Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Serum biomarkers of oxidative stress in cats with feline infectious peritonitis

F. Tecles a, M. Caldín b, A. Tvarijonaviciute a, D. Escribano a, S. Martínez-Subiela a, J.J. Cerón a,*,

a Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain
b San Marco Veterinary Hospital, 35141 Pudova, Italy

1. Introduction

Oxidative stress can be defined as an imbalance between the oxidant and antioxidant system, with an advantage toward the oxidant system (Suresh et al., 2009). In this situation the organism is unable to detoxify reactive oxygen species, which accumulate, producing a harmful effect on the functional and structural integrity of biological tissues (Yılmaz, 2012). Cats seem to be more susceptible to oxidative stress and damage, probably influenced by the particular spleen structure of this species (Christopher et al., 1995; Harvey and Kaneko, 1977), and a situation of oxidative stress has been demonstrated in various diseases in this species such as diabetes mellitus (Webb and Falkowski, 2009), chronic renal failure (Keegan and Webb, 2010) and feline immunodeficiency virus (FIV) infection (Webb et al., 2008). However, to the author’s knowledge there are no studies about oxidative stress in feline infectious peritonitis (FIP), a viral disease resulting from feline coronavirus (FCoV) infection.

Inflammation plays a major role in FIP infection, since a major inflammatory response is presented during the course of FIP which is involved in the pathogenesis, producing fibrinous serositis, with accumulations of highly proteinaceous fluid within body cavities, disseminated pyogranulomatous formation, hypergammaglobulinemia, and the development of immune complexes (Gunn-Moore et al., 1998; Pedersen, 2014a). Increases in acute phase proteins (APPs), which are markers of inflammation, such as alpha-1 glycoprotein or serum amyloid A can be used as a diagnostic aid in this disease. Knowing the relation between inflammation and oxidative stress (Montorfano et al., 2014), it could be postulated that oxidative stress could be present in cats affected by FIP.

Several enzymes and non-enzymatic molecules are included within the antioxidant system (Delmas-Beauvieux et al., 1996). Paraoxonase 1 (PON1) is a serum enzyme that has a protective role against oxidation (James, 2007). In humans, a reduction of PON1 activity has been reported in several pathologic conditions, including bacterial and viral infections (Farid and Horii, 2012). In addition, PON1 is associated with inflammation, being considered as a negative acute phase protein in several species (Feingold et al., 1998). Turk et al., 2011) and dogs (Tvarijonaviciute et al., 2012a, 2012b). Owing to the wide spectrum of species on which PON1 is reduced in inflammation, to study this molecule also in cats may be important.

Lactones are considered as the natural substrates of PON1 (Billecke et al., 2000), and other artificial substrates can also be used for measurement of this enzyme as paraoxon, phenyl acetate (PA)
or p-nitrophenyl acetate (pNA; Ceron et al., 2014). However, use of paraoxon as substrate would not be optimal due to its toxicity (Camps et al., 2009) and the possibility of analyzer contamination (Mogarekar and Chawhan, 2013). Divergences in the diagnostic performance between different substrates have been described in certain diseases (Dantoine et al., 1998; Keskin et al., 2009). Therefore, comparative studies in which various substrates are used for PON1 measurements would be recommended when this enzyme is evaluated in a new disease.

Serum total antioxidant capacity (TAC) considers the cumulative effect of all antioxidants present in the blood (Nagy et al., 2006) and provides an integrated index of the oxidative status (Ghiselli et al., 2000). The most widely used colorimetric methods are based on oxidation of a colorless molecule, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), to a blue–green ABTS-(Erel, 2004). Decreased TAC has been reported in human patients with HIV infection and was negatively correlated with lipid peroxidation, suggesting the presence of oxidative stress in these individuals (Suresh et al., 2009).

