Draft Genome Sequence of *Bacillus velezensis* Lzh-a42, a Plant Growth-Promoting Rhizobacterium Isolated from Tomato Rhizosphere

Zhenghua Li,a,b Mei Chen,a,b Kun Ran,c Jihua Wang,a,b Qiangcheng Zeng,d Feng Songa,b

aShandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
bCollege of Physics and Electronic Information, Dezhou University, Dezhou, China
cShandong Institute of Pomology, Taian, China
dCollege of Life Sciences, Dezhou University, Dezhou, China

ABSTRACT The plant growth-promoting rhizobacterium *Bacillus velezensis* strain Lzh-a42, which has antimicrobial activity, was isolated from tomato rhizosphere. Here, we report its genome sequence, which includes several predicted functional genes related to secondary metabolite biosynthesis, antimicrobial activity, and biofilm synthesis.

Bacteria associated with the rhizosphere are generally referred to as plant growth-promoting rhizobacteria (PGPRs) (1). Various bacterial species have been reported as PGPRs, including some *Bacillus* species (2). For example, *B. velezensis* is a widespread PGPR in rhizosphere soil, and it was reported that *B. velezensis* G341 could secrete bacillomycin L and fengycin A with antifungal activity (3). *B. velezensis* ZJ20 (4), *B. velezensis* YJ11-1-4 (5), *B. velezensis* GQJK49 (6), and *B. velezensis* 2A-2B (7) were also found to exert antifungal effects on plant-pathogenic fungi.

B. velezensis strain Lzh-a42 was isolated from tomato rhizosphere soil samples from the city of Dezhou, Shandong Province, China. This PGPR strain had antimicrobial activity toward some plant pathogens, including *Fusarium moniliforme*.

From this study, we report the draft genome sequence of *B. velezensis* Lzh-a42. Whole-genome DNA was extracted and then sequenced using the PacBio and Illumina MiSeq systems, respectively. The raw data were filtered and assembled with SPAdes version 3.9.0 (8) and A5-miseq version 20150522 (9), which generated 1,237 Mb of total clean data with a genome coverage of 278.0×. Two scaffolds were finally obtained, and the total length of the genome was 4,246,605 bp, with a GC content of 45.99%, which is similar to those of *B. velezensis* subsp. plantarum YAU B9601-Y2 (99%) (GenBank accession no. HE774679), *B. velezensis* Y2 (99%) (CP003332), and *B. velezensis* CN026 (99%) (CP024897).

A total of 4,402 open reading frames, 4,074 functional genes, 86 tRNAs, and 27 rRNAs were predicted in the genome of *B. velezensis* Lzh-a42. Moreover, 2,888 of the 4,074 genes (70.9%) were classified into 22 classes of Clusters of Orthologous Groups of proteins (COG) functional categories, and 118 genes (including 19 polyketide synthases and 10 nonribosomal peptide synthetases) were predicted to be involved in secondary metabolism biosynthesis and catabolism. Gene clusters for synthesizing secondary metabolism with antagonistic action were also found in the genome. For example, there were genes coding for the antibiotics bacilysin (*bacABCDE*; CXP43_RS19760 to CXP43_RS19740) (10), fengycin (*fenEDCBA*; CXP43_RS10610 to CXP43_RS10630) (11), bacillomycin (*bmyCBAD*; CXP43_RS10480 to CXP43_RS10495) (12), and surfactin (*srfAACD*; CXP43_RS01800 to CXP43_RS01810) (11). Genes coding for the...
antibacterial polyketides bacilisine (CXP43_RS08875 to CXP43_RS08920) (13) and diff-
cificin (CXP43_RS12585 to CXP43_RS12655) (12) were also predicted.

B. velezensis Lzh-a42 also possesses the ability to synthesize biofilm. The genes for
biofilm synthesis (14), including tapA (CXP43_RS13100), sipW (CXP43_RS13095), rafA
(CXP43_RS13090) operon, bslA (CXP43_RS15835), and epsABCDE (CXP43_RS18010
to CXP43_RS18030) were identified, as were their regulators, Spo0A (GenPept accession
no. WP_003153177), SinR (WP_003153104), and SirR (WP_007407395).

The genome sequence of *B. velezensis* Lzh-a42 presented here will help us to
understand the strain's mechanisms for antimicrobial activity and biofilm synthesis and
its potential use as a biocontrol agent for disease management and enhancing agri-
cultural productivity.

Accession number(s). This whole-genome shotgun project has been deposited in
GenBank under the accession no. CP025308.

