REDUCED INVARIANT SETS

GERALD W. SCHWARZ

In honor of Dick Palais

Abstract. Let K be a compact Lie group and W a finite-dimensional real K-module. Let X be a K-stable real algebraic subset of W. Let $\mathcal{I}(X)$ denote the ideal of X in $\mathbb{R}[W]$ and let $\mathcal{I}_K(X)$ be the ideal generated by $\mathcal{I}(X)^K$. We find necessary conditions and sufficient conditions for $\mathcal{I}(X) = \mathcal{I}_K(X)$ and for $\sqrt{\mathcal{I}_K(X)} = \mathcal{I}(X)$. We consider analogous questions for actions of complex reductive groups.

1. Introduction

Let K be a compact Lie group, let W be a finite-dimensional real K-module and let $X \subset W$ be K-invariant and real algebraic (the zero set of real polynomial functions on W). Let $\mathcal{I}(X)$ denote the ideal of X in $\mathbb{R}[W]$. Let $\mathbb{R}[W]^K$ denote the K-invariants in $\mathbb{R}[W]$ and let $\mathcal{I}_K(X)$ be the ideal generated by $\mathcal{I}(X)^K := \mathcal{I}(X) \cap \mathbb{R}[W]^K$. We say that X is K-reduced if $\mathcal{I}_K(X) = \mathcal{I}(X)$ and almost K-reduced if $\sqrt{\mathcal{I}_K(X)} = \mathcal{I}(X)$. Let Kw be an orbit in W. Then the slice representation at w is the action of the isotropy group K_w on N_w, where N_w is a K_w-complement to $T_w(Kw)$ in $W \cong T_w(W)$. An orbit $Kw \subset W$ is principal (resp. almost principal) if the image of K_w in $\text{GL}(N_w)$ is trivial (resp. finite). We denote the principal (resp. almost principal) points of W by W_{pr} (resp. W_{apr}) and we set $X_{\text{pr}} := W_{\text{pr}} \cap X$ and $X_{\text{apr}} := W_{\text{apr}} \cap X$. The strata of W are the collections of points $S \subset W$ whose isotropy groups are conjugate. There are finitely many strata. If $\mathbb{R}[W]$ is a free $R[W]^K$-module, then we say that W is cofree. In the following, when we talk about one set being dense in another, we are referring to the Zariski topology.

Here are our main results:

Theorem 1.1. If X is K-reduced (resp. almost K-reduced), then X_{pr} (resp. X_{apr}) is dense in X, and conversely if W is cofree.

Theorem 1.2. Let $w \in W$. Then the orbit Kw is K-reduced (resp. almost K-reduced) if and only if Kw is principal (resp. almost principal).

To prove the results above and to obtain further results we need to complexify. Let $V = W \otimes_{\mathbb{R}} \mathbb{C}$ and $G = K_{\mathbb{C}}$ be the complexifications of W and K. We have the quotient morphism $\pi: V \to V//G$ where π is surjective, $V//G$ is an affine variety and $\pi^*\mathbb{C}[V//G] = \mathbb{C}[V]^G$. We have the Luna strata of the quotient $V//G$ whose inverse images in V are the strata of V. The strata of V are in 1-1 correspondence with those of W [Sch80, §5]. Let $Y = X_{\mathbb{C}}$ be the complexification of X (the Zariski closure of X in V). We say that Y is G-saturated if $Y = \pi^{-1}(\pi(Y))$ and that Y is G-reduced if the ideal $\mathcal{I}(Y)$ of Y is generated by $\mathcal{I}(Y)^G$. We can define Y_{apr} and Y_{pr} as above (see §3). If f_1, \ldots, f_k are functions on a complex variety, let $\mathcal{I}(f_1, \ldots, f_k)$ denote the ideal they generate.

Theorem 1.3. (1) X is almost K-reduced if and only if Y is G-saturated.
(2) X is K-reduced if and only if Y is G-reduced.
(3) X_{apr} (resp. X_{pr}) is dense in X if and only if Y_{apr} (resp. Y_{pr}) is dense in Y.
Theorem 1.4. Assume that $Y \parallel G \subset V \parallel G$ is the zero set of f_1, \ldots, f_k.

