The More, the Merrier? Multiple Myoglobin Genes in Fish Species, Especially in Gray Bichir (Polypterus senegalus) and Reedfish (Erpetoichthys calabaricus)

Kathrin Helfenrath1, Markus Sauer1, Michelle Kamga1,2, Michelle Wisniewsky1, Thorsten Burmester1, and Andrej Fabrizius 1,*

1Institute of Zoology, Biocenter Grindel, University of Hamburg, Germany
2Teaching Hospital Cologne, University of Cologne, Cologne, Germany

*Corresponding author: E-mail: andrej.fabrizius@uni-hamburg.de.
Accepted: 9 April 2021

Abstract

The members of the globin superfamily are a classical model system to investigate gene evolution and their fates as well as the diversity of protein function. One of the best-known globins is myoglobin (Mb), which is mainly expressed in heart muscle and transports oxygen from the sarcolemma to the mitochondria. Most vertebrates harbor a single copy of the myoglobin gene, but some fish species have multiple myoglobin genes. Phylogenetic analyses indicate an independent emergence of multiple myoglobin genes, whereby the origin is mostly the last common ancestor of each order. By analyzing different transcriptome data sets, we found at least 15 multiple myoglobin genes in the polypterid gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus). In reedfish, the myoglobin genes are expressed in a broad range of tissues but show very different expression values. In contrast, the Mb genes of the gray bichir show a rather scattered expression pattern; only a few Mb genes were found expressed in the analyzed tissues. Both, gray bichir and reedfish possess lungs which enable them to inhabit shallow and swampy waters throughout tropical Africa with frequently fluctuating and low oxygen concentrations. The myoglobin repertoire probably reflects the molecular adaptation to these conditions. The sequence divergence, the substitution rate, and the different expression pattern of multiple myoglobin genes in gray bichir and reedfish imply different functions, probably through sub- and neofunctionalization during evolution.

Key words: globin, mRNA expression, sub–neofunctionalization, RNA-seq, gene expansion.

Significance

Myoglobin is one of the best-known proteins in biology and usually is found as a single copy gene. In some fish species however, multiple myoglobin genes have been found but it is not well understood where these multiplications occur during fish evolution. In this study, we shed light on the independent multiplication of myoglobin genes. We found at least 15 multiple myoglobin genes in gray bichir (Polypterus senegalus) and reedfish (Erpetoichthys calabaricus) that are characterized by large sequence differences and variable gene expression. Our results indicate that myoglobin adapted rapidly during evolution in different species to similar changing abiotic environments.

Introduction

Myoglobin (Mb) has a unique position in the history since it was the first protein with an analyzed molecular structure (Kendrew et al. 1960). Ever since these small, globular, monomeric proteins and its family members are subject to intense studies investigating the evolution and function of these proteins and genes (Graur and Li 2000; Vinogradov et al. 2007; Storz et al. 2013; Schwarze et al. 2014). Mb consists of eight alpha helices, which harbor an iron-containing heme group that enables Mb to bind gaseous
ligands, such as oxygen (O$_2$) and nitric oxide (NO) (Wittenberg BA and Wittenberg JB 1989; Wittenberg JB and Wittenberg BA 2003). The main expression sites of Mb are the heart and skeletal. The high O$_2$ affinity enables Mb to extract O$_2$ of the less affine hemoglobin from the blood. Within the myocytes Mb facilitates the transport of O$_2$ to mitochondria (Merx et al. 2001; Wittenberg JB and Wittenberg BA 2003; Helbo et al. 2013). Additionally, Mb stores O$_2$ for short-term or long-term hypoxic stages. High concentration of Mb in muscles of diving mammals lead to a large O$_2$ storage capacity, sustaining extended dives (Davis 2014). In addition to these properties, Mb also displays enzymatic functions. For example, under normoxic conditions, oxygenated Mb acts as dioxygenase, converting the bioactive NO to nitrate (NO$_3$) and under hypoxic conditions deoxygenated Mb acts as a nitrite reductase producing NO from NO$_2$ which leads to a NO-mediated vasodilation and thus, enhances oxygen supply (Hendgen-Cotta et al. 2008; Hendgen-Cotta et al. 2014). It has also been assumed that Mb is involved in oxidative defense by detoxifying reactive oxygen species (ROS) (George and Irvine 1951; Osawa and Korzekwa 1991; Flegal et al. 2004; Helbo et al. 2012).

Surprisingly, Mb knockout mice show no immediate physiological defects (Garry et al. 1998). However, they exhibit multiple compensatory mechanisms, including a higher capillary density, smaller cell width, elevated hematocrit and increased coronary flow, ensuring sufficient oxygen supply (Goedecke et al. 1999; Grange et al. 2001; Meeson et al. 2001; Wittenberg JB and Wittenberg BA 2003). In addition to the occurrence of Mb in heart and skeletal muscles, there is recent evidence for Mb expression in smooth muscle, endothelial and tumor cells, even though in significantly lower levels (Qu et al. 1998; Cossins et al. 2009; Gorr et al. 2011). In some cancer cells Mb is probably involved in specific cellular hypoxia response mechanisms by modulating gene expression of hypoxia marker genes, such as HIF1α (Bicker et al. 2019).

