Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions

Murali K. Akula1,2, Mohamed X. Ibrahim1,10, Emil G. Ivarsson1,10, Omar M. Khan3,4,10, Israiel T. Kumar1, Malin Erlandsson5, Christin Karlsson1, Xiufeng Xu6, Mikael Brisslert5, Cord Brakebusch7, Donghai Wang8, Maria Bokarewa5, Volkan I. Sayin2,9 & Martin O. Bergo1,6

Rho family proteins are prenylated by geranylgeranyltransferase type I (GGTase-I), which normally target proteins to membranes for GTP-loading. However, conditional deletion of GGTase-I in mouse macrophages increases GTP-loading of Rho proteins, leading to enhanced inflammatory responses and severe rheumatoid arthritis. Here we show that heterozygous deletion of the Rho family gene Rac1, but not Rhoa and Cdc42, reverses inflammation and arthritis in GGTase-I-deficient mice. Non-prenylated Rac1 has a high affinity for the adaptor protein Ras GTPase-activating-like protein 1 (Iqgap1), which facilitates both GTP exchange and ubiquitination-mediated degradation of Rac1. Consistently, inactivating Iqgap1 normalizes Rac1 GTP-loading, and reduces inflammation and arthritis in GGTase-I-deficient mice, as well as prevents statins from increasing Rac1 GTP-loading and cytokine production in macrophages. We conclude that blocking prenylation stimulates Rac1 effector interactions and unleashes proinflammatory signaling. Our results thus suggest that prenylation normally restrains innate immune responses by preventing Rac1 effector interactions.
protein geranylgeranyltransferase type I (GGTase-I) transfers a 20-carbon geranylgeranyl lipid to a cysteine residue of proteins harboring a carboxyl-terminal CAAX motif, including the Rho family proteins Rac1, RhoA, and Cdc42. Geranylgeranylation, also called prenylation, enhances hydrophobicity and facilitates membrane anchoring of Rho proteins and is believed to be essential for correct subcellular targeting, effector binding, GTP loading, and activation. Geranylgeranylation is an evolutionarily conserved modification that has generated a broad interest for several reasons. First, Rho family proteins contribute to tumor growth and metastasis, which prompted the development of GGTase-I inhibitors (GGTIs). Several GGTIs exhibit anti-tumor effects in preclinical studies and the rationale for using GGTIs in cancer therapy is supported by mouse gene-targeting experiments. Second, Rho proteins regulate phagocytosis, migration, reactive oxygen species (ROS) production, and signaling in inflammatory cells. Thus, targeting GGTase-I has been proposed as a strategy to treat inflammatory and autoimmune disorders, including rheumatoid arthritis and multiple sclerosis. And third, reduced geranylgeranylation of Rho proteins is frequently suggested to underlie anti-inflammatory properties and other pleiotropic effects of statins. Statins lower cholesterol levels by blocking mevalonate synthesis but this also leads to reduced synthesis of geranylgeranylporphosphate (GGPP), the lipid substrate of GGTase-I. The idea that blocking Rho protein geranylgeranylation would inhibit inflammation was challenged by studies into GGTase-I-deficient mice. Knockout of GGTase-I’s catalytic subunit in macrophages eliminated Rho protein geranylgeranylation, but surprisingly, Rac1, RhoA, and Cdc42 accumulated in their GTP-bound active form, and Rac1 remained associated with membranes. Moreover, p38 and Nfkb activities were high in GGTase-I-deficient macrophages, which increased pro-inflammatory cytokine production after lipopolysaccharide (LPS) stimulation; and the mice developed chronic erosive rheumatoid arthritis. Thus, targeting macrophage GGTase-I activates Rho proteins and causes inflammation. These results dispute the general understanding of the biochemical and medical importance of CAAX protein geranylgeranylation and raise a range of new questions. For example, GGTase-I has more than 60 predicted substrates, and it is not yet known whether one or more of these proteins mediate inflammatory signaling and erosive arthritis development in mice lacking GGTase-I in macrophages. It would also be important to define mechanisms underlying the increased GTP loading of nonprenylated Rho proteins. One potential explanation is that they interact more avidly than prenylated Rho proteins with a nonprenylated Rho protein. One potential explanation is that unknown. In the current study, we used genetic, pharmacologic, and proteomic strategies to address these issues and identify a new potential explanation for the role of prenylation for Rac1 effector interactions and proinflammatory signaling.

Results

Rac1 knockout prevents arthritis in GGTase-I-deficient mice. Mice lacking GGTase-I in macrophages (Pgg11b/D-LysM-Cre^{-/}) hereafter designated Pgg11b/D mice develop erosive arthritis, and nonprenylated Rac1, RhoA, and Cdc42 accumulate in the GTP-bound state. In TX-114 phase-separation assays Rac1, RhoA, and Cdc42 exhibited a substantial shift from the detergent to aqueous phase in Pgg11b/D macrophages; and click-chemistry experiments revealed that Rac1 is not geranylgeranylated—thus confirming the previous conclusion that these proteins are not prenylated. We hypothesized that the increased activity of one of these nonprenylated proteins mediates arthritis development and the proinflammatory phenotypes of Pgg11b/D mice. To test this hypothesis, we knocked out one copy of Rac1, Rhoa, and Cdc42 in macrophages of Pgg11b/D mice (previous studies show that knockout of both copies of Rac1, Rhoa, and Cdc42 produces multiple in vivo and cellular phenotypes). As expected, levels of total Rac1, Rhoa, and Cdc42 were ~50% (47–58%) lower in BM macrophages from Pgg11b/D/Rac1^{Δ/Δ}, Pgg11b/D/Rhoa^{Δ/Δ}, and Pgg11b/D/Cdc42^{Δ/Δ} mice, respectively, than in macrophages from littermate Pgg11b/D mice (Supplementary Fig. 1C). Similarly, levels of GTP-bound Rac1 was ~50% lower in Pgg11b/D/Rac1^{Δ/Δ} than in Pgg11b/D macrophages (Fig. 1a). Immunohistochemical analyses revealed that the high synovitis and bone erosion scores in joints of Pgg11b/D mice were markedly lower in Pgg11b/D/Rac1^{Δ/Δ} mice, and were statistically indistinguishable from wild type (Fig. 1b). The arthritis scores were similar in Pgg11b/D/Rhoa^{Δ/Δ} and Pgg11b/D/Cdc42^{Δ/Δ} mice whereas they were higher in Pgg11b/D/Cdc42^{Δ/Δ} macrophages (Supplementary Fig. 1D and E).

