Pattern of malformations in central nervous system and its association with other congenital anomalies in perinates

Hari Charan Saranga¹, Jayanta Kumar Sarkar²*, Giriraj Kusre³, Krishna Kanta Biswas⁴

¹Assistant Professor, ²Associate Professor, ³Demonstrator, Dept. of Anatomy, Silchar Medical College, Assam, ⁴Associate Professor, Dept. of Anatomy, Assam Medical College, Dibrugarh, Assam, India

*Corresponding Author:
Email: jksarkar31@gmail.com

Received: 13th May, 2018
Accepted: 15th June, 2018

Abstract
Introduction: The congenital malformations of the central nervous system is one of the leading causes of perinatal mortality in this region of the country. It may present as an isolated defect or may be associated with other organ system malformations.

Aims and Objectives: Aim of the present study was to find out the pattern of congenital malformations in the central nervous system both in live and still born perinates. Our main objective was to ascertain its association with other organ systems most commonly involved.

Materials and Methods: The prospective study was carried out on 76 perinates having congenital anomalies out of 15,970 births (15,614 live born and 356 stillborn) ranging from 28th weeks of gestation to 7 days after birth. Twenty, out of 76 were born with central nervous system malformations.

Results and Observations: The congenital malformations of central nervous system were found to be 26.31%. Anencephaly was the most common malformation (50%) observed amongst the central nervous system in the study with a female preponderance 1:5:1, followed by spina bifida with meningo(myelo)cele (35%), hydrocephalus (10%) and holoprosencephaly (5%). Anencephaly was associated with occipital meningoencephalocele in 10% cases.

Conclusion: Anencephaly is the most common malformations in the study, followed by spina bifida and meningo(myelo)cele. The other malformations found in the central nervous system are hydrocephalus, meningoencephalocele and holoprosencephaly. The incidence of congenital malformations in present study is comparatively lower than in other parts of India and abroad.

Keywords: Congenital malformation, Perinates, Anencephaly, Spina bifida, Meningomyelocele.

Introduction
The malformations of the central nervous system result from alterations in the morphogenesis or histogenesis of the nervous tissue itself. Some of the aberrations, however are extrinsic in that they result from developmental failure or abnormalities in the mesodermal structure related to the early nervous system. Proper differentiation of these mesodermal derivatives such as notochord, somite, vertebrae and mesenchyme are essential for normal development of the brain and spinal cord.¹ Congenital anomalies of the central nervous system are major causes of mortality during perinatal period and results from failure of the closure of the neural tube between third and fourth week of embryonic life. Major neural tube defects are spina bifida, meningocele, meningo(myelo)cele, anencephaly and meningoencephalocele.²³ Anencephaly occurs if the rostral part of neural tube fails to close, associated with degeneration of the exposed neural plate tissue¹ resulting in failure to develop major parts of the brain. In place of the normal neural tissue, there are thin-walled vascular channels resembling the choroid plexus and masses of neural tissue.⁴ Anencephaly is the most severe form of neural tube defect and is not compatible with life. Most of these cases are diagnosed during pregnancy by ultrasonography or amniocentesis and after delivery of the babies in neonates.³ Anencephalic infants are mostly stillborn or die shortly after birth. Spina bifida is midline defect of vertebral arches without protrusion of the spinal cord or meninges. The most common site of spina bifida is in the lumbosacral region. Meningocele occurs when the meninges protrude through the defect in the posterior arches of vertebrae. Spina bifida with meningo(myelo)cele is a more common and severe defect than spina bifida with meningocele. Hydrocephalus results from blockage of cerebrospinal fluid in the ventricular system or subarachnoid space. Meningoencephalocele results from defective closure of the rostral neuropore during the fourth week and affects skull with protrusion of meninges and cerebellum, cerebrum or portions of the brainstem.⁶

Aims and Objectives
Aim of the present study was to find out the frequency of the pattern of major congenital malformations in central nervous system both in live and still born perinates. Our objective was to ascertain its association with anomalies of other organ systems most commonly involved.

