Abstract

Temporal Expression Extraction (TEE) is essential for understanding time in natural language. It has applications in Natural Language Processing (NLP) tasks such as question answering, information retrieval, and causal inference. To date, work in this area has mostly focused on English as there is a scarcity of labeled data for other languages. We propose XLTime, a novel framework for multilingual TEE. XLTime works on top of pre-trained language models and leverages multi-task learning to prompt cross-language knowledge transfer both from English and within the non-English languages. It alleviates problems caused by a shortage of data in the target language. We apply XLTime with different language models and show that it outperforms the previous automatic SOTA methods on French, Spanish, Portuguese, and Basque, by large margins. It also closes the gap considerably on the handcrafted HeidelTime method.

1 Introduction

Temporal Expression Extraction (TEE) refers to the detection of temporal expressions (such as dates, durations, etc. as shown in Table 1). It is an important NLP task (UzZaman et al., 2013) and has downstream applications in question answering (Choi et al., 2018), information retrieval (Mitra et al., 2018), and causal inference (Feder et al., 2021). Most TEE methods work on English and are rule-based (Strögen and Gertz, 2013; Zhong et al., 2017). Deep learning-based methods (Chen et al., 2019; Lange et al., 2020) are less common and report results on par with or inferior to the rule-based SOTAs.

Moreover, methods that work on other languages are rare, because of the scarcity of annotated data. We find that that there is considerable room for improving TEE, especially for low-resource languages (e.g., the previous SOTA performance on the English TE3 dataset (UzZaman et al., 2013) is around 0.90 in F1, while that on the Basque TEE benchmark (Altuna et al., 2016) is merely 0.47). Recent deep learning methods, which have shown gains for many tasks, are underexplored for this important area of NLP.

Developing an approach that can learn using the existing limited amount of training data is crucial for this field because of the effort required to develop high-quality rules for each language. Thus we propose a cross-lingual knowledge transfer framework for multilingual TEE, namely, XLTime. We base our framework on pre-trained multilingual models (Devlin et al., 2019; Conneau et al., 2020). We then use Multi-Task Learning (MTL) (Liu et al., 2019a) to prompt knowledge transfer both from English and within the low-resource languages. We design primary and secondary tasks. The former leverages the existing data of the other languages. It transfers explicit knowledge that explicitly tells the forms of the temporal expressions in a source language. The latter constructs its training data in a self-supervised (Liu et al., 2021) manner. It transfers implicit knowledge by teaching the model to tell if a sentence in the target language contains temporal expressions.

Contributions. 1) We propose XLTime, which prompts cross-lingual knowledge transfer using MTL to address multilingual TEE. 2) We show that XLTime outperforms the previous automatic SOTA methods by large margins on four languages, i.e., French, Spanish, Portuguese, and Basque, which are "low-resource" for the TEE task. 3) We show that XLTime also approaches the performance of the heavily handcrafted HeidelTime (Strögen and
We adopt SOTA multilingual models (Devlin et al., 2019; Conneau et al., 2020) as the backbone of XLTime, denoted as: $T(E(X))$. X is the input sequence. E and T are the lexicon and Transformer encoder layers as shown in Figure 1(b). The backbone allows XLTime to acquire semantic and syntactic knowledge of various languages. It is shared by the MTL tasks introduced in Section 3.2.

3.2 MTL-based Cross-Lingual Knowledge Transfer

XLTime transfers knowledge from multiple source languages to the low-resource target language. The source languages include English and others for which TEE training data is available. We design primary and secondary tasks on top of the backbone to prompt explicit and implicit knowledge transfer. The primary task transfers knowledge that explicitly encodes the forms of the temporal expressions in a source language. It is formalized as sequence labeling and directly leverages the training data of the source language to train the backbone along with the primary task classifier, shown in Figure 1 (b). The primary task minimizes L_{sl}:

$$L_{sl} = - \frac{1}{b} \sum_{i=1}^{b} \sum_{j=1}^{m_i} \mathbb{1}(y_{ij}, c) \log(\text{softmax}(W \cdot x_{ij})), \quad (1)$$

where $x \in \mathbb{R}^d$ is the embedding of a token output by the backbone. $W \in \mathbb{R}^{c \times d}$ is the primary task classifier. c and y_{ij} are the predicted and ground-truth labels of the token. $\mathbb{1}(,)$ equals to 1 if its two operators are the same and 0 otherwise. b is the total number of input sequences and m_i is the length of the ith sequence.

