BOUNDS ON THE TORSION SUBGROUPS OF NÉRON–SEVERI GROUPS

HYUK JUN KWEON

Abstract. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d \). We give explicit upper bounds on the order of the torsion subgroup \((\text{NS}_X)_{\text{tor}}\) of the Néron–Severi group of \(X \). The bounds are derived from an explicit upper bound on the number of irreducible components of either the Hilbert scheme \(\text{Hilb}_Q X \) or the scheme \(\text{CDiv}_n X \) parametrizing the effective Cartier divisors of degree \(n \) on \(X \). We also give an upper bound on the number of generators of \((\text{NS}_X)[\ell^\infty]\) uniform as \(\ell \neq \text{char} k \) varies.

1. Introduction

The Néron–Severi group \(\text{NS}_X \) of a smooth proper variety \(X \) over a field \(k \) is the group of divisors modulo algebraic equivalence. If \(k \) is algebraically closed, \(\text{NS}_X \) also equals the group of connected components of the Picard scheme of \(X \). Néron [17, p. 145, Théorème 2] and Severi [20] proved that \(\text{NS}_X \) is finitely generated. The aim of this paper is to give an explicit upper bound on the order of \((\text{NS}_X)_{\text{tor}}\). To the best of the author’s knowledge, this is the first explicit bound on the order of \((\text{NS}_X)_{\text{tor}}\).

Theorem 5.13. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d \). Then

\[
\#(\text{NS}_X)_{\text{tor}} \leq 2^{d^2 + 2r \log_2 r}.
\]

For any prime number \(\ell \neq \text{char} k \), there is a natural isomorphism \((\text{NS}_X)[\ell^\infty] \simeq H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}}[21, 2.2]\). Thus, Theorem 5.13 implies the corollary below.

Corollary 5.15. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d \). Let \(\ell \neq \text{char} k \) be a prime number. Then

\[
\prod_{\ell \neq \text{char} k} \#H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}} \leq 2^{d^2 + 2r \log_2 r}.
\]

We also give a uniform upper bound on the number of generators of \((\text{NS}_X)[\ell^\infty]\) as described below. This bound and a sketch of its proof were suggested by János Kollár after seeing an earlier draft of our paper containing only Theorem 5.13.

Date: March 2, 2022.

2010 Mathematics Subject Classification. Primary 14C05; Secondary 14C20, 14C22.

Key words and phrases. Néron–Severi group, Castelnuovo–Mumford regularity, Gotzmann number.

This research was partially supported by Samsung Scholarship and National Science Foundation grant DMS-1601946.
Theorem 6.3. Let $X \hookrightarrow \mathbb{P}^r$ be a smooth connected projective variety of degree d over k. Let $p = \text{char } k$, and

$$N = \begin{cases} (\text{NS } X)_{\text{tor}}, & \text{if } p = 0 \\ (\text{NS } X)_{\text{tor}}/(\text{NS } X)[p^\infty], & \text{if } p > 0. \end{cases}$$

Then N is generated by less than or equal to $(d - 1)(d - 2)$ elements.

Corollary 6.4. Let $X \hookrightarrow \mathbb{P}^r$ be a smooth connected projective variety of degree d over k. Let $\ell \neq \text{char } k$ be a prime number. Then $H^2_{\text{et}}(X, \mathbb{Z}_\ell)_{\text{tor}}$ is generated by less than or equal to $(d - 1)(d - 2)$ elements.

The torsion-free quotient $(\text{NS } X)/(\text{NS } X)_{\text{tor}}$ is the group of divisors modulo numerical equivalence. Its rank is bounded by the second Betti number of X. Katz found an upper bound on the sum of all Betti numbers of X [10, Theorem 1]; this gives a rough bound on the rank of $\text{NS } X$.

The torsion subgroup $(\text{NS } X)_{\text{tor}}$ is the group of numerically zero divisors modulo algebraic equivalence. This is a birational invariant [1, p. 177]. Recently, Poonen, Testa and van Luijk gave an algorithm to compute it.\footnote{They also found an algorithm computing the torsion free quotient assuming the Tate conjecture.}

The algorithm is based on their theorem that $(\text{NS } X)_{\text{tor}}$ injects into the set of connected components of $\text{Hilb}_Q X$ for some polynomial Q [19, Lemma 8.29]. The order of $(\text{NS } X)_{\text{tor}}$ will be bounded by finding an explicit Q and bounding the number of connected components of $\text{Hilb}_Q X$. We will show that an upper bound on the number of connected components of $\text{CDiv}_n X$ for an integer n depending on Q also gives an upper bound on the order of $(\text{NS } X)_{\text{tor}}$.

Section 3 shows that Q may be taken to be the Hilbert polynomial of mH, where H is a hyperplane section of X and m is an explicit integer. Section 4 bounds the number of irreducible components of $\text{Hilb}_Q X$ by using its embedding in a Grassmannian. Section 5 bounds the number of irreducible component of $\text{CDiv}_n X$ by using Kollár’s technique [13, Exercise I.3.28]. Finally, Section 6 gives a uniform upper bound on the number of generators of $(\text{NS } X)[\ell^\infty]$.

From now on, the base field k is assumed to be algebraically closed, since a base change makes the Néron–Severi group only larger [19, Proposition 6.1]. However, no assumption is made on the characteristic of k.

2. Notation

Given a scheme X over k, let $\text{conn}(X)$ and $\text{irr}(X)$ be the set of connected components of X and the set of irreducible components of X, respective. Let X_{red} be the reduced closed subscheme associated to X. If X is smooth and proper, then $\text{NS } X$ denote the Néron–Severi group of X. Let $H^i_{\text{et}}(X, \mathcal{F})$ be the i-th étale cohomology group of X corresponding to an étale sheaf \mathcal{F}. If $k = \mathbb{C}$, then let X^an be the analytic space of X. If M is a topological manifold, then $H^i_{\text{sing}}(M, \mathbb{Z})$ (resp. $H^i_{\text{sing}}(M, \mathbb{Z})$) denotes the i-th singular cohomology (resp. homology) group with integer coefficients.

A projective variety is a closed subscheme of $\mathbb{P}^r = \text{Proj } k[x_0, \ldots , x_r]$ for some r. Suppose that $X \hookrightarrow \mathbb{P}^r$ is a projective variety. Let $I_X \subset k[x_0, \ldots , x_r]$ be the saturated ideal defining X. Given $f_0, \ldots , f_{t-1} \in k[x_0, \ldots , x_r]$, let $V_X(f_0, \ldots , f_{t-1})$ be the subscheme of X defined
by the ideal \((f_0, \ldots, f_{t-1}) + I_X \). Let \(\mathcal{O}_X, \mathcal{I}_X, \Omega_X \) and \(\omega_X \) be the sheaf of regular functions, the ideal sheaf, the sheaf of differentials and the canonical sheaf of \(X \), respectively.

