DIRECT AND INVERSE PROBLEMS FOR TIME-FRACTIONAL PSEUDO-PARABOLIC EQUATIONS

MICHAEL RUZHANSKY*

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium, and School of Mathematical Sciences, Queen Mary University of London, United Kingdom.
E-Mail michael.ruzhansky@ugent.be

DAURENBEK SERIKBAEV* AND BERIKBOL T. TOREBEK*

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium, and Al–Farabi Kazakh National University, Almaty, Kazakhstan, and Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-Mail daurenbek.serikbaev@ugent.be and berikbol.torebek@ugent.be

NIYAZ TOKMAGAMBETOV*†

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium, and Al–Farabi Kazakh National University, Almaty, Kazakhstan, and Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan.
E-Mail tokmagambetov@math.kz

Abstract. The purpose of this paper is to establish the solvability results to direct and inverse problems for time-fractional pseudo-parabolic equations with the self-adjoint operators. We are especially interested in proving existence and uniqueness of the solutions in the abstract setting of Hilbert spaces.

Mathematics Subject Classification (2020): 35R30, 35G15, 45K05.
Key words: Pseudo-parabolic equation, Caputo fractional derivative, weak solution, direct problem, inverse problem.

1. Introduction. The problems of determination of temperature at interior points of a region when the initial and boundary conditions along with diffusion
source term are specified are known as direct diffusion conduction problems. In
many physical problems, determination of coefficients or the right-hand side (the
source term, in case of the diffusion equation) in a differential equation from some
available information is required; these problems are known as inverse problems.

Inverse source problems for the diffusion, sub-diffusion and for other types of
equations are well studied. There are numerous works published only in recent years
in this area (for example, see [AKT19, HLIK19, KY19, RZh18, SSB19]). However,
inverse problems for pseudo-parabolic equations and for their fractional analogues
have been studied relatively little (see [KJ18, LT11a, LT11b, LV19, Run80, FN19]).

The inverse problem of determining the coefficient and the right hand side of a
pseudo-parabolic equation from local over defined states has important applications
in various fields of applied science and engineering. The study of inverse problems
for pseudo-parabolic equations began in the 1980s by Rundell (see [Run80]).

Let H be a separable Hilbert space and let L, M be operators with the corre-
sponding discrete spectra $\{\lambda_\xi\}_{\xi \in \mathcal{I}}, \{\mu_\xi\}_{\xi \in \mathcal{I}}$ on H, where \mathcal{I} is a countable set.

In this paper we consider solvability of the direct and inverse problems for the
following pseudo-parabolic equation

$$
D_t^\alpha [u(t) + Lu(t)] + Mu(t) = f(t) \text{ in } H,
$$

(1.1)

for $0 < t < T < \infty$, with initial data

$$
u(0) = \varphi \in H,
$$

(1.2)

and final condition

$$
u(T) = \psi \in H.
$$

(1.3)

Here D_t^α is the Caputo fractional derivative of order $0 < \alpha \leq 1$.

In the particular case $\alpha = 1$, the equation (1.1) coincides with the classical
pseudo-parabolic equation with some differential operators L and M. The energy
for the isotropic material can be modeled by a pseudo-parabolic equation [CG68].
Some wave processes [BBM72], filtration of the two-phase flow in porous media with
the dynamic capillary pressure [BGPV97] are also modeled by pseudo-parabolic
equations. Time-fractional pseudo-parabolic equation (1.1) occurs in the study of
flows of the Oldroyd-B fluid, one of the most important classes for dilute solutions
of polymers [FFKV09, TL05].

In this paper, we consider direct and inverse problems for the time-fractional
pseudo-parabolic equation with different abstract operators. We seek generalized
solutions to these problems in a form of series expansions using the elements of
nonharmonic analysis (see [RT16, RTT19]) and we also examine the convergence
of the obtained series solutions. The main results on well-posedness of direct and
inverse problems are formulated in three theorems.

We will be making the following assumption:

Assumption 1.1. We assume that selfadjoint operators L and M are diagonalisable
(can be written in the infinite dimensional matrix form) with respect to some
basis $\{e_\xi\}_{\xi \in \mathcal{I}}$ of the separable Hilbert space H with the eigenvalues $\lambda_\xi \in \mathbb{R} : \lambda_\xi \geq c_L > 0$ and $\mu_\xi \in \mathbb{R} : \mu_\xi \geq c_M > 0$ for all $\xi \in \mathcal{I}$, respectively. Here c_L and c_M are
some constants, \mathcal{I} is some countable set.
We will be sometimes also making the following assumption with \(I = \mathbb{N}^k \) or \(I = \mathbb{Z}^k \) for some \(k \):

Assumption 1.2. In further calculus for our analysis we will also require that \(\lambda_\xi \to \infty \) and \(\mu_\xi \to \infty \) as \(|\xi| \to \infty \). Moreover, we will assume that \(|\lambda_\xi| = O(|\mu_\xi|^\kappa) \) as \(|\xi| \to \infty \) for some \(\kappa > 0 \).

1.1. Preliminaries.

Now, for the formulation of problems we need to define fractional differentiation operators.

Definition 1.3. The Riemann-Liouville fractional integral \(I^\alpha \) of order \(0 < \alpha < 1 \) for an integrable function \(f \) is defined by

\[
I^\alpha[f](t) = \frac{1}{\Gamma(\alpha)} \int_c^t (t-s)^{\alpha-1} f(s) ds, \ t \in [c, d],
\]

where \(\Gamma \) denotes the Euler gamma function.

The Caputo fractional derivative of order \(0 < \alpha < 1 \) of a differentiable function \(f \) is defined by

\[
D_t^\alpha[f](t) = I^{1-\alpha}[f'(t)] = \frac{1}{\Gamma(1-\alpha)} \int_c^t \frac{f'(s)}{(t-s)^\alpha} ds, \ t \in [c, d].
\]

For more information see [KST06].

