Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis

Abstract

Background: Hepato cellular carcinoma (HCC) represents a challenging malignancy of worldwide importance; it is the sixth most common cancer and the third most common cause of cancer-related death globally. Alcohol, tobacco, obesity, diabetes and viral etiology interact to increase the risk of HCC in patients with chronic liver diseases. Smoking is a well documented risk factor for many cancers and can play role in cancer development in patients with liver diseases. Egypt has a significant prevalence of HBV, HCV, bilharzial infections and smoking which may allow us to identify a high-risk group for HCC among patients with chronic liver diseases and cirrhosis.

Aim: The aim of this study is to evaluate the impact of smoking as a co-factor for HCC development in Egyptian patients with chronic hepatitis B and/or C with or without Schistosomal infestation.

Patients and method: A case control study was conducted on 320 Egyptian patients with chronic liver disease (CLD): 160 patients with HCC (Group I) and 160 patients without focal lesion (Group II) as a control group. All patients were assigned to full history taking with emphasis on special habits especially smoking, family history; clinical examination, laboratory investigations, abdominal ultrasound, rectal snip for bilharzial infestation and liver biopsy was conducted in some cases when imaging was inconclusive.

Results: There was no statistical significant difference between HCC cases and control group as regards age, gender nor residence. Out of 320 patients enrolled in this study; only 95(29.69%) patients were non smokers, most patients were smokers 225(70.31%). Among the smokers, males were more than females and most of them were heavy smokers. The HCC patients were found more with heavy smoking than control patients. All smokers were liable for developing HCC 1.8 times more than non smokers (OR: 1.8, CI: 0.89-3.32) while heavy smokers were 3.15 times more liable than non smokers (OR: 3.15, CI: 1.45-7). Smoking men with were liable to develop HCC 2.63 times more than non smokers (OR: 2.63, CI: 1.06-5.83) and heavy smokers 2.55 times more than non smokers (OR: 2.55, CI: 0.96-6.35), urban smokers were liable to develop HCC 3.57 times more than non smokers (OR: 3.57, CI: 1.15-11.58) and heavy smokers 3.48 times more than non smokers (OR: 3.48, CI: 0.86-13.9); Smokers with chronic HCV infection were liable to develop HCC 1.51 times more than non smokers (OR: 1.51, CI: 0.60-2.94) and heavy smokers 2.6 times more than non smokers (OR: 2.6, CI: 0.95-5.96). Smokers with cirrhosis were liable to develop HCC 2.17 times more than non smokers (OR: 2.17, CI: 0.93-5.07) and heavy smokers 4 times more than non smokers (OR: 4, CI: 1.95-13.10).

Conclusion: The study revealed that smoking for long duration in CLD (chronic HBV, HCV infections and liver cirrhosis) is a highly risk factor for development of HCC among Egyptians.

Recommendations: Many efforts are needed to help and promote complete cessation of smoking generally and specially in patients with chronic liver diseases. Follow up of all patients with CLD especially smokers is needed to detect early focal lesion.

Keywords: Bilharzial infections; Schistosomal infestation; Cytochrome P53; Liver cirrhosis; Smokers; Alcohol; Tobacco
Abbreviations: HCC: Hepato Cellular Carcinoma; CLD: Chronic Liver Disease; IARC: International Agency for Research on Cancer; HBV: Hepatitis B Virus; HCV: Hepatitis C Virus; SI: Smoking Index; ESR: Erythrocyte Sedimentation Rate

Introduction

Hepato cellular carcinoma (HCC) is one of the most common cancers worldwide and a public health concern in many developing countries [1]. The annual incidence is estimated to be 1,000,000 cases [2]. Primary liver cancer has a variable incidence over the world [3]. Alcohol, tobacco, obesity, diabetes and viral etiology interact together to increase the risk of HCC in patients with chronic liver diseases or cirrhosis [4].

Liver diseases associated with chronic hepatitis B virus infection including HCC account for more than one million deaths annually worldwide [5]. In endemic areas, the risk of developing HCC among individuals chronically infected with HBV is up to 100 times more than that of non-HBV carriers [6]. HCV is now recognized to be a major risk factor for HCC. This is evidenced by finding both antibody to HCV and HCV-RNA in serum of a substantial proportion of patients with HCC and by the progression of liver disease in HCV patients to cirrhosis and HCC [7]. Current estimates indicate that about one-third of all adults smoke. Teenagers of both sexes seem to be smoking more. The liver is an important organ that has many tasks. Among other things, the liver is responsible for processing drugs, alcohol, and other toxins to remove them from the body. There is evidence that smoking alters the ability of the liver to handle such substances. In some cases, this may influence the dose of medication necessary to treat an illness. Some research also suggests that smoking can aggravate the course of liver disease [8].

