Compact Multilayered Balanced-to-Balanced Dual- and Tri-Band Diplexers Based on Magnetically Coupled Open-Loop Resonators

JOSE L. MEDRÁN DEL RÍO, (Graduate Student Member, IEEE), ARMANDO FERNÁNDEZ-PRIETO, (Senior Member, IEEE), JESÚS MARTEL, (Senior Member, IEEE), RAFAEL R. BOIX, (Member, IEEE), AND FRANCISCO MEDINA, (Fellow, IEEE)

1Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, 41012 Seville, Spain
2Departamento de Física Aplicada II, Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, 41012 Seville, Spain

Corresponding author: Armando Fernández-Prieto (armandof@us.es)

This work was supported by MCIN/AEI/10.13039/501100011033 under Grant PID2020-116739GB-I00. The work of Jose L. Medrán del Río was supported in part by MCIN/AEI/10.13039/501100011033 through Research Scholarship under Grant PRE2018-085677, and in part by ESF Investing in Your Future.

ABSTRACT Two new compact balanced-to-balanced diplexers composed of two multiband balanced bandpass filters in a multilayer configuration are proposed in this letter to perform dual- and tri-band responses. The balanced bandpass filters are based on the use of magnetically coupled open-loop resonators. The magnetic coupling results in a strong inherent common-mode rejection, greater than 40 dB within all the dual-band diplexer passbands and greater than 30 dB for the tri-band diplexer passbands. All passbands in both diplexers are close to each other and well separated thanks to the presence of several transmission zeroes between them. Operating frequencies have been selected to be within the L band, used for many applications such as mobile services or satellite navigation. Specifically, the dual-band diplexer passbands are located at 1.08/1.58 GHz and 1.3/1.8 GHz with fractional bandwidths of 7/5.2 % and 7.4/5.5 %, while the tri-band diplexer passbands are located at 1.7/2.2/2.79 GHz and 1.97/2.37/2.95 GHz with fractional bandwidths of 4.1/4.6/3.5 % and 5.6/4.6/3.7 %. Measurements of two different prototypes are provided to validate the obtained simulation results, illustrating in this manner the usefulness of the proposed design methodology.

INDEX TERMS Balanced diplexer, common-mode rejection, dual-band diplexer, L band, microstrip diplexer, multilayer, stripline diplexer, tri-band diplexer.

I. INTRODUCTION

The development in recent years of wireless communications, satellite navigation systems and many other radio communication applications has led to an increase in the demand of multiband devices, such as multiband bandpass filters (BPFs), diplexers, or multiplexers, among many other devices with multiband capabilities. Along with this increase in attention to multiband devices there has also been a growing interest in balanced devices, as they offer well known useful advantages over their single-ended counterparts [1], [2], [3], [4]. These benefits provided by balanced devices lie mainly in their inherent immunity to electromagnetic interference and environmental noise, as well as an improved signal-to-noise ratio which allows for lower voltage operation. The combination of these two features is very interesting from a designer’s point of view, as it brings together the advantages of these two highly demanded type of devices. For this reason, multiband differential-mode (DM) devices have attracted a lot of attention in recent years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. Diplexers are a type of devices on which researchers have recently focused their attention [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].
Among them, references [28], [29], [30], and [31] deal with planar dual-band balanced diplexers (DB-BDs). The main features that must be present in a well designed multiband balanced diplexer are good DM performance, strong common-mode (CM) rejection and high isolation between passbands. Output channels interference must be also low and for this reason high isolation between output ports is also required. The DB-BDs presented in [28], [29], [30], and [31], as the first one proposed in this letter, are designed by combining two individual dual-band bandpass filters (DB-BPFs) to achieve the desired diplexer response. In [28] and [29] the passbands are spaced far apart and the designs do not incorporate transmission zeros (TZs) between the passbands (a very desirable feature for this kind of devices). In [30], the differential passbands are well-defined with high isolation between them but, once again, very spaced apart. On the other hand, common-mode rejection better than 40 dB is provided over a relatively wide bandwidth. In [31], a reflectionless approach is presented where the passbands are very close to each other including TZs between them. However, the common-mode rejection level is limited to 20 dB and the design makes use of resistors to achieve low common-mode in-band input power reflection.