In what follows, we will widely use the properties of the Mittag-Leffler type function (see [LG99])

\[
E_{\alpha, \beta}(z) = \sum_{m=0}^{\infty} \frac{z^m}{\Gamma(\alpha m + \beta)}.
\]

In [Sim14] the following estimate for the Mittag-Leffler function is proved, when \(0 < \alpha < 1 \) (not true for \(\alpha \geq 1 \))

\[
\frac{1}{1 + \Gamma(1-\alpha)z} \leq E_{\alpha,1}(-z) \leq \frac{1}{1 + \Gamma(1+\alpha)^{-1}z}, \ z > 0.
\]

Thus, it follows that

\[
0 < E_{\alpha,1}(-z) < 1, \ z > 0.
\]

2. Direct problem.

We consider the pseudo-parabolic equation

\[
D_t^\alpha[u(t) + Lu(t)] + Mu(t) = f(t),
\]

for \(0 < t < T < \infty \), with the Cauchy condition

\[
u(0) = \varphi \in \mathcal{H}.
\]

Definition 2.1. Let \(X \) be a separable Hilbert space.
The space \(C^\alpha([0,T];X),\ 0 < \alpha \leq 1\) is the space of all continuous functions \(g: [0,T] \to X\) with also continuous \(D_t^\alpha g: [0,T] \to X\), such that
\[
\|g\|_{C^\alpha([0,T];X)} = \|g\|_{C([0,T];X)} + \|D_t^\alpha g\|_{C([0,T];X)} < \infty.
\]

The space \(W^\alpha([0,T];X),\ 0 < \alpha \leq 1\) is the space of all \(L^2\)-integrable functions \(g: [0,T] \to X\) with \(L^2\)-integrable \(D_t^\alpha g: [0,T] \to X\), such that
\[
\|g\|_{W^\alpha([0,T];X)} = \|g\|_{L^2([0,T];X)} + \|D_t^\alpha g\|_{L^2([0,T];X)} < \infty.
\]

A generalised solution of the direct problem (2.1)–(2.2) is the function \(u \in L^2([0,T];\mathcal{H}_L^1) \cap L^2([0,T];\mathcal{H}_M^1) \cap W^\alpha([0,T];\mathcal{H}_L^1)\). Here we define \(\mathcal{H}_{L,M}^{l,m}\) as
\[
\mathcal{H}_{L,M}^{l,m} := \{u \in \mathcal{H}: \mathcal{L}^l \mathcal{M}^m u \in \mathcal{H}\},
\]
for any \(l, m \in \mathbb{R}\). In view of this we can define \(\mathcal{H}_L^l, \mathcal{H}_M^m\) correspondingly
\[
\mathcal{H}_L^l := \{u \in \mathcal{H}: \mathcal{L}^l u \in \mathcal{H}\},
\]
\[
\mathcal{H}_M^m := \{u \in \mathcal{H}: \mathcal{M}^m u \in \mathcal{H}\},
\]
for any \(l, m \in \mathbb{R}\).

2.1. Case I: \(1/2 < \alpha < 1\). For Problem (2.1)–(2.2), the following theorem holds true.

Theorem 2.2. Let \(1/2 < \alpha < 1\). Suppose that Assumption 1.1 holds. Let \(\varphi \in \mathcal{H}_L^1 \cap \mathcal{H}_M^1\) and \(f \in L^2([0,T];\mathcal{H}) \cap L^2([0,T],\mathcal{H}_{L,M}^{-1,1})\). Then there exists a unique solution \(u(t)\) of Problem (2.1)–(2.2) such that \(u \in L^2([0,T];\mathcal{H}_M^1) \cap W^\alpha([0,T];\mathcal{H}_L^1)\). This solution can be written in the form
\[
u(t) = \sum_{\xi \in \mathcal{I}} \varphi_{\xi} \frac{\mu_{\xi}}{1 + \lambda_{\xi}} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_\xi
\]
\[
+ \sum_{\xi \in \mathcal{I}} \left[\frac{1}{1 + \lambda_{\xi}} \int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} s^\alpha \right) f_\xi(t - s) ds \right] e_\xi,
\]
where \(\varphi_{\xi} = (\varphi, e_\xi)_{\mathcal{H}}, f_\xi(t) = (f(t), e_\xi)_{\mathcal{H}}\).

Proof. Let us first prove the existence result. Since the system of eigenfunctions \(e_\xi\) is a basis in \(\mathcal{H}\), we seek the function \(u(t)\) in the form
\[
u(t) = \sum_{\xi \in \mathcal{I}} u_\xi(t) e_\xi,
\]
where \(u_\xi(t)\) are unknown functions. Substituting (2.4) into Equations (2.1)–(2.2) and taking into account Assumption 1.1, we obtain the following equations corresponding to the function \(u_\xi(t)\):
\[
D_t^\alpha u_\xi(t) + \frac{\mu_{\xi}}{1 + \lambda_{\xi}} u_\xi(t) = \frac{f_\xi(t)}{1 + \lambda_{\xi}},
\]
Here $f_\xi(t)$ is the coefficient function of the expansion of $f(t)$, i.e.

$$f(t) = \sum_{\xi \in \mathcal{I}} f_\xi(t) e_\xi,\]

with

$$f_\xi(t) = (f(t), e_\xi)_\mathcal{H},$$

and φ_ξ is the coefficient of the expansion of φ, i.e.

$$\varphi = \sum_{\xi \in \mathcal{I}} \varphi_\xi e_\xi,\]

with

$$\varphi_\xi = (\varphi, e_\xi)_\mathcal{H}.$$
From this we have
\[u(t) = \sum_{\xi \in \mathcal{I}} \varphi_\xi E_{\alpha,1} \left(\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi \]
(2.10)
\[+ \sum_{\xi \in \mathcal{I}} \left[\int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right] e_\xi. \]

Now, we prove the convergence of the obtained infinite series corresponding to the functions \(u(t), \mathcal{D}_t^\alpha u(t), \mathcal{M}u(t) \) and \(\mathcal{D}_t^\alpha \mathcal{L}u(t) \).

Before we get the convergence, let us calculate \(\mathcal{M}u(t), \mathcal{D}_t^\alpha u(t) \) and \(\mathcal{D}_t^\alpha \mathcal{L}u(t) \).

By using Assumption 1.1 in (2.7), we have
\[\lambda_\xi \varphi_\xi = (\varphi_\xi, e_\xi)_{\mathcal{H}} = (\varphi_\xi, \mathcal{L}e_\xi)_{\mathcal{H}} = (\mathcal{L}\varphi_\xi, e_\xi)_{\mathcal{H}}; \]
\[\mu_\xi \varphi_\xi = (\varphi_\xi, e_\xi)_{\mathcal{H}} = (\varphi_\xi, \mathcal{M}e_\xi)_{\mathcal{H}} = (\mathcal{M}\varphi_\xi, e_\xi)_{\mathcal{H}}. \]
(2.11)
Applying the operator \(\mathcal{L} \) to (2.9), and taking into account formulas (2.11), we get
\[\mathcal{L}u(t) = \sum_{\xi \in \mathcal{I}} \varphi_\xi E_{\alpha,1} \left(\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) \mathcal{L} e_\xi \]
\[+ \sum_{\xi \in \mathcal{I}} \left[\int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right] \mathcal{L} e_\xi \]
\[= \sum_{\xi \in \mathcal{I}} \lambda_\xi \varphi_\xi E_{\alpha,1} \left(\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi \]
\[+ \sum_{\xi \in \mathcal{I}} \frac{\lambda_\xi}{1 + \lambda_\xi} \left[\int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right] e_\xi \]
(2.12)
\[= \sum_{\xi \in \mathcal{I}} (\mathcal{L}\varphi_\xi, e_\xi)_{\mathcal{H}} E_{\alpha,1} \left(\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi \]
\[+ \sum_{\xi \in \mathcal{I}} \frac{\lambda_\xi}{1 + \lambda_\xi} \left[\int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right] e_\xi. \]