Multivariate logistic regression showed that smoking is a significant risk factor for acquiring HCV infection [9]. This might be so because smoking is highly associated with an increased use of outpatient physician and hospital services. Cigarette smoke contains many chemicals, polycyclic aromatic hydrocarbons and nitrosamines which are primarily metabolized in the liver. Polycyclic aromatic hydrocarbons leads to specific genetic mutations in cytochrome P53 tumour suppressor gene in addition to increased levels of DNA methyltransferase enzyme, resulting in increased risk of initiation and promotion of cancer [10]. El-Zayadi AR, et al [11] have reported an association between heavy smoking (more than 400 SI) where smoking index (SI) is the amount of cigarette smoke inhaled per day multiplied by the number of smoking years (SI = No. of Cig./day × No. of years). History included data of risk factors for HCC, blood transfusion, surgical procedure and family history of malignancy. Clinical examination, abdominal ultrasound and routine laboratory tests were done to all patients included: complete blood picture, erythrocyte sedimentation rate (ESR), liver function tests (ALT, AST, ALP, GGT, S albumin and bilirubin), pro-thrombin time and concentration, hepatitis markers for hepatitis B and C viruses, renal function tests. Serum levels of alpha fetoprotein (AFP) and tri-phasic abdominal spiral CT were done to HCC group. Liver biopsy from hepatic mass was taken when imaging was un-conclusive. Retinal snip was done for detection of bilharzial ova. The data were analyzed statistically to predict smoking as a risk factor of HCC in chronic liver disease using SPSS for Windows, version 11.5 (SPSS).

Inclusion criteria

Adult patients (more than 18 years old) with chronic with chronic hepatitis B, C or both with HCC (group I) and chronic liver disease patients without HCC (group II). A written consent was taken from each patient to participate in this study.

Exclusion criteria

Other chronic liver disease (as auto-immune hepatitis... etc) Patients with deteriorated general condition including encephalopathy, hematotasis or melena.

Results

A case control study conducted on 160 HCC patients, 132 males and 28 females (4:7:1) plus 160 chronic liver disease patients as hospital controls, 130 males and 30 females (4:3:1). The age

Citation: Alnoomani N, Zaky S, Hammad OM, Nawawi A, Mousa KM, et al. (2016) Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis. J Liver Res Disord Ther 2(4): 00034. DOI: 10.15406/Jlrdt.2016.02.00034
for HCC cases ranged from 42-76 years (mean = 56.97± 8.6) compared to 40-75 years (mean = 54.63) for controls. The age in HCC patients were below 50 years in 18(11.25%) compared to 37(23.12%) controls, between 50-69 years in 136(85.0%) HCC patients compared to 120 (75%) controls (Table 1). HCC cases were found as: 62 (38.84%) in urban areas compared to 60 (37.33%) controls while 98 (61.16%) HCC cases and 100 (62.67%) controls from rural area. There was no statistical differences between HCC cases and control groups as regard gender, age and residence (P>0.05). Smokers were significantly higher among HCC group, (Table 2).

Table 1: Age distribution of studied groups

Range of age(years)	HCC	Control
No. %	No. %	
<50	18 11.25	37 23.12
50-69	136 85	120 75
≥70	6 3.75	3 1.88
Total	160 100	160 100
P	X² = 4.73	P = 0.05
Range	42-76	40-75
Mean ±SD	56.97±8.56	54.63 ± 8.32

There was no statistical differences between HCC cases and controls as regard to biochemical analyses, symptoms and most signs except liver tenderness in HCC patients where P value was very highly significant (P<0.0001), Table 2. Also there was no statistical difference between HCC cases and controls regarding bilharzial infection by rectal snip, where it was positive in 34(21.25%) of HCC patients versus 36(22.5%) in controls (Table 2).

In HCC cases 18(13.6%) male were non-smokers compared to 38(29.2%) male controls while 114 (86.4%) HCC cases and 92(70.8%) controls were smokers (Table 3a).

