EVALUATION OF PHARMACOGNOSTICAL CHARACTERS, PHYTOCHEMICAL SCREENING, AND IN-VITRO ANTIBACTERIAL ACTIVITY OF Clematis buchananian DE CANDOLLE (RANUNCULACEAE)

Prabal Sharma¹*, Prosanta Pal²a, Amitava Roy²b, Koushik Sen Gupta²c, Bapi Ray Sarkar²d, Pradeep Saha³, and Sonam Bhutia⁴

¹*Himalayan Pharmacy Institute, Majhitar, Sikkim University, East Sikkim, India-737135
²a,b,c,dDepartment of Pharmaceutical Technology, University of North Bengal, West Bengal, India-734013
³Shivalik College of Pharmacy, Nangal, Punjab, Panjab University, India-140126
⁴Department of Pharmacognosy, Government Pharmacy College Sajong, Government of Sikkim, Sikkim University, Sajong, Rumtek, East Sikkim, India-737135

*Corresponding Author: sonamkzbhutia@gmail.com

ABSTRACT
Phytotherapy is used as a complementary approach to the prevention and treatment of many diseases. Clematis buchananian, Family: Ranunculaceae (Buttercup family) possess medicinal value and are used as an anti-inflammatory, for peptic ulcer, treatment of ingestion, applied externally to cuts and wounds and sinusitis. The purpose of the present study is to establish the standardized identification parameters such as pharmacognostic characteristics and phytochemical composition, antioxidant, and antibacterial activities of Clematis buchananian leaves extract. Pharmacognostical analysis indicates that the leaf surface is oval, hairy, and pilose, and has an acute apex. Microscopic characteristics reveal the upper epidermis has a single layer with a thin cuticle and inter-spread with numerous actinocytic stomata and unicellular and multiseriate trichomes. The Stomatal number: 168-192 (lower epidermis), Stomatal index: 14.28 %, Vein-Islet number: 48-54 and Vein termination number: 24-30 respectively. The extractive values for alcoholic and water-soluble were found to be 6.8% w/w and 4.5% w/w respectively. The phytochemical screening of extracts exhibited the presence of alkaloids, carbohydrates, saponins and proteins. The methanolic extracts of leaves of Clematis buchananian at a concentration of 500µg/ml showed high potency against gram-negative bacteria such as Salmonella typhi and Escherichia coli. The extract showed maximum scavenging activity of 67.89 and 59.67 respectively against Ascorbic acid with an IC₅₀ value is 48μg/ml. The different phytoconstituents mainly alkaloids, carbohydrates, saponins, amino acids, and proteins could be responsible for the In-vitro antibacterial and antioxidant potentials of leaf extract.

Keywords: Clematis buchananian, Standardization, Antioxidant, Phytoconstituent Profiling, Antibacterial, Chromatography.

INTRODUCTION
Modern medicine has today displaced plants in many countries with many synthetic products, but nearly 30 percent of pharmaceutical preparations are still obtained from plants directly or indirectly. Modern times have seen a decline in the use of medicinal plants and their extracts as therapeutic agents, especially in developing countries, many of which have either been rejected by the medical profession or are now administered in the form of isolated compounds. The strategy of isolating the active principles from the medicinal plants and manufacturing a pharmaceutical preparation then became popular. In many developing countries, including India, modern medicines and herbal medicines are being used complementarily in healthcare system areas. The interest in plant products emerges worldwide late because of the assumption that many herbal drugs are considered to be free from side effects. It is a fact that the discovery of a new synthetic drug takes time and is a costly affair. The effectiveness of the synthetic drug is often followed by its single or multiple adverse effects, and the curatives are not
available in some situations. Herbs have been used throughout history by all cultures but India has one of the oldest, richest, and most complex cultural practices associated with the use of medicinal plants. The market for herbal products is rising exponentially around the world in the current scenario and major pharmaceutical companies are currently conducting comprehensive research on plant materials for their possible medicines. The number of scientific publications focused on herbal drugs is rising in many national and international journals. Plants have provided a wide range of effective medicines for humanity to relieve disease suffering following remarkable developments in synthetic drugs in recent years, some of the drugs used from Plant origin still maintain their use of plant-based medicines is on the increase throughout the world. Given the tremendous advances made in modern medicine, there are still a large number of disorders that need to be found for successful medicinal products. There is an urgent need today for the development of safer drugs to treat inflammatory disorders, diabetes, liver diseases, and gastrointestinal disorders. Therefore, there is growing interest in the pharmacological evaluation of different plants used in conventional medicinal systems in India. However, the folkloric use of synthetic medicines is mostly observational and is based on observation without scientific support from clinical trials. One cannot overemphasize the need for comprehensive systematic research into indigenous drugs.

