An Innovative Business Model for a Multi-echelon Supply Chain Inventory Management Pattern

G Cesarelli¹,⁴, A Scala²,³, D Vecchione², AM Ponsiglione³ and G Guizzi¹

¹ Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”, Piazzale Tecchio 80, 10th sector, Naples, Italy
² Department of Public Health, University of Naples “Federico II”, School of Medicine, Via Pansini 5, 5th sector, Naples, Italy
³ Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”, Via Claudio 21, 10th sector, Naples, Italy
⁴ These authors gave equal contribution

*Email: giuseppe.cesarelli@unina.it

Abstract. Nowadays, companies are experimenting novel organizational solutions to efficiently operate in uncertain and highly dynamic scenarios. As a potential solution, this paper proposes a new business model for a multi-echelon Supply Chain inventory management pattern. Specifically, an inventory model with proactive lateral transshipments was developed and subsequently tested carrying out 288 experiments with the aim of assessing transshipments impact on the performance of a two-echelon Supply Chain. The final goal was to investigate the potential reduction of the overall cost of the enterprise and, conversely, whether this approach could promote significant improvements in the level of service, achievable through a more efficient management of resources. The analyses and simulations indicate the use of large batches and/or low-cost products did not demand the necessity of transshipment events. These preliminary findings could be potentially validated and tested in the future considering more complex networks or multiple products.

1. Introduction
In this historical period, strongly conditioned by the rapid evolution of environmental variables, companies are committed to implementing and experimenting new flexible organizational and management solutions. Currently, high quality, competitive costs, and short development times are necessary to guarantee customer assets [1–4]. Companies that intend to implement these services and adapt to the context of reference must be aware of the current situation and, consequently, should implement a strategic system [5] using different management techniques [6, 7] and optimize tools to analyse several data [8–15] to achieve customers satisfaction [16–18]. Thus, similar improvements may also derive from recent investigations carried out in the context of Industry 4.0 [19–21].

The paper shows the necessity to achieve customers satisfaction with the aid of several external factors.
1.1. Supply Chain Inventory Management: Evolution, Characteristic and Limitations

Until the end of the 1970s, the organizational model, which dominated the literature, referred to a vertically integrated company. Subsequently, with the increase of personalized customers’ requests, the development of communication and information technologies allowed a radical change also in logistic aspects. All these changes promoted the economic integration of business process, with a consequent reduction in transition costs [22] and a personalized service with shorter delivery times. These were the decisive factors in the development of “Supply Chain Management”. With this new management approach, the company becomes part of a network of different entities. The aim is to provide highly customized products and services [22, 23]. Therefore, the Supply Chain concept is much broader than that of logistics.

In this perspective, the success of the system depends on the interaction capacity of the single network nodes and on an efficient use of interactive technology. Fluctuation and diversification of the demand are the principal parameters to control in our dynamic market system. Variability could depend on the "Forrester effect" or the "Bull-whip effect". It increases backwards in the supply chain, determining a higher level of stock than necessary. An effective and efficient Supply Chain shows the following features [24]:

- Stable and collaborative organizational relationships;
- Appropriate coordination;
- Efficient information flows;
- Outsourcing;
- Make-to-order strategy, with current market conditions;
- Efficient warehouse management through the logic of Just in Time approaches [25].

1.2. Management of Up-stream and Down-stream Reports

In the previous section, it was introduced the concept of Supply Chain. The two interested areas of action are up stream integration with upstream suppliers and downstream integration with consumers. Over the years, these relationships have undergone a continuous evolution, due to the increase in environmental complexity and both variety and variability of several adoptable technological solutions. Interestingly, each supply relationship has not the same weight for the company. Indeed, it is possible to identify two types of suppliers:

- Tactical suppliers, or suppliers of materials of minor importance;
- Strategic suppliers, suppliers who play a strategic role for the lead company.

In the first case, the costs associated with changing the supplier are low and a multiple supply is possible. The relationships with suppliers that belong to the second category are necessary to achieve the business success. A second type of relationship connects the physical distribution of the products and allows an ideal organization of storage and the integrated management of information flows and supply systems. The most advanced distributors use distribution centers or logistic structures managed directly by the distributors. The primary task of a distribution center is to monitor in real time the network needs and the time necessary to receive and deliver the products to destination. The aim is to constitute a single stockpile for the entire distribution network, significantly reducing costs and maintaining the control over the level of service.
2. Innovative Models of Supply chain
Supply chain management is an innovative approach which deals with planning and control of materials and the information from suppliers to final consumers. A fundamental aspect of this approach is the cooperation between all parties to optimize system-level performance. In recent years, there has been an evolution in management processes and the creation of new concepts such as: Outsourcing, Vendor Managed Inventory, Virtual Inventory and Lateral Transshipments [26–30].

