A Nonabelian Particle-Vortex Duality

Jeff Murugan\(^1\) and Horatiu Nastase\(^2\)

\(^1\)The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700, South Africa and
\(^2\)Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, Rua Dr. Bento T. Farias 271, Bl. II, São Paulo 01140-070, SP, Brazil

(Dated: November 20, 2015)

We define a nonabelian particle-vortex duality as a 3-dimensional analogue of the usual 2-dimensional worldsheet nonabelian T-duality. The transformation is defined in the presence of a global SU(2) symmetry and, although derived from a string theoretic setting, we formulate it generally. We then apply it to so-called “semilocal strings” in an SU(2)\(_G\) × U(1)\(_L\) gauge theory, originally discovered in the context of cosmic string physics.

PACS numbers: 11.27.+d,11.15.Tk,11.25.Sq

I. INTRODUCTION

Beginning with the remarkable correspondence between the sine-Gordon and massive Thirring models [1], dualities have played a crucial role in the modern understanding of quantum field theories. Indeed, they have been an indispensable tool in the understanding of both strongly coupled systems as well as various non-perturbative problems. This was certainly the case, for instance, for Seiberg and Witten’s landmark study of perturbative problems. This was certainly the case, for both strongly coupled systems as well as various non-relativistic methods employed in high energy theory. An- instance, for Seiberg and Witten’s landmark study of relativistic methods employed in high energy theory. Another possibility is that the duality was generally less well-defined than its (3 + 1)–dimensional counterpart. To the best of our knowledge, particle-vortex duality has, until now, only been defined in the context of abelian gauge theories, exhibiting Neilsen-Olesen-like vortices. In [5], this duality was defined as a path integral transformation in a manifestly symmetric way, and embedded into a planar \(\mathcal{N} = 6\) Chern-Simons-matter theory commonly known as the ABJM model, which is itself known to be dual to the type IIA superstring on an \(\text{AdS}_4 \times \mathbb{CP}^3\) background [6]. In this context, the particle-vortex duality of the boundary field theory was shown to correspond to an electric-magnetic duality in the bulk. As a final point in [5], it was speculated that, based on the structure of the embedding into the ABJM model, it should be possible to define a nonabelian version that would act on the whole non-abelian ABJM model.

In this letter, we show that it is indeed the case that we can define a version of particle-vortex duality that acts on a non-abelian theory, at least in a certain restricted sense. Key to our argument are the recent advances in the study of 2–dimensional non-abelian T-duality acting on the string worldsheet in string theory [7] (see also [8–10] for the action of the nonabelian T-duality in supergravity). By generalizing the procedure to (2 + 1)–dimensions, we obtain a non-abelian version of particle-vortex duality that acts on gauge theories with a global SU(2), as well as a local symmetry. Recognizing that this is precisely the set-up for the “semi-local” vortices found in [12] (see also [13, 14]) in the context of cosmic strings in the case of a local U(1) symmetry, we explicitly exhibit the action of the nonabelian particle-vortex transformation on these solutions.

The letter is organized as follows. In section 2 we revisit non-abelian T-duality and its relation to the abelian T-duality, extending it in section 3 to three spacetime dimensions, consequently defining a non-abelian particle-vortex duality on a general theory which we illustrate with a simple example of a semilocal vortex in section 4. This article should be viewed as a proof-of-principle of a phenomenon with potential application from condensed matter to cosmology, with a longer companion paper to follow in which we will elaborate further on the duality and provide more substantial examples [15].

II. NONABELIAN T-DUALITY

In string theory, abelian T-duality is a symmetry that acts on a compact dimension as an inversion of its ra-
the string worldsheet action in this background takes the form

\[S = \int d^2 x \left[Q_{\mu\nu} \partial_+ X^\mu \partial_- X^\nu + Q_{\mu\nu} \partial_+ X^\mu + E_{ij} L^i_+ L^j_+ \right]. \]

