Mixed Reality Interaction Techniques

JENS GRUBERT

This chapter gives an overview of interaction techniques for mixed reality including augmented and virtual reality (AR/VR). Various modalities for input and output are discussed. Specifically, techniques for tangible and surface-based interaction, gesture-based, pen-based, gaze-based, keyboard and mouse-based, as well as haptic interaction are discussed. Furthermore, the combination of multiple modalities in multisensory and multimodal interaction as well as interaction using multiple physical or virtual displays are presented. Finally, interaction with intelligent virtual agents is considered.

1 INTRODUCTION

This chapter gives an overview of interaction techniques for mixed reality (MR), including augmented and also virtual reality (AR/VR). Early research in the field of MR interaction techniques focused on the use of surface-based, tangible as well as gesture-based interaction, which will be presented at the beginning of this chapter. Further modalities, such as pen-based, gaze-based or haptic interaction have seen recent attention and are presented next. Further, with the move towards productivity-oriented use cases, interaction with established input devices such as keyboard and mice has seen interest in the research community. Finally, inspired by the popularity of conversational agents, interaction with intelligent virtual agents are discussed. The development of interaction techniques is closely related to the advancements in input devices. Hence, the reader is invited to study the according book chapter as well. While this chapter follows the above mentioned structure, further possibilities to structure interaction techniques include organizing according to interaction tasks [41] such as object selection [4, 80, 302] and object manipulation [219], navigation [163], symbolic input [89] or system control [79]. Further, interaction techniques for specific application domains have been discussed such as music [27] games [273] or immersive analytics [51, 98]. Interested readers are also referred to further surveys on 3D interaction techniques [145] or interaction with smart glasses [196].

2 TANGIBLE AND SURFACE-BASED INTERACTION

This section presents the concepts of Tangible user interfaces (TUIs) and their applicability in AR. It covers the effects of output media, spatial registration approaches for TUIs, tangible magic lenses, augmenting large surfaces like walls and whole rooms, the combination of AR with shape-changing displays as well as the role of TUIs for VR-based interaction. Figure 1 depicts an overview about output and input devices typically found in TUI-based interaction for MR.

TUIs are concerned with using physical objects as medium for interaction with computers [325] and have seen substantial interest in human-computer interaction [295]. Early prototypes utilized tabletops, on which physical objects were placed to change properties of digital media. For example Underkoffler and Ishii introduced a simulation of an optical workbench using tangible objects on a tabletop [326] as well as an application for architectural planning [327].

In AR, this concept was introduced by Kato et al. [170] as Tangible Augmented Reality (TAR). They used a paddle as prop, equipped with a fiducial, to place furniture inside a house model. Fjeld
et al. [108] introduced further tangibles such as a booklet and a cube for interacting within an educational application for chemistry.

TAR is typically used for visualizing digital information on physical objects while concurrently using those physical objects as interaction devices. Billinghurst et al. [33] state TAR characteristics as realizing spatial registration between virtual and physical objects and the ability for users to interact with those virtual objects by manipulating the physical ones. For example, Regenbrecht et al. [264] utilized a rotary plate to allow multiple co-located users to manipulate the orientation of a shared virtual object. This way, the gap between digital output (e.g., on a flat screen) and physical input (e.g., using a rotary knob) can be reduced as the digital information is directly overlaid over the physical content. Lee et al. [194] described common interaction themes in TAR applications such as static and dynamic mappings between physical and digital objects. They describe a space-multiplexed approach, where each physical tool is mapped to a single virtual tool or function as
well as a time-multiplexed approach in which the physical object is mapped to different digital tools dependent on the context-of use. However, the effect of this overlay depends also on the output medium. For example, when using projection-based systems [34] or video see-through (VST) head-mounted displays (HMDs) (c.f. chapter 10 in [143]), the distance between the observer to the physical and virtual objects is the same. In contrast, when using commodity optical see-through (OST) HMDs with a fixed focal plane, there can be a substantial cost of perceiving virtual and physical objects at the same time. Specifically, Eiberger et al. [94] showed that when processing visual information jointly from objects within arms reach (in this case a handheld display) and information presented on a OST HMD at a different distance, task completion times increased by approximately 50% and error rate increased by approximately 100% compared to processing this visual information solely on the OST HMD.

For spatially registering physical and virtual objects, early works on TAR often relied on fiducial markers, such as provided by ARToolKit [169] or ARUCO [279]. While, easy to prototype (i.e. fiducials have to be simply printed out and attached to objects), these markers can inhibit interaction due to their susceptibility to occlusions (typically through hand and finger interaction). Hence, it is advised to use modern approaches for hand-based interaction [16, 203] with spatially tracked rigid and non-rigid objects [141, 259, 346]. Also, when using OST HMDs, the calibration between the HMD and the users’ eyes can impact the interaction [120, 134].

Evolving from the magic lens [30] and tangible interaction concepts [325] tangible magic lenses allow to access and manipulate otherwise hidden data in interactive spatial environments. A wide variety of interaction concepts for interactive magic lenses have been proposed within the scope of information visualization (c.f. [319, 320]).

Within AR, various rigid shapes have been explored. Examples include rectangular lenses for tabletop interaction [305] or circular lenses [306]. Flexible shapes [308] have been utilized as well as multiple sheets of paper [156]. In their pioneering work, Szalavári and Gervautz [314] introduced the personal-interaction-panel in AR. The two-handed and pen-operated tablet allowed for selection and manipulation of virtual objects as well as for system control. Additionally, transparent props have been explored (e.g., a piece of plexiglass) both for tabletop AR [44, 242, 270] as well as VR [283]. Purely virtual tangible lenses have been proposed as well [207]. Brown et al. [45] introduced a cubic shape which could either perspectively correct and manipulate 3D objects or text. This idea was later revisited by Issartel et al. [161] in a mobile setting.

Often, projection-based AR has been used to realize tangible magic lenses, in which a ceiling-mounted projector illuminates a prop such as a piece of cardboard or other reflective materials [61, 305] and (typically RGB or depth) cameras process user input.

Mobile devices such as smartphones and tablets are also commonly used as a tangible magic lens [131, 199], see Figure 2, and can be used in conjunction with posters [131], books [178], digital screens [199] or maps [226, 267].

When using the tangible magic lens metaphor in public space, one should be aware about the social acceptability, specifically due to the visibility of spatial gestures and postures [263, 272]. For example, in a series of studies across gaming and touristic use cases, Grubert et al. [127, 132] explored benefits and drawbacks of smartphone-based tangible lens interfaces in public settings and compared them to traditional static peephole interaction, commonly used in mobile map applications. They found that user acceptance is largely dependent on the social and physical setting. In a public bus stop inside a large open space used at transit area, participants favored the magic lens over a static peephole interface despite tracking errors, fatigue and potentially conspicuous gestures. Also, most passersby did not pay attention to the participants and vice versa. However, when deploying the same experience in a different public transportation stop with other spatial and social context (waiting area, less space to avoid physical proximity to others),
participated used and preferred the magic lens interface significantly less compared to a static peephole interface. In the context of evaluations of magic lens metaphors in handheld AR, the impact of tracking technology also has to be considered [228].

Further, when using smartphones or tablets as magic lenses, the default user’s view is based on the position of the physical camera attached to the handheld device, see Figure 3, left and Figure 4, left. However, this can potentially negatively affect the user experience [74, 75]. Hence, it can be advisable to incorporate user-perspective rendering to render the scene from the point of view of the user’s head, see Figure 3, right and Figure 4, right. For example, Hill et al. [153], introduced user-perspective rendering as virtual transparency for VST AR. Baričević et al [15] compared user-vs. device-perspective rendering in a VR simulation. Tomioka et al. [321] presented approximated user-perspective rendering using homographies. Grubert et al. [133] proposed a framework for enabling user-perspective rendering for augmenting public displays. Čopič et al. [74, 75], quantified the performance differences between device- and user perspective rendering in map-related tasks and Mohr et al. [225], developed techniques for efficient computation of head-tracking techniques needed for user-perspective rendering.

Beyond handheld solutions, whole surfaces such as tables, walls or body parts can be augmented and interacted with. Often projector-camera systems are used for processing input and creating output on surfaces. Early works included augmenting desks using projectors to support office work of single users [211, 338, 339] or in collaborative settings [269]. Later, the Microsoft Kinect and further commodity depth sensors gave rise to a series of explorations with projector-camera systems. For example, Xiao et al. [348] introduced WorldKit, to allow users to sketch and operate user interface elements on everyday surfaces. Corsten et al. [76] proposed a pipeline for repurposing
everyday objects as input devices. Henderson and Feiner also proposed to utilize passive haptic feedback from everyday objects to interact with virtual control elements such as virtual buttons [151]. Mistry and Maes [224] utilized a necklace-mounted projector-camera system to sense finger interactions and project content on hands or the environment. Following suit, Harrison et al., [147] introduced OmniTouch, a wearable projector-depth-camera system that allowed to project user interface elements on body parts, such as the hand (e.g., a virtual dial pad) or to augment paper using touch.

Beyond handheld solutions, whole surfaces such as tables, walls or body parts can be augmented and interacted with. Often projector-camera systems are used for processing input and creating output on surfaces. Early works included augmenting desks using projectors to support office work of single users [211, 338, 339] or in collaborative settings [269]. Later the Microsoft Kinect and further commodity depth sensors gave rise to a series of explorations with projector-camera systems.

For example, Xiao et al. [348] introduced WorldKit, to allow users to sketch and operate user interface elements on everyday surfaces. Corsten et al. [76] proposed a pipeline for repurposing everyday objects as input devices. Henderson and Feiner also proposed to utilize passive haptic feedback from everyday objects to interact with virtual control elements such as virtual buttons [151].

Mistry and Maes [224] utilized a necklace-mounted projector-camera system to sense finger interactions and project content on hands or the environment. Following suite, Harrison et al., [147] introduced OmniTouch, a wearable projector-depth-camera system that allowed to project user interface elements on body parts, such as the hand (e.g., a virtual dial pad) or to augment paper using touch.

Further, the idea of interacting with augmented surfaces was later expanded to cover bend surfaces [24], walls [167], complete living rooms [166] or even urban facades [40, 107]. For example, in IllumiRoom [167], the area around a television was augmented using a projector, after initially scanning it with a depth camera, see Figure 5. Possible augmentations included extending the field of view of on-screen content, selectively rendering scene elements of a game or changing the appearance of the whole environment using non-photorealistic rendering (e.g., cartoon style or a wobble effect). In RoomAlive, multiple projector-depth camera units were used to create a 3D scan of a living room as well as to spatially track the user’s movement within that room, see Figure 6. Users were able to interact with digital elements projected in the room using touch and in-air gestures. Apart from entertainment purposes, this idea was also investigated in productivity scenarios such as collaborative content sharing in meetings [105]. Finally, the augmentation of
shape changing interfaces was also explored [109, 200, 261]. For example, in Sublimate [200] an actuated pin display was combined with a stereoscopic see-through screen to achieve a close coupling between physical and virtual object properties, e.g., for visualizing height fields or NURBS surface modelling. InForm [109] expanded this idea to allow both for user input on its pins (e.g., utilizing them as buttons or handles) as well as manipulation of external objects (such as moving a ball across its surface).

In VR, tangible interaction has been explored using various props. The benefit of using tangibles in VR is that a single physical object can be used to represent multiple virtual objects [3], even if they show a certain extend of discrepancy. Simeone et al. [301], presented a model of potential substitutions based on physical objects such as mugs, bottles, umbrellas or a torch. Hettiarachchi et al. [152] transferred this idea to AR. Harley et al. [146], proposed a system for authoring narrative experiences in VR using tangible objects.
3 GESTURE-BASED INTERACTION

Touch and in-air gestures and postures make up a large part of interpersonal communication and have also been explored in depth in Mixed Reality. A driver for gesture-based interaction was the desire for "natural" user interaction, i.e. interaction without the need to explicitly handle artificial control devices, but to rely on easy to learn interaction with (to the user) invisible input devices. While many gesture sets have been explored by researchers or users [252], it can be debated how "natural" those gesture-based interfaces really are [236], e.g., due to the poor affordances.

Still, the prevalence of small sensors such as RGB and depth cameras, inertial measurement units, radars or magnetic sensors in mobile devices, AR and VR HMDs, as well as continuing advances in hand [16, 203], head [229] and body pose estimation [54, 63, 67, 81, 117, 205, 281] gave rise to a wide variety of gesture-based interaction techniques being explored for Mixed Reality.

For mobile devices researchers, began investigating options for interaction next to [241], above [110, 186], behind [82, 342], across [65, 123, 258, 286], or around [349, 361] the device. The additional modalities are either substituting or complementing the devices’ capabilities. These approaches typically relied on modifying existing devices using a variety of sensing techniques, which can limit their deployment to mass audiences. Hence, researchers started to investigate the use of unmodified devices. Nandakumar et al. [231] proposed to use the internal microphones of mobiles to determine the location of finger movements on surfaces, but could not support mid-air interaction. Song et. al [303] enabled in-air gestures using the front and back facing cameras of unmodified mobile devices. With Surround See, Yang et al. [353] modified the front-facing camera of a mobile phone with an omnidirectional lens, extending its field of view to 360° horizontally. They showcased different application areas, including peripheral environment, object and activity detection, including hand gestures and pointing, but did not comment on the recognition accuracy. In GlassHands, it was demonstrated how the input space around a device can be extended, by using a built-in front-facing camera of an unmodified handheld device and some reflective glasses, like sunglasses, ski goggles or visors [128]. This work was later extended to investigate the feasibility of utilizing eye reflections [288, 289].

While being explored since the mid 90’s in tabletop-based AR [46, 78, 87], for handheld AR, vision-based finger and hand tracking became popular since the mid 2000’s [158, 197, 198, 296]. Yusof et al. [356] provide a survey on the various flavors of gesture-based interaction in handheld AR, including marker-based and marker-less tracking of fingers or whole hands.