Materials and Methods
The prospective study was carried out on 76 perinates having congenital anomalies out of 15,970 births (8,312 male and 7,682 female) in the Department of Anatomy, Assam Medical College & Hospital, Dibrugarh. The specimens (15,614 live born & 356 stillborn) were obtained during 28th weeks of gestation to 7 days after birth. In the present study, the congenital malformations of the central nervous system were studied in 76 perinates. The malformations of the central nervous system were divided into two major parts: (a) malformations of cranioencephaly and (b) malformations of spinal system. The cranioencephalic malformations were assessed with special reference to holoprosencephaly, anencephaly, encephalocele, meningocele, hydrocephalus, meningomyelocele, meningo(myelo)cele and myelomeningocele. The spinal system malformations were assessed with reference to spina bifida, encephalocele, meningocele, hydrocephalus, meningomyelocele, meningo(myelo)cele and myelomeningocele.
stillborn babies) were procured from the Department of Obstetrics & Gynaecology, Assam Medical College & Hospital, Dibrugarh. Twenty, out of 76 were born with central nervous system malformations.

Study Population: Live and still born perinates ranging from 28th weeks of gestation to 7 days after birth. Foetuses born before 28 weeks of gestation, terminated pregnancy and macerated babies were excluded from the present study.

The still born foetuses were examined in the Department of Anatomy after fulfillment of a proforma and in figure. The written consent from the parents was taken before examination and dissection of perinates. The result and observations were presented in tabular form and in figure. Statistical calculations were done in percentage and in per thousand live birth.

Results and Observations

In the present study, total 76 (62 stillbirth, 17.41% & 14 live birth, 0.09%) cases of congenital malformations were found in 15,970 births (Table 1). Total percentage of congenital malformation was found to be 0.47%. Out of 76 congenital malformations, 20 cases (26.31%) were found to be of central nervous system with male female ratio 1.5:1 (Table 1).

Anencephaly was the most common (50%) malformation observed in the central nervous system with male female ratio 1:1.5 (table 2, chart 1, Fig. 1 & 5). Incidence of anencephaly was 0.62 per 1000 birth. Spina bifida with meningocele was observed in 35% cases of central nervous system malformation with an incidence rate of 0.438 per 1000 birth (table 2, chart 1 & Fig. 2). Hydrocephalus was noted in 10% cases with an incidence of 0.125 per 1000 birth (Table 2, Chart 1 & Fig. 3). Holoprosencephaly was recorded in 5% cases with an incidence of 0.063 per 1000 birth (Table 2).

Association with other organ system:

In the present study of central nervous system malformations, anencephaly showed association with occipital meningoencephalocele (10%) (Table 2, Chart 2, Fig. 1 & 5), craniorachischisis (5%) (Fig. 4), spina bifida (20%), with CTEV and syndactyly (10%) and with omphalocele major, single umbilical artery and contracture right wrist (5%) (Table 2 & Chart 2). Spina bifida and meningocele showed association with CTEV and polydactyly (10%) and omphalocele major, CDH, imperforate anus (5%) cases (table 2 & chart 2). Hydrocephalus showed association with syndactyly, CTEV (10%), spina bifida and low set ear (5%) (Table 2 & Chart 2, Fig. 3). 5% cases of CNS malformations showed association of holoprosencephaly with cleft lip, cleft palate, proboscis, syndactyly and amputated digit. (Table 2 & Chart 2)

Table 1: Showing frequency distribution of congenital malformations. (n=76)

No of cases	Male	Female	Total	Central nervous system malformation (n=20)				
Congenital malformations	62	14	76	12	08	20	1.5:1	1.25
Percentage %	17.41%	0.09%	0.47%	15.79%	10.52%	26.31%		

Table 2: Frequency distribution of malformation in CNS & its association with other organ system (n=20)

Malformations in central nervous system	No. of cases	Percentage	Incidence per 1000 birth	Malformations with other organ system	Percentage	Incidence per 1000 birth
Anencephaly	10	50%	0.62	Occipital meningoencephalocele	10%	0.125
				Spina bifida	20%	0.250
				Craniorachischisis	5%	0.063
				CTEV, syndactyly	10%	0.125
				Omphalocele major, Single umbilical artery, Contracture right wrist	5%	0.063
Spina bifida & meningo-myelocoele	07	35%	0.438	CTEV, polydactyly	10%	0.125
				Omphalocele major, CDH, imperforate anus	5%	0.063
Table 3: Comparative data showing incidence of neural tube defects by various researchers

