An Erdős-Ko-Rado theorem for multisets

Karen Meagher *
Department of Mathematics and Statistics
University of Regina, Regina, Saskatchewan, Canada
kmeagher@math.uregina.ca

Alison Purdy
Department of Mathematics and Statistics
University of Regina, Regina, Saskatchewan, Canada
purdyali@math.uregina.ca

Submitted: Aug 9, 2011; Accepted: Oct 26, 2011; Published: XX
Mathematics Subject Classification: 05D05

Abstract

Let k and m be positive integers. A collection of k-multisets from $\{1, \ldots, m\}$ is intersecting if every pair of multisets from the collection is intersecting. We prove that for $m \geq k+1$, the size of the largest such collection is $\binom{m+k-2}{k-1}$ and that when $m > k+1$, only a collection of all the k-multisets containing a fixed element will attain this bound. The size and structure of the largest intersecting collection of k-multisets for $m \leq k$ is also given.

1 Introduction

The Erdős-Ko-Rado Theorem [6] is an important result in extremal set theory that gives the size and structure of the largest pairwise intersecting k-subset system from $[n] = \{1, \ldots, n\}$. This theorem is commonly stated as follows:

Theorem 1.1. Let k and n be positive integers with $n \geq 2k$. If \mathcal{F} is a collection of intersecting k-subsets of $[n]$, then

$$|\mathcal{F}| \leq \binom{n-1}{k-1}.$$

Moreover, if $n > 2k$, equality holds if and only if \mathcal{F} is a collection of all the k-subsets from $[n]$ that contain a fixed element from $[n]$.

*Research supported by NSERC.
Note that if \(n < 2k \), any pair of \(k \)-subsets will be intersecting and so the largest intersecting collection will have size \(\binom{n}{k} \).

A multiset is a generalization of a set in which an element may appear more than once. As with sets, the order of the elements is irrelevant. The cardinality of a multiset is the total number of elements including repetitions. A \(k \)-multiset system on an \(m \)-set is a collection of multisets of cardinality \(k \) containing elements from \([m]\). We say that two multisets are intersecting if they have at least one element in common and that a collection of multisets is intersecting if every pair of multisets in the collection is intersecting.

In this paper, we give a generalization of the Erdős-Ko-Rado Theorem to intersecting multiset systems. Specifically, we prove the following two theorems for the cases when \(m \geq k + 1 \) and \(m \leq k \) respectively.

Theorem 1.2. Let \(k \) and \(m \) be positive integers with \(m \geq k + 1 \). If \(\mathcal{A} \) is a collection of intersecting \(k \)-multisets of \([m]\), then

\[
|\mathcal{A}| \leq \binom{m + k - 2}{k - 1}.
\]

Moreover, if \(m > k + 1 \), equality holds if and only if \(\mathcal{A} \) is a collection of all the \(k \)-multisets from \([m]\) that contain a fixed element from \([m]\).

If \(m < k + 1 \), larger collections are possible. For example, if \(m = k = 3 \), the seven \(k \)-multisets containing either two or three distinct elements from \([m]\) will form an intersecting collection since each multiset contains more than half the elements from \([m]\). We will use \(\mathcal{M}(\frac{m}{2}) \) to denote the collection of all \(k \)-multisets that contain more than \(\frac{m}{2} \) distinct elements from \([m]\) and \(\mathcal{M}(\frac{m}{2}) \) to denote the collection of all \(k \)-multisets from \([m]\) containing exactly \(\frac{m}{2} \) distinct elements. Then

\[
|\mathcal{M}(\frac{m}{2})| = \binom{m}{\frac{m}{2}} \binom{k - 1}{k - \frac{m}{2}}
\]

and

\[
|\mathcal{M}(\frac{m}{2})| = \sum_{j=\left\lceil \frac{m+1}{2} \right\rceil}^{m} \binom{m}{j} \binom{k - 1}{k - j}.
\]

Theorem 1.3. Let \(k \) and \(m \) be positive integers with \(m \leq k \). If \(\mathcal{A} \) is a collection of intersecting \(k \)-multisets of \([m]\), then:

1. If \(m \) is odd, \(|\mathcal{A}| \leq |\mathcal{M}(\frac{m}{2})| \) and equality holds if and only if \(\mathcal{A} = \mathcal{M}(\frac{m}{2}) \).

