Upregulated Expression of C-X-C Chemokine Receptor 4 Is an Independent Prognostic Predictor for Patients with Gastric Cancer

Hongyong He*, Cong Wang*, Zhenbin Shen, Yong Fang, Xuefei Wang, Weidong Chen, Fenglin Liu, Xinyu Qin, Yihong Sun*

Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China

Abstract

Aberrant chemokine (C-X-C motif) receptor CXCR4 expressions in malignant tissues have been reported, but its role in gastric cancer prognosis remains unknown. Our studies were designed to investigate the expression and prognostic significance of CXCR4 in patients with gastric cancer. CXCR4 expression was retrospectively analyzed by immunohistochemistry in 97 patients with gastric adenocarcinoma from China. Results were assessed for association with clinical features and overall survival by using Kaplan-Meier analysis. Prognostic values of CXCR4 expression and clinical outcomes were evaluated by Cox regression analysis. A molecular prognostic stratification scheme incorporating CXCR4 expression was determined by using receiver operating characteristic (ROC) analysis. The results show that CXCR4 predominantly localized in the cell membranes and cytoplasm. The protein level of CXCR4 was upregulation in gastric cancer tissues and upregulated expression of CXCR4 was only significantly associated with Lauren classification (P<0.001). Increased CXCR4 expression in gastric cancer tissues was positively correlated with poor overall survival of gastric cancer patients (P<0.001). Further multivariate Cox regression analysis suggested that intratumoral CXCR4 expression was an independent prognostic indicator for the disease. Applying the prognostic value of intratumoral CXCR4 density to TNM stage system showed a better prognostic value in patients with gastric cancer. On the basis of TNM stage, detection of CXCR4 expression will be helpful for predicting prognosis for patients with gastric cancer.

Introduction

Despite a marked decline in the incidence of gastric cancer in many industrialized nations, gastric cancer remains the fourth most common neoplasm worldwide and the second most frequent cause of cancer-related mortality partially due to losing curative therapeutic opportunities at the time of initial diagnosis with advanced stage disease in the vast majority of patients [1,2]. Some 400,000 new cases are diagnosed every year in China, accounting for 42% of the world total [3]. Gastric cancer patients with the same stage of the disease present different clinical courses and have different prognosis [4]. This heterogeneity of gastric carcinoma is present at the molecular level and has a genetic predisposition to it [5]. Recently, some molecular-based markers were reported to be significant prognostic factors for patients with gastric cancer [6,7]. However, few of them have been confirmed as independent predictive factor. Therefore, identification of a postoperative useful indicator to better understand the biological basis for the survival of gastric cancer patients may provide important clinically relevant insights into disease management.

Chemokine receptors are expressed not only by leukocytes but also by certain epithelial cells and several types of cancer cell [8]. Previous studies had been demonstrated that CXCL12/CXCR4 axis plays an important role in metastasis of many malignancies, including gastric cancer [9]. CXCL12 is the only...
known ligand for CXCR4, which activates the receptor CXCR4 and attracts circulating CXCR4-expression cells to peripheral tissues through regulating a wide variety of downstream signal pathways related to proliferation, migration, chemotaxis, and cell survival [10]. It has been demonstrated that cancerous CXCL12 positivity was determined to be an independent prognostic factor for patient survival of gastric cancer [11]. CXCR4 has also been found to be a prognostic marker in various types of cancer, including acute myeloid leukemia [12], breast cancer [13], and prostate cancer [14]. However, a comprehensive analysis of CXCR4 expression in relation to survival of patients with gastric cancer remains largely unknown and needs to be further established.

In the present study, we seek to determine the clinical and prognostic implications of CXCR4 expression in gastric cancer. Our investigation reveals that the protein level of CXCR4 was upregulation in gastric cancer tissues compared with the paired non-tumoral tissues, and its correlation with poor prognosis of patients with gastric cancer was evaluated. Moreover, combination of intratumoral CXCR4 expression and TNM stage showed a better prognostic value than did TNM stage alone.

Materials and Methods

Ethics statement

Ethical approval was granted by the Clinical Research Ethics Committee of Zhongshan Hospital of Fudan University (Shanghai, China). Signed informed consent was obtained from all patients for the acquisition and use of patient tissue samples and anonymized clinical data.

