BERNSTEIN CENTER OF SUPERCUSPIDAL BLOCKS

MANISH MISHRA

Abstract. Let G be a tamely ramified connected reductive group defined over a non-archimedean local field k. We show that the Bernstein center of a tame supercuspidal block of $G(k)$ is isomorphic to the Bernstein center of a depth zero supercuspidal block of $G_0(k)$ for some twisted Levi subgroup of G.

1. Introduction

Let G be a connected reductive group defined over a non-archimedean local field k. Assume that G splits over a tamely ramified extension k' of k. We will denote the group of k-rational points of G by G and likewise for other algebraic groups. In [8], Jiu-Kang Yu gives a very general construction of a class of supercuspidal representations of G which he calls tame. A tame supercuspidal representation $\pi = \pi_\Sigma$ of G is constructed out of a depth zero supercuspidal representation π_0 of G^0 and some additional data, where G^0 is a twisted Levi subgroup of G. By twisted, we mean that $G^0 \otimes k'$ is a Levi factor of a parabolic subgroup of $G \otimes k'$. The additional data, together with G^0 and π_0 is what we are denoting by Σ in the notation π_Σ. In [4], Kim showed that under certain hypothesis, which are met for instance when the residue characteristic is large, these tame supercuspidals exhaust all the supercuspidals of G.

The depth zero supercuspidal π_0 of G^0 is compactly induced from (K^0, ϱ_0) where K^0 is a compact mod center open subgroup of G^0 and ϱ_0 is a representation of K^0. The constructed representation π_Σ is compactly induced from (K, ϱ), where K is a compact mod center open subgroup of G containing K^0 and ϱ is a representation of K. The representation ϱ is of the form $\varrho_0 \otimes \kappa$, where ϱ_0 is seen as a representation of K by extending from K^0 “trivially” (see [8] Sec. 4) and κ is a representation of K constructed out of the part of Σ which is independent of ϱ_0.

Let Z^π (resp. Z^π_0) denote the Bernstein center of the Bernstein block (see Section II for these terms) of G (resp. G^0) containing π (resp. π_0). Under certain hypothesis $C(G)$ [3 Page 47], we show that:

Theorem. $Z^\pi \cong Z^\pi_0$. Thus, the Bernstein center of a tame supercuspidal block of G is isomorphic to the Bernstein center of a depth zero supercuspidal block of a twisted Levi subgroup of G.

1
Let $\mathcal{H}(G, ^o \varrho)$ (resp. $\mathcal{H}(G^0, ^o \varrho_0)$) denote the Hecke algebra of the type constructed out of (K, ϱ) (resp. (K^0, ϱ_0)) (see Sec. 1.2). As a consequence of the above theorem, we obtain

$$Z(\mathcal{H}(G, ^o \varrho)) \cong Z(\mathcal{H}(G^0, ^o \varrho_0)),$$

where $Z(\mathcal{H}(G, ^o \varrho))$ (resp. $Z(\mathcal{H}(G^0, ^o \varrho_0))$) denotes the center of $\mathcal{H}(G, ^o \varrho)$ (resp. $\mathcal{H}(G^0, ^o \varrho_0)$).

In [8] Conj. 0.2, Yu conjectures that $\mathcal{H}(G, ^o \varrho) \cong \mathcal{H}(G^0, ^o \varrho_0)$. This is a special case of his more general conjecture [3] Conj. 17.7. Assuming certain conditions on π_{Σ} ([11 Sec. 5.5]) which are satisfied quite often, for instance whenever π_{Σ} is generic, in Theorem [10] we show that

$$\mathcal{H}(G, ^o \varrho) \cong \mathcal{H}(G^0, ^o \varrho_0).$$

2. Notations

Throughout this article, k denotes a non-archimedean local field. For an algebraic group G defined over k, we will denote its k-rational points by G. We will follow standard abuses of notation and terminology and refer, for example, to parabolic subgroups of G in place of k-points of k-parabolic subgroups of G. Center of G will be denoted by Z_G. The category of smooth representations of G will be denoted by $\mathcal{R}(G)$. If K is a subgroup of G and $g \in G$, we denote gKg^{-1} by gK. If ρ is a complex representation of K, $^g\rho$ denotes the representation $x \mapsto \rho(g^{-1}xg)$ of gK. For $g \in G$, we say that g intertwines ρ if the vector space $\text{Hom}_{K \cap K}(^g\rho, \rho)$ is non-zero.

