Molecular determinants of matrix metalloproteinase-12 covalent modification by a photoaffinity probe: insights into activity-based probe development and conformational variability of matrix metalloproteinases.

Anne Sophie Dabert-Gay, Bertrand Czarny, Laurent Devel, Fabrice Beau, Evelyne Lajeunesse, Sarah Bregant, Robert Thai, Athanasios Yiotakis & Vincent Dive

From the CEA, Commissariat à l’Energie Atomique, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), CE-Saclay, 91191 Gif/Yvette, Cedex, France and Laboratory of Organic Chemistry, Department of Organic Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece

Running title: MMP-12 photoaffinity probe

Address correspondence to: Dr V. Dive, CEA, Commissariat à l’Energie Atomique, Service d’Ingénierie Moléculaire de Protéines (SIMOPRO), 152, CE-Saclay, 91191 Gif/Yvette, Cedex, France, Tel: 33 1 69083585, Fax: 33 1 69089071, vincent.dive@cea.fr

Mass-spectroscopy, micro-sequencing and site-directed mutagenesis studies have been performed to identify in human matrix metalloelastase (hMMP-12) residues covalently modified by a photo-affinity probe, previously shown to be able to covalently label specifically the active site of matrix metalloproteinases (MMPs). Results obtained led us to conclude that photoactivation of this probe in complex with hMMP-12 affects a single residue in human MMP-12, Lys241, through covalent modification of its side chain εNH2 group. As X-ray and NMR studies of hMMP-12 indicate that Lys 241 side chain is highly flexible, our data reveal the existence of particular Lys241 side chain conformation in which the ε NH2 group points towards the photolabile group of the probe, an event explaining the high levels of cross-linking yield observed with hMMP-12 and the probe. Lys241 is not conserved in MMP members may be linked to the residue variability observed at position 241 in this family.

Matrix metalloproteases (MMPs) belong to a family of structurally related extracellular/cell-surface-anchored zinc endoproteinases able to collectively cleave the protein component of the extracellular matrix (1,2). MMPs are considered to be critical mediators of both normal and pathological tissue remodelling processes (3). MMPs form a group of 23 proteins in humans containing a catalytic domain belonging to the metzincin superfamily (4-8). Their over-expression observed in and associated with various diseases (9), including cancer, arthritis, atherosclerosis

The abbreviation used are: MMP, matrix metalloproteinase; hMMP-12, human matrix metalloelastase; Mca, (7-methoxycoumarin-4-yI)acetyl; Dpa, N3-(2,4-dinitrophenyl)L-2,3-diaminopropionyl; Mca-Mat, Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2; TFA, trifluoroacetic acid; FA, formic acid.
and multiple sclerosis, has stimulated impressive effort over the past 20 years to develop synthetic inhibitors able to block potently the uncontrolled activity of these potential therapeutic targets (10,11). Extremely potent inhibitors of MMPs have been developed, but with the exception of MMP-2 (12), MMP-13 (13,14) and MMP-12 (15), most of these inhibitors act as broad-spectrum inhibitors of MMPs. Clinical trials based on the use of these broad-spectrum inhibitors in patients with advanced cancers have failed to reach their end points, with severe side effects observed (16). Some reasons for this failure, as discussed in recent studies, suggest that some MMP members promote tumor progression, but others provide a protective effect in different stages of cancer progression (17). This highlights the need to use in clinical setting highly selective inhibitors able to target only the MMPs responsible for tumor progression (18-21). Similar trends have been observed in atherosclerosis, in which some MMP members have opposite effects on plaque stability. In this pathology, MMP-12 has been reported to promote both lesion and plaque extension (22), justifying our current efforts in developing selective MMP-12 inhibitors (15). To further progress on our understanding of the complex roles played by MMPs, probes able to detect and identify which MMPs are expressed under active forms in a complex biological environment have recently been developed (23-26). To be informative, such activity-based probes (ABPs) should covalently and exclusively modify the free form of the protease active site, but not the pro-form or the active form in complex with natural TIMP inhibitors. ABPs for serine and cysteine proteinases have been successfully developed by exploiting the presence of highly conserved nucleophiles in the active-site of these enzymes and selecting appropriate reactive groups to provide covalent modification of the targeted enzymes (27,28). For zinc metalloproteinases, like MMPs, the lack of conserved active-site nucleophiles requires the use of photolabile groups to covalently label the enzyme active site (23-26). Following this strategy, we recently developed a selective MMP probe that consists of a phosphinic peptide core able to block potently and selectively a large set of MMPs, to which an azido photolabile group has been grafted onto the inhibitor P1' side chain (probe 1, scheme 1) (26).

Scheme 1

The choice of the photolabile group and position of its incorporation in the inhibitor structure were based on the X-ray structure of phosphinic peptide inhibitor in complex with MMP-9 (29). Based on these structural considerations, the azido group of probe 1 is expected to enter into the deep S1' cavity of MMPs, in a position that should favour covalent modification of residues lining this cavity. While probe 1 was shown to covalently modify only the active site of MMPs, high variation in cross-linking yield was observed between different MMPs (26). Indeed, the covalent modification of hMMP-12 by probe 1 resulted in a cross-linking yield of ≈ 45%, whereas this yield decreased to a few percents for human MMP-8. In order to
understand the molecular determinant of this difference and improve the design of better ABPs that covalently modified all MMPs with high cross-linking yields, the identification of the hMMP-12 residues covalently modify by probe 1 has been carried out.

