VISIBLE SPECTROPHOTOMETRIC METHOD DEVELOPMENT AND VALIDATION OF IMATINIB IN BULK AND FORMULATION

SMITA KUMBHAR1, VINOD MATOLE1*, YOGESH THORAT1, ANITA SHEGAONKAR1, AVINASH HOSMANI2

1D. S. T. S. Mandal’s College of Pharmacy, Solapur 413004 Maharashtra, India, 2Government College of Pharmacy, Ratnagiri
Email: matole7414@gmail.com

Received: 10 Nov 2019, Revised and Accepted: 14 Jan 2020

ABSTRACT

Objective: A new, simple, sensitive, precise and reproducible UV visible spectrophotometric method was developed for the determination of Imatinib in pharmaceutical formulations with alizarin.

Methods: The method is based on formation of yellow-colored complex. The UV spectrum of Imatinib in methanol showed λ max at 431 nm. Beer’s law is valid in the concentration range of 10-70 μg/ml. This method was validated for linearity, accuracy, precision, ruggedness and robustness.

Results: The method has demonstrated excellent linearity over the range of 10-70 μg/ml with regression equation $y = 0.013x - 0.017$ and regression correlation coefficient $r^2 = 0.997$. Moreover, the method was found to be highly sensitive with LOD (4.3μg/ml) and LOQ (13.07μg/ml).

Conclusion: Based on results the proposed method can be successfully applied for the assay of Imatinib in various pharmaceutical dosage forms.

Keywords: Imatinib, Spectrophotometry, Alizarin, Method Development, Validation

INTRODUCTION

Cancer is an abnormal growth of cell which tends to proliferate in an uncontrolled way and in some cases metastasize. It is the common cause of mortality [1].

Imatinib is an anticancer agent used to treat leukemia. Specifically, it is used for chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL), certain types of gastrointestinal stromal tumors (GIST), chronic eosinophilic leukemia. Specifically, Philadelphia chromosome-positive (Ph+) [2-5]. The activity of tyrosine kinase i.e. multiplication of cell is blocked by Imatinib. This will lead to a stoppage of the spreading of cancer cell [6-8]. The United states approved Imatinib as medical use in 2001. It is also included in the World Health Organization List of Essentials Medicines, the most effective and safe medicines needed in a health system. Imatinib was drug to be pushed for approval of designation by FDA [9-13].

Structure of imatinib

![Chemical structure of Imatinib](image)

**Fig. 1:** The Chemical name of Imatinib is α-(4-methyl-1-piperazinyl)-3-[4-(3-pyridyl)-2-pyrimidinyl]-p-toluidide. The molecular formula of Imatinib is C29H31N7O and molecular weight is 493.603 gm/ml. Imatinib is white powder and has melting point 214 °-224 °C. It is freely soluble in distilled water and methanol [14-17]

MATERIALS AND METHODS

Materials

Imatinib was taken as a gift sample from Microlab, Bengaluru, India. Alizarin, Methanol and Dichloromethane were used were of analytical grade.

Instruments

A UV visible single beam spectrometer [systronics 119] and Shimadzu 1800-UV spectrophotometer with 1 cm quartz cuvettes were used for all absorbance measurement.

All weights were taken on an analytical balance (Shimadzu AY220). Sonicator was used for dissolving Imatinib in methanol.

Experimental

Preparation of alizarin

Alizarin 0.1 % (w/v) was dissolved in the least amount of methanol and completed to the required volume using dichloromethane.

Preparation of standard stock solution

Accurately weighed 10 mg of Imatinib transferred to 100 ml volumetric flask. It was dissolved in methanol and sonicated for 10 min. The volume was made up to mark with methanol to obtain final strength.

Procedure for plotting a calibration curve

Into a series of 10 ml volumetric flasks, 1-7 ml of standard solution was pipetted out separately and to each flask, 1 ml of 0.1 % alizarin was added. The volume was completed to the mark using methanol. The developed yellow color was measured at wavelength 431 nm against blank solution prepared in a similar manner excluding a drug.

