Software and hardware co-simulation verification platform for navigation SoC

Dan Qi*, Mo Chen, Shaozhen Zhang, Dan Cheng and Jun Mu
Space Star Technology Co, Ltd, Beijing, China

*Corresponding author’s e-mail: qid@spacestar.com.cn

Abstract. This paper proposes a software and hardware co-simulation verification platform suitable for satellite navigation SoC chips. The specific implementation scheme is described, and the final simulation results are given. Software simulation is written in C and assembly language, using a complete software compilation and debugging tool chain, hardware simulation is built based on verification methodology, SoC design code is written by verilog, and the software and hardware are coordinated through the VCS compiler to achieve information interaction, and then a universal simulation platform with fast speed, high authenticity and convenient debugging is realized. The simulation results show that the navigation SoC chip functions correctly.

1. Introduction
With the development of our country's Beidou satellite navigation system (BDS), independent design of application-specific integrated circuits (ASIC) can effectively improve system integration, improve performance, and reduce power consumption[1], which is more important for achieving national production and independent control of the navigation industry. It is of great significance, and the research and development of satellite navigation chips is an important part of the development of satellite navigation in our country[2].

In recent years, with the vigorous development of System on Chip (System on Chip) technology, the development of receiver chips for global navigation satellite systems is of great significance for improving system integration, improving receiver performance, and reducing receiver power consumption[3,4]. In the process of chip R&D, in addition to chip design, extensive and comprehensive verification work is also necessary. Industrial practice shows that verification work in the SoC design process has accounted for 70% of the total design cycle time, even as high as 85%. The workload and difficulty have exceeded chip design and become the bottleneck of SoC design and development[5], and simulation verification is a crucial link in verification work[6].

This paper proposes a software and hardware co-simulation verification platform suitable for satellite navigation SoC chips. The software environment and hardware environment construction methods are described respectively, and also the method of software and hardware information interacting. Through the navigation signal GPS L1c/a acquisition and tracking function, the simulation verifies the correctness of the platform and chip functions.

2. Architecture of Navigation SoC
The architecture of the navigation SoC chip is shown in Fig 1. The processor uses ARM926EJ-S and integrates two 16KB caches as instruction cache and data cache. At the same time, ARM integrates the VFP9-S coprocessor, which can accelerate the floating-point computing power of the processor, and can greatly improve the running speed of the program for floating-point computing applications. The
processor integrates a debugging interface and connects to the outside of the chip through the JTAG interface to provide an online debugging mode. The bus adopts a multi-layer AHB bus, which can effectively reduce the complexity of a single-layer bus while improving the bus throughput and response speed, and improve the timing of the bus to support higher bus frequencies.

![Navigation SoC Diagram](image)

Figure 1. Architecture of navigation SoC.

AHB bus peripherals include: bootloader ROM, instruction IRAM, data DRAM, VIC interrupt controller, EBI external bus interface, AHB to APB bridge, AHB to localbus bridge.

APB peripheral modules include: Timer, Uart, GPIO, SPI, SPF, I2C, WatchDog and CAN bus interfaces.

The baseband is the core part of the chip, which realizes the acquisition, tracking, synchronization, and decoding of navigation signals.

3. Software and Hardware Co-simulation Verification Platform for Navigation SoC

The simulation platform is composed of three parts: simulator, software simulation environment and hardware simulation environment. Its structural block diagram is shown in Fig 2. Among them, the simulator refers to the vcs simulation software and its operating platform. The software simulation environment mainly includes user programs, and the hardware environment mainly includes design files, intermediate frequency simulation signals, and components such as driver and monitor. The chip design file is the test target of the simulation platform, and the user program and the intermediate frequency simulation signal are the test vectors of the simulation platform. The chip RTL code is used for pre-simulation, and the chip netlist file is used for post-simulation.

In order to reduce the simulation time as much as possible, the verification work of the chip boot unit is verified by some special test cases, so the verification work of the platform no longer involves the boot unit. In addition, the navigation SoC contains a variety of different types of interfaces, which need to be simulated and verified. The simulation in this article does not involve interfaces, and mainly takes baseband GPS L1c/a acquisition and tracking as an example.
3.1. Software environment

The user program of the software simulation environment is written by a mixture of C and assembly language. Through software compiler, assembler, linker and other tools, the software program is converted into an executable image file through the use of makefile scripts, and then the file conversion tool fromelf. The image file is converted into a binary mif file and loaded into the SoC chip memory. When the chip boot starts, the ARM core calls the software code and executes the program.

