Effect of a single oral dose of rabeprazole on nocturnal acid breakthrough and nocturnal alkaline amplitude

Jin-Yan Luo, Chun-Yan Niu, Xue-Qin Wang, You-Ling Zhu, Jun Gong

AIM: To study the effect of rabeprazole (RAB) on nocturnal acid breakthrough (NAB) and nocturnal alkaline amplitude (NAKA) and to compare it with omeprazole (OME) and pantoprazole (PAN).

METHODS: By an open comparative study, forty patients with active peptic ulcer were randomly assigned to receive one of the three PPIs (proton pump inhibitor) with a single oral dose. They were divided into RAB group (10 mg), OME group (20 mg) and PAN group (40 mg). Twenty healthy volunteers were enrolled to the control group (without taking any drug). Intragastric pH monitoring was then performed 1 hour before and 24 hours after the dose was given.

RESULTS: No clinically undesirable signs and symptoms possibly attributed to the administration of RAB or OME and PAN were recognizable throughout the study period. All subjects completed the study according to the protocol. All PAN were recognizable throughout the study period. All data were processed by a computer. Data were presented as the mean ±SD. Comparisons between two groups and among three groups were made using the Student t test or t’ test followed by an analysis of covariance. P<0.05 was considered to have statistical significance. The intragastric pH of NAB was significantly higher in RAB group (1.84±0.45) in comparison with OME group (1.15±0.30) (both P<0.05). PAN produced a much higher pH on NAKA (6.41±0.45) in comparison with PAN (6.01±0.92) (P<0.05).

CONCLUSION: A single oral dose of 10 mg RAB may increase the pH of NAB and shorten the sustaining time of NAB, and it may increase the pH of NAKA as well as prolong the sustaining time of NAKA.

Luo JY, Niu CY, Wang XQ, Zhu YL, Gong J. Effect of a single oral dose of rabeprazole on nocturnal acid breakthrough and nocturnal alkaline amplitude. World J Gastroenterol 2003; 9 (11): 2583-2586
http://www.wjgnet.com/1007-9327/9/2583.asp

INTRODUCTION

The first-generation proton pump inhibitors (PPIs) (such as omeprazole, lansoprazole and pantoprazole) have been considered to be the most primary and potent treatments of acid-related diseases since they were put into clinical application, and their efficacy and safety have been well-documented and widely recognized. However, researches during the last 10 years have shown that, despite the multiple treatment modalities such as modifying administer methods, increasing the dosages or adding H2 receptor antagonist, the first-generation PPIs can not suppress the nocturnal acid secretion successfully especially NAB[1,2]. The objective in designing this trial was to observe the effect of the newer-generation of PPI rabeprazole on NAB (nocturnal acid breakthrough) and NAKA (nocturnal alkaline amplitude).

MATERIALS AND METHODS

Subjects and grouping
Forty patients with endoscopically proven active gastric or duodenal ulcer at our hospital from June, 2001 to May, 2002 entered into the study. They were randomly assigned to three groups: RAB group (n=15), OME group (n=15) and PAN group (n=10). The male/female ratio of patients was 9:6, 8:7, 6:4 in the three groups respectively. Their age (mean) was 20.61 (34.5±7.8) years, 22.60 (30.6±6.7) years and 25.59 (29.3±6.5) years respectively. Twenty healthy volunteers (10 men and 10 women) were enrolled as the control group, aged from 18 to 60 years (mean 25.7±9.5).

Methods

Administering method This study was an open comparative trial. With a single oral dose, every one was administered 10 mg RAB, 20 mg OME or 40 mg PAN respectively, ambulatory intragastric pH measurements were then performed. All subjects ceased the drugs that might affect acid secretion and gastrointestinal motility 2 weeks before the study.

Instruments and processes[3] Portable pH recorder (DIGITRAPPER MKIII, CTD Co., Sweden). After fasted for 12 hours, an electrode was placed via a nostril into the stomach at 8 am, to record the baseline pH for an hour, a dose of drug was given to one patient at 9 am, pH was recorded continuously for 12 hours of night sleeping period after the dose of PPI. The impact of the three agents on NAB (identifying criterion[4]: Intragastric pH dropped to <4 and remained below that level for at least 1 hour during the 12 hours of night sleeping period after the dose of PPI). The impact of the three agents on NAKA (identifying criterion[5]: The time that intragastric pH remained >4 lasted for>1 hour from 0:00 to 8 am).

Statistical analysis

All data were processed by a computer. Data were presented as the mean ±SD. Comparisons between two groups and among three groups were made using the Student t test or t’ test followed an analysis of covariance. P<0.05 was considered to have statistical significance.
that the pH(1.84±0.55) of NAB was significantly higher in the second 6-hours) after the dose of PPI 1 hour during the 12 hours of night sleeping period (typically the developing mechanisms are remain unclear. Our attention was to investigated the effects of PPIs on NAB and NAKA.

