We are IntechOpen, the world’s leading publisher of Open Access books
Built by scientists, for scientists

6,600
Open access books available

177,000
International authors and editors

195M
Downloads

154
Countries delivered to

TOP 1%
Our authors are among the most cited scientists

12.2%
Contributors from top 500 universities

WEB OF SCIENCE™
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Physical and Radiobiological Evaluation of Radiotherapy Treatment Plan

Suk Lee, Yuan Jie Cao and Chul Yong Kim

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/60846

Abstract

Radiation treatment planning plays an important role in modern radiation therapy; it could simulate to plan the geometric, radiobiological, and dosimetric aspects of the therapy using radiation transport simulations and optimization. In this chapter, we have reviewed several quantitative methods used for evaluating radiation treatment plans and discussed some important considering points. For the purpose of quantitative plan evaluation, we reviewed dosimetrical indexes like PITV, CI, TCI, HI, MHI, CN, COSI, and QF. Furthermore, radiobiological indexes like Niemierko’s EUD-based TCP and NTCP were included for the purpose of radiobiological outcome modeling. Additionally, we have reviewed dose tolerance for critical organs including RTOG clinical trial results, QUENTEC data, Emami data, and Milano clinical trial results. For the purpose of clinical evaluation of radiation-induced organ toxicity, we have reviewed RTOG and EORTC toxicity criteria. Several programs could help for the easy calculation and analysis of dosimetrical plan indexes and biological results. We have reviewed the recent trend in this field and proposed further clinical use of such programs. Along this line, we have proposed clinically optimized plan comparison protocols and indicated further directions of such studies.

Keywords: Treatment plan evaluation, Dosimetrical indices, Radiobiological indices, Tolerance doses, Radiation toxicity

1. Introduction

We have reviewed the methods used for quantitative comparison of different radiation treatment plans, the process of treatment plan comparison protocol, and the further direction of treatment plan evaluation programs. For the purpose of quantitative plan evaluation, we reviewed dosimetical indexes like prescription isodose to target volume (PITV) ratio,
homogeneity index (HI), conformity index (CI), target coverage index (TCI), modified dose homogeneity index (MHI), conformity number (CN), critical organ scoring index (COSI), and quality factor (QF). Furthermore, radiobiological indexes like Niemierko’s EUD-based tumor control probability (TCP) and normal tissue complication probability (NTCP) were included for the purpose of radiobiological outcome modeling. Additionally, we have reviewed dose tolerance for critical organs including RTOG clinical trial results, QUENTEC data, Emami data, and Milano clinical trial results. For the purpose of clinical evaluation of radiation-induced organ toxicity, we have reviewed RTOG and EORTC toxicity criteria. Several programs could help for the easy calculation and analysis of dosimetric plan indexes and biological results. We have reviewed the recent trend in this field and proposed further clinical use of such programs. It is well known that plan comparison study still remain many controversies. The major issue is that plan evaluation methods are used in plan comparison and plan optimization. We have reviewed well-known dosimetric and biological plan indexes and several commercial and non-commercial plan evaluation programs. Along this line, we have proposed clinically optimized plan comparison protocols and indicated the further directions of such studies.

2. Background: Radiotherapy, radiation treatment planning, and planning decision support program

2.1. Radiotherapy

Over the past few decades, radiation treatment has become a technologically advanced field in modern medicine, especially with the advent of intensity-modulated radiation therapy (IMRT) [1]. Traditional radiation therapy planning is a manual, iterative, and simple process in which treatment fields are placed and beam modifiers are inserted.

Modifications are then made after manual inspection of the dose distribution calculated after each iteration [2]. In IMRT, the dose calculation engine specified dose distribution over the target volume and surrounding normal structures. Furthermore, dose calculation engine displayed a 2D dose intensity map by using its optimization algorithms [3]. Moreover, the inverse planning algorithm required users to set a dose/volume criteria for the specific organ/structure, and the computer calculated to find out a final solution to satisfy the criteria. [4]. Another breakthrough of modern radiation treatment is image-guided radiotherapy (IGRT). With the adoption and integration of imaging information in treatment designs, IGRT is the most innovative area in advanced radiotherapy [5]. IGRT has increased knowledge of exact tumor targets and their movements during the treatment process [6]. Despite improvements in target coverage and normal tissue sparing, the implementation of IMRT and IGRT remains a labor-intensive trial and error process. The creation of optimized treatment plans for personalized therapy still requires significant time and effort. Radiation treatment includes CT simulation, organ contouring, treatment planning, quality assurance, and dose delivery (Figure 1) [7].
2.2. Radiation treatment planning

For radiation treatment, a team of radiation oncologists, radiation therapists, medical physicists, and medical dosimetrists plan the appropriate external beam radiotherapy treatment
technique for a patient with cancer [8]. There are generally two different types of planning algorithms, forward planning and inverse planning. The forward planning technique is mostly used in external-beam radiotherapy treatment planning process. For example, a medical physicist determines the beam angles in the treatment planning systems to maximize tumor dose when sparing the healthy tissues. This type of planning is used for the majority of external-beam radiotherapy treatments, but is only useful for relatively uncomplicated cases in which the tumor has a simple shape and is not near any critical organs. Inverse planning is a technique used to inversely design radiotherapy treatment plans (Figure 2). The radiation oncologist defines a patient’s critical organs and tumor. Then, the dosimetrist provides target doses for each. An optimization program is then run to find the treatment plan that best matches all input criteria. This type of trial-and-error planning process is time and labor intensive.

There are several commercial treatment planning systems (TPS) available nowadays. Table 1 summarizes information about commercial TPS [9].

2.3. Planning decision support program

Dose volume histogram (DVH) provides dose volume coverage information. However, it fails to provide more information like hot spot and dose homogeneity. Dosimetrical indices were widely used for plan evaluation for a specific purpose. For example, a homogeneity index refers to the intensity of dose distributions in target volume, those plans with both “hot” spot...
and “cold” spot could be distinguished by this index. Additionally, some indices consider dose conformity in the target volume. Conformity index was an example of such indices. Another method to review and evaluate treatment plan quality was biological index. A tumor control probability could indirectly estimate a tumor could be controlled by a certain dose. Furthermore, normal tissue complication probability could estimate the probability of a surrounding critical structure becomes some radiation-induced complications. Many programs have been designed and developed to calculate both dosimetrical and biological indices since the 2000s [10-29]. This is shown in Figure 3.

Treatment planning system	Company	Website
ScandiPlan	Scanditronix	http://www.scanditronix-magnet.se
Pinnacle3	Philips Healthcare	http://www.healthcare.philips.com
ISOgray	DOSIsoft	http://www.dosisoft.com
iPlan	Brainlab	https://www.brainlab.com
XiO	Electa	http://www.elekta.com
Monaco	Electa	http://www.elekta.com
Theraplan Plus	Electa	http://www.elekta.com
Oncentra MasterPlan	Electa	http://www.elekta.com
Oncentra Prostate	Electa	http://www.elekta.com
Oncentra GYN	Electa	http://www.elekta.com
Pinnacle	Philips Healthcare	http://www.healthcare.philips.com
Plato RTS	Electa	http://www.elekta.com
Plato BPS	Electa	http://www.elekta.com
Cad Plan	Varian Medical Systems	http://www.varian.com
Corvus	nomos	http://www.nomos.com
KL-Medical Electron Linear Accelerator treatment system	KLZ Healthcare	http://klz.comedb.com
Prowess 3-D	Prowess	http://www.prowess.com/
Brachyvision	Varian	http://www.varian.com
Leksell GammaPlan®	Electa	http://www.elekta.com
Eclipse	Varian Medical Systems	http://www.varian.com
VariSeed	Varian Medical Systems	http://www.varian.com
RayStation	RaySearch Laboratories	http://www.raysearchlabs.com

Table 1. Commercial RTP lists
3. Plan evaluation

3.1. Plan evaluation methods

3.1.1. Qualitative analysis

In conventional radiation therapy, an isodose distribution is used for plan analysis and evaluation. Figure 4 shows the typical isodose distribution of 3D conformal treatment plans and IMRT plans.

3.1.2. Quantitative analysis

DVH is the relationship between the dose distribution of a certain organ and 100% normalized volume of such organ. It was calculated and generated based on 3D reconstructed images in the treatment planning systems [9]. DVH could simplify 3D information of dose distribution.
into a 2D graph or quantitative values [30-34]. Figure 5 shows a typical DVH for helical tomotherapy (HT) and intensity modulated proton therapy (IMPT) plans for prostate cancer.

Figure 4. Typical isodose distribution of (a) 3D conformal treatment plan and (b) IMRT plan.

Figure 5. Typical DVH for helical tomotherapy (HT) treatment plan and intensity modulated arc therapy (IMAT) plan of prostate cancer: (a) axial slice, (b) sagittal slice. Planning target volume (PTV), critical structures, and four different isodose lines shown. (c) Dose-volume histogram comparison for prostate case. Solid lines, tomotherapy plan; dashed lines, intensity modulated arc therapy (IMAT) plan (International Journal of Radiation Oncology Biology Physics, 69(1), 2007).
4. Plan analysis

Isodose distribution and DVH analysis were insufficient compared to complicated and advanced planning techniques. As the femoral head DVHs in Figure 4 show, it was difficult to distinguish whether IMPT (continuous red line) or HT (dashed red line) plans were superior. For low dose volume (V_0 to V_{20}), IMPT was more favorable than HT. However, this relationship reversed for high dose volume (V_{20} to V_{50}). As a result, there are several indexes that may represent target conformity and dose homogeneity [31, 35-38].

4.1. Dosimetric analysis

4.1.1. Index

Several quantitative evaluation tools were reviewed in this paper. These included the prescription isodose to target volume (PITV) ratio, homogeneity index (HI), conformity index (CI), target coverage index (TCI), modified dose homogeneity index (MHI), conformity number (CN), quality factor (QF) for PTV, maximum dose, mean dose, dose volume histogram (DVH), and critical organ scoring index (COSI) for the OAR (Figure 6).