Given a coherent sheaf \(\mathcal{F} \) on \(X \), let \(\text{HP}_{\mathcal{F}} \) be the Hilbert polynomial of \(\mathcal{F} \), and \(\Gamma(\mathcal{F}) \) be the global section of \(\mathcal{F} \). Given a graded module \(M \) over \(k \), let \(\text{HP}_M \) be the Hilbert polynomial of \(M \), and \(M_t \) be the degree \(t \) part of \(M \). Take an effective divisor \(D \) on \(X \). Let \(\text{HP}_D \) be the Hilbert polynomial of \(D \) as a subscheme of \(\mathbb{P}^r \). Then \(\mathcal{O}(-D) \subset \mathcal{O}_X \) is the ideal sheaf corresponding to \(D \), and

\[
\text{HP}_D = \text{HP}_{\mathcal{O}_X} - \text{HP}_{\mathcal{O}(-D)}.
\]

Let \(\text{Hilb} \, X \) be the Hilbert scheme of \(X \). Given a polynomial \(Q(t) \), let \(\text{Hilb}_Q \, X \) be the Hilbert scheme of \(X \) parametrizing closed subschemes of \(X \) with Hilbert polynomial \(Q \). Let \(\text{Chow}_{\delta,n} \, X \) be the Chow variety of dimension \(\delta \) and degree \(n \) algebraic cycles on \(X \). Let \(\text{CDiv} \, X \) be the scheme parametrizing the effective Cartier divisors on \(X \), and let \(\text{CDiv}_{n} \, X \) be the open and closed subscheme of \(\text{CDiv} \, X \) corresponding to the divisors of degree \(n \). Let \(\text{Pic} \, X \) be the Picard scheme of \(X \). Let \(\text{Alb} \, X \) be the Albanese variety of \(X \). Given a vector space \(V \) and nonnegative number \(t \), let \(\text{Gr}(t,V) \) be the Grassmannian parametrizing \(t \)-dimensional subspaces of \(V \). Let \(\text{Gr}(t,n) = \text{Gr}(t,k^n) \).

Given a set \(S \), let \(\#S \) be the number of elements in \(S \). Give a group \(A \), let \(A_{\text{ab}} \) be the abelianization of \(A \), and \(A^{(\ell)} = \varprojlim A_{\text{ab}}/\ell^n A_{\text{ab}} \) be the maximal pro-\(\ell \) abelian quotient of \(A \). If \(A \) is abelian, let \(A_{\text{tor}} \), \(A[n] \) and \(A[\ell^\infty] \) be the set of torsion elements, \(n \)-torsion elements and \(\ell \)-power torsion elements, respectively. If \(A \) is a finite abelian group, then \(A^* \) is the Pontryagin dual of \(A \).

3. Numerical Conditions

Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by polynomials of degree \(\leq d \). Let \(K \) and \(H \) be a canonical divisor and a hyperplane section of \(X \), respectively. The goal of this section is to give an explicit \(m \) such that

\[
\# \text{conn}(\text{Hilb}_{\text{HP},mH} \, X) \geq \#(\text{NS} \, X)_{\text{tor}}.
\]

Poonen, Testa and van Luijk proved that an order of a Néron–Severi group is bounded by a number of connected components of a certain Hilbert scheme. The theorem and the proof below is a reformulation of their work in [19, Section 8.4].

Theorem 3.1 (Poonen, Testa and van Luijk). *Let \(F \) be a divisor on \(X \) and \(Q = \text{HP}_{\text{O}_X} - \text{HP}_{\text{O}(-F)} \). If \(\text{O}_X(F + D) \) has a global section for every numerically zero divisor \(D \), then*

\[
\# \text{conn}(\text{Hilb}_Q \, X \cap \text{CDiv} \, X) \geq \#(\text{NS} \, X)_{\text{tor}}.
\]

Proof. Recall that \(\text{CDiv} \, X \) is an open and closed subscheme of \(\text{Hilb} \, X \) [13, Exercise I.3.28], and there is a natural proper morphism \(\pi : \text{CDiv} \, X \to \text{Pic} \, X \) sending a divisor to the corresponding class [3, p. 214].

Let \(\text{Pic}^c \, X \) be the finite union of connected components of \(\text{Pic} \, X \) parametrizing the divisors numerically equivalent to \(F \). Since the Hilbert polynomial of a divisor is a numerical invariant, \(Q \) is the Hilbert polynomial of each divisor corresponding to a closed point of \(\pi^{-1}(\text{Pic}^c \, X) \). Thus, \(\pi^{-1}(\text{Pic}^c \, X) \subset \text{Hilb}_Q \, X \). Since \(\text{Pic}^c \, X \) is open and closed in \(\text{Pic} \, X \), and \(\text{CDiv} \, X \) is open and closed in \(\text{Hilb} \, X \), the scheme \(\pi^{-1}(\text{Pic}^c \, X) \) is open and closed in
Hilb\(Q\) \(X \cap \text{CDiv} \ X\). Thus,
\[
\# \text{conn}(\text{Hilb}\(Q\) \(X \cap \text{CDiv} \ X\)) \geq \# \text{conn}(\pi^{-1}(\text{Pic}^{c} \ X)).
\]
Since \(F + D\) is linearly equivalent to an effective divisor for every numerically zero divisor \(D\), the morphism \(\pi\) restricts to a surjection \(\pi^{-1}(\text{Pic}^{c} \ X) \to \text{Pic}^{c} \ X\). Hence,
\[
\# \text{conn}(\pi^{-1}(\text{Pic}^{c} \ X)) \geq \# \text{conn}(\text{Pic}^{c} \ X) = (\text{NS}^{\text{tor}} \ X).
\]
The authors of [19] chose \(F = K + (\dim \ X + 2)H\) because of the following partial result towards Fujita’s conjecture.

Theorem 3.2 (Keeler [11, Theorem 1.1]). Let \(L\) be an ample divisor on \(X\). Then
(a) \(\mathcal{O}_{X}(K + (\dim \ X)H + L)\) is generated by global sections, and
(b) \(\mathcal{O}_{X}(K + (\dim \ X + 1)H + L)\) is very ample.

However, computing the Hilbert polynomial of \(\mathcal{O}(-K)\) is somehow difficult. Therefore, we will show that \(F = ((d - 1) \cdot \text{codim} \ X)H\) is another choice.

Lemma 3.3. Let \(Y\) be a nonempty smooth closed subscheme of an affine space \(\mathbb{A}^{r} = \text{Spec} \ k[x_{0}, \cdots, x_{r-1}]\). Suppose that the ideal \(I\) defining \(Y\) is generated by polynomials of degree \(\leq d\). Let \(c = \text{codim} \ Y\). Then there are polynomials \(f_{0}, \cdots, f_{c-1} \in I\) such that
(a) \(\deg f_{i} = d\) for all \(i\), and
(b) \(f_{0} \land \cdots \land f_{c-1}\) represents a nonzero element in \(\land^{c}(I/I^{2})\).

Proof. Let \(R = k[x_{0}, \cdots, x_{c-1}]/I\). Then \(I/I^{2}\) is a locally free \(R\)-module of rank \(\text{codim} \ Y\) by [8, Theorem 8.17]. Take any prime ideal \(p \subset R\). Then \((I/I^{2})_{p}\) is a free \(R_{p}\)-module. Thus, there are \(p_{0}, \cdots, p_{c-1} \in I\) and \(q_{0}, \cdots, q_{c-1} \in R \setminus p\) such that
\[
\frac{p_{0}}{q_{0}} \land \frac{p_{1}}{q_{1}} \land \cdots \land \frac{p_{c-1}}{q_{c-1}}
\]
represents a nonzero element of \(\land^{c}(I/I^{2})_{p}\). Hence,
\[
(2) \quad p_{0} \land p_{1} \land \cdots \land p_{c-1}
\]
represents a nonzero element of \(\land^{c}(I/I^{2})\).

