h–analogue of Newton’s binomial formula

H. B. Benaoum ∗
Institut für Theoretische Physik, Technische Universität Clausthal
Leibnizstrasse 10, 38678 Clausthal–Zellerfeld, Germany

14 July 1998
Revised 06 October 1998

Abstract

In this letter, the h–analogue of Newton’s binomial formula is obtained in the h–deformed quantum plane which does not have any q–analogue. For h = 0, this is just the usual one as it should be. Furthermore, the binomial coefficients reduce to \(\frac{n!}{(n-k)!} \) for h = 1. Some properties of the h–binomial coefficients are also given. Finally, I hope that such results will contribute to an introduction of the h–analogue of the well–known functions, h–special functions and h–deformed analysis.

Published in J. Phys. A : Volume 31 Issue 46 (20 November 1998) p. L751

∗Present and permanent adress : Institut für Physik , Johannes Gutenberg–Universität, 55099 Mainz, Germany, email : benaoum@thep.physik.uni-mainz.de
The study of q–analysis appeared in the literature very long time ago [1]. In particular, a q–analogue of the Newton’s formula, well–known functions like q–exponential, q–logarithm, · · · etc, and the special functions arena’s [1, 5, 6] have been introduced and studied intensively.

Such q–analogue of these was obtained by taking q–commuting variables x, y satisfying the relation $xy = qyx$, i.e. (x, y) belongs to the Manin plane.

In this letter, I will take another direction by introducing the analogue of Newton’s formula in the h–deformed quantum plane [8, 7] (i.e. h–Newton binomial formula). As far as I know, such a h–analogue does not exist in the litterature till now and the result will permit in the future the introduction of the h–analogue of well–known functions, h–special functions and h–deformed analysis.

Newton’s binomial formula is defined as follows:

$$(x + y)^n = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) y^k x^{n-k} \quad (1)$$

where $\left(\begin{array}{c} n \\ k \end{array} \right) = \frac{n!}{k!(n-k)!}$ and it is understood here that the coordinate variables x and y commute, i.e. $xy = yx$.

A q–analogue of (1) for the q–commuting coordinates x and y satisfying $xy = qyx$ was first stated by Rothe, although its special cases were known to L. Euler, see [3], found again by Schützenberger [2] long time ago and has been rediscovered many times subsequently [4].

A q–analogue of (1) becomes:

$$(x + y)^n = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] q y^k x^{n-k} \quad (2)$$

where the q–binomial coefficient is given by:

$$\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{(q; q)_n}{(q; q)_k (q; q)_{n-k}}$$

with

$$(a; q)_k = (1 - a)(1 - qa) \cdots (1 - q^{k-1}a), \quad a \in \mathbb{C}, k \in \mathbb{N}$$
Now consider Manin’s q–plane $x'y' = qyx'$. By the following linear transformation (see [8] and references therein):

$$
\begin{pmatrix}
x' \\
y'
\end{pmatrix} = \begin{pmatrix} 1 & \frac{k}{q-1} \\
0 & 1
\end{pmatrix} \begin{pmatrix} x \\
y
\end{pmatrix}
$$

Manin’s q–plane changes to $xy - qyx = hy^2$ which for $q = 1$ gives the h–deformed plane:

$$
xy = yx + hy^2 \quad (3)
$$

Even though the linear transformation is singular for $q = 1$, the resulting quantum plane is well-defined.

Proposition 1:
Let x and y be coordinate variables satisfying (3), then the following identities are true:

$$
\begin{align*}
x^ky &= \sum_{r=0}^{k} \frac{k!}{(k-r)!} h^r y^{r+1} x^{k-r} \\
x^k y &= y^k x + khy^{k+1}
\end{align*}
\quad (4)
$$

These identities are easily proved by successive use of (3).

Proposition 2: (h–binomial formula)
Let x and y be coordinate variables satisfying (3), then we have:

$$
(x + y)^n = \sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right]_h y^k x^{n-k} \quad (5)
$$

where $\left[\begin{array}{c} n \\ k \end{array} \right]_h$ are the h–binomial coefficients given as follows:

$$
\left[\begin{array}{c} n \\ k \end{array} \right]_h = \left(\begin{array}{c} n \\ k \end{array} \right) h^k (h^{-1})_k. \quad (6)
$$

with $\left[\begin{array}{c} n \\ 0 \end{array} \right]_h = 1$ and $(a)_k = \Gamma(a + k)/\Gamma(a)$ is the shifted factorial.
Proof:
We will prove this proposition by recurrence. Indeed for \(n = 1, 2 \), it is verified.
Suppose now that the formula is true for \(n - 1 \), which means:

\[
(x + y)^{n-1} = \sum_{k=0}^{n-1} \binom{n-1}{k} y^k x^{n-1-k},
\]

with \(\binom{n-1}{0} h = 1 \).
To show this for \(n \), let first consider the following expansion:

\[
(x + y)^n = \sum_{k=0}^{n} C_{n,k} y^k x^{n-k}
\]

where \(C_{n,k} \) are coefficients depending on \(h \).
Then, we have:

\[
(x + y)^n = (x + y)(x + y)^{n-1} = (x + y)\sum_{k=0}^{n-1} \binom{n-1}{k} y^k x^{n-1-k}
\]

\[
= \sum_{k=0}^{n-1} \binom{n-1}{k} x y^k x^{n-1-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} y^k x^{n-1-k}.
\]