Study group	Year	Anencephaly	Spina bifida	Meningo-myeolocele	Hydrocephalus	Holoprosencephaly
Laurence et al	1968	3.54/1000	4.13/1000	-	0.45/1000	-
Tibrewala & Pai	1974	0.49/1000	0.65/1000	-	0.16/1000	-
Mathur et al	1975	3.8/1000	0.3/1000	0.9/1000	1.9/1000	-
Choudhury et al	1984	0.52/1000	-	0.24/1000	0.43/1000	-
Swain et al	1994	1.52/1000	-	0.76/1000	2.03/1000	-
Rajab et al	1998	0.69/1000	-	0.45/1000	0.44/1000	-
Hendricks et al	1999	4.9/10,000	6.7/10,000	-	-	-
Datta & Chaturvedi	2000	0.69/1000	-	0.34/1000	0.34/1000	-
CDC	2000	6.1/10,000	6.3/10,000	-	-	-
Fida et al	2007	-	-	0.37/1000	0.74/1000	-
Snell R.S	2010	6/1000	6/1000	-	6/1000	-
Golaliipour et al	2010	11.4/10,000	12.7/10,000	-	-	-
Sunethi et al	2011	50%	41.66%	8.33%	-	-
Saiyad & Jadav	2012	(41.38%)	(10.34%)	(10.34%)	(13.80%)	-
Pujari & Pujari	2012	-	0.23/1000	1.64/1000	0.47/1000	-
Sadler TW	2015	1/500-1000	1/1000	1/1000	1/1200	1/15,000
Moore K.L	2016	1/1000	-	1/2000	-	-
Bhide & Kar	2018	17.1/10,000	8.45/10,000	-	-	-
Present study		10 (50%)	0.62/1000	7 (35%)	2 (10%)	1 (5%)
		Births	Births	0.438/1000 Births	0.125/10	0.063/1000 Births

Chart 1: Frequency distribution of malformations in central nervous system
Chart 2: Association of CNS malformation with other organ system

Anencephaly	Meningomyelocele	Hydrocephalus	Holoprosencephaly
20%	10%	5%	10%
10%	10%	5%	10%
10%	5%	5%	5%
5%	5%	5%	5%

