A skin cancer prevention photoageing intervention for secondary schools in Brazil delivered by medical students: protocol for a randomised controlled trial

Titus Josef Brinker,1,2,3 Bianca Lisa Faria,4 Martina Gatzka,5 Olber Moreira de Faria,4 Markus V Heppt,6 Michael C Kirchberger,7 Dirk Schadendorf,3 Yasuhiro Nakamura,8 Fabian Buslaff,1,2 Oscar Campos Lisboa,9 Ana Carla Cruz Oliveira,4 Henrique Augusto Lino,4 Breno Bernardes-Souza9

ABSTRACT

Introduction The incidence of melanoma is increasing faster than any other major cancer both in Brazil and worldwide. The Southeast of Brazil has especially high incidences of melanoma, and early detection is low. Exposure to UV radiation represents a primary risk factor for developing melanoma. Increasing attractiveness is a major motivation for adolescents for tanning. A medical student-delivered intervention that harnesses the broad availability of mobile phones as well as adolescents’ interest in their appearance may represent a novel method to improve skin cancer prevention.

Methods and analysis We developed a free mobile app (Sunface), which will be implemented in at least 30 secondary school classes, each with 21 students (at least 30 classes with 21 students for control) in February 2018 in Southeast Brazil via a novel method called mirroring. In a 45 min classroom seminar, the students’ altered three-dimensional selfies on tablets are ‘mirrored’ via a projector in front of their entire class, showing the effects of unprotected UV exposure on their future faces. External block randomisation via computer is performed on the class level with a 1:1 allocation. Sociodemographic data, as well as skin type, ancestry, UV protection behaviour and its predictors are measured via a paper–pencil questionnaire before as well as at 3 and 6 months postintervention. The primary end point is the group difference in the 30-day prevalence of daily sunscreen use at a 6-month follow-up. Secondary end points include (1) the difference in daily sunscreen use at a 3-month follow-up, (2) if a self-skin examination in accordance with the ABCDE rule was performed within the 6-month follow-up and (3) the number of tanning sessions.

Ethics and dissemination Ethical approval was obtained from the ethics committee of the University of Itauna. Results will be disseminated at conferences and in peer-reviewed journals.

Trial registration number NCT03178240; Pre-results.

INTRODUCTION

According to the WHO, the incidence of melanoma is increasing more rapidly than any other major cancer both in Brazil and worldwide. Melanoma is one of the most common cancers in young adults and poses substantial health and economic burdens.1

Approximately 90% of melanomas are associated with UV exposure, in particular with the frequency of severe sunburns, and are therefore highly preventable.2 Multiple studies showed that daily sunscreen use with a sun protection factor (SPF) above 30, as recommended by international dermatology guidelines, may prevent sunburns and skin cancer including melanoma.3–6

Brazil has one of the highest UV indexes on earth; additionally, tanning is culturally established and Brazilians commonly experience unprotected overexposure to the sun, especially in their childhood and teenage years.7–11 In a 2008 population-based survey with 1604 participants in the south of Brazil, 48.7% reported at least one sunburn in the prior year.12 In an attempt to mitigate the health damage caused by excessive UV exposure, Brazil was the first country to prohibit indoor tanning in 2009, although with limited success.9 The Southeast of Brazil (the
location of this study) is especially populated by citizens with a European ancestry and therefore has high incidences of melanoma (up to 23.5/100 000 inhabitants) with a lack of early diagnosis and an overall survival below worldwide rates.12–15

Interventions encouraging sun protection habits are important, particularly among adolescents, as increased risk of skin cancer is associated with cumulative UV exposure and sunburns early in life.16–18 In line with this association, various recent experimental studies to test these effects in young target groups aimed at promoting sunscreen use as an end point19–22 and others used various UV protection behaviours (including avoiding sunbeds) or behavioural scores.23–32 Given the substantial amount of time that children and adolescents spend in the school environment, addressing skin cancer prevention in this setting is crucial and provides a unique opportunity to propel skin cancer prevention programmes.33

Despite the effectiveness of daily sunscreen and its implementation in international dermatological guidelines,34 a study conducted in Brazil among 398 medical students from the city of Curitiba showed that only 8.4% use sunscreen daily, 4.3% had already used tanning beds and 85.5% had past sunburns despite having undergone a clinical rotation in a Dermatology department.8 The lack of exemplary behaviour among prospective physicians regarding skin cancer prevention is known on a global scale.35–37 The authors of this study have concluded that novel engagement methods are needed to answer the increasing demand for skin cancer awareness among physicians.

