ABSTRACT
This study explores the impact of COVID-19 on travellers’ future recreational vehicle, cabin and tent camping decisions extending the construal level theory. Findings suggest that camping consideration due to COVID-19 is significantly related to understanding about time and distance of travel and dependent on pandemic scale.

ARTICLE HISTORY
Received 10 November 2020
Accepted 21 February 2021

KEYWORDS
Coronavirus; COVID-19; camping; nature-based tourism; recreation

Introduction
Camping – an accommodation and outdoor form of recreation – has demonstrated resilience to the effects of COVID-19 providing more options to mitigate socialization than other accommodations (e.g. hotels) (Craig & Karabas, 2021; Craig, 2020). Yet, the extent to which campers will respond to COVID-19 has not been elucidated within a theoretical framework. Thus, we apply the construal level theory (CLT: Trope & Liberman, 2010) to recreational vehicle (RV), cabin and tent camping to answer the questions: (1) Does concrete understanding about time and distance influence camping decisions? And (2) is COVID-19 scale related to the timing and distance of camping decisions?

Construal level theory
The CLT explores individual construal (or understanding) about and proximity to a stimulus (Trope & Liberman, 2010). Construal ranges from concrete to abstract, where concrete construal lies within one’s mental horizon. Abstract construal represents uncertainty about a stimulus (i.e. outside one’s mental horizon), thus concrete construal is more closely related to action regarding a stimulus (e.g. travel during a pandemic). Proximity is one’s psychological reference point towards a stimulus for time (near or far), distance (near or far), social (in-group or outgroup) and hypotheticality (did it occur or not). The focal stimulus is COVID-19 – an actual event with global impact – thus social and hypothetical proximity are not pertinent. Like concrete construal, low proximity is more closely related to action towards a stimulus (e.g. travel soon or nearby). Further, previous tourism studies have demonstrated inverse relationships between proximity and disaster scale (Floyd et al., 2008; van Lent et al., 2017). While construal and proximity are related, they are not interchangeable. Thus, we hypothesize about construal (H1 and H2) and proximity (H3) separately:

H1: Travelers with a concrete construal about when they will travel (time) will be more likely to consider camping.

H2: Travelers with a concrete construal about how far they will travel (distance) will be more likely to consider camping.

CONTACT
Christopher A. Craig christopheralancraig@gmail.com

Supplemental data for this article can be accessed at https://doi.org/10.1080/13683500.2021.1895730.
H3: Proximity (time and distance) will be inversely related to traveler camping consideration based on stimulus scale.

Methods, measures and results

A marketing firm funded by a private tourism business administered a survey from 27 April to 30 April 2020. Though the survey collected data based on the business’ marketing needs, neither firm participated in this study. We do not include identifying information to maintain firm confidentiality. Of the 6953 respondents to an email solicitation, 2685 US participants who travelled for leisure in 2019 completed a survey representing a qualification rate of 38.6% (ME = 2%, CL = 99%). Sampling involved a stratified approach based on US Census regions (see Figure 1).

There are three dependent variables of interest including future RV, cabin and tent camping. The variables were operationalized with the question root ‘Does the pandemic have any impact on your decision to consider [RV, deluxe cabin, tent] camping?’ with response categories from (1) much less likely to consider to (5) much more likely to consider. The two independent variables of interest are time and distance of future travel operationalized with question roots ‘How long will it take for you to go camping once the restrictions in your area are lifted?’ and ‘What is the maximum distance you are willing to travel for a camping trip once the restrictions are lifted?’ Response categories for time ranged from (1) I feel that it is safe to go camping now to (7) more than six months; Response categories for distance ranged from (1) within 25 miles to (8) none, I do not feel that there is a maximum distance. Each response category also included an ‘uncertain’ option. Inherent in the independent variables are construal (low – define a time or distance; high – uncertain about time or distance) and proximity (temporal and spatial).

To test H1 and H2, time and distance were binary recoded where travellers (1) defined a time or distance for travel or (0) chose the uncertain option. Independent sample t-tests were then run for the entire sample (see Table 1). Both hypotheses are supported where high construal (i.e. uncertain) travellers are significantly less likely than low construal travellers to consider RV, cabin or tent camping. Prior to running bi-variate correlation analysis to test H3, high construal travellers (i.e. uncertain) were removed (see Supplemental Table 1 for socio-demographics). The scale was operationalized by retrieving reported COVID-19 cases (Hopkins, 2020) sorted by region, a natural research design commonly used in disaster research (Hein et al., 2019). This analysis revealed over half of the
reported 1,063,800 cases as of 30 April 2020, the last day of the survey, were in the Northeast with cases distributed relatively evenly throughout the other three regions. Thus, the scale was greater in the Northeast where we expected inverse relationships for camping consideration and proximity (i.e. time and distance).

