Roman domination excellent graphs: trees

Vladimir Samodivkin

1

1 Department of Mathematics, University of Architecture, Civil Engineering and Geodesy
Sofia, Bulgaria
vl.samodivkin@gmail.com

Received: 2 October 2016; Accepted: 8 October 2017
Published Online: 24 October 2017
Communicated by Ismael González Yero

Abstract: A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V \rightarrow \{0, 1, 2\}$ such that every vertex with label 0 has a neighbor with label 2. The weight of f is the value $f(V) = \sum_{v \in V} f(v)$ The Roman domination number, $\gamma_R(G)$, of G is the minimum weight of an RDF on G. An RDF of minimum weight is called a γ_R-function. A graph G is said to be γ_R-excellent if for each vertex $x \in V$ there is a γ_R-function h_x on G with $h_x(x) \neq 0$. We present a constructive characterization of γ_R-excellent trees using labelings. A graph G is said to be in class UVR if $\gamma(G - v) = \gamma(G)$ for each $v \in V$, where $\gamma(G)$ is the domination number of G. We show that each tree in UVR is γ_R-excellent.

Keywords: Roman domination number, excellent tree, coalescence

AMS Subject classification: 05C69, 05C05

1. Introduction and preliminaries

For basic notation and graph theory terminology not explicitly defined here, we in general follow Haynes et al. [9]. Specifically, let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. A spanning subgraph for G is a subgraph of G which contains every vertex of G. In a graph G, for a subset $S \subseteq V(G)$ the subgraph induced by S is the graph $\langle S \rangle$ with vertex set S and edge set $\{xy \in E(G) \mid x, y \in S\}$. The complement \overline{G} of G is the graph whose vertex set is $V(G)$ and whose edges are the pairs of nonadjacent vertices of G. We write K_n for the complete graph of order n and P_n for the path on n vertices. Let C_m denote the cycle of length m. For any vertex x of a graph G, $N_G(x)$ denotes the set of all neighbors of x in G, $N_G[x] = N_G(x) \cup \{x\}$ and the degree of x is $\deg_G(x) = |N_G(x)|$. The minimum and maximum degrees of a graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset S of vertices, let
Denote by $P = \{v \in V(G) - S \mid N_G(u) \cap S = \{v\}\}$. The external private neighborhood epn(v, S) of $v \in S$ is defined by $\text{epn}(v, S) = \{u \in V(G) - S \mid N_G(u) \cap S = \{v\}\}$. A leaf is a vertex of degree one and a support vertex by $N = \{v \in V(G) - S \mid \deg_G(v) = 1\}$. Let a γ-good graph be a finite set of integers which has positive as well as non-positive elements. If F and H are disjoint graphs, $v_F \in V(F)$ and $v_H \in V(H)$, then the coalescence $(F \cdot H)(v_F, v_H : v)$ of F and H via v_F and v_H, is the graph obtained from the union of F and H by identifying v_F and v_H in a vertex labeled v. If F and H are graphs with exactly one vertex in common, say x, then the coalescence $(F \cdot H)(x)$ of F and H via x is the union of F and H.

Let Y be a finite set of integers which has positive as well as non-positive elements. Denote by $P(Y)$ the collection of all subsets of Y. Given a graph G, for a Y-valued function $f : V(G) \rightarrow Y$ and a subset $S \subseteq V(G)$ we define $f(S) = \sum_{v \in S} f(v)$. The weight of f is $f(V(G))$. A Y-valued Roman dominating function on a graph G is a function $f : V(G) \rightarrow Y$ satisfying the conditions: (a) $f(N_G[v]) \geq 1$ for each $v \in V(G)$, and (b) if $v \in V(G)$ and $f(v) \leq 0$, then there is $u_v \in N_G(v)$ with $f(u_v) = \max\{k \mid k \in Y\}$. For a Y-valued Roman dominating function f on a graph G, where $Y = \{r_1, r_2, \ldots, r_k\}$ and $r_1 < r_2 < \cdots < r_k$, let $V_f^{j} = \{v \in V(G) \mid f(v) = r_j\}$ for $i = 1, \ldots, k$. Since these k sets determine f, we can equivalently write $f = (V_f^{r_1}; V_f^{r_2}; \ldots; V_f^{r_k})$. If f is Y-valued Roman dominating function on a graph G and H is a subgraph of G, then we denote the restriction of f on H by $f|_H$. The Y-Roman domination number of a graph G, denoted $\gamma_{YR}(G)$, is defined to be the minimum weight of a Y-valued dominating function on G. As examples, let us mention: (a) the domination number $\gamma(G) \equiv \gamma_{\{0,1\}}(G)$, (b) the minus domination number [6], where $Y = \{-1, 0, 1\}$, (c) the signed domination number [5], where $Y = \{-1, 1\}$, (d) the Roman domination number $\gamma_R(G) \equiv \gamma_{\{0,1,2\}}(G)$ [4], and (e) the signed Roman domination number [1], where $Y = \{-1, 1, 2\}$. A Y-valued Roman dominating function f on G with weight $\gamma_{YR}(G)$ is called a γ_{YR}-function on G.

Now we introduce a new partition of a vertex set of a graph, which plays a key role in the paper. In determining this partition, all γ_{YR}-functions of a graph are necessary. For each $X \in P(Y)$ we define the set $V^X(G)$ as consisting of all $v \in V(G)$ with $\{f(v) \mid f \text{ is a } \gamma_{YR}\text{-function on } G\} = X$. Then all members of the family $(V^X(G))_{X \in P(Y)}$ clearly form a partition of $V(G)$. We call this partition the γ_{YR}-partition of G.

Fricke et al. [7] in 2002 began the study of graphs, which are excellent with respect to various graph parameters. Let us concentrate here on the parameter γ_{YR}. A vertex $v \in V(G)$ is said to be (a) γ_{YR}-good, if $h(v) \geq 1$ for some γ_{YR}-function h on G, and (b) γ_{YR}-bad otherwise. A graph G is said to be γ_{YR}-excellent if all vertices of G are γ_{YR}-good. Any vertex-transitive graph is γ_{YR}-excellent. Note that when $\gamma_{YR} \equiv \gamma$, the set of all γ-good and the set of all γ-bad vertices of a graph G form the γ-partition of G. For further results on this topic see e.g. [2, 10–15].

In this paper we begin an investigation of γ_{YR}-excellent graphs in the case when $Y = \{0, 1, 2\}$. In what follows we shall write γ_R instead of $\gamma_{\{0,1,2\}}$, and we shall abbreviate a $\{0,1,2\}$-valued Roman dominating function to an RD-function. Let us describe all members of the γ_R-partition of any graph G (we write $V^i(G)$, $V^{ij}(G)$ and $V^{ijk}(G)$ instead of $V^{\{i\}}(G), V^{\{i,j\}}(G)$ and $V^{\{i,j,k\}}(G)$, respectively).

(i) $V^{i}(G) = \{x \in V(G) \mid f(x) = i \}$ for each γ_R-function f on G, $i = 1, 2, 3;$
Denote by $R_{n,k}$ the family of all mutually non-isomorphic n-order γ_R-excellent connected graphs having the Roman domination number equal to k. With the family $G_{n,k}$, we associate the poset $\mathbb{R}E_{n,k} = (G_{n,k}, \prec)$ with the order \prec given by $H_1 \prec H_2$ if and only if H_2 has a spanning subgraph which is isomorphic to H_1 (see [16] for terminology on posets). Remark 1 shows that all maximal elements of $\mathbb{R}E_{n,k}$ are in R_{CEA}. Here we concentrate on the set of all minimal elements of $\mathbb{R}E_{n,k}$. Clearly a graph $H \in G_{n,k}$ is a minimal element of $\mathbb{R}E_{n,k}$ if and only if for each $e \in E(H)$ at
least one of the following holds: (a) $H - e$ is not connected, (b) $\gamma_R(H) \neq \gamma_R(H - e)$, and (c) $H - e$ is not γ_R-excellent. All trees in $G_{n,k}$ are obviously minimal elements of $\mathbb{R}E_{n,k}$.

The remainder of this paper is organized as follows. In Section 2, we formulate our main result, namely, a constructive characterization of γ_R-excellent trees. We present a proof of this result in Sections 3 and 4. Applications of our main result are given in Sections 5 and 6. We conclude in Section 7 with some open problems.

We end this section with the following useful result.

Lemma 3. ([4]) Let $f = (V_0^f;V_1^f;V_2^f)$ be any γ_R-function on a graph G. Then each component of $\langle V_0^f \rangle$ has order at most 2 and no edge of G joins V_1^f and V_2^f.

In most cases Lemmas 1, 2 and 3 will be used in the sequel without specific reference.

2. The main result

In this section, we present a constructive characterization of γ_R-excellent trees using labelings. We define a labeling of a tree T as a function $S : V(T) \to \{A, B, C, D\}$. A labeled tree is denoted by a pair (T, S). The label of a vertex v is also called its status, denoted $sta_T(v : S)$ or $sta_T(v)$ if the labeling S is clear from context. We denote the sets of vertices of status A, B, C and D by $S_A(T), S_B(T), S_C(T)$ and $S_D(T)$, respectively. In all figures in this paper we use \bullet for a vertex of status A, \bullet for a vertex of status B, \bullet for a vertex of status C, and \circ for a vertex of status D. If H is a subgraph of T, then we denote the restriction of S on H by $S|_H$.

Figure 1. All trees with $|L_B \cup L_C| \leq 2$.

To state a characterization of γ_R-excellent trees, we introduce four types of operations. Let \mathcal{T} be the family of labeled trees (T, S) that can be obtained from a
sequence of labeled trees $\tau : (T^1, S^1), \ldots, (T^j, S^j), (j \geq 1)$, such that (T^1, S^1) is in $\{(H_1, I^1), \ldots, (H_5, I^5)\}$ (see Figure 1) and $(T, S) = (T^i, S^i)$, and, if $j \geq 2$, (T^{i+1}, S^{i+1}) can be obtained recursively from (T^i, S^i) by one of the operations O_1, O_2, O_3 and O_4 listed below; in this case τ is said to be a \mathcal{T}-sequence of T. When the context is clear we shall write $T \in \mathcal{T}$ instead of $(T, S) \in \mathcal{T}$.

\begin{figure}[h]
\centering
\begin{tikzpicture}

\begin{scope}[every node/.style={draw, circle, fill=black, inner sep=1pt}]
\node (v1) at (0,0) {x};
\node (v2) at (1,1) {x};
\node (v3) at (2,0) {x};
\node (v4) at (3,1) {x};
\end{scope}

\begin{scope}[every edge/.style={thick}]
\path (v1) edge (v2);
\path (v2) edge (v3);
\path (v3) edge (v4);
\end{scope}

\node at (-1.5,0) {(F_1, J^1)};
\node at (1.5,0) {(F_2, J^2)};
\node at (4.5,0) {(F_3, J^3)};
\node at (2.5,1) {(F_4, J^4)};
\end{tikzpicture}
\caption{(F, J)-graphs}
\end{figure}

Operation O_1. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and $(F, J) \in \{(F_1, J^1), (F_2, J^2), (F_3, J^3)\}$ (see Figure 2) by adding the edge ux, where $u \in V(T_i)$, $x \in V(F)$ and $\text{stat}_{T_i}(u) = \text{stat}_F(x) = C$.

Operation O_2. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_4, J^4) (see Figure 2) by adding the edge ux, where $u \in V(T_i)$, $x \in V(F_4)$, $\text{stat}_{T_i}(u) = D$, and $\text{stat}_{F_4}(x) = C$.