The secondary task implicitly reveals how the temporal expressions would be expressed in the target language. We translate the sequences in the source language training data into the target language using Google Translate (we observe similar results with AWS Translate). The secondary task is formalized as binary classification, where the input samples are the translated sequences and the labels are indicators of whether or not the sequences contain temporal expressions (can be easily inferred from the original labels). This task tunes the model to learn the characteristics of temporal expressions in the target language in an implicit manner. It is self-supervised and requires no token-level labeling. It trains the backbone and the secondary task classifier by minimizing L_{sc}:

$$L_{sc} = - \frac{1}{b} \sum_{i=1}^{b} \mathbb{1}(y'_i, c') \log(\text{softmax}(W' \cdot x'_i)), \quad (2)$$

where $x' \in \mathbb{R}^d$ is the sequence embedding output by the [CLS] of the backbone. $W' \in \mathbb{R}^{2 \times d}$ is the secondary task classifier. c' and y'_i are the predicted and true sequence labels. We train XLTime concurrently on the primary and secondary tasks (further details found in Appendix B).

1Github to be added.
Table 2: Dataset statistics (more details in Appendix C).

Lang	Dataset	# Exprs
FR	Bittar et al. (2011)	425
ES	UzZaman et al. (2013)	1,094
PT	Costa and Branco (2012)	1,227
EU	Altuna et al. (2016)	847
EN	TE3 (UzZaman et al., 2013)	1,830
	Tweets (Zhong et al., 2017)	2,634

Table 3: Results for Multilingual TEE (F1).

Model	Language	FR	ES	PT	EU
Automatic Baseline Models					
HeidelTime-auto		0.55	0.42	0.50	0.17
BiLSTM+CRF		0.64	0.62	0.64	0.47
mBERT		0.63	0.62	0.66	0.65
XLMR-base		0.69	0.54	0.63	0.46
XLMR-large		0.75	0.72	0.75	0.70
Projection Method					
Transfer from EN (Ours)					
XLTime-mBERT		0.73	0.71	0.67	0.76
XLTime-XLMRbase		0.78	0.66	0.68	0.71
XLTime-XLMRlarge		0.76	0.72	0.77	0.78
Transfer from EN and others (Ours)					
XLTime-mBERT		0.80	0.77	0.80	0.77
XLTime-XLMRbase		0.82	0.72	0.73	0.79
XLTime-XLMRlarge		0.84	0.75	0.84	0.79
Handcrafted Method					
HeidelTime		0.86	0.86	0.60	0.60

4 Experiments

4.1 Experimental Setup

Datasets. We use the English (EN), French (FR), Spanish (ES), Portuguese (PT), and Basque (EU) TEE benchmark datasets. Table 2 shows dataset statistics (see Appendix C for a more detailed description). For each target language, we split its dataset with 10% for validation and 90% for test. For each source language (applicable to XLTime), we use the whole dataset for training.

Baselines. We evaluate against rule-based, deep learning-based, and entity projection-based methods. We compare to the handcrafted HeidelTime (Strötgen and Gertz, 2013) and its automatically extended version, HeidelTime-auto (Strötgen and Gertz, 2015). We also compare to deep learning methods: BiLSTM+CRF (Lange et al., 2020), mBERT, base and large versions of XLMR (trained on English TEE datasets and evaluated on low-resource languages). In addition, we compare to TMP (Jain et al., 2019), a cross-lingual label projection approach which relies on machine translation as well as orthographic and phonetic similarity packages (unavailable for EU). We use TMP to project the English dataset to the target languages, use the projected data to train the language models, then evaluate on the target languages.

