From Bench to Market: Preparing Human Pluripotent Stem Cells Derived Cardiomyocytes for Various Applications

Sung-Hwan Moon1, Daekyeong Bae2, Taek-Hee Jung3, Eun-Bin Chung3, Young-Hoon Jeong3, Soon-Jung Park3, Hyung-Min Chung3

1Department of Medicine, School of Medicine, Konkuk University, Seoul, Korea
2Mirae Cell Bio Inc., Seoul, Korea
3Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea

Human cardiomyocytes (CMs) cease to proliferate and remain terminally differentiated thereafter, when humans reach the mid-20s. Thus, any damages sustained by myocardium tissue are irreversible, and they require medical interventions to regain functionality. To date, new surgical procedures and drugs have been developed, albeit with limited success, to treat various heart diseases including myocardial infarction. Hence, there is a pressing need to develop more effective treatment methods to address the increasing mortality rate of the heart diseases. Functional CMs are not only an important in vitro cellular tool to model various types of heart diseases for drug development, but they are also a promising therapeutic agent for cell therapy. However, the limited proliferative capacity entails difficulties in acquiring functional CMs in the scale that is required for pathological studies and cell therapy development. Stem cells, human pluripotent stem cells (hPSCs) in particular, have been considered as an unlimited cellular source for providing functional CMs for various applications. Notable progress has already been made: the first clinical trials of hPSCs derived CMs (hPSC-CMs) for treating myocardial infarction was approved in 2015, and their potential use in disease modeling and drug discovery is being fully explored. This concise review gives an account of current development of differentiation, purification and maturation techniques for hPSC-CMs, and their application in cell therapy development and pharmaceutical industries will be discussed with the latest experimental evidence.

Keywords: Human pluripotent stem cell, Cardiomyocytes, Cell therapy, Drug discovery, Disease modeling

Human embryonic stem cells (hESCs), induced pluripotent stem cells (hiPSCs) and nuclear transfer embryonic stem cells (Nt-ES), are all considered to possess pluripotency, although their derivation methods and origins differ. Such a capacity could provide an answer to overcoming the lack of cellular sources from which functional cardiomyocytes (CMs) can be obtained. In the last two decades, strenuous research efforts have made huge stride in developing efficient differentiation and purification methods for CMs, and their potential use in the areas of cell therapy development and new drug discovery is stand-
ly being materialized. Recapitulating key developmental events of cardiogenesis has been a customary practice for inducing CMs differentiation. Such attempts have been conducted 1) through formation of 3-dimensional floating cell aggregates (embryoid bodies, EBs) that consist of three germ layers cells, 2) by directly supplementing differentiation milieu to monolayer of adherent hPSCs or 3) by co-culturing with supporting cells known to facilitate CMs differentiation (Fig. 1).

3D method using embryoid body (EB) formation

Since the establishment of hESCs lines in 1998, and later hiPSCs in 2007, EBs formation has been a popular choice of method for inducing CMs differentiation. Floating hPSCs colonies spontaneously form spherical EBs that constitute cells representative of all three germ layers. Supplementation of a cocktail of growth factors to the suspension culture of EBs expedites CMs differentiation as some cells undergo perceptible morphological changes into contractile cells with sarcomeric structures as early as day 20 post growth factor treatment (1). However, the attempts to control the consistency and efficiency of EBs based approaches are severely thwarted mainly due to the variability in the EB sizes. In recent years though, studies have reported various means to control the EB sizes in order to minimize differentiation variability associated with the size. For instance, micro aggrewell plates (commercialized by STEMCELL Technologies Inc), allow aggregation of a defined number of cells by simple centrifugation. The ease with which a large number of uniform size EBs can be produced paves the way for a simple and commercial scale production of differentiated cells (2).

