Original article

Activation of the cardiac Na\(^+\)–Ca\(^{2+}\) exchanger by sorcin via the interaction of the respective Ca\(^{2+}\)-binding domains

Carlotta Zamparelli, Niall Macquaide, Gianni Colotti, Daniela Verzili, Tim Seidler, Godfrey L. Smith, Emilia Chiancone

Department of Cardiology and Pneumology, Georg-August University, Göttingen, D-37075 Göttingen, Germany
Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
CNR Institute of Molecular Biology and Pathology, Department of Biochemical Sciences A. Rossi Fanelli, Rome, Italy

1 Joint first authors.

Corresponding author. Tel.: +39 0649910761; fax: +39 064440062.
E-mail address: emilia.chiancone@uniroma1.it (C. Zamparelli).

A R T I C L E I N F O

Article history:
Received 1 December 2009
Received in revised form 21 January 2010
Accepted 8 March 2010
Available online 15 March 2010

Keywords:
Sorcin
Na\(^+\)/Ca\(^{2+}\) exchanger
Ca\(^{2+}\)-mediated interaction
Protein activation
Cardiomyocytes

A B S T R A C T

Sorcin is a penta-EF-hand protein that interacts with intracellular target proteins after Ca\(^{2+}\) binding. The sarcosomal Na\(^+\)/Ca\(^{2+}\) exchanger (NCX1) may be an important sorcin target in cardiac muscle. In this study, RNAi knockdown of sorcin, purified sorcin or sorcin variants was employed in parallel measurements of: (i) NCX activity in isolated rabbit cardiomyocytes using electrophysiological techniques and (ii) sorcin binding to the NCX1 calcium binding domains (CBD1 and (iii) using surface plasmon resonance and gel overlay techniques. Sorcin is activated by Ca\(^{2+}\) binding to the EF3 and EF2 regions, which are connected by the D helix. To investigate the importance of this region in the interaction with NCX1, three variants were examined: W105G and W99G, mutated respectively near EF3 and EF2, and E124A that does not bind Ca\(^{2+}\) due to a mutation at EF3. Downregulation of sorcin decreased and supplementation with wt sorcin (3 µM) increased NCX activity in isolated cardiomyocytes. The relative stimulatory effects of the sorcin variants were: W105G > wt sorcin > Sorcin Calcium Binding Domain (SCBD) > W99G > E124A. Sorcin binding to both CBD1 and 2 was observed. In the presence of 50 µM Ca\(^{2+}\), the interaction with CBD1 followed the order W105G > SCBD > wt sorcin > W99G > E124A. In sorcin, the interacting surface can be mapped on the C-terminal Ca\(^{2+}\)-binding domain in the D helix region comprising W99. The fast association/dissociation rates that characterize the interaction of sorcin with CBD1 and 2 may permit complex formation/dissociation during an excitation/contraction cycle.

© 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

Sorcin (soluble resistance-related calcium binding protein) is a 21.6 kDa protein identified in the cytosol of multidrug resistant cells [1,2] that belongs to the penta-EF-hand (PEF) family, a small group of regulatory calcium binding proteins comprising calpain, ALG-2, granalcin, peflin and PEF1 [3–8]. Sorcin shares the typical structural and functional features of all PEF family members. It has a two-domain architecture, characterized by a flexible and hydrophilic Gly/Pro-rich N-terminal domain and a C-terminal calcium binding domain containing the five EF-hand motifs (Fig. 1), and dimerizes through the unpaired EF5 hand. Like the other PEF proteins, sorcin undergoes a Ca\(^{2+}\)-dependent activation that promotes translocation to membranes where interaction with several molecular targets occurs [9]. In turn, these features render sorcin an effective participant in a number of Ca\(^{2+}\)-mediated processes. Sorcin activation is induced by Ca\(^{2+}\) binding to the two functionally relevant EF3 and EF2 motifs, that are not paired structurally as in most EF-hand proteins, but are connected by the long and rigid D helix (Fig. 1). An essential step of sorcin activation therefore consists in the transfer of information concerning Ca\(^{2+}\) binding from the site with the highest affinity for the metal, EF3, through the D helix to EF2, and from there to the rest of the molecule. The ensuing conformational change is believed to loosen the hydrophobic and hydrophilic interactions that bring the N- and C-terminal domains together. This renders both domains available for target protein recognition, in particular the D helix residues [10]. It follows that the EF3-D helix-EF2 region should be considered as a tightly coupled functional unit.

