Ecological factors influence balancing selection on leaf chemical profiles of a wildflower

Lauren N. Carley, Julius P. Mojica, Baosheng Wang, Chia-Yu Chen, Ya-Ping Lin, Kasavajhala V. S. K. Prasad, Emily Chan, Che-Wei Hsu, Rose Keith, Chase L. Nuñez, Carrie F. Olson-Manning, Catherine A. Rushworth, Maggie R. Wagner, Jing Wang, Pei-Min Yeh, Michael Reichelt, Kathryn Ghittas, Jonathan Gershenzon, Cheng-Ruei Lee and Thomas Mitchell-Olds

Balancing selection is frequently invoked as a mechanism that maintains variation within and across populations. However, there are few examples of balancing selection operating on loci underpinning complex traits, which frequently display high levels of variation. We investigated mechanisms that may maintain variation in a focal polymorphism—leaf chemical profiles of a perennial wildflower (Boechera stricta, Brassicaceae)—explicitly interrogating multiple ecological and genetic processes including spatial variation in selection, antagonistic pleiotropy and frequency-dependent selection. A suite of common garden and greenhouse experiments showed that the alleles underlying variation in chemical profile have contrasting fitness effects across environments, implicating two ecological drivers of selection on chemical profile: herbivory and drought. Phenotype-environment associations and molecular genetic analyses revealed additional evidence of past selection by these drivers. Together, these data are consistent with balancing selection on chemical profile, probably caused by pleiotropic effects of secondary chemical biosynthesis genes on herbivore defence and drought response.

How genetic variation is maintained despite persistent natural selection is a central question in evolutionary biology. Theory demonstrates that both directional and stabilizing selection should reduce genetic variation within populations over time. Since methods for quantifying phenotypic selection were standardized, hundreds of studies and thousands of measurements of selection have revealed that directional selection is common in nature. Nevertheless, high levels of additive genetic variance are frequently documented within and among natural populations. In addition to posing a fundamental puzzle, the persistence of widespread genetic diversity despite selection directly influences future evolutionary outcomes in heterogeneous environments requiring a mechanistic understanding of how ecological interactions influence fitness and genetic diversity.

Here, we explicitly test multiple ecological and genetic mechanisms that may contribute to balancing selection on a locus influencing complex trait variation. We focus on anti-herbivore defence, including spatial variation in selection, antagonistic pleiotropy and frequency-dependent selection. A suite of common garden and greenhouse experiments showed that the alleles underlying variation in chemical profile have contrasting fitness effects across environments, implicating two ecological drivers of selection on chemical profile: herbivory and drought. Phenotype-environment associations and molecular genetic analyses revealed additional evidence of past selection by these drivers. Together, these data are consistent with balancing selection on chemical profile, probably caused by pleiotropic effects of secondary chemical biosynthesis genes on herbivore defence and drought response.
a complex plant trait comprising many constituent phenotypes—for example, leaf toughness and hairiness, life history, size and architecture, and primary and secondary metabolites—all of which may have their own complex genetic architectures. In Boechera stricta (Brassicaceae), a wild relative of Arabidopsis, glucosinolate (GS) secondary metabolites contribute to insect resistance and fitness; furthermore, the proportion of aliphatic GS derived from branched-chain amino acid (Val and Ile) precursors, called BC-ratio, is an important axis of GS variation controlled by a known biosynthetic locus. BC-ratio in B. stricta is thus an intermediary physiological trait linking complex trait variation to a tractable genetic basis. Past work has documented the molecular evolution that allowed for the diversification of BC-ratio in B. stricta, but fine-scale patterns of chemical variation, as well as the specific mechanisms contributing to selection on this trait, remained unknown. Here, we report field experiments, greenhouse experiments and molecular genetic analyses that test for balancing selection on this biochemical polymorphism, interrogating multiple ecological and genetic mechanisms that may drive it, including spatial and temporal variation in selection, antagonistic pleiotropy and frequency-dependent selection.

Results

GS variation is widespread in nature. To assess variation in BC-ratio across the species range, we used high-performance liquid chromatography (HPLC) to characterize the GS profiles of accessions collected from 337 wild B. stricta populations grown in a common greenhouse environment. These new data provide the most detailed picture of GS variation in B. stricta to date. While past research has shown that BC-ratio varies spatially, this fine-scaled geographic survey shows that BC-ratio is highly polymorphic across the species range, often at small geographic scales (Fig. 1). Because of this, we investigated a variety of evolutionary processes that may contribute to balancing selection on this trait.

BCMA1/3 alleles confer contrasting fitness effects across environments. The tandemly duplicated BCMA1/3 genes control BC-ratio in B. stricta by modulating the first step in the core aliphatic GS biosynthesis pathway. To determine which processes may influence balancing selection on BC-ratio, we generated near-isogenic lines (NILs) derived from a largely homozygous F4 individual that was heterozygous for a narrow genomic region containing BCMA1/3 (refs. 24,29). We screened nearby PCR markers on F5 progeny, and two homozygous F6 closest-flanking recombinants (CFRs) were crossed together, yielding F1 and F2 CFR-NILs. Multiple independent F3 families provide replicated, homozygous CFR-NILs differing at ten loci adjacent to BCMA1/3 (Methods). We used these CFR-NILs to test the effects of contrasting homozygous BCMA1/3 haplotypes conferring methionine-derived GS or branched-chain-amino-acid-derived GS (homozygous MM and BB genotypes, respectively) on components of fitness in the field and laboratory.