Most vertebrates harbor one Mb gene in the genome (Burmester and Hankeln 2014). However, there are some known exceptions that either lost Mb or have multiple Mb genes (Maeda and Fitch 1982; Fraser et al. 2006; Fuchs et al. 2006; Sidell and O’Brien 2006; Roesner et al. 2008; Hoffmann et al. 2011; Gallagher and Macqueen 2016; Koch et al. 2016; Li et al. 2018). The stickleback and some icefish species only express non-functional Mb sequences (Hoffmann et al. 2011; Sidell and O’Brien 2006), whereas the bullfrogs (Rana catesbeian) completely lack the Mb gene (Maeda and Fitch 1982; Fuchs et al. 2006). The compensatory mechanisms are not fully understood, but it has been speculated that a hemoglobin chain in the heart of frogs adopts a Mb-like function (Maeda and Fitch 1982) and the low water temperatures in the Antarctic sea may render Mb unnecessary because the physically dissolved O$_2$ in the cold water is sufficient to support the very low metabolic rate of icefish (Sidell and O’Brien 2006).

The common carp (Cyprinus carpio) and goldfish (Carassius auratus) on the other hand have two Mb isoforms (Mb1 and Mb2) with different tissue expression patterns (Fraser et al. 2006; Roesner et al. 2008). Although Mb1 displays a rather ubiquitous expression pattern (e.g., heart, liver, kidney, and gills), Mb2 is exclusively located in neuronal tissues (Fraser et al. 2006; Cossins et al. 2009). In lungfish (Dipnoi) there are up to seven distinct Mb genes with different kinetic properties and tissue-specific expression patterns (Koch et al. 2016; Lüdemann, Fago, et al. 2019). Interestingly, in contrast to the single copy Mb, which is mostly expressed in the heart, the highest expression site of lungfish Mb is the brain (Koch et al. 2016; Lüdemann, Fago, et al. 2019). The silver arowana (Osteoglossum bicirrhosum) and the Asian arowana (Scleropages formosus) harbor three Mb genes (Gallagher and Macqueen 2016) and the walking catfish (Clarias batrachus) exhibits the largest Mb repertoire with 15 Mb genes, known so far (Li et al. 2018).

We explore whether these fishes form an exceptional position or if multiple Mb genes are a common phenomenon within fish species. We analyzed the Sequence Read Archive (SRA) data sets (supplementary table 1, Supplementary Material online) of 12 fish species and found multiple Mb genes in gray bichir (Polypterus senegalus) and reedfish (Eptepoichthys calabaricus). Both species harbor at least 15 Mb genes, the largest number of Mb genes found so far. To better understand the evolutionary history of all described Mb genes, we examined the phylogeny of the novel Mb genes in gray bichir and reedfish. Further, we investigated the amino acid sequences and the expression pattern of the multiple Mb genes of gray bichir and reedfish, providing first evidences of the evolutionary fate of gene expansion in these fish. Our results give hints on why multiple Mb genes occur especially in these fish and provide similarities of multiple Mb genes in different species which hints to similar functions.

Results

Evolution of Multiple Mbs in Several Fish Species

To investigate the origin and the evolution of multiple Mb genes in different fish species, we generated a phylogenetic tree including all known multiple Mb genes (fig. 1). The single copy Mb sequence of the Australian ghost shark, a cartilaginous fish (Chondrichthyes) was used to root the tree. Some walking catfish Mb sequences were shortened since they show some incongruity (supplementary fig. 1, Supplementary Material online). Mb genes of lungfish, polypteridae and teleostei formed monophyletic clades, strongly indicating a distinct evolutionary divergence. Within lungfish, polypteridae, arowana and cyprinids, the multiple Mb genes seem to occur in the last common ancestor. This becomes
apparent when some Mb genes of different species (that belong to one order) form sister groups, for example, Mb2, Mb3, and Mb7 of the gray bichir and reedfish. Multiple Mb genes of walking catfish do not form sister groups with Mb genes of other catfish species. This suggests that the multiple Mb genes just occur in the walking catfish and are not present in the last common ancestor of catfish. Genome duplications in the evolution of salmon (Macqueen and Johnston 2014; Lien et al. 2016) presumably lead to duplicated Mb genes in salmon. In Rainbow trout, another salmonid fish, the duplicated Mb genes still exist, however, their functionality was lost due to pseudogenization. Atlantic salmon might have lost one of the duplicated Mb genes.

Polypteridae and lungfish diverged approximately 430 Ma (Kumar et al. 2017), comparison of the Mb sequences between and within these groups allows the evaluation of the amino acid evolution. The multiple Mb genes show different substitution rates with the lowest within the gray bichir 1.73 ± 0.17 × 10⁻⁹ amino acid substitutions per site per year (supplementary table 5, Supplementary Material online). In polypteridae Mb3 with 1.24 ± 0.43 × 10⁻¹⁰ amino acid substitutions per site per year shows the lowest substitution rate versus Mb1 (6.35 ± 1.18 × 10⁻¹⁰), Mb5 (6.62 ± 1.33 × 10⁻¹⁰ amino acid substitutions per site per year), and Mb7 (5.34 ± 1.15 × 10⁻¹⁰ amino acid substitutions per site per year) with up to five times higher rates, respectively (supplementary table 6, Supplementary Material online). The lower substitution rate in Mb3 could indicate a purifying selection pressure, thus conserving an important function whereas the higher substitution rates in Mb5 and Mb7 may lead to new functions for these Mb genes. Overall, the results show that the multiple Mb genes of the different fish species did not arise in one last common ancestor, rather they emerged by convergent evolution. In most cases, the multiple Mb genes arise in the family’s last common ancestor and in catfish they exclusively occur in the walking catfish.

