Bosonic and Fermionic Representations of Endomorphisms of Exterior Algebras

OMMOLBANIN BEHZAD, LETTERIO GATTO *

Abstract

We describe the fermionic and bosonic Fock representation of the Lie super-algebra of endomorphisms of the exterior algebra of the \(\mathbb{Q} \)-vector space of infinite countable dimension, vanishing at all but finitely many basis elements. We achieve the goal by exploiting the extension of the Schubert derivations on the fermionic Fock space.

Introduction

0.1 The Goal. Let \(B := \mathbb{Q}[x] \) be the polynomial ring in the infinitely many indeterminates \(x := (x_1, x_2, \ldots) \). The purpose of this paper is to further enhance a classical but fundamental result by Date, Jimbo, Kashiwara and Miwa, which describes the polynomial algebra \(B(\xi) := B \otimes \mathbb{Q}[\xi^{-1}, \xi] \) (the bosonic Fock space) as a representation of the Lie algebra \(gl_\infty(\mathbb{Q}) := \{(a_{ij})_{i,j \in \mathbb{Z}} \mid \text{all but a finite number of the } a_{ij} \in \mathbb{Q} \text{ are zero}\} \).

For the convenience of our exposition, we slightly change the notation for \(gl_\infty(\mathbb{Q}) \) as follows. Let us consider the \(\mathbb{Q} \)-vector space \(V := \bigoplus_{i \in \mathbb{Z}} \mathbb{Q} \cdot b_i \), whose basis \(b = (b_i)_{i \in \mathbb{Z}} \) is parametrised by the integers, along with its restricted dual \(V^* := \bigoplus_{i \in \mathbb{Z}} \mathbb{Q} \cdot \beta_j \), with basis \(\beta = (\beta_i)_{i \in \mathbb{Z}} \), where \(\beta_j \in \text{Hom}_\mathbb{Q}(V, \mathbb{Q}) \) is the unique linear form such that \(\beta_j(b_i) = \delta_{ji} \). In this way, the algebra \(gl_\infty(\mathbb{Q}) \) gets identified with

\[
\text{gl}(V) = V \otimes V^* = \bigoplus_{i,j \in \mathbb{Z}} \mathbb{Q} \cdot b_i \otimes \beta_j.
\]

In the contribution \[2\] (see also \[9\]) Date, Jimbo, Kashiwara and Miwa compute the action on \(B(\xi) \) of the generating function

\[
\mathcal{E}(z, w) = \sum_{i,j} b_i \otimes \beta_j z^i w^{-j}
\]

of the basis as in \(1\), and obtain their celebrated bosonic vertex operator representation of \(\text{gl}(V) \). Our main result is the ultimate extension of the DJKM formula, concerned with the fermionic and the bosonic vertex representation of the Lie super-algebra \(\text{gl}(\wedge V) := \wedge V \otimes \wedge V^* \), where \(\wedge V \) and \(\wedge V^* \) denote, as usual, the exterior algebra of \(V \) and \(V^* \) respectively. Our formula includes, and admits as a particular case, the DJKM one, as displayed, e.g., in \[10\], Proposition 5.2 or \[9\], Section 1.

* Work sponsored by Finanziamento Diffuso della Ricerca, no. 53_RBA17GATLET del Politecnico di Torino; Progetto di Eccellenza Dipartimento di Scienze Matematich e, 2018–2022 no. E11G18000350001, INDAM-GNSAGA e PRIN “Geometria delle Variet`a Algebriche”.

Keywords and Phrases: Schubert Derivations on the fermionic Fock space, Vertex Operators on Exterior Algebras, Bosonic and Fermionic Representations by Date-Jimbo-Kashiwara-Miwa, Symmetric Functions.

2020 MSC: 14M15, 15A75, 05E05, 17B69.
0.2 Let \(\mathcal{P} \) be the set of all partitions (non increasing sequences of non negative integers all zero but finitely many). The fermionic Fock space is a \(\mathbb{Z} \)-graded vector space \(\mathcal{F} := \bigoplus_{m \in \mathbb{Z}} \mathcal{F}_m \) which, like \(B(\xi) \), the bosonic one, possesses a basis \([b]_{m+\lambda} \) parametrised by \(\mathbb{Z} \times \mathcal{P} \). More than that, it is essential, from our point of view, to think of \(\mathcal{F} \) as a \(B(\xi) \)-module of rank 1 generated by

\[
[\xi^m S_{\lambda}(\mathbf{x})][b]_0 = [b]_{m+\lambda} = b_{m+\lambda_1} \wedge \cdots \wedge b_{m-r+1+\lambda_r} \wedge b_{m-r} \wedge b_{m-r-1} \wedge \cdots,
\]

where \(S_{\lambda}(\mathbf{x}) \) denotes the Schur polynomial associated to the partition \(\lambda \) and to the sequence \(\mathbf{x} \).

Equality (3) can be understood either as a Giambelli’s formula for Schubert Calculus on infinite Grassmannian (see [7]) or like a Jacobi-Trudy formula. To follow more closely the reference [10, Theorem 6.1], and being more adherent to the subject of the paper, we call (3) the Boson-Fermion correspondence. Our starting point is the obvious remark that \(\wedge \mathcal{V} \) is a (irreducible) representation of the Lie super–algebra \(gl(\wedge \mathcal{V}) \) of all endomorphisms vanishing at all basis elements but finitely many of the exterior algebra. An explicit generating function encoding the \(gl(\wedge \mathcal{V}) \)-module structure of \(\wedge \mathcal{V} \) has already been proposed in [1], where the vertex operators shaping the boson-fermion correspondence spontaneously arise in all their splendor, regardless of the more classical framework. In addition, as noticed in [8], little effort is needed to extend the \(\wedge \mathcal{V} \)-representation to \(\mathcal{F} \), mainly because the latter is a module over the former. This reflects in the fact that each degree \(\mathcal{F}_m \) of \(\mathcal{F} \), as suggested in formula (3), can be thought of as a semi-infinite exterior power. Finally, one just pulls back on \(B(\xi) \) the \(\mathcal{F} \) representation of \(gl(\wedge \mathcal{V}) \), invoking the boson-fermion correspondence.

The program demands, however, to identify a basis of finitely many of the exterior algebra. An explicit generating function encoding the \(gl(\wedge \mathcal{V}) \)-module structure of \(\wedge \mathcal{V} \) has already been proposed in [1], where the vertex operators shaping the boson-fermion correspondence spontaneously arise in all their splendor, regardless of the more classical framework. In addition, as noticed in [8], little effort is needed to extend the \(\wedge \mathcal{V} \)-representation to \(\mathcal{F} \), mainly because the latter is a module over the former. This reflects in the fact that each degree \(\mathcal{F}_m \) of \(\mathcal{F} \), as suggested in formula (3), can be thought of as a semi-infinite exterior power. Finally, one just pulls back on \(B(\xi) \) the \(\mathcal{F} \) representation of \(gl(\wedge \mathcal{V}) \), invoking the boson-fermion correspondence.

The program demands, however, to identify a basis of finitely many of the exterior algebra. An explicit generating function encoding the \(gl(\wedge \mathcal{V}) \)-module structure of \(\wedge \mathcal{V} \) has already been proposed in [1], where the vertex operators shaping the boson-fermion correspondence spontaneously arise in all their splendor, regardless of the more classical framework. In addition, as noticed in [8], little effort is needed to extend the \(\wedge \mathcal{V} \)-representation to \(\mathcal{F} \), mainly because the latter is a module over the former. This reflects in the fact that each degree \(\mathcal{F}_m \) of \(\mathcal{F} \), as suggested in formula (3), can be thought of as a semi-infinite exterior power. Finally, one just pulls back on \(B(\xi) \) the \(\mathcal{F} \) representation of \(gl(\wedge \mathcal{V}) \), invoking the boson-fermion correspondence.