H3 was partially supported (see Table 2). Time was significantly and inversely related to each of the three camping types in the Northeast but not distance. As expected, in the Midwest and South, neither time nor distance were related to any of the camping dependent variables. Failing to reject the null hypothesis, time and distance were both significantly and inversely related to consideration for each camping type in the West region.

Discussion and conclusion

Adaptive COVID-19 measures (e.g. social distancing) adversely impacted psychological and physical well-being, though camping provides an outdoor accommodation and recreation that naturally separates travellers (Craig, 2020). These characteristics led to a rebound of camping, in many cases

| Table 1. Descriptives and independent sample t-tests for time and distance of travel ($n = 2685$). |
|---------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Construal-time | N | M | SD | SE | t | df | p |
| RV Low | 2098 | 3.250 | 1.371 | 0.030 | 7.048 | 999.686 | 0.000 |
| High | 587 | 2.820 | 1.271 | 0.052 | | | |
| Cabin Low | 2098 | 3.290 | 1.376 | 0.030 | 5.701 | 1002.764 | 0.000 |
| High | 587 | 2.940 | 1.271 | 0.052 | | | |
| Tent Low | 2098 | 3.240 | 1.416 | 0.031 | 12.898 | 1071.727 | 0.000 |
| High | 587 | 2.480 | 1.216 | 0.050 | | | |
| Construal-distance | N | M | SD | SE | t | df | p |
| RV Low | 2288 | 3.210 | 1.380 | 0.029 | 5.324 | 592.709 | 0.000 |
| High | 397 | 2.850 | 1.201 | 0.060 | | | |
| Cabin Low | 2288 | 3.260 | 1.377 | 0.029 | 4.919 | 582.506 | 0.000 |
| High | 397 | 2.920 | 1.229 | 0.062 | | | |
| Tent Low | 2288 | 3.170 | 1.427 | 0.030 | 10.175 | 625.491 | 0.000 |
| High | 397 | 2.510 | 1.156 | 0.058 | | | |

| Table 2. Bi-variate correlations ($n = 1969$). |
|---------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Midwest ($n = 337$) | RV | Cabin Tent | Time | Distance |
| RV | – | – | – | – |
| Cabin | 0.531** | – | – | – |
| Tent | 0.391** | 0.345** | – | – |
| Time | 0.013 | 0.072 | –0.081 | – |
| Distance | 0.094 | 0.034 | –0.031 | 0.055 | – |
| Northeast ($n = 337$) | RV | Cabin Tent | Time | Distance |
| RV | – | – | – | – |
| Cabin | 0.604** | – | – | – |
| Tent | 0.549** | 0.525** | – | – |
| Time | –0.130* | –0.140** | –0.191** | – |
| Distance | –0.033 | –0.011 | –0.067 | 0.118* | – |
| South ($n = 661$) | RV | Cabin Tent | Time | Distance |
| RV | – | – | – | – |
| Cabin | 0.567** | – | – | – |
| Tent | 0.505** | 0.464** | – | – |
| Time | –0.034 | –0.045 | –0.071 | – |
| Distance | 0.015 | 0.024 | –0.057 | 0.170** | – |
| West ($n = 534$) | RV | Cabin Tent | Time | Distance |
| RV | – | – | – | – |
| Cabin | 0.606** | – | – | – |
| Tent | 0.520** | 0.452** | – | – |
| Time | –0.123* | –0.097* | –0.130** | – |
| Distance | –0.130** | –0.113** | –0.130** | 0.126** | – |

*p < .05 ** p < .01
resulting in busier than normal camping conditions (NPS, 2021). As the first known study to theoretically explore the effects of COVID-19 on RV, cabin and tent camping, we apply the CLT making two key contributions: (1) we confirm that concrete construal about time and distance is positively associated with camping consideration (Trope & Liberman, 2010); and (2) contrary to previous tourism studies (Floyd et al., 2008; van Lent et al., 2017), our findings indicate the distance (i.e. spatial proximity) did not influence camping decisions where COVID-19 scale was the highest, establishing camping as unique compared to other tourism offerings. Practically speaking, travellers who defined when and how far they were willing to travel were more likely to consider RV, cabin and tent camping as a result of the pandemic, regardless distance to camping location where scale was the highest (i.e. Northeast).