3. Yu’s construction [8]

Let G be a connected reductive group defined over a non-archimedean local field k. A twisted k-Levi subgroup G' of G is a reductive k-subgroup such that $G' \otimes_k \bar{k}$ is a Levi subgroup of $G \otimes_k \bar{k}$. Yu’s construction involves the notion of a generic G-datum. It is a quintuple $\Sigma = (\vec{G}, y, \vec{r}, \vec{\phi}, \rho)$ satisfying the following:

1. $\vec{G} = (G^0 \subseteq G^1 \subseteq \ldots \subseteq G^d = G)$ is a tamely ramified twisted Levi sequence such that Z_{G^0}/Z_G is anisotropic.
2. y is a point in the extended Bruhat-Tits building of G^0 over k.
3. $\vec{r} = (r_0, r_1, \ldots, r_{d-1}, r_d)$ is a sequence of positive real numbers with $0 < r_0 < \cdots < r_{d-2} < r_{d-1} \leq r_d$ if $d > 0$, $0 \leq r_0$ if $d = 0$.
4. $\vec{\phi} = (\phi_0, \ldots, \phi_d)$ is a sequence of quasi-characters, where ϕ_i is a G^{i+1}-generic quasi-character [8] Sec. 9 of G^i; ϕ_0 is trivial on G^0_{y, r_0}, but nontrivial on G^0_{y, r_i} for $0 \leq i \leq d-1$. If $r_{d-1} < r_d$, ϕ_d is nontrivial on G^i_{y, r_d} and trivial on $G^i_{y, r_{d+1}}$. Otherwise, $\phi_d = 1$. Here $G^i_{y, r}$ denote the filtration subgroups of the parahoric at y defined by Moy-Prasad (see [6] Sec. 2.6).
(5) \(\rho \) is an irreducible representation of \(G^0_{[y]} \), the stabilizer in \(G^0 \) of the image [\(y \)] of \(y \) in the reduced building of \(G^0 \), such that \(\rho|G_{y,0}^0 \) is isotypical and c-Ind_{\(G_{y}^0 \)}^G \(\rho \) is irreducible and supercuspidal.

Let \(K^0 = G^0_{[y]}, K^0+ = G^0_{y,0} \), \(K^i = G^0_{[y]} G^1_{y,s_0} \cdots G^i_{y,s_{i-1}} \) and \(K^{i+} = G^0_{[y]} G^1_{y,s_0} \cdots G^i_{y,s_{i-1}}+ \) where \(s_j = r_j/2 \) for \(i = 1, \ldots, d \). In [3, Sec. 11], Yu constructs certain representation \(\kappa \) of \(K^d = K^d(\Sigma) \) which is independent of \(\rho \) and constructed only out of \((\overline{G}, y, \overline{r}, \overline{\phi}) \). He defines certain subgroups \(J^i = (G^i-1, G^i)(k)_{y,(r_i-1,s_i-1)} \) and \(J^{i+} = (G^{i+}, G^{i})(k)_{y,(r_i,s_i-1+)} \) for \(1 \leq i \leq d \) (see [3, Sec. 3] for the meaning of notations used here). For these groups, one has

\[
K^{i-1} J^i = K^i, \quad K^{(i-1)+} J^{i+} = K^{i+}.
\]

Also, \(K^{i-1} \cap J^i \subset K^{(i-1)+} \). Since \(\rho \) is iso-trivial on \(K^0+ \), one can successively inflate the representation \(\rho \) of \(K^0 \) to a representation of \(K^d \), which we again denote by \(\rho \), via the maps

\[
K^i \rightarrow K^{i-1} J^i / J^i = K^{i-1} / (K^{i-1} \cap J^i)
\]

(see [3, Sec. 4] for details). Write \(\rho_\Sigma := \rho \otimes \kappa \).

