Review Article

Involvement of Mitochondrial Dynamics and Mitophagy in Sevoflurane-Induced Cell Toxicity

Ming Li,1 Jiguang Guo,1 Hongjie Wang,1,2 and Yuzhen Li3

1School of Basic Medical Sciences, Hebei University, Baoding, Hebei Province, China
2Affiliated Hospital of Hebei University, Baoding, Hebei Province, China
3Department of Pathophysiology, Graduate School of PLA General Hospital, Beijing, China

Correspondence should be addressed to Hongjie Wang; hongjiew68@126.com and Yuzhen Li; yuzlif96@163.com

Received 1 December 2020; Revised 10 February 2021; Accepted 18 February 2021; Published 28 February 2021

Academic Editor: Hao Zhou

Copyright © 2021 Ming Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General anesthesia is a powerful and indispensable tool to ensure the accomplishment of surgical procedures or clinical examinations. Sevoflurane as an inhalational anesthetic without unpleasant odor is commonly used in clinical practice, especially for pediatric surgery. However, the toxicity caused by sevoflurane has gained growing attention. Mitochondria play a key role in maintaining cellular metabolism and survival. To maintain the stability of mitochondrial homeostasis, they are constantly going through fusion and fission. Also, damaged mitochondria need to be degraded by autophagy, termed as mitophagy. Accumulating evidence proves that sevoflurane exposure in young age could lead to cell toxicity by triggering the mitochondrial pathway of apoptosis, inducing the abnormalities of mitochondrial dynamics and mitophagy. In the present review, we focus on the current understanding of mitochondrial apoptosis, dynamics and mitophagy in cell function, the implications for cell toxicity in response to sevoflurane, and their underlying potential mechanisms.

1. Introduction

Sevoflurane is one of the most commonly used inhaled anesthetics in clinical practice for nearly 30 years [1]. It has a quick onset of action and short recovery time from anesthesia. And sevoflurane could keep hemodynamics stable. In addition, the inhalation of sevoflurane shows little irritation to the respiratory tract with a special aromatic odor. Its coefficient of blood: gas partition is only 0.69 [2, 3]. Therefore, sevoflurane has been widely administered in pediatric surgeries to maintain the general anesthesia. However, in recent years, the researches based on clinical trials and laboratory experiments have indicated that general anesthesia by inhalation of sevoflurane for children could trigger irreversible neural damage [4–6].

Mitochondria which are semiautonomous and double-membrane organelles provide the most proportion of energy for cell living through citric acid cycle and oxidative phosphorylation. Neural cells are enriched with mitochondria. Neural cells require to consume a lot of energy in order to maintain their normal functions [7]. Therefore, it is no doubt that mitochondrial abnormality inevitably leads to neural dysfunction. It has been demonstrated that mitochondria are the targets of sevoflurane-induced neural toxicity [8, 9]. Sevoflurane exposure induces neural toxicity by initiating mitochondrial apoptotic pathway, disturbing the balance of mitochondrial dynamics and mitophagy. This review summarizes the recent advances in our understanding of mitochondrial apoptosis, dynamics and mitophagy in cell function, the implications for cell toxicity in response to sevoflurane, and their underlying potential mechanisms.

2. Apoptosis in Neural Cells by Sevoflurane through Mitochondrial Pathway

2.1. Mitochondrial Pathway of Apoptosis. The mitochondrial pathway of apoptosis, also called the intrinsic apoptotic pathway, is mainly regulated by the B cell lymphoma 2 (Bcl-2) protein family [10]. The Bcl-2 family is divided into three functional groups. Antiapoptotic Bcl-2 proteins include Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and A1/Bfl-1 [11]. They are critical for cell survival [12]. The proapoptotic members are divided into two classes. The effector molecules Bax and Bak are
required for mitochondrial outer membrane permeabilisation (MOMP) [13]. The BH3-only proteins consist of Bim, Bid, Puma, Bmf, Bik, Bad, Noxa, and Hrk [14, 15]. They initiate apoptosis by activation of Bax and Bak, either inhibiting the prosurvival Bcl-2 family proteins [16]. The electron transport chain of the mitochondria having three complexes: complexes I, III, and IV, could function as proton pumps to produce an electrochemical potential of approximately around -150 mV across the inner membrane of mitochondria [17]. This is the formation of mitochondrial membrane potential (MMP) which is treated as the core indicator of the mitochondrial fundamental function [18]. The energy stored in the MMP is used to synthesize ATP and to maintain the different Ca²⁺ concentration across the mitochondrial matrix and the cytosol [17, 19, 20]. Various apoptotic stimuli activate Bak and Bax. The activation of Bak and Bax induces the opening of mitochondrial permeability transition pore (mPTP), subsequently increasing MOMP [21–23]. The increase of MOMP leads to the release of cytochrome c from the mitochondria into the cytoplasm. In the cytosol, cytochrome c interacts with apoptotic protease activation factor 1, which binds to and activates caspase 9 and, in turn, its downstream caspase 3, resulting in apoptosis [10, 24].

2.2. Sevoflurane Activates Mitochondrial Pathway of Apoptosis to Induce Neural Cell Injury. It has been demonstrated that sevoflurane could induce neural cell apoptosis by the activation of mitochondrial pathway [25–34]. The sevoflurane treatment downregulates the expression of Bcl-2 and upregulates the expression of Bax, thereby inducing the loss of MMP, stimulating the release of cytochrome c from mitochondria and the activation of caspase 3. Inevitably, neuroapoptosis occurs through the mitochondrial pathway of apoptosis. As early as 2001, Kudo and his colleagues first observed that high concentration of inhaled anesthetic decreased MMP and increased the release of lactate dehydrogenase release (LDH) causing irreversible damage to the cocultured primary neuronal-glial cells [35]. Later, Moe et al. showed that 1 or 2 minimum alveolar concentration (MAC) of sevoflurane similarly with the concentrations used in clinic gradually depolarized the isolated rat presynaptic MMP [36–38]. This depolarization was only partly blocked by the ATP-sensitive potassium channel inhibitor 5-hydroxydecanoate but enhanced when the complex IV of the mitochondrial electron transport chain was inhibited, indicating that the sevoflurane-induced depolarization might be related to ATP synthase reversal [36, 37]. Furthermore, the same results are also obtained in the isolated synaptosomes from human temporal lobe tissue [38]. Exposure of mouse cerebral cortex in the postnatal day (P) P6, P7, and P8 to sevoflurane for 2 hours causes cognitive deficiency, decrease of MMP, and ATP concentration [39]. Sevoflurane inhibits the respiration of mitochondria in human neuroglioma cells [40]. And the mitochondrial respiratory function of neonatal mice is more severely suppressed by sevoflurane to compare with the old one [41].

The increase of reactive oxygen species (ROS) level is observed by most of the experiments as a result of MMP decrease and the inhibition of mitochondrial respiratory [31–33, 39, 40, 42]. Moe et al. first reported that sevoflurane treatment slowly increased the synaptosomal Ca²⁺ level [36]. Following researchers proved that sevoflurane treatment would induce an increment of cytosolic Ca²⁺ in cultured pheochromocytoma neurosecretory cells and rat hippocampal neurons [33, 40]. Some think that the increased Ca²⁺ is from the endoplasmic reticulum (ER), for the Ca²⁺ level in ER is decreased following the sevoflurane treatment [43]. And the others believe the increased Ca²⁺ is from the membrane Ca²⁺ channel, since nimodipine can block the increase of Ca²⁺ and the dysfunction of mitochondria [33]. The increase of intracellular calcium flux and ROS level could stimulate the opening of mPTP, decrease MMP, and suppress ATP synthesis, subsequently leading to neuroapoptosis by the mitochondrial pathway [33, 44].

3. The Involvement of Mitochondrial Dynamics Imbalance in Neural Injury by Sevoflurane

3.1. Mitochondrial Dynamics and Neural Cell Function. Mitochondria are prominently dynamic organelles that are continuously going fusion and fission, known as mitochondrial dynamics [45]. The process of constantly reshaping mitochondria allows them properly in response to the ceaseless change of cellular physiological state [46]. Fused mitochondria are able to promote energy delivery from the cell periphery to the cell core, and fragmented mitochondria can be trafficked to energy-demanding regions of the cell [47, 48]. Proper distribution of fused and fragmented mitochondria is extremely important for the maintenance of synapses and dendritic spines as they are far from the cell body [49]. And according to the energy requirements and metabolic conditions of neural cells, mitochondria can constantly adjust their morphology and distribution through fusion and fission to meet neural functional demands [50]. Thus, the imbalance of mitochondrial fusion and fission inevitably leads to neural dysfunction [50]. It has been proved that mitochondrial fission is mainly regulated by dynamin-related protein 1 (Drp1) and fission, mitochondrial 1 (Fis1) [51, 52]. Drp1 is mainly localized in the cytosol, and Fis1 is anchored in the mitochondrial outer membrane [53, 54]. Upon activation, Drp1 is recruited to mitochondria by Fis1. Then, Drp1 interacts with Fis1 to mediate mitochondrial fission [55]. When endogenous Drp1 is inhibited in the primary cultured neurons, the mitochondria mainly gather in the cell body and fail to locate to the neuritis [56]. The heterozygous de novo mutations of Drp1 in humans are neonatal lethality or give rise to development delay and refractory epilepsy [57–59].

In mammals, mitochondrial fusion requires the involvement of two 85 kD GTPase isoforms, namely, mitofusin1 (Mfn1) and mitofusin2 (Mfn2), and another dynamin family 100 kD GTPase, optic atrophy 1 (Opal) [47, 60]. Mfn1 and Mfn2 are located in the outer mitochondrial membrane, which mediate outer membrane fusion [60, 61], while Opal is anchored in the inner mitochondrial membrane and facilitates inner membrane fusion [62]. Homozygous mutants of Mfn1 or Mfn2 are embryonic lethality in mouse [63]. Knockout of Mfn2 in mouse Purkinje neurons increases the
fragmented mitochondria and inhibits the distribution of mitochondria in the dendritic spines [64]. Consequently, the energy supply of the neuritis is reduced, thereby leading to neural degeneration [64]. Also, retinal ganglion cells of Opa1−/− mouse show fragmented mitochondria. And less mitochondria are found in the per micron of dendrite [65]. Human carrying mutations of Mfn2 display severe peripheral neuropathy, and the mutant Opa1 would lead to vision loss for impaired optic nerve [66–68].

3.2. The Role of Mitochondrial Dynamics in Neural Injury Induced by Sevoflurane

The effect of sevoflurane on mitochondrial dynamics is firstly studied by Amrock et al. [9]. As the neurotoxicity effect of general anesthesia is significantly dominant to young children undergoing rapid synaptogenesis and brain development [69, 70], Amrock et al. chose rat pups between P7 and P13 for studying [9]. The timeframe is considered to be the period of brain growth spurt at birth in humans [71]. Rat pups are exposed to sevoflurane [9]. It is reported that sevoflurane decreases the mitochondrial density in rat hippocampus [9]. And when the primary rat cortical neurons are treated with sevoflurane, fragmental mitochondria show mostly in the cell body of neurons and little is found in the neurites, indicating that sevoflurane could disturb the mitochondrial morphology and distribution [72]. Unfortunately, the authors have not detected the expression changes of the key regulators of mitochondria dynamic after treating with sevoflurane. Following the study of Amrock et al., some researches focus on the expression changes of mitochondrial fission and fusion proteins. These researches found that sevoflurane induces the upregulation of Drp1 and Fis1 and the downregulation of Mfn2 and Opa1 [26, 27, 40, 73]. It seems that sevoflurane could disturb the balance of mitochondrial dynamics through promoting mitochondrial fission and suppressing mitochondrial fusion, thereby inducing the damage of neural cells.

4. The Effects of Sevoflurane on Mitophagy in Neural Cells

4.1. Mitophagy and Neural Cells

Autophagy is a special kind of physiological process that can degrade unnecessary or damaged cytosolic components through lysosome [74]. Mitophagy refers to the degradation of the dysfunctional or superfluous mitochondria by autophagy mechanism [75]. Therefore, mitophagy plays a key role in maintaining mitochondrial quality control and metabolic balance [76].

Mitophagy is a selective process. Dysfunctional or superfluous mitochondria need to be recognized and engulfed through microtubule-associated protein 1 light chain 3 alpha (LC3) adaptors or LC3 receptors to form mitophagosomes [77]. The PINK1 (PTEN-induced putative kinase 1)/Parkin-dependent pathway is the most well-defined LC3 adaptor

![Figure 1: Sevoflurane treatment induces the abnormality of mitochondrial pathway of apoptosis, mitochondrial dynamics, and mitophagy. Sevoflurane treatment could induce the reduction of MMP, the decrease of Bcl-2 expression, and the elevation of Bax expression, thereby initiating the mitochondrial pathway of apoptosis. Also, sevoflurane treatment could disturb mitochondrial dynamic by increasing Drp1 expression and reducing Mfn2. And the changes of LC3I/II ratio, p62, PINK1, Parkin, and Bnip3 expression induced by sevoflurane indicate that sevoflurane could disturb mitophagy.](image-url)
pathway [78]. In the pathway, following MMP collapse due to damage stimuli, PINK1 is stabilized at the outer mitochondrial membrane, which recruits Parkin to the mitochondrial surface [79, 80]. Parkin on the mitochondrial surface polyubiquitinates other outer membrane proteins [81]. Then, polyubiquitin chains are phosphorylated by PINK1. The autophagy adaptor protein p62 discerns the phosphorylated poly-Ub signal and directly binds to LC3 to initiate the formation of mitophagosome and the mitochondrial degradation [82]. BCL2/adenosine E1B 19 kDa interacting protein 3 (Bnip3) is one of the LC3 receptors [83]. It can interact directly with LC3 through the LC3-interacting region (LIR) to recognize and engulf damaged mitochondria to mitophagosomes [81, 84]. Mutant PINK1 and Parkin account for less than 5% of familial Parkinson’s disease [85, 86]. The number of mitochondria is increased as the expression of PINK1 is diminished in the hippocampal neurons of the Alzheimer disease mouse model [87]. Abnormally enlarged mitochondria are observed in the iPSC-derived midbrain neurons from the Parkin mutant patients, which are more vulnerable to mitochondrial stress [88].

4.2. The Effect of Mitophagy on Neural Injury upon Sevoflurane. Accumulating evidence indicates that sevoflurane can interfere mitophagy to induce neural injury. It is reported that treatment of neonatal rat hippocampus with sevoflurane increases the proportion of LC3II and the expression level of p62 [26, 40, 42, 89]. The expression of PINK1 and Parkin is upregulated by sevoflurane in the hippocampal neurons of adult female mouse. Xia et al. identified that sevoflurane downregulates the expression of miR145 leading to increased Bnip3 level in neuronal cell lines [29]. The elevated expression of Bnip3 by sevoflurane was further confirmed by Zheng et al. in the mouse hippocampus [73]. These data indicate that sevoflurane could stimulate mitophagy [29, 42, 73]. However, Chen et al. reported that sevoflurane decreases the expression of Parkin in the mitochondria of aged rat hippocampus, and overexpression of Parkin or pretreatment with rapamycin could rescue the impairment of mitophagy induced by sevoflurane, suggesting that sevoflurane treatment blocks the activation of mitophagy [40].

5. Conclusion

In summary, increasing evidence suggests that sevoflurane could induce neural injury by mitochondrial apoptotic pathway. Also, sevoflurane is able to interfere mitochondrial dynamics and mitophagy to promote neural damage (Figure 1). The great progress has significantly improved our understanding of the mechanisms of sevoflurane-induced neural injury. However, the processes of mitochondrial dynamics and mitophagy are very complex. And there is a cross-talk/interplay among the mitochondrial pathway of apoptosis, mitochondrial dynamics, and mitophagy. Therefore, further studies need to be done to explore the regulatory effects of sevoflurane on the complex processes and the cross-talk/interplay. In addition, some studies have suggested that neural injury induced by sevoflurane is due to insufficient mitophagy. In contrast, some studies have indicated that neural injury triggered by sevoflurane might be the result of excessive mitophagy. Why does mitophagy have inconsistent changes in sevoflurane-treated hippocampus damage? The resolution of these issues will help people deeply understand the mechanisms of sevoflurane-induced neural injury and provide theoretical supports for the therapy of sevoflurane-induced neural injury.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

Ming Li and Jiguang Guo contributed equally to this work.

Acknowledgments

This work was supported by the President Foundation of Hebei University (XZJJ201919) and National Natural Science Foundation of China (81970246).

References

[1] N. J. O’Keefe and T. E. Healy, “The role of new anesthetic agents,” Pharmacology & Therapeutics, vol. 84, no. 3, pp. 233–248, 1999.
[2] T. Li, Z. Huang, X. Wang, J. Zou, and S. Tan, “Role of the GABAA receptors in the long-term cognitive impairments caused by neonatal sevoflurane exposure,” Reviews in the Neurosciences, vol. 30, no. 8, pp. 869–879, 2019.
[3] D. P. Strum and E. I. Eger 2nd, “Partition coefficients for sevoflurane in human blood, saline, and olive oil,” Anesthesia and Analgesia, vol. 66, no. 7, pp. 654–656, 1987.
[4] L. Vutskits and Z. Xie, “Lasting impact of general anaesthesia on the brain: mechanisms and relevance,” Nature Reviews. Neuroscience, vol. 17, no. 11, pp. 705–717, 2016.
[5] B. A. Rappaport, S. Suresh, S. Hertz, A. S. Evers, and B. A. Orser, “Anesthetic neurotoxicity — clinical implications of animal models,” The New England Journal of Medicine, vol. 372, no. 9, pp. 796–797, 2015.
[6] K. Servick, “Researchers struggle to gauge risks of childhood anesthesia,” Science, vol. 346, no. 6214, pp. 1161-1162, 2014.
[7] J. V. Cabral-Costa and A. J. Kowaltowski, “Neurological disorders and mitochondria,” Molecular Aspects of Medicine, vol. 71, p. 100826, 2020.
[8] Y. Wang, M. Qian, Y. Qu et al., “Genome-wide screen of the hippocampus in aged rats identifies mitochondria, metabolism and aging processes implicated in sevoflurane anesthesia,” Frontiers in Aging Neuroscience, vol. 12, p. 122, 2020.
[9] L. G. Amrock, M. L. Starner, K. L. Murphy, and M. G. Baxter, “Long-term effects of single or multiple neonatal sevoflurane exposures on rat hippocampal ultrastructure,” Anesthesiology, vol. 122, no. 1, pp. 87–95, 2015.
[10] F. J. Bock and S. W. G. Tait, "Mitochondria as multifaceted regulators of cell death," *Nature Reviews. Molecular Cell Biology*, vol. 21, no. 2, pp. 85–100, 2020.

[11] E. Ottina, D. Tischner, M. J. Herold, and A. Villunger, "A1/Bfl-1 in leukocyte development and cell death," *Experimental Cell Research*, vol. 318, no. 11, pp. 1291–1303, 2012.

[12] R. J. Youle and A. Strasser, "The BCL-2 family protein: opposing activities that mediate cell death," *Nature Reviews. Molecular Cell Biology*, vol. 9, no. 1, pp. 47–59, 2008.

[13] R. Singh, A. Letai, and K. Sarosiek, "Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins," *Nature Reviews. Molecular Cell Biology*, vol. 20, no. 3, pp. 175–193, 2019.

[14] M. Kvansakul and M. G. Hinds, "Structural biology of the Bcl-2 family and its mimicry by viral proteins," *Cell Death & Disease*, vol. 4, no. 11, article e909, 2013.

[15] C. Lanave, M. Santamaria, and C. Saccone, "Comparative genomics: the evolutionary history of the Bcl-2 family," *Gene*, vol. 333, pp. 71–79, 2004.

[16] K. McArthur and B. T. Kile, "Apoptotic caspases: multiple or mistaken identities?", *Trends in Cell Biology*, vol. 28, no. 6, pp. 475–493, 2018.

[17] D. G. Nicholls and S. L. Budd, "Mitochondria and neuronal survival," *Physiological Reviews*, vol. 80, no. 1, pp. 315–360, 2000.

[18] D. G. Nicholls, "Bioenergetics and transmitter release in the isolated nerve terminal," *Neurochemical Research*, vol. 28, no. 10, pp. 1433–1441, 2003.

[19] R. van Belzen, A. B. Kotlyar, N. Moon, W. R. Dunham, and S. P. J. Albracht, "The iron-sulfur clusters 2 and ubisemiquinone radicals of NADH:ubiquinone oxidoreductase are involved in energy coupling in submitochondrial particles†," *Biochemistry*, vol. 36, no. 4, pp. 886–893, 1997.

[20] A. Boveris, N. Oshino, and B. Chance, "The cellular production of hydrogen peroxide," *The Biochemical Journal*, vol. 128, no. 3, pp. 617–630, 1972.

[21] M. Narita, S. Shimizu, T. Ito et al., "Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 95, no. 25, pp. 14681–14686, 1998.

[22] I. Marzo, C. Brenner, N. Zamzami et al., "Bax and adenosine nucleotide translocator cooperate in the mitochondrial control of apoptosis," *Science*, vol. 281, no. 5385, pp. 2027–2031, 1998.

[23] J. Karch, J. Q. Kwong, A. R. Burr et al., "Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice,"* eLife*, vol. 2, article e00772, 2013.

[24] M. C. Wei, W. X. Zong, E. H. Cheng et al., "Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death," *Science*, vol. 292, no. 5517, pp. 727–730, 2001.

[25] M. Xu, J. Feng, M. Tang et al., "Blocking retrograde axonal transport of autophagosomes contributes to sevoflurane-induced neuron apoptosis in APP/PS1 mice," *Acta Neurologica Belgica*, 2020.

[26] Y. Shan, S. Sun, F. Yang, N. Shang, and H. Liu, "Dexmedetomidine protects the developing rat brain against the neurotoxicity wrought by sevoflurane: role of autophagy and Drp1-Bax signaling," *Drug Design, Development and Therapy*, vol. Volume 12, pp. 3617–3624, 2018.

[27] F. Yang, Y. Shan, Z. Tang et al., "The neuroprotective effect of hemin and the related mechanism in sevoflurane exposed neonatal rats," *Frontiers in Neuroscience*, vol. 13, p. 537, 2019.

[28] X. Zhou, D. Xian, J. Xia et al., "MicroRNA-34c is regulated by p53 and is involved in sevoflurane-induced apoptosis in the developing rat brain potentially via the mitochondrial pathway," *Molecular Medicine Reports*, vol. 15, no. 4, pp. 2204–2212, 2017.

[29] H. Xia, Y. Li, G. Zhu, and X. Zhang, "Activation of mitochondria apoptotic pathway is involved in the sevoflurane-induced hippocampal neuronal HT22 cells toxicity through miR-145/Bipn3 axis," *International Journal of Clinical and Experimental Pathology*, vol. 10, no. 11, pp. 10873–10882, 2017.

[30] X. Chen, X. Zhou, D. Lu et al., "Aberantly expressed long non-coding RNAs are involved in sevoflurane-induced developing hippocampal neuronal apoptosis: a microarray related study," *Metabolic Brain Disease*, vol. 31, no. 5, pp. 1031–1040, 2016.

[31] Y. Cheng, Y. Jiang, L. Zhang et al., "Mesenchymal stromal cells attenuate sevoflurane-induced apoptosis in human neuroglioma H4 cells," *BMC Anesthesiology*, vol. 18, no. 1, p. 84, 2018.

[32] Y. Zhang, Y. Li, X. Han, X. Dong, X. Yan, and Q. Xing, "Elevenased expression of DJ-1 (encoded by the human PARK7 gene) protects neuronal cells from sevoflurane-induced neurotoxicity," *Cell Stress & Chaperones*, vol. 23, no. 5, pp. 967–974, 2018.

[33] X. Zhu, Y. Yao, M. Guo et al., "Sevoflurane increases intracellular calcium to induce mitochondrial injury and neuroapoptosis," *Toxicology Letters*, vol. 336, pp. 11–20, 2021.

[34] M. Satomo, Y. Satoh, K. Terui et al., "Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice," *Anesthesiology*, vol. 110, no. 3, pp. 628–637, 2009.

[35] M. Kudo, M. Aono, Y. Lee, G. Massey, R. D. Pearlstein, and D. S. Warner, "Effects of volatile anesthetics on N-methyl-d-aspartate excitotoxicity in primary rat neuronal-glial cultures," *Anesthesiology*, vol. 95, no. 3, pp. 756–765, 2001.

[36] M. C. Moe, R. Bains, M. L. Vinje, G. A. Larsen, E. B. Kampenhau, and J. Berg-Johnsen, "Sevoflurane depolarizes presynaptic mitochondria in the central nervous system," *Acta Anaesthesiologica Scandinavica*, vol. 48, no. 5, pp. 562–568, 2004.

[37] R. Bains, M. C. Moe, G. A. Larsen, J. Berg-Johnsen, and M. L. Vinje, "Volatile anesthetics depolarize neural mitochondria by inhibition of the electron transport chain," *Acta Anaesthesiologica Scandinavica*, vol. 50, no. 5, pp. 572–579, 2006.

[38] R. Bains, M. C. Moe, M. L. Vinje, and J. Berg-Johnsen, "Sevoflurane and propofol depolarize mitochondria in rat and human cerebrocortical synaptosomes by different mechanisms," *Acta Anaesthesiologica Scandinavica*, vol. 53, no. 10, pp. 1354–1360, 2009.

[39] G. Xu, H. Lu, Y. Dong et al., "Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice," *British Journal of Anaesthesia*, vol. 119, no. 3, pp. 481–491, 2017.

[40] Y. Chen, P. Zhang, X. Lin et al., "Mitophagy impairment is involved in sevoflurane-induced cognitive dysfunction in aged rats," *Aging*, vol. 12, no. 17, pp. 17235–17256, 2020.

[41] Y. Yu, Y. Yang, H. Tan et al., "Tau contributes to sevoflurane-induced neurocognitive impairment in neonatal mice," *Anesthesiology*, vol. 133, no. 3, pp. 595–610, 2020.

[42] J.-S. Ye, L. Chen, Y.-Y. Lu, S.-Q. Lei, M. Peng, and Z.-Y. Xia, "Honokiol-mediated mitophagy ameliorates postoperative
cognitive impairment induced by surgery/sevoflurane via inhibiting the activation of NLRP3 inflammasome in the hippocampus,” *Oxidative Medicine and Cellular Longevity*, vol. 2019, Article ID 8636918, 13 pages, 2019.

[43] H. Yang, G. Liang, B. J. Hawkins, M. Madesh, A. Pierwola, and H. Wei, “Inhalational anesthetics induce cell damage by disruption of intracellular calcium homeostasis with different potencies,” *Anesthesiology*, vol. 109, no. 2, pp. 243–250, 2008.

[44] Y. Zhang, P. Lu, F. Liang et al., “Cyclophilin D contributes to anesthesia neurotoxicity in the developing brain,” *Frontiers in Cell and Development Biology*, vol. 7, p. 396, 2020.

[45] S. A. Detmer and D. C. Chan, “Functions and dysfunctions of mitochondrial dynamics,” *Nature Reviews. Molecular Cell Biology*, vol. 8, no. 11, pp. 870–879, 2007.

[46] D. C. Chan, “Mitochondrial dynamics and its involvement in disease,” *Annual Review of Pathology*, vol. 15, no. 1, pp. 235–259, 2020.

[47] J. Hom and S. S. Sheu, “Morphological dynamics of mitochondria – A special emphasis on cardiac muscle cells,” *Journal of Molecular and Cellular Cardiology*, vol. 46, no. 6, pp. 811–820, 2009.

[48] V. P. Skulachev, “Mitochondrial filaments and clusters as intracellular power-transmitting cables,” *Trends in Biochemical Sciences*, vol. 26, no. 1, pp. 23–29, 2001.

[49] A. Boscolo, D. Milanovic, J. A. Starr et al., “Early exposure to general anesthesia disturbs mitochondrial fission and fusion in the developing rat brain,” *Anesthesiology*, vol. 118, no. 5, pp. 1086–1097, 2013.

[50] K. Okamoto and J. M. Shaw, “Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes,” *Annual Review of Genetics*, vol. 39, no. 1, pp. 503–536, 2005.

[51] Y. Yoon, E. W. Krueger, B. J. Oswald, and M. A. McNiven, “The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1,” *Molecular and Cellular Biology*, vol. 23, no. 15, pp. 5409–5420, 2003.

[52] E. Smirnova, L. Gripparic, D. L. Shurland, and A. M. van der Bliek, “Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells,” *Molecular Biology of the Cell*, vol. 12, no. 8, pp. 2245–2256, 2001.

[53] D. I. James, P. A. Parone, Y. Mattenberger, and J. C. Martinou, “hFis1, a Novel Component of the Mammalian Mitochondrial Fission Machinery,” *The Journal of Biological Chemistry*, vol. 278, no. 38, pp. 36373–36379, 2003.

[54] H. T. Bui and J. M. Shaw, “Dynamin assembly strategies and adaptor proteins in mitochondrial fission,” *Current Biology*, vol. 23, no. 19, pp. R891–R899, 2013.

[55] S. B. Ong and A. B. Gustafsson, “New roles for mitochondria in cell death in the reperfused myocardium,” *Cardiovascular Research*, vol. 94, no. 2, pp. 190–196, 2012.

[56] N. Ishihara, M. Nomura, A. Jofuku et al., “Mitochondrial fission factor Drp1 is essential for embryonic development and synaptic formation in mice,” *Nature Cell Biology*, vol. 11, no. 8, pp. 958–966, 2009.

[57] H. R. Waterham, J. Koster, C. W. T. van Roermund, P. A. W. Moojer, R. J. A. Wanders, and J. V. Leonard, “A lethal defect of mitochondrial and peroxisomal fission,” *The New England Journal of Medicine*, vol. 356, no. 17, pp. 1736–1741, 2007.

[58] S. von Spiczak, K. L. Hellbig, D. N. Shinde et al., “DNM1encephalopathy,” *Neurology*, vol. 89, no. 4, pp. 385–394, 2017.

[59] J. R. Vanstone, A. M. Smith, S. McBride et al., “__DNM1L__–related mitochondrial fission defect presenting as refractory epilepsy,” *European Journal of Human Genetics*, vol. 24, no. 7, pp. 1084–1088, 2016.

[60] A. Santel and M. T. Fuller, “Control of mitochondrial morphology by a human mitofusin,” *Journal of Cell Science*, vol. 114, Part 5, pp. 867–874, 2001.

[61] H. Chen, A. Chomyn, and D. C. Chan, “Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction,” *The Journal of Biological Chemistry*, vol. 280, no. 28, pp. 26185–26192, 2005.

[62] S. Elhes, I. Raschke, G. Mancuso et al., “Regulation of OPA1 processing and mitochondrial fusion by m-AIF protease isoenzymes and OMA1,” *The Journal of Cell Biology*, vol. 187, no. 7, pp. 1023–1036, 2009.

[63] H. Chen, S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan, “Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development,” *The Journal of Cell Biology*, vol. 160, no. 2, pp. 189–200, 2003.

[64] H. Chen, J. M. McCaffery, and D. C. Chan, “Mitochondrial fusion protects against neurodegeneration in the cerebellum,” *Cell*, vol. 130, no. 3, pp. 548–562, 2007.

[65] P. A. Williams, M. Piechota, C. von Ruhlend, E. Taylor, J. E. Morgan, and M. Votruba, “Opal1 is essential for retinal ganglion cell synaptic architecture and connectivity,” *Brain*, vol. 135, no. 2, pp. 493–505, 2012.

[66] S. L. Sawyer, A. Cheuk-Him Ng, A. M. Innes et al., “Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy,” *Human Molecular Genetics*, vol. 24, no. 18, pp. 5109–5114, 2015.

[67] R. D. Bo, M. Moggio, M. Rango et al., “Mutated mitofusin 2 presents with intrafamilial variability and brain mitochondrial dysfunction,” *Neurology*, vol. 71, no. 24, pp. 1959–1966, 2008.

[68] C. Alexander, M. Votruba, U. E. A. Pesch et al., “OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28,” *Nature Genetics*, vol. 26, no. 2, pp. 211–215, 2000.

[69] L. Vutskits, “General anesthesia,” *Anesthesia and Analgesia*, vol. 115, no. 5, pp. 1174–1182, 2012.

[70] R. T. Wilder, R. P. Flick, J. Sprung et al., “Early exposure to anesthesia and learning disabilities in a population-based birth cohort,” *Anesthesiology*, vol. 110, no. 4, pp. 796–804, 2009.

[71] J. Dobbing and J. Sands, “Comparative aspects of the brain growth spurt,” *Early Human Development*, vol. 3, no. 1, pp. 79–83, 1979.

[72] F. Xu, R. Armstrong, D. Urrego et al., “The mitochondrial division inhibitor Mdivi-1 rescues mammalian neurons from anesthetic-induced cytotoxicity,” *Molecular Brain*, vol. 9, no. 1, p. 35, 2016.

[73] F. Zheng, P. Fang, J. Chang et al., “Methylene blue protects against sevoflurane-induced cognitive dysfunction by suppressing Drp1 deSUMOylation in aged mice,” *Neurochemical Research*, vol. 45, no. 4, pp. 956–963, 2020.

[74] M. Russo and G. L. Russo, “Autophagy inducers in cancer,” *Biochemical Pharmacology*, vol. 153, pp. 51–61, 2018.

[75] K. Palikaras, E. Lionaki, and N. Tavernarakis, “Mechanisms of mitophagy in cellular homeostasis, physiology and pathology,” *Nature Cell Biology*, vol. 20, no. 9, pp. 1013–1022, 2018.
G. Ashraf and T. L. Schwarz, "The pathways of mitophagy for quality control and clearance of mitochondria," *Cell Death and Differentiation*, vol. 20, no. 1, pp. 31–42, 2013.

T. Saito and J. Sadoshima, "Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart," *Circulation Research*, vol. 116, no. 8, pp. 1477–1490, 2015.

S. Tan and E. Wong, "Mitophagy transcriptome: mechanistic insights into polyphenol-mediated mitophagy," *Oxidative Medicine and Cellular Longevity*, vol. 2017, Article ID 9028435, 13 pages, 2017.

A. Kazlauskaite, V. Kelly, C. Johnson et al., "Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity," *Open Biology*, vol. 4, no. 3, p. 130213, 2014.

T. R. Caulfield, F. C. Fiesel, E. L. Moussaud-Lamodière, D. F. A. R. Dourado, S. C. Flores, and W. Springer, "Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin," *PLoS Comput Biol*, vol. 10, no. 11, article e1003935, 2014.

E. M. Fivenson, S. Lautrup, N. Sun et al., "Mitophagy in neurodegeneration and aging," *Neurochemistry International*, vol. 109, pp. 202–209, 2017.

W. Xu, U. Ocak, L. Gao et al., "Selective autophagy as a therapeutic target for neurological diseases," *Cellular and Molecular Life Sciences*, 2020.

S. M. Yoo and Y. K. Jung, "A molecular approach to mitophagy and mitochondrial dynamics," *Molecules and Cells*, vol. 41, no. 1, pp. 18–26, 2018.

A. Hamacher-Brady and N. R. Brady, "Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy," *Cellular and Molecular Life Sciences*, vol. 73, no. 4, pp. 775–795, 2016.

T. Kitada, S. Asakawa, N. Hattori et al., "Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism," *Nature*, vol. 392, no. 6676, pp. 605–608, 1998.

E. M. Valente, P. M. Abou-Sleiman, V. Caputo et al., "Hereditary early-onset Parkinson’s disease caused by mutations in PINK1," *Science*, vol. 304, no. 5674, pp. 1158–1160, 2004.

M. Manczak, R. Kandimalla, X. Yin, and P. H. Reddy, "Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer’s disease," *Human Molecular Genetics*, vol. 27, no. 8, pp. 1332–1342, 2018.

S. Y. Chung, S. Kishinevsky, J. R. Mazzulli et al., "Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation," *Stem Cell Reports*, vol. 7, no. 4, pp. 664–677, 2016.

L. Xu, J. Shen, L. Yu, J. Sun, and M. Yan, "Autophagy is involved in sevoﬂurane-induced developmental neurotoxicity in the developing rat brain," *Brain Research Bulletin*, vol. 140, pp. 226–232, 2018.