ARTICLE

Quantitative analysis of preclinical ocular microvascular changes in Multisystemic Inflammatory Syndrome in Children (MIS-C) detected by optical coherence tomography angiography

Büşra Yılmaz Tuğan1✉, Hafize Emine Sönmez2, Kübra Atay1, Eviç Zeynep Başar3, Berna Özkan4 and Levent Karabaş1

© The Author(s), under exclusive licence to The Royal College of Ophthalmologists 2022

OBJECTIVES: To evaluate the macular and optic nerve head (ONH) vascular density, foveal avascular zone area, and outer retina and choriocapillaris flow in Multisystemic Inflammatory Syndrome in Children (MIS-C) using optical coherence tomography angiography (OCTA).

METHODS: Thirty-four eyes of 34 patients with MIS-C and 36 age and sex-matched healthy controls were investigated in this prospective, cross-sectional study. The superficial capillary plexus (SCP) and deep capillary plexus (DCP), ONH, FAZ parameters, the flow area of the outer retina, and choriocapillaris were evaluated using OCTA.

RESULTS: All VD parameters in SCP were significantly lower in MIS-C patients. There was no significant difference between the groups in VD parameters of both DCP and ONH, as well as FAZ area and FAZ perimeter. However, foveal density (FD-300) was significantly decreased in the MIS-C group. (p = 0.024). The outer retina flow area at 1 mm, 2 mm, and 3 mm radius and CC flow area at 1 mm and 2 mm radius were significantly lower in the MIS-C group than in the control group. Although CC flow area at 3 mm radius was decreased in the MIS-C group compared to healthy controls, the difference was not statistically significant.

CONCLUSIONS: We demonstrated a decreased vessel density in SCP, choriocapillaris flow area, and outer retinal flow area in MIS-C patients. Hence, we proposed that OCTA could reveal retinal and choroidal microvascular changes in MIS-C patients who were completely healthy before the diagnosis of MIS-C.

Eye (2023) 37:566–573; https://doi.org/10.1038/s41433-022-02081-8

INTRODUCTION

Multisystemic Inflammatory Syndrome in Children (MIS-C) emerged as a new disorder after the pandemic of Sars-CoV-2 infection [1]. It is a post-acute inflammatory illness that often presents 4–5 weeks on average after Sars-CoV-2 exposure. A cytokine storm leading to tissue injury is suggested as the underlying aetiology while the data enlightening specific pathophysiology has not been determined yet [2]. Initial reports defined this new condition as Kawasaki-like disease. However, it is well known now that the spectrum of disease has expanded with varying systemic involvement, including ocular manifestations. Conjunctivitis is the most common ocular feature seen in almost half of MIS-C patients [3], while the effect of the disease on the retina has not been elucidated yet. Microvascular damage and endothelial injury have been determined among patients with MIS-C [4]. Therefore, retinal vessels may be a target in the course of the disease.

Optical coherence tomography angiography (OCT-A) enables a non-invasive evaluation of retinal microvasculature that exceeds the capability of other forms of imaging [5]. OCTA can quantify superficial (SCP) and deep capillary plexus (DCP), peripapillary region, choriocapillaris (CC), and outer retina, separately. OCTA also provides information about the shape and dimensions of the foveal avascular zone (FAZ) [6]. Thus, impaired systemic microcirculation might be mapped on the retinal capillary system. Previous studies evaluating the retinal vessel density changes related to COVID-19 infection yielded different results [7–9].

To the best of our knowledge, there have been no published studies assessing the state of the retinal microvasculature in patients after SARS-COV-2 related MIS-C. The main objective of the present cross-sectional study was to perform not only a direct retinal observation but an in-depth analysis of the retinal vascular plexuses and flow to detect possible subclinical retinal vascular involvement associated with the prothrombotic and hyperinflammatory state in MIS-C.

METHODS

Participants

This prospective observational study was performed from March 2021 to June 2021. The study protocol was approved by the Ethics Committee at...
Kocae University and adhered to the principles of the Declaration of Helsinki. Informed consent was obtained from all participants.