EXPERIMENTAL

Methods and Chemicals
Dragendorff’s reagent, Hager’s reagent, sulphuric acid, sodium hydroxide, Fehling reagent-A and B, zinc dust, ferric chloride, alcohol, acetic acid, ethyl alcohol, chloral hydrate, toluidine blue, phloroglucinol, glycerine, hydrochloric acid and all other chemicals used in this study were of analytical grade.

Collection, Identification, and Authentication of the Plant Material
The leaves of the plant Clematis buchananiana are collected in the month of August from the selected geographical area.

Morphological Analysis
The morphological analysis was performed in pharmacobotany and anatomic characteristics of young leaves of Clematis buchananiana. The adult leaves were collected in three replicates to accomplish this study.

Microscopic Analysis
Transverse Section (T.S) of the fresh leaf of Clematis buchananiana midrib region was cut and fixed in FAA and then dehydrated by employing graded series of ethyl alcohol and tertiary butyl alcohol. Sections were taken using a microtome. A permanent mount was prepared using safranin fast green double staining technique.

Powder Microscopy
The coarse powder of the leaf was used to study the microscopical characteristics of the leaf powder.

Physicochemical Analysis
Extractive values, moisture contents, total Ash value, and leaf constants such as vein islet numbers, vein terminal numbers, stomatal numbers, and stomatal indexes were determined.

Preliminary Phytochemical Screening
Preliminary phytochemical screening was carried out to find out the presence of various Phytoconstituents using standard procedure.

Chromatographic Studies
Thin Layer Chromatography (TLC) of Methanolic Extracts
Pre-coated silica gel G plates were used in this study which acts as a stationary phase. 50 mg of the dried methanolic extract was dissolved in 50 ml of methanol. 10 μl of this solution was loaded on TLC plates using 2 μl capillary tubes. The thin layer chromatograms were developed using hexane: ethyl acetate (8:2) as the mobile phase. The thin layer chromatograms were visualized under short UV i.e. UV 254 nm. After the spots were visualized and labeled, their retardation factors (Rf value) were calculated. The Rf values were calculated according to the following formula:
Pharmacological Study
Antioxidant Activity
3 ml of reaction mixture containing 0.2 ml of a 0.004% methanol solution of 1,1,2-DPPH and 2.8 ml of test solution, at various concentrations of the Methanolic extract, was prepared. Absorbance at 517 nm was determined after 30 minutes and the percentage inhibition activity was calculated by using the equation.\(^{20-24}\)

\[
\% \text{ Scavenging Activity} = \left(\frac{A_0 - A_1}{A_0} \right) \times 100
\]

Where \(A_0\) is the absorbance of the control and \(A_1\) is the absorbance of the extract. The lower the absorbance, the higher the free radical scavenging activity.

Antibacterial Screening
Determination of MIC
Nutrient broth test tubes were prepared and labeled as shown in the Table-1 below. In the first tube (UT), the inoculum was not added which is used for checking the sterility of the medium and as a negative control. Other all test tubes, inoculum (3 to 4 drops) were added to reach the final concentration of microorganisms is \(10^6\) cells/ml. In all the test tubes, a test sample (methanolic extract) was added ranging from 20.8125 \(\mu\)l to 2ml. except for uninoculated (negative control) and control (positive) tubes. The positive control tube is used to check the suitability of the medium for the growth of the test microorganism and the viability of the inoculum. Adjust the final volume to 10ml in all the test tubes by using sterile water. All the test tubes are properly shaken and then incubated at 37°C for two days.

