Screening of promising chemotherapeutic candidates from plants extracts

Junei Kinjo¹ · Daisuke Nakano¹ · Toshihiro Fujioka¹ · Hikaru Okabe¹

Received: 29 February 2016 / Accepted: 25 March 2016 / Published online: 16 April 2016
© The Japanese Society of Pharmacognosy and Springer Japan 2016

Abstract Over the course of our studies investigating anti-proliferative properties of compounds originating from plants against human gastric adenocarcinoma (MK-1), human uterine carcinoma (HeLa), murine melanoma (B16F10), and two human T cell lymphotropic virus type 1 (HTLV-1)-infected T-cell lines (MT-1 and MT-2), we have screened 582 extracted samples obtained from a variety of parts from 370 plants. A few extracts showed anti-proliferative activity against all cell lines, but upon further investigation, toxicity toward selected cell lines was recognized. After activity-guided fractionation, isolation of the active principles was achieved. Structure–activity relationship studies identified the components and functionalities responsible for the specific selectivity against each cancer cell line. The effect of polyacetylenes against MK-1 cells was more potent than against HeLa and B16F10 cells. The compound having a 3,4-dihydroxyphenethyl group also showed an anti-proliferative effect against B16F10 cells. Some 6-methoxyflavone derivatives and 8-hydroxy furano-coumarins were good inhibitors of HeLa cell growth. The 17 compounds whose EC₅₀ values were less than 1 nM did not show specific cellular selectivity. Because the cytotoxic effect of 24, 25-dihydrowithanolide D toward control cells was observed at a concentration about 100 times higher than those for the cancer cell lines, withanolide was identified as the most promising chemotherapeutic candidate in our experiments.

Keywords Cancer cell lines · Anti-proliferative activity · Activity-guided fractionation · Plant extracts · Active principles · Structure–activity relationship

Introduction

Development of anti-neoplastic drugs is the focus of numerous research programs around the world. Plants are the richest source of novel chemical compounds and in fact, many natural product-derived compounds have been identified as chemotherapeutic candidates [1]. For instance, vinca alkaloids, podophyllotoxins, taxanes, and camptothecins are four main classes of compounds that are well-known anti-neoplastic drugs originating from plants [2]. It is significant that over 60 % of the currently used anti-neoplastic drugs are derived from natural sources including plants [3].

Over the course of our studies investigating the anti-proliferative characteristics of compounds originating from plants against human gastric adenocarcinoma (MK-1), human uterine carcinoma (HeLa), murine melanoma (B16F10), and two human T cell lymphotropic virus type 1 (HTLV-1)-infected T-cell lines (MT-1 and MT-2), we have already reported many compounds active against cancer cell lines [4]. Herein, we report not only the screening results against the above cell lines but also the active principles and analysis of their structure–activity relationships.

Screening results

The 582 samples obtained from a variety of plant parts from 370 plants (302 genera, 104 families) were extracted with MeOH under reflux. The anti-proliferative effects of
the extracts against the MK-1, HeLa, B16F10, MT-1, and MT-2 cell lines were evaluated (Table 1). The extracts listed in Table 1 are classified in the Angiosperm Phylogeny Group III system. The extracts of the leaves of Annona squamosa (Annonaceae), the aerial parts and roots of Tylophora tanakae (Asclepiadaceae), and the leaves of Thuja occidentalis (Cupressaceae) showed the most potent anti-proliferative activities against all cell lines. The extracts of the leaves of Annona cherimola (Annonaceae), the fresh leaves of Tylophora ovata and T. ovata var. brownii (Asclepiadaceae), twigs of T. ovata, the roots of Saussurea lappa (Asteraceae), the seeds of Luffa acutangula (Cucurbitaceae), the leaves of Juniperus rigida (Cupressaceae), the woods of Haematoxylum brasiletto (Fabaceae), the rhizomes of Coptis japonica (Ranunculaceae), the roots of Ruta graveolens (Rutaceae), and the leaves of Cephalotaxus harringtonia (Taxaceae) showed decreasing levels of potency in the order listed. Homoharringtonine (Omacetaxine), a protein translation inhibitor for the treatment of chronic myelogenous leukemia, is found in the leaves of C. harringtonia [5]; therefore, the extract might show potent activity. There were a few extracts that had anti-proliferative activity against all cell lines and upon further investigation, toxicity toward selected cell lines was identified.

Table 2 shows a summary of the sensitivity of the plant extracts toward MK-1, HeLa, B16F10, MT-1, and MT-2 cells. The percentage of extracts that were active at concentrations of less than 100 μg/mL against the various cell lines were as follows: B16F10 (70 %), MK-1 (55 %), HeLa (39 %), MT-1 (23 %), and MT-2 (28 %). Adult T-cell leukemia/lymphoma (ATL) is a malignancy of mature peripheral T lymphocytes caused by HTLV-1. Although conventional chemotherapeutic regimens used against other malignant lymphomas have been administered to ATL patients, the therapeutic outcomes remain very poor. Therefore, these results suggest that a few plant extracts were sensitive to the T-cell lymphotropic virus type 1 (HTLV-1)-infected T cells (MT-1 and MT-2).

Active principles

Polyacetylenes (Fig. 1)

After activity-guided fractionation against MK-1, HeLa, B16F10, MT-1, and MT-2 cells, two active polyacetylenes, falcarindiol (1) and panaxydol (2), were isolated from the roots of Heracleum moellendorffii (Apiaceae) [6]. Six other polyacetylenes were isolated from the leaves of Angelica japonica (Apiaceae) [7] together with 1 and 2 after activity-guided fractionation against MK-1 cells. Among them, four compounds were furanocoumarin ethers of 1. It was evident that the effects of these compounds except for compound 3 against MK-1 cells were more potent than their effects against HeLa and B16F10 cells (Table 3). Because compound 2 showed 16 times greater activity when compared with its 8-hydroxy derivative (1), the presence of a hydroxy group at C-8 was presumed to reduce activity. The most potent compound was panaxydol (2), with an EC50 value of 1.2 μM against MK-1 cells. Bioactive panaxydol-type polyacetylenes in plant-derived foods have attracted attention as health-promoting compounds [8].

Lignans (Fig. 2)

After activity-guided fractionation against MK-1, HeLa, and B16F10 cells, seven lignans including deoxy-podophyllotoxin (9), (-)-deoxypodorphizone (10), and related compounds were isolated from the roots of Anthriscus sylvestris (Apiaceae) [9]. From the fruits of the same plant, two other lignans (14 and 15) were isolated together with 9 and 10 after activity-guided fractionation against MK-1, HeLa, and B16F10 cells [10]. Deoxypodophyllotoxin (9) showed higher activity than polyacetylenes against these cell lines. Etoposide, a clinically used chemotherapeutic agent against small-cell lung cancer, malignant lymphoma, and acute leukemia is a derivative of a podophyllotoxin isolated from Podophyllum peltatum (Berberidaceae) [11]. Of note is that the EC50 value of deoxypodophyllotoxin (9) was in the nanomolar range across all cell lines tested including MT-1 and MT-2 cells (Table 3). Topoisomerase II-inhibited DNA breakage was recognized as the mechanism of action of Etoposide. The structural features that are crucial for the anti-topoisomerase II activity of podophyllotoxin derivatives have been roughly identified as: bulky 7β-bulky substituent, trans-lactone in ring D, dioxolane ring in ring A, quasi-axial configuration of ring E, and 4'-hydroxy group [12].

Phenylethanoids (Fig. 3)

After activity-guided fractionation against B16F10 cells, two active phenylethanoids, acteoside (17) and isacteoside (18), were isolated from the leaves of Clerodendrum bungei and the bark of C. trichotomum (Lamiancaceae) [13]. Four other phenylethanoids including arenarioside (19) and leucosceptoside A (20) were isolated from the aerial parts of Lippia dulcis and L. canescens (Verbenaceae) together with some miscellaneous compounds after activity-guided fractionation against MK-1, HeLa, and B16F10 cells [14]. Furthermore, three other phenylethanoids (21–23) isolated from the leaves of Ligustrum purpurascens (Oleaceae) were also evaluated [15]. It was remarkable that the effect of phenylethanoids (17–23) against B16F10 cells was more potent than their effects against HeLa and MK-1 cells.
Table 1 Anti-proliferative activities of the plants extracts against MK-1, HeLa, B16F10, MT-1, and MT-2 cells

Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2	
Acanthaceae	Dicliptera japonica	Aerial parts	–	–	+	–	–	
	Justicia procumbens	Whole part	–	+	+	****	**	
Actinidiaceae	Actinidia chinensis	Fruits	+	+	+++++	–	–	
Adoxaceae	Sambucus chinensis	Leaves	–	–	–	–	–	
		Stems	–	–	–	–	–	
Aizoaceae	Tetragonia expansa	Whole part	–	–	+	–	–	
Amaranthaceae	Achyranthes fauriei	Roots	+++	+++	–	–	–	
	Celosia argentea	Seeds	–	–	–	–	–	
	Chenopodium ambrosioides	Aerial parts	–	–	–	–	–	
	Chenopodium ambrosioides var. anthelminticum	Leaves	+	–	+	–	–	
		Stems	–	–	–	NT	NT	
	Chenopodium graveolens	Aerial parts	++	+	+	–	**	
	Gomphrena globosa	Whole part	–	–	–	–	–	
Amaryllidaceae	Allium sativum var. pekinense	Bulbs	+++	+	+++++	–	–	
Anacardiaceae	Mangifera indica	Barks	+++++	+++++	++++++	–	–	
		Leaves	+	+	+++++	**	–	
		Peels	+	+	+	**	**	
		Pulp	–	–	–	–	–	
		Seeds	+++	+	+++++	**	**	
Annonaceae	Annona cherimola	Barks	+	–	+	****	****	
		Leaves	+++++	+++++	++++++	**	–	
	Annona muricata	Leaves	+++	+	++++++	–	–	
		Stems	+++	+	++++++	**	–	
	Annona reticulata	Barks	+	–	–	–	–	
		heartwoods	+	–	–	NT	NT	
		Leaves	+++	+	++++++	********	*	*
	Annona squamosa	Leaves	+++++	+++++	++++++	****	****	
		Twigs	+++	+++	+++	**	–	
Apiaceae	Angelica acutiloba	Fruits	+	–	–	NT	NT	
		Leaves	–	–	–	NT	NT	
	Angelica dahurica	Fruits	++	–	+	**	**	
	Angelica decursiva	Aerial parts	–	–	–	–	–	
		Leaves	++	–	–	NT	NT	
		Fruits	+	–	+	**	**	
	Angelica japonica	Fruits	++	–	–	NT	NT	
		Leaves	–	–	–	NT	NT	
	Angelica keiskei	Aerial parts	–	–	–	NT	NT	
		Leaves	–	–	–	NT	NT	
	Angelica kiusiana	Leaves	–	–	–	–	–	
	Angelica pubescens	Roots	+	+	+	–	–	
	Anethum graveolens	Fruits	–	–	–	NT	NT	
		Leaves	–	–	–	NT	NT	
		Roots	+++	–	–	NT	NT	
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2	
-----------------	--------------------------	------------------------	------	------	--------	------	------	
	Anthriscus cerefolium	Fruits	++	−	−	NT	NT	
	Anthriscus sylvestris	Fruits	++++	++++	++++	NT	NT	
		Leaves	++++	++++	++++	NT	NT	
		Roots	++++	++++	++++	NT	NT	
	Bupleurum falcatum	Leaves	−	−	−	NT	NT	
	Bupleurum rotundifolium	Fruits	++++	++	+++	NT	NT	
	Carum carvi	Fruits	++	−	+	NT	NT	
		Leaves	+	−	−	NT	NT	
		Roots	++++	−	+	NT	NT	
	Centella asiatica	Leaves	++	−	+	NT	NT	
		Aerial parts	+	−	+++	−	−	
	Citrus japonica	Fruits	++	++	+++	−	−	
	Citrus officinalis	Leaves	−	−	−	NT	NT	
		Rhizomes	−	−	+	−	−	
	Coriandrum sativum	Leaves	−	−	−	−	−	
		Fruits	++	−	+	NT	NT	
	Cryptotaenia japonica	Leaves	++	−	+	NT	NT	
	Foeniculum vulgare	Leaves	+	−	+	NT	NT	
	Glehnia littoralis	Fruits	++++	−	+++	NT	NT	
	Heracleum moellendorffii	Leaves	+	−	−	NT	NT	
		Roots	++++	−	−	NT	NT	
	Osmorhiza aristata	Aerial parts	−	−	++++	−	−	
		Roots	−	−	−	**	**	
	Peucedanum japonicum	Leaves	−	−	−	**	**	
		Stems, Root barks	+	+	−	**	**	
	Peucedanum praeruptorum	Roots	−	−	−	**	**	
Apocynaceae	*Apocynum venetum*	Whole part	+	−	+	−	−	
	Cerbera manghas	Barks	NT	NT	NT	**	**	
		Leaves	++++	−	+++	NT	NT	
		Aerial parts	−	−	−	****	****	
	Trachelospermum jasminoides	Leaves	−	−	−	**	**	
	Trachelospermum liukiuense	Aerial parts	−	−	+	−	−	
Aquifoliaceae	*Ilex cornuta*	Fruits	−	−	+	−	−	
		Leaves	+	−	+	**	****	
	Ilex kudingcha	Leaves	NT	NT	NT	−	−	
	Ilex latifolia	Leaves	−	−	+	−	−	
	Ilex rotundula	Fruits	−	−	−	**	**	
		Leaves	+	+	+	**	**	
Araceae	*Arisaema ringens*	Tubers	+	−	+	−	−	
	Pinellia ternata	Tubers	−	−	−	−	−	
Araliaceae	*Aralia cordata*	Roots	−	−	−	−	−	
	Aralia elata	Barks	+	−	+++	−	−	
		Leaves	+	−	+	−	−	
	Dendropanax trifidus	Barks	−	−	+	−	−	
		Fruits	−	−	+	−	−	
		Leaves	+	+	+++	−	−	
	Eleutherococcus senticosus	Root barks	−	−	+	**	**	
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2	
-----------------	-----------------------	---------------------	------	------	--------	------	------	
Araucariaceae	Araucaria heterophylla	Leaves	+	+	-	-	-	
Aristolochiaceae	Aristolochia spp.	Roots	+	+	-	-	-	
	Asarum nipponicum	Aerial parts	+	+	-	-	-	
	Asarum sieboldii	Roots	+	+	-	-	-	
Asclepiadaceae	Asclepias curassavica	Leaves	+	+	-	-	-	
	Cynanchum caudatum	Leaves	-	-	-	-	-	
	Marsdenia candurango	Roots	-	-	-	-	-	
	Marsdenia tomentosa	Leaves	-	-	-	-	-	
Asclepiadaceae	Metaplexis japonica	Aerial parts	-	-	-	NT	NT	
Periploca spp.	Roots	-	-	-	-	-	-	
Tylophora ovata	Fresh leaves	+	+	+	-	-	-	
Tylophora ovata	Fresh leaves	+	+	+	-	-	-	
Tylophora ovata	Twigs	+	+	+	-	-	-	
Tylophora tanakae	Aerial parts	+	+	+	-	-	-	
Asparagaceae	Anemarrhena asphodeloides	Roots, Rhizomes	-	-	-	-	-	
Dracaena draco	Barks	-	-	-	-	-	-	
Ophiopogon japonicus	Tubers	-	-	-	-	-	-	
Asteraceae	Achillea millefolium	Leaves	-	-	-	-	-	
	Stems	-	-	-	-	-	-	
Adenocaulon himalaicum	Aerial parts	+	+	+	-	-	-	
	Roots	-	-	-	-	-	-	
Adenostemma lavenia	Aerial parts	+	+	+	-	-	-	
Arctium lappa	Roots	-	-	-	-	-	-	
Artemisia absinthium	Aerial parts	+	-	-	-	-	-	
	Leaves	-	-	-	-	-	-	
	Roots	+	+	+	-	-	-	
Artemisia campestris	Aerial parts	+	+	+	-	-	-	
Artemisia capillaris	Aerial parts	+	+	+	-	-	-	
	Roots	+	+	+	-	-	-	
Artemisia ludoviciana var. mexicana	Aerial parts	+	+	+	-	-	-	
Aster spathulifolius	Leaves	+	+	+	-	-	-	
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2	
--------	-----------------	-------	------	------	--------	------	------	
			+	−	+	**	**	
Aster	verticillatum	Aerial parts	+	−	+	−	−	
Bidens	frondosa	Aerial parts	+	+	+	−	−	
		Roots, Rhizomes	++++	++++	+++	**	**	
Carthamus	tinctorius	Flowers	−	−	−	−	−	
Centaurea	benecktius	Leaves	+	−	+	NT	NT	
Chrysanthemum	vulgar	Aerial parts	+	+	+	**	**	
Cichorium	intybus	Aerial parts	+	−	+	−	−	
		Roots	+	−	+	−	−	
Cosmos	bipinnatus	Seeds	−	−	−	−	−	
Creasopetalum	crepidioides	Aerial parts	−	−	−	−	−	
		Roots, Rhizomes	−	−	+	−	−	
Crepidiastrum	lanceolatum	Aerial parts	−	−	−	−	−	
Eclipta	prostrata	Whole part	+	−	+	−	−	
Eupatorium	stoechadosum	Leaves	−	−	−	−	−	
		Roots	+	+++	+	−	−	
		Stems	−	−	−	−	−	
Euryops	pectinatus	Leaves	−	−	+	−	−	
		Stems	−	−	−	−	−	
Helianthus	annuus	Aerial parts	−	−	−	**	**	
Inula	helenium	Roots	+++	+++	+++	NT	NT	
Ligularia	japonica	Leaves	−	−	−	**	−	
		Roots	−	−	−	−	−	
Neurolaena	lobata	Leaves	−	+	+	NT	NT	
Parasenecio	tebakoensis	Aerial parts	+	−	+	−	−	
Santolina	chamaeyparissus	Leaves	−	−	+	−	−	
		Stems	−	−	+++	−	−	
Suaevia	lappa	Roots	++++	++++	++++	**	****	
Senecio	vulgaris	Whole part	−	−	−	−	−	
Siegesbeckia	glabrescens	Leaves	+	+	−	−	−	
		Roots	−	−	−	−	−	
Sonchus	asper	Aerial parts	−	−	+	−	−	
Tagetes	patula	Aerial parts	−	−	+	−	**	
		Roots	−	−	+	−	−	
Tridax	procumbens	Leaves	−	−	−	NT	NT	
Tussilago	farfara	Roots	+	−	+	−	−	
Wedelia	prostrata	Whole part	−	−	+	**	**	
Xanthium	strumarium	Fruits	−	−	−	−	−	
Balsaminaceae	Impatiens textori	Aerial parts	−	−	+	**	**	
Berberidaceae	Berberis japonica	Leaves	+	++	+++	−	**	
		Roots	+	+	++++	**	**	
Epimedium	grandiflorum subsp.	Roots, Rhizomes	−	−	−	−	−	
Epimedium	sagittatum	Aerial parts	++++	++++	++++	−	−	
Nandina	domestica	Barks	+	+	+++	−	**	
		Leaves	++	−	+++	−	−	
Bignoniaceae	Pseudocalyymna alliaceum	Aerial parts	−	−	+	**	−	
Boraginaceae	Lithospermum officinale var. erythrorhizon	Roots	−	−	−	−	−	
Brassicaceae	Isatis indigotica	Fruits	−	−	+	**	**	
Table 1 continued

Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
Lepidium apetalum	Seeds	++ ++	**	**			
Lepidium virginicum	Whole part	– –	+	–			
Thalipis arvense	Seeds	– –	–	–			
Burseraceae	Bursara simaruba	Fruits	+ +	+	–		
Campanulaceae	Codonopsis spp.	Roots	– –	–	–		
Cannabaceae	Humulus japonicus	Aerial parts	– –	+	**	**	
Caprifoliaceae	Lonicera japonica	Flowers	– –	–	–		
Caricaceae	Carica papaya	Barks	– –	–	–		
Caryophyllaceae	Agrostrum githago	Seeds	+	–	+	–	–
Vaccaria segetalis	Seeds	+ –	–	–	–		
Celastraceae	Celastrus orbicularis	Vines	– –	–	–	–	–
Euonymus alatus	Barks	– –	+++	+	++	**	**
Euonymus japonicus	Barks	– –	–	–	+	–	–
Myrtens diversifolia	Leaves	– –	–	–	+	–	–
Chloranthaceae	Sarcandra glabra	Roots	–	+++	+	–	–
Clusiaceae	Garcinia subelliptica	Barks	+	+	+++++	–	–
Garcinia xanthochymes	Leaves	– –	–	–	–		
Cornus officinalis	Fruits	– –	–	–	–		
Cumbretaceae	Terminalia chebula	Fruits	+	+++	+++++	**	**
Commelinaceae	Commelina communis	Whole part	– –	–	+	–	–
Cornaceae	Camptotheca acuminata	Fruits	++++	++++	+++	**	**
Cornus officinalis	Fruits	– –	–	–	–		
Crasulaceae	Bryophyllum pinnatum	Aerial parts	+	–	+	–	–
Hylotelephium erythrosticum	Roots	+	+	++	–	–	–
Orostachys japonicus	Whole part	– –	–	–	+	–	–
Sedum azozno var. floribundum	Roots	+++	+	+++	–	–	–
Sedum tomentosum	Whole part	– –	–	–	+	–	–
Cucurbitaceae	Actinostemma lobatum	Aerial parts	+	+	–	–	–
Citrullus colocynthis	Seeds	– –	–	–	–		
Gynostemma pentaphyllum	Aerial parts	– –	–	–	–		
Lagenaria leucantha var. gourda	Fruits	++++	++++	+	****	**	
Maytenus diversifolia	Leaves	– –	–	–	+	–	–
Chloranthaceae	Sarcandra glabra	Roots	–	+++	+	–	–
Caricaceae	Carica papaya	Barks	– –	–	–	–	–
Caryophyllaceae	Agrostrum githago	Seeds	+	–	+	–	–
Vaccaria segetalis	Seeds	+ –	–	–	–		
Celastraceae	Celastrus orbicularis	Vines	– –	–	–	–	–
Euonymus alatus	Barks	– –	+++	+	++	**	**
Euonymus japonicus	Barks	– –	–	–	+	–	–
Maytenus diversifolia	Leaves	– –	–	–	+	–	–
Chloranthaceae	Sarcandra glabra	Roots	–	+++	+	–	–
Clusiaceae	Garcinia subelliptica	Barks	+	+	+++++	–	–
Garcinia xanthochymes	Leaves	– –	–	–	–		
Pulp	+ –	–	–	–	–		
Seeds	+ –	–	–	–	–		
Stems	+ –	–	–	–	–		
Heartwoods	– –	–	–	–	–		
Leaves	+ –	–	–	–	–		
Barks	+ –	–	–	–	–		
Fruits	+ –	–	–	–	–		
Aerial parts	+ –	–	–	–	–		
Roots	+ –	–	–	–	–		
Seeds	+ –	–	–	–	–		
Stems	+ –	–	–	–	–		
Lagenaria leucantha var. gourda	Fruits	++++	++++	+	****	**	
Maytenus diversifolia	Leaves	– –	–	–	+	–	–
Chloranthaceae	Sarcandra glabra	Roots	–	+++	+	–	–
Caricaceae	Carica papaya	Barks	– –	–	–	–	–
Caryophyllaceae	Agrostrum githago	Seeds	+	–	+	–	–
Vaccaria segetalis	Seeds	+ –	–	–	–		
Celastraceae	Celastrus orbicularis	Vines	– –	–	–	–	–
Euonymus alatus	Barks	– –	+++	+	++	**	**
Euonymus japonicus	Barks	– –	–	–	+	–	–
Maytenus diversifolia	Leaves	– –	–	–	+	–	–
Chloranthaceae	Sarcandra glabra	Roots	–	+++	+	–	–
Clusiaceae	Garcinia subelliptica	Barks	+	+	+++++	–	–
Garcinia xanthochymes	Leaves	– –	–	–	–		
Pulp	+ –	–	–	–	–		
Seeds	+ –	–	–	–	–		
Stems	+ –	–	–	–	–		
Heartwoods	– –	–	–	–	–		
Leaves	+ –	–	–	–	–		
Barks	+ –	–	–	–	–		
Fruits	+ –	–	–	–	–		
Aerial parts	+ –	–	–	–	–		
Roots	+ –	–	–	–	–		
Seeds	+ –	–	–	–	–		
Stems	+ –	–	–	–	–		
Lagenaria leucantha var. gourda	Fruits	++++	++++	+	****	**	
Maytenus diversifolia	Leaves	– –	–	–	+	–	–
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
--------------	---	-------------	------	------	--------	------	------
Lagenaria	*leucantha* var. *microcarpa*	Fruits	++++	++++	+++	NT	NT
		Seeds	++++	++++	+++	–	–
Luffa	*acutangula*	Aerial parts	+	+	+	**	**
		Seeds	++	++++	++++	**	****
Luffa	*aegyptica*	Fruits	–	–	–	–	–
Momordica	*charantia*	Aerial parts	–	–	–	–	–
		Fruits	–	–	–	NT	NT
		Seeds	–	–	–	–	–
Momordica	*cochininchensis*	Fruits	–	–	–	NT	NT
Sicana	*odorifera*	Fruits	+	+	–	NT	NT
Trichosanthes	*kirilowii* var. *japonica*	Roots	+++	+++	+	–	–
Biota	*orientalis*	Leaves	++	++	+++	**	**
Juniperus	*chinensis* var. *kaizuka* Hort.	Leaves	+	+	+	**	**
		Stems	+	+	+	–	–
Juniperus	*rigida*	Leaves	+++	+++	++++	****	****
		Stems	+	+++	+	**	**
Thuja	*occidentalis*	Leaves	++++	++++	++++	*****	*****
		Stems	+	+++	+++	*	**
Cupressaceae							
	Cycas revoluta	Leaves	–	–	+	–	–
		Peels	–	–	+	–	–
		Seed kernels	–	–	–	–	–
Daphniphyllaceae	*Daphniphyllum macropodum*	Barks	–	+	–	–	–
		Leaves	–	–	+	–	–
Elaeocarpaceae	*Elaeocarpus sylvestris* var. *ellipticus*	Barks	+++	+++	+++	**	**
		Leaves	+++	+++	+	**	**
Eucommiaceae	*Eucommia ulmoides*	Barks	–	–	–	**	**
Euphorbiaceae	*Acalypa australis*	Roots	++	+	+	–	–
		Leaves	+	–	+	–	–
		Aerial parts	+	+	+	–	–
		Roots	+	+	+	–	–
		Whole part	+++	+	+	–	–
		Aerial parts	+++	+	+	–	–
		Seeds	+++	–	–	–	–
Fabaceae	*Acacia melanoxylon*	Barks	+++	+	+++	–	–
		Leaves	+	+	+	–	**
		Flowers	NT	NT	NT	–	–
		Roots	–	+	–	–	–
		Seeds	–	–	+	**	**
Cassia	*obtusifolia*	Seeds	–	–	+	–	–
		Leaves	+	–	+	–	–
		Stems	–	–	+	–	–
Erythrina	*variegata* var. *orientalis*	Barks	–	+	–	–	–
		Roots	–	+	–	–	–
		Seeds	+	+	+++	–	–
		Leaves	+	–	++	–	–
		Underground parts	–	+	–	–	–
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
--------------	---	----------	-------	------	--------	------	------
	Glycyrrhiza uralensis	Roots	-	+	-	-	-
	Haematoxyllum brasiliense	Woods	++++	++++	++++	***	****
	Lonchocarpus oxacensis	Roots	+	-	-	NT	NT
	Lonchocarpus unifoliolatus	Roots	+	-	-	NT	NT
	Medicago polymorpha	Whole part	-	-	-	-	-
	Mellotus officinalis	Whole part	-	+	-	-	-
	Psoralea corylifolia	Seeds	+++	+++	++++	**	-
	Rhynchosia volabilis	Seeds	++++	+++	++++	**	-
	Sophora japonica	Fruits	-	-	+	**	**
	Trifolium dubium	Aerial parts	-	+	-	-	-
	Zornia spp.	Leaves	+	-	+	-	**
Gelsemiaceae	**Gelsemium sempervirens**	Leaves	-	-	+++	-	-
		Stems	-	-	+	-	-
Geraniaceae	**Pelargonium graveolens**	Leaves	++++	+	++++	-	**
		Stems	++++	+	++++	-	**
Iridaceae	**Crocosmia aurea**	Bulbs	-	-	-	-	-
Juglandaceae	**Juglans mandshurica var. sachalinensis**	Barks	++	++	+++	-	-
Lamiaeae	**Ajuga decumbens**	Whole part	-	-	-	-	-
	Ajuga reptans	Leaves	-	-	-	-	-
	Caryopteris incana	Aerial parts	-	-	+	-	-
	Clerodendron thomsoniae	Leaves	-	-	-	NT	NT
	Clerodendrum bungei	Flowers	-	-	-	-	-
		Leaves	-	-	++	-	-
		Stems	-	-	-	-	-
	Clerodendrum trichotomum	Barks	+	-	+++	-	-
		Flowers	-	-	-	-	-
		Fruits	-	-	+	-	-
		Leaves	-	-	+++	-	-
	Elsholtzia ciliata	Aerial parts	+	-	+	-	-
	Glechoma longituba	Whole part	-	-	-	-	-
	Isodon japonicus	Leaves	+	+	++++	-	-
		Roots	+	+	-	-	-
		Stems	+	+	++++	-	-
	Lamium amplexicaule	Whole part	-	-	-	-	-
	Leonurus sibiricus	Aerial parts	-	-	**	**	**
		Roots	-	-	+	-	-
		Seeds	-	-	+	-	-
	Rosmarinus officinalis	Leaves	++++	+	++++	**	**
	Salvia miltiorrhiza	Roots	+	-	+	-	-
	Scutellaria baicalensis	Roots	+	+	-	-	-
	Scutellaria barbata	Whole part	-	-	+	**	**
	Teucrium japonicum	Leaves	-	-	+++	-	-
	Vitex trifolia	Branches	NT	NT	NT	NT	-
Lamiaceae	**Cinnamomum cassia**	Barks	+	+	+	**	**
		Leaves	-	-	-	-	-
	Lindera strychnifolia	Roots	+	+	-	-	-
	Persea americana	Leaves	++++	++++	++++	-	-
		Pulp	+	+++	+	-	-
		Seeds	+	+	-	-	-
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
---------------	--	----------------	------	------	--------	------	------
Liliaceae	*Fritillaria verticillata* var. *thungergii*	Twigs	+	+	+	−	−
Lythraceae	*Capsia hyssopifolia*	Aerial parts	+	+	+	−	−
		Roots	++	+	+	−	−
	Punica granatola	Peels	++++	+	+++	**	**
Magnoliaceae	*Magnolia ova*	Barks	+	+	+	−	−
Malvaceae	*Abelmoschus manihot*	Leaves	−	+	+	−	−
	Althaeae cannabina	Leaves	−	−	−	−	−
	Chorisia speciosa	Immatured fruits	−	−	−	−	−
	Corchoropsis tomentosa	Fruits	−	−	+	**	**
		Leaves	+	+	+++	−	−
		Stems	−	−	+	−	−
	Gossypium arboresum	Leaves	+	+	++	−	−
		Roots	+	+	++	−	−
		Stems	+	−	+	−	−
	Gossypium brasiliensis	Leaves	++	++	++	−	−
		Roots	−	+	+	−	−
		Stems	−	+	+	−	−
	Malvaviscus arboresus	Leaves	+	−	−	−	−
		Barks	+	+	+	**	**
		Leaves	+	+	+	−	−
		Barks	−	−	−	−	−
		Heartwoods	−	−	−	−	−
		Leaves	+++	+	+++	**	**
Menispermaceae	*Melia azedarach* var. toosendan*	Fruits	−	−	++++	**	**
Moraceae	*Cocos trilobus*	Fruits	−	−	+	−	−
		Leaves	+	+	+	−	−
		Vines	−	−	+	−	−
	Stephania tetrandra	Roots	−	−	+	**	**
		Stems	−	−	−	−	−
	Tinospora tuberculata	Stems	−	−	−	−	−
Myrtaceae	*Ficus carica*	Leaves	−	−	+	−	−
	Ficus pumila	Fruits	+	−	+	−	−
		Leaves	+	+	+++	−	−
		Stems	−	−	+	−	−
	Morus alba	Root barks	−	−	−	−	−
	Myristica fragrans	MeOH−oil	++	++	++	NT	NT
		MeOH−ppt	−	−	+	−	−
Muntingiaceae	*Muntingia calabura*	Fruits	+	−	+	NT	NT
		Leaves	+++	+	++	−	−
	Myrtaceae	Fruits	−	−	−	−	−
		Leaves	+	+	+++	−	−
		Twigs	+++	+	+++	−	−
	Psidium cattleyanum	Branches	+++	+	+	−	−
		Fruits	−	−	−	−	−
		Leaves	+	+	+	−	−
	Psidium guajava	Branches	+	+	+++	−	−
		Leaves	+	+	+	−	−
		Twigs	+++	+++	+++	−	−