2.1. Outsourcing
The non-core activities are enthusing companies for which the last described activities constitute the true core business. Generally, the contract is long-term and implies mutual trust and professionalism in the processing of sensitive data. The relationships between the company that outsources and the company to which the activity is sold (the outsourcer) are in fact collaborative, there is no conflicting element that most often characterizes the customer/supplier relationship. These motivations lead outsourcing to economic, financial, operational and strategic advantages. Nevertheless, the most common drawbacks are the potential loss of activities control, drainage of the company resources, resentments of the personnel dedicated to specific activities and a trade-off between flexibility and internal control Vendor Managed Inventory (VMI), one of the most used strategies to improve the Supply Chain [31, 32].

2.2. Vendor Managed Inventory
Through the VMI, the supplier makes the main inventory replenishment decisions for the organization. It checks the retailer's inventory levels and perform replenishment decisions basing on order quantities, transport and times. This allows to reduce production peaks, valleys and coordinate orders from different buyers, thereby increasing the number of on-time deliveries and also decreasing the Bull-Whip effect [33].

2.3. Virtual Inventory
This model involves sharing of the stock availability of several companies active in a territorial context. The goal is to reduce stocks of identical items in all warehouses [34]. The operation of this strategy is ensured by a service provider who knows the inventory levels through information technology systems and dedicated management procedures. The service provider manages the warehouses according to companies needs and the quantity of redundant materials. The provider, finally, receives the orders and then proceeds to the procurement, using the on-hand stock of the warehouses belonging to the virtual inventory, or possibly, turning to an external supplier.

2.4. Lateral Transshipments
The lateral transshipments allow rapid flows of materials and information from one echelon to another nearby echelon. Two different application modes can be distinguished: proactive and reactive. In proactive transshipment, lateral transfers are used to redistribute stocks between all the storage points of the same echelon, at predetermined intervals over time. Therefore, a proactive transshipment can be planned and organized in advance to generate the lowest possible management costs. Reactive transshipments, on the other hand, fit to situations where one or more storage points are in stock-out while one or more storage points present excess stock. This type of transfer is therefore suitable in environments where the costs of transshipment are relatively low compared to the costs associated with the storage of large quantities of stocks and the failure to meet the demands of end consumers [35, 36].

3. Methods
The proposed inventory sharing model with proactive lateral transshipments for a two-echelon Supply Chain integrates the concepts of VMI and Inventory Sharing. The objective of this work is to evaluate the impact of lateral transfers on the performance of a supply chain and to research the conditions in
which lateral transfers are advantageous both in terms of the overall supply chain costs and in terms of the service level. This model considers a network consisting of two local warehouses (retailers) that must satisfy the demands of end consumers and a central warehouse from which local warehouses periodically refuel. Each local warehouse faces a variable demand $D_j (j = h, l)$ defined in the following equation (1):

\[
D_j = \begin{cases}
 d_j - \delta_j & \text{with probability } k \\
 d_j & \text{with probability } 1 - 2k \\
 d_j + \delta_j & \text{with probability } k
\end{cases}
\]

with $d_j \geq 0$, $0 \leq \delta_j \leq d_j$, $0 \leq k \leq 1/2$, $d_{high} \geq d_{low}$, $E[D_j] = d_j$ and $\text{Std dev}[D_j] = (2k)^{1/2} \cdot d_j$

In particular, one of the two local warehouses has a low average demand ($d_{low} = 30$ pieces / day) while the other has a high average demand ($d_{high} = 50$ pieces / day). The replenishment policy is at reorder point, with reorder point s described by the following equation (2):

\[
s = d \cdot \tau + z \cdot \sigma_d \cdot (\tau)^{1/2}
\]

with d average annual demand, σ_d standard deviation of demand, $\tau = 10$ days deterministic and constant lead time and z a parameter whose calibration depends on the level of service to be ensured.