To determine the sample size, power analysis was performed by G*Power program for effect size = 0.8; α = 0.05 and power (1-β) = 0.80. Sample size was calculated as 26 eyes for each of the MIS-C and control groups. Thirty-four eyes of 34 paediatric patients were diagnosed with MIS-C according to the diagnostic criteria of CDC and WHO [10, 11]. The control group consisted of 36 eyes of 36 age and sex-matched healthy peers without a prior history of ocular or systemic diseases admitted to our ophthalmology clinic for refractive spherical or cylindrical error <2 D with BCVA of ≥20/20 and no other ocular or systemic diseases. Data were collected from the right eye of each participant. Clinical and laboratory findings, outcomes, and additional treatments were obtained from the medical charts of the patients.

Exclusion criteria for both groups were best-corrected visual acuity (BCVA) < 20/20, active or previous uveitis findings, any pathology on biomicroscopic and fundus examination, any retinal and choroidal pathology observed on optical coherence tomography (OCT) of the macula, and enhanced-depth imaging (EDI) OCT of the choroid and any other systemic disease.

Examination protocol

All participants underwent routine ophthalmic evaluation including BCVA, slit-lamp biomicroscopy, IOP measurement with Goldmann applanation tonometry, axial eye length (AL) measurement using an IOLMaster (ver. 3.02; Carl Zeiss, Meditec, Jena, Germany), central corneal thickness (CCT) with a full auto tonometer (Canon TX-20P, Tokyo, Japan), spherical equivalent (SE formula = Cylindrical power/2 + Spherical power). After pupilary dilation, dilatation of the retinal microvasculature using Optovue AngioVue (RTVue XR Avanti; Optovue Inc., Fremont, CA, USA) was performed for evaluating the macular, optic nerve head (ONH), and foveal avascular zone (FAZ) regions. Optovue AngioVue is an angiographic programme that includes an SD-OCT providing both thickness and vascular density, AngioVue system is an angiographic programme that includes an SD-OCT program (vessel density within a 300 µm ring surrounding the FAZ) (Fig. 1A–F).

The current study is the first to evaluate the retinal vascular status in a cohort of recovered SARS-CoV-2 related MIS-C patients. In the current study, OCTA was performed to compare the VD of the retinal capillary microvasculature in MIS-C patients versus age and sex-matched healthy controls. The current study participants. There were no significant differences in age, sex, IOP, SE, AL, CCT, CMT, subfoveal CT, and RNFL thickness between MIS-C and control groups (p > 0.05 for all). One case in the MIS-C group and one case in the control group were excluded because the mean-image quality index was <7/10. The mean image-quality index for macula was 8.00 ± 0.88 in the MIS-C group and 7.96 ± 0.82 in the normal controls (p = 0.861). The mean image-quality index for optic disc was 8.13 ± 0.70 in the MIS-C group and 7.92 ± 0.84 in the normal controls (p = 0.335).

Statistical analysis

The statistical analysis was carried out using the SPSS software version 21.0. The variables were investigated using visual (histogram, probability plots) and analytic methods (Kolmogorov-Smirnov/Shapiro-Wilk’s test) to determine whether or not they are normally distributed. Descriptive statistics were shown as proportions and mean values, whichever was appropriate. The Chi-square test or Fisher’s exact test was used to examine the associations between two categorical variables whichever was appropriate. Independent samples T-test was used to compare the continuous variables between two groups. Pearson test was used to evaluate the associations between variables. The significance was tested at the 5% level and differences were considered statistically significant if p ≤ 0.05.

RESULTS

A total of 34 patients with MIS-C were evaluated. Among them, 20 were female and 14 were female. Of 34 patients, 30 (88.2%) had a history of contact with COVID-19 patients. At admission, SARS-CoV-2 PCR was negative in all patients, and all were positive for SARS-CoV-2 IgG or IgM. The mean age of patients was 10.94 ± 3.08. All patients presented with fever lasting 4 [2–7] days. The median time of hospitalization was 9.12 ± 2.84 days. All patients were discharged without sequelae. The mean time between diagnosis and ocular evaluation was 37.47 ± 5.18 days. Age and sex-matched, 36 healthy volunteers were enrolled. Supplementary Table 1 shows the demographic and clinical characteristics of study participants. There were no significant differences in age, sex, IOP, SE, AL, CCT, CMT, subfoveal CT, and RNFL thickness between MIS-C and control groups (p > 0.05 for all).