An early example for in-air interaction using AR HMDs is presented by Kolsch et al. [183], who demonstrated finger tracking with a head-mounted camera. Xiao et al. [350] showed how to incorporate touch gestures on everyday surfaces in to the Microsoft HoloLens. Beyond hand and finger tracking, full-body tracking using head-mounted cameras was also explored [60]. Also, reconstruction of facial gestures, e.g., for reenactment purposes, when wearing HMDs has seen increased interest [64, 95, 318, 365]. Further solutions for freehand interaction were also proposed including a wrist-worn gloveless sensor [174], swept frequency capacitive sensing [282], an optical mouse sensor attached to a finger [352], or radar-based sensing [332].

Many AR and VR in-air interaction techniques rely on using arms not being supported by a surface (e.g. an elbow resting on a table). Hence, to facilitate reliable selection, targets are designed to be sufficiently large and spaced apart [304]. Also, while the addition of hand tracking to modern AR and VR HMDs allows for easy access to in-air gestures, the accuracy of those spatial tracking solutions still is significantly lower than dedicated lab-based external tracking systems [291].

Besides interaction with handheld or head-worn devices, also whole environments such as rooms can be equipped with sensors to facilitate gesture-based interaction [43, 230, 360]. In VR, off-the-shelf controllers were also appropriated to reconstruct human poses in real-time [55, 165].
4 PEN-BASED INTERACTION

In-air interactions in AR and VR typically make use of unsupported hands or controllers designed for gaming. In addition, pens (often in combination with tablets as supporting surface) have also been explored as input device. Szalavári and Gervautz [314], and, similarly,Billinghurst et al. [31] utilized pens for input on physical tablets in AR respectively VR. Watsen et al. [336] used a handheld Personal Digital Assistant (PDA) for operating menus in VR. In the Studierstube framework, pens were used to control 2D user interface elements on a PDA in AR. Poupyrev et al. [255] used a pen for notetaking in VR. Gesslein et al. [116] used a pen for supporting spreadsheet interaction in Mobile VR.

Researches also investigated the use of pens for drawing and modelling, see Figure 7. Sachs et al. [277] presented an early system of 3D CAD modeling using a pen. Deering [83] used a pen for in-air sketching in a fishtank VR environment. Keeve et al. [173] utilized a brush for expressive painting in a Cave Automatic Virtual Environment (CAVE) environment. Encarnacao [97] used a pen and pad for sketching in VR on top of an interactive table. Fiorentino et al. [106] explored the use of pens in mid-air for CAD applications in VR. Xin et al. [351] enabled the creation of 3D sketches using pen and tablet interaction in handheld AR. Yee et al. [354] used a pen-line device along a VST HMD for in-situ sketching in AR. Gasquez et al. [114, 115], Arora et al. [5], as well as Drey et al. [88] noted the benefits of supporting both free-form in-air sketching as well as sketching on a supporting 2D surface in AR and VR. Suzuki et al. [313] expanded previous sketching applications for AR with dynamic and responsive graphics, e.g. to support physical simulations.

The performance of pen-based input was also investigated in VR. Bowman and Wingrave [42] compared pen and tablet input for menu selection against floating menus and a pinch-based
menu system and found that pen and tablet interaction was significantly faster. Teather and Stuerzlinger [317] compared pen-based input to mouse input for target selection in a fishtank VR environment and found that 3D pointing was inferior to 2D pointing when targets were rendered stereoscopically. Arora et al. [6] compared pen-based mid-air painting to surface-supported painting and found supporting evidence that accuracy improved using a physical drawing surface. Pham et al. [250] indicated that pens significantly outperform controllers for input in AR and VR and is comparable to mouse-based input for target selection. Batmaz et al. explored different pen grip styles for target selection in VR [17].

5 GAZE-BASED INTERACTION

Besides utilizing touch input, in-air gestures or physical input devices, gaze has also been explored as input modality in Mixed Reality. Duchowski [91] presents a review of 30 years of gaze-based interaction, in which gaze-based interaction is categorized within a taxonomy that splits interaction into four forms, namely diagnostic (off-line measurement), active (selection, look to shoot), passive (foveated rendering or gaze-contingent displays), and expressive (gaze synthesis).

For VR, Mine [222] proposed to use gaze-directed steering and look-at menus, as early as 1995. Tanriverdi and Jacob [315] highlighted that VR can benefit from gaze tracking. They stated that physical effort can be minimized through gaze and that user’s natural eye movement can be employed to perform interactions in VR (e.g., with distant objects). They also indicated that a proposed heuristic gaze selection technique outperformed virtual hand-based interaction in terms of task-completion time. Cournia et al. [77] found that dwell-time based selection was slower than manual ray-pointing. Duchowski et al. [92] presented software techniques for binocular eye tracking within VR as well as their application to aircraft inspection training. Specifically, they presented means for integrating eye trackers into a VR framework, novel 3D calibration techniques and techniques for eye-movement analysis in 3D space. In 2020, Burova et al. [49] also utilized eye-gaze analysis in industrial tasks. They used VR to develop AR solutions for maintenance tasks and collected gaze data to elicit comments from industry experts on the usefulness of the AR simulation. Zeleznik et al. [358] investigated gaze interaction for 3D pointing, movement, menu selection and navigation (orbiting and flying) in VR. They introduced Lazy interactions that minimize hand movements, Helping Hand techniques in which gaze augments hand-based techniques as well as Hands Down techniques, in which the hand can operate a separate input device. Piumsomboon et al. [253] presented three novel eye-gaze-based interaction techniques for VR: Duo-Reticles, an eye-gaze selection techniques based on eye-gaze and inertial reticles, Radial Pursuit, a smooth pursuit-based technique for cluttered object and Nod and Roll, a head-gesture-based interaction based on the vestibulo-ocular reflex.

6 HAPTIC INTERACTION

Auditory and visual channels are widely addressed sensory channels in AR and VR systems. Still, human experiences can be enriched greatly through touch and physical motion. Haptic devices enable the interaction between humans and computers by rendering mechanical signals to stimulate human touch and kinesthetic channels. Research in haptics has a long tradition and incorporates expertise from various fields such as robotics, psychology, biology and computer science. Haptics also play a role in diverse application domains such as gaming [85], industry [347], education [223] or medicine [73, 144, 341]. Haptic interactions are based on cutaneous/tactile (i.e. skin-related) and kinesthetic/proprioceptive (i.e. related to the body pose) sensations. Various devices have been proposed for both sensory channels, varying in form factor, weight, mobility, comfort as well as the fidelity, duration and intensity of haptic feedback. For recent surveys, please see [26, 245].
Also, in VR, using haptic feedback has a long tradition [218]. A commonly used active haptic device for stationary VR environment with a limited movement range of the users hands, is the PHANToM, which is a grounded system (or manipulandum) offering a high fidelity but low portability. Hence, over time substantial research efforts have been made in creating mobile haptic devices for VR [245], see Figure 8.

In AR, a challenge for using haptics is that the display typically occludes real objects the user might want to interact with. Also, in OST displays, the haptic device is still visible behind virtual objects rendered on the display. When using VST displays, the haptic device might be removed by inpainting [280].

Besides active haptic systems, researchers have also investigated the use of low-fidelity physical objects to augment virtual environments in passive haptics. An early example of this type of haptic feedback is presented by Insko [160], who showed that passive haptics can improve both sense of presence and spatial knowledge training transfer in a virtual environment.

A challenge when using passive haptic feedback, besides a mismatch in surface fidelity, is that the objects used for feedback are typically static. To mitigate this problem two strategies can be employed. First, the objects themselves can be moved during interaction by mounting them on robotic platforms such as robots [312, 334] or by human operators [68, 70]. Second, the movements of the user themselves can be redirected to a certain extend by decoupling the physical motion of a user from the perceived visual motion. This can be done with individual body parts such as hands [8, 69], see Figure 9 or the whole body using redirected walking techniques [181, 234].

7 MULTIMODAL INTERACTION

While, often, AR and VR system offer single input channels along with audio-visual output, rich interaction opportunities arise when considering the combination of further input and output modalities. Complementing the strengths of multiple channels can lead to enriched user experiences. While multimodal (or multisensory) output is typically concerned with increasing the immersion and sense of presence in a scene, multimodal input typically tries to increase the efficiency of user interaction with a AR or VR system. For overviews about multimodal interaction beyond AR and VR, please see works by Jaimes and Sebe [162] or Turk [324]. Nizam et al. also provide a recent overview about multimodal interaction for specifically for AR [235].

The use of multisensory output such as the combination of audiovisual output with smell and touch has been shown to increase presence and perceived realism in VR [57, 155] and has been employed as early as in the 1960s [150]. Gallace et al. discussed both benefits and challenges when
utilizing multiple output modes in VR [113]. Extrasensory experiences, [90, 201] (such as making temperature visible through infrared cameras) has also been explored [179].

In AR, Narumi et al. [232] showed that increasing the perceived size of a real cookie using AR also increased the feeling of satiety. Narumi et al. [233] also created a multisensory eating experience in AR by changing the apparent look and smell of cookies. Koizumi et al. [182] were able to modulate the perceived food texture using a bone-conducting speaker. Ban et al. [11], showed that it is possible to influence fatigue while handling physical objects by affecting the perceived weight of those objects through modulating their size using AR.

Regarding multimodal input in VR, the combination of speech and gestures is a commonly used input combination. In 1980, Bolt [37] introduced *put-that-there*. Users could immerse themselves in a *Media Room* to place objects within that environment through a combination of gestures and speech. In 1989, Hauptmann [148] showed that users preferred a combination of speech and gestures for the spatial manipulation of 3D objects. Cohen et al. [72] used a handheld computer along with speech and gesture for supporting map-based tasks on a virtual workbench. LaViola [191], used hand-based interaction (sensed through a data glove) along with speech for interior design in VR. Ciger et al. [71] combined speech with pointing of a magic wand on an immersive wall to create "magical" experiences. Burdea et al. [48], present an early survey on VR input and output devices as well as an overview about studies that quantify the potentials of several modalities on simulation realism and immersion. Prange et al. [256], studied the use of speech and pen-based interaction in a medical setting.

In AR, Olwal et al. [243], combined speech and gestures for object selection. Kaiser et al. [168] extended that work by introducing mutual disambiguation to improve selection robustness. Similarly, Heidemann et al. [149], presented an AR system for online acquisition of visual knowledge and retrieval of memorized objects using speech and deictic (pointing) gestures. Kolsch et al. [183], combined speech input with gestures in an outdoor AR environment. Piumsomboon [251], studied
the use of gestures and speech vs gestures only for object manipulation in AR. They found, that the multimodal was not substantially better than gesture-only based interaction for most tasks (but object scaling). This indicates, that multimodality per se is not always beneficial for interaction, but needs to be carefully designed to suit the task at hand. Rosa et al. [274], discussed different notions of AR and Mixed Reality as well as the role of multimodality. Wilson et al. [343] used a projector-camera system mounted on a pan-tilt platform for multimodal interaction in a physical room using a combination of speech and gestures.

The combination of touch and 3D movements has also been explored in VR and AR. Tsang et al. [322], introduced the Boom Chameleon, touch display mounted on a tracked mechanical boom and used joint gesture, speech and viewpoint input in a 3D annotation application. Benko et al. [23] combined on surface and in-air gestures for content transfer between a 2D screen and 3D space. Mossel et al. [227] as well as Marzo et al. [216], combined touch input and handheld device movement for 3D object manipulations in mobile AR. Polvi et al. [254] utilized touch and the pose of a handheld touchscreen for remixed object positioning in mobile AR. Grandi et al. [118], studied the use of touch and the orientation of a smartphone for collaborative object manipulation in VR. Surale et al. [311] explored the use of touch input on a spatially tracked tablet for object manipulations in VR. In VR, Menzner et al. [220] utilized combined in-air and touch movements on and above smartphones for efficient navigation of multiscale information spaces, see Figure 10. Several authors combined pen input both in mid-air as well as on touch surfaces to enhance sketching in VR [88] and AR [5, 114, 115].

Also, the combination of eye-gaze with other modalities such as mid-air gestures and head-movements has seen recent interest for interaction in AR and VR. For example, Pfeuffer et al. [248] investigated the combination of gaze and gestures in VR, see Figure 11. They described Gaze + Pinch, which integrates eye gaze to select 3D objects, and indirect freehand gestures to manipulate those objects. They explored this technique for object selection, manipulation, scene navigation, menu interaction, and image zooming. Similarly, Ryu et al. [276] introduced a combined grasp eye-pointing technique for 3D object selection. Kyto et al. [190] combined head and eye gaze for improving target selection in AR. Sidenmark and Gellersen [299, 300], studied different techniques combining eye and head pointing in VR. Gesslein et al. [116] combined pen-based input with gaze tracking for efficient interaction across multiple spreadsheets, see Figure 12. Biener et al. [29] utilized gaze and touch interaction for navigating virtual multi-display environments, see Figure 13.
Fig. 11. Multimodal target selection in VR using a combination of gaze and gestures [248]. Image courtesy of Ken Pfeuffer.

Fig. 12. Interacting with multiple sheets using a combination of pen-based and gaze-based interaction [116]. Initially, solely icons indicating the existent of additionally accessible sheets are visible (a). Neighboring sheets are expanded and each sheet the user gazes at is highlighted with a red frame (b). The user taps with his non-dominant hand on the tablet bezel, causing the selected sheet to slide towards the tablet (c), where the user can edit it using the tablet’s touchscreen (d).

Fig. 13. Left: a virtual multi-display environment [29]. Right: Users can navigate across displays by gaze (left, right, up, down) and touch (depth).

