Electroweak structure of light nuclei within chiral effective field theory

Laura E. Marcucci

University of Pisa
INFN-Pisa

EFB22, September 11, 2013

Thanks to my collaborators:
A. Kievsky, M. Viviani, S. Rosati [Univ. of Pisa & INFN-Pisa]
L. Girlanda [Univ. of Salento]
R. Schiavilla, M. Piarulli [ODU & Jefferson Lab., USA]
S. Pastore [ANL, USA]
Outline

- Introduction: the χEFT framework for the EW transition operators
- The electromagnetic sector:
 - electromagnetic structure of $A = 2, 3$ nuclei
 - electromagnetic moments and transitions in $A \leq 9$
- The weak sector:
 - muon capture on $A = 2, 3$ nuclei
 - the pp reaction ($p + p \rightarrow d + e^+ + \nu_e$)
- Outlook
Introduction

Until \(\simeq 15 \) years ago: POTENTIAL MODEL APPROACH (PMA)

- Accurate \textbf{phenomenological} potentials: \(V_{NN} + V_{NNN} \) (see AV18+UIX)
- \textbf{Realistic} electroweak currents: Meson-Exchange Currents (MEC) + \(\Delta \)

\(\Rightarrow \) very successful \textbf{BUT} no simple connection to QCD

Chiral Effective Field Theory (\(\chi \)EFT): very short summary

- Nuclear physics \(\simeq \) QCD at low-energy
 \(\rightarrow \) nucleons \((N) \), pions \((\pi) \), EW fields \((A_\mu) \)

- Chiral Lagrangian \(\mathcal{L}(N; \pi; A_\mu) = \sum_\nu \mathcal{L}_\nu \); \(\mathcal{L}_\nu \propto \mathcal{O}(Q/\Lambda_{QCD})^\nu \)
 \(\rightarrow \) regularization with cutoff function \(- \Lambda \simeq 500 - 600 \text{ MeV} + \text{LECs} \)

Disadvantage: limited to processes with \(Q \simeq 1 - 2 m_\pi \)

\textbf{Advantages:}
- nuclear force "hierarchy" \(\rightarrow \) accurate \(V_{NN} + V_{NNN} \)
- consistent framework for interactions + currents
Nuclear EW currents in χEFT

EW operators: $\rho^\gamma, j^\gamma; \rho^{V/A}, j^{V/A}$

$\text{CVC } \Rightarrow \rho^V/j^V \rightarrow \rho^\gamma/j^\gamma$

History

- Park et al. in heavy-baryon χPT (HBχPT) \rightarrow since \simeq 1995
- Pastore et al. in time-ordered perturbation theory (TOPT) \rightarrow since 2009
- Kölling et al. with the unitary transform method \rightarrow in parallel since 2009

To be remarked:

- Park et al. currents ready BEFORE the χEFT potentials
- χEFT currents + phenomenological potentials = “hybrid” χEFT approach
Power counting for j^γ

$\mathcal{O}(Q^{-2})$

$O(Q^{-1})$

$\mathcal{O}(Q^0)$

$\mathcal{O}(Q^1)$

\[j^{(-2)} \propto [e_N(1)(p'_1 + p_1) + i\mu_N(1)\sigma \times q] \times \delta(p'_2 - p_2) + 1 \leftrightarrow 2 \]

"standard" one – pion – exchange

= relativistic corrections

Note: vanishing contribution from diagrams like
Similar results between Pastore et al. and Kölling et al.

Differences with Park et al.

for the box-diagrams

for the terms

Park et al. → $J(ij) \propto q \times [g_{4S}(\sigma_i + \sigma_j) + g_{4V}(\tau_i \times \tau_j)^z (\sigma_i \times \sigma_j)]$

Pastore et al. →

$J_{\text{min}}(ij)$ [LECs from NN scatt. data]

$J_{\text{nm}}(ij) \propto q \times [d_1^S \sigma_i + d_1^V (\tau_i^z - \tau_j^z)\sigma_i]$

$J_{\text{OPE}}(ij) \propto \frac{\sigma_j \cdot k_j}{(m_\pi^2 + k_j^2)} q \times [(d_2^S \tau_i \cdot \tau_j + d_2^V \tau_j^z)k_j$

$+ d_3^V (\tau_i \times \tau_j)^z \sigma_i \times k_j]$
- \(d_1^S \) & \(d_2^S \) → \(\mu_d \) & \(\mu_S(A = 3) \)

- \(d_3^V = \frac{d_2^V}{4} \) (\(\Delta \)-resonance saturation picture) →

- \(d_1^V \) and \(d_2^V \):