Vessel density evaluation of macular and peripapillary region

Macular and optic nerve head VD parameters of enrolled participants were reported in Table 1. All VD parameters in SCP were significantly decreased in the MIS-C group compared to healthy controls. Also, VD parameters of both DCP and ONH were decreased in the MIS-C group than in the control group, but this difference was not statistically significant (p > 0.05 for all).

FAZ, Non-flow and flow evaluation

Non-flow, flow, and FAZ parameters of both MIS-C and control groups were presented in Table 2. FD-300 was significantly decreased in the MIS-C group (p = 0.024).

The outer retina flow area at 1 mm, 2 mm, and 3 mm radius and CC flow area at 1 mm and 2 mm radius were significantly lower in the MIS-C group than in the control group. Although CC flow area at 3 mm was decreased in the MIS-C group compared to healthy controls, the difference did not show statistical significance.

DISCUSSION

The current study is the first to evaluate the retinal vascular status in a cohort of recovered SARS-CoV-2 related MIS-C patients. In the current study, OCTA was performed to compare the VD of the retinal capillary microvasculature in MIS-C patients versus age and sex-matched healthy controls. The current study participants. There were no significant differences in age, sex, IOP, SE, AL, CCT, CMT, subfoveal CT, and RNFL thickness between MIS-C and control groups (p > 0.05 for all).

The current study is the first to evaluate the retinal vascular status in a cohort of recovered SARS-CoV-2 related MIS-C patients. In the current study, OCTA was performed to compare the VD of the retinal capillary microvasculature in MIS-C patients versus age and sex-matched healthy controls. The current study participants. There were no significant differences in age, sex, IOP, SE, AL, CCT, CMT, subfoveal CT, and RNFL thickness between MIS-C and control groups (p > 0.05 for all).
In Abrishami et al. [8] study, mean macular superficial and deep capillary plexus VD were significantly reduced in the COVID-19 patients compared to the age-matched controls. In Savastano et al. [7] study, the authors evaluated post-COVID-19 patients one month after discharge from the hospital. They revealed no significant difference in SCP and DCP in the COVID-19 group compared to the control group even after performing binary logistic regression analysis to exclude confounding factors [7]. In another study evaluating macular microcirculation at three capillary layers as SCP, intermediate capillary plexus (ICP), and DCP, authors reported that overall macula VD of the SCP and DCP was not significantly different between post-COVID patients and controls, but VD of ICP was significantly lower in post-COVID patients compared to controls [9]. Zapata et al. [15] stratified patients as mild, moderate, and severe according to disease severity. They concluded that fovea-centred VD was significantly lower in the moderate and severe patient groups compared to the mild patient group and control group [15]. Turker et al. [16] examined recovered COVID-19 patients at an early period and 6 months. They reported a decrease in VD values in all parafoveal quadrants of the SCP and DCP in the early period and also in all parafoveal quadrants of the SCP and 2 (superior, inferior) of the parafoveal quadrants of the DCP at 6-months after COVID-19 infection. Yet they did not find a significant difference regarding SCP and DCP VD between the patient group and the control group at either the early period or 6-month after COVID-19 infection [16]. In the current study, we demonstrated decreased VD parameters in MIS-C patients even after the mean time of 37.47 ± 5.18 days between MIS-C diagnosis and ocular examination. Cennamo et al. [17] reported that all macular DCP parameters showed significant reduction but only whole image VD in SCP was decreased in the COVID-19 group compared to the controls. Conversely, in one study, the authors revealed that SCP was affected more than DCP. While significantly lower foveal and

Fig. 1 Density measurement of a representative case of MIS-C patients. ETDRS rings on macula represent from inside to outside: 1 mm for fovea, 3 mm for parafovea, and 6 mm for perifovea. The SCP (A) is automatically segmented by the software from the inner limiting membrane (ILM) (red line) to the inner plexiform layer (IPL) (green line) (C). B Colour image of the superficial macular region. The DCP (D) is automatically segmented by the software from the IPL (green line) to the outer plexiform layer (OPL) (red line) (F). E Colour image of the deep macular region. VD of the optic nerve head (ONH) (G) is automatically segmented by the software from the ILM (red line) to the nerve fibre layer (NFL) (green line) (I). H The rings represent total, inside disc and peripapillary VD in 4.5 × 4.5 mm scan size. Colour image of the peripapillary region.
parafoveal VD in SCP was observed in COVID-19 patients compared to controls, in DCP, only foveal VD was significantly lower in the patient group compared to controls [18].

