TAYLOR’S THEOREM FOR FUNCTIONALS ON BMO WITH APPLICATION TO BMO LOCAL MINIMIZERS

DANIEL E. SPECTOR AND SCOTT J. SPECTOR

Abstract. In this note two results are established for energy functionals that are given by the integral of $W(x, \nabla u(x))$ over $\Omega \subset \mathbb{R}^n$ with $\nabla u \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$, the space of functions of Bounded Mean Oscillation of John & Nirenberg. A version of Taylor’s theorem is first shown to be valid provided the integrand W has polynomial growth. This result is then used to demonstrate that, for the Dirichlet, Neumann, and mixed problems, every Lipschitz-continuous solution of the corresponding Euler-Lagrange equations at which the second variation of the energy is uniformly positive is a strict local minimizer of the energy in $W^{1,1}(\Omega; \mathbb{R}^N)$ for which the weak derivative $\nabla u \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$.

1. Introduction

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a Lipschitz domain. Suppose that $d : D \to \mathbb{R}^N$, $N \geq 1$, is a given Lipschitz-continuous function, where $D \subset \partial \Omega$, the boundary of Ω. We herein consider functionals of the form

$$
\mathcal{E}(u) = \int_{\Omega} W(x, \nabla u(x)) \, dx
$$

(1.1)

for W that satisfy, for some $a > 0$ and $r > 0$,

$$
|D^3 W(x, K)| \leq a(1 + |K|^r),
$$

for all real N by n matrices K and almost every $x \in \Omega$. We take $u = d$ on D and $u \in W^{1,\text{BMO}}(\Omega; \mathbb{R}^N)$, the subspace of the Sobolev space $W^{1,1}(\Omega; \mathbb{R}^N)$ for which the weak derivative ∇u is of Bounded Mean Oscillation. Our main result shows that any Lipschitz-continuous weak solution u_e of the corresponding Euler-Lagrange equations:

$$
0 = \delta \mathcal{E}(u_e)[w] = \int_{\Omega} D W(x, \nabla u_e(x)) [\nabla w(x)] \, dx \quad \text{for all } w \in \text{Var},
$$

(1.2)

at which the second variation of \mathcal{E} is uniformly positive: for some $b > 0$ and all $w \in \text{Var},$

$$
\delta^2 \mathcal{E}(u_e)[w, w] = \int_{\Omega} D^2 W(x, \nabla u_e(x)) [\nabla w(x), \nabla w(x)] \, dx \geq b \int_{\Omega} |\nabla w(x)|^2 \, dx,
$$

(1.3)

will satisfy, for some $c > 0$,

$$
\mathcal{E}(w + u_e) \geq \mathcal{E}(u_e) + c \int_{\Omega} |\nabla w(x)|^2 \, dx
$$

(1.4)

for all $w \in W^{1,\text{BMO}}(\Omega; \mathbb{R}^N) \cap \text{Var}$ whose gradient has sufficiently small norm in $\text{BMO}(\Omega)$. Here

$$
D^j W(x, K) = \frac{\partial^j}{\partial K^j} W(x, K), \quad \text{Var} := \{w \in W^{1,2}(\Omega; \mathbb{R}^N) : w = 0 \text{ on } D\},
$$

$$
\|\nabla u\|_{\text{BMO}} := |\nabla u|_{\text{BMO}} + |(\nabla u)_\Omega|,
$$

$| \cdot |_{\text{BMO}}$ denotes the standard semi-norm on $\text{BMO}(\Omega)$ (see (2.1)), and $(\nabla u)_\Omega$ denotes the average value of the components of ∇u on Ω.

Date: 24 May 2020.
The above result extends prior work\(^1\) of Kristensen & Taheri [19, Section 6] and Campos Cordero [4, Section 4] (see, also, Firoozye [8]). These authors proved that, for the Dirichlet problem, if \(u_e\) is a Lipschitz-continuous weak solution of the Euler-Lagrange equations, (1.2), at which the second variation of \(E\) is uniformly positive, (1.3), then there is a neighborhood of \(\nabla u_e\) in \(\text{BMO}(\Omega)\) in which all Lipschitz mappings have energy that is greater than the energy of \(u_e\).

