BMJ Open

Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study

Andrea Dennis, Malgorzata Wamil, Johann Alberts, Jude Oben, Daniel J Cuthbertson, Dan Wootton, Michael Crooks, Mark Gabhay, Michael Brady, Lyth Hishmeh, Emily Attree, Melissa Heightman, Rajarshi Banerjee, Amitava Banerjee. On behalf of COVERSCan study investigators

ABSTRACT

Objective To assess medium-term organ impairment in symptomatic individuals following recovery from acute SARS-CoV-2 infection.

Design Baseline findings from a prospective, observational cohort study.

Setting Community-based individuals from two UK centres between 1 April and 14 September 2020.

Participants Individuals ≥18 years with persistent symptoms following recovery from acute SARS-CoV-2 infection and age-matched healthy controls.

Intervention Assessment of symptoms by standardised questionnaires (EQ-5D-5L, Dyspnoea-12) and organ-specific metrics by biochemical assessment and quantitative MRI.

Main outcome measures Severe post-COVID-19 syndrome defined as ongoing respiratory symptoms and/or moderate functional impairment in activities of daily living; single-organ and multiorgan impairment (heart, lungs, kidneys, liver, pancreas, spleen) by consensus definitions at baseline investigation.

Results 201 individuals (mean age 45, range 21–71 years, 71% female, 88% white, 32% healthcare workers) completed the baseline assessment (median of 141 days following SARS-CoV-2 infection, IQR 110–162). The study population was at low risk of COVID-19 mortality (obesity 20%, hypertension 7%, type 2 diabetes 2%, heart disease 5%), with only 19% hospitalised with COVID-19. 42% of individuals had 10 or more symptoms and 60% had severe post-COVID-19 syndrome. Fatigue (88%), muscle aches (87%), breathlessness (88%) and headaches (83%) were most frequently reported. Mild organ impairment was present in the heart (26%), lungs (11%), kidneys (4%), liver (28%), pancreas (40%) and spleen (4%), with single-organ and multiorgan impairment in 70% and 29%, respectively. Hospitalisation was associated with older age (p<0.001), non-white ethnicity (p=0.016), increased liver volume (p<0.0001), pancreatic inflammation (p<0.01), and fat accumulation in the liver (p<0.05) and pancreas (p<0.01). Severe post-COVID-19 syndrome was associated with radiological evidence of cardiac damage (myocarditis) (p<0.05).

Strengths and limitations of this study

- This is an ongoing, prospective, longitudinal COVID-19 recovery study with biochemical and imaging characterisation of organ function, starting in April 2020 before recognition of ‘long-COVID’, propert testing availability and prospective COVID-19-related research.
- By recruiting ambulatory patients with broad inclusion criteria, we focused on a real-world population at lower risk of COVID-19 severity and mortality.
- Healthy controls were included for comparison, not individuals with postinfluenza symptoms, COVID-19 without symptoms or from general clinics, which further studies may explore.
- The study population was not ethnically diverse despite disproportionate COVID-19 impact in non-white individuals.
- To limit interaction and exposure between the trial team and the patients, pulse oximetry, spirometry, MRI assessment of the brain and muscle function were not included from the outset.

Conclusions In individuals at low risk of COVID-19 mortality with ongoing symptoms, 70% have impairment in one or more organs 4 months after initial COVID-19 symptoms, with implications for healthcare and public health, which have assumed low risk in young people with no comorbidities.

Trial registration number NCT04369807; Pre-results.

INTRODUCTION

Early in the COVID-19 pandemic, research and clinical practice focused on pulmonary manifestations. There is increasing evidence for direct multiorgan effects, as well as indirect effects on other organ systems and disease processes, such as cardiovascular diseases and cancers, through changes in healthcare delivery and patient behaviours.
clear long-term impact on individuals and health systems underlines the urgent need for a whole body approach with assessment of all major organ systems following SARS-CoV-2 infection. Quantitative MRI has recently been used to show multiorgan impairment in individuals post-COVID-19 hospitalisation, \(^{11}\) but has not been used in non-hospitalised individuals.

COVID-19 is the convergence of an infectious disease, undertreated non-communicable diseases and social determinants of health, described as a ‘syndemic’. \(^{12}\) Pre-existing non-communicable diseases and risk factors predict poor COVID-19 outcomes, whether intensive care admission or mortality. \(^{10}\) Research has emphasised acute SARS-CoV-2 infection, hospitalised individuals and COVID-19 mortality, \(^{13-15}\) which is likely to underestimate the true burden of COVID-19-related disease. Among those surviving acute infection, 10% report persistent symptoms for 12 weeks or longer after initial infection (‘long-COVID’, or ‘post COVID-19 syndrome’, PCS). \(^{16}\) However, PCS is yet to be fully defined. \(^{17-20}\) Neither severity of symptoms, nor medium-term and long-term pathophysiology across organ systems, nor the appropriate control populations are understood.

UK government policies have emphasised excess mortality risk in moderate-risk and high-risk conditions, including ‘shielding’ \(^{10}\) and commissioning of a risk calculator to identify those at highest risk of COVID-19 severity and mortality. \(^{21}\) These policies assume that younger individuals without apparent underlying conditions are at low risk. However, unlike symptoms following critical illness or acute phase of other coronavirus infections, \(^{23}\) symptoms in PCS are commonly reported in individuals with low COVID-19 mortality risk, for example, female, young and no chronic comorbidities. \(^{14}\) The potential scale of PCS in ‘lower-risk’ individuals, representing up to 80% of the population, \(^{9}\) necessitates urgent policies across countries to monitor, \(^{24}\) treat \(^{9}\) and pay \(^{25}\) for long-term implications of COVID-19 and to mitigate impact on healthcare utilisation and economies.

Therefore, in a pragmatic, prospective cohort study of individuals with persistent symptoms at least 4 weeks following recovery from acute SARS-CoV-2 infection and at low risk of COVID-19 mortality, we investigated (1) the prevalence of multiorgan impairment, compared with healthy, age-matched controls; (2) the associations between typical COVID-19 symptoms and multiorgan impairment; and (3) the associations between hospitalisation, severity of symptoms and multiorgan impairment.

METHODS

Patient population and study design

In an ongoing, prospective study, participants were recruited to the study following expression of interest on the study registration website. Participants learnt about the study through advertisement on social media or via recommendations from clinicians from four participant identification centres, the latter usually applied to patients who had been hospitalised. Assessment took place at two UK research imaging sites (Perspectum, Oxford; and Mayo Clinic Healthcare, London) between 1 April 2020 and 14 September 2020, completing baseline assessment by 14 September 2020 (figure 1). Participants with laboratory-confirmed SARS-CoV-2 infection (tested SARS-CoV-2-positive by oropharyngeal/nasopharyngeal swab by reverse-transcriptase PCR (n=62), a positive antibody test (n=63), or with strong clinical suspicion of infection with typical symptoms/signs and assessed as highly likely to have COVID-19 by two independent clinicians (n=73)) were eligible for enrolment. Exclusion criteria were symptoms of active respiratory viral infection (temperature >37.8°C or three or more episodes of coughing in 24 hours), hospital discharge in the last 7 days, and contraindications to MRI, including implanted pacemakers, defibrillators, other metallic implanted devices and claustrophobia. All participants gave written informed consent.

Assessment of PCS

Assessment included patient-reported validated questionnaires (quality of life, EQ-5D-5L \(^{26}\) and Dyspnoea-12 \(^{27}\)) and fasting biochemical investigations (listed in online supplemental methods). PCS was classified as ‘severe’ (defined as persistent breathlessness, score of ≥10 on Dyspnoea-12, or reported moderate or greater problems with usual activities on EQ-5D-5L) or ‘moderate’. These thresholds were selected as the Dyspnoea-12 has been correlated with the Medical Research Council (MRC)
Table 1	Baseline demographics and symptoms of 201 low-risk individuals with post-COVID-19 syndrome								
	All patients (N=201)	Healthy controls (n=36)	P value	Not hospitalised (n=163)	Hospitalised (n=37)	P value	Moderate PCS (n=77)	Severe PCS (n=116)	P value
Age (years), mean (SD)	44 (11.0)	39 (12.4)	0.013	43 (10.9)	50 (10.0)	0.001	45 (12.2)	44 (10.0)	0.419
Female, n (%)	142 (70.6)	14 (38.9)	0.032	118 (72.4)	23 (62.2)	0.302	51 (66.2)	85 (73.3)	0.374
BMI (kg/m²), median (IQR)	25.7 (22.7–28.1)	23.2 (21.4–23.1)	<0.001	25.3 (22.7–27.7)	27.2 (23.1–31.0)	0.063	25.8 (22.7–27.9)	25.4 (22.5–28.2)	0.639
Ethnicity									
White	176 (87.6)	33 (91.7)	148 (90.8)	28 (75.7)	67 (87.0)	106 (91.4)	0.178		
Mixed	3 (1.5)	0 (0)	3 (1.8)	0 (0)	0.016	1 (1.3)	2 (1.7)	0.904	
South Asian	7 (3.5)	3 (8.3)	4 (2.5)	3 (8.1)	5 (6.5)	0 (0)	0.374		
Black	4 (2.0)	0 (0)	1 (0.6)	2 (5.4)	2 (2.6)	2 (1.7)	0.178		
Comorbidities and risks									
Smoking									
Never	133 (66.2)	20 (60.6)	108 (66.3)	24 (64.9)	55 (71.4)	72 (61.7)	0.244		
Current	6 (3.0)	8 (24.2)	<0.001	6 (3.7)	0 (0)	0.641	3 (3.9)	3 (2.6)	0.001
Ex-smoker	62 (30.8)	5 (15.2)	49 (30.1)	13 (35.1)	19 (24.7)	41 (35.3)	0.178		
Healthcare worker	64 (31.8)	4 (12.1)	0.009	50 (30.7)	13 (35.1)	0.695	33 (42.9)	28 (24.1)	0.007
Asthma	37 (18.4)	0 (0)	0.002	34 (20.9)	3 (8.1)	0.099	13 (16.9)	22 (19.0)	0.849
BMI ≥25kg/m²	113 (56.5)	7 (20)	87 (53.7)	25 (67.6)	0.144	46 (60.5)	62 (53.4)	0.374	
≥30kg/m²	40 (20.0)	0 (0)	28 (17.3)	12 (32.4)	0.066	16 (21.1)	24 (20.7)	1.000	
Hypertension	13 (6.5)	0 (0)	0.001	11 (6.7)	2 (5.4)	1.000	6 (7.8)	7 (6.0)	0.771
Diabetes	4 (2.0)	0 (0)	0.104	4 (2.5)	0 (0)	1.000	4 (5.2)	0 (0)	0.024
Previous heart disease	9 (4.5)	0 (0)	0.001	8 (4.9)	1 (2.7)	1.000	3 (3.9)	5 (4.3)	1.000
Symptoms									
Fatigue	196 (98.0)	159 (97.5)	37 (100.0)	1.000	73 (96.1)	115 (99.1)	0.302		
Shortness of breath	176 (88.0)	141 (86.5)	35 (94.6)	0.262	58 (76.3)	112 (96.6)	0.0001		
Muscle ache	173 (86.5)	142 (87.1)	31 (83.8)	0.597	66 (86.8)	101 (87.1)	1.000		
Headache	165 (82.5)	138 (84.7)	27 (73.0)	0.098	56 (73.7)	102 (87.9)	0.019		
Joint pain	156 (78.0)	127 (77.9)	29 (78.4)	1.000	56 (73.7)	94 (81.0)	0.284		
Chest pain	152 (76.0)	128 (78.5)	24 (64.9)	0.090	47 (61.8)	98 (84.5)	0.001		
Cough	146 (73.0)	117 (71.8)	29 (78.4)	0.539	55 (72.4)	84 (72.4)	1.000		
Fever	144 (72.0)	113 (69.3)	31 (83.8)	0.104	51 (67.1)	86 (74.1)	0.329		
Sore throat	143 (71.5)	120 (73.6)	23 (62.2)	0.165	50 (65.8)	86 (74.1)	0.256		
Open access
dyspnoea grade, where level 3 warrants referral to rehabilitation services, and with EQ-5D-5L, less than 8% of the general population report moderate or greater problems with usual activities.

Multiorgan impairment in PCS compared with healthy controls

We selected MRI as the imaging modality (as in UK Biobank) due to (1) safety (no radiation exposure, no need for intravenous contrast and minimal contact with the radiographer); (2) quantitative reproducibility (>95% acquisition and image processing success rate); (3) capacity for information sharing (digital data repository for independent analysis and research); and (4) rapid scalability (35 min scan to phenotype lung, heart, kidney, liver, pancreas and spleen). Multiorgan MRI data were collected at both study sites (Oxford: MAGNETOM Aera 1.5T; Mayo Healthcare London: MAGNETOM Vida 3T; both from Siemens Healthcare, Erlangen, Germany). The COVERSCAN multiparametric MRI assessment typically required 35 min per patient, including the lungs, heart, liver, pancreas, kidneys and spleen, by standardised methodology (online supplemental file 1). In brief, we assessed inflammation of the heart, kidneys, liver and pancreas with quantitative T1 relaxation mapping; lung function was characterised with a dynamic structural T2-weighted lung scan estimating lung capacity; ectopic fat accumulation in the liver and pancreas from proton density fat fraction; and volume of the liver and spleen measured from T1-weighted structural scan.

To determine impairment in each organ, we compared MRI-derived measurements from the heart, lungs, kidneys, liver and pancreas and spleen with reference ranges (online supplemental table 1), which were established as mean±2 SD from the healthy, age-matched control subjects (n=36) and validated by scoping literature review. We defined organ impairment if quantitative T1 mapping was outside the reference ranges for the heart, kidney, liver and pancreas, reduced estimated lung capacity from dynamic measurements in the lungs, or there was evidence of hepatomegaly, splenomegaly or ectopic fat accumulation.

Symptoms and multiorgan impairment

Associations between organ impairment and symptoms were visually assessed using a heat map, dividing those with impairments to an organ into columns and colouring the rows by percentage of reported symptoms.

Hospitalisation, severity and multiorgan impairment

We compared mean differences in quantitative organ metrics for hospitalised versus not hospitalised and moderate versus severe PCS using Kruskal-Wallis test (Fisher’s exact test for differences in binary outcomes). We defined multiorgan impairment as ≥2 organs with metrics outside the reference range. We investigated the associations between multiorgan impairment and (1) being hospitalised and (2) severe PCS with multivariate

Table 1

Component	Not hospitalised	Hospitalised	P value	Healthy controls (n=36)	Not hospitalised	Hospitalised	P value
Diarrhoea	91 (55.8)	91 (55.8)	0.097	58 (35.6)	55 (33.7)	0.642	
Abnormal pain	91 (55.8)	91 (55.8)	1.000	58 (35.6)	55 (33.7)	0.642	
Wheezing	75 (48.6)	75 (48.6)	0.000	22 (36.9)	13 (35.1)	0.642	
Inability to walk	98 (49.0)	13 (35.1)	0.000	58 (35.6)	55 (33.7)	0.642	
Runny nose	80 (40.0)	68 (34.0)	0.000	58 (35.6)	55 (33.7)	0.642	
Time interval	141 (110–162)	141 (110–162)	0.000	141 (110–162)	141 (110–162)	0.000	

Data are presented as count (%). Comparisons between hospitalised and between moderate versus PCS were conducted using Fisher’s exact test.
logistic regression models, adjusting for age, sex and body mass index (BMI).

Patient and public involvement and engagement

Patients and the public have directly and indirectly informed our research, from design to dissemination, with regular updates and webinars, including question and answer sessions with patients. Several clinician coauthors were indirectly informed by their patients in the COVERS CAN study (RB, AB) or PCS clinics (DW, MH, MC), who are members of organisations such as Long Covid SOS (eg, LH) and UKDoctors#Longcovid (eg, EA). LH and EA have been involved in the research, interpretation of results, understanding implications of our results and providing critical feedback to the manuscript.

Statistical analysis

We performed all analyses using R V.3.6.1, using descriptive statistics to summarise baseline characteristics and considering a p value less than 0.05 as statistically significant. Mean and SD were used for normally distributed continuous variables, median with IQR for non-normally distributed variables, and frequency and percentage for categorical variables. For group-wise comparison for absolute values between cases and healthy controls, we used Kruskal-Wallis test.

RESULTS

Overall study population

Baseline characteristics

The study included 201 individuals (full details regarding hospitalisation: n=199; full questionnaire data to assign PCS severity: n=193). The mean age was 44.0 (range 21–71) years and the median BMI was 25.7 (IQR 23–28).

Of the individuals, 71% were female, 88% were white, 32% were healthcare workers and 19% had been hospitalised with COVID-19. Assessments (symptoms, blood and MRI) had a median of 141 (IQR 110–162) days after initial symptoms. Medical history included smoking (3%), asthma (19%), obesity (20%), hypertension (7%), diabetes (2%) and prior heart disease (5%). The healthy control group had a mean age of 39 years (range 20–70), 40% were female, with a median BMI of 23 (IQR: 21–25) (table 1).

Regardless of hospitalisation, the most frequently reported symptoms were fatigue (98%), shortness of breath (88%), muscle ache (87%) and headache (83%) (table 1). Of the individuals, 99% had four or more and 42% had ten or more symptoms. Of individuals 70% reported ≥ 13 weeks off paid employment. Of the incidental structural findings observed on MRI (n=56), three were cardiac (atrial septal defect, bicuspid aortic valve and right atrial mass), one renal (hydronephrosis) and the rest were benign cysts.

Haematological investigations, including mean corpuscular haemoglobin concentration (24%), and renal, liver and lipid biochemistry, including potassium (38%), alanine transferase (14%), lactate dehydrogenase (17%), triglycerides (11%) and cholesterol (42%), were abnormally high in ≥10% of individuals. Bicarbonate (10%), phosphate (11%), uric acid (11%) and transferrin saturation (19%) were abnormally low in ≥10% of individuals (online supplemental table 1).

