Adaptive Immune Responses Mediated Age-related *Plasmodium yoelii* 17XL and 17XNL Infections in 4 and 8-week-old BALB/c Mice

Qiu-bo Wang
China Medical University

Yun-ting Du
Cancer hospital of China Medical University

Fei Liu
China Medical University

Xiao-dan Sun
China Medical University

Xun Sun
China Medical University

Guang Chen
Taizhou University

Wei Pang
China Medical University

Yaming Cao (ymcao@cmu.edu.cn)
China Medical University https://orcid.org/0000-0002-1547-3033

Research article

Keywords: age-related, *Plasmodium yoelii* 17XL, *Plasmodium yoelii* 17XNL, adaptive immune responses, 4-week-old BALB/c mice, 8-week-old BALB/c mice

Posted Date: December 6th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-29497/v6

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at BMC Immunology on January 11th, 2021. See the published version at https://doi.org/10.1186/s12865-020-00391-8.
Abstract

Background: It is important to expound the opposite clinical outcomes between children and adulthood for eradicate malaria. There remains unknown about the correlation between adaptive immune response and age-related in malaria.

Methods: 4 and 8-week-old mice were used to mimic children and adulthood, respectively. Parasitemia and the survival rate were monitored. The proportion and function of Th1 and Th2 cells were detected by FACS. The levels of IFN-γ, IL-4, total IgG, IgG1, IgG2a and *Plasmodium yoelii* MSP-1-specific IgG were measured by ELISA.

Results: The adult group showed greater resistance to *P. yoelii* 17XL infection, with lower parasitemia. Compared with 4-week-old mice, the percentage of CD4⁺T-bet⁺IFN-γ⁺ Th1 cells as well as IFN-γ production were significantly increased on day 5 p.i. in the 8-week-old mice after *P. yoelii* 17XNL infection. The percentage of CD4⁺GATA3⁺IL-4⁺ Th2 cells and CD4⁺CXCR5⁺ Tfh cells, and IL-4 production in the 8-week-old mice significantly increased on day 5 and day 10 after *P. yoelii* 17XNL infection. Notably, the levels of total IgG, IgG1, IgG2a and *P. yoelii* MSP-1-specific IgG were also significantly increased in the 8-week-old mice. PD-1, a marker of exhaustion, was up-regulated on CD4⁺ or activated CD4⁺ T cells in the 8-week-old mice as compared to the 4-week-old group.

Conclusions: Thus, we consider that enhanced cellular and humoral adaptive immunity might contribute to rapid clearance of malaria among adults, likely in a PD-1-dependent manner due to induction of CD4⁺ T cells exhaustion in *P. yoelii* 17XNL infected 8-week-old mice.

Background

Malaria is a serious infectious disease, which cause of mortality and morbidity in tropical countries [1]. According to WHO report, malaria transmission was found in 91 countries with Africa experiencing disproportionately high malaria cases (90% of the total) and accounting for 91% of total malaria deaths worldwide [2]. Notably, children under the age of 5 years are particularly vulnerable to *plasmodium* infection. More than two-thirds of malaria deaths (70%) occur in this age group [3]. Of the five *Plasmodium* species that infect humans, *Plasmodium falciparum* and *Plasmodium vivax* are the most common, and *P. falciparum* is the most virulent and responsible for the majority of deaths [2, 3]. In addition, the multiplicity of infection (MOI) varies depending on the overall prevalence of infection in the population, and the age of the individual [4, 5]. The young children are highly susceptible to clinical illness and high parasitemia, whereas the adults are highly resistant [4], resulting in a major difference in the spectrum of disease manifestations between children and adults [6]. Therefore, understanding the immunological mechanisms involved in susceptibility to different virulent *Plasmodium* species during infection in children or adulthood could contribute to the development of an immunologically based control strategy to prevent or treat this devastating disease.
Upon infection, anti-parasite immunity plays a pivotal role in removing the parasite from the blood. Firstly innate immunity is activated via complement system, innate lymphoid cells and dendritic cells (DCs), act to limit the acute phase of parasitemia, but are insufficient to clear the infection [7, 8, 9]. When DCs present the processed antigen, adaptive immunity is activated. Direct cell cytotoxicity, cytokine secretion as well as anti-malarial antibody work together for effective parasite clearance [10, 11, 12, 13]. Childhoods and young children are more susceptible to malaria infection than adults worldwide [4]. Age-related changes in immune systems increased prevalence of asthma, nasal polyps and lung injury [14, 15]. However, whether differences in cellular and humoral immunity lead to this age-related infection profile remains unknown. Therefore, we used different virulent Plasmodium (lethal Py17XL and non-lethal Py17XNL) strains to infect 4-week-old and 8-week-old BALB/c mice to mimic infancy and adulthood, respectively, in order to characterize the relationship between immune cell responses and age-related malaria infection among different age groups, and understand the mechanism of malaria immunity. We propose that the dynamics of MOI can be explained by a model of increasing acquired immunity to blood-stage infection with age.

Results

Comparison of different species of Plasmodium infection course in 4-week-old and 8-week-old BALB/c mice

To investigate the relationship between age-related host immunity against malaria infection, we used BALB/c mice of different age groups to mimic infancy and adulthood, and monitored parasitemia and the survival rate at different time points after lethal Py17XL and non-lethal Py17XNL infections. Within 20 days after Py17XNL infection, 96% of the 8-week-old mice successfully survived whereas only 78% of the 4-week-old mice survived (Fig. 1A). In accordance with the survival rate, the parasitemia peaked at 12% in the 4-week-old mice on day 11 p.i. while it was only 7% in the 8-week-old group, although the onset of parasitemia was similar in both groups on day 3 p.i. (Fig. 1B). Similarly, parasitemia peaked at 80% in the 4-week-old mice on day 8 p.i., and all mice died; however, in the 8-week-old group, parasitemia peaked at 75% on day 8 p.i., subsequently declined, and all mice died on day 11 p.i. (Fig. 1D). Therefore, children were more susceptible to parasite infection, whereas the adult group seemed to be relatively resistant.

