $M \to \infty$.

We next estimate the upper bound of $I(M)$ as $M \to \infty$. Define

$$u_\tau(x) := A_\tau \frac{w(\tau x)}{\|w\|_2} \varphi(x), \quad \tau > 0,$$

(2.13)

where $0 \leq \varphi(x) \in C^\infty(\mathbb{R}^N)$ is a cut-off function satisfying

$$\varphi(x) = \begin{cases} 1, \quad |x| \leq 1; \\ 0, \quad |x| \geq 2, \end{cases}$$

$w > 0$ is the unique positive solution of (1.7), and $A_\tau > 0$ is a suitable constant such that $\|u_\tau(x)\|_2^2 = 1$. Applying the exponential decay of w in (1.9), one can check that as $\tau \to \infty$,

$$1 \leq A_\tau^2 = \frac{\|w\|_2^2}{\int_{\mathbb{R}^N} w^2(x)\varphi^2(\frac{x}{\tau}) dx} \leq 1 + \frac{\int_{B_2} w^2(x) dx}{\int_{B_2} w^2(x) dx} \leq 1 + Ce^{-2b\tau},$$

(2.14)

where $C > 0$ is independent of $\tau > 0$. Substituting (2.13) into (1.2) and applying the exponential decay of w in (1.9) and the identity (1.8), direct calculations yield that as $\tau \to \infty$,

$$\int_{\mathbb{R}^N} |\nabla u_\tau|^2 dx = \frac{A_\tau^2}{\|w\|_2} \int_{\mathbb{R}^N} \left[\varphi(\frac{x}{\tau}) \tau \nabla w(x) + w(x) \nabla \varphi(\frac{x}{\tau}) \right]^2 dx$$

$$= \frac{A_\tau^2}{\|w\|_2} \int_{\mathbb{R}^N} \left[\tau^2 \varphi^2(\frac{x}{\tau}) \nabla w(x) \right]^2 + w^2(x) \nabla \varphi(\frac{x}{\tau})^2$$

$$+ 2\tau \nabla w(x) \varphi(\frac{x}{\tau}) \nabla \varphi(\frac{x}{\tau}) w(x) \right] dx$$

$$\leq (1 + Ce^{-2b\tau}) \frac{N(p-1) + 2b}{2(p+1) - N(p-1) - 2b} \tau^2,$$
The key of proving (3.1) is to verify that

\[I(M) - \tilde{I}(M) \to 0 \quad \text{as} \quad M \to \infty. \]

Proof. The key of proving (3.1) is to verify that

\[I(M) \leq E_M(u_\tau) \leq \frac{N(p-1)+2b}{2(p+1)-N(p-1)-2b} \tau^2 - \tau^{2(p-1)+b} \frac{4(M/a^*)^{p-1}}{2(p+1)-N(p-1)-2b} + V(0) + C e^{-\delta \sqrt{\tau}}. \]

It then follows from (2.15)–(2.17) that as \(\tau \to \infty \),

\[\int_{\mathbb{R}^N} |u_\tau|^{p+1} dx = \frac{A^{p+1}_2}{\|w\|_2^{p+1}} \int_{\mathbb{R}^N} |w(x)\varphi(x)|^{p+1} dx = A^{p+1}_2 \tau^{N(p-1)+b} \int_{\mathbb{R}^N} |w(x)\varphi(x)|^{p+1} dx \geq A^{p+1}_2 \tau^{N(p-1)+b} \frac{2(p+1)}{2(p+1)-N(p-1)-2b} (a^*)^{\frac{1}{p+1}} - Ce^{-\delta \sqrt{\tau}}. \]

Setting \(\tau = \left(\frac{M}{a^*} \right)^{\frac{p-1}{1-N(p-1)-2b}} \) into the above estimate, it then gives that as \(M \to \infty \),

\[\int_{\mathbb{R}^N} V(x)u_\tau^2(x)dx = \frac{A^2}{\|w\|_2^2} \int_{\mathbb{R}^N} V(\frac{x}{\tau})w^2(\frac{x}{\tau})dx \]

and

\[\int_{\mathbb{R}^N} \frac{|u_\tau|^{p+1}}{|x|^b} dx = \frac{A^{p+1}_2}{\|w\|_2^{p+1}} \int_{\mathbb{R}^N} \frac{|w(\tau x)\varphi(\frac{x}{\tau})|^{p+1}}{|x|^b} dx \geq A^{p+1}_2 \tau^{N(p-1)+b} \frac{2(p+1)}{2(p+1)-N(p-1)-2b} (a^*)^{\frac{1}{p+1}} - Ce^{-\delta \sqrt{\tau}}. \]

