Schur’s exponent conjecture II

Michael Vaughan-Lee

December 2021

Abstract

Primoz Moravec published a very important paper in 2007 where he proved that if G is a finite group of exponent n then the exponent of the Schur multiplier of G can be bounded by a function $f(n)$ depending only on n. Moravec does not give a value for $f(n)$, but actually his proof shows that we can take $f(n) = ne$ where e is the order of $b^{-n}a^{-n}(ab)^n$ in the Schur multiplier of $R(2, n)$. (Here $R(2, n)$ is the largest finite two generator group of exponent n, and we take a, b to be the generators of $R(2, n)$.) It is an easy hand calculation to show that $e = n$ for $n = 2, 3$, and it is a straightforward computation with the p-quotient algorithm to show that $e = n$ for $n = 4, 5, 7$. The groups $R(2, 8)$ and $R(2, 9)$ are way out of range of the p-quotient algorithm, even with a modern supercomputer. But we are able to show that $e \geq n$ for $n = 8, 9$. Moravec’s proof also shows that if G is a finite group of exponent n with nilpotency class c, then the exponent of the Schur multiplier of G is bounded by ne where e is the order of $b^{-n}a^{-n}(ab)^n$ in the Schur multiplier of the class c quotient $R(2, n; c)$ of $R(2, n)$. If q is a prime power we let $e_{q,c}$ be the order of $b^{-q}a^{-q}(ab)^q$ in the Schur multiplier of $R(2, q; c)$. We are able to show that e_{p^k,p^2-p-1} divides p for all prime powers p^k. If $k > 2$ then $e_{2^k,c}$ equals 2 for $c < 4$, equals 4 for $4 \leq c \leq 11$, and equals 8 for $c = 12$. If $k > 1$ then $e_{3^k,c}$ equals 1 for $c < 3$, equals 3 for $3 \leq c < 12$, and equals 9 for $c = 12$.

We also investigate the order of $[b, a]$ in a Schur cover for $R(2, q; c)$.

1 Introduction

There is a long-standing conjecture attributed to I. Schur that the exponent of the Schur multiplier, $M(G)$, of a finite group G divides the exponent of G. It is easy to show that this conjecture holds true for groups of exponent 2 and
exponent 3, but a counterexample in exponent 4 was found by Bayes, Kautsky and Wamsley \[1\] in 1974. The conjecture remained open for odd exponent until 2020, when I found counterexamples of exponent 5 and exponent 9 \[6\]. It seems certain that there are counterexamples to this conjecture for all prime powers greater than 3, but this leaves open the question of what bounds on the exponent of \(M(G)\) might hold true.

The usual definition of the Schur multiplier of a finite group \(G\) is the second homology group \(H_2(G, \mathbb{Z})\). For computational purposes we use the Hopf formulation of the Schur multiplier, which is as follows. We write \(G = F/R\), where \(F\) is a free group, and then

\[M(G) = (R \cap F')/[F, R].\]

If we let \(H = F/[F, R]\) then \(H\) is an infinite group, and the quotient \(H/H'\) is a free abelian group with rank equal to the rank of \(F\) as a free group. However the centre of \(H\) contains \(R/[F, R]\) and has finite index in \(H\). So the derived group \(H' = F'/[F, R]\) is finite, and \(M(G)\) is finite. It is known that the exponent of \(M(G)\) divides the order of \(G\). Furthermore if \(G\) has exponent \(n\) and if \(h \in H'\) then \(h^n \in M(G)\). So the quotient \(H'/M(G)\) has exponent dividing \(n\). In particular, if \(G\) is a finite \(p\)-group then \(H'\) is a finite \(p\)-group.

Primoz Moravec published a very important paper \[5\] in 2007 in which he proved that if \(G\) is a finite group of exponent \(n\) then the exponent of \(M(G)\) is bounded by a function \(f(n)\) depending only on \(n\). Moravec does not give an explicit formula for \(f(n)\), but his proof of this theorem actually shows that if \(G\) is a finite group of exponent \(n\) then the exponent of \(M(G)\) divides \(ne\) where \(e\) is the order of \(b^{-n}a^{-n}(ab)^n\) in the Schur multiplier of \(R(2, n)\). (We let \(R(2, n)\) denote the largest finite 2 generator of exponent \(n\), and we take the generators of \(R(2, n)\) to be \(a, b\).)

Theorem 1 (Moravec, 2007) Let \(b^{-n}a^{-n}(ab)^n \in M(R(2, n))\) have order \(e\). If \(G\) is any finite group of exponent \(n\) then the exponent of \(M(G)\) divides \(ne\).

We give a short proof of this theorem in Section 2. The same proof gives the following theorem.

Theorem 2 Let \(R(2, n; c)\) be the nilpotent of class \(c\) quotient of \(R(2, n)\), and let \(e_{n,c}\) be the order of \(b^{-n}a^{-n}(ab)^n \in M(R(2, n; c))\). If \(G\) is any finite group of exponent \(n\) with class \(c\), then the exponent of \(M(G)\) divides \(ne_{n,c}\).
Our proof of Moravec’s theorem also gives the following corollary.

Corollary 3 Let $R(d, n)$ be the largest finite d generator group of exponent n. Then if $d \geq 2$ the exponent of $M(R(d, n))$ is the order of $b^{-n}a^{-n}(ab)^n \in M(R(2, n))$.

Theorem 1 led me to investigate the order e_q of $b^{-q}a^{-q}(ab)^q \in M(R(2, q))$ for prime power exponents q. (We restrict ourselves to groups of prime power exponent since if G is any finite group and p is any prime then the Sylow p-subgroup of $M(G)$ is a subgroup of the Schur multiplier of the Sylow p-subgroup of G.) It is an easy hand calculation to show that $e_q = q$ for $q = 2, 3$. And it is a straightforward computation with the p-quotient algorithm [4] to show that $e_q = q$ for $q = 4, 5, 7$. Computing the groups $R(2, 8)$ or $R(2, 9)$ (or their Schur covers) is way out of the range of the p-quotient algorithm, even with a modern supercomputer. But I am able to show that $e_q \geq q$ for $q = 8, 9$.

Theorem 2 led me to investigate the order $e_{q, c}$ of $b^{-q}a^{-q}(ab)^q \in M(R(2, q; c))$ for prime power exponents q and various c.

Theorem 4 If q is a power of the prime p then $e_{q, p^2 - p - 1}$ divides p.

Theorem 5 If $k > 2$ then $e_{2^k, c}$ equals 2 for $c < 4$, equals 4 for $4 \leq c \leq 11$, and equals 8 for $c = 12$.

Theorem 6 If $k > 1$ then $e_{3^k, c}$ equals 1 for $c < 3$, equals 3 for $3 \leq c < 12$, and equals 9 for $c = 12$.

The counterexamples to Schur’s conjecture found in [1] and [6] are based on the following construction. Let $H(q, c)$ be the largest four generator group of exponent q and nilpotency class c which is generated by a, b, c, d and subject to the relation $[b, a][d, c] = 1$.

The Bayes, Kautsky and Wamsley example in [1] is $H(4, 4)$ which has Schur multiplier of exponent 8. The element $[b, a][d, c]$ has order 8 in the Schur multiplier, and in fact $[b, a]$ has order 8 in a Schur cover of $R(2, 4; 4)$. Similarly my examples in [6] are based on $H(5, 9)$ and $H(9, 9)$. In the Schur multipliers of these two groups the elements $[b, a][d, c]$ have order 25 and 27. The examples “work” because $[b, a]$ has order 25 and 27 in Schur covers of $R(2, 5; 9)$ and $R(2, 9; 9)$. It seems plausible that more generally the exponent of $M(H(q, c))$ is the order of $[b, a]$ in a Schur cover of $R(2, q; c)$, though I
have no idea how to prove this in general. For this reason I have looked at the order of $[b, a]$ in Schur covers of $R(2, q; c)$ for various q, c. For example, $[b, a]$ has order 32 in a Schur cover of $R(2, 8; 12)$ so it seems to me to be extremely likely that $M(H(8, 12))$ has exponent 32, though I cannot prove it (yet!). This is an interesting example because all p-group counterexamples G to Schur’s conjecture found so far have $\exp M(G) = p \exp G$.

I am able to prove that $M(H(q, 4))$ has exponent 2q whenever $q \geq 4$ is a power of 2. For $q = 9, 27$ $M(H(q, 9))$ has exponent 3q, and it seems very likely that $M(H(q, 9))$ has exponent 3q for all $q > 3$ which are powers of 3. Similarly for $q = 5, 25$ $M(H(q, 9))$ has exponent 5q, and it seems very likely that $M(H(q, 9))$ has exponent 5q for all q which are powers of 5.