MIS-C is an emerging disorder that initially presented in the midst of a global pandemic and broke the belief that children are blessed by COVID-19. The underlying pathology in MIS-C patients is thought to be tissue injury secondary to the cytokine storm. Supporting this hypothesis, Fraser et al. [4] demonstrated increased levels of 21 different cytokines related to endothelial injury such as MMP-7, IP-10, resistin, and IL-3. However, unlike adult COVID-19 studies, the effect of MIS-C on vasculature in children has not been investigated exhaustively. In the current study, we evaluated the influence of MIS-C on retinal and choroidal microvasculature and we demonstrated a significant decrease of VD in all SCP regions and also outer retina and CC flow in the MIS-C group with respect to the healthy controls. Therefore, in view of our findings, impaired retinal and choroidal microvasculature may be one of the results of this new emergency phenomenon. Overall, previous studies with OCTA revealed a much more significant decrease of DCP VD than SCP VD in COVID-19 patients compared to controls, which also occurs in diabetic retinopathy and other vascular diseases [19–21]. This entity was attributed to the indirect connection of DCP to arterioles and being more vulnerable to thrombotic events than SCP. Although, in the present study, we also showed decreased VD parameters in the DCP of MIS-C patients, this difference did not reach statistical significance. A significant reduction was observed in VD parameters of SCP in the MIS-C patients compared to the controls. The small number of patients may have caused this difference to be insignificant. Since MIS-C is quite different from the other intense inflammatory syndromes of childhood, further studies with a larger cohort would help us to demonstrate the changes in retinal vascular plexus related to MIS-C.

The previous studies investigated possible changes in VD of the ONH region in COVID-19 patients. In Cennamo et al. [17] study, the authors revealed that whole image ONH VD was significantly lower in COVID-19 patients compared to controls. In that study, no difference was observed in the inside disc and peripapillary VD between the two groups. In another study, lower ONH perfusion density in the post-COVID-19 group compared to the control group was observed [22]. In the current study, no significant differences were found between ONH parameters of MIS-C patients and the controls.

There have been studies comparing FAZ parameters of COVID-19 patients and healthy controls. In Abrishami et al. [8] and Cennamo et al. [17] studies, FAZ area was also greater in the
Fig. 3 Flow measurement of a representative case of MIS-C patients. A Flow measurement in the outer retina (left column) calculated at 1 mm, 2 mm (B), and 3 mm (C) radius. D The blood flow was calculated in mm2 centred on the fovea in the outer retina layer, segmented automatically from the outer plexiform layer (OPL) and the Bruch membrane (BRM). Flow measurement in the choriocapillaris (right column) calculated at 1 mm (E), 2 mm (F), and 3 mm (G) radius. H The blood flow was calculated in mm2 centred on the fovea in the choriocapillaris, segmented automatically from BRM to 30 μm inferiorly to the BRM.
Table 1. Macular and Optic Nerve Head Vessel Density Assessment Tool Parameters of OCTA.