Single-organ and multiorgan impairment in PCS compared with healthy controls

Organ impairment was more common in PCS than healthy controls (figure 2 and online supplemental figure
Table 2 Evidence of organ impairment in 201 low-risk individuals with post-COVID-19 syndrome

Measurement	All patients (N=201)	Healthy controls (n=36)	P value	Not hospitalised (n=163)	Hospitalised (n=37)	P value	Moderate PCS (n=77)	Severe PCS (n=116)	P value
Heart									
Left ventricular ejection fraction (%)									
Normal (>51%)	190 (95.0)	35 (97.2)	0.699	155 (95.7)	33 (89.1)	0.124	72 (93.5)	111 (95.7)	0.353
Impaired (≤51%)	11 (5.0)	1 (2.8)		7 (4.3)	4 (10.1)	5 (6.4)	5 (4.3)		
Left ventricular end diastolic volume (mL)									
>264 mL in Men; >206 mL in Women	8 (4.0)	1 (2.8)	1.00	4 (2.5)	4 (10.8)	0.040	4 (5.2)	4 (3.4)	0.715
Evidence of myocarditis									
≥3 segments with high T1 (≥1229 ms at 3T; ≥1015 ms at 1.5T)	39 (19.4)	2 (5.6)	0.053	30 (18.4)	8 (21.6)	0.647	9 (11.7)	29 (25.0)	0.027
Lungs									
Deep breathing fractional area change									
<31%	21 (11.4)	1 (2.8)	0.138	17 (11.3)	4 (11.8)	1	7 (10.1)	13 (11.9)	0.811
Kidneys									
Kidney cortex T1									
Normal (<1652 ms at 3T; <1227 ms at 1.5T)	191 (96.5)	36 (100.0)	0.599	155 (96.9)	35 (94.6)	0.618	74 (98.7)	112 (96.6)	0.65
Impaired (≥1652 ms at 3T; ≥1227 ms at 1.5T)	7 (3.5)	0 (0.0)		5 (3.1)	2 (5.4)	0.002	1 (1.3)	4 (3.4)	
Pancreas									
Pancreatic inflammation (T1 in ms)									
Normal <803 ms	162 (85.3)	23 (100.0)	0.049	139 (89.1)	22 (66.7)	0.002	60 (82.2)	95 (86.4)	0.530
Impaired ≥803 ms	28 (14.7)	0 (0)		17 (10.9)	11 (33.3)	13 (17.8)	15 (13.6)		
Pancreatic fat									
Normal <4.6%	122 (62.2)	30 (93.8)	<0.001	107 (66.9)	14 (40.0)	0.004	44 (57.9)	72 (63.7)	0.449
Impaired ≥4.6%	74 (37.8)	2 (6.2)		53 (33.1)	21 (60.0)	32 (42.1)	41 (36.3)		
Liver									
Liver inflammation (cT1 in ms)									
Normal <784 ms	177 (88.5)	36 (100)	0.030	148 (91.4)	28 (75.7)	0.018	69 (90.8)	101 (87.1)	0.494
Impaired ≥784 ms	23 (11.5)	0 (0)		14 (8.6)	9 (24.3)	7 (9.2)	15 (12.9)		
Liver fat									
Normal <4.8%	159 (79.1)	34 (94.4)	0.034	134 (82.2)	24 (64.9)	0.026	61 (79.2)	91 (78.4)	1
Impaired ≥4.8%	42 (20.9)	2 (5.4)		29 (17.8)	13 (35.1)	16 (20.8)	25 (21.6)		
Liver volume									

Continued
Impairment was present in the heart in 26% (myocarditis 19%, systolic dysfunction 9%), lung in 11% (reduced vital capacity), kidney in 4% (inflammation), liver in 28% (12% inflammation, 21% ectopic fat, 10% hepatomegaly), pancreas in 40% (15% inflammation, 38% ectopic fat) and spleen in 4% (splenomegaly) (figure 2 and table 2).

Of the individuals, 70% had impairment in at least one organ and 29% had multiorgan impairment, with overlap across multiple organs (figure 3). Impairment in the liver, heart or lungs was associated with further organ impairment in 63%, 62% and 48% of individuals (figure 3).

Symptoms and multiorgan impairment

Hepatic and pulmonary impairment frequently clustered together, with fatigue, muscle aches, fever and cough commonly reported. Impairment in particular organs was associated with particular symptoms—pancreas: diarrhoea, fever, headache and dyspnoea; heart: headache, dyspnoea and fatigue; and kidney: wheezing, runny nose, diarrhoea, cough, fever, headache, dyspnoea and fatigue (figure 4).

Hospitalisation, severity and multiorgan impairment

The hospitalised group were older (p=0.001), had higher BMI (p=0.063), and were more likely to be non-white (p=0.016) and to report ‘inability to walk’ (p=0.009) than non-hospitalised individuals. There were no other statistically significant differences between risk factors or symptoms between the groups. Impairment of the liver, pancreas (eg, ectopic fat in the pancreas and liver, hepatomegaly) and ≥2 organs was higher in hospitalised individuals (all p<0.05) (figure 3 and table 2). In multivariate analyses, adjusting for age, sex and BMI, liver volume remained significantly associated with hospitalisation (p=0.001). Hospitalised individuals had high triglycerides (30% vs 7.2%, p=0.002), cholesterol (60% vs 38%, p=0.04) and low-density lipoprotein-cholesterol (57% vs 31%, p=0.01), and low transferrin saturation (38% vs 15%, p=0.01), compared with non-hospitalised individuals. Erythrocyte sedimentation rate (ESR) (13%), bicarbonate (12%), uric acid (16%), platelet count (13%) and high-sensitivity C-reactive protein (CRP) (15%) were high in ≥10% of hospitalised individuals.

Of the individuals, 60% (n=120) had severe PCS, with 52% reporting persistent, moderate problems undertaking usual activities (level 3 or greater in the relevant EQ-5D-5L question; 34% reported Dyspnoea-12 score ≥10). Of those with severe PCS, 84% were not hospitalised and 73% were female. There were no differences in age, BMI or ethnicity between the groups. Individuals with severe PCS were more likely to report shortness of breath (p<0.001), headache (p=0.019), chest pain (p=0.001), abdominal pain (p=0.001) and wheezing (p=0.039). Of those with ‘severe’ PCS, 25% had myocarditis compared with 12% with moderate PCS (unadjusted: 0.023; adjustment for age, sex and BMI: p=0.04; online supplemental figure 2). Severe PCS was associated with higher mean

Measurement	All patients (N=201)	Healthy controls (n=36)	Not hospitalised (n=163)	Hospitalised (n=37)	P value	Moderate PCS (n=77)	Severe PCS (n=116)	P value
Normal <1935 mL	150 (89.6)	34 (97.1)	25 (67.6)	104 (89.7)	0.214	180 (89.6)	74 (96.6)	0.003
Impaired ≥1935 mL	21 (10.4)	1 (2.9)	12 (32.4)	12 (10.3)	0.172	160 (89.6)	12 (9.4)	4.1 (10.8)
Normal <350 mL	194 (96.5)	32 (91.4)	33 (89.2)	3 (1.8)	0.172	160 (89.6)	7 (3.3)	0.816
Impaired ≥350 mL	7 (3.5)	1 (2.9)	9 (2.6)	9 (11.7)	0.172	160 (89.6)	12 (9.4)	4.1 (10.8)

Data are presented as count (%).

Comparisons between managed at home versus hospitalised and between moderate versus severe PCS were conducted using Fisher’s exact test.
cell haemoglobin concentration (28% vs 17%), cholesterol (46.2% vs 32.8%), CRP (10% vs 3.8%) and ESR (10% vs 6%) than moderate PCS, but these differences were not statistically significant (online supplemental table 3). Muscle aches, fever and coughing were common in severe PCS, and headache was common in individuals with inflammation of the pancreas (figure 4).

DISCUSSION
We report three findings in the first COVID-19 recovery study to evaluate medium-term, multiorgan impairment. First, in low-risk individuals, there were chronic symptoms and mild impairment in the heart, lung, liver, kidney and pancreas 4 months post-COVID-19, compared with healthy controls. Second, cardiac impairment was more common in severe PCS. Third, we demonstrate feasibility and potential utility of community-based multiorgan assessment for PCS.

Comparison with other studies
Common symptoms were fatigue, dyspnoea, myalgia, headache and arthralgia, despite low risk of COVID-19 mortality or hospitalisation. COVID-19 impact models have included age, underlying conditions and mortality, but not morbidity, multiorgan impairment and chronic diseases.29 30 Even in non-hospitalised individuals, up to 10% of those infected have PCS,15 31 but studies of extrapulmonary manifestations emphasise acute illness.32 We describe mild rather than severe organ impairment, but the pandemic’s scale and high infection rates in lower risk individuals signal medium-term and longer-term COVID-19 impact, which cannot be ignored in healthcare or policy spheres.

Acute myocarditis and cardiogenic shock33 are documented in hospitalised patients with COVID-19.6 In American athletes, recent COVID-19 was associated with myocarditis.34 Although causality cannot be attributed and postviral syndromes have included similar findings,21 we show that a quarter of low-risk individuals with PCS have mild systolic dysfunction or myocarditis. The significance of these findings and the associations with contemporaneous abnormal echocardiography findings and long-term myocardial fibrosis and impairment are unknown. Cardiac impairment, a risk factor for severe COVID-19, may have a role in PCS. Two further findings that deserve investigation are pancreatic abnormalities, given the excess diabetes risk reported in PCS,15 and the preponderance of healthcare workers at increased PCS risk (as observed for COVID-19 mortality), possibly due to higher viral burden.

PCS is likely to be a syndrome rather than a single condition. Despite an immunological basis for individual variations in COVID-19 progression and severity,35 prediction models have high rates of bias, perform poorly,36 and focus on respiratory dysfunction and decisions for ventilation in acutely unwell patients, rather than multiorgan function. Ongoing long-term studies37 exclude non-hospitalised, low-risk individuals. During a pandemic, we studied subclinical organ impairment in PCS, showing low rates of incidental findings. As specialist PCS services are rolled out,38 39 multiorgan assessment, monitoring and community pathways have potential roles during and beyond COVID-19, but need to be evaluated.

Implications for research, clinical practice and public health
Our findings have three research implications. First, as countries face second waves, COVID-19 impact models
Open access

should include PCS, whether quality of life, healthcare utilisation or economic effects. Second, there is urgent need for multiorgan assessment, including blood and imaging, as well as primary and secondary care data linkage, to define PCS. Third, longitudinal studies of clustering of symptoms and organ impairment will inform health services research to plan multidisciplinary care pathways. There are three management implications. First, we signal the need for multiorgan monitoring in at least the medium term, especially extrapulmonary sequelae. Care pathways involving MRI (with limited access in many clinical settings) need evaluation versus other modalities to detect organ impairment (eg, spirometry, N-terminal pro B-type natriuretic peptide (NT-pro-BNP), ECG, echocardiography, ultrasound and blood investigations). Second, until effective vaccines and treatments are widely available, ‘infection suppression’ (eg, social distancing, masks, physical isolation) is the prevention strategy. Third, whether understanding baseline risk or multiorgan complications, PCS requires management across specialties (eg, cardiology, gastroenterology) and disciplines (eg, epidemiology, diagnostics, laboratory science) (figure 5).

Limitations
There are some limitations. First, our cardiac MRI protocol excluded gadolinium contrast due to concerns regarding COVID-19-related renal complications, relying on native T1 mapping to characterise myocardial inflammation non-invasively (previously validated for acute myocarditis).40 Second, for organ impairment, we show association, not causation, and incidental findings are possible in asymptomatic individuals41; however, our findings are strengthened by comparison with healthy, age-matched controls, although not matched for sex or baseline comorbidities. Third, for pragmatic reasons, our controls were scanned using 1.5T, but we used 3T ranges as described in an analogous study with similar acquisition protocols. Therefore, we may be under-representing the true proportion of impairment in those individuals with PCS scanned at 3T. Fourth, further studies may explore different controls, for example, individuals with

Figure 4 Percentage of reported symptoms during the acute phases of the illness within those with evidence of organ impairment for each organ separately. Darker red indicates higher percentage of reported symptoms per impaired organ. There are no distinct patterns of symptoms relating to each impaired organ, but a high burden of symptoms in individuals is highlighted.
postinfluenza symptoms, COVID-19 without symptoms or from general clinics. We will investigate duration, trajectory, complications and recovery for specific symptoms and organ impairment in the follow-up phase. Fifth, our study population was not ethnically diverse, despite disproportionate COVID-19 impact in non-white individuals. Sixth, to limit interaction and exposure between the trial team and the patients, pulse oximetry, spirometry, MRI assessment of the brain and muscle function were not included from the outset.

CONCLUSIONS

Our study suggests PCS has a physiological basis, with measurable patient-reported outcomes and organ impairment. Future research should address longer-term follow-up of organ function beyond symptoms and blood investigations, even in lower risk individuals; prioritisation for imaging, investigation and referral; and optimal care pathways. Health system responses should emphasise infection suppression and management of pre-COVID-19 and post-COVID-19 risk factors and chronic diseases.

Author affiliations

1. Perspectum, Oxford, UK
2. Department of Cardiology, Great Western Hospital Foundation NHS Trust, Swindon, UK
3. Department of Cardiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
4. Alliance Medical, Warwick, UK
5. Department of Gastroenterology, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
6. Institute of Liver and Digestive Health, University College London, London, UK
7. Institute of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
8. Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
9. Department of Respiratory Research, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
10. Department of Respiratory Medicine, Hull and East Yorkshire Hospitals NHS Trust, Hull, UK
11. Institute of Clinical and Applied Health Research, University of Hull, Hull, UK
12. Institute of Population Health Sciences, University of Liverpool, Liverpool, UK
13. Department of Oncology, University of Oxford, Oxford, UK
14. Long COVID SOS, Oxford, UK
15. UKDoctors#Longcovid, London, UK
16. Department of Medicine, University College London Hospitals NHS Foundation Trust, London, UK
17. Institute of Health Informatics, University College London, London, UK
18. Department of Cardiology, Barts Health NHS Trust, London, UK

Twitter Amitava Banerjee @amibanerjee1

Contributors Study design: AD, RB, JA, COVERSCAN team. Patient recruitment: RB, COVERSCAN team. Data collection: MW, COVERSCAN team. Data analysis: AD, AB, COVERSCAN team. Data interpretation: AB, AD, MW, RB. Initial manuscript drafting: AB, AD, RB. Critical review of early and final versions of the manuscript: all authors including JO and DJC. Specialist input: MW, AB (cardiology); RB, MH, DW, MC, DJC (general medicine); MH, MC, DW (long COVID-19); MB, RB (imaging); AD (statistics); AB (epidemiology/public health); MG (primary care); JA (healthcare management); LH, EA (patient and public involvement).

Funding This work was supported by the UK’s National Consortium of Intelligent Medical Imaging (Industry Strategy Challenge Fund), Innovate UK (Grant 104688) and the European Union’s Horizon 2020 research and innovation programme (agreement no 719445). The research was designed, conducted, analysed and interpreted by the authors independently of the funding sources.

Competing interests AD, RB and MB are employees of Perspectum.

Patient consent for publication Not required.

Ethics approval The study has received ethical approval (20/SC/0185).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request from the corresponding author.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s).
REFERENCES

1. World Health Organization. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected. interim guidance 13 March 2020, 2020. Available: https://apps.who.int/iris/handle/10665/331446

2. Pavon AG, Meier D, Samim D, et al. First documentation of persistent SARS-CoV-2 infection presenting with late acute severe myocarditis. *Can J Cardiol* 2020;36;1326.e5–1326.e7.

3. Puntmann VO, Carerj ML, Wieters I. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). *JAMA Cardiol* 2019;2020:1265–73.

4. Tabary M, Khanmohammadi S, Araghi F, et al. Pathologic features of COVID-19: a Concise review. *Pathol Res Pract* 2020;216:153097.

5. Aqqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. *United European Gastroenterol J* 2020;8:509–19.

6. Somasundaram NP, Ranathunga I, Ratnasamy V, et al. The impact of SARS-CoV-2 virus infection on the endocrine system. *J Endocrinol* 2020;4:1–22.

7. Farouk SS, Flaccadori E, Cravedi P, et al. COVID-19 and the kidney: what we think we know so far and what we don't. *J Nephrol* 2020;33:1213–8.

8. Lai A, Pasea L, Banerjee A. Estimating excess mortality in people with cancer and multimorbidity in the COVID-19 emergency. *BMJ Open* 2020;10:e043828.

9. Banerjee A, Pasea L, Harris S, et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. *The Lancet* 2020;395:1715–25.

10. Banerjee A, Chen S, Pasea L. Excess deaths in people with cardiovascular diseases during the COVID-19 pandemic. *Eur J Prev Cardiol* 2020.

11. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-Term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. *Clinical Medicine* 2021;31:100683.

12. Horton R. Offline: COVID-19 is not a pandemic. *The Lancet* 2020;396:874.

13. Showlin CL, Vizzacchipi MP. Implications for COVID-19 triage from the ICNARC report of 2204 COVID-19 cases managed in UK adult intensive care units. *Emerg Med J* 2020;37:332–3.

14. Docherty AB, Harrison EM, Gr, et al. Features of 2133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. *BMJ* 2020;369:m1985–12.

15. Williamson EJ, Walter AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFE. *Nature* 2020;584;430–6.

16. Office for National Statistics. The prevalence of long COVID symptoms and COVID-19 complications. 2020. Available: https://www.ons.gov.uk/news/statementsandletters/theprevalenceoflongcovidsymptomsandcovid19complications

17. del Rio C, Collins LF, Malani P. Long-Term health consequences of COVID-19. *JAMA* 2020;324:1723.

18. Carfi A, Bernabei R, Landi F, et al. Persistent symptoms in patients after acute COVID-19. *JAMA* 2020;324:603–5.

19. Nabavi N. Long covid: how to define it and how to manage it. *BMJ* 2020;370:m3489.

20. Greenhalgh T, Knight M, A'Court C, et al. Management of post-acute covid-19 in primary care. *BMJ* 2020;13:m3026.

21. National Institute for Health Research. New risk prediction model could help improve guidance for people shielding from COVID-19. 2020. Available: https://www.nihr.ac.uk/news/new-risk-prediction-model-could-help-improve-guidance-for-people-shielding-from-covid-19/25086

22. Hill AD, Fowler RA, Pinto R, et al. Long-term outcomes and healthcare utilisation following critical illness – a population-based study. *Crit Care* 2016;20:1–10.

23. Perrin R, Riste L, Hann M, et al. Into the looking glass: post-viral syndrome post COVID-19. *Med Hypotheses* 2020;144:110055.

24. George FM, Barratt SL, Condiffe R, et al. Respiratory follow-up of patients with COVID-19 pneumonia. *Thorax* 2020;75:1009–16.

25. Jiang DH, McCoy RG. Planning for the Post-COVID syndrome: how payers can mitigate long-term complications of the pandemic. *J Gen Intern Med* 2020;35:3036–9.

26. Oomen MF, Pickard AS, Golicki D, et al. Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: a multi-country study. *Qual Life Res* 2013;22:1717–27.

27. Yorke J, Moosavi SH, Shuldham C, et al. Quantification of dysphonia using descriptors: development and initial testing of the Dysphonia-12. *Thorax* 2010;65;1–6.