Theorem 1 (Yu). \(\pi_\Sigma := c\text{-}\text{Ind}_{\mathcal{K}^+}^{\mathcal{G}} \rho_\Sigma \) is irreducible and thus supercuspidal.

The following theorem of Kim [4] says that under certain hypothesis (which are met for instance when the residue characteristic is sufficiently large), the representations \(\pi_\Sigma \) for various generic \(G \)-datum \(\Sigma \) exhaust all the supercuspidal representations of \(G \).

Theorem 2 (Ju-Lee Kim). *Suppose the hypothesis (H.k), (HB), (HGT) and (HN) in [4] are valid. Then all the supercuspidal representations of \(G \) arise through Yu’s construction.*

In [3, Theorem 6.6, 6.7] under certain hypothesis denoted by \(C(\overline{G}) \) [3] Page 47, Hakim and Murnaghan determine when two supercuspidal representations are equivalent:

Theorem 3 (Hakim-Murnaghan). Let \(\Sigma = (\overline{G}, y, \overline{r}, \overline{\phi}, \rho) \) and \(\Sigma' = (\overline{G}', y', \overline{r}', \overline{\phi}', \rho') \) be two generic \(G \)-data. Set \(\phi = \Pi_{i=1}^d \phi_i|G^0 \), \(\phi' = \Pi_{i=1}^d \phi'_{i}|G^0' \), \(\pi_0 = c\text{-}\text{Ind}_{\mathcal{G}_{[y]}}^{G^0} \rho \) and \(\pi_0' = c\text{-}\text{Ind}_{\mathcal{G}_{[y]}}^{G^0'} \rho' \). Then \(\pi_\Sigma \cong \pi_{\Sigma'} \) if and only if there exists \(g \in G \) such that \(K^d(\Sigma) = g K^d(\Sigma') \) and \(\rho_\Sigma = g \rho_{\Sigma'} \) if and only if \(G^0 = g G^0' \) and \(\pi_0 \otimes \phi \cong g (\pi_0' \otimes \phi' \).
4. Bernstein center

4.1. Bernstein decomposition. Let $X_k(G) = \text{Hom}(G, \mathbb{G}_m)$, the lattice of k-rational characters of G. Let

$$G := \{ g \in G : \text{val}_k(\chi(g)) = 0, \forall \chi \in X_k(G) \}.$$

In [5, Section 7], Kottwitz defined a functorial homomorphism $\kappa_G : G \rightarrow X_*(Z_G)^{Fr}_{I_k}$. Here $X_*(Z_G)$ denotes the co-character lattice of Z_G, $(\cdot)^{Fr}$ (resp. $(\cdot)^{I_k}$) denotes taking invariant (resp. coinvariant) with respect to Frobenius Fr (resp. inertia subgroup I_k). The map κ_G induces a functorial surjective map:

$$(4.1) \quad \kappa_G : G \rightarrow X_*(Z_G)^{Fr}_{I_k}/\text{torsion}$$

and $\ker(\kappa_G)$ is precisely G (see [2, Sec. 3.3.1]).

Let $X_{nr}(G) := \text{Hom}(G/\mathcal{O}_G, \mathbb{C}^\times)$ denote the group of unramified characters of G. For a smooth representation π of G, the representations $\pi \otimes \chi$, $\chi \in X_{nr}(G(k))$ are called the unramified twists of π.

Consider the collection of all cuspidal pairs (L, σ) consisting of a Levi subgroup L of G and an irreducible cuspidal representation σ of L. Define an equivalence relation \sim on the class of all cuspidal pairs by

$$(L, \sigma) \sim (M, \tau) \text{ if } ^gL = M \text{ and } ^g\sigma \cong \tau \nu,$$

for some $g \in G$ and some $\nu \in X_{nr}(M)$. Write $[L, \sigma]_G$ for the equivalence class of (L, σ) and $\mathcal{B}(G)$ for the set of all equivalence classes. The set $\mathcal{B}(G)$ is called the Bernstein spectrum of G. We say that a smooth irreducible representation π has inertial support $s := [L, \sigma]_G$ if π appears as a subquotient of a representation parabolically induced from some element of s. Define a full subcategory $\mathcal{R}(G)^s$ of $\mathcal{R}(G)$ as follows: a smooth representation π belongs to $\mathcal{R}(G)^s$ iff each irreducible subquotient of π has inertial support s. The categories $\mathcal{R}(G)^s, s \in \mathcal{B}(G)$, are called the Bernstein Blocks of G.

