Airway Elastin is increased in severe asthma and relates to proximal wall area: histological and computed tomography findings from the U-BIOPRED severe asthma study

Susan J Wilson¹ | Jonathan A Ward¹ | Helen M Pickett¹ | Simonetta Baldi² | Ana R Sousa³ | Peter J Sterk⁴ | Kian Fan Chung⁵ | Ratko Djukanovic¹ | Barbro Dahlen⁶ | Bo Billing⁶ | Dominick Shaw⁷ | Norbert Krug⁸ | Thomas Sandström⁹ | Christopher Brightling² | Peter H Howarth¹ | the U-BIOPRED consortium

¹Faculty of Medicine, University of Southampton, Southampton, UK
²Department of Respiratory Science, University of Leicester, Leicester, UK
³Respiratory Therapy Unit, GlaxoSmithKline, Stevenage, UK
⁴Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
⁵National Heart & Lung Institute, Imperial College London, London, UK
⁶Department of Respiratory Medicine and Allergy, The Centre for Allergy Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
⁷Nottingham Respiratory Research, University of Nottingham, Nottingham, UK
⁸Fraunhofer Institute of Toxicology & Experimental Medicine, Hannover, Germany
⁹Department of Respiratory Medicine, Umea University, Stockholm, Sweden

Correspondence
Susan J Wilson, Histochemistry Research Unit, Sir Henry Wellcome Laboratories, Mailpoint 894, Level B, South Block, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD.
Email: S.J.Wilson@southampton.ac.uk

Funding information
National Institute for Health Research, Grant/Award Number: 270194; Department of Health

Abstract

Background: Airway remodelling, which may include goblet cell hyperplasia / hypertrophy, changes in epithelial integrity, accumulation of extracellular matrix components, smooth muscle hypertrophy and thickening of the lamina reticularis, is a feature of severe asthma and contributes to the clinical phenotype.

Objective: Within the U-BIOPRED severe asthma study, we have assessed histological elements of airway remodelling and their relationship to computed tomography (CT) measures of proximal airway dimensions.

Methods: Bronchial biopsies were collected from two severe asthma groups, one non-smoker (SAn, n = 28) and one current/ex-smoker (SAs/ex, n = 13), and a mild-moderate asthma group (MMA, n = 28) classified and treated according to GINA guidelines, plus a healthy control group (HC, n = 33). Movat’s pentachrome technique was used to identify mucin, elastin and total collagen in these biopsies. The number of goblet cells (mucin+) was counted as a percentage of the total number of epithelial cells and the percentage mucin epithelial area measured. The percentage area of elastic fibres and total collagen within the submucosa was also measured, and the morphology of the elastic fibres classified. Participants in the asthma groups also had a CT scan to assess large airway morphometry.

Results: The submucosal tissue elastin percentage was higher in both severe asthma groups (16.1% SAn, 18.9% SAs/ex) compared with the HC (9.7%) but did not differ between asthma groups. There was a positive relationship between elastin and airway wall area measured by CT (n = 18–20, rho=0.544, p = 0.024), which also related to an increase in elastic fibres with a thickened lamellar morphological appearance. Mucin epithelial area and total collagen were not different between the four groups. Due to small numbers of suitable CT scans, it was not feasible to compare airway morphometry between the asthma groups.
1 | INTRODUCTION

Severe asthma has a heterogeneous clinical phenotype and pathology. This pathology includes airway remodelling, features of which may be goblet cell hyperplasia/hypertrophy, changes in epithelial integrity, accumulation of extracellular matrix components, smooth muscle hypertrophy and thickening of the lamina reticularis.1-4 In this current study, we focus on the evaluation of goblet cell hyperplasia/hypertrophy and the presence of the extracellular matrix components, collagen and elastin, and how these relate to central airway wall and lumen measurements by computed tomography (CT). This study was undertaken as data regarding changes in these parameters, in relation to disease, are conflicting.