Let \(g_{0}, \cdots, g_{c-1}\) be polynomials of degree \(\leq d\) which generate \(I\). Then each \(p_{i}\) can be written as a \(R\)-linear combination of \(g_{i}\)’s. If we expand (2), at least one term should be nonzero in \(\land^{c}(I/I^{2})\). Therefore, we may assume that
\[
g_{0} \land g_{1} \land \cdots \land g_{c-1}
\]
represents a nonzero element of \(\land^{c}(I/I^{2})\). Let \(\ell \notin I\) be a polynomial of degree 1, and let \(f_{i} = \ell^{d - \deg g_{i}}g_{i}\). Then
\[
f_{0} \land f_{1} \land \cdots \land f_{c-1}
\]
represents a nonzero element of \(\land^{c}(I/I^{2})\) and \(\deg f_{i} = d\) for every \(i\). \(\square\)

Lemma 3.4. The sheaf \(\mathcal{O}_{X}(-K + (d \cdot \text{codim} \ X - r - 1)H)\) has a global section.
Proof. Let \(c = \text{codim} X \). Since \(X \) is smooth, there is an exact sequence
\[
0 \to \mathcal{I}_X/\mathcal{I}_X^2 \to \Omega_{\mathbb{P}^r} \otimes \mathcal{O}_X \to \Omega_X \to 0,
\]
and \(\mathcal{I}_X/\mathcal{I}_X^2 \) is locally free of rank \(c \) [8, Theorem 8.17]. Taking the highest exterior power gives
\[
\omega_{\mathbb{P}^r}|_X \simeq \bigwedge^c (\mathcal{I}_X/\mathcal{I}_X^2) \otimes \omega_X
\]
\[
\omega_X^{-1}(-r - 1) \simeq \bigwedge^c (\mathcal{I}_X/\mathcal{I}_X^2).
\]
Let \(U_i \subset X \) be the affine open set given by \(x_i \neq 0 \). Then there exist polynomials \(f_0, \ldots, f_{c-1} \) of degree \(d \) such that
\[
f_0(x_0/x_i, \ldots, x_r/x_i) \wedge \cdots \wedge f_{c-1}(x_0/x_i, \ldots, x_r/x_i)
\]
represents a nonzero section of \(\bigwedge^c (\mathcal{I}_X/\mathcal{I}_X^2)|_{U_i} \) by Lemma 3.3. Take another \(U_j \subset X \) given by \(x_j \neq 0 \). Then two sections
\[
x_i^d f_0(x_0/x_i, \ldots, x_r/x_i) \wedge \cdots \wedge x_{i}^d f_{c-1}(x_0/x_i, \ldots, x_r/x_i)
\]
and
\[
x_j^d f_0(x_0/x_j, \ldots, x_r/x_j) \wedge \cdots \wedge x_{j}^d f_{c-1}(x_0/x_j, \ldots, x_r/x_j)
\]
give same restrictions in \(\bigwedge^c (\mathcal{I}_X/\mathcal{I}_X^2)|_{U_i \cap U_j} \). Because \(i \) and \(j \) are arbitrary, the sections above extend to a global section of
\[
\omega_X^{-1}(d \cdot \text{codim} X - r - 1) \simeq \bigwedge^c (\mathcal{I}_X/\mathcal{I}_X^2(d)). \tag*{\qed}
\]

Lemma 3.5. Let \(D \) be a divisor on \(X \) numerically equivalent to \(0 \).\(^2\) Then
(a) \(\mathcal{O}_X(D + ((d - 1) \text{codim} X)H) \) is generated by global sections, and
(b) \(\mathcal{O}_X(D + ((d - 1) \text{codim} X + 1)H) \) is very ample.

Proof. The divisor \(D + H \) is ample, since ampleness is a numerical property. Then \(K + (\dim X)H + (D + H) \) is generated by global section by Theorem 3.2. Thus, Lemma 3.4 implies that
\[
(K + (\dim X)H + (D + H)) + (-K + (d \cdot \text{codim} X - r - 1)H)
\]
\[
= D + ((d - 1) \text{codim} X)H
\]
is generated by global sections. Similarly, \(D + ((d - 1) \text{codim} X + 1)H \) is very ample. \(\Box \)

Theorem 3.6. Let \(m = (d - 1) \text{codim} X \). Then
\[
\# \text{conn}(\text{Hilb}_{\mathbb{P}^r,m} X) \geq \#(\text{NS}_X)_{\text{tor}}.
\]

Proof. By Lemma 3.5(a), we may apply Theorem 3.1 to \(F = mH \). \(\Box \)

\(^2\)The condition ‘numerically equivalent to 0’ can be replaced by ‘numerically effective’ due to Kleiman’s criterion of ampleness [12, Chapter IV §2 Theorem 2].
4. Irreducible Components of Hilbert Schemes

The aim of this section is to give an explicit upper bound on \(\#(\text{NS}_{\text{tor}} X) \) for a smooth projective variety \(X \). Theorem 3.6 implies that it suffices to give an upper bound on the number of connected components of some Hilbert scheme. Recall the definition of Castelnuovo–Mumford regularity and Gotzmann numbers.

Definition 4.1. A coherent sheaf \(\mathcal{F} \) over \(\mathbb{P}^r \) is \(m \)-regular if and only if
\[
H^i(\mathbb{P}^r, \mathcal{F}(m - i)) = 0
\]
for every integer \(i > 0 \). The smallest such \(m \) is called the Castelnuovo–Mumford regularity of \(\mathcal{F} \).

Definition 4.2. Let \(P \) be the Hilbert polynomial of some ideal \(I \subset k[x_0, \cdots, x_r] \). The Gotzmann number \(\varphi(P) \) of \(P \) is defined as
\[
\varphi(P) = \inf \{ m \mid \mathcal{I}_Z \text{ is } m\text{-regular for every closed subvariety } Z \subset \mathbb{P}^r \text{ with Hilbert polynomial } P \}.
\]

Hilbert schemes can be explicitly described as a closed subscheme of a Grassmannian, by Gotzmann [5].

Theorem 4.3 (Gotzmann). Let \(P \) be the Hilbert polynomial of some ideal \(I \subset k[x_0, \cdots, x_r] \). Assume that \(t \geq \varphi(P) \). Then
\[
\iota_t : \text{Hilb}^{(t+r)-P(t)} \mathbb{P}^r \to \text{Gr}(P(t), k[x_0, \cdots, x_r]_t)
\]
\[
[Y] \mapsto \Gamma(\mathcal{I}_Y(t))
\]
gives a well-defined closed immersion. Moreover, the image is the collection of linear spaces \(T \subset k[x_0, \cdots, x_r]_t \) such that
(a) \(\dim (x_0 T + \cdots + x_r T) \leq P(t + 1) \).

