GENETIC EVIDENCE FOR SINGLE-STRAND LESIONS INITIATING NBS1-DEPENDENT HOMOLOGOUS RECOMBINATION IN DIVERSIFICATION OF IG V IN CHICKEN B LYMPHOCYTES

Makoto Nakahara1,2¤, Eiichiro Sonoda1, Kuniharu Nojima1, Julian E. Sale3, Katsuuya Takenaka1, Koji Kikuchi1, Yoshihito Taniguchi1, Kyoko Nakamura1, Yoshiki Sumitomo1, Ronan T. Bree4,5, Noel F. Lowndes4,5, Shunichi Takeda1*

1 CREST Research Project, Japan Science and Technology Agency, Saitama, Japan, 2 Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan, 3 Medical Research Council Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Cambridge, United Kingdom, 4 Genome Stability Laboratory, Department of Biochemistry, National University of Ireland-Galway, Galway, Ireland, 5 National Centre for Biomedical Engineering Science, National University of Ireland-Galway, Galway, Ireland

Abstract

Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (lg) V genes through HR (lg gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3’ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3’ to 5’ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases.

Introduction

Homologous recombination (HR) contributes to genome maintenance by repairing double-strand breaks (DSBs) and single-strand lesions. It accomplishes this by associating the damaged DNA with intact homologous sequences [reviewed in [1]]. Genetic studies of Escherichia coli indicate that DSBs are recognized by the RecBCD enzyme at the initial step of HR, while single-strand gaps are loaded with RecA with the help of the RecF, RecO and RecR (RecFOR) proteins [2] (reviewed in [3]). In yeast and vertebrate cells, however, it remains unclear whether single-strand lesions can also directly stimulate HR, or if their replication leads to DSBs, which then stimulate HR.

The process of DSB-induced HR is well characterized in the budding yeast [4]. First, DSBs are resected by a nuclease to generate a 3’ overhang. A major nuclease in this process is thought to be a complex containing three proteins: Mre11, Rad50 and Nbs1 (called the MRN complex) (reviewed in [5]). The role of the 3’–5’ exonuclease activity of purified Mre11 in DSB repair remains enigmatic, as DSB resection is of opposite polarity in vivo [6]. Recent studies indicate that the MRN complex requires another factor to function: CtIP, the ortholog of Sae2 and Ctp1 in S. cerevisiae and S. pombe, respectively [7–9]. Biochemical study demonstrated that Sae2, a cofactor of the MRN complex, can process a single strand nick, and expand it [10]. The single-strand DNA generated adjacent to the DSB is coated with polymerized Rad51, resulting in the formation of nucleoprotein filaments. The assembly of RAD51 at DNA damage sites is regulated by a number of RAD51 cofactors, including the tumor-suppressor gene BRCA1 (Breast Cancer Susceptibility Gene 1), BRCA2, and five
Author Summary

An important class of chemotherapeutic drugs used in the treatment of cancer induces DNA damage that interferes with DNA replication. The resulting block to replication results in the formation of single-strand gaps in DNA. These gaps can be filled by specialized DNA polymerases, a process associated with the introduction of mutations or by recombination with an undamaged segment of DNA with an identical or similar sequence. Our work shows that diversification of the antibody genes in the chicken B cell line DT40, which is initiated by localized replication-stalling DNA damage, proceeds by formation of a single-strand intermediate. These gaps are generated by the action of a specific nuclease complex, comprising the Mre11, Rad50, and Nbs1 proteins, which have previously been implicated in the initiation of homologous recombination from double-strand breaks. However, in this context, their dysfunction can be reversed by the expression of a bacterial single-strand-specific nuclease, SbcB. Antibody diversification in DT40 thus provides an excellent model for studying the process of replication-stalling DNA damage and will allow a more detailed understanding of the mechanisms underlying gap repair and cellular tolerance of chemotherapeutic agents.

RAD51 paralogs (RAD51B/C/D and XRCC2/3) [reviewed in (11,12)]. The Rad51-containing single-strand DNA filaments play a role in the search for homologous DNA sequences and subsequent strand invasion into homologous duplex DNA. The importance of the role of the MRN complex in genome maintenance is indicated by a marked increase in the number of spontaneously arising chromosomal breaks following by cell death after depletion of Mre11 in DT40 cells [13], and is also indicated by the high incidence of tumorigenesis in certain hereditary diseases: ataxia-telangiectasia-like diseases (ATLD) and Nijmegen breakage syndrome (NBS), which result from hypomorphic mutations in the MRE11 and NBS1 genes, respectively [14–17].

A combination of HR and non-templated single-base changes contributes to Ig V sequence variation in chickens and in some mammalian species such as rabbits and cattle [18]. Similarly, the chicken DT40 B lymphocyte line undergoes templated HR-dependent diversification (hereafter called Ig gene conversion) as well as non-templated single-base substitutions (hereafter called Ig hypermutation) during in vitro passage [19–21]. HR introduces tracts of templated mutations to rearranged variable (V) regions [22–24]. An array of “pseudo-V_{\lambda}” regions, located upstream from the functional rearranged V_{\lambda}, provides donors for this non-reciprocal sequence transfer. Since donor and recipient segments have a ~10% sequence divergence, sequential Ig gene conversion events are able to substantially diversify Ig V [24].

Both types of Ig V diversification are initiated by activation-induced deaminase (AID), which forms uracil from deoxycytidine (dC) [25–27]. Uracil is subsequently removed by uracil-DNA-glycosylase (UNG) mediated hydrolysis, which generates abasic sites [28–30]. In UNG{-/-} DT40 cells, the rate of C to T transitions is more than ten times greater than in UNG{+/+} cells, indicating that more than 90% of the AID-induced uracil is accurately eliminated, presumably by base excision repair [28].

Non-templated hypermutation is generated as a consequence of translesion DNA synthesis (TLS) past abasic sites [31]. It is currently unclear how Ig gene conversion is induced by abasic sites, although it is likely that the abasic sites are converted to either single-strand gaps or DSBs, which in turn stimulate HR with upstream pseudo-V_{\lambda} segments. Current evidence points towards single-strand gaps, rather than DSBs, as the main downstream intermediate of abasic sites in the induction of Ig gene conversion for the following reason. In cells deficient in BRCA1, BRCA2 or Rad51 paralogs, where Rad51 is not accumulated efficiently at DNA lesions, the impaired HR causes a shift of Ig V diversification from HR- to TLS-dependent hypermutation [20,32,33]. Cleavage of template strands containing abasic sites cannot occur prior to TLS past the abasic sites. Thus, a common substrate for both Ig gene conversion and TLS is likely to be a single-strand gap and/or a stalled replication fork [34].

We hypothesized that if Ig gene conversion was triggered by single-strand lesions but not by DSBs, it would not involve the MRN complex (which is currently proposed as being involved in double-strand-break resection to generate recombinogenic 3' ends). To test this hypothesis, we generated nbs1 hypomorphic mutant DT40 cells, where Nbs1 null mutant cells were rescued by an NBS1{P70} transgene. The resulting ANBS1/NBS1{P70} cells shared a phenotype very similar to cell lines established from patients with Nijmegen-breakage syndrome [35], including significant reduction in the frequency of HR-dependent DSB repair. Unexpectedly, the defect of Nbs1 also suppressed Ig gene conversion by two orders of magnitude.