Goblet cell hyperplasia has been observed in the lungs of patients who have died from asthma5,6 and is also seen in bronchial biopsy tissue in milder asthma,7 although not consistently so.8 To date, there are no reported studies in living severe asthmatics. Collagens 1, 3 and 5 form part of the extracellular matrix in the bronchial wall, contributing to the structural support of the airway.1,2 Whilst there is a report of increased submucosal collagen9 in bronchial biopsies from mild and moderate asthma compared with healthy controls, other studies have not consistently reproduced this finding.10–12 In severe asthmatics, Benayoun et al12 and Chakir et al13 have reported an increase in submucosal collagen compared with both milder asthmatics and healthy controls but again this finding in biopsy tissue is inconsistent.11,14 Furthermore, post-mortem studies have not reported any differences in total collagen content in the lungs of cases of fatal asthma as compared to that in non-asthmatic deaths.15,16

Elastin, which contributes to airway patency and elastic recoil, has been reported to be increased in the central airways17 and in longitudinal bundles,15 but decreased in the distal airways18 in fatal asthma compared with non-asthma controls, whereas no disease-related differences were observed by Godfrey.19 An increase in the proportion of elastin within the airway smooth muscle has been observed in cases of fatal asthma compared with non-fatal asthma.20 In bronchial biopsies from mild and moderate asthma, no difference in the proportion of elastic fibres, as compared to healthy controls, is reported and this is not affected by corticosteroid treatment.19 Both Mauad et al17 in fatal asthma and Bousquet et al21 in living asthmatics report a change in the appearance of the elastic fibres. The elastic fibres in the superficial layer appearing more fragmented and wispy whilst those in the deeper layer are condensed and thickened (lamellar).

Imaging of the lungs of asthmatics by computed tomography (CT)22,23 has shown increased air-trapping, airway wall thickening and decreases in lumen area. Several groups have investigated the relationship between these CT changes and remodelling changes identified by histological methods. Some groups have demonstrated relationships others have not. In moderate asthmatics, a positive relationship is observed between per cent wall area (as a fraction of total airway area) and wall thickness, as measured by CT, with the thickness of the reticular basement membrane (RBM) in proximal airway biopsies,24 whereas in the SARP (severe asthma research programme) study25 and the study of Berair et al,26 this relationship is not observed. Per cent wall area, segmental wall area and wall thickness are reported to be positively correlated with the thickness of the bronchial epithelium.25,26 Berair et al26 also observe a positive relationship between segmental wall area per cent and airway smooth muscle per cent in biopsies. However, other studies have not observed any relationship between CT and histological measures of remodelling27,28 although Lederlin et al28 did observe that airway wall attenuation correlated with mast cell infiltration into the airway smooth muscle.

Due to these conflicting findings and the need to better understand the remodelling pathology in severe asthma and its relationship to the clinical assessment by CT, the U-BIOPRED study of severe asthma has explored the relationship between CT central wall parameters and proximal airway wall biopsy changes in remodelling.

2 | METHODS

2.1 | Study design

As previously described in detail,29 the U-BIOPRED (Unbiased Biomarkers for the Predictions of Respiratory Disease Outcomes) multi-centre pan-European severe asthma study included three adult asthma groups: severe non-smokers (SAn), severe current/ex-smokers (SAs/ex) and those with mild-moderate disease (MMA), classified and treated according to the Global Initiative for Asthma (GINA) guidelines, as well as a healthy control (HC) group. Participants underwent detailed clinical phenotyping, had induced sputum and blood collected for inflammatory cell profiling and ‘omics analysis and exhaled nitric oxide fraction (FeNO) measured. This study was approved by an ethics review committee at each centre (France: Independent Ethics Committee sud Mediterranee 2100-A01681-40, Germany: Hanover Medical School Ethics Committee, 5938, Netherlands: Medical Ethics Committee, Academic Medical Centre, University of Amsterdam, METC 10/207 #11.17.0430, Sweden: Regional Independent Ethics committee, Stockholm, 2011/1254-31/3, UK: NRES committee South West 10/H0721/66), and all participants gave written informed consent.

Conclusion: These findings identify a link between extent of elastin deposition and airway wall thickening in severe asthma.
2.2 | Bronchoscopy procedure, biopsy collection and analysis

