Calretinin and parvalbumin in schizophrenia and affective disorders: a mini-review, a perspective on the evolutionary role of calretinin in schizophrenia, and a preliminary post-mortem study of calretinin in the septal nuclei

Brisch, Ralf; Bielau, Hendrik; Saniotis, Arthur; et al

DOI: https://doi.org/10.3389/fncel.2015.00393

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-114275
Journal Article
Published Version

Originally published at:
Brisch, Ralf; Bielau, Hendrik; Saniotis, Arthur; et al (2015). Calretinin and parvalbumin in schizophrenia and affective disorders: a mini-review, a perspective on the evolutionary role of calretinin in schizophrenia, and a preliminary post-mortem study of calretinin in the septal nuclei. Frontiers in Cellular Neuroscience:9:393.
DOI: https://doi.org/10.3389/fncel.2015.00393
Calretinin and parvalbumin in schizophrenia and affective disorders: a mini-review, a perspective on the evolutionary role of calretinin in schizophrenia, and a preliminary post-mortem study of calretinin in the septal nuclei

Ralf Brisch 1,*†, Hendrik Bielau 2†, Arthur Saniotis 3,4, Rainer Wolf 5, Bernhard Bogerts 2,6, Dieter Krell 2, Johann Steiner 2,6, Katharina Braun 6,7, Marta Krzyżanowska 1, Maciej Krzyżanowski 1, Zbigniew Jankowski 1, Michał Kalisz 1, Hans-Gert Bernstein 2 and Tomasz Gos 1

1 Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland, 2 Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany, 3 School of Medicine, The University of Adelaide, Adelaide, SA, Australia, 4 Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland, 5 Department of Psychiatry and Psychotherapy, Ruhr University Bochum, Bochum, Germany, 6 Center for Behavioral Brain Sciences, Magdeburg, Germany, 7 Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany

Objective: The septal nuclei are important limbic regions that are involved in emotional behavior and connect to various brain regions such as the habenular complex. Both the septal nuclei and the habenular complex are involved in the pathology of schizophrenia and affective disorders.

Methods: We characterized the number and density of calretinin-immunoreactive neurons in the lateral, medial, and dorsal subregions of the septal nuclei in three groups of subjects: healthy control subjects (N = 6), patients with schizophrenia (N = 10), and patients with affective disorders (N = 6).

Results: Our mini-review of the combined role of calretinin and parvalbumin in schizophrenia and affective disorders summarizes 23 studies. We did not observe significant differences in the numbers of calretinin-immunoreactive neurons or neuronal densities in the lateral, medial, and dorsal septal nuclei of patients with schizophrenia (N = 10), and patients with affective disorders compared to healthy control subjects.

Conclusions: Most post-mortem investigations of patients with schizophrenia have indicated significant abnormalities of parvalbumin-immunoreactive neurons in various brain regions including the hippocampus, the anterior cingulate cortex, and the prefrontal cortex in schizophrenia. This study also provides an explanation from an evolutionary perspective for why calretinin is affected in schizophrenia.

Keywords: calretinin, parvalbumin, septal nuclei, post-mortem studies, schizophrenia, affective disorders, evolution of the human brain
Introduction

Ca$^{2+}$-binding proteins (CBPs) are classified as Ca$^{2+}$-puffer proteins (CPPs; parvalbumin, calretinin, calbindin, calcineurin, and the S100 family) or Ca$^{2+}$-sensor proteins (CSSs; calmodulin, and VILIP-1,3). The processes by which CPPs and CSSs interact are not well-understood. In schizophrenia, CBPs are used to identify altered GABAergic (γ-aminobutyric acid-producing) interneurons in various brain regions, including the prefrontal cortex, hippocampus, and amygdala (Inan et al., 2013). Calretinin belongs to a subset of inhibitory interneurons that uses the neurotransmitter GABA (Barinka and Druga, 2010; Cauì et al., 2014). GABA is converted by the action of glutamic acid decarboxylase (GAD), which exists as two isoforms, GAD65 and GAD67. GAD65 is localized in axon terminals, and GAD67 is localized in neuronal cell bodies (Blum and Mann, 2002). Calretinin has been detected in the cingulate and entorhinal cortices as well as the hippocampus, brainstem, and cerebellum in the human brain (Nitsch and Ohm, 1995; Mikkonen et al., 1997; Baizer, 2014). White matter interneurons express GABA, calbindin, and calretinin (Suárez-Solá et al., 2009), which are relevant in schizophrenia (review by Kostovic et al., 2011; Yang et al., 2011; Joshi et al., 2012).

In the present study, we assessed the presence of calretinin in the anterior, middle, and posterior portions of the human septal nuclei. Recent findings regarding the involvement of calretinin in neurogenesis and animal models of psychiatric diseases imply that it is important to study the role of calretinin in the septal nuclei in schizophrenia and affective disorders. A loss of calretinin causes a deficit in adult hippocampal neurogenesis (Todkar et al., 2012). In adult mice, calretinin-positive neurons are present in the dentate gyrus, an important neurogenic zone (Spampanato et al., 2012). The transcription factor Gsx2 (genetic screened homebox 2) proliferates in the human cortical subventricular zone and commits cortical stem cells into calretinin-expressing cells (Radonjic et al., 2014). Calretinin cells originate from the subventricular zone of the lateral and caudal ganglion eminences (González-Gómez and Meyer, 2014). The density of calretinin-positive neuronal progenitors along the septo-temporal axis of the hippocampus was decreased by unpredictable chronic mild stress (UCMS), and this effect was inhibited by the treatment with the antidepressant fluoxetine (Tanti et al., 2013). Alterations in calretinin expression have been observed in mouse models of epilepsy and psychiatric diseases (Shin et al., 2013); however, no significant differences in the number of calretinin-immunoreactive interneurons in the cerebral cortices of wild-type and DBZ (DISC1-binding zinc finger protein) knockout (KO) mice have been reported (Koyama et al., 2013). Electroconvulsive therapy (ECT) results in the neurogenesis of calretinin-positive interneurons (Inta et al., 2013). The septum, via cholinergic and GABAergic pathways, is involved in the regulation of mesolimbic dopamine transmission (Lecourtier et al., 2010). The suppression of the septohippocampal pathway and its GABAergic activity might represent a novel treatment for the symptoms of schizophrenia (Ma et al., 2012; Deidda et al., 2014). The medial habenular complex is connected to the septal nuclei through the stria medullaris (Sutherland, 1982; Hikosaka, 2013). Habenular dysfunction is involved in schizophrenia (Heldt and Ressler, 2006), and habenular calcification has been reported in schizophrenia (Sandyk, 1992). A reduction in the volume of the medial and lateral habenular complex and reductions in the cell number and area of the medial habenula have been observed in affective disorders (Ranft et al., 2010), mainly a habenular volume reduction in unmedicated bipolar patients (Savitz et al., 2011a), but not in patients with post-traumatic stress disorder (Savitz et al., 2011b). Further, diminished neuronal density has been reported in the lateral septal nucleus of brain sections from bipolar patients compared with control subjects using both Nissl and Heidenhain-Woelke methods (Brisch et al., 2011).

The aim of this study is to investigate whether alterations of calretinin-immunoreactive neurons exist in the lateral, medial and dorsal septal nuclei in patients with schizophrenia and patients with affective disorders in comparison with healthy control subjects, based on the pathway between the septal nuclei and the habenular complex and the importance of calretinin in neurogenesis and animal models of psychiatric diseases.

