Candida albicans enhances meropenem tolerance of Pseudomonas aeruginosa in a dual-species biofilm

Farhana Alam¹, Dominic Catlow², Alessandro Di Maio³, Jessica M. A. Blair²† and Rebecca A. Hall ¹,4*†

¹Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; ²Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; ³Birmingham Advanced Light Microscopy, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; ⁴Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, CT2 7NZ, UK

*Corresponding author. E-mail: R.A.Hall@bham.ac.uk
†These authors contributed equally to the article.

Received 24 June 2019; returned 30 July 2019; revised 18 October 2019; accepted 12 November 2019

Background: Pseudomonas aeruginosa is an opportunistic bacterium that infects the airways of cystic fibrosis patients, surfaces of surgical and burn wounds, and indwelling medical devices. Patients are prone to secondary fungal infections, with Candida albicans being commonly co-isolated with P. aeruginosa. Both P. aeruginosa and C. albicans are able to form extensive biofilms on the surfaces of mucosa and medical devices.

Objectives: To determine whether the presence of C. albicans enhances antibiotic tolerance of P. aeruginosa in a dual-species biofilm.

Methods: Single- and dual-species biofilms were established in microtitre plates and the survival of each species was measured following treatment with clinically relevant antibiotics. Scanning electron microscopy and confocal microscopy were used to visualize biofilm structure.

Results: C. albicans enhances P. aeruginosa biofilm tolerance to meropenem at the clinically relevant concentration of 5 mg/L. This effect is specific to biofilm cultures and is dependent upon C. albicans extracellular matrix polysaccharides, mannan and glucan, with C. albicans cells deficient in glycosylation structures not enhancing P. aeruginosa tolerance to meropenem.

Conclusions: We propose that fungal mannan and glucan secreted into the extracellular matrix of P. aeruginosa/C. albicans dual-species biofilms play a central role in enhancing P. aeruginosa tolerance to meropenem, which has direct implications for the treatment of coinfected patients.

Introduction

The majority of infections in humans are polymicrobial in nature, with common diseases no longer considered to be caused by a single aetiological agent.¹ The most prevalent polymicrobial infections include periodontitis, gastroenteritis, diabetic foot wounds, burn wounds and biofilm-associated infections.¹,²

The genetic disease, cystic fibrosis (CF), is characterized by thickening of the mucus layer lining the endothelium of the respiratory tract, which provides an ideal environment for microbial colonization.³ Reduced mucociliary clearance enables these microorganisms to persist and form polymicrobial biofilms on the mucosa of the lower respiratory tract.¹ The CF lung is a major site of interaction between Pseudomonas aeruginosa and Candida albicans.⁴ASTE Around 70% of CF patients become chronically infected with P. aeruginosa by the age of 30,⁶ with C. albicans isolated from up to 75% of CF patients,⁷ although sputum samples are often contaminated with microbes from the upper respiratory tract and oral cavity.⁸ However, simultaneous colonization has been linked to severer clinical outcomes,⁹,¹⁰ due to accelerated decline in lung function and worsening of disease progression.¹⁰,¹¹

Biofilms are structured communities of microbial cells ensnared within a matrix of extracellular polymeric substances.¹²,¹³ Biofilms are formed by bacterial and fungal species and an estimated 65%–80% of all microbial infections in humans are biofilm related.¹²,¹³ This has important clinical implications as the MICs of antimicrobials for biofilm cells can be 100–1000 times greater than for planktonic cells.¹⁵,¹⁶ Antimicrobial resistance in microorganisms poses an increasing challenge to public health worldwide,¹⁷,¹⁸ making biofilms a particularly relevant topic of research.
Previous work on interactions between *P. aeruginosa* and *C. albicans* has focused predominantly on physical and molecular interactions and their effects on growth, morphology and virulence.\(^{19-24}\) However, little is known of how their interactions affect antimicrobial drug efficacy. Studies on mono-species *C. albicans* and *P. aeruginosa* biofilms have linked biofilm extracellular matrix (ECM) material to antimicrobial drug inhibition. For example, the fungal polysaccharide β-1,3-glucan sequesters the antifungal fluconazole,\(^{25}\) whilst the *P. aeruginosa* exopolysaccharides Pel and PsI are implicated in the inhibition of various antibiotics, including tobramycin.\(^{26}\) Therefore, a greater understanding of the impact of this cross-kingdom interaction on antimicrobial tolerance is of great clinical importance.

Meropenem is a first-line antibiotic for treating *Pseudomonas* infections in the CF lung.\(^{27}\) Meropenem is a carbapenem that targets PBPs within Gram-negative bacteria, causing inhibition of cell wall peptidoglycan synthesis, ultimately leading to osmotic lysis of bacterial cells.\(^{28,29}\) Meropenem is administered intravenously as a 15–30 min infusion of 1–2 g (adult dose), thrice daily for 2 weeks.\(^{30}\) When *P. aeruginosa* biofilms are treated with clinical doses of meropenem, only bacteria at the biofilm peripheries are killed, whilst cells closer to the base remain viable.\(^{31}\) In patients, the meropenem concentration found in epithelial lining fluid 1 h post-treatment is 5.3 mg/L.\(^{30}\) with the clinical breakpoint of *Pseudomonas* being >8 mg/L.\(^{32}\) Therefore, slight deviations in tolerance of *P. aeruginosa* to meropenem could impede clearance of the infection. Here, we observed that *P. aeruginosa/C. albicans* dual-species biofilms displayed enhanced tolerance to meropenem. This protection was provided through active secretion of fungal ECM components, specifically mannan and β-glucan. Therefore, co-colonization of *P. aeruginosa* and *C. albicans* within the CF lung may result in small reservoirs of protected *P. aeruginosa*, which could survive antimicrobial treatment and reseed the infection site.

