An L^p-L^q-Version of Morgan’s Theorem for the n-Dimensional Euclidean Motion Group

Sihem Ayadi and Kamel Mokni

Received 9 August 2006; Revised 11 January 2007; Accepted 15 January 2007

Recommended by Wolfgang zu Castell

We establish an L^p-L^q-version of Morgan’s theorem for the group Fourier transform on the n-dimensional Euclidean motion group $M(n)$.

Copyright © 2007 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

An aspect of uncertainty principle in real classical analysis asserts that a function f and its Fourier transform \hat{f} cannot decrease simultaneously very rapidly at infinity. As illustrations of this, one has Hardy’s theorem [1], Morgan’s theorem [2], and Beurling-Hörmander’s theorem [3–5]. These theorems have been generalized to many other situations; see, for example, [6–10].

In 1983, Cowling and Price [11] have proved an L^p-L^q-version of Hardy’s theorem. An L^p-L^q-version of Morgan’s theorem has been also proved by Ben Farah and Mokni [7].

To state the L^p-L^q-versions of Hardy’s and Morgan’s theorems more precisely, we propose the following.

Let $a,b > 0$, $p, q \in [1, +\infty]$, $\alpha \geq 2$, and β such that $1/\alpha + 1/\beta = 1$.
If we consider measurable functions f on \mathbb{R} such that

$$e^{a|x|^\alpha} f \in L^p(\mathbb{R}), \quad e^{b|y|^\beta} \hat{f} \in L^q(\mathbb{R}),$$

we obtain the following.

(i) If $(a\alpha)^{1/\alpha}(b\beta)^{1/\beta} > (\sin(\pi/2)(\beta - 1))^{1/\beta}$, then $f = 0$ a.e.
(ii) If $(a\alpha)^{1/\alpha}(b\beta)^{1/\beta} \leq (\sin(\pi/2)(\beta - 1))^{1/\beta}$, then one has infinitely many such f.

The case $\alpha = \beta = 2$, $p = q = +\infty$ corresponds to Hardy’s theorem.
The case $\alpha = \beta = 2$, $1 \leq p$, $q < +\infty$ corresponds to the Cowling-Price theorem.
The case $\alpha > 2$, $p = q = +\infty$ corresponds to Morgan’s theorem.
The case $\alpha > 2$, $1 \leq p$, $q < +\infty$ corresponds to the Ben Farah-Mokni theorem.
We remark that for each one of those cases there are further requirements for \(f \) if
\[
(aa)^{1/\alpha}(b \beta)^{1/\beta} = (\sin(\pi/2)(\beta - 1))^{1/\beta},
\]
In this paper, we give an \(L^p - L^q \)-version of Morgan’s theorem for the \(n \)-dimensional Euclidean motion group \(M(n) \), \(n \geq 2 \).

We can note that for the motion group, theorems of Beurling and Hardy have been studied by Sarkar and Thangavelu [12]. For example, the condition in Theorem 1.1 below for \(f = 0 \) a.e. for the case \(\alpha = 2 \) follows from their work.

The motion group \(M(n) \) is the semidirect product of \(\mathbb{R}^n \) with \(K = SO(n) \). As a set \(M(n) = \mathbb{R}^n \times K \), and the group law is given by

\[
(x,k)(x',k') = (x + k \cdot x', kk'),
\]
here \(k \cdot x' \) is the nature action of \(K \) on \(\mathbb{R}^n \). The Haar measure of \(M(n) \) is \(dx \, dk \), where \(dx \) is the Lebesgue measure on \(\mathbb{R}^n \) and \(dk \) is the normalized Haar measure on \(K \).

Denote by \(\hat{M}(n) \) the unitary dual of the motion group. The abstract Plancherel theorem asserts that there is a unique measure \(\mu \) on \(\hat{M}(n) \) such that for all \(f \in L^1(M(n)) \cap L^2(M(n)) \),

\[
\int_{M(n)} | f(x,k) |^2 \, dx \, dk = \int_{\hat{M}(n)} \text{tr} (\pi(f)\pi(f)^*) \, d\mu(\pi),
\]
where \(\pi(f) = \int_{M(n)} f(x,k)\pi(x,k) \, dx \, dk \) is the group Fourier transform of \(f \) at \(\pi \in \hat{M}(n) \).

