Built-up expansion between 2001 and 2011 in South America continues well beyond the cities

Maria José Andrade-Núñez1,3 and T Mitchell Aide2

1 Department of Environmental Sciences, University of Puerto Rico, PO Box 70377, San Juan, 00936-8377, Puerto Rico
2 Department of Biology, University of Puerto Rico, PO Box 23160, San Juan, 00931-3360, Puerto Rico
3 Author to whom any correspondence should be addressed.

E-mail: mj_andradenunez@yahoo.com

Keywords: built-up expansion, major cities, urban areas, rural areas, South America

Abstract

The expansion of built environment is a major driver of land change which can have irreversible consequences on the environment, ecosystem services, and biodiversity. While most studies have focused on urban areas, particularly large cities, the built environment includes much more. This is exemplified by the complex interconnection among cities of all sizes and rural areas through trade, people, policies, and infrastructure, which ultimately shapes the patterns of land use. However, a comprehensive spatial analysis of built-up areas is lacking. Here, we used nighttime data to evaluate the extent and spatial distribution of the built environment across the South American continent between 2001 and 2011, with the objectives of determining where built-up expansion is occurring and the relative contribution of the 30 major cities with populations greater than 1 million people. Our results reveal that built-up expansion occurs well beyond the 30 major cities, with the majority of expansion occurring in small and medium cities and rural areas. This detailed and spatially explicit description of development patterns across South America provides a valuable baseline for land use policies, which hopefully will balance future built expansion with the need for agriculture lands and the protection of large uninterrupted natural areas.

1. Introduction

The built environment comprises all human-made infrastructures located in urban areas (e.g. cities, towns, suburbs, and conurbations), rural areas (e.g. villages and farms), and transport networks (e.g. roads, railways, and canals). In general, studies addressing some aspect of the built environment have focused on urban areas, particularly large cities, the built environment includes much more. This is exemplified by the complex interconnection among cities of all sizes and rural areas through trade, people, policies, and infrastructure, which ultimately shapes the patterns of land use. Therefore, a thorough evaluation of the built environment should include all infrastructure associated with humans and their activities, regardless of where it occurs.
producer of agricultural products, and between 2001 and 2013 the area in pastures and croplands expanded considerably (Graesser et al. 2015). South America is also a major global exporter of raw materials (e.g. petroleum, minerals, gas, and agricultural) (Belloni and Wainer 2014). All of these activities require infrastructure and energy, and part of the increasing demand for energy will be provided by >300 hydroelectric dams in construction or in the planning stage in the Andes (Finer and Jenkins 2012) and the Brazilian Amazon (Lees et al. 2016). The increase in population, agriculture, and energy production all point to a large and extensive expansion of the built environment in a continent with five of the 25 biodiversity hotspots (Myers et al. 2000), 39 of the 137 most irreplaceable areas for biodiversity conservation on Earth (Le Saout et al. 2013), and the largest area of relatively undisturbed tropical forest (Eva et al. 2004).

In this paper, we assess the patterns of built-up expansion across the South American continent between 2001 and 2011. We determine the extent and spatial distribution of built-up areas and evaluate the relative contribution of the major 30 cities (urban areas with >1 million people) to built-up expansion. Our analyses showcase the diverse dynamics of built-up expansion, particularly its rapid expansion outside of the major urban centers.

