Effect of Aminoethoxyvinylglycine (AVG) on Preharvest Drop, Fruit Quality, and Maturation of ‘McIntosh’ Apples. I. Concentration and Timing of Dilute Applications of AVG

James R. Schupp
Department of Horticultural Science, Hudson Valley Laboratory, Cornell University, Highland, NY 12528

Duane W. Greene
Department of Plant and Soil Sciences, University of Massachusetts, Amherst, MA 01003

Additional index words. Malus ×domestica, abscission, ethylene, daminozide, naphthaleneacetic acid, ripening, fruit drop, plant growth regulator

Abstract. To compare the effects of growth regulators on preharvest fruit drop and fruit maturity, aminoethoxyvinylglycine (AVG) was applied to ‘McIntosh’ apple trees at 75, 150, or 225 mg·L⁻¹ at 8, 4, or 2 weeks before harvest (WBH). These treatments were compared to NAA, daminozide, and to an untreated control. All AVG treatments and timings except 75 mg·L⁻¹ applied 8 WBH delayed preharvest drop and fruit maturity. AVG applied at 225 mg·L⁻¹ was more effective in delaying drop and development of maturity than other rates when applied 8 or 2 WBH, but at 4 WBH, 150 mg·L⁻¹ gave equivalent results to 225 mg·L⁻¹. AVG at 150 mg·L⁻¹ was superior to NAA or daminozide as a stop-drop agent. No concentration, or time of application of AVG influenced fruit size at harvest. AVG reduced internal ethylene concentration (IEC) in ‘McIntosh’ apples linearly with increasing AVG concentration. There was a linear relationship between time of AVG application (8, 4, or 2 WBH) and IEC in the fruit after harvest, and the time required for harvested fruit to enter the ethylene climacteric. Development of red color was delayed by AVG. This was attributed to a delay in ripening as determined by a slower increase in IEC and starch hydrolysis. In general, earlier application of AVG resulted in reduced effectiveness of lowering IEC following harvest. Chemical names used: aminoethoxyvinylglycine (AVG), naphthaleneacetic acid (NAA), succinic acid-2,2-dimethylhydrazide (daminozide).

‘McIntosh’ is the most heavily planted apple cultivar in New York and New England, representing a substantial portion of the region’s apple production. Its faults include uneven ripening and the tendency to have excessive preharvest fruit drop (Proctor, 1990). With the dominance of ‘McIntosh’, growers are faced with the dilemma of harvesting most of their crop within the 2 to 3 weeks when ‘McIntosh’ ripen. In a normal year 25% of the crop can drop and in a severe year >50% of the fruit can fall to the ground before harvest (Greene, 1996). The problem of preharvest drop of ‘McIntosh’ was studied extensively following the discovery that auxin-type plant growth regulators could retard preharvest drop (Batjer and Marth, 1945; Edgerton and Hoffman, 1951; Hoffman and Edgerton, 1952; Mattus and Moore, 1954; Southwick et al., 1953).

Naphthaleneacetic acid (NAA) and 2,4,5-trichlorophenoxypropionic acid (2, 4, 5-TP) emerged as the two compounds most capable of controlling drop on a number of apple cultivars (Edgerton and Hoffman, 1951; Hoffman and Edgerton, 1952; Southwick et al., 1953).

Received for publication 27 Jan. 2003. Accepted for publication 6 Oct. 2003.

Aminoethoxyvinylglycine (AVG) is a naturally occurring compound that was discovered in the early 1970s. Its primary mode of action is to inhibit ethylene biosynthesis (Boller et al., 1979). Bangert et al. (1978) showed that multiple applications of AVG retarded preharvest drop of ‘King of the Pippin’ apples. AVG also delayed ripening (Bramlage et al., 1980), and resulted in higher flesh firmness at harvest and following storage (Bramlage et al., 1980; Williams, 1980). The commercial development of AVG was started by Maag Chemical Company but it was later discontinued because of the apparent high cost of production. Abbott Laboratories initiated further development of AVG as a drop control compound following the loss of registration of daminozide on apples (Clarke et al., 1996). The purpose of this investigation was to evaluate and confirm the efficacy of different concentrations of AVG applied at three different timings, for drop control of ‘McIntosh’ apples and to determine its effect on ripening and fruit quality at harvest.