One can make this invariance local by introducing an SU(2) gauge field \(A \) and replacing derivatives with covariant derivatives, \(\partial_\pm g \rightarrow D_\pm g = \partial_\pm g - A_\pm g \), which, in turn, replaces \(L^i_+ \) with \(\tilde{L}^i_+ = -iTr [t^i g^{-1} D_\pm g] \). Since we don’t want to add a new degree of freedom (the gauge field \(A \)), we need to impose its triviality as a constraint. A good way of doing that is by requiring the field strength to vanish and enforcing this in the action through a Lagrange multiplier term \(-iTr [vF_{+-}] = -ie^{\mu
u}Tr [vF_{\mu\nu}] \), where \(v = v_i \) is an SU(2) adjoint (a triplet) and the field strength \(F_{-+} = \partial_- A_+ - \partial_+ A_- - [A_+, A_-] \). In this way we obtain a first order action that acts as a master action for the T-duality. Integrating out the Lagrange multiplier \(v \) leads to \(F_{-+} = 0 \) which, in the absence of any topological issues, leads to a trivial \(A \), equivalent to \(A = 0 \), recovering the original theory.

If instead, we integrate out the gauge field \(A \) and gauge fix the SU(2) symmetry, we get \(A^\pm \) in terms of \(v \), and on substituting into the master action, obtain the T-dual action. Explicitly, we first partially integrate the Lagrange multiplier term to

\[-i \int Tr [vF_{+-}] = \int \{ Tr [\partial_\pm v] A_\pm - i(\partial_\pm v) A_\pm \} - A_+ fA_- \]

where \(A_+ fA_- \equiv A_+^i f_{ij} A_-^j \) and \(f_{ij} \equiv f_{ij}^k v_k \). Then, gauge fixing the SU(2) to \(g = 1 \), replaces \(L^i_+ \) by \(iTr [t^i A_\pm] = iA^i_\pm \), in the master action, giving

\[S = \int d^2 x \left[Q_{\mu\nu} \partial_+ X^\mu \partial_- X^\nu + Q_{\mu\nu} \partial_+ X^\mu (\pm iA^-_\mu) + Q_{\mu\nu} \partial_- X^\nu (\pm iA^+_\mu) \right] + E_{ij} (iA_\mu^i)(iA_\mu^j) \]

After varying this with respect to \(A_+ \) and \(A_- \) and solving the resulting equations of motion, we obtain

\[A^\pm_\mu = -iM^{-1}_{ij}(\partial_\pm v_j - Q_{\mu\nu} \partial_\nu X^\nu) \]

\[A^\pm_\mu = +iM_{ij}(\partial_\nu v_j + Q_{\mu\nu} \partial_+ X^\nu) \]

where \(M_{ij} \equiv E_{ij} + f_{ij} \). Finally, substituting \(A_\pm \) back in the master action, produces the T-dual action

\[S_{dual} \equiv \int d^2 x \left[Q_{\mu\nu} \partial_+ X^\mu \partial_- X^\nu + (\partial_\mu v_i + Q_{\mu\nu} \partial_+ X^\nu) \times M^{-1}_{ij}(\partial_\nu v_j - Q_{\mu\nu} \partial_+ X^\nu) \right]. \]

At the quantum level, i.e. considering the one-loop determinant, the T-duality also modifies the dilaton to

\[\Phi(x, v) = \Phi(x) - \frac{1}{2} \ln(\det M). \]

III. PARTICLE-VORTEX DUALITY AS NONABELIAN T-DUALITY IN 3 DIMENSIONS

We now want to generalize the above construction to \((2 + 1)\)-dimensions. Again, it is natural to con-
Consider the real variables Φ^a_0 and $L^{i}_{\mu} = -i \text{Tr} [t^a g^{-1} \partial_{\mu} g]$, where, as before $g(x^\mu) \in SU(2)$ is complex. We will first write down a desired master action generalizing the 2–dimensional case, except with $Q_{\mu i} = 0$ and $Q_{\mu \nu} = \delta_{\mu \nu}$.