During the lead time the demand is uncertain so that the retailer could see the safety stocks reduced and consequently find themselves in stock-out with significant backlog costs to be incurred. To guarantee a more efficient material management, the model foresees the possibility of using lateral transshipments between the two local warehouses, in a preventive manner, to avoid that the warehouse with negative stock on hand goes into stock-out. The decision-making system is centralized and local warehouses adopt inventory sharing; therefore, it operates in a VMI context in which the vendor (central warehouse) - usually a manufacturer, but eventually a reseller/distributor - makes the main inventory supply decisions for the entire organization. The model therefore begins with a check of the inventory levels followed by an evaluation of the stock on-hand (SoH) of each local warehouse. At the end of the evaluation phase of the on-hand stock, three cases may arise:

- **SoH1 and SoH2 < 0**, both local warehouses have negative on-hand stocks, are likely to go into stock-outs and need stocks that neither can supply to the other, which is why the transfer is not activated;
- **SoH1 xor SoH2 < 0**, the stock with negative on-stock stocks is likely to go into stock-out, needs stocks, while the other with positive on-hand stocks can sell a quantity of stocks at least equal to SoH. In this case, the costs associated with the transfer are compared with the backlog costs that the warehouse with SoH<0 would support if it went in stock-out;
- **SoH1 and SoH2 > 0**, the warehouses have sufficient stock on hand to meet the demand that is generated during the transshipment lead time, which is why they do not need stocks and the transfers are not activated.

The objective of the model is to find the Lot Size and Service Level values of each local warehouse which minimize an objective function, following described in the equation (3), created by weighing the different costs and events.

\[
\text{Total cost} = C_o \cdot (n_{w1} + n_{w2}) + C_m \cdot (S_{w1} + S_{w2}) + C_{fr} \cdot (t_{w1w2} + t_{w2w1}) + C\text{wt} \cdot (q_{w1w2} + q_{w2w1}) + C_b \cdot (b_{w1} + b_{w2})
\]

where C_o, C_m, C_{fr}, $C\text{wt}$, C_b are respectively the cost of ordering, the cost of stock keeping, the fixed cost of transshipment, the variable cost of transshipment and the cost of backlog. Moreover, n_{w1}, n_{w2}, S_{w1}, S_{w2}, t_{w1w2}, t_{w2w1}, q_{w1w2}, q_{w2w1}, b_{w1} and b_{w2}, respectively, represent the number of orders for W1, the number of orders for W2, the average stock of W1, the average stock of W2, the events transshipment...
from W_1 to W_2, transshipment events from W_2 to W_1, items transshipped from W_1 to W_2, items transshipped from W_2 to W_1, backlog W_1 and backlog W_2.

4. Results

288 experiments were examined and for each experiment it was estimated the optimal value of several decision variables, evaluating the fitness function (namely, the iteration presenting the minimum Supply Chain cost) for each possible combination of the Lot Size and Service Level values (node 1, node 2). These combinations were obtained by considering 25 Lot Size values for each node (from 0 to 500, with step 20) and 10 Service Level values for each node (from 0.9 to 1, with step 0.1). Therefore, 62500 simulations were considered considering a fixed duration of 365 days. The model and the simulation have been implemented in Python. Finally, the iteration with best fitness function was selected for each experiment.

Once the 288 results were obtained, an analysis was carried out using Pivot Tables which proved to be fundamental for identifying the relationships between lateral transshipment and Lot Size and between lateral transshipment and product cost. Firstly, it was noted that as the Lot Size of both local warehouses increased, transshipment events decreased (Figure 1). This leads to the conclusion that the use of large batches means that lateral transshipments are not indispensable.

![Figure 1](image1.png)

Figure 1. Line charts showing transshipment events (y axis) considering increments for a single lot size. (x axis). Transshipments evolution for (a) the increasing lot size 1 and (b) the increasing lot size 2.

Secondly, analysing the fitness function of both the Lot Size, it was possible to deduce that with a high product cost both the Lot Size (considered one at a time) has no influence on the fitness value, as shown in Figure 2.

![Figure 2](image2.png)

Figure 2. Line charts showing fitness function values (y axis) considering increments for a single lot size (x axis) for high product costs. Fitness evolution for (a) the increasing lot size 1 and (b) the increasing lot size 2.
In the presence of a low product cost, instead, both the Lot Size (considered one at a time) do not influence the fitness value (Figure 3).

