STABILITY CRITERION FOR CONVOLUTION-DOMINATED INFINITE MATRICES

QIYU SUN

Abstract. Let ℓ^p be the space of all p-summable sequences on \mathbb{Z}. An infinite matrix is said to have ℓ^p-stability if it is bounded and has bounded inverse on ℓ^p. In this paper, a practical criterion is established for the ℓ^p-stability of convolution-dominated infinite matrices.

1. Introduction

Let C be the set of all infinite matrices $A := (a(j,j'))_{j,j' \in \mathbb{Z}}$ with

$$\|A\|_C = \sum_{k \in \mathbb{Z}} \sup_{j-j' = k} |a(j,j')| < \infty.$$

Let $\ell^p := \ell^p(\mathbb{Z})$ be the set of all p-summable sequences on \mathbb{Z} with the standard norm $\|\cdot\|_p$. An infinite matrix $A := (a(j,j'))_{j,j' \in \mathbb{Z}} \in C$ defines a bounded linear operator on ℓ^p, $1 \leq p \leq \infty$, in the sense that

$$Ac = \left(\sum_{j' \in \mathbb{Z}} a(j,j')c(j') \right)_{j \in \mathbb{Z}}$$

where $c = (c(j))_{j \in \mathbb{Z}} \in \ell^p$. Given a summable sequence $h = (h(j))_{j \in \mathbb{Z}} \in \ell^1$, define the convolution operator C_h on ℓ^p, $1 \leq p \leq \infty$, by

$$C_h : \ell^p \ni (b(j))_{j \in \mathbb{Z}} \mapsto \left(\sum_{k \in \mathbb{Z}} h(j-k)b(k) \right)_{j \in \mathbb{Z}} \in \ell^p.$$

Observe that the linear operator associated with an infinite matrix $A \in C$ is dominated by a convolution operator in the sense that

$$|(Ac)(j)| \leq (C_h|c|)(j) := \sum_{j' \in \mathbb{Z}} h(j - j')|c(j')|, \quad j \in \mathbb{Z}$$

for any sequence $c = (c(j))_{j \in \mathbb{Z}} \in \ell^p$, $1 \leq p \leq \infty$, where $|c| = (|c(j)|)_{j \in \mathbb{Z}}$ and the sequence $(\sup_{j-j' = k}|a(j,j')|)_{k \in \mathbb{Z}}$ can be chosen to be the sequence $h = (h(j))_{j \in \mathbb{Z}}$ in (1.3). So infinite matrices in the set C are said to be convolution-dominated.

Convolution-dominated infinite matrices were introduced by Gohberg, Kaashoek, and Woerdeman [12] as a generalization of Toeplitz matrices. They showed that the class C equipped with the standard matrix multiplication and the above norm $\|\cdot\|_C$ is an inverse-closed Banach subalgebra of $B(\ell^p)$ for $p = 2$. Here $B(\ell^p)$, $1 \leq p \leq \infty$, is the space of all bounded linear operators on ℓ^p with the standard operator norm, and a subalgebra A of a Banach algebra \mathcal{B} is said to be inverse-closed if an operator $T \in \mathcal{A}$ has an inverse T^{-1} in \mathcal{B} then $T^{-1} \in \mathcal{A}$ ([7, 11, 21]). The inverse-closed property for convolution-dominated infinite matrices was rediscovered by Sjöstrand [25].

2000 Mathematics Subject Classification. 47B35, 40E05, 65F05, 42C40, 47G30, 94A20.
with a completely different proof and an application to a deep theorem about pseudodifferential operators. Recently Shin and Sun [23] generalized Gohberg, Kaashoek and Woerdeman’s result and proved that the class C is an inverse-closed Banach subalgebra of $B(ℓ^p)$ for any $1 \leq p \leq ∞$. The readers may refer to [5, 10, 20, 23, 25, 27] and the references therein for related results and various generalizations on the inverse-closed property for convolution-dominated infinite matrices.

Convolution-dominated infinite matrices arise and have been used in the study of spline approximation ([8, 9]), wavelets and affine frames ([6, 18]), Gabor frames and non-uniform sampling ([3, 14, 15, 26]), and pseudo-differential operators ([13, 16, 24, 25] and the references therein). Examples of convolution-dominated infinite matrices include the infinite matrix $\left(a(j - j') \right)_{j,j' \in \mathbb{Z}}$ associated with convolution operators, and the infinite matrix $\left(a(j - j') e^{-\frac{2\pi}{\sqrt{-1}} \theta j' (j - j')} \right)_{j,j' \in \mathbb{Z}}$ associated with twisted convolution operators, where $\theta \in \mathbb{R}$ and the sequence $a = (a(j))_{j \in \mathbb{Z}}$ satisfies $\sum_{j \in \mathbb{Z}} |a(j)| < ∞$ ([1, 14, 19, 27, 29]).

A convolution-dominated infinite matrix A is said to have $ℓ^p$-stability if there are two positive constants C_1 and C_2 such that

$$C_1 \|c\|_p \leq \|Ac\|_p \leq C_2 \|c\|_p \quad \text{for all } c \in ℓ^p.$$

The $ℓ^p$-stability is one of basic assumptions for infinite matrices arising in the study of spline approximation, Gabor time-frequency analysis, nonuniform sampling, and algebra of pseudo-differential operators, see [1, 3, 6, 8, 9, 10, 14, 15, 16, 18, 19, 23, 24, 25, 26, 27, 29] and the references therein. Practical criteria for the $ℓ^p$-stability of a convolution-dominated infinite matrix will play important roles in the further study of those topics.