Experimental Procedures

Chemicals: Commercial reagents were used without additional purification. Buffers and salts were purchased from Sigma. Synthesis and tritium radiolabelling of probe 1 were carried out as previously reported (26). Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂ (Mca-Mat) was purchased from Novabiochem and TIMP-1 inhibitor from R&D systems.

Proteins: Synthetic gene encoding the catalytic domain of the MMP-12 (Met⁹⁸-Lys²⁶₆) was obtained from Geneart (Geneart-AG, Germany). This gene was inserted into the pET24a vector, between the NdeI and BamHI site, for expression under the PT7 promoter. A Lys->Ala mutant was produced from 5'ccgtaatgttccccacctacGCatatgttgacatcaaca-3' and 5'-tgtgttgatgtcaacatatGCGtaggggggaacattacgg-3' oligonucleotides, using the Site-Directed Mutagenesis Kit (Stratagene, Heidelberg, Germany). All plasmids were propagated in the Echerichia Coli strain XL1-Blue at 37°C and all constructions were verified by DNA sequencing using the ABI PRISM 310 Genetic analyzer (Applied Biosystem). Recombinant proteins were expressed in E.Coli BL21 (DE3 star) cells carrying the MMP-12 catalytic domain-encoding plasmids. Bacteria were grown at 37°C in LB medium supplemented with kanamycin (50µg/mL). At an absorbance (600nm) of 0.6, protein expression was induced with 0.5 mM of isopropyl-β-thiogalactopyranoside (IPTG). Five hours after induction, cells were harvested by centrifugation at 5000 g for 30 minutes at 4°C. The pellets were resuspended in buffer A (100 mM Tris-HCl pH 8.5, 5 mM benzamidinocloride, 5 mM 2-mercaptoethanol) and incubated with lysozyme for one hour at 4°C. The suspension was then passed through a cell disruption system at 4°C (Constant Systems Ltd, Daventry Northants, England) and was then centrifuged at 4°C for 30 minutes (8000 g). The pellets were washed three times with buffer B (100 mM Tris-HCl pH 8.5, 2 M urea, 5 mM 2-mercaptoethanol) and was dissolved in buffer C (100 mM Tris-HCl pH 8.5, 8 M urea). Refolding and purification steps were carried out as previously described (30). Refolded proteins were analysed by SDS-PAGE and were found to migrate as a single band. Protein molecular weights were determined by ESI-MS and the presence of the Lys->Ala mutation was verified by Maldi-TOF, after tryptic digestion.

Enzyme Assays: Enzyme assays, inhibition and titration experiments were carried out in 50 mM Tris/HCl buffer, pH 6.8, 10 mM CaCl₂, at 25°C, in flat-bottomed 96-well nonbinding surface plates (Corning-Costar, Schiphol-RijK, The Netherlands), using the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂ (Mca-Mat) substrate, as described before (15). Fluorescence signals were monitored using a Fluoroscan Ascent photon counter spectrophotometer (Thermo-Labsystems) equipped with a temperature control device and a plate shaker. Titration experiments using a calibrated TIMP-1 solution were performed to determine the exact enzyme concentration for each MMP batch: for these experiments, MMP concentrations were set around 20 nM. Values for k_{cat}/Km were determined from first-order full-time course reaction curves.
obtained at [S] << Km ([S]=0.5 mM) and 5 nM final enzyme concentration. These progress curves were monitored by following the increase in fluorescence at 400 nm (λex = 340 nm) induced by the cleavage of the Mca-Mat substrate. kcat/Km values were obtained by fitting these progress curves (three independent experiments) with the integrated Michaelis-Menten equation by nonlinear regression. The Ki values of the probe were determined using the method proposed by Horovitz and Leviski (31).

Mass spectrometry: MS experiments were performed on an Ion Trap mass spectrometer (Bruker, Esquire-HCT). Ion trap parameters were set as follows: the electrospray potential +/- 4000 volts, the skimmer voltage +/- 40 volts, the capillary exit 226 volts and a source temperature of 365 °C. The MS survey scan was m/z 400-3000 Da with a target mass fixed at m/z 1800 Da and a 5 spectrum scans average.

Nano-RP-HPLC: Peptide separation was carried out on an Ultimate LC Packings /DIONEX UltiMate™ Capillary/Nano LC System apparatus, using an Acclaim PepMap100 C18, 3 μm, 100 Å (150 mm x 75 μm) column at a flow rate of 200 nL/min and with detection at 214 nm. Solvent systems were: (A) 95% water, 5% acetonitrile, 0.01% TFA and 0.04% FA and (B) 5% water, 95% acetonitrile, 0.01% TFA and 0.04% FA. The following gradient was used: t = 0 min, 100% A; t = 3 min, 100% A; t = 73 min 70% B; t = 74 min 100% B; and t = 80 min 100% B.

μ-RP-HPLC: Peptide separation was carried out on an Agilent 1100 series apparatus and using a X-Bridge (Waters) C18 5 μm, 300 Å column (2.1 x 150 mm, 5 μm) at a flow rate of 200 μL/min and with detection at 214 nm. Solvent systems were: (A) 100% water, 0.1% FA and (B) 100% acetonitrile, 0.09% FA. The following gradient was used: t = 0 min, 100% B; t = 5 min, 100% B; and t = 45 min 100% B.