DISCUSSION

NAB and NAKA are two common clinical phenomena, but intragastric pHs in RAB group and OME group were all higher than that in the healthy control group (\(P<0.05\)).

The above results suggested that RAB had an advantage over OME and PAN on suppressing NAB, which was consistent with other reports\([6,7]\). It might contribute to the pharmacological features of RAB such as longer half-life, rapid onset of action, acid-stability, no influences on foods, dosing time or patterns\([1,4]\).

This study showed that histamine played a major role in nocturnal acid secretion\([4,13,14]\). A study revealed that 70% of patients with gastro-oesophageal reflux disease (GERD) receiving PPIs had NAB which was often accompanied by esophageal acid exposure. The prevalence of ineffective esophageal motility and low LES pressure was significantly higher in refluxers than in non-refluxers\([12]\). Peghini et al. suggested that histamine played a major role in nocturnal acid secretion\([4,13,14]\).

RESULTS

Impacts of RAB, OME and PAN on NAB (Table 1)

NAB often occurs after 8 pm. Of the 40 patients, 26 (65%) exhibited NAB, which occurred mostly from 8 pm to 4-6 am next morning. The results showed that RAB increased pH of NAB significantly (1.84±0.55) than OME and PAN (\(P<0.05\)), it also shortened persisting time of NAB. NAB occurred frequently in PPI group.

Impacts of RAB, OME and PAN on NAKA (Table 2)

Compared with the healthy group, all three PPIs could increase pH of NAKA and prolong the sustaining time of NAKA. The persisting time that pH>4 of NAKA in RAB group was longer than that in the other three groups (\(P<0.05\), \(P<0.05\), \(P<0.01\)), intragastric pHs in RAB group and OME group were all higher than that in the healthy control group (\(P<0.01\)) (Table 2).

DISCUSSION

NAB and NAKA are two common clinical phenomena, but the developing mechanisms are remain unclear. Our attention was to investigated the effects of PPIs on NAB and NAKA.

NAB was defined as the occurrence of intragastric pH dropped to below 4 and remained below that level for at least 1 hour during the 12 hours of night sleeping period (typically the second 6-hours) after the dose of PPI\([1,4]\). This study showed that the pH(1.84±0.55) of NAB was significantly higher in RAB group than in OME group and PAN group (\(P<0.05\)), the persisting time of NAB was shortened. Additionally, the occurrence of NAB was lower in RAB group than in PAN group. The above results suggested that RAB had an advantage over OME and PAN on suppressing NAB, which was consistent with other reports\([6,7]\). It might contribute to the pharmacological features of RAB such as longer half-life, rapid onset of action, acid-stability, no influences on foods, dosing time or patterns\([6,7]\). NAB had a high occurrence after midnight and typically in the second 6-hours during night sleeping\([8,10]\). NAB after taking PPIs was first reported by Peghini and Katz\([4]\). Peghini et al. considered that NAB could be explained by food-related factors (for example, the absence of the buffering effect of meals after midnight) which resulted in weakened acid-inhibiting efficacy of PPIs and increased night acid production. This might help to explain why the acid-suppressing effect of PPIs during daytime was greater than that during nighttime\([10]\).

According to the fact that adding a dose of H$_2$RA at bed time could produce a much better controllable action than that of PPIs on NAB. Peghini et al. suggested that histamine played a major role in nocturnal acid secretion\([4,13,14]\). A study revealed that 70% of patients with gastro-oesophageal reflux disease (GERD) receiving PPIs had NAB which was often accompanied by esophageal acid exposure. The prevalence of ineffective esophageal motility and low LES pressure was significantly higher in refuxers than in non-refluxers\([13]\), so GERD was considered to correlate with NAB closely. This might be the result of gastric acid secretion following a circadian profile.
which was characterized by an increase in the evening, with a peak at about midnight[16]. This might explain why only some refluxers developed esophagitis. There was another opinion that eradication of *H pylori* appeared to be closely related to the occurrence of nocturnal NAB when a dose of PPI was given[17]. There were important clinical implications of NAB, because there existed a close relationship between night acid-control and GERD as well as peptic ulcer. Esophageal protective mechanism was decreased during this time and it was unfavorable for ulceric mucosa to restore[18,19]. It was thought that NAB might be particularly injurious to the esophageal mucosa and might arise lasting nocturnal heartburn or acid regurgitation and even respiratory complaints. Hence, there was a clinical rationale and greater importance for acid-related disorders to promote the healing of peptic ulcer, severe GER and Barrett’s esophagus in order to improve the quality of life[20]. But NAB was also reckoned to prove reversely the safety of PPI (i.e. it was extremely difficult to render achlorhydric)[21]. Many studies supported that the addition of a low dose of H2 RA did enhance the control effect on NAB of PPIs because H2 RAs reduced basal gastric acid secretion, H2 RA nizatidine has been known to stimulate gastric emptying and elevate LES pressure and therefore decrease NAB as well as nightly reflux[22]. Low dose of H2 RA following a provocative dinner or a large fatty meal might effectively reduce esophageal acid exposure. Being prone to produce a tolerance to H2 RA due to its long-term intaking, an intermittent dosing fashion might be an optimal approach[22].