However, up to the knowledge of the author, little is known about practical criteria for the $ℓ^p$-stability of an infinite matrix. For an infinite matrix $A = \left(a(j - j') \right)_{j,j' \in \mathbb{Z}}$ associated with convolution operators, there is a very useful criterion for its $ℓ^p$-stability. It states that A has $ℓ^p$-stability if and only if the Fourier series $\hat{a}(ξ) := \sum_{j \in \mathbb{Z}} a(j) e^{-ijξ}$ of the generating sequence $a = (a(j))_{j \in \mathbb{Z}} \in ℓ^1$ does not vanish on the real line, i.e.,

$$\hat{a}(ξ) \neq 0 \quad \text{for all } ξ \in \mathbb{R}. \quad (1.5)$$

Applying this criterion for the $ℓ^p$-stability, one concludes that the spectrum $σ_p(C_a)$ of the convolution operator C_a as an operator on $ℓ^p$ is independent of $1 \leq p \leq ∞$, i.e.,

$$σ_p(C_a) = σ_q(C_a) \quad \text{for all } 1 \leq p, q \leq ∞ \quad \text{see [4, 17, 22, 23]}$$

and the references therein for the discussion on spectrum of various convolution operators. Applying the above criterion again, together with the classical Wiener’s lemma ([29]), it follows that the inverse of an $ℓ^p$-stable convolution operator C_a is a convolution operator C_b associated with another summable sequence b.

For a convolution-dominated infinite matrix $A = \left(a(j,j') \right)_{j,j' \in \mathbb{Z}}$, a popular sufficient condition for its $ℓ^1$-stability and $ℓ^∞$-stability is that A is diagonal-dominated,
i.e.,

\[(1.7) \quad \inf_{j \in \mathbb{Z}} \left(\left| a(j, j) \right| - \max \left(\sum_{j' \neq j} \left| a(j, j') \right|, \sum_{j' \neq j} \left| a(j', j) \right| \right) \right) > 0. \]

In this paper, we provide a practical criterion for the \(\ell^p \)-stability of convolution-dominated infinite matrices. We show that a convolution-dominated infinite matrix \(A \) has \(\ell^p \)-stability if and only if it has certain “diagonal-blocks-dominated” property (see Theorem 2.1 for the precise statement).

2. Main Theorem

To state our criterion for the \(\ell^p \)-stability of convolution-dominated infinite matrices, we introduce two concepts. Given an infinite matrix \(A \), define the truncation matrices \(A_s, s \geq 0 \), by

\[A_s = (a(i, j) \chi(-s, s)(i - j))_{i, j \in \mathbb{Z}} \]

where \(\chi_E \) is the characteristic function on a set \(E \). Given \(y \in \mathbb{R} \) and \(1 \leq N \in \mathbb{Z} \), define the operator \(\chi_y^N \) on \(\ell^p \) by

\[\chi_y^N : \ell^p \ni (c(j))_{j \in \mathbb{Z}} \mapsto (c(j) \chi(-N, N)(j - y))_{j \in \mathbb{Z}} \in \ell^p. \]

The operator \(\chi_y^N \) is a diagonal matrix \(\text{diag}(\chi(-N, N)(j - y))_{j \in \mathbb{Z}} \).

Theorem 2.1. Let \(1 \leq p \leq \infty \), and \(A \) be a convolution-dominated infinite matrix in the class \(C \). Then the following statements are equivalent.

(i) The infinite matrix \(A \) has \(\ell^p \)-stability.

(ii) There exist a positive constant \(C_0 \) and a positive integer \(N_0 \) such that

\[(2.1) \quad \| \chi_y^{2N} A \chi_y^N c \|_p \geq C_0 \| \chi_y^N c \|_p, \quad c \in \ell^p, \]

hold for all integers \(N \geq N_0 \) and \(n \in N \mathbb{Z} \).

(iii) There exist a positive integer \(N_0 \) and a positive constant \(\alpha \) satisfying

\[(2.2) \quad \alpha > 2(5 + 2^{1-p})^{1/p} \inf_{0 \leq s \leq N_0} \left(\| A - A_s \| c + \frac{s}{N_0} \| A \| c \right) \]

such that

\[(2.3) \quad \| \chi_y^{2N_0} A \chi_y^{N_0} c \|_p \geq \alpha \| \chi_y^{N_0} c \|_p, \quad c \in \ell^p, \]

hold for all \(n \in N_0 \mathbb{Z} \).

Taking \(N_0 = 1 \) in (2.2) and (2.3), we obtain a sufficient condition (2.4), which is a strong version of the diagonal-domination condition (1.7), for the \(\ell^\infty \)-stability of a convolution-dominated infinite matrix.