Setting \(\tau = \left(\frac{M}{a^*} \right)^{\frac{p-1}{1-N(p-1)-2b}} \) into the above estimate, it then gives that as \(M \to \infty \),

\[I(M) \leq \tilde{I}(M) \leq \frac{N(p-1)+2b}{2(p+1)-N(p-1)-2b} \tau^2 - \tau^{2(p-1)+b} \frac{4(M/a^*)^{p-1}}{2(p+1)-N(p-1)-2b} + V(0) + C e^{-\delta \sqrt{\tau}}. \]

where \(\lambda_0 := -\frac{N(p-1)+2b-a^*}{2(p+1)-N(p-1)-2b} > 0 \). Thus, (3.11) follows from (2.12) and (2.18), which completes the proof of Lemma 3.2

3 Proof of Theorem 1.1

In this section, we shall complete the proof of Theorem 1.1 on the limit behavior of minimizers for (1.1) by the blow-up analysis. We first establish the following lemma.

Lemma 3.1. Under the assumption (1.3), assume that \(V(x) \) satisfies (V), and let \(u_M \) be a positive minimizer of \(I(M) \). Then we have

\[\int_{\mathbb{R}^N} V(x)u_M^2(x)dx \to 0 \quad \text{as} \quad M \to \infty. \]

Proof.
Indeed, if (3.2) holds, then one derive from (1.12) and (1.13) that
\[
\int_{\mathbb{R}^N} V(x) u_M^2(x) dx = I(M) - \tilde{E}_M(u_M) \leq I(M) - \tilde{I}(M) \to 0 \text{ as } M \to \infty, \tag{3.3}
\]
which thus implies that (3.1) holds.

We now prove (3.2). By Lemma 2.1, we deduce from (2.18) that
\[
I(M) \leq \tilde{I}(M) + o(1) \text{ as } M \to \infty. \tag{3.4}
\]
On the other hand, it follows from (1.12) and (1.13) that
\[
I(M) - \tilde{I}(M) \geq E_M(u_M) - \tilde{E}_M(u_M) = \int_{\mathbb{R}^N} V(x) u_M^2(x) dx \geq 0 \text{ as } M \to \infty. \tag{3.5}
\]
Therefore, the estimate (3.2) now follows from (3.4) and (3.5), and we are done. □

Motivated by [20,22,32], we next establish the following lemma.

Lemma 3.2. Under the assumption (1.3), assume that
\[
V(x) \text{ satisfies } (V),\]
and let \(u_k \) be a positive minimizer of \(I(M_k) \), where \(M_k \to \infty \) as \(k \to \infty \).
Define
\[
w_k(x) := \epsilon_N^{\frac{N}{2}} u_k(\epsilon_k x), \tag{3.6}
\]
where \(\epsilon_k := \left(\frac{M_k}{a^*} \right)^{-\frac{p-1}{2-N(p-1)-2b}} \to 0 \text{ as } k \to \infty. \)
Then there exists a subsequence, still denoted by \{w_k\}, of \{w_k\} such that
\[
w_k(x) \to \frac{w(x)}{\sqrt{a^*}} \text{ strongly in } H^1(\mathbb{R}^N) \text{ as } k \to \infty, \tag{3.7}
\]
where \(a^* := \|w\|_2^2 \) and \(w > 0 \) is the unique positive solution of (1.7).