Sequence Analysis of Multiple Mb Genes in Reedfish and Gray Bichir

Sequence analysis of the newly detected multiple Mb genes in the two polypteridae species showed 15 functional Mb genes (EcaMb) in reedfish (fig. 2), whereas gray bichir (fig. 3) lost 4 of the 15 functional Mb genes (PseMb) by pseudogenization.
On average, EcaMbs are composed of 151 amino acids and display identity values between 32% (EcaMb2b to EcaMb5 and EcaMb7e) and 92% (EcaMb2a and EcaMb2b). EcaMb1 showed the highest identity to the single copy sperm whale PcaMb by sharing 48% of amino acids, whereas EcaMb5 displayed the biggest differences to the single copy PcaMb (32%). Amino acids that are essential for oxygen binding including the distal and proximal histidines at helix positions E7 and F8 and the phenylalanine residue at position CD1 are present in all EcaMb sequences (fig. 2).

PseMb genes consist of 148 amino acids on average. PseMb2a and PseMb2b showed the highest identity with 92%, whereas PseMb1 and PseMb5bps differ the most (33%). Similar to EcaMbs, PseMb1 exhibited the highest identity value with the single copy PcaMb with 47%, whereas PseMb5bps only share 27% of amino acids with PcaMb. During evolution 4 of the 15 PseMb genes became pseudogenes and thus, lost their function. In PseMb4dps and PseMb5cps a stop codon prematurely interrupts their CDS, PseMb4e lost the start codon and PseMb5bps lost the histidine at helix positions F8 (fig. 3). In summary, the sequence analysis indicates an expansion of Mb genes by amplification in reedfish and reduction by pseudogenization in gray bichir.

Gene Expression of Multiple Mb Genes in Reedfish and Gray Bichir

Gene expression analysis with EcaMb and PseMb were performed on 10 tissues by using qRT-PCR and on different tissues and mixtures by analyzing freely available SRA transcriptome data sets. Due to high similarity of some Mb genes it was not possible to clone each Mb and thus, we could not perform the expression analyses for three EcaMbs and two PseMbs via qRT-PCR.

Most of the EcaMb genes exhibited a rather ubiquitous expression pattern determined by qRT-PCR (fig. 4). However, the gene expression levels of EcaMbs clearly showed different intensities. EcaMb1, EcaMb2b, and EcaMb3 showed the highest expression; whereas EcaMb1 was most highly expressed in heart (5.09 \(\times \) 10^8 copies per \(\mu \)g total RNA), lungs (2.94 \(\times \) 10^8 copies per \(\mu \)g total RNA), and spleen (1.23 \(\times \) 10^8 copies per \(\mu \)g total RNA).
(4.50 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), muscles (4.66 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), gills (3.83 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), and eye (2.63 \times 10^7 \text{ copies per } \mu g \text{ total RNA}); EcaMb2b was found in gills (4.66 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), heart (3.18 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), and brain (1.59 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), EcaMb3 was found to be expressed with high levels in the eye (7.46 \times 10^6 \text{ copies per } \mu g \text{ total RNA}). In addition, EcaMb4b and EcaMb5 showed expression values above 10^5 \text{ copies per } \mu g \text{ RNA in eye. Thus, the eye in reedfish showed the strongest expression and the largest number of EcaMb genes, whereas the liver showed the lowest expression values (fig. 4B). Liver and gill SRA-transcriptome analyses are in line with our qRT-PCR findings (supplementary fig. 2A and B, Supplementary Material online). Surprisingly, EcaMb4a and EcaMb4b showed the highest expression values in the mixture of gills, brain, liver and ovary (supplementary fig. 2C, Supplementary Material online). Since we found moderately high expression levels in gills, brain and liver via qRT-PCR but did not analyze the ovary, it may indicate very high EcaMb4a and EcaMb4b expression in ovary. The low expression values of EcaMb1, EcaMb2b and EcaMb3 in mixture of gills, brain, liver and ovary are not in accordance with our qRT-PCR results. That could be due to a bioinformatical artifact or faulty mapping based on very similar transcripts/reads.

In contrast to EcaMb genes, the expression of PseMb genes is rather scattered throughout the tissues we analyzed by qRT-PCR (fig. 5). PseMb1, PseMb2a, PseMb3, PseMb5, and PseMb7a show expression values of above 10^5 \text{ copies per } \mu g \text{ RNA, whereas PseMb2a showed its highest expression in heart (5.28 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), eyes (3.50 \times 10^7 \text{ copies per } \mu g \text{ total RNA}), and brain (9.98 \times 10^5 \text{ copies per } \mu g \text{ total RNA}). PseMb5a and PseMb7a showed a clear expression maximum in gonads (PseMb5a 9.32 \times 10^5 \text{ copies per } \mu g \text{ total RNA}; PseMb7a 6.81 \times 10^5 \text{ copies per } \mu g \text{ total RNA}), whereas PseMb3, similar to the EcaMb3, was most highly expressed in the eye (8.37 \times 10^6 \text{ copies per } \mu g \text{ total RNA}). Thus, there are two PseMb genes in gonads and in eye with a copy-number higher than 10^5 \text{ copies per } \mu g \text{ RNA. Interestingly, almost all PseMb genes are expressed in the brain. However, the expression values are minor with the exception of PseMb2a (9.98 \times 10^5 \text{ copies per } \mu g \text{ RNA).}

Fig. 3.—Amino acid sequence alignment of the multiple Mb genes of gray bichir (Polypterus senegalus) and the Mb of the sperm whale (PcaMb). The secondary structure of sperm whale myoglobin is superimposed in the upper row, with α-helices designated A–H. The conserved areas are highlighted in black (100%), dark gray (75%), and gray (50%) and the conserved amino acids PheCD1, HisE7, and HisF8 are marked by arrows. Pseudogenes are abbreviated with ps.
10^5 copies per µg total RNA). SRA-transcriptome analysis confirmed the high expression values of PseMb1 in developing tissue of mandible and in pectoral fin (supplementary fig. 3B and C, Supplementary Material online). Additionally, the high expression of PseMb6, PseMb7a, and PseMb7b found in a mixture of heart, liver, spleen, kidney and brain (supplementary fig. 3A, Supplementary Material online) may indicate a strong expression in spleen and kidney.

