A GEOMETRIC INTERPRETATION OF STANLEY’S MONOTonicity theorem

ALAN STAPLEDON

Abstract. We present a new geometric proof of Stanley’s monotonicity theorem for lattice polytopes, using an interpretation of δ-polynomials of lattice polytopes in terms of orbifold Chow rings.

1. Introduction

Let P be a d-dimensional lattice polytope in a lattice N of rank n. That is, P is the convex hull of finitely many points in $N \cong \mathbb{Z}^n$. If m is a positive integer, then let $f_P(m) := \#(mP \cap N)$ denote the number of lattice points in the m’th dilate of P. A famous theorem of Ehrhart [6] asserts that $f_P(m)$ is a polynomial in m of degree d, called the Ehrhart polynomial of P. The generating series of $f_P(m)$ can be written in the form

$$\frac{\delta_P(t)}{(1-t)^{d+1}} = \sum_{m \geq 0} f_P(m) t^m,$$

where $\delta_P(t) = \delta_0 + \delta_1 t + \cdots + \delta_d t^d$ is a polynomial of degree at most d with integer coefficients, called the δ-polynomial of P. Using techniques from commutative algebra, Stanley proved that the coefficients δ_i are non-negative [12] and proved that δ-polynomials of lattice polytopes satisfy the following monotonicity property [13, Theorem 3.3]. An alternative combinatorial proof of these results was given by Beck and Sottile in [2]. If $f(t) = \sum_i f_i t^i$ and $g(t) = \sum_i g_i t^i$ are polynomials with integer coefficients, then we write $f(t) \leq g(t)$ if $f_i \leq g_i$ for all $i \geq 0$.

Theorem 1.1 (Stanley’s Monotonicity Theorem). If $Q \subseteq P$ are lattice polytopes, then $\delta_Q(t) \leq \delta_P(t)$.

We now present a new geometric proof of Stanley’s theorem. We first recall the following geometric interpretation of δ-polynomials of lattice polytopes. After replacing N with its intersection with the affine span of P, we may assume that N has rank d. Let T be a regular, lattice triangulation of P and let σ denote the cone over $P \times \{1\}$ in $N_{\mathbb{R}} \times \mathbb{R}$, where $N_{\mathbb{R}} = N \otimes \mathbb{R}$. The triangulation T induces a simplicial fan refinement Δ of σ, with cones given by the cones over the faces of T, and we may consider the $(d+1)$-dimensional, simplicial toric variety $Y = Y(\Delta)$ associated to Δ. The toric variety Y is semi-projective in the sense that it contains a torus-fixed point and is projective over its affinisation $Y(\sigma)$ [8]. The cohomology ring $H^*(X, \mathbb{Q})$ of a semi-projective, simplicial toric variety X was computed by Hausel and Sturmfels in [8], and it was observed by Jiang and Tseng [9].

The author would like to thank Professor Jiang and Professor Stanley for very useful emails.
Lemma 2.7] that Hausel and Sturmfel’s proof, along with the results in [7, Section 5.1], imply that $H^\ast(X, \mathbb{Q})$ is isomorphic to the Chow ring $A^\ast(X, \mathbb{Q})$.

The orbifold Chow ring of a Deligne-Mumford stack was introduced by Abramovich, Graber and Vistoli [1] as the algebraic analogue of Chen and Ruan’s orbifold cohomology ring [5]. Borisov, Chen and Smith introduced the notion of a toric stack in [4] and showed that any simplicial, semi-projective toric variety X has the canonical structure of a Deligne-Mumford stack. The orbifold Chow ring $A^\ast_{\text{orb}}(X, \mathbb{Q})$ of X is a \mathbb{Q}-graded \mathbb{Q}-algebra and was computed by Jiang and Tseng in [9], generalising results in [4] (Remark 2.2). The following combinatorial observation follows from [14, Theorem 4.6] (c.f. [10, Corollary 1.2]).

(1) $\delta_P(t) = \sum_{i \in \mathbb{Q}} \dim_{\mathbb{Q}} A^i_{\text{orb}}(Y, \mathbb{Q}) t^i.$

If Q is a lattice polytope contained in P, then let N' denote the intersection of N with the affine span of Q and let σ' denote the cone over $Q \times \{1\}$ in $(N')_\mathbb{R} \times \mathbb{R}$. One verifies that we may choose a regular, lattice triangulation T of P which restricts to a regular, lattice triangulation of Q. In this case, the fan Δ refining σ restricts to a fan Σ refining σ' and we may consider the semi-projective toric variety $Y' = Y'((\Sigma))$. The inclusion of N' in N induces a locally closed toric immersion $Y' \hookrightarrow Y$ and a restriction map between the corresponding orbifold Chow rings. We will prove the following lemma in Section 2.