Materials and Methods

Experiment 1. Concentration and timing. Maine. Experiments to evaluate the effect of AVG on ‘McIntosh’ apples were carried out at the University of Maine Highmoor Farm, Monmouth, Maine in 1991 and 1992. Mature ‘Macspur McIntosh’M.26 trees growing on a Dxfield fine sandy loam were selected and blocked into six replications of 15 trees. On 29 July, 8 weeks before harvest (WBH), one tree in each block received a dilute spray of 75, 150, or 225 mg·L⁻¹ AVG (ABG-3097), Abbott Laboratories, North Chicago, Ill.) containing 0.1% (v/v) Regulaid surfactant (Kalo, Inc, Overland Park, Kans.). Similar applications were made on different and unsprayed trees in each block on 26 Aug. and 9 Sept., 4 and 2 WBH, respectively. Three trees in each block were not sprayed and served as controls for the three timings of AVG application. Three trees per block were sprayed on 16 Sept. with 20 mg L⁻¹ NAA (Fruitone N, AMVAC Corp., Newport Beach, Calif.). Forty fruit on one to two tagged limbs per tree were counted at the beginning of the study. All remaining fruit were counted three times weekly, and the cumulative percent fruit drop was calculated. On 30 Sept., 20 fruit per tree were harvested from the perimeter of each tree. Fruit weight and diameter were measured then red color was estimated visually on each fruit to the nearest 10%. Fruit firmness was determined on two sides of each fruit with a press-mounted Effigi penetrometer (Mc Cormick Fruit Co., Yakima, Wash.). Juice was collected during the flesh firmness determination and soluble solids content of the composite sample was measured with a hand-held refractometer (Atago; Mc Cormick Fruit Co.). A second 20-fruit sample was collected, placed on fiberboard fruit packing trays and held at room temperature (≈ 20 °C) for 15 d. Fruit firmness was then measured as previously described.

Ten fruit per tree were sampled on 16, 23, and 30 Sept. and 7 Oct. Internal ethylene of each fruit was measured with a gas chromatograph
was again determined on 15, 17, 19, and 21 Sept., in each block, trees were paired and sprayed on 21 Aug. with AVG at 75, 100, 150, 200, or 300 mg L\(^{-1}\), with 0.1% (v/v) Regulaid surfactant. Two trees in each block received daminozide at 750 mg L\(^{-1}\) on 4 Aug., another pair received 10 mg L\(^{-1}\) NAA on 8 Sept., and another pair received 40 mg L\(^{-1}\) Daminozide on 27 Sept. Fruit weight, fruit size, flesh firmness, and soluble solids were evaluated as previously described. Starch index was rated using the method of Priest and Lougheed (1988).

Analysis of variance was used to determine the significance of treatments. Where appropriate, means were separated by orthogonal polynomial comparison, regression analysis, or Duncan’s multiple range test.

Results

Experiment 1. Concentration and timing, Maine. All treatments reduced preharvest drop (Tables 1 and 2). The duration of drop increased in greater drop control than when applied at 8 WBH. The time of AVG application influenced the extent of drop control starting on 27 Sept., the time of commercial harvest. A treatment × time interaction was noted after the first week in Oct. The lower concentration of AVG controlled drop less effectively when the application was made early. Higher rates of AVG controlled drop late into the season when application was made either 4 or 2 weeks before the anticipated start of normal harvest. AVG or NAA did not affect IEC on 16 Sept., the day NAA was applied (data not presented). All concentrations of AVG reduced IEC linearly with concentration on all four harvest dates (Table 3). Fruit from trees treated with AVG 225 mg L\(^{-1}\) had the lowest IEC on 7 and 14 Oct., while AVG 75 mg L\(^{-1}\) was different from the untreated control or NAA on these dates.