Theorem 7 If $q > 4$ is a power of 2, and if we let f be the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ then $f = q$ for $c < 4$, $f = 2q$ for $4 \leq c < 12$, and $f = 4q$ for $c = 12$. If G is a finite 2-group with nilpotency class less than 4 then $\exp M(G)$ divides $\exp G$.

Theorem 8 If $q > 3$ is a power of 3, and if we let f be the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ then $f = q$ for $c < 9$, and $f = 3q$ for $c = 9$. If G is any group of exponent q with class less than 9 then $\exp M(G)$ divides q.

Theorem 9 Let q be a power of 5. If we let f be the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ then $f = q$ for $c < 9$, and $f = 5q$ for $c = 9$. If G is any group of exponent q with class less than 9 then $\exp M(G)$ divides q.

Theorem 10 Let q be a power of 7. If we let f be the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ then $f = q$ for $c < 13$, and $f = 7q$ for $c = 13$. If G is any group of exponent q with class less than 13 then $\exp M(G)$ divides q.

Theorem 10 follows from the fact that in a Schur cover of $R(2, 5)$ the element $[b, a]^5$ is a product of commutators with entries a or b, where at least 5 of the entries are a’s and at least 5 of the entries are b’s. Similarly Theorem 10 follows from the fact that in a Schur cover of $R(2, 7)$ the element $[b, a]^7$ is a product of commutators with at least 7 entries a and at least 7 entries b. If the same pattern is repeated for higher primes p, then I would expect the order of $[b, a]$ in $M(R(2, p^k; c))$ to be p^k for $c < 2p - 1$ and to be p^{k+1} when $c = 2p - 1$.

The theorems above omit the exponents 2, 3, 4. It is easy to see that the Schur multiplier of a group of exponent 2 or exponent 3 has exponent 2 or 3 (respectively). Moravec [5] proves that the Schur multiplier of a group of exponent 4 has exponent dividing 8.
2 Proof of Theorem 1

We write $R(2, n) = F/R$ where F is the free group generated by a, b, and let $H = F/[F, R]$. (We are not assuming here that n is a prime power.) Then $b^{-n}a^{-n}(ab)^n \in M(R(2, n))$. Let $b^{-n}a^{-n}(ab)^n$ have order e. We show that e is the exponent of $M(R(d, n))$ for all $d \geq 2$, and that if G is any finite group of exponent n then $\exp(M(G))$ divides ne.

So let G be any finite group of exponent n, let $G = F/R$ where F is a free group, and let $H = F/[F, R]$. (Apologies for using the same notation for the covering group of G as I used for the covering group of $R(2, n)$.) Let a, b be any two elements in H. Then the subgroup of H generated by a and b is a homomorphic image of the cover of $R(2, n)$, and so $b^{-n}a^{-n}(ab)^n \in H'$ lies in the centre of H and has order dividing e. Let F be freely generated by the set X and let K be the subgroup of H generated by the elements $x^n[F, R]$ ($x \in X$). Then K is a free abelian group which intersects H' trivially. If w is an arbitrary element of F we can write $w = x_1x_2\ldots x_k$ for some k and some $x_1, x_2, \ldots, x_k \in X \cup X^{-1}$. Letting $a = x_1$ and $b = x_2x_3\ldots x_k$ we see that

$$w^n = (x_1x_2\ldots x_k)^n = x_1^n(x_2\ldots x_k)^n b^{-n}a^{-n}(ab)^n.$$

Repeating this argument we see that

$$w^n = x_1^n x_2^n \ldots x_k^n c,$$

where c is a product of terms of the form $b^{-n}a^{-n}(ab)^n$ with $a, b \in F$. So we see that if $h \in H$ then h^n is a product of an element in K and an element in H' which lies in the centre of H and has order dividing e. It follows that any product of n^{th} powers in H can be expressed in the same form. Since $K \cap H' = \{1\}$ we see that this implies that any product of n^{th} powers in H which lies in H' has order dividing e. So $\exp(M(R(d, n))) = e$ for all $d \geq 2$. If $h \in H'$, then h^n is an n^{th} power which lies in H', and so $h^{ne} = 1$. So H' has exponent dividing ne, and this implies that $\exp(M(G))$ divides ne.

3 Some commutator calculus

Let F be the free group of rank 2 generated by a and b. If we are working in the nilpotent quotient $F/\gamma_{k+1}(F)$ for some k then we pick a fixed ordered set of basic commutators of weight at most k. See [3, Chapter 11]. The first few basic commutators in our sequence are

$$a, b, [b, a], [b, a, a], [b, a, b], [b, a, a, a], [b, a, b, b], [b, a, a, [b, a]].$$
If \(c_1, c_2, \ldots, c_m \) is our list of basic commutators of weight at most \(k \) then every element of \(F/\gamma_{k+1}(F) \) can be written uniquely in the form
\[
c_1^{n_1} c_2^{n_2} \cdots c_m^{n_m} \gamma_{k+1}(F)
\]
for some integers \(n_1, n_2, \ldots, n_m \). From the theory of Hall collection (see [3, Theorem 12.3.1]), if \(n \) is any positive integer then in \(F/\gamma_k \)
\[
(ab)^n = a^n b^n [b, a]^\binom{n}{2} [b, a, a]^\binom{n}{3} c_5^{\alpha_5} \cdots c_m^{\alpha_m}
\]
where the exponents \(n, \binom{n}{2}, \binom{n}{3}, n_5, \ldots, n_m \) take a very special form. If \(c_r \) has weight \(w \) then \(n_r \) is an integral linear combination of the binomial coefficients \(n, \binom{n}{2}, \binom{n}{3}, \ldots, \binom{n}{w} \). Furthermore the integer coefficients which arise in these linear combinations are positive, and are independent of \(n \).

The exponents \(n, \binom{n}{2}, \binom{n}{3}, n_5, \ldots, n_m \) which arise in equation (1) are all polynomials in \(n \) which take integer values when \(n \) is an integer. The formula
\[
\binom{n}{r} = \frac{n(n-1) \cdots (n-r+1)}{r!}
\]
also makes sense when \(n \) is negative. We let \(P = \mathbb{Q}[t] \) be the ring of polynomials in an indeterminate \(t \) over the rationals \(\mathbb{Q} \). An integer-valued polynomial is a polynomial \(f(t) \in P \) which takes integer values whenever \(f(t) \) is evaluated at an integer \(n \). The set of integer-valued polynomials is a subring of \(P \), and is a free abelian group with basis
\[
1, t, \frac{t(t-1)}{2!}, \ldots, \frac{t(t-1) \cdots (t-d+1)}{d!}, \ldots
\]
The exponents \(n_i \) which arise in equation (1) all take the form \(n_i = f_i(n) \) where \(f_i(t) \) is an integer-valued polynomial of degree at most \(\text{wt} \, c_i \) which does not depend on \(n \). The polynomials \(f_i(t) \in P \) that arise in this way in equation (1) also satisfy \(f_i(0) = 0 \).

We rewrite equation (1) in the following form
\[
(ab)^n = a^n b^n [b, a]^\binom{n}{2} [b, a, a]^\binom{n}{3} c_5^{f_5(n)} \cdots c_m^{f_m(n)}
\]
where the integer-valued polynomials \(f_i(t) \) are independent of \(n \). The key properties of these polynomials to keep in mind are that \(f_i(0) = 0 \) and \(\text{deg} \, f_i(t) \leq \text{wt} \, c_i \).

