Breaking the n^k Barrier for Minimum k-cut on Simple Graphs

Zhiyang He∗ Jason Li†

December 2, 2021

Abstract

In the minimum k-cut problem, we want to find the minimum number of edges whose deletion breaks the input graph into at least k connected components. The classic algorithm of Karger and Stein [KS96] runs in $\tilde{O}(n^{2k-2})$ time,\(^1\) and recent, exciting developments have improved the running time to $O(n^k)$ [GHLL20]. For general, weighted graphs, this is tight assuming popular hardness conjectures.

In this work, we show that perhaps surprisingly, $O(n^k)$ is not the right answer for simple, unweighted graphs. We design an algorithm that runs in time $O(n^{(1-\epsilon)k})$ where $\epsilon > 0$ is an absolute constant, breaking the natural n^k barrier. This establishes a separation of the two problems in the unweighted and weighted cases.

*Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States.
†Simons Institute, UC Berkeley, Berkeley, United States.

\(^1\) $\tilde{O}(\cdot)$ denotes omission of polylogarithmic factors in n.
1 Introduction

In this paper, we study the (unweighted) minimum k-cut problem: given an undirected graph $G = (V, E)$ and an integer k, we want to delete the minimum number of edges to split the graph into at least k connected components. Throughout the paper, let λ_k denote this minimum number of edges. Note that the k-cut problem generalizes the global minimum cut problem, which is the special case $k = 2$.

For fixed constant $k \geq 2$, the first polynomial-time algorithm for this problem is due to Goldschmidt and Hochbaum [GH94], who designed an algorithm running in $n^{O(k^2)}$ time. Subsequently, Karger and Stein showed that their (recursive) randomized contraction algorithm solves the problem in $\tilde{O}(n^{2k-2})$ time. This was later matched by a deterministic algorithm of Thorup [Tho08] based on tree packing, which runs in $\tilde{O}(n^{2k})$ time.

These algorithms remained the state of the art until a few years ago, when new progress was established on the problem [GLL18, GLL19, Li19], culminating in the $\tilde{O}(n^k)$ time algorithm of Gupta, Harris, Lee, and Li [GHL20] which is, surprisingly enough, just the original Karger-Stein recursive contraction algorithm with an improved analysis. The $\tilde{O}(n^k)$ time algorithm also works for weighted graphs, and they show by a reduction to max-weight k-clique that their algorithm is asymptotically optimal, assuming the popular conjecture that max-weight k-clique cannot be solved faster than $\Omega(n^{k-O(1)})$ time. However, whether the algorithm is optimal for unweighted graphs was left open; indeed, the (unweighted) k-clique problem can be solved in $n^{(\omega/3)k+O(1)}$ time through fast matrix multiplication.\footnote{As standard, we define ω as the smallest constant such that two $n \times n$ matrices can be multiplied in $O(n^{\omega+o(1)})$ time. The best bound known is $\omega < 2.373$ [AW21], although $\omega = 2$ is widely believed.}

In this paper, we make partial progress on this last question by showing that for simple graphs, the right answer is asymptotically bounded away from n^k:

Theorem 1.1. There is an absolute constant $\epsilon > 0$ such that the minimum k-cut problem can be solved in $n^{(1-\epsilon)k+O(1)}$ time.

In fact, we give evidence that $n^{(\omega/3)k+O(1)}$ may indeed be the right answer (assuming the popular conjecture that k-clique cannot be solved any faster). This is discussed more in the statement of Theorem 1.3.

1.1 Our Techniques

Our high-level strategy mimics that of Li [Li19], in that we make use of the Kawarabayashi-Thorup graph sparsification technique on simple graphs, but our approach differs by exploiting matrix multiplication-based methods as well. Below, we describe these two techniques and how we apply them.

Kawarabayashi-Thorup Graph Sparsification Our first algorithmic ingredient is the (vertex) graph sparsification technique of Kawarabayashi and Thorup [KT18], originally developed to solve the deterministic minimum cut problem on simple graphs. At a high level, the sparsification process
Matrix Multiplication What if the minimum k-cut has components that are singleton vertices? If all but one component is a singleton, then we can use a matrix multiplication-based algorithm similar to the Nešetřil and Poljak’s algorithm for k-clique [NP85], which runs in \(n^{(\omega/3)k+O(1)} \) time. Thus, the main difficulty is to handle minimum k-cuts where some components are singletons, but not k − 1 many. The following definition will be at the core of all our discussions for the rest of this paper.

Definition 1.2 (Border and Islands). Given a k-cut C with exactly r singleton components, we denote the singleton components as \(S_1 = \{v_1\}, \ldots, S_r = \{v_r\} \) and denote the other components \(S_{r+1}, \ldots, S_k \). A border of C is a cut obtained by merging some singleton components into larger components. More precisely, a border is defined by a subset \(I \subseteq [r] \) and a function \(\sigma : I \rightarrow [k \setminus [r]] \). Given I and \(\sigma \), we let \(S'_1 = S_1 \cup \{v_j : j \in I, \sigma(j) = i\} \), then the border \(B_{I,\sigma} \) is the \((k - |I|)\)-cut defined by the components \(S'_{r+1}, \ldots, S'_k \), together with the unmerged singleton components \(S_j \) where \(j \in [r \setminus I] \). The set of vertices \(\{v_i : i \in [I]\} \), corresponding to the merged singleton components, is called the islands.

Given this definition, our main technical contribution is as follows: we show that if the cut C has exactly r singleton components, then we can first apply Kawarabayashi-Thorup sparsification to compute a graph \(G' \) of size \(\tilde{O}(n/\lambda_k) \) that preserves some borders of C. We then use the algorithm of [GHLL20] on \(G' \) to discover a border, which will succeed with probability roughly \(1/\tilde{O}(n/\lambda_k)^{k-|I|} \). Finally, we run a matrix multiplication-based algorithm to locate the islands in an additional \(n^{(\omega/3)|I|+O(1)} \) time. Altogether, the runtime becomes \(\tilde{O}((n/\lambda_k)^{k-s}) \cdot n^{(\omega/3)s+O(1)} \), which is \(n^{(1-\epsilon')k+O(1)} \) as long as \(\lambda_k \geq n^\epsilon \), where \(\epsilon' \) depends on \(\epsilon \).

We summarize our discussions with the following theorem, which is the real result of this paper.

Theorem 1.3. Suppose there exists an algorithm that takes in a simple, unweighted graph G, and returns its minimum k-cut in time \(\lambda_k^{ck}n^{O(1)} \). Let \(c = \max\left(\frac{\epsilon}{1+\epsilon}, \frac{\omega}{3}\right) \). Then we can compute a minimum k-cut of a simple, unweighted graph in \(O(n^{ck+O(1)}) \).
Recently, Lokshtanov, Saurabh, and Surianarayanan [LSS20] showed an algorithm for exact minimum k-cut that runs in time $\lambda^{O(k)} n^{O(1)}$. Combining their result with Theorem 1.3, we obtain a minimum k-cut that runs in time $O(n^{ck+O(1)})$ for some constant $c < 1$. We further note that we use their algorithm in a black-box manner, which means if one could derive an exact algorithm with a better constant t, then our algorithm will have an improved runtime up to $O(n^{\omega k/3+O(1)})$.

2 Main Algorithm

In this section, we discuss our algorithm in detail. Given a simple, unweighted graph G, we first run an approximate k-cut algorithm to determine the magnitude of λ_k. If $\lambda_k \leq O(n^{1/t+1})$, then we can run the exact algorithm on G and output its result. Otherwise, we apply Lemma 2.2, which is a modified version of Kawarabayashi-Thorup sparsification [KT18] for k-cuts. These modifications, discussed in Section 3, will give us a graph G' on $O_k(n/\lambda_k)$ vertices that preserves at least one border for every minimum k-cut of G. Now we fix any minimum k-cut of G, and fix its border $B_{I,\sigma}$ specified by Lemma 2.2. For every possible value of $|I|$, we run Lemma 2.3 to discover $B_{I,\sigma}$ with high probability.

Once we found the border, locating the islands is simple. In Section 5, we present a slight variant of Nešetřil and Poljak’s k-clique algorithm [NP85] that solves the following problem in $O(n^{\frac{3r}{\omega}+O(1)})$ time.

Definition 2.1 (r-Island Problem). Given a graph G, find the optimal $r+1$-cut C which has exactly r singleton components.

This enables us to recover the minimum k-cut in G by guessing the number of islands in each non-singleton component specified by the border, and finding them independently. The total runtime is $O(n^{\frac{3r}{\omega}|I|+O(1)})$ since the number of islands in any non-singleton component is at most the total number of islands $|I|$. This proves Theorem 1.3.

Our methods are summarized in the following algorithm. Note that for the initial $O(1)$-approximation step, various algorithms can be used.

Algorithm 1 Main Algorithm

1: Run an 2-approximation algorithm of k-CUT in polynomial time [SV95], and let its output be λ_{k}.
2: if $\lambda_{k} \leq 10^{1/t}$ then
3: Run the given exact algorithm for k-CUT
4: else
5: Apply Lemma 2.2 to obtain a graph G' on $O_k(n/\lambda_k)$ vertices.
6: for each $i = 0, 1, 2, \ldots, r$ do \triangleright Iterate over possible values of $i = |I|$ of the border $B_{I,\sigma}$
7: Run Lemma 2.3 with parameter $\beta = 1 - (1 - 2/\log n)i/k$.
8: for each cut C output by Lemma 2.3 do \triangleright at most $(n/\lambda_k)^{k-(1-2/\log n)i+O(1)}$ many
9: Guess the number of islands in each non-singleton component of C.
10: Run the Island Discovery Algorithm in each non-singleton component.
11: end for
12: end for
13: end if
2.1 Analysis

Our analysis is divided into three parts, each corresponding to one section of the algorithm. The first part concerns the Kawarabayashi-Thorup sparsification, and the following theorem is proved in Section 3.

Lemma 2.2. For any simple graph, we can compute in $k^{O(k)}n^{O(1)}$ time a partition V_1, \ldots, V_q of V such that $q = (k \log n)^{O(1)}n/\lambda_k$ and the following holds:

(*) For any minimum k-cut C with exactly r singleton components, there exists $I \subset [r]$ and a function $\sigma : I \rightarrow [k] \setminus [r]$ such that the border of C defined by I and σ, namely $B_{I, \sigma}$, agrees with the partition V_1, \ldots, V_q. In other words, all edges of $B_{I, \sigma}$ are between some pair of parts V_i, V_j. Moreover, we have $|B_{I, \sigma}| \leq \lambda_k - (1 - 2/\log n)|I|\lambda_k/k$.

Contracting each V_i into a single vertex, we obtain a graph G' on $\tilde{O}(n/\lambda_k)$ vertices that preserves $B_{I, \sigma}$.

Next, we describe and analyze the algorithm that computes the border. The following lemma is proved in Section 4.

Lemma 2.3. Fix an integer $2 \leq s \leq k$ and a parameter $\beta \leq 1$, and consider an s-cut C of size at most $\beta \lambda_k$. There is an $n^{3\beta k + O(1)}$ time algorithm that computes a list of $n^{\beta k + O(1)}$ s-cuts such that with high probability, C is listed as one of the cuts.

Finally, we present and analyze the algorithm that extends the border by computing the missing islands in each non-singleton component. The following lemma is proved in Section 5.

Lemma 2.4. There is a $O_r(n^{2k/3} + O(1))$ deterministic algorithm that solves the r-Island problem.

With these three lemmas in hand, we now analyze Algorithm 1.

Fix a minimum k-cut. The initial Kawarabayashi-Thorup sparsification takes $k^{O(k)}n^{O(1)}$ time by Lemma 2.2, and the border $B_{I, \sigma}$ is preserved by the partition and has size at most $\lambda_k - (1 - 2/\log n)|I|\lambda_k/k$. For the correct guess of $|I|$, Lemma 2.3 detects $B_{I, \sigma}$ with high probability among a collection of $n/\lambda_k^{k-1-2/\log n} + O(1)$ many $(k-i)$-cuts. Finally, for the $(k-i)$-cut $C = B_{I, \sigma}$, the Island Discovery Algorithm extends it to a minimum k-cut in time $n^{(\omega/3) + O(1)}$. The total running time is therefore

$$k^{O(k)}n^{O(1)} + \left(n/\lambda_k\right)^{k-1-2/\log n} + O(1) \cdot n^{(\omega/3) + O(1)} \leq k^{O(k)}n^{O(1)} + \left(n/\lambda_k\right)^{k-1-2/\log n + O(1)} + \left(n/\lambda_k\right)^{k-1-2t/\log n + O(1)} \cdot n^{(\omega/3) + O(1)}.$$

The $n^{2t/\log n}$ term is at most $O(1)^{2t}$, which is negligible. The running time is dominated by either $i = 0$ or $i = k$, depending on which of $\frac{i}{t-1}$ and $\omega/3$ is greater. This concludes the analysis of Algorithm 1 and the proof of Theorem 1.3.

3 Kawarabayashi-Thorup Sparsification

In this section, we prove the following Kawarabayashi-Thorup sparsification theorem of any simple graph. Rather than view it as a vertex sparsification process where groups of vertices are contracted,
we work with the grouping of vertices itself, which is a partition of the vertex set. We use parts to denote the vertex sets of the partition to distinguish them from the components of a k-cut.

Most of the arguments in this section originate from Kawarabayashi and Thorup’s original paper [KT18], though we find it more convenient to follow the presentations of [GLL21] and [Li19].

Lemma 2.2. For any simple graph, we can compute in \(k^{O(k)}n^{O(1)} \) time a partition \(V_1, \ldots, V_q \) of \(V \) such that \(q = (k \log n)^{O(1)} n / \lambda_k \) and the following holds:

\[(*) \text{ For any minimum } k\text{-cut } C \text{ with exactly } r \text{ singleton components, there exists } I \subset [r] \text{ and a function } \sigma : I \to [k] \setminus [r] \text{ such that the border of } C \text{ defined by } I \text{ and } \sigma, \text{ namely } B_{I,\sigma}, \text{ agrees with the partition } V_1, \ldots, V_q. \text{ In other words, all edges of } B_{I,\sigma} \text{ are between some pair of parts } V_i, V_j. \]

Moreover, we have \(|B_{I,\sigma}| \leq \lambda_k - (1 - 2/\log n)|I|\lambda_k / k. \)

Contracting each \(V_i \) into a single vertex, we obtain a graph \(G' \) on \(\tilde{O}(n/\lambda_k) \) vertices that preserves \(B_{I,\sigma} \).

3.1 Regularization Step

We first “regularize” the graph to obey a few natural conditions, which is done at no asymptotic cost to the number of clusters. In particular, we ensure that \(m \leq O(\lambda_k n) \), i.e., there are not too many edges, and \(\delta \geq \lambda_k / k \), i.e., the minimum degree is comparable to the size of the k-cut.

Nagamochi-Ibaraki sparsification. First, we show that we can freely assume \(m = O(\lambda_k n) \) through an initial graph sparsification step due to Nagamochi and Ibaraki; the specific theorem statement here is from [Li19].

Theorem 3.1 (Nagamochi and Ibaraki [NI92], Theorem 3.3 in [Li19]). Given a simple graph \(G \) and parameter \(s \), there is a polynomial-time algorithm that computes a subgraph \(H \) with at most \(sn \) edges such that all \(k \)-cuts of size at most \(s \) are preserved. More formally, for all \(k \)-cuts \(S_1, \ldots, S_k \) satisfying \(|E_G[S_1, \ldots, S_k]| \leq s \), we have \(E_G[S_1, \ldots, S_k] = E_H[S_1, \ldots, S_k] \).

Compute a \((1 + 1/k) \)-approximation \(\tilde{\lambda}_k \in [\lambda_k, (1 + 1/k)\lambda_k] \) in time \(k^{O(k)}n^{O(1)} \) [LSS20], apply Theorem 3.1 with parameter \(s = \tilde{\lambda}_k \), and replace \(G \) with the returned graph \(H \). This allows us to assume \(m \leq (1 + 1/k)\lambda_k n \) henceforth.

Lower bound the minimum degree. Next, we would like to ensure that the graph \(G \) has minimum degree comparable to \(\lambda_k \). While there exists a vertex of degree less than \(\frac{\tilde{\lambda}_k}{(1 + 1/k)(k-1)} \), declare that vertex as a trivial part in the final partition, and remove it from \(G \). We claim that we can remove at most \(k - 1 \) such vertices; otherwise, the vertices together form a \(k \)-cut of size less than \((k - 1) \cdot \frac{\tilde{\lambda}_k}{(1 + 1/k)(k-1)} = \frac{\tilde{\lambda}_k}{(1 + 1/k)} \leq \lambda_k \), contradicting the value \(\lambda_k \) of the minimum \(k \)-cut. We have thus removed at most \(k - 1 \) vertices. The remaining task is to compute a partition of the remaining graph which has minimum degree at least \(\frac{\tilde{\lambda}_k}{(1 + 1/k)(k-1)} \geq \lambda_k / k \). We then add a singleton set for each of the singleton vertices removed, which is at most \(k - 1 \) extra parts, which is negligible since we aim for \((k \log n)^{O(1)} n / \lambda_k \) many parts in total.
3.2 Kawarabayashi-Thorup Sparsification

It remains to prove the following lemma, which is Lemma 2.2 with the additional assumptions $m \leq 2\lambda_k n$ and $\delta \geq \lambda_k / k$.

Lemma 3.2. Suppose we are given a simple graph with $m \leq 2\lambda_k n$ and $\delta \geq \lambda_k / k$. Then, we can compute a partition V_1, \ldots, V_q of V such that $q = (k \log n)^{O(1)} n / \lambda_k$ and the following holds:

(*) For any minimum k-cut C with exactly r singleton components, there exists $I \subset [r]$ and a function $\sigma : I \rightarrow [k] \setminus [r]$ such that the border of C defined by I and σ, namely $B_{I,\sigma}$, agrees with the partition V_1, \ldots, V_q. In other words, all edges of $B_{I,\sigma}$ are between some pair of parts V_i, V_j.

Moreover, we have $|B_{I,\sigma}| \leq \lambda_k - (1 - 2 / \log n) |I| \lambda_k / k$.

Our treatment follows closely from Appendix B of [GLL21].

Expander decomposition preliminaries. We first introduce the concept of the conductance of a graph, as well as an expander, defined below.

Definition 3.3 (Conductance). Given a graph $G = (V, E)$, a set $S : \emptyset \subseteq S \subseteq V$ has conductance

$$\frac{|\partial_G S|}{\min\{\text{vol}(S), \text{vol}(V \setminus S)\}}$$

in the graph G, where $\text{vol}(S) := \sum_{v \in S} \text{deg}(v)$. The conductance of the graph G is the minimum conductance of a set $S \subseteq V$ in G.

Definition 3.4. For any parameter $0 < \gamma \leq 1$, a graph is a γ-expander if its conductance is at least γ.

The following is a well-known result about decomposing a graph into expanders, for which we provide an easy proof below for convenience.

Theorem 3.5 (Expander Decomposition). For any graph $G = (V, E)$ with m edges and a parameter $\gamma < 1$, there exists a partition U_1, \ldots, U_p of V such that:

1. For all $i \in [p]$, $G[U_i]$ is a γ-expander.
2. $|E[U_1, \ldots, U_p]| \leq O(\gamma m \log m)$.

The partitioning algorithm. To compute the partition V_1, \ldots, V_q, we execute the same algorithm from Section B of [GLL21], except we add an additional step 4. Throughout the algorithm, we fix parameter $\epsilon := 1 / (k \log n)$.

1. Compute an expander decomposition with parameter $\gamma := 1 / \delta$, and let U_1, \ldots, U_p be the resulting partition of V.

6
2. Initialize the set $S \leftarrow \emptyset$, and initialize $C_i \leftarrow U_i$ for each $i \in [p]$. While there exists some $i \in [p]$ and a vertex $v \in C_i$ satisfying $\deg_{G[C_i]}(v) \leq \frac{2}{5} \deg_G(v)$, i.e., vertex v loses at least $\frac{3}{5}$ fraction of its degree when restricted to the current C_i, remove v from C_i and add it to S. The set S is called the set of singleton vertices. Note that some C_i can become empty after this procedure. At this point, we call each C_i a cluster of the graph. This procedure is called the trimming step in [KT18].

3. Initialize the set $L := \bigcup_{i \in [p]} \{ v \in C_i \mid \deg_{G[C_i]}(v) \leq (1 - \epsilon) \deg_G(v) \}$, i.e., for each $i \in [p]$ and vertex $v \in C_i$ that loses at least ϵ fraction of its degree when restricted to C_i, add v to L (but do not remove it from C_i yet). Then, add L to the singletons S (i.e., update $S \leftarrow S \cup L$) and define the core of a cluster C_i as $A_i \leftarrow C_i \setminus L$. For a given core A_i, let $C(A_i)$ denote the cluster whose core is A_i. This procedure is called the shaving step in [KT18].

4. For each core A_i with at most k vertices, we shatter the core by adding A_i to the singletons S (i.e., update $S \leftarrow S \cup A_i$) and updating $A_i \leftarrow \emptyset$. This is the only additional step relative to [GLL21].

5. Suppose there are $p' \leq p$ nonempty cores A_i. Let us re-order the cores $A_1, \ldots, A_{p'}$ so that $A_1, \ldots, A_{p'}$ are precisely the nonempty cores. The final partition $\mathcal{P} = \{ V_1, V_2, \ldots \}$ of V is $\bigcup_{i \in [p']} \{ A_i \} \cup \bigcup_{v \in S} \{ \{ v \} \}$. In other words, we take each nonempty core A_i as its own set in the partition, and add each vertex $v \in S$ as a singleton set. We call each nonempty core A_i a core in the partition, and each vertex $v \in S$ as a singleton in the partition.

The lemmas below are stated identically to those in [GLL21], so we omit the proofs and direct interested readers to [GLL21].

Lemma 3.6 (Lemma B.11 of [GLL21]). Fix a parameter $\alpha \geq 1$ that satisfies $\alpha < o(\delta / \log n)$. For each nonempty cluster C and a subset $S \subseteq V$ satisfying $|\partial_G S| \leq \alpha \delta$, we have either $|C \cap S| \leq 3\alpha$ or $|C \setminus S| \leq 3\alpha$.

The lemma below from [GLL21] is true for the algorithm without step 4.

Lemma 3.7 (Corollary B.9 of [GLL21]). Suppose we skip step 4 of the algorithm. Then, there are $O(\frac{m \log m}{\delta^2})$ many sets in the partition \mathcal{P}.

Clearly, adding step 4 increases the number of parts by a factor of at most k, so the we obtain the following corollary.

Corollary 3.8. There are $O(\frac{k m \log m}{\delta^2})$ many sets in the partition \mathcal{P}.

Since $m \leq \lambda_k n$ and $\delta \geq \lambda_k / k$ by the assumption of Lemma 3.2, this fulfills the bound $q = (k \log n)^{O(1)} n / \lambda_k$ of Lemma 3.2. For the rest of this section, we prove property ($*$).

The following lemma is a combination of Lemma B.12 of [GLL21] and Lemma 16 of [Li19], and we provide a proof for completeness.
Lemma 3.9. Fix a parameter $\alpha \geq 1$ that satisfies $\alpha < o(\frac{\delta}{k \log n})$. For any nonempty core A and any minimum k-cut of size at most $\alpha \delta$, there is exactly one component S^* satisfying $|S^* \cap C(A)| > 3\alpha$, and any other component S that is non-singleton must be disjoint from A. Moreover, each vertex $v \in A$ has at least $(1 - 2\epsilon) \deg(v)$ neighbors in S^*.

Proof. We first show that $|C(A)| > 3\alpha k$. Since $C(A)$ is nonempty, each vertex $v \in C(A)$ has at least $\frac{\delta}{n} \deg(v) \geq \frac{\delta}{2} \delta$ neighbors in $C(A)$, so $|C(A)| > \frac{\delta}{2} \delta - 1 > 3\alpha k$ by the assumption $\alpha < o(\frac{\delta}{k \log n})$.

By Lemma 3.6, each component S must satisfy $|C(A) \cap S| \leq 3\alpha k$ or $|C(A) \setminus S| \leq 3\alpha k$, and the latter implies that $|C(A) \cap S| > |C(A)|/2$, which only one side S can satisfy. Moreover, one such component S^* must exist since otherwise, $|C(A)| = \sum_S |C(A) \cap S| \leq 3\alpha k$, a contradiction. Therefore, all but one component S^* satisfy $|C(A) \cap S| \leq 3\alpha$.

Next, each vertex $v \in A$ has at least $(1 - \epsilon) \deg(v)$ neighbors in $C(A)$, and at most $3\alpha k$ of them can go to $C(A) \cap S$ for any component $S \neq S^*$. This leaves at least $(1 - \epsilon) \deg(v) - 3\alpha k$ neighbors in S^*, which is at least $(1 - 2\epsilon) \deg(v)$ since $\epsilon = 1/ \log n$ and $\alpha < o(\frac{\delta}{k \log n})$.

We now show that if S is non-singleton and $|C(A) \cap S| \leq 3\alpha k$, then S is disjoint from A. Suppose otherwise; then, any vertex $v \in A \cap S$ has at least $(1 - 2\epsilon) \deg(v)$ neighbors in S^* as before. If we move v from S to S^*, then the result is still a k-cut since S is non-singleton. Moreover, the edges from v to S are newly cut, and the edges from v to S^* are saved. The former is at most $\epsilon \deg(v) + 3\alpha k$, and the latter at least $(1 - 2\epsilon) \deg(v)$. Since $\epsilon = 1/ \log n$ and $\alpha < o(\frac{\delta}{k \log n})$, the new k-cut is smaller than the old one, a contradiction.

Finally, we prove property (\ast) of Lemma 3.2.

Lemma 3.10. For any minimum k-cut C with exactly r singleton components, there exists $I \subset [r]$ and a function $\sigma : I \to [k] \setminus [r]$ such that the border of C defined by I and σ, namely $B_{I,\sigma}$, agrees with the partition V_1, \ldots, V_q. In other words, all edges of $B_{I,\sigma}$ are between some pair of parts V_i, V_j. Moreover, we have $|B_{I,\sigma}| \leq \lambda_k - (1 - 2/ \log n)|I| \lambda_k / k$.

Proof. Enumerate the singleton components as $S_1 = \{v_1\}, \ldots, S_r = \{v_r\}$. Let T be the set of singleton components S_i such that S_i is contained in a part V_j that has more vertices than just v_i (i.e., $V_j \supseteq \{v_i\}$).

For every such component $S_i = \{v_i\}$, since $V_j \supseteq \{v_i\}$, we must have $|V_j| > k$, since otherwise it would have been shattered into singletons on step 4 of the algorithm. So there must be a non-singleton component S^*_j of the minimum k-cut intersecting V_j (which is unique by Lemma 3.9). This component must be the S^* from Lemma 3.9. We define $\sigma(i) = i^*$.