First though, we define the local SU(2) symmetry, which means replacing derivatives with covariant derivatives, $D_{\mu} g = \partial_{\mu} g - A_{\mu} g$, and L^i_{μ} with $\tilde{L}^i_{\mu} = -i \text{Tr} [t^i g^{-1} D_{\mu} g]$. The desired master action is then

$$S_{\text{master}} = \int d^3x \left[-\frac{1}{2} (\partial_{\mu} \Phi^0_0)^2 - \frac{1}{2} (\Phi^k_0)^2 g^{\mu \nu} \tilde{L}^i_{\mu} \tilde{L}^j_{\nu} E_{ij} + e^{\mu \nu \rho} T_{ij} f^{v}_{\rho} \right] ,$$

(11)

where the gauge field strength is the usual $F_{\mu \nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} - [A_{\mu}, A_{\nu}]$.

Varying the action with respect to the Lagrange multipliers v^i_{μ} leads to $F^i_{\mu \nu} = 0$ which, in the absence of any topological issues, leads to a trivial gauge field. Consequently, the choice of $A_{\mu i} = 0$ leads to $L^i_{\mu} = L^i_{\mu}$, reducing the action to the pre-dualizing,

$$S_{\text{original}} = \int d^3x \left[-\frac{1}{2} (\partial_{\mu} \Phi^0_0)^2 - \frac{1}{2} (\Phi^k_0)^2 g^{\mu \nu} L^i_{\mu} L^j_{\nu} E_{ij} \right] .$$

(12)

If instead we first partially integrate the Lagrange multipliers term to

$$\int e^{\mu \nu \rho} v^i_{\mu} F^i_{\nu \rho} = \int e^{\mu \nu \rho} [(\partial_{\nu} v^i_{\mu}) A^i_{\rho} - (\partial_{\rho} v^i_{\mu}) A^i_{\nu} + A^i_{\rho} f_{\nu ij} A^j_{\mu}] ,$$

where $f_{\nu ij} \equiv f_{ijk} v^k_{\nu}$, and gauge fix by setting $g = 1$, then $\tilde{L}^i_{\mu} \rightarrow i \text{Tr} [t^i A_{\mu}] = i A^i_{\mu}$. Subsequent variation of the master action with respect to A^i_{μ} gives

$$[(\Phi^k_0)^2 g^{\mu \nu} E_{ij} + 2 e^{\mu \nu \rho} f_{\nu ij}] A^i_{\mu} = -e^{\mu \rho \sigma} (\partial_{\nu} v^i_{\rho} - \partial_{\rho} v^i_{\nu}) V^\rho_{\nu} ,$$

which is solved by $A^i_{\mu} = -M^i_{\rho j} V^\rho_{\nu}$, with

$$M^i_{\rho j} \equiv \left[(\Phi^k_0)^2 g^{\mu \nu} E_{ij} + 2 e^{\mu \nu \rho} f_{\nu ij} \right] ,$$

$$V^\rho_{\nu} \equiv e^{\mu \nu \rho} (\partial_{\nu} v^i_{\rho} - \partial_{\rho} v^i_{\nu}) .$$

(13)

On substituting A^i_{μ} back in the master action (11), we get the particle-vortex dual action

$$S_{\text{dual}} = \int d^3x \left[-\frac{1}{2} (\partial_{\mu} \Phi^0_0)^2 + \frac{1}{2} A^i_{\mu} M^i_{\rho j} A^j_{\rho} + A^i_{\mu} V^\rho_{\nu} \right]$$

$$= -\frac{1}{2} \int d^3x [V^\mu_i M^i_{\rho j} V^\rho_j + (\partial_{\mu} \Phi^0_0)^2] .$$

(14)

Evidently then, we have found a transformation of the path integral in $(2 + 1)$–dimensional theories of the form (12) that furnishes a non-abelian particle-vortex duality. In order to consider it a genuine particle-vortex duality transformation, we must be able to derive (12) from a more familiar action that admits vortex solutions, couple the theory to a nontrivial gauge field and add a vortex current term to the action.