Operation O_3. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (H_k, I^k), $k \in \{2, 3, \ldots, 7\}$ (see Figure 1), in such a way that $T^{i+1} = (T^i \cdot H_k)(u, v : u)$, where $\text{stat}_{T^i}(u) = \text{stat}_{H_k}(v) = A$, and $\text{stat}_{T^{i+1}}(u) = A$.

Operation O_4. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (H_k, I^k), $k \in \{3, 4, 6\}$ (see Figure 1), in such a way that $T^{i+1} = (T^i \cdot H_k)(u, v : u)$, where $\text{stat}_{T^i}(u) = D$, $\text{stat}_{H_k}(v) = A$, and $\text{stat}_{T^{i+1}}(u) = D$.

Remark that if $y \in V(T^i)$ and $i \leq k \leq j$, then $\text{stat}_{T^i}(y) = \text{stat}_{T^j}(y)$. Now we are prepared to state the main result.

Theorem 1. Let T be a tree of order at least 2. Then T is γ_R-excellent if and only if there is a labeling $S : V(T) \to \{A, B, C, D\}$ such that (T, S) is in \mathcal{T}. Moreover, if $(T, S) \in \mathcal{T}$ then

\begin{align*}
(\mathcal{P}_1) & \quad S_B(T) = \{x \in V^{02}(T) \mid \deg(x) = 2 \text{ and } |N(x) \cap V^{02}(T)| = 1\}, \quad S_A(T) = V^{01}(T), \\
S_D(T) & \quad = V^{012}(T), \quad \text{and } S_C(T) = V^{02}(T) - S_B(T).
\end{align*}

3. Preparation for the proof of Theorem 1

3.1. Coalescence

We shall concentrate on the coalescence of two graphs via a vertex in V^{01} and derive the properties which will be needed for the proof of our main result.
Proposition 1. Let $G = (G_1 \cdot G_2)(x)$ be a connected graph and $x \in V^{01}(G)$. Then the following holds.

(i) If f is a γ_R-function on G and $f(x) = 1$, then $f|_{G_i}$ is a γ_R-function on G_i, and $f|_{G_i-x}$ is a γ_R-function on $G_i - x$, $i = 1, 2$.

(ii) $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) If h is a γ_R-function on G and $h(x) = 0$, then exactly one of the following holds:

(iii.1) $h|_{G_1}$ is a γ_R-function on G_1, $h|_{G_2-x}$ is a γ_R-function on $G_2 - x$, and $h|_{G_2}$ is no RD-function on G_2.

(iii.2) $h|_{G_1-x}$ is a γ_R-function on $G_1 - x$, $h|_{G_1}$ is no RD-function on G_1, and $h|_{G_2}$ is a γ_R-function on G_2.

(iv) Either $\{x\} = V^{01}(G_1) \cap V^{01}(G_2)$ or $\{x\} = V^{01}(G_i) \cap V^1(G_j)$, where $\{i, j\} = \{1, 2\}$.

Proof. (i) and (ii): Since $f(x) = 1$, $f|_{G_i}$ is an RD-function on G_i, and $f|_{G_i-x}$ is an RD-function on $G_i - x$, $i = 1, 2$. Assume g_1 is a γ_R-function on G_1 with $g_1(V(G_1)) < f|_{G_1}(V(G_1))$. Define an RD-function f' as follows: $f'(u) = g_1(u)$ for all $u \in V(G_1)$ and $f'(u) = f(u)$ when $u \in V(G_2 - x)$. Then $f'(V(G)) = g_1(V(G_1)) + f|_{G_2-x}(V(G_2 - x)) < f(V(G))$, a contradiction. Thus, $f|_{G_i}$ is a γ_R-function on G_i, $i = 1, 2$. Now, Lemma 1 implies that $f|_{G_i-x}$ is a γ_R-function on $G_i - x$, $i = 1, 2$. Hence $\gamma_R(G) = f|_{G_1}(V(G_1)) + f|_{G_2}(V(G_2)) - f(x) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) First note that $h(x) = 0$ implies $h|_{G_i}$ is an RD-function on G_i for some $i \in \{1, 2\}$, say $i = 1$. If $h|_{G_2}$ is an RD-function on G_2 then $\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction with (ii). Thus, $h|_{G_2-x}$ is an RD-function on $G_2 - x$. Now we have $\gamma_R(G_1) + \gamma_R(G_2) - 1 = \gamma_R(G) = h(V(G)) = h|_{G_1}(V(G_1)) + h|_{G_2-x}(V(G_2 - x)) \geq \gamma_R(G_1) + (\gamma_R(G_2) - 1)$. Hence $h|_{G_1}$ is a γ_R-function on G_1 and $h|_{G_2-x}$ is a γ_R-function on $G_2 - x$.

(iv) Let f_1 be a γ_R-function on G_1. Assume first that $f_1(x) = 2$. Define an RD-function g on G as follows: $g(u) = f_1(u)$ when $u \in V(G_1)$ and $g(u) = f(u)$ when $u \in V(G_2 - x)$, where f is defined as in (i). The weight of g is $\gamma_R(G_1) + (\gamma_R(G_2) + 1) - 2 = \gamma_R(G)$. But $g(x) = 2$ and $x \in V^{01}(G)$, a contradiction. Thus $f_1(x) \neq 2$. Now by (i) we have $x \in V^1(G_i) \cup V^{01}(G_i)$, $i = 1, 2$, and by (iii), $x \in V^{01}(G_j)$ for some $j \in \{1, 2\}$.

Proposition 2. Let $G = (G_1 \cdot G_2)(x)$, where G_1 and G_2 are connected graphs and $\{x\} = V^{01}(G_1) \cap V^{01}(G_2)$.

(i) If f_i is a γ_R-function on G_i with $f_i(x) = 1$, $i = 1, 2$, then the function $f : V(G) \rightarrow \{0, 1, 2\}$ with $f|_{G_i} = f_i$, $i = 1, 2$, is a γ_R-function on G.

(ii) $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$.

(iii) Let $V_R = \{V^0, V^1, V^2, V^{01}, V^{02}, V^{12}, V^{012}\}$. Then for any $A \in V_R$, $A(G_1) \cup A(G_2) = A(G)$.

\qed
Proof. (i) and (ii): Note that f is an RD-function on G and $\gamma_R(G) \leq f(V(G)) = f_1(V(G_1)) + f_2(V(G_2)) - f(x) = \gamma_R(G_1) + \gamma_R(G_2) - 1$. Now let h be any γ_R-function on G.

Case 1: $h(x) \geq 1$. Then $h|_{G_i}$ is an RD-function on G_i, $i = 1, 2$. If $h(x) = 2$ then since $x \in V^{01}(G_1) \cap V^{01}(G_2)$, $h|_{G_i}$ is no γ_R-function on G_i, $i = 1, 2$. Hence $\gamma_R(G) \geq (\gamma_R(G_1) + 1) + (\gamma_R(G_2) + 1) - h(x) = \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction. If $h(x) = 1$ then $\gamma_R(G) = h(V(G)) = h(V(G_1)) + h(V(G_2)) - h(x) \geq \gamma_R(G_1) + \gamma_R(G_2) - 1$. Thus $h(x) = 1$, $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$ and f is a γ_R-function on G.

Case 2: $h(x) = 0$. Then at least one of $h|_{G_1}$ and $h|_{G_2}$ is an RD-function, say the first. If $h|_{G_2}$ is an RD-function on G_2 then $h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2)$, a contradiction. Hence $h|_{G_2-x}$ is a γ_R-function on $G_2 - x$. But then $\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + \gamma_R(G_2) - x \geq \gamma_R(G_1) + \gamma_R(G_2) - 1 \geq \gamma_R(G)$.

Thus, (i) and (ii) hold.

(iii): Let g_1 be a γ_R-function on G_1 with $g_1(x) = 0$, and g_2 a γ_R-function on $G_2 - x$. Then the RD-function g on G for which $g|_{G_1} = g_1$ and $g|_{G_2-x} = g_2$ has weight $g_1(V(G_1)) + g_2(V(G_2 - x)) = \gamma_R(G_1) + \gamma_R(G_2 - x) = \gamma_R(G_1) + \gamma_R(G_2) - 1 = \gamma_R(G)$. Hence by (i), $x \in V^{01}(G) \cup V^{012}(G)$. However, by Case 1 it follows that $h(x) \neq 2$ for any γ_R-function h on G. Thus $x \in V^{01}(G)$.

Let $g \in V(G_1 - x)$, l_1 a γ_R-function on G_1, and h a γ_R-function on G. We shall prove that the following holds.

Claim 4.1 There are a γ_R-function l on G, and a γ_R-function h_1 on G_1 such that $l(y) = l_1(y)$ and $h_1(y) = h(y)$.

Define an RD-function l on G as $l|_{G_1} = l_1$ and $l|_{G_2-x} = l_2$, where l_2 is a γ_R-function on $G_2 - x$. Since $l(V(G)) = \gamma_R(G_1) + \gamma_R(G_2 - x) = \gamma_R(G)$, l is a γ_R-function on G and $l(y) = l_1(y)$.

Assume now that there is no γ_R-function h_1 on G_1 with $h_1(y) = h(y)$. Proposition 1 implies that, $h|_{G_1-x}$ is a γ_R-function on $G_1 - x$. But then the function $h': V(G_1) \rightarrow \{0, 1, 2\}$ defined as $h'(u) = 1$ when $u = x$ and $h'(u) = h|_{G_1}(u)$ otherwise, is a γ_R-function on G_1 with $h'(y) = h|_{G_1}(y)$, a contradiction.

By Claim 4.1 and since $x \in V^{01}(G)$, $A(G_1) = A(G) \cap V(G_1)$ for any $A \in V_R$. By symmetry, $A(G_2) = A(G) \cap V(G_2)$. Therefore $A(G_1) \cup A(G_2) = A(G)$ for any $A \in V_R$. □

Lemma 4. Let $G = (G_1 \cdot G_2)(x)$, where G_1 and G_2 are connected graphs and $\{x\} = V^{012}(G_1) \cap V^{01}(G_2)$. Then $\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1$ and $x \in V^{012}(G)$.

Proof. Let f_i be a γ_R-function on G_i with $f_i(x) = 1$, $i = 1, 2$. Then the function f defined as $f|_{G_i} = f_i$ is an RD-function on G_i, $i = 1, 2$. Hence $\gamma_R(G) \leq f(V(G)) = \gamma_R(G_1) + \gamma_R(G_2) - 1$. Let now h be any γ_R-function on G.

Case 1: $h(x) = 2$.

(continued on next page...
Since \(x \in V^{012}(G_1) \cap V^{01}(G_2) \), \(h|_{G_1} \) is a \(\gamma_{R}\)-function on \(G_1 \) and \(h|_{G_2} \) is an RD-function on \(G_2 \) of weight more than \(\gamma_R(G_2) \). Hence \(\gamma_R(G) = h(V(G)) \geq \gamma_R(G_1) + (\gamma_R(G_2) + 1) - h(x) \). Thus \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).

Case 2: \(h(x) = 1 \).
Then obviously \(h|_{G_1} \) and \(h|_{G_2} \) are \(\gamma_{R}\)-functions. Hence \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).