There is statistical difference between male HCC cases and control group as regards smoking habit where (P<0.05) in both none and light smokers but not in moderate and heavy smokers (Table 3a). In HCC cases 21(75.0%) female were non-smokers compared to 18(60.0%) female in control group while 7(25%) female HCC cases and 12(40%) female control groups were smokers. No statistical differences between female cases and control groups in smoking habit (P>0.05) (Table 3b).

Table 4a shows the prevalence of smoking and odds ratio (95% CI) of developing HCC in patients and matched control group as regard gender where all smokers are liable for HCC 1.8 times more than non smokers (OR: 1.8, CI 0.89-3.32) and heavy smokers 3.15 times more than non smokers (OR: 3.15, CI 1.45-7). Smoker men are liable to develop HCC 2.63 times more than non smokers (OR: 2.63, CI 1.06-5.83) and heavy smokers 2.55 times more than non smokers (OR: 2.55, CI 0.96-6.35), but females are not at risk to develop HCC due to smoking.

Table 4b shows the prevalence of smoking and odds ratio (95% CI) of developing HCC in all patients as regard residence where all urban smokers are liable to develop HCC 3.57 times more than non smokers (OR: 3.57, CI: 1.15-11.58) and heavy smokers 3.48 times more than non smokers (OR: 3.48, CI: 0.86-13.9) but rural cases are not at risk to develop HCC due to smoking.

Table 2: Baseline characteristics of studied groups

Characteristics	HCC (160)	Control (160)	X²	P
Sex				
Males	132 82.5	130 81.3	0.08	>0.05 NS
Females	28 17.5	30 18.7		
Residence				
Urban	62 38.84	60 37.33	0.05	>0.05 NS
Rural	98 61.16	100 62.67		
Smoking Status				
Non smokers	39 24.37	56 35	4.33	<0.05 S
Smokers	121 75.63	104 65		
Liver Examination and Abdominal Ultrasound Characteristics				
Not enlarged	32 20	40 25	0.92	>0.05
Enlarged with sharp border	128 80	120 75.3		
Enlarged and hard consistency	80 50	24 15		
Irregular surface	52 32.5	32 20	3.1	>0.05
Tenderness	120 75	54 33.75		>0.0001
Cirrhosis	92 57.5	91 56.88		
Viral Sero Markers and Bilharzial Infection				
HBSAg*	49 30.6	34 21	1.93	>0.05
HCV Ab*	120 75	139 86.8	3.83	<0.05
Mixed HIV and HCV infections	9 5.6	13 8.1		
Bilharzial infection	34 21.3	36 22.5		

Table 3a: Distribution of HCC cases and control group in relation to smoking habit among males, SI = smoking index.

Citation: Alnoomani N, Zaky S, Hammad OM, Nawawi A, Mousa KM, et al. (2016) Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis. J Liver Res Disord Ther 2(4): 00034. DOI: 10.15406/jlrdt.2016.02.00034
Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis

Table 3b: Distribution of HCC cases and control groups in relation to smoking habit among females, SI = smoking index.

Smoking Habits	Females		X²	P		
	HCC (n28)	Control (n30)				
	No.	%	No.	%		>0.05
Non smokers	21	75	18	60	0.42	>0.05
Smokers	7	25	12	40	0.11	>0.05
Light < 200 SI	5	72	6	50	0.82	>0.05
Moderate 200-400 SI	1	14	3	25		
Heavy > 400 SI	1	14	3	25	0	

Smoker cases with chronic HBV infection are liable to develop HCC 1.83 times more than non smokers (OR: 1.83, CI: 0.47-8.61) and heavy smokers 2.63 times more than non smokers (OR: 2.63, CI: 0.40-14.2). Smoker cases with chronic HCV infection are liable to develop HCC 1.51 times more than non smokers (OR: 1.51, CI: 0.60-2.94) and heavy smokers 2.6 times more than non smokers (OR: 2.6, CI 0.96-5.96). Smoker cases with cirrhosis are liable to develop HCC 2.17 times more than non smokers (OR: 2.17, CI 0.93-5.07) and heavy smokers 4 times more than non smokers (OR: 4, CI: 1.95-13.10).

There was no statistical difference between HCC cases and controls as regards HBV infection (P > 0.05) while HCV infection was significantly higher in HCC cases than controls (P < 0.05).