Findings for H1 and H2 are consistent with previous CLT and tourism studies for multiple accommodation types (e.g. hotels, glamping) where concrete understanding about travel (e.g. when and where) is associated with future plans (e.g. Craig & Karabas, 2021; Kim et al., 2016; Trope & Liberman, 2010). However, findings for H3 are counter-intuitive where COVID-19 scale is related to (1) time but not distance in the Northeast and (2) distance and time in the West. We expanded the scope of COVID-19 scale to also include a US Center for Disease Control report (Oster et al., 2020) finding that in March and April, 84% and 75% of the population in the Northeast and West lived in COVID-19 hotspot counties compared to 10% and 8% in the South and Midwest, respectively. Thus, scale is comparable in terms of percentage of population near hotspots but not the number of overall cases in the Northeast and West.

Research about the 9/11 terrorist attacks (Floyd et al., 2008) and the Ebola epidemic in 2014 (van Lent et al., 2017) demonstrates that time and distance of travel is inversely related to disaster stimulus. Initial operationalization of scale in addition to post hoc analysis (Oster et al., 2020) reveals that COVID-19 scale is highest in the Northeast and the West (albeit quantified differently), supporting the inverse relationship between travel timing and future consideration of RV, cabin and tent camping. Consistent with the CLT (Trope & Liberman, 2010), van Lent et al. (2017) report that fear of Ebola is associated with physical distance from an epidemic. Considering the relatively higher percentage of residents close to hotspots in the West (75%) compared to the South (10%) and Midwest (8%), the inverse relationship between physical distance of travel and camping decisions becomes more intuitive. However, the lack of relationship between physical distance in the Northeast region, where the majority of COVID-19 cases are located, is not. One possible explanation for the lack of significant relationships in the region may be that safe recreation and tourism alternatives may require more distance travelled from larger cities (e.g. New York City) than from suburban or rural areas; though, causal research is warranted to provide clarity.

Four recommendations for future research to overcome limitations of this study are to (1) use a longitudinal design that captures camping behaviours instead of plans, (2) capture higher resolution traveller location data like zip-code to better capture COVID-19 scale, (3) capture more details about travellers to provide insights into their travel distance decisions, and (4) use multiple items to operationalize time and distance of travel.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Craig, C. A. (2020). Camping, glamping, and coronavirus in the United States. *Annals of Tourism Research, https://doi.org/10.1016/j.annals.2020.103071*

Craig, C.A., & Karabas, I. (2021). Glamping after the coronavirus pandemic. *Tourism and Hospitality Research, https://doi.org/10.1177/1467358421993864*
Floyd, M. F., Gibson, H., Pennington-Gray, L., & Thapa, B. (2008). The effect of risk perceptions on intentions to travel in the aftermath of September 11, 2001. *Journal of Travel & Tourism Marketing, 15*(2–3), 19–38. https://doi.org/10.1300/J073v15n02_02

Hein, W., Wilson, C., Lee, B., Rajapaksa, D., de Moel, H., Athrukoral, W., & Managi, S. (2019). Climate change and natural disasters: Government mitigation activities and public property damage response. *Land Use Policy, 82*, 436–444. https://doi.org/10.1016/j.landusepol.2018.12.026

Hopkins, J. (2020). *COVID-19 dashboard by the center for systems science and engineering (CSSE) at Johns Hopkins University (JHU)*. https://coronavirus.jhu.edu/map.html

Kim, J., Kim, P. B., Kim, J. E., & Magnini, V. P. (2016). Application of construal-level theory to promotional strategies in the hotel industry. *Journal of Travel Research, 55*(3), 340–352. https://doi.org/10.1177/0047287514550097

National Parks Service (NPS). (2021). *Social science*. https://www.nps.gov/subjects/socialscience/index.htm

Oster, A. M., Kang, G. J., Cha, A. E., Beresovsky, V., Rose, C. E., Rainisch, G., Porter, L., Valverde, E. E., Peterson, E. B., Driscoll, A. K., & Norris, T. (2020). Trends in number and distribution of COVID-19 hotspot counties – United States, March 8–July 15, 2020. *Morbidity and Mortality Weekly Report, 69*(33), 1127–32. https://doi.org/10.15585/mmwr.mm6933e2

Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. *Psychological Review, 117*(2), 440–463. https://doi.org/10.1037/a0018963

van Lent, L. G. G., Sungur, H., Kunneman, F. A., van de Velde, B., & Das, E. (2017). Too far to care? Measuring public attention and fear for Ebola using twitter. *Journal of Medical Internet Research, 19*(6), e193. https://doi.org/10.2196/jmir.7219