Case 3: \(h(x) = 0 \).
Hence at least one of \(h|_{G_1} \) and \(h|_{G_2} \) is a \(\gamma_{R}\)-function. If both \(h|_{G_1} \) and \(h|_{G_2} \) are \(\gamma_{R}\)-functions, then \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) \), a contradiction. Hence either \(h|_{G_1} \) and \(h|_{G_2-x} \) are \(\gamma_{R}\)-functions, or \(h|_{G_1-x} \) and \(h|_{G_2} \) are \(\gamma_{R}\)-functions. Since \(\{x\} = V^{012}(G_1) \cap V^{01}(G_2) \), in both cases we have \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \).
Thus, \(\gamma_R(G) = \gamma_R(G_1) + \gamma_R(G_2) - 1 \) and \(x \in V^{012}(G) \).

\[\square \]

3.2. Three lemmas for trees

Lemma 5. Let \(T \) be a \(\gamma_{R}\)-excellent tree of order at least 2. Then \(V(T) = V^{01}(T) \cup V^{012}(T) \cup V^{02}(T) \).

Proof. Let \(x \in V(T) \), \(y \in N(x) \) and \(f \) a \(\gamma_{R}\)-function on \(T \). Suppose \(x \in V^1(T) \). If \(f(y) = 1 \), then the RD-function \(g \) on \(T \) defined as \(g(x) = 2 \), \(g(y) = 0 \) and \(g(u) = f(u) \) for all \(u \in V(T) \) - \(\{x, y\} \) is a \(\gamma_{R}\)-function on \(T \), a contradiction. But then \(N(x) \subseteq V^0(T) \), which is impossible.

Suppose now \(x \in V^2(T) \cup V^{12}(T) \). Hence \(x \) is not a leaf. Choose a \(\gamma_{R}\)-function \(h \) on \(T \) such that (a) \(h(x) = 2 \), and (b) \(k = |epn[x, V^k_2]| \) to be as small as possible. Let \(epn[x, V^2_2] = \{y_1, y_2, \ldots, y_k\} \) and denote by \(T_i \) the connected component of \(T - x \), which contains \(y_i \). Hence \(h(y_i) = 0 \) for all \(i \leq k \). Since \(T \) is \(\gamma_{R}\)-excellent, there is a \(\gamma_{R}\)-function \(f_k \) on \(T \) with \(f_k(y_k) \neq 0 \). Since \(x \in V^2(T) \cup V^{12}(T) \), \(f_k(x) \neq 0 \). If \(f_k(y_k) = 1 \) then \(f_k(x) = 1 \), which easily implies \(x \in V^{012}(T) \), a contradiction. Hence \(f_k(y_k) = f_k(x) = 2 \). Define a \(\gamma_{R}\)-function \(l \) on \(T \) as \(l|_{T_k} = f_k|_{T_k} \) and \(l(u) = h(u) \) for all \(u \in V(T) - V(T_k) \). But \(|epn[x, V^k_2]| < k \), a contradiction with the choice of \(h \). Thus \(V^1(T) \cup V^2(T) \cup V^{12}(T) \) is empty, and the required follows. \[\square \]

Lemma 6. Let \(T \) be a tree and \(V^-(T) \) is not empty. Then each component of \(\langle V^-(T) \rangle \) is either \(K_1 \) or \(K_2 \).

Proof. Assume that \(P : x_1, x_2, x_3 \) is a path in \(T \) and \(x_1, x_2, x_3 \in V^-(T) \). Then there is a \(\gamma_{R}\)-function \(f_i \) on \(T \) with \(f_i(x_i) = 1 \), \(i = 1, 2, 3 \) (by Lemma 1). Denote by \(T_j \) the connected component of \(T - x_2 \cup x_j \) that contains \(x_j \), \(j = 1, 3 \). Then \(f_2|_{T_j} \) and \(f_3|_{T_j} \) are \(\gamma_{R}\)-functions on \(T_j \), \(j = 1, 3 \). Now define a \(\gamma_{R}\)-function \(h \) on \(T \) such that \(h|_{T_j} = f_j|_{T_j} \), \(j = 1, 3 \), and \(h(u) = f_2(u) \) when \(u \in V(T) - (V(T_1) \cup V(T_3)) \). But \(h(x_1) = h(x_2) = h(x_3) = 1 \), a contradiction. \[\square \]

Lemma 7. Let \(T \) be a \(\gamma_{R}\)-excellent tree of order at least 2.
(i) If $x \in V^{012}(T)$, then x is adjacent to exactly one vertex in $V^-(T)$, say y_1, and $y_1 \in V^{012}(T)$.

(ii) Let $x \in V^{02}(T)$. If $\deg(x) \geq 3$ then x has exactly 2 neighbors in $V^-(T)$. If $\deg(x) = 2$ then either $N_T(x) \subseteq V^{012}(T)$ or there is a path u, x, y, z in T such that $u, z \in V^{01}(T)$, $y \in V^{02}(T)$ and $\deg(y) = 2$.

(iii) $V^{01}(T)$ is either empty or independent.

Proof. Let $x \in V^{012}(T) \cup V^{02}(T)$ and $N(x) = \{y_1, y_2, \ldots, y_k\}$. If x is a leaf, then clearly $x, y_1 \in V^{012}(T)$. So, let $r \geq 2$. Denote by T_i the connected component of $T - x$ which contains $y_1, i \geq 1$. Choose a γ_R-function h on T such that (a) $h(x) = 2$, and (b) $k = |epm[x, V^2_1]|$ to be as small as possible. Let without loss of generality $epm[x, V^2_1] = \{y_1, y_2, \ldots, y_k\}$. By the definition of h it immediately follows that (c) $h|_{T_j}$ is a γ_R-function on T_j for all $j \geq k + 1$, (d) for each $i \in \{1, \ldots, k\}$, $h|_{T_i}$ is no RD-function on T_i, and (e) $h|_{T_i \setminus y_i}$ is a γ_R-function on $T_i - y_i$, $i \in \{1, \ldots, k\}$. Hence $\gamma_R(T_i) \leq \gamma_R(T_i - y_i) + 1$ for all $i \in \{1, \ldots, k\}$. Assume that the equality does not hold for some $i \leq k$. Define an RD-function h_i on T as follows: $h_i(u) = h(u)$ when $u \in V(T) - V(T_i)$ and $h_i|_{T_i} = h'_i$, where h'_i is some γ_R-function on T_i. But then either h_i has weight less than $\gamma_R(T)$ or h_i is a γ_R-function on T with $epm[x, V^2_i] = epm[x, V^2_i] - \{y_i\}$. In both cases we have a contradiction. Thus $\gamma_R(T_i) = \gamma_R(T_i - y_i) + 1$ for all $i \in \{1, \ldots, k\}$. Therefore $\gamma_R(T) = h(V(T)) = 2 + \sum_{i=1}^k(\gamma_R(T_i) - 1) + \sum_{j=k+1}^{r} \gamma_R(T_j) = 2 - k + \sum_{i=1}^k \gamma_R(T_i) = 2 - k + \gamma_R(T - x)$. Thus $\gamma_R(T) = 2 - k + \gamma_R(T - x)$.

(i) Since $\gamma_R(T - x) + 1 = \gamma_R(T), k = 1$. We already know that $h|_{T_j}$ is a γ_R-function on T_j, $j \geq 2$. Assume that $y_j \in V^{012}(T) \cup V^{01}(T)$ for some $j \geq 2$. Then there is a γ_R-function l on T with $l(y_j) = 1$. Clearly $l|_{T_j}$ is a γ_R-function on T_j. Now define a γ_R-function h'' on T as follows: $h''(u) = h(u)$ when $u \in V(T) - V(T_j)$ and $h''|_{T_j} = l|_{T_j}$. But then $h''(x) = h''(y_j) = 1$ and $xy_j \in E(G)$, which is impossible. Thus, $y_2, y_3, \ldots, y_r \in V^{02}(T)$. Define now γ_R-functions h_1 and h_2 on T as follows: $h_1(u) = h_2(u) = h(u)$ for all $u \in V(T) - \{x, y_1\}$, $h_1(x) = h_1(y_1) = 1$, $h_2(x) = 0$ and $h_2(y_1) = 2$. Thus $y_1 \in V^{01}(T)$.

(ii) Since $\gamma_R(T - x) = \gamma_R(T), k = 2$. Recall that $h|_{T_j}$ is a γ_R-function on T_j, $j \geq 3$, and $\gamma_R(T_i - y_i) = \gamma_R(T_i) - 1$ for $i = 1, 2$. Hence there is a γ_R-function f_i on T_i with $f_i(y_1) = 1$, $i = 1, 2$. Suppose first that $r \geq 3$. As in the proof of (i), we obtain $y_3, \ldots, y_r \in V^{02}(T)$. Hence there is a γ_R-function g on T such that $g(y_3) = 2$. By the choice of h, $g(x) = 0$. Then $g|_{T_1}$ is a γ_R-function on T_i, $i = 1, 2$. Define now a γ_R-function g' on T as $g'|_{T_i} = f_i$, $i = 1, 2$, and $g'(u) = g(u)$ when $u \in V(T) - (V(T_1) \cup V(T_2))$. Since $g'(y_1) = g'(y_2) = 1$, $y_1, y_2 \in V^-(T)$.

So, let $r = 2$ and let f be a γ_R-function on T with $f(x) = 0$. Then there is y_s such that $f(y_s) = 2$, say $s = 2$. Hence $y_2 \in V^{02}(T) \cup V^{012}(T)$ and $f|_{T_1}$ is a γ_R-function on T_1. Define the γ_R-function l on T as $l|_{T_1} = f_1$ and $l(u) = f(u)$ when $u \in V(T) - V(T_1)$. Since $l(y_1) = 1, y_1 \in V^{01}(T) \cup V^{012}(T)$.

Assume first that $y_1 \in V^{012}(T)$. Then there is a γ_R-function f' on T with $f'(y_1) = 2$. Since $x \in V^{02}(T)$ and $deg(x) = 2$, $f'(x) = 0$. Hence $f'|_{T_2}$ is a γ_R-function on T_2. But then we can choose f' so that $f'|_{T_2} = f_2$. Thus $y_2 \in V^{012}(T)$. So let $y_1 \in V^{01}(T)$ and suppose $y_2 \in V^{012}(T)$. Then there is a γ_R-function f'' on T with $f''(y_2) = 1$. Since $x \in V^{02}(T)$, $f''(x) = 0$ and $f''(y_1) = 2$, a contradiction. Thus, if $y_1 \in V^{01}(T)$ then $y_2 \in V^{02}(T)$.

Finally, let us consider a path y_1, x, y_2, z in T, where $y_1 \in V^{01}(T)$, $x, y_2 \in V^{02}(T)$ and $deg(x) = 2$. Assume to the contrary that $N(y_2) = \{z_1, z_2, \ldots, z_s \in x\}$ with $s \geq 3$. Denote by T_{y} the connected component of $T - y_2$ that contains z_p, $p = 1, 2, \ldots, s$. By applying results proved above for $x \in V^{02}(T)$ with $deg(x) \geq 3$ to y_2, we obtain that (a) y_2 has exactly 2 neighbors in $V^-(T)$, say, without loss of generality, $z_1, z_2 \in V^-(T)$, and (b) $\gamma_R(T_{z_1} - z_1) = \gamma_R(T_{z_2} - z_1) - 1$, where $i = 1, 2$. Recall now that: $h(x) = 2$, $h|_{T_i}$ is no RD-function on T_i and $h|_{T_i - y_i}$ is a γ_R-function on $T_i - y_i$, $i = 1, 2$. Hence $h(y_1) = h(y_2) = 0$ and $h|_{T_{y}}$ is a γ_R-function on T_{y}, $j \leq s - 1$. Since $\gamma_R(T_{z_i} - z_i) = \gamma_R(T_{z_i}) - 1$, $i = 1, 2$, additionally we can choose h so that $h(z_1) = h(z_2) = 1$. But then the function h_1 defined as $h_1(u) = h(u)$ when $u \in V(T) - \{y_1, x, y_2, z_1, z_2\}$ and $h_1(y_1) = h_1(x) = 1$, $h_1(y_2) = 2$, $h_1(z_1) = h(z_2) = 0$ is a γ_R-function on T. Now $h_1(x) = 1$, $h_1(y_2) = 2$ and $xy_2 \in E(G)$ lead to a contradiction. Thus, $N(y_2) = \{x, z\}$. Suppose $z \notin V^{01}(T)$. Then there is a γ_R-function h_4 on T with $h_4(z) = 2$. If $h_4(y_2) = 2$, then $h_4(x) = 0$ and the function h_5 on T defined as $h_5(x) = h_5(y_2) = 1$ and $h_5(u) = h_4(u)$ otherwise, is a γ_R-function on T, a contradiction. Hence $h_4(y_2) = 0$ and since $y_1 \in V^{01}(T)$, $h_4(x) = 2$ and $h_4(y_1) = 0$. But then the function h_6 on T defined as $h_6(x) = h_6(y_1) = 1$ and $h_6(u) = h_4(u)$ otherwise, is a γ_R-function on T, a contradiction. Therefore $z \in V^{01}(T)$, and we are done.

