Reducts of the Generalized Random Bipartite Graph

Yun Lu

Abstract Let \(\Gamma \) be the generalized random bipartite graph that has two sides \(R_l \) and \(R_r \) with edges for every pair of vertices between \(R_l \) and \(R_r \) but no edges within each side, where all the edges are randomly colored by three colors \(P_1, P_2, P_3 \). In this paper, we investigate the reducts of \(\Gamma \) that preserve \(R_l \) and \(R_r \), and classify the closed permutation subgroups in \(\text{Sym}(R_l) \times \text{Sym}(R_r) \) containing the group \(\text{Aut}(\Gamma) \). Our results rely on a combinatorial theorem of Nešetřil-Rödl and the strong finite submodel property of the random bipartite graph.

1 Introduction

As in [6], a reduct of a structure \(\Gamma \) is a structure with the same underlying set as \(\Gamma \) in some relational language, each of whose relation is \(\emptyset \)-definable in the original structure. If \(\Gamma \) is \(\omega \)-categorical, then a reduct of \(\Gamma \) corresponds to a closed permutation subgroup in \(\text{Sym}(\Gamma) \) (the full symmetric group on the underlying set of \(\Gamma \) that contains \(\text{Aut}(\Gamma) \) (the automorphism group of \(\Gamma \)). Two interdefinable reducts are considered to be equivalent. That is, two reducts of a structure \(\Gamma \) are equivalent if they have the same \(\emptyset \)-definable sets, or, equivalently, they have the same automorphism groups. There is a one-to-one correspondence between equivalence classes of reducts \(N \) and closed subgroups of \(\text{Sym}(\Gamma) \) containing \(\text{Aut}(\Gamma) \) via \(N \mapsto \text{Aut}(N) \) (see [6]).

There are currently a few \(\omega \)-categorical structures whose reducts have been explicitly classified. In 1977, Higman classified the reducts of the structure \((\mathbb{Q}, <) \) (see Higman [3]). In 2008, Markus Junker and Martin Ziegler classified the reducts of expansions of \((\mathbb{Q}, <) \) by constants and unary predicates (see M. Junker [4]). Simon Thomas showed that there are finitely many reducts of the random graph (Thomas [5]) in 1991, and of the random hypergraphs ([6]) in 1996. In 1995 James Bennett proved similar results for the random...
tournament, and for the random k-edge coloring graphs (Bennett [1]). In 2011, I investigated the reducts of the random bipartite graph that preserve sides. Equivalently, we analyze the closed subgroups of $\text{Sym}(R_l) \times \text{Sym}(R_r)$ containing $\text{Aut}(\Gamma)$.

In this paper, we consider the generalized random bipartite graphs, i.e. complete random bipartite graphs with k colors P_1, P_2, P_3 on $R_l \times R_r$ such that $P_1 \cup P_2 \cup P_3 = R_l \times R_r$ and $P_i \cap P_j = \emptyset$ if $i \neq j$. The appropriate language L_3 for such structures can be taken to have two unary relations, R_l and R_r, and 3 binary relations P_1, P_2, P_3. For convenience we consider a graph $\Gamma = (V, R_l, R_r, P_1, P_2, P_3)$, where $R_l, R_r \subseteq V$ and $P_1, P_2, P_3 \subseteq R_l \times R_r$. Then Γ is a bipartite graph having 3 cross-types if it satisfies the following set B_3 of axioms:

1. $\exists x R_l(x)$
2. $\exists x R_r(x)$
3. $\forall x \forall y (P_i(x, y) \rightarrow (R_l(x) \land R_r(y))), i = 1, \ldots, 3$
4. $\forall x \forall y (P_i(x, y) \rightarrow \neg P_j(x, y)), i \neq j$
5. $\forall x \forall y (R_l(x) \land R_r(y) \rightarrow (P_1(x, y) \lor P_2(x, y) \lor P_3(x, y)))$
6. $\forall x ((R_l(x) \lor R_r(x)) \land \neg (R_l(x) \land R_r(x)))$.

Definition 1.1. A countable bipartite graph Γ having 3 cross-types Γ is random if it satisfies the extension properties Θ_n for all $n \in \mathbb{N}$:

(\Theta_n): For any finite pairwise disjoint $X_{i1}, X_{i2}, X_{i3} \subseteq R_l$ and finite pairwise disjoint $X_{r1}, X_{r2}, X_{r3} \subseteq R_r$, each of size at most n,

(a) there exists a vertex $v \in R_l$ such that $P_1(v, x)$ for every $x \in X_{ri}, i = 1, \ldots, 3$.
(b) there exists a vertex $w \in R_r$ such that $P_i(x, w)$ for every $x \in X_{ri}, i = 1, \ldots, 3$.

The Θ_n’s are first-order sentences, and the axioms in Definition 1.1 together with the $\{\Theta_n\}_{n \in \mathbb{N}}$ form a complete and ω-categorical theory. It can be shown that a 3-colored random bipartite graph exist. It is countable and unique up to isomorphism. It is also easy to show that the 3-colored random bipartite graph is homogeneous by a back-and-forth argument. In the rest of paper, the we use Γ to denote the 3-colored random bipartite graph, unless otherwise mentioned.

Notice that with three cross-types, the definition of switch is more complicated because the permutation group S_3 is not commutative. From now on, we let $\text{Sym}_{\{l, r\}}(\Gamma)$ denote $\text{Sym}(R_l) \times \text{Sym}(R_r)$.

Definition 1.2. Given $\sigma \in S_3$ and a vertex $v \in R_l$, a switch on v according to σ is a permutation $\pi \in \text{Sym}_{\{l, r\}}(\Gamma)$ such that for any $(a, b) \in R_l \times R_r$ and for $i = 1, 2, 3$,

- if $v = a$, then $P_i(a, b) \rightarrow P_{\sigma(i)}(\pi(a), \pi(b))$;
- otherwise, $P_i(a, b) \rightarrow P_i(\pi(a), \pi(b))$.

Similarly we define a switch w.r.t. $v \in R_r$.

Definition 1.3. Given $\sigma \in S_3$ and $A \subseteq \Gamma$, a switch on A according to σ is a permutation $\pi \in \text{Sym}_{\{l, r\}}(\Gamma)$ such that for any $(a, b) \in R_l \times R_r$ and for $i = 1, 2$ or 3,

- if (a, b) has exactly one entry from A, then $P_i(a, b) \rightarrow P_{\sigma(i)}(\pi(a), \pi(b))$;
- if (a, b) has both entries in A, then $P_i(a, b) \rightarrow P_{\sigma^2(i)}(\pi(a), \pi(b))$.
Definition 1.4. If \(X \subseteq \{l, r\} \) and \(H \leq S_3 \), then \(S^H_X(\Gamma) \) is the closed subgroup of \(\text{Sym}_{\{l,r\}}(\Gamma) \) generated as a topological group by \(\text{Aut}(\Gamma) \) together with all \(\pi \in \text{Sym}_{\{l,r\}}(\Gamma) \) such that there exists a vertex \(v \in R_i \) for \(i \in X \) and \(\sigma \in H \) such that \(\pi \) is a switch w.r.t. \(v \) according to \(\sigma \).

Thus the candidates for the reducts are \(S^H_{\{l\}}(\Gamma), S^H_{\{r\}}(\Gamma) \) and \(S^H_{\{l,r\}}(\Gamma) \), where \(H \) is one of the subgroups of the permutation group \(S_3 \):
\[
\{1\}, \{1, (12)\}, \{1, (13)\}, \{1, (23)\}, \{(1), (123), (132)\} \text{ and } S_3.
\]

We begin the analysis of reducts of \(\Gamma \), the random bipartite graph with three cross-types, by indicating which reducts are essentially new; these will be the ones we call irreducible.

Definition 1.5. Let \(G \) be a closed subgroup of \(\Gamma \) in \(\text{Sym}(\Gamma) \).

We say \(G \) is reducible if for some \(k \in \{1, 2, 3\} \), \(G \) contains every map \(g \in \text{Sym}(\Gamma) \) which preserves \(P_k \). This means that \(G \) is blind to the distinction between the other two cross-types. If \(G \) is not reducible, then we say \(G \) is irreducible.

So if \(G \) is reducible, then \(G \) can be viewed as a reduct of the bipartite graph with two edges, as already classified in the previous chapter.

Here is the main result of this paper:

Theorem 1.6. If \(G \) is an irreducible closed subgroup such that \(\text{Aut}(\Gamma) \leq G \leq \text{Sym}_{\{l,r\}}(\Gamma) \), then \(G = (S^H_{\{l\}}(\Gamma), S^H_{\{r\}}(\Gamma)) \) where \(H_1, H_2 \leq S_3 \). If \(G \subset \text{Sym}_{\{l,r\}}(\Gamma) \), then \(H_1 = H_2 \) unless one of the two groups is trivial.

Here is how the rest of the paper is organized. In section 2, we show that the 3-colored random bipartite graph has the strong finite submodel property; in section 3, we study the relations preserved by the groups \(S_X(\Gamma) \), where \(X \subseteq \{l, r\} \). In section 3, and in section 4, we discuss a technique term \((m \times n)\)-analysis and prove its existence for the random bipartite graph. These prepare us to give an explicit classification of the closed subgroups of \(S_{\{l,r\}}(\Gamma) \) containing \(\text{Aut}(\Gamma)^* \) in the rest of the paper. In section 5, we prove the first part of Theorem 2.1, which says that the closed subgroups of \(S_{\{l,r\}}(\Gamma) \) containing \(\text{Aut}(\Gamma)^* \) are \(\text{Aut}(\Gamma)^*, S_{\{l\}}(\Gamma), \text{ and } S_{\{r\}}(\Gamma), \text{ and } S_{\{l,r\}}(\Gamma) \). Then in section 6 we show there is no other proper closed subgroup between \(S_{\{l,r\}}(\Gamma) \) and \(\text{Sym}_{\{l,r\}}(\Gamma) \), which completes the proof of Theorem 2.1.