2. Methods

We use nighttime light (NTL) data to evaluate the patterns of built-up expansion in South America between 2001 and 2011. We selected the 2001–2011 timeframe because it included the most recent and high-quality DMSP-OLS NTL images (Zhang et al. 2016). In addition, this timeframe included the most recent population censuses in most South American countries. Instead of using the common urban/non-urban classification method, we classified NTL data into three built-up classes across a gradient of compactness: no-development (no compactness), scattered (low to medium compactness), and aggregated (medium to high compactness) following the methodology used in smaller-scale studies in South America (Parés-Ramos et al. 2013) (figure S1 available at stacks.iop.org/ERL/13/084006/mmedia). With these data, we first estimated the extent, spatial distribution, and transitions among the three built-up classes for all of South America, and for the 11 573 municipalities (i.e. second or third administrative units) within the 13 countries of the continent. Second, we generated a spatial population dataset at the municipality-level using national census data. Following this, we classified municipalities based on built-up and population net changes between 2001 and 2011, and then assigned each municipality to one of four built-up/population categories: (1) shrinkage, (2) densification, (3) rural expansion, and (4) urban expansion. Finally, we evaluated the relative contribution of the 30 major cities (i.e. urban areas with >1 million people) to built-up expansion by extracting the extent of scattered and aggregated expansion area between 2001 and 2011, as well as the total, urban and rural population in 2011 for these municipalities within a buffer of 50 km radius from the center of each city (figures S2 and S3) and compared these data with built-up expansion, and population data in the rest of the continent. The scales of the analyses in this study are South America, municipality, and the 50 km buffer around the 30 largest cities. In addition, population data was obtained at the municipality scale and NTL data was collected at the 1 km² pixel scale.

In this study, we used the term ‘urban area’ for a human settlement with large population and high population density which is dominated by the built environment in a contiguous area (table S1). To clarify the urban definition and other key terms used throughout this manuscript, we provide a brief definition of each term in table S1. Methods are described in more detail in the supplementary information.

3. Results and discussion

The spatial distribution and changes in the built-up classes varied greatly across South America (figure 1). Between 2001 and 2011 the aggregated built-up class increased from 94 606 km² (0.54%) to 123 766 km² (0.7%) (figure 2). Our aggregated built-up class corresponds well with the urban class commonly used in other studies, and our estimate of the extent of this class is similar to previous estimates (Schneider et al. 2009, Zhou et al. 2015). During the 10 year study period, the area of aggregated (i.e. urban) expansion was 29 160 km², equivalent to the area of Belgium (30 528 km²). Although other studies have suggested that urban expansion will slow in highly urbanized South America (Angel et al. 2011b, Seto et al. 2011), we documented a ~30% increase in the aggregated built-up class over 10 years. The scattered built-up class increased at an even faster pace (3.7% yr⁻¹), from 938 235 km² (5.3% of South America) in 2001 to 1 286 434 km² (7.27%) in 2011 (figure 2). The sum of the scattered and aggregated built-up classes (i.e. built-up area) increased by 377 359 km², an area equivalent to the size of Suriname and Guyana combined, increasing from 5.84% (2001) to 7.97% (2011) of the South American continent (figure 2). As a result of built-up expansion, the area of the no-development class decreased 377 360 km² (~2% of South America) between 2001 and 2011 (figure 2).

Given that recent studies on urban expansion in South America have highlighted a sprawling growth pattern around the fringes of major cities (Inostroza et al. 2013, Parés-Ramos et al. 2013) and nearby cities being absorbed by larger metropolises (ONU-HABITAT 2012, Pulido 2014), we expected that the majority
of built-up expansion would be located around the major cities (30 urban areas with > 1 million people). Nevertheless, our findings showed a different pattern; built-up expansion occurred well beyond the proximity of the 30 major cities. Furthermore, only 3.6% of the scattered expansion and 21% of the aggregated expansion area in South America occurred within 50 km of the 30 major cities despite the fact that 44% of South American urban dwellers live in these areas (figure 3(a)).

We found that 56.5% (n = 6542) of municipalities had a net increase in built-up areas coupled with an increase in total population (table 1). Specifically, we found that built-up expansion occurred predominantly in municipalities with a maximum urban population of 50,000 inhabitants (figure 4). In addition, our results showed that rural expansion (i.e. a net increase in built-up area associated with a decrease in total population) occurred in 20.5% of municipalities (table 1). This result suggests that built-up expansion is occurring outside urban agglomerations across the continent. The third most common pattern was densification (table 1), which occurred in 15.1% of the municipalities. Of the 1738 municipalities that had an increase in population, but no increase in built-up area, 23.5% occurred in Colombia (table S2). Finally, 7.9% of the municipalities lost population and built-up area (table 1), and while these municipalities occurred across South America, 65% occurred in mountainous areas (>1000 m) (e.g. Andes).