(iii) Assume that $u_1, u_2 \in V^{01}(T)$ are adjacent. Let $T_{u_{i}}$ be the component of $T - u_1u_2$ that contains u_{i}, $i = 1, 2$. Let g_i be a γ_R-function on T with $g_i(u_i) = 1$, $i = 1, 2$. Hence $g_i(T_{u_{i}})$ is a γ_R-function on $T_{u_{i}}$, $i, j = 1, 2$. Thus $\gamma_R(T) = \gamma_R(T_{u_{i}}) + \gamma_R(T_{u_{j}})$.

Define now a γ_R-function g_3 on T as $g_3|_{T_{i}} = g_1|_{T_{i}}$, $i = 1, 2$. But then a function g_4 defined as $g_4(u) = g_3(u)$ when $u \in V(T) - \{u_1, u_2\}$, $g_4(u_1) = 2$ and $g_4(u_2) = 0$ is a γ_R-function on T, contradicting $u_1 \in V^{01}(T)$. Thus $V^{01}(T)$ is independent. □

4. Proof of the main result

Proof of Theorem 1. Let T be a γ_R-excellent tree. First, we shall prove the following statement.

\mathcal{P}_2. There is a labeling $L : V(T) \rightarrow \{A, B, C, D\}$ such that (a) $L_A(T)$ is either empty or independent, (b) each component of $\langle L_B(T) \rangle$ and $\langle L_D(T) \rangle$ is isomorphic to K_2, (c) each element of $L_B(T)$ has degree 2 and it is adjacent to exactly one vertex in $L_A(T)$, (d) each vertex v in $L_C(T)$ has exactly 2 neighbors in $L_A(T) \cup L_D(T)$, and if $deg(v) = 2$ then both neighbors of v are in $L_D(T)$.

By Lemma 5 we know that $V(T) = V^{01}(T) \cup V^{012}(T) \cup V^{02}(T)$. Define a labeling $L : V(T) \rightarrow \{A, B, C, D\}$ by $L_A(T) = V^{01}(T)$, $L_D(T) = V^{012}(T)$, $L_B(T) = \{x \in$
\(V^{02}(T) \mid \deg(x) = 2 \) and \(|N(x) \cap V^{02}(T)| = 1\), and \(L_C(T) = V^{02}(T) - L_B(T) \). The validity of \((P_2)\) immediately follows by Lemma 7.

Denote by \(\mathcal{T} \) the family of all labeled, as in \((P_2)\), trees \(T \). We shall show that if \((T, L) \in \mathcal{T} \) then \((T, L) \in \mathcal{T} \).

(I) Proof of \((T, L) \in \mathcal{T} \Rightarrow (T, L) \in \mathcal{T} \).

Let \((T, L) \in \mathcal{T} \). The following claim is immediate.

Claim 1.1

(i) Each leaf of \(T \) is in \(L_A(T) \cup L_D(T) \).

(ii) If \(v \) is a support vertex of \(T \), then \(v \) is adjacent to at most 2 leaves.

(iii) If \(u_1 \) and \(u_2 \) are leaves adjacent to the same support vertex, then \(u_1, u_2 \in L_A(T) \).

We now proceed by induction on \(k = |L_B \cup L_C| \). The base case, \(k \leq 2 \), is an immediate consequence of the following easy claim, the proof of which is omitted.

Claim 1.2 (see Fig.1)

(i) If \(k = 0 \) then \((T, L) = (H_1, I^1) \).

(ii) If \(k = 1 \) then \((T, L) \) is obtained from \((H_1, I_1)\) by operation \(O_2 \), i.e. \((T, L) = (H_{11}, I^{11}) \).

(iii) If \(k = 2 \) then either \((T, L) \) is \((H_r, I^r)\) with \(r \in \{2, 3, 4, 5\} \), or \((T, L) \) is obtained from \((H_{11}, I^{11})\) by operation \(O_1 \) or by operation \(O_2 \) (see the graphs \((H_s, I^s)\) where \(s \in \{6, 7, 8, 9, 10\} \).

Let \(k \geq 3 \) and suppose that each tree \((H, L') \in \mathcal{T} \) with \(|L_B(H) \cup L_C(H)| < k \) is in \(\mathcal{T} \). Let now \((T, L) \in \mathcal{T} \) and \(k = |L_B(T) \cup L_C(T)| \). To prove the required result, it suffices to show that \(T \) has a subtree, say \(U \), such that \((U, L|_U) \in \mathcal{T} \), and \((T, L) \) is obtained from \((U, L|_U)\) by one of operations \(O_1 \), \(O_2 \), \(O_3 \) and \(O_4 \). Consider any diametral path \(P : x_1, x_2, \ldots, x_n \) in \(T \). Clearly \(x_1 \) is a leaf. Denote by \(x_1^1, x_1^2, \ldots \) all neighbors of \(x_i \), which do not belong to \(P \), \(2 \leq i \leq n - 1 \).

Case 1: \(sta(x_1) = A \) and \(sta(x_2) = B \).

Then \(deg(x_1) = 1 \), \(deg(x_2) = deg(x_3) = 2 \), \(sta(x_3) = B \) and \(sta(x_4) = A \). Thus \(T \) is obtained from \(T - \{x_1, x_2, x_3\} \in \mathcal{T} \) and a copy of \(H_2 \) by operation \(O_3 \) (via \(x_4 \)).

Case 2: \(sta(x_1) = A \) and \(sta(x_2) = C \).

Hence \(deg(x_2) \geq 3 \). By the choice of \(P \), \(deg(x_2) = 3 \), \(x_2^1 \) is a leaf, \(sta(x_2^1) = A \) and \(sta(x_3) = C \). If \(deg(x_3) \geq 4 \) then \(T \) is obtained from \(T - \{x_2^1, x_1, x_2\} \in \mathcal{T} \) and a copy of \(F_1 \) by operation \(O_1 \). So, let \(deg(x_3) = 3 \). Assume first that \(sta(x_4) = A \). Then either \(x_3^1 \) is a leaf of status \(A \) or \(x_3^1 \) is a support vertex, \(deg(x_3^1) = 2 \), and both \(x_3^1 \) and its leaf-neighbor have status \(D \). Thus, \(T \) is obtained from \(T - (N[x_2] \cup N[x_3^1]) \in \mathcal{T} \) and a copy of \(H_3 \) or \(H_4 \), respectively, by operation \(O_3 \) (via \(x_4 \)). Finally let \(sta(x_4) = D \). By the choice of \(P \), either \(x_3^1 \) is a leaf of status \(A \) and then \(T \) is obtained from
$T - (N[x_2] \cup \{x_3^1\}) \in \mathcal{T}_1$ and a copy of H_3 by operation O_4, or x_3^1 is a support vertex of degree 2 and both x_3^1 and its leaf-neighbor have status D, and then T is obtained from $T - \{x_2^1, x_1, x_2\} \in \mathcal{T}_1$ and a copy of F_1 by operation O_1.

In what follows, let $sta(x_1) = D$. Hence $de(x_2) = 2$, $sta(x_2) = D$ and $sta(x_3) = C$. If $de(x_3) = 2$ then T is obtained from $T - N[x_2] \in \mathcal{T}_1$ and a copy of F_4 by operation O_2.

Case 3: $de(x_3) = 3$ and $sta(x_4) \in \{A, D\}$.
In this case $sta(x_3^1) = C$, x_3^1 is a support vertex, $de(x_3^1) = 3$, and the leaf neighbors of x_3^1 have status A. Now (a) if $sta(x_4) = A$ then T is obtained from $T - (N[x_2] \cup N[x_3^1]) \in \mathcal{T}_1$ and a copy of H_4 by operation O_3 (via x_4), and (b) if $sta(x_4) = D$ then T is obtained from $T - (N[x_2] \cup N[x_3^1]) \in \mathcal{T}_1$ and a copy of H_4 by operation O_4 (via x_4).

Case 4: $de(x_3) = 3$, $sta(x_4) = C$ and $sta(x_3^1) = A$.
Hence x_3^1 is a leaf. If $de(x_4) = 3$ and $sta(x_5) = sta(x_4^1) = D$, or $de(x_4) \geq 4$, then T is obtained from $T - \{x_1, x_2, x_3, x_3^1\} \in \mathcal{T}_1$ and a copy of F_2 by operation O_1. So, let $de(x_4) = 3$ and the status of at least one of x_5 and x_4^1 is A. Assume first that $sta(x_4^1) = A$. Hence x_4^1 is a leaf (by the choice of P). If $sta(x_5) = A$ then T is obtained from a copy of H_4 and a tree in \mathcal{T}_1 by operation O_3 (via x_5). If $sta(x_5) = D$ then T is obtained from a copy of H_4 and a tree in \mathcal{T}_1 by operation O_4 (via x_5). Second, let $sta(x_4^1) = D$. Hence $sta(x_5) = A$, $de(x_4^1) = 2$ and the status of the leaf-neighbor of x_4^1 is D. But then T is obtained from a copy of H_5 and a tree in \mathcal{T}_1 by operation O_3 (via x_5).

Case 5: $de(x_3) = 3$, $sta(x_4) = C$ and $sta(x_3^1) = D$.
Hence $de(x_3^1) = 2$, x_3^1 is a support vertex, and the leaf-neighbor of x_3^1 has status D. If $de(x_4) \geq 4$ or $sta(x_5) = sta(x_4^1) = D$, then T is obtained from $T - N[\{x_2, x_3^1\}] \in \mathcal{T}_1$ and a copy of F_3 by operation O_1. So, let $de(x_4) = 3$ and at least one of x_5 and x_4^1 has status A. Assume $sta(x_4^1) = A$. Hence x_4^1 is a leaf. If $sta(x_5) = A$ then T is obtained from $T - N[\{x_2, x_3^1, x_4^1\}] \in \mathcal{T}_1$ and a copy of H_6 by operation O_3 (via x_5). If $sta(x_5) = D$ then T is obtained from $T - N[\{x_2, x_3, x_4^1\}] \in \mathcal{T}_1$ and a copy of H_6 by operation O_4 (via x_5). Now let $sta(x_4^1) = D$. Hence $sta(x_5) = A$ and then T is obtained from a copy of H_7 and a tree in \mathcal{T}_1 by operation O_3 (via x_5).

Case 6: $de(x_3) \geq 4$.
Hence x_3 has a neighbor, say y, such that $y \neq x_4$ and $sta(y) = C$. By the choice of P, y is a support vertex which is adjacent to exactly 2 leaves, say z_1 and z_2, and $sta(z_1) = sta(z_2) = A$. But then T is obtained from $T - \{y, z_1, z_2\} \in \mathcal{T}_1$ and a copy of F_1 by operation O_1.

By Claim 2.1, there are no other possibilities.

(II) $(T, S) \in \mathcal{T} \Rightarrow (T, S) \in \mathcal{T}_1$. Obvious.

It remains the following.

(III) Proof of $(T, S) \in \mathcal{T} \Rightarrow T$ is γ_R-excellent and (P_1) holds.
Let \((T, S) \in \mathcal{T}\). We know that \((T, S) \in \mathcal{T}_1\). We now proceed by induction on \(k = |S_B \cup S_C|\). First let \(k \leq 2\). By Claim 1.2, \(T \in \mathcal{H} = \{H_1, \ldots, H_{11}\}\). It is easy to see that all elements of \(\mathcal{H}\) are \(\gamma_R\)-excellent graphs and \((\mathcal{P}_1)\) holds for each \(T \in \mathcal{H}\).

Let \(k \geq 3\) and suppose that if \((H, S') \in \mathcal{T}\) and \(|S_B'(H) \cup S_C'(H)| < k\), then \(H\) is \(\gamma_R\)-excellent and \((\mathcal{P}_1)\) holds with \((T, S)\) replaced by \((H, S')\). So, let \((T, S) \in \mathcal{T}\) and \(k = |S_B(T) \cup S_C(T)|\). Then there is a \(\mathcal{T}\)-sequence \(\tau : (T^1, S^1), \ldots, (T^{j-1}, S^{j-1}), (T, S)\). By induction hypothesis, \(T^{j-1}\) is \(\gamma_R\)-excellent and \((\mathcal{P}_1)\) holds with \((T, S)\) replaced by \((T^{j-1}, S^{j-1})\). We consider four possibilities depending on whether \(T\) is obtained from \(T^{j-1}\) by operation \(O_1, O_2, O_3\) or \(O_4\).

Case 7: \(T\) is obtained from \(T^{j-1} \in \mathcal{T}\) and \(F_a\) by operation \(O_1, a \in \{1, 2, 3\}\). Hence \(T\) is obtained after adding the edge \(ux\) to the union of \(T^{j-1}\) and \(F_a\), where \(\text{sta}_{T^{j-1}}(u) = \text{sta}_{F_a}(x) = C\) (see Fig. 2). First note that \(\gamma_R(F_a) = a + 1\), and \(F_2\) and \(F_3\) are \(\gamma_R\)-excellent graphs. Since \(\gamma_R(F_a - x) = \gamma_R(F_a)\) and \(u \in V^{02}(T^{j-1})\), Lemma 2 implies \(\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(F_a)\). Hence for any \(\gamma_R\)-function \(g\) on \(T\), the weight of \(g|_{F_a}\) is not more than \(\gamma_R(F_a)\). But then \(g(x) \neq 1\) and either \(g|_{F_a-x}\) is a \(\gamma_R\)-function on \(F_a\) or \(g|_{F_a-x}\) is a \(\gamma_R\)-function on \(F_a - x\). By inspection of all \(\gamma_R\)-functions on \(F_a\) and \(F_a - x\), we obtain

\[
(\alpha_1) \quad S_A(T) \cap V(F_a) = V^{01}(T) \cap V(F_a), \quad S_B(T) \cap V(F_a) = \emptyset, \quad \{x\} = S_C(T) \cap V(F_a) = V^{02}(T) \cap V(F_a), \quad \text{and} \quad S_D(T) \cap V(F_a) = V^{012}(T) \cap V(F_a).
\]

By the definition of operation \(O_1\) it immediately follows

\[
(\alpha_2) \quad S_X(T) \cap V(T^{j-1}) = S^{-1}_X(T^{j-1}), \quad \text{for all} \quad X \in \{A, B, C, D\}.
\]

Let \(f_1\) be a \(\gamma_R\)-function on \(T^{j-1}\) and \(f_2\) a \(\gamma_R\)-function on \(F_a\). Then the RD-function \(f\) on \(T\) defined as \(f|_{T^{j-1}} = f_1\) and \(f|_{F_a} = f_2\) is a \(\gamma_R\)-function on \(T\). Since \(f_1\) was chosen arbitrarily, we have

\[
(\alpha_3) \quad V^{01}(T^{j-1}) \subseteq V^{01}(T) \cup V^{012}(T), \quad V^{02}(T^{j-1}) \subseteq V^{02}(T) \cup V^{012}(T), \quad \text{and} \quad V^{012}(T^{j-1}) \subseteq V^{012}(T).
\]

By \((\alpha_1)\) and \((\alpha_3)\) we conclude that \(T\) is \(\gamma_R\)-excellent.

Now we shall prove that

\[
(\alpha_4) \quad V^{01}(T) \cap V(T^{j-1}) = V^{01}(T^{j-1}), \quad V^{02}(T) \cap V(T^{j-1}) = V^{02}(T^{j-1}), \quad \text{and} \quad V^{012}(T) \cap V(T^{j-1}) = V^{012}(T^{j-1}).
\]

Assume there is a vertex \(z \in V^{02}(T^{j-1}) \cap V^{012}(T)\). By Lemma 7, \(z\) is adjacent to at most 2 elements of \(V^{-}(T^{j-1})\). Now by \((\alpha_3)\) and since \(\Delta((V^{-}(T))) \leq 1\) (by Lemma 6), \(z\) is adjacent to exactly one element of \(V^{-}(T^{j-1})\). But then Lemma 7 implies that there is a path \(z_1, z, z_2, z_3\) in \(T^{j-1}\) such that \(\text{deg}_{T^{j-1}}(z) = \text{deg}_{T^{j-1}}(z_2) = 2\), \(z, z_2 \in V^{02}(T^{j-1})\) and \(z_1, z_3 \in V^{01}(T^{j-1})\). Since \((\mathcal{P}_1)\) is true for \(T^{j-1}\), \(\text{sta}_{T^{j-1}}(z_1) = \text{sta}_{T^{j-1}}(z_3) = A\), and \(\text{sta}_{T^{j-1}}(z) = \text{sta}_{T^{j-1}}(z_2) = B\). Clearly, at least one of \(z_1\) and \(z_3\) is a cut-vertex. Denote by \(Q\) the graph \(\langle\{z_1, z, z_2, z_3\}\rangle\) and let the vertices of \(Q\)
are labeled as in T^{j-1}. Let U_s be the connected component of $T - \{z,z_2\}$, which contains z_s, $s=1,3$.

Assume first that T^1 is a subtree of $U \in \{U_1,U_3\}$. Then there is i such that T^i is obtained from T^{i-1} and Q by operation O_3. Hence T^{i-1} is a subtree of U. Recall that if $y \in V(T^r)$ and $r \leq s \leq j-1$, then $sta_{T^r}(y) = sta_{T^s}(y)$. Using this fact, we can choose τ so that $T^{j-1} = U$. Therefore U is in \mathcal{F}. Suppose that neither z_1 nor z_3 is a leaf of T^{j-1}. Define $R^s = T^{i+s} - (V(T^{i-1}) \cup \{z,z_2\})$, $s = 1,2,\ldots,j-1-i$. Since clearly R^1 is in $\{H_2,H_3,\ldots,H_7\}$, the sequence R^1,R^2,\ldots,R^{j-1-i} is a \mathcal{F}-sequence of U', where $\{U,U'\} = \{U_1,U_3\}$. Thus, both U_1 and U_3 are in \mathcal{F}, and $sta_{U_1}(z_1) = A$. By the induction hypothesis, $z_1 \in V^{01}(U_1)$.

Suppose now that $u \in V(U_3)$. Consider the sequence of trees U_3,U_4,U_5, where U_4 is obtained from U_3 and Q by operation O_4 (via z_3), and U_5 is obtained from U_4 and F_a by operation O_1. Clearly U_5 is in \mathcal{F}, $sta_{U_5}(z_1) = A$ and by the induction hypothesis, $z_1 \in V^{01}(U_5)$. Since $T = (U_5 \cdot U_1)(z_1)$ and $\{z_1\} = V^{01}(U_1) \cap V^{01}(U_5)$, by Proposition 2 we have $z_1 \in V^{01}(T)$. But then Lemma 7 implies $z_2 \in V^{02}(T)$, a contradiction.

Now let $u \in V(U_1)$. Denote by U_2 the graph obtained from U_1 and F_a by operation O_3. Then U_2 is in \mathcal{F}, $sta_{U_2}(z_1) = A$, and by induction hypothesis, $z_1 \in V^{01}(U_2)$. Define also the graph U_6 as obtained from U_3 and Q by operation O_3, i.e. $U_6 = (U_3 \cdot Q)(z_3)$. Then U_6 is in \mathcal{F}, $sta_{U_6}(z_1) = A$ and by induction hypothesis, $z_1 \in V^{01}(U_6)$. Now by Proposition 2, $z_1 \in V^{01}(T)$, which leads to $z_2 \in V^{02}(T)$ (by Lemma 7), a contradiction.

Thus, in all cases we have a contradiction. Therefore $V^{02}(T^{j-1}) \subseteq V^{02}(T)$ when both z_1 and z_3 are cut-vertices. If z_1 or z_3 is a leaf, then, by similar arguments, we can obtain the same result.

Let now $T^1 = Q$. Then T^2 is obtained from T^1 and H_k by operation O_3. Consider the sequence of trees $\tau_1 : T^1_k = H_k,T^2,T^3,\ldots,T^{j-1}$. Clearly τ_1 is a \mathcal{F}-sequence of T^{j-1} and $T^1_k \neq Q$. Therefore we are in the previous case. Thus, $V^{02}(T^{j-1}) = V(T^{j-1}) \cap V^{02}(T)$.

Assume now that there is a vertex $w \in V^{01}(T^{j-1}) \cap V^{012}(T)$. By Lemma 7(i) w has a neighbor in T, say w', such that $w' \in V^{012}(T)$. Since $w \neq u$, $w' \in V(T^{j-1})$. But all neighbors of w in T^{j-1} are in $V^{02}(T^{j-1})$ (by Lemma 7 applied to T^{j-1} and w). Since $V^{02}(T^{j-1}) = V(T^{j-1}) \cap V^{02}(T)$, we obtain a contradiction.

Thus (α_4) is true.

Now we are prepared to prove that (\mathcal{P}_1) is valid. Using, in the chain of equalities below, consecutively (α_2), the induction hypothesis, (α_1) and (α_4), we obtain

$$S_A(T) = S_A^{j-1}(T^{j-1}) \cup (S_A(T) \cap V(F_a)) = V^{01}(T^{j-1}) \cup (V^{01}(T) \cap V(F_a)) = V^{01}(T),$$
and similarly, $S_D(T) = V^{012}(T)$. Since $u \notin S_B(T)$ and $S_B(T) \cap V(F_a) = \emptyset$, we have

$$
S_B(T) = S_B(T) \cap V(T^{j-1}) \overset{(\alpha_2)}{=} S_B^{-1}(T^{j-1})
$$

$$
= \{ t \in V^{02}(T^{j-1}) | \deg_{T^{j-1}}(t) = 2 \text{ and } |N_{T^{j-1}}(t) \cap V^{02}(T^{j-1})| = 1 \}
$$

$$
\overset{(\alpha_4)}{=} \{ t \in V^{02}(T) \cap V(T^{j-1}) | \deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}
$$

$$
= \{ t \in V^{02}(T) | \deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}.
$$

The last equality follows from $\deg_T(x) > 2$ and $\{ x \} = V^{02}(T) \cap V(F_a)$ (see (α_1)). Now the equality $S_C(T) = V^{02}(T) - S_B(T)$ is obvious. Thus, (P_1) holds and we are done.