Discussion

Although most vertebrates harbor a single copy Mb gene, some fish species evolved multiple Mb genes. This multitude of Mb genes is probably of advantage for these species. We were interested how these multiple Mb genes have evolved and whether this phenomenon is unique to only few species or rather common in teleost fish. Our results show a convergent evolution of multiple Mb genes in which the genes mostly occur in the last common ancestor of each order. Further we found at least 15 Mb copies in gray bichir and reedfish with different expression patterns and various sequence divergences.

Multiple Mb Genes Occurred Independently in Different Fish Species, but Seem to Have Arisen for Similar Reasons

Fig. 4.—Gene expression analysis of the multiple Mb genes in different tissues of reedfish employing the qRT-PCR. Gene expression values are shown as absolute copy number per µg RNA. Expression values above 10^5 copies/µg RNA are marked by the dashed line. (A) Tissue-specific gene expression of EcaMbs. (B) Expression of EcaMbs sorted per tissue.
walking catfish, the multiple Mb genes occur in the last common ancestor of each order. Some of the multiple Mb genes show high substitution rates, in particular the Mbs in lungfish and some Mbs in gray bichir and reedfish. Fast changes in the CDS may be due to the change of selection pressures after functional diversification and changes in tissue expression (Helbo et al. 2012).

The substitution rates of the walking catfish Mb genes are unclear since we have shortened some of the sequences due to incongruity. The multiple Mb genes of the walking catfish were only found in this species and do not occur in other catfish species. The exact evolutionary origin of walking catfish Mb genes is not fully understood, but genome sequence analyses show that the Mb genes presumably multiplied by tandem duplication (Li et al. 2018).

We found at least 15 Mb genes in gray bichir (P. senegalus) and reedfish (E. calabaricus), dating the multiplication to the last common ancestor approximately 400 Ma (Betancur-R et al. 2013; Berthelot et al. 2014). Polypteridae and lungfish diverged 430 Ma, which indicates a strong abiotic influence in this interim period and could have favored the emergence of multiple Mb genes. The oxygen concentration started to rise 440–300 Ma from approximately 18% to approximately 30%, which might have played a major role in the emergence of multiple Mb genes (dates from http://www.timetree.org; last accessed September 28, 2020 [Kumar et al. 2017]).

Some lungfish species exhibit the largest genomes of animals with C-values of 40 pg up to 133 pg. The genome of polypteridae (3.7–7.3 pg) is much smaller compared with lungfish. Nevertheless, the genome of polypteridae is larger than genomes of carp (1.8 pg), zebrafish (1.8 pg), and human (3.5 pg) (Gregory 2020). Even though the lungfish have the largest genome, there is no evidence for particular polyploidization (Vervoort 1980) and thus, there is no correlation between multiple Mb genes with the size of the genome (Koch et al. 2016). The multiple Mb genes of lungfish and probably

FIG. 5.—Gene expression analyses of the multiple Mb genes in different tissues of gray bichir. Expression values above 10^5 copies/μg RNA are marked by the dashed line. (A) Tissue-specific gene expression of PseMbs. (B) Expression of PseMb sorted per tissue.
also of gray bichir and reedfish are outcomes of Mb-specific gene multiplication events.

Although the multiple Mb genes occurred independently in different fish species, they seem to have evolved for similar reasons. In their environment, fish are exposed to fluctuating oxygen concentrations, which can lead to hypoxia and oxidative stress (Nikinmaa 2002; Nikinmaa and Rees 2005; Tiedke et al. 2014; Missaghi et al. 2017). Interestingly, fish with multiple Mb genes are extremely well adapted to this dynamic environment. For example, the Goldfish is able to survive anoxic periods (Lushchak et al. 2001), the lungfish, the gray bichir, and the reedfish exhibit lungs whereas the walking catfish possesses suprabranchial chambers, which enable them to breath atmospheric air (Jesse et al. 1967; Lechleuthner et al. 1989; Lefevre et al. 2014). Further, lungfish and the walking catfish aevitate in a mud cocoon during the hot summer periods, whereas gray bichir, reedfish, and also the walking catfish survive dry periods by crossing terrestrial areas to find water sources (Delaney et al. 1974; Bruton 1979; Pace and Gibb 2011; Standen et al. 2014). These morphologic and behavioral adaptations enable these fish species to cope with changing oxygen concentrations. However, adaptations on the molecular level are also needed to prevent cell damage as a result of hypoxia and reoxygenation.

Presumably the multiple Mb genes play a role in this molecular adaptation and have a cytoprotective role in the organism. Although Mb1 in goldfish and common carp displays a ubiquitous expression pattern and seem to be involved in oxygen supply and NO-metabolism, Mb2 is restricted to the brain and protects it by detoxifying ROS (Fraser et al. 2006; Roesner et al. 2008; Cossins et al. 2009; Helbo et al. 2012). High expression values of Mb genes in the brain were also found in some lungfish and the walking catfish. Lungfish Mbs protect cells from hypoxia and reduce the production of ROS (Koch et al. 2016). Mb genes of gray bichir and reedfish also show high expression values in brain, but also in other tissues. Presumably, some of the multiple Mb genes protect tissues sensitive to hypoxia and oxidative stress, and other Mb genes that are expressed in respiratory tissues might be involved in oxygen supply. Investigations of multiple Mb genes in goldfish and lungfish show that they have cytoprotective properties and play a role in the molecular adaptation to fluctuating oxygen concentrations. Like lungfish and goldfish, Mb gene in the polypteridae shows a wide range of expression patterns, with Mb genes also being expressed in the brain and thus, might have similar functional roles.