As in earlier studies, LPS-stimulated Pgg11b/D macrophages produced and secreted Il-1β (which wild-type macrophages do not); this effect was associated with caspase-1 activation (Fig. 1c, d). Inactivation of Rac1 reduced caspase-1 and Il-1β production by 90–100% (Fig. 1c, d). LPS-stimulated Pgg11b/D macrophages also secreted high amounts of Il-6, Tnf, and Mmp13; whereas the levels in medium of Pgg11b/D/Rac1^{Δ/Δ} and wild-type macrophages were similar (Fig. 1c, e). In addition, basal expression of inflammation and extracellular matrix-associated genes was increased in Pgg11b/D macrophages, but similar to wild-type in Pgg11b/D/Rac1^{Δ/Δ} cells (Supplementary Fig. 1F and G). Cytokine levels in medium of Pgg11b/D/Rhoa^{Δ/Δ} and Pgg11b/D/Cdc42^{Δ/Δ} macrophages did not differ consistently compared with Pgg11b/D macrophages (Supplementary Fig. 2A–D).

Pgg11b/D macrophages exhibited increased levels of LPS-stimulated p38 phosphorylation and phosphorylation of the Nfkb-regulator Ikk kinase (Ikk); and increased basal and LPS-stimulated phosphorylation of the tyrosine protein kinase Src and signal transducer and activator of transcription 3 (Stat3) (Fig. 1f). Consistent with results in Fig. 1a–e, phosphorylation of p38, Src, Ikk, and Stat3 was reduced in Pgg11b/D macrophages (Fig. 1f). Rac1-GTP may activate inflammatory signaling pathways through multiple effectors including ROS and p38. Pharmacological inhibition of ROS-reduced phosphorylation of Stat3, Src, and Ikk in Pgg11b/D macrophages, but did not influence p38 phosphorylation (Supplementary Fig. 2E and F). Moreover, a p38 inhibitor and a ROS inhibitor prevented the increased cytokine production observed in LPS-stimulated Pgg11b/D macrophages (Fig. 1g and Supplementary Fig. 2G and H).
were unaffected (Fig. 2b). Further analyses revealed that the total levels of Rac1 were reduced by ~50% (Fig. 2a). Moreover, the half-life of Rac1 was 65–70% shorter in Pggt1bΔΔ mice than in control cells (Fig. 2c, d). To determine whether ubiquitin-mediated proteasomal degradation contributed to the reduced Rac1 levels, we first immunoprecipitated ubiquitin and performed western blots for Rac1; and found higher amounts of ubiquitin-associated Rac1 in Pggt1bΔΔ than in control lysates (Fig. 2e). Although we

Fig. 1 Rac1 haploinsufficiency rescues arthritis and inflammatory signaling in Pggt1bΔΔ mice. **a** Left, Western blots showing steady-state levels of GTP-bound and total Rac1 in BM macrophages isolated from Pggt1b+/+, Pggt1bΔΔ, and littermate Rac1ΔΔ/+ Pggt1bΔΔ mice. Actin was used as a loading control. Right, Bar graphs showing mean Rac1-GTP levels determined by densitometry (n = 2 per genotype). **b** Synovitis and erosion score in joints of 12-week-old Pggt1b+/+ (n = 4), Pggt1bΔΔ (n = 12), and Rac1ΔΔ/+ Pggt1bΔΔ (n = 9) mice. **c** Cytokine concentrations, 8 h after LPS (10 ng/ml) stimulation, in medium of primary bone marrow (BM) macrophages isolated from Pggt1b+/+ (n = 3), Pggt1bΔΔ (n = 4), and Rac1ΔΔ/+ Pggt1bΔΔ (n = 3) mice. **d** Western blots showing levels of mature IL-1β and caspase-1 in supernatants (Sup), and pro-IL-1β and pro-caspase-1 in lysates (Lys) of LPS (200 ng/ml) stimulated BM macrophages; ubiquitin (ubiquitin and Actin in lysates was used as a loading control. The antibiotic nigericin (28 mM) was used as a positive control for inflammasome-mediated caspase-1 activation and IL-1β production. **e** Western blot showing levels of Mmp13 in medium of LPS-stimulated BM macrophages; Actin in lysates was used as a loading control. **f** Western blots showing phosphorylated (p) and total levels of intracellular signaling mediators in lysates of BM macrophages isolated 0, 15, and 30 min after LPS stimulation. **g** Concentration of IL-1β in medium of LPS-stimulated BM macrophages (n = 3 genotype) that had been pre-incubated for 1 h with inhibitors of p38 (SB203580; 1 and 5 µM) and ROS (DPI; 500 nM and 5 µM). For **c–e, g**, similar results were observed in two to three independent experiments. Error bars presented as s.e.m. when n is equal to or more than three. Significance between groups were calculated with two tailed Student’s t test (c, g) and one-way ANOVA with Tukey’s post hoc test (b). n.s. not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
only detected Rac1 conjugated with three Ubiquitins under the current experimental conditions, we can’t rule out the existence of mono-, di-, and polyubiquitinated forms. Second, we incubated macrophages with proteasome inhibitors and found that total Rac1 levels were restored (Fig. 2f); proteasome inhibition also increased Rac1-GTP levels (Supplementary Fig. 3C). In contrast with Rac1, total RhoA, and Cdc42 levels were increased in Pggt1bΔ/Δ cells (Supplementary Fig. 3A and B). Thus, blocking prenylation reduces Rac1 stability but appears to increase that of RhoA and Cdc42.
Table 1 Rho family effector proteins identified by mass spectrometry of proteins co-immunoprecipitated with Rac1 in Ptgt1bΔ/Δ and control macrophages

No	Accession	Description	PSM	Fold change	P value
1	Q9JKF1	Ras GTPase-activating-like protein Iqgap1 [Iqgap1]	98	1.16	0.007
2	Q64NO3	Rho GTPase-activating protein 30 [RHG30]	5	1.12	0.012
3	Q8BYW1	Rho GTPase-activating protein 25 [RHG25]	2	1.60	0.043
4	A6X8Z5	Rho GTPase-activating protein 31 [RHG31]	9	0.85	0.170
5	Q9WVM1	Rac GTPase-activating protein 1 [RGAP1]	3	0.84	0.227

Fold change represents the relative abundance of a protein in macrophages from the two genotypes.

RhoGD1I is not involved in phenotypes of GGTase-I deficiency. The GGTase-I knockout reduces interactions between RhoGD1I and Rac1 and Cdc42, but not RhoA. We hypothesized that a reduced interaction between RhoGD1I and Rac1 might underlie increased GTP loading and cytokine production and tested this by inactivating RhoGD1I expression. Consistent with a previous study, suppressing RhoGD1I expression with small-interfering (si) RNAs increased Rac1 GTP loading and reduced total Rac1 levels—a result that was associated with increased LPS-stimulated IL-6 and Tnf production (Supplementary Fig. 4A). However, we only observed this result in the RAW264.7 macrophage cell line; it was neither observed in primary macrophages incubated with siRNAs, nor in immortalized macrophages where the Arhgdial gene had been inactivated with CRISPR/CAS9 (Supplementary Fig. 4B and C). Moreover, RhoGD1I inactivation never increased IL-1β production, including in RAW264.7 cells (Supplementary Fig. 4A–C).

