Phylogeography of the Laniatorid Harvestman Pseudobiantes japonicus and Its Allied Species (Arachnida: Opiliones: Laniatores: Epedanidae)

YOSHIMASA KUMEKAWA,1 KATSURA ITO,1 NOBUO TSURUSAKI,2 HIROSHI HAYAKAWA,1 KYOHEI OHGA,1 JUN YOKOYAMA,3 SHIN-ICHI TEBAYASHI,1 RYO ARAKAWA,1 AND TATSUYA FUKUDA1,4

ABSTRACT To clarify the phylogenetic relationships of Pseudobiantes japonicus Hirst, 1911 and its allied species, Epedanellus tuberculatus Roewer, 1911 and Kilungius insulanus (Hirst, 1911) (Arachnida: Opiliones: Laniatores: Epedanidae), we conducted morphological and nucleotide sequence analyses of this complex. Sequencing of the cytochrome c oxidase subunit I gene of 179 samples recovered six clades comprised of four allopatric lineages within P. japonicus and two monophyletic groups of E. tuberculatus and K. insulanus, respectively, related as follows: ([Clades A + B of P. japonicus] [Clade C of P. japonicus]) (K. insulanus [Clade D of P. japonicus + E. tuberculatus]). This phylogenetic relationship implies that “Pseudobiantes japonicus” is paraphyletic or polyphylectic, unless mitochondrial introgression between species is postulated. Moreover, Clades C and D of P. japonicus were also separable by the combination of a few morphological characters and from Clades A and B in P. japonicus. These results suggest that a thorough taxonomic revision is needed for the classification of P. japonicus and allied species.

KEY WORDS Epedanellus tuberculatus, Kilungius insulanus, phylogenetic relationship, phylogeography, Pseudobiantes japonicus

Harvestmen (Class Arachnida: Order Opiliones) are a diverse group of arachnids with >6,000 living species and are commonly found in many terrestrial habitats of every continent except Antarctica (Machado et al. 2007, Kury 2008). Because of low vagility, they often show high geographic differentiation both in external morphology and chromosomes even in a single species (Tsurusaki 2007). Furthermore, because of their general lack of resistance to desiccation, most harvestmen tend to be limited to forests with moderate moisture and several groups, such as Sabacon (Sabaconidae), Caddo (Caddidae), and Triaeononychidae, show typical patterns of disjunct distribution as relicts (Suzuki et al. 1977, Schönhofer et al. 2013). Their limited occurrence and enormous geographic variability have hampered phylogenetic analyses based on morphological characters because of the paucity of reliable external characters.

Recent molecular phylogenetic studies have revealed new aspects for our understanding of the relationships in various groups of harvestmen (Giribet et al. 1999; Thomas and Hedin 2008; Sharma and Giribet 2009, 2011; Derkarabetian et al. 2010, 2011; Giribet et al. 2010; Hedin and Thomas 2010; Schönhofer and Martens 2010; Burns et al. 2012; Hedin et al. 2012; Sharma 2010; Sharma et al. 2012; Schönhofer et al. 2013). In this study, as a first trial of the application of molecular phylogenetics for Japanese laniatorids, we focused on the phylogenetic relationships of various populations of the laniatorid Pseudobiantes japonicus Hirst, 1911 (Epedanidae) and its allied species of the same family.

P. japonicus is a common species of harvestman that occurs widely in the western part of the main islands of Japan (Fig. 1). The species is 3.5–4.0 mm in body length (BL) and lives in humid places such as crevices beneath stones and fallen twigs, or in forest floor litter. This species shows geographic variation in some external characters such as armaments on the second scutal area (Suzuki 1973a,b). The species also shows male dimorphism in cheliceral size, and the ratio of males with large chelicerae to males with small chelicerae varies geographically (Tsurusaki and Fujikawa 2004).

The distributional range of P. japonica mostly overlaps with that of Epedanellus tuberculatus Roewer, 1911 (Fig. 1). E. tuberculatus is ecologically and morphologically very similar to P. japonica, though E. tuberculatus, whose adult body size reaches ≈4.5–7.0 mm, is clearly larger than P. japonicus (Fig. 1). These two species have two geo-
graphical counterparts that are presumed to be allopatric sister species: *Kilungius insulanus* (Hirst 1911) in the middle part of the Ryukyu Islands (Island Amami-Ōshima, Island Yoron, Island Okinawa, etc.) and *Kilungius bimaculatus* Roewer, 1915 in the Sakishima Islands (the southernmost part of the Ryukyu Islands, which includes Island Ishigaki, Island Iriomote, Island Yonaguni, etc.; Fig. 1).

Tsurusaki (2006) indicated that these four species constitute a closely related monophyletic group based on their general morphological similarity (Suzuki 1973a,b; Suzuki and Tsurusaki 1999) and their distributional pattern, though they have so far been treated under three different genera in the existing system of classification (e.g., Roewer 1923).

To resolve phylogenetic relationships of *P. japonicus* and its allied species, we performed phylogenetic analysis of the group (excluding *K. bimaculatus*, as samples were unavailable) using the cytochrome *c* oxidase subunit I (COI) gene.