The bronchoscopy cross-sectional sub-study, for the collection of airway samples, has been described in detail by Wilson et al. In brief, participants underwent bronchoscopy, with the collection of airway samples, including endobronchial biopsies, in accordance with standardized protocols across each of the eight participating clinical centres. Up to two of these biopsies from each bronchoscopy were fixed 10% neutral buffered formalin and embedded in paraffin wax and were used for this current study. Of the 139 bronchoscopies that biopsies for paraffin embedding were collected from, 102 participants had biopsies that were suitable for staining, having a submucosal area greater than 0.25 mm² and/or 0.1 mm of intact epithelium. Two 4-µm sections were cut from each biopsy and stained with Movat's pentachrome technique to identify features of remodelling, including mucin, elastic fibres and collagen. The number of goblet cells (mucin positive) was counted as a percentage of the total number of epithelial cells and the percentage mucin epithelial area as a fraction of total epithelial area, measured using computerized image analysis (Zeiss KS400 software, Image Associates, UK) to thresholding on features of interest based on RGB colour composition, in lengths of intact epithelium. The percentage area of elastic fibres and collagen within the submucosa, excluding glands, smooth muscle, cartilage and the lamina reticularis, was also measured using the same approach (see Figure 1, in supplementary material for an illustration of this method). We also made a qualitative assessment of the morphological appearance of the elastic fibres classifying them as wispy, lamellar or mixed as described by Bousquet et al.

The observers (HMP and JAW) undertaking the image analysis were blinded to the participant grouping and ID.

2.3 | Computed tomography

The clinical characterization of the participants also included CT. Volumetric whole lung scans were obtained at full inspiration (total lung capacity) and full expiration (residual volume) using a standardized protocol for each scanner manufacturer and model. All participants were coached in the breath-holding techniques and practiced breath-holding immediately prior to scanning. Participants were scanned 10–60 minutes after receiving 400 µg salbutamol. Post-processing was performed using the VIDA Apollo software (VIDA Diagnostics, Iowa, USA) as described previously. Quantitative CT parameters included large airway morphometry (measured in mm²): lumen area (LA), wall area (WA) and percentage wall area (WA% = 100x(WA/WA+LA)).

2.4 | Statistical analysis

Data were initially analysed by ANOVA to test for differences between groups and then where relevant, either non-parametric or parametric analysis applied to evaluate the significance of group differences using SPSS (version 19). Spearman's rank test was applied to test for pair-wise correlations. We also included our previously published data for lamina reticularis thickness and airway smooth muscle area fraction when testing for these relationships.

| TABLE 1 | Participant demographics—remodelling study. |
|-----------------|--------------------------------------------|
| Number of participants | 28 | 13 | 28 | 33 |
| Age [mean years (SE)] | 49.1 (2.82) | 55.1 (1.75) | 42.1 (2.57) | 40.2 (2.39) |
| Gender [n] | Female: 16 Male: 12 | Female: 5 Male: 8 | Female: 15 Male:13 | Female:9 Male:24 |
| Body mass index [mean kg/m² (SE)] | 30.1 (1.3) | 30.1 (1.9) | 26.3 (1.0) | 25.5 (0.6) |
| Forced expiratory volume in one second [mean % predicted (SE)] | 73.1 (4.02) | 66.7 (4.78) | 88.91 (4.25) | 102.30 (2.08) |
| Reversibility [change FEV₁, % predicted, pre-post salbutamol (SE)] | 9.22 (1.68) | 7.16 (4.65) | 8.29 (1.90) | Not measured |
| Forced expiratory flow 25–75% [mean (SE)] | 39.24 (4.79) | 33.97 (7.06) | 61.34 (4.44) | 86.95 (4.18) |
| Peak expiratory flow [mean % predicted (SE)] | 82.55 (4.61) | 68.98 (5.92) | 88.00 (6.13) | 105.37 (2.47) |
| Specific airway conductance [mean (SE)] | 1.12 (0.20) | 0.90 (0.11) | 1.47 (0.14) | 1.95 (0.20) |
| Smoking history [% subjects] | Never: 86 Ex (<5 pack-yrs): 14 | Current: 23 Ex (>5 pack-yrs):77 | Never: 89 Ex (<5 pack-yrs): 11 | Never: 79 Ex (<5 pack-yrs): 21 |

Differences (p < 0.05) are indicated: SAn vs MMA, SAn vs HC, SAs/ex vs MMA, SAs/ex vs HC. MMA vs HC
The demographics for the participants included in this study are summarized in Table 1. The participants in both severe asthma groups were older and had a higher body mass index (BMI) and lower forced expiratory volume in one second (FEV1), forced expiratory flow (FEF25-75) than both the MMA and healthy controls. Peak expiratory flow (PEF) and specific airway conductance (SGaw) were also lower in both severe groups compared with healthy controls, and in the SAs/ex, but not the SAn, these measures were both lower than the MMA. The MMA had a lower FEV1, FEF25-75, PEF and SGaw than the HC.

