Proteomics-based confirmation of protein expression and correction of annotation errors in the *Brucella abortus* genome

Julie Lamontagne1, Maxime Béland1, Anik Forest1, Alexandra Côté-Martin1, Najib Nassif1, Fadi Tomaki1, Ignacio Moriyón2, Edgardo Moreno3 and Eustache Paramithiotis*1

Abstract

Background: Brucellosis is a major bacterial zoonosis affecting domestic livestock and wild mammals, as well as humans around the globe. While conducting proteomics studies to better understand *Brucella abortus* virulence, we consolidated the proteomic data collected and compared it to publicly available genomic data.

Results: The proteomic data was compiled from several independent comparative studies of *Brucella abortus* that used either outer membrane blebs, cytosols, or whole bacteria grown in media, as well as intracellular bacteria recovered at different times following macrophage infection. We identified a total of 621 bacterial proteins that were differentially expressed in a condition-specific manner. For 305 of these proteins we provide the first experimental evidence of their expression. Using a custom-built protein sequence database, we uncovered 7 annotation errors. We provide experimental evidence of expression of 5 genes that were originally annotated as non-expressed pseudogenes, as well as start site annotation errors for 2 other genes.

Conclusions: An essential element for ensuring correct functional studies is the correspondence between reported genome sequences and subsequent proteomics studies. In this study, we have used proteomics evidence to confirm expression of multiple proteins previously considered to be putative, as well as correct annotation errors in the genome of *Brucella abortus* strain 2308.

Background

Brucella species bacteria are gram negative alpha proteobacteria superbly adapted for survival in intracellular environments. They infect a wide range of mammals, including essentially all economically important domestic mammals, many wild species, and humans. Brucellosis is the largest bacterial zoonosis in the world [1-3]. In humans, untreated brucellosis is a long lasting disease characterized by recurrent fever episodes and clinical manifestations that include spondylitis, severe headaches, joint or abdominal pain, endocarditis, and meningencephalitis. In severe non-treated cases brucellosis can cause death [1-3].

Seven terrestrial *Brucella* species have been defined: *Brucella melitensis*, *Brucella abortus*, *Brucella suis*, *Brucella ovis*, *Brucella canis*, *Brucella neotomae* and *Brucella microti* which infect goats, cattle, pigs, sheep, dogs, desert wood rats and common voles, respectively [1,4]. Two *Brucella* species infecting marine mammals such as dolphins, whales, seals, sea lions and walrus have also been defined as *Brucella ceti* and *Brucella pinnipedialis* [5-7]. With the exception of *B. suis* biovar 3, the *Brucella* genome is encoded on two chromosomes, containing in total approximately 3,500 genes. Genome sequences from 32 different *Brucella* strains, representing all species, have been published either as complete genomes (10 strains) or as draft assemblies in NCBI (22 strains) [8-14].

The raw genome sequencing data of 78 other strains is also available in the Sequence Read Archive of NCBI. The genome sequences were very highly homologous, although regions of unique genetic material were also observed. It is possible that these regions are involved in establishing the distinct host preferences and biological
behavior of the different Brucella species sequenced to date [15].

Unlike other pathogenic bacteria, Brucella virulence does not appear to be the result of relatively few virulence genes that can be transferred horizontally via plasmids, phages, or assembled in pathogenicity islands. Brucella also lack typical virulence factors such as exotoxins, flagella, capsules, and type III secretion systems. Rather, the pathogen’s virulence appears to be an integrated aspect of its physiology. Therefore, to better understand Brucella virulence, we will need to better understand the Brucella proteome, including how it changes during the different stages of the intracellular and extracellular Brucella life-cycles, and how it interacts with host proteins and processes. Indeed, we have previously demonstrated that Brucella bacteria are capable of extensive, reversible, remodeling of their cell envelopes [16]. Furthermore, during the establishment of an intracellular infection, Brucella bacteria also appear able to carry out extensive, and reversible, modifications to their biosynthetic pathways and respiration in order to adapt to the changing microenvironments encountered in infected host cells [17]. This suggests that the Brucella proteome is considerably more dynamic than previously suspected, and that in depth proteomic analysis of the pathogen, as well as integration of these data with the available genomic information, will result in novel mechanistic and possibly therapeutic insights.