To show that this sequence can be executed, we consider a scalar field Φ in a tensor product representation, obtained from the adjoint representations of two groups, that a priori need not be related to the SU(2) on which particle-vortex duality acts. As an ansatz we take

$$\Phi = \Phi^a_0 T_a \otimes e^{i \int dx^\mu L^{i}_{\mu} F^{A}_{i A} \tilde{T}_A} ,$$

(15)

where T_a and \bar{T}_A are adjoint matrices transforming under a priori different groups, and $F^{A}_{i A}$ are given coefficients (a "background"), out of which we will construct E_{ij}. Normalizing the generators through $\text{Tr} [T_i T_b] = \delta_{ab}$ and $\text{Tr} [\bar{T}_A \bar{T}_B] = \delta_{AB}$, leads to

$$\text{Tr} [(T_a \otimes \bar{T}_A)(T_b \otimes \bar{T}_B)] = \delta_{AB} \delta_{ab} ,$$

(16)

and consequently, the standard kinetic term for Φ becomes $(\delta^A_{\Phi} = N)$

$$\text{Tr} |\partial_{\mu} \Phi|^2 = N (\partial_{\mu} \Phi^0_0)^2 + (\Phi^0_0)^2 L^i_{\mu} L^j_{\nu} N E_{ij} ,$$

(17)

where $N E_{ij} = F^{A}_{i A} F^{A}_{j A}$, which up to a normalization of Φ_0 is the same as (12). We can now add to this action a potential depending only on Φ_0 which, as we saw earlier, is untouched by the duality transformation. Thereafter, we need to couple to a gauge field, write a vortex ansatz and add a vortex current to the action. Toward this end, we need a more general ansatz for the scalar.

One simple, if naive, possibility is if $F^{A}_{i A}$ is simply F_i, i.e. T_A is trivial and in which we can write an ansatz with just a common phase,

$$\Phi^a_0 \exp \left(i \int dx^\mu L^i_{\mu} F_i \right) ,$$

(18)

and for which the standard scalar kinetic term becomes

$$\sum_a |\partial_{\mu} \Phi^a|^2 = (\partial_{\mu} \Phi^0_0)^2 + (\Phi^0_0)^2 L^i_{\mu} L^j_{\nu} g^{\mu \nu} F_i E_{ij} .$$

(19)

Again, we reproduce (12) except with $E_{ij} = F_i F_j$ now separable. Next, we couple the scalar to an external gauge field, $a_{\mu} = a^m_{\mu} T_m$ in a Lie algebra direction not covered by A_{μ} (Tr $[A_{\mu} T_m] = 0$). This amounts to replacing \tilde{L}^i_{μ} in (11) by

$$\tilde{L}^i_{\mu} = -i \text{Tr} [t^i g^{-1} (\partial_{\mu} - i (A_{\mu} + a^m_{\mu} T_m))] g$$

(20)

and adding a kinetic term of $+\frac{1}{4} \text{Tr} [f_{\rho \nu}]$, for the external gauge field.

However, for the purposes of writing a vortex ansatz, it is more useful to consider instead a modification that creates a covariant derivative acting on the field Φ. For Φ in the adjoint representation, the normal derivative is

$$\partial_{\mu} \Phi = (T_a \partial_{\mu} \Phi^a_0 + T_a \otimes \bar{T}_A i \Phi^0_0 T^{A}_{i A}) \otimes e^{i \int dx^\mu L^{i}_{\mu} F^{A}_{i A} \tilde{T}_A} ,$$

(21)

Making the derivative covariant results in

$$D_{\mu} \Phi = (T_a \partial_{\mu} \Phi^a_0 + T_a \otimes \bar{T}_A i \Phi^0_0 T^{A}_{i A}) + \text{Tr} [A^B_{\mu} T_B, e^{i \int dx^\mu L^{i}_{\mu} F^{A}_{i A} \tilde{T}_A}] e^{-i \int dx^\mu L^{i}_{\mu} F^{A}_{i A} \tilde{T}_A} .$$
Therefore, in effect, the gauge field coupling gives the replacement
\[L^i_\mu F^A_i \to L^i_\mu F^A_i + L^i_\mu F^{BF}_{BC} A^C_{BC} + \mathcal{O}((L^i_\mu)^2), \tag{23} \]
to first order. We note that nothing makes it necessary that the gauge field be nonabelian at all. Indeed, if \(A \) belongs to the singlet representation, we may write the usual \(U(1) \) covariant derivative for \(\Phi \) without a problem.