Materials and Methods

Sampling of *P. japonicus* and Allied Species. To obtain a comprehensive phylogenetic sample of *P. japonicus* and its allied species, 146 *P. japonicus*, 7 *E. tuberculatus*, and 15 *K. insulanus* were sampled from across the ranges of these species (Fig. 1; Table 1). We failed to obtain samples suitable for DNA extraction for *K. bimaculatus*. As outgroup taxa, three *Proscotolemon sauteri* Roewer, 1916 (formerly Phalangodidae but now incertae sedis) and two *Metanippononychus daisenensis* Suzuki, 1974 (Triaenonychidae) were collected from the wild, and sequence data for *Bishopella laciniosa* (Crosby & Bishop, 1924) (Phalangodidae) (EU162812: Thomas and Hedin 2008), *Metanonychus setulus* (Briggs, 1971) (Triaenonychidae) (HM056732: Derkarabedian et al. 2011), *Sclerobunus* sp. (Triaenonychidae) (HM056742: Derkarabedian et al. 2011), and *Fumontana deprehendor* Shear, 1977 (Triaenonychidae) (EU162773: Thomas and Hedin 2008) were obtained from the DNA Data Bank of Japan. All
Table 1. Summary of *P. japonicus* and its outgroup taxa analyzed in this study

Species	OTU name	Prefecture	City	Town	Clade	Sampling date	Reference	Accession no.	
P. japonicus	1	Chubu	Shizuoka	Sakuma	C	18 Aug. 2010	This study	AB937908	
	2	Chubu	Shizuoka	Toei	C	18 Aug. 2010	This study	AB937905	
	3	Chubu	Shizuoka	Haruno	C	23 Oct. 2010	This study	AB937907	
	4	Chubu	Aichi	Sanage-yama	C	23 Oct. 2010	This study	AB937823	
	5	Chubu	Aichi	Tivohashi	C	20 May 2005	This study	AB937896	
	6	Chubu	Aichi	Minamichita	C	23 Oct. 2010	This study	AB937846	
	7	Kinki	Mie	Yoichi	C	16 July 2010	This study	AB937847	
	8	Kinki	Mie	Ujimazake	C	17 Aug. 2010	This study	AB937848	
	9	Kinki	Mie	Ouchiya	C	4 Sept. 2010	This study	AB937849	
	10	Kinki	Mie	Funada	C	25 Aug. 2010	This study	AB937860	
	11	Kinki	Nara	Ogawa	C	28 Aug. 2010	This study	AB937890	
	12	Kinki	Wakayama	Katsuragi	C	17 Aug. 2010	This study	AB937845	
	13	Kinki	Wakayama	Ichinono	C	25 Aug. 2010	This study	AB937851	
	14	Kinki	Wakayama	Terayama	C	18 Aug. 2010	This study	AB937854	
	15	Kinki	Wakayama	Oshima	C	26 Aug. 2010	This study	AB937833	
	16	Kinki	Wakayama	Shionomaki	C	31 Aug. 2010	This study	AB937852	
	17	Chubu	Fukui	Oi	B	25 Aug. 2010	This study	AB937838	
	18	Chubu	Fukui	Hikasa	B	18 Aug. 2010	This study	AB937837	
	19	Chubu	Fukui	Katsura	B	23 Oct. 2010	This study	AB937840	
	20	Kinki	Shiga	Inazuma	B	18 Aug. 2010	This study	AB937839	
	21	Kinki	Shiga	Otsu	B	30 May 2010	This study	AB937840	
	22	Kinki	Kyoto	Fukuchiyama	B	3 Sept. 2010	This study	AB937841	
	23	Kinki	Kyoto	Ochi	B	24 Aug. 2010	This study	AB937843	
	24	Kinki	Kyoto	Nantan	B	26 Aug. 2010	This study	AB937810	
	25	Kinki	Kyoto	Hirogawa	B	26 Aug. 2010	This study	AB937835	
	26	Chubu	Hyogo	Kani	B	17 Aug. 2010	This study	AB937859	
	27	Kinki	Hyogo	Kani	B	31 Aug. 2010	This study	AB937558	
	28	Kinki	Hyogo	Sano	B	3 Sept. 2010	This study	AB937836	
	29	Kinki	Hyogo	Yamakita	B	26 Aug. 2010	This study	AB937861	
	30	Kinki	Hyogo	Sakamoto	B	17 Aug. 2010	This study	AB937866	
	31	Kinki	Hyogo	Kobe	B	22 Oct. 2010	This study	AB937660	
	32	Kinki	Hyogo	Minamiwakai	B	25 Aug. 2010	This study	AB937668	
	33	Kinki	Hyogo	Minamiwakai	B	30 Aug. 2010	This study	AB937618	
	34	Chugoku	Tottori	Iwami	B	30 Aug. 2010	This study	AB937600	
	35	Chugoku	Tottori	Chizu	B	5 July 2010	This study	AB937877	
	36	Chugoku	Tottori	Nichinan	B	4 July 2010	This study	AB937907	
	37	Chugoku	Okawama	Nagi	B	30 Aug. 2010	This study	AB937861	
	38	Chugoku	Okawama	Koen	B	22 Sep. 2010	This study	AB937864	
	39	Chugoku	Okawama	Takano	B	30 Aug. 2010	This study	AB937862	
	40	Chugoku	Hiroshima	Miyoshi	B	1 June 2005	This study	AB937806	
	41	Chugoku	Hiroshima	Akita	B	22 Sept. 2010	This study	AB937579	
	42	Chugoku	Hiroshima	Hotsukaichi	B	30 Aug. 2010	This study	AB937824	
	43	Shikoku	Ehime	Imabari	B	5 June 2010	This study	AB937821	
	44	Shikoku	Ehime	Tanbara	B	5 June 2010	This study	AB937820	
	45	Shikoku	Ehime	Fujinoshigoto	B	4 Nov. 2010	This study	AB937903	
	46	Shikoku	Ehime	Toon	B	25 May 2010	This study	AB937895	
Species	OTU number	Prefecture	City	Town	Clade	Location	Sampling date	Reference	Accession no.
---------	------------	------------	------	------	-------	----------	---------------	-----------	--------------
P. japonicus	47	Shikoku	Ehime	Iyo	B	Saredani	1 Oct. 2010	This study	AB937597
	48	Shikoku	Ehime	Iyo	B	Inuyose-toge	15 July 2010	This study	AB937599
	49	Shikoku	Ehime	Matsuyama	B	Shukuno	1 Oct. 2010	This study	AB937558
	50	Shikoku	Ehime	Matsuyama	B	Shukuno	1 Oct. 2010	This study	AB937558
	51	Shikoku	Ehime	Kochi	A	Nishinomiya	15 July 2010	This study	AB937591
	52	Shikoku	Ehime	Kochi	A	Cokoya	15 July 2010	This study	AB937591
	53	Shikoku	Ehime	Kochi	A	Shiroshigamachi	15 July 2010	This study	AB937591
	54	Shikoku	Ehime	Kochi	A	Shiroshigamachi	15 July 2010	This study	AB937591
