Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Determination of sialic acids in immune system cells (coelomocytes) of sea urchin, *Paracentrotus lividus*, using capillary LC-ESI-MS/MS

Savaş İzzetoğlu*, Umut Şahar, Ecem Şener, Remziye Deveci

Ege University, Faculty of Science, Department of Biology, Section of Molecular Biology, 35100 Bornova-Izmir, Turkey

ABSTRACT

Coelomocytes are considered to be immune effectors of sea urchins. Coelomocytes are the freely circulating cells in the body fluid contained in echinoderm coelom and mediate the cellular defence responses to immune challenges by phagocytosis, encapsulation, cytotoxicity and the production of antimicrobial agents. Coelomocytes have the ability to recognize self from non-self. Considering that sialic acids play important roles in immunity [1], we determined the presence of sialic acid types in coelomocytes of *Paracentrotus lividus*. Homogenized coelomocytes were kept in 2 M aqueous acetic acid at 80 °C for 3 h to liberate sialic acids. Sialic acids were determined by derivatization with 1,2-diamino-4,5-methylenedioxy-benzene dihydrochloride (DMB) followed by capillary liquid-chromatography-electrospray ionization/tandem mass spectrometry (CapLC-ESI-MS/MS). Standard sialic acids; Neu5Ac, Neu5Gc, KDN and bovine submaxillary mucin showing a variety of sialic acids were used to confirm sialic acids types. We found ten different types of sialic acids (Neu5Gc, Neu5Ac, Neu5Gc9Ac, Neu5Gc8Ac, Neu5Gc, Neu5,9Ac2, Neu5,7Ac2, Neu5,8Ac2, Neu5,7,9Ac3, Neu5Gc7,9Ac2, Neu5Gc7Ac) isolated in limited amounts from total coelomocyte population. Neu5Gc type of sialic acids in coelomocytes was the most abundant type sialic acid when compared with other types. This is the first report on the presence of sialic acid types in coelomocytes of *P. lividus* using CapLC-ESI-MS/MS-Ion Trap system (Capillary Liquid Chromatography-Electrospray Ionization/Tandem Mass Spectrometry).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and higher invertebrates (such as starfish and sea urchin), and on some bacteria that interact with vertebrates [1]. The expression of sialic acids is highly conserved in deuterostomes, i.e., from echinoderms to humans [2]. Sialic acids are biosynthesized by almost all organisms as a 9-carbon carboxylated monosaccharide and found most frequently as the terminal sugars of cell surface glycolipids and glycoproteins [3–6]. Because of their terminal location and negative charge, sialic acids have numerous roles in many aspect of immunity [1]. These monosaccharides have the potential to contribute or inhibit many intermolecular and intercellular interactions [4,7]. Sialic acids also contribute to many features of the cell surface and frequently serve as ligands for receptor-mediated intercellular interactions, host cell-pathogen recognition processes and lymphocyte-endothelial cell interactions [8,9]. Many earlier studies removed sialic acids from immune cell surfaces using sialidases and observed changes in behavior of such cells [1]. Sialic acids are crucial in the development of vertebrates, as observed that mouse embryos engineered to deficient sialic acid expression died after they birth [10]. In pathogenic diseases, including some inflammations, particular microbes recognize cell surface sialic acids when invading host cells [11,12]. For example, binding of influenza A and B viruses to host cell is accomplished by the specific recognition of the host sialic acid linkage by the virus. Sialylated molecules on *Aspergillus fumigatus* conidia (fungal pathogen) are recognized by cultured mouse macrophages and lung epithelial cell lines and enhance the uptake of conidia into the endosomal system of the host cell [13]. Sialic acid residues can also mask recognition sites such as galactose residues on glycoproteins to prevent their in vivo removal by asialo-glycoprotein receptors [14]. In certain cancers, changes in sialic acid amounts, types and linkages have been associated with tumorigenesis and cancer metastasis [12]. More than 50 naturally occurring sialic acid [15–17] derivatives of the three main forms, N-acetyllneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc) and 2-keto-3-deoxy-nonulosonic acid (KDN) were identified [6,18]. The great structural diversity in the sialic acids originates from different...
substitutions on the amino group at carbon 5 and hydroxyl groups at carbons 4, 7, 8 and 9 by acetyl groups (O-acetylation) [3,19,20].