2. If \(m \) is even, \(|\mathcal{A}| \leq \left| \mathcal{M}(\frac{m}{2}) \right| + \frac{1}{2} \left| \mathcal{M}(\frac{m}{2}) \right| \) and equality holds if and only if \(\mathcal{A} \) consists of \(\mathcal{M}(\frac{m}{2}) \) and a maximal intersecting collection of \(k \)-multisets from \(\mathcal{M}(\frac{m}{2}) \).

A \(k \)-multiset on an \(m \)-set can be represented as an integer sequence of length \(m \) with the integer in each position representing the number of repetitions of the corresponding element from \([m]\). For example, if \(m = 6 \), the multiset \(\{1, 2, 2, 4\} \) can
be represented by the integer sequence \((1, 2, 0, 1, 0, 0)\). For a \(k\)-multiset, the sum of the integers in the corresponding integer sequence will equal \(k\).

Erdős-Ko-Rado type results for intersecting families of integer sequences are known (e.g. \([9]\), \([10]\), \([11]\)). In these, the sum of the entries in the integer sequence is not restricted to \(k\) and the definition of intersection is different from our definition for multisets. In \([2]\), Anderson proves an Erdős-Ko-Rado type result for multisets but uses yet another definition of intersection. A definition of intersection equivalent to ours is used in several theorems for intersecting collections of vectors presented by Anderson in \([3]\). These theorems were originally written in terms of sets of noncoprime divisors of a number by Erdős et al. in \([5]\) and \([7]\), and again the sum of the entries is not restricted to \(k\).

More recently, Brockman and Kay \([4]\) proved the result in Theorem 1.2 provided that \(m \geq 2k\). Mahdian \([13]\) proved the bound on the size of a collection of intersecting \(k\)-multisets when \(m > k\) using a method similar to Katona’s cycle proof for sets \([12]\). Our results improve the bound on \(m\) given in \([4]\) and give the size and structure of the largest possible intersecting collection for all values of \(m\) and \(k\).

2 Proof of Theorem 1.2

Our proof of this theorem uses a homomorphism from a Kneser graph to a graph whose vertices are the \(k\)-multisets of \([m]\).

A Kneser graph, \(K(n, k)\), is a graph whose vertices are all of the \(k\)-sets from an \(n\)-set, denoted by \(\binom{[n]}{k}\), and where two vertices are adjacent if and only if the corresponding \(k\)-sets are disjoint. Thus an independent set of vertices in the Kneser graph is an intersecting \(k\)-set system. We will use \(\alpha(K(n, k))\) to denote the size of the largest independent set in \(K(n, k)\).

We now define a multiset analogue of the Kneser graph. For positive integers \(k\) and \(m\), let \(M(m, k)\) be the graph whose vertices are the \(k\)-multisets from the set \([m]\), denoted by \(\binom{[m]}{k}\), and where two vertices are adjacent if and only if the corresponding multisets are disjoint. For this graph, the number of vertices is equal to \(\binom{m}{k} = \binom{m+k-1}{k}\) and an independent set is an intersecting \(k\)-multiset system.

Let \(n = m + k - 1\). Then \(K(n, k)\) has the same number of vertices as \(M(m, k)\) and \(B \cap [m] \neq \emptyset\) for any \(B \in \binom{[n]}{k}\).

For a set \(A \subseteq [m]\) of cardinality \(a\) where \(1 \leq a \leq k\), the number of \(k\)-sets, \(B\), from \([n]\) such that \(B \cap [m] = A\) will be equal to

\[
\binom{n-m}{k-a} = \binom{k-1}{k-a}.
\]

Similarly, the number of \(k\)-multisets from \([m]\) that contain all of the elements of \(A\) and no others will be equal to

\[
\binom{a}{k-a} = \binom{a+(k-a)-1}{k-a} = \binom{k-1}{k-a}.
\]

Hence there exists a bijection, \(f : \binom{[n]}{k} \rightarrow \binom{[m]}{k}\), such that for any \(B \in \binom{[n]}{k}\), the set of distinct elements in \(f(B)\) will be equal to \(B \cap [m]\).
If \(A, B \in \binom{[n]}{k} \) are two adjacent vertices in the Kneser graph, then \((A \cap [m]) \cap (B \cap [m]) = \emptyset\) and hence \(f(A) \cap f(B) = \emptyset\). Therefore \(f(A) \) is adjacent to \(f(B) \) if \(A \) is adjacent to \(B \) and so the bijection \(f : \binom{[n]}{k} \to \binom{[m]}{k} \) is a graph homomorphism. In fact, \(K(n, k) \) is isomorphic to a spanning subgraph of \(M(m, k) \). Thus

\[
\alpha(M(m, k)) \leq \alpha(K(n, k)).
\]