8 MULTI-DISPLAY INTERACTION

Traditionally, output of interactive systems is often limited to a single display. However, multi-display environments from the desktop to gigapixel displays are also increasingly common for knowledge work and complex tasks such as financial trading or factory management as well as for social applications such as second screen TV experiences [125]. Surveys about multi-display systems and distributed user interfaces have been presented by Elmqvist [96], Grubert et al. [124, 125, 257] and Brudy et al. [47].
Augmented Reality has the potential to enhance interaction with both small and large displays by adding an unlimited virtual screen space or other complementing characteristics like mobility. However, this typically comes at the cost of a lower display fidelity compared to a physical panel display (such as lower resolution, lower contrast, or a smaller physical field of view in OST HMDs).

In 1991, Feiner et al. [104], proposed a hybrid display combining a traditional desktop monitor with an OST HMD and explored a window manager application. Butz et al. [53], combined multiple physical displays ranging from handheld to wall-sized with OST HMDs in a multi-user collaborative environment. Baudisch et al. [19] used a projector to facilitate focus and context interaction on a desktop computer. MacWilliams et al. [213] proposed a multi-user game in which players could interact with a tabletop, laptop as well as handheld displays. Serrano et al. [294] propose to use an OST HMD to facilitate content transfer between multiple physical displays on a desktop. Boring et al. [39] used a smartphone to facilitate content transfer between multiple stationary displays. They later extended the work to manipulate screen content on stationary displays [20] and interactive facades [38] using smartphones. Raedle et al. [258] supported interaction across multiple mobile displays through a top-mounted depth-camera. Grubert et al. [121, 123] used face tracking to allow user interaction across multiple mobile devices, which could be dynamically re-positioned, see Figure 14, left. They also proposed to utilize face tracking [121, 122] for creating a cubic VR display with user perspective rendering, see Figure 14, right. Butscher et al. [52] explored the combination of VST HMDs with a tabletop displays for information visualization. Reipschläger et al. [265, 266] combined a high resolution horizontal desktop display with an OST HMD for design activities. Gugenheimer et al. [137] introduced face touch, which allows interacting with display-fixed user interfaces (using direct touch) and world-fixed content (using raycasting). This work was later extended to utilize three touch displays around the user’s head [139], see Figure 15. Gugenheimer et al. also introduced ShareVR [138], which enabled multi-user and multi-display interaction across users inside and outside of VR, see Figure 16.

A number of systems also concentrated on the combination of HMDs and handheld as well body-worn displays such as smartwatches, smartphones and tablets in mobile contexts. Here, typically the head-mounted display extends the field of view of the handheld display to provide a larger virtual field of view. In MultiFi [119], an OST HMD provides contextual information for higher resolution touch-enabled displays (smartwatch and smartphone), see Figure 17. The authors explored different spatial reference systems such as body-aligned, device-aligned, and side-by-side modes. Similar explorations have followed suit using video-see-through HMDs [237], an extended set of interaction techniques [364], using smartwatches [209, 340, 345], or with a focus on understanding smartphone-driven window management techniques for HMDs [271].
Purely virtual multi-display environments have also been explored in AR and VR. In 1993, Feiner et al. [103] introduced head-surrounding and world reference frames for positioning 3D windows in VR. In 1998, Billinghurst et al. [32] introduced the spatial display metaphor, in which information windows are arranged on a virtual cylinder around the user. Since then, virtual information displays have been explored in various reference systems, such as world-, object-, head-, body- or device-referenced systems [192]. Specifically, interacting with windows in body-centered reference systems [330] has attracted attention, for instance to allow fast access to virtual items [66, 202], mobile multi-tasking [99, 101] and visual analytics [100]. Lee et al. [195] investigated positioning a window in 3D space using a continuous hand gesture. Petford et al. [247] compared the selection performance of mouse and raycast pointing in full coverage displays (not in VR). Jetter et al. [164] proposed to interactively design a space with various display form factors in VR.

9 INTERACTION USING KEYBOARD AND MOUSE

Being the de facto standard for human-computer interaction in personal computing environments for decades, standard input peripherals such as keyboard and mouse, while initially used in
projection-based CAVE environments, were soon replaced by special purpose input devices and associated interaction techniques for AR and VR (see previous sections). This was partly due to the constraints of those input devices making them challenging to use for spatial input with six degrees of freedom. Physical keyboards typically support solely symbolic input. Standard computer mice are restricted to two-dimensional pointing (along with button clicks, and a scroll-wheel). However, with modern knowledge workers still relying on the efficiency of those physical input devices, researchers revisited how to use them within AR and VR.

With increasing interest in supporting knowledge work using AR and VR HMDs [130, 140, 204, 275], keyboard and mouse interaction drew attention by several researchers. The keyboard was designed for rapid entrance of symbolic information, and although it may not be the best mechanism developed for the task, its familiarity that enabled good performance by users without considerable learning efforts kept it almost unchanged for many years. However, when interacting with spatial data, they are perceived as falling short of providing efficient input capabilities [28], even though they are successfully used in many 3D environments (such as CAD or gaming [309]), can be modified to to allow 3D interaction [246, 335] or can outperform 3D input devices in specific tasks such as 3D object placement [25, 310]. Also for 3D object manipulation in AR and VR they found to be not significantly slower than a dedicated 3D input device [187].

In VR, a number of works investigated the costs of using physical keyboards for standard text entry tasks, see Figure 18. Grubert et al. [135, 136], Knierim et al. [180] as well as McGill et al. [217] found physical keyboards to be mostly usable for text entry in immersive head-mounted display-based VR but varied in their observations about the performance loss when transferring text entry from the physical to the virtual world. Pham et al. [249] deployed a physical keyboard on a tray to facilitate mobile text entry. Apart from standard QWERTY keyboards a variety of further text entry input devices and techniques have been proposed for VR, see [89].

Besides using unmodified physical keyboards, there have been several approaches in extending the basic input capabilities of physical keyboard beyond individual button presses. Specifically, input on, above and around the keyboard surface have been proposed using acoustic [171, 189], pressure [86, 208, 357], proximity [316], capacitive sensors [35, 102, 142, 268, 298, 323], cameras [175, 260, 344], body-worn orientation sensors [50] or even unmodified physical keyboards [193,
Fig. 18. Text entry in VR using standard physical keyboards using different hand representations [135]. From left to right: no representation, inverse-kinematic model, finger tip representation using spheres, video pass-through of the user’s hands.

359]. Besides sensing, actuation of keys has also been explored [9]. Embedding capacitive sensing into keyboards has been studied by various researchers. It lends itself to detect finger events on and slightly above keys and can be integrated into mass-manufacturing processes. Rekimoto et al. [268] investigated capacitive sensing on a keypad, but not a full keyboard. Habib et al. [142] and Tung et al. [323] proposed to use capacitive sensing embedded into a full physical keyboard to allow touchpad operation on the keyboard surface. Tung et al. [323] developed a classifier to automatically distinguish between text entry and touchpad mode on the keyboard. Shi et al. developed microgestures on capacitive sensing keys [297, 298]. Similarly, Zheng et al. [362, 363] explored various interaction mappings for finger and hand postures. Sekimoro et al. focused on exploring gestural interactions on the space bar [293]. Extending the idea of LCD-programmable keyboards [159], Block et al. extended the output capabilities of touch-sensitive, capacitive sensing keyboard by using a top-mounted projector [35]. Several commercial products have also augmented physical keyboards with additional, partly interactive, displays (e.g., Apple Touch Bar [2], Logitech G19 [206], Razer Death-Stalker Ultimate [262]).

Maiti et al. [215] explored the use of randomized keyboard layouts on physical keyboards using an OST display. Wang et al. [333] explored the use of an Augmented Reality extension to a desktop-based analytics environment. Specifically, they added a stereoscopic data view using a HoloLens to a traditional 2D desktop environment and interacted with keyboard and mouse across both the HoloLens and the desktop.

Schneider et al. [290] explored the design space of using physical keyboards in VR beyond text entry, see Figure 19. Specifically, they proposed three different input mappings: 1 key to 1 action (standard mode of interaction using keyboards), multiple keys to a single action (e.g., mapping a large virtual button to several physical buttons), as well as mapping a physical key to a coordinate in a two-dimensional input space. Similarly, they proposed three different output mappings: augmenting individual keys (e.g., showing an emoji on a key), augmenting on and around the keyboard (e.g., adding additional user interface elements on top of the keyboard such as virtual sliders) as well as transforming the keyboard geometry itself (e.g., only displaying single buttons, or replacing the keyboard by other visuals). Those ideas were later also considered in the domain of immersive analytics [129].

Mouse-based pointing has been studied in depth outside of AR and VR for pointing on single monitors [56] as well as multi-display environments [7, 18, 21]. However, it has been found that standard 2D mice do not adapt well to multi-display interaction [331], an issue which is also relevant for AR and VR. Consequently, standard mice have been modified in various ways to add additional degrees of freedom. For example, Villar et al. [328] explored multiple form factors for multi-touch enabled mice. Other researchers have added additional mouse sensors to support yawing [212, 244], pressure sensors for discrete selection [59, 177] to allow for three instead of two degrees of freedom.
Three-dimensional interaction was enabled using the Rockin’Mouse [10] and the VideoMouse [154]. Both works added a dome below the device to facilitate 3D interaction. Steed and Slater [307] proposed to add a dome on top of the mouse rather than below. Further form factors have also been proposed to facilitate pointing based interaction in 3D [111, 112]. Recently, researchers also worked on unifying efficient input both in 2D and 3D [246, 278].

Standard mice using a scroll wheel can also be efficiently used for 3D object selection when being combined with gaze-tracking in virtual multi-display environments [29]. For example, in the Windows Mixed Reality Toolkit [221], the x and y- movement of the mouse can be mapped to the x and y movements on a proxy shape such as a cylinder (or any object on that cylinder, like a window). The scroll wheel is used for changing the pointer depth (in discrete steps). The x- and y- movements can be limited to the current field of view of the user to allow for acceptable control to display ratios. The user gaze can then be used to change the view on different regions of the proxy shape.

10 VIRTUAL AGENTS

Virtual agents can be considered as “intelligent” software programs performing tasks on behalf of users’ questions or commands. While it can be argued, what “intelligent” really means in this context, a widely accepted characteristic of this “intelligence” is context-aware behaviour [126, 329]. This allows an agent to interact with the user and environment through sensing and acting in an independent and dynamic way. The behaviour is typically well-defined and allows to trigger actions based on a set of conditions [240]. The rise of voice assistants (or conversational agents) [157], which interact with users through natural language, has brought media attention and a prevalence in various areas such as home automation, in-car operation, automation of call centers, education and training [239].

Fig. 19. Input-output dimensions of reconfiguring physical keyboards in VR with mapped example applications, [290]. The x-axis shows input mappings and the y-axis shows output mappings. FL: Foreign Languages; EM: Emojis; SC: Special Characters; PW: Secure Password Entry; BS: Browser Shortcuts; WM = Word Macros.
In AR and VR, virtual agents often use more than a single modality for input and output. Complementary to voice input and output, virtual agents in AR and VR can typically react to body gestures or postures or even facial expressions of the users. Due to their graphical representations, those agents are embodied in the virtual world. The level of embodiment of a virtual agent has been studied extensively [84, 355]. For example, it has been shown that the effect of adding a face was larger than the effect of visual realism (both photo-realism and behavioral realism of the avatar) [355]. In VR, the level of visual realism of the virtual agent is typically matched to the visual realism of the environment, see Figure 20. In contrast, in AR, there is often a noticeable difference between the agent representation and the physical scene, and those effects are still underexplored [176], see Figure 21. Hantono et al. review the use of virtual agents in AR in educational settings. Norouzi et al. provide review of the convergence between AR and virtual agents [238].

Specifically for AR, Maes et al. [214] introduced a magic mirror AR system, in which humans could interact with a dog through both voice and gestures. Similarly, Cavazza et al. [58] allowed participants to interact with virtual agents in an interactive storytelling environment. MacIntyre et al. [210] used pre-recorded videos of physical actors to let users interact with them using OST HMDs. Anabuki et al. [1] highlight that having virtual agents and users share the same physical environment is the most distinguishing aspect of virtual agents in AR. They introduced Welbo, an animated virtual agent, which is aware of its physical environment and can avoid standing in the user’s way. Barakony et al. [12] presented AR Puppet, a system that explored the context-aware animated agents within AR. The authors investigated aspects like visualization, appearance, or behaviors. They also studied AR-specific aspects such as the ability of the agent to avoid physical obstacles or its ability to interact with physical objects. Based on this initial research, the authors explored various applications [13, 14]. Chekhlov et al. [62] presented a system based on Simultaneous Localization and Mapping (SLAM) [93], in which a virtual agent had to move in a physical environment. Blum et al. [36] introduced an outdoor AR game which included virtual agents. Kotranza et al. [184, 185] used a tangible physical representation of a human that could be touched, along with a virtual visual representation in a medical education context. They called this dual representation mixed reality humans and argued that affording touch between a human and a virtual agent enables interpersonal scenarios.
11 SUMMARY AND OUTLOOK

This chapter served as an overview of a wide variety of interaction techniques MR - covering both device- and prop-based input such as tangible interaction, pen and keyboard input as well as utilizing human effector-based input such as spatial gestures, gaze or speech.

The historical development of the presented techniques was closely coupled to the available sensing capabilities. For example, in order to recognize props such as paddles [170], they had to be large enough in order to let fiducials be recognized by low-resolution cameras. With the advancement of computer vision-based sensing, fiducials could be come smaller, change their appearance to natural looking images or be omitted altogether (e.g., for hand and finger tracking). Further, the combination of more than one modality became possible through increasing computational capabilities of MR systems.