Using the result of the first proposition, we obtain:

\[
(x + y)^n = \sum_{k=0}^{n-1} \binom{n-1}{k} y^k x^{n-k} + \sum_{k=0}^{n-1} \binom{n-1}{k} y^k x^{n-1-k} - (1 + (k-1)h)y^k x^{n-k}.
\]

which yields respectively:

\[
C_{n,0} = \binom{n-1}{0} h = 1,
\]
\[
C_{n,k} = \binom{n-1}{k} h + (1 + (k-1)h) \binom{n-1}{k-1} h = \binom{n}{k} h,
\]
\[
C_{n,n} = \binom{n-1}{n-1} h (1 + (n-1)h) = \binom{n}{n} h.
\]
This completes the Proof.

Moreover, the h–binomial coefficients obey to the following properties:

$$
\left[\begin{array}{c} n \\ k \end{array} \right]_h + (1 + (k - 1)h) \left[\begin{array}{c} n \\ k - 1 \end{array} \right]_h = \left[\begin{array}{c} n + 1 \\ k \end{array} \right]_h.
$$

(7)

and

$$
\left[\begin{array}{c} n + 1 \\ k + 1 \end{array} \right]_h = \frac{n + 1}{k + 1}(1 + kh) \left[\begin{array}{c} n \\ k \end{array} \right]_h.
$$

(8)

In fact, these properties follow from the well–known relations of the classical binomial coefficients:

$$
\left(\begin{array}{c} n + 1 \\ k \end{array} \right) = \left(\begin{array}{c} n \\ k \end{array} \right) + \left(\begin{array}{c} n \\ k - 1 \end{array} \right)
$$

and

$$
\left(\begin{array}{c} n + 1 \\ k \end{array} \right) = \frac{n + 1}{k} \left(\begin{array}{c} n \\ k - 1 \end{array} \right)
$$

upon using $(a)_k = (a + k - 1)(a)_{k-1}$, which means that (7) and (8) are just a consequence of the known properties of the classical coefficients and the shifted factorial.

Now, we make the following remarks. First, for $h = 0$ the Newton’s binomial formula is just the usual one for commuting variables $xy = yx$ as it should be.

Second, for $h = 1$ the $h = 1$–binomial coefficients are:

$$
\left[\begin{array}{c} n \\ k \end{array} \right]_{h=1} = \frac{n!}{(n - k)!}
$$

(9)

and therefore the $h = 1$–analogue Newton’s binomial formula becomes:

$$
(x + y)^n = \sum_{k=0}^{n} \frac{n!}{(n - k)!} y^k x^{n-k}
$$

(10)

provided that $xy = yx + y^2$.

To conclude, we see that the h–analogue of Newton’s formula in the h–deformed plane has no q–analogue. It seems from the structures of the h–binomial coefficients that the h–deformed plane is somewhat "more classical" than the q–deformed plane.
acknowlegement

I’d like to thank the DAAD for its financial support and the referee for his remarks. Special thanks go also to Prof. H.-D. Doebner, Dr. R. Häußling for reading the manuscript and Prof. F. Scheck for encouragements.

References

[1] For historical details see the book ”Basic Hypergeometric Series”, by G. Gasper, M. Rahman, Cambridge University Press, Cambridge, 1990.

[2] M. P. Schützenberger, ”Une interprétation de certaines solutions de l’équation fonctionnelle : $F(x + y) = F(x)F(y)$ ”, C. R. Acad. Sci. Paris 236 (1953) 352.

[3] See the footnote on page 60 in the book ” Quantum Group Symmetry and q–Tensor Algebras” by L. C. Biedenharn and M. A. Lohe, World Scientific, Singapore, 1995.

[4] J. Cigler, ” Operatormethoden für q–Identitäten”, Monatsh. Math. 88 (1979) 87.

[5] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, ”Classical Orthogonal Polynomials of a Discrete Variable”, Springer–Verlag, Berlin, 1991.

[6] Tom H. Koornwinder, ”Special functions and q–commuting variables”, Preprint q-alg/9608008. See also references therein.

[7] H.B. Benaoum, H.-D. Doebner, ”Noncommutative differential calculus on the N–dimensional h–deformed quantum bosonic and fermionic space”, Preprint TU–Clausthal 29 June 1998.

[8] S. Cho, J. Madore, K.S. Park, ” Noncommutative geometry of the h–deformed quantum plane”, q-alg/9709007.