Clinical specimens

We prospectively recruited consecutive patients with gastric cancer, collected the clinicopathologic data and the specimens, and detailed retrospectively analyzed the samples for markers correlating with survival and their role in refining gastric cancer prognostic stratification [15]. Human gastric cancer tissue samples were collected at the time of surgical resection from 97 patients with gastric adenocarcinoma without any chemotherapy or radiation therapy before surgery, which had been formalin-fixed, paraffin-embedded, and clinically and histopathologically diagnosed from January 2000 to December 2005 at Zhongshan Hospital of Fudan University. Non-tumoral gastric tissues were obtained at least 5 cm from the tumor at the same time. Routine chemotherapy had been given to the patients with advanced-stage disease after operation, but no radiation treatment was done in any of patients included in our study. Patients were excluded if they had previously been exposed to any targeted therapy, chemotherapy, radiotherapy, or intervention therapy for gastric cancer. All specimens were pathologically reassessed independently by two gastroenterology pathologists blinded to the clinical data.

Tissue microarray and immunohistochemistry

Tissue microarrays were constructed as previously described [16]. The tissue microarray paraffin blocks were cut into 4 µm sections. The sections were heated at 70°C for 1 h, dewaxed in xylene and dehydrated through a gradient concentration of alcohol. After retrieving and blocking the endogenous peroxidase and non-specific staining with 3% (v/v) H₂O₂, normal goat serum, the sections were incubated with anti-CXCR4 antibody (R&D systems, Minneapolis, MN, USA) overnight at 4°C. The slides were then incubated with HRP-conjugated goat anti-mouse IgG secondary antibody for 10 min at 37°C. Finally, the sections were visualized by DAB solution (DAKO, Carpinteria, CA, USA) and counterstained with haematoxylin (DAKO, Carpinteria, CA, USA). The specificity of antibody was confirmed by immunohistochemistry with peptide competition. The intensity of immunohistochemistry staining of CXCR4 was scored independently by two gastroenterology pathologists using the semi-quantitative immunoreactivity scoring (IRS) system as previously described [15,17]. Negative controls were treated identically but with the primary antibody omitted.

Statistical analysis

Statistical analysis was performed with MedCalc Software (version 11.4.2.0; MedCalc, Mariakerke, Belgium). Patient baseline characteristics and disease factors were summarized using descriptive statistics. Numerical data were analyzed using Student’s t test, whereas categorical data were studied using Pearson’s χ² for Fisher’s exact test. Cumulative survival time was calculated by Kaplan-Meier method and analyzed by log-rank test. Numbers at risk were calculated for the beginning of each time period. The Cox proportional hazards regression model was used to perform univariate and multivariate analyses. Receiver operating characteristic (ROC) analysis was used to compare the sensitivity and specificity for the prediction of overall survival by the parameters. All P values were two sided, and differences were considered significant at values of P<0.05. Results are reported according to REMARK (Reporting Recommendations for Tumor Marker Prognostic Studies) guidelines [18].

Results

The protein level of CXCR4 was upregulation in gastric cancer tissues

In order to ascertain whether CXCR4 protein is elevated in gastric cancer tissues, we first evaluated CXCR4 expression by immunohistochemical analyses in tumor and paired non-tumoral specimens from 97 patients with gastric cancer. As shown in Figure 1, Most of the stroma cells were negative staining, although sporadic positive staining on these cells was also observed (Figure 1B to 1D). CXCR4 immunoreactivity was mainly in the membranes and cytoplasm of gastric cancer cells (Figure 1C and 1D) and the intensity of the immunohistochemical staining was variable. Compared with week non-tumoral CXCR4 density in gastric epithelial cells (Figure 1B), intratumoral CXCR4 expression increased both in intestinal-type (Figure 1C) and diffuse-type (Figure 1D) gastric cancer. Collectively, these observations suggest that CXCR4 expression is increased in gastric cancer tissues compared with the paired non-tumoral tissues.
97 tumors were scored as high CXCR4 expression.

and clinical characteristics in patients with gastric cancer.

various clinicopathologic features of overall 97 gastric cancer

† Split at median.

statistically analyzed to determine their relationship with

Immunohistochemical staining of CXCR4 levels was

Age (years)P

All patients

≤60

Female

Gender

Localisation

Proximal

Middle

Distal

Differentiation

Well

Moderately

Poorly

Lauren classification

Intestinal type

T classification

T1

T2

T3

T4

N classification

N0

N1

N2

N3

Distant metastasis

No

Yes

TNM stage

i

ii

iii

iv

Tumor size (cm)P

<3.5

≥3.5

† Split at median.