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Shandong Province
(ZR2015CQ002), the Taishan Young Scholars Program of Shandong Province of China
(tsqn20161049), the Talent Introduction Project of Dezhou University of China
(2016jrc10), the Projects of Science and Technology for Colleges and Universities in
Shandong Province (J17KA099 and J15LE09), and the National Natural Science Foun-
dation of China (31500606 and 61671107).

REFERENCES

1. Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria
(PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:
1327–1350. https://doi.org/10.1007/s11274-011-0979-9.

2. Joseph B, Ranjan Patra R, Lawrence R. 2012. Characterization of plant
growth promoting rhizobacteria associated with chickpea (*Cicer ariet-
num* L.). Int J Plant Prod 1:141–152. https://doi.org/10.22069/ijpp.2012.
332.

3. Lim SM, Yoon MY, Choi GJ, Choi YH, Jang KS, Shin TS, Park HW, Yu NH,
Kim YH, Kim JC. 2017. Diffusible and volatile antifungal compounds
produced by an antagonistic *Bacillus velezensis* G341 against various
phytopathogenic fungi. Plant Pathol J 33:488–498. https://doi.org/10.
5423/PPJ.OA.04.2017.0073.

4. Xu T, Zhu T, Li S. 2016. Beta-1,3-1,4-glucanase gene from *Bacillus velezen-
sis* J220 exerts antifungal effect on plant pathogenic fungi. World J
Microbiol Biotechnol 32:26. https://doi.org/10.1007/s11274-015-1985-0.

5. Lee JK, Park CH, Jeon HH, Kwon YB, Lee SH. 2017. Complete genome
sequence of *Bacillus velezensis* YJ11-1-4, a strain with broad-spectrum
antimicrobial activity, isolated from traditional Korean fermented soy-
bean paste. Genome Announc 5(48):e01352-17. https://doi.org/10.1128/
genomeA.01352-17.

6. Ma J, Liu H, Liu K, Wang C, Li Y, Hou Q, Yao L, Cui Y, Zhang T, Wang H,
Wang B, Wang Y, Ge R, Xu B, Yao G, Xu W, Fan L, Ding Y, Du B. 2017.
Complete genome sequence of *Bacillus velezensis* GQJK49, a plant
growth-promoting rhizobacterium with antifungal activity. Genome An-
nounc 5(35):e00922-17. https://doi.org/10.1128/genomeA.00922-17.

7. Martinez-Raudales I, De La Cruz-Rodriguez Y, Alvarado-Gutierrez A,
Vega-Arreguin J, Fraire-Mayorga A, Alvarado-Rodriguez M, Balderas-
Hernandez V, Fraire-Velazquez S. 2017. Draft genome sequence of
Bacillus velezensis 2A-2B strain: a rhizospheric inhabitant of *Sporobolus
airoides* (Torr.) Torr., with antifungal activity against root rot causing
phytopathogens. Stand Genomic Sci 12:73. https://doi.org/10.1186/s40793-
017-0289-4.

8. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyshkin AV, Sirokin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new
genome assembly algorithm and its applications to single-cell sequenc-
ing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.

9. Codd G, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to
assemble microbial genomes from Illumina MiSeq data. Bioinformatics
31:587–589. https://doi.org/10.1093/bioinformatics/btu661.

10. Rajavel M, Mitra A, Gopal B. 2009. Role of *Bacillus subtilis* BacB in the
synthesis of bacilysin. J Biol Chem 284:31882–31892. https://doi.org/10.
1074/jbc.M109.014522.

11. Jin Q, Jiang Q, Zhao L, Su C, Li S, Si F, Li S, Zhou C, Mu Y, Xiao M. 2017.
Complete genome sequence of *Bacillus velezensis* S3-1, a potential
biological pesticide with plant pathogen inhibiting and plant promoting
capabilities. J Biotechnol 259:199–203. https://doi.org/10.1016/j.jbiotec-
2017.07.011.

12. Luo C, Liu X, Zhou H, Wang X, Chen Z. 2015. Nonribosomal peptide
synthase gene clusters for lipopeptide biosynthesis in *Bacillus subtilis*
916 and their phenotypic functions. Appl Environ Microbiol 81:422–431.
https://doi.org/10.1128/AEM.02921-14.

13. Guo S, Li X, He P, Ho H, Wu Y, He Y. 2015. Whole-genome sequencing of
Bacillus subtilis XF-1 reveals mechanisms for biological control and mul-
tiple beneficial properties in plants. J Ind Microbiol Biotechnol 42:
925–937. https://doi.org/10.1007/s10295-015-1612-y.

14. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. 2013. Sticking
together: building a biofilm the *Bacillus subtilis* way. Nat Rev Microbiol
11:157–168. https://doi.org/10.1038/nrmicro2960.