Case 8: T is obtained from $T^{j-1} \in \mathcal{F}$ by operation O_2.

Clearly, $\gamma_R(F_4) = \gamma_R(F_4 - x) = 2$. By Lemma 2, $\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(H_4)$. Let f_1 be a γ_R-function on T^{j-1} and f_2 a γ_R-function on F_4. Then the function f defined as $f|_{T^{j-1}} = f_1$ and $f|_{F_4} = f_2$ is a γ_R-function on T. Therefore $V^{012}(T^{j-1}) \subseteq V^{012}(T)$, $V^{01}(T^{j-1}) \subseteq V^{01}(T) \cup V^{02}(T)$, and $V^{02}(T^{j-1}) \subseteq V^{02}(T) \cup V^{012}(T)$.

Assume that there is $y \in V^{0s}(T^{j-1}) \cap V^{012}(T)$, $s \in \{1, 2\}$, and let f' be a γ_R-function on T with $f'(y) = r \notin \{0, s\}$. If $f'|_{T^{j-1}}$ is an RD-function on T^{j-1}, then $f'|_{T^{j-1}}(V(T^{j-1})) > \gamma_R(T^{j-1})$ and $f'|_{F_4}(V(F_4)) \geq 2$. This leads to $f'(V(T)) > \gamma_R(T)$, a contradiction. Hence $f'|_{T^{j-1}}$ does not have a RD-function on T^{j-1} and $f'|_{T^{j-1} - u}$ is a γ_R-function on $T^{j-1} - u$. Define now an RD-function f'' on T^{j-1} as $f''|_{T^{j-1} - u} = f'|_{T^{j-1} - u}$ and $f''(y) = 1$. Since $u \in V^-(T^{j-1})$, f'' is a γ_R-function on T^{j-1} with $f''(y) = r \notin \{0, s\}$, a contradiction with $y \in V^{0s}(T^{j-1})$.

Thus

$$
(\alpha_5) \quad V^{012}(T^{j-1}) = V^{012}(T) \cap V(T^{j-1}), \quad V^{01}(T^{j-1}) = V^{01}(T) \cap V(T^{j-1}), \quad V^{02}(T^{j-1}) = V^{02}(T) \cap V(T^{j-1}).
$$

Let x, x_1, x_2 be a path in F_4, h_1 a γ_R-function on T^{j-1} with $h_1(u) = 2$, and h_2 a γ_R-function on $T^{j-1} - u$. Define γ_R-functions g_1, \ldots, g_4 on T as follows:

- $g_1|_{T^{j-1}} = h_1$, $g_1(x) = g_1(x_2) = 0$ and $g_1(x_1) = 2$;
- $g_2|_{T^{j-1}} = h_1$, $g_2(x) = 0$ and $g_2(x_1) = g_2(x_2) = 1$;
- $g_3|_{T^{j-1}} = h_1$, $g_3(x) = g_3(x_1) = 0$ and $g_3(x_2) = 2$;
- $g_4|_{T^{j-1} - u} = h_2$, $g_4(u) = g_4(x_1) = 0$, $g(x) = 2$ and $g_4(x_2) = 1$.

This, (α_5) and Lemma 6 allows us to conclude that T is γ_R-excellent, $x_1, x_2 \in V^{012}(T)$ and $x \in V^{02}(T)$.

By induction hypothesis, (P_1) holds with (T, S) replaced by (T^{j-1}, S^{j-1}). Then Since $u \notin S_B(T)$ and $S_B(T) \cap V(F_4) = \emptyset$, we have

$$
S_B(T) = S_B^{-1}(T^{j-1})
$$

$$
= \{ t \in V^{02}(T^{j-1}) | \deg_{T^{j-1}}(t) = 2 \text{ and } |N_{T^{j-1}}(t) \cap V^{02}(T^{j-1})| = 1 \}
$$

$$
= \{ t \in V^{02}(T) | \deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1 \}.
$$
The last equality follows from $\deg_T(x) > 2$ and $\{x\} = V^{02}(T) \cap V(F_4)$. Now the equality $S_C(T) = V^{02}(T) - S_B(T)$ is obvious. Thus, (P_1) is true.

Case 9: T is obtained from $T^{j-1} \in \mathcal{F}$ by operation O_3.

Let $T = (T^{j-1} \cdot H_k)(u, v : u)$, where $\text{stat}_{T^{j-1}}(u) = \text{stat}_{H_k}(v) = \text{stat}_T(u) = A$ and $k \in \{2, \ldots, 7\}$. Hence $S_X(T) = S_X^{j-1}(T^{j-1}) \cup I_X^k(H_k)$, for any $X \in \{A, B, C, D\}$. We know that (P_1) holds with (T, S) replaced by any of (T^{j-1}, S^{j-1}) and (H_k, I^k). Hence $S_A(T) = S_A^{j-1}(T^{j-1}) \cup I_A^k(H_k) = V^{01}(T^{j-1}) \cup V^{01}(H_k)$. Now, by Proposition 2, applied to T^{j-1} and H_k, $S_A(T) = V^{01}(T)$. Similarly we obtain $S_D(T) = V^{012}(T)$.

We also have

$$S_B(T) = S_B^{j-1}(T^{j-1}) \cup I_B^k(H_k) = \{t \in V^{02}(T^{j-1}) \mid \deg_T(t) = 2 \text{ and } |N_{T^{j-1}}(t) \cap V^{02}(T^{j-1})| = 1\} \cup \{t \in V^{02}(H_k) \mid \deg_{H_k}(t) = 2 \text{ and } |N_{H_k}(t) \cap V^{02}(H_k)| = 1\} = \{t \in V^{02}(T^{j-1}) \cup V^{02}(H_k) \mid \deg_T(t) = 2 \text{ and } |N_T(t) \cap V^{02}(T)| = 1\},$$

as required, because $V^{02}(T^{j-1}) \cup V^{02}(H_k) = V^{02}(T)$ (by Proposition 2). Now the equality $S_C(T) = V^{02}(T) - S_B(T)$ is obvious.

Case 10: T is obtained from $T^{j-1} \in \mathcal{F}$ and $H_k \in \mathcal{F}$, $k \in \{3, 4, 6\}$, by operation O_4.

By induction hypothesis and Lemma 4, we have $\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(H_k) - 1$ and $u \in V^{012}(T)$. Let f_1 be a γ_R-function on T^{j-1} and f_2 a γ_R-function on $H_k - v$. Then the function f defined as $f|_{T^{j-1}} = f_1$ and $f|_{H_k-v} = f_2$ is a γ_R-function on T. Therefore $V^{012}(T^{j-1}) \subseteq V^{012}(T)$, $V^{01}(T^{j-1}) \subseteq V^{01}(T) \cup V^{012}(T)$, and $V^{02}(T^{j-1}) \subseteq V^{02}(T) \cup V^{012}(T)$. Assume that there is $y \in V^{08}(T^{j-1}) \cap V^{012}(T)$, $s \in \{1, 2\}$, and let f' be a γ_R-function on T with $f'(y) = r \notin \{0, s\}$. But then $f'|_{T^{j-1}}$ is no RD-function on T^{j-1}, $f'(u) = 0$, $f'|_{T^{j-1}-u}$ is a γ_R-function on $T^{j-1} - u$ and $f'|_{H_k}$ is a γ_R-function on H_k. Define now an RD-function g_1 on T^{j-1} as $g_1|_{T^{j-1}-u} = f'|_{T^{j-1}-u}$ and $g_1(u) = 1$. Since $g_1(V(T^{j-1})) = \gamma_R(T^{j-1} - u) + 1 = \gamma_R(T^{j-1})$, g_1 is a γ_R-function on T^{j-1}. But $g_1(y) = r \notin \{0, s\}$, a contradiction. Thus

$$(\alpha_6) \quad V^{012}(T^{j-1}) = V^{012}(T) \cap V(T^{j-1}), \quad V^{01}(T^{j-1}) = V^{01}(T) \cap V(T^{j-1}), \quad V^{02}(T^{j-1}) = V^{02}(T) \cap V(T^{j-1}).$$

The next claim is obvious.

Claim 1.3 Let x be the neighbor of v in H_k, $k \in \{3, 4, 6\}$. Then $\gamma_R(H_3) = 4, \gamma_R(H_4) = 5, \gamma_R(H_6) = 6, \gamma_R(H_k - v) = \gamma_R(H_k - \{v, x\}) = \gamma_R(H_k)$, and $l(x) = 0$ for any γ_R-function l on $H_k - v$.

Let h be a γ_R-function on T. We know that $u \in V^{012}(T), u \in V^{012}(T^{j-1}), v \in V^{01}(H_k)$, and $\gamma_R(T) = \gamma_R(T^{j-1}) + \gamma_R(H_k) - 1$. Then by Claim 1.3 we clearly have:

(a1) If $h(u) = 2$ then at least one of the following holds:

(a1.1) $h|_{H_k-v}$ is a γ_R-function on $H_k - v$, and

(a1.2) $h|_{H_k-\{v, x\}}$ is a γ_R-function on $H_k - \{v, x\}$.

(a2) If $h(u) = 1$ then $h|_{H_k - v}$ is a γ_R-function on $H_k - v$.

(a3) If $h(u) = 0$ then either $h|_{H_k}$ is a γ_R-function on H_k, or $h|_{H_k - v}$ is a γ_R-function on $H_k - v$.

Let l_1, l_2, l_3, l_4 and l_5 be γ_R-functions on $H_k, H_k - v, H_k - \{v, x\}, T^{j-1} - u$ and T^{j-1}, respectively, and let $l_5(u) = 2$. Define the functions $h_1, h_2,$ and h_3 on T as follows: (i) $h_1|_{T^{j-1}} = l_5, h_1(x) = 0$ and $h_1|_{H_k - \{v, x\}} = l_3$, (ii) $h_2|_{T^{j-1}} = l_5$ and $h_1|_{H_k - v} = l_2$, and (iii) $h_3|_{T^{j-1} - u} = l_4$ and $h_3|_{H_k} = l_1$. Clearly $h_1, h_2,$ and h_3 are γ_R-functions on T. After inspection of all γ_R-functions of $H_k, H_k - v$ and $H_k - \{v, x\}$, we conclude that $V^{01}(H_k) - \{v\} \subseteq V^{01}(T), V^{02}(H_k) \subseteq V^{02}(T)$, and $V^{012}(H_k) \subseteq V^{012}(T)$. This and (α_7) imply

$$V^{012}(T) = V^{012}(T^{j-1}) \cup V^{012}(H_k), \ V^{02}(T) = V^{02}(T^{j-1}) \cup V^{02}(H_k), \text{ and} \ V^{01}(T) = V^{01}(T^{j-1}) \cup V^{01}(H_k) - \{v\}.$$

Since (\mathcal{P}_3) holds with T replaced by H_k or by T^{j-1} (by induction hypothesis), using (α_7) we obtain that (\mathcal{P}_1) is satisfied. \qed

5. Corollaries

The next three results immediately follow by Theorem 1.

Corollary 1. If $(T, S_1), (T, S_2) \in \mathcal{T}$ then $S_1 \equiv S_2$.

If $(T, S) \in \mathcal{T}$ then we call S the \mathcal{T}-labeling of T.