Comparison of Th1 immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice

Next, the relationship between Th1 cell responses and age during the early stage of plasmodium infection was determined. The percentage of CD4+ T-bet+ IFN-γ+ Th1 cells was determined by flow cytometry, and the level of IFN-γ in splenocytes was measured by ELISA. Compared with 4-week-old mice, the frequency and absolute number of Th1 cells were significantly increased in Py17XNL-infected 8-week-old mice on day 5 p.i. (Fig. 2A-C) (p<0.05). The level of IFN-γ in Py17XNL-infected 8-week-old mice on day 5 p.i. had the same trend as Th1 cells (Fig. 2G). Interestingly, in Py17XL-infected 8-week-old mice, the frequency and absolute number of Th1 cells peaked on day 3 p.i. (Fig. 2D-F) (p<0.05), then subsequently decreased,
but remained higher than normal control on day 5 p.i. (p<0.05). Notably, the level of IFN-γ in lethal Py17XL-infected mice was significantly increased on day 5 p.i. (p<0.05), but there was no obvious difference between the 4-week-old mice and 8-week-old mice (Fig 2H). This data suggested that enhanced Th1 cell responses might be associated with age-related non-lethal Py17XNL infection and resistance during the early stage of lethal Py17XL infection.

Comparison of Th2 immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice

To assess the characteristics of Th2 cell responses and their relationship with age during the late stage of plasmodium infection, we evaluated the percentage and absolute number of CD4⁺GATA3⁺IL-4⁺ Th2 cells and interleukin-4 (IL-4) production. The proportion and absolute number of Th2 cells were elevated in both groups on day 5 p.i. and day 10 p.i. after Py17XNL infection as compared to normal control (Fig. 3A-C) (p<0.05). Following, we found that there was obvious difference in the percentage and absolute number of Th2 cells on day 5 and 10 p.i. between the 4-week-old and 8 week-old BALB/c mice (Fig3B) (p<0.05). Consistently, the level of IL-4 production in Py17XNL-infected 8-week-old mice was significantly increased as compared to the 4-week-old mice on day 5 p.i. and day 10 p.i. (Fig. 3D) (p<0.05). In addition, we detected the percentage and absolute number of CD4⁺CXCR5⁺ Tfh cells, recognized as specialized providers of cognate B cell help. The percentage and absolute number of CD4⁺CXCR5⁺ Tfh cells peaked on day 5 p.i., and then decreased to normal level on day 10 p.i. in the 4-week-old mice. However, in the 8-week-old mice, the percentage and absolute number of CD4⁺CXCR5⁺ Tfh cells were significantly increased on day 10 p.i. as compared to the 4-week-old mice (Fig. 3E, 3F, 3G) (p<0.05). As expected, the percentage and absolute number of Th2 cells, and CD4⁺CXCR5⁺ Tfh cells, and the level of IL-4 were significantly elevated in Py17XNL-infected 8-week-old group during the late stage of malaria infection. These results indicated that an enhanced Th2 immunity during non-lethal Py17XNL infection might contribute to rapid clearance of Plasmodium in adults.

PD-1 signal regulated immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice

PD-1 signaling plays an essential role in regulating immune cell exhaustion. To explore whether PD-1 signaling mediated effector T cell exhaustion and facilitated persistent infection in infancy or adulthood, we detected the expression of PD-1 on CD4⁺ or activated CD4⁺ T cells after lethal Py17XL and non-lethal Py17XNL infection by flow cytometry. The expression of PD-1 on CD4⁺ or activated CD4⁺ T cells was significantly increased on day 5 and day 10 p.i. after lethal Py17XL and non-lethal Py17XNL infections. Compared with 8-week-old mice, the expression of PD-1 on CD4⁺ or activated CD4⁺ T cells after non-lethal Py17XNL infection on day 10 p.i. was significantly raised in the 4-week-old mice (Fig. 4A-C) (p<0.05). Interestingly, in lethal Py17XL infection, the expression of PD-1 on CD4⁺ or activated CD4⁺ T cells was higher in the 8-week-old mice than in the 4-week-old mice on day 10 p.i. (Fig. 4D-F).
The levels of total and *P.y* MSP-1-specific antibody in *Py17XNL*-infected 4-week-old and 8-week-old BALB/c mice

Protection from clinical malaria has been reported to be associated with both the breadth and magnitude of the antibody responses to merozoite antigens [18]. ELISA of B cell-related total IgG, IgG1 and IgG2a also showed a significant difference in antibody production in adult mice as compared to children mice on day 10 p.i. (Fig. 5A, B, C). Interestingly, compared with 4-week-old mice, *Py* MSP-1-specific IgG antibody production was increased in the 8-week-old mice during malaria infection (Fig 5D) (*p*<0.05).

Discussion

Malaria infection is known to be age-related, with children being more susceptible than adults [19, 20, 21, 22]. This study aimed to investigate whether the susceptibility to malaria infection in children and adulthood is associated with cellular and humoral immune responses, using a mouse model of lethal *Py17XL* and non-lethal *Py17XNL* infections in different age groups. Children mice were found to be more susceptible to *Py17XNL* infection, with higher parasitemia at various time points. The adult group was more resistant to *Py17XL* infection with lower parasitemia during the early stage of malaria infection. Importantly, enhanced cellular and humoral immunity, especially MSP-1 specific antibody, might contribute to rapid clearance of malaria in the adult group.

