INTRODUCTION

Hepatic fibrosis is the basic damage resulting from chronic hepatitis C (CHC) which is one of the prime health challenges. The ultramicroscopic changes occurring in hepatic fibrosis include activation of hepatic stellate cells (HSCs) which is triggered by injury to hepatocytes. The excessive secretion of collagen by activated HSCs induces hyperplasia and deposition of extracellular matrix (ECM), which ultimately leads to liver fibrosis and cirrhosis. When HSCs trans differentiate into proliferative, and contractile myofibroblasts, they express certain mesenchymal markers like alpha smooth muscle actin, encoded by Actin alpha 2-ACTA2 gene which is an isoform of the vascular smooth muscle actin and is expressed in all stages.
Acidic - there is augmented expression of Glial Fibrillary Acidic -GFAP-positive HSCs in early stages of hepatic fibrosis. In addition to ACTA2, studies have shown that there is augmented expression of Glial Fibrillary Acidic -GFAP-positive HSCs in early stages of hepatic fibrosis. The GFAP gene encodes a class III intermediate filament protein expressed specifically in astrocytes of the central nervous system and their transformation capacity is well conserved. A study in rodents reported the expression of GFAP with an increased expression in the acute response to injury in the rat, and a decreased in the chronic one. It is reported that GFAP could represent a more useful marker than Alpha smooth muscle actin (α-SMA) of early HSCs activation and may be an early indicator of hepatic fibrogenesis. Our study done in 2014 revealed strong association of GFAP with the gold standard immunohistochemical marker, ACTA2 suggesting that GFAP could be a useful indicator of early HSCs activation in CHC patients. The GFAP positive cells may be antecedents of the HSCs detected by ACTA2 or they may denote a diverse subpopulation.

Most common cause of hepatocellular carcinoma (HCC) in our country is viral hepatitis. It is vital that degree of cirrhosis is established by the clinician and risk factors for HCC are identified. Bioinformatics has enabled us to discover diagnostic biomarkers and to plan treatment modalities. In light of above facts, the purpose of this study is to identify dysregulated pathways and gene enrichment based on ACTA2 and GFAP interaction network analysis in hepatic fibrosis.

METHODS

This is an in-silico study. GFAP and ACTA2 were obtained by immunohistochemistry in previous study by one of the authors which was approved by the Ethical Review Committee (Ref. Code: 1601119ZRBIO) of Ziauddin University. The study was done from March-September 2019.

In this study, the gene expression and interaction of GFAP and ACTA2 were analysed in silico. Immunoexpression of GFAP revealed substantial association with ACTA2 (α-SMA) in previous study concluding inverse relationship of GFAP with progression of fibrosis. Hence, GFAP could be characterized as useful marker for early hepatic stellate cells activation.

Bioinformatics analysis: Enrichment and protein–protein interaction (PPI) network analysis of the identified proteins: GFAP and ACTA2 along with their mapped gene data sets was performed using FunRich: Functional Enrichment analysis tool version 3.1.3 released on March 2017 http://www.funrich.org. The enriched and depleted proteins were identified by calculating fold change for biological pathways, protein domains and site of expressions. Interaction network analysis: In FunRich software hypergeometric test, BH and Bonferroni test were applied. Normal and Overrepresented and gene ontology (GO) functional categories, significant interactions and pathways associated with datasets were identified by using the hypergeometric test and p-value correction with the BH and Bonferroni tests. Statistical cut-off of enrichment analyses was kept as default with a p-value <0.05 after Bonferroni correction.

RESULTS

Protein-Protein Interaction (PPI) Analysis of GFAP and ACTA2: The protein–protein interaction network visualization and its analysis of GFAP and ACTA2 was performed using FunRich database. The interaction network included the biological pathway enrichment of defined proteins. The PPI network was among differentially regulated interacting proteins of potential retrieved from interaction of GFAP and ACTA2 in Fig.1. Among selected GFAP and ACTA2 interacting 44 protein genes, all had interactions with each other as shown in Fig.1. The gene mapping of GFAP and ACTA2

![Fig.1: Protein-Protein interaction (PPI) Network of GFAP and ACTA2.](image-url)
interacting proteins with their chromosomal location was shown in Table-I. The enzymes represented the major category mapped along with protein kinase C and proto-oncogenes of tyrosine kinase. The leading biological pathways associated with these interacting proteins were signalling by EGFR and TGF-beta receptor signalling as depicted in Table-I.

