MULTIPLE POSITIVE SOLUTIONS OF A \((p_1, p_2)\)-LAPLACIAN SYSTEM WITH NONLINEAR BCS

FILOMENA CIANCIARUSO AND PAOLAMARIA PIETRAMALA

Abstract. Using the theory of fixed point index, we discuss existence, non-existence, localization and multiplicity of positive solutions for a \((p_1, p_2)\)-Laplacian system with nonlinear Robin and/or Dirichlet type boundary conditions. We give an example to illustrate our theory.

1. Introduction

In the remarkable paper [39] Wang proved the existence of one positive solution of following one-dimensional \(p\)-Laplacian equation

\[
(\varphi_p(u'))'(t) + g(t)f(u(t)) = 0, \ t \in (0, 1),
\]
subject to one of the following three pair of nonlinear boundary conditions (BCs)

\[
\begin{align*}
 u'(0) &= 0, \ u(1) + B_1(u'(1)) = 0, \\
 u(0) &= B_0(u'(0)), \ u'(1) = 0, \\
 u(0) &= B_0(u'(0)), \ u(1) + B_1(u'(1)) = 0.
\end{align*}
\]

The results of [39] were extended by Karakostas [23] to the context of deviated arguments. In both cases, the existence results are obtained via a careful study of an associated integral operator combined with the use of the Krasnosel’skii-Guo Theorem on cone compressions and cone expansions.

The Krasnosel’skii-Guo Theorem, more in general, topological methods are a commonly used tool in the study of existence of positive solutions for the \(p\)-Laplacian equation (1.1) subject to different BCs. This is an active area of research, for example, homogeneous Dirichlet BCs have been studied in [1, 5, 16, 25, 31, 37, 43, 47], homogeneous Robin BCs in [31, 43, 47], nonlocal BCs of Dirichlet type in [3, 4, 6, 7, 9, 14, 24, 39, 41, 48] and nonlocal BCs of Robin type in [14, 30, 32, 40, 42, 48].

Here we study the the one-dimensional \((p_1, p_2)\)-Laplacian system

\[
\begin{align*}
 (\varphi_{p_1}(u'))'(t) + g_1(t)f_1(t, u(t), v(t)) &= 0, \ t \in (0, 1), \\
 (\varphi_{p_2}(v'))'(t) + g_2(t)f_2(t, u(t), v(t)) &= 0, \ t \in (0, 1),
\end{align*}
\]

with \(\varphi_{p_i}(w) = |w|^{p_i-2}w\), subject to the nonlinear boundary conditions (BCs)

\[
\begin{align*}
 u'(0) &= 0, \ u(1) + B_1(u'(1)) = 0, \\
 v(0) &= B_2(v'(0)), \ v(1) = 0.
\end{align*}
\]

2010 Mathematics Subject Classification. Primary 45G15, secondary 34B18.

Key words and phrases. Fixed point index, cone, positive solution, p-laplacian, system, nonlinear boundary conditions.
The existence of positive solutions of systems of equations of the type (1.2) has been widely studied, see for example [8, 28, 29, 44] under homogeneous Dirichlet BCs and [16, 22, 34, 38, 46] with homogeneous Robin or Neumann BCs. For earlier contributions on problems with nonlinear BCs we refer to [11, 12, 15, 17, 18, 20, 23, 30, 33, 39] and references therein.

We improve and complement the previous results in several directions: we obtain multiplicity results for \((p_1, p_2)\)-Laplacian system subject to nonlinear BCs, we allow different growths in the nonlinearities \(f_1\) and \(f_2\) and we also discuss non-existence results. Finally we illustrate in an example that all the constants that occur in our results can be computed.

Our approach is to seek solutions of the system (1.2)-(1.3) as fixed points of a suitable integral operator. We make use of the classical fixed point index theory and benefit of ideas from the papers [19, 21, 23, 39].

2. The system of integral equations

We recall that a cone \(K\) in a Banach space \(X\) is a closed convex set such that \(\lambda x \in K\) for \(x \in K\) and \(\lambda \geq 0\) and \(K \cap (-K) = \{0\}\). If \(\Omega\) is a open bounded subset of a cone \(K\) (in the relative topology) we denote by \(\overline{\Omega}\) and \(\partial \Omega\) the closure and the boundary relative to \(K\). When \(\Omega\) is an open bounded subset of \(X\) we write \(\Omega_K = \Omega \cap K\), an open subset of \(K\).

The following Lemma summarizes some classical results regarding the fixed point index, for more details see [2, 13].

Lemma 2.1. Let \(\Omega\) be an open bounded set with \(0 \in \Omega_K\) and \(\overline{\Omega}_K \neq K\). Assume that \(F: \overline{\Omega}_K \to K\) is a compact map such that \(x \neq Fx\) for all \(x \in \partial \Omega_K\). Then the fixed point index \(i_K(F, \Omega_K)\) has the following properties.

1. If there exists \(e \in K \setminus \{0\}\) such that \(x \neq Fx + \lambda e\) for all \(x \in \partial \Omega_K\) and all \(\lambda > 0\), then \(i_K(F, \Omega_K) = 0\).
2. If \(\mu x \neq Fx\) for all \(x \in \partial \Omega_K\) and for every \(\mu \geq 1\), then \(i_K(F, \Omega_K) = 1\).
3. If \(i_K(F, \Omega_K) \neq 0\), then \(F\) has a fixed point in \(\Omega_K\).
4. Let \(\Omega^1\) be open in \(X\) with \(\overline{\Omega^1} \subset \Omega_K\). If \(i_K(F, \Omega_K) = 1\) and \(i_K(F, \Omega^1_K) = 0\), then \(F\) has a fixed point in \(\Omega_K \setminus \overline{\Omega^1}_K\). The same result holds if \(i_K(F, \Omega_K) = 0\) and \(i_K(F, \Omega^1_K) = 1\).

To the system (1.2)-(1.3) we associate the following system of integral equations, which is constructed in similar manner as in [39], where the case of a single equation is studied.

\[
\begin{align*}
u(t) &= \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)f_1(\tau, u(\tau), v(\tau))\,d\tau \right)\,ds \\
&\quad + B_1 \left(\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)f_1(\tau, u(\tau), v(\tau))\,d\tau \right) \right), \quad 0 \leq t \leq 1, \\
\end{align*}
\]

\[
\begin{align*}
v(t) &= \begin{cases}
\int_t^1 \varphi_{p_1}^{-1} \left(\int_0^{s_{u,v}} g_2(\tau)f_2(\tau, u(\tau), v(\tau))\,d\tau \right)\,ds \\
&\quad + B_2 \left(\varphi_{p_2}^{-1} \left(\int_0^1 g_2(\tau)f_2(\tau, u(\tau), v(\tau))\,d\tau \right) \right), \quad 0 \leq t \leq \sigma_{u,v}, \\
\int_0^1 \varphi_{p_2}^{-1} \left(\int_0^s g_2(\tau)f_2(\tau, u(\tau), v(\tau))\,d\tau \right)\,ds, & \sigma_{u,v} \leq t \leq 1,
\end{cases}
\end{align*}
\]
where \(\varphi^{-1}_{p_1}(w) = \frac{1}{w^{p_1-1}} \text{sgn} w \) and \(\sigma_{u,v} \) is the smallest solution \(x \in [0, 1] \) of the equation

\[
\int_0^x \varphi^{-1}_{p_1} \left(\int_0^x g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) d\tau + B_2 \left(\varphi^{-1}_{p_2} \left(\int_0^x g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right)
= \int_x^1 \varphi^{-1}_{p_2} \left(\int_x^s g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds.
\]

By a solution \(\| w \| \) of (1.2)-(1.3), we mean a solution of the system (2.1).