The structure of the software code is shown in Fig 3. After the system BOOT is up, it directly jumps to the main() function for single-process tasks. If an interrupt exception occurs, the boot code jumps to the interrupt handling function according to the interrupt vector table address. The interrupt
processing function includes the processing of each interrupt. The main() function calls the TC (Test Case) function of each module, and TC calls the underlying driver code. The writing of the driver code is based on the register definition files and global variables of each module. The software structure is clear and controllable, which is convenient for the parallel submission and management of test cases.

![Software Code Structure](image)

Figure 3. The structure of the software code.

Since the simulation user program is the most core part of the test vector, it directly determines the simulation duration, so its design should be as simple as possible on the basis of covering the navigation SoC functions. The simulation user program flow is as follows:

1. Set the baseband clock and reset in the main function.
2. Put the acquisition parameters into the main function and start the signal acquisition program.
3. Put the tracking parameters into the main function, and start the corresponding tracking channel program.
4. Timely detect the acquisition completion flag. If the acquisition completion flag is detected, it indicates that the acquisition unit has completed the signal acquisition.
5. Regularly detect the track channel status, bit synchronization status, switch tracking parameters, etc.
6. In the main function, read the acquisition results, tracking status, related integration results and channel observations.

3.2 Hardware environment

The intermediate frequency simulation signal of the hardware simulation environment is generated by the Matlab program. Based on the UVM verification methodology, the driver component is used to input the IF signal to the ad data interface, and the monitor component is used to observe the acquisition successful signal, and output the tracking integral value to a text file. The result analysis of the chip is divided into two ways, one is to use the waveform file to observe the simulation details, and the other is to use the Matlab software to perform data analysis and chart drawing on the output text file. Taking GPS L1c/a as an example, the information of the simulated input intermediate frequency sampling signal is shown in Table 1.
Table 1. The information of the IF signal.

Satellite system	Signal	Satellite number	IF (MHz)	Doppler frequency (Hz)	Initial code phase (chip)	Sample frequency (MHz)	Carrier to noise ratio (db . Hz)
GPS	L1c/a	1	46.42	0	0	62	44

4. Simulation Results and Discussion

By executing the user program, the simulation platform can display the control flow and data flow of the navigation SoC in the user program operation, AHB bus timing, satellite signal acquisition, channel tracking and other key modules. Using the acquisition results, related integral values and channel state observations output by the interface, it can be judged whether each functional module is operating normally. Based on the above simulation platform architecture, the simulation of the satellite navigation baseband SoC is completed by using vcs, integrated development environment, and Matlab software. The simulation result is shown in Fig 4, where acq2trk_start represents the successful acquisition flag, int_result_i, int_result_q are the tracking integral values, and the tracking integral value is analyzed by Matlab as shown in Fig 5. The simulation results show that the baseband acquisition and tracking function of the navigation SoC is normal.

![Figure 4. The simulation result.](image-url)

![Figure 5. The analyzed result by matlab.](image-url)
5. Conclusion
This article introduces a software and hardware co-simulation verification platform for satellite navigation SoCs, elaborates the specific implementation scheme, and gives the final simulation results. The pre-simulation and post-simulation are performed through the design simulation verification platform. The chip design files and application software are organically combined during the simulation process to display the control flow and data flow of the satellite navigation SoC during the program operation, and verify the correctness of the key modules, which effectively improves the success rate of chip design and ensures that the chip can be successfully taped out once.

Acknowledgments
I would like to express my gratitude to all those who helped me during the writing of this paper. Thanks for the excellent development platform and financial support provided by the IC Design Center in Space Star Technology Co. Ltd. Special thanks to all members of the navigation SOC project.

References
[1] Wang Bisheng, Lu Shanwei, Yang Dongkai, Zhang Qishan. A New Solution to GNSS Receiver Baseband Signal Processing SoC Platform Based on Open RISC Processor[C], 7th International Conference on Wireless Communications, Networking and Mobile Computing(WiCOM), 2011: 1-4.
[2] Zhang Rong, Huang Haiying, Li Chunzhi. Software and Hardware Design of the Embedded Test System Based on NIOSII Soft-core Processor[J]. Computer Measurement & Control, 2012, 20(2): 303-306.
[3] Xie Gang. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009: 5.
[4] Zhao Gang, Hou Ligang, Liu Yuan, Zhu Xiudian, Wu Wuchen. Methodology of SoC Design Using Hardware/Software Co-simulation[J]. Microelectronic & Computer, 2006, 23(6): 247-249.
[5] Yan Chao. Research of GPS Baseband SoC Design and Key Technology[D]. Chongqing: Chongqing University, 2014.
[6] Liao Mengxin. Research and Implementation of Design and Verification Platform for Navigation Receiver SOC[D]. Shanghai: Shanghai Jiao Tong University, 2011.