Bacteriophages lytic for *Salmonella* rapidly reduce *Salmonella* contamination on glass and stainless steel surfaces

Joelle Woolston,1,* Adam R. Parks,2 Tamar Abuladze,1 Bradley Anderson,1 Manrong Li,1 Chandi Carter,1 Leigh Farris Hanna,3 Serena Heyse,1 Duane Charbonneau1 and Alexander Sulakvelidze1

1Intralytix, Inc.; Baltimore, MD USA; 2National Cancer Institute; Frederick, MD USA; 3The Procter and Gamble Company; Mason, OH USA

Keywords: *Salmonella*, bacteriophage, phage, SalmoFresh™, SalmoLyse™, food safety, surface decontamination

Abbreviations: ca., approximately

A cocktail of six lytic bacteriophages, SalmoFresh™, significantly (p < 0.05) reduced the number of surface-applied *Salmonella* Kentucky and Brandenburg from stainless steel and glass surfaces by > 99% (2.1–4.3 log). Both strains were susceptible to SalmoFresh™ in the spot-test assay. Conversely, SalmoFresh™ was unable to reduce surface contamination with a *Salmonella* Paratyphi B strain that was not susceptible to the phage cocktail in the spot-test assay. However, by replacing two SalmoFresh™ component phages with two new phages capable of lysing the Paratyphi B strain in the spot-test assay, the target range of the cocktail was shifted to include the *Salmonella* Paratyphi B strain. The modified cocktail, SalmoLyse™, was able to significantly (p < 0.05) reduce surface contamination of the Paratyphi B strain by > 99% (2.1–4.1 log). The data show that both phage cocktails were effective in significantly reducing the levels of *Salmonella* on hard surfaces, provided the contaminating strains were susceptible in the spot-test (i.e., spot-test susceptibility was indicative of efficacy in subsequent surface decontamination studies). The data also support the concept that phage preparations can be customized to meet the desired antibacterial application.

Introduction

Illnesses caused by *Salmonella* constitute a substantial health burden in the United States and around the world. The Centers for Disease Control (CDC) estimates that each year, in the US, infection by foodborne *Salmonella* causes over one million people to become sick, approximately 19,000 of whom are hospitalized and an estimated 400 individuals die.1 In the US alone, these illnesses result in nearly $2.4 billion in medical costs annually, which constitutes a substantial economic hardship on national and local economies.2 *Salmonella* are also an international health risk, causing an estimated 93.8 million illnesses globally, and approximately 155,000 deaths, each year.3

According to the Food Safety and Inspection Service (FSIS) of the US Department of Agriculture (USDA), about 75% of the annual cases of human salmonellosis are due to the consumption of contaminated poultry, beef and egg products.5 Although this bacterium is inactivated when these foods are properly cooked, *Salmonella* may survive for several days on the surfaces on which the foods are processed and handled before cooking.5 If other foods, especially ready-to-eat foods (e.g., fruits and vegetables), come into contact with those contaminated surfaces, *Salmonella* may contaminate them and cause foodborne salmonellosis.5 Strategies currently employed to manage *Salmonella* and other foodborne pathogenic bacteria focus on using chemical disinfec-tants as well as physical disruption, including heat, steam and UV-light irradiation to non-selectively reduce the microbial burden on food contact surfaces.6,7 These strategies, while effective, have significant drawbacks, such as corrosion of equipment, toxic chemical residues, and damage to the quality of foods.

A novel approach to reduce the need for harsh chemical sanitizers is the use of lytic bacteriophages (or phages) as biocontrol agents.8-10 This method relies upon the activity of environmentally-isolated lytic bacteriophages that are capable of exclusively infecting and killing specific bacterial strains or a subgroup of strains, usually within the same genus. The concept of using lytic bacteriophage as a pathogen control strategy has been the subject of several recent reviews in the scientific literature.11-13 This communication reports that (1) two lytic bacteriophage cocktails, each containing six *Salmonella*-specific phages, significantly reduced the levels of *Salmonella* on selected hard surfaces, (2) the contaminating strain must be susceptible to the lytic bacteriophage cocktails, as determined by the spot-test assay,14 for the cocktail to be able to reduce *Salmonella* contamination on
hard surfaces, and (3) a lytic bacteriophage cocktail specific for
Salmonella could be rapidly customized and adapted to achieve
lytic activity against _Salmonella_ strains/serotypes not previously
lysed. This is an important consideration for enabling continued
effectiveness of the approach, as it allows updating phage prepa-
rations to keep up with the emergence of bacterial resistance
against a given phage cocktail as the result of selective pressure
caused by the continued use of such phage preparations and/or
natural shifts in bacterial populations.