	MIS-C group (n = 34) Mean ± SD	Control group (n = 36) Mean ± SD	p*
VD of SCP (%)			
Whole image	49.16 ± 3.75	51.48 ± 2.27	0.002
Sup hemi	49.08 ± 3.54	51.58 ± 2.45	0.001
Inf hemi	49.26 ± 4.06	51.40 ± 2.29	0.011
Fovea	18.86 ± 5.69	21.22 ± 6.53	0.021
Parafovea	49.95 ± 6.16	54.21 ± 2.68	0.002
Para sup hemi	50.35 ± 6.34	54.86 ± 2.54	0.001
Para inf hemi	49.53 ± 6.39	53.54 ± 3.23	0.008
Para superior	50.64 ± 6.52	55.42 ± 2.87	0.002
Para nasal	49.17 ± 6.26	53.12 ± 3.30	0.003
Para inferior	49.39 ± 7.07	53.45 ± 4.19	0.029
Para temporal	50.61 ± 6.06	54.82 ± 2.79	<0.001
Perifovea	49.87 ± 4.11	52.10 ± 2.29	0.004
Peri sup hemi	49.89 ± 3.94	52.01 ± 2.53	0.004
Peri inf hemi	49.86 ± 4.47	52.20 ± 2.35	0.007
Peri superior	49.81 ± 3.98	52.09 ± 2.37	0.013
Peri nasal	53.19 ± 3.78	55.14 ± 2.37	0.039
Peri inferior	49.94 ± 4.37	51.97 ± 2.79	0.012
Peri temporal	46.62 ± 5.24	49.17 ± 2.04	0.012
VD of DCP (%)			
Whole image	52.79 ± 7.12	53.49 ± 5.43	0.422
Sup hemi	51.78 ± 7.48	53.54 ± 5.26	0.290
Inf hemi	52.48 ± 7.02	53.30 ± 5.63	0.508
Fovea	36.94 ± 7.02	38.07 ± 7.30	0.380
Parafovea	57.68 ± 5.30	57.87 ± 4.48	0.769
Para sup hemi	57.88 ± 5.35	58.51 ± 4.18	0.496
Para inf hemi	57.23 ± 4.90	57.49 ± 5.49	0.916
Para superior	57.11 ± 6.23	58.46 ± 4.20	0.264
Para nasal	58.45 ± 4.44	59.30 ± 5.25	0.620
Para inferior	56.45 ± 5.36	57.92 ± 9.46	0.602
Para temporal	57.83 ± 5.71	58.15 ± 5.31	0.918
Perifovea	53.57 ± 7.77	54.93 ± 6.05	0.349
Peri sup hemi	54.11 ± 8.22	55.14 ± 6.01	0.389
Peri inf hemi	53.03 ± 7.70	54.74 ± 6.39	0.348
Peri superior	53.61 ± 8.81	54.37 ± 6.46	0.271
Peri nasal	51.93 ± 8.52	53.76 ± 7.17	0.379
Peri inferior	52.86 ± 8.46	54.17 ± 7.22	0.479
Peri temporal	55.85 ± 7.06	57.52 ± 4.95	0.285
VD of ONH (%)			
wpVD (total disc)	49.41 ± 2.46	49.42 ± 2.75	0.639
IVD (inside disc)	52.15 ± 3.84	52.22 ± 5.63	0.922
ppVD average (peripapillary)	51.25 ± 2.49	51.36 ± 3.45	0.609
ppVD sup hemi	51.31 ± 3.75	51.40 ± 2.91	0.517
ppVD inf hemi	51.12 ± 3.24	51.42 ± 3.49	0.736
ppVD superior	51.07 ± 4.55	51.48 ± 3.65	0.432
ppVD nasal	48.62 ± 3.76	49.19 ± 2.42	0.306
ppVD inferior	53.00 ± 3.34	53.21 ± 4.69	0.571
ppVD temporal	52.10 ± 4.74	53.34 ± 3.21	0.467

Bold values represent statistically significant ones.

*Independent samples T-test.

COVID-19 patients, but this did not reach statistical significance. Savastano et al. [7] found no significant difference in terms of FAZ area and FAZ perimeter in the COVID-19 group compared to the control group. In Turker et al.[16] study, FAZ area did not show a difference between the early period and 6-month after COVID-19 infection. Also, no significant difference was found in FAZ area between the patient group and the control group at either the early period or 6-month after COVID-19 infection. Our results on FAZ parameters are in line with previous studies.

Our current study further demonstrates decreased outer retina and choriocapillaris flow area. Turker et al.[16] found that CC flow area at 6-month after COVID-19 infection was significantly lower than the early period examination. However, there was no difference in CC flow area between the patient and control groups at either the early or 6-month follow-up periods after COVID-19 infection. Conversely, in another Turker et al. study [23] evaluating hospitalized COVID-19 patients, the study group had significantly higher CC flow area values than controls and this situation was attributed to reactive vasodilation response to hypoxia due to the ischemia of the choroid tissue and systemic inflammatory factors.

