Porcine Coronin 1A Contributes to Nuclear Factor-Kappa B (NF-κB) Inactivation during *Haemophilus parasuis* Infection

Chong Liu¹*, Yang Wang²*, Hengling Zhang¹, Shuang Cheng¹, Catherine Charreyre³, Jean Christophe Audonnet³, Pin Chen¹, Qigai He¹*

¹ Division of Animal Infectious Diseases, State key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P. R. China, ² State key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, P. R. China, ³ Merial SAS, Lyon, France

Abstract

Haemophilus parasuis (*H. parasuis*) is the etiological agent of porcine polyserositis and arthritis (Glässer’s disease) characterized by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. Currently, the molecular basis of this infection is largely unknown. Coronin 1A (Coro1A) plays important roles in host against bacterial infection, yet little is known about porcine Coro1A. In this study, we investigated the molecular characterization of porcine Coro1A, revealing that porcine Coro1A was widely expressed in different tissues. Coro1A could be induced by lipopolysaccharide (LPS), polyinosinic acid-polycytidyl acid [poly (I:C)] and *H. parasuis* in porcine kidney-15 (PK-15) cells. Functional analyses revealed that porcine Coro1A suppressed the NF-κB activation during *H. parasuis* infection by inhibiting the degradation of IκBα and nuclear translocation of p65. Overexpression of porcine Coro1A inhibited the transcription of NF-κB-mediated downstream genes [Interleukin-6 (IL-6), Interleukin-8 (IL-8) and COX-2] through down-regulation of NF-κB.

The results indicated that porcine Coro1A is an important immunity related gene that helps to inhibit NF-κB activation during *H. parasuis* infection.

Introduction

Coronin was firstly isolated from Dictyostelium discoideum and localized to crown-like structures on the apical surface of the cells [1]. To date, 7 members of the mammalian coronin family have been found, as follows: Coronin 1–5 [2], Coronin 6 (corSE) and Coronin 7/POD [3]. Coronins belong to the WD (Trp-Asp) repeat superfamily, which are found in all eukaryotes and have been highly conserved during evolution [3–5]. A defining structural characteristic of coronins is the presence of an N-terminal WD40 repeat domain, separated by a unique region [6]. Moreover, WD-repeats are involved in vital biological processes, such as cytoskeletal organization, signal transduction and membrane trafficking [7]. Coronins mainly associate with the membrane cytoskeleton through interaction with F-actin and the Arp2/3 complex, regulating cell motility and cytoskeletal rearrangement [8,9].

Coro1A, a member of mammalian coronin family, also known as Tryptophan Aspartate containing coat protein (TACO) or p57 [10], is mainly expressed in hematopoietic cells and equally distributes between the cytosol and the cell cortex [11]. It has been demonstrated that Coro1A plays a crucial role in T lymphocyte activation [11,12], migration [13], survival [14], and calcium signal transduction [15]. In neutrophils, Coro1A associates with actin and the soluble component p40phox subunit of the NADPH oxidase complex [16,17]. While in macrophages, Coro1A associates with phagosomes [18,19]. Previous study has clarified the association between human Coro1A and the intracellular survival of pathogenic mycobacterium [20,21].

The Gram-negative bacterium *Haemophilus parasuis* (*H. parasuis*) has generated a worldwide threat to the swine herds, and leads to a huge economic loss to the pig industry. 15 serovars of *H. parasuis* have been identified so far [22]. The virulent strains of *H. parasuis* are the causative agent of Glasser’s disease, and the disease is characterized by fibrinous polyserositis, meningitis and polyarthritis [23], all of which are associated with uncontrolled inflammation. Besides, acute pneumonia, acute septicemia, acute fasciitis and myositis happened occasionally [24]. The pathogen-

* Citation: Liu C, Wang Y, Zhang H, Cheng S, Charreyre C, et al. (2014) Porcine Coronin 1A Contributes to Nuclear Factor-Kappa B (NF-κB) Inactivation during *Haemophilus parasuis* Infection. PLoS ONE 9(8): e103904. doi:10.1371/journal.pone.0103904

* Editor: Yung-Fu Chang, Cornell University, United States of America

* Received March 4, 2014; Accepted July 4, 2014; Published August 5, 2014

* Copyright: © 2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All data are included within the manuscript.