In this work we have generated a synthesis of the proteomic datasets we produced from multiple independent comparisons of Brucella strains either grown in media or retrieved from infected host cells. Some of this data is currently publicly available [16,17];[http://proteomicsresearchsource.org/Default.aspx] with the remainder becoming available as part of this work. These studies were originally designed to identify experimental condition-specific differences in the Brucella proteome. We compiled the experimental evidence for any Brucella protein detected and compared the proteomic data to the available genomic data. We provide the first direct experimental evidence for the expression of 305 Brucella proteins, but also identified experimental evidence for the expression of five genes previously annotated as pseudogenes, and of start site errors in two other genes.

Results and Discussion

First experimental evidence of the expression of 305 proteins in B. abortus 2308

Samples used for the proteomic analysis came from B. abortus either grown extracellularly in media or isolated from infected RAW264.7 macrophages. The extracellular samples included whole bacteria grown directly in trypsic soy broth, outer membrane preparations (blebs) [16] and cytosols. Intracellular samples consisted of viable B. abort-
Table 1: *B. abortus* 2308 proteins for which the expression was demonstrated for the first time

Cytoplasm

BAB1_0002	DnaN	BAB1_0855	GRX family	BAB1_1449	UDP-N-acetylglucosamine transferase	BAB1_2149	PepS
BAB1_0022	Unknown	BAB1_0856	BoA-related	BAB1_1450	acetyl-L-muramidase	BAB1_2168	RpsO; S15
BAB1_0023	AroA	BAB1_0857	FGAM synthase II	BAB1_1508	L-alanine ligase	BAB1_2173	FabB
BAB1_0035	KdsB	BAB1_0861	PurS	BAB1_1508	CarB	BAB2_0083	Eda2
BAB1_0063	Unknown	BAB1_0864	HpcH/Hpal	BAB1_1512	CspA	BAB2_0090	GCNS-related
BAB1_0071	ArgG	BAB1_0874	AcpP	BAB1_1523	GreA	BAB2_0090	N-acetylmuramoyltransferase
BAB1_0100	Putative AsnC family	BAB1_0880	HAD-like	BAB1_1528	SseA-1	BAB2_0109	Gnd
BAB1_0107	Trs-ABC (P-loop)	BAB1_0886	NN:DBI PRT	BAB1_1538	OmpR	BAB2_0160	Unknown
BAB1_0118	Unknown	BAB1_0896	ArgS	BAB1_1547	PepQ	BAB2_0162	L-carnitine dehydrogenase
BAB1_0122	GyrB	BAB1_0898	NagZ	BAB1_1549	PrsA	BAB2_0177	Gnr
BAB1_0139	NifU	BAB1_0918	GatB/YqeY	BAB1_1553	YchF	BAB2_0177	YafB