1. Suppose that Y_{apr} is dense in Y and that for any stratum S of V which intersects $Y \setminus Y_{apr}$ the codimension of S in V is at least $k + 1$. Then Y is G-saturated.

2. Suppose that Y_{pr} is dense in Y and that Y is G-saturated. In addition, suppose that $\mathcal{I}(\pi(Y)) = \mathcal{I}(f_1, \ldots, f_k)$ where Y has codimension k in V. Then Y is G-reduced.

Corollary 1.5. If (1) above holds, then X is almost K-reduced. If (2) holds, then X is K-reduced.

In sections 2–4 we consider when a general G-invariant $Y \subset V$ is G-saturated or G-reduced and we establish Theorem 1.4. In section 5 we treat the real case by complexifying. At the end of section 5 we establish Theorems 1.1, 1.2 and 1.3.

D. Ž. Djoković posed the question of identifying the X which are K-reduced. Our results give a partial answer. We thank M. Raïss for transmitting the question to us. We thank the referee for a careful reading of the manuscript, helpful suggestions and Lemma 3.3.

2. The complex case

Let G be a complex reductive group and Y an affine algebraic set with an algebraic G-action. Dual to the inclusion $\mathbb{C}[Y]^G \subset \mathbb{C}[Y]$ we have the quotient morphism $\pi_Y : Y \to Y \parallel G$. Let V be a finite-dimensional G-module and let Y be a G-stable algebraic subset of V (the zero set of an ideal of $\mathbb{C}[V]$). We shall denote π_Y simply by π. Then $\pi_Y = \pi|_Y$ and $\pi(Y) \simeq Y \parallel G$ is an algebraic subset of $V \parallel G$. We say that Y is G-saturated if $Y = \pi^{-1}(\pi(Y))$. Let $\mathcal{I}(Y)$ denote the ideal of Y in $\mathbb{C}[V]$ and let $\mathcal{I}_G(Y)$ denote the ideal generated by $\mathcal{I}(Y)^G$. We say that Y is G-reduced if $\mathcal{I}(Y) = \mathcal{I}_G(Y)$. The null cone $\mathcal{N}(V)$ of V is the fiber $\pi^{-1}(\pi(0))$. Then $\mathcal{N}(V)$ is (scheme theoretically) defined by the ideal $\mathcal{I}_G(\{0\})$ so that the scheme $\mathcal{N}(V)$ is reduced if and only if the set $\mathcal{N}(V)$ is G-reduced, in which case we say that V is coreduced. See [KS11] for more on coreduced representations.

The points of $V \parallel G$ are in one-to-one correspondence with the closed G-orbits in V. The Luna strata of $V \parallel G$ are the sets of closed orbits whose isotropy groups are all G-conjugate. There are finitely many strata in $V \parallel G$, and we consider their inverse images in V to be the strata of V. Let $v \in V$ such that Gv is closed. Then the isotropy group G_v is reductive, and there is a G_v-stable complement N_v to $T_v(Gv)$ in $V \simeq T_v(V)$. We call the action of G_v on N_v the slice representation at v.

We start with some examples.

Example 2.1. Let $(V, G) = (k\mathbb{C}^n, \text{SL}_n)$, $k \geq n$. The invariants are generated by the determinants \det_{i_1, \ldots, i_n} where the indices $1 \leq i_1 < \cdots < i_n \leq k$ tell us which n copies of \mathbb{C}^n to take. Then V is coreduced since $\mathcal{N}(V)$ is the determinantal variety of $(k \times n)$-matrices of rank at most $n - 1$. See also [KS11]. All orbits outside the null cone are closed with trivial isotropy group, hence are principal.

Example 2.2. Let $G \subset \text{GL}(V)$ be finite and nontrivial. Then $\mathcal{N}(V)$ is the origin which is G-saturated but not G-reduced.

Part (2) of the proposition below follows from Serre’s criterion for reducedness [Mat80, Ch. 7]. Part (1) also follows, using the Jacobian criterion for smoothness.

Proposition 2.3. Let $Y \subset V$ be a G-saturated algebraic set.

