Abstract. Acetaminophen (APAP), is a safe analgesic and antipyretic drug at therapeutic dose, and is widely used in the clinic. However, high doses of APAP can induce hepatotoxicity and nephrotoxicity. Most studies have focused on high-dose APAP-induced acute liver and kidney injury. So far, few studies have investigated the effects of the therapeutic dose (1/10 of the high dose) or of the low dose (1/100 of the high dose) of APAP on the cells. The aim of this study was to investigate the cellular effects of therapeutic- or low-dose APAP treatment on hepatoma cells and kidney fibroblasts. As expected, high-dose APAP treatment inhibited while therapeutic ‑dose treatment did not inhibit cell survival of kidney tubular epithelial cells. In addition, therapeutic-dose treatment induced an increase in the H₂O₂ level, activated the caspase-9/-3 cascade, and induced cell apoptosis of hepatoma cells. Notably, APAP promoted fibroblast proliferation, even at low doses. This study demonstrates that different cellular effects are exerted upon treatment with different APAP concentrations. Our results indicate that treatment with the therapeutic dose of APAP may exert an antitumor activity on hepatoma, while low-dose treatment may be harmful for patients with fibrosis, since it may cause proliferation of fibroblasts.

Introduction

Acetaminophen (APAP), also known as paracetamol, is a safe analgesic and antipyretic agent at therapeutic dose (1). It has been widely applied in the clinic (2-4). In general, an overdose of APAP of 10-15 g can cause serious toxicity and is harmful to the liver and the kidneys (5,6). APAP is easily available and cheap, and thus patients may easily receive an overdose. This is one of the reasons that APAP constitutes the most common cause of self-poisoning in numerous countries (7-9). In order to study APAP overdose-induced liver and acute kidney damage, a number of animal and cell models have been established. Studies in these models have shown that treatment with high doses of APAP (300 -2,500 mg/kg) can cause hepatotoxicity and nephrotoxicity in vivo (10-14), and doses >0.005 mol/l can induce cytotoxicity on kidney and liver cells (15-20). Previous studies have shown that APAP can induce apoptosis or necrosis on different cell models (14,19,21), and that high-dose APAP treatment can increase oxidative stress, decrease the glutathione level and activate MAPK signaling pathways, resulting in cell cytotoxicity (14,16,20,22-25).

A number of recent studies have indicated that high-dose APAP treatment causes liver and kidney failure (26-28). However, other studies reported that high-dose APAP treatment also exerts antitumor effects. These studies showed that APAP can induce cytotoxicity on neuroblasts (SH-SY5Y...
cells), hepatoma (HuH7 cells) and breast cancer (FM3A cells) (29-33). These studies also demonstrated, in different tumor cell types, that APAP-induced cell death is related to the proteins NF-xB, members of the Bcl-2 family, and the glycerol synthase kinase-3. In addition, APAP can enhance the chemotherapeutic anticancer effects of drugs used to treat neuroblastoma, leukemia and ovarian carcinoma (30,34,35). According to the above studies, APAP can activate different cytotoxic mechanisms in liver, kidney and tumor cells (14,19,21,31,36). To date, most studies have focused on the mechanisms of APAP-induced cytotoxicity and on how to prevent high-dose APAP-related poisoning of the liver and the kidneys. However, whether APAP can enhance cell proliferation remains unclear.

Kidney tubular epithelial cell damage can induce renal failure (37-40). Kidney fibrosis, via fibroblast proliferation, can also cause renal failure (41-43). Therefore, both kidney tubular cell damage and fibroblast proliferation can cause kidney dysfunction. Recently, high-dose APAP-induced nephrotoxicity was reported and investigated (13,22,44-47). These studies found that high-dose APAP treatment can induce kidney tubular cell death in animal and cell models. In addition, numerous studies have demonstrated that high-dose APAP treatment can induce an increase in oxidative stress, causing tubular cell death through necrosis or the apoptotic pathway (13,22,44,47,48). However, there is no evidence that APAP can cause kidney dysfunction by inducing fibroblast proliferation. The present study is the first to demonstrate, to the best of our knowledge, that high doses of APAP (7.94 mM) can inhibit cell survival in kidney tubular cells (NRK-52E), while promoting cell proliferation in kidney interstitial fibroblasts (NRK-49F).