We use equation (2) to get an expansion of \([y^n, x] \) for \(x, y \in F \). Equation (2) gives
\[
y^n x = x(y[y, x])^n = xy^n[y, x]^n[y, x, y]^\binom{n}{2} (c_4 \alpha)^{f_4(n)} \cdots (c_m \alpha)^{f_m(n)} \gamma_{k+1}(F)
\]
where α is the endomorphism of F mapping a, b to $y, [y, x]$. This equation gives

$$[y^n, x] = [y, x]^n[y, x, y]^2(c_4\alpha)^{f_4(n)} \cdots (c_m\alpha)^{f_m(n)} \text{ modulo } \gamma_{k+1}(F). \quad (3)$$

4 Proof of Theorem 4

We want to prove that if q a power of the prime p then the order of $b^{-q}a^{-q}(ab)^q$ in $M(R(2, q; p^2 - p - 1))$ divides p. The case $p = 2$ is covered by Theorem 5, and so we assume that $p > 2$. We write $R(2, q; p^2 - p - 1) = F/R$, where F is the free group with free generators a, b. Let $H = F/[F, R]$. So H is nilpotent of class at most $p^2 - p$, and (as we noted in the introduction) H' is a finite p-group. We let c_1, c_2, \ldots, c_m be our list of basic commutators of weight at most $p^2 - p$ as described in Section 3. Let $x, y \in H$ and set $n = q$ in equation (3) from Section 3. Using the fact that H is nilpotent of class $p^2 - p$ we obtain a relation

$$[y, x]^q[y, x, y]^2[y, x, y]^3(c_5\alpha)^{f_5(q)} \cdots (c_m\alpha)^{f_m(q)} = 1, \quad (4)$$

where α is the homomorphism from F to H mapping a, b to $y, [y, x]$. Recall that if $wt \ c_i = w$ then $deg \ f_i(t) \leq w$. Note that if $wt \ c_i = w$ then $c_i\alpha$ is a commutator in x, y with w entries y. Also note that $wt \ c_i < p^2$ so that $f_i(q)$ is divisible by $\frac{2}{p}$ for all i. And if $wt \ c_i < p$ then $f_i(q)$ is divisible by q.

Since H is nilpotent of class at most $p^2 - p$, if $y \in \gamma_{p-1}(H)$ then $c_i\alpha = 1$ whenever $wt \ c_i \geq p$. So if $y \in \gamma_{p-1}(H)$ then relation (4) shows that $[y, x]^q$ is a product of qth powers of commutators in x, y with higher weight. First let $y \in \gamma_{p^2-p-1}(H)$. Then equation (4) gives $[y, x]^q = 1$. Since elements $[y, x]$ of this form generate $\gamma_{p^2-p}(H)$ this implies that $\gamma_{p^2-p}(H)$ has order q. Next let $y \in \gamma_{p^2-p-2}(H)$. Then equation (4) gives $[y, x]^q \in \gamma_{p^2-p}(H)^q = \{1\}$. So we see that $\gamma_{p^2-p-1}(H)$ has order q. We continue in this way, successively proving that $\gamma_{p^2-p-2}(H), \gamma_{p^2-p-3}(H), \ldots$ have order q. Finally we let $y \in \gamma_{p-1}(H)$ and prove that $\gamma_p(H)$ has exponent q.

Now set $n = pq$ in equation (3), and we obtain the relation

$$[y, x][y, x]^q[y, x, y]^2[y, x, y]^3(c_5\alpha)^{f_5(pq)} \cdots (c_m\alpha)^{f_m(pq)} = 1$$

where all the exponents $f_i(pq)$ are divisible by q, and where commutators with less than p entries y have exponents divisible by pq. Since all commutators in H with weight at least p have order dividing q, this implies that $[y, x]^q$ is a product of $(pq)^{th}$ powers of commutators of higher weight in x, y. So
Let \(q = 2^k \) \((k > 2)\), and let \(e_{q,c} \) be the order of \(b^{-q}a^{-q}(ab)^q \) in \(M(R(2, q; c)) \). We want to prove that \(e_{q,c} \) equals 2 for \(c < 4 \), equals 4 for \(4 \leq c \leq 11 \), and equals 8 for \(c = 12 \). We also want to prove that if \(f \) is the order of \([b, a]\) in a Schur cover of \(R(2, q; c)\) then \(f = q \) for \(c < 4 \), \(f = 2q \) for \(4 \leq c < 12 \), and \(f = 4q \) when \(c = 12 \).

Let \(R(2, q; 12) = F/R \) where \(F \) is the free group of rank two generated by \(a, b \), and let \(H = F/[F, R] \). Then \(H \) is an infinite group, but the subgroup \(\langle a^q, b^q \rangle \leq H \) is a central subgroup with trivial intersection with \(H' \). We can factor this subgroup out, without impacting \(M(R(2, q; 12)) \), and we now have a finite 2-group. We used the \(p \)-quotient algorithm to compute this quotient for \(q = 8, 16, 32 \). (These were quite easy computations.) The computations showed that \(e_{q,c} \) takes the values given in Theorem 5 for \(q = 8, 16, 32 \), and that \(f \) takes the values given in Theorem 7 for \(q = 8, 16, 32 \). We show that the fact that Theorem 5 and Theorem 7 hold true for \(q = 2^5 \) implies that they hold true for all exponents \(q = 2^k \) with \(k \geq 5 \).

We let \(q = 2^k \) where \(k \geq 5 \), and let \(c_1, c_2, \ldots, c_m \) be our list of basic commutators of weight at most 13 as described in Section 3. As in the proof of Theorem 4 we let \(x, y \in H \) and obtain a relation

\[
[y^q, x] = [y, x]^q[y, x]^{(2)}[y, x, y]^{(3)}[y, x, y, y]^{(4)}(c_5\alpha)^{f_5(q)} \cdots (c_m\alpha)^{f_m(q)}
\] (5)

where \(\alpha \) is the homomorphism from \(F \) to \(H \) mapping \(a, b \) to \(y, [y, x] \). If \(\text{wt } c_i = w \) then \(c_i\alpha \) is a commutator in \(x \) and \(y \), with \(w \) entries \(y \), and \(\deg f_i \leq w \). The binomial coefficients \(\binom{q}{2} \) and \(\binom{q}{3} \) are both divisible by \(\frac{q}{2} \),
the binomial coefficients \(\binom{q}{d} \) for \(d < 8 \) are divisible by \(\frac{q}{4} \), and the binomial coefficients \(\binom{q}{d} \) for \(d < 16 \) are divisible by \(\frac{q}{8} \).

If we let \(y \in \gamma_7(H) \) then \([y, x, y] \in \gamma_{15}(H) = \{1\} \), so we see that \([y, x]^q = 1\). Now \(\gamma_8(H) \) is generated by elements \([y, x] \) with \(y \in \gamma_7(H) \), and \(\gamma_8(H) \) is abelian. So \(\gamma_8(H) \) has exponent \(q \).

Next let \(y \in \gamma_4(H) \), and replace \(q \) by \(2q \) in equation (5). Using the fact that \(\gamma_8(H) \) has exponent \(q \) we see that \([y, x]^{2q} = 1\). So \(\gamma_5(H) \) is generated by elements of order \(2q \). Furthermore \(\gamma_5(H) \) is nilpotent of class 2, and \(\gamma_5(H)^{\prime} \leq \gamma_{10}(H) \) has exponent \(q \). So \(\gamma_5(H) \) has exponent \(2q \).

Next let \(y \in H' \), and replace \(q \) by \(4q \) in equation (5). We obtain \([y, x]^{4q} = 1\). So \(\gamma_3(H) \) is generated by elements of order \(4q \), and using the fact that \(\gamma_5(H) \) has exponent \(2q \) and \(\gamma_8(H) \) has exponent \(q \), we see that \(\gamma_3(H) \) has exponent \(4q \).

Finally replace \(q \) by \(8q \) in equation (5) and we obtain \([y, x]^{8q} = 1\) for all \(x, y \). Using facts that \(\gamma_3(H) \) has exponent \(4q \), \(\gamma_5(H) \) has exponent \(2q \), and \(\gamma_8(H) \) has exponent \(q \), we see that \(H' \) has exponent \(8q \).

Let \(N \) be the normal subgroup

\[
\gamma_2(F)^{8q} \gamma_3(F)^{4q} \gamma_5(F)^{2q} \gamma_8(F)^{q} \gamma_{14}(F) < F.
\]

Then \(H = F/M \) where \(M = ([y^q, x] : x, y \in F)N \).