In this paper, two approaches for the design of balanced diplexers (BD) based on simple coupled open-loop resonators are presented. Both structures are based on a multilayer topology composed by two multiband balanced bandpass filters. There are several reasons for choosing to use a multilayer topology instead of a single-layer approach. Firstly, the use of a multilayer structure allows to achieve a high level of miniaturization, which is a complex task when designing multiplexer. In fact, it is one of the main objectives of this work. Secondly, thanks to the multilayer structure, magnetic coupling between resonators can be used. Indeed, one of the main benefits of the multilayer structure is precisely its flexibility in locating several independent filters with magnetically coupled resonators. This allows for the implementation of filters and diplexers with both multiband operation and inherent common-mode rejection, something that would not be easy for a single layer approach, which would require additional stages to suppress common-mode propagation. The idea of using magnetic coupling to design balanced diplexers was used for the first time in [18] and [20]. However, in [18] and [20] the proposed diplexers were designed to provide one single passband per output. In our paper, we have extended this idea to design diplexers with two and three differential passbands per output channel. For the first approach of this work the dual-band case, the structure features a multilayer microstrip topology with two dual-band balanced bandpass filters (DB-BBPFs) while the tri-band diplexer presents a multilayer stripline topology with two tri-band balanced bandpass filters (TB-BBPFs). The individual filters are based on magnetically coupled resonators, as the one reported in [32]. However, the designs presented in this contribution go beyond the design of two individual balanced dual-band bandpass filters. Here, the T-junction plays a fundamental role since it is optimized to introduce transmission zeros between the passbands in order to improve the selectivity of the devices. Furthermore, thanks to the flexibility in the design of the T-junction, it is possible to extend the idea in [32] to a three layers’ structure to design, for the first time to the authors knowledge, a balanced diplexer with three differential passbands per output channel.

In brief, the main features of this design approach are: 1) Compactness, since multilayer approach allows the miniaturization of the device; 2) high selectivity passbands close to each other with TZs between them; 3) strong common-mode suppression over a relatively wide bandwidth; 4) design simplicity, which makes the structure easily adjustable to other frequencies and bandwidths; and 5) scalability, since this structure can be easily modified to accommodate more layers or higher order filters.

Among them, references [28], [29], [30], and [31] deal with planar dual-band balanced diplexers (DB-BDs). The main features that must be present in a well designed multiband balanced diplexer are good DM performance, strong common-mode (CM) rejection and high isolation between passbands. Output channels interference must be also low and for this reason high isolation between output ports is also required. The DB-BDs presented in [28], [29], [30], and [31], as the first one proposed in this letter, are designed by combining two individual dual-band bandpass filters (DB-BPFs) to achieve the desired diplexer response. In [28] and [29] the passbands are spaced far apart and the designs do not incorporate transmission zeros (TZs) between the passbands (a very desirable feature for this kind of devices). In [30], the differential passbands are well-defined with high isolation between them but, once again, very spaced apart. On the other hand, common-mode rejection better than 40 dB is provided over a relatively wide bandwidth. In [31], a reflectionless approach is presented where the passbands are very close to each other including TZs between them. However, the common-mode rejection level is limited to 20 dB and the design makes use of resistors to achieve low common-mode in-band input power reflection.

In this paper, two approaches for the design of balanced diplexers (BD) based on simple coupled open-loop resonators are presented. Both structures are based on a multilayer topology composed by two multiband balanced bandpass filters. There are several reasons for choosing to use a multilayer topology instead of a single-layer approach. Firstly, the use of a multilayer structure allows to achieve a high level of miniaturization, which is a complex task when designing multiplexer. In fact, it is one of the main objectives of this work. Secondly, thanks to the multilayer structure, magnetic coupling between resonators can be used. Indeed, one of the main benefits of the multilayer structure is precisely its flexibility in locating several independent filters with magnetically coupled resonators. This allows for the implementation of filters and diplexers with both multiband operation and inherent common-mode rejection, something that would not be easy for a single layer approach, which would require additional stages to suppress common-mode propagation. The idea of using magnetic coupling to design balanced diplexers was used for the first time in [18] and [20]. However, in [18] and [20] the proposed diplexers were designed to provide one single passband per output. In our paper, we have extended this idea to design diplexers with two and three differential passbands per output channel. For the first approach of this work the dual-band case, the structure features a multilayer microstrip topology with two dual-band balanced bandpass filters (DB-BBPFs) while the tri-band diplexer presents a multilayer stripline topology with two tri-band balanced bandpass filters (TB-BBPFs). The individual filters are based on magnetically coupled resonators, as the one reported in [32]. However, the designs presented in this contribution go beyond the design of two individual balanced dual-band bandpass filters. Here, the T-junction plays a fundamental role since it is optimized to introduce transmission zeros between the passbands in order to improve the selectivity of the devices. Furthermore, thanks to the flexibility in the design of the T-junction, it is possible to extend the idea in [32] to a three layers’ structure to design, for the first time to the authors knowledge, a balanced diplexer with three differential passbands per output channel.