Materials and methods

Strains and growth conditions

Strains of *P. aeruginosa* and *Candida* species used in this study are listed in Table 1. *P. aeruginosa* strains were maintained on, and cultured in, Miller-modified LB and *C. albicans* strains in yeast extract peptone dextrose (YPD) medium. Both were grown at 37°C, with aeration at 200 rpm. Antimicrobials (from Sigma–Aldrich, UK) were used at the following concentrations (mg/L): meropenem, 0, 1, 2.5, 5 and 10; ceftazidime, 0 and 5; and conazole, 25, whilst the *P. aeruginosa* exopolysaccharides Pel and PsI are implicated in the inhibition of various antibiotics, including tobramycin.\(^{26}\) Therefore, a greater understanding of the impact of this cross-kingdom interaction on antimicrobial tolerance is of great clinical importance.

Meropenem is a first-line antibiotic for treating *Pseudomonas* infections in the CF lung.\(^{27}\) Meropenem is a carbapenem β-lactam that targets PBPs within Gram-negative bacteria, causing inhibition of cell wall peptidoglycan synthesis, ultimately leading to osmotic lysis of bacterial cells.\(^{28,29}\) Meropenem is administered intravenously as a 15–30 min infusion of 1–2 g (adult dose), thrice daily for 2 weeks.\(^{30}\) When *P. aeruginosa* biofilms are treated with clinical doses of meropenem, only bacteria at the biofilm peripheries are killed, whilst cells closer to the base remain viable.\(^{31}\) In patients, the meropenem concentration found in epithelial lining fluid 1 h post-treatment is 5.3 mg/L.\(^{30}\) with the clinical breakpoint of *Pseudomonas* being >8 mg/L.\(^{32}\) Therefore, slight deviations in tolerance of *P. aeruginosa* to meropenem could impede clearance of the infection. Here, we observed that *P. aeruginosa/C. albicans* dual-species biofilms displayed enhanced tolerance to meropenem. This protection was provided through active secretion of fungal ECM components, specifically mannan and β-glucan. Therefore, co-colonization of *P. aeruginosa* and *C. albicans* within the CF lung may result in small reservoirs of protected *P. aeruginosa*, which could survive antimicrobial treatment and reseed the infection site.

Materials and methods

Strains and growth conditions

Strains of *P. aeruginosa* and *Candida* species used in this study are listed in Table 1. *P. aeruginosa* strains were maintained on, and cultured in, Miller-modified LB and *C. albicans* strains in yeast extract peptone dextrose (YPD) medium. Both were grown at 37°C, with aeration at 200 rpm. Antimicrobials (from Sigma–Aldrich, UK) were used at the following concentrations (mg/L): meropenem, 0, 1, 2.5, 5 and 10; ceftazidime, 0 and 5; and conazole, 25, whilst the *P. aeruginosa* exopolysaccharides Pel and PsI are implicated in the inhibition of various antibiotics, including tobramycin.\(^{26}\) Therefore, a greater understanding of the impact of this cross-kingdom interaction on antimicrobial tolerance is of great clinical importance.

Meropenem is a first-line antibiotic for treating *Pseudomonas* infections in the CF lung.\(^{27}\) Meropenem is a carbapenem β-lactam that targets PBPs within Gram-negative bacteria, causing inhibition of cell wall peptidoglycan synthesis, ultimately leading to osmotic lysis of bacterial cells.\(^{28,29}\) Meropenem is administered intravenously as a 15–30 min infusion of 1–2 g (adult dose), thrice daily for 2 weeks.\(^{30}\) When *P. aeruginosa* biofilms are treated with clinical doses of meropenem, only bacteria at the biofilm peripheries are killed, whilst cells closer to the base remain viable.\(^{31}\) In patients, the meropenem concentration found in epithelial lining fluid 1 h post-treatment is 5.3 mg/L.\(^{30}\) with the clinical breakpoint of *Pseudomonas* being >8 mg/L.\(^{32}\) Therefore, slight deviations in tolerance of *P. aeruginosa* to meropenem could impede clearance of the infection. Here, we observed that *P. aeruginosa/C. albicans* dual-species biofilms displayed enhanced tolerance to meropenem. This protection was provided through active secretion of fungal ECM components, specifically mannan and β-glucan. Therefore, co-colonization of *P. aeruginosa* and *C. albicans* within the CF lung may result in small reservoirs of protected *P. aeruginosa*, which could survive antimicrobial treatment and reseed the infection site.

Materials and methods

Strains and growth conditions

Strains of *P. aeruginosa* and *Candida* species used in this study are listed in Table 1. *P. aeruginosa* strains were maintained on, and cultured in, Miller-modified LB and *C. albicans* strains in yeast extract peptone dextrose (YPD) medium. Both were grown at 37°C, with aeration at 200 rpm. Antimicrobials (from Sigma–Aldrich, UK) were used at the following concentrations (mg/L): meropenem, 0, 1, 2.5, 5 and 10; ceftazidime, 0 and 5; and conazole, 25, whilst the *P. aeruginosa* exopolysaccharides Pel and PsI are implicated in the inhibition of various antibiotics, including tobramycin.\(^{26}\) Therefore, a greater understanding of the impact of this cross-kingdom interaction on antimicrobial tolerance is of great clinical importance.