Table-1: Determination of MIC by using Broth Dilution Method

Test Tube Number	The volume of Medium (ml)	The volume of the methanolic Solution (\(\mu\)l)	The volume of Sterile water (\(\mu\)l)	Concentration of methanolic solution(\(\mu\)g/ml)
UT (negative control)	8	0	2000	-
CT (positive Control)	8	0	2000	-
1	8	20.81	1979.19	31.25
2	8	41.625	1958.38	62.5
3	8	83.25	1916.75	125
4	8	166.5	1833.5	250
5	8	333	1667	500
6	8	666	1334	1000
7	8	1000	1000	1500
8	8	1333	667	2000
9	8	1666	334	2500
10	8	2000	0	3000

Determination of Zone of Inhibition (ZOI) by Agar well Diffusion Method
The antibacterial activity was performed by employing Agar well diffusion method. The following Gram-positive and Gram-negative bacteria were used for antibacterial screening. *Staphylococcus aureus* (S1) NCTC-6571, *Bacillus subtilis* (B1) NCTC-10341, *Escherichia Coli* (E.coli2) NCTC-832, *Salmonella typhi* (SL2) NCTC-59.

Table-2: Preparation of Nutrient Agar Media (500ml)

Peptone	5g
Sodium chloride	2.5g
Agar	10g
Beef extract	5g
Distilled water q.s to	500ml
pH adjust to	7.2 – 7.4
Sodium chloride, peptone, beef extract, and agar were weighed out and dissolved in the required amount of distilled water by keeping the media in the steam bath, the agar was melted out and the indicator was added and the volume was made with distilled water. pH was adjusted at 7.2-7.4. Then the flux was plugged and wrapped in paper then autoclave at 15 p.s.i. pressure at 121°C for 15 min.21

Standard Drug Solution

Standard drug dilution was prepared in double distilled water.

Gentamicin: 2.8µg/ml.

Preparation of Inoculums

The peptone water medium was sterilized by autoclaving at 15 p.s.i pressure and 121°C for 15 minutes. A loop full of organisms was transferred from a laboratory-maintained mother culture into different Bijou bottles containing sterilized peptone water medium. The Bijou bottles were incubated for 37°C for 48 hours.

Agar Well Diffusion Method

The antibacterial activity of methanolic extract of *Clematis buchananiana* against four pathogenic bacteria was evaluated by using the agar well diffusion method. The Nutrient agar plates were prepared by pouring 15 ml of molten media into the sterile Petri plates. About (108- 109) colony-forming units per ml were used. Wells or cups of 5mm size were made with sterile borer into agar plates containing the bacterial inoculums. 20µL of microbial broth was spread on the surface of nutrient agar plates. The methanolic extracts were introduced into the respective hole of the plates. Sterile water was used as negative control which was introduced into the well instead of methanolic extract. Gentamicin was used as standard. After that, the plates were incubated for 48 hrs at 37°C. After incubation for 48 hrs at 37°C, the plates were observed. The antibacterial activity was present on the plates; it was indicated by an inhibition zone surrounding the well. The zone of inhibition was measured and expressed in millimeters. Antibacterial activity was recorded when the radius of the zone of inhibition was greater than 4 mm.25,26

RESULTS AND DISCUSSION

The plant *Clematis buchananiana* has been investigated in a systematic way covering its pharmacognostical, physiochemical, and phytochemical study. In this section, the result of various investigations carried out was compiled.

Macroscopic Examination

Macroscopic Parameters

A leaf of *Clematis buchananiana* consists of different parts like leaf surface, length, width, taste, odor, and color are summarized below.

Observation	Results
Surface	Hairy
Length	3-6 cm

![Fig.-1: Leaf of Clematis buchananiana](image)
Microscopic Examination
Transverse Section (T.S) of leaves of *Clematis buchananiana*.

Width	2-3 cm
Taste	Bitter
Odor	Pungent
Colour	Greenish

Quantitative Microscopy
The leaves were subjected to the determination of various constants as numerical values using the reported procedure.