In brief, the main features of this design approach are: 1) Compactness, since multilayer approach allows the miniaturization of the device; 2) high selectivity passbands close to each other with TZs between them; 3) strong common-mode suppression over a relatively wide bandwidth; 4) design simplicity, which makes the structure easily adjustable to other frequencies and bandwidths; and 5) scalability, since this structure can be easily modified to accommodate more layers or higher order filters.
II. DUAL-BAND BALANCED DIPLEXER PROTOTYPE

A. GEOMETRIC CONFIGURATION

The proposed structure to implement the DB-BD considered in this contribution is based on a multilayer topology that includes two metalized layers. A 3D-view and a top view of the structure can be seen in Fig. 1. Basically, the DB-BD is composed of two individual 2nd order DB-BBPFs, one constituted by open-loop resonators 1,2,3 and 4 (filter A) and the other by open-loop resonators 5, 6, 7 and 8 (filter B). Feeding structure, which will be described later on, is located on top layer. The coupling scheme of each DB-BBPF is represented in Figs.2 (a) and (c) in which we can observe the direct coupling paths (solid lines) and the cross-coupling paths (dashed lines). However, for simplicity, in the design of the DB-BBPFs we have neglected the coupling between the resonators of different layers. This approximation is reasonable because the resonance frequency is different for the resonators of the top layer and the resonators of the middle layer. Therefore, as a first approximation, each passband of filters A or B is mainly controlled by the pair of resonators located on the same layer of the structure (the center frequency depends on the resonator size, the fractional bandwidth, , depends on the coupling coefficients and the specific matching level at the input and output ports can be achieved by the external quality factors - see Fig. 2-). In other words, each DB-BBPF is composed of two single-band balanced bandpass filters (SB-BBPF) that can be considered almost completely independent and, therefore, be designed following the well-known procedure explained in [33] for single-band bandpass filters whose corresponding coupling scheme is the one in Fig. 2 (b) and (d). Nevertheless, please note that each pair of SB-BBPFs are connected to a common source and load (see Fig. 2) so the key point in the design is to achieve the required external quality factors for the two SB-BBPFs in an independent way. With that purpose in mind, the inductive feeding structure used in [32] has been modified to a capacitive one to better adjust the excitation of resonators on different layers. Top layer resonators are excited by means of the edge-gap capacitances controlled by geometrical parameters (referring to Fig. 1) and for 22’ and 33’ output channels, respectively, while middle layer resonators are excited by means of broadband capacitances whose values are controlled by the length and width of the feeding arms, and for 22’ output channel and and for 33’ output channel, respectively. Thanks to the versatility of this structure provided by the feeding scheme (edge-gap capacitance for resonators on top layer and broadband capacitance for resonators on middle layer), modifications may be included to increase the order of the filters, the number of layers or the number of passbands. This will be demonstrated in section III.

Since the resonators used to create the passbands are coupled across the straight sections carrying a high electrical current, DM coupling is mainly magnetic as discussed in [34]. For DM, the symmetry plane is (see Fig. 1 (b)) behaves as an electric wall (virtual short-circuit). This leads to a high current distribution at the resonance frequency. High current means strong magnetic field which is the bridge that transmits DM between resonators. On the contrary, for CM the symmetry plane is a magnetic wall (virtual open-circuit). In this case, electrical current level is low which means that open-loop resonators are weekly excited. This results in a poor CM transmission. This description is just qualitative and we refer the interested reader to [34] for a deeper discussion on DM and CM coupling schemes.

Returning to the structure under study, a T-junction has been implemented on the top layer (input channel 11’) with the purpose of enforcing the diplexing response. In the design of this T-junction two DM targets have been prioritized: First one is to preserve the external quality factors obtained for the individual DB-BBPFs which ensures no degradation of DM performance; second one is the introduction of several transmission zeros (TZs) between the differential passbands of both output channels. In Fig. 1 (b) we have shown the reflection coefficients and seen from the feeding points of filter A (channel 22’) and filter B (channel 33’), respectively. The T-junction is also designed in such a way that at the center frequencies of the DM passbands of filter A () and filter B (), the amplitude of the input reflection coefficient is approximately 0 while is close to 1, leading to the appearance of TZs in the output channel 33’ at those frequencies. Likewise, TZs in channel 22’ are obtained at the center frequencies of the passbands of filter B () for which and for which .

B. DESIGN PROCEDURE

As previously mentioned, each channel DB-BBPF will be treated as the combination of two SB-BBPF based on two magnetically coupled open-loop resonators excited with the same input structure (see Fig. 2). In this work, each SB-BBPF will be designed with an order for maximally flat response. For this transfer function, the values of the corresponding low-pass prototype elements are and Filters specifications (center frequencies of the passbands and fractional bandwidths), required coupling coefficients and external quality factors can be found in Table 1. The coupling coefficients and external quality factors have been extracted from the well-known equations for the coupling coefficients and the output (external quality factors of a filter of order and frac-
TABLE 1. SB-BBPFs specifications, required coupling coefficients and external quality factors for the DB-BD.