NABA was also termed as “spontaneous nocturnal gastric alkalinization” (SNGAK), “spontaneous nocturnal alkalinization” (SNA), “nocturnal anhydrochloric wave” and “inversion of gastric pH”[23-25], which was defined as a phenomenon that an abrupt physiological or pathological raise of intragastric pH to above 4 to 6 after sleeping (mostly in the early morning). The prevalence of NABA ranged between 40-80% in normal populations, mostly beginning in the latter part of the night. Bianco et al[26] found that SNA lasted for 87.8±12.47min/time in normal volunteers and for 3.27±1.62 min/time in patients with duodenal ulcer. Ke et al[26] reported that NABA presented in 67% of normal group, lasting for 169.7±40.2 min (total), and raised in 70% of patients with duodenal ulcer, lasting for 57.6±12.0 min (total). In this study, NABA presented in 45% (9/20) of normal subjects, which sustained for 135.0±47.38 min (total), and in 55% (22/40) of patients with duodenal ulcer. The results were lower than the above, the mean sustaining time of NABA was 220.4±100.6 min (total) in patients with duodenal ulcer after a single administration of PPI. These findings indicated that RAB might increase the pH of NABA and prolong persisting time of NABA. Ke et al[26] suggested that it was not until bile reached to a considerable level when it had an influence on intragastric pH. As bile is nocuous to esophageal mucosa, so only a solitary pH raise produces a protective action. NABA was proposed by Bianco et al. at first in 1970s, there were several opinions about its pathophysiological mechanism. NABA appeared to be a kind of self-protective mechanism for gastric mucosa against the damages of acid and mucosa-injuring agents, and helping expulse H+ to gastric cavity continuously so as to relieve clinical symptoms[26]. In this trial, all 3 PPIs increased peak value and persisting time of NABA (there was a significant difference in comparison with the control). The increase was more prominent for RAB than for OME and PAN, one likely explanation was that H+-K+-ATPase was inhibited much more. Further investigation is needed. Based on earlier studies[23,27,29], we hypothesized that NABA was related to DGR, this hypothesis was supported by conclusions of other countries[30,31]. Alkaline reflux mostly occurred during MMC phase II and phase III, suggesting that NABA together with duodenal uncoordinated motor activity could lead to the reflux of duodenal juice (not always bile) into gastric cavity and hence antrum “alkalinization” state at the end of phase III. NABA was thought to be strongly related to sleeping and interrupted by waking up[31]. Some investigators deduced that NABA correlated with reduced vagal tone and cholecystectomy as well as modulation of gastric secretions[24,32]. There were evidences that ulcer patients did not show SNA phenomenon before treatment, but the therapy led it to recurrence, and the lack of SNA in duodenal ulcer patients was so frequent that its absence might be a diagnostic sign of peptic ulcer (positively predictive value 82%)[25,33]. In addition, we had an interesting observation that NABA always appeared following NAB (Figure 1). There have been no findings concerning this phenomenon yet, and its etiology needs to be identified.

NAB is the most notable limitation of PPIs used at present. By comparison we can understand that available PPIs are unable to resolve the problem of NABA, including rabeprazole. In summary, we have shown that a single dose of 10 mg rabeprazole can achieve a much superior acid-suppressing efficacy as compared to omeprazole and pantoprazole. It can elevate pH of NABA, shorten persisting time of NABA, increase pH as well as sustaining time of NAB. These findings show that rabeprazole may provide a profound control on nocturnal gastric acid secretion. However, there remain problems demanding further evaluations. For example, whether it is beneficial by increasing the dose or administering time of rabeprazole (i.e. twice daily) or an on-demand treatment[19] should be given to enhance the acid-inhibiting efficacy of rabeprazole, whether the onset of NABA correlates with more effective inhibiting on H+-K+-ATPase of rabeprazole, etiology and clinical implications of NAB and NABA, and why NABA is always present after NAB.