BAB1_0159	S30EA	BAB1_0924	AccC	BAB1_1613	Unknown	BAB2_0186	Fumarate hydratase
BAB1_0160	PtsN-like	BAB1_0933	PCRF 2	BAB1_1645	DhaK-1	BAB2_0187	Unknown
BAB1_0191	GABAtransms	BAB1_0943	TyrS	BAB1_1646	DhaK-2	BAB2_0191	HAD-like, dehydrogenase
BAB1_0204	AdhP	BAB1_0949	SufC	BAB1_1655	GabD	BAB2_0198	Pseudouridine
BAB1_0215	ThiE	BAB1_0955	DeaD	BAB1_1669	PAS domain	BAB2_0198	Pseudouridine
BAB1_0216	ThiG	BAB1_0960	Trs heavy metal	BAB1_1671	TcaR	BAB2_0198	Pseudouridine
BAB1_0242	ManR	BAB1_1014	MetG	BAB1_1687	Dut	BAB2_0216	3-hydroxybutyryl-CoA dehydrogenase
BAB1_0285	HisD	BAB1_1030	Gor	BAB1_1695	PurA	BAB2_0216	3-hydroxybutyryl-CoA dehydrogenase
BAB1_0317	Trs arginine/ornithine	BAB1_1037	Mandelate racemase; muconate lactonizing	BAB1_1702	Phosphoglucomutase	BAB2_0246	P47K
BAB1_0331	ArgD	BAB1_1070	MuScA lactonizing	BAB1_1778	FdxA	BAB2_0337	RocF
BAB1_0344	Pip	BAB1_1043	Unknown	BAB1_1719	ThiE	BAB2_0295	DgoK
BAB1_0353	Unknown dehydrogenase	BAB1_1050	FolB	BAB1_1722	Efp	BAB2_0296	KdgA
BAB1_0416	DUF85	BAB1_1077	Ach1p	BAB1_1751	Unknown	BAB2_0333	NADH:flavin oxidoreductase/NADH oxidase
BAB1_0429	Polyprenyl synthetase	BAB1_1098	PRA-CH	BAB1_1778	FdxA	BAB2_0337	RocF
BAB1_0446	DnaJ	BAB1_1121	DNA gyrase subunit A	BAB1_1781	Unknown	BAB2_0343	Trx-2
BAB1_0447	FabI-1	BAB1_1130	ClpA/B	BAB1_1804	MarR family	BAB2_0358	Dhp
BAB1_0482	FabD	BAB1_1132	ClpP	BAB1_1810	AtpH	BAB2_0361	TypA
BAB1_0484	AcpP	BAB1_1156	KdsA	BAB1_1813	Transaldolase	BAB2_0365	FbaA
BAB1_0489	Guanylate kinase	BAB1_1157	PyrG	BAB1_1815	LeuS	BAB2_0366	RpiB/LacA/LacB
BAB1_0510	ThrC	BAB1_1161	TpiA	BAB1_1819	ACAT	BAB2_0367	TIM 2
BAB1_0525	PpdK	BAB1_1164	TrpC	BAB1_1824	PurH	BAB2_0370	EryC
BAB1_0532	Transthretin	BAB1_1167	GltX	BAB1_1837	CynT	BAB2_0448	Unknown
BAB1_0540	Formyl transferase, N-terminal	BAB1_1170	GltA	BAB1_1840	MmsA	BAB2_0457	FoID
BAB1_0544	Degt/DnrJ/EryC1/Srs	BAB1_1174	FabZ	BAB1_1872	PrfA	BAB2_0459	Pgi
BAB1_0561	Man-6-P isomerase type II	BAB1_1177	Endoribonuclease	BAB1_1874	LysC	BAB2_0460	Zwf
BAB1_0570	XylA	BAB1_1205	ElaB-domain	BAB1_1879	GrxC	BAB2_0483	ShuT
BAB1_0578	Unknown	BAB1_1212	BhbA	BAB1_1887	HemC	BAB2_0513	GcvT
BAB1_0588	ATP/GTP-binding	BAB1_1213	Unknown; conserved	BAB1_1926	SusC	BAB2_0568	Unknown
Table 1: *B. abortus* 2308 proteins for which the expression was demonstrated for the first time (Continued)