	Filter A (Channel 22")	Filter B (Channel 33")
Top layer		
\(f_{A1}^t\)	1.54 GHz	1.75 GHz
\(\Delta A_1\)	5%	5%
\(Q_{E1}^t\)	\(Q_{EO}^t\) = 28.28	\(Q_{E1}^t\) = \(Q_{EO}^t\) = 28.28
\(M_{12}\)	0.042	0.042
Middle layer		
\(f_{A2}^t\)	1.06 GHz	1.28 GHz
\(\Delta A_2\)	7%	7%
\(Q_{E1}^t\)	\(Q_{EO}^t\) = 20.2	\(Q_{E1}^t\) = \(Q_{EO}^t\) = 20.2
\(M_{34}\)	0.059	0.059

The substrate chosen to implement the structure under study is the same for both layers, namely Rogers CLTE-AT whose characteristics are: \(\varepsilon_r = 3\), thickness \(h = 1.016\) mm and \(\tan \delta = 0.0013\) (see Fig. 1).

Although the topology of the DB-BBPFs was first proposed in [32], no theoretical framework was given. In this paper we provide an step-by-step design procedure for the DB-BBPF composing each diplexer output channel and for the final DB-BD, which can be extended for more complex structures including more layers and thus more differential passbands (see section III). The design process followed to implement the final structure consists of the following steps:

1) Finding the dimensions of the individual resonators:

The operation frequency of the filter is mainly controlled by the physical length of the resonators. Since the resonators chosen are simple open-loop resonators, their length is approximately half of the guided wavelength at their respective resonant frequencies \((f_{A1}^t\) for resonators \(\#1\) and \(\#2\), \(f_{A2}^t\) for resonators \(\#3\) and \(\#4\), \(f_{B1}^c\) for resonators \(\#5\) and \(\#6\) and \(f_{B2}^c\) for resonators \(\#7\) and \(#8\)). To find the resonator dimensions, classical transmission lines calculators can be employed. In our case, the package Linecalc incorporated in ADS Keysight Momentum is used [35].

2) Imposing the required coupling coefficients and the external quality factors for the SB-BBPFs involved:

Once the physical dimensions of the resonators have been found, the next step consists of imposing the required coupling coefficients between the coupled resonators extracted from the specific fractional bandwidths. The coupling level between resonators is mainly controlled by the gap distance between the resonators \((s_i^t\) and \(s_i^b\) for filter A), in such a way that smaller gap distances lead to greater coupling levels (and larger fractional bandwidths). For each DB-BBPF the extraction of the coupling coefficient \(M_{ij}\) is carried out separately for its two individual SB-BBPFs following the standard procedure in [33]. On the other hand, the matching level is related to the external quality factor which is controlled by the filters feeding schemes. In our case, all feeding schemes are capacitive. Specifically, excitation capacitances are edge-gap type for the top layer resonators and broadside type for the resonators in the middle layer. The physical parameters governing these capacitances for filter A (see Fig. 1) are the length of the feeding arms, \(l_{1a}^t\), \(l_{1b}^t\) and \(s_{3l}\). Specifically, \(l_{1a}^t\) and \(l_{1b}^t\) have influence on \(Q_{

\[
M_{i,i+1} = \frac{\Delta}{\sqrt{s_{i+1}^t}} \quad \text{for} \quad i = 1, \ldots, n - 1
\]

\[
Q_{EI}^t = \frac{\Delta}{g_{01}^t}
\]

\[
Q_{EO}^t = \frac{\Delta}{g_{02}^t}
\]

The initial values for the physical dimensions that allow the extraction of the coupling coefficient \(M_{ij}\) are also included in Table 2, where we observe a very good agreement between the initial and final values. The final dimensions of the optimization process that has been carried out for both the fractional bandwidths and the matching level set by the SB-BBPFs specifications. The final dimensions of the optimization process are also included in Table 2, where we observe a very good agreement between the initial and final values. This confirms that our approximation of neglecting the coupling between the resonators in different layers works reasonably well. It is worth noting that the dimensions of the resonators do not require adjustment separately for its two individual SB-BBPFs following the standard procedure in [33]. On the other hand, the matching level is related to the external quality factor which is controlled by the filters feeding schemes. In our case, all feeding schemes are capacitive. Specifically, excitation capacitances are edge-gap type for the top layer resonators and broadside type for the resonators in the middle layer. The physical parameters governing these capacitances for filter A (see Fig. 1) are the length of the feeding arms, \(l_{1a}^t\), \(l_{1b}^t\) and \(s_{3l}\). Specifically, \(l_{1a}^t\) and \(l_{1b}^t\) have influence on \(Q_{

\[
M_{i,i+1} = \frac{\Delta}{\sqrt{s_{i+1}^t}} \quad \text{for} \quad i = 1, \ldots, n - 1
\]

\[
Q_{EI}^t = \frac{\Delta}{g_{01}^t}
\]

\[
Q_{EO}^t = \frac{\Delta}{g_{02}^t}
\]