Theorem 4 (Bernstein). We have

$$\mathcal{R}(G) = \prod_{s \in \mathcal{B}(G)} \mathcal{R}(G)^s.$$

4.2. Hecke algebra. Let J be a compact open subgroup of G and let (τ, W) be an irreducible representation of J. We call (J, τ) a compact open datum. The Hecke algebra $\mathcal{H}(G, \tau)$ associated to a compact open datum (J, τ) is the space of compactly supported functions $f : G \rightarrow \text{End}_\mathbb{C}(W)$ such that

$$f(j_1 gj_2) = \tau(j_1)f(g)\tau(j_2), \quad j_1, j_2 \in J \text{ and } g \in G.$$
The standard convolution operation gives $H(G, \tau)$ the structure of an associative C-algebra with identity.

Let $\mathcal{R}_\tau(G)$ be the subcategory of $\mathcal{R}(G)$ consisting of smooth representations which are generated by their τ-isotypic component. If $\mathcal{R}_\tau(G) = \mathcal{R}(G)^s$ for some $s \in \mathcal{B}(G)$, then we say that (J, τ) is an s-type. Let $\mathcal{H}(G, \tau) - \mathcal{M}od$ denote the category of non-degenerate $\mathcal{H}(G, \tau)$ modules. If (J, τ) is an s-type, then $\mathcal{R}(G)^s$ is equivalent to $\mathcal{H}(G, \tau) - \mathcal{M}od$.

4.3. The center of $\mathcal{R}(G)$. Let C be an abelian category. The set $\text{End}_C(id)$ of natural transformations of the identity functor of C is a ring which by definition is the center of C. Denote it by $Z(C)$. Explicitly, $z \in Z(C)$ is a collection of morphisms $z_A : A \to A$, one for each object A in C, such that for any morphism $f : B \to C$, the diagram

$$
\begin{array}{ccc}
B & \xrightarrow{f} & C \\
\downarrow{z_B} & & \downarrow{z_C} \\
B & \xrightarrow{f} & C
\end{array}
$$

commutes.

Let R be a ring with identity. Let $\mathfrak{Z}(R)$ (resp. $\mathfrak{Z}(R - \mathcal{M}od)$) denote the center of R (resp. the center of the category of left R-modules). There is a canonical ring isomorphism

$$
(4.2) \quad c \in \mathfrak{Z}(R) \mapsto \mu_c \in \mathfrak{Z}(R - \mathcal{M}od),
$$

where μ_c acts on each left R-module M by $\mu_c(m) = cm$, for all $m \in M$ (see [7, Sec. 1.6.2]).

Let $s \in \mathcal{B}(G)$. The center of $\mathfrak{Z}(G)$ (resp. $\mathfrak{Z}(G)^s$) of the category $\mathcal{R}(G)$ (resp. $\mathcal{R}(G)^s$) is called the Bernstein center. If (J, τ) is an s-type, then $\mathcal{R}(G)^s \cong \mathcal{H}(G, \tau) - \mathcal{M}od$, and therefore by Equation (4.2), there is a canonical isomorphism

$$
(4.3) \quad \mathfrak{Z}(G)^s \cong Z(\mathcal{H}(G, \tau)),
$$

where $Z(\mathcal{H}(G, \tau))$ denotes the center of $\mathcal{H}(G, \tau)$.

5. Supercuspidal block

Let G be a connected reductive group over k. Let π be an irreducible supercuspidal representation of G of the form $\pi = c \cdot \text{Ind}_J^G(\tau)$, where J is an open, compact mod center subgroup of G and τ is a representation of J. Write $^o J = J \cap ^o G$ and let $^o \tau$ be some irreducible component of $\tau | ^o J$. Then

Proposition 5. [1] Sec. 5.4] The group $^o J$ is the unique maximal compact subgroup of J and $(^o J, ^o \tau)$ is a $[G, \pi]_G$-type in G.