Across 15 common garden field environments spanning 780 km, 11 sites (Fig. 1, inset) and four years, there was significant variation in the effects of BCMA1/3 alleles on insect resistance (Supplementary Table 1). Contrasting alleles showed changes in rank resistance across environments, with the MM and BB genotypes each conferring greater protection in some environments, and also differentially influenced resistance to a model herbivore (Trichoplusia ni (Lepidoptera: Noctuidae)) in the laboratory (Fig. 2a). In B. stricta, herbivore damage decreases fitness by reducing reproductive output (Fig. 2b and Supplementary Table 2); thus, GS traits that influence insect resistance are subject to variable selection by insect herbivores across environments.
BCMA1/3 alleles also influenced survival in the field (Supplementary Table 3), with the **MM** and **BB** genotypes changing in rank survival across environments (Fig. 2c). However, herbivore resistance did not directly influence survival in these experiments (Supplementary Table 4). Survival trade-offs across environments thus implicate other ecological forces, along with herbivory, in shaping selection on BC-ratio.

Finally, by manipulating **BCMA1/3** genotype frequencies in six field environments, we tested for frequency-dependent effects of **BCMA1/3** alleles. Genotype frequency did not affect either insect resistance or survival (Extended Data Fig. 1 and Supplementary Tables 1 and 3). Thus, spatial variation in selection, rather than frequency-dependent selection, may maintain GS polymorphisms in this species.

Drought influences selection on **BCMA1/3.** Recent work on *Arabidopsis* has revealed that GSs can modulate drought response by regulating stomatal aperture\(^3\)\(^1\).\(^2\). In a subset of our field experiments showing evidence of drought stress (Fig. 3a), we tested whether drought also shapes selection on BC-ratio. Field arrays experiencing stronger viability selection via drought showed significant increases in the frequency of the **MM** genotype (Supplementary Table 5 and Fig. 3b). Thus, in addition to herbivory, drought influences selection on BC-ratio, and **MM** alleles seem to confer higher fitness under drought stress.

In a controlled dry-down greenhouse experiment, we found that variation in drought response among CFR-NIL genotypes is underpinned by differing morphological responses to drought. Specifically, the **MM** genotype decreases its size under drought compared with controls, while **BB** does not (Fig. 3c,d, Extended Data Fig. 2 and Supplementary Table 6). Because size drives water use (Fig. 3e,f and Supplementary Table 7), this suggests that **MM** alleles reduce water use in response to drought, which may yield higher fitness under drought stress in the field.

To determine whether GSs also influence drought response in a broad range of genetic backgrounds, we performed a second greenhouse dry-down experiment with a panel of 350 accessions from across the species range (Fig. 1). BC-ratio was genetically correlated with leaf water content under drought (Supplementary Table 8); low-BC-ratio accessions maintained higher leaf water content under drought (Fig. 3g). Finally, in this diverse panel of accessions, precipitation-related climate variables in home
environments predict the distribution of BC-ratio phenotypes across the landscape (Supplementary Tables 9–11 and Extended Data Figs. 3 and 4). The best climatic predictor of BC-ratio was annual precipitation (Supplementary Table 11); natural accessions producing low-BC-ratio GS phenotypes were found in drier environments (Fig. 3h). After controlling for population structure, this genotype–environment association is evident for large-scale geographically heterogeneous selection on BC-ratio by climate.15

Our findings build on recent evidence for the involvement of GS in drought response12,14, suggesting that BCMA1/3 alleles altering BC-ratio confer contrasting morphological responses to drought stress. Thus, environmental variation in drought stress as well as herbivory may favour diverse GS profiles across the landscape.

Linkage disequilibrium decays rapidly around BCMA3. Tightly linked loci near BCMA1/3 might covary with BCMA1/3 alleles, possibly contributing to the observed phenotypic patterns. Using a de novo long-read assembly around BCMA1/3 (Methods), we scanned patterns of genetic differentiation (FST) along chromosome 7 to identify flanking regions in which the MM and BB CFR-NIL haplotypes have divergent single nucleotide polymorphisms (SNPs). This revealed the BCMA1/3 haplotype to be 212 kilobases (kb) in length, spanning positions 11,737 to 11,949 kb on chromosome 7, extending 42 kb in the 5′ direction and 167 kb in the 3′ direction of BCMA3 (Fig. 4a). A total of 41 SNPs fall within this haplotype.

The version_2 SAD12 reference genome shows a total of 11 genes, including BCMA1/3, in this CFR-NIL interval. Prior studies have shown that, besides BCMA1/3, several of these genes may contribute to drought response or change expression in response to drought (Fig. 4b). Other loci within the nonrecombinant interval could thus influence the phenotypes observed in our common garden experiments. To determine whether flanking genes covary with BCMA3 in nature, we used sequence data from a range-wide panel of natural accessions14 to characterize linkage disequilibrium (LD) around BCMA3. In geographic areas with high genetic diversity (COL and UTA)16, LD surrounding BCMA3 is low (Fig. 4c). Thus, while nearby regions cosegregate with BCMA3 in the CFR-NILs, low LD between BCMA3 and surrounding regions suggests that...
in a panel of 110 accessions performed Sanger sequencing on BCMA3, we characterized genetic variants underlying BC-ratio phenotypes, we assayed, we found stop codon only and stop codon + deletion variants spanning 328 km and 729 km of the species range, respectively (Fig. 5b). Given low seed dispersal and outcrossing in Boechera, widespread variants in natural habitats suggest that the functional genetic bases of variation in GS phenotypes have been maintained over long periods and are not ephemeral novel mutants.

Finally, a molecular hallmark of balancing selection is elevated nucleotide variation within genes under selection. We characterized nucleotide diversity (π) within BCMA3 and genes of similar amino acids. Additionally, several accessions showed premature stop codons later in the amino acid sequence caused by nonsense mutations. All premature stop codons are associated with low BC-ratio (Fig. 5a and Supplementary Table 12), presumably because they disrupt the function of the BCMA3 enzyme. These derived mutations are geographically widespread; among the accessions we assayed, we found stop codon only and stop codon + deletion variants spanning 328 km and 729 km of the species range, respectively (Fig. 5b). Given low seed dispersal and outcrossing in Boechera, widespread variants in natural habitats suggest that the functional genetic bases of variation in GS phenotypes have been maintained over long periods and are not ephemeral novel mutants.