	55	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	56	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	57	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	58	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	59	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	60	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	61	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	62	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	63	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	64	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	65	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	66	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	67	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	68	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	69	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	70	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	71	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	72	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	73	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	74	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	75	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	76	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	77	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	78	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	79	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	80	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	81	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	82	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	83	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	84	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	85	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	86	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	87	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	88	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	89	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	90	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	91	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	92	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
	93	Shikoku	Kochi	Shikoku	B	Usuki	1 Oct. 2010	This study	AB937592
Species name	OTU name	Location	Town	Clade	Sampling date	Reference	Accession no.		
--------------	----------	----------	------	-------	---------------	-----------	--------------		
Shikoku Kochi	Kitagawa	Agura	A	7 Aug. 2010	This study	AB937914			
Shikoku Kochi	Kitagawa	Himabe	A	13 June 2005	This study	AB937915			
Shikoku Kochi	Kitagawa	Nogawa	A	7 July 2010	This study	AB937830			
Shikoku Kochi	Muroto	Hane	A	17 Sept. 2010	This study	AB937871			
Shikoku Kochi	Muroto	Hane	A	17 Sept. 2010	This study	AB937873			
Shikoku Kochi	Muroto	Hane	A	17 Sept. 2010	This study	AB937574			
Shikoku Kochi	Muroto	Hane	A	7 July 2010	This study	AB937575			
Shikoku Kochi	Muroto	Hane	A	7 July 2010	This study	AB937575			
Shikoku Kochi	Muroto	Murotomisaki	A	10 July 2010	This study	AB937814			
Shikoku Kochi	Muroto	Moto	A	4 Nov. 2010	This study	AB937815			
Shikoku Kochi	Tosashimizu	Nakanohama	A	27 Oct. 2010	This study	AB937811			
Kyushu Kumamoto	Oguni	Kurobuchi	D	10 Sept. 2011	This study	AB937889			
Kyushu Kumamoto	Oguni	Kurobuchi	D	14 Sept. 2011	This study	AB937890			
Kyushu Kumamoto	Kikuchi	Toyoma	D	12 Sept. 2011	This study	AB937888			
Kyushu Kumamoto	Nankan	Koimachi	D	10 Sept. 2011	This study	AB937887			
Kyushu Kumamoto	Nankan	Sekihigashi	D	10 Sept. 2011	This study	AB937886			
Kyushu Kumamoto	Misato	Abe	D	10 Sept. 2011	This study	AB937854			
Kyushu Kumamoto	Isuki	Ko	D	12 Sept. 2011	This study	AB937853			
Kyushu Kumamoto	Hitoyoshi	Kawanaya	D	24 Sept. 2010	This study	AB937947			
Nagasaki Unzen	Chijiwa	D	9 Sept. 2011	This study	AB937883				
Miyazaki Shiba	Shinohakura	D	24 Sept. 2010	This study	AB937829				
Miyazaki Nobeoka	Akamizu	D	20 July 2010	This study	AB937891				
Miyazaki Nobeoka	Kitakata	D	9 Sept. 2011	This study	AB937849				
Miyazaki Shiba	Shinohakura	D	26 Sept. 2010	This study	AB937943				
Miyazaki Nishimera	Kaunera	D	9 Sept. 2011	This study	AB937940				
Miyazaki Kohayashi	Sukinokohara	D	23 Sept. 2010	This study	AB937925				
Miyazaki Takaharu	Nishihimoto	D	23 Sept. 2010	This study	AB937958				
Miyazaki Takaharu	Kamamuta	D	23 Sept. 2010	This study	AB937956				
Miyazaki Kohayashi	Nojiri	D	13 Sept. 2011	This study	AB937960				
Miyazaki Miyakonojo	Takajo	D	24 Sept. 2010	This study	AB937955				
Miyazaki Nichinan	Kitagou	D	12 Sept. 2011	This study	AB937957				
Miyazaki Nichinan	Nango	D	12 Sept. 2011	This study	AB937930				
Miyazaki Kushima	Honjo	D	23 Sept. 2010	This study	AB937946				
Miyazaki Kushima	Toi	D	24 Sept. 2010	This study	AB937951				
Kagoshima Yusu	Yusui	D	13 Sept. 2011	This study	AB937950				
Kagoshima Ezumi	Takenoto	D	14 Sept. 2011	This study	AB937933				
Kagoshima Kirishima	Yokogawa	D	11 Sept. 2011	This study	AB937072				
Kagoshima Aira	Kajiki	D	10 Sept. 2011	This study	AB937858				
Kagoshima Kagoshima	Koriyama	D	10 Sept. 2011	This study	AB937832				
Kagoshima Kirishima	Kokubukawahara	D	11 Sept. 2011	This study	AB937845				
Kagoshima Kirishima	Fukuyama	D	11 Sept. 2011	This study	AB937859				
Kagoshima Hiioki	Hiyoshi	D	24 Sept. 2010	This study	AB937942				
Kagoshima Kagoshima	Kamifukuamu	D	14 Sept. 2011	This study	AB937837				
Kagoshima Minamisatsuma	Kinpo	D	22 Sept. 2010	This study	AB937944				
Kagoshima Makurazaki	Nishikaga	D	13 Sept. 2011	This study	AB937827				
Kagoshima Minamikyushu	Chiranchoi	D	13 Sept. 2011	This study	AB937827				
Table 1. Continued