2 Strong Finite Submodel Property

In this section, we use the notion of the Strong Finite Submodel Property (SFSP) initially introduced by Thomas in [6], and we prove that the random 3-colored bipartite graph has the SFSP. This property provides a powerful tool when it comes to the proof in the later sessions.

Definition 2.1 ([6]). A countable infinite structure \(\mathcal{M} \) has the **Strong Finite Submodel Property (SFSP)** if \(\mathcal{M} = \bigcup_{i \in \mathbb{N}} \mathcal{M}_i \) is a union of an increasing chain of substructures \(\mathcal{M}_i \) such that

1. \(|\mathcal{M}_i| = i \) for each \(i \in \mathbb{N} \); and
(2) for any sentence φ with $\mathcal{M} \models \varphi$, there exists $N \in \mathbb{N}$ such that $\mathcal{M}_i \models \varphi$ for all $i \geq N$.

Here we choose a specific chain of bipartite graphs Γ_i such that $\Gamma = \bigcup \Gamma_i$ where $|\Gamma_i| = i$, $\Gamma_i \subset \Gamma_{i+1}$ for $i \in \mathbb{N}$, and

- if i is even, then $|\Gamma_i \cap R| = |\Gamma_i \cap R_r|$;
- otherwise, $|\Gamma_i \cap R| = |\Gamma_i \cap R_r| + 1$.

Thus for any sentence φ true in Γ, there is an j_φ such that $i > j_\varphi$ implies φ is true in Γ_i.

Theorem 2.2. The countable random 3-colored bipartite graph Γ has the SFSP.

Theorem 2.2 is a consequence of the Borel–Cantelli Lemma, as follows below:

Definition 2.3 ([6]). If $\{A_n\}_{n \in \mathbb{N}}$ is a sequence of events in a probability space, then $\bigcap_{n \in \mathbb{N}} \bigcup_{n \leq k \in \mathbb{N}} A_k$ is the event that consists of realization of infinitely many of A_n, denoted by $\lim \inf A_n$.

Lemma 2.4 (Borel–Cantelli, Billingsley [2]). Let $\{A_n\}_{n \in \mathbb{N}}$ be a sequence of events in a probability space. If $\sum_{n=0}^{\infty} P(A_n) < \infty$, then $P(\lim \inf A_n) = 0$.

Proof of Theorem 2.2 Since the extension properties Θ_n’s axiomatize the random 3-colored bipartite graph Γ and Θ_i implies Θ_{i-1} for all $i \in \mathbb{N}$, for every sentence φ true in Γ, there exists some $k \in \mathbb{N}$ such that Θ_k holds if and only if φ holds. Let Ω be the probability space of all countable bipartite graphs $(S, R_l, R_r, P_1, P_2, P_3)$, where $|R_l| = |R_r| = \omega$ and every cross-edge $E \in R_l \times R_r$ has the cross-type P_1, P_2 or P_3 on it independently with probability $\frac{1}{3}$. For each $n \in \mathbb{N}$ with $n \geq k$, let A_n be the event that a 3-colored bipartite subgraph $S_n \in [S]^n$ does not satisfy the extension property Θ_k. We consider two cases: n is even ($n=2m$), and n is odd ($n=2m+1$). Then by simple computation,

$$P(A_{2m}) \leq 2 \cdot \left(\frac{m}{k} \right) \left(\frac{m-k}{k} \right) \left(\frac{m-2k}{k} \right) \left(1 - \left(\frac{1}{3} \right)^{3k} \right)^{m-3k},$$

and

$$P(A_{2m+1}) \leq 2 \cdot \left(\frac{m+1}{k} \right) \left(\frac{m+1-k}{k} \right) \left(\frac{m+1-2k}{k} \right) \left(1 - \left(\frac{1}{3} \right)^{3k} \right)^{m-3k}.$$

Notice that $\sum_{n=0}^{\infty} P(A_n) = \sum_{m=0}^{\infty} P(A_{2m}) + \sum_{m=0}^{\infty} P(A_{2m+1})$, we have

$$\sum_{n=0}^{\infty} P(A_n) \leq 4 \cdot \sum_{m=0}^{\infty} \left(\frac{m+1}{k} \right) \left(\frac{m+1-k}{k} \right) \left(\frac{m+1-2k}{k} \right) \left(1 - \left(\frac{1}{3} \right)^{3k} \right)^{m-3k}$$

where $\binom{n}{k}$ is the number of combinations of n objects taken k at a time. Let

$$C_m = \left(\frac{m+1}{k} \right) \left(\frac{m+1-k}{k} \right) \left(\frac{m+1-2k}{k} \right) \left(1 - \left(\frac{1}{3} \right)^{3k} \right)^{m-3k}.$$ \hspace{1cm} (1)

Then $\lim_{m \to +\infty} C_{m+1}/C_m = (1 - \frac{1}{3})^3 < 1$. By the ratio test for infinite series, we have $\sum_{m=0}^{\infty} C(m)$ converges, and so does $\sum_{n=0}^{\infty} P(A_n)$. Thus by Lemma 2.4, $P(\lim \inf A_n) = 0$. So there exists a 3-colored bipartite graph $S \in \Omega$ and an integer N such that for all $n \geq N$, $S_n \in [S]^n$ satisfies the extension property Θ_k, and so φ. Notice that the choice of S ensures that S is countable and satisfies all the axioms for the random bipartite graph. Hence S is isomorphic to Γ. Then Γ has the SFSP, which completes the proof of Theorem 2.2. \hfill \Box
Similarly, we can show as in Theorem 2.2 that

Proposition 2.5. The countable random \(k \)-colored bipartite graph \(\Gamma \) has the strong finite submodel property (SFSP).

For the remainder of this Chapter we will restrict our attention to the case \(k = 3 \). We expect that our results to generalize to arbitrary \(k \), but we have not organized the details for the more general results at this stage.

3 Candidates for Irreducible Closed Groups

In this section, we will discuss the candidates for irreducible closed groups.

Motivated by the colorings defined in Bennett’s thesis [1], we may define a class of edge colorings \(\chi : [A]^2 \rightarrow \{l, r, P_1, P_2, P_3\} \) for a bipartite graph \(A \subseteq \Gamma \) as follows, where \(\{a, b\} \in [A]^2 \):

- if \(\{a, b\} \in [R_l]^2 \), then \(\chi(a, b) = l \);
- if \(\{a, b\} \in [R_r]^2 \), then \(\chi(a, b) = r \);
- if \(\{a, b\} \in R_l \times R_r \) and \(P_i(a, b) \) for some \(i = 1, 2, 3 \), then \(\chi(a, b) = P_i \).

Definition 3.1. Let \(A_1 \) be a bipartite graph with the edge coloring \(\chi_{1} \), and \(A_2 \) be a bipartite graph with the edge coloring \(\chi_{2} \) where \(\chi \)'s are defined as above. If \(|A_1| = |A_2| \) and \(A_1 \cap R_l = A_2 \cap R_l \), then the edge coloring \(\chi_{2} \) is a permutation of the edge coloring \(\chi_{1} \) if there is some vertex bijection \(\varphi : A_1 \rightarrow A_2 \) preserving \(R_l, R_r \) and some permutation \(\sigma \in S_3 \) such that for every cross-edge \((a, b) \in (A_1 \times A_1) \cap (R_l \times R_r) \), \(\chi_{1}(a, b) = \sigma(\chi_{2}(\varphi(a), \varphi(b))) \). That is, \(P_i(a, b) \) implies \(P_{\sigma(i)}(\varphi(a), \varphi(b)) \) for \(i = 1, 2, 3 \).

Definition 3.2. Let \(A \) be a bipartite graph, and \(\chi_{1}, \chi_{2} \) be edge colorings on \([A]^2 \) as above. Then the edge coloring \(\chi_{2} \) is homogeneous w.r.t. the coloring \(\chi_{1} \) if for any \((a, b), (a', b') \in (A \times A) \cap (R_l \times R_r) \), \(\chi_{2}(a, b) = \chi_{2}(a', b') \) implies \(\chi_{1}(a, b) = \chi_{1}(a', b') \).

Claim 3.1. If \(A \) is a bipartite graph, \(\chi_{1} \) and \(\chi_{2} \) are edge colorings on \([A]^2 \) defined as above. If \(\chi_{2} \) is homogenous w.r.t. \(\chi_{1} \) but is not a permutation of \(\chi_{1} \), then there must be two distinct colors \(P_i \) and \(P_j \) and some color \(P_k \) \((i, j, k \in \{1, 2, 3\}) \) such that for any \((x, y) \subseteq (A \cap R_l) \times (A \cap R_r) \), \(\chi_{2}(x, y) = P_i \) or \(\chi_{2}(x, y) = P_j \) implies \(\chi_{1}(x, y) = P_k \).

