Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat

Chunxiu Yu, Dori Derdikman, Sebastian Haidarliu, Ehud Ahissar*

Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel

In active sensation, sensory information is acquired via movements of sensory organs; rats move their whiskers repetitively to scan the environment, thus detecting, localizing, and identifying objects. Sensory information, in turn, affects future motor movements. How this motor-sensory-motor functional loop is implemented across anatomical loops of the whisker system is not yet known. While inducing artificial whisking in anesthetized rats, we recorded the activity of individual neurons from three thalamic nuclei of the whisker system, each belonging to a different major afferent pathway: paralemniscal, extralemniscal (a recently discovered pathway), or lemniscal. We found that different sensory signals related to active touch are conveyed separately via the thalamus by these three parallel afferent pathways. The paralemniscal pathway conveys sensor motion (whisking) signals, the extralemniscal conveys contact (touch) signals, and the lemniscal pathway conveys combined whisking–touch signals. This functional segregation of anatomical pathways raises the possibility that different sensory-motor processes, such as those related to motion control, object localization, and object identification, are implemented along different motor-sensory-motor loops.

Introduction

Active touch is a closed-loop process in which sensor motion determines the sensory input and the sensory input determines future sensor motion [1,2]. Both sensor motion and touch signals are reported to the brain by peripheral neurons. Limb movements are reported via proprioceptive mechanoreceptors located in joints, tendons, and muscle spindles. Whisker movements are reported to the brain via mechanoreceptors located in the whisker follicle. As with limb movements, whisker movements are reported by a set of receptors that is separated from those sensing touch [3].

Whisker afferents ascend via the thalamus in three parallel pathways: the lemniscal pathway ascends via the dorsomedial (dm) sector of the ventral posteromedial nucleus (VPM) (VPMdm), the paralemniscal ascends via a rostral sector of the posterior complex (POm), and a recently discovered pathway ascends via the ventrolateral sector of the VPM (VPMvl) [4]. We refer to the recently discovered pathway as “extralemniscal” to denote its path, which emerges from paralemniscal nuclei in the brainstem and ascends in parallel to the lemniscal and paralemniscal pathways [4] (we thank P.M. Knutsen for this suggestion). The paralemniscal, extralemniscal, and lemniscal pathways appear to be trigeminal analogs of the spinal spinohalamic, neospinothalamic, and dorsal column–lemniscal pathways [5], respectively. These pathways convey their information to different targets [4,6,7], which are different target levels of brain hierarchy [8,9], with the lemniscal involving the highest, the extralemniscal a lower, and the paralemniscal a still lower level. The lemniscal and paralemniscal pathways differ considerably in their responses to stimuli applied passively to stationary whiskers [10–13]. However, information about the signals conveyed by these pathways, and by the extralemniscal one, during active touch is lacking [4].

We combined active whisking with controlled stimulus application and accurate localization of recording sites by employing artificial whisking in anesthetized rats [3,14–16]. With this method, whiskers are moved forward by their muscles, and thus whisker–object interaction mimics that which occurs naturally, i.e., forces are applied both to the whisker’s follicle and to the whisker’s shaft. In contrast, when stimulating passive whiskers, i.e., when the object moves an otherwise stationary whisker, forces are applied only to the whisker’s shaft. Using this artificial active whisking method, we previously identified three types of active-touch signals (whisking, touch, and combined whisking–touch) sent by trigeminal ganglion (TG) neurons to the brain [3]. Here, we used the same method to examine conveyance of active-touch signals via the thalamus.