To further define the role of the MRN complex in Ig gene conversion, we next attempted to reverse the defective Ig gene conversion by ectopically overexpressing chicken Exo1 [36–40] or E.coli Exo1 (SbcB) [41–43]. Exo1 is an evolutionarily conserved double strand-specific 5' to 3' exonuclease, and involved in mismatch repair in the eukaryotic cells. Additionally, the eukaryotic Exo1 can promote HR by facilitating 3' tail formation at DSBs [38,39]. Although both eukaryotic Exo1 and SbcB expand single-strand gaps from single-strand breaks in mismatch repair, SbcB can digest single-strand DNA at an opposite direction, 3' to 5', and thereby suppress DSB induced HR by removing 3' overhang at DSBs [reviewed in [3]]. Remarkably, the ectopic expression of SbcB normalized Ig gene conversion, but overexpression of chicken Exo1 did not. Conversely, the ectopic expression of chicken Exo1, but not SbcB, increased the frequency of DSB-dependent gene-targeting [44,45], presumably by promoting the resection of DSBs. These data argue against the possibility that SbcB promotes Ig gene conversion by processing DSBs. Hence, these data support the notion that single-strand gaps may be supported a common direct precursor of both Ig gene conversion and error-prone gap-filling. In addition, our study thus suggests that the MRN complex is involved in HR, probably in two different ways: by processing DSBs and by generating recombinogenic single-strand lesions.

Results

Generation of Nbs1{P70}-Expressing Clones and Nbs1-Null–Deficient Cells

The chicken NBS1 gene is located on chromosome 2, which is trisomic in DT40 cells. To completely inactivate the NBS1 gene, we generated deletion constructs containing different marker genes, a procedure designed to remove the entire reading frame of the NBS1 gene, including all 16 exons (~30 kb) (Figure 1A). These targeting plasmids were sequentially transfected into wild-type (WT) DT40 cells, and the NBS1{+/+} cells were isolated. To generate conditional NBS1-disrupted cells, we employed Cre-recombinase-mediated deletion of a chicken NBS1 transgene. NBS1{+/+} cells were transfected with the transgene containing the WT NBS1 cDNA flanked by loxP sites on both sides (the loxP-NBS1{P70} transgene) together with a Cre-ER expression vector [46]. The

Author Summary

An important class of chemotherapeutic drugs used in the treatment of cancer induces DNA damage that interferes with DNA replication. The resulting block to replication results in the formation of single-strand gaps in DNA. These gaps can be filled by specialized DNA polymerases, a process associated with the introduction of mutations or by recombination with an undamaged segment of DNA with an identical or similar sequence. Our work shows that diversification of the antibody genes in the chicken B cell line DT40, which is initiated by localized replication-stalling DNA damage, proceeds by formation of a single-strand intermediate. These gaps are generated by the action of a specific nuclease complex, comprising the Mre11, Rad50, and Nbs1 proteins, which have previously been implicated in the initiation of homologous recombination from double-strand breaks. However, in this context, their dysfunction can be reversed by the expression of a bacterial single-strand-specific nuclease, SbcB. Antibody diversification in DT40 thus provides an excellent model for studying the process of replication-stalling DNA damage and will allow a more detailed understanding of the mechanisms underlying gap repair and cellular tolerance of chemotherapeutic agents.
resulting $NBS1^{-/-}/loxP-NBS1^{P95}$ clones were transfected with targeting constructs to disrupt exons 1–16 or exons 13–16, which encodes the Mre11-binding domain of the third $NBS1$ allele (Figure 1B). We were only able to obtain targeted integration with the latter construct, because Nbs1 overproduction from the $loxP$-$NBS1p95$ transgene substantially reduced gene-targeting efficiency. The genotype of the $NBS1^{2/2}/D_{13–16}/loxP-NBS1p95$ (hereafter $DNBS1/loxP-NBS1^{P95}$) clones was confirmed by Southern-blot analysis of $HindIII$-digested genomic DNA for the disappearance of a WT 5kb band (Figure 1C). Western-blot analysis showed that $DNBS1/loxP-NBS1^{P95}$ cells expressed levels of Nbs1p95 that were about 50 fold higher than the WT cells (Figure 1D). $DNBS1/loxP-NBS1^{P95}$ cells tended to grow more slowly than did WT cells (Figure 1E), a phenotype that may be attributed to the overexpressed $NBS1^{P95}$.

To investigate whether Nbs1p95 is required for cellular proliferation, $DNBS1/loxP-NBS1^{P95}$ cells were treated with tamoxifen to activate the Cre recombinase, resulting in the deletion of the $loxP-NBS1^{P95}$ transgene. $DNBS1/loxP-NBS1^{P95}$ cells ceased proliferating four days after the addition of tamoxifen (Figure 1E), with substantial numbers of dead cells (data not shown). These observations indicate that $NBS1$ is required for cellular proliferation, as previously reported [47]. To investigate the cause of the cell death, we scored spontaneous chromosomal aberrations when the cells were dying. The tamoxifen-treated $DNBS1/loxP-NBS1^{P95}$ cells indeed exhibited extensive spontaneous chromosomal breaks (Figure 1F), as did Mre11 deficient cells [13], indicating an essential role for Nbs1 in repairing lethal double-strand breaks.

We also made conditional Rad50-depleted cells and found that they too exhibited an increase in the level of chromosomal breaks.
before cell death (Figure S1). Thus, a loss of Mre11, Rad50 and Nbs1 has a very similar effect on the maintenance of chromosomal DNA in cycling cells, suggesting that the three molecules form a functional unit, as do the yeast ortholog proteins [5].

We wanted to test whether or not expression of Nbs1p70 could rescue the cells from cell death. To this end, we complemented ΔNBS1/loxP-NBS1p95 cells with an NBS1p70 transgene and generated ΔNBS1/loxP-NBS1p95/NBS1p70 clones. The Nbs1p70 protein contains an Mre11-binding site, but lacks both the FHA and BRCT domains (Figure 2A) [5]. Western-blot analysis verified the Nbs1p70 expression, which was about 30 times higher than the expression of endogenous Nbs1 (Figure 2B). To remove the loxP-NBS1p95 transgene, ΔNBS1/loxP-NBS1p95/NBS1p70 cells were exposed to tamoxifen for three days, and isolated clones were examined for the expression of the Nbs1 protein. All surviving colonies expressed Nbs1p70, but not WT Nbs1p95, showing that their genotype is ΔNBS1/NBS1p70 (Figure 2B). The resulting clones proliferated with slightly slower kinetics than did the ΔNBS1/loxP-NBS1p95 cells (Figure 2C). We therefore conclude that Nbs1p70 is sufficient to rescue ΔNBS1-deficient cells. This conclusion implies that the viability of previously described Nbs1-deficient DT40 cells might be attributable to the leaky expression of an N-terminally truncated protein [48].

Reduction in the Rate of Ig Gene Conversion in Nbs1p70-Expressing Cells

Two representative ΔNBS1/NBS1p70 clones were further studied for their HR capability by measuring their gene-targeting frequency and sensitivity to DNA-damaging agents. Table 1 shows the ratio of targeted-to-random integration events at two loci. No gene-targeting events were detectable in the ΔNBS1/NBS1p70 clones. We next measured cellular sensitivity to ionizing...
Table 1. Targeted integration frequencies in the indicated loci.