4.1.2. PTV index

The PITV ratio, obtained by dividing prescription isodose surface volume by target volume, is expressed as:

$$\text{PITV} = \frac{\text{PIV}}{\text{TV}}$$ \hspace{1cm} (1)

In the above equation, PIV represents prescription isodose surface volume and TV refers to target volume [39]. The PITV ratio is a conformity measure, and a value of 1.0 indicates that the volume of the prescription isodose surface equals that of the PTV. A PITV ratio of 1.0 does not necessarily imply that both volumes are similar. To ensure adequate PTV coverage, this measure should always be used in conjunction with a PTV-DVH [39]. The CI and HI indices for targets were computed to assess the quality of IMRT plans. CI is defined as the ratio of target volume and the volume inside the isodose surface that corresponds to the prescription dose. CI is generally used to indicate the portion of a prescription dose that is delivered inside the PTV [40].

CI is expressed as:

$$\text{CI} = \frac{\text{PTV}_{PD}}{\text{PIV}}$$ \hspace{1cm} (2)
In the above equation, PIV represents prescription isodose surface volume and PTV_{PD} represents PTV coverage at the prescription dose. CI of 1 indicates that 100% of a prescription dose is delivered to the PTV, and no dose is delivered to any adjacent tissue [40]. The CI is less than 1 for most clinical cases. Higher CI values indicate poorer dose conformity to the PTV. HI is defined as the ratio of maximum dose delivered to the PTV divided by the prescription dose delivered to the PTV [41].

HI is expressed as:

$$HI = \frac{D_{\text{max}}}{PD}$$

(3)

In the above equation, D_{max} represents PTV maximum dose. An HI of 1 represents the ideal uniform dose within a target. Higher HI values indicate greater dose heterogeneity in the PTV [39].

TCI refers to the exact coverage of PTV in a treatment plan for a given prescription dose. TCI is expressed as:

$$TCI = \frac{PTV_{PD}}{PTV}$$

(4)

In the above equation, PTV_{PD} represents PTV coverage at the prescription dose.

MHI is similar to HI, and is expressed as [41]:

$$MHI = \frac{D_{95}}{D_5}$$

(5)

In the above equation, D_{95} and D_5 represent doses received at 95% and 5% of the volume coverage, respectively.

Conformity number (CN) is a relative measurement of dosimetric target coverage and sparing of normal tissues in a treatment plan [42]. The CN is expressed as:

$$CN = TCI \times CI = \frac{PTV_{PD}}{PTV} \times \frac{PTV_{PD}}{PIV}$$

(6)

In the above equation, PTV_{PD} refers to PTV coverage at the prescription dose and PIV represents prescription isodose surface volume [42].
Figure 6. Comparison of the various dosimetric indices in various clinical cases.

Index	Formula	Concept	Value = 1	Value <1 or value >1
PTV (prescription isodose to target volume)	$PTV = \frac{PIV}{TV}$			
CI (conformity index)	$CI = \frac{PTV_{PD}}{PIV}$			
TCI (target coverage index)	$TCI = \frac{PTV_{PD}}{PTV}$			
CN (conformity number)	$CN = \frac{PTV_{PD}}{PTV}$			

- **HI (homogeneity index)**
 - $HI = \frac{D_{max}}{PD}$

- **MHI (modified homogeneity index)**
 - $MHI = \frac{D_{ref}}{D_h}$

- **COSI (critical organ scoring index)**
 - $COSI = 1 - \sum\frac{TV(organ_{PD})}{TC}$

- **Legend**:
 - PTV (planning target volume)
 - OAR (organ at risk)
 - TV (target volume)
4.2 Biological analysis

4.2.1. Overview of biological models

For radiobiological model-based plan evaluation, Niemierko’s equivalent uniform dose (EUD)-based NTCP and TCP model were reviewed [12, 19]. First, the DVHs from each plan were exported from the appropriate treatment planning system (TPS) for each modality. The DVHs were then imported into MATLAB version R2012a (The Math Works, Inc., Natick, MA, USA) for TCP and NTCP modeling analysis. According to Neimierko’s phenomenological model, EUD is defined as:

\[
EUD = \left(\sum_{i} V_i \text{EUD}_i \right)^{1/2}
\]

(7)

where \(a\) is a unitless model parameter that is specific to the nominal tumor structure of interest, and \(V_i\) is a unitless parameter that represents the \(i^{th}\) partial volume receiving dose \(D_i\) in Gy [12].

Since the relative volume of the whole structure of interest corresponds to 1, the sum of all partial volumes \(V_i\) will equal 1. In equation [5], the EQD is a biologically equivalent physical dose of 2 Gy defined as:

\[
EQD = D \times \left(\frac{\alpha + D}{\beta \cdot n_f} \right)^{1/2}
\]

(8)

where \(n_f\) and \(d_f = D/n_f\) are the number of fractions and the dose per fraction size of the treatment course, respectively. In this equation, \(\alpha/\beta\) is the tissue-specific linear quadratic (LQ) parameter of the organ being exposed. Niemierko’s TCP [12] is defined as:

\[
TCP = \frac{1}{1 + \left(\frac{TCD_{50}}{EUD} \right)^{\gamma_{50}}}
\]

(9)

where \(TCD_{50}\) is the tumor dose required to control 50% of cancer cells when a tumor is homogeneously irradiated and \(\gamma_{50}\) is a unitless model parameter that is specific to the tumor of interest. The slope of the dose response curve is described by \(\gamma_{50}\). Niemierko’s NTCP [19] is defined as:

\[
TCP = \frac{1}{1 + \left(\frac{TCD_{50}}{EUD} \right)^{\gamma_{50}}}
\]

(10)
where TD_{50} is the tolerance dose of a 50% complication rate at a specific time (e.g. 5 years in the Emami et al. normal tissue tolerance data [43]) for an entire organ of interest. This parameter also describes the slope of the dose response curve.

4.3. Overall plan index

4.3.1. Overall plan index

A comprehensive quality index (CQI) including surrounding OARs were introduced to evaluate the individual difference between OARs and PTV and the small volume of critical structures. CQI is expressed as [44]:

$$CQI = \frac{1}{N} \sum_{i=1}^{N} QI_{i} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{P_{\text{max}}^{\text{plan}}}{P_{\text{max}}^{\text{tol}}} \right)$$

(11)

In this equation, I is the index of the critical organs, which are several critical structures in certain plan. CQI was designed to compare the ability of avoiding these organs around the PTV given the same weighting to all organs. Although CQI may overweight certain organs that are below tolerance, we chose this index as it represents a global measure of the capability of avoiding sensitive structures. Individual QIs are shown for direct comparison of each OAR. A CQI less than one indicates that HT provides a better plan for the surrounding OARs, and vice versa.

4.3.2. COSI

The COSI index accounts for both target coverage and critical organ irradiation [45]. The main advantage of this index is its ability to distinguish between different critical organs. COSI is expressed as:

$$\text{COSI} = 1 - \sum_{i} w_{i} \frac{V_{i}(\text{OAR})_{\text{ad}}}{TCV}$$

(12)

where $V_{i}(\text{OAR})_{\text{ad}}$ is the volume fraction of OAR that receives more than a predefined tolerance dose. TCV is the volumetric target coverage, which is defined as the fractional volume of PTV covered by the prescribed isodose. Modified COSI is expressed as:

$$m\text{COSI} = \sum_{i=1}^{8} W_{i} \left(\frac{\text{COSI}_{10} + \text{COSI}_{20} + \cdots + \text{COSI}_{80}}{8} \right)$$

(13)

Although the COSI index focuses only on OARs that receive high dose region volumes, the modified COSI considers both high dose and low dose regions.
4.3.3. Quality factor

The quality factor (QF) introduced in this study is a dosimetric index that can evaluate the quality of an entire plan [23]. The QF of a plan is analytically expressed as:

\[
QF = \left[2.718 \exp \left(-\sum_{i=1}^{N} W_i X_i \right) \right]^{1/10}
\]

(14)

In the above equation, \(X_i \) represents all PTV indices, including PITV, CI, HI, TCI, MHI, CN, and COSI. The weighting factor (\(W_i \)) values can be adjusted between 0 and 1 for all relatively weighted indices for a user-defined number of indices (N). A weighting factor of 1 was used for all separate indices. Thus, the QF was mainly used to compare the conformity of plans throughout various trials of a treatment.

5. Radiation tolerance dose and toxicity

The dose to critical structures plays an important role in treatment plan evaluation and is a challenging parameter in radiotherapy treatment planning. Here, Emami data [43], QUENTEC data [46], RTOG data, and the Milano study were reviewed. Doses based on tumor location in the body related to critical organs are as follows (Table 2-4).

5.1. Radiation toxicities

The assessment and reporting of toxicity plays a central role in oncology [47-50]. The foundation of toxicity reporting is the toxicity criteria system. Multiple systems have been developed in the last 30 years, and they have evolved substantially since their first introduction. The wide adoption of standardized criteria will facilitate comparison between institutions and clinical trials.

The Radiation Therapy Oncology Group (RTOG) acute radiation morbidity scoring criteria developed in 1984 consists of 13 scales that cover most body regions [51]. This system was used by the RTOG and in other clinical trials for over 30 years. The inclusion of acute radiation criteria into a multimodality grading system facilitated toxicity grading in all oncologic disciplines. This system also allows radiation oncologists to recognize and grade toxicities that were not available in the previous RTOG system. Tables 5 and 6 summarize acute toxicity categorized by body region.