There have been many reports concerning the analysis of specific sialic acids in animals. Although small amounts of glycoconjugates with sialic acids have been reported in certain prototstate animals such as insect [21–24], these sugars are found in largest amount and exhibit greatest structural variability in deuterostomia, predominantly in the echinodermata and hemichordata [25].

Echinoderms have a potential immune system for their survival [26]. Many species, living in coastal and estuarine waters, are directly exposed to potentially pathogenic microorganisms and have developed defence responses mainly based on immunocytes (coelomocytes) and humoral factors contained in the coelomic fluid [27–30]. In echinoids, sea urchin, Paracentrotus lividus, at least four main coelomocyte types including a subpopulation of macrophage-like cell, phagocytic cells that circulate in the coelomic fluid have been described: amoebocytes, vibratile cells, red and uncolored spherulocytes [26,30–35]. Cell-based immunity is carried by the coelomocytes, a morphologically heterogeneous population of free roaming cells that are capable of recognizing and neutralizing pathogens. Coelomocytes present diverse functions which include phagocytosis, engulfment, clotting, cytotoxicity and wound healing [31,35].

The cell-based immunity system is able to distinguish between self and non-self by oversialylation and undersialylation of their cell surface (but so far not examined in echinoids) [36]. In terms of their immune systems, echinoderms represent the same basic immune system cells, particularly in the echinoderm coelomocytes.

2. Materials and methods

2.1. Sea urchins

Sea urchins of the species P. lividus were collected from the nearshore waters of the northern Izmir coastline, Foça, Turkey.

2.2. Coelomocyte collection for sialic acid analysis

Necessary quantities of the coelomic fluid with coelomocytes were immediately taken from the coelomic cavity without feeding sea urchins. As previously described [37,38], the coelomic fluid from each animal was collected by removing Aristotle’s lantern, or the mouth structure, and aliquoted into 3 ml volumes and then diluted with isosmotic anticoagulant solution (20 mM Tris, 0.5 M NaCl, 70 mM EDTA pH 7.5) (ISO-EDTA). After centrifugation diluted with isosmotic anticoagulant solution (20 mM Tris, 0.5 M NaCl, 70 mM EDTA pH 7.5) (ISO-EDTA). After centrifugation

2.3. Coelomocyte preparation for microscopy

Coelomocytes were suspended in coelomocyte culture (CCM: 0.5 M NaCl, 5 mM MgCl2, 1 mM EGTA, 20 mM HEPES, pH 7.4). Cell suspensions (100 μL) were settled onto glass coverslips. Cells in fresh preparations were viewed on a Leica DM 4000B microscope using a 63 × NA 1.4 apochromatic objective lens coupled to a DP71 camera (Olympus).

2.4. Materials

All chemicals and solvents were of the highest grade commercially available (LC-MS grade). Standart sialic acids; Neu5Ac, Neu5Gc and KDN (A9646, G9793 and 60714) were purchased from Sigma (Sigma-Aldrich Chemie GmbH Riedstrasse 2 D-89555 STEINHEIM). DMB (1,2-diamino-4,5-methylenedioxy-benzene dihydrochloride) was obtained from Sigma (D4784). Sialic acids were determined by labeling with DMB. Mucin (purchased from Sigma-M-3895 Bovine Submaxillary Gland) was used in the present study as a model for sialic acid compounds. Salivary mucin is a collection of proteins that contain large amounts of O-glycosidically linked carbohydrate chains. Mucin isolated from bovine submaxillary gland using as a standard compound contains most members of sialic acid family [4,39]. The amino group of sialic acids in mucin is usually substituted with acetyl or glycolyl groups. Hydroxyl groups of sialic acids are also sometimes substituted with acetyl, lactyl and other groups [40].

2.5. Liberation of sialic acids from mucin glycoprotein and derivatization of standards

For the confirmation of molecular species of sialic acids, mucin (1 mg) was mixed with 20 μL 2 M aqueous acetic acid. The mixture (1 mg/20 μL) was kept at 80 °C for 3 h for releasing sialic acids. The solution (20 μL) was kept at 80 °C for 3 h for releasing sialic acids. The solution (20 μL) containing sialic acids was mixed with 7 mM DMB, 0.75 M β-mercaptoethanol, and 8 mM sodium hydroxulflate in 1.4 M aqueous acetic acid. The mixture was incubated at 60 °C for 150 min in the dark. After cooling, a portion was analyzed using LC-ESI-MS/MS.

Standards; Neu5Ac, Neu5Gc and KDN (1.25 μg/mL) were directly derivatized with DMB and reaction mixture directly injected to LC-ESI-MS/MS system.

2.6. Liberation and derivatization of sialic acids from coelomocytes

Coelomocytes were homogenized by sonication (Bandelin-Sonorex) at 4 °C in 2 M aqueous acetic acid solution (1 mg of cells/5 μL). The solution was used for sialic acid analysis. Homogenized 40 μL sample solutions (1 mg/5 μL) were kept for 3 h at 80 °C. After hydrolysis, the mixtures were derivatized with DMB in the same manner as above. The mixtures were centrifuged at 16,300 rpm for 10 min at 4 °C. Supernatant solution containing the derivatized sialic acids was pipetted to HPLC vial insert (250 μL). The injection volumes of both samples were 0.5 μL for analyzing by CapLC-ESI-MS/MS with ion trap.

2.7. Capillary LC-ESI-MS/MS/Ion trap parameters

LC was performed using an Agilent 1200 Capillary HPLC system with an ODS capillary column (Agilent ZORBAX SB-C18 150 × 0.5 mm, 5 μm, USA) delivering 20 μL/min of the eluent. Elution was performed by isocratic mode using mixture of methanol—aetonitrile—water (7.5:5:87.5, v/v). The column was kept at 30 °C during the analysis. The samples were stored at 5 °C in temperature controlled autosampler board (Agilent G1377A). The column of LC system was connected to an electrospray ion source (ESI positive). All mass spectrometric measurements were performed on a HCT Ultra ion trap mass spectrometer (Brucker Daltonics, Bremen, Germany) equipped with an electrospray ionization (ESI) source. Spectrometric conditions such as the ion optics voltages, nebulizer gas and dry gas flow rates, and the dry gas
temperature were controlled by EsquireControl software 6.1. Both the nebulizer gas and the dry gas were nitrogen, and helium (He) (99.9%) was used as the collision gas in the ion trap. The ion source parameters were set as follows: dry temperature 310 °C, nebulizer pressure 15.0 psi, and dry gas flow 5 l/min. MS/MS spectra were carried out by collision-induced dissociation (CID). All mass spectra were acquired in the mass range 200–600 m/z, with a scan speed of 26,000 m/z per second. Data analysis was carried out using Data Analysis software (v.3.4, Bruker Daltonics).

3. Results

To determine whether substituted sialic acids exist on the circulating coelomocytes, 2 M acetic acid treatment was used to release sialic acids from glycoconjugates without destroying the substitutions that may be present on the sialic acid molecule. Released sialic acids were then derivatized with 1,2-diamino-4,5-methylenedioxybenzene dihydrochloride (DMB) and separated by CapLC-ESI-MS/MS and retention times-CID fragments were obtained from MRM of sialic acids are very useful for screening the ions at lower end of the mass spectrometry (MS/MS) [41]. Therefore, [M + H]⁺, m/z = 508 [M + H-18]⁺ and m/z = 510 [M + H]⁺, m/z = 492 [M + H-18]⁺ in the mass chromatogram on total coelomocyte population. 7, 8, 9-O-acetylated of Neu5Ac was obtained at [M + H]⁺, m/z = 468 [M + H]⁺, m/z = 450 [M + H-18]⁺. Also, Neu5Gc type of sialic acids and its acetylated compounds (Neu5Gc7Ac, Neu5Gc8Ac and Neu5Gc9Ac) were identified at m/z = 484 [M + H]⁺, m/z = 466 [M + H-18]⁺. The distributions of sialic acids in total coelomocyte population were shown Fig. 4. KDN is a structurally related s-keto acid that is also found in glycoconjugates [13]. However, under the conditions used in this study, KDN was not found both coelomocytes and BSM. Hence, Neu5Gc was established as the predominant sialic acid on circulating coelomocytes of P. lividus.

4. Discussion

Although small amounts of sialic acid have been reported in insects [21–23] and a gastropod [24], they are not found generally in glycoconjugates of protostome animals [42]. However, within the deuterostome lineage of the animal kingdom, both the echinoderms and vertebrates possess significant amounts of sialylated glycoconjugates and frequently display a considerable number of sialic acid types. The structural variety among the sialic acids results from a number of enzyme-catalyzed modifications of N-acetyleneuraminic acid occurring at different stages of glycoconjugate biosynthesis [43]. N-Glycolylneuraminic acid (Neu5Gc) is one of the most common sialic acids and formally results from the hydroxylation of the methyl group of the N-acetyl moiety of Neu5Ac. Interestingly, no Neu5Gc has been found in human and chicken tissues, although small amounts have been detected in tumors [9]. In the marine deuterostomes, including sea urchins and starfish, Neu5Gc is often main and predominant sialic acid and is widely distributed in glycoproteins and gangliosides of especially oocyte and sperm cells, suggesting that it is involved in a number of

![Fig. 1. Schema of the reaction of 1,2-diamino-4,5-methylenedioxy-benzene (DMB) derivatization of sialic acids.](image-url)
Fig. 2. LC-ESI-MS/MS mass spectrum and chromatogram of DMB-Sialic acid species (ten types) found in total coelomocyte population. Monitored of molecular ions \([M + H]^+\) as labeled (●) by software, and CID (collision-induced dissociation) fragments \([M + H-H_2O]^+\) at \[m/z\]; 424 for Neu5GC, 408 for Neu5Ac, 466 for Neu5GC7Ac, Neu5GC8Ac and Neu5GC9Ac, 450 for Neu5,7Ac2, Neu5,8Ac2 and Neu5,9Ac2, 492 for Neu5,7,9Ac3, 508 for Neu5GC7,9Ac2.

Fig. 3. LC-ESI-MS/MS mass spectrum and chromatogram of DMB-Standard Sialic acid species (KDN, Neu5GC and Neu5Ac). Monitored of molecular ions \([M + H]^+\) as labeled (●) by software, and CID (collision-induced dissociation) fragments \([M + H-H_2O]^+\) at \[m/z\].
important biological functions in these marine invertebrates [9,25,44,45]. In immune cells of sea urchin, *P. lividus*, Neu5Sc was the most abundant type sialic acid when compared with other found sialic acid types. Cell surface glycoconjugates which include Neu5Sc may help to protect tissues from attack by certain pathogen-derived toxic enzymes. In order to aid the digestion of the cell surface glycoconjugates, several microorganisms secrete sialidase, which may facilitate bacterial infection. Since the cleavage rate of Neu5Sc by bacterial and viral sialidases is generally lower than that of Neu5Ac, the expression of Neu5Gc may be an adaptation to retard the effects of sialidases [46]. Neu5Ac is the most common ligand for virus binding but Neu5Gc and O-acetylated groups on sialic acids can be developmentally regulated in immune systems or create new biological functions [3,6]. They therefore revealed to be important in cell differentiation, neural development, non-immunogenic protection and immune reactivity [47]. However, high levels of 9-O-acetylated sialic acids were detected on developing and peripheral resting and activated T-cells [48]. As another example, side chain O-acetylated sialic acids are also expressed human leukocytes, where they can be used as markers for specific subsets of T-helper cell. For several subsets of T-lymphocytes O-acetylation of sialic acids is known to be a differentiation and maturation marker [47,48]. This may be one of reasons why immune cells, circulating coelomocytes, contain such a wide variety of O-acetylated sialic acids (Neu5Gc9Ac, Neu5Gc8Ac, Neu5,9Ac2, Neu5,7Ac2, Neu5,8Ac2, Neu5,7,9Ac3, Neu5Gc7Ac). And also, O-acetylation of sialic acids may be a novel marker for finding subsets of coelomocytes like T-cells.

In conclusion, the investigation of the immune system of echinoderms should help in understanding the cellular and humoral interactions that control host defense in this group of marine animals and mammals. Our results are also important for a phylogenetic point of view because they may contribute to the understanding of the immune phenomena of higher animals, including mammals. Moreover, they may lead to possible analogies or homologies with immune reactions in vertebrates.

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK – project no. 112T646) and Ege University Science and Technology Centre (EBLITEM – project no. 2012B1043).

References

[1] Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann NY Acad Sci 2012;1253:16–36 (Invited Review).
[2] Schauer R, Srinivasan GV, Wipf D, Kneer R, Schwartz-Albier R. O-Acetylated sialic acids and their role in immune defense. Adv Exp Med Biol 2011;705:525–48.
[3] Varki A. Diversity in the sialic acids. Glycobiology 1992;2(1):25–40.
[4] Klein A, Díaz S, Ferrero I, Lambli F, Rousset P, Manzi AE. New sialic acids from biological sources identified by a comprehensive and sensitive approach: Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) of SIAO quinoxalinones. Glycobiology 1997;7(7):421–32.
[5] Morimoto N, Nakano M, Kinoshita M, Kawabata A, Morita M, Oda Y, et al. Specific distribution of sialic acids in animal tissues as examined by LC-ESI-MS after derivatization with 1,2-diamino-4,5-methyleneoxazobenzene. Anal Chem 2001;73(22):5422–41.
[6] Lamari FN, Karamanou NK. Separation methods for sialic acids and critical evaluation of their biologic relevance. J Chromatogr B Analyt Technol Biomed Sci 2002;781(1–2):3–19.
[7] Varki A. Biological roles of oligosaccharides: all of theories are correct. Glycobiology 1993;3(2):97–110.
[8] Miyata S, Sato C, Kitamura S, Toriyama M, Kitajima K. A major flagellum sialoglycoprotein in sea urchin sperm contains a novel polysialic acid, an alpha2,9-linked poly-N-acetyleneuraminic acid chain, capped by an 8-O-sulfated sialic acid residue. Glycobiology 2004;14(9):827–40.
[9] Martensen I, Schauer R, Shaw L. Cloning and expression of a membrane-bound CMP-N-acetyleneuraminic acid hydrolase from the starfish Asterias rubens. Eur J Biochem 2001;268(19):5157–66.
[10] Angata T, Varki A. Chemical diversity in the sialic acids and related \(\alpha \)-ketoglutaric acids: an evolutionary perspective. Chem Rev 2002;102:439–69.
[11] Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L. Biochemistry and role of sialic acids. In: Rosenberg A, editor. Biology of sialic acids. New York: Plenum Press; 1995. p. 7–67.
[12] Lawrence SM, Huddleston KA, Pitts LR, Nguyen N, Lee YC, Vann WF, et al. Cloning and expression of the human N-acetylenuraminic acid phosphate synthase gene with 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid biosynthetic ability. J Biol Chem 2000;275(23):17869–77.
[13] Warwas ML, Watson JN, Bennett AJ, Moore MM. Structure and role of sialic acids on the surface of Aspergillus fumigatus conidiospores. Glycobiology 2007;17(4):401–10.

Table 1

Sialic acids	RT	\([M + H]^+\)	CID fragments	\([M + H-H_2O]^+\)	Fragments (m/z)
Neu5Gc	7.3	442	424	313–295–283–229	
Neu5Gc7Ac	9.9	484	466	313–295–283–229	
Neu5Ac	10.0	426	408	313–295–283–229	
Neu5Gc8Ac	10.8	468	466	313–295–283–229	
Neu5,7Ac2	11.9	468	450	313–295–283–229	
Neu5Gc9Ac	13.4	484	466	313–295–229	
Neu5,8Ac2	15.2	468	450	313–295–229	
Neu5,9Ac2	19.7	468	450	313–295–229	
Neu5Gc7,9Ac2	24.2	526	508	313–295–229	
Neu5,7,9Ac3	28.0	510	492	313–295–229	

Fig. 4. Distribution of sialic acids amounts measured by LC-ESI-MS/MS. Sialic acid contents of total coelomocyte population were demonstrated by average peak area of MRMs chromatograms of their types. Data are presented as mean ± standard deviation (S.D.) of peak area from three replicated experiments.
Schauer R. Sialic acids and their role as biological masks. Trends Biochem Sci 1985;10:357–60.

Kamerling JP, Gerwig GJ. Structural analysis of naturally occurring sialic acids. In: Brockhausen I, editor. Methods in molecular biology, glycochemistry protocols. Totowa, New Jersey: Humana Press; 2007, p. 69–91.

Schauer R. Sialic acids as regulators of molecular and cellular interactions.Curr Opin Struct Biol 2009;19(5):507–14.

Bergfeld AK, Pearce OM, Diaz SL, Pham T, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycoly neuraminic acid. J Biol Chem 2012;287:28865–81.

Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta 2009;1790(12):1599–610.

Schauer R. Chemistry, metabolism and biological functions of sialic acids. Adv Carbohydrate 1982;40:131–234.

Hashi N, Kawasaki N, Nakajima Y, Toyoda M, Katagiri Y, Itoh S, et al. Study on the quality control of cell therapy products. Determination of N-glyco neuraminic acid incorporated into human cells by nano-flow liquid chromatography/Fourier transformation ion cyclotron mass spectrometry. J Chromatogr A 2007;1160(1–2):263–9.

Roth J, Kempf A, Reuter G, Schauer R, Gehring WJ. Occurrence of sialic acids in protein and other echinoderms. Comp Biochem Physiol B Biochem Mol Biol 1998;120(3):605–14.

Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schroder HC, et al. Monitoring chemical and physical stress using sea urchin immune cells. Prog Mol Subcell Biol 2003;35:85–110.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Smith LC, Rast JP, Brockton V, Terrilliger DP, Nair SV, Buckley K, et al. The sea urchin immune system. Inv Surv J 2010;7:211–20.

Karaçal S, Deveci R, Pehlivan S, Ozcan A. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in larval stage. Invertebr Reprod Dev 2000;37(2):167–70.

Lee K, Jang KS, Kim YG, Park SH, Lee CS, et al. Low mass cutoff evasion with q(2) value optimization in ion trap. Anal Biochem 2009;387(1):133–5.

Corfield AP, Schauer R. Occurrence of sialic acids. In: Schauer R, editor. Sialic acids — chemistry, metabolism and function. New York: Springer Verlag; 1982. p. 5–50.

Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H, editors. Glycoproteins II. Amsterdam: Elsevier; 1997. p. 243–402.

Gollub M, Shaw L. Isolation and characterization of cytidine-5’-monophosphate-N-acetyleneuraminic acid from the starfish Asstrius rubens. Comp Biochem Physiol B Biochem Mol Biol 2003;134(1):89–101.

Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schroder HC, et al. Monitoring chemical and physical stress using sea urchin immune cells. Prog Mol Subcell Biol 2003;35:85–110.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Karaçal S, Deveci R, Pehlivan S, Ozcan A. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in larval stage. Invertebr Reprod Dev 2000;37(2):167–70.

Lee K, Jang KS, Kim YG, Park SH, Lee CS, et al. Low mass cutoff evasion with q(2) value optimization in ion trap. Anal Biochem 2009;387(1):133–5.

Corfield AP, Schauer R. Occurrence of sialic acids. In: Schauer R, editor. Sialic acids — chemistry, metabolism and function. New York: Springer Verlag; 1982. p. 5–50.

Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H, editors. Glycoproteins II. Amsterdam: Elsevier; 1997. p. 243–402.

Gollub M, Shaw L. Isolation and characterization of cytidine-5’-monophosphate-N-acetyleneuraminic acid from the starfish Asstrius rubens. Comp Biochem Physiol B Biochem Mol Biol 2003;134(1):89–101.

Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schroder HC, et al. Monitoring chemical and physical stress using sea urchin immune cells. Prog Mol Subcell Biol 2003;35:85–110.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Karaçal S, Deveci R, Pehlivan S, Ozcan A. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in larval stage. Invertebr Reprod Dev 2000;37(2):167–70.

Lee K, Jang KS, Kim YG, Park SH, Lee CS, et al. Low mass cutoff evasion with q(2) value optimization in ion trap. Anal Biochem 2009;387(1):133–5.

Corfield AP, Schauer R. Occurrence of sialic acids. In: Schauer R, editor. Sialic acids — chemistry, metabolism and function. New York: Springer Verlag; 1982. p. 5–50.

Schauer R, Kamerling JP. Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H, editors. Glycoproteins II. Amsterdam: Elsevier; 1997. p. 243–402.

Gollub M, Shaw L. Isolation and characterization of cytidine-5’-monophosphate-N-acetyleneuraminic acid from the starfish Asstrius rubens. Comp Biochem Physiol B Biochem Mol Biol 2003;134(1):89–101.

Matranga V, Pinsino A, Celi M, Natoli A, Bonaventura R, Schroder HC, et al. Monitoring chemical and physical stress using sea urchin immune cells. Prog Mol Subcell Biol 2003;35:85–110.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Smith LC, Chang L, Britten RJ, Davidson EH. Sea urchin gene expressed in activated coelomocytes are identified by expressed sequence tags. Complement Cytokine Res 2001.

Karaçal S, Deveci R, Pehlivan S, Ozcan A. Adhesion of hemocytes to desialylated prothoracic glands of Galleria mellonella (Lepidoptera) in larval stage. Invertebr Reprod Dev 2000;37(2):167–70.

Lee K, Jang KS, Kim YG, Park SH, Lee CS, et al. Low mass cutoff evasion with q(2) value optimization in ion trap. Anal Biochem 2009;387(1):133–5.