Finally, a molecular hallmark of balancing selection is elevated nucleotide variation within genes under selection. We characterized nucleotide diversity (π) within BCMA3 and genes of similar

Molecular signatures are consistent with balancing selection on BCMA. Prior research identified functional amino acid substitutions in the BCMA3 enzyme that influence BC-ratio. To characterize genetic variants underlying BC-ratio phenotypes, we performed Sanger sequencing on BCMA3 in a panel of 110 accessions. In addition to the previously described amino acid substitutions altering enzyme activity, at least two structural variants are present in BCMA3 (Supplementary Table 12). An eight-base-pair deletion causes a frameshift mutation upstream of both amino acid substitutions of interest, disrupting the BCMA3 enzyme after 137

Fig. 4 | The BCMA1/3 CFR-NIL interval contains ten flanking loci, but they show little correlation (LD) in natural populations. a. Comparisons of genotyping by sequencing (GBS) data between BB and MM CFR-NIL genotypes show an FSt peak around the BCMA3 gene (red line), revealing a ~212-kb non-recombinant interval (delimited by blue lines) among the CFR-NILs. b. Eleven B. stricta genes occur in the non-recombinant CFR-NIL haplotype, including BCMA3 (at kb 11 706) and genes of similar family (at kb 11 752). The shaded rows indicate that homologues in Arabidopsis (At) have variable expression in response to drought. The shaded row with bold text indicates that At homologues have impacts on drought response, which have been validated with functional genetic studies. The shaded row with bold red text indicates that At homologues have functionally verified effects on both insect resistance and drought response. c. Heat maps showing pairwise LD (r2) in a 712-kb interval surrounding BCMA3, for three groups of accessions: 157 COL accessions, 126 UTA accessions and 233 pooled COL + UTA accessions. The blue numbers on the diagonals indicate the position on chromosome 7 (in base pairs) of the BCMA3 gene and the closest SNP to the limits of the surrounding non-recombinant region in the CFR-NILs. In b, all B. stricta gene positions reflect the version_2 SAD12 reference genome and fall on chromosome 7.
size across a panel of 54 accessions. Consistent with predictions for balancing selection, we found that BCMA3 is more polymorphic than 97.1% of 1,689 comparable loci across the genome (Fig. 5c).

Effect size of BCMA1/3. Since we aim to understand selection on genes that influence complex trait variation, we estimated the average effect of the BCMA1/3 polymorphism on herbivore damage in nature. The mean effect size of BCMA1/3 on herbivore damage was 0.172 standard deviations, indicating that it is a small-effect quantitative trait locus influencing herbivore damage and fitness in nature.

Discussion

The degree to which different evolutionary processes may explain the maintenance of polymorphism has been the subject of debate for decades. Our experiments document spatial variation in selection driving evolution of the BCMA1/3 polymorphism in B. stricta. Specifically, functional links between genetic variation in BCMA1/3, chemical (GS) and physiological (drought tolerance) functional traits, and fitness in nature reveal trade-offs of BCMA1/3 alleles across environments. Changes in the sign of allelic effects on fitness across environments are hallmarks of balancing selection. Our data thus show that balancing selection has
maintained complex trait variation in GS profiles across the landscape. This conclusion is corroborated by molecular analyses, which reveal that nucleotide diversity within BCMA3 is elevated compared with other genes in this species and that GS phenotypes in common garden are genetically correlated with drought conditions in home environments. Finally, while the BCMA1/3 polymorphism evolved after B. stricta diverged from its close congener (Extended Data Fig. 5), genetic variants underlying GS profiles are geographically widespread, suggesting that selection has maintained multiple variants over time.

While we see clear evidence of functional trait and fitness trade-offs conferred by BCMA1/3 alleles across environments, alleles also had synergistic effects on fitness components in some environments; conducting our experiments in a subset of sites or years could have led to the erroneous conclusion that only one allele was favoured by selection. For example, in the GTH-2016 and 401-2016 environments, the MM allele confers both higher survival and reduced herbivore damage (Fig. 2a,c). Conditional neutrality was also common; in 7 of 15 tested field environments, contrasting BCMA1/3 alleles conferred no detectable differences in either insect resistance or survival. Furthermore, in many environments in which fitness trade-offs were detectable, the magnitude of allelic effects was small. These findings suggest that experiments must deploy large sample sizes in many environments to detect changes in allelic effects when they do occur44,45 and that the relative lack of empirical evidence for balancing selection may be influenced by limited statistical power. Beyond this practical concern, these findings reveal biologically relevant environmental variation in the expression of trade-offs, emphasizing the critical importance of environmental context in understanding complex patterns of natural selection.

Our results are consistent with examples of quantitative trait loci expressing contrasting effects on fitness under variable laboratory and field conditions46,47, as well as pleiotropic effects of SNPs across environments contributing to polygenic trait variation14. Our work builds on these studies by offering explanations of functional consequences for allelic variation across environments on complex phenotypes that underlie fitness. Such mechanistic understanding has been achieved previously in now-classic studies focusing on biotic interactions with herbivores and microbes50, recent functional and abiotic stressors31,47–49. While classically known for mediating auxin and IAA, help coordinate organismal responses to both biotic and abiotic interactions, such as GS, are likely to experience complex patterns of natural selection that may decrease the likelihood of a single variant rising to fixation. These results thus highlight how multiple ecological drivers of selection can influence balancing selection on complex traits.

Methods
Characterizing GS variation across the landscape. We characterized the chemical profiles of 337 natural accessions collected from across the species range12. Progeny of wild-collected seeds were self-pollinated under controlled greenhouse conditions to minimize maternal effects. We then measured GS profiles using HPLC following ref. 31 and estimated the least-squares mean value of BC-ratio per accession by fitting a restricted maximum likelihood model with accession ID and greenhouse block as random effects (Supplementary Methods, ‘HPLC’).