Evolution and Gene Expression Analyses of Multiple Mb Genes in Gray Bichir and Reedfish Suggest Functional Diversity

To obtain first insights into the evolutionary fate of multiple Mb genes in reedfish and gray bichir we investigate the phylogeny, the amino acid sequences and gene expression patterns. Our results show that Mb1 to Mb3 of both species exhibit comparatively low substitution rates and high expression values in heart. Further, Mb1 is most similar to the single copy Mb gene of sperm whale (figs. 1–5). Thus, these genes have changed little and have retained their original place of expression (Opazo et al. 2015). Probably some of these multiple Mb genes (Mb1–Mb3) have taken over the function of the original Mb gene via subfunctionalization.

Further, there are similarly high sequence differences of multiple Mb genes within gray bichir (67%) and reedfish (68%) compared with lungfish (67.6%). The high sequence divergences of lungfish Mb genes indicate different functions of these genes (Koch et al. 2016). Likely, this also applies to the multiple Mb genes in the gray bichir and reedfish. Especially coding sequences (CDs) of Mb5, Mb6 and Mb7 in gray bichir and reedfish changed extremely, which is shown by high substitution rates (fig. 1) and a high divergence to the single copy Mb gene of sperm whale (figs. 2 and 3). Interestingly, PseMb5a and PseMb7a show high expression values in gonads similar to the high expression levels of Mb5 in gonads of the west African lungfish and Mb3 in south American lungfish (Koch et al. 2016; Lüdemann, Fago, et al. 2019). Further, very high expression values of Globin E (GbE) have been described in ovaries of south American lungfish (Lepidosiren paradoxa, Lpa). Kinetic features of multiple LpaGbE genes show that these genes probably act as oxygen transport proteins and are involved in the NO metabolism in the south American lungfish (Lüdemann, Verissimo, et al. 2019). Thus, it is feasible that the PseMb genes fulfill similar functions in the gray bichir, protecting the sensible gonads against an imbalance in NO metabolism and insufficient oxygen.

Highest expression values of PseMb genes were measured in the heart (PseMb2a 5.2 × 107 copies/μg RNA) and in the eye (PseMb2a 3.5 × 107 copies/μg RNA, PseMb3 8.3 × 106 copies/μg RNA). As shown in a range of vertebrate species, the heart is the tissue in which most of the Mbs are expressed (Wittenberg JB and Wittenberg BA 2003). Within the heart, Mb transports oxygen from the sarcomlemma to the mitochondria of heart cells (Wittenberg JB and Wittenberg BA 2003) and also exhibits enzymatic functions by converting nitric oxide (NO) into nitrate (NO3−) under normoxic conditions (Flögel et al. 2010). High amounts of Mb protein in the cell can lead to aggregation depending on the net surface charges of the Mbs (Mirceta et al. 2013; Berenbrink 2021). The differences in the amino acid sequences we found in the gray bichir and reedfish (figs. 2 and 3) could alter the folding stabilities of the different Mbs. The changes in amino acids, depending on the position of the residues within the folded protein, may also change the net surface charge ΔζMB of the different proteins in the same tissue and add to electrostatic repulsion between Mbs within the same cell. Further analysis of the ΔζMB can shed some light on the possible distinct functions and interactions of the multiple Mbs.
PseMb2a may fulfill these functions in the heart of gray bichir. Interestingly, PseMb1 seem to have lost this classical function, since it shows very low expression values, although it is the most conserved PseMb gene and it has the highest similarity to the single copy Mb of sperm whale (fig. 3). We suppose that as a consequence of the gene duplication, the sequence of PseMb2a was able to adapt optimally to this function, whereupon this function was transferred from PseMb1 to PseMb2a. Furthermore, PseMb2a and PseMb3 display high expression values in the eye. This high expression is somehow similar to GbE expression in the eye of birds, where GbE supplies oxygen to the metabolic active retina (Blank et al. 2011). Phylogenetic analyses and O₂ binding characteristics indicate that Mb and GbE can perform the same function (Burmester and Hankeln 2014). Thus, it is possible that PseMb2a and PseMb3 supply oxygen in the eye of gray bichir, similar to GbE in birds.

Compared with the expression pattern of PseMbs, the multiple Mb genes of reedfish showed a rather ubiquitous expression distribution. Highest expression values of EcaMb1, EcaMb2b, and EcaMb3 were measured in lungs, gills, brain, muscles, heart, and eye. Within the brain it is possible that some of the multiple EcaMbs act similar to lungfish Mbs and supply oxygen to the brain and protect it against oxidative stress. Compared with PseMbs, the most conserved EcaMb1 shows the highest expression in the heart and presumably fulfills the classical oxygen transport function in heart cells. The eye exhibits the most highly expressed EcaMb genes (EcaMb1 2.6 × 10⁶ copies/µg RNA, EcaMb2b 3.9 × 10⁶ copies/µg RNA, EcaMb3 7.4 × 10⁶ copies/µg RNA) which may indicate oxygen transport function similar to GbE in bird (Blank et al. 2011). High expression values in lung and gills of EcaMbs may indicate that these Mb genes are able to bind oxygen on respiratory surfaces. In order to determine and confirm the actual functions, further investigations must be carried out.