BAB1_0641	Alanine aminopeptidase; Neutral zinc metallopeptidase, zinc-binding region	BAB1_1223	AlaS	BAB1_1936	GloB	BAB2_0572	IlvE
BAB1_1224	RecA	BAB1_1946	SecA	BAB2_0620	Unknown		
BAB1_1233	RpsM; S13 Ads	BAB1_1970	FadB	BAB2_0642	Acyl-CoA dehydratase		
BAB1_1234	Adk	BAB1_1971	EtfA	BAB2_0644	Metal-dependent		
BAB1_0666	DapA	BAB1_1241	RpsH; S8	BAB1_1988	HisC	BAB2_0645	GatC
BAB1_0671	MoaD	BAB1_1246	RplP; L16	BAB1_2023	CipA/cipB	BAB2_0851	GuaB
BAB1_0740	Unknown	BAB1_1249	RpsC; S3	BAB1_2059	ParB	BAB2_0861	DapA
BAB1_0775	AspS	BAB1_1256	RpsJ; S10	BAB1_2080	HisU	BAB2_0897	AldB
BAB1_0780	HemB	BAB1_1266	RplJ; L10	BAB1_2081	HisV	BAB2_0898	ArgB
BAB1_0787	GlyA	BAB1_1280	Unknown	BAB1_2087	HisE	BAB2_0900	Unknown
BAB1_0789	RibD	BAB1_1286	GloA	BAB1_2096	PTS system IIA	BAB2_0991	DapD
BAB1_0790	RibE	BAB1_1294	Aminotransferase subunit	BAB2_0993	DapE		
BAB1_0813	CysD	BAB1_1297	Unknown	BAB2_2109	AccD	BAB2_1009	MgsA
BAB1_0817	Unknown; conserved	BAB1_1376	UreA	BAB2_2133	Unknown	BAB2_1012	DapB
BAB1_0826	NuoE	BAB1_1408	IlvB	BAB2_2134	SMP-30	BAB2_1013	Gpm
BAB1_0842	ProS	BAB1_2135	Glutathione synthetase	BAB2_1032			

Inner membrane

BAB1_0400	Unknown	BAB1_1281	DUF192	BAB2_0261	RecA	BAB2_0877	Binding-protein-dependent transport system inner membrane component
BAB1_0425	NhaA	BAB1_1703	FtsH	BAB2_0709	FtsK-alpha		
BAB1_0542	WbkC	BAB1_1712	MotA; TolQ; ExbB	BAB2_0728	CydA		

Periplasm

BAB1_0010	Trs-ABC oligopeptide	BAB1_1118	PpiB-1	BAB2_0427	Trs-ABC spermidine/putrescine	BAB2_0697	Unknown; conserved
BAB1_0155	OstA-like	BAB1_1362	Lac	BAB2_0812	Trs-ABC oligopeptide		
BAB1_0404	Unknown	BAB1_1413	DegP	BAB2_0451	Trs-ABC oligopeptide		
BAB1_0444	PdxH	BAB1_1890	YciL-like protein	BAB2_0879	Trs-ABC spermidine/putrescine		
BAB1_0739	ETC complex I	BAB1_1919	Unknown	BAB2_0593	Trs-ABC amino acid		
BAB1_0776	Unknown	BAB1_1981	TlpA	BAB2_0880	Unknown		
BAB1_0881	Trs-ABC amino acid	BAB2_0374	Unknown	BAB2_0664	Trs-ABC peptidase		

Outer membrane

| BAB1_0659 | Omp2a | BAB1_0707 | OtsA | BAB1_0963 | TolC | |

Table 1: Summary of proteins for which the expression was demonstrated for the first time in *B. abortus* 2308. This table continues from the previous page, showing additional proteins along with their associated functional annotations.
these ORFs (Figure 1): BAB1_1205, BAB1_1645, BAB1_1646, BAB1_1768 and BAB2_0216. The MSMS spectra of the 18 peptides representing these former pseudogenes were manually validated. We thus investigated the reasons for which these genes had been annotated as pseudogenes. The genomic sequence of the cytoplasmic protein with a conserved DUF 883 domain BAB1_1205 was found to be identical to BMEI0805, its

Locus tag	Protein description	Peptide sequence	Protein sequence
BAB1_1205	Hypothetical protein	AENINDIQKALEK	QQLAEHFR
	(BMEI0805)		
BAB1_1645	Dak phosphatase domain	AGDWLTMERA	VGVVTGGGSGHEPAFIGYTGK
	(BMEI0397)		
BAB1_1646	Dak phosphatase domain	AATGATLEVR	LRPGILSDTGTMQF
	(BMEI0396)		
BAB1_1768	Hypothetical protein	TAYGGYGGAGAILAGGAAGGGNR	WSVLNMIAVAGLASSCTTIN
	(BMEI0827)		
BAB2_0216	Enoyl-CoA hydratase	QQLAEHFR	VSVKIVVGYGAVTIN
	(BMEI1021)		