Proof By the definition of homogeneous and permutation colorings, if \(\chi \) is not a permutation then it must collapse two colors. \(\square \)

Definition 3.3. Let \(G \) be an irreducible closed subgroup of \(Sym(\Gamma) \). The pair \((R, \alpha) \), where \(R \) is a finite subset of \(\Gamma \) and \(\alpha \in \Gamma \backslash R \), is sufficiently complex w.r.t. \(G \) if the following hold:

1. For any \(g \in G \) and \(c \in \{P_1, P_2, P_3\} \), there is a cross-edge \(\langle a, b \rangle \in (g(R) \cap R_l) \times (g(R) \cap R_r) \) such that \(c(a, b) \). (\(R \) witnesses all the cross-types.)
2. If there is some \(g \in G \) such that \(g \upharpoonright R \cup \{\alpha\} \) is a switch w.r.t. \(\alpha \in R_l \) permuting \(P_i \) according to \(\sigma \), then some (hence all) switches \(f \) w.r.t. singletons in \(R_l \) according to \(\sigma \) are also in \(G \). (\(R \cup \{\alpha\} \) witnesses which switches w.r.t. \(R_l \) are not in \(G \).)
Theorem 3.5

We prove that there exist ϕ and a vertex coloring (3). There exists some $\alpha \in R_l$ such that (R, α) satisfies Property (2), and there is some $\beta \in R_r$ such that (R, β) satisfies Property (3).

Claim 3.2. If R is sufficiently complex and $S \supseteq R$, then S is sufficiently complex.

Proof

First, for any $g \in G$, and any $c \in \{P_i\}$ for $i = 1, 2, 3$, since R is sufficiently complex, there always exists one cross-edge $(a, b) \in g(R) \subseteq g(S)$ such that $c(a, b)$. So S has the property (1). Second, suppose $\alpha \in \Gamma \setminus R$ and (R, α) is sufficiently complex. If there exists some $g \in G$ such that $g \mid S \cup \{\alpha\}$ is a switch w.r.t. $\alpha \in R_l$ according to σ, then $g \mid R \cup \{\alpha\}$ is a switch w.r.t. α according to σ. Since (R, α) is sufficiently complex, some (hence all) switches f w.r.t. singletons according to σ are in G, showing that condition (2) holds. Similarly we can prove (S, α) has the property (3).

Theorem 3.5. If G is an irreducible closed subgroup of $Sym(\Gamma)$ containing $Aut(\Gamma)$, then there is a pair (R, α) which is sufficiently complex w.r.t. G.

Proof We prove that there exist R_0 with the property (1), (R_1, α) where $\alpha \in R_l$ with the property (2), and (R_2, α) where $\alpha \in R_r$ with the property (3).

Property (1). Suppose there is no such R_0 in Γ: i.e. for any $R \subseteq \Gamma$, there exists some $g \in G$ such that the cross-edges of $g(R)$ have fewer than three cross-types. Then if $\Gamma = \bigcup \Gamma_i$ is our nice enumeration as in the strong finite submodel property, there exists a sequence $\{f_i\}_{i \in \mathbb{N}} \subseteq G$ such that $f_i(\Gamma_i)$ has fewer than three cross-types. Since there are only three cross-types, but infinitely many $\{f_i\}$, then there exists some $c \in \{P_i\}$ and $\{f_{i_1}\} \subseteq \{f_i\}$ such that $f_{i_1}(\Gamma_{i_1})$ has no cross-type c. Hence for every finite $B \subseteq \Gamma$, there is some $g \in G$ such that $g(B)$ has no cross-edge with cross-type c on it. For each $i \in \mathbb{N}$, we define an edge coloring $\chi : [\Gamma_i]^2 \rightarrow \{l, r, P_1, P_2, P_3\}$ for every $\{a, b\} \in [\Gamma_i]^2$ by

- if $\{a, b\} \subseteq R_l$, then $\chi(a, b) = l$;
- if $\{a, b\} \subseteq R_r$, then $\chi(a, b) = r$;
- if $(a, b) \in R_l \times R_r$ and $P_1(a, b)$, then $\chi(a, b) = P_1$;
- if $(a, b) \in R_l \times R_r$ and $P_2(a, b)$, then $\chi(a, b) = P_2$;
- if $(a, b) \in R_l \times R_r$ and $P_3(a, b)$, then $\chi(a, b) = P_3$.

and a vertex coloring $\varphi : \Gamma_i \rightarrow \{L, R\}$ for every $a \in \Gamma_i$ by

- if $a \in R_l$, then $\varphi(a) = L$;
- if $a \in R_l$, then $\varphi(a) = R$.

Note: This “sufficiently complex” concept is different from that in Chapter 3.
Let \((\Gamma, \chi, \varphi)\) be the \(\alpha\)-pattern \(P\). By the Nešetřil-Rödl Theorem, there is some bipartite graph \(B_i \subset \Gamma\) such that for every partition \(F\) on \(B_i\), there is \(\Gamma'_i \subset B_i\) such that

1. \(\Gamma'_i\) has the \(\alpha\)-pattern \(P\) (hence \(\Gamma'_i \cong \Gamma_i\));
2. \(\Gamma'_i\) is \(F\)-homogeneous.

Now we choose \(N \in \mathbb{N}\) such that when \(j \geq N\), \(\Gamma_j\) has all colors. Now let \(g_i \in G\) be such that \(g_i(B_i)\) has no cross-edge with cross-type \(F\) and let \(F = \chi \circ g_i\). Then \(F = \chi \circ g_i : |B_i|^2 \rightarrow \{l, r, P_1, P_2, P_3\} \setminus \{c\}\). Since \(g(\Gamma'_i)\) has no cross-edge with cross-type \(c\), the coloring \(\chi\) is not a permutation of \(\chi \circ g_i\): so by Claim 3.1 there must be distinct cross-types \(P_m\) and \(P_n\) and some cross-type \(P_l\) such that for every \((a, b) \in (R_i \times R_r) \cap \Gamma'_i\), \(\chi(x, y) = P_m\) or \(\chi(x, y) = P_n\) implies \(\chi \circ g_i(x, y) = P_l\), i.e. \(P_m(x, y)\) or \(P_n(x, y)\) implies \(P_l(g_i(x), g_i(y))\). WLOG, let \(\Gamma_i\) replace \(\Gamma'_i\).

Let \(X, Y \subset \Gamma\) be finite bipartite subgraphs with \(|X \cap R_i| = |Y \cap R_i| (i = l, r)\) and \(f : X \rightarrow Y\) such that \(f\) preserves \(P_k, R_l\) and \(R_r\) where \(k \neq m, n, n\). For \(X\), there are some \(N_x \in \mathbb{N}\) such that \(\Gamma(N_x) \supset X\). By a similar argument as above, there is some \(g_X \in G\) such that for every \((a_x, b_x) \in X \cap (R_l \times R_r)\) with \(P_m(a_x, b_x) \lor P_n(a_x, b_x)\), we have \(P_l(g_X(a_x), g_X(b_x))\). Similarly, for \(Y\), there is some \(N_y \in \mathbb{N}\) such that \(\Gamma(N_y) \supset Y\). By a similar argument as above, there is some \(g_Y \in G\) such that for every \((a_y, b_y) \in Y \cap (R_l \times R_r)\) with \(P_m(a_y, b_y) \lor P_n(a_y, b_y)\), \(P_l(g_Y(a_y), g_Y(b_y))\). Thus there is an isomorphism \(\sigma : g_X(X) \rightarrow g_Y(Y)\). Hence \(g_Y \circ f = \sigma \circ g_X\), hence \(f = g_Y^{-1} \circ \sigma \circ g_X\) and then \(f \in G | X\). Since \(X\) and \(Y\) are arbitrary finite bipartite subgraphs of \(\Gamma\) and \(G\) is closed, so for any \(f \in Sym(\Gamma)\) preserving \(P_k\) for some \(k \in \{1, 2, 3\}, f \in G\). By Definition 1.5, \(G\) is reducible, a contradiction with our assumption.

Property (2): Suppose there is no such \((R_l, \alpha)\) in \(\Gamma\), i.e. for any finite bipartite \(R \subset \Gamma\) and any \(\alpha \in (\Gamma \setminus R) \cap R_l\), there exist some \(\sigma \in S_3\) and \(g \in G\) such that \(g | R \cup \{\alpha\}\) is a switch w.r.t. \(\alpha\) according to \(\sigma\), but there is no \(f \in G\) such that \(f\) is a switch w.r.t. \(\alpha\) according to \(\sigma\). Let \(\Gamma = \Gamma \cup R_l\), as in the SFSP, then there exists a sequence \(\{f_i, \sigma_i\} \subset G\) such that \(f_i \mid (\Gamma \cup \{\alpha\})\) is a switch w.r.t. a single vertex \(\alpha\) of \(R_l\) according to \(\sigma_i\). Since \(S_3\) is finite but \(\{f_i\}\) is infinite, we have \(\{f_i\} \subseteq \{f_i\}\) and some \(\sigma\) such that \(f_i \mid (\Gamma \cup \{\alpha\})\) is a switch w.r.t. a single vertex \(\alpha\) of \(R_l\) according to \(\sigma\). Since \(G\) is closed, there exists a switch w.r.t. \(\alpha\) according to \(\sigma\) as in \(G\). But this contradicts the assumption.

Property (3): Similar to the previous proof of **Property (2).**

Now we choose \(R = R_0 \cup R_1 \cup R_2\). By Claim 3.2, the set \(R\) is sufficiently complex.

Lemma 3.6. Suppose \(H_1, H_2 \leq S_3\). If \(G = \langle S_{(l)}^{H_1}, S_{(r)}^{H_2} \rangle\) is an irreducible closed subgroup in \(Sym(\Gamma)\), then for any \(f \in H_1\) and any \(g \in H_2\) it is the case that \(f \circ g = g \circ f\).