The Sunface mirroring intervention aims to provide science-based skin cancer prevention to a large number of adolescents and to sensitise prospective physicians to the importance of exemplary behaviour.38–40

Current knowledge on school-based skin cancer prevention

Unhealthy behaviour with respect to UV exposure is mostly initiated in early adolescence,41 commonly with the belief that a tan increases attractiveness42–44 and the problems related to melanoma as well as skin atrophy are too far in the future to fathom.

A recent randomised trial with Australian high school students demonstrated that appearance-based videos on UV-induced premature ageing were superior in encouraging sunscreen use to videos of the same length focusing exclusively on health aspects.19 These findings are in line with international studies demonstrating the important influence of self-perceived attractiveness on self-esteem in adolescence.45–46 Furthermore, enhancing one’s attractiveness is a primary motivation for tanning in adolescents both in Brazil and worldwide.42 47 48 In addition, the success of appearance-based photoageing intervention mobile apps, in which an image is altered to predict future appearance in the fields of tobacco and adiposity prevention, shows promise for these interventions in behavioural change settings.49–56

In the setting of skin cancer prevention, a quasi-experimental study by Williams et al57 demonstrated significantly higher scores for predictors of sun protection behaviour in young women from the UK (70 participants in total) using a photoageing desktop programme. Furthermore, the photoageing software ‘showed promising reduction in young adults’ tanning intentions in a study with 10 participants in total (7 women and 3 men).58 However, prior studies are limited by their small sample size and limitations related to expanding the target population.

Introduction of the Sunface app

We harnessed the widespread availability of mobile phones and adolescents’ interest in appearance to develop the free mobile phone app ‘Sunface,’ which enables the user take a selfie and then offers three categories: ‘daily sun protection’, ‘no sun protection’ and ‘weekly tanning,’ showing the altered face at 5–25 years in the future (figures 1–4). All effects are based on the individual skin type that the user can choose at the
The app also shows the most common UV-induced skin cancers via extra buttons and calculates how the OR is increased with different behaviors. In addition, the app gives advice on sun protection, explains the facial changes and encourages skin examinations using the ABCDE rule (Asymmetry, Border irregularity, Color variety, Diameter and Evolution).

Afterwards, the app offers many sharing options (animated video or photo) with family and friends. By this means, the social network of the user may also be informed about the various photoaging effects of excessive UV exposure and potential health consequences, as well as potentially learning about the benefits of using the app.

To produce realistic effects (figure 6) and to show the user realistic ORs for the options they choose in the app for the three most strongly associated skin pathologies, an extensive review of the current literature on UV-induced skin damage was conducted for each specific skin type. As no trials with 25 years of follow-up were available, we had to extrapolate the current evidence on UV-induced skin damage for the specific skin types. The evidence consists of more than 50 publications to create realistic effects from a clinician’s standpoint (which may differ from what the average person perceives as realistic).

We recently implemented this app in two German secondary schools via a method called mirroring. We ‘mirrored’ the students’ altered three-dimensional (3D) selfies on mobile phones or tablets via a projector in front of their entire grade. Using an anonymous questionnaire, we then measured sociodemographic data as well as risk factors for melanoma and the perceptions of the intervention on a 5-point Likert scale among 205 students of both sexes aged 13–19 years (median 15 years).
In our pilot study, we found more than 60% agreement in both items measuring motivation to reduce UV exposure and only 12.5% disagreement: 126 (63.0%) agreed or strongly agreed that their 3D selfie motivated them to avoid using a tanning bed, and 124 (61.7%) agreed or strongly agreed to increase use of sun protection; only 25 (12.5%) disagreed with both items. However, no effects on actual behaviour could be measured due to the cross-sectional design of the study.63

