A LEMMA OF LAZARSFELD AND THE JACOBIAN BLOW UP

DAVID B. MASSEY

Abstract. For a complex analytic function \(f \), the exceptional divisor of the jacobian blow-up is of great importance. In this paper, we show what a lemma from the thesis of Lazarsfeld tells one about the structure of this exceptional divisor.

1. Introduction

Let \(\mathcal{U} \) be an open subset of \(\mathbb{C}^{n+1} \) and let \(f: (\mathcal{U}, 0) \to (\mathbb{C}, 0) \) be a nowhere locally constant complex analytic function. Near the origin, the critical locus \(\Sigma f \) of \(f \) is contained in the hypersurface \(V(f) \) defined by \(f \); we assume that \(\mathcal{U} \) is chosen small enough so that this is true throughout \(\mathcal{U} \). We use \(z := (z_0, \ldots, z_n) \) for the coordinates on \(\mathbb{C}^{n+1} \) and so on \(\mathcal{U} \).

We let \(\pi: \text{Bl}_j(\mathcal{U}) \to \mathcal{U} \) be the projection map of the blow-up of \(\mathcal{U} \) along the jacobian ideal \(j(f) := \langle \frac{\partial f}{\partial z_0}, \ldots, \frac{\partial f}{\partial z_n} \rangle \), where \(\text{Bl}_j(\mathcal{U}) \subseteq \mathcal{U} \times \mathbb{P}^n \). Let \(E = \pi^{-1}(\Sigma f) \) denote the exceptional divisor, which is purely \(n \)-dimensional. Let \(W_0, W_1, \ldots, W_r \) denote the distinct irreducible components of \(E \) over \(0 \), i.e., the irreducible components \(W \) of \(E \) such that \(0 \in \pi(W) \).

Now let us identify the \(\mathcal{U} \times \mathbb{P}^n \) which contains the jacobian blow-up with the projectivized cotangent space \(\mathbb{P}(T^*\mathcal{U}) \). Under this identification, \(\text{Bl}_j(\mathcal{U}) \) is equal to the projectivized closure of the relative conormal of \(f \), that is,

\[
\text{Bl}_j(\mathcal{U}) = \mathbb{P}(T^*_{\mathcal{U}}/\Sigma f).
\]

For \(0 \leq k \leq r \), we let \(Y_k \) denote the irreducible analytic set \(\pi(W_k) \). Then the fact that \(E \) is purely \(n \)-dimensional, combined with the existence of an \(a_f \) stratification, tells us that \(W_k \) is equal to the closure of the conormal space of the regular part \(Y^o_k \) of \(Y_k \), that is, \(W_k = \mathbb{P}(T^*_{Y^o_k}) \).

We refer to the \(Y_k \) as the Thom varieties of \(f \) at \(0 \).

Clearly, the Thom varieties are important for understanding limiting relative conormals and the \(a_f \) condition. In addition, the result of [1] and [4] tells us that, as sets, the exceptional divisor \(E \) is equal to the projectivized characteristic cycle of the sheaf of vanishing cycles of \(C_\mathcal{U} \) (or \(Z_\mathcal{U} \)) along \(f \). Thus, the Thom varieties are also closely related to the topology of the Milnor fibers of \(f \) at points in \(\Sigma f \).

While we prove a more general result in Theorem 2.2, a special case is much easier to state:

Corollary. Suppose that \(\Sigma f \) is smooth at \(0 \). Then, at \(0 \), either

(1) there is a Thom variety of \(f \) of codimension 1 in \(\Sigma f \), or

(2) \(\Sigma f \) itself is the only Thom variety, and \(f \) defines a family of isolated singularities with constant Milnor number (that is, a simple \(\mu \)-constant family as given in Definition 1.1 of [3]).

2020 Mathematics Subject Classification. 32S25, 32S05, 32S30, 32S50.

Key words and phrases. hypersurface singularities, jacobian blow up, vanishing cycles, \(a_f \) condition.
So, if Σf is smooth and there are any proper sub-Thom varieties in Σf, then there must be one of codimension 1. We find this somewhat surprising.

The crux of the proof of our theorem lies in a lemma from the Ph.D. thesis [2] of Lazarsfeld, which we recall in the next section.

2. The Lemma and the Theorem

We now state Lemma 2.3 of [2] (with some changes in notation):

Lemma 2.1. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.

We now state Lemma 2.3 of \cite{2} (with some changes in notation):

Lemma 2.3. (Lazarsfeld) Let Z be an irreducible normal variety of dimension $n + 1$, and let $X \subseteq Z$ be a subvariety which is locally defined (set-theoretically) by $n + 1 - e$ equations. Fix an irreducible component V of X. Then, for all $x \in V \cap X \setminus V$, $\dim_x (V \cap X \setminus V) \geq e - 1$.