Results

Anatomical Borders

In thalamic slices, the border between VPM and POm is distinct in all planes of sectioning, due to a high contrast in terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: CO, cytochrome oxidase; POm, whisker-responsive rostral sector of the posterior complex of the thalamus; PStH, peri-stimulus time histogram; Sr, response (spike count/cycle) of cells to whisking against an object during protraction; Sr, response (spike count/cycle) of cells to whisking in air during protraction; T, touch signal; TG, trigeminal ganglion; Ti, touch index (normalized touch response); VPM, ventroposteromedial nucleus of the thalamus; VPMdm, dorsomedial VPM; VPMvl, ventrolateral VPM; W, whisking signal

* To whom correspondence should be addressed. E-mail: ehud.ahissar@weizmann.ac.il
is not distinct with standard section planes, i.e., coronal, sagittal, and horizontal [4,18]. Thus, we explored non-standard section planes in both young (in which thalamic borders are in general more clear) [19] and adult rats. We found that a distinct border between VPMdm and VPMvl is visible in an oblique plane, from dorsomedial to ventrolateral, at 50° to the horizontal plane [19]. In this plane, the VPMdm–VPMvl border was salient in young rats (Figure 1A and 1B), and still visible in adult rats (Figure 1C and 1D). We used the anatomical scheme of Figure 1D as a canonical scheme for our thalamic recordings. Each recording site was determined by an electrolytic lesion and mapped onto the canonical scheme (Figure 1D, black dots). The method we used for coordinate transformation is described in Figure S1.

Specificity of Thalamic Responses

We examined the specificity of neuronal responses to active movement and touch in the three parallel trigeminal pathways by recording from 67 individual neurons located in their corresponding thalamic stations in urethane-anesthetized rats (Figure 1D): POm (n = 24), VPMvl (n = 13), and VPMdm (n = 30). The facial nerve was stimulated at 83 Hz for 100 ms to induce protraction (forward movement of all whiskers), and then left unstimulated for 100 ms to allow passive retraction. Repetitive whisking movements were thus induced at 5 Hz, which is within the natural whisking rate, in trains of 2 s and intertrain intervals of 3 s. In the movement path of the principal whisker of each recorded neuron, a pole of 2-mm diameter was presented vertically during touch
blocks (consisting of 12–24 trains each), at 70%–90% of the whisker's length. No object was presented in free-air blocks.

With moving whiskers, object localization would be ambiguous unless the brain contained an independent signal that described whisker motion. A pure movement (whisking) signal (W) would report whisking only, i.e., would report whisker movement in a consistent manner regardless of touch events during the movement. A pure touch signal (T) would report touch only. We found that a clear dissociation between W and T signals occurs in the thalamus, in which W and T signals, whose interactions were either additive (W + T) or subtractive (W − T), i.e., in which touch either added or subtracted spikes from the whisking response (see Figure 2C and 2D). In both free-air and touch conditions, tonic responses often contained a strong 83-Hz component (see rhythmic responses in Figure 2C and 2D), locked to the 83-Hz movement ripple (see whisker angle trajectories in Figure 2), similar to tonic responses of TG neurons [3]. Tonic responses were observed only in VPMdm, except one case in VPMvl (see response durations in Table S1). A period with reduced response between the phasic and tonic components, such as that exhibited in Figure 2D during whisking in air, was observed in seven VPMdm neurons (two W − T and five W + T) during either whisking in air or against an object.