It is well known that \(\mu \) is supported by the set of infinite-dimensional elements of \(\hat{M}(n) \), which is parametrized by \((r,\lambda) \in [0, \infty[\times \hat{U} \), where \(U = SO(n-1) \) is the subgroup of \(SO(n) \) leaving fixed \(e_n = (0, \ldots, 0, 1) \) in \(\mathbb{R}^n \). As such an element \(\pi_{r,\lambda} \) is realized in a Hilbert space \(H_\lambda \), we note that for \(f \in L^1(M(n)) \cap L^2(M(n)) \), \(\pi_{r,\lambda}(f) \) is a Hilbert-Schmidt operator on \(H_\lambda \), moreover the restriction of the Plancherel measure on the part \([0, \infty[\times \{\lambda\}\) is given up to a constant depending only on \(n \), by \(r^{n-1} \, dr \).

For the analogue of Morgan's theorem on \(M(n) \) we propose the following version, where we use the notation \(\hat{f}(r,\lambda) = \pi_{r,\lambda}(f) \).

Theorem 1.1. Let \(p, q \in [1, +\infty] \), \(a, b \in]0, +\infty[\), and \(\alpha, \beta \) positive real numbers satisfying \(\alpha > 2 \) and \(1/\alpha + 1/\beta = 1 \).

Suppose that \(f \) is in \(L^2(M(n)) \) such that

(i) \(e^{a|\lambda|^\alpha} f(x,k) \in L^p(M(n)) \),
(ii) \(e^{b \lambda^\beta} \| \hat{f}(r,\lambda) \|_{HS} \in L^q([r, r^{n-1} \, dr]) \) for all fixed \(\lambda \) in \(\hat{U} \).

If \((aa)^{1/\alpha}(b \beta)^{1/\beta} > (\sin(\pi/2)(\beta - 1))^{1/\beta} \), then \(f \) is null a.e.
If \((aa)^{1/\alpha}(b \beta)^{1/\beta} \leq (\sin(\pi/2)(\beta - 1))^{1/\beta} \), then there are infinitely many such \(f \).

This paper is organized as follows.

In Section 2, we give a description of the unitary dual of the \(n \)-dimensional Euclidean motion group \(M(n) \). Section 3 is devoted to the above version of Morgan’s theorem for \(M(n) \).
2. Description of the unitary dual of $M(n)$

We are going to describe the infinite-dimensional elements of $\hat{M}(n)$, which are sufficient for the Plancherel formula. We start by some notations.

For any integer m, let $\langle \cdot, \cdot \rangle$ denote the Hermitian (resp., Euclidian) product on \mathbb{C}^m (resp., on \mathbb{R}^m) and let $\| \cdot \|$ be the corresponding norm. For $y \neq 0$ in \mathbb{R}^n let U_y be the stabilizer of y in K under its natural action on \mathbb{R}^n. U_y is conjugate to the subgroup $U = \text{SO}(n-1)$ of $\text{SO}(n)$ leaving fixed $\varepsilon_n = (0, \ldots, 0, 1)$ in \mathbb{R}^n.

We remark that $\hat{\mathbb{R}}^n$, the set of unitary characters of \mathbb{R}^n, is identified with \mathbb{R}^n. In fact any such character is of the form χ_y, $y \in \mathbb{R}^n$, and is defined for all $x \in \mathbb{R}^n$ by $\chi_y(x) = e^{i(x,y)}$. The trivial character corresponds to $y = 0$.

To construct an infinite-dimensional irreducible unitary representation of the motion group $M(n)$, we use the following steps.

Step 1. Take a nontrivial element χ_y in $\hat{\mathbb{R}}^n$. It is stabilized under the action of K by U_y.

Step 2. Take $\lambda \in \hat{U}_y$ and consider $\chi_y \otimes \lambda$ as a representation of the semidirect product of \mathbb{R}^n by U_y denoted by $\mathbb{R}^n \ltimes U_y$.

Step 3. Induce $\chi_y \otimes \lambda$ from $\mathbb{R}^n \ltimes U_y$ to $M(n)$ to obtain a representation $T_{y,\lambda}$ of $M(n)$.

We have then the following properties (see [13, 14] for details).