Table 1 continued
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
Nyctaginaceae	Mirabilis jalapa	Leaves	-	-	+	-	**
		Roots	+	+	+	-	-
Oleaceae	Ligustrum japonicum	Immatured fruits	+	-	+	-	-
		Leaves	+	+	+	NT	NT
	Ligustrum lucidum	Fruits	+	-	+	-	-
		Leaves	+	-	++	-	-
	Ligustrum ovalifolium	Leaves	-	-	+	-	-
	Ligustrum purpurascens	Leaves	+	+	+	-	-
Orchidaceae	Dendrobium spp.	Aerial parts	+	+	+	-	-
Orobancheaceae	Cistanche deserticola	Stems	-	-	+	-	-
Oxalidaceae	Averrhoa carambola	Barks	-	-	+	-	-
		Leaves	+	-	+	-	-
Paonaceae	Paephina lactiflora	Roots	-	-	-	-	-
Papaveraceae	Corydalis heterocarpa var. japonica	Aerial parts	-	-	+	**	**
		Roots	+	-	-	-	-
	Corydalis tartschaniowii var. yuhanusuo	Tubers	+	+	+	-	**
Phyllanthaceae	Phyllanthus aciduse	Leafstalks, Twigs	-	-	-	-	-
Phyllanthus urinaria		Leaves	+	-	-	-	-
Phytolaccaceae	Petiveria alliacea	Leaves	+	+	+++	NT	NT
Phytoleca americana		Roots	-	-	-	-	-
Rivina humilis		Aerial parts	-	-	+	-	-
Piperaceae	Piper spp.	Leaves	+	-	+	**	**
Pittosporaceae	Pittosporum tobira	Barks	-	-	-	-	-
		Fruits	+	+	+	-	-
		Leaves	+	-	+	-	-
		Peels	+	+	+	**	**
Plantaginaceae	Pentstemon gloxinioides	Leaves	-	-	+	-	-
		Rhizomes	-	-	+++	-	-
		Stems	-	-	+	-	-
Picrorhiza scrophulariiflora		Rhizomes	-	-	+	-	-
Polygala tenerifolia		Roots	-	-	-	-	-
Polygala orientale		Seeds	+	+	+++	-	-
Polygala tinctorium		Whole part	+	+	+	-	-
Plumbaginaceae	Plumbago capensis	Whole part	+	+	+	-	-
Podocarpaceae	Podocarpus macrophyllus	Leaves	+	+	+++	-	-
		Stems	+	+	+++	-	-
Polygalaceae	Polygala tenerifolia	Roots	-	-	-	-	-
Polygonaceae	Fallopia japonica	Roots	+	+	+	-	-
		Seeds	+	+	+++	-	-
	Polygonum tinctorium	Whole part	-	-	-	**	**
Rheum palmatum		Rhizomes	++++	+	++++	-	-
Rumex acetosa		Roots, Rhizomes	-	-	+	**	**
Rumex japonicus		Roots, Rhizomes	-	-	++	-	**
Polybiaceae	Drymaria fortunii	Rhizomes	-	-	+	-	-
Polybiaceae	Phlebodium aureum	Dried roots	+	-	+	-	-
		Fresh roots	+	-	-	**	**
		Whole part	+	-	+	-	-
Portulacaceae	Portulaca oleracea	Whole part	+	-	+	-	**
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
------------------	-----------------	---------------------	------	------	--------	------	------
Primulaceae	Ardisia crenata	Leaves	–	–	+++++	–	–
		Roots	+++++	+	+++	****	****
		Stems	–	–	+++	–	–
Ardisia japonica		Leaves	+	+	+	–	–
		Stems, Underground parts	+	+	+++	–	–
Lysimachia japonica		Whole part	–	–	+	–	–
Proteaceae	Macadamia ternifolia	Leaves	+	+	+++	–	–
		Twigs	+++	++	+++	NT	NT
Pteridaceae	Pteris multifida	Aerial parts	–	–	+	–	–
		Roots, Rhizomes	+	+	+	–	–
Ranunculaceae	Cimicifuga simplex var. ramosa	Aerial parts	–	–	+	–	–
		Underground parts	–	+	–	–	–
	Clematis paniculata	Aerial parts	+	–	+	–	–
	Coptis japonica	Rhizomes	++++	++++	++++++	**	**
	Thalictrum thunbergii	Aerial parts	–	–	+	–	–
		Underground parts	–	–	+++	–	–
Rhamnaceae	Berchemia racemosa	Leaves	–	–	+	–	–
		Stems	–	–	+	–	–
	Boehmeria dulcis	Fruits	–	–	+	–	–
	Zizyphus jujuba var. jujuba	Fruits	–	–	–	–	–
	Zizyphus jujuba var. spinosa	Seeds	–	–	+	–	–
Rehmanniaceae	Rehmannia glutinosa var. purpurea	Roots	–	–	–	–	–
Rosaceae	Agrimonia pilosa	Whole part	–	–	++	–	–
	Chaenomeles sinensis	Fruits	–	–	+	++	–
	Crataegus cuneata	Fruits	–	+	–	–	–
	Eryobotrya japonica	Barks	+	+	+	–	–
	Geum japonicum	Aerial parts	+	+	+	–	–
		Roots	+	+	+++	–	–
	Potentilla chrysanthi	Whole part	–	–	+	–	–
	Potentilla fragarioides var. major	Aerial parts	–	–	+	–	–
		Underground parts	+	+	+++	**	**
	Potentilla indica	Whole part	+	–	+	–	–
	Prunus armeniaca	Seeds kernels	–	+	–	–	–
	Rosa multiflora	Fruits	–	+	–	–	–
	Rubus hirsutus	Aerial parts	–	–	+	–	–
	Sanguisorba officinalis var. carnea	Roots	+	–	+	–	–
Rubiaceae	Damnocanthus macrophyllus var. macrophyllus	Leaves	–	–	++	–	–
		Roots	–	–	–	–	–
		Stems	–	–	–	–	–
	Galium pogsnoanthum	Aerial part	–	–	+	–	–
	Hamelia patens	Leaves, Twigs	+	–	++	–	–
	Hedyotis diffusa	Whole part	–	–	–	–	–
	Paederia scandens	Fruits	–	+	–	–	–
		Leaves	–	–	–	–	–
		Stems	–	–	–	–	–
	Rubia argyi	Roots	+++++	++++	++++	**	**
	Uncaria rhynchophylla	Hooks	–	–	++	–	–
Rutaceae	Boeninghausenia japonica	Aerial parts	+	+	+	**	**
		Roots	+++	++++	++++	**	**
Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
-------------------	-------------------------	--------------	------	------	--------	------	------
Citrus grandis	Peels	--	--	+	--	--	--
Citrus natsudaidai	Immatured fruits	--	--	+	--	--	--
Evodia rutaecarpa	Barks	--	--	+	--	--	--
Orissa japonica	Leaves	+	+	+	--	--	--
Phellodendron amurense	Barks	+	+	++++	**	****	****
Ruta graveolens	Aerial parts	--	+	++++	**	***	***
Zanthoxylum ailanthoides	Barks	+	+	+++	**	**	**
Zanthoxylum bungeanum	Peels	--	+	+	**	**	**
Sapindaceae	Aesculus turbinata	++	--	--	--	--	--
Sapindaceae	Alangium malabarum	++	--	--	--	--	--
Dimocarpus longan	Leaves	+++	+	+++	--	--	--
Litchi chinensis	Leaves	+	+	+++	--	--	--
Sapindus makurossi	Peels	+++	+++	+++	****	**	**
Sapotaceae	Chrysophyllum cainito	Leaves	+	+	NT	NT	NT
Schisandraceae	Kadsura japonica	Leaves	--	--	+	--	--
Schisandraceae	Schisandra chinensis	Fruits	--	--	--	--	--
Scrophulariaceae	Scrophularia baergerianna	Roots	--	--	--	--	--
Simaroubaceae	Picrasma quassioides	Woods	+	+	--	--	--
Smilacaceae	Smilax china	Rhizomes	+	+	++	--	--
Solanaceae	Brunfelsia latifolia	Leaves	+	--	--	--	--
Nicandra physalodes	Fruits	--	--	--	--	--	--
Physalis angulata	Aerial parts	+++	+++	+++	--	--	--
Physalis pruinosa	Aerial parts	++++	+++	+	++	***	***
Solanum mammosum	Aerial parts	+	+	--	--	--	--
Solanum nigrum	Aerial parts	--	+	++	**	**	**
Taxaceae	Cephalotaxus harringtonia	Leaves	++++	++++	+++	****	****
Torreya grandis	Seeds	++	+	+++	--	--	--
Theaceae	Camellia sinensis	Leaves	++	NT	NT	NT	NT
Thymelaeaceae	Daphne genkwa	Flowers	+	+	+	**	**
Because the effects of compound 23 were extremely weak, this suggested the 3,4-dihydroxyphenethyl group is essential for the observed strong anti-proliferative activity. Furthermore, 3,4-dihydroxyphenethyl alcohol itself showed potent activity [13]. It is also known that treatment of phenylethanoids resulted in apoptotic cell death [16].

Polyphenols (Fig. 4)

Epidemiological studies have suggested that the consumption of green tea [Camellia sinensis (Theaceae)] provides protection against stomach cancer. In a rural area of northern Kyushu, Japan, a decreased risk of stomach cancer was also noted among people reporting a high consumption of green tea [17]. Fractionation of green tea extract, guided by the anti-proliferative activity against MK-1 cells, resulted in the isolation of six flavan-3-ols (24–29) together with the inactive glycosides of kaempferol and quercetin [18]. A study of their structure–activity relationships suggested that the presence of the three adjacent hydroxyl groups (pyrogallol or galloyl group) in the molecule is a key factor for enhancing the compound’s activity. Six active polyphenols (30–35) were isolated from the seeds of Rhynchosia volubilis (Fabaceae) after activity-guided fractionation against MK-1, HeLa, and B16F10 cells [19]. These compounds all showed much stronger inhibition against B16F10 cell growth than against HeLa and MK-1 cell growth. Gallic acid (31) with a free carboxyl group showed higher activity than its methyl ester (32). A hydrolysable tannin (36) and two condensed tannins (37, 38) isolated from Phyllanthus emblica (Phyllanthaceae) also showed potent activity [20] against three cell lines. It was proposed that the anti-cancer properties of polyphenols may be related to their ability to participate in a copper-dependent prooxidant mechanism [21].

Flavones (Fig. 5)

After activity-guided fractionation against MK-1, HeLa, and B16F10 cells, 11 active flavones (39–49) were isolated.

Table 1 continued

Family	Scientific name	Parts	MK-1	HeLa	B16F10	MT-1	MT-2
Urticaceae	Daphne odora	Roots	–	–	++++	–	–
	Edgeworthia chrysantha	Roots	–	–	+	–	–
	Cecropia obtusifolia	Fresh leaves	+	–	+	–	–
		Leaves	++	+	+	–	–
	Urtica dioica	Leaves, Twigs	–	–	–	–	–
	Urtica thunbergiana	Aerial parts	–	–	+	–	–
Verbenaceae	Aloysia triphylla	Leaves	+++	+	+	–	–
	Lantana camara var. aculeata	Leaves	+++	+++	+	–	–
		Stems	+++	+++	+	–	–
	Lantana montevidensis	Leaves	++++	++++	++++++	–	–
	Lippia canescens	Aerial parts	–	–	+	–	–
	Lippia dulcis	Aerial parts	+	–	+++	–	–
	Lippia triphylla	Leaves	+	–	+++	–	–
		Stems	–	–	+	–	–
	Verbena brasiliensis	Aerial parts	+	–	+	–	–
		Roots	+	–	++	–	–
	Verbena officinalis	Aerial parts	+	–	+	–	–
		Roots	–	–	–	–	–
Vitaceae	Cayratia japonica	Aerial parts	–	–	+	–	–
Xanthorrhoeaceae	Aloe ferox	Leaves	+	–	–	–	–
Zingiberaceae	Alpinia japonica	Fruits	–	–	–	–	–
		Seeds	–	+	+	–	**
	Curcuma zedoaria	Rhizomes	+	–	+	**	**
	Hedychium coronarium	Rhizomes	+	+	+	**	**
	Zingiber officinale	Rhizomes	+	+	++	**	****

The extracts are classified in the Angiosperm Phylogeny Group III system. EC_{50} values against MK-1, HeLa, and B16F10 cells (<3.13 µg/mL, +++++; 3.13–6.25 µg/mL, +++++; 6.25–12.5 µg/mL, ++++; 12.5–25 µg/mL, +++; 25–50 µg/mL, ++; 50–100 µg/mL, +; >100 µg/mL, -). EC_{50} values against MT-1 and MT-2 cells (<0.1 µg/mL, ********; 0.1–1 µg/mL, ******; 1–10 µg/mL, ****; 10–100 µg/mL, **; >100 µg/mL, -)

NT not tested
from the leaves of *Lantana montevidensis* (Verbenaceae) [22]. Concurrently, several related flavones (50–57) isolated from other plant materials and two synthetic ones (58, 59) were also evaluated. 5,7-Dihydroxy flavones (39, 50, 51), 5,7-dihydroxy-6-methoxy flavones (40, 41, 54, 55), and 6-methoxy flavone (59) were much stronger inhibitors of HeLa cell growth than B16F10 and MK-1 cell growth. In particular, compound 59 was a potent inhibitor of HeLa cell growth. Therefore, the 6-methoxy group is likely important for enhancing the anti-proliferative activity of flavones against HeLa cells. A synthetic flavone derivative, flavopiridol (Alvocidib), is being evaluated in clinical trials of ovarian and primary peritoneal cancers [23].

Sesquiterpenes (Fig. 6)

After activity-guided fractionation against MK-1, HeLa, and B16F10 cells, five active sesquiterpenes (60–64) were isolated from the roots of *Inula helenium* (Asteraceae) together with an inactive sesquiterpene (65) and a weak one (66) [24]. A structure–activity study suggested that the presence of an α-methylene-γ-lactone group is a key component required for the anti-proliferative activity. The thiol reactivity of the α-methylene-γ-lactone group may be responsible for the observed anti-proliferative activity [25]. Two norsesquiterpene glycosides from the roots of *Phyllanthus emblica* (Phyllanthaceae) exhibited potent activity (data not shown) although their aglycone and monogluco-side showed no inhibitory activity [20].

Triterpene glycosides (Fig. 7) and triterpenes (Fig. 8)

From the bioactive fraction of the fruits of *Bupleurum rotundifolium* (Apiaceae), ten ursane-type triterpene glycosides were isolated and their anti-proliferative activities against MK-1, HeLa, and B16F10 cells were estimated [26]. All active glycosides (67–71) have a 13β, 28-epoxy
Compound name	MK-1	HeLa	B16F10	MT-1	MT-2	Normal
Falcarindiol (1)	15	149	89	NT	NT	NT
Panaxynol (2)	1.2	224	80	NT	NT	NT
8-O-Acetylfalcarindiol (3)	274	175	203	NT	NT	NT
(9Z,1,9-Heptadecadiene-4,6-diyn-3,8,1 1-triol (4)	8	106	62	NT	NT	NT
Japoangelol A (5)	15	24	32	NT	NT	NT
Japoangelol B (6)	8.7	26	42	NT	NT	NT
Japoangelol C (7)	20	32	28	NT	NT	NT
Japoangelol D (8)	30	41	53	NT	NT	NT
Deoxypodophyllotoxin (9)	0.055	0.082	0.21	0.006	0.003	NT
(-)-Deoxypodorhizone (10)	1.85	3.2	4	NT	NT	NT
Nemerosin (11)	1.8	1	1.8	NT	NT	NT
Anthriscinol methyl ether (12)	13	11	11	NT	NT	NT
Elemicin (13)	22	9.6	13	NT	NT	NT
Anthriscusin (14)	6.2	5.2	7.5	NT	NT	NT
Morelensin (15)	0.24	0.14	0.23	NT	NT	NT
(-)-Hinokinin (16)	4.8	7.3	7.6	NT	NT	NT
Acteoside (17)	35	50	11	NT	NT	NT
Isoacteoside (18)	40	32	10	NT	NT	NT
Arenarioside (19)	34	34	16	NT	NT	NT
Leucosceptoside A (20)	42	33	28	NT	NT	NT
Ligupurpuroside A (21)	26	69	6.5	NT	NT	NT
Ligupurpuroside C (22)	49	49	11	NT	NT	NT
Ligupurpuroside B (23)	>135	>135	>135	120	NT	NT
Epicatechin (24)	45	NT	NT	NT	NT	NT
Epigallocatechin (25)	14	NT	NT	NT	NT	NT
Epigallocatechin gallate (26)	9	NT	NT	NT	NT	NT
Gallocatechin (27)	14	NT	NT	NT	NT	NT
Epicatechin gallate (28)	14	NT	NT	NT	NT	NT
Gallocatechin gallate (29)	10	NT	NT	NT	NT	NT
7-O-Galloyl catechin (30)	41	38	9	NT	NT	NT
Gallic acid (31)	19	22	7.1	NT	NT	NT
Gallic acid methylester (32)	65	43	18	NT	NT	NT
Trigalloylgallic acid (33)	10	9.3	2.9	NT	NT	NT
1-O-Galloylgallose (34)	60	45	15	NT	NT	NT
1,6-Di-O-galloylgallose (35)	39	29	8.1	NT	NT	NT
Corilagin (36)	13	30	4.7	NT	NT	NT
Prodelphidin B1 (37)	13	15	3.3	NT	NT	NT
Prodelphidin B2 (38)	15	15	3.3	NT	NT	NT
Apigenin (39)	22	15	26	NT	NT	NT
Hispidulin (40)	83	17	67	NT	NT	NT
Eupafolin (41)	29	6	16	NT	NT	NT
Compound 42	55	55	18	NT	NT	NT
Compound 43	73	73	29	NT	NT	NT
Compound 44	33	44	39	NT	NT	NT
Cirsiliol (45)	18	21	9	NT	NT	NT
Eupatorin (46)	58	15	44	NT	NT	NT
Cirsilineol (47)	17	203	73	NT	NT	NT
Compound 48	22	14	14	NT	NT	NT
Compound name	MK-1	HeLa	B16F10	MT-1	MT-2	Normal
---------------	------	------	--------	------	------	--------
Chrysin (50)	63	8	51	NT	NT	NT
Luteolin (51)	31	10	21	NT	NT	NT
Baicalein (52)	26	30	11	NT	NT	NT
6-Hydroxyluceolin (53)	26	30	13	NT	NT	NT
Pectolinarigenin (54)	115	10	64	NT	NT	NT
Desmethoxycentauredin (55)	24	9	64	NT	NT	NT
Jaceosidin (56)	27	33	27	NT	NT	NT
Eupatilin (57)	55	35	58	NT	NT	NT
7-Methoxyflavone (58)	119	87	119	NT	NT	NT
6-Methoxyflavone (59)	398	8	398	NT	NT	NT
1,3,11(13)-Elematrien-8β, 12-olide (60)	6.9	13	4.3	NT	NT	NT
5α-Epoxyalantolactone (61)	6.9	6.5	3.6	NT	NT	NT
4β,5α-epoxy-1(10),11(13)-germacradiene-8,12-olide (62)	12	33	14	NT	NT	NT
Alantolactone (63)	6.9	6.9	4.7	NT	NT	NT
Isoalantolactone (64)	44	41	29	NT	NT	NT
11α,13-Dihydroalantolactone (65)	>427	>427	>427	NT	NT	NT
11α,13-Dihydroisoalantolactone (66)	>427	>427	>427	44	NT	NT
Rotundifolioside I (67)	20	37	18	NT	NT	NT
Rotundifolioside J (68)	16	21	11	NT	NT	NT
Rotundifolioside A (69)	48	71	31	NT	NT	NT
Rotundifolioside H (70)	18	31	18	NT	NT	NT
Rotundifolioside G (71)	84	>108	46	NT	NT	NT
Rotundifolioside E (72)	>110	>110	>110	NT	NT	NT
Rotundifolioside F (73)	>108	>108	>108	NT	NT	NT
Rotundioside F (74)	17	19	6.6	NT	NT	NT
Rotundioside G (75)	7.8	15	17	NT	NT	NT
Rotundioside T (76)	13	12	7.7	NT	NT	NT
Rotundioside Q (77)	34	37	12	NT	NT	NT
Rotundioside S (78)	19	34	8.9	NT	NT	NT
Ursolic acid lactone (79)	90	88	194	NT	NT	NT
Ursolic acid (80)	19	65	14	NT	NT	NT
Pomolic acid (81)	55	59	29	NT	NT	NT
Corosolic acid (82)	59	69	44	NT	NT	NT
2α,3α-Dihydroxy-urs-12-en-28-oic acid (83)	55	38	36	NT	NT	NT
3-Epipasminic acid (84)	21	21	19	NT	NT	NT
Psoralen (85)	403	40	376	345	177	NT
Bergapten (86)	167	37	167	189	214	NT
Xanthotoxol (87)	>431	16	289	NT	NT	NT
8-Hydroxybergapten (88)	139	8.9	104	NT	NT	NT
Xanthotoxin (89)	139	74	181	73	48	NT
Isopimpinellin (90)	151	53	159	85	231	NT
1,3-Dihydroxy-4-[(2'-hydroxy-3'-hydroxymethyl-3',4'-epoxybutyl)-N-methylation (91)]	0.056	0.056	1.76	NT	NT	NT
1,3-Dihydroxy-4-{[(Z)-3'-hydroxy-3'-methylbuten-1'-yl]-N-methylation (92)]	308	68	13	NT	NT	NT
4β-Hydroxywithanolide E (93)	NT	NT	NT	0.2	0.2	1.6
withanolide S (94)	NT	NT	NT	196	81	NT
Table 3 continued

Compound name	MK-1	HeLa	B16F10	MT-1	MT-2	Normal
5α-O-Methylwithanolide S (95)	NT	NT	NT	21	3.6	NT
5α-O-Butylwithanolide S (96)	NT	NT	NT	2.4	0.8	NT
2-Hydro-3β-methoxy-4β-hydroxywithanolide E (97)	NT	NT	NT	1.9	1.7	NT
Sitoinoside IX (98)	NT	NT	NT	0.83	6.1	NT
Withaferine A (99)	NT	NT	NT	0.16	1.3	NT
2,3-Dihydrowithaferine A (100)	NT	NT	NT	0.022	0.51	NT
24,25-Dihydrowithanolide D (101)	NT	NT	NT	0.008	0.008	860
Physapruin A (102)	NT	NT	NT	0.05	0.28	NT
Withanolide F (103)	NT	NT	NT	1.4	1.6	NT
Nivaphysalin A (104)	NT	NT	NT	>100	>100	NT
Nivaphysalin B (105)	NT	NT	NT	>100	>100	NT
Nivaphysalin C (106)	NT	NT	NT	59	58	NT
Liriodenine (107)	NT	NT	NT	3.1	3.6	NT
Lysicamne (108)	NT	NT	NT	32	16	NT
Lanuginosine (109)	NT	NT	NT	1.3	4.5	NT
14β-Hydroxytylophorine N-oxide (110)	NT	NT	NT	0.07	0.027	NT
Tylophorine N-oxide (111)	NT	NT	NT	0.029	0.0048	NT
3-Demethyl-14β-hydroxyisotylocrebrine N-oxide (112)	NT	NT	NT	0.0083	0.0071	0.04
Tylophorine N-oxide (113)	NT	NT	NT	1.6	1.5	NT
Isotylocrebrine N-oxide (114)	NT	NT	NT	0.38	0.25	NT
3-Demethyl-14β-hydroxyisotylocrebrine (115)	NT	NT	NT	0.0028	0.0026	NT
Tylophorine (116)	NT	NT	NT	0.076	0.051	NT
Isotylocrebrine (117)	NT	NT	NT	0.048	0.025	NT
7-Demethyltylophorine (118)	NT	NT	NT	0.019	0.029	NT
5-FU	21	13	1.1	NT	NT	NT
DOX	NT	NT	NT	0.015	0.013	NT

Dox doxorubicin, *5-FU* 5-fluorouracil (positive controls), *NT* not tested

Fig. 2 Structures of lignans identified from a screen of plant extracts
ring system in the molecule except for 72 and 73, which have a 21β-hydroxy group. The glycosides of the other aglycones are almost inactive. Among the active glycosides, 69 and 71, which have a glucosyl group directly linked to the aglycone instead of a fucosyl group, were less potent. It is possible that the fucosyl group plays some role in the anti-proliferative activity. From the same fraction, 19 oleanane-type triterpene glycosides were also isolated and their anti-proliferative activities were evaluated [27]. Similar to the ursane-type triterpene glycosides, all active glycosides (74–78) have a 13β, 28-epoxy ring system in the molecule. In contrast to the ursane-type triterpene glycosides, compounds 77 and 78, which have a 21α-hydroxy group, had potent anti-proliferative activities. The configuration at the C-21 hydroxy group might influence the anti-proliferative activity.

After activity-guided fractionation against MK-1, HeLa, and B16F10 cells, ten triterpenes were isolated from the aerial parts of *Centella asiatica* (Apiaceae) [28]. Some (79–84) of these triterpenes showed potent anti-proliferative activities. Similar to the results of the polyphenols, ursolic acid (80) with a free carboxyl group showed higher activity than its lactone (79). Ursolic acid (80) was previously reported to induce apoptotic cell death [29].

Coumarins and acridone alkaloids (Fig. 9)

After activity-guided fractionation against MK-1, HeLa, and B16F10 cells, 16 compounds were isolated from the aerial parts and roots of *Boenninghausenia japonica* (Rutaceae) [30]. Among them, an acridone alkaloid (91) showed very strong anti-proliferative activity against these three cell lines. The EC50 value of 91 was in the nanomolar range except for against B16F10 cells. Therefore, a 3′, 4′-epoxy group might be important for enhancing the anti-proliferative activity of acridone alkaloids. Furthermore, some furanocoumarins (85–90) showed potent anti-proliferative activities against HeLa cells. The furanocoumarins (87, 88) having an 8-hydroxy group showed more potent activity than those without the substituent (85, 86) and those with an 8-methoxy group (89, 90) against HeLa cells. Therefore, an 8-hydroxy group may be important for enhancing the anti-proliferative activity of these compounds against HeLa cells. Some furanocoumarins (85, 86,
89, 90) also showed moderate anti-proliferative activity against MT-1 and MT-2 cells (Table 3). A recent review reports that natural and synthetic coumarins have anti-cancer activity toward various cell lines [31].

Withanolides (Fig. 10)

After activity-guided fractionation against MT-1 and MT-2 cells, five active withanolides (93–97) were isolated from the aerial parts of Physalis pruinosa (Solanaceae) [32]. Structure–activity relationships suggested that the presence of a 5β, 6β epoxy group in the B-ring and a 4β-hydroxy group in the A-ring were important for the observed activities. The aliphatic ether side chain at C-5 also seems to increase the activity because as the side chain is lengthened, the activity increases. Because the EC$_{50}$ value for 4β-hydroxywithanolide E (93) was in the nanomolar range against both MT-1 and MT-2 cells, 31 other withanolides were also evaluated [33]. Except for compound 98, none of the glycosides showed any activity against the ATL cell lines. Because compound 98 has a 5β, 6β-epoxy group as well as a 4β-hydroxy group, we predicted it might show potent activity. However, the activity of the corresponding deglycosylated compound (99) was approximately four times greater than that of its glucoside (98). These results indicated that the presence of a sugar moiety should reduce the anti-proliferative effects. The importance of the 5β, 6β-epoxy group, and 4β-hydroxy group was further supported by the analysis of compound 100 because it showed the second strongest anti-proliferative activity. The activities of 99, having a double bond between C-2 and C-3, were weaker than those for 100, suggesting the double bond between C-2 and C-3 might reduce the activity. Because compound 102 showed greater activity when compared with compound 103, the importance of a 4β-hydroxy group was further supported. Compared with the compounds having the 5β, 6β-epoxy group, the activities of the compounds (104–106) having other types of epoxy groups (6α, 7α-epoxy group in the B-ring and/or 24α, 25α-epoxy group in the E-ring) were significantly lower. The position of the epoxy group and/or the configuration of the epoxy group seem to be important for the activity. Compound 106 containing a 15β-hydroxy group showed moderate activity while compound 105 containing a 15α-
hydroxy group did not show any activity. This indicated that the configuration of the hydroxy group at C-15 may influence a compound’s activity. Finally, the EC$_{50}$ value of 24, 25-dihydrowithanolide D (101), the most potent withanolide-type inhibitor, was 8 nM against both cells. In contrast, the cytotoxic effect (860 nM) of 101 toward normal cells was observed at a concentration about 100 times higher than those observed for the ATL cell lines. Furthermore, compound 101 was confirmed to induce dose-dependent apoptosis against MT-1, MT-2, and fresh ATL cells [33]. Therefore, 24, 25-dihydrowithanolide D (101) may be a promising chemotherapeutic candidate.

Recently inhibition of the growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest by 4β-hydroxywithanolide E (93) have been reported [34]. Further, induction of apoptosis in leukemia cells by targeting the activation of a neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase by withanolide D have been also reported [35].
Fig. 7 Structures of triterpene glycosides identified from a screen of plant extracts

rotundifolioside I (67): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Xyl} \)
rotundifolioside J (68): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Rha} \)
rotundifolioside A (69): \(R = \text{Glc}^2-\text{Glc}^2-\text{Xyl} \)
rotundifolioside H (70): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Xyl} \)
rotundifolioside G (71): \(R = \text{Glc}^2-\text{Glc}^2-\text{Xyl} \)
rotundifolioside E (72): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Xyl} \)
rotundifolioside F (73): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Rha} \)
rotundifolioside G (75): \(R = \text{Glc}^2-\text{Glc}^2-\text{Xyl} \)

rotundidioside T (76): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Xyl} \)
rotundidioside Q (77): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Xyl} \)
rotundidioside S (78): \(R = \text{Fuc}^2-\text{Glc}^2-\text{Rha} \)

Fig. 8 Structures of triterpenes identified from a screen of plant extracts

ursolic acid lactone (79)
ursolic acid (80)
pomolic acid (81)
corosolic acid (82)
2α,3α-dihydroxy-urs-12-en-28-ol acid (83)
3-epimaslinic acid (84)
Fig. 9 Structures of coumarins and acridone alkaloids identified from a screen of plant extracts

- psoralen (85)
- xanthotoxol (87)
- xanthotoxin (89)
- bergapten (86)
- 8-hydroxybergapten (88)
- isopimpinellin (90)
- 1,3-dihydroxy-4-(2'-hydroxy-3'-hydroxymethyl-3',4'-epoxybutyl)-N-methylacridone (91)
- 1,3-dihydroxy-4-[(Z)-3'-hydroxy-3'-methylbuten-1'-yl]-N-methylacridone (92)

Fig. 10 Structures of withanolides identified from a screen of plant extracts

- 4β-hydroxywithanolide E (93)
- withanolide S (94): R = H
- 5α-O-methylwithanolide S (95): R = CH₃
- 5α-O-butylowithanolide S (96): R = n-Butyl
- 2-hydro-3β-methoxy-4β-hydroxywithanolide E (97)
- sitosidoside IX (98): R = Glc
- withaferine A (99): R = H
- 2,3-dihydrowithaferine A (100)
- 24,25-dihydrowithanolide D (101)
- physapruin A (102): R = OH
- withanolide F (103): R = H
- nivaphysalin A (104)
- nivaphysalin B (105): 15α
- nivaphysalin C (106): 15β
Wang et al. suggested that Hsp90 inhibition by the withanolides is correlated with their ability to induce cancer cell death [36].

Aporphine and phenanthroindolizidine alkaloids
(Fig. 11)

After activity-guided fractionation against MT-1 and MT-2 cells, three active aporphine alkaloids (107–109) were isolated from the leaves of *Annona reticulata* and *A. squamosa* (Annonaceae) [37]. Liriodenine (107) showed accumulation of Sub-G1 stage cells in the MT-1 and MT-2 cell population, suggesting induction of apoptosis. A structure–activity relationship analysis suggested that the presence of a 1, 2-methylenedioxy group seemed to enhance activity. A similar conclusion on the structure–activity relationship was also obtained by Liu et al. [38].
Six phenanthroindolizidine alkaloids (110–115) were isolated from the aerial parts of *Tylophora tanakae* (Asclepiadaceae) by activity-guided fractionation [39]. In addition to 110–115, three phenanthroindolizidine alkaloids (116–118) obtained from other plants were examined for their anti-proliferative activity against MT-1 and MT-2 cells. The EC50 values of all alkaloids except for compound 113 were in the low nanomolar range. The results suggested that the presence of a 2-methoxy functionality, the methyl group of a 7-methoxy functionality, and an N-oxide moiety appear to reduce the potency of the anti-proliferative activity [39]. Phenanthroindolizidine alkaloids are cytotoxic to multidrug-resistant cells [40], inhibiting the enzyme dihydrofolate reductase [41]. The in vivo efficacy of a new phenanthroindolizidine alkaloid derivative (YPC-10157) was recently evaluated [42].

Conclusions

Cytotoxicity against selected cancer cell lines was characterized and could be explained by identifying the active principles responsible for the observed effects. The polyacetylenes was more potent against MK-1 cells than against HeLa and B16F10 cells. The EC50 value of the most potent polyacetylene (2) against MK-1 cells was 1.2 μM (Fig. 12). The compounds (17–22) having a 3, 4-dihydroxyphenethyl group also showed remarkable anti-proliferative effects against B16F10 cells (Fig. 12). Interestingly, some 6-methoxyflavone derivatives (40, 41, 54, 55, 59) and 8-hydroxy furanocoumarins (87, 88) showed strong inhibition against HeLa cell growth (Fig. 12).

The compounds whose EC50 values were less than one nanomolar (<1 nM) were not selective for specific cell types. This group included two lignans (9, 15), one acridone alkaloid (91), six withanolides (93, 98–102), and eight phenanthroindolizidine alkaloids (110–112, 114–118). Because the cytotoxic effect of 24, 25-dihydrowithanolid D (101) toward normal cells was observed at a concentration about 100 times higher than against the ATL cell lines, withanolide was concluded to be the most promising chemotherapeutic candidate from our experiments.

Acknowledgments We thank Drs. Tsuneatsu Nagao, Fumiko Abe, Kunihide Mihashi, Hisashi Matsunaga, Ryuji Ikeda, Takashi Tanaka, Tenji Konishi, Kenji Ishitsuka, Ryota Tsuchihashi, and Masafumi Okawa for supporting our work.

References

1. Lee KH (2010) Discovery and development of natural product-derived chemotherapeutic agents based on a medicinal chemistry approach. J Nat Prod 73:500–516
2. Balunas MJ, Kinghorn AD (2005) Drug discovery for medicinal plants. Life Sci 78:431–441
3. Cragg GM, Newman DJ (2005) Plant as a source of anti-cancer agents. J Ethnopharmacol 100:72–79
4. Nagao T, Kinjo J, Okabe H (2004) Anti-proliferative phenolic constituents in plants and structure-activity relationships. FFI J 209:2–12
5. Gandhi V, Plunkett W, Cortes JE (2014) Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res 20:1735–1740
6. Nakano Y, Matsunaga H, Saita T, Masato M, Katano M, Okabe H (1998) Antiproliferative constituents in Umbelliferae plants II. Screening for polyacetylenes in some umbelliferae plants, and isolation of panaxyanol and falcarindiol from the roots of *Heracleum moellendorffii*. Biol Pharm Bull 21:257–261
7. Fujioka T, Furumi K, Fujii H, Okabe H, Mihashi K, Nakano Y, Matsunaga H, Katano M, Masato M (1999) Antiproliferative constituents in Umbelliferae plants V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of *Angelica japonica*. Chem Pharm Bull 47:96–100
8. Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693
9. Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in Umbelliferae plants III. Constituents in the root and the ground part of *Anthriscus sylvestris* Hoffm. Chem Pharm Bull 46:871–874
10. Ikeda R, Nagao T, Okabe H, Nakano Y, Matsunaga H, Katano M, Mori M (1998) Antiproliferative constituents in Umbelliferae plants IV. Constituents in the fruits of *Anthriscus sylvestris* Hoffm. Chem Pharm Bull 46:875–878
11. Hartwell JL, Schrecker AW (1958) The chemistry of Podophyllum. Fortschr Chem Org Naturst 15:83–166

12. Lee KH, Xiao Z (2012) Podophyllotoxins and analogs. In: Cragg GM, Kingston DGI, Newman DJ (eds) Antitumor agents from natural products, 2nd edn. CRC press, Taylor & Francis, New York, pp 95–122

13. Nagao T, Abe F, Okabe H (2001) Antiproliferative constituents in plants. Leaves of Clerodendrum bungei and bark of C. trichotomum. J Biol Pharm Bull 24:1338–1341

14. Abe F, Nagao T, Okabe H (2002) Antiproliferative constituents in plants. Aerial parts of Lippia dulcis and Lippia canescens. Biol Pharm Bull 25:920–922

15. Kinjo J, Nagao T, Tanaka T, Nonaka G, Okabe H (2002) Antiproliferative activity of phenypropanoid ester glycosides from Ligstrum purpureascens. Nat Med 56:136–138

16. Saracoigli I, Harput U (2011) Phenylethanoid glycosides: naturally occurring apoptosis inducers. Planta Med. doi:10.1055/s-0031-1282124

17. Kono S, Ikeda M, Tokudome S, Kuratsune M (1988) A case-control study of gastric cancer and diet in northern Kyushu, Japan. Jpn J Cancer Res 79:1064–1074

18. Kinjo J, Nagao T, Tanaka T, Nonaka G, Okabe H (2002) Activity-guided fractionation of green tea extract with antiproliferative activity against human stomach cancer cells. J Biol Pharm Bull 25:1238–1240

19. Kinjo J, Nagao T, Tanaka T, Nonaka G, Okabe H (2001) Antiproliferative constituents in plants. Seeds of Rhus vernicifolia. Biol Pharm Bull 24:1443–1445

20. Zhang YJ, Nagao T, Tanaka T, Nonaka G, Yang CR, Okabe H, Kouno I (2004) Antiproliferative activity of the main constituents from Phyllanthus emblica. Biol Pharm Bull 27:251–255

21. Khan HY, Zubair H, Ullah MF, Ahmad A, Hadi SM (2012) A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols. Curr Drug Targets 13:1738–1749

22. Nagao T, Abe F, Kinjo F, Kinjo J, Okabe H (2002) Antiproliferative constituents in plants. Flavones from the leaves of Lantana montevidensis and consideration of structure-activity relationship. Biol Pharm Bull 25:875–879

23. Bible KC, Peethambaram PP, Oberg AL, Maples W, Grote-Hynes V, Nally AVD, Wright J, Deyle LA, Erlichman C (2012) A phase 2 trial of flavopiridol (Alvocidib) and cisplatin in patients with cisplatin-resistant ovarian and primary peritoneal carcinoma. J Biol Pharm Bull 25:1370–1372

24. Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C (2010) Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 9:239. doi:10.1186/1476-4598-9-239

25. Wang HC, Tsai YL, Wu YC, Chang FR, Liu MH, Chen WY, Wu CC (2012) Withanolides-induced breast cancer cell death is correlated with their ability to inhibit heat protein 90. PLoS One 7:e37764. doi:10.1371/journal.pone.0037764

26. Nagano D, Ishitsuka K, Kamikawa M, Matsuda M, Tsuichihashi R, Okawa M, Abe F, Jerzy WJ (2002) Antiproliferative activity of the main constituents against human adult T-cell leukemia/lymphoma (II): apoptosis of antiproliferative principle (24,25-dihydrowithanolide D) against ATL cell lines and structure-activity relationships with withanolides isolated from solanaceous plants. J Nat Med 67:415–420

27. Liu Y, Liu J, Li M, Fen Y (2013) Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids. Curr Topics Med Chem 13:2116–2126

28. Nagao T, Nohara T, Tamura K, Kinjo J (2015) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (IV): phenanthroindolizidine alkaloids. Curr Topics Med Chem 15:2116–2126

29. Zhang W, Men X, Lei P (2014) Review on anti-tumor effect of tripterene acid compounds. J Cancer Res Therapeutics 10:14–19

30. Chaya N, Terauchi K, Yamagata Y, Kinjo J, Okabe H (2004) Antiproliferative constituents in plants. Coumarins and acridone alkaloids from Boenninghaea japonica. Biochim Biophys Acta 1696:1312–1316

31. Klenkar J, Moheir M (2015) Natural and synthetic coumarins as potential anticancer agents. J Chem Pharm Res 7:1223–1238

32. Nakano D, Ishitsuka K, Hattuse T, Tsuichihashi R, Okawa M, Abe H, Tamura K, Kinjo J (2011) Screening of promising chemotherapeutic candidates against human adult T-cell leukemia/lymphoma from plants: active principles structure-activity relationships with withanolides. J Nat Med 65:559–567

33. Nakano D, Ishitsuka K, Katsuya H, Kunami N, Nogami R, Yoshimura Y, Matsuda M, Kamikawa M, Tsuichihashi R, Okawa M, Ikeda T, Nohara T, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (II): apoptosis of antiproliferative principle (24,25-dihydrowithanolide D) against ATL cell lines and structure-activity relationships with withanolides isolated from solanaceous plants. J Nat Med 67:415–420

34. Yen CY, Chiu CC, Chang FR, Chen YH, Huang WC, Hsu YC, Yang HL, Lee AYL, Tsai MT, Guo ZL, Cheng YS, Liu YC, Lan YH, Chang YC, Ko YC, Chang HW, Wu YC (2010) APRF-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer 10:46. doi:10.1186/1471-2407-10-46

35. Dan S, Anne KL, Jette C, Boadan AB, Abe F, Jerzy WJ (2002) Antiproliferative sesquiterpene lactones from the roots of Inula helenium. J Nat Prod 65:1299–1302

36. Liu Y, Liu J, Li M, Fen Y (2013) Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids. Curr Topics Med Chem 13:2116–2126

37. Nakano D, Ishitsuka K, Kamikawa M, Matsuda M, Tsuichihashi R, Okawa M, Abe H, Tamura K, Kinjo J (2013) Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (III). J Nat Med 67:404–409

38. Liu Y, Liu J, Di D, Li M, Fen Y (2013) Structural and mechanistic bases of the anticancer activity of natural aporphinoid alkaloids. Curr Topics Med Chem 13:2116–2126

39. Wang HC, Tsai YL, Wu YC, Chang FR, Liu MH, Chen WY, Wu CC (2012) Withanolides-induced breast cancer cell death is correlated with their ability to inhibit heat protein 90. PLoS One 7:e37764. doi:10.1371/journal.pone.0037764

40. Dan S, Anne KL, Jette C, Boadan AB, Abe F, Jerzy WJ (2002) In vitro cytotoxic activity of phenanthroindolizidine alkaloids from Cynanchum vincetoxicum and Tylophora tanakae against drug-sensitive and multidrug-resistant cancer cells. J Nat Prod 65:1299–1302

41. Rao KN, Venkatachalam SR (2000) Inhibition of dihydrofolate reductase and cell growth activity by the phenanthroindolizidine alkaloid, 4-methoxy-1-[(3-hydroxy-2-propyl)amino]-5H-dibenzo[a,d]cyclohepten-5-one through inhibition of protein synthesis. Anticancer Res 20:3391–3398

42. Ueno S, Yamazaki R, Ikeda T, Yaegashi T, Matsuzaki T (2014) Antitumor effect of a novel phenanthroindolizidine alkaloid derivative through inhibition of protein synthesis. Anticancer Res 34:3391–3398