Cofactor F_{420}: an expanded view of its distribution, biosynthesis and roles in bacteria and archaea

Rhys Grinter*† and Chris Greening*‡

Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia

*Corresponding author: Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia. E-mail: Chris.greening@monash.edu; Rhys.grinter@monash.edu

One sentence summary: This review provides a comprehensive description of the distribution and biosynthesis of the redox cofactor F_{420}, as well as its enzymology, physiological roles and biotechnological applications.

This review is written in honor of Prof Ralph S. Wolfe (1921-2019), a pioneer of archaeal biology and biochemistry who co-discovered F_{420} in 1971.

Editor: Bernhard Schink

†Rhys Grinter, http://orcid.org/0000-0002-8195-5348
‡Chris Greening, http://orcid.org/0000-0001-7616-0594

ABSTRACT

Many bacteria and archaea produce the redox cofactor F_{420}. F_{420} is structurally similar to the cofactors FAD and FMN but is catalytically more similar to NAD and NADP. These properties allow F_{420} to catalyze challenging redox reactions, including key steps in methanogenesis, antibiotic biosynthesis and xenobiotic biodegradation. In the last 5 years, there has been much progress in understanding its distribution, biosynthesis, role and applications. Whereas F_{420} was previously thought to be confined to Actinobacteria and Euryarchaeota, new evidence indicates it is synthesized across the bacterial and archaeal domains, as a result of extensive horizontal and vertical biosynthetic gene transfer. F_{420} was thought to be synthesized through one biosynthetic pathway; however, recent advances have revealed variants of this pathway and have resolved their key biosynthetic steps. In parallel, new F_{420}-dependent biosynthetic and metabolic processes have been discovered. These advances have enabled the heterologous production of F_{420} and identified enantioselective F_{420}H_{2}-dependent reductases for biocatalysis. New research has also helped resolve how microorganisms use F_{420} to influence human and environmental health, providing opportunities for tuberculosis treatment and methane mitigation. A total of 50 years since its discovery, multiple paradigms associated with F_{420} have shifted, and new F_{420}-dependent organisms and processes continue to be discovered.

Keywords: cofactor 420; redox chemistry; enzymology; cofactor biosynthesis; redox cofactor; cofactor distribution

ABBREVIATIONS

2PL: 2-phospho-L-lactate
3PG: 3-phospho-D-glycerate
Adf: F_{420}-dependent secondary alcohol dehydrogenase
ANME: anaerobic methanotrophic archaea
AOA: ammonium-oxidizing archaea
APDs: 4-alkyl-L-proline derivatives
BGC: biosynthetic gene cluster
CoM: coenzyme M
CoB: coenzyme B
CoB-S-S-CoM: coenzyme B, coenzyme M heterodisulfide
ddn: deazaflavin-dependent nitroreductase
DFTR: F_{420}H_{2}-dependent flavin-containing thioredoxin reductase

Received: 5 January 2021; Accepted: 11 April 2021
INTRODUCTION

Cofactors play a fundamental role in biological chemistry. When bound to enzymes, they provide chemical reactivity and specificity that is otherwise unattainable via protein sidechain and backbone chemistry (Begley 2010). Cofactors that mediate redox reactions often contain heterocyclic ring structures, which can accept and donate electrons at physiologically relevant redox potentials (Eicher, Hauptmann and Speicher 2013). In addition to the important heterocyclic riboflavin cofactors FAD and FMN (Fig. 1A), bacteria and archaea produce the structurally related deazaflavin cofactor, F_{420} (Factor 420; Fig. 1B; Cheeseman, Toms-Wood and Wolfe 1972; Eirich, Vogels and Wolfe 1979; Walsh 1980; Joosten and van Berkel 2007; Ney et al. 2017a). While F_{420} structurally resembles FAD and FMN, it is chemically more similar to the nicotinamide cofactors NAD and NADP (Fig. 1C; Jacobson and Walsh 1984; Walsh 1986; de Poorter, Geerts and Keltjens 2005; Huang et al. 2012; Buckel and Thauer 2013). Like NAD(P), F_{420} functions as a cellular hydride carrier (Hendrickson and Leigh 2008). It is reduced by dedicated F_{420}− reducing dehydrogenases, with low potential electrons provided by catabolic substrates or NADPH (Schauer and Ferry 1986; Purwantini and Daniels 1996; Berk and Thauer 1997; Warkentin et al. 2001; Bashiri et al. 2008; Allegretti et al. 2014). The resulting reduced cofactor, termed F_{420}H_{2}, is then utilized by diverse F_{420}H_{2}-dependent reductases to reduce substrates in both catabolic and anabolic pathways (Wang et al. 2013; Ahmed et al. 2015; Purwantini, Daniels and Mukhopadhyay 2016; Greening et al. 2017; Mascotti et al. 2018; Steiningerova et al. 2020).

F_{420} was first described in methanogenic archaea of the phylum Euryarchaeota (Cheeseman, Toms-Wood and Wolfe 1972; Tzeng, Bryant and Wolfe 1975) by the Wolfe group in 1971. Its production was subsequently shown to be universal among methanogenic Euryarchaeota and widespread among other members of this phylum (Eirich, Vogels and Wolfe 1979; van Beelen, Dijkstra and Vogels 1983; Li and White 1986; De Wit and Eker 1987; Gorris and Voet 1991; Gorris 1994; Purwantini, Gillis and Daniels 1997). F_{420} biosynthesis genes are also encoded by diverse other archaea, including members of the TACK and Asgard archaeal superphyla (Evans et al. 2015; Kerou et al. 2016; Vanwongterghem et al. 2016; Ney et al. 2017a; Jay et al. 2018; Spang et al. 2019; Wang et al. 2019). Independent from its discovery in methanogens, F_{420} was isolated from antibiotic-producing streptomycetes belonging to the phylum Actinobacteria (Miller et al. 1960; McCormick and Morton 1982), and was then shown to be widely produced by members of this phylum, including all members of the genus Mycobacterium (Naraoka et al. 1984; Daniels, Bakhiet and Harmon 1985; Purwantini, Gillis and Daniels 1997). Outside of Actinobacteria, F_{420} biosynthesis genes have been detected in a diverse range of bacteria, and its production has been biochemically confirmed in both Proteobacteria and Chloroflexi (Ney et al. 2017a; Braga et al. 2019, 2020). Until recently, it was thought that the F_{420} biosynthesis pathway was identical in all producing organisms (Ney et al. 2017a). However, recent studies have uncovered variation in the substrates and enzymes utilized for F_{420} biosynthesis between bacteria and archaea, as well as a new variant of the mature cofactor in Proteobacteria (Bashiri et al. 2019; Braga et al. 2019; Grinter et al. 2020). This variability reflects the diversity of the organisms that produce F_{420}, as well as the complex evolutionary history of the biosynthesis pathway, which is characterized by both vertical and horizontal gene transfer events (Weiss et al. 2016; Ney et al. 2017a).

In addition to its role in microbial physiology, F_{420} has garnered interest for its industrial, medical and environmental applications. The cofactor and its analogs have potential in industrial biocatalysis (Taylor, Scott and Grogan 2013; Greening et al. 2017; Bashiri et al. 2019; Drenth, Trajkovic and Fraaije 2019). The low redox potential and obligate hydride transfer chemistry of F_{420} enable reduction of otherwise recalcitrant organic molecules (Greening et al. 2017; Mathew et al. 2018; Martin et al. 2020). Numerous F_{420}-dependent enzymes are present in microbial genomes, providing an inventory for industrial biocatalysis (Selenkut and Haft 2010; Ahmed et al. 2015; Mascotti et al. 2018; Steiningerova et al. 2020). Some progress has been made towards use of F_{420}-dependent enzymes in industrial catalysis, including the first heterologous production of the cofactor (Bashiri et al. 2019; Braga et al. 2019; Ney 2019), though further advances are required. With respect to medical applications, the F_{420}-dependent enzyme deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis activates the recently approved antitubercular drugs pretomanid and delamanid and F_{420} has been shown to play a role in antimicrobial resistance in mycobacterial pathogens (Hasan et al. 2010; Cellitti et al. 2017a).
Figure 1. Structural comparison of F420 with flavins and nicotinamides. (A) Structures of the riboflavin head group and tail groups of the flavins FMN and FAD. (B) Structures of the 5-deazaflavin head group and tail groups of F420 and 3PG-F420. Locations of chemical substitutions between riboflavin and 5-deazaflavin are highlighted. N = 2–9 depending on the microbial species. (C) Structural similarity between the nicotinamides NAD(P)H and the central redox-active portion of F420H2. For F420H2, R represents the phospholactyl and oligoglutamate tail shown in panel B. For NAD(P)H, R2 represents the ribose-5-phosphate of the nicotinamide nucleotide and the adenosine nucleobase as shown in (Bogan and Brenner 2013).

Significant progress has been made in understanding F420 in the five years since this topic was last reviewed comprehensively (Greening et al. 2016). We now have a much-improved understanding of the distribution, biosynthesis and roles of F420. These new findings have challenged several paradigms in the field, including the idea that F420 is restricted to a few microbial lineages and is synthesized through a universal pathway. This review provides a new synthesis of our understanding of F420, by integrating recent and historical literature while outlining remaining knowledge gaps. We also discuss how these fundamental advances facilitate applications, for example heterologous F420 production for biocatalysis.

CHEMISTRY, DISTRIBUTION AND ROLES OF F420

Chemical properties

Like the universal nicotinamide cofactors NAD(P) and flavin cofactors FMN/FAD, the primary role of F420 is to transfer electrons between compounds within the cell (Walsh 1986; Munro and McLean 2013). Chemically, F420 consists of three components: the redox-active isoalloxazine head group F0, a phosphoorganic acid linker and a γ-linked polyglutamate tail of variable length (Fig. 1B; Eirich, Vogels and Wolfe 1978; Braga et al. 2019).

As a 5-deazaflavin moiety, the F0 head group contains three chemical substitutions compared to flavins (Fig. 1A and B) that give F420 unique spectral and electrochemical properties (Fig. 2A and B). The key change is the substitution of the redox-active N-5 atom of the isoalloxazine ring for a carbon. In contrast to flavins, this substitution precludes F420 from forming a stable semiquinone, given unpaired electrons cannot delocalize through a C-5 isoalloxazine ring in low-energy states (O’Brien, 2012; Gurumurthy et al. 2013; Lee et al. 2020). Additionally, methanogenic archaea that reside in environments such as livestock rumen, rice paddies and waste landfill produce a significant portion of global methane emissions via a process that requires F420 (Kirschke et al. 2013; Greening et al. 2019). As such, inhibition of F420 biosynthesis or F420-dependent enzymes in livestock has been proposed as a strategy to reduce global greenhouse gas emissions (Attwood et al. 2011; Patra et al. 2017).
Weinstock and Cheng, 1967, 1970; Edmondson, Barman and Tollin, 1972; Xia, Shen and Zhu, 2015. As a result, F420 is an obligate hydride carrier similar to nicotinamides and does not readily undergo single-electron reactions such as autoxidation in air (Fisher, Spencer and Walsh, 1976; Spencer, Fisher and Walsh, 1976; Jacobson and Walsh, 1984; Walsh, 1986). In addition, when compared to flavins, C-7 and C-8 of F420 are demethylated and C-7 is hydroxylated, further altering the redox properties of the cofactor (Eirich, Vogels and Wolfe, 1978). As a result of these three substitutions, F420 has a much lower standard redox potential (−340 mV) than riboflavin (−210 mV), FAD (−220 mV) or FMN (−190 mV; Thauer, Jungermann and Decker, 1977; Walsh, 1986). This redox potential is modulated by physiological conditions, resulting in a redox potential of −380 mV in hydrogenotrophic methanogens that maintain a 10:1 ratio of reduced to oxidized F420 (Jacobson and Walsh, 1984; de Poorter, Geerts and Keltjens, 2005). This makes F420 well suited to mediate the low potential reactions of anaerobic metabolism, as well as reductions that require a low potential electron donor (Thauer, Jungermann and Decker, 1977; Hartzell et al., 1985).

F420 can exist in a range of protonation states as summarized in Fig. 2. The resonance structure of the isoalloxazine ring of oxidized F420 lowers the pKₐ of the C-7 hydroxyl group to 6.3, favoring its deprotonation under basic conditions. Deprotonation of the F420 C-7 hydroxyl leads to delocalization of the resulting unbonded electron and the formation of a conjugated paraquinoid anion, which is the species that exhibits the classic F420 spectral properties of strong absorbance at 420 nm (Fig. 2A; Walsh, 1980, 1986). In this paraquinoid state, F420⁻ exhibits reduced electrophilicity, making it resistant to reduction via hydride acquisition at its C-5 carbon (de Poorter, Geerts and Keltjens, 2005). Protonation of the F420 C-7 hydroxyl group results in a shift of its absorption maxima to ∼400 nm, as well as a decrease in the overall absorption coefficient (Fig. 2B; Mohamed et al., 2016a). During reduction in biological systems, F420 receives a hydride ion at its C-5 carbon with reductant derived from H₂, glucose-6-phosphate (G6P), NADPH, or other low-potential electron donors, via the action of dedicated F420H₂-dependent reductases (Fig. 2A; Aufhammer et al., 2004; Vit et al., 2014; Le et al., 2015; Oyugi et al., 2018). N-1 of reduced F420 possesses an unbonded electron pair and a net negative charge, facilitating its protonation, hence the F420H₂ nomenclature applied to the reduced compound (Jacobson and Walsh, 1984; Walsh, 1986). The pKₐ for the proton association with N-1 of reduced F420H₂ is 6.9,
meaning that the deprotonated reduced form, $\text{F}_{420}^\text{H}^-$, may be the physiologically relevant state of this cofactor in many F_{420}-dependent reductases, which has mechanistic implications as discussed below (Mohamed et al. 2016a). The changes to the bond structure of the isooxazoline ring of F_{420}H$_2$ lead to a corresponding change in its optical properties (Fig. 2A and C; Eirich, Vogels and Wolfe 1979; Walsh 1986; Mohamed et al. 2016a). F_{420}H$_2$ exhibits weak absorbance at 320 nm, with deprotonation to $\text{F}_{420}^\text{H}^-$ causing minimal further changes to its absorbption profile in the visible spectrum (Fig. 2C; Mohamed et al. 2016a). F_{420}H$_2$ formation interrupts conjugation across the isooxazoline ring and isolates the benzenoid portion of the molecule, preventing deprotonation of the C-7 hydroxyl at physiological pH (pK_a 9.7; Walsh 1980, 1986; Jacobson and Walsh 1984).

F_{420} is a fluorescent molecule, named for the absorbance of its oxidized F_0 head group at 420 nm, with corresponding fluorescence emission at 470 nm mediated by a $\pi \rightarrow \pi^*$ transition upon photon absorption (Cheeseman, Toms-Wood and Wolfe 1972; Mohamed et al. 2016a). F_0 spectral properties are blue-shifted relative to flavin and give F_{420} a characteristic golden-yellow color and blue-green fluorescence (Cheeseman, Toms-Wood and Wolfe 1972; Eirich, Vogels and Wolfe 1978). The blue-shifted fluorescence of F_0 allows it to efficiently transfer photons to flavin via Förster resonance energy transfer (FRET). In addition to its incorporation into F_{420}, F_0 is synthesized independently and its fluorescent properties are exploited by a class of DNA photolyases, which bind F_0 and FMN as cofactors to mediate the reductive cleavage of DNA pyrimidine dimers (Malhotra et al. 1992; Tamada et al. 1997). F_0-utilizing DNA photolyases are present in cyanobacteria, unicellular algae and possibly higher eukaryotes including Drosophila (Mayerl et al. 1990; Sancar 1990; Glas et al. 2009). Like F_0, F_{420} exhibits analogous autofluorescence and these properties can be used to identify F_{420}-producing organisms such as methanogens and mycobacteria by fluorescence microscopy (Doddema and Vogels 1978; Maglica, Özdemir and McKinney 2015; Lambrecht et al. 2017), or sort them by flow cytometry. However, F_{420} is not used by DNA photolyases and its physiological role appears to be restricted to acting as a redox cofactor (Sancar 1990; Kiontke et al. 2014; Greining et al. 2016).

While the F_0 deazaflavin headgroup is solely responsible for F_{420} redox function, the phospho-organic acid linker and polyglutamate tail modulate cofactor functionality by imparting negative charge and mediating interactions with F_{420} dependent enzymes (Fig. 1B; Ney et al. 2017b). Bacterial F_{420}-dependent enzymes from at least two superfamilies form electrostatic interactions with the phosphate group of the F_{420} linker via conserved motifs, enhancing their specificity for the cofactor (Ahmed et al. 2015; Purwantini, Daniels and Mukhopadhyay 2016). The polyglutamate tail of F_{420} varies in maximum length among producing organisms and exists as a population of different tail lengths from one to nine residues (Gorris and Voet 1991; Gorris 1994; Ney et al. 2017a, b). In archaea, the relative abundance of F_{420} with different tail lengths varies depending on culture conditions and growth phase, suggesting tail length may modulate F_{420} function (Peck 1989). Recently we investigated the effect of F_{420} polyglutamate tail length on the function of mycobacterial F_{420}-dependent enzymes (Ney et al. 2017b). F_{420} containing both short (two) and long (five to eight) polyglutamate chains were compatible with these enzymes, though long-chain F_{420} bound these enzymes with six to 10-fold greater affinity. Chain length also significantly modulated the kinetics of the enzymes, with long-chain F_{420} increasing the substrate affinity (lower K_m) but reducing the turnover rate (lower k_{cat}).

Molecular dynamics simulations indicated that F_{420}-dependent enzymes make multiple dynamic electrostatic interactions with the F_{420}-polyglutamate tail via conserved surface residues, likely explaining the observed differences in activity between short and long chain F_{420} (Ney et al. 2017b). These data suggest that variable F_{420} polyglutamate tail length may have evolved to modulate the activity of F_{420}-dependent enzymes. Additionally, these findings have significant implications for the use of F_{420} in industrial applications, where a high catalytic turnover is likely to be desirable.

F_{420}-dependent enzymes

F_{420}-dependent enzymes are broadly classified as F_{420}-reducing dehydrogenases or F_{420}H$_2$-dependent reductases based on the direction of the redox reaction they perform under physiological conditions (Greining et al. 2016). However, due to the relatively similar redox potentials of many F_{420}-substrate pairs, some F_{420}-dependent enzymes are bidirectional depending on the organism and physiological conditions (Eker, Hessels and Meerwaldt 1988; Berk and Thauer 1997; Afting, Hochheimer and Thauer 1998; Hendrickson and Leigh 2008). F_{420}-dependent enzymes can be further divided into two classes based on their mechanism of electron transfer. In the first of these classes, bound F_{420} accepts or donates hydride directly to or from the enzyme substrate. In the second class, bound flavin (FAD or FMN) acts as an intermediate, either accepting a hydride from or donating a hydride to F_{420} (Shima et al. 2000; Ceh et al. 2009; Allegretti et al. 2014; Ahmed et al. 2015; Joseph et al. 2016; Ouygi et al. 2018). F_{420}-dependent oxidoreductases of this second class often contain additional subunits with multiple iron-sulfur (FeS) clusters, which transfer electrons between the enzyme-substrate (i.e. H$_2$ or formate) and F_{420}, via FNM/FAD. In this role, the bound flavin acts as a modulator between the single-electron chemistry of the FeS clusters and the hydride chemistry of F_{420} (Wood, Haydock and Leigh 2003; Seedorf et al. 2007; Vitt et al. 2014).

F_{420}-dependent enzymes are structurally diverse and can be classified into several families, which possess distinct folds and evolutionary histories (Greining et al. 2016). These families are often distributed in both F_{420}-producing archaea and bacteria (Ney et al. 2017a) and have evolved to utilize F_{420} as a cofactor independently (Ahmed et al. 2015; Mascotti et al. 2018; Mascotti, Ayub and Fraaije 2020). F_{420}-dependent enzyme families often include both F_{420}-reducing and F_{420}H$_2$-oxidizing enzymes and are members of broader groups of oxidoreductases that utilize FNM, FAD, NAD(P)H, or heme as cofactors (Ahmed et al. 2015; Mascotti et al. 2018). Some of these groups contain multiple distinct lineages of enzymes that utilize F_{420}, indicating that specificity for the cofactor arose on multiple occasions (Ahmed et al. 2015; Mascotti et al. 2018). The currently identified enzyme families that utilize F_{420} as a cofactor are summarized in Table 1, with functionally characterized F_{420}-dependent dehydrogenases and F_{420}H$_2$-dependent reductases cataloged in Tables 2 and 3 respectively. The structures of representative examples of each family are shown in Figs 3 and 4. We have previously comprehensively reviewed the structure and function of these enzymes (Greining et al. 2016), and so we will not detail these aspects here.