Genotype	Targeted integration frequencies	Targeted locus
	OVALBUMIN	HPRT
WT	40/46 (87.0%)	12/34 (35.3%)
ANBS1/loxP-NBSp70	8/27 (29.6%)	3/37 (8.1%)
JNBS1/NBSp70	0/46 (0%)	0/46 (0%)

WT, ANBS1/loxP-NBSp70, and JNBS1/NBSp70 cells were transfected with targeting constructs of the indicated loci. The data shown are the number of targeted events at each locus divided by the number of drug-resistant clones analyzed. The percent frequency is in parentheses.

doi:10.1371/journal.pgen.1000356.t001

radiation and camptothecin, a DNA-topoisomerase-I inhibitor [49]. Ionizing-radiation-induced DSBs are repaired by the two major DSB repair pathways, HR and nonhomologous end-joining [50], whereas camptothecin-induced DSBs are repaired exclusively by HR [51–53]. Compared with WT cells, the ANBS1/NBSp70 cells showed a significant increase in damage sensitivity, particularly to camptothecin (Figures 2D and E). This is consistent with previous reports showing that Nbs1 promotes HR-mediated DSB repair [47,48].

The rate of Ig gene conversion was assessed by measuring the re-expression of surface immunoglobulin M (sIgM) in DT40 clones that carry a defined frameshift mutation in the light-chain VJ3 gene [21]. Since the frameshift is eliminated by superimposed Ig gene conversion, leading to the production of Igα, the rate of Ig gene conversion can be evaluated by measuring the kinetics of sIgM gain (Figure 3A). Thirty subclones from each genotype were analyzed for sIgM gain after 3 weeks of clonal expansion [33,54]. The median value of the fraction of sIgM+ cells was 1.84% for WT, 1.91% for NBS1−/−, and 0.75% for NBS1−/−/loxP-NBSp70 cells (Figure 3B). The reduced Ig gene conversion rate in NBS1−/−/loxP-NBSp70 cells may result from the toxic effect of the overproduced Nbs1p70 protein. Two ANBS1/NBSp70 clones displayed a significant decrease in gene conversion, with only 0.1–0.2% of subclones gaining sIgM, a level close to the background of the flow-cytometric analysis. To accurately evaluate the Ig gene conversion rate, we exposed populations of cells to trichostatin A, a histone-deacetylase inhibitor that increases the Ig gene conversion rate ~50 fold [55,56]. Following culture for 3 weeks in trichostatin A, the sIgM gain was only elevated to 2.15% in the ANBS1/NBSp70 cells, while the WT cells exhibited an increase from 1.84 to over 90% (Figure 3C). This suggests that the intact MRN complex might promote Ig gene conversion, as reported previously [57]. Alternatively, the accuracy of Ig gene conversion in the ANBS1/NBSp70 cells might be reduced, leading to a decrease in the re-expression of sIgM.

To examine the accuracy of Ig gene conversion, we determined the VJ3-nucleotide sequences from unsorted cells treated with trichostatin A for 4 weeks (Figure 3D). In trichostatin-A-treated unsorted WT cells, at least 42 Ig gene conversion events were detected among the 40 analyzed VJ3 segments (1.3×10−2 events per VJ3 per division). In contrast, the number of Ig gene conversion tracts was only one in 40 analyzed VJ3 (3×10−4 events per VJ3 per division) in ANBS1/NBSp70 cells. This 42-fold difference is comparable to the difference observed in the sIgM-gain assay (Figure 3C). Ig V sequence analysis showed that the accuracy of these events is unaffected, as neither aberrant recombination nor accumulation of point mutations was found in ANBS1/NBSp70 cells. To characterize the nature of Ig gene conversion, we also analyzed the VJ3 nucleotide sequences of sorted sIgM+ revertants from ANBS1/NBSp70 trichostatin-A-untreated cell populations.

The frame-shift mutation in Ig V3 [21] was indeed eliminated by superimposed gene conversion in all 40 analyzed fragments derived from ANBS1/NBSp70 cells (data not shown). Furthermore, we found no change in the pattern of gene conversion, such as length of gene-conversion tracts (84 nucleotides on average for both ANBS1/NBSp70 and WT [56]) or usage of pseudo-V donor segments, and no aberrant recombination (data not shown). Thus, although the defective Nbs1 function reduces the rate of Ig gene conversion, it compromises neither its accuracy nor donor gene preference.

Effect of Ectopic Expression of AID on Defective Ig Gene Conversion in Nbs1-Deficient Cells

To analyze Ig V hypermutation in ANBS1/NBSp70 cells, we increased the level of AID expression by introducing an AID transgene into DT40 cells through retroviral infection [31,58]. We assessed Ig V diversification by determining the nucleotide sequence of Ig V3 in unsorted cells at 14 days post-infection (Figure 3D). WT and ANBS1/NBSp70 cells exhibited similar levels of non-templated hypermutation: about 5.0×10−4 per nucleotide per division (Figure 3F). Thus, a defect in Nbs1 does not affect Ig V hypermutation.

AID overexpression increased the rate of Ig gene conversion from 5.2×10−4 to 1.3×10−3 per VJ3 per division in 40 analyzed VJ3 cells in WT cells (Figures 3E and F). Surprisingly, the frequency of Ig gene conversion in ANBS1/NBSp70 cells reached the level of the WT cells, i.e., 1.6×10−3 per VJ3 per division in 40 analyzed VJ3 sequences. Thus, the frequency of gene conversion was increased 25 fold in WT cells and 307 fold in ANBS1/NBSp70 cells by the ectopic expression of AID. No aberrant recombination events were observed. We conclude that a defect in Ig gene conversion in ANBS1/NBSp70 cells is completely normalized by the ectopic expression of AID. This observation suggests two scenarios, described as follows: DSBs might initiate Ig gene conversion in a manner similar to the way in which AID-dependent DSBs trigger Ig-class switch recombination (reviewed in [59]). Thus, higher levels of AID expression may result in multiple deamination events on both strands, with the ensuing incisions more likely to generate DSBs carrying the 3′ tails even in the absence of the intact MRN complex. Alternatively, Ig gene conversion might be initiated by single-strand gaps. In the latter model, the formation of multiple abasic sites and incisions in one strand results in the generation of recombinogenic single-strand gaps, after which Nbs1p70 is no longer required for the processing of single-strand lesions to stimulate Ig gene conversion.