The initial values for the physical dimensions that allow the extraction of the coupling coefficient \(M_{ij}\) are also included in Table 2, where we observe a very good agreement between the initial and final values. The final dimensions of the optimization process that has been carried out for both the fractional bandwidths and the matching level set by the SB-BBPFs specifications. The final dimensions of the optimization process are also included in Table 2, where we observe a very good agreement between the initial and final values. This confirms that our approximation of neglecting the coupling between the resonators in different layers works reasonably well. It is worth noting that the dimensions of the resonators do not require adjustment
and the only optimized parameters are those shown in Table 2.

3) Join both bandpass filters by means of a suitable T-junction:

Once the two DB-BBPF composing each output channel of the balanced diplexer has been completely designed, the last step in the design process is to connect them using a T-junction. The branch lengths of this T-junction, l_{t1} and l_{t2}, have been used to adjust the matching levels of the diplexer passbands as explained in [20], since after joining both DB-BPFs there will be a minor disturbance in the matching levels that needs to be corrected. These effects are shown in Fig. 5, where the simulated return loss has been plotted for several values of l_{t1} and l_{t2}.

Additionally, as mentioned before, the connection between the T-junction and the filters feeding lines (which is controlled by distance s_5) has been selected so that TZs are introduced in each output channel at the passband center frequencies of the other output channel.

Following this process, final dimensions can be set (see caption in Fig. 1). The simulated electromagnetic response of the DB-BD has been obtained using ADS Momentum from Keysight [35]. Results are displayed in Fig. 6. DM shows four well-defined passbands. As expected, due to the T-junction design, the differential passbands are separated by TZs in both output channels. To better illustrate this phenomenon, in Fig. 7 we depict the electric current distribution at two different frequencies corresponding to two different channel TZs. Notice that in Fig. 7 the TZ frequency in channel $22'$ corresponds with the center frequency of channel $33'$ and viceversa. This fact demonstrates that currents only flow through the branch of the diplexer that is excited at that given frequency without interfering with the other branch. For CM, a suppression level better than 40 dB in all DM passbands is observed. This response will be tested later in the next section with a prototype that has been manufactured to corroborate these results.

C. EXPERIMENTAL RESULTS AND DISCUSSION

Following the aforementioned steps, a DB-BD prototype has been manufactured to verify the results obtained in Fig. 6. Measurements are depicted in Fig. 8 where four DM passbands are present with the following characteristics: for channel $22'$, passbands are centered at 1.08 GHz and 1.58 GHz with Δfs of 7 % and 5.2 % and insertion loss (IL) of 1.91 dB and 1.35 dB, respectively. In the case of channel $33'$, passbands are centered at 1.3 GHz and 1.8 GHz with Δfs of 7.4 % and 5.5 % and IL of 1.2 dB and 1.16 dB, respectively. Good agreement between simulations and experiments is demonstrated. There is a slight shift in the measured frequency response that is caused by two reasons: First, the value of the dielectric constant of the substrate used is not exactly the same as $\varepsilon_r = 3$. Second, the presence of small
air gaps that may appear between the two layers during the manufacturing process, which modify the effective relative permittivity. A comparison with other DB-BD reported in the literature is presented in Table 3, the table is composed by DB-BD designed in microstrip technology except [24], which is designed as a dielectric resonator. From the table it can be inferred that the proposed design has competitive features when compared to other diplexers, standing out the small size of our structure.

III. TRIBAND DIPLEXER PROTOTYPE

A. GEOMETRIC PARAMETERS AND DESIGN

In this section, the idea proposed above will be extended to implement a multilayer tri-band balanced diplexer (TB-BD) with good DM performance and strong CM rejection. To the authors’ knowledge, no differential diplexer with six differential passbands (three per output channel) has been reported before. The structure proposed to implement the TB-BD considered in this paper is based on a multilayer topology consisting of four metalized layers stacked to build up a stripline circuit. A 3D and a top view of the structure layout can be seen in Fig. 9. In this case, the TB-BD is composed by two tri-band balanced bandpass filters (TB-BBPF); filter A (corresponding to the channel 22') and filter B (corresponding to the channel 33') that are connected by a T-junction. These two TB-BBPFs are in turn made up of three SB-BBPF composed of two coupled open-loop resonators stacked in different layers sharing the same feeding through the input port 11' (see coupling scheme represented in Fig. 10). With this prototype we demonstrate the scalability of the original design of the DB-BD adding a new layer to achieve an extra passband per branch of the diplexer. To ensure good coupling between the resonators on the same layer of the structure, a stripline configuration is chosen. This reduces radiation losses and provides low level of electromagnetic coupling between resonators located on different layers. Recall that in our design methodology cross-couplings are supposed to be negligible.