Results and Discussion

Selection of bacteriophages for biocontrol cocktails

Standard enrichment techniques were used to isolate a total
of 21 _Salmonella_-specific bacteriophages from various surface-
water sources in Maryland (including Baltimore Inner Harbor
and Chesapeake Bay). The ability of each bacteriophage to lyse
Salmonella was determined by screening the bacteriophages
against a collection of 916 _Salmonella_ strains (representing a
total of 43 known serotypes and 275 strains of undetermined
serotype), using the classical spot-test assay (data not shown).
After determining the lysis range for each bacteriophage,
SalmoFresh™, a bacteriophage cocktail possessing lytic ac-
tivity against a broad range of _Salmonella_ strains, was created.
The optimal lytic bacteriophages were chosen for inclusion after
determining their (1) host ranges (i.e., the phages that killed
the greatest percentage of our _Salmonella_ isolates), and (2) abili-
ties to kill _Salmonella_ serotypes of high public health impor-
tance, including _S. Typhimurium_, _S. Enteritidis_, _S. Heidelberg_,
S. Newport and _S. Hadar_. The resulting cocktail contained
6 bacteriophages (designated SPT-1, SBA-1781, SSE-121, STML-
13-1, STML-198 and SKML-39) and, at a concentration of ca.
2 × 10^4 PFU/mL, it killed 780 (85%) of the 916 _Salmonella_ iso-
lates examined in this study. A summary of serotypes (those rep-
resented by 5 or more strains in our collection) examined, as well
as the effectiveness of _SalmoFresh™_ against them is shown in
Table S1. An alternative cocktail (designated _SALmolys™_) was
also prepared as explained later in the text. This cocktail con-
tained 4 of the 6 bacteriophages included in _SalmoFresh™_ (SPT-
1, SBA-1781, SSE-121 and STML-198), but substituted two
other phages (SEML-239-1 and SNN-387 in place of STML-
13-1 and SKML-39). The reformulated cocktail lysed 756 (83%)
of the 916 _Salmonella_ test strains (at a concentration of ca. 2 ×
10^4 PFU/mL). The number of serotypes (listed in _Table S1_) lysed
was not affected.

The specificity of both cocktails was examined by determin-
ing their lytic activities against 35 strains of seven bacterial spe-
cies other than _Salmonella_ (see Materials and Methods). Neither
cocktail lysed any of the Gram-positive strains (_Listeria_ spp,
Staphylococcus aureus, or _Enterococcus_ spp), nor did they lyse the
Gram-negative _Pseudomonas aeruginosa_ or _Acinetobacter bauman-
nii_ strains. However, _SalmoFresh™_ and _SALmolys™_ lysed two
E. coli O157:H7 strains and _SALmolys™_ also lysed a single
Shigella strain. The results support the idea that both prepara-
tions are relatively specific for _Salmonella_ with slight cross-react-
ivity against a small number of strains of very closely related
species. Electron microscopic images of the eight bacteriophages
used to prepare _SalmoFresh™_ and _SALmolys™_ are contained in
Figure 1. All of these bacteriophages belong to the _Myoviridae_
family of double-stranded DNA bacteriophages, according to the
classification scheme of Ackermann and Berthiaume.