Locus tags and descriptions of proteins are indicated and proteins are organized by predicted subcellular localization.
The second peptide, "TDLPIMK", was found to match the cytoplasmic Brucella melitensis keto-hydroxylglutarate-aldolase (BMEII0009) and then assigned to BAB2_0083 in B. abortus 2308. This peptide overlaps the region upstream to the currently annotated translation start site and the first three amino acids based on the annotated translation start site (Figure 2B). Alignment of the current B. abortus 2308 protein sequence with its counterparts in other Brucella strains and species indicates that the 2308 protein sequence is falsely truncated. Other start sites lead to proteins having N-terminals longer by 11, 26 or 44 amino acids. Although we cannot clearly indicate the actual start site of BAB1_1926 or BAB2_0083, we can confirm that their N-terminals are longer than currently annotated. Based on the homology of the B. abortus 2308 genome being highest with that of other Brucella strains, one can speculate that the start sites would be identical to those mapped in these strains.

Operons
Since genes that are part of an operon are usually co-transcribed, it is possible that these genes might also be cotranslated [32]. Considering all proteins identified by our studies, we were able to almost fully reconstitute one of the two ribosomal RNA operons, with all but BAB1_1237 found. Additionally, the previously mentioned BAB1_1645 and BAB1_1646 genes are predicted to be part of an operon containing 6 genes, BAB1_1645 to BAB1_1650 http://www.microbesonline.org/operons/gnc359391.html. Four of these proteins were detected in our studies, although only BAB1_1645, -46 and -48 were found in the same experimental condition.

Conclusions
Mass spectrometry has proven to be a valuable tool to identify and correct genomic annotation errors in the study of microorganisms [33-37]. We performed a proteomics analysis of B. abortus 2308 proteins expressed upon extracellular and intracellular growth conditions to validate existing gene predictions at the protein level, to
acquire useful information on B. abortus 2308 expressed proteins and to identify and correct inaccurately annotated ORFs. We were able to confirm the expression of over 300 previously unreported proteins and five pseudogenes, and corrected two wrongly assigned translation start sites. Taken together, these findings further demonstrate that computational genomic annotation errors can be corrected using proteomics. This will lead to improved databases and thus better protein identification and functional annotation.
Methods

Brucella abortus protein preparation for mass spectrometry analysis

Four types of B. abortus 2308 samples were prepared: outer membranes, cytosols, intracellular bacteria isolated from infected RAW264.7 macrophages and extracellular bacteria from overnight cultures. Outer membrane samples were prepared and processed for mass spectrometry analysis as previously described [16]. Cytoplasmic fractions were prepared as described previously [38]. Briefly, bacteria grown in tryptic soy broth (Difco) in 2-liter flasks on an orbital shaker and harvested by centrifugation in sealed cups at 7,000 × g for 20 min. The thick slurry of bacteria were suspended in 10 mM phosphate-buffered saline (pH 7.2) was passed twice through a French press (Pressure Cell 40 K, Aminco; SLM Instruments Inc., Urbana, Ill.) at an internal pressure of 35,000 lb/in². The homogenate was digested with 50 mg of DNase II type V and RNase A per ml (Sigma) for 18 h at 37°C and fractionated by ultracentrifugation. The cell envelopes in the bottom of the tube removed and the cytoplasmic fractions in the supernatant, filtered, lyophilized and characterized as described previously [39]. Intracellular bacteria were isolated from RAW264.7 macrophages 3, 20 and 44 hours post-infection as previously described [17]. Proteins were extracted from intracellular and extracellular bacteria using the same method and digested for mass spectrometry as previously described [17].