Whisking and touch signals were quantified by measuring the response (spike count) of cells to whisking in air (SW) and to whisking against an object (ST) during the first 100 ms of each whisking cycle. These first 100 ms of each cycle contained only spikes generated during protraction, which comprised most of the spikes generated by our thalamic neurons in both whisking and touch conditions (see response durations in Table S1). Thalamic responses in all three nuclei exhibited a dynamic phase, lasting three to four whisking cycles, during which the response changed from cycle to cycle, followed by a steady-state phase during which the response remained stable (see Materials and Methods). The stable steady-state response, averaged over the last six cycles of each whisking train, was used to classify the type of thalamic response encountered. The touch component of the response was estimated as ST − SW, i.e., the response during protraction in touch cycles minus the response during protraction in free air. Normalized touch responses (touch index [T] = [ST − SW]([ST + SW]) would be 0 for a cell conveying a pure whisking signal (i.e. response to whisking is the same with and without touch), 1 for a cell conveying a pure touch signal, and −1 for a cell whose whisking response is completely inhibited by touch. We classified cells as W if their ST and SW responses did not differ significantly and their [T] < 0.2, T if their [T] > 0.8, and WT otherwise (see Figure S2 for statistical justification of these thresholds). Distribution of the TIs of individual thalamic neurons across the thalamus (Figure 3A) revealed a clear anatomical dissociation of W, T, and WT signals (see Table S1 for details): W signals ([T] ~ 0) are conveyed mostly (94%; 17/18 W cells) via the POm. T signals mostly (75%; 9/12 T cells) via VPMvl and WT signals (W + T and W − T) mostly (70%; 26/37 WT cells) via VPMdm. Consistently, the distribution of the TIs in each of the thalamic nuclei (Figure 3B) shows that POm neurons cluster around TI ≈ 0, most VPMvl neurons cluster around TI ≈ 1, and VPMdm neurons distribute bimodally, with most of the neurons exhibiting 0 < TI < 1 and fewer neurons exhibiting −1 < TI < 0.

Comparison of Latency and Duration of Responses

During touch cycles, latencies (from whisking onset to half-peak response) of W + T neurons (median = 6.7 ms) were significantly shorter than those of T (median = 17.6 ms) and W (median = 15.6 ms) neurons (p < 0.006, non-parametric
Thus, W + T responses could not result from an integration of thalamic W and T responses. Latencies of T neurons from the time of contact were short (median = 6.7 ms), and comparable to the latencies of W + T neurons from whisking onset (Figure 4B) \((p = 0.27) \), Mann-Whitney test). Interestingly, latencies of W–T cells (median = 12.4 ms) were longer than those of W + T neurons \((p = 0.05) \), Mann-Whitney test). Latencies also differed significantly across nuclei; POM neurons responded with longer latencies than VPMdm and VPMvl (from contact) \((p < 0.001) \), Mann-Whitney test), and VPMvl responded later than VPMdm neurons relative to whisking onset \((p = 0.04) \), Mann-Whitney test). The same relationships were observed when latencies were computed as delays from stimulus onset to the first spike in a cycle (see Table S1).

In these experiments, W and T responses were significantly shorter \((p < 0.001) \), paired \(t \) test) than the duration of protraction, lasting < 40 and 25 ms, respectively \((W, 22 \pm 7 \text{ ms}; T, 16 \pm 4 \text{ ms}) \) [excluding one outlier in VPMdm, whose duration was 92 ms]; their durations at half-peak were 13 \(\pm 6 \text{ and } 7 \pm 1 \text{ ms} \) (Figure 4C). Thus, W (POM) neurons mainly responded to the initial phase of protraction, when whisker velocity was highest, similar to most Whisking neurons of the TG [3]. T (VPMvl) neurons mainly reported contact onset, similar to TG Contact neurons [3]. In contrast, response durations of WT (W + T and W–T) neurons spanned two modes, one brief (< 40 ms; 21 \(\pm 8 \text{ ms} \), 20/37 neurons) and one long (55–118 ms; 102 \(\pm 16 \text{ ms} \), 17/37 neurons), which together covered the entire protraction phase (Figure 4C). This bimodal distribution of WT response durations resembles that of TG Whisking/Touch neurons [3]. The distribution of response durations differed significantly between the three response types \((W, T, WT; p < 0.02) \), Mann-Whitney test) and between the three nuclei \((p < 0.002) \), Mann-Whitney test).