1. If Y is G-reduced, then for every irreducible component Y_k of Y there is a point of Y_k where rank $f = \text{codim } Y_k$. Here $f = (f_1, \ldots, f_d) : V \to \mathbb{C}^d$ and the f_i generate $\mathcal{I}_G(Y)$.

2. If $\mathcal{I}_G(Y) = \mathcal{I}(f_1, \ldots, f_d)$ where the $f_i \in \mathbb{C}[V]^G$ and Y has codimension d, then Y is G-reduced if and only if the rank condition of (1) is satisfied.
Example 2.4. Let $G = \SO_3(\mathbb{C})$ acting as usual on $V = 2\mathbb{C}^3$. Then the invariants are generated by inner products $f_{ij}, 1 \leq i \leq j \leq 2$. Each copy of \mathbb{C}^3 has a weight basis $\{v_2, v_0, v_{-2}\}$ relative to the action of the maximal torus $T = \mathbb{C}^*$ where v_j has weight j. The null cone $Y := \mathcal{N}(V)$ is the G-orbit of all the vectors $v = (\alpha v_2, \beta v_2)$ for $\alpha, \beta \in \mathbb{C}$. But one easily calculates that the rank of $(f_{11}, f_{22}, f_{12}) : V \to \mathbb{C}^3$ at v is at most 2 while Y has codimension 3. Thus the null cone is not G-reduced.

3. The case where Y_{pr} or Y_{apr} is dense in Y

Throughout this section we assume that V is a stable representation of G, i.e., there is a nonempty open subset of closed orbits. This is always the case when $(V,G) = (W_{\mathbb{C}}, K_{\mathbb{C}})$ is a complexification ([Lun72] or [Sch80, Cor. 5.9]). Let Gv be a closed orbit. We say that Gv is principal if the slice representation (N_{v}, G_{v}) is a trivial representation and that Gv is almost principal if $G_{v} \to \GL(N_{v})$ has finite image. We denote the principal (resp. almost principal) points of V by V_{pr} (resp. V_{apr}). If $Y \subset V$ is G-stable, we set $Y_{pr} = Y \cap V_{pr}$ and $Y_{apr} = Y \cap V_{apr}$. Both Y_{apr} and Y_{pr} are open in Y. In general, the fiber of π through a closed orbit $Gv \subset V$ is $G \times^{G_{v}} \mathcal{N}(N_{v})$ (the G-fiber bundle with fiber $\mathcal{N}(N_{v})$ associated to the G_{v}-principal bundle $G \to G/G_{v}$). Thus the fiber is set-theoretically the orbit if and only $\mathcal{N}(N_{v})$ is a point. This happens if and only if the image $G_{v} \to \GL(N_{v})$ is finite, i.e., $v \in V_{apr}$. Hence Y_{apr} is always G-saturated. Similarly, the fiber is scheme-theoretically the orbit if and only if $\mathcal{N}(N_{v})$ is schematically a point which is equivalent to G_{v} acting trivially on N_{v}, i.e., we have $v \in V_{pr}$. Hence Y_{pr} is always G-reduced. To sum up we have

Proposition 3.1. Let Gv be a closed orbit and let $Y \subset V$ be a G-stable algebraic set.

1. If $Y = Y_{apr}$, then Y is G-saturated. In particular, Gv is G-saturated if and only if it is almost principal.
2. If $Y = Y_{pr}$, then Y is G-reduced. In particular, Gv is G-reduced if and only if it is principal.
3. The fiber $\pi^{-1}(\pi(v))$ is G-reduced if and only if the slice representation (N_{v}, G_{v}) is coreduced.

Corollary 3.2. If the isotropy groups of G acting on Y are all finite, then Y is G-saturated and if G acts freely on Y, then Y is G-reduced.

Of course, it is possible that Y is G-saturated (resp. G-reduced) even if Y_{apr} (resp. Y_{pr}) is empty. But in the case of a complexification $Y = X_{\mathbb{C}}$ it is necessary for G-saturation (resp. G-reducedness) that Y_{apr} (resp. Y_{pr}) is dense in Y (see §5). We consider the case that Y_{apr} or Y_{pr} is not dense in Y in the next section.

Unfortunately, we do not have the analogues of Proposition 3.1(1) and (2) for X. See Example 5.3 below.

