Calcium metabolism in cancer and hypercalcaemia of malignancy

The balance between bone formation and resorption may be disrupted in patients with cancer, leading either to increased bone resorption, calcium release, and possibly hypercalcaemia, or to increased bone formation, sequestration of calcium, and possibly hypocalcaemia. In adults, hypercalcaemia of malignancy is most common in patients with tumours that produce factors that induce osteoclast activation and enhance bone resorption. Impaired renal function and increased renal tubular calcium resorption may further affect calcium levels.

Treatment of hypercalcaemia of malignancy

Inhibitors of bone resorption, first the bisphosphonates and, later, denosumab, have been shown to be effective in hypercalcaemia treatment. Bisphosphonates (which are administered intravenously) are approved for hypercalcaemia of malignancy and are the current mainstay of treatment, whereas denosumab (which is administered subcutaneously) may offer an option for patients who do not respond to bisphosphonates or suffer from renal insufficiency.

Hypocalcaemia: treatment and prevention

Hypocalcaemia is most common in patients with prostate cancer and osteoblastic bone metastases, but can occur in patients with a variety of tumour types who are receiving inhibitors of bone resorption. While patients often respond to calcium and vitamin D supplementation, prevention should be the aim; at-risk patients should be identified before starting treatment with inhibitors of bone resorption. While patients often respond to calcium and vitamin D supplementation, prevention should be the aim; at-risk patients should be identified before starting treatment with inhibitors of bone resorption. Be closely monitored during at least the first few months of treatment, and receive concomitant calcium and vitamin D supplementation unless hypercalcaemia is present.

Conclusion

Both hypercalcaemia and hypocalcaemia can be serious if left untreated. It is therefore important that patients with cancer are closely monitored and receive adequate prevention and treatment measures to maintain normal blood calcium levels.

Keywords

Hypercalcaemia · Hypocalcaemia · Hypercalcaemia of malignancy · Denosumab · Bisphosphonates
intestines, and bone. The bone is a dynamic tissue that is constantly being remodelled by specialised bone-forming cells, osteoblasts, and bone-resorbing cells, osteoclasts [1], and acts as a major calcium sink [1, 2]. The normal balance of bone metabolism is often uncoupled in patients with advanced cancer, particularly in those with metastatic bone lesions. This can lead to hypercalcaemia of malignancy or hypocalcaemia, both of which can have serious consequences.

In order to maintain blood calcium homeostasis in patients with cancer, it is important to understand the underlying mechanisms of hypercalcaemia and hypocalcaemia in the context of the management of metastatic bone disease.

Calcium metabolism in cancer

The balance of bone formation and resorption can be disrupted in patients with cancer by systemic factors released from the primary tumour and by local effectors released from tumour cells that have metastasised to bone (Fig. 1) [1].

In osteoblastic metastases, tumour cells produce osteoblast-stimulating factors, such as endothelin-1, platelet-derived growth factor, fibroblast growth factor, and bone morphogenetic proteins, proteases (e.g. matrix metalloproteinases, prostate-specific antigen, urokinase-type plasminogen activator), all of which promote osteoblast proliferation and bone formation (Fig. 1) [4–7]. Osteoblastic metastases are common in patients with prostate cancer [8, 9]; endothelin-1 has been shown to be increased in the blood of such patients [6]. Calcium is sequestered from the blood during the development of osteoblastic metastases [10]; therefore, patients with prostate cancer and osteoblastic metastases are most at risk of developing hypocalcaemia.

In osteolytic metastases, tumour cells release factors that ultimately activate osteoclasts (Fig. 1). In breast cancer, the most important of these factors is parathyroid hormone-related protein (PTHrP) [11–13]. Other examples include transforming growth factor beta [14], interleukin-1 and interleukin-6, and tumour necrosis factor alpha [15]. These factors stimulate bone marrow stromal and osteoblast cells to express RANK ligand (RANKL), which signals via its cognate receptor RANK, expressed on osteoclast precursor cells and activated osteoclasts [16]. Signalling through the RANK receptor induces osteoclast maturation and bone resorption [17–19]. During bone resorption, calcium is released causing a rise in blood calcium concentration [2]. Additionally, growth factors stored in the bone matrix are released and stimulate tumour cell proliferation and further release of PTHrP, feeding into the vicious cycle of bone metastases and tumour growth [20].

Tumours of the breast and lung, and multiple myeloma, predominantly cause osteolytic metastases and lytic bone lesions, respectively [21–23]; patients with these malignancies are, therefore, most at risk of developing hypercalcaemia of malignancy.

Although there are clear distinctions in the causes and epidemiology of osteolytic and osteoblastic bone metastases, it should be noted that these two types of bone lesion represent extremes of a spectrum of metastatic bone disease [24]; a substantial proportion of patients have bone metastases with both osteolytic and osteoblastic elements. For example, in one study, the majority of patients with castration-resistant prostate cancer, a spectrum of bone lesions from osteolytic to osteoblastic was present [25].