We are now ready to consider a vortex ansatz. Assuming azimuthal symmetry, \(\Phi_0^a = \Phi_0^a(r) \) and “vortical” information about the solution is encoded in its phase
\[e^{i \int d^4x L^i_\mu F^A_i} = e^{iN_A \theta}, \tag{24} \]
where \(N_A \) is the vortex number and \(\theta \) is the polar angle on the plane. For a \(U(1) \) gauge field, it suffices to simply erase the \(A \) index. As in the abelian case, the requirement that \(D_\mu \Phi \to 0 \) at \(r \to \infty \) ensures both a finite energy solution (since the kinetic term \(|D_\mu \Phi|^2 \) vanishes at infinity) and the existence of a topological charge (since it implies that \(\oint A d\theta \) is quantized). Of course, having an ansatz doesn’t guarantee the existence of a solution. One needs to show that it is a solution of the equations of motion in a specific model (specified by a particular potential \(V(\Phi_0^a) \)). In a forthcoming article, we will show explicitly how the duality acts of nonabelian vortices in an \(SU(2) \times U(1) \) gauge theory that arises, for example, in the low energy limit of \(N = 2, SU(3) \) QCD with \(N_f \) flavors [11].

Finally, with an actual solution at hand we can isolate the vortex contributions to the action in the path integral, and obtain a vortex current term. Similarly to the abelian case considered in length in [5], where the phase \(\alpha \) separates into \(\alpha_{\text{smooth}} + \alpha_{\text{vortex}} \), with \(\alpha_{\text{vortex}} \) being the part that contains a topological charge of the vortex, we now replace \(L^i_\mu \) with \(L^i_{\mu, \text{smooth}} + L^i_{\mu, \text{vortex}} \). Gauge fixing \(g = 1 \), we get \(L^i_\mu = iA^i_{\mu, \text{smooth}} + L^i_{\mu, \text{vortex}} \), or rather \(A^i_\mu \to A^i_{\mu, \text{smooth}} + A^i_{\mu, \text{vortex}} \). Then, varying the master action (11) with respect to \(A^i_{\mu, \text{smooth}} \) gives
\[A^i_{\mu, \text{smooth}} + A^i_{\mu, \text{vortex}} = -M_{ij}^{-1} \epsilon^{ij\rho\nu} V_j^\rho. \tag{25} \]
The associated vortex term,
\[\epsilon^{\mu\nu\rho\sigma} V^i_\nu \partial_{\mu} A^j_\nu - \partial_{\nu} A^j_\nu \epsilon^{i\mu\rho\sigma} \equiv v^i_\mu \epsilon^{i\mu\rho\sigma}, \tag{26} \]
is obtained from the term linear in \(A^i_\mu \). From the vortex ansatz (24), we have
\[L^i_{\mu, \text{vortex}} F^A_i = N^A \partial_\mu \theta = N^A \frac{1}{2(\Phi_0^a)^2} j^\mu, \tag{27} \]
where \(j_\mu = \Phi^i \partial_\mu \Phi - \Phi \partial_\mu \Phi^i \) is a \(U(1) \) scalar particle current. In other words, the relation (26) expresses a duality between particle and vortex currents, generalizing the \(\epsilon^{\mu\nu\rho} \partial_{\rho} j_\nu = j^\mu_{\text{vortex}} \) relation from the abelian case, and justifying us calling it a nonabelian particle-vortex duality for the path integral transformation.