Recall that V is cofree if $\mathbb{C}[V]$ is a free $\mathbb{C}[V]^{G}$-module. Equivalently, $\pi : V \to V/\!/G$ is flat, or $\mathbb{C}[V]^{G}$ is a regular ring and the codimension of $\mathcal{N}(V)$ is $\dim \mathbb{C}[V]^{G}$ [Sch80, Proposition 17.29].

We owe the following lemma to the referee.

Lemma 3.3. Let V be a cofree G-module and let $U \subset V/\!/G$ be locally closed.

1. We have $\pi^{-1}(\overline{U}) = \pi^{-1}(\overline{U})$.
2. If $\pi^{-1}(U)$ is reduced, then so is $\pi^{-1}(\overline{U})$.

Proof. For (1) set $Z := \pi^{-1}(\overline{U})$. Then $\pi(Z)$ is closed [Kra84, II.3.2], hence $\pi(Z) = \overline{U}$. Since π is flat, so is $\pi^{-1}(\overline{U}) \to \overline{U}$. Set $S := \pi^{-1}(\overline{U}) \setminus Z$. Then S is open, hence $\pi(S)$ is open in \overline{U} (by flatness). By construction, $\pi(S)$ does not meet U, hence we must have $S = \emptyset$, establishing (1).
For (2) we can assume that $U = \overline{U} = \{u \in \overline{U} \mid f(u) \neq 0\}$ for $f \in C[U]$. Set $Z := \pi^{-1}(\overline{U})$, the schematic inverse image of \overline{U}. Since $C[U] \rightarrow C[\overline{U}] = C[U]_{f}$ is injective and $C[Z]$ is flat over $C[U]$, it follows that $C[Z] \rightarrow C[Z]_{f} = C[\pi^{-1}(U)]$ is also injective. Since the latter ring is reduced, so is $C[Z]$ and we have established (2). \hfill \square

Corollary 3.4. Suppose that (V,G) is cofree and that $Y \subset V$ is a G-stable algebraic set such that Y_{apr} is dense in Y. Then Y is G-saturated.

Example 3.5. Let $(V,G) = (4C^{2}, SL_{2})$ and let $Y = 2C^{2} \times \{0\}$. Then $Y_{\text{pr}} = Y_{\text{apr}}$ is dense in Y (it is the set of linearly independent vectors in Y) but Y is not G-saturated since it does not contain the null cone. The G-module V is not cofree, so we don’t contradict Corollary 3.4. Note that this example is the complexification of the case where $X = C^{2} \times \{0\} \subset W := C^{2} \oplus C^{2}$ and $K = SU(2, \mathbb{C})$. Thus $X_{\text{pr}} = X_{\text{apr}}$ is dense in X but X is not almost K-reduced. (We use Theorem 1.3.) This shows that cofreeness is also necessary in Theorem 1.1.

Theorem 3.6. Suppose that $Y \subset V$ is G-stable such that

1. Y_{apr} is dense in Y.
2. $Y/\![G \subset V/\!G$ is the zero set of f_{1}, \ldots, f_{k} where the minimal codimension of a non almost principal stratum of V which intersects Y is at least $k + 1$.

Then Y is G-saturated.

Proof. Let \tilde{Y} denote $\pi^{-1}(\pi(Y))$. Then each irreducible component of \tilde{Y} has codimension less than or equal to k. Let S be a non almost principal stratum of V which intersects Y. Then $S \cap \tilde{Y}$ is nowhere dense in \tilde{Y}. Thus Y_{apr} is dense in \tilde{Y}. Now \tilde{Y}_{apr} and Y_{apr} have the same image in $Y/\!G$. Hence $Y_{\text{apr}} = \tilde{Y}_{\text{apr}}$ and $Y = \tilde{Y}$ is saturated. \hfill \square

Example 3.7. Let $(V,G) = (kC^{2}, SL_{2})$, $k \geq 2$. The codimension of the null cone is $k - 1$ and the subset Y where the first copy of C^{2} is zero is not saturated, but corresponds to the subset of $V/\!G$ where the determinant invariants $\det_{12}, \ldots, \det_{1k}$ vanish (see Example 2.1). Thus the codimension condition in Theorem 3.6(2) is sharp.