Liquid Chromatography - Mass Spectrometry (LC-MS)

Peptide digests were analyzed by liquid chromatography coupled to mass spectrometry (LC-MS) as described [40]. Briefly, the samples were injected onto a reversed-phase column (Jupiter C18, Phenomenex, Torrance, CA) for HPLC separation. For LC-MS survey scans, the mass spectra were acquired over 400-1600 Da at a rate of 1 spectrum/second. Peptide sequencing was achieved by targeted and shotgun LC-MS/MS. For MS/MS scans, the mass range was 50-2000 Da, and each spectrum was acquired in 2 seconds. For LC-MS/MS, the duty cycle was one survey scan followed by one product ion scan (MS/MS).

Protein identification

Protein identification was done by submitting LC-MS/MS spectra to Mascot software (MatrixScience, Boston, MA) and searching against custom protein databases (see below). The parameters used for the Mascot search and protein homology clustering were previously detailed [16]. No multidimensional fingerprinting method was used. Annotation for each protein was performed using ExPASy Proteomics tools http://us.expasy.org/tools/#proteome, Kegg GenomeNet Database Service http://www.genome.jp/ and literature mining of orthologous genes and proteins.

Protein databases

The databases were composed of protein sequences obtained from the National Center for Biotechnology Information (NCBI) protein database (for B. abortus 2308, NC_007618 and NC_007624; for B. melitensis 16 M, NC_003317 and NC_003318; for Mus musculus, all protein sequences contained under taxonomy ID 10090) and of B. abortus 2308 "pseudoproteins" corresponding to the custom translation of pseudogenes. Genomic regions corresponding to the 316 entries annotated as pseudogenes in NCBI were directly translated and added to the database. Additionally, the ORF Finder tool from NCBI was used to determine other possible protein sequences corresponding to the pseudogenes. The ORF search was done by including 0 to 200 bp upstream or downstream from these regions. All resulting ORFs spanning the entire pseudogene sequence were kept. Ribosome binding sites were mapped when possible according to the sequence described in reference [41]. A total of 471 translated protein sequences were added to the NCBI databases.

Validation of mass spectrometry results

Sequences assigned to MS/MS spectra of peptides, which were mapped to pseudogenes or to genomic regions annotated as untranslated regions, were manually validated. For proteins identified by a single peptide, manual validation of the spectra was performed for peptide sequences having a Mascot score below 45.

Prediction of protein localization

The localization of newly demonstrated proteins was predicted using PSORTb version 2.0.4 http://www.psort.org/psortb/index.html, CELLO version 2.5 http://cello.life.nctu.edu.tw/ and PSLpred http://www.imtech.res.in/raghava/pslpred/index.html. For a localization to be assigned, a minimum of 2 of the 3 predictions had to match.

Additional material

Additional file 1 Proteins newly demonstrated in B. abortus 2308.
Each entry is represented by a gene locus tag, description of the protein and the sequences of the peptides measured. Proteins are organized by predicted subcellular localization.