Next we let \(K \) be the normal subgroup

\[
\gamma_2(F)^{q} \gamma_3(F)^{q} \gamma_5(F)^{q} \gamma_8(F)^{q} \gamma_{14}(F) < F.
\]

(The relevance of \(K \) is that if \(q \geq 8 \) is a power of 2 then \([y^q, x] \in K \) for all \(x, y \in F \).) We show that every element \(k \in K \) can be written uniquely modulo \(\gamma_{14}(F) \) in the form

\[
k = [b, a]^{m_3} c_4^{m_4} \ldots c_8^{m_8} c_9^{m_9} \ldots c_{41}^{m_{41}} c_{42}^{m_{42}} \ldots c_{1377}^{m_{1377}},
\]

where \(m_3, m_4, \ldots, m_{1377} \) are integers. (The number of basic commutators of weight at most 4 is 8, the number of weight at most 7 is 41, and the number of weight at most 13 is 1377.) First let

\[
K_2 = \gamma_3(F)^{q} \gamma_5(F)^{q} \gamma_8(F)^{q} \gamma_{14}(F).
\]

We show that every element in \(\gamma_2(F)^q \) can be written as \([b, a]^{m_3} \) modulo \(K_2 \). The elements of \(\gamma_2(F)^q \) are products of \(q \)th powers of elements in \(\gamma_2(F) \). Let \(x, y \in \gamma_2(F) \). Then from equation (2) in Section 3 we see that

\[
(xy)^q = x^q y^q [y, x]^{q} [y, x, x]^{q} (c_5 \alpha)^{f_5(q)} \ldots (c_{1377} \alpha)^{f_{1377}(q)}.
\]
where \(\alpha : F \to F \) is the endomorphism mapping \(a, b \) to \(x, y \). Now \([y, x]\), and \([y, x, x] \in \gamma_4(F) \) and \((\bar{y})\) and \((\bar{z})\) are divisible by \(\frac{q}{2}\). So \([y, x]^{(\bar{y})}\) and \([y, x]^{(\bar{z})}\) lie in \(K_2\). Similarly all the terms \((c_5a)_{35(q)}, \ldots, (c_{1377a})_{1377(q)}\) lie in \(K_2\). So \((xy)^q = x^q y^q \) modulo \(K_2\). This means that every product of \(q^\text{th}\) powers of elements in \(\gamma_3(F)\) can be written as the \(q^\text{th}\) power of a single element in \(\gamma_2(F)\) modulo \(K_2\). So consider \(x^q\) when \(x \in \gamma_2(F)\). We can write \(x = [b, a]^{m_3}g\) for some \(g \in \gamma_3(F)\). Then, as we have just seen, \(x^q = [b, a]^{q m_3} g^q\) modulo \(K_2\), and since \(g^q \in K_2\) this means that \(x^q = [b, a]^{q m_3}\) modulo \(K_2\).

Now let \(K_3 = \gamma_5(F)^{\bar{y}}\gamma_8(F)^{\bar{z}}\gamma_4(F)\). Then \(K_2\) is generated modulo \(K_3\) by \((\bar{y})^{\text{th}}\) powers of elements in \(\gamma_3(F)\). Using the same argument as above we see that if \(x, y \in \gamma_3(F)\) then \((xy)^{\bar{y}} = x^{\bar{y}} y^{\bar{z}}\) modulo \(K_3\). So every product of \((\bar{y})^{\text{th}}\) powers in \(\gamma_3(F)\) can be expressed modulo \(K_3\) as \(x^{\bar{y}}\) with \(x \in \gamma_3(F)\).

Let \(x = c_4^{m_4}c_5^{m_5} \ldots c_8^{m_8} g\), with \(g \in \gamma_5(F)\). Then

\[
x^{\bar{y}} = c_4^{\bar{y} m_4} (c_5^{m_5} \ldots c_8^{m_8} g)^{\bar{y}} \text{ modulo } K_3
\]

\[
= c_4^{\bar{y} m_4} c_5^{\bar{y} m_5} (c_6^{m_6} \ldots c_8^{m_8} g)^{\bar{y}} \text{ modulo } K_3
\]

\[
= \ldots
\]

\[
= c_4^{\bar{y} m_4} \ldots c_8^{\bar{y} m_8} g^{\bar{y}} \text{ modulo } K_3
\]

\[
= c_4^{\bar{y} m_4} \ldots c_8^{\bar{y} m_8} \text{ modulo } K_3.
\]

So every element of \(\gamma_2(F)^{\bar{y}}\gamma_3(F)^{\bar{z}}\) can be expressed modulo \(K_3\) in the form

\[
[b, a]^{q m_3} c_4^{\bar{y} m_4} \ldots c_8^{\bar{y} m_8}.
\]

Continuing in this way we see that every element \(k \in K\) can be written in the form \((6)\) modulo \(\gamma_4(F)\). Since every element of \(F/\gamma_4(F)\) can be uniquely expressed in the form

\[
c_1^{n_1} c_2^{n_2} \ldots c_{1377}^{n_{1377}} \gamma_4(F)
\]

for some integers \(n_1, n_2, \ldots, n_{1377}\), the expression \((6)\) for \(k\) modulo \(\gamma_4(F)\) is unique.

Similarly every element of \(N\) can be expressed uniquely modulo \(\gamma_4(F)\) in the form

\[
[b, a]^{8 q m_3} c_4^{4 q m_4} \ldots c_8^{4 q m_8} c_9^{2 q m_9} \ldots c_{41}^{2 q m_{41}} c_{42}^{q m_{42}} \ldots c_{1377}^{q m_{1377}},
\]

and if \(k \in K\) is given by \((6)\) then \(k \in N\) if and only if \(8 | m_i\) for \(3 \leq i \leq 1377\). So \(K\) is generated by

\[
C = \{ [b, a]^9, c_4^{\bar{y}}, \ldots, c_8^{\bar{y}}, c_9^{\bar{y}}, \ldots, c_{41}^{\bar{y}}, c_{42}^{\bar{y}}, \ldots, c_{1377}^{\bar{y}} \}.
\]
modulo $\gamma_{14}(F)$, and all these generators have order 8 modulo N. We show that provided $q \geq 32$ these generators commute with each other modulo N, so that K/N is abelian. It follows that K/N is a direct sum of 1375 copies of the cyclic group of order 8. If $k \in K$ has the form (6) then we let $[m_3, m_4, \ldots, m_{1377}]$ be the representative vector of kN, and we think of this vector as an element in C_8^{1375}. Multiplying two elements of K/N corresponds to adding their representative vectors, and $k \in N$ if and only if the representative vector of kN is zero.

To show that the elements in C commute with each other we first let $c, d \in \gamma_3(F)$ and consider the commutator $[c^r, d^s]$ for general $r, s > 0$. The subgroup $\langle c, d \rangle$ has class at most 4 modulo N, and we expand $[c^r, d^s]$ modulo $\gamma_5(\langle c, d \rangle)$. Taking $x = d^s$ we see that

$$[c^r, x] = [c, x]^r[c, x, c]^{(12)}[c, x, c, c]^{(1)}.$$

Also

$$[c, x] = [c, d^s] = [c, d]^s[c, d, d]^{(12)}[c, d, d, d]^{(1)}.$$

So, modulo $\gamma_5(\langle c, d \rangle)$,

$$[c^r, d^s] = ([c, d]^s[c, d, d]^{(12)}[c, d, d, d]^{(1)})^r([c, d]^s[c, d, d]^{(12)}, c]^{(1)}[c, d]^s, c, c]^{(1)}$$

$$= [c, d]^{rs}[c, d, d]^r[c, d, d, d]^r[c, d, c]^{(12)}[c, d, c, c]^{(12)}[c, d, c, c]^{(12)}[c, d, c, c]^{(12)}[c, d, c, c]^{(1)}.$$

Now assume that $q \geq 32$ and let $r = s = \frac{q}{2}$ then $2q$ divides rs and all the other exponents in the product above are divisible by q so that $[c^{\frac{q}{2}}, d^{\frac{q}{2}}] \in N$.

So the elements in $\{c_i^{\frac{q}{2}} : \text{wt} c_i = 3, 4\}$ commute with each other modulo N. Similarly if $c \in \gamma_3(F)$ and $d \in \gamma_5(F)$ then $\langle c, d \rangle$ is nilpotent of class at most 3 modulo N, and in the expansion of $[c^{\frac{q}{2}}, d^{\frac{q}{2}}]$ the exponent of $[c, d]$ is divisible by 2q, and all the exponents of terms of weight 3 are divisible by q, so that $[c^{\frac{q}{2}}, d^{\frac{q}{2}}] \in N$. So elements in $\{c_i^{\frac{q}{2}} : \text{wt} c_i = 3, 4\}$ commute with elements in $\{c_i^{\frac{q}{2}} : 5 \leq \text{wt} c_i \leq 7\}$ modulo N. If $c \in \gamma_3(F)$ and $d \in \gamma_8(F)$ then $\langle c, d \rangle$ is nilpotent of class at most 2 modulo N, so that

$$[c^{\frac{q}{2}}, d^{\frac{q}{2}}] = [c, d]^{\frac{q^2}{2}} \in N.$$

In the same way, if $c, d \in \gamma_5(F)$ then $\langle c, d \rangle$ is nilpotent of class at most 2 modulo N, and

$$[c^{\frac{q}{2}}, d^{\frac{q}{2}}] = [c, d]^{\frac{q^2}{8}} \in N,$$

$$[c^{\frac{q}{2}}, d^{\frac{q}{2}}] = [c, d]^{\frac{q^2}{2}} \in N.$$

11
Finally, if $c, d \in \gamma_7(F)$ then $[c, d] \in N$, so $[c^r, c^s] \in N$ for all r, s. So all the elements in $C \setminus \{[b, a]q\}$ commute with each other modulo N (provided $q \geq 32$).