Proof Suppose not, then there exist \(f \in H_1, g \in H_2\) such that \(f \circ g \neq g \circ f\). Then for \(\gamma = g^{-1} \circ f^{-1} \circ g \circ f\), there must be some \(c \in \{1, 2, 3\}\) such that \(\gamma(c) \neq c\). Choose \(x \in R_l, y \in R_r\) such that \(P\)(\(x, y\)). We construct an \(h \in G = \langle S_{(l)}^{H_1}, S_{(r)}^{H_2} \rangle\) which will be a composition \(h = g_4 \circ g_3 \circ g_2 \circ g_1\) of four switches \(g_1, g_3 \in S_{(l)}^{H_1}\), \(g_2, g_4 \in S_{(r)}^{H_2}\) on single vertices. First let \(g_1\)
be a switch w.r.t. x according to f, then let g_2 be a switch w.r.t. $g_1(y)$ according to g. Then let g_3 be a switch w.r.t. $g_2g_1(x)$ according to f^{-1} and finally let g_4 be a switch w.r.t. $g_3g_2g_1(y)$ according to g^{-1}. Then for every $(a, b) \in R_t \times R_t$, if $(a, b) \neq (x, y)$, then $P_c(a, b) \implies P_c(h(a), h(b))$ but $P_c(x, y) \implies -P_c(h(x), h(y))$. Hence for any finite bipartite $A \subset \Gamma$, we can construct a $g_A \in G$ such that $g_A(A)$ has one fewer edge with cross-type c. By repeating this process, we can find some $\overline{\gamma} \in G$ such that $\overline{\gamma}A$ has no edge with cross-type c. Then Γ cannot contain a sufficiently complex set. By Theorem 3.5, G is reducible, a contradiction. This completes the proof of Lemma 3.6.

In particular we have:

\[
\langle S_{(t)}^{(12)}, S_{(r)}^{(123)} \rangle \text{ is reducible since } (12)(123) = (23) \neq (13) = (123)(12).
\]

\[
\langle S_{(t)}^{(13)}, S_{(r)}^{(123)} \rangle \text{ is reducible since } (13)(123) = (12) \neq (23) = (123)(13).
\]

\[
\langle S_{(t)}^{(23)}, S_{(r)}^{(123)} \rangle \text{ is reducible since } 23(123) = (13) \neq (12) = (123)(23).
\]

\[
\langle S_{(t)}^{(12)}, S_{(r)}^{(13)} \rangle \text{ is reducible since } (12)(13) = (132) \neq (123) = (13)(12).
\]

\[
\langle S_{(t)}^{(12)}, S_{(r)}^{(23)} \rangle \text{ is reducible since } (12)(23) = (232) \neq (123) = (23)(12).
\]

\[
\langle S_{(t)}^{(13)}, S_{(r)}^{(23)} \rangle \text{ is reducible since } (13)(23) = (123) \neq (132) = (12)(13).
\]

Lemma 3.7. The group $S_{(t,r)}^{S_A} = \langle S_{(t)}^{S_A}, S_{(r)}^{S_A} \rangle$ is the full symmetric group $\text{Sym}_{(t,r)}(\Gamma)$.

Proof It is enough to show that for any $(n \times m)$-bipartite $A \subset \Gamma$ where $n, m \in \mathbb{N}$, there exists some $g_A \in S_{(t,r)}^{S_A}$ such that $g_A(A)$ has only a single cross-type P_1. Then for any two $(n \times m)$-bipartite graphs B, C, we can find an automorphism σ of Γ sending $g_B(B)$ to $g_C(C)$, since each of these two subgraphs has only P_1 as cross-type. Then the map $f = g_C^{-1} \circ \sigma \circ g_B$ takes B to C, and $f \in S_{(t,r)}^{S_A}$. Then $S_{(t,r)}^{S_A} = \text{Sym}_{(t,r)}(\Gamma)$.

WLOG, suppose A has three cross-types: P_1, P_2 and P_3. Let $f, g \in S_A$, $f = (123)$ and $g = (12)$. Then $f \circ g \neq g \circ f$ and let $\gamma = g^{-1} \circ f^{-1} \circ g \circ f (= (123))$. Using the similar argument as in the proof of Lemma 3.6, for every finite bipartite subgraph $A \subset \Gamma$ we can construct some $g \in S_{(t,r)}^{S_A}$ such that $g(A)$ has no cross-edge with cross-type P_2. Similarly, using the similar argument as in the proof of Lemma 3.6, we can construct some $f \in S_{(t,r)}^{S_A}$ such that $f(g(A))$ has no cross-edge with cross-type P_3. That is, for every finite bipartite subgraph $A \subset \Gamma$, there exists $f \circ g \in S_{(t,r)}^{S_A}$ such that $h(A)$ has only a single cross-type P_1. This completes the proof of this Lemma.
Note that when $\sigma \in S_3$ is nontrivial, $S_{\{l\}}^{<\sigma>} = \langle Aut(\Gamma), h \rangle$ where h is a switch w.r.t. some subset of R_l according to σ.

Lemma 3.8. If $H_1 \neq H_2$ are non-trivial subgroups of S_3, then $\langle S_{\{l\}}^{H_1}, S_{\{l\}}^{H_2} \rangle = S_{\{l\}}^{S_3}$.

Proof. Let $H_1 = <\sigma_1>$ and $H_2 = <\sigma_2>$ for $\sigma_1, \sigma_2 \in S_3$, $\sigma_1 \neq \sigma_2$ and $\sigma_1, \sigma_2 \neq (1)$. There exist $f_1 \in S_{\{l\}}^{H_1}$ which is a switch w.r.t. some vertex in R_l according to σ_1 such that $S_{\{l\}}^{H_1} = \langle Aut(\Gamma), f_1 \rangle$, and $f_2 \in S_{\{l\}}^{H_2}$ which is a switch w.r.t. some vertex in R_l according to σ_2 such that $S_{\{l\}}^{H_2} = \langle Aut(\Gamma), f_2 \rangle$. Note that every two distinct proper subgroups of S_3 generate the whole S_3. Then every switch w.r.t. a single vertex in R_l according to $\sigma \in S_3$ is generated by the elements in $Aut(\Gamma)$ together with two additional elements f_1 and f_2. Thus $\langle S_{\{l\}}^{H_1}, S_{\{l\}}^{H_2} \rangle = \langle Aut(\Gamma), f_1, f_2 \rangle$ is the closed group generated by $Aut(\Gamma)$ and all the switches w.r.t. single vertex in R_l according to some $\sigma \in S_3$, which is $S_{\{l\}}^{S_3}$ by definition. □

Lemma 3.9. Let $S = S_{\{l\}}^{<(12)>}(\Gamma) \cup S_{\{l\}}^{<(13)>}(\Gamma) \cup S_{\{l\}}^{<(23)>}(\Gamma) \cup S_{\{l\}}^{<(123)>}(\Gamma)$, and $\sigma \in S_{\{l\}}^{S_3}(\Gamma) \setminus S$, then $\langle Aut(\Gamma), \sigma \rangle = S_{\{l\}}^{S_3}(\Gamma)$.

Proof. Recall that $S_{\{l\}}^{H}(\Gamma)$ for $H \leq S_3$ is generated by compositions of switches on singletons in R_l together with automorphisms. We will show that any element which is in $S_{\{l\}}^{S_3}(\Gamma) \setminus S$ can be modified to produce elements in two distinct subgroups $S_{\{l\}}^{H_1}(\Gamma)$ and $S_{\{l\}}^{H_2}(\Gamma)$ where $H_1 \neq H_2$. Hence we can get all of $S_{\{l\}}^{S_3}(\Gamma)$ as closure. Let $\sigma \in S_{\{l\}}^{S_3}(\Gamma)$ but not in any of $S_{\{l\}}^{H}$ for every $H < S_3$. By considering the action of σ on each edge, we can find sets $\{A_1, A_2, A_3, A_4, A_5\}$ where $A_i \subseteq R_l$ for $1 \leq i \leq 5$ and $A_j \cap A_k = \emptyset$ for $j \neq k$ (A_i could be empty for $1 \leq i \leq 5$, but there are at least two distinct $j, k \in \{1, 2, 3, 4, 5\}$ such that A_j and A_k are nonempty) such that σ sends the cross-types on the cross-edges with exactly one endpoint in A_1 to the cross-types dictated by (12), the cross-types on the cross-edges with exactly one endpoint in A_2 change the cross-types according to (13), the cross-types on the cross-edges with exactly one endpoint in A_3 change the cross-types according to (23), the cross-types on the cross-edges with exactly one endpoint in A_4 change the cross-types according to (123) and the cross-types on the cross-edges with exactly one endpoint in A_5 change the cross-types according to (132).

Case 1 Assume $0 < |A_i| < \omega$ for $i = 1, \ldots, 5$.

Step 1: There exists some $f_1 \in Aut(\Gamma)$ such that $f_1(\sigma(A_i)) = A_i$. Let $h_1 = \sigma \circ f_1 \circ \sigma$, then h_1 is a switch w.r.t. A_4 according to (132) and w.r.t. A_5 according to (123).

Step 2: Similarly, there exists some $f_2 \in Aut(\Gamma)$ such that $f_2(\sigma(A_i)) = A_i$ for $i = 1, \ldots, 5$, and let $h_2 = h_1 \circ f_2$, then h_2 is a switch w.r.t. $\sigma(A_4)$ by (132) and w.r.t. $\sigma(A_5)$ by (123). Let $h_3 = h_2 \circ \sigma$, then h_3 is a switch w.r.t. A_1 according to (12), w.r.t. A_2 according to (13) and w.r.t. A_3 according to (23).