Our proof of the above result makes use of a version of Taylor’s theorem on \(\text{BMO}(\Omega)\) that is established herein: Let \(W\) satisfy, for some \(a > 0, r > 0\), and integer \(k \geq 2\),

\[
|D^k W(x, K)| \leq a(1 + |K|^r),
\]

for all real \(N\) by \(n\) matrices \(K\), and almost every \(x \in \Omega\). Fix \(M > 0\) and \(F \in L^\infty(\Omega; \mathbb{R}^{N \times n})\). Then there exists a constant \(c = c(M, ||F||_\infty) > 0\) such that every \(G \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})\) with \(||G - F||_{\text{BMO}} < M\) satisfies

\[
\int_\Omega W(G) \, dx \geq \int_\Omega W(F) \, dx + \sum_{j=1}^{k-1} \frac{1}{j!} \int_\Omega D^j W(F)[H, H, \ldots, H] \, dx - c \int_\Omega |H|^k \, dx,
\]

where \(H = G - F, F = F(x), G = G(x)\), and, e.g., \(W(F) = W(x, F(x))\).

A key ingredient in our proof of (1.5) is the interpolation inequality [22, Theorem 2.5]: If \(1 \leq p < q < \infty\), then there is a constant \(C = C(p, q, \Omega)\) such that, for all \(\psi \in \text{BMO}(\Omega)\),

\[
\int_\Omega |\psi(x)|^q \, dx \leq C(||\psi||_{\text{BMO}} + |\langle \psi \rangle_\Omega|)^{q-p} \int_\Omega |\psi(x)|^p \, dx.
\]

When \(\Omega = \mathbb{R}^n\) and \(\langle \psi \rangle_{\mathbb{R}^n} = 0\) this inequality is due to Fefferman & Stein [7, p. 156], although it is clear from [16, pp. 624–625] that Fritz John was aware of (1.6) when \(||\psi||_{\text{BMO}}\) was sufficiently small and \(\langle \psi \rangle_\Omega = 0\) (for domains \(\Omega\) with bounded eccentricity).

Finally, we note that our main result assumes that the solution \(u_e\) of the Euler-Lagrange equations (1.2) is Lipschitz continuous and has uniformly positive second variation (1.3). It follows that \(u_e\) is a weak relative minimizer of the energy (1.1), that is, a minimizer with respect to perturbations that are small in \(W^{1,\infty}\). Grabovsky & Mengesha [11, 12] give further conditions\(^2\) that they prove imply that \(u_e\) is then a strong relative minimizer of \(E\), that is, a minimizer with respect to perturbations that are small in \(L^\infty\), whereas our result only changes \(W^{1,\infty}\) to \(W^{1,\text{BMO}} \subset \subset L^\infty\). However, as Grabovsky & Mengesha have noted, their results require that \(u_e\) be \(C^1\). Examples of Müller & Šverák [21] demonstrate that not all Lipschitz-continuous solutions of (1.2) need be \(C^1\). Also, the Lipschitz-continuous example of Kristensen & Taheri [19, §7] satisfies both (1.2) and (1.3).

2. Preliminaries

For any domain (nonempty, connected, open set) \(U \subset \mathbb{R}^n, n \geq 2\), we denote by \(L^p(U; \mathbb{R}^N)\), \(p \in [1, \infty)\), the space of (Lebesgue) measurable functions \(u\) with values in \(\mathbb{R}^N, N \geq 1\), whose

\(^1\)The result in [19, Section 6] has been extended to the Neumann and mixed problems in [22, Section 3].

\(^2\)The most significant are quasiconvexity in both the interior and at the boundary. See Ball & Marsden [1].
L^p-norm is finite:
\[\| u \|_{L^p}^p = \| u \|_{p,U}^p := \int_U |u(x)|^p \, dx < \infty. \]

$L^\infty(U; \mathbb{R}^N)$ shall denote those measurable functions whose essential supremum is finite. We write $L^1_{\text{loc}}(U; \mathbb{R}^N)$ for the set of measurable functions that are integrable on every compact subset of U.