Photoaffinity Labelling: MMPs (1μM) were incubated with 2μM of 3H probe 1 in 50 mM Tris/HCl, pH 6.8, 10 mM CaCl2, 0.01% Brij35, for 10 min in the dark at room temperature. The reaction mixture was irradiated using a 1000W mercury lamp (Orsam) for 2 min (10 °C). All irradiations experiments were performed under inactinic light (Na light) at 310 nm (50μW.cm−2) on an apparatus equipped with an aperture and a series of lenses focusing the polychromatic light to a monochromator (Jobin-Yvon), a series of lenses to focus the monochromatic light to a thermostat support, in which the eppendorf tube containing the mixture to irradiate is inserted. Light intensity was measured with a radiometer IL1700 (International Light, Newburyport, MA). After irradiation, the reaction was quenched by the addition of Laemmli loading buffer followed by boiling (5 min, 95°C). These samples were immediately processed for subsequent SDS gel analysis.

Electrophoresis: Radiolabelled proteins were diluted in Laemmli loading buffer (final concentration: 0.1% (w/v) bromphenol blue, 2% (w/v) SDS, 10% (v/v) glycerol, 50 mM Tris-HCL pH 6.8 and 100 mM DTT) and were resolved by SDS-PAGE electrophoresis in a 12% 1 mm-thick SDS gel, using a mini-protean III apparatus (Biorad). Silver staining was performed as classically described.

In-gel digestion: Gels were stained with Coomassie blue R250. Gel pieces containing proteins were excised and destained by adding 50 μL of 25 mM NH4 HCO3 in 50% acetonitrile. After a 10-min incubation with occasional vortexing, the liquid phase was discarded. This
procedure was repeated 3 times. Gel pieces were then rinsed (10 min) with acetonitrile and dried under vacuum. Gel pieces were reswelled in 25 mM NH₄ HCO₃ buffer containing trypsin (12 ng/µL, modified porcine trypsin sequence grade, Promega). After the trypsin digestion (37 °C, 18 h), the solution was transferred into an eppendorf tube and tryptic peptides were isolated by extraction with 50 µL of 50% acetonitrile in water with 1% FA (2x10 min) at room temperature. Peptide extracts were pooled, concentrated under vacuum and solubilised in 50% acetonitrile in water with 1% TFA.

Blotting: Transfer of proteins onto PVDF (polyvinylidene fluoride) membrane was achieved using a semi-dry transfer blot apparatus (Biorad). Gels were rinsed in a 50 mM Tris/HCl, pH 8.5, 20% methanol, 40 mM glycine, 0.0375% SDS in distilled water (Transfer Buffer). The PVDF membrane was activated in a bath of methanol, rinsed with water and was then equilibrated in the transfer buffer. We formed a membrane sandwich for protein transfer between the cathode and the anode: this included, from anode to cathode, a sheet of extra-thick-blot-paper (Biorad), wetted with transfer buffer, then the activated PVDF membrane, the gel, and finally 2 sheets of extra-thick-blot-paper wetted with transfer buffer. After transfer, membranes were dried before radioactivity analysis or were stained using a Coomassie blue solution (0.1% R₂₅₀, 50/49/1 Water/Ethanol/Acetic Acid).

Radioimaging: Radioactivity imaging and counting of the PVDF membranes were performed with the beta-Imager™ 2000 from Biospace (Paris, France). This apparatus allows an absolute counting of the tritium beta particles, with a detection threshold of 0.007 cpm/mm² for tritium.

Trypsin digestion of PVDF membranes: Pieces of PVDF membranes containing labelled or unlabelled h-MMP-12 were excised and destained using a 50/50 water/ethanol solution to remove excess of R₂₅₀. PVDF pieces were incubated in a solution of 50 mM NH₄ HCO₃ pH 8/ acetonitrile (50/50) with trypsin (12.5ng/µL). Digestion was ran for 18-20 h at 50 °C. PVDF pieces were then rinsed with a solution of 50% acetonitrile with 0.1 % TFA.

Peptide mapping: Eluant from the µ-HPLC column was split out into two flows: one at 160 µl/min for UV monitoring (214 nm & 280 nm using a diode array detector) and radioactivity measurements; the remaining flow was directed to an electrospray mass spectrometer for MS. A volume of 0.5µL of each fraction was spotted onto glass plate for counting tritium radioactivity using the beta-Imager™ 2000. On-line µ-HPLC/ESI/MS experiments were performed on an ion trap mass spectrometer, with the parameters as described above.

Edman Sequencing: N-terminal amino acid sequence analysis was performed by automated Edman degradation using an ABI Model 477A / 120A Protein-Peptide Sequencing/ Analysis System and Analysis Software System, Model 920A (Applied Biosystems Inc., Foster City, CA). Radioactive fractions eluted from the µ-HPLC column were pooled and loaded onto a TFA-treated cartridge filter, previously conditioned with BioBrene Plus™. Prior to each sequence analysis, calibration was performed using PTH-amino acids standard solution.

