Aramazdospirifer orbelanus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia

Vahram SEROBYAN, Taniel DANELIAN, Catherine CRÓNIER, Araik GRIGORYAN & Bernard MOTTEQUIN
Aramazdospirifer orbelianus (Abich, 1858) n. comb., a new cyrtospiriferid brachiopod genus and a biostratigraphically important species from the lower Famennian (Upper Devonian) of Armenia

Vahram SEROBYAN
Institute of Geological Sciences of the National Academy of Sciences of the Republic of Armenia-Yerevan, 24A, Marshal Baghramyan Avenue, Yerevan 0019 (Republic of Armenia) and Univ. Lille, CNRS, UMR 8198 Evo-Eco-Paleo, F-59000 Lille (France)
vahram.serobyan@univ-lille.fr, vahramserobyan@gmail.com (corresponding author)

Taniel DANELIAN
Catherine CRÔNIER
Univ. Lille, CNRS, UMR 8198 Evo-Eco-Paleo, F-59000 Lille (France)

Araik GRIGORYAN
Institute of Geological Sciences of the National Academy of Sciences of the Republic of Armenia-Yerevan, 24A, Marshal Baghramyan Avenue, Yerevan 0019 (Republic of Armenia)

Bernard MOTTEQUIN
O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, rue Vautier 29, B-1000 Brussels (Belgium)

Submitted on 20 December 2019 | Accepted on 2 September 2020 | Published on 15 February 2022

ABSTRACT

The new genus *Aramazdospirifer* n. gen. (*Cyrtospiriferidae*) is erected to include *Spirifer orbelianus* Abich, 1858 from the lower Famennian of Central Armenia as its type species and to refute long-standing claims related to the affinities of the latter. The micro-ornament and internal structure of this species are investigated and documented for the first time, on the basis of recently collected material from the Ertych horizon of three different sections. Additionally, a neotype is selected for Abich’s species as the type material is lost. *Aramazdospirifer orbelianus* (Abich, 1858) n. comb., is a biostratigraphically important species for the lower Famennian strata of the Lesser Caucasus. It appears to be restricted to the South-Armenian Block; reports outside this Gondwanan area are discussed and discarded.

KEY WORDS

Brachiopoda, *Spiriferida*, lower Famennian, Gondwana, Armenia, neotypification, new genus, new combination.
INTRODUCTION

The Upper Devonian sedimentary sequences of Armenia are highly fossiliferous and contain a diverse and well-preserved brachiopod fauna (Abrahanyan 1957, 1964, 1974; Arakelyan 1964; Serobyan et al. 2021), which remains largely undocumented from a taxonomic and biostratigraphic point of view. Re-investigation of this fauna is crucial to better understand Late Devonian changes in brachiopod diversity and palaeobiogeographic distribution. In Armenia, Devonian outcrops were first examined by the famous German geologist Hermann Abich, considered as the “Father of Caucasian Geology” (Milansky 2007). Abich (1858) described a number of new brachiopod species from the Lesser Caucasus, notably the spiriferid species *Spirifer orbelianus* Abich, 1858. The latter was erroneously reported afterwards in the Franco-Belgian Basin by Gosselet (1874), and later in different parts of the world (see Sarneael 1974 for a review, and references below). Due to its great potential for biostratigraphic correlations of lower Famennian successions throughout the Lesser Caucasus, re-investigation of *S. orbelianus* is a necessary task as its affinities at the genus level still remain unclear, in spite of the extensive taxonomic studies led by Abrahanyan (1957, 1974) and Afanasjeva (in Alekseeva et al. 2018a). The purpose of the present study is to reassess the taxonomy of *S. orbelianus* on the basis of recently collected material from the lower Famennian of Central Armenia, with implications for its palaeobiogeographic distribution.

STRATIGRAPHIC AND PALEOGEOGRAPHIC SETTINGS

In the southern part of Central Armenia crops out a c. 1 500 m-thick Middle Devonian-lower Carboniferous sequence of platform carbonate deposits (Fig. 1). They record the earliest depositional history of Palaeozoic sediments in the area; they were accumulated on a Gondwanan passive margin that was facing the Palaeotethys, situated to the North; this part of Gondwana was later individual-
Aramazdospirifer orbelianus (Abich, 1858) n. comb.

COMPTES RENDUS PALEVOL • 2022 • 21 (6)

Abbreviations
IGSNASRAGM Institute of Geological Sciences of the National Academy of Sciences of Armenia, Yerevan;
RBINS Royal Belgian Institute of natural Sciences, Brussels;
USTL University of Lille, Lille.

Material and Methods

The examined material was collected from the Noravank, Ertych and Djravank sections (Fig. 1) during several field seasons organized in 2018 and 2019. It comes from marly limestones and shales of the lower Famennian Ertych horizon (Fig. 2), which can be correlated with the ‘Cyrtospirifer orbelianus’ Zone of Abrahamyan (1957) and the ‘Cyrtiopsis orbelianus-Cyrtiopsis armenicus’ Zone of Rzhonsnitskaya & Mamedov (2000). In total, 80 articulated brachiopod shells and 15 dissociated valves were collected, the main part of which is derived from a soft, weathered surface that provided well-preserved, nearly sediment-free specimens. The bulk of the specimens illustrated and investigated herein is housed at the Geological Museum of the IGSNASRAGM. Some specimens are deposited at the RBINS and others at the USTL.