Analysis of imatinib in pharmaceutical dosage form

20 Capsules containing Imatinib were weighed. An accurately weighed portion of the powder equivalent to 10 mg of Imatinib was dissolve in a 100 ml of methanol and mixed for about for 5 min and sonicated for about 10 min then filtered. From formed solution with a concentration of 100μg/ml seven aliquots were pipetted out into a
100 ml of volumetric flask having concentration 10-70μg/ml to each flask and 0.5 ml of 0.1% alizarin was added. The volume was made up to mark with methanol. These solutions were analyzed at selected wavelength 431 nm and results were statistically validated.

**RESULTS AND DISCUSSION**

The absorption spectral analysis shows the λ max of Imatinib to be 431 nm.

UV Visible spectra of imatinib

**Table 1: Results for linearity**

| S. No. | Concentration (μg/ml) | Absorbance |
|--------|-----------------------|------------|
| 1      | 10                    | 0.129      |
| 2      | 20                    | 0.253      |
| 3      | 30                    | 0.397      |
| 4      | 40                    | 0.510      |
| 5      | 50                    | 0.649      |
| 6      | 60                    | 0.784      |
| 7      | 70                    | 0.960      |

**Accuracy**

The accuracy of an analytic method is the closeness of the test result obtained by that method to the true value. To perform the accuracy of proposed method standard addition method is used. Previously analyzed samples of Imatinib were added with standard drug solution and are analyzed by the proposed method. Recovery (%) RSD (%) was calculated for each concentration.

**Range**

The parameter of analytical method validation range is an interval between the lower and upper concentration limit of the analyte. The

---

*Fig. 2: The proposed method was validated according to ICH Q28 R1 guidelines for validation of analytical procedure [18-21]*

*Fig. 2: Calibration curve for imatinib*
range of this procedure is 10-70 µg/ml and it is selected on the trial and error basis.

**Precision**

Intra and inter-day precision were evaluated at 10-70 µg/ml. Seven replicates of each concentration were assayed in one run for the intra-day experiment. Six replicates of each concentration were assayed within 3 different days for inter-day experiments. The mean Imatinib value was found to be 30µg/ml. The RSD of intra-day precision was found to be 0.62 % and of inter-day was found to be 0.58% suggesting that the developed method is precise.

**Limit of detection (LOD)**

The Limit of Detection (LOD) of an analytical method is the lowest amount of analyte in a sample that can be detected but not necessarily quantitated, under the stated experimental condition. It is calculated by formula,

$$LOD = \frac{3 \sigma_a}{b}$$

**Limit of quantitation (LOQ)**

The parameter limit of quantitation is the lowest amount of drug in a solution which can be estimated with acceptable accuracy and precision under the experimental conditions.

$$LOQ = 10 \frac{\sigma_a}{b}$$

**Ruggedness**

The ruggedness of an analytical method is the degree of reproducibility of test results obtained by the analysis of the same sample under a variety of condition such as different laboratories, different analyst, etc. Ruggedness is normally expressed as a lack of influence on the test results of operational and environmental variables of the analytical method.

**Robustness**

After deliberate variations in stated experimental conditions, the given analytical method is subjected for the reliability of an analysis. Typical variations are temperature, the stability of analytical solution etc.

### Table 2: Regression analysis of the calibration curve for the proposed method

| Parameters | Method values |
|------------|---------------|
| λ max      | 431 nm        |
| Beer's law | 10-70 µg/ml   |
| Correlation coefficient (r) | 0.997 |
| Regression equation (Y = mx+c) | 0.013-0.017 |
| Slope (m)  | 0.013         |
| Intercept (c) | -0.017     |
| LOD(µg/ml) | 4.3           |
| LOQ(µg/ml) | 13.07         |