Fig. 1: Anencephaly with occipital meningoencephalocele

Fig. 2: Spina bifida and meningomyelocele with CTEV

Fig. 3: Hydrocephalus with low set ear, CTEV & syndactyly

Fig. 4: Craniorachischisis totalis
Discussion

The present study revealed 26.31% cases of congenital malformation in the central nervous system with an incidence of 1.25 per 1000 birth in comparison to Siddesh et al7 31.6%, Singh A8 20.5%, Singh & Sinha31 12.8%, Fida et al9 1.9/1000, Rajab et al10 1.25/1000 birth, Golalipour et al11 25.4/10000 and Bhide & Kar12 28.93 per 10,000 live births (Table 3). According to Schoenwolf G C,13 open neural tube defects occur in about 0.1% of all live births and the frequency of it as a whole in the United States is approximately 0.1%. Anencephaly was the most common (50%) congenital malformations among central nervous system in the present study. It was comparable with the study of Sunethri et al14 (50%), Moradi et al15 (50%), Kulkarni et al16 (45%) and Saiyad & Jadav17 (41.38%). According to Parthasaraty A18 incidence of anencephaly was observed 1 in 1000 births. In the present study incidence of anencephaly was 0.62/1000 live birth in comparison to Rajab et al10 0.69/1000, Datta & Chaturvedi19 0.69/1000, Tibrewala & Pai20 0.49/1000 and Choudhary et al21 0.52/1000. Anencephaly was recorded by Mathur et al22 3.8/1000, Swain et al23 1.52/1000, Hendrik et al.24 CDC, Golalipour et al11 and Bhide & Kar12 as 4.9, 11.4, 6.1 and 17.1 per 10,000 live birth respectively (table 3). Sadler T W5 stated that anencephaly occurs in 1 per 5,000 births and is more common in females than in males. According to Moore K L,26 anencephaly occurring at least once in every 1000 births and two to four times more common in females than in males. In the present study, the female preponderance was seen with ratio of 1.5:1. Spina-bifida with meningocele occurred was the second most common malformations of the central nervous system (35%) in the present study. The incidence is quite low when compared to Sunethri et al12 (41.66%) and high compared to the observations of Saiyad & Jadav17 (10.34%). On the contrary, the present study was comparable to the observations of Mathur et al22 0.3/1000, Datta & Chaturvedi19 0.34/1000 and Catibusic F H et al2 1/4000 live births. Spina bifida was found by Hendricks et al.24 CDC,25 Golalipour et al11 and Bhide & Kar12 as 6.7, 6.3, 12.7 and 8.45 per 10, 000 live birth respectively which was higher in comparison to the present study of 0.438/1000 live birth. Hydrocephalus was noted in 10% cases which was comparable with Pinar et al27 12.4%. The incidence is quite low 0.125/1000 when compared with Rajab et al9 0.44/1000, Laurence et al28 0.45/1000, Pujari & Pujari29 0.47/1000 and Snell RS4 6/1000. Hydrocephalus develops in at least 80% of patients with meningomyelocele by Catibusic F H et al2 or may be associated with spina bifida and meningocele by Snell R S.4 In the present study hydrocephalus was observed in stillborn male full-term fetus associated with spina bifida and CTEV (Fig. 2). Meningoencephalocele occurs approximately once in every 2000 births by Moore K L6 and 11.6% by Mahadevan and Bhat.30 In the present study occipital meningoencephalocele along with anencephaly was noted in 10% cases with incidence of 0.125 per 1000 birth (Table 2, Chart 2) in comparison to Rajab et al9 0.45/1000 (table 3). Holoprosencephaly observed 1/ 15,614 live birth in comparison to Sadler T W5 1/15,000 live births.

From the present study it had been found that congenital malformation of the central nervous system was one of the leading causes of perinatal mortality in this region of the country. It may present as an isolated defect or may be associated with other organ system malformations.

Conclusion

The present study reveals the pattern and frequency of malformation in the central nervous system and its association with other organ system commonly involved. Anencephaly is the most common malformations followed by spina bifida and meningomyelocele. The other CNS malformations are hydrocephalus, meningoencephalocele and holoprosencephaly. The incidence of congenital malformations in present study is comparatively lower than in other parts of India and abroad. The incidence of congenital anomalies is declining significantly following folic acid administration. The malformations resulting from neural tube defects, can be prevented by taking folic acid daily three months prior to conception and continuing throughout pregnancy.