Discussion

We showed here that the major active-touch signal conveyed in each of the three afferent pathways of the thalamus is mediated by W + T neurons, which are short-latency T cells. The latencies of T neurons are comparable to the latencies of W + T neurons from whisking onset, suggesting that the two afferent pathways converge on T neurons. This hypothesis is further supported by the fact that the latencies of T neurons are shorter than those of W–T cells, which are long-latency T cells. The latencies of W + T neurons are also shorter than those of W–T cells, which are short-latency W cells. The latencies of W–T cells are comparable to the latencies of W neurons, suggesting that the two afferent pathways converge on W neurons. This hypothesis is further supported by the fact that the latencies of W neurons are shorter than those of W–T cells, which are long-latency T cells.
whisker system is different: whisking in the paralemniscal (via POM), contact in the extralemniscal (via VPMvl), and combined whisking–touch in the lemniscal (via VPMdm) pathway. The three afferent pathways did not respond synchronously. In each whisking cycle, VPMdm neurons, conveying the combined signal, fired first whereas POM and VPMvl neurons, conveying isolated whisking and touch signals, fired later. VPMdm also contained tonic responses that were absent in the other nuclei. All these observations, together with the known anatomy and physiology of the system, suggest that VPMdm responses did not result from a combination of signals transmitted by the POM and VPMvl. Moreover, the orthogonal response types of POM (W) and VPMvl (T) indicate that each of the three thalamic nuclei conveys a signal that could not result from a combination of signals transmitted by the other two nuclei. This, and the fact that similar response types (W, T, and WT) are conveyed by the lemniscal pathway via VPMdm, and are proposed to involve processing of object identity (“what”).

Why would sensory information flow in parallel pathways in this, or in other systems [10,12,23–29]? Based on the anatomical and physiological data available, Bishop [5] suggested that parallel sensory pathways evolved in successive steps, each adding a larger fiber pathway, and incorporating successively higher brain areas to implement a novel function. Thus, Bishop suggested that the first spinal somatosensory pathway to evolve was the spinothalamic, followed by the neospinothalamic, and then the dorsal column–lemniscal. An order that is analogous to the paralemniscal, extralemniscal, and lemniscal in the trigeminal system. The functional segregation reported here between these pathways, and the evidence indicating that these three pathways close the sensory-motor loop at different levels of brain hierarchy, raise the following sensory-motor hypothesis: The paralemniscal system is involved in a low-order motor-sensory-motor loop that controls whisking velocity and frequency in a servo-like manner [30], the extralemniscal system adds a higher level of control based on contact information and object location, and the lemniscal system adds the highest level of control so far, which is based on information related to object identity. This proposed functional segregation (Figure 5) does not imply functional isolation; these parallel loops are expected to interact such that a higher loop uses, and builds upon, the processing performed by a lower loop. For example, the paralemniscal loop might interact with the brainstem loop [31] to optimize whisking control. Another example is object localization, in which contact timing (extralemniscal) must interact with whisking information (paralemniscal) to extract object location. Analysis of object identity requires interaction of detailed spatial information with information about whisker movement and contact [16,32]. The high-resolution directional-selective spatial information [33,34] together with whisking information (WT signals) conveyed by the VPMdm meet this requirement. Object-identity analysis also involves comparisons with memorized patterns; hence, it requires significant cortical involvement [35,36], such as that exhibited by the lemniscal system. Thus, the paralemniscal, extralemniscal, and lemniscal parallel loops may have evolved sequentially, as suggested for parallel sensory pathways [5], by adding contact detection to movement control, and identity analysis to contact detection.

Our experimental paradigm utilized rats under general anesthesia, which affects response amplitude, latency, duration, and adaptation in the thalamus and cortex [11,37–39]. However, these effects are quantitative in nature and are expected to be similar for all thalamic neurons, and thus cannot account for the prominent differences in response types we report here. The state of thalamic and cortical neurons during the steady-state response phase, the phase used herein for response classification in anesthetized rats, is considered to be analogous to the state of thalamic and cortical neurons during exploratory whisking in awake rats [39–41]. Consistently, during the steady state, thalamic neurons are hypothesized to function in their gating, signal-processing mode [42]. Nevertheless, under anesthesia, the intensity and nature of top-down effects, such as those affecting the thalamus directly, or indirectly [43,44], are probably different; the efferent signals that control whisking are lacking; and the sensory-motor loops that control active touch [8] are practically opened. Moreover, behaving rats...
continuously control their whisking according to context and in reaction to contacts. Thus, although the basic segregation of response types observed here in anesthetized rats is expected to occur in awake ones, the exact behavior of thalamic neurons during active touch should be further studied in awake behaving rats.