Proof. We first prove that there exist some positive constants \(C_1, C_2, C_1', C_2' \), which are independent of \(k \), such that as \(k \to \infty \),
\[
0 < C_1 \leq \| \nabla w_k \|_2^2 \leq C_2 \text{ and } 0 < C_1' \leq \int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx \leq C_2'. \tag{3.8}
\]
Indeed, using Lemmas 2.2 and 3.1, we deduce from (1.2) and (3.6) that as \(k \to \infty \),
\[
\epsilon_k^2 I(M_k) = \epsilon_k^2 \left(\int_{\mathbb{R}^N} |\nabla u_k|^2 dx + \int_{\mathbb{R}^N} V(x) u_k^2 dx - \frac{2M_k^{p-1}}{p+1} \int_{\mathbb{R}^N} \frac{|u_k|^{p+1}}{|x|^b} dx \right)
\]
\[
= \left(\int_{\mathbb{R}^N} |\nabla w_k|^2 dx - \frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx + o(\epsilon_k^2) \right) \to -\lambda_0 < 0, \tag{3.9}
\]
which implies that
\[
\frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx \to 1 \text{ as } k \to \infty. \tag{3.10}
\]
By contradiction, assume that \(\|\nabla w_k\|_2^2 \to \infty \) as \(k \to \infty \). Define \(\gamma_k^2 := \|\nabla w_k\|_2^2 > 0 \) and \(v_k(x) = \gamma_k^{-2} w_k(\gamma_k^{-1} x) \), so that \(\gamma_k^2 \to \infty \) as \(k \to \infty \). It then follows that \(\|v_k\|_2^2 = 1 \) and \(\|\nabla v_k\|_2^2 = 1 \) for all \(k \geq 1 \). Further, we deduce from the GN inequality \([1.5]\) that

\[
\int_{\mathbb{R}^N} \frac{|v_k|^{p+1}}{|x|^b} dx \leq C_{GN}^{-1} \|\nabla v_k\|_{2}^{(N(p-1)+b)/2-\frac{N(p-1)-b}{2}} = C_{GN}^{-1}, \tag{3.11}
\]

where \(C_{GN} > 0 \) is given in \([1.6]\). Under the assumption \([1.3]\), since \(\|v_k\|_2^2 = \|\nabla v_k\|_2^2 = 1 \) for all \(k \geq 1 \), it follows from \((3.11)\) that

\[
\frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} \frac{|v_k|^{p+1}}{|x|^b} dx = \frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} \frac{|v_k|^{p+1}}{|x|^b} dx \int_{\mathbb{R}^N} \frac{|\nabla v_k|_2^2}{2} dx \gamma_k^{-1} \rightarrow 0 \quad \text{as} \quad k \to \infty,
\]

which however contradicts to \((3.10)\). Hence, we conclude that \(\|\nabla w_k\|_2^2 \leq C_2 \) holds uniformly as \(k \to \infty \). Applying the GN inequality \([1.5]\) and the fact that \(\|w_k\|_2^2 = 1 \), we deduce from above that \(\int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx \leq C_2 \) holds uniformly as \(k \to \infty \). On the other hand, one can obtain from \((3.9)\) that \(\int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx \geq C_1' \) holds uniformly as \(k \to \infty \), together with \([1.5]\), which then imply that \(\|\nabla w_k\|_2^2 \geq C_1 \) holds uniformly as \(k \to \infty \). We therefore conclude that \((3.8)\) holds.

From \((3.6)\) and \((3.8)\), we deduce that \(w_k \) is bounded uniformly in \(H^1(\mathbb{R}^N) \), which implies that there exist a subsequence, still denoted by \(\{w_k\} \), of \(\{w_k\} \) and \(0 \leq w_0 \in H^1(\mathbb{R}^N) \) such that

\[
w_k \rightharpoonup w_0 \geq 0 \quad \text{weakly in} \quad H^1(\mathbb{R}^N) \quad \text{as} \quad k \to \infty. \tag{3.13}
\]

We now prove that \(w_0 \neq 0 \). Motivated by \([2,15]\), we first claim that

\[
\int_{\mathbb{R}^N} |x|^{-b} w_k^{p+1} dx \to \int_{\mathbb{R}^N} |x|^{-b} w_0^{p+1} dx \quad \text{as} \quad k \to \infty. \tag{3.14}
\]