Meropenem is a first-line antibiotic for treating *Pseudomonas* infections in the CF lung.\(^{27}\) Meropenem is a carbapenem β-lactam that targets PBPs within Gram-negative bacteria, causing inhibition of cell wall peptidoglycan synthesis, ultimately leading to osmotic lysis of bacterial cells.\(^{28,29}\) Meropenem is administered intravenously as a 15–30 min infusion of 1–2 g (adult dose), thrice daily for 2 weeks.\(^{30}\) When *P. aeruginosa* biofilms are treated with clinical doses of meropenem, only bacteria at the biofilm peripheries are killed, whilst cells closer to the base remain viable.\(^{31}\) In patients, the meropenem concentration found in epithelial lining fluid 1 h post-treatment is 5.3 mg/L.\(^{30}\) with the clinical breakpoint of *Pseudomonas* being >8 mg/L.\(^{32}\) Therefore, slight deviations in tolerance of *P. aeruginosa* to meropenem could impede clearance of the infection. Here, we observed that *P. aeruginosa/C. albicans* dual-species biofilms displayed enhanced tolerance to meropenem. This protection was provided through active secretion of fungal ECM components, specifically mannan and β-glucan. Therefore, co-colonization of *P. aeruginosa* and *C. albicans* within the CF lung may result in small reservoirs of protected *P. aeruginosa*, which could survive antimicrobial treatment and reseed the infection site.

Materials and methods

Strains and growth conditions

Strains of *P. aeruginosa* and *Candida* species used in this study are listed in Table 1. *P. aeruginosa* strains were maintained on, and cultured in, Miller-modified LB and *C. albicans* strains in yeast extract peptone dextrose (YPD) medium. Both were grown at 37°C, with aeration at 200 rpm. Antimicrobials (from Sigma–Aldrich, UK) were used at the following concentrations (mg/L): meropenem, 0, 1, 2.5, 5 and 10; ceftazidime, 0 and 5; ciprofloxacin, 0 and 0.05; tobramycin, 0 and 2; and fluconazole, 0, 250, 500, 750 and 1000.

Formation of dual-species biofilms

Biofilms were grown in 96-well plates as previously described.\(^{33}\) Briefly, cultures were washed twice in PBS and *P. aeruginosa* cultures diluted to OD\(\text{600}\) of 0.2 and *Candida* strains diluted to 1×10⁶ cells/mL in Mueller–Hinton broth (MHB) or DMEM supplemented with 1% L-glutamine. *P. aeruginosa* (2×10⁶) and *Candida* (1×10⁶) cells were added to 14 mL vent-capped culture tubes in a final volume of 2 mL MHB. Cultures were incubated for 3 h at 37°C with aeration at 200 rpm; the appropriate amount of antibiotic was added and cultures incubated for an additional 18 h. Cultures were sonicated in a water bath sonicator and serially diluted and plated for viable counts. Experiments were performed with three technical and four biological replicates.
Table 1. Bacterial and fungal strains used in this study

Strain	Common name	Genotype	Reference/source
P. aeruginosa			
ATCC 15692	PAO1	WT	ATCC
Midlands 1	Midlands 1	clinical isolate	
C. albicans			
SC5314	SC5314	type strain	
NGY152	NGY152	ura3A::imm34/ura3A::imm434; RPS1/rps1A::URA3	
NGY355	pmr1A	ura3A::imm34/ura3A::imm434; pmr1A::hisG/pmr1A::hisG; RPS10/ rps10A::URA3	
NGY356	pmr1A + PMR1	ura3A::imm34/ura3A::imm434; pmr1A::hisG/pmr1A::hisG; RPS1/ rps1A::Clp10-PMR1	
CDH15	mnn4A	ura3A::imm434/ura3A::imm434; mnn4A::hisG/mnn4A::hisG; RPS10::URA3	
CDH13	mnn4A + MNN4	ura3A::imm434/ura3A::imm434; mnn4A::hisG/mnn4A::hisG; RPS10:: [Clp10-MNN4-URA3]	
NGY582	mnn2A	ura3A::imm34/ura3A::imm434; mnn2A::dpl200/mnn2A::dpl200; RPS1/rps1A::Clp10	
NGY583	mnn2A + MNN2	ura3A::imm34/ura3A::imm434; mnn2A::dpl200/mnn2A::dpl200; RPS1/rps1A::Clp10- MNN2	
NGY600	mnn2–26	ura3A::imm34/ura3A::imm434; mnn2A::dpl200/mnn2A::dpl200; mnn23A::dpl200/mnn23A::dpl200; mnn24A::dpl200/mnn24A::dpl200; mnn26A::dpl200/mnn26A::dpl200; mnn21A::dpl200/mnn21A::dpl200; RPS1/rps1A::Clp10	
NGY337	mnt1A/mnt2A	ura3A::imm34/ura3A::imm434; mnt1A::hisG/mnt1A::hisG; RPS10/rps10A::Clp10	
NGY335	mnt1A/mnt2A + MNT1	ura3A::imm34/ura3A::imm434; mnt1A::hisG/mnt1A::hisG; mnt2A::hisG/mnt2A::hisG; RPS10/rps10A::Clp10-MNT1	
Non-albicans Candida			
WU284	C. dubliniensis	WT	
CAY676	C. tropicalis	type strain	ATCC
CLIB214	C. parapsilosis	type strain	
AM16/0701	C. krusei	clinical isolate	
ATCC 2001	C. glabrata	type strain	ATCC