Iqgap1 binds nonprenylated Rac1 and mediates arthritis. To determine whether blocking Rac1 prenylation influences other effector interactions, we immunoprecipitated Rac1 from Ptgt1bΔ/Δ and control macrophage lysates and performed isobaric tagging for relative peptide quantification with mass spectrometry. From a list of 717 proteins whose levels differed significantly in Ptgt1bΔ/Δ and control cells, we identified five known Rho family effector proteins (Table 1). The top hit was GTPase-activating-like protein 1 (Iqgap1)—an adaptor protein that binds and stabilizes GTP-bound Rho family proteins but lacks GAP and GEF activity. Immunoprecipitation (IP) and western blot analyses of macrophage lysates revealed that the Rac1-Iqgap1 interaction was two to threefold higher in Ptgt1bΔ/Δ than control cells (Fig. 3a). The interaction between Iqgap1 and RhoA and Cdc42 in Ptgt1bΔ/Δ macrophages was also increased (Supplementary Fig. 5A and B).

To determine whether Iqgap1 contributes to phenotypes of GGTase-I deficiency, we bred Ptgt1bΔ/Δ mice on an Iqgap1−/− background. Levels of synovitis and bone erosion were 60–70% lower in joints of Ptgt1bΔ/ΔIqgap1−/− than Ptgt1bΔ/ΔIqgap1+/+ mice, and cytokine production by LPS-stimulated Ptgt1bΔ/ΔIqgap1−/− macrophages was reduced to control levels (Fig. 3b, c). Importantly, knockout of Iqgap1 alone (e.g., Ptgt1bΔ/Δ Iqgap1−/−) did not influence cytokine production (Supplementary Fig. 5C), although it reduced basal Rac1-GTP and total Rac1 levels (Supplementary Fig. 5D). Moreover, the Iqgap1 knockout reduced Rac1-GTP loading and ubiquitination, and increased total Rac1 to levels observed in control macrophages. The Iqgap1 knockou also reduced GTP-bound and total RhoA, Cdc42 and Rac1 to control levels (Supplementary Fig. 5F and G). Furthermore, Ptgt1bΔ/Δ macrophages have a small adhesive area and appear small and rounded, and the knockout of Iqgap1 abolished this phenotype (Fig. 3f).

Tiam1 binds nonprenylated Rac1 and stimulates GTP loading. Iqgap1 has no GEF or GAP activity. Thus, we asked whether an increased interaction with a known GEF—or a reduced interaction with RacGAP1—could explain the increased GTP loading of nonprenylated Rac1. IP-western blot analyses revealed a two to sixfold higher Rac1-Tiam1 interaction in Ptgt1bΔ/Δ than in control macrophages (Fig. 4a). Interactions between Rac1 and the GEFs Vav1, Vav2, β-Pix, and Dock1, and the GAP RacGAP1 were similar in Ptgt1bΔ/Δ and control macrophages (Supplementary Fig. 6A). Inhibiting Tiam1 expression with siRNAs reduced GTP-bound and increased total Rac1 (Fig. 4b). Tiam1 inhibition also reduced cytokine production of LPS-stimulated Ptgt1bΔ/Δ macrophages (Fig. 4c and Supplementary Fig. 6B and C).

To determine whether Tiam1 interacts with Iqgap1, we performed IP-western blot analyses and found a low basal interaction in control Ptgt1bΔ/Δ macrophages and a high degree of interaction in Ptgt1bΔ/Δ macrophages (Fig. 4d). These experiments also revealed consistently higher Tiam1 levels in control macrophages than in Ptgt1bΔ/Δ macrophages.
Fig. 3 Iqgap1 binds nonprenylated Rac1 and mediates GTP loading, cytokine production, and arthritis. a Left, immunoprecipitation (IP) of Rac1 in BM macrophage lysates followed by western blots for Iqgap1. Direct western blots were performed on the same lysates (Input) to quantify total Iqgap1 and Rac1 levels. Nonprenylated Rap1A was used as marker of GGTase-I-decient cells; actin was used as a loading control. Middle and right, levels of Rac1-bound Iqgap1 was determined by densitometry of IP-western blots of BM macrophages from six mice/genotype. b Synovitis and erosion scores in joints of 12-week-old Pggt1b+/+ (n = 4), Pggt1bΔ/Δ (n = 9), and littermate Iqgap1+/–/Pggt1bΔ/Δ (n = 7) mice. c Cytokine concentrations, 8 h after LPS stimulation, in medium of BM macrophages isolated from Pggt1b+/+, Pggt1bΔ/Δ, and Iqgap1+/–/Pggt1bΔ/Δ mice (n = 3/genotype). d Left panel, Western blots showing levels of GTP-bound Rac1, total Rac1, and Iqgap1 in BM macrophages isolated from Pggt1bΔ/+, Pggt1bΔ/Δ, and Iqgap1+/–/Pggt1bΔ/Δ mice. Right panels, levels of GTP-bound and total Rac1 determined by densitometry (n = 5/genotype). e Western blots of macrophage lysates isolated at base-line and 15 and 30 min after LPS stimulation. f Confocal microscopy images showing F-Actin staining of BM macrophages. Scale bars: 10 μm. Error bars represent s.e.m. The graph shows adhesive area of 20-30 macrophages in ten randomly selected fields analyzed in cells from two mice/genotype. Signiﬁcance between groups was calculated with two tailed Student’s t test (a, c, d, f) and one-way ANOVA with Tukey’s post hoc test (b). n.s. not signiﬁcant, *P < 0.05, **P < 0.01, ***P < 0.001
Fig. 4 Tiam1 binds nonprenylated Rac1 and supports GTP loading and IL-1β production. a Left, immunoprecipitation (IP) of Rac1 in BM macrophage lysates followed by western blots for Tiam1. Direct western blots were performed on the same lysates (Input) to quantify total Tiam1 and Rac1 levels. Middle and right, levels of Rac1-bound Tiam1 was determined by densitometry of IP-western blots followed by western blots for Tiam1. Direct western blots were performed on the same lysates (Input) to quantify total Tiam1 and Rac1 levels. b Western blot showing levels of GTP-bound Rac1 in lysates of BM macrophages pre-incubated for 24 h with scrambled or Tiam1-targeted siRNAs. Direct western blots were performed on the same lysates (Input) to quantify total Tiam1 and Rac1 levels. c Concentration of IL-1β, 8 h after LPS stimulation, in medium of BM macrophages pre-incubated for 24 h with scrambled or Tiam1-targeted siRNAs (n = 2 genotype). d Left, IP of Tiam1 followed by western blot for Iqgap1. Right, IP of Iqgap1 followed by western blot for Tiam1. Direct western blots were performed on the same lysates (Input) to quantify total Iqgap1, Tiam1, and Actin levels. Error bars represent s.e.m. Significance between groups were calculated with two tailed Student’s t test. *P < 0.05