(a) For $y \neq 0$ and any $\lambda \in \hat{U}_y$, the representation $T_{y,\lambda}$ is unitary and irreducible.

(b) Every infinite-dimensional irreducible unitary representation of $M(n)$ is equivalent to $T_{y,\lambda}$ for some y and λ as above.

(c) The representations T_{y_1,λ_1} and T_{y_2,λ_2} are equivalent if and only if $\| y_1 \| = \| y_2 \|$ and λ_1 is equivalent to λ_2 under the obvious identification of U_{y_1} with U_{y_2}.

In particular, when $\| y \| = r > 0$, $T_{y,\lambda}$ is equivalent to $T_{r\varepsilon_n,\lambda}$, so the different classes of infinite-dimensional representations of $M(n)$ can be parametrized by $(r, \lambda) \in [0, \infty) \times \hat{U}$. We use the notation $\pi_{r,\lambda}$ for $T_{r\varepsilon_n,\lambda}$ and for its equivalence class in $\hat{M}(n)$. Let us make this representation explicit.

λ is an irreducible unitary representation of $U = \text{SO}(n-1)$, it is of finite dimension d_λ and acts on \mathbb{C}^{d_λ}. Let H_λ be the vector space of all measurable function $\psi : K \to \mathbb{C}^{d_\lambda}$ such that $\int_K \| \psi(k) \|^2 dk < \infty$ and $\psi(uk) = \lambda(u)(\psi(k))$ for all $u \in U$, $k \in K$. H_λ is a Hilbert space with respect to the inner product defined by

$$
(\psi_1 | \psi_2) = d_\lambda \int_K \langle \psi_1(k), \psi_2(k) \rangle dk.
$$

(2.1)

$\pi_{r,\lambda}$ acts on H_λ via

$$
[\pi_{r,\lambda}(a,k)\psi](k_0) = e^{i(k_0^{-1}r\varepsilon_n a)}\psi(k_0k), \quad \psi \in H_\lambda,
$$

(2.2)

for $a \in \mathbb{R}^n$, $k, k_0 \in K$.

The Plancherel measure μ is then supported by the subset of $\hat{M}(n)$ given by $\{ \pi_{r,\lambda} : \lambda \in \hat{U}, r \in \mathbb{R}^+ \}$, and on each “piece” $\{ \pi_{r,\lambda} : r \in \mathbb{R}^+ \}$ with λ fixed in \hat{U}, it is given by $C_n r^{n-1} dr$, where C_n is a constant depending only on n.

The Fourier transform of a function f in $L^1(M(n))$ is denoted as above by \hat{f}. It is defined for $(r, \lambda) \in [0, \infty) \times \hat{U}$ by

$$\hat{f}(r, \lambda) = \pi_{r, \lambda}(f) = \int_{\mathbb{R}^n} \int_K f(a, k) \pi_{r, \lambda}(a, k) dk da$$

(2.3)

(the integral being interpreted suitably, see [15]).

By the Plancherel theorem we know that for $f \in L^1(M(n)) \cap L^2(M(n))$, $\hat{f}(r, \lambda)$ is a Hilbert-Schmidt operator. Let $\|\hat{f}(r, \lambda)\|_{HS}$ be its Hilbert-Schmidt norm.

3. Morgan’s theorem for the motion group

Before giving Morgan’s theorem for the motion group $M(n)$, we state the following complex analysis lemma proved by Ben Farah and Mokni [7]. This lemma plays a crucial role in the proof of our main theorem.

Lemma 3.1. Suppose $\rho \in [1, 2[, q \in [1, +\infty]$, $\sigma > 0$, and $B > \sigma \sin(\pi/2)(\rho - 1)$.

If g is an entire function on \mathbb{C} satisfying the conditions

$$\|g(\rho + iy)\| \leq \text{const} e^{\sigma |y|^p} \text{ for any } x, y \in \mathbb{R},$$

$$e^{B|x|^p}g_{|\mathbb{R}} \in L^q(\mathbb{R}),$$

then $g = 0$.

We now give the L^p-L^q-version of Morgan’s theorem.

Theorem 3.2. Let $p, q \in [1, +\infty]$, $a, b \in [0, +\infty[$, and α, β positive real numbers satisfying $\alpha > 2$ and $1/\alpha + 1/\beta = 1$.

