Slow ground state molecules from matrix isolation sublimation

C. L. Cesar, A. N. Oliveira, R. L. Sacramento, B. X. Alves, B. A. Silva, and W. Wolff

Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
INMETRO, Av. Nossa Senhora das Graças, 50, Duque de Caxias - RJ, Brazil

Synopsis We describe a cryogenic beam of 7Li$_2$ dimers from sublimation of a neon matrix where Li atoms have been implanted via laser ablation of solid precursors of LiH. Laser absorption spectroscopy measured: T~7 K, Trot ~ 6K, drift velocity of 130 m s$^{-1}$ with molecular density of 107 cm$^{-3}$. The formation of molecules in a matrix offers new possibilities.

The production of cold samples or beams of molecules is an ongoing research field with many applications [1], from quantum information to basic physics tests, such as the search for a permanent electric dipole moment tests, quantum information studies, cold collisions, chemistry, and trapping.

A typical spectrum for the $A^1\Sigma^+_u (v' = 4, J' = 2) \leftarrow X^1\Sigma^+_g (v'' = 0, J'' = 1)$ transition, at 665.927 nm, are shown in Fig. 1.

![Typical spectrum of Li$_2$ transition at 665.927 nm, black line; (b) best fit to the measured data, red line. The measured parameters $\Delta\nu_e$ and $\delta\nu_{DS}$ are related to temperature and forward velocity.](image)

Details of the experimental setup for Matrix Isolation Sublimation (MISu): a neon matrix is grown onto a cryogenic sapphire substrate, and atoms of Li and H are implanted via laser ablation of a solid LiH precursor; atoms and molecules are liberated from the matrix into vacuum with a sublimation heat pulse on the NiCr film resistor on the sapphire, will be presented. Also, details how to generate and characterize the molecular beam will be given.

References

[1] L. Carr et al 2009 New J. Phys. 11 055049
[2] K. Walker et al 1993 Mol. Phys. 78 577
[3] A. N. Oliveira et al 2014 J. Phys. B: At. Mol. Opt. Phys. 47 245302

E-mail: lenz@if.ufrj.br
E-mail: wania@if.ufrj.br