Taxonomic distribution

Until recently F_{420} was thought to be a rare cofactor, taxonomically restricted to the members of archaeal phylum Euryarchaeota and the bacterial phylum Actinobacteria (Ney...
F420-dependent protein family	Acronym	Protein fold	Mechanism of hydride transfer	Phylogenetic distribution	Characterized function(s)	Key references
Flavin/deazaflavin oxidoreductase	FDOR-A, FDOR-B	Split β-barrel	Direct F420-substrate	Actinobacteria, Chloroflexi	F420H2-dependent reduction of diverse substrates (e.g. menaquinone, tetracycline and biliverdin) with promiscuous activity often observed	Cellitti et al. (2012); Lapaíkar et al. (2012); Ahmed et al. (2015); Greening et al. (2017)
Luciferase-like hydride transferase	LLHT	TIM-Barrel	Direct F420-substrate	Broadly found in F420 producing bacteria and archaea	F420-dependent oxidation or F420H2-dependent reduction of diverse substrates (e.g. G6P, mycolic acids and CH2=H4MPT) Hydride transfer between F420/F420H2 and NADP/NADPH	Aufhammer et al. (2004, 2005); Bashiri et al. (2008); Nguyen et al. (2017); Mascotti et al. (2018)
F420-dependent NADPH oxidoreductase	Fno	Rossmann fold	Direct F420-substrate	Broadly found in F420 producing bacteria and archaea		
F420-dependent H4MPT oxidoreductase	Mtd	Rossmann fold	Direct F420-substrate	Euryarchaeota: methanogens, ANME, Archaeoglobales	Hydride transfer between F420/F420H2 and CH=H4MPT/CH2=H4MPT Reduction of dioxigen (O2) to water (2 H2O) to detoxify O2 Couples the reduction/oxidation of F420/F420H2 to that of formate, H2, methanophenazine, quinone or sulfite, via association with structurally diverse protein subunits.	Shim et al. (2000); Hagemeyer et al. (2003a); Warkentin et al. (2005); Ceh et al. (2009); Seedorf et al. (2004, 2007)
F420-dependent bifurcating reductase	FdcC	β-lactamase/flavodoxin fold	Indirect F420-flavin-2Fe-O2	Euryarchaeota: methanogens, ANME, Archaeoglobales		Baron and Ferry (1989); Bäumer et al. (2000); Brüggenmann, Falinski and Deppenmeier (2000); Johnson and Mukhopadhayay (2005, 2008b); Welte and Deppenmeyer (2011a); Allegretti et al. (2014); Vitt et al. (2014)
Deazaflavin-dependent thioredoxin reductase	DFTR	Thioredoxin reductase fold	Indirect F420-flavin-disulfide	Euryarchaeota: Methanococcales	Couples F420H2 oxidation to the reduction of thioredoxin	Susanti, Loganathan and Mukhopadhayay (2016)
F420-dependent bifurcating reductase	HdrA2	HdrA-like fold	Indirect F420-flavin-FeS-substrate	Euryarchaeota: Methanosarcinales	Couples F420H2 oxidation to the reduction of CoM-S-S-CoB and ferredoxin via bifurcation	Yan, Wang and Ferry (2017)
Oxidoreductase and domain	Physiological role	Taxonomic distribution	Family	EC no.	PDB ID	References
--------------------------	-------------------	------------------------	--------	--------	--------	------------
Archaea						
Fdh: F$_{420}$-reducing hydrogenase	Methanogenic growth on H$_2$. Couples oxidation of H$_2$ to the reduction of F$_{420}$. May be physiologically reversible.	All orders of methanogens	FDRC	1.12.98.1	4OMF, 4C10, 3ZFS, 6QGT	Tzeng, Wolfe and Bryant (1975); Jacobson et al. (1982); Muth, Morschel and Klein (1987); Kulkami et al. (2009); Mills et al. (2013); Allegrètii et al. (2014); Vitt et al. (2014); Ilina et al. (2019)
Ffd: F$_{420}$-reducing formate dehydrogenase	Methanogenic growth on formate. Couples oxidation of formate to the reduction of F$_{420}$. May be part of electron bifurcating complex.	Many Eurarchaeota (e.g. Methanobacterales, Methanococcales, Methanopyrales, Methanomicrobiales and Methanocellales)	FDRC	1.2.99.9		
Adf: F$_{420}$-reducing secondary alcohol dehydrogenase	Growth on secondary alcohols. Couples oxidation of secondary alcohols (e.g. isopropanol) to the reduction of F$_{420}$.	Some Eurarchaeota (Methanomicrobiales and Methanocellales)	LLHT	1.1.98.5	1RHC	Widdel and Wolfe (1989); Bleicher and Winter (1991); Aufhammer et al. (2004); Martin et al. (2020)
Bacteria						
Fno: F$_{420}$-reducing NADPH dehydrogenase	Exchanges electrons between NADP and F$_{420}$. F$_{420}$ reduction direction dominant in bacteria, as F$_{420}$ is the secondary cofactor.	Many Actinomycetales (e.g. Streptomyces, Thermobifida, Rhodococcus, Noeadia and Noeadiales), Chloroflexi?, Alphaproteobacteria?, Betaproteobacteria?	Fno	1.5.1.40	5N2I	Eker, Hessels and Meerwaldt (1989); Heiss et al. (2002); Kumar et al. (2017)
Fgd: F$_{420}$-reducing glucose-6-phosphate dehydrogenase	Heterotrophic growth. Couples oxidation of glucose-6-phosphate to the reduction of F$_{420}$ via the pentose phosphate pathway.	Many Actinomycetales (e.g. Mycobacterium, Actinoplanes, Microbacterium and Amycolatopsis), Chloroflexi, Alphaproteobacteria?, Betaproteobacteria?	LLHT	1.1.98.2	3B4Y	Bashiri et al. (2008); Oyugi et al. (2018)
Fsd: F$_{420}$-reducing sugar-6-phosphate dehydrogenase	Heterotrophic growth. Couples oxidation of glucose-, fructose- or mannose-6-phosphate to the reduction of F$_{420}$. Similar to Fgd, with a catalytic preference for glucose-6-phosphate, but an expanded substrate specificity.	Some Actinomycetales (e.g. Noeadiales and Cryptosporangium)	LLHT	1.1.98.2		Mascotti et al. (2018)
fimAD: F$_{420}$-reducing hydroxymycolic acid dehydrogenase	Cell wall biosynthesis. Catalyzes F$_{420}$-dependent oxidation of hydroxymycolic acids to ketomycolic acids.	Few Mycobacterium (primarily pathogenic species)	LLHT			Bashiri et al. (2012); Purwantini and Mukhopadhyay (2013)
Amm4: F$_{420}$-dependent ammosamide dehydrogenase	Putative dehydrogenase involved in primary amide formation in the pyrroloquinoline alkaloid ammosamide. Details of reaction mediated and the product formed are unresolved.	Few Actinomycetales (e.g. Streptomyces and Amycolatopsis)	FDOR-B			Jordan and Moore (2016)
Table 3. Functionally characterized F$_420$H$_2$-dependent reductases. This table updates and expands upon the enzymes previously summarized and reviewed by Greening et al. (2016).

Oxidoreductase and domain	Physiological role	Taxonomic distribution	Family	EC no.	PDB ID	References
Archaea						
Mtd: F$_420$-reducing methylene-H$_4$MPT dehydrogenase	Reduces CH≡H$_4$MPT to CH$_2$=H$_4$MPT with F$_420$H$_2$ during CO$_2$-reducing methanogenesis. Performs the opposite reaction during methylotrophic methanogenesis and anaerobic methane/alkane oxidation.	Various Euryarchaeota including: all orders of methanogens, Archaeoglobales, ANME and Halobacterales; various TACK and Asgard archaea	Mtd	1.5.98.1	1QV9, 1U61, 3IQF, 3IQE	Hartzell et al. (1985); Brümmler et al. (1991a,b); Hagemieier et al. (2003a,b); Geh et al. (2009)
Mer: F$_{230}$H$_2$-dependent methylene-H$_4$MPT reductase	Reduces CH$_2$=H$_4$MPT to CH$_3$-H$_4$MPT with F$_420$H$_2$ during CO$_2$-reducing methanogenesis. Performs the opposite reaction during methylotrophic methanogenesis and anaerobic methane/alkane oxidation.	Various Euryarchaeota including: all orders of methanogens, Archaeoglobales, ANME and Halobacterales; various TACK and Asgard archaea	LLHT	1.5.98.2	1F07, 1EZW, 1Z69	Te Brümmler et al. (1991b); Shima et al. (2000); Aufhammer et al. (2005); Geh et al. (2009)
Fpo: F$_420$H$_2$-dependent methanophenazine reductase	Proton-translocating primary dehydrogenase in respiratory chain transferring electrons from F$_{230}$H$_2$ to heterodisulfide.	Methanosarcinales	FDRC	1.1.98.4		Bäumer et al. (1998); Deppenmeier, Lienard and Gottschalk (1999); Ide, Bäumer and Deppenmeier (1999); Bäumer et al. (2000); Welte and Deppenmeier (2011a); Kunow et al. (1994); Brügmann, Falinski and Deppenmeier (2000); Hallam et al. (2004); Hocking et al. (2014); Seedof et al. (2004,2007)
Fpo: F$_{230}$H$_2$-dependent quinone reductase	Proton-translocating primary dehydrogenase in respiratory chain transferring electrons from F$_{230}$H$_2$ to sulfate.	Archaeoglobales and ANME	FDRC	1.1.98.4		
Fpr: F$_{230}$H$_2$-dependent oxidase	Detoxifies O$_2$ by mediating the four-electron reduction of O$_2$ to H$_2$O with F$_{230}$H$_2$.	Methanobacteria, Methanococcales, Methanomicrobiales and Methanocellales	FprA	1.5.3.22	2OHH, 2OHI, 2OHI	Seedof et al. (2004,2007)
Fsr: F$_{230}$H$_2$-dependent sulfite reductase	Detoxifies sulfite by mediating the six electron reduction of sulfite to sulfide with F$_{230}$H$_2$. Also enables the use of sulfite as an S source.	Methanobacteria and Methanococcales	Mds	1.8.98.3		Johnson and Mukhopadhyay (2005,2008a)
Fno: F$_{230}$H$_2$-dependent NADP$^+$ reductase	Exchanges electrons between NADP$^+$ and F$_{230}$-NADP$^+$ reduction direction dominant in archaea, as NADP$^+$ is the secondary cofactor.	Various Euryarchaeota including: all orders of methanogens, Archaeoglobales and ANME; various TACK and Asgard archaea	Fno	1.5.1.40	1JAY, 1JAX	Tzeng, Wolfe and Bryant (1975); Kunow et al. (1993); Berk and Thauer (1997); Warkentin et al. (2001)
HdrA2B2C2: F$_{230}$H$_2$-dependent, electron-bifurcating, heterodisulfide reductase	The HdrA2 subunit of this complex oxidizes F$_{230}$H$_2$, with subunits HdrB2 and HdrC2 bifurcating the resulting electrons to ferredoxin and CoM-S-S-CoB (heterodisulfide). Thought to mediate energy conservation during acetoclastic methanogenesis.	Methanosarcinales	HdrA2			Yan, Wang and Ferry (2017)
DFTR: F$_{230}$H$_2$-dependent thioredoxin reductase	Recycling of the thioredoxin disulfide through reduction by electrons transferred from F$_{230}$H$_2$ via a low potential FMN and disulfide redox center.	Methanococcales	DFTR	1.8.1.9		Susanti, Loganathan and Mukhopadhyay (2016)
Oxidoreductase and domain	Physiological role	Taxonomic distribution	Family	EC no.	PDB ID	References
---------------------------	-------------------	-----------------------	--------	--------	---------	-------------
Bacteria						
Ddn: F420H2-dependent menaquinone reductase	Reduction of the respiratory cofactor menaquinone for energy conservation and possibly to mitigate redox stress. Also catalyzes the promiscuous activation nitroimidazole prodrugs.	Most Actinomycetales (e.g., Mycobacterium, Streptomyces, Rhodococcus), Chloroflexi?, Methanosarcinales?	FDOR-A1 family.	1.1.98.-	3H96, 4Y9I, 3R5R, 3R57	Taylor et al. (2010); Cellitti et al. (2013); Ahmed et al. (2015); Lee et al. (2020)
Fbr: F420H2-dependent biliverdin reductase	Reduction of the heme degradation product biliverdin to bilirubin. May also reduce mycobillins.	Most Actinomycetales (e.g., Mycobacterium, Streptomyces, Rhodococcus), Chloroflexi?, Methanosarcinales?	FDOR-B3 and FDOR-B4 family.	1.1.98.-	2FY1, 4QVB, 1W9A	Canaan et al. (2005); Biswal et al. (2006); Ahmed et al. (2015, 2016); Mashalidis et al. (2015)
Fts: F420H2-dependent tetracycline synthase	Reduction of dehydrotetracyclines to tetracyclines during streptomycete antibiotic synthesis. Role in mycobacteria unknown.	Most Actinomycetales (e.g., Mycobacterium, Streptomyces, Rhodococcus), Chloroflexi?, Thaumarchaeota?	FDOR-B family.	1.1.98.-	2FY1, 4QVB, 1W9A	Taylor et al. (2010); Wang et al. (2013); Ahmed et al. (2015); Lee et al. (2020)
TpnL: F420H2–dependent dehydropiperidine reductase	Reduction of the dehydropiperidine moiety to piperidine during the synthesis of thiopeptins antibiotics.	Some Actinomycetales (Streptomyces, Amycolatopsis, Micromonospora and Actinoalloteichus)	FDOR-B family.	1.1.98.-		Ichikawa, Bashiri and Kelly (2018)
GupA: F420H2–dependent dihydropyrazine reductase	Reduction of the dihydropyrazine ring to piperzine during the synthesis of guanipiperazines.	Some Actinomycetales (Streptomyces)	FDOR-B family.	1.1.98.-		Shi et al. (2021)
Fht: F420H2-dependent picrate reductase	Reduces 2,4,6-trinitrophenol (picrate) for use as a C and N source through hydride transfer to the nitroaromatic ring.	Few Actinomycetales (Rhodococcus, Nocardia, Nocardioides)	FDOR-A/B family.	1.1.98.-		Ebert, Rieger and Knackmuss (1999); Heiss et al. (2002)
Fps/Adp6: F420H2-dependent 4-alkyl-L-proline derivative reductases	Reduction of 4-alkyl-L-proline derivatives (APDs) in the final step in the biosynthesis of this compound. Different enzymes of this class impart structural diversity by reducing either the endocyclic imine or the exocyclic double bond of APDs.	Some Actinomycetales (Streptomyces, Micrococcus and Streptosporangium)	FDOR-A/B family.	1.1.98.-		Li et al. (2009a,b); Steiningerova et al. (2020)
fPKR: F420H2-dependent phthiodiolone ketoreductase	Reduction of phthiodiolone keto intermediates during the synthesis of phthiocerol dimycocerosates (PDIM), a class of mycobacterial cell surface apolar lipids.	Few Mycobacterium (primarily pathogenic species)	FDOR-A/B family.	1.1.98.-		Purwantini, Daniels and Mudumbai (2019)
LxmJ: F420H2-dependent 2,3-didehydroalanine reductase	Stereospecific reduction of the 2,3-didehydroalanine reductase to D-alanine during class V lanthipeptide biosynthesis.	Few Streptomyces	FDOR-A/B family.	1.1.98.-		Tao et al. (2020)
et al. 2017a). However, recent studies applying genomic, spectroscopic and biochemical analysis have demonstrated that F420 is much more widely distributed among bacteria and archaea than previously thought (Kerou et al. 2016; Lackner et al. 2017; Ney et al. 2017a; Braga et al. 2019, 2020). Prior to these studies, it was assumed that F0 production was more widespread than F420. Yet genomic analysis shows that, in the majority of organisms, the genes required for F0 biosynthesis co-occur with those required for its conversion to F420, indicating that F0 is generally produced as a precursor for F420 biosynthesis, with a possible secondary role as a chromophore in some F420 producers (Kiontke et al. 2014; Ney et al. 2017a). A phylogenetic tree and accompanying table outlining microbial lineages biochemically demonstrated to produce F0 and F420, as well as those predicted to produce these cofactors based on genomic data, is presented in Fig. 5 and Table 4. There is currently no evidence that F420 is synthesized as a redox cofactor by eukaryotes. The distribution of F420 biosynthesis genes among bacteria and archaea appears to be widespread in some lineages (i.e. Euryarchaeota and Actinobacteria; Cheeseman, Toms-Wood and Wolfe 1972; Eirich, Vogels and Wolfe 1979; Lin and White 1986; Bair, Isabelle and Daniels 2001), but variable among others (i.e. TACK lineages of Archaea and Proteobacteria; Kerou et al. 2016; Ney et al. 2017a). F420 biosynthesis genes are highly abundant in metagenomes.
The secondary structural elements are highlighted (blue = α-helix, yellow = β-sheet or coil), FMN or FAD colored red and FeS clusters and metal ions are shown as spheres. (A) FDFO family F_420-dependent flavodiiron oxidase (FprA) from *Methanothermobacter thermautotrophicus* responsible for the reduction of O_2 to H_2O (PDB ID = 2OHJ; Seedorf et al. 2007). (B) FDRC domain-containing F_420-reducing NiFe hydrogenase (Frh) from *Methanothermobacter marburgensis* (PDB ID = 4CI0; Allegretti et al. 2014). (C) F_420-H$_2$-dependent thioredoxin reductase (DFTR) from *M. jannaschii* (homology model; Susanti, Loganathan and Mukhopadhyay 2016).

from diverse soil, marine and some host-associated ecosystems, further indicating that F_420 biosynthesis is a widespread trait (Ney et al. 2017a).

F_420 production and roles within archaea

Within archaea, F_420 production has only been biochemically confirmed in Euryarchaeota and much of our understanding of the physiological roles of the cofactor is derived from these organisms (Jacobson and Walsh 1984; Schmitz et al. 1991; Vaupel and Thauer 1995; Berk and Thauer 1997; Thauer 1998; Brüggemann, Falinski and Deppenmeier 2000). Currently, available genomic and metagenomic datasets show that a complete complement of genes necessary for F_420 biosynthesis is also present in members of two other major archaeal groups, the TACK and Asgard archaea (Kerou et al. 2016; Ney et al. 2017a;
Figure 5. Phylogenetic distribution of F0 and F420 producing organisms. A simplified two-domain tree of life depicted the organisms shown or predicted to produce the 5-deazaflavins F0 or F420. This is based on currently available data from published work (Greening et al. 2016; Ney et al. 2017a), and genomic and metagenomic data in the NCBI database (as of October 2020). Tree topography is based on Hug et. al. (Hug et al. 2016) and Castelle and Banfield (2018), with additional reference to Zhou et al. (2020), Wang et al. (2019) and Momper, Aronson and Amend (2018). ∗ = F420 biosynthesis genes detected only in multiple metagenome-assembled genomes (MAGs) or single-amplified genomes (SAGs) from these archaea and bacteria, rather than genomes derived from pure culture.
Table 4. Confirmed and predicted F_{420}-producing organisms. Experimentally confirmed F_{420} producers are highlighted in yellow, while predicted F_{420} producers with a full complement of F_{420} biosynthesis genes based on analysis of assembled pure culture genomes or multiple MAGs/SAGs, are highlighted in green.

Taxonomy	FbiC	CofH	CofG	CofC/ FbiD	CofD/ FbiA	CofE	FbiE	FbiB
Bacteria								
Actinobacteria								
Actinobacteria								X
Rubrobacteria								-
Thermoleophilia								-
Acidimicrobia								-
Nitriliruptoria								-
Chloroflexi								
Thermomicrobia								-
Ardenticaenae								-
Ktedonobacteriales								-
Caldilineae								-
Anaerolineae								-
Dehalococoidia								-
Chloroflexia								-
SAR202 cluster								X
Proteobacteria								
Alphaproteobacteria	X	X	X	X	X	X	X	X
Betaproteobacteria	X	X	X	X	X	X	X	-
Gammaproteobacteria	X	X	X	X	X	X	X	-
Deltaproteobacteria	X	X	X	X	X	X	X	-
Firmicutes								
Clostridia								-
Bacilli								-
Acidobacteria								-
Candidatus Rokubacteria	-	X	X	X	X	X	X	-
Nitrospinae								X
Candidatus Tectomicrobia	-	X	X	X	X	X	X	-
Candidatus Dormibacteraeota	-	X	X	X	X	X	X	-
Candidatus Hydrogenedentes	-	X	X	X	X	X	X	-
Spirochaetales								X
Verrucomicrobia								X
Gemmatimonadetes								X
Candidatus Methylomirabilis (NC10)	-	X	X	-	X	X	X	-
Candidatus Dadabacteria	-	X	X	X	X	X	X	-
Candidatus Lindowbacteria	-	X	X	X	X	X	X	-
Candidatus Schekmanbacteria	-	X	X					

Roles in Euryarchaeota

Methanogenic Euryarchaeota Methanogens are a diverse group of obligately anaerobic archaea that produce methane as the end product of their energy generation pathways (Liu and Whitman 2008). Methanogens encompass at least seven orders within the Euryarchaeota (Brochier, Forterre and Gribaldo 2004; Bapteste, Brochier and Boucher 2005; Brochier-Armanet, Forterre and Gribaldo 2011; Borrel et al. 2013; Evans et al. 2019), though Adam, Borrel and Gribaldo 2019; Evans et al. 2019; Orsi et al. 2020). The central role of F_{420} in this pathway likely goes some way to explain its widespread production by the archaeal domain. However, the role of F_{420} goes well beyond one-carbon metabolism and the diversity of F_{420}-producing archaea indicates that many additional functions likely remain to be discovered (Kozubal et al. 2013; Kerou et al. 2016; Susanti, Loganathan and Mukhopadhyay 2016; Ney et al. 2017a; Jay et al. 2018).
Table 4. Continued

| Archaea | Euryarchaeota group | | | | | | | |
|--------------------------|---------------------|---|---|---|---|---|---|
| Euryarchaeota | | | | | | | |
| Methanococci | X | X | X | X | X | - | - |
| Methanobacteria | X | X | X | X | X | - | - |
| Methanomicrobia | X | X | X | X | X | - | - |
| Halobacteria | X | X | X | X | X | - | - |
| Archaeoglobi | X | X | X | X | X | - | - |
| Methanopyri | X | X | X | X | X | - | - |
| Methanoratronarchaeia | X | X | X | X | X | - | - |
| Candidatus Methanoliparia| X | X | X | X | X | - | - |
| Candidate Hadesarchaeia | X | X | X | X | X | - | - |
| Candidate Theionarchaeia | X | X | X | X | X | - | - |
| Candidate division MSBL1 | X | X | X | X | X | - | - |
| Candidate Hydrothermarchaeia | X | X | X | X | X | - | - |
| TACK group | | | | | | | |
| Crenarchaeota | | | | | | | |
| Thermoprotei | X | X | X | X | X | X | - |
| Thaumarchaeota | | | | | | | |
| Nitrososphaeria | X | X | X | X | X | X | - |
| Nitrospumilales | X | X | X | X | X | X | - |
| Candidatus Bathyarchaeota| X | X | X | X | X | X | - |
| Candidatus Marsarchaeota | X | X | X | X | X | X | - |
| Candidatus Geothermarchaeota | X | X | X | X | X | X | - |
| Candidatus Verstraetearchaeota | X | X | X | X | X | X | - |
| Candidatus Nezhaarchaeota| - | - | - | - | X | X | - |
| Candidatus Korarchaeota | - | - | - | X | X | X | X |
| Asgard group | | | | | | | |
| Candidatus Lokiarchaeota | X | X | X | X | X | X | X |
| Candidatus Heimdallarchaeota | X | X | X | X | X | X | - |
| Candidatus Helarchaeota | X | X | X | X | X | X | X |
| Candidatus Odinarchaeota | - | - | - | X | X | X | X |
| Candidatus Thorarchaeota | - | - | - | X | X | X | X |

Genome-resolved metagenomics indicates there are potentially methanogenic archaea outside this phylum (vanwonterghem et al. 2016; sorokin et al. 2017; spang and ettema 2017; berghuis et al. 2019). All cultured methanogens synthesize F420, which serves as a central redox cofactor for two of the three major routes of methanogenesis: the CO2-reducing and methylotrophic pathways (Cheeseman, toms-wood and Wolfe 1972; edwards and mcbride 1975; dodderma and vogels 1978; eirich, vogels and Wolfe 1979; van beelen, dijkstra and vogels 1983; dolfing and mulder 1985). As such, it is often present at high concentrations (up to 2.0 \mu mol per g dry weight) in these methanogens (eirich, vogels and Wolfe 1979; isabelle, simpson and daniels 2002).