Determination of P. aeruginosa susceptibility to meropenem

MICs of meropenem were determined for P. aeruginosa strains according to the standardized broth microdilution method using MHB. Concentrations of meropenem used were 0, 1, 2, 4, 8, 16 and 32 mg/L. MICs were determined for P. aeruginosa strains using cells grown on LB agar and cells recovered from biofilms. MICs were the lowest concentrations of meropenem that caused no visible growth.

Statistical analysis

Statistical analyses were done using GraphPad Prism 8.0.0 software. Data were analysed using two-way ANOVA and Holm–Sidak’s multiple comparisons test.

Results

C. albicans increases the tolerance of P. aeruginosa to meropenem in dual-species biofilms

To determine whether the presence of C. albicans within a P. aeruginosa biofilm can enhance tolerance of P. aeruginosa to meropenem, preformed mono-species (P. aeruginosa) and dual-species (P. aeruginosa/C. albicans) biofilms were treated with meropenem and P. aeruginosa survival quantified by viable counts. Given that the concentration of meropenem in the lung immediately after administration is between 5 and 6 mg/L, this drug concentration was the focus of the study. The viability of P. aeruginosa mono-species biofilms was reduced to 25.35% when treated with 5 mg/L meropenem, indicating P. aeruginosa biofilm cells are susceptible to meropenem. Fewer P. aeruginosa cells were recovered from dual-species biofilms, which is likely due to nutrient competition. However, in the presence of C. albicans, meropenem was non-effective against P. aeruginosa in both MHB (Figure 1a) and DMEM (Figure S1, available as Supplementary data at JAC Online), indicating that this inter–kingdom interaction negatively affects meropenem efficacy.

To visualize the structure of the biofilms, samples were analysed by scanning electron microscopy and confocal microscopy. Mono-species P. aeruginosa biofilms were significantly reduced in the presence of meropenem, while in the meropenem-treated dual-species biofilms, significant levels of P. aeruginosa colonized...
Figure 1. *C. albicans* increases the tolerance of *P. aeruginosa* to meropenem in a dual-species biofilm. (a) Preformed 24 h biofilms were incubated for 18 h in MHB containing no antibiotic or 5 mg/L meropenem. Data are the mean ± SEM from five biological replicates. Data were analysed using two-way ANOVA and Holm–Sidak’s multiple comparisons test (**P < 0.01). NS, not significant. (b) Scanning electron microscopy analysis of biofilms. Meropenem treatment of mono-species *P. aeruginosa* biofilms results in death of bacterial cells, whilst the presence of *C. albicans* in the dual-species biofilm enhances meropenem tolerance; the tight association of *P. aeruginosa* cells to fungal surfaces is visible. *C. albicans* alone is unaffected by meropenem. (c) 3D reconstructions of biofilms from confocal z-stacks. Red indicates propidium iodide stain (dead cells), green indicates Syto 9 dye (DNA) and blue indicates calcofluor white stain (chitin).
the fungal hyphae (Figure 1b), confirming the cfu data. In agreement with this, the biofilm thickness was lower in meropenem-treated dual-species biofilms (Figure 1c and Figure S2), indicating dense packing of bacterial cells against fungal hyphae, creating a more compact biofilm structure. Therefore, the presence of C. albicans enhances the tolerance of P. aeruginosa to meropenem.

To identify whether this dual-species interaction had any impact on antifungal resistance, biofilms were treated with fluconazole. C. albicans cells in dual-species biofilms showed similar susceptibility levels to fluconazole as untreated controls at all tested concentrations. Therefore, the presence of P. aeruginosa does not affect the antifungal activity of fluconazole under the tested conditions (Figure S3).

Meropenem tolerance is not maintained following subculture of P. aeruginosa biofilm cells

The selective pressure from antibiotic use increases the likelihood of cells developing resistance. The sessile nature and close proximity of biofilm cells promotes cell–cell interactions, increasing horizontal gene transfer and mutation frequencies relative to planktonic cells. Furthermore, the presence of C. albicans increases P. aeruginosa mutation rates. To determine whether the observed increase in meropenem tolerance of P. aeruginosa was due to selection for resistance mutations, the meropenem MICs for cells recovered from both P. aeruginosa mono- and dual-species biofilms that had been treated with 5 mg/L meropenem, or untreated, were determined by standard broth microdilution MIC assay and compared with the MIC for the starter culture. The MIC for P. aeruginosa under all tested conditions was 4 mg/L, suggesting that P. aeruginosa cells recovered from treated biofilms were not resistant to meropenem and, therefore, the observed increased tolerance was unlikely due to selection for resistance mutations.

Increased tolerance of P. aeruginosa to meropenem is specific to dual-species biofilms

Enhanced survival of P. aeruginosa as a result of interactions with C. albicans has previously been observed in planktonic cultures, through inter-kingdom communication via secreted metabolites. To determine whether the observed increase in meropenem tolerance of P. aeruginosa was specific to biofilms, P. aeruginosa susceptibility to meropenem in the presence of C. albicans was tested during planktonic growth. At all meropenem concentrations tested, there was no significant difference in P. aeruginosa survival whether in the presence or absence of C. albicans (Table 2), suggesting that C. albicans-mediated protection is biofilm specific.