These results clearly demonstrate that built-up expansion in South America continues well beyond the cities, supporting the argument that growth in many countries is shifting to small and medium cities (OUNHABITAT 2012) (figure 4). These cities play a central role in rural-urban interactions as they are tightly linked with activities (e.g. agriculture, mining) occurring in the surrounding rural areas (Bolay and Rabinovich...
Figure 2. Built-up class transition between 2001 and 2011 in South America. The extent (km2) of each built-up class transition is reported. ND = no-development, SC = scattered, and AG = aggregated. The extents for ND-AG and AG-ND are showed above the asterisks.

Figure 3. Comparison of built-up expansion and population between the 30 major cities in South America and the rest of the continent. (a) Area of scattered and aggregated built-up classes expansion between 2001 and 2011. (b) Total, urban, and rural population in 2011 in the 30 cities and in South America. Built-up expansion and population data for each city were obtained by extracting data using a 50 km buffer from the city center.

Table 1. Built-up and population dynamics of the 11,573 municipalities in South America between 2001 and 2011. The changes in built-up area and population represent four general patterns: urban expansion, rural expansion, densification, and shrinkage.

Pattern	Pattern name	Number of municipalities	Percent
Built-up >0 and Total pop. >0	Urban expansion	6542	56.5
Built-up >0 and Total pop. ≤0	Rural expansion	2381	20.5
Built-up ≤0 and Total pop. >0	Densification	1738	15.1
Built-up ≤0 and Total pop. ≤0	Shrinkage	912	7.9

Therefore, in an era of political and administrative decentralization (Bolay and Rabinovich 2004), we expect that the expansion of the built environment will continue in small and medium cities across South America.

Furthermore, much of the scattered expansion in rural areas could be associated with large development projects (e.g. gas and oil extraction, hydroelectric power plants, and tourism) and the rapid urbanization of small towns on the agriculture frontier (da Gama Torres 2004).
Figure 4. Built-up class expansion between 2001 and 2011 by municipality urban population classes. Built-up class expansion includes: ND-SC = no-development to scattered, ND-AG = no-development to aggregated, and SC-AG = scattered to aggregated.

2011, Chen et al 2015). For example, in Peru, infrastructure was an important driver of forest loss (5.6%), mostly due to illegal mining activities, and in Venezuela dam construction contributes to 37.8% of deforestation (De Sy et al 2015). In Brazil, anthropogenic activities related to human settlement and resettlement such as road expansion, building construction, agriculture conversion, and logging were identified as the major drivers of deforestation around the Tucuruí Dam (Chen et al 2015).

In addition, another driver of the large increase in the scattered built-up class could be the ‘parcelization’ of continuous agricultural lands and natural areas. For example, in Ecuador both peri-urban and rural areas are being converted into primary or vacation residences (Reyes-Bueno et al 2016).

4. Conclusion

These analyses highlight two major points. First, while South America has a very urbanized population, the expansion of the built environment was not concentrated around the largest cities. On the contrary, the majority of change occurred around municipalities with ≤50,000 urban inhabitants and in rural areas. Our results, specifically the built-up change map, the recognition of four built-up/population patterns, and the identification of major areas of built-up expansion provide valuable baseline information for major organizations (e.g. the World Bank, United Nations Human Settlements Programme) and the international research community (e.g. Future Earth Global Land Programme) to better understand the implications of globalization, to promote sustainable development approaches and developed land policies that mitigate the undesired effects of the built environment.