Actually, we have

\[
\begin{align*}
|\int_{\mathbb{R}^N} |x|^{-b} w_k^{p+1} dx - \int_{\mathbb{R}^N} |x|^{-b} w_0^{p+1} dx| & \leq \int_{\mathbb{R}^N} |x|^{-b} |w_k^{p+1} - w_0^{p+1}| dx \\
& = \int_{B_R} |x|^{-b} |w_k^{p+1} - w_0^{p+1}| dx + \int_{\mathbb{R}^N \setminus B_R} |x|^{-b} |w_k^{p+1} - w_0^{p+1}| dx := A_k + B_k,
\end{align*}
\]

where \(R > 0 \) is arbitrary. Under the assumption \([1.3]\), we have \(1 < p < 1 + \frac{4-2b}{N} \) and

\[
1 + \frac{4-2b}{N} < 1 + \frac{4-2b}{N-2} \quad \text{if} \quad N \geq 3.
\]
By Hölder inequality, we then have

\[A_k = \int_{B_R} |x|^{-b} |w_k^{p+1} - w_0^{p+1}| \, dx \]

\[\leq \left(\int_{B_R} |x|^{-br} \, dx \right)^{\frac{1}{r}} \left(\int_{B_R} |w_k^{p+1} - w_0^{p+1}|^t \, dx \right)^{\frac{1}{t}} \]

\[\leq C \left(\int_{B_R} |w_k^{p+1} - w_0^{p+1}|^t \, dx \right)^{\frac{1}{t}}, \tag{3.15} \]

where \(\frac{1}{r} + \frac{1}{t} = 1 \), \(t > 1 \) and \(r > 1 \) satisfies \(\frac{b}{N} < \frac{1}{r} \). Note that \(\frac{1}{t} = 1 - \frac{1}{r} < \frac{N-b}{N} \).

Consider \(p_1 > 0 \) and \(q_1 > 0 \) satisfying

\[\frac{p}{p_1} + \frac{1}{q_1} = 1 \quad \text{at} \quad \frac{N-b}{N}. \tag{3.16} \]

which then yields from (3.15) that

\[A_k \leq C \left(\int_{B_R} |w_k^{p+1} - w_0^{p+1}|^t \, dx \right)^{\frac{1}{t}} \]

\[\leq C \left(\|w_k\|_{L^p(B_R)}^p + \|w_0\|_{L^p(B_R)}^p \right) \|w_k - w_0\|_{L^q(B_R)}. \tag{3.17} \]

Similar to [2, Theorem 1.5], choose suitable constants \(p_1 > 0 \) and \(q_1 > 0 \) satisfying (3.16), so that

\[\|w_k\|_{L^p(B_R)}^p + \|w_0\|_{L^p(B_R)}^p \leq C \quad \text{and} \quad \|w_k - w_0\|_{L^q(B_R)} \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty, \]

where \(C > 0 \) is independent of \(k > 0 \). This further implies from (3.17) that

\[A_k \rightarrow 0 \quad \text{as} \quad k \rightarrow \infty, \tag{3.18} \]

On the other hand, for any \(\epsilon > 0 \), there exists \(R \geq \epsilon^{\frac{1}{N}} \) such that

\[B_k = \int_{\mathbb{R}^N \setminus B_R} |x|^{-b} |w_k^{p+1} - w_0^{p+1}| \, dx \]

\[\leq \epsilon \int_{\mathbb{R}^N \setminus B_R} (w_k^{p+1} + w_0^{p+1}) \, dx \leq C \epsilon \quad \text{as} \quad k \rightarrow \infty, \]

due to Sobolev’s embedding theorem and the uniform boundedness of \(w_k \) in \(H^1(\mathbb{R}^N) \).

Since \(\epsilon > 0 \) is arbitrary, we conclude from above that the claim (3.14) holds true.

Following (3.13) and (3.14), one can deduce that \(w_0 \neq 0 \).

Next, we prove that \(\|w_0\|_2^2 = 1 \). By contradiction, we assume that \(\|w_0\|_2^2 = l \), where \(l \in (0, 1) \). Set \(w_l := \sqrt{l} w_0 \). By (3.13), we may assume that \(w_k \rightarrow w_0 \) a.e. in \(\mathbb{R}^N \) as \(k \rightarrow \infty \). Using the Brézis-Lieb lemma, we obtain that