 SET I → \(\sigma_{np} \) & \(\mu_V(A = 3) \)

	\(d_1^V \)	\(d_2^V \)
N3LO+N2LO-500	10.36	17.42
N3LO+N2LO-600	41.84	33.14
AV18+UIX-500	45.10	35.57
AV18+UIX-600	257.50	75.00

⇒ \(d_2^V \) fixed by \(\Delta \)-resonance saturation

SET II → \(\sigma_{np} \) ⇒ prediction for \(\mu_V(A = 3) \)

SET III → \(\mu_V(A = 3) \) ⇒ prediction for \(\sigma_{np} \)
\(\Lambda \) [MeV]	\(\mathcal{O}(Q^{-2}) \)	\(\mathcal{O}(Q^{-1}) \)	\(\mathcal{O}(Q^0) \)	\(\mathcal{O}(Q^1) \)-TPE	\(\mathcal{O}(Q^1) \)-min	\(\mathcal{O}(Q^1) \)-nm	\(\mathcal{O}(Q^1) \)-OPE	\(\mathcal{O}(Q^1) \)-OPE
	\(\sigma_{np} \) [mb]							
	500	600	500	600	500	600	500	600
\(\mathcal{O}(Q^{-2}) \)	305.8	304.6	-2.193	-2.182				
\(\mathcal{O}(Q^{-1}) \)	320.6	318.9	-2.408	-2.392				
\(\mathcal{O}(Q^0) \)	319.2	317.6	-2.384	-2.370				
\(\mathcal{O}(Q^1) \)-TPE	321.3	320.5	-2.403	-2.432				
\(\mathcal{O}(Q^1) \)-min	321.3	320.5	-2.413	-2.415				
\(\mathcal{O}(Q^1) \)-nm \(d_1^V \) – SET I	315.2	305.7	-2.297	-2.142				
\(\mathcal{O}(Q^1) \)-OPE \(d_2^V \) – SET I	\textbf{332.6}	\textbf{332.6}	\textbf{-2.553}	\textbf{-2.553}				
\(\mathcal{O}(Q^1) \)-nm \(d_1^V \) – SET II	329.1	328.5	-2.562	-2.561				
\(\mathcal{O}(Q^1) \)-OPE \(d_2^V \) – SET II	\textbf{332.6}	\textbf{332.6}	\textbf{-2.612}	\textbf{-2.622}				
\(\mathcal{O}(Q^1) \)-nm \(d_1^V \) – SET III	326.0	324.7	-2.502	-2.491				
\(\mathcal{O}(Q^1) \)-OPE \(d_2^V \) – SET III	329.4	328.8	\textbf{-2.553}	\textbf{-2.553}				
Exp.	332.6±0.7							-2.553
Static properties for $A = 2, 3$ nuclei

	Theory	Exp.
$r_c(d)$ [fm]	1.972 ± 0.004	1.9733 ± 0.0044
$Q(d)$ [fm2]	0.2836 ± 0.0016	0.2859 ± 0.0003
$Q(d)$ [fm2] (PMA-AV18)	0.275	
$r_c(^3\text{He})$ [fm]	1.962 ± 0.004	1.959 ± 0.030
$r_c(^3\text{H})$ [fm]	1.756 ± 0.006	1.755 ± 0.086
$r_m(^3\text{He})$ [fm]	1.905 ± 0.022	1.965 ± 0.153
$r_m(^3\text{H})$ [fm]	1.791 ± 0.018	1.840 ± 0.181

Piarulli et al., PRC 87, 014006 (2013)
A = 2 results:
current operator

Piarulli et al., PRC 87, 014006 (2013)
\(A = 3 \) results:
charge operator

Piarulli et al., PRC 87, 014006 (2013)
$A = 3$ results: current operator

Piarulli et al., PRC 87, 014006 (2013)
Magnetic moments for $A = 6 - 9$ nuclei

hybrid χEFT = \textit{AV18/UIX GFMC w.f.} + Pastore et al. χEFT currents

	PMA$^{[1]}$	χEFT$^{[2]}$	Exp.
$\mu_S(A = 7)$	0.83	0.91	0.929
$\mu_V(A = 7)$	-4.57	-4.66	-4.654
$\mu_S(A = 8)$	1.18	1.30	1.345
$\mu_V(A = 8)$	-0.18	-0.19	-0.309
$\mu_S(A = 9; 3/2^-)$	0.89	1.01	1.023
$\mu_V(A = 9; 3/2^-)$	-1.41	-1.57	-1.609
$\mu_S(A = 9; 3/2^+)$	0.78	0.88	
$\mu_V(A = 9; 3/2^+)$	4.17	4.35	