This randomised trial was designed to answer the following questions:

Is the implementation of the app in secondary schools in southeastern Brazil effective in encouraging daily sunscreen use among adolescents? Is it equally effective for both genders? Is it effective for the most sensitive skin types? How does the app intervention change the attitudes towards sun protection in accordance with the theory of planned behaviour (TPB)?64

METHODS AND ANALYSIS

Study design

The Sunface trial is designed as a randomised controlled superiority trial with two parallel groups. Our primary end point is the difference between the two groups in daily sunscreen use (past 30 days) from baseline to 6-month follow-up (figure 7). The planned study period is February 2018 to November 2018. The study groups will consist of randomised classes receiving the intervention and control classes within the same schools (no intervention). Randomisation is externally and centrally performed at the school level with a 1:1 allocation (control to intervention) via computer.12 A total of at least 60 secondary school classes in Itauna, Brazil will participate in the teacher-supervised baseline survey in February 2018, which is conducted by trained data collectors. One week after the baseline survey, the intervention classes receive a 45 min app-based intervention conducted by
local medical student volunteers. Follow-up surveys will be conducted at 3 and 6 months postintervention (figure 7).

Intervention

The school-based intervention under evaluation consists of a 45 min educational module in the classroom setting using a photoageing app. The intervention is presented by two medical students per classroom to approximately 21 students at a time. The goal is to initiate and guide the student evaluation process of skin cancer prevention with age-appropriate information that helps the students reframe positive opinions and views regarding sun protection habits in a gain-framed and interactive manner.

To integrate app-based photoageing interventions into a school-based setting, we previously developed and tested the mirroring approach in a pilot study. Mirroring means that the students’ altered 3D selfies on smartphones or tablets are ‘mirrored’ via a projector in front of the entire class. The mirroring approach is implemented by medical student volunteers from the University of Itauna, who receive standardised training in advance. To ensure the participation of all students within a certain class and to avoid contamination within schools, we will implement the mirroring intervention via 10 Samsung Galaxy Tablets that are already set up and brought to the schools by the volunteers.

In the first 10 min phase, the displayed face of one student volunteer is used to show the app’s altered features in the three categories to the peer group, providing an incentive for the rest of the class to test the app. Students can interact with their own animated face via touch (see online multimedia supplementary appendix 1). In front of their peers, they will be able to display their image as a non-sun protection user/sun protection user/weekly tanning bed user at 5, 10, 15, 20 and 25 years in the future (see figures 1 and 2). Multiple device displays can be projected simultaneously, which are used to consolidate the altered measures with graphics (eg, to explain wrinkle formation). We implement mirroring with Galaxy Tab A (Samsung) via Apple’s proprietary AirPlay interface using the Android app ‘Mirroring360’ (Splashtop).

In the second 15 min phase, students are encouraged to try the app on one of the tablet computers. The number of provided tablet computers was calculated so that the phase would take up to 12 min at most after factoring in a usage time of approximately 4 min per student. By this calculation, 25 min of the mirroring intervention and 10 provided tablets were sufficient to have every student within a class of 40 pupils successfully photoaged at least once.

In the following 15 min, the remaining functions of the app are discussed with the students: facial changes, the
ABCDE rule and the guidelines for sun protection are addressed in an interactive setting. At the end of the classroom seminar, we ask for the students’ final judgements on daily sunscreen use to create positive peer pressure and influence the students’ subjective norm in accordance with the TPB.

In the last 5 min, the perception of the intervention by the students is measured directly after the intervention in an anonymous survey on a 5-point Likert scale via four items: (1) ‘The animation of my 3D selfie motivates me to use daily sunscreen’, (2) ‘I learned new benefits of sun protection’, (3) ‘The intervention motivates me to check my skin with the ABCDE rule in the next 6 months’ and (4) ‘The intervention was fun’.

Participants
Eligibility criteria at baseline
Students from Itauna in Southeast Brazil attending grades 6 to 12 in all types of regular secondary school are eligible.