2D-directed monolayer differentiation

Monolayer differentiation of hPSCs is initiated without the intermediately EB formation stage, and differentiation cues are directly supplemented to the adherent hPSCs in feeder-free systems. One of the advantages of the monolayer differentiation is that it enables investigators to gain a better control of the differentiation. The morphological changes are easily observable under a light microscope therefore different growth factors can be supplied in a stage-specific manner in attempts to as closely recapitulate...
the embryonic environment as possible. 2D directed differentiation of CMs is often based on Wnt signaling pathway, and regulates the differentiation by adding growth factors such as bone morphogenetic protein 4 (BMP4), Activin A and fibroblast growth factor 2 (FGF2) to the culture medium containing serum (3). Such method is, however, not suitable for clinical application of resulting CMs as the serum is an animal derivative. Xeno-free culture medium consisting of RPMI and B27 supplement has been developed, and together with above-mentioned growth factors, CMs differentiation efficiency between 50~90% was achieved (4). In recent years, small molecules, known for higher potency and lower manufacturing costs than growth factors, have been widely adopted for initiating CMs differentiation. GSK3-inhibitors (CHIR99021, BIO, TWS119, TDZE-8, 3F8) and wnt inhibitors (IWR-1, IWP2, IWP3, IWP-4, XAV-939, KY02111, Wnt-C59) are commonly used small molecules for CMs differentiation yielding an efficiency between 80~90% (5, 6).

Co-culture system

CMs differentiation is induced by culturing hPSCs with endoderm lineage cells that are known to play intricate, yet important roles for the heart development. A co-culture system of hPSCs with mouse visceral endoderm-like cells (END-2) has been reported to be conducive to generating contractile cells at an efficiency of about 25 to 40%. Co-culture differentiation methods can induce differentiation using a small number of hPSCs, and has an advantage of achieving comparable differentiation efficiency within a relatively short period of time without a plethora of growth factors (7). However, there is a disadvantage of having to separate differentiated CMs from the residual END-2 for subsequent applications.

Characterization and purification of hPSC-CMs

hPSC-CMs emerges sequentially from the undifferentiated state through the primitive mesoderm to CMs in an analogous manner to cardiogenesis during the early human developmental stage. In the initial stages of the differentiation, the expression of undifferentiated markers (e.g. Oct4 and Nanog) dissipates while inversely, the expression level of representative markers of early mesoderm differentiation increases (e.g. Brachyury and DKK-1). As the differentiation progresses, the differentiating cells take up immature CMs characteristics as demonstrated by CMs (e.g. NKX2.5 and Gata4) and muscle filament (e.g. cTnT, alpha-actin and MHC) associated markers expressions, spontaneous contractility and electrophysiological properties (Fig. 2) (8). Over time, such cells mature into fully functioning cells akin to adult CMs (1). Since the differentiation is never 100% efficient, the presence of contaminating by-products is inevitable, thus techniques for separating and purifying CMs are required (9). Current purification strategies, and probably one of the most used methods, include the following; centrifugation, flow cytometry and metabolic screening (Fig. 3).

Centrifugation (percoll gradient)

CMs purification by density gradient is somewhat considered as the “golden standard”. Since CMs are larger and denser than non-CMs, density gradient centrifugation, in which cells are fractionated by floating density, could
effectively separate CMs from other cell types. This was routinely used to isolate primary CMs until 2000, when mouse ESCs derived CMs were first purified by the same method (10). Later, ~60% hPSC-CMs were purified from impurities such as EBs, small clumps and single cells, and ~82.6% CMs were enriched following a 2D directed method (11, 12).

Flow cytometry

Flow cytometry analysis using cell-specific markers has the advantage of being applicable to various cell types in a simple and highly efficient manner, but no marker specific to CMs has been reported. For this reason, many researchers have identified CMs related surface proteins during differentiation, and validated their authenticity as CMs specific markers. KDR and C-KIT (13) and Flk-1 and PDGFR-α (14) have been used to isolate hPSC-CMs progenitors, which were then further matured into functional CMs. Such purification methods yielded populations of 50% and 60% CMs respectively (13, 14). In 2011, signal-regulatory protein alpha (SIRPA) was found to be exclusively expressed in hPSC-CMs, and when an antibody against SIRPA was used to isolate CMs from the differentiating culture, it yielded up to 98% cTnT-positive cells (15). Vascular cell adhesion molecule 1 (VCAM1) has also been reported as a viable surface protein marker for isolating hPSC-CMs (16). After screening 242 antibodies for human cell surface molecules, it was found that 80% cTnT positive hPSC-CMs also expressed VCAM1 11 days post differentiation. Thus, purification using VCAM1 antibody at day 11 yielded ~98% VCAM1 positive population of which ~95% expressed cTnT, and displayed molecular and functional features of CMs.