In the CO2-reducing pathway, CO2 is progressively reduced to methane using electrons derived from exogenous substrates such as H2, formate and less commonly secondary alcohols (tzeng, bryant and Wolfe 1975; widdel and Wolfe 1989; fig. 6). F420H2 donates a hydride for two of these reaction steps, after first being reduced by F420-reducing dehydrogenases utilizing H2 (Frh; jacobsen et al. 1982; muth, morschel and klein 1987; fiebig and friedrich 1989; de poorter, geerts and keljens 2005; allegré et al. 2014), formate (Ffd; schauer and ferry 1986; shuber et al. 1986; baron and ferry 1989), or secondary alcohols (Adf; widdel and Wolfe 1989; bleicher and winter 1991). In this pathway, CO2 is first condensed with the cofactor methanofuran, before being transferred to tetrahydromethanopterin (H4MPT) to form 5-formyltetrahydrodethanopterin (CHO-H4MPT). CHO-H4MPT then undergoes enzymatically mediated intramolecular condensation to form 5,10-methylenetetrahydrodethanopterin (CH≡H4MPT). The CO2-derived methyl group resulting from these reactions is then transferred to coenzyme M (CoM),
Figure 6. F420-dependent reactions of one-carbon metabolism in archaea. F420 is a cofactor involved in key steps in hydrogenotrophic methanogenesis, methylotrophic methanogenesis, anaerobic methanotrophy and anaerobic alkane oxidation in archaea. Hydride transfer reactions involving F420-dependent enzymes are indicated as is the enzyme responsible. F420H2 reduced through the oxidation of formate (Ffd), H2 (Frh), or secondary alcohols (Adf) can be utilized for reactions mediated by Mtd, Mer, or for other cellular processes. Only reactions mediated by F420-dependent enzymes are shown in detail. For a full outline of methanogenesis pathways, refer to the following reviews on the subject (Deppenmeier 2002; Thauer et al. 2008; Timmers et al. 2017; Evans et al. 2019).

before it is substituted by coenzyme B (CoB), forming the heterodisulfide CoB-S-S-CoM and releasing methane (Fig. 6; Thauer 1998). The methyl transfer from CH3-H4MPT to CoM is mediated by the MtrA-H membrane protein complex, which conserves energy through the pumping of sodium ions out of the cell (Welander and Metcalf 2005; Thauer et al. 2008). In addition to the MtrA-H complex, energy is also conserved through respiratory reduction of CoB-S-S-CoM in methanogens with cytochromes (i.e. Methanosarcinales) or by electron bifurcation in methanogens without cytochromes (Thauer et al. 2008; Kaster et al. 2011; Welte and Deppenmeier 2014). In the case of methanogens with cytochromes, F420H2 can serve as a direct electron donor to the respiratory chain; this depends on the activity of F420H2-dependent methanophenazine reductase (Fpo), a 14-subunit complex similar to bacterial complex I that directly pumps protons using the energy released from electron transfer from F420H2 to the membrane-diffusible cofactor methanophenazine (Deppenmeier et al. 1990; Abken and Deppenmeier 1997; Bäumer et al. 1998, 2000; Welte and Deppenmeier 2011b).
F420 has distinct roles in the methylo trophic and acetoclastic methanogenesis pathways. In the methylo trophic metha nogenesis pathway, methyl groups (from methanol, methylated amines and methylated sulfides) are alternatively converted into CH₄ (reductive route) and CO₂ (oxidative route; Fig. 6; Krzycki et al. 1987; Ferry and Kastead 2007). The oxidative route likely occurs through the reverse direction of the CO₂-reducing pathway, with the methyl group first transferred to CoM, then H₂MPT, before being oxidized sequentially by Mer and Mtd, yielding F₂O₂H₂. The reductive route proceeds from CH₃-S-CoM in the same fashion as the CO₂-reducing pathway (Fig. 6; Deppenmeier 2002; Thauer et al. 2008). Methanogens with cytochromes use F₂O₂H₂ generated through the oxidative arm of the methylo trophic pathway as an input to the respiratory chain via Fpo (Welte and Deppenmeier 2011b). Aceto castic methanogenesis is F₂O₂H₂-dependent, producing CO₂ and CH₄ from acetate utilizing a largely distinct set of enzymes to the hydrogenotrophic or methylotrophic pathways (Smith and Mah 1978; Barber et al. 2011). However, despite not being required for this process, F₂O₂H₂ is present in facultatively acetoclastic Methanosarcina when grown solely on acetate and in the obligately acetoclastic genus Methanothrix, indicating that the cofactor has roles in methanogenesis physiology beyond those of methanogenesis (Baresi and Wolfe 1981; Barber et al. 2011; Zhu et al. 2012). In support of this, a potential electron-bifurcating heterodisulfide reductase that uses ferredoxin and F₂O₂H₂ as electron donors has been identified in Methanosarcina acetivorans (Yan, Wang and Ferry 2017).

Dedicated F₂O₂H₂-dependent enzymes have been shown to mediate other diverse reactions in methanogens, as detailed in Tables 2 and 3. These include reduction of the redox cofactors NADP⁺ (F₂O₂H₂-dependent NADP reductase; Fno) and thioredoxin (F₂O₂H₂-dependent flavin-containing thioredoxin reductase; DFTR; Spaans et al. 2015; Susanti, Loganathan and Mukhopadhyay 2016), mobilization of sulfate as a sulfur source (F₂O₂H₂-dependent sulfate reductase; Fsr; Johnson and Mukhopadhyay 2008a) and detoxification of atmospheric O₂ (F₂O₂H₂-dependent oxidase; FprA; Seedorf et al. 2007).

Methane-, ethane- and butane-oxidizing Euryarchaeota Anaerobic methanotrophy is a biogeochemically significant process in which methane of biological or abiotic origin is oxidized to CO₂, with nitrate, sulfate, or transition metal ions as terminal electron acceptors (Bhattarai, Cassarini and Lens 2019). Up to 90% of the methane produced by marine sediment is estimated to be internally recycled by this process, thereby moderating methane release into the atmosphere (Reeburgh 2002; Timmers et al. 2017). Outside of central metabolism, little is known about the role of F₂O₂H₂ in Archaeoglobi. However, A. fulgidus possesses Fno, which is thought to be the sole route for NADP reduction (Kunow et al. 1993; Warkentin et al. 2001). F₂O₂H₂ production has also been experimentally determined in the halophiles Halobacterium and Halococcus, though its physiological role remains undefined (Lin and White 1986; De Wit and Eker 1987).

Roles in other Archaea
TACK lineages of Archaea The TACK lineage represents a major grouping of archaea originally containing the phyla Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota, but now expanded to contain several other recently identified phyla (Guy and Ettema 2011; Spang, Caceres and Ettema 2017; Wang et al. 2019). Diverse members of the TACK group contain a full complement of genes for F₂O₂ (Spang et al. 2012; Zhalnina et al. 2014; Evans et al. 2015; Kerou et al. 2016; Vanwonterghem et al. 2016; Nys et al. 2017a; Jay et al. 2018; Berghuis et al. 2019; Table 4), though no definitive experimental evidence confirming the production and roles of F₂O₂ has been presented. Putative F₂O₂ producing species adopt diverse aerobic and anaerobic lifestyles (Jay et al. 2018; Yu et al. 2018; Berghuis et al. 2019). F₂O₂ production appears to be a common trait in Thaumarchaeota (Tourn et al. 2011; Kozlowski et al. 2016; Ren et al. 2019;
Based on the analysis of metagenome-derived genomes (MAGs) that mediate nitrification in soil and marine ecosystems (Kuyers, Marchant and Kartal 2018). Genomic analysis and fluorescence microscopy indicate both Nitrosospira gargensis and Nitrospira viennensis synthesize F420 in significant quantities (Spang et al. 2012; Kerou et al. 2016), though the presence and role of F420 in this phylum has not been biochemically confirmed. Given Nitrospira are aerobes that cannot perform methano genesis, the cofactor is unlikely to play a role in one-carbon transformations (Kerou et al. 2016; Ren et al. 2019). Proteinomic analysis indicates that F420-dependent oxidoreductases of the luciferase-like hydride transferase (LLHT) and flavin/deazaflavin oxidoreductase (FDOR) families are produced at high levels, suggesting a role for the cofactor in biosynthetic or biodegradative processes (Kerou et al. 2016).

Several other TACK phyla also encode F420 biosynthesis genes. Marsarchaeota and Geaarchaeota, two closely related aerobic chemoheterotrophic phyla recently discovered in thermophilic iron-rich microbial mats, also encode F420 biosynthesis genes and F420-dependent oxidoreductases. Metatranscriptomic analysis indicates that F420-dependent oxidoreductases are highly expressed by Marsarchaeota living in microbial mats. These enzymes were hypothesized to play a role in the metabolism of extracellular sulfonates, although there is limited phylogenetic or biochemical evidence to support this (Jay et al. 2018). The candidate phyla Bathyarchaeota and Ver straearchaeota are also predicted to produce F420 (Table 4; Evans et al. 2015; Vanwonerghem et al. 2016; Zhou et al. 2018). Based on the analysis of metagenome-derived genomes (MAGs) from these species, Ver straearchaeota are predicted to be capable of F420-dependent hydrogenotrophic methanogenesis (Fig. 6), the first example of an archaeon capable of this process to be discovered outside of the Euryarchaeota (Berghuis et al. 2019; Evans et al. 2019). Based on the presence of genes homologous to the methyl-CoM reducing complex Mcr, it was originally suggested that Bathyarchaeota are also capable of methy lotropic methanogenesis (Evans et al. 2015). However, the phylogenetic grouping of the Mcr genes present in Bathyarchaeota indicates that they utilize this complex for F420-dependent anaerobic alkane oxidation (Fig. 6), rather than methanogenesis, similarly to the recently identified candidate genus Syn trophoarchaem and potentially the candidate phylum Hela rchaeota (Laso-Pérez et al. 2016; Chen et al. 2019; Evans et al. 2019; Seitz et al. 2019).

F420 production and roles within bacteria

In bacteria, F420 has been primarily studied in Actinobacteria. It has been biochemically identified in members of the genera *Mycobacterium*, *Streptomyces*, *Rhodococcus*, *Nocardia* and *Nocardioidea* (Daniels, Bakhiet and Harmon 1985; Eker, Hessels and Meerwaldt 1989; Purwantini, Gillis and Daniels 1997; Ebert, Rieger and Knackmuss 1999; Selengut and Haft 2010), the majority of which are soil saprophytes. F420 is not essential for central metabolism in Actinobacteria, though the cofactor is used for a wide range of purposes that provide a growth or survival advantage (Ebert, Rieger and Knackmuss 1999; Hasan et al. 2010; Taylor et al. 2010; Wang et al. 2012; Gurumurthy et al. 2013; Greening et al. 2017; Lee et al. 2020). In addition to Actinobacteria, recent biochemical evidence indicates that F420 is produced by members of the phylum Chloroflexi and the classes Alphaproteobacteria and Betaproteobacteria (Ney et al. 2017a; Braga et al. 2019). Spectroscopic analysis suggests members of the candidate phylum Tectomicrobia also produce the cofactor (Lackner et al. 2017). The genes required for F420 biosynthesis are also encoded in multiple genomes from the cultivated phyla Acidobacteria, Firmicutes and Nitrospinae and the candidate phyla Rokubacteria, Tectomicrobia and Dadabacteria (Wilson et al. 2014; Hug et al. 2016; Becraft et al. 2017; Lackner et al. 2017; Ney et al. 2017a).

Presently, no experimental studies have been performed investigating its biochemical and physiological role in bacterial species outside of Actinobacteria.

Roles in Actinobacteria

Mycobacteria The genetic complement for F420 biosynthesis is present in all cultured environmental and pathogenic mycobacteria. F420 production has been experimentally confirmed in many *Mycobacterium* species including *M. tuberculosis*, *M. smegmatis*, *M. phlei*, *M. bovis* and *M. avium* (Bair, Isabelle and Daniels 2001). Two fast-growing saprophytic members of the genus, *M. smegmatis* and *M. phlei*, produce F420 in large quantities (0.3–0.6 μmol per g dry weight; Isabelle, Simpson and Daniels 2002), indicating it plays a significant role in mycobacterial physiology. In addition, F420 is produced by the obligate pathogens *M. tuberculosis* and *M. leprae* (Purwantini, Gillis and Daniels 1997; Bair, Isabelle and Daniels 2001), which suggests a conserved physiological function for the cofactor among mycobacteria, as well as a role in survival in the host. A further indication of its significance is that all mycobacterial species contain numerous enzymes known or predicted to utilize F420 as a cofactor (Selengut and Haft 2010; Ahmed et al. 2015). *M. smegmatis* is predicted to encode 75 F420-dependent enzymes (30 of FDOR family, 45 of LLHT family), while *M. tuberculosis* is predicted to encode 33 F420-dependent enzymes (15 of FDOR family, 17 of LLHT family; Selengut and Haft 2010; Ahmed et al. 2015). In addition to these known classes of F420-dependent enzymes, further F420-dependent enzymes may be present in mycobacteria, which belong to novel enzyme families and thus cannot be readily identified based on amino acid sequence homology (Kumar 2018). While the function of the majority of F420-dependent enzymes in mycobacteria remains poorly understood, recent phenotypic and biochemical studies have shed light on some...
of their physiological roles (Hasan et al. 2010; Bashiri et al. 2012; Gurumurthy et al. 2013; Ahmed et al. 2015; Jirapanjawat et al. 2016; Purwantini, Daniels and Mukhopadhyay 2016; Lee et al. 2020).

F420 is not essential for mycobacterial growth, with mutants deficient in its synthesis or reduction successfully generated in M. smegmatis (Purwantini and Mukhopadhyay 2009; Taylor et al. 2010; Grinster et al. 2020), M. tuberculosis (Darwin et al. 2003; Manjunatha et al. 2006; Gurumurthy et al. 2013) and M. bovis (Choi, Kendrick and Daniels 2002). However, several studies indicate that F420 contributes to the ability of mycobacteria to persist in response to oxygen deprivation, oxidative stress, nitrosative stress, or treatment with antimicrobial compounds (Purwantini and Mukhopadhyay 2009; Gurumurthy et al. 2013; Jirapanjawat et al. 2016; Lee et al. 2020; Rifat et al. 2020). F420 reduction in the cytoplasm of Mycobacterium appears to be solely mediated by the F420-reducing glucose 6-phosphate dehydrogenase (Fgd), rather than by Fno, which is employed by most other Actinobacteria (Purwantini, Gillis and Daniels 1997; Bashiri et al. 2008; Jirapanjawat et al. 2016). In mycobacteria, Fgd is one of two entry points into the reductive pentose phosphate pathway, in addition to the canonical NADP+ -reducing enzyme. The metabolic coupling of F420 reduction of G6P oxidation represents a significant portion of the flux through the pentose phosphate pathway in mycobacteria, with Fgd activity in cell lysates roughly equivalent to NADP-dependent G6P dehydrogenase (Purwantini, Gillis and Daniels 1997, 1998). G6P levels are 100-fold higher in M. smegmatis than E. coli grown under comparable conditions and may serve as a store of reductant that is mobilized through F420 to combat oxidative stress (Hasan et al. 2010). Consistent with this hypothesis, mycobacteria use G6P when challenged with redox cycling agents (e.g. menadione), rapidly reduce such compounds using F420H2-dependent reductases and are hypersusceptible to challenge in strains unable to make or reduce F420 (Hasan et al. 2010; Gurumurthy et al. 2013; Jirapanjawat et al. 2016). Mycobacteria unable to produce or reduce F420 are also hypersusceptible to nitrosative stress, including from NaN3O2 and NO (Darwin et al. 2003; Purwantini and Mukhopadhyay 2009). In a chemical assay, isolated F420H2 readily reduces NO2-, leading to the suggestion that the cofactor may directly quench reactive nitrogen species (Purwantini and Mukhopadhyay 2009). However, the biochemical mechanism of F420 dependent oxidative and nitrosative stress resistance in Mycobacterium remains to be fully elucidated.

Emerging evidence suggests that F420H2 may also serve as a respiratory electron donor for mycobacteria. The FDOR-A family enzyme deazaflavin nitroreductase (Ddn) from M. tuberculosis, as well as its homologs from M. smegmatis, can reduce menaquinone at physiologically relevant rates (Fig. 7A; Lee et al. 2020). Furthermore, heterologous expression of Ddn stimulated the O2 consumption of isolated M. smegmatis membranes in an F420H2-dependent fashion, indicating it supplies F420 derived reductant to the respiratory chain. An M. tuberculosis mutant lacking this enzyme is impaired in its ability to recover from hypoxia-induced dormancy (Lee et al. 2020). However, more systematic studies are required to unravel the contribution of F420H2 compared to other electron donors in maintaining energy and redox homeostasis in mycobacterial cells.

F420 also plays a role in the biosynthesis of the complex lipids that compose the outer envelope of Mycobacterium, thereby contributing to the virulence and intrinsic antibiotic resistance of the genus (Cox et al. 1999; Dubnau et al. 2000; Jain et al. 2007; Purwantini and Mukhopadhyay 2013; Purwantini, Daniels and Mukhopadhyay 2016). The outer envelope of pathogenic mycobacteria contains ketomycolic acids, which are important virulence factors (Yuan et al. 1998; Dubnau et al. 2000; Sambandan et al. 2013). Ketomycolic acids are produced by the oxidation of hydroxymycolic acids, after their transport to the extracellular side of the cellular membrane by fHMAD, an F420-reducing dehydrogenase of the LLHT family (Fig. 7B; Purwantini and Mukhopadhyay 2013). fHMAD is secreted from the cell via the TAT secretion system in complex with F420. As a dehydrogenase, fHMAD does not require a pool of reduced F420 to mediate ketomycolic acid formation, allowing it to function extracytoplasmically (Bashiri et al. 2012). Phthiocerol dimycolocerosates (PDM) are another family of lipids prevalent in the cell envelope of pathogenic mycobacteria. While likely absent from saprophytic species like M. smegmatis (Bansal-Mutalik and Nikaido 2014), in M. tuberculosis PDM constitutes 46% of the total lipids (Wang et al. 2020), contributing to cell envelope impermeability and phagosomal escape from host cells (Quigley et al. 2017). In M. bovis, conversion of phthiodiolone dimycolocerosates to PDM is dependent on reduced F420H2 provided either enzymatically by Fgd or added exogenously to cell lysates. Based on sequence analysis, it is predicted that f420H2-dependent LLHT (phthiodiolone ketoreductase, fPKR) is responsible for the reduction of phthiodiolone dimycolocerosates to phthiotriol dimycolocerosates, the penultimate step in PDM synthesis (Fig. 7C; Siméone et al. 2007; Purwantini, Daniels and Mukhopadhyay 2016). Suggestive of further roles for F420-dependent enzymes in lipid biosynthesis, proteomic analysis of the FDOR-AA family in mycobacteria indicates these enzymes are membrane-associated and their genetic context suggests they play a role in lipid synthesis (Ahmed et al. 2015). Synthesis of the complex lipid-rich mycobacterial outer envelope requires a high level of biosynthetic complexity (Kolattukudy et al. 1997; Bansal-Mutalik and Nikaido 2014; Marrakchi, Lanéelle and Daffé 2014), which may be provided by F420-dependent enzymes, thereby helping to explain their abundance and diversity in mycobacterial species.

F420H2-dependent reductases also provide a reductive detoxification system in mycobacteria, providing the ability to inactivate a range of exogenous compounds with antimicrobial activity (Jirapanjawat et al. 2016). M. smegmatis ΔfbiC and Δfsgd strains are hypersensitive to a range of antimicrobial compounds, including quinone analogs (e.g. menadione), coumarin derivatives (e.g. methoxsalen), arolymethane dyes (e.g. malachite green) and quinolones (e.g. oxolinic acid; Guerra-Lopez, Daniels and Rawat 2007; Hasan et al. 2010; Jirapanjawat et al. 2016). The intrinsic resistance of wild-type M. smegmatis to these compounds is attributed to the large number of FDORs it uses. Numerous purified FDORs from M. smegmatis have been shown to promiscuously reduce members of the above chemical classes to varying degrees (Jirapanjawat et al. 2016; Greening et al. 2017). In support of the role of FDORs in reductive detoxification, wildtype M. smegmatis can reduce methoxsalen, malachite green and methyl violet added to cultures, but ΔfbiC and Δfsgd strains cannot (Guerra-Lopez, Daniels and Rawat 2007; Jirapanjawat et al. 2016). Importantly, M. smegmatis ΔfbiC and Δfsgd strains only display a modest increase in sensitivity to the clinically utilized antimycobacterials, including rifampicin, isoniazid and clofazimine, suggesting it lacks F420-dependent enzymes capable of reducing them (Jirapanjawat et al. 2016). While some FDORs from M. tuberculosis also promiscuously reduce exogenous compounds (Taylor et al. 2010; Cellitti et al. 2012), it remains to be determined whether F420H2-dependent reductases provide an analogous detoxification system in obligately pathogenic mycobacteria.

Despite our growing understanding of the general role of F420-dependent processes in Mycobacterium, few F420-dependent
enzymes have a defined physiological function (Selengut and Haft 2010; Ahmed et al. 2015). In addition to those discussed above, an FDOR-B enzyme purified from M. tuberculosis is proposed to be an F420H2-dependent biliverdin reductase; the enzyme reductively converts biliverdin to bilirubin, a potent antioxidant that may play a role in resisting host-induced oxidative stress, though it remains to be established if this activity occurs physiologically (Fig. 7D; Biswal et al. 2006; Ahmed et al. 2015). To fully understand the role of F420 in Mycobacterium, further work is required to systematically characterize the phenotypes associated with this cofactor, including its role in resistance to antimicrobials, redox stress and hypoxia. Additionally, while F420 plays a role in mycobacterial physiology, the extent to which the cofactor is required for the long-term persistence of M. tuberculosis in the host is unclear. To reconcile the physiology with biochemical mechanisms, the role of specific F420-dependent enzymes in mediating the reactions behind these phenotypes needs to be determined through genetic and biochemical analysis.