The SaRS-CoV-2 virus enters the cell via binding to angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 receptors [24]. Tissues with excess ACE2 receptors such as lung, myocardium, intestine, and kidney are frequently affected during SaRS-CoV-2 infection [25]. Especially on the endothelial cell membrane, ACE2 is the predominant receptor. Endothelial damage due to direct invasion of the virus or secondary to released cytokines plays a critical role in the inflammatory and disseminated coagulation processes during COVID-19, which results in an increased risk of thromboembolic, cardiovascular, and cerebrovascular complications in patients. Retina and CC are also highly vascularized tissues in the body. Accordingly, the effects of inflammatory and ischemic diseases could be observed in retina and choroid. Similar to COVID-19, MIS-
C is associated with prevalent microangiopathy and inflammation. Thus, it is possible to observe impairment of blood flow in retina and CC. In the present study, detection of decreased retinal VD of all segments in SCP and flow of outer retina and choriocapillaris in an otherwise healthy cohort using OCTA is quite remarkable. All participants in the study had BCVA of ≥20/20 and ocular examination was normal. Furthermore, all were completely healthy before the diagnosis of MIS-C. Therefore, these results were thought to be related to MIS-C.

Although our study is the first to evaluate retinal microcirculation in MIS-C patients, it has several limitations. First, the results of a single-centre study cannot be generalized for all MIS-C. Second, our study included a relatively small number of the cohort. Furthermore, long-term follow-up of the patients was lacking.

In conclusion, this study highlights certain aspects of MIS-C-related retinal vasculopathy. Decreased retinal vessel density and CC flow in cases of SARS-CoV-2 related MIS-C was found, which demonstrates the complexity of the disease and its multiorgan involvement. Management of SARS-CoV-2 related MIS-C should include retinal assessment, with a close follow-up. Future multi-centred, larger-scale, clinical, and experimental studies are needed to understand the exact effect of MIS-C on retinal and choroidal vasculature better and to elucidate whether these alterations have permanent and long-term effects.

SUMMARY
What was known before
- Endothelial injury and microvascular damage act as the originator of systemic inflammation and thrombosis in severe COVID-19.
- Studies using OCTA demonstrated impaired retinal vessel density and flow in adult COVID-19 patients.
- No studies have been conducted to evaluate retinal and choroidal microcirculation in MIS-C patients by now.

What this study adds
1. Multisystem Inflammatory Syndrome in Children (MIS-C) group showed decreased vessel density in superficial capillaryplexus and foveal density (FD-300) compared to healthy controls.
2. MIS-C related decreased flow in outer retina and chorioa-
 pilla r layer was observed.