Surface decontamination studies

The ability of the bacteriophage cocktails to reduce _Salmonella_
on artificially contaminated hard surfaces was evaluated as
described previously. Briefly, stainless steel coupons or glass
coverslips were contaminated with _S. enterica_ serovar Kentucky
strain S800 at a concentration of ca. 1 × 10^7 CFU/surface and
then treated for 5 min with either phosphate buffered saline
(PBS) or _SalmoFresh™_ at a concentration of ca. 1 × 10^7 PFU/
surface. Strain S800 was randomly selected from the _Salmonella_
strains that were susceptible to _SalmoFresh™_ in the spot-test
assay. A contact time of 5 min was selected to mimic the con-
tact time of another phage preparation (ListShield™) previously
approved by the Environmental Protection Agency (EPA) for
similar surface decontamination applications (EPA registration
number 74234-1). The “free phages” (i.e., phages unattached to
Salmonella adhering to the coverslips) were removed by washing
with peptone water, and the concentrations of viable _Salmonella_
remaining on the coverslips were determined by a standard col-
ony counting assay (see Materials and Methods). Recoveries of
Salmonella from PBS-treated controls ranged from ca. 5 × 10^3
to 1 × 10^4 CFU (_Fig. 2_). _SalmoFresh™_ treatment significantly
(p < 0.05, unpaired t-test) reduced _Salmonella_ contamination on
the stainless steel and glass surfaces by 4.3 log CFU/surface
(99.995%) and 3.0 log CFU/surface (99.90%), respectively
(_Fig. 2A_), vs. the PBS-treated controls. This reduction is similar
to that recently reported for _Yersinia pestis_-specific bacteriophages
(> 99%) and _Escherichia coli_ O157:H7-specific bacteriophages
(94%).

The challenge strain used during these studies, _Salmonella_
Kentucky S800, was selected because it was susceptible to
SalmoFresh™, as determined by a spot-test assay. The sus-
ceptibility of a bacterial strain to a lytic bacteriophage is typi-
cally assumed to be required for bacteriophage efficacy as an
antibacterial for various practical applications. However, rig-
orous experimental evidence establishing that idea for food
safety or surface decontamination applications have not yet
been reported. Therefore, to test this assumption, we repeated
the study using a susceptible strain, _Salmonella_ Brandenburg
S806, and a non-susceptible strain, _Salmonella_ Paratyphi B
S661, as the challenge organisms. _S. Brandenburg_ S806 was
used instead of the previously used susceptible _S. Kentucky_
S800 to examine the robustness of the approach and to con-
firm that the observed efficacy of _SalmoFresh™_ is not limited
to one susceptible test strain. _S. Paratyphi_ B S661 was selected
because it is resistant to _SalmoFresh™_ at both 2 × 10^4
and 1 × 10^7 PFU/mL when examined in the spot-test assay.
Using the glass surface in the surface decontamination study,
SalmoFresh™ treatment significantly reduced (p < 0.05) the
Salmonella load on coverslips experimentally contaminated
with the susceptible strain, _S. Brandenburg_ S806, by 2.1 log
CFU/surface (99.14%), but it did not significantly reduce
In all our surface decontamination studies, the Salmonella were exposed to the phage preparations on the hard surfaces for 5 min, after which the phages were washed away and the levels of residual Salmonella on those surfaces were enumerated. The normal lytic cycle of a bacteriophage requires about 20–40 min, thus, the significant reductions in Salmonella counts we observed during our studies (with the Salmonella strains susceptible to SalmoFresh and SalmoLyse in the spot-test assay) were not likely to be the endpoints of the full lytic process on the hard surfaces but were rather the result of initial adsorption of the phage particles to the bacterial membrane and subsequent lysis of the bacteria. In this context, most lytic phage-infected bacteria are destined for lysis by ≤1 min post-injection of phage DNA.