Corollary 2.2. Let \(A = (a(j, j'))_{j, j' \in \mathbb{Z}} \) be a convolution-dominated infinite matrix in the class \(C \). If

\[(2.4) \quad \inf_{j \in \mathbb{Z}} \left| a(j, j) \right| - 2 \sum_{0 \neq k \in \mathbb{Z}, j - j' = k} \sup_{j' = k} \left| a(j, j') \right| > 0, \]

then \(A \) has \(\ell^\infty \)-stability.
We say that an infinite matrix \(A = (a(i,j))_{i,j \in \mathbb{Z}} \) is a \textit{band matrix} if \(a(i,j) = 0 \) for all \(i, j \in \mathbb{Z} \) satisfying \(j > i + k \) or \(j < i - k \). The quantity \(2k + 1 \) is the \textit{bandwidth} of the matrix \(A \). For a band matrix \(A \) with bandwidth \(2k + 1 \), \(A - A_s \) is the zero matrix if \(s > k \). Therefore for \(N > k \),

\[
\inf_{0 \leq s \leq N} \left(\|A - A_s\|_c + \frac{s}{N} \|A\|_c \right) \leq \frac{k}{N} \|A\|_c.
\]

This, together with Theorem 2.1, gives the following sufficient condition for a band matrix to have \(\ell^p \)-stability.

\textbf{Corollary 2.3.} Let \(1 \leq p \leq \infty \) and \(A \) be a convolution-dominated band matrix in the class \(C \) with bandwidth \(2k + 1 \). If there exists an integer \(N_0 > k \) such that

\[
\|A \chi_{N_0}^p c\|_p \geq \alpha \|\chi_{N_0}^p c\|_p, \quad c \in \ell^p,
\]

holds for some constant \(\alpha \) strictly larger than \(2(5 + 2^{1-p})^{1/p} k \|A\|_c / N_0 \), then \(A \) has \(\ell^p \)-stability.

If we further assume that the infinite matrix \(A \) in Corollary 2.3 has the form \(A = (a(j - j'))_{j,j' \in \mathbb{Z}} \) for some finite sequence \(a = (a(j))_{j \in \mathbb{Z}} \) satisfying \(a(j) = 0 \) for \(|j| > k \), then \(\|A\|_c = \sum_{|j| \leq k} |a(j)| \) and the condition (2.5) can reformulated as follows:

\[
\|\tilde{A}_{N_0} c\|_p \geq \frac{\gamma k}{N_0} \left(\sum_{|j| \leq k} |a(j)| \right) \|c\|_p, \quad c \in \mathbb{R}^{2N_0 + 1},
\]

holds for some \(\gamma > 2(5 + 2^{1-p})^{1/p} \), where

\[
\tilde{A}_{N_0} = (a(j - j'))_{-N_0 \leq j \leq N_0, -k \leq j' \leq N_0}
\]

and

\[
\|c\|_p = \begin{cases} \left(\sum_{j=-k}^{k} |c(j)|^p \right)^{1/p} & \text{if } 1 \leq p < \infty \\ \sup_{-k \leq j \leq k} |c(j)| & \text{if } p = \infty, \end{cases}
\]

for \(c = (c(-k_1), \ldots, c(0), \ldots, c(k_2))^T \in \mathbb{R}^{k_1 + k_2 + 1} \). As a conclusion from (2.6) and (2.7), we see that if \(A = (a(j - j'))_{j,j' \in \mathbb{Z}} \) does not have \(\ell^p \)-stability, then for any large integer \(N \),

\[
\inf_{0 \neq c \in \mathbb{R}^{2N + 1}} \frac{\|\tilde{A}_{N} c\|_p}{\|c\|_p} \leq \frac{2(5 + 2^{1-p})^{1/p} k}{N} \left(\sum_{|j| \leq k} |a(j)| \right).
\]

For the special case \(p = 2 \), the above inequality (2.8) can be interpreted as the minimal eigenvalue of \((\tilde{A}_N)^T \tilde{A}_N \) is less than or equal to \(\frac{2k}{N^2} \left(\sum_{|j| \leq k} |a(j)| \right)^2 \), and it can also be rewritten as

\[
\inf_{0 \neq P_N \in \Pi_N} \left(\int_{-\pi}^{\pi} |\tilde{a}(\xi)|^2 |P_N(\xi)|^2 d\xi \right)^{1/2} \leq \frac{\sqrt{2k}}{N} \left(\sum_{|j| \leq k} |a(j)| \right),
\]

where \(\tilde{a}(\xi) = \sum_{j \in \mathbb{Z}} a(j) e^{-ij\xi} \) and \(\Pi_N \) is the set of all trigonometrical polynomial of degree at most \(N \).

If the sequence \(a = (a(j))_{j \in \mathbb{Z}} \) satisfies \(a(0) = 1, a(-1) = -1, \) and \(a(j) = 0 \) otherwise, then the bandwidth of the infinite matrix \(A = (a(j - j'))_{j,j' \in \mathbb{Z}} \) is equal
to 3, the norm \(\|A\|_C \) of the associated infinite matrix \(A \) is equal to 2,

\[
\tilde{A}_N = \begin{pmatrix}
-1 & 0 & 0 & \cdots & 0 & 0 \\
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
& & & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & 1 & -1 \\
0 & 0 & 0 & \cdots & 0 & 1
\end{pmatrix},
\]

(2.10)

and

\[
\inf_{0 \neq c \in \mathbb{R}^{2N+1}} \frac{\|\tilde{A}_N c\|_p}{\|c\|_p} \geq \frac{1}{N+1},
\]

where the last inequality holds since the matrix

\[
\tilde{B}_N := \begin{pmatrix}
-1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
-1 & -1 & -1 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
& & & \ddots \\
& & & \ddots \\
-1 & -1 & -1 & \cdots & -1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & \cdots & 1 & 1 \\
& & & \ddots \\
& & & \ddots \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 1 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{pmatrix}
\]

is a left inverse of the matrix \(\tilde{A}_N \). Therefore the order \(N^{-1} \) in (2.8) can not be improved in general, but the author believes that the bound constant \(2(5+2^{1-p})^{1/p} \) in (2.2) and (2.8) is not optimal and could be improved.

