Oscillometry bronchodilator response in adult moderate to severe eosinophilic asthma patients: A prospective cohort study

To the Editor,

The presence of bronchodilator response (BDR) is one of the key hallmarks in diagnosing asthma and is traditionally defined as a >200ml and >12% improvement in spirometry forced expiratory volume in 1 s (FEV₁) following short acting beta agonist therapy. Patients who demonstrate BDR typically have higher levels of airway inflammation, poorer asthma control and a greater spirometric response toinhaled corticosteroid (ICS) therapy.¹⁻³

Airway oscillometry is an effort-independent tidal breathing manoeuvre that also assesses small airway function through measuring differences in resistance between 5 and 20 Hz (R₅₋₂₀), a manoeuvre that also assesses small airway function through measuring differences in resistance between 5 and 20 Hz (R₅₋₂₀), reactivity at 5 Hz (X₅) and area under reactance curve (AX).⁴ It has previously been demonstrated that oscillometry BDR is related to asthma control,⁵ and that R₅₋₂₀ and AX bronchodilator response display greater sensitivity compared to that of FEV₁ or FEF₂₅₋₇₅ in response to salbutamol in mild to moderate asthma patients.⁶ In this prospective cohort study, we aim to elucidate similarities and differences in BDR for spirometry and oscillometry in patients with poorly controlled severe asthma with type 2 inflammation.

Thirty-three severe asthma patients attending the Scottish Centre for Respiratory Research for screening into a separate clinical trial (EudraCT No. 2019–003763-22) were enrolled into this study between December 2020 and October 2021. Prior to their appointment, all patients were instructed to withhold their SABA for 6 h; ICS for 12 or 24 h depending on dosing frequency, long-acting beta-agonists (LABA) for 12 or 24 h; long-acting muscarinic antagonists (LAMA) for 12 or 24 h; theophylline for 48 h; leukotriene receptor antagonists (LTRA) for 48 h and antihistamines for 5 days. No patients were taking biologics at enrolment. Fractional exhaled nitric oxide (FeNO) was measured using NIOX VERO (Circassia) according to the manufacturer’s instructions and ATS/ERS guidelines. Spirometry (Micromedical) was performed according to ERS guidelines. Thorasys TremoFlo Airwave Oscillometry system measurements were performed in triplicate to assess oscillometry according to the ERS guidelines with oscillometry always performed prior to spirometry. Blood testing was performed to detect levels of peripheral blood eosinophils (PBE) and circulating levels of specific IgE antibodies [Fluorescence enzyme-linked immunoassay (Phadia Immunocap 250)] to defined common allergens including house dust mite, grass, cat, dog and silver birch. Asthma control was determined using the 6-point asthma control questionnaire (ACQ) and mini asthma quality of life questionnaire (mini-AQLQ). All patients were subsequently administered 400μg of salbutamol via a pMDI through an aerocochamber spacer device (Trudell Medical UK Ltd) with oscillometry and spirometry measurements repeated after 15 min. Statistical analysis was performed using SPSS version 27 and graphs were prepared with GraphPad Prism 6 (GraphPad Software Inc).

Data were assessed for normality with Boxplots prior to analysis. Paired Student’s T tests with a two tailed alpha error set at 0.05 were implemented to evaluate any significant differences in pulmonary function pre- and post-salbutamol. Independent Student’s T tests were also used to compare pre-bronchodilator spirometry, oscillometry, type 2 biomarkers and ACQ in those patients with or without spirometry or oscillometry defined BDR. Pearson’s correlation coefficients were computed to assess the relationship between percentage differences for spirometry and oscillometry. The standardized response mean (SRM) expresses the signal to noise ratio as mean change divided by SD (SRM ≥ 0.80 are considered highly sensitive). Ethical approval was obtained through the East of Scotland research ethics service.

The mean baseline demographic data were as follows: gender (F/M) 18/15; age 52 years; BMI: 31 kg/m²; ACQ: 3.0; mini-AQLQ: 3.2; FEV₁: 76%; FEF₂₅₋₇₅: 39%; FVC: 98%; FEV₁/FVC: 0.63; R₅: 0.59 kPa/L/s; R₂₀: 0.40 kPa/L/s; R₅₋₂₀: 0.19 kPa/L/s; X₅: -0.33 kPa/L/s; AX: 3.77 kPa/L; Freq: 24.00 Hz; PBE: 505 cells/μl; total IgE: 388 kU/L; neutrophils: 4586 cells/μl; FeNO: 54 ppb and number of positive specific IgE of 1. The mean ICS dose was 1875 μg; 79% were taking LABA; 52% LAMA; 64% LTRA; 21% theophylline; 70% oral antihistamines; 3% sodium cromoglicate; 48% intranasal steroids and 12% intranasal antihistamines. One patient was taking a daily oral prednisolone dose of 1 mg. Thirty-nine percent were ex-smokers with the remainder having never smoked.

When comparing pre- and post-bronchodilator measurements (Table 1), spirometry and oscillometry values were all statistically significant (p < .001). Similar outcomes resulted from repeating the analysis for those patients with AHR to mannitol (n = 21).