Analogously, we have
\[\mathcal{M}u(t) = \sum_{\xi \in \mathcal{I}} (\mathcal{M}\varphi_\xi, e_\xi)_{\mathcal{H}} E_{\alpha,1} \left(\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi \]
(2.13)
\[+ \sum_{\xi \in \mathcal{I}} \frac{\mu_\xi}{1 + \lambda_\xi} \left[\int_0^t s^{\alpha-1} E_{\alpha,\alpha} \left(\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right] e_\xi. \]

Applying the operator \(\mathcal{D}_t^\alpha \) to (2.4), we have
\[\mathcal{D}_t^\alpha u(t) = \sum_{\xi \in \mathcal{I}} \mathcal{D}_t^\alpha u_\xi(t) e_\xi. \]
(2.14)
By using (2.5), we find $\mathcal{D}_t^\alpha u_\xi(t)$

\begin{equation}
(2.15) \quad \mathcal{D}_t^\alpha u_\xi(t) = \frac{f_\xi(t)}{1 + \lambda_\xi} - \frac{\mu_\xi}{1 + \lambda_\xi} u_\xi(t).
\end{equation}

Putting (2.10) into (2.15), we get

\begin{equation}
(2.16) \quad \mathcal{D}_t^\alpha u_\xi(t) = \frac{f_\xi(t)}{1 + \lambda_\xi} - \frac{\mu_\xi}{1 + \lambda_\xi} \varphi_\xi E_{\alpha,1} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) + \frac{\mu_\xi}{(1 + \lambda_\xi)^2} \left[\int_0^t s^{\alpha - 1} E_{\alpha,\alpha} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t - s) ds \right].
\end{equation}

Substituting (2.16) into (2.14), we obtain

\begin{equation}
(2.17) \quad \mathcal{D}_t^\alpha u(t) = \sum_{\xi \in \mathcal{I}} \frac{f_\xi(t)}{1 + \lambda_\xi} e_\xi - \sum_{\xi \in \mathcal{I}} \frac{\mu_\xi}{1 + \lambda_\xi} \varphi_\xi E_{\alpha,1} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi + \sum_{\xi \in \mathcal{I}} \frac{\mu_\xi}{(1 + \lambda_\xi)^2} \left[\int_0^t s^{\alpha - 1} E_{\alpha,\alpha} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t - s) ds \right] e_\xi.
\end{equation}

Applying the operator \mathcal{L} to (2.17) and taking into account formulas (2.11), we have

\begin{equation}
(2.18) \quad \mathcal{D}_t^\alpha \mathcal{L} u(t) = \sum_{\xi \in \mathcal{I}} \frac{\lambda_\xi}{1 + \lambda_\xi} f_\xi(t)e_\xi - \sum_{\xi \in \mathcal{I}} \frac{\mu_\xi}{1 + \lambda_\xi} (\mathcal{L} \varphi, e_\xi)_H E_{\alpha,1} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi + \sum_{\xi \in \mathcal{I}} \frac{\mu_\xi \lambda_\xi}{(1 + \lambda_\xi)^2} \left[\int_0^t s^{\alpha - 1} E_{\alpha,\alpha} \left(- \frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t - s) ds \right] e_\xi.
\end{equation}
Now let us estimate \mathcal{H}-norms

\begin{equation}
\|u(t)\|_{L^2([0,T];\mathcal{H})}^2 \leq \sum_{\xi \in I} \left| E_{\alpha,1} \left(-\frac{\mu_\xi}{1+\lambda_\xi} t^\alpha \right) \right|^2 |\varphi_\xi|^2 + \sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \left| \int_0^t s^\alpha \left(-\frac{\mu_\xi}{1+\lambda_\xi} s^\alpha \right) f_\xi(t-s) ds \right|^2 \\
\leq C \sum_{\xi \in I} \left(\frac{1}{1+\frac{\mu_\xi}{1+\lambda_\xi} t^\alpha} \right)^2 |\varphi_\xi|^2 + C \sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \left(\int_0^t \left(\frac{s^\alpha}{1+\frac{\mu_\xi}{1+\lambda_\xi} s^\alpha} f_\xi(t-s) ds \right)^2 \right)^{\frac{1}{2}} \\
\leq C \sum_{\xi \in I} |\varphi_\xi|^2 + C \sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \int_0^t \left(\frac{s^\alpha}{1+\frac{\mu_\xi}{1+\lambda_\xi} s^\alpha} \right)^2 ds \int_0^t \left| f_\xi(s) \right|^2 ds \\
\leq C\|\varphi\|_{\mathcal{H}}^2 + C \sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \int_0^t \left(\frac{s^\alpha}{1+\frac{\mu_\xi}{1+\lambda_\xi} s^\alpha} \right)^2 ds \int_0^t \left| f_\xi(s) \right|^2 ds \\
\leq C\|\varphi\|_{\mathcal{H}}^2 + C \sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \int_0^t \frac{1}{s^{2-2\alpha}} ds \int_0^t \left| f_\xi(s) \right|^2 ds
\end{equation}

Due to the assumption $\alpha > 1/2$, finally, we get

\[
\|u\|_{L^2([0,T];\mathcal{H})}^2 \leq C(\|\varphi\|_{\mathcal{H}}^2 + \|f\|_{L^2([0,T];\mathcal{H}_{-1})}^2).
\]

Here we take into account that

\begin{equation}
\sum_{\xi \in I} \frac{1}{(1+\lambda_\xi)^2} \int_0^t \left| f_\xi(s) \right|^2 ds = \sum_{\xi \in I} \frac{\left| f_\xi(s) \right|^2}{1+\lambda_\xi} ds \int_0^t \left| f(s) \right|^2_{\mathcal{H}_{-1}} ds \leq C\|f\|_{L^2([0,T];\mathcal{H}_{-1})}^2,
\end{equation}

for some constant $C > 0$.