Increased P. aeruginosa tolerance to meropenem is dependent on fungal viability

Production of biofilm ECM is an active process, involving secretion of glycoproteins, polysaccharides, lipids and nucleic acids. To determine whether the protective effect of C. albicans is mediated by an active or passive mechanism, P. aeruginosa biofilms were grown in the presence of either heat-killed C. albicans (disrupts the fungal cell wall, denatures proteins and causes cell lysis) or by fixing the C. albicans cells in 4% PFA (maintains cell structure). However, in the presence of heat-killed or PFA-fixed C. albicans, P. aeruginosa remained susceptible to meropenem (Figure 2), suggesting that C. albicans actively protects P. aeruginosa from meropenem.

Candida dubliniensis also enhances P. aeruginosa meropenem tolerance in dual-species biofilms

Only a few species of the Candida genus are associated with disease in humans, including C. albicans, C. dubliniensis, Candida tropicalis, Candida parapsilosis, Candida krusei and Candida glabrata.
actively secretes mannan and/or glucan into the biofilm ECM, sequester or inhibit the activity of the drug. Therefore, *C. albicans* meropenem (Figure S4), suggesting that the polysaccharides may protect *P. aeruginosa* effect was observed (Figure 4b). Mannan and glucan protected meropenem in biofilms (Figure 4a), but not in planktonic cultures (Figure 4c). To determine whether mannan and glucan have independent effects, *P. aeruginosa* were susceptible to meropenem. However, *P. aeruginosa* survival was unaffected during growth in a dual-species biofilm with *C. albicans* (Figure 6), suggesting that in CF patients, co-colonization with *C. albicans* may increase *P. aeruginosa* tolerance to meropenem.

Fungal cell wall polysaccharides enhance *P. aeruginosa* tolerance to meropenem

The secretion of ECM polymers, specifically polysaccharides, by *C. albicans* biofilm cells is linked to increased antifungal resistance of fungal biofilms. However, there is increasing evidence that fungal ECM polysaccharides also contribute to antibiotic resistance in dual-species fungal/bacterial biofilms. To determine whether secreted fungal cell wall polymers play a role in protecting *P. aeruginosa*, mono- and dual-species biofilms were treated with 5 mg/L meropenem. However, the presence of *C. albicans* did not provide protection against these antimicrobial treatments (Figure S5a and b), suggesting that the mechanism by which *C. albicans* confers enhanced tolerance is likely due to the chemical structure of meropenem.

C. albicans cell wall glycosylation is important for protection against meropenem

To further investigate the role of fungal mannan in meropenem tolerance, the ability of *C. albicans* cell wall glycosylation mutants to protect *P. aeruginosa* was quantified. *C. albicans* has two major forms of mannan, the extensively branched N-linked mannan and the simple, linear O-linked mannan. Deletion of genes involved in key glycosylation steps results in the incorporation of altered mannan epitopes in the cell wall (Figure 5a) and within the ECM. To elucidate the role of these glycosylation structures in protecting *P. aeruginosa* from meropenem, mutants defective in general protein glycosylation (*pmr1Δ*, ATPase required for transporting Ca²⁺ and Mn²⁺ ions into the Golgi), N-mannan phosphomannan incorporation (*mnn4Δ*), N-mannan side chain elaboration (*mnn2–26*), and O-mannan biosynthesis (*mnt1Δ/mnt2Δ*) were tested for their ability to protect *P. aeruginosa* from meropenem. Deletion of genes required for N-mannan biosynthesis (*mnn4, mnn2–26 and pmr1*) reduced the ability of *C. albicans* to protect *P. aeruginosa* from meropenem (Figure 5b and c). Scanning electron microscopy analysis showed very few bacterial cells surviving meropenem treatment in dual-species biofilms with *C. albicans* glycosylation mutants (Figure 5e) but bacteria that did survive were closely adhered to the fungal cell surface, suggesting cell-cell adherence may play a role in meropenem tolerance. In agreement with this, deletion of genes involved in O-mannan biosynthesis (*mnt1/mnt2*), which have previously been shown to be involved in bacterial attachment to *C. albicans*, had the greatest impact on *P. aeruginosa* protection (Figure 5d and e). This indicates that protection of *P. aeruginosa* requires full elaboration of fungal mannan.

C. albicans does not enhance *P. aeruginosa* tolerance to other antibiotics

To determine whether the presence of *C. albicans* also affects tolerance of *P. aeruginosa* biofilm cells to other clinically relevant antibiotics, mono- and dual-species biofilms were treated with 5 mg/L ceftazidime, 0.05 mg/L ciprofloxacin, 2 mg/L tobramycin or a combination of 5 mg/L meropenem and 2 mg/L tobramycin. However, the presence of *C. albicans* did not provide protection against these antimicrobial treatments (Figure S5a and b), suggesting that the mechanism by which *C. albicans* confers enhanced tolerance is likely due to the chemical structure of meropenem.

