A phylogeny of the Triraphideae including Habrochloa and Nematopoa (Poaceae, Chloridoideae)

Paul M. Peterson¹, Konstantin Romaschenko¹, Yolanda Herrera Arrieta²

¹ Department of Botany MRC-166, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA ² Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico

Corresponding author: Paul M. Peterson (peterson@si.edu)

Academic editor: Clifford Morden | Received 21 January 2022 | Accepted 21 March 2022 | Published 18 April 2022

Citation: Peterson PM, Romaschenko K, Herrera Arrieta Y (2022) A phylogeny of the Triraphideae including Habrochloa and Nematopoa (Poaceae, Chloridoideae). PhytoKeys 194: 123–133. https://doi.org/10.3897/phytokeys.194.80967

Abstract

To investigate the evolutionary relationships among species of the tribe Triraphideae (including two monotypic genera, Habrochloa and Nematopoa), we generated a phylogeny based on DNA sequences from nuclear ribosomal (ITS) and four plastid markers (rps16-trnK, rps16 intron, rpl32-trnL, and ndhA intron). Habrochloa and Nematopoa form a clade that is sister to Neyraudia and Triraphis. Member of the Triraphideae have paniculate inflorescences, 3-veined, marginally ciliate lemmas, usually with hairy lateral veins, that are apically bifid and awned from between a sinus. A description of the Triraphideae and key to the genera is provided, and the biogeography is discussed, likely originating in Africa.

Keywords

Classification, Habrochloa, molecular phylogenetics, Nematopoa, Neyraudia, Triraphideae, Triraphis

Introduction

Clayton and Renvoize (1986) pointed out that Neyraudia R. Br. was perhaps an ally of Triraphis R. Br. since both genera possess slender microhairs and the two have keeled lemmas that are villous on the lateral veins (Watson and Dallwitz 1992). Based on DNA sequence studies Bouchenak-Khelladi et al. (2008) were first to show strong support for Neyraudia and Triraphis as being sister in the subfamily Chloridoideae Kunth ex Beilschm. Hilu and Alice (2001) and Bouchenak-Khelladi et al.
(2008), using the same \textit{matK} sequence marker placed these two genera in the subtribe Uniolinae Clayton, now a member of tribe Eragrostideae Stapf. Another DNA sequence study supported the placement of the \textit{Neyraudia–Triraphis} clade as being sister to remaining species in the Chloridoideae and, subsequently, the tribe Triraphideae P.M. Peterson [based on subtribe Triraphidinae Stapf (1917)] was erected to include these two genera (Peterson et al. 2010). Using unpublished DNA sequence phylogenies (Peterson and Romaschenko, unpubl.), the monotypic \textit{Habrochloa} C.E. Hubb., was added to the Triraphideae in the classification of all genera within the Poaceae (Soreng et al. 2015, 2017).

Hubbard (1935, 1957a, b) transferred \textit{Triraphis longipes} Stapf & C.E. Hubb. to \textit{Crinipes} Hochst. (Arundinoideae) since it possessed a bearded callus, then later moved it to a new monotypic genus, \textit{Nematopoa} C.E. Hubb. \textit{Nematopoa} was included in the Arundinoideae by Clayton and Renvoize (1986). In more recent classifications (Soreng et al. 2015, 2017), \textit{Nematopoa longipes} (Stapf & C.E. Hubb.) C.E. Hubb. was placed as a synonym of \textit{Triraphis} as originally described. Based on unpublished DNA sequence phylogenies (Peterson and Romaschenko, unpubl.), Soreng et al. (2022) and Gallaher et al. (2022) placed \textit{Nematopoa} in the Triraphideae. Therefore, the current concept of the Triraphideae consists of four genera, \textit{Habrochloa}, \textit{Nematopoa}, \textit{Neyraudia}, and \textit{Triraphis}.