Authors' contributions

JL designed and coordinated the study, analyzed the data and wrote the manuscript. MB participated in the data analysis and manuscript writing. AF performed the mass spectrometry experiments and peptide validations. ACM participated in the data analysis. NN performed the protein identification steps. FT participated in the protein identification steps. IM participated in the data analysis and manuscript writing. EM participated in the data analysis and manuscript writing. EP conceived of the study and participated in manuscript writ-
References
1. Moreno E, Moriyon I: The Genus Brucella. In The Prokaryotes Edited by: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. New York: Springer-Verlag, 2006:315-356.
2. Mavrantzas V, Amaratunga SA, Brown CMG: Brucellosis in India - a review. J Bacteriol 2008, 190:3359-3374.
3. Bouza E, Sanchez-Carrillo C, Hernangomez S, Gonzalez MJ: Laboratory-acquired brucellosis: a Spanish national survey. J Hosp Infect 2005, 61:80-83.
4. Scholz HC, Hubalek Z, Sedlacek I, et al: Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 2008, 58:375-382.
5. Ross HM, Foster G, Reid RJ, Jahans KL, Macmillan AP: Brucella species infection in sea-mammals, Vet Rec 1994, 134:359.
6. Ewalt DR, Payeur JB, Martin BM, Cummins DR, Miller WG: Characteristics of a Brucella species from a bottlenose dolphin (Tursiops truncatus). J Vet Diagn Invest 1994, 6:448-452.
7. Cloeckaert A, Verger JM, Grayson M, et al: Classification of Brucella spp. isolated from marine mammals by DNA polymorphism at the omp2 locus. Microbes Infect 2001, 3:729-738.
8. Paulsen IT, Castaneda-Roldan EI, Ouahrani-Bettache S, Saldana Z, Avelino F, Rendon MA, Dornand J, Grön J: Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 2006, 8:1877-1887.
9. Díez-Pascual VG, Kapatral V, Redkar RJ, et al: Genome sequence of the facultative intracellular pathogen Brucella melitensis. Nat Biotechnol 2002, 20:443-448.
10. Halling SM, Peterson-Burch BD, Bricker BJ, et al: Complete description of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 2005, 187:2715-2726.
11. Chain PS, Comerci DJ, Tolmasky ME, et al: Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun 2005, 73:833-843.
12. Wattam AR, Williams KP, Snyder EE, et al: Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferential intracellular lifestyle. J Bacteriol 2009, 191:3569-3579.
13. Audic S, Lescot M, Clavene J, Scholz HC, Brucella microti: the genome sequence of an emerging pathogen. BMC Genomics 2009, 10:352.
14. Crasta OR, Folletta G, Felsz Z, Mane EP, Evans C, Martinovo-Catt S, Bricker B, Yu G, Dush, Sobral BW: Genome sequence of Brucella abortus vaccine strain 519 compared to virulent strains yields candidate virulence genes. PLoS One 2008, 3:e2193.
15. Rajatheekara G, Glasser JD, Glover DA, Splitter GA: Comparative whole-genome hybridization reveals genomic islands in Brucella species. J Bacteriol 2004, 186:5040-5051.
16. Lamontagne J, Butler H, Chaves-Olarte E, et al: Extensive cell envelope modulation is associated with virulence in Brucella abortus. J Proteome Res 2007, 6:1519-1529.
17. Lamontagne J, Forest A, Marrazzo E, et al: Intracellular adaptation of Brucella abortus. J Proteome Res 2009, 8:1594-1609.
18. Yu CS, Liu C, Hwang JK: Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004, 13:1402-1406.
19. Bhasin M, Garg A, Raghava GPH: PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005, 21:2522-2524.
20. Gardy JL, Laid MR, Chen F, Ray S, Walsh CJ, Ester M, Brinkman FSL: PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 2005, 21:517-523.
21. Connolly JP, Comerci DJ, Afalents T, et al: Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 2006, 6:3767-3780.
22. Klinker S, Zylberman B, Bonomi HR, Haase I, Guimaraes BG, Braden BC, Bacher A, Fischer M, Goldbaum FA: Structural and kinetic properties of lumazine synthase isoenzymes in the order Rhizobiales. J Mol Biol 2007, 26:664-680.
23. Zylberman V, Klinke S, Haase I, Bacher A, Fischer M, Goldbaum FA: Evolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella. J Bacteriol 2006, 188:5135-5142.