3. Proof

We say that a discrete subset \(\Lambda \) of \(\mathbb{R}^d \) is relatively-separated if

\[
R(\Lambda) := \sup_{x \in \mathbb{R}^d} \sum_{\lambda \in \Lambda} \chi_{\lambda+[-1/2,1/2]^d}(x) < \infty
\]

([1, 23, 27]). Clearly, the set \(\mathbb{Z} \) of all integers is a relatively-separated subset of \(\mathbb{R} \) with

\[
R(\mathbb{Z}) = 1.
\]

Given a discrete set \(\Lambda \), let \(\ell^p(\Lambda) \) be the set of all \(p \)-summable sequences on the set \(\Lambda \) with standard norm \(\| \cdot \|_{\ell^p(\Lambda)} \) or \(\| \cdot \|_p \) for brevity.

Given two relatively-separated subsets \(\Lambda \) and \(\Lambda' \) of \(\mathbb{R}^d \), define

\[
\mathcal{C}(\Lambda, \Lambda') = \left\{ A := (a(\lambda, \lambda'))_{\lambda \in \Lambda, \lambda' \in \Lambda'} \left| \|A\|_{\mathcal{C}(\Lambda, \Lambda')} < \infty \right. \right\},
\]

where

\[
\|A\|_{\mathcal{C}(\Lambda, \Lambda')} = \sum_{k \in \mathbb{Z}^d} \sup_{\lambda \in \Lambda, \lambda' \in \Lambda'} |a(\lambda, \lambda')| \chi_{k+[-1/2,1/2]^d}(\lambda - \lambda').
\]
It is obvious that
\[(3.3) \quad C(\mathbb{Z}, \mathbb{Z}) = \mathcal{C}.
\]

Given an infinite matrix \(A = (a(\lambda, \lambda'))_{\lambda \in \Lambda, \lambda' \in \Lambda'} \) define its truncation matrices
\[
A_s, s \geq 0, \text{ by } A_s = \left(a(\lambda, \lambda') \chi_{\{s, s\}}(\lambda - \lambda') \right)_{\lambda \in \Lambda, \lambda' \in \Lambda'}.
\]

For any \(y \in \mathbb{R}^d \) and a positive integer \(N \), define the operator \(\chi_N^y \) on \(\ell^p(\Lambda) \) by
\[(3.4) \quad \chi_N^y : \ell^p(\Lambda) \ni (c(\lambda))_{\lambda \in \Lambda} \mapsto (c(\lambda)\chi_{(-N, N)}(\lambda - y))_{\lambda \in \Lambda} \in \ell^p(\Lambda).
\]

In this section, we establish the following criterion for the \(\ell^p \)-stability of infinite matrices in the class \(\mathcal{C}(\Lambda, \Lambda') \), which is a slight generalization of Theorem 2.1 by (3.2) and (3.3).

Theorem 3.1. Let \(1 \leq p \leq \infty \), the subsets \(\Lambda, \Lambda' \) of \(\mathbb{R}^d \) be relatively-separated, and the infinite matrix \(A \) belong to \(\mathcal{C}(\Lambda, \Lambda') \). Then the following statements are equivalent to each other:

(i) The infinite matrix \(A \) has \(\ell^p \)-stability, i.e., there exist positive constants \(C_1 \) and \(C_2 \) such that
\[(3.5) \quad C_1 \|c\|_{\ell^p(\Lambda)} \leq \|Ac\|_{\ell^p(\Lambda')} \leq C_2 \|c\|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda').
\]

(ii) There exist a positive constant \(C_0 \) and a positive integer \(N_0 \) such that
\[(3.6) \quad \|\chi_n^{2N}A_n^\Lambda c\|_{\ell^p(\Lambda)} \geq C_0 \|\chi_n^N c\|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]
where \(N_0 \leq N \in \mathbb{Z} \) and \(n \in N\mathbb{Z}^d \).

(iii) There exist a positive integer \(N_0 \) and a positive constant \(\alpha \) satisfying
\[(3.7) \quad \alpha > 2(5 + 2^{1-p})^d R(\Lambda)^{-1/p} R(\Lambda')^{1-1/p} \inf_{0 \leq s \leq N_0} \left(\|A - A_s\|_{\ell^p(\Lambda, \Lambda')} + \frac{d_0}{N_0} \|A\|_{\ell^p(\Lambda, \Lambda')} \right)
\]
such that
\[(3.8) \quad \|\chi_n^{2N_0}A_n^\Lambda c\|_{\ell^p(\Lambda)} \geq \alpha \|\chi_n^{N_0} c\|_{\ell^p(\Lambda')}
\]
hold for all \(c \in \ell^p(\Lambda') \) and \(n \in N_0\mathbb{Z} \).