In the future, we expect an ongoing trend of both minimizing the size and price of sensors, as well as the ubiquitous availability of those sensors, in dedicated computing devices, in everyday objects [337], on [284] or even in the human body itself [292]. Hence, MR interaction techniques will play a central role on shaping the future of both pervasive computing [126] as well as augmenting humans with (potentially) super human capabilities (e.g., motor capabilities [172, 188], cognitive and perceptual capabilities [285]). Besides technological and interaction challenges along the way, the field of MR interaction will greatly benefit from including both social and ethical implications when designing future interfaces.
REFERENCES

[1] Mahoro Anabuki, Hiroyuki Kakuta, Hiroyuki Yamamoto, and Hideyuki Tamura. 2000. Welbo: An embodied conversational agent living in mixed reality space. In CHI’00 extended abstracts on Human factors in computing systems. 10–11.

[2] Apple. [n.d.]. Apple Touch Bar. https://developer.apple.com/mac-os/touch-bar/. Last accessed 27.11.2018.

[3] Bruno Araujo, Ricardo Jota, Varun Perumal, Jia Xian Yao, Karon Singh, and Daniel Wigdor. 2016. Snake Charmer: Physically enabling virtual objects. In Proceedings of the TEI’16: Tenth International Conference on Tangible, Embedded, and Embodied Interaction. 218–226.

[4] Ferran Argelaguet and Carlos Andujar. 2013. A survey of 3D object selection techniques for virtual environments. Computers & Graphics 37, 3 (2013), 121–136.

[5] Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan Singh. 2018. Symbiosissketch: Combining 2D & 3D sketching for designing detailed 3D objects in situ. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 185.

[6] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karon Singh, and George W Fitzmaurice. 2017. Experimental Evaluation of Sketching on Surfaces in VR. In CHI, Vol. 17. 5643–5654.

[7] Mark Ashdown, Kenji Oka, and Yoichi Sato. 2005. Combining head tracking and mouse input for a GUI on multiple monitors. In CHI’05 extended abstracts on Human factors in computing systems. 1188–1191.

[8] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D Wilson. 2016. Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the 2016 chi conference on human factors in computing systems. 1968–1979.

[9] Gilles Bailly, Thomas Pietrzak, Jonathan Deber, and Daniel J Wigdor. 2013. Mêtamorphe: augmenting hotkey usage with actuated keys. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 563–572.

[10] Ravin Balakrishnan, Thomas Baudel, Gordon Kurtenbach, and George Fitzmaurice. 1997. The Rockin’Mouse: integral 3D manipulation on a plane. In Proceedings of the ACM SIGCHI Conference on Human factors in computing systems. 311–318.

[11] Yuki Ban, Takuiji Narumi, Tatsuya Fujii, Sho Sakurai, Jun Imura, Tomohiro Tanikawa, and Michitaka Hirose. 2013. Augmented endurance: controlling fatigue while handling objects by affecting weight perception using augmented reality. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 69–78.

[12] Istvan Barakonyi, Thomas Psik, and Dieter Schmalstieg. 2004. Agents that talk and hit back: Animated agents in augmented reality. In Third IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 141–150.

[13] István Barakonyi and Dieter Schmalstieg. 2005. Augmented reality agents in the development pipeline of computer entertainment. In International Conference on Entertainment Computing. Springer, 345–356.

[14] Istvan Barakonyi and Dieter Schmalstieg. 2006. Ubiquitous animated agents for augmented reality. In 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, 145–154.

[15] Domagoj Baricˇević, Cha Lee, Matthew Turk, Tobias Höllerer, and Doug A Bowman. 2012. A hand-held AR magic lens with user-perspective rendering. In 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 197–206.

[16] Emad Barsoum. 2016. Articulated hand pose estimation review. arXiv preprint arXiv:1604.06195 (2016).

[17] Anil Ufuk Batmaz, Aunnoy K Mutasim, and Wolfgang Stuerzlinger. [n.d.]. Precision vs. Power Grip: A Comparison of Pen Grip Styles for Selection in Virtual Reality. ([n. d.]).

[18] Patrick Baudisch, Edward Cutrell, Ken Hinckley, and Robert Gruen. 2004. Mouse ether: accelerating the acquisition of targets across multi-monitor displays. In CHI’04 extended abstracts on Human factors in computing systems. 1379–1382.

[19] Patrick Baudisch, Nathaniel Good, and Paul Stewart. 2001. Focus plus context screens: combining display technology with visualization techniques. In Proceedings of the 14th annual ACM symposium on User interface software and technology. 31–40.

[20] Dominikus Baur, Sebastian Boring, and Steven Feiner. 2012. Virtual projection: exploring optical projection as a metaphor for multi-device interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1693–1702.

[21] Hrvoje Benko and Steven Feiner. 2005. Multi-monitor mouse. In CHI’05 extended abstracts on Human factors in computing systems. 1208–1211.

[22] Hrvoje Benko, Christian Holz, Mike Sinclair, and Eyal Ofek. 2016. Normaltouch and texturetouch: High-fidelity 3D haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 717–728.

[23] Hrvoje Benko, Edward W Ishak, and Steven Feiner. 2005. Cross-dimensional gestural interaction techniques for hybrid immersive environments. In IEEE Proceedings. VR 2005. Virtual Reality. 2005. IE EE, 209–216.

[24] Hrvoje Benko, Ricardo Jota, and Andrew Wilson. 2012. MirageTable: freehand interaction on a projected augmented reality tabletop. In Proceedings of the SIGCHI conference on human factors in computing systems. 199–208.
[25] François Bérard, Jessica Ip, Mitchel Benovoy, Dalia El-Shimy, Jeffrey R Blum, and Jeremy R Cooperstock. 2009. Did “Minority Report” get it wrong? Superiority of the mouse over 3D input devices in a 3D placement task. In *IFIP Conference on Human-Computer Interaction*. Springer, 400–414.

[26] Carlos Bermejo and Pan Hui. 2017. A survey on haptic technologies for mobile augmented reality. *arXiv preprint arXiv:1709.00698* (2017).

[27] Florent Berthault. 2019. 3D interaction techniques for musical expression. *Journal of New Music Research* (2019), 1–13.

[28] Lonni Besançon, Paul Issartel, Mehdi Ammi, and Tobias Isenberg. 2017. Mouse, tactile, and tangible input for 3D manipulation. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*. 4727–4740.

[29] Verena Biener, Daniel Schneider, Travis Gesslein, A. Otte, B. Kuth, Per Ola Kristensson, Eyal Ofek, Michel Pahud, and Jens Grubert. 2020. Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers. *IEEE Transactions on Visualization and Computer Graphics* 01 (oct 2020), 1–1. https://doi.org/10.1109/TVCG.2020.3023567

[30] Eric A Bier, Maureen C Stone, Ken Pier, William Buxton, and Tony D DeRose. 1993. Toolglass and magic lenses: the see-through interface. In *Proceedings of the 20th annual conference on Computer graphics and interactive techniques*. ACM, 73–80.

[31] Mark Billinghurst, Sisinio Baldi, Lydia Matheson, and Mark Philips. 1997. 3D palette: a virtual reality content creation tool. In *Proceedings of the ACM symposium on Virtual reality software and technology*. 155–156.

[32] Mark Billinghurst, Jerry Bowskil, Mark Jessop, and Jason Morphett. 1998. A wearable spatial conferencing space. In *Digest of Papers. Second International Symposium on Wearable Computers (Cat. No. 98EX215)*. IEEE, 76–83.

[33] Mark Billinghurst, Raphael Grasset, and Julian Looser. 2005. Designing augmented reality interfaces. *ACM Siggraph Computer Graphics* 39, 1 (2005), 17–22.

[34] Oliver Bimber and Ramesh Raskar. 2005. *Spatial augmented reality: merging real and virtual worlds*. CRC press.

[35] Florian Block, Hans Gellersen, and Nicolas Villar. 2010. Touch-display keyboards: transforming keyboards into interactive surfaces. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. ACM, 1145–1154.

[36] Lisa Blum, Richard Wetzel, Rod McCaill, Leif Oppermann, and Wolfgang Broll. 2012. The final TimeWarp: using form and content to support player experience and presence when designing location-aware mobile augmented reality games. In *Proceedings of the designing interactive systems conference*. 711–720.

[37] Richard A Bolt. 1980. “Put-that-there” Voice and gesture at the graphics interface. In *Proceedings of the 7th annual conference on Computer graphics and interactive techniques*. 262–270.

[38] Sebastian Boring and Dominikus Baur. 2012. Making public displays interactive everywhere. *IEEE computer graphics and applications* 33, 2 (2012), 28–36.

[39] Sebastian Boring, Dominikus Baur, Andreas Butz, Sean Gustafson, and Patrick Baudisch. 2010. Touch projector: mobile interaction through video. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. 2287–2296.

[40] Sebastian Boring, Sven Gehring, Alexander Wiethoff, Anna Magdalena Blöckner, Johannes Schönig, and Andreas Butz. 2011. Multi-user interaction on media facades through live video on mobile devices. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. 2721–2724.

[41] Doug Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan P Poupyrev. 2004. *3D User interfaces: theory and practice, CourseSmart eTextbook*. Addison-Wesley.

[42] Doug A Bowman and Chadwick A Wingrave. 2001. Design and evaluation of menu systems for immersive virtual environments. In *Proceedings IEEE Virtual Reality Reality*. 2001. IEEE, 149–156.

[43] Alan Bränzel, Christian Holz, Daniel Hoffmann, Dominik Schmidt, Marius Knaust, Patrick Lühne, René Meusel, Stephan Richter, and Patrick Baudisch. 2013. GravitySpace: tracking users and their poses in a smart room using a pressure-sensing floor. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. 725–734.

[44] Leonard D Brown and Hong Hua. 2006. Magic lenses for augmented virtual environments. *IEEE Computer Graphics and Applications* 26, 4 (2006), 64–73.

[45] Leonard D Brown, Hong Hua, and Chunyu Gao. 2003. A widget framework for augmented interaction in SCAPE. In *Proceedings of the 16th annual ACM symposium on User interface software and technology*. 1–10.

[46] Thomas Brown and Richard C Thomas. 2000. Finger tracking for the digital desk. In *Proceedings First Australasian User Interface Conference. AUIC 2000 (Cat. No. PR00515)*. IEEE, 11–16.

[47] Frederik Brudy, Christian Holz, Roman Rädle, Chi-Jui Wu, Steven Houben, Clemens Nylandsted Klokmose, and Nicolai Marquardt. 2013. Cross-device taxonomy: survey, opportunities and challenges of interactions spanning across multiple devices. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*. 1–28.

[48] Grigore Burdea, Paul Richard, and Philippe Coiffet. 1996. Multimodal virtual reality: Input-output devices, system integration, and human factors. *International Journal of Human-Computer Interaction* 8, 1 (1996), 5–24.

[49] Alisa Burova, John Mäkelä, Jaakko Hakulinen, Tuuli Keskinen, Hanna Heinonen, Sanni Siltanen, and Markku Turunen. 2020. Utilizing VR and Gaze Tracking to Develop AR Solutions for Industrial Maintenance. In *Proceedings of the 2020
Mixed Reality Interaction Techniques

50. Daniel Buschek, Bianka Roppelt, and Florian Alt. 2018. Extending Keyboard Shortcuts with Arm and Wrist Rotation Gestures. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. ACM, 21.

51. Wolfgang Büschel, Jian Chen, Raimund Dachselt, Steven Drucker, Tim Dwyer, Carsten Görö, Tobias Isenberg, Andreas Kerren, Chris North, and Wolfgang Stuerzinger. 2018. Interaction for immersive analytics. In Immersive Analytics. Springer, 95–138.

52. Simon Butcher, Sebastian Hubenschmid, Jens Müller, Johannes Fuchs, and Harald Reiterer. 2018. Clusters, trends, and outliers: How immersive technologies can facilitate the collaborative analysis of multidimensional data. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–12.

53. Andreas Butz, Tobias Hollerer, Steven Feiner, Blair MacIntyre, and Clifford Beshers. 1999. Enveloping users and computers in a collaborative 3D augmented reality. In Proceedings 2nd IEEE and ACM International Workshop on Augmented Reality (IWAR ’99). IEEE, 35–44.

54. Polona Caserman, Augusto Garcia-Agundez, and Stefan Göbel. 2019. A Survey of Full-Body Motion Reconstruction in Immersive Virtual Reality Applications. IEEE transactions on visualization and computer graphics (2019).

55. Polona Caserman, Augusto Garcia-Agundez, Robert Konrad, Stefan Göbel, and Ralf Steinmetz. 2019. Real-time body tracking in virtual reality using a Vive tracker. Virtual Reality 23, 2 (2019), 155–168.

56. Géry Casiez, Daniel Vogel, Ravin Balakrishnan, and Andy Cockburn. 2008. The impact of control-display gain on user performance in pointing tasks. Human–computer interaction 23, 3 (2008), 215–250.

57. John P. Cater. 1994. Smell/taste: odors in reality. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Vol. 2. IEEE, 1781–vol.

58. Marc Cavazza, Olivier Martin, Fred Charles, Steven J. Mead, and Xavier Marichal. 2003. Interacting with virtual agents in mixed reality interactive storytelling. In International Workshop on Intelligent Virtual Agents. Springer, 231–235.

59. Jared Cecchanowicz, Pourang Irani, and Srijit Subramanian. 2007. Augmenting the mouse with pressure sensitive input. In Proceedings of the SIGCHI conference on Human factors in computing systems. 1385–1394.

60. Young-Woon Cha, True Price, Zhen Wei, Xinran Lu, Nicholas Rewkowski, Rohan Chabrba, Zhe Qin, Hyoughun Kim, Zhaqi Su, Yebin Liu, et al. 2018. Towards fully mobile 3D face, body, and environment capture using only head-worn cameras. IEEE transactions on visualization and computer graphics 24, 11 (2018), 2993–3004.

61. Leith KY Chan and Henry YK Lau. 2012. MagicPad: the projection based 3D user interface. International Journal on Interactive Design and Manufacturing (IJDeM) 6, 2 (2012), 75–81.