Experimental Procedures

Subjects

All brains used in this study were from the Brain Collection of the University of Magdeburg. Brains were obtained from pathologists or medical examiner offices in the years 1987–2002 according to the Declaration of Helsinki (1975) and German and EU laws and after approval by the university’s ethic commission. The mean demographic data for all individual cases (all were Caucasian) including brain weight, post-mortem delay, onset of disease, and duration of disease are present in Table 1. The three groups were carefully matched for gender, age, post-mortem delay, the age at onset of illness, and brain weight. The post-mortem brains of six subjects lacking any signs of neurological or psychiatric symptoms were used as a control group. Brains from 10 patients with schizophrenia diagnosed according to the DSM-IV (Diagnostic and statistical manual of mental disorders) and ICD-10 (International statistical classification of diseases and related health problems) criteria were included; most of these patients had received antipsychotic treatment for at least several years. In addition, the brains of six patients with affective disorders according to DSM-IV and ICD-10 were studied. Of these, three patients were diagnosed with bipolar disorder (DSM IV-TR: 296.5; F 31.3) with manic and depressive episodes, and three patients suffered from major depressive disorder (DSM IV-TR: 296.5; F 31.5). All patients with affective disorders had received mood stabilizers consistently or periodically and/or antidepressive medication for several years before death. Only patients with detailed clinical records and well-documented psychopathology were included. The criteria for exclusion from the three groups were as follows: (i) organic brain disease; (ii) brain injury; (iii) alcoholism or chronic substance abuse; (iv) chronic somatic diseases affecting the central nervous system (i.e., cachexia, cancer, chronic liver or kidney diseases, or long...
term corticosteroid treatment); and (v) age greater than 65 years, to exclude changes related to normal aging of the brain.

Tissue Processing

Brains were removed within 4–72 h after death (see Table 1 for the demographic data of control subjects and patients) and fixed in toto in 8% phosphate-buffered formaldehyde for at least 2 months (pH = 7.0, T = 15–20°C). The frontal and occipital poles were separated by coronal cuts anterior to the genu and posterior to the splenium of the corpus callosum. After embedding all parts of the brain in paraffin, serial whole brain sections without midline cut of the middle block were cut (20 µm) with a calibrated microtome and mounted. The shrinkage factor caused by fixation and embedding and the thickness of the slices were calculated by methods described previously by Baumann et al. (1999). The mean volume shrinkage factor for brains in the schizophrenia, affective disorder, and control groups was 2.2 ± 0.3 (mean ± SD). No significant differences in the shrinkage factors were observed among the three groups. Every 50th section was stained for calretinin. The distance between the sections was 1 mm.

Stereological-based Analysis and Morphometric Delineation Criteria

For the present study, one coronal sections was randomly selected from each brain. Each section was located at the same clearly defined anatomical landmarks in either the anterior, middle, or posterior portion of the human septum. The cross-sectional areas of the septal nuclei within each section were determined using a computerized image system (Digitrace Imaging System). The borders of the septal tissue were delineated under a microscope at low magnification with a 2.5 × objective according to the boundaries described by Horváth and Palkovits (1987). The anterior border of the septal tissue is the genu of the corpus callosum; the upper border is the body of the corpus callosum and the anterior commissure; and the lateral borders are the lateral ventricles. The septal tissue is surrounded basally by the nucleus accumbens and the stria terminalis. To determine interrater reliability, stereological measurements of eight different, randomly selected brains were performed by two investigators (R.B., R.S). The interrater reliability for the densities of calretinin-immuno-positive neurons in the septal nuclei was 0.97 (intraclass correlation coefficient). All measurements were performed blind to the diagnosis: the investigators were unaware of the patient’s diagnosis, age, and gender. The cross-sectional area of the section was scanned with a 2.5 × objective using a video camera module attached to a Leica light microscope, and Digitrace software was used to project a picture on a monitor (22.0 × 15.9 mm). A magnification of 400 × was used for cell counting. Using this apparatus, the counting frame was superimposed onto one section at clearly defined anatomical landmarks, with up to 200 systematically, uniformly randomly sampled counting boxes (i.e., up to 100 counting boxes for the left and the right portions of the septal nuclei) for each septal nucleus along the entire extent of the septal nucleus. The actual section thickness of each section in the septal nuclei was determined with a 100 × oil immersion objective by focusing on the upper and lower surfaces of the section and then subtracting the z-axis distance measured by the a microcator attached to the Leica DM RB microscope (Leica, Gießen, Germany). To determine the number of neurons at a higher magnification (400X) neurons were counted by using the optical dissector method as described earlier (Bernstein et al., 2001; Brisch et al., 2009; Walløe et al., 2014). The average thickness of the sections (z-axis) was 16.0 ± 1.9 µm (mean ± SD). The mean thickness of the sections was 14.9 ± 1.9 µm (mean ± SD) in the schizophrenia group, 16.9 ± 1.8 µm (mean ± SD) in the affective disorders group, and 16.8 ± 1.2 µm (mean ± SD) among healthy control subjects. The neuronal density was estimated based on the square of the counting area, which was determined by the square of the septal nuclei at the adjacent nuclei, and the number of calretinin-immunoreactive neurons within the counting boxes (Brisch et al., 2009). Neurons touching the left and lower borders of the counting boxes were excluded, and neurons touching the opposite borders were included (see Figure 1; Pennington et al., 2008).

Immunohistochemistry

The brain sections were dewaxed with xylol and washed with distilled water (two 10-min washes). The sections were washed in 1% H2O2–10% methanol/phosphate-buffered saline solution. After repeated washings in phosphate-buffered saline solution, the sections were incubated in bovine serum albumin in a humidified chamber for 1 h. A rabbit polyclonal antisera (Swant, Bellizona, Switzerland, Code No: 7699/4) was then applied to the brain sections as the primary antibody in a dilution of 1:500. The solution consisted of 20 µl of calretinin antibody, 10 ml of PBS, 40 µl of Triton X-100, and 200 ml of goat normal serum. The brain sections were incubated in a humidified chamber at 4°C for 48 h and washed twice for 10 min each in phosphate-buffered saline. The secondary antibody (goat-anti-rabbit-immunoglobulin E 0432, Dako, Denmark) was then applied to the sections at a dilution of 1:100, and the sections were incubated in a humidified chamber for 48 h, followed by two washes for 5 min each in phosphate-buffered saline. Streptavidin was then applied to the sections at a dilution of 1:100 (Streptavidin-biotin-peroxidase-complex, RPN 1051, Batch,...

TABLE 1 | Demographic data and group parameters for healthy control subjects, patients with affective disorders, and patients with schizophrenia.

	Control subjects	Affective disorders	Schizophrenia
N	6	6	10
Males/Females	2/4	2/4	6/4
Age (years)	52.7 ± 9.7	48.7 ± 11.6	54.8 ± 8.9
Brain weight (g)	1298.3 ± 169.6	1373.3 ± 155.9	1305.7 ± 155.2
Brain volume (cm³)	1252.0 ± 163.6	1324.3 ± 150.3	1259.1 ± 149.7
Post-mortem delay (h)	36.0 ± 20.1	29.2 ± 14.7	31.7 ± 15.2
Duration of illness (years)	9.7 ± 6.8	23.7 ± 12.9	
Onset of illness (years)	39.0 ± 10.1	31.1 ± 11.1	
Thickness of section (µm)	16.8 ± 1.2	16.9 ± 1.8	14.9 ± 1.9

Mean ± standard deviation.
Brisch et al. Calretinin and parvalbumin in schizophrenia and affective disorders

177351, Amersham Biosciences, Germany). Streptavidin was used as an antibody marker. The sections were then incubated in a humidified chamber at a 4°C for 1 h, followed by two washes for 10 min each in phosphate-buffered saline. To visualize the reaction products, 3,3′-diamino nickel sulfate hexahydrate was used. Finally, repeated washings with distilled water (twice for 5 min), 60% alcohol (5 min), 70% alcohol (5 min), 96% alcohol (5 min), and absolute alcohol (5 min) were performed. To control the specificity of the immunostaining for calretinin, we either omitted the primary antiserum or replaced it with buffer or normal rabbit serum. Control reactions showed a complete disappearance of specific immunostaining.