Table 4a: Prevalence of smoking & odds ratio of developing HCC in patients & matched controls as regard gender

Groups	No.	Non-smokers	Smokers	OR (95%CI)			
		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HCC	160	39	27	26	68	1.8	3.15
Control	160	56	12	28	64	0.89-3.32	1.45-7

Men

Groups	No.	Non-smokers	Smokers	OR (95%CI)			
		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HCC	132	18	22	25	67	2.63	2.55
Control	130	38	6	25	61	1.06-5.83	0.96-6.35

Women

Groups	No.	Non-smokers	Smokers	OR (95%CI)			
		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HCC	28	21	5	1	1	0.72	0
Control	30	18	6	3	3	0.18-3.38	

Table 4b: Prevalence of smoking & odds ratio of developing HCC in patients & matched control cases as regard residence

Groups	No.	Non-smokers	Smokers	OR (95% CI)			
		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
Urban		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HCC	62	14	3	23	22	3.57	3.48
Control	60	31	11	4	14	1.15-11.58	0.86-13.9
Rural		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HCC	98	25	24	3	46	0.63	0.64
Control	100	25	1	24	50	0.27-1.45	0.25-1.78
Discussion

Hepato-cellular carcinoma (HCC) is the most frequent primary cancer of liver worldwide. HCC is the seventh most common tumor in males and ninth in females. The annual incidence is estimated to be 1,000,000 newly diagnosed cases [2]. The Middle East, including Egypt, is considered an area of intermediate incidence rate [9]. HCC incidence in Egypt was between 5-7 per 100,000 populations per year [21]. HCC is one of the few human cancers for which an etiological factor can be identified in many cases [9]. Hepatic viruses, particularly hepatitis B virus (HBV) and hepatitis C virus (HCV) are major causes of HCC worldwide [22]. Cigarette smoking is a major source of 4-aminobiphenyl, a hepatic carcinogen which has been implicated as a causal risk factor for HCC [23]. Smoking and alcohol drinking were possible risk factors for liver cancer, since many case control studies [24,25] and a few cohort studies [26,27] have indicated a relation between these life style habits and the risk of liver cancer. The International Agency for Research on Cancer (IARC) classified liver cancer as a tobacco related malignancy [28]. Hirayama T [29] found that cigarette smoking involved in the development of liver cancer due to liver cirrhosis. Skolnick AA [30] found that smoking appears to increase the risk of liver cancer and Kuper H, et al. [31], found that there was an interactive effect of heavy smoking and heavy drinking in the development of HCC. Also, Evans AA, et al. [32] found that there was an association of smoking with HCC in females but not in males. In this study, the smoking habit of the HCC studied men was 114(86.40%) smokers and 18 (13.6%) non smokers. In women 7(25%) were smokers and 21(75%) were non smokers. This may be due to cultural and traditional attitudes. Kew, 1985 [33] found that smoking habit among HCC men was: 120(59.2%) were smokers out of 203 and 83(40.8%) non smokers, but in women, 4(10.8%) out of 37 cases were smokers and 33(89.2%) were non smokers. This finding revealed that smoking habit is experienced by men more than women and may be a risk factor for HCC.

The dose-response relationship between cigarette smoking and HCC has been unclear in most epidemiological studies [34-36]. In this study there was significant association between light smoking and HCC. Hara M, et al. [37] reported that comparison of HCC cases with CLD patients, no dose response relationship was evident for peak-year during lifetime, and yet more recent cigarette consumption such as pack-years during the last 5 years was significantly associated with HCC risk in a dose dependant manner. HCV is proved as a risk factor for HCC and in this study, it was found that there was positive correlation between heavy smoking and HCC development in chronic HCV patients, similar findings were reported by El-Zayadi A, et al. [20], Mori M, et al. [38], Hirayama T [29] and Chen CJ, et al. [41], they found a significant association between the daily use of cigarette smoking and the primary liver cancer in chronic HCV infected males. In addition, a substantial numbers of case control studies or hospital based prospective studies, have also a positive relation between cigarette use and the risk of HCC in chronic hepatitis C [25,35]. HBV is documented as a risk factor for HCC and in this study; we found a positive association between HBV infection and smoking as an increasing risk for HCC, previous case control study by Chen CJ, et al. [39] had presented an evidence of increased risk for the concurrent positivity of HBV infection and cigarette smoking. Mori M, et al. [38] in a prospective study found that chronic hepatitis B and C infections were significantly associated with HCC risk, although a history of cigarette smoking was not significantly related to risk. As these infections are at least partly responsible for the pathogenesis of HCC, it may be reasonable to suppose that hepatitis B or C virus infection causes continuous liver cell necrosis, hepatocyte re-growth and eventual malignant transformation induced by mutational genetic error [25]. Cigarette smoking may promote these processes, because the liver is a target organ for chemicals in tobacco. However, the detailed biologic mechanism of the effect of viral infection combined with life style habits on HCC development remains to be explained [38]. Kuper H, et al. [31] found that tobacco smoking