Figure 3. Line charts showing fitness function values (y axis) considering increments for a single lot size (x axis) for low product costs. Fitness evolution for (a) the increasing lot size 1 and (b) the increasing lot size 2.

These results indicate large batches are convenient with items which present a low product cost.

5. Discussion and Conclusion

In this work, a simulation model that integrates the concepts of inventory sharing and VMI was in Python. The model used preventive lateral transshipments with the aim of finding the Lot Size and Service Level values of each local warehouse to minimize the total cost of the supply chain (namely, the fitness function). The first simulations were carried out according to the 288 experiments considered which indicated lateral transshipments implementation is suggested in the presence of small lots and items with a high product cost.

Unlike other inventory models which consider lateral transshipments, the model developed and described in this paper integrates the concepts of VMI and Inventory Sharing and it is aimed at evaluating the impact of lateral transshipments on the performance of a Supply Chain and at finding the conditions in which lateral transshipments are advantageous. The obtained results, when compared to the relevant literature on this topic, show the proposed model offers an effective alternative to other approaches. In particular, the proposed strategy is based on proactive lateral transshipment, which can bring a further cost reduction compared to other models based on reactive transshipments only, as also demonstrated in other literature studies [37] where the benefits of using proactive lateral transshipments emerges especially in those systems characterized by partial pooling, as the ones simulated in this work. In fact, while it is generally known that there is no benefit for a proactive approach in a complete pooling network, since the transshipment decision rules are irrelevant when all warehouses are as one source [37, 38], here we give an additional proof of how the optimization models for lateral transshipments can effectively make a difference in the decision-making process for a partial pooling network.

Despite we deeply investigated the effect of lot size, effects of demand variability have not been studied and interpreted yet and they could be the objective of the next steps of our research in order to validate the proposed model and the relevance of the designed decision rules in highly dynamic business environments, as also highlighted in other studies [38, 39].

Moreover, while this model is generally proposed for small systems, it will be worth exploring the possibility to extend the proposed approach also to larger systems with three or more non-identical retailers and to inventory problems of larger multi-echelon supply chains.

On the other hand, the proposed model has a straightforward and easy-to-adopt logic leading to lower computational times compared to other more complex models available in the literature, which requires time-consuming computational efforts to solve inventory problems [38]. In this direction, a computationally efficient approach has been attempted in a more recent study [40]. However, similarly to our model, such approach assumes that supplier lead times are fixed [40], which is a limitation since,
in practice, supplier lead times are uncertain, with an adverse impact on the overall performance of the supply chain. Therefore, future efforts could be also devoted to improve the proposed model considering a certain degree of uncertainty when estimating lead times.

Furthermore, while our model includes the most relevant parameters affecting the performance of the supply chain, there are also other non-negligible factors, e.g. additional costs (contractual, maintenance, discounts), that could be taken into consideration to get more insights into the value of strategic supply chain decision making, as also suggested in a previous study [41]. Finally, by analysing other scientific works present in literature which deal with the same issues [42-44], it was found the substantial differences of the analysed items compared to the proposed study are linked to the mix of supply chain models used. Indeed, such studies present a mix of models with a higher number of decision factors and variables, e.g. combining the lateral transshipment with additional support models. The possibility of combining the proposed model with others to achieve more reliable results could be explored in future works.

References

[1] Converso G, De Carlini R, Santillo L C and Improta G 2012 Project management implementation for healthcare activities organization Adv. Comput. Sci. 8 436–43

[2] Improta G, Balato G, Romano M, Ponsiglione A M, Raiola E, Russo M A, Cuccaro P, Santillo L C and Cesarelli M 2017 Improving performances of the knee replacement surgery process by applying dmaic principles J. Eval. Clin. Pract. 23 1401–07

[3] Improta G, Guizzi G, Ricciardi C, Giordano V, Ponsiglione AM, Converso G and Triassi M 2020 Agile six sigma in healthcare: case study at santonobono pediatric hospital Int. J. Environ. Res. Public. Health, 17 1052

[4] Guizzi G, Miele D, Santillo L and Romano E 2013 25th European Modeling and Simulation Symp. (EMSS 2013) ed. A G Bruzzone, E Jiménez, F Longo and Y Merkuryev (Red Hook:USA/Curran Associates) pp 571–576

[5] Dallari F and Marchet G 2003 Rinnovare la Supply Chain ed. Il Sole 24 Ore (Milan: Italy)