* Funding: This work was supported by the China agriculture research system (CARS-36), National Basic Research Program (973 Program, grant No. 2011CB511802) and Merial SAS, France (http://www.merial.com). The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript.

* Competing Interests: CC and JCA are employed by Merial, one of the funders of this study. The authors would like to state clearly that whilst two of the authors have an affiliation with the funding provided for this work (MerialSAS), there are no commercial conflicts with this work. There are no patents, products in development or marketed products to declare. The interpretation of the results was completely independent from any company’s opinion. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

* Email: he628@mail.hzau.edu.cn

* * These authors contributed equally to this work.
nosis of \textit{H. parasuis} infection is still unknown. Chen et al (2012) reported that \textit{H. parasuis} could activate the NF-\(\kappa\)B pathway in PK-15 cells [25]. The NF-\(\kappa\)B signaling pathway is important in signal transduction during the innate immune response [26]. NF-\(\kappa\)B signaling relies on the targeting of IkB (inhibitor of NF-\(\kappa\)B) subunit to the proteasome to allow NF-\(\kappa\)B to translocate from the cytosol to the nucleus where it activates transcription of pro-inflammatory cytokine genes, which are essential to mount a protective immune response and host defence [27]. In our previous study, we found porcine Coro1A was differentially expressed in \textit{H. parasuis} infected porcine alveolar macrophages, which were considered as a major component of the host innate immunity [28]. The innate immune response in vertebrates is the first defense line against invading microorganisms. Interestingly, human Coro1A is mentioned as a novel inhibitor of TLR-mediated NF-\(\kappa\)B activation in \textit{Mycobacterium leprae} infection [18]. So in this study, we explored the immunological functions of porcine Coro1A during \textit{H. parasuis} infection. The results indicated that porcine Coro1A is an important immunity related gene that helps to inhibit NF-\(\kappa\)B activation during \textit{H. parasuis} infection.

Materials and Methods

Ethics statement

All of the animal experiments were approved by the Research Ethics Committee of College of Veterinary Medicine, Huazhong Agricultural University, Hubei, China (No. 2009–0012).

Cells, bacteria and reagents

PK-15 cells (ATCC number CCL-33; American Type Culture Collection) were cultured and maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% heat-inactivated newborn calf serum (NCS), 100 U/ml penicillin, and 10 \(\mu\)g/ml streptomycin sulfate. \textit{H. parasuis} 0165 strain was clinically isolated in China with high-level virulence. Bacteria were cultured in tryptic soy broth (TSB; Difco) supplemented with 10 mg/ml nicotinamide adenine dinucleotide (NAD; Sigma) and 5% fetal bovine serum (Gibco), Eagle’s Medium (DMEM) supplemented with 10% heat-inactivated newborn calf serum (NCS) at 37\(^\circ\)C and 5\% CO\(_2\). Adherent PK-15 cells were washed twice with sterile PBS and cultured further in DMEM supplemented with 10\% activated newborn calf serum and streptomycin sulfate.

\textit{H. parasuis} infection group and control group (10\% NCS) were selected for the analysis of porcine Coro1A expression in different tissues. Total RNA from 5 porcine organs (inguinal lymph node, heart, spleen, lung, brain) was isolated. For the tissue-specific expression of porcine Coro1A, total cellular RNA was extracted from 15 different swine tissues: heart, liver, spleen, lung, kidney, pancreas, stomach, cerebellum, duodenum, tonsil and colon. Total RNA was isolated by using the Simply P Total RNA Extraction Kit (Bioflux), and was reverse-transcribed into cDNA by using ReverTraAce Kit (TOYOBO), according to the manufacturer’s protocols. The quantitative real-time PCR (Q-PCR) assay was performed by using LightCycler 480 SYBR Green I Real Time PCR Master Mix (Roche) with primer pairs described in table 1, and samples were normalized with the samples collected at 0 h as the reference. The specificity of the primers was confirmed by melting curve analysis.

LPS, poly (I:C) and \textit{H. parasuis} induced expression of porcine Coro1A in PK-15 cells

PK-15 cells were seeded at a concentration of 4 \(\times\) 10\(^5\) cells/well into six-well culture plates (Corning) and grown in culture medium (DMEM) supplemented with 10\% heat-inactivated newborn calf serum (NCS) at 37\(^\circ\)C with 5\% CO\(_2\). Adherent PK-15 cells were washed twice with sterile PBS and cultured further in DMEM and treated with 1 \(\mu\)g/ml LPS, 10 \(\mu\)g/ml poly (I:C) or 10\(^7\) CFU of \textit{H. parasuis} for 0, 2, 6, 12, 24, and 48 h (three replicates in each group). The cells were harvested at each time, and total RNA was extracted by using Simply P Total RNA Extraction Kit, and RT-PCR was employed by using ReverTraAce Kit. The Q-PCR assays were performed by using LightCycler 480 SYBR Green I Real Time PCR Master Mix with primer pairs described in table 1, and samples were normalized with the samples collected at 0 h as the calibrator and the GAPDH as the reference gene. All Q-PCRs were performed in triplicate.

Plasmid construction

The coding sequence of porcine Coronin 1A was subcloned into the pCDNA-3.1 vector (Invitrogen,USA) using \textit{BamHI}/\textit{EcoRI} sites, resulting in the expression constructs pCDNA-Coro1A.
Porcine Coronin 1A Contributes to NF-κB Inactivation

Table 1. Primers used in quantitative real-time PCR.

Gene	Primer sequence
Coro1A	F: 5’-GTGGACTGGAGCCGGAAG-3’
	R: 5’-GCCACCTGCCGCCCTCCT-3’
IL-6	F: 5’-CCTCAGTCAGTGCCCTCTCC-3’
	R: 5’-GCATCACCTTGGCATTCTCTCC-3’
IL-8	F: 5’-CACCTGTAATCTGAATCTGTTA-3’
	R: 5’-CTTCACAAATACGTGGACAACTTC-3’
COX-2	F: 5’-TTCAACGCAATTCCATACCA-3’
	R: 5’-GAAGCCGTCAAGCAAGAG-3’
GAPDH	F: 5’-ACATGGCCCTGCAAGGAG-3’
	R: 5’-GATCGAGTTGGGCTTGACT-3’

Transfections and luciferase reporter assays

Transient transfection was performed using Lipofectamine 2000 (Invitrogen,USA). PK-15 cells were seeded on 24-well tissue culture plates (Corning) and cultured until the cells reached approximately 70–80% confluence, and were then transfected with the plasmids listed below. For each transfection, 0.2 μg of the reporter plasmid pNF-κB-Luc along with 0.05 μg of pRL-TK for normalization and expression plasmids or empty control plasmid were used. Firefly and Renilla luciferase activities were measured by using the dual-luciferase reporter assay system (Promega) according to the manufacturer’s instructions. Data represent relative firefly luciferase activity.

Western blot analysis

PK-15 cells were seeded at a concentration of 4×10⁵ cells/well into six-well tissue culture plates until the cells reached approximately 70–80% confluence. Transfection was performed with Lipofectamine2000 reagent following the manufacturer’s protocols. At 24 h post-transfection, cells were washed twice with PBS, harvested and lysed, then boiled in SDS protein sample buffer (2% SDS, 10% glycerol, 60 mM Tris-HCl [pH 6.8], 0.001% bromophenol blue, and 0.33% b-mercaptoethanol). Cells infected with H. parasuis for 12 h were treated the same. The cell lysates were separated by 10% acrylamide SDS-PAGE, followed by electroblotting onto a nitrocellulose membrane. Western blots were performed with homemade anti-Coronin 1A polyclonal antibody, anti-IκBα, anti-p65, anti-p-p65, anti-β-actin monoclonal antibodies and anti-Histone H3 polyclonal antibody as well as HRP-conjugated goat anti-mouse or goat anti-rabbit IgG, respectively. Signals were visualized by using SuperSignal West Pico Luminol kit (Pierce). Analysis of bands was performed using the public domain ImageJ program (developed at the National Institute of Health and available at http://rsb.info.nih.gov/ij).

RNA extraction and real-time quantitative analysis of IL-6, IL-8 and COX-2

Total RNA was extracted from the PK-15 cells by using Simply P Total RNA Extraction Kit, and RT-PCR was employed by using ReverTraAce Kit. The Q-PCR assays were performed by using LightCycler 480 SYBR Green I Real Time PCR Master Mix with primer pairs described in table 1. The housekeeping gene GAPDH was used as an internal control. All Q-PCRs were performed in triplicate.

Statistical analysis

Data were presented as means ± standard deviations (SD). Statistical analysis was performed by using the Statistical Package Social Sciences (SPSS) program, version 17.0. Student’s T-test was used to determine statistical significance. A p-value less than 0.05 was considered significant and a p-value less than 0.01 was considered highly significant.

Results

Porcine Coro1A protein purification and antibody production

The coding sequence of porcine Coro1A comprised 1386 bp with a G+C content of 63.2%. PCR product by amplified porcine Coro1A gene was cloned into pET-30a expression vector and transformed into E. coli BL21 (DE3) cells. With prokaryotic expression system, we obtained a soluble recombinant protein migrating on SDS-PAGE with a molecular mass about 65 kDa (Fig. 1A). This recombinant protein was used to raise specific mouse polyclonal antiserum against porcine Coro1A. The serum specifically reacted with the 65 kDa band of rPoCoro1A (Fig. 1B).

Tissue-specific expression of porcine Coro1A

In order to elucidate the basal expression of porcine Coro1A, Q-PCR [29] was used to analyze its transcript in mRNA prepared from 15 different tissues. Using transcript-specific and consensus region-specific primer pairs described in table 1 and the housekeeping gene GAPDH was used as an internal control. As shown in Figure 2, porcine Coro1A was highly expressed in the liver, pancreas, stomach, cerebellum, bowel lymph node and moderately expressed in the inguinal lymph node, mandibular lymph node, cerebrum, kidney, spleen, duodenum, tonsil and lowly expressed in heart, lung, and colon. All in all, porcine Coro1A was found ubiquitously expressed in all examined tissues. Interestingly, the expression level of porcine Coro1A in liver was notably higher than any other investigated tissues, which was different from human and mouse [10,20]. In addition, although there is contradiction among the different species in Coro1A mRNA expression, abundant Coro1A mRNA expression was observed in the immune organs of human, mouse and pig, indicating that Coro1A might play roles in the mammalian immune system.
Expression analysis of porcine Coro1A in PK-15 cells stimulated with LPS, poly (I:C) and H.parasuis

PK-15 cells have been shown especially useful for the study of infectious disease processes in swine [25,30]. In order to investigate the expression patterns of porcine Coro1A under general conditions that imitate bacterial and viral infection, the immuno-stimulation assay was carried out in PK-15 cells using LPS, poly (I:C) and H.parasuis as the stimulators. Overnight cultures of PK-15 cells were washed twice with sterile PBS and maintained in DMEM, then treated with 1 μg/ml LPS, 10 μg/ml poly (I:C) or 10^7 CFU of H.parasuis for 0, 2, 6, 12, 24 and 48 h. LPS stimulation induced up-regulation of Coro1A at 24 h, and reached the peak at 48 h (Fig. 3A). The up-regulation of Coro1A under poly (I:C) and H.parasuis stimulation was also observed (Fig. 3B and C). This study indicated that LPS, poly (I:C) and H.parasuis can induce the expression of porcine Coro1A in vitro.

Porcine Coro1A suppresses NF-κB activation in PK-15 cells

In order to investigate the molecular function of porcine Coro1A in innate immunity, the expression plasmid pcDNA-Coro1A was used for a luciferase reporter assay. As shown in Figure 4A, overexpression of Coro1A in PK-15 cells potently suppressed NF-κB activation. To further confirm the effect of Coro1A on NF-κB, PK-15 cells were transfected with the increasing amounts of the expression plasmid pcDNA-Coro1A, luciferase activity was monitored at 24 h post-transfection. As shown in Figure 4B, a dose-dependent decrease in luciferase reporter activity was observed. These data clarified that porcine Coro1A was responsible for the inhibition of NF-κB activation in PK-15 cells.

Overexpression of porcine Coro1A inhibits the degradation of IκBα and nuclear translocation of p65

In order to investigate the potential mechanism of NF-κB inactivation by porcine Coro1A, we firstly examined the IκBα degradation and nuclear translocation of p65 in PK-15 cells.
Porcine Coronin 1A Contributes to NF-κB Inactivation

expression level in the cytoplasmic extracts using a western blot assay. As shown in Figure 4C and D, the 1xBz protein significantly increased in a dose-dependent manner in PK-15 cells transfected with pcDNA-Coro1A. To further characterize the mechanism, the phosphorylation and nuclear translocation of the p65 subunit, as well as the total p65 in Coro1A expression cells were determined. The results revealed that the amount of phosphorylated p65 and nuclear p65 protein significantly decreased in a dose-dependent manner, while the amount of total p65 was unaltered (Fig. 4C and D). Because TNF-α is a classic cytokine that induces NF-κB activation, it was possible that Coro1A influences the action of TNF-α. Indeed, porcine Coro1A suppressed TNF-α-induced NF-κB activation in a dose-dependent manner (Fig. 4C and E).
Figure 5. Porcine Coro1A inhibit *H. parasuis* induced NF-kB activation. (A) PK-15 cells were transfected with pNF-kB-luc (0.2 µg) and pRL-TK (0.05 µg), then cells were control-inoculated, live or heat-killed *H. parasuis* (10^7 CFU) inoculated. (a) P<0.05 compared with the control group, (b) P<0.05 compared with the inactivated group. (B) PK-15 cells were transfected with 2 µg of plasmid encoding porcine Coro1A as well as empty vector pcDNA-3.1, along with pNF-kB-luc (0.2 µg) and pRL-TK (0.05 µg). At 24 h post-transfection, cells were treated with live or heat-killed *H. parasuis* (10^7 CFU), and cell extracts were prepared for the luciferase reporter assays at 12 h after this treatment. Values for the samples were normalized using Renilla luciferase values. Inactivated *H. parasuis*-inoculated cells transfected with empty vector and live *H. parasuis*-inoculated cells transfected with empty vector value were respectively set as a basis level of 1. (a) P<0.01 as compared with inactivated *H. parasuis*-inoculated cells transfected with empty vector. (b) P<0.01 as compared with live *H. parasuis*-inoculated cells transfected with empty vector. (C) PK-15 cells were transfected with the varying amount (0, 2, 4 µg) of pcDNA-Coro1A. At 24 h post-transfection, cells were inoculated with live *H. parasuis* (10^7 CFU) for 12 h. Western blot analysis with antibodies specific for endogenous IxB, p65 or p-p65 were performed. A polyclonal anti-Coronin 1A antibody was used to confirm the expression of Coro1A. The β-actin (for porcine Coro 1A, IxB, total p65, p-p65 samples) and Histone H3 (for nuclear-p65 samples) were respectively used as a control for sample loading. Western blot analyses were repeated in three independent experiments with similar results and a representative blot was selected. (D) Band densitometry was performed on the western blot shown in figure 5C. The β-actin (for porcine Coro 1A, IxB, total p65, p-p65 samples) and Histone H3 (for nuclear-p65 samples) were respectively used for normalization (*P<0.05, **P<0.01, Student’s T-test). (E) PK-15 cells were transfected with 4 µg of pcDNA-Coro1A as well as empty vector pcDNA-3.1. At 24 h post-transfection, cells were inoculated with live *H. parasuis* at 10^7 CFU and then harvested at 12 h for RNA extraction. The levels of IL-6, IL-8 and COX-2 mRNAs were measured by Q-PCR analysis. Results are expressed as decreasing mRNA levels relative to those inoculated *H. parasuis* with empty vector value were respectively set as a basis level of 1. (a) P<0.01 compared with inactivated *H. parasuis*-inoculated cells transfected with empty vector.

Porcine Coro1A induces down-regulation of NF-kB-regulated gene expression

NF-kB is a critical transcription factor regulating the transcription and expression of many pro-inflammatory molecules, including critical enzymes (for example, COX-2), most cytokines (for example, IL-6), and chemokines (for example, IL-8). To further investigate the possible biological impact of porcine Coro1A on pro-inflammatory molecules, the Q-PCR was used to determine if porcine Coro1A inhibited NF-kB-regulated target gene expression, including IL-6, IL-8, and COX-2. As shown in Figure 4F, overexpression of porcine Coro1A suppressed the relative expression of IL-6, IL-8 and COX-2. Therefore, we deduced that porcine Coro1A could induce down-regulation of NF-kB-regulated gene expression.