Statistical Analysis

The independence of frequency for the variables of gender and diagnosis was analyzed using Pearson's chi-square test. The other demographic variables are presented as their mean ± standard deviation and were compared among the three groups using a one-way ANOVA (analysis of variance; see Table 1). Levene's-test was used to evaluate the equality of variances for a given variable, such as the cell numbers calculated for the three groups (i.e., healthy control subjects, patients with affective disorders, and patients with schizophrenia). Some of the morphometric values had distinct asymmetric distributions (see Table 2) and were therefore using non-parametric tests. The Kruskal–Wallis test was performed to determine the significance of the differences in terms of mean cross-sectional area, the number of neurons, and the neuronal densities among the three groups (see Table 2). Results were considered significant at the 0.05 level. In cases of significance, the pairwise U-test (Wilcoxon–Mann–Whitney with the Shaffer-correction) was used to detect significant differences between pairwise groups (see Table 2). The statistical power of each test was also calculated.

Methods of the Mini-review

We searched PubMed in July 2015. Using the following keywords “calretinin and neuronal density and schizophrenia,” we obtained 12 hits, of which three were relevant studies. We had 18 hits in PubMed for the keywords “calretinin and neuronal number and schizophrenia,” two of which were relevant studies. We had two hits in PubMed for the keywords “calretinin and neuronal

![FIGURE 1 | Calretinin-immunopostive neurons (arrows) in the Ncl. lateralis of a patient with schizophrenia (modified from Pennington et al., 2008).](image)

TABLE 2	Cell numbers and neuronal densities (neurons/mm³) in the septal nuclei of patients with schizophrenia, patients with affective disorders, and the healthy control subjects.		
Cell number (mean, SD, CE)	Ncl. lateralis	Ncl. medialis (pars fimbrialis and pars intermedia)	Ncl. dorsalis
Volume cell density (mean, SD, CE)			
Control subjects (N = 6)	123.0 (81.4; 0.27)	171.6 (85.7; 0.22) (N = 5)	131.0 (87.8; 0.27)
	131.6 (88.2; 0.24)	167.7 (83.9; 0.21)	131.7 (87.9; 0.27)
Patients with schizophrenia (N = 10)	257.4 (243.3; 0.32) (N = 9)	329.7 (374.1; 0.43) (N = 7)	224.2 (299.6; 0.45) (N = 9)
	2891 (1939; 0.22)	2863 (3452; 0.46)	2110 (2389; 0.38)
Patients with affective disorders (N = 6)	168.2 (91.3; 0.22)	165.4 (98.3; 0.27) (N = 5)	238.0 (150.5; 0.26)
	2376 (1192; 0.20)	1744 (730; 0.19)	2856 (1281; 0.18)

Two-group-comparisons

- Aff. vs. Ctr. (U-test): 0.48; 0.59
- SZ vs. Ctr. (U-test): 0.18; 0.61
- SZ vs. Aff. (U-test): 0.78; 0.78

Three-group-comparisons

- ANOVA Ctr./Aff./SZ (p-value): 0.048; 0.071
- Levene’s-test: 0.036; 0.10
- K–W-test Ctr./Aff./SZ: 0.38; 0.76

The data are presented as the mean, standard deviation (SD), and coefficient of error (CE). Please note that the number of patients with schizophrenia included in the data for the nuclei lateralis, medialis (pars fimbrialis and pars intermedia), and dorsalis data is less than the original number of patients with schizophrenia (in bold). In addition, the number of patients with affective disorders included in the nuclei medialis data is less than the original number of patients with affective disorders (in bold). K–W-test, Kruskal–Wallis-test; Ctr, Control subjects; SZ, Patients with schizophrenia; Aff, Patients with affective disorders; Ncl., nucleus. Shrinkage-corrected data are presented.
density and bipolar disorder,” one of which was a relevant study. We had two hits in PubMed for the keywords “calretinin and neuronal number and bipolar disorder,” one of which was a relevant study. We had two hits in PubMed for the keywords “calretinin and neuronal density and major depressive disorder,” one of which was a relevant study. We had two hits in PubMed for the keywords “calretinin and neuronal number and major depressive disorder,” one of which was a relevant study. We had 22 hits for the keywords “parvalbumin and neuronal density and schizophrenia,” of which six were relevant studies. We had 48 hits for the keywords “parvalbumin and neuronal number and schizophrenia, three of which were relevant studies.” We had two hits for the keywords “parvalbumin and neuronal density and bipolar disorder,” of which one was a relevant study. We had four hits for the keywords “parvalbumin and neuronal number and bipolar disorder,” two of which were relevant studies. We also searched the reference lists of published studies.

Results

Numbers of Calretinin-immunoreactive Neuron and Neuronal Densities in the septal Nuclei of Patients with Schizophrenia, Patients with Affective Disorders, and Healthy Control Subjects

No significant differences were observed in the number of calretinin-immunoreactive neurons in the lateral (AFF vs. CTR, \(P = 0.48; \) SZ vs. CTR, \(P = 0.18; \) SZ vs. AFF, \(P = 0.78; \)) medial (pars fimbrialis and pars intermedia; AFF vs. CTR, \(P = 1.00; \) SZ vs. CTR, \(P = 0.76; \) SZ vs. AFF, \(P = 0.88; \)) dorsal septal nuclei (AFF vs. CTR, \(P = 0.24; \) SZ vs. CTR, \(P = 0.69; \) SZ vs. AFF, \(P = 0.78; \)) among patients with schizophrenia, patients with affective disorders and healthy control subjects (see Figures 2A, 3A–E; Table 2). There were no significant differences in the densities of calretinin-immunoreactive neurons in the lateral (AFF vs. CTR, \(P = 0.59; \) SZ vs. CTR, \(P = 0.61; \) SZ vs. AFF, \(P = 0.78; \)) medial (pars fimbrialis and pars intermedia; AFF vs. CTR, \(P = 1.00; \) SZ vs. CTR, \(P = 0.88; \) SZ vs. AFF, \(P = 1.00; \)) and dorsal septal nuclei (AFF vs. CTR, \(P = 0.24; \) SZ vs. CTR, \(P = 0.86; \) SZ vs. AFF, \(P = 0.22; \)) among patients with schizophrenia, patients with affective disorders, and healthy control subjects (see Figure 2B; Table 2). The mean cross-sectional areas of the septal nuclei did not differ significantly among the patients with schizophrenia, patients with affective disorders, and healthy control subjects. The statistical power (1-\(\beta \) probability of error) was estimated for the F-tests used in the statistical analysis of number of cells and cell density, respectively. For the the dorsal septal nuclei, it was estimated as 0.612 and 0.736, for the medial septal nuclei (pars fimbrialis and pars intermedia) as 0.933 and 0.763, and for the lateral septal nuclei as 0.952 and 0.771. Therefore, it was concluded that our sample size would be large enough to detect statistically significant differences.

Discussion

The present study demonstrates for the first time that there are no alterations in the density and number of calretinin-immunoreactive neurons in the lateral, medial, and dorsal septal nuclei of patients with schizophrenia or patients with affective disorders compared to healthy control subjects.