In order to utilize the fixed point index theory we state the following assumptions on the terms that occur in the system (2.1).

(C1) For every \(i = 1, 2, f_i : [0, 1] \times [0, \infty) \times [0, \infty) \to [0, \infty) \) satisfies Carathéodory conditions, that is, \(f_i(\cdot, u, v) \) is measurable for each fixed \((u, v) \) and \(f_i(t, \cdot, \cdot) \) is continuous for almost every (a.e.) \(t \in [0, 1] \), and for each \(r > 0 \) there exists \(\phi_{i,r} \in L^\infty[0, 1] \) such that

\[
f_i(t, u, v) \leq \phi_{i,r}(t) \quad \text{for } u, v \in [0, r] \text{ and a.e. } t \in [0, 1].
\]

(C2) \(g_1 \in L^1[0, 1], g_1 \geq 0 \) and

\[
0 < \int_0^1 \varphi^{-1}_{p_1} \left(\int_0^1 g_1(\tau) d\tau \right) d\tau < +\infty.
\]

(C3) \(g_2 \in L^1[0, 1], g_2 \geq 0 \) and

\[
0 < \int_0^{1/2} \varphi^{-1}_{p_2} \left(\int_0^{1/2} g_2(\tau) d\tau \right) d\tau + \int_1^{1/2} \varphi^{-1}_{p_2} \left(\int_1^{1/2} g_2(\tau) d\tau \right) d\tau < +\infty.
\]

(C4) For every \(i = 1, 2, B_i : \mathbb{R} \to \mathbb{R} \) is a continuous function and there exist \(h_{i1}, h_{i2} \geq 0 \) such that

\[
h_{i1} v \leq B_i(v) \leq h_{i2} v \quad \text{for any } v \geq 0.
\]

Remark 2.2. The condition (2.2) is weaker than the condition

\[
0 < \int_0^1 \varphi^{-1}_{p_1} \left(\int_0^1 g_2(\tau) d\tau \right) d\tau < +\infty.
\]

In fact, for example, the function

\[
g_2(t) = \begin{cases}
\frac{1}{(t-1)^2}, & t \in [0, 1/2], \\
\frac{1}{t^2}, & t \in (1/2, 1],
\end{cases}
\]

satisfies (2.2) but not satisfies (2.3).

Remark 2.3. From (C2) and (C3) follow that there exists \([a_1, b_1] \subset [0, 1] \) such that \(\int_{a_1}^{b_1} g_1(s) ds > 0 \) and there exists \([a_2, b_2] \subset (0, 1) \) such that \(\int_{a_2}^{b_2} g_2(s) ds > 0 \).

We work in the space \(C[0, 1] \times C[0, 1] \) endowed with the norm

\[
\|(u, v)\| := \max\{|u|_{\infty}, |v|_{\infty}\},
\]

where \(|w|_{\infty} := \max\{|w(t)|, t \in [0, 1]\} \).

Take the cones

\[
K_1 := \{ w \in C[0, 1] : w \geq 0, \text{ concave and nonincreasing}\},
\]

\[
K_2 := \{ w \in C[0, 1] : w \geq 0, \text{ concave}\}.
\]
It is known (see e.g. \cite{39}) that

- for \(w \in K_1 \) we have \(w(t) \geq (1 - t)\|w\|_{\infty} \), for \(t \in [0, 1] \);
- for \(w \in K_2 \) we have \(w(t) \geq \min\{t, 1 - t\}\|w\|_{\infty} \), for \(t \in [0, 1] \).

It follows that the functions in \(K_1 \) are strictly positive on the sub-interval \([a_i, b_i]\) and in particular we have

- for \(w \in K_1 \) we have \(\min_{t \in [0, b_1]} w(t) \geq (1 - b_1)\|w\|_{\infty} \);
- for \(w \in K_2 \) we have \(\min_{t \in [a_2, b_2]} w(t) \geq \min\{a_2, 1 - b_2\}\|w\|_{\infty} \).

In the following we make use of the notations:

\[
 c_1 := 1 - b_1, \quad c_2 := \min\{a_2, 1 - b_2\}.
\]

Consider now the cone \(K \) in \(C[0, 1] \times C[0, 1] \) defined by

\[
 K := \{(u, v) \in K_1 \times K_2\}.
\]

For a \textit{positive} solution of the system \((2.1)\) we mean a solution \((u, v) \in K\) of \((2.1)\) such that \(\|(u, v)\| > 0\). We seek such solution as a fixed point of the following operator \(T\).

Consider the integral operator

\[
 (2.4) \quad T(u, v)(t) := \begin{pmatrix}
 T_1(u, v)(t) \\
 T_2(u, v)(t)
\end{pmatrix},
\]

where

\[
 T_1(u, v)(t) := \int_t^1 \varphi^{-1}_{p_1} \left(\int_0^s f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + B_1 \left(\varphi^{-1}_{p_1} \left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \right)
\]

and

\[
 T_2(u, v)(t) := \begin{cases}
 \int_0^t \varphi^{-1}_{p_2} g_2(t, u(\tau), v(\tau)) d\tau ds \\
 + B_2 \left(\varphi^{-1}_{p_2} \left(\int_0^1 g_2(t, u(\tau), v(\tau)) d\tau \right) \right), & 0 \leq t \leq \sigma_{u,v}, \\
 \int_t^1 \varphi^{-1}_{p_2} g_2(t, u(\tau), v(\tau)) d\tau ds, & \sigma_{u,v} \leq t \leq 1,
\end{cases}
\]

From the definitions, for every \((u, v) \in K\) we have

\[
 \max_{t \in [0, 1]} T_2(u, v)(t) = T_2(u, v)(\sigma_{u,v}).
\]

Under our assumptions, we can show that the integral operator \(T\) leaves the cone \(K \) invariant and is compact.

\textbf{Lemma 2.4.} The operator \((2.4)\) maps \(K \) into \(K \) and is compact.

