Heterogeneity in Phenotype of Usher-Congenital Hyperinsulinism Syndrome

Hearing loss, retinitis pigmentosa, and hyperinsulinemic hypoglycemia ranging from severe to mild with conversion to diabetes

Angham N. Al Mutair, MD1,2
Klaus Brusgaard, MSC, PhD3
Bassam Bin-Abbas, MD3
Khalid Hussain, MD, PhD4
Naila Felimban, MD1
Adnan Al ShaiKH, MD3
Henrik T. Christesen, MD, PhD6

OBJECTIVE—To evaluate the phenotype of 15 children with congenital hyperinsulinism (CHI) and profound hearing loss, known as Homozygous 11p15-p14 Deletion syndrome (MIM #606528).

RESEARCH DESIGN AND METHODS—Prospective clinical follow-up and genetic analysis by direct sequencing, multiplex ligation-dependent probe amplification, and microsatellite markers.

RESULTS—Genetic testing identified the previous described homozygous deletion in 11p15, USH1C:c.(90+392)ABCC8:c.(2694+528)del. Fourteen patients had severe CHI demanding near-total pancreatectomy. In one patient with mild, transient neonatal hypoglycemia and non-autoimmune diabetes at age 11 years, no additional mutations were found in HNF1A, HNF4A, GCK, INS, and INSR. Retinitis pigmentation was found in two patients aged 9 and 13 years. No patients had enteropathy or renal tubular defects. Neuromotor development ranged from normal to severe delay with epilepsy.

CONCLUSIONS—The phenotype of Homozygous 11p15-p14 Deletion syndrome, or Usher-CHI syndrome, includes any severity of neonatal-onset CHI and severe, sensorineural hearing loss. Retinitis pigmentation and non-autoimmune diabetes may occur in adolescence.

Diabetes Care 36:557–561, 2013

Congenital hyperinsulinism (CHI, MIM #256450) is a heterogeneous disease with hyperinsulinemic hypoglycemia, most frequently caused by mutations in ABCC8 (1,2). Usher syndrome 1C (USH1C, MIM #296904) is caused by mutations in USH1C (3), a gene situated next to ABCC8 on chromosome 11p15.1. A very rare, homozygous contiguous gene deletion, including USH1C and ABCC8, has been described in three patients, characterized by severe CHI, deafness, vestibular hypofunction, severe enteropathy, and renal tubular dysfunction (MIM #606528) (4,5).

We report on 15 new patients from eight consanguineous families with the same homozygous deletion, but with clinical heterogeneity and with manifestations from β-cells, inner ear, and retina only.

From the 1Department of Pediatrics, Endocrinology Division, King Abdulaziz Medical City-Riyadh, Riyadh, Saudi Arabia; the 2College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; the 3Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; the 4London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust and The Institute of Child Health, London, U.K.; the 5Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; and the 6H.C. Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark.

Corresponding author: Henrik T. Christesen, henrik.christesen@ouh.regionsyddanmark.dk.
Received 19 June 2012 and accepted 20 August 2012.
DOI: 10.2337/dc12-1174
This article contains Supplementary Data online at http://care.diabetesjournals.orglookup/suppl/doi:10.2337/dc12-1174/-/DC1.
© 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
Patient no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Family	A	A	A	A	A	B	B	B	B	C	C	D	E	F	G	H
Current age (years, months)	11, 10	0, 19	16, 10	4, 4	3, 1	6, 7	6, 8	Died at 28 days	6, 8	Died at 2 years	9, 6	1, 5	4, 11	3, 2	0, 10	
Proband (+)	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Sex	Boy	Girl	Boy	Girl	Girl	Girl	Girl	Girl	Boy	Boy	Girl	Girl	Girl	Girl	Boy	
Gestation	Term															
Birth weight (kg)	3.3	3.07	2.5	3.5	3.0	3.1	3.6	3.2	4.0	3.8	4.0	5.5	2.5	3.2	3.4	
SD score	−0.82	−1.08	−2.73	−0.05	−1.25	−1.01	+0.18	−0.77	+0.85	+0.37	+1.14	+4.72	−0.78	−1.06	−0.38	
Age of first known episode of hypoglycemia	Day 1	Day 1	3 Months	Day 1	Day 1	Day 4	Day 1	Day 2	Day 2	Day 1						
Presenting sign	Seizures	Seizures	Irritability, apnea	Seizures	None											
Severe hearing loss	+	+	+	+	+	+	+	N/A	+	+	+	+	+	+	+	
Brain stem auditory-evoked response	Absent	N/A	Absent	Absent	Absent	Absent	Absent	Absent								
Vision	N	N	RT	N	N	N	N	NT	N	Blind	N	N	N			
Visual-evoked response	N/A	Absent	N/A	N/A	Affected											
Gastrointestinal involvement	−	−	−	−	−	−	−	−	−	−	−	−	−	−		
Renal tube defect	−	−	−	−	−	−	−	−	−	−	−	−	−	−		
Growth (actual percentile)																
Weight	50%	25%	75%	50%	50%	25%	50%	25%	50%	75%	10%	50%	25%	50%	50%	
Height	50%	10%	50%	10%	50%	25%	10%	25%	10%	25%	10%	50%	25%	50%	50%	
Motor	MD	N	N	SD	N	N	N	N	MD	SD	MD	N	MD	MD	MD	
Cognitive	MD	N	N	SD	N	N	N	N	MD	SD	MD	N	MD	N	N	
Epilepsy	+	−	+	+	−	−	−	−	+	+	+	+	+	+	−	−