Editing the Rac1 CAAX sequence increases GTP loading. Levels of GTP-bound and total Rac1 in GGTase-I-deficient cells could conceivably be influenced by the accumulation of other non-prenylated CAAX-proteins. To define biochemical consequences of blocking Rac1 prenylation in cells expressing normal GGTase-I activity, we edited the CAAX sequence of endogenous Rac1 in human embryonic kidney (HEK) cells with a nonintegrating homologous recombination-based CRISPR/CAS9 approach. We isolated three CAAX-mutant clones (Rac1CM1–3), sequenced their DNA and cDNA (Fig. 5a), and found in their lysates that Rac1 exhibited a reduced electrophoretic mobility indicating that the protein had not been prenylated by GGTase-I (Fig. 5b). Rac1-GTP levels were two to fourfold higher in CAAX-mutant than in control cells; and Rac1 total levels were two to threefold lower (Fig. 5c). Further analyses revealed that the distribution of Rac1 in cytosol and membrane fractions was similar in CAAX-mutant and control cells (Fig. 5d). However, nuclear Rac1 levels were lower in the edited cells (Fig. 5d). Similar to the findings with Pggt1b^{ΔΔ} macrophages, Rac1 total levels increased following lactacystin and MG-132 administration (Fig. 5e, f). Moreover, Rac1 ubiquitination and Iqgap1 association was higher in Rac1 mutant than control cells (Fig. 5g, h).

Statins mimic effects of GGTase-I deficiency. To determine whether statins can produce similar cellular effects as GGTase-I deficiency, we incubated three different macrophage types with Atorvastatin, Rosuvastatin, and Simvastatin. Statins increased Rac1-GTP levels and reduced total Rac1; and increased GTP-bound and total RhoA (Fig. 6a, b). Moreover, statins facilitated IL-1β maturation and secretion in response to LPS, and potentiated IL-6 and Tnf production (Fig. 6c, d, and Supplementary Fig. 7A and B). To determine if Iqgap1 underlies the ability of statins to increase cytokine production, we incubated primary Iqgap1-knockout macrophages with Simvastatin and found that LPS-stimulated cytokine production was either reduced or normalized (Fig. 6e). Inhibiting Iqgap1 with siRNAs produced similar results (Supplementary Fig. 7D).

Discussion
In this study, we identified three components of the mechanism underlying inflammatory phenotypes of mice with macrophage-specific GGTase-I deficiency. First, GGTase-I prenylates at least 60 substrates¹⁷, and our data indicate that one of them, Rac1, mediates the majority of the robust innate immune responses. Second, nonprenylated Rac1 becomes hyperactivated through an
increased interaction with Tiam1 and Iqgap1. And third, hyperactive Rac1 activates inflammasome-, ROS-, and p38-driven signaling pathways that enhance LPS-induced Il-1β, Il-6, and Tnf production.

Prenylation is believed to have evolved as a strategy to target proteins to membranes, promote effector interactions, and thereby stimulate activation and signaling34. Several results indicate that this is not the case for Rac1. First, Rac1 membrane/cytosol partitioning was unaffected in GGTase-I-deficient macrophages14 and in HEK cells engineered to express endogenous Rac1 with CAAX motif mutations. Second, interactions between nonprenylated Rac1 and the effectors Tiam1 and Iqgap1 were substantially increased. And third, GTP-binding was increased and downstream signaling pathways were activated. The simplest
Fig. 5 Editing the endogenous Rac1 CAAX-motif increases GTP loading and reduces total Rac1 levels. a Predicted amino acid sequence from sanger sequence results of PCR-amplified Rac1 DNA and cDNA fragments. The DNA/cDNA was from HEK-293 clones whose Rac1 gene had been edited at the CAAX sequence by CRISPR/Cas9-facilitated homologous recombination to prevent geranylgeranylation by GGToase-I. CM1-3, CAAX mutant clones; Ctrl, unedited control clone. b Left, western blot showing electrophoretic mobility of wild-type Rac1 in Rac1Ctrl lysates, and nonprenylated (np) Rac1 in CM1-3 lysates. c Left, western blots showing amounts of GTP-bound Rac1, total Rac1, and the loading control Actin in lysates of the gene-edited cells. Middle and right, levels of GTP-bound and total Rac1 determined by densitometry; data are mean of three independent experiments and expressed as percent of Rac1Ctrl. d, e Western blots showing levels of total Rac1 and the loading control Actin in lysates of gene-edited cells isolated after incubation with 15 μM lactacystin for 12 h (e); and 50 μM MG-132 at different time points (f). g Left, immunoprecipitation (IP) of Rac1 in gene-edited cells followed by western blot for Ubiquitin. Direct western blots were performed on the same lysates (input) to quantify total Rac1 levels. Actin was used as a loading control. Error bars represent s.e.m.

A possible explanation for these results is that GGToase-I-mediated prenylation normally acts as a break on innate immune responses in macrophages by limiting Rac1 effector interactions. Blocking prenylation releases the break, stimulates Rac1 interactions, and unleashes wide-spread proinflammatory signaling (Supplementary Fig. 8).

This reasoning is particularly relevant for the control of IL-1β production. Due to its potent pleiotropic inflammatory effects, IL-1β secretion by macrophages is tightly controlled and requires two different events: a priming step through cell-surface receptors that leads to Il1b transcription; and a second signal that activates caspase-1 and leads to pro-IL-1β cleavage and secretion of the mature protein. Our data suggest that nonprenylated Rac1 can act as the second signal in IL-1β production. This argument is supported by the finding that the robust caspase-1-mediated IL-1β production in GGToase-I-deficient macrophages was abolished by normalizing Rac1-GTP levels—which was accomplished by knocking out one copy of Rac1 or both copies of Iqgap1.

GGToase-I deficiency increased basal phosphorylation of Src, Stat3, and Ikkaβ/δ—and to some extent p38—in a Rac1-dependent fashion; LPS-induced phosphorylation of all four proteins was also increased. Rac1-induced activation of Src, Stat3, and Ikk was mediated by ROS, whereas p38 activation was likely a direct consequence of Rac1/PAK activity. These findings are consistent with previous reports that Rac1 triggers ROS production by NADPH oxidases which activates Stat3 and Stat5, although other studies show a physical interaction between Rac1-GTP and Stat3.

Interestingly, Stat3 contributes to the progression of chronic inflammation and joint destruction in mouse models of rheumatoid arthritis. Src and p38 are also involved in Ikk-dependent activation of NFKB which stimulates transcription of cytokines including IL-1β, IL-6, and TNF. Importantly, knockout of one copy of Rac1 normalized Rac1-GTP levels in GGToase-I-deficient macrophages and reduced or normalized signaling of the entire pathway.

Knockout of Iqgap1 normalized Rac1-GTP loading, ablated proinflammatory signaling and cytokine production, and markedly reduced arthritis in GGToase-I-deficient mice. Although it is not known whether Iqgap1 encounters nonprenylated Rho proteins in activated wild-type macrophages, it is possible that targeting Iqgap1 might be useful in the therapy of some inflammatory conditions. One example would be patients with mevalonate kinase deficiency (MKD)—an autoinflammatory disease associated with high IL-1β production, fever episodes, lymph node enlargement, and joint pain. MKD leads to reduced synthesis of GGPP which reduces prenylation, and could therefore enhance cytokine production through an increased Rac1-Iqgap1 interaction. Targeting Iqgap1 would likely be associated with few side-effects as Iqgap1-deficient mice are viable and exhibit only mild phenotypes late in life; and their macrophages responded normally to LPS. Targeting Rac1 might be an alternative strategy and has been proposed earlier, but Rac1 deficiency is lethal in mice and produces a range of cellular and tissue phenotypes.