3.1 | Biopsy remodelling features

Representative images of Movat’s pentachrome staining are shown in Figure 1. This dye-based technique enables the identification of mucin, elastic and collagen in one section. Summary data are shown in Table 2. A full data set was not available for all parameters, as some cases did not have any intact epithelium for mucin measurements, and in a few cases, the submucosa showed signs of crush artefact so collagen and elastin could not be assessed. The numbers included for each parameter are shown in Table 2. There was no difference in the mucin or collagen quantification between the four groups. The median (IQR) percentage of elastic fibres in the bronchial submucosa was significantly higher in both severe groups (SAns 16.1% [10.6–24.9], SAs/ex 18.9% [15.4–26.1]) than in the HC (9.7 [7.1–14.5], p = 0.025 & p = 0.003, respectively; Figure 2a). In most cases, these elastic fibres had a mixed appearance (wispy and lamella). However, a lamellar elastic appearance was more frequent in the severe asthmatics than the HC, where a wispy phenotype was more predominant (Figure 2b).

3.2 | Computed tomography

For the bronchoscopy cohort included in this study, suitable CT images for analysis were only available for 18 expiratory scans and 20 inspiratory scans the majority of these being for the SAn group (n = 12)(Table 3). Therefore, it was not reasonable to make between-groups comparisons of these data. CT scans had to be excluded for the following reasons: i) deviations in the CT acquisition protocol, ii) technical errors in data capture or transfer, iii) error in CT procedure identified by lung density being greater in the inspiratory compared to expiratory scans or iv) CT and body plethysmography lung volumes, when compared, being discrepant by more than 3 SD from the mean difference.

3.3 | Relationship between biopsy remodelling, CT measures and lung function data

Due to the low number of participants with CT data, we tested for relationships between biopsy remodelling data and all participants with CT data (n = 17–18 asthma, n = 1–2 HC). We observed a positive relationship between the percentage elastin in the submucosa and the per cent wall area (expiratory) (Figure 2c), which also related to
the appearance of the elastin fibres (Figure 2d). There was no relationship between mucin, collagen, ASM fraction or lamina reticularis thickness and CT measures of remodelling.

We also did not observe any relationship between remodelling features and measures of lung function.

4 | DISCUSSION

In this study, which is the largest to date to assess submucosal airway remodelling in severe asthma, we have observed more elastin in the airways of severe asthmatics, irrespective of smoking status, compared to healthy controls. The elastic fibres in the asthmatics were thickened and more lamellar in appearance than in the HC. The amount of elastin in the airways and its appearance had a relationship to airway wall area, assessed by CT. There was no relationship between the amount of elastin and the demographic or clinical measures reported here.

The proportion of elastin we observed in our severe asthma groups is similar to that reported by Godfrey et al.\(^1\) in the airway wall in asthma deaths and Araujo\(^2\) in airway smooth muscle. Neither of these studies report differences between fatal asthma and non-asthma controls. Increases in elastin have been reported in the central airways in fatal asthma compared with non-asthma controls.\(^15,17\) These elastic fibres were observed to be similar in appearance to those observed in our study, being thickened and more lamellar in appearance, as has also been reported by Bousquet et al.\(^21\)

The differences in findings with respect to elastin content in relation to disease between some of the previous studies and our work could reflect the airway compartments studied, sample type and number of samples included. Our study in bronchial biopsies taken from the large airways, showing increased elastin in severe asthma compared with healthy controls, concurs with the findings of Mauad et al\(^17\) and Carroll et al\(^15\) who examined central airways in post-mortem tissue from patients who had died of asthma, observing increased elastin compared with non-asthma controls. The study of Godfrey et al.\(^19\) also in central airways, did not observe a difference between fatal asthma and non-asthma; however, this study was small, with only five fatal asthma cases. Whilst we report similar proportions of elastin to that of Araujo et al.\(^20\) they did not see a difference compared with non-asthma. Our studies differ in the compartment within the airway that was assessed, with Araujo et al looking at airway smooth muscle and our study the airway submucosa, which could account for the differences in group comparisons. Our results also differ to the findings in distal airways\(^18\) which may reflect the differing role of elastin in these compartments.

This increase in elastin could be part of the remodelling / repair response that is well documented in asthma.\(^1-4\) Smooth muscle cells, fibroblasts and myofibroblasts are sources of elastin in normal lung.\(^34,35\) The cytokines TNF-\(\alpha\), IL1-\(\beta\) and TGF\(\beta\), all of which are elevated in asthma,\(^32,36\) can induce myofibroblasts to synthesize increased amounts of elastin.\(^35\) The study of Shifren et al.\(^37\) reports up-regulation of elastin expression by myofibroblasts in the lung fibrotic disease bronchiolitis obliterans. This leads us to speculate that the myofibroblast, known to be important in the asthma remodelling response, could be contributing to the increase in elastin we have observed in this study. This is further supported by the study of Carroll et al.\(^15\) who observed elastin staining to be in close proximity to myofibroblasts, both of which were increased in fatal asthma.

Increased bronchoconstriction has, in mild asthmatics, been shown to drive a remodelling response,\(^36\) and this could also be a possible mechanism initiating the remodelling changes we have observed. The presence of increased bronchoconstriction could also account for the increased lamellar appearance of the elastin, as reported by Mauad et al.\(^17\)

The positive relationship we observed between elastin and percent wall area is novel. We also noted that this was associated with an altered appearance of the elastic fibres, with the higher percentage of elastin and greater wall area having elastic fibres with thickened lamellar appearance as shown in Figure 1. This suggests that as
FIGURE 2  Elastin in the bronchial submucosa and relationship to CT wall area: The fraction (%) of elastin is shown (a) in severe nonsmokers (●), severe current/ex-smokers (▲), mild-moderate (+) asthmatics and in healthy controls (▼). Median values (--) and significant differences between the groups are indicated. The appearance of these elastic fibres (b) was classified as wispy, lamellar or mixed. There was a positive relationship between submucosal elastin and per cent wall area (expiratory) measured by CT (c), this also related to the appearance of the elastin (d). Data for severe asthmatics taking oral corticosteroids are shown as open symbols.

TABLE 3 Summary data—Computed tomography.

|                          | Severe asthma non-smoker (SAn) | Severe asthma current or ex-smoker (SAs/ex) | Mild-moderate asthma (MMA) | Healthy control (HC) |
|--------------------------|--------------------------------|--------------------------------------------|----------------------------|---------------------|
| **Number of scans**      | Expire 12                      | 1                                         | 4                          | 1                   |
|                          | Inspire 12                     | 1                                         | 5                          | 2                   |
| **Wall area %**          | Expire 68.0 (1.42)             | 71.5                                      | 64.9 (1.41)                | 64.5                |
|                          | Inspire 63.9 (0.43)            | 68.8                                      | 63.0 (1.66)                | 65.3 (0.16)         |
| **Wall area mean**       | Expire 35.3 (2.12)             | 33.4                                      | 28.8 (2.53)                | 29.1                |
|                          | Inspire 33.0 (2.11)            | 41.1                                      | 32.2 (1.87)                | 31.7 (3.28)         |
| **Wall area median**     | Expire 33.5 (2.17)             | 30.0                                      | 29.0 (3.59)                | 28.8                |
|                          | Inspire 33.9 (1.81)            | 40.9                                      | 33.5 (2.23)                | 35.5 (5.02)         |
| **Lumen area mean**      | Expire 19.9 (2.10)             | 12.7                                      | 17.0 (2.56)                | 16.8                |
|                          | Inspire 22.0 (1.31)            | 21.2                                      | 25.7 (4.14)                | 22.9 (4.48)         |
| **Lumen area median**    | Expire 15.5 (0.97)             | 12.0                                      | 16.1 (3.3)                 | 15.9                |
|                          | Inspire 19.1 (0.96)            | 18.5                                      | 20.1 (2.40)                | 18.8 (2.80)         |

Data sets>1 are mean (SE)
the amount of elastin in the airway increases and thickens so does the airway wall area.

We did not observe any relationship between airway remodelling measured by CT with mucin, collagen, ASM fraction or lamina reticularis assessed histologically. This result for lamina reticularis concurs with that of Aysola et al.25 and Berair et al.26 but not that of Kasahara et al.24 who reported a positive relationship. These differences in findings could reflect the asthmatic population included in the studies. We, Aysola25 and Berair26 included severe asthmatics in our studies, whereas that of Kasahara did not. A positive relationship between airway smooth muscle fraction assessed in biopsies with both airway luminal area and airway wall measured by CT has previously been reported,26 but we did not observe this. We also did not see the inverse relationship between FEV1 per cent predicted and airwall thickness measured by CT as in the studies of Kasahara et al.25 and Aysola et al.25 This could be due to low numbers of participants with CT measures in our study.

In this study, we did not observe a relationship between these structural changes and measures of lung function. In mild asthma, an inverse correlation between PC20 methacholine and airway elastin content in paraffin-embedded bronchial biopsies is observed29 implying that increasing severity of airway hyper-reactivity is linked with increased elastin. Howarth et al.20 report that airway hyper-reactivity remains abnormal in severe asthma despite therapy. However, in the U-BIOPRED study PC20 methacholine was not assessed, so we are unable to explore relationships between this aspect of abnormal physiology and airway tissue morphology.

Our data showing that total submucosal collagen did not vary with disease concur with the observations of others in mild, moderate and severe asthmatics10-12,14 and in asthma deaths,15,16 but does differ from the reports of Wilson et al.9 Benayoun et al.12 and Chakir et al.13 In these latter studies, the methodological approaches employed differ from the present study, which may explain the differences in results. These three studies employed immunohistochemistry to stain for collagen 1 or 3. Wilson et al.9 quantified staining using computerized image analysis to a depth of 30-50 microns beneath the SBM and both Benayoun et al.12 and Chakir et al.13 used a scoring system, whereas in the present study, we have stained for total collagen and focused specifically on collagen within the submucosa, excluding collagen within the lamina reticularis layer. The study of Kaminska et al.21 is the only previously reported study that has examined the relationship between CT measures of remodelling and submucosal collagen. Like our current study, they did not observe any relationships.

Our study, which is larger than previously reported studies assessing goblet cell hyperplasia in asthma,5-8 demonstrates that there is no change in goblet cell number or mucin fraction within the bronchial epithelium in either severe or moderate asthma, when assessed in bronchial biopsies. This concurs with the findings of Lozewicz et al.22 in mild asthma but does not support the findings of Ordonez et al.23 who reported an increase in the volume density of mucin in mild asthma or from findings in autopsy-based studies.5,6 This difference in findings could be a reflection of the increased numbers in our study, which included 27 severe asthmatics (SAN & SAS/ex), 23 MMA and 33 HC, which better reflects the true sample population. The largest study previously included bronchial biopsies from 13 asthmatics and 12 healthy controls.

As previously reported,30 we did not observe any disease-related differences in the thickness of the lamina reticularis or the proportion of airway smooth muscle as a fraction of the submucosa in these steroid-treated asthmatics as compared to healthy controls. We also did not observe, in this current study, any relationship with CT measures of remodelling and these morphological measures. This lack of relationship concurs previous studies.25-28

Although this is one of the largest studies assessing submucosal remodelling in bronchial biopsies from living severe asthmatics that yielded some novel findings, this study does have some limitations. The low number of suitable CT images that could be analysed meant we were unable to compare remodelling measured by CT across the different asthma groups or with HC. This could have also lead to a type II error.

In conclusion, this study has revealed increased elastin in severe asthma that relates to CT scan measures of airway wall thickening. It also supports previous work showing that submucosal collagen deposition and goblet cell number do not differ with asthma disease severity and that this, and airway smooth muscle and laminar reticularis thickness do not relate to CT measures of remodelling.

ACKNOWLEDGEMENTS
The bronchoscopy centres acknowledge the help received from nursing and other healthcare workers in the conduct of this study, and the Histochemistry Research Unit in Southampton acknowledges the help from Helen Pickett and Jon Ward in assisting with the analysis of the tissue biopsies. The U-BIOPRED study would have not been possible without the Innovative Medicines Initiative (IMI) funding provided by the European Union (EU) and the European Federation of Pharmaceutical Industries and Associations (EFPIA).

This research presented in this paper was co-funded by the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Airway Disease Predicting Outcomes through Patient Specific Computational Modelling (AirPROM) project (funded through 7th EU framework grant, 270194). This paper presents independent research funded by the National Institute for Health Research (NIHR). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

The authors also recognize that without the voluntary help from the asthmatic participants and the healthy control volunteers, this study would not have been possible and are indebted to their generosity.

Members of the U-BIOPRED study group are detailed in the supplementary acknowledgements.

CONFLICT OF INTEREST STATEMENT
SJW, JAW, HMP, SB, ARS, PJS, BD, BB, NK, TS, PHH have no conflicts of interest to declare.
KFC has no conflict of interests related to the study; outside of this study, he has received honoraria for participating in Advisory Board meetings of GSK, AZ, Roche, Novartis, Merck, BI, TEVA and Shionogi regarding treatments for asthma, chronic obstructive pulmonary disease and chronic cough and has also been remunerated for speaking engagements.

DS receives speaker fees from AZ, GSK and Novartis, and travel fees from AZ and Novartis.

CEB has no conflict of interests related to the study; during the conduct of the study, CEB received paid to his Institution grants and personal fees from GSK, AZ, Novartis, Sanofi, Regeneron, BI, Chiesi, Roche/Genentech, Mologic, 4DPharma and Gossamer, outside the submitted work.

RD reports receiving fees for lectures at symposia organized by Novartis, AstraZeneca and TEVA, consultation for TEVA and Novartis as member of advisory boards, and participation in a scientific discussion about asthma organized by GlaxoSmithKline. He is a co-founder and current consultant, and has shares in Synairgen, a University of Southampton spin-out company.

The data that support the findings of this study are available from the corresponding author upon reasonable request.

AUTHORS' CONTRIBUTIONS

SJW lead the immunopathological analysis for the U-BIOPRED study including the analysis presented here. JAW and HMP undertook the staining and analysis described. SB and CB were responsible for the CT part of this study, KFC, DS, BD, BB, NK, TS and PHH were leads at the clinical centres undertaking the bronchoscopy aspects of this work, and SRS and PHH were the bronchoscopy study leads. DS and ARS were responsible for the clinical data analysis for the main study. KFC, RD and PJS designed and were the leads for the U-BIOPRED study.

ORCID

Susan J Wilson https://orcid.org/0000-0003-1305-8271

REFERENCES

1. Bai TR, Knight DA. Structural changes in the airways in asthma: observation and consequences. Clin Sci. 2005;108:463–477.
2. Halwani R, Al-Muhsen S, Hamid Q. Airway remodeling in asthma. Curr Opn Pharmacol. 2010;10:236–245.
3. Bittar HET, Yousem SA, Wenzel SE. Pathobiology of severe asthma. Annu Rev Pathol Mech. 2015;10:511–545.
4. King GG, James A, Harkness L, Wark PAB. Pathophysiology of severe asthma: We've only just started. Respirology. 2018;23:262–271.
5. Aikawa T, Shimura S, Sasaki H, Ebina M, Takishima T. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest. 1992;101:916–921.
6. Shimura S, Andoh Y, Haraguchi M, Shirato K. Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur Respir J. 1996;9:1395–1401.
7. Ordonez CL, Kashayar R, Wong HH, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001;163:517–523.
8. Lozewicz S, Wells C, Gomez E, et al. Morphological integrity of the bronchial epithelium in mild asthma. Thorax. 1990;45:12–15.
9. Wilson JW, Li X. The measurement of reticular basement membrane ad submucosal collagen in the asthmatic airway. Clin Exp Allergy. 1997;27:363–371.
10. Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. Lancet. 1989;1(8637):520–524.
11. Chu HW, Hallay JL, Martin RJ, Leung DYM, Szeffler SJ, Wenzel SE. Collagen deposition in the large airways may not differentiate severe asthma from milder forms of the disease. Am J Respir Crit Care Med. 1998;158:1936–1944.
12. Benayoun L, Druilhe A, Dombert M-C, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167:1360–1368.
13. Chakir J, Shannon J, Molet S, et al. Airway remodeling- associated mediators in moderate to severe asthma: effect of steroids on TGFβ, IL-11, IL-17 and type I and type III collagen expression. J Allergy Clin Immunol. 2003;111:1293–1298.
14. Pepe C, Foley S, Shannon J, et al. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005;116:544–549.
15. Carroll NG, Perry S, Karkhanis A, et al. The airway longitudinal elastic fiber network and mucosal folding in patients with asthma. Am J Respir Crit Care Med. 2000;161:244–248.
16. Dolhnikoff M, da Silva LFF, de Araujo BB, et al. The outer wall of small airways is a major site of remodeling in fatal asthma. J Allergy Clin Immunol. 2009;123:1090–1097.
17. Mauad T, Xavier ACG, Saldiva PHN, Dolhnikoff M. Elastosis and fragmentation of fibers of the elastic system in fatal asthma. Am J Respir Crit Care. 1999;60:968–975.
18. Mauad T, Silva LFF, Santos MA, et al. Abnormal alveolar attachments with decreased elastic fiber content in distal lung in fatal asthma. Am J Respir Crit Care Med. 2004;170:857–862.
19. Godfrey RWA, Lorimer S, Majumdar S, et al. Airway and lung elastic fibre is not reduced in asthma nor in asthmatics following corticosteroid treatment. Eur Respir J. 1995;8:922–927.
20. Araujo BB, Dolhnikoff M, Silva LFF, et al. Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur Respir J. 2008;32:61–69.
21. Bousquet J, Lacoste J-Y, Chanez P, Vic P, Godard P, Michel F-B. Bronchial elastic fibers in normal subjects and asthmatic patients. Am J Respir Crit Care Med. 1996;153:1648–1654.
22. de Jong PA, Müller NL, Paré PD, Coxson HO. Computed tomographic imaging of the airways: relationship to structure and function. Eur Respir J. 2005;26:140–152.
23. Castro M, Fain SB, Hoffman EA, Gierada DS, Erzurum SC, Wenzel S. Lung imaging in asthmatic patients: The picture is clearer. J Allergy Clin Immunol. 2011;128:467–478.
24. Kasahara K, Shiba K, Ozawa T, Okuda K, Adachi M. Correlation between the bronchial subepithelial layer and whole airway wall thickness in patients with asthma. Thorax. 2002;57:242–246.
25. Aysola RS, Hoffman EA, Gierada D, et al. Airway remodeling measured by multidetector CT is increased in severe asthma and correlates with pathology. Chest. 2008;134:1183–1191.
26. Berar R, Hartley R, Mistry V, et al. Associations in asthma between quantitative computed tomography and bronchial biopsy-derived airway remodeling. Eur Respir J. 2017;49:1601507.
27. Kaminska M, Foley S, Maghni K, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol. 2009;124:45–51.
28. Lederlin M, Laurent F, Porton Y, et al. CT attenuation of the bronchial wall in patients with asthma: comparison with geometric parameters and correlation with function and histologic characteristics. AJR. 2012;199:1226–1233.
29. Shaw DE, Sousa AR, Fowler SJ, et al. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. 2015;46:1308-1321.

30. Wilson SJ, Ward JA, Sousa AR, et al. U-BIOPRED Study Group. Severe asthma exists despite suppressed tissue inflammation: findings of the U-BIOPRED study. Eur Respir J. 2016;48:1307-1319.

31. Movat HZ. Demonstration of all connective tissue elements in a single section; pentachrome stains. AMA Arch Pathol. 1955;60:289-295.

32. Hartley RA, Barker BL, Newby C, et al. Relationship between lung function and quantitative computed tomographic parameters of airway remodeling, air trapping, and emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center study. J Allergy Clin Immunol. 2016;137:1413-1422.

33. Russell RJ, Chachi L, FitzGerald JM, et al. MESOS study investigators. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Resp Med. 2018;6:499-510.

34. Uitto J, Christiano AM, Kähäri V-M, et al. Molecular biology and pathology of human elastin. Biochem Soc Trans. 1991;19:824-829.

35. Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229:298-309.

36. Chung KF, Barnes PJ. Cytokines in asthma. Thorax. 1999;54:825-857.

37. Shifren A, Woods JC, Rosenbluth DB, Officer S, Cooper JD, Pierce RA. Upregulation of elastin expression in constrictive bronchiolitis obliterans. Int. J COPD. 2007;2:593-598.

38. Grainge CL, Lau LCK, Ward JA, et al. Effect of bronchoconstriction on airway remodelling in Asthma. New Engl J Med. 2011;364:2006-2015.

39. Slats AM, Janssen K, van Schaewijk A, et al. Expression of smooth muscle and extracellular matrix proteins in relation to airway function in asthma. J Allergy Clin Immunol. 2008;121(5):1196-1202.

40. Howarth PH, Babu KS, Arshad HS, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60:1012-1018.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Wilson SJ, Ward JA, Pickett HM, et al. Airway Elastin is increased in severe asthma and relates to proximal wall area: histological and computed tomography findings from the U-BIOPRED severe asthma study. Clin Exp Allergy. 2021;51:296–304. https://doi.org/10.1111/cea.13813