Concluding Remarks

The use of lytic bacteriophages to remove specific bacteria from hard surfaces has been gaining increased attention, as indicated by studies focusing on bacteriophages targeting some major foodborne bacterial pathogens, such as L. monocytogenes and E. coli O157:H7, as well as some select bacterial agents of bioterrorism concern. Additionally, at least one bacteriophage preparation has been registered by the US Environmental Protection Agency (EPA registration number 74234-1) as a "microbial
and to updating the phage preparation when the predominant *Salmonella* isolates in that facility are no longer susceptible to the original phage cocktail. This approach of customization of bacteriophage cocktails may provide flexibility for maintaining an effective long-term pathogen control strategy in various settings. However, several important factors should be considered concerning the implementation of an effective phage-based biocontrol approach in real-life situations. For example: (1) Lytic phages, because of their specificity, will only kill their specific bacterial hosts (in the case of this study, *Salmonella*). Thus, bacteriophage strategies should be considered a supplement, rather than a substitute, for chemical sanitizers and disinfectants.
that typically have a very broad spectrum of activity. (2) With some rare exceptions,19 the typical concentrations of commonly used chemical sanitizers and disinfectants will rapidly inactivate phages. Therefore, application of bacteriophage should be coordinated with the use of common chemical sanitizers, to ensure optimization of both strategies. For example, after treating surfaces with a phage cocktail, allowing a sufficient time to elapse before applying a chemical sanitizer or disinfectant to the surfaces. (3) To facilitate rapid updating of phage-based biocontrol agents, several regulatory issues need to be addressed before such updates can be implemented in real-life situations. The approach is a clear departure from the traditional approval process for other antimicrobials. However, a positive development in that regard is the FDA's flexibility regarding its recent approval of a bacteriophage cocktail specific for \textit{L. monocytogenes}, whereby the agency allowed for future updates to the cocktail with new replacement phages, if and when necessary to maintain efficacy (21 CFR §172.785). All new phages will need to meet the same stringent safety and efficacy criteria as the original phages in the six-phage cocktail, and the manufacturing process and all quality control protocols must be strictly adhered to for all new phages—but these are logical and technically-feasible requirements. It is possible that similar strategy could be used by the EPA when regulating phage preparations for surface applications.

The data obtained during our studies demonstrate that treatment with bacteriophage cocktails lytic for \textit{Salmonella} significantly reduced the levels of \textit{Salmonella} contaminating the two hard surfaces examined. If the observed efficacy of SalmoFreshTM and SalmoLyseTM is reproducible in food processing facilities, a bacteriophage cocktail-based approach may help to reduce the immediate \textit{Salmonella} levels on surfaces, potentially enabling these facilities to reduce the use of chemical sanitizers for that purpose. Additionally, using SalmoFreshTM or a similar bacteriophage-based preparation may also have more long-term implications for reducing \textit{Salmonella} contamination. In this context, various sanitizing or disinfecting chemicals are routinely used while attempting to produce a bacteria-free environment in food processing facilities. However, such an environment is unsustainable, due to the rapid reintroduction of various microorganisms during food processing procedures (potentially including the pathogenic bacteria that were the targets of the original, chemical-based sanitation protocol). Thus, routine use of SalmoFreshTM or SalmoLyseTM (or any other technically equivalent phage preparation) may provide a subtle selective pressure that may make it increasingly difficult for \textit{Salmonella} to re-establish themselves in that environment. Additional long-term studies are needed to investigate the validity of this phage-mediated “eco-management” approach.

\section*{Materials and Methods}

\subsection*{Bacterial strains and growth media}

A total of 916 \textit{Salmonella} isolates from various research and public health laboratories in the United States were used in the studies described here, representing a total of 43 known serotypes and 275 strains of undetermined serotype. Also, a total of 35 strains of seven bacterial species other than \textit{Salmonella} were used during the studies. They included three strains of \textit{L. monocytogenes}, two strains of \textit{L. innocua}, and five strains each of \textit{Staphylococcus aureus}, \textit{Pseudomonas aeruginosa}, Acinetobacter baumannii, Enterococcus spp, \textit{Shigella} spp and \textit{E. coli}. All strains were stored at \textdegree C in 70\% LB broth-30\% glycerol. The three \textit{Salmonella enterica} serotypes used in our surface decontamination studies were \textit{S. Kentucky} S800, \textit{S. Brandenburg} S806 and \textit{S. Paratyphi B} S661.