Proof. See [5, Section 3]. \(\square \)

Let \(X \hookrightarrow \mathbb{P}^r \) be a projective variety and \(Q \) be a polynomial. Then there is the natural closed embedding
\[
\text{Hilb}_Q X \hookrightarrow \text{Hilb}_Q \mathbb{P}^r.
\]

Theorem 4.4. Use the notation in Theorem 4.3. Let \(X \hookrightarrow \mathbb{P}^r \) be a projective variety defined by polynomials of degree \(\leq d \). Assume that \(t \geq \max\{ \varphi(P), d \} \). Then the image of
\[
\text{Hilb}^{(t+r)-P(t)} X
\]
under \(\iota_t \) is the collection of linear spaces \(T \subset k[x_0, \cdots, x_r]_t \) such that
(a) \(\dim (x_0 T + \cdots + x_r T) \leq P(t + 1) \) and
(b) \(\Gamma(\mathcal{I}_X(t)) \subset T \).

Proof. See the proof of [19, Lemma 8.23] \(\square \)

Therefore, an upper bound on Gotzmann numbers will give an explicit construction of a Hilbert scheme. Such a bound is given by Hoa [9, Theorem 6.4(i)].
Theorem 4.5 (Hoa). Let $I \subset k[x_0, \cdots, x_r]$ be an nonzero ideal generated by homogeneous polynomials of degree at most $d \geq 2$. Let a be the Krull dimension of $k[x_0, \cdots, x_r]/I$. Then

$$\varphi(\text{HP}_I) \leq \left(\frac{3}{2}d^{r+1-a} + d\right)^{a^2-1}. $$

Once a Hilbert scheme is explicitly constructed, we can bound the number of the irreducible components by the lemma below.

Lemma 4.6. If $X \hookrightarrow \mathbb{A}^r$ is an affine scheme defined by polynomials of degree $\leq d$, then

$$\# \text{ irr}(X) \leq d^r. $$

Proof. This is a special case of the Andreotti-Bălzout inequality [4, Lemma 1.28]. \hfill \square

The Grassmannian $\text{Gr}(k, n)$ is covered by open sets isomorphic to $\mathbb{A}^{k(n-k)}$. The conditions in Theorem 4.4 can be translated into explicit equations in such an affine space, giving the lemma below.

Lemma 4.7. Let V and W be vector spaces. Let $n = \dim V$. Let $\varphi_i : V \to W$ be a linear map for each $i = 0, \cdots, r$. Let $U \subset V$ be a subspace. Let X be the collection of $T \in \text{Gr}(q, V)$ satisfying

(a) $\dim(\varphi_0(T) + \cdots + \varphi_r(T)) \leq p$, and

(b) $U \subset T$.

Then X is a closed subscheme of $\text{Gr}(q, V)$, and with $n = \dim V$,

$$\# \text{ conn}(X) \leq \max\{p + 1, q + 1\}^{q(n-q)}. $$

Proof. Given a subspace $S \subset V$ of dimension $n - q$, there is an open set

$$U_S = \{T \in \text{Gr}(q, V) | U \cap T = \{0\}\}. $$

Choose a basis of V such that S is spanned by the first $n - q$ entries. Then every $T \in U_S$ is uniquely represented as a column space of a block matrix

$$N_T = \begin{pmatrix} X_{n-q,q} \\ I_q \end{pmatrix}, $$

where $X_{n-q,q}$ is an $(n-q) \times q$ matrix, and I_q is the $q \times q$ identity matrix. The entries of $X_{n-q,q}$ can be regarded as indeterminates, giving an isomorphism $U_S \simeq \mathbb{A}^{(n-q)q}$. Let $\varphi_{i}^{\otimes q}(N_T)$ be the $(\dim W) \times q$ matrix obtained by applying φ_i to every column of N_T. Then

$$\dim(\varphi_0(T) + \cdots + \varphi_r(T)) \leq p $$

if and only if every $(p + 1) \times (p + 1)$ minor of the block matrix

$$\begin{pmatrix} \varphi_0^{\otimes k}(X_{n-q,q}) & \varphi_1^{\otimes k}(X_{n-q,q}) & \cdots & \varphi_r^{\otimes k}(X_{n-q,q}) \end{pmatrix} $$

is zero.

Let M_U be a matrix whose columns form a basis of U. Then $U \subset T$ if and only if every $(q + 1) \times (q + 1)$ minor of

$$\begin{pmatrix} X_{n-q,q} \\ I_q \end{pmatrix} M_U $$

is zero.
is zero. Thus, \(\mathbf{X} \cap U_S \) is defined by the minors in \(U_S \), meaning that \(\mathbf{X} \) is a closed subscheme of \(\text{Gr}(q,V) \).

Now, take one point from each irreducible component of \(\mathbf{X} \), and let them be \(T_0, \cdots, T_{\ell-1} \subset V \). Then \((n-k)\)-dimensional subspace \(S \subset V \) can be chosen such that

\[
S \cap \left(\bigcup_{i=0}^\ell T_i \right) = \{0\},
\]

implying that every irreducible component intersects with \(U_S \). Since \(\mathbf{X} \cap U_S \) is defined by polynomials of degree \(\leq \max\{p+1, q+1\} \), Lemma 4.6 implies

\[
\# \text{irr}(\mathbf{X}) = \# \text{irr}(\mathbf{X} \cap U_S) \leq \max\{p+1, q+1\}^q(n-q). \tag*{□}
\]

Lemma 4.8. Let \(X \hookrightarrow \mathbb{P}^r \) be a projective variety defined by polynomials of degree \(\leq d \). Let \(P \) be the Hilbert polynomial of an ideal. If \(t \geq \max\{\varphi(P), d, 8r\} \) and \(r \geq 2 \), then

\[
\# \text{irr} \left(\text{Hilb}_{r^t-P(t)} X \right) \leq t^{r^2r}.
\]

Proof. Theorem 4.4 and Lemma 4.7 implies that

\[
\# \text{irr} \left(\text{Hilb}_{r^t-P(t)} X \right) \leq \max \{ P(t+1)+1, P(t)+1 \}^{P(t)(t^{r^t})-P(t)}
\]

\[
\leq \left(\binom{t+1+r}{r} + 1 \right) \left(\frac{(t+1+r)^2}{r!} \right).
\]

Since \(r \geq 2 \) and \(t \geq 8r \),

\[
\binom{t+1+r}{r} = \frac{(t+r+1) \cdots (t+2)}{r!}
\]

\[
\leq \frac{(t+r+1)^r}{2^{r-1}}
\]

\[
\leq \left(\frac{10t}{8} \right)^r \frac{1}{2^{r-1}}
\]

\[
< t^r.
\]

Therefore,

\[
\# \text{irr} \left(\text{Hilb}_{r^t-P(t)} X \right) \leq (t^r)^2 = t^{r^2}. \tag*{□}
\]

Now, we are ready to give an upper bound:

Theorem 4.9. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d \). Then

\[
(3) \quad \#(\text{NS} \ X)_{\text{tor}} \leq 2^{dr+3\log_2 r}.
\]