Although some studies demonstrated significant changes in calretinin-immunoreactive neurons in schizophrenia and bipolar disorder compared to control subjects in brain regions such as the dentate and the dorsolateral prefrontal gyri (Oh et al., 2012; Walton et al., 2012), the majority of studies of calretinin-immunoreactive neurons in schizophrenia in brain areas such as the hippocampus, prefrontal, and cingulate cortices, and the mammillary bodies (Zhang and Reynolds, 2002; Zhang et al., 2002; Bernstein et al., 2007; review by Eyles et al., 2002) and in affective disorders in the cingulate cortex (Cotter et al., 2002; see Table 3) are consistent with our present findings.

A novel interaction between calretinin and AMPA [(S)-2 amino-3-(3-hydroxy-5-methyl-4-isooazolyl)-propionic-acid] has been proposed as a potential target for the development of new antipsychotic therapeutics for schizophrenia (Siekmieier and vanManen, 2013). However, new drugs that affect this pathway should be developed with caution because the
GABA-potentiating drug vigabatrin, an irreversible inhibitor of GABA-transaminase, induces alterations in GAD67, GAD65, parvalbumin, and calbindin levels in certain brain regions, including the hippocampus and cerebral cortex (Levav-Rabkin et al., 2010). Increased density of GAD65/67-immunoreactive neuropil suggests a GABAergic hyperactivity in the hippocampus and might compose a risk factor for suicidal behavior in affective disorders (Gos et al., 2009). Increased densities of GAD65/67-positive neurons in the dorsolateral prefrontal and superior temporal cortices and in the hippocampus have been observed among patients with major depressive disorder compared with control subjects and patients with bipolar disorder as well as in the orbitofrontal cortex among patients with major depressive disorder and bipolar disorder compared to control subjects (Bielau et al., 2007) and in the posterior subiculum and parahippocampal gyrus in treated patients with chronic schizophrenia compared with control subjects (Schreiber et al., 2011). Further, a reduced level of GAD67 protein in the prefrontal cortex has been observed in major depressive disorder compared with control subjects (Karolewicz et al., 2010), and a reduction in GAD67 along with parvalbumin-positive cells of the dorsal hippocampus has been observed in a rat model of schizophrenia (Dickerson et al., 2014). Calbindin/GAD67-positive and calretinin/GAD67-positive neurons are much more involved in pathological processes in brain diseases, including schizophrenia, than are neurons with GAD65 (Rocco et al., 2015). Alterations in GABAergic interneurons and minicolumns in the neocortex are characteristic of neuropathological diseases such as schizophrenia (Raghanti et al., 2010). Moreover, the dorsolateral prefrontal cortex, with its glutamatergic and GABAergic populations, has been the focus of recent schizophrenia research (Lewis et al., 2005; Hofman and Lewis, 2011). Increased levels of GABA have been observed in prefrontal cortices in unmedicated patients with schizophrenia (Kegeles et al., 2012). Reduced numbers of parvalbumin-immunoreactive neurons in the hippocampus, prefrontal and frontal cortices, and mammillary bodies have been reported in patients with schizophrenia compared with control subjects (Beasley and Reynolds, 1997; Lewis et al., 2001; Reynolds and Beasley, 2001; Reynolds et al., 2001, 2002, 2004; Beasley et al., 2002; Zhang and Reynolds, 2002; Zhang et al., 2002; Bernstein et al., 2007; see Table 3) and in an animal model of schizophrenia (Reynolds et al., 2004; Penschuck et al., 2006; Harte et al., 2007; Bissonette et al., 2014). In addition, a significant decrease in parvalbumin-immunoreactive neurons in the entorhinal cortex of patients with bipolar disorder compared with control subjects has been observed (Pantazopoulos et al., 2007).

Increased oxidative stress and changes in antioxidant systems, such as decreased glutathione, in schizophrenia compromise the integrity of parvalbumin interneurons in the ventral hippocampus (Steullet et al., 2010).

Upregulation of parvalbumin in the prefrontal cortex during adolescence due to pre- and postnatal disturbances has been observed (Caballero et al., 2014). Age-related changes have been observed in the calbindin-, calretinin-, and parvalbumin-immunoreactive neurons of the human cerebral cortex (Bu et al., 2003) and in the parvalbumin-immunoreactive neurons of the medial and lateral geniculate nuclei of rhesus macaques (Gray et al., 2013). Nicotine enhances GABAergic and serotonin synaptic transmission in the medial septum (Wu et al., 2003; Aznar et al., 2005; DuBois et al., 2013).

Methylphenidate, which is used to treat children suffering from attention deficit hyperactivity disorder (ADHD), causes an increase in calretinin neurons in the medial septum and in the vertical limb of the diagonal band of Broca (MS/VDB) of rats (García-Avilés et al., 2015). Furthermore, cannabis abuse results in decreased expression of GAD67 in the parvalbumin-containing interneurons of the prefrontal cortex in a rat model of schizophrenia (Zamberletti et al., 2014). Prenatal lead exposure results in a loss of parvalbumin-interneurons co-labeled with GAD67 protein in specific brain regions such as medial prefrontal cortex, striatum, and hippocampus but to increased activity of...
TABLE 3 | Post-mortem studies of calretinin-, calbindin-, and parvalbumin-immunoreactive neurons in patients with schizophrenia, bipolar patients, and patients with major depressive disorder compared to control subjects.

Authors	Sample sizes	Brain areas	Results
Daviss and Lewis, 1995	N = 10 schizophrenia patients, N = 5 control subjects	Prefrontal cortical areas 9 and 46, Neuronal cell density	Calbindin ↑ (schizophrenia patients compared to control subjects), Calretinin ↔
Beasley and Reynolds, 1997	N = 18 schizophrenia patients, N = 22 control subjects	Prefrontal cortex, Neuronal cell density	Parvalbumin ↓ (in layers III, IV of schizophrenia patients compared to control subjects)
Kalus et al., 1997	N = 5 schizophrenia patients, N = 5 control subjects	Anterior cingulate cortex, Neuronal cell density, Somal profile density	Nissl ↔ (total neuronal density), Parvalbumin ↑ (soma profile density in layers Va and Vb in schizophrenia patients compared to control subjects)
Woo et al., 1997	N = 15 schizophrenia patients, N = 15 control subjects	Prefrontal cortex (areas 9 and 46), Occipital cortex (area 17), Neuronal cell density, Somal size	Parvalbumin ↔
Holt et al., 1999	N = 10 schizophrenia patients, N = 9 control subjects	Total striatum, Neuronal cell density	Choline acetyltransferase ↓ (in the total striatum and most prominent in the ventral striatum in schizophrenia patients compared to control subjects), Calretinin ↓ (in the total striatum and most prominent in the caudate nucleus in schizophrenia patients compared to control subjects)
Reynolds and Beasley, 2001	N = 18 schizophrenia patients, N = 22 control subjects	Prefrontal cortex, Relative density of neurons	Parvalbumin ↓ (in layers III, IV of schizophrenia patients compared to control subjects), Calretinin ↔
Beasley et al., 2002	N = 15 schizophrenia patients, N = 15 bipolar patients	Neuronal cell density	Parvalbumin ↓ (in layer III of schizophrenia patients to control subjects), Calbindin ↓ (in layers II, III and V of schizophrenia patients compared to control subjects and layer V of bipolar patients compared to control subjects; by comparing individual laminar densities between groups (correction for multiple comparisons) only a reduction in layer II in schizophrenia patients compared to control subjects), Calretinin ↔
Cotter et al., 2002	N = 15 schizophrenia patients, N = 15 bipolar patients, N = 15 patients with major depressive disorder, N = 15 control subjects	Anterior cingulate cortex, Neuronal cell density, Neuronal cell size	Calretinin ↔, Parvalbumin ↔, Calbindin ↔
Reynolds et al., 2002	N = 15 schizophrenia patients, N = 15 bipolar patients, N = 15 patients with major depressive disorder, N = 15 control subjects	Entorhinal cortex, Prefrontal cortex, Neuronal cell density	Parvalbumin ↓ (schizophrenia patients compared to control subjects), Calbindin ↔, Calretinin ↔

