Data Article

Data on RNA-seq analysis of Drosophila melanogaster during ageing

Morteza Bajgirana, Azali Azlana,b, Shaharum Shamsuddinb,c, Ghows Azzama,b,∗, Mardani Abdul Halimb,d,∗

a School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
b USM-RIKEN Interdisciplinary Collaboration for Advanced Sciences, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia
c School of Health Science, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
d Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia

Abstract

Ageing is defined as gradual decline of physiological, cellular and molecular state of an organism with time. The age-associated cell dysfunctions usually cause chronic diseases such as diabetes, cancers and other age-related diseases. Many of the genes and pathways involved in ageing are conserved in different species. These genes and pathways have been categorised into nine cellular and molecular hallmarks, namely, genomic instability, telomere attrition, loss of proteostasis, mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, stem cell exhaustion, cellular senescence and altered intercellular communication. Despite countless studies on ageing, the molecular mechanism of ageing is poorly understood. Here, we performed genome wide transcriptome mapping of ageing process in \textit{D. melanogaster}. In which, transcriptomic analysis conducted on the 1 day and 60 days flies. Illumina Hiseq platform were used to generate raw data. Afterwards, further analysis including differential expression analysis, GO classification and KEGG pathway enrichment analysis were performed. The raw data were uploaded to SRA database and the BioProject ID

https://doi.org/10.1016/j.dib.2021.107413
2352-3409 © 2021 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
is PRJNA718442. These data provide the basis for future research in order to discover the genes and pathways involved in ageing.

© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Ageing
Specific subject area	Transcriptomic changes during ageing, comparing expression changes that occur in ageing, investigating the involvement of molecular pathways in ageing
Type of data	RNA-seq data, figures, tables
How data were acquired	RNA sequencing by Illumina Hiseq platform
Data format	Raw (FASTQ), excel spreadsheet, image, table
Parameters for data collection	Total RNA extraction and sequencing of samples in two different conditions, namely, day 1 Drosophila melanogaster (young) and day 60 Drosophila melanogaster (old) performed.
Description of data collection	Total RNA was isolated using Trizol reagent and RNeasy MinElute Cleanup Kit. RNA quality was evaluated by electrophoresis, Nanodrop2000 and Agilent2100 Bioanalyzer. rRNA was removed and then samples prepared and sequenced.
Data source location	School of biological sciences, Universiti Sains Malaysia (USM), Malaysia (5.355° N, 100.3012° E)
Data accessibility	Data can be accessed from NCBI SRA (BioProject ID: PRJNA718442)

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA718442

Value of the Data

- These data provide a comprehensive picture with a greater resolution of gene expression changes and the pathways involved in the process of ageing in *D. melanogaster*.
- The dataset and analysis provided here can be useful for researchers focusing on ageing and age-related diseases such as Alzheimer, cancer, and cardiovascular diseases in *D. melanogaster*.
- Applying different workflows, the RNA-seq raw data provided here can be used for further analysis to investigate the role of coding and non-coding genes in ageing. Besides, the analysis provided here would shed light on potential genes and pathways involved in ageing process for further molecular research in order to find novel anti-ageing strategies and treatments for age-related diseases.

1. **Data Description**

To investigate changes in molecular landscape in ageing process, day 1 and day 60 flies of *D. melanogaster* were chosen as model system and RNA sequencing was done using Illumina Hiseq platform. Table 1 provides accession numbers and links for raw data generated by RNA sequencing. There are in total three paired end libraries for day 1, and three paired end libraries for day 60 flies. Raw reads generated was mapped by HISAT2 and differential expression analysis was performed using edgeR. Table 2 shows the summary of libraries statistics and mapping including number of raw reads, number of cleaned reads and mapping rates. Differentially expressed genes and their respective fold change and expression levels as count per million (CPM) are listed in supplementary 1. Differentially expressed genes, further, were chosen for GO classification and KEGG pathway analysis. The enriched GO terms featuring biological process, cellular component,
and molecular functions and the number of differentially expressed genes related to those GO terms are presented in Tables 3–5, respectively. Table 6 shows the result of KEGG pathway enrichment analysis in day 60 compared to day 1 flies. Number of differentially expressed genes related to each KEGG pathway is provided in Table 6.