Lemma 1.2. The morphism $Y' \hookrightarrow Y$ induces a surjective graded ring homomorphism $A^\ast_{\text{orb}}(Y, \mathbb{Q}) \to A^\ast_{\text{orb}}(Y', \mathbb{Q})$.

By (1), $\delta_P(t) = \sum_{i \in \mathbb{Q}} \dim_{\mathbb{Q}} A^i_{\text{orb}}(Y, \mathbb{Q}) t^i$ and $\delta_Q(t) = \sum_{i \in \mathbb{Q}} \dim_{\mathbb{Q}} A^i_{\text{orb}}(Y', \mathbb{Q}) t^i$, and we conclude that $\delta_Q(t) \leq \delta_P(t)$, as desired.

Remark 1.3. If we regard the empty face as a face of the triangulation T of dimension -1, then the h-vector of T is defined by

$$h_T(t) = \sum_F t^{\dim F + 1} (1 - t)^{d - \dim F},$$

where the sum ranges over all faces F in T. It is a well known fact that $0 \leq h_T(t) \leq \delta_P(t)$ and $h_T(t) = \delta_P(t)$ if and only if T is a unimodular triangulation [3,11]. We have the following geometric interpretation of this result.

It follows from the definition of the orbifold Chow ring (see Section 2) that $A^\ast(Y, \mathbb{Q})$ is a direct summand of $A^\ast_{\text{orb}}(Y, \mathbb{Q})$ and $A^\ast(Y, \mathbb{Q}) = A^\ast_{\text{orb}}(Y, \mathbb{Q})$ if and only if Y is smooth. The result now follows from the fact that $h_T(t) = \sum_{i \geq 0} \dim_{\mathbb{Q}} A^i(Y, \mathbb{Q}) t^i$ [5, Corollary 2.12] and the fact that Y is smooth if and only if T is a unimodular triangulation.

All varieties and stacks will be over the complex numbers. In Section 2, we will review orbifold Chow rings and prove Lemma [2].
2. Orbifold Chow Rings

The orbifold Chow ring $A_{\text{orb}}^*(\mathcal{X}, \mathbb{Q})$ of a Deligne-Mumford stack \mathcal{X} was introduced by Abramovich, Graber and Vistoli as the degree 0 piece of the small quantum cohomology ring of \mathcal{X} [1]. We will review the structure of $A_{\text{orb}}^*(\mathcal{X}, \mathbb{Q})$ as a \mathbb{Q}-graded vector space and refer the reader to [1] for the relevant details and the description of the ring structure of $A_{\text{orb}}^*(\mathcal{X}, \mathbb{Q})$. The inertia stack $\mathcal{I}\mathcal{X}$ of \mathcal{X} is a Deligne-Mumford stack whose objects consist of pairs (x, α), where x is an object of \mathcal{X} and α is an automorphism of x. If $\mathcal{X}_1, \ldots, \mathcal{X}_r$ denote the connected components of $\mathcal{I}\mathcal{X}$, then

$$A_{\text{orb}}^*(\mathcal{X}, \mathbb{Q}) = \bigoplus_{j=1}^r A^*(|\mathcal{X}_j|, \mathbb{Q})[s_j],$$

where $|\mathcal{X}_j|$ is the coarse moduli space of \mathcal{X}_j, $s_j \in \mathbb{Q}$ is the age of \mathcal{X}_j and $[s_j]$ denotes a grading shift by s_j. If we identify \mathcal{X} as the connected component of $\mathcal{I}\mathcal{X}$ whose objects consist of pairs (x, id), where x is an object of \mathcal{X} and id is the identity automorphism of x, then the age of \mathcal{X} is 0 and $A^*(|\mathcal{X}|, \mathbb{Q})$ is a direct summand of $A_{\text{orb}}^*(\mathcal{X}, \mathbb{Q})$.

Continuing with the notation of the introduction, recall that P is a d-dimensional lattice polytope in a lattice N of rank d and T is a regular lattice triangulation of P. Recall that T induces a fan refinement Δ of the cone σ over $P \times \{1\}$ in $N_{\mathbb{R}} \times \mathbb{R}$, and that $Y = Y(\Delta)$ is the associated $(d+1)$-dimensional, semi-projective, simplicial toric variety. There is a canonical Deligne-Mumford stack \mathcal{Y} with coarse moduli space Y [4]. If F is a non-empty face of T with vertices v_1, \ldots, v_s, then set

$$\text{Box}(F) = \{ w \in N_{\mathbb{R}} \times \mathbb{R} \mid w = \sum_{i=1}^s q_i(v_i, 1) \text{ for some } 0 < q_i < 1 \},$$