(Continued)
Authors	Sample sizes	Brain areas	Results
Zhang and Reynolds, 2002	$N = 15$ schizophrenia patients	Hippocampus	Relative cell density of neurons
	$N = 15$ bipolar patients		Neuronal body size
	$N = 15$ patients with major depressive disorder		Calretinin \downarrow (cell density in male schizophrenia patients and bipolar patients (CA 1) compared to control subjects)
Zhang et al., 2002	$N = 15$ schizophrenia patients	Hippocampus	Neuronal cell density
	$N = 15$ control subjects		Neuronal cell size
Danos et al., 2003	$N = 12$ schizophrenia patients	Anteroventral thalamic nucleus (AN)	Neuronal cell density
	$N = 14$ control subjects		
Tooney and Chahl, 2004	$N = 6$ schizophrenia patients	Prefrontal cortex	Calretinin \downarrow
	$N = 6$ control subjects		Caibindin \downarrow
			Parvalbumin \downarrow (neuronal cell density)
Chance et al., 2005	$N = 12$ schizophrenia patients	Planum temporale	Calbinderin \downarrow
	$N = 12$ control subjects		
Wheeler et al., 2006	$N = 9$ schizophrenia patients	Posterior cingulate cortex	Calbindin \downarrow
	$N = 9$ control subjects		
Bernstein et al., 2007	$N = 15$ schizophrenia patients	Mammillary bodies	Parvalbumin projection neurons \downarrow (schizophrenia patients compared to control subjects)
	$N = 15$ control subjects		Caibedrin \downarrow
Pantazopoulos et al., 2007	$N = 10$ schizophrenia patients	Entorhinal cortex (EC)	Parvalbumin \downarrow (neuronal density and cell number in bipolar patients (BP) compared to control subjects (CS))
	$N = 10$ bipolar patients		(neuronal density \downarrow of the superficial layers of the lateral and CA1 in BP compared to CS)
	$N = 16$ control subjects		(neuronal density \downarrow of the superficial layers of the CA1 in SZ compared to CS)
Rajkowska et al., 2007	$N = 14$ patients with major depressive disorder (MDD)	Dorso lateral prefrontal cortex (dIPFC)	Calbindin \downarrow in cell density and size in dIPFC in patients with MDD compared to control subjects a trend for reduction in parvalbumin and calbindin-immunoreactive neurons in cell density and cell size in ORB in patients with MDD compared to control subjects
	$N = 11$ control subjects	Orbitofrontal cortex (ORB)	
Konradi et al., 2011a	$N = 13$ schizophrenia patients	Hippocampus	Parvalbumin \downarrow
	$N = 20$ control subjects		Somatostatin \downarrow
Konradi et al., 2011b	$N = 14$ bipolar patients	Hippocampus	Parvalbumin \downarrow (CA4, CA1) and somatostatin \downarrow (CA1)
	$N = 18$ control subjects		(bipolar patients compared to control subjects)
the subcortical dopaminergic system and intensified locomotor response to cocaine in a rat model of schizophrenia (Stansfield et al., 2015).

A major limitation of the present study is the small numbers of healthy control subjects, patients with schizophrenia, and patients with affective disorders. It was not possible to determine the numbers of smokers and non-smokers in our study's population, a minor drawback of the study. The psychotropic medication in patients with schizophrenia and patients with affective disorders was only recorded during the last 3 months before the patients' lives.

Our findings of no significant differences in the density and number of immunoreactive calretinin neurons in the medial, lateral, and dorsal septal nuclei in patients with schizophrenia, patients with affective disorders, and healthy control subjects should be interpreted as a preliminary result. Future research examining the distribution of calretinin neurons in the septal nuclei of patients with schizophrenia or patients with affective disorders should utilize larger sample sizes. Forthcoming investigations should also focus on the distribution and the densities of parvalbumin-immunoreactive neurons in the septal nuclei of patients with schizophrenia and patients with affective disorders compared with healthy control cases.

Evolutionary Trade-off of Calretinin and Schizophrenia

An evolutionary perspective on why calretinin is affected in the neurodevelopmental disorder schizophrenia provides some insight into this disorder. While several evolutionary theories have been proposed for the persistence of schizophrenia (Davis et al., 1991; Adriaens, 2008; da Silva Alves et al., 2008). Although it is impossible to verify these theories using ancestral hominin remains because brain tissue cannot be fossilized. Numerous hypotheses have been proposed for the superior cognitive abilities of *Homo species*, and these have been largely based on the threefold increase of the human neocortex during the Pleistocene period (2 Ma–13 kya). However, much of this research has focused on brain anatomy in relation to cerebral volume size rather than neuro-hormonal regulation. It has been established that GABAergic interneurons are crucial in the diverse activities of pyramidal cells (Hendry et al., 1987; Zaitsev et al., 2009). From an evolutionary perspective, GABA has been shown to have an inhibitory function in the nervous systems of both vertebrates and invertebrates (Fiorillo and Williams, 1998; Gou et al., 2012). Although, it has been established that there exists a relationship between glutamatergic pyramidal neurons and GABAergic interneurons (of which calretinin-positive neurons are a subtype of GABAergic interneurons; Radonjic et al., 2014), this relationship is not well-understood in relation to the development of schizophrenia in humans.

Evolution of the Neurotransmitters

Gamma-aminobutyric Acid and Glutamate and their Receptors

A recent theory hypothesizes that there may have been positive Darwinian selection in the modification of interneuron populations in humans, leading to cognitive specializations in *Homo species* (Sherwood et al., 2010). Current studies indicate that there is an evolutionary continuity between human and non-human primates, as well as changes in subcortical descending projections during human evolution (Rilling et al., 2008; Sherwood et al., 2010). Calretinin-positive interneurons are the most abundant GABAergic neurons in primates (Hladnik et al., 2014). Interestingly, anatomical and neurohormonal changes to the brain during human evolution may have informed changes in glutamatergic and GABAergic processes in interneurons, thereby possibly altering calretinin regulation in the hippocampus and in key motor centers. The development of obligate bipedalism required a host of morphological and neuro-hormonal changes: CNS, metabolic and cardiovascular responses due to sustained running, swivel hips, slow-twitch muscles, plantar arches and longer femurs, as well as modification