No Involvement of DSBs in AID-Induced Ig Gene Conversion

There are two major DSB repair pathways: HR and nonhomologous end-joining (NHEJ). Two studies previously reported the negative effect of NHEJ on Ig gene conversion [60,61], which suggests that DSBs are an intermediate in Ig gene conversion. However, the IgV sequence from unsorted populations show only a two-fold increase [60] or no increase [61] in the rate of Ig gene conversion in NHEJ deficient clones in comparison with WT cells. Furthermore, another study [20] and our own work did not reproduce their data (data not shown). In general, it is difficult to draw a conclusion from at best a two-fold difference due to possible clonal variations in DT40 cells. To determine the
involvement of DSBs in Ig gene conversion more accurately, we performed two experiments: 1) Detection of deletions within V\(_i\) in RAD54\(^{\sim}\) and Ku70\(^{\sim}\)/RAD54\(^{\sim}\) clones [50] (Figure 4A), and 2) terminal deoxynucleotidyltransferase (TdT) expression (Figure 4B and C). In the first experiment, the effect of Ku70 depletion on Ig V diversification was investigated in the RAD54\(^{\sim}\) background, where HR is not completed despite the accumulation of Rad51 at sites with DNA damage [62,63]. Since the loss of Rad54 is substantially suppressed by NHEJ in the repair of x-ray-induced DSBs [50], we assumed that if Ig gene conversion is initiated by DSBs, a majority of such breaks would eventually be repaired by NHEJ in RAD54\(^{\sim}\) cells, as are x-ray-induced DSBs. Thus, the additional inactivation of Ku70 in RAD54\(^{\sim}\) cells would result in the deletion of V\(_i\) sequences, as illustrated by the extensive deletion of the V(D)J coding joint in NHEJ-defective B precursors [64]. To detect deletion of Ig V\(_i\), we determined the nucleotide sequences of V\(_i\) in AID overexpressing WT, RAD54\(^{\sim}\) and Ku70\(^{\sim}\)/RAD54\(^{\sim}\) cells (Figure 4A). The RAD54\(^{\sim}\) and Ku70\(^{\sim}\)/RAD54\(^{\sim}\) cells exhibited only one (6.6 \times 10^{-4} \text{ per } V\(_i\) per division in 36 analyzed V\(_i\) sequences) and three (1.7 \times 10^{-3} \text{ per } V\(_i\) per division in 43 analyzed V\(_i\) sequences) single-nucleotide deletion events, respectively. There were no longer deletions. Thus, unlike the repair of x-ray-induced DSBs, this result does not support the idea that unrepaired AID-induced damage at the V\(_i\) segment of RAD54\(^{\sim}\) cells is subject to NHEJ-mediated DSB repair.

In the second experiment, we overexpressed TdT, which added nucleotides at DSBs in a template-independent manner during V(D)J-joining [65,66]. TdT has been shown to access the Ig locus when expressed in a human cell line that undergoes constitutive Ig somatic mutation in vivo [67]. If DSBs are a frequent trigger for Ig gene conversion, TdT-mediated nucleotide additions should be readily demonstrated at Ig V\(_i\) in DT40 cells expressing TdT. We therefore transfected a TdT expression plasmid into WT DT40 cells and performed an Ig V\(_i\) sequence analysis. The TdT overproduction affected neither point mutation nor Ig gene conversion frequency (Figure 4B). In contrast to the effect seen in hypermutating Ramos cells [67], we could not detect any insertion in difference frequency between WT cells with or without TdT overproduction (Figure 4C). Furthermore, all the insertions were of a single base pair, with the exception of one sequence where a deletion of 19 base pairs was associated with the insertion of CCC, which could not be accounted for by a pseudogene donor (ACAAAGTTCGC..19 bp del...GACAAC). This is the only example within the analyzed 109 sequences that may reflect the activity of TdT. The absence of additional nucleotides at Ig V\(_i\) indicates that DSBs are not intimately associated with Ig gene conversion.

In summary, these data support the hypothesis that the initiating lesions for Ig gene conversion are predominantly single-strand gaps rather than DSBs. Hence, AID overexpression that normalizes the impaired Ig gene conversion of ANBS1/\(\sim\)BSp\(^{\sim}\) cells (Figure 3D) possibly does so as a consequence of the formation of multiple incisions in one strand, which promotes the generation of recombinogenic single-strand gaps even in the absence of the intact MRN complex. This hypothesis is also supported by a previous biochemical study, which demonstrates that AID processively deaminates C residues on a single-strand DNA [68].

SbcB, a Nuclease that Acts on a Single-Strand Gap, Induces Gene Conversions in nbs1-Deficient Cells

If Ig gene conversion is triggered by single-strand lesions, then the MRN complex is likely to contribute to Ig gene conversion, possibly by converting small single-strand lesions to larger, more recombinogenic gaps. To test this hypothesis, we attempted to normalize the impaired Ig gene conversion of the Nbs1-deficient cells by overproducing nucleases whose activity is precisely characterized. These nucleases included Exo1 [36–40] and SbcB [41–43]. Using a retroviral vector, we introduced individual nuclease transgenes into DT40 cells and established overproducing clones. We cultured individual clones for 2 weeks and determined the nucleotide sequences of the V\(_i\) segment. Remarkably, SbcB dramatically increased the rate of Ig gene conversion in ANBS1/\(\sim\)BSp\(^{\sim}\) cells (Figure 5A–C). Unexpectedly, this increase was not observed in ANBS1/\(\sim\)BSp\(^{\sim}\) cells overexpressing chicken Exo1, presumably because this exonuclease can work only in a physiological context such as during mismatch repair in the chicken cell line. The frequency of Ig gene conversion in SbcB overproducing Nbs1-deficient cells reached 4.2 \times 10^{-3} \text{ per } V\(_i\) per division in analyzed 45 V\(_i\) sequences, a level higher than the genome conversion frequency of the WT cells (Figure 5B). Ectopic SbcB expression did not significantly change the position (compare Figures 3D and 5A) or pseudo-V usage (Figure 5D) of the Ig gene conversion. In contrast, the nature of the Ig gene conversion was distinctly different between trichostatin-A-treated WT cells and those overproducing AID (Figure 3D and 5A). Presumably, this is because, according to a previous biochemical study [68], overproduced AID can deaminate even "cold" spots at Ig V, thereby initiating HR from a wider range of nucleotide sequences than does the endogenous AID of DT40 cells. Thus, it is likely that SbcB promotes Ig gene conversion in the same physiological manner as does the MRN complex. SbcB has the 3' to 5' exonuclease activity specific for single-stranded DNA in vivo [41–43], and can thereby expand single-strand gaps to stimulate HR in vivo. Hence, we conclude that the MRN complex contributes to Ig gene conversion.
Figure 4. Double-strand breaks may not be associated with Ig gene conversion. (A) Ig V mutation events in AID overexpressing WT, RAD54^{−/−} and KU70^{−/−} RAD54^{−/−} cells. Each horizontal line represents the rearranged V_l (450 bp) with mutations classified as described in Figure 3D. Clones were expanded for 2 weeks. More than two clones were analyzed for each data set. Nucleotide sequence data included in one square bracket are derived from individual cell clones. (B) Immunoglobulin diversification in terminal deoxytransferase- (TdT) expressing DT40 cells. (B) Proportion of sequences carrying the indicated number of non-templated point mutations (PM), ambiguous mutations (Amb) and gene conversions (GC), determined as previously described [20]. The total number of sequences analyzed is indicated in the center of the pie chart. Data are derived from four independent clones. Control data for the TdT-expression experiment (WT with no TdT expression) were previously published [20] and are included here for comparison. (C) Proportion of sequences containing a deletion, duplication or insertion.

doi:10.1371/journal.pgen.1000356.g004
gene conversion in a similar manner by increasing the size of single-strand gaps.