We hypothesize that oxidative stress could be present in the cats affected by FIP, probably influenced by the major inflammatory reaction which is associated with this disease, and therefore changes in serum oxidative biomarkers may be present. To test this hypothesis, serum PON1 activity and TAC in a group of cats naturally affected by FIP were measured and compared with a group of healthy cats and cats with other inflammatory diseases. PON1 activity was measured using three different substrates: pNA, PA, and 5-thiobutil butyro lactone (TBBL) to evaluate the possible differences in the values of PON1 in FIP depending on the substrate. Assays for measurement of PON1 using PA and TBBL, and an assay for TAC determination, were validated for use in cats.

2. Materials and methods

2.1. Animals

In this retrospective study, the serum samples from cats were selected from the authors’ veterinary hospitals database (2011–2012). The serum samples corresponded to diagnoses made based on physical examination, hematological and biochemistry evaluations, urinalyses, radiography and ultrasonography, cytology, serology and immunohistochemistry, depending on each clinical case. Based on the results of the different diagnostic approaches, the serum samples were selected and separated into 3 groups.

Serum of 18 clinically healthy cats presented for routine health screening examinations was the control group. These cats had no history of illness and no clinical signs on physical examination; all were serologically negative for FCoV infection using indirect fluorescence antibody (VMRD), FIV and feline leukaemia virus (FeLV) infections by using commercially available ELISA tests (ViraCHEK, Symbiotics). Serology was considered positive when titers were >1/80 in case of FeLV and FIV tests and when titers were >1/1600 in case of FCoV tests. These cats did not show any clinical sign compatible with FIP 1 year after sample collection.

The second group consisted of serum from 19 cats naturally infected with FCoV that presented clinical signs consistent with FIP. All these cats had negative serology to FIV and FeLV. Hematological changes included low packed cell volume in 7/19 cats, neutropenia in 8/19 cats and lymphopenia in 12/19 cats. FIP diagnosis was confirmed in all 19 cats by necropsy, histology and immunohistochemistry (Licitra et al., 2013). Fourteen cats had effusive FIP and 5 cats had the non-effusive or dry form.

The third group consisted of serum from cats with other inflammatory diseases. This group was comprised of 13 cats that were serologically negative for FCoV, FeLV and FIV infections, but had high serum amyloid A (SAA) concentrations (median 42.9 μg/ml; interquartile range 25.8–53.7 μg/ml) consistent with inflammatory disease. Diagnoses in this group included feline lower urinary tract disease, bone fracture, cholangiohepatitis (n = 2 each), chronic renal insufficiency, aspergillosis, cryptoorchidism, chronic renal insufficiency, and chronic interstitial nephritis and pyometra (n = 1 each). One cat with cholangiohepatitis, the cat with chronic renal insufficiency and the cat with chronic interstitial nephritis died in a period of less than one year after collecting the samples and post mortem examination rule out the presence of FIP. The cats that survived did not present signs compatible with FIP 1 year after collecting the samples.

The serum samples were kept at −80 °C until analyses for PON1, TAC and SAA. This study was approved by the Ethics Committee of the University of Murcia (Spain).

2.2. PON1 analyses

2.2.1. Serum PON1 activity measured with pNA

This activity was measured following a previously described method (Tvarkijonicvitiche et al., 2012b). Three hundred microliters of the working reagent consisted of 50 mM Tris (Tris [hydroxymethyl]aminomethane, Sigma-Aldrich), pH 8.0, with 1.0 mM CaCl2 (calcium chloride dihydrate, Sigma–Aldrich) was added together with 2 μl of the serum sample. After an incubation period of 325 s at 37 °C, 72 μl of the start reagent consisting of 2.5 mM pNA (Sigma–Aldrich) in water was added. The rate of formation of p-nitrophenol was determined at 405 nm after 250 s in an automated chemistry analyzer (Olympus 2700). The nonenzymatic hydrolysis of pNA, which was based on the hydrolysis rate in the absence of serum, was subtracted from the total hydrolysis rate. The activity, expressed in U/ml, was based on the molar absorbitivity (14,000/M/cm) of p-nitrophenol at 405 nm. This method has been previously validated in cats (Tvarkijonicvitiche et al., 2012c).