The recently collected material was compared with Abrahamyan’s specimens, collected in Armenia during the 1940s to 1980s, most of which are now stored at the IGSNASRAGM.
The internal structure of the newly collected articulated specimens identified as *A. orbelianus* (Abich, 1858) n. comb. found in the three sections (Fig. 1) was investigated by using the standard technique of serial sections and acetate peels. The latter were assembled between microscope slides and photographed under a binocular microscope Olympus SZX 12. Afterwards, the photographs were transferred to CorelDRAW X7 software and internal details were drawn using a digital drawing tablet. Furthermore, in order to capture the fine details of the internal structure, the ground specimens were photographed directly under a Canon EOS 700D camera that was attached on a Zeiss SteREO Discovery V20 Microscope. Intact brachiopod specimens were coated with magnesium oxide or ammonium chloride sublimate before being photographed. All images have been further processed using Adobe Photoshop CS6. Additionally, the IGSNASRAGM 3895/PS 3001 specimen was coated with gold and the digitization of the micro-ornament of the latter was performed by ZEISS EVO Scanning Electron Microscope. RBINS specimens selected for scanning electron microscopy were observed using a low vacuum SEM, an ESEM FEI Quanta 200, but not coated with gold.

SYSTEMATIC PALAEOONTOLOGY

The superspecific classification adopted herein follows Carter et al. (2006) for the Order Spiriferida. The synonomy list only concerns the report of the species in the South-Armenian Block.

Order SPIRIFERIDA Waagen, 1883
Suborder SPIRIFERIDINa Waagen, 1883
Superfamily CYRTOSPIRIFEROIDEA
Termier & Termier, 1949
Family CYRTOSPIRIFERIDAE Termier & Termier, 1949
Subfamily CYRTOSPIRIFERINAE Termier & Termier, 1949
Aramazdospirifer n. gen.

Diagnosis. — Shell of medium-size, ventribiconvex, subpentagonal, wider than long to longer than wide, with mucronate cardinal extremities; generally widest at hinge line; ventral interarea moderately high, apsalnic; delthyrium wide and most of its height covered by a pseudodeltidium, the latter is composed of several distinct plates, with submesothyrid foramen; fold and sulcus moderately wide, well-defined; median longitudinal elevation developed in sulcus and frequently on fold; ribs numerous, usually simple on flanks, increasing by bifurcation in sulcus and on fold; micro-ornament capillate both on ribs and in interspaces; dental plates long, strong and intrasinal; delothyrial plate well-developed; unsupported ctenophoridium with numerous vertical lamellae; crural plates short; dorsal myophragm present.

Type species. — *Spirifer orbelianus* Abich, 1858.

Other species. — It is currently difficult to assign other species to *Aramazdospirifer* n. gen. with certainty in the absence of taxonomical revisions of the diverse cyrtospiriferide fauna from the Famennian of the ex-USSR. *Spirifer* (*Cyrtospirifer*) *aperontarius* von Schlotheim *sensu* Nalivkin (1930) described in the Central Kara-Tau and along the headwaters of the Naryn river (Kazakhstan) likely belongs to the new genus, although the latter has a less globular shell, subcircular tongue and lacks median and longitudinal elevations in sulcus and fold. It is worth noting that the real *aperontarius* from Germany and the Franco-Belgian basin differs from Nalivkin’s species and does not belong to *Aramazdospirifer* n. gen. (see Paeckelmann 1942; Vander- Vennin 1959). It is also probable that *Cyrtospirifer* (*Cyrtospirifer*) *pentagonalis* Sidjachenko (1962) described from the Famennian of Central Kara-Tau should be assigned to *Aramazdospirifer* n. gen. as it shares many common features with the new genus. More precisely its inflated and subpentagonal shell that is ornamented with closely spaced and flattened ribs, acute to mucronate cardinal extremities and apsaic triangular ventral interarea that fit well with the diagnosis of the new genus. Nevertheless, the micro-ornament, the internal morphology and the type of pseudodeltidium of the latter species is unknown. Finally, *Cyrtospirifer* *aquilinus* Romanowski *sensu* Nalivkin (1930) described from the Central Kara-Tau and along the headwaters of the Naryn river (Kazakhstan) might also be assigned to the new genus, although it lacks median and longitudinal elevations in sulcus and on fold. However, its micro-ornament and internal morphology is unknown. All these uncertainties preclude the possibility of a definite assignment to *Aramazdospirifer* n. gen.

Etymology. — In honor of Aramazd, who was the chief god in pre-Christian Armenian mythology.

Remarks

Aramazdospirifer n. gen. is included in the superfamily Cyrtospiriferoidae based on the presence of dental plates, a ctenophoridium, a well-developed delthyrial plate, and capillate ornamentation. Although a thorough revision of this superfamily, recommended by Ma & Day (2000), is still pending, *Aramazdospirifer* n. gen. is assigned to the family Cyrtospiriferidae, as defined by Johnson (2006), due to the development of ribs in the sulcus and on fold. Additionally, its wide hinge line argues for its assignment to the subfamily Cyrtospiriferinae rather than to the Cyrtiopiniae.