It remains to show that $[b, a]^q$ commutes with elements in C. Let $d \in \gamma_3(F)$ and let $c = [b, a]$. We obtain an expression for $[d^r, c^s]$ modulo N similar to the expression we obtained above for $[c^r, d^s]$ modulo N when $c, d \in \gamma_3(F)$. In this case we have $\gamma_1([c, d]) \leq N$, so we obtain an expression involving basic commutators in c, d of weight at most 6. A complete list of basic commutators up to weight 5 is

$$c, d, [d, c], [d, c, c], [d, c, d, c], [d, c, c, c], [d, c, d, c, c, c], [d, c, c, d, d, d, c], [d, c, c, c, c, c], [d, c, c, c, d, d], [d, c, c, c, d, d], [d, c, c, [d, c]], [d, c, d, [d, c]].$$

We also need the first basic commutator of weight 6: $[d, c, c, c, c, c]$. All the other basic commutators of weight 6 in c, d lie in N. We call these basic commutators (including $[d, c, c, c, c, c]$) d_1, d_2, \ldots, d_{15}. Then

$$[d^r, c^s] = d_3^{n_3} d_4^{n_4} \cdots d_{15}^{n_{15}}$$

modulo N

where n_3, n_4, \ldots, n_{15} equal

$$rs, r \begin{pmatrix} s \\ 2 \end{pmatrix}, \begin{pmatrix} r \\ 2 \end{pmatrix} s, r \begin{pmatrix} s \\ 3 \end{pmatrix}, \begin{pmatrix} r \\ 2 \end{pmatrix} s, \begin{pmatrix} r \\ 4 \end{pmatrix}, \begin{pmatrix} r \\ 3 \end{pmatrix} s, \begin{pmatrix} r \\ 2 \end{pmatrix} s.$$

The derivation of these exponents is straightforward, but tedious, so I will omit it. It is easy to use a computer to check that they are correct for any number of r, s. Using this expression for $[d^r, c^s]$ with $c^s = [b, a]^q$ it is straightforward to check that $[b, a]^q$ commutes with all the elements in C modulo N.

This completes our proof that K/N is a direct product of 1375 copies of the cyclic group of order 8.

We have shown that every element $k \in K$ can be expressed uniquely modulo $\gamma_14(F)$ in the form (6) above. But there is a problem in that the coefficients $m_3, m_4, \ldots, m_{1377}$ which appear in (6) can depend on q. To illustrate this, consider the following example. Let c_i, c_j, c_k be the basic commutators

$$[b, a, a, a, a], [b, a, a, a, b], [[b, a, a, a, b], [b, a, a, a, b], [b, a, a, a, a]].$$

Then working modulo $\gamma_14(F)$ we have

$$(c^i c^j)^q = c^i c^j c^k 1^{(q-1)}.$$
However $8 | \frac{q^4}{4}$ provided $q \geq 32$, and so the representative vector of $(c_i,c_j)^\frac{q^4}{4}N$, thought of as an element in C_{1375}^{13}, is

$$[0, \ldots, 0, 1, 0, \ldots, 0, 1, 0, \ldots, 0, -1, 0, \ldots, 0]$$

which does not depend on q.

To solve this problem in generality we need to investigate the binomial coefficients $\binom{q}{d}$ for $1 \leq d \leq 13$. These are all divisible by $\frac{q^4}{4}$, so we can write $\binom{q}{d} = \frac{q}{2}n$ for some integer n. We show that $n \mod 8$ only depends on d, and not on q (provided $q \geq 32$).

Consider $\binom{q}{8}$ for example. We want to show that $\binom{q}{8} = \frac{q}{2}n$ where $n \mod 8$ does not depend on q.

$$\binom{q}{8} = \frac{q^8 - 28q^7 + 322q^6 - 1960q^5 + 6769q^4 - 13 \cdot 132q^3 + 13 \cdot 68q^2 - 5040q}{8!}$$

$$= -\frac{q}{8} + \frac{2 \times 3267 \times q^2 + rq^3}{27 \times 315}$$

for some integer r. The fraction $\frac{2 \times 3267 \times q^2 + sq^3}{27 \times 315}$ is actually an integer, and since $q = 2^k$ with $k \geq 5$ we can write this integer as qm for some integer m. Dividing through by $\frac{q}{8}$ we have $n = -1 + 8m$, and so $n = -1 \mod 8$.

For another example consider $\binom{q}{12}$, and again write this binomial coefficient as $\frac{q}{8}n$.

$$\binom{q}{12} = -\frac{q}{8} + \frac{2 \times 1024785 \times q^2 + rq^3}{12!}$$

for some integer r. Multiplying both sides of this equation by 3 we have

$$\frac{q}{8}3n = -\frac{q}{4} + s$$

for some integer s. So $3n \mod 8 = -2$ and $n \mod 8 = 2$.

The binomial coefficients $\binom{q}{d}$ where d is odd are all divisible by q, so can all be written in the form $\frac{q}{4}n$ where $n \mod 8 = 0$. The binomial coefficients $\binom{q}{d}$ for $d = 2, 4, 6, 10$ can be handled in the same way as we dealt with the cases $d = 8, 12$.

Similarly the binomial coefficients $\binom{q}{d}$ for $1 \leq d \leq 7$ are all divisible by $\frac{q}{4}$ and can all be written in the form $\frac{q}{4}n$ where $n \mod 8$ does not depend on q.

And finally the binomial coefficients $\binom{q}{d}$ for $1 \leq d \leq 3$ are all divisible by $\frac{q}{2}$ and can all be written in the form $\frac{q}{2}n$ where $n \mod 8$ does not depend on q.

Now we return to the issue of representing an element $[y^q, x]$ in the form (6) above. We need to show that provided $q \geq 32$ then the representative
vector of \([y^q, x]N\) depends only on \(x, y\), and not on \(q\). We introduce the notation \(rv(kN)\) for the representative vector of \(kN\) when \(k \in K\).

Equation (3) from Section 3 gives
\[
[y^q, x] = [y, x^q][y, x, y]^{(q)}[y, x, y, y]^{(q)}(c_5\alpha)^{f_5(q)} \cdots (c_{1377}\alpha)^{f_{1377}(q)}
\]
modulo \(N\), where \(\alpha\) is the endomorphism of \(F\) mapping \(a, b\) to \([y, x]\). And so
\[
rv([y^q, x]N) = rv([y, x^q]N) + rv([y, x, y]^{(q)}N) + \ldots + rv((c_{1377}\alpha)^{f_{1377}(q)}N).
\]
We show that all the summands on the right hand side of this equation depend only on \(x, y\), and not on \(q\).

First consider a summand \(rv((c_i\alpha)^{f_i(q)}N)\) where \(wt c_i \geq 8\). From our analysis of binomial coefficients we know that \(f_i(q) = n\frac{q}{8}\) for some integer \(n\) where \(n \mod 8\) is independent of \(q\) (provided \(q \geq 32\)). Furthermore \((c_i\alpha) \in \gamma_8(F)\) so that \((c_i\alpha)^q \in N\). So
\[
(c_i\alpha)^{f_i(q)}N = (c_i\alpha)^{(n \mod 8)\frac{q}{8}N}.
\]
We show that \(rv((c_i\alpha)^{f_i(q)}N)\) depends only on \(x, y\) by showing that if \(g \in \gamma_8(F)\) then \(rv(g^\frac{q}{8}N)\) depends only on \(g\) and not on \(q\). Let
\[
g = c_{42}^{\beta_42} \cdots c_{1377}^{\beta_{1377}} \mod N,
\]
for some integers \(\beta_i\). Then since \(\gamma_8(F)\) is abelian modulo \(N\),
\[
g^\frac{q}{8} = c_{42}^{\frac{q}{8}\beta_42} \cdots c_{1377}^{\frac{q}{8}\beta_{1377}} \mod N,
\]
and \(rv(g^\frac{q}{8}N)\) equals
\[
[0, \ldots, 0, \beta_42, \ldots, \beta_{1377}]
\]
which depends on \(g\), and not on \(q\).