2.2.2. Serum PON1 activity measured with PA

In this method, PON1 activity was analyzed by measuring the hydrolysis of PA into phenol as described elsewhere (van Himbergen et al., 2005). The assay was performed in a 96-well microplate. The sample buffer consisted of 50 mM Tris and 1 mM CaCl2 (pH 8.0). The serum sample was diluted in sample buffer to 1:40 ratio, and 5 μl of the diluted sample was added to the wells. Then, 200 μl of the freshly made substrate reagent containing 1 mM PA (Sigma–Aldrich) in sample buffer was added. The reaction was monitored for 5 min at 260 nm and 37 °C in a microplate reader (PowerWave XS, Bio-Tek Instruments). The nonenzymatic hydrolysis of PA, which was based on the hydrolysis rate in the absence of serum, was subtracted from the total hydrolysis rate. PON1 activity was expressed as U/ml of serum. The molar extinction coefficient used to calculate the rate of hydrolysis was 1310/M/cm.

2.2.3. Serum PON1 activity measured with 5-thiobutil butyro lactone (TBBL)

The method involves the use of a chromogenic lactone that structurally resembles the proposed natural lipolactone substrates (Marsillach et al., 2009). The assay was performed in a 96-well microplate. The sample buffer consisted of 50 mM Tris and 1 mM CaCl2 (pH 8.0). The method comprised of four pipetting steps: 1 μl of a chromophore solution containing 100 mM 5,5’dithio-bis-2-nitrobenzoic acid (Sigma–Aldrich Co) in dimethyl sulfoxide (Sigma–Aldrich Co) was added to the wells, then followed by 45 μl of 4% acetonitrile (Mulrisolvent HPLC grade ACS, Sharlau Chemie SA, Sentmenat, Spain) solution in sample buffer. In the third step, 55 μl of diluted serum sample at 1:200 ratio in sample buffer was added. Finally, 100 μl of the freshly made substrate containing 0.4 mM TBBL (provided by Dr. Khersonsky, Weizmann Institute of Science, Israel) in sample buffer was added. Two minutes after TBBL addition, the
reaction was monitored at 412 nm in an automated microplate reader (PowerWave XS) at 37 °C. The nonenzymatic hydrolysis of TBBL, which was based on the hydrolysis rate in the absence of serum, was subtracted from the total hydrolysis rate. PON1 activity was expressed as U/ml of serum, in which 1 unit equals 1 mmol of TBBL hydrolyzed/min. The molar extinction coefficient used to calculate the rate of hydrolysis was 7000/M/cm.

2.3. TAC measurement

The method described by Erel (2004) was validated for use in cats. In this method, the blue–green colored oxidized 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) is reduced to a colorless molecule, and the change in color is spectrophotometrically monitored. Reagent 1 was consisted of acetate buffer solution, pH 5.8, including 0.4 M CH₃COONa (Sigma-Aldrich) and 0.36% glacial acetic acid (Sigma-Aldrich). Reagent 2 was consisted of acetate buffer, pH 3.6, containing 2 mM CH₃COONa, 0.15% glacial acetic acid, 0.009% hydrogen peroxide (H₂O₂, Panreac Quimica SA) and 10 mM ABTS diammonium salt (Sigma-Aldrich). Two hundred fifty microliters of reagent 1 and 12 μl of serum sample were mixed and incubated at 37 °C for 150 s. Then, 25 μl of reagent 2 was added. Change in absorbance was monitored at 600 nm after 525 s. The method was adapted to an automated analyzer (Olympus 2700).

2.4. Serum amyloid A (SAA) measurement

The presence of inflammation was assessed by measuring the serum acute phase protein SAA concentration. SAA was measured using a commercially available immunoturbidimetric method (SAATIA; LZ-SAA, Eiken Chemical Co., Tokyo, Japan), adapted to an automated analyzer (Olympus 2700). This method has been previously validated for feline specimens (Kajikawa et al., 1999).

2.5. Analytical validation for PON1 measurements with PA and TBBL, and TAC measurements

Since these methods have not been previously validated for feline specimens, an analytical validation was performed. Precision was determined by calculating the intra-assay coefficient of variation (CV) of two pooled sera with different PON1 and TAC concentrations. The pool with low PON1 activities and low TAC concentration was performed by mixing the same volume of serum from 10 diseased animals which were randomly chosen and the pool with expected high PON1 activities and high TAC concentration was prepared by mixing sera from 10 healthy animals. Each pool was analyzed six times in a single assay run. The inter-assay CV was determined by analyzing the same pools in six separate runs on different days. Sera were frozen in aliquots, and only the vials needed for each run were used, to avoid possible changes due to repetitive thawing and freezing. Linearity was evaluated using the method of linearity under dilution. The pool serum with high values of PON1 and TAC was diluted on a two-fold basis with sample buffer and assayed by triplicate. The results were compared with those expected by linear regression analysis. The limit of detection was expressed as U/ml, 0.04 U/ml and 0.02 mmol/l for PA, TBBL and TAC, respectively. The calculated limits of detection were 0.64 U/ml, 0.04 U/ml and 0.02 mmol/l for PA, TBBL and TAC, respectively.

2.6. Statistical analyses

Routine descriptive statistic parameters were calculated by routine descriptive statistical procedures. The Kolmogorov–Smirnov test was performed to assess the normality of data obtained from the healthy and diseased cats. Those data giving a non-parametric distribution were log-transformed prior to statistical analysis. One-way analysis of variance and Tukey post-hoc test were used to determine if the values obtained from the healthy and diseased animals were statistically different. The Pearson correlation coefficient was calculated to assess correlation between PON1 and TAC with SAA. The significance level used in each case was P < 0.05. All statistical analyses were calculated using spreadsheet (Excel 2000, Microsoft) and Graph Pad Software Inc (GraphPad Prism, version 5 for Windows, Graph Pad Software).

3. Results

3.1. Analytical validation of PON1 measurements with PA and TBBL, and TAC measurements

The intra- and inter-assay CVs obtained for PON1 measurement with PA and TBBL and for TAC analysis are shown in Table 1. Intra-assay CVs were lower than 10% in all cases. Inter-assay CVs were lower than 7%, 16% and 12% for PA, TBBL and TAC, respectively. Coefficient of linear regression higher than 0.98 was observed when pooled serum was diluted and analyzed with any of the validated methods (Fig. 1). The calculated limits of detection were 0.64 U/ml, 0.04 U/ml and 0.02 mmol/l for PA, TBBL and TAC, respectively.

3.2. Comparison between healthy and diseased cats

Table 2 shows PON1, TAC and SAA values in the cats included in this study. A significantly lower PON1 activity was observed with all substrates in cats with FIP or with other inflammatory dis-

![Fig. 1. Linear regression analysis obtained after analysis of a pool of serum diluted on a two-fold basis with sample buffer. Dilutions were assayed by triplicate for paraoxonase (PON1) with the substrates phenyl acetate (PA) and 5-thiobutil butyrolactone (TBBL), and total antioxidant capacity (TAC). Each point represents the mean value of the triplicates.](image)

Table 1

|               | Intra-assay | Inter-assay |
|---------------|-------------|-------------|
|               | Mean (SD)   | CV          | Mean (SD)  | CV          |
| PA (U/ml)     | Pool 1      | 39.21 (1.44)| 3.68       | 33.34 (0.92)| 2.76        |
|               | Pool 2      | 11.01 (0.67)| 6.11       | 10.40 (0.71)| 6.81        |
| TBBL (U/ml)   | Pool 1      | 4.16 (0.09)| 2.23       | 3.99 (0.22)| 5.60        |
|               | Pool 2      | 1.21 (0.11)| 9.35       | 1.64 (0.16)| 15.11       |
| TAC (mmol/l)  | Pool 1      | 0.64 (0.01)| 1.50       | 0.60 (0.03)| 4.80        |
|               | Pool 2      | 0.15 (0.01)| 5.70       | 0.15 (0.02)| 11.30       |

PA, paraoxonase measured with phenyl acetate; TBBL, paraoxonase measured with 5-thiobutil butyrolactone; TAC, total antioxidant capacity.
Table 2
Paraoxonase activity (measured with three different substrates), total antioxidant capacity and serum amyloid A concentration in healthy cats, cats with feline infectious peritonitis and cats with non-viral inflammation. Results are expressed as median value, 25–75% centiles are within parenthesis, minimum–maximum values are within brackets.

|                  | pNA (U/ml) | PA (U/ml) | TBBL (U/ml) | TAC (mmol/l) | SAA (mg/l) |
|------------------|------------|-----------|-------------|--------------|------------|
| Healthy          | 3.45       | 25.30     | 3.39        | 0.42         | 0.15       |
|                  | (2.58–4.58)| (18.38–34.31)| (2.43–4.15)| (0.32–0.47) | (0.10–0.30)|
| FIP              | 1.90**     | 9.61***   | 1.62***     | 0.26**       | 10.71***   |
|                  | (1.33–2.48)| (4.43–12.34)| (0.73–2.16)| (0.00–0.30)| (38.00–148.0)|
| Inflamm.         | 1.30***    | 9.20***   | 1.79*       | 0.34         | 42.90***   |
|                  | (0.45–2.35)| (3.75–17.80)| (1.16–2.47)| (0.18–0.46)| (24.85–55.00)|

pNA, -nitrophenyl acetate; PA, phenyl acetate; TBBL, 5-thiobutil butyrolactone; TAC, total antioxidant capacity; SAA, serum amyloid A.

*p < 0.05.
**p < 0.01.
***p < 0.001.

In Table 3, the values of the different analytes in cats with effusive and non-effusive forms appear. Cats with effusive forms showed significantly lower values of PON1 and TAC and higher values of SAA compared with cats with non-effusive forms.

No significant correlation was observed between PON1 measured with different substrates and TAC. All PON1 assays and TAC measurement showed a significant but weak negative correlation with SAA concentration (Table 4).

4. Discussion

In this report, assays for PON1 activity with three different substrates (pNA, PA and TBBL) and TAC were used. PON1 assays using PA and TBBL and the assay for TAC determination were first validated for feline samples. In the PON1 assay, both methods using PA and TBBL showed precise results and were able to measure PON1 in a linear manner, similar to the results previously reported in dogs (Tvarijonaviciute et al., 2012b). Although one cat with FIP showed a PON1 value below the limit of detection when PA was used. The TAC assay was precise and linear with values higher than the limit of detection of the assay. However, 5 cats with FIP and one cat with other inflammatory condition showed TAC values under the calculated limits of detection. The existence of values lower than the limit of the detection should be considered as a limitation for the PON1 assay using PA as substrate and for the TAC assay, especially in cases of FIP or other inflammatory conditions where low values are expected.

To the authors’ knowledge, this is the first report measuring PON1 and TAC in cats with FIP and in inflammatory conditions. A significant decrease in PON1 activity with the three substrates was observed in both groups of diseased cats. The only report found about PON1 in cats studied the possible oxidative stress associated with obesity (Tvarijonaviciute et al., 2012c). There are several reasons that could explain a decrease in PON1 activity in cats with FIP. One of these reasons is oxidative stress, corroborated by the low TAC concentration in these cats. Oxidative stress is known to be involved in the pathogenesis of some human viruses. For example, hepatitis C virus infection is associated with the accumulation of reactive species, compared with healthy cats. TAC was significantly lower in cats with FIP compared with healthy cats and cats with other inflammatory conditions. The SAA concentration was significantly higher in cats with FIP and with other inflammatory diseases than in healthy animals. The SAA concentration was significantly higher in cats with FIP than in cats with other inflammatory diseases.

In Table 3, the values of the different analytes in cats with effusive and non-effusive forms appear. Cats with effusive forms showed significantly lower values of PON1 and TAC and higher values of SAA compared with cats with non-effusive forms.

No significant correlation was observed between PON1 measured with different substrates and TAC. All PON1 assays and TAC measurement showed a significant but weak negative correlation with SAA concentration (Table 4).

Table 3
Paraoxonase activity (measured with three different substrates), total antioxidant capacity and serum amyloid A concentration in healthy cats, cats with feline infectious peritonitis in the effusive form and in the dry form. Results are expressed as median value, 25–75% centiles are within parenthesis, minimum–maximum values are within brackets.

|                  | pNA (U/ml) | PA (U/ml) | TBBL (U/ml) | TAC (mmol/l) | SAA (mg/l) |
|------------------|------------|-----------|-------------|--------------|------------|
| Effusive         | 1.50**     | 7.78*     | 0.93**      | 0.22*        | 107.60**   |
|                  | (1.20–2.30)| (4.38–11.59)| (0.67–1.70)| (0.02–0.25)| (58.85–191.90)|
| Dry              | 2.90       | 14.95     | 2.20        | 0.28         | 41.80      |
|                  | (0.45–2.35)| (7.03–19.00)| (2.16–2.90)| (0.26–0.34)| (13.70–54.50)|
|                  | (2.20–4.50)| (3.99–22.38)| (2.16–3.30)| (0.26–0.47)| (4.00–60.10)|

pNA, -nitrophenyl acetate; PA, phenyl acetate; TBBL, 5-thiobutil butyrolactone; TAC, total antioxidant capacity; SAA, serum amyloid A.

*p < 0.05.
**p < 0.01.

Table 4
Pearson correlation coefficients between paraoxonase assays with serum amyloid A and total antioxidant capacity.

|                  | pNA (U/ml) | PA (U/ml) | TBBL (U/ml) | TAC (mmol/l) |
|------------------|------------|-----------|-------------|--------------|
| Pearson correlation coefficient with TAC | 0.226     | 0.130     | -0.036      |
| Pearson correlation coefficient with SAA | -0.509*** | -0.594*** | -0.377***   |

pNA, -nitrophenyl acetate; PA, phenyl acetate; TBBL, 5-thiobutil butyrolactone; TAC, total antioxidant capacity; SAA, serum amyloid A.

*p < 0.05.
**p < 0.01.
***p < 0.001.
This paper reports by first time the decrease of two antioxidant biomarkers PON1 and TAC in cats with FIP compared with healthy animals. This indicates that a situation of oxidative stress appears in FIP possibly associated with the inflammatory response that occurs in this disease. Further research should be performed to explore the possible practical applications that monitoring the oxidative stress could have in this disease, as well the possibilities of antioxidants having therapeutic or preventative potential.

Acknowledgements

The authors would like to thank Dr. Khersonsky from Weizmann Institute of Science, Israel, for providing of the substrate 5-thiobutil butyro lactone.

References

Billecke, S., Draganov, D., Counsell, R., Stetsen, P., Watson, C., Hsu, C., et al., 2000. Human serum paraoxonase (PON1) isoforms Q and R and hydrolizes lactones and cyclic carbonate esters. Drug Metabolism and Disposition 28, 1335–1342.

Bonaz, M., Trevisi, E., Calamari, L., Librandi, F., Ferrai, A., Bertoni, G., 2007. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. Journal of Dairy Science 90, 1740–1750.

Campos, J., Marsillich, J., Joven, J., 2009. The paraoxonase: role in human diseases and methodological difficulties in measurement. Critical Reviews in Clinical Laboratory Science 46, 83–106.

Ceron, J.J., Tecles, F., Tvarijonaviciute, A., 2014. Serum paraoxonase 1 (PON1) measurement: an update. BMC Veterinary Research 10, 74. doi:10.1186/1746-6148-10-74.

Christopher, M.M., Broussard, J.D., Peterson, M.E., 1995. Heinz body formation associated with ketoacidosis in diabetic cats. Journal of Veterinary Internal Medicine 9, 24–31.

Chun, C.K., Özer, E.A., Welsh, M.J., Zahner, J., Greenberg, E.P., 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 101, 3587–3590.

Dantoni, T.F., Debord, J., Charmes, J.P., Merle, L., Marquet, P., Lachatre, B., et al., 1998. Decrease of serum paraoxonase activity in chronic renal failure. Journal of the American Society of Nephrology 9, 2082–2088.

Delmas-Beauvieux, M.C., Peuchant, E., Couchourey, A., Constant, J., Sergeant, C., Simonoff, M., et al., 1996. The enzymatic antioxidant system in blood and glutathione status in human immunodeficiency virus (HIV)-infected patients: effects of supplementation with selenium or beta-carotene. The American Journal of Clinical Nutrition 64, 101–107.

Erel, O., 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Chemistry 37, 277–285.

Farid, A.S., Horii, Y., 2012. Modulation of paraoxonases during infectious diseases and its potential impact on atherosclerosis. Lipids in Health and Disease 11, 92.

Feingold, K.R., Memon, R.A., Moser, A.H., Grunfeld, C., 1998. Paraoxonase activity in the serum and hepatic mRNA levels decrease during the acute phase response. Arteriosclerosis 18, 307–315.

Franco-Pons, N., Marsillich, J., Joven, J., Campos, J., Cloşa, D., 2008. Serum paraoxonase undergoes inhibition and proteolysis during experimental acute pancreatitis. Journal of Gastrointestinal Surgery 12, 891–899.

Ghiselli, A., Scarfì, M., Natafì, F., Scaccini, C., 2000. Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine 29, 1106–1114.

Giordano, A., Spagnolo, V., Colom, A., Paltrinieri, S., 2004. Changes in some acute phase proteins and paraoxonase activities in patients with feline infectious peritonitis or exposed to feline coronavirus infection. The Veterinary Journal 167, 38–44.

Guidance for Industry: Bioanalytical Method Validation, US, 2001.

Harvey, J.W., Kaneko, J.J., 1977. Mammalian erythrocyte metabolism and oxidant stress. In: Harvey, J.W., Kaneko, J.J. (Eds.), Mammalian erythrocyte metabolism and oxidant stress. Plenum Press, New York, pp. 221–242.

Harvey, J.W., Kaneko, J.J., 1977. Mammalian erythrocyte metabolism and oxidant stress: critical view and experimental data. Free Radical Biology and Medicine 29, 1106–1114.

Hsu, C., Welsh, M.J., Zahner, J., Greenberg, E.P., 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proceedings of the National Academy of Sciences of the United States of America 101, 3587–3590.

Keegan, R.F., Webb, C.B., 2010. Oxidative stress and neutrophil function in cats with chronic renal failure. Journal of Veterinary Internal Medicine 24, 514–519.

Kappelle, P.J., Bijzet, J., Hazenberg, B.P., Dullaart, R.P., 2011. Lower serum paraoxonase-1 activity is related to higher serum amyloid A levels in metabolic syndrome. Archives of Medical Research 42, 219–225.

Keskin, M., Dirican, M., Kiyici, M., Yilmaz, Y., Gurel, S., et al., 2009. Baseline serum paraoxonase 1 (PON1) and arylesterase activities in patients with chronic liver disease: relationship to disease severity. Internal Medicine Journal 39, 243–248.
Licitra, B.N., Millet, J.K., Regan, A.D., Hamilton, B.S., Rinaldi, V.D., Duhamel, G.E., et al., 2013. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging Infectious Diseases 19, 1066–1073.

Marsillach, J., Aragonés, G., Beltrán, R., Caballeria, J., Pedro-Botet, J., Morcillo-Suárez, C., et al., 2009. The measurement of the lactonase activity of paraoxonase-1 in the clinical evaluation of patients with chronic liver impairment. Clinical Biochemistry 42, 91–98.

Mogarekar, M.R., Chawhan, S.S., 2013. The determination of Q192R polymorphism of paraoxonase 1 by using non-toxic substrate p-nitrophenyl acetate. Indian Journal of Human Genetics 19, 71–77.

Montorfano, I., Becerra, A., Cero, R., Echeverría, C., Sáez, E., Morales, M.G., et al., 2014. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Laboratory Investigation; a journal of technical methods and pathology 94, 1068–1082.

Nagy, G., Ward, J., Mosser, D.D., Koncz, A., Gergely, P., Jr., Stancato, C., et al., 2006. Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection. The Journal of Biological Chemistry 281, 34574–34591.

Novak, F., Vavrova, L., Kodydkova, J., Novak, F., Sr., Hynkova, M., Zak, A., et al., 2010. Decreased paraoxonase activity in critically ill patients with sepsis. Clinical and Experimental Medicine 10, 21–25.

Paracha, U.Z., Fatima, K., Alqahtani, M., Chaudhary, A., Abuzenadah, A., Damanhouri, G., et al., 2013. Oxidative stress and hepatitis C virus. Virology Journal 10, 251.

Parra, S., Alonso-Villaverde, C., Coll, B., Ferré, N., Marsillach, J., Aragonés, G., et al., 2007. Serum paraoxonase 1 activity and concentration are influenced by human immunodeficiency virus infection. Atherosclerosis 194, 175–181.

Parra, S., Marsillach, J., Aragonés, G., Rull, A., Beltrán-Debón, R., Alonso-Villaverde, C., et al., 2010. Methodological constraints in interpreting serum paraoxonase-1 activity measurements: an example from a study in HIV-infected patients. Lipids in Health and Disease 9, 32.

Pedersen, N.C., 2014a. An update on feline infectious peritonitis: virology and immunopathogenesis. The Veterinary Journal 201, 123–132.

Pedersen, N.C., 2014b. An update on feline infectious peritonitis: diagnostic and therapeutics. The Veterinary Journal 201, 133–141.

Regan, A.D., Cohen, R.D., Whittaker, G.R., 2009. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells. Virology 384, 135–143.

Suresh, D.R., Annam, V., Pratibha, K., Prasad, B.V., 2009. Total antioxidant capacity – a novel early bio-chemical marker of oxidative stress in HIV infected individuals. Journal of Biomedical Science 16, 61.

Trettinger, A., Spada, C., Verdi, J.C., Miranda, A.F., Oliveira, O.V., Silveira, M.V., et al., 2000. Decreased antioxidant defense in individuals infected by the human immunodeficiency virus. European Journal of Clinical Investigation 30, 454–459.

Turk, R., Habuš, J., Flegr-Melvici, Z., Svetina, A., Mojčec, V., Perkov, S., et al., 2011. Serum platelet-activating factor acetylhydrolase and paraoxonase-1 activity in horses infected with Leptospira spp. Acta Tropica 118, 97–100.

Tvarijonaviciute, A., Kocaturk, M., Carneve, M., Trecules, F., Cerón, J.J., 2012a. Serum butyrylcholinesterase and paraoxonase 1 in a canine model of endotoxemia: effects of choline administration. Research in Veterinary Science 93, 668–674.

Tvarijonaviciute, A., Trecules, F., Caldin, M., Tasca, S., Cerón, J.J., 2012b. Validation of spectrophotometric assay for serum paraoxonase type-1 measurement in dogs. American Journal of Veterinary Research 73, 34–41.

Tvarijonaviciute, A., Cerón, J.J., Holden, S.L., Morris, P.J., Bourge, V., German, A.J., 2012c. Effects of weight loss in obese cats on biochemical analytes related to inflammation and glucose homeostasis. Domestic Animal Endocrinology 42, 129–141.

van Himbergen, T.M., Roest, M., Graaf, J., Jansen, E.H., Hattori, H., Kastelein, J.J., et al., 2005. Indications that paraoxonase-1 contributes to plasma high density lipoprotein levels in familial hypercholesterolemia. Journal of Lipid Research 46, 445–451.

Webb, C., Lehman, T., McCord, K., Avery, P., Dow, S., 2008. Oxidative stress during acute FIV infection in cats. Veterinary Immunology and Immunopathology 122, 16–24.

Webb, C.B., Falkowski, L., 2009. Oxidative stress and innate immunity in feline patients with diabetes mellitus: the role of nutrition. Journal of Feline Medicine and Surgery 11, 271–276.

Yilmaz, N., 2012. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Archives of Medical Science 1, 138–153.