Sorcin is expressed in most human tissues including the heart where Ca\(^{2+}\)-bound sorcin interacts with and regulates several ionic channels, such as the L-type voltage-dependent channel, the ryanodine receptor, RyR2, and the sarcoplasmic reticulum Ca\(^{2+}\)-ATPase, SERCA2a, and thus plays an important role in the regulation of the excitation–contraction–relaxation processes [11–18]. Discordant effects of sorcin overexpression on cardiac function have been reported. According to Seidler et al. [13] and Meyers et al. [19] cardiac-specific overexpression of sorcin in rabbit myocytes and transgenic mice leads to a significant reduction in contractility, while
Suarez et al. [20] and Frank et al. [21] reported that transfection of rat or mouse heart or isolated cardiac cells with sorcin-expressing vectors significantly enhanced cardiac function.

The overexpression of sorcin in cardiomyocytes has also been associated with increased activity of the Na\(^+\)-Ca\(^{2+}\) exchanger, NCX [13,22]. The mammalian NCX family includes three genes (Ncx1, Ncx2 and Ncx3) with very similar functional properties. NCX1, the main isoform expressed in the heart, catalyzes the electrogenic exchange of Ca\(^{2+}\) and Na\(^+\) across the plasma membrane in both the Ca\(^{2+}\) influx and Ca\(^{2+}\) efflux mode and is one of the crucial regulators of Ca\(^{2+}\) homeostasis within cardiomyocytes and of cardiac contractility. NCX1 consists of nine transmembrane helices with an extracellular N-terminus and a cytosolic C-terminus that is organized in four domains [23,24]. There are two adjacent homologous Ca\(^{2+}\)-binding domains, CBD1 and CBD2, arranged in an antiparallel fashion, that are connected via a regulatory catenin-like domain (CLD) to the membrane part of the exchanger (Fig. 2). A rise in cytosolic Na\(^+\) stimulates rapidly and then inactivates the exchanger; in contrast, cytosolic Ca\(^{2+}\) activates the exchanger and relieves the Na\(^+\)-dependent inactivation [25–28]. Regulation by cytosolic Na\(^+\) and Ca\(^{2+}\) involves sites that do not participate directly in the ion translocation process. Thus, an amphipathic sequence, the XIP region (eXchanger Inhibitory Peptide), takes part in regulation by Na\(^+\), whereas CBD1 and CBD2 are responsible for the Ca\(^{2+}\)-dependent activation of the exchanger. Both CBD1 and CBD2 have an Ig-like fold with the Ca\(^{2+}\)-binding sites in the distal loops [24,28,29]. They contain also an unstructured loop, the FG loop, which in CBD2 is...
characterized by the presence of a tissue-specific, alternatively spliced region (Fig. 2). Despite the structural similarity, CBD1 binds four Ca\(^{2+}\) with high affinity \((K_0 = 0.3 \mu M)\), whereas CBD2 binds only two metal ions with lower affinity \((K_0 = 5 \mu M)\) [30]. In CBD1, the four Ca\(^{2+}\) ions are brought into close proximity by a complex arrangement of the coordinating residues. Thus, aspartate and glutamate carboxylate oxygens provide bidentate ligands that coordinate two (Asp500) or three (Glu451) Ca\(^{2+}\) simultaneously. In CBD2, the two Ca\(^{2+}\)-binding sites are only 5.4 Å apart, such that the two metal ions are coordinated by two carboxylate oxygens of a single aspartate side chain (Asp578). Mutations of acidic Ca\(^{2+}\)-binding amino acid residues in CBD1 decrease affinity for Ca\(^{2+}\), as expected, but do not eliminate Ca\(^{2+}\)-dependent regulation [26]. In contrast, mutations E516L, D578V and E648L in the CBD2 Ca\(^{2+}\)-binding sites completely remove Ca\(^{2+}\) regulation, placing the exchanger in a constitutionally active state [28]. In accord with these observations, the alternatively spliced NCX1 kidney isoform with an arginine at position 578 and the brain isoform carrying a D578R mutation are not regulated by Ca\(^{2+}\) [31]. Taken together these data point to CBD1 and CBD2 as major determinants of the NCX1 functional regulation.