Materials and Methods

Surgical and recording procedures. Experiments were performed on 40 male Albino Wistar rats weighing 200–300 g, using experimental protocols as previously described [3]. Briefly, surgery was performed under general anesthesia (urethane; 1.5 g/kg, intraperitoneally), with supplemental doses of anesthetic (10%) being administered when required. Atropine methyl nitrate (0.3 mg/kg, intramuscularly) was administered to prevent respiratory complications. Anesthetized animals were secured in a stereotaxic device (SR-6; Narishige, Tokyo, Japan), and their body temperature maintained at 37 °C. An opening was made in the skull overlying the right thalamus, and tungsten microelectrodes (0.5–1 MΩ, Alpha Omega Engineering, Nazareth, Israel) were lowered according to known stereotaxic coordinates of POM and VPM until units drivable by electrical stimulation were encountered. Up to four electrodes, spaced 0.33 mm from each other, were lowered in parallel in each recording session. Standard methods for single-unit recordings were used [3]. Single units were sorted by spike templates. Units were considered single only if they had homogenous spike shapes that did not overlap with other units of the same and if they exhibited refractory periods of >1 ms in their autocorrelation histograms. Artifacts produced by electrical stimulation were isolated by an online spike-sorter (MSD-3.2; Alpha-Omega Engineering) and removed from unit recordings. Experimental procedures were approved by the Institutional Animal Care and Use Committee of The Weizmann Institute of Science.

Experimental paradigms. We induced trains (5 Hz, 50% duty cycle, 2 s) of artificial whisking followed by intertrain intervals of 3 s in blocks of 12, 18, or 24 trains (trials) each. Artificial whisking was induced as described in [3]. In brief, the facial nerve was cut and its distal end mounted on a pair of silver electrodes. Bipolar, rectangular electrical pulses (0.3–4.0 V, 40 μs duration) were applied through an isolated pulse stimulator (Model 2100; A-M systems, Sequim, Washington, United States) at 83 Hz, the lowest frequency that still produced continuous whisker movement. Whisker movements were recorded at 1,000 frames/sec with a fast digital video camera (MotionScope PCI 1000; Redlake, San Diego, California, United States) with recording epochs synchronized with neurophysiological data with 1 ms accuracy [3,45]. Blocks of free-air artificial whisking were interleaved with blocks of artificial whisking against an object positioned in front of the principal whisker, i.e., the whisker that produced the maximal response in the recorded cell during manual passive whisking of the object. The object was a vertical pole (2-mm diameter), positioned at three different horizontal distances from the resting position of the whisker; the distance of the object from the skin was 70%–90% of the whisker’s length. Horizontal distances of the object from the resting position of the whisker ranged from 1 to 9 mm (median = 3 mm). Each of the four whisking conditions (free-air and three object positions) was repeated in at least two blocks, interleaved in time. Results of touch trials were averaged over all three object positions. In order to mimic as close as possible natural conditions, all the whiskers of the mystacial pad were left intact throughout an experimental session. These 30 neurons were analyzed during steady-state periods. We selected cycles 5–10 as those cycles in which virtually all thalamic neurons exhibited stabilized responses. This selection was based on the following observations. The intertrial variability (variance/mean) of response spike counts stabilized, on average, on cycle 1 for POM neurons and cycle 5 for VPM neurons. The mean cycle-to-cycle difference of four response variables (spike count/cycle, PSTH amplitude, latency to half-peak, and delay to first spike) stabilized at 0 for all three nuclei prior to cycle 5, except for spike count/cycle in the VPMdm, which stabilized on cycle 6.