The RTOG/EORTC (European Organization for Research and Treatment of Cancer) system for scoring late effects was developed in 1984 alongside the RTOG acute criteria. It contains 16 organ categories (Tables 7, 8) and has been used widely. However, its shortcomings have prompted the development of other systems.
Critical Structure	Dose/ fx	Vol.	Dose	Max. Dose	Protocol	Treated organ	Critical Structure	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	TD 60/5	TD 90/5	Organ	Dose Tolerance	Endpoint
Brachial Plexus	2 Gy	5%	60 Gy	619	Postop H&N	Brain	QUANTEC data	<60 Gy	<3%	Symptomatic necrosis	Whole	2/3	1/3	1/3					
	2 Gy	60 Gy	522	Definitive H&N	Brain	72 Gy	Symptomatic necrosis	4500	5000	6000	Brain	6500	7500						
	2 Gy	66 Gy	0619	Postop H&N, lung, nasopharynx	90 Gy	10%	Symptomatic necrosis	6000	6100	6200	Brachial plexus	7700							
	3 Gy	36 Gy	937	Lung				<60 Gy	<3%	Neuropathy or necrosis	Brain stem	5000	6000	6500	–	–	–	Brain stem	
	4 Gy	30 Gy	937	Lung				<54 Gy	<5%	Neuropathy or necrosis	Brain stem	5000	6000	6500	–	–	–	Brain stem	
Brainstem	1.8-2Gy	0.03 cc	55 Gy	0.03 cc	Intermediate risk meningioma	539	–	–	–	–	–	–	–	–	–	–	–	–	
	33 fx	54 Gy	615	Nasopharynx	Brain stem	<64 Gy	–	–	–	–	–	–	–	–	–	–	–	–	
	1.8-2Gy	0.03 cc	539	0.03 cc	High risk meningioma, glioblastoma	0539, 083	–	–	–	–	–	–	–	–	–	–	–	–	
	2 Gy	52 Gy	1016	Oropharynx				<54 Gy	<5%	Neuropathy or necrosis	–	–	–	–	–	–	–	–	
Cochlea	33 fx	5%	55 Gy	615	Nasopharynx	Mean	<=45 Gy	<30%	Sensory neural hearing loss	Ear	5500	5500	5500	6500	6500	6500	6500		
	Mean	20 Gy	1016	Oropharynx		Cochlea	Mean	<=45 Gy	<30%	Sensory neural hearing loss	Larynx (necrosis)	7000	7000	7900	8000	8000	9000	9000	
Larynx, glottis	2 Gy	45 Gy	0619	Postop H&N, definitive H&N, nasopharynx	Larynx	<66 Gy	Vocal dysfunction	4500	4500	8000	–	–	–	–	–	–	–	–	
	Mean	<44 Gy	<20%	Edema	Larynx (edema)	Mean <50 Gy	<30%	Aspiration	7000	7900	8000	–	–	–	–	–	–	–	–
	Mean	<44 Gy	<20%	Edema	–	Mean <50 Gy	<27%	–	4500	4500	–	–	–	–	–	–	–	–	–
Critical Structure	Dose / Vol.	Treated organ	Critical Structure	Dose / Vol.	Toxicity Rate	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	Organ Dose Tolerance	Endpoint								
-------------------	-------------	---------------	-------------------	-------------	---------------	-----------------	-------	-------	--------	----------------------	----------								
Lens	5 Gy (0.03 cc)	Intermediate risk meningioma	Lens	539	-	-	1800	-	-										
Lips	1.8-2 Gy	2 Gy	Mean	>20 Gy	1016	Oropharynx	66 Gy	1016	Oropharynx	-	-								
Mandible / TM joint	33 fxs	2 Gy	Mean	1 cc	75 Gy	Nasopharynx	6000	6000	6500	6500	7200	7200	7700	Nasopharynx	-	-			
Optic nerve	54 Gy (0.03 cc)	Intermediate risk meningioma	Optic nerve / chiasm	539	<55 Gy	<5%	Optic neuropathy	5000	-	-	6500	-	-						
Optic nerve	56 Gy (0.03 cc)	High risk meningioma, glioblastoma	Optic nerve / chiasm	0319	55-60 Gy	3-7%	Optic neuropathy	5000	-	-	6500	-	-						
Oral cavity	1.8-2 Gy	50 Gy (0.03 cc)	Intermediate risk meningioma, nasopharynx	0319	>60 Gy	>7-20%	Optic neuropathy	5000	-	-	6500	-	-						
Oral cavity	1.8-2 Gy	55 Gy (0.03 cc)	High risk meningioma, glioblastoma	Optic nerve	0319	5000	-	-	-	6500	-	-							