Conflict of Interest: None

Reference

1. Hamilton W J, Mossman H W: Nervous system: in Hamilton, Boyd and Mossman’s Human Embryology 4th edition. 1972:487-88.
2. Catibusic F H et al: Congenital malformations of the central nervous system: clinical approach: Bosnian Journal of Basic Medical Sciences. 2008;8(4):356-360.
3. Jones K L, Jones M C, Campo M D: Brain: Major anomalies: in Smith’s recognizable patterns of human malformation, 7th edition. 2013:943-946.
4. Snell R S: The development of the nervous system: Clinical neuroanatomy, 7th edition. 2010;514-515.
5. Sadler T W: Third to eighth weeks, central nervous system: Langmans medical embryology, 13th edition, 2015;71-80, 306-342.
6. Moore K L, Persaud T V N, Torchia M G: Nervous system: The Developing Human: Clinically oriented embryology, 10th edition. 2016;379-417.
7. Siddesh A, Gupta G, Sharan R, Agarwal M, Phadke S R: Spectrum of prenatally detected central nervous system malformations neural tube defects continue to be the leading fetal malformation: Indian J Med Res. 2017;145:471-478.
8. Singh A, Gupta R K: Pattern of congenital anomalies in newborn: A Hospital based prospective study: JK Science. 2009;11(1):34-36.
9. Fida N M, Al-Aama J, Nichols W: A prospective study of congenital malformations among live born neonates at a University Hospital in Western Saudi Arabia. Saudi Med J. 2007;2(9):1367-1373.
10. Rajab A, Vaishnav A, Freeman N V, Patton M A: Neural tube defects and congenital hydrocephalus in the Sultanate of Oman: Journal of Tropical Pediatrics. 1998;44(5):300-303.
11. Golalipour M J, Najafi L, Keshhtkar A A: Neural tube defects in native Fars ethnicity in Northern Iran: Iranian J Publ Health. 2010;39(3):116-123.
12. Bhide P, Kar A: A national estimate of the birth prevalence of congenital anomalies in India: systematic review and meta-analysis. BMC Pediatrics. 2018;18:175 https://doi.org/10.1186/s12887-018-1149-0
13. Schoenwolf G C, Bleyl S B, Brauer P R, Francis-West P H: Fourth week: Forming the embryo: Larsen’s human embryology, 4th edition. 2009:107-117
14. Sunethri Padma, Ramakrishna D, Jijitha Bai P, Ramana P V: Pattern of distribution of congenital anomalies in stillborn: A Hospital Based Prospective Study: International Journal of Pharma and Bio Sciences. 2011;2(2):604-610.
15. Moradi B, Katouli F S, Gity M, Kazemi M A, Shakiba M, Masrour F F: Neural tube defects distribution and associated anomalies diagnosed by prenatal ultrasonography in Iranian fetuses: J Obstet Gynecol Cancer Res. J Obstet Gynecol Cancer Res. 2017;2(4):e64382. doi: 10.5812/jogcr.64382
16. Kulkarni M L, Mathew M A, Reddy V: The range of neural tube defects in Southern India: Archives of Disease in Childhood.1989;64:201-204.
17. Saiyad S S, Jadav H R: Study of congenital malformations in central nervous system and Gastro-intestinal tract: National J of Med Research. 2012;2(2);121-123.
18. Parthasarathy A: IAP Textbook of Pediatrics 2nd Ed. Jaypee Brothers, Medical Publishers (P) Ltd, New Delhi. 2003:291-295
19. Datta V, Chaturvedi P: Congenital malformations in rural Maharashtra: Ind Pediatr. 2000;37(9):988-1001.
20. Tibrewala NS, Pai PM: Congenital malformations in the newborn period. Ind Pediatr. 1974;11(6):403-06.
21. Choudhury A, Talukder G, Sharma A: Neonatal congenital malformations in Calcutta. Indian Journal of Pediatrics. 1984;21:399-405.
22. Mathur BC, Karan S, Vijaya Devi K K: Congenital malformations in the newborn. Indian Pediatr. 1975;12:179-83.
23. Swain S, Agrawal A, Bhatia BD: Congenital Malformations at birth. Indian Journal of Pediatrics. 1994;31:1187-1191.
24. Hendricks K A, Simpson J S, Larsen R D. Neural tube defects along the Texas-Mexico border, 1993-1995. Am J Epidemiol. 1999;149(12):1119-27.
25. CDC: Neural Tube Defect Surveillance and Folic Acid Intervention-Texas-Mexico Border, 1993-1998:2000;49(1):1-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm4901a1.htm
26. Moore K L, Persaud T V N, Torchia M G: Nervous system: Before we are born, Essentials of embryology and birth defects, 9th edition. 2016; 251–261
27. Pinar H, Tatevosyants N, Singer D B: Central Nervous System Malformations in a perinatal/neonatal autopsy series: Pediatric and Developmental Pathology. 1998;1:42–48.
28. Laurence K M, Carter C O, David P A: Major central nervous system malformations in south wales- pregnancy factors, seasonal variation, and social class effects, Brit J Prev Soc Med. 1968;22:212-222.
29. Pujiar D K, Pujiar A D: Congenital malformations detected at birth – A prospective study in Bangalore: Indian Journal of Public Health Research & Development. 2012;3(2):28-31.
30. Mahadevan B, Bhat B V: Neural tube defects in Pondicherry: Indian Journal of Paediatrics. 2005 July;72:557-559.
31. Singh A, Sinha S: Risk factors of congenital malformations in North India: A case control study: Journal of Postgraduate Medicine, Education and Research. 2016;50(1):22-27.

How to cite this article: Sarangsa HC, Sarkar JK, Kusre G, Biswas KK. Pattern of malformations in central nervous system and its association with other congenital anomalies in perinates. Ind J Clin Anat Physiol. 2018;5(3):314-319.