\[\|\nabla w_k\|_2^2 = \|\nabla w_l\|_2^2 + \|\nabla (w_k - w_l)\|_2^2 + o(1) \quad \text{as} \quad k \rightarrow \infty. \tag{3.19} \]
From \((2.11), (3.1)\), \((3.3), (3.14)\) and \((3.19)\), we derive that as \(k \to \infty\),
\[-\lambda_0 = \lim_{k \to \infty} \epsilon_k^2 I(M_k)\]
\[= \lim_{k \to \infty} \epsilon_k^2 \left(\int_{\mathbb{R}^N} |\nabla u_k|^2 dx + \int_{\mathbb{R}^N} V(x) u_k^2 dx - \frac{2M_k}{p+1} \int_{\mathbb{R}^N} |u_k|^{p+1} dx \right)\]
\[\geq \lim_{k \to \infty} \left(\int_{\mathbb{R}^N} |\nabla w_k|^2 dx - \frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} |w_k|^{p+1} dx \right)\]
\[= \int_{\mathbb{R}^N} |\nabla w_0|^2 dx - \lim_{k \to \infty} \int_{\mathbb{R}^N} |\nabla (w_k - w_0)|^2 dx - \frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} |w_0|^{p+1} dx \]
\[\geq \int_{\mathbb{R}^N} |\nabla w_0|^2 dx - \frac{2(a^*)^{\frac{p-1}{2}}}{p+1} \int_{\mathbb{R}^N} |w_0|^{p+1} dx\]
\[> l\bar{I}(a^*) = -l\lambda_0 < 0,
\]
which is a contradiction. Hence, \(\|w_0\|_2^2 = 1\) holds true.

Since \(\|w_k\|_2^2 = \|w_0\|_2^2 = 1\), we have
\[w_k(x) \to w_0(x) \quad \text{strongly in } L^2(\mathbb{R}^N) \quad \text{as } k \to \infty. \tag{3.21}\]

By the weak lower semicontinuity, \((2.1)\) and \((3.1)\), we then derive from \((3.9)\) that
\[\nabla w_k(x) \to \nabla w_0(x) \quad \text{strongly in } L^2(\mathbb{R}^N) \quad \text{as } k \to \infty. \tag{3.22}\]

Note from \((3.9)\) that \(\{w_k\}\) is a minimizing sequence of \(\bar{I}(a^*)\). One then deduces from \((3.14)\) and \((3.22)\) that \(w_0\) is a minimizer of \(\bar{I}(a^*)\). By \((2.2)\), we obtain that \(w_0(x) = \frac{w(x)}{\sqrt{a^*}}\).

Combining \((3.21)\) and \((3.22)\), we obtain that
\[w_k(x) \to w_0(x) = \frac{w(x)}{\sqrt{a^*}} \quad \text{strongly in } H^1(\mathbb{R}^N) \quad \text{as } k \to \infty, \tag{3.23}\]
which gives \((3.7)\). The lemma is thus proved. \(\square\)

Applying above lemmas, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: 1. We first prove the exponential decay \((1.11)\). Let \(u_k > 0\) be a minimizer of \(I(M_k)\), and consider the sequence \(\{w_k\}\) defined in Lemma 3.2 where \(M_k \to \infty\) as \(k \to \infty\). We claim that there exists a subsequence, still denoted by \(\{w_k\}\), of \(\{w_k\}\) such that
\[w_k(x) \to 0 \quad \text{as } |x| \to \infty \quad \text{uniformly for sufficiently large } k > 0. \tag{3.24}\]

Indeed, one can derive from \((3.7)\) that for any \(2 \leq \alpha < 2^*\),
\[\int_{|x| \geq \gamma} |w_k|^\alpha dx \to 0 \quad \text{as } \gamma \to \infty \quad \text{uniformly for sufficiently large } k > 0. \tag{3.25}\]
On the other hand, it follows from (1.4) and (3.6) that \(w_k \) satisfies the following equation

\[
- \Delta w_k + \epsilon^2_k V(\epsilon_k x) w_k - (a^*) \frac{p-1}{p} w^{p-1}_k \frac{w_k}{|x|^b} = \mu_k \epsilon^2_k w_k \quad \text{in} \quad \mathbb{R}^N, \tag{3.26}
\]

where \(\mu_k \in \mathbb{R} \) is the Lagrange multiplier. Applying (1.8), (3.6) and (3.14), we deduce from Lemma 2.2 that

\[
\epsilon^2_k \mu_k = \epsilon^2_k I(M_k) - \frac{p-1}{p+1} M_k^{\frac{p+1}{2}} \int_{\mathbb{R}^N} \frac{|u_k|^{p+1}}{|x|^b} dx \leq \epsilon^2_k I(M_k) - \frac{p-1}{p+1} (a^*)^{\frac{p+1}{2}} \int_{\mathbb{R}^N} \frac{|w_k|^{p+1}}{|x|^b} dx \tag{3.27}
\]

\[-\Delta w_k - c(x) w_k \leq 0 \quad \text{in} \quad \mathbb{R}^N, \quad \text{where} \quad c(x) = (a^*)^{\frac{p+1}{2}} \frac{w^{p-1}_k(x)}{|x|^b}. \tag{3.28}\]