Streptomyces In Streptomyces species, F420 plays an important role as a cofactor for enzymes involved in the synthesis of structurally diverse antibiotics and secondary metabolites (Wang et al. 2013; Ichikawa, Bashiri and Kelly 2018; Steiningerova et al. 2020). F420 plays a role in the biosynthesis of structurally diverse antibiotics and secondary metabolites (Wang et al. 2013; Ichikawa, Bashiri and Kelly 2018; Steiningerova et al. 2020). APDs are biosynthetic precursors for lincosamide and griselimycin antibiotics (Peschke et al. 1995; Lukat et al. 2017), several pyrrolobenzodiazepines (PBDs) with antitumorigenic and antibiotic properties (e.g. tomaymycin, sibiromycin, anthranmycin; Li et al. 2009a, b; Steiningerova et al. 2020), and the quorum-sensing peptide hormaomycin (Höfer et al. 2011). These F420H2-dependent LLHT reductases, named Apd6s, are present in the biosynthetic gene clusters (BGCs) for these secondary metabolites and perform the final reduction step in APD biosynthesis (Fig. 8B; Steiningerova et al. 2020). While it was not formally identified at the time, one of the earliest instances of F420 isolation was from Streptomyces aureofaciens, where it was shown to mediate the final hydrogenation step in chlorotetracycline biosynthesis (McCormick et al. 1958; Miller et al. 1960). More recently, it was shown that an F420H2-dependent FDOR-B family enzyme catalyzes the final reduction of the C5a-C11a double bond of the dehydroxytetracycline precursor of several tetracycline variants (Fig. 8A; Wang et al. 2013). These enzymes are designated OxyR, CtcR and DacO4 in the oxytetracycline/tetracycline, chlorotetracycline and dactylocycline biosynthesis pathways respectively (Wang et al. 2012, 2013).

Figure 7. Physiological reactions proposed to be mediated by F420-dependent enzymes in mycobacteria. The bond oxidized or reduced is highlighted in orange for each substrate, with the enzyme responsible for the reaction indicated. For the reactions shown in A, B and D, F420H2 is generated by Fgd through oxidation of G6P. For the reaction shown in C, F420 oxidizes hydroxymycolic acid to ketomycolic acid at the extracellular face of the cytoplasmic membrane, yielding F420H2.
Figure 8. Reactions proposed to be mediated by F₄₂₀-dependent reductases in streptomycetes. The bond reduced is highlighted in orange for each substrate, with the enzyme responsible for the reaction indicated. F₄₂₀H₂ for the reactions shown is generated by the enzyme Fno via the oxidation of NADPH.
4-substituted Δ1-pyrroline-2-carboxylic acid substrate (Fig. 8B; Steiningerova et al. 2020). These differences in Adp6 specificity lead to variably saturated APD moieties that help mediate the biological function of the final compound that contains them (Steiningerova et al. 2020). Bioinformatic analysis indicates that Adp6 homologs are widely distributed within several bacterial phyla and often associated with BGCs of unknown function, suggesting they mediate the formation of novel APD-containing molecules (Steiningerova et al. 2020).

An F420H2-dependent reductase of the FDOR-B superfamily from Streptomyces chrestomyceticus, designated GupA, forms part of the BGC for guanipiperazines A and B. These compounds are formed through the condensation of two L-tyrosine molecules forming a dihydropyrazine ring that is reduced by GupA to form the piperazine ring found in the final product (Fig. 8C). While the function of these compounds is unknown, homologues of GupA and other components of the guanipiperazine BGC are widespread in Streptomyces species (Shi et al. 2021).

Other F420-dependent enzymes form part of the biosynthetic pathways of diverse posttranslationally modified peptide antibiotics. The BGC of the recently discovered lexapeptide, a class V lanthipeptide produced by Streptomyces rochei, contains the F420H2-dependent LLHT LxmJ that catalyzes the reduction of a lexapeptide dehydroalanine moiety to D-Ala (Fig. 8D). This reduction increases the potency of lexapeptide towards a panel of Gram-positive bacteria (Tao et al. 2020). Additionally, an F420H2-dependent FDOR-B family reductase designated TpnL is present in the BGC of the thiopeptide thiopeptin produced by Streptomyces tetayamensis. TpnL mediates the reduction of an imine within the dehydropyrazine moiety of thiopepin, yielding a modified piperidine-containing product (Fig. 8E; Ichikawa, Bashiri and Kelly 2018). TpnL homologs are present in many known or predicted peptide BGCs and form a distinct clade from other FDOR-B sequences (Ahmed et al. 2015; Ichikawa, Bashiri and Kelly 2018). Also of note is the BGC of the pyrroloquinoline alkaloid ammosamide from Streptomyces sp. CNR-698, which contains the putative F420-dependent FDOR-B protein Amm4. The authors predict Amm4 is an oxidase involved in primary amide biosynthesis, based on the accumulation of an ammosamic acid shunt product in an Δamm4 producing strain (Jordan and Moore 2016).

The chemically diverse nature of the secondary metabolites with biosynthetic pathways containing F420-dependent enzymes, as well as the involvement of the structurally unrelated FDOR and LLHT enzyme families, demonstrates that F420-dependent enzymes are versatile biosynthetic tools for streptomyces. An abundance of BGCs containing predicted F420-dependent enzymes indicates that F420 is likely to be utilized in the biosynthesis of many more secondary metabolites than those currently identified experimentally. For example, putative F420-dependent LLHTs are also encoded in the BGCs for a coronafacoyl phytotoxin produced by the plant pathogen Streptomyces scabiei (Bown et al. 2016), the aminoglycoside kasugamycin produced by Streptomyces kasugaensis (Ikeno et al. 2006), and mitomycin C produced by Streptomyces laeudulaceae (Mao, Varoglu and Sherman 1999). However, further experimentation is required to support the F420-dependence of these enzymes and their specific role in the biosynthesis of these compounds. At odds with our increasing knowledge of the role of F420 in secondary metabolism in streptomyces, virtually nothing is known about its role in primary metabolism, or whether it shares some physiological roles to those described for its fellow actinobacteria genus Mycobacterium.

Other Actinobacteria F420 is widely produced by other Actinobacteria including Rhodococcus, Nocardia and Nocardioides (Daniels, Bakheit and Harmon 1985; Purwantini, Gillis and Daniels 1997; Ebert, Rieger and Knackmuss 1999). Bacteria from these genera utilize F420H2-dependent reductases from the LLHT superfamily to mobilize the explosive picrate (2,4,6-trinitrophenol) and related compounds (e.g., 2,4-dinitrophenol, 2,4-dinitroanisole) for degradation (Ebert, Fischer and Knackmuss 2001; Fida et al. 2014). Due to this capability, several actinobacterial strains such as Rhodococcus opacus and Nocardioidea simplex can grow on picrate as their sole carbon and nitrogen source (Lenke et al. 1992; Ebert, Fischer and Knackmuss 2001). Other than its role in the remediation of nitroaromatic xenobiotics (Ebert, Rieger and Knackmuss 1999; Ebert, Fischer and Knackmuss 2001; Fida et al. 2014), little is known about the physiological roles of F420 in these Actinobacteria. Consistent with its role in picrate degradation, F420 likely contributes to the well-documented ability of soil actinomycetes to biodegrade a wide variety of complex organic compounds, including polycyclic aromatic hydrocarbons (McCarthy and Williams 1992; Schrijver and Mot 1999).

Roles in other bacteria

The production of F420 by bacteria outside of the phylum actinobacteria was only recently experimentally verified (Ney et al. 2017a; Braga et al. 2019, 2020). As such, no F420H2-dependent reductases or F420-reducing dehydrogenases have been investigated experimentally in these bacteria. However, based on the levels of F420 production and analysis of the genomes of F420-producing bacteria, some inferences can be made regarding the role of F420 in these species. Of the species shown experimentally to produce F420, Thermomicrobium roseum (Chloroflexi) and Paraburkholderia rhizoxinica (Betaproteobacteria) are abundant producers, suggesting F420 plays a significant role in the physiology of these organisms (Braga et al. 2019). In contrast, F420 was only detected in Oligotropha carboxidovorans and Paracoccus denitrificans in trace quantities, indicating a minor or niche-specific role for the cofactor in these Alphaproteobacteria (Ney et al. 2017a). F420 producers within Betaproteobacteria and Tectomicrobia only encode Fno among known F420-reducing dehydrogenases, suggesting that NADPH is the major or only compound utilized for F420 reduction in these bacteria (Ney et al. 2017a). Predicted alphaproteobacterial F420-producers encode Fgd in addition to Fno, suggesting that G6P is also utilized for F420 reduction. In Chloroflexi, Fgd is the most prevalent F420-reducing dehydrogenase, but Adf and Fno homologs are also present, suggesting diverse substrates enable F420 reduction (Ney et al. 2017a).

The ecological niche and physiology of recently identified F420 producing bacteria suggest the cofactor is employed in diverse roles, which are at least partially analogous to those identified in Actinobacteria. The phylum Tectomicrobia (Candidatus Entotheonella spp.) includes uncultured bacteria that produce diverse bioactive secondary metabolites associated with marine sponges (Lackner et al. 2017). These bacteria possess large genomes (>9 Mbp) and are predicted to be F420 producers, given they are autofluorescent, possess a full set of F420 biosynthetic genes (Table 4) and encode multiple putative F420H2-dependent reductases (Wilson et al. 2014; Lackner et al. 2017; Ney et al. 2017a; Mori et al. 2018). F420 likely plays a role in secondary metabolite biosynthesis in Tectomicrobia similar to that of streptomyces discussed above. Chloroflexi are one of the dominant bacterial phyla found in soils and are reputed for their biodegradative capacities (Björnsson et al. 2002; Speirs et al. 2019). They generally encode numerous F420H2-dependent
reductases (Ney et al. 2017a), suggesting members of the phylum may use F_{420} as a cofactor for biodegradative reductases in a similar manner to $M. \text{sme}$gmat is or $N. \text{ocardia}$ spp. The betaproteobacterial fugal endosymbiont $P. \text{rhi}$zoxina produces a chemically distinct F_{420} variant, $3PG-$ F_{420} (see section 3.1.2). In $P. \text{rhi}$zoxina, $3PG-$ F_{420} production is greatly enhanced when growing inside its fugal syndrome, suggesting the cofactor facilitates symbiosis. Based on the presence of genes encoding a putative ABC transporter adjacent to the $3PG-$ F_{420} BCG, $P. \text{rhi}$zoxina possibly exports the cofactor to be used by its fungal partner (Braga et al. 2019). Interestingly, the genome of $P. \text{rhi}$zoxina lacks genes with homology to known F_{420}-dependent enzymes, suggesting that distinct mechanisms of cofactor utilization and cycling occur in this bacterium (Braga et al. 2019).

Experimental work is required to establish the role of F_{420} in these bacteria. Metagenomic analysis indicates that F_{420} producers are prevalent among aerobic soil bacteria (Ney et al. 2017a), suggesting it is widely used for its versatile biosynthetic and biodegradative properties. As a result, F_{420}-dependent enzymes may directly affect the microbial and chemical composition of soils, by providing bacteria with the ability to both synthesize and degrade antimicrobial compounds, in an ongoing arms race.

THE MECHANISM AND EVOLUTION OF F_{420} BIOSYNTHESIS

Diversity within the F_{420} biosynthetic pathway

Figure 9 presents the steps in the F_{420} biosynthesis pathway and the enzymes that mediate them. Consistent with the initial discovery of F_{420} in methanogenic Euryarchaeota (Cheeseman, Toms-Wood and Wolfe 1972), initial investigation of the structure and biosynthesis of the cofactor was performed in these organisms (Eirich, Vogels and Wolfe 1978; Jacobson and Walsh 1984; Li et al. 2003a). The F_{420} biosynthesis pathway in methanogenic Euryarchaeota was established and was assumed to be universal to all F_{420} producing organisms (Greening et al. 2016; Bashiri et al. 2019). However, recent investigation of F_{420} biosynthesis in bacteria has revealed that divergent pathways for F_{420} biosynthesis are employed in different organisms. These differences originate from variation in the substrate compound utilized to link the F_{0} head group of F_{420} to its polyglutamate tail (Bashiri et al. 2019; Braga et al. 2019; Grinter et al. 2020). Based on current experimental evidence, the F_{420} biosynthesis pathway occurs via three variant pathways, found in Euryarchaeota, Actinobacteria and Proteobacteria, respectively (Fig. 9). However, future investigation may reveal further diversity in the F_{420} biosynthesis pathway.

A note on nomenclature

Different nomenclature has been applied to F_{420} biosynthetic enzymes from archaea and bacteria. This reflects the incremental nature of the advance in our understanding of F_{420} biosynthesis, as well as the distant relationships between these domains. However, the continued use of different nomenclature is now justified with the recent discovery that F_{420} is synthesized through distinct routes in these domains. Nevertheless, the nomenclature has become increasingly convoluted in light of these discoveries, together with recent evidence demonstrating multiple horizontal gene transfer of F_{420} biosynthetic genes and gene fusion events. For simplicity, in this review, we will generally refer to F_{420} biosynthesis proteins mediating the archaenal pathway with the prefix ‘CoF’ and those mediating the bacterial pathway with the prefix ‘Fbi’.

In methanogens, the enzymes CoF G and CoFH mediate F_{0} biosynthesis, CoFC and CoFD mediate F_{420}-0 biosynthesis, and CoFE is responsible for the formation of mature F_{420} via the addition of a γ-linked polyglutamate tail. In mycobacteria, the prefix ‘Fbi’ is utilized, with a different lettering system, where the following enzymes are analogous: FbiC is derived from a fusion of CoFC and CoFH, FbiD and FbiA are similar to CoFC and CoFD respectively, and FbiE is derived from a fusion of CoFE and the nitroreductase (NTR) superfamily protein FbiE. It should be noted that some bacteria possess individual enzymes homologous to CoFC, CoFH, or CoFE of archaeal F420 producers; we refer to these by the ‘CoF’ designation, as they are distinct from the corresponding ‘Fbi’ fusion enzymes. Likewise, at least some archaea possess some homologs of ‘Fbi’ fusion enzymes. Finally, the FbiA and FbiD variants from some Betaproteobacteria produce the chemically distinct variant $3PG-$ F_{420} (Braga et al. 2019). The subscript ‘3PC’ is applied to these enzymes.

Comparison of pathways

In the F_{420} biosynthetic pathway of Eurarchaeota, 2-phospho-α-L-lactate (2PL) links the F_{0} head group of F_{420} to its polyglutamate tail (Fig. 9; Grochowski, Xu and White 2008). It has been proposed that 2PL is synthesized by the unidentifed lactate kinase CoB, using lactate produced from L-lactaldehyde (Graupner and White 2001; Graupner, Xu and White 2002; Grochowski, Xu and White 2006). 2PL is conjugated to F_{0} via the action of the enzymes CoFC and CoFD to create F_{420}-0 (i.e. F_{420} with no glutamate tail). CoFC activates 2PL through condensation with GTP to form the intermediate compound lactyl-diphospho-α-guanosine (LPPG; Grochowski, Xu and White 2008). CoFD subsequently transfers 2PL from LPPG to F_{0} to form F_{420}-0 (Graupner, Xu and White 2002). The activity of CoFC is contingent on the presence of CoFD, suggesting that these enzymes form a catalytic complex to regulate the production to the LPPG intermediate, which is unstable (Bashiri et al. 2019; Braga et al. 2019). F_{420}-0 is then converted to mature F_{420} via the addition of a variable-length γ-linked glutamate tail by the enzyme CoFE (Li et al. 2003a; Nocek et al. 2007). In archaea, the length of the glutamate tail varies from 4 to 5 in methanogens with cytochromes or 2-3 in those without (Gorris 1994). In some Eurarchaeota, an additional terminal α-linked glutamate is added by the α-L-glutamate ligase CoF (Li et al. 2003b).

In mycobacteria, the central metabolic intermediate phosphoenolpyruvate (PEP), rather than 2PL, is utilized as the precursor for F_{420} biosynthesis in this genus (Bashiri et al. 2019; Grinter et al. 2020). The incorporation of PEP into F_{420} follows an analogous route to that of 2PL in archaea, with the enzymes FbiD and FbiA (homologs of CoFC and CoFD respectively) first converting PEP into the intermediate enolpyruyl-diphospho-α-guanosine (EPGG) and then condensing it with F_{0} to form dehydro-F_{420}-0 (DH-F_{420}-0), in which the enol group of PEP remains oxidized (Fig. 9; Grinter et al. 2020). DH-F_{420}-0 is then modified to form mature F_{420} by the dual-functional enzyme FbiE. FbiE possesses an N-terminal domain homologous to CoF, which adds a variable-length γ-linked polyglutamate tail of 2–8 residues (Bashiri et al. 2019). The C-terminal domain of FbiB (FbiB$_{\text{term}}$) reduces the enol group of DH-F_{420} Converting it into mature F_{420} (Bashiri et al. 2016, 2019). The reduction of DH-F_{420} improves the stability of the molecule by removing the high-energy phosphoenol bond (Braga et al. 2020). The Chloroflexi strain $T. \text{roseum}$ utilizes an independent homolog of FbiB$_{\text{term}}$ to reduce DH-F_{420}, herein referred to as FbiE (Braga et al. 2020). Genomic analysis indicates that independent FbiE homologs are present in the
Figure 9. Diverse routes to F_{420} biosynthesis employed by bacteria and archaea. 1 = classical archaean pathway (Euryarchaeota), 2 = bacterial pathway a (Actinobacteria, Chloroflexi), 3 = bacterial pathway b (Betaproteobacteria). The substrates and mechanisms for F_{420} biosynthesis are shared between all identified pathways. Abbreviated compounds are as follows: PEP, phosphoenolpyruvate; 2PL, 2-phospho-L-lactate; 3PG, 3-phosphoglycerate; EPPG, enolpyruvyl-diphospho-5'-guanosine; LPPG, lactyl-diphospho-5'-guanosine; GPPG, 3-guanosine-5'-disphospho-D-glycerate. The enzymes involved in each biosynthesis step are indicated.
genomes of several predicted bacterial and archaeal F420 producers, and putative F420-producing members of the archaeal phylum Lokiarchaeota possess a dual functional FbiB homolog (Braga et al. 2020), suggesting that diverse bacteria and archaea also employ a PEP-dependent pathway for F420 biosynthesis (Fig. 10B).

A third route for F420 biosynthesis is employed by the betaproteobacterium P. rhizoxinica, in which 3-phospho-D-glycerate (3PG) is utilized in place of 2PL or PEP for F420 biosynthesis. This leads to the formation of the chemically distinct species 3PG-F420 and depends on the action of FbiD3PG and FbiA3PG, homologs of CofC/FbiD and CofD/FbiA respectively (Fig. 9; Braga et al. 2019). The specificity for 3PG over PEP or 2PL appears to originate from FbiD3PG, which preferentially mediates the incorporation of 3PG into 3-guanosine-5′-disphospho-D-glycerate (GPPG; Braga et al. 2019). A homolog of CofE then adds a variable-length γ-linked polyglutamate tail of 1–6 residues to form mature 3PG-F420 (Braga et al. 2019).

The selective pressures underlying the rerouting of the F420 biosynthesis pathways remain unclear. Considering that CofC/FbiD/FbiD3PG evolved from a common F420-producing ancestral enzyme (Ney et al. 2017a; Bashiri et al. 2019; Braga et al. 2019), a substrate switch must have occurred in at least two lineages to yield the three observed biosynthesis pathways. This switch likely occurred to reconcile the precursor utilized for F420 production with its presence or level of availability in the metabolite pool of the F420-producing organism.

Structural and biochemical basis

Recently, considerable progress has been made in understanding F420 biosynthesis in both bacteria and archaea. Except for CofG/CofH and FbiC, crystal structures have been determined for all enzymes in the F420 biosynthetic pathway, with biochemical analysis revealing considerable detail on the catalytic mechanisms employed during F420 biosynthesis.

Synthesis of F0 by CofG/CofH and FbiC

In all studied F420 producing organisms, F0 is synthesized through a universal mechanism involving two SAM-radical domain enzymes (Decamps et al. 2012). In archaea and some bacteria, these domains exist as two separate proteins CofG and CofH, while in Actinobacteria and Proteobacteria they are present in the single fusion protein FbiC (Ney et al. 2017a; Bashiri et al. 2019; Braga et al. 2019). No structures for these enzymes have been determined to date, likely due to the difficulty of working with these oxygen-sensitive proteins (Imlay 2006; Philmus et al. 2015). However, mass spectrometric analysis of CofG and CofH reaction products combined with substrate deuteration has provided considerable insight into the catalytic mechanism behind F0 synthesis (Decamps et al. 2012; Philmus et al. 2015). F0 is formed by the condensation of L-tyrosine with pyrimidine ribityldiaminouracil (5-amino-6-ribitylamino-2,4-[1H,3H]-pyrimidinedione), which is also a substrate for riboflavin biosynthesis (Bacher et al. 2000; Decamps et al. 2012). In the first step of this two-step reaction, the 5′-deoxyadenosyl radical generated by CofH abstracts a hydrogen atom from the tyrosine amine, which causes the tyrosine to fragment to form a ψ-hydroxybenzyl radical. This radical then undergoes addition to the double bond of pyrimidine ribityldiaminouracil, with this compound subsequently oxidized by the [4Fe4S] of CofH to yield an intermediate product (Fig. 11B). This product is then accepted by CofG, where the 5′-deoxyadenosyl radical formed by this enzyme extracts a further hydrogen, creating a radical intermediate that undergoes cyclization followed by oxidation by the [4Fe4S] cluster of CofG to yield F0 (Fig. 11C; Philmus et al. 2015). Despite existing as a fusion protein, the two domains of FbiC appear to function independently, with diffusion rather than direct substrate transfer responsible for the transfer of the product of the FbiC C-terminal domain to the N-terminal domain to complete F0 biosynthesis (Philmus et al. 2015).

Synthesis of LPPG, EPPG and GPPG by CofC, FbiD and FbiD3PG

The F0 is linked to the polyglutamate tail of mature F420 via either a 2PL for F420 or 3PG for 3PG-F420 (Graupner, Xu and White 2002; Braga et al. 2019; Grinter et al. 2020). In order to activate them for condensation with F0, 2PL, PEP or 3PG are condensed with GTP to form LPPG, EPPG and GPPG, respectively (Fig. 9). Despite the differences in their preferred substrate CofC, FbiD and FbiD3PG are homologs thought to share a common catalytic mechanism (Bashiri et al. 2019; Braga et al. 2019). The crystal structure of Apo-CofC from Methanosarcina mazei (PDB ID: 2I5E) was first determined by a structural genomics consortium (2006), demonstrating that the enzyme possesses a nucleotide-binding Rossmann fold, though the lack of substrate in this crystal structure limited the insight of the catalytic mechanism provided by this structure. Recently, the structure of FbiD from M. tuberculosis was determined in complex with PEP and two catalytic Mg2+ ions (Fig. 12A; Bashiri et al. 2019). Based on this structure, key substrate-binding residues were identified (Fig. 12C; Bashiri et al. 2019). Further, structural comparison between FbiD and the distantly related bifunctional acetyltransferase/uridylyltransferase GlmU reveals a putative GTP-binding pocket (Fig. 12B). This pocket is occluded in the crystal structure of FbiD, which is consistent with the observation that neither purified CofC nor FbiD are active in the absence of their partner enzyme CofD and FbiA (Bashiri et al. 2019; Braga et al. 2019). This suggests that conformational activation of CofC/FbiD occurs in the presence of CofD/FbiA, likely to prevent the futile production of an unstable product (Bashiri et al. 2019).