Proof. If \(X \) is a curve or a projective space, then \((\text{NS} \ X)_{\text{tor}} = 0 \). Thus, we may assume that \(r \geq 3, d \geq 2 \) and \(\text{codim} \ X \geq 1 \). Moreover, \(X \) may be assumed to be not contained in any hyperplane.
Let I be the ideal defining X. Let H be a hyperplane section of X cut by $x_r = 0$. Let $m = (d-1) \operatorname{codim} X \geq 1$. Then $I + (x^m)$ is the ideal defining mH where $m = (d-1) \operatorname{codim} X$. Let $t = (2rd)^{(r+1)2^{r-2}}$ and $a = \dim X$. Then $t \geq d$ and $t \geq 8r$. Moreover,

$$t = \left(\frac{3}{2}(rd)^{r+1-a} + \frac{1}{2}(rd)^{r+1-a}\right) \cdot 2^{2^{r-2}}$$

$$\geq \left(\frac{3}{2}(rd)^{r+1-a} + rd\right) \cdot 2^{a-1}$$

$$\geq \varphi(\mathcal{H} \mathcal{P}_{mH}) \text{ (by Theorem 4.5)}.$$

Thus, Theorem 3.6 and Lemma 4.8 implies that

$$\#(\text{NS}_X)_{\text{tor}} \leq \# \text{conn}(\mathcal{H} \mathcal{P}_{mH}X) \leq \# \text{irr}(\mathcal{H} \mathcal{P}_{mH}X) \leq t^{rt^{2r}}.$$

Notice that

$$\log_2 \log_d \log_2 \left(t^{rt^{2r}}\right) = \log_2 \log_d \left(t^{2r}r \log_2 t\right)$$

$$\leq \log_2 \log_d \left(t^{2r}2^{r-1}(r+1)r^2d\right)$$

(since $\log_2(2rd) \leq 2rd$)

$$\leq \log_2 \left(2r \log_d t + r + \log_2(r+1)r^2\right)$$

(since $d \geq 2$)

$$\leq \log_2 \left(2^{r-1}r(r+1)(\log_2 r + 2) + r + \log_2(r+1)r^2\right)$$

$$\leq r + 3 \log_2 r.$$

As a result,

$$\#(\text{NS}_X)_{\text{tor}} \leq 2^{2^{r+3} \log_2 r}.$$

□

5. Irreducible Components of Chow Varieties

In this section, $X \hookrightarrow \mathbb{P}^r$ is a smooth projective variety defined by homogeneous polynomials of degree $\leq d$. The goal of this section is to give a better upper bound on the order of $(\text{NS}_X)_{\text{tor}}$. János Kollár pointed out that the bound may be also derived form an upper bound on the number of connected components of $\text{Chow}_{\delta,n}X$. Our goal only requires a bound for CDiv_nX instead of Chow varieties of arbitrary dimensions.

Theorem 5.1. Let $n = (d-1) \operatorname{codim} X \cdot \deg X$. Then

$$\# \text{conn}(\text{CDiv}_nX) \geq \#(\text{NS}_X)_{\text{tor}}.$$

Proof. Let $H \subset X$ be a hyperplane section, $m = (d-1) \operatorname{codim} X$, and $Q = \mathcal{H} \mathcal{P}_{mH}$. If D is a closed subscheme with Hilbert polynomial Q, then $\deg D = \deg mH = n$. Hence,

$$\mathcal{H} \mathcal{P}_QX \cap \text{CDiv} X \subset \text{CDiv}_nX.$$

Since $\mathcal{H} \mathcal{P}_QX$, $\text{CDiv} X$ and CDiv_nX are open and closed in $\mathcal{H} \mathcal{P}X$, Lemma 3.5 and Theorem 3.1 implies that

$$\# \text{conn}(\text{CDiv}_nX) \geq \# \text{conn}(\mathcal{H} \mathcal{P}_QX \cap \text{CDiv} X) \geq \#(\text{NS}_X)_{\text{tor}}.$$

□
In [13, Exercise I.3.28], Kollár gives an explicit upper bound on \(\# \text{irr}(\text{Chow}_{\delta,n} \mathbb{P}^r) \) and an outline of the proof. Moreover, [13, Exercise I.3.28.13] suggests an exercise to find an explicit upper bound on \(\# \text{irr}(\text{Chow}_{\delta,n} X) \), and the proof can be found in [7, Section 2]. However, the proof works only if \(\text{char} \, k = 0 \), and it does not give a bound in a closed form.

Therefore, we will give another complete proof, but most of the proof up to Lemma 5.11 is just a modification of Kollár’s technique and [7, Section 2]. Moreover, we will only bound \(\# \text{irr}(\text{CDiv}_n X) \), because this restriction avoids the bad behavior of Chow varieties in positive characteristic, simplifies the proof and slightly improves the result.

Lemma 5.2. Let \(D \subset X \) be a nonzero effective divisor on \(X \) of degree \(n \). Then there are \(f \) and \(g \) in \(\Gamma(X, \mathcal{I}_D(n)) \) such that \(D \) is the largest effective divisor contained in \(V_X(f,g) \).

Proof. Take any point \(x \in X \) and a generic linear projection \(\rho_0 : \mathbb{P}^r \to \mathbb{P}^{\dim X} \). Then \(\rho_0(D) \) is a hypersurface and \(\rho_0|_x \) is étale at \(x \). Let \(f_0 \) be a homogeneous polynomial of degree \(n \) defining \(\rho_0(D) \), and \(f \in \Gamma(X, \mathcal{I}_D(n)) \) be its pullback. Then

\[
V_X(f) = D \cup E_0 \cup E_1 \cup \cdots \cup E_{t-1}
\]

for some irreducible closed subschemes \(E_i \subset X \) not set theoretically contained in \(D \).

Take \(e_i \in E_i \setminus D \) for each \(i \), and let \(\rho_1 : \mathbb{P}^r \to \mathbb{P}^{\dim X} \) be another generic linear projection. Then \(e_i \notin \rho_1(D) \) for every \(i \). Let \(g_0 \) be a homogeneous polynomial of degree \(n \) defining \(\rho_1(D) \), and \(g \in \Gamma(X, \mathcal{I}_D(n)) \) be its pullback. Then \(V_X(f,g) \) contains \(D \) but not \(E_i \) for all \(i \). Thus, \(D \) is the largest divisor contained in \(V_X(f,g) \). \(\square \)

Definition 5.3. Let

\[
N_n = \binom{n + r}{n} - 1.
\]

Then \(\mathbb{P}^{N_n} \) parameterizes nonzero homogeneous polynomials of degree \(n \) with \(r + 1 \) variables up to constant factors. Let

\[
S_n = \left\{ (f,g) \in (\mathbb{P}^{N_n})^2 \mid \text{codim}_X(V_X(f,g)) \leq 1 \right\} \quad \text{and} \quad T_n = \left\{ ((f,g), [D]) \in S_n \times \text{CDiv} \, X \mid D \subset V_X(f,g) \right\}.
\]

Let \(p : T_n \to S_n \) and \(q : T_n \to \text{CDiv} \, X \) be the natural projections.