Finally, by using (1.5) and arguing as in (2.19), from (2.9)–(2.18) we get the following estimates

\[
\|\mathcal{L}u\|_{L^2([0,T];\mathcal{H})}^2 \leq C(\|\mathcal{L}\varphi\|_{\mathcal{H}}^2 + \|f\|_{L^2([0,T];\mathcal{H})}^2),
\]

\[
\|\mathcal{M}u\|_{L^2([0,T];\mathcal{H})}^2 \leq C(\|\mathcal{M}\varphi\|_{\mathcal{H}}^2 + \|f\|_{L^2([0,T];\mathcal{H}_{-1,1})}^2),
\]
\[\| \mathcal{D}_t^\alpha u \|_{L^2([0,T], H)}^2 \leq C(\| \varphi \|_{H_{\mathcal{L},\mathcal{M}}}^{2} + \| f \|_{L^2([0,T], H_{\mathcal{L},\mathcal{M}})}^{2} + \| f \|_{L^2([0,T], H_{\mathcal{L},\mathcal{M}}^{-1})}^{2}), \]

and
\[\| \mathcal{D}_t^\alpha L u \|_{L^2([0,T], H)}^2 \leq C(\| \varphi \|_{H_{\mathcal{L},\mathcal{M}}}^{2} + \| f \|_{L^2([0,T], H)}^{2} + \| f \|_{L^2([0,T], H_{\mathcal{L},\mathcal{M}}^{-1})}^{2}), \]

respectively. Here in all our estimates in the spaces \(H_{\mathcal{L},\mathcal{M}}^{l,m} \) for some \(l, m \in \mathbb{R} \) we play with the argument as in (2.20). Thus, we finish the proof of the existence result.

Proof of the uniqueness of the solution. Let \(w(t) \) and \(v(t) \) be two solutions of Problem (2.1)–(2.2), i.e.
\[
\mathcal{D}_t^\alpha w(t) + \mathcal{D}_t^\alpha Lw(t) + \mathcal{M}w(t) = f(t),
\]
\[
w(0) = \varphi,
\]
\[
\mathcal{D}_t^\alpha v(t) + \mathcal{D}_t^\alpha Lv(t) + \mathcal{M}v(t) = f(t),
\]
\[
v(0) = \varphi.
\]
By subtracting these equations from each other, and denoting \(u(t) = w(t) - v(t) \), we obtain
\[\mathcal{D}_t^\alpha u(t) + \mathcal{D}_t^\alpha Lu(t) + \mathcal{M}u(t) = 0, \]
\[u(0) = 0. \]
We also have
\[u_\xi(t) = (u(t), e_\xi)_H, \xi \in \mathcal{I}. \]
Applying the operator \(\mathcal{D}_t^\alpha \) to (2.23), we have
\[\mathcal{D}_t^\alpha u_\xi(t) = (\mathcal{D}_t^\alpha u(t), e_\xi)_H, \xi \in \mathcal{I}. \]
From (2.21)–(2.22), we have
\[\mathcal{D}_t^\alpha u_\xi(t) + \frac{\mu_\xi}{1 + \lambda_\xi} u_\xi(t) = 0, \]
\[u_\xi(0) = 0. \]
By the formula (2.8), when \(\varphi_\xi = 0, f_\xi(t) = 0 \), the solution of the problem (2.25)–(2.26) is \(u_\xi(t) \equiv 0 \).
Further, by the basis property of the system \(\{e_\xi\}_{\xi \in \mathcal{I}} \) in \(H \), we obtain \(u(t) \equiv 0 \). The uniqueness of the solution of Problem (2.1)–(2.2) is proved. \(\square \)
2.2. Case II: $0 < \alpha < 1$. Here we deal with the case when $0 < \alpha < 1$. But for this we will require more conditions on source term.

Theorem 2.3. Let $0 < \alpha < 1$. Suppose that Assumption 1.1 holds. Let $\varphi \in H^1_M \cap H^1_M$ and $f \in W^1([0,T];\mathcal{H})$. Then there exists a unique solution $u(t)$ of Problem (2.1)–(2.2) such that $u \in L^2([0,T];H^1_M) \cap W^\alpha([0,T];H^1_M)$. This solution can be written in the form

$$u(t) = \sum_{\xi \in \mathcal{I}} \varphi_\xi E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi + \sum_{\xi \in \mathcal{I}} \frac{f_\xi(t)}{\mu_\xi} e_\xi - \sum_{\xi \in \mathcal{I}} f_\xi(0) E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) e_\xi - \sum_{\xi \in \mathcal{I}} \left[\int_0^t \frac{f_\xi'(t-s)}{\mu_\xi} E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) ds \right] e_\xi,$$

where $\varphi_\xi = (\varphi, e_\xi)_\mathcal{H}$, $f_\xi(t) = (f(t), e_\xi)_\mathcal{H}$.

Proof. By repeating the arguments of Theorem 2.2, we start from the formula (2.8). For the last term of the equation (2.8), we have

$$-\frac{1}{\mu_\xi} \int_0^t ds \left(E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) \right) f_\xi(t-s) ds = -\frac{1}{\mu_\xi} E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi(t-s) \bigg|_0^t$$

$$- \frac{1}{\mu_\xi} \int_0^t E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi'(t-s) ds = \frac{1}{\mu_\xi} f_\xi(t) - \frac{1}{\mu_\xi} E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) f_\xi(0)$$

$$- \frac{1}{\mu_\xi} \int_0^t E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi'(t-s) ds.$$

Thus, for the solution of the Cauchy problem

$$D_t^\alpha u_\xi(t) + \frac{\mu_\xi}{1 + \lambda_\xi} u_\xi(t) = \frac{f_\xi(t)}{1 + \lambda_\xi}, \quad u_\xi(0) = \varphi_\xi,$$

we have

$$u_\xi(t) = \varphi_\xi E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) + \frac{1}{\mu_\xi} f_\xi(t)$$

$$- \frac{1}{\mu_\xi} E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha \right) f_\xi(0)$$

$$- \frac{1}{\mu_\xi} \int_0^t E_{\alpha,1} \left(-\frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha \right) f_\xi'(t-s) ds.$$
for all $\xi \in I$.

Putting (2.28) into (2.4), we obtain the solution of Problem (2.1)–(2.2) in the following form

\[
\begin{align*}
 u(t) &= \sum_{\xi \in I} \varphi_{\xi} E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad + \sum_{\xi \in I} \frac{f_{\xi}(t)}{\mu_{\xi}} e_{\xi} - \sum_{\xi \in I} \frac{f_{\xi}(0)}{\mu_{\xi}} E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad - \sum_{\xi \in I} \left[\int_{0}^{t} \frac{f'_{\xi}(t - s)}{\mu_{\xi}} E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} s^\alpha \right) ds \right] e_{\xi}.
\end{align*}
\tag{2.29}
\]

To prove the convergence of the obtained infinite series corresponding to the functions $L u(t)$, $M u(t)$, $D_t^\alpha u(t)$ and $D_t^\alpha L u(t)$, first, we need to calculate them.