To test whether overproduced SbcB affects HR-dependent repair of DSBs in vivo, we measured the effect of SbcB overproduction on DSB repair. To this end, we measured I-SceI-induced gene-targeting [44]. We inserted the S2neo fragment carrying the I-SceI recognition site [69] into the Ovalbumin locus of DT40 cells, subsequently transfecting the 3'neo fragment [69] (gene-targeting vector in Figure 5E) together with an I-SceI expression plasmid. Since gene-targeting of 3'neo into S2neo leads to the restoration of the WT neomycin-resistance (neoR) gene, the efficiency of gene-targeting events can be analyzed by measuring the frequency of neoR colonies. As previously observed [45], the cotransfection of the I-SceI expression plasmid increases the gene-targeting frequency of 3'neo by more than three orders of magnitude. To test whether SbcB affects DSBI-induced gene-targeting, we measured gene-targeting frequency following transfection of both the 3'neo gene-targeting fragment and the I-SceI expression plasmids, along with either a nuclease-expression plasmid (SbcB or the chicken Exo1 expression plasmid) or a negative control vector into WT DT40 cells. The ectopic expression of SbcB had no impact on DSB-induced gene-targeting (Figure 5F). In contrast, overproduction of chicken Exo1 increased the frequency of gene-targeting events more than 10 fold. This observation argues against the involvement of overproduced SbcB in DSB repair.

Discussion

We show in this study that DT40 cells deficient in the individual components of the MRN complex exhibit similar phenotypes, including extensive chromosomal breaks prior to cell death. This observation suggests that Nbs1 participates in HR as part of the MRN complex, as does the MRX complex in yeast. As expected, the lethality of Nbs1-deficient cells was rescued by the expression of the Nbs1p70 N-terminal-truncated protein. ANBS1/NBS1p70 cells showed a significant decrease in the rate of Ig gene conversion. In the following subsections we present evidence that suggests that Ig gene conversion may be initiated by AID-induced single-strand lesions and that the MRN complex contributes to Ig gene conversion presumably by processing these single-strand lesions to generate recombinogenic gaps.

Ig Gene Conversion Events Are Initiated by Single-Strand Lesions but not by DSBs

Two mechanisms could underlie the AID-dependent initiation of Ig gene conversion. The first assumes that AID-dependent single-strand lesions are converted to DSBs (possibly by blocking replication in one of the two sister chromatids), which stimulate Ig gene conversion. The second states that AID-dependent single-strand lesions directly trigger Ig gene conversion. The first scenario is unlikely for five reasons. First, in hnu1, hnu2 and rad51-paralog DT40 mutants, which are defective in the accumulation of Rad51 at sites of DNA damage, inefficient repair of AID-induced lesions activates TLS associated with hypermutation at dC:dG basepairs [20,32,33]. Thus, the AID-induced substrate for HR is also likely to be the substrate for TLS-dependent Ig V hypermutation. Since effective TLS requires that there is no cleavage of the abasic-site-containing strand, it seems therefore plausible that unfilled gaps directly stimulate Ig gene conversion in HR-proficient cells. (Figure 6). Second, if AID directly causes DSBs in Ig V, such breaks would likely be repaired primarily by NHEJ in HR-deficient cells. Although it has been shown that AID-mediated DSBs trigger Ig-class switch recombination, which is partially dependent on NHEJ-mediated DSB repair [70], we did not obtain evidence for the involvement of NHEJ in Ig gene conversion, even in RAD54−/− cells (Figure 4A), where a late step of HR is compromised [62,63]. This observation conflicts with the critical role NHEJ plays in the repair of X-ray-induced DSBs, as evidenced by the significant increase in sensitivity to x-rays in Ku70−/−Rad54−/− cells compared with Rad54−/− cells [50]. Third, overexpression of terminal deoxynucleotidyl transferase failed to add extra-nucleotide sequences at the Ig Vγ of DT40 cells (Figure 4B and C). This observation argues against the significant association of Ig gene conversion with DSBs, because N nucleotides are inserted at the DSBs, as observed in DSB-induced V(D)J recombination [65,66]. Fourth, although chicken Exo1 overproduction significantly increased the frequency of DSB-induced HR (Figure 5F), as observed in yeast [38,39], the overproduction of SbcB did not enhance DSB-induced gene-targeting. However, SbcB reversed the defective Ig gene conversion in the Nbs1-deficient DT40 cells. Moreover, it is believed that SbcB suppresses DSB-induced HR, because its 3′ to 5′ exonuclease activity may remove the 3′ protruded tails from DSBs (reviewed in [3]). Collectively, these data suggest that DSBs do not play a major role in triggering Ig gene conversion, and that it is more likely that single-strand gaps formed by the sequential action of AID, UNG and the MRN complex directly stimulate Ig gene conversion.

At one time, models for both DSB- and nick-initiated HR were proposed [71,72] (reviewed in [1]). The finding of DSBs during meiosis, as well as the development of the restriction-enzyme-induced HR model, established the DSB as the main initiator of HR [73,74]. However, accumulating evidence indicates that single-strand lesions are indeed responsible for the initiation of HR in both RecFOR-dependent HR in E. coli and in mutant V(D)J recombinase-induced HR in episomal plasmids [2,75]. Adding to this evidence, our study indicates that Ig gene conversion is a form of HR that is directly stimulated by single-
strand lesions on chromosomal DNA in higher eukaryotic cells. The question remains as to whether or not single-strand gap-induced HR effectively contributes to the release of the replication block in the absence of accompanying DSBs.

Role of the MRN Complex in Ig Gene Conversion

The notion that single-strand lesions directly stimulate Ig gene conversion indicates that, like SbcB, the MRN complex may promote HR by converting single-strand breaks to more recombinogenic substrates such as single-strand gaps. In fact, according to the nick-initiating HR model, the initial nick is expanded into a single-strand gap to trigger HR [72]. Moreover, the presence of such activity is suggested by the biochemical study of CtpP, a protein that physically interacts with the MRN complex [8,10]. On the other hand, Larson et al. indicate that the MRN complex incises a strand near an abasic site [76]. However, if this activity plays a dominant role in the initiation of Ig gene conversion, one cannot explain why the subsequent defect in the accumulation of Rad51 at the incision in the rad51 paralog and bec1 mutant shift Ig V diversification from HR- to TLS-mediated hypermutation [20,32,33]. Nonetheless, it is possible that the incision activity accounts for a fraction of Ig gene conversion. A defect in this incision activity might be substituted by AID overexpression, as it could introduce multiple AP sites, which makes less effective AP endonuclease compensate for the defective incision activity of the mutant Mre11 complex in A/NBS1//NBS1p70 cells.

Figure 6 presents two models for the participation of the MRN complex in Ig gene diversification. In both models, AID-mediated catalysis and subsequent hydrolysis of uracil lead to the formation of single-strand gaps as a result of stalled replication (Figure 6A). The MRN complex facilitates HR by increasing the length of gaps in both models. Quick and copious recruitment of Rad51 at DNA lesions triggers Ig gene conversion, whilst poor recruitment leads to translesion DNA synthesis past abasic sites by error-prone polymerases. In the second model, it is still unclear why, despite the 10% sequence divergence between pseudo-V donor and V(D)J recipient fragments, competition between equal sister-chromatid HR and Ig gene conversion (Figure 6B) does not fully inhibit homologous recombination in the latter [24]. Presumably, extensive processing of single-strand lesions by the MRN complex and SbcB allows for homologous recombination, whilst impaired processing inhibits both TLS and Ig gene conversion (Figure 6B). The overproduction of AID might form gaps between two adjacent abasic sites on one strand, thereby suppressing the defective processing of single-strand lesions in A/NBS1//NBS1p70 cells (Figure 6B). Additionally, the MRN complex contributes to Ig gene conversions through its incision activity [76], and its defect in A/NBS1//NBS1p70 cells is rescued by the formation of multiple AP sites in AID overexpressing cells.