From the Erdős-Ko-Rado Theorem, we have that if \(n \geq 2k \),

\[
\alpha(K(n, k)) = \binom{n-1}{k-1}.
\]

Thus, for \(m \geq k + 1 \),

\[
\alpha(M(m, k)) \leq \binom{n-1}{k-1} = \binom{m+k-2}{k-1}.
\]

An intersecting collection of \(k \)-multisets from \([m] \) consisting of all \(k \)-multisets containing a fixed element from \([m] \) will have size \(\binom{m+(k-1)-1}{k-1} = \binom{m-k-2}{k-1} \). Therefore

\[
\alpha(M(m, k)) = \binom{m+k-2}{k-1}
\]

which gives the upper bound on \(\mathcal{A} \) in Theorem 1.2

To prove the uniqueness statement in the theorem, let \(m > k + 1 \) and let \(\mathcal{A} \) be an intersecting multiset system of size \(\binom{m+k-2}{k-1} \). With the homomorphism defined above, the pre-image of \(\mathcal{A} \) will be an independent set in \(K(n, k) \) of size \(\binom{n-1}{k-1} \). Since \(m > k + 1 \) and \(n = m + k - 1 \), it follows that \(n > 2k \) so, by the Erdős-Ko-Rado theorem, \(f^{-1}(\mathcal{A}) \) will be a collection of all the \(k \)-subsets of \([n] \) that contain a fixed element from \([n] \). If the fixed element, \(x \), is an element of \([m] \), then it follows from the definition of \(f \) that every multiset in \(\mathcal{A} \) will contain \(x \). Thus \(\mathcal{A} \) will be a collection of all the \(k \)-multisets from \([m] \) that contain a fixed element from \([m] \) as required. If \(x \notin [m] \), then \(f^{-1}(\mathcal{A}) \) will include the sets \(A = \{1, m+1, \ldots, n\} \) and \(B = \{2, m+1, \ldots, n\} \) since \(m > k + 1 \) implies that \(m > 2 \). But \(f(A) \cap f(B) = \emptyset \) which contradicts our assumption that \(\mathcal{A} \) is an intersecting collection of multisets. Therefore, when \(m > k + 1 \), if \(\mathcal{A} \) is an intersecting collection of multisets of the maximum possible size, then \(\mathcal{A} \) is the collections of all \(k \)-multisets containing a fixed element from \([m] \).

The case when \(m = k + 1 \) is analogous to the case when \(n = 2k \) in the Erdős-Ko-Rado theorem. The size of the largest possible intersecting collection is equal to \(\binom{m+k-2}{k-1} \) but collections attaining this bound are not limited to those having a common element in all \(k \)-multisets.

3 Proof of Theorem 1.3

Although Theorem 1.2 is restricted to \(m \geq k + 1 \), the inequality \(\alpha(M(m, k)) \leq \alpha(K(n, k)) \) still holds when \(m \leq k \). However, the resulting inequality

\[
\alpha(M(m, k)) \leq \binom{n}{k} = \binom{m+k-1}{k}
\]
is not particularly useful since for \(m > 1 \) this bound is not attainable. Clearly, two multisets consisting of \(k \) copies of different elements from \([m]\) will not intersect.

Before proceeding with our proof of Theorem 1.3 we define the support of a multiset. If \(A \) is a \(k \)-multiset from \([m]\), the support of \(A \), denoted by \(S_A \), is the set of distinct integers from \([m]\) in \(A \). Note that two \(k \)-multisets, \(A, B \in \binom{[m]}{k} \), will be intersecting if and only if \(S_A \cap S_B \neq \emptyset \) and that each \(S_A \) will have a unique complement, \(S_A^c = [m] \setminus S_A, \) in \([m]\).

Let \(\mathcal{A} \) be an intersecting family of \(k \)-multisets of \([m]\) of maximum size and let \(M \in \mathcal{A} \) be a \(k \)-multiset such that \(|S_M| = \min \{|S_A| : A \in \mathcal{A} \} \). If \(m = 2 \), it is easy to see that the theorem holds, so we will assume that \(m > 2 \).