Table 4c: Prevalence of smoking & odds ratio of developing HCC according to HBV, HCV and cirrhosis.

	No.	Non-smokers	Smokers	OR (95% CI)			
		Light <200SI	Moderate 200-400	Heavy >400SI	smoking	Heavy smokers	
HBV patients							
HCC	49	3	5	20	21	1.83	2.63
Control	34	9	8	6	11	0.47-8.61	0.40-14.2
HCV patients							
HCC	120	25	17	27	51	1.51	2.6
Control	139	34	32	42	31	0.60-2.94	0.95-5.96
Cirrhosis							
HCC	92	17	11	29	35	2.17	4
Control	91	20	20	36	15	0.93-5.07	1.95-13.10

Citation: Alnoomani N, Zaky S, Hammad OM, Nawawi A, Mousa KM, et al. (2016) Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis. J Liver Res Disord Ther 2(4): 00034. DOI: 10.15406/jlrdt.2016.02.00034
has an important role in the etiology of HCC, but the association of tobacco smoking with HCC risk appear to be more evident among individuals without chronic infection with HBV or HCV. This observation is compatible with an additive role of chronic viral infection and tobacco smoking in the etiology of HCC, since the effect of tobacco smoking in those cases with HBsAg and/or HCV Ab is concealed by the extremely strong carcinogenic effect of HBV and HCV. An effect of smoking on development of HCC as biologically plausible, given the carcinogenic potential of several compounds in tobacco smoke and the role that the liver plays in their metabolism [42]. Mohamed NH, et al. [43] reported that 49.6% of HCC cases had history of smoking [43] and El-Zayadi, A, et al. [20] reported also that smoking yields chemicals with oncogenic potential that increase the risk of HCC [23]. Eleff, A, et al. [44] concluded that cigarette smoking may aggravate liver disease in patients with HCV infection due to the possible hepatotoxicity of cigarette smoking. In a study done by Ohishi W, et al. [45] on 224 HCC patients, smoking was marginally significantly associated with increased risk for HCC even after adjusting for liver fibrosis.

In this study smoking was associated with HCC in urban patients but not in rural ones. Urban patients may be exposed more to pollutants. HCC development is a multistage process and is influenced by environmental and genetic factors [46]. Eldin MS, et al. [47] found that 45% of HCC cases had history of smoking, half of them were heavy smokers [47] and similar results was reported by Mohamed NH, et al. [43]. In this study, 92 patients of group I (57.5%) had a confident sonographic evidence of liver cirrhosis, 70 patients (73.7%) had it as a solo finding while only 34 patients (21.25%) had sonographic evidence of an additional background schistosomal periportal fibrosis. This high association between cirrhosis and HCC is agreed upon by Rosen CB, et al. [48] who stated that more than three quarters of the patients with HCC have underlying cirrhosis. Abdelaziz A, et al. [49] stated that smoking may play an important role in pathogenesis of HCC in cirrhosis. Furthermore, a study by Mabrouk GM [50] on 34 Egyptian patients with HCC revealed that all of them (100%) had liver cirrhosis and 77% of them had schistosomiasis antibodies in their sera which present a much higher incidence than our study and this may be due to the difference in sample size. Tabor E [51], reported that serologic evidences of HBV infection is detected in about 70% of HCC patients in Africa, which is a figure much higher than that documented in our study. The difference was yet more pronounced in a study by Yates SC, et al. [52], on 131 Egyptian patients with proven HCC, where chronic HBV infection was detected in 102 patients (78%). HBsAg was positive in 28 patients (29.4%) which is strikingly lower than reported by Darwish MA, et al. [19] who found it to be positive in 61.4% of HCC cases. As expected, the strongest risk factors for HCC in Ezzat S, et al. [53] study were HCV RNA (OR=16–17) and current HBV infection (OR=27–28). Soliman AS, et al. [54] concluded that occupational exposure may play an important role in the development of HCC in Egypt. Farming, industrial exposures and cigarette smoking may increase the risk of HCC among HCV-seropositive individuals. Worldwide there is a strong association between HCC infection and HCC [18, 52]. Mabrouk GM [50] reported that 84% of 34 Egyptian patients with HCV were HCC Ab positive and similar results obtained by Khella AK, et al. [55] (83.6%) and Darwish MA, et al. [19] (70%). Our results recorded 75.0% HCV Ab positivity in patients with HCC and this will triggers an alarm, that high percentage of patients with chronic HCV infection will develop HCC if left unscreened and untreated and also support the need for a more effective therapy at an earlier stage.