The proof of our theorem below uses the above lemma in a crucial way. Our proof also uses, as sets, our notation and results on relative polar cycles and Lê cycles as presented in \cite{1}. We should mention that our theorem and its proof are closely related to Proposition 1.31 of \cite{5}, which we recall in the next section.
\(\Gamma_{f, z} \) is purely \(e \)-dimensional, every component of \(\Sigma f \) of dimension \(\geq e \) must be an irreducible component of \(X \). In particular, \(V \) is an irreducible component of \(X \).

We now apply Lazarsfeld’s Lemma. It tells us that, if \(0 \in V \cap (\Gamma_{f, z} \cup \Sigma f \setminus V) \), then either
\[\dim_0 V \cap \Gamma_{f, z} \geq e - 1 \quad \text{or} \quad \dim_0 V \cap \Sigma f \setminus V \geq e - 1. \]

Suppose that we are not in case (1) of the theorem, i.e., suppose that \(\dim_0 V \cap \Sigma f \setminus V < e - 1 \). Then either \(\dim_0 V \cap \Gamma_{f, z} \geq e - 1 \), or \(0 \notin \Gamma_{f, z} \) and \(0 \notin \Sigma f \setminus V \). We claim that these correspond to cases (2) and (3), respectively.

Case 2:

Suppose that \(\dim_0 V \cap \Sigma f \setminus V < e - 1 \) and \(\dim_0 V \cap \Gamma_{f, z} \geq e - 1 \).

By Proposition 1.15 of [6], as sets,
\[V \cap \Gamma_{f, z} = V \cap \bigcup_{j \leq e - 1} \Lambda_{j, f, z}, \]
where \(\Lambda_{j, f, z} \) is the purely \(j \)-dimensional Lê cycle. Thus, \(\dim_0 V \cap \Gamma_{f, z} \geq e - 1 \) implies that \(V \) contains an \((e - 1)\)-dimensional irreducible component \(Y \) of \(\Lambda_{e-1, f, z} \) at the origin. By Corollary 10.15 and/or Theorem 10.18 of [6], \(Y \) is a component of an absolute polar variety of a Thom variety \(T \) (which necessarily must have dimension \(\geq e - 1 \)) of \(f \); however, since we are assuming that \(\dim_0 V \cap \Sigma f \setminus V < e - 1 \), \(T \) cannot be contained in another irreducible component of \(\Sigma f \), but rather must be contained in \(V \). But by our hypotheses, the Thom varieties in \(V \) of dimension \(> e - 1 \) are smooth and have no absolute polar varieties of dimension \((e - 1) \). Thus \(T \) must be \((e - 1)\)-dimensional and so \(Y = T \), and we have the conclusion of Case 2.

Case 3:

Now suppose that \(0 \notin \Gamma_{f, z} \) and \(0 \notin \Sigma f \setminus V \). First, \(0 \notin \Sigma f \setminus V \) immediately implies that \(V = \Sigma f \) at the origin. As we saw in Case 2, but using that \(V = \Sigma f \), we have
\[V \cap \Gamma_{f, z} = \bigcup_{j \leq e - 1} \Lambda_{j, f, z}, \]
and, as we are assuming that \(0 \notin \Gamma_{f, z} \), this implies that, at the origin, \(\Lambda_{j, f, z} = \emptyset \) for all \(j \leq e - 1 \). But \(\Lambda_{j, f, z} \) includes any Thom variety of dimension \(j \), and so there are none for \(j \leq e - 1 \). Therefore, we have the conclusion of Case 3. \(\square \)

Letting \(e = d \) in the theorem above, we obtain the corollary from the introduction:

Corollary 2.3. Suppose that \(\Sigma f \) is smooth at \(0 \). Then, at \(0 \), either

1. there is a Thom variety of \(f \) of codimension 1 in \(\Sigma f \), or

2. \(\Sigma f \) itself is the only Thom variety, and \(f \) defines a family of isolated singularities with constant Milnor number, that is, a simple \(\mu \)-constant family as given in Definition 1.1 of [3].

Proof. If we let \(e = d \) in Theorem 2.2, we obtain essentially the whole corollary. If \(\Sigma f \) is smooth, then it is irreducible, and Case 1 from the theorem cannot occur. Cases 2 and 3 from the theorem correspond to Cases 1 and 2, respectively, of the corollary. The only thing that requires further proof is that Case 3 of the theorem implies that \(f \) defines a family of isolated singularities with constant Milnor number.

However, Case 3 of Theorem 2.2 is the case where \(0 \notin \Gamma_{d, f, z} \), that is, \(\Gamma_{d, f, z} \) is empty near the origin or, with its cycle structure, is 0. Then one applies the equivalence of Conditions 3 and 5 from Theorem 2.3 of [3] to conclude that \(f \) defines a family of isolated singularities with constant Milnor number (a simple \(\mu \)-constant family). \(\square \)
We can use Theorem 2.2 to prove a version of itself which refers to super-Thom varieties rather than sub-Thom varieties.