RTOG data | QUANTEC data | Emami Data | Milano Data

Physical and Radiobiological Evaluation of Radiotherapy Treatment Plan

http://dx.doi.org/10.5772/60846
Critical Structure	RTOG data	QUANTEC data	Emami Data	Milano Data																			
Dose/ Vol.	Mean Dose	Max. Dose	Protocol	Critical Structure	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	Organ	Dose	Endpoint									
Parotid Glands	2 Gy	Mean one gland	0.0619, 0.0522, 1016	Postop H&N, definitive H&N, oropharynx	Mean	<=25 Gy	<20%	Long-term salivary function	<25%	Parotid		Mean dose 26 Gy	Postop H&N, definitive H&N, oropharynx	Late Grade 2 xerostomia, <75% of long-term salivary function loss									
Pharynx, posterior wall	2 Gy	33% 50 Gy	0156	Oropharynx	Mean	<=50 Gy	<20%	Symptomatic dysphagia and aspiration															
Retina	1.8-2 Gy	45 Gy (0.03 cc)	0159	Intermediate risk meningioma	Retina	4500	–	–															
Spinal Cord	1.8 Gy	45 Gy	0623, 0615	Lung, Nasopharynx	50 Gy	<=20%	Myelopathy	Spinal cord	EUD < 52 Gy, Max < 55 Gy	<=5% grade 3 toxicity													
Submandibular Gland	2 Gy	Mean <39 Gy	1016	Oropharynx	69 Gy	50%	Myelopathy	Spinal cord	EUD < 52 Gy, Max < 55 Gy	<=5% grade 3 toxicity													
Critical Structure	Dose/ fx	Vol. Dose	Max. Dose	Treated organ	Critical Structure	Dose/Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	Dose Tolerance	Endpoint									
-------------------	---------	-----------	-----------	----------------	-------------------	-----------	-----------	--------------	----------------	--------	--------	--------	---------------	----------									
Esophagus	1.8 Gy	Mean	34 Gy	0625, 0617	Lung	Mean	<34 Gy	5-20%	Grade 3- esophagitis	Whole	2/3	1/3	<30%	V30 and <550 <30%									
	1.8 Gy	10 cm	60 Gy	623	Lung	V35	<50%	<30%	Grade 2- esophagitis	Esophagus	5500	5800	6000	6800	7000	7200							
	2 Gy	Mean	30 Gy	1104	Esophagus	V50	<40%	<30%	Grade 2- esophagitis	(striaclitis, perforation)													
	3 Gy	47 Gy	937	Lung	Lung	V70	<20%	<30%	Grade 2- esophagitis	Thyroid	4500	8000	-	-									
Heart	1.8 Gy	33%	60 Gy	0625, 0617	Lung	Mean	<26 Gy	<15%	Pericarditis	Heart	4000	4900	6000	5000	5500	7000							
	1.8 Gy	33%	50 Gy	436	Eosphagus	V30	<46%	<15%	Pericarditis	(periactitis)													
	1.8 Gy	87%	45 Gy	0623, 0617, 0436	Lung, esophagus	V25	<10%	<1%	Long term cardiac mortality														
	1.8 Gy	100%	40 Gy	0623, 0617, 0436	Lung, esophagus																		
	3 Gy	47 Gy	937	Lung																			
	3 Gy	V48	<30%	937	Lung																		
Critical Structure	Protocol	Treated organ	Dose/ fx	Vol.	Dose	Max. Dose	Toxicity	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	TD 95/5	Late grade 2 in	Late grade 3 in	Late grade 3 in	mLd <10-20 Gy	Late grade 3 in	V30 <10-15%	V30 <25% 30%	Late grade 3 in	mLd <6-10%		
---------------------------	----------	---------------	----------	------	------	-----------	----------	------------------	-------	-------	--------	--------	----------------	----------------	----------------	----------------	----------------	--------------	--------------	----------------	---------		
Lung, single	2 Gy	3 cm CWS to field	413	Breast	V20	<=30%	<20%	Symptomatic pneumonitis	Lung	1750	3000	4500	2400	6000	6000	6000	6000	6000	6000	6000	6000		
Lungs, total	2 Gy	V20 20%	630	Sarcoma	Mean	7 Gy	5%	Symptomatic pneumonitis	Lung	–	5000	–	–	6000	–	–	–	–	6000	–	–		
	2 Gy	V20 37%	0617, 0623	Lung	Mean	13 Gy	10%	Symptomatic pneumonitis	Lung	–	–	–	–	–	–	–	–	–	–	–	–		
	2 Gy	Mean 20 Gy	617	Lung	Mean	20 Gy	20%	Symptomatic pneumonitis	Lung	–	–	–	–	–	–	–	–	–	–	–	–		
	3 Gy	Mean 20 Gy	937	Lung	Mean	24 Gy	30%	Symptomatic pneumonitis	Lung	–	–	–	–	–	–	–	–	–	–	–	–		
	3 Gy	V20 < 30%	937	Lung	Mean	27 Gy	40%	Symptomatic pneumonitis	Lung	–	–	–	–	–	–	–	–	–	–	–	–		
	3 Gy	150 cc 30 Gy	937	Lung	Small bowel (individual loops)	V15	<320 cc	<10%	Grade 3+ toxicity	Small intestine	4000	5000	5000	6000	–	–	–	–	–	–	–	–	–
	3 Gy	100 cc 35 Gy	937	Lung	Small bowel (peritoneal cavity)	V45	<195 cc	<10%	Grade 3+ toxicity	(obstruction, perforation)	5000	5000	5000	6000	–	–	–	–	–	–	–	–	–
	3 Gy	50 cc 40 Gy	937	Lung	–	–	–	–	–	–	–	–	–	–	–	–							
Small Bowel	3 Gy	1 cc 45 Gy	937	Lung	–	–	–	–	–	–	–	–	–	–	–	–							
	4 Gy	100 cc 30 Gy	937	Lung	–	–	–	–	–	–	–	–	–	–	–	–							
	4 Gy	50 cc 35 Gy	937	Lung	–	–	–	–	–	–	–	–	–	–	–	–							
	4 Gy	1 cc 40 Gy	937	Stomach	D100	<45 Gy	<7%	Ulceration	(ulceration, perforation)	5000	5500	6000	6300	6700	7000	–	–	–	–	–	–	–	
Critical Structure	Dose/fx	Vol.	Dose	Max. Dose	Protocol	Treated organ	RTSG data	QUANTIC data	Enami Data	Milano Data	Organs	Dose tolerance	Endpoint										
-------------------	---------	------	-------	----------	----------	----------------	------------	--------------	------------	-------------	---------	----------------	----------										
Lung, Nasopharynx	1.8 Gy	45 Gy	0623, 0615	50 Gy	0.20%	Myelopathy	(20 cm) (10 cm) (5 cm)	(10 cm) (5 cm)	Spinal cord	-	Max < 50 Gy	<5% grade >= 3 toxicity											
Spinal cord	2 Gy	50.5	617	60 Gy	6%	Myelopathy	4700 5000 5000	7000 7000	Cervical spinal cord	-	EUD < 32 Gy	<9% grade >= Max < 50 Gy											
Spinal cord	1.8 Gy	10 cm	50 Gy	69 Gy	50%	Myelopathy	Mean <15-18 Gy	<5%	Clinical dysfunction	Kidney	2300 3000 5000 2800 4000	-	Anemia, azotemia, HTN, edema										
Kidney	3 Gy	36 Gy	937				Mean <28 Gy	<50%	Clinical dysfunction	Kidney	V12 <55%	<5% Clinical dysfunction											
Kidney, bilateral	1.8 Gy	67%	30 Gy	436	436	Esopehagus	Kidney, bilateral, V12 <55%	<5%	Clinical dysfunction														
Kidney	2 Gy	50%	14 Gy	630	630	Sarcoma	V20 <32%	<5%	Clinical dysfunction														
Kidney	3 Gy	V18	< 25%	937	937	Lung	V20 <30%	<5%	Clinical dysfunction														
Critical Structure	RT0G data	QUANTEC data	Emami Data	Milano Data																			
--------------------	-----------	--------------	------------	-------------																			
	Dose/ Vol.	Dose Max. Dose	Protocol Treated organ	Dose/ Vol.	Dose Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 3/5	TD 50/5	Organ	Dose tolerance	Endpoint										
	1.8 Gy	50% 35 Gy	436 Esophagus	Mean <30-32 Gy	<5% RILD (in normal liver function)	Liver	3000 3500 5000 4000 4500 5500	Liver	1/3: 40-80 Gy	Late 2/3: 50-60 Gy	3/3: 25-35%												
Liver	3 Gy	>700 cc	<35 Gy	937 Lung	Mean <42 Gy	<50% RILD (in normal liver function)	Liver																
Mean <28 Gy	<5% RILD (in Child-Pugh A or HCC)	Liver																					
Mean <36 Gy	<50% RILD (in Child-Pugh A or HCC)	Liver																					
Critical Structure	Dose	Protocol	Treated organ	Partial Organ	Percentage	Volume (±10% late)	Critical Structure	Dose	Percentage	Volume (±10% late)	Toxicity Rate	Toxicity Endpoint	Organ	TD 5/5	TD 50/5	Specialization	Dose	End Point					
-------------------	------	----------	---------------	---------------	------------	-------------------	-------------------	------	------------	-------------------	---------------	----------------	--------	--------	--------	----------------	------	-----------					
Bladder	1.8 Gy	60%	50/Gy	621	Prostate	Whole	Bladder (bladder cancer)	Partial Organ	30 Gy	(9-10% late)	V60	<50%	Grade 3+ toxicity	Whole	2/3	1/3	Whole	2/3	1/3				
Bladder	1.8 Gy	60%	45/Gy	534	Postop prostatic	Whole	Bladder (prostate cancer)	Partial Organ	10 Gy	(10-40% late)	V50	<50%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	55%	50/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(5-10% late)	V30	<50%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	50%	35/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	50 Gy	(20% late)	V70	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	50%	65/Gy	534	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	70 Gy	(20% late)	V50	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	50%	65/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	70 Gy	(20% late)	V50	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	45%	65/Gy	534	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	60 Gy	(35% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	44.6 Gy	621	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	60 Gy	(35% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A					
Bladder	1.8 Gy	40%	45/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(35% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	40%	45/Gy	415	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	35%	45/Gy	415	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	50 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	35%	70/Gy	415	Prostate	Whole	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
Bladder	1.8 Gy	30%	70/Gy	529	Anus	Urethra	Bladder (prostate cancer)	Partial Organ	60 Gy	(20% late)	V30	<25%	Grade 3+ toxicity	Bladder	<900	8000	N/A	8000	N/A				
External genitalia	RTOG data	Handbook	QUANTEC data	Emami Data	Milano Data																		
-------------------	-----------	----------	--------------	------------	-------------																		
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy 90% 20 Gy	529	Anus																					
1.8 Gy 35% 30 Gy	529	Anus																					
1.8 Gy 5% 40 Gy	529	Anus																					
1.8 Gy 50% 30 Gy	529	Anus																					
1.8 Gy 13% 30 Gy	416	Endometrium																					
1.8 Gy 40% 40 Gy	522	Rectum	Anorectal necrosis																				
1.8 Gy 35% 40 Gy	529	Anus																					
1.8 Gy 25% 45 Gy	522	Rectum																					
1.8 Gy 10% 50 Gy	534	Prostate																					
1.8 Gy 5% 44 Gy	529	Anus																					
Femoral Head																							
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy 5% 50 Gy																							
1.8 Gy 5 Gy	PMED Prostate Group Consor																						
1.8 Gy 3 Gy	50 Gy	530	Sarcoma																				
1.8 Gy 50 Gy	522	Rectum																					
1.8 Gy 35 Gy	712	Bladder																					
Bladder																							
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy 35% 30 Gy	529	Anus																					
1.8 Gy 35% 40 Gy	529	Anus																					
1.8 Gy 5% 50 Gy	529	Anus																					
1.8 Gy 50% 55 Gy	529	Anus																					
Large Bowel																							
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy 35% 40 Gy	529	Anus																					
1.8 Gy 5% 50 Gy	529	Anus																					
Penile Bulb																							
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy Mean 52.5 Gy	415	Prostate																					
Penile Bulb																							
Critical Structure	Dose/	Vol.	Dose	Max. Dose	Partial	Organ	Tolerance (< 2 Gy Gy/ft)	Critical Structure	Vol.	Dose/ Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 5%	TD 50%	Organ	Dose tolerance	Endpoint				
1.8 Gy Mean 52.5 Gy	415	Prostate																					
Critical Structure	RTOG data	Handbook	QUANTEC data	Enami Data	Milano Data																		
-------------------	-----------	----------	--------------	------------	-------------																		
	Dose/Ex	Vol.	Dose	Max. Dose	Protocol	Treated organ	Dose	Max. Dose	Tolerance (1.8–2.0 Gy/fx)	Critical Structure	Vol.	Dose/Vol.	Max. Dose	Toxicity Rate	Toxicity Endpoint	Organ	TD 50	TD 50%	Organ	Dose tolerance	End point		
1.8 Gy 60%	30 Gy	418	Endometrial	Whole	60 Gy	Rectum	GYN HDR	V50	<8%	<10%	Grade 3+ toxicity	Rectum	V80	<10%	<10%	Grade 3+ toxicity	Rectum	V50 = 3 Gy	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8-2 Gy 80%	35 Gy	712	Bladder	Rectum	GYN HDR	Point A	Rectum	V60	<10%	<10%	Grade 3+ toxicity	Rectum	V70	<15%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 80%	30 Gy	415	Prostate	Rectum	GYN HDR	Point A	Rectum	V65	<10%	<10%	Grade 3+ toxicity	Rectum	V75	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 80%	60 Gy	415	Prostate	Rectum	GYN HDR	Point A	Rectum	V75	<10%	<10%	Grade 3+ toxicity	Rectum	V70	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 66.6 Gy	61	Prostate	Rectum	GYN HDR	Point A	Rectum	V80	<10%	<10%	Grade 3+ toxicity	Rectum	V75	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%			
1.8 Gy 20%	35 Gy	415	Prostate	Rectum	GYN HDR	Point A	Rectum	V85	<10%	<10%	Grade 3+ toxicity	Rectum	V75	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 20%	70 Gy	415	Prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 25%	65 Gy	415	Prostate	Rectum	GYN HDR	Point A	Rectum	V85	<10%	<10%	Grade 3+ toxicity	Rectum	V75	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 25%	40 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 20%	45 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 20%	70 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 25%	60 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 25%	40 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		
1.8 Gy 20%	45 Gy	534	Postop prostate	Rectum	GYN HDR	Point A	Rectum	V90	<10%	<10%	Grade 3+ toxicity	Rectum	V80	<20%	<10%	Grade 3+ toxicity	Rectum	V50 = 2 in < 20-25%	Late grade	V70 = 2 in < 20-25%	5.10%		

Rectum

References:

- Physical and Radiobiological Evaluation of Radiotherapy Treatment Plan. 2009. PubMed: 18947938

For more information, visit: [Physical and Radiobiological Evaluation of Radiotherapy Treatment Plan](http://dx.doi.org/10.5772/60846)
Table 4. Radiation tolerance dose in pelvis