The design process is identical to that of the DB-BD, with the difference that the feeding is now located in the middle layer of the structure. In this regard, SB-BBPFs in the middle layer are excited by edge-gap capacitances, while SB-BBPFs in the top and bottom layers are excited by broadside capacitances. The individual SB-BBPFs that make up the structure are still 2nd-order filters based on magnetically coupled open-loop resonators and the explanation regarding the reduction of CM transmission is still valid for this configuration. Design specifications are provided in
and the designer’s leeway to adjust the device to different figures that reveal the independence between passbands to show the versatility of the design we provide two different designs that are shown in the caption of Fig. 9. As an example described for DB-BD, we have calculated the final dimension. Table 4. Following a design process very similar to the one design filter B as first approximation.

Table 3. Comparison with previously reported balanced dual-band diplexers.

Ref.	Δλ**	A**	Tech.	Filter order	Differential-Mode	Common-Mode			
[28]	0.88 x 0.83 x 0.52	0.5	D R @	2	f1 / f2 (GHz)	2.3 / 3.5 mm	520 / 2.5 mm	20 / 4.5 dB	
[39]	1.00 x 0.81 x 0.011	0.5	MLIL	2	f1 / f2 (GHz)	2.3 / 2.45 mm	520 / 2.45 mm	2.6 / 2.6 mm	20 / 2.6 dB
[30]	1.41 x 0.64 x 0.011	0.5	MLIL	1	f1 / f2 (GHz)	2.3 / 1.32 mm	520 / 1.32 mm	2.6 / 2.6 mm	20 / 2.6 dB
[31]	2.3 x 0.95 x 0.012	0.5	MLIL	1	f1 / f2 (GHz)	2.3 / 1.32 mm	520 / 1.32 mm	2.6 / 2.6 mm	20 / 2.6 dB
Ths 0.32 x 0.18 x 0.013	0.5	MLIL	2	f1 / f2 (GHz)	2.3 / 1.32 mm	520 / 1.32 mm	2.6 / 2.6 mm	20 / 2.6 dB	

* Guided wavelength (Δλ**) at lowest operation frequency (f1 / f2) // † Per channel // ‡ Not available // Δ Dielectric Resonator //Microstrip 1 Layer // ● Microstrip 2 Layers.

** Simulation and Experimental Results**

Simulated results for this balanced multi-band diplexer, depicted in Fig. 13, show six well-defined DM passbands, three per branch of the diplexer, very close to each other and with TZs between them. It is important to note that the proposed diplexer is able to allocate six differential passbands with good band-to-band isolation within a frequency range specifications. In Fig. 11 the length of the resonators 11-12 is modified while keeping the rest of the parameters unchanged. This allows to display the evolution of the resonance frequency of the specified passband, which, as mentioned above, follows the half-wavelength rule for open-loop resonators. Fig. 12 demonstrates the physical application of the coupling factor variation discussed for the dual-band approach, linking this value to a physical parameter. In this case, such parameter is the gap between resonators 11-12, denoted as sbr. No other parameter has been modified. As shown in the examples, both the frequency and Δ of the diplexer passbands can be changed within a limited range, without interfering with the other passbands of the device. This analysis can be extended to the previous dual-band case. Again, the substrate chosen to implement the proposed TB-BD in this paper is the Rogers CLTE-AT for all layers, with dielectric constant εf = 3, thickness h = 1.016 mm and tan δ = 0.0013.
FIGURE 11. Frequency tuning for the passband controlled by the length of the resonators 11-12.

FIGURE 12. FBW tuning for the passband controlled by the physical parameter s_{br}.

of just 1.2 GHz bandwidth. Furthermore, good CM rejection (greater than 30 dB) is observed in all passbands. In order to verify that simulated results are correct, a prototype of the structure in Fig. 9 has been fabricated and measured.

Measured results of the TB-BD designed above are shown in Fig. 14. According to this figure, the proposed design provides six differential passbands with following characteristics: for channel 22', passbands are centered at 1.7 GHz, 2.2 GHz and 2.79 GHz, with $\Delta's$ of 4.1%, 4.6% and 3.5% and IL of 2.3 dB, 2.3 dB, and 3.1 dB, respectively. For channel 33', passbands are centered at 1.97 GHz, 2.37 GHz and 2.95 GHz with $\Delta's$ of 5.6%, 4.6% and 3.7% and IL of 1.8 dB, 2.1 dB and 2.9 dB, respectively. The total area occupied by the TB-BD, in terms of the guided wavelength λ_g at the lowest operation frequency, is $0.25\lambda_g \times 0.13\lambda_g$. Regarding CM, it is observed a rejection level greater than 40 dB between 1 GHz and 2.25 GHz, and greater than 30 dB between 2.25 GHz and 3.25 GHz. Channel-to-channel isolation measurements also provided good results, demonstrating more than -40 dB for CM and -20 dB or more for DM in the whole frequency range.