REFERENCES

1. Tytgat G NJ. Shortcomings of the first-generation proton pump inhibitors. *Eur J Gastroenterol Hepatol* 2001; 13(Suppl 1): S29-S33
2. Sachs G. Improving on PPI-based therapy of GORD. *Eur J Gastroenterol Hepatol* 2001; 13(Suppl 1): S35-S41
3. Gong J, Zhu YL, Luo JY, Wang XQ. The acid-inhibiting effect of famotidine with a single dose by injection in muscle. *Zhonghua Yi Xue Zazhi* 1998; 37: 762-765
4. Pehlini PL, Katz PO, Bracy NA, Castell DO. Nocturnal recovery of gastric acid secretion with twice-daily dosing of proton pump inhibitors. *Am J Gastroenterol* 1999; 94: 763-767
5. Bianco A, Cagossi M, Piraccini R, Castrucci G, Greco AV. The nightly spontaneous alkalinization of the stomach. *Riv Eur Sci Med Farmacol* 1993; 15: 17-27
6. Robinson M. New-generation proton pump inhibitors-overcoming the limitations of early-generation agents. *Eur J Gastroenterol Hepatol* 2001; 13(Suppl 1): S53-S57
7. Katz PO, Frissora C. The pharmacology and clinical relevance of proton pump inhibitors. *Curr Gastroenterol Rep* 2002; 4: 459-462
8. Williams MP, Pounder RE. Review article the pharmacology of rabeprazole. *Aliment Pharmacol Ther* 1999; 13(Suppl 3): 3-10
concentration. (20mg) daily given in the morning or evening: a comparison of H2
in acid-related disorders.

Sarosiek J. Significant enhancement of gastric mucin content af-

Peghini PL, gastric acid breakthrough on omeprazole: a controlled study in

effects on gastric acidity, and plasma gastrin and omeprazole

ter rabeprazole administration: its potential clinical significance

Skoczylas T, with rabeprazole versus omeprazole on 24-h intragastric acid-

tity and plasma gastrin concentrations in young healthy male

subjects.

Xue S, blockers improve nocturnal gastric acid control in GERD pa-

Watanabe M, Kinoshita Y. nocturnal gastric acid breakthrough Aliment.

Engl J Med pump inhibitors.

Anderson C, Khoury R, Castell DO. Gastro-oesoph-

Katz PO, Castell DO. Oesophageal motility defects

Katsube T, associated with nocturnal gastro-oesophageal reflux on proton

Soll AH. The physiology of gastric acid secretion.

Brown TH, Walton G, Cheadle WG, Larson GM. The alkaline shift in gastric pH after cholecystectomy. A m J Surg 1989; 157-65

Bianco A, Cagossi M, Piraccini R, Greco A V. Human
duodenogastric reflux, retroperistalsis, and MMC. Riv Eur Sci M ed

Ke MY, Lan Y, Wang ZF, Xing JH. Character of 24-hour

intragastric pH change in patients with functional dyspepsia.

Linchuang Xiao huabing Zazhi 1995; 7: 97

Gong J, Zhang R, Luo JY, Zhu YL, Wang XQ. The effect of bile
reflux on the intragastric pH. X i’ an Y ike Da xue X ubao 2001; 22:
25-27

Dalenback J, Abrahamson H, Bjornson E, Fandriks L, Mattsson
A, Olbe L, Svennerholm A, Spovall H. Human duodenogastric reflux, retroperistalsis and MMC. Am J Physiol 1998; 275(3Pt2):
R762-769

Gong J, Zhang R, Luo JY, Zhu YL, Wang XQ. A study on the
etiology of the spontaneous nocturnal gastric alkalinization. Xi’ an
Yike Daxue Xuebao 2001; 22: 230-232

Bjornsson ES, Abrahamsson H. Nocturnal antral pH rises are
related to duodenal phase III retroperistalsis. Dig Dis Sci 1997;
42:2432-2438

Dai P, Gong J, Zhang R, Luo JY, Zhu YL, Wang XQ. Assessment of
duodenogastric reflux by combined continuous intragastric pH
and bilirubin monitoring. World J Gastroenterol 2002; 8: 382-304

Bianco A, Cagossi M, Piraccini R, Castrucci G, Greco A V. The
nightly spontaneous alkalinization of the stomach. Rev Eur Sci M ed
Farmacol 1995; 15: 17-27

Bianco A, Cagossi M, Piraccini R, Greco A V. Twenty-four-hour
intragastric pH-metry: H2-receptor antagonist restoration of
nightly gastric spontaneous alkalinization in duodenal ulcer
healing. Rev Eur Sci M ed Farmacol 1992; 14: 281-291

Edited by Zhao M and Wang XL