The proteins enriched in Signalling by EGFR Pathway were HGS, CDK1, PRKCA, SRC, PRKCD and PRKACA. Likewise, Protein-Protein interaction (PPI) Network of GFAP and ACTA2 enriched in TGF-beta receptor Signalling were PRKACA, PRKCA, CAMK2A, SRC, SMAD2, PRKCD, CREBB and SNTA1. It is worth mentioning that SRC, PRKACA, PRKCA and PRKCD were

Table-I: Gene Mapping and Biological Pathways Enriched in Interaction of GFAP and ACTA2 shown in Fig.1.

Gene symbol	Protein Name	Chromosome	Map location	Interacting Genes with GFAP and ACTA 2	Biological Pathway	p-value
PRKCD	Protein kinase C, delta	3	3p21.31	CREBBP; PRKCA; EP300; CDK1; PRKACA	Retinoic acid receptors-mediated signaling	p = 0.009
HGS	Hepatocyte growth factor	17	17q25	PRKCD; PRKCA; SRC; VIM; SMAD2	Alpha6Beta4Integrin	p = 0.01
	regulated tyrosine kinase					
	substrate					
PRKCA	protein kinase C, alpha	17	17q22-q23.2	PRKCD; PRKCA; SRC; PRKACA; ROCK1	Thromboxane A2 receptor signaling	p = 0.017
RC	SRC proto-oncogene, Non-	20	20q12-q13	PRKCD; PRKCA; SRC; CDK1; PRKACA;	Signalling by NGF	p = 0.018
	receptor tyrosine kinase			PSEN1; PSEN2		
CDK1	Cyclin-dependent kinase 1	10	10q21.1	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA	Signaling by EGFR	p = 0.023
PRKACA	Protein kinase, CAMP-	19	19p13.1	CREBBP; PRKCD; PRKCA; EP300; SRC;	TNF receptor signaling pathway	p = 0.043
	dependent, catalytic, Alpha			PRKACA; VIM; PRAKCA; APP; SNTA1		
GFAP	Glial fibrillary acidic protein	17	17q21	CREBBP; PRKCD; PRKCA; EP300; SRC;	TGF-beta receptor signaling	p = 0.051
				PRKACA; SMAD2; SNTA1; CAMK2A		
ACTA2	Actin, alpha 2, smooth muscle,	10	10q23.3	CREBBP; PRKCD; PRKCA; EP300; SRC;	Regulation of nuclear SMAD2/3 signaling	p = 0.051
	Aorta			PRKACA; SMAD2; SNTA1; CAMK2A		
CREBBP	CREB binding protein	16	16p13.3	CREBBP; PRKCD; PRKCA; EP300; SRC;	Regulation of cytoplasmic and nuclear	p = 0.051
				PRKACA; SMAD2; SNTA1; CAMK2A	SMAD2/3 signaling	
PRKCD	Protein kinase C, Delta	3	3p21.31	CREBBP; PRKCD; PRKCA; EP300; SRC;	ALK1 signaling events	p = 0.076
				PRKACA; SMAD2; SNTA1; CAMK2A		
PRKCA	Protein kinase C, Alpha	17	17q22-q23.2	CREBBP; PRKCD; PRKCA; EP300; SRC;	ALK1 pathway	p = 0.082
				PRKACA; SMAD2; SNTA1; CAMK2A		
Table-II: Heat Map Showing Differentially Expressed Proteins & their Pathways Interacting with Genes enriched in Signalling by EGFR Pathway and TGF-beta receptor signaling pathway shown in Fig 1.

Biological pathway	Fold enrichment	P-value (Hypergeometric test)	Genes mapped (Signalling by EGFR Pathway)	Biological pathway	Fold enrichment	P-value (Hypergeometric test)	Genes mapped (TGF-beta receptor signaling Pathway)
EGF receptor (ErbB1) signaling pathway	4.894911	1.47E-05	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA; ACTA2;	Regeneration of cytoplasmic and nuclear SMAD2/3 signaling	20.62231	1.32E-12	CREBBP; PRKCD; PRKCA; CAMK2A;
EGFR-dependent Endothelin signaling events	4.89105	1.47E-05	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA; ACTA2;	Sig. of cytoplasmic and nuclear SMAD2/3 signaling	20.62231	1.32E-12	EP300; SRC; PRKACA; SMAD2; SNTA1;
Signaling events mediated by Hepatocyte Growth Factor Receptor (c-Met)	4.875939	1.51E-05	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA; ACTA2;	TFG-beta receptor signaling	20.62231	1.32E-12	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA; SMAD2; SNTA1; CAMK2A;
Signaling by EGFR	55.02213	8.48E-11	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA;	EGFR-dependent Endothelin signaling events	4.89105	6.10E-07	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA; SMAD2; SNTA1; CAMK2A;
Signal Transduction	4.464134	0.000291	PRKCD; HGS; PRKCA; SRC; CDK1; PRKACA;	TFG-beta receptor signaling	20.62231	1.32E-12	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA; SMAD2; SNTA1; CAMK2A;
Signaling by PDGF	57.6263	5.31E-09	PRKCD; PRKCA; SRC; CDK1; PRKACA;	EGFR-dependent Endothelin signaling events	4.89105	6.10E-07	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA; SMAD2; SNTA1; CAMK2A;
Signaling by FGFR	47.31531	1.45E-08	PRKCD; PRKCA; SRC; CDK1; PRKACA;	p38 MAPK signaling pathway	25.89165	6.78E-10	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA; SNTA1;
TGF-beta receptor signaling	11.79678	0.000169	PRKCD; PRKCA; SRC; CDK1; PRKACA;	Role of Calcineurin-dependent NFAT signaling in lymphocytes	36.81247	8.49E-08	CREBBP; PRKCD; PRKCA; EP300; SRC; PRKACA;