and let $\text{Box}(\emptyset) = \{ 0 \in N_{\mathbb{R}} \times \mathbb{R} \}$. Borisov, Chen and Smith [4] showed that the inertia stack of \mathcal{Y} decomposes into connected components as $\mathcal{I}\mathcal{Y} = \coprod_{F \in T} \prod_{w \in \text{Box}(F) \cap (N \times \mathbb{Z})} Y_w$, where $Y_w = Y$ if $w = 0$ and, if $w \neq 0$, then $|Y_w|$ is isomorphic to the torus-invariant subvariety $V(F)$ of Y corresponding to the cone over $F \times \{1\}$ in Δ. Moreover, if $\psi : N_{\mathbb{R}} \times \mathbb{R} \to \mathbb{R}$ denotes projection onto the second co-ordinate, then the age of Y_w is $\psi(w) \in \mathbb{Z}$.

Recall that if Q is a lattice polytope contained in P, then N' is the intersection of N with the affine span of Q and the fan Δ restricts to a fan Σ refining the cone σ' over $Q \times \{1\}$ in $(N')_{\mathbb{R}} \times \mathbb{R}$. If \mathcal{Y}' denotes the canonical Deligne-Mumford stack with coarse moduli space $Y' = Y'(\Sigma)$, then the inclusion of N' in N induces an inclusion of \mathcal{Y}' as a closed substack of $\mathcal{Y} \times (\mathbb{C}^*)^{\dim P - \dim Q}$ and an inclusion of $\mathcal{Y} \times (\mathbb{C}^*)^{\dim P - \dim Q}$ as an open substack of \mathcal{Y}. These inclusions induce a corresponding restriction map $\nu : A_{\text{orb}}^*(\mathcal{Y}, \mathbb{Q}) \to A_{\text{orb}}^*(\mathcal{Y}', \mathbb{Q})$, which we describe below (c.f. Remark 2.2).

If $T|_Q$ denotes the restriction of T to Q, then the inertia stack of \mathcal{Y}' decomposes into connected components as $\mathcal{I}\mathcal{Y}' = \coprod_{F \in T|_Q} \prod_{w \in \text{Box}(F) \cap (N \times \mathbb{Z})} Y'_w$, where $Y'_w = Y'$ if $w = 0$ and, if $w \neq 0$, then the age of Y'_w is $\psi(w)$ and $|Y'_w|$ is isomorphic to the torus-invariant subvariety $V(F)'$ of Y' corresponding to the cone over $F \times \{1\}$ in Σ. For each face $F \in T|_Q$, the inclusion of N' in N induces a closed immersion $V(F)' \hookrightarrow V(F) \times (\mathbb{C}^*)^{\dim P - \dim Q}$ and an open immersion $V(F)' \times (\mathbb{C}^*)^{\dim P - \dim Q} \hookrightarrow V(F)$. The corresponding restriction map $\nu_F : A^*(V(F), \mathbb{Q}) \to A^*(V(F)', \mathbb{Q})$ is surjective since if W' is an irreducible closed subvariety of $V(F)'$ and W denotes the closure
of $W' \times (\mathbb{C}^*)^{\dim P - \dim Q}$ in $V(F)$, then $\nu_F([W]) = [W']$. The restriction map $\iota : A^*_\text{orb}(Y, Q) \to A^*_\text{orb}(Y', Q)$ has the form

$$\iota : \prod_{F \in \mathcal{T}} \prod_{w \in \text{BOX}(F) \cap (N \times Z)} A^*((\mathcal{Y}_w), Q)[\psi(w)] \to \prod_{F \in \mathcal{T}|_Q} \prod_{w \in \text{BOX}(F) \cap (N \times Z)} A^*((\mathcal{Y}'_w), Q)[\psi(w)],$$

where for each $F \in \mathcal{T}$ and $w \in \text{BOX}(F) \cap (N \times Z)$, ι restricts to ν_F (with a grading shift) on $A^*((\mathcal{Y}_w), Q)[\psi(w)]$ if $F \subseteq Q$ and restricts to zero otherwise. One can verify from the description of the ring structure of an orbifold Chow ring in [1] that ι is a ring homomorphism. We conclude that ι is a surjective ring homomorphism, thus establishing Lemma 2.2.

Remark 2.1. The dimensions of the graded pieces of $A^*(V(F), Q)$ are equal to the coefficients of an h-vector of a fan [3 Corollary 2.12]. The analogous combinatorial proof of Stanley’s theorem goes as follows: one can express $\delta_P(t)$ and $\delta_Q(t)$ as sums of shifted h-vectors [3 11], and then apply Stanley’s monotonicity theorem for h-vectors [13] to conclude the result.