AVG and NAA did not affect fruit weight at harvest (data not shown). AVG-treated fruit were firmer and NAA-treated fruit were softer, compared with fruit from control trees at harvest (Table 4). Fruit treated with 150 or 225 mg L\(^{-1}\) Daminozide remained firmer than all other treatments after 15 d at room temperature. Red fruit surface was reduced slightly but soluble solids were increased by AVG. Time of application did not affect any fruit characteristics.

Experiment 2. Concentration and timing, Massachusetts. AVG reduced preharvest drop linearly (Table 5). Daminozide reduced preharvest drop to commercially acceptable levels only to 13 Sept., the time when commercial harvest would begin in this block. There was a highly significant AVG × time of application interaction on 27 Sept.. Fruit drop under trees receiving lower rates of AVG applied at the earlier timing became greater, whereas drop under trees receiving high rates of AVG at 2 WBH was considerably less (data not shown). After 13 Sept., the start of commercial harvest, AVG was a superior drop control compound compared with daminozide, regardless of AVG application date.

AVG reduced IEC at harvest and during the 10 d fruit were held at room temperature (Table 6). IEC of daminozide-treated fruit did not differ from controls at harvest, but was lower thereafter. Fruit treated with AVG 150 or 225 mg L\(^{-1}\) had lower IEC than daminozide-treated fruit throughout the 10-d evaluation period, whereas fruit treated with AVG 75 mg L\(^{-1}\) had lower IEC than daminozide-treated fruit only at harvest and after being held at room temperature for 10 d.

The time of application of 150 mg L\(^{-1}\) AVG influenced IEC at harvest and following a 10-d period at room temperature (Table 7). Clearly, application of AVG 150 mg L\(^{-1}\) resulted in less control of IEC during shelf life studies at 20 °C. The IEC was always less on daminozide-treated fruit compared with untreated fruit.

The onset of the ethylene climacteric was delayed linearly with increasing AVG concentration. AVG, but not daminozide (Table 8). The time after harvest that was required for fruit to enter the ethylene climacteric was linearly related to the date AVG was applied (Table 9). Daminozide delayed slightly the time of ripening. AVG application at 4 or 2 weeks before anticipated harvest delayed ripening more than daminozide.

AVG did not affect fruit weight, flesh firmness, or soluble solids content but it reduced red

Table 1. Effect of aminoethoxyvinylglycine (AVG) and naphthaleneacetic acid (NAA) on preharvest drop of ‘Macspur McIntosh’ apples in Maine, 1991. Data are the mean of AVG applications made 8, 4, and 2 weeks before harvest. Exp. 1.

| Treatment (mg L\(^{-1}\)) | 16 Sept. | 18 Sept. | 20 Sept. | 22 Sept. | 23 Sept. | 27 Sept. | 30 Sept. | 2 Oct. | 4 Oct. | 7 Oct. | 9 Oct. | 11 Oct. | 16 Oct. |
|---------------------------|----------|----------|----------|----------|----------|----------|----------|--------|--------|--------|--------|--------|
| AVG 0 | 11 | 15 | 22 | 22 | 22 | 51 | 69 | 79 | 84 | 94 | 98 | 96 | 97 |
| AVG 75 | 7 | 8 | 10 | 14 | 21 | 29 | 37 | 45 | 63 | 65 | 72 | 82 | |
| AVG 150 | 5 | 7 | 8 | 9 | 14 | 18 | 24 | 29 | 40 | 42 | 46 | 57 | |
| AVG 225 | 5 | 6 | 7 | 7 | 9 | 11 | 13 | 19 | 29 | 30 | 33 | 40 | |
| NAA 20 | 6 | 8 | 8 | 11 | 34 | 55 | 66 | 73 | 83 | 85 | 86 | 89 | |

Significance

- AVG
- Time
- AVG × time

NS: nonsignificant, ***: significant at P ≤ 0.05, 0.01, or 0.001, respectively.
Table 2. Effect of aminoethoxyvinylglycine (AVG) and naphthaleneacetic acid (NAA) on preharvest fruit drop of ‘McIntosh’ apples in Maine, 1991, Expt. 1.