62. Denis Chekhlov, Andrew P. Gee, Andrew Calway, and Walterio Mayol-Cuevas. 2007. Ninja on a plane: Automatic discovery of physical planes for augmented reality using visual slam. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 153–156.

63. Lulu Chen, Hong Wei, and James Ferryman. 2013. A survey of human motion analysis using depth imagery. Pattern Recognition Letters 34, 15 (2013), 1995–2006.

64. Shu-Yu Chen, Lin Gao, Yu-Kun Lai, Paul L Rosin, and Shihong Xia. 2018. Real-time 3D face reconstruction and gaze tracking for virtual reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 525–526.

65. Xiang’Anthony’ Chen, Tovi Grossman, Daniel J Wigdor, and George Fitzmaurice. 2014. Duet: exploring joint interactions on a smartphone and a smartwatch. In Proc. CHI ‘14. ACM, 159–168.

66. Xiang Anthony Chen, Nicolai Marquardt, Anthony Tang, Sebastian Boring, and Saul Greenberg. 2012. Extending a mobile devices interaction space through body-centric interaction. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services. ACM, 151–160.

67. Yucheng Chen, Yingli Tian, and Mingyi He. 2020. Monocular human pose estimation: A survey of deep learning-based methods. Computer Vision and Image Understanding (2020), 102897.

68. Lung-Pan Cheng, Patrick Lührne, Pedro Lopes, Christoph Sterz, and Patrick Baudisch. 2014. Haptic turk: a motion method based on people. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 3463–3472.

69. Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrovje Benko, and Andrew D Wilson. 2017. Sparse haptic proxy: Touch feedback in virtual environments using a general passive prop. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 3718–3728.

70. Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick Baudisch. 2015. Turkdeck: Physical virtual reality based on people. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 417–426.

71. Jan Ciger, Mario Gutierrez, Frederic Vexo, and Daniel Thalmann. 2003. The magic wand. In Proceedings of the 19th spring conference on Computer graphics. 119–124.

72. Philip Cohen, David McGee, Sharon Oviatt, Lihzhong Wu, Josh Clow, Rob King, Simon Julier, and Lawrence Rosenblum. 1999. Multimodal interaction for 2D and 3D environments [virtual reality]. IEEE Computer Graphics and Applications 19, 4 (1999), 10–13.
Barret Ens, Benjamin Bach, Maxime Cordeil, Engelke Ulrich, Marcos Serrano, Wesley Willet, Arnaud Prouzeau, Christoph Anthes, Wolfgang Büscher, Cody Dunne, Tim Dwyer, Jens Grubert, Haga Jason, Nuri Kirhsenbaum, Dylan Kobayashi, Tica Lin, Monsurat Olaosebikan, Fabian Pointecker, David Saffo, Nazmus Saquib, Dieter Schmalstieg, Danielle Albers Szafir, Matt Whitlock, and Yang Yang. 2021. Grand Challenges in Immersive Analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.

Barrett Ens, Juan David Hincapí-Ramos, and Pourang Irani. 2014. Ethereal planes: a design framework for 2D information space in 3D mixed reality environments. In Proceedings of the 2nd ACM symposium on Spatial user interaction. ACM, 2–12.

Barrett Ens and Pourang Irani. 2016. Spatial analytic interfaces: Spatial user interfaces for in situ visual analytics. IEEE computer graphics and applications 37, 2 (2016), 66–79.

Barrett M Ens, Rory Finnegan, and Pourang P Irani. 2014. The personal cockpit: a spatial interface for effective task switching on head-worn displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3171–3180.

Wolfgang Fallot-Burghardt, Morten Fjeld, C Speirs, S Ziegenspeck, Helmut Krueger, and Thomas Läubli. 2006. Touch&Type: a novel pointing device for notebook computers. In Proceedings of the 4th Nordic conference on Human-computer interaction: changing roles. ACM, 465–468.

Steven Feiner, Blair Maclntyre, Marcus Haupt, and Eliot Solomon. 1993. Windows on the world: 2 D windows for 3 D augmented reality. In ACM Symposium on User Interface Software and Technology. 145–155.

Steven Feiner and Ari Shamash. 1991. Hybrid user interfaces: Breeding virtually bigger interfaces for physically smaller computers. In Proceedings of the 4th annual ACM symposium on User interface software and technology. 9–17.

Andreas Rene Fender, Hrvoje Benko, and Andy Wilson. 2017. Meetalive: Room-scale omni-directional display system for multi-user content and control sharing. In Proceedings of the 2017 ACM international conference on interactive surfaces and spaces. 106–115.

Michele Fiorentino, Antonio E Uva, and Giuseppe Monno. 2005. The Senstylus: a novel rumble-feedback pen device for CAD application in Virtual Reality. (2005).

Patrick Tobias Fischer and Eva Hornecker. 2012. Urban HCI: spatial aspects in the design of shared encounters for media facades. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 307–316.

Morten Fjeld and Benedikt M Voegtl. 2002. Augmented chemistry: An interactive educational workbench. In Proceedings. International Symposium on Mixed and Augmented Reality. IEEE, 259–321.

Sean Follmer, Daniel Leithinger, Alex Olwal, Akimitsu Hogge, and Hiroshi Ishii. 2013. inFORM: dynamic physical affordances and constraints through shape and object actuation. In UIST. Vol. 13. 2501988–2502032.

Euan Freeman, Stephen Brewster, and Vuokko Lantz. 2014. Towards Usable and Acceptable Above-device Interactions. In Proc. MobileHCI ’14 (Toronto, ON, Canada). ACM, 459–464. https://doi.org/10.1145/2628363.2634215

Bernd Froehlich, Jan Hochstrate, Verena Skuk, and Anke Huckauf. 2006. The globefish and the globemouse: two new six degree of freedom input devices for graphics applications. In Proceedings of the SIGCHI conference on Human factors in computing systems. 191–199.

Bernd Fröhlich and John Plate. 2000. The cubic mouse: a new device for three-dimensional input. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems. 526–531.

Alberto Gallace, Mary K Ngo, John Sulaitis, and Charles Spence. 2012. Multisensory presence in virtual reality: possibilities & limitations. In Multiple sensorial media advances and applications: New developments in MulSeMedia. IGI Global, 1–38.

Danilo Gasques, Janet G Johnson, Tommy Sharkey, and Nadir Weibel. 2019. PintAR: Sketching Spatial Experiences in Augmented Reality. In Companion Publication of the 2019 on Designing Interactive Systems Conference 2019 Companion. ACM, 17–20.

Danilo Gasques, Janet G Johnson, Tommy Sharkey, and Nadir Weibel. 2019. What you sketch is what you get: Quick and easy augmented reality prototyping with pintar. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. 1–6.

Travis Gesslein, Verena Biener, Phillip Gagel, Daniel Schneider, Eyal Ofek, Michel Pahud, Per Ola Kristensson, and Jens Grubert. 2020. Pen-based Interaction with Spreadsheets in Mobile Virtual Reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE.

Wenjuan Gong, Xuenia Zhang, Jordi González, Andrews Sobral, Thierry Bouwmans, Changhe Tu, and El-hadi Zahzah. 2016. Human pose estimation from monocular images: A comprehensive survey. Sensors 16, 12 (2016), 1966.

José Luis Gustavo Grandi, Henrique Galvan Debarba, Luciana Nedel, and Anderson Maciel. 2017. Design and evaluation of a handheld-based 3D user interface for collaborative object manipulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 5881–5891.

Jens Grubert, Matthias Heinisch, Aaron Quigley, and Dieter Schmalstieg. 2015. Multi2: Multi fidelity interaction with displays on and around the body. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems.
Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. 2019. Deep Learning for 3D

Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Text entry in immersive head-mounted display-based virtual reality using standard keyboards. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 159–166.

Jens Grubert, Matthias Kränz. 2017. Headphones: Ad hoc mobile multi-display environments through head tracking. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 3966–3971.

Jens Grubert and Matthias Kränz. 2017. mpCube: Towards a mobile perspective cubic display using mobile phones. In 2017 IEEE Virtual Reality (VR). IEEE, 459–460.

Jens Grubert and Matthias Kränz. 2017. Towards ad hoc mobile multi-display environments on commodity mobile devices. In 2017 IEEE Virtual Reality (VR). IEEE, 461–462.

Jens Grubert, Matthias Kranz, and Aaron Quigley. 2015. Design and technology challenges for body proximate display ecosystems. In Proceedings of the 17th international conference on human-computer interaction with mobile devices and services adjacent. 951–954.

Jens Grubert, Matthias Kranz, and Aaron Quigley. 2016. Challenges in mobile multi-device ecosystems. mUX: The Journal of Mobile User Experience 5, 1 (2016), 1–22.

Jens Grubert, Tobias Langlotz, Stefanie Zollmann, and Holger Regenbrecht. 2016. Towards pervasive augmented reality: Context-awareness in augmented reality. IEEE transactions on visualization and computer graphics 23, 6 (2016), 1706–1724.

Jens Grubert, Ann Morrison, Helmut Munz, and Gerhard Reitmayr. 2012. Playing it real: magic lens and static peephole interfaces for games in a public space. In Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services. 231–240.

Jens Grubert, Eyal Ofek, Michel Pahud, Matthias Kranz, and Dieter Schmalstieg. 2016. Glasshands: Interaction around unmodified mobile devices using sunglasses. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces. 215–224.

Jens Grubert, Eyal Ofek, Michel Pahud, and booktitle=Workshop on Envisioning Future Productivity for Immersive Analytics at ACM CHI 2020 year=2020 organization=ACM Kristensson, Per Ola. [n.d.]. Back to the Future: Revisiting Mouse and Keyboard Interaction for HMD-based Immersive Analytics.

Jens Grubert, Eyal Ofek, Michel Pahud, Per Ola Kristensson, Frank Steinicke, and Christian Sandor. 2018. The office of the future: Virtual, portable, and global. IEEE computer graphics and applications 38, 6 (2018), 125–133.

Jens Grubert, Michel Pahud, Raphael Grasset, Dieter Schmalstieg, and Hartmut Seichter. 2015. The utility of magic lens interfaces on handheld devices for touristic map navigation. Pervasive and Mobile Computing 18 (2015), 88–103.

Jens Grubert and Dieter Schmalstieg. 2013. Playing it real again: a repeated evaluation of magic lens and static peephole interfaces in public space. In Proceedings of the 15th international conference on Human-computer interaction with mobile devices and services. 99–102.

Jens Grubert, Hartmut Seichter, and Dieter Schmalstieg. 2014. Towards user perspective augmented reality for public displays. In 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 339–340.

Jens Grubert, Johannes Tuemle, Ruediger Mecke, and Michael Schenk. 2010. Comparative User Study of two See-through Calibration Methods. VR 10, 269-270 (2010), 16.

Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Effects of hand representations for typing in virtual reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 151–158.

Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Text entry in immersive head-mounted display-based virtual reality using standard keyboards. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 159–166.

Jan Gugenheimer, David Dobbelstein, Christian Winkler, Gabriel Haas, and Enrico Rukzio. 2016. Facetouch: Enabling touch interaction in display fixed uis for mobile virtual reality. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 49–60.

Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, and Enrico Rukzio. 2017. Sharevr: Enabling co-located experiences for virtual reality between hmd and non-hmd users. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 4021–4033.

Jan Gugenheimer, Evgeny Stemasov, Harpreet Sareen, and Enrico Rukzio. 2017. FaceDisplay: enabling multi-user interaction for mobile virtual reality. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. 369–372.

Jie Guo, Dongdong Weng, Zhenliang Zhang, Haiyan Jiang, Yue Liu, Yongtian Wang, and Henry Been-Lirn Duh. 2019. Mixed Reality Office System Based on Maslow’s Hierarchy of Needs: Towards the Long-Term Immersion in Virtual Environments. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 224–235.

Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Bennamoun. 2019. Deep Learning for 3D Point Clouds: A Survey. arXiv preprint arXiv:1912.12033 (2019).
[142] Iman Habib, Niklas Berggren, Erik Rehn, Gustav Josefsson, Andreas Kunz, and Morten Fjeld. 2009. Dgts: Integrated typing and pointing. In *IFIP Conference on Human-Computer Interaction*. Springer, 232–235.

[143] Rolf R Hainich and Oliver Bimber. 2016. *Displays: fundamentals & applications*. CRC press.

[144] Felix G Hamza-Lup, Crenguta M Bogdan, Dorin M Popovici, and Ovidiu D Costea. 2019. A survey of visuo-haptic simulation in surgical training. *arXiv preprint arXiv:1903.03272* (2019).

[145] Chris Hand. 1997. A survey of 3D interaction techniques. In *Computer graphics forum*, Vol. 16. Wiley Online Library, 269–281.

[146] Daniel Harley, Aneshes P Tarun, Daniel Germinario, and Ali Mazale. 2017. Tangible vr: Diegetic tangible objects for virtual reality narratives. In *Proceedings of the 2017 Conference on Designing Interactive Systems*. 1253–1263.

[147] Chris Harrison, Hrvoje Benko, and Andrew D Wilson. 2011. OmniTouch: wearable multitouch interaction everywhere. In *Proceedings of the 24th annual ACM symposium on User interface software and technology*. 441–450.

[148] Alexander G Hauptmann. 1989. Speech and gestures for graphic image manipulation. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. 241–245.

[149] Gunther Heidemann, Ingo Bax, and Holger Bekel. 2004. Multimodal interaction in an augmented reality scenario. In *Proceedings of the 6th international conference on Multimodal interfaces*. 53–60.

[150] Morton L Hilig. 1962. Sensorama simulator. US Patent 3,050,870.

[151] Steven Henderson and Steven Feiner. 2010. Opportunistic tangible user interfaces for augmented reality. *IEEE Transactions on Visualization and Computer Graphics* 16, 1 (2010), 4–16.