Leaf Constant of *Clematis buchananiana*

Powder Microscopy
The powdered leaf of *Clematis buchananiana* was mounted with phloroglucinol and HCL (1:1), iodine solution, and sulphuric acid respectively, and the following elements were observed: Trichome, starch grains, and calcium oxalate crystals.
Table-4: Leaf Constant

Determination	Values
Stomatal Number	168-192 (lower epidermis)
Stomatal Index	14.28%
Vein-Islet Number	48-54
Vein Termination Number	24-30

Fig. 6: Trichomes

Fig. 7: Calcium oxalate crystals

Fig. 8: Starch grains

Table-5: Extractive Value of *Clematis buchananiana*:

S. No.	Extracts	Extractive Value (%W/W)
1	Alcohol soluble extracts	6.8
2	Water soluble extracts	4.5

Table-6: Moisture Content of *Clematis buchananiana*:

Fresh Weight(g)	Dry Weight (g)	Loss on Drying(g)	Moisture Content (%w/w)
5	4.92	0.08	1.6

Table-7: Ash Value of *Clematis buchananiana*

Total Ash (%w/w)	Acid Insoluble Ash (%W/W)	Water Soluble Ash (%w/w)
6.67	1.2	5.36

Table-8: Phytochemical Profiling

Phytoconstituents	Petroleum ether extract	Chloroform extract	Ethyl acetate extract	Methanolic extract
Alkaloids	-	-	-	+
Glycosides	-	-	-	-
Tannins/Phenolic	-	-	-	-
Phytosterols	-	-	-	-
Carbohydrates	+	+	+	+
Flavanoids	-	-	-	-
Proteins and amino	+	+	+	+
Thin Layer Chromatography (TLC) of Methanolic Extracts
Methanolic extract showed four spots using hexane: ethyl acetate (8:2) as the mobile phase when visualized under UV 254 nm. The R_f value of the four spots was found to be 0.34, 0.56, 0.68, and 0.82 respectively.

Table-9: TLC investigation of fractions eluted using column chromatography

S. No.	Test Tube No.	Description	No. of Spots
1	18,19,20,21	Light green band	one
2	32,33,34,35,36	Light yellow band	one

Pharmacological Study
Table-10: Antioxidant activity of methanolic extract of leaves of Clematis buchananiana: methanolic extract of Clematis buchananiana showing % inhibition at different concentrations. Data given are the mean of three replicates ± standard error mean, p< 0.01.

Concentration	Ascorbic acid	Methanolic extract
20 μg/ml	47.47± 0.06	25.07±0.11
40 μg/ml	54.54±0.32	37.11±0.09
60 μg/ml	66.89±0.41	48.23±0.43
80 μg/ml	82.00±0.24	59.67±0.16
100 μg/ml	90.81±0.03	67.89±0.20

Fig.-9: 1, 1-diphenyl-2-picrylhydrazil (DPPH) Scavenging Activity of Methanolic Extract of Leaves of Clematis Buchananiana and the Standard Ascorbic Acid. The Graph Represents The Percentage of DPPH Inhibition. Each Point Represents the values obtained from Three Experiments Performed. The IC_{50} Value of the Methanolic Extract and Standard Ascorbic Acid Were Found To Be 67.5μg/Ml and 48 Mg/Ml Respectively

Determination of Minimum Inhibitory Concentration (MIC) by Broth Dilution Method
After incubation, all test tubes are examined for the growth in form of turbidity and colonies, respectively. The MIC was calculated by comparing all results with positive and negative control.

Table-11: MIC of Methanolic Extract of C. buchananiana against Bacterial Strains

Microorganisms	MIC (µg/ml)
B. subtilis	500
S. aureus	125
E. coli	500
S. typhi	500
Determination of Zone of Inhibition by Agar Well Diffusion Method
The Studies of physicochemical constants can serve as a valuable source of information and are usually used in judging the purity and quality of the drug. The extractive values have given an idea about the chemical constitution of the drug and from the study. The extractive value of alcohol was highest followed by water. The ash value determines the earthy matter or inorganic composition and other impurities present along with the drug. The qualitative phytochemical tests on different extracts showed the diverse nature of phytoconstituents. The petroleum ether, chloroform, and ethyl acetate extracts were found to contain carbohydrates, proteins, amino acids, and saponins, whereas the methanolic extract was found to contain alkaloids, carbohydrates, proteins, amino acids, and saponins as compared to previous studies in the same genus.27,28 TLC of methanolic extracts of \textit{Clematis buchananiana} leaves in solvent system hexane: ethyl acetate (8:2) using pre-coated silica gel G254 plate under UV 254 nm was done which confirms the presence of a diverse group of phytochemicals. This variation in \(R_f \) values of the phytochemicals provides a very important clue in the understanding of their polarity. The antioxidant activity of the methanolic extract was performed by the DPPH method.