Lemma 5.4. Let \(X \hookrightarrow (\mathbb{P}^r)^2 \) be a closed subscheme defined by bihomogeneous polynomials of total degree \(\leq d \). Then

\[
\# \text{irr}(X) \leq d^{2r}.
\]

Proof. Let \(L_0 \) and \(L_1 \) be generic hyperplanes of \(\mathbb{P}^r \). Then \(L_0 \times \mathbb{P}^r \) and \(\mathbb{P}^r \times L_1 \) do not contain any irreducible component of \(X \). Let

\[
U = (\mathbb{P}^r \setminus L_0) \times (\mathbb{P}^r \setminus L_1) \cong \mathbb{A}^{2r}.
\]

Then

\[
\# \text{irr}(X) = \# \text{irr} \,(X \cap U),
\]

and \(X \cap U \hookrightarrow \mathbb{A}^{2r} \) is defined by polynomials of degree \(\leq d \). Consequently, Lemma 4.6 proves the inequality. \(\square \)
Lemma 5.5. Let \(n \) be a positive integer. Then \(S_n \) is closed in \((\mathbb{P}^N)^2\) and
\[
\# \text{irr}(S_n) \leq \left(\frac{2\max\{n,d\} + (r-1)d}{r}\right)^{2(n+r)-2}.
\]

Proof. Take \((f,g) \in (\mathbb{P}^N)^2\) as in Definition 5.3. Then \(\text{codim}_X(V_X(f,g)) = 1\), if and only if the intersection of \(V_X(f,g)\) with \(t = \dim X - 1 \) number of generic hyperplane sections is nonempty. Let \(h_i = \sum_{j=0}^{r-1} \xi_{i,j} x_j \) be a generic hyperplane section for each \(i \), where \(\xi_{i,j} \) are indeterminates. Take a base extension to \(k(\{\xi_{i,j}\}_{i,j})\). Then
\[
\text{codim}_X(V_X(f,g)) = 1 \\
\iff V_X(f, g, h_0, \ldots, h_{t-1}) \neq \emptyset \\
\iff (x_0, \ldots, x_r)^{2n,n} \in (f,g,h_0,\ldots,h_{t-1}) + I_X \\
\text{(by [13, Corollary I.7.4.4.3])} \\
\iff \text{rank} \left((f,g,h_0,\ldots,h_{t-1}) + I_X \right) < \left(\frac{2\max\{n,d\} + (r-1)d}{r}\right).
\]
The last condition can be translated into bihomogeneous polynomials in the coefficients of \(f \) and \(g \) of total degree \(\left(\frac{2\max\{n,d\} + (r-1)d}{r}\right) \). Lemma 5.4 proves the inequality. \(\square\)

Lemma 5.6. The set \(T_n \) is a closed subset of \(S_n \times \text{CDiv } X \).

Proof. Since \(\text{CDiv } X \) is open and closed in \(\text{Hilb } X \), it suffices to show that
\[
T^Q_n = \{((f,g), [Z]) \in S_n \times \text{Hilb}_Q X \mid Z \subset V_X(f,g)\}
\]
is closed in \(S_n \times \text{Hilb}_Q X \) for every Hilbert polynomial \(Q \). Recall that Theorem 4.3 gives a closed embedding
\[
u_t: \text{Hilb}_Q X \to \text{Gr}(P(t), k[x_0,\ldots,x_r]_t) \\
[Z] \mapsto \Gamma(\mathcal{I}_Z(t))
\]
for some polynomial \(P \) and every large \(t \). This gives a closed embedding
\[
(S_n \times \text{Hilb}_Q X) \hookrightarrow (\mathbb{P}^N \times \text{Gr}(P(t), k[x_0,\ldots,x_r]_t)).
\]
We may assume that \(t \geq n \). Notice that \(Z \subset V(f,g) \) if and only if the saturation of \((f,g)\) is contained in the saturated ideal defining \(Z \). Thus,
\[
Z \subset V(f,g) \iff (f,g)_t \subset \Gamma(\mathcal{I}_Z(t)) \\
\iff \dim (\Gamma(\mathcal{I}_Z(t)) + (f,g)_t) \leq P(t).
\]
Note that \(\mathbb{P}^N \times \text{Gr}(P(t), k[x_0,\ldots,x_r]_t) \) is covered by the standard affine open spaces. In such affine open spaces, the last condition is expressed as \((P(t) + 1) \times (P(t) + 1)\) minors of some matrix. Consequently, \(T^Q_n \) is identified with a closed subset of \(\mathbb{P}^N \times \text{Gr}(P(t), k[x_0,\ldots,x_r]_t) \). \(\square\)

Definition 5.7. Let \(\text{PDiv}_n X \) be the union of the irreducible components of \(\text{CDiv}_n X \) which contains at least one closed point corresponding to a reduced and irreducible divisor.

Lemma 5.8. Let \(F \) be an irreducible component of \(\text{PDiv}_n X \). Then there is a unique irreducible component \(E \) of \(T_n \) such that \(q(E) = F \).
Lemma 5.12. That this map is injective. □

E where Lemma 5.8 and Lemma 5.10 define a map

Proof. Lemma 5.11.

Let

Proof. S

Lemma 5.10.

Component containing S

Since R

Thus, we can take W

Because

is unique. □

Lemma 5.9. Let F and E be as in Lemma 5.8. Then there is (f, g) ∈ Sn such that E is the only irreducible component of Tn satisfying (f, g) ∈ p(E).

Proof. Let W ⊂ CDivn be the complement of the image of the proper morphism

Then W parametrizes the reduced and irreducible divisors of degree n on X. Notice that W ∩ F ≠ ∅, because F ⊂ PDivn X. The uniqueness of E implies that there is a dense open set U ⊂ F such that q−1(U) does not intersect with any irreducible component of Tn other than E. Thus, we can take [D] ∈ W ∩ U. Then D is a reduced and irreducible divisor, since [D] ∈ W. Lemma 5.2 implies that there is (f, g) ∈ Sn such that

p−1((f, g)) = \{((f, g), [D])\}.

Then E is the only irreducible component of Tn containing ((f, g), [D]), because [D] ∈ U. □

Lemma 5.10. Let F and E be as in Lemma 5.8. Then p(E) is an irreducible component of Sn.

Proof. Let

Rn = q−1(CDiv1 X ∪ CDiv2 X ∪ ⋯ ∪ CDivn deg X X) ⊂ Tn.

Since Rn is proper, the restriction p|Rn : Rn → Sn is also proper. Moreover, p|Rn is surjective, because deg Vx(f, g) ≤ n deg X for every (f, g) ∈ Sn. Thus, every irreducible component of Sn is the image of an irreducible component of Rn under p|Rn. Let B ⊂ Sn be the irreducible component containing p(E). Then Lemma 5.9 implies that p(E) = B. □

Lemma 5.11. If n is a positive integer, then

irr(PDivn X) ≤ # irr(Sn).