Corollary 2. Let T be a γ_R-excellent tree of order $n \geq 5$, and S the \mathcal{T}-labeling of T. Then $\frac{3}{2} \leq |V^{02}(T)| \leq \frac{3}{2}(n - 1)$ and $\frac{1}{2}n \geq |V^{-}(T)| \geq \frac{1}{2}(n + 2)$. Moreover,

1. $\frac{3}{2} = |V^{02}(T)|$ if and only if (T, S) has a \mathcal{T}-sequence $\tau : (T_1, S_1), \ldots, (T^j, S^j)$, such that $(T_1, S_1) = (F_3, J^3)$ and if $j \geq 2$, (T^{j+1}, S^{j+1}) can be obtained recursively from (T^j, S^j) and (F_3, J^3) by operation O_1.

2. $|V^{02}(T)| \leq \frac{3}{2}(n - 1)$ if and only if (T, S) has a \mathcal{T}-sequence $\tau : (T_1, S_1), \ldots, (T^j, S^j)$, such that $(T_1, S_1) = (H_2, I^2)$ and if $j \geq 2$, (T^{j+1}, S^{j+1}) can be obtained recursively from (T^j, S^j) and (H_2, I^2) by operation O_3.

Corollary 3. Let G be an n-order γ_R-excellent connected graph of minimum size. Then either $G = K_3$ or $n \neq 3$ and G is a tree.

6. Special cases

Let G be a graph and $\{a_1, \ldots, a_k\} \subseteq \{0, 1, 2, 01, 02, 12, 012\}$. We say that G is a $\mathcal{R}_{a_1, \ldots, a_k}$-graph if $V(G) = \bigcup_{i=1}^{k} V^{a_i}(G)$ and all $V^{a_1}(G), \ldots, V^{a_k}(G)$ are nonempty. Now let T be a γ_R-excellent tree of order at least 2. By Theorem 1, we immediately conclude that $T \in \mathcal{R}_{012} \cup \mathcal{R}_{01,02} \cup \mathcal{R}_{02,012} \cup \mathcal{R}_{01,02,012}$. Moreover,
(i) \(T \in \mathcal{R}_{012} \) if and only if \(T = K_2 \), and

(ii) \(T \in \mathcal{R}_{01,02,012} \) if and only if none of \(S_A(T), S_C(T) \) and \(S_D(T) \) is empty, where \(S \) is the \(\mathcal{F} \)-labeling of \(T \).

In this section, we turn our attention to the classes \(\mathcal{R}_{01,02} \) and \(\mathcal{R}_{02,012} \).

6.1. \(\mathcal{R}_{01,02} \)-graphs.

Here we give necessary and sufficient conditions for a tree to be in \(\mathcal{R}_{01,02} \). We define a subfamily \(\mathcal{F}_{01,02} \) of \(\mathcal{F} \) as follows. A labeled tree \((T, S) \in \mathcal{F}_{01,02} \) if and only if \((T, S) \) can be obtained from a sequence of labeled trees \(\tau : (T^1, S^1), \ldots, (T^j, S^j) \), \((j \geq 1)\), such that \((T^1, S^1)\) is in \(\{(H_2, I^2), (H_3, I^3)\}\) (see Figure 1) and \((T, S) = (T^j, S^j)\), and, if \(j \geq 2 \), \((T^{i+1}, S^{i+1})\) can be obtained recursively from \((T^i, S^i)\) by one of the operations \(O_5 \) and \(O_6 \) listed below; in this case \(\tau \) is said to be a \(\mathcal{F}_{01,02} \)-sequence of \(T \).

Operation \(O_5 \). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((F_1, I^1)\) (see Figure 2) by adding the edge \(u \cdot x \), where \(u \in V(T_i) \), \(x \in V(F_1) \) and \(sta_{T_i}(u) = sta_{F_i}(x) = C \).

Operation \(O_6 \). The labeled tree \((T^{i+1}, S^{i+1})\) is obtained from \((T^i, S^i)\) and \((H_k, I^k)\), \(k \in \{2, 3\}\) (see Figure 1), in such a way that \(T^{i+1} = (T^i \cdot H_k)(u, v : u) \), where \(sta_{T_i}(u) = sta_{H_k}(v) = A \), and \(sta_{T^{i+1}}(u) = A \).

Remark that once a vertex is assigned a status, this status remains unchanged as the labeled tree \((T, S)\) is recursively constructed. By the above definitions we see that \(S_D(T) \) is empty when \((T, S) \in \mathcal{F}_{01,02} \). So, in this case, it is naturally to consider a labeling \(S \) as \(S : V(T) \to \{A, B, C\} \). From Theorem 1 we immediately obtain the following result.

Corollary 4. Let \(T \) be a tree of order at least 2. Then \(T \in \mathcal{R}_{01,02} \) if and only if there is a labeling \(S : V(T) \to \{A, B, C\} \) such that \((T, S) \) is in \(\mathcal{F}_{01,02} \). Moreover, if \((T, S) \in \mathcal{F}_{01,02} \) then

\[
(P_3) \quad S_B(T) = \{x \in V^{02}(T) \mid \deg(x) = 2 \text{ and } |N(x) \cap V^{02}(T)| = 1\}, \quad S_A(T) = V^{01}(T), \quad \text{and} \quad S_C(T) = V^{02}(T) - S_B(T).
\]

As an immediate consequence of Corollary 1 we obtain:

Corollary 5. If \((T, S_1), (T, S_2) \in \mathcal{F}_{01,02} \) then \(S_1 \equiv S_2 \).

A graph \(G \) is called a 2-corona if each vertex of \(G \) is either a support vertex or a leaf, and each support vertex of \(G \) is adjacent to exactly 2 leaves. In a labeled 2-corona all leaves have status \(A \) and all support vertices have status \(C \).
Proposition 3. Every connected n-order graph H, $n \geq 2$, is an induced subgraph of a $\mathcal{R}_{01,02}$-graph with the domination number equals to $2|V(H)|$.

Proof. Let a graph G be a 2-corona such that the induced subgraph by the set of all support vertices of G is isomorphic to H. Let x be a support vertex of G and y, z the leaf neighbors of x in G. Then clearly for any γ_R-function f on G, $f(x) + f(y) + f(z) \geq 2$, $f(y) \neq 2 \neq f(z)$ and $f(x) \neq 1$. Define RD-functions h and g on G as follows: (a) $h(u) = 2$ when u is a support vertex of G and $h(u) = 0$, otherwise, and (b) $g(v) = h(v)$ when $v \notin \{x, y, z\}$, and $g(x) = 0$, $g(y) = g(z) = 1$. Therefore $\gamma_R(G) = 2|V(H)|$ and G is in $\mathcal{R}_{01,02}$. □

Corollary 6. There does not exist a forbidden subgraph characterization of the class of $\mathcal{R}_{01,02}$-graphs. There does not exist a forbidden subgraph characterization of the class of γ_R-excellent graphs.

Let $\mathcal{S}_{01,02}$ be the family of all labeled trees (T, L) that can be obtained from a sequence of labeled trees $\lambda: (T^1, L^1), \ldots, (T^j, L^j), (j \geq 1)$, such that $(T, L) = (T^j, L^j)$, (T^1, L^1) is either (H_2, I^2) (see Figure 1) or a labeled 2-corona tree, and, if $j \geq 2$, (T^{i+1}, L^{i+1}) can be obtained recursively from (T^i, L^i) by one of the operations O_7 and O_8 listed below; in this case λ is said to be a $\mathcal{S}'_{01,02}$-sequence of T.

Operation O_7. The labeled tree (T^{i+1}, L^{i+1}) is obtained from (T^i, L^i) and (H_2, I^2), in such a way that $T^{i+1} = (T^i \cdot H_2)(u, v : u)$, where $sta_{T^i}(u) = sta_{H_2}(v) = A$, and $sta_{T^{i+1}}(u) = A$.

Operation O_8. The labeled tree (T^{i+1}, L^{i+1}) is obtained from (T^i, L^i) and a labeled 2-corona tree, say U_i, in such a way that $T^{i+1} = (T^i \cdot U_i)(u, v : u)$, where $sta_{T^i}(u) = sta_{U_i}(v) = A$, and $sta_{T^{i+1}}(u) = A$.

Again, once a vertex is assigned a status, this status remains unchanged as the 2-labeled tree T is recursively constructed.

Theorem 2. For any tree T the following are equivalent.

$(A_1) \; T$ is in $\mathcal{R}_{01,02}$.

$(A_2) \; There is a labeling $S: V(T) \rightarrow \{A, B, C\}$ such that (T, S) is in $\mathcal{S}_{01,02}$.

$(A_3) \; There is a labeling $L: V(T) \rightarrow \{A, B, C\}$ such that (T, L) is in $\mathcal{S}'_{01,02}$.

Proof. $(A_1) \Leftrightarrow (A_2)$: By Corollary 4.

$(A_3) \Rightarrow (A_2)$:
Let a tree $(T, L) \in \mathcal{S}'_{01,02}$. It is clear that all $\mathcal{S}'_{01,02}$-sequences of (T, L) have the same number of elements. Denote this number by $r(T)$. We shall prove that $(T, L) \in \mathcal{S}'_{01,02} \Rightarrow (T, L) \in \mathcal{S}_{01,02}$. We proceed by induction on $r(T)$. If $r(T) = 1$ then either
(T, L) is a labeled 2-corona tree, or (T, L) = (H_2, I^2). In both cases (T, L) ∈ ℰ_{01,02}.

We need the following obvious claim.

Claim 2.1 If (T', L') is a labeled 2-corona tree, w ∈ V(T') and sta(w) = A, then either (T', L') is (H_3, I^3) or there is a ℰ-sequence τ : (T^1, S^1), . . . , (T^i, S^i), (l ≥ 2), such that (T^1, S^1) = (H_3, I^3), w ∈ V(T^1), (T^i, S^i) = (T', L'), and (T^{i+1}, S^{i+1}) can be obtained recursively from (T^i, S^i) and (F_1, J^1) by operation O_5.

Suppose now that each tree (H, L_H) ∈ ℰ_{01,02} with r(H) < k is in ℰ_{01,02}, where k ≥ 2. Let λ : (T^1, L^1), . . . , (T^l, L^l), be a ℰ_{01,02}-sequence of a labeled tree (T, L) ∈ ℰ'_{01,02}. By the induction hypothesis, (T^{l-1}, L^{l-1}) is in ℰ_{01,02}. Let τ : (U^1, S^1), . . . , (U^m, S^m) be a ℰ-sequence of (T^{l-1}, L^{l-1}). Hence U^m = T^{l-1} and S^m = L^{l-1}. If (T^{l-1}, L^{l-1}) is obtained from (T^{l-1}, L^{l-1}) and (H_2, I^2) by operation O_7, then (U^1, S^1), . . . , (U^m, S^m), (T^{l-1}, L^{l-1}) = (T, L) is a ℰ-sequence of (T, L). So, let (T^{l-1}, L^{l-1}) be obtained from (T^{l-1}, L^{l-1}) and a labeled 2-corona tree, say (Q, L_q) by operation O_8. Hence (T^{l-1}, L^{l-1}) and Q have exactly one vertex in common, say w, and sta_{T^{l-1}}(w) = sta_Q(w) = sta_{T^l}(w) = A. By Claim 2.1, (Q, L_q) ∈ ℰ_{01,02} and it has a ℰ_{01,02}-sequence, say (Q^1, L_q^1), . . . , (Q^s, L_q^s) such that Q^s = Q, L_q = L_q^s, and w ∈ V(Q^1). Denote W^{m+i} = (V(U^m) ∪ V(Q^i)), and let a labeling S^{m+i} be such that S^{m+i}|_{U^m} = S^m and S^{m+i}|_{Q^i} = L_q^s. Then the sequence of labeled trees (U^1, S^1), . . . , (U^m, S^m), (W^{m+1}, S^{m+1}), . . . , (W^{m+s}, S^{m+s}) = (T, L) is a ℰ_{01,02}-sequence of (T, L).