Suppose that f is a measurable function on $M(n)$ such that

(i) $e^{a|x|^p} f(x, k) \in L^p(M(n))$,

(ii) $e^{b|\lambda|^q} \|\hat{f}(r, \lambda)\|_{HS} \in L^q(\mathbb{R}^+, r^{n-1} dr)$ for all fixed λ in \hat{U}.

If $(aa^{1/\alpha}(b\beta)^{1/\beta} > (\sin(\pi/2)(\beta - 1))^{1/\beta}$, then f is null a.e.

Proof. To prove that $f = 0$, we are going to prove that $\hat{f}(r, \lambda) = 0$. For this, it suffices to show that for fixed $\lambda \in \hat{U}$ and for any fixed K-finite vectors φ and ψ in H_{λ}, the condition $(aa^{1/\alpha}(b\beta)^{1/\beta} > (\sin(\pi/2)(\beta - 1))^{1/\beta}$ implies that $(\hat{f}(r, \lambda)\varphi | \psi) \equiv 0$ as a function of r and λ.

Let $\lambda \in \hat{U}$ and let φ, ψ be K-finite vectors in H_{λ}. We note that φ and ψ are continuous on K and thus bounded. On the other hand, for $r \in \mathbb{R},$

$$(\hat{f}(r, \lambda)\varphi | \psi) = \int_K \int_{\mathbb{R}^n} f(x, k)(\pi_{r, \lambda}(x, k)\varphi | \psi) dx dk.$$
Let $\Phi_r(x, k) = (\pi_{r,\lambda}(x, k)\varphi \ | \ \psi)$ for $r \in \mathbb{R}$ and $(x, k) \in M(n)$. Then, by definition of $\pi_{r,\lambda}$, we have

$$
\Phi_r(x, k) = d_1 \int_K \langle (\pi_{r,\lambda}(x, k)\varphi)(0), \psi(0) \rangle dk_0
= d_1 \int_K e^{i(k_0^{-1} r_{xk})} \langle \varphi(k_0 k), \psi(k_0) \rangle dk_0
= d_1 \int_K e^{i(r_{xk}k_0)} \langle \varphi(k_0 k), \psi(k_0) \rangle dk_0.
$$

(3.3)

Note that the integral on the right-hand side makes sense even if $r \in \mathbb{C}$. Hence, with (x, k) fixed, the function $\Phi_r(x, k)$ of the variable r extends to the whole complex plane. One can easily see that for fixed (x, k), $z \mapsto \Phi_z(x, k)$ is an entire function on \mathbb{C}. Moreover, for $z \in \mathbb{C}$,

$$
| \Phi_z(x, k) | \leq d_1 \int_K | e^{i(z_{xk}k_0)} | \cdot | \varphi(k_0 k) | \cdot | \psi(k_0) | dk_0.
$$

(3.4)

Then

$$
| \Phi_z(x, k) | \leq A \int_K e^{-\langle \text{Im} z_{xk}, k_0 x \rangle} dk_0,
$$

(3.5)

where A is a constant depending only on λ, φ, and ψ. (Note that φ and ψ are continuous functions on K and hence are bounded.)

Using the fact that dk_0 is a normalized measure on K, we obtain

$$
| (\Phi_z(x, k)) | \leq A e^{\text{Im} z : \| x \|.
$$

(3.6)

By definition of $\Phi_z(x, k)$, we have

$$
(\hat{f}(z, \lambda) \varphi \ | \ \psi) = \int_{\mathbb{R}^n} f(x, k) \Phi_z(x, k) dx dk.
$$

(3.7)

Since f satisfies hypothesis (i) of Theorem 3.2 and $| (\Phi_z(x, k)) | \leq A e^{\text{Im} z : \| x \|}$, we conclude that the function $r \mapsto (\hat{f}(r, \lambda) \varphi \ | \ \psi)$ can be extended to the whole of \mathbb{C} and indeed it can be proved that the function

$$
z \mapsto (\hat{f}(z, \lambda) \varphi \ | \ \psi) \quad \text{is an entire function.}
$$

(3.8)