enriched in both EGFR and TGF-beta Signalling pathways as shown in Fig 1.

In liver fibrosis, there were divergent proteome repertoires regarding EGFR and TGF beta receptor signalling. Superimposed bar chart depicted fold comparison of the differential expression of biological pathway proteins involved in EGFR Signalling (6) against TGF Beta Receptor Signalling...
GFAP-ACTA2 Protein Interaction in Liver Fibrosis

Fig.2: Fold Comparison for Biological Pathway of proteins involved in EGFR Signalling (6) against TGF Beta Receptor.

(9). The proteins in related to EGFR signalling pathways were enriched up to 150 fold while proteins in EGFR signalling were depleted more than 130 fold (Fig.2).

Differential Expression Genes/Proteins and their Pathways: In Table-II, deep red boxes showed significant enriched pathways were Signaling by EGFR with fold enrichment of more than 2 folds and p-value: 1.51E-05 and TGF-beta receptor signalling with fold enrichment of more than 10 folds and p value: 1.32E-12. The common genes related to these pathways are PRKCD; PRKCA; SRC; CDK1; PRKACA, CREBBP; PRKCD; PRKCA; CAMK2A; EP300; SRC; PRKACA; SMAD2; SNTA1. Moreover, functional enrichment analysis of GFAP and ACTA2 interacting proteins showed 85.7% enrichment of proteins in signaling pathways of EGFR. This led to identification of another pathway, the epidermal growth factor receptor (EGFR or ErbB1) signaling system, which seems to be strongly associated with the interacting proteins GFAP and ACTA2. This finding may be due to the facilitation of crosstalk between signaling pathways by EGFR, resulting in release of various mediators of inflammation and repair. The EGFR signaling is reported to be a key element in not only fibrosis but also the proliferation of fibrotic liver injury to neoplastic transformation.

The study by Yang et al. has shown that EGFs can stimulate proliferation of hepatic stellate cells, which is the primary effecter cell, orchestrating the deposition of extracellular matrix (ECM) in fibrotic liver. EGFR showed signaling enrichment of proteins similar to those in TGF, including PRKACA, PRKCA, SRC, SMAD2 and PRKCD. Protein kinase C (PKC) is a group of calcium dependent proteins which regulate embryonic development. Various members of this PKC family have been implicated in progression of cell cycle, apoptosis and differentiation. Protein kinase A family of proteins is activated in response to G coupled protein receptors while PRKCD plays a key role in autophagy suppression which is achieved by the process of phosphorylation of AKT which further activates mTOR, specific for fibrolamellar carcinoma. In current study, activity of c-SRC various disease processes. Therefore, they can help in identifying more potent biomarkers using dysregulated pathways. We used a network-based method to ascertain the dysregulated pathways elaborated in hepatitis C which may build new insights into pathogenesis of liver fibrosis. TGF-β/ Smad signaling pathway is known to be one of the key fibrogenic and inflammatory pathways in the liver. TGF-β1 have been implicated in the process of activating HSCs with the magnitude of fibrosis being in proportion to increase in TGF β levels. Studies have shown that ACTA2 is associated with TGF β pathway that enhances contractile properties of HSCs leading to fibrosis. The results of our study show that biologic pathways associated with GFAP and ACTA2 were signaled by TGF β receptor signaling which is consistent with the previous studies. On the basis of close interaction of proteins, we used PPI networks to identify disease-specific networks. Our study showed a number of proteins enriched in TGER signaling primarily involving PRKACA, PRKCA, CAMK2A, SRC, SMAD2, PRKCD, CREBB and SNTA1. Moreover, functional enrichment analysis of GFAP and ACTA2 interacting proteins showed 85.7% enrichment of proteins in signaling pathways of EGFR. This led to identification of another pathway, the epidermal growth factor receptor (EGFR or ErbB1) signaling system, which seems to be strongly associated with the interacting proteins GFAP and ACTA2. This finding may be due to the facilitation of crosstalk between signaling pathways by EGFR, resulting in release of various mediators of inflammation and repair. The EGFR signaling is reported to be a key element in not only fibrosis but also the proliferation of fibrotic liver injury to neoplastic transformation.

The study by Yang et al. has shown that EGFs can stimulate proliferation of hepatic stellate cells, which is the primary effecter cell, orchestrating the deposition of extracellular matrix (ECM) in fibrotic liver. EGFR showed signaling enrichment of proteins similar to those in TGF, including PRKACA, PRKCA, SRC, SMAD2 and PRKCD. Protein kinase C (PKC) is a group of calcium dependent proteins which regulate embryonic development. Various members of this PKC family have been implicated in progression of cell cycle, apoptosis and differentiation. Protein kinase A family of proteins is activated in response to G coupled protein receptors while PRKCD plays a key role in autophagy suppression which is achieved by the process of phosphorylation of AKT which further activates mTOR, specific for fibrolamellar carcinoma. In current study, activity of c-SRC...
decreases with progressive liver fibrogenesis and hepatic stellate cell (HSC) activation. This finding is consistent with literature which reports that inhibition of SRC Kinase promotes HCV replication.22 The oncogenic properties of SRC family kinases have been reported with various studies upon role of SRC as target therapy in the treatment of idiopathic pulmonary fibrosis, systemic sclerosis and glioblastoma. However, its role in liver fibrosis progression is not yet understood.23 SRC along with PRKACA, PRKCA and PRKCD must be further explored to establish their role in target therapy of hepatic fibrosis in chronic hepatitis.

CONCLUSION

In this analysis, many perilous pathways and genes were identified based on protein-protein interaction of network GFAP and ACTA2. EGFR and TGF-beta Receptor Signalling pathways were found to be enriched in liver fibrosis through Protein Interaction studies. SRC, PRKACA, PRKCA and PRKCD were enriched and differentially expressed in both EGFR and TGF-beta Signalling pathways. These signalling pathways and related proteins are the potential targets for new therapeutic agents to combat liver fibrosis resulting from chronic hepatitis C.

Conflicts of interest: The authors declare no conflict of interest with regard to this work.

Grant Support & Financial Disclosures: None.

REFERENCES

1. Shay JES, Hamilton JP. Hepatic fibrosis: Avenues of investigation and clinical implications. Clin Liver Dis. 2016;11(3):111-114. doi: 10.1016/j.cld.702
2. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64:830-841. doi: 10.1136/ gutjnl-2014-306842
3. Davidson M, Song KH, Mu Lee H, Llewellyn J, Du Y, Baker B, et al. Engineered fibrous networks to investigate the influence of fiber mechanics on myofibroblast differentiation. ACS Biomater Sci Eng. 2019;5(8):5899-5908. doi: 10.1021/acsbiomaterials.8b01276
4. Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 2017;121:27-42. doi: 10.1016/j.addr.05.007
5. Sandulescu L, Rogoveanu I, Ciurea T, Comanescu MV, Streba CT, Ionescu AG, et al. Immunohistochemical study of stellate cells in patients with chronic viral hepatitis C genotype. Rom J Morphol Embryol. 2011;52:137-143.
6. Sohier Zakaria MY, Moussa M, Akh El-Ahwaney E, ElRaziky M, Mostafa O, et al. Value of α-smooth muscle actin and glial fibrillary acidic protein in predicting eventual hepatic fibrosis in chronic hepatitis C virus infection. Arch Med Sci. 2010;6(3):362. doi: 10.5114/ams.2010.14255
7. Eun K, Hwang SU, Jeon HM, Hyun SH, Kim H. Comparative Analysis of Human, Mouse, and Pig Glial Fibrillary Acidic Protein. Gene Structures. Anim Biotechnol. 2016;27(2):126-132.
8. Bai X, Saab AS, Huang W, Hoberg IK, Kirchhoff F, Scheller A. Genetic background affects human glial fibrillary acidic protein promoter activity. PLoS One. 2013;8(6):e66873. doi: 10.1371/journal.pone.0066873
9. Hassan S, Syed S, Kehar SL. Glial fibrillary acidic protein (GFAP) as a mesenchymal marker of early hepatic stellate cells activation in liver fibrosis in chronic hepatitis C infection. Pak J Med Sci. 2014;30(3):1027-1032. doi: 10.12669/pjms.303.5524
10. Zhou L, Shang M, Shi M, Zhao L, Lin Z, Chen T, et al. Clonorchis sinensis lysophospholipase inhibits TGF-β1-induced expression of pro-fibrogenic genes through attenuating the activations of Smad3, JNK2, and ERK1/2 in hepatic stellate cell line LX-2. Parasitol Res. 2016;113:643-650. doi: 10.1007/s00436-015-4782-4
11. Berasain C, Avila, MA. The EGFR signalling system in the liver: from hepatopo protection to hepatocarcinogenesis. J Gastroenterol. 2014;49:9-23. doi: 10.1007/s00535-013-0907-x
12. Máté R, Catásu MC, Măeșcu-Mătăsă C. Nuclear repositioning of hepatitis B and C viruses in hepatocellular carcinoma Hepatobiliary Malignancies. Hepatology. 2015;62(4):1190-1200. doi: 10.1002/hep.27969
13. Zhaozhang Shi, Xia Yu, Xiaojing Wang. Identification of dysregulated pathways involved in hepatitis C based on network pathway enrichment analysis. Int J Clin Exp Pathol. 2016;9(5):5611-5619.
14. Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson, NA, et al. FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 2015;15:2907-2904. doi: 10.1002/pmic.201400515
15. Tan Z, Liu Q, Jiang R, Lv L, Shoto SS, Maillet I, et al. Interleukin-63 drives hepatic fibrosis through activation of hepatic stellate cells. Cell Mol Immunol. 2018;15(4):388-398. doi: 10.1038/cmi.2016.63
16. Zhang HY, Kim KS, Lee YH, Park JH, Kim JH, Lee SY, et al. Dendropanorpa morbitera Ameloriates Thioacetamide-Induced Hepatic Fibrosis via TGF-β1/Smad5 Pathways. Int J Biol Sci. 2019;15(4):800-811. doi: 10.7195/ibs.103536
17. Su TH, Shiao CW, Jao F, Yang NJ, Tai WT, Liu CJ, et al. Src-homology protein tyrosine phosphatase-1 agonist, SC-43, reduces liver fibrosis. Sci Rep. 2017;7(1):1278. doi: 10.1038/s41598-017-01572-z.
18. Song Q, Zhao C, Ou S, Meng Z, Kang P, Fan L, et al. Co-expression analysis of differentially expressed genes in hepatitis C virus-induced hepatocellular carcinoma. Mol Med Rep. 2015;11:21-28. doi: 10.3892/mmr.2015.3695
19. Liu H, Dong F, Li G, Niu M, Zhang C, Han Y, et al. Liuweiwuling tablets attenuate BDL-induced hepatic fibrosis via modulation of TGF-β1/Smad and NF-kB signalling pathways. J Ethnopharmacol. 2018;210:232-241. doi: 10.1016/j.jep.2017.08.029
20. Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, et al. New insights into TGF-β1/Smad signaling in tissue fibrosis. Chem Biol Interact. 2018;292:76-83. doi: 10.1016/j.cbi.2018.07.008
21. Yang QE, Ozawa M, Zhang Z, Kohn J, Eady AE. The requirement for protein kinase C delta (PRKCD) during preimplantation bovine embryo development. Reprod Fertil Dev. 2016;28(4):482-490. doi: 10.1071/RD14160
22. Graham R, Jin L, Knutsen DL, Kloft-Nelson SM, Greipp PT, Walburger, N, et al. DNAJB1-PRKACA is one of its subunit is encoded by PRKACA. Mod Pathol. 2016;29(3):582-589. doi: 10.1038/modpathol.2015.4
23. Zhang D, Xu X, Dong Z. PRKCD/PRKDC contributes to nephrotoxicity during cisplatin chemotherapy by suppressing autophagy. Autophagy. 2017;13(3):631-632. doi: 10.1080/15548627.2016.1269990
24. Bhattarai N, McLinden JH, Xiang J, Mathijs MM, Schmidt WN, et al. Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo. PLoS Pathog. 2017;13(2):e1006232. doi: 10.1371/journal.ppat.1006232
25. Gortzen J, Schiervagen R, Bierwolf J, Klein S, Uischner FE, van der Ven PF, et al. Interplay of matrix stiffness and e-SRC in hepatic fibrosis. Front Physiol. 2017;6:359. doi: 10.3389/fphys.2015.00359

Authors’ Contribution: ZR conceived, designed and did manuscript writing along with editing of manuscript. SH did data collection, manuscript writing and editing of manuscript. HS and SS did literature review, manuscript writing, statistical analysis and editing. ZR takes the responsibility and is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.