\textit{Habrochloa bullockii} C.E. Hubb. is a small, delicate, African annual (culms 10–25 cm tall) with a fringe of hairs for a ligule and delicate panicles bearing 3–5-flowered spikelets, each including awned, apically bifid, marginally ciliate lemmas that bear trigonous caryopses, whereas \textit{Nematopoa longipes} is a caespitose, southern African perennial (culms 30–80 cm tall) with ciliate, membranous ligules and capillary panicles bearing 4–7-flowered spikelets, each including awned, apically bifid, marginally ciliate lemmas (Clayton et al. 2016). \textit{Neyraudia} consists of four reedlike perennials [culms (0.8–) 1–5 m tall], a cartilaginous ridge with a line of hairs apically for a ligule, and plumose panicles bearing 3–8-flowered spikelets, each including awned, apically bifid lemmas that are ciliate marginally and along lateral veins; three species in tropical and temperate Asia and one species in Africa (Watson et al. 1992; Filgueiras and Zuloaga 1999; Guala 2003; Clayton et al. 2016). \textit{Triraphis} consists of eight annual or perennials (culms 4–140 cm tall) with membranous ligules or a fringe of hairs open or contracted (rarely spiciform) panicles bearing 4–24-flowered spikelets, each including apically 3-lobed and 3-awned lemmas that are ciliate marginally and villous along the lateral veins, and trigonous caryopses; six species in Africa, one in Australasia and one in South America (Watson et al. 1992; Nightingale and Weiller 2005; Clayton et al. 2016).

In the present phylogenetic study, using DNA sequences from nuclear ribosomal (ITS) and four plastid markers (\textit{rps16-trnK}, \textit{rps16} intron, \textit{rpl32-trnL}, and \textit{ndhA} intron), we include for the first time \textit{Habrochloa bullockii}, \textit{Nematopoa longipes}, and \textit{Neyraudia arundinacea} (L.) Henrard with two other species of \textit{Neyraudia} and five species of \textit{Triraphis}. In addition, we include a description of the Triraphideae, key to the genera in the tribe, and hypothesize its biogeographical history.
Materials and methods

Detailed methods for DNA extraction, amplification, and sequencing are given in Romaschenko et al. (2012) and Peterson et al. (2010, 2014a, b, 2015a, b, 2016). We used Geneious Prime 2020 (Kearse et al. 2012) for contig assembly of bidirectional sequences of *ndhA* intron, *rpl32-trnL, rps16* intron, *rps16-trnK* and ITS regions, and implemented in Geneious Muscle algorithm (Edgar 2004) to align the sequences and adjust the final alignment. The maximum likelihood parameters for each region were estimated with GARLI 2.0 (Zwickl 2006) and were used as priors in Bayesian calculations to infer overall phylogeny. The Bayesian tree was constructed using MrBayes v3.2.7 (Huelsenbeck and Ronquist 2001; Ronquist et al. 2012). All compatible branches were saved. The Bayesian analysis was initiated with random starting trees sampling once per 100 generations and continued until the value of the standard deviation of split sequences dropped below 0.01 indicating convergence of the chains. The effective sample size (ESS) value for all the parameters was greater than 200 and the first 25% of the sampled values were discarded. Maximum likelihood bootstrap analyses (Felsenstein 1985) were performed using GARLI with 1000 repetitions. The resulted file containing 1000 trees from the bootstrap analysis was then read into PAUP* v.5.0 (Swofford 2000) to compute the majority rule consensus tree.

Our study was designed to test relationships among species residing in four genera (*Habrochloa, Nematopoa, Neyraudia, and Triraphis*) attributed to the Triraphideae. Representative species from all remaining tribes (Centropodieae P.M. Peterson, N.P. Barker & H.P. Linder, Cynodonteae Dumort., Eragrostideae Stapf, and Zoysieae Benth.) in the Chloridoideae have been included to test the monophyly of the tribe (Peterson et al. 2010). In addition, the phylogeny includes two species from the Danthonioideae, *Danthonia compressa* Austin and *Merxmuellera drakensbergensis* (Schweick.) Conert, and one species from the Panicoideae, *Chasmanthium latifolium* (Michx.) H.O. Yates, which was used as an outgroup.

Results and discussion

Thirty-five new sequences (16%) from five species (nine individuals) are newly reported in GenBank, along with all other sequences for 48 individuals and 41 species included in this study (Table 1). Total aligned characters, numbers of sequences, proportion of invariable sites, and other parameters are noted in Table 2. The resulting plastid and ITS topologies were inspected for conflicting nodes with ≥ 95% posterior probabilities. No supported conflict was found so plastid and ITS sequences were combined.

The Bayesian tree from the combined plastid and ITS regions is well resolved (Fig. 1). Most clades have posterior probabilities equal to 1.00 and additional bootstrap values of 90% or greater. There is strong support for *Habrochloa bullockii + Nematopoa longipes* sister to a monophyletic *Neyraudia* with three individuals of *N. reynaudiana* (Kunth) Keng ex Hitchc. sister to one individual of *N. arundinacea* (type of the genus)
Table 1. Taxon voucher (collector, number, and where the specimen is housed), country of origin, and GenBank accession for DNA sequences of *rps16-trnK*, *rps16* intron, *rps16-trnL*, *ndhA* intron, and ITS regions; **bold** indicates new accession; a dash (–) indicates missing data, an asterisk (*) indicates sequences not generated in our lab.

Taxon	Voucher	Country	*rps16-trnK*	*rps16* intron	*rps16-trnL*	*ndhA* intron	ITS
1. Centropodia glauca (Nees) Cope	Davidse 6367 (US)	South Africa	JF729075	–	JF729175	JF729164	JF729164
2. Centropodia mossamedensis (Rendle) Cope	Schwerkendorf 2250 (US)	South Africa	JF729076	JF729182	JF729176	–	–
3. Chamaanthium latifolium (Michx.) H.O. Yates	Peterson 22463 (US)	USA, Maryland	GU360517	GU360438	GU359891	GU359379	GU359319
4. Chloris barbata Sw.	Peterson 22255 & Saarela (US)	Mexico, Sinaloa	GU360514	GU360435	GU359873	GU359377	GU359320
5. Cottus pappophoroides Kunth	Peterson 21463, Soreng, LaTorre & Rojas (US)	Peru, Ancash	GU360060	GU360456	GU359842	GU359363	GU359237
6. Damabonia comparsa Austin	Peterson 21986 & Levine (US)	USA, North Carolina	GU360521	GU360483	GU359865	GU359345	–
7. Eleusine indica (L.) Gaertn.	Peterson 21362, Saarela & Flores Villegas (US)	Mexico, Mexico	GU360496	GU360472	GU359797	GU359473	GU359338
8. Eleusine poitiana (Chiov.) Chiov.	Burger 2915 (US)	Ethiopia	GU360601	GU360457	GU359843	–	GU359236
9. Ellisosbha ranger (Pilg.) P.M. Peterson & N.P. Barker	Barker 960 (BOL)	Namibia	JF729079	JF729184	–	JF729166	JF345167
10. Enneapogon xeler Lehm.	Sachse 008 (MO)	South Africa, Western Cape	JQ345237	JQ345279	JQ345322	JQ345208	JQ345168
11. Entoplocamia aristulata (Hack. & Rendle) Stapf	Seydel 187 (US)	South Africa	GU360492	GU360468	GU359793	GU359469	GU359342
12. Enneapogon xeler Lehm.	Latz 13486 (MO)	Australia	JQ345238	JQ345281	JQ345323	JQ345209	JQ345169
13. Enneapogon xeler Lehm.	Peterson 14345, Soreng & Rosenberg (US)	Australia, Western Australia	GU360703	GU360288	GU359986	GU359535	GU359137
14. Gouinia virgata var. robusta J.J. Ortiz	Reeder 4714 & Reeder (US)	Mexico, Zacatecas	KF827775	KF827710	KF827639	KF827584	KF827521
15. Gymnopogon granifer Roseng., B.R. Arill. & Izag.	Peterson 16642 & Refolso-Rodriguez (US)	Peru, Apurimac	GU360581	GU360383	GU359816	GU359436	GU359200
16. Habrophyla bulbicci C.E. Hubbard	Peterson 23927b, Soreng, Romaschenko & Abaid (US)	Tanzania, Ruwuma	ON012448	ON012424	ON012427	ON012435	OM980631
17. Leptocarydion vulpiastrum (De Not.) Stapf	Peterson 24238, Soreng & Romaschenko (US)	Tanzania	KF827792	KF827725	KF827660	KF827595	KF827539
18. Leptochloa digitata (R.Br.) Domin	Risker 476 & Kerrigan (MO)	Australia, Northern Territory	JQ345246	JQ345289	JQ345331	JQ345213	JQ345178
19. Muhlenbergia japonica Steud.	Peterson 21986 & Levine (US)	South Africa	JF729074	JF729183	–	JF729165	–

Bold indicates new accession; a dash (–) indicates missing data, an asterisk (*) indicates sequences not generated in our lab.
Taxon	Voucher	Country	Accession Numbers
Nematopoa longipes (Stapf & C.E. Hubb.) C.E. Hubb.	Simon 2353	Africa	MF035992*
Neyraudia arundinacea (L.) Henrard	Peterson 23991, Soreng, Romaschenko & Abeid (US)	Tanzania, Njomba	ON012449
Neyraudia reynaudiana (Kunth) Keng ex Hitchc.	Columbus 5302 (RSA)	Tanzania, Region I	KF356392*
Neyraudia reynaudiana (Kunth) Keng ex Hitchc.	Soreng 5318, Peterson & Sun Hang (US)	China, Yunnan	–
Pappophorum pappiferum (Lam.) Kuntze	Peterson 21689, Soreng, La Torre & Rojas Fox (US)	Peru, Ancash	GU360700
Perotis indica (L.) Kuntze	Peterson 23880, Soreng & Romaschenko (US)	Tanzania, Region I	KF827801
Psilolemma jaegeri (Pilg.) S.M. Phillips	Peterson 24247, Soreng & Romaschenko (US)	Tanzania, Region I	KM011122
Sporobolus virginicus (L.) Kunth	Peterson 15683 & Soreng (US)	Chile, Region I	GU360610
Tragus berteronianus Schult.	FLSP 457 (US)	Peru	GU360616
Tridens flavus var. *chapmanii* (Small) Shinners	McColl 4138 (MO)	USA, Missouri	KF827817
Triplasis americana P. Beauv.	Kral 12065 (MO)	USA, Georgia	GU827818
Triraphis andropogonoides (Steud.) E. Phillips	Mennell s.n. (US)	South Africa, Cape Province	KF827820
Triraphis mollis R. Br.	Lazarides 046 & Palmer (US)	Australia, Uluru National Park	KF827821
Triraphis mollis R. Br.	Peterson 14344, Soreng & Rosenberg (US)	Australia, Western Australia	GU360669
Triraphis mollis R. Br.	Saarela 1608, Peterson, Soreng & Judziewicz (US)	Australia, Northern Territory	ON012450
Triraphis mollis R. Br.	Saarela 1615, Peterson, Soreng & Judziewicz (US)	Australia, Northern Territory	ON012451
Triraphis mollis R. Br.	Saarela 1648, Peterson, Soreng & Judziewicz (US)	Australia, Northern Territory	ON012452
Triraphis mollis R. Br.	Saarela 1656, Peterson, Soreng & Judziewicz (US)	Australia, Northern Territory	ON012453
Triraphis purpurea Hack.	Schweickerdt 2115 (US)	Australia, Northern Territory	ON012454
Triraphis ramosissima Hack.	Seydel 4278 (US)	Australia, Northern Territory	ON012455
Zoysia macrantha subsp. *walshii* M.E. Nightingale	Loch 435 (US)	Australia	GU360640

Phylogeny of the Triraphideae

24 *Nematobolus langiunculatus* (Nees) P.Ilg., C.E. Hubb., C.E. Hubb.
25 *Nematobolus arundinaceus* (L.) Herrard
26 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
27 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
28 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
29 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
30 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
31 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
32 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
33 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
34 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
35 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
36 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
37 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
38 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
39 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
40 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
41 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
42 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
43 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
44 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
45 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
46 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
47 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
48 *Neyraudia ciliata* (Kunth) Keng ex Hitchc.
plus a monophyletic *Triraphis*. The *Triraphis* clade includes six individuals of *T. mollis* R. Br. (type of the genus as treated by Burbidge 1946 and Peterson et al. 2022) sister to *T. schinzii* Hack. and *T. ramosissima* Hack. sister to *T. andropogonoides* (Steud.) E. Philipp + *T. purpurea* Hack. Our molecular data clearly support independent recognition of *Nematopoa* since it is sister to *Habrochloa* and not a member of the *Triraphis* clade.

Habrochloa bullockii and *Nematopoa longipes* are clearly aligned within the *Triraphideae*, and together with *Neyraudia* and *Triraphis*, share the following salient morphological features: panicle inflorescences, 3-veined, marginally ciliate lemmas, usually with hairy lateral veins, and lemmas that are apically bifid and awned from between the sinus (Watson and Dallwitz 1992; Watson et al. 1992; Peterson et al. 2010; Clayton et al. 2016). Another probable synapomorphy for these four genera is possession of panicoid-type bicellular microhairs (long, narrow basal and terminal cells; Amarsasinghe and Watson 1988). Watson et al. (1992) verified the presence of panicoid bicellular microhairs for *Habrochloa, Nematopoa*, and *Triraphis* but indicate that they are absent in *Neyraudia arundinacea*. However, Clayton and Renvoize (1986) previously indicated that *Neyraudia* possesses slender microhairs similar to those in *Triraphis*.

Based on a sample containing *Nematopoa*, *Neyraudia*, and *Triraphis*, Gallaher et al. (2022) determined the crown age (10.62 Ma) and stem age (46.76 Ma) of the *Triraphideae*. Although at least three species of *Neyraudia* include tropical and temperate Asia in their distribution, Africa is the most likely area of origin for the *Triraphideae* since all four genera in the tribe include species distributed in Africa. In addition, the *Triraphideae* shares a common ancestor with *Centropodieae*, also from Africa and temperate Asia (Peterson et al. 2011). Because more than half of the genera of Chloridoideae reside in Africa and the larger tribes, i.e., the Eragrostideae

Table 2. Characteristics of the five DNA regions (*rps16-trnK, rps16 intron, rpl32-trnL, ndhA and ITS*) and parameters used as priors in Bayesian analyses estimated with GARLI 2.0.

Characteristic	rps16-trnK	rps16 intron	rpl32-trnL	ndhA intron	Combined plastid data	ITS	Overall
Total aligned characters	887	1046	844	1146	3923	769	4692
Number of sequences	45	45	46	42	178	41	219
Number of new sequences	6 (13%)	6 (13%)	8 (17%)	7 (17%)	27 (15%)	8	(20%)
Likelihood score (-lnL)	3909.0	3405.6	3778.7	4281.4	7973.0	6	(16%)
Number of substitution types	6	6	6		6		
Model for among-sites rate variation	gamma	Gamma	gamma	gamma	gamma		
Substitution rates	1.2071	1.2951	1.0625	0.9848	–	1.1422	
2.7093	1.2876	1.7914	2.5216	–	2.6273		
0.4083	0.3028	0.3251	0.2912	1.7222	–		
1.5405	1.1547	1.4401	1.9389	0.6568	–		
2.9778	2.0746	1.5146	2.3679	4.5253	–		
1.0000	1.0000	1.0000	1.0000	1.0000	–		
Character state frequencies	0.3088	0.3779	0.3693	0.3669	–	0.2404	
0.1363	0.1226	0.1380	0.1348	0.2374	–	0.2582	
0.1462	0.1743	0.1222	0.1484	0.2641	–	0.2582	
0.4084	0.3251	0.3703	0.3497	–	–	0.2582	
Proportion of invariable sites	0.1666	0.3154	0.0413	0.2537	–	0.2547	
Gamma shape parameter (α)	2.1848	1.0833	0.9498	1.0636	–	0.9409	
and Zoysieae have centers of diversity there, Hartley and Slater (1960) earlier concluded that the subfamily probably originated on the African continent and spread to other parts of the world (Bouchenak-Khelladi et al. 2008; Peterson et al. 2007, 2010, 2011, 2014c).
Taxonomy

Triraphideae P.M. Peterson, Molec. Phylogen. Evol. 55(2): 591. 2010 ≡ Triraphidinae Stapf, Fl. Trop. Afr. 9: 22. 1917 – Type: Triraphis R. Br., Prodr. 185. 1810.

Description (emendation). Annuals or perennials, sometimes rhizomatous or reed-like (Neyraudia) culms 4–500 cm tall, erect or decumbent; ligules membranous and ciliate or a fringe of hairs; inflorescence a panicle, open to contracted, rarely spiciform; spikelets 2–15 mm long, 3–24-flowered, laterally compressed; glumes usually shorter than the spikelets or upper glume 2 × as long as adjacent lemma (Habrochloa), 0-, 1- or 3-veined, membranous, sometimes hyaline, apex entire to mucronate, rarely awned; lemmas membranous, rarely cartilaginous, 3-veined with ciliate or pilose margins, lateral veins, if present, usually hairy and sometimes extending as awns (Triraphis), apex bifid and awned from between the sinus; paleas 0.5 to as long as lemma, 2-veined; stamens 3; caryopses with adherent pericarp, often trigonous to ellipsoid, sometimes linear.

Included genera. Habrochloa, Nematopoa, Neyraudia, Triraphis.

Key to the genera

1. Lemmas 3-awned, the lateral veins extending into awns................. Triraphis
 – Lemmas 1-awned, the lateral veins never extending into awns2

2. Culms (80–) 100–500 cm tall, generally 1–1.5 cm wide at base, often woody; plants perennial, reedlike; ligules cartilaginous at base, apically with a line of hairs; panicles 30–80 cm long, plumose.. Neyraudia
 – Culms 10–80 cm tall, ≤ 3 mm wide at base, herbaceous; plants annual not reedlike; ligules membranous with a fringe of hairs, not cartilaginous at base; panicles 2–30 cm long, not plumose...3

3. Spikelets 2–2.5 mm long; lemmas 1–1.3 mm long, 3-veined, awned, the awns 4–6 mm long; upper glumes 2 × as long as adjacent lemma
 .. Habrochloa
 – Spikelets 6–10 mm long; lemmas 3.5–4.3 mm long, 1-awned, the awns 8–13 mm long; upper glumes 0.5–0.6 × as long as adjacent lemma
 .. Nematopoa

Acknowledgements

We thank the National Geographic Society Committee for Research and Exploration (Grant No. 8848-10, 8087-06) for field and laboratory support; the Smithsonian Institution’s Restricted Endowments Fund, the Scholarly Studies Program, Research Opportunities, Atherton Seidell Foundation, Biodiversity Surveys and Inventories Program, Small Grants Program, the Laboratory of Analytical Biology, and the United States Department of Agriculture. We thank Neil Snow, Clifford W. Morden, and Ana Isabel Honfi for suggesting changes to the manuscript.
References

Amarasinghe V, Watson L (1988) Comparative ultrastructure of microhairs in grasses. Botanical Journal of the Linnean Society 98(4): 303–319. https://doi.org/10.1111/j.1095-8339.1988.tb01705.x

Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): Progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution 47(2): 488–505. https://doi.org/10.1016/j.ympev.2008.01.035

Burbidge NT (1946) Foliar anatomy and the delimitation of the genus Triodia R. Br. Blumea (Supplement 3): 83–89.

Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world. Kew Bulletin, Additional Series 13: 1–389.

Clayton WD, Vorontsova MS, Harman KT, Williamson H (2016 onwards) GrassBase - The online World grass flora: The Board of Trustees, Royal Botanic Gardens. http://www.kew.org/data/grasses-db.html [accessed 23 December 2021]

Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340

Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution; International Journal of Organic Evolution 39(4): 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Filgueiras TS, Zuloaga FO (1999) A new Triraphis (Poaceae: Eragrostideae) from Brazil: First record of a native species in the New World. Novon 9(1): 36–42. https://doi.org/10.2307/3392114

Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li DZ, Clark LG, Tyrrell CD, Welker CAD, Kellogg EA, Teisher JK (2022) [in press] Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution.

Guala GF (2003) 17.08 Neyraudia Hook. f. In: Barkworth ME, Capels KM, Long S, Piep MB (Eds) Flora of North America North of Mexico, Vol. 25, Magnoliophyta: Commelinidae (in part): Poaceae, part 2. Oxford University Press, New York, 30–32.

Hartley W, Slater C (1960) Studies on the origin, evolution, and distribution of the Gramineae III. The tribes of the subfamily Eragrostideae. Australian Journal of Botany 8: 256–276. https://doi.org/10.1071/BT9600256

Hilu KW, Alice LA (2001) A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Systematic Botany 26: 386–405.

Hubbard CE (1935) Notes on African Grasses: XVIII. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) 5: 306–311. https://doi.org/10.2307/4107133

Hubbard CE (1957a) Notes on African Grasses: XXVII. Crinipes Hochst., a genus of grasses from North East Tropical Africa. 12: 54–58. https://doi.org/10.2307/4109105

Hubbard CE (1957b) Notes on African grasses: XXV. Nematopoa, a new genus from Southern Rhodesia. Kew Bulletin 12(1): 51–52. https://doi.org/10.2307/4109103

Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics [Oxford, England] 17(8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentrjes P, Drummond A (2012) Geneious-Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics [Oxford, England] 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Nightingale ME, Weiller CM (2005) Triraphis. In: Mallet K (Ed.) Flora of Australia. Volume 44B. Poaceae 3. Australian Biological Resources Study, Canberra, ACT, Australia, 424–426.

Peterson PM, Columbus JT, Pennington SJ (2007) Classification and biogeography of New World grasses: Chloridoideae. Aliso 23(1): 580–594. https://doi.org/10.5642/aliso.20072301.43

Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Molecular Phylogenetics and Evolution 55(2): 580–598. https://doi.org/10.1016/j.ympev.2010.01.018

Peterson PM, Romaschenko K, Barker NP, Linder HP (2011) Centropodieae and Ellisochloa, a new tribe and genus in the Chloridoideae (Poaceae). Taxon 60(4): 1113–1122. https://doi.org/10.1002/tax.604014

Peterson PM, Romaschenko K, Herrera Arrieta Y (2014a) A molecular phylogeny and classification of the Cteniinae, Fagganiniinae, Gouiniinae, Gymnopogoninae, Pteridinae, and Trichoneurinae [Poaceae: Chloridoideae: Cynodonteae]. Taxon 63(2): 275–286. https://doi.org/10.12705/632.35

Peterson PM, Romaschenko K, Soreng RJ (2014b) A laboratory guide for generating DNA barcodes in grasses: a case study of Leptochloa s.l. (Poaceae: Chloridoideae). Webbia 69(1): 1–12. https://doi.org/10.1080/00837792.2014.927555

Peterson PM, Romaschenko K, Herrera Arrieta Y, Saarela JM (2014c) A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63(6): 1212–1243. https://doi.org/10.12705/636.19

Peterson PM, Romaschenko K, Herrera Arrieta Y (2015a) A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae). Taxon 64(3): 445–467. https://doi.org/10.12705/643.5

Peterson PM, Romaschenko K, Herrera Arrieta Y (2015b) Phylogeny and subgeneric classification of Bouteloua with a new species, B. herrera-arrietae (Poaceae: Chloridoideae: Cynodonteae: Boutelouinae). Journal of Systematics and Evolution 53(4): 351–366. https://doi.org/10.1111/jse.12159

Peterson PM, Romaschenko K, Herrera Arrieta Y (2016) A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis. Taxon 65(6): 1263–1287. https://doi.org/10.12705/656.4

Peterson PM, Wiersema JH, Soreng RJ, Romaschenko K, Herrera Arrieta Y (2022) (2881) Proposal to conserve the name Triraphis (Poaceae: Chloridoideae: Triraphideae) with a conserved type. Taxon 71(2): 474–475. https://doi.org/10.1002/tax.12701
Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Futuona O, Susanna A (2012) Systematics and evolution of the needle grasses (Poaceae: Pooideae: Stipeae) based on analysis of multiple chloroplast loci, ITS, and lemma micromorphology. Taxon 61(1): 18–44. https://doi.org/10.1002/tax.611002

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029

Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Figuieras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53(2): 117–137. https://doi.org/10.1111/jse.12150

Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55(4): 259–290. https://doi.org/10.1111/jse.12262

Soreng RJ, Peterson PM, Zuloaga FO, Romaschenko K, Clark LG, Teisher JK, Gillespie LJ, Barberá P, Welker CAD, Kellogg EA, Li DZ, Davidse G (2022) A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. Journal of Systematics and Evolution 60: jse.12847. https://doi.org/10.1111/jse.12847

Stapf O (1917) Order CLVII. Gramineae. In: Prain D (Ed.) Flora of Tropical Africa, vol. 9, part 1. L. Reeve and Co. Limited, London, 1–384.

Swofford DL (2000) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 5. Sinauer Associates Inc., Sunderland, Massachusetts.

Watson L, Dallwitz M (1992) The Grass Genera of the World. CAB International, Wallingford.

Watson L, Macfarlane TD, Dallwitz MJ (1992 onwards) The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 5 Nov 2021. https://www.delta-intkey.com/grass/index.htm#H

Zwickl DJ (2006) Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion. University of Texas, Austin, 125 pp.