Continued on p. 559
Family	A	A	A	A	A	B	B	B	C	C	D	E	F	G	H
Patient no	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Electroencephalography (EEG)	Rolandic (8 years)	N/A	Rolandic (11 years)	Slow background, bilateral discharge	N/A	N/A	N/A	N/A	Slow background	Slow background	Slow background, left hemisphere epileptic discharge	N/A	Focal epileptic discharge during sleep		
Spontaneous progression to diabetes	—	—	+	—	—	—	—	—	—	—	—	—	—	—	
Biochemical and genetic data															
Insulin level at hypoglycemia (pmol/L)*	237	205	14	92	66	130	80	273	122	N/A	228	41	38	282	144
Intravenous glucose requirement (mg/kg/min)	29	25	6	6	18	20	26	28	11	N/A	12	20	20	17	19
Other hormonal and metabolic evaluation	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ABCG8-USH1C homozygous deletion	+	+	+	N/A	+	+	+	N/A	N/A	N/A	N/A	+	+	+	+
Last follow-up HbA1c (ref. 4.4–6.4%)	8.5%	5.4%	6.8%	5.3%	N/A	5.0%	5.6%	N/A	4.8%	N/A	4.7%	9.0%	N/A	N/A	N/A
Treatment															
Maximal dose Diazoxide (mg/kg/day)	25	25	0	20	25	20	25	20	20	20	20	20	20	20	
Octreotide (mg/kg/day)	50	50	0	30	44	50	50	40	30	30	40	40	35	35	
Glucagon (μg/kg/h)	Bolus	Bolus	—	—	10	Bolus	—	Bolus	—	—	—	Bolus	Bolus	—	—
Nifedipine (mg/kg/day)	3	—	—	—	—	—	—	—	—	—	—	—	—	—	
Near-total pancreatectomy	+	+	—	+	+	+	+	+	+	+	+	+	+	+	+

Continued on p. 560
diabetes, hearing loss, dizziness, vision anomalies, or signs of enteropathy or nephropathy. Patients had normal HbA1c (5.2–6.8%), fasting blood glucose (4.8–6.7 mmol/L), and 2-h OGGT glucose (4.1–9.3 mmol/L), except one with 2-h OGGT glucose (12.5 mmol/L), which was explained by severe obesity (BMI 31 kg/m²).

In all 10 patients with available DNA, sequence analysis revealed a 122.815-base pair deletion of USH1C exon 3–28 and ABCC8 exon 1–22, USH1C: c.(90+592)del. MLPA analyses confirmed the heterozygous state of the parents and the homozygous state of the offspring. In the atypical patient 3, the homozygous deletion was verified in two separate blood samples. No mutations were found in antagonizing, nonsyndromic diabetic genes. Microsatellite analysis in 12 parents showed a common ancestral haplotype. The mutation was calculated to be introduced in all the families approximately 3.9 generations previously for the parental generation.