Contaminated classes
All classes will be included in the final intention-to-treat analysis. However, app use will be assessed in both groups at 6-month follow-up to assess contamination of control classes and will be the basis for a secondary (sensitivity) analysis with the methods described in the Analysis section of this protocol.

Procedure
The schools are recruited via email, telephone and personal appointment (in most cases with the principal). Reasons for non-participation are not recorded. Data are collected via a paper–pencil questionnaire. In addition to sociodemographic data (age, gender and school type), the questionnaire captures the Fitzpatrick skin type, the ancestry of the school students and the frequency of sunscreen use in the past 30 days as well as other sun protection behaviours. These items are based on the Sun Exposure and Protection Index questionnaire and were either used in their original form or adapted to the specific circumstances of the present study. No Portuguese equivalents of the instruments were available; thus, we used the conceptual method for translation described by the WHO/UNESCAP (United Nations Economic and Social Commission for Asia) Project on Health and Disability Statistics. Newly translated and/or modified items were extensively pretested and subjected to statistical analyses (internal consistency/Cronbach’s α and exploratory and confirmatory factor analyses, which represented the basis for item selection).

Data collection
Each data collector received training for data collection and was required to use an adapted standardised protocol for data collection, an optimised version of that used in the Smokerface randomised trial.

Cluster randomisation
In accordance with the guidelines for good epidemiological practice, classes within schools are externally and centrally randomly assigned to the control or intervention group via block randomisation in a 1:1 ratio (control to intervention) via computer by a statistician at the University of Duisburg-Essen, Germany. Stratification will be performed by grade.

Outcomes
The primary end point is the difference in the 30-day prevalence of daily sunscreen use between both groups at 6-month follow-up. Secondary end points include the difference in daily sunscreen use at 3-month follow-up, if a self-skin examination in accordance with the ABCDE rule was performed within the 6-month follow-up and the number of tanning sessions in the past 30 days. For all end points, the number needed to treat will also be calculated. A daily sunscreen user is defined as a pupil who claims to have used sunscreen daily or almost daily in the 30 days preceding the survey.

Statistical considerations
Sample size calculation
We calculated sample sizes of 630 in the intervention group and 630 in the control group, which were obtained by sampling 30 classes with 21 students each in the intervention group and 30 classes with 21 students each in the control group to achieve 80% power to detect a prevalence difference between the groups of 5%. The daily sunscreen prevalence was assumed to be 6% under the null hypothesis and 11% under the alternative hypothesis based on a small pilot survey with 150 students in Itauna. The test statistic used is the two-sided score test (Farrington & Manning). The significance level of the test is 0.05. Normal class size in Brazil is 35 pupils; a lost to follow-up effect of 40% was taken into account.

Data entry
Data entry will be supported by the current software version of Formic Fusion by Xerox AG (Kloten, Switzerland) and the recommended scanners.

Analysis
To examine baseline differences in pupils’ characteristics in our experimental design, we will use χ² tests for categorical variables and t-tests for continuous variables. To test for between-group differences in baseline and follow-up daily sunscreen use in the past 30 days, we will use a cluster-adjusted Mantel-Haenszel χ² test with a significance level of 5% (two-sided). For the main analysis, hierarchical linear models (HLMs) will be applied. HLM can handle the nested structure of the data and will be used to test for between-group differences in within-group changes in sun protection behaviour over time. HLM will also be used to investigate the influence of further covariates (such as gender, European ancestry and skin type) and time-dependent behaviour in secondary analyses. Statistical analyses will be performed using SPSS Statistics V.24.
The effect that missing data may have on results will be assessed via sensitivity analysis. Dropouts (essentially participants who withdraw consent for continued follow-up or who are missing from the classroom during the survey) will be included in the analysis and multiple imputation will be used to estimate the treatment effect.70

DISCUSSION

This is the first cluster-randomised school-based trial on photovoltaic skin cancer prevention and the first trial on medical student-delivered school-based skin cancer prevention worldwide. While classic health educational school-based approaches in skin cancer prevention were evaluated as inferior to appearance-based approaches,19 there is a global lack of novel, innovative strategies that harness current technology while taking widely accepted theories for behavioural change into account.60 Although multiple studies have shown that skin cancer risk is predominantly associated with sun exposure early in life, there is often a lack of awareness in risk groups.

