Valproate-associated Movement Disorder: A Literature Review

Jamir Pitton Rissardo¹, Ana Letícia Fornari Caprara¹, Ícaro Durante²
¹Department of Medicine, Federal University of Santa Maria, Santa Maria, Brazil; ²Department of Medicine, Federal University of Fronteira Sul, Passo Fundo, Brazil

Received February 21, 2020; Accepted August 22, 2021.

Key words: Valproate – Valproic acid – Review – Movement disorder – Drug-induced

Abstract: Valproate (VPA) was first synthesized in 1882, but it was only in the early 1960s that its anticonvulsant properties were discovered. The aim of this literature review is to evaluate the clinical epidemiological profile, pathological mechanisms, and management of VPA-associated movement disorder (MD). Relevant reports in six databases were identified and assessed by two reviewers without language restriction. A total of 138 reports containing 362 cases of subjects who developed a MD secondary to VPA were reported. The MD identified were parkinsonism (PKN) (252), myoclonus (MCL) (54), dystonia (DTN) (17), dyskinesia (DKN) (16), stutters (4), tics (3), akathisia (AKT) (1). In the not clearly defined group, 15 extrapyramidal symptoms, 3 AKT, 2 DTN, 1 rigidity, 1 unstable gait were assessed. The mean and median age was 55.8 (SD: 16.58) and 61 years (range: 4–87 years). The most common VPA-indication was epilepsy, and 51.36% were males. The mean and median time from the VPA start to the MD onset was 32.75 (SD: 30.05) and 21.15 months (range: 1 day – 20 years). The mean and median time from the VPA withdrawal until the MD recovery was 2.89 (SD: 2.79) and 3 months (1 day – 12 months). The most common management was drug withdrawal. A complete recovery was obtained in 80.61%. VPA-associated MD was extensively reported in the literature. PKN was the most well-described. Future studies need to clearly report the clinical history of the patient, considering the full investigation of other adverse events during their entire life.

Mailing Address: Dr. Jamir Pitton Rissardo, Av. Roraima, 1000 – Camobi, Santa Maria – RS, 97105-900, Brazil; Phone: (55) (55) 334 729 08; e-mail: jamirrissardo@gmail.com

https://doi.org/10.14712/23362936.2021.14
© 2021 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0).
Introduction
Valproate (VPA), and its pharmacological forms such as valproic acid, sodium valproate, and valproate semisodium are anticonvulsants (Figure 1). In 1882, Beverly Burton synthesized VPA for the first time; this compound was used for almost eighty years as an inert solvent in laboratories (Lempérière, 2001). Pierre Eymard, in the early 1960s, during animal studies to develop a new antiepileptic drug, noted that the substances dissolved in VPA had apparently better anticonvulsant properties (Henry, 2003). After this observation, many clinical studies showed the efficacy and safety of VPA for the management of focal seizures (Brugger et al., 2016). In 1967, it was approved as an antiepileptic drug in France (Henry, 2003). Only in 1983, the Food and Drug Administration approved this medication for the treatment of epilepsy (Lempérière, 2001). The first study assessing the efficacy of VPA in bipolar disorder was done by Lambert et al. at the end of the 1960s in France, soon after the approval for epilepsy, which showed good results, but for many years these data were believed to be incidental, due to the small number of subjects studied (Henry, 2003). About ten years later, German clinical trials followed by North American studies supported the hypothesis of Lambert et al. In 1995, VPA was approved as monotherapy during manic episodes by the FDA (Lempérière, 2001).

The mechanism of action of VPA is not completely understood (Figure 2) (Lempérière, 2001; Löscher, 2002; Bowden, 2003; Henry, 2003; Brugger et al., 2016). Its main interactions are related to the voltage-gated sodium channels blockage and increased brain levels of gamma-aminobutyric acid (GABA) (Löscher, 2002). The increased concentration of this neurotransmitter is believed to occur due to indirect inhibition of the GABA’s reuptake and degradative enzymes. Also, it is worth mentioning that this GABAergic mechanism probably explains the anticonvulsant and antimanic properties of this drug (Bowden, 2003). Other pathways that VPA is related include the Kv7.2, AKAP5, and histone deacetylase (Löscher, 2002). It is hypothesized that the inhibition of the histone deacetylase may have neuroprotective effects due to the increased uncoiling of DNA promoting more transcriptional activity of chromatin structures (Bowden, 2003).

The adverse effects of this medication that affect more than ten percent of users are nausea, vomiting, headache, coagulation disorders (Rissardo et al.,

Figure 1 – Skeletal formula of the anticonvulsant drug valproic acid, also known as 2-propylvaleric acid.
2019), alopecia, asthenia, somnolence, amblyopia, diarrhea, dizziness, dyspepsia, nystagmus, and tinnitus (Bowden, 2003). In the label of VPA, there is a black box warning about hepatotoxicity in susceptible individuals (those with mitochondrial diseases), teratogenicity, and pancreatitis (Löscher, 2002). Other common side effects secondary to VPA are movement disorders (MD) such as tremor and ataxia, which can significantly impact the quality of life of an important percentage of the VPA users. Moreover, these abnormal movements are challenging to diagnose and manage in the clinical practice, because the majority of affected individuals have a pre-existing psychiatric or neurologic comorbidity.

In the literature, there are few reviews about VPA and MD that were not focused solely on tremors. To be more specific, we found two reviews about VPA-induced parkinsonism (PKN). Mahmoud and Tampi published a study about this topic in 2011; they objectively selected elderly patients, and a total of thirteen case reports were analysed. In 2016, Brugger et al. searched on four databases for papers in English about VPA and PKN, a total of 116 patients were evaluated; their purpose was to discuss the possible hypotheses for these adverse effects. In this context, the aim of the present literature review is to evaluate the clinic-epidemiological profile, pathological mechanisms, and management of VPA-associated MD.
Methods

Search strategy

We searched six databases and also abstracts of the “International Congress of the Parkinson’s Disease and Movement Disorders (1990–2019)” in an attempt to locate any and all existing reports on movement disorders (MD) secondary to VPA published between 1975 and 2019 in electronic form. Excerpta Medica (Embase), Google Scholar, Latin American and Caribbean Health Sciences Literature (Lilacs), Medline, Scientific Electronic Library Online (Scielo), and ScienceDirect were searched. Search terms were “parkinsonism, dyskinesia, dystonia, stuttering, myoclonus, restless legs syndrome, akathisia, tremor, chorea, tics, restlessness, ataxia, ballism, hyperkinetic, hypokinetic, bradykinesia, movement disorder”. These terms were combined with “valproate, valproic acid” (Table 1).

Inclusion and exclusion criteria

Case reports, case series, original articles, letters to the editor, bulletins, and poster presentations published from 1975 to 2019 were included in this review with no language restriction. The authors independently screened the titles and abstracts.

Table 1 – FreeText and MeSH search terms in the US National Library of Medicine

Category	Search terms	Results
Parkinsonism	(((((((valproate)[All Fields] OR “valproate’s”[All Fields]) OR “valproates”[All Fields]) OR “valproic acid”[MeSH Terms]) OR (“valproic”[All Fields] AND “acid”[All Fields])) OR “valproic acid”[All Fields]) OR “valproate”[All Fields]) AND (((((((“parkinson disease”[MeSH Terms] OR (“parkinson”[All Fields] AND “disease”[All Fields])) OR “parkinson disease”[All Fields]) OR “parkinson’s”[All Fields]) OR “parkinsons”[All Fields]) OR “parkinson”[All Fields]) OR “parkinsonian disorders”[MeSH Terms]) OR (“parkinsonian”[All Fields] AND “disorders”[All Fields]) OR “parkinsonian disorders”[All Fields]) OR “parkinsonism”[All Fields]) OR “parkinsonisms”[All Fields]) OR “parkinsons’s”[All Fields])	180
Tics	(((((((valproate)[All Fields] OR “valproate’s”[All Fields]) OR “valproates”[All Fields]) OR “valproic acid”[MeSH Terms]) OR (“valproic”[All Fields] AND “acid”[All Fields])) OR “valproic acid”[All Fields]) OR “valproate”[All Fields]) AND (“TIC”[Journal] OR “TIC”[All Fields])	15
Dyskinesia	(((((((valproate)[All Fields] OR “valproate’s”[All Fields]) OR “valproates”[All Fields]) OR “valproic acid”[MeSH Terms]) OR (“valproic”[All Fields] AND “acid”[All Fields])) OR “valproic acid”[All Fields]) OR “valproate”[All Fields]) AND (((“dyskinesiae”[All Fields]) OR “dyskinesias”[MeSH Terms]) OR “dyskinesias”[All Fields]) OR “dyskinesia”[All Fields])	576
Category	Search terms	Results
-----------------	--	---------
Dystonia	((((("valproate"[All Fields] OR "valproate’s"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("dystonia"[MeSH Terms] OR “dystonia”[All Fields]) OR "dystonias"[All Fields]) OR “dystonic disorders”[MeSH Terms]) OR (“dystonic”[All Fields] AND “disorders”[All Fields])) OR “dystonic disorders”[All Fields])	54
Stuttering	(((((("valproate"[All Fields] OR "valproate’s"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND (((((((("stammerers"[All Fields] OR "stammers"[All Fields]) OR "stutterer"[All Fields]) OR "stutterer’s"[All Fields]) OR "stutterers"[All Fields]) OR "stuttering"[MeSH Terms]) OR “stuttering”[All Fields]) OR “stammer”[All Fields]) OR “stammering”[All Fields]) OR “stutter”[All Fields]) OR “stuttered”[All Fields]) OR “stutters”[All Fields]) OR “stutterings”[All Fields])	10
Myoclonus	((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("myoclonias"[All Fields] OR "myoclonus"[MeSH Terms]) OR “myoclonus”[All Fields]) OR “myoclonia”[All Fields])	345
Restless legs syndrome	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("restless legs syndrome"[MeSH Terms] OR (“restless”[All Fields] AND “legs”[All Fields]) AND “syndrome”[All Fields])) OR “restless legs syndrome”[All Fields]))	17
Akathisia	((((("valproate"[All Fields] OR "valproate’s"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("akathisias"[All Fields] OR “psychomotor agitation”[MeSH Terms]) OR (“psychomotor”[All Fields] AND “agitation”[All Fields]) OR “psychomotor agitation”[All Fields]) OR “akathisia”[All Fields])	122
Tremor	((((("valproate"[All Fields] OR "valproate’s"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("trembling"[All Fields] OR “tremor”[MeSH Terms]) OR “tremor”[All Fields]) OR “tremors”[All Fields]) OR “tremoring”[All Fields]) OR “tremorous”[All Fields])	222
Chorea	((((("valproate"[All Fields] OR "valproate’s"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("chorea"[MeSH Terms] OR “chorea”[All Fields]) OR “choreas”[All Fields]) OR “choreas”[All Fields])	124
Category	Search terms	Results
------------------	---	---------
Restlessness	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("psychomotor agitation"[MeSH Terms] OR ("psychomotor"[All Fields] AND "agitation"[All Fields])) OR "psychomotor agitation"[All Fields]) OR "restlessness"[All Fields])	124
Ataxia	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("ataxia"[MeSH Terms] OR "ataxia"[All Fields]) OR "ataxias"[All Fields])	205
Ballism	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("dyskinesias"[MeSH Terms] OR "dyskinesias"[All Fields]) OR "ballism"[All Fields])	542
Hyperkinetic	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("hyperkinetic"[All Fields] OR "hyperkinetics"[All Fields]) OR "hyperkinetic"[All Fields])	20
Hypokinetic	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("hypokinesia"[MeSH Terms] OR "hypokinesia"[All Fields]) OR "hypokinetic"[All Fields])	9
Bradykinesia	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("hypokinesia"[MeSH Terms] OR "hypokinesia"[All Fields]) OR "bradykinesia"[All Fields]) OR "bradykinesias"[All Fields])	12
Movement disorder	(((((("valproate"[All Fields] OR "valproate's"[All Fields]) OR "valproates"[All Fields]) OR "valproic acid"[MeSH Terms]) OR ("valproic"[All Fields] AND "acid"[All Fields])) OR "valproic acid"[All Fields]) OR "valproate"[All Fields]) AND ((("movement disorders"[MeSH Terms] OR ("movement"[All Fields] AND "disorders"[All Fields]) OR "movement disorders"[All Fields]) OR ("movement"[All Fields] AND "disorder"[All Fields]) OR "movement disorder"[All Fields])	466

Total: 3043

VPA-associated MD
of all papers found in the initial search. Disagreements between the authors were resolved through discussion.

Cases where the cause of MD was already known and either motor symptoms did not worsen or were not related to VPA were excluded. Also, cases that were not accessible by electronic methods, even after a formal request to the authors (by e-mail) were excluded. Reports that had more than one factor contributing to the MD were evaluated by the probability of occurrence of the event based on the Naranjo algorithm.

Data extraction

For VPA a total of 6,443 papers were found; 5,279 were irrelevant and 1,026 were unrelated to the complication, duplicate, inaccessible electronically, or provided insufficient data (Figure 3). Data abstraction was performed. When provided, we extracted author, department, year of publication, country of origin, number of patients affected, VPA indication including off-label uses, time from first VPA-dose until MD onset, time from VPA withdrawal or management to symptoms improvement, patient’s status at the last follow-up, and important findings of clinical history and management. The majority of the reports did not provide specific

![Figure 3 – Flow chart of the screening process for valproate (VPA).](image-url)
information about the times of MD onset and recovery. Data were extracted by two independent authors, double-checked to ensure matching, and organized by whether or not the MD was a side effect of VPA use.

Statistical analysis
Categorical variables were represented as proportions; continuous variables were represented as mean, standard deviation (SD), median, and range.

Definitions
The clinical characteristics and definitions of the MDs such as parkinsonism, tics, dyskinesia, dystonia, myoclonus, restless legs syndrome, akathisia, tremor, chorea, ataxia, and ballism were obtained from the reference Jankovic and Tolosa (2007). The clinical diagnosis for the psychiatric conditions was obtained from the Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) (American Psychiatric Association, 2013). The Naranjo algorithm was used for determining the likelihood of whether an adverse drug reaction was actually due to the drug rather than the result of other factors (Naranjo et al., 1981). In the cases where the non-English literature was beyond the authors’ proficiency (English, Portuguese, Spanish, Italian, French, and German) and the English abstract did not provide enough data, such as Japanese, Korean, Chinese, Russian, and Dutch, Google Translate service was used (De Vries et al., 2018).

Results
For the years 1975 to 2019, a total of 138 reports containing 362 cases, from thirty-three countries, of individuals who developed a movement disorder (MD) secondary to valproate (VPA) were reported (Table 2). Figure 4 shows the number of reports

![Figure 4](image_url)
Reference	Country/ year	No. of cases	Age (mean)/ sex	Age (mean)/ sex	VPA Follow-up	Important clinical history (CH) and clinical management (CM)
Lance and Anthony	Australia 1977	1 adult/F	EPI 1200	months	NA	CH: asterix is
Nutt et al.	USA 1979	1 57/M	PD 1000–2000	33 days	NA	CH: asterix is
Bodensteiner et al.	USA 1981	2 NA	EPI NA	NA	NA	CH: hyperammonemia
Campostrini et al.	Italy 1983	2 adult/ 1 M + 1 F	EPI NA	NA	NA	CH: hyperammonemia
Zaccara et al.	Italy 1984	2 19.5/1 M + 1 F	EPI 800	2 weeks	4 days CR	CH: cortical asterixis.
Gastaut and Mege	France 1985	1 adult/ NA	EPI NA	NA	NA	CH: hyperammonemia without hepatic insufficiency
Aguglia et al.	Italy 1995	6 39.83/3 F + 3 M	EPI 1200	1 week	2–6 days CR	CH: cortical asterixis.
Vogt and Mothersill	Switzerland 2000	3 43/3 F	EPI NA	NA	NA	CH: subcortical, EEG-based. Possible interaction with oxcarbazepine and lamotrigine.
						CM: drug withdrawal

Table 2 – Clinical reports of VPA-associated MD
Study (Year)	Location	Gender	Age	Initial Treatment	Duration	CR Duration	Outcome	Events		
Shirasaka and Mitsuyoshi (1999)	Japan	10/F	28	EPI	1 month	weeks	CR	CH: cortical asterixis; dose-dependent effect: dose increase caused an increase of MCL frequency; VPA withdrawal		
Rottach et al. (2000)	Germany	28/NA	600	BD	2 weeks	4 days	CR	CH: cortical asterixis, EEG-based. CM: VPA withdrawal		
Kao et al. (2001)	Taiwan	51/F	1500	EPI	2 weeks	< 1 week	CR	CH: subcortical asterixis; hyperammonemia; possible interaction with CBZ. CM: VPA withdrawal		
Reif et al. (2004)	Germany	42/M	2000	DPS	7 day	2 days	CR	CH: cortical MCL, EEG-based. CM: VPA withdrawal		
Brefel-Courbon et al. (2006)	France	20	NA	NA	NA	NA	NA			
Dealberto and Sarazin (2008)	Canada	41/F	1000	mood	1 year	2 days	CR	CH: cortical asterixis, EEG-based; hyperammonemia. CM: VPA withdrawal		
Fan et al. (2008)	Taiwan	72/F	900	mood	3 months	1 week	CR	CH: cortical asterixis, EEG-based; possible interaction with lamotrigine; hyperammonemia. CM: VPA withdrawal		
Yoon et al. (2008)	Korea	56.7/M	EPI	NA	NA	NA	NA			
Gardner et al. (2009)	USA	66/F	mood	750	NA	NA	CR	CH: multifocal MCL. CM: VPA withdrawal		
Mangewala et al. (2013)	USA	17/M	EPI	1500	5 months	NA	no (only improvement)	CH: asterixis; hyperammonemia. CM: VPA-dose decrease with partial improvement of the symptoms		
Nayak et al. (2012)	India	35/F	EPI	1000	2 weeks	< 6 weeks	CR	CH: subcortical asterixis; possible interaction with antipsychotics. CM: VPA withdrawal		
Reference	Country/year	No. of cases	Age (mean)/sex	Age (mean)/sex	VPA indication	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)
-----------------------	--------------	--------------	----------------	----------------	----------------	---------------	----------	-------------	-----------	---
Surendran et al.	India 2016	1	57/M	BD	1500–2000	7 years	3 weeks	CR		CH: cortical asterixis, EEG-based; hyperammonemia; possible interaction with risperidone. CM: VPA withdrawal
Dick and Saunders	USA 1980	1	adult/M	DTN	600–1800	days–weeks	NA	NA	CR	CH: worsening of cervical + axial DTN. CM: VPA withdrawal
Kiuru and Ivanaaenen	Finland 1987	1	23/F	EPI	1200–1500	months	1 week	CR		CH: axial DTN that occurred after a dose increase. Previous history of hepatopathy due to CBZ + VPA + lynestrenol interaction. CM: VPA-dose decreased with the resolution of the symptoms
Dunayevich and Strakowski	USA 1999	1	40/F	schizophrrenia	1250	7 months	NA	no		CH: choreoathetotic DKN + (blepharospasm + oromandibular + cervical) DTN; possible interaction with olanzapine; previous history of blepharospasm with loxapine. CM: olanzapine-dose decrease and clozapine started with partial recovery
Oh et al.	Korea 2004	1	40/M	EPI	1200	days	1 week	CR		CH: spasmodic dysphonia. CM: VPA-dose reduction with the recovery of the symptoms
Teive et al.	Brazil 2004a	1	8/M	EPI	NA	NA	NA	NA	NA	CH: VPA was present when the status DTN occurred
Author(s)	Country	Year	Age	Gender	Diagnosis	Duration	Age at Start	Comments		
-------------------	----------	------	------	--------	-----------	----------	--------------	--		
Werner et al.	Switzerland	2006	1	elderly/NA	NA	NA	NA	CH: possible differential with DTN; dropped head syndrome was more severe in patients using VPA		
Yohanan et al.	USA	2006	1	65/M	schizophrenia	1500	several weeks	CR		
								CH: axial DTN; possible interaction with CBZ + risperidone. CM: VPA withdrawal		
Habermeyer et al.	Switzerland	2007	1	60/F	mood	900	4 days	NA		
								CR		
								CH: axial DTN (anterocollis). CM: VPA and quetiapine-dose decrease and biperiden started with symptoms recovery		
Lee et al.	Korea	2007	1	64/F	EPI	600	days	NA		
								NA		
								CH: patient with probable Creutzfeldt-Jakob disease that worsened DTN and MCL when VPA was started		
Zadikoff et al.	Canada	2007	2	47.5/F 1 M	EPI	NA	NA	NA		
								CH: one task specific DTN, other hemi-DTN		
Czarnecki et al.	USA	2008	1	59/M	BD	NA	days	no		
								CH: axial DTN (anterocollis) + PKN + AKT; possible interaction with risperidone + quetiapine. CM: all drugs withdrawal without improvement; he received the diagnosis of frontotemporal dementia		
Duggal	USA	2008	1	20/M	schizophrenia	1000	3 days	1 day CR		
								CH: axial DTN (laterocollis); possible interaction with ziprasidone. CM: benztropine was started with an improvement of the symptoms		
Bayram et al.	Turkey	2013	1	4/F	EPI	NR	6 months	CR		
								CH: cervical DTN; possible interaction with butamirate citrate		
Reference	Country/year	No. of cases	Age (mean)/sex	VPA induction	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)	
------------------	--------------	--------------	----------------	---------------	---------------	-----------	-------------	-----------	---	
Faridhosseini et al.	Iran 2015	1	33/F schizophrenia	1000 months	CR	CH: axial DTN; possible interaction with clozapine. CM: clozapine-dose reduced and biperiden started				
Bermudez et al.	Brazil 2017	1	62/F BD	1000 3 days	CR	CH: trismus, possible oromandibular DTN. CM: biperiden and clonazepam were prescribed without response. VPA withdrawal with symptoms resolution				
Friis et al.	Denmark 1983	3	32.33/1 F + 2 M several	1400 (mean) NA	NA	NA	NA	CR	CH: all the subjects had DKN associated with some degree of AKT	
Lancman et al.	USA 1994	3	21/2 F + 1 M EPI	1466 (mean) 4 years	NA	CR	NA	CR	CH: 2 individuals were in use of phenytoin, possible interaction. CM: cessation of VPA or the substitution to VPA sprinkles improved the symptoms	
Gara and Roberts	Canada 2000	2	5.37/1 F + 1 M EPI	1125 years NA	CR	CH: orofacial DKN, but oromandibular DTN cannot be excluded; possible interaction with methylphenidate. CM: Pt1 VPA withdrawal; Pt2 methylphenidate replaced by clonidine				
Gunal et al.	Turkey 2002	1	38/M EPI	1500 2 months 2 months	CR	CH: choreiform DKN. CM: VPA withdrawal				
Authors	Location	Year	Age	Gender	Protein Loading	Duration	Onset	VPA Withdrawal	Comments	
------------------------	----------	------	-----	--------	----------------	----------	-------	----------------	--	
Hall and Ringel	USA 2004	1	42/F	NA	NA	NA	NA	NA	CH: chorea in the presence of VPA after protein loading; the combination of chronic VPA administration and a meal high in protein could have contributed to the DKN	
Morrison et al.	USA 2006	1	11/F	NA	NA	5 days	NA	NA	CH: choreiform DKN. CM: VPA withdrawal	
Srinivasan and Lok	Singapore 2010	1	53/M	EPI	1900 months	2 days	CR		CH: hemichoreiform DKN; the MD occurred after one week of VPA-dose in a dose higher than the prescribed. CM: VPA withdrawal; after VPA rechallenge without the occurrence of new symptoms	
van de Velde et al.	Belgium 2011	1	80/F	migraine	1200 days-weeks, < 6 months	CR			CH: choreiform DKN, weeks after the VPA-dose increase. CM: VPA withdrawal and haloperidol started	
Yilmaz et al.	Turkey 2013	1	7/M	EPI	500 days	NA	NA	CR	CH: orofacial DKN after 2 days in the use of methylphenidate + VPA	
Giordano et al.	Italy 2014	1	53/F	EPI	900 days	1 week	CR		CH: choreiform DKN + axial DTN. CM: VPA withdrawal	
Bruno et al.	UK 2016	1	36/M	EPI	1000 single IV	1 week	CR		CH: choreiform DKN + multifocal MCL. CM: VPA withdrawal	
Bowdle et al.	USA 1979	2	22/NA	none	1000–1500 days–weeks	NA	NA	CH: the adverse effects started appearing at 1,000 mg. The speaking was characterized as stammering		
Reference	Country/year	No. of cases	Age (mean)/sex	VPA indication	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)	
----------------------	--------------	--------------	----------------	----------------	---------------	-----------	-------------	-----------	---	
Mukherjee et al.	India 2015	1	56/M BD	BD	1500	1 week	< 1 week	CR	CH: his articulation, intensity, timings of utterance, rhythm were affected. CM: VPA withdrawal; VPA rechallenge caused symptoms reappearance	
Clos	Scotland 2001	1	38/F BD	BD	1200	1 month	NA	no	CH: possible interaction with lithium. CM: VPA withdrawal with partial improvement of the symptoms	
Alonso-Navarro et al.	Spain 2007	1	14/M EPI	EPI	1500	1 day	NA	CR	CH: motor + phonic tics. CM: ziprasidone started with the improvement of the symptoms	
Zadikoff et al.	Canada 2007	1	47/M EPI	EPI	NA	NA	NA	NA	CH: excessive eye blinking	
Thome-Souza et al.	Brazil 2012	1	18/F EPI	EPI	1000	1.2 years	NA	CR	CH: motor tics; possible interaction with lamotrigine. CM: lamotrigine and VPA-dose decrease with symptoms improvement	
Lautin et al.	USA 1979	1	52/M schizophrenia	schiz...	1000	4 days	2 days	CR	CH: he had a history of metoclopramide and haloperidol developing PKN. CM: benzotropine and trihexyphenidyl started with symptoms permanence. VPA was withdrawal	
Study	Country	Year	Age Details	Follow-up	Outcome	Details				
---------------	-----------	------	-------------	-----------	---------	---------				
Nutt et al.	USA	1979	56.6/2 F + 2 M	PD	2000	28 days	NA	NA	CH: the four patients developed worsening of PKN features. Two developed MCL. CM: drug withdrawal; after the study, the doses of these subjects affected needed to be significantly increased.	
Friis et al.	Denmark	1983	37/1 F + 10 M	several	1700	NA	NA	NA	CH: all the subjects had some level of AKT associated to the PKN. 5 subjects had PKN + DKN	
van der Zwan	Australia	1989	adult/NA	EPI	NA	NA	NA	CR		
Power et al.	Canada	1990	adult/NA	EPI	NA	NA	NA	NA		
Alvarez-Gomez et al.	Spain	1993	12/F	EPI	600	7 days	1 month	CR	CM: VPA replaced by CBZ with symptoms resolution	
Froomes and Stewart	Australia	1994	67/F	EPI	1400	months	3 days	CR	CH: possible interaction with CBZ. CM: CBZ withdrawal with symptoms resolution	
Sasso et al.	Italy	1994	23/2 M	EPI	1250	16 months	5 weeks	CR	CM: VPA maintenance and symptoms improved over time	
del Real Francia et al.	Spain	1995	70.5/2 F	NA	1500	years	weeks	CR	CM: VPA withdrawal	
Armon et al.	USA	1996	51.5/NA	EPI	1400	44.8 months	< 3 months	CR (96%)	CM: VPA withdrawal	
Gwinn and Caviness	USA	1997	69/M	BD	500	11 months	NA	no	CH: PKN + orofacial DKN; possible interaction with risperidone. CM: drug withdrawal with the permanence of DKN	
Reference	Country/Year	No. of Cases	Age (mean)/Sex	VPA Follow-up	Important Clinical History (CH) and Clinical Management (CM)					
--------------------	--------------------	--------------	----------------	---------------	---					
Onofrj et al.	Italy 1998	2	65.5/1 F + 1 M	EPI 1150	CH: in one of the patients a dose increase was reported 6 months before the MD onset; patients assessed by Unified Parkinson’s Disease Rating Scale; possible interaction with CBZ					
Park-Matsumoto and Tazawa	Japan 1998	3	73/2 F + 1 M	EPI 800	CH: possible interaction with nortriptyline + venlafaxine. The PKN started with the added of nortriptyline. CM: nortriptyline-dose reduce improved the symptoms					
Conforti et al.	Italy 1999	1	69/F	BD 1200	CH: possible PKN marked stiffness and motor slowness. CM: VPA-dose reduced with a full recovery					
Lapiere et al.	Canada 1999	1	62/F	BD 1400	CH: possible PKN marked stiffness and motor slowness. CM: VPA-dose reduced with a full recovery					
Nouzilles et al.	Argentina 1999	3	60.33/NA	EPI 1259	NA					
Kim et al.	Korea 2000	1	69/F	EPI 1200	CH: dementia characterized by an insidious onset was associated in three cases and bradypsychia in one case. CM: VPA withdrawal					
Masmoudi et al.	France 2000	5	64/2 F + 3 M	EPI 1400	CH: multiple system atrophy-like syndrome. CM: VPA withdrawal					
Shill and Fife	USA 2000	1	67/F	EPI NA	CH: multiple system atrophy-like syndrome. CM: VPA withdrawal					
Authors	Country Year	Case Number	Age/gender	Treatment Duration	CR	CH	CM			
-----------------	--------------	-------------	------------	--------------------	----	----	----			
Barroso et al.	France 2002	1	72/NA	NA	NA	NA	NA			
Foley et al.	USA 2002	6	70/6 M	3 EPI + 3 BD	1166.7	21.3 months	NA	CR	CH: gait abnormality was the most common presenting symptom	
Iijima	Japan 2002	1	77/M	behavior control	300	1 week	NA	CR	CM: VPA withdrawal	
Raja and Azzoni	Italy 2002	1	38/NA	NA	NA	NA	NA	CR	CH: possible PKN and interaction with quetiapine	
Reif et al.	Germany 2003	1	62/F	mood	1200	10 days	7 days	CR	CH: possible interaction with lithium; hyperammonemia. CM: VPA and lithium withdrawal; amantadine started	
Easterford et al.	UK 2004	5	60.2/4 M + 1 F	EPI	1220	> 1 year	NA	CR (2/5)	CH: normal β-CIT-SPECT. CM: VPA withdrawal	
Ferrari et al.	Italy 2004	3	52.66/3 M	EPI	1250	4.6 year	NA	CR	CH: one of the patients had PKN after IV VPA; dose-unrelated side effect	
Lee	Korea 2004	1	61/M	BD	1500	days--weeks	< 7 days	CR	CM: PKN partially relieved by the coadministration of anticholinergic agents and disappeared after discontinuation of VPA	
Dergalust et al.	USA 2005	1	adult/NA	NA	NA	NA	NA	NA		
Macphee	Scotland 2005	1	73/M	mood	1500	3 months	3 months	CR	CH: FP-CIT SPECT scan was normal. CM: VPA withdrawal	
Ricard et al.	France 2005	1	58/M	BD	1000	7 months	1 month	CR	CH: PKN + cognitive impairment + hyperammonemia. CM: VPA withdrawal	
Thygesen and Wolf	Denmark 2005	2	64/1 F + 1 M	EPI	1400	10 months	weeks	CR	CH: PKN + cognitive impairment. CM: VPA withdrawal	
Gaubert et al.	France 2006	1	82/M	EPI	2000	17 months	3 weeks	CR	CM: VPA withdrawal	
Reference	Country/ year	No. of cases	Age (mean)/ sex	VPA indication	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)	
--------------------	---------------	--------------	-----------------	----------------	---------------	-----------	-------------	-----------	--	
Ristić et al.	Serbia 2006	5	59.9/4 F + 1 M	EPI	1100	12.9 months	NA	no (only improvement)	CH: early identification of PKN and discontinuation of the drug led to complete recovery in affected patients	
Borroni et al.	Italy 2007	1	61/F	EPI	1200	10 years	NA	no (only improvement)	CH: multiple system atrophy-like syndrome. CM: VPA withdrawal	
Hommet et al.	France 2007	1	81/M	EPI	500	2 months	3 months	CR	CH: possible PKN. CM: VPA-dose decrease without improvement; VPA withdrawal with full recovery	
Jamora et al.	USA 2007	6	42.16/4 F + 2 M	EPI	750	76.16 months	NA	no (only improvement)	CH: FP-CIT SPECT scan was normal. CM: VPA withdrawal	
Macphee and Stewart	Scotland 2007	1	67/F	EPI	600	10 years	NA	no (only improvement)		
Zadikoff et al.	Canada 2007	6	44.5/4 F + 2 M	EPI	1425	7.33 years	NA	NA		
Aguilar and Ondo	USA 2008	4	63.2/NA	NA	NA	71.4 months	NA	NA		
Maximov and Maximov	Bulgaria 2008	1	75/M	EPI	2000	NA	NA	No	CM: levodopa was started with improvement of the symptoms	
Salazar et al.	Argentina 2008	1	67/M	mood	1000	days	2 months	CR	CH: PKN + axial DTN (laterocollis); a history of Huntington’s disease. CM: VPA withdrawal	
Author(s)	Country Year	Age/F Sex	Treatment	CR	Duration	Follow-Up	CH	CM		
---------------------	--------------	-----------	-----------	----	----------	-----------	--	--		
Sechi et al.	Italy 2008	39/F	palatal MCL		1000	3 months	1 month CR	CH: a history of Alexander's disease. CM: VPA withdrawal		
Toribio-Díaz et al.	Spain 2008	78/F	EPI		1500	2 months	2 months CR	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Abreu et al.	Brazil 2009	47/F	BD		2500	7 months	NA no (only improvement)	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Lidbom et al.	Sweden 2009	72/F	mood		1400	11 years	NA NA	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Louter and Tromp	Netherlands 2009	57/F	NA		NA NA	NA NA	NA NA	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Schreuer et al.	Netherlands 2009	70/2 M	EPI		850	2.5 years	NA CR	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Andrade et al.	Cuba 2010	52/F	EPI		1140	2 months	2 months CR	CH: PKN + cognitive impairment. CM: VPA withdrawal		
Khwaja et al.	India 2010	26/F	EPI		1000	2 years	3 months CR	CH: progressive supranuclear palsy-like syndrome. CM: VPA withdrawal		
Lyell et al.	UK 2010	76/NA	NA		NA NA	NA NA	NA NA	CH: possible PKN + axial DTN and interaction with aspirin. CM: VPA-dose decrease with the improvement of the symptoms		
Munhoz et al.	Brazil 2010	67.6/NA	NA		NA NA	NA NA	NA NA	CH: PKN + cognitive impairment; a history of systemic lupus erythematos. CM: VPA withdrawal		
Penot and Pradeau	France 2010	75/F	EPI		1000	1 week	2 months CR	CH: PKN + cognitive impairment		
Sleegers et al.	Netherlands 2010	70/F	EPI		1000	months	5 weeks CR	CH: PKN + cognitive impairment; a history of systemic lupus erythematos. CM: VPA withdrawal		
Bondon-Guitton et al.	France 2011	NA	NA		NA NA	NA NA	NA NA			
Reference	Country/ year	No. of cases	Age (mean)/ sex	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)		
-----------	---------------	--------------	----------------	--------------	----------	-------------	-----------	--		
Evans et al.	USA 2011	1	65/F	EPI	1000	13 years	NA	no (only improvement)	CH: PKN + cognitive impairment; normal pressure hydrocephalus-like presentation. CM: VPA withdrawal	
Sama and Pringsheim	Canada 2011	1	63/F	BD	NA	1–2 years	NA	no (only improvement)	CH: progressive supranuclear palsy-like syndrome. CM: VPA withdrawal	
Gosala Raja Kukkuta et al.	India 2013	1	56/M	EPI	800	6 months	4 days	CR	CH: progressive supranuclear palsy-like syndrome; hyperammonemia. CM: VPA withdrawal	
Silver and Factor	USA 2013	5	63/3 F + 2 M	2 DPS + 1 MCL + 1 BD + 1 EPI	1000	1.81 months	9 months	CR (3/5)	CH: PKN + cognitive impairment (3/5). CM: VPA withdrawal	
Athauda et al.	UK 2015	1	65/M	EPI	3000	8 years	NA	no (only improvement)	CH: due to continuous PKN signs after management a DaTSCAN was performed which showed abnormal uptake and he received the diagnosis of idiopathic PD. CM: VPA withdrawal	
Jopowicz and Kurkowska-Jastrzebska	Poland 2014	1	76/M	EPI	1000	3 months	NA	no (only improvement)	CM: VPA-dose reduce with the improvement of the symptoms	
Prakash et al.	Denmark 2015	1	76/F	EPI	1200	years	NA	no (only improvement)	CH: PKN + cognitive impairment. CM: VPA withdrawal	
Desai and Desai	India 2015	3	NA	NA	NA	NA	NA	NA		
Study	Location	Year	Gender	Diagnosis	VPA	Duration	CR	CH	CM	
------------------------------	----------	------	--------	-----------	-----	----------	----	--	--	
Hassamal et al.	USA 2016	1	71/F	BD	1250	8 years	CR	PKN + cognitive impairment.	VPA withdrawal	
Irons et al.	UK 2015	1	87/M	NA	NA	NA	NA	no (only improvement)	multiple system atrophy-like syndrome; DaTSCAN positive; VPA withdrawal	
Bhattacharjee et al.	UK 2016	1	54/M	BD	NA	NA	NA	no (only improvement)	PKN that persisted after management; DaTSCAN positive; VPA withdrawal	
Botturi et al.	Italy 2016	1	59/M	EPI	900	3 months	CR	axial DTN + PKN; hyperammonemia.	VPA withdrawal	
Simões et al.	Portugal 2016	8	72/6 M & 2 F	6 EPI + 2 psychiatric condition	1379	4 months	8 months	CR	VPA withdrawal	
Tada et al.	Japan 2017	1	75/F	BD	1000	6 months	NA	no (only improvement)	PKN + cognitive impairment.	VPA withdrawal
Bhattacharjee et al.	UK 2017	24	68/NA	NA	NA	NA	NA	NA	assessment of the DAT-SPECT scans conducted for the diagnosis of drug-induced versus idiopathic PKN	
Caruana Galizia et al.	UK 2017	1	60/F	EPI	1700	20 years	CR	PKN + cognitive impairment; symptoms occurred after the withdrawal of phenytoin, so possible interaction cannot be ruled out	VPA withdrawal	
Reference	Country/ year	No. of cases	Age (mean)/ sex	VPA indication	VPA dose (mg)	MD onset	MD recovery	Follow-up	Important clinical history (CH) and clinical management (CM)	
-----------------	---------------	--------------	-----------------	----------------	---------------	----------	-------------	-----------	---	
Aykut et al.	Turkey 2018	1	72/M	BD	2500	10 years	6 days	CR	CH: PKN + axial DTN. CM: VPA withdrawal	
Kim et al.	Korea 2018	1	69/F	EPI	1200	3 years	1 week	CR	CH: 18F-FP-1TPET was normal. CM: VPA withdrawal	
Patel et al.	India 2018	1	58/M	EPI	500	7 years	NR	CR	CM: VPA withdrawal	
Yomtoob et al.	USA 2018	17	64.5/10 F + 7 M	NA	NA	4.3 years	NA	NA		
Baizabal-	Mexico 2021	2	35.9/NA	EPI	1365	NA	NA	NA		
Carvallo and										
Alonso-Juarez										
Bennet and	USA 2019	2	71/2 F	BD + 1 DPS	NA	6 months	NA	CR	CH: PKN + cognitive impairment. CM: VPA withdrawal	
Rosen										
Dal and	Australia 2019	2	77.5/2 M	EPI	1200	2.5 years	NA	no (only improvement)		
Whyte									CH: PKN, after withdrawal the patients did not have recover; levodopa was started and the PKN alleviated. CM: VPA withdrawal	
Davoudi-	Iran 2019	1	54/M	mood	1500	NA	weeks	CR	CH: possible PKN + cognitive impairment. CM: VPA withdrawal	
Monfared et al.										
Randhawa and	USA 2019	1	NA	BD	NA	3 months	NA	no (only improvement)		
Mehanna									CH: possible interaction with risperidone; normal DAT-SPECT scan even after the permanence of PKN symptoms	
Kohlhase et al.	Germany 2019	2	61/2 M	EPI	1525	years	NA	CR	CH: PKN; 1 hyperammonemia; normal DAT-SPECT scan. CM: VPA withdrawal	
Study	Location	Year	Group	Condition	Efficacy/Adverse Effects					
-------	----------	------	-------	-----------	-------------------------					
Leclair-Visonneau et al.	France	2016	NA	PKN	Assessment of the efficacy of VPA in progressive supranuclear palsy. The progressive supranuclear palsy rating scale at 12 months was significantly higher in the VPA than in the placebo group but was similar between the two groups at 24 months. According to the authors, this strongly suggests poor tolerability due to side effects than permanent neurological damage.					
Wang et al.	Germany	2016	NA	EPS, DTN, AKT, rigidity	Assessment of the efficacy of VPA in schizophrenia. The studies compared VPA + antipsychotic to antipsychotic; none of the adverse effects were significant. They encountered AKT (3/186, RR 1.06 [0.36, 3.06]); ataxia (2/115, RR 2.42 [0.37, 15.92]); DTN (2/130, RR 1.00 [0.30, 3.37]); rigidity (1/33, RR 2.83 [0.12, 64.89]); unstable gait (1/19, RR 0.27 [0.02, 3.39]). Interesting, the VPA was associated with a significant decrease of DKN of –3.31 (–4.91, –1.71).					
Makhlouf et al.	Tunisia	2018	15	EPS	Assessment of the incidence of VPA side effects in a Tunisian population. 15 subjects complained of slowness of execution of movements, and EPS was observed in every one of these subjects.					

AKT – akathisia; BD – bipolar disorder; CBZ – carbamazepine; CH – clinical history; CM – clinical management; CR – complete recovery; DKN – dyskinesia; DPS – depression; DTN – dystonia; EEG – electroencephalogram; EPI – epilepsy; EPS – extrapyramidal symptoms; F – female; M – male; MCL – myoclonus; MD – movement disorder; NA – not applicable/not available; PKN – parkinsonism; PD – Parkinson’s disease; RR – risk ratio; SPECT – single-photon emission computed tomography; VPA – valproic acid/valproate
Table 3 – Resume of VPA-associated MD

MD	PKN	MCL	DTN	DKN	Stutter	Tic	AKT	Others	General data
Cases (%)	252 (69.61)	54 (14.91)	17 (4.69)	16 (4.41)	4 (1.10)	3 (0.82)	1 (0.27)	15 (4.14)	362
Continent (%)									
Africa	0	0	0	0	0	0	0	15 (100)	15
Australia	0	1 (1.85)	0	0	0	0	0	0	1
Asia	17 (6.74)	6 (11.11)	4 (23.52)	3 (18.75)	1 (25.00)	0	0	0	31
Europe	122 (48.41)	36 (66.66)	3 (17.64)	6 (37.50)	1 (25.00)	1 (33.33)	1 (100)	0	170
N. America	90 (35.71)	11 (20.37)	8 (47.05)	7 (43.75)	2 (50.00)	1 (33.33)	0	0	119
S. America	23 (9.12)	0	2 (11.76)	0	0	1 (33.33)	0	0	26
Sex (%)									
Female	74 (29.36)	15 (27.77)	8 (47.05)	8 (50.00)	0	1 (33.33)	1 (100)	107	
Male	83 (32.93)	10 (18.51)	8 (47.05)	8 (50.00)	2 (50.00)	2 (66.66)	0	113	
Unknown	95 (37.69)	29 (53.70)	1 (5.88)	0	2 (50.00)	0	0	142	
Age (y)									
Range	12–87	10–72	4–65	5.37–80	22–56	14–47	38		
Mean	60.87	40.85	40.26	30.67	36.25	26.33	38		
VPA-dose (Mn mg)	1315	1223	1113	1274	1150	1250	1200		
*VPA-indication	EPI (123/172)	EPI (27/34)	EPI (5/14)	EPI (10/18)	BD (1/4)	EPI (3/3)	BD (1/1)		
MD onset									
Range	4 d – 20 y	7 d – 7 y	3 d – 7 mo	1 d – 4 y	4 d – wks	1 d – 1.2 y	1 mo		
Mean (y)	3.38	0.49	0.23	2.21	0.02	0.60	1 mo		
MD recovery									
Range	2 d – 12 mo	2 d – 6 wk	1 d – 1 mo	2 d – 2 mo	3 d – 1 wk	NA	NA		
Mean (mo)	3.41	0.33	0.40	0.95	0.16	NA	NA		
Follow-up – % CR (number of reports)	77.02%	95.23%	81.81%	100%	100%	100%	0%		

AKT – akathisia; BD – bipolar disorder; CR – complete recovery; d – day; DKN – dyskinesia; DTN – dystonia; EPI – epilepsy; MCL – myoclonus; MD – movement disorder; Md – median; Mn – mean; mo – month; NA – not available/not applicable; PKN – parkinsonism; SD – standard deviation; Rg – range (minimum–maximum); VPA – valproic acid/valproate; y – year; wk – week; in the “Others” subgroup are cases not specified about the movement disorder such as extrapyramidal symptoms; *main VPA-indication (no/total)
of VPA-associated MD over time. There were 170 reports from Europe, 119 North American, 31 Asian, 26 South American, 15 African, and 1 Australian. The MDs identified were parkinsonism, with 252 cases, 54 cases of myoclonus, 17 of dystonia (DTN), 16 of dystonia, 4 of stutters, 3 of tics, and 1 of akathisia (AKT). In the “not clearly defined group”, 15 cases of extrapyramidal symptoms, 3 of AKT, 2 of DTN, 1 of rigidity, and 1 of unstable gait were assessed.

The summary data about VPA-associated MD is provided in Table 3. Herein, we will describe the general data of all clearly defined cases.

The abnormal movements occurred in males in 51.36% of the cases. The mean and median age was 55.8 (SD: 16.58) and 61 years (age range: 4–87 years). The indication of VPA in descending order of frequency was epilepsy 69.10% (170/246), bipolar disorder (25), “mood related” (12), DKN (dystonia) in Parkinson’s disease (5), schizophrenia (5), depression (4), myoclonus (MCL) (2), DTN (1), migraine (1), twitch eyelids (1), and others non-specified psychiatric conditions (20).

The mean and median time from starting VPA use to the MD onset was 32.75 (SD: 30.05) and 21.15 months (MD onset time range: 1 day – 20 years), respectively. About 75% of the individual had abnormal movement within 50 months of the VPA treatment. The mean and median time from the VPA withdrawal until the MD recovery was 2.89 (SD: 2.79) and 3 months (MD recovery time range: 1 day – 12 months), respectively. In the subgroup of subjects that had improvement of the symptoms, the complete recovery was achieved within 9 months of the drug withdrawal in almost all cases (99%). Figure 5 shows a comparison between the percentage of patients who developed a MD since the beginning of the treatment and the percentage of patients recovering after drug withdrawal when outliers were removed.

![Figure 5](image-url)

Figure 5 – Comparison between the percentage of patients developing movement disorders (MD) since the beginning of the drug treatment and the percentage of patients recovering after drug withdrawal.
The most common management was drug withdrawal. Other options were the VPA-dose reduction, replacement of the drug probably interacting with VPA, and the prescription of other drugs after the VPA discontinuation, such as levodopa, benztropine, benzodiazepines, biperiden, haloperidol, and diphenhydramine. In addition, the replacement of VPA in tablet form for the same dosage in sprinkles presentation was sufficient to improve the symptoms in one case. A complete recovery was observed in 80.61% of the patients (158/196).

Discussion

General

VPA-associated MD was widely reported in the literature. We believe that the availability, costs, and some historical factors of VPA probably had contributed to this. VPA is among the safest and most effective medicines needed in a health system, as attested by the World Health Organization’s List of Essential Medicines, and it is marketed in the majority of countries. Also, VPA was the 126th most prescribed medication in the USA with almost six million prescriptions in 2017 (ClinCalc, 2020). Furthermore, the well-known description of flunarizine and cinnarizine developing PKN in 1984, promoted the awareness of the drug-induced MD resulting in an increasing number of reports about all abnormal movements secondary to medications including those associated with VPA (Teive et al., 2004b).

Based on the data available in Table 2, we can hypothetically illustrate a case. A middle-aged European male with poorly controlled epilepsy resorts to his neurologist. VPA 250 mg with a gradual increase until five-six tablets a day was prescribed. Within three years, the patient started complaining of stiffness, rigidity, and resting tremor; neurological examination revealed bradykinesia, and a diagnosis of PKN secondary to VPA was done. VPA was established and lamotrigine or carbamazepine was started. In the follow-up after three months, the patient had a full recovery and was able to walk without assistance and the tremor disappeared.

The majority of the incidences of abnormal movements associated with VPA are not well described in the literature. Table 3 is a summary of the percentages of some abnormal movements secondary to VPA (Anthony, 1977; Bowdle et al., 1979; Friis et al., 1983; Zaccara et al., 1984; van der Zwan, 1989; Armon et al., 1996; Nouzeilles et al., 1999; Easterford et al., 2004; Ristić et al., 2006; Jamora et al., 2007; Zadikoff et al., 2007; Lance and; Leclair-Visonneau et al., 2016; Makhlouf et al., 2018; Baizabal-Carvallo and Alonso-Juarez, 2021); the data was extracted from the clinical trials and population-based studies that provide sufficient data for Table 2. The incidences of VPA-associated abnormal movements extensively vary throughout the literature. For example, VPA-induced PKN was observed from 1.37 to 75% of the individuals.

Herein, we would like to discuss some of the MDs in subtopics to allow a better comprehension of the data.
Parkinsonism (PKN)

History
In 1979, Lautin et al. reported the first case of VPA-induced PKN. They described a middle-aged male who was prescribed VPA 1,000 mg for schizophrenia; four days later, the patient complained of PKN symptoms. Benztropine and trihexyphenidyl were started, but the symptoms did not alleviate. Only when VPA was withdrawn did the patient have a full recovery. Also, the individual had a previous history of PKN secondary to metoclopramide and haloperidol. Therefore, we believe that this has contributed significantly to the literature because a similar presentation of VPA and ant dopaminergic drugs in the same individual suggested a common neuronal pathway associated with extrapyramidal symptoms of these two drug classes.

It is worth mentioning that in the same year Nutt et al. (1979) published the cases of four individuals with Parkinson’s disease with worsening gait and resting tremors that were using VPA.

Epidemiology
The incidence of PKN following VPA use found in the literature was 1.37, 1.60, 2.27, 5.04, 6.00, 10.16, 10.71, 73.33, and 75.00% (Table 4). The majority of the individuals reported were males, the mean age was 60.87 years, the mean VPA-dose was 1,315 mg. The time since starting VPA until MD onset, and the time until resolution after VPA discontinuation were 3.38 years and 3.41 months, respectively.

When we compare the present study with the Brugger et al. (2016); the main differences encountered are that the present work has assessed a greater number of patients (252 vs. 116), of which the majority was male (52.86% vs. 41.4%); interestingly, the findings of Brugger et al. (2016) for mean age (63.5 years), VPA main indication (epilepsy) and median VPA dose (1,250 mg) were almost identical to those already described in this revision.

Presentation and clinical diagnosis
The presentation in the majority of the cases was a symmetric akinetic-rigid syndrome, with predominant postural/action over the resting tremor. Sometimes signs and symptoms of cognitive impairment were observed. The severity of the clinical presentation ranged from mild to severe with loss of physical independence. Some patients had pre-existing diseases other than the indication for VPA prescription such as Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, Huntington’s disease, systemic lupus erythematosus, and some brain damage. Interestingly, multiple system atrophy-like and progressive supranuclear palsy-like syndromes were reported as the presenting symptoms.

A clear distinction between VPA-induced MD and idiopathic Parkinson’s disease based only on clinical criteria is challenging in clinical practice. Therefore, we proposed some clinical tools to help with the diagnosis of this syndrome (Table 5).
Table 4 – Incidence of some abnormal movements associated with VPA in the literature

MD	Reference	Year	NR	N	Incidence (%)	Studied disease
MCL	Lance and Anthony	1977	1	60	1.66	EPI
Ataxia	Lance and Anthony	1977	1	60	1.66	EPI
Tremor	Lance and Anthony	1977	2	60	3.33	EPI
Stutter	Bowdle et al.	1979	2	6	33.33	healthy
AKT	Friis et al.	1983	15	15	100.00	several
PKN	Friis et al.	1983	11	15	73.33	several
DKN	Friis et al.	1983	8	15	53.33	several
MCL	Zaccara et al.	1984	2	38	5.26	EPI
PKN	van der Zwaan	1989	2	88	2.27	EPI
PKN	Armon et al.	1996	27	36	75.00	EPI
Tremor	Armon et al.	1996	16	36	44.44	EPI
Bradykinesia	Armon et al.	1996	22	35	62.85	EPI
PKN	Nouzeilles et al.	1999	3	28	10.71	EPI
Intentional	Nouzeilles et al.	1999	15	28	53.57	EPI
tremor						
Postural	Nouzeilles et al.	1999	16	28	57.14	EPI
tremor						
PKN	Easterford et al.	2004	3	50	6.00	EPI
Tremor	Easterford et al.	2004	11	50	22.00	EPI
PKN	Ristić et al.	2006	5	364	1.37	EPI
Tremor	Ristić et al.	2006	28	364	7.69	EPI
Ataxia	Ristić et al.	2006	7	364	1.92	EPI
PKN	Jamora et al.	2007	6	119	5.04	EPI
PKN	Zadikoff et al.	2007	6	59	10.16	EPI
Postural	Zadikoff et al.	2007	6	59	10.16	EPI
action tremor						
DTN	Zadikoff et al.	2007	2	59	3.38	EPI
Tic	Zadikoff et al.	2007	1	59	1.69	EPI
Worsening of	Leclair-Visonneau et al.	2016	3	28	10.71	PSP
the gait						
Movements	Makhlouf et al.	2018	15	74	20.27	EPI
slowness						
PKN	Baizabal-Carvallo	2021	2	125	1.60	EPI/migraine
	and Alonso-Juarez					

AKT – akathisia; DKN – dyskinesia; DTN – dystonia; EPI – epilepsy; MCL – myoclonus; MD – movement disorder; N – number of individuals in the study using VPA; NR – number of reports with the movement disorder; PKN – parkinsonism; PSP – progressive supranuclear palsy; VPA – valproic acid/valproate
Pathophysiological mechanism
In the literature, we found five possible pathophysiological mechanisms to explain the VPA-induced PKN (Figure 6) (Brugger et al., 2016). First, the VPA can increase the concentration of GABA (Löschler, 2002), which inhibits the globus pallidus connections with the thalamus, decreasing activity of the direct pathway. Second, another effect of VPA is the inhibition of the histone deacetylase that may increase the expression of some genes and decrease others such as those involved in the synaptic transmission (Löschler, 2002), which was already suggested in cell studies. Third, most affected individuals were elderly, so they may already have an imbalance of dopaminergic and cholinergic activity, and when VPA is used, a decrease in dopamine occurs, favoring the indirect pathway (Sawle et al., 1990). Fourth, VPA can, in a normal concentration of neurotransmitters (balanced state), affect mitochondrial enzymes causing cellular energy deficiency, what increases the

Table 5 – Clinical tools for the diagnosis of VPA-induced PKN

1) History of VPA use
2) PKN after therapy with VPA use (at least two of the following symptoms: bradykinesia, rigidity, and postural instability)
3) Usually, symmetrical PKN with prominent action/postural over resting tremor
4) More commonly affects elderly individuals
5) Recovery with VPA withdrawal
6) Other possible causes of PKN excluded

PKN – parkinsonism; VPA – valproic acid/valproate

Figure 6 – Schematic diagram of the possible pathophysiological mechanisms to explain the valproate (VPA)-induced parkinsonism (PKN). The first pier represented by the GABAergic and histone deacetylase effects, which are directly related to the mechanism of action of valproate (VPA). The second pier is dependent on the dopamine (DP) status of the patient that could be decreased (↓) or normal (N), in which the presence of VPA can cause a disbalance (↓↑) of dopaminergic and cholinergic activity (D/A). The third pier is those individuals with coexisting Parkinson’s disease.
likelihood of an oxidative stress and consequently a neurodegenerative process, especially in the dopaminergic system (Löscher, 2002); a supporting fact for this theory is that individuals with particular mitochondrial lesions are more susceptible to the development of side effects related to VPA (Henry, 2003). Fifth, the diagnosis of Parkinson’s disease in a significant percentage of the patients cannot be ruled out; as a result, perhaps the use of VPA was only by chance present in these individuals, who may develop uncorrelated Parkinson’s disease.

Management
The most commonly reported management was the VPA discontinuation, adopted in more than seventy-five percent of the individuals. In some cases, dopamine precursors were attempted to manage and a partial improvement of the PKN symptoms was achieved; in the follow-up, levodopa showed to be effective and reduced the recovery time, but apparently these cases were after diagnosed with Parkinson’s disease. One individual received bromocriptine, but no details were provided regarding treatment response. The VPA-induced PKN had the second-worst prognosis, full recovery was obtained in 77.02% of the subjects; about 10% of subjects only had partial improvement of the symptoms, with permanence of at least one symptom even after the last follow-up.

Myoclonus (MCL)
MCL was the first VPA-associated MD identified and was the second most commonly reported in the literature. The incidence of MCL related to VPA use found in the literature was 1.66–5.26% (Table 4). MCL-individuals were approximately twenty years younger than those affected by PKN, also, the VPA dose was lower, and MD onset and recovery happened sooner than in general data. The majority of the subjects involved were female (3:2). The presentation was asterixis and multifocal MCL. The MCL source was cortical and subcortical. It is worth mentioning that an important percentage of the cases only describe the neurological examination, giving the diagnosis without providing the findings of the electrodiagnostic studies. The management was drug withdrawal or the reduction of VPA-dose.

A feature reported in an important percentage of the patients, and possibly related to the mechanism of VPA-induced MCL, is the high serum concentrations of ammonia, with no sign of liver failure described in the eight individuals assessed. Therefore, some authors believe that the explanation for MCL in the group of hyperammonemic individuals is the decrease of inhibitory neurotransmitters caused by ammonia, turning the individuals more susceptible to the development of MCL (Campostrini et al., 1983; Gastaut and Mege, 1985). On the other hand, the possibility that the ammonia levels found in these cases may be incidental cannot be excluded, as clinical trials with VPA already reported higher levels of this compound in individuals without any complaint (Löscher, 2002; Bowden, 2003). Also, this
hypothesis can support the idea that perhaps VPA action on the central nervous system may lead to the development of MCL. Moreover, we hypothesized that the mechanism behind VPA-induced MCL is probably related to VPA interaction with serotonin. In rat models, VPA caused both increase and decrease in serotonin concentration, depending on the site of action (Baf et al., 1994).

Dystonia (DTN)

In the DTN group, the data obtained for doses and times until onset and recovery from MD are comparable to general data on drug-induced DTN found in literature. Dick and Saunders (1980) probably described the first case of VPA-associated DTN. They reported the case of an individual with cervical and axial DTN that they attempted to treat with VPA, and the DTN-symptoms worsened.

The presentation in descending order of frequency was axial, cervical, oromandibular, blepharospasm, status dystonicus, and spasmodic dysphonia. We included the spasmodic dysphonia in the DTN group, but some authors believe that this disorder is a different entity, which goes beyond the aim of this review (Oh et al., 2004). In the same way, dropped head syndrome commonly reported with anticonvulsants may or may not be related to DTN (Werner et al., 2006). Possible interactions with clozapine, risperidone, quetiapine, and butamirate citrate were described.

One of the possible assumptions to explain the VPA-induced DTN is based on the GABAergic neurotransmission (Löscher, 2002). We believe that due to increased GABA levels by VPA the direct and indirect pathways that go to the thalamus might be interrupted. But the indirect pathway subactivity could probably predominate, and this disruption can increase the thalamocortical drive and eventually lead to DTN (Rissardo and Caprara, 2019). Another hypothesis related to dopaminergic activity in a mechanism similar to that proposed for the VPA-induced PKN can also be assumed (Brugger et al., 2016).

Dyskinesia (DKN)

Friis et al. (1983) reported in 53.33% of the individuals receiving VPA the development of DKN (Table 4). The presentation was orofacial, choreiform, hemichoreiform, and choreoathetotic. The association with another MD was observed with axial DTN and multifocal MCL. The DKN, stutter, and tics had the best prognosis with 100% recovery after the management.

The effects of VPA in the dopaminergic system probably explain the VPA-induced DKN. One fact that can support this hypothesis is the long time from starting VPA treatment until the MD onset, which was after 2.21 years. It is believed that due to the dopamine blockage, antipsychotics trigger inflammatory processes and the release of reactive oxygen species causing abnormal adaptations of the striatal organization, and ultimately leading to overactivation of the direct pathway (Lepping et al., 2011).
The most frequent management was VPA withdrawal. Another option was the VPA-dose reduction in those individuals that a possible interaction related to protein intake or other medications was assumed. Moreover, Lancman et al. (1994) reported in one subject the substitution from VPA tablet to sprinkles improving the symptoms. A possible relation with the higher VPA plasma concentration and the DKN occurrence can be proposed in this case, since the sprinkles have their peak within four hours and other VPA formulation in one hour, especially the syrup (Cloyd et al., 1992).

Stutter, tic, and akathisia (AKT)
In our analysis, we included stutter because of the possible differential diagnosis of DTN, MCL, and even DKN due to poor description of the neurological examination. It was observed only in young adult males with bipolar disorder. The MD’s times of onset and recovery were the shortest, and the VPA-dose was the lowest reported in relation to the general data. These features can support the assumption of possible DTN diagnosis. Also, the prognosis was excellent, with 100% recovery. The most effective treatment was the drug withdrawal. Mukherjee et al. (2015) attempted the VPA reintroduction, which caused the reappearance of the symptoms. Thus, in the VPA-induced stuttering, we believe that the rechallenge of VPA should not be done.

Tics were observed in three individuals and corresponded to less than one percent of VPA-induced MD reports. In the data extraction of the Zadikoff et al. (2007) study, the percentage of individuals developing tics with VPA use was 1.69%. The patients presented with motor, motor and phonic, or only excessive eye blinking tics. Two cases reported had possible drug interactions, so a clear association can only be suspected. The drugs interacting with VPA were ziprasidone and lamotrigine; VPA can increase the levels of ziprasidone/lamotrigine by decreasing their metabolism (Alonso-Navarro et al., 2007; Thome-Souza et al., 2012). The VPA-dose decrease was enough for the achievement of a full recovery in the reports.

The less frequent MD published in the literature in association with VPA was AKT. But, it is noteworthy that this does not represent clinical practice. Friis et al. (1983) assessed 15 individuals using VPA, all of them developed some degree of AKT. Clos (2001) reported the case of a young adult female with bipolar disorder who was prescribed VPA 1,200 mg, and within one month she developed AKT-symptoms, but the diagnosis may be doubtful because the individual was in concomitant use of lithium.

Conclusion
In sum, VPA-associated MD was extensively reported in the literature probably due to availability, costs, and some historical factors of VPA. The most frequent and well described MD was PKN. In descending order of frequency, the following MD related
to VPA were encountered: PKN > MCL > DTN > DKN > Stutter > Tic > AKT. Further studies are warranted to elucidate the occurrence of these MD associated with VPA and its underlying pathophysiology. Future reports need to clearly describe the clinical history of the patient considering a full investigation of other adverse events during their entire life as well as a long-term follow-up. We believe that the knowledge of VPA-associated MD raises the awareness about MD, and especially those drug-induced, which sometimes are challenging in the clinical practice to diagnose and manage.

References
Abreu, L. N., Issler, C., Lafer, B. (2009) Valproate-induced reversible pseudoatrophy of the brain and hyperammonemic encephalopathy in a bipolar patient. Aust. N. Z. J. Psychiatry 43(5), 484–485.
Aguglia, U., Gambardella, A., Zappia, M., Valentino, P., Quattrone, A. (1995) Negative myoclonus during valproate-related stupor. Neurophysiological evidence of a cortical non-epileptic origin. Electroencephalogr. Clin. Neurophysiol. 94(2), 103–108.
Aguilera, L. G., Ondo, W. G. (2008) Exploring the relationship between drug-induced parkinsonism and tardive dyskinesias. Mov. Disord. 23.
Alonso-Navarro, H., Adeva-Bartolomé, T., Jiménez-Jiménez, F. (2007) Tic disorders associated to epilepsy: 2 cases. Mov. Disord. 22, 283.
Alvarez-Gomez, M. J., Vaamonde, J., Narbona, J., Barao, M., Barona, P., Brannan, T., Gudin, M., Ibañez, R. (1993) Parkinsonian syndrome in childhood after sodium valproate administration. Clin. Neuropharmacol. 16(5), 451–455.
American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Association Publishing, Washington D.C.
Andrade, R., García-Espinosa, A., Pérez-Montoto, A., Toledo-Sotomayor, G., Remón-González, Y., Frades-García, V. (2010) Síntomas neuropsiquiátricos causados por ácido valproico. Rev. Neurol. 50(1), 62–63.
Armon, C., Shin, C., Miller, P., Carwile, S., Brown, E., Edinger, J. D., Paul, R. G. (1996) Reversible parkinsonism and cognitive impairment with chronic valproate use. Neurology 47(3), 626–635.
Athauda, D., Batley, R., Ellis, C. (2015) Clinically silent idiopathic Parkinson’s disease unmasked by valproate use: a brief report. Aging Clin. Exp. Res. 27(3), 387–390.
Aukst-Margetić, B., Margetić, B. (2008) Stuttering as a side-effect of divalproex sodium. Psychiatry Clin. Neurosci. 62(6), 748–748.
Aykut, D. S., Aral, G., Tiryaki, A. (2018) Parkinsonism due to the use of long-term high-dose valproic acid in an elderly patient with mania syndrome: a case report and literature review. Psychiatry and Behavioral Sciences 8(4), 199–203.
Baf, M. M., Subhash, M., Lakshmana, K. M., Rao, B. S. R. (1994) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem. Int. 24(1), 67–72.
Baizabal-Carvallo, J. F., Alonso-Juarez, M. (2021) Valproate-induced rest tremor and parkinsonism. Acta Neurol. Belg. 121, 515–519.
Barroso, B. (2002) Reversible parkinsonism induced by prolonged treatment with valproate. Therapie 57(4), 410–411. (in French)
Bayram, E., Karakaya, P., Topcu, Y., Yis, U., Hiz, S. (2013) Acute cervical dystonia after the first dose of butamirate citrate. Pediatr. Emerg. Care 29(1), 80–81.
Bennett, A., Rosen, J. (2019) Valproate-induced parkinsonism: A literature review and case series. American Psychiatric Association Annual Meeting.

VPA-associated MD
Bermudez, M., Gracia, D., Garcia, D., Cunha, E., Campos, F., Santistevan, T., Motta, G. (2017) Trismus secondary to valproate treatment in a woman with bipolar disorder: a case report. *Archives of Clinical Psychiatry (Sao Paulo)* **44**(5), 137–137.

Bhattacherjee, S., Shankar, P. V., Elkider, M. (2016) Dopamine transporter single-photon emission computed tomography brain scan: A reliable way to distinguish between degenerative and drug-induced parkinsonism. *Indian J. Nucl. Med.* **31**(3), 249–250.

Bhattacherjee, S., Chalissery, A. J., Barry, T., O’Sullivan, D., O’Connell, M., Lynch, T. (2017) Referral practice, reporting standards, and the impact of dopamine transporter scans done in a tertiary hospital. *Neurol. India* **65**(6), 1264–1270.

Bodensteiner, J., Morris, H., Golden, G. (1981) Asterixis associated with sodium valproate. *Neurology* **31**(2), 194–195.

Bondon-Guitton, E., Perez-Lloret, S., Bagheri, H., Brefel, C., Rascol, O., Montastruc, J.-L. (2011) Drug-induced parkinsonism: A review of 17 years’ experience in a regional pharmacovigilance center in France. *Mov. Disord.* **26**(12), 2226–2231.

Borroni, B., Rosati, A., Costanzi, C., Zulli, R., Mardighian, D., Gasparotti, R., Padovani, A. (2007) Multiple system atrophy due to prolonged valproic acid treatment. *Int. Psychogeriatr.* **19**(4), 780–782.

Botturi, A., Silvani, A., Pravettoni, G., Paoli, R. A., Lucchiari, C. (2016) Reversible valproate induced Pisa syndrome and parkinsonism in a neuro-oncology patient with depression and epilepsy. *Case Rep. Neurol.* **8**(2), 115–119.

Bowden, C. L. (2003) Valproate. *Bipolar Disord.* **5**(3), 189–202.

Bowdle, T., Patel, I., Wilensky, A., Comfort, C. (1979) Hepatic failure from valproic acid. *N. Engl. J. Med.* **301**(8), 435–436.

Brefel-Courbon, C., Gardette, V., Ory, F., Montastruc, J. L. (2006) Drug-induced myoclonus: A French pharmacovigilance database study. *Neurophysiol. Clin.* **36**(5–6), 333–336.

Brugger, F., Bhatia, K. P., Besag, F. M. C. (2016) Valproate-associated parkinsonism: A critical review of the literature. *CNS Drugs* **30**(6), 527–540.

Bruno, E., Holmes, P., Koutroumanidis, M. (2016) A complex hyperkinesia induced by valproate. *Mov. Disord. Clin. Pract.* **3**(5), 513–514.

Campostrini, R., Paganini, M., Boncinelli, L., Zaccara, G., Arnetoli, G., Zappoli, R. (1983) Alterations of the state of consciousness induced by valproic acid: 6 case reports. *Riv. Patol. Nerv. Ment.* **104**(1), 23–34. (in Italian)

Caruana Galizia, E., Isaacs, J. D., Cock, H. R. (2017) Non-hyperammonaemic valproate encephalopathy after 20 years of treatment. *Epilepsy Behav. Case Rep.* **8**, 9–11.

ClinCalc (2020) *The Top 300 of 2020*. Available at: https://clincalc.com/DrugStats/Top300Drugs.aspx

Clos, F. H. (2001) Acute akathisia and sodium valproate. *Int. J. Psychiatry Clin. Pract.* **5**(3), 219–222.

Cloyd, J. C., Kriel, R. L., Jones-Saete, C. M., Ong, B. Y., Jancik, J. T., Remmel, R. P. (1992) Comparison of sprinkle versus syrup formulations of valproate for bioavailability, tolerance, and preference. *J. Pediatr.* **120**(4 Pt 1), 634–638.

Conforti, D., Borgherini, G., Fiorellini Bernardis, L. A., Magni, G. (1999) Extrapyramidal symptoms associated with the adjunct of nortriptyline to a venlafaxine-valproic acid combination. *Int. Clin. Psychopharmacol.* **14**(3), 197–198.

Czarnecki, K., Kumar, N., Josephs, K. A. (2008) Parkinsonism and tardive antecollis in frontotemporal dementia – Increased sensitivity to newer antipsychotics? *Eur. J. Neurol.* **15**(2), 199–201.

Dal, S., Whyte, S. (2019) 035 Valproate-induced parkinsonism “an early warning”: case reports and review of literature. *J. Neurol. Neurosurg. Psychiatry* **90**(e7), A12–A12.

Davoudi-Monfared, E., Radmehr, M., Ghaeli, P., Mousavi, M. (2019) A case series of severe hyperammonemia

Rissardo J. P.; Caprara A. L. F.; Durante Í.
encephalopathy related to valproate: Can antipsychotics increase the risk? *Iran. J. Psychiatry* **14**(3), 248–252.

De Dios, C., Fudio, S., Lorenzo, A. (2011) Reversible parkinsonism and cognitive decline due to a possible interaction of valproic acid and quetiapine. *J. Clin. Pharm. Ther.* **36**(3), 430–432.

De Vries, E., Schoonvelde, M., Schumacher, G. (2018) No longer lost in translation: Evidence that Google Translate works for comparative bag-of-words text applications. *Polit. Anal.* **26**(4), 417–430.

Dealberto, M.-J. C. C., Sarazin, F. F. A. (2008) Valproate-induced hyperammonemic encephalopathy without cognitive sequelae: A case report in the psychiatric setting. *J. Neuropsychiatry Clin. Neurosci.* **20**(3), 369–371.

del Real Francia, M. A., Sanz Martínez, J., Vaamonde Gamo, J., Gudín Rodríguez-Magariños, M., Ibáñez Alonso, R., Riñón, V. (1995) Parkinsonism induced by sodium valproate. *Neurologia* **10**(9), 381–383. (in Spanish)

Dergalust, S., Ferrer, M., Cheng, E., Sayers, J. (2005) Drug-induced movement disorders caused by medications other than dopamine receptor blockers in the Veteran population. *Mov. Disord.* **20**, 17–18.

Desai, D., Desai, S. (2015) Spectrum of disorders presenting as secondary Parkinsonism in a rural based medical teaching college in Western India. *Mov. Disord.* **30**.

Dick, D., Saunders, M. (1980) Extrapyramidal syndrome with sodium valproate. *Br. Med. J.* **280**(6208), 189.

Duggal, H. S. (2008) Acute Pisa syndrome and pharyngolaryngeal dystonia due to ziprasidone. *J. Neuropsychiatry Clin. Neurosci.* **20**(1), 108–109.

Dunayevich, E., Strakowski, S. M. (1999) Olanzapine-induced tardive dystonia. *Am. J. Psychiatry* **156**(10), 1662.

Easterford, K., Clough, P., Kellett, M., Fallon, K., Duncan, S. (2004) Reversible parkinsonism with normal beta-CIT-SPECT in patients exposed to sodium valproate. *Neurology* **62**(8), 1435–1437.

Evans, M. D., Shinar, R., Yaari, R. (2011) Reversible dementia and gait disturbance after prolonged use of valproic acid. *Seizure* **20**(6), 509–511.

Fan, C. C., Huang, M. C., Liu, H. C. (2008) Lamotrigine might potentiate valproic acid-induced hyperammonemic encephalopathy. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **32**(7), 1747–1748.

Faridhosseini, F., Omidi-Kashani, F., Baradaran, A. (2015) Pisa syndrome associated with clozapine: A rare case report and literature review. *Spine Deform.* **3**(4), 386–389.

Ferrari, A., De Merra, F., Filosto, M., Leonardi, A. (2004) Sodium valproate induced parkinsonism. *Epilepsia* **45**, 132.

Foley, C., Slevin, J., Kasarskis, E. (2002) Divalproex-induced parkinsonism: A retrospective review of cases. *Mov. Disord.* **17**, 250–251.

Friis, T., Christensen, T. R., Gerlach, J. (1983) Sodium valproate and biperiden in neuroleptic-induced akathisia, parkinsonism and hyperkinesia. A double-blind cross-over study with placebo. *Acta Psychiatr. Scand.* **67**(3), 178–187.

Froomes, P. R., Stewart, M. R. (1994) A reversible parkinsonian syndrome and hepatotoxicity following addition of carbamazepine to sodium valproate. *Aust. N. Z. J. Med.* **24**(4), 413–414.

Gara, L., Roberts, W. (2000) Adverse response to methylphenidate in combination with valproic acid. *J. Child Adolesc. Psychopharmacol.* **10**(1), 39–43.

Gardner, T. M., Aziz, R., Muralee, S., Tampi, R. R. (2009) Valproic acid-induced myoclonus in a demented patient: a case report. *Case Rep. Med.* **2009**, 392091.

Gastaut, J. L., Mege, J. L. (1985) Encephalopathy with asterixis induced by sodium valproate. Role of hyperammonemia without hepatic insufficiency. *Presse Med.* **14**(7), 431. (in French)

Gaubert, M. L., Cougnaud, A., Ghali, A., Bruhat, C., Diquet, B., Berrut, G. (2006) Loss of autonomy related to valproic acid intake. *J. Am. Geriatr. Soc.* **54**(12), 1971–1971.

Giordano, A., Amboni, M., Tessitore, A. (2014) Valproate-induced generalized choreoathetosis. *Mov. Disord. Clin. Pract.* **1**(3), 271–272.

VPA-associated MD
Gosala Raja Kukkuta, S., Srinivas, M., Raghuonandan, N., Thomas, M., Prabhu, A., Laly, M. (2013) Reversible vertical gaze palsy in sodium valproate toxicity. *J. Neuroophthalmol.* 33(2), 202–203.

Gunal, D. I., Guleryuz, M., Bingol, C. A. (2002) Reversible valproate-induced choreiform movements. *Seizure* 11(3), 205–206.

Gwinn, K. A., Caviness, J. N. (1997) Risperidone-induced tardive dyskinesia and parkinsonism. *Mov. Disord.* 12(1), 119–121.

Habermeyer, B., Rabovsky, K., Jentzsch, C., Pinhard, K., Müller-Spahn, F. (2007) Cervical dystonia due to interaction of valproic acid and quetiapine. *J. Clin. Psychopharmacol.* 27(4), 396–397.

Hall, D. A., Ringel, S. P. (2004) Adult nonketotic hyperglycinemia (NKH) crisis presenting as severe chorea and encephalopathy. *Mov. Disord.* 19(4), 485–486.

Hassamal, S., Waller, S., Reese, K., Testa, C. (2016) Reversible acid-induced parkinsonism and cognitive impairment in an elderly patient with bipolar disorder I. *Turk Psikiyatri Derg.* 27(3), 213–217.

(in Turkish, English)

He, Z. F., Chen, J., Zhou, C. N., Rao, Z., Wang, X. H. (2017) Disabling tremor induced by long-term use of sodium valproate and lamotrigine: case report. *Medicine* 96(47), e8711.

Henry, T. R. (2003) The history of valproate in clinical neuroscience. *Psychopharmacol. Bull.* 37, 5–16 (Suppl. 2).

Hommet, C., Mondon, K., de Toffol, B., Constats, T. (2007) Reversible cognitive and neurological symptoms during valproic acid therapy. *J. Am. Geriatr. Soc.* 55(4), 628–628.

Iijima, M. (2002) Valproate-induced parkinsonism in a demented elderly patient. *J. Clin. Psychiatry* 63(1), 75.

Irons, R., Joanna, B., Apurba, C. (2015) The role of DaT scan in drug induced Parkinsonism. *Mov. Disord.* 30.

Iuppa, C. A., Diefenderfer, L. A. (2013) Risperidone-induced Pisa syndrome in MS: Resolution with luradalone and recurrence with chlorpromazine. *Ann. Pharmacother.* 47(9), 1223–1228.

Jamora, D., Lim, S.-H., Pan, A., Tan, L., Tan, E.-K. (2007) Valproate-induced Parkinsonism in epilepsy patients. *Mov. Disord.* 22(1), 130–133.

Jankovic, J., Tolosa, E. (2007) *Parkinson’s Disease and Movement Disorders*. Lippincott Williams and Wilkins, Baltimore.

Jopowicz, A., Kurkowska-Jastrzebska, I. (2014) Parkinsonian syndrome, a sporadic side effect of valproic acid. *Pharmacother. Psychiatr. Neurol.* 23(3–4), 199–205.

Kao, C.-D., Chen, W.-T., Chen, J., Yen, D.-J., Yiu, C.-H., Liao, K.-K. (2001) Valproate asterixis: a case report. *Acta Neurol. Taiwan.* 10(2), 123–126.

Khwaja, G. A., Ranjan, R., Gupta, M., Chowdhry, D., Hirve, M. (2010) Valproate-induced reversible “Parkinsonism Plus” syndrome. *J. Indian Acad. Clin. Med.* 11, 235–238.

Kim, H., Park, H., Sung, Y., Lee, H., Kim, D., Choi, S. (2018) Valproic acid related reversible parkinsonism. *Asian Oceania Congress of Neurology.*

Kim, S. K., Oh, S. H., Kim, W. J. (2000) A case of valproate-induced reversible parkinsonism. *J. Korean Neurol. Assoc.* 18(5), 654.

Kiuru, S., Iivanainen, M. (1987) Camptocormia, a new side effect of sodium valproate. *Epilepsy Res.* 1(4), 254–257.

Kohlhase, K., Knake, S., Timmermann, L., Rosenow, F., Strzelczyk, A. (2019) Akinetisch-rigide Bewegungsstörungen unter Antikonvulsiva. *DGNeurologie* 2(4), 287–291.

Lance, J., Anthony, M. (1977) Sodium valproate and clonazepam in the treatment of intractable epilepsy. *Arch. Neurol.* 34(1), 14–17.

Lancman, M. E., Asconapé, J. J., Penry, J. K. (1994) Choreiform movements associated with the use of valproate. *Arch. Neurol.* 51(7), 702–704.

Lapière, O., Dubreucq, J. L., Beauchemin, M. A., VINET, B. (1999) Valproic acid intoxication in a patient with bipolar disorder and chronic uremia. *Can. J. Psychiatry* 44(2), 188.

Rissardo J. P.; Caprara A. L. F.; Durante Í.
Lautin, A., Stanley, M., Angrist, B., Gershon, S. (1979) Extrapyramidal syndrome with sodium valproate. *Br. Med. J.* **2(6197)**, 1035–1036.

Leclair-Visonneau, L., Rouaud, T., Debilly, B., Durif, F., Houeto, J.-L., Kreisler, A., Defebvre, L., Lamy, E., Volteau, C., Nguyen, J. M., Dily, S. L., Damier, P., Boutoleau-Brettonnière, C., Lejeune, P., Derkinderen, P. (2016) Randomized placebo-controlled trial of sodium valproate in progressive supranuclear palsy. *Clin. Neurol. Neurosurg.* **146**, 35–39.

Lee, K. U. (2004) A case of reversible parkinsonism induced by valproate in a patient with bipolar disorder. *Korean J. Psychopharmacol.* **15**(1), 107.

Lee, S., Koh, S., Park, K., Lee, D. (2007) Early dystonia in probable Creutzfeldt-Jakob disease with diffusion weighted MR images. *Mov. Disord.* **22**, 117–118.

Lempérière, T. (2001) Brief history of the development of valproate in bipolar disorders. *Encephale* **27**(4), 365–372. (in French)

Lepping, P., Delieu, J., Mellor, R., Williams, J. H. H., Hudson, P. R., Hunter-Lavin, C. (2011) Antipsychotic medication and oxidative cell stress: a systematic review. *J. Clin. Psychiatry* **72**(3), 273–285.

Lindbom, U., Taubert, B., Fahlgqvist, M. S., Bergens, A., Kimland, E., Jonsson, E. W., Bergman, U. (2009) Reversible dementia-like condition and parkinsonism in an elderly woman. Idiosyncratic adverse effects connected to 11 years of antiepileptic medication. *Lakartidningen* **106**(12), 863–865. (in Swedish)

Löscher, W. (2002) Basic pharmacology of valproate. *CNS Drugs* **16**(10), 669–694.

Mount, F., Tromp, S. C. (2009) Parkinsonism due to the medication. *Ned. Tijdschr. Geneeskd.* **153**, A336–A336. (in Dutch)

Lyell, V., Henderson, E., Ahearn, D., MacMahon, D. (2010) Multi-centre survey of new patients referred from primary care with parkinsonism what proportion are on medications which can cause drug induced parkinsonism? *Mov. Disord.* **25**(7), 224.

Macphee, G. (2005) Valproate induced parkinsonism. *J. R. Coll. Physicians Edinb.* **35**(3), 214.

Macphee, G. J. A., Stewart, D. A. (2007) Diagnosis of Parkinsonism in older patients receiving sodium valproate. *Mov. Disord.* **22**(8), 1211–1211.

Mahmoud, F., Tampi, R. (2011) Valproic acid-induced parkinsonism in the elderly: A comprehensive review of the literature. *Am. J. Geriatr. Pharmacother.* **9**(6), 405–412.

Makhlof, S., Mansour, M., Msselmenni, M., Bedoui, I., Zaouali, J. (2018) Side effects of sodium valproate in a Tunisian population. *Res. J. Nerv. Syst.* **1**(1), 8.

Mangewala, V., Sarwar, S., Rosenberger, R., Rais, T., Knox, M. (2013) Valproate-induced hyperammonemic encephalopathy: a case report. *Innov. Clin. Neurosci.* **10**(5–6), 12–13.

Masmoudi, K., Grass-Champel, V., Bonnet, I., Pannier, M., Masson, H., Rosa, A., Andrejak, M. (2000) Dementia and extrapyramidal problems caused by long-term valproic acid. *Therapie* **55**(5), 629–634.

Masmoudi, K., Grass-Champel, V., Masson, H., Andréjak, M. (2006) Parkinsonism and/or cognitive impairment with valproic acid therapy: a report of ten cases. *Pharmacopsychiatry* **39**(1), 9–12.

Maximov, K., Maximov, G. (2008) Valproate-induced parkinsonism in epilepsy patient – A case report. *Acta Medica Bulgarica* **XXXV**(1/2008), 38–42.

Morrison, P. F., Sankar, R., Shields, W. D. (2006) Valproate-induced chorea and encephalopathy in atypical nonketotic hyperglycinemia. *Pediatr. Neurol.* **35**(5), 356–358.

Mukherjee, S., Sen, S., Chatterjee, S. S., Biswas, A., Tripathi, S. K. (2015) Divalproex-induced stuttering: A rare case report. *Eur. J. Psychol. Educ. Studies* **2**(1), 25.

Munhoz, R. P., Werneck, L. C., Teive, H. A. G. (2010) The differential diagnoses of parkinsonism: Findings from a cohort of 1528 patients and a 10 years comparison in tertiary movement disorders clinics. *Clin. Neurol. Neurosurg.* **112**(5), 431–435.

VPA-associated MD
Naranjo, C. A., Busto, U., Sellers, E. M., Sandor, P., Ruiz, I., Roberts, E. A., Janecek, E., Domecq, C.,
Greenblatt, D. J. (1981) A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 30(2), 239–245.

Nayak, R., Pandurangi, A., Bhogale, G., Patil, N., Chate, S. (2012) Asterixis (flapping tremors) as an outcome of complex psychotropic drug interaction. J. Neuropsychiatry Clin. Neurosci. 24(1), E26–E27.

Nouzeilles, M., García, M., Rabinowicz, A., Merello, M. (1999) Prospective evaluation of parkinsonism and tremor in patients treated with valproate. Parkinsonism Relat. Disord. 5(1–2), 67–68.

Nutt, J., Williams, A., Plotkin, C., Eng, N., Ziegler, M., Calne, D. (1979) Treatment of Parkinson’s disease with sodium valproate: Clinical, pharmacological, and biochemical observations. Can. J. Neurol. Sci. 6(3), 337–343.

Oh, J., Park, K. D., Cho, H. J., Choi, K. G., Jung, S. M. (2004) Spasmodic dysphonia induced by valproic acid. Epilepsia 45(7), 880–881.

Onofrj, M., Thomas, A., Paci, C. (1998) Reversible parkinsonism induced by prolonged treatment with valproate. J. Neurol. 245(12), 794–796.

Pal, G., Lin, M. M., Laureno, R. (2014) Asterixis: A study of 103 patients. Metab. Brain Dis. 29(3), 813–824.

Park-Matsumoto, Y. C., Tazawa, T. (1998) Valproate induced parkinsonism. No To Shinkei 50(1), 81–84.

Patel, S. R., Patel, K. P., Gupta, S. D., Malhotra, S. D., Patel, P. R. (2018) Valproate induced Parkinsonism. Natl. J. Integr. Res. Med. 9(6), 72–74.

Penot, J.-P., Pradeau, F. (2010) Syndrome démentiel et extrapyramidal iatrogène: Effet secondaire rare de l’association acide valproique-aspirine. Presse Med. 39(2), 279–280.

Power, C., Blume, W., Young, G. (1990) Reversible parkinsonism associated with valproate therapy. Neurology 40, 139 (Suppl. 1).

Prakash, S., Harbo, T., Christensen, J. (2015) Valproate can induce reversible encephalopathy. Ugeskr. Laeger 177(20), 945–946 (in Danish).

Raja, M., Azzoni, A. (2002) Valproate and quetiapine overdose with benign outcome: a case report. Int. J. Psychiatry Clin. Pract. 6(3), 173–174.

Randhawa, J., Mehanna, R. (2019) Drug-induced parkinsonism may persist beyond two years after discontinuation of dopamine transmission blocking agents. Mov. Disord. 34, 599.

Reif, A., Hamelbeck, B., Pfuhlmann, B. (2003) Acute akinetic crisis with marked cognitive impairment due to valproate treatment. Int. J. Geriatr. Psychiatry 18(4), 356–357.

Reif, A., Leonhard, C., Mössner, R., Lesch, K.-P., Fallgatter, A. J. (2004) Encephalopathy and myoclonus triggered by valproic acid. Prog. Neuropsychopharmacol. Biol. Psychiatry 28(6), 1061–1063.

Ricard, C., Martin, K., Tournier, M., Bégaud, B., Verdoux, H. (2005) A case of Parkinsonian syndrome, cognitive impairment and hyperammonemia induced by divalproate sodium prescribed for bipolar disorder. Encephale 31(1), 98–101. (in French)

Rissardo, J. P., Caprara, A. L. F. (2019) Comment: Dystonia and asterixis in acute thalamic infarct: Proposed mechanism. Ann. Mov. Disord. 2(3), 138–139.

Rissardo, J. P., Caprara, A. L. F., Silveira, J. O. F. (2019) Valproic acid-associated pancytopenia: A dose-dependent adverse effect. Rom. J. Neurol. 18(3), 150–153.

Ristić, A. J., Vojvodić, N., Janković, S., Sindelić, A., Sokić, D. (2006) The frequency of reversible parkinsonism and cognitive decline associated with valproate treatment: A study of 364 patients with different types of epilepsy. Epilepsia 47(12), 2183–2185.

Rottach, K. G., Weiss-Brummer, J., Wieland, U., Schmauß, M. (2000) Valproinsäure als Phasenprophylaktikum Ein Fall von Valproat-Enzephalopathie. Nervenarzt 71(5), 401–403.

Salazar, Z., Tschopp, L., Calandra, C., Micheli, F. (2008) Pisa syndrome and parkinsonism secondary to valproic acid in Huntington’s disease. Mov. Disord. 23(16), 2430–2431.

Rissardo J. P.; Caprara A. L. F.; Durante Í.
Sarna, J., Pringsheim, T. (2011) Progressive supranuclear palsy-like phenotype associated with concomitant exposure to mood stabilizer and neuroleptic. *Mov. Disord.* **26**.

Sasso, E., Delsoldato, S., Negrotti, A., Mancia, D. (1994) Reversible valproate-induced extrapyramidal disorders. *Epilepsia* **35**(2), 391–393.

Sawle, G., Colebatch, J., Shah, A., Brooks, D., Marsden, C., Frackowiak, R. (1990) Striatal function in normal aging: Implications for Parkinson’s disease. *Ann. Neurol.* **28**(6), 799–804.

Schreur, L., Middeljans-Tijssen, C. W., Hengstman, G. J. D., Olde Rikkert, M. G. M. (2009) Cognitieve stoornissen en parkinsonisme bij gebruik van valproinezuur. *Tijdsschr. Gerontal. Geriatr.* **40**(1), 29–33.

Sechi, G. P., Conti, M., Sau, G. F., Cocco, G. A. (2008) Valproate-induced parkinsonism, glial cells and Alexander’s disease. *Prog. Neuropsychopharmacol. Biol. Psychiatry* **32**(5), 1351–1352.

Shill, H. A., Fife, T. D. (2000) Valproic acid toxicity mimicking multiple system atrophy. *Neurology* **55**(12), 1936–1937.

Shirasaka, Y., Mitsuyoshi, I. (1999) A case of epileptic negative myoclonus: Therapeutic considerations. *Brain Dev.* **21**(3), 209–212.

Silver, M., Factor, S. A. (2013) Valproic acid-induced parkinsonism: Levodopa responsiveness with dyskinesia. *Parkinsonism Relat. Disord.* **19**(8), 758–760.

Simões, R., Inácio, N., Silva, V., Arraiolos, A., Alegria, P., Canas, N., Vale, J. (2016) Valproate-induced reversible parkinsonism – A case series. *Mov. Disord.* **31**.

Sleegers, M. J. M., Beutler, J. J., Hardon, W. J., Berden, J. H. M., Verhave, J. C., Conemans, J. M. H., Hollandier, D. A., Dautzenberg, P. L., Hoogeveen, E. K. (2010) Reversible rapidly progressive dementia with parkinsonism induced by valproate in a patient with systemic lupus erythematosus. *J. Am. Geriatr. Soc.* **58**(4), 799–801.

Srinivasan, S., Lok, A. W. (2010) Valproate-induced reversible hemichorea. *Mov. Disord.* **25**, 1511–1512.

Surendran, I., Sahoo, S., Gupta, G., Chauhan, N., Grover, S. (2016) Valproate-induced hyperammonemic encephalopathy in an elderly patient with bipolar disorder. *J. Geriatr. Ment. Health* **3**(2), 172–175.

Tada, H., Ogihara, T., Nakamura, T., Sasayama, D., Sugiyama, N., Takahashi, Y., Washizuka, S., Amano, N. (2017) A case of severe parkinsonism in an elderly person induced by valproic acid. *Psychogeriatrics* **17**(1), 76–77.

Teive, H. A. G., Souza, M., Antoniuk, S., Barbosa, E., Scaff, M., Werneck, L. (2004a) Status dystonicus: Report of four cases. *Mov. Disord.* **19**, 114.

Teive, H. A. G., Troiano, A. R., Germiniani, F. M. B., Werneck, L. C. (2004b) Flunarizine and cinnarizine-induced parkinsonism: A historical and clinical analysis. *Parkinsonism Relat. Disord.** **10**(4), 243–245.

Thome-Souza, S., Moreira, B., Valente, K. D. (2012) Late adverse effects of the coadministration of valproate and lamotrigine. *Pediatr. Neurol.* **47**(1), 47–50.

Thygesen, K. S., Wolf, P. (2005) Valproate-caused encephalopathy. *Ugeskr. Laeger* **167**(40), 3793–3794. (in Danish)

Toribio-Díaz, M. E., Moreira-Guitart, J., Palao-Duarte, S. (2008) Reversible parkinsonism and cognitive impairment following treatment with valproate. *Rev. Neurol.* **47**(7), 390–391. (in Spanish)

van de Velde, K., Cras, P., Helsen, G. (2011) Acute chorea caused by valproate in an elderly. *Acta Neurol. Belg.* **111**(3), 220–221.

van der Zwan, A. Jr. (1989) Transient Parkinson syndrome and tremor caused by the use of sodium valproate. *Ned. Tijdschr. Geneeskd.* **133**(24), 1230–1232. (in Dutch)

Vogt, H., Mothersill, I. (2000) Asterixis: An adverse event also with new anti-epileptic drugs. *Epilepsia* **41**, 226 (Suppl. 7).

Wang, Y., Xia, J., Helfer, B., Li, C., Leucht, S. (2016) Valproate for schizophrenia. *Cochrane Database Syst. Rev.* **11**(11), CD004028.
Werner, I., Bruchert, S., Meyer, K., Bohhalter, S. (2006) Dropped head syndrome in long-term care patients with chronic epilepsy and mental retardation-relationship to antiepileptic treatment. Mov. Disord. 21, 373.

Wils, V., Golüke-Willemse, G. (1997) Extrapyramidal syndrome due to valproate administration as an adjunct to lithium in an elderly manic patient. Int. J. Geriatr. Psychiatry 12(2), 272.

Yilmaz, A. E., Donmez, A., Orun, E., Tas, T., Isik, B., Sonmez, F. M. (2013) Methylphenidate-induced acute orofacial and extremity dyskinesia. J. Child Neurol. 28(6), 781–783.

Yohanan, M., Aulakh, J. S., Weith, J., Hawkins, J. W. (2006) Pisa syndrome in a patient in a wheelchair taking valproic acid. Am. J. Psychiatry 163(2), 325–326.

Yomtoob, J., Koloms, K., Bega, D. (2018) DAT-SPECT imaging in cases of drug-induced parkinsonism in a specialty movement disorders practice. Parkinsonism Relat. Disord. 53, 37–41.

Yoon, J. H., Lee, P. H., Yong, S. W., Park, H. Y., Lim, T. S., Choi, J. Y. (2008) Movement disorders at a university hospital emergency room. An analysis of clinical pattern and etiology. J. Neurol. 255(5), 745–749.

Zaccara, G., Paganini, M., Campostrini, R., Arnetoli, G., Zappoli, R., Moroni, F. (1984) Hyperammonemia and valproate-induced alterations of the state of consciousness. A report of 8 cases. Eur. Neurol. 23(2), 104–112.

Zadikoff, C., Munhoz, R. P., Asante, A. N., Politzer, N., Wennberg, R., Carlen, P., Lang, A. (2007) Movement disorders in patients taking anticonvulsants. J. Neurol. Neurosurg. Psychiatry 78(2), 147–151.