5.1. **Commutativity conditions.** Assume that the representation \(\pi \) satisfies the following conditions:

1. The representation \(\tau|^{0}\mathcal{J} \) is irreducible, i.e., \(\tau|^{0}\mathcal{J} = \tau|^{0}\mathcal{J} \).
2. Any \(g \in G \) which intertwines the representation \(\tau|^{0}\mathcal{J} \) lies in \(\mathcal{J} \).

These conditions are quite frequently satisfied (see [1] Sec. 5.5), for instance if \(\pi \) admits a Whittaker model ([7] Remark 1.6.1.3)). Under these assumptions, we have:

Proposition 6. [1] Sec. 5.5 | The Hecke algebra \(\mathcal{H}(G, \tau|^{0}\mathcal{J}) \) associate to the type \((\tau|^{0}\mathcal{J}, \tau|^{0}\mathcal{J})\) is commutative.

6. **Main result**

We use the notations of Section 3. Fix a generic \(G \)-datum \(\Sigma = (\mathbf{G}, y, \mathbf{T}, \mathbf{F}, \phi, \rho) \). Then \(\pi_{\Sigma} := c\text{-Ind}_{K_{d}^{G}}^{G} \rho_{\Sigma} \) is an irreducible supercuspidal representation of \(G \), where \(\rho_{\Sigma} \) is of the form \(\rho \otimes \kappa \) and \(\kappa \) is a representation of \(K_{d}^{G} \), constructed only out of the data \((\mathbf{G}, y, \mathbf{T}, \mathbf{F}, \phi, \rho) \). The representation \(\pi_{0} = c\text{-Ind}_{K_{d}^{0}}^{G_{0}} \rho \) of \(G_{0} \) is depth zero supercuspidal. Set \(s := [G, \pi_{\Sigma}]_{G} \) and \(s_{0} := [G_{0}, \pi_{0}]_{G_{0}} \). Let \(J(G) \) (resp. \(J(G)^{s} \), resp. \(J(G)^{s_{0}} \)) be the Bernstein center of the category \(\mathcal{R}(G) \) (resp. \(\mathcal{R}(G)^{s} \), resp. \(\mathcal{R}(G)^{s_{0}} \)). Let \(\text{Irr}^{s}(G) \) (resp. \(\text{Irr}^{s_{0}}(G^{0}) \)) denote the isomorphism classes of irreducible elements in \(\mathcal{R}(G)^{s} \) (resp. \(\mathcal{R}(G^{0})^{s_{0}} \)). We assume the hypothesis \(C(\mathbf{G}) \) in [3] Page 47 in the rest of this section.

By functoriality of the map \(\mathbf{G} \hookrightarrow G \) induces a map

\[
\chi \in X_{\text{nr}}(G) \mapsto \chi|_{G_{0}} \in X_{\text{nr}}(G_{0}).
\]

Theorem 7. The map \(f_{\Sigma} : \pi_{\Sigma} \otimes \nu \in \text{Irr}^{s}(G) \mapsto \pi_{0} \otimes \nu|_{G_{0}} \in \text{Irr}^{s_{0}}(G^{0}), \nu \in X_{\text{nr}}(G) \), is well defined and is a bijection. Consequently, there is an isomorphism \(f_{\Sigma} : J(G)^{s} \cong J(G_{0})^{s_{0}} \).

Proof. We first prove well definedness. Suppose \(\pi_{\Sigma} \otimes \chi \cong \pi_{\Sigma} \) for \(\chi \in X_{\text{nr}}(G) \). Then we want to show that \(\pi_{0} \otimes \chi|_{G_{0}} \cong \pi_{0} \). Define a new quintuple \(\Sigma_{\chi} = (\mathbf{G}, y, \mathbf{T}, \mathbf{F}, \phi, \rho \otimes (\chi|_{K_{d}^{G}})). \) We have \(\pi_{\Sigma} \otimes \chi \cong c\text{-Ind}_{K_{d}^{G}}^{G} (\rho \otimes \kappa \otimes (\chi|_{K_{d}^{G}})) \). Since \(\chi \) is unramified, it follows that \(\pi_{\Sigma} \otimes \chi \cong \pi_{\Sigma_{\chi}} \). By Theorem 3, \(\pi_{\Sigma} \cong \pi_{\Sigma_{\chi}} \) is equivalent to \((K_{d}, \rho_{\Sigma}) \) being conjugate to \((K_{d}, \rho_{\Sigma_{\chi}}) \) by an element \(g \in G \). Since \(\rho_{\Sigma}|_{K_{d}^{+}} = \rho_{\Sigma_{\chi}}|_{K_{d}^{+}} \), it follows that \(g \) intertwines \(\rho_{\Sigma} |_{K_{d}^{+}} \). By [3] Prop. 4.4 and 4.1], it implies that \(g \in K_{d}^{G_{0}} K_{d}^{G} \). Thus we can assume without loss of generality that \(g \in G_{0} \). Let \(\rho' = (\rho \otimes \chi|_{K_{d}^{0}}) \).