[1] Marcucci et al., PRC 78, 065501 (2008)
[2] Pastore et al., PRC 87, 035503 (2013)
EM transitions widths in $A = 6 - 9$ nuclei

- 9Be($^{5/2}^- \rightarrow ^3/2^-$) $B(E2)$
- 9Be($^{5/2}^- \rightarrow ^3/2^-$) $B(M1)$
- 8B($^3^+ \rightarrow 2^+$) $B(M1)$
- 8B($^1^+ \rightarrow 2^+$) $B(M1)$
- 8Li($^3^+ \rightarrow 2^+$) $B(M1)$
- 8Li($^1^+ \rightarrow 2^+$) $B(M1)$
- 7Be($^{1/2}^- \rightarrow ^3/2^-$) $B(M1)$
- 7Li($^{1/2}^- \rightarrow ^3/2^-$) $B(E2)$
- 7Li($^{1/2}^- \rightarrow ^3/2^-$) $B(M1)$
- 6Li($0^+ \rightarrow 1^+$) $B(M1)$

EXPT

GFMC(IA)

GFMC(TOT)

Ratio to experiment

Pastore et al., PRC 87, 035503 (2013)
Power counting for j^A

Note:

- $O(Q^1)$: loop and two-pion-exchange contributions (not yet calculated)

- Park et al. only available model at $O(Q^0)$ → one LEC - d_R

$$d_R = \frac{M_N}{\Lambda_{\chi EFT}} c_D + \frac{1}{3} M_N (c_3 + 2 c_4) + \frac{1}{6}$$

Gårdestig and Phillips, PRL 96, 232301 (2006)
Gazit et al., PRL 103, 102502 (2009)

- fit c_D and c_E (in TNI at N2LO) to $B(A = 3)$ and GT_{Exp}

Laura E. Marcucci (Univ. of Pisa & INFN) EW structure of light nuclei within χEFT EFB22, September 11, 2013
\(\Rightarrow \{c_D; c_E\}_{\text{MAX}} \) and \(\{c_D; c_E\}_{\text{MIN}} \)

Model	\(\Lambda \) [MeV]	\(c_D \)	\(c_E \)	\(B(^{4}\text{He}) \) [MeV]	\(^2a_{nd} \) [fm]
N3LO/N2LO*	500	1.0	-0.029	28.36	0.675
N3LO/N2LO	500	-0.12	-0.196	28.49	0.666
N3LO/N2LO	600	-0.26	-0.846	28.64	0.696
Exp.				28.30	0.645(10)

Marcucci et al., PRL 108, 052502 (2012); Viviani et al., arXiv:1307.5167, submitted to PRL
Elastic $p-d$ scattering $E_{lab} = 3$ MeV

- NN (AV18 + χEFT)
- NN+NNN − χEFT
- AV18+IL7
Elastic $p-^3\text{He}$ scattering $E_p = 5.54$ MeV
Results: muon capture on $A = 2, 3$ nuclei

- $\mu^- + d \rightarrow n + n + \nu_\mu \rightarrow$ capture rate in the doublet iperfine state Γ^D
- $\mu^- + ^3\text{He} \rightarrow ^3\text{H} + \nu_\mu \rightarrow$ total capture rate Γ_0

	$\Gamma^D(1S_0)$	Γ^D	Γ_0
IA $- \Lambda = 500$ MeV	238.8	381.7	1362
IA $- \Lambda = 600$ MeV	238.7	380.8	1360
FULL $- \Lambda = 500$ MeV	254.4(9)	399.2(9)	1488(9)
FULL $- \Lambda = 600$ MeV	255(1)	399(1)	1499(9)

$\Gamma^D = 399(3)$ s$^{-1}$ & $\Gamma_0 = 1494(21)$ s$^{-1}$

vs. $\Gamma^D(\text{exp}) \cdots$ & $\Gamma_0(\text{exp}) = 1496(4)$ s$^{-1}$

Marcucci et al., PRL 108, 052502 (2012)
Marcucci et al. (2011) [PMA+χEFT*]

Wang et al. (1965)

Bertin et al. (1973)

Bardin et al. (1986)

Cargnelli et al. (1986)

Marcucci et al. (2012) [χEFT]
The proton-proton weak capture: where do we stand

\[S(E) = S(0) + S'(0) E + \frac{1}{2} S''(0) E^2 + \cdots \]

- Gamow peak: \(E \approx 6 \text{ keV} \) in the Sun, \(E \approx 15 \text{ keV} \) in larger stars
- Latest review: SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

\[S(0) = 4.01(1 \pm 0.009) \times 10^{-23} \text{ MeV fm}^2 \]
(PMA\[^1\], \(\chi \text{EFT*}[2] \) and \(\chi \text{EFT}[3] \) calculations)

\[S'(0) = S(0) (11.2 \pm 0.1) \text{ MeV}^{-1} \]
(only a PMA calculation)

No realistic calculation of \(S''(0) \)

[1] Schiavilla et al., PRC 58, 1263 (1998)
[2] Park et al., PRC 67, 055206 (2003)
[3] Chen et al., PRC 67, 025801 (2003)
Very recently . . .