Thus, this trial provides the opportunity to evaluate an innovative, highly scalable, appearance-based intervention in a high-risk population. It will also provide data to estimate whether photovoltaic mobile apps have the potential to be broadly implemented in schools via the mirroring intervention but also via other avenues (ie, posters68 or smartphone-based advertising campaigns in the App Store and Google Play Store) or could be a valuable addition to existing educational programmes. Additionally, because it is delivered by medical students, this trial also sensitises future physicians to the importance of skin cancer prevention, highlighting their associated responsibilities within communities.35, 71

According to the TPB, the subjective norm and the expected self-efficacy of the participants play a substantial role in their resulting behaviour. For example: What do their peers think about tanning? Is the result of tanning regarded as attractive and does it therefore increase one’s chances of finding a boy/girlfriend? How likely is it that a behavioural change can positively influence this reaction? The mirroring intervention triggers strong reactions of the peer group of the individual participant towards their photovoltaic future self (=affecting subjective norm) but also illustrates the power of one’s own behavioural change (and thereby increases one’s expectation of self-efficacy, another predictor of the TPB) to influence this reaction by peers.52

Limitations

Because this study is conducted only in Brazil, the results may not be generalizable to other cultural or national settings. However, the theoretical basis for this intervention (the TPB) has been proven to apply to most cultural contexts around the globe.64 As this trial enrols approximately 10 different public schools, it should be representative for most school types.

We must choose classes and not schools as a cluster due to sample size limitations; thus, cluster effects cannot be entirely excluded. However, multiple steps are taken to limit contamination between the control and intervention classes (ie, the name of the app is not mentioned to the pupils by the trained medical students and the teachers of the control classes are strictly prohibited to talk about the intervention with their students). Cluster effects are also monitored in the end line questionnaire and provide a basis for a sensitivity analysis.

Some students may find the effects of the Sunface app unrealistic, as indicated in our recently published pilot study. However, this does not appear to attenuate motivation to adhere to UV protection behaviour.63

In summary, we evaluate the long-term effects on behaviour of a novel method that integrates photovoltaic in a school-based skin cancer prevention programme in a population with a high risk for developing skin cancer. The programme affects the students’ peer group and also considers predictors for tanning.

ETHICS AND DISSEMINATION

Participation is voluntary and oral consent is sufficient. The ethics committee of the University of Itauna waived the necessity for informed written consent. All participant information will be stored in locked file cabinets in areas with limited access. The participants’ study information will not be released outside the study without the written permission of the participant. Results will be disseminated at conferences, in peer-reviewed journals and on our websites.

Author affiliations

1Department of Dermatology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
2National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
3Department of Dermatology, Venerology and Allergology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
4School of Medicine, University of Itauna, Itauna, Brazil
5Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
6Department of Dermatology and Allergology, University Medical Center Munich, Munich, Germany
7Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
8Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
9School of Medicine, Federal University of Ouro Preto, Ouro Preto, Brazil

Acknowledgements

The authors thank all participating schools, students, volunteering medical students and teachers who helped to organise the classroom visits in the city of Itauna.

Contributors

TJB initiated the study, invented, designed and organised the intervention, wrote the manuscript, drafted the design of the study and will perform the statistical analyses. BB-S participated in the conception of the study, MVH, MCK, YN, MG, FB and DS contributed to the design of the study and data analyses and proof-read the manuscript. BB-S and DCL contributed to the design and logistics of the study, assisted with the translation of classroom materials and reviewed the final version of the manuscript. BLF, OMdF, HAL and ACCO will conduct data entry and coordinate/conduct the intervention in Brazil. They also supported the translation of the classroom materials and proof-read the manuscript. All authors
declare responsibility for the data and findings presented and have full access to the final trial dataset.

Funding The tablets are funded by the Young Research Award Research Grant from La Fondation La Roche Posay awarded to TJB for his research on the Sunface tablets. La Roche Posay (LA FONDATION LA ROCHE-POSAY, Att: Cécile Voletm 62 quai Charles Pasqua, 92300 LEVALLOIS PERRET, France) and the University of Itauna Funding Board had no role in the design and conduction of this study or in the preparation, review or approval of this manuscript.