We shall write $\Omega \subset \mathbb{R}^n$, $n \geq 2$, to denote a Lipschitz domain, that is a bounded domain whose boundary $\partial \Omega$ is (strongly) Lipschitz. (See, e.g., [6, p. 127], [20, p. 72], or [14, Definition 2.5].) Essentially, a bounded domain is Lipschitz if, in a neighborhood of every $x \in \partial \Omega$, the boundary is the graph of a Lipschitz-continuous function and the domain is on “one side” of this graph. $W^{1,p}(\Omega; \mathbb{R}^N)$ will denote the usual Sobolev space of functions $u \in L^p(\Omega; \mathbb{R}^N)$, $1 \leq p \leq \infty$, whose distributional gradient ∇u is also contained in L^p. Note that, since Ω is a Lipschitz domain, each $u \in W^{1,\infty}(\Omega; \mathbb{R}^N)$ has a representative that is Lipschitz continuous. We shall write $\mathbb{R}^{N \times n}$ for the space of real N by n matrices with inner product $A : B = \text{trace}(AB^T)$ and norm $\|A\| = \sqrt{\text{trace}(A^T A)}$, where B^T denotes the transpose of B.

2.1. Bounded Mean Oscillation. The BMO-seminorm\(^3\) of $F \in L^1_{\text{loc}}(U; \mathbb{R}^{N \times n})$ is given by
\[[F]_{\text{BMO}(U)} := \sup_{Q \subset U, Q \subset U} \int_U |F(x) - \langle F \rangle_Q| \, dx, \quad (2.1) \]
where the supremum is to be taken over all nonempty, bounded (open) n-dimensional hypercubes Q with faces parallel to the coordinate hyperplanes. Here
\[\langle F \rangle_U := \int_U F(x) \, dx := \frac{1}{|U|} \int_U F(x) \, dx \]
denotes the average value of the components of F, $|U|$ denotes the n-dimensional Lebesgue measure of any bounded domain $U \subset \mathbb{R}^n$, and we write $Q \subset U$ provided that $Q \subset K_Q \subset U$ for some compact set K_Q.

The space $\text{BMO}(U; \mathbb{R}^{N \times n})$ (Bounded Mean Oscillation) is defined by
\[\text{BMO}(U; \mathbb{R}^{N \times n}) := \{ F \in L^1_{\text{loc}}(U; \mathbb{R}^{N \times n}) : [F]_{\text{BMO}(U)} < \infty \}. \quad (2.2) \]
One consequence of (2.1)–(2.2) is that $L^\infty(U; \mathbb{R}^{N \times n}) \subset \text{BMO}(U; \mathbb{R}^{N \times n})$ with
\[[F]_{\text{BMO}(U)} \leq 2\|F\|_{\infty,U} \quad \text{for all } F \in L^\infty(U; \mathbb{R}^{N \times n}). \]
We note for future reference that if $U = \Omega$, a Lipschitz domain, then a result of P. W. Jones [18] implies, in particular, that
\[\text{BMO}(\Omega; \mathbb{R}^{N \times n}) \subset L^1(\Omega; \mathbb{R}^{N \times n}). \]

It follows that\(^4\)
\[\|F\|_{\text{BMO}} := [F]_{\text{BMO}(\Omega)} + |\langle F \rangle_\Omega| \quad (2.3) \]
is a norm on $\text{BMO}(\Omega; \mathbb{R}^{N \times n})$.

\(^3\)See Brezis & Nirenberg [2, 3], John & Nirenberg [17], Jones [18], Stein [23, §4.1], or, e.g., [13, §3.1] for properties of BMO.

\(^4\)If $F = \nabla w$ with $w = 0$ on $\partial \Omega$ then $\|\nabla w\|_{\text{BMO}} = [\nabla w]_{\text{BMO}(\Omega)}$ since the integral of ∇w over Ω is then zero.
2.2. Further Properties of BMO. The main property of BMO that we shall use is contained in the following result. Although the proof can be found in [22], the significant analysis it is based upon is due to Fefferman & Stein [7], Iwaniec [15], and Diening, Růžička, & Schumacher [5].

Proposition 2.1. Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a Lipschitz domain. Then, for all $q \in [1, \infty)$,

$$\text{BMO}(\Omega; \mathbb{R}^{N \times n}) \subset L^q(\Omega; \mathbb{R}^{N \times n})$$

with continuous injection, i.e., there are constants $J_1 = J_1(q, \Omega) > 0$ such that, for every $F \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$,

$$\left(\int_{\Omega} |F|^q \, dx \right)^{1/q} \leq J_1 \|F\|_{\text{BMO}}. \quad (2.4)$$

Moreover, if $1 \leq p < q < \infty$ then there exists constants $J_2 = J_2(p, q, \Omega) > 0$ such that every $F \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$ satisfies

$$\|F\|_{p, \Omega} \leq J_2 \left(\|F\|_{\text{BMO}} \right)^{1-p/q} \left(\|F\|_{p, \Omega} \right)^{p/q}. \quad (2.5)$$

Here $\| \cdot \|_{\text{BMO}}$ is given by (2.1) and (2.3).

3. An Implication of Taylor’s Theorem for a Functional on BMO

Hypothesis 3.1. Fix $k, N \in \mathbb{Z}$ with $k \geq 2$ and $N \geq 1$. We suppose that we are given an integrand $W : \Omega \times \mathbb{R}^{N \times n} \to \mathbb{R}$ that satisfies:

- (H1) $K \mapsto W(x, K) \in C^k(\mathbb{R}^{N \times n})$, for a.e. $x \in \Omega$;
- (H2) $(x, K) \mapsto D^j W(x, K)$, $j = 0, 1, \ldots, k$, are each (Lebesgue) measurable on their common domain $\Omega \times \mathbb{R}^{N \times n}$; and
- (H3) There are constants $c_k > 0$ and $r > 0$ such that, for all $K \in \mathbb{R}^{N \times n}$ and a.e. $x \in \Omega$,

$$|D^k W(x, K)| \leq c_k (1 + |K|^r).$$

Here, and in the sequel,

$$D^0 W(x, K) := W(x, K), \quad D^j W(x, K) := \frac{\partial^j}{\partial K^j} W(x, K)$$

denotes j-th derivative of $K \mapsto W(\cdot, K)$. Note that, for every $K \in \mathbb{R}^{N \times n}$, a.e. $x \in \Omega$, and $j = 1, 2, \ldots, k$,

$$D^j W(x, K) \in \text{Lin}(\mathbb{R}^{N \times n} \times \mathbb{R}^{N \times n} \times \cdots \times \mathbb{R}^{N \times n}, \mathbb{R}),$$

that is, $D^j W(x, K)$ can be viewed as a multilinear map from j copies of $\mathbb{R}^{N \times n}$ to \mathbb{R}.

Remark 3.2. Hypothesis (H3) implies that each of the functions $D^j W$, $j = 0, 1, \ldots, k - 1$, satisfies a similar growth condition, i.e., $|D^j W(x, K)| \leq c_j (1 + |K|^{r+j-k})$. It follows that each of the functions $D^j W$ is (essentially) bounded on $\Omega \times K$ for any compact $K \subset \mathbb{R}^{N \times n}$.

5 This result, as stated, is valid for a larger class of domains: Uniform domains. (Since BMO $\subset L^1$ for such domains. See P. W. Jones [18], Gehring & Osgood [10], and e.g., [9].) A slightly modified version of this result is valid for John domains. See [22] and the references therein.
Lemma 3.3. Let W satisfy Hypothesis 3.1. Fix $M > 0$ and $F \in L^\infty(\Omega; \mathbb{R}^{N \times n})$. Then there exists a constant $c = c(M, \|F\|_\infty) > 0$ such that every $G \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$ with $\|G - F\|_{\text{BMO}} < M$ satisfies

$$
\int_{\Omega} W(G) \, dx \geq \int_{\Omega} W(F) \, dx + \sum_{j=1}^{k-1} \frac{1}{j!} \int_{\Omega} D^j W(F)[H, H, \ldots, H] \, dx - c \int_{\Omega} |H|^k \, dx, \tag{3.1}
$$

where $H = G - F$, $F = F(x)$, $G = G(x)$, and, e.g., $W(F) = W(x, F(x))$.

Proof. Fix $M > 0$ and $F \in L^\infty(\Omega; \mathbb{R}^{N \times n})$. Let $G \in \text{BMO}(\Omega; \mathbb{R}^{N \times n})$ satisfy $\|G - F\|_{\text{BMO}} < M$. We first note that (2.4) in Proposition 2.1 yields

$$
H := G - F \in L^q(\Omega; \mathbb{R}^{N \times n}) \quad \text{for every } q \geq 1, \tag{3.2}
$$

while (H3) together with the fact that F is in L^∞ yields (see Remark 3.2), for some $C > 0$ and a.e. $x \in \Omega$,

$$
|D^j W(x, F(x))| \leq C, \quad j = 0, 1, \ldots, k - 1. \tag{3.3}
$$

Consequently, (3.2) and (3.3) yield, for every $q \geq 1$,

$$
x \mapsto D^j W(x, F(x))[H(x), H(x), \ldots, H(x)] \in L^q(\Omega; \mathbb{R}^{N \times n}), \tag{3.4}
$$

for $j = 0, 1, \ldots, k - 1$.

Next, by Taylor’s theorem for the function $A \mapsto W(\cdot, A)$, for almost every $x \in \Omega$,

$$
W(G) = W(F) + \sum_{j=1}^{k-1} \frac{1}{j!} D^j W(F)[H, H, \ldots, H] + R(F; H), \tag{3.5}
$$

$$
R(F; H) := \int_0^1 (1 - t)^{k-1} (k-1)! D^k W(F + tH)[H, H, \ldots, H] \, dt.
$$

We note that hypothesis (H3) together with the inequality $|a + b|^r \leq c_r(|a|^r + |b|^r)$, $c_r = \max\{1, 2^{r-1}\}$, and the fact that $t \in [0, 1]$ gives us

$$
|D^k W(F + tH)| \leq c_k (1 + |F + tH|^r) \leq c_k + c_k c_r |F|^r + |H|^r \tag{3.6}
$$

and hence the absolute value of the integrand in (3.5) is bounded by $c_k/(k-1)!$ times

$$
|H|^k (1 + c_r |F|^r) + c_r |H|^{k+r}. \tag{3.7}
$$

We next integrate (3.5) and (3.5) over Ω to get, in view of (3.4), (3.6), and (3.7),

$$
\int_{\Omega} W(G) \, dx = \int_{\Omega} W(F) \, dx + \sum_{j=1}^{k-1} \frac{1}{j!} \int_{\Omega} D^j W(F)[H, H, \ldots, H] \, dx + \int_{\Omega} R(F; H) \, dx \tag{3.8}
$$

and

$$
\int_{\Omega} R(F; H) \, dx \leq C_1 \int_{\Omega} |H|^k \, dx + C_2 \int_{\Omega} |H|^{k+r} \, dx \tag{3.9}
$$

$$
\leq (C_1 + C_2 J^{k+r} ||H||_{\text{BMO}}^{r}) \int_{\Omega} |H|^k \, dx,
$$

where we have made use of (2.5) of Proposition 2.1 with $p = k$ and $q = k+r$, $C_2 := c_k c_r / (k-1)!$, and $C_1 := c_k(1 + c_r |F|_\infty^r) / (k-1)!$. The desired result, (3.1), now follows from (3.8) and (3.9). \qed
4. The Second Variation and BMO Local Minimizers.

We take \(\partial \Omega = D \cup S \) with \(D \) and \(S \) relatively open and \(D \cap S = \emptyset \).

If \(D \neq \emptyset \) we assume that a Lipschitz-continuous function \(d : D \to \mathbb{R}^N \) is prescribed. We define

\[
W^{1, \text{BMO}}(\Omega; \mathbb{R}^N) := \{ u \in W^{1,1}(\Omega; \mathbb{R}^N) : \nabla u \in \text{BMO}(\Omega; \mathbb{R}^{N \times n}) \}
\]

and denote the set of Admissible Mappings by

\[
\text{AM} := \{ u \in W^{1, \text{BMO}}(\Omega; \mathbb{R}^N) : u = d \text{ on } D \text{ or } \langle u \rangle_{\Omega} = 0 \text{ if } D = \emptyset \}.
\]

The energy of \(u \in \text{AM} \) is defined by

\[
E(u) := \int_{\Omega} W(x, \nabla u(x)) \, dx,
\]

where \(W \) is given by Hypothesis 3.1 with \(k = 3 \). We shall assume that we are given a \(u_e \in \text{AM} \) that is a weak solution of the Euler-Lagrange equations corresponding to (4.1), i.e.,

\[
0 = \int_{\Omega} D W(x, \nabla u_e(x)) [\nabla w(x)] \, dx,
\]

for all variations \(w \in \text{Var} \), where

\[
\text{Var} := \{ w \in W^{1,2}(\Omega; \mathbb{R}^N) : w = 0 \text{ on } D \text{ or } \langle w \rangle_{\Omega} = 0 \text{ if } D = \emptyset \}.
\]

Theorem 4.1. Let \(W \) satisfy Hypothesis 3.1 with \(k = 3 \). Suppose that \(u_e \in \text{AM} \cap W^{1,\infty}(\Omega; \mathbb{R}^N) \) is a weak solution of (4.2) that satisfies, for some \(a > 0 \),

\[
\int_{\Omega} D^2 W(\nabla u_e)[\nabla z, \nabla z] \, dx \geq 4a \int_{\Omega} |\nabla z|^2 \, dx \text{ for all } z \in \text{Var}.
\]

Then there exists a \(\delta > 0 \) such that any \(v \in \text{AM} \) that satisfies

\[
||\nabla v - \nabla u_e||_{\text{BMO}} < \delta
\]

will also satisfy

\[
E(v) \geq E(u_e) + a \int_{\Omega} |\nabla v - \nabla u_e|^2 \, dx.
\]

In particular, any \(v \neq u_e \) that satisfies (4.4) will have strictly greater energy than \(u_e \).

Remark 4.2. 1. The theorem’s conclusions remain valid if one subtracts \(\int_{\Omega} b(x) \cdot u(x) \, dx \) and \(\int_{S} s(x) \cdot u(x) \, dS_x \) from \(E \). 2. Fix \(q > 2 \). Then inequality (2.5) in Proposition 2.1 together with (4.5) yields a constant \(\hat{j} = \hat{j}(q) \) such that any \(v \in \text{AM} \) that satisfies (4.4) will also satisfy

\[
E(v) \geq E(u_e) + \hat{a} \hat{j} \delta^{2-q} \int_{\Omega} |\nabla v - \nabla u_e|^q \, dx.
\]

Remark 4.3. The conclusions of Theorem 4.1 remain valid if we replace the assumption that \(u_e \) is a weak solution of (4.2) by the assumption that \(u_e \) is a weak relative minimizer of \(E \), i.e., \(E(v) \geq E(u_e) \) for all \(v \in \text{AM} \cap W^{1,\infty}(\Omega; \mathbb{R}^N) \) with \(||\nabla v - \nabla u_e||_{\infty} \) sufficiently small.
Proof of Theorem 4.1. Let $u_e \in AM$ be a weak solution of the Euler-Lagrange equations, (4.2), that satisfies (4.3). Suppose that $v \in AM$ satisfies (4.4) for some $\delta > 0$ to be determined later and define $w := v - u_e \in \text{Var} \cap W^{1,\text{BMO}}$. Then Lemma 3.3 yields a constant $c > 0$, such that

$$E(v) \geq E(u_e) + 2\hat{k} \int_{\Omega} |\nabla w|^2 \, dx - c \int_{\Omega} |\nabla w|^3 \, dx,$$

where we have made use of (4.1)–(4.3).

We next note that inequality (2.5) in Proposition 2.1 (with $q = 3$ and $p = 2$) gives us

$$J^3 ||\nabla w||_{\text{BMO}} \int_{\Omega} |\nabla w|^2 \, dx \geq \int_{\Omega} |\nabla w|^3 \, dx.$$

The desired inequality, (4.5), now follows from (4.4), (4.6), and (4.7) when δ is sufficiently small. Finally, $E(v) > E(u_e)$ is clear from (4.5) since Ω is a connected open region and either $\langle w \rangle_{\Omega} = 0$ or $w = 0$ on $D \subset \partial \Omega$. \hfill \square

References

[1] Ball, J. M., Marsden, J. E.: Quasiconvexity at the boundary, positivity of the second variation and elastic stability. Arch. Ration. Mech. Anal. 86, 251–277 (1984)
[2] Brezis, H., Nirenberg, L.; Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197–263 (1995)
[3] Brezis, H., Nirenberg, L.; Degree theory and BMO. II. Compact manifolds with boundaries. With an appendix by the authors and Petru Mironescu. Selecta Math. (N.S.) 2, 309–368 (1996)
[4] Campos Cordero, J.: Boundary regularity and sufficient conditions for strong local minimizers. J. Funct. Anal. 272, 4513–4587 (2017)
[5] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35, 87–114 (2010)
[6] Evans L. C., Gariepy, R. F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)
[7] Fefferman, C., Stein, E. M.: H^p spaces of several variables. Acta Math. 129, 137–193 (1972)
[8] Firoozye, N. B.: Positive second variation and local minimizers in BMO-Sobolev spaces. Preprint no. 252, 1992, SFB 256, University of Bonn
[9] Gehring, F. W.: Uniform domains and the ubiquitous quasidisk. Jahresber. Deutsch. Math.-Verein. 89, 88–103 (1987)
[10] Gehring, F. W., Osgood, B. G.: Uniform domains and the quasihyperbolic metric. J. Analyse Math. 36, 50–74 (1979)
[11] Grabovsky, Y., Mengesha, T.: Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations 29, 59–83 (2007) [Erratum: 32, 407–409 (2008)]
[12] Grabovsky, Y., Mengesha, T.: Sufficient conditions for strong local minimal: the case of C^1 extremals. Trans. Amer. Math. Soc. 361, 1495–1541 (2009)
[13] Grafakos, L.: Modern Fourier analysis. 3rd edition. Springer, New York (2014)
[14] Hofmann, S., Mitrea, M., Taylor, M.: Geometric and transformational properties of Lipschitz domains, Semmes-Kenig-Toro domains, and other classes of finite perimeter domains. J. Geom. Anal. 17, 593–647 (2007)
[15] Iwaniec, T.: On L^p-integrability in PDEs and quasiregular mappings for large exponents. Ann. Acad. Sci. Fenn. Ser. A I Math. 7, 301–322 (1982)
[16] John, F.: Uniqueness of non-linear elastic equilibrium for prescribed boundary displacements and sufficiently small strains. Commun. Pure Appl. Math. 25, 617–634 (1972)
[17] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14, 415–426 (1961)
[18] Jones, P. W.: Extension theorems for BMO. Indiana Univ. Math. J. 29, 41–66 (1980)
[19] Kristensen, J., Taheri, A.: Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170, 63–89 (2003)
[20] Morrey, C. B., Jr.: Multiple Integrals in the Calculus of Variations. Springer, New York (1966)
[21] Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2) 157, 715–742 (2003)
[22] Spector, D. E., Spector, S. J.: Uniqueness of equilibrium with sufficiently small strains. Arch. Ration. Mech. Anal. 233, 409–449 (2019)
[23] Stein, E. M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ (1993)

Okinawa Institute of Science and Technology Graduate University, Nonlinear Analysis Unit, 1919–1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan

E-mail address: daniel.spector@oist.jp

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, USA

E-mail address: sspector@siu.edu