28. Hobbins A, Barry L, Kelleher D, et al. The health of the residents of Ireland: population norms for Ireland based on the EQ-5D-5L descriptive system – a cross sectional study. *HRB Open Res* 2018;1:22.

29. Gupta A, Madhavan MV, Sehgal K, et al. Extrapolatory manifestations of COVID-19. *Nat Med* 2020;26:1017–32.

30. Palmer K, Monaco A, Kivipelto M, et al. The potential long-term impact of the COVID-19 outbreak on patients with non-communicable diseases in Europe: consequences for healthy ageing. *Aging Clin Exp Res* 2020;32;1189–94.

31. Menni C, Valdes AM, Freiden MB, et al. Real-Time tracking of self-reported symptoms to predict potential COVID-19. *Nat Med* 2020;26:1037–40.

32. Mandal S, Barnett J, Brilli S, et al. “Long-COVID”: a cross-sectional study of persistent symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. *Thorax* 2020;thoraxjnl-2020-215818.

33. Chau VQ, Giustino G, Mahmood K, et al. Cardiogenic shock and hyperinflammatory syndrome in young males with COVID-19. *Circ Hear Fail* 2020;556–9.

34. Rajpal S, Tong MS, Borchers J, et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. *JAMA Cardiol* 2020;5:7–7.

35. Mathew D, Giles JR, Baxter AE, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. *Science* 2020;369:eabc8511.

36. Wynants L, Van Calster B, Collins GS, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. *BMJ* 2020;369:m1328.

37. PHOSP-COVID. Post-HOSPitalisation COVID-19 study, 2020. Available: https://www.phosp.org/

38. NHS. NHS to offer ‘long covid’ sufferers help at specialist centres, 2020. Available: https://www.england.nhs.uk/2020/10/nhs-to-offer-long-covid-help/

39. National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19, 2020. Available: https://www.nice.org.uk/guidance/mg188

40. Navab N, Bocian R, Riechert SK, Dalz Armeilena E, et al. Native T1 mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. *J Cardiovasc Magn Reson* 2014;16:1–11.

41. Gibson LM, Paul L, Chappell FM, et al. Potentially serious incidental findings on brain and body magnetic resonance imaging of apparently asymptomatic adults: systematic review and meta-analysis. *BMJ* 2018;14:k4577.
Web Supplementary Materials

Supplementary methods 2
Supplementary references 4
Supplementary results 6
Figure S1: Comparison of patients to control quantitative image derived measures in a subset of those scanned at 1.5T 6
Figure S2: Organ impairment in severe versus moderate post COVID syndrome (n=201) 7
Table S1: Reference ranges to define organ impairment 7
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by hospitalisation or managed at home 8
Table S3: Blood investigations in 201 low-risk individuals, sub-divided by those with severe of moderate post-COVID syndrome 13
Supplementary methods

Blood investigations

Blood investigations included: full blood count, serum biochemistry (sodium, chloride, bicarbonate, urea, creatinine, bilirubin, alkaline phosphatase, aspartate transferase, alanine transferase, lactate dehydrogenase, creatinine kinase, gamma-glutamyl transpeptidase, total protein, albumin, globulin, calcium, magnesium, phosphate, uric acid, fasting triglycerides, cholesterol (total, HDL, LDL), iron, iron-binding capacity (unsaturated and total) and inflammatory markers (erythrocyte sedimentation rate, ESR; high sensitivity-C-Reactive Protein, CRP) (TDL laboratories, London).

Imaging

All the imaging methods can be deployed on standard clinical MRI scanners and are generally expedited approaches of methods previously demonstrated in the scientific literature that unless stated each utilise a short (<14 seconds) breath-hold.

Cardiac imaging involved complete coverage of the heart with a short-axis stack (to the valve plane) of cine images acquired using cardiac gating, this acquisition mirrors that in UK Biobank and is a standardized approach(S1). Three short-axis cardiac T1 maps are acquired using the MOLLI-T1 approach at the basal, mid and apical levels of the left ventricle.

Liver and pancreas imaging used the LiverMultiScan acquisition protocol (Perspectum, Oxford, UK), which involves 3 single 2D axial slice breath-held acquisitions that separately are sensitive to the fat content (proton density fat fraction, or PDFF), to T2* (which is representative of liver iron content) and a MOLLI-T1 measurement (providing a measurement of tissue water), additionally a volumetric scan was used that covers the entire liver(S2).

Two dynamic cine MR acquisitions of the lung were acquired in the coronal plane with a 306.91 ms temporal resolution: one 40 s acquisition with the patient instructed to breathe normally and a second 30 s acquisition with the patient instructed to breathe deeply.

Kidney imaging used a single coronal view that was able to image both kidneys, imaging contrasts were MOLLI-T1, T2* (for blood oxygen level assessment), and diffusion imaging that was acquired during free-breathing in 2 minutes.

Image Analysis

Cardiac MRI Analysis: Experienced cardiac MRI analysts used CVI42 (Cardiovascular Imaging Inc, Canada) to manually trace the end-diastolic and end-systolic phases in each of the short-axis views, following the standard UK BioBank evaluation approach as previously described(S3). This analysis yielded: For both the left and the right ventricle; End diastolic volume, End systolic volume, Stroke volume and Ejection Fraction. Additionally left ventricular muscle mass and wall thickness are determined from the function data. Cardiac T1 was determined for each of the 16 cardiac segments (of the AHA 17 segment model)(S4).

Liver Images were analysed by data analysts experienced at using the LiverMultiScan (Perspectum, Oxford, UK) software. This yielded global metrics in each liver of PDFF (proton density fat fraction), T2*, and cT1 (cT1 is a measurement of T1 that has been corrected for the confounding effects of iron and standardised to 3 Tesla; it is elevated with disease).

Pancreas images were analysed in a similar manner to the above except the software used was not FDA-cleared and iron correction was not performed. The output T1 was standardized to 3 Tesla.
Lung cine imaging allowed the measurement of the area of the left and right lungs through the breathing cycle in the coronal plane, which used automated methods that were reviewed by image analysts. The periodicity of the area fluctuations was used to determine the respiratory rate. All analysis was performed in-house using MATLAB based tools. The method was validated by measuring the correlation between the change in area and the forced vital capacity, the latter being measured using spirometry.

Patient respiration was assessed by imaging a single 2D coronal slice of the lungs over 30 seconds using a dynamic cine MRI acquisition, during which the patient instructed to breathe deeply.

Kidney images were assessed using in-house tools to fit the parametric maps and allow trained analysts to make measurements. The T2* maps were analysed by the Twelve Layer Concentric Object (TLCO) approach that generates a gradient of relaxation values, in the other evaluations the cortex and medulla were manually segmented using the MOLLI-T1 map or the b=0 (in the case of diffusion) to guide the boundary.

In all cases the volumetric assessments utilised an initial in-house developed machine-learning driven segmentation, and then a manual step that may be used to fine tune boundaries. This approach was also used in the body composition analysis, which for reasons of speed was performed only in a single slice (an axial view that passes through L3 of the spine) in this work.
Supplementary references

S1. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S. UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson. 2016 Feb 1;18:8.

S2. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014 Jan;60(1):69-77. doi: 10.1016/j.jhep.2013.09.002.

S3. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Francis JM, Khanji MY, Lukaschuk E, Lee AM, Carapella V, Kim YJ, Leeson P, Piechnik SK, Neubauer S. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017 Feb 3;19(1):18.

S4. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002 Jan 29;105(4):539-42.

S5. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015 Apr 18;17(1):29.

S6. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Rutten FH, Schirmer B, van der Meer P; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 Jul 14;37(27):2129-2200.

S7. Tsao CW, Lyass A, Larson MG, Cheng S, Lam CS, Aragam JR, Benjamin EJ, Vasan RS. Prognosis of adults with borderline left ventricular ejection fraction. JACC Heart Fail. 2016 Jun;4(6):502-10.

S8. Chalasani, Naga, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67.1 (2018): 328-357

S9. Mojtahed A, Kelly C, Herlihy A, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases. Abdominal Radiol 2019; 44: 72–84.

S10. Jayaswal AN, Levick C, Selvaraj EA, et al. Prognostic value of multiparametric MRI, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int 2020; in press. DOI: doi:10.1111/liv.14625.

S11. Jayaswal ANA, Levick C, Selvaraj EA, Dennis A, Booth JC, Collier J, Cobbold J, Tunnicliffe EM, Kelly M, Barnes E, Neubauer S, Banerjee R, Pavlides M. Prognostic value of multiparametric magnetic
resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int. 2020 Jul 30. doi: 10.1111/liv.14625

S12. Chouhan MD, Firmin L, Read S, Amin Z, Taylor SA. Quantitative pancreatic MRI: a pathology-based review. Br J Radiol. 2019 Jul;92(1099):20180941.

S13. Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the Pancreas. J Magn Reson Imaging. 2020 Apr 17. doi: 10.1002/jmri.27148.

S14. Gillis KA, McComb C, Patel RK, et al. Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease. Nephron 2016; 133: 183–92.

S15. Peperhove M, Vo Chieu VD, Jang M-S, et al. Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 2018; 28: 44–50.

S16. Chow KU, Luxembourg B, Seifried E, Bonig H. Spleen size is significantly influenced by body height and sex: establishment of normal values for spleen size at us with a cohort of 1200 healthy individuals. Radiology 2015; 279: 306–13.
Supplementary results

Sub-group analysis

Data from healthy participants (n=36) scanned on the 1.5T Siemens MRI scanner were compared to the sub-group of patients (N=121) scanned on the same MRI machine. Median global cardiac T1 was elevated in the patient group (979 ms versus 962ms, P=0.001). Lung fractional area difference, a measure of relaxed vital capacity, was significantly lower in the patient group (41% versus 48%, P<.001). Kidney inflammation (1148 vs 1084 ms, p <0.001) was significantly elevated in the patients as were markers of organ fat (liver 2.6% versus 2.1%, p=0.008; pancreas: 4.3% versus 2.5%, p<0.001) (Figure S1).

Figure S1: Box plots showing median and interquartile ranges for the healthy control group and the patient group for those scanned at 1.5T. Comparisons between groups were performed using two-sided Kolmogorov-Smirnov (KS) tests. Significance stars are * P<.05; ** P<.01, ***P<.001.
Figure S2: Organ impairment in severe versus moderate post COVID syndrome (n=201)

![Organ impairment graph]

Table S1: Reference ranges for organ impairment, defined as a value that was greater than the mean plus 2 standard deviations of that from the control group for most; mean minus 2 standard deviations for left ventricular ejection fraction and lung fractional area difference for the 1.5T scans. For the 3T scans, this was the value as reported by Raman et al (2020).

Organ Impairment	1.5T Reference range	3T Reference range
Left ventricular ejection fraction (LVEF) (S4-S7)	≤ 51.5%	----
Increased end-diastolic volume (S4-S7)	≥ 264ml in men	----
	≥ 206ml in women	----
Myocarditis (S4-S7)	≥ 1015 ms	≥ 1238ms
Deep breathing fractional area change*	≤ 33%	----
Liver volume (S8-S11)	≤ 1.93L	----
Liver fat (S8-S11)	≥ 4.8%	----
Liver inflammation (S8-S11)	≥ 784 ms	----
Pancreatic fat (S12-S13)	≥ 4.6%	----
Pancreatic inflammation (S12-13)	≥ 803ms	----
Renal Cortical T1(S14-S15)	≥ 1227ms	≥ 1652ms
Spleen volume(S16)	≤ 0.35L	----

* Our lung imaging protocol captured 2D dynamic imaging of the lungs as the patient breathes. We delineated the lungs at maximum inspiration and again at maximum expiration and take the difference to give a proxy of ‘vital capacity’, which correlates well with forced vital capacity (r = 0.61, P<0.001) from spirometry. Given the measure was associated with body size, we divided the difference in maximum inspiration and expiration by maximum inspiration to give a normalised ‘lung ejection fraction’. In order to assess whether an individual’s ‘lung ejection fraction’ was abnormal, it was measured in 39 controls, characterising a healthy normal range of the mean +/- 2 standard deviations, with a lower score representing poorer lung health. 31% (0.31) was the lower limit for normal from our controls and therefore selected as the threshold for respiratory impairment.
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by those who were hospitalised versus those who were managed at home

Measurement	All	Managed at home	Hospitalised	p-value
Haemoglobin				
Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.575
Abnormal low (< 130 g/L in men; < 115 g/L in women)	5 (2.8%)	2 (1.4%)	1 (3.1%)	
Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	2 (1.4%)	1 (3.1%)	
Haematocrit (HCT)				
Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	173 (97.2%)	142 (97.3%)	31 (96.9%)	0.386
Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.1%)	1 (0.7%)	1 (3.1%)	
Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	3 (2.1%)	0 (0%)	
Red cell count				
Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.287
Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	5 (2.8%)	3 (2.1%)	2 (6.2%)	
Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	3 (1.7%)	3 (2.1%)	0 (0%)	
Mean cell volume (MCV)				
Normal (80 - 99 fl.)	174 (97.8%)	142 (97.3%)	32 (100%)	1
Abnormal low (< 80 fl.)	4 (2.2%)	4 (2.7%)	0 (0%)	
Abnormal high (> 99 fl.)	0 (0%)	0 (0%)	0 (0%)	
Mean corpuscular haemoglobin (MCH)				
Normal (26 - 33.5 pg)	174 (97.8%)	143 (97.9%)	31 (96.9%)	0.249
Abnormal low (< 26 pg)	3 (1.7%)	3 (2.1%)	0 (0%)	
Abnormal high (> 33.5 pg)	1 (0.6%)	0 (0%)	1 (3.1%)	
Mean corpuscular haemoglobin concentration (MCHC)				
Normal (300 - 350 g/L)	135 (75.8%)	109 (74.7%)	26 (81.2%)	0.501
Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 350 g/L)	43 (24.2%)	37 (25.3%)	6 (18.8%)	
Red cell distribution width (RDW)				
Normal (11.5 - 15)	161 (91%)	129 (89%)	32 (100%)	0.218
Abnormal low (< 11.5)	10 (5.6%)	10 (6.9%)	0 (0%)	
Abnormal high (> 15)	6 (3.4%)	6 (4.1%)	0 (0%)	
Platelet count				
Normal (150 - 400 x10^9/L)	166 (93.3%)	138 (94.5%)	28 (87.5%)	0.152
Abnormal low (< 150 x10^9/L)	2 (1.1%)	2 (1.4%)	0 (0%)	
Abnormal high (> 400 x10^9/L)	10 (5.6%)	6 (4.1%)	4 (12.5%)	
Mean platelet volume (MPV)				
Normal (7 - 13 fl.)	177 (99.4%)	145 (99.3%)	32 (100%)	1
Abnormal low (< 7 fl.)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 13 fl.)	1 (0.6%)	1 (0.7%)	0 (0%)	

8
Component	Normal (3 - 10 x10^9/L)	Abnormal low (< 3 x10^9/L)	Abnormal high (> 10 x10^9/L)	p Value
Neutrophils				
Normal (2 - 7.5 x10^9/L)	163 (91.6%)	133 (91.1%)	30 (93.8%)	1
Abnormal low (< 2 x10^9/L)	12 (6.7%)	10 (6.8%)	2 (6.2%)	
Abnormal high (> 7.5 x10^9/L)	3 (1.7%)	3 (2.1%)	0 (0%)	
Lymphocytes				
Normal (1.2 - 3.65 x10^9/L)	161 (90.4%)	130 (89%)	31 (96.9%)	0.316
Abnormal low (< 1.2 x10^9/L)	17 (9.6%)	16 (11%)	1 (3.1%)	
Abnormal high (> 3.65 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Monocytes				
Normal (0.2 - 1 x10^9/L)	176 (98.9%)	144 (98.6%)	32 (100%)	1
Abnormal low (< 0.2 x10^9/L)	1 (0.6%)	1 (0.7%)	0 (0%)	
Abnormal high (> 1 x10^9/L)	1 (0.6%)	1 (0.7%)	0 (0%)	
Eosinophils				
Normal (0 - 0.4 x10^9/L)	172 (96.6%)	141 (96.6%)	31 (96.9%)	1
Abnormal low (< 0 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.4 x10^9/L)	6 (3.4%)	5 (3.4%)	1 (3.1%)	
Basophils				
Normal (0 - 0.1 x10^9/L)	178 (100%)	146 (100%)	32 (100%)	N/A
Abnormal low (< 0 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.1 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Erythrocyte sedimentation rate (ESR)				
Normal (1 - 20 mm/hr)	164 (91.1%)	136 (91.9%)	28 (87.5%)	0.491
Abnormal low (< 1 mm/hr)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 20 mm/hr)	16 (8.9%)	12 (8.1%)	4 (12.5%)	
Sodium				
Normal (135 - 145 mmol/L)	173 (97.2%)	141 (96.6%)	32 (100%)	1
Abnormal low (< 135 mmol/L)	4 (2.2%)	4 (2.7%)	0 (0%)	
Abnormal high (> 145 mmol/L)	1 (0.6%)	1 (0.7%)	0 (0%)	
Potassium				
Normal (3.5 - 5.1 mmol/L)	108 (62.1%)	87 (61.3%)	21 (65.6%)	0.692
Abnormal low (< 3.5 mmol/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 5.1 mmol/L)	66 (37.9%)	55 (38.7%)	11 (34.4%)	
Chloride				
Normal (98 - 107 mmol/L)	171 (96.1%)	139 (95.2%)	32 (100%)	1
Abnormal low (< 98 mmol/L)	4 (2.2%)	4 (2.7%)	0 (0%)	
Abnormal high (> 107 mmol/L)	3 (1.7%)	3 (2.1%)	0 (0%)	
Bicarbonate				
Normal (22 - 29 mmol/L)	150 (84.3%)	125 (85.6%)	25 (78.1%)	0.169
Abnormal low (< 22 mmol/L)	18 (10.1%)	15 (10.3%)	3 (9.4%)	
Abnormal high (> 29 mmol/L)	10 (5.6%)	6 (4.1%)	4 (12.5%)	
Urea				

Dennis A. et al. BMJ Open 2021; 11:e048391. doi: 10.1136/bmjopen-2020-048391
Supplemental material