Using the above theorem, we obtain the following equivalence of \(\ell^p \)-stability for infinite matrices having certain off-diagonal decay, which is established in [2, 28, 23] for \(\gamma > d(d + 1), \gamma > 0 \), and \(\gamma \geq 0 \) respectively.

Corollary 3.2. Let \(\Lambda, \Lambda' \) be relatively-separated subsets of \(\mathbb{R}^d \), and \(A = (a(\lambda, \lambda'))_{\lambda \in \Lambda, \lambda' \in \Lambda'} \) satisfy
\[
\|A\|_{\ell^p(\Lambda, \Lambda')} = \sum_{k \in \mathbb{Z}^d} (1 + |k|)^\gamma \sup_{\lambda \in \Lambda, \lambda' \in \Lambda'} |a(\lambda, \lambda')| \chi_{|k+|1/2,1/2|^d}(\lambda - \lambda') < \infty
\]
where \(\gamma > 0 \). Then the \(\ell^p \)-stability of the infinite matrix \(A \) are equivalent to each other for different \(1 \leq p \leq \infty \).

Proof. Let \(1 \leq p \leq \infty \) and \(A \) have \(\ell^p \)-stability. Then by Theorem 3.1 there exists a positive constant \(C_0 \) and a positive integer \(N_0 \) such that
\[(3.9) \quad \|\chi_n^{2N_0}A_n^\Lambda c\|_{\ell^p(\Lambda)} \geq C_0 \|\chi_n^N c\|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]
where \(N_0 \leq N \in \mathbb{Z} \) and \(n \in \mathbb{N}^d \). From the equivalence of different norms on a finite-dimensional space, we have that
\[
(2N)^d R(\Lambda)^{\min(1/q-1/p,0)} \|A_N^c\|_{p,(\Lambda)} \leq (2N)^d \|A_N^c\|_{p,(\Lambda)} \text{ for all } c \in \ell^p(\Lambda),
\]
where \(1 \leq p, q \leq \infty, 1 \leq N \in \mathbb{Z} \) and \(n \in \mathbb{N}^d \) ([2, 23]). Therefore for \(1 \leq q \leq \infty, \)
\[
\|A_N^c\|_{p,(\Lambda)} \leq C_0(2N)^{-d|1/p-1/q|} R(\Lambda)^{\min(1/p-1/q,0)}
\]
(3.10)
\[
\times R(\Lambda)^{-\max(1/p-1/q,0)} \|A_N^c\|_{p,(\Lambda)} \text{ for all } c \in \ell^q(\Lambda),
\]
where \(N_0 \leq N \in \mathbb{Z} \) and \(n \in \mathbb{N}^d \). We notice that
\[
\inf_{0 \leq s \leq N} \|A - A_s\|_{C(\Lambda,\Lambda')} + \frac{ds}{N} \|A\|_{C(\Lambda,\Lambda')} \leq \|A\|_{C,\gamma(\Lambda,\Lambda')} \inf_{0 \leq s \leq N} s^\gamma + \frac{ds}{N}
\]
(3.11)
\[
\leq (d + 1) \|A\|_{C,\gamma(\Lambda,\Lambda')} N^{-\gamma/(1+\gamma)}.
\]
Thus for \(1 \leq q \leq \infty \) with \(d|1/p-1/q| < \gamma/(1+\gamma) \), it follows from (3.10) and (3.11) that there exists a sufficiently large integer \(N_0 \) such that
\[
\|A_N^c\|_{p,(\Lambda)} \geq \alpha \|A_N^c\|_{p,(\Lambda)}
\]
hold for all \(c \in \ell^q(\Lambda), N \geq N_0 \) and \(n \in \mathbb{N}^d \), where \(\alpha \) is a positive constant larger than \(2(5+2^{1-q})d/q R(\Lambda)^{1/q} R(\Lambda)^{1/q} \inf_{0 \leq s \leq N_0} (\|A - A_s\|_{C(\Lambda,\Lambda')} + \frac{ds}{N} \|A\|_{C(\Lambda,\Lambda')} \).

Then by Theorem 3.1, the infinite matrix \(A \) has \(\ell^q \)-stability for all \(1 \leq q \leq \infty \) with \(d|1/q-1/p| < \gamma/(1+\gamma) \). Applying the above trick repeatedly, we prove the \(\ell^q \)-stability of the infinite matrix \(A \) for any \(1 \leq q \leq \infty \).

To prove Theorem 3.1, we first recall some basic properties for infinite matrices \(A \) in the class \(C(\Lambda,\Lambda') \) and its truncation matrices \(A_s, s \geq 0 \).