In addition, APAP can induce different cytotoxic mechanisms on different hepatoma cell lines. APAP can induce caspase-dependent apoptosis on hepatoma HuH7 and SK-Hep1 cells (31,49) and induces apoptosis and necrosis on hepatoma HepG2 cells (50). Additionally, a study demonstrated that high-dose APAP treatment can inhibit DOX-induced cell death in hepatoma HepG2 cells (36). Although APAP-induced apoptosis of hepatoma Hep3B cells was reported (51), the underlying mechanisms are still unclear.

Materials and methods

Materials. Luminol, lucigenin and Hoechst 33342 were purchased from Sigma-Aldrich (St. Louis, MO, USA). Transforming growth factor (TGF)-β was purchased from R&D Systems (Minneapolis, MN, USA). The MTT assay kit was purchased from Bio Basic Canada, Inc. (Markham, ON, Canada). The caspase-9 substrate acetyl-Leu-Glu-His-Asp-p-nitroanilide (Ac-LEHD-pNA), the caspase-3-like substrate acetyl-Asp-Glu-Val-Asp-p-nitroanilide (Ac-DEVD-pNA) and the caspase-8 substrate acetyl-Ile-Glu-Thr-Asp-p-nitroanilide (Ac-IETD-pNA) were purchased from AnaSpec, Inc. (San Jose, CA, USA). Fetal bovine serum (FBS), Dulbecco's modified Eagle's medium (DMEM), non-essential amino acids, L-glutamine and penicillin/streptomycin were purchased from Gibco-BRL (Carlsbad, CA, USA).

Cell lines and cultures. The rat kidney cell lines NRK-52E (tubular epithelial cells) and NRK-49F (fibroblasts) and Hep3B cells were purchased from the Bioresource Collection and Research Center (Hsinchu, Taiwan). These cell lines were cultured in DMEM medium supplemented with 10% FBS, 2 mM L-glutamine, 100 IU/ml penicillin/streptomycin and 0.1 mM non-essential amino acids, and were maintained at 37°C in a humidified atmosphere containing 5% CO₂, as in (52,53).

Cell survival assay. Survival rates of NRK-52E, NRK-49F and Hep3B cells were determined with the MTT assay as previously described (54,55). Briefly, cells were cultured in 96-well plates. On the second day, cells were divided into the control and experimental groups. After cells were treated with 7.94 nM APAP, 0.794 nM APAP, 0.0794 nM APAP and 1nM TGF-B, respectively, cell survival rates were measured every day. The MTT assay was conducted daily according to the manufacturer's instructions. Absorbance was measured at 570 nm using a multi-well ELISA reader (Molecular Devices, Sunnyvale, CA, USA).

Quantification of H₂O₂ and O₂⁻ levels. H₂O₂ and O₂⁻ levels were measured using a lucigenin-amplified chemiluminescence method, as in (56,57). Briefly, 200 µl of cell lysate was mixed with 0.2 mmol/l of luminol solution (100 µl) for the quantification of the H₂O₂ level, or with 0.1 mmol/l of lucigenin solution (500 µl) for the quantification of the O₂⁻ level. Measurements were then performed on the CLA-FSI chemiluminescence analyzing system (Tohoku Electronic Industrial Co., Ltd., Sendai, Japan). Each assay was performed four times and results were expressed as the chemiluminescence count per 10 sec.

Nuclear observation. Nuclear morphology was observed by nuclear staining with Hoechst 33342. Cells were treated with Hoechst 33342 (10 µg/ml) for 10 min. Nuclear condensation and DNA fragmentation were observed under a fluorescence microscope (excitation, 352; emission, 450 nm; Olympus BX61; Olympus Corporation, Tokyo, Japan), as described in previous studies (58,59).

Caspase activity assay. Cells were treated with lysis buffer (50 mM Tris- HCl, 120 mM NaCl, 1 mM EDTA, 1% NP-40, pH 7.5), and then 1 µM protease inhibitors (Cocktail set 539131; Merck KGaA, Darmstadt, Germany) were added. Cell pellets were obtained by centrifugation (15,000 x g, 4°C, 30 min). Caspase-3, -8 and -9 activities were determined based on assays described in previous studies (60-62). Briefly, 40 µl of cell lysate (80 µg total protein) were mixed with 158 µl reaction buffer (20% glycerol, 0.5 mM EDTA, 5 mM dithiothreitol, 100 mM HEPES, pH 7.5) and 2 µl fluorogenic substrate (Ac-LEHD-pNA, Ac-DEVD-pNA, or Ac-IETD-pNA) and were incubated at 37°C for 6 h. The absorbance of the cleaved fluorogenic substrate was detected at 405 nm (A405) in a FLx800™ fluorescence microplate reader (BioTek Instruments, Inc., Winooski, VT, USA). The fold increase (FI) in caspase activity was calculated using the following formula: FI = ([A405sample - A405control] / A405control).