0.3 To pursue our program we use the basis of \(\wedge \mathcal{V} \otimes \wedge \mathcal{V}^* = \bigoplus_{k,l \geq 0} \wedge^k \mathcal{V} \otimes \wedge^l \mathcal{V}^* \) obtained as the union of those induced on \(\wedge^k \mathcal{V} \otimes \wedge^l \mathcal{V}^* \) by \(b \) and \(\beta \), for all \(k, l \geq 0 \). This is quite straightforward, up to getting aware of one main combinatorial point, i.e. that they are best parametrised by the set \(\mathcal{P} \), in what, in Definition 2.1, lacking of a better terminology, we called bilateral partitions. More precisely, given \(r \geq 0 \), we shall understand by \(\mathcal{P}_r \) the set of all \(r \)-tuples \(\lambda = (\lambda_1, \ldots, \lambda_r) \subseteq \mathbb{Z}^+ \), such that \(\lambda_1 \geq \cdots \geq \lambda_r \). We so have

\[
\wedge \mathcal{V} = \bigoplus_{\mu \in \mathcal{P}_k} \mathbb{Q}[b]^k_{\mu} \quad \text{and} \quad \wedge \mathcal{V}^* = \bigoplus_{\nu \in \mathcal{P}_l} \mathbb{Q}[\beta]^l_{\nu},
\]

where

\[
[b]^k_{\mu} = b_{k-1+\mu_1} \wedge \cdots \wedge b_{\mu_k} \quad \text{and} \quad [\beta]^l_{\nu} = \beta_{l-1+\nu_1} \wedge \cdots \wedge \beta_{\nu_l}.
\]

Then

\[
\mathcal{E}(z_k, w_l^{-1}) = \sum_{\mu, \nu \in \mathcal{P}_k \otimes \mathcal{P}_l} [b]^k_{\mu} \otimes [\beta]^l_{\nu} s_{\mu}(z_k) s_{\nu}(w_l^{-1}),
\]

is the generating function of the distinguished basis \([b]^k_{\mu} \otimes [\beta]^l_{\nu} \) of \(\wedge^k \mathcal{V} \otimes \wedge^l \mathcal{V}^* \), where \(z_k \) and \(w_l^{-1} \) are, respectively, \(k \)-tuples \((z_1, \ldots, z_k) \) and \(l \)-tuples \((w_1^{-1}, \ldots, w_l^{-1}) \) of formal variables. Abusing notation, we have chosen to denote by the same symbols \(s_{\mu}(z_k) \) and \(s_{\nu}(w_l^{-1}) \) natural extensions of the classical Schur polynomials occurring in the theory of symmetric functions as in, e.g., [4, Section 3] and/or [3, Section 2.2]. The difference with the classical ones is that they are symmetric rational
functions and do coincide with the usual Schur symmetric polynomials whenever \(\lambda \in \mathcal{P}_r = \mathcal{P} \cap \mathbb{N}' \).

We are now in position to anticipate the statement of our main result.

Theorem 3.6. The (DJKM bosonic) action of \(\mathcal{E}(z_k, w_l^{-1}) \) on \(B(\xi) \) is given by

\[
\mathcal{E}(z_k, w_l) = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(z_k^{-1}) p_n(w_l) \right) \Gamma(z_k, w_l),
\]

where

i) the map \(\Gamma(z_k, w_l) : B(\xi) \to B(\xi)[z_k^{\pm 1}, w_l^{\pm 1}] \) is the vertex operator

\[
R(z_k, w_l^{-1}) \exp \left(\sum_{n \geq 1} x_n (p_n(z_k) - p_n(w_l)) \right) \exp \left(\sum_{n \geq 1} \frac{p_n(z_k^{-1}) - p_n(w_l^{-1})}{n} \frac{\partial}{\partial x_n} \right); \tag{5}
\]

ii) the map \(R(z_k, w_l^{-1}) : B(\xi)[z_k, w_l^{-1}] \to B(\xi)[z_k, w_l^{-1}] \) is the unique \(B[z_k, w_l^{-1}] \)-linear extension of

\[
\xi^m \mapsto \xi^{m+k-1} \prod_{1 \leq i \leq k} \prod_{1 \leq j \leq l} \frac{z_i^{m-l+1}}{w_j^{m-l+1}};
\]

iii) the expression \(p_n(z_k^{\pm 1}) \) and \(p_n(w_l^{\pm 1}) \) denote the Newton powers sums symmetric polynomials, in the variables \(z_k^{\pm 1} \) and \(w_l^{\pm 1} \), i.e. more explicitly

\[
p_n(z_k^{\pm 1}) := z_k^{\pm n} + \cdots + z_k^{\pm n} \quad \text{and} \quad p_n(w_l^{\pm 1}) := w_l^{\pm n} + \cdots + w_l^{\pm n}.
\]

The meaning of formula (5) is that if \(P(x, \xi) \in B(\xi) \) is any polynomial, then the “multiplication” of \([b]_l^\mu \otimes [b]_l^\nu \), is the coefficient of \(s_{\mu}(z_k)s_{\nu}(w_l^{-1}) \) in the expansion \(\mathcal{E}(z_k, w_l^{-1}) P(x, \xi) \). This may seem tricky. However multiplying the resulting expression by the product of the Vandermonde \(\Delta_0(x_k) \Delta_0(w_l^{-1}) \), it is sufficient to consider the coefficient of the less intimidating monomial \(z_k^{k-1+\mu_1} \cdots z_k^{\mu_k} \cdot w_l^{1+\nu_1} \cdots w_l^{\nu_l} \) suffices.

To end up, reading formula (5) for \(k = l = 1 \), putting \(z_1 = z \) and \(w_1 = w \), one has \(s_{\mu}(z) = z^i \) and \(s_{\nu}(w^{-1}) = w^{-j} \), for all \(i, j \in \mathbb{Z} \). By the definition of the logarithm of an invertible formal power series:

\[
\exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{w_n}{z^n} \right) = \frac{1}{1 - \frac{w}{z}}
\]

and the fact that, in this case, \(R(z, w^{-1}) \xi^m = \xi^m \frac{z^m}{w^m} \), equality (4) simplifies into

\[
\mathcal{E}(z, w^{-1})|_{B_G} = \frac{z^m}{w^m} \exp \left(\sum_{n \geq 1} x_n (z^n - w^n) \right) \exp \left(- \sum_{n \geq 1} \frac{z^{-n} - w^{-n}}{n} \frac{\partial}{\partial x_n} \right), \tag{6}
\]

which is precisely the original DJKM formula for the bosonic representation of \(gl(V) \) (see e.g. [10, Proposition 5.2] or [9, Section 1]. This may look surprising indeed, because comparing (5) with (6), it is apparent that (5) can be obtained from the DJKM expression simply by replacing the variables \(z, w \) in (6) by the power sums of the \(k \) and \(l \)-tuples of indeterminates needed to write
the appropriate generating functions. As in our previous references [1, 7, 8], we have borrowed methods from the theory of Hasse-Schmidt derivation on a exterior algebra, like in the book [5]. The similarity of DJKM formula with our (4), however, makes us wonder whether there is any other argument to deduce our Theorem 3.6 bypassing our methods.

0.4 Organisation of the paper. In the first section we recall some more or less known prerequisites. We revise, in particular, the construction of the fermionic Fock space following [8, Section 5] as well as how to extend the Schubert derivation on it. A little background on Schur polynomials, mainly following [4] but also [10, Lecture 6], is included as well. Section 2 is devoted to carefully define the generating function of the basis elements of $\bigwedge^k V \otimes \bigwedge^l V^*$, that is best suited to describe the fermionic and bosonic representation of $gl(\bigwedge V)$. In this same section the natural notion of bilateral partition is also introduced. It is reasonable to suspect it somewhere hidden in some less known literature. Section 3 eventually concerns the statement and proof of our main theorem which, as announced, supplies the expression of both the fermionic and the bosonic expression of $gl(\bigwedge V)$. The two cases are treated in a unified way, reflecting the fact inspiring the references [5, 7, 8] that there is a very little, if not any at all, substantial difference between the two spaces. Indeed, as explained in [1], the vertex operators occurring in the representation theory of the Heisenberg algebra, come naturally to life, exactly the same, already at the level of multivariate Schubert derivations on exterior algebras. With no serious need, at least for the focused purposes of our research, to cross the walls to enter in the realm of the infinite wedge powers, as however we did in the present contribution.

1 Background and notation

1.1 We shall deal with a \mathbb{Q}-vector space $V := \bigoplus_{i \in \mathbb{Z}} \mathbb{Q} \cdot b_i$ and its restricted dual $V^* := \bigoplus_{i \in \mathbb{Z}} \mathbb{Q} \cdot \beta_j$, where $\beta_j \in \text{Hom}_\mathbb{Q}(V, \mathbb{Q})$ is the unique linear form such that $\beta_j(b_i) = \delta_{ji}$. The generating series of the basis elements of V and V^* are, respectively:

$$b(z) = \sum_{i \in \mathbb{Z}} b_i z^i \in V[[z^{-1}, z]] \quad \text{and} \quad \beta(w^{-1}) = \sum_{j \in \mathbb{Z}} \beta_j w^{-j} \in V^*[[w, w^{-1}]]. \quad (7)$$

1.2 Hasse-Schmidt Derivations on $\bigwedge V$. A map $D(z) : \bigwedge V \to \bigwedge V[z]$ is said to be Hasse-Schmidt (HS) derivation on $\bigwedge V$ if $D(z)(u \wedge v) = D(z)u \wedge D(z)v$, for all $u, v \in \bigwedge V$. Write $D(z)$ in the form $\sum_{j \geq 0} D_j z^j$, with $D_j \in \text{End}_\mathbb{Q}(\bigwedge V)$. Then $D(z)$ is invertible in $\text{End}_\mathbb{Q}(\bigwedge V)[z]$ if and only if D_0 is invertible In this case $D(z)$ is invertible and its inverse $D(z)$ is a HS-derivation as well.