Further, from (3.6) and (3.7), we deduce that

$$
| (\hat{f}(z, \lambda) \varphi \ | \ \psi) | \leq A \int_{\mathbb{R}^n} | f(x, k) | e^{\text{Im} z : \| x \|} dx dk.
$$

(3.9)

Let $I = \{ (b\beta)^{-1/\beta} (\sin(\pi/2)(\beta - 1))^{1/\beta}, (aa\lambda)^{1/\alpha} \}$, and $C \in I$. Applying the convex inequality $|ty| \leq (1/\alpha) |t|^{\alpha} + (1/\beta) |y|^{\beta}$ to the positive numbers $C \| x \|$ and $|\text{Im} z|/C$, we obtain

$$
| \text{Im} z | \cdot \| x \| \leq \frac{C^\alpha}{\alpha} \| x \|^\alpha + \frac{1}{\beta C^\beta} | \text{Im} z |^\beta,
$$

(3.10)
thus
\[|(\hat{f}(z,\lambda)\varphi | \psi)| \leq Ae^{(1/\beta C^\beta)|\text{Im}z|^\beta} \int_\mathbb{R}^n |f(x,k)| e^{(C\alpha/\alpha)|x|^\alpha} \, dx \, dk. \] (3.11)

Then
\[|(\hat{f}(z,\lambda)\varphi | \psi)| \leq Ae^{(1/\beta C^\beta)|\text{Im}z|^\beta} \int_\mathbb{R}^n e^{a|x|^\alpha} |f(x,k)| e^{(C\alpha/\alpha-a)|x|^\alpha} \, dx \, dk. \] (3.12)

Using this inequality, hypothesis (i), the fact that dk is a normalized measure, and the inequality $a > c/\alpha$, we obtain
\[|(\hat{f}(z,\lambda)\varphi | \psi)| \leq \text{const} e^{(1/\beta C^\beta)|\text{Im}z|^\beta}. \] (3.13)

On the other hand, since $\pi-r,\lambda$ and π,r,λ are equivalent as representations of $M(n)$,
\[\|\hat{f}(-r,\lambda)\|_{HS} = \|\hat{f}(r,\lambda)\|_{HS}. \] (3.14)

Hypothesis (ii) of Theorem 3.2 and the inequality (3.14) imply that the function
\[r \mapsto e^{br}\|\hat{f}(r,\lambda)\|_{HS} \text{ belongs to } L^q(\mathbb{R}), \] (3.15)

thus
\[r \mapsto e^{br}((\hat{f}(r,\lambda)\varphi | \psi)_{L^q(\text{H}^\lambda)}) \text{ belongs to } L^q(\mathbb{R}). \] (3.16)

It is clear from (3.8), (3.13), (3.16) that the function $z \mapsto (\hat{f}(z,\lambda)\varphi,\psi)$ satisfies the hypothesis of Lemma 3.1, and so
\[(\hat{f}(z,\lambda)\varphi | \psi) \equiv 0 \] (3.17)
as a function of z.

Since φ, ψ, λ are arbitrary, then $\hat{f}(r,\lambda) \equiv 0$ for all $r \in \mathbb{R}_+$ and $\lambda \in \hat{U}$. Hence, by the Plancherel formula, we get that $f = 0$ a.e. This completes the proof of the theorem. \(\square\)

In order to prove that our version respects the analogy with Morgan's theorem, let us now establish the sharpness of the condition
\[(a\alpha)^{1/\alpha}(b\beta)^{1/\beta} > (\sin(\pi/2)(\beta-1))^{1/\beta} \] (3.18)
in Theorem 3.2.

Proposition 3.3. Let $p,q \in [1, +\infty]$, $a,b \in]0, +\infty[$, and a,β positive real numbers satisfying $\alpha > 2$ and $1/\alpha + 1/\beta = 1$.

If $(a\alpha)^{1/\alpha}(b\beta)^{1/\beta} \leq (\sin(\pi/2)(\beta-1))^{1/\beta}$, then there are infinitely many measurable functions on $M(n)$ satisfying
\begin{itemize}
 \item[(i)] $e^{a|x|^\alpha} f(x,k) \in L^p(M(n))$,
 \item[(ii)] $e^{br}\|\hat{f}(r,\lambda)\|_{HS} \in L^q(\mathbb{R}_+, r^{n-1} \, dr)$ for any λ fixed in \hat{U}.
\end{itemize}
To prove this proposition, we use the following lemma for a, b, α, β as above.