Suppose that \(|S_M| < \frac{m}{2} \). Let \(B_1 = \{ A \in \mathcal{A} : S_A = S_M \} \) and let \(B_2 = \{ B \in \binom{[m]}{k} : S_B = S_M \} \). Then \(B_1 \subseteq \mathcal{A} \) and \(B_2 \cap \mathcal{A} = \emptyset \).

We will now show that \(\mathcal{A}' := (\mathcal{A} \setminus B_1) \cup B_2 \) is an intersecting family of \(k \)-multisets from \([m]\) that is larger than \(\mathcal{A} \). By construction, every multiset in \(\mathcal{A} \setminus B_1 \) contains at least one element from \([m]\) \(S_M \), and \([m]\) \(S_M = S_B \) for all \(B \in B_2 \). Thus \(\mathcal{A}' \) is an intersecting collection of \(k \)-multisets.

Let \(|S_M| = i \). Then

\[
|B_1| = \binom{i}{k-i} = \binom{k-1}{k-i}.
\]

Since \(|S_M| = m - i \), it follows that

\[
|B_2| = \binom{m-i}{k-(m-i)} = \binom{k-1}{k-m+i}.
\]

To show that \(|\mathcal{A}'| > |\mathcal{A}| \), it is sufficient to show that

\[
\frac{k-1}{k-m+i} > \frac{k-1}{k-i},
\]

or equivalently, that

\[
(k-i)! (i-1)! > (k-m+i)! (m-i-1)!.
\]

Since \(i < \frac{m}{2} \) and \(m \leq k \), we have that \(k-i > k-\frac{m}{2} > k-m+i \geq 1 \). Therefore,

\[
(k-i)! (i-1)! = (k-i) (k-i-1) \ldots (k-m+i+1) (k-m+i)! (i-1)! \\
\quad \geq (m-i) (m-i-1) \ldots (i+1) (k-m+i)! (i-1)! \\
\quad = \frac{m-i}{i} (m-i-1)! (k-m+i)! \\
\quad > (m-i-1)! (k-m+i)!
\]

as required. Thus if \(\mathcal{A} \) is of maximum size, it cannot contain a multiset with less than \(\frac{m}{2} \) distinct elements from \([m]\).

It is easy to see that any \(k \)-multiset containing more than \(\frac{m}{2} \) distinct elements from \([m]\) will intersect with any other such \(k \)-multiset. This completes the proof of the theorem for the case when \(m \) is odd. When \(m \) is even, it is necessary to consider
the k-multisets which contain exactly $\frac{m}{2}$ distinct elements, that is, the k-multisets in $\mathcal{M}(\frac{m}{2})$. These multisets will intersect with any multiset containing more than $\frac{m}{2}$ distinct elements. However, $\mathcal{M}(\frac{m}{2})$ is not an intersecting collection. For any $A \in \mathcal{M}(\frac{m}{2})$, all of the k-multisets, B, where $S_B = S_A$ will be in $\mathcal{M}(\frac{m}{2})$ and will not intersect with A. Since the size of a maximal intersecting collection of $\frac{m}{2}$-subsets of $[m]$ is $\frac{1}{2}\left(\begin{array}{c}m+1\end{array}\right)$ and each $\frac{m}{2}$-subset is the support for the same number of multisets in $\mathcal{M}(\frac{m}{2})$, an intersecting collection of k-multisets will contain at most half of the k-multisets in $\mathcal{M}(\frac{m}{2})$.

\section{Further work}

An obvious open problem is determining the size and structure of the largest collection of t-intersecting k-multisets, i.e. collections of multisets where the size of the intersection for every pair of multisets is at least t. (We define the intersection of two multisets to be the multiset containing all elements common to both multisets with repetitions.) The following conjecture is a version of Conjecture 5.1 from [4].

\textbf{Conjecture 4.1.} Let k, m and t be positive integers with $t \leq k$ and $m \geq t(k-t)+2$. If A is a collection of intersecting k-multisets of $[m]$, then

$$|A| \leq \left(\begin{array}{c}m + k - t - 1 \\ k - t \end{array}\right).$$

Moreover, if $m > t(k-t)+2$, equality holds if and only if A is a collection of all the k-multisets from $[m]$ that contain a fixed t-multiset from $[m]$.