Gene modification

Various reporter hPSCs lines have been generated to develop an efficient fluorescent-based purification method. The generation of a reporter hPSCs line harboring the green fluorescence protein (GFP) Nkx2.5 gene was reported, and purification based on a high level of GFP fluorescence upon differentiation yielded 85% CMs (17, 18). The α-myosin heavy chain (αMHC) gene is broadly expressed during the course of murine cardiac development therefore its sensitivity for purifying hPSC-CMs was examined by constructing a myocardial-specific enhanced GFP reporter in H9 hESCs line (19). Using the cell line, the investigators were able to isolate myocardial precursors, which were capable of further developing into atrial- and ventricular-like CMs. CMs specific reporter cell lines serve the purpose of purifying CMs, but this method is an unlikely option for clinical applications.

Metabolic selection

Glucose is the primary energy source for metabolically active mammalian cells. Glycolysis breaks down glucose into pyruvate and lactate while generating two molecules of ATP without the presence of oxygen. Pyruvate is then used as a substrate in the mitochondrial tricarboxylic acid
cycle to yield 36 ATP molecules via oxidative phosphorylation. CMs, unlike most somatic cells, are capable of using lactic acid as an alternative metabolic substrate under glucose-depleted environments. To attest this metabolic homeostasis, differentiating hPSCs culture was subjected to glucose-depleted environments with varying concentrations of lactate (20). Therein, non-CMs failed to survive as ~98% alpha-actinin positive cells were detected 20~30 days after differentiation. The fact that hPSC-CMs had remained a high intracellular ATP in such environments revealed that the metabolic selection is an effective purification strategy for enriching viable and functional hPSC-CMs.

Maturation methods for hPSC-CMs

The action potential generated by ion channel activity in intracellular segmental structures is important for the spontaneous contractility of mature CMs. However, hPSC-CMs are immature in comparison to those derived from adult tissues in terms biological (cell morphology and contractility) and functional (cellular metabolism and electrophysiology) standpoint. Therefore, for the application of hPSC-CMs in cell therapy development and drug screening, the cells are required to resemble as closely as possible the fully fledged adult CMs in terms of functionality. Techniques such as 1) long-term culture, 2) biomimetic and tissue engineering techniques, and 3) electrical stimulation have been employed as methods to induce maturation of hPSC-CMs (Fig. 3).

Characteristic comparison between immature hPSC-CMs and mature adult CMs

Morphological properties: Although mature human adult CMs have a long rod-shaped arrangement of sarcomere structures, hPSC-CMs are smaller and have an irregular round segmental shape compared to mature CMs. The membrane capacitance, which increases in proportion to the cell surface area, is lower than adult CMs due to the size of immature CMs (21). In adult CMs, transverse tubules (T-tubules) that regulate the calcium release and contraction of the sarcoplasmic reticulum (SR) are well developed, but those in hPSC-CMs are poorly developed in comparison (22).

Electrophysiological properties: In order to generate action potentials of CMs, signal transmission systems between various ion channels must work in concert. However, in immature CMs, low activity among ion channels may cause impairment to spontaneous contractility, and unstable cell function may present crucial pitfalls in their applications. The gap junction, which regulates the conduction velocity of CMs, is an important factor in determining the maturation of CMs. In the case of immature CMs, Connexin and N-cadherin are distributed circumferentially around the cell membrane, while those in mature CMs are distributed in the intercalated disks (23). Since the difference in the intracellular distribution of the gap junction proteins may attribute the functional differences of CMs, modulating the distribution of the gap junction protein is a very important for the stabilization of CMs function.

Metabolic properties: CMs are one of the most energy-demanding cells in the human body, and over 35% of their volume is composed of mitochondria. The type of energy metabolism of CMs depends on their maturity. Not only mature adult CMs have higher mitochondrial numbers compared to hPSC-CMs, but the inner membranes of the mitochondria are also well developed. The mitochondrial oxidative capacity increases in the mature CMs, and ~90% of energy generation is ascribed to fatty acid β-oxidation (24). Immature and proliferating CMs, in contrast, have fewer mitochondrial numbers, and they are functionally under developed. Indeed, oxidative metabolism only accounts for only <15% of the total ATP produced, and their reliance on glycolysis is much preferred (25).

