The Design of Integrated Information System for High Voltage Metering Lab

Yan Ma 1, Yi Yang 1, Guangke Xu 1, Chao Gu 1, Lida Zou 2*, Feng Yang 3

1 State Grid Shandong Electric Power Research Institute, Jinan 250002, China
2 Shandong University of Finance and Economics, Jinan 250014, China
3 Shandong Zhongshi Yitong Group Co. Ltd., Jinan 250002, China

*Corresponding author e-mail: yanpony@126.com

Abstract. With the development of smart grid, intelligent and informatization management of high-voltage metering lab become increasingly urgent. In the paper we design an integrated information system, which automates the whole transactions from accepting instruments, make experiments, generating report, report signature to instrument claims. Through creating database for all the calibrated instruments, using two-dimensional code, integrating report templates in advance, establishing bookmarks and online transmission of electronical signatures, our manual procedures reduce largely. These techniques simplify the complex process of account management and report transmission. After more than a year of operation, our work efficiency improves about forty percent averagely, and its accuracy rate and data reliability are much higher as well.

1. Introduction
With the perfection of “intensified management of three components and integrated systems of five processes” of State Grid [1], high voltage metering lab in Shandong electric power research institute undertakes responsibility for calibrating more than 30 kinds of high voltage test instruments from power generating company, power grid company and power equipment plant. Our annual calibration ability is up to several thousand instrument-times. With the development of smart grid [2], our work still stays on manual management and paper storage, which cannot satisfy the needs of field work.

First all the test instruments need our manual records and all the attributes such as production factory, production model, instrument type are input into paper table. Most instruments are calibrated once a year, and we have not formed a database. Each time we register again, which adds lots of workload.

Second, testing data are also recorded into handwriting table, and we manually compute uncertainty, which has a low efficiency. Third, the calibration tempo is purely managed by manual memory and experience. Last, condition assessment of power grid equipment needs our testing data. Now it is hard to query measurement error data and trace its variation for a certain instrument.

Combining work reality, it is essential to construct the integrated lab information system [3]. For high voltage metering lab, warehouse management of testing instruments is simplified and automated. All the account and testing data also realize the intelligent management, accurate storage and efficient assessment.
2. System Overall Design

Our high voltage metering lab is recognized by China National Accreditation Committee for Laboratory and National Committee for Conformity Assessment Laboratory, and now has a number of high voltage measurement test items. The information system aims to construct an intelligent transceiver system, the instrument database and automatic process control system.

![Flowchart of calibrating instruments](image)

Figure 1. The flowchart of calibrating instruments
Table 1. Different levels of system modules

Level 1 module	Level 2 module	Level 3 module	Level 4 module
Query	calibrating rate of process	calibrating number	maintaining record
Statistics	calibrating rate	Qualified number, qualification rate	stock in and stock out record
Instrument account	Standard instruments (used to calibrate the other instruments)	Maintain account	Calibration plan
	Calibrated instruments	Calibration records	stock maintenance record
	instruments	stock calibration plan	Calibration plan
	Commission	Quality and statistics	Verify account
	Commission sheet	Calibration number (auto-generation)	Scan code or print code
Testing	instruments	High-voltage metering type	Gas detection relay type
	Testing data	Electrical measurement type	Safety appliance type
Report	Testing report	Generating	Electronic signature
	Online transmission	Printing	Review and approve, support rollback
Claim	Claiming records	Scanning code	Registering
Public dictionary	Calibration specification	Instrument type	Instrument standard name
	Instrument standard name	Technique parameters	Instrument state
	Instrument affiliation	The maximum kind	Data verification
	Instruments required to be calibrated		
System configuration	Production factory	Maintain	Verify
	Production model	Maintain	Verify
	Testing items	Maintain	
	Report template	Electrical measurement type	Six kinds
		Safety appliance type	Two kinds
		Gas detection relay type	Four kinds
		Pressure relief valve type	Three kinds
		Uploading pictures	
		Generating directory	
		Automatic typesetting	

Fig. 1 gives the flowchart of our whole system, which describes the process of calibrating the instruments. First we select the instrument affiliation and instrument type. If it is high-voltage metering, gas detection relay or live detection equipment, we first find whether it has two-dimensional code [4] or account. If it has no account, we need to add it into database and print its two-dimensional code. If it is safety appliance or electric measurement equipment, we directly generate a commission sheet. A commission sheet can include many instruments. After receiving the instruments, they are sent to different labs. Then testers begin the calibrating items and all the original records are saved. Meanwhile, the data are input into our system, and the report is automatically generated [5]. Our system also support direct upload of WORD/PDF/EXCEL files. After that, reports go into online transmission. It is
sequentially sent from writer, reviewer to approver. All the persons can sign electronically [6]. Last the instruments go into the state of waiting for claimed. The instruments can be taken away through simple scanning.

3. System Module and Data Structure
We next introduce the concrete levels of different system modules, as shown in Table 1. We divide our system into concrete calibration and system configuration. Instrument calibration consists of eight parts including query, statistics, instrument account, commission, testing, report, claiming. It includes the whole process such as data input, data verification, data processing, data analysis, report generation, remote transmission. According to practical needs, the module can be connected with other management functions. We use two-dimensional code to identify each instrument, which is associated with all the information of the instrument. The data automated identification technique realizes the intelligent and paperless management.

We use Oracle11g as our database, and PowerDesigner is the designing tool. Table 2 gives the list of used tables. We design 26 tables and all the transactions in the lab are uniformly managed, including faculty, instruments, standard instruments and archive files.

Table 2. The listed tables in the system

No.	Table name	Code
1.	Safety appliance main table	T_EPRI_SYYQ_AOQGQJ_MAIN
2.	Instrument standard name	T_EPRI_SYYQ_BZTZ
3.	Stock in and stock out table	T_EPRI_SYYQ_CRKGL_MAIN
4.	Instrument department	T_EPRI_SYYQ_DEPARTMENT
5.	Electrical measuring main table	T_EPRI_SYYQ_DQCS_MAIN
6.	Corresponding table of commission and specification	T_EPRI_SYYQ_DYGX
7.	High-voltage metering main table	T_EPRI_SYYQ_GYJM MAIN
8.	Quota management	T_EPRI_SYYQ_INSTRUMENTMANGER
9.	Calibration specification	T_EPRI_SYYQ_JDYJ
10.	Corresponding table of specification and testing items	T_EPRI_SYYQ_JDYJ_DYGX
11.	Technique parameter	T_EPRI_SYYQ_JSCS
12.	The maximum table	T_EPRI_SYYQ_PARNET_YQLX
13.	Gas detection relay main table	T_EPRI_SYYQ_QIJDOGQJ_MAIN
14.	Gas detection relay slave table	T_EPRI_SYYQ_QIJDOGQJ_SUB
15.	Production factory	T_EPRI_SYYQ_SCCJ
16.	Calibration records	T_EPRI_SYYQ_SJI
17.	Testing report	T_EPRI_SYYQ_SYBG
18.	Maintenance record	T_EPRI_SYYQ_WXJL
19.	Production model	T_EPRI_SYYQ_XH
20.	attachment	T_EPRI_SYYQ_XHFGJLB
21.	Instrument claiming	T_EPRI_SYYQ_YQLQ
22.	Instrument second type	T_EPRI_SYYQ_YQLX
23.	account	T_EPRI_SYYQ_YQTZ
24.	user	T_EPRI_USER

4. Performance Evaluation
In the paper, our software environment is JDK1.6, TomCat7.0 and Oracle11g. Two servers are deployed. One is for application server, the other is for database server. The operating system is Windows Server 2008. We develop both client and browser version. For users, the accessing PC should support IE8 or above version, and Microsoft Word is 2007 and above. Some plugins can be downloaded when you log into the system.
After we use the integrated information system, all the transactions in the lab are finished online. First our paper commission sheet can be directly printed online. Fig. 2 shows our entry of commission sheet. Second, all the instruments are added into database. We just need to scan its two-dimensional code, and all the information is abstracted. Fig. 3 shows the account attributes. Third, we input all the report templates in advance. After the testing data are entered, the testing report is automatically generated. The report format is shown as Fig. 4. Fourth, the report is sequentially signed electronically. We no longer need handwritten signature, and its system interface is like Fig. 5. Last, we also integrate many statistics and computation and can export them in EXCEL file.

Now the system has been running for over a year, and our work efficiency improves largely. Previously, finishing one report averagely needs 13 workdays and most time wastes on organizing data and take paper report to look for all the bosses to sign. Now, we just need 8 workdays to complete a report. Not only manual computation is avoided and time is saved, but also the error accuracy and uncertainty are more reliable and precise. In addition, the superior always asks for some periodic or occasional work sheet. Artificial statistic is tedious and time-consuming, and now it is finished just by several selections and one click. The time on statistics reduces from two days to several minutes.
5. Conclusion
In the paper, we develop an integrated information system for our high-voltage metering lab. It automates a series of calibrating procedure from receiving, testing, report, signing to claiming. It also realizes the intelligent management and automated control of our lab. During system development we use two-dimensional code, online editing of WORD, electronical signature technique, which help largely improve efficiency. After using the system, the calibration period reduces from 13 to 8 workdays and the statistics work just needs several minutes.

Acknowledgments
This work was financially supported by Institute-level foundation (No. 2017-12). The authors are grateful for the anonymous reviewers who made constructive comments.

References
[1] L.J Yu, Analysis on Intensive Management in Power Grid Enterprises Based on Theory of Company Value Chain, Energy Tech. and Econ. 23 (2011) 57-61.
[2] D.X. Zhang, L.Z. Yao, W.Y. Ma, Development Strategies of Smart Grid in China and Abroad, Proc of the CSEE, 33 (2013) 1-14.
[3] J. Liang, Design and Implementation of Laboratory Management Information System, Xiamen University, (2014).
[4] Y.Z. Yu, Research on Related Technologies of the QR 2-dimensional Code, Beijing Jiaotong University, (2014).
[5] Z.B Liu, Rapid Output of Testing Report Bulk by Program, Mod. Scie. Instru. 1 (2010) 51-54.
[6] Z.Y. Li, Designing and Implementation of the Electronic Contracts System Based on Electronic Signature Technology, Hunan Shifan University, (2016).