MS/MS sequencing of covalently modified peptides: Radioactive fractions containing covalent adduct peptides were concentrated by using a C₁₈ ZipTip. Off-

line nanoESI-MS/MS experiments were performed on a ion trap mass spectrometer. Ion trap parameters for MS were set as follows: nano-electrospray potential, 1000 volts; skimmer voltage, 40 volts; capillary Exit, 226 volts and source temperature, 150 °C. The scan number was increased to 20 spectra over an m/z of 250-2000 Da, the isolation width was set to 1Da and the collision energy to 0.65 volts in the MS/MS-mode. MS/MS spectra were recorded for double-charged molecular peptide ions.

Molecular Modeling: Model of probe 1 interacting with hMMP-12 was obtained as previously described (15). NMR structures in Figure 7a & b where selected from an ensemble of 20 NMR structures of the hMMP-12 catalytic domain deposited in RCSB PDB under access code 2POJ.

RESULTS

1D SDS-PAGE in-gel digestion: Efficient cross-linking experiments were shown to rely on the presence of detergent in sample buffer, a requirement preventing direct analysis of the photo-adduct by mass-spectroscopy. In addition, previous work has demonstrated that light excitation of probe 1 in presence of hMMP-12 catalytic domain produced two protein species that could be resolved by 1D SDS-PAGE, the upper band corresponding to the covalently labelled hMMP-12 and the lower band to unmodified hMMP-12 (26). These considerations led us to use first electrophoresis to separate the unmodified from modified forms of hMMP-12 and then proceed to the analytical characterisation of these protein species. After electrophoresis, gel pieces containing these protein forms were subjected to in-gel trypsin digestion, and the corresponding soluble tryptic fragments were resolved by nano-HPLC and analysed online by mass-spectroscopy. Nano-HPLC-MS analyses of the tryptic fragments from unlabelled (figure 1b) hMMP-12 showed a good overlapping with its catalytic domain sequence (figure 1a). Among the twelve expected tryptic fragments, 8 fragments were detected in the nano-HPLC profile (figure 1b & 1d). Based on mass criteria, two peptides co-eluting at the same retention time were shown to result from the S 1’ loop cleavage by trypsin (peak 6: MH+ = 956.6 and 7: MH+ = 1027.5; through this paper, the S 1’ loop sequence corresponds to the fragment Ala234 to Arg249). The nano-HPLC profile (figure 1c) for the covalently modified form of hMMP-12 (upper band) was characterised by an absence of peaks 6 and 7. This suggests that the covalent modification of hMMP-12 by the probe targets residues of the S 1’ loop. No additional signals corresponding to modified peptides were observed in this nano-HPLC profile, thus the corresponding peptides should remain in the gel. An absence of radioactivity in the sample buffer (probe 1 incorporates a tritium radioactive atom, scheme 1) supports this conclusion. To overcome this drawback, proteins were transferred from the gel onto PVDF membranes, prior to trypsin treatment.

μLC-MS analysis of trypsic digest containing radioactive species: Analysis of PVDF membranes after gel transfer by radioimaging indicated a quantitative protein transfer. When pieces of PVDF membrane containing hMMP-12 covalently labelled by probe 1 are incubated in buffer, no signal of radioactivity was detected in solution, a result showing that labelled hMMP-12 remains on/in the membrane. By contrast, when these membranes were incubated in...
buffer containing trypsin, radioactivity was released, suggesting the presence of hMMP-12 tryptic fragment(s) labelled by probe 1 in buffer sample. This tryptic fragment mixture, including those obtained from unmodified hMMP-12, were analysed by μ-HPLC, mass-spectroscopy and radioactivity counting. Comparison of the corresponding μ-HPLC profiles (figure 2a unlabelled hMMP-12 and 2b labelled hMMP-12) revealed the presence of three additional radioactive peaks in the labelled sample. S_1' loop tryptic fragments (peaks 6 & 7 in figure 2a) were detected in the unlabelled hMMP-12 sample, but were no longer detected in the labelled sample, suggesting again a covalent modification of the S_1' loop by the photo-affinity probe.

MS analysis of the three radioactive peptides: Measure of mass-to-charge ratio using a negative detection mode of the above three μ-HPLC peaks (F1, F2 and F3) indicated that the mass of the fragment contained in F3 corresponds approximately to the expected mass (observed mass 2712.3 Da, expected mass 2713.3 Da, see discussion) of the S_1' loop peptide of hMMP-12 (residues Ala^234 to Arg^249, M=1964.99) covalently modified by probe 1 (M=776.27 Da, minus 28 Da due to loss of N_2 after irradiation of the azide group)(figure 3). Thus, the covalent modification of hMMP12 by probe 1 prevents cleavage of the S_1' loop peptide by trypsin, a result explaining why the corresponding tryptic fragments are no longer detected after covalent modification. Furthermore, this absence of trypsin cleavage suggests that the site of covalent modification occurs at the Lys^241 level or at a residue near Lys^241 (the S_1' loop fragment contains only one internal tryptic site). The mass-to-charge ratio of the two other species (F1 and F2 in figure 3) corresponds to F3 oxidized forms, with one (+ 16, F2) and two (+32, F1) degrees of oxidation, respectively. The presence of Met^236 in the S_1' loop sequence may explain the observation of oxidized forms (see below).