IV. AN EXAMPLE: SEMILOCAL VORTICES

To illustrate the above, we now exhibit the duality transformation explicitly for the case of the semilocal (cosmic) strings of [12–14]. Defined through the Lagrangian
\[\mathcal{L} = -\frac{1}{2} |D_\mu \Phi|^2 - \frac{\lambda}{4} (\Phi^4 - \nu^2)^2 - \frac{1}{4} f_{\mu\nu} f^{\mu\nu}, \tag{28} \]
the model is a two-flavored Higgs model with an \(SU(2)_C \times U(1)_L \to U(2) \) symmetry group. Now the scalar \(\Phi = (\Phi^a, (\Phi^1, \Phi^2)^T \) transforms in the fundamental representation of the global, flavor \(SU(2) \), while the gauge-covariant derivative is only \(U(1) \)-local, \(D_\mu \Phi = (\partial_\mu - i e A_\mu) \Phi \), like at the end of the last section, and \(f_{\mu\nu} = 2 g_{\mu\nu} \) is the usual abelian field strength. Of course, unlike the case in the last section, where \(\Phi = \Phi^a T_a \), \(\Phi \) was in the adjoint of the group generated by \(T_a \), here we now have a scalar \(\Phi^a \) in the fundamental representation of the global \(SU(2) \), so for the duality transformation we simply write the ansatz (18) but \textit{without} \(\Phi = \Phi^a T_a \). Here \(\Phi^a_0, a = 1, 2 \) and \(L^i_\mu, i = 1, 2, 3, 4 \in adj(U(2)) \) are real, \(i = 4 \) corresponds to \(I \), thus we see that even though we have 6 real variables, we are constrained to have the same phase for \(\Phi^1 \) and \(\Phi^2 \). That is actually fine, since for the axially symmetric \(n \)-vortex ansatz
\[a_\theta = \frac{v}{\sqrt{2} r} a(r); \quad a_r = 0; \quad \Phi^a = v \varphi^a(r) e^{i n \alpha_\theta}, \tag{29} \]
where \((r, \theta)\) are polar coordinates on the plane, leads to the condition that \(at \to \infty, \alpha_2 = \alpha_1 + c \), with \(c \) a constant. Taking \(c = 0 \) (without loss of generality), the vortex solution indeed satisfies the ansatz for the particle-duality transformation in (18). The energy is Bogomolnyi-saturated at critical coupling \(\beta = 2a^2 c \), where the second order equations of motion for \(\Phi \) and \(a_\mu \), defining \(\varphi(r) = \sqrt{\varphi^2(r)} + \) \((\varphi^2(r))^2 \), descend to the first order BPS equations
\[\frac{d \varphi}{dr} = \frac{n}{r} (1-a) \varphi, \quad \frac{da}{dr} = \frac{r}{n} (1-a \varphi^2), \tag{30} \]
same ones as for the Nielsen-Olesen vortex, thus the same numerical vortex solution is used to construct this “semilocal string”.

Making the identification \(Tr [t^i T_m] = \delta^i_m \) and the embedding \(a^4_\mu = a_\mu, a^1_{1,2,3} = 0 \) (and \(A^4_\mu \neq 0; A^3_\mu = 0 \)), we have the master action for the duality (replacing \(L^i_\mu \) with \(\tilde{L}^i_\mu \) in (11) and adding the kinetic term)
\[S_{\text{master}} = \int d^4 x \left[-\frac{1}{2} (\partial_\mu \Phi_0^a)^2 - \frac{1}{2} (\Phi_0^a)^2 \varphi^{i\rho\sigma} \sum_{i,j=1}^4 \tilde{L}^i_\mu \tilde{L}^j_\nu E_{ij} - \frac{1}{4} f^{2}_{\mu\nu} - V(\Phi) + \epsilon^{\mu\nu\rho\sigma} \sum_{i=1,2,3} v^i_\mu F^i_{\nu\rho} \right], \tag{31} \]
where \(E_{ij} = F_i F_j \) and \(\Phi_0^a = v \varphi^a \). As before, varying with respect to \(v^i_\mu \) leads to the original action, where the
terms on the first line combine to give $-(1/2)|D_\mu \Phi|^2$. Integrating out A_μ, instead and imposing the gauge $g=1$, leads to the dual action (with the definitions (13))

$$S_{\text{dual}} = \int d^3x \left[-\frac{1}{2} (\partial_\mu \Phi_0^\dagger)^2 - \frac{1}{4} f_{\mu\nu} - V(\Phi) + A_{\mu}^i \gamma^\mu_i + A_\mu^i \gamma^\mu_i + V_j^\rho + M_{ij}^\rho a_\sigma \right],$$

where $A_\mu^i = -M_{ij}^{-1} a_\sigma (V_j^\rho + M_{ij}^{\rho\sigma} a_\sigma)$.

V. DISCUSSION

Abelian particle-vortex duality has proven a powerful tool in the understanding of bosonic systems that range from anyonic superconductivity through to cosmic strings. An excellent example of this is illustrated in [17], which utilizes precisely this duality to explain the current-voltage symmetry observed near the critical point of the transition between the Laughlin plateaux and Quantum Hall insulator, a phenomenon not captured in the linear electromagnetic approximation.