Several experimental data point to an effect of sorcin on NCX function in the heart, indicative of a possible direct interaction between the two proteins. In particular, NCX activity is increased in sorcin-overexpressing cardiomyocytes, while a low NCX activity has been observed in a rabbit model of left ventricular dysfunction (LVD) [29] and in sorcin-overexpressing cardiomyocytes, whereas CBD2 remained in the insoluble fraction. CBD1 purification was carried out by 30% (w/v) ammonium sulphate precipitation at room temperature for 1 h, while BD2 purification required protein extraction by treatment with 0.3% N-lauryl-sarcosine in 50 mM CAPS buffer pH 11.0. An anion exchanger column Mono-Q (GE Healthcare) was used to improve purification of both NCX1 domains. The proteins, dialysed vs. a 10 mM Tris–HCl buffer at pH 7.5, were loaded onto the column and were recovered upon application of a linear gradient of NaCl between 0 and 0.5 M. Based on SDS page electrophoresis, the degree of enrichment was ~80% for CBD1 and ~70% for CBD2. In the SPR experiments the concentration of CBD1 and CBD2 was calculated from the intensity of the respective bands in SDS gels (Supplementary Fig. S1) after determination of the total protein concentration with the Bradford assay.

2.3. Overlay assay experiments

Wt sorcin and SCBD were subjected to electrophoresis on a 15% polyacrylamide gel under denaturing conditions [36] and transferred to polyvinylidene fluoride membranes (PVDF) in transfer buffer [25 mM Tris–HCl, 192 mM glycine, and 20% methanol (pH 8.3)] at 100 mA for 45 min. The PVDF membranes were incubated at room temperature separately with CBD1 and CBD2 (20 µg/mL) in 1% gelatin in TBST buffer [20 mM Tris–HCl, 0.5 M NaCl, and 0.05% Tween 20 (pH 7.5)] containing either 50 µM CaCl\(_2\) (total concentration) or 1 mM EGTA to assess the calcium dependence of the interaction. Subsequently, the membranes were incubated in 1% gelatin in TBST buffer with a mouse anti-NCX1 monoclonal antibody (antigen: purified canine cardiac NCX; Biocompare). The antibody was used at 1:3000 dilution, a condition where it recognizes equally well CBD1 and CBD2 and does not recognize other proteins like albumin and gelatin, as established in preliminary experiments. The blots were developed by incubation for 45 min with alkaline phosphatase conjugated monoclonal anti-mouse IgG in 1% gelatin in TBST. Control experiments ruled out the existence of cross reactivity between sorcin or SCBD and the anti-NCX monoclonal antibody.

2.4. Surface plasmon resonance measurements

Surface plasmon resonance (SPR) experiments were carried out using a BIACORE X system (BIACore AB, Uppsala, Sweden). The sensor chip (CM5, Biacore AB) was activated chemically by a 35 µL injection of a 1:1 mixture of N-ethyl-N-(3-(dimethylaminopropyl) carbodiimide (200 mM) and N-hydroxysuccinimide (50 mM) at a flow rate of 5 µL/min. In one set of experiments, sorcin was immobilized on the activated sensor chip via amine coupling. The reaction was carried out in 20 mM sodium acetate at pH 6.0, the remaining ester groups were blocked by injecting 1 M ethanolamine hydrochloride (35 µL). This procedure ensures immobilization of sorcin principally via the N-terminus [32]. As a control, the sensor chip was treated as described above in the absence of sorcin. The interaction of immobilized sorcin with the CBD1 and CBD2 domains of NCX1 was detected through mass.
concentration-dependent changes in the refractive index on the sensor chip surface expressed as resonance units (RU). The increase in RU relative to baseline indicates complex formation; the plateau region represents the steady-state phase of the interaction, whereas the decrease in RU represents dissociation of the NCX1 calcium binding domains from immobilized sorcin after injection of buffer. A response change of 1000 RU typically corresponds to a change in the protein concentration on the sensor chip of 1 ng/mm² [37]. The experiments were carried out at 25 °C in 10 mM HEPES (pH 7.4), 150 mM NaCl, and 0.005% surfactant P-20. The buffer was treated with Chelex 100 to eliminate Ca²⁺ contaminations and degassed. The concentration of CBD1 and CBD2 ranged between 500 nM and 22 µM at a constant calcium concentration.

In a second set of experiments, CBD1 was immobilized on the activated CM5 chip at pH 4.5 using the procedure described above. The interaction with wt sorcin or sorcin mutants (E124A, W99G, W105G and SCBD) at a concentration of 1 µM was measured in the presence of 20 and 50 µM Ca²⁺. Scatchard analysis of the dependence of the SPR signal at steady state (Eq) on the concentration of CBD1 and CBD2 was performed to determine the equilibrium dissociation constant. Eq values were calculated from the sensorgrams using BLAevaluation version 3.0. The amine coupling kit, the P-20 surfactant, and the CM-5 sensor chip were purchased from Biacore AB and all the other reagents were high-purity grade.

Negative controls for the SPR experiments were obtained by transformation of E. coli BL21(DE3) with pET22, induction with 1 mM IPTG for 5 h at 37 °C, and subsequent sonication and centrifugation; the supernatants were treated as for the CBD1 and CBD2 preparations, but the last purification step by anion exchanger chromatography was omitted (Supplementary Fig. S1).

2.5. Measurement of NCX currents in isolated cardiac myocytes

Procedures were undertaken in accordance with the United Kingdom Animals (Scientific Procedures) Act 1986 and conform to the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1985). New Zealand White male rabbits were given an intravenous injection of 500 U heparin together with an overdose of sodium pentobarbitone (100 mg/kg) and their hearts were removed. Isolated hearts were perfused retrogradely (25 mL min⁻¹) at a constant calcium concentration. The Tyrode's solution superfusing isolated cells contained (mmol/L): CsCl (45), EGTA/CaEGTA (Cs + 1.2 mmol/L), Na 2ATP (10); pH 7.25. This pipette solution was designed to buffer [Ca²⁺] to ~250 nmol/L (confirmed by separate [Ca²⁺] measurements). After achieving the whole-cell configuration, a period of 5–10 min was allowed for dialysis of the pipette solution into the cell. Currents were then measured in response to a 3 s ramp from ~120 mV to +80 mV from the holding potential of ~80 mV. An ascending ramp was chosen since this has been shown to cause less perturbation of sub-sarcosomeal [Ca²⁺] than a descending ramp, and the resulting currents are closer to those obtained using a voltage step protocol [38]. The ramp protocol was performed at 0.1 Hz, when steady-state currents were achieved; data from 12 ramps were recorded for subsequent averaging. The protocol was repeated in the presence of 5 mmol/L Ni²⁺ to obtain the background current, and this was subtracted to obtain the current attributable to NCX (see Fig. 3(A)). Sorcin or the mutant proteins were added to the intracellular pipette solution for dialysis into the cell at a concentration of 3 µM using a protocol similar to previous work, designed to supplement endogenous intracellular sorcin by comparable amounts of exogenous protein [15,16]. Allowing sorcin to dialyse into the cell for 10 to 20 min had no additional effects (data not shown). Preliminary experiments using 1 µM sorcin had no significant effect on the NCX current (see Supplementary Fig. S5). Control measurements were made by adding identical amounts of the suspension buffer. The control and experimental data were always obtained on the same experimental day.

2.6. Preparation and testing of sorcin RNAi virus

As previously described [16], a partial rabbit sorcin sequence was amplified using primers based on the known human sorcin sequence by reverse transcription of RNA from a chinchilla bastard rabbit. Sense and antisense oligonucleotides were chosen to target the 19 nucleotide segment complementary to the rabbit sorcin mRNA sequence GCAAGAUCAUCUUGGAGA and ligated downstream of a U6 promoter into vector pSIREN-DNR (BD Biosciences Clontec, Palo Alto, USA). Six different siRNA sequences were cloned into pSIREN and verified for their effectiveness in a rabbit tumor cell line VX2. Knockdown was verified via RT-PCR. The most effective siRNA was selected to generate recombinant adenovirus. Recombination with the remaining adenoviral genome using pAdeno-X vector was carried out according to the manufacturer’s instructions (BD Adeno-X Expression System, BD, Biosciences Clontech, Palo Alto, USA). Infection of adult ventricular cardiomyocytes with the AdRNAi virus (100 MOI) resulted in downregulation of native sorcin expression to 27 ± 7% of control value after 36h of quiescent culture [16]. Example blots demonstrating of downregulation of sorcin RNA and protein are shown in the online supplement (Supplementary Fig. S5).

3. Results

3.1. Sorcin modulates NCX activity in isolated rabbit cardiomyocytes

Fig. 3(A) demonstrates the protocol used to extract the membrane current associated with NCX. Previous studies have shown that the current–voltage relationship of the Ni²⁺-sensitive current corresponds well to the predicted relationship for NCX [39]. Specific downregulation of native sorcin protein levels to <30% of control values resulted in a significant decrease in NCX activity across the voltage range (Fig. 3(B)) to approximately 50% of the control level. This suggests that native sorcin levels tonically stimulate NCX under control levels. In separate experiments, inclusion of 3 µM wt sorcin in the pipette to supplement intracellular sorcin levels resulted in a dramatic increase in NCX activity (Fig. 3(C)).

3.2. Sorcin and NCX1 interact directly by means of the respective Ca²⁺-binding domains: overlay assay experiments

The immunoblot experiments presented in Fig. 4 show that sorcin interacts with NCX1 by means of SCBD and that the interaction
involves both CBD1 and CBD2. In the presence of 50 µM Ca\(^{2+}\), the two NCX1 domains appear to interact with sorcin in a similar manner. When incubation is carried out in the presence of EGTA no bands are visible in the immunoblot (Supplementary Fig. S3), an indication that complex formation is specific and calcium dependent.

3.3. SPR characterization of the sorcin–NCX1 interaction

Surface plasmon resonance experiments were performed to characterize the binding reaction quantitatively. In a first series of experiments, sorcin was immobilized onto the chip. The changes in refractive index (RU) that occur during injection of the CBD1 and CBD2 solutions at different concentrations in the presence of 50 µM CaCl\(_2\) are depicted in Figs. 5(A), (B) and the Scatchard analysis of the data is presented in Fig. 5(C). The equilibrium and kinetic parameters that describe the interaction of immobilized sorcin with the two NCX1 domains are rather similar. In particular, the equilibrium dissociation constant pertaining to CBD1 and CBD2 correspond to \(K_D = 7 \pm 2 \mu M\) and \(3 \pm 1.7 \mu M\), respectively. As expected, the interaction with both CBD1 and CBD2 depends on calcium concentration. At nanomolar calcium (a concentration achieved by addition of 2 mM EDTA) no interaction takes place as shown by the extremely small \(R_{eq}\) values.

Fig. 3. Effect of sorcin and knockdown of sorcin on cardiac NCX activity. (A) The ascending voltage ramp protocol (−120 to +80 mV in 3 s) applied to a single ventricular cardiomyocyte and the associated membrane currents in the absence and presence of 5 mmol/L Ni\(^{2+}\) (the zero current level indicated by the horizontal line). The Ni\(^{2+}\)-sensitive signal (lower panel) represents the current carried by NCX (\(I_{NCX}\)). This protocol was used to generate the average I–V relationships shown in (A(ii)) for normal cardiomyocytes (\(n = 20\) cells from 3 hearts). (B) shows the data from cardiomyocytes transfected with mRNAi virus for sorcin compared to the Ad-LacZ control. The relative change in currents at −120 mV and +80 mV are shown in (B(ii)). \(I_{NCX}\) is lower in myocytes transfected with the mRNAi adenovirus that reduces sorcin expression. (\(*\)P < 0.05, \(n = 15\) cells from 3 hearts in both groups). (C) shows the I–V curve recorded from cells with 3 µM sorcin dialysed into the cell via the intracellular pipette. \(I_{NCX}\) was significantly increased in cardiomyocytes compared to control (\(n = 15\) myocytes from 3 hearts in each group).
while at 20 and 50 μM there is interaction and the time courses are alike. Experiments with negative control preparations ruled out the occurrence of aspecific binding (Supplementary Fig. S4).

In another set of experiments CBD1 and CBD2 were immobilized on the sensor chip and their interaction with soluble wt sorcin was measured. For CBD1, the results obtained at 50 μM Ca²⁺ yield an equilibrium constant $K_D = 1.2 \pm 2 μM$, while CBD2 interacts with sorcin with an equilibrium constant $K_D = 1.0 \pm 2 μM$, in satisfactory agreement with the data obtained with immobilized sorcin. The increase in RU at nanomolar Ca²⁺ concentration was negligible.

These observations prompted the experiment depicted in Fig. 6 aimed at mimicking the changes in Ca²⁺ concentration that occur during an excitation–contraction–relaxation cycle. Thus, wt sorcin was bound to immobilized CBD1 at 50 μM Ca²⁺ and was dissociated at nM Ca²⁺ (i.e. in the presence of 2 mM EDTA). The sorcin–CBD1 complex dissociates about ten-fold faster ($k_d = 0.9 \pm 0.4 s^{-1}$) than at 50 μM Ca²⁺. The parallel experiment at the latter Ca²⁺ concentration is also shown to allow a direct comparison. Similarly, wt sorcin was bound to immobilized CBD2 at 50 μM Ca²⁺ and was dissociated at nM Ca²⁺. At this Ca²⁺ concentration the sorcin–CBD2 complex dissociates about ten-fold faster ($k_d = 0.6 \pm 0.2 s^{-1}$) than at 50 μM Ca²⁺ just like the sorcin–CBD1 one.

The SPR results are compiled in Table 1.

3.4. Effect of sorcin mutants on NCX1 activity

The presence of 3 μM sorcin Ca²⁺-binding domain (SCBD) increases NCX activity by about 120% relative to control suggesting this domain is important in the stimulation of NCX1 activity, in accord with its involvement in formation of the sorcin–NCX1 complex (Fig. 7). The different sorcin variants analyzed have strikingly different effects on the activity of NCX1 as already observed in the case of the Ca²⁺ spark properties which reflect RyR2 activity in cardiomyocytes [33,34]. This applies in particular to the W99G and W105G variants which carry a mutation in the D helix at a distance of only two helical turns. The W105G variant quadruplicates NCX activity with respect to control and therefore resembles wt sorcin (Fig. 3), whereas W99G increases the Ni²⁺-sensitive currents by about 60% with respect to control. The E124A mutant, characterized by impaired binding of Ca²⁺ to the highest affinity EF3 site, is indistinguishable from control.
3.5. SPR characterization of the sorcin mutants–NCX1 interaction

The NCX activity data just presented were supplemented by SPR experiments in which the interaction between immobilized CBD1 and soluble wt sorcin or sorcin variants at the same protein concentration was monitored (Fig. 8). In the presence of 50 µM Ca2+, the interaction with CBD1 follows the order W105G N SCBD N wt sorcin N W99G based on the observed increase in RU. The corresponding \(K_D\) values decrease from 26 to 2.0 \(\mu\)M (average of two experiments). In case of the E124A variant the increase in RU was negligible.

4. Discussion

The current study demonstrates a tonic influence of sorcin on NCX; downregulation of sorcin levels decreases NCX activity and addition of wt sorcin stimulates NCX. The study also provides evidence for a direct interaction between sorcin and NCX1 and thus furnishes a molecular explanation for the activation of the exchanger associated with increased expression of sorcin in cardiomyocytes [13,22].

A dual experimental approach was used to advantage. Overlay and SPR measurements on the isolated proteins/domains allowed the kinetic and equilibrium characterization of the interaction with NCX1 subfragments while NCX activity measurements on cardiomyocytes were used to extend the conclusions thus drawn to a cellular context. In the case of sorcin, the behaviour of the wild type protein was compared to that of the \(\text{Ca}^{2+}\)-binding domain, SCBD, and of the site-specific mutants used successfully to map the surface interacting with RyR2 [34]. As far as NCX1 is concerned, the two major cytoplasmic \(\text{Ca}^{2+}\)-binding domains, CBD1 and CBD2, were chosen in view of their important regulatory role. The choice of these NCX1 domains proved to be correct based on the agreement of the NCX activity results and those of the overlay experiments (Figs. 3 and 4). Thus, sorcin increases NCX

Table 1

Equilibrium and kinetic constants for the sorcin–NCX domains interaction as assessed from SPR experiments.

	\(K_D\) (M) 50 µM \text{CaCl}_2	\(k_a\) (M\(^{-1}\)s\(^{-1}\)) 50 µM \text{CaCl}_2	\(k_d\) (s\(^{-1}\)) 50 µM \text{CaCl}_2	\(k_d\) (s\(^{-1}\)) 2 mM \text{EDTA}
Immobilized-soluble protein				
Sorcin–CBD1	\(7 \times 10^{-6} \pm 2 \times 10^{-6}\)	\(4 \times 10^{4} \pm 1 \times 10^{4}\)	\(0.27 \pm 0.1\)	
Sorcin–CBD2	\(3 \times 10^{-6} \pm 1.7 \times 10^{-6}\)	\(8 \times 10^{4} \pm 3 \times 10^{4}\)	\(0.24 \pm 0.1\)	
CBD1–sorcin	\(1.2 \times 10^{-6} \pm 2 \times 10^{-6}\)	\(7 \times 10^{4} \pm 4 \times 10^{4}\)	\(0.08 \pm 0.1\)	\(0.9 \pm 0.4\)
CBD2–sorcin	\(1.0 \times 10^{-6} \pm 2 \times 10^{-6}\)	\(5 \times 10^{4} \pm 4 \times 10^{4}\)	\(0.05 \pm 0.03\)	\(0.6 \pm 0.2\)

Conditions: 10 mM HEPES (pH 7.4), 150 mM NaCl, and 0.005% surfactant P-20, in the presence of 50 µM \text{CaCl}_2. Temperature 25 \(^\circ\)C.
activity in accordance with the observation that both CBD1 and CBD2 interact with sorcin. Both types of data also show that sorcin interacts with NCX1 via the C-terminal Ca\(^{2+}\)-binding domain. The fact that SCBD is indistinguishable from full-length sorcin in the overlay experiments, but has a somewhat lower activating effect on the Ni\(^{2+}\)-sensitive current in cardiomyocytes in turn indicates that the N-terminal sorcin domain may participate in the interaction.

The SPR analysis of the sorcin interaction with CBD1 and CBD2 confirms the involvement of both exchanger domains in complex formation and shows that the respective equilibrium and kinetic parameters are very similar. Thus, at a Ca\(^{2+}\) concentration of 50 µM, the equilibrium dissociation constant between immobilized sorcin and the two NCX1 domains is 3–7 µM resulting from an association rate constant of 4–8 × 10\(^{4}\) M\(^{-1}\) s\(^{-1}\) and a dissociation rate constant of 0.24–0.27 s\(^{-1}\) (Fig. 5). Importantly, comparable results are obtained also in the reciprocal experiment, which entails the use of immobilized CBD1 or CBD2 (Figs. 6 and 8), an indication that steric effects due to immobilization have only a minor effect on the interaction. From a cellular perspective more informative values are obtained when association between CBD1 and sorcin takes place at 50 µM Ca\(^{2+}\) and

Fig. 7. Effect of sorcin variants on NCX activity. (A) shows the average Ni\(^{2+}\)-sensitive current recorded from single cardiomyocytes with a series of sorcin variants dialysed into the cell via the intracellular pipette: (i) SCBD; (ii) W105G (iii) W99G and (iv) E124A. (B) shows the relative change in IN\(_{\text{NCX}}\) current at −120 and 80 mV. The variants have the following relative potency: W105G>SCBD>W99G>E124A.
dissociation at nanomolar Ca\(^{2+}\) since these Ca\(^{2+}\) concentrations mimic those occurring during the excitation–contraction–relaxation cycle (Fig. 6). This experiment clearly shows that the decreased affinity of the two proteins at nanomolar Ca\(^{2+}\) can be attributed to the significant increase in the rate of dissociation of the complex (\(k_{d} = 0.9 \pm 0.4 \text{ s}^{-1}\), corresponding to \(t_{1/2}\) values of 0.5–1.4 s) upon decrease in Ca\(^{2+}\) concentration.

Having established that sorcin and NCX1 interact via the respective Ca\(^{2+}\)-binding domains and having characterized the interaction in thermodynamic and kinetic terms, the identification of the interacting surface on the sorcin molecule was addressed. The site-specific sorcin variants of EF3 hand and D helix residues used previously to identify the sorcin region involved in complex formation with RyR2 were employed [33,34]. These mutants revealed similarities and differences in the sorcin–RyR2 and sorcin–NCX systems which both involve the sorcin D helix. However, the complex with NCX1 is formed via the sorcin region near EF3 comprising W99. Thus, removal of W99 almost abolishes interaction with the exchanger (Fig. 8) and its activation (Fig. 7), while mutation of W105 leaves both properties unaltered with respect to wt sorcin. In contrast, the interaction with RyR2 is severely compromised when W105 is mutated, but is affected only marginally upon substitution of W99 [34].

The data just presented shed light only on part of the events that are triggered by Ca\(^{2+}\) binding to sorcin and NCX leading to an increased NCX activity. The affinity for Ca\(^{2+}\) is such that at low micromolar Ca\(^{2+}\) concentrations both proteins are saturated with Ca\(^{2+}\) [30,33] and acquire the conformation that renders them able to interact with fast kinetics via the respective Ca\(^{2+}\)-binding domains. The sorcin Ca\(^{2+}\)-binding domain participates also in the interaction with RyR2, but not in the sorcin–annexin VII interaction which takes place via the respective N-terminal regions [32,34]. In sorcin, the beginning of the D helix within the EF2-D helix-EF3 functional unit is a crucial spot for complex formation as indicated by the effect of the available site-specific variants employed. No such detailed information is available for the CBD1 and CBD2 domains, although it may be hypothesized that sorcin binding to CBD2 favours a conformation resembling that of its constitutionally active mutants [28]. If so, Ca\(^{2+}\)-binding sites such as E516, D578 and E648 of NCX1 could interact directly with sorcin; such interaction could remove Ca\(^{2+}\) regulation, placing the exchanger in a constitutionally active state [28]. The alternative splicing sequence of CBD2, which forms the unstructured FG loop and is accounted for being part of the regulation of NCX1 [24,40] is not important for sorcin binding, since sorcin binds similarly to CBD1 and the full-length CBD2 variant. The stoichiometry of the interaction is likewise not known. The location of the D helices on opposite sides of the sorcin dimer (Fig 1) renders their concomitant interaction with CBD1 and CBD2 in the spatial relationship proposed by Hilge et al. [23,24] and depicted in Fig. 2 unlikely, despite the flexibility of the loops involved. Complex formation between two sorcin dimers and one NCX molecule cannot be excluded based on the available data.

As mentioned above, the interaction of sorcin with CBD1 and CBD2 is characterized by fast kinetics, both in terms of on and off rates. Both rates are fast enough to allow for a partial cycle of association with (and activation of) NCX and dissociation from (deactivation of) NCX within fractions of seconds and may allow NCX regulation on a “beat to beat” basis. The Ca\(^{2+}\)-sensitive modulation would act in addition to the Ca\(^{2+}\) dependence associated with Ca\(^{2+}\) binding to the CBD1 and CBD2 domains. The reasons for two parallel levels of Ca\(^{2+}\) dependant regulation is unknown, but a similar principle appears to apply to the regulation of L-type Ca\(^{2+}\) channel, RyR2 and SERCA i.e. modulation by direct interaction of Ca\(^{2+}\) and indirectly via Ca\(^{2+}\)-dependent sorcin interaction. Further work is required to determine what aspect of cell function is mediated by this parallel series of Ca\(^{2+}\)-dependent interactions.

In more general terms, NCX has an important role in Ca\(^{2+}\) homeostasis in a variety of tissues, such as the heart, the kidney and the brain, and is a key player in pathological situations that involve dysregulation of Ca\(^{2+}\) balance [41]. The calcium-dependent translacation of sorcin to membranes, and its ability to interact with different targets (in heart, brain and other tissues) and to alter their activity, makes sorcin an efficient regulator of different functions in different cell types. The activatory role of sorcin can be important in short-term and long-term regulation of NCX1 and may have an impact in diverse pathologies where NCX1 is involved. In heart cells, the effects of sorcin on intracellular Ca\(^{2+}\) and contractility is difficult to predict, as it will depend on the status of the target channels (L-type Ca\(^{2+}\) channel and ryanodine receptor), pumps (sarcoplasmic reticulum Ca-ATPase) and exchangers (NCX1). For instance the discrepancy between sorcin-mediated decrease in intracellular Ca\(^{2+}\) reported in rabbit myocytes [13] and sorcin-mediated decrease in intracellular Ca\(^{2+}\) reported in rat myocardium [20,21] may be explained by the higher intracellular Na\(^{+}\) in rat heart. Under these conditions, the capacity for Ca\(^{2+}\) extrusion is reduced and consequently the ability of sorcin to stimulate Ca\(^{2+}\) efflux is limited. Therefore additional effects on L-type, RyR or SR Ca\(^{2+}\)-ATPase may dominate and promote contractility. Alternatively in rabbit, the low intracellular Na\(^{+}\) will ensure that NCX extrudes Ca\(^{2+}\) during diastole; therefore, sorcin-mediated stimulation of NCX will lower intracellular Ca\(^{2+}\) and this effect may dominate over the others in determining intracellular Ca\(^{2+}\) signals. Acknowledgments

MIUR local funds to E.C. and MIUR PRIN 2007 grant to G.C. are acknowledged. A grant from the British Heart Foundation (No PG/04/058) to G.L.S. supported this work. TS was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) Grant Ha 1233/7-3.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.yjmcc.2010.03.003.

References

[1] Meyers MB, Biedler JL. Increased synthesis of a low molecular weight protein in vincristine-resistant cells. Biochem Biophys Res Commun 1981;99:228–35.