Maturation method for hPSC-CMs

Long term culture: hPSC-CMs are generated 20~30 days post induction thus, it is inevitable that they are biologically, functionally and structurally immature in comparison to adult CMs that continue to mature for 6~10 years after birth. A long-term culture protocol was devised to examine whether hPSC-CMs take up more mature characteristics over a prolonged period of time in culture (26). In this study, the early stage hPSC-CMs (20~40 days after initiating differentiation) were largely small and rounded cells with poor subcellular organizations, and an underdeveloped contractile machinery as evidenced by the misalignment of myofibrils. Morphological changes into more elongated shape were accompanied with an increased size over the ensuing 2 months, and by day 80~100 post differentiation induction, an improved myofibril alignment, density and morphology was observed. In addition, a 2-fold increase in the contractile ability was evident in the late stage hPSC-CMs when sarcomere length changes were measured during the contraction. Other functional characteristic parameters such as calcium uptake, action potential properties and cardiac gene expression profile of the late-stage hPSC-CMs closely re-
Mimicking in vivo niche using tissue engineering approach: Because human cardiac muscle cells are exposed to pressure and electrical stimulation in vivo, they are structurally rod-shaped to minimize the impact. A method of improving the maturation of CMs through a cell culture system mimicking the natural environment is studied. As a result of culturing immature CMs by changing the surface of the cell culture dish to a patterned topography, a linear of myofibril was developed in the same direction as that of the substrate, and the distribution of the gap junction and the function of the conduction velocity improved (27). CMs are composed of 3D arrangement of interstitial fibroblast, blood vessel, extracellular matrix (ECM) and CMs (28). Therefore, in order to regulate the maturation of immature CMs, a three-dimensional extracellular matrix capable of simulating the environment similar to myocardial tissue was prepared by tissue engineering techniques, which improved maturation of hPSC-CMs.

Electric stimulation: CMs form a synchronic structure with tissues with high electrical signal activity. In order to regulate the maturity of immature CMs by taking advantage of this property, the cells were cultured under the conditions of electric stimulation, and as a result, stable cell arrangement, intercellular synchronization and contractile capacity were all increased. In addition, the structure and function of mitochondria, sodium-calcium exchanger, action potential and conduction velocity were also improved (29).

Application of hPSC-CMs

It is widely recognized that hPSC-CMs can be used in the following applications; 1) disease modeling, 2) cell therapy development for treating acute myocardial infarction, 3) human cell based assays for arrhythmogenesis and cardiotoxicity evaluation of candidate molecules for drug discovery.

Cardiac disease modeling

hPSCs derived from patients with genetic heart diseases reflect individual genetic information, and CMs generated from such cells provide an accurate in vitro model of the diseases. This allows you gain sights into the cause of disorder and its consequences. Pathogenic studies of the human heart disease using an animal disease model has limitations in its accuracy because of differences in cell size, heart rate, and ion channel activity between the two species. Since the inception of iPSCs technology, CMs from patients’ own iPSCs have been used to elucidate pathophysiology of representative genetic cardiac diseases such as Leopard syndrome, long QT syndrome, Timothy syndrome, Pompe disease, familial hypertrophic and dilated cardiomyopathy, and the genetic analysis and characterization of electrophysiological functions have been reported to reflect the characteristics of the diseases (30-36). Therefore, it is expected that cardiac disease modeling using hPSC-CMs will be able to illuminate unseen pathological mechanisms of heart diseases for developing improved and efficient treatment methods.

Cell therapy

The first approved stem cell therapeutic product in the world, Hearticellgram-AMI is a bone marrow derived mesenchymal stem cells (MSCs) based therapy for treating acute myocardial infarction (47). A profusion of other clinical trials is currently taking place around the world to validate the feasibility of various other types of MSCs for treating myocardial infarction. In most of the trials,

Experiments	Disease	Animal	Implantation	Results	References
Pre-clinical	Complete AV block	Pig	Cell injection	Electromechanical integration in vivo pacing	(37)
Acute myocardial infarction	Rat	Gelatin Scaffold	Preservation of graft size ↑	(38)	
Chronic myocardial infarction	Mouse	Cell injection	EF ↑, Infarct area ↓	(39)	
Minipig	Cell injection	Infarct size ↓, Vascular density ↑	(40)		
Mouse, Monkey	Cell sheet	EF ↑, Vascularization	(42)		
Cryo-injury	Guinea pig	Cell injection	Electrical coupling, Graft-host synchronization, Non-fatal arrhythmias	(43)	
Normal	Rat	Cardiac patch	Electrical coupling, Graft-host synchronization	(44)	
Clinical	Myocardial infarction	Human	Fibrin patch	EF ↑, Graft-myocardial tissue	(46)
the safety of such therapies is consistently confirmed, but we are often left perplexed regarding to their efficacy. In the rare cases of therapeutic outcomes, the mode of therapeutic action is revealed to be indirect; through the paracrine effect of the stem cells secretory factors (48). Since the donor cells are expected to live only for a short period of time after transplantation, the potency of the paracrine effect remains questionable (49). The potential of using hPSC-CMs for treating myocardial infarction is manifested by pre-clinical and clinical studies (Table 1). In contrast to adult/fetal tissues derived MSCs, the transplanted hPSC-CMs functionally integrated into the injured cardiac tissue, and improved the function of cardiac muscles by synchronizing with the heart tissue of the recipient. The integrated cells remained viable up to 6 months post transplantation, and the observed functional improvement was also sustained for the same period of time. A significant milestone in PSCs research was reached when hPSC-CMs received the regulatory clearance to initiate human clinical trials for treating acute myocardial infarction in 2015 (46).