Supporting Information

Figure S1. Transformation of Recording Coordinates from Coronal to Oblique Plane (A1–A3) Coronal sections through the thalamus containing lesions (arrows) in the VPMvl (A1), VPMdm (A2), and POM (A3). Slices were counted starting from the rostral end of the VPM. “Slice xy” indicates that the center of the lesion was found in slice no. x, out of total y slices that spanned the rostrocaudal length of the VPM in that rat.

Figure S2. Classification of Response Types Based on Steady-State Responses: Statistical Significance and Criteria

(A) For each cell, the probability (one-tailed t test, across all steady-state cycles) that it did not respond to whisking in air (S0 = 0) is depicted as a function of its TI (i.e., the normalized touch responses during protraction). Green indicates POM cells; brown, VPMdm cells; and orange, VPMvl cells.

(B) For each cell, the probability (two-tailed t test) that its responses to whisking in air (S0) and whisking against an object (S1) were identical is depicted, as a function of its TI.

(C) Distribution of TI in the trigeminal thalami (n = 67). Based on these data, cells with TI > 0.8 were classified as T (Touch) cells (dotted box in [A]). Cells with [TI] < 0.2 and p(S0 = S1) > 0.05 were classified as W (Whisking) cells (dotted box in [B]).

Table S1. Response Types, Magnitudes, Latencies, and Durations in Each Thalamic Nucleus

Found at DOI: 10.1371/journal.pbio.0040124.sg002 (115 KB DOC).

Acknowledgments

We thank Per Magne Knutsen for suggesting the name “extra-lemniscal” to describe the recently discovered pathway. We thank
References