\textit{Proof.} Take \((u, v) \in K\). Then we have \(T(u, v) \in K\). Now, we show that the map \(T\) is compact. Firstly, we show that \(T\) sends bounded sets into bounded sets. Take \((u, v) \in K\) such that
\((p_1, p_2)\)-LAPLACIAN SYSTEM

\[\| (u, v) \| \leq r.\] Then, for all \(t \in [0, 1]\) we have

\[T_1(u, v)(t) = \int_t^1 \varphi_{p_1}^{-1}\left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau))\,d\tau \right)\,ds + B_1\left(\varphi_{p_1}^{-1}\left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau))\,d\tau \right) \right)\]

\[\leq \int_t^1 \varphi_{p_1}^{-1}\left(\int_0^s g_1(\tau) \phi_{1, r}(\tau)\,d\tau \right)\,ds + h_1\varphi_{p_1}^{-1}\left(\int_0^1 g_1(\tau) \phi_{1, r}(\tau)\,d\tau \right)\]

\[\leq \int_t^1 \varphi_{p_1}^{-1}\left(\int_0^1 g_1(\tau) \phi_{1, r}(\tau)\,d\tau \right)\,ds + h_1\varphi_{p_1}^{-1}\left(\int_0^1 g_1(\tau) \phi_{1, r}(\tau)\,d\tau \right) < +\infty.\]

We prove now that \(T_1\) sends bounded sets into equicontinuous sets. Let \(t_1, t_2 \in [0, 1]\), \(t_1 < t_2\), \((u, v) \in K\) such that \(\| (u, v) \| \leq r\). Then we have

\[|T_1(u, v)(t_1) - T_1(u, v)(t_2)| = \left| \int_{t_1}^{t_2} \varphi_{p_1}^{-1}\left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau))\,d\tau \right)\,ds \right| \leq C_r |t_1 - t_2|.\]

Therefore we obtain \(|T_1(u, v)(t_1) - T_1(u, v)(t_2)| \to 0\) when \(t_1 \to t_2\). By the Ascoli-Arzelà Theorem we can conclude that \(T_1\) is a compact map. In a similar manner we proceed for \(T_2(u, v)\).

Moreover, the map \(T\) is compact since the components \(T_i\) are compact maps.

\[\square\]

3. Existence results

For our index calculations we use the following (relative) open bounded sets in \(K\):

\[K_{p_1, p_2} = \{(u, v) \in K : \|u\|_\infty < p_1 \text{ and } \|v\|_\infty < p_2\}\]

and

\[V_{p_1, p_2} = \{(u, v) \in K : \min_{t \in [a_1, b_1]} u(t) < c_1 p_1 \text{ and } \min_{t \in [a_2, b_2]} v(t) < c_2 p_2\}\]

and if \(p_1 = p_2 = p\) we write simply \(K_p\) and \(V_p\). The set \(V_p\) was introduced in [10] as an extension to the case of systems of a set given by Lan [27]. The use of different radii, in the spirit of the paper [21], allows more freedom in the growth of the nonlinearities.

The following Lemma is similar to the Lemma 5 of [10] and therefore its proof is omitted.

Lemma 3.1. The sets defined above have the following properties:

- \(K_{c_1 p_1, c_2 p_2} \subset V_{p_1, p_2} \subset K_{p_1, p_2}\).
- \((w_1, w_2) \in \partial V_{p_1, p_2} \iff (w_1, w_2) \in K \text{ and } \min_{t \in [a_1, b_1]} w_i(t) = c_i p_i \text{ for some } i \in \{1, 2\} \text{ and } \min_{t \in [a_2, b_2]} w_j(t) \leq c_j p_j \text{ for } j \neq i\).
- If \((w_1, w_2) \in \partial V_{p_1, p_2}\), then for some \(i \in \{1, 2\}\) \(c_i p_i \leq w_i(t) \leq p_i \text{ for each } t \in [a_i, b_i]\) and \(\|w_i\|_\infty \leq p_i; \text{ moreover for } j \neq i \text{ we have } \|w_j\|_\infty \leq p_j\).

We firstly prove that the fixed point index is 1 on the set \(K_{p_1, p_2}\).
Lemma 3.2. Assume that
\[(1^{1}_{\rho_1, \rho_2})\] there exist \(\rho_1, \rho_2 > 0\) such that for every \(i = 1, 2\)
\[
f^p_{1, \rho_2} < \varphi_{p_1}(m_i)
\]
where
\[
f^p_{1, \rho_2} = \sup \left\{ \frac{f_i(t, u, v)}{\rho_{p_1}^{-1}} : (t, u, v) \in [0, 1] \times [0, \rho_1] \times [0, \rho_2], \right\},
\]
\[
\frac{1}{m_1} = \int_0^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) d\tau \right) ds + h_{12} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) d\tau \right),
\]
\[
\frac{1}{m_2} = \max \left\{ \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1} \left(\int_0^{\frac{1}{2}} g_2(\tau) d\tau \right) ds + h_{22} \varphi_{p_2}^{-1} \left(\int_0^1 g_2(\tau) d\tau \right), \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1} \left(\int_{\frac{1}{2}}^s g_2(\tau) d\tau \right) ds \right\}.
\]

Then \(i_K(T, K_{\rho_1, \rho_2}) = 1\).

Proof. We show that \(\lambda(u, v) \neq T(u, v)\) for every \((u, v) \in \partial K_{\rho_1, \rho_2}\) and for every \(\lambda \geq 1\); this ensures that the index is 1 on \(K_{\rho_1, \rho_2}\). In fact, if this does not happen, there exist \(\lambda \geq 1\) and \((u, v) \in \partial K_{\rho_1, \rho_2}\) such that \(\lambda(u, v) = T(u, v)\).

Firstly we assume that \(\|u\| = \rho_1\) and \(\|v\| \leq \rho_2\).

Then we have
\[
\lambda u(t) = \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + B_1 \left(\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \right) \\
\leq \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{12} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \\
= \rho_1 \left(\int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) \frac{f_1(\tau, u(\tau), v(\tau))}{\rho_{p_1}^{-1}} d\tau \right) ds + h_{12} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) \frac{f_1(\tau, u(\tau), v(\tau))}{\rho_{p_1}^{-1}} d\tau \right) \right).
\]

Taking \(t = 0\) gives
\[
\lambda u(0) = \lambda \rho_1 \leq \rho_1 \left(\int_0^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1^{p_1-p_2} d\tau \right) ds + h_{12} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) f_1^{p_1-p_2} d\tau \right) \right) \\
= \rho_1 \varphi_{p_1}^{-1} \left(f_1^{p_1-p_2} \right) \left(\int_0^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) d\tau \right) ds + h_{12} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) d\tau \right) \right) \\
= \rho_1 \frac{1}{m_1} \varphi_{p_1}^{-1} \left(f_1^{p_1-p_2} \right).
\]

Using the hypothesis (3.1) and the strictly monotonicity of \(\varphi_{p_1}^{-1}\) we obtain \(\lambda \rho_1 < \rho_1\). This contradicts the fact that \(\lambda \geq 1\) and proves the result.

Now we assume \(\|v\| = \rho_2\) and \(\|u\| \leq \rho_1\).