Afanasjeva in Alekseeva et al. (2018a) examined some specimens collected from the Armenian sections and reassigned Abich’s species to the late Givetian — early Frasnian genus *Uchospirifer* Liaschenko, 1957 known from South Timan (Russia). *Aramazdospirifer* n. gen. shares indeed several external and internal characters with *Uchospirifer* Liaschenko, 1957 *sensu* Sokirian (2006). More particularly, both genera display a subpentagonal shell that is ornamented with closely spaced and flattened ribs (also in sulcus and on fold), an apsaic
Aramazdospirifer orbelianus (Abich, 1858) n. comb.

Fig. 3. — Aramazdospirifer orbelianus (Abich, 1858) n. comb.: A–F, R–T, almost complete specimen (IGNASRAGM 3895/PS 3001) from the Djravank section in ventral, dorsal, posterior, lateral, posterodorsal and anterior views (A–F), close-up of micro-ornament (capillae and growth lines) on dorsal valve (close to anterior margin; R–T); G, H, incomplete specimen (IGNASRAGM 3896/PS 3002) from the Noravank section, close-up of the ventral interarea (pseudodeltidium; G); I–N, almost complete specimen (IGNASRAGM 3897/AB97/48; neotype, Noravank section) in ventral, dorsal, posterodorsal, posterior, anterior and lateral views; O–Q, U–V, almost complete specimen (IGNASRAGM 3898/PS 3004) from the Ertych section in ventral, dorsal, lateral, posterior and anterior views; W–AA, almost complete juvenile specimen (IGNASRAGM 3899/PS 3005) from the Djravank section in ventral, dorsal, anterior, posterior and lateral views. Scale bars: A–F, I–Q, U–AA, 10 mm; G, 2 mm; H, 5 mm; R, 200 μm; S, 400 μm; T, 500 μm.
and triangular ventral interarea, divergent dental plates, and an unsupported ctenophoridium. However, Aramazdospirifer n. gen. differs from Uchtospirifer by its much more inflated shell, acute to mucronate cardinal extremities, wider hinge line, clearly defined longitudinal and median elevation in sulcus and similar elevation often developed on fold, and the type of pseudodeltidium formed by several distinct plates. Furthermore, it is worth noting that Aramazdospirifer n. gen. has narrower ribs perceptible along the whole length of its shell and fold, whereas the median ribs of Uchtospirifer are variably developed, sometimes flattened to imperceptible or absent. Moreover, the micro-ornament of the new genus lacks the tubercles observed on Uchtospirifer.

Externally Aramazdospirifer n. gen. resembles also to the Famennian genus Wenjukovispirifer Oleneva, 2016 mainly in terms of its rounded subpentagonal outline, ventribiconvex lateral profile, acute to mucronate cardinal extremities, wide hinge line, well-defined and triangular ventral interarea, wide sulcus and fold bearing bifurcating ribs that are narrower than those present on the flanks. However, Aramazdospirifer n. gen. differs by its median and longitudinal elevation in sulcus and similar elevation frequently displayed on fold, and its pseudodeltidium that is formed by several distinct plates with minute submesothyrid foramen. Additionally, Aramazdospirifer n. gen. lacks pustules that are observed in Wenjukovispirifer. It is difficult to compare the internal morphology of these genera as Oleneva (2016) did not illustrate any serial sections. Nevertheless, she mentioned the presence of a median septum situated in the ventral interior of Wenjukovispirifer, a character that is not observed in Aramazdospirifer n. gen.

The new genus differs strongly from Cyrtospirifer Nalivkin in Frederiks 1924, by its more globular, longitudinally elongated and inflated shell, well-developed pseudodeltidium, longitudinal and median elevation in sulcus and similar elevation often developed on fold and the type of micro-ornament. Internally, these genera appear to be similar, though Aramazdospirifer n. gen. possesses an unsupported ctenophoridium, while the latter is supported by an apical callosity in many Cyrtospirifer representatives.

Aramazdospirifer n. gen. is distinguished externally from Lamarkispirifer Gatinaud, 1949 sensu Ma & Day (2007), known from the lower Famennian of South China (Ma & Day 1999), by its more rounded and inflated shell, longitudinal and median elevation in sulcus and analogous elevation often developed on fold and its high tongue. Additionally, Aramazdospirifer n. gen. lacks a median furrow on fold of the dorsal valve and the hayasakai-type micro-ornament. Internally, the most substantial difference is the presence of a dorsal median septum in Lamarkispirifer, while this character is absent in Aramazdospirifer n. gen.

Aramazdospirifer n. gen. can be distinguished from the genus Pseudocyrtiopsis Ma & Day, 1999, known from the lower Famennian of South China, by its shell outline, longitudinal and median elevation in sulcus and analogous elevation often developed on fold, simple and flattened ribs, lack of well-developed pustules in ribs and interspaces. Internally, Aramazdospirifer n. gen. differs by its unsupported ctenophoridium.

Aramazdospirifer orbelianus (Abich, 1858) n. comb.