Next consider a summand \(rv((c_i\alpha)^{f_i(q)}N)\) where \(4 \leq wt c_i < 8\). We can write \(f_i(q) = n\frac{q}{4}\) for some integer \(n\) where \(n \mod 8\) is independent of \(q\). The element \(c_i\alpha \in \gamma_5(F)\) and so \((c_i\alpha)^{2n} \in N\). So
\[
(c_i\alpha)^{f_i(q)}N = (c_i\alpha)^{(n \mod 8)\frac{q}{4}N}.
\]
We show that \(rv((c_i\alpha)^{f_i(q)}N)\) depends only on \(x, y\) by showing that if \(g \in \gamma_5(F)\) then \(rv(g^\frac{q}{4}N)\) depends only on \(g\) and not on \(q\). Let
\[
g = c_{9}^{\beta_9} \cdots c_{1377}^{\beta_{1377}} \mod N,
\]
for some integers \(\beta_i\). Then since \(\gamma_5(F)\) is abelian modulo \(N\),
\[
g^\frac{q}{4} = c_{9}^{\frac{q}{4}\beta_9} \cdots c_{1377}^{\frac{q}{4}\beta_{1377}} \mod N,
\]
and \(rv(g^\frac{q}{4}N)\) equals
\[
[0, \ldots, 0, \beta_9, \ldots, \beta_{1377}]
\]
which depends on \(g\), and not on \(q\).
for some integers β_i. Then
\[g^\frac{q}{2} = c_3^{\frac{\beta_0}{2}} \cdots c_{1377}^{\frac{\beta_{1377}}{2}} h(\frac{h}{2}) \mod N, \]
where
\[h = \prod_{9 \leq i < j \leq 1377} [c_j^{\beta_j}, c_i^{\beta_i}]. \]
So
\[\text{rv} \left(g^\frac{q}{2} N \right) = [0, \ldots, 0, \beta_9, \ldots, \beta_{1377}] + u \]
where $u = \text{rv} \left(h(\frac{q}{2}) N \right)$. As we have seen
\[h(\frac{q}{2}) N = h^{-\frac{q}{2}} N \]
so u depends only on h, which in turn depends only on g. So $\text{rv} \left(g^\frac{q}{2} N \right)$ depends only on g and not on q.

Now consider a summand $\text{rv} \left((c_i \alpha)^{f_i(q)} N \right)$ where $\text{wt} c_i = 2$ or 3. We can write $f_i(q) = n \frac{q}{2}$ for some integer n where $n \mod 8$ is independent of q. The element $c_i \alpha \in \gamma_3(F)$ and so $(c_i \alpha)^{4q} \in N$. So
\[(c_i \alpha)^{f_i(q)} N = (c_i \alpha)^{(n \mod 8) \frac{q}{2}} N. \]
We show that $\text{rv} \left((c_i \alpha)^{f_i(q)} N \right)$ depends only on x, y by showing that if $g \in \gamma_3(F)$ then $\text{rv} \left(g^\frac{q}{2} N \right)$ depends only on g and not on q. Let $g = c_4^{\beta_4} h \mod N$ where
\[h = c_5^{\beta_5} \cdots c_{1377}^{\beta_{1377}}. \]
Then from equation (2) in Section 3 we see that
\[g^\frac{q}{2} = c_4^{\frac{\beta_4}{2}} h^\frac{q}{2} [h, c_4^{\frac{\beta_4}{2}}]^{\frac{q}{2}(\frac{q}{2})} (c_4 \gamma)^{f_4(\frac{q}{2})} \cdots (c_{1377} \gamma)^{f_{1377}(\frac{q}{2})} \mod N \]
where γ is the endomorphism of F mapping a, b to $c_4^{\beta_4}, h$. If $\text{wt} c_i > 4$ then $c_i \gamma \in \gamma_{14}(F)$ and so
\[g^\frac{q}{2} = c_4^{\frac{\beta_4}{2}} h^\frac{q}{2} [h, c_4^{\frac{\beta_4}{2}}]^{\frac{q}{2}(\frac{q}{2})} (c_4 \gamma)^{f_4(\frac{q}{2})} \cdots (c_8 \gamma)^{f_8(\frac{q}{2})} \mod N \]
and
\[\text{rv} \left(g^\frac{q}{2} N \right) = \text{rv} \left(c_4^{\alpha_4} N \right) + \text{rv} \left(h^\frac{q}{2} N \right) + \ldots + \text{rv} \left((c_8 \gamma)^{f_8(\frac{q}{2})} N \right). \]
Clearly $\text{rv} \left(c_4^{\alpha_4} N \right) = [0, \alpha_4, 0, \ldots, 0]$ depends only on g. And we can assume by induction on the length of the product $h = c_5^{\beta_5} \cdots c_{1377}^{\beta_{1377}}$ that $\text{rv} \left(h^\frac{q}{2} N \right)$ depends only on h, and hence only on g.

So consider the element \([h, c_4^\beta]\). This element lies in \(\gamma_6(F)\) so that \([h, c_4^\beta]^{2q} \in N\). Furthermore

\[
\left(\frac{q}{2}\right) = \frac{q}{4} \left(\frac{q}{2} - 1\right) = -\frac{q}{4} \text{ modulo } 2q
\]

provided \(q \geq 32\). So

\[
[h, c_4^\beta]^{\left(\frac{q}{2}\right)} N = [h, c_4^\beta]^{-\frac{q}{2}} N
\]

and \(rv([h, c_4^\beta]^{\left(\frac{q}{2}\right)} N)\) (as we have seen above) depends only on \([h, c_4^\beta]\), which in turn depends only on \(g\).

For \(i = 4, 5, 6, 7, 8\) \(c_i \gamma \in \gamma_9(F)\), so that \((c_i \gamma)^q \in N\). It is straightforward to see that \(\frac{q}{4} f_i(\frac{q}{4})\) for \(i = 4, 5, 6, 7, 8\), and it is also straightforward to see that \(f_i(\frac{q}{4})\) modulo \(q\) equals \(4\frac{q}{8}, 6\frac{q}{8}, 7\frac{q}{8}, 5\frac{q}{8}, 5\frac{q}{8}\) for \(i = 4, 5, 6, 7, 8\) provided \(q \geq 32\). It follows that \((c_4 \gamma)^{f_i(\frac{q}{2})} N = (c_4 \gamma)^{4\frac{q}{2}} N\) and \(rv((c_4 \gamma)^{f_i(\frac{q}{2})} N)\) depends only on \(c_4 \gamma\) and hence only on \(g\). Similarly \(rv((c_i \gamma)^{f_i(\frac{q}{2})} N)\) depends only on \(g\) for \(i = 5, 6, 7, 8\).

So \(rv\left(\frac{q}{2} N\right)\) is a sum of vectors each of which depends only on \(g\).

Finally consider the summand \(rv([y, x]^q N)\). Let \([y, x] = [b, a]^\beta h\) where \(h \in \gamma_3(F)\). Then from equation (2) in Section 3 we see that

\[
[y, x]^q = [b, a]^q [h, [b, a]^\beta]^{(\frac{q}{2})} (c_4 \gamma)^{f_i(q)} \cdots (c_{23} \gamma)^{f_{23}(q)} \text{ modulo } N,
\]

where \(\gamma\) is the endomorphism of \(F\) sending \([a, b]^\beta\) to \([b, a]^\beta, h\). (For \(i > 23\) \(c_i \gamma \in \gamma_{14}(F)\)). So \(rv\left([y, x]^q N\right)\) equals

\[
[\beta, 0, \ldots, 0] + rv(h^q N) + rv([h, [b, a]^\beta]^{(\frac{q}{2})} N) + \ldots + rv((c_{23} \gamma)^{f_{23}(q)} N).
\]

We have already shown that \(rv(h^q N)\) depends only on \(h\), and hence only on \(x, y\), so consider \(rv([h, [b, a]^\beta]^{(\frac{q}{2})} N)\). Since \([h, [b, a]^\beta] \in \gamma_5(F)\) it follows that \([h, [b, a]^\beta]^{2q} \in N\). So, as we have seen above, \([h, [b, a]^\beta]^{(\frac{q}{2})} N = [h, [b, a]^\beta]^{-\frac{q}{2}} N\), so that \(rv([h, [b, a]^\beta]^{(\frac{q}{2})} N)\) depends only on \(x, y\). Both \(c_4 \gamma\) and \(c_5 \gamma\) lie in \(\gamma_5(F)\), and so \(c_4 \gamma^{2q} \in N\) and \(c_5 \gamma^{2q} \in N\). Now \(f_4(q) = \left(\frac{q}{2}\right)\) and \(f_5(q) = \left(\frac{q}{2}\right) + 2\left(\frac{q}{3}\right)\), and so \((c_4 \gamma)^{f_4(q)} N = (c_4 \gamma)^q N\) and \((c_5 \gamma)^{f_5(q)} N = (c_5 \gamma)^{-\frac{q}{2}} N\), and \(rv((c_i \gamma)^{f_i(q)} N)\) depends only on \(x, y\) for \(i = 4, 5\).