Species	OTU name	Location	Clade	Sampling date	Reference	Accession no.		
		Distinct	Prefecture	City	Town			
140 Kyushu	140 Kyushu	Kagoshima	Minamikyushu	Kawanabe	D	14 Sept. 2011	This study	AB937936
141 Kyushu	141 Kyushu	Kagoshima	Kinotsuki	Kitakata	D	11 Sept. 2011	This study	AB937939
142 Kyushu	142 Kyushu	Kagoshima	Kinoko	Baha	D	24 Sept. 2010	This study	AB937934
143 Kyushu	143 Kyushu	Kagoshima	Kanoya	Oara	D	10 Sept. 2011	This study	AB937941
144 Kyushu	144 Kyushu	Kagoshima	Kanoya	Aira	D	10 Sept. 2011	This study	AB937928
145 Kyushu	145 Kyushu	Kagoshima	Kinotsuki	Kishira	D	11 Sept. 2011	This study	AB937933
146 Kyushu	146 Kyushu	Kagoshima	Kinoko	Kinko	D	11 Sept. 2011	This study	AB937926
Pr. sauteri	Prs1 Kyushu	Miyazaki	Kobayashi	Nojiri	–	13 Sept. 2011	This study	AB937961
Prs2 Kyushu	Prs2 Kyushu	Kagoshima	Kanoya	Kihoku	–	12 Sept. 2011	This study	AB937962
Prs3 Kyushu	Prs3 Kyushu	Kumamoto	Hitoyoshi	Kawanai	–	14 Sept. 2011	This study	AB937963
K. insulanus	Kii1 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937918
Kii2 Ryukyu	Kii2 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937919
Kii3 Ryukyu	Kii3 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937920
Kii4 Ryukyu	Kii4 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937964
Kii5 Ryukyu	Kii5 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937965
Kii6 Ryukyu	Kii6 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937966
Kii7 Ryukyu	Kii7 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937967
Kii8 Ryukyu	Kii8 Ryukyu	Okinawa	Ogami	Taminoto	–	11 July 2011	This study	AB937921
Kii9 Ryukyu	Kii9 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937965
Kii10 Ryukyu	Kii10 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937969
Kii11 Ryukyu	Kii11 Ryukyu	Okinawa	Kunigami	Nishine-dake	–	11 July 2011	This study	AB937970
Kii12 Ryukyu	Kii12 Ryukyu	Okinawa	Ogami	Taminoto	–	11 July 2011	This study	AB937922
Kii13 Ryukyu	Kii13 Ryukyu	Okinawa	Ogami	Taminoto	–	11 July 2011	This study	AB937971
Kii14 Ryukyu	Kii14 Ryukyu	Okinawa	Nago	Katsu-dake	–	6 July 2011	This study	AB937923
Kii15 Ryukyu	Kii15 Ryukyu	Okinawa	Nago	Katsu-dake	–	6 July 2011	This study	AB937924
E. tuberculatus	Ept1 Shikoku	Ehime	Matsuyama	Shukun	–	23 June 2005	This study	AB937822
Ept2 Kinki	Kinki	Kyoto	Nantan	Miyama	–	17 Aug. 2010	This study	AB937844
Ept3 Kinki	Kinki	Hyogo	Shio	Yamasaki	–	31 Aug. 2010	This study	AB937865
Ept4 Kinki	Kinki	Hyogo	Awaji	Kurokami	–	4 Sept. 2010	This study	AB937570
Ept5 Shikoku	Shikoku	Ehime	Seiyo	Shirakawa	–	1 Oct. 2010	This study	AB937902
Ept6 Chubu	Chubu	Aichi	Takara	Okubo	–	23 Oct. 2010	This study	AB937910
Ept7 Kinki	Kinki	Nara	Gose	Takama	–	24 Aug. 2010	This study	AB937555
Paranonychidae sp	Trs1 Chugoku	Tottori	Hino	Toyosaka	–	4 July 2010	This study	AB937972
Trs2 Chugoku	Trs2 Chugoku	Tottori	Hino	Toyosaka	–	4 July 2010	This study	AB937973
M. setulus	Mes	–	–	–	–	–	Derkarabetian et al. (2011)	HM056732
S. embusus sp	Scs	–	–	–	–	–	Derkarabetian et al. (2011)	HM056742
F. deprehendor	Fud	–	–	–	–	–	Thomas and Hedin (2008)	EU162773
B. lactinosa	Bil	–	–	–	–	–	Thomas and Hedin (2008)	EU162512

OTU name and clade correspond to our phylogenetic results (Figs. 3–8).
samples were stored at -30°C until DNA could be extracted.

Morphological Analyses. For morphological analysis, the BL and eye–spine length (ESL; Fig. 2) were measured for each individual, and the morphology of the second scutal area was recorded (Fig. 2). We measured 146 *P. japonicus*, 7 *E. tuberculatus*, and 15 *K. insulanus*. Measurements of the BL and the ESL were made using a digital caliper.