Edman Sequencing: The three purified radioactive fractions (F1, F2 and F3), containing the covalently modified hMMP-12 S_1' loop peptide, were pooled and subjected to Edman degradation to further characterise the site of covalent modification. N-terminal sequencing of this peptide started at Ala^234 and ended at to Tyr^240, with no sequencing cycle detected at the Lys^241 position (fig 4). The next sequencing step indicated a Tyr residue at position 242, and sequencing identified all subsequent S_1' loop residues up to Arg^249. Therefore, the site of covalent modification occurs in the S_1' loop and Lys^241 is the only residue modified by probe 1 in this loop.

MS/MS analysis: The MS/MS analysis of the purified and photo-cross-linked tryptic fragments corresponding to the S_1' loop was carried out for further confirmation and to characterise the chemical structure of the covalent adduct. MS/MS (CID) experiments were performed on the double-charged precursor ion at m/z [M+2H]^2+ = 1373.1 Da, corresponding to the double oxidized modified tryptic peptide (Mw(F1) = 2744.3 Da, figure 3). Fragment ions were assigned according to the nomenclature described by Biemann et al (32). Experimental C-terminal y_3 to y_8 ion masses were consistent with those predicted, indicating that the C-terminal part of the S_1' loop from Tyr^242 to Arg^249 is not modified by probe 1 (figure 5). All these ions possess the expected theoretical mass, thus no oxidation takes place in Tyr^242-Arg^249 sequence. By contrast, the mass shift observed from ion y_9 to y_12, corresponding exactly to the mass...
increment expected for the covalent addition of probe 1 to the S_{1}' loop fragment including one degree of oxidation, demonstrated that the covalent modification occurs at Lys^{241} level. As this part of the S_{1}' loop does not contain a methionine or amino acids that could be the target of oxidation (Pro^{239-Arg^{249}}), the oxidation site in this case is expected to occur inside the probe structure. Observed N-terminal b ion masses (from b_8 to b_{12}) are in agreement with the above conclusion, but these observations alone cannot be used to determine the site of modification. This identification would have required observing the b_7 ion, at the least. All b ions observed possess two degrees of oxidation, one as a result from probe oxidation, as suggested above, and the other probably resulting from methionine oxidation.

Analysis of lysine->Ala mutant:

An hMMP-12 mutant was produced in which lysine in position 241 of the wild-type was replaced by alanine. Comparison of the catalytic efficiency of this mutant in cleaving a fluorogenic synthetic substrate specific for MMPs, as well as the Ki value of probe 1 towards the mutant, as compared to wild-type hMMP-12, indicate similar functional properties between the two proteins (Table 1). Photo-labelling of this mutant with probe 1, analysed either by silver staining or radioactivity counting, revealed significantly less cross-linking in the mutant (≈ 2% based on radioactivity counting), than in wild-type hMMP-12 (≈ 45%) (figure 6).