Critical Structure	Organs	RTOG data	Handbook	QUANTEC data	Emami Data	Milano Data												
Small Bowel																		
Dose	Vol.	Dose	Max.	Dose	Partial	Critical	Dose/ Vol.	Max.	Dose	Toxicity	Toxicity	Organ	TD 5/5	TD 50/5	Organ	Dose	tolerance	End point
1.8 Gy	200 cc	30 Gy	529	Anus	Small bowel	Small volume	50 Gy	V15	<120 cc	<10%	Grade 3+ toxicity	Small intestine	4000	5000	5000	6000		
1.8 Gy	130 cc	35 Gy	529	Anus	Small bowel	Whole	>40 Gy	V45	<195 cc	<10%	Grade 3+ obstruction, perforation							
1.8 Gy	30 cc	40 Gy	822	Rectum														
1.8 Gy	30 cc	40 Gy	822	Rectum														
Skin, longitudinal																		
Dose	3 Gy	20 Gy	630	Sarcoma														
Testis																		
Dose	3 Gy	30 Gy	630	Sarcoma														
Vulva																		
Dose	3 Gy	30 Gy	630	Sarcoma														
Anus																		
Bone, weight-bearing	2 Gy	30 Gy	630	Sarcoma														
Joints	2 Gy	30 Gy	630	Sarcoma														
Tissue	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4													
-----------------------------	--	--	--	--	--													
Skin	No change over baseline	Follicular, faint, or dull erythema/epilation/dry desquamation/decreased sweating	Tender or bright erythema, patchy moist desquamation/moderate edema	Confluent, moist desquamation other than skin folds, pitting edema	Ulceration, hemorrhage, necrosis													
Mucosal membrane	No change over baseline	Injection/may experience mild pain not requiring analgesic	Patchy mucositis which may produce an inflammatory aseptic or erosive reaction/desquamation/may experience moderate pain requiring analgesia	Confluent fibrous mucositis/may include severe pain requiring narcotic	Ulceration, hemorrhage, necrosis													
Eye	No change over baseline	Mild conjunctivitis with or without scleral injection/increased tearing	Moderate conjunctivitis with or without keratitis requiring steroids and/or antibiotics/dry eye requiring artificial tears/relieves with photophobia	Severe keratitis with corneal ulceration/objective decrease in visual acuity or in visual fields/acute glaucoma/painful/ulcers	Loss of vision (unilateral or bilateral)													
Ear	No change over baseline	Mild external otitis with erythema, pruritus, secondary to dry desquamation not requiring medication. Audiogram unchanged from baseline	Moderate external otitis requiring topical medication/serious otitis medius/hypoausia on testing only	Severe external otitis with discharge or moist desquamation/symptomatic hypoacusia/limitus, not drug related	Deafness													
Salivary gland	No change over baseline	Mild mouth dryness/slightly thickened saliva/may have slightly altered taste such as metallic taste/changes not reflected in alteration in baseline feeding behavior, such as increased use of liquids with meals	Moderate to complete dryness/thick, sticky saliva/markedly altered taste	Severe dysphagia or odynophagia with dehydration or weight loss (>15% from pre-treatment baseline) requiring N-G feeding tube, I.V. fluids, or hyperalimentation	Acute salivary gland necrosis													
Pharynx and esophagus	No change over baseline	Mild dysphagia or odynophagia/may require topical anesthetic or non-narcotic analgesics/may require soft diet	Moderate dysphagia or odynophagia/may require narcotic analgesics/may require puree or liquid diet	Persistent hoarseness but able to vocalize/referred ear pain, sore throat, patchy fibrous exudate or mild arytenoid edema not requiring narcotic/cough requiring antibiotics	Complete obstruction, ulceration, perforation, fistula													
Larynx	No change over baseline	Mild or intermittent hoarseness/cough not requiring antihistamine or erythema of mucosa	Persistent hoarseness but able to vocalize/referred ear pain, sore throat, patchy fibrous exudate or mild arytenoid edema not requiring narcotic/cough requiring antibiotics	Neurologic findings present sufficient to require home care/nursing assistance may be required/medications including steroids/anti-seizure agents may be required	Marked dyspnea, stridor, or hemoptysis with tracheostomy or intubation necessary													
CNS	No change over baseline	Fully functional status (i.e., able to work) with minor neurologic findings, no medication needed	Neurologic findings requiring hospitalization for initial management	Neurologic findings requiring hospitalization for initial management	Serious neurologic impairment which includes paralysis, coma, or seizure >3 per week despite medication/hospitalization required													
Organ/Tissue	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4													
-------------	--------	--------	--------	--------	--------													
Upper G.I	No change	Anorexia with <=5% weight loss from pretreatment baseline/nausea not requiring antiemetics/abdominal discomfort not requiring parasympatholytic drugs or analgesics	Anorexia with <=15% weight loss from pretreatment baseline/nausea and/or vomiting requiring antiemetics/abdominal pain requiring analgesics	Anorexia with >15% weight loss from pretreatment baseline or requiring N-G tube or parenteral support. Nausea and/or vomiting requiring tube or parenteral support/abdominal pain, severe despite medication/hematemeses or melena/abdominal distention (flat plate radiograph demonstrates distended bowel loops)	Ileus, subacute or acute obstruction, perforation, GI bleeding requiring tube decompression or bowel diversion													
Lower G.I	No change	Increased frequency or change in quality of bowel habits not requiring medication/rectal discomfort not requiring analgesics	Diarrhea requiring parasympatholytic drugs (e.g., Lomotil)/mucous discharge not necessitating sanitary pads/rectal or abdominal pain requiring analgesics	Diarrhea requiring parenteral support/severe mucous or blood discharge necessitating sanitary pads/abdominal distention (flat plate radiograph demonstrates distended bowel loops)	Acute or subacute obstruction, fistula or perforation; GI bleeding requiring transfusion; abdominal pain or tenesmus requiring tube decompression or bowel diversion													
Lung	No change	Mild symptoms of dry cough or dyspnea on exertion	Persistent cough requiring narcotic, antitussive agents/dyspnea with minimal effort but not at rest	Severe cough unresponsive to narcotic antitussive agent or dyspnea at rest or diffuse pulmonary/intermittent oxygen or steroids may be required	Severe respiratory insufficiency/continuous oxygen or assisted ventilation													
Genitourinary	No change	Frequency of urination or nocturia twice pretreatment habit/dysuria, urgency not requiring medication	Frequency of urination or nocturia that is less frequent than every hour. Dysuria, urgency, bladder spasm requiring local anesthetic (e.g., Pyridium)	Frequency with urgency and nocturia hourly or more frequently/dysuria, pelvis pain, or bladder spasm requiring regular, frequent narcotic/gross hematuria with/without clot passage	Hematuria requiring transfusion/acute bladder obstruction not secondary to clot passage, ulceration, or necrosis													
Heart	No change over baseline	Asymptomatic but objective evidence of EKG changes or pericardial abnormalities without evidence of other heart disease	Symptomatic with EKG changes and radiologic findings of congestive heart failure or pericardial disease/no specific treatment required	Congestive heart failure, angina pectoris, pericardial disease responding to therapy	Congestive heart failure, angina pectoris, pericardial disease, arrhythmias not responsive to nonsurgical measures													
Organ/Tissue	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Organ/Tissue												
-------------------	---------	---	---	---	---------	-------------------												
Subcutaneous tissue	None	Slight atrophy; pigmentation change; some hair loss	Patch atrophy; moderate telangiectasia; total hair loss	Marked atrophy; gross telangiectasia	Ulceration	Death related to radiation effects												
Mucosa membrane	None	slight induration (fibrosis), and loss of subcutaneous fat	Moderate fibrosis but asymptomatic; slight field contraction; <10% linear reduction	Severe induration and loss of subcutaneous tissue; field contraction; >10% linear measurement	Necrosis	Death related to radiation effects												
Mucosa membrane	None	Slight atrophy and dryness	Moderate atrophy and telangiectasia; little mucous	Marked atrophy with complete dryness; severe telangiectasia	Ulceration	Death related to radiation effects												
Salivary gland	None	Slight dryness of mouth; good response on stimulation	Moderate dryness of mouth; poor response on stimulation	Complete dryness of mouth; no response on stimulation	Fibrosis	Death related to radiation effects												
Spinal cord	None	Mild L'Hermitte's syndrome	Severe L'Hermitte's syndrome	Objective neurological findings at or below cord level treated	Mono, para quadriplegia	Death related to radiation effects												
Brain	None	Mild headache; slight lethargy	Moderate headache; great lethargy	Severe headaches; severe CNS dysfunction (partial loss of power or dyckinesia)	Seizures or paralysis; coma	Death related to radiation effects												
Eye	None	Asymptomatic cataract; minor corneal ulceration or keratitis	Symptomatic cataract; moderate corneal ulceration; minor retinopathy or glaucoma	Severe keratitis; severe retinopathy or detachment severe glaucoma	Panophthalmitis/blindness	Death related to radiation effects												
Larynx	None	Hoarseness; slight arytenoid edema	Moderate arytenoid edema; chondritis	Severe edema; severe chondritis	Necrosis	Death related to radiation effects												
Organ/Tissue	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5												
----------------------	---	---	---	---	---	---												
Lung	None	Asymptomatic or mild symptoms (dry cough); slight radiographic appearances	Moderate symptomatic fibrosis or pneumonitis (severe cough); low grade fever; patchy radiographic appearances	Severe symptomatic fibrosis or pneumonitis; dense radiographic changes	Severe respiratory insufficiency/continuous O2assisted ventilation	Death related to radiation effects												
Heart	None	Asymptomatic or mild symptoms; transient 7 wave inversion and ST changes; sinus tachycardia (>100)	Moderate angina on effort; mild pericarditis; normal heart size; persistent abnormal 7 wave and ST changes; low ORS	Severe angina; pericardial effusion; constrictive pericarditis; moderate heart failure; cardiac enlargement; EKG abnormalities	Tamponade/severe heart failure/severe constrictive pericarditis	Death related to radiation effects												
Esophagus	None	Mild fibrosis; slight difficulty in swallowing solids; no pain on swallowing	Unable to take solid food normally; swallowing semi-solid food; dilation may be indicated	Severe fibrosis; ability to swallow only liquids; may have pain on swallowing; dilation required	Necrosis/perforation fistula	Death related to radiation effects												
Small/large intestine	None	Mild diarrhea; mild cramping; bowel movement 5 times daily; slight rectal discharge or bleeding	Moderate diarrhea and colic; bowel movement >5 times daily; excessive rectal mucosa or intermittent bleeding	Obstruction or bleeding, requiring surgery	Necrosis/perforation fistula	Death related to radiation effects												
Liver	None	Mild lassitude; nausea, dyspepsia; slightly abnormal liver function	Moderate symptoms; some abnormal liver function tests; serum albumin normal	Disabling epatitis insufficiency; liver function tests grossly abnormal; low albumin; edema or ascites	Necrosis/hepatic coma or encephalopathy	Death related to radiation effects												
Kidney	None	Transient albuminuria; no hypertension; mild impairment of renal function; urine 25–35 mg%; creatinine 1.5–2.0 mg%; creatinine clearance > 75%	Persistent moderate albuminuria (2+); mild hypertension; no related anemia; moderate impairment of renal function; urine > 36–60 mg%; creatinine clearance (50–74%)	Severe albuminuria; severe hypertension; persistent anemia (>10%); severe renal failure; urine > 40 mg%; creatinine > 4.0 mg%; creatinine clearance < 50%	Malignant hypertension; uric acid coma/uric > 100%	Death related to radiation effects												
Bladder	None	Slight epithelial atrophy; minor telangiectasia (microscopic hematuria)	Moderate frequency; generalized telangiectasia; intermittent macroscopic hematuria	Severe frequency and dysuria; severe generalized telangiectasia (often with proteinuria); frequent hematuria; reduction in bladder capacity (<150 cc)	Necrosis/contracted bladder (capacity < 100 cc); severe hemorraghic cystitis	Death related to radiation effects												
Bone	Asymptomatic; no growth retardation; reduced bone density	Moderate pain or tenderness; growth retardation; irregular bone sclerosis	Moderate stiffness; intermittent or moderate joint pain; moderate limitation of movement	Severe pain or tenderness; complete arrest of bone growth; dense bone sclerosis	Necrosis/spontaneous fracture	Death related to radiation effects												
Joint	None	Mild joint stiffness; slight limitation of movement	Serous joint stiffness; pain with severe limitation of movement	Severe joint stiffness; pain with severe limitation of movement	Necrosis/complete fixation	Death related to radiation effects												
6. Radiation treatment plan analysis programs