DNA Extraction, Amplification, and Sequencing. All DNA extractions were performed using QIAGEN DNeasy kits (Qiagen, Valencia, CA), according to the manufacturer’s protocol for animal tissue samples. The isolated DNA was resuspended in Tris–EDTA buffer and stored at -20°C until use. For all specimens, we amplified the COI gene, previously shown to be useful to reveal population-level relationships (Crosby and Bishop 1924, Thomas and Hedin 2008, Derkarabetian et al. 2011), was amplified using the previously published primers: LCO1490 (5’-GGT CAA CAA ATC ATA AAG ATA ATG G-3’; Folmer et al. 1994) and C1-N-2776-spider (5’-GGA TAA TCA GAA TAN CGN CGA GG-3’; Vink et al., 2005) adding to the following eight new primers: COI-Kume (5’-WAA YTT YAC MTC TTT YTT-3’), COI-Kume2F (5’-CTY CTY ACA GAC CGM AAT TT-3’), COI-Kume3F (5’-AAT ACC TYT ATT YGT HTG ATC-3’), Kume1–1 F (5’-ATD RSY TTY CCM CGD WTA AA-3’), Kume1–2 F (5’-AKR AGM TTY TGR YTD YTR CC-3’), COI-Yoshi (5’-TGY TGR TAW AGR ATD GGR TGY-3’), Yoshi2–1R (5’-TWG AYA TRG CTR ARA TTA TMC-3’), and Yoshi2–2R (5’-CCT ACD GTR AAT ATR TGR TG-3’). DNA was amplified by incubation at 94°C for 10 s followed by 45 cycles of incubation at 94°C for 1.5 min, 48°C for 2 min, and 72°C for 3 min, with a final extension at 72°C for 15 min. DNA was amplified by polymerase chain reaction (PCR) in a 50-μl reaction volume containing ≈50 ng of total DNA, 10 mM Tris–HCl buffer (pH 8.3) with 50 mM KCl and 1.5 mM MgCl₂, 0.2 mM of each dNTP, 1.25 U TaqDNA polymerase (TaKaRa, Tokyo, Japan), and 0.5 μM of each primer. After amplification, reaction mixtures were subjected to electrophoresis in 1% low-melting-temperature agarose gels and purified using QIAGEN QuickSpin kits according to the manufacturer’s specifications. We sequenced the purified PCR products using a BigDye Terminator Cycle Sequencing Kit (ABI PRISM DNA Sequencing kit, Perkin-Elmer Applied Biosystems, Tokyo, Japan) and ABI PRISM 3100-Avant Genetic Analyzer according to the manufacturers’ instructions.

Data Analysis. To construct phylogenetic trees for *P. japonicus* and its allied species, sequences were aligned using ClustalW (Thompson et al. 1994). Moreover, we confirmed insertions or deletions (indels) using MEGA5 (Tamura et al. 2011). In the neighbor-joining (NJ) method, the model maximum composite likelihood was used. Bootstrap resampling used 1,000 replications for the NJ analysis. In the maximum-likelihood (ML) method was reconstructed by MEGA program, version 5.05 (Tamura et al. 2011). The model test function in MEGA was used to choose models for ML analyses by the Bayes information criterion. The reliability of branching patterns in ML trees was tested by bootstrapping (1,000 samples). The following DNA sequence evolution models were used TN93 + G + I.

Results

Phylogenetic Analyses of *P. japonicus* and Its Allied Species. We reconstructed phylogenetic relationships using 179 samples of *P. japonicus* and its allied species including outgroup species. The length of the *P. japonicus* COI gene was 1,057 bp, with insertions of 6 bp compared with *P. sauteri*. Gaps in the sequences were eliminated in all of the following analyses, thus 1,051 bp were used in our study. We reconstructed phylogenetic trees based on the NJ method (Figs. 3–5).
phylogenetic trees indicated that *P. japonicus* was comprised of a paraphyletic assemblage and divided into four subgroups, denoted Clades A to D (Figs. 3–5). In addition, we reconstructed another phylogenetic tree based on ML method (Figs. 6–8). Branching patterns between NJ and ML trees were mainly congruence. It is surprising that both *E. tuberculatus* and *K. insulanus* were recovered with one *P. japonicus* group and the monophyletic *K. insulanus* was sister to remove Clade D of *P. japonicus* and *E. tuberculatus* (Figs. 5 and 8). The monophyly of each subgroup of *P. japonicus* and both *K. insulanus* and *E. tuberculatus* were supported by relatively high bootstrap values (94–100%); however, basal nodes had low support values in NJ and ML trees.

Figure 9 shows the geographical distribution of the four clades in *P. japonicus*. Clade A consisted of 27 individuals distributed in the eastern half of Shikoku and an isolated population (no. 78, Nakanohama in Tosashimizu City) at the southwestern end of Shikoku. In total, 60 individuals from the western half of Shikoku, northern part of Kinki District, and Chugoku and the northern part of Kyushu Districts were included in Clade B. Clade C consisted of 16 individuals from the southern Kinki and Chubu Districts. Clade D was composed of 44 individuals from the central and southern parts of Kyushu District.