Step 3: There exists $f_3 \in Aut(\Gamma)$ such that $f_3(A_4) \cap A_1 \neq \emptyset$ but $f_3(A_4) \cap A_i = \emptyset$ for $i = 2, 3$, and $f_3(A_5) \cap A_2 \neq \emptyset$ but $f_3(A_5) \cap A_i = \emptyset$
for $i = 1, 3$ and $f_3(A_5) \cap f_3(A_4) = \emptyset$. There exists $f_4 \in Aut(\Gamma)$ such that $f_4(h_3 \circ f_3(A_4)) = A_1$ for $j = 4, 5$ and $f_4 \circ h_3(\{A\}) \cap A_5 = \emptyset$, $f_4 \circ h_3(\{A\}) \cap A_4 = \emptyset$. Let $h_4 = h_1 \circ f_4 \circ h_3$. By the definition of h_3, f_4, h_1 and the fact that $(132)(12) = (23)$ and $(123)(13) = (23)$. Now h_4 is a switch w.r.t. $A_1 \setminus f_3(A_4) \subset A_1$ according to (12), w.r.t. $A_2 \setminus f_3(A_5) \subset A_2$ according to (13), and w.r.t. $f_3(A_4) \setminus A_1$ according to (132), w.r.t. $f_3(A_5) \setminus A_2$ according to (123), and w.r.t. $A_3 \cup (A_1 \cap f_3(A_4)) \cup (A_2 \cap f_3(A_5)) \supset A$ according to (23).

Case 1: Let f according to (12), w.r.t. (A) and f that $f \in Aut(\Gamma)$, we have $f(\{A\}) = (23)$. Now follow Step 1 – 3, we can get a switch w.r.t. A_1 according to (12), w.r.t. A_2 according to (13) and w.r.t. A_3 according to (23).

Step 5: Since $|A_i| < \omega$ for $i = 1, 2$, we can follow steps 1 – 4 finitely many times to obtain a sequence of $A_1, A_2, A_3 \subset \Gamma$, ending with $A_1^N = \emptyset$ and $A_2^N = \emptyset$. Then we now have a switch g w.r.t. A_3^N according to (23).

Similarly, we produce a switch h w.r.t. some subset of R_i according to (13). Then $\langle Aut(\Gamma), \sigma \rangle = \langle Aut(\Gamma), g, h, \sigma \rangle = \langle S_{<23}^{<13}(\{I\}), S_{<23}^{<13}(\{I\}) \rangle$. By Lemma 3.8 $\langle Aut(\Gamma), g, h, \sigma \rangle = S_{<23}^{<13}(\{I\})$, and this completes the proof of Case 1.

Case 2: If all A_k’s are finite but some A_k is empty, then we follow the proof above, only with fewer steps.

Case 3: If there exists some k with $|A_k| = \omega$, then since A_k is the “limit” of its finite approximations A_k', we can deal with its finite subsets A_k' with the method in Case 1, then take the limit (which must lie in the closure).

This completes the proof of Lemma 3.9.

Theorem 3.10. Let G be an irreducible closed subgroup of $S_{<3}^{<13}(\Gamma)$ containing $Aut(\Gamma)$. Then there exists $H \leq S_3$ such that $G = S_H^{\Gamma}(\Gamma)$.

Proof Let G be an irreducible closed proper subgroup of $S_{<3}^{<13}(\Gamma)$ containing $Aut(\Gamma)$. If there is some nontrivial $H \leq S_3$ such that $G \leq S_H^{\Gamma}(\Gamma)$, then if G is not $Aut(\Gamma)$, we have $G = S_H^{\Gamma}(\Gamma)$. Suppose not, i.e. $G \subset S_H^{\Gamma}(\Gamma)$. Then every $g \in G \setminus Aut(\Gamma)$ is a composition of switches w.r.t. permutations in H. If $|H| = 2$, then g is also a switch w.r.t. some subset $A \subseteq R_1$ according to some $\sigma \in H$. Then by Lemma ?? $G \geq \langle Aut(\Gamma), g \rangle = S_H^{\Gamma}(\Gamma)$, contradicting the assumption that $G \subset S_H^{\Gamma}(\Gamma)$. If $|H| = 3$, we can use an argument similar to that in Lemma 3.9 to get some $g' \in \langle Aut(\Gamma), g \rangle$ such that $g' \in G \setminus Aut(\Gamma)$ is a switch w.r.t. some subset $A \subseteq R_1$ according to some $\sigma \in H$. Then by Lemma ?? $G \geq \langle Aut(\Gamma), g' \rangle = S_H^{\Gamma}(\Gamma)$, contradicting with the assumption that $G \subset S_H^{\Gamma}(\Gamma)$.

If such H does not exist, then there exists some element $f \in G$ but $f \notin S_K^{<13}(\Gamma)$ for any proper $K \leq S_3$. Then by Lemma 3.9, there exist at least two nontrivial $H_1, H_2 \leq S_3$ with $H_1 \neq H_2$ such that $f \in \langle S_K^{<13}(\Gamma), S_{\{I\}}^{<13}(\Gamma) \rangle$, thus $G \geq S_{\{I\}}^{S_3}(\Gamma)$, a contradiction.
4 Switch Groups as Irreducible Closed Subgroups

Now we show that the various switch groups are exactly the irreducible closed subgroups of $\text{Sym}(\Gamma)$ where Γ is the random bipartite graph having three cross-types.

Lemma 4.1. Let G be an irreducible closed subgroup of $\text{Sym}_{\{l,r\}}(\Gamma)$ containing $\text{Aut}(\Gamma)$, and suppose there exist a finite bipartite subgraph $R \subset \Gamma$ and $\alpha \in \Gamma \setminus R$ such that

1. (R, α) is a sufficiently complex subgraph with respect to G,
2. for any $\pi \in G$ such that $\pi \upharpoonright R$ is an isomorphism, $\pi \upharpoonright R \cup \{\alpha\}$ is a switch w.r.t. α according to some $\sigma \in S_3$ (σ could be the identity).

Then $G = \langle S_{\{l\}}^H(\Gamma), S_{\{r\}}^H(\Gamma) \rangle$ for some $H_1, H_2 \leq S_3$. If $G \subset \text{Sym}_{\{l,r\}}(\Gamma)$, then $H_1 = H_2$ unless one of the two groups is trivial.

Proof Since $G \cap S_{\{l\}}^{S_3}(\Gamma)$ is an irreducible closed subgroup of $S_{\{l\}}^{S_3}(\Gamma)$, by Theorem 3.10 there exists $H_1 \leq S_3$ such that $S_{\{l\}}^{H_1}(\Gamma) = G \cap S_{\{l\}}^{S_3}(\Gamma)$. Similarly, there exists $H_2 \leq S_3$ such that $S_{\{r\}}^{H_1}(\Gamma) = G \cap S_{\{r\}}^{S_3}(\Gamma)$. Now let $\pi \in G$ be given. Choose N large enough such that for our fixed enumeration $\Gamma = \cup \Gamma_i$, if $i \geq N$ then

1. Γ_i is sufficiently complex,
2. for any $x, y, z \in \Gamma_i$ with x on the same side as α and $x \neq y, z$, there exists subgraphs R_y and R_z of Γ_i with $y \in R_y, z \in R_z, x \notin R_y \cup R_z, (R_y, x) \cong (R, \alpha) \cong (R_z, x)$, and with cross-edges between x and $R_y \cap R_z$ of all three cross-types.

We can find an N such that (1) holds by Theorem 3.5 and SFSP. By the extension property of Γ, (2) holds in Γ_i, and hence by the Strong Finite Submodel Property, (2) holds for Γ_i for all large i.

Now look at Γ_N, and define the coloring χ on $[\Gamma_N]^{\leq 2}$ by

1. for every $x \in \Gamma_N$,
 - if $x \in R_l$, then $\chi(x) = L$;
 - if $x \in R_r$, then $\chi(x) = R$.
2. for every $\{a, b\} \in [\Gamma_N]^2$,
 - if $\{a, b\} \in [R_l]^2$, then $\chi(a, b) = l$;
 - if $\{a, b\} \in [R_r]^2$, then $\chi(a, b) = r$;
 - if $\{a, b\} \in R_l \times R_r$ and $P_3(a, b)$, then $\chi(a, b) = P_3$;
 - if $\{a, b\} \in R_l \times R_r$ and $P_2(a, b)$, then $\chi(a, b) = P_2$;
 - if $\{a, b\} \in R_l \times R_r$ and $P_3(a, b)$, then $\chi(a, b) = P_3$.

Let (Γ_N, χ) be the α-pattern P. By the Nešetřil-Rödl theorem, there exists a α-Pattern Q, with the underlying set X, such that for any partition $F : [X]^2 \to \{P_1, P_2, P_3, l, r\}$, there exists $\Gamma_N \subseteq X$ such that

- (Γ_N, χ) has the α-pattern P (hence $\Gamma_N \cong \Gamma_N$);
- (Γ_N, χ) is F-homogeneous.

We define $F = \chi \circ \pi$ on $[\Gamma]^{\leq 2}$ for every $\{a, b\} \in [\Gamma]^{\leq 2}$ by

- if $\{a, b\} \in [R_l]^2$, then $F(a, b) = l$;
- if $\{a, b\} \in [R_r]^2$, then $F(a, b) = r$;
Such that any vertex b cross-edges between g_i.Lemma
Now we show that there are no other irreducible closed subgroups.

Proof

Since Γ_N, χ is F-homogeneous, χ is homogeneous w.r.t. $\chi \circ \pi$. Since Γ_N is sufficiently complex and $\Gamma_N \cong \Gamma$, Γ_N witnesses all the cross-types. Hence $\chi \circ \pi$ does not lose any cross-types. By Claim 3.1, we have $\chi \circ \pi$ is a permutation of χ. So π is a switch w.r.t. all the vertices in R_i according to some $\sigma \in S_3$. Since $\pi \in G \cap S_{\Lambda_i}^{3}(\Gamma)$, such $\sigma \in H_1$. Hence $\pi \in S_{\Lambda_i}^{3}(\Gamma) \mid \Gamma_N$.