(Figs 3-7; Table 1)

| Measurements and ratios in mm of Aramazdospirifer orbelianus (Abich, 1858) n. comb. Abbreviations: dL, length of the dorsal valve; L, length of the shell; T, thickness of the shell; Ws, width of the sulcus. |
|---|---|---|---|---|---|---|---|---|
| Min | 22 | 21.3 | 14.9 | 9 | 18.6 | 0.78 | 0.57 | 0.34 | 1.09 |
| Max | 39 | 39.1 | 35.1 | 20 | 29.1 | 1.21 | 1.21 | 0.6 | 1.52 |

| Abbreviations: dL, length of the dorsal valve; L, length of the shell; T, thickness of the shell; Ws, width of the sulcus. |
|---|---|---|---|---|
| Number of individuals | 60 | 54 | 53 | 55 |
| Mean value | 30.47 | 30.77 | 25.9 | 14.57 |
| Standard deviation | 3.2916 | 3.9919 | 4.4912 | 2.0632 |
| Standard error± | ±0.4249 | ±0.5431 | ±0.6169 | ±0.2782 |
| Min | 22 | 21.3 | 14.9 | 9 |
| Max | 39 | 39.1 | 35.1 | 20 |
| dL | 53 | 54 | 53 | 55 |
| L/W | 53 | 54 | 53 | 55 |
| T/W | 53 | 54 | 53 | 55 |
| Ws/W | 53 | 54 | 53 | 55 |
| W/dL | 53 | 54 | 53 | 55 |

Table 1.
Aramazdospirifer orbelianus (Abich, 1858) n. comb.

(1957), as well as the 'Cyrtiopsis orbelianus'-Cyrtiopsis armenicus Zone of Rhoninsitskaya & Mamedov (2000) (Fig. 2). Initially, Abrahamyan (1957) reported this species from sequences considered as constituting the lower part of the upper Famennian. Following the extensive stratigraphic study of Abrahamyan (1964) and Arakelyan (1964), it appeared that the previously reported orbelianus bearing sequences are actually early Famennian in age. Therefore, Abrahamyan (1974) specified that A. orbelianus n. comb. is restricted to the lower Famennian (possibly corresponding to the equivalent of the Palmatolepis crepida-P. glabra pectinata conodont zones of Spalletta et al. (2017)). Previously this species has been observed in Armenia in the Argichi, Lanjanist (Kadrlu), Chanakchi (Zangakatun), Ertchy and Noravank sections (Fig. 1) (Abrahamyan 1957; Arakelyan 1964) and doubtfully in the Gyumushlug section of Nakhichevan (Fig. 1; Abrahamyan 1957). It is worth noting that only two poorly preserved specimens of possible A. orbelianus n. comb. have been found so far in Nakhichevan by Abrahamyan (1957) (IGSNASRAGM collections). Nevertheless, both specimens lack longitudinal and median elevations, and display an erect beak, which are not characters present in A. orbelianus n. comb. Moreover, further sampling in several sections exposing the lower Famennian strata in Nakhichevan, including the Gyumushlug section, did not reveal the presence of Abich’s species (e.g. Arakelyan 1964; Aristov et al. 1979; Feliks et al. 1980; Grechishnikova 1986).

MATERIAL EXAMINED. — Eighty articulated specimens, ten ventral and five dorsal valves from the marly/sandy limestones of the Ertchy horizon of the Djravank (sixty articulated specimens and ten ventral valves), Noravank (type locality: twelve articulated specimens and four dorsal valves) and Ertchy (eight articulated specimens and one
Fig. 5. — Transverse serial sections of Aramazdospirifer orbelianus (Abich, 1858) n. comb. from the Djravank section. Numbers refer to distances in mm from the tip of the ventral umbo. Scale bars: A, 5 mm; B, 2.5 mm.
Aramazdospirifer orbelianus (Abich, 1858) n. comb.

DESCRIPTION

Shell medium-sized (up to 39 mm in width and 39.1 mm in length), wider than long to longer than wide, generally ventribiconvex, rounded subpentagonal in outline, widest at hinge line, highest at about midlength; cardinal extremities acute to mucronate, but strongly extended in some specimens; anterior margin strongly excavated by sulcus, emarginate; anterior commissure uniplicate.

Ventral valve strongly inflated, rounded pentagonal in outline, with convex flanks sloping steeply towards lateral commissures; highest at about midlength; cardinal extremities acute to mucronate, but strongly extended in some specimens; anterior margin strongly excavated by sulcus, emarginate; anterior commissure uniplicate.

Dorsal valve wider than long, inflated with flanks sloping moderately to strongly towards lateral commissures, subquadrangular to subtrapezoidal in outline; highest in the anterior third of the valve, but gradually decreasing towards the anterior margin; interarea linear (up to 3 mm high), slightly concave, orthocline; fold well-defined, wide, moderately high, inconspicuously originating from beak, widening and becoming deeper anteriorly, sulcus margins gentle. Sulcus bears a longitudinal and median elevation which inconspicuously originates in the posterior part of the valve; it widens, thickens and becomes more conspicuous anteriorly (highest and widest at the anterior margin); tongue high, perpendicular to commissural plane with its distal part sometimes bent dorsally, subogival in outline.