Applying the operator L to (2.29), and taking into account formulas (2.11), we get

\[
\begin{align*}
 L u(t) &= \sum_{\xi \in I} (L \varphi_{\xi}, e_{\xi})_H E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad + \sum_{\xi \in I} \frac{\lambda_{\xi}}{\mu_{\xi}} f_{\xi}(t) e_{\xi} - \sum_{\xi \in I} \frac{\lambda_{\xi}}{\mu_{\xi}} f_{\xi}(0) E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad - \sum_{\xi \in I} \frac{\lambda_{\xi}}{\mu_{\xi}} \left[\int_{0}^{t} \frac{f'_{\xi}(t - s)}{\mu_{\xi}} E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} s^\alpha \right) ds \right] e_{\xi}.
\end{align*}
\tag{2.30}
\]

Analogously, we have

\[
\begin{align*}
 M u(t) &= \sum_{\xi \in I} (M \varphi_{\xi}, e_{\xi})_H E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad + \sum_{\xi \in I} f_{\xi}(t) e_{\xi} - \sum_{\xi \in I} f_{\xi}(0) E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} t^\alpha \right) e_{\xi} \\
 &\quad - \sum_{\xi \in I} \left[\int_{0}^{t} \frac{f'_{\xi}(t - s)}{\mu_{\xi}} E_{\alpha,1} \left(-\frac{\mu_{\xi}}{1 + \lambda_{\xi}} s^\alpha \right) ds \right] e_{\xi}.
\end{align*}
\tag{2.31}
\]

Applying the operator D_t^α to (2.4), we have

\[
D_t^\alpha u(t) = \sum_{\xi \in I} D_t^\alpha u_{\xi}(t) e_{\xi}.
\tag{2.32}
\]

By using (2.5), we find $D_t^\alpha u_{\xi}(t)$

\[
D_t^\alpha u_{\xi}(t) = \frac{f_{\xi}(t)}{1 + \lambda_{\xi}} - \frac{\mu_{\xi}}{1 + \lambda_{\xi}} u_{\xi}(t).
\tag{2.33}
\]
Putting (2.28) into (2.33), we get

\[D^\alpha_t u(t) = - \frac{\mu \xi}{1 + \lambda \xi} \phi \xi E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) \]

\[+ \frac{1}{1 + \lambda \xi} E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) f\xi(0) \]

\[+ \frac{1}{1 + \lambda \xi} \int_0^t E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} s^\alpha \right) f'\xi(t - s) ds. \]

Substituting (2.34) into (2.32), we obtain

\[D^\alpha_t u(t) = \sum_{\xi \in \mathbb{Z}} \frac{\mu \xi}{1 + \lambda \xi} \phi \xi E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) e\xi \]

\[+ \sum_{\xi \in \mathbb{Z}} \frac{1}{1 + \lambda \xi} E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) f\xi(0) e\xi \]

\[+ \sum_{\xi \in \mathbb{Z}} \left[\frac{1}{1 + \lambda \xi} \int_0^t E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} s^\alpha \right) f'_\xi(t - s) ds \right] e\xi. \]

Applying the operator \(L \) to (2.35) and taking into account formulas (2.11), we have

\[D^\alpha_t Lu(t) = \sum_{\xi \in \mathbb{Z}} \frac{\mu \xi}{1 + \lambda \xi} (L\phi, e\xi) \mathcal{H} E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) e\xi \]

\[+ \sum_{\xi \in \mathbb{Z}} \frac{\lambda \xi}{1 + \lambda \xi} E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) f\xi(0) e\xi \]

\[+ \sum_{\xi \in \mathbb{Z}} \left[\frac{\lambda \xi}{1 + \lambda \xi} \int_0^t E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} s^\alpha \right) f'_\xi(t - s) ds \right] e\xi. \]

Now, let us estimate \(\mathcal{H} \)-norms

\[\|u(t)\|_{\mathcal{H}} ^2 \leq \sum_{\xi \in \mathbb{Z}} \left| E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) \right|^2 |\phi\xi|^2 \]

\[+ \sum_{\xi \in \mathbb{Z}} \left| \frac{f\xi(t)}{\mu \xi} \right|^2 + \sum_{\xi \in \mathbb{Z}} \left| \frac{f\xi(0)}{\mu \xi} \right|^2 \left| E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} t^\alpha \right) \right|^2 \]

\[+ \sum_{\xi \in \mathbb{Z}} \left| \int_0^t \frac{f'_\xi(t - s)}{\mu \xi} E_{\alpha,1} \left(- \frac{\mu \xi}{1 + \lambda \xi} s^\alpha \right) ds \right|^2 \]

\[\leq C \sum_{\xi \in \mathbb{Z}} \left(\frac{1}{1 + \lambda \xi} \right)^2 |\phi\xi|^2 \]

\[+ \sum_{\xi \in \mathbb{Z}} \left| \frac{f\xi(t)}{\mu \xi} \right|^2 + C \sum_{\xi \in \mathbb{Z}} \left(\frac{1}{1 + \lambda \xi} \right)^2 \left| \frac{f\xi(0)}{\mu \xi} \right|^2 \]

\[(2.37) \]
\[+ C \sum_{\xi \in I} \frac{1}{\mu^2_\xi} \left(\int_0^t \frac{1}{1 + \frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha} |f'_\xi(t - s)| ds \right)^2 \]

\[\leq C \sum_{\xi \in I} |\varphi_\xi|^2 + C \sum_{\xi \in I} \left| \frac{f_\xi(t)}{\mu_\xi} \right|^2 \]

\[+ C \sum_{\xi \in I} \frac{1}{\mu^2_\xi} \int_0^T \left(\frac{1}{1 + \frac{\mu_\xi}{1 + \lambda_\xi} s^\alpha} \right)^2 ds \int_0^T |f'_\xi(s)|^2 ds \]

\[\leq C \|\varphi\|_H^2 + C \|f(t)\|_{H^{-1}_M}^2 + C \|f\|_{W^1(0,T;H^{-1}_M)}^2. \]

Finally, we obtain
\[\|u\|_{L^2(0,T;H)} \leq C(\|\varphi\|_H^2 + \|f\|_{W^1(0,T;H^{-1}_M)}^2). \]

By using (1.5) and arguing as in (2.2), from (2.29)–(2.36) we get the following estimates
\[\|L u\|_{L^2([0,T],H)} \leq C \|L \varphi\|_H^2 + C \|f\|_{W^1([0,T],H^{-1}_M)}^2, \]

\[\|M u\|_{L^2([0,T],H)} \leq C \|M \varphi\|_H^2 + C \|f\|_{W^1([0,T],H)}^2, \]

\[\|D^\alpha_t u\|_{L^2([0,T],H)} \leq C(\|\varphi\|_{H^{-1,1}_M}^2 + \|f\|_{W^1([0,T],H^{-1})}^2), \]

and
\[\|D^\alpha_t L u\|_{L^2([0,T],H)} \leq C(\|\varphi\|_{H^1_M}^2 + \|f\|_{W^1([0,T],H)}^2), \]

respectively. It proves the existence result.