Since Γ_N is sufficiently complex, it witnesses which switches are in G, so there must be some $\varphi \in G \cap S_{\Lambda_i}^{3}(\Gamma)$ such that $\varphi^{-1} \circ \pi$ is an isomorphism on Γ_N. Let $\pi_1 = \varphi^{-1} \circ \pi$; we show that π_1 is a switch map.

Write $\Gamma_{N+1} = \Gamma_N \cup \{ x \}$. WLOG, we suppose $x \in R_i$. If $\pi_1 \mid \Gamma_{N+1}$ is an isomorphism, then it is trivially a switch. If not, then let $y, z \in \Gamma_N$ be arbitrary. By the choice of N there exists subgraphs $y \in R_y \subseteq \Gamma_N$ and $z \in R_z \subseteq \Gamma_N$ such that there are all cross-types between $\{ x \}$ and $R_y \cap R_z$. $\pi_1 \mid \Gamma_N$ is an isomorphism, and $R_y, R_z, (R_y, x), (R_z, x)$ are sufficiently complex with $R_y \cong R$ and $R_z \cong R$. Since $\pi_1 \mid R_y$ is an isomorphism, $\pi_1 \mid R_y \cup \{ x \}$ is a switch w.r.t. x according to some $\sigma_1 \in H_1$. Similarly, $\pi_1 \mid R_z \cup \{ x \}$ is a switch w.r.t. x according to some $\sigma_2 \in H_1$. But $\sigma_1 = \sigma_2$ since $\pi_1 \mid R_y \cup \{ x \}$ has to agree with $\pi_1 \mid R_z \cup \{ x \}$ on $R_y \cap R_z$. Since y, z are arbitrary, $\pi_1 \mid \Gamma_{N+1}$ is a switch w.r.t. x according to some $\sigma' \in S_3$. (R_y, x) witnesses the fact that this switch is in G, so there exists some $\varphi_1 \in G$ such that φ_1 is a switch w.r.t. x according to σ'. Since $\varphi_1 \in G \cap S_{\Lambda_i}^{3}(\Gamma)$, such $\sigma' \in H_1$. Hence $\varphi_1^{-1} \circ \pi_1$ is an isomorphism on Γ_{N+1}. Let $\pi_2 = \varphi_1^{-1} \circ \pi_1$.

Write $\Gamma_{N+2} = \Gamma_{N+1} \cup \{ x' \}$ for $x' \in R_i$. Similarly, we get $\pi_2 \mid \Gamma_{N+2}$ is a switch w.r.t. x'. So there exists some $\varphi_2 \in G$ and $\varphi_2 \mid \Gamma_{N+2}$ is a switch w.r.t. x' and $\varphi_2 \circ \pi_2$ is an isomorphism on Γ_{N+2}. By induction, $\pi \mid \Gamma_{N+k}$ is a composition of switches on vertices in $\Gamma_{N_k} \setminus \Gamma_N$. Since $\langle S_{\Lambda_i}^{3}(\Gamma), S_{\Lambda_i}^{2}(\Gamma) \rangle$ is closed, π is a switch. We have shown that it is a composition of switches on the vertices in R_i and switches on the vertices in R_r. Since the choice of π is arbitrary, $G \subseteq \langle S_{\Lambda_i}^{3}(\Gamma), S_{\Lambda_i}^{2}(\Gamma) \rangle$. But $S_{\Lambda_i}^{3}(\Gamma), S_{\Lambda_i}^{2}(\Gamma) \leq G$, so we have $G = \langle S_{\Lambda_i}^{3}(\Gamma), S_{\Lambda_i}^{2}(\Gamma) \rangle$. If $G \subset Sym_{(i,r)}(\Gamma)$, then by Lemma 3.8, $H_1 = H_2$ unless one of them is trivial.

5 Switches Are the Only Nontrivial Closed Groups

Now we show that there are no other irreducible closed subgroups.

Lemma 5.1. Let $\Gamma = \sqcup \Gamma_i$ as in SFSP, and let G be an irreducible closed subgroup of $Sym_{(i,r)}(\Gamma)$ containing $Aut(\Gamma)$. There is an integer N such that $i \geq N$ implies

(\star) If $\alpha \in \Gamma_i$ and $g \in G$ is an isomorphism on $\Gamma \setminus \{ \alpha \}$, then there are cross-edges between $g(\Gamma \setminus \{ \alpha \})$ and $g(\alpha)$ with all cross-types.

Proof Let R be sufficiently complex. By the extension properties Θ_n for $n \in \mathbb{N}$, the following sentence is true in Γ:

(\star) For any $\alpha \in \Gamma$ and any bipartite subgraph $B \subset \Gamma$ with $|B| = |R|$ and any vertex $b \in B$ on the same side as α, there is some embedding $\varphi : B \rightarrow \Gamma$ such that $\varphi(b) = \alpha$.

By SFSP, there exists \(N \in \mathbb{N} \) such that when \(i \geq N \), \((\ast)\) is true for \(\Gamma_i \).

Suppose for any \(M \in \mathbb{N} \), there exist \(i \geq M \) and some \(g \in G \) which is an isomorphism on \(\Gamma_i \setminus \{\alpha\} \), but for some \(c \in \{P_1, P_2, P_3\} \), there is no cross-edge in \(g(\Gamma_i) \) with endpoint \(g(\alpha) \) having the cross-type \(c \). For any subgraph \(B \subset \Gamma \) with \(|B| = |R| \) and any \(b \) in the same side as \(\alpha \), there is an isomorphism \(\varphi \in \text{Aut}(\Gamma) \) with \(\varphi(B) \leq \Gamma_i \) such that \(\varphi(b) = \alpha \). If \(f = g \circ \varphi \in G \), then \(f(B) \) has no cross-edge with cross-type \(c \) and endpoint \(f(b) \). By a composition of such maps, one for each vertex of \(B \) in the same side as \(\alpha \), we have a \(f^* \) such that \(f^*(B) \) has no cross-type \(c \). Since \(R \) is a special case of \(B \), we can find a \(f^*_d \in G \) such that \(f^*_d(R) \) has no cross-edge with cross-type \(c \). But \(R \) is sufficiently complex, and witnesses the fact that \(G \) is irreducible, and we have reached a contradiction.

\(\square \)

Lemma 5.2. Let \(\Gamma = \cup \Gamma_i \) given by SFSP, and let \(G \) be an irreducible closed group of \(\text{Sym}_{l,r}(\Gamma) \) containing \(\text{Aut}(\Gamma) \). Then there is an integer \(N \) such that for any \(i \geq N \):

1. There is no \(g \in G \) which is an isomorphism on \(\Gamma_i \) except for its effect on one cross-edge.
2. For every \(\alpha \in \Gamma \), there is no \(g \in G \) which is an isomorphism on \(\Gamma_i \setminus \{\alpha\} \) and for which there exists a switch \(f \) w.r.t. \(g(\alpha) \) such that \(f \circ g \) is an isomorphism on \(\Gamma_i \) except for exactly one cross-edge.

Proof Let \((C, \gamma)\) where \(C \subset \Gamma \) and \(\gamma \in \Gamma \setminus C \) be sufficiently complex. Since \(\Gamma \) has the extension property, the following is true in \(\Gamma \):

(a) for any \(|C|\)-graph \(C' \) with three cross-types, and any cross-edge \((a, b)\) of \(\Gamma \), and any cross-edge \((a', b') \in C'\) with the same cross-type as \((a, b)\), there is an embedding \(\varphi : C' \rightarrow \Gamma \) such that \(\varphi(a', b') = (a, b) \).

(b) For any two vertices \(\alpha, \beta \) on the same side of \(\Gamma \) as \(\gamma \), there is a finite subgraph \(A \subset \Gamma \) such that \(\alpha, \beta \notin A \) and \(A \cong C \) can be extended to \(A \cup \{\alpha\} \cong C \cup \{\gamma\} \).

By SFSP, there exists some \(N \in \mathbb{N} \) such that \(i \geq N \) implies that \(\Gamma_i \) has the properties \((a)\) and \((b)\). We show that the same \(N \) will satisfy Lemma 5.2.

Since \((2)\) implies \((1)\) when a switch is trivial, we suppose \((2)\) does not hold, i.e. for any \(N \in \mathbb{N} \) there are \(i \geq N, g \in G \), and \(f \) such that \(g \) is an isomorphism on \(\Gamma_i \setminus \{\alpha\} \), \(f \) is a switch w.r.t. \(g(\alpha) \) and \(f \circ g \) is an isomorphism except on one cross-edge of \(\Gamma_i \). One endpoint must be \(\alpha \), let the other endpoint be \(\beta \). By \((b)\) above, there exists some \(A \cong C \) and \(\alpha, \beta \notin A \) such that \(A \cup \{\alpha\} \cong C \cup \{\gamma\} \).