Treatment	Preharvest drop (% of total)											
(mg L⁻¹)	16 Sept.	18 Sept.	20 Sept.	23 Sept.	27 Sept.	30 Sept.	2 Oct.	4 Oct.	7 Oct.	9 Oct.	11 Oct.	16 Oct.
AVG 0 (control)	8	12	20	30	51	73	80	86	95	95	97	98
AVG 75	9	11	13	23	34	51	64	71	89	91	94	98
AVG 150	6	6	9	13	23	33	49	61	81	84	86	93
AVG 225	3	5	5	6	7	11	17	29	51	55	61	72
NAA 20	8	9	9	14	41	65	74	78	88	89	92	94

Significance:
- AVG
- NAA vs. control
- NAA vs. AVG 75
- NAA vs. AVG 150
- NAA vs. AVG 225

Applied 8 weeks before harvest

Treatment	Preharvest drop (% of total)											
(mg L⁻¹)	17	23	29	38	54	71	81	85	93	94	96	97
AVG 75	6	6	7	7	14	16	21	30	46	47	56	68
AVG 150	2	3	3	4	5	6	7	13	16	22	37	
AVG 225	5	7	7	8	9	9	12	17	21	22	24	30
NAA 20	5	6	6	7	32	49	62	68	79	83	83	88

Significance:
- AVG
- NAA vs. control
- NAA vs. AVG 75
- NAA vs. AVG 150
- NAA vs. AVG 225

Applied 4 weeks before harvest

Treatment	Preharvest drop (% of total)											
(mg L⁻¹)	17	23	29	38	54	71	81	85	93	94	96	97
AVG 75	6	6	7	7	14	16	21	30	46	47	56	68
AVG 150	2	3	3	4	5	6	7	13	16	22	37	
AVG 225	5	7	7	8	9	9	12	17	21	22	24	30
NAA 20	5	6	6	7	32	49	62	68	79	83	83	88

Significance:
- AVG
- NAA vs. control
- NAA vs. AVG 75
- NAA vs. AVG 150
- NAA vs. AVG 225

Applied 2 weeks before harvest

Treatment	Preharvest drop (% of total)											
(mg L⁻¹)	17	23	29	38	54	71	81	85	93	94	96	97
AVG 75	6	6	7	7	14	16	21	30	46	47	56	68
AVG 150	2	3	3	4	5	6	7	13	16	22	37	
AVG 225	5	7	7	8	9	9	12	17	21	22	24	30
NAA 20	5	6	6	7	32	49	62	68	79	83	83	88

Significance:
- AVG
- NAA vs. control
- NAA vs. AVG 75
- NAA vs. AVG 150
- NAA vs. AVG 225

Table 3. Effect of aminoethoxyvinylglycine (AVG) concentration and naphthaleneacetic acid (NAA) on internal ethylene concentration of ‘McIntosh’ apples held at room temperature, 1991, Expt. 1.

Treatment	Date of sample			
(mg L⁻¹)	23 Sept.	30 Sept.	7 Oct.	14 Oct.
AVG 0	24	27	52	52
AVG 75	10	11	32	40
AVG 150	1	4	14	16
AVG 225	1	1	6	9
NAA 20	24	33	33	33

Significance:
- AVG
- NAA vs. AVG 75
- NAA vs. AVG 150
- NAA vs. AVG 225

Previously Autio and Bramlage (1982) showed that apple cultivars differ in their response to AVG. Specifically, ‘McIntosh’ was shown to be a difficult cultivar in which to control fruit maturity. When labeled for this
color at harvest, which resulted in a reduction in the number of fruit that could be classified as U.S. Extra Fancy Fruit (data not shown).

Time of application of AVG influenced red color. Applications made 2 and 4 weeks before anticipated harvest appeared to reduce red color more than when application was made a 8 WBH (data not shown).

Experiment 3. Concentration, Massachusetts. Increasing AVG concentrations reduced preharvest drop linearly throughout the measurement period, and the relationship was also significant as a quadratic function between 21 Sept. and 2 Nov. (Table 10). Drop control from AVG was superior to that provided by NAA or daminozide as of 21 and 28 Sept., respectively.