Porcine Coro1A is a key molecule that modulate NF-kB activation during *H. parasuis* infection

A recent study demonstrated that *H. parasuis* infection in PK-15 cells could induce the NF-kB activation via IxB degradation and the phosphorylation of p65, which allows NF-kB to stimulate expression of target genes associated with various inflammations [25]. In order to investigate whether porcine Coro1A is a key molecule that modulate NF-kB activation during *H. parasuis* infection, at 24 h post-transfection of pcDNA-Coro 1A, cells were infected with live or heat-killed *H. parasuis*. Luciferase activities in both live and heat-killed *H. parasuis* infections were monitored at 12 h post-infection, followed by the examination of the IxB, p65, nuclear p65 and p-p65 expression level using western blot assay.
Q-PCR was used to determine the NF-κB regulated gene expression, including IL-6, IL-8, and COX-2. As shown in Figure 5A, both live and heat-killed H. parasuis infections could activate the NF-κB in PK-15 cells. Interestingly, overexpression of Coro1A in PK-15 cells consistently suppressed NF-κB activation by inhibiting IκB degradation and nuclear translocation of p65, in spite of H. parasuis infections (Fig. 5B–D). Furthermore, the relative expression of IL-6, IL-8, and COX-2 was also suppressed (Fig. 5E). These data certified that porcine Coro1A could modulate the inflammatory response by regulating the NF-κB signaling pathway, which triggered by H. parasuis infection.

In vivo expression of porcine Coro 1A in pigs with systemic infection of H. parasuis

In order to understand the expression of the porcine Coro 1A in pigs with systemic infection of H. parasuis, the different tissues obtained from the H. parasuis infected pigs and the controls were selected for the qPCR analysis. Our qPCR examination demonstrated that the increasing expression of porcine Coro 1A was observed in the lungs, spleen and lymph nodes of pigs infected with H. parasuis (Fig. 6). However, in brain and heart of H. parasuis infected pigs, the expression of porcine Coro 1A did not show significant changes compared to the controls.

Discussion

A recent study has indicated that the differentially expressed of Coro1A was observed both in bacterial and viral infections [28,31–33]. However, the molecular characterization of porcine Coro1A and its potential roles in porcine infectious diseases have not been studied.

PK-15 cells have been shown especially useful for the study of infectious disease processes in swine including H. parasuis infection [25]. In this study, Coro1A could be induced by LPS, Poly(IC) and H. parasuis in PK-15 cells in vitro. Interestingly, some H. parasuis infection related genes were also induced by LPS and Poly (IC) in PK-15 cells [29,34]. As classical pathogen-associated molecular patterns, LPS and poly (IC) were widely used to simulate bacterial and viral infection, respectively, for animal immune response induction [35]. A previous study identified that Coro1A suppressed both LPS-induced NF-κB activation through TLR-4 and poly (IC)-induced NF-κB activation through TLR-3 [10]. Our data clarified that both LPS and poly (IC) can induce the expression of porcine Coro1A in vitro, suggesting that porcine Coronin 1A may play roles in host immune system against bacterial and viral infection.

Glasse’s disease caused by H. parasuis is characterized by a severe inflammation of the serous membranes, including pleuritis, pericarditis and peritonitis, along with meningitis, arthritis and pneumonia [24]. H. parasuis diffusely distributed within the mononuclear cells in brains exudate of pigs with fibrinopurulent meningitis suggested the inflammation of serous membranes was associated with inflammatory cells by secreting various cytokines and chemokines [36]. Furthermore, it was reported that H. parasuis or its lipooligosaccharide could stimulate IL-8 and IL-6 released by newborn pig tracheal cells and porcine brain microvascular endothelia cells [37,38]. All these chemokines and cytokines reported involved in initiating adaptive immune responses by NF-κB, which has been shown to play a critical role in regulating the expression of large numbers of genes involved in inflammatory responses [39,40]. Chen et al. (2012) reported that H. parasuis infection activate the NF-κB via IκB degradation and the phosphorylation of p65 in PK-15 cells, which allowed NF-κB to stimulate expression of target genes associated with various inflammations [25]. During H. parasuis infection, the powerful inflammatory response could help host to clear this pathogen or recruit additional inflammatory cells to the site of infection. However, sustained or excessive production of inflammatory cytokine can have damaging consequences. To counterbalance inflammatory cytokines, anti-inflammatory cytokines are produced. Wilkinson et al (2010) reported that the IL-1β and its antagonist, IL-1RA are both more highly expressed in “susceptible” animals challenged with H. parasuis [41]. A recent study showed that the anti-inflammatory cytokine TGF-β was increased in H. parasuis infected PAMs [28]. Anti-inflammatory cytokines may decrease the potentially damaging effects of proinflammatory cytokine on host tissue. Another molecules that performed anti-inflammatory effects were by modulating NF-κB activation [42]. In this study, we proved porcine Coro1A was a novel innate immunity related gene that contributes to inhibit NF-κB activation during H. parasuis infection by inhibiting the degradation of IκBα and nuclear translocation of p65. This study may help us to understand the complex mechanisms of host immunity response during H. parasuis infection.

Acknowledgments

The authors thank Dr. Liangjun Zhao for the technical assistance.

Author Contributions

Conceived and designed the experiments: QH. Performed the experiments: CL YW. Analyzed the data: HZ SC PC. Contributed reagents/materials/analysis tools: QH YW CC JCA. Wrote the paper: QH.

References

1. de Hostos EL, Bradtke B, Lootsgeich F, Guggenheim R, Gerisch G (1991) Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J 10: 4097–4104.

2. de Hostos EL (1999) The coronin family of actin-associated proteins. Trends Cell Biol 9: 345–350.

3. Utrerecht AC, Bear JE (2006) Coronins: the return of the crown. Trends Cell Biol 16: 421–426.
Porcine Coronin 1A Contributes to NF-κB Inactivation

4. Xavier CP, Eichinger L, Fernandez MP, Morgan RO, Clemen CS (2008) Evolutionary and functional diversity of coronin proteins. Subcell Biochem 48: 98–109.

5. Roadcap DW, Clemen CS, Bear JE (2008) The role of mammalian coronin in Regulation of T cell responses. Subcell Biochem 49: 124–155.

6. Gafni J, Albrecht I, Zanolari I, Steinmetz MO, Pieters E (2005) Association of the leukocyte plasma membrane with the actin cytoskeleton through coiled coiled mediated trimERIC coronin 1 molecules. Mol Biol Cell 16: 2786–2798.

7. Jayachandran R, Gafni J, Massner J, Albrecht I, Zanolari B, et al. (2008) RNA interference in JJ74 macrophages reveals a role for coronin 1 in mycobacterial trafficking but not in actin-dependent processes. Mol Biol Cell 19: 1241–1251.

8. Humphries CL, Balcer HI, D'Agostino JL, Winsor B, Drubin DG, et al. (2002) Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J Cell Biol 159: 993–1004.

9. Rybakin V, Clemen CS (2005) Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 27: 625–632.

10. Suzuki K, Nishihata T, Arai Y, Honma N, Yamamoto K, et al. (1995) Molecular cloning of a novel actin-binding protein, p57, with a WD repeat and a leucine zipper motif. FEBS Lett 364: 283–288.

11. Nal B, Carrell P, Mehr O, Verhey C, Da Silva MI, et al. (2004) Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation. Int Immunol 16: 231–240.

12. Foger N, Rangeil D, Danilenko DM, Chan AC (2006) Requirement for coronin-1 in T lymphocyte trafficking and cellular homeostasis. Science 313: 839–842.

13. Siow LR, Roadcap DW, Paris K, Watson SR, Grigorovca I, et al. (2008) The actin regulator coronin-1A is mutant in a thymic egress-deficient mouse strain and in a patient with a severe combined immunodeficiency. Nat Immunol 9: 1307–1315.

14. Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, et al. (2008) Coronin-1A links the cytoskeleton and membrane trafficking. Bioessays 27: 625–632.

15. Mugnier B, Nal B, Carroll P, Mohr E, Verthuy C, Da Silva MI, et al. (2004) Coronin-1 links cytoskeleton dynamics to TCR alpha beta-induced cell signaling. PLoS One 3: e3467.

16. Grogan A, Reeves E, Krep N, Wientjes F, Totty NF, et al. (1997) Cytosolic phos proteins interact with and regulate the assembly of coronin in neutrophils. J Cell Biol 137: 1001–1013.

17. Allen LAH, DeLeo FR, Gallus A, Toyoshima S, Suzuki K, et al. (1999) Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X-linked chronic granulomatous disease. Blood 93: 3521–3530.

18. Tanigawa K, Suzuki K, Kimura H, Takeshita F, Wu H, et al. (2009) Tryptophan aspartate-containing coat protein (CORO1A) suppresses Toll-like receptor signalling in Mycobacterium leprae infection. Clin Exp Immunol 156: 495–501.

19. Seto S, Tsujimura K, Koide Y (2012) Coronin-1a inhibits autophagosome formation of Mycobacterium tuberculosis-containing phagosomes and assists mycobacterial survival in macrophages. Cell Microbiol 14: 710–727.

20. Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97: 435–447.

21. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, et al. (2007) Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130: 57–50.

22. Kirkstein P, Rapp-Gabrielsson VJ (1992) Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol 30: 862–865.

23. Amano H, Shihata M, Kajio N, Moresumi T (1994) Pathologic observations of pigs intranasally inoculated with serovar 1, 4 and 5 of Haemophilus parasuis using immunoperoxidase method. J Vet Med Sci 56: 639.

24. Oliveira S, Pijuan C (2004) Haemophilus parasuis: new trends on diagnosis, epidemiology and control. Vet Microbiol 99: 1–12.

25. Chen Y, Jin H, Chen P, Li Z, Meng X, et al. (2012) Haemophilus parasuis infection activates the NF-kappaB pathway in PK-15 cells through IkappaB degradation. Vet Microbiol 160: 259–263.

26. Constantoulakis P, Filou E, Rovina N, Chiras G, Hannouqa A, et al. (2010) In vivo expression of innate immunity markers in patients with mycobacterium tuberculosis infection. BMC Infect Dis 10: 243.

27. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124: 783–801.

28. Wang Y, Liu C, Fang Y, Liu X, Li W, et al. (2012) Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics 13: 68.

29. Liu XD, Chen HB, Tong Q, Li XY, Zhu MJ, et al. (2011) Molecular characterization of caveolin-1 in pigs infected with Haemophilus parasuis. J Immunol 186: 3031–3040.

30. Montes-Rodriguez R, Martinez-Martinez S, Gutierrez-Martín CB, Rodríguez-Ferrer EF (2012) Haemophilus parasuis serovar 5 Nagasaki strain adheres and invades PK-15 cells. Vet Microbiol 154: 347–352.

31. Engler A, Roy S, Sen CK, Padgett DA, Sheridan JJ (2005) Restrain stress alters lung gene expression in an experimental influenza A viral infection. J Neuroimmunol 162: 103–111.

32. Schiotz BL, Jorgensen SM, Rexroad C, Gjøen T, Krasnov A (2008) Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells. Virus Res 136: 65–74.

33. Purcell MK, Marjara IS, Batts W, Kurath G, Hansen JD (2011) Transcriptome analysis of rainbow trout infected with high and low virulence strains of infectious hematopoietic necrosis virus. Fish Shellfish Immunol 30: 84–93.

34. Chen H, Lanbery JK, Cheng L, Li X, Gao J, et al. (2011) Porcine S100A8 and S100A9: molecular characterizations and crucial functions in response to Haemophilus parasuis infection. Dev Comp Immunol 35: 490–500.

35. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449: 819–826.

36. Segales J, Domingo M, Solano GI, Pijuan C (1997) Immunohistochemical detection of Haemophilus parasuis serovar 5 in formalin-fixed, paraffin-embedded tissues of experimentally infected swine. J Vet Diagn Invest 9: 237–243.

37. Bouche B, Vanier G, Jacques M, Gottschalk M (2008) Interactions of Haemophilus parasuis and its LOS with porcine brain microvascular endothelial cells. Vet Res 39: 42.

38. Bouche B, Vanier G, Charpie M, Auger E, Gottschalk M (2009) Studies on the interactions of Haemophilus parasuis with porcine epithelial tracheal cells: limited role of LOS in apoptosis and pro-inflammatory cytokine release. Microb Pathog 46: 108–113.

39. Schmittz F, Mages J, Heit A, Lang R, Wagner H (2004) Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. Eur J Immunol 34: 2863–2873.

40. van Wijk, Vancoillie M (2010) The molecular signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res 20: 24–33.

41. Wilkinson JM, Sargent CA, Galina-Pantoja L, Tucker AW (2010) Gene expression profiling in the lungs of pigs with different susceptibilities to Glasser’s disease. BMC Genetics 11: 455.

42. Wilkinson JM, Sargent CA, Galina-Pantoja L, Tucker AW (2010) Gene expression profiling in the lungs of pigs with different susceptibilities to Glasser’s disease. BMC Genetics 11: 455.