Lemma 3.4. If $(a\alpha)^{1/\alpha}(b\beta)^{1/\beta} = (\sin(\pi/2)(\beta - 1))^{1/\beta}$, then for all $m \in \mathbb{R}$ and $m' = (2m + d(2 - \alpha))/(2\alpha - 2)$, there exists a nonzero measurable function on $M(n)$ satisfying

(i) $\left(1 + ||x||^{-m}e^{|a||x|^2}\right) f \in L^\infty(M(n))$,

(ii) $\left(1 + r\right)^{-m'}e^{br\beta} \left|\hat{f}(r, \lambda)\right|_{HS} \in L^\infty(\mathbb{R}^+, r^{n-1}dr)$ for any fixed λ in \hat{U}.

Proof. We put for $(x, k) \in M(n)$

$$f(x, k) = -i \int_C z^\nu e^{z^q-qA||x||^2} dz,$$

where $q = a/(\alpha - 2)$, $A^\alpha = (1/4)((\alpha - 2)a)^2$, $\nu = (2m + 4 - \alpha)/(\alpha - 2)$, and C is the path which lies in the half-plane $\text{Re} z > 0$, and goes to infinity, in the directions $\text{arg} z = \pm \theta_0$, $\pi/2q < \theta_0 < \pi/q$.

According to Morgan (see [2, page 190]), for $||x|| \to \infty$, we have

$$f(x, k) \sim (\alpha - 2)\left(\frac{(\alpha - 2)a}{2}\right)^{n/\alpha} \sqrt{\left(\frac{\pi}{\alpha}\right)} ||x||^{m} e^{-a||x||^2}.$$

(3.20)

On the other hand, for λ fixed in \hat{U}, $(\hat{f}(r, \lambda)\varphi \mid \psi)$ is equal to

$$-id_\lambda \int_K \int_{\mathbb{R}^n} \int_C \int_K z^\nu e^{z^q-qA||x||^2} e^{i(r\varphi, k0\alpha)} \langle \varphi(k0k), \psi(k0) \rangle dk0 dz da dk,$$

(3.21)

which by a change of variables $x = k_0^{-1}a$ is equal to

$$-id_\lambda \int_K \int_{\mathbb{R}^n} \int_C \int_K z^\nu e^{z^q-qA||x||^2} e^{i(r\varphi, x)} \langle \varphi(k0k), \psi(k0) \rangle dk0 dz dx dk.$$

(3.22)

Using this equality and Fubini’s theorem, we obtain the following expression for $(\hat{f}(r, \lambda)\varphi \mid \psi)$:

$$-id_\lambda \left(\int_K \langle \varphi(k0k), \psi(k0) \rangle dk0 dk \right) \int_{\mathbb{R}^n} z^\nu e^{z^q-qA||x||^2} e^{i(r\varphi, x)} dx dz.$$

(3.23)

Since

$$\int_{\mathbb{R}^n} e^{-qA||x||^2} e^{i(r\varphi, x)} dx = \left(\frac{\pi}{qAz}\right)^{n/2} e^{-r^2/4aqz},$$

we deduce that

$$(\hat{f}(r, \lambda)\varphi \mid \psi) = -id_\lambda \left(\frac{\pi}{qA} \right)^{n/2} \left(\int_K \langle \varphi(k0k), \psi(k0) \rangle dk0 \right) \int_C z^{y-n/2} e^{z^q-r^2/4aqz} dz.$$

(3.25)

Now, we fix an orthonormal basis $\{e_j; j \in \mathbb{N}\}$ of H_1. Taking into account that $\hat{f}(r, \lambda)$ is a Hilbert–Schmidt operator, we then replace φ by e_i, ψ by e_j and take the sum on $i, j \in \mathbb{N}$ to
Adapting the method of Morgan (see [2, page 191]), we obtain

$$
\| \hat{f}(r, \lambda) \|_{HS} = O(r^{m'} e^{-br\beta})
$$

(3.27)

with $m' = (2m + n(2 - \alpha))/(2\alpha - 2)$. We conclude by using the estimations (3.20) and (3.27).

