Investigation on various construction material LECA, thermal insulated and conventional blocks

Nandhakumar R1*, Parthipan G2, Thangeeswari T3, Karthikraja S1 and Gangadurai B4
1Department of Civil Engineering, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Chennai - 600 062 Tamil Nadu, India.
2Department of Physics, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Chennai - 600 062 Tamil Nadu, India.

*Corresponding author email: nandhagopi.kumar@gmail.com

Abstract. Among the various construction materials, LECA (light weight expanded clay aggregate) is a versatile material due to its unique properties and is utilized in many applications. LECA blocks are highly impermeable and have high performance properties. Thermal insulated blocks are well suited for high rise buildings to withstand high temperature. It requires less steel and concrete for structural members due to its lower density. The LECA is mixed with grade M30 with 50% and 100% of replacement. The molded concrete blocks were tested to determine the strength and workability of the blocks under various experimental conditions and different time periods such as 7 days and 28 days. The tests such as compression test and water absorption test were conducted. From the experimental investigation, we will be able to conclude the best among these blocks based on their strength.

1. Introduction
The historical development of house facilities reveals that man has been modeling his environment throughout the ages for more comfortable living. Through producing and using inexpensive but powerful locally available building materials, these targets can be accomplished in part. It is important to pursue ways in developing countries to reduce construction costs, especially for low-budget housing, as well as to implement easy and efficient solutions for their repair and maintenance. Thermal block is a material’s ability to absorb heat energy and store it. Changing the temperature of high-density materials such as cement, bricks and tiles requires a lot of heat energy. Thermal building blocks are a commercial solution for partition, floor and subversive constructions. Its unique properties are high thermal and noise insulation, good compressive strength, easy to handle and moisture resistance. Thermal building blocks recommended are first-rate thermal insulation which is inbuilt to get U-value targets easier in construction and diminish the carbon dioxide emissions from building. LECA is a unique construction material with light aggregates which is made by fired clay in rotary kiln at very high temperature. After the calcinations process, the organic compounds are destroyed by fire and forcing the bubbles to enlarge and form the product in honeycombed structure. The resulting ceramic pellets are lightweight, porous and highly resistant to crushing. Due to its weightless structure, it possesses an excellent thermal and sound insulation and fire-resistant stability [1]. Hence LECA material can be applied in the construction of under-ground areas, detachment walls inside the room and ceilings. In this research work, the aim is to produce an alternate for the

Content from this work may be used under the terms of the CreativeCommons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
conventional block, in terms of strength, low cost, weight of the blocks and hence to promote sustainable development in the field of construction. Conventional blocks can be used only in ordinary environment and it will definitely fail in the point of excessive loading and also handling energy is more. Also we studied about the behaviour of solid blocks and compressive strength of solid blocks.

2. Experimental Work

2.1. Insulation Material

The insulation material used in thermal blocks is polystyrene and its physical properties are mentioned in the table 1 below. Polystyrene material used in this study is shown in figure 1 (a-b) below.

S. No	Physical Property	Value
1	Specific Gravity	1.04
2	Flexural Strength	83 MPa (12000 PSI)
3	Tensile Strength	53 MPa (7700 PSI)
4	Melting Temperature	210-249 °C (410-480 °F)
5	Solubility in water	Insoluble

Figure 1 (a-b). Insulation material.

2.2. LECA Material

The physical properties of LECA [1, 5-7] are mentioned in the below table 2. The figure 2 shows the sample LECA material used in this study.

S.No	Physical Properties	Value
1	Specific gravity	0.56
2	Water absorption	18%
3	Impact value	49.68
2.3. General Information

- Coarse aggregate: Light weight expanded clay aggregate
- Fine aggregate: M-sand
- Insulation material: Polystyrene
- Size of mould: 200x200x400mm
- Size of the insulation material: 150x80x300mm
- Grade of concrete used: M30
- Mix ratio: 1:1.9:1.7
- Water cement ratio=0.45 (IS 456 TABLE-5)

2.4. Preparation of Materials

The lightweight construction blocks are prepared by proper relative amount of the concrete mix with LECA. The amount of aggregate proportion is changes from various nature and place of work. For construction within room in which the place not affected by weather, the 100% lightweight proportions is adequate. Similarly, for construction in outdoor projects, medium mix is needed. But important point to be noticed is, the lighter the concrete, the weaker the block [8-11]. Figure 3 and figure 4 depicts the mould and m-sand used in the study respectively.
Figure 4. M-Sand used in the study.