In modern radiation therapy, physical dose indices, such as mean doses, dose-volume histograms (DVHs), and isodose distribution charts, are often used for treatment plan evaluation. DVHs provide dose volume coverage information. However, they fail to provide information regarding hot spots and dose homogeneity. When reviewing physical dose indices, the resulting biological objectives, such as tumor control rate and normal tissue complication probability, must be indirectly estimated based on clinical experience and knowledge. In some competing plans, it is possible that a similar mean dose, maximum dose, or minimum dose might have significantly different radiobiological outcomes. To facilitate the direct and accurate comparison and ranking of treatment plans, radiobiological models for treatment plan evaluation have been introduced. These radiobiological models are based on the idea that the radio-sensitivity of different organs should be taken into account. As a result, the physical dose delivered to an organ is directly associated with the dose–response probability of inducing complications in normal tissues. Many programs have been designed and developed to calculate both dosimetrical and biological indices, as shown in Table 9 [10-29].

7. Multidisciplinary strategies: Planning decision support concept

7.1. Methods could be used for planning a decision support system

In this section, we highlight dosimetrical and biological models in radiation oncology treatment planning, with focus on the methodological aspects of prediction model development. In radiation treatment planning analysis, dose volume histograms were the most widely used quantitative results. To comprehensively evaluate a certain DVH, we proposed several dosimetrical and biological models in the earlier sections. For dosimetrical models, there were PTTV, CI, and TCI for target coverage index, and MHI, HI for homogeneity index and COSI, QF, and CQI for overall index. For radiobiological models, there were TCP and NTCP for tumor or critical structures, representatively. There were still other factors like treatment time, planning time, or overall monitor units irradiated in patients could be helpful for making more reasonable decision. Some characteristic prognostic and predictive factors like radiation-induced organ toxicities were discussed in earlier sections. We also enumerate the normal tissue tolerance criteria including QUENTEC and EMAMI database.

7.2. The need of plan decision support concept in RT

With the emergence of individualized medicine and the increasing amount and complexity of available medical data, a growing need exists for the development of planning decision-support systems based on prediction models of treatment outcome [55-57]. In radiation oncology, these models combine both predictive and prognostic data factors from dosimetrical, biological, imaging, and other sources to achieve the highest accuracy to predict tumor response and follow-up event rates. The central challenge, however, is how to integrate diverse, multimodal information (imaging, dosimetrical, biological, and other data) in a quantitative manner to provide specific clinical predictions that accurately and robustly
Currently, many prediction models are being published that consider factors related to disease and treatment, but without standardized assessments of their robustness, reproducibility, or clinical utility [58]. Consequently, these prediction models might not be suitable for clinical decision-support systems for routine care.

Program	Input system	Dicom RT platform	Plan comparison	Plan analysis	Disease features	Paper publication
HART						
CERR						
DREES						
EUD-based mathematical model						
EUCLID						

Estimate patient outcomes as a function of the possible decisions. Currently, many prediction models are being published that consider factors related to disease and treatment, but without standardized assessments of their robustness, reproducibility, or clinical utility [58]. Consequently, these prediction models might not be suitable for clinical decision-support systems for routine care.
Program	Input system	Oncent RT platform	Plan comparison	Plan analysis	Program features	Paper publication
computational platform	√	AAPM/√ compatibile	RTOG, DicomRT	DicomRT	Matlab, ARIA	Dezhi Liu (18) 2009
BIOPLAN	√	DVH file	DVH file	DVH file	Matlab, Visual Basic	B SANCHEZ NIETO 2000
Anonymous	√	DVH file	DVH file	DVH file	Matlab	Arun S. Oinam (21) 2011
SlicerRT	√	DicomRT compatible	with commercial RTP	Matlab	C++	Csaba Pinter (22) 2012
MERT	√	DicomRT	This was RTP	Multi format(MC)	Matlab	Murat Surnau (26) 2010
DIRART	√	DicomRT	use CERR import engine	Matlab	Doshan Yang (27) 2010	
SABER	√	DicomRT	Eclipse	Matlab	Jay Burmeister (28) 2010	
DICOM RT tools	√	DicomRT	Helas TMS	Matlab	Spati E (29) 2002	
Table 9. Review of previous programs

Program	Input system	Dicom RT platform	Plan comparison	Plan analysis	Program features	Paper publication
BELDoral	DVH file	DVH file	×	×	×	×
Comp Plan	DVH file	DVH file in Excel	×	×	×	×
CalcNTCP	Manual input	Manual input	×	×	×	×
RADBIOMID	DVH file	Manual input	×	×	×	×
BioSuite	DVH file	Pinnacle, Eclipse	×	×	×	×
RTToolbox	√ Dicom RT	×	×	×	×	×
					MatLab	Su FC
					MuLab	Holloway LC
					Visual Basic	Khan HA
					Microsoft Excel	Chang JH
					BioSuite	JUzan
					Virtus, our	Lanlan, Zhang
					in-house	
					developed	
					planning	
					system	

Depicts statistical analysis
- Normal statistic
- Survival statistic

Indicates independence from GUI
- ×
- √
Decision making in radiotherapy is mainly based on clinical features, such as the patient performance status, organ function, and grade and extent of the tumor (e.g., as defined by the TNM system). In almost all studies, such features have been found to be prognostic for survival and development of toxicity [59, 60]. Consequently, these features should be evaluated in building robust and clinically acceptable radiotherapy prognostic and predictive models. Moreover, measurement of some clinical variables, such as performance status, can be captured with minimal effort.

Toxicity measurements and scoring should also build on validated scoring systems, such as the Common Terminology Criteria for Adverse Events (CTCAE), which can be scored by the physician or patient [50, 61]. Indeed, a meta-analysis showed that high-quality toxicity assessments from observational trials are similar to those of randomized trials. [45, 46] However, a prospective protocol must clarify which scoring system was used and how changes in toxicity score were dealt with over time with respect to treatment. Finally, to ensure a standardized interpretation, the reporting of clinical and toxicity data and their analyses should be performed in line with the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) statement for observational studies and genetic-association studies, which is represented as checklists of items that should be addressed in reports to facilitate the critical appraisal and interpretation of these types of studies (Figure 7).

Figure 7. Design of planning decision support concept in radiotherapy treatment planning.
Despite the challenges that remain, the vision of predictive models leading to plan decision support concept that are continuously updated via rapid learning on large datasets is clear, and numerous steps have already been taken. These include universal data-quality assurance programs and semantic interoperability issues. However, we believe that this truly innovative journey will lead to necessary improvement of healthcare effectiveness and efficiency. Indeed, investments are being made in research and innovation for health-informatics systems, with an emphasis on interoperability and standards for secured data transfer, which shows that “eHealth” will be among the largest health-care innovations of the coming decade. Accurate, externally validated prediction models are being rapidly developed, whereby multiple features related to the patient’s disease are combined into an integrated prediction. The key, however, is standardization—mainly in data acquisition across all areas, including dosimetric-based and biological-based models, patient preferences, and possible treatments. These crucial features are the basis of validating a plan decision support system, which, in turn, will stimulate developments in rapid-learning health care and will enable the next major advances in shared decision making.

8. Conclusion

Plan comparison studies still remain controversial. The main reason for this is because plan parameters, optimization methods, and OAR constraints are difficult to clearly define. Many researchers have focused on the influence of planning parameters on the results of treatment plans [62-64]. For instance, Gutiérrez et al. [65] reported that the use of a field width of 1 cm resulted in dosimetrically superior plans for brain irradiation compared to plans that use a field width of 2.5 cm. More recently, Skorska and Piotrowski studied the influence of treatment-planning parameters on plan qualities for prostate cancer patients using helical tomotherapy [66]. This study revealed that using a field width of 1 cm, instead of 5 cm, leads to decreases in the D20%, D40%, D60%, and D80% of the small intestine by 2.45%, 8.48%, 6.36%, and 5%. This results in a 1.22Gy, 4.24Gy, 3.18Gy, and 2.50Gy, respectively, for the prescribed dose of 50 Gy. Another bias of plan comparison studies is that the quality of a planner’s abilities and planning techniques may vary. Performing repeat planning processes and using multiple planners to cross check would minimize such bias. The use of OAR dose tolerance guidelines, such as RTOG or QUENTEC protocols, would minimize human error.