Conclusion

This study revealed that smoking for long duration in CLD (chronic HBV and/or HCV infections and liver cirrhosis) is highly risk factor for development of HCC among Egyptians. Smoker males, urban and heavy smoking is more liable to development of HCC than non smoker females, non smoker urban and light smokers respectively. Recommendation: Screening for HCC in chronic liver diseases is highly recommended specially in patients with high risk factors as HCV, HBV infection and cirrhosis especially with smoking. These figures arouse the necessity for strict national programs to stop smoking generally and especially in patients with liver diseases.

References

1. Viviani S, Jack A, Bah E, Montesano R (1997) Hepatocellular carcinoma: a preventable cancer. Epidemiol Prev 21(2): 129-136.
2. El-Serag HB (2001) Epidemiology of hepatocellular carcinoma. Clin Liver Dis 5(1): 87-107.
3. Saracco G (1995) Primary liver cancer is of multifactorial origin: importance of hepatitis B virus infection and dietary aflatoxins. J Gastroenterol Hepatol 10(5): 604-608.
4. Yuan JM, Govindarajarn S, Arakawa K, Yu MC (2004) Synergism of alcohol, diabetes, and viral hepatitis on the risk of hepatocellular carcinoma in blacks and whites in the US. Cancer 101(5): 1009-1017.
5. Montesano R, Hainaut P, Wild CP (1997) Hepatocellular carcinoma: from gene to public health. J Natl Cancer Inst 89(24): 1844-1851.
6. Beasley RP (1988) Hepatitis B virus—the major etiology of hepatocellular carcinoma. Cancer 61(10): 1942-1952.
7. Yao F, Terrault N (1997) Hepatitis C and hepatocellular carcinoma. Curr Treat Options Oncol 2(6): 473-483.
8. El-Serag HB, Davila JA, Petersen NJ, McGlynn KA (2003) The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Ann Intern Med 139(10): 817-823.
9. Wang CS, Tair Wang S, Chang TT, Yao WJ, Chou P (2002) Smoking and alanine aminotransferase levels in hepatitis C virus infection: implications for prevention of hepatitisis C virus progression. Arch Intern Med 162: 811-815.
10. Hammons GJ, Yan Y, Lopatina NG, Jin B, Wise C, et al. (1999) Increased expression of hepatic DNA methyltransferase in smokers. Cell Biol Toxicol 15(6): 389-394.
11. El-Zayadi AR, Selim O, Hamdy H, El-Tawil A, Moustafa H (2002) Heavy cigarette smoking induces hypoxic polycythemia (erythrocytosis) and hyperuricemia in chronic hepatitis C patients with reversal of clinical symptoms and laboratory parameters with therapeutic phlebotomy. Am J Gastroenterol 97(5): 1264-1265.
12. Oka H, Kurioka N, Kim K, Kanno T, Kuroki T, et al. (1990) Prospective study of early detection of hepatocellular carcinoma in patients with cirrhosis. Hepatology 12(4 Pt 1): 680-687.
13. Tsukuma H, Hiyama T, Tanaka S, Nakao M, Yabuuchi T, et al. (1993) Risk factors for hepatocellular carcinoma among patients with liver diseases. N Engl J Med 328(25): 1797-1801.

14. Chiba T, Matsuoka Y, Abei M, Shoda J, Tanaka N, et al. (1996) The role of previous hepatitis B virus infection and heavy smoking in hepatocellular carcinoma related hepatic carcinoma. Am J Gastroenterol 91(6): 1195-1203.