Theorem 2.4. (Thom Going Up) Let T be an r-dimensional Thom variety of Σf at 0. Let $V \supseteq T$ be an irreducible component of Σf at 0. Then, at 0, one of the following must hold:

1. $T = V$, or
2. $T \subseteq V \cap \overline{\Sigma f \setminus V}$, or
3. there exists a Thom variety $T' \subseteq V$ of f at 0 such that $T \subseteq \Sigma T'$, or
4. there exists a Thom variety $T' \subseteq V$ of f at 0 such that $\dim T' = r + 1$ and $T \subseteq T'$.

Proof. Suppose that we are not in Cases 1, 2, or 3. Then, let

$$X := \overline{T \setminus \overline{\Sigma f \setminus V}} \cup \bigcup_{T'} \Sigma T' \cup \bigcup_{T'' \supset T} T''$$

where the unions are over all Thom varieties T' and T'' contained in V, and $T'' \not\supset T$. Since we are not in Cases 2 or 3, X is an open, dense subset of T. Let $x \in X$. Then, $x \not\in \overline{\Sigma f \setminus V}$ and, at x, every Thom variety $T' \subseteq V$ contains T and is smooth at x.

We apply Theorem 2.2 at x in place of 0. Let e be the smallest dimension of a Thom variety $T' \subseteq V$ at x such that T' properly contains T; there is such an e since we are not in Case 1, i.e., V itself is a Thom variety in V which properly contains T. Then we must be in Case 2 of Theorem 2.2, and there must be a Thom variety \widetilde{T} of dimension $(e - 1)$ in V at x. But this \widetilde{T} must contain T (by the choice of x), and we would have a contradiction of the definition of e unless \widetilde{T} does not properly contain T. Thus we must have $\widetilde{T} = T$ at x and $e = r + 1$. Since this is true for x in an open, dense subset of T, the conclusion of Case 4 follows. \[\square\]

3. Examples

Example 3.1. Suppose that the irreducible components of Σf at the origin are a line L and a plane P. Is it possible that L and P are the only Thom varieties of f at 0? The answer is “no”, and one might suspect that that is because $\{0\}$ must also be a Thom variety. However, Theorem 2.2 with $e = 2$ tells us that, in fact, the plane P must contain a 1-dimensional Thom variety.

Let us look at a specific example. Let $f = w^2 + xyz^2$. Then,

$$\Sigma f = V(2w, yz^2, xz^2, 2xyz) = V(w, z) \cup V(w, y, x) = P \cup L.$$

Of course, P and L are Thom varieties, but Theorem 2.2 tells us that there must be a 1-dimensional Thom variety contained in P.

The reader is invited to calculate the blow-up of the jacobian ideal to show that the other Thom varieties are, in fact, $V(w, z, x)$, $V(w, z, y)$ and $\{0\}$.

Example 3.2. Is the smoothness requirement in Theorem 2.2 and Corollary 2.3 really necessary? Yes. Consider $f = w^2 + (x^2 + y^2 + z^2)^2$. Then,

$$\Sigma f = V(2w, 4(x^2 + y^2 + z^2)x, 4(x^2 + y^2 + z^2)y, 4(x^2 + y^2 + z^2)z) = V(w, x^2 + y^2 + z^2).$$

Now $V(w, x^2 + y^2 + z^2)$ is a Thom variety. However, by symmetry, there cannot be a 1-dimensional Thom variety inside $V(w, x^2 + y^2 + z^2)$ and yet, by direct calculation, one can show that $\{0\}$ is a Thom variety.

Thus, if Σf is irreducible, but not smooth, the conclusions of Corollary 2.3 need not hold.
References

[1] Kashiwara, M. *Systèmes d’équations micro-différentielles*, volume 8. Dépt. de Math, Univ. Paris-Nord, 1978. (Notes by T. M. Fernandes).

[2] Lazarsfeld, R. *Branched Coverings of Projective Space*. PhD thesis, Brown University, 1980.

[3] Lê, D. T. and Massey, D. Hypersurface Singularities and Milnor Equisingularity. *Pure and Appl. Math. Quart.*, *special issue in honor of Robert MacPherson’s 60th birthday*, 2, no.3:893–914, 2006.

[4] Lê, D. T. and Mebkhout, Z. Variétés caractéristiques et variétés polaires. *Comptes Rendus Acad. Sci.*, 296:129–132, 1983.

[5] Massey, D. Numerical Invariants of Perverse Sheaves. *Duke Math. J.*, 73(2):307–370, 1994.

[6] Massey, D. *Lê Cycles and Hypersurface Singularities*, volume 1615 of Lecture Notes in Math. Springer-Verlag, 1995.