Return to Normal: Prioritizing Elective Surgeries With Low Resource Utilization

To the Editor

Suspension of elective surgeries was among the first mitigation efforts in anticipation of a surge in demand for critical care services during the coronavirus disease 2019 (COVID-19) pandemic.1 As the United States nears the peak of this pandemic, policymakers need to determine the optimal strategy to safely return to “normal” operations while remaining vigilant and prepared for future recurrent outbreaks.

We therefore evaluated intensive care unit (ICU) utilization and mechanical ventilation following common elective surgical procedures to (1) determine which procedures are the least resource intensive and (2) which patient populations are less likely to require postoperative ICU admission or ventilation.

After Institutional Review Board approval (IRB no. 2016-436), we conducted a retrospective analysis of patients captured in the Premier Healthcare database (2006–2016) who underwent common elective inpatient procedures (Supplemental Digital Content, Appendix, http://links.lww.com/AA/D93).2 For each surgical cohort, we identified ICU admission, length of ICU (and hospital) stay, and use and length of (non-) invasive ventilation (≥96 or <96 hours). Multivariable logistic regression models measured the association between patient age/comorbidity burden as measured by Charlson-Deyo index,3 and the outcomes of ICU admission and ventilation, to validate the perception that younger and healthier patients are less likely to require these resources.

Of the 15 elective surgeries evaluated, cardiac procedures were the most resource intensive with 83.9% of patients admitted to the ICU and 27.9% requiring ventilation, followed by abdominal procedures that had an average ICU admission rate of 20.3%. Gynecological surgeries and joint arthroplasties appeared to be the least resource intensive with fewer than 5.5% of patients admitted to the ICU and <2% requiring postoperative ventilation (Table). In regression models, greater comorbidity burden was associated with significantly increased odds of ICU admission or any form of ventilation in almost all procedure cohorts; this association was more subdued and sometimes reversed for older age (Figure).

The highest ICU utilization was seen in cardiac, abdominal, and spine surgeries. Outside of cardiac procedures, postoperative ventilation was relatively uncommon, indicating that limiting elective procedures is primarily beneficial in maximizing ICU capacity rather than freeing up ventilators.

In almost all procedure cohorts, younger patients with a low comorbidity burden were less likely to require ICU admission and/or ventilation. Comorbidity burden was a stronger risk factor and thus should be prioritized over age for optimal patient selection. There is a 2-fold impact of restricting these surgeries to younger patients with a low comorbidity burden. These patients are not only less likely to require ICU or ventilation, but they are also at lower risk of developing severe COVID-19 symptoms were they to contact the virus during their hospital stay.4 However, if patients do not meet these criteria and their health could worsen from delaying surgery, it may be advisable to instead space out surgeries of older patients with underlying conditions to optimize resource utilization.

Limitations of this study include our simplified analysis that only considered patient age and comorbidity burden. While there are a number of other factors associated with ICU admission and ventilation, our findings should provide a useful starting point in strategizing to return to normal operations. Additionally, some procedures classified as elective in this database may not truly be elective; however, given that they will still be performed during the COVID-19 pandemic, we felt valuable information could still be gained from retaining them in our analyses.

These data suggest that, in the transition back to elective surgery, cardiac and abdominal procedures should be limited if possible in favor of “safer” and less resource-intensive surgeries such as gynecological and nontraumatic orthopedic procedures. Across all procedure cohorts, it would be ideal to restrict or at least prioritize younger patients with fewer comorbidities.

Lauren A. Wilson, MPH
Haoyan Zhong, MPA
Department of Anesthesiology, Critical Care & Pain Management
Hospital for Special Surgery
New York, New York

Funding: This study was funded internally by the Department of Anesthesiology, Critical Care & Pain Management, Hospital for Special Surgery.

Conflicts of Interest: Stavros G. Memtsoudis is a director on the boards of the American Society of Regional Anesthesia and Pain Medicine (ASRA) and the Society of Anesthesia and Sleep Medicine (SASM). He is a one-time consultant for Sandoz Inc and Teikoku and is currently on the medical advisory board of HATH. He has a pending US Patent application for a Multicatheter Infusion System. US-2017-0361063. He is the owner of SGM Consulting, LLC, and co-owner of FC Monmouth, LLC. None of the above relations influenced the conduct of the present study.

Supplemental digital content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website (www.anesthesia-analgesia.org).
Procedure	Cardiac	Abdominal	Gynecological	Orthopedic	Fracture or Fracture or Dislocation of Hip or Femur	Fracture or Fracture or Dislocation of Lower Extremity
Elective inpatient procedures, n	73,327	224,215	67,836	35,738	20,962	15,847
Postoperative ICU admission, n	26,630	215,153	64,735	14,886	18,277	1917
% of ICU/inpatient admission	36.3	96	95.4	2.6	2.9	5.4
ICU length of stay, median (IQR)	1 (1–2)	3 (1–5)	2 (1–5)	1 (1–2)	2 (1–3)	2 (1–4)
Any ventilation, n (%)	2707	74031	25111	3961	5016	583
Noninvasive	303	2878	941	6 (1–4)	1008	104
Invasive	2287	68,545	23,116	2009	3804	463
Both	117	2608	1054	3 (1–3)	204	16
Invasive ventilation duration, n (%)	613	6891	4020	72	576	71
Consecutive ≥96 h	613	6891	4020	72	576	71
Consecutive <96 h	117	2608	1054	3 (1–3)	204	16
Hospital length of stay, median (IQR)	68	60 (50–70)	67 (50–73)	62 (43–65)	32 (38–40)	46 (50)
Patient age, median (IQR)	68	60 (50–70)	67 (50–73)	62 (43–65)	32 (38–40)	46 (50)
Deyo index, n (%)	0	19,023	45,646	12,062	21,452	81,108

Abbreviations: ICU, intensive care unit; IQR, interquartile range.
Letters to the editor

Jiabin Liu, MD, PhD
Department of Anesthesiology, Critical Care & Pain Management
Hospital for Special Surgery
New York, New York

Jashvant Poeran, MD, PhD
Institute for Healthcare Delivery Science
Department of Population Health Science & Policy
Icahn School of Medicine at Mount Sinai
New York, New York

Stavros G. Memtsoudis, MD, PhD, MBA, FCCP
Department of Anesthesiology, Critical Care & Pain Management
Hospital for Special Surgery
New York, New York

Department of Health Policy and Research
Weill Cornell Medical College
New York, New York
memtsoudiss@hss.edu

REFERENCES

1. Ross SW, Lauer CW, Miles WS, et al. Maximizing the calm before the storm: Tiered surgical response plan for novel coronavirus (COVID-19). J Am Coll Surg. 2020.

2. McDermott KW, Freeman WJ, Elixhauser A. Overview of operating room procedures during inpatient stays in US hospitals, 2014: statistical brief# 233. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville, MD: Agency for Healthcare Research and Quality; 2017.

3. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45:613–619.

4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.

DOI: 10.1213/ANE.000000000004930