The proof of the uniqueness of the solution of Theorem 2.3 is the same as in the case of Theorem 2.2. \(\square \)

3. **Inverse problem.** This section is concerned with an inverse problem for the pseudo-parabolic equation (1.1). We obtain existence and uniqueness results for this problem, by using the L–Fourier method.

Problem 3.1. Find a pair of functions \((u(t), f)\) satisfying the following pseudo-parabolic equation
\[(3.1) \quad D^\alpha_t [u(t) + Lu(t)] + M u(t) = f, \text{ in } H, \]

for \(0 < t < T < \infty\), with initial data
\[(3.2) \quad u(0) = \varphi \in H, \]
and final condition

\begin{equation}
(3.3) \quad u(T) = \psi \in \mathcal{H}.
\end{equation}

Let us define \(\gamma := \max\{0, \kappa - 1\} \), where \(\kappa \) is from Assumption 1.2. A generalised solution of the inverse problem (3.1)-(3.3) is the pair of functions \((u(t), f)\), where \(u \in C^\alpha([0, T]; \mathcal{H}^{1+\gamma}_{\mathcal{L}} \cap \mathcal{H}^{1+\gamma}_{\mathcal{M}}) \), and \(f \in \mathcal{H} \).

For Problem (3.1)-(3.3) the following statement holds true.

Theorem 3.2. Let \(0 < \alpha < 1 \). Suppose that Assumptions 1.1 and 1.2 hold. Let \(\varphi, \psi \in \mathcal{H}^{1+\gamma}_{\mathcal{L}} \cap \mathcal{H}^{1+\gamma}_{\mathcal{M}} \). Then the generalised solution of the inverse problem (3.1)-(3.3) exists, is unique, and can be written in the form

\begin{equation}
(3.4) \quad u(t) = \varphi + \sum_{\xi \in \mathcal{I}} \left[(\varphi, e_\xi)_{\mathcal{H}} - (\varphi, e_\xi)_{\mathcal{H}} \right] \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} t^\alpha) \right) e_\xi,
\end{equation}

\begin{equation}
(3.5) \quad f = \mathcal{M} \varphi + \sum_{\xi \in \mathcal{I}} \frac{[\mathcal{M} \varphi, e_\xi]_{\mathcal{H}} - (\mathcal{M} \varphi, e_\xi)_{\mathcal{H}} e_\xi}{1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T^\alpha)}.
\end{equation}

Proof. Existence. Since the system \(\{e_\xi\}_{\xi \in \mathcal{I}} \) is a basis in the space \(\mathcal{H} \), we expand the functions \(u(t) \) and \(f \) as follows:

\begin{equation}
(3.4) \quad u(t) = \sum_{\xi \in \mathcal{I}} u_\xi(t) e_\xi,
\end{equation}

\begin{equation}
(3.5) \quad f = \sum_{\xi \in \mathcal{I}} f_\xi e_\xi,
\end{equation}

where \(u_\xi(t) \) and \(f_\xi \) are

\begin{align*}
& u_\xi(t) = (u(t), e_\xi)_{\mathcal{H}}, \quad \xi \in \mathcal{I}, \\
& f_\xi = (f, e_\xi)_{\mathcal{H}}, \quad \xi \in \mathcal{I}.
\end{align*}

Substituting (3.4) and (3.5) into the equations (3.1)-(3.3) and using the relations

\begin{equation}
(3.6) \quad \mathcal{D}_t^\alpha u_\xi(t) + \frac{\mu_\xi}{1+\lambda_\xi} u_\xi(t) = \frac{f_\xi}{1+\lambda_\xi},
\end{equation}

\begin{equation}
(3.7) \quad u_\xi(0) = \varphi_\xi,
\end{equation}

\begin{equation}
(3.8) \quad u_\xi(T) = \psi_\xi,
\end{equation}

we get the following problem for the functions \(u_\xi(t) \) and for the constants \(f_\xi, \xi \in \mathcal{I} \):
for $t \in [0, T]$ and for any $\xi \in \mathcal{I}$. Where ϕ_ξ, ψ_ξ are the coefficients of the expansions of ϕ, ψ, i.e.

\begin{equation}
\phi = \sum_{\xi \in \mathcal{I}} \phi_\xi e_\xi, \quad \psi = \sum_{\xi \in \mathcal{I}} \psi_\xi e_\xi,
\end{equation}

given by

\begin{equation}
\phi_\xi = (\phi, e_\xi)_H, \quad \psi_\xi = (\psi, e_\xi)_H.
\end{equation}

We seek a general solution of Problem (3.6)–(3.8) in the following form

\begin{equation}
\begin{aligned}
u(0) &= \frac{f_\xi}{\mu_\xi} + C_\xi = \phi_\xi, \\
\nu(T) &= \frac{f_\xi}{\mu_\xi} + C_\xi E_{\alpha,1}(-\frac{\mu_\xi}{1 + \lambda_\xi} T^\alpha) = \psi_\xi, \\
\phi_\xi - C_\xi + C_\xi E_{\alpha,1}(-\frac{\mu_\xi}{1 + \lambda_\xi} T^\alpha) &= \psi_\xi.
\end{aligned}
\end{equation}

Then

\begin{equation}
C_\xi = \frac{\phi_\xi - \psi_\xi}{1 - E_{\alpha,1}(-\frac{\mu_\xi}{1 + \lambda_\xi} T^\alpha)}.
\end{equation}

Then f_ξ is represented as

\begin{equation}
f_\xi = \mu_\xi \phi_\xi - \mu_\xi C_\xi.
\end{equation}

Substituting f_ξ, $u_\xi(t)$ into the expansions (3.4) and (3.5), we find

\begin{equation}
u(t) = \phi + \sum_{\xi \in \mathcal{I}} C_\xi \left(E_{\alpha,1}(-\frac{\mu_\xi}{1 + \lambda_\xi} t^\alpha) - 1\right) e_\xi,
\end{equation}

\begin{equation}
f = \sum_{\xi \in \mathcal{I}} \mu_\xi \phi_\xi e_\xi - \sum_{\xi \in \mathcal{I}} \mu_\xi C_\xi e_\xi.
\end{equation}

By using the self-adjointness of the operator \mathcal{M},

\begin{equation}
(\mathcal{M} \phi, e_\xi)_H = (\phi, \mathcal{M} e_\xi)_H,
\end{equation}

and using $\mathcal{M} e_\xi = \mu_\xi e_\xi$, we obtain

\begin{equation}
(\phi, e_\xi)_H = \frac{(\mathcal{M} \phi, e_\xi)_H}{\mu_\xi}, \quad (\psi, e_\xi)_H = \frac{(\mathcal{M} \psi, e_\xi)_H}{\mu_\xi}.
\end{equation}
Substituting these identities into the formula of C_ξ, we get that

$$C_\xi = \frac{(M\varphi,e_\xi)_H - (M\psi,e_\xi)_H}{\mu_\xi \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)\right)}.$$