Now \(g \upharpoonright A \cup \{\alpha\} \) is a switch with the same permutation of cross-types as that of \(f^{-1} \). But \(A \cup \{\alpha\} \cong C \cup \{\gamma\} \) which witnesses which switches are in \(G \). So \(f^{-1} \in G \), hence \(f \in G \). Let \(h = f \circ g \). Then \(h \in G \), but this leads to a contradiction since for any \(|C|\)-graph \(C' \) having three cross-types, and any cross-edge \((a', \beta') \in C' \cap (R_i \times R_r) \) with \(P_i(\alpha, \beta) \) and \(P_i(\alpha', \beta') \) for some \(i \in \{1, 2, 3\} \), by \((a)\) there is an embedding \(\varphi : C' \rightarrow \Gamma \) such that \(\varphi(a', \beta') = (\alpha, \beta) \). Since \(\Gamma \) is homogeneous, there is some \(\Phi \in \text{Aut}(\Gamma) \) such that \(\Phi \upharpoonright C' = \varphi \). Now let \(h_1 = h \circ \Phi \). Then \(h_1 \in G \) and \(h_1 \upharpoonright C' \) is an isomorphism except on the cross-edge \((\alpha', \beta') \). Hence \(h(C') \) has one fewer cross-edge with cross-type \(P_i \) on it. If there are \(n \) many cross-edges with cross-type \(P_i \) in \(C' \), then by repeating this argument \(n \) times, we can
construct $h_n \in G$ such that $h_n(C')$ has no cross-edge with cross-type P_i. Since C is a special case of C', we have the same result for C. But since C is sufficiently complex, it witnesses all the cross-types in C and we have a contradiction, and N is as desired. \hfill \Box

Given a bipartite graph $A \subseteq \Gamma$, we define a class of vertex colorings $\Phi : A \rightarrow \{L, \overline{P}, P_2, P_3\}$ for every $x \in A$ by
- if $x \in R_l$, then $\Phi(x) = L$;
- if $x \in R_r$, then $\Phi(x) = \overline{P}_i$ for some $i = 1, 2, 3$.

Definition 5.3. Let A_1 be a bipartite graph with vertex coloring Φ_1, and let A_2 be a bipartite graph with vertex coloring Φ_2, where Φ_1 is defined as above and $\Phi_2 = \Phi \circ g$ for some $g \in Sym(A_1)$ preserving R_l, R_r. If $|A_1| = |A_2|$ and $|A_1 \cap R_l| = |A_2 \cap R_l|$, then the vertex coloring Φ_2 is a permutation of the vertex coloring χ_1 if there is some vertex bijection $\varphi : A_1 \rightarrow A_2$ preserving R_l, R_r and some permutation $\sigma \in S_3$ such that for any vertex $x \in R_r$, $\Phi_1(x) = \sigma(\Phi_2(\varphi(x)))$.

Definition 5.4. Let A be a bipartite graph, and Φ_1, Φ_2 be vertex colorings on A defined in Definition 5.3. Then the vertex coloring Φ_2 is homogeneous w.r.t. the coloring Φ_1 if for any $x, x' \in A \cap R_r$, $\Phi_2(x) = \Phi_2(x') \Longrightarrow \Phi_1(x) = \Phi_1(x')$.

Claim 5.1. If A is a bipartite graph, Φ_1, Φ_2 are the vertex colorings on A defined as above, and Φ_2 is homogenous w.r.t. χ_1 but is not a permutation of Φ_1, then there must be two distinct colors \overline{P}_i and \overline{P}_j and some color \overline{P}_k ($i, j, k \in \{1, 2, 3\}$) such that for any $x \in A \cap R_r$, $\Phi_2(x) = \overline{P}_i$ or $\Phi_2(x) = \overline{P}_j$ implies $\Phi_1(x) = \overline{P}_k$.

Proof This follows immediately from the definitions of homogeneous and permutation colorings. \hfill \Box

Given a bipartite graph $A \subseteq \Gamma$, we define an edge coloring $\chi : A \rightarrow \{l, r, P_1, P_2, P_3\}$ for every $\{a, b\} \in A$ by
- if $\{a, b\} \subseteq R_l$, then $\chi(a, b) = l$;
- if $\{a, b\} \subseteq R_r$, then $\chi(a, b) = r$;
- if $a \in R_l, b \in R_r$ and $P_1(a, b)$, then $\chi(a, b) = P_1$;
- if $a \in R_l, b \in R_r$ and $P_2(a, b)$, then $\chi(a, b) = P_2$;
- if $a \in R_l, b \in R_r$ and $P_3(a, b)$, then $\chi(a, b) = P_3$.

Lemma 5.5. Let \mathcal{A} be the class of bipartite subgraphs having at least one vertex in R_i ($i = l, r$) in Γ with edge coloring $\chi : |V|^2 \rightarrow \{l, r, P_1, P_2, P_3\}$ defined above, and with vertex coloring $\Phi : V \rightarrow \{L, \overline{P}, P_2, P_3\}$ defined above. For any finite $A_1 \in \mathcal{A}$, there is a finite $A_2 \in \mathcal{A}$ such that for any vertex coloring $\Psi : A_2 \rightarrow \{L, \overline{P}, P_2, P_3\}$, which is not a permutation of Φ, then there exists $A'_1 \in \mathcal{A}$ with $\langle A_1, \Phi, \chi \rangle \cong \langle A'_1, \Phi, \chi \rangle$, $A'_1 \subseteq A_2$, and one of the following properties:

(a) There is a color $t \in \{\overline{P}_1, \overline{P}_2, P_3\}$ such that $\Psi(x) \neq t$ for every vertex $x \in A'_1 \subseteq A_2$.

(b) There is some vertex coloring $\Psi' : A'_1 \rightarrow \{L, \overline{P}, P_2, P_3\}$, which is a permutation of Ψ, and differs from $\Phi : A'_1 \rightarrow \{L, \overline{P}, P_2, P_3\}$ on exactly one vertex in R_r.

Yun Lu
Proof

We choose $M \in \mathbb{N}$ such that for any $i \geq M$, and for any $v \in \Gamma_i$, there exists $B \subset \Gamma_i$ with $v \in B$ such that $B \cong A_1$. We can do this because of the extension property and SFSP. Now we choose $N \in \mathbb{N}$ such that $N \geq M$ and $\Gamma_N \supseteq A_1$. Since for any $v \in \Gamma_N$, there exists an isomorphic copy of A_1 containing v, we can extend the colorings Φ, χ on A_1 to the colorings on the whole Γ_N. We call them Φ, χ to simplify the notation. Now let (Γ_N, Φ) be our P-pattern. Then by the Neˇ setˇ ril-R¨ odl Theorem, there exists a finite $A_2 \in \mathfrak{A}$ such that for any partition function $F = \Psi : A_2 \rightarrow \{L, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$, there is $\Gamma_N' \subset A_2$ satisfying

- Γ_N' has the α-pattern P (hence $\Gamma_N' \cong \Gamma_N$);
- (Γ_N', Φ) is Ψ-homogeneous.

Since $\Gamma_N' \cong \Gamma_N$, we can find a graph $A_1' \subset \Gamma_N'$ such that $\langle A_1', \Phi, \chi \rangle \cong \langle A_1, \Phi, \chi \rangle$. Now we have (Γ_N', Φ) is Ψ-homogeneous, i.e. if $\Phi(a) = \Phi(b)$, then $\Psi(a) = \Psi(b)$ for $a, b \in \Gamma_N'$.

If Ψ is not a permutation of Φ on Γ_N', then by Claim 5.1 there must exist some color $t \in \{\overline{P}_1, \overline{P}_2, \overline{P}_3\}$ such that $\Psi(v) \neq t$ for every $v \in \Gamma_N'$. Since $A_1' \subset \Gamma_N'$, the same result holds for A_1'. Then Property (1) holds.

If Ψ is a permutation of Φ on Γ_N', then since Ψ is not a permutation of Φ on $A_2 \supseteq \Gamma_N'$, there must exist some Γ_k for $k \geq N$ such that Ψ is a permutation of Φ on Γ_k, but Ψ is not a permutation of Φ on Γ_{k+1}. Let $\Gamma_{k+1} = \Gamma_k \cup \{v\}$. Note that $v \in R_k$, since $\Psi(x) = \Phi(x)$ for every $x \in R_k$. There must exist a subgraph $B \subset \Gamma_k$ such that $v \in B$ and $f : B \cong A_1$ preserves the vertex coloring Φ and the edge coloring χ. Hence we have $\Psi \upharpoonright (B \backslash \{v\})$ is a permutation of $\Phi \upharpoonright (B \backslash \{v\})$, but $\Psi \upharpoonright B$ is not a permutation of $\Phi \upharpoonright B$. Let f_1 be an isomorphism from A_1 to A_1', and let $\Psi' = \Psi \circ f_1 \circ f_1^{-1}$. Then we have the Property (2). This completes the proof of Lemma 5.5.

Similarly, given a bipartite graph $A \subseteq \Gamma$, we define a class of vertex colorings $\overline{\Phi} : A \rightarrow \{R, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$ by for every $x \in A$,

- if $x \in R_x$, then $\Phi(x) = R$;
- if $x \in R_i$, then $\Phi(x) = \overline{P}_i$ for some $i = 1, 2, 3$.

A similar argument gives the following Lemma:

Lemma 5.6. Let \mathfrak{A} be the class of bipartite subgraphs of Γ having at least one vertex in R_i ($i = l, r$) with edge coloring $\chi : [V]^2 \rightarrow \{l, r, P_1, P_2, P_3\}$ defined above and with vertex coloring $\overline{\Phi} : V \rightarrow \{R, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$ defined above. For any finite $A_1 \in \mathfrak{A}$, there is a finite $A_2 \in \mathfrak{A}$ such that for any vertex coloring $\Psi : A_2 \rightarrow \{R, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$, and which is not a permutation of $\overline{\Phi}$, there exists $A_1' \in \mathfrak{A}$ with $\langle A_1, \overline{\Phi}, \chi \rangle \cong \langle A_1', \overline{\Phi}, \chi \rangle$, $A_1' \subset A_2$, and one of the following properties:

- There is a color $t \in \{\overline{P}_1, \overline{P}_2, \overline{P}_3\}$ such that $\Psi(x) \neq t$ for every vertex $x \in A_1'$.
- There is some vertex coloring $\Psi' : A_1' \rightarrow \{R, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$, which is a permutation of Ψ, and differs from $\overline{\Phi} : A_1' \rightarrow \{R, \overline{P}_1, \overline{P}_2, \overline{P}_3\}$ on exactly one vertex in R_i.