Materials and Methods

Plasmid Construction

All genomic fragments in the NBS1-targeting constructs were amplified from DT40 genomic DNA using LA-PCR (Takara Bio, Kyoto) with the primers indicated below. To make the NBS1A1–16 plasmid, the upstream and downstream arms were amplified with 5'-AGCGGTGGGACCCCGGCGTCATTTCTGCTATTGGCAGCCGTCGACCCCGCGTATTTCAGCAGCCTG-3' and 5'-AAAAGCTTTGGTTCCTCGGTGCTCCTCACC-3' primers, respectively. The resulting amplified upstream fragment was cut at the NotI site (derived from genomic sequence) followed by Klenow treatment and subsequently a HindIII cut. The 2.5 kb blunt-end HindIII fragment was cloned into the XhoI (blunt ended with Klenow treatment) HindIII site of pBluescript II (Stratagene) (named...
the pBS/NBS1 5’ arm). Two oligonucleotides, containing either EcoRI-BamHI-BglII-SalI or BamHI-BglII-HindIII, were inserted into the EcoRI-SalI or BamHI-HindIII site of the pBS/NBS1 5’ arm plasmid. The 5.5 kb 3’ arm was inserted into the HindIII-NotI site of the pBluescript (pBS/NBS 3’ arm). To make the NBS1A1–16 blasticidin (Bsr) gene-disruption construct, the BsrK^ marker cassette was cloned into the BamHI site of the pBS/NBS 5’ arm plasmid (with EcoRI-BamHI-BglII-SalI sites), followed by the ligation of the resulting plasmid with SalI and NotI and the SalI-NotI fragment containing the 3’ arm from the pBS/NBS 3’ arm plasmid (NBS1A1–16 Bsr). Similarly, a Puromycin- (PuroK^) marker cassette was cloned into the BamHI site of the pBS/NBS 5’ arm plasmid, followed by the insertion of the HindIII and NotI fragment of the 3’ arm from the pBS/NBS 3’ arm between the HindIII and NotI sites (NBS1A1–16 PuroK^). To make the NBS1A1–13 gene-disruption construct, the upstream arm was amplified with 5’-TTGGAGGTGAGCAGCAACCATGACGG-3’ and 5’-AAAGGATCCCTTCTGAGAGGAGCCAGGACG-3’ primers. The 7.5 kb self- (in genomic sequence) BamHI fragment of the amplified fragment was cloned into the XhoI-BamHI site of the pBS/NBS 5’ arm plasmid (named pBS/A13–16 5’ arm). A neomycin- (Neo) neo marker gene cassette was cloned into the BamHI site of the pBS/A13–16 5’ arm plasmid. The resulting plasmid was ligated with the SalI-NotI fragment of the 3’ arm used for the NBS1A1–16 Bsr construct (NBS1A1–16). A probe for Southern hybridization was amplified from DT104 genomic DNA using the primers 5’-AAGGTTGAGAAGATGAGCCATGATGCAGATTCCCTTCACTTGGC-3’ and 5’-TGACTGCACTCTGCTCATTCTG-3’. The following two expression vectors were generated: 1) pBluescript-loxP-chicken β-actin promoter-multiple cloning site—internal ribosomal entry site (IRES) enhanced green fluorescent protein (EGFP) gene-loxP (named the plox vector), and 2) pBluescript-chicken β-actin promoter-multiple cloning site (named the β-actin vector). Chicken Nbs1^cDNA was amplified from pBS/NBS1 by PCR with the 5’-AAGAATTCGAGAAGATGAGCCATGATG-3’ and 5’-TTGGAGGTGAGCAGCAACCATGACGG-3’, and then cloned into the EcoRI-BglII-SalI site of plox (plox/NBS1). To make the NBS1p70 cDNA (Figure 2A), NBS1p70 cDNA was served as template DNA for PCR amplification using primers 5’-AAGGATCCATGATGAGCCATGATGCAGATTCCCTTCACTTGGC-3’ and 5’-TTGGAGGTGAGAAGATGAGCCATGATG-3’, and the amplified fragment was cloned into the BamHI-NotI site of the β-actin plasmid (pβ-actin/NBS1p70). Chicken Rad50 cDNA was amplified by a standard RT-PCR method with primers 5’-ATGGCCAAAGATTAGAAAGATGAGCATCCC-3’ and 5’-TAAATGACGATGAGCCAAGGAGC-3’, and then cloned into pTRE2 (Clontech) (pTRE2/RAD50) (Accession #514645). Two RAD50 disruption constructs, RAD50-Bsr and RAD50-HisD, were expected to delete exon 11 to 13 encoding amino-acid sequences from 579 to 735. The 3.9 kb 5’ arm was amplified from DT104 genomic DNA using primers 5’-TGCCATACAGAAGAATCCACTGCGGCTTA - 3’ and 5’-CTGAGTGGTTTTGGCCATGGAGCCAGTCTCTC-3’ and cloned into pBluescript KS(+) vector. The resulting plasmid was inserted with the 1.4 kb Spel-SacI genomic fragment including exon 14, which was excised from a phase clone derived from the chicken genomic DNA library, where it served as the 3’ arm in the RAD50 disruption construct. Lastly, marker cassettes, Bsr or HisD, were inserted into the BamHI site to generate the RAD50-Bsr or RAD50-HisD gene-disruption construct. The genomic 3.4 kb SalI-EcoRI fragment, which is located at downstream of the 3’ arm, was used as a probe for Southern-blot analysis.

Cell Culture and DNA Transfection

Cells were cultured in RPMI1640, supplemented with 10^−5 M β-mercaptoethanol, 10% fetal-calf serum and 1% chicken serum (Sigma, St Louis, MO) at 39.5°C. Methods for DNA transfection and genotoxic treatments are as described previously [77].

Generation of NBS1 Mutant Cells

WT DT40 cells were sequentially transfected with NBS1A1–16 Bsr^ and subsequently with NBS1A1–16 Puro^-targeting constructs to obtain NBS1A1–16 cells. They were then transfected with an expression vector containing Cre-estrogen receptor chimeric recombinase [pANMerCreMer [46]] together with the plox/NBS1plasmid. The resulting NBS1A1–16/loxP-NBS1^ cells were transfected with the NBS1A1–16 gene-disruption construct to obtain NBS1A1–16/loxP-NBS1^ cells. NBS1A1–16/loxP-NBS1^ cells were generated by expressing NBS1/loxP-NBS1/^ cells to NBS1^ cells for 3 days followed by subcloning, as described previously [46].

Generation of RAD50 Mutant Cells

WT DT40 cells were transfected with the RAD50-Bsr disruption construct to generate RAD50^/− cells. They were co-transfected with the pTRE2/RAD50 and pTet-off (Clontech) plasmids simultaneously to make RAD50^/−/tetRAD50 cells. These cells were transfected with the RAD50-HisD construct to generate RAD50^/−/tetRAD50 cells. Conditional inactivation of the RAD50 transgene was done using tetracycline as previously described [13].