C. albicans protects *P. aeruginosa* CF isolates from meropenem

To explore the clinical relevance of the above findings, the ability of *C. albicans* to increase meropenem tolerance of clinical CF isolates was tested. Mono-species biofilms of the Midlands 1 CF isolate were susceptible to meropenem. However, *P. aeruginosa* survival was unaffected during growth in a dual-species biofilm with *C. albicans* (Figure 6), suggesting that in CF patients, co-colonization with *C. albicans* may increase *P. aeruginosa* tolerance to meropenem.
Discussion

P. aeruginosa and *C. albicans* are commonly co-isolated from the sputum of CF patients,\(^{20}\) where the thickened mucus layer lining the endothelium of the lower respiratory tract provides an ideal environment for biofilm formation.\(^{3,7}\) Chronic *P. aeruginosa* colonization in the CF lung is correlated with increased likelihood of *C. albicans* colonization, indicating a synergistic interaction that leads to a greater decline in lung function.\(^{10,11}\) Here, we show that *C. albicans* significantly enhanced *P. aeruginosa* biofilm tolerance to 5 mg/L meropenem in both a laboratory strain and a CF isolate. Although the protective effect was relatively small (<1 log\(_{10}\) change in *P. aeruginosa* cfu/mL), this may still have clinical relevance. For example, the clinical breakpoint of *P. aeruginosa* for meropenem is >8 mg/L,\(^{32}\) this increased tolerance could push the required meropenem concentration over the clinical breakpoint, categorizing the infection as meropenem resistant. This has direct implications for treatment of CF patients who present with coinfection. Standard doses of meropenem may become insufficient for treating *P. aeruginosa* infection, with combination antibiotic/antifungal therapy being a potentially more effective therapeutic option.

The protective effect of *C. albicans* was biofilm specific and dependent upon fungal ECM components. This is consistent with...
Figure 5. *C. albicans* cell wall glycosylation is important for protection against meropenem. (a) Schematic diagram representing the structure of N-mannan (including phosphomannan) and O-mannan of *C. albicans*. The points of truncation of the mutants used in this study are indicated by arrows. The pmr1Δ mutant causes loss of a Galg Ca2+/Mn2+ -ATPase, affecting numerous mannosyltransferases, so the extent of truncation of the α-1,6-mannose backbone is variable. (b) N-mannan glycosylation is important for protection against meropenem. Preformed 24 h biofilms were incubated for 18 h in MHB containing no antibiotic or 5 mg/L meropenem. The N-mannan glycosylation mutants (mnn4Δ, pmr1Δ or mnn2Δ) inhibit the ability of *C. albicans* to protect *P. aeruginosa*. Tolerance to meropenem is restored in reconstituted control strains. (c) The mnn2–26Δ sextuple mutant, in which only the unsubstituted α-1,6-mannose backbone of N-mannan remains, inhibits the ability of *C. albicans* to protect *P. aeruginosa*. (d) O-mannan glycosylation is important for protection against meropenem. The mnt1Δ/mnt2Δ double mutant inhibits the ability of *C. albicans* to protect *P. aeruginosa*. Meropenem tolerance is restored when MNT1 is reconstituted. Data are the mean ± SEM from three biological replicates. Data were analysed using two-way ANOVA and Holm–Sidak’s multiple comparisons test (**P < 0.01, ***P < 0.001 and ****P < 0.0001 in panels b, c and d). NS, not significant. (e) Scanning electron microscopy analysis of biofilms. Deletion of genes required for fungal N-mannan biosynthesis (mnn4) or O-mannan biosynthesis (mnt1/mnt2) reduced the ability of *C. albicans* to protect *P. aeruginosa* from meropenem, as indicated by the reduction in the number of bacterial cells following meropenem treatment; the majority of surviving bacteria are in close contact with fungal cells. When the genes (MNN4 or MNT1) are reconstituted, the protective effect is restored, as evidenced by the abundance of *P. aeruginosa* cells coating the fungi in the meropenem-treated samples.
other reports where \(C.\) albicans ECM components have been shown to provide protection against ofloxacin and vancomycin in dual-species biofilms with \(\text{Escherichia coli} \) and \(\text{Staphylococcus aureus} \), respectively.\(^{42,43} \) However, in contrast to these studies, where \(C.\) albicans ECM components provide protection against a range of antimicrobials, \(C.\) albicans ECM components only increased \(P.\) aeruginosa tolerance to meropenem. This suggests that the mechanism by which \(C.\) albicans ECM components enhance meropenem tolerance may be different to those proposed for other antibiotics. Considering the effect was not seen for other \(\beta\)-lactams (i.e. ceftazidime) this suggests the protective mechanism may depend on chemical structure or ability to bind mannan or \(\beta\)-glucan, rather than the mode of action.

Previously, mannan and \(\beta\)-glucan have been shown to bind and sequester antimicrobials, limiting their diffusion through biofilms.\(^{43} \) Therefore, it is possible that the actual concentration of meropenem within dual-species biofilms is significantly lower. Similar interactions have been observed in dual-species biofilms where \(\text{Streptococcus mutans} \) exopolysaccharides bind and sequester fluconazole, reducing its efficacy against \(C.\) albicans.\(^{49} \) Alternatively, mannans or glucans may coat bacterial cells, providing a physical barrier that impedes drug permeation, supporting the proposed mechanism by which \(S.\) aureus is protected from vancomycin.\(^{42} \)