Lemma 3.3. ([23]) Let \(1 \leq p \leq \infty \), the subsets \(\Lambda, \Lambda' \) of \(\mathbb{R}^d \) be relatively-separated, \(A \) be an infinite matrix in the class \(C(\Lambda,\Lambda') \), and \(A_s, s \geq 0 \), be the truncation matrices of \(A \). Then
\[
\|Ac\|_{p,(\Lambda')} \leq R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \|A\|_{C(\Lambda,\Lambda')} \|c\|_{p,(\Lambda')} \text{ for all } c \in \ell^p(\Lambda'),
\]
(3.13)
\[
\lim_{s \to +\infty} \|A - A_s\|_{C(\Lambda,\Lambda')} = 0,
\]
(3.14)
\[
\lim_{N \to +\infty} \inf_{0 \leq s \leq N} \|A - A_s\|_{C(\Lambda,\Lambda')} + \frac{ds}{N} \|A\|_{C(\Lambda,\Lambda')} = 0,
\]
and
\[
\|A_s\|_c \leq \|A\|_c \text{ for all } s \geq 0.
\]

Let \(\psi_0(x_1, \ldots, x_d) = \prod_{i=1}^d \max(2 - 2|x_i|, 1, 0) \) be a cut-off function on \(\mathbb{R}^d \).

Then
\[
0 \leq \chi_{[-1/2,1/2]}(x) \leq \psi_0(x) \leq \chi_{[-1,1]}(x) \leq 1 \text{ for all } x \in \mathbb{R}^d,
\]
and
\[
|\psi_0(x) - \psi_0(y)| \leq 2d \|x - y\|_\infty \text{ for all } x, y \in \mathbb{R}.
\]
where \(\|x\|_\infty = \max_{1 \leq i \leq d} |x_i| \) for \(x = (x_1, \ldots, x_d) \). Define the multiplication operator \(\Psi^N_n \) on \(\ell^p(\Lambda) \) by
\[
(3.19) \quad \Psi^N_n : \ell^p(\Lambda) \ni (c(\lambda))_{\lambda \in \Lambda} \mapsto \left(\psi_0\left(\frac{\lambda - n}{N}\right) c(\lambda) \right)_{\lambda \in \Lambda} \in \ell^p(\Lambda).
\]

Applying (3.17) and (3.18) for the cut-off function \(\psi_0 \), we obtain the following properties for the multiplication operators \(\Psi^N_n, n \in N\mathbb{Z} \).

Lemma 3.4. Let \(1 \leq N \in \mathbb{Z}, \Lambda \) be a relatively-separated subset of \(\mathbb{R}^d \), and the multiplication operators \(\Psi^N_n, n \in N\mathbb{Z}^d \), be as in (3.19). Then
\[
(3.20) \quad \|\Psi^N_n c\|_{\ell^p(\Lambda)} \leq \|\chi^N_n c\|_{\ell^p(\Lambda)} \quad \text{for all } c \in \ell^p(\Lambda)
\]
where \(1 \leq p \leq \infty \),
\[
(3.21) \quad \|c\|_{\ell^p(\Lambda)} \leq \left(\sum_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^p(\Lambda)}^p \right)^{1/p} \leq 2^d/p\|c\|_{\ell^p(\Lambda)} \quad \text{for all } c \in \ell^p(\Lambda)
\]
\[
(3.22) \quad A^{d/p}\|c\|_{\ell^p(\Lambda)} \leq \left(\sum_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^p(\Lambda)}^p \right)^{1/p} \leq (5 + 2^{1-p})d/p\|c\|_{\ell^p(\Lambda)} \quad \text{for all } c \in \ell^p(\Lambda),
\]
where \(1 \leq p < \infty \), and
\[
(3.23) \quad \|c\|_{\ell^\infty(\Lambda)} = \sup_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^\infty(\Lambda)} = \sup_{n \in N\mathbb{Z}^d} \|\Psi^N_n c\|_{\ell^\infty(\Lambda)} \quad \text{for all } c \in \ell^\infty(\Lambda).
\]

To prove Theorem 2.1, we also need the following result.

Lemma 3.5. ([23]) Let \(N \geq 1 \), the subsets \(\Lambda, \Lambda' \) of \(\mathbb{R}^d \) be relatively-separated, \(A \) be an infinite matrix in the class \(C(\Lambda, \Lambda') \), \(A_N \) be the truncation matrix of \(A \), and \(\Psi^N_n, n \in N\mathbb{Z}^d \), be the multiplication operators in (3.19). Then
\[
(3.24) \quad \|\Psi^N_n A_N - A_N \Psi^N_n\|_{C(\Lambda, \Lambda')} \leq \inf_{0 \leq s \leq N} \left(\|A_N - A_s\|_{C(\Lambda, \Lambda')} + 2dsN \right).
\]

Now we start to prove Theorem 3.1.

Proof of Theorem 3.1. (i)\(\Rightarrow \) (ii): By the \(\ell^p \)-stability of the infinite matrix \(A \), there exists a positive constant \(C_0 \) (independent of \(n \in N\mathbb{Z}^d \) and \(1 \leq N \in \mathbb{Z} \)) such that
\[
(3.25) \quad \|A\chi^N_n c\|_{\ell^p(\Lambda)} \geq C_0\|\chi^N_n c\|_{\ell^p(\Lambda')} \quad \text{for all } c \in \ell^p(\Lambda'),
\]
where \(n \in N\mathbb{Z}^d \) and \(N \geq 1 \). Noting
\[
(3.26) \quad \chi^N_n A_N \psi^N_n = A_N \psi^N_n
\]
and applying (3.13) yield
\[
(3.27) \quad \|A\chi^N_n c - \chi^N_n A\chi^N_n c\|_{\ell^p(\Lambda)} \leq \|I - \chi^N_n A - A\chi^N_n c\|_{\ell^p(\Lambda)} \leq R(\Lambda)^{1/p}R(\Lambda')^{1-1/p}\|A - A_N\|_{C(\Lambda, \Lambda')}\|\chi^N_n c\|_{\ell^p(\Lambda')}.
\]