Conclusion

In the present study, we show with gray bichir and reedfish that there are two more fish species with multiple Mb genes. Our results support the convergent evolution of multiple Mb genes in different species. However, they seem to have evolved for similar reasons. The gray bichir and the reedfish exhibit at least 15 Mb genes with a high sequence divergence and distinct expression patterns, indicating different functions and thus, supporting the sub- and/or neofunctionalization model in duplicated genes. The presence of multiple Mb genes demonstrates that the globin family served repeatedly during evolution to allow organisms, such as fish, to dynamically adapt to changing abiotic environments. Thus, globin genes with a large functional repertoire are a classic example to study the gene fate in terms of sub- and neofunctionalization during evolution.

Materials and Methods

Identification of Novel Mb-Transcripts

To identify multiple Mb genes, we investigated SRA data sets of 12 fish species available at NCBI (supplementary table 1, Supplementary Material online) including gray bichir (P. senegalus) and reedfish (E. calabaricus).

At first, de-novo assemblies were generated with Trinity (Grabherr et al. 2011). Known globin sequences were used to search for globins using the BLAST algorithm by employing GhostX (Suzuki et al. 2014). The sequences of these contigs were loaded into the open reading frame finder (https://www.ncbi.nlm.nih.gov/orffinder, last accessed November 04, 2020) to determine the CDS. To confirm the CDS, we performed a back-mapping with CLC-Genomics Workbench (version 11.0.1, Qiagen) and determined the exact Mb sequences of gray bichir and reedfish (supplementary tables 2 and 3, Supplementary Material online). Mb sequences of the gray bichir that lack an open reading frame, either due to frameshift or a point mutation leading to a premature stop codon, were designated as pseudogenes.

Phylogenetic Analyses

Sequence alignment of Mb amino acid sequences of all fish that were included into the tree was created by employing MAFFT online tool with the auto strategy. The ω-helices (helix A–H) are shown above the alignment (figs. 2 and 3), and were obtained using the Mb single copy sequence of the sperm whale (Physeter catodon, Pca). To investigate the phylogenetic relationships of multiple Mb genes in bony fish (Osteichthyes), especially the classification of polypteridae (Polypteriformes) Mbs, a multiple sequence alignment of the amino acid sequences was created with the MAFFT online tool (Katoh et al. 2009). Multiple Mb sequences of gray bichir (P. senegalus), reedfish (E. calabaricus), west African lungfish (Protopterus annectens) (Koch et al. 2016), common carp (C. carpio), goldfish (C. auratus) (Fraser et al. 2006; Roesner et al. 2008), silver arowana (O. bicirrhosum), Asian arowana (S. formosus) (Gallagher and Macqueen 2016), and walking catfish (C. batrachus) (Li et al. 2018) were included in a collection of single copy Mb sequences (supplementary table 4, Supplementary Material online). The phylogenetic tree was calculated with MrBayes v3.2.2 using the Dayhoff+I+G model, which was selected using PROTTTEST (Darriba et al. 2011). Two independent runs of 5,000,000 generations with four simultaneous chains each were performed. Every 1000th generation, the tree was sampled and the posterior probabilities were estimated after discarding the initial 25% of the trees.

To calculate amino acid substitution rates first the gamma distribution was estimated using the Dayhoff+I+G model (+ Gamma + Invar + Freq) (Schwartz and Dayhoff 1979). The estimated value of the shape parameter
(2.4848) was used to calculate the evolutionary rates within and between the three groups of Mb sequences of the lungfish, reedfish, and gray bichir (supplementary table 5, Supplementary Material online). Additionally, the evolutionary divergence between selected pairs of Mbs was calculated (supplementary table 6, Supplementary Material online). Evolutionary analyses were conducted in MEGA X (Kumar et al. 2018).

Tissue Preparation and RNA Extraction
One specimen of gray bichir and one of reedfish were obtained from a pet shop and euthanized in icy water supplemented with 1 g/l tricaine methanesulfonate. Animal handling was conducted according to the German Animal Welfare Act. Selected tissues were removed, transferred to RNAlater (Qiagen, Hilden, Germany) and stored at –80°C until further use.

Total RNA was extracted from selected tissues using peqGOLD Trifast (PEQLAB, Erlangen, Germany) and the Crystal RNA Mini Kit (Biolab Products, Gödenstorf, Germany) following the instructions of the manufacturer, including an on-column digestion with RNase-free DNase (Qiagen, Hilden, Germany). The RNA concentration was measured with the Nanodrop ND 1000 UV-Vis spectrometer (Thermo Scientific, Bonn, Germany) and the quality and integrity of the total RNA was evaluated employing the Tapestation System (Agilent 4200). In total 1 µg RNA was used for cDNA synthesis using the RevertAid H Minus First Strand cDNA Synthesis Kit (Thermo Scientific, Bonn, Germany) following the instructions of the manufacturer. The cDNA was used for cDNA cloning and qRT-PCR.

cDNA Cloning
To establish standard plasmids for qRT-PCR individual Mb-Sequences were amplified with gene-specific oligonucleotides that were created using the bioinformatically determined sequences. The amplicons were cloned into the pGEM-T vector (Promega, Mannheim, Germany) and sequenced by a commercial service (GATC, Konstanz, Germany).