### Table 3: Result for precision (Intra-day)

| S. No. | Concentration (µg/ml) | Absorbance 1 | Absorbance 2 | Absorbance 3 | % RSD |
|--------|-----------------------|--------------|--------------|--------------|-------|
| 1      | 30                    | 0.397        | 0.404        | 0.400        |       |
| 2      | 30                    | 0.395        | 0.400        | 0.396        |       |
| 3      | 30                    | 0.397        | 0.399        | 0.394        |       |
| 4      | 30                    | 0.400        | 0.402        | 0.399        |       |
| 5      | 30                    | 0.396        | 0.398        | 0.395        |       |
| 6      | 30                    | 0.395        | 0.396        | 0.394        |       |
| %RSD   |                       | 0.46 %       | 0.71%        | 0.71%        | 0.62% |

### Table 4: Result for precision (Inter day)

| S. No. | Concentration (µg/ml) | Day 1  | Day 2  | Day 3  | %RSD |
|--------|-----------------------|--------|--------|--------|------|
| 1      | 30                    | 0.397  | 0.394  | 0.398  |      |
| 2      | 30                    | 0.395  | 0.399  | 0.400  |      |
| 3      | 30                    | 0.397  | 0.402  | 0.401  |      |
| 4      | 30                    | 0.400  | 0.394  | 0.398  |      |
| 5      | 30                    | 0.396  | 0.397  | 0.395  |      |
| 6      | 30                    | 0.395  | 0.398  | 0.397  |      |
| %RSD   |                       | 0.46 %  | 0.77%  | 0.53%  | 0.58% |

### Table 5: Result for robustness

| Temperature | Concentration | Absorbance | Average | SD  |
|-------------|---------------|------------|---------|-----|
| 30°C        | 7 µg/ml       | 0.397      | 0.396   | 0.001862 |
| 25°C        | 7 µg/ml       | 0.410      | 0.406   | 0.005762 |

Matole et al.

Int J Curr Pharm Res, Vol 12, Issue 2, 63-67
The wavelength was found at 431 nm. Seven concentrations were taken for linearity i.e. 10-70 µg/ml. Hence correlation coefficient ($r^2$) was found to be 0.997 (table 1 and 2). The absorbance was found within limit i.e. 0-2. Hence the performed parameter was found to be validated.

**Precision**

**Intra-day precision**

Intra-day precision study was carried out in 30 µg/ml concentration and the relative standard deviation was found within limit i.e. less than 2%. Hence the performed parameter was validated (table 3).

**Inter-day precision**

The inter-day precision study was performed and the results showed to be less than 2% using 30 µg/ml concentration. Hence the performed parameter was validated (table 4).

**Robustness**

The results obtained by changing concentration i.e. 7 µg/ml and temperature i.e. 25°C and 30°C does not affect the results. The percentage relative standard deviation was found within the limit i.e. less than 2%. Hence the parameter was found to be validated (table 5).

**Ruggedness**

The change in analyst at a concentration of 7 µg/ml showed that the obtained result does not affected by it (table 6).

**Limit of detection**

The limit of detection was found to be 4.3 µg/ml (table 2).

**Limit of quantification**

The limit of quantification was found to be 13.07 µg/ml (table 2).

**CONCLUSION**

An analytical zero order derivative UV spectrophotometric method was developed and validated thoroughly for the quantitative determination of imatinib in pure drug and capsule. The presented method was found to be rugged, simple, accurate, precise, reproducible and gives an acceptable recovery of the analyte, which can be directly easily applied to the analysis of the pharmaceutical capsule formulation of imatinib.

**ACKNOWLEDGMENT**

Authors are thankful to the Principal, D. S. T. S. Mandal’s College of Pharmacy, Solapur, for providing the necessary facilities.

**REFERENCES**

1. Shereen E, Abdel Karim, Raafat A, Farghaly Rasha M, Naskar E, Ashraf H Abadi. Spectrophotometric determination of imatinib using charge transfer complexes in pure form and pharmaceutical formulation. Chem Rapid Commun 2014;2:55-60.

2. Suresha DN, Pramila T, Tamizamani T. Method development and validation of imatinib. Int J Pharm Pharm Anal 2016;1:11.

3. Mahesh S, Manjusna N, Sanjay D. Development and validation of an analytical method for estimation of imatinib in bulk and solid dosage form by UV spectroscopy. Der Pharm Lett 2015;7:214-20.