As exciting as these developments have been to date, we are today at the birth of a new paradigm with the discovery of topological phases of matter as embodied in, for example, high temperature superconductors and the fractional quantum Hall effect. A key feature of such states of matter is that their quasi-particle excitations are neither fermionic nor bosonic but are best described as nonabelian anyons that obey nonabelian braiding statistics. Certainly since Moore and Read’s landmark paper [18] identifying quasiparticle excitations of certain fractional quantum Hall systems which obey nonabelian statistics, nonabelian states of matter have posed an exciting challenge to theoretical physics. Recent technological advances coupled with equally rapid developments in topological field theory have served only to fuel interest in this area and make the study of nonabelian states of matter one of the hottest topics in theoretical condensed matter physics today. It is our hope that the nonabelian particle-vortex duality communicated in this article will develop into as useful a tool to understand these new states of matter as its counterpart did for abelian physics.

VI. ACKNOWLEDGEMENTS

We thank Thiago Araújo, Fernando Quevedo and Jonathan Shock for discussions. The work of HN is supported in part by CNPq grant 301709/2013-0 and FAPESP grants 2013/14152-7 and 2014/18634-9. JM acknowledges support from the National Research Foundation (NRF) of South Africa under its IPRR and CPRR programs.

[1] S. R. Coleman, “The Quantum Sine-Gordon Equation as the Massive Thirring Model,” Phys. Rev. D 11, 2088 (1975).
[2] N. Seiberg and E. Witten, “Electric-magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)] [hep-th/9407087].
[3] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD,” Nucl. Phys. B 431, 484 (1994) [hep-th/9408099].
[4] D. H. Lee and M. P. A. Fisher, Int. J. Mod. Phys. B 5, 2675 (1991).
[5] J. Murugan, H. Nastase, N. Raghunauth and J. P. Shock, “Particle-vortex and Maxwell duality in the AdS_{4} \times \mathbb{CP}^{3} / ABJM correspondence,” JHEP 1410, 51 (2014) [arXiv:1404.5926 [hep-th]].
[6] O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[7] X. C. de la Ossa and F. Quevedo, Nucl. Phys. B 403, 377 (1993) [hep-th/9210021].
[8] K. Sfetsos and D. C. Thompson, “On non-abelian T-dual geometries with Ramond fluxes,” Nucl. Phys. B 846, 21 (2011) [arXiv:1012.1320 [hep-th]].
[9] G. Itsios, C. Nunez, K. Sfetsos and D. C. Thompson, “Non-Abelian T-duality and the AdS/CFT correspondence: new N=1 backgrounds,” Nucl. Phys. B 873, 1 (2013) [arXiv:1301.6755 [hep-th]].
[10] O. Kelekci, Y. Lozano, N. T. Macpherson and E. Ő. Colgáin, “Supersymmetry and non-Abelian T-duality in type II supergravity,” Class. Quant. Grav. 32, no. 3, 035014 (2015) [arXiv:1409.7406 [hep-th]].
[11] R. Auzzi, S. Bolognesi, J. Eveslin, K. Konishi and A. Yung, Nucl. Phys. B 673, 187 (2003) [hep-th/0307287].
[12] T. Vachaspati and A. Achucarro, “Semilocal cosmic strings,” Phys. Rev. D 44, 3067 (1991).
[13] M. Hindmarsh, “Existence and stability of semilocal strings,” Phys. Rev. Lett. 68, 1263 (1992).
[14] G. W. Gibbons, M. E. Ortiz, F. Ruiz Ruiz and T. M. Samols, “Semilocal strings and monopoles,” Nucl. Phys. B 385, 127 (1992) [hep-th/9203023].
[15] J. Murugan and H. Nastase, in preparation.
[16] T. H. Buscher, “Path-Integral Derivation of Quantum Duality in Nonlinear Sigma-Models,” Phys. Lett. B 204, 4 (1988).
[17] C. P. Burgess and B. P. Dolan, Phys. Rev. B 65, 155323 (2002) [cond-mat/0105621].
[18] G. W. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).