Measurement of Sensitivity of Cells to Killing by γ-Rays, Camptothecin, and Analyzes of Chromosome Aberrations

Clonogenic survival was monitored by a colony-formation assay, as described previously [77]. To measure sensitivity to camptothecin (Topogene, Columbus, OH), appropriate numbers of cells were plated into six-well plate containing the complete medium and 1.5% methylcellulose (Aldrich, Milwaukee, WI), supplemented with camptothecin. Colony numbers were counted at 7 and 14 days, and the survival percentage was determined in terms of the number of colonies of untreated cells. To measure ionizing-radiation sensitivity, serially diluted cells were plated in the medium containing methylcellulose, irradiated with a ^137^Cs γ-ray source and then incubated. Measurement of chromosome aberrations was carried out as previously described [77].

Western Blot Analysis

Methods described previously were used for the preparation of whole-cell extracts and western-blot analysis, with the following modifications. For western-blot analysis, the mouse monoclonal anti-human Nbs1 antibody (BD Transduction Laboratories catalog #611871) was used at a 1:100 dilution, and HRP-conjugated donkey anti-mouse IgG antibody (Santa Cruz Biotechnology catalog #sc-2314) was used at a 1:5000 dilution. The western-blot analysis, rabbit polyclonal anti-chicken Rad50 antibody was used at a 1:100 dilution, and HRP-conjugated donkey anti-rabbit IgG antibody (Santa Cruz Biotechnology catalog #sc-2004) was used at a 1:5000 dilution. For the western-blot analysis, rat monoclonal anti-mouse AID antibody (kindly provided by Dr. K. Kinoshita, Kyoto University) was used at a 1:500 dilution, and HRP-conjugated donkey anti-rat IgG antibody (Jackson Immunoresearch catalog #712-035-150) was used at a 1:5000 dilution.
Measurement of Targeted Integration Frequencies

To analyze the frequency of targeted integration events at the OVALBUMIN [78] and HPRT [79] loci, their disruption constructs were transfected into cells. Following selection of clones resistant to appropriate antibiotics, Southern-blot analysis was performed.

Analysis of Rate of slgM Gain and Loss

We confirmed that ΔNBS1/NBS1+/− cells retained the same frame-shift mutation in the V sequence as do WT cells [21]. Generation frequency of surface IgM (slgM) loss variants as well as slgM-gain revertants were monitored by flow-cytometric analysis of cells that had been expanded for 3 weeks after subcloning and then stained with fluorescein isothiocyanate-conjugated (FITC) goat anti-chicken IgM (Bethyl, Montgomery, TX). At least 30 subclones were analyzed in each genotype. To enhance Ig gene conversion, trichostatin A (TSA, Wako Osaka, concentration: 1.25 ng/ml) was added to a mixture of sIgM-negative subclones for 1 min, and 72 hours after electroporation, the number of live cells was counted by FACS and transferred to 96 well-cluster trays with or without 2.0 mg of G418 per ml. Cells were grown for 7 days, and HR frequencies were calculated by the following equation: HR frequency (colonies/cell) = number of G418-resistant colonies/(plating efficiency × total number of live cells). Expression was used for electroporation, as previously described [44].

I-SceI-Induced Gene Targeting

10^7 cells were suspended in 0.1 ml Nucleofector Solution T (amaxa) and electrooporated using a Nucleofector (amaxa) at program B-23. 2 μg of linear 3′ neo DNA and 2 μg of circular I-SceI expression vector (pBASce), together with 2 μg of either control (pBluescript II KS+), SbcB or chicken Exo1 expression vector, were transfected. 3′ neo DNA was amplified by PCR from the Sc neo substrate plasmid [69] using Phusion DNA polymerase (Finzymes) (30 cycles at 94°C for 30 s, 60°C for 30 s, and 72°C for 2 min), with 5′-GGAGTCCGGC-CTTGAACAGATGGATTGAC-3′ and 5′-GAGAACCCGCTATGACCATGATTACGCC-3′ primers. The amplified fragment was used for electroporation, as previously described [44].

Supporting Information

Figure S1 RAD50 gene-disrupted mutants are lethal to cells. RAD50+/− cells were conditionally created using the tet-repressible promoter (RAD50+/−/tet/∆RAD50), as described for the generation of MRE11-deficient DT10 cells [13]. (A) Schematic representation of a part of the RAD50 locus, the gene disruption constructs and the configuration of the targeted alleles. Solid boxes indicate the position of exons. Only disrupted exons are indicated. Relevant Exo1 RI sites and the position of the probe used in Southern-blot analysis are indicated. (B) RAD50 gene-targeting was confirmed by Southern-blot analysis. Exo1-RI-digested genomic DNA from cells with the indicated genotypes of the Rad50 gene was analyzed, using the probe shown in (A). Positions of hybridizing fragments of the WT and targeted loci are indicated. (C) The tet/∆RAD50 transgene expression was inhibited by the addition of doxycycline (Dox). Rad50 protein levels were reduced by at least 100 fold 24 hours after the addition of doxycycline. (D) Growth curves corresponding to the indicated cell cultures. Experiments were done at least three times. "+Dox" represents continuous exposure to doxycycline. The cells ceased to proliferate four days after the addition of Dox and eventually all died, indicating that RAD50 plays an essential role in the cellular proliferation of any vertebrate cell. (E) Chromosomal breaks accumulated in Rad50 depleted cells. Rad50+/−/− cells were exposed to Dox for six days. Fifty mitotic cells were analyzed for each chromosomal analysis. Found at: doi:10.1371/journal.pgen.1000356.s001 (3.1 MB EPS)

Acknowledgments

The authors thank Dr. Reiko Shinkura (Dept. of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Japan) for her critical reading of the manuscript and discussion.
Author Contributions
Conceived and designed the experiments: MN ES ST. Performed the experiments: MN ES KN JES KT YT KN YS. Analyzed the data: MN ES JES. Contributed reagents/materials/analysis tools: KK. Wrote the paper: MN ES JES RTB NFTL ST.