Parameter	Value					
Normal (1.7 - 8.3 mmol/L)	178 (100%)					
Abnormal low (< 1.7 mmol/L)	0 (0%)					
Abnormal high (> 8.3 mmol/L)	0 (0%)					
Creatinine						
Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women)	161 (90.4%)					
Abnormal low (< 66 umol/L in men; < 49 umol/L in women)	12 (6.7%)					
Abnormal high (> 112 umol/L in men; > 92 umol/L in women)	5 (2.8%)					
Bilirubin						
Normal (0 - 20 umol/L)	175 (98.3%)					
Abnormal low (< 0 umol/L)	0 (0%)					
Abnormal high (> 20 umol/L)	3 (1.7%)					
Alkaline phosphatase						
Normal (40 - 129 IU/L in men; 35 - 104 IU/L in women)	168 (94.4%)					
Abnormal low (< 40 IU/L in men; < 35 IU/L in women)	8 (4.5%)					
Abnormal high (> 129 IU/L in men; > 104 IU/L in women)	2 (1.1%)					
Aspartate transferase						
Normal (0 - 37 IU/L in men; 0 - 31 IU/L in women)	162 (93.1%)					
Abnormal low (< 0 IU/L in men; < 0 IU/L in women)	0 (0%)					
Abnormal high (> 37 IU/L in men; > 31 IU/L in women)	12 (6.9%)					
Alanine transferase						
Normal (10 - 50 IU/L in men; 10 - 35 IU/L in women)	151 (84.8%)					
Abnormal low (< 10 IU/L in men; < 10 IU/L in women)	2 (1.1%)					
Abnormal high (> 50 IU/L in men; > 35 IU/L in women)	25 (14%)					
Lactate dehydrogenase (LDH)						
Normal (135 - 225 IU/L in men; 135 - 214 IU/L in women)	142 (80.7%)					
Abnormal low (< 135 IU/L in men; < 135 IU/L in women)	5 (2.8%)					
Abnormal high (> 225 IU/L in men; > 214 IU/L in women)	29 (16.5%)					
Creatine kinase (CK)						
Normal (38 - 204 IU/L in men; 26 - 140 IU/L in women)	163 (91.6%)					
Abnormal low (< 38 IU/L in men; < 26 IU/L in women)	2 (1.1%)					
Abnormal high (> 204 IU/L in men; > 140 IU/L in women)	13 (7.3%)					
Gamma glutamyl transferase						
Normal (10 - 71 IU/L in men; 6 - 42 IU/L in women)	165 (92.7%)					
Abnormal low (< 10 IU/L in men; < 6 IU/L in women)	4 (2.2%)					
Abnormal high (> 71 IU/L in men; > 42 IU/L in women)	9 (5.1%)					
Total protein						
Normal (63 - 83 g/L)	173 (97.2%)					
Abnormal low (< 63 g/L)	3 (1.7%)					
Abnormal high (> 83 g/L)	2 (1.1%)					
Albumin						
Normal (34 - 50 g/L)	167 (93.8%)					
Abnormal low (< 34 g/L)	0 (0%)					
Abnormal high (> 50 g/L)	11 (6.2%)					
Globulin						
Normal (1.7 - 8.3 mmol/L)	178 (100%)					
Abnormal low (< 1.7 mmol/L)	0 (0%)					
Abnormal high (> 8.3 mmol/L)	0 (0%)					
Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women)	161 (90.4%)					
Abnormal low (< 66 umol/L in men; < 49 umol/L in women)	12 (6.7%)					
Abnormal high (> 112 umol/L in men; > 92 umol/L in women)	5 (2.8%)					
Test	Lower Limit	Upper Limit	Value 1	Value 2	Value 3	p-value
--------------	-------------	-------------	---------	---------	---------	---------
Calcium	2.2 - 2.6 mmol/L	> 35 g/L	172 (96.6%)	141 (96.6%)	31 (96.9%)	0.386
Magnesium	0.6 - 1 mmol/L	> 35 g/L	176 (98.9%)	144 (98.6%)	32 (100%)	1
Phosphate	0.87 - 1.45 mmol/L	> 35 g/L	150 (84.3%)	121 (82.9%)	29 (90.6%)	0.518
Uric acid	266 - 474 umol/L in men; 175 - 363 umol/L in women	> 35 g/L	148 (83.1%)	124 (84.9%)	24 (75%)	0.067
Triglycerides	< 2.3 mmol/L	> 35 g/L	10 (100%)	8 (100%)	2 (100%)	N/A
Cholesterol	< 5 mmol/L	> 35 g/L	4 (40%)	3 (37.5%)	1 (50%)	1
Fasting triglycerides	< 2.3 mmol/L	> 35 g/L	149 (88.7%)	128 (92.8%)	21 (70%)	0.002
HDL cholesterol	0.9 - 1.7 mmol/L in men; 1.2 - 1.7 mmol/L in women	> 35 g/L	106 (59.6%)	87 (59.6%)	19 (59.4%)	0.075
LDL cholesterol	< 3 mmol/L	> 35 g/L	113 (64.9%)	100 (69.4%)	13 (43.3%)	0.011
Iron	10.6 - 28.3 umol/L in men; 6.6 - 26 umol/L in women	> 35 g/L	164 (92.1%)	135 (92.5%)	29 (90.6%)	0.22
- Abnormal high (> 28.3 umol/L in men; > 26 umol/L in women)
- Normal (41 - 77 umol/L)
- Abnormal low (< 41 umol/L)
- Abnormal high (> 77 umol/L)

	Men	Women	Total
Abnormal high	10 (5.6%)	9 (6.2%)	1 (3.1%)
Normal	172 (97.2%)	141 (97.2%)	31 (96.9%)
Abnormal low	0 (0%)	0 (0%)	0 (0%)
Abnormal high	5 (2.8%)	4 (2.8%)	1 (3.1%)

Total iron binding capacity (TIBC)

- Normal (41 - 77 umol/L)
- Abnormal low (< 41 umol/L)
- Abnormal high (> 77 umol/L)

	Men	Women	Total
Normal	139 (78.5%)	120 (82.8%)	19 (59.4%)
Abnormal low	34 (19.2%)	22 (15.2%)	12 (37.5%)
Abnormal high	4 (2.3%)	3 (2.1%)	1 (3.1%)

Transferrin saturation

- Normal (20 - 55 %)
- Abnormal low (< 20 %)
- Abnormal high (> 55 %)

	Men	Women	Total
Normal	146 (92.4%)	124 (93.9%)	22 (84.6%)
Abnormal low	0 (0%)	0 (0%)	0 (0%)
Abnormal high	12 (7.6%)	8 (6.1%)	4 (15.4%)

High sensitivity CRP

- Normal (0 - 5 mg/L)
- Abnormal low (< 0 mg/L)
- Abnormal high (> 5 mg/L)

	Men	Women	Total
Normal	124 (93.9%)	124 (93.9%)	22 (84.6%)
Abnormal low	0 (0%)	0 (0%)	0 (0%)
Abnormal high	12 (7.6%)	8 (6.1%)	4 (15.4%)
Table S3: Blood investigations in 201 low-risk individuals sub-divided by those with severe or moderate post-COVID syndrome (PCS)

Measurement	All	Moderate PCS	Severe PCS	p-value
Haemoglobin				
• Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	166 (96%)	62 (96.9%)	104 (95.4%)	1
• Abnormal low (< 130 g/L in men; < 115 g/L in women)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
• Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Haematocrit (HCT)				
• Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	168 (97.1%)	64 (100%)	104 (95.4%)	0.274
• Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.2%)	0 (0%)	2 (1.8%)	
• Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	0 (0%)	3 (2.8%)	
Red cell count				
• Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	167 (96.5%)	61 (95.3%)	106 (97.2%)	0.825
• Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	4 (2.3%)	2 (3.1%)	2 (1.8%)	
• Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	2 (1.2%)	1 (1.6%)	1 (0.9%)	
Mean cell volume (MCV)				
• Normal (80 - 99 fl)	170 (98.3%)	62 (96.9%)	108 (99.1%)	0.556
• Abnormal low (< 80 fl)	3 (1.7%)	2 (3.1%)	1 (0.9%)	
• Abnormal high (> 99 fl)	0 (0%)	0 (0%)	0 (0%)	
Mean corpuscular haemoglobin (MCH)				
• Normal (26 - 33.5 pg)	170 (98.3%)	61 (95.3%)	109 (100%)	0.049
• Abnormal low (< 26 pg)	2 (1.2%)	2 (3.1%)	0 (0%)	
• Abnormal high (> 33.5 pg)	1 (0.6%)	1 (1.6%)	0 (0%)	
Mean corpuscular haemoglobin concen (MCHC)				
• Normal (300 - 350 g/L)	131 (75.7%)	53 (82.8%)	78 (71.6%)	0.103
• Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)	
• Abnormal high (> 350 g/L)	42 (24.3%)	11 (17.2%)	31 (28.4%)	
Red cell distribution (RDW)				
• Normal (11.5 - 15)	157 (91.3%)	59 (92.2%)	98 (90.7%)	0.339
• Abnormal low (< 11.5)	10 (5.8%)	2 (3.1%)	8 (7.4%)	
• Abnormal high (> 15)	5 (2.9%)	3 (4.7%)	2 (1.9%)	
Platelet count				
• Normal (150 - 400 x10^9/L)	161 (93.1%)	59 (92.2%)	102 (93.6%)	0.417
• Abnormal low (< 150 x10^9/L)	2 (1.2%)	0 (0%)	2 (1.8%)	
• Abnormal high (> 400 x10^9/L)	10 (5.8%)	5 (7.8%)	5 (4.6%)	
Mean platelet volume (MPV)				
• Normal (7 - 13 fl)	172 (99.4%)	64 (100%)	108 (99.1%)	1
• Abnormal low (< 7 fl)	0 (0%)	0 (0%)	0 (0%)	
Test	Normal (min - max)	Abnormal low (< min)	Abnormal high (> max)	
-------------------------------	--------------------	------------------------	-------------------------	
White cell count				
Normal (3 - 10 x10^9/L)	167 (96.5%)	61 (95.3%)	106 (97.2%)	
Abnormal low (< 3 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 10 x10^9/L)	6 (3.5%)	3 (4.7%)	3 (2.8%)	
Neutrophils				
Normal (2 - 7.5 x10^9/L)	159 (91.9%)	57 (89.1%)	102 (93.6%)	
Abnormal low (< 2 x10^9/L)	11 (6.4%)	5 (7.8%)	6 (5.5%)	
Abnormal high (> 7.5 x10^9/L)	3 (1.7%)	2 (3.1%)	1 (0.9%)	
Lymphocytes				
Normal (1.2 - 3.65 x10^9/L)	156 (90.2%)	56 (87.5%)	100 (91.7%)	
Abnormal low (< 1.2 x10^9/L)	17 (9.8%)	8 (12.5%)	9 (8.3%)	
Abnormal high (> 3.65 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Monocytes				
Normal (0.2 - 1 x10^9/L)	171 (98.8%)	63 (98.4%)	108 (99.1%)	
Abnormal low (< 0.2 x10^9/L)	1 (0.6%)	0 (0%)	1 (0.9%)	
Abnormal high (> 1 x10^9/L)	1 (0.6%)	1 (1.6%)	0 (0%)	
Eosinophils				
Normal (0.4 - 1 x10^9/L)	167 (96.5%)	63 (98.4%)	104 (95.4%)	
Abnormal low (< 0.4 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.4 x10^9/L)	6 (3.5%)	1 (1.6%)	5 (4.6%)	
Basophils				
Normal (0.1 - 0.4 x10^9/L)	173 (100%)	64 (100%)	109 (100%)	
Abnormal low (< 0 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.1 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Erythrocyte sedimentation rate (ESR)				
Normal (1 - 20 mm/hr)	160 (91.4%)	62 (93.9%)	98 (89.9%)	
Abnormal low (< 1 mm/hr)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 20 mm/hr)	15 (8.6%)	4 (6.1%)	11 (10.1%)	
Sodium				
Normal (135 - 145 mmol/L)	168 (97.1%)	63 (98.4%)	105 (96.3%)	
Abnormal low (< 135 mmol/L)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
Abnormal high (> 145 mmol/L)	1 (0.6%)	0 (0%)	1 (0.9%)	
Potassium				
Normal (3.5 - 5.1 mmol/L)	105 (62.1%)	35 (56.5%)	70 (65.4%)	
Abnormal low (< 3.5 mmol/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 5.1 mmol/L)	64 (37.9%)	27 (43.5%)	37 (34.6%)	
Chloride				
Normal (98 - 107 mmol/L)	166 (96%)	62 (96.9%)	104 (95.4%)	
Abnormal low (< 98 mmol/L)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
Abnormal high (> 107 mmol/L)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Bicarbonate	Normal (22 - 29 mmol/L)	Abnormal low (< 22 mmol/L)	Abnormal high (> 29 mmol/L)	147 (85%)	55 (85.9%)	92 (84.4%)	0.946
	16 (9.2%)	6 (9.4%)	10 (9.2%)	0.285	0.24	0.512	

Urea	Normal (1.7 - 8.3 mmol/L)	Abnormal low (< 1.7 mmol/L)	Abnormal high (> 8.3 mmol/L)	173 (100%)	64 (100%)	109 (100%)	N/A
	0 (0%)	0 (0%)	0 (0%)				

Creatinine	Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women)	Abnormal low (< 66 umol/L in men; < 49 umol/L in women)	Abnormal high (> 112 umol/L in men; > 92 umol/L in women)	156 (90.2%)	59 (92.2%)	97 (89%)	0.705
	12 (6.9%)	3 (4.7%)	9 (8.3%)				

Bilirubin	Normal (0 - 20 umol/L)	Abnormal low (< 0 umol/L)	Abnormal high (> 20 umol/L)	170 (98.3%)	63 (98.4%)	107 (98.2%)	1
	0 (0%)	0 (0%)	0 (0%)				

Alkaline phosphatase	Normal (40 - 129 IU/L in men; 35 - 104 IU/L in women)	Abnormal low (< 40 IU/L in men; < 35 IU/L in women)	Abnormal high (> 129 IU/L in men; > 104 IU/L in women)	164 (94.8%)	59 (92.2%)	105 (96.3%)	0.185
	7 (4%)	3 (4.7%)	4 (3.7%)				

Aspartate transferase	Normal (0 - 37 IU/L in men; 0 - 31 IU/L in women)	Abnormal low (< 0 IU/L in men; < 0 IU/L in women)	Abnormal high (> 37 IU/L in men; > 31 IU/L in women)	157 (92.9%)	59 (93.7%)	98 (92.5%)	1
	0 (0%)	0 (0%)	0 (0%)				

Alanine transferase	Normal (10 - 50 IU/L in men; 10 - 35 IU/L in women)	Abnormal low (< 10 IU/L in men; < 10 IU/L in women)	Abnormal high (> 50 IU/L in men; > 35 IU/L in women)	146 (84.4%)	56 (87.5%)	90 (82.6%)	0.512
	2 (1.2%)	1 (1.6%)	1 (0.9%)				

Lactate dehydrogenase (LDH)	Normal (135 - 225 IU/L in men; 135 - 214 IU/L in women)	Abnormal low (< 135 IU/L in men; < 135 IU/L in women)	Abnormal high (> 225 IU/L in men; > 214 IU/L in women)	137 (80.1%)	51 (81%)	86 (79.6%)	0.24
	5 (2.9%)	0 (0%)	5 (4.6%)				

Creatinine kinase (CK)	Normal (38 - 204 IU/L in men; 26 - 140 IU/L in women)	Abnormal low (< 38 IU/L in men; < 26 IU/L in women)	Abnormal high (> 204 IU/L in men; > 140 IU/L in women)	159 (91.9%)	56 (87.5%)	103 (94.5%)	0.28
	2 (1.2%)	1 (1.6%)	1 (0.9%)				

Gamma glutamyl transferase	Normal (10 - 71 IU/L in men; 6 - 42 IU/L in women)	Abnormal low (< 10 IU/L in men; < 6 IU/L in women)	Abnormal high (> 71 IU/L in men; > 42 IU/L in women)	161 (93.1%)	60 (93.8%)	101 (92.7%)	0.426
	3 (1.7%)	0 (0%)	3 (2.8%)				

Total protein	Normal (63 - 83 g/L)	168 (97.1%)	63 (98.4%)	105 (96.3%)	0.792
	0.792				
- Abnormal low (< 63 g/L)
 - Albumin: 3 (1.7%)
 - Globulin: 1 (1.6%)
 - Calcium: 2 (1.8%)
- Abnormal high (> 83 g/L)
 - Albumin: 2 (1.2%)
 - Globulin: 0 (0%)
 - Calcium: 2 (1.8%)
- Normal (34 - 50 g/L)
 - Albumin: 162 (93.6%)
 - Globulin: 59 (92.2%)
 - Calcium: 103 (94.5%)

0.538

- Abnormal low (< 34 g/L)
 - Globulin: 0 (0%)
 - Calcium: 0 (0%)
- Abnormal high (> 50 g/L)
 - Globulin: 11 (6.4%)
 - Calcium: 5 (7.8%)
- **Abnormal high (> 1.5 mmol/L in men; > 1.7 mmol/L in women)**: 54 (31.2%) 22 (34.4%) 32 (29.4%)

LDL cholesterol
- **Normal (< 3 mmol/L)**: 111 (65.7%) 45 (72.6%) 66 (61.7%) 0.18
- **Abnormal high (> 3 mmol/L)**: 58 (34.3%) 17 (27.4%) 41 (38.3%)

Iron
- **Normal (10.6 - 28.3 umol/L in men; 6.6 - 26 umol/L in women)**: 160 (92.5%) 57 (89.1%) 103 (94.5%) 0.337
- **Abnormal low (< 10.6 umol/L in men; < 6.6 umol/L in women)**: 3 (1.7%) 2 (3.1%) 1 (0.9%)
- **Abnormal high (> 28.3 umol/L in men; > 26 umol/L in women)**: 10 (5.8%) 5 (7.8%) 5 (4.6%)

Total iron binding capacity (TIBC)
- **Normal (41 - 77 umol/L)**: 167 (97.1%) 60 (93.8%) 107 (99.1%) 0.064
- **Abnormal low (< 41 umol/L)**: 0 (0%) 0 (0%) 0 (0%)
- **Abnormal high (> 77 umol/L)**: 5 (2.9%) 4 (6.2%) 1 (0.9%)

Transferrin saturation
- **Normal (20 - 55 %)**: 135 (78.5%) 50 (78.1%) 85 (78.7%) 0.283
- **Abnormal low (< 20 %)**: 33 (19.2%) 11 (17.2%) 22 (20.4%)
- **Abnormal high (> 55 %)**: 4 (2.3%) 3 (4.7%) 1 (0.9%)

High sensitivity CRP
- **Normal (0 - 5 mg/L)**: 141 (92.2%) 50 (96.2%) 91 (90.1%) 0.223
- **Abnormal low (< 0 mg/L)**: 0 (0%) 0 (0%) 0 (0%)
- **Abnormal high (> 5 mg/L)**: 12 (7.8%) 2 (3.8%) 10 (9.9%)
Web Supplementary Materials

Section	Page
Supplementary methods	2
Supplementary references	4
Supplementary results	6
Figure S1: Comparison of patients to control quantitative image derived measures in a subset of those scanned at 1.5T	6
Figure S2: Organ impairment in severe versus moderate post COVID syndrome (n=201)	7
Table S1: Reference ranges to define organ impairment	7
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by hospitalisation or managed at home	8
Table S3: Blood investigations in 201 low-risk individuals, sub-divided by those with severe of moderate post-COVID syndrome	13
Supplementary methods

Blood investigations

Blood investigations included: full blood count, serum biochemistry (sodium, chloride, bicarbonate, urea, creatinine, bilirubin, alkaline phosphatase, aspartate transferase, alanine transferase, lactate dehydrogenase, creatinine kinase, gamma-glutamyl transpeptidase, total protein, albumin, globulin, calcium, magnesium, phosphate, uric acid, fasting triglycerides, cholesterol (total, HDL, LDL), iron, iron-binding capacity (unsaturated and total) and inflammatory markers (erythrocyte sedimentation rate, ESR; high sensitivity-C-Reactive Protein, CRP) (TDL laboratories, London).