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

REFERENCES
1. Ramcharan T, Nolan O, Lai CY, Prabhu N, Krishnamurthy R, Richter AG, et al. Paediatric inflammatory multisystem syndrome: Temporally associated with SARS-CoV-2 (PIMS-TS): Cardiac features, management and short-term outcomes at a UK tertiary paediatric hospital. Pediatr Cardiol. 2020;41:1391–401.
2. McMurray JC, May JW, Cunningham MW, Jones OY. Multisystem Inflammatory Syndrome in Children (MIS-C), a Post-viral myocarditis and systemic vasculitis-A critical review of its pathogenesis and treatment. Front Pediatr. 2020;8:626182. 16
3. Lo TC, Chen YY. Ocular and systemic manifestations in paediatric multisystem inflammatory syndrome associated with COVID-19. J Clin Med. 2021;10:2953.
4. Fraser DD, Patterson EK, Daley M, Cepinskas G. Case Report: Inflammation and endothelial injury profiling of COVID-19 pediatric Multisystem Inflammatory Syndrome (MIS-C). Front Pediatr. 2021;9:597926.
5. Spadea RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55.
6. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitreous. 2015;1:5.
7. Savastano MC, Gambini G, Cozzupoli GM, Criscioli E, Savastano A, De Vico U, et al. Against COVID-19 Post-acute care study group. Retinal capillary involvement in early post-COVID-19 patients: A healthy controlled study. Graefes Arch Clin Exp Ophthalmol. 2021;259:2157–65.
8. Abrisshami M, Emanverdian Z, Shoebi N, Ornithabzari A, Daneshvar R, Sadaei Rezvani T, et al. Optical coherence tomography angiography analysis of the retina in patients recovered from COVID-19: A case-control study. Can J Ophthalmol. 2021;56:24–30.
9. Hohberger B, Ganslmayr M, Lucio M, Kruse F, Hoffmanns J, Monitz M, et al. Retinal microcirculation as a correlate of a systemic capillary impairment after severe acute respiratory syndrome coronavirus 2 infection. Front Med (Lausanne). 2021;8:67655:4.
10. Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19) (2020). https://emergency.cdc.gov/han/2020/han00432.asp. Accessed 14 May 2020.
11. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19 (2020). https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19. Accessed 15 May 2020.
12. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet (Lond, Engl). 2020;395:1417–8.
13. Lowenstein CJ, Solomon SD. Severe COVID-19 is a microvascular disease. Circulation. 2020;142:1609–11.
14. Marchetti M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99:1701–7.
15. Zapata MA, Banderas Garcia S, Sanchez-Moltavci A, Falcó A, Otero-Romero S, Arcos G, et al. Retinal microvascular abnormalities in patients after COVID-19 depending on disease severity. Br J Ophthalmol. 2020;16:bjophthalmol-2020-317953.
16. Turker IC, Dogan CU, Uzun O, Gencu D, Kutucu OK, Kutucu OC. Early diagnosis of COVID-19-induced vascular changes with optical coherence tomography angiography. Am J Ophthalmol. 2021;21:50008:4182(21)00717-X.
17. Cennamo G, Reibaldi M, Montorio D, D'Alessandro L, Fallico M, Trisi M. Optical coherence tomography angiography features in Post-COVID-19 pneumonia patients: A pilot study. Am J Ophthalmol. 2021;227:182–90.
18. González-Zamora J, Bilbao-Malavé V, Gándara E, Casablanca-Piñera A, Boqueria-Ventosa C, Landejo MF, et al. Retinal microvascular impairment in COVID-19 bilateral pneumonia assessed by optical coherence tomography angiography. Biomedicines 2021;9:247.
19. Ashraf M, Sampani K, Clermont A, Abu-Qamar O, Rhee J, Silva PS, et al. Vascular density of deep, intermediate and superficial vascularplexuses are differentially affected by diabetic retinopathy severity. Invest Ophthalmol Vis Sci. 2020;61:53.
20. Coscas F, Glacet-Bernard A, Miere A, Caillaux V, Uzzan J, Lupidi M, et al. Optical coherence tomography angiography in patients with COVID-19: Retinal vascular occlusion: Evaluation of superficial and deep capillary plexa. Am J Ophthalmol. 2016;161:160–71.e1-2.
21. Khairallah M, Abroug N, Khochtali S, Mahmoud A, Jelliti B, Coscas G, et al. Optical coherence tomography angiography in patients with behcet uveitis. Retina 2017;37:1678–91.
22. Savastano A, Criscioli E, Savastano MC, Younis S, Gambini G, De Vico U, et al. Peripapillary retinal vascular involvement in early post-COVID-19 patients. J Clin Med. 2020;9:2895.
23. Turker IC, Dogan CU, Gucuk D, Kutucu OK, Gul C. Optical coherence tomography angiography findings in patients with COVID-19. Can J Ophthalmol. 2021;56:83–87.
24. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMRPSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271
25. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: Current state of the science. Immunity 2020;52:910–41.

AUTHOR CONTRIBUTIONS
Conceptualization: BYT, HES; Methodology: BYT, HES; Formal analysis and investigation: BYT, KA, EZB, LK; Writing - original draft preparation: BYT, HES; Writing - review and editing: BYT, HES, BO, LK; Funding acquisition: none; Resources: none; Supervision: BYT, HES, KA, EZB, BO, LK. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.
ETHICS APPROVAL
The study was reviewed and approved by the local ethics committee of Kocaeli University (Approval number: GOKAEK-2021/15.20).

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41433-022-02081-8.

Correspondence and requests for materials should be addressed to Büşra Yılmaz Tuğan.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.