TABLE 3 | Continued

Authors	Sample sizes	Brain areas	Results
Wang et al., 2011	$N = 11$ patients with schizophrenia $N = 13$ patients with type 1 bipolar disorder $N = 15$ control subjects	Caudal entorhinal cortex (EC) Subiculum Parasubiculum Neuronal density	Parvalbumin ↓ and somatostatin ↓ (in the caudal EC and parasubiculum of bipolar and schizophrenia patients compared to control subjects) Calbindin ↔
Oh et al., 2012	$N = 15$ patients with schizophrenia $N = 15$ bipolar patients $N = 15$ patients with major depressive disorder $N = 15$ control subjects	Dorsolateral prefrontal cortex (dlPFC) Neuronal cell density Neuronal cell size	Calretinin ↓ (in layer I in patients with major depressive disorder compared to control subjects) A significant correlation between reduced density of calretinin-immunoreactive in the dlPFC of patients with major depressive disorder and lower density or size of glial cells and pyramidal neurons in subjects from the Stanley Neuropathology Consortium
Walton et al., 2012	$N = 15$ control subjects $N = 15$ schizophrenia patients $N = 15$ bipolar patients $N = 15$ patients with major depressive disorder	Hippocampus Neuronal cell number	Calretinin ↑ (in the dentate gyrus of schizophrenia patients and bipolar patients compared to control subjects)
of eccrine glands (Mattson, 2012). A recent theory contends that the advent of endurance hunting from *Homo erectus* onwards mediated thermo-regulatory changes in the dopaminergic system (Previc, 2002) and that such changes influenced neurohormonal regulation (Mattson, 2012). This theory also states that endurance hunting demanded retention of geographical areas and mnemonic recall in hippocampal areas to maximize resource acquisition (Mattson, 2012; Brisch et al., 2014). It could be suggested that the increase in physical activity levels (PAL) from *Homo erectus* onwards, may have caused an evolutionary trade-off in which higher metabolic demands in ancestral hominins may have come at an evolutionary cost of making GABA interneurons more vulnerable. Even slight physiologic variations in brain temperature may alter neuron composition and function (Andersen and Moser, 1995). Research indicates that GABA in the preoptic area and anterior hypothalamus (POAH) acts in heat regulation (Ishiwata et al., 2005), while hyperthermia may increase hippocampal excitability and decrease GABA regulation in pyramidal cells (Qu et al., 2007; Qu and Leung, 2009). Therefore, selective pressures informing human brain evolution may have come at a cost of altering calretinin regulation of GABAergic hippocampal-interneurons, which may have contributed to the development of schizophrenia in humans.

Funding

This study was supported by grants from the Stanley Medical Research Institute.

Acknowledgments

We thank Dipl.-Ing. Renate Stauch (RS) for her excellent technical assistance.

References

Adriaens, P. R. (2008). Debunking evolutionary psychiatry’s schizophrenia paradox. *Med. Hypotheses* 70, 1215–1222. doi: 10.1016/j.mehy.2007.10.014

Andersen, P., and Moser, E. I. (1995). Brain temperature and hippocampal function. *Hippocampus* 5, 491–498. doi: 10.1002/hipo.450050602

Aznar, S., Kostova, V., Sorensen, H. R., and Knudsen, G. M. (2005). A7 nicotinic receptor subunit is present on serotonin neurons projecting to hippocampus and septum. *Synapse* 55, 196–200. doi: 10.1002/syn.20108

Baizer, J. S. (2014). Unique features of the human brainstem and cerebellum. *Front. Hum. Neurosci.* 8:202. doi: 10.3389/fnhum.2014.00202

Barinka, F., and Druga, R. (2010). Calretinin expression in the mammalian neocortex: a review. *Physiol. Res.* 59, 665–677.

Baumann, B., Danos, P., Krell, D., Dieckmann, S., Leschinger, A., Stauch, R., et al. (1999). Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a postmortem study. *J. Neuropsychiatry Clin. Neurosci.* 11, 71–78. doi: 10.1176/jnp.11.1.71

Beasley, C. L., and Reynolds, G. P. (1997). Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. *Schizophr. Res.* 24, 349–355. doi: 10.1016/S0920-9964(96)00122-3

Beasley, C. L., Zhang, Z. J., Patten, J., and Reynolds, G. P. (2002). Selective deficit in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. *Biol. Psychiatry* 52, 708–715. doi: 10.1016/S0006-3223(02)01360-4

Bernstein, H. G., Krell, D., Brauneewel, K. H., Baumann, B., Gundelfinger, E. D., Dieckmann, S., et al. (2001). Increased number of nitric oxide synthase immunoreactive Purkinje cells and dendate nucleus neurons in schizophrenia. *J. Neurocytol.* 30, 661–670. doi: 10.1023/A:1016520932139

Bernstein, H. G., Krause, S., Krell, D., Dobrowolny, H., Wolter, M., Stauch, R., et al. (2007). Strongly reduced number of parvalbumin-immunoreactive projection neurons in the mammillary bodies in schizophrenia: further evidence for limbic neuropathology. *Ann. N.Y. Acad. Sci.* 1096, 120–127. doi: 10.1196/annals.1397.077

Bielu, H., Steiner, J., Mawrin, C., Trübner, K., Brisch, R., Meyer-Lotz, G., et al. (2007). Dysregulation of GABAergic neurotransmission in mood disorders. *Ann. N.Y. Acad. Sci.* 1096, 157–169. doi: 10.1196/annals.1397.081

Bissonette, G. B., Bae, M. H., Suresh, T., Jaffe, D. E., and Powell, E. M. (2014). Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons. *Behav. Brain. Res.* 239, 143–151. doi: 10.1016/j.bbr.2013.10.051

Blum, B. P., and Mann, J. J. (2002). The GABAergic system in schizophrenia. *Int. J. Neuropsychopharmacol.* 5, 159–179. doi: 10.1017/S1461145702002894

Brisch, R., Bernstein, H. G., Krell, D., Dobrowolny, H., Bielu, H., Steiner, J., et al. (2009). Dopamine-glutamate abnormalities in the frontal cortex associated with the catechol-O-methyltransferase (COMT) in schizophrenia. *Brain Res.* 1269, 166–175. doi: 10.1016/j.brainres.2009.02.039

Brisch, R., Bernstein, H. G., Dobrowolny, H., Krell, D., Stauch, R., Trübner, K., et al. (2011). A morphometric analysis of the septal nuclei in schizophrenia and affective disorders: reduced neuronal density in the lateral septal nucleus in schizophrenia. *Eur. Arch. Psychiatry Clin. Neurosci.* 261, 47–58. doi: 10.1007/s00406-010-0119-9

Brisch, R., Saniotis, A., Wolf, R., Bielu, H., Bernstein, H. G., Steiner, J., et al. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. *Front. Psychiatry* 5:47. doi: 10.3389/fpsyg.2014.00047

Bu, J., Sathyendra, V., Nagyker, N., and Geula, C. (2003). Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex. *Exp. Neurol.* 182, 220–231. doi: 10.1016/S0014-4886(03)00094-3

Caballero, A., Flores-Barrera, E., Cass, D. K., and Tseng, K. Y. (2014). Differential regulation of parvalbumin and calretinin interneurons in the prefrontal cortex during adolescence. *Brain Struct. Funct.* 219, 395–406. doi: 10.1007/s00429-013-0508-8

Cauli, B., Zhou, X., Tricoire, L., Toussay, X., and Staiger, J. F. (2014). Revisiting enigmatic cortical calretinin-expressing interneurons. *Front. Neuroanat.* 8:52. doi: 10.3389/fnana.2014.00052

Chance, S. A., Walker, M., and Crow, T. J. (2005). Reduced density of calbindin-immunoreactive interneurons in the planum temporale in schizophrenia. *Brain Res.* 1046, 32–37. doi: 10.1016/j.brainres.2005.03.045

Cotter, D., Landau, S., Beasley, C., Stevenson, R., Chana, G., MacMillan, L., et al. (2002). The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, and schizophrenia. *Biol Psychiatry* 51, 377–386. doi: 10.1016/S0006-3223(01)01243-4