Disclaimer La Fondation La Roche Posay (LA FONDATION LA ROCHE-POSAY, Att: Cécile Voletm 62 quai Charles Pasqua, 92300 LEVALLOIS PERRET, France) and the University of Itauna Funding Board had no role in the project and copies of all questionnaires.

Competing interests None declared.

Patient consent Obtained.

Ethics approval Ethics approval was obtained from the ethics committee of the University of Itauna.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES
1. Livingstone E, Windermuth-Kieselbach C, Eigentler TK, et al. A first prospective population-based analysis investigating the actual practice of melanoma diagnosis, treatment and follow-up. Eur J Cancer 2011;47:1977–89.
2. The Lancet Editorial Board. Skin cancer: prevention is better than cure. Lancet 2014;384:470.
3. Green AC, Williams GM, Logan V, et al. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 2011;29:257–63.
4. Ghiaasand R, Weiderpass E, Green AC, et al. Sunscreen use and subsequent melanoma risk: a population-based cohort study. J Clin Oncol 2016;34:3976–83.
5. Nijsten T. Sunscreen use in the prevention of Melanoma: common sense rules. Virginia, USA: American Society of Clinical Oncology, 2016.
6. Ou-Yang H, Jiang L, Meyr K, et al. Sun protection by beach umbrella vs sunscreen with a high sun protection factor: a randomized clinical trial. JAMA Dermatol 2017;153:304–8.
7. Benvenuto-Andrade C, Zen B, Fonseca G, et al. Sun exposure and protection habits among high-school adolescents in Porto Alegre, Brazil. Photochem Photobiol 2005;81:630–5.
8. Purim KSM, Wroblewski FC. Sun exposure and protection among medical students in curitiba (PR). Rev bras educ med 2014;38:477–85.
9. Schalka S, Steiner D, Ravelli FN, et al. Brazilian consensus on photoprotection. An Bras Dermatol 2014;89:1–74.
10. Haack RL, Horta BL, Cesar JA. [Sunburn in young people: population-based study in Southern Brazil]. Rev Saude Publica 2008;42:26–33.
11. Silva AA. Outdoor Exposure to Solar Ultraviolet Radiation and Legislation in Brazil. Health Phys 2016;110:623–6.
12. Lima AS, Stein CE, Casemiro KP, et al. Epidemiology of melanoma in the South of Brazil: study of a city in the Vale do Itajaí from 1999 to 2013. An Bras Dermatol 2015;90:185–9.
13. Vazquez VL, Silva TB, Vieira MA, et al. Melanoma characteristics in Brazil: demographics, treatment, and survival analysis. BMC Res Notes 2015;8:64.
14. Amancio CT, Nascimento LF. Cutaneous melanoma in the State of São Paulo: a spatial approach. An Bras Dermatol 2014;89:442–6.
15. Naser N. Cutaneous melanoma: a 30-year-long epidemiological study conducted in a city in southern Brazil, from 1980-2009. An Bras Dermatol 2011;86:932–41.
16. Lo JA, Fisher DE. The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science 2014;346:945–9.
17. Wu S, Han J, Laden F, et al. Long-term ultraviolet flux, other potential risk factors, and skin cancer risk: a cohort study. Cancer Epidemiol Biomarkers Prev 2014;23:1080–9.
18. Barton MK. Indoor tanning increases melanoma risk, even in the absence of a sunburn. CA Cancer J Clin 2014;64:367–8.
19. Tuong W, Armstrong AW. Effect of appearance-based education compared with health-based education on sunscreen use and knowledge: a randomized controlled trial. J Am Acad Dermatol 2014;70:665–9.
20. Craciun C, Schiz N, Lipiske S, et al. Facilitating sunscreen use in women by a theory-based online intervention: a randomized controlled trial. J Health Psychol 2012;17:207–16.
21. Hirst NG, Gordon LG, Scurruff PA, et al. Lifetime cost-effectiveness of skin cancer prevention through promotion of daily sunscreen use. Value Health 2012;15:261–8.
22. Sakoufaki M, Stergiopoulou A, Stratigos A. Design and implementation of a health promotion program to prevent the harmful effects of ultraviolet radiation at primary school students of rural areas of Greece. Int J Res Dermatol 2017;3:306.