Malaria infections have various clinical symptoms, including febrile, anemia, acidosis and end-organ failure. To be mentioned, the difference of clinical phenotypic correlated with parasite proliferation rates, which can be controled by erythrocyte and hemoglobin polymorphisms [23]. In addition, disease profile can be determined by the strain and host [24]. In this study, 4-week-old and 8-week-old mice were used to mimic infancy and adulthood, respectively. We successfully established the age-related malaria infection mouse model to study the age-related anti-malaria immunity. Compared with 8-week-old group, the survival rate and parasitemia at different time points indicated that the 4-week-old group was same to both lethal and non-lethal parasite infections. After non-lethal *Py17XNL* infection, parasitemia was significantly higher in the 4-week-old mice than the 8-week-old mice during the acute and chronic stages of infection. After lethal *Py17XL* infection, a significant difference in parasitemia was observed in the early stage of infection. In accordance with the parasitemia, enhanced Th1 immune responses were only observed in the early stage in adult mice after lethal *Py17XL* infection and enhanced adaptive immune responses (Th1 and Th2) were detected in adult mice during non-lethal *Py17XNL* infection. These data suggested that the difference in response to non-lethal and lethal *Plasmodium* infections was associated with the pattern of immune cell responses in the host. Thus, clinical phenotypes of malaria infections can be determined by age and immune states from host.

Similar to other infectious diseases, accumulating evidences have indicated that CD4⁺ T cells are essential to control malaria infection [25, 26, 27, 28]. Numerous studies have highlighted the role of Th1/Th2 cells or related signaling mechanisms in controlling malaria infection [29, 30, 31, 32, 33]. In this study, enhanced Th1 and Th2 responses were displayed in 8-week-old mice after malaria infection.
Significantly higher percentage of Th1/Th2 cells and level of IFN-γ/IL-4 were observed in the 8-week-old mice as compared to the 4-week-old mice. In vitro studies also showed an enhanced Th1 cell response, which indicated an important role of Th1/Th2 cell-mediated age-related anti-malarial response. However, many studies suggested a shift from Th2 to Th1 cell responses with age. Li et al. found that IFN-γ level increased with age but not Th-related transcription factors, while IL-4 expression in plasma and CD4+ splenocytes declined with age [34]. A shift from Th2 towards Th1 immune responses was also observed in children with tertian or tropical malaria infection [35]. These studies partly supported our conclusion that enhanced Th1 cells might contribute to malaria clearance during the early stage of plasmodium infection. However, we observed enhanced Th2 cells during the late stage/chronic stage of malaria infection. Further studies are needed to investigate if any shift exists during the early stage of malaria infection. In addition, follicular T helper (Tfh) cells are essential for Plasmodium infection clearance by activating germinal center B cell responses [36, 37, 38, 39]. Relative research found that the preferential localization of Tfh cells in the germinal center (GC) suggests a unique, intimate relationship between the Tfh cell and the B cell. Cytokines and cell-surface receptors provided by Tfh cells, as a kind of auxiliary signal incompletely to keep GC B cells alive and proliferation via CD40L, IL-21 and IL-4 help [40,41]. In this study, the percentage and absolute number of CD4+CXCR5+ Tfh cells peaked on day 5 p.i., and then decreased to normal level on day 10 p.i. in the 4-week-old mice. However, in the 8-week-old mice, the percentage and absolute number of CD4+CXCR5+ Tfh cells were significantly increased on day 10 p.i. as compared to the 4-week-old mice (Fig. 3E, 3F). Relative studies found that the addition of Tfh cells induces GC collapse, result for damage of B cells. Thus we speculated that GC perhaps has collapsed in young mice during the early stage of plasmodium infection, because Tfh cells increased rapidly. In addition, the GC is the primary site of B cell affinity maturation [41]. These studies supported our findings that the impaired function of antibody-secreting B cells and Tfh cells in childhood and children may account for their susceptibility to malaria infection.

We also observed a dampening of PD-1 signaling on activated CD4+ T cells after non-lethal Py17XNL infection but not lethal Py17XL infection in the 8-week-old mice. PD-1 co-inhibitory signaling was reported to regulate helper T cell differentiation and anti-Plasmodium humoral immunity [41], and PD-1 deficiency could enhance humoral immunity during malaria infection [42]. PD-1 was also a marker of T-cell exhaustion [43]. Several studies have also proven that chronic malaria infection drives T cell exhaustion through PD-1 signaling [44, 45]. Therefore, we speculated that during non-lethal infection, humoral immunity plays an essential role in the late stage of malaria clearance, perhaps correlated with enhanced PD-1 signaling on activated CD4+ T cells, which may help to drive CD4+ effector T cell exhaustion and promote persistent infection in children. Therefore, differences in PD-1 signaling could be observed in different age groups after non-lethal but not lethal malaria infection.

Several studies have confirmed that immune effector mechanisms are required to eliminate malarial parasites, and B cells secrete specific antibodies supported by Th2 cells, which can effectively remove the parasites to prevent the recidivation and recrudescence [46, 47]. Similarly, infusion of malaria hyperimmune serum resulted in rapid clearance of parasitized erythrocytes [47]. Merozoites proliferation
from RBCs can be prevented by Anti-Plasmodium antibodies, depended on blocking cytoadherence to endothelial capillary of iRBCs and promoting phagocytosis by mononuclear cells [48, 49, 50]. However, researchers found that levels of antimalarial antibodies continue to increase significantly resulting from chronic exposure to infection [51], perhaps correlated with impaired establishment of B cell memory [52]. Thus in young children, we can found the short-lived antibody responses [53-56]. In this study, we detected the levels of B cell-related total IgG, IgG1 and IgG2a in Py17XNL-infected BALB/c mice. The results showed a difference in antibody production between adult and children mice, and the levels of total antibody might contribute to rapid clearance of malarial parasites in the adult group during the chronic stage of non-lethal Py17XNL infection. Moreover, IgG1 and IgG3 antibodies against merozoite surface proteins (MSPs) are thought to be instrumental in protection, which is considered as a major vaccine candidate [57]. Therefore, we detected the levels of Py MSP-1 specific antibody. Consistently, the dynamics of Py MSP-1 specific antibody was the same as total antibody. These data implied that an enhanced antibody response during chronic stage of non-lethal Py17XNL infection might contribute to rapid clearance of malaria in the adult group.

Conclusion

Taken together, the findings of this study revealed that in non-lethal Py17XNL infection, higher burden of parasitemia in children mice were associated with weakened Th1 cellular immune responses, down-regulated humoral immunity with decreased percentage and number of Th2 and Tfh cells as well as lower level of antibody secretion and enhanced PD-1 signaling on activated CD4\(^+\) T cells. Higher resistance to lethal Py17XL infection in the early stage in adult mice was associated with enhanced Th1 cellular immune responses and weakened PD-1 signaling on activated CD4\(^+\) T cells. These results provide a new insight on immune responses in malaria infection.

However, we have to consider a question: the expression of PD-1 on activated CD4\(^+\) T cells induced depletion of immune cells. On the one hand, depletion of immune cells induced down-regulation of anti-malaria immune response; on the other hand, exhaust of immune cells reduces the immunopathological injury in malaria-infected hosts. It is very difficult to regulate the dynamic balance between them. So there are many questions to deal with about using PD-1 antagonists to treat malaria infections.

Methods

Mice, Parasite and experimental infection

The 4-week-old (90 mice) and 8-week-old (90 mice) female BALB/c mice were purchased from Beijing Animal Institute. Py17XL and Py17XNL strains were provided by Dr. Motomi Torii (Department of Molecular Parasitology, Ehime University Graduate School of Medicine, Ehime, Japan). Infections were initiated by intraperitoneal (i.p.) injection of 1×10\(^6\) Py 17XL or 1×10\(^6\) Py 17XNL parasitized erythrocytes in BALB/c mice. All animal procedures were conducted in compliance with the Regulations for the Administration of Affairs Concerning Experimental Animals (1988.11.1), and humanely treated. The
experimental mice were matched for age and sex. Parasitemia was examined by light microscopy of Giemsa-stained, tail blood smears. Mortality was monitored daily. All experiments were performed in compliance with local animal ethics committee requirements. The animals were not submitted to euthanasia during the process of *plasmodium* infection. Other mice were submitted to euthanasia during detecting the relative index in indicated time points—the way to do it is posterior cervical dislocation after eyeball blood extraction.

Spleen cell culture

Spleen cell culture was prepared as previously described [16]. Briefly, we aseptically removed spleen from each mouse, and then passed through a sterile fine-wire mesh with 10 ml of RPMI1640 including 5% heat-inactivated fetal calf serum (FCS) (Hyclone Laboratories, Inc.), 25mM Hepes (Life Technologies), 0.12% gentamicin (Schering, Montreal, Quebec, Canada) and 2mM glutamine (Life Technologies). Cell suspensions were centrifuged at 350×*g* for 10 min at room temperature (RT). Using cold 0.17M NH₄Cl to lyse Erythrocytes. Following the cells were washed twice with fresh medium, and then viability of the spleen cells was confirmed by trypan blue exclusion, and was always >90%. Spleen cells were adjusted to a final concentration of 10⁷ cells/ml in RPMI1640 supplemented with 10% heat-inactivated FCS. Aliquots (500μl/well) of the cell suspension were incubated in 24-well flat-bottom culture plates (FALCON) in triplicate for 48 hours at 37°C in a humidified 5% CO₂ incubator. Then, the plates were centrifuged at 350×*g* for 10 min at RT, supernatants were collected and stored at -80°C until they were assayed for the levels of IFN-g, IL-4, IgG, IgG1, IgG2a and *P. y* MSP-1-specific IgG.

Cytokine analysis

Commercial enzyme-linked immunosorbent assay (ELISA) kit measured levels of IFN-γ and IL-4 according to the manufacturer’s protocols (R&D Systems, Minneapolis, MN). Using a microplate reader read the OD values at 450 nm. The concentrations of cytokines in samples were calculated against the standard curve generated using recombinant IFN-g and IL-4, respectively.

Multiplex assay for antibody determination

Levels of total serum IgG, IgG1, IgG2a and *P. y* MSP-1-specific IgG were measured by ELISA as previously described with some modifications [17]. Briefly, Maxisorp flat-bottomed, 96-well microplates were coated overnight at 4°C with 50 μg of *P. y* MSP-1 antigens in a carbonate-bicarbonate buffer (pH 9.6). The plates were washed with PBS-Tween (PBS-T) and blocked with 0.05% bovine serum albumin (BSA)-PBS-T. Next, 100 μl of plasma dilutions in 0.05% BSA-PBS-T (1:50 for *P. y* MSP-1 IgG) were added in duplicate and incubated at RT for 2 h. After washing with PBS-T, the plates were incubated with horseradish peroxidase-conjugated goat anti-mouse IgG (Sigma, USA) at a dilution of 1:5000. The OD values were read in a microplate reader at 490 nm.

Cell surface/intracytoplasmic staining and flow cytometry
To assess the function of CD4+ T cells, we detected Tfh (CD4+CXCR5+cells), CD4+PD-1+cells and CD4+CD62L-PD-1+cells, spleen cells from BALB/c mice infected with *Py17XL/Py17XNL* at different time points were double-stained with FITC-conjugated anti-CD4 (clone GK1.5, BD), BV421-conjugated anti-PD-1 (clone J43, BD), PE-conjugated anti-CXCR-5 (clone 2G8, BD) and APC-conjugated anti-CD62L (MEL-14, BD), followed by two washes, staining and analysis by flow cytometry.

To assess dynamics of Th1(CD4+T-bet+IFN-γ+) cells and Th2 (CD4+GATA3+IL-4+) cells, spleen cells from BALB/c mice infected with *Py17XL/Py17XNL* at different time points were triple-stained with fluorescein isothiocyanate (FITC)-conjugated anti-CD4 (clone GK1.5), PE-conjugated anti-T-bet (clone eBio4B10, eBioscience), APC-conjugated anti-IFN-γ (XMG1.2, BD) for Th1 cells, and FITC-conjugated anti-CD4 (clone GK1.5), PE-conjugated anti-GATA-3 (clone L50-823, BD), APC-conjugated anti-IL-4 (clone 11B11, BD) for Th2 cells. After stimulation for 2 hours with PMA and ionomycin at 37°C, Golgi Stop (BD Bioscience) was added to each reaction (1:500, vol/vol). After co-culture for 4 hours at 37°C, the cells were washed with 3% FCS and then resuspended in 100μl of 3% FCS. FITC-anti-CD4, PE-anti-T-bet and PE-anti-GATA3 were added for surface staining. Then, the cells were fixed and permeabilized, and intracytoplasmic staining was performed using allophycocyanin (APC)-anti-IFN-γ. We used the isotype control antibodies as follows: Table 1. All antibodies were purchased from BD Pharmingen.

Statistical analysis

All analyses were performed using GraphPad Prism version 6.0 (GraphPad Software, La Jolla, CA). Data are presented as mean ± standard error of the mean (SEM). Survival analysis was performed using the Kaplan-Meier log-rank test. Statistical significance of differences between the two groups was assessed by unpaired Student’s t-tests. P-values were calibrated using Bonferroni correction, and were considered statistically significant if they were less than 0.05.

Abbreviations

Py17XL: *Plasmodium yoelii* 17XL; *Py17XNL*: *Plasmodium yoelii* 17XNL; DCs: dendritic cells; IL-4: interleukin-4; Tfh: follicular T helper cells; RBCs: red blood cells; iRBCs: infected RBCs; MSPs: merozoite surface proteins; i.p.: intraperitoneal; FCS: fetal calf serum.

Declarations

Acknowlegements

We thank Dr. Motomi Torii (Ehime University Graduate School of Medicine, Ehime, Japan) for his guidance in this research and providing malaria parasite strains of *Py17XL* and *Py17XNL*.

Funding
This work was supported by grants from the National Natural Science Foundation of China (81101278; 81429004); Outstanding youth program of Taizhou university (Z2020080); and doctor launching fund project of Liaoning province (20180540019). The funders had no role in the design of the study or in the collection analysis or interpretation of the data.

Availability of data and materials

The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request.

Author's contributions

YM.C authored the manuscript. G.C and W.P designed the experiments. QB.W, YT.D F.L, XD.S and S.X performed all experiments. YT.D provided critical support for all data analysis. G.C critically reviewed the manuscript. All authors have read and approved the manuscript

Ethics approval and consent to participate

The 4-week-old and 8-week-old female BALB/c mice were used for all experiments and protocols complied with the China medical University Animal Ethics Committee requirements. This study does not involve the use of human data or tissue. All authors have read and approved the manuscript.

Consent for publication

Not applicable.

Competing Interests

No potential conflict of interest was reported by the authors.

Author details

aDepartment of Immunology, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China;

bDepartment of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, No. 999 Liang Xi Road, Binhu District, Wuxi, 214000, China;

cDepartment of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, NO. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China;

dDepartment of basic medical sciences, Taizhou University medical school, No 1139 shifu road, jiaojiang district, Taizhou 317700, china
References

1. Beri D, Balan B, Tatu U. Commit, hide and escape: the story of Plasmodium gametocytes. Parasitolog, 2018; 16:1-11.

2. WHO World Malaria Report, 2017. https://www.worldaware.com/article/blog/global-malaria-report-2017.

3. Miller LH, Baruch DI, Marsh K, Rooth I, Färnert A, Davenport MP. The pathogenic basis of malaria. Nature, 2002; 415: 673-679.

4. Pinkevych M, Petravic J, Bereczky S, Ingegerd R, Anna F, Miles PD. Understanding the relationship between Plasmodium falciparum growth rate and multiplicity of infection. Journal of Infectious Diseases, 2015; 211(7):1121-1127.

5. Soulama I, Nébié I, Ouédraogo A, Gansane A, Diarra A, Tiono AB, Bougouma EC, Konaté AT, Kabré GB, Taylor WR, Sirima SB. Plasmodium falciparum genotypes diversity in symptomatic malaria of children living in an urban and a rural setting in Burkina Faso. Malaria Journal, 2009; 8:135.

6. Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. American Journal of Tropical Medicine and Hygiene. 2015; 93(3 Suppl):42-56.

7. Boyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling-Jones H, Cheng YS, Stubbs J, Tetteh KK, Conway DJ, McCarthy JS, Muller I, Marsh K, Anders RF, Beeson JG. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity, 2015; 42:580-590.

8. Mauduit M, See P, Peng K, Rénia L, Ginhoux F. Dendritic cells and the malaria pre-erythrocytic stage. Immunologic research, 2012; 53:115-1126.

9. Palomo J, Quesniaux V, Togbe D, Reverchon F, Ryffel B. Unravelling the Roles of Innate Lymphoid Cells in Cerebral Malaria Pathogenesis. Parasite Immunology, 2018; 40(2).

10. Berg A, Otterdal K, Patel S, Reverchon F, Ryffel B. Complement Activation Correlates With Disease Severity and Contributes to Cytokine Responses in Plasmodium falciparum Malaria. The Journal of infectious diseases, 2015; 212:1835-1840.

11. Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, Chen L, Zhong N, Chen X. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One. 2011; 6: e24407.

12. Claser C, Chang ZW, Russell B, Rénia L. Adaptive immunity is essential in preventing recrudescence of Plasmodium yoelii malaria parasites after artesunate treatment. Cellular Microbiology, 2017; 19(11).

13. Mandala WL, Msefula CL, Gondwe EN, Drayson MT, Molyneux ME, MacLennan CA. Cytokine Profiles in Malawian Children Presenting with Uncomplicated Malaria, Severe Malarial Anemia, and Cerebral Malaria. Clinical and vaccine immunology, 2017; 24(4). pii: e00533-16.
14. Cho SH, Kim DW, Lee SH, Kolliputi N, Hong SJ, Suh L, Norton J, Hulse KE, Seshadri S, Conley DB, Kern RC, Tan BK, Peters A, Grammer LC, Schleimer RP. Age-related increased prevalence of asthma and nasal polyps in chronic rhinosinusitis and its association with altered IL-6 trans-signaling. American journal of respiratory cell and molecular biology, 2015; 53:601-606.

15. Linge HM, Lee JY, Ochani K, Koga K, Kohn N, Ojamaa K, Powell SR, Miller EJ. Age influences inflammatory responses, hemodynamics, and cardiac proteasome activation during acute lung injury. Experimental lung research, 2015; 41: 216-227.

16. Ma SH, Zheng L, Liu YJ, Guo SY, Feng H, Chen G, Li DM, Wang JC, Cao YM. Plasmodium yoelii: influence of antimalarial treatment on acquisition of immunity in BALB/c and DBA/2 mice. Experimental Parasitology, 2007; 116(3):266-272.

17. Mehrizi, A.A., Asgharpour, S., Salmanian, A.H., Djadid ND, Zakeri S. IgG subclass antibodies to three variants of Plasmodium falciparum merozoite surface protein-1 (PfMSP-1(19)) in an area with unstable malaria transmission in Iran. Acta Tropica, 2011; 119, 84-90.

18. Osier FH, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KK, Lowe B, Mwangi T, Bull PC, Thomas AW, Cavanagh DR, McBride JS, Marsh K. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infection and Immunity, 2008; 76: 2240-2248.

19. Boutlis CS, Weinberg JB, Baker J, Bockarie MJ, Mgone CS, Cheng Q, Anstey NM. Nitric oxide production and nitric oxide synthase activity in malaria-exposed Papua New Guinean children and adults show longitudinal stability and no association with parasitemia. Infection and Immunity, 2004; 72(12):6932-6938.

20. Cox, M. J., D. E. Kum, L. Tavul, A. Narara A, Raiko A, Baisor M, Alpers MP, Medley GF, Day KP. Dynamics of malaria parasitaemia associated with febrile illness in children from a rural area of Madang, Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1994; 88:191-197.

21. Rogier, C., D. Commenges, and J. F. Trape. Evidence for an age-dependent pyrogenic threshold of Plasmodium falciparum parasitemia in highly endemic populations. American Journal of Tropical Medicine and Hygiene, 1996; 54:613-619.

22. Smith, T., B. Genton, K. Baea, Taime J, Narara A, Al-Yaman F, Beck HP, Hii J, Alpers M. Relationships between Plasmodium falciparum infection and morbidity in a highly endemic area. Parasitology, 1994; 109:539-549.

23. Weatherall DJ, Miller LH, Baruch DI, Marsh K, Doumbo OK, Casals-Pascual C, Roberts DJ. Malaria and the red cell. Hematology (Am Soc Hematol Educ Program). 2002; 1: 35–57.

24. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Molecular and Biochemical Parasitology, 1993; 58:283-292.

25. Couper, K.N., Phillips R.S., Brombacher, F., Alexander J. Parasite-specific IgM plays a significant role in the protective immune response to asexual erythrocytic stage Plasmodium chabaudi AS infection.
26. Seixas, E., Ostler, D. Plasmodium chabaudi chabaudi (AS): differential cellular responses to infection in resistant and susceptible mice. Experimental Parasitology, 2005; 110:394-405.

27. Taylor-Robinson, A.W., Phillips, R.S. B cells are required for the switch from Th1 to Th2 regulated immune responses to Plasmodium chabaudi infection. Infection and Immunity, 1994; 62:490-498.

28. Yazdani, S.S., Mukherjee, P., Chauhan, V.S., Chitnis CE. Immune responses to asexual blood-stages of malaria parasites. Current Molecular Medicine, 2006; 6:187-203.

29. Fauconnier M, Palomo J, Bourigault ML, Meme S, Szeremeta F, Beloeil JC, Danneels A, Charron S, Ribet P, Ryffel B, Quesniaux VF. IL-12R beta 2 is essential for the development of experimental cerebral malaria. Journal of Immunology, 2012; 188:1905-1914.

30. Haque A, Best SE, Montes de Oca M, James KR, Ammerdorffer A, Edwards CL, de Labastida Rivera F, Amante FH, Bunn PT, Sheel M, Sebina I, Koyama M, Varelias A, Hertzog PJ, Kalinke U, Gun SY, Rénia L, Ruedl C, MacDonald KP, Hill GR, Engwerda CR. Type I IFN signaling in CD8-DCs impairs Th1-dependent malaria immunity. The Journal of clinical investigation, 2014; 124:2483-2496.

31. Maneekan P, Leaungwutiwong P, Misse D, Luplertlop N. T helper (Th) 1 and Th2 cytokine expression profile in dengue and malaria infection using magnetic bead-based bio-plex assay. The Southeast Asian journal of tropical medicine and public health, 2013; 44:31-36.

32. Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Frontiers in Immunology, 2014; 5:671.

33. Tatfeng YM, Agbonlahor DE, Amegor OF. Measurement of Th1, Th2 cytokines and white cell count in childhood haemoglobinopathies with uncomplicated malaria infection. Hematology, 2012; 17: 47-50.

34. Xia Y, Yang J, Wang G, Li C, Li Q. Age-Related Changes in DNA Methylation Associated with Shifting Th1/Th2 Balance. Inflammation, 2016; 39:1892-1903.

35. Khodzhaeva NM. Age-related cytokine regulation in children with malaria]. Meditsinskaia parazitologiia i parazitamye bolezni, 2011; 25-28.

36. Figueiredo MM, Costa PAC, Diniz SQ, Henriques PM, Kano FS, Tada MS, Pereira DB, Soares IS, Martins-Filho OA, Jankovic D, Gazzinelli RT, Antonelli LRDV. T follicular helper cells regulate the activation of B lymphocytes and antibody production during Plasmodium vivax infection. PLoS Pathogens, 2017; 13: e1006484.

37. Hansen DS, Obeng-Adjei N, Ly A, Ioannidis LJ, Crompton PD. Emerging concepts in T follicular helper cell responses to malaria. International Journal for Parasitology, 2017;47:105-110.

38. Perez-Mazliah D, Nguyen MP, Hosking C, McLaughlin S, Lewis MD, Tumwine I, Levy P, Langhorne J. Follicular Helper T Cells are Essential for the Elimination of Plasmodium Infection. EBioMedicine, 2017; 24:216-230.

39. Salles EM, Menezes MN, Siqueira R, Borges da Silva H, Amaral EP, Castillo-Méndez SI, Cunha I, Cassado ADA, Vieira FS, Olivieri DN, Tadokoro CE, Alvarez JM, Coutinho-Silva R, D'Império-Lima MR. P2X7 receptor drives Th1 cell differentiation and controls the follicular helper T cell population to protect against Plasmodium chabaudi malaria. PLoS Pathogens, 2017; 13: e1006595.
40. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 2011, 29, 621-663.
41. Shane Crotty. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014 Oct 16;41(4):529-42.
42. Obeng-Adjei N, Portugal S, Tran TM, Yazew TB, Skinner J, Li S, Jain A, Felgner PL, Doumbo OK, Kayentao K, Ongoiba A, Traore B, Crompton PD. Circulating Th1-Cell-type Tfh Cells that Exhibit Impaired B Cell Help Are Preferentially Activated during Acute Malaria in Children. Cell reports, 2015; 13: 425-439.
43. Zander RA, Obeng-Adjei N, Guthmiller JJ, Kulu DI, Li J, Ongoiba A, Traore B, Crompton PD, Butler NS. PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity. Cell Host 2015; 13;17(5):628-41.
44. Liu T, Lu X, Zhao C, Zhao T, Xu W. PD-1 deficiency enhances humoral immunity of malaria infection treatment vaccine. Infection and Immunity, 2015; 83: 2011-2017.
45. Liu J, Zhang S, Hu Y, Yang Z, Li J, Liu X, Deng L, Wang Y, Zhang X, Jiang T, Lu X. Targeting PD-1 and Tim-3 Pathways to Reverse CD8 T-Cell Exhaustion and Enhance Ex Vivo T-Cell Responses to Autologous Dendritic/Tumor Vaccines. Journal of immunotherapy, 2016; 39: 171-180.
46. Horne-Debets JM, Faleiro R, Karunarathne DS, Liu XQ, Lineburg KE, Poh CM, Grotenbreg GM, Hill GR, MacDonald KP, Good MF, Renia L, Ahmed R, Sharpe AH, Wykes MN. PD-1 dependent exhaustion of CD8+ T cells drives chronic malaria. Cell reports, 2013; 5:1204-1213.
47. Wykes MN, Horne-Debets JM, Leow CY, Karunarathne DS. Malaria drives T cells to exhaustion. Frontiers in microbiology, 2014; 5:249.
48. Maestre A, Carmona-Fonseca J. Immune responses during gestational malaria: a review of the current knowledge and future trend of research. Journal of Infection in Developing Countries, 2014; 8(4):391-402.
49. White NJ. Malaria parasite clearance. Malaria Journal, 2017; 16(1):88
50. Beeson JG, Osier FH, Engwerda CR. 2008. Recent insights into humoral and cellular immune responses against malaria. Trends in Parasitology, 24:578-584.
51. Taylor-Robinson AW. Regulation of immunity to Plasmodium: implications from mouse models for blood stage malaria vaccine design. Experimental Parasitology, 2010; 126:406-414.
52. Wipasa J, Elliott S, Xu H, Good MF. Immunity to asexual blood stage malaria and vaccine approaches. Immunology and Cell Biology, 2002; 80:401-414.
53. Langhorne J, Ndungu FM, Sponaas AM, Marsh K. Immunity to malaria: more questions than answers. Nature Immunology, 2008; 9:725-732.
54. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, Crompton PD, Marsh K, Ndungu FM. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. Journal of Immunology, 2013; 190:1038-1047.
55. Cavanagh DR, Elhassan IM, Roper C, Robinson VJ, Giha H, Holder AA, Hviid L, Theander TG, Arnot DE, McBride JS. A longitudinal study of type-specific antibody responses to Plasmodium falciparum
merozoite surface protein-1 in an area of unstable malaria in Sudan. Journal of Immunology, 1998; 161:347-359.

56. Dorfman JR, Bejon P, Ndungu FM, Langhorne J, Kortok MM, Lowe BS, Mwangi TW, Williams TN, Marsh K. B cell memory to 3 Plasmodium falciparum blood-stage antigens in a malaria-endemic area. Journal of Infectious Diseases, 2005; 191:1623-1630.

57. Akpogheneta OJ, Duah NO, Tetteh KK, Dunyo S, Lanar DE, Pinder M, Conway DJ. Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infection and Immunity, 2008; 76:1748-1755.

58. Taylor RR, Egan A, McGuinness D, Jepson A, Adair R, Drakely C, Riley E. Selective recognition of malaria antigens by human serum antibodies is not genetically determined but demonstrates some features of clonal imprinting. International Immunology, 1996; 8:905-915.

59. Walker KM, Okitsu S, Porter DW, Duncan C, Amacker M, Pluschke G, Cavanagh DR, Hill AV, Todryk SM. Antibody and T-cell responses associated with experimental human malaria infection or vaccination show limited relationships. Immunology. 2015; 145(1):71-81.

Tables

Due to technical limitations, Table 1 is provided in the Supplementary Files section.

Figures
Parasitemia (A, C) and survival rate (B, D) of Py17.XNL or Py17.XL infection in 4-week-old and 8-week-old BALB/c mice. Parasitemia was calculated by counting the number of parasite-infected erythrocytes per 1000 erythrocytes. Mortality was checked daily and Mantel-Cox test analyzed the difference of survival rate (Fig A $\chi^2 = 3.580$, $p = 0.059$, by Mantel-Cox test, Fig C $\chi^2 = 1.483$, $p = 0.22$, by Mantel-Cox test). The data are representative of two separate experiments.
Figure 2

Flow cytometric and ELISA analysis demonstrated Th1 immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice. Two-dimensional contour map (upper-left panel) (A), column diagram: upper-left panel, the proportion of Th1 cells in CD4+ T cells (B) and absolute cell number (C) of CD4+T-bet+IFN-γ+ Th1 cells in 4-week-old and 8-week-old BALB/c mice after Py17XL infection are displayed; Representative dot plots (lower-left panel) (D), column diagram: lower-left panel, the proportion of Th1 cells in CD4+ T cells (E) and absolute cell number (F) of CD4+T-bet+IFN-γ+ Th1 cells in 4-week-old and 8-week-old BALB/c mice after Py17XNL infection are displayed. Level of IFN-γ (G, H) in spleen cell supernatants in Py17XNL/Py17XL-infected BALB/c mice were measured. Results are presented as arithmetic mean of 9 mice each group ± SE. Single asterisk (*) and double asterisks (**) indicate p < 0.05 and p < 0.01, respectively, as compared with control mice. A single pound sign (#) and double pound sign (##) indicate p < 0.05 and p < 0.01, respectively, as compared with 8-week-old mice. Normal control group: 0 day group.
Figure 3

Flow cytometric and ELISA analysis demonstrated Th2 immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice. Representative dot plots (upper-left panel) (A), column diagram: upper-left panel, the proportion of Th2 cells in CD4+ T cells (B) and absolute cell number (C) of CD4+GATA3+IL-4+ Th2 cells in 4-week-old and 8-week-old BALB/c mice after Py17XNL infection are displayed. Level of IL-4 (D) in spleen cell supernatants in Py17XNL-infected BALB/c mice
were measured. Representative dot plots (upper-left panel) (E). The proportion (F) and absolute cell number (G) of CD4+CXCR5+Tfh cells were measured by flow cytometry in 4-week-old and 8-week-old BALB/c mice after Py17XNL infection. Results are presented as arithmetic mean of 9 mice each group ± SE. Single asterisk (*) and double asterisks (**) indicate p < 0.05 and p < 0.01, respectively, as compared with control mice. A single pound sign (#) and double pound sign (##) indicate p < 0.05 and p < 0.01, respectively, as compared with 8-week-old mice. Normal control group: 0 day group.

Figure 4

Flow cytometric analysis demonstrated PD-1 signaling promoted immune response in different species of Plasmodium-infected 4-week-old and 8-week-old BALB/c mice. Representative dot plots (upper-left panel) (A) and column diagram:upper-left panel, the proportion of CD4+PD-1+ cells in splenocytes (B) and absolute cell number (C) of CD4+PD-1+ cells in 4-week-old and 8-week-old BALB/c mice after Py17XNL infection are displayed. Representative dot plots (lower-left panel) (D) and column diagram:lower-left panel, the proportion of CD4+PD-1+ cells in splenocytes (E) and absolute cell number (F) of CD4+PD-1+ cells in 4-week-old and 8-week-old BALB/c mice after P.y17XL infection are displayed. Results are presented as arithmetic mean of 9 mice each group ± SE. Single asterisk (*) and double asterisks (**) indicate p < 0.05 and p < 0.01, respectively, as compared with control mice. A single pound sign (#) and double pound sign (##) indicate p < 0.05 and p < 0.01, respectively, as compared with 8-week-old mice. Normal control group: 0 day group.
Figure 5

ELISA analysis demonstrated the levels of total and Py MSP-1-specific antibodies in spleen supernatants of Py17XNL-infected 4-week-old and 8-week-old BALB/c mice. IgG (A), IgG1(B), IgG2a (C) and Py MSP-1-specific IgG (D) were measured in supernatants of Py17XNL-infected 4-week-old and 8-week-old BALB/c mice by ELISA. Results are presented as arithmetic mean of 9 mice each group ± SE. Single asterisk (*) and double asterisks (**) indicate p < 0.05 and p < 0.01, respectively, as compared with control mice. A single pound sign (#) and double pound sign (##) indicate p < 0.05 and p < 0.01, respectively, as compared with 8-week-old mice. Normal control group: 0 day group.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- NC3RsARRIVEGuidelinesChecklist.pdf
- Table1.tif