Synthesis of F420-O, DH-F420-O and 3PG-F420-O by CofD, FbiA and FbiA3PG

CofD, FbiA and FbiA3PG are homologous enzymes that mediate the transfer of 2PL, PEP or 3PG from the diphospho-5′-guanosine intermediate produced by CofC/FbiD to F0. This results in the formation of the intermediates F420-O, DH-F420-O and 3PG-F420-O, with no glutamate moieties (Graupner, Xu and White 2002). The crystal structures of CofD from Methanosarcina mazei and FbiA from M. smegmatis have been determined in the presence of their substrates (Forouhar et al. 2008; Grinter et al. 2020). These enzymes require a divalent cation for activation, which was absent from the crystal structure of CofD, meaning the catalytically important portions of the F0 and GDP substrates were disregarded in this structure (Forouhar et al. 2008). However, we recently determined the structure of FbiA in complex with F0, GDP and Ca2+, providing a clear picture of the catalytic complex of this enzyme (Fig. 13A; Grinter et al. 2020). The catalytic metal ion represented by Ca2+ in this structure is coordinated by aspartates 45 and 57. Aspartate 46 in CofD, which is equivalent to aspartate 57 in FbiA, is important for catalytic activity, suggesting it is also involved in catalytic metal ion coordination in this enzyme (Forouhar et al. 2008). In addition to the two aspartate residues, the catalytic Ca2+ ion is further coordinated by a H2O molecule, the terminal hydroxyl of F0 and the β-phosphate of EPPG (Fig. 13B). This coordination positions the EPPG β-phosphate for nucleophilic attack by the F0 terminal hydroxyl, leading to the transfer of PEP and the creation of the DH-F420-O product (Grinter et al. 2020).
To mediate this nucleophilic attack, FO requires activation, with likely candidate bases being the carboxyl or β-phosphate group of EPPG. A proposed reaction mechanism based on proton subtraction by the former is presented in Fig. 13C.

Addition of the poly-glutamate tail to F420 by CofE and FbiBterm

CofE and the N-terminal domain of FbiB (FbiBterm) are non-ribosomal peptide synthases that perform the final step in F420 biosynthesis, adding a variable number of γ-linked glutamate residues to form the F420 tail. The crystal structure of CofE from *A. fulgidus* revealed that the protein possesses a novel fold, consisting of an intertwined butterfly-shaped dimer (Fig. 14A; Nocek et al. 2007). The GDP and catalytic Mn$^{2+}$ ion bound version of this structure revealed the location of a Y-shaped active site with grooves hypothesized to be responsible for binding F420-0 and L-glutamate in addition to GTP (Fig. 14B; Nocek et al. 2007). A proposed catalytic mechanism for CofE and FbiBterm, based on that of the nucleotide-dependent tetrahydrofolate:L-glutamate γ-ligase (FPGS; Sheng et al. 2000) and UDP-N-acetylmuramoyl-L-alanine:glutamate ligase (MurD; Bertrand et al. 1997), involves
the activation of the terminal carboxyl of F420-0 by the addition of a phosphate group from GTP. Subsequently, the carbonyl carbon of the resulting acyl phosphate undergoes a nucleophilic attack by the glutamate amine, leading to the formation of a tetrahedral intermediate, which breaks down to the final F420 product and inorganic phosphate (Fig. 14C; Forouhar et al. 2008). Biochemical and genetic evidence indicates that CofE and FbiB_term are responsible for the addition of both the initial glutamate to F0 and extension of the poly-glutamate chain (Bashiri et al. 2016, 2019). Further research is required to resolve how the active site of these enzymes can perform both the initial and subsequent glutamate additions.

Reduction of DH-F420 by FbiB_term and FbiE

The reduction of DH-F420 is performed by FbiB_term in mycobacteria or FbiE in Chloroflexi, homologs that belong to the FMN-dependent NTR superfamily. The crystal structure of the isolated FbiB_term from mycobacteria has been determined, revealing an intertwined dimer, in complex with either FMN or F420, in distinct binding sites (Fig 15A; Bashiri et al. 2016). The relative positions of FMN and DH-F420-0 were modeled based on these structures, providing a plausible active site and catalytic mechanism for this enzyme (Bashiri et al. 2019), where N-5 of FMNH2 is ideally positioned for hydride transfer to the DH-F420-0 enol group (Fig. 15B).

Figure 11. Production of the deazaflavin F0 is catalyzed by dual SAM-radical domains. (A) Structural model of the SAM radical domains that mediate F0 synthesis, consisting of the two separate proteins CofG and CofH (in archaea and some bacteria) or a single fusion protein FbiC (in bacteria and eukaryotes). Structural models constructed based on homology modeling using Phyre2 based on the structure of MqnE from Pedobacter heparinus (PDB ID = 6XI9; Kelley et al. 2015). (B) A summary of the proposed reaction performed by CofH. (C) A summary of the proposed reaction performed by CofG. For the full reaction scheme summarized in panels B and C refer to Philmus et al. (2015). R = The F0 ribose tail as shown in Fig. 9.
Evolution of the F420 biosynthesis pathway

While it is now clear that F420 is widely distributed in bacteria and archaea, it is not universally distributed like redox cofactors FMN/FAD and NAD/NADP (Daniels, Bakhiet and Harmon 1985; Ney et al. 2017a; Braga et al. 2019, 2020). This distribution poses the question of how F420 biosynthesis originated and how the genes responsible were disseminated across bacteria and archaea. It has been proposed that the capacity to synthesize F420 was present in the last universal common ancestor (LUCA) and was selectively retained by a subset of bacterial and archaeal lineages (Weiss et al. 2016). However, current evidence suggests that the F420 biosynthesis pathway evolved in a stepwise fashion in archaea and bacteria, with horizontal gene transfer mediating assembly of the complete biosynthesis pathway (Ney et al. 2017a). Such inferences are supported by the variable distribution (Fig. 5), genetic organization (Fig. 10) and phylogenetic analysis of the F420 biosynthesis genes (Ney et al. 2017a). In Fig. 16, we present a schematic of the gene transfer events that potentially occurred during the evolution of F420 biosynthesis. By necessity, this model focuses on well-studied F420 producers, and the direction of several gene transfer events remains unresolved.

The synthesis of F₀, as the catalytically active headgroup of F420, almost certainly evolved first. F₀ has near-identical redox properties to F420 and can function as a cofactor for F420-dependent enzymes in vitro (Jacobson and Walsh 1984; Drenth, Trajkovic and Fraaije 2019). However, the uncharged aromatic structure of F₀ allows it to readily diffuse across lipid membranes (Bashiri et al. 2010), limiting its usefulness as a redox cofactor due to its metabolically costly loss from the cell (Shah et al. 2019). The problem of diffusive loss is less acute when F₀ gets phosphorylated to produce the bifunctional FbiE. The next stage in the evolution of F420 biosynthesis was the addition of a phospho-carboxylic acid group to F₀ to form F420-0, a catalytic intermediate of the current biosynthesis pathway (Bashiri et al. 2019; Grinter et al. 2020). This modification imparts a negative charge, preventing its diffusion across cellular membranes (Bashiri et al. 2010), while not affecting the redox properties of the molecule. Phylogenetic evidence suggests that the ancestors of CofC/FbiD/FbiD₃PG and CofD/FbiA/FbiA₃PG potentially originated in an actinobacterial ancestor before being laterally acquired by other bacteria and archaea (Nelson-Sathi et al. 2015; Ney et al. 2017a). This suggests that F420 was first employed as a redox cofactor in Actinobacteria, before being horizontally acquired by other bacteria and archaea, including Eurarchaeota. The final stage in the evolution of F420 biosynthesis was the addition of the variable-length γ-linked polyglutamate tail to F420-0 by the enzyme CofE (Li et al. 2003a; Bashiri et al. 2019). The polyglutamate tail greatly enhances the affinity and specificity of interactions between F420 and F420-dependent oxidoreductases, possibly explaining why it arose (Ney et al. 2017b; Drenth, Trajkovic and Fraaije 2019). The evolutionary origin of CofE is unclear (Nocek et al. 2007; Ney et al. 2017a), though the polyglutamate tail synthesized by CofE is present in F420 from all currently investigated producing species (Gorris 1994; Li et al. 2003a; Bashiri et al. 2016; Greening et al. 2016; Ney et al. 2017a; Braga et al. 2019), indicating it is universally important for F420 function and has thus been co-inherited with other F420 biosynthesis genes. In Actinobacteria, cofE underwent a fusion with the DH-F₄₂₀-0 reductase gene fbiE to produce the bifunctional fbiE.

APPLICATIONS OF F₄₂₀ BIOSYNTHESIS

Progress and challenges for the use of F₄₂₀ in industrial catalysis

The hydrogenation reactions performed by F₄₂₀-H₂-dependent reductases are of interest for biocatalysis due to their regio- and enantioselectivity, which can generate up to two chiral centers (Greening et al. 2017; Mathew et al. 2018). Further, the low redox potential of F₄₂₀ allows it to mediate the reduction of otherwise recalcitrant bonds, including alkenes, enamines, enones, enoates and cyclic imines (Taylor et al. 2010; Jirapanjawat et al. 2016; Greening et al. 2017; Ichikawa, 2018).
Bashiri and Kelly 2018; Mathew et al. 2018; Steinningerova et al. 2020). \(F_{420}\) -dependent reductases provide an alternative to the nicotinamide-dependent Old Yellow Enzymes (OYEs) for performing these reactions (Stuermer et al. 2007; Winkler, Faber and Hall 2018), with some evidence suggesting that \(F_{420}\)-dependent reductases can generate reaction products with the opposite stereochemistry than OYEs (Mathew et al. 2018). However, while recent work has addressed a number of the challenges associated with utilizing \(F_{420}\)-dependent enzymes for industrial applications, several further challenges must be addressed before their potential for chemical synthesis can be realized.

Two plausible scenarios exist for the utilization of \(F_{420}\)-dependent reductases in the production of industrially relevant compounds. Purified \(F_{420}\)-dependent reductases can be utilized, in conjunction with an \(F_{420}\)-reducing regeneration system, to perform the biocatalytic reduction of the desired substrate. Alternatively, a synthetic biology approach could be employed, utilizing microbes engineered to produce \(F_{420}\) and express \(F_{420}\)-dependent biosynthetic pathways to produce compounds via microbial cell culture. In this section, we will discuss challenges and recent developments relating to the heterologous production of \(F_{420}\) and the development of suitable \(F_{420}\)-dependent enzymes for compound synthesis. These advances apply both to systems utilizing purified \(F_{420}\)-dependent enzymes and the development of synthetic biological systems utilizing \(F_{420}\).

Development of high yield \(F_{420}\) production

One of the major challenges in the development and utilization of \(F_{420}\)-dependent enzymes for biotechnological applications is the low yield of \(F_{420}\) obtained when purified from native sources (Isabelle, Simpson and Daniels 2002; Mathew et al. 2018; Bashiri et al. 2019). However, recent advances in our understanding of the \(F_{420}\) biosynthesis pathway, as well as successful heterologous production, have improved the prospects of obtaining the cofactor in industrially relevant quantities (Bashiri et al. 2019; Grinter et al. 2020).

\(F_{420}\) was initially purified from methanogenic archaea, such as *Methanobacterium thermoautotrophicum* (Eirich, Vogels and...
Wolfe 1978, 1979; Isabelle, Simpson and Daniels 2002). However, the relative technical difficulty in culturing these obligate anaerobes led to the identification and optimization of the aerobic actinomycete *M. smegmatis* as an alternative source of F420 (Isabelle, Simpson and Daniels 2002). Despite producing F420 at levels 5-fold lower than methanogens, the ease of culture and high cell densities achieved by this bacterium led to *M. smegmatis* being largely adopted as the preferred organism for F420 production, except in cases where short-chain F420-2 is required (Isabelle, Simpson and Daniels 2002; Ney et al. 2017b). Heterologous plasmid-based expression of FbiA, FbiB and FbiC in *M. smegmatis* by Bashiri et al. increased production of F420 from this bacterium 10-fold to levels greater than those produced by methanogens (Bashiri et al. 2010). This augmented F420 production in *M. smegmatis* is the currently preferred method of F420 production (Lapalikar et al. 2012; Ahmed et al. 2015; Mashalidis et al. 2015; Ney et al. 2017a; Oyugi et al. 2018; Drenth, Trajkovic and Fraaije 2019; Steiningerova et al. 2020). However, yields from this method are still unlikely to be compatible with economically viable production on an industrial scale. The estimated maximum yield of F420 from this process is ~3 g/kg dry weight (~0.9 g/kg wet cell weight; Isabelle, Simpson and Daniels 2002; Bashiri et al. 2010). Therefore, considerable further optimization of this system or alternative processes for F420 production are required.

One option for large-scale production of F420 is the use of a heterologous expression system, which is amenable to optimization through metabolic engineering. Until recently, a perceived bottleneck for heterologous production was the use of 2PL as a substrate in the F420 biosynthetic pathway, as it is not produced in significant quantities by bacteria (Graupner and White 2001; Graupner, Xu and White 2002; Bashiri et al. 2019). However, the discovery that mycobacterial F420 biosynthesis utilizes the abundant metabolite PEP paved the way for its heterologous production (Bashiri et al. 2019; Grinter et al. 2020). Concurrently, Ney and Greening first successfully produced F420 in *E. coli* through the heterologous expression of FbiC, FbiA, CofD and FbiB (Ney 2019). However, the yields for F420 produced in *E. coli* were lower than that achieved for purification from *M. smegmatis* or methanogens (Isabelle, Simpson and Daniels 2002; Bashiri et al. 2010).}

Figure 14. Crystal structure of CofE from *A. fulgidus* in complex with GDP and Mn2+. (A) Cartoon view of the crystal structure of the functional dimer of CofE [PDB ID = 2PHN]. CofE subunits are shown in pink (Mol. A) and red (Mol. B). Bound GDP and catalytic Mn2+ ions are shown for Mol. B only, as stick and sphere representation respectively. (B) Electrostatic surface view of the CofE active site showing bound GDP, catalytic Mn2+ ions and predicted F420-0 binding pocket. (C) Proposed catalytic mechanism for the first γ-linked glutamate addition mediated by CofE, R = F4 minus terminal hydroxyl.
Figure 15. Crystal structure of FbiBC-term, from M. tuberculosis. (A) Cartoon view of the crystal structure of the functional dimer of the FbiB C-terminal domain responsible for the FMNH$_2$ mediated reduction of DH-F$_{420}$-0 [PDB IDs = 4X0O, 4X0Q] FbiBC-term is shown in green and FMN and DH-F$_{420}$-0 (modeled based on the co-crystal structure of F$_C$) are shown as sticks. (B) A zoomed view of the FbiBC-term active site in complex with FMN and DH-F$_{420}$-0 as in panel A, with a cartoon and transparent atomic surface of the FbiBC-term shown.

Figure 16. Schematic showing possible events in the evolution of F$_{420}$ and its acquisition by different bacterial and archaeal lineages. Arrows with solid lines indicate potential horizontal transfer of ancestral F$_{420}$ biosynthetic genes. Dashed lines with bidirectional arrows indicate a likely gene transfer event of unknown directionality. Phyla labels are simplified for clarity. Note the figure is a speculative model drawn based on data from sources discussed in the main text and other models are also consistent with these data.
et al. 2019; Shah et al. 2019), meaning considerable further engineering is required to make the system compatible with industrial production. Through the course of their discovery of 3PG-F420 production by P. rhocincola, Braga et. al. independently hetero logously produced this chemical F420 variant in E. coli (Braga et al. 2019). While 3PG-F420 was only produced in low quantities, it is compatible with F420-dependent enzymes from organisms producing the classical version of the cofactor (Braga et al. 2019). As such, this work provides an alternative set of enzymes and precursor substrates for heterologous F420 production, which may assist in increasing production levels.

Synthetic or semisynthetic synthesis of F420-like cofactors is a promising alternative strategy for large quantities of cofactor compatible with industrial applications. F0 can be produced synthetically in large quantities and is catalytically compatible with some F420-dependent enzymes (Hossain et al. 2015). However, it generally exhibits much lower catalytic efficiency, making it a less than ideal cofactor for industrial applications (Drenth, Trajkovic and Fraaije 2019). Recently, Drenth et al. utilized a biosynthetic approach to enzymatically phosphorylate the terminal hydroxyl of F0, yielding the F420 analog F0-5′-phosphate (FOP). FOP was functional as a cofactor for both F420-reducing dehydrogenases and F0H2-dependent reductases with a higher catalytic efficiency than F0. However, a reduction in catalytic efficiency compared to F420 was observed depending on the enzyme employed (2- to 22-fold reduction; Drenth, Trajkovic and Fraaije 2019; Martin et al. 2020). This reduction in efficiency reinforces the importance of the F420 polyglutamate tail in protein cofactor interactions (Ney et al. 2017b) and suggests that FOP use will be limited to compatible enzymes or those which have been engineered to suit this cofactor. Currently, no definitive solution exists to cheaply and efficiently produce F420 or a suitable analog that can be utilized by enzymes with a high level of catalytic efficiency. However, the recent progress discussed above can likely be built upon to provide a solution to this bottleneck in the near future.

Development of an efficient F420 reduction system

To harness their potential for asymmetric hydrogenation on an industrial scale, F420H2-dependent reductases require a source of reduced F420H2. Ideally, F420H2 would be regenerated from enzymatically oxidized F420 via a mechanism integral to the reaction system, providing a high F420H2/F420 ratio and a sustained source of the reduced cofactor to maximize reaction yields. While it may be possible to directly reduce F420 by electrochemical or photochemical means (Wichmann and Vasic-Racki 2005), this has not been comprehensively investigated. As such, enzymatic regeneration of F420 using existing F420-reducing dehydrogenases is currently the most practical means of cofactor regeneration.

F420-reducing dehydrogenases that utilize a number of diverse substrates have been identified (Table 2). In their physiological context, these dehydrogenases produce a free pool of reduced cytoplasmic F420H2, which is bound by F420H2-dependent reductases and utilized to directly transfer hydride to their substrate (Ahmed et al. 2015, 2016; Greening et al. 2017; Mathew et al. 2018). This system differs mechanistically from OYEs, which tightly bind a FMN molecule that is first reduced by NAD(P)H before substrate reduction (Stuermer et al. 2007; Toogood, Gardiner and Scrutton 2010). The independent nature of F420-reducing dehydrogenases and F420H2-dependent reductases provides flexibility compared to OYEs, allowing for the use of different substrates for cofactor regeneration by F420-reducing dehydrogenases. Several F420-reducing dehydrogenases have been produced recombinantly and structurally characterized (Table 2; Warkentin et al. 2001; Aufhammer et al. 2004, 2005; Bashiri et al. 2008; Allegretti et al. 2014), facilitating enzyme production and optimization via structure-guided protein engineering. However, to provide an economically viable solution to F420 reduction for industrial catalysis, the enzyme employed must be stable and readily producible in large quantities. Additionally, it must reduce F420 with reasonable catalytic efficiency and its substrate must be cheap and readily obtainable. Considering these criteria, some F420-reducing dehydrogenases are more attractive targets than others for industrial cofactor regeneration.

Enzymes originating from methanogenic archaea, which utilize H2 (Fdh) or formate (Fdh) for F420 reduction, are superficially attractive targets due to the low cost of their substrates and the lack of contaminating solutes resulting from their oxidation (Shah et al. 2019). However, both of these enzymes are multi-subunit proteins that utilize complex transition metal cofactors for substrate oxidation and transfer the resulting electrons to F420 via multiple iron-sulfur clusters (Schauer and Ferry 1986; Vitt et al. 2014). The complexity of these enzymes, combined with the oxygen sensitivity of their metal-containing functional groups, means they are unlikely to be a practical solution for F420-reduction (Baron and Ferry 1989; Vitt et al. 2014). F420 reduction utilizing NADPH as a hydride donor, via the enzyme Fno, represents a more attractive means of cofactor regeneration (Berk and Thauer 1997; Kumar et al. 2017). Fno is a small single subunit protein, which is produced by a wide range of bacteria and archaea, providing numerous homologs from which to select an industrially compatible enzyme (Eirich and Dugger 1984; Kunow et al. 1993; Le et al. 2015; Kumar et al. 2017). Representative crystal structures of Fno from thermophilic species have been determined, providing the basis for optimization via protein engineering (Kunow et al. 1993; Kumar et al. 2017). Drawbacks for the use of Fno for cofactor regeneration include the relative expense of NADPH, which is required in stoichiometric quantities to the target for reduction (unless an additional enzyme and substrate is added for NADP+ regeneration), as well as the presence of contaminating NADP+ in the final reaction mix. The use of G6P for F420 regeneration via the enzyme Fgd is another option that has similar advantages and disadvantages to NADPH. Fgd is a single-chain protein that can be recombinantly produced and for which a crystal structure has been determined (Purwarianti and Daniels 1996; Bashiri et al. 2008). However, G6P is relatively expensive and its use in F420 reduction leads to the generation of the by-product 6-phosphoglucono-D-lactone. Recently homologs of Fgd with significant activity towards other sugar phosphates were identified (Mascotti et al. 2018). These enzymes, named Fsd, reducing sugar-6-phosphate dehydrogenases (Fsd), also exhibit low levels of F420 reductase activity with non-phosphorylated sugars (Mascotti et al. 2018). While the rates of F420 reduction with these sugars were too low to be catalytically useful, they suggest that through protein engineering Fsd could be adapted to utilize more economical non-phosphorylated sugars as substrates (Mascotti et al. 2018).

The F420-reducing secondary alcohol dehydrogenase Adf is the most promising target for F420H2 regeneration on an industrial scale. Adf is a relatively small (37 kDa) single chain enzyme produced by thermostatable organisms, which can utilize inexpensive secondary alcohols like isopropanol to reduce F420 with a reasonable catalytic efficiency (Bleicher and Winter 1991). The product of this reaction is a volatile ketone (e.g. acetone), which
can be readily separated from the reaction product. The standard potential for the reduction of acetone to isopropanol is ~290 mV, higher than that of F420/F420H2 (~340 mV; Thauer, Jungemmann and Decker 1977; Jacobson and Walsh 1984), meaning that a relatively high concentration of substrate (~100 mM) would be needed to ensure efficient F420 reduction. However, Adf has been shown experimentally to tolerate isopropanol up to 100 mM with no significant reduction in activity (Martin et al. 2020). Relatively high concentrations of secondary alcohols are often well tolerated by enzymes and this tolerance could be improved for F420H2-dependent reductases by protein engineering (Doukyu and Ogino 2010). Moreover, the addition of secondary alcohols could increase the solubility of enzyme substrates with poor solubility. In summary, Adf is a simple protein with high stability, that can be produced recombinantly, has good catalytic efficiency, an inexpensive substrate and produces a volatile product. As such, of the currently characterized F420 reducing enzymes, it is the only candidate that fulfills all the above criteria for industrial applications.

