Not that young: combining plastid phylogenomic, plate tectonic and fossil evidence indicates a Palaeogene diversification of Cycadaceae

Jian Liu1,2,* , Anders J. Lindstrom3,*, Thomas E. Marler4 and Xun Gong1,2,5,*

1CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China, 2Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China, 3Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, Bangsalae, Pattaya, Chonburi 20250, Thailand, 4Western Pacific Tropical Research Center, University of Guam, UOG Station, Mangilao, GU 96923, USA and 5University of Chinese Academy of Sciences, Beijing 100049, China

* For correspondence. Email liujian@mail.kib.ac.cn, ajlindstrom71@gmail.com or gongxun@mail.kib.ac.cn

Received: 30 June 2021 Returned for revision: 30 August 2021 Editorial decision: 8 September 2021 Accepted: 10 September 2021 Electronically published: 14 September 2021

•背景和目标 Previous molecular dating studies revealed historical mass extinctions and recent radiations of extant cycads, but debates still exist between palaeobotanists and evolutionary biologists regarding the origin and evolution of Cycadaceae.

•方法 Using whole plastomic data, we revisited the phylogeny of this family and found the Palawan endemic Cycas clade was strongly related to all lineages from Southeast Eurasia, coinciding with a plate drift event occurring in the Early Oligocene. By integrating fossil and biogeographical calibrations as well as molecular data from protein-coding genes, we established different calibration schemes and tested competing evolutionary timelines of Cycadaceae.

•结果 We found recent dispersal cannot explain the distribution of Palawan Cycas, yet the scenario including the tectonic calibration yielded a mean crown age of extant Cycadaceae of ~69–43 million years ago by different tree priors, consistent with multiple Palaeogene fossils assigned to this family. Biogeographical analyses incorporating fossil distributions revealed East Asia as the ancestral area of Cycadaceae.

•结论 Our findings challenge the previously proposed Middle-Late Miocene diversification of cycads and an Indochina origin for Cycadaceae and highlight the importance of combining phylogenetic clades, tectonic events and fossils for rebuilding the evolutionary history of lineages that have undergone massive extinctions.

关键词: Cycadaceae, Cycads, origin, Palawan, Palaeogene, plastid phylogenomics.

INTRODUCTION

Establishing the evolutionary timescale for the tree of life is a central yet elusive goal of evolutionary biology (De Baets et al., 2016). The most common approach in molecular dating to calibrate a node relies on known fossil information. However, accurately dating lineages lacking appreciable or agreed fossil records remains challenging. Among alternative approaches additional to fossils or stratigraphy (Bromham and Penny, 2003; Hipsley and Müller, 2014), a less direct method of calibration cannot explain the distribution of Palawan Cycas, yet the scenario including the tectonic calibration yielded a mean crown age of extant Cycadaceae of ~69–43 million years ago by different tree priors, consistent with multiple Palaeogene fossils assigned to this family. Biogeographical analyses incorporating fossil distributions revealed East Asia as the ancestral area of Cycadaceae.

© The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Salas-Leiva et al., 2013; Condamine et al., 2015). However, this was questioned by palaeobotanists (Su et al., 2014) who implied a much earlier diversification of Cycas by arguing that multiple Palaeogene cycad fossils (Yokoyama, 1911; Krassilov, 1978; Su et al., 2014) can be assigned to the extant Cycas because of the single-vein midrib which is unique to this group (Hermsen et al., 2007). In addition, biogeographical analyses for Cycadaceae also revealed inconsistent evolutionary histories and conflicting ancestral areas (South China: Xiao and Möller, 2015; Indochina: Mankga et al., 2020), raising the necessity to revisit the origin and differentiation of this family.

Within Cycas, section Wadeae is endemic to the closely associated islands of Culion and Palawan, belonging to the Palawan microcontinent that now forms part of the Philippine archipelago (Fig. 1). The rifting of North Palawan microcontinent since the Late Eocene has been well documented in many paleogeographical studies (Almasco et al., 2000; Suzuki et al., 2000; Yumul et al., 2009; see also Fig. 1). Most terrestrial animals and plants, especially those with limited dispersal ability over ocean barriers, may have undergone vicariant speciation due to this process of plate movement, which gave rise to the ‘Palawan Arc’ hypothesis (Blackburn et al., 2010). The species from section Wadeae morphologically closely resemble those of sections Panzhihuaenses, Asiorientales and Stangerioides found in continental East Asia or along margins of the shallow sea basin of East Asia, suggesting the analogous ‘rafting Palawan’ hypothesis for the distribution of Wadeae (Tang, 2004). Although Hill (1999) recognized section Wadeae as close to section Stangerioides by cladistic analysis based on morphological data, previous phylogenetic studies based on different molecular markers generated incongruent positions of this section in Cycas (Xiao and Möller, 2015; Liu et al., 2018; Mankga et al., 2020). The clear separation between Cycas from East Asia and Palawan provides a framework to test the utility of biogeographical evidence in the molecular dating of Cycas but has not been applied in any previous study involving the dating of this genus.

Plastid phylogenomics has facilitated progress in rebuilding the timescale for the tree of life over the last decade (Moore et al., 2010; Davis et al., 2014; Li et al., 2019) and has been widely applied to resolve deep relationships of particularly calcitrant lineages, such as those that have undergone recent radiations (Ma et al., 2014; Barrett et al., 2016). In the present study, we first reconstruct the phylogenetic framework of Cycadaceae using whole plastomic data and link this phylogeny to the distribution of taxa. Then we combine palaeogeographical and fossil evidence to establish different calibration schemes, use molecular dating to estimate the ages of major phylogenetic nodes under different calibration schemes, and test their robustness among different effects. We then discuss which timeline based on calibration scenarios best explains the historical biogeography of Cycadaceae. By understanding the timescale and biogeography of extant Cycas, we aim to settle debates on the spatial and temporal origin of this group and further discuss how to better accommodate the conflicts between clock and rock using the biogeographical calibrations.

MATERIALS AND METHODS

Sampling and DNA extraction

We sampled 47 complete plastomes of Cycadaceae, covering all six sections and all major clades from a previous phylogeny with nearly complete sampling (Liu et al., 2018), with 40 newly sequenced plastomes. Additionally, we added 11 published plastomes, including all other nine genera (Zamiaceae) from Cycadales, and two Ginkgo accessions to our dataset. Sampling information and accessions of all materials used in this study can be found in Supplementary Data Table S1. Total genomic DNA was extracted from silica gel-dried materials by a modified CTAB method (Doyle, 1991).

Plastome sequencing, assembly and annotation

We used the genome skimming method (Dodsworth, 2015) to obtain the Cycas plastomes. A total of 2 Gb of sequencing data from the Illumina Hiseq Platform (Novogene, Beijing, China) were filtered for each sample and used for plastome assembly in the get_organelle pipeline (Jin et al., 2020) by using Cycas szechuanensis (NC042668) as a reference. The resulting contigs were trimmed and further edited in Bandage v.0.7.1 (Wick et al., 2015) to obtain the quadrantal structure contig.

Fig. 1. Illustration of the proposed location of the Palawan microcontinental block (red) in (A) the Early Eocene (35 Ma) and (B) Pliocene (5 Ma), based on reconstructions of the geological history of Southeast Asia (Hall, 2012). The white region denotes the deep sea. Pale yellow regions represent submarine continental margins. Blue regions indicate sea-floor spreading.
We applied both the PGA pipeline (Qu et al., 2019) and GeSeq (Tillich et al., 2017) to perform plastome annotation using C. szechuanensis as a reference. The annotations were compared, double-checked and adjusted in Geneious prime v.2020 (Kearse et al., 2012).

Phylogenetic analyses and divergence time estimation

Phylogenetic reconstructions were implemented in IQTREE v.2.1.1 (Minh et al., 2020) to infer the maximum-likelihood (ML) tree using the ultrafast bootstrap approximation method (Hoang et al., 2018) with 1000 replicates. We ran the phylogenetic analyses based on two datasets: protein-coding (PC) regions and the whole plastomic (WP) dataset.

Age estimation was conducted in the BEAST package v.2.6.1 (Bouckaert et al., 2019) based on the PC dataset. We employed three fossil calibrations from a comprehensive dating analysis of all cycads based on six fossils (Condamine et al., 2015). We did not incorporate all six fossils because our study focused only on Cycadaceae, and the remaining three fossils were used as internal calibrations of Zamiaceae. These fossils, Crossozamia chinensis (Gao and Thomas, 1989), Antarcticycas schopffi (Hermens et al., 2006) and Dioon inopinus (Hollick, 1932), are the oldest known Cycadophyta fossils, the closest relatives to extant cycads (Martínez et al., 2012), and the closest lineage to extant Dioon, respectively. Following Condamine et al. (2015), we applied these three fossils to constrain the stem (364.7–265.1 million years ago, Ma) and crown nodes (364.7–235.0 Ma) of Cycadales, and the crown of Zamiaceae (265.1–56 Ma) respectively, using the uniform prior distribution.

Our plastomic phylogeny strongly resolved the Palawan lineages as sisters to the extant lineages from South China (see Results), consistent with a vicariance event caused by tectonic movements (i.e. opening of the South China Sea; Tang, 2004). As there is no consensus on the precise time when the seafloor of the South China Sea started to spread (~37–32 Ma; Briais et al., 1993; Hsu et al., 2004) after Late Eocene to Early Oligocene, we applied a uniform prior distribution of 37–32 Ma as an internal biogeographical calibration for the split of lineages between Palawan and continental Eurasia based on the reconstruction of Cenozoic Southeast Asia (Hall, 2002), to compare its effects for age estimation.

To evaluate the influence of crown constraint in age estimation for clades of Cycadaceae, we also conducted a separate molecular dating for cross-validation by using the stratigraphic age of Cycas fushunensis fossils (47.5 ± 1 Ma) (Su et al., 2014) as a minimum constraint to the crown of extant Cycas, and the fossil age of A. schopffi to constrain the upper bound, using a uniform prior distribution (i.e. 235.0–47.5 Ma), along with the three cycad fossils above, to estimate the internal node ages.

As a result, we set three different calibration schemes: (1) combined three-fossil and tectonic events (Palawan block-split event), (2) a three-fossil calibration (internal nodes within the Cycas phylogeny unconstrained), and (3) a four-fossil calibration scheme with Cycas crown constrained (Fig. 2, insets). In each calibration scheme, we compared the performance of both the Yule and birth–death priors, because the choice of the branching process prior can have a drastic influence on clade ages (Condamine et al., 2015). We utilized a default uniform prior with a starting value of 1 for the Yule birth rate. For the birth–death prior, we also set the uniform prior as default from

![Fig. 2. Density plots of marginal posterior age distributions of crown node Cycas based on three calibration schemes (Schemes 1–3) and different tree priors (birth–death and Yule). Ages were extracted from 10 000 posterior trees from BEAST analyses. The phylograms above the density plots show the calibrated nodes (orange) of each scheme as described in the Methods.](image-url)
0 to 10^4 for the speciation rate and 0 to 1 for the relative extinction rate; starting values were 1.0 for speciation and 0.5 for relative extinction. We used the nested sampling (NS) method (Russel et al., 2019) implemented in BEAST to choose which branching process prior was favoured for each calibration scenario. We then compared the estimated marginal posterior age distribution for major internal nodes by different schemes described above. After the run, we used the ‘birthdeath’ function implemented in the R package ape (Paradis and Schliep, 2018), which fits by ML of a birth–death model to the branching times, to compute the extinction rates of the obtained maximum clade credibility (MCC) consensus trees of each scheme based on the birth–death prior.

We also evaluated the effects of using different dataset partitions, subsamples of data, clock models and tree priors in estimating the timeline of Cycas. First, we created three datasets, one with all sites from the PC dataset included (nt123: 84 675 nucleotides), one with all third codon sites removed (nt12: 56 450 nucleotides) and another with only third codon sites retained (nt3: 28 225 nucleotides). This allowed us to examine the effect of saturation at third codon positions. The recommended substitution model in BEAST analyses for the partitioned dataset was determined by PartitionFinder2 (Lanfear et al., 2017), all yielding GTR+G+I+X. We further used the PhyloMAd software (Duchene et al., 2018) to test the model adequacy and sequence saturation. Second, we drew a random subsample of 10, 20, 40 (Supplementary Data Table S2) and all 87 genes to examine how the date estimates responded to increases in the size of the dataset. Third, we used the PC dataset to examine the impacts of all four clock models available in BEAST: strict clock (SC), random local clock (RLC), and two uncorrelated relax clock models – exponential (RCE) and lognormal (RCL). We then used the NS method to choose the best-fitting clock model. Last, we also examined the effects of different tree priors (i.e. Yule and birth–death) as described above on internal age estimation. All the above analyses were run using calibration Scheme 1. We analysed the partitioned and subsampled data in BEAST using the RCL model to allow a range of optimal values for the among-lineage rate of substitution and using the birth–death prior to allow extinction, as they were revealed as the best-fit models (Table 1; Table S3). For all the above analyses, we compared the mean posterior ages and their 95% highest posterior density (HPD) intervals for major internal nodes under different effects.

For each analysis, we ran one or two repeats of 500 million generations and sampled the log every 50 000 generations to ensure it reaches a posterior effective sample size (ESS > 200) in Tracer v.1.7 (Rambaut et al., 2018). In total, 500 million to 1 billion iterations were run in BEAST for each analysis, which generated 10 000–20 000 trees by sampling the tree every 50 000 generations. The first 10–30% of trees were discarded as burn-in before generating the MCC consensus tree in TreeAnnotator (Bouckaert et al., 2019). The consensus MCC tree with estimated ages was visualized in Figtree v.1.4.4 (Rambaut et al., 2018).

Table 1. Marginal likelihood estimates of different clock models inferred by the nested sampling method in BEAST. The favoured prior is in bold type as the likelihood is greater than any other by 2SD.

Clock model	Marginal likelihood
Strick clock (Mean SD = 2.52)	Uncorrelated relax clock exponential (mean SD = 2.81)
Uncorrelated relax clock lognormal (mean SD = 2.80)	Random local clock (mean SD = 2.87)
Replicate 1	–221 370.84
Replicate 2	–221 376.71
Mean	–221 373.78
–220 012.67	–220 017.72
–220 012.61	–220 010.92
–220 016.08	–220 136.08
–220 007.23	–220 442.91
–220 009.92	–220 289.50

Ancestral area reconstruction

To examine the ancestral distribution of Cycas, we conducted ancestral area reconstruction. Combining the distribution of extant Cycas and its fossils, as well as past and current continental positions, we defined five biogeographical areas: A, East Asia, south to the Red River region; B, Indochina and India; C, Palawan and Culion islands; D, Southeast Asia islands including Australia; and E, Africa. The biogeographical history of Cycadaceae was inferred by RASP v.4 (Yu et al., 2015) using the statistical dispersal–extinction–cladogenesis (S-DEC) model (Ree and Smith, 2008), by using 1000 posterior trees derived from the BEAST analysis based on Scheme 1, given the week support on two nodes in the phylogeny (see Results).

To estimate the effect of fossils in the reconstruction of the ancestral area, we compared the inferred biogeographical history of Cycadaceae (1) by integrating the fossil distribution of C. fushunensis as sister to all extant Cycas, and (2) based on extant taxa. For the S-DEC analysis, we constrained the dispersal between some biogeographical regions using an adjacency matrix (Supplementary Data Table S4) and set equal dispersal probabilities between other regions through time. We also set the baseline rates of dispersal and local extinction to be ‘estimated’. All possible area combinations, with a maximum of two simultaneous areas, were permitted in RASP, as no Cycas species occur in more than two biogeographical areas as defined here.

RESULTS

Phylogenetic reconstruction

The plastomic phylogeny inferred by ML generated slightly conflicting topologies for some clades based on different datasets, with higher bootstrap probabilities (BP) for most clades by the WP than PC dataset (Supplementary Data Fig. S1). Therefore, the following results focus primarily on the phylogeny based on the WP dataset. Four major clades were
Molecular dating

The MCC consensus tree generated by BEAST had an identical topology to the ML tree based on the WP dataset (Supplementary Data Fig. S3). However, different calibration schemes yielded contrasting node ages for the Cycas chronogram (Table 2, Fig. 2 and Fig. S4). Under the favoured birth–death prior (Table S3), the mean crown age of Cycadaceae was estimated as 42.88 Ma (95% HPD: 57.76–33.45 Ma, node A, Table 2, Fig. 3) for Scheme 1, and 9.33 Ma (95% HPD: 15.65–3.11 Ma) for Scheme 2 (Table 2; Fig. S5a). The mean crown ages of Cycadaceae were estimated to diverge in the Late Cretaceous (69.31 Ma, Scheme 1; 87.39 Ma, Scheme 2) based on the Yule prior (Table 2; Figs S5b and S6). In Scheme 3, the divergence times between Palawan and East Asian lineages (node W in Fig. 3) were 16.86 Ma (95% HPD: 26.37–8.63 Ma) and 56.58 Ma (95% HPD: 101.44–22.47 Ma) for birth–death and Yule priors, respectively (Table 2; Fig. S7). In general, Schemes 1 and 3 showed more age distribution overlaps between birth–death and Yule priors than Scheme 2 (Fig. 2; Fig. S4). For the MCC trees inferred by the birth–death prior, higher extinction rates were estimated from Scheme 2 (0.311) than Schemes 1 (0.097) and 3 (0.120).

The PhyloMad analyses suggested a low risk in using the GTR+G+I substitution model for the datasets and indicated the third coding sites of the PC dataset had not reached saturation (Supplementary Data Fig. S8). This was consistent with the age estimation results by different data partitioning schemes, which showed little differences among different coding sites (Fig. 4A; Fig. S9). We found the estimated ages were also insensitive to the number of subsampled genes (Fig. 4B; Fig. S10). However, different clock models can lead to inconsistent results in age estimation: SC tended to have the youngest estimates; RLC exhibited the highest mean estimates; and the two relaxed clock models showed similar estimates with RCL showing narrower confidential intervals than RCE (Fig. 4C; Fig. S11). Model test results supported the RCL model as the best-fit (Table 1). For the tree prior effect, the Yule prior led to significantly older ages than the birth–death prior for all major nodes (Fig. 4D; see also Table 2 for comparisons within different schemes), and model selection results favoured the birth–death prior for all schemes (Table S3).

Biogeographical reconstruction

The DEC analyses with or without fossil integration produced incongruent results for crown Cycadaceae. The most probable ancestral area of Cycadaceae was inferred as East Asia (region A) when the fossil distribution was taken into consideration (Fig. 5), while the crown node remained ambiguous (regions AB) when only extant Cycas was used for inference (Supplementary Data Fig. S12).

DISCUSSION

Impacts of different effects on age estimation

A previous study of angiosperms suggested the evolutionary timescale was robust to large reductions in the number of genes, and to substantial changes of most models and priors (Foster et al., 2017). Here, the Cycas timescale was generally insensitive to the number of sampled genes. We also found that our estimate of the Cycas evolutionary timescale was robust to the partitioned codons. This was not surprising, as the protein-coding sequences used in this study have not reached saturation to impact the results. However, age estimates of Cycadaceae remain dependent on the choice of clock models, with SC generally leading to younger node ages than the other clock models, and RLC yielding slightly older ages. The strict clock can perform well for trees with shallow roots because of low levels of rate variation between branches (Brown and Yang, 2011), but this is not the case in analyses of most empirical datasets (Crisp et al., 2014) nor in this study. Because of use of a constant rate, the 95% credibility interval based on the SC model was found to be much narrower, as expected based on previous studies (Ho et al., 2005; Foster et al., 2017). The RLC also yielded more precise confidential intervals but slightly older ages than the relaxed clocks. Previous studies suggested that RLC would

Table 2. Summarized ages of main nodes/clades (labelled in Fig. 3) by different calibration schemes for Cycadaceae. Ranges in square brackets after the node age denote the 95% confidence interval of each node age. Ma: million years ago.

Node	Clade	Combined three-fossil and tectonics	Three-fossil Scheme 2	Four-fossil Scheme 3				
	Scheme 1		Birth–death (Ma)	Yule (Ma)	Birth–death (Ma)	Yule (Ma)	Birth–death (Ma)	Yule (Ma)
A	Cycas crown	42.88 [57.76–33.45]	69.31 [116.82–34.53]	9.33 [15.65–3.11]	87.39 [149.81–32.99]	52.62 [63.46–47.50]	93.70 [155.47–47.52]	
W	I	33.69 [36.30–32.00]	34.59 [36.97–32.23]	6.21 [10.00–1.66]	54.43 [97.56–18.82]	16.86 [26.37–8.63]	56.58 [101.44–22.47]	
B	II–IV	27.14 [39.62–14.37]	51.38 [84.61–24.54]	6.82 [10.84–2.00]	64.83 [111.91–24.54]	23.83 [40.28–10.92]	69.89 [122.89–29.39]	
C	II	17.97 [28.73–8.93]	36.47 [62.05–14.93]	4.94 [8.10–1.53]	45.58 [80.68–14.16]	14.71 [24.37–7.04]	48.07 [89.26–16.64]	
D	III–IV	14.14 [20.95–8.09]	32.96 [54.32–14.72]	3.82 [5.30–1.16]	42.92 [75.18–12.00]	11.04 [16.64–6.01]	46.02 [85.56–17.19]	
Fig. 3. Chronogram of *Cycas* reconstructed by BEAST based on 87 protein-coding regions using the birth–death prior with Scheme 1 which combined fossil (red solid circles) and geological event (red solid square) calibrations. Morphologically recognized sections are annotated within the clades. Outgroups are shaded grey. Numbers at nodes denote the posterior probabilities (PP) of the clade as inferred by BEAST, with PP = 1 not indicated. Inset is the biogeographical pattern of *Cycas* with the distribution of the clades shown by different colours. Important geographical information and three fossils described as *Cycas* (Yokoyama, 1911; Krassilov, 1978; Su et al., 2014) are indicated in the inset.
perform better for datasets with clade-specific substitution rates (e.g. Crisp et al., 2014). However, there seemed to be no significant fast or slowly evolving clades for our ingroup dataset (Supplementary Data Fig. S2). Hence, the ages inferred from the two clock models (SC and RLC) were unreliable as these models were rejected (Table 1). Both of the relaxed clock models (RCL and RCE) led to similar ages for crown Cycas (~43 vs. 47 Ma, respectively), and the RCL showed more precise estimations and was favoured by the model selection. These potential inconsistent results indicate that the suitability of clock models should be compared by using a priori criteria (see Crisp et al., 2014) or a posteriori marginal likelihood test.

Previous studies have also documented that the branching process prior can substantially impact the age estimation for lineages that have undergone massive extinction [e.g. in cycads (Condamine et al., 2015), Xanthorrhoea (Crisp et al., 2014) and Ephedra (Rydin et al., 2021)], suggesting the tree prior effects are strongly dependent on data characteristics and the underlying phylogeny (Ritchie et al., 2017). The Yule prior would, in general, be expected to yield an older age for the crown age compared to the birth–death prior because the Yule prior assumes a constant birth rate and zero extinction, resulting in nodes being more evenly spread over the tree (Rydin et al., 2021). Hence, the birth–death prior estimates more nodes toward the present compared to the past (Gernhard, 2008), leading to a ‘pull to the present’ effect. Given this, we expected contrasting results for all nodes in different schemes (see Table 2, Fig. 2 and Supplementary Data Fig. S4) during age estimation for extant Cycas based on different tree priors (i.e. Yule vs. birth–death). The long extinction history of Cycas may be more sensitive to branching process priors than the extinction history of other plant groups (Nagalingum et al., 2011; Condamine et al., 2015).

We also found that the estimated node ages of crown Cycadaeae based on the same birth–death prior and similar fossils were younger in this study (<10 Ma, Scheme 2, Table 2; Supplementary Data Fig. S5a) than all previous studies

![Fig. 4. Comparisons of the ages inferred for important Cycas nodes across different analyses, based on different (A) dataset partitions, (B) subsamples of genes, (C) clock models and (D) tree priors. All analyses use calibration Scheme 1, uniform calibration priors, birth–death tree prior, uncorrelated relaxed clock lognormal model and all protein-coding genes unless otherwise stated. Abbreviations: nt123, a dataset including all nucleotide codons; nt12, dataset including the first and second positions of nucleotide codons; nt3, dataset only including the third position of nucleotide codons; the subsampled (10, 20, 40) genes from the PC dataset are listed in Supplementary Data Table S2; SC, strict clock; RLC, random local clock; RCE, uncorrelated relaxed clock exponential; RCL, uncorrelated relaxed clock lognormal. Refer to Fig. 3 for the major nodes A–D.](image-url)
This may be caused by the nuclear markers used in previous molecular dating studies evolving faster than the plastid genes employed in the present study. Despite some differences, these results all suggested a Late Miocene diversification of Cycadaceae, which was significantly younger than the estimated ages by the Yule prior in different schemes (Fig. 2). This was especially significant for Scheme 2 of this study where only deep nodes were constrained, yielding the age of crown Cycas varying from ~10 to 87 Ma (Table 2). This variation in age estimation between different priors revealed an eight-fold difference, which was greater than the three-fold difference in general revealed in a previous comparison (Condamine et al., 2015). Considering the different sampling fractions, sequence and fossil matrices used between previous studies and our study, it is difficult to offer a reasonable explanation for why there were wider differences between Yule and birth–death priors in the present study. However, these results may suggest that the influence of tree priors on molecular dating may be greater than previously thought.

A birth–death model with homogeneous rates across time and various clades within large groups is still an oversimplified model (Condamine et al., 2015), and the extinction rates inferred by molecular phylogeny based only on extant lineages should also be interpreted cautiously (Marshall, 2017). In this study, we found the variation between different branching process priors can be mitigated by introducing internal calibrations.

Fig. 5. Biogeographical reconstruction using the statistical–dispersal–extinction–cladogenesis (S-DEC) method based on extant and fossil distributions of Cycas. The Cycas fushunensis clade is inserted as sister to the extant group, but set to being extinct after 1 million years for all 1000 randomly sampled posterior trees from BEAST. The tree is then summarized in RASP. Coloured dots at nodes represent most likely ancestral areas inferred by RASP. Inset is the geographical distribution of extant Cycadaceae (Cycas), including the five geographical regions used: A, East Asia, south to the Red River region; B, Indochina and India; C, Palawan and Culion islands; D, Southeast Asia islands including Australia; E, Africa. The two grey solid circles on the branch denote two extinct Cycas lineages (C. cretacea and C. fujiana).
Recent empirical studies by molecular dating have reaffirmed that many lineages (Cook and Crisp, 2005; Giles et al., 2017) or floras (Chen et al., 2018) may be younger than previously thought. Yet because of an erroneous ‘prior belief’ or impositions from results (Heads, 2012), clade ages inferred or interpreted from the molecular clock are often too young to have been affected by the tectonic events that coincide spatially with the clades’ distributions. This apparent discrepancy is used to discount vicariance and support a dispersal model (Heads, 2019). While any empirical study must consider the fossil records as a priority when estimating the timescale of the tree of life (and this will provide minimum ages), one should also take the phylogenetic clades and their distribution into consideration, as these are the strongest components of molecular phylogenetics (Heads, 2019). The previous phylogenetic framework of Cycadaceae revealed an ambiguous position of section Wadeae, possibly caused by the limited and incongruent molecular markers employed (Liu et al., 2018). However, our phylogeny inferred by plastid genomic data explicitly resolved the Wadeae group as sister to the Southeast Eurasian clade comprising sections Punzhiuanaeoses, Asiorientales and Stangerioides (Fig. 3). This result was consistent with the morphological resemblance among these sections (Hill, 1999) as well as the phylogeny based on nrITS orthologues (Xiao and Möller, 2015), which further conformed to the previously proposed vicariance-for-speciation hypothesis for this section (Tang, 2004). In this study, we offered different calibration schemes, aiming to compare and discuss the evolutionary histories (dispersal or vicariance) of the Wadeae group under different timelines.

The scenario that extant Cycas diversified after the Late Miocene, as indicated by all previous molecular estimates using a birth–death tree prior (e.g. Nagalingum et al., 2011; Condamine et al., 2015; Scheme 2 of this study), leaves us with a very recent divergence of the Wadeae group (6.21 Ma, 95% HPD: 10.00–1.66 Ma). Despite representing a minimum age, this timeline can largely exclude the possibility of vicariance, as the rifting of Palawan (Hall, 2002) is much older than the upper boundary of the 95% credible interval of the divergence time (10 Ma, Table 2). If the current distribution of the Wadeae group in the Palawan islands is a result of recent dispersal from South China rather than vicariance events, the group must have dispersed very quickly over large parts of the South China Sea via two possible routes. First is the South China–Southwest China–Indochina–Borneo route when Palawan and other microcontinents had collided with Borneo ~10–5 Ma (Karig et al., 1986) in its current position (Hall, 2009). However, Cycas taxa normally have large and heavy seeds with limited dispersal ability (Dehghan and Yuen, 1983; Xiao and Möller, 2015); but see the coastal Rumphiae group: Keppel et al., 2008; Liu et al., 2021), and thus the Wadeae group lacks the dispersal mechanism to migrate over such long distances within such a short time (6.21 Ma on average; Table 2; Supplementary Data Fig. S5a). The second route is a migration shortcut scenario from Taiwan via Luzon to Palawan (Esselstyn and Oliveros, 2010), although this was also unlikely due to the deep sea arc between Taiwan and Luzon islands (>1000 m, Heaney, 1985), and no emergent island has ever been present in the South China Sea (Hall, 2009). Moreover, the fact that no sister lineages of the Wadeae group were found anywhere in Indochina, Borneo and Luzon also supports the rejection of these routes.

On the other hand, a previous study suggested that crustal deformation, and environmental and climatic changes related to orogenic events probably stimulated the lineage separation and speciation of Cycadaceae through vicariance events (Xiao and Möller, 2015). The vicariance hypothesis can be favoured in explaining the occurrence of section Wadeae in Palawan, given the limited dispersal ability of this group and its strong plastid phylogenetic affinity with continental Eurasia (Fig. 3). This tectonic rifting event, which contributed to the previously proposed ‘Palawan Arc’ hypothesis (Blackburn et al., 2010; Siler et al., 2012), considers that Eurasian micro-continental blocks on the edge of the Eurasian plate carried floral and faunal assemblages when they split and rafted from the Asian mainland and collided with the Philippine mobile belt after the Late Eocene to Early Oligocene (Fig. 1). To our knowledge, we offer the first case to comprehensively demonstrate the ‘Palawan Arc’ hypothesis in plants. The date derived by combining this vicariance event in molecular dating pre-dates the crown node of Cycadaceae from the Late Miocene (Nagalingum et al., 2011; Condamine et al., 2015) to the Eocene (Fig. 3, Table 2). This is further congruent with the stratigraphic ages of multiple fossils assigned to this genus characterized by the obvious single vein midrib (Yokoyama, 1911; Krassilov, 1978; Su et al., 2014).

Previous molecular dating studies supporting post-Miocene diversification of extant cycads have questioned the validity of the Palaeogene putative Cycas fossils, due to the extensive infrageneric homoplasy found in the leaflet and cuticle characters within extant Cycas (Griffith et al., 2014). They argued because of this anatomical homoplasy, these cuticle characters cannot be used to link the fossils to the extant genus.
(Condamine et al., 2015). However, no details were given to justify their argument. On the contrary, the leaflet anatomical characters have recently been shown to reveal a substantial phylogenetic signal in extant cycad evolution at the supra-generic level (Coirio et al., 2020). Moreover, the unique single-vein midrib character (with one vascular bundle) displayed in those ‘questionable’ cycad fossils (Yokoyama, 1911; Krassilov, 1978; Su et al., 2014), as a gross morphological feature of leaflets, is believed to have evolved independently (Hermsen et al., 2007; Griffith et al., 2014) and has not been found in any cycad fossil or extant group except Cycas (Hermsen et al., 2006). Thus, the anatomical traits can be valid for generic-level identification, and it should be reasonable to assign these Palaeocene cycad fossils (Yokoyama, 1911; Krassilov, 1978; Su et al., 2014) to the genus Cycas, at least based on their shared exclusive midrib trait from a botanical and palaeobotanical perspective.

Dating methods limited to only a few fossils are highly sensitive to the assignment of calibrations and defined priors, where assignments can lead to biased substitution rate estimates (Duchêne et al., 2014), and poor fossil calibration coverage of certain lineages when more fossil calibrations are available may lead to underestimated node ages (Sauquet et al., 2012; Wang and Mao, 2016). This implies the four- or six-fossil datasets previously used for deep node calibrations to rebuild the timescale of extant cycads (Nagalingum et al., 2011; Condamine et al., 2015) remain insufficient. A growing number of convincing cycad fossils could be used for internal calibration by assigning to extant genera, such as Cycas from the Eocene (Su et al., 2014), Zamia from the Eocene-Oligocene (Erdei et al., 2018), Ceratozamia from the Oligocene (Kvaček, 2014); or very close to an extant group (e.g. Eobowenia from the Early Cretaceous, Coiro and Pott, 2017). Therefore, the radiation of cycad clades established by previous molecular studies (Nagalingum et al., 2011; Condamine et al., 2015) could have been underestimated not only because of a lack of fossil or biogeographical support, but also because they were influenced by the tree priors owing to the absence of effective internal calibrations (discussed above).

Apart from the evidence from our molecular dating based on biogeographical calibration, the post-Miocene diversification of cycads is also questioned by evidence from the long beetle–cycad evolutionary history that can be dated back to the Early Jurassic (Cai et al., 2018). A recent molecular dating study on another cycad genus, Dioon, used biogeographical calibrations and also yielded a Palaeogene age of 56 Ma for the crown node (Gutiérrez-Ortega et al., 2018), which is significantly older than that without considering tectonic events (~14 Ma) (Condamine et al., 2015). Together, these studies challenge the view that diversification of extant cycad genera took place after the Neogene (Nagalingum et al., 2011; Condamine et al., 2015).

Biogeographical implications for Cycas

The ancestral area of Cycadaceae was recently inferred as a tropical region (i.e. Indochina) (Mankga et al., 2020), overturning the conclusion from a previous study that suggested subtropical South China (Xiao and Möller, 2015). Using our plastomic phylogeny, we found the inferred ancestral area for Cycas based on the extant group is ambiguous (Supplementary Data Fig. S12), while including the fossil distribution can extend the ancestral area to a wide but explicit East Asia (Fig. 5), rejecting the Indochina origin hypothesis. The reason why the previous study proposed Indochina as the ancestral area is because of the non-monophyletic section Indosinenses revealed in their phylogeny (Mankga et al., 2020). However, their result is not supported by morphology or geography, and is incongruent with the present and all other previous phylogenies (Hill, 1999; Nagalingum et al., 2011; Condamine et al., 2015; Xiao and Möller, 2015), even the one from which they obtained the source data (Liu et al., 2018). Thus, their conclusion on this basis is unconvincing.

The monophyly of section Stangerioides was supported by morphology (Hill, 2008) and proven by the nrITS phylogeny (Xiao and Möller, 2015). However, neither the previous phylogeny (Liu et al., 2018) involving chloroplast markers nor the plastid phylogenomic tree in the present study supports the monophyly of section Stangerioides (Fig. 3; Supplementary Data Fig. S2), from which the two subclades of this section roughly diverged at the boundary of the Red River Fault, which is recognized as one of the main geological discontinuities of Southeast Asia (Leloup et al., 1995). The clear biogeographical pattern of Stangerioides revealed in this study suggests a plastid divergence triggered by this geographical barrier that formed during Oligocene to Miocene (Tapponnier et al., 1982; Leloup et al., 1995). More broadly, this geographical isolation has also promoted the plastid divergence within Cycas between Clade I and Clades II–IV (Fig. 3), as no lineage from Clade I has crossed the barrier.

Our phylogeny also suggests the close relationship between sections Cycas and Indosinenses, which revealed a sister clade of Indosinenses and some lineages from sections Cycas in the Pacific (Fig. 3). A similar close affinity was found between the Australian species and some lineages from the Indian Ocean. Previous studies have suggested that long-distance dispersal of Cycas could have shaped the current distribution of the genus (Keppel et al., 2008; Xiao and Möller, 2015; Liu et al., 2021). The lineages from many remote Pacific islands (Guam, New Britain and Vanuatu, Fig. 3) were revealed as sisters to section Indosinenses from the Indochina Peninsula, suggesting that seed dispersal via ocean currents may contribute to the gene flow over these regions (Keppel et al., 2008; Liu et al., 2021). However, more comprehensive sampling is required to unravel the specific mechanism in driving these patterns in Cycas.

CONCLUSIONS

Extant Cycadaceae is believed to have undergone recent and post-Neogene radiation in the context of long historical mass extinctions. However, our updated phylogeny based on plastomic data challenges this view by combining extra evidence from plate tectonics and the geological age of fossils assigned to Cycas. Molecular dating by integrating biogeographical calibration robustly indicates that crown Cycas dates back to the Palaeogene, and strongly supports the idea that previously described Cycas fossils represent extinct sisters of the extant group. Biogeographical analysis incorporating fossils rejects the
Indochina origin of *Cycas* and instead assigns the ancestral area of this group to a more extensive East Asia region. This study highlights the importance of combining phylogenetic clades, tectonic events and fossil records for inferring the evolutionary history of lineages that have undergone massive extinctions.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.com/aob and consist of the following. Fig. S1: Tanglegrams of maximum-likelihood trees of *Cycas* using whole plastomic data and protein-coding genes in this study. Fig. S2: Phylogram of the maximum-likelihood tree of *Cycas* based on the whole chloroplast genomic dataset using IQTREE in this study. Fig. S3: Comparison between the maximum-likelihood tree based on the whole chloroplast genomic dataset and BEAST maximum clade credibility tree based on the protein-coding region dataset of *Cycas* in this study. Fig. S4: Density plots of marginal posterior age distributions of the *Cycas* crown node based on three calibration schemes and different tree priors. Fig. S5: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by birth–death and Yule priors under calibration Scheme 2 based on 87 protein-coding genes using Bayesian analysis with an uncorrelated relaxed clock, in BEAST. Fig. S6: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by the Yule prior under calibration Scheme 1 based on 87 protein-coding genes using Bayesian analysis with an uncorrelated relaxed clock, in BEAST. Fig. S7: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by birth–death and Yule priors under calibration Scheme 3 based on 87 protein-coding genes using Bayesian analysis with an uncorrelated relaxed clock, in BEAST. Fig. S8: Corrected vs. uncorrected pairwise differences for first and second codon positions, and third codon positions for the 87-gene dataset. Fig. S9: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by the birth–death prior under calibration Scheme 1 based on the partitioned datasets with the first and second positions of the nucleotide codon, and only the third positions of the nucleotide codon, using Bayesian analysis with an uncorrelated relaxed clock, in BEAST. Fig. S10: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by the birth–death prior under calibration Scheme 1 based on a subsample of 10, 20 and 40 protein-coding genes using Bayesian analysis with an uncorrelated relaxed clock, in BEAST. Fig. S11: Chronogram depicting the *Cycas* evolutionary timescale, as estimated by the birth–death prior under calibration Scheme 1 based on 87 protein-coding genes using strict clock, random local clock and uncorrelated relaxed clock exponential models by Bayesian analysis in BEAST. Fig. S12: Biogeographical reconstruction based on the statistical–dispersal–extinction–cladogenesis method and distributions of extant *Cycas*. Table S1: Collection information, vouchers, plastomic characteristics and NCBI accessions of the *Cycas* samples used in this study. Table S2: Information of randomly subsampled protein-coding genes in each scheme used for BEAST analyses. Table S3: Marginal likelihood estimates of Yule and birth–death priors for different calibration scenarios inferred by the nested sampling method in BEAST. Table S4: Area adjacent matrix used in ancestral reconstruction analyses.

ACKNOWLEDGEMENTS

We thank two anonymous reviewers for their thoughtful comments and constructive suggestions towards improving our manuscript. We thank Corey Blanc for his linguistic assistance. J.L., A.J.L. and X.G. conceived the study; A.J.L., J.L. and T.E.M. conducted fieldwork; J.L. performed lab work and analysed the data; J.L. wrote the first draft and all authors contributed substantially to revisions and gave final approval for publication. The authors have no conflict of interest to declare.

FUNDING

This work was funded by the National Natural Science Foundation of China (31900184 & 31800191), the West Light Foundation of the Chinese Academy of Sciences (Y8246811W1), and the Natural Science Foundation of Yunnan Province (20201AT007002 & Y939521261).

LITERATURE CITED

Almasco JN, Rodolfo K, Fuller M, Frost G. 2000. Paleomagnetism of Palawan, Philippines. *Journal of Asian Earth Sciences* 18: 369–389.

De Buets K, Antonelli A, Donoghue PCJ. 2016. Tectonic blocks and molecular clocks. *Philosophical Transactions of the Royal Society B: Biological Sciences* 371: 1–12.

Barrett CF, Baker WJ, Comer JR, et al. 2016. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commeliniid monocots. *New Phytologist* 209: 855–870.

Blackburn DC, Rickford DP, Diesmos AC, Iskandar DT, Brown RM. 2010. An ancient origin for the enigmatic flat-headed frogs (Bominauritidae: *Barbouraula*) from the islands of Southeast Asia. *PLoS One* 5: e12090.

Bouckaert R, Vaughan TG, Barido-Sottani J, et al. 2019. *BEAST* 2.5: an advanced software platform for Bayesian evolutionary analysis. *PLoS Computational Biology* 15: 1–28.

Brenner ED, Stevenson DW, Twigg RW. 2003. Cycads: evolutionary innovations and the role of plant-derived neurotoxins. *Trends in Plant Science* 8: 446–452.

Braia L, Patriat F, Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. *Journal of Geophysical Research: Solid Earth* 98: 6299–6328.

Bromham L, Penny D. 2003. The modern molecular clock. *Nature Reviews. Genetics* 4: 216–224.

Brown RP, Yang Z. 2011. Rate variation and estimation of divergence times using strict and relaxed clocks. *BMCEvolutionary Biology* 11: 271.

Cai C, Escalona HE, Li L, Yin Z, Huang D, Engel MS. 2018. Beetle polination of cycads in the Mesozoic. *Current Biology* 28: 2806–2812.e1.

Chen Y, Deng T, Zhou Z, Sun L, Li H. 2018. Is the East Asian flora ancient or not? *Nature Science Review* 62: 689–706.

Coiro M, Jelmini N, Neuenschwander H, et al. 2020. Evolutionary signal of leaflet anatomy in the Zamiaceae. *Journal of Plant Sciences* 181: 697–715.

Coiro M, Pott C. 2017. *Esobienia* gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of *Bowenia? BMCEvolutionary Biology* 17: 1–14.

Condamine FL, Nagalingum NS, Marshall CR, Morlon H. 2015. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. *BMCEvolutionary Biology* 15: 1–18.

Cook LG, Crisp MD. 2005. Not so ancient: the extant crown group of *Notothfagus* represents a post-Gondwanan radiation. *Proceedings. Biological Sciences* 272: 2535–2544.

Crisp MD, Hardy NB, Cook LG. 2014. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grassstrees. *BMCEvolutionary Biology* 14: 1–17.
Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S. 2011. Recent synchronous radiation of a living fossil. Science 334: 796–799.

Paradis E, Schliep K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15: 1–12.

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10: 611–616.

Ritchie AM, Lo N, Ho SYW. 2017. The impact of the tree prior on molecular dating of data sets containing a mixture of inter- and intraspecies sampling. Systematic Biology 66: 413–425.

Russel PM, Brewer BJ, Klaere S, Bouckaert RR. 2019. Model selection and parameter inference in phylogenetics using nested sampling. Systematic Biology 68: 219–233.

Rydin C, Blokzijl R, Thureborn O, Wikström N. 2021. Node ages, relationships, and phylogenomic incongruence in an ancient gymnosperm lineage – Phylogeny of Ephedra revisited. Taxon. doi: 10.1002/tax.12493.

Said Gutiérrez-Ortega J, Yamamoto T, Vovides AP, et al. 2018. Aridification as a driver of biodiversity: a case study for the cycad genus Dioon (Zamiaceae). Annals of Botany 121: 47–60.

Salas-Leiva DE, Meerow AW, Calonje M, et al. 2013. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods. Annals of Botany 112: 1263–1278.

Sauquet H, Ho SY, Gandolfo MA, et al. 2012. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Systematic Biology 61: 289–313.

Siler CD, Oaks JR, Welton LJ, et al. 2012. Did geckos ride the Palawan raft to the Philippines? Journal of Biogeography 39: 1217–1234.

Su K, Quan C, Liu YS (Christopher). 2014. Cycas fushunensis sp. nov. (Cycadaceae) from the Eocene of northeast China. Review of Palaeobotany and Palynology 204: 43–49.

Suzuki S, Takemura S, Yumul GP, David SD, Asiedu DK. 2000. Composition and provenance of the upper Cretaceous to Eocene sandstones in Central Palawan, Philippines: constraints on the tectonic development of Palawan. Island Arc 9: 611–626.

Taponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P. 1982. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proceedings of the Royal Society B: Biological Sciences 282: 20141013.

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31: 3350–3352.

Tang W. 2004. Continental drift and the evolution of Asian Cycas. Encephalartos 80: 25–28.

Xiao LQ, Möller M. 2015. Nuclear ribosomal ITS functional paralogs resolve the phylogenetic relationships of a late-Miocene radiation cycad Cycas (Cycadaceae). PLoS One 10: 1–14.

Yokoyama M. 1911. Some Tertiary fossils from the Miike coal-field. Journal of the College of Science, Imperial University, Tokyo, Japan 27: 1–16.

Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Molecular Phylogenetics and Evolution 87: 46–49.

Yumul GP, Dimalanta CB, Marquez EJ, Queaño KL. 2009. Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: a review. Journal of Asian Earth Sciences 34: 610–623.