[6] Improta G, Romano M, Di Cicco M V, Ferraro A, Borrelli A, Verdoliva C, Triassi M and Cesarelli M 2018 Lean thinking to improve emergency department throughput at aorn cardarelli hospital BMC Health Serv. Res. 18 914

[7] Dell’Aversana Orabona G, Abbate V, Magliotto F, Committeri U, Improta G, Bonavolonta P, Reccia A, Somma T, Iaconetta G and Califano L 2019 Postoperative management of zygomatic arch fractures: in-house rapid prototyping system for the manufacture of protective facial shields J. Craniofac. Surg. 30 2057–60

[8] Improta G, Russo MA, Triassi M, Converso G, Murino T and Santillo L C 2018 Use of the ahp methodology in system dynamics: modelling and simulation for health technology assessments to determine the correct prosthetic choice for hernia diseases. Math. Biosci. 299 19–27

[9] Improta G, Perrone A, Russo M A and Triassi M 2019 Health technology assessment (hta) of optoelectronic biosensors for oncology by analytic hierarchy process (ahp) and likert scale. BMC Med. Res. Methodol. 19 140

[10] Ricciardi C, Fiorillo A, Valente A S, Borrelli A, Verdoliva C, Triassi M and Improta G 2019 Lean six sigma approach to reduce los through a diagnostic-therapeutic-assistance path at a.o.r.n. a. cardarelli. TQM J. 31 657–72

[11] Guizzi G, Chiocca D and Romano E 2012 Proc. of the Eleventh Int. Conf. on New Trends in software Methodology, Tools and Techniques (SoMeT_12) ed. H Fujita and R Revetria (Amsterdam: Netherlands/IOS Press) pp 499-517

[12] Romano M, D’Addio G, Clemente F, Ponsiglione A M, Improta G and Cesarelli M 2014 2014 IEEE International Symp. on Medical Measurements and Applications Proc. ed. IEEE (Piscataway: USA/IEEE) pp. 545-550