Data analysis. Data were obtained from four independent triplicate experiments and are presented as mean values of all data, with related standard deviations (SD).
Results

APAP treatment reduces the survival rate of kidney tubular epithelial cells, while inducing proliferation of kidney fibroblasts. Previous studies showed that a high dose of APAP (>5 mM) can cause cell cytotoxicity in vitro (15-20). In accordance with these studies, we also found that high-dose (7.94 mM) APAP treatment reduces the survival rate of kidney tubular epithelial cells (NRK-52E line), in a time-dependent manner (Fig. 1A). The survival rate of NRK-52E cells did not decrease upon treatment with 1/10 of the high dose of APAP compared to high-dose treatment (Fig. 1A). These results suggest that APAP-induced cell cytotoxicity is dependent on APAP concentration and incubation time. However, to our surprise, although high-dose APAP treatment decreased the survival rate of NRK-52E cells, it promoted cell proliferation of kidney fibroblasts (NRK-49F line) (Fig. 1B). This was also observed upon treatment with 1/10 of the high dose of APAP (Fig. 1B). It is well established in the clinic that both tubular epithelial cell damage and kidney fibrosis can induce renal failure (13,22,43,47,48). Therefore, our findings indicate that APAP-induced renal failure may not only relate to the inhibition of tubular epithelial cell survival, but also to the promotion of renal fibroblast proliferation.

Low-dose APAP treatment induces proliferation of kidney fibroblasts. Previous studies have demonstrated that high-dose APAP treatment can inhibit tubular epithelial cell survival to induce renal failure (13,22,43,47,48). In the present study, as shown in Fig. 1, high-dose APAP treatment inhibited growth of tubular epithelial cells, and induced proliferation of kidney fibroblasts. In patients with kidney fibrosis, it is important to prevent fibroblast proliferation, which further aggravates their condition. In order to enhance our understanding on the effects of APAP treatment on patients with fibrosis, it is therefore valuable to investigate whether low doses of APAP (below the therapeutic dose) can induce fibroblast proliferation. In this study, low-dose APAP treatment was applied on kidney fibroblasts to study its effects on cell growth. It is notable that low-dose APAP treatment did not inhibit cell survival of NRK-52E cells, while low-dose treatment induced cell proliferation in the fibroblast cell line NRK-49F (Fig. 2A). In addition, APAP induced fibroblast proliferation similarly to the treatment with the positive control TGF-β, and in a dose-dependent manner (Fig. 2B). APAP has not been reported to be toxic to liver and kidney cells at doses below the therapeutic dose in the clinic. However in our experiments, a low dose of APAP induced fibroblast proliferation, which may have harmful effects in patients with fibrosis. Thus, our
study suggests that these patients may be sensitive to even low doses of APAP.

The cytotoxic effects of APAP are more prominent in Hep3B compared to NRK52 cells. High-dose APAP treatment induced cytotoxic effects not only in the tubular cell line NRK-52E, but also in the hepatoma cell line Hep3B (Fig. 3A). Cell survival rates of treated Hep3B cells were lower compared to those observed in NRK-52E cells. However, at an APAP concentration that was 1/10 of the high dose (therapeutic dose), no obvious cytotoxic effects were observed in NRK-52E cells, while the survival rate of Hep3B cells was markedly reduced (Fig. 3B). Therefore, APAP exerts more prominent cytotoxic effects on Hep3B compared to NRK-52E cells. These results indicate that APAP, at a non-toxic concentration for healthy tubular cells, may exert an antitumor effect on hepatoma cells.