Imaging

All the imaging methods can be deployed on standard clinical MRI scanners and are generally expedited approaches of methods previously demonstrated in the scientific literature that unless stated each utilise a short (<14seconds) breath-hold.

Cardiac imaging involved complete coverage of the heart with a short-axis stack (to the valve plane) of cine images acquired using cardiac gating, this acquisition mirrors that in UK Biobank and is a standardized approach(S1). Three short-axis cardiac T1 maps are acquired using the MOLLI-T1 approach at the basal, mid and apical levels of the left ventricle.

Liver and pancreas imaging used the LiverMultiScan acquisition protocol (Perspectum, Oxford, UK), which involves 3 single 2D axial slice breath-held acquisitions that separately are sensitive to the fat content (proton density fat fraction, or PDFF), to T2* (which is representative of liver iron content) and a MOLLI-T1 measurement (providing a measurement of tissue water), additionally a volumetric scan was used that covers the entire liver(S2).

Two dynamic cine MR acquisitions of the lung were acquired in the coronal plane with a 306.91 ms temporal resolution: one 40 s acquisition with the patient instructed to breathe normally and a second 30 s acquisition with the patient instructed to breathe deeply.

Kidney imaging used a single coronal view that was able to image both kidneys, imaging contrasts were MOLLI-T1, T2* (for blood oxygen level assessment), and diffusion imaging that was acquired during free-breathing in 2minutes.

Image Analysis

Cardiac MRI Analysis: Experienced cardiac MRI analysts used CVI42 (Cardiovascular Imaging Inc, Canada) to manually trace the end-diastolic and end-systolic phases in each of the short-axis views, following the standard UK BioBank evaluation approach as previously described(S3). This analysis yielded: For both the left and the right ventricle; End diastolic volume, End systolic volume, Stroke volume and Ejection Fraction. Additionally left ventricular muscle mass and wall thickness are determined from the function data. Cardiac T1 was determined for each of the 16 cardiac segments (of the AHA 17 segment model)(S4).

Liver Images were analysed by data analysts experienced at using the LiverMultiScan (Perspectum, Oxford, UK) software. This yielded global metrics in each liver of PDFF (proton density fat fraction), T2*, and cT1 (cT1 is a measurement of T1 that has been corrected for the confounding effects of iron and standardised to 3 Tesla; it is elevated with disease).

Pancreas images were analysed in a similar manner to the above except the software used was not FDA-cleared and iron correction was not performed. The output T1 was standardized to 3 Tesla.
Lung cine imaging allowed the measurement of the area of the left and right lungs through the breathing cycle in the coronal plane, which used automated methods that were reviewed by image analysts. The periodicity of the area fluctuations was used to determine the respiratory rate. All analysis was performed in-house using MATLAB based tools. The method was validated by measuring the correlation between the change in area and the forced vital capacity, the latter being measured using spirometry.

Patient respiration was assessed by imaging a single 2D coronal slice of the lungs over 30 seconds using a dynamic cine MRI acquisition, during which the patient instructed to breathe deeply.

Kidney images were assessed using in-house tools to fit the parametric maps and allow trained analysts to make measurements. The T2* maps were analysed by the Twelve Layer Concentric Object (TLCO) approach that generates a gradient of relaxation values, in the other evaluations the cortex and medulla were manually segmented using the MOLLI-T1 map or the b=0 (in the case of diffusion) to guide the boundary.

In all cases the volumetric assessments utilised an initial in-house developed machine-learning driven segmentation, and then a manual step that may be used to fine tune boundaries. This approach was also used in the body composition analysis, which for reasons of speed was performed only in a single slice (an axial view that passes through L3 of the spine) in this work.
Supplementary references

S1. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S. UK Biobank's cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson. 2016 Feb 1;18:8.

S2. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014 Jan;60(1):69-77. doi: 10.1016/j.jhep.2013.09.002.

S3. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Francis JM, Khanji MY, Lukaschuk E, Lee AM, Carapella V, Kim YJ, Leeson P, Piechnik SK, Neubauer S. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017 Feb 3;19(1):18.

S4. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002 Jan 29;105(4):539-42.

S5. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015 Apr 18;17(1):29).

S6. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nilsson-Paylor P, Parissis JT, Pilgrim D, Riley JP, Rosano GMC, Ruzyllo W, Schulte HM, van der Meer P; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 Jul 14;37(27):2129-2200.

S7. Tsao CW, Lyass A, Larson MG, Cheng S, Lam CS, Aragam JR, Benjamin EJ, Vasan RS. Prognosis of adults with borderline left ventricular ejection fraction. JACC Heart Fail. 2016 Jun;4(6):502-10.

S8. Chalasani, Naga, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67.1 (2018): 328-357

S9. Mojtahed A, Kelly C, Herlihy A, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease—a UK Biobank sub-study, with an appendix of interesting cases. Abdominal Radiol 2019; 44: 72–84.

S10. Jayaswal AN, Levick C, Selvaraj EA, et al. Prognostic value of multiparametric MRI, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int 2020; in press. DOI:doi:10.1111/liv.14625.

S11. Jayaswal ANA, Levick C, Selvaraj EA, Dennis A, Booth JC, Collier J, Cobbold J, Tunnicliffe EM, Kelly M, Barnes E, Neubauer S, Banerjee R, Pavlides M. Prognostic value of multiparametric magnetic
resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int. 2020 Jul 30. doi: 10.1111/liv.14625

S12. Chouhan MD, Firmin L, Read S, Amin Z, Taylor SA. Quantitative pancreatic MRI: a pathology-based review. Br J Radiol. 2019 Jul;92(1099):20180941.

S13. Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the Pancreas. J Magn Reson Imaging. 2020 Apr 17. doi: 10.1002/jmri.27148.

S14. Gillis KA, McComb C, Patel RK, et al. Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease. Nephron 2016; 133: 183–92.

S15. Peperhove M, Vo Chieu VD, Jang M-S, et al. Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 2018; 28: 44–50.

S16. Chow KU, Luxembourg B, Seifried E, Bonig H. Spleen size is significantly influenced by body height and sex: establishment of normal values for spleen size at us with a cohort of 1200 healthy individuals. Radiology 2015; 279: 306–13.
Supplementary results

Sub-group analysis

Data from healthy participants (n=36) scanned on the 1.5T Siemens MRI scanner were compared to the sub-group of patients (N=121) scanned on the same MRI machine. Median global cardiac T1 was elevated in the patient group (979 ms versus 962ms, P=0.001). Lung fractional area difference, a measure of relaxed vital capacity, was significantly lower in the patient group (41% versus 48%, P<0.001). Kidney inflammation (1148 vs 1084 ms, p <0.001) was significantly elevated in the patients as were markers of organ fat (liver 2.6% versus 2.1%, p=0.008; pancreas: 4.3% versus 2.5%, p<0.001) (Figure S1).

Figure S1: Box plots showing median and interquartile ranges for the healthy control group and the patient group for those scanned at 1.5T. Comparisons between groups were performed using two-sided Kolmogorov-Smirnov (KS) tests. Significance stars are * P<.05; ** P<.01, ***P<.001.
Figure S2: Organ impairment in severe versus moderate post COVID syndrome (n=201)

Table S1: Reference ranges for organ impairment, defined as a value that was greater than the mean plus 2 standard deviations of that from the control group for most; mean minus 2 standard deviations for left ventricular ejection fraction and lung fractional area difference for the 1.5T scans. For the 3T scans, this was the value as reported by Raman et al (2020).

Organ Impairment	1.5T Reference range	3T Reference range
Left ventricular ejection fraction (LVEF) (S4-S7)	≤ 51.5%	----
Increased end-diastolic volume (S4-S7)	≥ 264ml in men	≥ 206ml in women
Myocarditis (S4-S7)	≥ 1015 ms	≥ 1238ms
Deep breathing fractional area change*	≤ 33%	----
Liver volume (S8-S11)	≤ 1.93L	----
Liver fat (S8-S11)	≥ 4.8%	----
Liver inflammation (S8-S11)	≥ 784 ms	----
Pancreatic fat (S12-S13)	≥ 4.6%	----
Pancreatic inflammation (S12-13)	≥ 803ms	----
Renal Cortical T1(S14-S15)	≥ 1227ms	≥ 1652ms
Spleen volume(S16)	≤ 0.35L	----

* Our lung imaging protocol captured 2D dynamic imaging of the lungs as the patient breathes. We delineated the lungs at maximum inspiration and again at maximum expiration and take the difference to give a proxy of ‘vital capacity’, which correlates well with forced vital capacity (r = 0.61, P<.001) from spirometry. Given the measure was associated with body size, we divided the difference in maximum inspiration and expiration by maximum inspiration to give a normalised ‘lung ejection fraction’. In order to assess whether an individual’s ‘lung ejection fraction’ was abnormal, it was measured in 39 controls, characterising a healthy normal range of the mean +/- 2 standard deviations, with a lower score representing poorer lung health. 31% (0.31) was the lower limit for normal from our controls and therefore selected as the threshold for respiratory impairment.
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by those who were hospitalised versus those who were managed at home

Measurement	All	Managed at home	Hospitalised	p-value
Haemoglobin				
• Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.575
• Abnormal low (< 130 g/L in men; < 115 g/L in women)	5 (2.8%)	4 (2.7%)	1 (3.1%)	
• Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	2 (1.4%)	1 (3.1%)	
Haematocrit (HCT)				
• Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	173 (97.2%)	142 (97.3%)	31 (96.9%)	0.386
• Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.1%)	1 (0.7%)	1 (3.1%)	
• Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	3 (2.1%)	0 (0%)	
Red cell count				
• Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.287
• Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	5 (2.8%)	3 (2.1%)	2 (6.2%)	
• Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	3 (1.7%)	3 (2.1%)	0 (0%)	
Mean cell volume (MCV)				
• Normal (80 - 99 fl.)	174 (97.8%)	142 (97.3%)	32 (100%)	1
• Abnormal low (< 80 fl.)	4 (2.2%)	4 (2.7%)	0 (0%)	
• Abnormal high (> 99 fl.)	0 (0%)	0 (0%)	0 (0%)	
Mean corpuscular haemoglobin (MCH)				
• Normal (26 - 33.5 pg)	174 (97.8%)	143 (97.9%)	31 (96.9%)	0.249
• Abnormal low (< 26 pg)	3 (1.7%)	3 (2.1%)	0 (0%)	
• Abnormal high (> 33.5 pg)	1 (0.6%)	0 (0%)	1 (3.1%)	
Mean corpuscular haemoglobin concentration (MCHC)				
• Normal (300 - 350 g/L)	135 (75.8%)	109 (74.7%)	26 (81.2%)	0.501
• Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)	
• Abnormal high (> 350 g/L)	43 (24.2%)	37 (25.3%)	6 (18.8%)	
Red cell distribution width (RDW)				
• Normal (11.5 - 15)	161 (91%)	129 (89%)	32 (100%)	0.218
• Abnormal low (< 11.5)	10 (5.6%)	10 (6.9%)	0 (0%)	
• Abnormal high (> 15)	6 (3.4%)	6 (4.1%)	0 (0%)	
Platelet count				
• Normal (150 - 400 x10^4/μL)	166 (93.3%)	138 (84.5%)	28 (87.5%)	0.152
• Abnormal low (< 150 x10^4/μL)	2 (1.1%)	2 (1.4%)	0 (0%)	
• Abnormal high (> 400 x10^4/μL)	10 (5.6%)	6 (4.1%)	4 (12.5%)	
Mean platelet volume (MPV)				
• Normal (7 - 13 fl)	177 (99.4%)	145 (99.3%)	32 (100%)	1
• Abnormal low (< 7 fl)	0 (0%)	0 (0%)	0 (0%)	
• Abnormal high (> 13 fl)	1 (0.6%)	1 (0.7%)	0 (0%)	
White cell count				
Parameter	Normal (3 - 10 x10^9/L)	Abnormal low (< 3 x10^9/L)	Abnormal high (> 10 x10^9/L)	p-value
----------------------------	-------------------------	-----------------------------	------------------------------	---------
Neutrophils	172 (96.6%)	0 (0%)	6 (3.4%)	0.593
Lymphocytes	163 (91.6%)	12 (6.7%)	3 (1.7%)	1
Eosinophils	161 (90.4%)	17 (9.6%)	0 (0%)	0.316
Monocytes	176 (98.9%)	1 (0.6%)	1 (0.6%)	1
Basophils	178 (100%)	0 (0%)	0 (0%)	N/A
Erythrocyte sedimentation rate (ESR)	164 (91.1%)	0 (0%)	16 (8.9%)	0.491
Sodium	173 (97.2%)	4 (2.2%)	1 (0.6%)	1
Potassium	108 (62.1%)	0 (0%)	66 (37.9%)	0.692
Chloride	171 (96.1%)	4 (2.2%)	3 (1.7%)	1
Bicarbonate	150 (84.3%)	18 (10.1%)	10 (5.6%)	0.169
Urea	0.316	6 (4.1%)	4 (12.5%)	9
- Normal (1.7 - 8.3 mmol/L) 178 (100%) 146 (100%) 32 (100%) N/A
- Abnormal low (< 1.7 mmol/L) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 8.3 mmol/L) 0 (0%) 0 (0%) 0 (0%)

Creatinine
- Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women) 161 (90.4%) 134 (91.8%) 27 (84.4%) 0.219
- Abnormal low (< 66 umol/L in men; < 49 umol/L in women) 12 (6.7%) 9 (6.2%) 3 (9.4%)
- Abnormal high (> 112 umol/L in men; > 92 umol/L in women) 5 (2.8%) 3 (2.1%) 2 (6.2%)

Bilirubin
- Normal (0 - 20 umol/L) 175 (98.3%) 144 (98.6%) 31 (96.9%) 0.45
- Abnormal low (< 0 umol/L) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 20 umol/L) 3 (1.7%) 2 (1.4%) 1 (3.1%)

Alkaline phosphatase
- Normal (40 - 129 IU/L in men; 35 - 104 IU/L in women) 168 (94.4%) 137 (93.8%) 31 (96.9%) 0.161
- Abnormal low (< 40 IU/L in men; < 35 IU/L in women) 8 (4.5%) 8 (5.5%) 0 (0%)
- Abnormal high (> 129 IU/L in men; > 104 IU/L in women) 2 (1.1%) 1 (0.7%) 1 (3.1%)

Aspartate transferase
- Normal (0 - 37 IU/L in men; 0 - 31 IU/L in women) 162 (93.1%) 133 (93.7%) 29 (90.6%) 0.464
- Abnormal low (< 0 IU/L in men; < 0 IU/L in women) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 37 IU/L in men; > 31 IU/L in women) 12 (6.9%) 9 (6.3%) 3 (9.4%)

Alanine transferase
- Normal (10 - 50 IU/L in men; 10 - 35 IU/L in women) 151 (84.8%) 125 (85.6%) 26 (81.2%) 0.603
- Abnormal low (< 10 IU/L in men; < 10 IU/L in women) 2 (1.1%) 2 (1.4%) 0 (0%)
- Abnormal high (> 50 IU/L in men; > 35 IU/L in women) 25 (14%) 19 (13%) 6 (18.8%)

Lactate dehydrogenase (LDH)
- Normal (135 - 225 IU/L in men; 135 - 214 IU/L in women) 142 (80.7%) 118 (81.9%) 24 (75%) 0.236
- Abnormal low (< 135 IU/L in men; < 135 IU/L in women) 5 (2.8%) 5 (3.5%) 0 (0%)
- Abnormal high (> 225 IU/L in men; > 214 IU/L in women) 29 (16.5%) 21 (14.6%) 8 (25%)

Creatinine kinase (CK)
- Normal (38 - 204 IU/L in men; 26 - 140 IU/L in women) 163 (91.6%) 132 (90.4%) 31 (96.9%) 0.642
- Abnormal low (< 38 IU/L in men; < 26 IU/L in women) 2 (1.1%) 2 (1.4%) 0 (0%)
- Abnormal high (> 204 IU/L in men; > 140 IU/L in women) 13 (7.3%) 12 (8.2%) 1 (3.1%)

Gamma glutamyl transferase
- Normal (10 - 71 IU/L in men; 6 - 42 IU/L in women) 165 (92.7%) 136 (93.2%) 29 (90.6%) 0.461
- Abnormal low (< 10 IU/L in men; < 6 IU/L in women) 4 (2.2%) 4 (2.7%) 0 (0%)
- Abnormal high (> 71 IU/L in men; > 42 IU/L in women) 9 (5.1%) 6 (4.1%) 3 (9.4%)

Total protein
- Normal (63 - 83 g/L) 173 (97.2%) 143 (97.9%) 30 (93.8%) 0.22
- Abnormal low (< 63 g/L) 3 (1.7%) 2 (1.4%) 1 (3.1%)
- Abnormal high (> 83 g/L) 2 (1.1%) 1 (0.7%) 1 (3.1%)

Albumin
- Normal (34 - 50 g/L) 167 (93.8%) 136 (93.2%) 31 (96.9%) 0.692
- Abnormal low (< 34 g/L) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 50 g/L) 11 (6.2%) 10 (6.8%) 1 (3.1%)