As we’ve argued in the previous paragraph, the border S'_r, \ldots, S'_k defined as $S'_i = S_i \cup \{v_j : j \in I, \sigma(j) = i\}$ agrees with the partition V_1, \ldots, V_q. It remains to show that $|E(S'_r, \ldots, S'_k)| \leq \lambda_k - (1 - 1/k)|I| \lambda_k / k$. For each component $S_i = \{v_i\}$ with $i \in I$, by Lemma 3.9, the vertex v_i has at least $(1 - 2\epsilon) \deg(v)$ neighbors in $S^*_{\sigma(i)}$, so merging v_i with $S^*_{\sigma(i)}$ decreases the cut value by at least $(1 - 2\epsilon) \deg(v)$. It follows that the border has size at most $\lambda_k - (1 - 2\epsilon)|I| \deg(v)$, which meets the bound since $\epsilon = 1/ \log n$ and $\deg(v) \geq \delta \geq \lambda_k / k$ by assumption.

With Lemma 3.10, this concludes the proof of Lemma 3.2.
4 Finding the Border

In this section, we develop an algorithm to compute the border. The main lemma is the following, where C represents the border we wish to find.

Lemma 2.3. Fix an integer $2 \leq s \leq k$ and a parameter $\beta \leq 1$, and consider an s-cut C of size at most $\beta \lambda_k$. There is an $n^{\beta k + O(1)}$ time algorithm that computes a list of $n^{\beta k + O(1)}$ s-cuts such that with high probability, C is listed as one of the cuts.

Our algorithm follows Karger’s contraction algorithm, stated below, and its analysis from [GHLL20].

Algorithm 2 Contraction Algorithm [GHLL20]

1: while $|V| > \tau$ do
2: Choose an edge $e \in E$ at random from G, with probability proportional to its weight.
3: Contract the two vertices in e and remove self-loops.
4: end while
5: Return a k-cut of G chosen uniformly at random.

The key lemma we use is the following from [GHLL20].

Lemma 4.1 (Lemma 17 of [GHLL20]). Suppose that J is an edge set with $\alpha = |J|/\lambda_k$ and $n \geq \tau \geq 8\alpha k^2 + 2k$. Then J survives lines 1 to 4 of the Contraction Algorithm with probability at least $(n/\tau)^{-\alpha k} k^{-O(\alpha k^2)}$.

The algorithm sets $\tau = 8\beta k^2 + 2k$, and by Lemma 4.1, any s-cut C of size $\alpha \lambda_k$ for some $\alpha \leq \beta$ survives lines 1 to 4 of the Contraction Algorithm with probability $k^{-O(k^2)} n^{-\alpha k} \geq k^{-O(k^2)} n^{-\beta k}$. The algorithm sets s for the parameter k, and C is output with probability $1/r^\tau \geq k^{-O(k^2)}$. Overall, the probability of outputting C is $k^{-O(k^2)} n^{-\beta k}$. Repeating the algorithm $k^{O(k^2)} n^{\beta k} \log n$ times, we can output a list of cuts that contains C with high probability.

5 Finding the Islands

In this section, we prove the following lemma.

Lemma 2.4. There is a $O_r(n^{\frac{kr}{r} + O(1)})$ deterministic algorithm that solves the r-Island problem.

We present an algorithm for r-island which is a variant of Nešetřil and Poljak’s k-clique algorithm [NP85]. Given an input graph G, we want to find the optimal r vertices to cut off from G. Note that this is similar to finding the minimum r-clique in G, except that we need to take into account the edges from the r islands to the remaining giant component in G. We first consider the case where r is divisible by 3.
Algorithm 3 Island Discovery Algorithm

1. We construct a weighted graph G' as follows — for every subset of vertices S such that $|S| = \frac{r}{3}$, create a vertex v_S. Denote the total number of edges among vertices in S as w_S, and denote the total number of edges between S and $V \setminus S$ as $w_{S'}$. For each pair of vertices v_S, v_T, let $w_{S,T}$ be the total number of edges between S and T if they are disjoint. Add an edge between them of weight $w_{S,T}$.

2. We want to find the minimum weight triangle in the graph G'. To do so, we guess the weight of a minimum weight triangle as follows: Denote the three vertices as $v_{S_1}, v_{S_2}, v_{S_3}$. Guess $w_{S_1}, w_{S_2}, w_{S_3}, w_{S_1}', w_{S_2}', w_{S_3}'$, and $w_{S_1,s_2}, w_{S_2,s_3}, w_{S_3,s_1}$.