2. Experimental Design, Materials and Methods

2.1. Fly husbandry

Wild-type Oregon-R (OreR) (genotype: Oregon-R-P2; stock no.: 107294) from Kyoto Stock Center was used. The flies were maintained at 25 °C, 12 h light/dark cycle in a corn-based meal consists of 4% (w/v) corn starch, 5% (w/v) polenta, 10% (w/v) brown sugar, 0.7% (w/v) agar, 5% (w/v) yeast, 3% (w/v) nipagin and 0.7% (v/v) propionic acid.

2.2. Total RNA extraction, library construction, and RNA-seq

Equal number of male and female flies was used to extract the total RNA. A combination of Trizol reagent (Invitrogen, USA) and RNeasy MinElute Cleanup Kit (Qiagen, Germany) was used to extract the RNA. The flies were homogenized in 500 μL of Trizol reagent, then, a volume of 100 μL of chloroform was added into the mixture. The sample was thoroughly mixed and centrifuged at 10,000 xg for five minutes. A volume of 1000 μL of isopropanol was added into aqueous layer and thoroughly mixed. The sample was cleanup using MinElute Cleanup Kit according to manufacturer protocol. gDNA was removed using Turbo™ DNase Kit (Thermo Fisher Scientific, USA). The quality of extracted RNA was assessed by agarose gel electrophoresis, Nanodrop2000 (Thermo Fisher Scientific, USA), and Agilent2100 Bioanalyzer (Agilent, USA). High quality RNA (≥ 5 μg; ≥ 200 ng/μL; OD260/280 = 1.8–2.2) will be used for library construction.

Table 1

Sample	Accession number	Accession link
Day1 replicate 1	SAMN18533764	https://www.ncbi.nlm.nih.gov/biosample/18533764
Day1 replicate 2	SAMN18533765	https://www.ncbi.nlm.nih.gov/biosample/18533765
Day1 replicate 3	SAMN18533766	https://www.ncbi.nlm.nih.gov/biosample/18533766
Day60 replicate 1	SAMN18533767	https://www.ncbi.nlm.nih.gov/biosample/18533767
Day60 replicate 2	SAMN18533768	https://www.ncbi.nlm.nih.gov/biosample/18533768
Day60 replicate 3	SAMN18533769	https://www.ncbi.nlm.nih.gov/biosample/18533769

Table 2

Library	%GC	Number of raw reads	Number of cleaned reads	Mapping rate
Day1 replicate 1	45	49210530	48883744	96.7
Day1 replicate 2	45	51138168	50773952	96.4
Day1 replicate 3	44	49970634	49629740	92.4
Day60 replicate 1	51	56678370	56334634	95.9
Day60 replicate 2	50	50948514	50564212	95.7
Day60 replicate 3	50	53317220	52898742	95.3
For library construction, standard Illumina protocol was employed. The first step involving the enrichment of mRNA using poly-T oligo attached magnetic beads. Then, the mRNA was fragmented using divalent cations. First strand cDNA synthesis was performed using SuperScript II followed by second strand. End repair was performed to remove any overhangs prior to adenylation of 3’ends. Then, adapter was ligated, and size selection (150–200 bp) was performed. The purified size-selected RNA was sequenced using Illumina HiSeq platform. Raw data generated was trimmed and cleaned by removing low quality reads and removing the adaptor.

2.3. Differential expression analysis

RNA-seq reads were aligned to the reference genome of *D. melanogaster* by using HISAT2 version 2.1.0 [1]. The genome was Drosophila_melanogaster.BDGP6.28.dna_sm.toplevel.fa.gz downloaded from Ensembl. Afterwards, in order to quantify the expression level of transcripts the alignment files generated by HISAT2 were used as inputs for featurecount [2]. These counts were then used as input for differential analysis using edgeR [3]. The statistical program edgeR
Table 4

Enriched GO terms featuring cellular component. Significantly differentially expressed genes in day 60 versus day 1 are categorised into 25 GO terms featuring cellular component with significant of P-value < 0.05. The number of differentially expressed genes related to the GO terms are presented as count with their respective P-value.