Other major issues among plan comparison studies are the method of plan analysis and evaluation. Many studies have focused on developing a simple index that represents the overall quality of plans [14, 19, 41, 42, 67]. However, none of these plans are easily used in a clinic. There is a need for programs that can easily calculate dosimetrical and biological indices [10, 12, 13, 15, 16, 22-25, 28, 68, 78-82].

There is a growing trend of studying the relationships between treatment plan results and clinical outcomes, such as toxicities, survival, and patterns of failure [69-77]. Such studies may help physicians and physicists learn more about the influence of plan results and plan quality on patient treatment.
Acknowledgements

This chapter was developed by a special working group of the Korea University Medical Physics Lab from the department of radiation oncology, college of medicine, Korea University, Seoul, 136-705, Korea. Members of the planning index study working group include Kwang Hyeon Kim, M.S., Kyung Hwan Chang, Ph.D., and Jang Bo Shim, M.S.

Author details

Suk Lee*, Yuan Jie Cao and Chul Yong Kim

*Address all correspondence to: sukmp@korea.ac.kr

Department of Radiation Oncology, College of Medicine, Korea University, Seoul, Korea

References

[1] Bernier J, Hall EJ, Giaccia A. Radiation oncology: a century of achievements. Nature Reviews Cancer. 2004;4(9):737–47.
[2] Thariat J, Hannoun-Levi J-M, Sun Myint A, Vuong T, Gerard J-P. Past, present, and future of radiotherapy for the benefit of patients. Nature Reviews Clinical Oncology. 2013;10(1):52–60.
[3] Rembielak A, Woo TCS. Intensity-modulated radiation therapy for the treatment of pediatric cancer patients. Nature Clinical Practical Oncology. 2005;2(4):211–7.
[4] Mittauer K, Lu B, Yan G, Kahler D, Gopal A, Amdur R, et al. A study of IMRT planning parameters on planning efficiency, delivery efficiency, and plan quality. Medical Physics. 2013;40(6):061704.
[5] Verellen D, Ridder MD, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nature Reviews Cancer. 2007;7(12):949–60.
[6] Jaffray DA. Image-guided radiotherapy: from current concept to future perspectives. Nature Reviews Clinical Oncology. 2012;9(12):688–99.
[7] Lo SS, Fakiris AJ, Chang EL, Mayr NA, Wang JZ, Papiez L, et al. Stereotactic body radiation therapy: a novel treatment modality. Nature Reviews Clinical Oncology. 2010;7(1):44–54.
[8] Galvin JM, Ezzell G, Eisbrauch A, Yu C, Butler B, Xiao Y, et al. Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiol-
ogy and Oncology and the American Association of Physicists in Medicine. International Journal of Radiation Oncology, Biology, Physics. 2004;58(5):1616–34.

[9] Cadman P, Bassalow R, Sidhu NP, Ibbott G, Nelson A. Dosimetric considerations for validation of a sequential IMRT process with a commercial treatment planning system. Physics in Medicine and Biology. 2002;47(16):3001–10.

[10] Deasy JO, Blanco AI, Clark VH. CERR: a computational environment for radiotherapy research. Medical Physics. 2003;30(5):979.

[11] El Naqa I, Suneja G, Lindsay PE, Hope AJ, Alaly JR, Vicic M, et al. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Physics in Medicine and Biology. 2006;51(22):5719–35.

[12] Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica: PM: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics. 2007;23(3–4):115–25.

[13] Gayou O, Parda DS, Miften M. EUCLID: an outcome analysis tool for high-dimensional clinical studies. Physics in Medicine and Biology. 2007;52(6):1705–19.

[14] Henriquez FC, Castrillon SV. A quality index for equivalent uniform dose. Journal of Medical Physics/Association of Medical Physicists of India. 2011;36(3):126–32.

[15] Holloway LC, Miller JA, Kumar S, Whelan BM, Vinod SK. Comp Plan: a computer program to generate dose and radiobiological metrics from dose-volume histogram files. Medical Dosimetry: Official Journal of the American Association of Medical Dosimetrists. 2012;37(3):305–9.

[16] Khan HA. CalcNTCP: a simple tool for computation of normal tissue complication probability (NTCP) associated with cancer radiotherapy. International Journal of Radiation Biology. 2007;83(10):717–20.

[17] Kim JS. A dose volume histogram analyzer program for external beam radiotherapy. Journal of the Korean Society of Radiology. 2008.

[18] Liu D, Ajlouni M, Jin J-Y, Ryu S, Siddiqui F, Patel A, et al. Analysis of outcomes in radiation oncology: an integrated computational platform. Medical Physics. 2009;36(5):1680.

[19] Luxton G, Keall PJ, King CR. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Physics in Medicine and Biology. 2008;53(1):23–36.

[20] NAHUM BS-NaAE. BIOPLAN: software for the biological evaluation of radiation therapy. Medical Dosimetry. 2000.

[21] Oinam AS, Singh L, Shukla A, Ghoshal S, Kapoor R, Sharma SC. Dose volume histogram analysis and comparison of different radiobiological models using in-house de-
veloped software. Journal of Medical Physics/Association of Medical Physicists of India. 2011;36(4):220–9.

[22] Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT: radiation therapy research toolkit for 3D Slicer. Medical Physics. 2012;39(10):6332–8.

[23] Pyakuryal A. A computational tool for the efficient analysis of dose-volume histograms for radiation therapy treatment plans. Journal of Applied Clinical Medical Physics. 2010.

[24] Spezi E, Lewis DG, Smith CW. A DICOM-RT-based toolbox for the evaluation and verification of radiotherapy plans. Physics in Medicine and Biology. 2002;47(23):4223–32.

[25] Su FC, Mavroidis P, Shi C, Ferreira BC, Papanikolaou N. A graphic user interface toolkit for specification, report and comparison of dose-response relations and treatment plans using the biologically effective uniform dose. Computer Methods and Programs in Biomedicine. 2010;100(1):69–78.

[26] Surucu M, Klein EE, Mamalu-Hunter M, Mansur DB, Low DA. Planning tools for modulated electron radiotherapy. Medical Physics. 2010;37(5):2215.

[27] Yang D. Technical note: DIRART – a software suite for deformable image registration and adaptive radiotherapy research. Medical Physics. 2010.

[28] Zhang L, Hub M, Mang S, Thieke C, Nix O, Karger CP, et al. Software for quantitative analysis of radiotherapy: overview, requirement analysis and design solutions. Computer Methods and Programs in Biomedicine. 2013;110(3):528–37.

[29] Zhao B, Joiner MC, Orton CG, Burmeister J. “SABER”: a new software tool for radiotherapy treatment plan evaluation. Medical Physics. 2010;37(11):5586.

[30] Oliver M, Ansbacher W, Beckham WA. Comparing planning time, delivery time and plan quality for IMRT, RapidArc and tomotherapy. J Appl Clin Med Phys. 2009;10(4):3068.

[31] Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, et al. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Medical Physics. 2010;37(3):1350–9.

[32] Reyners T, Tournel K, De Coninck P, Heymann S, Vinh-Hung V, Van Parijs H, et al. Dosimetric assessment of static and helical TomoTherapy in the clinical implementation of breast cancer treatments. Radiotherapy and Oncology. 2009;93(1):71–9.

[33] Trofimov A, Nguyen PL, Coen JJ, Doppke KP, Schneider RJ, Adams JA, et al. Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. International Journal of Radiation Oncology, Biology, Physics. 2007;69(2):444–53.

[34] Vargas C, Fryer A, Mahajan C, Indelicato D, Horne D, Chellini A, et al. Dose-volume comparison of proton therapy and intensity-modulated radiotherapy for prostate
cancer. International Journal of Radiation Oncology, Biology, Physics. 2008;70(3):744–51.

[35] Ceylan C, Kucuk N, Bas Ayata H, Guden M, Engin K. Dosimetric and physical comparison of IMRT and CyberKnife plans in the treatment of localized prostate cancer. Reports of Practical Oncology and Radiotherapy: Journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology. 2010;15(6):181–9.

[36] Kumar SA, Holla R, Sukumar P, Padmanaban S, Vivekanand N. Treatment planning and dosimetric comparison of IMRT and CyberKnife plans in the treatment of localized prostate cancer. Reports of Practical Oncology and Radiotherapy: Journal of Greatpoland Cancer Center in Poznan and Polish Society of Radiation Oncology. 2012;18(2):87–94.

[37] Poon DM, Kam M, Leung CM, Chau R, Wong S, Lee WY, et al. Dosimetric advantages and superior treatment delivery efficiency of RapidArc over conventional intensity-modulated radiotherapy in high-risk prostate cancer involving seminal vesicles and pelvic nodes. Clinical oncology (Royal College of Radiologists (Great Britain)). 2013;25(12):706–12.

[38] Widesott L, Pierelli A, Fiorino C, Lomax AJ, Amichetti M, Cozzarini C, et al. Helical tomotherapy vs. intensity-modulated proton therapy for whole pelvis irradiation in high-risk prostate cancer patients: dosimetric, normal tissue complication probability, and generalized equivalent uniform dose analysis. International Journal of Radiation Oncology, Biology, Physics. 2011;80(5):1589–600.

[39] Shaw E, Kline R, Gillin M, Souhami L, Hirschfeld A, Dinapoli R, et al. Radiation Therapy Oncology Group: radiosurgery quality assurance guidelines. International Journal of Radiation Oncology, Biology, Physics. 1993;27(5):1231–9.

[40] Knoos T, Kristensen I, Nilsson P. Volumetric and dosimetric evaluation of radiation treatment plans: radiation conformity index. International Journal of Radiation Oncology, Biology, Physics. 1998;42(5):1169–76.

[41] Yoon M, Park SY, Shin D, Lee SB, Pyo HR, Kim DY, et al. A new homogeneity index based on statistical analysis of the dose-volume histogram. Journal of Applied Clinical Medical Physics. 2007;8(2):9–17.