It is important to note that since the manufacturing process followed to implement this prototype is the same as the one used for the DB-BD case (i.e., multilayer lamination has been performed by using plastic screws), slight frequency shifts are inevitable for the measured center frequencies due to the presence of small air-gaps. Furthermore, for this multilayer structure, discrepancies between simulations and measurements can also be explained in terms of the chosen measurement set-up. As explained above and as can be observed in the prototype pictures presented in the inset of Fig. 14, the TB-BD can be considered a stripline structure, since all resonators are sandwiched between a top and a bottom ground plane. Nevertheless, to measure the response of the prototype it is necessary to include a transition between stripline and microstrip in order to allow the measurement process (see Fig. 14 b) inset). This transition between stripline-to-microstrip technology is not included in the simulated results and may introduce losses and mismatching in the original design. However, taking into account the complexity of the structure and the homemade lamination process, measured results show a very good agreement with simulated ones. To the authors’ knowledge, this is the first TB-BD presented.
in planar technology, therefore, there are no other designs to
capture the performance of our structure.

IV. CONCLUSION
In this paper, a new approach to design balanced-to-balanced
diplexers with intrinsic common-mode suppression has been
introduced. Two new designs have been proposed, a dual-band
and a tri-band balanced diplexer. Both of them are
based on multilayer topology, allowing for minituarization
and magnetic coupling between resonators providing inherent
common-mode rejection. Microstrip technology has been
used for the dual-band case and stripline technology was
chosen for the tri-band diplexer. Each metalized layer is
composed of two pairs of magnetically coupled open-loop
resonators that confer a high common-mode rejection without
needing to add external elements to the original design. The
main features displayed are: 1) very compact size compared
to other designs reported in the literature; 2) possibility of
closely spaced differential-passbands isolated by transmis-
sion zeros on each channel; 3) very low common-mode trans-
mission in the bandwidth of interest and 4) versatility, the
design is easily adjusted to host more layers to accommodate
more passbands and it is also possible to employ higher order
filters.