2.5. Testing Process

Experimental test is carried out on the blocks to determine its various parameters which are governing the strength of solid blocks. Test procedure is based on the instruction provided by the standard codes. The compressive strength and water absorption test are performed. The number of sampling required for each test is taken. Average of sampling is taken the results of each test. The compressive strength is determined using compressive testing machine, 3.5N/s to 4N/s rate of loading is applied while applying load to the blocks [12-16].

3. Results and Discussion

The table 3, represents the compressive strength of various building blocks tested as per IS 516-1959 standard on day 7. It indicates that due to the partial addition of LECA material in conventional material block gives better results than other building blocks.

S. No	Name of the Block	Weight of Blocks (kg)	Area of Blocks (mm²)	Load on Testing (kN)	Stress (N/mm²)
1	LECA (Partially Replaced)	30.13	80000	1107	13.83
2	LECA (Fully Replaced)	26.49	80000	1069	13.36
3	Thermal Insulated Block	28.31	80000	490	6.125
4	Conventional Block	32.4	80000	739	9.26

In the below table 4, compressive strength of various kinds of building blocks tested as per IS 516-1959 standard on day 28. It is clear that the addition of LECA material in conventional material block gives better results.
Table 4. Compressive strength on 28th day of solid block.

S. No	Name of the Block	Weight of Blocks (kg)	Area of Blocks (mm²)	Load on Testing (kN)	Stress (N/mm²)
1	LECA (Partially Replaced)	30.3	80000	2067	25.81
2	LECA (Fully Replaced)	26.72	80000	1855	23.18
3	Thermal Insulated Block	28.53	80000	1072	13.4
4	Conventional Block	33.54	80000	1020	12.75

Comparison of the compressive strength of various building blocks which were tested as per IS 516-1959 standard on day 7 and 28 were shown on the table 5 below. It indicates that the partial addition of LECA material in block gives better results than fully replaced LECA material blocks and thermal insulated blocks. Figure 5 and figure 6 shows the images of the blocks loaded for compression testing and images of the blocks after testing respectively.

Table 5. Comparison of the compressive strength at different days.

S. No	Name of the block	Load on testing - 7 days (KN)	Load on testing - 28 days (KN)
1	LECA (Partially Replaced)	1107	2067
2	LECA (Fully Replaced)	1069	1855
3	Thermal Insulated Block	490	1072
4	Conventional Block	739	1020

Figure 5. Compression test on blocks.
The table 6, represents water absorption test results of different building blocks in terms of percentage. The water absorption tests were conducted as per IS 1124-1974 standard. The images of the water absorption tests were shown in the below figure 7.

S. No	Name of the Block	Dry weight of the blocks (kg)	Wet weight of the blocks (kg)	Water Absorption (%)
1	LECA (Partially Replaced)	30.3	39	28.71
2	LECA (Fully Replaced)	26.72	35.95	35.03
3	Thermal Insulated Block	28.18	34.37	22.15
4	Conventional Block	33.54	45.75	36.4

The presented research results show that the compressive strength of partially replaced LECA is 13.83 N/mm2 and for fully replaced LECA is 13.36 N/mm2 at seventh day. Similarly, the compressive strength of partially replaced LECA is 25.81 N/mm2 and for fully replaced LECA is 23.18 N/mm2 at twenty eighth day. On other hand, thFe obtained results shows the enhancement in compressive strength for partially replaced LECA than thermal insulated blocks (125% and 92.82% higher than
thermal insulated blocks at day 7 and day 28. The water absorption percentage of partially replaced and fully replaced LECA is less than conventional blocks (26% and 3.9% lesser at day 28) and less than 64% compared with thermal insulated blocks. From this we can conclude that the reduction in the weight of concrete will reduce the dead weight of concrete. Hence, the construction cost gets decreased by reducing the amount pay out for construction of buildings.