Globulin
Parameter	Normal Range	Normal Count	Abnormal Low Count	Abnormal High Count	p Value
Hematocrit	37 - 50%	173 (97.2%)	3 (1.7%)	2 (1.1%)	0.386
Calcium	2.2 - 2.6 mmol/L	172 (96.6%)	3 (1.7%)	4 (2.2%)	0.43
Magnesium	0.6 - 1 mmol/L	176 (98.9%)	3 (1.7%)	1 (0.6%)	1
Phosphate	0.87 - 1.45 mmol/L	150 (84.3%)	2 (1.1%)	5 (2.8%)	0.518
Uric acid	266 - 474 umol/L in men; 175 - 363 umol/L in women	148 (83.1%)	19 (10.7%)	11 (6.2%)	0.067
Triglycerides	< 2.3 mmol/L	10 (100%)	0 (0%)	0 (0%)	N/A
Cholesterol	< 5 mmol/L	4 (40%)	6 (60%)	1 (0%)	1
Fasting cholesterol	< 5 mmol/L	98 (58.3%)	12 (62.3%)	12 (40%)	0.04
HDL cholesterol	0.9 - 1.5 mmol/L in men; 1.2 - 1.7 mmol/L in women	106 (59.6%)	16 (9%)	56 (31.5%)	0.075
LDL cholesterol	< 3 mmol/L	113 (64.9%)	61 (35.1%)	4 (2.2%)	0.011
Iron	10.6 - 28.3 umol/L in men; 6.6 - 26 umol/L in women	164 (92.1%)	164 (92.1%)	4 (2.2%)	0.22

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

BMJ Open 2021; 11:e048391. doi: 10.1136/bmjopen-2020-048391

Dennis A. et al. BMJ Open 2021; 11:e048391. doi: 10.1136/bmjopen-2020-048391
- Abnormal high (> 28.3 umol/L in men; > 26 umol/L in women) 10 (5.6%) 9 (6.2%) 1 (3.1%)

Total Iron binding capacity (TIBC)
- Normal (41 - 77 umol/L) 172 (97.2%) 141 (97.2%) 31 (96.9%) 1
- Abnormal low (< 41 umol/L) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 77 umol/L) 5 (2.8%) 4 (2.8%) 1 (3.1%)

Transferrin saturation
- Normal (20 - 55 %) 139 (78.5%) 120 (82.8%) 19 (59.4%) 0.011
- Abnormal low (< 20 %) 34 (19.2%) 22 (15.2%) 12 (37.5%)
- Abnormal high (> 55 %) 4 (2.3%) 3 (2.1%) 1 (3.1%)

High sensitivity CRP
- Normal (0 - 5 mg/L) 146 (92.4%) 124 (93.9%) 22 (84.6%) 0.112
- Abnormal low (< 0 mg/L) 0 (0%) 0 (0%) 0 (0%)
- Abnormal high (> 5 mg/L) 12 (7.6%) 8 (6.1%) 4 (15.4%)
Table S3: Blood investigations in 201 low-risk individuals sub-divided by those with severe or moderate post-COVID syndrome (PCS)

Measurement	All	Moderate PCS	Severe PCS	p-value
Haemoglobin				
• Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	166 (96%)	62 (96.9%)	104 (95.4%)	1
• Abnormal low (< 130 g/L in men; < 115 g/L in women)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
• Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Haematocrit (HCT)				
• Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	168 (97.1%)	64 (100%)	104 (95.4%)	0.274
• Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.2%)	0 (0%)	2 (1.8%)	
• Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	0 (0%)	3 (2.8%)	
Red cell count				
• Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	167 (96.5%)	61 (95.3%)	106 (97.2%)	0.825
• Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	4 (2.3%)	2 (3.1%)	2 (1.8%)	
• Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	2 (1.2%)	1 (1.6%)	1 (0.9%)	
Mean cell volume (MCV)				
• Normal (80 - 99 fl)	170 (98.3%)	62 (96.9%)	108 (99.1%)	0.556
• Abnormal low (< 80 fl)	3 (1.7%)	2 (3.1%)	1 (0.9%)	
• Abnormal high (> 99 fl)	0 (0%)	0 (0%)	0 (0%)	
Mean corpuscular haemoglobin (MCH)				
• Normal (26 - 33.5 pg)	170 (98.3%)	61 (95.3%)	109 (100%)	0.049
• Abnormal low (< 26 pg)	2 (1.2%)	2 (3.1%)	0 (0%)	
• Abnormal high (> 33.5 pg)	1 (0.6%)	1 (1.6%)	0 (0%)	
Mean corpuscular haemoglobin concentration (MCHC)				
• Normal (300 - 350 g/L)	131 (75.7%)	53 (82.8%)	78 (71.6%)	0.103
• Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)	
• Abnormal high (> 350 g/L)	42 (24.3%)	11 (17.2%)	31 (28.4%)	
Red cell distribution width (RDW)				
• Normal (11.5 - 15)	157 (91.3%)	59 (92.2%)	98 (90.7%)	0.339
• Abnormal low (< 11.5)	10 (5.8%)	2 (3.1%)	8 (7.4%)	
• Abnormal high (> 15)	5 (2.9%)	3 (4.7%)	2 (1.9%)	
Platelet count				
• Normal (150 - 400 x10^9/L)	161 (93.1%)	59 (92.2%)	102 (93.6%)	0.417
• Abnormal low (< 150 x10^9/L)	2 (1.2%)	0 (0%)	2 (1.8%)	
• Abnormal high (> 400 x10^9/L)	10 (5.8%)	5 (7.8%)	5 (4.6%)	
Mean platelet volume (MPV)				
• Normal (7 - 13 fl)	172 (99.4%)	64 (100%)	108 (99.1%)	1
• Abnormal low (< 7 fl)	0 (0%)	0 (0%)	0 (0%)	
	Normal (3 - 10 x10^9/L)	Abnormal low (< 3 x10^9/L)	Abnormal high (> 10 x10^9/L)	
------------------	-------------------------	-----------------------------	------------------------------	
White cell count	167 (96.5%)	0 (0%)	6 (3.5%)	
	61 (95.3%)	0 (0%)	3 (4.7%)	
	106 (97.2%)	0 (0%)	3 (2.8%)	
	0.671			
Neutrophils				
	159 (91.9%)	11 (6.4%)	3 (1.7%)	
	57 (89.1%)	5 (7.8%)	2 (3.1%)	
	102 (93.6%)	6 (5.5%)	1 (0.9%)	
	0.468			
Lymphocytes				
	156 (90.2%)	17 (9.8%)	0 (0%)	
	56 (87.5%)	8 (12.5%)	0 (0%)	
	100 (91.7%)	9 (8.3%)	0 (0%)	
	0.43			
Monocytes				
	171 (98.8%)	1 (0.6%)	1 (0.6%)	
	63 (98.4%)	0 (0%)	1 (1.6%)	
	108 (99.1%)	1 (0.9%)	0 (0%)	
	0.604			
Eosinophils				
	167 (96.5%)	0 (0%)	6 (3.5%)	
	63 (98.4%)	0 (0%)	1 (1.6%)	
	104 (95.4%)	5 (4.6%)		
	0.415			
Basophils				
	173 (100%)	0 (0%)	0 (0%)	
	64 (100%)	0 (0%)	0 (0%)	
	109 (100%)	0 (0%)	0 (0%)	
	N/A			
Erythrocyte sedimentation rate (ESR)				
	160 (91.4%)	15 (8.6%)	4 (6.1%)	
	62 (93.9%)	4 (6.1%)	11 (10.1%)	
	98 (89.9%)			
	0.416			
Sodium				
	168 (97.1%)	4 (2.3%)	1 (0.6%)	
	63 (98.4%)	1 (1.6%)	0 (0%)	
	105 (96.3%)	3 (2.8%)	1 (0.9%)	
	1			
Potassium				
	105 (62.1%)	64 (37.9%)	105 (65.4%)	
	35 (56.5%)	27 (43.5%)	70 (65.4%)	
	0.255			
Chloride				
	166 (96%)	4 (2.3%)	3 (1.7%)	
	62 (96.9%)	1 (1.6%)	1 (1.6%)	
	104 (95.4%)	3 (2.8%)	2 (1.8%)	
	1			
Supplemental material	BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)			

Bicarbonate
- **Normal (22 - 29 mmol/L)**: 147 (85%), 55 (85.9%), 92 (84.4%) 0.946
- **Abnormal low (< 22 mmol/L)**: 16 (9.2%), 6 (9.4%), 10 (9.2%)
- **Abnormal high (> 29 mmol/L)**: 10 (5.8%), 3 (4.7%), 7 (6.4%)

Urea
- **Normal (1.7 - 8.3 mmol/L)**: 173 (100%), 64 (100%), 109 (100%) N/A
- **Abnormal low (< 1.7 mmol/L)**: 0 (0%), 0 (0%), 0 (0%)
- **Abnormal high (> 8.3 mmol/L)**: 0 (0%), 0 (0%), 0 (0%)

Creatinine
- **Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women)**: 156 (90.2%), 59 (92.2%), 97 (89%) 0.705
- **Abnormal low (< 66 umol/L in men; < 49 umol/L in women)**: 12 (6.9%), 3 (4.7%), 9 (8.3%)
- **Abnormal high (> 112 umol/L in men; > 92 umol/L in women)**: 5 (2.9%), 2 (3.1%), 3 (2.8%)

Bilirubin
- **Normal (0 - 20 umol/L)**: 170 (98.3%), 63 (98.4%), 107 (98.2%) 1
- **Abnormal low (< 0 umol/L)**: 0 (0%), 0 (0%), 0 (0%)
- **Abnormal high (> 20 umol/L)**: 3 (1.7%), 1 (1.6%), 2 (1.8%)

Alkaline phosphatase
- **Normal (40 - 129 IU/L in men; 35 - 104 IU/L in women)**: 164 (94.8%), 59 (92.2%), 105 (96.3%) 0.185
- **Abnormal low (< 40 IU/L in men; < 35 IU/L in women)**: 7 (4%), 3 (4.7%), 4 (3.7%)
- **Abnormal high (> 129 IU/L in men; > 104 IU/L in women)**: 2 (1.2%), 2 (3.1%), 0 (0%)

Aspartate transferase
- **Normal (0 - 37 IU/L in men; 0 - 31 IU/L in women)**: 157 (92.9%), 59 (93.7%), 98 (92.5%) 1
- **Abnormal low (< 0 IU/L in men; < 0 IU/L in women)**: 0 (0%), 0 (0%), 0 (0%)
- **Abnormal high (> 37 IU/L in men; > 31 IU/L in women)**: 12 (7.1%), 4 (6.3%), 8 (7.5%)

Alanine transferase
- **Normal (10 - 50 IU/L in men; 10 - 35 IU/L in women)**: 146 (84.4%), 56 (87.5%), 90 (82.6%) 0.512
- **Abnormal low (< 10 IU/L in men; < 10 IU/L in women)**: 2 (1.2%), 1 (1.6%), 1 (0.9%)
- **Abnormal high (> 50 IU/L in men; > 35 IU/L in women)**: 25 (14.5%), 7 (10.9%), 18 (16.5%)

Lactate dehydrogenase (LDH)
- **Normal (135 - 225 IU/L in men; 135 - 214 IU/L in women)**: 137 (80.1%), 51 (81%), 86 (79.6%) 0.24
- **Abnormal low (< 135 IU/L in men; < 135 IU/L in women)**: 5 (2.9%), 0 (0%), 5 (4.6%)
- **Abnormal high (> 225 IU/L in men; > 214 IU/L in women)**: 29 (17%), 12 (19%), 17 (15.7%)

Creatinine kinase (CK)
- **Normal (38 - 204 IU/L in men; 26 - 140 IU/L in women)**: 159 (91.9%), 56 (87.5%), 103 (94.5%) 0.28
- **Abnormal low (< 38 IU/L in men; < 26 IU/L in women)**: 2 (1.2%), 1 (1.6%), 1 (0.9%)
- **Abnormal high (> 204 IU/L in men; > 140 IU/L in women)**: 12 (6.9%), 7 (10.9%), 5 (4.6%)

Gamma glutamyl transferase
- **Normal (10 - 71 IU/L in men; 6 - 42 IU/L in women)**: 161 (93.1%), 60 (93.8%), 101 (92.7%) 0.426
- **Abnormal low (< 10 IU/L in men; < 6 IU/L in women)**: 3 (1.7%), 0 (0%), 3 (2.8%)
- **Abnormal high (> 71 IU/L in men; > 42 IU/L in women)**: 9 (5.2%), 4 (6.2%), 5 (4.6%)

Total protein
- **Normal (63 - 83 g/L)**: 168 (97.1%), 63 (98.4%), 105 (96.3%) 0.792
- **Abnormal low (< 63 g/L)**
 - 3 (1.7%)
 - 1 (1.6%)
 - 2 (1.8%)

- **Abnormal high (> 83 g/L)**
 - 2 (1.2%)
 - 0 (0%)
 - 2 (1.8%)

Albumin

- **Normal (34 - 50 g/L)**
 - 162 (93.6%)
 - 59 (92.2%)
 - 103 (94.5%)
 - 0.538

- **Abnormal low (< 34 g/L)**
 - 0 (0%)
 - 0 (0%)
 - 0 (0%)

- **Abnormal high (> 50 g/L)**
 - 11 (6.4%)
 - 5 (7.8%)
 - 6 (5.5%)

** Globulin**

- **Normal (19 - 35 g/L)**
 - 168 (97.1%)
 - 61 (95.3%)
 - 107 (98.2%)
 - 0.616

- **Abnormal low (< 19 g/L)**
 - 3 (1.7%)
 - 2 (3.1%)
 - 1 (0.9%)

- **Abnormal high (> 35 g/L)**
 - 2 (1.2%)
 - 1 (1.6%)
 - 1 (0.9%)

** Calcium**

- **Normal (2.2 - 2.6 mmol/L)**
 - 167 (96.5%)
 - 62 (96.9%)
 - 105 (96.3%)
 - 0.525

- **Abnormal low (< 2.2 mmol/L)**
 - 2 (1.2%)
 - 0 (0%)
 - 2 (1.8%)

- **Abnormal high (> 2.6 mmol/L)**
 - 4 (2.3%)
 - 2 (3.1%)
 - 2 (1.8%)

** Magnesium**

- **Normal (0.6 - 1 mmol/L)**
 - 171 (98.8%)
 - 63 (98.4%)
 - 108 (99.1%)
 - 0.604

- **Abnormal low (< 0.6 mmol/L)**
 - 1 (0.6%)
 - 1 (1.6%)
 - 0 (0%)

- **Abnormal high (> 1 mmol/L)**
 - 1 (0.6%)
 - 0 (0%)
 - 1 (0.9%)

** Phosphate**

- **Normal (0.87 - 1.45 mmol/L)**
 - 145 (83.8%)
 - 55 (85.9%)
 - 90 (82.6%)
 - 0.824

- **Abnormal low (< 0.87 mmol/L)**
 - 23 (13.3%)
 - 8 (12.5%)
 - 15 (13.8%)

- **Abnormal high (> 1.45 mmol/L)**
 - 5 (2.9%)
 - 1 (1.6%)
 - 4 (3.7%)

** Uric acid**

- **Normal (266 - 474 umol/L in men; 175 - 363 umol/L in women)**
 - 145 (83.8%)
 - 53 (82.8%)
 - 92 (84.4%)
 - 0.804

- **Abnormal low (< 266 umol/L in men; < 175 umol/L in women)**
 - 18 (10.4%)
 - 8 (12.5%)
 - 10 (9.2%)

- **Abnormal high (> 474 umol/L in men; > 363 umol/L in women)**
 - 10 (5.8%)
 - 3 (4.7%)
 - 7 (6.4%)

** Triglycerides**

- **Normal (< 2.3 mmol/L)**
 - 10 (100%)
 - 6 (100%)
 - 4 (100%)
 - N/A

- **Abnormal high (> 2.3 mmol/L)**
 - 0 (0%)
 - 0 (0%)
 - 0 (0%)

** Fasting triglycerides**

- **Normal (< 2.3 mmol/L)**
 - 144 (88.3%)
 - 52 (89.7%)
 - 92 (87.6%)
 - 0.802

- **Abnormal high (> 2.3 mmol/L)**
 - 19 (11.7%)
 - 6 (10.3%)
 - 13 (12.4%)

** Cholesterol**

- **Normal (< 5 mmol/L)**
 - 4 (40%)
 - 3 (50%)
 - 1 (25%)
 - 0.571

- **Abnormal high (> 5 mmol/L)**
 - 6 (60%)
 - 3 (50%)
 - 3 (75%)

** Fasting cholesterol**

- **Normal (< 5 mmol/L)**
 - 96 (58.9%)
 - 39 (67.2%)
 - 57 (54.3%)
 - 0.135

- **Abnormal high (> 5 mmol/L)**
 - 67 (41.1%)
 - 19 (32.8%)
 - 48 (45.7%)

** HDL cholesterol**

- **Normal (0.9 - 1.5 mmol/L in men; 1.2 - 1.7 mmol/L in women)**
 - 103 (59.5%)
 - 38 (59.4%)
 - 65 (59.6%)
 - 0.539

- **Abnormal low (< 0.9 mmol/L in men; < 1.2 mmol/L in women)**
 - 16 (9.2%)
 - 4 (6.2%)
 - 12 (11%)
| Parameter | Normal (< 3 mmol/L) | Abnormal high (> 3 mmol/L) | Unspecified |
|--|---------------------|----------------------------|-------------|
| LDL cholesterol | 111 (65.7%) | 58 (34.3%) | |
| Iron | 160 (92.5%) | 10 (5.8%) | |
| Total iron binding capacity (TIBC) | 167 (97.1%) | 10 (5.8%) | |
| Transferrin saturation | 135 (78.5%) | 4 (2.9%) | |
| High sensitivity CRP | 141 (92.2%) | 12 (7.8%) | |
Web Supplementary Materials

Supplementary methods .. 2
Supplementary references 4
Supplementary results .. 6
Figure S1: Comparison of patients to control quantitative image derived measures in a subset of those scanned at 1.5T ... 6
Figure S2: Organ impairment in severe versus moderate post COVID syndrome (n=201) 7
Table S1: Reference ranges to define organ impairment .. 7
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by hospitalisation or managed at home 8
Table S3: Blood investigations in 201 low-risk individuals, sub-divided by those with severe of moderate post-COVID syndrome 13

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s)
Supplementary methods

Blood investigations

Blood investigations included: full blood count, serum biochemistry (sodium, chloride, bicarbonate, urea, creatinine, bilirubin, alkaline phosphatase, aspartate transferase, alanine transferase, lactate dehydrogenase, creatinine kinase, gamma-glutamyl transpeptidase, total protein, albumin, globulin, calcium, magnesium, phosphate, uric acid, fasting triglycerides, cholesterol (total, HDL, LDL), iron, iron-binding capacity (unsaturated and total) and inflammatory markers (erythrocyte sedimentation rate, ESR; high sensitivity-C-Reactive Protein, CRP) (TDL laboratories, London).

Imaging

All the imaging methods can be deployed on standard clinical MRI scanners and are generally expedited approaches of methods previously demonstrated in the scientific literature that unless stated each utilise a short (<14seconds) breath-hold.