References
1. Smith GR (2004) How homologous recombination is initiated: unexpected evidence for single-strand nicks from p(d) site-specific recombination. Cell 117: 146–148.
2. Morimatsu K, Kowalczykowski SC (2003) RecFOR proteins load RecA protein onto gapped DNA to activate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11: 1337–1347.
3. Roche EP, Cornet E, Michel B (2003) Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 1: e15.
4. Paques F, Haber JE (1999) Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63: 349–404.
5. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3: 317–327.
6. Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436: 1053–1057.
7. Takada S, Nakamura K, Taniguchi Y, Paull TT (2007) CtIP/CtIP and the MRN complex collaborate in the initial steps of homologous recombination. Mol Cell 28: 351–352.
8. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, et al. (2007) Human CtIP an endonuclease that processes hairpin DNA cooperatively with the Mre11 RAD50 Xrs2 complex. Mol Cell 28: 638–651.
9. Nagaraju G, Scully R (2007) Minding the gap: the underground functions of an ataxia-telangiectasia-like disorder. Cell 99: 577–587.
10. Varon R, Vissing C, Platter M, Creaossettuki KM, Chrambach WA, et al. (1998) Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.
11. Matsura S, Tauchi H, Nakamura K, Aondo N, Nakamoto S, et al. (1998) Positional cloning of the gene for Nijmegen breakage syndrome. Nat Genet 19: 179–181.
12. Grilley M, Griffith J, Modrich P (1993) Bidirectional excision in methyl-directed mismatch repair. Cell 74: 647–657.
13. Itoh T, Zhao L, Kozak M, Wagner EK, Jackson SP (1999) Mre11 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J 18: 6619–6629.
14. Stewart GS, Mason RS, Skaricova J, Bressan DA, Kaplan MI, et al. (1999) The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 97: 527–537.
15. Donoho G, Reichardt W, Baudis MA, Lottspeich F, Jasin M, et al. (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell 18: 4070–4078.
16. Fujimoto A, Tachiiri S, Sonoda E, Thompson LH, Dhar PK, et al. (2001) RAD52 partially substitutes for the Rad51 paralog XRC3 in maintaining chromosomal integrity in vertebrate cells. EMBO J 20: 5186–5197.
17. Saberi A, Hochegger H, Szuts D, Lan L, Yasui A, et al. (2007) RAD18 and BRCA1 cooperate in processing double-strand breaks but not telomeres. Mol Cell 28: 735–746.
18. D’Amours D, Jackson SP (2002) The mammalian XRC3 complex is essential for immunoglobulin V gene conversion in a cultured B cell line. Curr Biol 12: 2595: 1301–1306.
19. Arakawa H, Moldovan GL, Saribasak H, Saribasak NN, Jentsch S, et al. (2006) A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4: e146–148.
20. Tsubouchi H, Oogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Cell Biol 11: 2223–2233.
21. Cooper DL, Lahue RS, Modrich P (1993) Methyl-directed mismatch repair is defined temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol Cell Biol 5186–5197.
22. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106: 902–923.
23. Iyer RR, Pluciennik A, Burdett V, Modrich PL (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106: 902–923.
24. Tsubouchi H, Oogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Cell Biol 11: 2223–2233.
25. Longerich S, Orelli BJ, Martin RW, Bishop DK, Stobo U (2008) Brcal in immunoglobulin gene conversion and somatic hypermutation. DNA Repair (Amst) 11: 518–529.
26. Rصلی G, Di Noia JM, Neuberger MS (2004) Mismatch recognition and uracil excision provide complementary pathways to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16: 163–171.
27. Saberi A, Nakahara M, Sale JE, Nakajou H, Arakawa K, Hatakenaka A, et al. (2008) The 9-1-1 complex is essential for DNA double-strand break repair and checkpoint signalling. EMBO J 25: 1301–1306.
28. Sarbassak H, Sarbassak NN, Ipek FM, Elbrow JT, Arakawa H, et al. (2006) Uracil DNA glycosylase disruption blocks Ig gene conversion and induces transition mutations. J Immunol 176: 363–374.
29. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, et al. (2007) Human CtIP an endonuclease that processes hairpin DNA cooperatively with the Mre11 RAD50 Xrs2 complex. Mol Cell 28: 638–651.
30. Tsubouchi H, Oogawa H (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol Cell Biol 11: 2223–2233.
54. Zhao GY, Sonoda E, Barber LJ, Oka H, Murakawa Y, et al. (2007) A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol Cell 25: 663–675.
55. Seo H, Masukura M, Murataki H, Takeda S, Shihata T, et al. (2005) Rapid generation of specific antibodies by enhanced homologous recombination. Nat Biotechnol 23: 731–735.
56. Kawamori T, Araki K, Sonoda E, Yamashita YM, Harada K, et al. (2005) Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20: 793–799.
57. Yabuki M, Fujii MM, Maizels N (2005) The MRE11-RAD50-NBS1 complex accelerates somatic hypermutation and gene conversion of immunoglobulin variable regions. Nat Immunol 6: 730–736.
58. Shinkura R, Ito S, Begum NA, Nagaoka H, Muramatsu M, et al. (2004) Separate domains of AID are required for somatic hypermutation and class-switch recombination. Nat Immunol 5: 707–712.
59. Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, et al. (2007) Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94: 157–214.
60. Cook AJ, Halttunen YM, Lau KK, Jones DP, Harris RS, et al. (2007) DNA-dependent protein kinase inhibits AID-induced antibody gene conversion. PLoS Biol 5: e80.
61. Tang ES, Martin A (2006) NHEJ-deficient DT40 cells have increased levels of immunoglobulin gene conversion: evidence for a double strand break intermediate. Nucleic Acids Res 34: 6343–6351.
62. Sugawara N, Wang X, Haber JE (2005) In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Mol Cell 12: 209–219.
63. Takata M, Sasaki MS, Sonoda E, Fukushima T, Harrison RS, et al. (2000) The Rad51 paralog Rad51B promotes homologous recombinational repair. Mol Cell Biol 20: 6476–6482.
64. Gu Y, Jin S, Gao Y, Weaver DT, Alt FW (1997) Ku70-deficient embryonic stem cells have increased ionizing radiation sensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc Natl Acad Sci U S A 94: 8076–8081.
65. Bertocci B, De Smet A, Well JC, Reynaud CA (2006) Nonoverlapping functions of DNA polymerases mu, lambda, and terminal deoxynucleotidyltransferase during immunoglobulin V(D)J recombination in vivo. Immunity 25: 31–41.
66. Komori T, Okada A, Stewart V, Alt FW (1993) Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261: 1171–1175.
67. Sale JE, Neuberger MS (1998) TdT-accessible breaks are scattered over the immunoglobulin V domain in a constitutively hypermutating B cell line. Immunology 9: 859–869.
68. Plam P, Brunsteiter R, Petruska J, Goodman MF (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 423: 103–107.
69. Johnson RD, Liu N, Jasim M (1999) Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401: 397–399.
70. Kenter AL (2005) Class switch recombination: an emerging mechanism. Curr Top Microbiol Immunol 290: 171–199.
71. Sosstak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33: 25–35.
72. Radding CM (1982) Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet 16: 405–437.
73. Haber JE (1992) Matin-type gene switching in Saccharomyces cerevisiae. Trends Genet 8: 446–452.
74. Sun H, Treco D, Schultes NP, Szostak JW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87–90.
75. Lee GS, Neiditch MB, Salus SS, Roth DB (2004) RAG proteins shepherd double-strand breaks to a specific pathway, suppressing error-prone repair, but RAG nicking initiates homologous recombination. Cell 117: 171–184.
76. Larson ED, Cummings WJ, Bednarski DW, Maizels N (2005) MRE11/RAD50 Cleaves DNA in the AID/UNG-Dependent Pathway of Immunoglobulin Gene Diversification. Mol Cell 20: 367–373.
77. Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, et al. (2003) Multiple roles of Rev3, the catalytic subunit of pol3, in maintaining genome stability in vertebrates. EMBO J 22: 3180–3197.
78. Buerstedde JM, Takada S (1994) Increased ratio of targeted to random integration after transfection of chicken B cell lines. Cell 67: 179–188.
79. Fukagawa T, Hayward N, Yang J, Azzalin C, Griffin D, et al. (1999) The chicken HPRT gene: a counter selectable marker for the DT40 cell line. Nucleic Acids Res 27: 1966–1969.