The knockout of Iqgap1 rescued most of the robust proinflammatory phenotypes of GGToase-I-deficient macrophages but did not influence LPS-induced cytokine production of GGToase-I wild-type macrophages—despite reducing Rac1-GTP levels. The simplest explanation for these observations is that both the levels of Rac1-GTP and the affinity of Rac1 for Iqgap1 were markedly higher in GGToase-deficient than wild-type macrophages; thus Iqgap1’s role in controlling Rac1-GTP levels and its downstream signaling could simply be comparatively more important in the GGToase-I-deficient cells. Whether or not Iqgap1 influences Rac1-GTP signaling and cytokine production in arthritis and other inflammatory diseases in the setting of wild-type GGToase-I remains to be determined.

Statin administration produced similar effects as the knockout of GGToase-I: Rac1-GTP levels increased, as did LPS-induced cytokine production, in a GGPP-dependent fashion. Part of those results are in line with previous studies, but here we also provide evidence that the proinflammatory statin effect requires Iqgap1. It, therefore, seems reasonable to speculate that statins’ pro-inflammatory effects on macrophages stem from reduced Rac1 prenylation and increased interaction with Iqgap1. However, statin therapy is more often associated with anti-inflammatory than pro-inflammatory effects. A potential explanation is that anti-inflammatory statin effects are the result of the drug’s action on lymphocytes rather than macrophages. For example, statins inhibit T-cell proliferation and differentiation, and immune synapse formation. Another speculation would be that some side-effects of statin therapy, such as myositis and rhabdomyolysis, are caused by hyperactivation of a non-prenylated Rho protein. However, these speculations should be interpreted with caution because there is little evidence that statins inhibit prenylation in vivo. Daily statin doses used by patients range from 5 to 80 mg/day, resulting in plasma concentrations of 1–15 nM. The doses used in vivo in the present study are lower than those of many other studies, but they are likely higher than those that cells in vivo are exposed to.

Our results show clearly that prenylation is not required for GTP loading and activation of Rho proteins. Prenylation actually inhibits GTP loading. Why then are Rho proteins prenylated? One potential role of prenylation is to fine-tune the targeting of Rho proteins to specific subcellular membrane domains. Another possibility is that prenylation is required for rapid cycling between GTP and GDP-bound states during specific functions of
Fig. 6 Statins increase Rac1-GTP and cytokine production in a GGPP- and Iqgap1-dependent fashion. **a** Left, western blots showing levels of GTP-bound and total Rac1 in lysates of RAW 264.7 macrophages incubated for 3 weeks with Atorvastatin (5 µM), Rosuvastatin (2.5 µM), and Simvastatin (1 µM). Np-Rap1A was used as a marker of GGTPase-I-deficient cells and Actin as a loading control. Middle and right, amounts of GTP-bound and total Rac1 determined by densitometry. **b** Left, western blots showing levels of GTP-bound and total RhoA in the same cells as in (a). Middle and right, amounts of GTP-bound and total RhoA determined by densitometry. **c** IL-1β concentration, before and 8 h after LPS stimulation, in medium of RAW 264.7 macrophages incubated with Atorvastatin (5 µM) and Rosuvastatin (2.5 µM) for 21 days. GGPP (10 µM) was added to the cells 3 days before LPS stimulation. **d** Similar experiment as in (c) performed with J774 macrophages. **e** Cytokine concentration in medium of LPS-stimulated Iqgap1+/+ and Iqgap1−/− macrophages incubated with Simvastatin (5 µM) for 60 h. Error bars represent s.e.m. Significance between groups were calculated with two tailed Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001.
the cell such as during proliferation or certain types of cell movement. These issues will be possible to address in the future. But based on the current study, we conclude that a major role of GGTTase-I-mediated prenylation in macrophages is to limit Rac1 activation and pro-inflammatory signaling, prevent Rac1-dependent IL-1β maturation, and thereby restrain innate immune responses.

Methods

Mouse breeding and genotyping. Mice harboring conditional knockout alleles of the beta subunit of GGTTase-I (Pgettββ) were bred with Igsyrome M-Cre (LC) knock-in mice to produce offspring lacking GGTTase-I in macrophages as described;6; these mice were designated Pgettββα (Δ = delta, deleted allele). Pgettββα mice were bred with mice harboring conditional knockout allelic of Rac1, Rhoa, and Cdc42, and conventional knockout alleles for Ilgagp1. Genotyping was performed by polymerase chain reaction (PCR) on genomic DNA from ear or tail biopsies. Mice were housed in a specific pathogen-free facility monitored by routine testing of sentinel mice, and were given free access to water and chow. Mice were on a mixed genetic background (129Ola/Hsd-C57BL/6) and control mice in all experiments were gender-matched littermates. Animal experiments were approved by the research animal ethics committee in Gothenburg, Sweden.

Histology and quantification of arthritis in joints. Joints from 12-week-old mice were fixed for 48 h in 4% paraformaldehyde and stored at 70% ethanol. Tissues were decalcified, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The slides were analyzed in a Zeiss Axioplan 2 microscope (Carl Zeiss AG). Synovitis and erosion scores were evaluated in sections of knee, ankle, metatarsal, and 3 foci in the sublining layer, and proliferation of synovia; and 3—massive influx of inflammatory cells scattered throughout the synovial tissue, and growth of granulation tissue (pannus). Cartilage and bone erosion were evaluated with a separate 0–3 scale: 0 = a healthy joint; 1 = reduction or uneven cartilage thickness; 2 =—compromised cartilage integrity and formation of erosions on the cartilage surface under the growing pannus; and 3 = loss of articular surface, obliteration of the joint cavity, and loss of joint or bone shape. The cumulative arthritis index for each mouse was constructed by adding the scores from the fore and hind paws.

Isolating and culturing bone marrow macrophages. Bone marrow cells were isolated from femur and tibia and cultured for 7–10 days in DMEM high glucose medium (61,956,059) supplemented with 10% fetal bovine serum (10270-106, Thermo Fisher Scientific), 1% HEPES (H8987, Sigma-Aldrich), 1% glutamine (290970, Thermo Fisher Scientific), 1% gentamycin (11482524, Fischer Scientific), 0.01% β-mercaptoethanol, and 10% CMCMG14-12 cell supernatant as a source of macrophage colony-stimulating factor (M-CSF).