Then by Theorem 3 we get \(\pi_{0} \otimes \phi \cong (\pi_{0} \otimes \phi) \) as \(G_{0} \)-representations, where \(\phi \) is as in Theorem 3 and \(\pi_{0} := c\text{-Ind}_{K_{d}^{0}}^{G_{0}} \rho' \cong \pi_{0} \otimes (\chi|_{G_{0}}) \). It follows that \(\pi_{0} \otimes \chi|_{G_{0}} \cong \pi_{0} \) and therefore \(f_{\Sigma} \) is well defined. Now if \(\chi \in X_{\text{nr}}(G) \) is such that \(\pi_{0} \otimes \chi|_{G_{0}} \cong \pi_{0} \), then it follows from Theorem 3 or directly that \(\pi_{\Sigma_{\chi}} \cong \pi_{\Sigma} \), i.e., \(\pi_{\Sigma} \otimes \chi \cong \pi_{\Sigma} \). This shows that the map \(f_{\Sigma} \) is also injective.
We now prove surjectivity. Now given \(\nu \in X_{\text{nr}}(G^0) \), using notation similar to before, write \(\Sigma_{\nu} = (\mathcal{G}, y, \rightarrow, \phi, \rho \otimes (\nu|K^0)) \). Let \(\circ K^d, \circ \rho_{\Sigma} \) (resp. \(\circ K^d, \circ \rho_{\Sigma} \)) be a type constructed out of \((K^d, \rho_{\Sigma}) \) (resp. \((K^d, \rho_{\Sigma}) \)) as in Sec. 5. Then \(\circ K^0 = G^0 \) and \(\circ K^d = \circ K^0 G^1_y s_{\alpha_{\circ_{s}}} \cdots G^d_{y, s_{\alpha_{d-1}}} \) (see notations in Sec. 3) is the maximal compact subgroup of \(K^d \) (see [8 Cor. 15.3]). Since \(\rho_{\Sigma} \circ K^d = \rho_{\Sigma_0} \circ K^d \), we can assume that \(\circ K^d, \circ \rho_{\Sigma} = \circ K^0, \circ \rho_{\Sigma} \). Now since \(\circ K^d, \circ \rho_{\Sigma} \) is an \(s \)-type, it follows that \(\pi_{\Sigma_0} \cong \pi_{\Sigma} \otimes \chi \) for some \(\chi \in X_{\text{nr}}(G) \). By the argument used in the proof of the well-definedness of the map \(f_{\Sigma} \) in the previous paragraph, we get, \(\pi_0 \otimes \nu \cong \pi_0 \otimes (\chi|G^0) \), i.e., \(\pi_0 \otimes \nu \) is the image of \(\pi_{\Sigma} \otimes \chi \) under \(f_{\Sigma} \). Thus \(f_{\Sigma} \) is also surjective.

We thus have a bijection \(f_{\Sigma} : \pi_{\Sigma} \otimes \chi \in \text{Irr}^s(G) \mapsto \pi_0 \otimes (\chi|G^0) \in \text{Irr}^s(G^0), \chi \in X_{\text{nr}}(G) \). Since \(3(G)^s \) (resp. \(3(G^0)^{s_0} \)) is canonically the ring of regular functions on \(\text{Irr}^s(G) \) (resp. \(\text{Irr}^s(G^0) \)) [7 Prop. 1.6.4.1], the Theorem follows.