Our Approaches. We test out several variants of our proposed model, which can be broken into two classes: 1) Cross-lingual transfer from EN. We apply XLTime on mBERT, base and large versions of XLMR and use EN as the only source language. 2) Cross-lingual transfer from EN and others. We transfer from other languages in addition to EN. Experimental settings are found in Appendix D.

Evaluation Metrics. We report F1 in strict match.
(UzZaman et al., 2013), i.e., all its tokens must be correctly recognized for an expression to be counted as correctly extracted.

We follow the setting in prior work of evaluating “without type” and report the results without considering the types of the temporal expressions (e.g., for ‘see you tomorrow’, a prediction such as ‘O O B-Duration’ would be counted as correct, though the proper labeling would be ‘O O B-Date’).

4.2 Evaluation Results

We evaluate XLTime on multilingual TEE (see Table 3 and Appendix F). We observe: 1) XLTime-XLMRlarge outperforms the strongest automatic baseline by up to 9% in F1 on all languages. It even outperforms the handcrafted HeidelTime method by a large margin (24% in F1) in PT. 2) Applying XLTime improves upon the vanilla language models, even when transferring knowledge only from EN. E.g., XLTime-XLMRbase outperforms XLMR-base by 13%, 22%, 8%, and 54% in F1 on FR, ES, PT, and EU. 3) Introducing additional source languages to XLTime further improves the performance: the F1 improves by up to 19%, 11%, and 11% for XLTime-mBERT, XLTime-XLMRbase, and XLTime-XLMRlarge. 4) HeidelTime is a very hard baseline to beat given the time and care that went into developing language-specific rules. However, XLTime approaches its performance for FR and ES, outperforms it for PT, and makes predictions for EU (where HeidelTime has no rules). 5) XLTime-XLMRlarge improves upon XLMR-large by a large margin (11% in F1) in EU. For FR, ES, and PT, the improvements are smaller. This may because XLMR-large, compared to mBERT and XLMR-base, is already very knowledgeable (especially in FR, ES, and PT, which are more common than EU). Therefore, applying XLTime may not provide an improvement (in contrast, applying XLTime on mBERT and XLMR-base dramatically boosts F1 by 8-54%). 6) TMP performs poorly probably because the falsely projected entities can mislead the language models.

We also study the effect of transferring additional knowledge from low-resource languages, see Table 4 and Appendix F. Our assumption is that similar languages (FR, ES, and PT) would help each other (one exception is PT, as the published dataset is EN text translated to PT and we, therefore, don’t expect machine translation to provide additional knowledge). We observe: 1) In most cases, transferring additional knowledge from similar languages (blue cells) does dramatically improve performance (underlined cells), with F1 increased by up to 13%. 2) In some rare cases, negative transfer (Wu et al., 2020) occurs as adding source languages hurts performance (e.g., EN, ES → PT scores lower than EN → PT for XLTime-XLMRbase). We hypothesize this is related to the quality of the datasets and plan to address this in the future (Appendix H).

5 Conclusion

We propose XLTime for multilingual language TEE in low-resource scenarios. It is based on language models and leverages MTL to prompt cross-language knowledge transfer. It greatly alleviates the problems caused by the shortage in training data and shows results superior to the previous automatic SOTA methods on four languages. It also approaches the performance of a highly engineered rule-based system.
References

Begoña Altuna, María Jesús Aranzabe, and Arantza Díaz de Ilarraza. 2016. Adapting timeml to basque: Event annotation. In Proceedings of CICLing 2016, pages 565–577. Springer.

André Bittar, Pascal Amsili, Pascal Denis, and Laurence Danlos. 2011. French timebank: an iso-timeml annotated reference corpus. In Proceedings of ACL-HLT 2011, pages 130–134.

Angel X Chang and Christopher D Manning. 2012. Su-time: A library for recognizing and normalizing time expressions. In Lrec, volume 3735, page 3740.

Sanxing Chen, Guoxin Wang, and Börje Karlsson. 2019. Exploring word representations on time expression recognition. Technical report, Tech. rep., Microsoft Research Asia.