[13] Romano M, Bifulco P, Ponsiglione A M, Gargiulo G D, Amato F and Cesarelli M 2018 Evaluation of floating line and foetal heart rate variability Biomed. Signal Process. Control. 39 185-96
[14] D’Addio G, Ricciardi C, Improta G, Bifulco P and Cesarelli M 2020 XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 ed. Henriques J, Neves N and de Carvalho P (Cham: Switzerland/Springer) pp 907-913
[15] Ricciardi C, Cantoni, Improta G, Iuppariello L, Latessa I, Cesarelli M, Triassi M and Cuocolo A 2020 Application of data mining in a cohort of Italian subjects undergoing myocardial perfusion imaging at an academic medical center Comput. Methods ProgramsBiomed. 189 105343–49
[16] Melillo P, Delle Donne A, Improta G, Cozzolino S and Bracale M 2011 Proc. of the International Symp. on the Analytic Hierarchy Process for Multicriteria Decision Making (Cassino: Italy/AHP Academy) ISAHP 119 p
[17] DuPree E, Martin L, Anderson R, Kathuria N, Reich D, Porter C and Chassin M R 2009 Improving patient satisfaction with pain management using six sigma tools Jt. Comm. J. Qual. Patient Saf. 35 343-50
[18] Penchansky R and Thomas J W 1981 The concept of access: definition and relationship to consumer satisfaction. Med. Care 19 127–40
[19] Cammardella A, Guizzi G, Vespoli S and Visone G 2017 IEEE 3rd Int Forum on Research and Technologies for Society and Industry (RTSI) ed. IEEE (Piscataway: USA/IEEE) pp 213-218
[20] Guizzi G, Vespoli S and Santini S 2017 Proc. of the 3rd INCOSE Italia Conf. on System Engineering ed. D Fierro, A Garro, G Guizzi, L Tirone and A Tundis (Aachen:Germany/CEUR-WS Team) pp 94-100
[21] Vespoli S, Grassi A, Guizzi G and Santillo LC 2019 9th IFAC Conf. on Manufacturing Modelling, Management and Control MIM 2019 Proc. ed. D Ivanov, A Dolgui and F Yalaoui (Amsterdam: Netherlands/Elsevier) pp 2170-2176
[22] Sciarelli S 2002 Economia e gestione dell’impresa ed. CEDAM/Wolters Kluwer Italy (Milan: Italy)
[23] Holimchayachotikul P, Leksakul K and Guizzi G 2011 Robust design for etching process parameters of hard disk drive slider fabrication using data mining and multi response optimization WSEAS Trans. on Syst. and Control. 6 15-24
[24] Cerullo G, Guizzi G, Massei C and Sgaglione L 2016 12th International Conference on Signal-Image Technology Internet-Based Systems ed. K Yetongnon, A Dipanda, R Chbeir, G De Pietro and L Gallo (Piscataway: USA/IEEE) pp 750–757
[25] Massaroni E 2002 La logistica nell’approccio sistemico al governo dell’impresa ed. CEDAM/Wolters Kluwer Italy (Milan: Italy)
[26] Fadda L 2008 Vari aspetti dell’outsourcing logistico in ambito supply chain Impresa Progetto - Electron. J. Manag. 1 1-36
[27] Lee H L A 1987 Multi-echelon inventory model for repairable items with emergency lateral transshipments Manag. Sci. 33 1302–16
[28] Romano E, Chiocca D, Santillo LC and Guizzi G 2013 12th IEEE International Conf. on Intelligent Software Methodologies, Tools and Techniques ed. A Szaká1 (Piscataway:USA/IEEE) pp 93–97
[29] Holimchayachotikul P, Derrouiche R, Leksakul K and Guizzi G 2010 ICOSSSE’10: Proc. of the9th WSEAS Int. Conf. on System Science and Simulation in Engineering ed. Fujita H and Sasaki J (Stevens Point: USA/WSEAS) pp 336–341
[30] Guizzi G, Revetria R and Romano E 2017 XXII Summer School “Francesco Turco” Industrial Systems Engineering ed. University of Palermo (Palermo: Italy/University of Palermo Press) pp 35-46
[31] Grahovac J and Chakravarty 2001 A sharing and lateral transshipment of inventory in a supply chain with expensive low-demand items Manag. Sci. 47 579–94
[32] Gallo M, Grisi R M and Guizzi G 2010 ICOSSSE’10: Proc. of the 9th WSEAS Int. conf. on System Science and Simulation in Engineering ed. Fujita H and Sasaki J (Stevens Point: USA/WSEAS) pp 370–377
[33] Cárdenas-Barrón L E, Treviño-Garza G and Wee H M 2012 A simple and better algorithm to solve the vendor managed inventory control system of multi-product multi-constraint economic order quantity model Expert Syst. Appl. 39 3888–95
[34] Becattini G 2017 The Marshallian industrial district as a socio-economic notion Rev. Déconomie Ind. 157 13–32
[35] Kutanoglu E and Mahajan M 2009 An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels Eur. J. Oper. Res. 194 728–42
[36] Wong H, Cattrysse D and Van Oudheusden D 2005 Inventory pooling of repairable spare parts with non-zero lateral transshipment time and delayed lateral transshipments Eur. J. Oper. Res. 165 207–18
[37] Seidscher A and Minner S 2013 A semi-markov decision problem for proactive and reactive transshipments between multiple warehouses Eur. J. Oper. Res. 230 42–52
[38] Bouma HW and Teunter RH 2016 The routed inventory pooling problem with multiple lateral transshipments Int. J. Prod. Res. 54 3523–33
[39] Nakandala D, Lau H and Zhang J 2017 Strategic hybrid lateral transshipment for cost-optimized inventory management Ind. Manage. Data Syst. 117 1632-49
[40] Topan E and van der Heijden M C 2020 Operational level planning of a multi-item two-echelon spare parts inventory system with reactive and proactive interventions Eur. J. Oper. Res. 284 164-75
[41] Firouz M, Keskin B B and Melouk S H 2017 An integrated supplier selection and inventory problem with multi-sourcing and lateral transshipments Omega 70 77-93
[42] Lee Y H, Jung J W and Jeon Y S 2007 An effective lateral transshipment policy to improve service level in the supply chain Int. J. Prod. Econ. 106 115-26
[43] Ahmadi G, Torabi S A and Tavakkoli-Moghaddam R 2016 A bi-objective location-inventory model with capacitated transportation and lateral transshipments Int. J. Prod. Res. 54 2035-56
[44] Firoozi M, Babai M Z, Klibi W and Ducq Y 2020 Distribution planning for multi-echelon networks considering multiple sourcing and lateral transshipments Int. J. Prod. Res 58 1968-86