Dorsal valve wider than long, inflated with flanks sloping moderately to strongly towards lateral commissures, subquadrangular to subtrapezoidal in outline; highest in the anterior third of the valve, but gradually decreasing towards the anterior margin; interarea linear (up to 3 mm high), slightly concave, orthocline; fold well-defined, wide, moderately high, inconspicuously originating from beak, widening and becoming deeper anteriorly, often bearing a longitudinal and median elevation starting from dorsal beak. Ornamentation of up to 35 rounded (generally 28-30, 5-6 ribs per 5 mm at anterior margin near sulcus and fold), simple, flattened, low ribs on each flank, becoming fainter towards posterolateral margins; in sulcus and on fold, up to 25 ribs, increasing by bifurcations, much narrower than

Fig. 6. — Scatter diagrams of *Aramazdospirifer orbelianus* (Abich, 1858) n. comb.: **A**, relation between shell width and length; **B**, relation between shell width and thickness; **C**, relation between shell width and width of sulcus; **D**, relation between shell width and length of dorsal valve. Abbreviations: **N**, number of specimens measured; **p**, probability value; **r**, coefficient of correlation.
those present on flanks; interspaces as wide as ribs on flanks, but wider than ribs in sulcus and on fold; micro-ornament of capillae both on ribs and in interspaces with concentric growth lines sometimes thickened as growth varices.

Ventral valve interior with thin, long, intrasinal and divergent dental plates, becoming much less divergent to almost parallel more anteriorly, converging dorsally in umbonal region (as seen in transverse section); delthyrial plate well-developed, thick (particularly in large specimens); umbonal callus well-developed, central and lateral apical cavities large and filled in by callus; teeth relatively small, subrectangular. Dorsal valve interior with unsupported ctenophoridium composed of up to 33 well developed, relatively long lamellae; hinge plate divided; outer hinge plates slightly concave, crural bases dorsally convergent; spiral cones not preserved in the sectioned specimens.

Variability
The shell shape varies from almost globular forms with thickness exceeding as width and length, having narrower, shallow sulcus to transversely elongated wider forms with broad sulcus and relatively less inflated valves. The beak angle, the height of the longitudinal elevation and the number of ribs are also shifting.

Ontogeny
Juvenile forms differ from adults in having less inflated valves, straight beaks, shallower sulcus, weak fold, fainter ribs, inconspicuous elevations developed only anteriorly and the less convex delthyrial plate. The size distribution during growth represented by the length/width, thickness/width, width of sulcus/width and length of dorsal valve/width plots (Fig. 6) shows a continuous and progressive growth with no distinct grouping. The relative proportions of Aramazdospirifer orbelianus n. comb. represented by sufficient material remain constant (linear regression: $y = ax + b$; significant probability value: $p < 0.001^{***}$ whatever the degree of development of individuals [Fig. 6]). Moreover, the correlation is positive with width varying proportionally with length, thickness, width of sulcus and the length of dorsal valve. To complete the scatter plots, the measurements (in mm) of numerous individuals of Aramazdospirifer orbelianus n. comb. are also presented in Table 1 and Figure 7. The length of the dorsal valve shows less dispersed values (Fig. 7).

DISCUSSION
Aramazdospirifer orbelianus n. comb. was named by Abich (1858) in honor of the Orbelian family, one of the strongest dynasties in medieval Armenia, characterized by a long history of political influence documented in inscriptions throughout the provinces of Yayots Dzor and Syunik. Abich found this species in the lower Famennian sequence exposed at Noravank although he did not explicitly mention this locality. Abich (1858: 524) indicated that "Sp. Orbelianus ist bis jetzt nur in dem Baranco des Erhebungsthales von Gyneschik [= Gnischik], in den Schichten h and k Profils pag. 440, und zwar in sehr grossen Mengenverhältnissen gefunden worden", i.e., the author found this species in large numbers only in the h (impure limestones) and k (limestones with glauconitic sand) horizons of the profile exposed on the slopes of the valley of the Gnishik river (Fig. 1). These are apparently the marly/sandy limestone layers constituting the lower Famennian sequence exposed below the Noravank monastery, which is one of the most notable monasteries built by the Orbelian dynasty. Abich's species was later reported by Gosselet (1874, 1880, 1894) in northern France and southern Belgium, from sequences accumulated close to the Givetian-Frasnian boundary. However, according to Sartenaer (1974) and Mottequin (2019), the Franco-Belgian material was erroneously identified as Spirifer orbelianus and needs further investigation. Reed (1922) reported a single specimen from Pamir, identified as S. orbelianus and stated that the species displays all the superficial features typical for Abich's species. Nonetheless, his single illustrated specimen has rounded cardinal extremities, coarser ribs with very narrow interspaces and fewer ribs in sulcus and on fold; it also lacks a median longitudinal elevation. We thus consider this specimen as distinct from Abich's species and in need of re-examination. Bonnet (1947: 32, 39) noted the presence of Spirifer orbelianus in Frasnian strata of Armenia, but this occurrence remains highly questionable as he did not illustrate his material (Sartenaer 1974). Gatinaud (1949) erected the genus Lamarckispirifer and assigned many species to it, including Abich's species, but as noted by Ma & Day (2007), the latter species differs externally by its inflated shell and cannot be attributed to that genus. During the "golden era" of Palaeozoic studies in Armenia (1950s to 70s) A. orbelianus n. comb. was reported extensively by Abrahamyan (1957, 1974), Abrahamyan et al. (1973) and Arakelyan (1952, 1964). Abrahamyan (1957) assumed that A. orbelianus n. comb. could be a sister species of Cyrtiopsis armenicus as the latter appeared in a slightly younger horizon. Therefore, Abrahamyan (1974) incorrectly assigned both species to the lower Famennian genus Cyrtiopsis Grabau, 1923. Sartenaer (1974) discussed several reports of A. orbelianus n. comb. from Africa, the Franco-Belgian basin and Iran. He rightly concluded that none of
them corresponds to Abich’s species. In sum, *A. orbelianus* n. comb. is known only from the South-Armenian Block (Central Armenia and possibly Nakhichevan).