APAP treatment increases apoptosis of Hep3B cells via an increase in the H2O2 level. APAP-induced cytotoxic effects that relate to an increase in the generation of reactive oxygen species (ROS) were previously reported (65,66). However, it is still unclear which ROS elements are increased upon APAP treatment. O2· and H2O2 are two commonly found ROS types in the cells. O2· and H2O2 levels were thus quantified following APAP treatment. The result showed that APAP causes an increase in the H2O2, but not in the O2·, level in Hep3B cells (Fig. 4B). Therefore, APAP-induced cytotoxicity is possibly related to H2O2 but not to O2·. In addition, microscopic observations of the nuclear morphology revealed nuclear condensation and DNA fragmentation in the APAP-treated Hep3B cells (Fig. 5). These results overall suggest that APAP can induce cell cytotoxicity via an increase in the H2O2 level.

APAP activates the caspase-9/-3 cascade in Hep3B cells. Caspase activation can induce cell apoptosis (60,61). In our study, APAP treatment also induced apoptosis of Hep3B cells, as indicated by results presented in Figs. 4 and 5. Therefore, caspase activities were next measured in Hep3B cells, focusing on the two major caspase cascades, the caspase-9/-3 and the caspase-8/-3, and using a substrate cleavage assay as previously described (60,61). The caspase-9 and -3 activities were found induced by treatment with 1/10 of the high dose of APAP (Fig. 6A and C). However, the caspase-8 activity did not notably change upon APAP treatment (Fig. 6B). This result suggests that APAP can activate the caspase-9/-3 cascade to induce cell cytotoxicity in Hep3B cells.
Discussion

Both tubular epithelial cell damage and fibroblast proliferation can induce renal dysfunction (13,22,41,43,47,48,63,64). Numerous studies have demonstrated that an APAP overdose can reduce tubular epithelial cell survival, resulting in nephrotoxicity (13,22,43-46). Most of the studies to date have focused on high-dose APAP-induced acute intoxication of kidney tubular cells. These studies have highlighted the need to further investigate the effects of APAP and take these effects into consideration in order to prevent APAP-induced acute damage. However, it is still unclear whether low doses of APAP may cause chronic kidney damage. Our present study demonstrated that high-dose APAP treatment not only reduces survival of tubular epithelial cells, but it can also induce proliferation of fibroblasts, even at low doses. This implies that APAP-induced renal damage may occur through epithelial cell damage or fibroblast proliferation. In general, acute damage is easier to detect and diagnose compared to chronic damage; therefore, APAP overdose-induced acute intoxication is commonly observed, whereas low-dose APAP-induced damage is more likely to be ignored in the clinic. Here, we demonstrated that low-dose APAP treatment can promote fibroblast proliferation. Thus, we consider the therapeutic dose of APAP to be a safe analgesic and antipyretic agent for patients who do not show fibrosis, but potentially harmful to patients with kidney fibrosis.

The TGF-β signaling pathway was shown to be involved in renal damage (67-69). TGF-β-induced renal damage
has been associated with: i) tubular cell death (68,70,71); ii) epithelial mesenchymal transition (72,73); and iii) fibroblast proliferation (74,75). Up to now, no study has provided evidence that APAP can induce kidney fibroblast proliferation via TGF-β-related signals. In this study, NRK-49F cells (fibroblasts) treated with APAP showed a similar induction in proliferation to the one observed in the group treated with TGF-β. In addition, a previous study showed that TGF-β is significantly elevated in APAP-treated liver tissue (71). Based on these observations, we hypothesize that APAP induces kidney fibroblast proliferation via the TGF-β signaling pathway. Whether APAP also exerts effects on epithelial mesenchymal transition in kidney tubular cells warrants future investigation.

O$_2$ and H$_2$O$_2$ are two commonly found ROS in the cells. They are typically produced by the electron transport chain. O$_2$ can be removed from the cells through the enzymatic activity of superoxide dismutase, and H$_2$O$_2$ through the activity of catalase or glutathione. It is well established that cell damage occurs when O$_2$ and H$_2$O$_2$ levels are increased. Previous studies showed that an APAP overdose can increase ROS levels and eventually, reduce cell viability (51,76). However, these studies did not directly demonstrate which ROS element is increased upon APAP treatment. Here, two types of ROS (O$_2$ and H$_2$O$_2$) were quantified following APAP treatment. The H$_2$O$_2$ level increased, but no notable change in the O$_2$ level was observed in APAP-treated cells. Our study suggests that the inhibition of cell survival by APAP may occur through an increase in the H$_2$O$_2$ level. This is possibly the reason why N-acetyl cysteine, a substrate for glutathione synthesis, is applied on patients with APAP-induced poisoning in emergency clinical cases (77,78).

APAP-induced cell death has been extensively studied (13,22,44,47,48). These studies demonstrated that APAP induces cell death either via the apoptotic or the necrotic death pathways in different cells. In our study, features of apoptosis were observed in APAP-treated Hep3B cells, similar to previous studies (51,75). Moreover, our study further demonstrated that the caspase-9/-3 cascade is activated upon APAP treatment, while the caspase-8/-3 cascade is not. Caspase-9/-3 signaling related to mitochondrial damage and caspase-8/-3 signaling related to death receptor signals have been previously reported (60,61). Thus, our data suggest that APAP-induced cell cytotoxicity might be associated with mitochondrial damage in Hep3B cells. Finally, previous studies have shown cytotoxicity upon high-dose (>5 mM) APAP treatment in vitro (15-20). In this study, high-dose APAP treatment induced cytotoxicity in both healthy kidney tubular cells and hepatoma cells. However, 1/10 of this dose was only cytotoxic to hepatoma cells. This suggests that non-toxic (to healthy cells) doses of APAP may be applied in the future as antitumor agents targeting cancer cells.

In summary, the present study shows that: i) APAP treatment can induce cell proliferation of kidney fibroblasts even at low doses, and thus we suggest that APAP treatment needs to be carefully monitored in patients with fibrosis; ii) APAP treatment can increase the H$_2$O$_2$ level and activate the caspase-9/-3 cascade to cause cytotoxicity; and iii) the cytotoxic effects of APAP depend on the cell type, with hepatoma cells being more severely affected compared to healthy kidney tubular cells.

Acknowledgements

This study was supported by the following grants: NSC99-2320-B-039-030-MY3; NSC99-2632-B-039-001-MY3; NSC101-2321-B-039-004-; NHRI-EX102-10245B1; TCRD-I101-04-03; TCRD-TPE-102-26; and TCRD-TPE-103-48.

References

1. Rumack BH: Acetaminophen misconceptions. Hepatology 40: 10-15, 2004.
2. Cuzzolin L, Antonucci R and Fanos V: Paracetamol (acet-aminophen) efficacy and safety in the newborn. Curr Drug Metab 14: 178-185, 2013.
3. Klotz U: Paracetamol (acetaminophen) - a popular and widely used nonopioid analgesic. Arzneimittelforschung 62: 355-359, 2012.
4. Sullivan JE and Farrar HC: Section on Clinical Pharmacology and Therapeutics, Committee on Drugs: Fever and antipyretic use in children. Pediatrics 127: 580-587, 2011.
5. Young RJ: Dextropropoxyphene overdosage. Pharmacological considerations and clinical management. Drugs 26: 70-79, 1983.
6. Simkin S, Hawton K, Kapur N and Gunnell D: What can be done to reduce mortality from paracetamol overdoses? A patient interview study, QJM 105: 45-51, 2012.
7. Hawton K, Bergen H, Simkin S, et al: Impact of different pack sizes of paracetamol in the United Kingdom and Ireland on intentional overdoses: a comparative study. BMC Public Health 11: 460, 2011.
8. Hawton K, Townsend E, Deeks J, et al: Effects of legislation restricting pack sizes of paracetamol and salicylate on self poisoning in the United Kingdom: before and after study. BMJ 322: 1203-1207, 2001.
9. Daly FF, Fountain JS, Murray L, Graudins A and Buckley NA: Guidelines for the management of paracetamol poisoning in Australia and New Zealand - explanation and elaboration. A consensus statement from clinical toxicologists consulting to the Australasian poisoners information centres. Med J Aust 188: 730-734, 2008.
10. Gopi KS, Reddy AG, Jyothi K and Kumar BA: Acetaminophen-in duced hepato- and nephrotoxicity and amelioration by silymarin and Terminalia chebula in rats. Toxicol Int 17: 64-66, 2010.
11. Abdel-Zaher AO, Abdel-Hady RH, Mahmoud MM and Farrag MM: The potential protective role of alpha-lipoic acid against acetaminophen-induced hepatic and renal damage. Toxicology 243: 261-270, 2008.
12. Cermik H, Taslipinar MY, Aydin I, et al: The relationship between N-acetylcycteine, hyperbaric oxygen, and inflam matin in a rat model of acetaminophen-induced nephrotoxicity. Inflammation 36: 1145-1152, 2013.
13. Ucar F, Taslipinar MY, Alp BF, et al: The effects of N-acetylcysteine and ozone therapy on oxidative stress and inflammation in acetaminophen-induced nephrotoxicity model. Ren Fail 35: 640-647, 2013.
14. Liang YL, Zhang ZH, Liu XJ, et al: Melatonin protects against apoptosis-inducing factor (AIF)-dependent cell death during acetaminophen-induced acute liver failure. PLoS One 7: e51912, 2012.
15. Amaral SS, Oliveira AL, Marques PE, et al: Altered responsivenes s to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal 11: 10, 2013.
16. Badmann A, Langsch S, Keogh A, Brunner T, Kaufmann T and Corazza N: TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death Dis 3: e447, 2012.
17. Badmann A, Keough A, Kaufmann T, Bouillet P, Brunner T and Corazza N: Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage. Cell Death Dis 2: e171, 2011.
18. McGill MR, Yan HM, Ramachandran A, Murray GJ, Rolls DN and Jaeschke H: HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53: 974-982, 2011.
19. Zhao X, Cong X, Zheng L, Xu L, Yin L and Peng J: Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol Lett 214: 69-80, 2012.
20. Mobsber MA, Gonzalez-Rodriguez A, Santamaria B, et al: Protein tyrosine phosphorylation 1B modulates GSK3beta/NF2 and IGF1R signaling pathways in acetaminophen-induced hepatitis. Acta Pharmacol Sin 35: 549-557, 2012.

21. Rachamandran A, McGill MR, Xie Y, Ni HM, Ding WX and Jaeschke H: Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58: 2099-2108, 2013.

22. Ahmad ST, Arjumand W, Nafees S, et al: Hesperidin alleviates acetaminophen-induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicol Lett 208: 149-161, 2012.

23. Inkielewicz-Špieniak I and Knap N: Effect of exposure to fluoride and acetaminophen on oxidative/nitrosative status of liver and kidney in male and female rats. Pharmacol Rep 64: 902-911, 2012.

24. Sllit AM, Dominick PK, Roberts JC and Cohen SD: Effect of ribose cystine pretreatment on hepatic and renal acetaminophen metabolite formation and glutathione depletion. Basic Clin Pharmacol Toxicol 96: 487-494, 2005.

25. Youssef MI, Omar SA, El-Guendi MI and Abdelmegid LA: Potential protective effects of querectin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematoctytosis in rats. J Med Chem Toxicol 46: 3246-3261, 2012.

26. Zhang Y, Yang J, Yang M, Pang P, Cun Y, Xiao A and Wen A: The impaired disposition of probe drugs is due to both liver and kidney dysfunctions in CCl4(model) rats. Environ Toxicol Pharmacol 33: 453-458, 2012.

27. Zhao YL, Zhou GD, Yang HB, Wang JB, Shan LM, Li RS and Xiao XB: Rhein protects against acetaminophen-induced hepatic and renal toxicity. Food Chem Toxicol 49: 1705-1710, 2011.

28. Roomi MW, Kalinovsky T, Ivanov V, Rath M and Niedzwiecki A: A nutrient mixture prevents acetaminophen hepatic and renal toxicity in ICR mice. Hum Exp Toxicol 27: 223-230, 2008.

29. Posadas I, Santos P and Cena V: Acetaminophen induces human neuroblastoma cell death through NFKB activation. PLoS One 7: e01060, 2012.

30. Posadas I, Vellecco V, Santos P, Prieto-Lloret J and Cena V: Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line. Br J Pharmacol 150: 577-585, 2007.

31. Jaeschke H: Comments on ‘glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells’. J Pharmacol Exp Ther 314: 1401-1404, 2005.

32. Macanus-Pirard P, Yaacob NS, Lee PC, Holder JC, Hinton RH and Kass GE: Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells. J Pharmacol Exp Ther 313: 780-789, 2005.

33. Bilir A, Guleri AD and Altinoz MA: Acetaminophen and DMSO modulate apoptosis and gemcitabine sensitivity in MDA-MB breast cancer cells in vitro. Neoplasia 51: 460-464, 2004.

34. Wu YJ, Neuwelt AJ, Muldoon LL and Neuwell EA: Acetaminophen enhances cisplatin- and paclitaxel-mediated cytotoxicity to SKOV3 human ovarian carcinoma. Anticancer Res 33: 2391-2400, 2013.

35. Reszka KJ, Brittigan LH, Rasmussen GT, Wagner BA, Burns CP and Brittigan BE: Acetaminophen stimulates the peroxidative metabolism of anthrahydroclines. Arch Biochem Biophys 427: 16-29, 2004.

36. Macanas-Pirard P, Yaacob NS, Lee PC, Holder JC, Hinton RH and Kass GE: Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells. J Pharmacol Exp Ther 313: 780-789, 2005.

37. Kidokoro K, Satoh M, Nagasu H, et al: Tacrolimus induces glomerular injury via endothelial dysfunction coupled with reactive oxygen species and inflammatory change. Kidney Blood Press Res 35: 549-557, 2012.

38. Stacchiotti A, Li Volti G, Lavazza A, et al: Inhibition of JAK2 protects renal endothelial and epithelial cells from oxidative stress and cyclosporin A toxicity. Kidney Int 75: 227-234, 2009.
63. Hassane S, Leonhard WN, van der Wal A, et al: Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222: 21-31, 2010.
64. Edward M, Quinn JA, Mukherjee S, et al: Gadodiamide contrast agent ‘activates’ fibroblasts: a possible cause of nephrogenic systemic fibrosis. J Pathol 214: 584-593, 2008.
65. Kumari A and Kakkar P: Lupeol protects against acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes. Food Chem Toxicol 50: 1781-1789, 2012.
66. Anoush M, Eghbal MA, Fathiazad F, Hamzeiy H and Kouzehkonani NS: The protective effects of garlic extract against acetaminophen-induced oxidative stress and glutathione depletion. Pak J Biol Sci 12: 765-771, 2009.
67. Yao Y, Yang J, Wang D, et al: The aqueous extract of Lycopus lucidus Turcz ameliorates streptozotocin-induced diabetic renal damage via inhibiting TGF-beta1 signaling pathway. Phytomedicine 20: 1160-1167, 2013.
68. Hills CE, Siamantouras E, Smith SW, Cockwell P, Liu KK and Squires PE: TGFb modulates cell-to-cell communication in early epithelial-to-mesenchymal transition. Diabetologia 55: 812-824, 2012.
69. Xu Y, Yang S, Huang J, Ruan S, Zheng Z and Lin J: Tgf-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells. Int J Mol Med 29: 781-790, 2012.
70. Yoshikawa M, Hishikawa K, Idei M and Fujita T: Trichostatin a prevents TGF-beta1-induced apoptosis by inhibiting ERK activation in human renal tubular epithelial cells. Eur J Pharmacol 642: 28-36, 2010.
71. Li R, Wang Y, Liu Y, et al: Curcumin inhibits transforming growth factor-β1-induced EMT via PPARγ pathway, not Smad pathway in renal tubular epithelial cells. PLoS One 8: e58848, 2013.
72. Han WQ, Zhu Q, Hu J, Li PL, Zhang F and Li N: Hypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells. Biochim Biophys Acta 1833: 1454-1462, 2013.
73. Yan HD, Li XZ, Xie JM and Li M: Effects of advanced glycation end products on renal fibrosis and oxidative stress in cultured NRK-49F cells. Chin Med J (Engl) 120: 787-793, 2007.
74. Guo W, Xu H, Huang WY, et al: Prohibitin suppresses renal interstitial fibroblasts proliferation and phenotypic change induced by transforming growth factor-beta1. Zhonghua Yi Xue Za Zhi 87: 1660-1665, 2007 (In Chinese).
75. Levanon D, Manov I and Iancu TC: Qualitative and quantitative analysis of the effects of acetaminophen and N-acetylcysteine on the surface morphology of Hep3B hepatoma cells in vitro. Ultrastruct Pathol 28: 3-14, 2004.
76. Williamson K, Wahl MS and Mycyk MB: Direct comparison of 20-hour IV, 36-hour oral, and 72-hour oral acetylcysteine for treatment of acute acetaminophen poisoning. Am J Ther 20: 37-40, 2013.
77. Saritas A, Kandis H, Baltaci D, et al: N-Acetyl cysteine and erdosteine treatment in acetaminophen-induced liver damage. Toxicol Ind Health: Oct 15, 2012 (Epub ahead of print).