Morphological Analyses of *P. japonicus* and Its Allied Species. BL, ESL, and the armaments of the second scutal area were analyzed and compared with mitochondrial clades (Figs. 3–5). Means with SDs of the BLs of males and females of Clades A, B, C, and D of *P. japonicus* were 3.67 ± 0.23 (male A), 3.83 ± 0.27 (female A), 3.56 ± 0.31 (male B), 3.65 ± 0.43 (female B), 3.81 ± 0.28 (male C), 3.98 (female C), 3.73 ± 0.26 (male D), and 3.79 ± 0.34 mm (female D). For *E. tuberculatus*, these values were 5.64 ± 0.05 (male) and 5.53 ± 0.16 (female), while for *K. insulanus* they were 4.23 ± 0.46 (male) and 4.01 ± 0.42 mm (female). Males and females of *E. tuberculatus* were significantly larger than those of any of other species. However, male *K. insulanus* were significantly larger than males in any of the other clades of *P. japonicus* (Fig. 10).
Means with SDs for the ESL of Clades A, B, C, and D of *P. japonicus* were 0.46 ± 0.10 (male A), 0.49 ± 0.06 (female A), 0.53 ± 0.07 (male B), 0.50 ± 0.11 (female B), 0.90 ± 0.19 (male C), 0.90 (female C), 1.09 ± 0.21 (male D), and 1.02 ± 0.17 mm (female D; Fig. 11). Those for males and females of *E. tuberculatus* were 0.96 ± 0.07 and 1.07 ± 0.08 mm, respectively, and those for males and females of *K. insulanus* they were 1.30 ± 0.20 and 1.12 ± 0.22 mm, respectively. Of these, male individuals of *K. insulanus* had the significantly longest ESL and Clades A and B had the shortest ESL of all examined samples (Fig. 11). There were no significant differences among male individuals of Clades C and D and *K. insulanus* (*P* value >0.05). Female ESL of Clades A and B were also significantly shorter than those of the remaining samples (*P* value <0.05). No significant differences were detected between Clades A and B in the ESL of either males and females (*P* value >0.05).

Armaments on the second scutal area of *P. japonicus* and the allied species can be divided into two types: 1) second scutal area unarmed or only with rudimentary spines, and 2) second scutal area with a pair of short spines; and the results of the examination are shown in Table 2. Individuals of Clades A, B, and D had an unarmed second scutal area, except for two males of Clade A. However, Clade C was prominent in having spines on the second scutal area without exception. *E. tuberculatus* usually had two median granules on the second scutal area or lacked them (nonspined type). *K. insulanus* had a transverse row of granules on the same position (nonspined type).

Discussion

Phylogeographic Relationship Within *P. japonicus* and Possible Roles of the Ota and Asahi Rivers as Pleistocene Geographical Barriers. Ikeda et al. (2012) reported that the loss of flight promotes speciation in coleopteran insects. It is expected that genuinely flightless animals such as *P. japonicus* and related species would be bound to show more prominent geo-

Fig. 4. Phylogenetic tree of *P. japonicus* of Clade B and its related forms with outgroups using the NJ method. The numbers above or below the branches indicate the bootstrap value (>90%). For abbreviations, see Table 1. (I) Complete tree topology. (II) Magnification of highlighted region.
Fig. 5. Phylogenetic tree of *P. japonicus* of Clade D and its related forms with outgroups using the NJ method. The numbers above or below the branches indicate the bootstrap value (>90%). For abbreviations, see Table 1. (I) Complete tree topology. (II) Magnification of highlighted region.
graphical population differentiation. In fact, our results indicated that individuals of *P. japonicus* are divided into four allopatric clades across their distribution.

The current distribution of biological diversity cannot be understood without information about how organisms responded to historical changes in geological and climatic conditions. There is no doubt that the glacial–interglacial cycles of the Quaternary period would have played an important role in shaping the distribution of biodiversity among current populations, even in warm temperate zones where the land was not covered with ice sheets (Minato and Ijiri 1976). During the Last Glacial Maximum, the mean annual temperature was ≈5–9°C cooler and the precipitation was lower than present levels (Tsukada 1984). Therefore, climatic cooling caused southward shifts and shifts to lower altitude in the geographical ranges of various species (Tsukada 1974). Palynological evidence indicates that broadleaved deciduous and evergreen forests in Japan were subjected to cold periods at least four times during the Quaternary (Tsukada 1974). Aoki et al. (2004) hypothesized that the pollen record indicates that refugial populations were sparsely distributed along the coasts of the Pacific Ocean, while refugia of broadleaved evergreen forests were limited to southern areas mainly at the southern end of Kyushu. Moreover, fossil evidence also indi-

![Fig. 6. Phylogenetic tree of *P. japonicus* of Clade B and its related forms with outgroups using the ML method. The numbers above or below the branches indicate the bootstrap value (>90%). For abbreviations, see Table 1. (I) Complete tree topology. (II) Magnification of highlighted region.](https://academic.oup.com/aesa/article-abstract/107/4/756/19102)
cates that these populations migrated northward from refugia after the Last Glacial Maximum (Tsukada 1984, Matsuoka and Miyoshi 1998). These studies suggest that populations of some forest-dependent insects and other arthropods responded to the environmental changes associated with the glacial cycles in a similar fashion to that of their associated forests.

Our studies indicated that *P. japonicus* consists of four clades occupying different geographical areas; Clade A (eastern Shikoku), Clade B (northern Kyushu, western Shikoku, Chugoku, Kinki, and the western part of Hokuriku Districts), Clade C (from southern Kinki to Tokai Districts), and Clade D (southern and middle part of Kyushu; Fig. 9). *P. japonicus* is widely distributed in western Japan from evergreen forests near sea level to Japanese beech *Fagus crenata* Blume forests, which usually grow in mountainous areas above ~800 m in altitude in western Japan. Palynological evidence shows distributional ranges of *F. crenata* moved southward and only grew in southern Kyushu, southern Shikoku, and the Kii Peninsula of the Kinki District as refugia during the last ice age 18,000–20,000 yr ago (Fujii et al. 2002). It is presumed that the Ota River that flows down from the western part of the Chugoku Mountains of Honshu ran southward through the present day Bungo Channel that separates Kyushu Island and Shikoku Island when the Seto Inland Sea regressed at that time. However, the Asahi River that originates from the Mt. Daisen–Hiruzen area in the eastern part of the Chugoku Mountains had run through the Kii Channel (Ota et al. 2004) until the Seto Inland Sea was reformed ~10,000 yr ago.