Then we have
\[
\lambda \rho_2 = \|T_2(u, v)\| = T_2(u, v)(\sigma_{u,v}).
\]
If $\sigma_{u,v} \leq \frac{1}{2}$, we have

$$\lambda_{p_2} = \|T_2(u,v)\|_\infty = T_2(u,v)(\sigma_{u,v})$$

$$= \int_0^{\sigma_{u,v}} \varphi_{p_2}^{-1}\left(\int_s^{\sigma_{u,v}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds + B_2\left(\varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)\right)$$

$$\leq \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds + h_{22} \varphi_{p_2}^{-1}\left(\int_0^{\sigma_{u,v}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)$$

$$\leq \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds + h_{22} \varphi_{p_2}^{-1}\left(\int_0^{\frac{1}{2}} g_2(\tau)d\tau\right)$$

If $\sigma_{u,v} > \frac{1}{2}$, we have

$$\lambda_{p_2} = \|T_2(u,v)\|_\infty = T_2(u,v)(\sigma_{u,v})$$

$$= \int_0^{\sigma_{u,v}} \varphi_{p_2}^{-1}\left(\int_s^{\sigma_{u,v}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds \leq \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds$$

$$= \rho_2 \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)f_2(\tau,u(\tau),v(\tau))d\tau\right)ds \leq \rho_2 \varphi_{p_2}^{-1}(f_{p_1,p_2}^{0,1,\rho_2}) \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)d\tau\right)ds.$$

Then, in both cases, we have

$$\lambda_{p_2} = \|T_2(u,v)\|_\infty = T_2(u,v)(\sigma_{u,v}) \leq \rho_2 \varphi_{p_2}^{-1}(f_{p_1,p_2}^{0,1,\rho_2}) \times$$

$$\max \left\{ \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)d\tau\right)ds + h_{22} \varphi_{p_2}^{-1}\left(\int_0^{\frac{1}{2}} g_2(\tau)d\tau\right), \int_0^{\frac{1}{2}} \varphi_{p_2}^{-1}\left(\int_s^{\frac{1}{2}} g_2(\tau)d\tau\right)ds \right\}$$

$$= \rho_2 \varphi_{p_2}^{-1}(f_{p_1,p_2}^{0,1,\rho_2}) \frac{1}{m_2}.$$

Using the hypothesis (3.1) and the strictly monotonicity of $\varphi_{p_2}^{-1}$ we obtain $\lambda_{p_2} < \rho_2$. This contradicts the fact that $\lambda \geq 1$ and proves the result. \square

We give a first Lemma that shows that the index is 0 on a set V_{ρ_1,ρ_2}.

Lemma 3.3. Assume that:

(1) There exist $\rho_1, \rho_2 > 0$ such that for every $i = 1, 2$

$$(3.2) \quad f_{i, (\rho_1, \rho_2)} > \varphi_{p_i}(M_i),$$

where

$$f_{1, (\rho_1, \rho_2)} = \inf \left\{ \frac{f_1(t,u,v)}{\rho_1^{p_1-1}} : (t,u,v) \in [0,b_1] \times [c_1 \rho_1, \rho_1] \times [0,\rho_2] \right\},$$

$$f_{2, (\rho_1, \rho_2)} = \inf \left\{ \frac{f_2(t,u,v)}{\rho_2^{p_2-1}} : (t,u,v) \in [a_2,b_2] \times [0,\rho_1] \times [c_2 \rho_2, \rho_2] \right\},$$
\[
\frac{1}{M_1} = \int_0^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) d\tau \right),
\]

and

\[
\frac{1}{M_2} = \frac{1}{2} \min_{a_2 \leq \nu \leq b_2} \left\{ \int_{a_2}^\nu \varphi_{p_2}^{-1} \left(\int_s^\nu g_2(\tau) d\tau \right) ds + \int_\nu^{b_2} \varphi_{p_2}^{-1} \left(\int_s^\nu g_2(\tau) d\tau \right) ds + h_{21} \varphi_{p_2}^{-1} \left(\int_{a_2}^\nu g_2(\tau) d\tau \right) \right\}.
\]

Then \(i_K(T, V_{\rho_1, \rho_2}) = 0. \)

Proof. Let \(e(t) \equiv 1 \) for \(t \in [0, 1] \). Then \((e, e) \in K\). We prove that

\[
(u, v) \neq T(u, v) + \lambda(e, e) \quad \text{for} \quad (u, v) \in \partial V_{\rho_1, \rho_2} \quad \text{and} \quad \lambda \geq 0.
\]

In fact, if this does not happen, there exist \((u, v) \in \partial V_{\rho_1, \rho_2}\) and \(\lambda \geq 0 \) such that
\((u, v) = T(u, v) + \lambda(e, e)\). We examine the two cases:

Case (1): \(c_1 \rho_1 \leq u(t) \leq \rho_1 \) for \(t \in [0, b_1] \) and \(0 \leq v(t) \leq \rho_2 \) for \(t \in [0, 1] \).
Thus for \(t \in [0, b_1] \), we have

\[
\rho_1 \geq u(t) = \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + B_1 \left(\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) \right) + \lambda \geq \int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) + \lambda \geq \int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) f_1(\tau, u(\tau), v(\tau)) d\tau \right) + \lambda \geq \rho_1 \int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s \frac{g_1(\tau, u(\tau), v(\tau))}{\rho_{p_1}^{-1}} d\tau \right) ds + \rho_1 h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) \frac{f_1(\tau, u(\tau), v(\tau))}{\rho_{p_1}^{-1}} d\tau \right) + \lambda.
\]

For \(t = 0 \) we obtain

\[
\rho_1 \geq \rho_1 \varphi_{p_1}^{-1} \left(f_1(\rho_1, \rho_2) \right) \left(\int_0^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) d\tau \right) \right) + \lambda > \rho_1 \varphi_{p_1}^{-1} \left(f_1(\rho_1, \rho_2) \right) \frac{1}{M_1} + \lambda.
\]

Using the hypothesis \((3.2)\) we obtain \(\rho_1 > \rho_1 + \lambda \), a contradiction.

Case (2): \(0 \leq u(t) \leq \rho_1 \) for \(t \in [0, 1] \) and \(c_2 \rho_2 \leq v(t) \leq \rho_2 \).
We distinguish three cases:

Case (i) \(0 < \sigma_{u,v} \leq a_2 \).
Therefore we get

\[
\rho_2 \geq v(\sigma_{u,v}) = T_2(u,v)(\sigma_{u,v}) + \lambda = \int_{\sigma_{u,v}}^{1} \varphi_{\rho_2}^{-1}\left(\int_{\sigma_{u,v}}^{\rho_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds + \lambda \\
\geq \int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds + \lambda \\
= \rho_2 \int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} \frac{g_2(\tau) f_2(\tau, u(\tau), v(\tau))}{\rho_2^{\rho_1}} d\tau \right) ds + \lambda \\
\geq \rho_2 \varphi_{\rho_2}^{-1}(f_2(\rho_1, \rho_2)) \left(\int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) ds \right) + h_2 \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) + \lambda \\
\geq \rho_2 \varphi_{\rho_2}^{-1}(f_2(\rho_1, \rho_2)) \int_{a_2}^{b_2} g_2(\tau) d\tau + h_2 \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) + \lambda \\
\geq \rho_2 \varphi_{\rho_2}^{-1}(f_2(\rho_1, \rho_2)) \frac{1}{M_2} + \lambda.
\]

Using the hypothesis (3.2) we obtain \(\rho_2 > \rho_2 + \lambda\), a contradiction.