Table 1. Relation between intratumoral CXCR4 expression and clinical characteristics in patients with gastric cancer.

Factor	Patients	CXCR4 Expression			
	No. %	Low	High	P	
All patients	97	100	54	43	
Age (years)P†					0.266
≤60	48	49.48	24	24	
>60	49	50.52	30	19	
Gender					0.528
Female	35	36.08	18	17	
Male	62	63.92	36	26	
Localization					0.375
Proximal	10	10.31	6	4	
Middle	45	46.39	28	17	
Distal	42	43.30	20	22	
Differentiation					0.160
Well	5	5.16	1	4	
Moderately	36	37.11	23	13	
Poorly	56	57.73	30	26	
Lauren classification				<0.001	
Intestinal type	71	73.20	49	22	
Diffuse type	26	26.80	5	21	
T classification				0.767	
T1	26	26.80	15	11	
T2	10	10.31	7	3	
T3	4	4.13	2	2	
T4	57	58.76	30	27	
N classification				0.053	
N0	38	39.18	22	16	
N1	19	19.59	14	5	
N2	14	14.43	9	5	
N3	26	26.80	9	17	
Distant metastasis				0.697	
No	94	96.91	52	42	
Yes	3	3.09	2	1	
TNM stage				0.629	
i	30	30.93	19	11	
ii	19	19.59	11	8	
iii	45	46.39	22	23	
iv	3	3.09	2	1	
Tumor size (cm)P†				0.450	
<3.5	56	57.73	33	23	
≥3.5	41	42.27	21	20	

The relationship between CXCR4 expression and clinicopathological factors in patients with gastric cancer

According to the IRS criterion, approximately 44.33% (43 of 97) tumors were scored as high CXCR4 expression. Immunohistochemical staining of CXCR4 levels was statistically analyzed to determine their relationship with various clinicopathologic features of overall 97 gastric cancer patients. As shown in Table 1, intratumoral CXCR4 expression was only associated with Lauren classification (P<0.001).

There are more patients with diffuse-type gastric cancer presented high intratumoral CXCR4 expression than with intestinal-type. There are no significant difference in age, gender, primary tumor location, differentiation, T classification, N classification, distant metastasis, TNM stage, or tumor size between the high intratumoral CXCR4 expression group and the low intratumoral CXCR4 expression group. In addition, non-tumoral CXCR4 expression was not associated with any clinicopathologic factors of gastric cancer patients (data not shown).

Association of CXCR4 expression with overall survival of patients with gastric cancer

To further investigate the prognostic value of CXCR4 expression in gastric cancer patients, we compared cancer-specific survival according to intratumoral CXCR4 expression, and Kaplan-Meier survival analysis was performed. As shown in Table 2, Kaplan-Meier survival analysis revealed that the overall survival of gastric cancer patients with high intratumoral CXCR4 expression was significantly poorer than those patients with low CXCR4 intratumoral expression (P<0.001; Figure 2A, Table 2), indicating a crucial impact of intratumoral CXCR4 expression on clinical outcome in patients. However, Kaplan-Meier survival analysis showed that non-tumoral CXCR4 expression was not associated with overall survival of gastric cancer patients (data not shown). In addition, in order to determine whether intratumoral CXCR4 expression could stratify patients with TNM stage stratum, we evaluated the prognostic value of intratumoral CXCR4 expression and did stratified analyses of gastric cancer patients with TNM stage i+ii and TNM stage iii+iv respectively. As shown in Table 2, only the patients with TNM stage iii+iv could be significantly stratified by intratumoral CXCR4 expression, the overall survival time of TNM stage iii+iv patients with low intratumoral CXCR4 expression was significantly longer than those with high intratumoral CXCR4 expression (P<0.001; Figure 2B and 2C, Table 2).