Furthermore, one can check from Hölder inequality that

\[c(x) \in L^t(\mathbb{R}^N), \quad \text{where} \quad t \in \left(\frac{2N}{N(p-1) + 2b}, \frac{2N}{(N-2)(p-1) + 2b} \right).\]

Applying De Giorgi-Nash-Moser theory (cf. [23, Theorem 4.1]) to (3.28), we deduce that

\[
\max_{B_1(\xi)} w_k(x) \leq C \left(\int_{B_2(\xi)} |w_k(x)|^\alpha dx \right)^{\frac{1}{\alpha}} \quad \text{for sufficiently large} \quad k > 0, \tag{3.29}
\]

where \(\xi \in \mathbb{R}^N \) is arbitrary, and \(C > 0 \) depends only on the bound of \(\|c(x)\|_{L^t(B_2(\xi))} \). Thus, (3.24) follows from (3.25) and (3.29).

Due to the smallness of \(|x|^{-b}\) for large \(|x| > 0\), we now derive from (3.24), (3.26) and (3.27) that there exists a sufficiently large constant \(R > 0 \), which is independent of \(k \), such that as \(k \to \infty \),

\[-\Delta w_k(x) + \theta w_k(x) \leq 0 \quad \text{in} \quad \mathbb{R}^N \setminus B_R(0), \tag{3.30}\]

where \(0 < \theta < 1 \) is independent of \(k \). By the comparison principle [5, Theorem 6.4.2], we obtain from (3.30) that as \(k \to \infty \),

\[w_k(x) \leq Ce^{-\sqrt{\theta}|x|} \quad \text{in} \quad \mathbb{R}^N \setminus B_R(0), \tag{3.31}\]

which implies the exponential decay (1.11) for \(w_k \) as \(k \to \infty \). Moreover, under the assumption \((V)\), since the term \(|x|^{-b}\) is small for large \(|x|\), applying the local elliptic estimate (cf. (3.15) in [17]) yields from (3.31) that as \(k \to \infty \),

\[|\nabla w_k(x)| \leq Ce^{-\theta|x|} \quad \text{for} \quad |x| > R,\]
which thus gives the exponential decay (1.11) for ∇w_k as $k \to \infty$. This proves (1.11).

2. We next prove that (1.10) holds true. Recall from Lemma 3.2 that
\[
w_k(x) \to \frac{w(x)}{\sqrt{a^*}} \text{ in } H^1(\mathbb{R}^N) \text{ as } k \to \infty, \tag{3.32}
\]
where the convergence holds for the whole sequence $\{w_k(x)\}$, due to the uniqueness of $w(x) > 0$. Following (3.32), the L^∞-uniform convergence (1.10) for the case $N = 1$ can be directly obtained by applying Sobolev’s embedding theorem $H^1(\mathbb{R}) \hookrightarrow L^\infty(\mathbb{R})$.

We now prove the L^∞-uniform convergence (1.10) for the case $N \geq 2$. Rewrite (3.26) as
\[
-\Delta w_k(x) = G_k(x) \text{ in } H^1(\mathbb{R}^N), \tag{3.33}
\]
where
\[
G_k(x) := \mu_k \epsilon_k^2 w_k - \epsilon_k^2 V(\epsilon_k x) w_k + (a^*)^{\frac{p-1}{2}} \frac{w_k^p}{|x|^b}.
\]
Since w_k is bounded uniformly in $H^1(\mathbb{R}^N)$ as $k \to \infty$, we derive from (3.29) that w_k is bounded uniformly in $L^\infty(\mathbb{R}^N)$.