Eunsol Choi, He He, Mohit Iyer, Mark Yatskar, Wentau Yih, Yejin Choi, Percy Liang, and Luke Zettlemoyer. 2018. Quac: Question answering in context. In Proceedings of EMNLP 2021.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of ACL 2020, pages 8440–8451.

Francisco Costa and António Branco. 2012. Timebankpt: A timeml annotated corpus of portuguese. In Lrec, volume 12, pages 3727–3734.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT 2019, pages 4171–4186.

Wentao Ding, Guanjie Gao, Linfeng Shi, and Yuzhong Qu. 2019. A pattern-based approach to recognizing time expressions. In Proceedings of AAAI 2019, volume 33, pages 6335–6342.

Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid Pryzant, Dhanya Sridhar, Zach Wood-Doughty, Jacob Eisenstein, Justin Grimmer, Roi Reichart, Margaret E. Roberts, Brandon M. Stewart, Victor Veitch, and Diyi Yang. 2021. Causal inference in natural language processing: Estimation, prediction, interpretation and beyond.

Alankar Jain, Bhargavi Paranjape, and Zachary C. Lipton. 2019. Entity projection via machine translation for cross-lingual NER. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1083–1092, Hong Kong, China. Association for Computational Linguistics.
Naushad UzZaman, Hector Llorens, Leon Derczynski, James Allen, Marc Verhagen, and James Pustejovsky. 2013. Semeval-2013 task 1: TempEval-3: Evaluating time expressions, events, and temporal relations. In Second Joint Conference on Lexical and Computational Semantics, Volume 2: Proceedings of SemEval 2013, pages 1–9.

Sen Wu, Hongyang R Zhang, and Christopher Ré. 2020. Understanding and improving information transfer in multi-task learning. In Proceedings of ICLR 2020.

Xiaoshi Zhong, Aixin Sun, and Erik Cambria. 2017. Time expression analysis and recognition using syntactic token types and general heuristic rules. In Proceedings of ACL 2017, pages 420–429.

Algorithm 1: Training XLTime

1 //Initialize model.
2 Load the parameters of E and T from a pre-trained multilingual model.
3 Initialize W and W' randomly.
4 // Prepare task data.
5 for t in \{primary, secondary\} do
6 Split the data of task t into mini-batches B_t
7 $B = B_{primary} \cup B_{secondary}$
8 for e in 1, ..., epoch do
9 Randomly shuffle B
10 // b_t is a mini-batch of task t
11 for b_t in B do
12 if t is a primary task then
13 $L_{sl} = \text{Equation 1}$
14 else
15 $L_{bc} = \text{Equation 2}$
16 Compute gradient and update model parameters

A Types of the Temporal Expressions

According to ISO-TimeML (Pustejovsky et al., 2010), the TEE dataset annotation guideline, there are four types of temporal expressions, i.e., Date, Time, Duration, and Set. Date refers to a calendar date, generally of a day or a larger temporal unit; Time refers to a time of the day and the granularity of which is smaller than a day; Duration refers to the expressions that explicitly describe some period of time; Set refers to a set of regularly recurring times (Pustejovsky et al., 2010).

B The Training Procedure

We adopt mini-batch-based stochastic gradient descent (SGD) to train XLTime, as shown in Algorithm 1. To concurrently train on the primary and secondary tasks, we split the training data of both tasks into mini-batches and randomly take one at each step. We then calculate loss using that mini-batch and update the parameters of the shared backbone (including E and T) as well as the task-type-specific classifier. The classifier of the other task type is unaffected.

C Detailed Statistics of the Datasets

Table 5 shows the detailed statistics of the datasets used in this study.
We study BERT (Devlin et al., 2019) and XLMR (Conneau et al., 2020) variants, RoBERTa (Liu et al., 2019b) and T5 Encoder (Raffel et al., 2019). We compare them to rule-based methods including HeidelTime (Strötgen and Gertz, 2013), SynTime (Zhong et al., 2017), and PTime (Ding et al., 2019), which report SOTA performances on Wikiwars, TE3, and Tweets, respectively. We experiment on both settings, i.e., “with type” and “without type”, and report F1, precision, and recall in strict match (UzZaman et al., 2013). We use the data splits following Ding et al. (2019) and the experimental settings introduced in Appendix D.