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd.

Received: 8 May 2022 | Revised: 9 June 2022 | Accepted: 11 June 2022
DOI: 10.1111/cea.14185
The greatest improvements after bronchodilation (expressed as % of baseline) were observed for R5-R20 (37.9%) and AX (53.5%) whilst the lowest improvements were demonstrated for FVC (4.1%) and FEV₁ (10.4%). SRMs for FEV₁, R5, X5, AX and F_res were all highly sensitive (>0.8) although was highest for FEV₁ (Table 1). Improvements in FEF₂⁵-₇₅% and R5-R20% were moderately correlated ($r = 0.47; p = 0.006$).

In our cohort of severe asthma patients, 11/33 (33%) had a positive BDR when using the standard FEV₁ criteria of >200 ml and >12% improvement post-salbutamol. When using recently recommended oscillometry BDR criteria, namely R5 ≥ 29% or X5 ≥ 45%, 12/33 (36%) had a positive BDR (Table 2). No significant differences in spirometry, oscillometry, asthma control or type 2 biomarkers were noted when using spirometry or oscillometry BDR criteria separately.

To our knowledge, this is the first study comparing BDR for oscillometry and spirometry in patients with poorly controlled severe asthma with type 2 inflammation. Respiratory impedance values for BDR in healthy volunteers have previously been documented, but in contrast, our cohort of patients had evidence of severe asthma. Notably, the mean baseline FEV₁ improved by 231 ml and 10.4% pre- versus post-salbutamol. One possible explanation for the lack of spirometry BDR in this study perhaps could be related to the fact that severe asthma is more associated with airway remodelling and fixed airflow obstruction than mild-to-moderate asthma.

Key messages
- FEF₂⁵-₇₅ and oscillometry demonstrate greater percentage improvements in bronchodilator response than FEV₁ in moderate severe asthma.
- Standardized response means for FEV₁ and oscillometry were highly sensitive.
- Oscillometry can be used as a viable alternative in patients unable to perform spirometry.

TABLE 1	Mean absolute and percentage differences and standardized response means for pre- and post-bronchodilator oscillometry and spirometry measurements			
	Mean difference (95%CI)	% difference (95%CI)	p value	SRM
FEV₁ (L)	0.231 (0.168–0.295)	10.4 (7.5–13.2)	<.001	1.29
FEF₂⁵-₇₅ (L/s)	0.356 (0.190–0.523)	25.9 (13.8–38.0)	<.001	0.76
FVC (L)	0.142 (0.066–0.219)	4.1 (1.9–6.2)	<.001	0.66
R5 (kPa/L/s)	0.12 (0.08–0.16)	20.1 (13.5–26.8)	<.001	1.07
R20 (kPa/L/s)	0.05 (0.02–0.07)	11.5 (5.8–17.1)	<.001	0.73
R5-R20 (kPa/L/s)	0.07 (0.05–0.10)	37.9 (24.4–51.5)	<.001	0.99
AX (kPa/L)	2.02 (1.16–2.87)	53.5 (30.8–76.2)	<.001	0.84
X5 (kPa/L/s)	0.11 (0.07–0.16)	33.7 (20.0–47.4)	<.001	
F_res (Hz)	4.60 (2.55–6.65)	19.5 (10.8–28.1)	<.001	0.90

TABLE 2 Comparisons of spirometry, oscillometry, asthma control and type 2 biomarkers according to presence or absence of bronchodilator response using FEV₁ or oscillometry criteria

	FEV₁ BDR (n = 11) vs non-BDR (n = 22)	Oscillometry BDR (n = 12) vs non-BDR (n = 21)
FEV₁ (L)	2.24 vs. 2.23	2.40 vs. 2.14
FEF₂⁵-₇₅ (L/s)	1.14 vs. 1.49	1.46 vs. 1.33
FVC (L)	3.85 vs. 3.34	3.82 vs. 3.33
R5 (kPa/L/s)	0.70 vs. 0.53	0.67 vs. 0.54
R20 (kPa/L/s)	0.45 vs. 0.38	0.42 vs. 0.40
R5-R20 (kPa/L/s)	0.25 vs. 0.16	0.25 vs. 0.15
AX (kPa/L)	5.03 vs. 3.14	5.02 vs. 3.05
X5 (kPa/L/s)	−0.37 vs. −0.32	−0.37 vs. −0.32
F_res (Hz)	26.16 vs. 23.04	27.47 vs. 22.16
ACQ	3.3 vs. 2.9	2.9 vs. 3.1
Mini AQLQ	3.1 vs. 3.2	3.4 vs. 3.1
FeNO (ppb)	74 vs. 40	45 vs. 55
PBE (cells/μL)	474 vs. 522	338 vs. 598*

Abbreviations: BDR, bronchodilator response; *p < .05.
One recent retrospective study observed that oscillometry BDR was associated with poor asthma control and was more sensitive than spirometry BDR. However, this study did not investigate small airways resistance using R5-R20 or FEF_{25-75}. In this study, we have prospectively demonstrated that both reactance (X5 and AX) and resistance measurements (R5-R20) in addition to FEF_{25-75} showed the greatest improvements in BDR compared to FEV\textsubscript{1} (Table 1).

Improvements in FEF\textsubscript{25-75} % and R5-R20% were moderately correlated. This is intuitive as both measurements are considered markers for SAD. Indeed, BDR values were highest for measurements related. This is intuitive as both measurements are considered markers for FEV\textsubscript{1}.

In this study, we have prospectively demonstrated that both reactance (X5 and AX) and resistance measurements (R5-R20) in addition to FEF\textsubscript{25-75} showed the greatest improvements in BDR compared to FEV\textsubscript{1}. The findings from this study are clinically relevant as biologic therapy has previously been shown to improve FEF\textsubscript{25-75} and R5-R20 in patients with severe asthma along with its well established effects on better asthma control.

We appreciate our study is limited in terms of a relatively small sample size and results from a single Scottish centre and therefore larger multicentre studies are indicated to validate our results including patients taking biologics. However, this is the first prospective study to assess oscillometry BDR in severe asthma patients with type 2 inflammation and therefore we hope this novelty will lead to further studies in this rapidly evolving area.

In conclusion, measurements for small airways dysfunction including FEF\textsubscript{25-75} and oscillometry demonstrated greater percentage improvements in bronchodilator response compared to baseline than FEV\textsubscript{1} and FVC in severe asthma patients. Standardized response means for FEV\textsubscript{1}, R5, X5, AX and F\textsubscript{res} were all highly sensitive although was highest for FEV\textsubscript{1}.

AUTHORS CONTRIBUTION
Rory Chan and Brian J. Lipworth were both jointly responsible for idea conception and writing all versions of the manuscript. Rory Chan collected and analysed all data whilst Brian J. Lipworth provided overall supervision.

ACKNOWLEDGEMENT
Open access funding enabled and organized by ProjektDEAL.

CONFLICT OF INTEREST
Dr. Chan reports personal fees (talks) from AstraZeneca. Dr. Lipworth reports non-financial support (equipment) from GSK; grants, personal fees (consulting, talks and advisory board), other support (attending ATS and ERS) and from AstraZeneca, grants, personal fees (consulting, talks, advisory board), other support (attending ERS) from Teva, personal fees (consulting) from Sanofi, personal fees (consulting, talks and advisory board) from Circassia in relation to the submitted work; personal fees (consulting) from Lupin, personal fees (consulting) from Glenmark, personal fees (consulting) from Vectura, personal fees (consulting) from Dr Reddy, personal fees (consulting) from Sandoz; grants, personal fees (consulting, talks, advisory board), other support (attending BTS) from Boehringer Ingelheim, grants and personal fees (advisory board and talks) from Mylan outside of the submitted work; and the son of BJL is presently an employee of AstraZeneca.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Rory Chan
https://orcid.org/0000-0003-2805-8266
Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School University of Dundee, Dundee, UK

Brian J. Lipworth
https://orcid.org/0000-0002-8140-2014
Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School University of Dundee, Dundee DD1 9SY, UK.

Email: b.j.lipworth@dundee.ac.uk

ORCID
Rory Chan https://orcid.org/0000-0003-2805-8266
Brian J. Lipworth https://orcid.org/0000-0002-8140-2014

REFERENCES
1. Heffler E, Crimi C, Campisi R, et al. Bronchodilator response as a marker of poor asthma control. Respir Med. 2016;112:45-50.
2. Puckett JL, Taylor RW, Leu SY, et al. An elevated bronchodilator response predicts large airway inflammation in mild asthma. Pediatr Pulmonol. 2010;45(2):174-181.
3. Szefler SJ, Martin RJ, King TS, et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol. 2002;109(3):410-418.
4. Chan R, RuiWen Kuo C, Lipworth B. Real-life small airway outcomes in severe asthma patients receiving biologic therapies. J Allergy Clin Immunol Pract. 2021;9(7):2907-2909.
5. Kuo CR, Chan R, Lipworth B. Impulse oscillometry bronchodilator response and asthma control. J Allergy Clin Immunol Pract. 2020;8(10):3610-3612.
6. Short PM, Williamson PA, Lipworth BJ. Sensitivity of impulse oscillimetry and spirometry in beta-blocker induced bronchoconstriction and beta-agonist bronchodilatation in asthma. Ann Allergy Asthma Immunol. 2012;109(6):412-415.
7. Johansson H, Wollmer P, Sundström J, Janson C, Malinovschi A. Bronchodilator response in FOT parameters in middle-aged adults from SCAPIS: normal values and relationship to asthma and wheezing. Eur Respir J. 2021;58(3):2100229.
8. Jang AS, Lee JH, Park SW, Park JS, Kim DJ, Park CS. Risk factors related to fixed airway obstruction in patients with asthma after antiasthma treatment. Ann Allergy Asthma Immunol. 2007;99(5):408-412.
9. Cottee AM, Seccombe LM, Thamin C, King GG, Peters MJ, Farah CS. Bronchodilator Response Assessed by the Forced Oscillation Technique Identifies Poor Asthma Control With Greater Sensitivity Than Spirometry. Chest. 2020;157(6):1435-1441.