Toxicity testing and drug screening

Due to the difficulties associated with acquiring functionally mature human CMs, pharmaceutical developers have relied on animal CMs to screen and evaluate their candidate molecules for cardiotoxicity and arrhythmogenesis potential in preclinical studies. Despite extensive animal trials, there have been many cases of unsuccessful clinical trials due to the unseen cardiotoxicity in preclinical settings. Such failures underpin the inadequacy and fallibility of animal-based evaluations, and they are now increasingly considered as an obsolete platform for human application. hPSC-CMs provide considerable advantages for an alternative preclinical tool for providing better predictability of molecules in question prior to human clinical trials. Indeed, recent studies on the efficacy and toxicity of various drugs (Nifedipine, mitoTEMPO, Norepinephrine, etc.) have been carried out using CMs derived from hypertrophic cardiomyopathy (HCM), dilated

Table 2. Drug screening using patients’ iPSC-CMs (y: year-old)

Cardiovascular disease	Gene mutation	Donor	Drug test	References
LQT-1	KCNQ1 (R190Q)	8 y, 42 y Male	Isoproterenol	(34)
LQT-2	KCNH2 (A614V)	28 y Female	Nifedipine, Pinacidil, Ranolazine	(50)
	A614V, G1681A		Isoproterenol, Hydrochloride, Nifedipine, Ranolazine, Dihydrochloride, Pinacidil monohydrate, Cisapride, E-4031, Sotalol	(51)
LQT-3	SCN5A(F1473C)		Mexiletine, Flecainide	(52)
LQT-8	Cav1.2 (G406R)	-	-	(32)
	CACNA1CG1216A	-	-	(51)
LQT	KCNH2	Male, 18~40 y	Moxifloxacin	(53)
	NK2, SCN5A, KCNQ1, CACNA1C, CALM1, KCNE2, KCNH2, KCNJ5	-	Sotalol	(54)
CPVT	RyR2 (S406L)	24 y Female	Dantrolene	(55)
	RyR2 (M4109R)	30 y Female	Forskolin, Isoproterenol, Flecainide	(56)
	RYR2, S406L, CASQ2, D307H	-	Dantrolene, Isoproterenol	(51)
DCM	TNNT2, R173W	Male, Female	Norepinephrine	(57)
	cTntf-R173W	14 y Male	Omecamtiv mecarbil	(46)
HCM	MYH7 c.1988GNA; p.R663H	53 y Female	Isoproterenol, Propranolol, Verapamil	(35)
Pompe disease	GAA		3-MA, L-carnitine	(36)
Barth syndrome	Tafazzin, BTH-H TAZ		mitoTEMPO	(58)
Familiar dilated cardiomyopathy	TNNT2, R173W		Metoprolol	(51)
ARVD/C	PKP2 Plakophilin-2	Male, Female	-	(30)
Brugada syndrome/LQT-3	SCN5A	20 y, 34 y Male	-	(59)
Brugada syndrome	SCN5A-1795insD	42 y, 67 y Male, 24 y Female	-	(60)
Cardiac arrhythmia		Male, Female	Tyrosine kinase inhibitors	(61)
Cardiomyopathy (DCM), Barth syndrome (BTHS), Long QT syndrome (LQTS) 1, 2, 3, 8, catecholaminergic polymorphic ventricular tachycardia (CPVT) and arrhythmogenic right ventricular dysplasia (ARVC) patients, and their value as a cellular resource capable of coping with preclinical tests has been highlighted (Table 2). It is expected that the emergent hPSC-CMs based assays will continue to consolidate their presence in preclinical settings, which will lower the usage of animals and failure rate in clinical trials.