Remark 2.2. Consider the deformed group ring $Q[N \times Z]^\Delta := \bigoplus_{v \in \sigma \cap (N \times Z)} Q \cdot y^v$, with ring structure defined by

$$y^v \cdot y^w = \begin{cases} y^{v+w} & \text{if there exists a cone } \tau \in \Delta \text{ containing } v \text{ and } w \\ 0 & \text{otherwise.} \end{cases}$$

If v_1, \ldots, v_s denote the vertices of T and $M = \text{Hom}_Z(N, Z)$, then Jiang and Tseng [9 Theorem 1.1] showed that there is an isomorphism of rings

$$A^*_\text{orb}(Y, Q) \cong \frac{Q[N \times Z]^\Delta}{\left\{ \sum_{i=1}^s ((v_i, 1), u)y^{(v_i, 1)} \mid u \in M \times Z \right\}}.$$

Similarly, if v_1, \ldots, v_s are the vertices of $T|_Q$ and $M' = \text{Hom}_Z(N', Z)$, then

$$A^*_\text{orb}(Y', Q) \cong \frac{Q[N' \times Z]^\Sigma}{\left\{ \sum_{i=1}^s ((v_i, 1), u)y^{(v_i, 1)} \mid u \in M' \times Z \right\}}.$$

Consider the surjective ring homomorphism $j : Q[N \times Z]^\Delta \to Q[N' \times Z]^\Sigma$ satisfying $j(y^v) = y^w$ if $v \in \Sigma$ and $j(y^v) = 0$ if $v \notin \Sigma$. The induced ring homomorphism

$$\frac{Q[N \times Z]^\Delta}{\left\{ \sum_{i=1}^s ((v_i, 1), u)y^{(v_i, 1)} \mid u \in M \times Z \right\}} \to \frac{Q[N' \times Z]^\Sigma}{\left\{ \sum_{i=1}^s ((v_i, 1), u)y^{(v_i, 1)} \mid u \in M' \times Z \right\}}$$

corresponds to the restriction map $\iota : A^*_\text{orb}(Y, Q) \to A^*_\text{orb}(Y', Q)$ under the above isomorphisms. The existence of such a ring homomorphism was used by Stanley in his original commutative algebra proof of Theorem 2.1 [13].

REFERENCES

1. Dan Abramovich, Tom Graber, and Angelo Vistoli, *Algebraic orbifold quantum products*, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 1–24. MR MR1950940 (2004c:14104)

2. Matthias Beck and Frank Sottile, *Irrational proofs for three theorems of Stanley*, European J. Combin. 28 (2007), no. 1, 403–409. MR MR2261827 (2007f:52029)

3. U. Betke and P. McMullen, *Lattice points in lattice polytopes*, Monath. Math. 99 (1985), no. 4, 253–265. MR MR799674 (87e:52019)
4. Lev A. Borisov, Linda Chen, and Gregory G. Smith, *The orbifold Chow ring of toric Deligne-Mumford stacks*, J. Amer. Math. Soc. **18** (2005), no. 1, 193–215 (electronic). MR MR2114820 (2006a:14091)

5. Weimin Chen and Yongbin Ruan, *A new cohomology theory of orbifold*, Comm. Math. Phys. **248** (2004), no. 1, 1–31. MR MR2104605 (2005j:57036)

6. Eugène Ehrhart, *Sur les polyédres rationnels homothétiques à n dimensions*, C. R. Acad. Sci. Paris **254** (1962), 616–618. MR 24 #A714

7. William Fulton, *Introduction to toric varieties*, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, , The William H. Roever Lectures in Geometry. MR MR1234037 (94g:14028)

8. Tamás Hausel and Bernd Sturmfels, *Toric hyperKähler varieties*, Doc. Math. **7** (2002), 495–534 (electronic). MR MR2015052 (2004i:53054)

9. Yunfeng Jiang and Hsian-Hua Tseng, *Note on orbifold chow ring of semi-projective toric deligne-mumford stacks*, arXiv:math/0606322, 2006.

10. Kalle Karu, *Ehrhart analogue of the h-vector*, math.AG/0607286, Snowbird talk, 2006.

11. Sam Payne, *Ehrhart series and lattice triangulations*, arXiv:math/0702052, to appear in Discr. Comput. Geom, 2007.

12. Richard P. Stanley, *Decompositions of rational convex polytopes*, Ann. Discrete Math. **6** (1980), 333–342, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978). MR MR593545 (82a:52007)

13. , *A monotonicity property of h-vectors and h*-vectors*, European J. Combin. **14** (1993), no. 3, 251–258. MR MR1215335 (94f:52016)

14. Alan Stapledon, *Weighted ehrhart theory and orbifold cohomology*, Adv. Math. **219** (2008), 63-88.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

E-mail address: astapldn@umich.edu