Upregulated expression of CXCR 4 is an independent prognostic predictor for patient with gastric cancer

In order to estimate the clinical significance of various prognostic factors that might influence survival in the study population, univariate analyses was performed for overall survival in 97 patients with gastric cancer. As shown in Table 3, Lauren classification (P=0.025), T classification (P=0.002), N classification (P=0.001), distant metastasis (P<0.001), TNM stage (P<0.001), and CXCR4 expression (P<0.001) were statistically significant risk factors affecting overall survival of patients with gastric cancer. High intratumoral CXCR4 expression is a significant negative predictor for overall survival (hazard ratio [HR], 5.07; 95% CI, 2.02 to 12.68; P<0.001). To evaluate the robustness of the prognostic value of intratumoral CXCR4 expression, Cox multivariate regression analysis was performed to derive independent risk estimates related to overall survival with the covariates showing significance in univariate analyses. As shown in Table 3, intratumoral CXCR4 expression (HR, 5.07; 95% CI, 2.02 to 12.68; P<0.001) and TNM stage (HR, 15.50; 95% CI, 4.64 to 51.85; P<0.001) were
both recognized as independent prognostic factors for overall survival in 97 patients with gastric cancer. Taken together, our findings indicate that intratumoral CXCR4 expression may be a useful marker to predict the survival of patients with gastric cancer.

Figure 1. Representative photomicrographs of CXCR4 expression in sections of gastric cancer and non-tumoral tissues. (A) Negative control. (B) Non-tumoral gastric tissue shows week expression of CXCR4. (C) Intestinal-type gastric cancer tissue shows strong expression of CXCR4. (D) Diffuse-type gastric cancer tissue shows strong expression of CXCR4. Scale bar: 50.0 µm.

doi: 10.1371/journal.pone.0071864.g001

Figure 2. Analyses of overall survival according to the expression of intratumoral CXCR4 in gastric cancer patients. (A–C) Kaplan-Meier analyses of overall survival according to intratumoral CXCR4 expression in patients with gastric cancer in (A) all patients (n=97), (B) TNM stage i+ii (n=49), and (C) TNM stage iii+iv (n=48). P value was calculated by log-rank test.

doi: 10.1371/journal.pone.0071864.g002
Table 2. Log-rank test on overall survival for TNM stage split by CXCR4 expression.

Factor	Patients	No.	%	P
All patients	97	100		
CXCR4 expression			<0.001	
Low	54		55.67	
High	43		44.33	
TNM stage i+ii	49		50.52	
CXCR4 expression			0.189	
Low	30		30.93	
High	19		19.59	
TNM stage iii+iv	48		49.48	
CXCR4 expression			<0.001	
Low	24		24.74	
High	24		24.74	

Figure 3. ROC analyses for the prediction of overall survival in patients with gastric cancer. ROC analyses of the sensitivity and specificity for the prediction of overall survival by the combined CXCR4 expression and TNM stage model, the TNM stage model, and the CXCR4 expression model. P values show the area under the ROC curves (AUC) of the combined CXCR4 expression and TNM stage model versus AUCs of the TNM stage model or the CXCR4 expression model. ROC, receiver operating characteristic. doi: 10.1371/journal.pone.0071864.g003

Extension of the TNM stage prognostic model with intratumoral CXCR4 expression

To develop a more sensitive predictive tool, we constructed a prognostic score model combining two independent prognostic factors, intratumoral CXCR4 expression and TNM stage, and compared its prognostic validity with the intratumoral CXCR4 expression alone and TNM stage alone models by means of receiver operating characteristic (ROC) analysis. Combination of intratumoral CXCR4 expression and TNM stage (AUC [95% CI], 0.906 [0.830 to 0.956]) showed a better prognostic value than did TNM stage (AUC [95% CI], 0.825 [0.734 to 0.894]; P=0.0109) or intratumoral CXCR4 expression (AUC [95% CI], 0.719 [0.619 to 0.806]; P<0.0001) alone (Figure 3).

Discussion

Advanced gastric cancer prognosis tends to be dismal, despite aggressive therapy [19]. Defining molecular subgroups may identify patients who could benefit from targeted therapies and personalized treatment is regarded as the best option to reduce gastric cancer mortality rates [2,20]. In the development
Table 3. Univariate and multivariate Cox regression analyses for overall survival in patients with gastric cancer.