Here is an example that is a complexification.

Example 3.8. Let $(V,G) = (2C^{2}, SO_{2}(\mathbb{C}))$ and let $Y = C^{2} \times \{0\} \cup \{0\} \times C^{2}$. Then Y_{apr} is dense in Y since any point not in $N(V)$ is on a principal orbit and $N(V)$ is nowhere dense in Y. However, Y is not G-saturated since it does not contain $N(V)$. Note that $\mathcal{I}(Y/\!G)$ is generated by det (the determinant), f_{12} and $f_{11}f_{22}$ where the f_{ij} are the inner product invariants. Since $\det^{2} = f_{11}f_{22} - f_{12}^{2}$, $\mathcal{I}(Y/\!G)$ is the radical of the ideal generated by f_{12} and $f_{11}f_{22}$. The null cone has codimension 2. Again this shows that the codimension condition in Theorem 3.6 is sharp.

We now have the following corollary of Lemma 3.3

Corollary 3.9. Suppose that (V,G) is cofree and that $Y \subset V$ is G-stable such that Y_{pr} is dense in Y. Then Y is G-reduced.

Remark 3.10. For Y to be G-reduced, it is not sufficient that every slice representation of V is coreduced. (This is the same as saying that every fiber of $\pi: V \rightarrow V/\!G$ is reduced.) Just consider Example 3.5 again. Here Y_{pr} is dense in Y but Y is not G-saturated, let alone G-reduced.

Theorem 3.11. Let V be a G-module and let $Y \subset V$ be G-saturated such that Y_{pr} is dense in Y. Suppose that $\pi(Y) \subset V/\!G$ is the zero set of f_{1}, \ldots, f_{k} where the codimension of Y is k. Then Y is G-reduced.
Proof. The rank of the differential of \(f = (f_1, \ldots, f_d) : V \to \mathbb{C}^d \) is maximal at a point of each irreducible component of \(Y \) since \(Y \) is reduced at all points of \(Y_{pr} \). Thus we can apply Serre’s criterion (Proposition 2.3).

Example 3.12. Let \((V, G) = (4\mathbb{C}^2, \text{SL}_2(\mathbb{C}))\) and let \(Y \) be the zero set of two of the determinant invariants \(\det_{ij} \). Then \(Y_{pr} \) is dense in \(Y \) since the only non-principal stratum is \(\mathcal{N}(V) \) which has codimension 3 while \(Y \) has codimension 2. By Theorem 3.11, \(Y \) is \(G \)-reduced.

4. The case where \(Y_{pr} \) or \(Y_{apr} \) is not dense in \(Y \)

We can say something in the case that \(Y_{apr} \) or \(Y_{pr} \) is not dense in \(Y \). We are certainly in this case if \(V \) is not stable, since then \(V_{pr} \) and \(V_{apr} \) are empty. Let \(v \in Y \) such that \(Gv \) is closed. Let \((N_v, G_v)\) be the slice representation and \(S \) the corresponding stratum of \(V \). We say that \((N_v, G_v)\) is a generic slice representation for \(Y \) if \(S \cap Y \) is dense in an irreducible component of \(Y \). We also say that \(S \) is generic for \(Y \).

Proposition 4.1. Let \((N_v, G_v)\) be a generic slice representation of \(Y \) corresponding to the stratum \(S \) of \(V \). If \(Y \) is \(G \)-saturated, then \(Y \cap S = \pi^{-1}(\pi(Y \cap S)) \). If \(Y \) is \(G \)-reduced, then \((N_v, G_v)\) is coreduced.

Proof. If \(Y \) is \(G \)-saturated, then we obviously must have that \(Y \cap S = \pi^{-1}(\pi(Y \cap S)) \). Let \(Z \) denote \(\pi(S) \). Then \(\pi^{-1}(Z) \to Z \) is a fiber bundle with fiber \(G \times^{G_v} \mathcal{N}(N_v) \). If \(Y \) is \(G \)-reduced, then the bundle is reduced, hence \((N_v, G_v)\) is coreduced.