[152] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing reality: Enabling opportunistic use of everyday objects as tangible proxies in augmented reality. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems*. 1957–1967.

[153] Alex Hill, Jacob Schiefer, Jeff Wilson, Brian Davidson, Maribeth Gandy, and Blair MacIntyre. 2011. Virtual transparency: Introducing parallax view into video see-through AR. In *2011 16th IEEE International Symposium on Mixed and Augmented Reality*. IEEE, 239–240.

[154] Ken Hinckley, Mike Sinclair, Erik Hanson, Richard Szeliski, and Matt Conway. 1999. The videogame: a camera-based multi-degree-of-freedom input device. In *Proceedings of the 12th annual ACM symposium on User interface software and technology*. 103–112.

[155] Hunter G Hoffman, Ari Hollander, Konrad Schroder, Scott Rousseau, and Tom Furness. 1998. Physically touching and tasting virtual objects enhances the realism of virtual experiences. *Virtual Reality* 3, 4 (1998), 226–234.

[156] David Holman, Roel Vertegaal, Mark Alotta, Nikoas Troje, and Derek Johns. 2005. Paper windows: interaction techniques for digital paper. In *Proceedings of the SIGCHI conference on Human factors in computing systems*. 591–599.

[157] Matthew B Hoy. 2018. Alexa, Siri, Cortana, and more: an introduction to voice assistants. *Medical reference services quarterly* 37, 1 (2018), 81–88.

[158] Wolfgang Hürst and Casper Van Wezel. 2013. Gesture-based interaction via finger tracking for mobile augmented reality. *Multimedia Tools and Applications* 62, 1 (2013), 233–258.

[159] I/O Universal Technologies Inc. [n.d.]. A Brief History of the LCD Key Technology. http://www.lcd-keys.com/english/history.htm. Last accessed 27.11.2018.

[160] Brent Edward Insko, M Meehan, M Whitton, and F Brooks. 2001. Passive haptics significantly enhances virtual environments. Ph.D. Dissertation. University of North Carolina at Chapel Hill.

[161] Paul Issartel, Lonni Besançon, Tobias Isenberg, and Mehdi Ammi. 2016. A tangible volume for portable 3d interaction. In *Proceedings of the 6th international conference on Multimodal interfaces*. 1–16.

[162] Alejandro Jaimes and Nicu Sebe. 2007. Multimodal human–computer interaction: A survey. *Computer vision and image understanding* 108, 1–2 (2007), 116–134.

[163] Jacek Jankowski and Martin Hachet. 2013. A survey of interaction techniques for interactive 3D environments.

[164] Hans-Christian Jetter, Roman Rädle, Tiare Feuchtner, Christoph Anthes, Judith Friedl, and Clemens Nylandsted Klokmose. 2020. “ In VR, everything is possible!“: Sketching and Simulating Spatially-Aware Interactive Spaces in Virtual Reality. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*. 1–16.

[165] Fan Jiang, Xubo Yang, and Lele Feng. 2016. Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices. In *Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry-Volume 1*. 309–318.

[166] Brett Jones, Rajinder Sodhi, Michael Murdock, Ravish Mehra, Hrvoje Benko, Andrew Wilson, Eyal Ofek, Blair MacIntyre, Nikunj Raghuvasanthi, and Lior Shapira. 2014. RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units. In *Proceedings of the 27th annual ACM symposium on User interface software and technology*. 637–644.

[167] Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D Wilson. 2013. IllumiRoom: peripheral projected illusions for interactive experiences. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*. 869–878.
28 Grubert

[168] Ed Kaiser, Alex Olwal, David McGee, Hrvoje Benko, Andrea Corradini, Xiaoguang Li, Phil Cohen, and Steven Feiner. 2003. Mutual disambiguation of 3D multimodal interaction in augmented and virtual reality. In Proceedings of the 5th international conference on Multimodal interfaces. 12–19.

[169] Hirokazu Kato. 2007. Inside ARToolKit. In 1st IEEE International Workshop on Augmented Reality Toolkit.

[170] Hirokazu Kato, Mark Billinghurst, Ivan Poupyrev, Kenji Imamoto, and Keihachiro Tachibana. 2000. Virtual object manipulation on a table-top AR environment. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000). Ieee, 111–119.

[171] Jun Kato, Daisuke Sakamoto, and Takeo Igarashi. 2010. Surfboard: keyboard with microphone as a low-cost interactive surface. In Adjunct proceedings of the 23rd annual ACM symposium on User interface software and technology. ACM, 387–388.

[172] H Kazerooni. 2008. A review of the exoskeleton and human augmentation technology. In Dynamic Systems and Control Conference, Vol. 43352. 1539–1547.

[173] Daniel F Keefe, Daniel Acevedo Feliz, Tomer Mosovich, David H Laidlaw, and Joseph J LaViola Jr. 2001. CavePainting: a fully immersive 3D artistic medium and interactive experience. In Proceedings of the 2001 symposium on Interactive 3D graphics. 85–93.

[174] David Kim, Otmar Hilliges, Shahram Izadi, Alex D Butler, Jiawen Chen, Jason Oikonomidis, and Patrick Olivier. 2012. Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor. In Proceedings of the 25th annual ACM symposium on User interface software and technology. 167–176.

[175] David Kim, Shahram Izadi, Jakub Dostal, Christoph Rhemann, Cem Keskin, Christopher Zach, Jamie Shotton, Timothy Large, Steven Bathiche, Matthias Nießner, et al. 2014. RetroDepth: 3D silhouette sensing for high-precision input on and above physical surfaces. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems. ACM, 1377–1386.

[176] Kangsoo Kim, Luke Boelling, Steffen Haesler, Jeremy Bailenson, Gerd Bruder, and Greg F Welch. 2018. Does a digital assistant need a body? The influence of visual embodiment and social behavior on the perception of intelligent virtual agents in AR. In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 105–114.

[177] Seoktae Kim, Hyunjung Kim, Boram Lee, Tek-Jin Nam, and Woohun Lee. 2008. Inflatable mouse: volume-adjustable mouse with air-pressure-sensitive input and haptic feedback. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 211–224.

[178] Matjaž Kljun, Klen Copić Pucihar, Jason Alexander, Maheshya Weerasinghe, Cuahtli Campos, Julie Ducasse, Barbara Kopacin, Jens Grubert, Paul Coulton, and Miha Čelar. 2019. Augmentation not duplication: considerations for the design of digitally-augmented comic books. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[179] Pascal Knierim, Francisco Kiss, and Albrecht Schmidt. 2018. Look inside: understanding thermal flux through augmented reality. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 170–171.

[180] Pascal Knierim, Valentin Schwind, Anna Maria Feit, Florian Nieuwenhuizen, and Niels Henze. 2018. Physical keyboards in virtual reality: Analysis of typing performance and effects of avatar hands. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–9.

[181] Luv Kohli, Eric Burns, Dorian Miller, and Henry Fuchs. 2005. Combining passive haptics with redirected walking. In Proceedings of the 2005 international conference on Augmented tele-existence. 253–254.

[182] Naoya Koizumi, Hidekazu Tanaka, Yuji Uema, and Masahiko Inami. 2011. Chewing jockey: augmented food texture by using sound based on the cross-modal effect. In Proceedings of the 8th International Conference on Advances in Computer Entertainment Technology. 1–4.

[183] Mathias Kolsch, Matthew Turk, and Tobias Hollerer. 2004. Vision-based interfaces for mobility. In The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. MOBIQUITOUS 2004. IEEE, 86–94.

[184] Aaron Kotranza and Benjamin Lok. 2008. Virtual human+ tangible interface= mixed reality human an initial exploration with a virtual breast exam patient. In 2008 IEEE Virtual Reality Conference. IEEE, 99–106.

[185] Aaron Kotranza, Benjamin Lok, Adeline Deladisma, Carla M Pugh, and D Scott Lind. 2009. Mixed reality humans: Evaluating behavior, usability, and acceptability. IEEE Transactions on Visualization and Computer Graphics 15, 3 (2009), 369–382.

[186] Sven Kratz and Michael Rohs. 2009. Hoverflow: exploring around-device interaction with IR distance sensors. In Proc. MobileHCI ’09. ACM, 42.

[187] Max Krichenbauer, Goshiyo Yamamoto, Takanumi Taketom, Christian Sandor, and Hirokazu Kato. 2017. Augmented reality versus virtual reality for 3d object manipulation. IEEE transactions on visualization and computer graphics 24, 2 (2017), 1038–1048.
[188] Kai Kunze, Kouta Minamizawa, Stephan Lukosch, Masahiko Inami, and Jun Rekimoto. 2017. Superhuman sports: Applying human augmentation to physical exercise. *IEEE Pervasive Computing* 16, 2 (2017), 14–17.

[189] Toshifumi Kuroswa, Buntarou Shizuki, and Jiro Tanaka. 2013. Keyboard Clawing: input method by clawing key tops. In *International Conference on Human-Computer Interaction*. Springer, 272–280.

[190] Mikko Kytö, Barrett Ens, Thammathip Pumsomboon, Gun A Lee, and Mark Billinghurst. 2018. Pinpointing: Precise Head-and Eye-Based Target Selection for Augmented Reality. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*. ACM, 81.

[191] J LaViola. 1999. Whole-hand and speech input in virtual environments. *Unpublished master’s thesis, Department of Computer Science, Brown University*, CS-99-15 (1999).

[192] Joseph J LaViola Jr, Ernst Kruijff, Ryan P McMahan, Doug Bowman, and Ivan P Poupyrev. 2017. *3D user interfaces: theory and practice*. Addison-Wesley Professional.

[193] Byungjoo Lee, Haesun Park, and Hyunwoo Bang. 2013. Multidirectional Pointing Input Using a Hardware Keyboard. *ETRI Journal* 35, 6 (2013), 1160–1163.

[194] Gun A Lee, Gerard J Kim, and Mark Billinghurst. 2007. Interaction design for tangible augmented reality applications. In *Emerging technologies of augmented reality: Interfaces and design*. IGI Global, 261–282.

[195] Joon Hyub Lee, Sang-Gyun An, Yongkwon Kim, and Seok-Hyung Bae. 2018. Projective Windows: Bringing Windows in Space to the Fingertip. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*. ACM, 218.

[196] Lik-Hang Lee and Pan Hui. 2018. Interaction methods for smart glasses: A survey. *IEEE Access* 6 (2018), 28712–28732.

[197] Minkyung Lee, Richard Green, and Mark Billinghurst. 2008. 3D natural hand interaction for AR applications. In 2008 23rd International Conference Image and Vision Computing New Zealand. IEEE, 1–6.

[198] Taehee Lee and Tobias Hollerer. 2007. Handy AR: Markerless inspection of augmented reality objects using fingertip tracking. In 2007 11th IEEE International Symposium on Wearable Computers. IEEE, 83–90.

[199] Sang-won Leigh, Philipp Schoessler, Felix Heibeck, Pattie Maes, and Hiroshi Ishii. 2015. THAW: tangible interaction with see-through augmentation for smartphones on computer screens. In *Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction*. ACM, 89–96.

[200] Daniel Leithinger, Sean Follmer, Alex Olwal, Samuel Luescher, Akimitsu Hogge, Jinha Lee, and Hiroshi Ishii. 2013. Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. In *Proceedings of the SIGCHI conference on human factors in computing systems*. 1441–1450.

[201] Vernon W Lemmon. 1937. Extra-sensory perception. *The Journal of Psychology* 4, 1 (1937), 227–238.

[202] Frank Chun Yat Li, David Dearman, and Khai N Truong. 2009. Virtual shelves: interactions with orientation aware devices. In *Proceedings of the 22nd annual ACM symposium on User interface software and technology*. ACM, 125–128.

[203] Rui Li, Zhenyu Liu, and Jianrong Tan. 2019. A survey on 3D hand pose estimation: Cameras, methods, and datasets. *Pattern Recognition* 93 (2019), 251–272.

[204] Zhen Li, Michelle Annett, Ken Hinckley, Karan Singh, and Daniel Wigdor. 2019. HoloDoc: Enabling Mixed Reality Workspaces that Harness Physical and Digital Content. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*. ACM, 687.

[205] Zhao Liu, Jianke Zhu, Jiajun Bu, and Chun Chen. 2015. A survey of human pose estimation: the body parts parsing based methods. *Journal of Visual Communication and Image Representation* 32 (2015), 10–19.

[206] Logitech. [n.d.]. Logitech G19 Keyboard for Gaming. https://support.logitech.com/en_us/product/g19-keyboard-for-gaming. Last accessed 27.11.2018.

[207] Julian Looser, Raphael Grasset, and Mark Billinghurst. 2007. A 3D flexible and tangible magic lens in augmented reality. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 51–54.

[208] Chen Change Loy, W Lai, and C Lim. 2005. Development of a pressure-based typing biometrics user authentication system. *ASEAN Virtual Instrumentation Applications Contest Submission* (2005).

[209] Zhixiong Lu, Yongtao Hu, and Jingwen Dai. [n.d.]. WatchAR: 6-DoF Tracked Watch for AR Interaction. In *IEEE ISMAR 2019 Demonstrations*.

[210] Blair MacIntyre, Jay David Bolter, Emmanuel Moreno, and Brendan Hannigan. 2001. Augmented reality as a new media experience. In *Proceedings IEEE and ACM International Symposium on Augmented Reality*. IEEE, 197–206.

[211] Wendy E Mackay and Anne-Laure Fayard. 1999. Designing interactive paper: lessons from three augmented reality projects. In *Proceedings of the international workshop on Augmented reality: placing artificial objects in real scenes: placing artificial objects in real scenes*. AK Peters, Ltd., 81–90.

[212] I Scott MacKenzie, R William Soukoreff, and Chris Pal. 1997. A two-ball mouse affords three degrees of freedom. In *CHI’97 Extended Abstracts on Human Factors in Computing Systems*. 303–304.

[213] Byungjoo Lee, Haesun Park, and Hyunwoo Bang. 2013. Multidirectional Pointing Input Using a Hardware Keyboard. *ETRI Journal* 35, 6 (2013), 1160–1163.

[214] Joon Hyub Lee, Sang-Gyun An, Yongkwon Kim, and Seok-Hyung Bae. 2018. Projective Windows: Bringing Windows in Space to the Fingertip. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*. ACM, 218.

[215] Lik-Hang Lee and Pan Hui. 2018. Interaction methods for smart glasses: A survey. *IEEE Access* 6 (2018), 28712–28732.

[216] Frank Chun Yat Li, David Dearman, and Khai N Truong. 2009. Virtual shelves: interactions with orientation aware devices. In *Proceedings of the 22nd annual ACM symposium on User interface software and technology*. ACM, 125–128.

[217] Rui Li, Zhenyu Liu, and Jianrong Tan. 2019. A survey on 3D hand pose estimation: Cameras, methods, and datasets. *Pattern Recognition* 93 (2019), 251–272.

[218] Zhen Li, Michelle Annett, Ken Hinckley, Karan Singh, and Daniel Wigdor. 2019. HoloDoc: Enabling Mixed Reality Workspaces that Harness Physical and Digital Content. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*. ACM, 687.

[219] Zhao Liu, Jianke Zhu, Jiajun Bu, and Chun Chen. 2015. A survey of human pose estimation: the body parts parsing based methods. *Journal of Visual Communication and Image Representation* 32 (2015), 10–19.

[220] Logitech. [n.d.]. Logitech G19 Keyboard for Gaming. https://support.logitech.com/en_us/product/g19-keyboard-for-gaming. Last accessed 27.11.2018.

[221] Julian Looser, Raphael Grasset, and Mark Billinghurst. 2007. A 3D flexible and tangible magic lens in augmented reality. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, 51–54.

[222] Chen Change Loy, W Lai, and C Lim. 2005. Development of a pressure-based typing biometrics user authentication system. *ASEAN Virtual Instrumentation Applications Contest Submission* (2005).

[223] Zhixiong Lu, Yongtao Hu, and Jingwen Dai. [n.d.]. WatchAR: 6-DoF Tracked Watch for AR Interaction. In *IEEE ISMAR 2019 Demonstrations*.

[224] Blair MacIntyre, Jay David Bolter, Emmanuel Moreno, and Brendan Hannigan. 2001. Augmented reality as a new media experience. In *Proceedings IEEE and ACM International Symposium on Augmented Reality*. IEEE, 197–206.

[225] Wendy E Mackay and Anne-Laure Fayard. 1999. Designing interactive paper: lessons from three augmented reality projects. In *Proceedings of the international workshop on Augmented reality: placing artificial objects in real scenes: placing artificial objects in real scenes*. AK Peters, Ltd., 81–90.

[226] I Scott MacKenzie, R William Soukoreff, and Chris Pal. 1997. A two-ball mouse affords three degrees of freedom. In *CHI’97 Extended Abstracts on Human Factors in Computing Systems*. 303–304.

[227] A MacWilliams, C Sandor, M Wagner, M Bauer, G Klinker, and B Bruegge. 2003. Herding Sheep: Live System Development for Distributed Augmented Reality. ISMAR’03: Proceedings of the 2nd IEEE. In *ACM International Symposium on Mixed and Augmented Reality*. 123.
[214] Pattie Maes, Trevor Darrell, Bruce Blumberg, and Alex Pentland. 1997. The ALIVE system: Wireless, full-body interaction with autonomous agents. Multimedia systems 5, 2 (1997), 105–112.

[215] Anindyaa Maiti, Murtuza Jadiwala, and Chase Weber. 2017. Preventing shoulder surfing using randomized augmented reality keyboards. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 630–635.

[216] Asier Marzo, Benoît Bossavit, and Martin Hachet. 2014. Combining multi-touch input and device movement for 3D manipulations in mobile augmented reality environments. In Proceedings of the 2nd ACM symposium on Spatial user interaction. ACM, 13–16.

[217] Mark McGill, Daniel Boland, Roderick Murray-Smith, and Stephen Brewster. 2015. A dose of reality: Overcoming usability challenges in vr head-mounted displays. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2143–2152.

[218] William A McNeely. 1993. Robotic graphics: a new approach to force feedback for virtual reality. In Proceedings of IEEE Virtual Reality Annual International Symposium. IEEE, 336–341.

[219] Daniel Mendes, Fabio Marco Caputo, Andrea Giachetti, Alfredo Ferreira, and J Jorge. 2019. A survey on 3D virtual object manipulation: From the desktop to immersive virtual environments. In Computer graphics, Vol. 38. Wiley Online Library, 21–45.

[220] Tim Menzner, Travis Gesslein, Alexander Otte, and Jens Grubert. 2020. Above Surface Interaction for Multiscale Navigation in Mobile Virtual Reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 372–381.

[221] Microsoft. 2019. Getting started with the Windows Mixed Reality Toolkit. https://microsoft.github.io/MixedRealityToolkit-Unity/Documentation/GettingStartedWithTheMRTK.html. [Online; accessed 31-May-2020].

[222] Mark R Mine. 1995. Virtual environment interaction techniques. UNC Chapel Hill CS Dept.

[223] James Minogue and M Gail Jones. 2006. Haptics in education: Exploring an untapped sensory modality. Review of Educational Research 76, 3 (2006), 317–348.

[224] Pranav Mistry and Pattie Maes. 2009. SixthSense: a wearable gestural interface. In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies: Adaptation. 85–85.

[225] Peter Mohr, Markus Tatgern, Jens Grubert, Dieter Schmalstieg, and Denis Kalkofen. 2017. Adaptive user perspective rendering for handheld augmented reality. In 2017 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 176–181.

[226] Ann Morrison, Antti Oulasvirta, Peter Peltonen, Saija Lemmela, Giulio Jacucci, Gerhard Reitmayr, Jaana Näsänen, and Antti Juustila. 2009. Like bees around the hive: a comparative study of a mobile augmented reality map. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1889–1898.

[227] Annette Moseil, Benjamin Venditti, and Hannes Kaufmann. 2013. 3DTouch and HOMER-S: intuitive manipulation techniques for one-handed handheld augmented reality. In Proceedings of the Virtual Reality International Conference: Laval Virtual. ACM, 12.

[228] Alessandro Mulloni, Jens Grubert, Hartmut Seichter, Tobias Langlotz, Raphael Grasset, Gerhard Reitmayr, and Dieter Schmalstieg. 2012. Experiences with the impact of tracking technology in mobile augmented reality evaluations. In MobileHCT 2012 Workshop MobIVis, Vol. 2. Citeseer.

[229] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. 2008. Head pose estimation in computer vision: A survey. Multimedia systems 5, 2 (1997), 105–112.

[230] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. 2008. Preventing shoulder surfing using randomized augmented reality keyboards. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 630–635.

[231] Asier Marzo, Benoît Bossavit, and Martin Hachet. 2014. Combining multi-touch input and device movement for 3D manipulations in mobile augmented reality environments. In Proceedings of the 2nd ACM symposium on Spatial user interaction. ACM, 13–16.

[232] Mark McGill, Daniel Boland, Roderick Murray-Smith, and Stephen Brewster. 2015. A dose of reality: Overcoming usability challenges in vr head-mounted displays. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. 2143–2152.

[233] William A McNeely. 1993. Robotic graphics: a new approach to force feedback for virtual reality. In Proceedings of IEEE Virtual Reality Annual International Symposium. IEEE, 336–341.

[234] Daniel Mendes, Fabio Marco Caputo, Andrea Giachetti, Alfredo Ferreira, and J Jorge. 2019. A survey on 3D virtual object manipulation: From the desktop to immersive virtual environments. In Computer graphics, Vol. 38. Wiley Online Library, 21–45.

[235] Pranav Mistry and Pattie Maes. 2009. SixthSense: a wearable gestural interface. In ACM SIGGRAPH ASIA 2009 Art Gallery & Emerging Technologies: Adaptation. 85–85.

[236] Peter Mohr, Markus Tatgern, Jens Grubert, Dieter Schmalstieg, and Denis Kalkofen. 2017. Adaptive user perspective rendering for handheld augmented reality. In 2017 IEEE Symposium on 3D User Interfaces (3DUI). IEEE, 176–181.

[237] Ann Morrison, Antti Oulasvirta, Peter Peltonen, Saija Lemmela, Giulio Jacucci, Gerhard Reitmayr, Jaana Näsänen, and Antti Juustila. 2009. Like bees around the hive: a comparative study of a mobile augmented reality map. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1889–1898.

[238] Annette Moseil, Benjamin Venditti, and Hannes Kaufmann. 2013. 3DTouch and HOMER-S: intuitive manipulation techniques for one-handed handheld augmented reality. In Proceedings of the Virtual Reality International Conference: Laval Virtual. ACM, 12.

[239] Alessandro Mulloni, Jens Grubert, Hartmut Seichter, Tobias Langlotz, Raphael Grasset, Gerhard Reitmayr, and Dieter Schmalstieg. 2012. Experiences with the impact of tracking technology in mobile augmented reality evaluations. In MobileHCT 2012 Workshop MobIVis, Vol. 2. Citeseer.

[240] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. 2008. Preventing shoulder surfing using randomized augmented reality keyboards. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 630–635.

[241] Asier Marzo, Benoît Bossavit, and Martin Hachet. 2014. Combining multi-touch input and device movement for 3D manipulations in mobile augmented reality environments. In Proceedings of the 2nd ACM symposium on Spatial user interaction. ACM, 13–16.
[282] Munehiko Sato, Ivan Pouporyev, and Chris Harrison. 2012. Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 483–492.

[283] Dieter Schmalstieg, L Miguel Encarnação, and Zsolt Szalavári. 1999. Using transparent props for interaction with the virtual table. *SID 99* (1999), 147–153.

[284] Albrecht Schmidt. 2015. Biosignals in human-computer interaction. *Interactions* 23, 1 (2015), 76–79.

[285] Albrecht Schmidt. 2017. Augmenting human intellect and amplifying perception and cognition. *IEEE Pervasive Computing* 16, 1 (2017), 6–10.

[286] Dominik Schmidt, Julian Seifert, Enrico Rukzio, and Hans Gellersen. 2012. A Cross-device Interaction Style for Mobiles and Surfaces. In *Proc. DIS ’12*.

[287] Susanne Schmidt, Gerd Bruder, and Frank Steinicke. 2019. Effects of virtual agent and object representation on experiencing exhibited artifacts. *Computers & Graphics* 83 (2019), 1–10.

[288] Daniel Schneider and Jens Grubert. 2017. [POSTER] Feasibility of Corneal Imaging for Handheld Augmented Reality. In *2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct)*. IEEE, 44–45.

[289] Daniel Schneider and Jens Grubert. 2017. Towards Around-Device Interaction using Corneal Imaging. In *Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces*. 287–293.

[290] Daniel Schneider, Alexander Otte, Travis Gesslein, Philipp Gabel, Bastian Kuth, Mohammad Shahm Damlakhi, Oliver Dietz, Eyal Ofek, Michel Pahud, Per Ola Kristensson, et al. 2019. ReconVigura tion: Reconfiguring Physical Keyboards in Virtual Reality. *IEEE transactions on visualization and computer graphics* (2019).

[291] Daniel Schneider, Alexander Otte, Axel Simon Kublin, Per Ola Kristensson, Eyal Ofek, Michel Pahud, Alexander Martschenko, and Jens Grubert. 2020. Accuracy of Commodity Finger Tracking Systems for Virtual Reality Head-Mounted Displays. In *IEEE VR 2020*. IEEE, IEEE. https://www.microsoft.com/en-us/research/publication/accuracy-of-commodity-finger-tracking-systems-for-virtual-reality-head-mounted-displays/.

[292] mc schraefel. 2019. in5: a Model for Inbodied Interaction. In *Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems*. 1–6.

[293] Kodai Sekimori, Yusuke Yamasaki, Yuki Takagi, Kazuma Murata, Buntarou Shizuki, and Shin Takahashi. 2018. Ex-space: Expanded space key by sliding thumb on home position. In *International Conference on Human-Computer Interaction*. Springer, 68–78.

[294] Marcos Serrano, Barrett Ens, Xing-Dong Yang, and Pourang Irani. 2015. Gluey: Developing a head-worn display interface to unify the interaction experience in distributed display environments. In *Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services*. 161–171.

[295] Orit Shaer and Eva Hornecker. 2010. Tangible user interfaces: past, present, and future directions. *Foundations and trends in human-computer interaction* 3, 1–2 (2010), 1–137.

[296] Yan Shen, Soh-Khim Ong, and Andrew YC Nee. 2011. Vision-based hand interaction in augmented reality environment. *Intl. Journal of Human–Computer Interaction* 27, 6 (2011), 523–544.

[297] Yilei Shi, Tomáš Vega Gálvez, Haimo Zhang, and Suranga Nanayakkara. 2017. Gestakey: Touch Interaction on Individual Keycaps. In *Proceedings of the 2017 ACM Conference on Human Factors in Computing Systems*. ACM, 596.

[298] Ludwig Sidenmark and Hans Gellersen. 2019. Eye&Head: Synergetic Eye and Head Movement for Gaze Pointing and Selection. In *Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology*. 1161–1174.

[299] Ludwig Sidenmark, Diako Mardanbegi, Argenis Ramirez Gomez, Christopher Clarke, and Hans Gellersen. 2020. BimodalGaze: Seamlessly Refined Pointing with Gaze and Filtered Gestural Head Movement. In *Proceedings of Eye Tracking Research and Applications*.

[300] Adalberto L Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional reality: Using the physical environment to design virtual reality experiences. In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*. 3307–3316.

[301] Hari Singh and Jaswinder Singh. 2019. Object Acquisition and Selection in Human Computer Interaction Systems: A Review. *International Journal of Intelligent Systems and Applications in Engineering* 7, 1 (2019), 19–29.

[302] Jie Song, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem Keskin, and Otmar Hilliges. 2014. In-air gestures around unmodified mobile devices. In *Proceedings of the 27th annual ACM symposium on User interface software and technology*. ACM, 319–329.

[303] Marco Speicher, Anna Maria Feit, Pascal Ziegler, and Antonio Krüger. 2018. Selection-Based Text Entry in Virtual Reality. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18)*. Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174221
[305] Martin Spindler and Raimund Dachselt. 2009. PaperLens: advanced magic lens interaction above the tabletop. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces. ACM, 7.

[306] Martin Spindler, Christian Tominski, Heidrun Schumann, and Raimund Dachselt. 2010. Tangible views for information visualization. In ACM International Conference on Interactive Tabletops and Surfaces. ACM, 157–166.

[307] Anthony Steed and Mel Slater. 1995. 3d interaction with the desktop bat. In Computer Graphics Forum, Vol. 14. Wiley Online Library, 97–104.

[308] Jürgen Steimle, Andreas Jördt, and Pattie Maes. 2013. Flexpad: highly flexible bending interactions for projected handheld displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 237–246.

[309] Wolfgang Stuerzlzinger and Chadwick A Wingrave. 2011. The value of constraints for 3D user interfaces. In Virtual Realities. Springer, 203–223.

[310] Junwei Sun, Wolfgang Stuerzlzinger, and Bernhard E Riecke. 2018. Comparing input methods and cursors for 3D positioning with head-mounted displays. In Proceedings of the 15th ACM Symposium on Applied Perception. 1–8.

[311] Hemant Bhaskar Surale, Aakar Gupta, Mark Hancock, and Daniel Vogel. 2019. TabletInVR: Exploring the Design Space for Using a Multi-Touch Tablet in Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 13.

[312] Ryo Suzuki, Hooman Hedayati, Clement Zheng, James L Bohn, Daniel Szafrir, Ellen Yi-Luen Do, Mark D Gross, and Daniel Leithinger. 2020. RoomShift: Room-scale Dynamic Haptics for VR with Furniture-moving Swarm Robots. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–11.

[313] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and Daniel Leithinger. 2020. RealitySketch: Embedding Responsive Graphics and Visualizations in AR with Dynamic Sketching. In Adjunct Publication of the 33rd Annual ACM Symposium on User Interface Software and Technology. 135–138.

[314] Zsolt Szalavári and Michael Gervautz. 1997. The personal interaction Panel—a Two-Handed interface for augmented reality. In Computer graphics forum, Vol. 16. Wiley Online Library, C335–C346.

[315] Vildan Tanriverdi and Robert JK Jacob. 2000. Interacting with eye movements in virtual environments. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems. 265–272.

[316] Stuart Taylor, Cem Keskin, Otmar Hilliges, Shahram Izadi, and John Helmes. 2014. Type-hover-swipe in 96 bytes: a motion sensing mechanical keyboard. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems. ACM, 1695–1704.

[317] Robert J Teather and Wolfgang Stuerzlzinger. 2011. Pointing at 3D targets in a stereo head-tracked virtual environment. In 2011 IEEE Symposium on 3D User Interfaces (3DUl). IEEE, 87–94.

[318] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian Theobalt, and Matthias Nießner. 2018. FaceVR: Real-time gaze-aware facial reenactment in virtual reality. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1–15.

[319] Christian Tominski, Stefan Gladisch, Ulrike Kister, Raimund Dachselt, and Heidrun Schumann. 2014. A Survey on Interactive Lenses in Visualization.. In EuroVis (STARs). Citeseer.

[320] Christian Tominski, Stefan Gladisch, Ulrike Kister, Raimund Dachselt, and Heidrun Schumann. 2017. Interactive lenses for visualization: An extended survey. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 173–200.

[321] Makoto Tomioaka, Sei Ikeda, and Kosuke Sato. 2013. Approximated user-perspective rendering in tablet-based augmented reality. In 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 21–28.

[322] Michael Tsang, George W Fitzmaurice, Gordon Kurtenbach, Azam Khan, and Bill Buxton. 2002. Boom chameleon: motion sensing mechanical keyboard. In Proceedings of the 15th annual ACM symposium on User interface software and technology. 111–120.

[323] Ying-Chao Tung, Ta Yang Cheng, Neng-Hao Yu, Chiuan Wang, and Mike Y Chen. 2015. FlickBoard: Enabling trackpad interaction with automatic mode switching on a capacitive-sensing keyboard. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 1387–1850.

[324] Matthew Turk. 2014. Multimodal interaction: A review. Pattern Recognition Letters 36 (2014), 189–195.

[325] Brygg Ullmer and Hiroshi Ishii. 1997. The metaDESKe: models and prototypes for tangible user interfaces. In Proceedings of Symposium on User Interface Software and Technology (UIST ’97). ACM.

[326] John Underkoffler and Hiroshi Ishii. 1998. Illuminating light: an optical design tool with a luminous-tangible interface. In Proceedings of the SIGCHI conference on Human factors in computing systems. 542–549.

[327] John Underkoffler and Hiroshi Ishii. 1999. Urp: a luminous-tangible workbench for urban planning and design. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems. 386–393.

[328] Nicolas Villar, Shahram Izadi, Dan Rosenfeld, Hrvoje Benko, John Helmes, Jonathan Westhues, Steve Hodges, Eyal Ofek, Alex Butler, Xiang Cao, et al. 2009. Mouse 2.0: multi-touch meets the mouse. In Proceedings of the 22nd annual ACM symposium on User interface software and technology. 33–42.

[329] Sarah Theres Völkel, Christina Schneegass, Malin Eiband, and Daniel Buschek. 2020. What is “intelligent” in intelligent user interfaces? a meta-analysis of 25 years of IUI. In Proceedings of the 25th International Conference on Intelligent User Interfaces. 477–487.
[330] Julie Wagner, Mathieu Nancel, Sean G Gustafson, Stephane Huot, and Wendy E Mackay. 2013. Body-centric design space for multi-surface interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1299–1308.

[331] Manuela Waldner, Ernst Krujiff, and Dieter Schmalstieg. 2010. Bridging gaps with pointer warping in multi-display environments. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries. 813–816.

[332] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupirev, and Otmar Hilliges. 2016. Interacting with soli: Exploring fine-grained dynamic gesture recognition in the radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 851–860.

[333] Xiyao Wang, Lonni Besançon, David Rousseau, Mickael Sereno, Mehdi Ammi, and Tobias Isenberg. 2020. Towards an Understanding of Augmented Reality Extensions for Existing 3D Data Analysis Tools. In ACM Conference on Human Factors in Computing Systems.

[334] Yuntao Wang, Zichao Chen, Hanchuan Li, Zhengyi Cao, Huiyi Luo, Tengxiang Zhang, Ke Ou, John Raiti, Chun Yu, Shwetak Patel, et al. 2020. MoveVR: Enabling Multiform Force Feedback in Virtual Reality using Household Cleaning Robot. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 1–12.

[335] Colin Ware and Kathy Lowther. 1997. Selection using a one-eyed cursor in a fish tank VR environment. ACM Transactions on Computer-Human Interaction (TOCHI) 4, 4 (1997), 309–322.

[336] Kent Watsen, Rudolph Darken, and Michael Capps. 1999. A handheld computer as an interaction device to a virtual environment. In Proceedings of the third immersive projection technology workshop.

[337] Mark Weiser. 1999. The computer for the 21st century. ACM SIGMOBILE mobile computing and communications review 3, 3 (1999), 3–11.

[338] Pierre Wellner. 1991. The DigitalDesk calculator: tangible manipulation on a desk top display. In Proceedings of the 4th annual ACM symposium on User interface software and technology. 27–33.

[339] Pierre Wellner. 1993. Interacting with paper on the DigitalDesk. Commun. ACM 36, 7 (1993), 87–96.

[340] Dirk Wenig, Johannes Schöning, Alex Olwal, Mathias Oben, and Rainer Malaka. 2017. WatchThru: Expanding Smartwatch Displays with Mid-air Visuals and Wrist-worn Augmented Reality. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. 716–721.

[341] Eleanora P Westebring-van der Putten, Richard HM Goossens, Jack J Jakimowicz, and Jenny Dankelman. 2008. Haptics in minimally invasive surgery—a review. Minimally Invasive Therapy & Allied Technologies 17, 1 (2008), 3–16.

[342] Daniel Wigdor, Clifton Forlines, Patrick Baudisch, John Barnwell, and Chia Shen. 2007. Lucid Touch: A See-through Mobile Device. In Proc. UIST ’07 (Newport, Rhode Island, USA) (UIST ’07). ACM, New York, NY, USA, 269–278. https://doi.org/10.1145/1294211.1294259

[343] Andrew Wilson, Hrvoje Benko, Shahram Izadi, and Otmar Hilliges. 2012. Steerable augmented reality with the beamatron. In Proceedings of the 25th annual ACM symposium on User interface software and technology. 413–422.

[344] Andrew D Wilson. 2006. Robust computer vision-based detection of pinching for one and two-handed gesture input. In Proceedings of the 19th annual ACM symposium on User interface software and technology. ACM, 255–258.

[345] Dennis Wolf, John J Dudley, and Per Ola Kristensson. 2018. Performance envelopes of in-air direct and smartwatch indirect control for head-mounted reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 347–354.

[346] Yi-Chin Wu, Liwei Chan, and Wen-Chieh Lin. 2019. Tangible and Visible 3D Object Reconstruction in Augmented Reality. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 26–36.

[347] Pingjun Xia, António M Lopes, and Maria Teresa Restivo. 2013. A review of virtual reality and haptics for product assembly (part 1): rigid parts. Assembly Automation (2013).

[348] Robert Xiao, Chris Harrison, and Scott E Hudson. 2013. WorldKit: rapid and easy creation of ad-hoc interactive applications on everyday surfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 879–888.

[349] Robert Xiao, Greg Lew, James Marsanico, Divya Harigharan, Scott Hudson, and Chris Harrison. 2014. Toffee: enabling ad hoc, around-device interaction with acoustic time-of-arrival correlation. In Proc. MobileHCI ’14. ACM, 67–76.

[350] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D Wilson, and Hrvoje Benko. 2018. MRTouch: adding touch input to head-mounted mixed reality. IEEE transactions on visualization and computer graphics 24, 4 (2018), 1653–1660.

[351] Min Xin, Ehud Sharlin, and Mario Costa Sousa. 2008. Napkin sketch: handheld mixed reality 3D sketching. In Proceedings of the 2008 ACM symposium on Virtual reality software and technology. 223–226.

[352] Xing-Dong Yang, Tovi Grossman, Daniel Wigdor, and George Fitzmaurice. 2012. Magic finger: always-available input through finger instrumentation. In Proceedings of the 25th annual ACM symposium on User interface software and technology. 147–156.

[353] Xing-Dong Yang, Khalad Hasan, Neil Bruce, and Pourang Irani. 2013. Surround-see: enabling peripheral vision on smartphones during active use. In Proceedings of the 26th annual ACM symposium on User interface software and
Brandon Yee, Yuan Ning, and Hod Lipson. 2009. Augmented reality in-situ 3D sketching of physical objects. In Intelligent UI workshop on sketch recognition, Vol. 1. Citeseer.

Nick Yee, Jeremy N Bailenson, and Kathryn Rickertsen. 2007. A meta-analysis of the impact of the inclusion and realism of human-like faces on user experiences in interfaces. In Proceedings of the SIGCHI conference on Human factors in computing systems. 1–10.

Cik Suhaime Yusof, Huidong Bai, Mark Billinghurst, and Mohd Shahrizal Sunar. 2016. A review of 3D gesture interaction for handheld augmented reality. Jurnal Teknologi 78, 2–2 (2016).

Wolfgang L Zagler, Christian Beck, and Gottfried Seisenbacher. 2003. FASTY-faster and easier text generation for disabled people. na.

Robert C Zeleznik, Andrew S Forsberg, and Jürgen P Schulze. 2005. Look-that-there: Exploiting gaze in virtual reality interactions. Technical report, Technical Report CS-05 (2005).

Haimo Zhang and Yang Li. 2014. GestKeyboard: enabling gesture-based interaction on ordinary physical keyboard. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1675–1684.

Yang Zhang, Chouchang Yang, Scott E Hudson, Chris Harrison, and Alanson Sample. 2018. Wall++ Room-Scale Interactive and Context-Aware Sensing. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1–15.

Chen Zhao, Ke-Yu Chen, Md Tanvir Islam Aumi, Shwetak Patel, and Matthew S. Reynolds. 2014. SideSwipe: Detecting In-air Gestures Around Mobile Devices Using Actual GSM Signal. In Proc. UIST ’14 (Honolulu, Hawaii, USA). ACM, New York, NY, USA, 527–534. https://doi.org/10.1145/2642918.2647380

Jingjie Zheng, Blaine Lewis, Jeff Avery, and Daniel Vogel. 2018. Fingerarc and fingerchord: Supporting novice to expert transitions with guided finger-aware shortcuts. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. 347–363.

Jingjie Zheng and Daniel Vogel. 2016. Finger-aware shortcuts. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. 4274–4285.

Fengyuan Zhu and Tovi Grossman. 2020. BISHARE: Exploring Bidirectional Interactions Between Smartphones and Head-Mounted Augmented Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM.

Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo Beeler, Patrick Pérez, Marc Stamminger, Matthias Nießner, and Christian Theobalt. 2018. State of the art on monocular 3D face reconstruction, tracking, and applications. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 523–550.