Calcium homeostasis can also be disrupted in patients with advanced cancer that has not metastatised to bone. In these patients, tumour-derived systemic factors (predominantly PTHrP) increase blood calcium concentrations by enhancing osteoclast activation and bone resorption and by increasing renal tubular calcium reabsorption [26].

Fig. 1 Mechanisms underlying osteolytic and osteoblastic metastasis. Adapted from Cell, Vol: 151, Ell B. and Kang Y. Snapshot: bone metastasis, Pages: 690–90. Copyright (2015), with permission from Elsevier [3]. BMP bone morphogenetic protein, CSF-1 colony-stimulating factor 1, DKK1 Dickkopf Wnt signalling pathway inhibitor 1, ET-1 endothelin 1, FGF fibroblast growth factor, GM-CSF granulocyte-macrophage colony-stimulating factor, IGF insulin-like growth factor, IGF 1/2 insulin-like growth factor 1/2, IL-6 interleukin 6, IL-8 interleukin 8, MMP-1α macrophage inflammatory protein 1 alpha, MMP matrix metalloproteinase, PSA prostate-specific antigen, PTHrP parathyroid hormone-related protein, RANK receptor activator of nuclear factor kappa B, RANKL receptor activator of nuclear factor kappa B ligand, SPARC secreted protein acidic and cysteine rich, TGF transforming growth factor beta, VEGF vascular endothelial growth factor, Wnt1 wingless-type MMTV integration site family member 1
A summary of the key factors contributing to the development of hypercalcaemia and hypocalcaemia, by primary tumour, is presented in Table 1.

Hypercalcaemia of malignancy

Previous estimates of hypercalcaemia of malignancy reported that it occurred in 5–30% of patients with cancer [30]. However, prevalence rates have fallen progressively with the widespread, early and prolonged use of agents that inhibit bone resorption [31, 32]. A recent observational study in patients with cancer of any type or stage found that the 2012 hypercalcaemia prevalence was 0.67%; prevalence estimates varied across cancer types and were highest for individuals with lung cancer, multiple myeloma, or stage IV cancer [33]. Similarly, a recent US study reported a hypercalcaemia prevalence of 2–2.8% among all patients with cancer, ranging from 1.4–2.1% in prostate cancer, to 7.5–10.2% in multiple myeloma [34]. Furthermore, both studies examined the prevalence of hypercalcaemia in patients with cancer and not specifically hypercalcaemia of malignancy; therefore, the prevalence of true hypercalcaemia of malignancy is likely to be lower. Indeed, a study of 642 patients diagnosed with hypercalcaemia of malignancy reported that up to one third of cases were not caused by tumour-related factors [35].

Signs and symptoms of hypercalcaemia include polyuria, nausea and vomiting, constipation, weakness, obtundation, and, in severe cases, coma [30, 36]. Early symptoms can be mild and difficult to distinguish from the underlying cancer or side effects of cancer therapy. When hypercalcaemia of malignancy is suspected, blood calcium concentrations should be measured; total blood calcium concentrations, adjusted for albumin, above 10.2 mg/dL are diagnostic of hypercalcaemia [1]. It should be noted, however, that disease development and the severity of symptoms are related to both the absolute blood calcium level and to the rate of increase [1, 30, 36].

Hypercalcaemia of malignancy can occur in patients with or without osteolytic bone metastases and is thus classified as

Malignancy	Hypercalcaemia	Hypocalcaemia
Prostate	• Prostate cancer accounts for only ~3% of cases of hypercalcaemia of malignancy. Therefore, hypercalcaemia is very rare in this patient population	• High risk of hypocalcaemia. Low calcium levels have been reported to occur in up to 30% of patients with advanced prostate cancer
	• Strong association with bone metastases, although these are not typically osteolytic	• Strong association with bone metastases, which are most commonly osteoblastic
		• Grade ≥ 2 hypocalcaemia might be expected in 6–21% of patients treated with inhibitors of bone resorption
		• Prostate cancer is a risk factor for development of grade ≥ 2 hypocalcaemia during treatment with inhibitors of bone resorption
Breast	• Breast cancer accounts for ~25% of cases of hypercalcaemia of malignancy	• Hypocalcaemia might be expected in 6–8% of patients treated with inhibitors of bone resorption
	• Strong association with bone metastases, which are typically osteolytic	
	• PTHrP is an important mediator of hypercalcaemia in both metastatic and non-metastatic breast cancer	
Lung	• Lung cancer accounts for ~35% of cases of hypercalcaemia of malignancy	• Hypocalcaemia might be expected in 3–18% of patients with lung cancer treated with inhibitors of bone resorption
	• Can be associated with bone metastases, which may be osteolytic	• SCLC is a risk factor for development of grade ≥ 2 hypocalcaemia during treatment with inhibitors of bone resorption
	• PTHrP may be an important mediator of paraneoplastic hypercalcaemia	
	• Rare reports of ectopic tumour-produced PTH associated with hypercalcaemia	
Haematological	• Haematological cancers account for ~14% of cases of hypercalcaemia of malignancy	• Hypocalcaemia might be expected in 8–13% of patients with multiple myeloma treated with inhibitors of bone resorption
	• Bone metastases are typically osteolytic, associated with risk of hypercalcaemia	
	• PTHrP and 1,25-(OH)₂D₃ may be important mediators of hypercalcaemia	
Renal	• Renal cancer accounts for ~3% of cases of hypercalcaemia of malignancy	• Risk of hypocalcaemia with inhibitors of bone resorption
	• Bone metastases, which may be osteolytic, associated with risk of hypercalcaemia	
	• PTHrP may be a mediator of hypercalcaemia	