Let \(S \) be a stratum of \(V \). We say that \(Y \) is \(S \)-saturated if \(Y \cap S = \pi^{-1}(\pi(Y \cap S)) \). We say that \(Y \) is \(S \)-reduced if \(Y \) is \(S \)-saturated and the slice representation \((N_v, G_v)\) associated to \(S \) is coreduced. Corresponding to Corollaries 3.4 and 3.9 and Theorems 3.6 and 3.11 we have the following result whose proof we leave to the reader.

Theorem 4.2. Let \(Y \subset V \) be a \(G \)-stable algebraic set.

1. If \(V \) is cofree and \(Y \) is \(S \)-saturated for every stratum \(S \) which is generic for \(Y \), then \(Y \) is \(G \)-saturated.
2. If \(V \) is cofree and \(Y \) is \(S \)-reduced for every stratum \(S \) which is generic for \(Y \), then \(Y \) is \(G \)-reduced.
3. Suppose that \(Y \) is \(S \)-saturated for every every generic stratum \(S \) of \(Y \). Further assume that the minimal codimension of the strata of \(V \) which intersect \(Y \) but are not generic for \(Y \) is greater than \(k \) and that \(Y/G \) is the zero set of \(f_1, \ldots, f_k \). Then \(Y \) is \(G \)-saturated.
4. Suppose that \(Y \) is \(G \)-saturated and that the ideal of \(\pi(Y) \subset V/G \) is generated by \(f_1, \ldots, f_k \) where the codimension of \(Y \) in \(V \) is \(k \). Also assume that \(Y \) is \(S \)-reduced for every generic stratum \(S \) of \(Y \). Then \(Y \) is \(G \)-reduced.

5. The real case

Let \(W \) be a real \(K \)-module where \(K \) is compact. Let \(X \subset W \) be real algebraic and \(K \)-stable. Now \(K \) is naturally a real algebraic group and the action on \(W \) is real algebraic. Moreover, every orbit of \(K \) in \(W \) is a real algebraic set [Sch01]. Let \(Y := X_{\mathbb{C}} \) denote the complexification of \(X \) inside \(V := W \otimes_{\mathbb{R}} \mathbb{C} \) and let \(G \) denote the complexification \(K_{\mathbb{C}} \) of \(K \). Then \(G \) is reductive and \(V \) is a stable \(G \)-module ([Lun72] or [Sch80, Cor. 5.9]). We say that a slice representation \((N_w, K_w)\) is a generic slice representation for \(X \) if \(w \in X \) and the corresponding stratum contains a nonempty open subset of \(X \). Equivalently, the complexification of \((N_w, K_w)\) is generic for \(Y \).

Proposition 5.1. (1) \(X \) is almost \(K \)-reduced if and only if \(Y \) is \(G \)-saturated.
(2) \(X \) is \(K \)-reduced if and only if \(Y \) is \(G \)-reduced.
(3) The set X_{apr} (resp. X_{pr}) is dense in X if and only if the set Y_{apr} (resp. Y_{pr}) is dense in Y.

(4) X is almost K-reduced implies that X_{apr} is dense in X.

(5) X is K-reduced implies that X_{pr} is dense in X.

Proof. The ideal of Y is $I(X) \otimes_{\mathbb{R}} \mathbb{C} \subset \mathbb{C}[W] \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C}[V]$ and $I_K(X) \otimes_{\mathbb{R}} \mathbb{C} = I_G(Y)$. Thus $I(Y) = I_G(Y)$ if and only if $I(X) = I_K(X)$, and $I(Y) = \sqrt{I_G(Y)}$ if and only if $I(X) = \sqrt{I_K(X)}$. Hence we have (1) and (2). For (3), note that X_{apr} is open in X and that Y_{apr} is open in Y. If a stratum S of W is dense in an irreducible component of X, then the corresponding stratum S_C of V is dense in an irreducible component of Y. Thus if X_{apr} is not dense in X, then Y_{apr} is not dense in Y. Clearly, if X_{apr} is dense in X, Y_{apr} is dense in Y. The argument for X_{pr} and Y_{pr} is similar, hence we have (3). Now suppose that X is almost K-reduced. Then for S a generic stratum of X and $x \in S \cap X$, the complexification $G x \simeq G/G_x$ of $K x$ is Zariski dense in the fiber $G \times^{G_x} \mathcal{N}(W_x \otimes_{\mathbb{R}} \mathbb{C})$ where $G_x = (K_x)_{\mathbb{C}}$. Thus $\mathcal{N}(W_x \otimes_{\mathbb{R}} \mathbb{C})$ is a point, i.e., the stratum consists of almost principal orbits. Hence we have (4), and (5) is proved similarly. □

Corollary 5.2. Let $X = K w$ be an orbit. Then X is almost K-reduced if and only if $K w$ is almost principal and X is K-reduced if and only if $K w$ is principal.