3. Denote A as the binary adjacency matrix for G'. Let F_1 denotes the set of vertices v_S such that $w_S = w_{S_1}, w_{S_2}' = w_{S_3}'$. Define $A_{1,2}$ to be the matrix A with the rows restricted to vertices in F_1, and columns restricted to vertices in F_2. Additionally, for $v_S \in F_1, v_T \in F_2$, if $w_{S,T} \neq w_{S_1,s_2}$, set $A_{1,2}[S,T] = 0$. Define $A_{2,3}, A_{3,1}$ similarly.

4. Compute the matrix product $B = A_{1,2} \times A_{2,3}$. If there exists $v_S \in F_1$, $v_T \in F_3$ such that $B[S,T] \neq 0, A_{3,1} = 1$, then find v_R such that $A_{1,2}[S,R] = A_{2,3}[R,T] = 1$ and return S, R, T. Otherwise, return Null.

Claim 5.1. Algorithm 3 returns an optimal $(r+1)$-cut with r islands with probability at least $\frac{1}{O(r^4n^3)}$.

Proof. We first note that given the nine parameters $w_{S_1}, w_{S_2}, w_{S_3}, w_{S_1}', w_{S_2}', w_{S_3}'$, and $w_{S_1,s_2}, w_{S_2,s_3}, w_{S_3,s_1}$, the weight of the returned cut would be $w_{S_1} + w_{S_2} + w_{S_3} + w_{S_1,s_2} + w_{S_2,s_3} + w_{S_3,s_1} + (w_{S_1}' - w_{S_1}s_2 - w_{S_3,s_1}) + (w_{S_2}' - w_{S_1,s_2} - w_{S_2,s_3}) + (w_{S_3}' - w_{S_2,s_3} - w_{S_3,s_1})$. In other words, the nine parameters precisely specify the weight of the returned cut. Therefore, if we guess the parameters correctly, our algorithm will return r-vertices that gives the minimum $r + 1$ cut with r islands. Note that $w_{S_1}, w_{S_2}, w_{S_3}$ and $w_{S_1,s_2}, w_{S_2,s_3}, w_{S_3,s_1}$ each have $O(r^2)$ possible values, while $w_{S_1}', w_{S_2}', w_{S_3}'$ each have $O(rn)$ possible values. Therefore there are at most $O(r^{15}n^3)$ possible combination of values for the nine parameters, which means we guess correctly with probability as least $\frac{1}{O(r^4n^3)}$. The rest of the algorithm is a standard triangle detection algorithm using matrix multiplication, which has runtime $O(n^{\frac{15}{2}})$.

If r is not divisible by 3, we can add up to two isolated vertices into the graph and reduce to the case where r is divisible by 3. This increase the runtime by a factor of $n^{O(1)}$. Now note that our above algorithm can be easily made deterministic by going over all $O(r^{15}n^3)$ possible combinations of the nine parameters instead of guessing them. This proves Lemma 2.4.

Acknowledgements

The authors would like to thank Anupam Gupta for many constructive discussions and comments.
References

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 522–539. SIAM, 2021.

[GH94] Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem for fixed k. *Math. Oper. Res.*, 19(1):24–37, 1994.

[GHLL20] Anupam Gupta, David G Harris, Euiwoong Lee, and Jason Li. Optimal bounds for the k-cut problem. *arXiv preprint arXiv:2005.08301*, 2020.

[GLL18] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut. In *2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 113–123. IEEE, 2018.

[GLL19] Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: Improving the karger-stein bound. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC)*, pages 229–240, 2019.

[GLL21] Anupam Gupta, Euiwoong Lee, and Jason Li. The connectivity threshold for dense graphs. In *Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 89–105. SIAM, 2021.

[KS96] David R Karger and Clifford Stein. A new approach to the minimum cut problem. *Journal of the ACM (JACM)*, 43(4):601–640, 1996.

[KT18] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear time. *Journal of the ACM (JACM)*, 66(1):1–50, 2018.

[Li19] Jason Li. Faster minimum k-cut of a simple graph. In *2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)*, pages 1056–1077. IEEE, 2019.

[LSS20] Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation scheme for min k-cut. In *2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)*, pages 798–809. IEEE, 2020.

[NI92] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs and capacitated graphs. *SIAM J. Discrete Math.*, 5(1):54–66, 1992.

[NP85] Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. *Commentationes Mathematicae Universitatis Carolinae*, 26(2):415–419, 1985.

[SV95] Huzur Saran and Vijay V. Vazirani. Finding k-cuts within twice the optimal. *SIAM Journal on Computing*, 24(1):101–108, 1995.
[Tho08] Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In *Proceedings of the fortieth annual ACM symposium on Theory of computing*, pages 159–166. ACM, 2008.