Conclusion

The outlook for hPSC-CMs application is promising: the human clinical trials for assessing safety and efficacy of hPSC-CMs for treating myocardial infarction are underway, a growing number of pharmaceutical companies have expressed their interests in endorsing hPSC-CMs for their preclinical testing, and pathogenic studies using heart disease patients’ iPSC-CMs are leading the way to discover more effective treatments. For a widespread application of hPSC-CMs though, the following should be addressed by investigators. Although hPSC-CMs differentiation could be performed in various ways, more often than not, the consistency and efficiency of differentiation vary when different hPSCs lines are used due to the distinct inherent genetic characteristics of each cell line. Development of highly efficient universal differentiation methods would make CMs readily available for applications at reduced costs. Various maturation techniques for hPSC-CMs have been effectual in their own merits, but characteristics of matured hPSC-CMs still fall short of that derived from adult tissue. This precludes their application in drug development and screening since the way immature CMs respond to molecules will be different to that of adult CMs. Interestingly, from cell therapy perspective, CMs of neonatal, and fetal origins have demonstrated better survival then mature CMs upon transplantation. Thus, optimum maturation also needs to be identified for different applications of hPSC-CMs. Nonetheless, the future prospect of hPSC-CMs is exciting, and looks certain to cause a paradigm shift in discovering novel drugs and therapies for heart diseases.

Acknowledgments

This research was supported by grants from the Bio & Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government, MSIP (2015M3A9C70730091) and Korea National Institute of Health fund 4861-312-260 (2017-ER6101-00).

Potential conflict of interest

The authors have no conflicting financial interest.

References

1. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J, Palecek SP, Thomson JA, Kamp TJ. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009;104:e30-e41
2. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 2008;26:2300-2310
3. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012;485:599-604
4. Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J, Palecek SP, Lyons GE, Thomson JA, Herron TJ, Jalife J, Kamp TJ. Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 2012;111:1125-1136
5. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, Lan F, Diecke S, Huber B, Mordwinkin NM, Plews JR, Abilez OJ, Cui B, Gold JD, Wu JC. Chemically defined generation of human cardiomyocytes. Nat Methods 2014;11:855-860
6. Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C, Hazeltine LB, Dunn KK, Kamp TJ, Palecek SP. Chemically defined generation of human cardiomyocytes. Nat Methods 2015;12:595-596
7. McMurray CL, Ward D, Passier R. Differentiation of human embryonic stem cells to cardiomyocytes by coculture with endoderm in serum-free medium. Curr Protoc Stem Cell Biol 2007 doi: 10.1002/9780470151808.sc01f02s2
8. Kehat I, Gepstein A, Spira A, Itskovitz-Eldor J, Gepstein L. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res 2002;91:659-661
9. Kempf H, Olmer R, Kropp C, Rücker M, Jara-Avaca M, Robles-Diaz D, Franke A, Elliott DA, Wojciechowski D, Fischer M, Roa Lara A, Krensh G, Gruh I, Haverich A, Martin U, Zweigerdt R. Controlling expansion and cardiomyogenic differentiation of human pluripotent stem cells in scalable suspension culture. Stem Cell Reports 2014;3:1132-1146
10. Doevendans PA, KubaLak SW, An RHL, Becker DK, Chien KR, Kass RS. Differentiation of cardiomyocytes in floating embryoid bodies is comparable to fetal cardiomyocytes. J Mol Cell Cardiol 2000;32:839-851
11. Xu C, Police S, Hassanipour, M, Gold JD. Cardiac bodies: a novel culture method for enrichment of cardiomyocytes...
12. Laffamme MA, Chen KY, Naumova AV, Muskheili V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-1024

13. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524-528

14. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapouri OW, Haynes JM, Pouton CW, Kaye DM, Mummery CL, Li X, Hawes SM, Davis RP, Goulburn AL, Passier R, Prall SK, Reinecke H, Xu C, Hassanipour M, Cummings CM, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Hirst CE, Yu QC, Lan H, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Nakatsuji N, Yamanaka S, Yamashita JK. Efficient and scalable purification of cardiomyocytes from human pluripotent stem cells. Nature 2008;453:524-528

15. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007;15:2027-2036

16. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 2010;56:130-140

17. Pons SD, Zhu WZ, Regnier M, Laffamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 2013;22:1991-2002

18. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007;15:2027-2036

19. Laffamme MA, Chen KY, Naumova AV, Muskheili V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 2007;25:1015-1024

20. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524-528

21. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapouri OW, Haynes JM, Pouton CW, Kaye DM, Mummery CL, Li X, Hawes SM, Davis RP, Goulburn AL, Passier R, Prall SK, Reinecke H, Xu C, Hassanipour M, Cummings CM, Bott-Flügel L, Dorn T, Goedel A, Höhnke C, Hofmann F, Hirst CE, Yu QC, Lan H, Tanaka T, Yoichi M, Yuasa S, Murata M, Suematsu M, Nakatsuji N, Yamanaka S, Yamashita JK. Efficient and scalable purification of cardiomyocytes from human pluripotent stem cells. Nature 2008;453:524-528

22. Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ. Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 2010;48:379-386

23. Angst BD, Khan LU, Severs NJ, Whiteley K, Rothery S, Thompson RP, Magee AI, Gourdie RG. Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 1997;80:88-94

24. Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR. Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 1994;90:713-725

25. Zimmermann WH, Schneiderbanger K, Schubert P, Didić M, Münzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res 2002;90:223-230

26. Marthaler RS, Vanherle SJ, Timmer ED, Zeijlemaker VA, Broers JJL, Smeets HJ, Geraeds JP, Ayoubi TA. Electrical signals affect the cardiomyocyte transcriptome independently of contraction. Physiol Genomics 2010;42A:283-289

27. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 2013;494:105-110

28. Olivetti G, Cigola E, Maestri R, Tartaglia M, Lichterle K, Werk J, Guan X, Green CR. Spatiotemporal relation between gap junctions and cell adhesion junctions during development, and postnatal maturation. J Cardiovasc Pharmacol 2010;56:130-140

29. Marthaler RS, Vanherle SJ, Timmer ED, Zeijlemaker VA, Broers JJL, Smeets HJ, Geraeds JP, Ayoubi TA. Electrical signals affect the cardiomyocyte transcriptome independently of contraction. Physiol Genomics 2010;42A:283-289

30. Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S, Kan NG, Forcales S, Puri PL, Leone TC, Marine JE, Calkins H, Kelly DP, Judge DP, Chen HS. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 2013;494:105-110

31. Olivetti G, Cigola E, Maestri R, Tartaglia M, Lichterle K, Werk J, Guan X, Green CR. Spatiotemporal relation between gap junctions and cell adhesion junctions during development, and postnatal maturation. J Cardiovasc Pharmacol 2010;56:130-140
Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 2010;363:1397-1409

35. Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT, Wu JC. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 2013;12:101-113

36. Huang HP, Chen PH, Hwu WL, Chuang CY, Chien YH, Stone L, Chien CL, Li LT, Chang SC, Chen HF, Ho IN, Chen CH, Kuo HC. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker analysis. Hum Mol Genet 2011;20:4851-4864

37. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofri R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein P. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282-1289

38. Mitic A, Li J, Miyagi Y, Gagliardi M, Li SH, Zu J, Weisell RD, Keller G, Li RK. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes. Biomaterials 2014;35:2798-2808

39. Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Huang MX, Wang M, Wu J. Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 2014;64:436-448

40. Yeghiazarians Y, Gaur M, Zhang Y, Sievers RE, Ritner C, Prasad M, Boyle A, Bernstein HS. Myocardial improvement with human embryonic stem-cell-derived cardiomyocytes enriched by p38MAPK inhibition. Cytotherapy 2012;14:223-231

41. Luo J, Weaver MS, Cao B, Dennis JE, Van Biber B, Laflamme MA, Allen MD. Cobalt protoporphyrin pretreatment protects human embryonic stem-cell-derived cardiomyocytes from hypoxia/reoxygenation injury in vitro and increases graft size and vascularization in vivo. Stem Cells Transl Med 2014;3:734-744

42. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 2012;126(11 Suppl 1):S29-S37

43. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JF, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murray CE. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014;510:273-277

44. Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV, Trinh P, Hiroti Y, Gold JD, Viswanathan M, Laflamme MA. Electrical Integration of Human Embryonic Stem Cell-Derived Cardiomyocytes in a Guinea Pig Chronic Infarct Model. J Cardiovasc Pharmacol Ther 2014;19:368-381

45. Sugiu T, Hibino N, Breuer CK, Shinoka T. Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. J Cardiothorac Surg 2016;11:163

46. Menasché P, Vanneau V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tchadjian G, Tosca L, Trouvin JH, Fabreguetttes JR, Bellamy V, Guillemain R, Subberbille Boissel C, Tartour E, Desnos M, Larghero J. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015;36:2011-2017

47. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, Yoon J, Kwon W, Hong IS, Lee K, Kwan J, Park KS, Choi D, Jang YS, Hong MK. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 2014;29:23-31