No treatment influenced fruit weight when evaluated over the 3-week sampling period (Table 11). AVG was linearly associated with higher fruit flesh firmness, daminozide-treated fruit had higher flesh firmness, while NAA had no effect. There was an AVG x harvest time interaction for flesh firmness. AVG-treated fruit had higher flesh firmness on 15 and 22 Sept., but not on the last harvest date of 6 Oct. Over the 3-week sampling period AVG did not influence red color although AVG reduced red color on the last sampling date on 6 Oct.

Discussion

Preharvest AVG sprays have been shown to delay the climatic rise in ethylene synthesis and respiration of apple fruit, leading to delayed preharvest fruit drop and delayed fruit maturity (Autio and Bramlage, 1982; Bangerth, 1978; Bramlage et al., 1980). These cited field studies evaluated the response of apple to AVG concentrations of 500 mg L⁻¹ and higher. AVG is an expensive compound to synthesize, and application of AVG at 450 mg L⁻¹ resulted in undesirable carry-over effects of increased vegetative growth and increased fruit set of ‘Delicious’ apple in the season following application Williams (1980). For all these reasons, it was highly desirable that lower concentrations of AVG be tested.

Acknowledgments

This project was supported under the U.S. fruit and vegetable research and development program (USFV-85-09) and was conducted at the U.S. Department of Agriculture, Northeastern Regional Research Center, Beltsville, Maryland.
but not when applied 8 WBH, while higher concentrations of AVG provided superior drop control than either NAA or daminozide, regardless of application date.

Daminozide was the product of choice by orchardists for >25 years to retard drop and increase flesh firmness on 'McIntosh' apples. AVG appears to be an acceptable if not better commercial alternative to daminozide, and this was confirmed by Greene (2002) on 'Delicious'. AVG was a superior drop control compound in this investigation as well as in a companion report (Greene and Schupp, 2003).

Growers frequently depended upon about a 4.5 N increase in firmness following daminozide application, which was confirmed in this investigation. Although AVG-treated fruit were firmer than untreated fruit, AVG-treated fruit were less firm than those receiving daminozide. NAA is registered as a drop control compound on apples. In this investigation AVG controlled drop better and longer than NAA; similar to results reported by Byers (1997a, 1997b).

Table 4. Effect of aminoethoxyvinylglycine (AVG) and napthaleneacetic acid (NAA) on fruit characteristics of ‘Macspur McIntosh’ apples at harvest in Maine, 1991, Expt. 1.

Treatment	Flesh firmness (N)	Soluble solids (%)	Red color (%)		
	At harvest 15 d				
Applied 8 weeks before harvest	AVG 0	62.1	38.7	11.9	90
	AVG 75	65.6	40.7	12.7	87
	AVG 150	67.1	43.1	12.2	84
	AVG 225	69.3	42.1	12.4	83
	NAA 20	55.9	37.2	11.7	89
Applied 4 weeks before harvest	AVG 0	59.6	38.7	11.9	88
	AVG 75	68.5	40.7	12.9	85
	AVG 150	70.2	41.2	12.7	84
	AVG 225	68.6	43.6	12.1	74
	NAA 20	55.4	39.7	12.6	90
Applied 2 weeks before harvest	AVG 0	60.3	38.2	12.2	88
	AVG 75	62.7	37.2	12.2	81
	AVG 150	67.6	42.1	12.6	82
	AVG 225	70.6	43.1	12.6	84
	NAA 20	54.6	40.2	12.6	85

Significance

AVG L *** L *** L *** L ***	AVG L *** L *** L *** L ***	Time NS NS NS NS
AVG x time NS NS NS NS	AVG x time NS NS NS NS	NS NS NS NS
NAA vs. AVG 0 * NS NS NS NS	NAA vs. AVG 75 *** NS NS NS	* * *
NAA vs. AVG 150 *** * NS NS	NAA vs. AVG 225 *** ** NS NS	*** **

NS, * ** *** Nonsignificant or significant at P = 0.05, 0.01, or 0.001, respectively; L = linear response.