Second, the rapid expansion and dispersed spatial distribution of the built environment beyond major cities have enormous implications for biodiversity conservation. Although approximately ~50% of South America is classified as forest (Eva et al 2004) and 24% of the continent has some level of protection (https://protectedplanet.net/), our analyses showed a significant reduction on areas free of development (i.e. no-development).

Expanding agriculture frontiers (Graesser et al 2015), hydroelectric dams (Finer and Jenkins 2012, Lees et al 2016), petroleum exploration (Baynard et al 2013) and mines (Alvarez-Berrios and Aide 2015) are important components of the built environment even though they often occur far from urban areas. They all require infrastructure, in particular roads, which provide access to new areas for further development (Baynard et al 2013, Lees et al 2016) causing deforestation and forest degradation (Chen et al 2015). In South America, the rapid expansion of the built environment beyond cities is contributing to the reduction and fragmentation of the largest tracts of tropical forest on the planet.

Acknowledgments

We thank Sebastián Martinuzzi for NTL image inter-calibration advice. We also thank Jess Zimmerman, Ricardo Grau, Rosana Grafals, Paul Furumo, and Carlos Corrada for their comments on the manuscript. The study was supported by NSF IGERT Grant # 0801577, the Dean of Graduate Studies at the University of Puerto Rico (Mérito Académico y Ejecutorias Excepcionales, and Dissertation Scholarships), the Puerto Rico Science Technology and Research Trust (Post-Hurricane
References

Alvarez-Berríos N L and Aide T M 2015 Global demand for gold is another threat for tropical forests Environ. Res. Lett. 10 014006

Angel S, Parent J, Circo D L and Blei A M 2011a Making Room for a Planet of Cities Technical Report (Cambridge, MA: Lincoln Institute of Land Policy)

Angel S, Parent J, Circo D L, Blei A and Potere D 2011b The dimensions of global urban expansion: estimates and projections for all countries, 2000-2050 Prog. Plann. 75 53–107

Baynard C W, Ellis J M and Davis H 2013 Roads, petroleum and accessibility: the case of eastern Ecuador Geojournal 78 675–95

Belloni P and Wainer A 2014 El rol del capital extranjero y su inserción en la América del Sur posneoliberal Probl. Desarro. 45 87–112

Bolay J-C and Rabinovich A 2004 Intermediate cities in Latin America risk and opportunities of coherent urban development Cities 21 407–21

Chen G, Powers R P, de Carvalho L M T and Mora B 2015 Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin Appl. Geogr. 63 1–8

Cohen B 2004 Urban growth in developing countries: a review of current trends and a caution regarding existing forecasts World Dev. 32 23–51

Elmqquist T et al 2013 Stewardship of the biosphere in the urban era Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. A Global Assessment ed T Elmqquist et al (Dordrecht, Heidelberg, New York, London: Springer) p. 719

Eva H D, Belward A S, De MIRanda E E, Di Bella C M, Gonds V, Huber O, Jones S, Sgrenzaroli M and Fritz S 2004 A land cover map of South America Glob. Change Biol. 10 731–5

Finer M and Jenkins C N 2012 Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity PLoS ONE 7 e35126

Frolking S, Milliman J T, Seto K C and Friedl M A 2013 A global fingerprint of macro-scale changes in urban structure from 1999-2009 Environ. Res. Lett. 8 024004

da Gama Torres H 2011 Environmental Implications of Peri-Urban Sprawl and the Urbanization of Secondary Cities in Latin America Technical Notes IDB-TN-237 (Inter-American Development Bank) (https://publications.iadb.org/handle/11319/4956)

Graesser J, Aide T M, Grau H R and Ramankutty N 2015 Cropland/pastureland dynamics and the slowdown of deforestation in Latin America Environ. Res. Lett. 10 034017

Grau R, Kuenmerle T and Macchi L 2013 Beyond ‘land sparing versus land sharing’: environmental heterogeneity, globalization and the balance between agricultural production and nature conservation Curr. Opin. Environ. Sustain. 5 477–83