Although \(C.\) albicans remains clinically the most commonly isolated \(\text{Candida} \) species, the prevalence of NAC species is increasing.\(^{50} \) \(C.\) dubliniensis was the only NAC species that protected \(P.\) aeruginosa from meropenem. This finding is of clinical relevance as, although less common than \(C.\) albicans, the prevalence of \(C.\) dubliniensis within CF patients ranges from 2.6% to 39.0% and there are cases of \(C.\) dubliniensis being co-isolated with \(P.\) aeruginosa from the lower respiratory tracts of CF patients.\(^{51} \) \(C.\) dubliniensis is the most closely related NAC species to \(C.\) albicans and, as a result, their biofilms are structurally similar.\(^ {38,39} \) with networks of yeast and hyphal cells embedded in a comparable ECM.\(^{52} \) Although the other NAC species produce biofilms, the composition of their ECM is considerably different\(^ {53,54} \) and their biofilms lack hyphae, which are important for bacterial attachment. Scanning electron microscopy confirmed that most bacteria in the treated dual-species biofilms were attached to fungal hyphae, suggesting that this interaction is important for protection. This hypothesis is supported by the fact that removal of \(O\)-mannan, which is required for bacterial binding,\(^ {47,55} \) reduced the ability of \(C.\) albicans to protect \(P.\) aeruginosa. However, given that purified carbohydrates were able to provide similar protection to \(C.\) albicans, it would suggest that ECM composition is the major contributing factor providing antimicrobial protection.

In conclusion, secreted \(C.\) albicans ECM polysaccharides protect \(P.\) aeruginosa by reducing the efficacy of meropenem. Clinically, this could result in persistent bacterial infection due to pockets of protected cells, which may then acquire true resistance as a result of continued exposure to sub-MIC concentrations of antibiotics. This highlights the importance of early diagnosis of dual-species biofilm infections, so that more efficacious therapeutic options, such as combination antibiotic/antifungal therapy, can be considered.

Acknowledgements
We would like to thank Paul Stanley and Theresa Morris, at the University of Birmingham’s Centre for Electron Microscopy, for assistance with scanning electron microscopy sample preparation and imaging. We thank Neil Gow, for providing the \(C.\) albicans mannan glycosylation mutant strains, and Donna MacCallum, for providing the \(C.\) krusei strain.

Funding
F.A. is supported by the Wellcome Trust Antimicrobials and Antimicrobial Resistance (AAMR) doctoral training programme (108876/Z/15/Z). Work in the laboratory of J.M.A.B. is supported by a David Phillips Fellowship to J.M.A.B. (BB/M02623X/1). Work in the laboratory of R.A.H. is supported by an MRC Career Development Award (MR/L00903X/1) and the BBSRC (BB/R00966X/1).

Transparency declarations
None to declare.

Supplementary data
Figures S1 to S5 are available as Supplementary data at JAC Online.

References
1. Peters BM, Jabra-Rizk MA, O’May GA et al. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25: 193–213.
2. Lohse MB, Gulati M, Johnson AD et al. Development and regulation of single- and multi-species \(\text{Candida albicans} \) biofilms. Nat Rev Microbiol 2018; 16: 19–31.
Pseudomonas aeruginosa

Bandara HM, Cheung BPK, Watt, RM

Discovery, and Development of New Antibiotics. 2017. http://www.who.int/WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, aminoglycosides and drivers of antimicrobial resistance.

18

minimizing its effects on agents.

Candida albicans

C. albicans

vancomycin, trimethoprim/sulfamethoxazole, ciprofloxacin, azithromycin, and aminoglycosides.

in the respiratory tract of cystic fibrosis patients. Med Mycol 2010; 48: 56–63.

Dixon EF, Hall RA. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 2015; 17: 1431–41.

5

O’Brien S, Fothergill JL. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung. FEMS Microbiol Lett 2017; 364: fnx128.

6

Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 2014; 384: 703–13.

7

Williams C, Ranjendran R, Ramage G. Pathogenesis of fungal infections in cystic fibrosis. Curr Fungal Infect Rep 2016; 10: 163–9.

8

Rana A, Sharma A, Pandey G. Diagnostic value of sputum Gram’s stain and sputum culture in lower respiratory tract infections in a tertiary care hospital. Int J Curr Microbiol App Sci 2017; 6: 4310–4.

9

Hamet M, Pavon A, Dalle F et al. Candida spp. airway colonization could promote antibiotic-resistant bacteria selection in patients with suspected ventilator-associated pneumonia. Intensive Care Med 2012; 38: 1272–9.

10

Dhamgaye S, Quy Y, Peleg AY. Polymicrobial infections with Pseudomonas aeruginosa and Staphylococcus aureus in respiratory infection with a more severe lung disease in cystic fibrosis.

11

Gileles-Hillel A, Shoseyov D, Polacheck I et al. Association of Chronic Candida albicans respiratory infection with a more severe lung disease in patients with cystic fibrosis. Pediatr Pulmonol 2015; 50: 1082–9.

12

Lindsay AK, Hogan DA. Candida albicans: molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. Fungal Biol Rev 2014; 28: 85–96.

13

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8: 623–33.

14

Van Acker H, Van Dijck P, Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22: 326–33.

15

Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7: 1061–72.

16

Hill D, Rose B, Pajkos A et al. Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 2005; 43: 5085–90.

17

WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. 2017. http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/.

18

Holmes AH, Moore LSP, Sundsfjord A et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016; 387: 176–87.

19

Lopez-Medina E, Fan D, Coughlin LA et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog 2015; 11: e1005129.