1. Gibson JJ (1962) Observations on active touch. Psychol Rev 69: 477–491.
2. Katz D (1989) The world of touch. Krueger LE, translator. Hillsdale (New Jersey): Erlbaum. 260 p.
3. Szved M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40: 621–630.
4. Pierret T, Lalvée P, Deschenes M (2000) Parallel streams for the relay of vibrissal information through thalamic barreloids. J Neurosci 20: 7455–7462.
5. Bishop GH (1959) The relation between nerve fiber size and sensory modality. Phylegetic implications of the afferent innervation of cortex. J Nerv Ment Dis 128: 89–114.
6. Cadusseau J, Roger M (1990) Distribution of the efferent projections of the rat posterior thalamic nucleus as revealed by Phasodus vulgaris immunohistochemistry. J Hirnforsch 31: 455–465.
7. Deschenes M, Veinante P, Zhang ZW (1998) The organization of cortico-thalamic projections: Reciprocity versus parity. Brain Res Rev 28: 286–308.
8. Kleinfeld D, Berg RW, O’Connor SM (1999) Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16: 69–88.
9. Guillery RW, Sherman SM (2002) The thalamus as a monitor of motor outputs. Phil Trans R Soc Lond B Biol Sci 357: 1809–1821.
10. Diamond ME, Armstrong-James M, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POM) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J Comp Neurol 318: 462–476.
11. Friedberg MH, Lee SM, Ebner FF (1999) Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. J Neurophysiol 81: 2243–2252.
12. Ahissar E, Sonnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406: 302–306.
13. Brecht M, Sakmann B (2002) Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex. J Physiol 543: 49–70.
14. Zucker R, Weller WJ (1969) Coding of somatic sensory input by vibrissae neurons in the rat’s trigeminal ganglion. Brain Res 12: 138–150.
15. Brown AW, Waite PM (1974) Responses in the rat thalamus to whisker movements produced by motor nerve stimulation. J Physiol 238: 387–401.
16. Arabzadeh E, Zorzin E, Diamond ME (2005) Neuronal encoding of texture in the whisker sensory pathway. PLoS Biol 3: e17. DOI: 10.1371/journal. pbio.0030017.
17. Land PW, Buffer SA Jr., Vaskovsky JD (1995) Barreloids in adult rat thalamus: Three-dimensional architecture and relationship to somatosensory cortical barrels. J Comp Neurol 355: 573–588.
18. Land PW, Simons DJ (1985) Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rat. Neurosci Lett 60: 319–324.
19. Haidarliu S, Ahissar E (2001) Size gradients of barreloids in the rat thalamus. J Comp Neurol 429: 372–387.
20. Kraupa H, West MC, Shuler MG, Laubach M, Nicolelis MA (2004) Layer-specific somatosensory cortical activation during active tactile discrimination. Science 304: 1989–1992.
21. Ahissar E, Zacksenhouse M (2001) Temporal and spatial coding in the rat vibrissal system. Prog Brain Res 130: 75–88.
22. Ahissar E, Arieli A (2001) Figuring space by time. Neuron 32: 185–201.
23. Perl ER (1965) Somatosensory mechanisms. Annu Rev Physiol 25: 450–492.
24. Diamond IT (1983) Parallel pathways in the auditory, visual and somatic systems. In: Macchi G, Rustioni A, Spredico R, editors. Somatosensory integration in the thalamus. Amsterdam: Elsevier. pp. 251–272.
25. Casagrande VA (1994) A third parallel visual pathway to primate area V1. Trends Neurosci 17: 305–310.
26. Kim U, Ebner FF (1999) Barrels and septa: Separate circuits in rat barrels field cortex. J Comp Neurol 408: 499–505.
27. Diamond ME (2000) Parallel sensing. Nature 406: 245–247.
28. He J, Hu B (2002) Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 88: 2152–2156.
29. Jones EG (1995) Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci 999: 218–233.
30. Wiener N (1949) Cybernetics. New York: John Wiley & Sons. 194 p.
31. Nguyen QT, Kleinfeld D (2005) Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45: 447–457.
32. Moore CI (2004) Frequency-dependent processing in the vibrissa sensory system. J Neurophysiol 9: 2390–2399.
33. Timofeeva E, Merette C, Emond G, Lalvée P, Deschenes M (2003) A map of angular tuning preference in thalamic barreloids. J Neurosci 23: 10717–10723.
34. Minnery BS, Bruno RM, Simons DJ (2005) Response transformation and receptive-field synthesis in the lemniscal trigeminothalamic circuit. J Neurophysiol 90: 1556–1570.
35. Guir-Koblesky E, Jenkins WM, Bravo H (1992) Vibrissal roughness discrimination is barrelcortex-dependent. Behav Brain Res 48: 145–152.
36. Hawkins J, Blakelee S (2004) On intelligence. New York: Henry Holt and Company. 261 p.
37. Simons DJ, Carvell GE, Hershey AE, Bryant DP (1992) Responses of barrel cortex neurons in awake rats and effects of urethane anesthesia. Exp Brain Res 91: 259–272.
38. Fanselow EE, Nicolelis MAL (1999) Behavioral modulation of tactile responses in the rat somatosensory system. J Neurosci 19: 7603–7616.
39. Castro-Alamancos MA (2004) Absence of rapid sensory adaptation in neocortex during information processing states. Neuron 41: 455–464.
40. Nicolelis MA, Fanselow EE (2002) Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5: 517–523.
41. Castro-Alamancos MA (2002) Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J Physiol 539: 567–578.
42. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76: 1367–1395.
43. Lalvée P, Urbain N, Dufresne C, Bokor H, Acaysi, L et al. (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J Neurosci 25: 7489–7498.
44. Bokor H, Frere SG, Eyre MD, Slezia A, Ulbert I, et al. (2005) Selective GABAergic control of higher-order thalamic relays. Neuron 45: 949–954.
45. Knutsen PM, Derdikman D, Ahissar E (2005) Tracking whisker and head movements in unrestrained behaving rodents. J Neurophysiol 93: 2294–2301.
46. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. San Diego: Academic Press. 474 p.