Danos, P., Baumann, B., Krämer, A., Bernstein, H. G., Stauch, R., Krell, D., et al. (2003). Volumes of association thalamic nuclei in schizophrenia: a postmortem study. *Schizophr. Res.* 60, 141–155. doi: 10.1016/S0920-9964(02)00307-9

da Silva Alves, F., Figee, M., van Amelsvoort, T., Veltman, D., and de Haan, L. (2008). The revised dopamine hypothesis of schizophrenia: evidence from pharmacological MRI studies with atypical antipsychotic medication. *Psychopharmacol. Bull.* 41, 121–132. doi: 10.1007/s00210-006-0209-1

Daviss, S. R., and Lewis, D. A. (1995). Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. *Psychiatry Res.* 59, 81–96. doi: 10.1016/0165-1781(95)00720-3

Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. (1991). Dopamine in schizophrenia: a review and reconceptualization. *Am. J. Psychiatry* 148, 1474–1486. doi: 10.1176/ajp.148.11.1474
Deidda, G., Bozarth, I. F., and Cancetta, L. (2014). Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front. Cell. Neurosci. 8:119. doi: 10.3389/fncel.2014.00119

Dickerson, D. D., Overeem, K. A., Wolff, A. R., Williams, J. M., Abraham, W. C., and Bilkey, D. K. (2014). Association of aberrant neural synchrony and altered GAD67 expression to maternal immune activation, a risk factor for schizophrenia. Transl. Psychiatry 4:e418. doi: 10.1038/tp.2014.64

Dubois, D. W., Damborsky, J. C., Fincher, A. S., Frye, G. D., and Winzer-Serhan, U. H. (2013). Varenicline and nicotine enhance GABAergic synaptic transmission in rat CA1 hippocampal and medio septal/diagonal band neurons. Life Sci. 92, 337–344. doi: 10.1016/j.lfs.2012.12.013

Eyles, D. W., McGrath, J. J., and Reynolds, G. P. (2002). Neuronal calcium-binding proteins and schizophrenia. Schizophr. Res. 57, 27–34. doi: 10.1016/S0920-9964(01)00299-7

Fiorillo, C. D., and Williams, J. T. (1998). Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82. doi: 10.1038/27919

García-Avilés, Á., Albert-Gascó, H., Arnal-Vicente, I., Elhaj, E., Sanjuan-Arias, A., Harte, M. K., Powell, S. B., Swerdlow, N. R., Geyer, M. A., and Reynolds, G. A. (2014). Modulation of GABAergic decarboxylase-immunoreactive neuropil. Frontiers in Cellular Neuroscience | www.frontiersin.org 11 October 2015 | Volume 9 | Article 393

Hendry, S. H., Schwark, H. D., Jones, E. G., and Yan, J. (1987). Numbers and periods for vulnerability to schizophrenia. Schizophr. Bull. 13, 1073–1074, 229–239. doi: 10.1093/schbul/sbr029

Holt, D. J., Herman, M. M., Hyde, M., Kleinman, C. M., Sinton, D. C., German, L. B., et al. (1999). Evidence for a deficit in cholinergic interneurons in the striatum in schizophrenia. Neuroscience 94, 21–31. doi: 10.1016/S0306-4522(99)00279-1

Horváth, S., and Palkovits, M. (1987). Morphology of the human septal nuclei: a topographic atlas. Acta Morphol. Hung. 35, 157–174.

Josh, D., Fung, S. J., Rothwell, A., and Weickert, C. S. (2012). Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia. Biol. Psychiatry 72, 725–733. doi: 10.1016/j.biopsych.2012.06.021

Inan, M., Petros, T. J., and Anderson, S. A. (2013). Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia. Neurobiol. Dis. 53, 36–48. doi: 10.1016/j.nbd.2012.11.013

Inta, D., Lima-Ojeda, J. M., Lau, T., Tang, W., Dormann, C., Sprengel, R., et al. (2013). Electroconvulsive therapy induces neurogenesis in frontal rat brain areas. PLoS ONE 8:e69986. doi: 10.1371/journal.pone.0069869

Ishiwata, T., Saito, T., Hasegaw, H., Yazawa, T., Kotanid, Y., Otokowae, M., et al. (2005). Changes of body temperature and thermoregulatory responses of freely moving rats during GABAergic pharmacological stimulation to the preoptic area and anterior hypothalamus in several ambient temperatures. Brain Res. 1048, 32–40. doi: 10.1016/j.brainres.2005.04.027

Kalus, P., Senitz, D., and Beckmann, H. (1997). Altered distribution of parvalbumin-immunoreactive local circuit neurons in the anterior cingulate cortex of schizophrenic patients. Psychiatry Res. 75, 49–59

Karolewicz, B., Maciag, D., O’Derwyer, G., Stockmeier, C. A., Feyissa, A. M., and Rajkowska, G. (2010). Reduced level of Glutamic Acid Decarboxylase-67kDa in the prefrontal cortex in major depression. Int. J. Neuropsychopharmacol. 13, 411–420. doi: 10.1016/S1165-1479(09)50587

Kegeles, L. S., Mao, X., Stanford, A. D., Girgis, R., Ojel, N., Xu, X., et al. (2012). Elevated prefrontal cortex γ-aminobutyric acid and glutamate–glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch. Gen. Psychiatry 69, 449–460. doi: 10.1001/archgenpsychiatry.2011.1519

Konradi, C., Yang, C. K., Zimmermann, E. I., Lohmann, K. M., Gresch, P., Pantazopoulos, H., et al. (2011a). Hippocampal interneurons are abnormal in schizophrenia. Schizophr. Res. 136, 161–173. doi: 10.1016/j.schres.2011.06.007

Konradi, C., Zimmermann, E. I., Yang, C. K., Lohmann, K. M., Gresch, P., Pantazopoulos, H., et al. (2011b). Hippocampal interneurons are abnormal in bipolar disorder. Arch. Gen. Psychiatry 68, 340–350. doi: 10.1001/archgenpsychiatry.2010.175

Kostovic, I., Judãs, M., and Sedmak, G. (2011). Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. Int. J. Dev. Neurosci. 29, 193–205. doi: 10.1016/j.ijdevneu.2010.09.005

Koyama, Y., Hattori, T., Shinzsu, S., Taniguchi, M., Yameda, K., Takamura, H., et al. (2013). DBZ (DISC1-binding zinc finger protein)-deficient mice display abnormalities in basket cells in the somatosensory cortices. J. Chem. Neuroanat. 35, 1–10. doi: 10.1016/j.jchemneu.2013.07.002

Lecourtier, L., de Vasconcelos, A. P., Cosquer, B., and Cassel, J. C. (2010). Combined lesions of GABAergic and cholinergic septal neurons increase locomotor activity and potentiate the locomotor response to amphetamine. Behav. Brain Res. 213, 175–182. doi: 10.1016/j.bbr.2010.04.050

Leva-Rakbin, T., Melamed, O., Clarke, G., Faber, M., Cryan, J. F., Dinan, T. G., et al. (2010). A sensitive period of mice inhibitory system to neonatal GABA enhancement by Vigbatrin is brain region dependent. Neuropharmacology 53, 1138–1154. doi: 10.1016/j.npp.2009.2019.219

Lewis, D. A., Hashimoto, T., and Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 6, 312–324. doi: 10.1038/nrn1648

Lewis, D. A., Cruz, D. A., Melchitzky, D. S., and Pieri, J. N. (2001). Lamina specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia. Am. J. Psychiatry 158, 1411–1422. doi: 10.1176/appi.ajp.158.9.1411

Ma, J., Tai, S. K., and Leung, L. S. (2012). Septohippocampal GABAergic neurons mediate the altered behaviors induced by N-methyl-D-aspartate receptor antagonists. Hippocampus 22, 2208–2218. doi: 10.1002/hipo.22039

Mattson, M. P. (2012). Evolutionary aspects of human exercise–born to run purposefully. Aging Res. Rev. 11, 347–352. doi: 10.1016/j.arr.2012.01.007

Mikkonen, M., Soininen, H., and Pitkanen, A. (1997). Distribution of parvalbumin–, calretinin–, and calbindin-D28–immunoreactive neurons and fibres in the human entorhinal cortex. J. Comp. Neurol. 388, 64–88.