Univariate	Overall Survival	
Hazard Ratio (95%CI)	P	
Age (years)	1.61 (0.79 to 3.27)	0.190
Gender: Male vs Female	0.98 (0.48 to 2.05)	0.948
Localization: Distal vs Proximal+ Middle	1.52 (0.74 to 3.12)	0.251
Differentiation: Poorly vs Well+ Moderately	1.63 (0.76 to 3.50)	0.206
Lauren classification: Diffuse vs Intestinal	2.31 (1.11 to 4.80)	0.025
T classification: T3+T4 vs T1+T2	23.36 (3.18 to 171.71)	0.002
N classification: N1+N2+N3 vs N0	25.79 (3.51 to 189.58)	0.001
Distant metastasis: Yes vs No	14.54 (3.84 to 55.06)	<0.001
TNM stage: iii+iv vs I+ii	13.12 (3.97 to 43.41)	<0.001
Tumor size (cm)	1.13 (0.55 to 2.33)	0.736
CXCR4 expression: High vs Low	4.90 (2.19 to 10.97)	<0.001

Multivariate	Hazard Ratio (95%CI)	P
Lauren classification: Diffuse vs Intestinal	1.29 (0.59 to 2.82)	0.520
TNM stage: iii+iv vs I+ii	15.50 (4.84 to 51.85)	<0.001
CXCR4 expression: High vs Low	5.07 (2.02 to 12.68)	0.001

Abbreviation: 95% CI, 95% confidence interval
† Split at median.

In summary, our results demonstrate that increased intratumoral CXCR4 expression predicts independently poor postoperative overall survival of patients with gastric cancer.
Integration of intratumoral CXCR4 density into current clinicopathologic TNM stage system might add some prognostic information for patients with gastric cancer.

Acknowledgements

The authors would like to thank Haiying Zeng (Fudan University, Shanghai, China) for experimental technical assistance.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69-90. doi:10.3322/caac.20107. PubMed: 21296855.

2. Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ (2009) Gastric cancer. Lancet 374: 477-490. doi:10.1016/S0140-6736(09)6017-6. PubMed: 19525077.

3. Yang L (2006) A clinicopathologic stage system for gastric cancer in China. World J Gastroenterol 12: 17-20. PubMed: 16404111.

4. Lim L, Michael M, Mann GB, Leong T (2005) Adjunctive therapy in gastric cancer. J Clin Oncol 23: 6220-6232. doi:10.1200/JCO.2005.11.593. PubMed: 16195489.

5. Stock M, Otto F (2005) Gene deregulation in gastric cancer. Gene 360: 1-19. doi:10.1016/j.gene.2005.06.026. PubMed: 16154715.

6. He H, Chen W, Wang X, Wang C, Liu F et al. (2012) Snail is an independent prognostic predictor for progression and patient survival of gastric cancer. Cancer Sci 103: 1206-1303. doi:10.1111/j.1445-2986.2012.02295.x. PubMed: 22471696.

7. Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M et al. (2005) Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer 8: 86-94. doi:10.1007/s10120-005-0320-0. PubMed: 15864715.

8. VandeCappellen J, Van Damme J, Struyf S (2008) The role of CXC chemokines and their receptors in cancer. Cancer Lett 267: 226-244. doi:10.1016/j.canlet.2008.04.050. PubMed: 18579287.

9. Iwasa S, Yanagawa T, Fan J, Katoh R (2009) Expression of CXCR4 and its ligand SDF-1 in intestinal-type gastric cancer is associated with lymph node and liver metastasis. Anticancer Res 29: 4751-4758. PubMed: 20032431.

10. Teicher BA, Fricker. (2010) SP CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16: 2927-2931. doi:10.1158/1078-0432.CCR-09-2329. PubMed: 20484021.

11. Ishigami S, Natsugoe S, Okumura H, Matsumoto M, Nakajo A et al. (2007) Clinical implication of CXCL12 expression in gastric cancer. Ann Surg Oncol 14: 3154-3158. doi:10.1245/s10434-007-9521-6. PubMed: 17653799.