Quantitative Real-Time Reverse Transcription PCR
Mb mRNA expression in different tissues of gray bichir and reedfish was estimated by quantitative real-time PCR (qRT-PCR). qRT-PCR was carried out on an ABI 7500 Real-Time PCR System (Applied Biosystems, Darmstadt, Germany) and the reactions were performed in duplicates of 10 µl including the Power SYBR-Green PCR Master Mix (Thermo Scientific, Bonn, Germany). We used 1 µl of cDNA and 0.3 µl forward as well as 0.3 µl reverse primers (stock solution 10 µM). Amplification was carried out using a standard PCR protocol (95°C 10 min, 95°C 15 s, 60°C 15 s, 72°C 30 s, 40 cycles) and specific primer combinations to amplify each of the multiple Mb sequences. To validate the specificity of each amplification reaction, a dissociation curve was performed (95°C 15 s, 60°C 30 s, 2 cycles). We employed the standard curve method to calculate the absolute mRNA copy numbers by using serial dilutions (from 10^2 to 10^6 copies) of the recombinant plasmid. Standard curve reactions were run as triplicates.

Expression Analysis via RNA-seq
In addition to the qRT-PCR analysis, we examined the gene expression of the multiple Mb-genes via RNA-Seq analysis of different organs in adult and developing specimens by using free available NCBI data sets (supplementary table 1, Supplementary Material online). Only reads with a similarity of 95% to the reference sequence in at least 95% of their length were used for further analysis. The data were normalized according to the size of the data set and the transcript length. Expression levels were calculated as reads per kilobase of transcript length per million reads (RPKM).

Supplementary Material
Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments
This study was funded by a PhD grant from the University of Hamburg. We thank Dr Cornelia Geßner and Dr Antonia Beiersdorfer for critical reading of the manuscript and helpful suggestions.

Data Availability
All data underlying this article are available in the manuscript and in its supplementary material.

Literature Cited
Berghuis P, et al. 2021. The role of myoglobin in the evolution of mammalian diving capacity – the August Krogh principle applied in molecular and evolutionary physiology. Comp Biochem Physiol A Mol Integr Physiol. 252:110843.

Berthelot C, et al. 2014. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 5(1):1–10.

Bicker A, et al. 2019. The role of myoglobin in epithelial cancers: insights from transcriptomics. Int J Mol Med. 45(2):385–400.

Blank M, et al. 2011. Oxygen supply from the bird’s eye perspective globin e is a respiratory protein in the chicken retina. J Biol Chem. 286(30):26507–26515.

Bruton MN. 1979. The survival of habitat desiccation by air breathing clariid catfishes. Environ Biol Fish. 4(3):273–280.
Burmeister T, Hankeln T. 2014. Function and evolution of vertebrate globins. Acta Physiol (Oxf). 211(3):501–514.

Cossins AR, Williams DR, Foulkes NS, Benenbrink M, Kipar A. 2009. Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol. 212(5):627–638.

Darrida D, Taboada GI, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165.

Davis RW. 2014. A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B. 184(1):23–53.

Delaney R, Lahiri S, Fishman A. 1974. Aestivation of the African lungfish Protopterus aethiopicus: cardiovascular and respiratory functions. J Exp Biol. 61(1):111–128.

Dayhoff MO, Schwartz RM, Orcutt BC. 1978. A model of evolutionary change in proteins. In: Dayhoff M, editor. Atlas of Protein Sequence and Structure. Vol. 5. Silver Spring (MD): National Biomedical Research Foundation. p. 345–352.

Flögel U, Fago A, Rassaf T. 2010. Keeping the heart in balance: the functional diversity of vertebrate myoglobins. Biochim Biophys Acta. 1834(9):1832–1839.

Flögel U, Gödecke A, Klotz L, Schrader J. 2004. Role of myoglobin in the antioxidant defense of the heart. FASEB J. 18(10):1156–1158.

Fraser J, et al. 2006. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci USA. 103(8):2977–2981.

Fuchs C, Burmeister T, Hankeln T. 2006. The amphibian globin gene repertoire as revealed by the Xenopus genome. Cytogenet Genome Res. 112(3–4):296–306.

Gallagher MD, Macqueen DJ. 2016. Evolution and expression of tissue globins in ray-finned fishes. Genome Biol Evol. 9(1):32–47.

Garry DJ, et al. 1998. Mice without myoglobin. Nature 395(6705):905–908.

Gee DS, Irvine D. 1951. Reaction of metmyoglobin with hydrogen peroxide. Nature 168(4265):164–165.

Gödecke A, et al. 1999. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci USA. 96(18):10495–10500.

Gorr T, et al. 2011. Old proteins—new locations: myoglobin, haemoglobin, neuroglobin and cytoglobin in solid tumours and cancer cells. Acta Physiol (Oxf). 203(3):563–581.

Grabher MG, et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 29(7):644–652.

Grange RW, et al. 2001. Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am J Physiol Cell Physiol. 281(5):C1487–C1494.

Graur D, Li W-H. 2000. Fundamentals of molecular evolution. Dynamics of best-fit models of protein evolution. Bioinformatics 212(5):627–638.

Gregory TR. 2020. Animal genome size database. Available from: http://www.genomesize.com/. Accessed April 23, 2021.

Helbo S, et al. 2012. Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am J Physiol Regul Integr Comp Physiol. 302(6):R693–R701.

Helbo S, Weber RE, Fago A. 2013. Expression patterns and adaptive functional diversity of vertebrate myoglobins. Biochim Biophys Acta. 1834(9):1832–1839.

Hendgen-Cotta UB, et al. 2008. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci USA. 105(29):10256–10261.

Hendgen-Cotta UB, Kelm M, Rassaf T. 2014. Myoglobin’s novel role in nitrite-induced hypoxic vasodilatation. Trends Cardiovasc Med. 24(2):69–74.