Theorem 5.7. If G is an irreducible closed subgroup such that $\text{Aut}(\Gamma) \leq G \leq \text{Sym}_{\{t, r\}}(\Gamma)$, then $G = (S^H_t(\Gamma), S^H_r(\Gamma))$ where $H_1, H_2 \leq S_3$. If $G \subset \text{Sym}_{\{t, r\}}(\Gamma)$, then $H_1 = H_2$ unless one of the two groups is trivial.

Proof We show that there is a sufficiently complex (R, α) with $R \subset \Gamma$ and $\alpha \in \Gamma \setminus R$, such that for any $g \in G$, if $g \mid R$ is an isomorphism, then $g \mid R \cup \{\alpha\}$ is a switch w.r.t. α according to some $\sigma \in S_3$. Then by Lemma 4.1 we are done.

Suppose that for any sufficiently complex (R, w), there exists some $g \in G$ such that $g \mid R$ is an isomorphism and $g \mid R \cup \{w\}$ is not a switch w.r.t. w according to any $\sigma \in S_3$. We eventually get a contradiction. WLOG, let $w \in R_t$. Choose N such that $i \geq N$ implies Γ_i is sufficiently complex and satisfies the conclusion of Lemma 5.1 and Lemma 5.2. Since Γ_N is sufficiently complex, then there exists some $v \in \Gamma \setminus \Gamma_N$ such that $\Gamma_N, v)$ is sufficiently complex. Let $v \in R_t$, and let $R = \Gamma_N \cup \{v\}$. We define the coloring $\chi : (R \setminus \{v\})^2 \rightarrow \{t, r, P_1, P_2, P_3\}$ as above. The edges between $\{v\}$ and $R \setminus \{v\}$ also induce a vertex coloring $\Phi_v : R \setminus \{v\} \rightarrow \{L, \overline{P_1}, \overline{P_2}, \overline{P_3}\}$ given for every $a \in R \setminus \{v\}$ by

- if $a \in R_t$, then $\Phi_v(a) = L$;
- if $a \in R_r$ and $P_1(a, a)$, then $\Phi_v(a) = \overline{P_3}$;
- if $a \in R_r$ and $P_2(a, a)$, then $\Phi_v(a) = \overline{P_2}$;
- if $a \in R_r$ and $P_3(a, a)$, then $\Phi_v(a) = \overline{P_1}$.

That is, the color of the vertex a is given by the cross-type of the cross-edge (a, v).

By Lemma 5.5, given $(R \setminus \{v\}, \Phi_v, \chi)$, there are a subgraph $S \subset \Gamma$ with a vertex coloring $\Phi_\alpha : S \rightarrow \{L, \overline{P_1}, \overline{P_2}, \overline{P_3}\}$ and an edge coloring $\chi : [S]^2 \rightarrow \{t, r, P_1, P_2, P_3\}$ such that for any other vertex coloring $\Psi : S \rightarrow \{L, \overline{P_1}, \overline{P_2}, \overline{P_3}\}$, if Ψ is not a permutation of Ψ_α, there exists $R' \subset S$ such that $(R' \setminus \{v\}, \Phi_v, \chi) \cong (R', \Phi_\alpha, \chi)$, hence $R' \cong R \setminus \{v\}$, and one of the properties (a) and (b) in Lemma 5.5 holds. Since Γ_N is random, there must exists a vertex $\alpha \in (\Gamma \setminus S) \cap R_t$ inducing the vertex coloring Φ_α.

Note that $(R', \Phi_\alpha, \chi) \cong (R \setminus \{v\}, \Phi_v, \chi)$, hence $(R \setminus \{v\}) \cup \{v\} \cong R' \cup \{\alpha\}$. Since $(R \setminus \{v\}, v)$ is sufficiently complex, so is (R', α). Then $S \cup \{\alpha\}$ is sufficiently complex since $S \supset R'$. By the assumption at the beginning of the proof, there exists some $g \in G$ which is an isomorphism on S, but $g \mid S \cup \{\alpha\}$ is not a switch w.r.t. α according to any $\sigma \in S_3$. Then the vertex $g(\alpha)$ induces a new coloring $\Phi_\alpha(g(\alpha))$ on $g(S)$, and $\Phi_{g(\alpha)}$ is not a permutation of Φ_α since $g \mid S \cup \{\alpha\}$ is not a switch w.r.t. α according to any $\sigma \in S_3$. Since $g(S) \cong S$, $g(\alpha)$ also induces a new coloring $\Phi_\alpha(g(\alpha))$ on S. Let $\Psi = \Phi_{g(\alpha)}$. Then by Lemma 5.5 we can find $R' \subset S$ such that one of the following two possibilities holds:

(a) there is a color $t \in \{\overline{P_1}, \overline{P_2}, \overline{P_3}\}$ such that $\Phi_{g(\alpha)}(x) \neq t$ for any vertex $x \in R'$
(b) There is a coloring $R' \rightarrow \{L, \overline{P_1}, \overline{P_2}, \overline{P_3}\}$ which is a permutation of $\Phi_{g(\alpha)}$, but differs from Φ_α on exactly one vertex in R_r.

Now $R \cong R' \cup \{\alpha\}$ since $(R', \Phi_\alpha) \cong (R \setminus \{v\}, \Phi_v)$. If (a) holds, then there is some $P_i, (i = 1, 2, 3)$ such that there is no edge between $g(\alpha)$ and $g(R')$ with the cross-type P_i, contrary to Lemma 5.1. If (b) holds, then $g \mid R' \cup \{\alpha\}$ differs
from a switch on exactly one cross-edge, contradicting Lemma 5.2. Similarly, if we assume \(w \in R_r \), we eventually get the contradiction by applying Lemma 5.6. This completes the proof of Theorem 5.7.

6 The Case When \(R_l \) and \(R_r \) Are Not Preserved

Next we do not assume that \(G \) preserves \(R_l \) and \(R_r \). Since an element of \(G \) either preserves \(R_l \) and \(R_r \) or switches \(R_l \) and \(R_r \), for every reduct \(S_X^H(\Gamma) \) where \(X \subseteq \{l, r\} \), and \(H \leq S_3 \) (which preserves \(R_l, R_r \)), we always have a corresponding reduct \(S_X^{H*}(\Gamma) \) which preserves the same relation as \(S_X^H(\Gamma) \) except it either preserves \(R_l \) and \(R_r \) or switches them.

Since the elements in \(G \) either preserve \(R_l \) and \(R_r \) or switch \(R_l \) and \(R_r \), we can introduce a relation of on the same side \(S(x, y) \) to replace \(R_l, R_r \) defined by \(S(x, y) \leftrightarrow (R_l(x) \land R_r(y)) \lor (R_r(x) \land R_l(y)) \), and a new binary relation \(P_i^* \) to replace \(P_i \) defined by \(P_i^*(x, y) \leftrightarrow P_i(x, y) \lor P_i(y, x) \) for \(i = 1, 2, 3 \). So if one forgets \(R_l, R_r \) but retains \(S(x, y) \) and replaces \(P_i \) by \(P_i^* \), then either the sides are preserved or switched. Since \(\Gamma \) satisfies the extension property \(\Theta_n \) for \(n \in \mathbb{N} \), we can construct \(\rho \in Sym(\Gamma) \) which exchanges the sets \(R_r \) and \(R_l \) and such that for every \(a \in R_l \) and every \(b \in R_r \), \(P_i(a, b) \rightarrow P_i(\rho(b), \rho(a)) \) where \(i = 1, 2, 3 \). Let \(S_X^{H*}(\Gamma) \) be \(\langle S_X^H(\Gamma), \rho \rangle \). Note that \(|S_X^{H*}(\Gamma)| = 2 \), and \(S_X^H(\Gamma) \leq S_X^{H*}(\Gamma) \).

Theorem 6.1. If \(G \) is an irreducible closed subgroup such that \(Aut(\Gamma) \leq G \leq Sym_{\{l, r\}}(\Gamma) \), then \(G = \langle S_X^{H_1}(\Gamma), S_X^{H_2}(\Gamma) \rangle \) or \(G = \langle S_X^{H_1}(\Gamma), S_X^{H*}(\Gamma) \rangle \) where \(H_1, H_2 \leq S_3 \). If \(G < Sym_{\{l, r\}}(\Gamma) \), then \(H_1 = H_2 \) unless one of the two groups is trivial.

References

[1] Bennett, J., *The reducts of infinite homogeneous graphs and tournaments*, PhD thesis, Rutgers University, New Brunswick, 1995.
[2] Billingsley, P., *Probability and Measure*, Wiley, New York, 1979.
[3] Higman, G., “Homogeneous relations,” *Quarterly Journal of Mathematics*, vol. 28(109) (1977), pp. 31–39.
[4] M. Junker, M. Z., “The 116 reducts of \((\mathbb{Q}, <, a)\),” *The Journal of Symbolic Logic*, vol. 73 (2008), pp. 861–884.
[5] Thomas, S., “Reducts of the random graph,” *Journal of Symbolic Logic*, vol. 56 (1991), pp. 176–181.
[6] Thomas, S., “Reducts of random hypergraphs,” *Annals of Pure and Applied Logic*, vol. 80 (1996), pp. 165–193.

Acknowledgments

This paper is a revision of the author’s doctoral dissertation, written under the direction of Carol Wood at Wesleyan University. The author would like to thank Dr. Wood for her guidance and for helpful comments on earlier versions of this paper.