[42] van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W. A conformation number to quantify the degree of conformity in brachytherapy and external beam irradiation: application to the prostate. International Journal of Radiation Oncology, Biology, Physics. 1997;37(3):731–6.

[43] Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology, Biology, Physics. 1991;21(1):109–22.
[44] Leung LH, Kan MW, Cheng AC, Wong WK, Yau CC. A new dose-volume-based plan quality index for IMRT plan comparison. Radiotherapy and Oncology. 2007;85(3):407–17.

[45] Menhel J, Levin D, Alezra D, Symon Z, Pfeffer R. Assessing the quality of conformal treatment planning: a new tool for quantitative comparison. Physics in Medicine and Biology. 2006;51(20):5363–75.

[46] Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, et al. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. International Journal of Radiation Oncology, Biology, Physics. 2010;76(3 Suppl):S3–9.

[47] Kirwan JM, Symonds P, Green JA, Tierney J, Collingwood M, Williams CJ. A systematic review of acute and late toxicity of concomitant chemoradiation for cervical cancer. Radiotherapy and Oncology. 2003;68(3):217–26.

[48] Maduro JH, Pras E, Willemsen PH, de Vries EG. Acute and long-term toxicity following radiotherapy alone or in combination with chemotherapy for locally advanced cervical cancer. Cancer Treatment Reviews. 2003;29(6):471–88.

[49] Trotti A. The evolution and application of toxicity criteria. Seminars in Radiation Oncology. 2002;12(1 Suppl 1):1–3.

[50] Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Seminars in Radiation Oncology. 2003;13(3):176–81.

[51] Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). International Journal of Radiation Oncology, Biology, Physics. 1995;31(5):1341–6.

[52] Sanchez-Nieto B, Nahum AE. BIOPLAN: software for the biological evaluation of Radiotherapy treatment plans. Medical Dosimetry: Official Journal of the American Association of Medical Dosimetrists. 2000;25(2):71–6.

[53] Chang JH LJD, Hamilton C, Khoo V. An Excel-based radiation biological modelling tool for the evaluation of radiotherapy treatment plans. Radiotherapy and Oncology 2011;99:5564–55.

[54] Uzan J, Nahum AE. Radiobiologically guided optimisation of the prescription dose and fractionation scheme in radiotherapy using BioSuite. The British Journal of Radiology. 2012;85(1017):1279–86.

[55] Abernethy AP, Etheredge LM, Ganz PA, Wallace P, German RR, Neti C, et al. Rapid-learning system for cancer care. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2010;28(27):4268–74.
[56] Fraass BA, Moran JM. Quality, technology and outcomes: evolution and evaluation of new treatments and/or new technology. Seminars in Radiation Oncology. 2012;22(1):3–10.

[57] Vogelzang NJ, Benowitz SI, Adams S, Aghajanian C, Chang SM, Dreyer ZE, et al. Clinical cancer advances 2011: Annual Report on Progress Against Cancer from the American Society of Clinical Oncology. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2012;30(1):88–109.

[58] Vickers AJ. Prediction models: revolutionary in principle, but do they do more good than harm? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2011;29(22):2951–2.

[59] Dehing-Oberije C, Yu S, De Ruyscher D, Meerschout S, Van Beek K, Lievens Y, et al. Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. International Journal of Radiation Oncology, Biology, Physics. 2009;74(2):355–62.

[60] Klopp AH, Eifel PJ. Biological predictors of cervical cancer response to radiation therapy. Seminars in Radiation Oncology. 2012;22(2):143–50.

[61] Trotti A, Colevas AD, Setser A, Basch E. Patient-reported outcomes and the evolution of adverse event reporting in oncology. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2007;25(32):5121–7.

[62] Moldovan M, Fontenot JD, Gibbons JP, Lee TK, Rosen II, Fields RS, et al. Investigation of pitch and jaw width to decrease delivery time of helical tomotherapy treatments for head and neck cancer. Medical Dosimetry: Official Journal of the American Association of Medical Dosimetrists. 2011;36(4):397–403.

[63] Westerly DC, Soisson E, Chen Q, Woch K, Schubert L, Olivera G, et al. Treatment planning to improve delivery accuracy and patient throughput in helical tomotherapy. International Journal of Radiation Oncology, Biology, Physics. 2009;74(4):1290–7.

[64] Woch K SE, Westerly D, Olivera G, Kaptoes J.. Acceleration of tomotherapy treatment delivery by increasing pitch and decreasing modulation. Medical Physics. 2008;35:2636–7.

[65] Gutierrez AN, Westerly DC, Tome WA, Jaradat HA, Mackie TR, Bentzen SM, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. International Journal of Radiation Oncology, Biology, Physics. 2007;69(2):589–97.

[66] Skorska M, Piotrowski T. Optimization of treatment planning parameters used in tomotherapy for prostate cancer patients. Physica Medica: PM : An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics. 2013;29(3):273–85.
[67] Feuvret L, Noel G, Mazeron JJ, Bey P. Conformity index: a review. International Journal of Radiation Oncology, Biology, Physics. 2006;64(2):333–42.

[68] Ebert MA, Haworth A, Kearvell R, Hooton B, Hug B, Spry NA, et al. Comparison of DVH data from multiple radiotherapy treatment planning systems. Physics in Medicine and Biology. 2010;55(11):N337–46.

[69] Semenenko VA, Tarima SS, Devisetty K, Pelizzari CA, Liauw SL. Validation of normal tissue complication probability predictions in individual patient: late rectal toxicity. International Journal of Radiation Oncology, Biology, Physics. 2012;85(4):1103–9.

[70] Taniguchi CM, Murphy JD, Eclov N, Atwood TF, Kielar KN, Christman-Skiieller C, et al. Dosimetric analysis of organs at risk during expiratory gating in stereotactic body radiation therapy for pancreatic cancer. International Journal of Radiation Oncology, Biology, Physics. 2012;85(4):1090–5.

[71] Vanasek J, Odrazka K, Dolezel M, Kolarova I, Jarkovsky J, Pavlik T, et al. Statistical analysis of dose–volume profiles and its implication for radiation therapy planning in prostate carcinoma. International Journal of Radiation Oncology, Biology, Physics. 2013;86(4):769–76.

[72] Carillo V, Cozzarini C, Rancati T, Avuzzi B, Botti A, Borca VC, et al. Relationships between bladder dose–volume/surface histograms and acute urinary toxicity after radiotherapy for prostate cancer. Radiotherapy and Oncology. 2014;111(1):100–5.

[73] Hoskin PJ, Rojas AM, Ostler PJ, Hughes R, Bryant L, Lowe GJ. Dosimetric predictors of biochemical control of prostate cancer in patients randomised to external beam radiotherapy with a boost of high dose rate brachytherapy. Radiotherapy and Oncology. 2014;110(1):110–3.

[74] Kestin L, Grills I, Guckenberger M, Belderbos J, Hope AJ, Werner-Wasik M, et al. Dose–response relationship with clinical outcome for lung stereotactic body radiotherapy (SBRT) delivered via online image guidance. Radiotherapy and Oncology. 2014;110(3):499–504.

[75] Nomden CN, de Leeuw AAC, Roesink JM, Tersteeg RJHA, Moerland MA, Witteveen PO, et al. Clinical outcome and dosimetric parameters of chemo-radiation including MRI guided adaptive brachytherapy with tandem-ovoid applicators for cervical cancer patients: a single institution experience. Radiotherapy and Oncology. 2013;107(1):69–74.

[76] Strom TJ, Wilder RB, Fernandez DC, Mellon EA, Saini AS, Hunt DC, et al. A dosimetric study of polyethylene glycol hydrogel in 200 prostate cancer patients treated with high-dose rate brachytherapy: intensity modulated radiation therapy. Radiotherapy and Oncology. 2014;111(1):126–31.
[77] Thor M, Apte A, Deasy JO, Karlsdóttir À, Moiseenko V, Liu M, et al. Dose/volume–
response relations for rectal morbidity using planned and simulated motion-inclu-
densive dose distributions. Radiotherapy and Oncology. 2013; 109(3):388–93.

[78] Comparison of linac-based fractionated stereotactic radiotherapy and tomotherapy
treatment plans for intra-cranial tumors, Jang Bo Shim, Suk Lee, Sam Ju Cho, Sang
Hoon Lee, Juree Kim, Kwang Hwan Cho, ChulKee Min, Hyun Do Huh, Rena Lee,
DaeSik Yang, Young Je Park, Won Seob Yoon, Chul Yong Kim, Soo Il Kwon, Chinese
Physics C, 34(11): 1768-1774, Nov., 2010

[79] Optimization of beam orientation and virtual organ delineation for lung IMRT,
Kyung Hwan Chang, Suk Lee, Yuan Jie Cao, Jang Bo Shim, Ji Eun Lee, Nam Kwon
Lee, Jung Ae Lee, DaeSik Yang, Young Je Park, Won Sup Yoon, and Chul Yong Kim,
Sam Ju Cho, Sang Hoon Lee, Woo Chul Kim, ChulKee Min, Kwang Hwan Cho, Hy-
un Do Huh, Journal of the Korean Physical Society, Volume 64, Issue 7, 1047-1054,
2014 (SCI, 0.476)

[80] Patient performance-based plan parameter optimization for prostate cancer in tomo-
therapy, Yuan Jie Cao, Suk Lee, Kyung Hwan Chang, Jang Bo Shim, KwangHyeon
Kim, et al., Medical Dosimetry, 2015, article in press.

[81] Optimized planning target volume margin in helical tomotherapy for prostate can-
cer: is there a preferred method?, Yuan Jie Cao, Suk Lee, Kyung Hwan Chang, Jang
Bo Shim, KwangHyeon Kim, et al., Journal of the Korean Physical Society, 67(1),
26-32, 2015

[82] Dosimetrical and radiobiological comparison of intensity modulated planning tech-
niques for prostate radiotherapy: a multi-institutional study, Suk Lee, Yuan Jie Cao,
Kyung Hwan Chang, Jang Bo Shim, KwangHyeon Kim, et al., Journal of the Korean
Physical Society, 2015, article in press.