\subsection*{Bacteriophage preparations}

Both of the bacteriophage cocktails formulated each contained a total of 6 phages. Four of the phages were common to SalmoFreshTM and SalmoLyseTM: SPT-1, STML-198, SSE-121 and SBA-1781. The remaining two phages were unique for each cocktail: SalmoFreshTM contained SKML-39 and STML-13-1, while SalmoLyseTM contained SEML-239-1 and SNN-387. Electron micrographs of the eight monophages used to prepare the phage cocktails are shown in Figure 1.

\subsection*{Spot-test assay}

The classical spot-test assay14 was used to determine susceptibility of the test strains to the individual phages and the two bacteriophage cocktails. Briefly, the test strain was grown to early log phase, a 0.100 mL aliquot was combined with top agar (LB + 0.7\% agar), and plated onto LB agar plates. Once set, 10 \textmu L of the test phage or cocktail was spotted onto the lawn and allowed to dry before incubating at the appropriate temperature for the strain (e.g., 35 ± 2\degree C for \textit{Salmonella}) for 24 ± 4 h. A strain was deemed susceptible if zone of lysis developed at the spot where phage was applied.

\subsection*{General design of studies utilizing \textit{Salmonella}-contaminated hard surfaces}

The studies were performed as described previously.9,19 All tests were performed in triplicate. Square glass coverslips and stainless steel coupons (both ca. 25 × 25 mm) were used as examples of the hard surfaces commonly found in food preparation settings. After cleaning with 70\% ethanol and rinsing with deionized water, the substrates were sequentially (1) placed in glass petri dishes (one item per dish), (2) sterilized in an autoclave, (3) treated with organic matter, and (4) stored at room temperature, in a laminar flow biosafety hood, until completely dry (typically 20–30 min). After drying, the surfaces of the matrices were contaminated by applying the appropriate \textit{Salmonella} serotype (10 \textmu L of a suspension of ca. 1 × 108 CFU/mL), and allowed to dry 30 min in a laminar flow biosafety hood to enhance bacterial attachment. After drying and attachment, 0.1 mL of the appropriate phage cocktail (ca. 1 × 108 PFU/mL; MOI = 10) or PBS were applied on top of the \textit{Salmonella}-contaminated surfaces. The test and control matrices were stored 5 min at room temperature, and the excess bacteriophage preparations and PBS were removed by holding the surfaces vertically and allowing the excess liquid to drain onto paper towels. The test and control matrices were then mixed gently for 30 s in separate conical tubes (50-mL capacity) containing 20 mL peptone water. Serial...
Salmonella treatment was evaluated by comparing the number of recovered from each of the tested surfaces. The efficacy of phage was evaluated by counting the total colony-forming units (CFU) was enumerated by counting Salmonella Shigella Agar (SSA; Becton-Dickinson) and the number of recovered Salmonella was enumerated by counting the total colony-forming units (CFU) recovered from each of the tested surfaces. The efficacy of phage treatment was evaluated by comparing the number of Salmonella recovered from PBS-treated control samples vs. phage-treated samples. Unpaired t-test was used to determine whether the observed differences were statistically significant, with p < 0.05 considered significant.