\(S(E) \) in \(\chi \text{EFT} \) and PMA

- Energy range 2 keV – 100 keV
- PMA [AV18] or \(\chi \text{EFT} \) [N3LO] + FULL EM interaction
- \(pp \ L \leq 1 \) partial waves: \(^1S_0 \) + all \(P \)-waves

\[
S(0) - ^1S_0 \quad \text{(in } 10^{-23} \text{ MeV fm}^2) \]

	\(V_{\text{nucl}} + V_{\text{Coul}} \)	\(V_{\text{nucl}} + V_{\text{EM}} \)
PMA-IA	3.99	3.96
PMA-FULL	4.03	4.00
\(\chi \text{EFT}(500) \)-IA	3.96	3.94
\(\chi \text{EFT}(500) \)-FULL	4.03	4.01
\(\chi \text{EFT}(600) \)-IA	3.94	3.93
\(\chi \text{EFT}(600) \)-FULL	4.01	4.01

- agreement with \(S^{\text{SFII}}(0) = 4.01(1 \pm 0.009) \)
- \(V_{\text{EM}} - V_{\text{Coul}} \rightarrow \leq 1 \% \) effect
- agreement PMA-\(\chi \text{EFT} \)
- very small cutoff dependence (\(\leq 1 \% \))

Marcucci et al., PRL 110, 192503 (2013)
Cumulative contributions to $S(0)$

	1S_0	$\cdots + ^3P_0$	$\cdots + ^3P_1$	$\cdots + ^3P_2$
PMA	4.000(3)	4.003(3)	4.015(3)	4.033(3)
χEFT(500)	4.008(5)	4.011(5)	4.020(5)	4.030(5)
χEFT(600)	4.007(5)	4.010(5)	4.019(5)	4.029(5)

- P-waves contribution to $S(0) \approx 1\%$
- theoretical uncertainty very small

$$S(0) = 4.03(1 \pm 0.006) \times 10^{-23} \text{ MeV fm}^2$$

vs.

$$S(0)^{\text{SFII}} = 4.01(1 \pm 0.009) \times 10^{-23} \text{ MeV fm}^2$$
Energy dependence of $S(E)$
Polynomial fit of \(S(E) \)

\[
\text{Fit 1: } S(E) = S(0) + S'(0) E + \frac{1}{2} S''(0) E^2
\]

\[
\text{Fit 2: } S(E) = S(0) + S'(0) E + \frac{1}{2} S''(0) E^2 + \frac{1}{6} S'''(0) E^3
\]

\(S'/S(0) \) [MeV\(^{-1}\)]	\(S''/S(0) \) [MeV\(^{-2}\)]	\(S'''/S(0) \) [MeV\(^{-3}\)]	\(\chi^2 \)
\(S + P - \) Fit 1	12.59(1)	199.3(1)	8.8 \times 10^{-4}
\(S + P - \) Fit 2	11.94(1)	248.8(2)	1.9 \times 10^{-4}
\(^1S_0 - \) Fit 1	12.23(1)	178.4(3)	1.2 \times 10^{-3}
\(^1S_0 - \) Fit 2	11.42(1)	239.6(5)	1.9 \times 10^{-4}
\(^1S_0 - \chi\text{EFT}^{[1]} \)	11.3(1)	170(2)	3.4 \times 10^{-1}

\[
S'(0)/S(0)^{\text{SFII}} = (11.2 \pm 0.1) \text{ MeV}^{-1}
\]

\[^{[1]}\] Chen et al., PLB 720, 385 (2013)
Now that EW processes can be studied in χEFT ⋯

- Study other EM processes of interest in χEFT (as $p + d \rightarrow ^3\text{He} + \gamma$)
- Develop weak current operators in χEFT-TOPT
- Repeat pp reaction and muon captures studies
- Study other weak processes of interest in χEFT (as $p + ^3\text{He} \rightarrow ^4\text{He} + e^- + \nu_e$)
- ⋯