(A_2) ⇒ (A_3):

Let a labeled tree (T, S) ∈ ℰ_{01,02}. Then (T, S) has a ℰ-sequence τ : (T^1, S^1), . . . , (T^i, S^i) = (T, S), where (T^1, S^1) ∈ {(H_2, I^2), (H_3, I^3)} ∈ ℰ'_{01,02}. We proceed by induction on p(T) = ∑_{z ∈ ℰ(T)} deg_T(z), where ℰ(T) is the set of all cut-vertices of T that belong to S_A(T). Assume first p(T) = 0. If j = 1 then we are done. If j ≥ 2 then (T^j, S^j) = (H_3, I^3) and (T^{j+1}, S^{j+1}) is obtained from (F_1, J^1) and (T^j, S^j) by operation O_5. Thus, (T, S) is a labeled 2-corona tree, which allow us to conclude that (T, S) is in ℰ'_{01,02}.

Suppose now that p(T) = k ≥ 1 and for each labeled tree (H, S_H) ∈ ℰ_{01,02} with p(H) < k is fulfilled (H, S_H) ∈ ℰ'_{01,02}. Then there is a cut-vertex, say z, such that (a) z ∈ S_A(T), (b) (T, S) is a coalescence of 2 graphs, say (T', S|_{T'}) and (T'', S|_{T''}), via z, and (c) no vertex in S_A(T) ∩ V(T'') is a cut-vertex of T''. Hence (T', S|_{T'}) ∈ ℰ'_{01,02} (by induction hypothesis) and (T'', S|_{T''}) is either a labeled 2-corona tree or H_2. Thus (T, S) is in ℰ'_{01,02}.

6.2. ℰ_{02,012}-trees.

Our aim in this section is to present a characterization of ℰ_{02,012}-trees. For this purpose, we need the following definitions. Let ℰ_{02,012} ⊂ ℰ be such that (T, S) ∈ ℰ_{02,012} if and only if (T, S) can be obtained from a sequence of labeled trees τ : (T^1, S^1), . . . , (T^j, S^j), (j ≥ 1), such that (T^1, S^1) = (F_3, J^3) (see Figure 2) and (T, S) = (T^j, S^j), and, if j ≥ 2, (T^{j+1}, S^{j+1}) can be obtained recursively from (T^j, S^j) by one of the operations O_9 and O_{10} listed below.
As a consequence of Theorem 3 and Corollary 7 we have:

Operation O_9. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_3, J^3) by adding the edge ux, where $u \in V(T^i)$, $x \in V(F_3)$, and $sta_{T^i}(u) = sta_{F_3}(x) = C$.

Operation O_{10}. The labeled tree (T^{i+1}, S^{i+1}) is obtained from (T^i, S^i) and (F_4, J^4) (see Figure 2) by adding the edge ux, where $u \in V(T^i)$, $x \in V(F_4)$, $sta_{T^i}(u) = D$, and $sta_{F_4}(x) = C$.

Note that once a vertex is assigned a status, this status remains unchanged as the labeled tree (T, S) is recursively constructed. By the above definitions we see that if $(T, S) \in \mathcal{R}_{01,02}$, then $S_A(T) = S_B(T) = \emptyset$. Therefore it is naturally to consider a labeling S as $S : V(T) \rightarrow \{C, D\}$.

From Theorem 1 we immediately obtain the following result.

Corollary 7. A tree T is in $\mathcal{R}_{02,012}$ if and only if there is a labeling $S : V(T) \rightarrow \{C, D\}$ such that (T, S) is in $\mathcal{R}_{02,012}$. Moreover, if $(T, S) \in \mathcal{R}_{02,012}$ then $S_C(T) = V^{02}(T)$ and $S_D(T) = V^{012}(T)$.

As an immediate consequence of Corollary 1 we obtain:

Corollary 8. If $(T, S_1), (T, S_2) \in \mathcal{R}_{02,012}$ then $S_1 \equiv S_2$.

Theorem 3. [3] If G is a connected graph of order $n \geq 3$, then $\gamma_R(G) \leq 4n/5$. The equality holds if and only if G is C_5 or is obtained from $\frac{n}{2}P_5$ by adding a connected subgraph on the set of centers of the components of $\frac{n}{2}P_5$.

As a consequence of Theorem 3 and Corollary 7 we have:

Corollary 9. Let G be a connected n-vertex graph with $n \geq 6$ and $\gamma_R(G) = 4n/5$. Then G is in $\mathcal{R}_{02,012}$ and $V^{012}(G)$ consists of all leaves and all support vertices. Moreover, if G is a tree, then G has a \mathcal{T}-sequence $\tau : (G^1, S^1), \ldots, (G^j, S^j)$, $(j \geq 1)$, such that $(G^1, S^1) = (F_3, J^3)$ (see Figure 2) and if $j \geq 2$, then (G^{i+1}, S^{i+1}) can be obtained recursively from (G^i, S^i) by operation O_9.

A graph G is said to be in class UVR if $\gamma(G - v) = \gamma(G)$ for each $v \in V(G)$. Constructive characterizations of trees belonging to UVR are given in [14] by Samodivkin, and independently in [11] by Haynes and Henning. We need the following result in [14] (reformulated in our present terminology).

Theorem 4. [14] A tree T of order at least 5 is in UVR if and only if there is a labeling $S : V(T) \rightarrow \{C, D\}$ such that (T, S) is in $\mathcal{R}_{02,012}$. Moreover, if $(T, S) \in \mathcal{R}_{02,012}$ then $S_C(T)$ and $S_D(T)$ are the sets of all γ-bad and all γ-good vertices of T, respectively.

We end with our main result in this subsection.
Theorem 5. For any tree T the following are equivalent:

(A_1) T is in $R_{02,012}$, \hspace{1cm} (A_5) T is in $R_{02,012}$, \hspace{1cm} (A_6) T is in UVR.

Proof. Corollary 7 and Theorem 4 together imply the required result. \hfill \square

7. Open problems and questions

We conclude the paper by listing some interesting problems and directions for further research. Let first note that if $n \geq 3$ and $G_{n,k}$ is not empty, then $k \leq 4n/5$ (Theorem 3).

An element of $RE_{n,k}$ is said to be isolated, whenever it is both maximal and minimal. In other words, a graph $H \in G_{n,k}$ is isolated in $RE_{n,k}$ if and only if $H \in R_{CEA}$ and for each $e \in E(H)$ at least one of the following holds: (a) $H - e$ is not connected, (b) $\gamma_R(H) \neq \gamma_R(H - e)$, (c) $H - e$ is not γ_R-excellent.

Example 1. (i) All γ_R-excellent graphs with the Roman domination number equals to 2 are K_2 and K_n, $n \geq 2$. If a graph $G \in R_{CEA}$ and $\gamma_R(G) = 2$, then G is complete. K_n is isolated in $RE_{n,2}$, $n \geq 2$.

(ii) [8] K_2, H_7 and H_8 (see Fig. 1) are the only trees in R_{CEA}.

(iii) If $RE_{n,k}$ has a tree T as an isolated element, then either $(n,k) = (2,2)$ and $T = K_2$, or $(n,k) = (9,7)$ and $T = H_7$, or $(n,k) = (10,8)$ and $T = H_8$.

- Find results on the isolated elements of $RE_{n,k}$.

- What is the maximum number of edges $m(G_{n,k})$ of a graph in $G_{n,k}$? Note that (a) $m(G_{n,2}) = n(n - 1)/2$, (b) $m(G_{n,3}) = n(n - 1)/2 - \lceil n/2 \rceil$.

- Find results on those minimal elements of $RE_{n,k}$ that are not trees.

Example 2. (a) A cycle C_n is a minimal element of $RE_{n,k}$ if and only if $n \equiv 0 \pmod{3}$ and $k = 2n/3$. (b) A graph G obtained from the complete bipartite graph $K_{p,q}$, $p \geq q \geq 3$, by deleting an edge is a minimal element of $RE_{p+q,4}$.

The height of a poset is the maximal number of elements of a chain.

- Find the height of $RE_{n,k}$.

Example 3. (a) It is easy to check that any longest chain in $RE_{6,4}$ has as the first element H_3 (see Fig 1) and as the last element one of the two 3-regular 6-vertex graphs. Therefore the height of $RE_{6,4}$ is 5.
(b) Let us consider the poset $\mathcal{RE}_{5r,4r}$, $r \geq 2$. All its minimal elements are γ_R-excellent trees (by Theorem 3 and Corollary 9), which are characterized in Corollary 9. Moreover, the graph obtained from rP_5 by adding a complete graph on the set of centers of the components of rP_5 is the largest element of $\mathcal{RE}_{5r,4r}$. Therefore the height of $\mathcal{RE}_{5r,4r}$ is $(r - 1)(r - 2)/2 + 1$.

- Find results on γ_{YR}-excellent graphs at least when Y is one of $\{-1, 0, 1\}$, $\{-1, 1\}$ and $\{-1, 1, 2\}$.

References

[1] H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, and V. Samodivkin, *Signed Roman domination in graphs*, J. Comb. Optim. 27 (2014), no. 2, 241–255.

[2] T. Burton and D.P. Sumnur, γ-excellent, critically dominated, end-dominated, and dot-critical trees are equivalent, Discrete Math. 307 (2007), no. 6, 683–693.

[3] E.W. Chambers, B. Kinnerslay, N. Prince, and D.B. West, *Extremal problems for Roman domination*, SIAM J. Discrete Math. 23 (2009), no. 3, 1575–1586.

[4] E.J. Cockayne, P.A. Jr. Dreyer, S.M. Hedetniemi, and S.T. Hedetniemi, *Roman domination in graphs*, Discrete Math. 278 (2004), no. 1, 11–22.

[5] J. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, *Signed domination in graphs*, Graph Theory, Combinatorics and Applications (Y. Alavi and A. Schwenk, eds.), Wiley, 1995, pp. 311–321.

[6] J. Dunbar, S.T. Hedetniemi, and A. McRae, *Minus domination in graphs*, Discrete Math. 199 (1999), no. 1-3, 35–47.

[7] G. Fricke, T. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, and R. Laskar, *Excellent trees*, Bull. Inst. Comb. Appl. 34 (2002), 27–38.

[8] A. Hansberg, N.J. Rad, and L. Volkmann, *Vertex and edge critical Roman domination in graphs*, Util. Math. 92 (2013), 73–97.

[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Fundamentals of domination in graphs*, Marcel Dekker, New York, 1998.

[10] T.W. Haynes and M.A. Henning, *A characterization of i-excellent trees*, Discrete Math. 248 (2002), no. 1-3, 69–77.

[11] ______, *Changing and unchanging domination: a classification*, Discrete Math. 272 (2003), no. 1, 65–79.

[12] M.A. Henning, *Total domination excellent trees*, Discrete Math. 263 (2003), no. 1-3, 93–104.

[13] E.M. Jackson, *Explorations in the classification of vertices as good or bad*, Master’s thesis, East Tennessee State University, 8 2001.

[14] V. Samodivkin, *Domination in graphs*, God. Univ. Arkhit. Stroit. Geod. Sofiya, Svitk II, Mat. Mekh. 39 (1996-1997), 111–135.
[15] ______, *The bondage number of graphs: good and bad vertices*, Discuss. Math. Graph Theory **28** (2008), no. 3, 453–462.

[16] T. Trotter, *Partially ordered sets*, Handbook of Combinatorics (Y. Alavi and A. Schwenk, eds.), Elsevier, 1995, pp. 433–480.