Case (ii) \(\sigma_{u,v} \geq b_2\).

\[
\rho_2 \geq v(\sigma_{u,v}) = T_2(u,v)(\sigma_{u,v}) + \lambda = \int_{\sigma_{u,v}}^{\sigma_{u,v}} \varphi_{\rho_2}^{-1}\left(\int_{\sigma_{u,v}}^{\rho_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
+ B_2 \varphi_{\rho_2}^{-1}\left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) + \lambda \\
\geq \int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_2 \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) + \lambda \\
= \rho_2 \int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) \frac{f_2(\tau, u(\tau), v(\tau))}{\rho_2^{\rho_1}} d\tau \right) ds + \rho_2 h_2 \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) + \lambda \\
\geq \rho_2 \varphi_{\rho_2}^{-1}(f_2(\rho_1, \rho_2)) \left(\int_{a_2}^{b_2} \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) ds \right) + h_2 \varphi_{\rho_2}^{-1}\left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) + \lambda \\
\geq \rho_2 \varphi_{\rho_2}^{-1}(f_2(\rho_1, \rho_2)) \frac{1}{M_2} + \lambda.
\]
Using the hypothesis \((\ref{3.2})\) we obtain \(\rho_2 > \rho_2 + \lambda\), a contradiction.

Case (iii) \(a_2 < \sigma_{u,v} < b_2\).

\[
2\rho_2 \geq 2v(\sigma_{u,v}) = 2\lambda + 2T_2(u, v)(\sigma_{u,v}) = 2\lambda + \int_{b_2}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \, ds \\
+ B_2 \left(\varphi_{p_2}^{-1} \left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right) + \int_{\sigma_{u,v}}^{1} \varphi_{p_2}^{-1} \left(\int_{\sigma_{u,v}}^{s} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
\geq 2\lambda + B_2 \left(\varphi_{p_2}^{-1} \left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right) + \int_{\sigma_{u,v}}^{1} \varphi_{p_2}^{-1} \left(\int_{\sigma_{u,v}}^{s} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
+ h_{21} \varphi_{p_2}^{-1} \left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) + \int_{\sigma_{u,v}}^{b_2} \varphi_{p_2}^{-1} \left(\int_{\sigma_{u,v}}^{s} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
= 2\lambda + B_2 \left(\varphi_{p_2}^{-1} \left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right) + \int_{\sigma_{u,v}}^{b_2} \varphi_{p_2}^{-1} \left(\int_{\sigma_{u,v}}^{s} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
\geq 2\lambda + B_2 \left(\varphi_{p_2}^{-1} \left(\int_{0}^{\sigma_{u,v}} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right) + \int_{\sigma_{u,v}}^{b_2} \varphi_{p_2}^{-1} \left(\int_{\sigma_{u,v}}^{s} g_2(\tau) f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds \\
\geq 2\lambda + 2\rho_2 \varphi_{p_2}^{-1}(f_{2, (\rho_1, \rho_2)}) \left(\frac{1}{M_1} \right)
\]

Using the hypothesis \((\ref{3.2})\) we obtain \(\rho_2 > \lambda + \rho_2\), a contradiction.

\[\square\]

Remark 3.4. We point out that a stronger, but easier to check, hypothesis than \((\ref{3.2})\) is

\[
f_{i, (\rho_1, \rho_2)} > \varphi_{p_i}(\tilde{M}_i),
\]

where

\[
\frac{1}{M_1} = \int_{0}^{b_1} \varphi_{p_1}^{-1} \left(\int_{0}^{s} g_1(\tau) d\tau \right) ds
\]

and

\[
\frac{1}{M_2} = \frac{1}{2} \min_{a_2 \leq \nu \leq b_2} \left\{ \int_{a_2}^{\nu} \varphi_{p_2}^{-1} \left(\int_{0}^{s} g_2(\tau) d\tau \right) ds + \int_{\nu}^{b_2} \varphi_{p_2}^{-1} \left(\int_{\nu}^{s} g_2(\tau) d\tau \right) ds \right\}
\]

In the following Lemma we exploit an idea that was used in \([19, 21]\) and we provide a result of index 0 controlling the growth of just one nonlinearity \(f_i\), at the cost of having to deal with a larger domain. Nonlinearities with different growths were considered for examples in \([35, 36, 45]\).

Lemma 3.5. Assume that

\[(\Pi_{\rho_1, \rho_2})^* \text{ there exist } \rho_1, \rho_2 > 0 \text{ such that for some } i \in \{1, 2\} \text{ we have}
\]

\[
f_{i, (\rho_1, \rho_2)}^* > \varphi_{p_i}(\tilde{M}_i),
\]

\[\text{(3.3)}\]
Theorem 3.6. The system (2.1) has at least one positive solution in K if one of the following conditions holds.

(S1) For $i = 1, 2$ there exist $\rho_i, r_i \in (0, \infty)$ with $\rho_i < r_i$ such that (Π_{p_1, p_2}), [or $(\Pi_{p_1, p_2})^*], (\Pi_{r_1, r_2})$ hold.

(S2) For $i = 1, 2$ there exist $\rho_i, r_i \in (0, \infty)$ with $\rho_i < c_i r_i$ such that (Π_{p_1, p_2}), (Π_{r_1, r_2}) hold.

The system (2.1) has at least two positive solutions in K if one of the following conditions holds.

(S3) For $i = 1, 2$ there exist $\rho_i, r_i, s_i \in (0, \infty)$ with $\rho_i < r_i < c_i s_i$ such that (Π_{p_1, p_2}), [or $(\Pi_{p_1, p_2})^*], (\Pi_{r_1, r_2})$ and (Π_{s_1, s_2}) hold.

(S4) For $i = 1, 2$ there exist $\rho_i, r_i, s_i \in (0, \infty)$ with $\rho_i < c_i r_i$ and $r_i < s_i$ such that (Π_{p_1, p_2}), (Π_{r_1, r_2}) and (Π_{s_1, s_2}) hold.

The system (2.1) has at least three positive solutions in K if one of the following conditions holds.

(S5) For $i = 1, 2$ there exist $\rho_i, r_i, s_i, \delta_i \in (0, \infty)$ with $\rho_i < r_i < c_i s_i$ and $s_i < \delta_i$ such that (Π_{p_1, p_2}), [or $(\Pi_{p_1, p_2})^*], (\Pi_{r_1, r_2})$, (Π_{s_1, s_2}) and $(\Pi_{\delta_1, \delta_2})$ hold.