CONCLUSIONS

The taxonomic revision of *Spirifer orbelianus* Abich, 1858, based on material collected from its type locality in Central Armenia and complemented by the specimens described by Abrahamyan (1957), led us to define the new cyrtospiriferine genus *Armaazadospirifer* n. gen. *Armaazadospirifer orbelianus* (Abich, 1858) n. comb. is one of the most useful species for the biostratigraphy of the lower Famennian in the Lesser Caucasus due to its short stratigraphic range and abundance. In addition to its type species, which appears to be endemic in the South-Armenian Block, several other Famennian species described from Central Kazakhstan and the East European Platform may be also considered for assignment to the genus *Armaazadospirifer* n. gen., although they are in need of a modern taxonomic reassessment. Further studies on Armenian material are still needed in order to complement the recent revisions of the Famennian brachiopod faunas from the area of northern Gondwana that now corresponds to the Lesser Caucasus, Afghanistan and Iran (Aleksseeva et al. 2018a, b; Mottequin & Brice 2019; Serobyan et al. 2021).

Acknowledgements

The PhD studies of V. Serobyan in France were funded by the French Embassy in Yerevan, the Erasmus + ICM programme and the MOBILLEX International Mobility Grant Programme of the University of Lille. T. Danelian and A. Grigoryan are grateful to the Erasmus Programme for funding their staff mobility in 2018 and 2019, respectively. Fieldwork was also facilitated by the logistic support of the Institute of Geological Sciences (Armenian Academy of Sciences). The authors thank the Région Hauts-de-France, and the Ministère de l’Enseignement Supérieur et de la Recherche (CPER Climibio), and the European Fund for Regional Economic Development for their financial support. Sylvie Régnier (UMR Evo-Evo-Paleo, ULille) and Julien Cillis (RBINS, Brussels) are gratefully acknowledged for the high-quality SEM pictures obtained on specimens deposited at IGNASRAGM and at the RBINS, respectively. Daria Bezgodova is thanked for kindly providing information about Abich’s collection. Constructive remarks by Jed Day, Elena Sokiran and an anonymous reviewer, and the associate editor, Annalisia Ferretti, improved the initial manuscript. The authors are also grateful to E. Sokiran for her advice on literature related to brachiopod genera described from the ex-USSR.

REFERENCES

Abich H. 1858. — Vergleichende geologische Grundzüge der Kaukasischen, Armenischen und Nordpersischen Gebirge. Prodromus einer Geologie der Kaukasischen Länder. Mémoires de l’Académie impériale des Sciences de Saint-Pétersbourg, 7e série, Sciences mathématiques et physiques 7: 359-534.

Abrahamyan M. S. 1957. — Brachiopodi verkholenformenskikh i eten- skikh otolebennih yugo-zapadnoi Armenii (Brachiopodi of the Upper Famennian and Ernzeug deposits of the South-Western Armenia). Akademiya Nauk Armianskoy SSR, Institut Geologicheskikh Nauk, Yerevan, 142 p. (in Russian).

Abrahamyan M. S. 1964. — Karbon (The Carboniferous), in Mekht- chian S. S., Vardaniants L. A., Gabrielian A. A., Magh- kian I. G. & Paffenholz C. N. (eds), Geologiya Armianskoy SSR (Geology of the Armenian USSR). Vol. 2. Akademiya Nauk Armianskoy SSR, Yerevan; 96-118 (in Russian).

Abrahamyan M. S. 1974. — Opyisanie fauny, Downsksaya sistema, Tip Brachiopoda, Brakhkiopody (Description of fauna, Devonian System, Phylum Brachiopoda, brachiopods), in Akopjan V. T. (ed.), Atlas isokopamenoy fauny Armianskoy SSR (Atlas of the fossil fauna of the Armenian USSR), Akademiya Nauk Armianskot SSR, Institut Geologicheskih Nauk, Yerevan; 48-64 (in Russian).

Abrahamyan M. S., Arakelyan R. A. & Azizebekov Sh. A. 1973. — Malyy Kavkaz (Yuzhnoye Zakavkaz'ye) (Lesser Caucasus (South Transcaucasia)), in Rzhonntsitskaya M. A. (ed.), Kavkazskaya geoksinlinal'naya oblast' i Predkavkaz' (Caucasus geosynclinal region and Ciscaucasia), in Naliykin D. V., Rzhonntsitskaya M. A. & Markovsky B. P. (eds), Stratigrafiya SSR, Devonkyaya sistema (Stratigraphy of the USSR, the Devonian system). Vol. 1. Nedra, Moscow; 210-219 (in Russian).

Abrahamyan M. S., Arakelyan R. A. & Papoyan A. S. 1975. — Granitsa Devona i Nizhnego Karbona (The Devonian and Lower Carboniferous boundary), in Stratigrafiya Karbona i Geologiya Ugleznakovskykh Formatsii SSR (Stratigraphy of the Carboniferous and Geology of Coal-bearing Formations of the USSR), Nedra, Moscow; 49-55 (in Russian).