Proof of Proposition 3.3. It suffices to prove the proposition for

$$(a\alpha)^{1/\alpha} (b\beta)^{1/\beta} = \left(\sin \frac{\pi}{2} (\beta - 1) \right)^{1/\beta},$$

(3.28)

and the rest is a deduction. Let m be a real number verifying

$$
m < \min \left(-\frac{n}{p}, \frac{n(1 - \alpha)}{q} + \frac{n(\alpha - 2)}{2} \right)
$$

(3.29)

with the convention $1/r = 0$ when $r = \infty$. If $m' = (2m + n(2 - \alpha))/(2\alpha - 2)$, then $m' < -n/q$.

For fixed λ in \hat{U}, Lemma 3.4 gives a nonzero measurable function f on $M(n)$ satisfying the inequalities

$$e^{a\|x\|^\alpha} | f(x, k) | \leq \text{const.} (1 + \|x\|)^m,$$

$$e^{br\beta} \| \hat{f}(\lambda) \|_{HS} \leq \text{const.} (1 + r)^{m'}.$$

The conditions $m < -n/p$ and $m' < -n/q$ and the fact that dk is a normalized measure imply that $e^{a\|x\|^\alpha} f$ belongs to $L^p(M(n))$ and $e^{br\beta} \| \hat{f}(\lambda) \|_{HS}$ belongs to $L^q(\mathbb{R}^+, C_n r^{n-1} dr)$ for fixed λ in \hat{U}.

References

[1] G. H. Hardy, “A theorem concerning Fourier transforms,” Journal of the London Mathematical Society, vol. 8, pp. 227–231, 1933.

[2] G. W. Morgan, “A note on Fourier transforms,” Journal of the London Mathematical Society, vol. 9, pp. 187–192, 1934.

[3] A. Beurling, The Collected Works of Arne Beurling. Vol. 1, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989.

[4] A. Beurling, The Collected Works of Arne Beurling. Vol. 2, Contemporary Mathematicians, Birkhäuser, Boston, Mass, USA, 1989.

[5] L. Hörmander, “A uniqueness theorem of Beurling for Fourier transform pairs,” Arkiv för Matematik, vol. 29, no. 2, pp. 237–240, 1991.

[6] S. C. Bagchi and S. K. Ray, “Uncertainty principles like Hardy’s theorem on some Lie groups,” journal of the Australian Mathematical Society. Series A, vol. 65, no. 3, pp. 289–302, 1998.
[7] S. Ben Farah and K. Mokni, “Uncertainty principle and the L^p-L^q-version of Morgan’s theorem on some groups,” Russian Journal of Mathematical Physics, vol. 10, no. 3, pp. 245–260, 2003.

[8] L. Gallardo and K. Trimèche, “Un analogue d’un théorème de Hardy pour la transformation de Dunkl,” Comptes Rendus Mathématique. Académie des Sciences. Paris, vol. 334, no. 10, pp. 849–854, 2002.

[9] E. K. Narayanan and S. K. Ray, “L^p version of Hardy’s theorem on semi-simple Lie groups,” Proceedings of the American Mathematical Society, vol. 130, no. 6, pp. 1859–1866, 2002.

[10] A. Bonami, B. Demange, and P. Jaming, “Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms,” Revista Matemática Iberoamericana, vol. 19, no. 1, pp. 23–55, 2003.

[11] M. Cowling and J. F. Price, “Generalisations of Heisenberg’s inequality,” in Harmonic Analysis (Cortona, 1982), vol. 992 of Lecture Notes in Math., pp. 443–449, Springer, Berlin, Germany, 1983.

[12] R. P. Sarkar and S. Thangavelu, “On theorems of Beurling and Hardy for the Euclidean motion group,” The Tohoku Mathematical Journal. Second Series, vol. 57, no. 3, pp. 335–351, 2005.

[13] G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.

[14] K. I. Gross and R. A. Kunze, “Fourier decompositions of certain representations,” in Symmetric Spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969-1970), W. M. Boothby and G. L. Weiss, Eds., pp. 119–139, Dekker, New York, NY, USA, 1972.

[15] M. Sugiura, Unitary Representations and Harmonic Analysis. An Introduction, Kodansha, Tokyo, Japan, 1975.
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Deadline	Date
Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru