A COROLLARY OF RIEMANN HYPOTHESIS

JINHUA FEI

ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

E-mail: feijihuayoujian@msn.com

Abstract. This paper use the results of the value distribution theory , got a significant conclusion by Riemann hypothesis

Keyword. Value distribution theory, Riemann zeta function

MR(2000) Subject Classification 30D35, 11M06

First, we give some signs, definition and theorem in the value distribution theory, its contents see the references [1] and [2] .

Definition.

\[
\log^+ x = \begin{cases}
\log x & 1 \leq x \\
0 & 0 \leq x < 1
\end{cases}
\]

It is easy to see that \(\log x \leq \log^+ x \).

Set \(f(z) \) is a meromorphic function in the region \(|z| < R, 0 < R \leq \infty \), and not identical to zero.

\(n(r, f) \) represents the poles number of \(f(z) \) on the circle \(|z| \leq r (0 < r < R) \), multiple poles being repeated. \(n(0, f) \) represents the order of pole of \(f(z) \) in the origin. For arbitrary complex number \(a \neq \infty \), \(n(r, \frac{1}{f-a}) \) represents the zeros number of \(f(z) - a \) in the circle \(|z| \leq r (0 < r < R) \), multiple zeros being repeated. \(n(0, \frac{1}{f-a}) \) represents the order of zero of \(f(z) - a \) in the origin.

Definition.

\[
m(r, f) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^+ |f(re^{i\varphi})| \, d\varphi
\]
\[N(r, f) = \int_0^r \frac{n(t, f) - n(0, f)}{t} \, dt + n(0, f) \log r \]

Definition. \(T(r, f) = m(r, f) + N(r, f) \).

\(T(r, f) \) is called the characteristic function of \(f(z) \).

Lemma 1. If \(f(z) \) is an analytical function in the region \(|z| < R \ (0 < R \leq \infty) \), then

\[T(r, f) \leq \log^+ M(r, f) \leq \frac{\rho + r}{\rho - r} T(\rho, f)(0 < r < \rho < R) \]

where \(M(r, f) = \max_{|z|=r} |f(z)| \)

The proof of the lemma see the page 57 of the references [1].

Lemma 2. Set \(f(z) \) is a meromorphic function in the region \(|z| < R \ (0 < R \leq \infty) \), not identical to zero. Set \(|z| < \rho \ (0 < \rho < R) \) is a circle, \(a_\lambda \ (\lambda = 1, 2, ..., h) \) and \(b_\mu \ (\mu = 1, 2, ..., k) \) respectively is the zeros and the poles of \(f(z) \) in the circle, appeared number of every zero or every pole and its order the same, and that \(z = 0 \) is not the zero or the pole of function \(f(z) \), then in the circle \(|z| < \rho \), we have the following formula

\[\log |f(0)| = \frac{1}{2\pi} \int_0^{2\pi} \log |f(\rho e^{i\varphi})| \, d\varphi - \sum_{\lambda=1}^h \log \frac{\rho}{|a_\lambda|} + \sum_{\mu=1}^k \log \frac{\rho}{|b_\mu|} \]

this formula is called Jensen formula.

The proof of the lemma see the page 48 of the references [1].

Lemma 3. Set function \(f(z) \) is the meromorphic function in \(|z| \leq R \), and

\[f(0) \neq 0, \infty, 1, \quad f'(0) \neq 0 \]

then when \(0 < r < R \), have

\[T(r, f) < 2 \left\{ N(R, \frac{1}{f}) + N(R, f) + N(R, \frac{1}{f-1}) \right\} \]
This is a form of Nevanlinna second basic theorems.

The proof of the lemma see the theorem 3.1 of the page 75 of the references [1].

The need for behind, We will make some preparations.

LEMMA 4. If when \(x \geq a \), \(f(x) \) is a nonnegative degressive function, then below limits exist

\[
\lim_{{N \to \infty}} \left(\sum_{{n=a}}^{{N}} f(n) - \int_{a}^{N} f(x) \, dx \right) = \alpha
\]

where \(0 \leq \alpha \leq f(a) \). in addition, if when \(x \to \infty \), have \(f(x) \to 0 \), then

\[
\left| \sum_{{a \leq n \leq \xi}} f(n) - \int_{a}^{\xi} f(\nu) \, d\nu - \alpha \right| \leq f(\xi - 1), \quad (\xi \geq a + 1)
\]

The proof of the lemma see the theorem 2 of page 91 of the references [3].

Set \(s = \sigma + it \) is the complex number, when \(\sigma > 1 \), the definition of Riemann Zeta function is

\[
\zeta(s) = \sum_{{n=1}}^{\infty} \frac{1}{n^s}
\]

When \(\sigma > 1 \), from the page 90 of the references [4], have

\[
\log \zeta(s) = \sum_{{n=2}}^{\infty} \frac{\Lambda(n)}{n^s \log n}
\]

where \(\Lambda(n) \) is Mangoldt function.
LEMMA 5. For any real number t, have

(1) $0.0426 \leq | \log \zeta(4 + it) | \leq 0.0824$

(2) $| \zeta(4 + it) - 1 | \geq 0.0426$

(3) $0.917 \leq | \zeta(4 + it) | \leq 1.0824$

(4) $| \zeta'(4 + it) | \geq 0.012$

PROOF.

(1)

$$| \log \zeta(4 + it) | \leq \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^4 \log n} \leq \sum_{n=2}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} - 1 \leq 0.0824$$

$$| \log \zeta(4 + it) | \geq \frac{1}{2^4} - \sum_{n=3}^{\infty} \frac{1}{n^4} = 1 + \frac{2}{2^4} - \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{9}{8} - \frac{\pi^4}{90} \geq 0.0426$$

(2)

$$| \zeta(4 + it) - 1 | = \left[\sum_{n=2}^{\infty} \frac{1}{n^4 + it} \right] \geq \frac{1}{2^4} - \sum_{n=3}^{\infty} \frac{1}{n^4}$$

$$= 1 + \frac{2}{2^4} - \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{9}{8} - \frac{\pi^4}{90} \geq 0.0426$$

(3)

$$| \zeta(4 + it) | = \left| \sum_{n=1}^{\infty} \frac{1}{n^4 + it} \right| \leq \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90} \leq 1.0824$$

$$| \zeta(4 + it) | \geq 1 - \sum_{n=2}^{\infty} \frac{1}{n^4} = 2 - \sum_{n=1}^{\infty} \frac{1}{n^4} = 2 - \frac{\pi^4}{90} \geq 0.917$$
from lemma 4, have

\[
\sum_{n=3}^{\infty} \frac{\log n}{n^4} = \int_{3}^{\infty} \frac{\log x}{x^4} dx + \alpha
\]

where \(0 \leq \alpha \leq \frac{\log 3}{3^4}\)

\[
\int_{3}^{\infty} \frac{\log x}{x^4} dx = -\frac{1}{3} \int_{3}^{\infty} \log x \, dx \, x^{-3} = \frac{\log 3}{3^4} + \frac{1}{3} \int_{3}^{\infty} x^{-4} \, dx
\]

\[
= \frac{\log 3}{3^4} - \frac{1}{3^2} \int_{3}^{\infty} dx \, x^{-3} = \frac{\log 3}{3^4} + \frac{1}{3^5}
\]

therefore

\[
\sum_{n=3}^{\infty} \frac{\log n}{n^4} \leq \frac{\log 3}{3^4} + \frac{1}{3^5} + \frac{\log 3}{3^4}
\]

therefore

\[
|\zeta'(4 + it)| \geq \frac{\log 2}{2^4} - \frac{2 \log 3}{3^4} - \frac{1}{3^5} \geq 0.012
\]

The proof is complete.

Set \(0 < \delta \leq \frac{1}{100} \), \(c_1, c_2, \ldots\), represents positive constant with only \(\delta\) relevant in the article below.

LEMMA 6. When \(\sigma \geq \frac{1}{2}, \, |t| \geq 2\), have

\[
|\zeta(\sigma + it)| \leq c_1 |t|^{\frac{1}{2}}
\]

The proof of the lemma see the theorem 2 of page 140 and the theorem 4 of page 142, of the references [4].
Lemma 7. Set \(f(z) \) is the analytic function in the circle \(|z - z_0| \leq R\), then for any \(0 < r < R \), in the circle \(|z - z_0| \leq r\), have

\[
|f(z) - f(z_0)| \leq \frac{2r}{R - r} \left(A(R) - Ref(z_0) \right)
\]

where \(A(R) = \max_{|z - z_0| \leq R} Ref(z) \)

The proof of the lemma see the theorem 2 of page 61 of the references [4].

Now assume Riemann hypothesis is correct, abbreviation for RH. In other words, when \(\sigma > \frac{1}{2} \), the function \(\zeta(\sigma + it) \) has no zeros. Set the union set of the region \(\sigma > \frac{1}{2}, |t| > 1 \) and the region \(\sigma > 2, |t| \leq 1 \) is the region \(D \).

Therefore, the function \(\zeta(\sigma + it) \) have neither zero nor poles in the region \(D \), so, function \(\log \zeta(\sigma + it) \) is a defined multi-valued analytic function in the region \(D \). Every single value analytic branch differ \(2\pi i \) integer times.

Assuming there are the points \(s_0 \) in the region \(D \), satisfy \(\zeta(s_0) = 1 \) (If there is not such point \(s_0 \), then the result of lemma 9 turns into \(N(\rho, \frac{1}{\zeta-1}) = 0 \), the results of the theorem of this article can be obtained directly). For different single value analytic branch, the value of \(\log \zeta(s_0) = \log 1 \) are different, it can value \(0, 2\pi ki, (k = \pm 1, \pm 2, \ldots) \). We select the single valued analytic branch of \(\log \zeta(s_0) = \log 1 = 0 \).

Because the region \(D \) is simple connected region, so the according to the single value theorem of analytic continuation (the theorem see the theorem 2 of page 276 of the references [5] and theorem 1 of page 155 of the references [6]), \(\log \zeta(\sigma + it) \) is the single valued analytic function in the region \(D \). in addition, when and only when \(\zeta(\sigma + it) = 1 \), have \(\log \zeta(\sigma + it) = 0 \). In other words, 1 value point of \(\zeta(\sigma + it) \) is the zero of \(\log \zeta(\sigma + it) \), the opposite is true.

Below, \(\log \zeta(\sigma + it) \) always express a single valued analytic branch for we selected.

Lemma 8. If RH is correct, then when \(0 < \delta \leq \frac{1}{100}, \sigma \geq \frac{1}{2} + 2\delta, |t| \geq 16 \), we have

\[
|\log \zeta(\sigma + it)| \leq c_2 \log |t| + c_3
\]

Proof. In the lemma 7, we choose \(z_0 = 0 \), \(f(z) = \log \zeta(z + 4 + it) \), \(|t| \geq 16 \), \(R = \frac{7}{2} - \delta \), \(r = \frac{7}{2} - 2\delta \). Because \(\log \zeta(z + 4 + it) \) is the analytic function
in the circle $|z - z_0| \leq R$, so, from the lemma 7, in the circle $|z - z_0| \leq r$, we have

$$| \log \zeta(z + 4 + it) \log \zeta(4 + it) | \leq \frac{7}{\delta} \left(A(R) - R \log \zeta(4 + it) \right)$$

hence

$$| \log \zeta(z + 4 + it) | \leq \frac{7}{\delta} \left(A(R) + | \log \zeta(4 + it) | \right) + | \log \zeta(4 + it) |$$

from the lemma 6, have

$$A(R) = \max_{|z - z_0| \leq R} \log | \zeta(z + 4 + it) | \leq \frac{1}{2} \log |t| + \log c_1$$

from the lemma 5, have

$$| \log \zeta(z + 4 + it) | \leq c_2 \log |t| + c_3$$

because $|t| \geq 16$ is real number arbitrarily, so when $\sigma \geq \frac{1}{2} + 2\delta$, we have

$$| \log \zeta(\sigma + it) | \leq c_2 \log |t| + c_3$$

The proof is complete.

Lemma 9. If RH is correct, then when $0 < \delta \leq \frac{1}{100}$, $|t| \geq 16$, $\rho = \frac{7}{2} - 2\delta$, in the circle $|z| \leq \rho$, we have

$$N\left(\rho, \frac{1}{\zeta(z + 4 + it) - 1} \right) \leq \log \log |t| + c_4$$

Proof. In the lemma 2, we choose $f(z) = \log \zeta(z + 4 + it)$, $R = \frac{7}{2} - \delta$, $\rho = \frac{7}{2} - 2\delta$, $a_\lambda (\lambda = 1, 2, ..., h)$ is the zeros of function $\log \zeta(z + 4 + it)$ in the circle $|z| < \rho$, multiple zeros being repeated. The function $\log \zeta(z + 4 + it)$ has no poles in the the circle $|z| < \rho$, and $\log \zeta(4 + it)$ not equal to zero, therefore we have

$$\log | \log \zeta(4 + it) | = \frac{1}{2\pi} \int_0^{2\pi} \log | \log \zeta(4 + it + e^{i\varphi}) | d\varphi - \sum_{\lambda=1}^{h} \log \frac{\rho}{|a_\lambda|}$$

7
from the lemma 5 and the lemma 8, have
\[\sum_{\lambda=1}^{h} \log \frac{\rho}{|a_\lambda|} \leq \log \log |t| + c_4 \]

because \(z = 0 \) is neither the zero, nor pole of the function \(\log \zeta(z + 4 + it) \), so if \(r_0 \) is a sufficiently small positive number, then

\[\sum_{\lambda=1}^{h} \log \frac{\rho}{|a_\lambda|} = \int_{r_0}^{\rho} \left(\log \frac{\rho}{t} \right) \frac{d n(t, \frac{1}{f})}{t} = \left[\left(\log \frac{\rho}{t} \right) n(t, \frac{1}{f}) \right]_{r_0}^{\rho}
+ \int_{r_0}^{\rho} \frac{n(t, \frac{1}{f})}{t} \, dt = \int_{0}^{\rho} \frac{n(t, \frac{1}{f})}{t} \, dt = N\left(\rho, \frac{1}{f}\right) \]

\[= N\left(\rho, \frac{1}{\log \zeta(z + 4 + it)}\right) = N\left(\rho, \frac{1}{\zeta(z + 4 + it) - 1}\right) \]

The proof is complete.

THEOREM. If RH is correct, then when \(\sigma \geq \frac{1}{2} + 4\delta \), \(0 < \delta \leq \frac{1}{100} \), \(|t| \geq 16 \), we have

\[|\zeta(\sigma + it)| \leq c_8 \left(\log |t|\right)^{c_8} \]

proof. In the lemma 3, we choose \(f(z) = \zeta(z + 4 + it) \), \(|t| \geq 16 \), from the lemma 5, have \(f(0) = \zeta(4 + it) \neq 0, \infty, 1, \quad f'(0) = \zeta'(4 + it) \neq 0 \), and \(f''(0) = \zeta''(4 + it) \geq 0.012, \quad |f(0)| = |\zeta(4 + it)| \leq 1.0824 \). We choose \(R = \frac{7}{2} - 2\delta \), \(r = \frac{7}{2} - 3\delta \). Because \(\zeta(z + 4 + it) \) is the analytic function, and have neither zero nor the poles in the circle \(|z| \leq R \), therefore

\[N\left(R, \frac{1}{f}\right) = 0, \quad N\left(R, f\right) = 0 \]

from the lemma 9, have

\[T\left(r, \zeta(z + 4 + it)\right) \leq 2 \log \log |t| + c_5 \]
In the lemma 1, we choose $R = \frac{7}{2} - 2\delta$, $\rho = \frac{7}{2} - 3\delta$, $r = \frac{7}{2} - 4\delta$, from the maximal principle, in the the circle $|z| \leq r$, we have

$$\log^+ |\zeta(z + 4 + it)| \leq c_6 \log \log |t| + c_7$$

Since $|t| \geq 16$ is arbitrary real number, so when $\sigma \geq \frac{1}{2} + 4\delta$, have

$$\log^+ |\zeta(\sigma + it)| \leq c_6 \log \log |t| + c_7$$

therefore

$$\log |\zeta(\sigma + it)| \leq c_6 \log \log |t| + c_7$$

therefore

$$|\zeta(\sigma + it)| \leq c_8 (\log |t|)^{c_\alpha}$$

The proof is complete.

The result of this theorem is better than known results.

REFERENCES

[1] Zhuang Q.T, Singular direction of meromorphic function, BeiJing: Science Press, 1982. (in Chinese).

[2] Yang L, Value distribution theory and new research, BeiJing: Science Press, 1982. (in Chinese)

[3] Hua L.G, Introduction of number theory, BeiJing: Science Press, 1979. (in Chinese)

[4] Pan C.D, Pan C.B, Fundamentals of analytic number theory, BeiJing: Science Press, 1999. (in Chinese)

[5] Zhuang Q.T, Zhang N.Y, Complex variables functions, BeiJing: Peking University press, 1984. (in Chinese)
[6] Hua L.G, Introduction of advanced mathematics (Book One of second volume), BeiJing: Science Press, 1981. (in Chinese)