(S6) For $i = 1, 2$ there exist $\rho_i, r_i, s_i, \delta_i \in (0, \infty)$ with $\rho_i < c_i r_i$ and $r_i < s_i < c_i \delta_i$ such that (Π_{p_1, p_2}), (Π_{r_1, r_2}), (Π_{s_1, s_2}) and $(\Pi_{\delta_1, \delta_2})$ hold.

4. Non-existence results

We now provide some non-existence results for system (2.1).

Theorem 4.1. Assume that one of the following conditions holds.

1. For $i = 1, 2$,

\[f_i(t, u_1, u_2) < \varphi_{p_i}(m_i u_i) \text{ for every } t \in [0, 1] \text{ and } u_i > 0. \]

2. For $i = 1, 2$,

\[f_i(t, u_1, u_2) > \varphi_{p_i} \left(\frac{M_i}{c_i} u_i \right) \text{ for every } t \in [a_i, b_i] \text{ and } u_i > 0. \]

3. There exists $k \in \{1, 2\}$ such that (4.1) is verified for f_k and for $j \neq k$ condition (4.2) is verified for f_j.

\[f_i(t, u_1, u_2) = \inf \left\{ \frac{f_i(t, u, v)}{p_{p_1}} : (t, u, v) \in [a_i, b_i] \times [0, \rho_1] \times [0, \rho_2] \right\}. \]
Then there is no positive solution of the system \((2.1) \) in \(K \).

Proof. (1) Assume, on the contrary, that there exists \((u, v) \in K\) such that \((u, v) = T(u, v)\) and \((u, v) \neq (0, 0)\). We distinguish two cases.

- Let be \(\|u\|_\infty \neq 0 \). Then we have

\[
u(t) = \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)f_1(\tau, u(\tau), v(\tau))d\tau \right) ds + B_1 \left(\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)f_1(\tau, u(\tau), v(\tau))d\tau \right) \right) < m_1 \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)d\tau \right) ds + m_1h_2\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)d\tau \right) \leq m_1\|u\|_\infty \left(\int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)d\tau \right) ds + h_2\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)d\tau \right) \right).
\]

Taking \(t = 0 \) gives

\[
\|u\|_\infty = u(0) < m_1\|u\|_\infty \left(\int_0^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)d\tau \right) ds + h_2\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)d\tau \right) \right) = m_1\|u\|_\infty \frac{1}{m_1},
\]
a contradiction.

- Let be \(\|v\|_\infty \neq 0 \).

Reasoning as in Lemma [3.2] we distinguish the cases \(\sigma_{u,v} \leq 1/2 \) and \(\sigma_{u,v} > 1/2 \). In the first case we have

\[
\|v\|_\infty = \|T_2(u, v)\|_\infty = T_2(u, v)(\sigma_{u,v}) = \int_0^{\sigma_{u,v}} \varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)f_2(\tau, u(\tau), v(\tau))d\tau \right) ds + B_2 \left(\varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)d\tau \right) \right) < m_2\|v\|_\infty \left(\int_0^{\sigma_{u,v}} \varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)d\tau \right) ds + h_{22}\varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)d\tau \right) \right) \leq m_2\|v\|_\infty \frac{1}{m_2},
\]
a contradiction.

The proof is similar in the last case \(\sigma_{u,v} > 1/2 \).

(2) Assume, on the contrary, that there exists \((u, v) \in K\) such that \((u, v) = T(u, v)\) and \((u, v) \neq (0, 0)\). We distinguish two cases.
• Let be $\|u\|_\infty \neq 0$. Then, for $t \in [a_1, b_1] = [0, b_1]$, we have

$$ u(t) = \int_t^1 \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + B_1 \left(\varphi_{p_1}^{-1} \left(\int_0^1 g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) \right) $$

$$ \geq \int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) $$

$$ \geq \int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau)f_1(\tau, u(\tau), v(\tau)) d\tau \right) $$

$$ \geq \frac{M_1}{c_1} \left(\int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) g_p(1)(u(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) g_p(1)(u(\tau)) d\tau \right) \right) $$

$$ \geq \frac{M_1}{c_1} \left(\int_t^{b_1} \varphi_{p_1}^{-1} \left(\int_0^s g_1(\tau) g_p(1)(u(\tau)) d\tau \right) ds + h_{11} \varphi_{p_1}^{-1} \left(\int_0^{b_1} g_1(\tau) g_p(1)(u(\tau)) d\tau \right) \right) $$

For $t = 0$ we obtain

$$ u(0) = \|u\|_\infty > M_1 \|u\|_\infty \frac{1}{M_1}, $$

a contradiction.

• Let be $\|v\|_\infty \neq 0$. We examine the case $\sigma_{u,v} \geq b_2$. We have

$$ \|v\|_\infty = v(\sigma_{u,v}) = T(u,v)(\sigma_{u,v}) = \int_{\sigma_{u,v}}^{\sigma_{u,v}} \varphi_{p_2}^{-1} \left(\int_s^{\sigma_{u,v}} g_2(\tau)f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds $$

$$ + B_2 \left(\varphi_{p_2}^{-1} \left(\int_0^{\sigma_{u,v}} g_2(\tau)f_2(\tau, u(\tau), v(\tau)) d\tau \right) \right) $$

$$ \geq \int_{a_2}^{b_2} \varphi_{p_2}^{-1} \left(\int_s^{b_2} g_2(\tau)f_2(\tau, u(\tau), v(\tau)) d\tau \right) ds + h_{21} \varphi_{p_2}^{-1} \left(\int_{a_2}^{b_2} g_2(\tau)f_2(\tau, u(\tau), v(\tau)) d\tau \right) $$

$$ \geq \frac{M_2}{c_2} \|v\|_\infty \left(\int_{a_2}^{b_2} \varphi_{p_2}^{-1} \left(\int_s^{b_2} g_2(\tau) d\tau \right) ds + h_{21} \varphi_{p_2}^{-1} \left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) \right) $$

$$ \geq \frac{M_2}{c_2} \|v\|_\infty \left(\int_{a_2}^{b_2} \varphi_{p_2}^{-1} \left(\int_s^{b_2} g_2(\tau) d\tau \right) ds + h_{21} \varphi_{p_2}^{-1} \left(\int_{a_2}^{b_2} g_2(\tau) d\tau \right) \right) $$

a contradiction. By similar proofs, the cases $0 < \sigma_{u,v} \leq a_2$ and $a_2 < \sigma_{u,v} < b_2$ can be examined.

(3) Assume, on the contrary, that there exists $(u, v) \in K$ such that $(u, v) = T(u,v)$ and $(u,v) \neq (0,0)$. If $\|u\|_\infty \neq 0$ then the function f_1 satisfies either (4.1) or (4.2) and the proof follows as in the previous cases. If $\|v\|_\infty \neq 0$ then the function f_2 satisfies either (4.1) or (4.2) and the proof follows as previous cases.

\[\Box \]

5. An example

We illustrate in the following example that all the constants that occur in the Theorem 3.6 can be computed.