Guneralp B, Seto K C and Ramachandran M 2013 Evidence of urban land teleconnections and impacts on hinterlands Curr. Opin. Environ. Sustain. 5 445–51

Inostroza L, Baur R and Casplovics E 2013 Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterisation of spatial patterns J. Environ. Manage. 115 87–97

Lees A C, Peres C A, Fearnside P M, Schneider M and Zuanon J A S 2016 Hydropower and the future of Amazonian biodiversity Biodivers. Conserv. 25 451–66

McDonald R I, Kazeiva P and Forman R T T 2008 The implications of current and future urbanization for global protected areas and biodiversity conservation Biol. Conserv. 141 1695–703

Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A B and Kent J 2000 Biodiversity hotspots for conservation priorities Nature 403 853–8

ONU-HABITAT 2012 Estado de las ciudades de America Latina y el Caribe 2012 Rumbo a Una Nueva Transición Urbana Technical Report (Nairobi: Programa de las Naciones Unidas para los Asentamientos Humanos, ONU-Habitat)

Parés-Ramos I, Alvarez-Berríos N L and Aide T M 2013 Mapping urbanization dynamics in major cities of Colombia, Ecuador, Peru, and Bolivia using night-time satellite imagery Land 2 37–59

Pulido N 2014 Bordes urbanos metropolitanos en Venezuela ante nuevas leyes y proyectos inmobiliarios Cuad. Geogr. Rev. Colomb. Geogr. 23 15–38

Reyes-Bueno F, Tubio Sánchez D, Gracia Samaniego J, MIranda Barrós D, Crecente Maseda A and Sánchez-Rodríguez A 2016 Factors influencing land fractioning in the context of land market deregulation in Ecuador Land Use Policy 52 144–50

Le Saout S et al 2013 Protected areas and effective biodiversity conservation Science 342 803–5

Schneider A, Friedl M A and Potere D 2009 A new map of global urban extent from MODIS satellite data Environ. Res. Lett. 4 044003

Seto K C, Fragkias M, Gunerulap B and Reilly M K 2011 A meta-analysis of global urban land expansion PLoS ONE 6 e23777

Seto K C, Gunerulap B and Hutrya L R 2012a Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools Proc. Natl Acad. Sci. USA 109 16085–8

Seto K C, Reenberg A, Boone C G, Fragkias M, Haase D, Langanke K, Marcorfullo P, Munroe D K, Olah B and Simon D 2012b Urban land teleconnections and sustainability Proc. Natl Acad. Sci. USA 109 7687–92

Seto K C, Sánchez-Rodríguez R and Fragkias M 2010 The new geography of contemporary urbanization and the environment Annu. Rev. Environ. Resour. 35 167–94

De Sy V, Achard F, Beuchle R, Clevers J G P W, Lindquist E and Verchot L 2015 Land use patterns and related carbon losses following deforestation in South America Environ. Res. Lett. 10 124004

United Nations 2012 World Urbanization Prospects: The 2011 Revision ST/ESA/SER (New York: United Nations Department of Economic and Social Affairs/Population Division)

Zhang Q, Pandey B and Seto K C 2016 A robust method to generate a consistent time series from DMSP/OLS nighttime light data IEEE Trans. Geosci. Remote Sens. 54 5821–31

Zhao N, Zhou Y and Samson E L 2015 Correcting incompatible DN values and geometric errors in nighttime lights time-series images IEEE Trans. Geosci. Remote Sens. 53 2039–49

Zhou Y, Smith S J, Zhao K, Imhof F, Thomson A, Bond-Lamberty B, Asrar G R, Zhang X, He C and Hvidegaard C D 2015 A global map of urban extent from nightlights Environ. Res. Lett. 10 054011

ORCID iDs

Maria José Andrade-Núñez. https://orcid.org/0000-0002-7066-0966

Maria Aid for Researchers Grant), and the American Society of Naturalists (Hurricane Recovery Grant).