CONCLUSIONS—We added 15 new patients to the only three patients already described with Usher-CHI syndrome and made a much longer follow-up until 16 years of age. Our data alter the phenotype description of the syndrome, not only in terms of a variable degree of hyperinsulinism with possibility of conversion to diabetes in the second decade but also in the Usher-related manifestations.

The deletion in USH1C-ABCC8 was exactly the same in all the investigated patients as in the two previously reported families (4,5) and calculated to be introduced in all six families studied approximately 3.9 generations before. Using an average generation time of 21.28 years in Saudi Arabia (6), this corresponds to a mutation age of 85 years.

In 14 patients, the hyperinsulinemic hypoglycemia was severe with early neonatal onset and did not respond to medical treatment, which is in line with the previous reports (4,5) and three other patients described with ABCC8 macrodeletions (7,8). In contrast, one patient had very mild hypoglycemia only with conversion to diabetes in puberty, without any clue of mosaicism, type 1 diabetes, type 2 diabetes, or additional diabetes gene mutations. A homozygous ABCC8 deletion is expected to result in a completely nonfunctional β-cell

Acknowledgments—This study was supported by a collaborative project grant from The European Society for Paediatric Endocrinology (ESPE), ESPE Research Unit Grant 2009-2011, and King Abdullah International Medical Research Center, Saudi Arabia.

No potential conflicts of interest relevant to this article were reported.

A.N.A.M. collected and analyzed data and wrote the manuscript. K.B. performed genetic analyses and reviewed the research design and methods section. B.B.-A., N.F., and A.A.S.
collected and analyzed data. K.H. collected and analyzed data and reviewed the manuscript. H.T.C. wrote the manuscript. H.T.C. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Parts of this study were presented in poster form at the Lawson Wilkins Pediatric Endocrine Society/ESPE 8th Joint Meeting, New York, New York, 9–12 September 2009.

The authors thank Svargo Pedersen, Joan Malec, Signe Nielsen, and Irene Jørgensen, Odense University Hospital Denmark, and Nouh Doaa, research coordinator, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia.

References

1. Nestorowicz A, Wilson BA, Schoor KP, et al. Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 1996;5:1813–1822
2. Christesen HB, Brusgaard K, Alm J, et al. Rapid genetic analysis in congenital hyperinsulinism. Horm Res 2007;67:184–188
3. Verpy E, Leibovici M, Zwaenepoel I, et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 2000;26:51–55
4. Bitter-Glindzicz M, Lindley KJ, Rutland P, et al. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nat Genet 2000;26:56–60
5. Hussain K, Bitter-Glindzicz M, Blydon D, et al. Infantile hyperinsulinism associated with enteropathy, deafness and renal tubulopathy: clinical manifestations of a syndrome caused by a contiguous gene deletion located on chromosome 11p. J Pediatr Endocrinol Metab 2004;17:1613–1621
6. Babay ZA, Addar MH, Shahid K, Meriki N. Age at menarche and the reproductive performance of Saudi women. Ann Saudi Med 2004;24:354–356
7. Bellanné-Chantelot C, Saint-Martin C, Ribeiro M-J, et al. ABCC8 and KCNJ11 molecular spectrum of 109 patients with diazoxide-unresponsive congenital hyperinsulinism. J Med Genet 2010;47:752–759
8. Fernández-Marmiesse A, Salas A, Vega A, Fernández-Lorenzo JR, Barreiro J, Carracedo A. Mutation spectra of ABCC8 gene in Spanish patients with hyperinsulinism of infancy (HI). Hum Mutat 2006;27:214
9. Dunne MJ, Cosgrove KE, Shepherd RM, Aynsley-Green A, Lindley KJ. Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 2004;84:239–275
10. Ashcroft FM. ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 2005;115:2047–2058
11. Segbers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J. Sur1 knockout mice: A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 2000;275:9270–9277
12. Shiota C, Larsson O, Shelton KD, et al. Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 2002;277:37176–37183
13. Miki T, Nagashima K, Tashiro F, et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 1998;95:10402–10406
14. Ouyang XM, Xia XJ, Verpy E, et al. Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum Genet 2002;111:26–30
15. Saouda M, Mansour A, Bou Moglabey Y, et al. The Usher syndrome in the Lebanese population and further refinement of the USH2A candidate region. Hum Genet 1998;103:193–198