Discovery and engineering of F420H2-dependent reductases

The range of biological reduction reactions performed by F420-dependent enzymes discussed above indicates their potential for performing reduction reactions. The diversity of molecules identified as physiological substrates for F420H2-dependent reductases, encompassing large and small soluble molecules, as well as hydrophobic molecules and lipids, also reflects their versatility as biocatalysts (Figs 7 and 8; Wang et al. 2013; Purwan-tini, Daniels and Mukhopadhay 2016; Greening et al. 2017; Lee et al. 2020; Steiningerova et al. 2020; Tao et al. 2020). Furthermore, the abundance of predicted F420-dependent enzymes encoded in microbial genomes indicates that currently-characterized F420-mediated reactions represent a small subset of those that exist in nature (Ahmed et al. 2015; Ney et al. 2017a; Mascotti et al. 2018). This indicates that there is a wealth of F420-dependent enzymes with potential for use in industrial catalysis.

The use of F420H2-dependent reductases to perform industrially important reduction reactions currently represents the most promising application of F420 to industrial processes (Greening et al. 2017; Mathew et al. 2018; Drenth, Trajkov and Frawrie 2019). F420H2-dependent reductases can reduce a range of activated alkenes (quinones, coumarins, enones, enals, pyrones and pyrans), unsaturated nitrogen-containing compounds (imines, pyrones, pyrans and triaryl methane dyes), with activity and substrate specificity varying widely between enzymes (Fig. 17 and Table 2; Greening et al. 2017; Mathew et al. 2018). FDOR-A family enzymes investigated displayed relatively high levels of activity towards quinones, in line with their proposed physiological role as menaquinone reductases (Ahmed et al. 2015; Lee et al. 2020). Mathew et al. showed that three diverse actinobacterial FDOR-A enzymes exhibited high levels of enantioselectivity towards a panel of α/β-unsaturated ketones and aldehydes, as well as regioselectivity towards a benzyl-denial compound (Mathew et al. 2018). The observed enantioselectivity of these enzymes towards several substrates was the opposite of that observed when the substrates were reduced by OYEs, indicating that FDORs could provide stereochemical flexibility for enzymatic catalysis (Mathew et al. 2018). However, the catalytic rates of purified FDORs towards these substrates, where reported, are low, meaning that significant engineering is required to render them suitable for industrial catalysis (Jirapanjawat et al. 2016; Greening et al. 2017; Mathew et al. 2018). Interestingly, a panel of diverse FDORs showed no activity against compounds containing functional groups (nitroimidazoles and imines) known to be reduced by F420H2-dependent FDORs in a physiological context (Greening et al. 2017). This observation, combined with the vastly different activities observed for FDORs towards different substrates with the same functional group, indicates that protein-substrate interactions are important for determining enzyme activity and significant engineering will be required to adapt the substrate binding sites of these enzymes to industrially relevant substrates.

Further investigation into the mechanisms of substrate binding and reduction by FDORs will assist in engineering enzymes with higher catalytic efficiency and predicting product stereochemistry. It has been proposed that proton donation to the F420-substrate after initial hydride transfer from F420 occurs from N1 of F420H2 (Fig. 1B; Shah et al. 2019). If true, both hydrogenation events occur on the same face of the activated alkene substrate, leading to cis-hydrogenation when a substituted alkene is reduced by the enzyme. This is in contrast to OYEs where trans-hydrogenation products are formed (Hollmann, Opperman and Paul 2020). However, cis-hydrogenation by FDORs has not been demonstrated experimentally, and spectroscopic and computational analysis suggests that F44H– (in which N1 is deprotonated) is the form of the cofactor utilized by the FDOR-A Ddn (Mohamed et al. 2016a). If F420H2– is the general physiological form of the cofactor used by FDORs, then substrate protonation must instead proceed from solvent or an enzyme sidechain (Mohamed et al. 2016a,b; Greening et al. 2017). A better understanding of the structural and biochemical basis for the binding of physiological and industrially relevant substrates to FDORs is also required. No crystal structures of FDOR-substrate complexes are available, though some docking analysis has been performed, indicating residues important for substrate binding...
Classes of compounds shown to be reduced by purified F420-dependent enzymes. The reduced bond is highlighted in orange for each compound. The enzymes tested, as well as their substrate range and relative activity levels, are provided in Table 5.

Figure 17. Proposed reaction schemes for the reduction of menaquinone and malachite green by F420H2-dependent reductases of the FDOR-A superfamily. In both cases, initial hydride transfer to one carbon atom of an activated alkene is followed by tautomerization yielding the final reaction product.

(A) Quinones

Menadione 1,4-Naphthoquinone 1,2-Naphthoquinone

Pyrones/Coumarins

5,6-Dihydro-2H-pyran-2-one Coumarin 3-Cyanocoumarin Fraxetin Afatoxin B1

Enones

3-Methyl-2-cyclopentenone 2-Cyclohexen-1-one (R)-Carvone β-ionone

Secondary Alcohols

Methoxyacetone Methyl isobutyl ketone 2-Heptanone Propiophenone

Triarylmethanes

Crystal Violet Malachite Green

(B) Menaquinone

Malachite Green

Hydrophobic molecules, suggests their biosynthetic potential. Notably, the TIM-barrel fold of LLHTs is unrelated to that of FDORs, possessing a structurally divergent substrate-binding pocket (Fig. 4; Mascotti et al. 2018). As such, LLHTs are likely to provide complementary substrate specificity and stereoselectivity to FDORs. Like FDORs, sequenced microbial genomes contain a wealth of putative F420-dependent LLHTs with unknown function, many of which are contained within hypothetical secondary metabolite BCGs (Selengut and Haft 2010; Mascotti et al. 2018; Steiningerova et al. 2020).

In summary, while our current understanding of F420-dependent enzymes sets the stage for the use of F420 in industrial catalysis, considerable further work is required to develop enzymes suitable for such processes. To realize this goal these enzymes will require a high level of activity towards economically relevant substrates, with favorable kinetic parameters. Also, they will likely need to display high levels of stereoselectivity, yielding a commercially relevant enantiomer. Further, for use in synthetic chemistry, the enzymes will need to be robust, able to withstand relatively harsh extremes of temperature, pH, ionic strength and concentrations of non-polar solvents. Currently, no enzymes with these properties have been described or developed. A possibly promising strategy for the development of such enzymes would be to identify commercially relevant substrates, with chemistry amenable to reduction
Table 5. Purified F420H2-dependent reductases that have been explored for substrate specificity and range.

Enzyme name	Originating organism	Sequence ID	Physiological substrate	In vitro activity	Enzyme class	PDB ID	Quinones	Coumarins	Enones	Enals	Pyrones	Pyrans	Triarylmethanes	Secondary alcohol
MSMEG-5998	M. smegmatis	ABK71916	Menaquinone	+++	FDOR-A1	ND	++	-	ND	ND	ND	ND	ND	ND
MSMEG-2027	M. smegmatis	ARK5354	Menaquinone	+++	FDOR-A1	4Y91	+++	ND	ND	ND	ND	ND	ND	ND
MSMEG-2850	M. smegmatis	ARW37737	Menaquinone	+++	FDOR-A1	3186	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-2004	M. smegmatis	ABK7467	Menaquinone	+++	FDOR-A1	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-3356	M. smegmatis	ABK7579	Menaquinone	++	FDOR-A1	3H96	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-3004	M. smegmatis	ABK74167	Menaquinone	++	FDOR-A1	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-5030	M. smegmatis	ABK74375	Menaquinone	+++	FDOR-A2	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-3380	M. smegmatis	ABK72884	Menaquinone	+++	FDOR-B1	3F7E	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-0048	M. smegmatis	ABK73917	Menaquinone	++	FDOR-B1	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-6325	M. smegmatis	ABK73368	Menaquinone	++	FDOR-B1	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-5170	M. smegmatis	ARK72943	Menaquinone	+++	FDOR-B1	4Y91	++	-	ND	ND	ND	ND	ND	ND
MSMEG-5717	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	5Y4V	++	-	ND	ND	ND	ND	ND	ND
MSMEG-4030	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	4ZKY	++	-	ND	ND	ND	ND	ND	ND
MSMEG-6526	M. smegmatis	ARK76717	Menaquinone	+++	FDOR-B2	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-5717	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	5Y4V	++	-	ND	ND	ND	ND	ND	ND
MSMEG-4030	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	4ZKY	++	-	ND	ND	ND	ND	ND	ND
MSMEG-6526	M. smegmatis	ARK76717	Menaquinone	+++	FDOR-B2	ND	ND	ND	ND	ND	ND	ND	ND	ND
MSMEG-3880	M. smegmatis	ARK78672	Menaquinone	+++	FDOR-B2	5Y4V	++	-	ND	ND	ND	ND	ND	ND
MSMEG-5030	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	4ZKY	++	-	ND	ND	ND	ND	ND	ND
MSMEG-3380	M. smegmatis	ARK72164	Menaquinone	+++	FDOR-B1	4ZKY	++	-	ND	ND	ND	ND	ND	ND

In vitro activity: +++, ++, +, -, ND.

References:
- Greening et al. (2017)
- Taylor et al. (2010)
- Lapalikar et al. (2012)
- Martin et al. (2020)
- Mathew et al. (2018)
- Mathew et al. (2018)
or oxidation by F420-dependent enzymes, which are recalcitrant to currently available synthetic chemical processes. The wealth of F420-dependent enzymes present in microbial genomes could be screened for enzymes capable of reducing these substrates to some degree. These enzymes could be then subjected to rigorous structural and biochemical characterization, combined with concerted protein engineering efforts, to produce enzymes suitable for the reduction of these substrates on an industrial scale.

Ramifications and applications of microbial utilization of F420

In addition to the importance of F420 in microbial physiology and its potential applications for chemical synthesis, our understanding of the diverse role of the cofactor has wider significance for improving human health and sustainability. As discussed below, hydrogenotrophic methanogens that rely on F420 are an important source of global greenhouse gases, while in M. tuberculosis F420 is important for the activation of nitroimidazole prodrugs and plays an insufficiently characterized role in survival in the host. Our recently acquired knowledge on the biosynthesis and roles of F420 can be utilized to develop methanogenesis inhibitors and antitubercular drugs, as well as to predict and alleviate nitroimidazole resistance.

Methane mitigation through inhibition of F420 dependent enzymes

F420-dependent hydrogenotrophic methanogens, notably Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium, are core members of the foregut microbiota of ruminants (Leahy et al. 2010; Henderson et al. 2015). Methane emitted by ruminants is a significant driver of global warming, with ruminant methane emissions accounting for approximately 40% of global methane emissions and 5% of global greenhouse gas emissions (Greening et al. 2019). Bacteria and archaea that utilize alternative aceticogenic or respiratory pathways for H2 oxidation, independently of F420, are abundant in the rumen (Greening et al. 2019). Thus, strategies to inhibit or outcompete hydrogenotrophic methanogens should foster a microbial community that produces less methane, reducing the greenhouse gas emissions from livestock farming (Morgavi et al. 2010; Greening et al. 2019). Potent methyl-CoM reductase inhibitors, such as 3-nitroxypropanol, reduce methane production without compromising animal health and productivity (Hristov et al. 2015; Duin et al. 2016). Given hydrogenotrophic methanogenesis requires F420, strategies that inhibit F420 production or its use by F420-dependent enzymes will also inhibit the growth of these archaea. While specific strategies for the inhibition of F420 biosynthesis or dependent enzymes in the rumen have not been reported, several studies indicate this may be possible. The pterin lumazine inhibits methanogen growth and methane formation in pure culture, possibly through its structural similarity to F420 (Nagar-Anthal et al. 1996), although this effect was less significant in mixed culture (Ungerfeld et al. 2004). Recently, in silico screening identified inhibitors of Fno from the methanogen Methanobrevibacter smithii, some of which bind the enzyme with affinity in the nM range. Some of these inhibitors are non-toxic dietary supplements and could be readily investigated for their ability to reduce methane emissions by inhibiting F420-dependent enzymes (Cuccioloni et al. 2020). If effective, inhibitors of F420 dependent pathways could be provided as dietary supplements, possibly in conjunction with other strategies to inhibit the growth of hydrogenotrophic methanogens or promote the growth of other hydrogenotrophs in the rumen.

Nitroimidazole prodrug activation in M. tuberculosis

It has been recognized since the late 1980s that compounds containing the nitroimidazole functional group can display potent antitubercular activity (Nagarajan et al. 1989; Liu et al. 2018). Early attempts to develop nitroimidazole-containing molecules for tuberculosis treatment, including the compound CGI-17341 (Ashtekar et al. 1993; Fig. 18A), failed due to toxicity concerns. However, concerted drug development efforts have yielded two compounds with potent antitubercular activities and acceptable safety profiles. These compounds, named delamanid and pretomanid (Fig. 18A), were both recently approved

![Figure 18. Nitroimidazole prodrugs effective against M. tuberculosis and their activation by Ddn. (A) Structure of nitroimidazole-containing prodrugs developed for tuberculosis treatment. Delamanid and pretomanid were recently approved for the treatment of M. tuberculosis infection, while CGI-17341 was abandoned due to toxicity concerns. The nitroimidazole functional group is highlighted in orange. (B) The complex between pretomanid and its activating enzyme Ddn from M. tuberculosis was generated by molecular docking using AutoDock Vina (Trott and Olson 2010). The proximity between the nitroimidazole group of pretomanid and the hydride transferring C5 carbon of F420 is shown in the inset panel. (C) Proposed products for the breakdown of pretomanid following its reduction by Ddn, full reaction schemes leading to product generation refer to Singh et al. (2008).](image-url)
for the treatment of multidrug-resistant tuberculosis (MDR) as a combination therapy (Liu et al. 2018; Keam 2019). Delamanid was approved in 2014 by the European Medicines Agency for use in an appropriate combination regimen for MDR tuberculosis treatment and is subject to ongoing safety and efficacy studies (Ryan and Lo 2014; von Groote-Bidlingmaier et al. 2019). Pretomanid was approved in 2019 by the U.S. Food & Drug Administration for treatment of MDR or extensively drug-resistant tuberculosis (XDR), as part of a three-drug ‘BPaL’ regime, also including bedaquiline and linezolid (Keam 2019). Safety and efficacy trials indicate pretomanid, administered in combination with bedaquiline, moxifloxacin and pyrazinamide, is also effective in the treatment of MDR and XDR tuberculosis, although this regime is awaiting regulatory approval (Tweed et al. 2019).

Nitroimidazole-containing compounds act as prodrugs in the treatment of tuberculosis and are reductively activated in the M. tuberculosis cell by the aforementioned FDOR-A enzyme Ddn (Fig. 18B; Cellitti et al. 2012; Fujiwara et al. 2018). The activation of delamanid and pretomanid occurs through the promiscuous activity of Ddn, which appears to play a physiological role in the reduction of menaquinone (Lee et al. 2020). The reduction of the nitroimidazole functional group by Ddn is thought to lead to several reaction products, including the release of HNO and HNO2 and the formation of des-nitro forms of the drugs (Fig. 18C; Singh et al. 2008). While the precise details of the mechanism of action of delamanid and pretomanid towards M. tuberculosis remain to be elucidated, evidence supports a role for the release of reactive nitrogen species in their toxicity (Manjunatha et al. 2006; Singh et al. 2008; Manjunatha, Boshoff and Barry 2009). Pretomanid also selectively inhibits the synthesis of ketomycolic acids in the M. tuberculosis, potentially through the direct or indirect inhibition of the F420-reducing dehydrogenase FHMD (Stover et al. 2000; Purwantini and Mukhopadhyay 2013). Further, global metabolomic analysis of pretomanid treated M. smegmatis identified the accumulation of the toxic metabolite methyglyoxal, indicating that metabolic poisoning may also play a role in the antitubercular activity of nitroimidazole drugs (Baptista et al. 2018). As nitroimidazole drugs are effective against M. tuberculosis under both aerobic and anaerobic conditions, and their activation by Ddn leads to several reactive intermediates and reaction products, the mechanism of action of these compounds is likely complex and multifaceted (Singh et al. 2008; Mukherjee and Boshoff 2011).

Resistance to delamanid and pretomanid in M. tuberculosis is imparted by mutations that prevent the production of F420 (via loss of functional FbIA, FbIB, FbIC or FbID) or its reduction to F420ZH2 (via loss of functional Fgd; Choi et al. 2001; Manjunatha et al. 2006; Jing et al. 2019; Lee et al. 2020). Additionally, mutations that result in either the complete loss of Ddn function or loss of its promiscuous activity towards the prodrugs also result in resistance (Lee et al. 2020). The latter finding is of concern for the longevity of delamanid and pretomanid for treatment of tuberculosis. Particularly concerning is that clinical M. tuberculosis isolates with mutations in Ddn that abolish its activity towards delamanid and pretomanid, but not its physiological substrate menaquinone, have been identified (Lee et al. 2020; Rifat et al. 2020). A number of these isolates were from patients that had not been treated with delamanid and pretomanid, suggesting that inherently resistant strains of M. tuberculosis exist (Yang et al. 2018; Lee et al. 2020). Interestingly, some mutations in Ddn result in resistance to pretomanid but not delamanid (Lee et al. 2020), likely due to the differences in their interactions with the Ddn substrate-binding pocket. Based on this observation, a robust understanding of Ddn substrate binding may allow for the deployment of patient-tailored prodrug variants less susceptible to polymorphisms in Ddn. As discussed in the next section, the effect of the loss of F420 on the virulence and transmissibility of M. tuberculosis as a result of nitroimidazole treatment remains uncertain.

Targeting F420 for the development of antitubercular drugs

The role of F420 in activating pretomanid and delamanid has rekindled interest in the role of F420 in mycobacterial physiology (Cellitti et al. 2012; Haver et al. 2015; Fujiwara et al. 2018; Lee et al. 2020; Rifat et al. 2020). However, despite recent progress in this area, we lack a comprehensive understanding of the importance of F420 in mycobacterial physiology. This is especially true for mycobacterial pathogens like M. tuberculosis, in part due to the difficulty in working with this slow-growing and highly pathogenic bacterium (Cole et al. 1998). However, phenotypes associated with the loss of F420 production discussed above strongly suggest that the cofactor plays a role in the ability of M. tuberculosis to cause disease (Gurumurthy et al. 2013; Jirapanjawat et al. 2016; Lee et al. 2020; Rifat et al. 2020). These observations, together with the ubiquity of F420 in mycobacteria, the abundance of F420-dependent enzymes in M. tuberculosis and the absence of the cofactor from human cells, make the processes that produce or use F420 potential targets for the development of antimicrobial compounds. One method of targeting F420 would be the development of compounds that inhibit the enzymes responsible for its biosynthesis (i.e. FbIA, FbIB, FbIC and FbID) or reduction (Fgd; Bashiri et al. 2008, 2019). Crystal structures are available for the majority of these enzymes, facilitating inhibitor design (Bashiri et al. 2008, 2019; Grinter et al. 2020). An alternative approach would be the development of F420 analogs that inhibit F420-dependent enzymes (Eirich, Vogels and Wolfe 1978). However, to make the considerable effort required for the identification and optimization of F420 biosynthesis inhibitors attractive, a better understanding of the importance of the cofactor for virulence is required.

The role of F420-dependent enzymes in reductively detoxifying antimicrobial compounds is also of interest for M. tuberculosis treatment (Jirapanjawat et al. 2016; Rifat et al. 2020). Profiling the antibiotic sensitivity of F420-deficient mutants of mycobacterial pathogens may identify antibiotics that selectively display activity against these strains. There is some evidence that loss of F420 leads to a heightened sensitivity to the antibiotics isoniazid, moxifloxacin and clofazimine in M. tuberculosis (Gurumurthy et al. 2013; Rifat et al. 2020). Given that loss of F420 production is known to mediate resistance to pretomanid and delamanid (Haver et al. 2015; Jing et al. 2019; Lee et al. 2020), antibiotics that are more effective against F420 deficient mutants may be useful in combination with these drugs to reduce or mitigate the development of resistance. Preliminary analysis of F420-dependent LLHTs in pathogenic mycobacteria demonstrates they play an important role in outer-envelope lipid biosynthesis. Outer envelope lipids, like PDIMs and ketomycolic acids, are important for mycobacterial virulence (Purwantini and Mukhopadhyay 2013; Purwantini, Daniels and Mukhopadhyay 2016). Growing evidence indicates these outer envelope lipids constitute a second outer membrane in mycobacteria (Hoffmann et al. 2008; Bansal-Mutalik and Nikaido 2014). In M. tuberculosis this membrane contains high concentrations of PDIM, which contribute to the impermeability of this barrier and the antibiotic resistance of this species (Wang et al. 2020). As such, a systematic understanding of the role of F420 dependent enzymes in outer-envelope lipid biosynthesis will inform future efforts to combat pathogenic mycobacteria through inhibition of this process.
OUTLOOK
When we first reviewed this topic five years ago (Greening et al. 2016), we noted multiple knowledge gaps that have since been addressed. These included: resolving the chemical steps and structural basis of F420 biosynthesis (Bashiri et al. 2019; Braga et al. 2019; Grinter et al. 2020); surveying the distribution of F420 across different taxa and ecosystems (Ney et al. 2017a); investigating the chemistry of the F420 headgroup and tail to catalysis (Mohamed et al. 2016a; Ney et al. 2017b); and enabling F420− dependent industrial biocatalysis through achieving heterologous cofactor production (Bashiri et al. 2019; Braga et al. 2019; Ney 2019) and characterizing promising F420− dependent oxidoreductases (Greening et al. 2017; Mascotti et al. 2018; Mathew et al. 2018; Drenth, Trajkovic and Fraaije 2019; Martin et al. 2020).

Some of these lines of investigation resulted in unexpected findings, most notably that F420 biosynthesis genes are extremely widely distributed (Ney et al. 2017a; Table S2, Supporting Information), the biosynthesis pathway has multiple variants and was misannotated in bacteria (Bashiri et al. 2019; Braga et al. 2019, 2020; Grinter et al. 2020) and some bacteria produce entirely novel variants of this cofactor (Braga et al. 2019).