Generation of CFR-NILs. We chose wild-collected accessions with high- and low-Bc-ratio phenotypes (LTM and SAD12 from Montana and Colorado, respectively; Fig. 1) to generate the experimental genotypes used here via a crossing pedigree described in Extended Data Fig. 6. Previously12, we identified a near-isogenic F4 derived from the SAD12 × LTM cross, screened 5,213 F5s for recombination near BCMA1/3 and then scored 13 tightly linked PCR markers on 205 homozygous F6 recombinants. Here, we identified two F6 homozygous CFRs, which were crossed together, generating a heterozygous double-recombinant F1. In the F2, we self-pollinated multiple MM and BB homozygotes, yielding F3 families representing replicated homozygous MM and BB CFR-NILs (hereafter, families). Using GBS (Supplementary Methods, ‘Genotyping-by-sequencing’), we determined the extent of the non-recombinant BCMA1/3 haplotype.

Laboratory herbivory experiment. We grew 225 juvenile CFR-NILs in a randomized complete block design under controlled greenhouse conditions (16 h day/8 h night; watering to saturation at fertilization at 300 ppm N weekly) for six weeks before challenging them with a model herbivore. Five blocks each contained 45 individuals, with five replicates per independent CFR-NIL family (four BB families and five MM families). We confined trays containing full statistical blocks in plexiglass chambers with mesh panels for ventilation. In these chambers, we applied a single second-instar cabbage looper larva (T. ni) to each plant. The larvae roamed within the chambers, feeding freely within a block for five days. We then scored each plant for insect damage as in ref. 12.

We used a restricted maximum likelihood mixed-effects model to test for the effect of genotype on resistance to T. ni; we fit herbivore damage in response to the fixed effect of BCMA1/3 genotype, the random effect of block and the random effect of family nested within genotype. We tested the significance of the fixed effect using both Satterthwaite’s method and Kenward-Roger’s method, which yielded similar results (Supplementary Table 1), and we tested the significance of the random effects using likelihood ratio tests.

Field experiments: common gardens. We transplanted 6,860 CFR-NILs into three experimental gardens in central Idaho and two experimental gardens in southwest Colorado, near the source populations for the parental accessions (Fig. 1). We transplanted cohorts containing 360–1,350 individuals between 2013 and 2015, using a randomized complete block design. The transplants were spaced at constant density and planted directly into the surrounding vegetation. Each cohort contained replicates using at least eight CFR-NIL families to control for possible effects of unlinked loci outside of the BCMA1/3 region. We measured herbivore damage, survival and reproduction of these individuals to estimate the effects of BCMA1/3 alleles on fitness-related traits in different environments and to test the effects of herbivore damage on reproductive fitness.

To assess variation in insect resistance across environments (N = 3,674), we used restricted maximum likelihood mixed-effects models to test for BCMA1/3 × environment effects on herbivore damage. We modelled herbivory in response to fixed effects of BCMA1/3, environment and the BCMA1/3 × environment interaction, and random effects of statistical block and CFR-NIL tested within BCMA1/3 genotype. We tested the significance of the fixed effects using both Satterthwaite’s method and Kenward-Roger’s method, which yielded similar results (Supplementary Table 1). We tested the significance of the random effects using likelihood ratio tests.

To assess variation in survival across environments (N = 6,860), we used a restricted linear mixed-effects model (binomial distribution; logit link) to fit survival in response to the same fixed and random effects used in the herbivory model. We tested the significance of the fixed effects using both Wald tests and parametric bootstrapping, which yielded qualitatively similar
results (Supplementary Table 3), and we tested the significance of the random effects using likelihood ratio tests. In both models, if we detected a significant genotype × environment interaction, we used pair-wise contrasts to compare allelic effects within each environment. We tested for natural selection by herbivory across all transplant environments \((N = 3,094)\) using a generalized linear mixed-effects regression with a binomial distribution and a logit link function; we fit reproductive success \((0/1)\) in response to fixed effects of herbivore damage, environment and the damage × environment interaction, and a random effect of block. A significant negative effect of herbivory on reproduction indicates that selection favours increased herbivore resistance (Supplementary Table 2). Furthermore, in one environment with high sample sizes (SCH 2016; \(N = 848\)), we used a linear mixed-effects model to fit log-transformed total reproductive output of reproductive plants (number of fruits x average fruit length) in response to the fixed effect of herbivore damage and the random effect of block (Supplementary Table 2). Finally, in the same environment (SCH 2016; \(N = 1,219\)), we tested for effects of herbivore damage on survival; we used a generalized linear mixed-effects model with a binomial distribution and logit link to fit survival in 2017 in response to the fixed effect herbivore damage in 2016 and the random effect of block (Supplementary Table 4). In all models testing for natural selection by herbivory, we tested the significance of the fixed effects using Wald tests with Type III sums of squares, and of the random effects using likelihood ratio tests. Full details about the experimental conditions and statistical analyses are provided in the Supplementary Methods under ‘Common garden experiments’.

Field experiments: temporary arrays. In 2016, we deployed 5,880 CFR-NILs into six environments in Colorado (Fig. 1) to test for frequency-dependent effects of the BCMA1/3 haplotype. We grew juvenile plants in 98-cell ‘cone-tainer’ racks and assigned racks to three treatments with different starting frequencies of the MM genotype: high (66% MM), medium (50% MM) and low (34% MM). The plants were randomized within each treatment rack, and we used ten CFR-NIL families to account for the potential of unlinked loci confounding the BCMA1/3 locus. We arranged ten racks (three high, four medium and three low \(f(44)\)) in a random configuration in each of the six array sites in Colorado, and we stuck each rack flush with the soil and neighbouring vegetation. We watered the arrays twice per week for the first two weeks of the growing season and then every other day. After eight weeks in field conditions, we censused for survival and herbivore damage as described above. We used these data to test for variation across environments in the effects of BCMA1/3 on herbivore defence and survival, as well as effects of genotype frequency on fitness components. Statistical models for herbivory \((N = 5,193)\) and survival \((N = 5,880)\) in the temporary arrays were identical to those described above for the permanent field transplants, but they included additional fixed effects of BCMA1/3 allele frequency and a genotype × frequency interaction (Supplementary Tables 1 and 3). Finally, we tested for array-level response to selection. Using least-squares analysis of covariance, we regressed the array-level final \(f(44)\) onto the proportion mortality of the arrays, fixed effects of environment and starting \(f(44)\), and the proportion mortality × starting \(f(44)\) interaction (Supplementary Table 5). Full details about the experimental design and statistical analyses are provided in the Supplementary Methods under ‘Temporary array experiments’.