24. Robertson GT, Roop RM Jr: The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 1999, 34:590-700.
25. Belfortontaine AF, Pierreux CE, Merentes P, Vandenhauze J, Letessier JJ, De Bolle X: Plasticity of a transcriptional regulation network among alphaproteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 2002, 43:945-960.
26. Mantoeira L, Guzmán-Verri C, Chaves-Olarte E, Barquero-Calvo E, de Miguel MJ, Moriyón I, Grön J, López-Cóghi I, Moreno E: BvrR/BvrS-controlled outer membrane proteins Omp3a and Omp3b are not essential for Brucella abortus virulence. Infect Immun 2007, 75:4657-4674.
27. Tábor A, Wansard V, Biełarz V, Delruetz RM, Danese I, Michel P, Walravens K, Godfroid J, Letessier JJ: Effect of omp10 or omp19 deletion on Brucella abortus outer membrane properties and virulence in mice. Infect Immun 2002, 70:5540-5546.
28. Essenberg CR, Sharma YK: Cloning of genes for proline and leucine biosynthesis from Brucella abortus by functional complementation in Escherichia coli. J Gen Microbiol 1993, 139:87-93.
29. Castrañeda-Roldán EJ, Ouahiani-Bettache S, Saldáza Z, Avelino F, Rendon MA, Dornand J, Grón JA: Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells. Cell Microbiol 2006, 8:1877-1887.
30. Valdés MW, Alcántara RB, Baumgartner JE, Bello JL, Robertson GT, Ng WL, Richardon JM, Winkler ME, Roop RM, Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 2005, 107:307-312.
31. Essenberg RC: Cloning and characterization of the glucokinase gene of Brucella abortus 19 and identification of three other genes. J Bacteriol 1995, 177:6297-6300.
32. Wang R, Prince JT, Marcotte EM: Mass spectrometry of the M. smegmatis proteome: protein expression levels correlate with function, operons, and codon bias. Genome Res 2005, 15:1118-1126.
33. Bruner E, Ahrens CH, Mohanty S, Baetschmann H, Loevenich S, Potthast T, Aebersold R: A high-quality catalog of the M. smegmatis proteome. Nat Biotechnol 2007, 25:576-583.
34. Gupta N, Tanner S, Jaitly N, Adkins JN, Lipton M, Edwards R, Romine M, Morse M, Osterman A, Balna V, Smith RD, Pevzner PA: Whole proteome analysis of M. smegmatis by functional complementation in Escherichia coli. J Gen Microbiol 1993, 139:87-93.
35. Mardel MJ, Stubb EV, Ruby EG: Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics 2008, 9:138.
36. Berg R, Cornwell SK, Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. New York: Springer-Verlag, 2006:315-356.
37. Godfrey J, Letessier JJ: Identification, confirmation, and correction of miscalls and artefactual expansions of the M. smegmatis proteome: protein expression levels correlate with function, operons, and codon bias. Genome Res 2005, 15:1118-1126.
38. Menninger GE, Davis C, Ewing B, Williams G, Kall L, Frewen BE, Noble WS, Green F, Thomas JH, MacCoss MJ: Use of shotgun proteomics for the identification, confirmation, and correction of E. coli elegans gene annotations. Genome Res 2008, 18:1560-1569.
39. Mardel MJ, Stubb EV, Ruby EG: Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics 2008, 9:138.
40. Deshayes C, Cornwell SK, Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. New York: Springer-Verlag, 2006:315-356.
41. Deshayes C, Ewing B, Williams G, Kall L, Frewen BE, Noble WS, Green F, Thomas JH, MacCoss MJ: Use of shotgun proteomics for the identification, confirmation, and correction of E. coli elegans gene annotations. Genome Res 2008, 18:1560-1569.
42. Mandel MJ, Stubb EV, Ruby EG: Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics 2008, 9:138.
39. Moriyon I, Berman DT: Effects of nonionic, ionic, and dipolar ionic detergents and EDTA on the Brucella cell envelope. J Bacteriol 1982, 152:822.

40. Lucero NE, Jacob NO, Ayala SM, Escobar GI, Tuccillo P, Jacques I: Unusual clinical presentation of brucellosis caused by Brucella canis. J Med Microbiol 2005, 54:505-508.

41. Dricot A, Rual JF, Lamesch P, Bertin N, Dupuy D, Hao T, Lambert C, Hallez R, Delrossie JM, Vandenhauve J, Lopez-Gorhi I, Moriyon I, Garcia-Lobo JM, Sangari FJ, Macmillan AP, Cutler SJ, Whatmore AM, Bozak S, Sequerra R, Doucette-Stamm L, Vidal M, Hill DE, Letesson JJ, De Bolle X: Generation of the Brucella melitensis ORFeome version 1.1. Genome Res 2004, 14:2201.