Then, formally, one obtains

(3.12) \[u(t) = \varphi + \sum_{\xi \in \mathcal{I}} \frac{[(\psi,e_\xi)_H - (\varphi,e_\xi)_H] \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)\right) e_\xi}{1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)}, \]

(3.13) \[f = M\varphi + \sum_{\xi \in \mathcal{I}} \frac{[(M\psi,e_\xi)_H - (M\varphi,e_\xi)_H] e_\xi}{1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)}. \]

Since $T > T_0 \geq 0$, $T_0 = \text{const}$, for denominators of (3.12) and (3.13), the following estimate holds true by (1.4),

$$1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha) \geq 1 - \frac{1}{1 + \frac{\mu_\xi}{1+\lambda_\xi} T_\alpha \Gamma(1 + \alpha)^{-1}}$$

$$= \frac{1}{1 + \frac{\mu_\xi}{1+\lambda_\xi} T_\alpha \Gamma(1 + \alpha)^{-1}}$$

$$= \frac{\Gamma(1 + \alpha)^{-1}}{\frac{1+\lambda_\xi}{\mu_\xi T_\alpha} + \Gamma(1 + \alpha)^{-1}}$$

$$\geq M > 0.$$

Here, by Assumption 1.2 we have $|\lambda_\xi| = O(|\mu_\xi|^{\kappa})$ as $|\xi| \to \infty$ for some $\kappa > 0$. In the case if $\kappa \leq 1$ the estimate (3.14) makes a sense. Now, suppose that $\kappa > 1$. Then, we have

(3.15) \[|\mu_\xi|^{\kappa-1}(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)) \geq |\mu_\xi|^{\kappa-1} \frac{\Gamma(1 + \alpha)^{-1}}{\frac{1+\lambda_\xi}{\mu_\xi T_\alpha} + \Gamma(1 + \alpha)^{-1}} \geq M > 0. \]

According to [LG99], we have

(3.16) \[\mathcal{D}^\alpha_t (E_{\alpha,1}(-\lambda t_\alpha)) = -\lambda E_{\alpha,1}(-\lambda t_\alpha). \]

Now, we prove the convergence of the obtained infinite series corresponding to the functions $u(t)$, $\mathcal{D}^\alpha_t u(t)$, $Mu(t)$, $\mathcal{D}^\alpha_t Lu(t)$, and f.

Before we get the convergence, let us calculate $\mathcal{D}^\alpha_t u(t)$, $Mu(t)$ and $\mathcal{D}^\alpha_t Lu(t)$. Applying the operator \mathcal{D}^α_t to (3.12), and using (3.16), we have

(3.17) \[\mathcal{D}^\alpha_t u(t) = \sum_{\xi \in \mathcal{I}} \frac{[(M\psi,e_\xi)_H - (M\varphi,e_\xi)_H] \mathcal{D}^\alpha_t \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)\right) e_\xi}{\mu_\xi \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)\right)} \]

$$= \sum_{\xi \in \mathcal{I}} \frac{[(M\psi,e_\xi)_H - (M\varphi,e_\xi)_H] E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha) e_\xi}{\left(1 + \lambda_\xi\right) \left(1 - E_{\alpha,1}(-\frac{\mu_\xi}{1+\lambda_\xi} T_\alpha)\right)}.$$
Applying the operators \mathcal{L} and \mathcal{M} to (3.12) and taking into account (2.11), we have

$$
\mathcal{L}u(t) = \mathcal{L}\varphi + \sum_{\xi \in I} \left[(\mathcal{L}\psi, e_\xi)_{\mathcal{H}} - (\mathcal{L}\varphi, e_\xi)_{\mathcal{H}} \right] \frac{1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}t^\alpha)}{1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}T^\alpha)} e_\xi,
$$

(3.18) $\mathcal{M}u(t) = \mathcal{M}\varphi + \sum_{\xi \in I} \left[(\mathcal{M}\psi, e_\xi)_{\mathcal{H}} - (\mathcal{M}\varphi, e_\xi)_{\mathcal{H}} \right] \frac{1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}t^\alpha)}{1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}T^\alpha)} e_\xi,$

respectively.

Now, applying the operator D_t^α to the first equality in (3.18), and taking into account formulas (2.11), we have

$$
D_t^\alpha \mathcal{L}u(t) = \sum_{\xi \in I} \frac{\mu\xi \left[(\mathcal{L}\psi, e_\xi)_{\mathcal{H}} - (\mathcal{L}\varphi, e_\xi)_{\mathcal{H}} \right]}{(1+\lambda\xi) \left(1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}T^\alpha)\right)} E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}t^\alpha) e_\xi.
$$

(3.19) $D_t^\alpha \mathcal{L}u(t) = \sum_{\xi \in I} \frac{\mu\xi \left[(\mathcal{L}\psi, e_\xi)_{\mathcal{H}} - (\mathcal{L}\varphi, e_\xi)_{\mathcal{H}} \right]}{(1+\lambda\xi) \left(1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}T^\alpha)\right)} E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}t^\alpha) e_\xi.$

Let us recall that $\gamma = \max\{0, \kappa - 1\}$. By using the formulas (3.12)–(3.19), and taking into account estimates (1.5), we get the following estimates

(3.20) $\|u\|^2_{C([0,T],\mathcal{H})} \leq C(\|\varphi\|^2_{\mathcal{H}} + \|\varphi\|^2_{\mathcal{H}_M^\gamma} + \|\psi\|^2_{\mathcal{H}_M^\gamma}),$

$\|\mathcal{M}u\|^2_{C([0,T],\mathcal{H})} \leq C(\|\varphi\|^2_{\mathcal{H}_M^\gamma} + \|\varphi\|^2_{\mathcal{H}_{1+\gamma}} + \|\psi\|^2_{\mathcal{H}_{1+\gamma}}),$

$\|D_t^\alpha u\|^2_{C([0,T],\mathcal{H})} \leq C(\|\varphi\|^2_{\mathcal{H}_{1+\gamma}} + \|\psi\|^2_{\mathcal{H}_{1+\gamma}}),$

$\|D_t^\alpha \mathcal{L}u\|^2_{C([0,T],\mathcal{H})} \leq C(\|\varphi\|^2_{\mathcal{H}_M^\gamma} + \|\psi\|^2_{\mathcal{H}_M^\gamma}).$

For clarity, we only show the first estimate. By taking the \mathcal{H}-norm from the both sides of the representation (3.12), we obtain