References
[1] R.N. Raj Prakash, A.Krishnamoorthi, “Experimental Study On Light Weight Concrete Using Leca”, International Journal of chem. Tech research, Vol.10(8), 98-109, 2017.
[2] Axel Berge, Pär Johansson, “High Performance Thermal Insulation”, Chalmers University of Technology, 2012.
[3] Marta Cianfrini, Roberto de Lieto Vollaro and Emanuele Habib, “Dynamic Thermal Features of Insulated Blocks: Actual Behavior and Myths”, Energies, Vol.10(11), 1807, 2017.
[4] Marta Cianfrini, Roberto de LietoVollaro and EmanueleHabib, “Thermal Inertia of hollow blocks: Actual Behavior and Myths”, Proceedings of CISBAT 2015 International Conference on Future Buildings and Districts - Sustainability from Nano to Urban Scale, pp.149-154, 2015.
[5] R. Vijayalakshmi and S. Ramanagopal., “Structural Concrete using Expanded Clay Aggregate: A Review”, Indian Journal of Science and Technology, Vol.11(16), pp.1-12, 2018.
[6] Osama A. B. Hassan, Petra Jonsson, “Lecablock, an Alternative Construction Material for the Exterior Walls of Passive House”, Journal of Building Construction and Planning Research, Vol.2(1), pp.96-108, 2014.
[7] V Geza, A Jakovics, S Gendelis, I Usilonoks and J Timofejevs, “Thermal conductivity of disperse insulation materials and their mixtures”, IOP Conference Series: Materials Science and Engineering, 251, 012012, 2017.
[8] Chan-Ki Jeon, Jae-Seong Lee, Hoon Chung, Ju-Ho Kim, and Jong-Pil Park, “A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent”, Advances in Materials Science and Engineering, vol. 2017, Article ID 3938965, 2017.
[9] Hendry, A. W., Fairbairn, D. R., & Khalaf, F. M., “Mechanical properties of materials used in concrete blockwork construction”, Magazine of Concrete Research, Vol.44(158), pp.1-14, 1992.
[10] Khalaf, F. M., “Factors influencing compressive strength of concrete masonry prisms”, Magazine of Concrete Research, Vol.48(175), pp.95-101, 2015.
[11] Köksal, H. O., Karakoç, C., & Yıldırım, H., “Compression Behavior and Failure Mechanisms of Concrete Masonry Prisms”, Journal of Materials in Civil Engineering, Vol.17(1), pp.107-115, 2005.
[12] Mohamad, G., Lourenço, P. B., & Roman, H. R., “Mechanics of hollow concrete block masonry prisms under compression: Review and prospects”, Cement and Concrete Composites, Vol.29(3), pp.181-192, 2007.
[13] Steadman, M., Drysdale, R. G., & Khattab, M. M., “Influence of Block Geometry and Grout Type on Compressive Strength of Block Masonry”, Proceedings of the 7th Canadian Masonry Symposium, pp. 1116–1127, 1995.
[14] W. Sai Deepak, G. Tirupathi Naidu, “Effect On Compressive Strength Of Concrete Using M Sand And Foundry Sand As A Partial Replacement For Fine Aggregate”, International Journal of Research in Engineering and Technology, Vol4(6), pp.180-183, 2015.
[15] D. A. R. Dosage, M. G. S. Dias and C. T. Ariyawansa, “Offshore Sand As A Fine Aggregate for Concrete Production”, British Journal of Applied Science & Technology, Vol.3(4), pp.813-825, 2013.

[16] Robert G. Varady, Katherine B. Hankins, Andrea Kaus, Emily Young, Robert Merideth, “to the Sea of Cortés: nature, water, culture, and livelihood in the Lower Colorado River basin and delta—an overview of issues, policies, and approaches to environmental restoration”, Journal of Arid Environments, Vol.49(1), pp.195-209, 2001.