Consider the system

\[(\varphi_{p_1}(u'))'(t) + g_1(t)f_1(t, u(t), v(t)) = 0, \ t \in (0, 1), \]

\[(\varphi_{p_2}(v'))'(t) + g_2(t)f_2(t, u(t), v(t)) = 0, \ t \in (0, 1), \]

subject to boundary conditions

\[u'(0) = 0, \ u(1) = B_1(u'(1)) = 0, \ v(0) = B_2(v'(0)), \ v(1) = 0, \]
where B_1 and B_2 are defined by:

$$B_1(w) = \begin{cases}
 w, & w \leq 0, \\
 \frac{w}{7}, & 0 \leq w \leq 1, \\
 \frac{w}{6} + \frac{1}{3}, & w \geq 1,
\end{cases}$$

and

$$B_2(w) = \begin{cases}
 \frac{w}{7}, & 0 \leq w \leq 1, \\
 \frac{w}{6} + \frac{2}{3}, & w \geq 1.
\end{cases}$$

Now we assume $g_1 = g_2 = 1$. Thus we have

$$\frac{1}{m_1} = \frac{p_1 - 1}{p_1} + h_{12},$$

$$\frac{1}{m_2} = \frac{p_2 - 1}{p_2} \left(\frac{1}{2} \right)^{p_2 - 1} + h_{22} \left(\frac{1}{2} \right)^{p_2 - 1},$$

$$\frac{1}{M_1} = \frac{1}{M_1[0,b_1]} = \frac{p_1 - 1}{p_1} b_1^{p_1 - 1} + h_{11} b_1^{p_1 - 1},$$

and

$$\frac{1}{M_2} = \frac{1}{M_2[a_2,b_2]} = \frac{1}{2} \min_{a_2 \leq \nu \leq b_2} \left(\frac{p_2 - 1}{p_2} \left((\nu - a_2)^{p_2 - 1} + (b_2 - \nu)^{p_2 - 1} \right) + h_{21}(\nu - a_2)^{-p_2} \right).$$

The choice $p_1 = \frac{3}{2}$, $p_2 = 3$, $b_1 = \frac{2}{3}$, $a_2 = \frac{1}{4}$, $b_2 = \frac{3}{4}$, $h_{11} = 1/6$, $h_{12} = 1/2$, $h_{21} = 1/9$ and $h_{22} = 1/3$ gives by direct computation:

$$c_1 = \frac{1}{3}; c_2 = \frac{1}{4}; m_1 = 1.2; M_1 = 5.78571; m_2 = 2.12132; M_2 = 9.14497.$$

Let us now consider

$$f_1(t,u,v) = \frac{1}{16}(u^4 + t^3v^3) + \frac{27}{50}, \quad f_2(t,u,v) = (tu)^{\frac{1}{2}} + 10v^9.$$

Then, with the choice of $\rho_1 = \rho_2 = 1/20$, $r_1 = 1$, $r_2 = 2/3$, $s_1 = s_2 = 9$, we obtain

$$\inf \left\{ f_1(t,u,v) : (t,u,v) \in [0,\frac{2}{3}] \times [0,\rho_1] \times [0,\rho_2] \right\} = f_1(0,0,0) = 0.54 > \sqrt{M_1\rho_1} = 0.538,$n

$$\sup \left\{ f_1(t,u,v) : (t,u,v) \in [0,1] \times [0,r_1] \times [0,r_2] \right\} = f_1(1,r_1,r_2) = 0.62 < \sqrt{m_1r_1} = 1.095,$n

$$\inf \left\{ f_1(t,u,v) : (t,u,v) \in [0,\frac{2}{3}] \times [c_1s_1,s_1] \times [0,s_2] \right\} = f_1(0,c_1s_1,0) = 5.602 > \sqrt{M_1s_1} = 1.247,$n

$$\sup \left\{ f_2(t,u,v) : (t,u,v) \in [0,1] \times [0,r_1] \times [0,r_2] \right\} = f_2(1,r_1,r_2) = 1.260 < (m_2r_2)^2 = 2,$n

$$\inf \left\{ f_2(t,u,v) : (t,u,v) \in [\frac{1}{4},\frac{3}{4}] \times [0,s_1] \times [c_2s_2,s_2] \right\} = f_2(t,0,c_2s_2) = 14778.9 > (M_2s_2)^2 = 6774.07.$$

Thus the conditions $(I_1^{1,2/3})^*, (I_1^{1,2/3})$ and $(I_0^{9,9})$ are satisfied; therefore the system (5.1)-(5.2) has at least two nontrivial solutions (u_1,v_1) and (u_2,v_2) such that $1/20 < \| (u_1,v_1) \| \leq 1$ and $1 < \| (u_2,v_2) \| \leq 9.$
References

[1] R. P. Agarwal, H. Lü and D. O’Regan, Eigenvalues and the one-dimensional p-Laplacian. *J. Math. Anal. Appl.* **266**, no. 2 (2002), 383-400.

[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. *SIAM. Rev.*, **18** (1976), 620–709.

[3] R. Avery and J. Henderson, Existence of three positive pseudo-symmetric solutions for a one-dimensional p-Laplacian. *J. Math. Anal. Appl.* **277**, no. 2 (2003), 395-404.

[4] K. Bachouche, S. Djebali and T. Moussaoui, ϕ-Laplacian BVPS with linear bounded operator conditions. *Arch. Math. (Brno)* **48**, no. 2 (2012), 121-137.

[5] D. Bai and Y. Chen, Three positive solutions for a generalized Laplacian boundary value problem with a parameter. *Appl. Math. Comput.* **219**, no. 9 (2013), 4782-4788.

[6] C. Bai and J. Fang, Existence of multiple positive solutions for nonlinear m-point boundary value problems. *J. Math. Anal. Appl.* **281**, no. 1 (2003) 76-85.

[7] B. D. Calvert, One-dimensional nonlinear Laplacians under a 3-point boundary condition. *Acta Math. Sin. (Engl. Ser.)* **26**, no. 9 (2010), 1641-1652.

[8] X. Cheng and H. Lü, Multiplicity of positive solutions for a (p_1, p_2)-Laplacian system and its applications. *Nonlinear Anal. Real World Appl.* **13**, no. 5 (2012), 2375-2390.

[9] H. Feng, W. Ge and M. Jiang, Multiple positive solutions for m-point boundary-value problems with a one-dimensional p-Laplacian. *Nonlinear Anal.* **68**, no. 8 (2008), 2269-2279.

[10] D. Franco, G. Infante and D. O’Regan, Nontrivial solutions in abstract cones for Hammerstein integral systems. *Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.*, **14** (2007), 837–850.

[11] C. S. Goodrich, Positive solutions to boundary value problems with nonlinear boundary conditions. *Nonlinear Anal.*, **75** (2012), 417–432.

[12] C. S. Goodrich, On nonlinear boundary conditions satisfying certain asymptotic behavior. *Nonlinear Anal.*, **76** (2013), 58–67.

[13] D. Guo and V. Lakshmikantham, *Nonlinear Problems in Abstract Cones*. Academic Press, 1988.