where \(I \) is the identity operator. Combining the estimates in (3.25) and (3.27) proves that
\[
(3.28) \quad \|\chi^N_n A\chi^N_n c\|_{\ell^p(\Lambda)} \geq (C_0 - R(\Lambda)^{1/p}R(\Lambda')^{1-1/p}\|A - A_N\|_{C(\Lambda, \Lambda')}\|\chi^N_n c\|_{\ell^p(\Lambda')}.
\]
hold for all \(c \in \ell^p(\Lambda') \), where \(n \in \mathbb{N}^d \) and \(N \geq 1 \). The conclusion (ii) then follows from (3.14) and (3.28).

(ii) \(\Rightarrow \) (iii): The implication follows from (3.15).

(iii) \(\Rightarrow \) (i): Let \(1 \leq p < \infty \). Take any \(n \in \mathbb{N}_0^d \) and \(c \in \ell^p(\Lambda') \). By the assumption (iii) for the infinite matrix \(A \),

\[
\| A^{N_0} \Psi_n^{N_0} c \|_{p(\Lambda)} = \| A^{N_0} (A_n - A) \Psi_n^{N_0} c \|_{p(\Lambda)} \geq \alpha \| \Psi_n^{N_0} c \|_{p(\Lambda)}.
\]

This together with (3.13) and (3.26) implies that

\[
\| A^{N_0} \Psi_n^{N_0} c \|_{p(\Lambda)} = \| A^{N_0} (A_n - A) \Psi_n^{N_0} c \|_{p(\Lambda)} \geq \| A^{N_0} (A_n - A) \Psi_n^{N_0} c \|_{p(\Lambda)} - \| A^{N_0} (A_n - A) \Psi_n^{N_0} c \|_{p(\Lambda)} \geq (\alpha - R(\Lambda)1/p R(\Lambda')1^{-1/p} \| A - A_n \|_{\mathcal{C}(\Lambda, \Lambda')} \| \Psi_n^{N_0} c \|_{p(\Lambda)}).
\]

From (3.13) and (3.24) it follows that

\[
\| (\Psi_n^{N_0} A_n - A_n \Psi_n^{N_0}) c \|_{p(\Lambda)} \leq R(\Lambda)1/p R(\Lambda')1^{-1/p} \| A_n - \Psi_n^{N_0} \|_{\mathcal{C}(\Lambda, \Lambda')} \| \Psi_n^{N_0} c \|_{p(\Lambda)}.
\]

Combining (3.21), (3.22), (3.30) and (3.31), we get

\[
2^{d/p} \| A_n c \|_{p(\Lambda)} \geq \left(\sum_{n \in \mathbb{N}_0^d} \| \Psi_n^{N_0} A_n c \|_{p(\Lambda)}^p \right)^{1/p} \\
\geq \left(\alpha - R(\Lambda)1/p R(\Lambda')1^{-1/p} \| A - A_n \|_{\mathcal{C}(\Lambda, \Lambda')} \right) \left(\sum_{n \in \mathbb{N}_0^d} \| \Psi_n^{N_0} c \|_{p(\Lambda)}^p \right)^{1/p} \\
- R(\Lambda)1/p R(\Lambda')1^{-1/p} \inf_{0 \leq s \leq N_0} \left(\| A_n - A_s \|_{\mathcal{C}(\Lambda, \Lambda')} + \frac{2d}{N_0} \| A_n \|_{\mathcal{C}(\Lambda, \Lambda')} \right) \\
\times \left(\sum_{n \in \mathbb{N}_0^d} \| \Psi_n^{N_0} c \|_{p(\Lambda)}^p \right)^{1/p} \\
\geq \left(\alpha - R(\Lambda)1/p R(\Lambda')1^{-1/p} \| A - A_n \|_{\mathcal{C}(\Lambda, \Lambda')} - (5 + 2^{1-p})1/p R(\Lambda)1/p R(\Lambda')1^{-1/p} \\
\times \inf_{0 \leq s \leq N_0} \left(\| A_n - A_s \|_{\mathcal{C}(\Lambda, \Lambda')} + \frac{2d}{N_0} \| A_n \|_{\mathcal{C}(\Lambda, \Lambda')} \right) \right) \| c \|_{p(\Lambda)}.
\]
Therefore
\[
\|Ac\|_{\ell^p(\Lambda)} \geq \|A_{N_0}c\|_{\ell^p(\Lambda)} - \|(A - A_{N_0})c\|_{\ell^p(\Lambda)}
\geq 2^{-1/p} \left(\alpha - (1 + 2^{d/p}) R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \|A - A_{N_0}\|_{C(\Lambda, \Lambda')}
- (5 + 2^{1-p})^{d/p} R(\Lambda)^{1/p} R(\Lambda')^{1-1/p} \times \inf_{0 \leq s \leq N_0} \left(\|A_{N_0} - A_s\|_{C(\Lambda, \Lambda')} + \frac{2ds}{N_0} \|A_{N_0}\|_{C(\Lambda, \Lambda')} \right) \right) \|c\|_{\ell^p(\Lambda')}
\geq 2^{-d/p} \left(\alpha - 2(5 + 2^{1-p})^{1/p} R(\Lambda)^{1/p}
- \inf_{0 \leq s \leq N_0} \left(\|A - A_s\|_{C(\Lambda, \Lambda')} + \frac{ds}{N_0} \|A\|_{C(\Lambda, \Lambda')} \right) \right) \|c\|_{\ell^p(\Lambda')},
\]
and the conclusion (i) for $1 \leq p < \infty$ follows.