Microorganisms	Zone of Inhibition (mm)	Methanolic extract (500µg/ml)	Gentamicin (2.8 µg/ml)	Sterile water
\textit{B. subtilis}	13mm	33mm	-	
\textit{E. coli}	17mm	34mm	-	
\textit{S. typhi}	22mm	36mm	-	

Microorganism	Zone of Inhibition (mm)	Methanolic extract (125µg/ml)	Gentamicin (2.8µg/ml)	Sterile water
\textit{S. aureus}	14mm	34mm	-	
The methanolic extract has shown good antioxidant activity (IC\textsubscript{50} = 58.5 μg/ml). The same values were found in species.29 The antibacterial activity of the methanolic extract was determined by using the broth dilution method (for MIC) and agar well diffusion method (for ZOI). The antibacterial activity of methanolic extract of \textit{Clematis buchananiana} leaves was broad spectrum as it inhibited both gram-positive and gram-negative bacteria. The methanol extract contains secondary metabolites such as alkaloids, carbohydrates, proteins, amino acids, and saponins. Some of these bioactive compounds may serve as potential antibacterial agents. Still, it was found that the methanolic extract is more active toward gram-negative bacteria than gram-positive bacteria.30

CONCLUSION

The pharmacognostic standard and phytochemical evaluation for the leaves of \textit{Clematis buchananiana} have been laid down for the first time in this study. In conclusion, it can be said that the study could be used as a diagnostic tool for the standardization of this medicinal plant. \textit{In vitro} antioxidant and antibacterial activity showed that the extract has good antioxidant as well as antibacterial potential. So it can be concluded that the methanolic extract of the leaves of \textit{Clematis buchananiana} possesses good antibacterial activity. Further study is required to isolate the compound from the methanolic extract of the leaves of \textit{Clematis buchananiana} which is responsible for the antioxidant and antibacterial activities.

ACKNOWLEDGEMENT

The authors are grateful to the host institutes-Himalayan Pharmacy Institute, Majhitar, Department of Pharmaceutical Sciences, North Bengal University, West Bengal, Shivalik College of Pharmacy, Nangal, Punjab University, and Government Pharmacy College Sajong- Government of Sikkim to giving us such an advanced facility like laboratory facilities, chemical utilities, sophisticated instruments, man powder, sound and friendly environment, etc. to collect the significant interpretational data for this investigational work. Thanks to the entire college team especially Dr. P. Pal, Mr. S. Bhutia, and other authors for their kind guidance, scientific instructions, formatting, and designing all the essential information to make my drafted work into a valuable research manuscript.

LIST OF ABBREVIATIONS

1. TLC=Thin layer chromatography
2. TS= Transverse Section
3. FAA= Formaldehyde Alcohol Acetic Acid
4. UV=Ultra Violet
5. DPPH= 2,2-diphenyl-1-picrylhydrazyl

REFERENCES

1. W.H. Lewis, M.P. Elvin-Lewis, \textit{John Wiley & Sons}, (2003), \url{https://doi.org/10.1525/maq.1978.10.1.02a00190}
2. S.M. Rates, \textit{Toxicon}, \textbf{39}, 5 (2001), \url{https://doi.org/10.1016/s0041-0101(00)00154-9}
3. A. Gurib-Fakim, \textit{Molecular aspects of Medicine}. \textbf{27}, 1(2006), \url{https://doi.org/10.1016/j.mam.2005.07.008}
4. D.C. Owens, A Guide to the Extrapyramidal Side Effects of Antipsychotic Drugs, \textit{Cambridge University Press}, p 385 (1999)
5. R.R. Petchi, C. Vijaya, S. Parasuraman, \textit{Journal of Traditional and Complementary Medicine}, \textbf{4}, 2 (2014), \url{https://doi.org/10.4103/2225-4110.126174}
6. G.A. Cordell, \textit{Phytochemistry}, \textbf{55}, 6 (2000), \url{https://doi.org/10.1016/s0031-9422(00)00230-2}
7. B. Patwardhan, A.D. Vaidya, M. Chorghade, \textit{Current Science}, \textbf{86(6)},789(2004)
8. F. Oliveira, G. Akisue, Fundamentals Pharmacobotany and Plant Morphology, São Paulo: Editora Atheneu (2009).
9. C.K. Kokate, S.B. Gokhale, A.P. Purohit. Pharmacognosy, 32nd ed., Nirali Prakashan, New Delhi, (2005).
10. J. Asokan, Botanical Microtechnique Principles and Practice,1st edn., Plant Anatomy Research Centre, Chennai, (2007).
11. S.E. Ruzin, Plant Microtechnique and Microscopy, New York: Oxford University Press (1999).