![Phylogenetic tree of *P. japonicus*](https://academic.oup.com/aesa/article-abstract/107/4/756/19102)
Thus, it is plausible that these two rivers (and the present day Bungo and Kii Channels) have acted as barriers to gene flow for land animals with very low vagility, such as *P. japonicus*.

The distributional patterns of the four clades of *P. japonicus* strongly suggest that these clades had been restricted to evergreen forests along the coasts of the Pacific Ocean in the last glacial age and were differentiated under the influence of the ancient Ota River and ancient Asahi River, and have recently expanded their distribution independently from each refugium.

The comparison of intraspecific phylogeographic patterns with other taxa over the same area and the search for congruent geographic patterns of genetic variation play important roles in indicating the influence of common historical factors (Arbogast and Kenagy 2001, Hewitt 2004). Comparing the intraspecific phylogeographic patterns among different species dis-
tributed in a single vegetation zone should be more informative because a group of species living together in the present environment likely responded in a similar or possibly the same manner to past geological or climatic events (Griffin and Barrett 2004).

In this context, it is interesting that there are many other examples that show morphological and genetic differentiation between Kyushu and Shikoku or between Shikoku and the Kii Peninsula. For example, the six-spined form of the soil-dwelling harvestman _Sys-
tenocentrus japonicus_ (Sclerosomatidae) is distributed in Shikoku and Chugoku District except for Yamaguchi Prefecture, which is in contrast to the distribution of the five-spined form that occurs in Kyushu, Yamaguchi Prefecture, Kinki District, and eastward of Honshu (Suzuki and Tsurusaki 1981). A phylogeographic study based on the mitochondrial COI gene for the metallic blue earthworm _Metaphire sieboldii_ (Horst, 1883) showed that the Group III occurring in the eastern part of Shikoku was replaced by Group I in the Kii Peninsula (Minamiya et al. 2009). In Japanese beech, _F. crenata_, the Clade III chloroplast DNA haplotype that occurs in Kyushu, the western half of Chugoku District, and Shikoku is substituted by Clade II in the Kii Peninsula (Fujii et al. 2002). Furthermore, recent phylogeographical analyses of mammals such as the Japanese monkey _Macaca fuscata_ and Japanese deer _Cervus nippon_ have also shown that there are separate mitochondrial
clades between Shikoku and the Kii Peninsula (Kawanoto 2007, Nunome et al. 2010).

The arrangement of analyzed morphological characters of *P. japonicus* on our phylogenetic tree could reveal that each clade of this species was recognized by the combination of BL, ESL, and the spine type of the second scutal area (Fig. 12). For example, individuals of Clade C have the longest ESL and the spine type of second scutal area, but Clade D lacks of them despite having the longest ESL of all *P. japonicus*. Individuals of Clades A and B have a relatively short ESL and the granule and the loss types of second scutal area, except for two male individuals with the spine type in Clade A. Unfortunately, individuals of Clade A could not be distinguished with those of Clade B by morphological characters we examined. A remaining problem is the occurrence of two clades (Clade A and Clade B in eastern and western Shikoku, respectively) of *P. japonicus* in Shikoku. Additional molecular markers may lend support to the scenario inferred here, and multiple markers should be surveyed to find further variation within this species. Such research would help to validate existing COI data sets and facilitate new interpretations.

Historical hybridization between different genotypes could be most commonly identified by the heterogeneity of nuclear DNA (nrDNA) and the incongruence between mitochondrial DNA (mtDNA) and nrDNA phylogenies that may indicate different parental contributions to the hybrid genome (e.g., Funk and Omland 2003). In this study, it allows for the discussion about hybridization, introgression, and incomplete lineage sorting between phylogenetic groups of *P. japonicus* to add the nrDNA information. Previous studies indicated that polymorphisms in 28S rRNA in nrDNA had proven to be effective tools to clarify the relationship of closely related taxa in harvestmen (Wheeler and Hayashi 1998; Giribet et al. 1999; Sharma and Giribet 2009, 2011; Derkarabetian et al. 2010; Giribet et al. 2010; Hedin and Thomas 2010; Sharma 2010; Sharma et al. 2012). Therefore, the phy-

Table 2. The morphology of second scutal area of *P. japonicus*, *E. tuberculatus*, and *K. insulanus* (number of individuals)

Taxa	Cladea	Type (male)	Type (female)		
		Spine	Non-spine	Spine	Nonspine
P. japonicus	A	2	6	0	10
	B	0	34	0	22
	C	8	0	1	0
	D	0	23	0	20
E. tuberculatus	–	0	2	0	4
K. insulanus	–	0	8	0	7

a Clade names are as indicated in Figs. 3–5.

![Fig. 12. The arrangement of morphological characters on the simplified phylogenetic tree of *P. japonicus* and its allied species (Figs. 3–5).](image-url)

Table 2. The morphology of second scutal area of *P. japonicus*, *E. tuberculatus*, and *K. insulanus* (number of individuals)
logenetic study using both mtDNA and an additional nrDNA could provide an answer not only to reticulated evolution but also to cryptic speciation between genotypes in *P. japonicus*.

Acknowledgments

We thank Drs. Y. Tsuchiya, Y. Yoshimi, N. Yokoyama, M. Muroi, S. Isomoto, K. Matsuyama, T. Sunami, S. Takei, N. Kakimoto, R. Matsui, and Y. Minamiya for reviewing this English manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

References Cited

Aoki, K., T. Suzuki, T. W. Hsu, and N. Murakami. 2004. Phylogeography of the component species of broad-leaved evergreen forests in Japan, based on chloroplast DNA. J. Plant Res. 117: 77–94.