Aleksseeva R. E., Afanasjeva G. A., Grechishnikova I. A., Ole- neva N. V. & PakhneviCh A. V. 2018a. — Devonian and Carboniferous Brachiopods and Biostratigraphy of Transcaca- sia (Ending). Paleontological Journal 52: 969-1085. https://doi. org/10.1134/S0031030118090010

Aleksseeva R. E., Afanasjeva G. A., Grechishnikova I. A., Ole- neva N. V. & PakhneviCh A. V. 2018b. — Devonian and Carboniferous Brachiopods and Biostratigraphy of Transcaucasia. Paleontological Journal 52: 829-967. https://doi.org/10.1134/ S0031030118080014

Arakelyan R. A. 1952. — Stratigrafiya paleoziyskich otolebenniy yugo-zapadnoy Armenii i peregnauyshich chastei Nakhichivanksoy ASSR (Stratigraphy of the Palaeozoic deposits of southwestern Armenia and the adjacent parts of the Nakhichevan ASSR). Akademiya Nauk Armianskoy SSR, Institut Geologicheskikh Nauk, Yerevan, 142 p. (in Russian).

Arakelyan R. A. 1964. — Devon (The Devonian), in Mekht- chian S. S., Vardaniants L. A., Gabrielian A. A., Magh- kian I. G. & Paffenholz C. N. (eds), Geologiya Armianskoy SSR (Geology of the Armenian USSR). Akademiya Nauk Armianskoy SSR, Yerevan 2: 46-96 (in Russian).

Arakelyan R. A., Malkasian E. G., Mekhtchyan C. C. & Paffenholz C. N. 1975. — Geologicheskiy ocherk Armianskoy CCP (Geologicheskaya skhema Armenskogo ASSR). Akademiya Nauk Armianskoy SSR, Institut Geologicheskih Nauk, Yerevan, 175 p. (in Russian).

Arsitov V. A. 1994. — Konodonty devona–nizhnego karbona Evrazii: soobshchestva, zonalnye raschleneniye, korrelyatsiya raznofasialnykh otlozeniy (Konodonts from the Devonian and Lower Carboniferous of Eurasia: communities, zonation and correlation of heterofacial deposits). Proceedings of the Geological Institute of the Russian Academy of Sciences 484: 1-193 (in Russian).

Arvitov V. A., Grechishchikova I. A., Tschigova V. A. & Felix V. P. 1979. — Subdivision and correlation of the Famen- nian and the lower Tournaisian deposits of Transcaucasia (on
brachiopods, conodonts and ostracods). Geological Survey of Belgium, Professional Paper 161: 91-95.

Bonnet P. 1947. — Description géologique de la Transcaucasie méridionale (chaînes de l’Araxe moyen), Mémoires de la Société géologique de France, nouvelle série 53: 1-62.

Carter J. L., Johnson J. G., Gourvenne C. R. & Hou H. F. 2006. — Spiriferida, in Kaesler R. L. (ed.), Treatise on invertebrate paleontology, Part H, Brachiopoda, revised. Vol. 5. Geological Society of America, and University of Kansas, Boulder, Colorado, and Lawrence, Kansas: 1689-1870.

Feliks V. P., Grechishnikova I. A., Levitski E. S. & Nagiev V. N. 1980. — Novyye dannyye o geologii rudnika Gryumushlug (Nov data on the geology of the Gryumushlug mine). Izvestiya vysšikh uchebnûkh zavedeniî. Geologiya i nauzvod 2: 69-73 (in Russian).

Frederiks G. N. 1924. — O verknekarneemougroльnym spiriferidakh Urala (On the Upper Carboniferous spiriferids of the Urals. Izvestiya Geologicheskogo Komiteta 58 (1919): 295-324 (in Russian).

Gatinaud G. 1949. — Contribution à l’étude des Brachiopodes Spiriferida. I.–Exposé d’une nouvelle méthode d’étude de la morphologie externe des Spiriferidae à sinus plissé. Bulletin du Museum national d’Histoire naturelle 21 (2): 487-492.

Gosselet J. 1874. — Carte géologique de la bande méridionale des calcaires dévonien de l’Entre Sambre-et-Meuse. Bulletin de l’Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique 21 (2): 81-114.

Gosselet J. 1880. — Esquisse géologique du Nord de la France et des contrées voisines. 1re fascicule. Terrains primaires, Imprimerie Six-Horemans, Lille, 167 p.

Gosselet J. 1894. — Étude sur les variations du Spirifer Verneuli et sur quelques espèces voisines. Mémoires de la Société géologique du Nord 4: 1-61.

Grechishnikova I. A. 1986. — Novyye devonskiye spiriferidy Zakavkaza’ye (New Devonian spiriferids of Transcaucasia). Zapiski Gornogo Instituta 107: 52-60 (in Russian).

Johnson J. G. 2006. — Cyrtospiriferoidae, in Kaesler R. L. (ed.), Treatise on Invertebrate Paleontology, Part H, Brachiopoda (Revised). Vol. 5. Geological Society of America, and University of Kansas, Boulder, Colorado, and Lawrence, Kansas: 1722-1732.