The elements \(c_i \gamma\) for \(i = 6, 7, \ldots, 23\) lie in \(\gamma_8(F)\), and so all have order dividing \(q\) modulo \(N\). And the exponents \(f_i(q)\) for \(i = 6, 7, \ldots, 23\) can all be expressed in the form \(\frac{q}{8}n_i\) modulo \(q\), where \(n_i \mod 8\) does not depend on \(q\) (provided \(q \geq 32\)). So \(rv((c_i \gamma)^{f_i(q)} N)\) depends only on \(x, y\) for \(i = 6, 7, \ldots, 23\).

Putting all this together we see that \(rv([y^q, x] N)\) depends only on \(x, y\), and not on \(q\).
As we stated earlier in this section, \(H = F/M \) where
\[
M = \langle [y^q, x] : x, y \in F \rangle N.
\]
As \(x, y \) range over \(F \) the elements \(rv([y^q, x]N) \) generate an (additive) subgroup \(S \leq C_{13}^{1375} \). An element \(k \in K \) lies in \(M \) if and only if \(rv(kN) \in S \). The key point is that provided \(q \geq 32 \) the subgroup \(S \) does not depend on \(q \).

Now consider the claim that \([b, a]\) has order \(8q \) in \(H \). As stated above, I have used the \(p \)-quotient algorithm to confirm this for \(q = 8, 16, 32 \). For \(q \geq 32 \) this is equivalent to showing that in \(F \), \([b, a]^{8q} \in M \) and \([b, a]^{4q} \notin M \). We have shown above that \([b, a]^{8q} \in N \). On the other hand, if \(q \geq 32 \) then \([b, a]^{4q} \) has representative vector \([4, 0, 0, \ldots, 0]\), and since my computations show that \([b, a]^{4q} \notin M \) when \(q = 32 \) this implies that \([4, 0, 0, \ldots, 0] \notin S \), and hence that \([b, a]^{4q} \notin M \) for any \(q \geq 32 \).

Next consider the claim that \(b^{-q}a^{-q}(ab)^q \) has order \(8 \) in \(H \). This is equivalent to showing that \(b^{-8q}a^{-8q}(ab)^{8q} \in M \) and that \(b^{-4q}a^{-4q}(ab)^{4q} \notin M \). From equation (2) in Section 3 we see that
\[
b^{-8q}a^{-8q}(ab)^{8q} = [b, a]^{(2q)}[b, a]^{(8q)}c_{f_5(8q)} \ldots c_{f_{1377}(8q)} \quad \text{modulo } N,
\]
and the properties of the integer-valued polynomials \(f_i(t) \) imply that
\[
b^{-8q}a^{-8q}(ab)^{8q} \in K.
\]
My computer calculations show that \(b^{-8q}a^{-8q}(ab)^{8q} \in M \) for \(q = 32 \). So the representative vector of \(b^{-8q}a^{-8q}(ab)^{8q} \) lies in \(S \) when \(q = 32 \). It is not really relevant, but the representative vector of \(b^{-8q}a^{-8q}(ab)^{8q} \) is
\[
[4, 0, 0, 4, 4, 0, 0, \ldots, 0].
\]
So \(b^{-8q}a^{-8q}(ab)^{8q} \in M \) for all \(q \geq 32 \). The element \(b^{-4q}a^{-4q}(ab)^{4q} \) also lies in \(K \), and my computer calculations show that if \(q = 32 \) then \(b^{-4q}a^{-4q}(ab)^{4q} \notin M \). So the representative vector of \(b^{-4q}a^{-4q}(ab)^{4q} \) does not lie in \(S \) when \(q = 32 \), and this implies that it does not lie in \(S \) for any \(q \geq 32 \). So \(b^{-4q}a^{-4q}(ab)^{4q} \notin M \) for \(q \geq 32 \).

The claims in Theorem 5 and Theorem 7 for the orders of \(b^{-q}a^{-q}(ab)^q \) and \([b, a]\) in Schur covers of \(R(2, q; c) \) for \(c < 12 \) follow similarly. We replace \(N \) by \(N_{c+2}(F) \). If \(c_r \) is the last basic commutator of weight \(c + 1 \) then any element in \(K/N \) has a unique representative vector \([m_3, m_4, \ldots, m_r]\) for all \(q \geq 32 \), and the proof goes through in the same way as above.
There is a slight problem in showing that $b^{-q}a^{-q}(ab)^q$ is non-trivial in the Schur cover of $R(2, q; c)$ since $b^{-q}a^{-q}(ab)^q \notin K$. But we can directly calculate a Schur cover of $R(2, q; 1)$ by hand, and show that $b^{-q}a^{-q}(ab)^q \neq 1$ in this cover. Similarly we can show that $[b, a]^\frac{q}{2}$ is non-trivial in a Schur cover of $R(2, q; 1)$, so that the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ is at least q for any c.

Finally, let G be a finite 2-group with exponent $q > 2$ and nilpotency class at most 3. We show that if H is the covering group of G then H' has exponent dividing q. Our calculations with the covering group of $R(2, q; 3)$ show that $[y, x]^q = [y, x, x]^\frac{q}{2} = 1$ for all $x, y \in H$. Groups satisfying the 2-Engel identity $[y, x, x] = 1$ are nilpotent of class at most 3. So if $h \in \gamma_4(H)$, h can be expressed as a product of terms $[y, x, x]$ and their inverses, with $x, y \in H$. So $h^{\frac{q}{2}}$ is a product of terms $[y, x, x]^{\frac{q}{2}}$ and their inverses, and hence $h^{\frac{q}{2}} = 1$. This implies that $\gamma_4(H)$ has exponent dividing $\frac{q}{2}$. Since H' is generated by commutators which have order dividing q, and $\gamma_4(H)$ has exponent dividing $\frac{q}{2}$, we see that that H' has exponent dividing q.

6 Proofs of Theorem 6 and Theorem 8

The proofs of Theorem 6 and Theorem 8 are essentially the same as the proofs of Theorem 5 and Theorem 7. Let $q = 3^k$ where $k \geq 2$, let $R(2, q; 12) = F/R$ where F is the free group of rank two generated by a, b, and let $H = F/[F, R]$. We can use the p-quotient algorithm to show that Theorem 6 and Theorem 8 hold true when $q = 9$ or 27, and we show that the fact that they hold true for $q = 27$ shows that they also hold true for higher powers of 3.

We let $q = 3^k$ where $k \geq 3$, and let $c_1, c_2, \ldots, c_{1377}$ be our list of basic commutators of weight at most 13. As in the proof of Theorem 5 and Theorem 7 we let $x, y \in H$ and obtain a relation

$$[y, x]^q[y, x, y]^{(3)}[y, x, y]^{(3)}(c_5\alpha)^{f_5(q)} \cdots (c_{1377}\alpha)^{f_{1377}(q)} = 1 \quad (7)$$

where α is the homomorphism from F to H mapping a, b to $y, [y, x]$. If $\text{wt} \ c_i = w$ then $c_i\alpha$ is a commutator in x and y, with w entries y, and $\deg f_i \leq w$. The binomial coefficients q and $\binom{q}{d}$ are both divisible by q, the binomial coefficients $\binom{q}{d}$ for $d < 9$ are divisible by $\frac{q}{3}$, and the binomial coefficients $\binom{q}{d}$ for $d < 27$ are divisible by $\frac{q}{4}$.

If we let $y \in \gamma_5(H)$ then all commutators in H with 3 or more entries y are trivial and we obtain the relation $[y, x]^q[y, x, y]^{(3)} = 1$. This implies that $[y, x]^q = 1$, and so (since $\gamma_6(H)$ is nilpotent of class 2) $\gamma_6(H)$ has exponent q.
Now let $y \in \gamma_2(H)$, and replace q by $3q$ in equation (7). Using the fact that $\gamma_6(H)$ has exponent q we see that $[y, x]^{3q} [y, x, y]^{(3q)} = 1$, which implies that $[y, x]^{3q} = 1$, and hence that $\gamma_3(H)$ has exponent $3q$.

Finally replace q by $9q$ in equation (7) and using the facts that $\gamma_3(H)$ has exponent $3q$ and $\gamma_6(H)$ has exponent q we see that $[y, x]^{9q} = 1$ for all $x, y \in H$, and that H' has exponent $9q$.

Let N be the normal subgroup

$$\gamma_2(F)^{9q} \gamma_3(F)^{3q} \gamma_7(F)^{3q} \gamma_{14}(F) < F.$$

Then $H = F/M$ where $M = ([y^q, x] : x, y \in F)N$.