48. Lunde K, Solheim S, Akhhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangshaus A, Fjeld JG, Smith HJ, Taraldsru E, Grogaard HK, Bjørnherheim R, Brekke M, Måller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-1209

49. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Herenstein B, Ganser A, Knapp WH, Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198-2202

50. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulou M, Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011;471:225-229

51. Csoöbényeiović M, Polák Š, Danišovič M, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulou M, Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Circulation 2011;124:2687-2694

52. Arbel G, Huber I, Satin J, Itskovitz-Eldor J, Gepstein L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282-1289

53. Sugiu T, Hibino N, Breuer CK, Shinoka T. Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. J Cardiothorac Surg 2016;11:163

54. Menasché P, Vanneau V, Hagege A, Bel A, Cholley B, Cacciapuoti I, Parouchev A, Benhamouda N, Tchadjian G, Tosca L, Trouvin JH, Fabreguetttes JR, Bellamy V, Guillemain R, Subberbille Boissel C, Tartour E, Desnos M, Larghero J. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J 2015;36:2011-2017

55. Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, Yoon J, Kwon W, Hong IS, Lee K, Kwan J, Park KS, Choi D, Jang YS, Hong MK. A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 2014;29:23-31

56. Lunde K, Solheim S, Akhhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangshaus A, Fjeld JG, Smith HJ, Taraldsru E, Grogaard HK, Bjørnherheim R, Brekke M, Måller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006;355:1199-1209

57. Hofmann M, Wollert KC, Meyer GP, Menke A, Arseniev L, Herenstein B, Ganser A, Knapp WH, Drexler H. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005;111:2198-2202

58. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulou M, Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011;471:225-229

59. Csoöbényeiović M, Polák Š, Danišovič M, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulou M, Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells. Circulation 2011;124:2687-2694

60. Terrenoire C, Wang K, Tung KW, Chung WK, Pass RH, Lu JT, Jean JC, Omari A, Sampson KJ, Kotton DN, Keller G, Kass RS. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 2013;144:61-72

61. Shinozawa T, Nakamura K, Shoji M, Morita M, Kimura M, Furukawa H, Ueda H, Shiramoto M, Matsuguma K, Kaji Y, Ikushima I, Yono M, Liou SY, Nagai H, Nakashima A, Yamamoto K, Izumo S. Recapitulation of clinical individual susceptibility to drug-induced QT prolongation in healthy subjects using iPSC-derived cardiomyocytes. Stem Cell Reports 2017;8:226-234

62. Stillitano F, Hansen J, Kong CW, Karakikes I, Funck-
Brentano C, Geng L, Scott S, Reynier S, Wu M, Valogne Y, Desseaux C, Salem JE, Jeziorowska D, Zahr N, Li R, Iyengar R, Hajjar RJ, Hulot JS. Modeling susceptibility to drug-induced long QT with a panel of subject-specific induced pluripotent stem cells. eLife 2017;6 doi: 10.7554/eLife.19406

Jung CB, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz KL. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 2012;4:180-191

Itzhaki I, Maizels L, Huber I, Gepstein A, Arbel G, Caspi O, Miller L, Belhassen B, Nof E, Gilikon M, Gepstein L. Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol 2012;60:990-1000

Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OF, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 2012;4:130ra47

Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 2014;20:616-623

Okatu S, Yuasa S, Suzuki T, Ito S, Makita N, Yoshida T, Li M, Kurokawa J, Seki T, Egashira T, Aizawa Y, Kodaira M, Motoda C, Yozu G, Shimojoji M, Hayashiji N, Hashimoto H, Kuroda Y, Tanaka A, Murata M, Aiba T, Shimizu W, Horie M, Kamiya K, Furukawa T, Fukuda K. Embryonic type Na+ channel β-subunit, SCN3B masks the disease phenotype of Brugada syndrome. Sci Rep 2016;6:34198

Veerman CC, Mengarelli I, Guan K, Stauske M, Barc J, Tan HL, Wilde AA, Verkerk AO, Bezzina CR. hiPSC-derived cardiomyocytes from Brugada Syndrome patients without identified mutations do not exhibit clear cellular electrophysiological abnormalities. Sci Rep 2016;6:30967

Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P, Sayed N, Churko JM, Kitani T, Wu H, Holmström A, Matsa E, Zhang Y, Kumar A, Fan AC, Del Álamo JC, Wu SM, Mosleh JJ, Mercola M, Wu JC. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 2017;9 doi: 10.1126/scitranslmed.aao2584