ID	GO term	Count	P-Value
GO:0005634	nucleus	1447	3.27917457291437E-20
GO:0071011	precatalytic spliceosome	141	2.51427093226562E-12
GO:0005737	cytoplasm	1203	1.23883014505389E-11
GO:0005875	microtubule associated complex	260	3.97418659471114E-11
GO:0071013	catalytic step 2 spliceosome	122	1.36639696934484E-10
GO:0005730	nucleolus	150	6.93025838404035E-08
GO:0012505	endomembrane system	177	2.8756207140668E-07
GO:0005622	intracellular	245	4.95714684182731E-05
GO:0005813	centrosome	84	7.7186956064813E-05
GO:0005739	mitochondrion	371	1.99536454552943E-04
GO:0005681	spliceosomal complex	45	3.85332448204499E-04
GO:0003532	small nuclear ribonucleoprotein complex	34	5.51522366393124E-04
GO:0000775	chromosome, centromeric region	37	9.26713989307493E-04
GO:0032040	small-subunit processome	32	9.89089142354131E-04
GO:0005819	spindle	45	0.001109693298146730
GO:0005635	nuclear envelope	45	0.001109693298146730
GO:0022625	cytosolic large ribosomal subunit	52	0.001409411399342990
GO:0005840	ribosome	83	0.00177795170627050
GO:0005654	nucleoplasm	123	0.002370412221655130
GO:0043234	protein complex	61	0.004578428094727970
GO:0009222	spindle pole	31	0.004752710283904030
GO:0016020	membrane	296	0.00699314564473070
GO:0005747	mitochondrial respiratory chain complex I	41	0.00733298819206281800
GO:0005643	nuclear pore	33	0.008068390352879900
GO:0005912	adherens junction	44	0.008423004737610120

Table 5

Enriched GO terms featuring molecular function. Significantly differentially expressed genes in day 60 compare to day 1 are categorised into 42 GO terms featuring molecular function with significant of P-value < 0.05. The number of differentially expressed genes related to the GO terms are presented as count with their respective P-value.

ID	GO term	Count	P-Value
GO:0005524	ATP binding	612	1.05918346247829E-12
GO:0005515	protein binding	527	5.96469126229741E-11
GO:0003676	nucleic acid binding	359	1.02969701996623E-09
GO:0008270	zinc ion binding	519	2.0315421977325E-09
GO:0003723	RNA binding	230	4.35245434691068E-08
GO:0005509	calcium ion binding	181	1.49307405316839E-07
GO:0046872	metal ion binding	519	2.59437961279962E-07
GO:0003713	transcription coactivator activity	54	3.138357146616E-05
GO:0004386	helicase activity	47	5.6129988650304E-05
GO:0003682	chromatin binding	111	6.63049880227043E-05
GO:0000166	nucleotide binding	175	6.76405674789166E-05
GO:0003729	mRNA binding	143	1.0322440384053E-04
GO:0008017	microtubule binding	91	4.19839962666167E-04
GO:0004722	protein serine/threonine phosphatase activity	42	8.43623758676245E-04
GO:0040004	ATP-dependent RNA helicase activity	45	0.001167979760263700
GO:003954	NADH dehydrogenase activity	31	0.001394636413593100
GO:0044822	poly(A) RNA binding	63	0.0015759251370282100
GO:0016887	ATPase activity	123	0.0016145164103400
GO:0001104	RNA polymerase II transcription cofactor activity	32	0.00378153889304200
GO:003714	transcription corepressor activity	27	0.0044196473951650
GO:0004842	ubiquitin-protein transferase activity	143	0.00467428235042100
GO:0003684	damaged DNA binding	26	0.005837637092831700
GO:0019843	rRNA binding	26	0.005837637092831700
GO:0008134	transcription factor binding	72	0.012680395459747200

(continued on next page)
Table 5 (continued)