Now let

$$K = \gamma_2(F)^{q} \gamma_3(F)^{3q} \gamma_7(F)^{3q} \gamma_{14}(F).$$

Just as in Section 5 we can show that every element $k \in K$ can be uniquely expressed modulo $\gamma_{14}(F)$ in the form

$$k = [b, a]^{q m_3} [b, a]^{q m_4} \ldots c_{23}^{q m_{23}} c_{24}^{q m_{24}} \ldots c_{1377}^{q m_{1377}}$$

(There are 23 basic commutators c_i of weight at most 6.) Similarly every element of N can be uniquely expressed modulo $\gamma_{14}(F)$ in the form

$$[b, a]^{q m_3} [b, a]^{q m_4} \ldots c_{23}^{q m_{23}} c_{24}^{q m_{24}} \ldots c_{1377}^{q m_{1377}}.$$

If $k \in K$ is given by equation (8) then $k \in N$ if and only if $9|m_i$ for $i = 3, 4, \ldots, 1377$. And just as in Section 5 we can show that K/N is abelian and is a direct product of 1375 copies of the cyclic group of order 9. We let $[m_3, m_4, \ldots, m_{1377}]$ be the representative vector for kN, and think of this vector as an element in C_{1375}^9. Multiplying elements of K/N corresponds to adding their representative vectors, and the element k lies in N if and only if the representative vector of kN is 0.

A similar argument to that given in Section 5 for binomial coefficients $\binom{\ell}{d}$ ($d \leq 13$) for q a power of 2 at least as big as 32, shows that if $q \geq 27$ is a power of 3 then all the binomial coefficients $\binom{\ell}{d}$ $d \leq 13$ can be expressed in the form $\frac{q}{d}n$ for some integer n where $n \mod 9$ depends only on d, and not on q. Similarly, if $q \geq 27$ is a power of 3 then all the binomial coefficients $\binom{\ell}{d}$ $d < 9$ can be expressed in the form $\frac{q}{d}n$ for some integer n where $n \mod 9$ depends only on d, and not on q. And finally, if $q \geq 27$ is a power of 3 then $\binom{\ell}{q} = q$ and $\binom{\ell}{2} = qn$ where $n \mod 9 = 4$. Using the same argument as we used in Section 5, we see that if $q \geq 27$ and $x, y \in F$, then $[y^q, x] \in K$, and the representative vector of $[y^q, x]N$ depends only on x, y, and not on q. As
we stated above, $H = F/M$ where $M = \langle [y^q, x] : x, y \in F \rangle N$. The quotient M/N is a subgroup of K/N and the set of representative vectors of elements in this subgroup is a subgroup $S \leq C_q^{1375}$. If $k \in K$, then $k \in M$ if and only if the representative vector of kN lies in S.

The remainder of the proof of Theorem 6 goes through in the same way as in Section 5, as does the proof of the claims in Theorem 8 for the order of $[b, a]$ in Schur covers of $R(2, q; c)$ for various c.

Now let G be a finite 3-group with exponent $q > 3$ and class at most 8, and let H be the covering group for G. We show that H' has exponent dividing q. We have shown that commutators in H have order dividing q, but we need to show that products of commutators have order dividing q. Our calculations with the covering group of $R(2, q; 8)$ show that $[y, x, x, x]_q^3 = 1$ for all $x, y \in H$. It is known that 3-Engel groups are locally nilpotent, and Werner Nickel’s nilpotent quotient algorithm in Magma [2] has a facility for computing Engel groups. The free 3-Engel group of rank 5 has class 9, and it is an easy calculation with the nilpotent quotient algorithm to show that 3-Engel groups satisfy the identity $[x_1, x_2, x_3, x_4, x_5]_{20}^2 = 1$. This implies that in a free group $[x_1, x_2, x_3, x_4, x_5]_{20}^2$ can be expressed as a product of terms $[y, x, x, x]$ and their inverses. Now $\gamma_5(H)$ is abelian and is generated by elements with order dividing q. So $\gamma_5(H)$ has exponent dividing q, which is coprime to 20. So if $h \in \gamma_5(H)$ then h can be expressed as a product of terms $[y, x, x, x]$ and their inverses (with $x, y \in H$). This implies that $h^{\frac{q}{2}}$ is a product of terms $[y, x, x, x]^{\pm \frac{q}{2}}$ (which are all trivial) and terms

$$[[y, x, x, x]^{\pm 1}, [z, t, t, t]^{\pm 1}]^{(\frac{q}{2})}$$

which are also trivial. So $\gamma_5(H)$ has exponent dividing $\frac{q}{2}$. This, combined with the fact that H' is generated by elements with order dividing q, implies that H' has exponent dividing q.

7 Proof of Theorem 9 and Theorem 10

To prove Theorem 9 we need to show that if q is a power of 5 then the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ is q for $c < 9$, and $5q$ for $c = 9$. It is an easy calculation with the p-quotient algorithm to show that this is the case for $q = 5, 25$. We use the same argument as in Section 5 and Section 6 to show that this implies that the theorem holds true for all powers of 5.

Let $q = 5^k$ where $k \geq 2$, let $R(2, q; 9) = F/R$ where F is the free group of rank two generated by a, b, and let $H = F/[F, R]$. Let $c_1, c_2, \ldots, c_{226}$ be our
list of basic commutators of weight at most 10. As in the last two sections we let $x, y \in H$ and obtain a relation

$$[y, x]^q[y, x, y]^{(y)}[y, x, y, y]^{(c_5)}(c_5 \alpha)f_5(q) \ldots (c_{226})f_{226}(q) = 1 \quad (9)$$

where α is the homomorphism from F to H mapping a, b to $y, [y, x]$. If $wt c_i = w$ then $c_i \alpha$ is a commutator in x and y, with w entries y, and $deg f_i \leq w$. The binomial coefficients $\binom{q}{d}$ for $d < 5$ are divisible by q, and the binomial coefficients $\binom{q}{d}$ for $d < 25$ are divisible by q^5.

If we let $y \in \gamma_2(H)$ then all commutators in H with 5 or more entries y are trivial and we see that $[y, x]^q = 1$, and $\gamma_3(H)$ has exponent q.

Now replace q by $5q$ in (9) and we obtain $[y, x]^{5q} = 1$, which implies that $\gamma_2(H)$ has exponent $5q$.

So we let

$$N = \gamma_2(F)^{5q}\gamma_3(F)^q\gamma_{11}(F)$$

and we let

$$K = \gamma_2(F)^{q}\gamma_3(F)^{\frac{q}{5}}\gamma_{11}(F).$$

Just as in Section 5 and Section 6 we can show that K/N is a direct product of 224 copies of the cyclic group of order 5. Every element $k \in K$ can be uniquely expressed modulo N in the form

$$k = [b, a]^{q m_3}c_4^{m_4} \ldots c_{226}^{m_{226}}$$

where $0 \leq m_i < 5$ for $i = 3, 4, \ldots, 226$. We let $[m_3, m_4, \ldots, m_{226}]$ be the representative vector for kN, and we think of it as an element in C_5^{224}.

Just as in Section 5 we can show that if $x, y \in F$ then $[x^q, y] \in K$, and the representative vector of $[x^q, y]N$ depends only on x, y, and not on q. The rest of the proof that the order of $[b, a]$ in a Schur cover of $R(2, q; c)$ is q for $c < 9$, and $5q$ for $c = 9$ goes through just as in Section 5.

If G is any group of exponent $q = 5^k$ ($k \geq 1$) with class less than 9, and if H is the cover of G then commutators in H have order dividing q, and so (since H' has class at most 4) H' has exponent dividing q, which implies that $M(G)$ has exponent dividing q.

The proof of Theorem 10 is almost identical to the proof of Theorem 9.
References

[1] A.J. Bayes, J. Kautsky, and J.W. Wamsley, Computation in nilpotent groups (application), Proceedings of the second international conference on the theory of groups (Australian National University, Canberra, 1973), Springer, Berlin, 1974, pp. 82–89.

[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265.

[3] M. Hall, The theory of groups, Macmillan, New York, 1959.

[4] G. Havas and M.F. Newman, Applications of computers to questions like those of Burnside, Lecture Notes in Mathematics, 806, Springer-Verlag, Berlin, 1980, pp. 211–230.

[5] Primoz Moravec, Schur multipliers and power endomorphisms of groups, J. Algebra 308 (2007), 12–25.

[6] Michael Vaughan-Lee, Schur’s exponent conjecture — counterexamples of exponent 5 and exponent 9, Int. J. Group Theory 10 (2021), 167–173.