23. Miller KA, Langholz BM, Ly T, et al. SunSmart: evaluation of a pilot school-based sun protection intervention in Hispanic early adolescents. Health Educ Res 2015;30:371–9.
24. Aarestrup C, Bonnesen CT, Thygensen LC, et al. The effect of a school-based intervention on sunbathed use in Danish pupils at continuation schools: a cluster-randomized controlled trial. J Adolesc Health 2014;54:214–20.
25. Holman DM, Fox KA, Glenn JD, et al. Strategies to reduce indoor tanning: current research gaps and future opportunities for prevention. Am J Prev Med 2013;44:672–81.
26. Hissnour J, Turrisi R, Scaglione NM, et al. A web-based intervention to reduce indoor tanning motivations in adolescents: a randomized controlled trial. Prev Sci 2017;18:131-140.
27. Stapleton JL, Hillhouse J, Levonyan-Radloff K, et al. Review of interventions to reduce ultraviolet tanning: Need for treatments targeting excessive tanning, an emerging addictive behavior. Psychol Addict Behav 2017;31:962–78.
28. Olson AL, Gaffney C, Starr P, et al. SunSafe in the Middle School Years: a community-wide intervention to change early-adolescent sun protection. Pediatrics 2007;119:e247–56.
29. Miller KA, Huh J, Urbin JS, et al. Patterns of sun protective behaviors among Hispanic children in a skin cancer prevention intervention. Prev Med 2015;81:303–8.
30. Turner D, Harrison SL, Buettner P, et al. Does being a “SunSmart School” influence hat-wearing compliance? An ecological study of hat-wearing rates at Australian primary schools in a region of high sun exposure. Prev Med 2014;60:107-14.
31. Buller DB, Andersen PA, Walkosz BJ, et al. Rationale, design, samples, and baseline sun protection in a randomized trial on a skin cancer prevention intervention in resort environments. Contemp Clin Trials 2016;48:67-75.
32. Sonntag JM, Noar SM. Assessing the potential effectiveness of pictorial messages to deter young women from indoor tanning: an experimental study, J Health Commun 2017;22:294–303.
33. Guy GP, Holman DM, Watson M. The Important Role of Schools in the Prevention of Skin Cancer. JAMA Dermatol 2016;152:1083–4.
34. Farberg AS, Glazer AM, Rigel AC, et al. Dermatologists’ Perceptions, Recommendations, and Use of Sunscreen. JAMA Dermatol 2017;153:99-101.
35. Isvy A, Beaucet A, Siaqi P, et al. Medical students and sun prevention: knowledge and behaviours in France. J Eur Acad Dermatol Venereol 2013;37:2427-2427.
36. Nannes JE, McGrath JM, Krejci-Manwaring J. Medical students’ perceptions of skin cancer: confusion and disregard for warnings and the need for new preventive strategies. Arch Dermatol 2012;148:392–3.
37. Patell SS, Nijhawan RI, Stechschulte S, et al. Skin Cancer awareness, attitude, and sun protection behavior among medical students at the University of Miami Miller School of Medicine. Arch Dermatol 2013;149:797–800.
38. Brinker TJ, Stamm-Balderjahn S, Seeger W, et al. Education Against Tobacco (EAT): a quasi-experimental prospective evaluation of a multinational medical-student-delivered smoking prevention programme for secondary schools in Germany. BMJ Open 2016;5:e008093.
39. Brinker TJ, Stamm-Balderjahn S, Seeger W, et al. Education Against Tobacco (EAT): a quasi-experimental prospective evaluation of a programme for preventing smoking in secondary schools delivered by medical students: a study protocol. BMJ Open 2014;4:e004909.
40. Brinker TJ, Heckl M, Gatzka M, et al. A skin cancer prevention photogating intervention for secondary schools in Brazil delivered by medical students: observational study. JMIR Mhealth Uhealth 2018.
41. Görg T, Diehl K, Greinert R, et al. Prevalence of sun-protective behaviour and intentional sun tanning in German adolescents and adults: results of a nationwide telephone survey. J Eur Acad Dermatol Venereol 2017;31:1077–e1273–306.