G.2 Evaluation Results

Table 7 shows the results. We observe: 1) When ignoring the types, the language models are inferior to SynTime on TE3, on par with or better than the rule-based methods on Wikiwars and Tweets. 2) When considering the types, the language models outperform the previous SOTAs by 11-22%, 18-21%, and 30-41% in F1 on TE3, Wikiwars, and Tweets datasets.

H Future Work

We observe negative transfer in some rare cases when transferring from multiple source languages (Tables 4 and 9). As suggested by Wu et al. (2020), the extent of negative transfer is affected by task covariance, which measures the similarities between the embedded task samples. We plan to verify this on XLTime by calculating and comparing the task covariances of the positively transferred cases to that of the negatively transferred cases.

One approach to reduce task covariance is to transform task sample embeddings by inserting an alignment layer between the lexicon encoder and the first Transformer layer. Wu et al. (2020) propose an alignment layer design, i.e., one linear matrix for each of the tasks. However, as the training data for low-resource TEE is sparse, the parameters introduced by these matrices might cause the model to overfit. We plan to design a new alignment layer that is more suitable for XLTime. The new design aims to reduce task covariance while prompting parameter sharing and reducing overfitting.

Table 5: The statistics of the datasets.

Lang	Dataset	Domain	#Docs	#Exprs	#Dates	#Times	#Durations	#Sets
FR	Bittar et al. (2011)	News	108	425	227	130	52	16
ES	UzZaman et al. (2013)	News	175	1,094	749	57	251	37
PT	Costa and Branco (2012)	News	182	1,227	998	41	176	12
EU	Altuna et al. (2016)	News	91	847	662	22	151	12
EN	TE3 (UzZaman et al., 2013)	News	276	1,830	1,471	34	291	34
	Wikiwars (Mazur and Dale, 2010)	Narrative	22	2,634	2,634	0	0	0
	Tweets (Zhong et al., 2017)	Utterance	942	1,128	717	173	200	38
Table 6: Multilingual TEE results (w/ type | w/o type).

Model	Automatic Baseline Models	Projection Method	Transfer from EN	Transfer from EN and others	Handcrafted Method							
w/ type	F1	Pr.	Re.									
HeidelTime-auto	0.53	0.63	0.46	0.41	0.56	0.32	0.49	0.66	0.39	0.15	0.60	0.09
BiLSTM-CRF	0.58	0.64	0.51	0.56	0.61	0.51	0.58	0.59	0.58	0.44	0.54	0.37
mBERT	0.56	0.61	0.51	0.56	0.62	0.51	0.60	0.56	0.64	0.59	0.64	0.55
XLMR-base	0.64	0.69	0.59	0.51	0.58	0.46	0.59	0.59	0.59	0.43	0.60	0.34
XLMR-large	0.69	0.70	0.68	0.68	0.71	0.66	0.71	0.69	0.73	0.66	0.70	0.63
w/o type	F1	Pr.	Re.									
HeidelTime-auto	0.50	0.56	0.45	0.23	0.59	0.14	0.60	0.57	0.64			
BiLSTM-CRF	0.50	0.60	0.43	0.23	0.57	0.14	0.61	0.58	0.64			
mBERT	0.52	0.61	0.46	0.24	0.59	0.15	0.61	0.58	0.63			
XLMR-base	0.62	0.62	0.62	0.65	0.70	0.61	0.61	0.58	0.66	0.68	0.72	0.65
XLMR-XLMR-base	0.67	0.67	0.68	0.60	0.63	0.58	0.64	0.62	0.66	0.64	0.68	0.60
XLMR-XLMR-large	0.71	0.74	0.68	0.70	0.76	0.65	0.74	0.71	0.78	0.72	0.79	0.66
Correction	**F1**	**Pr.**	**Re.**									
HeidelTime-auto	0.79	0.80	0.81	0.79	0.80	0.80	0.57	0.60	0.53			

Table 7: Supervised English TEE results (w/ type | w/o type).