Hoffmann FG, Opazo JC, Storz JF. 2011. Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates. Genome Biol Evol. 3:588–600.

Katoch K, Asimenos G, Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. In: Posada D, editor. Bioinformatics for DNA sequence analysis. Methods in Molecular Biology (Methods and Protocols). Vol. 537. Totowa (NJ): Humana Press. p. 39–64.

Kendrew JC, et al. 1960. Structure of myoglobin: a three-dimensional Fourier synthesis at 2 Å resolution. Nature 185(4711):422–427.

Koch J, et al. 2016. Unusual diversity of myoglobin genes in the lungfish. Mol Biol Evol. 33(12):3033–3041.

Kumar S, Steger G, Li M, Knycz A, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549. doi:10.1093/molbev/msy096

Kumar S, Steger G, Suleš M, Hedges SB. 2017. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 34(7):1812–1819.

Lechleuthner A, Schumacher U, Negele R, Welsch U. 1989. Lungs of polypterus and eterocopeothyrs. J Morphol. 212(2):161–178.

Lefevre S, et al. 2014. Air-breathing fishes in aquaculture. What can we learn from phylogeny? J Fish Biol. 84(3):705–731.

Li N, et al. 2018. Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics 19(1):952.

Lien S, et al. 2016. The Atlantic salmon genome provides insights into redploidyization. Nature 533(7602):200–205.

Lützemann J, Fago A, et al. 2019. Genetic and functional diversity of the multiple lungfish myoglobins. FEBS J. 287(8):1598–1611.

Lützemann J, Verissimo KM, et al. 2019. Globin E is a myoglobin-related, respiratory protein highly expressed in lungfish oocytes. Sci Rep. 9(1):1–11.

Lushchak VI, Lushchak LP, Mota AA, Hermes-Lima M. 2001. Oxidative stress and antioxidant defences in goldfish Carassius auratus during anoxia and reoxygenation. Am J Physiol Regul Integr Comp Physiol. 280(1):R100–R107.

Macqueen DJ, Johnston IA. 2014. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci. 281(1778):20132881.

Macedo NL, Fitch WS. 1982. Isolation and amino acid sequence of a monomeric hemoglobin in heart muscle of the bullfrog, Rana catesbeiana. J Biol Chem. 257(6):2806–2815.

Meeson AP, et al. 2001. Adaptive mechanisms that preserve cardiac function in mice without myoglobin. Circ Res. 88(7):713–720.

Merx MM, et al. 2001. Myoglobin facilitates oxygen diffusion. FASEB J. 15(6):1077–1079.

Mirceta S, et al. 2013. Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340(6138):1234192.

Missaghi S, Hondzo M, Herb W. 2017. Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate. Climatic Change 141(4):747–757.

Nikinmaa M. 2002. Oxygen-dependent cellular functions—why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A. Mol Integr Physiol. 132(1):1–16.

Nikinmaa M, Rees BB. 2005. Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol. 288(5):R1079–R1090.

Opazo JC, et al. 2015. Ancient duplications and expression divergence in the globin gene superfamily of vertebrates: insights from the elephant shark genome and transcriptome. Mol Biol Evol. 32(7):1684–1694.

Osawa Y, Korzekwa K. 1991. Oxidative modification by low levels of HOOH can transform myoglobin to an oxidase. Proc Natl Acad Sci USA. 88(16):7081–7085.
Pace CM, Gibb AC. 2011. Locomotor behavior across an environmental transition in the ropefish, *Erpetoichthys calabaricus*. J Exp Biol. 214(4):530–537.

Qiu Y, Sutton L, Riggs AF. 1998. Identification of myoglobin in human smooth muscle. J Biol Chem. 273(36):23426–23432.

Roesner A, Mitz SA, Hankeln T, Burmester T. 2008. Globins and hypoxia adaptation in the goldfish, *Carassius auratus*. FEBS J. 275(14):3633–3643.

Schwartz R, Dayhoff M. 1979. Matrices for detecting distant relationships. In: Dayhoff M, editor. Atlas of protein sequence and structure. Vol. 5. Silver Spring (MI): National Biomedical Research Foundation. p. 353–358.

Schwarze K, et al. 2014. The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates. Mol Biol Evol. 31(10):2708–2721.

Sidell BD, O’Brien KM. 2006. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol. 209(10):1791–1802.

Standen EM, Du TY, Larsson HC. 2014. Developmental plasticity and the origin of tetrapods. Nature 513(7516):54–58.

Storz JF, Opazo JC, Hoffmann FG. 2013. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol. 66(2):469–478.

Suzuki S, Kakuta M, Ishida T, Akiyama Y. 2014. GHOSTX: an improved sequence homology search algorithm using a query suffix array and a database suffix array. PLoS One 9(8):e103833.

Tiedke J, Thiel R, Burmester T. 2014. Molecular response of estuarine fish to hypoxia: a comparative study with ruffe and flounder from field and laboratory. PLoS One 9(3):e90778.

Vervoort A. 1980. Tetraploidy in *Protopterus* (Dipnoi). Experientia 36(3):294–296.

Vinogradov SN, et al. 2007. A model of globin evolution. Gene 398(1–2):132–142.

Wittenberg BA, Wittenberg JB. 1989. Transport of oxygen in muscle. Annu Rev Physiol. 51(1):857–878.

Wittenberg JB, Wittenberg BA. 2003. Myoglobin function reassessed. J Exp Biol. 206(12):2011–2020.

Associate editor: Sabyasachi Das