15. Darwish MA, Issa SA, Aziz AM, Darwish NM, Soliman AH (1993) Hepatitis C and B virus and their association with hepatitis associated with hepatocellular carcinoma in Egypt. J Egypt Public Health Assoc 68(1-2): 1-9.

16. Wahab MFA, Zakaria S, Kamel M, Khalig MKA, Mabrour MA, et al. (1994) High seroprevalence of hepatitis C infection among risk groups in Egypt. Am J Trop Med Hyg 51(5): 563-567.

17. Gaffar YA, Kamel M (1994) Prevalence of HBV infection in Egypt. Afro-Arab J Med 1:6.

18. Kamel MA, Ghaflar YA, Wasef MA, Wright M, Clark LC, et al. (1992) High prevalence of HCV in Egyptian blood donors. Lancet 340(8816): 427.

19. Darwish MA, Raouf TA, Rushdy P, Constantine NT, Rao MR, et al. (1993) Risk factors associated with a high sero prevalence of hepatitis C virus infection in Egyptian blood donors. Am J Trop Med Hyg 49(4): 440-447.

20. El-Zayadi A, Selim O, Hamdy H, El-Tawil A, Badran HM (2004) Impact of cigarette smoking on response to interferon therapy in chronic hepatitis C Egyptian patients. World J Gastroenterol 10(28): 2963-2966.

21. Jones SB (1999) Cancer in developing world: a call to action. BMJ 319(7208): 505-508.

22. Alberti A and Pontiasso P (1991) Hepatitis viruses as an etiological agent of hepatocellular carcinoma. Ital J Gastroenterol 23(7): 452-456.

23. El-Zayadi AR (2006) Heavy smoking and liver disease. World J Gastroenterol 12(38): 6098-6101.

24. Trichopoulos D, MacMahon B, Sparrows L, Merikas G (1980) Smoking and hepatocellular cancer in the United States. J Natl Cancer Inst 65(1): 111-114.

25. Yu MW, You SL, Chang AS, Lu SN, Liaw YF, et al. (1991) Association between hepatitis C virus antibodies and hepatocellular carcinoma in Taiwan. Cancer Res 51(20): 5621-5625.

26. Hirayama T (1981) A large scale cohort study on the relationship between diet and selected cancers of digestive organs. Gastrointestinal cancer: endogenous factors. Banbury report 7 Cold Spring Harbor Laboratory, USA, pp. 409-426.

27. Shibata A, Hihotani T, Toshima H, Tashiro H (1986) The role of drinking and cigarette smoking in the excess deaths from liver cancer. Jpn J Cancer Res 77(3): 287-295.

28. International Agency for Research on Cancer (2004) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Tobacco Smoke and Involuntary Smoking, Lyon, France, pp. 1-1419.

29. Hirayama T (1989) A large scale cohort study on the risk factors of primary liver cancer, with special reference to the role of cigarette smoking. Cancer Chemother Pharmacol 23: S14-S17.

30. Skolnick AA (1996) Armed with epidemiologic research, China Launches programs to prevent liver cancer. JAMA 276(18): 1458-1459.

31. Kuper H, Tzounou A, Kaklamani E, Hsieh CC, Lagiou P, et al. (2000) Tobacco smoking, alcohol consumption and their interaction in causation of hepatocellular carcinoma. Int J Cancer 85(4): 498-502.

32. Evans AA, Chen G, Ross EA, Shen FM, Lin WY, et al. (2002) Eight years follow up of the 90,000 persons. Haimen city cohort: Hepatocellular carcinoma mortality, risk factor and gender difference. Cancer Epidemiol Biomarkers Prev 11(4): 369-376.

33. Kew MC, Dibiscegle AM, Paterson AC (1985) Smoking as a risk factor in hepatocellular carcinoma. A case control study in Southern African blacks. Cancer 56(9): 2315-2317.

34. Goodman MT, Moriwaki H, Vaeth M, Alibia S, Hayabuchi H, et al. (1995) Prospective cohort study of risk factors for primary liver cancer in Hiroshima and Nagasaki, Japan. Epidemiology 6(1): 36-41.

35. Tanaka K, Himata T, Fukuda K, Shibata A, Tsukuma H (1995) Risk factors for hepatocellular carcinoma among Japanese women. Cancer Causes Control 6(2): 91-98.