Protein analyses. Rac1-GTP levels were assessed with the Active Rac1 Pulldown and Detection kit (16118, Thermo Fisher Scientific); Cdc42-GTP with the Active Cdc42 Pulldown and Detection kit (16119, Thermo Fisher Scientific); and RhoA-GTP with the RhoA Activation Assay Biochem Kit (BK036, Cytoskeleton). For IP, cells were lysed in a buffer containing 25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, and 5% glycerol; and IP was performed with antibodies recognizing Rac1 (sc-32214), anti-rabbit (sc-87), Tiam1 (sc-10792), and anti-goat (sc-32212), anti-rabbit (296–32,211), and anti-goat (296–32,214, LI-COR) antibodies and analyzed in a LI-COR Odyssey Imager. Band densities were analyzed with Image J. Mmp13 in macrophages was analyzed by using Mmp13 antibodies (sc-30073, Santa Cruz Biotechnology) and horseradish-conjugated anti-rabbit (NA934, GE Healthcare Lifesciences) antibodies and the ECL western blotting system (RPN2232, GE Healthcare Lifesciences), as described. Primary antibodies were used at 1:500 dilution, except anti-Mmp13 and -Tiam1 which were used at 1:250 dilution.

In vitro prenylation assay. Rac1 prenylation was detected with a click chemistry approach.60 Macrophages were incubated for 48 h with 30 mM Click-IT Gertanergyl Alcohol, Azide, mixed isomers (C10249, Thermo Fisher Scientific). Cells were then lysed in a buffer containing 25 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1% NP-40, and 5% glycerol, supplemented with protease and phosphatase inhibitors. IP was performed with Rac1 antibody 5 (05-389, Millipore) using the Dynabeads Protein G Immunoprecipitation Kit (10007D, Thermo Fisher Scientific). The click chemistry reaction was performed on the immunoprecipitate with a buffer containing 10 mM Alexa Fluor 488-alkyne (A10267, Thermo Fisher Scientific), 1 mM tris(2-carboxyethyl)phosphine (TCEP), 100 μM tris(1-benzyl-1H-L2,3-triazol-4-yl)methylamine (TBTa), and 1 mM CuSO4 in PBS for 1 h. The immunoprecipitates were washed three times with PBS containing 1% NP-40; eluted in LDS sample buffer; and then the proteins were resolved on 4–12% gels. Fluorescent (i.e., prenylated) Rac1 in gels was detected by Gel Doc XR nuclear imaging (BioRad).

Rac1 ubiquitination. Ubiquitinated Rac1 was detected as described.61 HEK293 cells were lysed in a buffer containing 2% deoxycholate, 150 mM NaCl, 10 mM Tris-HCl, and supplemented with 10 μM MG132, 10 μM PR619, protease and phosphatase inhibitors. Lysates were boiled for 10 min; sonicated; diluted ten times in a buffer containing 10 mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, and 1% Triton; incubated at +4 °C for 1 h with continuous rotation; and then clarified by centrifugation at 20,000g×30 min. IP was performed with Rac1 antibodies (05- 389, Millipore) using the Dynabeads Protein G Immunoprecipitation Kit (10007D, Thermo Fisher Scientific). Western blots were performed on Bolt 4–12% Bis–Tris gels (Thermo Fisher Scientific). Proteins were transferred to nitrocellulose for western blots with Ubiquitin antibodies (Thermo Fisher Scientific).

Gene-expression analyses. RNA was isolated from macrophages with the RNeasy Mini Kit (74104, Qiagen) 8 h after LPS stimulation (tlrl-ehps, Invivogen). Complementary (c) DNA was synthesized from RNA with the iScript cDNA synthesis kit (1708890, Bio-Rad). Quantitative real-time PCR was performed with Taqman assays for mouse Rac1 (Mm01210657_g1), Rhoa (Mm00843507_g1), Cdc42 (Mm01349005_g1), Tiam1 (Mm00437079_m1), and Arcl (4352933E, Thermo Fisher Scientific); and with SYBR-green using primers listed in Supplementary Table 1; in a 7900HT fast machine (Applied Biosystems).

Cytokine analyses and inhibitors. Macrophages were cultured overnight in medium without M-CSF and stimulated with LPS (10 ng/ml) in fresh medium. In some experiments the macrophages were incubated for 30 min with a p38 inhibitor (SB203580, Invivogen) and a ROS inhibitor (D-047808-03-0050, Roche Applied Science) before LPS stimulation; in other experiments the macrophages were incubated for 24–48 h with small-interfering (si) RNAs targeting Arhgdia (AM16706, Thermo Fisher Scientific), Tiam1 (D-047808-03-0050), Iqgap1 (D-048598-01-0050), or a scrambled sequence (D-001206-14-50, Dharmacon) before LPS stimulation. For statin experiments, macrophages were treated for 60 h or 18 days with Atorvastatin, (P20001, Sigma Aldrich), Rosuvastatin (SML1264, Sigma Aldrich) and Simvastatin (S6196, Sigma Aldrich). GGPP ammonium salt (G6025, Sigma Aldrich) was added to the cells 3 days before LPS stimulation. Supernatants were collected before and 8 h after LPS stimulation and levels of Tnf, Il-6, and Il-1β were determined by ELISA (88-7324-76, 88-7064-76, and 88-7013-76, respectively, Bioscience).

Mass spectrometry analysis of Rac1-interacting proteins. Macrophages were cultured in buffer containing 25 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 5% glycerin, and 1% CHAPS. Rac1 was immunoprecipitated with the 05-389 antibody (Millipore) using the Dynabeads Protein G Immunoprecipitation Kit (10007D, Thermo Fisher Scientific). The protein complex was eluted with 50 mM triethylammonium bicarbonate and 4% SDS, and digested with trypsin using the filter-aided sample preparation method, as described. The digested peptides were labeled with 10-plex isobaric tandem mass tag (TMT) reagents (Thermo Scientific). The labeled samples were combined into one TMT–set; purified with triethanolacetic acid, 10% acetonitrile and lyophilized, before removal of TFA. The purified sample was fractionated into twelve fractions using the Pierce High pH Reverse-Phase Peptide Fractionation Kit (Thermo Scientific), and the fractions were dried in a vacuum centrifuge and reconstituted in 20 μl of 3% acetonitrile, 0.1% formic acid for analysis. Peptides were then injected onto an Acclaim Pepmap 100 C18 trap column (2 cm × 100 μm, particle size 5 μm, Thermo Scientific) using an Easy-nano-LC 1000 liquid chromatography system and separated with an acetonitrile gradient on a 75-μm Reprosil-Pur C18-AQ column with a 300 nl/min
flow rate. Fractions were analyzed on Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher Scientific). Precursor ion mass spectra were acquired at 120,000 resolution and mass spectrometry (MS/MS) analysis was performed with data-dependent multistep mode where collision-induced dissociation spectra of the most intense precursor ions were recorded in ion trap at collision energy setting of 30 for s. Charge states 2−7 were selected for fragmentation, dynamic exclusion was set to 30 s. MS3 spectra for reporter ion quantification were recorded at 60,000 resolution with dissociation fragmentation at collision energy of 55 using synonymous precursor selector. In a second nano-LCMS analysis a list containing theoretical peptides from Igspe1 and Tiam1 were included in the analysis.

The data for the set were merged for identification and relative quantification using Proteome Discoverer version 1.4 (Thermo Fisher Scientific). The search was against the Mus musculus Swisprot Database version November 2017 (Swiss Institute of Bioinformatics, Switzerland) using Mascot 2.5 (Matrix Science) as a search engine with precursor mass tolerance of 5 ppm and fragment mass tolerance of 0.5 Da. Tryptic peptides were accepted with zero missed cleavage and variable modifications of deamidation, oxidation, fixed cysteine alkylation, and TMT-label modifications of N-termi and lysine were selected. The sum of the control samples was used as denominator and for calculating ratios. The detected peptide threshold in the software was set to a minimum quantification using Proteome Discoverer version 1.4 (Thermo Fisher Scientific) and analyzed with confocal microscopy (LSM700, Zeiss).

F-actin staining. Macrophages were fixed with ice-cold methanol in chamber slides and stained with Alexa Fluor 488 Phalloidin (A12379, Thermo Fischer Scientific) for 30 min. The slides were mounted with Prolong Gold Antifade Mounting reagent with DAPI (P36935, Thermo Fischer Scientific) and analyzed with confocal microscopy (LSM700, Zeiss).

Generating RhoGD11-knockout macrophages. Recombinant Cas9 was purified from BL21 Escherichia coli (C800003, ThermoFisher Scientific) transduced with a plasmid encoding Streptococcus pyogenes Cas9 (gift from Niels Geisjen, Addgene plasmid #62731). Synthesized cRNA/cDNA (Integrated DNA Technologies) targeting mouse Arg4 ortholog 2a (g: CAGAUAACUGCCAGAGGAUG, 5p:CUGGCGCAACGUCGCCGCA; retrieved from benchling.com) were pre- incubated with Cas9 in PBS for 10 min to create readily transfectable ribonuclease proteins (RNPs). Immortalized macrophages were transfected with the RNPs using Lipofectamine RNAiMAX (13778100, ThermoFisher Scientific) during 48 h, and pools of cells were used for analyses.

Generating Rac1-CAAX mutants with CRISPR/CAS9 editing. We used a single plasmid approach to edit the CAAX sequence of Rac1. A CRISPR (cr) RNA template oligonucleotide 5′-CGTGAAGATTCACAACAGC-3′ and its complex-лементary fragment targeting exon 6 of Rac1 were annealed and cloned into the GeneArt-CRISPR Nuclease vector (Life Technology) downstream of a human U6 promoter. A ~1-μg DNA fragment for homologous recombination–based editing was synthesized and cloned into unique MfeI and SpeI restriction sites of the vector. The fragment was composed of a 13–18-bp sequence encoding the mutant CAAX-motif (i.e., 5′-CGGAAAAGAATTCTTTA-3′ for C-L-L-L to S-L-L-L editing, and 5′-CGGAAAGAATTCTT-3′ for C-L-L-L to C-L-STOP editing) and 0.5 kb flanking genomic sequences. In the resulting all-in-one gRNA-CAS9 editing plasmid the U6 promoter drives gRNA transcription; a cytomegalovirus promoteranking genomic sequences. In the resulting all-in-one gRNA-CAS9 editing plasmid the U6 promoter drives gRNA transcription; a cytomegalovirus promoter and reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation 127, 782–790 (2013).

Winter-Vann, A. M. & Casey, P. J. Post-preinflammatory-processing enzymes as new targets in oncogenesis. Nat. Rev. Cancer 5, 405–412 (2005).

Khan, O. M. et al. Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice. J. Clin. Investig. 121, 626–639 (2011).

Khan, O. M. et al. Targeting GGTase-I activates RhoA, increases macrophage reverse cholesterol transport, and reduces atherosclerosis in mice. Circulation 127, 782–790 (2013).

Philips, M. R. The perplexing case of the geranylgeranyltransferase-deficient mouse. J. Clin. Invest. 121, 510–513 (2011).

Taylor, J. S., Reid, T. S., Terry, L. K., Casey, P. J. & Beebe, L. S. Structure of mammalian protein geranylgeranyltransferase type-I. Embo J 22, 5963–5974 (2003).

Brown, M. D. & Sacks, D. B. Iqgap1 in cellular signaling: bridging the GAP. Cytoskeleton (Hoboken) 67, 97–107 (2010).

Kusama, T. et al. Selective inhibition of cancer cell invasion by a geranylgeranylation-inhibitor. Nat. Commun. 10, 3975 (2019).

Sahu, E. & Marshall, C. J. Rho-GTPases and cancer. Nat. Rev. Cancer 2, 133–142 (2002).

Kumar, M. T. & Steck, L. Stabilization of metal ions on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. Biochem. J. 320(Pt 3), 925–932 (1996).

Fiori, Y. et al. Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6, 515–522 (1991).

Solski, P. A., Helms, W., Keely, P. J., Su, L. & Der, C. J. RhoA biological activity is dependent on prenylation but independent of specific isoprenoid modification. Cell Growth Diff. 13, 363–373 (2002).

References 1. Zhang, F. L. & Casey, P. J. Influence of metal ions on substrate binding and catalytic activity of mammalian protein geranylgeranyltransferase type-I. 2. Hori, Y. et al. Post-translational modifications of the C-terminal region of the rho protein are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6, 515–522 (1991).

Download the Nature Research Reporting Summary linked to this article.

The authors declare that the data supporting the findings of this study are available within the Article, supplementary information files and Source data, or are available upon reasonable requests to the authors.

Received: 4 December 2018 Accepted: 23 July 2019

Published online: 04 September 2019

Download the Nature Research Reporting Summary linked to this article.

The authors declare that the data supporting the findings of this study are available within the Article, supplementary information files and Source data, or are available upon reasonable requests to the authors.

Download the Nature Research Reporting Summary linked to this article.

The authors declare that the data supporting the findings of this study are available within the Article, supplementary information files and Source data, or are available upon reasonable requests to the authors.

Download the Nature Research Reporting Summary linked to this article.