For each irreducible object \(\tau \in \mathcal{R}(G) \) and \(z \in 3(G) \), denote by \(\chi_z(\tau) \), the scalar by which \(z \) acts on \(\tau \).

Corollary 8. Let \(z \in 3(G)^s \) and \(\pi \in \text{Irr}^s(G) \). Then \(\chi_z(\tau) = \chi_{f_{\Sigma}(z)}(f_{\Sigma}(\pi)) \).

Proof. This follows from [7] Prop. 1.6.4.1 and Theorem 4.

For an algebra \(\mathcal{A} \), denote by \(Z(\mathcal{A}) \) the center of \(\mathcal{A} \). Let \(H(G, \circ \rho_{\Sigma}) \) (resp. \(H(G^0, \circ \rho) \)) denote the Hecke algebra associated to the compact open data \((\circ K^d, \circ \rho_{\Sigma}) \) (resp. \((\circ K^0, \circ \rho) \)) (see Sec. 3.2). Then by Proposition 6, the Hecke algebras \(H(G, \circ \rho_{\Sigma}) \) and \(H(G^0, \circ \rho) \) are commutative. Theorem then follows from Corollary 8.

Theorem 10. \(H(G, \circ \rho_{\Sigma}) \cong H(G^0, \circ \rho) \).

Proof. By assumption, \(\rho_{\Sigma} \circ K^d \) is irreducible. Since \(\rho_{\Sigma} = \rho \otimes \kappa \) in the notations of Sec. 3, it implies that \(\rho \circ K^0 \) is also irreducible. Now by [8 Corr. 15.5], \(g \in G^0 \) intertwines \(\circ \rho \) iff it intertwines \(\circ \rho_{\Sigma} \). But then by assumption, \(g \in K^d \). Thus any \(g \in G^0 \) which intertwines \(\circ \rho \) lies in \(K^0 \). This means that \(\pi_0 \) also satisfies the commutativity conditions of Sec. 5.1. Then by Proposition 6, the Hecke algebras \(H(G, \circ \rho_{\Sigma}) \) and \(H(G^0, \circ \rho) \) are commutative. The Theorem then follows from Corollary 8.
Acknowledgement

The author is very thankful to Rainer Weissauer, Jeff Adler, Sandeep Varma and David Kazhdan for many helpful interactions. He is especially grateful to Jiu-Kang Yu for his careful proof reading and making important suggestions. He is also thankful to the Math Institute at Heidelberg University for supporting his stay during which this work was written.

References

[1] Colin J. Bushnell and Philip C. Kutzko. Smooth representations of reductive p-adic groups: structure theory via types. Proc. London Math. Soc. (3), 77(3):582–634, 1998.

[2] Thomas J. Haines. The stable bernstein center and test functions for shimura varieties. to appear in the proceedings for the London Mathematical Society - EPSRC Durham Symposium on Automorphic Forms and Galois Representations, Durham, July 18-28, 2011. 51 pages.

[3] Jeffrey Hakim and Fiona Murnaghan. Distinguished tame supercuspidal representations. Int. Math. Res. Pap. IMRP, (2):Art. ID rpn005, 166, 2008.

[4] Ju-Lee Kim. Supercuspidal representations: an exhaustion theorem. J. Amer. Math. Soc., 20(2):273–320 (electronic), 2007.

[5] Robert E. Kottwitz. Isocrystals with additional structure. II. Compositio Math., 109(3):255–339, 1997.

[6] Allen Moy and Gopal Prasad. Unrefined minimal K-types for p-adic groups. Invent. Math., 116(1-3):393–408, 1994.

[7] Alan Roche. The Bernstein decomposition and the Bernstein centre. In Ottawa lectures on admissible representations of reductive p-adic groups, volume 26 of Fields Inst. Monogr., pages 3–52. Amer. Math. Soc., Providence, RI, 2009.

[8] Jiu-Kang Yu. Construction of tame supercuspidal representations. J. Amer. Math. Soc., 14(3):579–622 (electronic), 2001.

E-mail address: manish.mishra@gmail.com
Current address: Im Neuenheimer Feld 288, D-69120, Heidelberg, Germany