20

Trejo-Hernández A, Andrade-Dominguez A, Hernandez M et al. Interspecies competition triggers virulence and mutability in Candida albicans-Pseudomonas aeruginosa mixed biofilms. ISME J 2014; 8: 1974–88.

21

Chen AJ, Dolben EF, Okegbe C et al. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Pathog 2014; 10: e1004480.

22

Bandara HM, Cheung BPK, Watt, RM et al. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development. Mol Oral Microbiol 2013; 28: 54–69.

23

Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology 2010; 156: 3096–107.

24

Hogan DA, Vík A, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 2004; 54: 1212–23.

25

Taff HT, Nett JE, Zarnowski R et al. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 2012; 8: e1002848.

26

Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41: 276–301.

27

Cystic Fibrosis Trust. Antibiotic Treatment for Cystic Fibrosis: Report of the UK Cystic Fibrosis Trust Antibiotic Working Group, 3rd Edition. 2009. https://www.cysticfibrosis.org.uk/~media/documents/the-work-we-do/care/concensus-docs-with-new-address/antibiotic-treatment.pdf?la=en.

28

Fernandez R, Arnador P, Prudenci C. β-Lactams: chemical structure, mode of action and mechanisms of resistance. Rev Med Microbiol 2013; 24: 7–17.

29

Papp-Wallice KM, Endimiani A, Taracena MA et al. Carbapenems: past, present, and future. Antimicrob Agents Chemother 2011; 55: 4943–60.

30

Nicolau DP. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin Infect Dis 2008; 47 Suppl 1: S32–40.

31

Haagensen JA, Verotta D, Huang L et al. New in vitro model to study the effect of human simulated antibiotic concentrations on bacterial biofilms. Antimicrob Agents Chemother 2015; 59: 4074–81.

32

EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 8.1. 2018. http://www.eucast.org/.

33

Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 2005; Chapter 1.

34

Harrriott MM, Noverr MC. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother 2009; 53: 3914–22.

35

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 2001; 48: 5–16.

36

Savage VJ, Choppa I, O’Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 2013; 57: 1968–70.

37

Olsen I. Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 2015; 34: 877–86.

38

Whibley N, Gaffen SL. Beyond Candida albicans: mechanisms of immunity to non-albicans Candida species. Cytokine 2015; 76: 42–52.

39

Papon N, Courdavault V, Castre M et al. Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 2013; 9: e1003550.

40

Taff HT, Mitchell KF, Edward JA et al. Mechanisms of Candida biofilm drug resistance. Future Microbiol 2013; 8: 1325–37.

41

Nett J, Lincoln L, Marchillo K et al. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 2007; 51: 510–20.

42

Kong EF, Tsui C, Kucharikova S et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio 2016; 7: e01365-16.

43

De Brucker K, Tan Y, Vints K et al. Fungal β-1,3 glucan increases ofloxacin tolerance of Escherichia coli in a polymicrobial E. coli/Candida albicans biofilm. Antimicrob Agents Chemother 2015; 59: 3052–8.

44

Sheth CC, Hall R, Lewis L et al. Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Med Mycol 2011; 49: 513–24.

45

Murciano C, Moyes DL, Rungrell M et al. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun 2011; 79: 4902–11.

46

Hall RA, Botes S, Lenardon MD et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog 2013; 9: e1003276.

47

Brand A, Barnes JD, Mackenzie KS et al. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida
Candida enhances Pseudomonas antibiotic tolerance

albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett 2008; 287: 48–55.

48 Scott FW, Pitt TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004; 53: 609–15.

49 Kim D, Liu Y, Benhamou RI et al. Bacterial-derived exopolysaccharides enhance antifungal drug tolerance in a cross-kingdom oral biofilm. ISME J 2018; 12: 1427–42.

50 Sardi JC, Scorzoni L, Bernardi T et al. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 2013; 62: 10–24.

51 Wahab AA, Taj-Aldeen SJ, Kolecak A et al. High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. Int J Infect Dis 2014; 24: 14–9.

52 Ramage G, Vande Walle K, Wickes BL et al. Biofilm formation by Candida dubliniensis. J Clin Microbiol 2001; 39: 3234–40.

53 Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) 2018; 5: 28.

54 Silva S, Negri M, Henriques M et al. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 2011; 19: 241–7.

55 Munro CA, Bates S, Buurman ET et al. Mnt1p and Mnt2p of Candida albicans are partially redundant α-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 2005; 280: 1051–60.

56 Sobel JD. Vaginitis. N Engl J Med 1997; 337: 1896–903.

57 Hobson RP, Munro CA, Bates S et al. Loss of cell wall mannosylphosphate in Candida albicans does not influence macrophage recognition. J Biol Chem 2004; 279: 39628–35.

58 Bates S, MacCallum DM, Bertram G et al. Candida albicans Pmr1p, a secretary pathway P-type Ca²⁺/Mn²⁺-ATPase, is required for glycosylation and virulence. J Biol Chem 2005; 280: 23408–15.

59 Marschhäuser J, Ruhnke M, Michel S et al. Identification of CARE-2-negative Candida albicans isolates as Candida dubliniensis. Mycoses 1999; 42: 29–32.

60 Zwolinska-Wcislo M, Budak A, Trojanowska D et al. Fungal colonization of the stomach and its clinical relevance. Mycoses 1998; 41: 327–34.