Greenhouse dry-down experiments. We performed two controlled progressive dry-down experiments in the greenhouse to test for genetic variation among CFR-NILs \((2 \times 5 \times 5 \times 6 = 600)\) families to the SAD12 reference to identify SNPs segregating among CFR-NILs. We calculated \(F_{ST}^{\infty}\) between MM and BB homozygotes in 20-bp non-overlapping windows along chromosome \(BCMA1/3\), used high-\(F_{ST}^{\infty}\) SNPs to identify the extent of the segregating BCMA1/3 locus in the CFR-NILs. In addition, we aligned published Illumina sequence data to the de novo version _2_ SAD12 reference genome for 233 accesses from the COL and UTA genetic groups, which show high genetic diversity and are polymorphic in BC. We estimated pairwise LD \((r^2)\) between each pair of SNPs within 500-kb non-overlapping windows along chromosome \(BCMA1/3\). We used linear models to test how structural variants and amino acid variants influence phenotypic variation in BC-ratio (Supplementary Methods, ‘Polymorphism in BCMA3’).

Dissecting the BCMA1/3 region. To characterize genetic variation in the segregating CFR-NIL region, we assembled version _2_ reference genomes for the LTM (BC-GS) and SAD12 (Met-GS) parental accessions, providing high-quality long-read coverage in the BCMA1/3 region (Extended Data Fig. 7). We then aligned GBS reads (Supplementary Information) from 65 replicate CFR-NIL families to the SAD12 reference to identify SNPs segregating among CFR-NILs. We calculated \(F_{ST}^{\infty}\) between MM and BB homozygotes in 20-bp non-overlapping windows along chromosome \(BCMA1/3\). We used high-\(F_{ST}^{\infty}\) SNPs to identify the extent of the segregating BCMA1/3 locus in the CFR-NILs.

Polymorphism in BCMA3. To explore the extent of genetic variation underlying the BC-ratio polymorphism, we Sanger-sequenced a subset of 110 accessions from the panel of 337 described above. After trimming and aligning the sequenced bases (Supplementary Methods, ‘Polymorphism in BCMA3’), we assigned the accessions to three structural variant categories: complete exons, premature stop and eight-base-pair deletion, and premature stop and no deletion. We also predicted amino acid sequences of the BCMA3 enzyme for each accession by translating the gene sequence data using the Biostars package in R, and we identified the amino acid variants at positions 148 and 268, which are hypothesized to cause differential GS biosynthesis between the SAD12 and LTM genotypes. We used linear models to test how structural variants and amino acid variants influence phenotypic variation in BC-ratio (Supplementary Methods, ‘Polymorphism in BCMA3’).

Molecular population genetic signatures of selection. To determine whether BCMA3 showed molecular signatures of balancing selection, we compared the observed level of nucleotide diversity \((\pi)\) in BCMA3 with the distribution of \(\pi\) in a subset of comparable genes in the _B. stricta_ genome across 54 accesses from the COL and UTA genetic groups, all of which have complete BCMA3 exons (that is, they are not pseudogenes). Following ref. 35, we calculated the observed \(\pi\) among silent sites in BCMA3 and other genes of similar length \((1,689\) genes), and we compared the value for BCMA3 with the distribution of \(\pi\) across other genes (Supplementary Methods, ‘Molecular signatures of selection’).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The new reference genome assemblies and raw Nanopore reads for the SAD12 and LTM genotypes have been submitted to NCBI (BioProject number PRJNA690290).
The short reads of the GBS data for the CFB-NIL families have been submitted to NCBI (BioProject number PRJNA659863). Previously published genomic data are archived with ref. 1. All other data reported in this manuscript are archived in the Dryad digital data repository (https://doi.org/10.5061/dryad.7h44j0zsr). All biological materials are available from the Arabidopsis Biological Resource Center (ABRC) or from the authors.

Code availability
The code used for this manuscript is archived in the Dryad digital repository (https://doi.org/10.5061/dryad.7h44j0zsr).

Received: 24 November 2020; Accepted: 7 May 2021; Published online: 17 June 2021

References
1. Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).
2. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).
3. Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).
4. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Nat. Rev. Genet. 16, 311–320 (2015).
5. Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now sustaining Earth? Trends Ecol. Evol. 25, 668–675 (2010).
6. McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of pleiotropic and epistatic genetic effects. Genetics 179, 3843–3852 (2012).
7. Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).
8. Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).
9. Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).
10. McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in outbred populations of Drosophila serrata. Genetics 201, 1239–1251 (2015).
11. Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).
12. Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).
13. Subramanian, B. & Rauscher, M. D. Balanced selection on a floral polymorphism. Evolution 54, 691–695 (2000).
14. Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).
15. Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).
16. Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).
17. Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).
18. Troughton, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).
19. Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. Trends Ecol. Evol. 22, 699–708 (2003).
20. Oakley, C. G., Ågren, J., Aitchison, R. A. & Schemske, D. W. QTL mapping of flowering time and its influence on the larval development of Spodoptera littoralis. J. Theor. Biol. 272, 173–187 (2011).
21. Angell, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).
22. Hopkins, R. J., van Dam, N. M. & van Loon, J. A. Role of glucosinolates in insect–plant relationships and mutualistic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).
23. McPherson, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolatehydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).
24. Wang, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).
25. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
26. Page, H., Abyzoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.5.6 (2020).
27. Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).
28. Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylist populations. N. Phytol. 171, 569–580 (2006).
29. Tro integrations, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).
30. Tuijnstra et al. A gain-of-function polymorphism controlling peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).
31. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).
32. Wang et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).
33. Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 121, 21–28 (2002).
34. Song et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).
35. Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Hereditas 82, 126–133 (1979).
36. Turgeon, R. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions. Genetics 165, 1053–1079 (2004).
37. Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).
57. Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. *Plant Physiol.* **162**, 2028–2041 (2013).

58. Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. *Plant Physiol. Biochem.* **106**, 82–90 (2016).

59. Dutailleur, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. *Plant Physiol.* **147**, 239–251 (2008).

60. Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. *Plant Mol. Biol.* **88**, 369–385 (2015).

61. Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. *Mol. Phylogen. Evol.* **8**, 317–333 (1997).

62. Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. *Plant J.* **44**, 620–632 (2005).

63. Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. *Proc. Natl Acad. Sci. USA* **92**, 7090–7094 (1995).

Acknowledgements

We thank the Duke University greenhouse staff, E. Hornstein, S. Mahanes, L. Schumm, B. Bingham, N. Niezgoda, C. Ried, A. Simha, W. de Vries, E. Courtois and K. Stinson for assistance with fieldwork in Colorado; E. Raskin, C. Strock, B. Guyton, W. Mitchell, J. Lessing, M. Olszack, A. Zemenick, M. McMunn, T. Park, S. Shriber-Olds and R. Colautti for assistance with fieldwork in Idaho; and J. Reithel, S. Sprott and C. Head for logistical support that facilitated fieldwork. We thank the Rocky Mountain Biological Laboratory, the Crested Butte Land Trust, the US Forest Service, D. Finlayson, R. Capps, A. Mears and P. Lehr for permission to conduct field experiments. We thank V. Grant and A. Zhao for assistance with laboratory experiments, E. Iversen at the Duke University Statistical Consulting Center for guidance regarding some analyses, and K. Donohue, M. Rausher and W. Morris for feedback that greatly improved this manuscript. We thank the Computer and Information Networking Center at National Taiwan University for high-performance computing facilities and the Technology Commons in the College of Life Science at National Taiwan University for molecular biology equipment. This work was supported by the Ministry of Science and Technology of Taiwan (grant no. 108-2636-B-002-004 to C.-R.L.), the Guangdong Natural Science Funds for Distinguished Young Scholar (grant no. 2018B030306040 to B.W.), the National Institutes of Health (grant no. 1R01 GM086496 to T.M.-O.) and the Rocky Mountain Biological Laboratory (Snyder Endowment graduate fellowship to L.N.C.).

Author contributions

L.N.C., J.P.M., C.-R.L., J.W., C.L.N. and T.M.-O. designed the project. L.N.C., J.P.M., C.-Y.C., K.Y.S.K.P., E.C., R.K., C.L.N., C.F.O.-M., C.A.R., M.R.W., J.W., P.-M.Y., K.G., C.-R.L. and T.M.-O. collected the data. L.N.C., J.P.M., C.-Y.C., Y.-P.L., M.R., J.G., C.-W.H., C.-R.L. and T.M.-O. analysed the data. L.N.C., C.-R.L. and T.M.-O. wrote the paper. All authors read and approved the paper.

Competing interests

The authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41559-021-01486-0.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41559-021-01486-0.

Correspondence and requests for materials should be addressed to C.-R.L. or T.M.-O.

Peer review information Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021
Extended Data Fig. 1 | Genotype frequency does not alter the effect of \(BCMA1/3 \) on herbivore resistance or survival. In experimental arrays in which we manipulated the starting genotype frequency of the \(BCMA1/3 \) homozygotes, there was no effect of genotype frequency on herbivore damage or survival. In each panel, points represent least-squares means estimates of the response variable for each genotype in each \(BCMA1/3 \) frequency treatment, and error bars represent ± one standard error.
Extended Data Fig. 2 | Genetic variation in norms of reaction to drought stress. BCMA1/3 alleles in the CFR-NIL background confer contrasting response to drought by altering morphological traits such as leaf size and number as well as physiological traits such as growth. Both genotypes reduce leaf water content under drought, but genetic differences in this response were only marginally significant. In each panel, points represent least-squares means estimates of the response variable for each genotype in each BCMA1/3 frequency treatment, and error bars represent ± one standard error.
Extended Data Fig. 3 | Drought-related climate variables are correlated with multivariate climatic predictors of BC-ratio. **a** BC-ratio varies across climate space, with PC1 the strongest predictor (Supplementary Table 9). **b** Linear models and permutation tests reveal that low BC-ratio phenotypes are significantly correlated with drier environments of origin. Points in all panels represent phenotypic (LS mean BC-ratio) and environmental variation (WorldClim data from the location of origin) of a broad panel of accessions. Colors represent BC-ratio, ranging from 0% (blue) to 100% (red). Shapes denote genetic groups as described in Wang et al. (2019). COL: circles; NOR: triangles; UTA: squares; WES: crosses. Black lines represent lines of best fit estimated using linear models using discrete groups to control for population structure (‘approach A’) as described in Supplementary Methods.
Extended Data Fig. 4 | Permutated vs. observed F-statistics relating BC-ratio to climate variables. Panes correspond to linear models presented in Supplementary Table 11. In each pane, gray bars show the frequency distribution of the test statistic relating each climate variable to BC-ratio from 10,000 permutations shuffling BC-ratio values without replacement (Supplementary Methods), red arrows show the observed F-statistic from each true model (Supplementary Table 11), and dashed lines mark the location of the extreme 95% tail in the empirical cumulative distribution function of permuted F-statistics, using three different methods to control for population structure (columns A-C; Supplementary Methods).
Extended Data Fig. 5 | Functional and copy number variation in BCMA evolved recently within B. stricta. Maximum likelihood phylogenetic reconstruction of BCMA copy sequences (excluding severely truncated copies) elucidates the evolutionary history of BCMA duplications in Boechera. Colored boxes behind (pseudo)gene names categorize features as follows: blue boxes contain nonfunctional BCMA pseudogenes on chromosome 7, light yellow boxes contain functional copies of BCMA2 on chromosome 2, and dark yellow boxes contain functional copies of BCMA3 and BCMA1 on chromosome 7. Shaded boxes indicate paralogs in B. retrofracta, and green box indicates the A. thaliana ortholog (CYP79F1). Scale bar shows genetic distance in nucleotide differences per base pair.
In the parental generation, wild accessions homozygous for production of methionine and branched-chain glucosinolates were identified and crossed.