Ma X.-P. & Day J. 1999. — Late Devonian brachiopod Cyrtospirifer davidsoni Grabau, 1923, and related forms from central Hunan of South China. Journal of Paleontology 73: 608-624. https://doi.org/10.1017/S0022336000032431

Ma X.-P. & Day J. 2000. — Revision of Tentitospirifer Tien, 1938, and morphologically similar spiriferid brachiopod genera from the Late Devonian (Frasnian) of Eurasia, North America, and Australia. Journal of Paleontology 74 (3): 444-463.

Ma X.-P. & Day J. 2007. — Morphology and revision of Late Devonian (Early Famennian) Cyrtospirifer (Brachiopoda) and related genera from South China and North America. Journal of Paleontology 81: 286-311. https://doi.org/10.1666/01WRB

Mamedov A. B. & Rzhonsnitskaya M. A. 1985. — Devonian of the south Transcaucasus. Zonal subdivision, boundaries of series and stages, correlation. Courier Forschungsinstitut Senckenberg 75: 135-156.

Milanovsky E. E. 2007. — Hermann Abich (1806-1886): the “Father of Caucasian Geology” and his travels in the Caucasus and Armenian Highlands. Geological Society, London, Special Publications 287: 177-181. https://doi.org/10.1144/SP287.14

Mottequin B. 2019. — An annotated catalogue of types of Silurian-Devonian brachiopod species from southern Belgium and northern France in the Royal Belgian Institute of Natural Sciences (1870-1945), with notes on those curated in other Belgian and foreign institutions. Geologia Belgica 22 (1-2): 47-89. https://doi.org/10.20341/gb.2019.005

Mottequin B. & Brice D. 2019. — Reappraisal of some Upper Devonian (Famennian) spiriferid brachiopods from the Band-e Bayan Domain (Afghanistan). Geobios 52: 47-65. https://doi.org/10.1016/j.geobios.2018.11.003

Nalivkin D. V. 1930. — Brachiopodi verknekkhogo i srednego devona Turkestana (Brachiopods from the Upper and Middle Devonian of Turkestan), Trudy Geologicheskogo Komiteta. Novaya seriya 180: 1-221 (in Russian).

Olevn Y. V. 2016. — Devonian Brachiopods of the Orders Spiriferida and Spiriferinida of the European Russia and Transcaucasia: Systematics, Shell Microstructure. Paleontological Journal 50 (11): 1207-1296. https://doi.org/10.1134/S0031030116101100

Paeckelmann W. 1942. — Beiträge zur Kenntnis devonischer Spiriferen. Abhandlungen des Reichsamts für Bodenforschung 197: 1-188.

Reed F. R. C. 1922. — Devonian fossils from Chitril and the Pamirs. Memoirs of the Geological Survey of India. Palaeontologia Indica 6 (2): 1-134.

Rzhonsnitskaya M. A. & Mamedov A. B. 2000. — Devonian stage boundaries in the southern Transcaucasia. Courier Forschungsinstitut Senckenberg 225: 329-333.

Sartenaer P. 1974. — Signification stratigraphique du ‘niveau des monstres’ du Frasnien franco-belge. Bulletin de l’Institut royal des Sciences naturelles de Belgique, nouvelle série 59 (3): 5-41.

Sorobyan V., Grigoryan A., Mottequin B., Mayilyan R., Crôntier C. & Daniell T. 2019. — Biostatigraphy of the Upper Devonian trignonirhynchiid brachiopods (Rhynchonellid) from Armenia. Proceedings of National Academy of Sciences of the Republic of Armenia. Earth Sciences 72 (2): 3-18.

Sorobyan V., Daniell T., Crôntier C., Grigoryan A. & Mottequin B. 2021. — Lower Famennian (Upper Devonian) rhynchonellid and athyrid brachiopods from the South Armenian Block. Journal of Paleontology 95 (3): 527-552. https://doi.org/10.1017/jpa.2020.114

Sidakchenko A. I. 1962. — Spiriferidy i stratigrafiya famennskikh olotubenyh tsientral’nygo i yugo-vostochnogo Karatau (Spiriferidés and stratigraphy of the Famennian deposits of the Central and Southeastern Kara–Taü). Akademiya Nauk SSSR, Sibirskoje otdelenie, Moskva, 147 p. (in Russian).

 Sokran E. V. 2006. — Early–Middle Frasnian cyrtospiriferid brachiopods from the East European Platform. Acta Palaeontologica Polonica 51 (4): 759-772.

Sosson M., Rolland Y., Muller C., Daniell T., Melkonyan R., Kekelia S., Adamiya S., Babadze V., Kangarli T., Avagyan A., Galoyan G. & Mosar J. 2010. — Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights, in Sosson M., Kaymak N., Stephenson R. A., Bergerat F. & Starostenko V. (eds), Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications 340 (1): 329-352. https://doi.org/10.1144/SP340.14

Spalletta C., Perri M. C., Over D. J. & Corrado N. 2017. — Famennian (Upper Devonian) conodont zonation: revised global standard. Bulletin of Geosciences 92 (1): 31-57. https://doi.org/10.3140/bull.geosci.1623

Vandercammen A. 1959. — Essai d’étude statistique des Cyrtospirifer du Frasnien de la Belgique. Mémoires de l’Institut des Sciences naturelles de Belgique 145: 1-175.

Submitted on 20 December 2019; accepted on 2 September 2020; published on 15 February 2022.

COMPTES RENDUS PALEOVOL • 2022 • 21 (6)