References
1. CDC. Estimates of foodborne illness in the United States. 2011. Available at: http://www.cdc.gov/foodborneburden/PDFs/FACTSHEET_A_FINDINGS_.updated-8-13.pdf
2. Mead PS, Slutsker L, Dietz V, McGlynn K, Sidell R, Bresee JS, Shapiro G, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emerg Infect Dis 1999; 5:607-25; PMID:10511517; http://dx.doi.org/10.3201/eid0505.990502
3. Majowicz SE, Muto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazio A, Hoodstra RM; International Collaboration on Enteric Disease ‘Burden of Illness’ Studies. The global burden of non typhoidal Salmonella gastroenteritis. Clin Infect Dis 2010; 50:882-9; PMID:20158401; http://dx.doi.org/10.1086/565733
4. CDC. Making food safer to eat. CDC Vital Signs 2011. Available at: http://www.cdc.gov/VitalSigns/article/25697
5. Kasumangirum HD, Riboldi G, Hazeleger WC, Beumer RR. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int J Food Microbiol 2003; 85:227-36; PMID:12878381; http://dx.doi.org/10.1016/S0168-1605(02)00540-8
6. Delaquis P, Bach S. Resistance and sublethal damage. In: Gomez-Lopez Vin, ed. Decontamination of fresh and minimally processed produce. Ames, IA:Wiley-Blackwell, 2012:77-86
7. Stanfield P. Cleaning and sanitizing a food plant. In: Hui Yh, et al., ed(s). Food plant sanitation. New York:Marcel Dekker, Inc, 2003:110-125
8. Abdulaziz T, Li M, Menetrez MY, Dean T, Senecal A, Sulakvelidze A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 2008; 74:6230-8; PMID:18723643; http://dx.doi.org/10.1128/AEM.01465-08
9. Rashid MH, Revazishvili T, Dean T, Butani A, Verrati K, Bishop-Lilly KA, Sothamann S, Sulakvelidze A, Rajanna C. A Verinina pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2012; 2:168-77; PMID:23275668; http://dx.doi.org/10.4161/bact.22240
10. Sharma M, Rys J-H, Beuchat LR. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol 2005; 99:449-59; PMID:16108786; http://dx.doi.org/10.1111/j.1365-2672.2005.02659.x
11. Goodridge LD, Bisha B. Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 2011; 1:130-7; PMID:22164346; http://dx.doi.org/10.4161/bact.1.3.17629
12. Greer GG. Bacteriophage control of foodborne bacteri- rist. J Food Prot 2005; 68:1102-11; PMID:15895751
13. Sulakvelidze A, Barrow PA. Phage therapy in animals and agribusiness. In: Kutter E and Sulakvelidze A, ed(s). Bacteriophages: Biology and applications. Boca Raton, FL:CRC Press, 2005:335-380
14. Adams MH. Host specificity. In: Benzer S, et al., ed(s). Bacteriophages. London:Interscience Publishers Ltd., 1959:121-135
15. Adams MH. Appendix: Isolation of bacterial viruses. In: Benzer S, et al., ed(s). Bacteriophages. London:Interscience Publishers, 1959:447-449
16. Ackermann H-W, Berhiaume L. A summary of virus classification. In: ed(s). Atlas of virus diagrams. Boca Raton, FL:CRC Press, 1995:3-6.
17. Mathews CK. An overview of the T4 developmental program. In: Karam JD, et al., eds. Molecular biology of bacteriophage T4. Washington, DC:ASM Press, 1994:1-10
18. Hihma AM, Jassim SA, Griffiths MW. Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophages. Int J Food Microbiol 1997; 34:197-207; PMID:9039566; http://dx.doi.org/10.1016/S0168-1605(96)01190-7
19. Roy B, Ackermann HW, Pandian S, Picard G, Goulet A. Biological inactivation of adhering Listeria monocytogenes by bacteriophages and a quaternary ammonium compound. Appl Environ Microbiol 1993; 59:2194-7; PMID:8215364

Disclosure of Potential Conflicts of Interest
CC, TA, JW, BA, ML and AS hold an equity stake in Intralytix, Inc., a Maryland corporation developing bacteriophage preparations (including SalmoFresh™ and SalmoLyse™) for various applications.

Acknowledgments
We thank Hans W. Ackermann for his electron microscopic examination of the Salmonella bacteriophages described in this report. The studies reported in this communication were supported, in part, by the Procter and Gamble Company and by SBIR award 2012-33610-19947 from the National Institute of Food and Agriculture, United States Department of Agriculture (to AS).

Supplemental Materials
Supplemental materials may be found here: www.landesbioscience.com/journals/bacteriophage/article/25697

Prepared, in part, by the Procter and Gamble Company and by SBIR award 2012-33610-19947 from the National Institute of Food and Agriculture, United States Department of Agriculture (to AS).

Prepared, in part, by the Procter and Gamble Company and by SBIR award 2012-33610-19947 from the National Institute of Food and Agriculture, United States Department of Agriculture (to AS).