Using Hölder inequality, we deduce that for any $R > 0$,
\[
\int_{B_R(0)} \frac{w_k^p(x)^r}{|x|^b} \, dx \leq \left(\int_{B_R(0)} \frac{1}{|x|^{br}} \, dx \right)^{\frac{1}{r'}} \left(\int_{B_R(0)} |w_k^p|^{rt'} \, dx \right)^{\frac{1}{t'}} < \infty, \tag{3.35}
\]
where $r \in (1, \frac{N}{b})$, $\frac{1}{r} + \frac{1}{r'} = 1$, and $t' = 1 + \max \left\{ \frac{N}{N-br'}, \frac{b}{pr} \right\}$. We then obtain from (3.35) that
\[
w_k^p(x)|x|^{-b} \in L^r_{\text{loc}}(\mathbb{R}^N) \text{ for any } r \in (1, \frac{N}{b}), \tag{3.36}
\]
which implies that $G_k(x)$ is bounded uniformly in $L^r_{\text{loc}}(\mathbb{R}^N)$. For any large $R > 0$, it thus follows from [17, Theorem 9.11] that
\[
\|w_k(x)\|_{W^{2,r}(B_R)} \leq C \left(\|w_k(x)\|_{L^r(B_{R+1})} + \|G_k(x)\|_{L^r(B_{R+1})} \right), \tag{3.37}
\]
where $C > 0$ is independent of $k > 0$ and $R > 0$. By the compactness of the embedding $W^{2,r}(B_R) \hookrightarrow L^\infty(B_R)$ for $2r > N$, cf. [17, Theorem 7.26], we conclude that there exists a subsequence, still denoted by $\{w_k\}$, of $\{w_k\}$ such that
\[
w_k(x) \to \tilde{w}_0(x) \text{ uniformly in } L^\infty(B_R) \text{ as } k \to \infty. \tag{3.38}
\]
Since $R > 0$ is arbitrary, we obtain from (3.32) that
\[
w_k(x) \to \frac{w(x)}{\sqrt{a^*}} \text{ uniformly in } L^\infty_{\text{loc}}(\mathbb{R}^N) \text{ as } k \to \infty. \tag{3.39}
\]
On the other hand, we deduce from (1.9) and (1.11) that for any \(\epsilon > 0 \), there exists a constant \(R_\epsilon > 0 \), independent of \(k > 0 \), such that

\[
|w_k(x)|, \quad \frac{|w(x)|}{\sqrt{a^*}} < \frac{\epsilon}{4} \quad \text{for any } |x| > R_\epsilon,
\]

which implies that

\[
\sup_{|x| > R_\epsilon} \left| w_k(x) - \frac{w(x)}{\sqrt{a^*}} \right| \leq \sup_{|x| > R_\epsilon} \left(|w_k(x)| + \frac{|w(x)|}{\sqrt{a^*}} \right) \leq \frac{\epsilon}{2}.
\]

Recall from (3.39) that for sufficiently large \(k > 0 \),

\[
\sup_{|x| \leq R_\epsilon} \left| w_k(x) - \frac{w(x)}{\sqrt{a^*}} \right| \leq \frac{\epsilon}{2}.
\]

We now conclude from above that the \(L^\infty \)-uniform convergence (1.10) holds true for all \(N \geq 2 \). The proof of Theorem 1.1 is therefore complete.

\[\square \]

References

[1] Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Cambridge (2007)

[2] Ardila, A.H., Dinh, V.D.: Some qualitative studies of the focusing inhomogeneous Gross-Pitaevskii equation. Z. Angew. Math. Phys. 71, 79 (2020)

[3] Baym, G., Pethick, C.J.: Ground state properties of magnetically trapped Bose-Einstein condensate rubidium gas. Phys. Rev. Lett. 76, 6–9 (1996)

[4] Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I, Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–346 (1983)

[5] Cao, D.M., Peng, S.J., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge University Press, New York (2021).