4. Martindale: The drug reference. Pharmaceutical Press, Lambeth High Streets London. 36th ed.; 2009. p. 773-4.

5. MS Patil, Smita JD, R Doijad, Rajendra C, MS Dhumal Priya P. Development of UV spectrophotometric method for the determination of imatinib mesylate (ITM) in bulk and formulation. Asian J Pharm Clin Res 2013;6:54-7.

6. Satyanarayana G, Ramesh E, Jitendra P, Kumar K, Hanumantharao B. Validation of new reversed-phase high-performance liquid chromatography method for the estimation of imatinib in the bulk and pharmaceutical dosage form. Asian J Res Chem 2010;1:6-9.

7. Chab B, Saks K, Sagars J. Role of stem cells in cancer therapy and cancer stem cells. Cancer Cell Int 2007;7:1-11.

8. Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 2007;117:2036-43.

9. Rochat B, Fayer A, Widmer N, Lahrichi SI, Pease B, Decosterd LA, et al. Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectroscopy. J Mass Spectrum 2008;43:736-52.

10. Ivanovic D, Medenica, Janicic B, Malenovie A. Reversed-phase liquid chromatography analysis of imatinib mesylate and impurity product in gleevec capsules. J Chromatogr B: Anal Technol Biomed Life Sci 2004;800:253-8.

11. Miura M, Takahashi N, Sawada K. Quantitative determination of imatinib in human plasma with high-performance liquid chromatography and ultraviolet detection. J Chromatogr Sci 2011;49:412-5.

12. Bouchet S, Chauzit E, Ducint D, Castaing N, Canal Raffin M, Moore N, et al. Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra-performance LC/MS-MS. Chin Chin Acta 2011;412:1060-7.

13. Davies A, Hayes AK, Knight, Watmough SJ, Pirrohamed M, Clark RE. Simultaneous determination of niloribib, imatinib and its main metabolite (CGP-74588) in human plasma by ultraviolet high-performance liquid chromatography. Chromatogr Rev 2010;35:702-7.

14. Teoh M, Narayanan P, Moo KS, Radakrishnan S, Pillapran R, Bukhart NI, et al. HPLC determination of imatinib in plasma and tissues after multiple oral dose administration to mice. Pak J Pharm Sci 2010;23:35-41.

15. Mlejnek P, Novak O, Dolezel P. A non-radioactive assay for precise determination of intracellular levels of imatinib and its main metabolite in Ber-Ab1 positive cells. Talanta 2011;83:1466-71.

16. Micova K, Friedecky D, Faber E, Pletynkova A, Adam T. Flow injection analysis vs ultra-high-performance liquid
chromatography coupled with tandem mass spectrometry for
determination of imatinib in human plasma. Clin Chim Acta
2010;411:1957-62.
17. De Francia S, D’Avolio A, De Martino F, Pirro E, Baietto L,
Siccardi M, et al. New HPLC-MS method for the simultaneous
quantification of the antileukemia drugs Imatinib, Dasatinib,
and Nilotinib in human plasma. J Chromatogr B Anal Technol
Biomed Life Sci 2009;877:1721-6.
18. Groman A, Golebiewski P. Validation of analytical procedure
control of residual ethanol, 2-propanol and ethyl acetate in
pharmaceutical substance imatinib. Acta Pol Pharm
2006;63:414-6.
19. Bui H, Masquelin T, Prun T, Castle T, Dage J, Kuo MS.
Investigation of retention behavior of drug molecules in
supercritical fluid chromatography using linear solvation
energy relationships. J Chromatogr A 2008;1206:186-95.
20. Rodriguez Flores J, Berrero Nevado JJ, Contento Salcedo AM,
Cabello Diaz MP. Nonaqueous capillary electrophoresis method
for the analysis of glivec and its main metabolite in human
urine. J Chromatogr A 2005;1068:175-82.
21. Diculescu VC, Chiorcea Paquim AM, Tugulea L, Vivan M,
Oliveira Brett AM. Interaction of imatinib with liposomes.
Voltametric AFM Characterization Bioelectrochem
2009;74:278-88.