36. Miziose T, Toku N, Nishisaka K, Nishisaka S, Ogimoto, et al. (1995) Prospective study on the relation of cigarette smoking with cancer of the liver and stomach in an endemic region. Int J Epidemiol 29(2): 232-237.

37. Hara M, Tanaka K, Sakaoto M, Higaki Y, Mizuta T, et al. (2008) case-control study on cigarette smoking and the risk of hepatocellular carcamoma among Japanese. Cancer Sci 99(1): 93-97.

38. Mori M, Hara M, Wada I, Hara T, Yamamoto K, et al. (2000) Prospective study of hepatitis B and C viral infections, cigarette smoking, alcohol consumption and other factors associated with HCC risk in Japan. Am J Epidemiol 151(2): 131-139.

39. Chen CJ, Liang KY, Chang AS, Chang YC, Lu SN, et al. (1991) Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency of hepatocellular carcinoma. Hepatology 13(3): 398-406.

40. Tzounou A, Trichopoulos D, Kaklamani E, Zavitsanos X, Koumantaki Y, et al. (1991) Assessment of interaction of Hepatitis B, C, D viruses, cirrhosis and tobacco smoking in HCC. Int J Cancer 49(3): 377-380.

41. Chen CJ, Yu MW, Wang CJ, Huang HY, Lin WC (1993) Multiple risk factors for HCC: a cohort study of 13,737 male adults in Taiwan. J Gastroenterology and Hepatology 8: S83-S87.

42. Starets ME, Murphy SE, Patten CJ, Nunes MG, Koehl W, et al. (1997) Comparative metabolism of tobacco related benzopyrene in human hepatic microsomes. Drug Metab Dispos 25(2): 154-162.

43. Mohamed NH, El-Zawahry, Mokbtar A, Mokbtar NM, El-Mawla NG (1994) High seroprevalence of hepatitis C infection among risk groups in Egypt. Am J Trop Med Hyg 51(5): 563-567.

44. Alnoomani N, Zaky S, Hammad OM, Nawawi A, Mousa KM, et al. (2016) Smoking as a Co-Factor for Development of Hepato Cellular Carcinoma in Egyptian Patients with Chronic Hepatitis. J Liver Res Disord Ther 2(4): 00034. DOI: 10.15106/Jldt.2016.02.00034
Liver cancer in Nile Delta. Indian Journal of Medical Research and Pharmaceutical Sciences 3 (2016): 19-26.

48. Rosen CB, Nagorney DM, Taswell HF, Helgeson SL, Ilstrup DM, et al. (1992) Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinomas. Ann Surg 216(4): 493-504.

49. Abdelaziz A, Dakhil N, Elbaz T, Shehab H, Zekri A, et al. (2006) Smoking increases the risk of hepatocellular carcinoma in cirrhosis. Liver International 26 (1): 63.

50. Mabrouk GM (1997) Prevalence hepatitis C infection and schistosomiasis in Egyptian patients with hepatocellular carcinoma. Dis Markers 13(3): 177-182.

51. Tabor E (1991) Strongly supported features of the association between hepatitis B virus and hepatocellular carcinoma. Adv Appl Biotechnol Ser 13: 107-118.

52. Yates SC, Hafez M, Beld M, Lukashov VV, Hassan Z, et al. (1999) Hepatocellular carcinoma in Egyptians with and without history of hepatitis B virus infection: association with hepatitis C (HCV) infection but not with HCV RNA level. Am J Trop Med Hyg 60(4): 714-720.

53. Ezzat S, Hamid MA, Eissa SA, Mokhtar N, Labib NA, et al. (2005) Associations of pesticides, HCV, HBV and hepatocellular carcinoma in Egypt. Int J Hyg Environ Health 208(S): 329-339.

54. Soliman AS, Hung CW, Tsodikov A, Seifeldin IA, Ramadan M, et al. (2010) Epidemiologic risk factors of hepatocellular carcinoma in a rural region of Egypt. Hepatol Int 4(4): 681-690.

55. Khella AK, Faris L, Helmy S, Yosif A, Esmail S, et al. (1999) Hepatocellular carcinoma: characteristics and possible etiologies in a group of Egyptian patients. J Egypt Public Health Assoc 67: 741-752.