Cardiac imaging involved complete coverage of the heart with a short-axis stack (to the valve plane) of cine images acquired using cardiac gating, this acquisition mirrors that in UK Biobank and is a standardized approach(S1). Three short-axis cardiac T1 maps are acquired using the MOLLI-T1 approach at the basal, mid and apical levels of the left ventricle.

Liver and pancreas imaging used the LiverMultiScan acquisition protocol (Perspectum, Oxford, UK), which involves 3 single 2D axial slice breath-held acquisitions that separately are sensitive to the fat content (proton density fat fraction, or PDFF), to T2* (which is representative of liver iron content) and a MOLLI-T1 measurement (providing a measurement of tissue water), additionally a volumetric scan was used that covers the entire liver(S2).

Two dynamic cine MR acquisitions of the lung were acquired in the coronal plane with a 306.91 ms temporal resolution: one 40 s acquisition with the patient instructed to breathe normally and a second 30 s acquisition with the patient instructed to breathe deeply.

Kidney imaging used a single coronal view that was able to image both kidneys, imaging contrasts were MOLLI-T1, T2* (for blood oxygen level assessment), and diffusion imaging that was acquired during free-breathing in 2minutes.

Image Analysis

Cardiac MRI Analysis: Experienced cardiac MRI analysts used CVI42 (Cardiovascular Imaging Inc, Canada) to manually trace the end-diastolic and end-systolic phases in each of the short-axis views, following the standard UK BioBank evaluation approach as previously described(S3). This analysis yielded: For both the left and the right ventricle; End diastolic volume, End systolic volume, Stroke volume and Ejection Fraction. Additionally left ventricular muscle mass and wall thickness are determined from the function data. Cardiac T1 was determined for each of the 16 cardiac segments (of the AHA 17 segment model)(S4).

Liver Images were analysed by data analysts experienced at using the LiverMultiScan (Perspectum, Oxford, UK) software. This yielded global metrics in each liver of PDFF (proton density fat fraction), T2*, and cT1 (cT1 is a measurement of T1 that has been corrected for the confounding effects of iron and standardised to 3 Tesla; it is elevated with disease).

Pancreas images were analysed in a similar manner to the above except the software used was not FDA-cleared and iron correction was not performed. The output T1 was standardized to 3 Tesla.
Lung cine imaging allowed the measurement of the area of the left and right lungs through the breathing cycle in the coronal plane, which used automated methods that were reviewed by image analysts. The periodicity of the area fluctuations was used to determine the respiratory rate. All analysis was performed in-house using MATLAB based tools. The method was validated by measuring the correlation between the change in area and the forced vital capacity, the latter being measured using spirometry.

Patient respiration was assessed by imaging a single 2D coronal slice of the lungs over 30 seconds using a dynamic cine MRI acquisition, during which the patient instructed to breathe deeply.

Kidney images were assessed using in-house tools to fit the parametric maps and allow trained analysts to make measurements. The T2* maps were analysed by the Twelve Layer Concentric Object (TLCO) approach that generates a gradient of relaxation values, in the other evaluations the cortex and medulla were manually segmented using the MOLLI-T1 map or the b=0 (in the case of diffusion) to guide the boundary.

In all cases the volumetric assessments utilised an initial in-house developed machine-learning driven segmentation, and then a manual step that may be used to fine tune boundaries. This approach was also used in the body composition analysis, which for reasons of speed was performed only in a single slice (an axial view that passes through L3 of the spine) in this work.
Supplementary references

S1. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S. UK Biobank's cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson. 2016 Feb 1;18:8.

S2. Banerjee R, Pavlides M, Tunnicliffe EM, Piechnik SK, Sarania N, Philips R, Collier JD, Booth JC, Schneider JE, Wang LM, Delaney DW, Fleming KA, Robson MD, Barnes E, Neubauer S. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J Hepatol. 2014 Jan;60(1):69-77. doi: 10.1016/j.jhep.2013.09.002.

S3. Petersen SE, Aung N, Sanghvi MM, Zemrak F, Fung K, Paiva JM, Francis JM, Khanji MY, Lukaschuk E, Lee AM, Carapella V, Kim YJ, Leeson P, Piechnik SK, Neubauer S. Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J Cardiovasc Magn Reson. 2017 Feb 3;19(1):18.

S4. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002 Jan 29;105(4):539-42.

S5. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015 Apr 18;17(1):29.

S6. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nikolidopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Rutten FH, Schmitzko L, van der Meer P; ESC Scientific Document Group. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 Jul 14;37(27):2129-2200.

S7. Tsao CW, Lyass A, Larson MG, Cheng S, Lam CS, Aragam JR, Benjamin EJ, Vasan RS. Prognosis of adults with borderline left ventricular ejection fraction. JACC Heart Fail. 2016 Jun;4(6):502-10.

S8. Chalasani, Naga, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67.1 (2018): 328-357.

S9. Mojtahed A, Kelly C, Herlihy A, et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases. Abdominal Radiol 2019; 44: 72–84.

S10. Jayaswal AN, Levick C, Selvaraj EA, et al. Prognostic value of multiparametric MRI, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int 2020; in press. DOI:doi:10.1111/liv.14625.

S11. Jayaswal ANA, Levick C, Selvaraj EA, Dennis A, Booth JC, Collier J, Clobbold J, Tunnicliffe EM, Kelly M, Barnes E, Neubauer S, Banerjee R, Pavlides M. Prognostic value of multiparametric magnetic
resonance imaging, transient elastography and blood-based fibrosis markers in patients with chronic liver disease. Liver Int. 2020 Jul 30. doi: 10.1111/liv.14625

S12. Chouhan MD, Firmin L, Read S, Amin Z, Taylor SA. Quantitative pancreatic MRI: a pathology-based review. Br J Radiol. 2019 Jul;92(1099):20180941.

S13. Harrington KA, Shukla-Dave A, Paudyal R, Do RKG. MRI of the Pancreas. J Magn Reson Imaging. 2020 Apr 17. doi: 10.1002/jmri.27148.

S14. Gillis KA, McComb C, Patel RK, et al. Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease. Nephron 2016; 133: 183–92.

S15. Peperhove M, Vo Chieu VD, Jang M-S, et al. Assessment of acute kidney injury with T1 mapping MRI following solid organ transplantation. Eur Radiol 2018; 28: 44–50.

S16. Chow KU, Luxembourg B, Seifried E, Bonig H. Spleen size is significantly influenced by body height and sex: establishment of normal values for spleen size at US with a cohort of 1200 healthy individuals. Radiology 2015; 279: 306–13.
Supplementary results

Sub-group analysis

Data from healthy participants (n=36) scanned on the 1.5T Siemens MRI scanner were compared to the sub-group of patients (N=121) scanned on the same MRI machine. Median global cardiac T1 was elevated in the patient group (979 ms versus 962ms, P=0.001). Lung fractional area difference, a measure of relaxed vital capacity, was significantly lower in the patient group (41% versus 48%, P<.001). Kidney inflammation (1148 vs 1084 ms, p <0.001) was significantly elevated in the patients as were markers of organ fat (liver 2.6% versus 2.1%, p=0.008; pancreas: 4.3% versus 2.5%, p<0.001) ([Figure S1](#)).

Figure S1: Box plots showing median and interquartile ranges for the healthy control group and the patient group for those scanned at 1.5T. Comparisons between groups were performed using two-sided Kolmogorov-Smirnov (KS) tests. Significance stars are * P<.05; ** P<.01, ***P<.001.
Table S1: Reference ranges for organ impairment, defined as a value that was greater than the mean plus 2 standard deviations of that from the control group for most; mean minus 2 standard deviations for left ventricular ejection fraction and lung fractional area difference for the 1.5T scans. For the 3T scans, this was the value as reported by Raman et al (2020).

Test	1.5T Reference range	3T Reference range
Left ventricular ejection fraction (LVEF) (S4-S7)	≤ 51.5%	----
Increased end-diastolic volume (S4-S7)	≥ 264ml in men	≥ 206ml in women
Myocarditis (S4-S7)	≥ 1015 ms	≥ 1238ms
Deep breathing fractional area change*	≤ 33%	----
Liver volume (S8-S11)	≤ 1.93L	----
Liver fat (S8-S11)	≥ 4.8%	----
Liver inflammation (S8-S11)	≥ 784 ms	----
Pancreatic fat (S12-S13)	≥ 4.6%	----
Pancreatic inflammation (S12-13)	≥ 803ms	----
Renal Cortical T1(S14-S15)	≥ 1227ms	≥ 1652ms
Spleen volume(S16)	≤ 0.35L	----

* Our lung imaging protocol captured 2D dynamic imaging of the lungs as the patient breathed. We delineated the lungs at maximum inspiration and again at maximum expiration and take the difference to give a proxy of ‘vital capacity’, which correlates well with forced vital capacity (r = 0.61, P<.001) from spirometry. Given the measure was associated with body size, we divided the difference in maximum inspiration and expiration by maximum inspiration to give a normalised ‘lung ejection fraction’. In order to assess whether an individual’s ‘lung ejection fraction’ was abnormal, it was measured in 39 controls, characterising a healthy normal range of the mean +/- 2 standard deviations, with a lower score representing poorer lung health. 31% (0.31) was the lower limit for normal from our controls and therefore selected as the threshold for respiratory impairment.
Table S2: Blood investigations in 201 low-risk individuals with post-COVID syndrome, sub-divided by those who were hospitalised versus those who were managed at home

Measurement	All	Managed at home	Hospitalised	p-value	
Haemoglobin					
Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.575	
Abnormal low (< 130 g/L in men; < 115 g/L in women)	5 (2.8%)	4 (2.7%)	1 (3.1%)		
Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	2 (1.4%)	1 (3.1%)		
Haematocrit (HCT)					
Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	173 (97.2%)	142 (97.3%)	31 (96.9%)	0.386	
Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.1%)	1 (0.7%)	1 (3.1%)		
Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	3 (2.1%)	0 (0%)		
Red cell count					
Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	170 (95.5%)	140 (95.9%)	30 (93.8%)	0.287	
Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	5 (2.8%)	3 (2.1%)	2 (6.2%)		
Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	3 (1.7%)	3 (2.1%)	0 (0%)		
Mean cell volume (MCV)					
Normal (80 - 99 fl.)	174 (97.8%)	142 (97.3%)	32 (100%)	1	
Abnormal low (< 80 fl.)	4 (2.2%)	4 (2.7%)	0 (0%)		
Abnormal high (> 99 fl.)	0 (0%)	0 (0%)	0 (0%)		
Mean corpuscular haemoglobin (MCH)					
Normal (26 - 33.5 pg)	174 (97.8%)	143 (97.9%)	31 (96.9%)	0.249	
Abnormal low (< 26 pg)	3 (1.7%)	3 (2.1%)	0 (0%)		
Abnormal high (> 33.5 pg)	1 (0.6%)	0 (0%)	1 (3.1%)		
Mean corpuscular haemoglobin concentration (MCHC)					
Normal (300 - 350 g/L)	135 (75.8%)	109 (74.7%)	26 (81.2%)	0.501	
Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 350 g/L)	43 (24.2%)	37 (25.3%)	6 (18.8%)		
Red cell distribution width (RDW)					
Normal (11.5 - 15)	161 (91%)	129 (89%)	32 (100%)	0.218	
Abnormal low (< 11.5)	10 (5.6%)	10 (6.9%)	0 (0%)		
Abnormal high (> 15)	6 (3.4%)	6 (4.1%)	0 (0%)		
Platelet count					
Normal (150 - 400 x10^9/L)	166 (93.3%)	138 (94.5%)	28 (87.5%)	0.152	
Abnormal low (< 150 x10^9/L)	2 (1.1%)	2 (1.4%)	0 (0%)		
Abnormal high (> 400 x10^9/L)	10 (5.6%)	6 (4.1%)	4 (12.5%)		
Mean platelet volume (MPV)					
Normal (7 - 13 fl.)	177 (99.4%)	145 (99.3%)	32 (100%)	1	
Abnormal low (< 7 fl.)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 13 fl.)	1 (0.6%)	1 (0.7%)	0 (0%)		
White cell count					
Test	Normal (N)	Abnormal low (NL)	Abnormal high (NH)	Count (n)	% Count
-----------------------	------------	-------------------	--------------------	-----------	---------
Neutrophils					
Normal (3 - 10 x10^9/L)	172 (96.6%)	140 (95.9%)	32 (100%)	0.593	
Abnormal low (< 3 x10^9/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 10 x10^9/L)	6 (3.4%)	6 (4.1%)	0 (0%)		
Lymphocytes					
Normal (1.2 - 3.65 x10^9/L)	163 (91.6%)	133 (91.1%)	30 (93.8%)	1	
Abnormal low (< 1.2 x10^9/L)	12 (6.7%)	10 (6.8%)	2 (6.2%)		
Abnormal high (> 3.65 x10^9/L)	3 (1.7%)	3 (2.1%)	0 (0%)		
Monocytes					
Normal (0.2 - 1 x10^9/L)	176 (98.9%)	144 (98.6%)	32 (100%)	1	
Abnormal low (< 0.2 x10^9/L)	1 (0.6%)	1 (0.7%)	0 (0%)		
Abnormal high (> 1 x10^9/L)	1 (0.6%)	1 (0.7%)	0 (0%)		
Eosinophils					
Normal (0 - 0.4 x10^9/L)	172 (96.6%)	141 (96.6%)	31 (96.9%)	1	
Abnormal low (< 0.4 x10^9/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 0.4 x10^9/L)	6 (3.4%)	5 (3.4%)	1 (3.1%)		
Basophils					
Normal (0 - 0.1 x10^9/L)	178 (100%)	146 (100%)	32 (100%)	N/A	
Abnormal low (< 0.1 x10^9/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 0.1 x10^9/L)	0 (0%)	0 (0%)	0 (0%)		
Erythrocyte sedimentation rate (ESR)					
Normal (1 - 20 mm/hr)	164 (91.1%)	136 (91.9%)	28 (87.5%)	0.491	
Abnormal low (< 1 mm/hr)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 20 mm/hr)	16 (8.9%)	12 (8.1%)	4 (12.5%)		
Sodium					
Normal (135 - 145 mmol/L)	173 (97.2%)	141 (96.6%)	32 (100%)	1	
Abnormal low (< 135 mmol/L)	4 (2.2%)	4 (2.7%)	0 (0%)		
Abnormal high (> 145 mmol/L)	1 (0.6%)	1 (0.7%)	0 (0%)		
Potassium					
Normal (3.5 - 5.1 mmol/L)	108 (62.1%)	87 (61.3%)	21 (65.6%)	0.692	
Abnormal low (< 3.5 mmol/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 5.1 mmol/L)	66 (37.9%)	55 (38.7%)	11 (34.4%)		
Chloride					
Normal (98 - 107 mmol/L)	171 (96.1%)	139 (95.2%)	32 (100%)	1	
Abnormal low (< 98 mmol/L)	4 (2.2%)	4 (2.7%)	0 (0%)		
Abnormal high (> 107 mmol/L)	3 (1.7%)	3 (2.1%)	0 (0%)		
Bicarbonate					
Normal (22 - 29 mmol/L)	150 (84.3%)	125 (85.6%)	25 (78.1%)	0.169	
Abnormal low (< 22 mmol/L)	18 (10.1%)	15 (10.3%)	3 (9.4%)		
Abnormal high (> 29 mmol/L)	10 (5.6%)	6 (4.1%)	4 (12.5%)		
Urea					

Test	Normal (0 - 7.0 mmol/L)	Abnormal low (< 0.4 mmol/L)	Abnormal high (> 7.0 mmol/L)	Abnormal low (< 0.3 mmol/L)	Abnormal high (> 7.0 mmol/L)	Abnormal low (< 0.3 mmol/L)	Abnormal high (> 7.0 mmol/L)
Creatinine	Normal (0 - 1.0 mmol/L)	Abnormal low (< 0.2 mmol/L)	Abnormal high (> 1.0 mmol/L)	Abnormal low (< 0.1 mmol/L)	Abnormal high (> 1.0 mmol/L)	Abnormal low (< 0.1 mmol/L)	Abnormal high (> 1.0 mmol/L)
Bilirubin	Normal (0 - 0.3 mg/dL)	Abnormal low (< 0.1 mg/dL)	Abnormal high (> 0.3 mg/dL)	Abnormal low (< 0.2 mg/dL)	Abnormal high (> 0.3 mg/dL)	Abnormal low (< 0.2 mg/dL)	Abnormal high (> 0.3 mg/dL)
Alkaline phosphatase	Normal (0 - 12 mg/dL)	Abnormal low (< 8 mg/dL)	Abnormal high (> 12 mg/dL)	Abnormal low (< 6 mg/dL)	Abnormal high (> 12 mg/dL)	Abnormal low (< 6 mg/dL)	Abnormal high (> 12 mg/dL)
Aspartate transferase	Normal (0 - 37 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 37 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 37 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 37 IU/L)
Alanine transferase	Normal (0 - 50 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 50 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 50 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 50 IU/L)
Lactate dehydrogenase (LDH)	Normal (0 - 25 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 25 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 25 IU/L)	Abnormal low (< 10 IU/L)	Abnormal high (> 25 IU/L)
Creatinine kinase (CK)	Normal (0 - 4.0 IU/L)	Abnormal low (< 2.0 IU/L)	Abnormal high (> 4.0 IU/L)	Abnormal low (< 2.0 IU/L)	Abnormal high (> 4.0 IU/L)	Abnormal low (< 2.0 IU/L)	Abnormal high (> 4.0 IU/L)
Gamma glutamyl transferase	Normal (0 - 0.5 g/L)	Abnormal low (< 0.3 g/L)	Abnormal high (> 0.5 g/L)	Abnormal low (< 0.3 g/L)	Abnormal high (> 0.5 g/L)	Abnormal low (< 0.3 g/L)	Abnormal high (> 0.5 g/L)
Total protein	Normal (0 - 8.0 g/L)	Abnormal low (< 6.0 g/L)	Abnormal high (> 8.0 g/L)	Abnormal low (< 6.0 g/L)	Abnormal high (> 8.0 g/L)	Abnormal low (< 6.0 g/L)	Abnormal high (> 8.0 g/L)
Albumin	Normal (0 - 3.0 g/L)	Abnormal low (< 2.0 g/L)	Abnormal high (> 3.0 g/L)	Abnormal low (< 2.0 g/L)	Abnormal high (> 3.0 g/L)	Abnormal low (< 2.0 g/L)	Abnormal high (> 3.0 g/L)
Globulin	Normal (0 - 1.0 g/L)	Abnormal low (< 0.8 g/L)	Abnormal high (> 1.0 g/L)	Abnormal low (< 0.8 g/L)	Abnormal high (> 1.0 g/L)	Abnormal low (< 0.8 g/L)	Abnormal high (> 1.0 g/L)