Nitsch, R., and Ohm, T. G. (1995). Calretinin immunoreactive structures in the human hippocampal formation. J. Comp. Neurol. 360, 475–487. doi: 10.1002/cne.903600309

Oh, D. H., Son, H., Hwang, S., and Kim, S. H. (2012). Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive
disorder. *Eur. Neuropharmacol.* 22, 330–338. doi: 10.1016/j.euroneuro.2011.09.001

Pantazopoulos, H., Lange, N., Baldessarini, R. J., and Berretta, S. (2007). Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. *Biol. Psychiatry* 61, 640–652. doi: 10.1016/j.biopsych.2006.04.026

Pennington, K., Dicker, P., and Cotter, D. R. (2008). Evidence for reduced neuronal somal size within the insular cortex, but not in affective disorders. *Schizophr. Res.* 106, 164–177. doi: 10.1016/j.schres.2008.08.022

Penschuck, S., Flagstad, P., Didriksen, M., Leist, M., and Michael-Titus, A. T. (2006). Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. *Eur. J. Neurosci.* 23, 279–284. doi: 10.1111/j.1460-9568.2005.04536.x

Previc, F. H. (2002). Thyroid hormone production in chimpanzees and humans: implications for the origins of human intelligence. *Am. J. Phys. Anthropol.* 118, 402–403. doi: 10.1002/ajpa.10095

Qu, L., Liu, X., Wu, C., and Leung, L. S. (2007). Hyperthermia decreases GABAergic synaptic transmission in hippocampal neurons of immature rats. *Neurobiol. Dis.* 27, 320–327. doi: 10.1016/j.nbd.2007.06.003

Qu, L., and Leung, L. S. (2009). Effects of temperature elevation on neuronal inhibition in hippocampal immatures of immature and mature rats. *J. Neurosci.* 37, 2773–2785. doi: 10.1523/jn.2011.02.10.00082

Radjonjic, N. V., Ortega, J. A., Memi, F., Dionne, K., Jakovcevski, I., and Zeevic, N. (2014). The complexity of the calretinin-expressing progenitors in the human cerebral cortex. *Front. Neuroanat.* 8:82. doi: 10.3389/fnana.2014.00082

Raghahtli, M. A., Spocket, M. A., Butti, C., Hof, P. R., and Sherwood, C. C. (2010). A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. *Front. Neuroanat.* 4:3. doi: 10.3389/neuro.05.003.2010

Rajkowska, G., O’Dwyer, G., Teleki, Z., Stockmeier, C. A., and Miguel-Neira, A., et al. (2011a). Habenula volume in bipolar disorder and major depressive disorder. *Transl. Psychiatry* 5:e522. doi: 10/3389/tp.2014.01.147

Steullet, P., Cabungcal, J. H., Kulak, A., Kraftsig, R., Chen, Y., Dalton, T. P., et al. (2010). Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. *J. Neurosci.* 30, 2547–2558. doi: 10.1523/JNEUROSCI.3857-09.2010

Suárez-Solá, M. L., González-Beiglado, F. J., Pueyo-Morlans, M., Medina-Bolivar, O. C., Hernández-Acosta, N. C., González-Gómez, M., et al. (2009). Neurons in the white matter of the adult human neocortex. *Front. Neuroanat.* 3:7. doi: 10.3389/neuro.05.007.2009

Sutherland, R. I. (1982). The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. *Neurosci. Biobehav. Rev.* 6, 1–13. doi: 10.1016/0149-7634(82)90003-3

Tanti, A., Westphal, W. P., Girault, V., Brizard, B., Devers, S., Leguiguet, A.-M., et al. (2013). Region-dependent and stage-specific effects of stress, environmental enrichment, and antidepressant treatment on hippocampal neurogenesis. *Hippocampus* 23, 797–811. doi: 10.1002/hipo.22134

Toody, K., Scotti, A. L., and Schwaller, B. (2012). Absence of the calcium-binding protein calbindin, not of calbindin D28k, causes a permanent impairment of murine adult hippocampal neurogenesis. *Front. Mol. Neurosci.* 5:56. doi: 10.3389/fnmol.2012.00056

Tooney, P. A., and Chahl, L. A. (2004). Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. *Prog. Neuropsychopharmacol. Biol. Psychiatry* 28, 273–278. doi: 10.1016/j.pnpbp.2003.10.004

W allo, S., Pakkenberg, B., and Fabricius, K. (2014). Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. *Front. Hum. Neurosci.* 8:508. doi: 10.3389/fnhum.2014.00508

Walton, N. M., Zhou, Y., Kogan, J., H. Shin, R., Webster, M., Gross, A. K., et al. (2012). Detection of an immature dentate gyrus feature in schizophrenia/bipolar patients. *Transl. Psychiatry* 2, e135. doi: 10.1038/tp.2012.56

Wang, A. Y., Lohmann, K. M., Yang, K., Zimermann, E. I., Pantazopoulos, H., Herring, N., et al. (2011). Bipolar disorder type 1 are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. *Acta. Neuropathol.* 122, 615–626. doi: 10.1007/s00401-011-0881-4

Wheeler, D. G., Dixon, G., and Harper, C. G. (2006). No difference in calcium-binding protein immunoreactivity in the posterior cingulate and visual cortex: Schizophrenia and controls. *Prog. Neuro. Psychol. Biol. Psychiatry* 30, 630–639. doi: 10.1016/j.pnpb.2005.11.091
Woo, T. U., Miller, J. L., Lewis, D. A. (1997). Schizophrenia and the parvalbumin-containing class of cortical circuit neurons. *Am. J. Psychiatry* 154, 1013–1015.

Wu, M., Hajszan, T., Leranth, C., and Alreja, M. (2003). Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons. *Eur. J. Neurosci.* 18, 1155–1168. doi: 10.1046/j.1460-9582.2003.02847.x

Yang, Y., Fung, S. J., Rothwell, A., Tianmei, S., and Weickert, C. S. (2011). Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. *Biol. Psychiatry* 69, 63–70. doi: 10.1016/j.biopsych.2010.08.020

Zaitsev, A. V., Povysheva, N. V., Gonzalez-Burgos, G., Rotaru, D., Fish, K. N., Krimer, L. S., et al. (2009). Interneuron diversity in layers 2–3 of monkey prefrontal cortex. *Cereb. Cortex* 19, 1597–1615. doi: 10.1093/cercor/bhn198

Zamberletti, E., Beggiato, S., Steardo, L., Antonelli, T., Ferraro, L., Rubino, T., et al. (2014). Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotypes induced by adolescent delta-9-terahydrocannibol exposure in rats. *Neurobiol. Dis.* 63, 35–47. doi: 10.1016/j.nbd.2013.10.028

Zhang, Z. J., and Reynolds, G. P (2002). A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. *Schizophr. Res.* 55, 1–10. doi: 10.1016/S0920-9964(01)00188-8

Zhang, Z., Sun, J., and Reynolds, G. P. (2002). A selective reduction in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in patients with schizophrenia. *Clin. Med. J.* 115, 819–823.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Brisch, Bielau, Saniotis, Wolf, Bogerts, Steiner, Braun, Krzyżanowska, Krzyżanowski, Jankowski, Kalisz, Bernstein and Gos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.