ID	GO term	Count	P-Value
GO:0003743	translation initiation factor activity	48	0.01586414858335640
GO:0003924	GTPase activity	106	0.017835528186287700
GO:0003899	DNA-directed RNA polymerase activity	26	0.0178667512397270
GO:0051539	4 iron, 4 sulfur cluster binding	26	0.0178667512397270
GO:0003755	peptidyl-prolyl cis-trans isomerase activity	29	0.02168192134654930
GO:0016853	isomerase activity	29	0.02168192134654930
GO:0003705	transcription factor activity, RNA polymerase II	46	0.023058171236249100
	distal enhancer sequence-specific binding		
GO:0051082	unfolded protein binding	45	0.0276767064792650
GO:0042393	histone binding	24	0.02925615687200600
GO:0016740	transferase activity	31	0.030883614952758100
GO:0003824	catalytic activity	98	0.03357953732093580
GO:0005484	SNAP receptor activity	23	0.037228197776595800
GO:0004693	cyclin-dependent protein serine/threonine kinase	15	0.03845359676428300
	activity		
GO:0030515	snoRNA binding	15	0.03845359676428300
GO:0001075	transcription factor activity, RNA polymerase II	19	0.03922287285579800
	core promoter sequence-specific binding involved in		
	preinitiation complex assembly		
GO:0042803	protein homodimerization activity	110	0.04323401342660000
GO:0042623	ATPase activity, coupled	39	0.04556019342003400
GO:0000977	RNA polymerase II regulatory region	48	0.04871352258031190
	sequence-specific DNA binding		

Table 6
KEGG pathway enrichment analysis. 10 KEGG pathways are significantly enriched by differentially expressed genes in day 60 compared to day 1 with significant of P-value < 0.05. The number of differentially expressed genes related to the pathway are presented as count with their respective P-value.

Term	Count	P-Value
Spliceosome	110	5.73666837052742E-04
DNA replication	34	0.00347665731881500
Nucleotide excision repair	37	0.00607462745663300
Basal transcription factors	36	0.007531383638678190
Protein processing in endoplasmic reticulum	107	0.009490293668130400
mRNA surveillance pathway	61	0.022952383725918000
Mismatch repair	20	0.02518504502307330
Purine metabolism	110	0.02557908482786070
Fanconi anemia pathway	25	0.02684084015079530
Ubiquitin mediated proteolysis	82	0.0493859761510847

was analyzed in R/Bioconductor environment. FDR < 0.05 were set as the threshold for significantly differential expression genes [4].

2.4. GO classification and enrichment analysis

DAVID online tool was used to identify significantly enriched GO terms featuring biological process, cellular component, molecular function and KEGG pathways with corrected P-value less than 0.05 [5,6].

Ethics Statements

All animal handlings complied with guidelines set forth by the National Institutes of Health for the care and use of laboratory animals, and the protocol of this study followed the National
Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978) and Guide for the Care and Use of Laboratory Animals: Table 4 8th Edition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT Author Statement

Morteza Bajgiran: Methodology, Resources, Investigation, Formal analysis, Data curation, Writing – original draft, Writing – review & editing; **Azali Azlan:** Software, Data curation, Formal analysis; **Shaharum Shamsuddin:** Supervision, Funding acquisition; **Ghows Azzam:** Supervision, Funding acquisition; **Mardani Abdul Halim:** Conceptualization, Methodology, Resources, Investigation, Data curation, Writing – original draft, Supervision.

Acknowledgments

The authors would like to acknowledge financial support from Universiti Sains Malaysia and Malaysian Ministry of Higher Education grant (FRGS: 203.PPSK.6171226) and URICAS RU-Top Down Research Grant (1001/ PBIIOLOGI/870040), Universiti Sains Malaysia

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107413.

References

[1] D. Kim, et al., Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells, Nat. Methods 12 (3) (2015) 237–243, doi:10.1038/nmeth.3284.
[2] Y. Liao, G.K. Smyth, W. Shi, FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (7) (Apr. 2014) 923–930 doi:, doi: 10.1093/bioinformatics/btt656.
[3] M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics 26 (1) (Nov. 2009) 139–140 doi:, doi:10.1093/bioinformatics/btp616.
[4] Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. Ser. B 57 (1) (Jan. 1995) 289–300 doi:, doi: 10.1111/j.2517-6161.1995.tb02031.x.
[5] D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (1) (2009) 44–57 doi:, doi: 10.1038/nprot.2008.211.
[6] D.W. Huang, B.T. Sherman, R.A. Lempicki, Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res. 37 (1) (2009) 1–13 doi:, doi:10.1093/nar/gkn923.