BMJ Open 2021; 11:e048391. doi: 10.1136/bmjopen-2020-048391
Parameter	Normal (19-35 g/L)	Abnormal low (<19 g/L)	Abnormal high (>35 g/L)	p-value
Calcium	173 (97.2%)	3 (1.7%)	2 (1.1%)	0.386
Magnesium	172 (96.6%)	3 (1.7%)	4 (2.2%)	0.43
Phosphate	150 (84.3%)	23 (12.9%)	5 (2.8%)	0.058
Uric acid	148 (83.1%)	19 (10.7%)	11 (6.2%)	0.067
Triglycerides	10 (100%)	0 (0%)	0 (0%)	N/A
Cholesterol	4 (40%)	6 (60%)	70 (41.7%)	0.04
HDL cholesterol	106 (59.6%)	16 (9%)	56 (31.5%)	0.075
LDL cholesterol	113 (64.9%)	61 (35.1%)	164 (92.1%)	0.011
Iron	164 (92.1%)	4 (2.2%)	135 (92.5%)	0.22

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Dennis A, et al. BMJ Open 2021; 11:e048391. doi: 10.1136/bmjopen-2020-048391
- Abnormal high (> 28.3 umol/L in men; > 26 umol/L in women): 10 (5.6%), 9 (6.2%), 1 (3.1%)

Total iron binding capacity (TIBC)
- Normal (41 - 77 umol/L): 172 (97.2%), 141 (97.2%), 31 (96.9%), 1
- Abnormal low (< 41 umol/L): 0 (0%), 0 (0%), 0 (0%)
- Abnormal high (> 77 umol/L): 5 (2.8%), 4 (2.8%), 1 (3.1%)

Transferrin saturation
- Normal (20 - 55 %): 139 (78.5%), 120 (82.8%), 19 (59.4%), 0.011
- Abnormal low (< 20 %): 34 (19.2%), 22 (15.2%), 12 (37.5%)
- Abnormal high (> 55 %): 4 (2.3%), 3 (2.1%), 1 (3.1%)

High sensitivity CRP
- Normal (0 - 5 mg/L): 146 (92.4%), 124 (93.9%), 22 (84.6%), 0.112
- Abnormal low (< 0 mg/L): 0 (0%), 0 (0%), 0 (0%)
- Abnormal high (> 5 mg/L): 12 (7.6%), 8 (6.1%), 4 (15.4%)

12
Table S3: Blood investigations in 201 low-risk individuals sub-divided by those with severe or moderate post-COVID syndrome (PCS)

Measurement	All	Moderate PCS	Severe PCS	p-value
Haemoglobin				
Normal (130 - 170 g/L in men; 115 - 155 g/L in women)	166 (96%)	62 (96.9%)	104 (95.4%)	1
Abnormal low (< 130 g/L in men; < 115 g/L in women)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
Abnormal high (> 170 g/L in men; > 155 g/L in women)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Haematocrit (HCT)				
Normal (0.37 - 0.5 in men; 0.33 - 0.45 in women)	168 (97.1%)	64 (100%)	104 (95.4%)	0.274
Abnormal low (< 0.37 in men; < 0.33 in women)	2 (1.2%)	0 (0%)	2 (1.8%)	
Abnormal high (> 0.5 in men; > 0.45 in women)	3 (1.7%)	0 (0%)	3 (2.8%)	
Red cell count				
Normal (4.4 - 5.8 x10^12/L in men; 3.95 - 5.15 x10^12/L in women)	167 (96.5%)	61 (95.3%)	106 (97.2%)	0.825
Abnormal low (< 4.4 x10^12/L in men; < 3.95 x10^12/L in women)	4 (2.3%)	2 (3.1%)	2 (1.8%)	
Abnormal high (> 5.8 x10^12/L in men; > 5.15 x10^12/L in women)	2 (1.2%)	1 (1.6%)	1 (0.9%)	
Mean cell volume (MCV)				
Normal (80 - 99 fl)	170 (98.3%)	62 (96.9%)	108 (99.1%)	0.556
Abnormal low (< 80 fl)	3 (1.7%)	2 (3.1%)	1 (0.9%)	
Abnormal high (> 99 fl)	0 (0%)	0 (0%)	0 (0%)	
Mean corpuscular haemoglobin (MCH)				
Normal (26 - 33.5 pg)	170 (98.3%)	61 (95.3%)	109 (100%)	0.049
Abnormal low (< 26 pg)	2 (1.2%)	2 (3.1%)	0 (0%)	
Abnormal high (> 33.5 pg)	1 (0.6%)	1 (1.6%)	0 (0%)	
Mean corpuscular haemoglobin concentration (MCHC)				
Normal (300 - 350 g/L)	131 (75.7%)	53 (82.8%)	78 (71.6%)	0.103
Abnormal low (< 300 g/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 350 g/L)	42 (24.3%)	11 (17.2%)	31 (28.4%)	
Red cell distribution width (RDW)				
Normal (11.5 - 15)	157 (91.3%)	59 (92.2%)	98 (90.7%)	0.339
Abnormal low (< 11.5)	10 (5.8%)	2 (3.1%)	8 (7.4%)	
Abnormal high (> 15)	5 (2.9%)	3 (4.7%)	2 (1.9%)	
Platelet count				
Normal (150 - 400 x10^9/L)	161 (93.1%)	59 (92.2%)	102 (93.6%)	0.417
Abnormal low (< 150 x10^9/L)	2 (1.2%)	0 (0%)	2 (1.8%)	
Abnormal high (> 400 x10^9/L)	10 (5.8%)	5 (7.8%)	5 (4.6%)	
Mean platelet volume (MPV)				
Normal (7 - 13 fl)	172 (99.4%)	64 (100%)	108 (99.1%)	1
Abnormal low (< 7 fl)	0 (0%)	0 (0%)	0 (0%)	
Test	Normal	Abnormal low	Abnormal high	
-----------------------------	--------------	--------------	---------------	
White cell count				
Normal (3 - 10 x10^9/L)	167 (96.5%)	61 (95.3%)	106 (97.2%)	
Abnormal low (< 3 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 10 x10^9/L)	6 (3.5%)	3 (4.7%)	3 (2.8%)	
Neutrophils				
Normal (2 - 7.5 x10^9/L)	159 (91.9%)	57 (89.1%)	102 (93.6%)	
Abnormal low (< 2 x10^9/L)	11 (6.4%)	5 (7.8%)	6 (5.5%)	
Abnormal high (> 7.5 x10^9/L)	3 (1.7%)	2 (3.1%)	1 (0.9%)	
Lymphocytes				
Normal (1.2 - 3.65 x10^9/L)	156 (90.2%)	56 (87.5%)	100 (91.7%)	
Abnormal low (< 1.2 x10^9/L)	17 (9.8%)	8 (12.5%)	9 (8.3%)	
Abnormal high (> 3.65 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Monocytes				
Normal (0.2 - 1 x10^9/L)	171 (98.8%)	63 (98.4%)	108 (99.1%)	
Abnormal low (< 0.2 x10^9/L)	1 (0.6%)	0 (0%)	1 (0.9%)	
Abnormal high (> 1 x10^9/L)	1 (0.6%)	1 (1.6%)	0 (0%)	
Eosinophils				
Normal (0.4 - 1 x10^9/L)	167 (96.5%)	63 (98.4%)	104 (95.4%)	
Abnormal low (< 0 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.4 x10^9/L)	6 (3.5%)	1 (1.6%)	5 (4.6%)	
Basophils				
Normal (0 - 0.1 x10^9/L)	173 (100%)	64 (100%)	109 (100%)	
Abnormal low (< 0 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 0.1 x10^9/L)	0 (0%)	0 (0%)	0 (0%)	
Erythrocyte sedimentation rate (ESR)				
Normal (1 - 20 mm/hr)	160 (91.4%)	62 (93.9%)	98 (89.9%)	
Abnormal low (< 1 mm/hr)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 20 mm/hr)	15 (8.6%)	4 (6.1%)	11 (10.1%)	
Sodium				
Normal (135 - 145 mmol/L)	168 (97.1%)	63 (98.4%)	105 (96.3%)	
Abnormal low (< 135 mmol/L)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
Abnormal high (> 145 mmol/L)	1 (0.6%)	0 (0%)	1 (0.9%)	
Potassium				
Normal (3.5 - 5.1 mmol/L)	105 (62.1%)	35 (56.5%)	70 (65.4%)	
Abnormal low (< 3.5 mmol/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 5.1 mmol/L)	64 (37.9%)	27 (43.5%)	37 (34.6%)	
Chloride				
Normal (98 - 107 mmol/L)	166 (96%)	62 (96.9%)	104 (95.4%)	
Abnormal low (< 98 mmol/L)	4 (2.3%)	1 (1.6%)	3 (2.8%)	
Abnormal high (> 107 mmol/L)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Supplemental material

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).

Bicarbonate				
Normal (22 - 29 mmol/L)	147 (85%)	55 (85.9%)	92 (84.4%)	0.946
Abnormal low (< 22 mmol/L)	16 (9.2%)	6 (9.4%)	10 (9.2%)	
Abnormal high (> 29 mmol/L)	10 (5.8%)	3 (4.7%)	7 (6.4%)	

Urea				
Normal (1.7 - 8.3 mmol/L)	173 (100%)	64 (100%)	109 (100%)	N/A
Abnormal low (< 1.7 mmol/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 8.3 mmol/L)	0 (0%)	0 (0%)	0 (0%)	

Creatinine				
Normal (66 - 112 umol/L in men; 49 - 92 umol/L in women)	156 (90.2%)	59 (92.2%)	97 (89%)	0.705
Abnormal low (< 66 umol/L in men; < 49 umol/L in women)	12 (6.9%)	3 (4.7%)	9 (8.3%)	
Abnormal high (> 112 umol/L in men; > 92 umol/L in women)	5 (2.9%)	2 (3.1%)	3 (2.8%)	

Bilirubin				
Normal (0 - 20 umol/L)	170 (98.3%)	63 (98.4%)	107 (98.2%)	1
Abnormal low (< 0 umol/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 20 umol/L)	3 (1.7%)	1 (1.6%)	2 (1.8%)	

Alkaline phosphatase				
Normal (40 - 129 IU/L in men; 35 - 104 IU/L in women)	164 (94.8%)	59 (92.2%)	105 (96.3%)	0.185
Abnormal low (< 40 IU/L in men; < 35 IU/L in women)	7 (4%)	3 (4.7%)	4 (3.7%)	
Abnormal high (> 129 IU/L in men; > 104 IU/L in women)	2 (1.2%)	2 (3.1%)	0 (0%)	

Aspartate transferase				
Normal (0 - 37 IU/L in men; 0 - 31 IU/L in women)	157 (92.9%)	59 (93.7%)	98 (92.5%)	1
Abnormal low (< 0 IU/L in men; < 0 IU/L in women)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 37 IU/L in men; > 31 IU/L in women)	12 (7.1%)	4 (6.3%)	8 (7.5%)	

Alanine transferase				
Normal (10 - 50 IU/L in men; 10 - 35 IU/L in women)	146 (84.4%)	56 (87.5%)	90 (82.6%)	0.512
Abnormal low (< 10 IU/L in men; < 10 IU/L in women)	2 (1.2%)	1 (1.6%)	1 (0.9%)	
Abnormal high (> 50 IU/L in men; > 35 IU/L in women)	25 (14.5%)	7 (10.9%)	18 (16.5%)	

Lactate dehydrogenase (LDH)				
Normal (135 - 225 IU/L in men; 135 - 214 IU/L in women)	137 (80.1%)	51 (81%)	86 (79.6%)	0.24
Abnormal low (< 135 IU/L in men; < 135 IU/L in women)	5 (2.9%)	0 (0%)	5 (4.6%)	
Abnormal high (> 225 IU/L in men; > 214 IU/L in women)	29 (17%)	12 (19%)	17 (15.7%)	

Creatine kinase (CK)				
Normal (38 - 204 IU/L in men; 26 - 140 IU/L in women)	159 (91.9%)	56 (87.5%)	103 (94.5%)	0.28
Abnormal low (< 38 IU/L in men; < 26 IU/L in women)	2 (1.2%)	1 (1.6%)	1 (0.9%)	
Abnormal high (> 204 IU/L in men; > 140 IU/L in women)	12 (6.9%)	7 (10.9%)	5 (4.6%)	

Gamma glutamyl transferase				
Normal (10 - 71 IU/L in men; 6 - 42 IU/L in women)	161 (93.1%)	60 (93.8%)	101 (92.7%)	0.426
Abnormal low (< 10 IU/L in men; < 6 IU/L in women)	3 (1.7%)	0 (0%)	3 (2.8%)	
Abnormal high (> 71 IU/L in men; > 42 IU/L in women)	9 (5.2%)	4 (6.2%)	5 (4.6%)	

Total protein				
Normal (63 - 83 g/L)	168 (97.1%)	63 (98.4%)	105 (96.3%)	0.792
Albumin				
---	---	---	---	
Abnormal low (< 63 g/L)	3 (1.7%)	1 (1.6%)	2 (1.8%)	
Abnormal high (> 83 g/L)	2 (1.2%)	0 (0%)	2 (1.8%)	
Normal (34 - 50 g/L)	162 (93.6%)	59 (92.2%)	103 (94.5%)	
Abnormal low (< 34 g/L)	0 (0%)	0 (0%)	0 (0%)	
Abnormal high (> 50 g/L)	11 (6.4%)	5 (7.8%)	6 (5.5%)	

Magnesium			
Abnormal low (< 0.6 mmol/L)	1 (0.6%)	1 (1.6%)	0 (0%)
Normal (0.6 - 1 mmol/L)	171 (98.8%)	63 (95.3%)	108 (98.2%)
Abnormal high (> 1 mmol/L)	1 (0.6%)	0 (0%)	1 (0.9%)

Globulin			
Normal (19 - 35 g/L)	168 (97.1%)	61 (95.3%)	107 (98.2%)
Abnormal low (< 19 g/L)	3 (1.7%)	2 (3.1%)	1 (0.9%)
Abnormal high (> 35 g/L)	2 (1.2%)	1 (1.6%)	1 (0.9%)

Calcium			
Abnormal low (< 2.2 mmol/L)	2 (1.2%)	0 (0%)	2 (1.8%)
Normal (2.2 - 2.6 mmol/L)	167 (96.5%)	62 (96.9%)	105 (96.3%)
Abnormal high (> 2.6 mmol/L)	4 (2.3%)	2 (3.1%)	2 (1.8%)

Phosphate			
Abnormal low (< 0.87 mmol/L)	23 (13.3%)	8 (12.5%)	15 (13.8%)
Normal (0.87 - 1.45 mmol/L)	145 (83.8%)	55 (85.9%)	90 (82.6%)
Abnormal high (> 1.45 mmol/L)	5 (2.9%)	1 (1.6%)	4 (3.7%)

Uric acid			
Abnormal low (< 266 umol/L in men; < 175 umol/L in women)	145 (83.8%)	53 (82.8%)	92 (84.4%)
Normal (266 - 474 umol/L in men; 175 - 363 umol/L in women)	18 (10.4%)	8 (12.5%)	10 (9.2%)
Abnormal high (> 474 umol/L in men; > 363 umol/L in women)	10 (5.8%)	3 (4.7%)	7 (6.4%)

Triglycerides			
Normal (< 2.3 mmol/L)	10 (100%)	6 (100%)	4 (100%)
Normal (< 2.3 mmol/L)	10 (100%)	6 (100%)	4 (100%)
Abnormal high (> 2.3 mmol/L)	0 (0%)	0 (0%)	0 (0%)

Cholesterol			
Normal (< 5 mmol/L)	4 (40%)	3 (50%)	1 (25%)
Abnormal high (> 5 mmol/L)	6 (60%)	3 (50%)	3 (75%)

Fasting triglycerides			
Normal (< 2.3 mmol/L)	144 (88.3%)	52 (89.7%)	92 (87.6%)
Normal (< 2.3 mmol/L)	144 (88.3%)	52 (89.7%)	92 (87.6%)
Abnormal high (> 2.3 mmol/L)	19 (11.7%)	6 (10.3%)	13 (12.4%)

Fasting cholesterol			
Normal (< 5 mmol/L)	96 (58.9%)	39 (67.2%)	57 (54.3%)
Normal (< 5 mmol/L)	96 (58.9%)	39 (67.2%)	57 (54.3%)
Abnormal high (> 5 mmol/L)	67 (41.1%)	19 (32.8%)	48 (45.7%)

HDL cholesterol					
Abnormal low (< 0.9 mmol/L in men; < 1.2 mmol/L in women)	16 (9.2%)	4 (6.2%)	12 (11%)		
Normal (0.9 - 1.5 mmol/L in men; 1.2 - 1.7 mmol/L in women)	103 (59.5%)	38 (59.4%)	65 (59.6%)		
Test	Men Normal	Men Abnormal	Women Normal	Women Abnormal	p-value
-------------------------------	------------	--------------	--------------	----------------	---------
LDL cholesterol					
Normal (< 3 mmol/L)	111 (65.7%)	45 (72.6%)	66 (61.7%)		0.18
Abnormal high (> 3 mmol/L)	58 (34.3%)	17 (27.4%)	41 (38.3%)		
Iron					
Normal (10.6 - 28.3 umol/L)	160 (92.5%)	57 (89.1%)	103 (94.5%)		0.337
Abnormal low (< 10.6 umol/L)	3 (1.7%)	2 (3.1%)	1 (0.9%)		
Abnormal high (> 28.3 umol/L)	10 (5.8%)	5 (7.8%)	5 (4.6%)		
Total iron binding capacity (TIBC)					
Normal (41 - 77 umol/L)	167 (97.1%)	60 (93.8%)	107 (99.1%)		0.064
Abnormal low (< 41 umol/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 77 umol/L)	5 (2.9%)	4 (6.2%)	1 (0.9%)		
Transferrin saturation					
Normal (20 - 55 %)	135 (78.5%)	50 (78.1%)	85 (78.7%)		0.283
Abnormal low (< 20 %)	33 (19.2%)	11 (17.2%)	22 (20.4%)		
Abnormal high (> 55 %)	4 (2.3%)	3 (4.7%)	1 (0.9%)		
High sensitivity CRP					
Normal (0 - 5 mg/L)	141 (92.2%)	50 (96.2%)	91 (90.1%)		0.223
Abnormal low (< 0 mg/L)	0 (0%)	0 (0%)	0 (0%)		
Abnormal high (> 5 mg/L)	12 (7.8%)	2 (3.8%)	10 (9.9%)		