An F1 heterozygous for parental alleles at BCMA1/3 (and elsewhere across the genome) was generated.

F2, F3, and F4 progeny were produced by single-seed descent to increase homozygosity across the genome and allow recombination of parental haplotypes.

In the F4 generation, an individual heterozygous around BCMA1/3 was identified using PCR markers. Due to previous generations of selfing, this BCMA1/3 heterozygote was largely homozygous elsewhere in the genome, but may contain other segregating loci.

F5s that had recombined near BCMA1/3 were identified using PCR markers, and selfed to generate F6s by single seed descent.

Homozygous F6 recombinants were screened using 13 markers closely linked to BCMA1/3 to identify closest flanking recombinants (red box).

Crossing the F6 CFRs yielded an F1 CFR heterozygote. Due to prior selfing, this was largely homozygous elsewhere in the genome, but some unlinked polymorphism is expected.

Selfing a single F1 CFR heterozygote yielded multiple independent F2 CFRs homozygous for each BCMA1/3 haplotype. Some rare unlinked polymorphism is still expected elsewhere in the genome.

Selfing F2 CFR homozygotes gave independent homozygous F3 CFR families representing methionine-derived (MM) and branched-chain amino acid-derived (BB) genotypes differing at BCMA1/3. Replicated family lines within each genotype control for unlinked polymorphisms. These F3 families were used in laboratory and field experiments, and in sequencing to determine the extent of the non-recombinant interval around BCMA1/3.

Extended Data Fig. 6 | See next page for caption.
Extended Data Fig. 6 | BCMA1/3 CFR-NILs: Chromosome 7 Pedigree. Chromosomal pedigree showing how closest flanking recombinant near-isogenic lines (CFR-NILs) were generated for use in laboratory and field experiments. See Methods and Supplementary Information for details. Within each step, diploid homologous pairs of Chromosome 7 are shown.
Extended Data Fig. 7 | Long-read assemblies of the LTM and SAD12 parents reveal substantial variation in tandem repeats and BCMA copy number in a 200 kb region on chromosome 7. Functional BCMA gene copies are indicated in yellow; red circles show severely truncated, non-functional BCMA copies; blue ellipses indicate close-to-full-length copies of BCMA containing frameshift deletions or transposon insertions. Blue and yellow elements match those shown in Extended Data Figures 5 and Supplementary Figure 2.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a
- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

- No software was used in data collection.

Data analysis

- All analyses of plant traits (herbivore resistance, survival, reproduction, drought response, etc.) were conducted using JMP Pro v. 12 or higher and/or R v. 3.6.0 or higher. R code used for analyses is archived along with the supporting data in the Dryad Digital Repository (DOI: 10.5061/dryad.7h44j0zsr). Custom Python and R scripts were also used in analyzing genomic data; those that have not been previously published are archived along with the supporting data in the Dryad Digital Repository (DOI: 10.5061/dryad.7h44j0zsr).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

New reference genome assemblies and raw Nanopore reads for SAD12 and LTM genotypes have been submitted to NCBI (BioProject number PRJNA609209). The short reads of the GBS data for CFR-NIL families have been submitted to NCBI (Bioproject number PRJNA659863). Previously published genomic data are archived with Wang et al. 2019 (DOI: 10.1186/s13059-019-1729-9). Code and all other data reported in this manuscript are archived in the Dryad Digital Repository (DOI: 10.5061/dryad.7h44j0zsr).
Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description
The studies reported here include: analytical chemistry, field transplant experiments, field array experiments, a lab herbivory assay, two drought tolerance dry-down experiments, Sanger sequencing analysis, and analyses of genomic data to characterize linkage disequilibrium, flanking genes, and FST. Full details regarding the study design for each of these components are provided in the Methods, Results, and Supplementary Information of the manuscript.

Research sample
This study focuses on wild-derived accessions and greenhouse crosses of the wildflower *Boechera stricta* (Brassicaceae). The wild-derived accessions are meant to represent a broad range of populations across the species range. To minimize maternal environmental effects, wild-derived accessions were self-pollinated for a minimum of 1-2 generations under greenhouse conditions prior to experimental use. Genotypes generated by crossing were created to target a gene of interest (BCMA3). The parental accessions used in the cross were chosen from the broad panel of naturally-derived accessions because they showed strong differences in foliar chemistry, the focal trait in this study.

Sampling strategy
Seeds from wild plants in the field were collected to deliberately span a broad geographic area. Because self-pollination is common in our study species, seeds were not collected from wild parent plants within ~1km of other existing collections. For experimental work, the sample sizes of experiments were determined primarily by logistical feasibility, maximizing replication within the means of the researchers managing each experiment.

Data collection
Leaf chemical phenotypes were determined using high-performance liquid chromatography. These data were collected at the Department of Biochemistry in the Max Planck Institute for Chemical Ecology. All other plant phenotypic data was collected in the laboratory and field by the authors, using standard measuring methods (rulers, balances). Researchers phenotyping plants were blind to the genotype of the plants, as the plants were tagged using a unique ID number rather than a descriptive label.

Timing and spatial scale
Field data were collected during the short growing season in high-elevation Rocky Mountain sites (June-September), which is constrained by snowfall on both ends, from 2013-2017. We focus on late-season census data from the field because herbivore damage remains visible on leaves throughout the season, so later measurements reflect cumulative damage across the growing season. Late-season censuses also allow us to measure survival through the growing season, and reproduction among plants that survived and had experienced vernalization.

The laboratory herbivory assay was conducted in 2016. Data were collected at the end of the herbivory treatment.

Chemical phenotyping of the broad panel of accessions was performed in 2016.

Genomic data on the broad panel of accessions and on the experimental crosses was generated incrementally from 2015-2019, as additional DNA extractions and library preparations could be performed depending on the availability of personnel.

The dry-down experiment using the broad panel of accessions was conducted in 2015. The dry-down experiment using the experimental crosses was conducted in 2017. In both of these experiments, data were collected from the beginning of the drought treatment to the end of the drought treatment. The plants were destructively harvested, so no further data collection was possible.

Data exclusions
In our field array experiment, one array experienced extremely high mortality. Analyses of the effect of mortality rate on genotype frequencies are presented both including and excluding this outlier. This is described in Supplementary Information, and results from both approaches are included in Supplementary Table 5.

In the dry-down experiment with CFR-NILs, three individual plants were extreme outliers for estimated leaf mass per area (LMA), possibly reflecting measurement error. We excluded these three outliers from our analysis of the effect of genotype and drought treatment on LMA. This exclusion is retained and annotated in the analysis code archived with this manuscript (DOI: 10.5061/dryad.7h44j0zsr).

Following genotyping-by-sequencing, two samples with few or low quality reads were removed.

For other analyses, we included all available data. In multivariate models, missing data from one or more variables precluded the inclusion of some individual plants/genotypes.

Reproducibility
Because we anticipated the effects of our focal gene to vary depending on ecological context, we reproduced our field herbivory and survival experiments in 15 environments. All laboratory experiments were conducted once unless otherwise noted.

Randomization
All field and laboratory experiments were conducted using either randomized complete block designs or completely randomized designs. Occasionally, completely randomized designs were used instead of randomized complete blocks if the number of replicates

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
across genotypes and treatments was not evenly divisible by the functional blocking unit (e.g. greenhouse rack that can hold a fixed number of pots). Plant positions within blocks were determined using a random number generator.

Blinding
In all experiments with human-collected phenotype data, plants were labeled using a unique plant ID representing its position in the randomization scheme. While the accessions and genotypes used in this study differ in foliar chemistry, they are not distinguishable from one another with the naked eye.

Did the study involve field work?

- Yes
- No

Field work, collection and transport

Field conditions
Fieldwork was conducted at 11 sites in the Rocky Mountains, USA. The field sites were grouped in two focal regions, central Idaho and west-central Colorado. Sites in the northern and southern Rocky Mountains ranged from 1812-2531 and 2888-3145 m in elevation, respectively. Accordingly, they differed in mean temperature and precipitation.

Location
The latitude, longitude, and elevation of each wild accession is included in the data archived along with this manuscript (DOI: 10.5061/dryad.7h44j0zsr) in the file "BCMA-final-RefPops-AllMerged.csv".

The latitude, longitude, and elevation of all field sites where experiments were conducted is included in the data archived along with this manuscript (DOI: 10.5061/dryad.7h44j0zsr) in the file "site_locations.csv".

All greenhouse and laboratory experiments were conducted at Duke University in Durham, NC, USA.

Access & import/export
Permits for fieldwork were obtained from United States Forest Service Regions 1, 2, 4, 5, and 6, and Grand Canyon, Sequoia, and Kings Canyon National Parks between 1999 and 2019.

Disturbance
Our field experiments displaced a small amount of soil for each transplanted individual or array. At the conclusion of all experiments, transplants were destroyed and any removed soil was replaced. For fenced transplant gardens, there was also disruption to soil and vegetation at the time of fence construction. Fences were removed and soil replaced at all sites that are no longer being actively used for research.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
✓	Antibodies
x	Eukaryotic cell lines
X	Palaeontology and archaeology
x	Animals and other organisms
x	Human research participants
x	Clinical data
x	Dual use research of concern

Methods

n/a	Involved in the study
✓	ChIP-seq
	Flow cytometry
	MRI-based neuroimaging

Animals and other organisms

Policy information about [studies involving animals](#): ARRIVE guidelines recommended for reporting animal research.

Laboratory animals

One laboratory experiment utilized live, second-instar insect herbivores (Trichoplusia ni [Lepidoptera: Noctuidae]) purchased from a commercial supplier under USDA APHIS permit number P526P-15-00202.

Wild animals

This study did not involve wild animals.

Field-collected samples

Field-collected accessions were grown under greenhouse conditions (18-21°C day/13-16°C night; 16h day length; watering to saturation daily; fertilization at 300 ppm N weekly; unless otherwise noted in the Methods, e.g. during drought experiments). We clipped the fruits off of experimental transplants before ripening to prevent the dispersal of non-local seed into nearby populations.

At the end of field experiments, remaining plants were uprooted, infrastructure (e.g. plant tags, fences and cages to prevent browsing) was removed, and any displaced soil was replaced.

Ethics oversight

All fieldwork conducted in Colorado was reviewed and approved by the Science Committee and Science Director at the Rocky Mountain Biological Laboratory, and included consideration of environmental impacts. Garden and array sites in Colorado were permitted by the United States Forest Service under special use permit GUN 1120 through coordination with the Rocky Mountain...
Biological Laboratory, or by private property owners. Garden sites in the northern Rocky Mountains were permitted by the United States Forest Service or by private property owners.

Note that full information on the approval of the study protocol must also be provided in the manuscript.