12. Ahn JY, Seo K, Weinberg OK, Arber DA (2013) The prognostic value of CXCR4 in acute myeloid leukemia. Appl Immunohistochem Mol Morphol 21: 79-84. PubMed: 22914607.

13. Parker CC, Kim RH, Li BD, Chu QD (2012) The chemokine receptor CXCR4 as a novel independent prognostic marker for node-positive breast cancer patients. J Surg Oncol 106: 393-398. doi:10.1002/jso.23113. PubMed: 22473623.

14. Jung SJ, Kim CI, Park CH, Chang HS, Kim BH et al. (2011) Correlation between Chemokine Receptor CXCR4 Expression and Prognostic Factors in Patients with Prostate Cancer. Korean J Urol 52: 607-611. doi:10.4111/jku.2011.52.9.607. PubMed: 22025955.

15. Wang X, He H, Zhang H, Chen W, Ji Y et al. (2013) Clinical and prognostic implications of beta 1-6-N-acetylglucosaminyltransferase V in patients with gastric cancer. Cancer Sci 104: 185-193. doi:10.1111/cas.12049. PubMed: 23107376.

16. Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W et al. (2008) High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J Clin Oncol 26: 2707-2716. doi:10.1200/JCO.2007.15.6521. PubMed: 18509183.

17. Weichert W, Rößke A, Gekeler V, Beckers T, Ebert MP et al. (2008) Association of patterns of class I histone deacetylation expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 9: 139-148. doi:10.1016/S1470-2241(08)70004-4. PubMed: 18207460.

18. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M et al. (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23: 9067-9072. doi:10.1200/JCO.2004.01.0454. PubMed: 16172462.

19. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F et al. (2009) Gastric cancer. Crit Rev Oncol Hematol 71: 127-164. doi:10.1016/j.critrevonc.2009.01.004.

20. Kasaiya K, Jones SJ (2011) A new frontier in personalized cancer therapy: mapping molecular changes. Future Oncol 7: 873-894. doi:10.2217/fon.11.63. PubMed: 21723278.

21. Balkwill F (2003) Chemokine biology in cancer. Semin Immunol 15: 49-55. doi:10.1016/S1044-5323(02)00127-6. PubMed: 12495640.

22. Demolin G, Focan C, Plomteux O, Kreutz F, Moenclaey N et al. (2008) [Chemotherapy for human gastric cancer: a review]. Rev Med Liege 63: 532-541. PubMed: 19051508.

23. Xie L, Wei J, Qian X, Chen G, Yu L et al. (2010) CXCR4, a potential predictive marker for docetaxel sensitivity in gastric cancer. Anticancer Res 30: 2209-2216. PubMed: 20651371.

24. Ying J, Xu Q, Zhang G, Liu B, Zhu L (2011) The expression of CXCL12 and CXCR4 in gastric cancer and their correlation to lymph node metastasis. Med Oncol 29: 1716-1722. PubMed: 21630055.

25. Kwak MK, Hur K, Park DJ, Lee HJ, Lee HS et al. (2005) Expression of chemokine receptors in human gastric cancer. Tumour Biol 26: 65-70. doi:10.1159/000089587. PubMed: 15867478.

26. Sun X, Cheng G, Hao M, Zheng J, Zhou X et al. (2010) CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29: 709-722. doi:10.1007/s10555-010-9256-x. PubMed: 20390302.

27. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D et al. (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17: 2074-2080. doi:10.1158/1078-0432.CCR-10-2636. PubMed: 21349988.

28. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2: 581-587. doi:10.1038/nrd1134. PubMed: 12815382.

29. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F et al. (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113: 4341-4351. doi:10.1182/blood-2008-10-186686. PubMed: 19139079.

30. Yasumoto K, Koizumi K, Kawashima A, Saitoh Y, Arita Y et al. (2008) Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 68: 2181-2187. doi:10.1158/0008-5472.CAN-05-3933. PubMed: 16489019.

Author Contributions

Conceived and designed the experiments: HH CW YS. Performed the experiments: HH CW. Analyzed the data: HH. Contributed reagents/materials/analysis tools: ZS YF XW WC FL XQ. Wrote the manuscript: HH CW.