42. Schneider S, Diehl K, Bock C, et al. Sunbed use, user characteristics, and motivations for tanning: results from the German population-based SUN-Study 2012. JAMA Dermatol 2013;149:43–9.

43. Hillhouse J, Turrisi R, Scaglione NM, et al. A web-based intervention to reduce indoor tanning motivations in adolescents: a randomized controlled trial. Prev Sci 2017;18:131–40.

44. Baudson TG, Weber KE, Freund PA. More than only skin deep: appearance self-concept predicts most of secondary school students’ self-esteem. Front Psychol 2016;7.

45. Baudson TG, Weber KE, Freund PA. More than only skin deep: demonstration of changes to physical appearance may enhance weight loss attempts. Eur J Public Health 2015;25:283–5.

46. Brinker TJ, Enk A, Gatzka M, et al. A Dermatologist’s Ammunition in the War Against Smoking: A Photoaging App. J Med Internet Res 2017;19:e326.

47. Williams AL, Grogan S, Clark-Carter D, et al. Impact of a facial-aging intervention versus a health literature intervention on women’s sun protection attitudes and behavioural intentions. Psychol Health 2013;28:993–1008.

48. Lo Presti L, Chang P, Taylor MF. Young Australian adults’ reactions to viewing personalised UV photoaged photographs. Australas Med J 2014;7:65–61.

49. Robinson JK, Wayne JD, Martini MC, et al. Early detection of new melanomas by patients with melanoma and their partners using a structured skin self-examination skills training intervention: a randomized clinical Trial. JAMA Dermatol 2016;152:979–85.

50. Brinker TJ, Schadendorf D, Kloe J, et al. Photoaging mobile apps as a novel opportunity for Melanoma prevention: pilot study. JMIR Mhealth Uhealth 2017;5:e101.

51. D’Orazio J, Jarrett S, Amaro-Ortiz A, et al. UV radiation and the skin. Int J Mol Sci 2013;14:2222–22.

52. Kamnayer A, Lufien RM. Oxidation events and skin aging. Ageing Res Rev 2015;21:16–29.

53. Brinker TJ, Bréikes CM, Schaefer CM, et al. Photoaging mobile apps in school-based melanoma prevention: pilot study. J Med Internet Res 2017;19:e319.

54. Alpen I. The theory of planned behavior. In: Lange PAM, Kruglanski AW, eds. Handbook of theories of social psychology, Vol. 1. London, UK: Sage; 2012: pp. 438–59.

55. Bakos L, Masiero NC, Bakos RM, et al. European ancestry and cutaneous melanoma in Southern Brazil. J Eur Acad Dermatol Venereol 2009;23:304–7.

56. Detert H, Hedlund S, Anderson CD, et al. Validation of sun exposure and protection index (SEPI) for estimation of sun habits. Cancer Epidemiol 2015;39:986–93.

57. Bobe J, Jagger C. Translation & linguistic evaluation protocol & supporting material. Geneva, Switzerland: WHO/UNESCAP Project on Health and Disability Statistics, 2003.

58. Brinker TJ, Holzapfel J, Baudson TG, et al. Photoaging smartphone app promoting poster campaign to reduce smoking prevalence in secondary schools: the smokeface randomized trial: design and baseline characteristics. BMJ Open 2016;6:e014288.

59. Donald A, Donner A. Adjustments to the Mantel-Haenszel chi-square statistic and odds ratio variance estimator when the data are clustered. Stat Med 1987;6:491–9.

60. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009;338:b2393.

61. Rat C, Houd S, Gaultier A, et al. General practitioner management related to skin cancer prevention and screening during standard medical encounters: a French cross-sectional study based on the International Classification of Primary Care. BMJ Open 2017;7:e013033.