Despite these important insights, we still lack a systematic understanding of the physiological role of the cofactor. Unanswered questions include why mycobacteria encode a multitude of predicted FDORs and LLHTs, and why newly identified F420 producers such as Proteobacteria and Chloroflexi synthesize this cofactor. Further research is needed to resolve whether lineages such as the TACK and Asgard archaea, Firmicutes and Tectomicrobia do produce F420 as predicted, and if so, which variants do they make and through which pathways? Other knowledge gaps that could be addressed in coming years include a more detailed understanding of the evolution of the F420 biosynthetic pathway, structural resolution of F420 biosynthesis and newly discovered F420− dependent methanogen enzymes, as well as the long-standing question of which enzyme mediates 2-phospholactate production in methanogens. As we detailed in the final section of this review, there is also ample potential to translate this fundamental knowledge to address medical, environmental and industrial challenges to improve human health and sustainability. Exactly 50 years since its discovery by Wolfe and colleagues, it is increasingly clear that F420 is a widespread and versatile cofactor, fundamental to the physiology of many bacteria and archaea.

FUNDING
This work was supported by an NHMRC EL2 Investigator Grant (APP1178715; awarded to C.G.), an NHMRC New Investigator Grant (APP5191146; awarded to C.G.), an NHMRC grant (APP1139832; awarded to C.G.) and an NHMRC EL1 Investigator Grant (APP1197376; Awarded to R.G.).

Conflicts of Interest. None declared.

REFERENCES
Abken H-J, Deppenmeier U. Purification and properties of an F420H2 dehydrogenase from Methanosarcina mazei G01. FEMS Microbiol Lett 1997;154:231–7.
Adam P5, Borrel G, Gribaldo S. An archaeal origin of the Wood–Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy. Nat Microbiol 2019;4:2155–63.
Afting C, Hochheimer A, Thauer R. Function of H2−forming methylenetetrahydrodeminotransferase dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch Microbiol 1998;169:206–10.
Ahmed FH, Carr PD, Lee BM et al. Sequence−structure−function classification of a catalytically diverse oxidoreductase superfamily in Mycobacteria. J Mol Biol 2015;427:3554–71.
Ahmed FH, Mohamed AE, Carr PD et al. Rv2074 is a novel F420H2− dependent hilverdin reductase in Mycobacterium tuberculosis. Protein Sci 2016;25:1692–709.
Albertsen M, Hugenholz P, Skarszewski A et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013;31:533–8.
Allegretti M, Mills DJ, McMullen G et al. Atomic model of the F420− reducing [NiFe] hydrogenase by electron cryo−microscopy using a direct electron detector. Elife 2014;3:e01963.
Arshad A, Speth DR, de Graaf RM et al. A metagenomics−based metabolic model of nitrate−dependent anaerobic oxidation of methane by methanoperedens−like archaea. Front Microbiol 2015;6:e1423.
Ashtekar DR, Costa−Perira R, Nagrajan K et al. In vitro and in vivo activities of the nitromidazolide CGI 17341 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1993;37:183–6.
Attwood G, Altermann E, Kelly W et al. Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim Feed Sci Technol 2011;166−167:65−75.
Aufhammer SW, Warkentin E, Berk H et al. Coenzyme binding in F420− dependent secondary alcohol dehydrogenase, a member of the bacterial luciferase family. Structure 2004;12:361−70.
Aufhammer SW, Warkentin E, Ermiller U et al. Crystal structure of methylenetetrahydrodeminotransferase reductase (Mer) in complex with coenzyme F420: architecture of the F420/FMN binding site of enzymes within the nonprolyl cis−peptide containing bacterial luciferase family. Protein Sci 2005;14:1840−9.
Bacher A, Eberhardt S, Fischer M et al. Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 2000;20:153−67.
Bair TB, Isabelle DW, Daniels L. Structures of coenzyme F420 in Methanosaeta concilii of Methanosarcina barkeri (PA−824). Proc Natl Acad Sci 2004;101:288−93.
Barber RD, Zhang L, Harnack M et al. Complete genome sequence of Methanosaeta concilii, a specialist in acetlastic methanogenesis. J Bacteriol 2011;193:3668−9.
Baresi L, Wolfe RS. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M reductase in acetategrown Methanosarcina. Appl Environ Microbiol 1981;41:388−91.
Baron SF, Ferry JG. Reconstitution and properties of a coenzyme F420−mediated formate hydrogenase system in Methanobacterium formicum. J Bacteriol 1989;171:3854−9.
Bashiri G, Antoney J, Jirgis EN et al. A revised biosynthetic pathway for the cofactor F420 in prokaryotes. Nat Commun 2019;10:1558.
Bashiri G, Perkowski EF, Turner AP et al. Tat-dependent translocation of an F420-binding protein of Mycobacterium tuberculosis. PLoS One 2012;7:e45003.

Bashiri G, Rehan AM, Greenwood DR et al. Metabolic engineering of cofactor F420 production in Mycobacterium smegmatis. PLoS One 2010;5:e15803.

Bashiri G, Rehan AM, Sreebhavan S et al. Elongation of the poly-γ-glutamate tail of F420 requires both domains of the F420:γ-glutamylligase (FbiB) of Mycobacterium tuberculosis. J Biol Chem 2016;291:6882–94.

Bashiri G, Squire CJ, Moreland NJ et al. Crystal structures of F420-dependent glucose-6-phosphate dehydrogenase FGD1 involved in the activation of the anti-tuberculosis drug candidate PA-824 reveal the basis of coenzyme and substrate binding. J Biol Chem 2008;283:17531–41.

Beal EJ, House CH, Orphan VJ. Manganese-and iron-dependent marine methane oxidation. Science 2009;325:184–7.

Becraft ED, Woyke T, Jarett J et al. Methanogens: genomic giants among the uncultured bacterial phyla. Front Microbiol 2018;9:2264.

Begley TP. 7.01 - Overview and introduction. In: Liu H-W, Man et al. Biochemistry: Niacin/NAD (P). 2013.

Berterand JA, Auger G, Fanchon E et al. Crystal structure of UDP-N-acetylglucosamyl-L-alanine: d-glutamate ligase from Escherichia coli. EMBO J 1997;16:3416–25.

Bhattarai S, Cassarini C, Lens PNL. Physiology and distribution of archaean methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol Mol Biol Rev 2019;83:e00074–18.

Biswal BK, Au K, Cherney MM et al. The molecular structure of Rv0274, a probable pyridoxine 5'-phosphate oxidase from Mycobacterium tuberculosis, at 1.6 A resolution. Acta Crystallogr Sect F 2006;62:735–42.

Björnsso L, Hugenholtz P, Tyson GW et al. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 2002;148:2309–18.

Blecher K, Winter J. Purification and properties of F420- and NADP+−dependent alcohol dehydrogenases of Methanogenium liminatus and Methanobacterium palustre, specific for secondary alcohols. Eur J Biochem 1991;200:43–51.

Boetius A, Ravenschlag K, Schubert CJ et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000;407:623–6.

Bogan K, Brenner C. Biochemistry: Niacin/NAD (P). 2013.

Borrel G, O’Toole PW, Harris HMB et al. Phylogenomic data support a seventh order of methylo trophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 2013;5:1769–80.

Bown L, Altowairish MS, Fyans JK et al. Production of the Streptomyces scabies coronafacoyl phytotoxins involves a novel biosynthetic pathway with an F420-dependent oxidoreductase and a short-chain dehydrogenase/reductase. Mol Microbiol 2016;101:122–35.

Braga D, Hasan M, Kröber T et al. Redox coenzyme F420 biosynthesis in thermomicrobia involves reduction by stand-alone nitroreductase superfamily enzymes. Appl Environ Microbiol 2020;86:e00457–20.

Braga D, Last D, Hasan M et al. Metabolic pathway rerouting in Paraburkholderia rhizoxinica evolved long-overlooked derivatives of coenzyme F420. ACS Chem Biol 2019;14:2088–94.

Brochier-Armanet C, Forterre P, Gribaldo S. Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 2011;14:274–81.

Brochier C, Forterre P, Gribaldo S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol 2004;5:R17.

Brüggemann H, Falinski F, Deppenmeier U. Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus. Eur J Biochem 2000;267:5810–4.

Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochimica et Biophysica Acta (BBA) Bioenergetics 2013;1827:94–113.

Bulzu P-A, Andrei A-S, Salcher MM et al. Casting light on Asgardarchaea metabolism in a sunlit microoxic niche. Nat Microbiol 2019;4:1129–37.

Bäumer S, Ide T, Jacobi C et al. The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 2000;275:17968–73.

Bäumer S, Murakami E, Brodersen J et al. The F420H2:hydrogen sulfide oxidoreductase system from Methanosarcina species: 2-hydroxyphosphinazene mediates electron transfer from F420H2 to hydroger sulfide oxidoreductase. FEBS Lett 1998;428:295–8.

Cai C, Leu AO, Xie G-J et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 2018;12:1929–39.

Canaan S, Sulzenbacher G, Roig-Zamboni V et al. Crystal structure of the conserved hypothetical protein Rv1155 from Mycobacterium tuberculosis. FEBS Lett 2005;579:215–21.

Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 2018;172:1181–97.

Ceh K, Demmer U, Warkentin E et al. Structural basis of the hydride transfer mechanism in F420-dependent methylenetetrahydrodopterin dehydrogenase. Biochemistry 2009;48:10098–105.

Cellitti SE, Shaffer J, Jones DH et al. Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Structure 2012;20:101–12.

Cheeseman P, Toms-Wood A, Wolfe R. Isolation and properties of a fluorescent compound, Factor 420, from Mycobacterium bovis. FEBS Lett 2001;505:7058–66.
Dolfing J, Mulder J-W. Comparison of methane production by Mycobacterium bovis BCG for coenzyme F_{20} and F_{0} biosynthesis. *J Bacteriol* 2002;184:2420–8.

Cole S, Brosch R, Parkhill J et al. Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature* 1998;393:537–44.

Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. *Environ Microbiol Rep* 2009;1:285–92.

Costa KC, Wong PM, Wang T et al. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. *Proc Natl Acad Sci* 2010;107:11050–5.

Cox JS, Chen B, McNeil M et al. Complex lipid determines tissue-specific replication of *Mycobacterium tuberculosis* in mice. *Nature* 1999;402:79–83.

Cuccioloni M, Bonfili L, Cecarini V et al. Structure/activity virtual screening and in vitro testing of small molecule inhibitors of 8-hydroxy-5-deazaflavin: NADPH oxidoreductase from gut methanogenic bacteria. *Sci Rep* 2020;10:e13150.

Daniels L, Bakhiet N, Harmon K. Widespread distribution of a SAM domain enzyme and tyrosine as substrate. *Proc Natl Acad Sci* 2012;109:11837–6.

Darwin KH, Ehrf S, Gutierrez-Ramos J-C et al. The proteasome of *Mycobacterium tuberculosis* is required for resistance to nitric oxide. *Science* 2003;302:1963–6.

Decamps L, Philmus B, Benjdia A et al. Biosynthesis of F_{0}, precursor of the F_{20} cofactor, requires a unique two radical-SAM domain enzyme and tyrosine as substrate. *J Am Chem Soc* 2012;134:18173–6.

de Poorter LMI, Geerts WJ, Keltjens JT. Hydrogen concentrations in methane-forming cells probed by the ratios of reduced and oxidized coenzyme F_{20}. *Microbiology* 2005;151:1697–705.

Deppenmeier U, Blaut M, Mahlmann A et al. Reduced coenzyme F_{20}: heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. *Proc Natl Acad Sci* 1990;87:9449–53.

Deppenmeier U, Lienard T, Gottschalk G. Novel reactions involved in energy conservation by methanogenic archaea. *FEBS Lett* 1999;457:291–7.

Deppenmeier U. The unique biochemistry of methanogenesis. *Progress in Nucleic Acid Research and Molecular Biology*. Vol. 71, Academic Press, 2002, 223–83.

De Wit L, Eker A. 8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile *Halobacterium cutirubrum*. *FEBS Microbiol Lett* 1987;48:121–5.

Doddemma HJ, Vogels GD. Improved identification of methanogenic bacteria by fluorescence microscopy. *Appl Environ Microbiol* 1978;36:752–4.

Dolfing J, Mulder J-W. Comparison of methane production rate and coenzyme F_{20} content of methanogenic consortia in anaerobic granular sludge. *Appl Environ Microbiol* 1985;49:1142–5.

Doukyu N, Ogino H. Organic solvent-tolerant enzymes. *Biochem Eng J* 2010;48:270–82.

Drenth J, Trajkovic M, Fraaije MW. Chemoenzymatic synthesis of an unnatural deazaflavin cofactor that can fuel F_{20}-dependent enzymes. *ACS Cat* 2019;9:6435–43.

Dubnau E, Chan J, Raynaud C et al. Oxygenated mycolic acids are necessary for virulence of *Mycobacterium tuberculosis* in mice. *Mol Microbiol* 2000;36:630–7.

Duin EC, Wagner T, Shima S et al. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. *Proc Natl Acad Sci* 2016;113:6172–7.

Ebert S, Fischer P, Knackmuss H-J. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by *Nocardioides simplex* FJ2-1A. *Biodegradation* 2001;12:367–76.

Ebert S, Rieger P-G, Knackmuss H-J. Function of coenzyme F_{20} in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by *Nocardioides simplex* FJ2-1A. *J Bacteriol* 1999;181:2669–74.

Edmondson DE, Barman B, Tollin G. Importance of the N-5 position in flavine coenzymes. Properties of free and protein-bound 5-deaza analogs. *Biochemistry* 1972;11:1133–8.

Edwards T, McBride BC. New method for the isolation and identification of methanogenic bacteria. *Appl Microbiol* 1975;29:540–5.

Eicher T, Hauptmann S, Speicher A. The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications: John Wiley & Sons, 2013.

Eirich LD, Dugger RS. Purification and properties of an F_{20}-dependent NADPH reductase from *Methanobacterium thermoautotrophicum*. *Biochimica et Biophysica Acta (BBA) Gen Sub* 1984;802:454–8.

Eirich LD, Vogels G, Wolfe R. Distribution of coenzyme F_{20} and properties of its hydrolytic fragments. *J Bacteriol* 1979;140:20–7.

Eirich LD, Vogels GD, Wolfe RS. Proposed structure for coenzyme F_{20} from Methanobacterium. *Biochemistry* 1978;17:4583–93.

Eker A, Hessels J, Meerwaldt R. Characterization of an 8-hydroxy-5-deazaflavin: NADPH oxidoreductase from *Streptomyces griseus*. *Biochimica et Biophysica Acta (BBA) Gen Sub* 1989;990:80–6.

Evans PN, Boyd JA, Leu AO et al. An evolving view of methane metabolism in the *Archaea*. *Nat Rev Microbiol* 2019;17:219–32.

Evans PN, Parks DH, Chadwick GL et al. Methane metabolism in the archaeal phylum *Bathyarchaeota* revealed by genome-centric metagenomics. *Science* 2015;350:434–8.

Ferry JK, Kastade KA. Methanogenesis. *Archaea*: Mol Cell Biol 2007:288–314. DOI: 10.1128/9781555815516.ch13.

Fida TT, Palamuru S, Pandey G et al. Aerobic biodegradation of 2,4-dinitroanisole by *Nocardioides sp*. strain JS1661. *Appl Environ Microbiol* 2014;80:7725–31.

Fiegib K, Friedrich B. Purification of the F_{20}-reducing hydrogenase from *Methanococcoides barkeri* (strain Fusaro). *Eur J Biochem* 1989;184:79–88.

Fisher J, Spencer R, Walsh C. Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphate, and 5-deazariboflavin 5'-diphosphate, 5'→ 5'-adenosine ester. *Biochemistry* 1976;15:1054–64.

Forouhar F, Abashidze M, Xu H et al. Mechanisms of resistance to delamanid, a drug for *Mycobacterium tuberculosis*. *Tuberculosis* 2018;108:186–94.

Glas AF, Maul MJ, Cryle M et al. The archaeal cofactor F_{0} is a precursor of the flavin analogues 5-deazariboflavin, 5-deazariboflavin 5'-phosphate, and 5-deazariboflavin 5'-diphosphate, 5'→ 5'-adenosine ester. *Biochemistry* 1976;15:1054–64.

Gorris L. Cofactor contents of methanogenic bacteria reviewed. *Biofactors* 1994;4:139–45.
Graupner M, White RH. Biosynthesis of the phosphodiester bond in coenzyme F420 in the methanoarchaea. Biochemistry 2001;40:10859–72.

Graupner M, Xu H, White RH. Characterization of the 2-phospho-L-lactate transferase enzyme involved in coenzyme F420 biosynthesis in Methanococcus jannaschii. Biochemistry 2002;41:3754–61.

Greening C, Ahmed FH, Mohamed AE et al. Physiology, biochemistry, and applications of F420- and Fd-dependent redox reactions. Microbiol Mol Biol Rev 2016;80:451–93.

Greening C, Geier R, Wang C et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J 2019;13:2617–32.

Greening C, Jirapanjawat T, Afrozoe S et al. Mycobacterial F420H2-dependent reductases promiscuously reduce diverse compounds through a common mechanism. Front Microbiol 2017;8:1000.

Grinter R, Ney R, Brammananath R et al. Cellular and structural basis of the unique intermediate dehydro-F20-0 in mycobacteria. Mysystems 2020;5:e00389–20.

Grochowski LL, Xu H, White RH. Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 2008;47:3033–7.

Grochowski LL, Xu H, White RH. Identification of lactaldehyde dehydrogenase in Methanocaldococcus jannaschii and its involvement in production of lactate for F420 biosynthesis. J Bacteriol 2006;188:2836–44.

Guerra-Lopez D, Daniela L, Rawat M. Mycobacterium smegmatis mc2155 fbcI and MSMEG 2392 are involved in triphenylmethane dye decolorization and coenzyme F420 biosynthesis. Microbiology 2007;153:2724–32.

Gurumurthy M, Rao M, Mukherjee T et al. A novel F20-dependent anti-oxidant mechanism protects Mycobacterium tuberculosis against oxidative stress and bactericidal agents. Mol Microbiol 2013;87:744–55.

Guy L, Ettema TJ. The archaeal "TACK"superphylum and the origin of eukaryotes. Trends Microbiol 2011;19:580–7.

Hagemeier CH, Shima S, Thauer RK et al. Coenzyme F420-dependent methylenetetrahydrodethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quaternary structure. J Mol Biol 2003;322:1047–57.

Hagemeier CH, Shima S, Warkentin E et al. Coenzyme F420-dependent methylenetetrahydrodethanopterin dehydrogenase from Methanopyrus kandleri: the selenomethionine-labelled and non-labelled enzyme crystallized in two different forms. Acta Crystallogr Sect D Biol Crystallogr 2003;59:1653–5.

Hallam SJ, Putnam N, Preston CM et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 2004;305:1457–62.

Haroon MF, Hu S, Shi Y et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013;500:567–70.

Hartzell PL, Zivilius G, Escalante-Semerena JC et al. Coenzyme F420 dependence of the methylenetetrahydrodethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 1985;133:884–90.

Hasan MR, Rahman M, Jaques S et al. Glucose 6-phosphate accumulation in mycobacteria implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 2010;285:19135–44.

Haver HL, Chua A, Ghode P et al. Mutations in genes for the F420 biosynthetic pathway and a nitroreductase enzyme are the primary resistance determinants in spontaneous in vitro-selected PA-824-resistant mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2015;59:5316–23.

Heiss G, Hofmann KW, Trachtmann N et al. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2, 4, 6-trinitrophenol degradation. Microbiology 2002;148:799–806.

Henderson G, Cox F, Ganesh S et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 2015;5:14567.

Hendrickson EL, Leigh JA. Roles of coenzyme F420-reducing hydrogenases and hydrogen-and F420-dependent methylenetetrahydrodethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. J Bacteriol 2008;190:4818–21.

Hocking WP, Stokke R, Raalvam I et al. Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol 2014;5:e95.

Hoffmann C, Leis A, Niederweis M et al. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci 2008;105:3963–7.

Hollmann F, Opperman DJ, Paul CE. Enzymatic reductions-A chemist’s perspective. Angew Chem Int Ed 2020;60:5644–65.

Hossain MS, Le CQ, Joseph E et al. Convenient synthesis of deazaflavin cofactor F0 and its activity in F420-dependent NADP reductase. Org Biomol Chem 2015;13:5082–5.

Hristov AN, Oh J, Giallongo F et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc Natl Acad Sci 2015;112:10663–8.

Huang H, Wang S, Moll J et al. Electron bifurcation involved in the energy metabolism of the acetoogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2. J Bacteriol 2012;194:3689–99.

Hug LA, Thomas BC, Sharon I et al. Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 2016;18:159–73.

Höfer I, Crüsemann M, Radzom M et al. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem Biol 2011;18:381–91.

Ichikawa H, Bashiri G, Kelly WL. Biosynthesis of the thiopetins and identification of an F420 dependent dehydropropieridine reductase. J Am Chem Soc 2018;140:10749–56.

Ite T, Bäumer S, Deppenmeier U. Energy conservation by H2: heterodisulfide oxidoreductase from Methanoculleus maripaludis and its activity in F420-dependent NADP reductase. Org Biomol Chem 2015;13:5082–5.

Iwatake M, Kunishima T, Kato Y et al. Discovery of the GAS5A gene involved in the biosynthesis of the siderophore gasira. FEBS Lett 2006;589:25–30.

Iwatake M, Kunishima T, Kato Y et al. Discovery of the GAS5A gene involved in the biosynthesis of the siderophore gasira. FEBS Lett 2006;589:25–30.
Isabelle D, Simpson DR, Daniels L. Large-scale production of coenzyme F420-5, 6 by using Mycobacterium smegmatis. Appl Environ Microbiol 2002;68:5750–5.

Jacobson F, Daniels L, Fox J et al. Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. J Biol Chem 1982;257:3385–8.

Jacobson F, Walsh C. Properties of 7, 8-dimethyl-8-hydroxy-5-deazaflavins relevant to redox coenzyme function in methanogen metabolism. Biochemistry 1984;23:979–88.

Jain M, Petzold CJ, Schelle MW et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci 2010;104:5133–8.

Jay ZJ, Beam JP, Dlakić M et al. Insights into the lifestyle and half-site reactivity within an F420-dependent enzyme, from the thermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 1997;390:364–70.

Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 2009;63:311–34.

Kolattukudy P, Fernandes ND, Azad A et al. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 1997;24:263–70.

Kołowski JA, Stieglmeier M, Schleper C et al. Pathways and key intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and Thaumarchaeota. ISME J 2016;10:1836–45.

Kozubal MA, Romine M, deM Jennings R et al. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 2013;7:622–34.

Krzycki JA, Kenealy WR, DeNiro MJ et al. Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide-hydrogen. Appl Environ Microbiol 1987;53:2597–9.

Kulkarni G, Kridelbaugh DM, Guss AM et al. Hydrogen is a preferred intermediate in the energy-conserving electron transport chain of Methanosarcina barkeri. Proc Natl Acad Sci 2009;106:15915–20.

