Targeting focal adhesion assembly by ethoxyfagaronine
prevents lymphoblastic cell adhesion to fibronectin

Submitted by Emmanuel Lemoine on Wed, 12/04/2013 - 16:28

Titre
Targeting focal adhesion assembly by ethoxyfagaronine prevents lymphoblastic cell adhesion to fibronectin

Type de publication
Article de revue

Auteur
Ouchani, Farid [1], Devy, Jérôme [2], Rusciani, A. [3], Helesbeux, Jean-Jacques [4], Salesse, Stéphanie [5], Letinois, Isabelle [6], Gras-Billart, D. [7], Duca, L. [8], Duval, Olivier [9], Martiny, Laurent [10], Charpentier, Emmanuelle [11]

Pays
Pays-Bas

Editeur
Elsevier

Ville
Amsterdam

Type
Article scientifique dans une revue à comité de lecture

Année
2012

Langue
Anglais

Date
2012/01/01

Numéro
4

Pagination
267 - 284

Volume
35

Titre de la revue
Analytical Cellular Pathology

ISSN
1878-3651

Résumé en anglais

Background: Leukemic cell adhesion to proteins of the bone marrow microenvironment provides signals which control morphology, motility and cell survival. We described herein the ability of ethoxyfagaronine (etxfag), a soluble synthetic derivative of fagaronine, to prevent leukemic cell adhesion to fibronectin peptide (FN/V).

Methods: Phosphorylation of fak and pyk2 were evaluated by immunoblotting. Labelled proteins were localized by confocal microscopy. PI 3-kinase activity was evaluated by in vitro kinase assay.

Results: Subtoxic concentration of etxfag reduced L1210 cell adhesion to FN/V dependently of β1 integrin engagement. Etxfag impaired FN-dependent formation of β1 clustering without modifying β1 expression at the cell membrane. This was accompanied by a decrease of focal adhesion number, a diminition of fak and pyk2 phosphorylation at Tyr-576, Tyr-861 and Tyr-579, respectively leading to their dissociations from β1 integrin and inhibition of PI 3-kinase activity. Etxfag also induced a cell retraction accompanied by a redistribution of phosphorylated fak and pyk2 in the perinuclear region and lipid raft relocalization.

Conclusion: Through its anti-adhesive potential, etxfag, combined with conventional cytotoxic drugs could be potentially designed as a new anti-leukemic drug.

URL de la notice
http://okina.univ-angers.fr/publications/ua59 [12]

DOI
10.3233/ACP-2012-0055 [13]
Liens
[1] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=245
[2] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=246
[3] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=247
[4] http://okina.univ-angers.fr/jeanjacques.helesbeux/publications
[5] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=248
[6] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=249
[7] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=250
[8] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=251
[9] http://okina.univ-angers.fr/olivier.duval/publications
[10] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=252
[11] http://okina.univ-angers.fr/publications?f%5Bauthor%5D=253
[12] http://okina.univ-angers.fr/publications/ua59
[13] http://dx.doi.org/10.3233/ACP-2012-0055

Publié sur Okina (http://okina.univ-angers.fr)