(3.21) $\|u(t)\|^2_{\mathcal{H}} \leq \|\varphi\|^2_{\mathcal{H}} + \sum_{\xi \in I} [\varphi_\xi]^2 + [\psi_\xi]^2 \left(1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}T^\alpha)\right)^2 \left(1 - E_{\alpha,1}(-\frac{\mu\xi}{1+\lambda\xi}t^\alpha)\right)^2.$

Now, by using the estimates (1.5), (3.14) and (3.15), we get

(3.22) $\|u(t)\|^2_{\mathcal{H}} \leq \|\varphi\|^2_{\mathcal{H}} + C_1 \sum_{\xi \in I} [\mu\xi]^{2\gamma} [\varphi_\xi]^2 + [\psi_\xi]^2 \leq C(\|\varphi\|^2_{\mathcal{H}} + \|\varphi\|^2_{\mathcal{H}_M^\gamma} + \|\psi\|^2_{\mathcal{H}_M^\gamma}),$

for some constants $C_1 > 0$ and $C > 0$. Thus, we finish the proof of (3.20).

Similarly, for the source term f, one obtains the estimate

$$
\|f\|^2_{\mathcal{H}} \leq C(\|\varphi\|^2_{\mathcal{H}_M^\gamma} + \|\varphi\|^2_{\mathcal{H}_{1+\gamma}} + \|\psi\|^2_{\mathcal{H}_{1+\gamma}}).
$$

Existence of the solution of Problem (3.1)–(3.3) is proved.
Proof of the uniqueness result. Let us suppose that \{u_1(t), f_1\} and \{u_2(t), f_2\} are solution of the Problem (3.1)–(3.3). Let \(u(t) = u_1(t) - u_2(t)\) and \(f = f_1 - f_2\). Then \(u(t)\) and \(f\) satisfy

\[
\mathcal{D}_t^\alpha [u(t) + \mathcal{L}u(t)] + \mathcal{M}u(t) = f, \tag{3.23}
\]

\[
u(0) = 0, \tag{3.24}
\]

\[
u(T) = 0. \tag{3.25}
\]

We also have

\[
u_\xi(t) = (u(t), e_\xi)_\mathcal{H}, \; \xi \in \mathcal{I}, \tag{3.26}
\]

and

\[
f_\xi = (f, e_\xi)_\mathcal{H}, \; \xi \in \mathcal{I}. \tag{3.27}
\]

Applying the operator \(\mathcal{D}_t^\alpha\) to (3.26), we have

\[
(1 + \lambda_\xi)\mathcal{D}_t^\alpha u_\xi(t) = (\mathcal{D}_t^\alpha [u(t) + \mathcal{L}u(t)], e_\xi)_\mathcal{H} = (-\mathcal{M}u(t) + f, e_\xi)_\mathcal{H} = -\mu_\xi u_\xi(t) + f_\xi.
\]

Thus, we get the problem with homogeneous conditions. The general solution of this equation has the form (3.11). Using the homogeneous conditions \(u_\xi(0) = 0\) and \(u_\xi(T) = 0\) we obtain

\[
f_\xi = 0 \; \text{and} \; u_\xi(t) \equiv 0.
\]

Further, by the completeness of the system \(\{e_\xi\}_{\xi \in \mathcal{I}}\) in \(\mathcal{H}\), we obtain \(f \equiv 0, u(t) \equiv 0\). Uniqueness of the solution of Problem (3.1)–(3.3) is proved. \(\square\)

References

[AKT19] N. Al-Salti, M. Kirane, and B.T. Torebek, On a class of inverse problems for a heat equation with involution perturbation, *Hacet. J. Math. Stat.* 48(3) (2019), 669–681.

[BGPV97] G.I. Barenblatt, J. Garcia-Azorero, A. De Pablo, and J.L. Vazquez, Mathematical model of the non-equilibrium water-oil displacement in porous strata, *Appl. Anal.* 65 (1997), 19–45.

[BBM72] T.B. Benjamin, J.L. Bona, and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, *Philos. Trans. Royal Soc. London. Ser. A* 272 (1972), 47–78.

[CG68] P.J. Chen and M.E. Gurtin, On a theory of heat conduction involving two temperatures, *Z. Angew. Math. Phys.* 19 (1968), 614–627.

[FN19] V.E. Fedorov and R.R. Nazhimov, Inverse problems for a class of degenerate evolution equations with Riemann-Liouville derivative, *Fractional Calculus and Applied Analysis* 22 (2019), 271–286.
Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate, *J. Non-Newtonian Fluid Mech.* **156** (2009), 189–201.

A. Hazanee, D. Lesnic, M.I. Ismailov, and N.B. Kerimov, Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, *Appl. Math. Comput.* **346** (2019), 800–815.

Y. Kian and M. Yamamoto, Reconstruction and stable recovery of source terms and coefficients appearing in diffusion equations, *Inverse Problems* **35**(11) (2019), 115006.

A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Mathematics studies, Vol. 204, Elsevier, North-Holland, 2006.

N. Kinash and J. Janno, Inverse problems for a perturbed time fractional diffusion equation with final overdetermination, *Math. Meth. Appl. Sci.* **41**(5) (2018), 1925–1943.

Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, *Acta Math. Vietnam.* **24** (1999), 207–233.

A.S. Lyubanova and A. Tani, An inverse problem for pseudo-parabolic equation of filtration. The existence, uniqueness and regularity, *Appl. Anal.* **90**(11) (2011), 1557–1571.

A.S. Lyubanova and A.V. Velisevich, Inverse problems for the stationary and pseudoparabolic equations of diffusion, *Appl. Anal.* **98**(11) (2019), 1997–2010.

W. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, *Appl. Anal.* **10** (1980), 231–242.

W. Rundell and Z. Zhang, Recovering an unknown source in a fractional diffusion problem, *J. Comput. Phys.* **368** (2018), 299–314.

M. Ruzhansky and N. Tokmagambetov, Nonharmonic analysis of boundary value problems, *Int. Math. Res. Notices* **2016**(12) (2016), 3548–3615.

M. Ruzhansky, N. Tokmagambetov, and B.T. Torebek, Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations, *J. Inverse and Ill-posed problems* **27**(6) (2019), 891–911.

T. Simon, Comparing Fréchet and positive stable laws, *Electron. J. Probab.* **19** (2014), 1–25.

M.M. Slodička, K. Šiškova, and K.V. Bockstal, Uniqueness for an inverse source problem of determining a space dependent source in a time-fractional diffusion equation, *Appl. Math. Lett.* **91** (2019), 15–21.

D. Tong and Y. Liu, Exact solutions for the unsteady rotational flow of non-Newtonian fluid in an annular pipe, *Internat. J. Engrg. Sci.* **43** (2005), 281–289.

Received 8 August, 2020.