Arbogast, B. S., and G. J. Kenagy. 2001. Comparative phylogenetic study using both mtDNA and an additional genic region for a review of bat evolution. J. Biogeogr. 28: 819–825.

Burns, M., M. Hedin, and J. W. Shultz. 2012. Molecular phylogeny of the leiobumine harvestmen of eastern North America (Opiliones: Sclerosomatidae: Leiobuminiae). Mol. Phylogenet. Evol. 63: 291–298.

Derkarabetian, S., D. B. Steinmann, and M. Hedin. 2010. Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores) from montane Western North America. PLoS ONE 5: e10358.

Derkarabetian, S., J. Ledford, and M. Hedin. 2011. Genetic diversification without obvious genetic isolates: Comparing mitochondrial divergence in harvestmen (Opiliones, Laniatores) and leaf beetles (Chrysomelidae) from montane sky islands of western North America. Mol. Phylogenet. Evol. 63: 844–853.

Folmer, O., M. Black, W. Moeh, S. Lutz, and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazon invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294–299.

Fujii, N., N. Tomaru, K. Okuyama, T. Koike, T. Mikami, and K. Ueda. 2002. Chloroplast DNA phylogeography of *Fagus crenata* (Fagaceae) in Japan. Plant Syst. Evol. 232: 21–33.

Funk, D. J., and K. E. Omland. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34: 397–423.

Giribet, G., M. Rambla, S. Carranza, J. Baguna, M. Birot, and C. Ribera. 1999. Phylogeny of the arachnid order Opiliones (Arthropoda) inferred from a combined approach of complete 18S and partial 28S ribosomal DNA sequences and morphology. Mol. Phylogenet. Evol. 11: 296–307.

Giribet, G., L. Vogt, A. Perez Gonzalez, P. Sharma, and A. Kury. 2010. A multitocus approach to harvestman (Arachnida: Opiliones) phylogeny with emphasis on biogeography and the systematics of Laniatores. Cladistics 26: 408–437.

Griffin, S. B., and S.C.H. Barrett. 2004. Post-glacial history of *Trillium grandiflorum* (Melanthiaceae) in eastern North America: inferences from phylogeography. Am. J. Bot. 91: 465–473.

Hedin, M., and S. M. Thomas. 2010. Molecular systematics of eastern North American Phalangodidae (Arachnida: Opiliones: Laniatores), demonstrating convergent mor-
Sharma, P. P., and G. Giribet. 2011. The evolutionary and biogeographic history of the armoured harvestmen - Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebr. Syst. 25: 106–142.

Sharma, P. P., P.A.C. Buenavente, R. M. Clouse, A. C. Diesmos, and G. Giribet. 2012. Forgotten gods: Zalmoxidae of the Philippines and Borneo (Opiliones: Laniatores). Zootaxa 3280: 29–55.

Suzuki, S. 1973a. Clines in Opiliones. Japanese Society of Systematic Zoology, Circular 46: 6–10.

Suzuki, S. 1973b. Opiliones from the South-west Islands, Japan. J. Sci. Hiroshima Univ. (Ser. B, Div. 1). 24: 205–279.

Suzuki, S. 1986. The harvestmen in Hiroshima Prefecture. Hibakagaku 132: 7–45.

Suzuki, S., and N. Tsurusaki. 1981. Redescription of Systenocentrus japonicus (Arachnida, Opiliones, Leiobunidae) with special reference to its two geographic forms. Annotatiiones Zoologicae Japonensis 54: 273–283.

Suzuki, S., and N. Tsurusaki. 1999. Arachnida, Opiliones. pp. 148–172. In J. Aoki (ed.). Pictorial keys to soil animals of Japan. Tokai University Publishers, Tokyo.

Suzuki, S., K. Tomishima, S. Yano, and N. Tsurusaki. 1977. Discontinuous distribution in relict harvestmen (Opiliones, Arachnida). Acta Arachnologica, 27: 121–138.

Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

Thomas, S. M., and M. Hedin. 2008. Multigene phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae Mol. Phylogent. Evol. 46: 645–658.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

Tsukada, M. 1984. A vegetation map in the Japanese Archipelago approximately 20,000 years B.P. Jap. J. Ecol. 34: 203–208.

Tsukada, M. 1974. Paleoeecology II, Synthesis. Kyoritsu, Tokyo, Japan.

Tsursuki, N. 2006. Biogeography of Opiliones in the Ryukyus Islands. The Nature & Insects (New Science Co. Ltd. Tokyo). 41: 30–33 + Figs 4–5 in an additional colour plate. (in Japanese)

Tsursuki, N. 2007. Chapter 6. Cytogenetics. pp. 266–279. In R. Pinto da Rocha, G. Machad, and G. Giribet (eds.), The harvestmen: The biology of opiliones. Harvard University Press, Cambridge, MA.

Tsursuki, N., and R. Fujikawa. 2004. Male dimorphism of chelicerae size in Pseudobiantes japonicus (Opiliones: Laniatore; Epdeanidae) – Alternative mating tactics? p. 278. In Abstracts of 16th International Congress of Arachnology, Ghent Universit, Belgium.

Vink, C. J., S. M. Thomas, P. Paquin, C. Y. Hayashi, and M. Hedin. 2005. The effects of preservatives and temperatures on arachnid DNA. Invert. Syst. 19: 99–104.

Wheeler, W. C., and C. Y. Hayashi. 1998. The phylogeny of the extant chelicerate orders. Cladistics 14: 173–192.

Received 2 July 2013; accepted 13 May 2014.