The authors declare that the data supporting the findings of this study are available within the Article, supplementary information files and Source data, or are available upon reasonable requests to the authors.
23. Kujik, L. M. et al. HMG-CoA reductase inhibition induces IL-beta release through Rac1/PI3K/PKB-dependent caspase-1 activation. Blood 112, 3563–3573 (2008).
24. Grimaldi, G. et al. Rac1 is essential for intracellular hematopoietic progenitor cells and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 111, 3313–3321 (2008).
25. Wells, C. M., Walshe, M., Ooi, S., Tybulewicz, V. & Ridley, A. J. Rac1-deficient macrophages exhibit defects in cell spreading and bacterial phagocytosis but not migration. J. Cell Sci. 117, 1259–1268 (2004).
26. Tan, W. et al. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 22, 1829–1838 (2018).
27. Satoh, M. et al. Requirement of Rac1 in the development of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 103, 7432–7437 (2006).
28. Wang, G. et al. Genetic ablation of Rac1 in cartilage results in hypoplasia, abnormal hypertrophy and chondrodysplasia. Dev. Biol. 306, 612–627 (2007).
29. Abu-Issa, R. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development. Biochem. Biophys. Res. Commun. 387, 845–852 (2012).
30. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
31. Bashour, A. M., Fullerton, A. T., Hart, M. J. & Bloom, G. S. Iqg1p, a Rac- and Cdc42-binding protein, directly binds and cross-links microfilaments. J. Cell Biol. 137, 1555–1566 (1997).
32. Castelo, D. E. et al. Rho isoform-specific interaction with Iqg1p promotes breast cancer cell proliferation and migration. J. Biol. Chem. 287, 8386–8387 (2012).
33. Li, S., Wang, Q., Chakladar, A., Bronson, R. T. & Bernards, A. Gastric tumorigenesis is driven by compromised geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency. J. Cell. Biol. 20, 697–701 (2000).
34. Wang, M. & Casey, P. J. Protein prenylation: unique fats make their mark on cellular processes. Nat. Rev. Mol. Cell Biol. 17, 1138 (2016).
35. Lopez-Castejon, G. & Brough, D. Understanding the mechanism of Il-1beta secretion through an isoprenylation-dependent mechanism. Autophagy 6, 189–195 (2011).
36. Cullen, S. P., Kearney, C. J., Clancy, D. M. & Martin, S. J. Diverse activators of the NLRP3 inflammasome promote IL-1beta secretion by triggering necrosis. Cell Rep. 11, 1535–1548 (2015).
37. Yoon, S. et al. Stat3 transcriptional factor activity caused by reactive oxygen species induces Il6 in starved-activated autophagy of cancer cells. Autophagy 6, 1125–1138 (2010).
38. Li, S. et al. The ROS-mediated activation of Il-6/Stat3 signaling pathway is involved in the 27-hydroxysterol-induced cellular senescence in nerve cells. Toxicol. Vit. 45, 10–18 (2017).
39. Simon, A. R. et al. Regulation of Stat3 by direct binding to the Rac1 GTPase. Science 290, 144–147 (2000).
40. Oike, T. et al. Stat3 as a potential therapeutic target for rheumatoid arthritis. Sci. Rep. 7, 10965 (2017).
41. Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29, 628–636 (2008).
42. Yang, Y. et al. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat. Inflamm. 2014, 352371 (2014).
43. Iregun, S. et al. Pharmacological inactivation of Src family kinases inhibits LPS-induced Tnf-alpha production in PRMC of patients with Behcet’s disease. Mediat. Inflamm. 2016, 541439 (2016).
44. Byeon, S. E. et al. The role of Src kinase in macrophage-mediated inflammatory responses. Mediat. Inflamm. 2012, 512926 (2012).
45. Akula, M. K. et al. Control of the innate immune response by the mevalonate pathway. Nat. Immunol. 17, 922–929 (2016).
46. Henneman, L., Schneider, M. S., Turbenburg, M. & Waterham, H. R. Compromised geranylgeranylation of RhoA and Rac1 in mevalonate kinase deficiency. J. Inherit. Metab. Dis. 33, 625–632 (2010).
47. Munoz, M. A. et al. Defective protein prenylation is a diagnostic biomarker of mevalonate kinase deficiency. J. Allergy Clin. Immunol. 140, 873–875 e876 (2017).
48. Lindholm, M. W. & Nilsson, J. Simvastatin stimulates macrophage interleukin-1beta secretion through an isoprenylation-dependent mechanism. Vasc. Pharmacol. 46, 91–96 (2007).
49. Bjorkhem-Bergman, L., Lindh, J. D. & Bergman, P. What is a relevant statin concentration in cell experiments claiming pleiotropic effects? Br. J. Clin. Pharm. 72, 164–165 (2011).
50. Youssel, S. et al. HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses parallel in central nervous system autoimmune disease. Mol. Neurodegener. 10, 78–84 (2002).
51. Chow, O. A. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454 (2010).
52. Metals, C., Hughes, B. & Herron, C. E. Simvastatin increases excitability in the hippocampus via a P13 kinase-dependent mechanism. Neuroscience 291, 279–288 (2015).
53. Chrostek, A. et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol. Cell Biol. 26, 6957–6970 (2006).
54. Jackson, B. et al. RhoA is dispensable for skin development, but crucial for contraction and directed migration of keratinocytes. Mol. Biol Cell 22, 693–695 (2011).
55. Wu, X. et al. Cdc42 controls progenitor cell differentiation and beta-catenin turnover in skin. Genes Dev. 20, 571–585 (2006).
56. Andersson, K. M., Svensson, M. N., Erlandsson, M. C., Jonsson, I. M. & Bokarewa, M. I. Down-regulation of survivin alleviates experimental arthritis. Arthritis Rheum. 47, 135–145 (2005).
57. Takeshita, S., Kaji, K. & Kudo, A. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15, 1477–1488 (2000).
58. Taguchi, Y. & Schatzl, H. M. Small-scale triton X-114 extraction of hydrophobic proteins. Bio Protoc. 4, e1139 (2014).
59. Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibroectin fragments. Arthritis Rheum. 65, 1561–1568 (2013).
60. Nishimura, A. & Linder, M. E. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol. Cell. Biol. 33, 1417–1429 (2013).
61. Choo, Y. S. & Zhang, Z. Detection of protein ubiquitination. J. Vis. Exp. 19, 1293 (2009).

Acknowledgements

This study was supported by grants from the Knut and Alice Wallenberg Foundation, Strategic Research Program in Cancer at Karolinska Institutet, Center for Innovative Medicine (CIMED), Swedish Cancer Society, and Swedish Heart & Lung Foundation (to M.O.B.); the Swedish Research Council (to M.O.B., V.I.S., and M.B.); the Swedish Society for Medical Research, Knut and Alice Wallenberg Foundation, and Wallenberg Centre for Molecular and Translational Medicine (to V.I.S.); and the Swedish Rheumatism Association (to M.B.). The Proteomics Core Facility at the Sahlgrenska Academy, Gothenburg University, performed the mass spectrometry analyses. Open access funding provided by University of Gothenburg.

Author contributions

M.K.A. designed the study, performed experiments, interpreted data, made figures and statistics, and wrote the first draft of the manuscript; M.X.I. designed and performed experiments, and prepared figures; E.G.I. designed and performed the experiments, and prepared the figures; O.M.K. designed and performed the experiments; I.T.K. performed the experiments; M.E. performed the histology; C.K. performed the histology and provided technical assistance; X.X. performed the CRISPR/CAS9 gene editing; M.Br. designed the experiments; C.B. provided the mouse models; M.Bo. designed the experiments and quantified arthritis; D.W. designed the experiments and provided the reagents; V.I.S. interpreted data and provided funding; and M.O.B. designed and supervised the study, provided funding, and wrote the paper.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-11606-x.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Peer review information: Nature Communications thanks Carol Williams and other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.