The optimal timing of AVG application in these studies was 4 to 2 WBH. Most previously reported applications were made within one month of normal harvest date for the cultivar under investigation. Autio and Bramlage (1982) found little difference in response of ‘Puritan’ to applications of AVG at 6, 4, or 2 WBH, however the over-all response of this summer-ripening cultivar, to 500 mg·L–1 AVG was not great, which may have partially obscured differences attributable to time of application. AVG at 75 mg·L–1 controlled drop better than NAA or daminozide when applied 4 or 2 WBH, but not when applied 8 WBH, while higher concentrations of AVG provided superior drop control than either NAA or daminozide, regardless of application date.

Daminozide was the product of choice by orchardists for >25 years to retard drop and increase flesh firmness on ‘McIntosh’ apples. AVG appears to be an acceptable if not better commercial alternative to daminozide, and this was confirmed by Greene (2002) on ‘Delicious’. AVG was a superior drop control compound in this investigation as well as in a companion report (Greene and Schupp, 2003). Growers frequently depended upon about a 4.5 N increase in firmness following daminozide application, which was confirmed in this investigation. Although AVG-treated fruit were firmer than untreated fruit, AVG-treated fruit were less firm than those receiving daminozide. NAA is registered as a drop control compound on apples. In this investigation AVG controlled drop better and longer than NAA; similar to results reported by Byers (1997a, 1997b).

Table 5. Effect of AVG and daminozide on preharvest drop of ‘Marshall McIntosh’ apples. Data are the means of AVG applications made 8, 4, and 2 weeks before harvest in Massachusetts, 1991, Expt. 2.

Treatment	Preharvest drop (% of total)								
	6 Sept.	13 Sept.	20 Sept.	27 Sept.	4 Oct.	11 Oct.	18 Oct.	25 Oct.	1 Nov.
Control	12	36	64	79	99	99	100	100	100
AVG 75	3	13	25	43	77	88	95	98	99
AVG 150	2	8	12	19	38	58	68	79	89
AVG 225	1	4	9	16	31	43	49	58	69
Daminozide 750	7	15	41	60	88	95	97	99	99

Significance

AVG L *** L *** L *** L ***	AVG L *** L *** L *** L ***	Time NS NS NS NS
AVG x time NS NS NS NS	AVG x time NS NS NS NS	NS NS NS NS
Daminozide vs. AVG * * * NS NS NS NS NS NS DS NS NS NS NS	Daminozide vs. AVG * * * NS NS NS NS NS NS NS NS	

NS, ** *** Nonsignificant or significant at P = 0.01 or 0.001, respectively; L = linear response.
Table 6. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples at and following harvest in Massachusetts, 1991, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	4.28
AVG 75	4	2.65
AVG 150	6	5.05
AVG 225	8	5.1
Daminozide 750	10	3.8

Table 7. Effect of time of aminoethoxyvinylglycine (AVG) application and daminozide on ethylene evolution and C = cubic response.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7

Table 8. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples enter the ethylene climacteric (1 mg·L⁻¹ ethylene) in Massachusetts, 1991, Expt. 2.

Table 9. Effects of time of AVG application and daminozide on the time after harvest 'Marshall McIntosh' apples entered the ethylene climacteric (1 mg·L⁻¹ internal ethylene), Massachusetts, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7

Table 10. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples at and following harvest in Massachusetts, 1991, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7

Table 11. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples at and following harvest in Massachusetts, 1991, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7

Table 12. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples at and following harvest in Massachusetts, 1991, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7

Table 13. Effect of aminoethoxyvinylglycine (AVG) concentration and daminozide on ethylene evolution from 'Marshall McIntosh' apples at and following harvest in Massachusetts, 1991, Expt. 2.

Chemical treatment	Time after harvest (d)	Ethylene concn in core cavity (mg·L⁻¹)
AVG 0 (control)	0	131.3
AVG 75	2	13.3
AVG 150	4	5.1
AVG 225	8	17.7
Table 10. Effect of aminoethoxyvinylglycine (AVG) concentration, naphthaleneacetic acid (NAA), and daminozide when applied as a dilute handgun spray on cumulative drop of 'Marshall McIntosh' in Massachusetts, 1992, Expt. 3.