1.3 Schubert derivations. Consider the shifts endomorphisms $\sigma_{\pm 1} \in gl(\bigwedge V)$ given by $\sigma_{\pm 1} b_j = b_j \pm 1$. By [5, Proposition 4.1.13], there exist unique HS derivations on $\sigma_{\pm}(z) : \bigwedge V \to \bigwedge V[z^{\pm 1}]$ such that

$$\sigma_{\pm}(z)b_j = \sum_{i \geq 0} b_{j \pm i} z^{\pm i}. \quad (8)$$

Let us denote by $\sigma_{\pm}(z)$ their inverses in $\bigwedge V[z^{\pm 1}]$. Restricted to V they work as follows

$$\sigma_+(z)b_j = b_j - b_{j+1}z \quad \text{and} \quad \sigma_-(z)b_j = b_j - b_{j-1}z^{-1}. \quad (8)$$

They are called Schubert derivations in the references [5, 7, 8].

1.4 Fermionic Fock space. We quickly summarise the definition of the fermionic Fock space borrowed from [8]. Let $[V]$ be a copy of V (framed by square bracket to distinguish by the original V itself). It is the \mathbb{Q}-vector space with basis $([b]_m)_{m \in \mathbb{Z}}$. Identify $[V]$ with a sub-module of the tensor
product $\bigwedge V \otimes Q[V]$ via the map $[b]_m \mapsto 1 \otimes [b]_m$. Let W be the $\bigwedge V$-submodule of $\bigwedge V \otimes Q[V]$ generated by all the expressions $\{b_m \otimes [b]_{m-1} - [b]_m, b_m \otimes [b]_m\}_{m \in \mathbb{Z}}$. In formulas:

$$W := \bigwedge V \otimes (b_m \otimes [b]_{m-1} - [b]_m) + \bigwedge V \otimes (b_m \otimes [b]_m).$$

1.5 Definition. The fermionic Fock space is the $\bigwedge V$-module

$$\mathcal{F} := \mathcal{F}(V) := \frac{\bigwedge V \otimes Q[V]}{W}. \quad (9)$$

Let $\bigwedge V \otimes Q[V] \to \mathcal{F}$ be the canonical projection. The class of $u \otimes [b]_m$ in \mathcal{F} will be denoted $u \wedge [b]_m$. Thus the equalities $b_m \wedge [b]_m = 0$ and $b_m \wedge [b]_{m-1} = [b]_m$ hold in \mathcal{F}. For all $m \in \mathbb{Z}$ and $\lambda \in \mathcal{P}$ let, by definition

$$[b]_{m+\lambda} := b_{m+\lambda} \wedge [b]_{m-r} = b_{m+\lambda_1} \wedge b_{m-1+\lambda_2} \wedge \cdots \wedge b_{m-r+\lambda_r} \wedge [b]_{m-r}$$

where r is any positive integer such that $\ell(\lambda) \leq r$, which implicitly defines $b_{m+\lambda}^r$ as an element of $\bigwedge^r V_{\geq m-r+1}$, where by $V_{\geq j}$ we understand $\bigoplus_{i \geq j} Q \cdot b_i$. It turns out that \mathcal{F} is a graded $\bigwedge V$-module:

$$\mathcal{F} := \bigoplus_{m \in \mathbb{Z}} \mathcal{F}_m,$$

where

$$\mathcal{F}_m := \bigoplus_{\lambda \in \mathcal{P}} \mathbb{Q}[b]_{m+\lambda} = \bigoplus_{r \geq 0} \bigoplus_{\lambda \in \mathcal{P}_r} \mathbb{Q} b_{m+\lambda}^r \wedge [b]_{m-r}. \quad (10)$$

is the fermionic Fock space of charge m [10, p. 36].

1.6 Proposition.

i) The equality $b_j \wedge [b]_m = 0$ holds for all $j \leq m$;

ii) The image of the map $\bigwedge V \otimes \mathcal{F}_m \to \mathcal{F}$ given by $(u, v) \mapsto u \wedge v$ is contained in \mathcal{F}_{m+r}.

Proof. They are [8, Proposition 4.4 and 4.5].

1.7 Extending Schubert derivations to \mathcal{F}. We now extend the Schubert derivations, in principle only defined on $\bigwedge V$, on \mathcal{F} according to [8] to which we refer to for more details. First we define their action on elements of the form $[b]_m$ by setting:

$$\sigma_-(z)[b]_m = \sigma_-(z)[b]_m := [b]_m, \quad \sigma_+(z)[b]_m := \sigma_+(z)b_m \wedge [b]_{m-1}$$

and

$$\overline{\sigma}_+(z)[b]_m := \sum_{j \geq 0} [b]_{m+(1^j)} z^j$$

where (1^j) denotes the partition with j parts equal to 1. Finally, we set

$$\sigma_\pm(z)[b]_{m+\lambda} = \sigma_\pm(z)b_{m+\lambda}^r \wedge \sigma_\pm(z)[b]_{m-r} \quad \text{and} \quad \overline{\sigma}_\pm(z)[b]_{m+\lambda} = \overline{\sigma}_\pm(z)b_{m+\lambda}^r \wedge [b]_{m-r}. \quad (11)$$
1.8 Proposition. For all $m \in \mathbb{Z}$, Giambelli’s formula for the Schubert derivation $\sigma_\pm(z)$ holds:

$$[b]_{m+\lambda} = \det(\sigma_{\lambda,j-i})[b]_m$$ \hspace{1cm} (12)

Proof. See [8, Proposition 5.13].

We introduce now an operator on \mathcal{F} which, in a sense, plays the role of the determinant of the shift endomorphism σ_1. We denote it by ξ. We shall understand it as the unique algebra endomorphism of $\wedge V$ such that $\xi \cdot b_j = b_{j+1}$. Being an algebra homomorphism implies that

$$\xi b_{m+\lambda} = b_{m+1+\lambda}$$

It is clearly invertible. Its inverse ξ^{-1} is such that $\xi^{-1}b_j = b_{j-1}$. Secondly, we extend it to \mathcal{F} as follows:

$$\xi [b]_{m+\lambda} = \xi ([b]_{m+\lambda}) \wedge [b]_{m+1+\lambda},$$ \hspace{1cm} (13)

where r is any integer greater than the length of the partition λ. It is trivial to check that such a definition does not depend on the choice of $r > \ell(\lambda)$. So for instance

$$\xi^{m'} [b]_{m+\lambda} = [b]_{m+m'+\lambda}.$$

1.9 Bosonic Fock space. Let $B := \mathbb{Q}[x]$, the polynomial ring in infinitely many indeterminates $x := (x_1, x_2, \ldots)$. As a \mathbb{Q}-vector space it possesses a basis of Schur polynomials parametrised by the set \mathcal{P} of all partitions. Moreover, $(S_1(x), S_2(x), \ldots)$ generate B as a \mathbb{Q}-algebra, because $S_i(x)$ is a polynomial of degree i, for all $i \geq 0$. If $\lambda \in \mathcal{P}$ one sets

$$S_\lambda(x) = \det(S_{\lambda,j-i}(x))$$ \hspace{1cm} (14)

where the sequence $(S_1(x), S_2(x), \ldots)$ is defined by

$$\sum_{j \in \mathbb{Z}} S_j(x)z^j = \exp(\sum_{i \geq 1} x_i z^i).$$ \hspace{1cm} (15)

Let $B(\xi) := B \otimes \mathbb{Q}[\xi, \xi^{-1}]$ be the $\mathbb{Q}[\xi]$-algebra of B-valued Laurent polynomials in ξ. We shall refer to $B(\xi)$ as the bosonic Fock space. It follows that

$$B(\xi) = \bigoplus_{m \in \mathbb{Z}, \lambda \in \mathcal{P}} \mathbb{Q} \cdot \xi^m S_\lambda(x)$$

1.10 The space \mathcal{F} can be endowed with a structure of free $B(\xi)$-module generated by $[b]_0$ of rank one generated by $[b]_0$ such that $\xi^m S_\lambda(x)[b]_0 = [b]_{\lambda}$, by simply declaring

$$\xi^m S_i(x)[b]_\lambda := \sigma_i[b]_{m+\lambda}.$$ \hspace{1cm} (16)

In fact

$$[b]_{m+\lambda} = \xi^m [b]_\lambda = \xi^m \det(\sigma_{\lambda,j-i})[b]_0 = \xi^m \det(S_{\lambda,j-i})[b]_0 = \xi^m S_\lambda(x)[b]_0$$

(Equation (13)),

(Giambelli’s formula for Schubert derivations),

(by equality (16)),

(Definition of $S_\lambda(x)$).
Secondly, the commutation rules hold for elements of the form $\sigma_i : \mathcal{F} \to \mathcal{F}$ with \mathcal{F}_m as eigenspaces. It implies that

$$\sigma_+(z)[b]_{m+\lambda} = \exp \left(\sum_{i \geq 1} x_i z^i \right) [b]_{m+\lambda},$$

i.e., abusing terminology, $\exp(\sum_{i \geq 1} x_i z^i)$ is an eigenvalue of $\sigma_+(z)$.

1.11 Lemma.

i) The Schubert derivations $\sigma_+(z), \sigma_-(z)$ commute with multiplication by ξ, i.e.

$$\xi \sigma_+(z) = \sigma_+(z) \xi \quad \text{and} \quad \xi \sigma_-(z) = \sigma_-(z) \xi;$$

ii) by regarding the Schubert derivation $\sigma_-(z)$ (resp. $\sigma_-(z)$) as a map $B \to B[z^{-1}]$ by setting $(\sigma_-(z) S_{\lambda}(x))[b]_m = \sigma_-(z)[b]_{m+\lambda}$ (resp. $(\sigma_-(z) S_{\lambda}(x))[b]_m = \sigma_-(z)[b]_{m+\lambda}$, one has:

$$\sigma_-(z) S_{i}(x) = S_{i}(x) - \frac{S_{i-1}(x)}{z};$$

iii) the maps $\sigma_-(z)$ and $\sigma_-(z)$ are $\mathbb{Q}(\xi)$-algebra endomorphism of $B(\xi)$. In particular

$$\sigma_-(z) S_{\lambda}(x) = \det(\sigma_-(z) S_{\lambda_{j-i+1}(x)})$$

and

$$\sigma_-(z) S_{\lambda}(x) = \det(\sigma_-(z) S_{\lambda_{j-i+1}(x)});$$

iv) the maps $\sigma_-(z)$ and $\sigma_-(z)$ act on B as exponential of a first order differential operators, namely:

$$\sigma_-(z) S_{\lambda}(x) = \exp \left(\sum_{n \geq 1} \frac{1}{n z^n} \frac{\partial}{\partial x_n} \right) S_{\lambda}(x)$$

and

$$\sigma_-(z) S_{\lambda}(x) = \exp \left(- \sum_{n \geq 1} \frac{1}{n z^n} \frac{\partial}{\partial x_n} \right) S_{\lambda}(x).$$

Proof. i) First we show that the commutation holds on the exterior algebra $\bigwedge \mathcal{V}$. This is nearly obvious, because

$$\sigma_\pm(z) \xi b_j = \sigma_\pm(z) b_{j+1} = \sum_{i \geq 0} b_{j+1 \pm i} z^i \xi = \xi \sum_{i \geq 0} b_{j \pm i} z^i = \xi \sigma_\pm(z) b_j$$

The same holds for $\sigma_\pm(z)$. We have

$$\sigma_\pm(z) \xi b_j = \sigma_\pm(z) b_{j+1} = b_{j+1} - b_{j+1 \pm 1} z^{\pm 1} = \xi (b_j - b_{j+1 \pm 1} z^{\pm 1}) = \xi \sigma_\pm(z) b_j.$$
\[\sigma_-(z)\xi[b]_m = \sigma_-(z)[b]_{m+1}\] (Definition of \(\xi\))
\[= [b]_{m+1}\] (\(\sigma_-(z)\) acts as the identity)
\[= \xi[b]_m = \xi\sigma_-(z)[b]_m\] (Definition of \(\xi\) and \(\sigma_-(z)\) acts as the identity on \([b]_m\))

Similarly one sees that \(\overline{\sigma}_-(z)\xi = \xi\overline{\sigma}_-(z)\). The check for \(\sigma_+(z)\) and \(\overline{\sigma}_+(z)\) works analogously as follows.

\[\sigma_+(z)\xi[b]_m = \sigma_+(z)[b]_{m+1}\] (Definition of \(\xi\))
\[= \sigma_+(z)b_{m+1} \land [b]_m\] (Definition of \(\sigma_+(z)[b]_m\))
\[= \sum_{i \geq 0} b_{m+1+i}z^i \land [b]_m\] (Definition of \(\sigma_+(z)b_m\))
\[= \sum_{i \geq 0} \xi b_{m+i} \land \xi[b]_{m-1} = \xi\sigma_+(z)[b]_m\]

and

\[\overline{\sigma}_+(z)\xi[b]_m = \overline{\sigma}_+(z)[b]_{m+1}\] (Definition of \(\xi\))
\[= \sum_{j \geq 0} (-1)^j b_{m+1+(1j)} \land [b]_{m-j}z^j\] (Definition of \(\overline{\sigma}_+(z)[b]_{m+1}\))
\[= \sum_{j \geq 0} (-1)^j \xi b_{m+(1j)} \land \xi[b]_{m-1-j}z^j\] (Definition of multiplying by \(\xi\))
\[= \xi \sum_{j \geq 0} (-1)^j b_{m+(1j)} \land [b]_{m-1-j}z^j = \xi\overline{\sigma}_+(z)[b]_m\]

Let us show now that (18) holds when evaluated against a general element of \(\mathcal{F}\). We check for \(\sigma_+(z)\), the others being analogous and even easier. Let \(\lambda\) be any partition and \(r\) any integer such that \(\ell(\lambda) < r\). Then:

\[\sigma_{\pm}(z)(\xi[b]_{m+\lambda}) = \sigma_{\pm}(z)[b]_{m+1+\lambda}\] (definition of multiplication by \(\xi\))
\[= \sigma_{\pm}(z)(b_{m+1+\lambda} \land [b]_{m+1-r})\] (decomposition of \([b]_{m+1+\lambda}\))
\[= \sigma_{\pm}(z)b_{m+1+\lambda} \land \sigma_{\pm}(z)[b]_{m+1-r}\] (\(\sigma_{\pm}(z)\) is a derivation)
\[= \sigma_{\pm}(z)\xi b_{m+\lambda} \land \sigma_{\pm}(z)[b]_{m-r}\] (definition of multiplication by \(\xi\))
\[= \xi\sigma_{\pm}(z)b_{m+\lambda} \land \xi\sigma_{\pm}(z)[b]_{m-r}\] (Lemma 1.11, item i))
\[= \xi\sigma_{\pm}(z)[b]_{m+\lambda}\]

The proof for the Schubert derivations \(\sigma_-(z)\) and \(\overline{\sigma}_\pm(z)\) works the same.

ii) The proof of this second statement works verbatim as in [6, Proposition 5.3], where the \(S_i(x)\) are denoted by \(h_i\);

iii) In this case the check follows by combining [6, Proposition 7.1] and [6, Corollary 7.3];
iv) Recall that $B(\xi) = \mathbb{Q}(\xi)[S_1(x), S_2(x), \ldots]$. Equation (15) implies that

$$\frac{\partial S_i(x)}{\partial x_j} = S_{i-j}(x),$$

Then (19), e.g., says that

$$\sigma-(z)S_i(x) = \left(1 - \frac{1}{z} \frac{\partial}{\partial x_1}\right)S_i(x) = \exp \left(- \sum_{n \geq 1} \frac{1}{nz^n} \frac{\partial^n}{\partial x_1^n}\right)S_i(x) \quad (25)$$

Now $\frac{\partial^n}{\partial x_1^n}S_i(x) = \frac{\partial}{\partial x_n}S_i(x)$. Since $S_i(x)$ generate B as a \mathbb{Q}-algebra and $\sigma-(z)$ are algebra homomorphisms coinciding on generators, (24) follows. The proof of (23) is analogous, but it also follows from inverting both members of the equality (24), obtaining

$$\sigma-(z) = \exp \left(\sum_{n \geq 1} \frac{1}{nz^n} \frac{\partial}{\partial x_n}\right)$$

1.12 In the sequel we will need the following observation. Suppose that ϕ is any of the endomorphism $\sigma_{\pm i}$ of $\sigma_{\pm j}$, for i and j arbitrary non negative integers and that

$$\phi(b)_{m+\lambda} = \sum_{\mu} a_\mu b_{m+\mu}.$$

Then, for any $n' \in \mathbb{Z}$,

$$\sum_{\mu} a_\mu b_{m+m'+\mu} = \phi(b)_{m+m'+\lambda}.$$

The proof is based on the definition of multiplication by ξ.

$$\sum_{\mu} a_\mu b_{m+m'+\mu} = \sum_{\mu} a_\mu \xi^{m'} b_{m+\mu} = \xi^{m'} \sum_{\mu} a_\mu b_{m+\mu} = \xi^{m'} \phi(b)_{m+\lambda} = \phi(b)_{m+m'+\lambda}.$$

2 The generating functions of the bases of $\bigwedge^k \mathcal{V}$ and $\bigwedge^l \mathcal{V}^*$

Let $\bigwedge \mathcal{V} = \bigoplus_{k \geq 0} \bigwedge^k \mathcal{V}$ and $\bigwedge \mathcal{V}^* = \bigoplus_{l \geq 0} \bigwedge^l \mathcal{V}^*$ be the exterior algebra of \mathcal{V} and \mathcal{V}^* respectively. To describe the bases of $\bigwedge^k \mathcal{V}$ and $\bigwedge^l \mathcal{V}^*$ induced by the basis b of \mathcal{V} and of β of \mathcal{V}^* (Cf. Section 1.1), we need to explain what we shall mean by bilateral partition.

2.1 Definition. A bilateral partition of length at most $r \geq 1$ is an element of the set:

$$\mathcal{P}_r := \{\lambda := (\lambda_1, \lambda_2, \ldots, \lambda_r) \in \mathbb{Z}^r | \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r\}.$$

Clearly, $\mathcal{P}_r := \mathcal{P}_r \cap \mathbb{N}^r$ is the set of the usual partitions of length at most r, namely the non-increasing sequences of non-negative integers with at most r non zero parts. If $i_1 > \cdots > i_k$ is a
If a generating function for the basis elements (\(\lambda = \ldots\)) is a generating function of the basis elements of \(V\), where \(s\) is a determinant \(\Delta_0(z_k) = \prod_{1 \leq i < j \leq k} (z_j - z_i)\). We then define, for all \(\lambda \in \mathcal{P}_k\), the extended Schur polynomial \(s_\lambda(z_k)\) through the equality

\[
\sum_{\mu \in \mathcal{P}} |b|^k_{\mu} s_\mu(z_k) \Delta_0(z_k) := b(z_k) \wedge \cdots \wedge b(z_1),
\]

and therefore the expression

\[
|b|^k(z_k) := \sum_{\mu \in \mathcal{P}_k} |b|^k_{\mu} s_\mu(z_k)
\]

is a generating function of the basis elements of \(\wedge^k V\) induced by the given basis \(b\) of \(V\). Similarly, a generating function for the basis elements \((|\beta|^l)_\nu \in \mathcal{P}_l\) is given by

\[
|\beta|^l(w_l^{-1}) := \sum_{\nu \in \mathcal{P}_l} |\beta|^l_{\nu} \cdot s_\nu(w_l^{-1}),
\]

where \(s_\nu(w_l^{-1})\) is now defined, for all \(\nu \in \mathcal{P}_l\), via the equality

\[
\sum_{\nu \in \mathcal{P}} |\beta|^l_{\nu} s_\nu(w_l^{-1}) \Delta_0(w_l^{-1}) := \beta(w_1^{-1}) \wedge \cdots \wedge \beta(w_l^{-1}),
\]

where

\[
\Delta_0(w_l^{-1}) = \prod_{1 \leq i < j \leq l} (w_j^{-1} - w_i^{-1}) = \frac{\prod_{1 \leq i < j \leq l} (w_i - w_j)}{\prod_{i=1}^{l-1} w_i^{-1}}.
\]

Notice the different numbering adopted for the variables \(z\) (formula (26)) and the variables \(w^{-1}\) (formula (29)).

2.2 Remark
If \(\lambda \subseteq \mathbb{N}^k\), then \(s_\lambda(z_k)\) is the usual Schur symmetric polynomial in \((z_1, z_2, \ldots, z_k)\).

If \(\lambda := (\lambda_1, \lambda_2, \ldots, \lambda_k) \in \mathcal{P}_k\), with all \(\lambda_i < 0\), then

\[
s_\lambda(z_k) = \frac{s_{-\lambda}(z_k^{-1})}{z_1^{k-1} \cdots z_k^{k-1}}.
\]

where \(-\lambda = (-\lambda_k, -\lambda_{k-1}, \ldots, -\lambda_1)\). If \(\lambda_1 > 0\) and \(\lambda_k < 0\), instead

\[
s_{\lambda}(z_k) = \frac{s_{(\lambda_1 + \lambda_k, \ldots, \lambda_{k-1} + \lambda_k, 0)}(z_k)}{\prod_{j=0}^{k} z_j^{\lambda_j}}.
\]

It is then clear that all \(s_\lambda(z)\), where \(\lambda\) runs on \(\mathcal{P}_k\), are \(\mathbb{Q}\)-linearly independent. The same holds true for \(\Delta_0(w_l^{-1})\).
2.3 Let $\beta \in \nu^*$. The contraction $\beta : \bigwedge \nu \to \bigwedge \nu$ can be depicted via the following diagram:

$$
\begin{vmatrix}
\beta(b_{r-1+\lambda_1}) & \beta(b_{r-2+\lambda_2}) & \cdots & \beta(b_{\lambda_r}) \\
 b_{r-1+\lambda_1} & b_{r-2+\lambda_2} & \cdots & b_{\lambda_r}
\end{vmatrix}
$$

(33)

to be read as follows. The scalar $\beta(b_{r-j+\lambda_j})$ is the coefficient of the element of $\bigwedge^{r-1} \nu$ obtained by removing the j-th exterior factor from $[b]_\lambda^r$.

The contraction of $\bigwedge^r \nu$ against $[\beta]^l_\nu \in \bigwedge^l \nu^*$ is well defined as well. It is an element of $\bigwedge^{r-l} \nu$ which can be represented as (See [1]):

$$
[\beta]^l_{\nu \downarrow \lambda}[b]_\lambda^r =
\begin{vmatrix}
\beta_{l-1+\nu_1}(b_{r-1+\lambda_1}) & \beta_{l-1+\nu_2}(b_{\lambda_r}) \\
 \vdots & \ddots & \vdots \\
 \beta_{\nu_1}(b_{r-1+\lambda_1}) & \beta_{\nu_2}(b_{\lambda_r}) \\
 b_{r-1+\lambda_1} & \cdots & b_{\lambda_r}
\end{vmatrix}
$$

(34)

to be read as follows. The Laplace-like expansion of the array (34) along the first row is an alternating linear combination of contractions of elements of $\bigwedge^{k-1} \nu$ against elements of $\bigwedge^{l-1} \nu^*$. Having already set the case $k = 1$ in (33), we have described it completely.

2.4 Although it may be easily guessed, let us now make precise the definition of the contraction of an element of F against an element of $\bigwedge^l \nu^*$. Giving the definition on bases elements $[b]_{m+\lambda}$ of F and $[\beta]^l_{\nu} (\nu := (\nu_1 \geq \ldots \geq \nu_l) \in \bigwedge^l \nu^*$ will suffice. Let $r \geq 0$ such that $\ell(\lambda) \leq r$ and $\nu_l \geq m - r$ and define:

$$
[\beta]^l_{\nu \downarrow \lambda}[b]_{m+\lambda} := ([\beta]^l_{\nu \downarrow \lambda}[b]_{m+\lambda}) \wedge [b]_{m-r}.
$$

It is straightforward to see that the definition does not depend on the choice of the non-negative integer $r > \ell(\lambda)$.

2.5 Let

$$
E(z_k, w_i^{-1}) = [b]^k(z_k) \otimes [\beta]^l(w_i^{-1}) = \sum_{\mu, \nu} [b]_{\mu \nu} \otimes [\beta]_{\nu} s_\mu(z_k) s_\nu(w_i^{-1}),
$$

(35)

be the generating function of the basis of $\bigwedge^k \nu \otimes \bigwedge^l \nu^*$. It defines two maps

$$
E_f(z_k, w_i^{-1}) : F \to F[z_k, w_i, z_k^{-1}, w_i^{-1}]
$$

(36)

and

$$
E_b(z_k, w_i^{-1}) := B(\xi) \to B(\xi)[z_k, w_i, z_k^{-1}, w_i^{-1}]
$$

(37)

which we distinguish by putting a subscript in the notation and satisfying the compatibility relation imposed by the boson-fermion correspondence. More precisely we define:

$$
E_f(z_k, w_i^{-1})[b]_{m+\lambda} := [b]^k(z_k) \wedge [\beta]^l(w_i^{-1}) \downarrow [b]_{m+\lambda}
$$

(38)

and

$$
(E_b(z_k, w_i^{-1})\xi^m S_\lambda(x))[b]_0 = E_f(z_k, w_i^{-1})[b]_{m+\lambda}
$$

(39)

where we have used the notation of (27) and (29).
2.6 Products of Schubert derivations. To further elaborate the shape of (38) and (39), we need to introduce the following new piece of notation. Let
\[
\sigma_+(z_k) = \sigma_+(z_1) \cdots \sigma_+(z_k), \quad \overline{\sigma_+(z_k)} = \overline{\sigma_+(z_1) \cdots \sigma_+(z_k)},
\] (40)
and
\[
\sigma_-(w_l) = \sigma_-(w_1) \cdots \sigma_-(w_l), \quad \overline{\sigma_-(w_l)} = \overline{\sigma_-(w_1) \cdots \sigma_-(w_l)}.
\] (41)

Equalities (40) and (41) must be read in \(\text{End}_Q(\bigwedge V)[z_k]\) and \(\text{End}_Q(\bigwedge V)[w_l^{-1}]\) respectively. They are *multivariate HS-derivations* of \(\bigwedge V\) in the following sense: i) they are *multi-variate* because are \(\text{End}_Q(\bigwedge V)\) formal power series in more than one indeterminate, namely \(z_k := (z_1, \ldots, z_k)\) and \(w_l^{-1} := (w_1^{-1}, \ldots, w_l^{-1})\), and ii) are *HS derivations*, being compatible with the wedge product:
\[
\sigma_\pm(z_k)(u \wedge v) = \sigma_\pm(z_k)u \wedge \sigma_\pm(z_k)v \quad \text{and} \quad \overline{\sigma_\pm(z_k)(u \wedge v)} = \overline{\sigma_\pm(z_k)u \wedge \overline{\sigma_\pm(z_k)v}}.
\]

2.7 Proposition. The following equality holds:
\[
\beta(w_l^{-1}) \wedge \cdots \wedge \beta(w_l^{-1})_\lambda[b]_{m+\lambda} = \frac{\Delta_0(w_l^{-1})}{\prod_{j=1}^l w_j^{-m-l+1}} \overline{\sigma_+(w_l)}\sigma_-(w_l)[b]_{m-l+\lambda}.\] (42)

Proof. If \(l = 1\) formula (43) reads as
\[
\beta(w_1^{-1})_\lambda[b]_{m+\lambda} = w_1^{-m}w_1^{-1}\sigma_+(w_1)\sigma_-(w_1)[b]_{m-1+\lambda}
\]
and this is precisely [8, Proposition 6.13]. Assume the formula holds for \(l - 1 \geq 0\). For notational simplicity let \(w_l^{-1}w_1 := (w_2, \ldots, w_l)\) and \(w_l^{-1}\lambda[w_1^{-1}] := (w_2^{-1}, \ldots, w_l^{-1})\). Then
\[
\beta(w_l^{-1})_\lambda[b]_{m+\lambda} = \frac{\Delta_0(w_l^{-1})_\lambda}{\prod_{j=2}^l w_j^{-m-l+2}} \overline{\sigma_+(w_l^{-1}w_1)}\sigma_-(w_l^{-1}w_1)[b]_{m-l+1+\lambda}
\]
\[
= w_1^{-m-l-1}\Delta_0(w_l^{-1}w_1^{-1}) \overline{\sigma_+(w_l^{-1}w_1)}\sigma_-(w_l^{-1}w_1)\overline{\sigma_+(w_l^{-1}w_1)}\sigma_-(w_l^{-1}w_1)[b]_{m-k+\lambda}
\]
Now we use the commutation rule:
\[
\sigma_-(w_1)\overline{\sigma_+(w_k^{-1}w_1)} = \overline{\sigma_+(w_k^{-1}w_1)}\sigma_-(w_1)(1 - \frac{w_2}{w_1}) \cdots (1 - \frac{w_l}{w_1})
\]
From which
\[
= \frac{w_1^{-m-l-1}}{w_l^{-1}w_2 \cdots w_l} \left(1 - \frac{w_1}{w_1} \cdots (1 - \frac{w_l}{w_1}) \frac{\Delta_0(w_l^{-1}w_1^{-1})}{\prod_{j=2}^l w_j^{-m-l+2}} \overline{\sigma_+(w_l)}\sigma_-(w_l)[b]_{m-k+\lambda}
\]
\[
= \frac{\Delta_0(w_l^{-1})}{\prod_{j=1}^l w_j^{-m-l+1}} \overline{\sigma_+(w_l)}\sigma_-(w_l)[b]_{m-k+\lambda}
\]
as desired.

2.8 Corollary. The generating function (28) acts on \mathcal{F} according to:

$$
\sum_{\nu \in \overline{P}_l} [\beta]^l_{\mu} s_\mu (w_{-1}) \cdot [b]_{m+\lambda} = \prod_{j=1}^{l} w_{-j}^{m-l+1} \sigma_+ (w_j) \sigma_- (w_l) [b]_{m-l+\lambda}.
$$

(43)

Proof. It is a consequence of equality (29) and of Proposition 2.7 up to dividing by the Vandermonde determinant.

2.9 Proposition. For all $k \geq 1$:

$$
b(z_k) \wedge \cdots \wedge b(z_1) \wedge [b]_{m+\lambda} = \prod_{j=1}^{k} z_{j}^{m+1} \Delta_0 (z_k) \sigma_+ (z_k) \sigma_- (z_k) [b]_{m+k+\lambda}.
$$

Proof. By induction on $k \geq 1$. If $k = 1$, the formula reads as

$$
b(z_1) \wedge [b]_{m+\lambda} = z_1^{m+1} \sigma_+ (z_1) \sigma_- (z_1) [b]_{m+1+\lambda}
$$

and this is Proposition 6.9 in [8]. Assume the formula holds for $k - 1 \geq 0$. Then,

$$
b(z_k) \wedge \cdots \wedge b(z_1) \wedge [b]_{m+\lambda}
$$

$$
= b(z_k) \wedge (b(z_{k-1}) \wedge \cdots \wedge b(z_1) \wedge [b]_{m+\lambda}) \quad \text{(Associativity of } \wedge \text{)}
$$

$$
= b(z_k) \wedge z_{k-1}^{m+1} \cdots z_1^{m+1} \sigma_+ (z_{k-1}) \sigma_- (z_k) [b]_{m+k-1+\lambda} \cdot \Delta_0 (z_{k-1})
$$

$$
= z_k^{m+k} z_{k-1}^{m+1} \cdots z_1^{m+1} \Delta_0 (z_{k-1}) \sigma_+ (z_k) \sigma_- (z_k) [b]_{m+k+\lambda}
$$

$$
= z_k^{m+k+1} \prod_{j=1}^{k-1} z_j^{m+1} \Delta_0 (z_{k-1}) \cdot \sigma_+ (z_1) \sigma_- (z_k) [b]_{m+k+\lambda}
$$

$$
= \prod_{j=1}^{k-1} z_j^{m+1} \Delta_0 (z_{k-1}) \sigma_+ (z_k) \sigma_- (z_k) [b]_{m+k+\lambda}
$$

as desired.

2.10 Corollary. The generating function (26) acts on the basis element $[b]_{m+\lambda} \in \mathcal{F}$ according to:

$$
\sum_{\mu \in \overline{P}_k} [b]^k_{\mu} s_\mu (z_k) \wedge [b]_{m+\lambda} = \prod_{j=1}^{k} z_{j}^{m+1} \sigma_+ (z_k) \sigma_- (z_k) [b]_{m+k+\lambda}
$$

(44)

Proof. By Proposition 2.9, using expression (26), dividing by the Vandermonde $\Delta_0 (z_k)$.
3 Fermionic and Bosonic Vertex Representation of $gl(\wedge V)$.

3.1 Lemma. The following commutation rules holds in $\text{End}_Q(\mathcal{F})[z^{-1}, w]$

$$\sigma_-(z)\sigma_+(w) = \left(1 - \frac{w}{z}\right)^{-1} \sigma_+(w)\sigma_-(z)$$ \hspace{1cm} (45)

$$= \exp\left(\sum_{n \geq 0} \frac{1}{n} \frac{w^n}{z^n}\right) \sigma_+(w)\sigma_-(z)$$ \hspace{1cm} (46)

Proof. Formula (45) is [8, Proposition 8.4, Formula (54)] and (46) uses the equality of formal power series $(1 - x)^{-1} = \exp(\sum_{n \geq 1} x^n/n)$.

3.2 Proposition. Let $p_n(z_k^{-1}) = \sum_{i=1}^k z_i^{-n}$ and $p_n(w_l^{-1}) = \sum_{j=1}^l w_j^{-n}$ (the symmetric power sums Newton polynomials). The following equalities holds on $\text{End}_Q(\xi)B(\xi)$:

$$\sigma_-(z_k) = \prod_{j=1}^k \sigma_-(z_j) = \exp\left(-\sum_{n \geq 1} \frac{1}{n} p_n(z_k^{-1}) \frac{\partial}{\partial x_n}\right).$$ \hspace{1cm} (47)

and

$$\sigma_-(w_l) = \prod_{j=1}^l \sigma_-(z_j) = \exp\left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l^{-1}) \frac{\partial}{\partial x_n}\right).$$ \hspace{1cm} (48)

Therefore

$$\sigma_-(z_k)\sigma_-(w_l)[b]_{m+\lambda} = \left[\exp\left(-\sum_{n \geq 1} \frac{1}{n} (p_n(z_k^{-1}) - p_n(w_l^{-1})) \frac{\partial}{\partial x_n}\right) \xi^m S_\lambda(x)\right][b]_0. \hspace{1cm} (49)$$

Proof. The operators

$$\sum_{n \geq 1} \frac{1}{n} \frac{\partial}{\partial x_n}, \sum_{n \geq 1} \frac{1}{n} \frac{\partial}{\partial x_n}, \sum_{n \geq 1} \frac{1}{n} \frac{\partial}{\partial x_n}, \sum_{n \geq 1} \frac{1}{n} \frac{\partial}{\partial x_n}$$

commute for all choices of $1 \leq i, j \leq k$ and $1 \leq p, q \leq l$. Then the product of their exponential is the exponentials of their sum:

$$\sigma_-(z_k) = \prod_{j=1}^k \sigma_-(z_j) = \prod_{j=1}^k \exp\left(-\sum_{n \geq 1} \frac{1}{n} \frac{\partial}{\partial x_n}\right)$$

$$= \exp\left(-\sum_{n \geq 1} \frac{1}{n} \left(\frac{1}{z_1^n} + \cdots + \frac{1}{z_k^n}\right) \frac{\partial}{\partial x_n}\right)$$

$$= \exp\left(-\sum_{n \geq 1} \frac{1}{n} p_n(z_k^{-1}) \frac{\partial}{\partial x_n}\right),$$

14
which validates (47). Formula (48) is checked analogously. Formula (49) follows from (47) and (48) and using again the fact that the operators \(\sum_{n \geq 1} \frac{1}{n} p_n(z_k^{-1}) \frac{\partial}{\partial x_n} \) and \(\sum_{n \geq 1} \frac{1}{n} p_n(w_l^{-1}) \frac{\partial}{\partial x_n} \) commute. Thus:

\[
\overline{\sigma}_-(z_k) \sigma_-(w_l) = \exp \left(- \sum_{n \geq 1} \frac{1}{n} p_n(z_k^{-1}) \frac{\partial}{\partial x_n} \right) \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l^{-1}) \frac{\partial}{\partial x_n} \right)
\]

\[
= \exp \left(- \sum_{n \geq 1} \frac{1}{n} \left(p_n(z_k^{-1}) - p_n(w_l^{-1}) \right) \frac{\partial}{\partial x_n} \right).
\] (50)

3.3 Proposition. The following commutation rules holds:

\[
\overline{\sigma}_-(z_k) \overline{\sigma}_+(w_l) = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l) p_n(z_k^{-1}) \right) \overline{\sigma}_+(w_l) \overline{\sigma}_-(z_k).
\] (51)

Proof. We first prove that

\[
\overline{\sigma}_-(z_k) \overline{\sigma}_+(w_l) = \prod_{i=1}^{k} \prod_{j=1}^{l} \left(1 - \frac{w_j}{z_i} \right)^{-1} \overline{\sigma}_+(w_l) \overline{\sigma}_-(z_k)
\] (52)

For \(k = l = 1 \) the formula is Proposition (3.1). Suppose it holds for \(k - 1 \geq 1 \) and \(l = 1 \). Then

\[
\overline{\sigma}_-(z_k) \overline{\sigma}_+(w_1) = \prod_{i=1}^{k} \overline{\sigma}_-(z_i) \cdot \overline{\sigma}_+(w_1) \quad \text{ (definition of } \overline{\sigma}_+(z_k) \text{)}
\]

\[
= \left(1 - \frac{w_1}{z_k} \right)^{-1} \prod_{i=1}^{k-1} \overline{\sigma}_-(z_i) \overline{\sigma}_+(w_1) \overline{\sigma}_-(z_k) \quad \text{ (first step of induction on } l \text{)}
\]

\[
= \left(1 - \frac{w_1}{z_k} \right)^{-1} \prod_{i=1}^{k-1} \left(1 - \frac{w_1}{z_i} \right)^{-1} \overline{\sigma}_+(w_1) \prod_{i=1}^{k-1} \overline{\sigma}_-(z_i) \overline{\sigma}_-(z_k) \quad \text{ (inductive hypothesis on } k \text{)}
\]

\[
= \prod_{i=1}^{k} \left(1 - \frac{w_1}{z_i} \right)^{-1} \overline{\sigma}_+(w_1) \overline{\sigma}_-(z_k) \quad \text{ (definition of } \overline{\sigma}_-(z_k) \text{)}.
\]

Suppose now that (52) holds for all \(k \geq 1 \) and \(l - 1 \geq 0 \). Then
\[
\overline{\sigma}_-(z_k)\overline{\sigma}_+(w_l) = \overline{\sigma}_-(z_k) \cdot \overline{\sigma}_+(w_l)\overline{\sigma}_-(w_{l-1})
\]

\[
= \prod_{i=1}^{k} \left(1 - \frac{w_l}{z_i} \right)^{-1} \overline{\sigma}_+(w_l)\overline{\sigma}_-(z_k)\overline{\sigma}_+(w_{l-1})
\]

\[
= \prod_{j=1}^{l} \left(1 - \frac{w_i}{z_j} \right)^{-1} \prod_{1 \leq i \leq k, 1 \leq j \leq \ell - 1} \left(1 - \frac{w_j}{z_i} \right)^{-1} \overline{\sigma}_+(w_l)\overline{\sigma}_+(w_{l-1})\overline{\sigma}_-(z_k)
\]

which is precisely (52). To phrase (52) in the form (51) one first notice that

\[
\left(1 - \frac{w_j}{z_i} \right)^{-1} = \exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{w_j^n}{z_i^n} \right).
\]

By a simple manipulation one sees that

\[
\prod_{1 \leq i \leq k, 1 \leq j \leq \ell} \left(1 - \frac{w_j}{z_i} \right)^{-1} = \prod_{1 \leq i \leq k, 1 \leq j \leq l} \exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{w_j^n}{z_i^n} \right) = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l)p_n(z_k^{-1}) \right)
\]

as desired.

3.4 Let \(R_f(z_k, w_l^{-1}) : \mathcal{F} \to \mathcal{F}[z_k^{\pm 1}, w_l^{\pm 1}] \) defined on homogeneous elements as:

\[
R_f(z_k, w_l^{-1})[b]_{m+l} = \frac{\prod_{i=1}^{k} z_i^{m-l+1}}{\prod_{j=1}^{l} w_j^{m-l+1}} \xi^{k-l}[b]_{m+l}
\]

and \(R_b(z_k, w_l^{-1}) \in \text{Hom}_{\mathbb{Q}[\xi]}(B(\xi), [z_k^{\pm 1}, w_l^{\pm 1}]) \) defined by

\[
(R_b(z_k, w_l^{-1})\xi^m S_\lambda(x))[b]_0 = R_f(z_k, w_l^{-1})[b]_{m+l}
\]

from which

\[
R_b(z_k, w_l^{-1}) \cdot 1 = \frac{\prod_{i=1}^{k} z_i^{m-l+1}}{\prod_{j=1}^{l} w_j^{m-l+1}} \xi^{k-l}
\]

3.5 **Proposition.** The map \(R_f(z_k, w_l^{-1}) \) commutes with Schubert derivations, in the sense that

\[
\sigma_\pm(z_k)R_f(z_k, w_l^{-1}) = R_f(z_k, w_l^{-1})\sigma_\pm(z_k)
\]

and \(\overline{\sigma}_\pm(z_k)R_f(z_k, w_l^{-1}) = R_f(z_k, w_l^{-1})\overline{\sigma}_\pm(z_k) \).

Proof. It is enough to prove that it commutes with \(\sigma_{\pm j} \) and \(\overline{\sigma}_{\pm j} \), \(i, j \geq 0 \), which are by definition \(\mathbb{Q}[x_k, w_l^{-1}] \)-linear. First of all recall that the product \(\sigma_{\pm i}[b]_{m+l} (\lambda \in \mathcal{P}_r) \) is ruled by some Pieri’s formulas

\[
\sigma_{\pm i}[b]_{m+l} = \sum_{\mu \in \mathcal{P}_r} [b]_{m+\mu},
\]

16
where P_+ (resp. P_-) is the set of all partitions $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_r$ ($r \geq \ell(\lambda)$) such that $\mu_1 \geq \lambda_1 \geq \cdots \geq \mu_k \geq \lambda_k$ and $|\mu| = |\lambda| + i$ (resp. $\lambda_1 \geq \mu_1 \geq \mu_2 \geq \cdots \geq \lambda_r \geq \mu_r$ and $|\mu| = |\lambda| - i$). Then we have

$$\sigma_{\pm i} R_f(z_k, w_l^{-1})[b]_{m+\lambda} = \sigma_{\pm i} \prod_{1 \leq i \leq k, 1 \leq j \leq l} \frac{z_i^{m+l-1}}{w_j^{m+l-1}} z^{k-l}[b]_{m+\lambda} = \prod_{1 \leq i \leq k, 1 \leq j \leq l} \frac{z_i^{m+l-1}}{w_j^{m+l-1}} \zeta^{k-l} \sum_{\mu \in P_\pm} [b]_{m+\mu} = R_f(z_k, w_l^{-1}) \sum_{\mu \in P_\pm} [b]_{m+\mu}$$

Thus $\sigma_{\pm}(z_k)$ commutes with $R_f(z_k, w_l^{-1})$ and so do $\sigma_{\pm}(z_k)$. Indeed:

$$\sigma_{\pm}(z_k) R_f(z_k, z_l^{-1}) = \sigma_{\pm}(z_k) R(z_k, z_l^{-1}) \sigma_{\pm}(z_k) R(z_k, z_l^{-1}) \sigma_{\pm}(z_k) = R_f(z_k, w_l^{-1}) \sigma_{\pm}(z_k).$$

3.6 Theorem. Notation as in (38) and (39). Then:

$$\mathcal{E}_f(z_k, w_l^{-1}) = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l)p_n(z_k^{-1}) \right) \Gamma_f(z_k, w_l)$$

and

$$\mathcal{E}_b(z_k, w_l^{-1}) = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l)p_n(z_k^{-1}) \right) \Gamma_b(z_k, w_l)$$

where the fermionic and bosonic vertex operators are, respectively

$$\Gamma_f(z_k, w_l) = R_f(z_k, w_l^{-1}) \sigma_{\pm}(z_k) \bar{\sigma}_+(w_l) \bar{\sigma}_-(z_k) \sigma_-(w_l) = R_f(z_k, w_l^{-1}) \exp \left(\sum_{n \geq 1} x_n(p_n(z_k) - p_n(w_l)) \right) \bar{\sigma}_-(z_k) \sigma_-(w_l).$$

and

$$\Gamma_b(z_k, w_l) = R_b(z_k, w_l^{-1}) \exp \left(\sum_{n \geq 1} x_n(p_n(z_k) - p_n(w_l)) \right) \exp \left(- \sum_{n \geq 1} p_n(z_k^{-1}) - p_n(w_l^{-1}) \frac{\partial}{\partial x_n} \right)$$

Proof. We have:
\[\mathcal{E}_f(z_k, w_l^{-1})[b]_{m+\lambda} = [b]^k(z_k) \wedge [f](w_l^{-1}) \cdot [b]_{m+\lambda} \]

\hspace*{1cm} \text{(definition of } \mathcal{E}_f(z_k, w_l^{-1}))

\[= [b]^k(z_k) \wedge \prod_{j=1}^{l} w_j^{-m+1-l} \sigma_+(w_l) \sigma_-(w_l^{-1}) [b]_{m-l+\lambda} \]

\hspace*{1cm} \text{(Corollary 2.8)}

\[= \frac{\prod_{i=1}^{k} z_i^{-m-l+1}}{\prod_{j=1}^{l} w_j^{-m+1}} \sigma_+(z_k) \sigma_-(z_k) \sigma_+(w_l) \sigma_-(w_l^{-1}) [b]_{m+k-l+\lambda} \]

\hspace*{1cm} \text{(Corollary 2.10)}

\[= R(z_k, w_l^{-1}) \sigma_+(z_k) \sigma_-(z_k) \sigma_+(w_l) \sigma_-(w_l^{-1}) [b]_{m+\lambda} \]

\hspace*{1cm} \text{(Definition of } R(z_k, w_l^{-1}))

By invoking the commutation relation proven in Proposition 3.3, one obtains

\[\mathcal{E}_f(z_k, w_l^{-1}) [b]_{m+\lambda} = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l) p_n(z_k^{-1}) \right) R(z_k, w_l^{-\text{dir}}) \sigma_+(z_k) \sigma_+(w_l) \sigma_-(z_k) \sigma_-(w_l^{-1}) [b]_{m+\lambda} \]

which already prove that the expression of \(\mathcal{E}_f(z_k, w_l^{-1}) \) is precisely (53). To continue with, the \(B(\xi) \)-module structure of \(\mathcal{F} \) says that \(\mathcal{F}_m \) is an eigenspace of \(\sigma_+(z_k) \sigma_+(w_l) \) with eigenvalue

\[\prod_{i=1}^{k} \exp \left(\sum_{n \geq 1} x_n z_i^n \right) \prod_{j=1}^{l} \exp \left(- \sum_{n \geq 1} x_n w_j^n \right) = \exp \left(\sum_{n \geq 1} x_n p_n(z_k) \right) \exp \left(- \sum_{n \geq 1} x_n p_n(w_l) \right) \]

\[= \exp \left(\sum_{n \geq 1} x_n (p_n(z_k) - p_n(w_l)) \right). \]

(58)

Thus formula (57), up to replacing \(\sigma_+(z_k) \sigma_+(w_l) \) by its eigenvalue (58) with respect to \(\mathcal{F} \), is precisely (53) with \(\Gamma_f(z_k, w_l) \) given by expression (55). To prove (54) we recall that

\[(\mathcal{E}_b(z_k, w_l^{-1}) \xi^m S_\lambda(x))[b]_0 = \mathcal{E}_f(z_k, w_l^{-1})[b]_{m+\lambda} = \exp \left(\sum_{n \geq 1} \frac{1}{n} p_n(w_l) p_n(z_k^{-1}) \right) \Gamma_f(z_k, w_l)[b]_{m+\lambda} \]

Now

\[\Gamma_f(z_k, w_l)[b]_{m+\lambda} = R_f(z_k, w_l^{-1}) \exp \left(\sum_{n \geq 1} x_n (p_n(z_k) - p_n(w_l)) \right) \sigma_-(z_k) \sigma_-(w_l^{-1}) [b]_{m+\lambda} \]

However, by Proposition 3.2, formula (49),

\[\sigma_-(z_k) \sigma_-(w_l^{-1}) [b]_{m+\lambda} = \left[\exp \left(- \sum_{n \geq 1} \frac{p_n(z_k^{-1}) - p_n(w_l^{-1})}{n} \frac{\partial}{\partial x_n} \right) \xi^m S_\lambda(x) \right] [b]_0. \]

which shows that

\[\Gamma_f(z_k, w_l)[b]_{m+\lambda} = (\Gamma_b(z_k, w_l^{-1}) \xi^m S_\lambda(x))[b]_0 \]

proving the theorem.
3.7 Remark. In formula (54) let us set \(k = l = 1 \) and call \(z = z_1 \) and \(w = w_1 \). Then \(p_n(z^{\pm 1}) = z^{\pm n} \) and \(p_n(w^{\pm 1}) = w^{\pm n} \). Then

\[
\mathcal{E}_b(z, w) = \exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{w^n}{z^n} \right) \Gamma_b(z, w)
\]

where

\[
\Gamma_b(z, w) = R_b(z, w) \exp \left(\sum_{n \geq 1} x_n (z^n - w^n) \right) \exp \left(- \sum_{n \geq 1} \frac{z^{-n} - w^{-n}}{n} \frac{\partial}{\partial x_n} \right)
\]

Keeping into account that

\[
\exp \left(\sum_{n \geq 1} \frac{1}{n} \frac{w^n}{z^n} \right) = \frac{1}{1 - \frac{w}{z}}
\]

and using the definition of \(R_b(z, w^{-1}) \) one sees that

\[
\mathcal{E}_b(z, w)_{|_{B(m)}} = \frac{z^m}{1 - \frac{w}{z}} \exp \left(\sum_{n \geq 1} x_n (z^n - w^n) \right) \exp \left(- \sum_{n \geq 1} \frac{z^{-n} - w^{-n}}{n} \frac{\partial}{\partial x_n} \right)
\]

which is the celebrated DJKM formula.

Acknowledgments. This work is one of the topics touched in the Ph.D. thesis of the first author, mostly redacted during her hosting at the Department of Mathematical Sciences of Politecnico of Torino under the sponsorship of Ministry of Science of the Islamic Republic of Iran. The second author profited of the support of Finanziamento Diffuso della Ricerca (no. 53_RBA17GATLET) and Progetto di Eccellenza del Dipartimento di Scienze Matematiche, 2018–2022, no. E11G18000350001. The project also benefitted the partial support of INDAM-GNSAGA, PRIN “Geometria delle Varietà Algebriche”.

For discussions and criticisms we want to primarily thank Inna Scherbak, who, as in [1], first suggested us to generalise the DJKM picture in the way as now stands in the present paper and Parham Salehyan for many useful redactional hints. Finally, we are indebted to Joachim Kock and Andrea T. Ricolfi for their carefully reading and many other kinds of assistance.

References

[1] O. Behzad, A. Contiero, L. Gatto, and R. Vidal Martins, *Polynomial representations of endomorphisms of exterior powers*.

[2] E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, *Transformation groups for soliton equations. III. Operator approach to the Kadomtsev-Petviashvili equation*, J. Phys. Soc. Japan **50** (1981), no. 11, 3806–3812. MR638807

[3] W. Fulton, *Young tableaux*, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry. MR1464693
[4] I. G-Macdonald, *Symmetric functions and Hall polynomials*, second ed., Oxford Classic Texts in the Physical Sciences, The Clarendon Press, Oxford University Press, New York, 2015, With contribution by A. V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition [MR1354144]. MR3443860

[5] L. Gatto and P. Salehyan, *Hasse-Schmidt derivations on Grassmann algebras*, IMPA Monographs, vol. 4, Springer, [Cham], 2016, With applications to vertex operators. MR3524604

[6] L. Gatto and P. Salehyan, *On Plücker equations characterizing Grassmann cones*, Schubert varieties, equivariant cohomology and characteristic classes — IMPANGA 15, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2018, pp. 97–125, arXiv:1603.00510. MR3754189

[7] L. Gatto and P. Salehyan, *The cohomology of the Grassmannian is a \mathfrak{gl}_n-module*, Comm. Algebra 48 (2020), no. 1, 274–290. MR4060030

[8] L. Gatto and P. Salehyan, *Schubert derivations on the infinite exterior power*, Bull. Braz. Math. Soc., New Series xxx (2020), no. 1, 2s. MR4060030

[9] M. Jimbo and T. Miwa, *Solitons and infinite-dimensional Lie algebras*, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 943–1001. MR723457

[10] V. G. Kac, A. K. Raina, and N. Rozhkovskaya, *Bombay lectures on highest weight representations of infinite dimensional Lie algebras*, second ed., Advanced Series in Mathematical Physics, vol. 29, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. MR3185361

Ommolbanin Behzad
behzad@iasbs.ac.ir
Department of Mathematics
Institute for Advanced Studies in Basic Sciences (IASBS)
P.O.Box 45195-1159 Zanjan
IRAN

Letterio Gatto
letterio.gatto@polito.it
Dipartimento di Scienze Matematiche, Politecnico di Torino
ITALY

20