Model	Rule-based Models	Language Models												
F1	**Pr.**	**Re.**	**F1**	**Pr.**	**Re.**	**F1**	**Pr.**	**Re.**						
HeidelTime	0.77	0.84	0.71	0.80	0.79	0.79	0.79	0.78	0.80	0.77	0.83	0.77	0.82	0.72
XLMR-base	0.80	0.81	0.79	0.80	0.80	0.79	0.79	0.78	0.80	0.79	0.80	0.79	0.82	0.72
XLMR-large	0.84	0.82	0.84	0.75	0.79	0.79	0.79	0.78	0.80	0.79	0.80	0.79	0.82	0.72
w/o type	F1	Pr.	Re.											
HeidelTime	0.86	0.87	0.85	0.86	0.91	0.81	0.60	0.64	0.57					
Table 8: Low-resource language TEE with additional source languages (F1, precision, and recall scores w/ type). The blue cells are expected to, while the underlined cells actually outperform (by $\geq 3\%$) using EN as the only source language.

Target Language	FR	ES						
Source Language(s)	EN, EN, EU, EN, PT, EN, ES	EN, EN, EU, EN, PT, EN, FR						
XLTime-mBERT	0.62	0.61	0.61	0.71	0.65	0.66	0.65	0.68
XLTime-XLMRbase	0.67	0.67	0.66	0.70	0.60	0.61	0.64	0.65
XLTime-XLMRlarge	0.71	0.73	0.73	0.75	0.70	0.68	0.69	0.68

Target Language	PT	EU						
Source Language(s)	EN, EN, FR, EN, ES, EN, EU	EN, EN, PT, EN, ES, EN, FR						
XLTime-mBERT	0.61	0.72	0.59	0.73	0.68	0.66	0.66	0.68
XLTime-XLMRbase	0.64	0.66	0.55	0.52	0.64	0.66	0.66	0.70
XLTime-XLMRlarge	0.74	0.79	0.81	0.71	0.72	0.71	0.74	0.72

Table 9: Low-resource language TEE with additional source languages (precision and recall scores w/o type). The blue cells are expected to, while the underlined cells actually outperform (by $\geq 4\%$) using EN as the only source language.

Target Language	FR	ES						
Source Language(s)	EN, EN, EU, EN, PT, EN, ES	EN, EN, EU, EN, PT, EN, FR						
XLTime-mBERT	0.73	0.76	0.76	0.77	0.77	0.69	0.69	0.69
XLTime-XLMRbase	0.68	0.67	0.67	0.74	0.63	0.64	0.67	0.69
XLTime-XLMRlarge	0.68	0.73	0.71	0.78	0.76	0.65	0.73	0.68

Target Language	PT	EU						
Source Language(s)	EN, EN, FR, EN, ES, EN, EU	EN, EN, PT, EN, ES, EN, FR						
XLTime-mBERT	0.66	0.75	0.62	0.76	0.66	0.70	0.79	0.67
XLTime-XLMRbase	0.66	0.68	0.60	0.55	0.61	0.64	0.73	0.76
XLTime-XLMRlarge	0.78	0.83	0.84	0.74	0.68	0.67	0.69	0.67

Target Language	FR	ES						
Source Language(s)	EN, EN, EU, EN, PT, EN, ES	EN, EN, EU, EN, PT, EN, FR						
XLTime-mBERT	0.73	0.76	0.76	0.77	0.77	0.76	0.79	0.69
XLTime-XLMRbase	0.79	0.77	0.81	0.79	0.70	0.72	0.75	0.78
XLTime-XLMRlarge	0.79	0.81	0.84	0.82	0.79	0.70	0.79	0.67

Target Language	PT	EU						
Source Language(s)	EN, EN, FR, EN, ES, EN, EU	EN, EN, PT, EN, ES, EN, FR						
XLTime-mBERT	0.66	0.75	0.62	0.76	0.63	0.64	0.64	0.64
XLTime-XLMRbase	0.66	0.68	0.60	0.55	0.60	0.60	0.63	0.65
XLTime-XLMRlarge	0.78	0.83	0.84	0.74	0.66	0.67	0.69	0.67