Proof. Lemma 5.8 and Lemma 5.10 define a map

\[\text{irr}(\text{PDiv}_n X) \rightarrow \text{irr}(S_n) \]

\[F \mapsto P(E), \]

where E is determined by F as in Lemma 5.8. Then Lemma 5.8 and Lemma 5.9 implies that this map is injective. □

Lemma 5.12. Let n be a positive integer. Then

\[# \text{irr}(\text{CDiv}_n X) \leq 2^n \left(2 \max\{n, d\} + (r - 1)d \right)^{2(n + r) - 2}. \]
Proof. Notice that
\[
\prod_{n_0 + \cdots + n_{t-1} = n} \text{PDiv}_{n_0} X \times \cdots \times \text{PDiv}_{n_{t-1}} X \longrightarrow \text{CDiv}_n X
\]

([D_0], \cdots, [D_{t-1}]) \mapsto [D_0 + \cdots + D_{t-1}].

is surjective, where the disjoint union runs over all integer partitions of \(n\). Thus, the left-hand side has more irreducible components. Take any integer partition \(n_0 + \cdots + n_{t-1} = n\). Then by Lemma 5.5 and Lemma 5.11,

\[
\# \text{irr}(\text{PDiv}_{n_0} X \times \cdots \times \text{PDiv}_{n_{t-1}} X) = \# \text{irr}(\text{PDiv}_{n_0} X) \times \cdots \times \# \text{irr}(\text{PDiv}_{n_{t-1}} X)
\]

\[
\leq \left(2 \max\{n_0, d\} + (r - 1)d\right)^{2^{(n_0 + r)^2} - 2} \times \cdots \times \left(2 \max\{n_{t-1}, d\} + (r - 1)d\right)^{2^{(n_{t-1} + r)^2} - 2}
\]

\[
\leq \left(2 \max\{n, d\} + (r - 1)d\right)^{2^{(n + r)^2} + \cdots + 2^{(n_{t-1} + r)^2} - 2}.
\]

Let
\[
D(x) = 2\left(x + \frac{r}{d}\right) - 2.
\]

Then \(D(0) = 0\) and \(D\) is concave above in \([0, \infty)\). Therefore,

\[
D(n_0) + D(n_1) + \cdots + D(n_{t-1}) \leq D(n).
\]

Furthermore, the number of integer partitions of \(n\) is less than or equal to \(2^n\). This proves the inequality. \(\square\)

Now, we are ready to give a new upper bound:

Theorem 5.13. Let \(X \hookrightarrow \mathbb{P}^r\) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d\). Then

(4) \[
\#(\text{NS}_X)_{\text{tor}} \leq 2^{d^2 + 2r \log_2 r}.
\]

Proof. If \(X\) is a curve or a projective space, then \((\text{NS}_X)_{\text{tor}} = 0\). Thus, we may assume that \(r \geq 3, d \geq 2, \deg X \geq 2\) and \(r - 2 \geq \text{codim} X \geq 1\). Let \(n = (d - 1) \text{codim} X \cdot \deg X\). Then

\[
d \leq n \leq (r - 2)(d - 1)d^{r-2}.
\]

Theorem 5.1 and Lemma 5.12 implies that

\[
\#(\text{NS}_X)_{\text{tor}} \leq \text{conn}(\text{CDiv}_n X) \leq \text{irr}(\text{CDiv}_n X) \leq 2^n \left(2n + (r - 1)d\right)^{2^{(n + r)^2} - 2}.
\]
Since
\[
\log_2 \left(\frac{2n + (r - 1)d}{r} \right) \leq \log_2 (2n + (r - 1)d)^r \\
\leq r \log_2 (rd)^r \\
\leq r (\log_2 r + r \log_2 d) \\
\leq r^2 (1 + \log_2 d) \\
\leq r^2 d
\]
and
\[
2 \binom{n + r}{r} \leq \frac{2(n + r)^r}{r!} \\
\leq \frac{(rd^{r-1})^r}{3},
\]
we have
\[
\log_d \log_2 (\#(NSX)_{tor}) \leq \log_d \log_2 \left(2^n \left(\frac{2n + (r - 1)d}{r} \right)^{2(n+r)} \right) \\
\leq \log_d \left(n + r^2 d \frac{(rd^{r-1})^r}{3} \right) \\
\leq \log_d \left(r^{r+2} d^{r(r-1)+1} \right) \\
\leq (r + 2) \log_2 r + r(r - 1) + 1 \\
\leq 2r \log_2 r + r^2.
\]

We now give an application to the torsion subgroups of second cohomology groups.

Lemma 5.14. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety of degree \(d \). Let \(\ell \neq \text{char } k \) be a prime number. The embedding \((NSX) \otimes \mathbb{Z}_\ell \hookrightarrow H^2_{\text{ét}}(X, \mathbb{Z}_\ell) \) [15, Remark V.3.29] induces by the Kummer sequence restricts to an isomorphism.
\[
(\text{NSX})[\ell^{\infty}] \simeq H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}}.
\]

Proof. See [21, 2.2]. \(\square \)

Therefore, the bound of Theorem 5.13 implies the corollaries below.

Corollary 5.15. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety defined by homogeneous polynomials of degree \(\leq d \). Let \(\ell \neq \text{char } k \) be a prime number. Then \(\prod_{\ell \neq \text{char } k} \# H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}} \leq 2^{r^2 + 2r \log_2 r} \).

Proof. This follows from Theorem 5.13 and Lemma 5.14. \(\square \)

Corollary 5.16. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth projective variety over \(\mathbb{C} \) defined by homogeneous polynomials of degree \(\leq d \). Then
\[
\# H^2_{\text{sing}}(X^{\text{an}}, \mathbb{Z})_{\text{tor}} \leq 2^{d^{r^2 + 2r \log_2 r}}.
\]
Proof. This follows from Corollary 5.15 and the fact that
\[
\prod_{\ell \text{ is prime}} H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}} \simeq H^2_{\text{sing}}(X^{\text{an}}, \mathbb{Z})_{\text{tor}}. \]
\[\Box \]

6. The Number of Generators of \((\text{NS } X)_{\text{tor}}\)

In this section, \(X \hookrightarrow \mathbb{P}^r\) is a smooth connected projective variety, and \(\ell\) is a prime number not equal to \(\text{char } k\). The goal is to give a uniform upper bound on the number of generators of \((\text{NS } X)[\ell^\infty]\). Our approach is a simplification of a brief sketch suggested by János Kollár.

Lemma 6.1. Let \(X \hookrightarrow \mathbb{P}^r\) be a smooth connected projective variety of degree \(d\), and \(x_0\) be a geometric point of \(X\). Let \(\ell \neq \text{char } k\) be a prime number. Then
\[
(\text{NS } X)[\ell^\infty]^* \simeq \pi_1^{\text{ét}}(X, x_0)_{\text{tor}}^{\ell}[\ell^\infty].
\]

Proof. The exact sequence in [22, Proposition 69] gives an exact sequence
\[
0 \to (\text{NS } X)[\ell^\infty]^* \to \pi_1^{\text{ét}}(X, x_0)^{(\ell)} \to \pi_1^{\text{ét}}(\text{Alb } X, 0)^{(\ell)} \to 0,
\]
by taking the maximal pro-\(\ell\) abelian quotient. Since \(\pi_1^{\text{ét}}(\text{Alb } X, 0)^{(\ell)}\) is a free \(\mathbb{Z}_\ell\)-module,
\[
(\text{NS } X)[\ell^\infty]^* \simeq \pi_1^{\text{ét}}(X, x_0)^{(\ell)}_{\text{tor}} \simeq \pi_1^{\text{ét}}(X, x_0)^{\text{ab}}[\ell^\infty]. \]
\[\Box \]

If \(M\) is a topological manifold, the linking form implies that \(H^2_{\text{sing}}(M, \mathbb{Z})_{\text{tor}}^* \simeq H^1_{\text{sing}}(M, \mathbb{Z})_{\text{tor}}^*\). Lemma 5.14 and Lemma 6.1 imply the étale analogy that \(H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}}^* \simeq \pi_1^{\text{ét}}(X, x_0)^{\text{ab}}[\ell^\infty]\).