REFERENCES
[1] F. Martin, L. Zhu, J. Hong, and F. Medina, Balanced Microwave Filters.
New York, NY, USA: Wiley, 2018.
[2] F. Martin, J. Naqui, A. Fernandez-Prieto, P. Velez, J. Bonache, J. Martel,
and F. Medina, “The beauty of symmetry: Common-mode rejection filters
for high-speed interconnects and band microwave circuits,” IEEE Microw.
Mag., vol. 18, no. 1, pp. 42–55, Jan. 2017.
[3] A. Arbelaez-Nieto, E. Cruz-Perez, J.-L. Olvera-Cervantes, A. Corona-Chavez,
and H. Lobato-Morales, “The perfect balance—A design procedure for balanced bandpass filters,” IEEE Microw. Mag.,
vol. 16, no. 10, pp. 54–65, Nov. 2015.
[4] W. Feng, W. Che, and Q. Xue, “The proper balance: Overview of
microstrip wideband balance circuits with wideband common mode sup-
pression,” IEEE Microw. Mag., vol. 16, no. 5, pp. 55–68, Jun. 2015.
[5] Z. Li, F. Wei, B. Liu, and X. W. Shi, “Design of balanced wideband BPF
based on tri-mode slotline resonators,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 69, no. 6, pp. 2767–2771, Jun. 2022.
[6] Z.-A. Ouyang, L. Zhu, and L.-L. Qiu, “Wideband balanced filters with
intrinsic common-mode suppression on coplanar strip-line-based multi-
mode resonators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 69, no. 6,
p. 2263–2275, Jun. 2022.
[7] Y. Zhang, Y. Wu, W. Wang, and J. Yan, “High-performance common- and
differential-mode reflectionless balanced band-pass filter using coupled
ring resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3,
p. 974–978, Mar. 2022.
[8] Z. Zhang, G. Zhang, Z. Liu, W. Tang, and J. Yang, “Compact balanced
bandpass filter based on equilateral triangular patch resonator,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 1, pp. 90–93, Jan. 2022.
[9] F. Wei, C. Y. Zhang, C. Zeng, and X. W. Shi, “A reconfigurable balanced
dual-band bandpass filter with constant absolute bandwidth and high selec-
tivity,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 9, pp. 4029–4040,
Sep. 2021.
[10] Z.-A. Ouyang, L. Zhu, and L.-L. Qiu, “Wideband balanced filters with
intrinsic common-mode suppression using coplanar strip double-sided
shunt-stub structures,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 8,
p. 3770–3782, Aug. 2021.
[11] L. K. Han, H.-W. Deng, J.-M. Zha, S.-B. Xing, and W. Han, “Com-
 pact dual-band dual-mode SIW balanced BPF with intrinsic common-
mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2,
p. 101–104, Feb. 2021.
[12] A. Iqbal, A. W. Ahmad, A. Smda, and N. K. Mallat, “Tunable SIW
bandpass filters with improved upper stopband performance,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 67, no. 7, pp. 1194–1198, Jul. 2020.
[13] A. Iqbal, J. J. Tiang, C. K. Lee, N. K. Mallat, and S. W. Wong, “Dual-
band half mode substrate integrated waveguide filter with independently
tunable bands,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 2,
p. 285–289, Feb. 2020.
[14] T.-Y. Lin and T.-L. Wu, “Balanced bandpass filter with common-mode
reflectionless feature by terminated coupled lines,” IEEE Trans. Electro-
mag. Compat., vol. 62, no. 4, pp. 1090–1097, Aug. 2020.
[15] Y. Zhu, K. Song, M. Fan, S. Guo, Y. Zhou, and Y. Fan, “Wideband balanced
bandpass filter with common-mode noise absorption using double-sided
parallel-strip line,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 4,
p. 359–362, Apr. 2020.
[16] K. Aliqb and J. Hong, “Wideband differential-mode bandpass filters
with stopband and common-mode suppression,” IEEE Microw. Wireless
Compon. Lett., vol. 30, no. 3, pp. 235–236, Mar. 2020.
[17] R. Gomez-Garcia, L. Yang, and J.-M. Munoz-Ferreras, “Balanced quasi-
eelliptic-type combline diplexer with multilayered-pole junction/output
sections,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 6,
p. 569–572, Jun. 2020.
[18] A. Fernandez-Prieto, A. Lujambio, F. Martín, J. Martel, F. Medina,
and R. R. Boix, “Compact balanced-to-balanced diplexer based on split-ring
resonators balanced bandpass filters,” IEEE Microw. Wireless Compon.
Lett., vol. 28, no. 3, pp. 218–220, Mar. 2018.
[19] Y. Zhou, H.-W. Wei, and Y. Zhao, “Compact balanced-to-balanced
microstrip diplexer with high isolation and common-mode suppression,”
IEEE Microw. Wireless Compon. Lett., vol. 24, no. 3, pp. 143–145,
Mar. 2014.
[20] A. Fernandez-Prieto, A. Lujambio, J. Martel, F. Medina, F. Martin,
and R. R. Boix, “Balanced-to-balanced microstrip diplexer based on mag-
netically coupled resonators,” IEEE Access, vol. 6, pp. 18536–18547,
2018.
JESÚS MARTEL (Senior Member, IEEE) received the Licenciado and Ph.D. degrees in physics from the University of Sevilla, Seville, Spain, in 1989 and 1996, respectively. Since 1990, he has been researching with the Microwave Group, University of Sevilla. His research interests include printed passive microwave components and metamaterials.

ARMANDO FERNÁNDEZ-PRIETO (Senior Member, IEEE) was born in Ceuta, Spain, in September 1981. He received the Licenciado and Ph.D. degrees in physics from the Universidad de Sevilla, Seville, Spain, in 2007 and 2013, respectively. He is currently an Associate Professor of electromagnetism with the Department of Electronics and Electromagnetism, University of Seville, and a member of the Microwaves Group. His research interests include printed passive microwave components and metamaterials.

RAFAEL R. BOIX (Member, IEEE) received the Licenciado and Ph.D. degrees in physics from the University of Sevilla, Seville, Spain, in 1985 and 1990, respectively. Since 1986, he has been with the Electronics and Electromagnetism Department, University of Sevilla, where he became a Tenured Professor in 2010. He belongs to the Microwaves Group, University of Sevilla. His current research interests include the efficient numerical analysis of periodic planar multilayered structures with applications to the design of frequency selective surface and reflectarray antennas, and on the development of circuit approaches for the synthesis of microstrip antennas with frequency selective response.

FRANCISCO MEDINA (Fellow, IEEE) was born in Puerto Real, Cádiz, Spain, in 1960. He received the Licenciado and Ph.D. degrees in physics from the Universidad de Sevilla, Seville, Spain, in 1983 and 1987, respectively. He is currently a Professor in electromagnetism with the Department of Electronics and Electromagnetism, Universidad de Sevilla, where he is also the Head of the Microwaves Group. His current research interests include analytical and numerical methods for planar structures, anisotropic materials, artificial media modeling, and planar microwave circuits. He has published a number of book chapters, journal articles, and conference papers on these topics. He is the Editor-in-Chief of the International Journal of Microwave and Wireless Technologies.