Treatment	Cumulative drop (%)									
	7 Sept.	14 Sept.	21 Sept.	28 Sept.	5 Oct.	12 Oct.	19 Oct.	26 Oct.	2 Nov.	9 Nov.
AVG 0 (control)	162	68.8	13.5	86	5.7					
AVG 75	168	69.2	13.0	84	5.3					
AVG 100	169	68.3	13.0	83	5.3					
AVG 150	172	69.2	12.9	86	5.1					
AVG 200	168	70.2	13.0	84	4.9					
AVG 300	167	72.5	13.1	86	5.0					
NAA 10	167	68.3	13.1	89	6.1					
Daminozide 750	160	72.5	13.4	88	5.4					

Table 11. Effect of aminoethoxyvinylglycine (AVG) concentration, naphthaleneacetic acid (NAA), and daminozide when applied as a dilute handgun application on fruit characteristics at harvest on 'Marshall McIntosh' in Massachusetts, 1992, Expt. 3.

Treatment	Fruit wt (g)	Flesh firmness (N)	Soluble solids (%)	Red color (%)	Starch rating
AVG 0 (control)	162	68.8	13.5	86	5.7
AVG 75	168	69.2	13.0	84	5.3
AVG 100	169	68.3	13.0	83	5.3
AVG 150	172	69.2	12.9	86	5.1
AVG 200	168	70.2	13.0	84	4.9
AVG 300	167	72.5	13.1	86	5.0
NAA 10	167	68.3	13.1	89	6.1
Daminozide 750	160	72.5	13.4	88	5.4

References

Greene, D.W. 1996. AVG: A new preharvest drop control compound for apples. Proc. Mass. Fruit Growers’ Assn. 101:79–84.

Greene, D.W. 2002. Preharvest drop control and maturity of ‘Delicious’ apples as affected by aminoethoxyvinylglycine (AVG). J. Tree Fruit Prod. 3:1–10.

Greene, D.W. and J.R. Schupp. Effect of aminoethoxyvinylglycine (AVG) on preharvest drop, fruit quality, and maturation of ‘McIntosh’ apples. II. Effect of time-concentration relationships and spray volume. HortScience 29(5):1036–1041.

Greene, D.W., M. Kaminsky, and J. Sincuk. 1987. An evaluation of stop drop materials in 1986. Proc. Mass. Fruit Growers’ Assoc. 93:74–78.

Hoffman, M.B. and L.J. Edgerton. 1952. Comparisons of naphthaleneacetic acid, 2, 4, 5-trichlorophenoxypropionic acid, and 2, 4, 5-trichlorophenoxyacetic acid, for controlling the harvest drop of McIntosh apples. Proc. Amer. Soc. Hort. Sci. 89:225–230.

Mattus, G.E. and R.C. Moore. 1954. Preharvest growth regulator sprays on apples. I. Drop and maturity 1952 and 1953. Proc. Amer. Soc. Hort. Sci. 64:199–208.

Priest, K.L. and E.C. Lougheed. 1988. Evaluating maturity of McIntosh and Red Delicious apples. Ont. (Guelph) Min. Agr. Food Factsheet 88-117.

Proctor, J.T.A. 1990. The ‘McIntosh’ Apple. Fruit Var. J. 44:50–53.

Smock, R.M. and C.R. Gross. 1947. The effect of some hormone materials on the respiration and softening rates of apples. Proc. Amer. Soc. Hort. Sci. 49:67–77.

Southwick, F.W., I.E. Demoranville, and J.F. Anderson. 1953. The influence of some growth regulating substances on preharvest drop, color, and maturity of apples. Proc. Amer. Soc. Hort. Sci. 61:155–162.

Southwick, F.W., J.R. Demoranville, and J.F. Anderson. 1954. The influence of some growth regulating substances on preharvest drop, color, and maturity of apples. Proc. Amer. Soc. Hort. Sci. 61:155–162.

Williams, M.W. 1980. Retention of fruit firmness and increase in vegetative growth and fruit set of apples with aminoethoxyvinylglycine. HortScience 15:76–77.