Kumar H, Nguyen Q-T, Binda C et al. Isolation and characterization of a thermostable F420: NADPH oxidoreductase from Thermobifida fusca. J Biol Chem 2017;292:10123–30.

Kumar H. Exploring Deazaflavoenzymes as Biocatalysts: University of Groningen, 2018.

Kunow J, Lindner D, Stetter KO et al. F420H2: quinone oxido-reductase from Archaeoglobus fulgidus. Eur J Biochem 1994;223: 503–11.

Kunow J, Schwörrer B, Stetter KO et al. A F420-dependent NADP+ reductase in the extremely thermophilic sulfate-reducing Archaeoglobus fulgidus. Arch Microbiol 1993;160:199–205.

Kypers MM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol 2018;16:263–76.

Lackner G, Peters EE, Helfrich EJ et al. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges. Proc Natl Acad Sci 2017;114:E347–56.

Lambrecht J, Cichocki N, Hübschmann T et al. Flow cytometric quantification, sorting and sequencing of methanogenic archaea based on F420 autofluorescence. Microb Cell Fact 2017;16:180.

Lapalikar GV, Taylor MC, Warden AC et al. F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the actinomycetales. PLoS One 2012;7:e30114.

Laso-Pérez R, Wegener G, Knittel K et al. Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 2016;539:396–401.

Leahy SC, Kelly WJ, Altermann E et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 2010;5:e8926.
Le CQ, Joseph E, Nguyen T et al. Optimization of expression and purification of recombinant Archeoglobus fulgidus F420H2: NADP+ oxidoreductase, an F420 cofactor dependent enzyme. Protein J 2015;34:391–7.

Lee BM, Harold LX, Almeida DV et al. Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathog 2020;16:e1008287.

Lenke H, Pieper D, Bruhn C et al. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl Environ Microbiol 1992;58:2928–32.

Li H, Graupner M, Xu H et al. F420 activity toward 2,4-dinitrophenol catalyzes the addition of two glutamates to F420-0 in F420 coenzyme biosynthesis in Methanococcus jannaschii. Biochemistry 2003;42:9771–8.

Li H, Xu H, Graham DE et al. Glutathione synthetase homologs encode α1-glutamate ligases for monoglutamyl derivative in nonmethanogenic archaea. Proc Natl Acad Sci 2003;100:9785–90.

Lin X, White R. Occurrence of coenzyme F420 and its gammonotglutamyl derivative in archaeal and eubacterial archaea. J Bacteriol 1986;168:444–8.

Liu Y, Matsumoto M, Ishida H et al. Delamanid: from discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis 2018;111:20–30.

Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 2008;1125:171–89.

Li W, Chou S, Khullar A et al. Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an S-γ-glutamyl derivative in nonmethanogenic archaea. J Antibiot 1995;48:977–80.

Lukat P, Katsuyama Y, Wenzel S et al. Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl Environ Microbiol 2009;75:2869–78.

López-García P, Moreira D. Eukaryogenesis, a syntrophy affair. In: Roberts MC, Foran OE, Martin C (eds) Encyclopedia of Biophysics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, 601–6.

MacLeod F, Kindler GS, Wong HL et al. Asgard archaea: diversity, function, and evolutionary implications in a range of microorganisms. AIMS Microbiol 2019;5:48.

Maglica Ž, Özdemir E, McKinney JD. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism. MBio 2015;6: e02236–14.

Malhotra K, Kim S-T, Walsh C et al. Roles of FAD and 8-hydroxy-5-deazaflavin chromophores in photoactivation by Anacystis nidulans DNA photolyase. J Biol Chem 1992;267:15406–11.

Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun Integr Biol 2009;2:215–8.

Manjunatha UH, Boshoff H, Dowd CS et al. Identification of a nitroimidazole-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci 2006;103:431–6.

Mao Y, Varoglu M, Sherman DH. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol 1999;6:251–63.

Marrakchi H, Lanéelle M-A, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 2014;21:67–85.

Martin C, Tjallinks G, Trajkovic M et al. Facile stereoselective reduction of prochiral ketones by using an F420H2-dependent alcohol dehydrogenase. ChemBioChem 2020;22:156–9.

Mascotti ML, Ayub MJ, Fraaije M. On the diversity of F420-dependent oxidoreductases: a sequence-and structure-based classification. bioRxiv 2020.

Mascotti ML, Kumar H, Nguyen Q-T et al. Reconstructing the evolutionary history of F420-dependent dehydrogenases. Sci Rep 2018;8:1–10.

Mashalidis EH, Gittis AG, Tomczak A et al. Molecular insights into the binding of coenzyme F420 to the conserved protein Rv1155 from Mycobacterium tuberculosis. Protein Sci 2015;24:729–40.

Mathew S, Trajkovic M, Kumar H et al. Enantio- and regioselective ene-reductions using F420H2-dependent enzymes. Chem Commun 2018;54:11208–11.

Mayerl F, Piret J, Kiener A et al. Functional expression of 8-hydroxy-5-deazaflavin-dependent DNA photolyase from Anacystis nidulans in Streptomyces coelicolor. J Bacteriol 1990;172:6061–5.

McCarthy AJ, St. Actinomycetes as agents of biodegradation in the environment—a review. Gene 1992;115:189–92.

McCormick J, Morton GO. Identity of cosynthetically transfer factor I of Streptomyces aureofaciens and fragment F2 from coenzyme F420 of Methanobacterium species. J Am Chem Soc 1982;104:4014–5.

McCormick J, Sjolander NO, Miller PA et al. The biological reduction of 7-chloro-5a (11a)-dehydrotricyclene to 7-chlorotetracyclene by Streptomyces aureofaciens. J Am Chem Soc 1958;80:6460–1.

Miller PA, Sjolander NO, Nalesnyk S et al. Cosynthetically transfer factor I, a factor involved in hydrogen-transfer in Streptomyces aureofaciens. J Am Chem Soc 1960;82:5002–3.

Mills DJ, Vitt S, Strauss M et al. De novo modeling of the F420α-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. eLife 2013;2:e00218.

Mohamed A, Ahmed F, Arulmozhiraja S et al. Protonation state of F420H2 in the prodrug-activating deazaflavin dependent nitroreductase (Ddm) from Mycobacterium tuberculosis. Mol Biosyst 2016a;12:1110.

Mohamed AE, Condie-Jurkic K, Ahmed FH et al. Hydrophobic shielding drives catalysis of hydride transfer in a family of F420H2-dependent enzymes. Biochemistry 2016b;55:6908–18.

Momper L, Aronson HS, Amend JP. Genomic description of ‘Can- didatus Abyssubacteria,’ a novel subsurface lineage within the candidate phylum Hydrogenedentes. Front microbiol 2018;9:1993.

Morgavi D, Forano E, Martin C et al. Microbial ecosystem and methanogenesis in ruminants. Animal 2010;4:1024.

Mori T, Cahn JK, Wilson MC et al. Single-bacterial genomics validates rich and varied specialized metabolism of uncultivated Entotheonella sponge symbionts. Proc Natl Acad Sci 2018;115:1718–23.

Mukherjee T, Boshoff H. Nitroimidazoles for the treatment of TB: past, present and future. Fut Med Chem 2011;3:1427–54.

Munro AW, McLean KJ. Electron transfer cofactors. In: Roberts GCK (ed.) Encyclopedia of Biophysics, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,601–6.

Muth E, Morschel E, Klein A. Purification and characterization of an 8-hydroxy-5-deazaflavin reducing-hydrogenase from the archaeabacterium Methanococcus voltae. Eur J Biochem 1987;169:571–7.

Möller-Zinkhan D, Börner G, Thauer RK. Function of methanofuran, tetrahydrodmyanthoprotein, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 1989;152:362–8.

Möller-Zinkhan D, Thauer RK. Anaerobic lactate oxidation to CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA

...
carbon–carbon cleavage reaction in cell extracts. Arch Microbiol 1990;153:215–8.
Nagar-Anthal KR, Worrell VE, Teal R et al. The pterin lumazine inhibits growth of methanogens and methane formation. Arch Microbiol 1996;166:136–40.
Nagarajan K, Shankar RG, Rajappa S et al. Nitroimidazoles XXI 2, 3-dihydro-6-nitroimidazo [2, 1-b] oxazoles with antituberculosis activity. Eur J Med Chem 1989;24:631–3.
Naraoka T, Momoi K, Fukasawa K et al. Isolation and identification of a naturally occurring 7, 8-dimethyl-8-hydroxy-5-deazapurinoblofin derivative from Mycobacterium avium. Biochimica et Biophysica Acta (BBA) Gen Sub 1984;797:377–80.
Nelson-Sathi S, Sousa FL, Roettger M et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 2015;517:77–80.
Nercessian O, Bienvenu N, Moreira D et al. Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 2005;7:118–32.
Ney B, Ahmed FH, Carere CR et al. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME J 2017a;11:125.
Ney B, Carere CR, Sparling R et al. Cofactor tail length modulates catalysis of bacterial F420-dependent oxidoreductases. Front Microbiol 2017b;8:1902.
Ney B. Characterisation and Industrial Application of Mycobacterial F420 Biosynthesis Volume Bachelor of Science (Honours): Australian National University, 2019.
Nguyen LA, He H, Pharm-Huy C. Chiral drugs: an overview. Int J Biomed Sci IJBS 2006;2:85.
Nguyen Q-T, Trinco G, Binda C et al. Discovery and characterisation of an F420-dependent glucose–6-phosphate dehydrogenase (Rh-FGD1) from Rhodococcus jostii RHA1. Appl Microbiol Biotechnol 2017;101:2831–42.
Nocek B, Evdokimova E, Proudfoot M et al. Structure of an amide bond forming F420-γγ-glutamyl ligase from Archaeoglobus fulgidus-a member of a new family of non-ribosomal peptide synthetases. J Mol Biol 2007;372:456–69.
O’Brien D, Weinstock L, Cheng C. 10-deazariboflavin. Chem Ind 1967;48:2044.
O’Brien DE, Weinslock LT, Cheng C. Synthesis of 10-deazariboflavin and related 2, 4-Dioxopyrimido [4, 5-b] quinolines. J Heterocycl Chem 1970;7:99–105.
Orsi WD, Vuillenmin A, Rodriguez P et al. Metabolic activity analyses demonstrate that Lokichaeon exhibits homoacetogenesi in sulfidic marine sediments. Nat Microbiol 2020;5:248–55.
Oyugi MA, Bashiri G, Baker EN et al. Mechanistic insights into F20-dependent glucose–6-phosphate dehydrogenase using isotope effects and substrate inhibition studies. Biochimica et Biophysica Acta (BBA) Proteins Proteomics 2018;1866:387–95.
Patel RN. Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr Opin Biotechnol 2001;12:587–604.
Patra A, Park T, Kim M et al. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 2017;8:1–18.
Peck MW. Changes in concentrations of coenzyme F420 analogs during batch growth of Methanosarcina Barkeri and Methanosarcina mazei. Appl Environ Microbiol 1989;55:940–5.
Peschke U, Schmidt H, Zhang HZ et al. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78–11. Mol Microbiol 1995;16:1137–56.
Philmus B, Decamps L, Berteau O et al. Biosynthetic versatility and coordinated action of S′-deoxyadenosine radicals in deazaflavin biosynthesis. J Am Chem Soc 2015;137:5406–13.
Purwanti E, Daniels L, Mukhopadhyay B. F420/H3 is required for phthiocercal dimycocerosest synthesis in mycobacteria. J Bacteriol 2016;198:2020–8.
Purwanti E, Daniels L. Molecular analysis of the gene encoding F420-dependent glucose–6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 1996;178:2861–6.
Purwanti E, Daniels L. Purification of a novel coenzyme F420-dependent glucose–6-phosphate dehydrogenase from Mycobacterium smegmatis. FEMS Microbiol Lett 1997;146:129–34.
Purwanti E, Mukhopadhyay B. Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci 2009;106:6333–8.
Purwanti E, Mukhopadhyay B. Rv0132c of Mycobacterium tuberculosis encodes a coenzyme F420-dependent hydroxymycolic acid dehydrogenase. PLoS One 2013;8:e81985.
Quigley J, Hughitt VK, Velikovsky CA et al. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. MBio 2017;8.
Rhee WS. Oceanic methane biogeochemistry. Chem Rev 2007;107:486–513.
Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J 2020:1–11.
Ren M, Feng X, Huang Y et al. Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution. ISME J 2019;13:2150–61.
Rifat D, Li S-Y, Ioerger TR et al. Mutations in fbd (Rv2983) as a novel determinant of resistance to pretomanid and delamanid in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2020;65:e01948–20.
Ryan NJ, Lo JH. Delamanid: first global approval. Drugs 2014;74:1041–5.
Sambandan D, Dao DN, Weinrick BC et al. Keto-mycolic acid-dependent pellicle formation confers tolerance to drug-sensitive Mycobacterium tuberculosis. mBio 2013;4:e00222–13.
Sancar A. Structure and function of DNA photolyase. Biochemistry 1994;33:2–9.
Sancar GB. DNA photolyses: physical properties, action mechanism, and roles in dark repair. Mut Res DNA Repair 1990;236:147–60.
Schauer NL, Ferry JG. Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum. J Bacteriol 1986;165:405–11.
Schmitz RA, Linder D, Stetter KO et al. N5,N10-Methylentetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus. Arch Microbiol 1991;156:427–34.
Schrijver AD, Mot RD. Degradation of pesticides by actinomycetes. Crit Rev Microbiol 1999;25:85–119.
Schwörer B, Breiting J, Klein AR et al. Formylmethanofuran: tetrahydromethanopterin formyltransferase and N5,N10-methyltetrahydromethanopterin dehydrogenase from the sulfate-reducing Archaeoglobus fulgidus: similarities with...
the enzymes from methanogenic Archaea. Arch Microbiol 1993;159:225–32.

Seedorf H, Dreisbach A, Hedderich R et al. F520H2 oxidase (FprA) from Methanoregulibacter arborophilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 2004;182:126–37.

Seedorf H, Hagemeier CH, Shima S et al. Structure of coenzyme F520H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J 2007;274:1588–99.

Seitz KW, Dombrowski N, Eme L et al. Asgard archaea capable of anaerobic hydrocorbic cycling. Nat Commun 2019;10:1–11.

Sekhon BS. Chiral pesticides. J Pest Sci 2009;34:1–12.

Selengut JD, Haft DH. Unexpected abundance of coenzyme F420-dependent enzymes in Mycobacterium tuberculosis and other actinobacteria. J Bacteriol 2010;192:5788–98.

Shah MV, Antony J, Kang SW et al. Cofactor F420-dependent enzymes: an under-explored resource for asymmetric redox biocatalysis. Catalysts 2019;9:868.

Sheng Y, Sun X, Shen Y et al. Structural and functional similarities in the ADP-forming amide bond ligase superfamily: implications for a substrate-independent conformational change in poly(lipo)glutamate synthetase. J Mol Biol 2000;302:425–38.

Shi J, Xu X, Liu PY et al. Discovery and biosynthesis of guanipiperazine from a NRPS-like pathway. Chem Sci 2021;12:2925–30.

Shima S, Warkentin E, Grabarse W et al. Structure of coenzyme F420 dependent methylenetetrahydrodiamethanopterin reductase from two methanogenic archaea. J Mol Biol 2000;300:935–50.

Shuber AP, Orr EC, Recny MA et al. Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J Biol Chem 1986;261:12942–7.

Siméone R, Constant P, Malaga W et al. Molecular dissection of the biosynthetic relationship between phthiocol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J 2007;274:1957–69.

Singh R, Manjunatha U, Boshoff HI et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 2008;322:1392–5.

Smith MR, Mah RA. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl Environ Microbiol 1978;36:870–9.

Sorokin DY, Makarova KS, Abbas B et al. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2017;2:17081.

Souza FL, Neukirchen S, Allen JF et al. Lokiaichaeon is hydrogen dependent. Nat Microbiol 2016;1:1–3.

Spang A, Caceres EF, Ettema TJ. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 2017;357:eaaf3883.

Spang A, Ettema TJ. Archaeal evolution: the methanogenic roots of Archaea. Nat Microbiol 2017;2:1–2.

Spang A, Poehlein A, Offe P et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera g argentia: insights into metabolic versatility and environmental adaptations. Environ Microbiol 2012;14:3122–45.

Spang A, Stairs CW, Dombrowski N et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019;4:1138–48.

Speirs L, Rice DT, Petrovski S et al. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Front Microbiol 2019;10:2015.

Spencer R, Fisher J, Walsh C. Preparation, characterization, and chemical properties of the flavin coenzyme analogues 5-deazariboflavin, 5-deazariboflavin 5’-phosphate, and 5-deazariboflavin 5’-diphosphate, 5’→5’-adenosine ester. Biochemistry 1976;15:1043–53.

Steiningerova L, Kamenik Z, Gazak R et al. Different reaction specificities of F520H2-dependent reductases facilitate pyrrolobenzodialdehydes and lincomycin to fit their biological targets. J Am Chem Soc 2020;142:3440–8.

Stetter KO, Lauerer G, Thomm M et al. Isolation of extremely thermophilic sulfite reducers: evidence for a novel branch of archaeabacteria. Science 1987;236:822–4.

Stover CK, Warrenre P, VanDevanter DR et al. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 2000;405:962–6.

Stuermer R, Hauer B, Hall M et al. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 2007;11:203–13.

Susanti D, Loganathan U, Mukhopadhyay B. A Novel F420-dependent thioredoxin reductase gated by low potential FAD a tool for redox regulation in an anaerobe. J Biol Chem 2016;291:23084–100.

Tamada T, Kitadokoro K, Higuchi Y et al. Crystal structure of DNA photolyase from Anacystis nidulans. Nat Struct Mol Biol 1997;4:887–91.

Tao M, Xu M, Zhang F et al. Functional genome mining reveals a novel class V lantipeptide containing a D-amino acid introduced by an F520H2-dependent reductase. Angew Chem Int Ed 2020.

Taylor M, Scott C, Grogan G. F420-dependent enzymes-potential for applications in biotechnology. Trends Biotechnol 2013;31:63–4.

Taylor MC, Jackson CJ, Tattersall DB et al. Identification and characterization of two families of F420H2-dependent reductases from Mycobacteria that catalyse aflatoxin degradation. Mol Microbiol 2010;78:561–75.

Te Brömmelstroet B, Hensgens CM, Keltjens JT et al. Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydrodiamethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochimica et Biophysica Acta (BBA) Gen Subj 1991;1073:77–84.

Te Brömmelstroet BW, Geerts WJ, Keltjens JT et al. Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydrodiamethanopterin dehydrogenase from Methanobacterium thermotrophicum strain ΔH. Biochimica et Biophysica Acta (BBA) Protein Struct Mol Enzymol 1991;1079:293–302.

Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977;41:100.

Thauer RK, Kaster A-K, Seedorf H et al. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6:579–91.

Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson: 1998 Marjory Stephenson prize lecture. Microbiology 1998;144:2377–406.
Wang P, Kim W, Pickens LB et al. Heterologous expression and manipulation of three tetracycline biosynthetic pathways. Angew Chem 2012;124:11298–302.

Wang Q, Bosshoff HI, Harrison JR et al. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 2020;367:1147–51.

Wang Y, Wegener G, Hou J et al. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 2019;4:595–602.

Warkentin E, Hagemeier CH, Shima S et al. The structure of F420-dependent methylenetetrahydrodichemotoprin dehydrogenase: a crystallographic ‘superstructure’ of the selenomethionine-labelled protein crystal structure. Acta Crystallogr Sect D Biol Crystallogr 2005;61:198–202.

Warkentin E, Mamat B, Sordel-Klippert M et al. Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound. EMBO J 2001;20:6561–9.

Weiss MC, Sousa FL, Mrnjavac N et al. The physiology and habitat of the last universal common ancestor. Nat Microbiol 2016;1:1–8.

Welander PV, Metcalf WW. Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc Natl Acad Sci 2005;102:10664–9.

Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of acetotrophic methanogens. Biochimica et Biophysica Acta (BBA) Bioenerg 2014;1837:1130–47.

Welte C, Deppenmeier U. Membrane-bound electron transport in Methanoseta thermophila. J Bacteriol 2011;193:2868–70.

Welte C, Deppenmeier U. Re-evaluation of the function of the F420 dehydrogenase in electron transport of Methanosarcina mazei. FEBS J 2011;278:1277–87.

Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale. Technol Transf Biotechnol: Springer, 2005, 225–60.

Widdel F, Wolfe R. Expression of secondary alcohol dehydrogenase in methanogenic bacteria and purification of the F420-specific enzyme from Methanogenium thermophilum strain TCI. Arch Microbiol 1989;152:322–8.

Williams TA, Szöllösi GJ, Spang A et al. Integrative modeling of gene and genome evolution root the archaeal tree of life. Proc Natl Acad Sci 2017;114:E4602–11.

Wilson MC, Mori T, Rückert C et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014;506:58–62.

Winkler CK, Faber K, Hall M. Biocatalytic reduction of activated CC-bonds and beyond: emerging trends. Curr Opin Chem Biol 2018;43:97–105.

Wood GE, Haydock AK, Leigh JA. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 2003;185:2548–54.

Xia K, Shen G-B, Zhu X-Q. Thermodynamics of various F420 coenzyme models as sources of electrons, hydride ions, hydrogen atoms and protons in acetocitrile. Org Biomol Chem 2015;13:6255–68.

Yang JS, Kim KJ, Choi H et al. Delamanid, bedaquiline, and linezolid minimum inhibitory concentration distributions and resistance-related gene mutations in multidrug-resistant and extensively drug-resistant tuberculosis in Korea. Ann Lab Med 2018;38:563–8.
Yan Z, Wang M, Ferry JG. A ferredoxin-and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. MBio 2017;8:e02285–16.
Yuan Y, Zhu Y, Crane DD et al. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 1998;29:1449–58.
Yu T, Wu W, Liang W et al. Growth of sedimentary Bath-yarchaeota on lignin as an energy source. Proc Natl Acad Sci 2018;115:6022–7.
Zhalnina KV, Dias R, Leonard MT et al. Genome sequence of Candidatus Nitrososphaera evergladensis from group I. 1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014;9:e101648.
Zhou Z, Liu Y, Xu W et al. Genome-and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. Msystems 2020;5.
Zhou Z, Pan J, Wang F et al. Bathyarchaeota: globally distributed metabolic generalists in anoxic environments. FEMS Microbiol Rev 2018;42:639–55.
Zhu J, Zheng H, Ai G et al. The genome characteristics and predicted function of methyl-group oxidation pathway in the obligate aceticlastic methanogens, Methanosaeta spp. PLoS One 2012;7:e36756.