PTHrP parathyroid hormone-related protein, *SCLC* small-cell lung cancer
cate to eliminate excess vitamin D as the cause of hypercalcaemia [46]. Hyperparathyroidism has been shown to be a predominant non-malignant cause of hypercalcaemia and so requires a different treatment strategy. Other causes of hypercalcaemia are much less frequent than hyperparathyroidism [35]. Therefore, in order to optimise the care of patients with cancer and hypercalcaemia, it is important to exclude other causes, which are mainly primary hyperparathyroidism and, more rarely, excess vitamin D.

Treatment of hypercalcaemia of malignancy

The most effective therapy for patients with hypercalcaemia of malignancy is treatment of the underlying cancer in order to reduce tumour production of factors that promote bone resorption and renal tubular calcium re-absorption; however, this may not be possible or effective in patients with advanced cancer [36]. Therapies that inhibit bone resorption and promote renal calcium excretion therefore become important. Most patients with hypercalcaemia of malignancy are dehydrated at presentation and rehydration is often the first step of treatment. Saline should be given at a maximal initial rate of 200–300 mL/h, then adjusted to maintain a urine output of 100–150 mL/h [46]. This, however, relieves the symptoms rather than addressing the underlying disease, and therefore, rehydration alone rarely resolves hypercalcaemia [47]. Nearly all patients with hypercalcaemia of malignancy have increased osteoclastic bone resorption; hence, inhibition of bone resorption is a key target for management of the condition [1].

Bisphosphonates, the first class of agents that inhibit bone resorption, are synthetic analogues of pyrophosphate (a natural regulator of bone metabolism) and are preferentially localised to the extracellular bone matrix. From there, bisphosphonates may inhibit the differentiation of osteoclastic precursors, induce apoptosis of osteoclasts and stimulate the release of osteoclastic inhibitory factors from osteoblasts [48]. The bisphosphonates commonly used to correct hypercalcaemia are clodronate, pamidronate, ibandronate and zoledronic acid [49]. Zoledronic acid (a nitrogen-containing bisphosphonate), at a dose of 4 mg infused over 15 min, is approved in the USA and the European Union for the treatment of hypercalcaemia of malignancy and the prevention of skeletal-related events (SREs) in patients with bone metastases [50, 51]. At this approved dose, zoledronic acid will lead to a reduction in blood calcium concentration within 2–3 days of administration [46]. Zoledronic acid was shown to have greater efficacy than pamidronate in the treatment of hypercalcaemia of malignancy in a pooled analysis of two randomised, double-blind, phase 3 trials involving 275 patients with moderate-to-severe hypercalcaemia of malignancy. Treatment with zoledronic acid resulted in a significantly higher proportion of complete responses by day 10 (88.4 versus 69.7%; \(P = 0.002 \)) (Fig. 2a), more rapid calcium normalisation, and more durable responses than treatment with pamidronate [52]. Renal adverse events were more frequent, however, in the patients receiving zoledronic acid; it is, therefore, not recommended if creatinine clearance is less than 30 mL/min [50]. Ibandronate, also a nitrogen-containing bisphosphonate, has been successfully used, notably in patients with myeloma and renal failure [54]. Although not currently indicated for the treatment of hypercalcaemia of malignancy, ibandronate may offer an alternative therapy for patients with renal failure [55].

More than 90% of patients with hypercalcaemia of malignancy can be successfully treated with rehydration and bisphosphonates; however, some patients do not respond to or experience relapse on bisphosphonate therapy. Persistent or relapsed hypercalcaemia of malignancy remains a difficult
complication to manage [56]. Denosumab, a fully-human IgG2 monoclonal antibody against RANKL that disrupts signalling through RANK and prevents tumour-mediated activation of osteoclasts [57], has been shown to be effective for the treatment of patients with bisphosphonate-refractory hypercalcaemia. In a single-arm, open-label study, 33 patients with hypercalcaemia of malignancy despite recent bisphosphonate treatment received denosumab 120 mg on days 1, 8, 15, and 29, and then every 4 weeks. In total, 64% of patients responded to denosumab treatment by day 10, with 36% of patients experiencing a complete response (Fig. 2b) [53]. The results of this study formed the basis of the approval of denosumab for the treatment of bisphosphonate-refractory hypercalcaemia of malignancy in the USA, Australia, Canada, and Russia [58–61]. Denosumab, therefore, offers a new treatment option for patients with persistent hypercalcaemia that does not respond to bisphosphonates or hypercalcaemia that relapses following bisphosphonate treatment.

Inhibitors of bone resorption are used to prevent SREs, which are associated with substantial pain and morbidity [62], in patients with metastatic bone disease [50, 63]. The risk of SREs is high in these patients, with up to 64% of those with advanced breast, prostate or lung cancer experiencing an SRE [64–67]. Furthermore, many patients experience multiple SREs over the course of their disease; individuals with breast cancer can experience a mean of 3.7 SREs per year, if left untreated [64]. Adequate preventive treatment is, therefore, a priority. Denosumab has shown superiority over zoledronic acid in preventing SREs in patients with bone metastases [68]. There is also preliminary evidence suggesting that denosumab may offer advantages over zoledronic acid in terms of delaying the onset of and reducing the occurrence or risk of hypercalcaemia of malignancy. A post hoc analysis of data from two phase 3, randomised, controlled trials comparing denosumab and zoledronic acid for the prevention of SREs in patients with bone metastases demonstrated that denosumab significantly delayed the time to first on-study hypercalcaemia event by 37% (hazard ratio, 0.63; 95% confidence interval (CI), 0.41–0.98; P = 0.042). Furthermore, fewer patients receiving denosumab experienced such an event (1.7% compared with 2.7% of those receiving zoledronic acid; P = 0.028), and treatment with denosumab reduced the risk of developing recurrent hypercalcaemia of malignancy by 52% compared with zoledronic acid (rate ratio, 0.48; 95% CI, 0.29–0.81; P = 0.006) [69–71]. These data must be interpreted cautiously, however, as neither study was powered to look for statistically significant differences in the occurrence of hypercalcaemia between the study arms. Despite this, denosumab may be considered to be a more potent inhibitor of bone resorption than zoledronic acid and may offer a superior option to prevent hypercalcaemia of malignancy. Denosumab also offers further advantages in that it is administered subcutaneously rather than intravenously, and it may be useful in patients with renal insufficiency.

In patients with severe hypercalcaemia, the hormone calcitonin is an important adjunctive treatment that acts within 4 h of administration and can be used to immediately reduce calcium plasma concentrations. Calcitonin reduces calcium concentration by inhibiting osteoclast activity and increasing renal calcium clearance. It should be given at a dose of 4–8 units/kg subcutaneously or intramuscularly every 6–12 h; duration of dosing is, however, limited to 48 h owing to the development of tachyphylaxis and decreased responsiveness [46].

Currently, the standard treatment for hypercalcaemia of malignancy is rehydration combined with intravenous...
Minimising calcium mobilisation as a consequence of bone resorption by inhibiting osteoclast activity and thus diminishing bone turnover. Treatment with inhibitors of bone resorption may also cause a shift of calcium into the bone if large populations of osteoblasts exist, as in osteoblastic metastases [81, 82], or when there is excess osteoid tissue (e.g. as a consequence of long-term vitamin D deficiency) [29]. Hypocalcaemia occurs more frequently in patients receiving denosumab than in those receiving zoledronic acid (Fig. 3); a combined analysis of three phase 3 trials comparing denosumab and zoledronic acid reported hypocalcaemia of grade 3 or higher in 3.1% and 1.3% of patients in the denosumab and zoledronic acid groups, respectively [83]. By contrast, an open-label extension of two of these trials, in which 295 patients received monthly denosumab for more than 3 years, reported similar rates of hypocalcaemia: 4.6% of patients who had received denosumab and 3.1% of patients who switched from zoledronic acid to denosumab experienced hypocalcaemia [84]. Thus, hypocalcaemia associated with denosumab appears to occur most often during the initial stages of therapy, but ‘stabilises’ thereafter and does not seem to increase with increased duration of exposure [29]. The increased risk of hypocalcaemia seen with denosumab is consistent with it being a more potent inhibitor of bone resorption than zoledronic acid [29]. Hypocalcaemia associated with treatment with inhibitors of bone resorption is often mild and transient, but can be severe, with some patients requiring hospitalisation and clinical intervention [79]. Hypocalcaemia must, therefore, be prevented wherever possible and managed in the context of the current management of metastatic bone disease.

Hypocalcaemia

Hypocalcaemia can cause muscle spasms, irritability, tetany, paraesthesias, seizures, and cardiac dysrhythmias. Its incidence is difficult to estimate because the aetiology is multifactorial. Defined as corrected total blood calcium below 8.5 mg/dL or ionised blood calcium below 4.6 mg/dL, hypocalcaemia occurs in approximately 30% of all patients with advanced prostate cancer [27, 28]. In patients with osteoblastic bone metastases, excessive uptake of calcium by bone-forming metastases, which sequester calcium, is a primary cause of hypocalcaemia [73]. Renal insufficiency can also contribute to the development of low blood calcium levels [74, 75].

The use of inhibitors of bone resorption for the prevention of SREs in patients with metastatic bone disease may induce or worsen hypocalcaemia, both in patients with prostate cancer [76–78] and patients with other tumours that metastasise to bone [29, 79, 80]; individuals with prostate cancer and osteoblastic metastases are most at risk of developing hypocalcaemia as an adverse effect of such treatment. Other risk factors include high baseline levels of bone turnover markers (urinary N-telopeptide of type I collagen and bone-specific alkaline phosphatase) and reduced creatinine clearance (Table 2) [29]. Bisphosphonates and denosumab prevent bone resorption by inhibiting osteoclast activity and thus diminish calcium mobilisation as a consequence of bone turnover. Treatment with inhibitors of bone resorption may also cause a shift of calcium into the bone if large populations of osteoblasts exist, as in osteoblastic metastases [81, 82], or when there is excess osteoid tissue (e.g. as a consequence of long-term vitamin D deficiency) [29]. Hypocalcaemia occurs more frequently in patients receiving denosumab than in those receiving zoledronic acid (Fig. 3); a combined analysis of three phase 3 trials comparing denosumab and zoledronic acid reported hypocalcaemia of grade 3 or higher in 3.1% and 1.3% of patients in the denosumab and zoledronic acid groups, respectively [83]. By contrast, an open-label extension of two of these trials, in which 295 patients received monthly denosumab for more than 3 years, reported similar rates of hypocalcaemia: 4.6% of patients who had received denosumab and 3.1% of patients who switched from zoledronic acid to denosumab experienced hypocalcaemia [84]. Thus, hypocalcaemia associated with denosumab appears to occur most often during the initial stages of therapy, but ‘stabilises’ thereafter and does not seem to increase with increased duration of exposure [29]. The increased risk of hypocalcaemia seen with denosumab is consistent with it being a more potent inhibitor of bone resorption than zoledronic acid [29]. Hypocalcaemia associated with treatment with inhibitors of bone resorption is often mild and transient, but can be severe, with some patients requiring hospitalisation and clinical intervention [79]. Hypocalcaemia must, therefore, be prevented wherever possible and managed in the context of the current management of metastatic bone disease.

Treatment and prevention of hypocalcaemia

Hypocalcaemia in patients with cancer can have severe consequences, whether occurring with or without the use of inhibitors of bone resorption, but responds well to calcium and vitamin D supplementation. Bisphosphonate therapy, with zoledronic acid preferred over pamidronate [36, 52]. In some countries, denosumab is approved for use in patients with bisphosphonate-refractory hypercalcaemia [53]. In addition, calcitonin may be useful for patients with severe or life-threatening hypercalcaemia because it causes a rapid, albeit transient, decrease of high serum calcium levels [46, 72].

Table 2 Factors significantly associated with the risk of developing grade ≥ 2 hypocalcaemia among denosumab-treated patients participating in three identically designed phase 3 trials of denosumab 120 mg s.c. (N = 2841) versus zoledronic acid 4 mg i.v. (N = 2836). Adapted with permission from Body JJ et al. Eur J Cancer 2015 [29]

Demographic variable/baseline disease characteristic	Denosumab		
	Point estimate	95% CI	P value
Sex (male versus female)	0.761	0.459–1.262	NS
Tumour type – prostate cancer	2.193	1.210–3.974	0.0096
Tumour type – SCLC	4.982	2.252–11.021	<0.0001
Baseline creatinine clearance (30 to < 60 mL/min versus ≥ 60 mL/min)	1.414	1.039–1.924	0.0276
Baseline corrected uNTx level (> 50 nmol/mmol versus ≤ 50 nmol/mmol)	1.305	1.018–1.673	0.036
Baseline BSAP level (> median versus ≤ median; 20.77 μg/L)	1.734	1.280–2.348	0.0004
Number of bone metastases (> 2 versus ≤ 2)	0.631	0.312–1.275	NS
Interaction between baseline BSAP and number of bone metastases	2.419	1.154–5.071	0.0193
Type of lesion – osteoblastic	1.197	0.870–1.647	NS

BSAP Bone-specific alkaline phosphatase, CI confidence interval, i.v. intravenous, NS not significant, s.c. subcutaneous, SCLC small-cell lung cancer, uNTx urinary N-telopeptide of type I collagen
vitamin D supplementation [74, 80, 85, 86]. Furthermore, when treatment with inhibitors of bone resorption is required for the management of metastatic bone disease, hypocalcaemia can usually be prevented by identification and appropriate management of at-risk patients [29]. Case reports and retrospective analyses have identified a number of risk factors associated with the development of hypocalcaemia in those receiving inhibitors of bone resorption; these include vitamin D deficiency, renal insufficiency, osteoblastic metastases, prostate cancer, and low baseline blood calcium levels (Table 2) [29, 78–80]. It is therefore important that vitamin D and calcium levels are assessed and supplementation initiated before starting treatment with inhibitors of bone resorption. This evaluation is particularly important given the high prevalence of vitamin D insufficiency or deficiency among patients with metastatic cancer [87]. Furthermore, all patients receiving inhibitors of bone resorption for the prevention of SREs should receive concomitant calcium and vitamin D supplementation; use of these supplements has been shown to lower the risk of developing hypocalcaemia by 27% and 40% in patients receiving zoledronic acid or denosumab, respectively [29]. An interim analysis of an open-label observational study of treatment persistence in patients with cancer who were receiving denosumab to prevent SREs found that most patients (80%) received calcium and vitamin D supplementation at the start of denosumab treatment. Long-term follow-up persistence data, however, are not yet available [88]. Previous reports suggest that adherence to calcium and vitamin D supplementation is low [89]; patients should, therefore, be counselled on the importance of adequate calcium and vitamin D intake in order to improve adherence [90]. Use of 1,25-dihydroxyvitamin D, the active metabolite of vitamin D, might offer further advantages in the prevention and treatment of hypocalcaemia; however, trials are required to confirm this.

Although hypocalcaemia can occur at any time during treatment with inhibitors of bone resorption, studies show that it often develops soon after treatment initiation; within 7 days, in some cases [79, 91]. Therefore, careful monitoring of at-risk patients after starting treatment is important to enable quick detection and resolution of hypocalcaemia [79, 91]. At-risk patients should also be educated about the symptoms of hypocalcaemia and encouraged to report any indicative symptoms [29]. If hypocalcaemia occurs while a patient is receiving inhibitors of bone resorption, additional calcium and vitamin D supplementation and further monitoring are advised. Delaying the administration of inhibitors of bone resorption because of hypocalcaemia is rarely necessary.

Conclusion

Both hypercalcaemia and hypocalcaemia can lead to serious complications in patients with advanced cancer. Bisphosphonates are effective treatments for both osteolytic and humoral hypercalcaemia of malignancy. In patients with persistent or relapsed hypercalcaemia of malignancy that fails to respond or no longer responds to bisphosphonate treatment, denosumab offers a therapeutic option and, as such, has been approved for this indication in the USA, Australia, Canada, and Russia. Denosumab is a more potent inhibitor of bone resorption than zoledronic acid and is more effective at preventing hypercalcaemia. It is possible that the incidence of hypercalcaemia of malignancy may further decrease as potent inhibitors of bone resorption are used more commonly and earlier in the course of management of patients with metastatic cancer. On the other hand, inhibitors of bone resorption have been shown to increase the risk of developing hypocalcaemia. This risk is higher with denosumab than with zoledronic acid; however, it can be managed by proper identification of at-risk patients and careful monitoring of those receiving these agents. Given the potential improvements to quality of life that inhibitors of bone resorption offer patients with advanced cancer, the benefits and risks associated with their use must be assessed. Further to this, physicians need to be aware of the measures they can take to counteract these
Acknowledgements Medical writing support, funded by Amgen (Europe) GmbH, was provided by Kelly Soady PhD from Oxford PharmaGenesis and Emma Booth from Amgen (Europe) GmbH. Editorial support was provided by Sarah Petrig of Amgen (Europe) GmbH.

Compliance with ethical standards

Conflicts of interest J-JB has served as a consultant for and received lecture fees from Amgen. DN is an employee and shareholder of Amgen. GT has served on advisory board for Celgene, Novartis and Roche.

Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Clines GA, Guise TA (2005) Hypercalcaemia of malignancy and basic research on mechanisms responsible for osteolytic and osteoblastic metastasis to bone. Endocrine-related cancer 12(3):549–583. doi:10.1677/erc.1.00543
2. Roodman GD (2004) Mechanisms of bone metastasis. New Eng J Med 350(16):1655–1664. doi:10.1056/NEJMra030831
3. Ell B, Kang Y (2012) SnapShot: bone metastasis. Cell 151(3):690–690.e1. doi:10.1016/j.cell.2012.10.005
4. Body JJ, Casimiro S, Costa L (2015) Targeting bone metastases in prostate cancer: improving clinical outcome. Nat Rev Urol 12(6):340–356. doi:10.1038/nrurol.2015.90
5. Canalis E, Gentile M, McCarthy T (1988) Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 81(5):1572–1577. doi:10.1172/jci113490
6. Nelson JB, Hedican SP, George DJ, Pietrantosio S, Eisenberger MA, Simons JW (1995) Identification of endotelin-1 in the physiopathology of metastatic adenocarcinoma of the prostate. Nat Med 1(9):944–949
7. Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T (2002) Tumor-derived platelet-derived growth factor-BB plays a critical role in osteoclastic bone destruction. J Clin Invest 110(2):283–291. doi:10.1172/jci118947
8. Shimo T, Kubota S, Yoshioh I, Ibaragi S, Isowa S, Eguchi T, Sasaki A, Takigawa M (2006) Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 21(7):1045–1059. doi:10.1359/jbmr.060416
9. Powell GJ, Southby J, Danks JA, Stillwell RG, Hayman JA, Henderson MA, Bennett RC, Martin TJ (1991) Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res 51(11):3059–3061
10. Kakonen SM, Selandor KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277(27):24571–24578. doi:10.1074/jbc.M205261200
11. Virk MS, Lieberman JR (2007) Tumor metastasis to bone. Arthritis Res Ther 9(Suppl 1):S5. doi:10.1186/ar2169
12. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423(6937):337–342. doi:10.1038/nature01658
13. Dougall WC (2012) Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res 18(2):326–335. doi:10.1158/1078-0432.CCR-10-2507
14. Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157(2):435–448. doi:10.1016/s0002-9440(10)64556-7
15. Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, Higashio K (1998) RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 252(3):395–400. doi:10.1006/bbrc.1998.9789
16. Chirgwin JM, Guise TA (2000) Molecular mechanisms of tumor-bone interactions in osteolytic metastases. Crit Rev Eukaryot Gene Expr 10(2):159–178
17. Roodman DG (2007) Pathogenesis of lung cancer bone metastasis: E06-01. J Thorac Oncol 2(8):S231. doi:10.1097/01.jto.0000283007.16865.fd
18. Roodman GD (2010) Pathogenesis of myeloma bone disease. J Cell Biochem 109(2):283–291. doi:10.1002/jcb.22403
19. Kozlowski W, Guise TA (2005) Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia 10(2):169–180. doi:10.1007/s10911-005-5399-8
20. Yucel B, Celusin MG, Oztomprak B, Hasbek Z, Bahar S, Kacan T, Bahceci A, Seker MM (2015) The negative prognostic impact of bone metastasis with a tumor mass. Clinics (Sao Paulo, Brazil) 70(8):535–540. doi:10.6061/clinics20150801
21. Morrissey C, Roudier MP, Dowell A, Ketcham RJ, Welty GT has served on advisory board for Celgene, Novartis and Roche.
22. Yates AJ, Gutierrez GE, Smolens P, Travis PS, Katz MS, Auffemorte TB, Boeing BF, Hymer TK, Poser JW, Mundy GR (1988) Effects of a synthetic peptide of a parathyroid hormone-related protein on calcium homeostasis, renal tubular calcium
59. Therapeutic Goods Administration Australia (2016) XGEVA (denosumab) Product information. https://www.ebs.tga.gov.au/ebc/picmi/picmirepository.nsf/pdf?OpenAgent&idx=CP-2012-PI-20733-3&d = 2016050316114622483. Accessed 03 May 03.05.16

60. Health Canada (2015) XGEVA (denosumab) Product monograph. https://www.amgca.ca/Xgeva_PM.pdf. Accessed 03 May 03.05.16

61. Russian State register of medicines (2015) Registration certificate.

62. Diel IJ, Body JJ, Egerdie B, Stopec A, Brown J, Fallowfield L, Patrick DL, Clecld, Damyanov D, Palazzo FS, Marx G, Zhou Y, Braun A, Balakumaran A, Qian Y (2016) Pain and agnogenic use associated with skeletal-related events in patients with advanced cancer and bone metastases. Supportive care in cancer: official journal of the Multinational Association of Supportive Care in Cancer 24(3):1327–1337. doi:10.1007/s00520-015-2908-1

63. European Medicines Agency (2015) XGEVA (denosumab) Summary of product characteristics. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002173/WC500110381.pdf. Accessed 12 October 12.10.15

64. Lipton A, Theriault RL, Hortobagyi GN, Simeone J, Knight RD, Mellars K, Reitsma DJ, Heffernan M, Seaman JJ (2000) Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 88(5):1082–1090

65. Rosen LS, Gordon D, Tchekmedyian NS, Yanagihara R, Hirsh V, Krzakowski M, Pawlicki M, De Souza P, Zheng M, Urbanowitz G, Reitsma S, Seaman JJ (2004) Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with non-small cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer 100(12):2613–2621. doi:10.1002/cncr.20308

66. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Zheng M (2004) Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96(11):879–882

67. Saad F, McKiernan J, Eastham J (2006) Rationale for zoledronic acid therapy in men with hormone-sensitive prostate cancer with or without bone metastasis. Urol Oncol 24(1):4–12. doi:10.1016/j.urolonc.2005.06.020

68. Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, Jiang Q, Tadros S, Dansey R, Goessl C (2011) Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet (London, England) 377(9768):813–822. doi:10.1016/s0140-6736(10)62344-6

69. Diel JJ, Body JJ, Stopec AT, Vadhan-Raj S, Spencer A, Steger G, von Moos R, Goldwasser F, Feng A, Braun A (2015) The role of denosumab in the prevention of hypercalcemia of malignancy in cancer patients with metastatic bone disease. European journal of cancer (Oxford, England : 1990) 51(11):1467–1475. doi:10.1016/j.ejca.2015.04.017

70. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, Scagliotti GV, Skeeham H, Spencer A, Vadhan-Raj S, von Moos R, Willenbacher W, Woll PJ, Wang J, Jiang Q, Jun S, Dansey R, Yeh H (2011) Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(9):1125–1132. doi:10.1200/jco.2010.31.3304

71. Stopec AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, Lichinister M, Fujisawa Y, Yardley DA, Viniegra M, Fan M, Jiang Q, Dansey R, Jun S, Braun A (2010) Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(35):5132–5139. doi:10.1200/jco.2010.29.7101

72. Vaughn CB, Vaitkevicius VK (1974) The effects of calcitonin in hypercalcemia in patients with malignancy. Cancer 34(4):1268–1271

73. Szentirmai M, Constantinou C, Rainey JM, Loewenstein JE (1995) Hypocalemia due to avid calcium uptake by osteoblastic metastases of prostate cancer. The Western journal of medicine 163(6):577–578

74. Domschke C, Schuetz F (2014) Side effects of bone-targeted therapies in advanced breast cancer. Breast care (Basel, Switzerland) 9(5):332–336. doi:10.1159/000368844

75. Kukreja SC, Shanmugam A, Lad TE (1988) Hypocalcemia in patients with prostate carcinoma. Calcif Tissue Int 46(4):330–334

76. Blackley S, Anderson K, Berg J (2015) A case of denosumab-induced hypocalemia in a patient with non-metastatic prostate cancer and renal impairment. The journal of the Royal College of Physicians of Edinburgh 45(2):133–135. doi:10.4997/jrcep.2015.209

77. Breen TL, Shane E (2004) Prolonged hypocalcemia after treatment with zoledronic acid in a patient with prostate cancer and vitamin D deficiency. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22(8):1531–1532. doi:10.1200/jco.2004.99.013

78. Pusuluri BB, Akbar RA, Butt M, ul Haq SM (2008) Hypocalcemia with bony metastases in prostate cancer. Journal of Ayub Medical College, Abbottabad : JAMC 20(1):138–139

79. Kreutle V, Blum C, Meier C, Past M, Muller B, Schutz P, Born K (2014) Bisphosphonate induced hypocalcemia – report of six cases and review of the literature. Swiss Med Wkly 144:w13979. doi:10.4414/sm.2014.13979

80. Epperla N, Pathak R (2015) Hypocalcemia secondary to zoledronic acid therapy in a patient with low vitamin D level. WMJ : official publication of the State Medical Society of Wisconsin 114(4):163–166 quiz 167

81. Ho JW (2012) Bisphosphonate stimulation of osteoblasts and osteoblastic metatasis as a mechanism of hypocalcemia. Med Hypotheses 78(3):377–379. doi:10.1016/j.mehy.2011.12.002

82. Ho JW, Sundar S (2012) Prolonged hypocalcemia after zoledronic acid in a patient with metastatic prostate carcinoma: did zoledronic acid trigger osteoblastic activity and avid calcium uptake? Clinical genitourinary cancer 10(1):50–53. doi:10.1016/j.clgc.2011.11.004

83. Lipton A, Fizazi K, Stopec AT, Henry DH, Brown JE, Yardley DA, Richardson GE, Siena S, Maroto P, Clemens M, Bilynsky B, Charu V, Beuzecoc P, Rader M, Viniegra M, Saad F, Ke C, Braun A, Jun S (2012) Superiority of denosumab to zoledronic acid for prevention of skeletal-related events: a combined analysis of 3 pivotal, randomised, phase 3 trials. European journal of cancer (Oxford, England : 1990) 48(16):3082–3092. doi:10.1016/j.ejca.2012.08.002

84. Stopec AT, Fizazi K, Body JJ, Brown JE, Carducci M, Diel I, Fujisawa Y, Martin M, Paterson A, Tonkin K, Shore N, Sieber P, Kueppers F, Karsh L, Yardley D, Wang H, Maniar T, Arellano J, Braun A (2015) Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer 24:447–455. doi:10.1007/s00520-015-2904-5

85. Singh D, Khaira NS, Sekhon JS (2004) Symptomatic hypocalcemia after treatment with zoledronic acid in a patient with multiple myeloma. Annals of oncology : official journal of

Springer
86. Skugor M (2014) Hypocalcaemia. http://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/endocrinology/hypocalcemia/. Accessed 09 October 09.10.15
87. Ng K, Sargent DJ, Goldberg RM, Meyerhardt JA, Green EM, Pitot HC, Hollis BW, Pollak MN, Fuchs CS (2011) Vitamin D status in patients with stage IV colorectal cancer: findings from intergroup trial N9741. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29(12):1599–1606. doi:10.1200/JCO.2010.31.7255
88. Diel IJ, Hecker D, Hesse T, Kluikel C, Nusch A, Rohrberg R, Kurbacher C, Rueckinger S, Schilling J, Schultz H (2015) X-TREME: interim analysis from a German open-label, observational non-interventional study for treatment persistence with denosumab in routine use in adults with bone metastases secondary to solid tumours. Presented at the European Cancer Congress, 25–29 September 2015, Vienna, Austria
89. Blouin J, Dragomir A, Moride Y, Ste-Marie LG, Fernandes JC, Perreault S (2008) Impact of noncompliance with alendronate and risendronate on the incidence of nonvertebral osteoporotic fractures in elderly women. Br J Clin Pharmacol 66(1):117–127. doi:10.1111/j.1365-2125.2008.03178.x
90. Rossini M, Bianchi G, Di Munno O, Giannini S, Minisola S, Sinigaglia L, Adami S (2006) Determinants of adherence to osteoporosis treatment in clinical practice. Osteoporos Int 17(6):914–921. doi:10.1007/s00198-006-0073-6
91. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Mann Z, Mautalen C, Mesenbrink P, Hu H, Canins J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822. doi:10.1056/NEJMoa067312