ANTIBACTERIAL ACTIVITY OF \textit{Clematis buchananiana} DE CANDOLLE (RANUNCULACEAE) Prabal Sharma et al.
12. R. Das, P. Pal, S. Bhutia, *Future Journal of Pharmaceutical Sciences*, 7, 1(2021), https://doi.org/10.1186/s43094-020-00166-3
13. WC E. Trease and Evans Pharmacognosy, 15 th edn. London Saunders, (2002)
14. World Health Organization, Quality Control Methods for Medicinal Plant Materials, World Health Organization (1998).
15. Pharmacopoeia I, Government of India, Ministry of Health and Family Welfare, Delhi: Controller of Publications, 2, 35 (1996)
16. Ayurvedic Pharmacopoeia Committee, The Ayurvedic Pharmacopoeia of India, Government of India, Ministry of Health and Family Welfare, New Delhi, India: Department of AYUSH. (2001)
17. P.K. Mukherjee, Quality Control of Herbal Drugs: An Approach to Evaluation of Botanicals, Business Horizons, (2002).
18. C.K. Kokate, A.P. Purohit, S.B. Gokhale, Practical Pharmacognosy, 4th ed. Vallabh Prakashan, New Delhi(1997)
19. H. Wagner, S. Bladt, E.M. Zgainski, Plant Drug Analysis: A Thin Layer Chromatography Altlas, Munich, Germany: Springer-Verlag, (1984).
20. V. Rajkumar, G. Guha, R.A. Kumar, *Asian Pacific Journal of Tropical Biomedicine*, 2, 1(2012), https://doi.org/10.1016/S2221-1691(12)60120-8
21. H. Usman, F. Abdulrahman, A. Usman, *African Journal of Traditional, Complementary and Alternative Medicines*, 6, 3 (2009), https://doi:10.4314/africa.v6i3.57178
22. A. Falamas, S.C. Pinzaru, C.A. Dehelean, C.I. Peev, C. Soica, *Journal of Raman Spectroscopy*. 42, 1 (2011), https://doi.org/10.1002/jrs.2658
23. N. Cotelle, J.L. Bernier, J.P. Catteau, J. Pommery, J.C. Wallet, E.M. Gaydou, *Free Radical Biology and Medicine*, 20, 1 (1996), https://doi:10.1016/0891-5849(95)02014-4
24. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, *Free Radical Biology and Medicine*, 26, 10(1999), https://doi: 10.1016/s0891-5849(98)00315-3
25. C.R. Kokare, Pharmaceutical Microbiology Experiments and Techniques, Career Publication, 2 (2007),
26. B. Rai, S. Bhutia, P. Pal, B.B. Kakoti, *Journal of Pharmacognosy and Phytochemistry*, 9, 1(2020)
27. AFNOR, Norme experimentale, XP G39-010, (2000).
28. B. Subba and S. Thapa, *Journal of Institute of Science and Technology*, 22, 2(2018), https://doi.org/10.3126/jist.v22i2.19605
29. A.M. Al-Taweel, Ph.D. Thesis, College of Pharmacy, King Saud University, King Abdulaziz City, Saudi Arabia (2007)
30. Z. Abdisa, F. Kenea, *Cogent Chemistry*, 6, 1(2020), https://doi.org/10.1080/23312009.2020.1862389 [RJC-7095/2022]