The conclusion (i) for $p = \infty$ can be proved by similar argument. We omit the details here.

The author thanks Professors Deguang Han, Zuhair M. Nashed, Xianliang Shi, and Wai-Shing Tang for their discussion and suggestions in preparing the manuscript.

REFERENCES

[1] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant space, *SIAM Review*, 43(2001), 585–620.
[2] A. Aldroubi, A. Baskakov and I. Krishtal, Slanted matrices, Banach frames, and sampling, *J. Funct. Anal.*, 255(2008), 1667–1691.
[3] R. Balan, P. G. Casazza, C. Heil, and Z. Landau, Density, overcompleteness and localization of frames I. Theory; II. Gabor system, *J. Fourier Anal. Appl.*, 12(2006), 105–143; 309–344.
[4] B. A. Barnes, When is the spectrum of a convolution operator on L^p independent of p? *Proc. Edinburgh Math. Soc.*, 33(1990), 327–332.
[5] A. G. Baskakov, Wiener’s theorem and asymptotic estimates for elements of inverse matrices, *Funktsional. Anal. i Prilozhen.*, 24(1990), 222–224.
[6] C. K. Chui, W. He, and J. Stöckler, Nonstationary tight wavelet frames I: Bounded intervals; II: unbounded intervals, *Appl. Comp. Harmonic Anal.*, 17(2004), 141–197; 18(2005), 25–66.
[7] A. Connes, C^* algebres et geometrie differentielle. C. R. Acad. Sci. Paris Ser. A-B, 290(1980), A599–A604.
[8] C. de Boor, A bound on the L_∞-norm of the L_2-approximation by splines in terms of a global mesh ratio, *Math. Comp.*, 30(1976), 687–694.
[9] S. Demko, Inverse of band matrices and local convergences of spline projections, *SIAM J. Numer. Anal.*, 14(1977), 616–619.
[10] G. Fendler, K. Gröchenig, and M. Leinert, Convolution-dominated operators on discrete groups, *Integral Equations Operator Theory*, 61(2008), 493–509.
[11] I. M. Gelfand, D. A. Raikov, and G. E. Silov, *Commutative Normed Rings*, New York: Chelsea 1964.
[12] I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman, The band method for positive and strictly contractive extension problems: an alternative version and new applications, *Integral Equations Operator Theory*, 12(1989), 343–382.
[13] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class, *Rev. Mat. Iberoam.*, 22(2006), 703–724.
[14] K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames, *J. Amer. Math. Soc.*, 17(2003), 1–18.
[15] K. Gröchenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus for infinite matrices, Trans. Amer. Math. Soc., 358(2006), 2695–2711.
[16] K. Gröchenig and T. Strohmer, Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class, Journal für die reine und angewandte Mathematik, 613(2007), 121–146.
[17] A. Hulanicki, On the spectrum of convolution operators on groups with polynomial growth, Invent. Math., 17(1972), 135–142.
[18] S. Jaffard, Propriétés des matrices bien localisées près de leur diagonale et quelques applications, Ann. Inst. Henri Poincaré, 7(1990), 461–476.
[19] R.-Q. Jia and C. A. Micchelli, Using the refinement equations for the construction of pre-wavelets. II. Powers of two, In Curves and Surfaces (Chamonix-Mont-Blanc, 1990), Academic Press, Boston, MA, 1991, 209–246.
[20] V. G. Kurbatov, Algebras of difference and integral operators, Funktsional. Anal. I. Prilozhen., 24(1990), 87–88.
[21] M. A. Naimark, Normed Algebras, Wolters-Noordhoff Publishing Groningen, 1972.
[22] T. Pytlik, On the spectral radius of elements in group algebras, Bull. Acad. Polon. Sci. Ser. Sci. Math., 21(1973), 899–902.
[23] C. E. Shin and Q. Sun, Stability of localized operators, J. Funct. Anal., 256(2009), 2417–2430.
[24] J. Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett., 1(1994), 185–192.
[25] J. Sjöstrand, Wiener type algebra of pseudodifferential operators, Centre de Mathematiques, Ecole Polytechnique, Palaiseau France, Seminaire 1994–1995, December 1994.
[26] Q. Sun, Non-uniform sampling and reconstruction for signals with finite rate of innovations, SIAM J. Math. Anal., 38(2006), 1389–1422.
[27] Q. Sun, Wiener’s lemma for infinite matrices, Trans. Amer. Math. Soc., 359(2007), 3099–3123.
[28] R. Tessera, Finding left inverse for operators on \(\ell^p(\mathbb{Z}^d) \) with polynomial decay, Preprint 2008.
[29] N. Wiener, Tauberian Theorem, Ann. Math., 33(1932), 1–100.

Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
Email: qsun@mail.ucf.edu