Lemma 6.2. Let \(X \hookrightarrow \mathbb{P}^r\) be a smooth connected projective variety of degree \(d\). Then \((\text{NS } X)[\ell^\infty]^*\) is generated by less than or equal to \((d - 1)(d - 2)\) elements.

Proof. For a general linear space \(L \subset \mathbb{P}^r\) of dimension \(r - \dim X + 1\), the intersection \(C := X \cap L\) is a connected smooth curve of degree \(d\). Take a geometric point \(x_0 \in C\). Then the natural map
\[
\pi_1^{\text{ét}}(C, x_0) \to \pi_1^{\text{ét}}(X, x_0)
\]
is surjective, by repeatedly applying the Lefschetz hyperplane theorem for étale fundamental groups [6, XII. Corollaire 3.5]. Let \(g\) be the genus of \(C\). Then Lemma 6.1 implies that \((\text{NS } X)[\ell^\infty]^*\) is isomorphic to a subquotient of
\[
\pi_1^{\text{ét}}(C, x_0)^{(\ell)}_{\text{tor}} \simeq \mathbb{Z}_\ell^{2g}. \]
Notice that \(2g \leq (d - 1)(d - 2)\) because \(\deg C = d\). As a result, \((\text{NS } X)[\ell^\infty]^*\) is generated by \(\leq (d - 1)(d - 2)\) elements.
\[\Box \]

Theorem 6.3. Let \(X \hookrightarrow \mathbb{P}^r\) be a smooth connected projective variety of degree \(d\) over \(k\). Let \(p = \text{char } k\), and
\[
N = \begin{cases}
(\text{NS } X)_{\text{tor}}, & \text{if } p = 0 \\
(\text{NS } X)_{\text{tor}}/(\text{NS } X)[p^\infty], & \text{if } p > 0.
\end{cases}
\]
Then \(N\) is generated by less than or equal to \((d - 1)(d - 2)\) elements.
Since a product of finitely many finite cyclic groups of coprime orders is again cyclic,
\[N \simeq \prod_{\ell \neq p} (\text{NS } X)[\ell^\infty] \]
is a product of \((d-1)(d-2) \) cyclic groups by Lemma 6.2.

Corollary 6.4. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth connected projective variety of degree \(d \) over \(k \). Let \(\ell \neq \text{char } k \) be a prime number. Then \(H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}} \) is generated by less than or equal to \((d-1)(d-2) \) elements.

Proof. This follows from Lemma 6.2 and Lemma 5.14.

Corollary 6.5. Let \(X \hookrightarrow \mathbb{P}^r \) be a smooth connected projective variety of degree \(d \) over \(\mathbb{C} \). Then \(\text{H}^2_{\text{sing}}(X^{an}, \mathbb{Z}) \) is generated by less than or equal to \((d-1)(d-2) \) elements.

Proof. This follows from Theorem 6.3 and the fact that
\[(\text{NS } X)_{\text{tor}} \simeq \prod_{\ell \text{ is prime}} (\text{NS } X)[\ell^\infty] \simeq \prod_{\ell \text{ is prime}} H^2_{\text{ét}}(X, \mathbb{Z}_\ell)_{\text{tor}} \simeq H^2_{\text{sing}}(X^{an}, \mathbb{Z})_{\text{tor}}. \]

The bounds in this section exclude the case \(\ell = \text{char } k \), because of the bad behavior of the étale cohomology at \(p \). One may try to overcome this by using Nori’s fundamental group scheme [18]. However, the Lefschetz hyperplane theorem for Nori’s fundamental group scheme is no longer true [2, Remark 2.4].

Question 6.6. Can one use another cohomology to prove the analogue of Lemma 6.2 for \((\text{NS } X)[p^\infty] \) in characteristic \(p \)?

Acknowledgement

The author thanks his advisor, Bjorn Poonen, for suggesting the problem, insightful conversation and careful guidance. The author thanks János Kollár, whose comments led to Section 5 and Section 6. The author thanks Wei Zhang for helpful conversation regarding étale homology. The author thanks Chenyang Xu for helpful conversation regarding Chow varieties.

References

[1] M. Baldassarri. *Algebraic varieties*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 12. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
[2] Indranil Biswas and Yogish I. Holla. Comparison of fundamental group schemes of a projective variety and an ample hypersurface. *J. Algebraic Geom.*, 16(3):547–597, 2007.
[3] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. *Néron models*, volume 21 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1990.
[4] Fabrizio Catanese. Chow varieties, Hilbert schemes and moduli spaces of surfaces of general type. *J. Algebraic Geom.*, 1(4):561–595, 1992.
[5] Gerd Gotzmann. Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes. *Math. Z.*, 158(1):61–70, 1978.
[6] Alexander Grothendieck. *Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2)*. North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968. Augmenté d’un exposé par Michèle Raynaud, Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2.
[7] Lucio Guerra. Complexity of Chow varieties and number of morphisms on surfaces of general type. *Manuscripta Math.*, 98(1):1–8, 1999.

[8] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

[9] Lê Tuân Hoa. Finiteness of Hilbert functions and bounds for Castelnuovo-Mumford regularity of initial ideals. *Trans. Amer. Math. Soc.*, 360(9):4519–4540, 2008.

[10] Nicholas M. Katz. Sums of Betti numbers in arbitrary characteristic. *Finite Fields Appl.*, 7(1):29–44, 2001. Dedicated to Professor Chao Ko on the occasion of his 90th birthday.

[11] Dennis S. Keeler. Fujita’s conjecture and Frobenius amplitude. *Amer. J. Math.*, 130(5):1327–1336, 2008.

[12] Steven L. Kleiman. Toward a numerical theory of ampleness. *Ann. of Math. (2)*, 84:293–344, 1966.

[13] János Kollár. *Rational curves on algebraic varieties*, volume 32 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1996.

[14] Gérard Laumon. Homologie étale. In Séminaire de géométrie analytique (École Norm. Sup., Paris, 1974-75), pages 163–188. Astérisque, No. 36–37. 1976.

[15] James S. Milne. *Étale cohomology*, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980.

[16] James S Milne. Lectures on étale cohomology. Available on-line at http://www.jmilne.org/math/CourseNotes/LEC.pdf, 1998.

[17] André Néron. Problèmes arithmétiques et géométriques rattachés à la notion de rang d’une courbe algébrique dans un corps. *Bull. Soc. Math. France*, 80:101–166, 1952.

[18] Madhav V. Nori. The fundamental group-scheme. *Proc. Indian Acad. Sci. Math. Sci.*, 91(2):73–122, 1982.

[19] Bjorn Poonen, Damiano Testa, and Ronald van Luijk. Computing Néron-Severi groups and cycle class groups. *Compos. Math.*, 151(4):713–734, 2015.

[20] Francesco Severi. La base per le varietà algebriche di dimensione qualunque contenuta in una data, e la teoria generate delle corrispondenze fra i punti di due superficie algebriche. *Mem. R. Accad. Italia*, 5:239–83, 1933.

[21] Alexei N. Skorobogatov and Yuri G. Zarhin. A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces. *J. Algebraic Geom.*, 17(3):481–502, 2008.

[22] Jakob Stix. *Rational points and arithmetic of fundamental groups*, volume 2054 of Lecture Notes in Mathematics. Springer, Heidelberg, 2013. Evidence for the section conjecture.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

E-mail address: kweon@mit.edu

URL: https://kweon7182.github.io/