Unfortunately, it is not true that $X = X_{pr}$ (or $X = X_{apr}$) implies the same equality for Y.

Example 5.3. Let $K = \text{SU}_2(\mathbb{C})$ and $W = 2 \mathbb{C}^2 \oplus \mathbb{R}$ where K acts as usual on the copies of \mathbb{C}^2 and trivially on \mathbb{R}. We consider W to be $2 \mathbb{H} \oplus \mathbb{R}$ where \mathbb{H} denotes the quaternions. Then $K \simeq S^3$, the unit quaternions, and the action on $2 \mathbb{H}$ is given by $k(p, q) = (kp, kq)$, $p, q \in \mathbb{H}$, $k \in S^3$. Let $p \mapsto \bar{p}$ denote the usual conjugation of quaternions. The invariants of K acting on $2 \mathbb{H}$ are generated by $(p, q) \mapsto \bar{(pq)}$ where the first two invariants lie in \mathbb{R} and the last in \mathbb{H}. Let α and β denote the first two invariants and let γ be the real part of $\bar{q} p$. Let δ, ϵ and ζ be the invariants which are the i, j and k components of $\bar{q} p$, respectively. Then there are certainly points in $2 \mathbb{H}$ where δ, ϵ and ζ vanish and where $\alpha = \beta = \gamma$ is any positive real number. Let x be a coordinate on the copy of W in R and let X be the subset of W defined by $\delta = \epsilon = \zeta = 0, \alpha = \beta = \gamma$ and $(\alpha - 1)^2 + x^2 = 1/2$. Then α never vanishes on X which implies that the isotropy group at the corresponding point of W is trivial, so we have that $X = X_{apr}$. The quotient X/K is a smooth curve, hence X is smooth of dimension 4. The complexification Y of X also has dimension four and contains some of the points $(s, t, \pm \sqrt{-3/4})$ where (s, t) lies in the null cone of $2 \mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \simeq 4 \mathbb{C}^2$ for the action of $K_{\mathbb{C}} \simeq \text{SL}_2(\mathbb{C})$. But this null cone has dimension 5. Hence Y is not G-saturated, let alone G-reduced, and $Y \neq Y_{apr}$. Moreover, X is neither K-reduced nor almost K-reduced.

Now we recover the theorems of the introduction. Theorem 1.2 is just Corollary 5.2. Theorem 1.3 is a consequence of Proposition 5.1 and Theorem 1.4 follows from Theorems 3.6 and 3.11.

Proof of Theorem 1.1. Suppose that X is K-reduced. Then Proposition 5.1 shows that X_{pr} is dense in X. Conversely, if (W, K) is cofree (equivalently, (V, G) is cofree) and X_{pr} is dense in X, then Y_{pr} is dense in Y by Proposition 5.1 and Y is G-reduced by Corollary 3.9. Hence X is K-reduced. The proof in the almost K-reduced case is similar. □

References

[Kra84] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.

[KS11] Hanspeter Kraft and Gerald W. Schwarz, Reduced null cones, to appear.

[Lun72] Domingo Luna, Sur les orbites fermées des groupes algébriques réductifs, Invent. Math. 16 (1972), 1–5.

[Mat80] Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980.
[Sch80] Gerald W. Schwarz, *Lifting smooth homotopies of orbit spaces*, Inst. Hautes Études Sci. Publ. Math. (1980), no. 51, 37–135.

[Sch01] , *Algebraic quotients of compact group actions*, J. Algebra 244 (2001), no. 2, 365–378.

Department of Mathematics, Brandeis University, Waltham, MA 02454-9110

E-mail address: schwarz@brandeis.edu