DISCUSSION

The various approaches used in this study indicate that modification of hMMP-12 by probe 1 mostly involved the ε amino group of Lys^{241}, a residue located on the S_{1}' loop, shaping one part of the S_{1}' cavity (26). This is consistent with our previous suggestions that grafting an azide onto a P_{1}' phenylisoxazoline side chain of a phosphinic peptide inhibitor of MMP should result in a photoaffinity probe able to modify residues of the S_{1}' cavity. However, even by using a molecular model describing the potential binding mode of 1 within the hMMP-12 active site, it would be hard to predict the results reported in this study. The main reason for this is the fact that Lys^{241} is located on a loop segment of hMMP-12 which, based on both X-ray and NMR studies of free hMMP-12 or in complex with synthetic inhibitors, displays high flexibility with the lysine side chain exhibiting high mobility (33-35). Superimposition of two hMMP-12 structure models, taken from an ensemble of twenty NMR-derived free hMMP-12 structures (34), provides some clues about the conformational space sampled by the Lys^{241} side chain (figure 7). In one of these structures, the position taken by the ε amino group of Lys^{241} is too far away (d > 7 Å) from the presumed position of the nitrogen atom of the reactive intermediate to predict covalent labelling of the lysine side chain (Fig 7a). By contrast, the second structure, in which the ε amino group of Lys^{241} points towards the S_{1}' loop cavity, would favour the labelling of Lys^{241} by probe 1 (Fig7b). It is worth to note that in these NMR structures, the positions reported for the lysine side chain correspond only to “possible conformations”. Result of the photo-crosslink experiments thus leads credence to these models, in particular to the one in which the lysine side chain points towards the S_{1}' cavity. The binding of probe 1 to hMMP-12 may induce a conformational change and stabilise a structure similar to that reported in figure 7b, in which the ε amino group of Lys^{241} is pointing in the direction of and is in close proximity to the reactive intermediate.
proximity of the probe 1 azide group. Alternatively, movements of the lysine side chain may exist on a time scale faster than the lifetime of the nitrene reactive intermediate. The mass observed for the covalently modified S1’ loop corresponds to the theoretical expected mass minus 1. This difference was resolved by considering that the ε amino group of Lys241 is actually labelled in its unprotonated form (NH₂). The equilibrium between NH₃⁺ and NH₂ forms at pH 7 of the Lys ε amino group could be shifted towards the NH₂ form, through consumption of the NH₂ form by the photochemical reaction. Alternatively, a shift in the lysine conformation towards the nitrene reactive group may change the pKa of that side chain. The exact chemical structure of the covalent adduct formed between hMMP-12 and probe 1, after irradiation, has not been established in this study. Based on previous studies of aryl azides, irradiation of probe 1 is expected to produce as reactive intermediates either a dedihydroazepine (Scheme 2a) or a triplet nitrene (Scheme 2b), as reactive intermediates (36-38). The dedihydroazepine intermediate is thought to react with nucleophilic atoms present in cysteine and histidine residues, but less likely with protonated ε amino group of the lysine side chain (Scheme 2, adduct 2a (38). Triplet nitrene may covalently modify the ε amino group of a lysine to form the structure reported in scheme 2 (adduct 2b). Simple phenylazides produce dedihydroazepine upon photolysis in water or buffer (39). However, the photogenerated intermediate was also reliant on the nature of the substituents of the phenyl ring (36-38). How the isoxazoline group in para-position of the phenyl in probe 1 influences which type of reactive intermediate is formed is actually unknown. Moreover, in a context of high affinity, the protein binding site environment might determine the structure of the reactive intermediate that will be formed upon photolysis. As the two predicted adducts have the same mass (Scheme 2, 2a and 2b), their discrimination by mass-spectrometry and the identification of the reactive intermediate involved in the reaction cannot be achieved in the present study. Indeed, given the length of adducts 2a and 2b, ESI/MS/MS mostly leads to peptide bond fragmentation. Thus, characterization of N-C or N-N bond to discriminate between 2a and 2b adducts would require the use of other techniques like electronic impact. The few percent of covalent modification observed in the Ala mutant prevented further characterisation of the covalent modification site. Similar weak covalent modifications occurring in the Ala mutant may also take place in wild-type hMMP-12, but this should only be considered as a minor reaction, in comparison with the major modification observed at lysine. Inspection of the S1’ cavity of hMMP-12 in the vicinity of the azide of probe 1 indicated that the closest atoms to the nitrogen linked to the phenyl (the one that will form the nitrene) are the Hα(d ≈ 3Å) and CH₃γ (d ≈ 3.5Å) of Val235. Labelling of hydrophobic residues is generally observed with probes that generate extremely reactive species like carbene (38), thus the weak labelling observed in the Ala mutant may be explained by the weaker reactivity of the nitrene formed by probe 1 towards hydrophobic residues, like Val235. Interestingly, in MMP-8 in which the position 241 is occupied by an alanine, a weak labelling (ca≈ 2-3%) was previously reported for its covalent modification by probe 1 (26). Thus, MMP-8 and the Ala-MMP-12 mutant display a similar reactivity towards probe 1, even though
their S1’ loop sequences are very different. Thus cross-linking yield between probe 1 and other MMPs is possibly determined by the chemical nature of the residue in position 241. This may explain the marked differences in cross-linking yield observed between various MMPs, as the composition of the position 241 is highly variable in MMPs (Ala\textsubscript{MMP8}, Gln\textsubscript{MMP14}, Thr\textsubscript{MMP2, 13, 11}, Arg\textsubscript{MMP9} and His\textsubscript{MMP3}). If true, developing photoaffinity probes with high cross-linking yield towards all MMPs will require the selection of other reactive photo-activatable groups, having lower selectivity towards the chemical nature of the residues surrounding the probe. This challenge will have to overcome the various chemical constraints and the particular shape of the MMP S1’ cavity. Probing the S1’ cavity of MMPs by photoaffinity labelling, as shown here, provides a unique insight into the conformational variability of MMPs, a key factor governing their selective recognition of substrates or inhibitors. Despite the development of very smart and different activity-based probes dedicated to MMPs (23-26), these APB probes have not yet detected active forms of MMPs in biological samples. The tight regulation and control of MMP active forms probably explain this failure, but it also calls for the development of extremely sensitive ABP probes (40). To be achieved, this goal needs to take into account the yield of cross-link achieved by these probes towards all MMP members. The data reported in this study should help in the design of better MMP ABP probes, allowing the sensitive detection of their active forms in various samples, an important objective for both diagnosis and therapeutic application (41-43).
Scheme 2
References:

1. Brinckerhoff, C. E., and Matrisian, L. M. (2002) Nat Rev Mol Cell Biol 3, 207-214
2. Visse, R., and Nagase, H. (2003) Circ Res 92, 827-839
3. Page-McCaw, A., Ewald, A. J., and Werb, Z. (2007) Nat Rev Mol Cell Biol 8, 221-233
4. Nagase, H., and Woessner, J. F., Jr. (1999) J Biol Chem 274, 21491-21494
5. Bode, W., Gomis-Ruth, F. X., and Stockler, W. (1993) FEBS Lett 331, 134-140
6. Stocker, W., and Bode, W. (1995) Curr Opin Struct Biol 5, 383-390
7. Massova, I., Lakshmi, P. K., Fridman, R., and Mobashery, S. (1998) FASEB J 12, 1075-1095
8. Gomis-Ruth, F. X. (2003) Mol Biotechnol 24, 157-202
9. Fingleton, B. (2007) Curr Pharm Des 13, 333-346
10. Babine, R. E., and Bender, S. L. (1997) Chem Rev 97, 1359-1472
11. Whittaker, M., Floyd, C. D., Brown, P., and Gearing, A. J. (1999) Chem Rev 99, 2735-2776
12. Rosenblum, G., Meroueh, S. O., Kleifeld, O., Brown, S., Singson, S., Fridman, R., Mobashery, S., and Sagi, I. (2003) J Biol Chem 278, 27009-27015
13. Engel, C. K., Pirard, B., Schimanski, S., Kirsch, R., Habermann, J., Kingler, O., Schlotte, V., Weithmann, K. u., and Wendt, K. U. (2005) Chem Biol 12, 181-189
14. Johnson, A. R., Pavlovsky, A. G., Ortwine, D. F., Prior, F., Man, C. F., Bornemeier, D. A., Banotai, C. A., Mueller, W. T., McConnell, P., Yan, C., Baragi, V., Lesch, C., Roark, W. H., Wilson, M., Datta, K., Guzman, R., Han, H. K., and Dyer, R. D. (2007) J Biol Chem 282, 27781-27791
15. Devel, L., Rogakos, V., David, A., Makaritis, A., Beau, F., Cuniasse, P., Yiotakis, A., and Dive, V. (2006) J Biol Chem 281, 11152-11160
16. Coussens, L. M., Fingleton, B., and Matrisian, L. M. (2002) science 295, 2387-2392
17. Lopez-Otin, C., and Matrisian, L. M. (2007) Nat Rev Cancer 7, 800-808
18. Overall, C. M., and Lopez-Otin, C. (2002) Nature review cancer 2, 657-672
19. Egeblad, M., and Werb, Z. (2002) Nature review cancer 2, 161-174
20. Overall, C. M., and Kleifeld, O. (2006) Nature review cancer 6, 227-239
21. Fingleton, B. (2006) Front Biosci 11, 479-491
22. Johnson, J. L., George, S. J., Newby, A. C., and Jackson, C. L. (2005) Proc Natl Acad Sci U S A 102, 15575-15580
23. Saghatelian, A., Jessani, N., Joseph, A., Humphrey, M., and Cravatt, B. F. (2004) Proc Natl Acad Sci U S A 101, 10000-10005
24. Chan, E. W., Chattopadhaya, S., Panicker, R. C., Huang, X., and Yao, S. Q. (2004) J Am Chem Soc 126, 14435-14446
25. Sieber, S. A., Niessen, S., Hoover, H. S., and Cravatt, B. F. (2006) Nat Chem Biol 2, 274-281
26. David, A., Steer, D., Bregant, S., Devel, L., Makaritis, A., Beau, F., Yiotakis, A., and Dive, V. (2007) Angew Chem Int Ed Engl 46, 3275-3277
27. Cravatt, B. F., Wright, A. T., and Kozarich, J. W. (2008) Annu Rev Biochem 77, 383-414
28. Kato, D., Boatright, K. M., Berger, A. B., Nazif, T., Blum, G., Ryan, C., Chehade, K. A., Salvesen, G. S., and Bogyo, M. (2005) Nat Chem Biol 1, 33-38
29. Tochowicz, A., Maskos, K., Huber, R., Oltenfreiter, R., Dive, V., Yiotakis, A., Zanda, M., Bode, W., and Goettig, P. (2007) J Mol Biol 371, 989-1006
30. Lang, R., Kocourek, A., Braun, M., Tschesche, H., Huber, R., Bode, W., and Maskos, K. (2001) J Mol Biol 312, 731-742
31. Horovitz, A., and Levitzki, A. (1987) Proc Natl Acad Sci USA 84, 6654-6658
32. Biemann, K. (1990) Methods Enzymol 193, 886-887
33. Nar, H., Werle, K., Bauer, M. M., Dollinger, H., and Jung, B. (2001) J Mol Biol 312, 743-751
34. Bhaskaran, R., Palmier, M. O., Bagegni, N. A., Liang, X., and Van Doren, S. T. (2007) J Mol Biol 374, 1333-1344
35. Bertini, I., Calderone, V., Cosenza, M., Fragai, M., Lee, Y. M., Luchinat, C., Mangani, S., Terni, B., and Turano, P. (2005) Proc Natl Acad Sci USA 102, 5334-5339
36. Bayley, H. (1983). in Photogenerated reagents in biochemistry and molecular biology (Work, T. S., and Burdon, R. H. eds.), Elsevier, Amsterdam
37. Fleming, S. A. (1995) Tetrahedron 51, 12479-12520
38. Kotzyba-Hibert, F., and Goeldner, M. (1995) Angew Chem Int Ed Engl 34, 1296-1312
39. Rizk, M. S., Shi, X., and Platz, M. S. (2005) Biochemistry 45, 543-551
40. Hesek, D., Toth, M., Meroueh, S. O., Brown, S., Zhao, H., Sakr, W., Fridman, R., and Mobashery, S. (2006) Chem Biol 13, 379-386
41. Unsal, D., Akyurek, N., Uner, A., Erpolat, O. P., Han, U., Akmansu, M., Mentes, B. B., and Dursun, A. (2008) Am J Clin Oncol 31, 55-63
42. Kramer, F., Sandner, P., Klein, M., and Krahm, T. (2008) Biomarkers 13, 270-281
43. Rydlova, M., Holubec, L., Jr., Ludvikova, M., Jr., Kalfert, D., Franekova, J., Povysil, C., and Ludvikova, M. (2008) Anticancer Res 28, 1389-1397
Acknowledgements:

This work was supported by funds from the Commissariat à l’Energie Atomique and from the European Commission (FP6RDT, Cancer Degradome project, LSHC-CT-2003-503297).
Table 1: Characterization of hMMP-12 Ala mutant. k_{cat}/K_m and K_i values were determined in Tris/HCl buffer 50 mM, pH 6.8, CaCl$_2$ 10 mM.

	hMMP-12	Ala mutant
McaMat k_{cat}/K_m (M$^{-1}$s$^{-1}$)	$1.53 \times 10^4 \pm 0.03 \times 10^4$	$1.32 \times 10^4 \pm 0.05 \times 10^4$
Probe 1 K_i (nM)	0.17 (± 0.01)	0.35 (± 0.04)
Legend to figures:

Figure 1: Peptide fragments generated by trypsin cleavage of hMMP-12. a) colour coded sequence describing the tryptic fragments of hMMP-12. nano-HPLC profile (214 nm) of a tryptic peptide mixture obtained by in-gel digestion of (b) unmodified or (c) covalently hMMP-12 by probe 1 (loading of 5 picomoles). d) Tryptic peptide sequences of hMMP-12 and corresponding m/z ratio.

Figure 2: μ-HPLC profile of a tryptic peptide mixture obtained by trypsin digestion of unmodified or covalently hMMP-12 by probe 1: UV trace (214 nm) of PVDF tryptic digest (100 pmoles) of (a) unmodified and (b) modified h-MMP-12 by probe 1. In (a) peaks labelled 6 and 7 correspond to the two tryptic fragments reported in figure 1d generated by trypsin cleavage of the S1’ loop. In (b) peaks labelled 1, 2 and 3 correspond to tryptic fragments covalently modified by probe 1.

Figure 3: μ-HPLC ESI mass spectra (negative mode) of peaks 1, 2 and 3 reported in figure 2. Molecular weights corresponding to the double-charged ion species contained in these HPLC fractions are reported.

Figure 4: Edman degradation of the purified fragment peptide of h-MMP-12 (25 pmoles) covalently modified by probe 1.

Figure 5: Low-energy CID spectrum of the purified S1’ loop peptide fragment modified by probe 1, precursor ion at m/z 1373.1 (double-protonated ion with two degrees of oxidation). The mass shift observed for the y9 ion, corresponding exactly to the mass increment expected for the covalent addition of probe 1 to the S1’ loop fragment including one degree of oxidation, demonstrated that the covalent modification occurs at Lys241 level.

Figure 6: Comparison of the covalent modification of wild-type h-MMP-12 and Ala mutant by probe 1. hMMP12 (1 μM) was incubated with probe 1 (2 μM) for 10 min, before UV irradiation (2 min). The MMP12 complexes (5 pmoles) were resolved by 1D sodium dodecylsulfate PAGE electrophoresis and visualized on the gel by silver staining (left) or the proteins were transferred onto a PVDF membrane that was analysed with a radioimager (right).

Figure 7: Model of probe 1 in complex with hMMP-12 (see the experimental part). As compared to the standard orientation recommended for metzincins, the structure of MMP-12 catalytic domain has been tilted around the horizontal axis to better bring out the S1’ loop. Lys241 is coloured in blue, probe 1 in green and catalytic zinc ion in purple; a and b displayed two possible conformations taken by the Lys241 flexible side chain, one (a) far away from the azide group and the other (b) nearby this group.
Figure 1

a) FREMPGGPVWRKHYTYRNYYTPDMNREDVYAIRKAFQVWSVTPLKFSPKINTG
 MADILVFGAAGDHFADWHGILAHAFPGSGIGGDAHFDDEFWTHSSGNTN
 LFTAVHGSLGLGHSDDPKAVMFPTYKIVDINTFRSLADDIRGIQLYSGYDPK
 S1 loop

b) (-) probe 1

c) (+) probe 1

d) 1. EMPGGPVW [MH]+ = 1028.7
 2. INNYTPDMN [MH]+ = 1237.7
 3. EZDVYAIR [MH]+ = 1900.6
 2'. INNYTPDMREDVYAIR [MH]+ = 2200.0
 3'. AFOQVWSVTPK [MH]+ = 1389.7
 4. INTGMAIDLVFG [MH]+ = 1518.2
 4'. INTMGDAADILVFG [MH]+ = 1536.6
 5. QAQHCPHAFTDOG [MH]+ = 1258.8
 6. AVMFPTYK [MH]+ = 956.6
 7. YDINTFR [MH]+ = 1027.7
 8. GIQLYSGYDPK [MH]+ = 1077.7
Figure 2
figure 4
Figure 5
Figure 6
Figure 7

(a)

(b)
Molecular determinants of matrix metalloproteinase-12 covalent modification by a photoaffinity probe: Insights into activity-based probe development and conformational variability of matrix metalloproteinases
Anne-Sophie Dabert-Gay, Bertrand Czarny, Laurent Devel, Fabrice Beau, Evelyne Lajeunesse, Sarah Bregant, Robert Thai, Athanasios Yiotakis and Vincent Dive

J. Biol. Chem. published online September 5, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M805795200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts