Triazole-resistant *Aspergillus luchuensis*, an industrially important black *Aspergillus* spp. used in fermentation in East Asia, isolated from the patient with invasive pulmonary aspergillosis in China

Qiqi Wang, Yanying Li, Yanming Li, Nir Oshero, Gustavo H. Goldman, Paul E. Verweij, Bo Zheng, Ruoyu Li, Wei Chen, Tianyu Li, Zhe Wan and Wei Liu

Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People’s Republic of China; National Clinical Research Center for Skin and Immune Diseases, Research Center for Medical Mycology, Peking University, No. 8 Xishiku St., West District, Beijing 100034, People’s Republic of China; Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, People’s Republic of China; Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, People’s Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, People’s Republic of China; Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Faculty de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; CWZ Center of Expertise for Mycology, Nijmegen, Netherlands

ABSTRACT

Aspergillus luchuensis, an industrially important member of *Aspergillus* species belonging to section *Nigri* used in fermentation in East Asia, was isolated from an immunocompromised patient with probable invasive pulmonary aspergillosis who failed voriconazole therapy in China. This isolate showed non-wild-type susceptibility to itraconazole, voriconazole, isavuconazole, and posaconazole. A G1378A mutation in *cyp51A*, resulting in the G441S amino acid substitution, which is the homolog to G448S conferring triazole-resistance in *A. fumigatus*, was detected in the *A. luchuensis* isolate.

ARTICLE HISTORY

Received 29 March 2022; Revised 5 May 2022; Accepted 6 May 2022

KEYWORDS *Aspergillus luchuensis*; fermentation in East Asia; triazole-resistance; *cyp51A* mutation; aspergillosis

Introduction

Aspergillus species (spp.) are the causative pathogens of invasive aspergillosis (IA) with considerable morbidity and mortality. Although *Aspergillus fumigatus* continues to be the most prevalent spp., other *Aspergillus* spp. such as *Aspergillus* section *Nigri* have been increasingly recognized to cause invasive disease [1]. *Aspergillus* section *Nigri* is widespread in the environment and used in industrial manufacture to produce pharmaceuticals, food ingredients, and enzymes [2]. *A. luchuensis*, a member of *Aspergillus* section *Nigri*, is widely used in food fermentation in East Asia, such as meju and nuruk in Korea, awamori in Japan, and Puerh tea in China [2]. *A. luchuensis* is often associated with otomycosis [3] and is not reported to cause IA. Here, we report the first case of probable invasive pulmonary aspergillosis (IPA) caused by *A. luchuensis* exhibiting triazole-resistance with a G441S mutation in *cyp51A* gene.

Methods and results

A 60-year-old male patient complained of recurrent cough with bloody sputum for seven months. He also suffered from myalgia, tinnitus, and hearing loss. Chest computed tomographic (CT) scan demonstrated bilateral pulmonary masses. Anti-neutrophil cytoplasmic/proteinase-3 antibodies (c-ANCA/PR3) test was positive. Granulomatosis with polyangiitis (GPA) was diagnosed. He was initially treated with oral prednisone (1 mg/kg/d). Five months later, he developed a deteriorating cough with brown sputum. CT scan revealed bilateral pulmonary cavitary lesions. The sputum sample was culture positive for *Aspergillus* spp. Therefore, the diagnosis of IPA was suspected [4] and oral voriconazole (VRC, 200 mg twice daily) was initiated. Prednisone was continued for the GPA treatment. However, the cough with sputum persisted, and breathlessness and fever developed. A bronchoscopy was performed and bronchoalveolar lavage fluid (BALF) was culture positive for *Aspergillus* spp. which was identified by macroscopic and microscopic
characteristics on potato dextrose agar (PDA), Czapek agar (CZA) and malt extract agar (MEA) at 25°C for 7 days (Figure 1(A)), and by sequencing of β-tubulin and calmodulin genes (GenBank accession number: MZ028459, MZ028460). The isolate was identified as *A. luchuensis* (ID number BMU10878). Because of the poor response to VRC, antifungal susceptibility of BMU10878 to itraconazole (ITC), VRC, amphotericin B (AMB), caspofungin (CAS), posaconazole (POS), and isavuconazole (ISA) was determined using E-test and disk diffusion (Figure 1(B)).

Figure 1. (A) Morphology of *A. luchuensis* BMU09478 and BMU10878 following 7-day-culture at 25°C. PDA: black granular colony; CZA: cottony, brown-yellow colony; MEA: velvet-like, yellow-green colony; corolla-like conidial heads with conidiogenous cells; scattered spores. (B) Antifungal susceptibilities of BMU09478 and BMU10878 to ITC, VRC, POS, AMB, CAS determined by E-test; ITC (80 μg), VRC (10 μg), POS (10 μg), ISA (80 μg) determined by disk diffusion. ITC, itraconazole; VRC, voriconazole; POS, posaconazole; ISA, isavuconazole; AMB, amphotericin B; CAS, caspofungin. (C) (a) Crops are exposed to triazole fungicides. (b) Crops applied with fungicides are further fermented with *A. luchuensis*. (c) Triazole-resistant isolates of *A. luchuensis* are selected by residues of the fungicides. (d) Triazole-resistant spores inhaled by immunocompromised patient causing IPA and failing in triazole-therapy.
posaconazole (POS), isavuconazole (ISA), amphotericin B (AMB), caspofungin (CAS) was determined by the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) M38-A3 document [5]. Another isolate of *A. luchuensis*, BMU09478 was included for comparison. According to the epidemiological cutoff values (ECVs) for *A. niger* [6], no clinical breakpoints (CBPs) and ECVs were established for *A. luchuensis*. BMU10878 showed non-wide-type susceptibility to ITC, VRC, ISA (all MICs > 16 μg/mL), and POS (MIC = 1 μg/mL), while the MICs of ITC, VRC, POS, ISA against *A. luchuensis* BMU09478 control isolate were 0.25 μg/mL. The MICs of AMB against both isolates were 2 μg/mL. Additionally, E-test and disk diffusion were performed and the results (Figure 1(B)) were consistent with those observed by the broth microdilution method. BALF galactomannan (GM) was 15.23 and with those observed by the broth microdilution method according to the Clinical and Laboratory Standards Institute (CLSI) M38-A3 document [5]. Another isolate of *A. luchuensis*, BMU09478 was included for comparison. According to the epidemiological cutoff values (ECVs) for *A. niger* [6], no clinical breakpoints (CBPs) and ECVs were established for *A. luchuensis*. BMU10878 showed non-wide-type susceptibility to ITC, VRC, ISA (all MICs > 16 μg/mL), and POS (MIC = 1 μg/mL), while the MICs of ITC, VRC, POS, ISA against *A. luchuensis* BMU09478 control isolate were 0.25 μg/mL. The MICs of AMB against both isolates were 2 μg/mL. Additionally, E-test and disk diffusion were performed and the results (Figure 1(B)) were consistent with those observed by the broth microdilution method. BALF galactomannan (GM) was 15.23 and with those observed by the broth microdilution method. Hence, we cannot rule out the possibility that the mutation was acquired in the environment, since *A. luchuensis* is widely used in fermentation and can be exposed to agricultural azoles during growth and storage of the fermentation products. The resulting spores with triazole-resistance could be inhaled by immunocompromised patients to cause IPA without triazole-therapy (Figure 1(C)). For IPA caused by those isolates of *Aspergillus* spp. with triazole-resistance, liposomal-AMB has strongly been recommended [1]. And the case in this report has also confirmed that liposomal-AMB is an effective alternative for the treatment of triazole-resistant IPA.

In conclusion, triazole fungicides being applied to fermentable crops may be a potential driver of triazole-resistance in industrial *Aspergillus* spp. used for fermentation. Testing of these and other environmental isolates could help to confirm an environmental route of resistance selection. If confirmed, our observation would provide evidence for fungicide resistance selection beyond *A. fumigatus*, with implications for antifungal stewardship both in environmental and clinical use of triazole compounds.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Key Research and Development Program of China [2021YFC2300400] and National Natural Science Foundation of China [81861140828, 81971912].
References

[1] Arastehfar A, Carvalho A, Houbraken J, et al. *Aspergillus fumigatus* and aspergillosis: from basics to clinics. Stud Mycol. 2021;100:100115.

[2] Hong SB, Lee M, Kim DH, et al. *Aspergillus luchuensis*, an industrially important black *Aspergillus* in East Asia. PLoS One. 2013;8:e63769.

[3] Gits-Muselli M, Hamane S, Verillaud B, et al. Different repartition of the cryptic species of black aspergilli according to the anatomical sites in human infections, in a French university hospital. Med Mycol. 2021;59:985–992.

[4] Donnelly JP, Chen SC, Kauffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin Infect Dis. 2020;71:1367–1376.

[5] Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. 3rd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2017, CLSI standard M38.

[6] Epidemiological cutoff values for antifungal susceptibility testing. 3rd ed. Wayne (PA): Clinical and Laboratory Standards Institute; 2020, CLSI supplement M59.

[7] Krishnan Natesan S, Wu W, Cutright JL, et al. *In vitro-in vivo* correlation of voriconazole resistance due to G448S mutation (cyp51A gene) in *Aspergillus fumigatus*. Diagn Microbiol Infect Dis. 2012;74:272–277.

[8] Ren J, Jin X, Zhang Q, et al. Fungicides induced triazole-resistance in *Aspergillus fumigatus* associated with mutations of TR46/Y121F/T289A and its appearance in agricultural fields. J Hazard Mater. 2017;326:54–60.

[9] Cao D, Wu R, Dong S, et al. Five-year survey (2014 to 2018) of azole resistance in environmental *Aspergillus fumigatus* isolates from China. Antimicrob Agents Chemother. 2020;64:e00904-20.

[10] Zhang J, Lopez Jimenez L, Snelders E, et al. Dynamics of *Aspergillus fumigatus* in azole fungicide-containing plant waste in the Netherlands (2016–2017). Appl Environ Microbiol. 2021;87:e02295-20.

[11] Chen Y, Dong F, Zhao J, et al. High azole resistance in *Aspergillus fumigatus* isolates from strawberry fields, China, 2018. Emerg Infect Dis. 2020;26:81–89.

[12] Jacques FM, Anuradha C, Johanna LR, et al. Clinical implications of globally emerging azole resistance in *Aspergillus fumigatus*. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150460.