The lower bound on m in this conjecture was obtained by substituting $m+k-1$ for n in the corresponding bound for sets given by Frankl [8] and Wilson [14]. The conjecture is supported by the fact that when $m > t(k-t)+2$, a collection consisting of all k-multisets containing a fixed t-multiset is larger than a collection consisting of all k-multisets containing $t+1$ elements from a set of $t+2$ distinct elements of $[m]$ and that these two collections are equal in size when $m = t(k-t)+2$. Furthermore, when $m = t(k-t)+1$, collections larger than $\left(\begin{array}{c}m+k-t-1 \\ k-t \end{array}\right)$ are possible. For example, if $t = 2$, $k = 5$ and $m = 7$, the cardinality of the collection of all k-multisets containing three or more elements from $\{1, 2, 3, 4\}$ is 91 while $\left(\begin{array}{c}m+k-t-1 \\ k-t \end{array}\right) = 84$.

The existence of a graph homomorphism from the Kneser graph $K(n,k)$ to its multiset analogue $M(m,k)$ in the proof of Theorem 12 gave a simple and straightforward way to show that the size of the largest independent set in $M(m,k)$ is no larger than the size of the largest independent set in $K(n,k)$. These graphs can be generalized as follows: let $K(n,k,t)$ be the graph whose vertices are the k-subsets of $[n]$ and where two vertices, A, B, are adjacent if $|A \cap B| < t$ and let $M(m,k,t)$ be the graph whose vertices are the k-multisets of $[m]$ and where two vertices, C, D are adjacent if $|C \cap D| < t$.

If a bijective homomorphism from $K(n,k,t)$ to $M(m,k,t)$ exists, it could be used to prove a bound not only on the maximum size of a t-intersecting collection as given in Conjecture 4.1 but also on the maximum size when $k-t \leq m \leq t(k-t)+2$ using the Complete Erdős-Ko-Rado theorem of Ahlswede and Khachatrian [1]. However,
it is not clear that such a homomorphism exists. The conditions placed on the bijection in the proof of Theorem 1.2 are not sufficient to ensure that the bijection is a homomorphism since for two k-multisets, A and B, having $|S_A \cap S_B| < t$ does not imply that $|A \cap B| < t$.

The simple fact that if a graph G is isomorphic to a spanning subgraph of a graph H, then $\alpha(H) \leq \alpha(G)$ may be useful in proving Erdős-Ko-Rado theorems for different objects. It would be interesting to determine if there are combinatorial objects other than multisets which have this relationship to an object for which an Erdős-Ko-Rado type result is known.

Acknowledgment

We are grateful for the helpful comments of the anonymous referee, particularly those concerning Theorem 1.3 which greatly simplified the proof.

References

[1] R. Ahlswede and L.H. Khachatrian. The complete intersection theorem for systems of finite sets. European J. Combin., 18(2):125–136, 1997.

[2] I. Anderson. An Erdős-Ko-Rado theorem for multisets. Discrete Math., 69(1):1–9, 1988.

[3] I. Anderson. Combinatorics of finite sets. Dover Publications Inc., Mineola, NY, 2002.

[4] G. Brockman and B. Kay. Elementary techniques for Erdős-Ko-Rado-like theorems. ArXiv e-prints, August 2008.

[5] P. Erdős, M. Herzog, and J. Schönhheim. An extremal problem on the set of noncoprime divisors of a number. Israel J. Math., 8:408–412, 1970.

[6] P. Erdős, Chao Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2), 12:313–320, 1961.

[7] P. Erdős and J. Schönhcim. On the set of non pairwise coprime divisors of a number. In Combinatorial theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), pages 369–376. North-Holland, Amsterdam, 1970.

[8] P. Frankl. The Erdős-Ko-Rado theorem is true for $n = ckt$. In Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. I, volume 18 of Colloq. Math. Soc. János Bolyai, pages 365–375. North-Holland, Amsterdam, 1978.

[9] P. Frankl and Z. Füredi. The Erdős-Ko-Rado theorem for integer sequences. SIAM J. Algebraic Discrete Methods, 1(4):376–381, 1980.

[10] P. Frankl and N. Tokushige. The Erdős-Ko-Rado theorem for integer sequences. Combinatorica, 19(1):55–63, 1999.

[11] H.-D. O. F. Gronau. More on the Erdős-Ko-Rado theorem for integer sequences. J. Combin. Theory Ser. A, 35(3):279–288, 1983.
[12] G. O. H. Katona. A simple proof of the Erdős-Chao Ko-Rado theorem. *J. Combinatorial Theory Ser. B*, 13:183–184, 1972.

[13] M. Mahdian. private communication, 2010.

[14] R.M. Wilson. The exact bound in the Erdős-Ko-Rado theorem. *Combinatorica*, 4(2-3):247–257, 1984.