[6] Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, Vol 10. American Mathematical Society, Courant Institute of Mathematical Sciences (2003)

[7] Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, no. 4, 549–561 (1982)

[8] Combet, V., Genoud, F.: Classification of minimal mass blow-up solutions for an \(L^2 \) critical inhomogeneous NLS. J. Evol. Equ. 16, 483–500 (2016)
[9] de Bouard, A., Fukuizumi, R.: Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities. *Ann. Henri Poincaré* 6, 1157–1177 (2005)

[10] Deng, Y.B., Guo, Y.J., Lu, L.: On the collapse and concentration of Bose-Einstein condensates with inhomogeneous attractive interactions. *Calc. Var. Partial Differ. Equ.* 54, 99–118 (2015)

[11] Deng, Y.B., Guo, Y.J., Lu, L.: Threshold behavior and uniqueness of ground states for mass critical inhomogeneous Schrödinger equations. *J. Math. Phys.* 59, 011503 (2015)

[12] Dinh, V.D.: Blowup of H^1 solutions for a class of the focusing inhomogeneous nonlinear Schrödinger equation. *Nonlinear Anal.* 174, 169–188 (2018)

[13] Farah, L.G.: Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrödinger equation. *J. Evol. Equ.* 16 (1), 193–208 (2016)

[14] Fukuizumi, R.: Stability and instability of standing waves for the Schrödinger equation with harmonic potential. *Discrete Contin. Dyn. Syst.* 7, 525–544 (2000)

[15] Genoud, F., Stuart, C.A.: Schrödinger equations with a spatially decaying nonlinearity: existence and stability of standing waves. *Discrete Contin. Dyn. Syst.* 21, 137–186 (2008)

[16] Gidas, B., Ni, W.M. and Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n, mathematical analysis and applications part A. *Adv. Math. Suppl. Stud.* 7, 369–402 (1981)

[17] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations, 2nd. Berlin: Springer, (1997)

[18] Guo, Y.J., Lin, C.S. and Wei, J.C.: Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. *SIAM J. Math. Anal.* 49 (5), 3671–3715 (2017)

[19] Guo, Y.J., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. *Lett. Math. Phys.* 104, 141–156 (2014)

[20] Guo, Y.J., Wang, Z.Q., Zeng, X.Y. and Zhou, H.S.: Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials. *Nonlinearity* 31, 957–979 (2018)
[21] Guo, Y.J., Zeng, X.Y. and Zhou, H.S.: Concentration behavior of standing waves for almost mass critical Schrödinger equations. *J. Differential Equations* **256**, 2079–2100 (2014)

[22] Guo, Y.J., Zeng, X.Y. and Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials. *Ann. Inst. H. Poincaré Anal. Non Linéaire* **33**, 809–828 (2016)

[23] Han, Q. Lin, F.: Elliptic Partial Differential Equations, 2nd, Courant Lecture Notes in Mathematics, Vol. 1. *Courant Institute of Mathematical Science/AMS*, New York (2011)

[24] Li, Y., Ni, W.M.: Radial symmetry of positive solutions of nonlinear elliptic equations in \mathbb{R}^n. *Comm. Partial Diff. Eqns.* **18**, 1043–1054 (1993)

[25] Lieb, E. H., Loss, M.: Analysis, 2nd ed., Graduate Studies in Mathematics Vol. 14 *American Mathematical Society*, (2001).

[26] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. *Ann. Inst H. Poincaré. Anal. Non Linéaire* **1**, 109–145 (1984)

[27] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case II. *Ann. Inst H. Poincaré. Anal. Non Linéaire* **1**, 223–283 (1984)

[28] Liu, C.S., Tripathi, V. K. Laser guiding in an axially nonuniform plasma channel. *Phys. Plasmas* **1**, 3100–3103 (1994).

[29] Maeda, M.: On the symmetry of the ground states of nonlinear Schrödinger equation with potential. *Adv. Nonlinear Stud.* **10**, 895–925 (2010)

[30] Saanouni, T.: Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. *J. Math. Phys.* **57** (8), 081503 (2016)

[31] Stuart, C.A.: Bifurcation in $L^p(\mathbb{R}^N)$ for a semilinear elliptic equation. *Proc. London Math. Soc.* **57**, 511–541 (1988)

[32] Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. *Commun. Math. Phys.* **153**, 229–244 (1993)

[33] Yanagida, E.: Uniqueness of positive radial solutions of $\Delta u + g(r)u + h(r)u^p = 0$ in \mathbb{R}^n. *Arch. Rational Mech. Anal.* **115**, 257–274 (1991)

[34] Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. *Z. Angew. Math. Phys.* **51**, 498–503 (2000)