[14] X. He and W. Ge, A remark on some three-point boundary value problems for the one-dimensional p-Laplacian. *ZAMM Z. Angew. Math. Mech.* **82**, no. 10 (2002), 728-731.

[15] G. Infante, Nonlocal boundary value problems with two nonlinear boundary conditions. *Commun. Appl. Anal.*, **12** (2008), 279–288.

[16] G. Infante, M. Maciejewski and R. Precup, A topological approach to the existence and multiplicity of positive solutions of (p,q)-Laplacian systems. *Dynamics of Partial Differential Equations*, to appear.

[17] G. Infante, F. M. Minhós and P. Pietramala, Non-negative solutions of systems of ODEs with coupled boundary conditions. *Commun. Nonlinear Sci. Numer. Simul.*, **17** (2012), 4952–4960.

[18] G. Infante and P. Pietramala, A cantilever equation with nonlinear boundary conditions. *Electron. J. Qual. Theory Differ. Equ., Spec. Ed. I*, No. 15 (2009), 1–14.

[19] G. Infante and P. Pietramala, Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein integral equations. *Nonlinear Anal.*, **71** (2009), 1301–1310.

[20] G. Infante and P. Pietramala, Multiple nonnegative solutions of systems with coupled nonlinear boundary conditions. *Math. Methods Appl. Sci.*, **37**, no. 14 (2014), 2080–2090.

[21] G. Infante and P. Pietramala, Nonzero radial solutions for a class of elliptic systems with nonlocal BCs on annular domains. *Nonlinear Differ. Equ. Appl. NoDEA*, (2015), DOI 10.1007/s00030-015-0311-8.

[22] P. Jebelean and R. Precup, Solvability of (p,q)-Laplacian systems with potential boundary conditions. *Appl. Anal.*, **89**, no. 2 (2010), 221-228.

[23] G. L. Karakostas, Positive solutions for the Φ-Laplacian when Φ is a sup-multiplicative-like function. *Electron. J. Differential Equations 2004* (2004), No. 68, 12 pp.

[24] G. L. Karakostas, Solvability of the Φ-Laplacian with nonlocal boundary conditions. *Appl. Math. Comput.* **215**, no. 2 (2009), 514-523.
[25] C. G. Kim, The three-solutions theorem for \(p \)-Laplacian boundary value problems. *Nonlinear Anal.* 75, no. 2 (2012), 924-931.

[26] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities, *Diff. Eqns and Dynam. Syst.*, 8 (2000), 175–195.

[27] K. Q. Lan, Multiple positive solutions of semilinear differential equations with singularities. *J. London Math. Soc.*, 63 (2001), 690–704.

[28] K. Q. Lan and Z. Zhang, Nonzero positive weak solutions of systems of \(p \)-Laplace equations. *J. Math. Anal. Appl.* 394, no. 2 (2012), 581-591.

[29] E. K. Lee and Y. H. Lee, A multiplicity result for generalized Laplacian systems with multiparameters. *Nonlinear Anal.* 71, no. 12 (2009), e366-e376.

[30] J. Li and J. Shen, Existence of three positive solutions for boundary value problems with \(p \)-Laplacian. *J. Math. Anal. Appl.* 311, no. 2 (2005), 457-465.

[31] H. Lü, D. O’Regan and C. Zhong, Multiple positive solutions for the one-dimensional singular \(p \)-Laplacian. *Appl. Math. Comput.* 133, no. 2-3 (2002), 407-422.

[32] D. X. Ma, Z. J. Du and W. Ge, Existence and iteration of monotone positive solutions for multipoint boundary value problem with \(p \)-Laplacian operator. *Comput. Math. Appl.* 50, no. 5-6 (2005), 729-739.

[33] P. Pietramala, A note on a beam equation with nonlinear boundary conditions. *Bound. Value Probl.*, (2011), Art. ID 376782, 14 pp.

[34] K. Prasad, K. Kumar and P. Murali, Solvability of higher order \((p, q) \)-Laplacian two-point boundary value problems. *J. Appl. Computat. Math.*, 3, no. 6 (2014), 6 pp.

[35] R. Precup, Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications. Mathematical models in engineering, biology and medicine, 284–293, *AIP Conf. Proc.*, 1124, Amer. Inst. Phys., Melville, NY, 2009.

[36] R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems. *J. Math. Anal. Appl.*, 352 (2009), 48–56.

[37] I. Sim and Y. H. Lee, A new solution operator of one-dimensional \(p \)-Laplacian with a sign-changing weight and its application. *Abstr. Appl. Anal.* 2012, Art. ID 243740, 15 pp.

[38] H. Su, Z. Wei and F. Xu, The existence of countably many positive solutions for a system of nonlinear singular boundary value problems with the \(p \)-Laplacian operator. *J. Math. Anal. Appl.* 325, no. 1 (2007), 319-332.

[39] J. Wang, The existence of positive solutions for the one-dimensional \(p \)-Laplacian. *Proc. Amer. Math. Soc.* 125, no. 8 (1997), 2275-2283.

[40] Y. Wang and W. Ge, Positive solutions for multipoint boundary value problems with a one-dimensional \(p \)-Laplacian. *Nonlinear Anal.* 66, no. 6 (2007), 1246-1256.

[41] Y. Wang and W. Ge, Existence of multiple positive solutions for multipoint boundary value problems with a one-dimensional \(p \)-Laplacian. *Nonlinear Anal.* 67, no. 2 (2007), 476-485.

[42] Y. Wang and C. Hou, Existence of multiple positive solutions for one-dimensional \(p \)-Laplacian. *J. Math. Anal. Appl.* 315 no. 1 (2006), 144153.

[43] Z. Wang and J. Zhang, Positive solutions for one-dimensional \(p \)-Laplacian boundary value problems with dependence on the first order derivative. *J. Math. Anal. Appl.* 314, no. 2 (2006), 618-630.

[44] X. Xu and Y-H. Lee, Some existence results of positive solutions for \(\phi \)-Laplacian systems. *Abstr. Appl. Anal.* (2014), Art. ID 814312, 11 pp.

[45] Z. Yang, Positive solutions to a system of second-order nonlocal boundary value problems, *Nonlinear Anal.*, 62 (2005), 1251–1265.

[46] Z. Yang, Positive solutions for a system of \(p \)-Laplacian boundary value problems. *Comput. Math. Appl.* 62, no. 12 (2011), 4429-4438.

[47] Z. Yang and D. O’Regan, Positive solutions of a focal problem for one-dimensional \(p \)-Laplacian equations. *Math. Comput. Modelling* 55, no. 7-8 (2012), 1942-1950.
[48] Y. Zhang, Existence and multiplicity results for a class of generalized one-dimensional p-Laplacian problem. *Nonlinear Anal.* **72**, no. 2 (2010), 748-756.

Filomena Cianciaruso, Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy

E-mail address: cianciaruso@unical.it

Paolamaria Pietramala, Dipartimento di Matematica e Informatica, Università della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy

E-mail address: pietramala@unical.it