Clinical utility of Next-Generation Sequencing-Based Panel Testing under the Universal Health Care System in Japan: A Retrospective Analysis at a Single University Hospital

Chiaki Inagaki, Daichi Maeda, Kazue Hatake, Yuki Sato, Kae Hashimoto, Daisuke Sakai, Shinichi Yachida, Iwao Nonomura and Taroh Satoh

Figure S1. CONSORT diagram of patients enrolled in the study. MTB; molecular tumor board.
Figure S2. Top 20 frequent genomic alterations with the treatment recommendation.

Figure S3. The operation workflow for evaluating and nominating presumed germline findings from tumor-only sequencing panel.

The workflow is adapted from the proposal of the Japan Agency for Medical Research and Development (AMED) study group concerning the information transmission process in genomic medicine. APC; adenomatous polyposis coli, BRCA1; breast cancer susceptibility gene 1, BRCA2; breast cancer susceptibility gene 2, RB1; retinoblastoma 1, TP53; tumor protein P53
Table S1. Actionable alterations according to cancer type.

Cancer Type	No. of patients with actionable mutation, n	No. of actionable mutation, n	Level of Evidence, n (%)
	Total	168	70 (64.8)
	Colorectal	45	19 (42.4)
	Sarcomas	22	8 (36.4)
	Pancreatic	18	4 (22.2)
	Gastric	13	2 (15.4)
	Ovarian	11	5 (35.5)
	Bile Duct	9	5 (55.6)
	Esophageal	8	4 (50.0)
	Breast	7	6 (85.7)
	Cervical	6	2 (33.3)
	Small intestinal	5	4 (80.0)
	Endometrial	3	3 (100.0)
	Non-Small Cell Lung	3	2 (66.6)
	Brain	3	2 (66.6)
	Melanoma	3	2 (66.6)
	Unknown Primary	3	1 (33.3)
	Hepatocellular Carcinoma	3	1 (33.3)
	Neuroblastoma	3	0 (0)
	Kidney	1	0 (0)
	Prostate	1	0 (0)
	Urinary Tract	1	0 (0)

Note: The table shows the number of patients with actionable mutations and the distribution of actionable mutations by cancer type, along with the level of evidence for each mutation.
Table S2. List of cases that underwent genomically matched treatment beyond standard of care based on MTB recommendation.

Cancer Type	Age	Sex	Targeted gene	LE	Treatment	Institution	Clinical Benefit
Endometrial	62	F	ATM	3B	Clinical trial; ATR inhibitor Clinical trial; JAK inhibitor	Outside hospital	NA
			JAK1			Our hospital	NA
Colorectal	43	F	TMB-H	1	Clinical trial; PD-1 inhibitor	Our hospital	NA
Gastric	68	M	FGFR2 amp	4	Clinical trial; FGFR2 inhibitor	Our hospital	NA
Bile duct	69	M	FGFR2 amp	4	Clinical trial; FGFR2 inhibitor	Our hospital	NA
Bile duct	75	F	ERBB2 amp	3B	Off label; Trastuzumab/Pertuzumab Off label; Trastuzumab deruxtecan	Our hospital	Yes
Colorectal	59	F	ERBB2 amp	2	Off label; Trastuzumab/Pertuzumab	Our hospital	No

amp: amplification, ATM: ataxia telangiectasia mutated, ERBB2: erbB-2 receptor tyrosine-protein kinase, FGFR2: fibroblast growth factor receptor 2, JAK1: janus kinase 1, MTB: molecular tumor board, TMB-H: tumor mutation burden high, LE: level of evidence.

Table S3. Patients’ preference for receiving presumed germline finding.

	Yes (n)	No (n)
Wanting to receive	166	2
presumed germline finding*		
Sharing information	156	8
with family members**		

*For minor patients, answers are obtained from their parents/guardians with patients’ assent. **exclude minor patients.

Table S4. Presumed germline finding gene list used for assessing F1CDx.

Gene	Major Phenotype
APC	FAP
ATM	Breast cancer
BAP1	Malignant Mesothelioma etc.
BRCA1	HBOC
BRCA2	HBOC
BRIP1	Ovarian cancer
CDH1	Diffuse gastric cancer
CDK4	Melanoma
CDKN2A	Melanoma/Pancreatic cancer
CHEK2	Breast cancer
FH	Hereditary Leiomyomatosis and Renal Cell cancer
FLCN	Birt-Hogg-Dube syndrome
MEN1	MEN1
MET	GIST
MLH1	Lynch syndrome
MSH1	Lynch syndrome
MSH6	Lynch syndrome
MUTYH	MAP
NBN Breast cancer
NF1 NF1
NF2 NF2
PALB2 Breast cancer
PMS2 Lynch syndrome
POLD1 Colon cancer
POLE Colon cancer
PTEN PTEN hamartoma
RAD51C Ovarian cancer
RAD51D Ovarian cancer
RB1 Retinoblastoma
RET MEN2
SDHA HPPS
SDHAF2 HPPS
SDHB HPPS
SDHC HPPS
SDHD HPPS
SMAD4 Juvenile Polyposis
STK11 Peutz-Jeghers syndrome
TGFBR2 Loeys-Dietz syndrome
TP53 Li-Fraumeni syndrome
TSC1 Tuberous Sclerosis
TSC2 Tuberous Sclerosis
VHL VHL
WT1 WT1-related Wilms tumor

APC; adenomatous polyposis coli, ATM; ataxia telangiectasia mutated, BAPI; BRCA1 associated protein 1, BRCA1; breast cancer susceptibility gene 1, BRCA2; breast cancer susceptibility gene 2, BRIP1; BRCA1 interacting protein C-terminal helicase 1, CDH1; cadherin-1, CDK4; cyclin dependent kinase 1, CDKN2A; cyclin Dependent Kinase Inhibitor 2A, CHEK2; checkpoint kinase 2, FAP; familial adenomatous polyposis, FH; fumarate hydratase, FLCN; folliculin, GIST; gastrointestinal stromal tumor, HBOC; hereditary breast and ovarian cancer, HPPS; hereditary pheochromocytoma/paraganglioma syndrome, MAP; MUTYH-Associated polyposis, MENI; multiple endocrine neoplasia type1, MEN2; multiple endocrine neoplasia type2, MET; hepatocyte growth factor receptor, MLH1; MutL homolog 1, MSH2; MutS Homolog 2, MSH6; mutS homolog 6, MUTYH; mutY homolog, NBN; nibrin, NF1; neurofibromatosis type1, NF2; neurofibromatosis type2, PALB2; partner and localizer of BRCA2, PMS2; PMS1 homolog 2, POLD1; DNA polymerase delta 1, POLE; DNA polymerase epsilon 1, PTEN; phosphatase and tensin homolog, RAD51C; RAD51 homolog C, RAD51D; RAD51 homolog D, RB1; retinoblastoma 1, RET; rearranged during transfection, SDHA; succinate dehydrogenase complex flavoprotein subunit A, SDHAF2; succinate dehydrogenase complex assembly factor 2, SDHb; succinate dehydrogenase complex subunit B, SDHC; succinate dehydrogenase complex subunit C, SDHD; succinate dehydrogenase complex subunit D, SMAD4; mothers against decapentaplegic homolog 4, STK11; serine/threonine kinase 11, TGFBR2; transforming growth factor beta receptor 2, TP53; tumor protein P53, TSC1; tuberous sclerosis complex 1, TSC2; tuberous sclerosis complex 2, VHL; von Hippel-Lindau, WT1; Wilms’ tumor 1,