The Complexity of Boolean State Separation
(Technical Report)

Ronny Tredup1 and Evgeny Erofeev2

1 Universität Rostock, Institut für Informatik, Theoretische Informatik, Albert-Einstein-Straße 22, 18059, Rostock (ronny.tredup@uni-rostock.de)
2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany (evgeny.erofeev@informatik.uni-oldenburg.de)

Abstract. For a Boolean type of nets τ, a transition system A is synthesizable into a τ-net N if and only if distinct states of A correspond to distinct markings of N, and N prevents a transition firing if there is no related transition in A. The former property is called τ-state separation property (τ-SSP) while the latter – τ-event/state separation property (τ-ESSP). A is embeddable into the reachability graph of a τ-net N if and only if A has the τ-SSP. This paper presents a complete characterization of the computational complexity of τ-SSP for all Boolean Petri net types.

Keywords: Boolean Petri nets, Boolean state separation, complexity characterization

1 Introduction

Providing a powerful mechanism for the modeling of conflicts, dependencies and parallelism, Petri nets are widely used for studying and simulating concurrent and distributed systems. In system analysis, one aims to check behavioral properties of system models, and many of these properties are decidable \cite{7} for Petri nets and their reachability graphs, which represent systems’ behaviors. The task of system synthesis is opposite: a (formal) specification of the system’s behavior is given, and the goal is then to decide whether this behavior can be implemented by a Petri net. In case of a positive decision, such a net should be constructed.

Boolean Petri nets form a simple yet rich and powerful family of Petri nets \cite{8,10,12,13,16}, applied in asynchronous circuits design \cite{24,26}, concurrent constraint programs \cite{9} and analysis of biological systems models \cite{6}. In Boolean nets, each place contains at most one token, for any reachable marking. Hence, a place can be interpreted as a Boolean condition that is true if marked and false otherwise. A place p and a transition t of such a net are related by one of the Boolean interactions that define in which way p and t influence each other. The interaction inp (out) defines that p must be true (false) before and false (true)

* Supported by DFG through grant Be 1267/16-1 ASYST.
after t's firing; free (used) implies that t's firing proves that p is false (true); nop means that p and t do not affect each other at all; res (set) implies that p may initially be both false or true but after t's firing it is false (true); swap means that t inverts p's current Boolean value. Boolean Petri nets are classified by the sets of interactions that can be applied. A set τ of Boolean interactions is called a type of net, and a net N is of type τ (a τ-net) if it applies at most the interactions of τ. For a type τ, the τ-synthesis problem consists in deciding whether a specification given in the form of a labeled transition system (TS) is isomorphic to the reachability graph of some τ-net N, and in constructing N if it exists. The complexity of τ-synthesis has been studied in different settings [17,20,22], and varies substantially from polynomial [16] to NP-complete [2].

In order to perform synthesis, that is, to implement the behavior specified by the given TS with a τ-net, two general problems have to be resolved: The τ-net has to distinguish the global states of the TS, and the τ-net has to prevent actions at states where they are not permitted by the TS. In the literature [3], the former requirement is usually referred to as τ-state separation property (τ-SSP), while the latter – τ-event/state separation property (τ-ESSP). Both τ-SSP and τ-ESSP define decision problems that ask whether a given TS fulfills the respective property. The present work focuses exclusively on the computational complexity of τ-SSP. The interest to state separation is motivated in several ways. First, many synthesis approaches are very sensitive to the size of the input’s state space. This raises the question if some initial, so-called pre-synthesis procedures [5,25] can be employed as a quick-fail mechanism, i.e., techniques with a small computational overhead that would gain some helpful information for the main synthesis, or reject the input if exact (up to isomorphism) synthesis is not possible. Since τ-synthesis allows a positive decision if and only if τ-SSP and τ-ESSP do [3], an efficient decision procedure for τ-SSP could serve as a quick-fail pre-process check. Second, if exact synthesis is not possible for the given TS, one may want to have a simulating model, i.e., a τ-net that over-approximates the specified behavior with some possible supplement. Formally, the TS then has to be injectively embeddable into the reachability graph of a τ-net. It is well known from the literature [3] that a TS can be embedded into the reachability graph of a τ-net if and only if it has the τ-SSP. Finally, in comparison to τ-ESSP, so far the complexity of τ-SSP is known to be as hard [1,16,22,23] or actually less hard [18,19]. On the contrary, in this paper, for some types of nets, deciding the τ-SSP is proven harder (NP-complete) than deciding the τ-ESSP (polynomial), e.g., for $\tau = \{\text{nop, res, set}\}$. From the contribution perspective, the τ-SSP has been previously considered only in the broader context of τ-synthesis, and only for selected types [16,19,21,22]. In this paper, we completely characterize the complexity of τ-SSP for all 256 Boolean types of nets and discover 150 new hard types, cf. §1 - §3, §6, §9 of Figure 1 and 4 new tractable types, cf. Figure 1 §10, and comprise the known results for the other 102 types as well, cf. Figure 1 §4, §5, §7, §8. In particular, our characterization categorizes Boolean types with regard to their behavioral capabilities, resulting from the Boolean interactions
Fig. 1: Overview of the computational complexity of τ-SSP for Boolean types of nets τ. The gray area highlights the new results that this paper provides.

involved. This reveals the internal organization of the entire class of Boolean nets, suggesting a general approach for reasoning about its subclasses.

This paper is organized as follows. In Section 2 all the necessary notions and definitions will be given. Section 3 presents NP-completeness results for the types with nop-interaction. τ-SSP for types without nop is investigated in Section 4. Concluding remarks are given in Section 5. One proof is shifted to the appendix.

2 Preliminaries

In this section, we introduce necessary notions and definitions, supported by illustrations and examples, and some basic results that are used throughout the paper.

Transition Systems. A (finite, deterministic) transition system (TS, for short) $A = (S, E, \delta)$ is a directed labeled graph with the set of nodes S (called states), the set of labels E (called events) and partial transition function $\delta : S \times E \rightarrow S$. If $\delta(s, e)$ is defined, we say that e occurs at state s, denoted by $s \xrightarrow{e}$. By $s \xrightarrow{e} s' \in A$, we denote $\delta(s, e) = s'$. This notation extends to paths, i.e., $q_0 \xrightarrow{e_1} \ldots \xrightarrow{e_n} q_n \in A$ denotes $q_{i-1} \xrightarrow{e_i} q_i \in A$ for all $i \in \{1, \ldots, n\}$. A TS A is loop-free, if $s \xrightarrow{e} s' \in A$ implies $s \neq s'$. A loop-free TS A is bi-directed if $s' \xrightarrow{e} s \in A$ implies $s \xrightarrow{e} s' \in A$. We say $s_0 \xrightarrow{e_1} \ldots \xrightarrow{e_n} s_n \in A$ is a simple bi-directed path if $s_i \neq s_j$ for all $i \neq j$ with $i, j \in \{0, \ldots, n\}$. An initialized TS $A = (S, E, \delta, i)$ is a TS with a distinct initial state $i \in S$, where every state $s \in S$ is reachable from i by a directed labeled path.
The only SSP atom \((\text{nop})\) allows to capture all \(\tau = (I, \tau)\) that a type \(\tau\) binary partial function \(R\). One easily verifies that \(\delta(\tau) = 1\), \(\delta(\text{set}, \text{swap}) = 1\), \(\delta(\text{used}) = 1\), and all \(\tau\) belongs. Hence, \(A_2\) has the \(\tau\)-SSP, as well.

Fig. 4: Left: TS \(A_3\), a simple directed path. If \(\hat{\tau}\) is defined as in Figure 3 then \(\sup(i) = 1\), \(\text{sig}(a) = \text{used}\), \(\text{sig}(b) = \text{swap}\) and \(\text{sig}(c) = \text{set}\) implicitly defines the \(\tau\)-region \(R = (\text{sup}, \text{sig})\) of \(A_3\) as follows: \(\sup(s_1) = \delta_1(1, \text{used}) = 1\), \(\sup(s_2) = \delta_2(1, \text{swap}) = 0\) and \(\sup(s_3) = \delta_3(0, \text{set}) = 1\). Middle: The image \(A_3^R\) of \(A_3\) under \(R\). One easily verifies that \(\delta_3(s, e) = s'\) implies \(\delta_3(\text{sup}(s), \text{sig}(e)) = \sup(s')\), cf. Figure 3. In particular, \(R\) is sound. For event \(b\), the edge defined by \(\delta_3(s_1, b) = s_2\) is mapped into \(\delta_3(1, \text{swap}) = 0\) under \(R\), i.e., \(b\) makes a state change on the path; similar for \(\text{sig}(c) = \text{set}\). \(R\) is not normalized, since \(\sup(s_0) = \sup(s_1)\), but \(\text{sig}(a) = \text{used} \neq \text{nop}\). Right: The image \(A_3^{R'}\) of \(A_3\) under the normalized \(\tilde{\tau}\)-region \(R'\) that is similar to \(R\) but replaces \(\text{used}\) by \(\text{nop}\).

Boolean Types of Nets [3]. The following notion of Boolean types of nets allows to capture all Boolean Petri nets in a uniform way. A **Boolean type of net** \(\tau = (\{0, 1\}, E_\tau, \delta_\tau)\) is a TS such that \(E_\tau\) is a subset of the **Boolean interactions**: \(E_\tau \subseteq I = \{\text{nop, inp, out, res, set, swap, used, free}\}\). Each interaction \(i \in I\) is a binary partial function \(i : \{0, 1\} \to \{0, 1\}\) as defined in Figure 2. For all \(x \in \{0, 1\}\) and all \(i \in E_\tau\), the transition function of \(\tau\) is defined by \(\delta_\tau(x, i) = i(x)\). Notice that a type \(\tau\) is completely determined by \(E_\tau\). Hence we often identify \(\tau\) with \(E_\tau\), cf. Figure 1. Moreover, since \(I\) captures all meaningful Boolean interactions [22] p. 617 and \(\tau\) is defined by \(E_\tau \subseteq I\), there are 256 Boolean types of nets at all. For a Boolean type of net \(\tau\), we say that its state 1 is \(\text{inside}\) and 0 is \(\text{outside}\). An
interaction \(i \in E \tau \) exits if \(\tau^{\downarrow} \downarrow 0 \), enters if \(\tau^{\uparrow} \uparrow 1 \), saves 1 if \(\tau^{\uparrow} \uparrow 1 \) and saves 0 if \(\tau^{\downarrow} \downarrow 0 \). Accordingly, we group interactions together by \(\text{crit} = \{\text{inp, res, swap}\} \), enter(= \{out, set, swap\}, \text{save}_1 = \{\text{nop, set, used}\}, \text{save}_0 = \{\text{nop, res, free}\} \) and \(\text{save} = \text{save}_1 \cup \text{save}_0 \).

For a net of type \(\tau \) (\(\tau \)-net), the interactions of \(\tau \) determine relations between places and transitions of the net. For instance, if a place \(p \) and a transition \(t \) are related via \(\text{inp} \), then \(p \) has to be marked \((\text{true}) \) to allow \(t \) to fire, and becomes unmarked \((\text{false}) \) after the firing (cf. Figure 2). Since we are only concerned with state separation, we omit the formal definition of \(\tau \)-nets and rather refer to, e.g., [2] for a comprehensive introduction to the topic.

\(\tau \)-Regions. The following notion of \(\tau \)-regions is the key concept for state separation. A \(\tau \)-region \(R = (\text{sup}, \text{sig}) \) of TS \(A = (S, E, \delta, \epsilon) \) consists of the mappings \(\text{support} \text{sup} : S \to \{0, 1\} \) and \(\text{signature} \text{sig} : E \to E \tau \), such that for every edge \(s \xrightarrow{e} s' \) of \(A \), the edge \(\text{sup}(s) \xrightarrow{\text{sig}(e)} \text{sup}(s') \) belongs to the type \(\tau \); we also say \(\text{sup} \) allows \((\text{sig} \text{and thus the region}) R \). If \(P = q_0, e_1, \ldots, e_n, q_n \) is a path in \(A \), then \(P^R = \text{sup}(q_0) \xrightarrow{\text{sig}(e_1)} \ldots \xrightarrow{\text{sig}(e_n)} \text{sup}(q_n) \) is a path in \(\tau \). We say \(P^R \) is the image of \(P \) (under \(\tau \)). For region \(R \) and path \(P \), event \(e_i \) with \(1 \leq i \leq n \) is called state changing on the path \(P^R \), if \(\text{sup}(q_{i-1}) \neq \text{sup}(q_i) \) for \(q_{i-1} \xrightarrow{e_i} q_i \) in \(P \). Notice that \(R \) is implicitly defined by \(\text{sup}(i) \) and \(\text{sig} \); Since \(A \) is reachable, for every state \(s \in S \), there is a path \(i \xrightarrow{e_1} \ldots \xrightarrow{e_n} s_n \) such that \(s = s_n \). Thus, since \(\tau \) is deterministic, we inductively obtain \(\text{sup}(s_{i+1}) = \text{sup}(s_i) \xrightarrow{\text{sig}(e_{i+1})} \text{sup}(s_{i+1}) \) for all \(i \in \{0, \ldots, n - 1\} \) and \(s_0 = i \). Hence, we can compute \(\text{sup} \) and thus \(R \) purely from \(\text{sup}(i) \) and \(\text{sig} \), cf. Figure 2. If \(\text{nop} \in \tau \), then a \(\tau \)-region \(R = (\text{sup}, \text{sig}) \) of a TS \(A \) is called \text{normalized} if \(\text{sig}(e) = \text{nop} \) for as many events \(e \) as \(\text{sup} \) allows: for all \(e \in E \), \(\text{sig}(e) \notin \{\text{used, free}\} \) and \(\text{sig}(e) \in \text{crit}\}\text{enter} \) then there is \(s \xrightarrow{e} s' \in A \) such that \(\text{sup}(s) \neq \text{sup}(s') \).

\(\tau \)-State Separation Property. A pair \((s, s')\) of distinct states of \(A \) defines a state separation atom (SSP atom). A \(\tau \)-region \(R = (\text{sup}, \text{sig}) \) solves \((s, s')\) if \(\text{sup}(s) \neq \text{sup}(s') \). If \(R \) exists, then \((s, s')\) is called \(\tau \)-solvable. If \(s \in S_A \) and, for all \(s' \notin S_A \setminus \{s\} \), the atom \((s, s')\) is \(\tau \)-solvable, then \(s \) is called \(\tau \)-solvable. A TS has the \(\tau \)-state separation property (\(\tau \)-SSP) if all of its SSP atoms are \(\tau \)-solvable.

A set \(R \) of \(\tau \)-regions of \(A \) is called \(\tau \)-separative if for each SSP atom of \(A \) there is a \(\tau \)-region \(R \) in \(R \) that solves it. By the next lemma, if \(\text{nop} \in \tau \), then \(A \) has the \(\tau \)-SSP if and only if it has a \(\tau \)-separative set of normalized \(\tau \)-regions of \(A \).

Lemma 1. Let \(A \) be a TS and \(\tau \) be a \text{nop}-equipped Boolean type of nets. There is a \(\tau \)-separative set \(R \) of \(A \) if and only if there is a \(\tau \)-separative set of normalized \(\tau \)-regions of \(A \).

Proof. The if-direction is trivial. Only-if: Let \(R = (\text{sup}, \text{sig}) \) be a non-normalized \(\tau \)-region, i.e., there is \(e \in E_A \) such that \(s \xrightarrow{e} s' \in A \) implies \(\text{sup}(s) = \text{sup}(s') \). Since \(\tau \) is \text{nop}-equipped, \(\text{sup}(s) \xrightarrow{\text{nop}} \text{sup}(s') \in \tau \) for all \(s \xrightarrow{e} s' \in A \). Thus, a \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) can be constructed from \(R \), where \(\text{sig}' \) is equal to \(\text{sig} \).
except for $\text{sig}'(e) = \text{nop}$. Since E_A is finite, a normalized region can be obtained from R by inductive application of this procedure.

By the following lemma, τ-SSP and $\tilde{\tau}$-SSP are equivalent if τ and $\tilde{\tau}$ are isomorphic:

Lemma 2 (Without proof). If τ and $\tilde{\tau}$ are isomorphic types of nets then a TS A has the τ-SSP if and only if A has the $\tilde{\tau}$-SSP.

In this paper, we consider the τ-SSP also as decision problem that asks whether a given TS A has the τ-SSP. The decision problem τ-SSP is in NP: By definition, A has at most $|S|^2$ SSP atoms. Hence, a Turing-machine can (non-deterministically) guess a τ-separative set R such that $|R| \leq |S|^2$ and (deterministically) check in polynomial time its validity if it exists.

In what follows, some of our NP-completeness results base on polynomial-time reductions of the following decision problem, which is known to be NP-complete [11]:

Cubic Monotone 1-in-3 3Sat. (CM 1-IN-3 3Sat) The input is a Boolean formula $\varphi = \{\zeta_0, \ldots, \zeta_{m-1}\}$ of negation-free three-clauses $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$, where $i \in \{0, \ldots, m-1\}$, with set of variables $X = \bigcup_{i=0}^{m-1} \zeta_i$; every variable $v \in X$ occurs in exactly three clauses, implying $|X| = m$. The question to decide is whether there is a (one-in-three model) $M \subseteq X$ satisfying $|M \cap \zeta_i| = 1$ for all $i \in \{0, \ldots, m-1\}$.

Example 1 (CM 1-IN-3 3Sat). The instance $\varphi = \{\zeta_0, \ldots, \zeta_5\}$ of CM 1-IN-3 3Sat with set of variables $X = \{X_0, \ldots, X_5\}$ and clauses $\zeta_0 = \{X_0, X_1, X_2\}$, $\zeta_1 = \{X_0, X_2, X_3\}$, $\zeta_2 = \{X_0, X_1, X_3\}$, $\zeta_3 = \{X_2, X_4, X_5\}$, $\zeta_4 = \{X_1, X_4, X_5\}$ and $\zeta_5 = \{X_3, X_4, X_5\}$ has the one-in-three model $M = \{X_0, X_4\}$.

3 Deciding the State Separation Property for nop-equipped Types

In this section, we investigate the computational complexity of nop-equipped Boolean types of nets. For technical reasons, we separately consider the types that include neither res nor set (§5 - §7 in Figure 1) and the ones that have at least one of them (§1 - §4 in Figure 1).

First of all, the fact that τ-SSP is polynomial for the types of §7 in Figure 1 is implied by the results of [16] [22, p. 619]. Moreover, for the types of Figure 1 §5 the NP-completeness of τ-SSP has been shown in [23] ($\tau = \{\text{nop, inp, out}\}$, and in [19] ($\tau = \{\text{nop, inp, out, used}\}$, there referred to as 1-bounded P/T-nets). Thus, in order to complete the complexity characterization for the nop-equipped types that neither contain res nor set, it only remains to ascertain the complexity of τ-SSP for the types Figure 1 §6. The following Subsection 3.1 proves that τ-SSP is NP-complete for these types.

Then, we proceed with the types of §1 - §4 in Figure 1. The fact that τ-SSP is polynomial for the types of §4 follows from [22, p. 619]. The NP-completeness of τ-SSP for the remaining types (§1 - §3) will be demonstrated in Subsection 3.2.
3.1 Complexity of τ-SSP for nopequipped Types without res and set

The following theorem summarizes the complexity for the types of $\S 5 - \S 7$ in Figure[1]

Theorem 1. Let τ be a nopequipped Boolean type of nets such that $\tau \cap \{\text{res, set}\} = \emptyset$. The τ-SSP is NP-complete if $\tau \cap \{\text{inp, out}\} \neq \emptyset$ and swap $\notin \tau$, otherwise it is polynomial.

As just discussed in Section[3] to complete the proof of Theorem[1] it remains to characterize the complexity of τ-SSP for the types of Figure[1] $\S 6$. Since τ-SSP is NP-complete if $\tau = \{\text{nop, inp, out}\}$ [23], by Lemma[1] the τ-SSP is also NP-complete if $\tau = \{\text{nop, inp, out, free}\}$ and $\tau = \{\text{nop, inp, out, free, used}\}$.

Thus, in what follows, we restrict ourselves to the types $\tau = \{\text{nop, inp}\} \cup \omega$ and $\tau = \{\text{nop, out}\} \cup \omega$, where $\omega \subseteq \{\text{used, free}\}$, and argue that their τ-SSP are NP-complete. To do so, we let $\tau = \{\text{nop, inp}\}$ and show the hardness of τ-SSP by a reduction of CM 1-IN-3 3SAT. By Lemma[1] this also implies the hardness of $\tau \cup \omega$-SSP, where $\omega \subseteq \{\text{used, free}\}$. Furthermore, by Lemma[2] the latter shows the NP-completeness of τ-SSP if $\tau = \{\text{nop, out}\} \cup \omega$ and $\omega \subseteq \{\text{used, free}\}$. The following paragraph introduces the intuition of our reduction approach.

The Roadmap of Reduction. Let $\tau = \{\text{nop, inp}\}$ and $\varphi = \{\zeta_0, \ldots, \zeta_{m-1}\}$ be an input of CM 1-IN-3 3SAT with variables $X = \{X_0, \ldots, X_{m-1}\}$ and clauses $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$ for all $i \in \{0, \ldots, m-1\}$. To show the NP-completeness of τ-SSP, we reduce a given input φ to a TS A_φ (i.e., an input of τ-SSP) as follows: For every clause $\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\}$, the TS A_φ has a directed labeled path P_i that represents ζ_i by using its variables as events:

$$P_i = t_{i,0} \xrightarrow{X_{i_0}} t_{i,1} \xrightarrow{X_{i_1}} t_{i,2} \xrightarrow{X_{i_2}} t_{i,3}$$

We ensure by construction that A_φ has an SSP atom α such that if $R = (\text{sup, sig})$ is a τ-region solving α, then $\text{sup}(t_{i,0}) = 1$ and $\text{sup}(t_{i,3}) = 0$ for all $i \in \{0, \ldots, m-1\}$. Thus, for all $i \in \{0, \ldots, m-1\}$, the path P_i^R is a path from 1 to 0 in τ. First, this obviously implies that there is an event $e \in \{X_{i_0}, X_{i_1}, X_{i_2}\}$ such that $\text{sig}(e) = \text{inp}$. Second, it is easy to see that there is no path in τ on which inp occurs twice, cf. Figure[3]. The following figure sketches all possibilities of P_i^R, i.e., $\text{sig}(X_{i_0}) = \text{inp}$ and $\text{sig}(X_{i_1}) = \text{sig}(X_{i_2}) = \text{nop}$, $\text{sig}(X_{i_1}) = \text{inp}$ and $\text{sig}(X_{i_0}) = \text{sig}(X_{i_2}) = \text{nop}$, and $\text{sig}(X_{i_0}) = \text{inp}$ and $\text{sig}(X_{i_0}) = \text{sig}(X_{i_1}) = \text{nop}$, respectively:

Hence, the event e is unique. Since this is simultaneously true for all paths P_0, \ldots, P_{m-1}, the set $M = \{e \in X \mid \text{sig}(e) = \text{inp}\}$ selects exactly one variable per clause and thus defines a one-in-three model of φ. Altogether, this approach
shows that if A_ϕ has the τ-SSP, which implies that α is τ-solvable, then ϕ has a one-in-three model.

Conversely, our construction ensures that if ϕ has a one-in-three model, then α and the other separation atoms of A_ϕ are τ-solvable, that is, A_ϕ has the τ-SSP.

The Reduction of A_ϕ for $\tau = \{\text{nop, inp}\}$. In the following, we introduce the announced TS A_ϕ, cf. Figure 5. The initial state of A_ϕ is $t_{0,0}$. First of all, the TS A_ϕ has the following path P that provides the announced SSP atom $\alpha = (t_{m,0}, t_{m+1,0})$:

$$t_{0,0} \xrightarrow{w_0} \cdots \xrightarrow{w_{i-1}} t_{i,0} \xrightarrow{w_i} \cdots \xrightarrow{w_{m-2}} t_{m-1,0} \xrightarrow{w_{m-1}} t_{m,0} \xrightarrow{k} t_{m+1,0} \xrightarrow{v} \top$$

Moreover, for every $i \in \{0, \ldots, m\}$, the TS A_ϕ has the following path T_i that uses the variables of $\xi_i = \{X_{i0}, X_{i1}, X_{i2}\}$ as events and provides the subpath $P_i = t_{i,0} X_{i0} \cdots X_{i2} t_{i,3}$:

$$t_{i,0} \xrightarrow{X_{i0}} t_{i,1} \xrightarrow{X_{i1}} t_{i,2} \xrightarrow{X_{i2}} t_{i,3} \xrightarrow{u_i} \top$$

Finally, the TS A_ϕ has, for all $i \in \{0, \ldots, m\}$, the following path G_i:

$$t_{0,0} \xrightarrow{y_i} g_{i,0} \xrightarrow{u_i} g_{i,1} \xrightarrow{k} g_{i,2}$$

Notice that the paths P and T_0, \ldots, T_{m-1} have the same “final”-state \bot. Obviously, the size of A_ϕ is polynomial in the size of ϕ. The following Lemma 3 and Lemma 4 prove the validity of our reduction and thus complete the proof of Theorem 1.

Lemma 3. Let $\tau = \{\text{nop, inp}\}$. If A_ϕ has the τ-SSP, then ϕ has a one-in-three model.

Proof. Let $R = (\text{sup}, \text{sig})$ be a τ-region that solves α, that is, $\text{sup}(t_{m,0}) \neq \text{sup}(t_{m+1,0})$. By $t_{m,0} \xrightarrow{k} t_{m+1,0}$ and $\tau = \{\text{nop, inp}\}$, this implies $\text{sig}(k) = \text{inp}$, $\text{sup}(t_{m,0}) = 1$ and $\text{sup}(t_{m+1,0}) = 0$. If $s_0 = t_0 \cdots s_i k s_{i+1} \cdots s_{n-1} s_n$ is a path in A_ϕ, then, by $\text{sig}(k) = \text{inp}$, we get $\text{sup}(s_j) = 1$ for all $j \in \{0, \ldots, i\}$, $\text{sup}(s_j) = 0$ for all $j \in \{i+1, \ldots, n\}$ and $\text{sig}(e_j) = \text{nop}$ for all $j \in \{1, \ldots, i, i+2, \ldots, n\}$. This implies $\text{sup}(\top) = 0$, $\text{sig}(v) = \text{nop}$ as well as $\text{sig}(u_i) = \text{nop}$ and $\text{sup}(t_{i,0}) = 1$ for all $i \in \{0, \ldots, m-1\}$. Furthermore, by $\text{sup}(\top) = 0$ and $\text{sig}(u_i) = \text{nop}$, we get $\text{sup}(u_i) = 0$ for all $i \in \{0, \ldots, m-1\}$. Hence, for all $i \in \{0, \ldots, m-1\}$, the image P_i^R of P_i is a path from 1 to 0 in τ. Hence, as just discussed above, $M = \{e \in X \mid \text{sig}(e) = \text{inp}\}$ selects exactly one variable per clause and defines a one-in-three model of ϕ. \hfill \square

Lemma 4. Let $\tau = \{\text{nop, inp}\}$. If ϕ has a one-in-three model, then A_ϕ has the τ-SSP.
Fig. 5: The TS A_φ originating from the input φ of Example 11 which has the one-in-three model $M = \{X_0, X_4\}$. The colored area sketches the region R_M of Lemma 2 that solves $\alpha = (t_{6,0}, t_{7,0})$.

Proof. Let M be a one-in-three model of φ.

The following region $R_1 = (\text{sup}, \text{sig})$ solves (s, s') for all $s \in \bigcup_{i=0}^{m-1} S(P_i)$ and all $s' \in \bigcup_{i=0}^{m-1} S(G_i)$, where $s' \neq t_{0,0}$: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_\varphi}$, if $e \in \{y_0, \ldots, y_{m-1}\}$, then $\text{sig}(e) = \text{inp}$, otherwise $\text{sig}(e) = \text{nop}$. Note Section A.

Figure 9 for an example of R_1.

Let $i \in \{0, \ldots, m-1\}$ be arbitrary but fixed. The following region $R_i^T = (\text{sup}, \text{sig})$ solves (s, s') for all $s \in \{t_{i,0}, \ldots, t_{i,3}\}$ and all $s' \in \bigcup_{j=i+1}^{m-1} S(T_j) \cup \{t_{m,0}, t_{m+1,0}\}$: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_\varphi}$, if $e \in \{w_i\} \cup \{u_0, \ldots, u_i\} \cup \{y_{i+1}, \ldots, y_{m-1}\}$, then $\text{sig}(e) = \text{inp}$, otherwise $\text{sig}(e) = \text{nop}$. Note Section A.

Figure 11 for an example of R_i^T.

The following region $R_2 = (\text{sup}, \text{sig})$ solves (t_{m+1}, \top) and $(g_{i,0}, g_{i,1})$ and $(g_{i,0}, g_{i,2})$ for all $i \in \{0, \ldots, m-1\}$: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_\varphi}$, if $e \in \{\top\} \cup \{u_0, \ldots, u_{m-1}\}$, then $\text{sig}(e) = \text{inp}$, otherwise $\text{sig}(e) = \text{nop}$. Note Section A.

Figure 11 for an example of R_2.

The following region $R_M = (\text{sup}, \text{sig})$ uses the one-in-three model M of φ and solves α as well as $(g_{i,1}, g_{i,2})$ for all $i \in \{0, \ldots, m-1\}$: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_\varphi}$, if $e \in \{k\} \cup M$, then $\text{sig}(e) = \text{inp}$, otherwise $\text{sig}(e) = \text{nop}$. Note Figure 6 for an example of R_M.

Let $i \in \{0, \ldots, m-2\}$ be arbitrary but fixed. The following region $R_i^G = (\text{sup}, \text{sig})$ solves (s, s') for all $s \in \{g_{i,0}, g_{i,1}, g_{i,2}\}$ and all $s' \in \bigcup_{i+1}^{m-1} S(G_j)$,
where $s' \neq t_{0,0}$: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_2}$, if $e \in \{y_{i+1}, \ldots, y_{m-1}\}$, then

$$\text{sig}(e) = \text{inp},$$

otherwise $\text{sig}(e) = \text{nop}$. Note Section A Figure 12 for an example of R_{1}^{G}.

By the arbitrariness of i for R_{1}^{X} and R_{1}^{G}, it remains to show that $t_{i,0}, \ldots, t_{i,3}$ are pairwise separable for all $i \in \{0, \ldots, m - 1\}$. Let $i \in \{0, \ldots, m - 1\}$ be arbitrary but fixed. We present only a region $R_{i_0}^{X} = (\text{sup}, \text{sig})$ that solves $(t_{i,0}, s)$ for all $s \in \{t_{i,1}, t_{i,2}, t_{i,3}\}$. It is then easy to see that the remaining atoms are similarly solvable. Let $j \neq \ell \in \{0, \ldots, m - 1\} \setminus \{i\}$ select the other two clauses of φ that contain X_{i_0}, that is, $X_{i_0} \in \zeta_j \cap \zeta_\ell$. $R_{i_0}^{X}$ is defined as follows: $\text{sup}(t_{0,0}) = 1$; for all $e \in E_{A_{x}}$, if $e \in \{X_{i_0}\} \cup \{v\} \cup \{u_0, \ldots, u_{m-1}\} \setminus \{u_i, u_j, u_\ell\}$, then $\text{sig}(e) = \text{inp}$, otherwise $\text{sig}(e) = \text{nop}$. Note Section A Figure 13 for an example of $R_{i_0}^{X}$. Similarly, one gets regions where X_{i_1} or X_{i_2} has inp-signature. These regions solve the remaining atoms of $S(T_i) \setminus \{\tau\}$. Since i was arbitrary, this completes the proof. □

3.2 Complexity of τ-SSP for nop-equipped Types with res or set.

The next theorem states that τ-SSP is NP-complete for the nop-equipped types that have not yet been considered, cf Figure 1 §1 - §3. Moreover, it summarizes the complexity of τ-SSP for all types of Figure 1 §1 - §4:

Theorem 2. Let τ and $\check{\tau}$ be Boolean type of nets and $\{\text{nop, res}\} \subseteq \tau$ and $\{\text{nop, set}\} \subseteq \check{\tau}$.

1. The τ-SSP is NP-complete if $\tau \cap \text{enter} \neq \emptyset$, otherwise it is polynomial.
2. The $\check{\tau}$-SSP is NP-complete if $\check{\tau} \cap \text{crit} \neq \emptyset$, otherwise it is polynomial.

In this section we complete the proof of Theorem 2 as follows. Firstly, we let $\tau_0 = \{\text{nop, inp, out}\}$ and, by a reduction of τ_0-SSP, we show that the τ-SSP is NP-complete if $\tau = \{\text{nop, out, res}\} \cup \omega$ and $\omega \subseteq \{\text{inp, used, free}\}$ or if $\{\text{nop, res, set}\} \subseteq \tau$. By Lemma 2 the former also implies the NP-completeness of τ-SSP if $\tau = \{\text{nop, inp, set}\} \cup \omega$ and $\omega \subseteq \{\text{out, used, free}\}$. Altogether, this proves the claim for all the types listed in §1 and §3 of Figure 1.

Secondly, we let $\tau_1 = \{\text{nop, inp}\}$ and reduce τ_1-SSP to τ-SSP, where $\tau = \{\text{nop, res, swap}\} \cup \omega$ and $\omega \subseteq \{\text{inp, used, free}\}$. Again by Lemma 2 this also implies the NP-completeness of τ-SSP if $\tau = \{\text{nop, set, swap}\} \cup \omega$ and $\omega \subseteq \{\text{out, used, free}\}$. Hence, this proves the claim for all the types listed in §2 of Figure 1 and thus completes the proof of Theorem 2.

For the announced reductions, we use the following extensions of a TS A, cf. Figure 6. Let $A = (S_A, E_A, \delta_A, \iota_A)$ be a loop-free TS, and let $\overline{E_A} = \{\overline{e} \mid e \in E_A\}$ be the set containing for every event $e \in E_A$ the unambiguous and fresh event \overline{e} that is associated with e. The backward-extension $B = (S_A, E_A \cup \overline{E_A}, \delta_B, \iota_A)$ of A extends A by $\overline{E_A}$ and additional backward edges: for all $e \in E_A$ and all $s, s' \in S_A$, if $\delta_A(s,e) = s'$, then $\delta_B(s,e) = s'$ and $\delta_B(s',\overline{e}) = s$. The oneway loop-extension $C = (S_A, E_A \cup \overline{E_A}, \delta_C, \iota_A)$ of a TS A extends B by some additional loops: for all $x \in E_A \cup \overline{E_A}$ and all $s \in S_A$, we define $\delta_C(s,e) = \delta_B(s,e)$ and, for
Proof. Figure 6: For all \(q_0 \), \(q_1 \): Proof.

Figure 6: Top, left to right: A TS \(A \) consisting of a single edge; backward-extension \(B \) of \(A \); oneway loop-extension \(C \) of \(A \); loop-extension \(D \) of \(A \). Bottom, left to right: images of \(A \) and its extensions \(B, C, D \) under regions corresponding to the types of Lemma 5 solving \(q_0, q_1 \): a \{nop, inp\}- (\{nop, inp, out\}) region of \(A \); a \{nop, res, out\}-region of \(B \); a \{nop, res, swap\}-region of \(C \); a \{nop, res, set\}-region of \(D \).

All \(e \in E_A \) and all \(s, s' \in S_A \), if \(\delta_A(s, e) = s' \), then \(\delta_C(s', e) = s' \). Finally, the loop-extension \(D = (S_A, E_A \cup \overline{E_A}, \delta_D, \iota_A) \) of \(A \) is an extension of \(C \), where for all \(x \in E_A \cup \overline{E_A} \) and all \(s \in S_A \), we define \(\delta_D(s, x) = \delta_C(s, x) \) and, for all \(e \in E_A \) and all \(s, s' \in S_A \), if \(\delta_A(s, e) = s' \), then \(\delta_D(s, e) = s' \).

Depending on the considered type \(\tau \), we let \(\tilde{\tau} = \tau_0 \) or \(\tilde{\tau} = \tau_1 \) and reduce a loop-free TS \(A = (S_A, E_A, \delta_A, \iota_A) \) either to its backward-, oneway loop- or loop-extension and show that \(\text{sup} : S_A \rightarrow \{0, 1\} \) allows a \(\tilde{\tau} \)-region of \(A \) if and only if it allows a \(\tau \)-region of the extension:

Lemma 5. Let \(\tau_0 = \{\text{nop, inp, out}\}, \tau_1 = \{\text{nop, inp}\} \), \(A \) a loop-free TS, \(\text{sup} : S_A \rightarrow \{0, 1\} \) and \(B, C \) and \(D \) the backward-, oneway loop- and loop-extension of \(A \), respectively.

1. If \(\tau = \{\text{nop, out, res}\} \cup \omega \) and \(\omega \subseteq \{\text{inp, used, free}\} \), then \(\text{sup} \) allows a \(\tau_0 \)-region \(R = (\text{sup}, \text{sig}) \) of \(A \) if and only if it allows a normalized \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) of \(B \).
2. If \(\tau \supseteq \{\text{nop, res, set}\} \), then \(\text{sup} \) allows a \(\tau_0 \)-region \(R = (\text{sup}, \text{sig}) \) of \(A \) if and only if it allows a normalized \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) of \(D \).
3. If \(\tau = \{\text{nop, res, swap}\} \cup \omega \) and \(\omega \subseteq \{\text{inp, used, free}\} \), then \(\text{sup} \) allows a \(\tau_1 \)-region \(R = (\text{sup}, \text{sig}) \) of \(A \) if and only if it allows a normalized \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) of \(C \).

Proof. (1): Only-if: Let \(R = (\text{sup}, \text{sig}) \) be a \(\tau_0 \)-region of \(A \). Recall that \(\text{sig}(e) = \text{nop} \), \(\text{sig}(e) = \text{inp} \), \(\text{sig}(e) = \text{out} \) imply \(\text{sup}(s) = \text{sup}(t) = 1 \) and \(\text{sup}(s) = 0 \) and \(\text{sup}(t) = 1 \) for all edges \(e \) of \(A \), respectively. Thus, it is easy to see that \(R \) induces a normalized \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) of \(B \) as follows, cf. Figure 6. For all \(e \in E_A \) and its associated event \(\overline{E_A} \), if \(\text{sig}(e) = \text{nop} \), then \(\text{sig}(e) = \text{sig}(\overline{E_A}) = \text{nop} \); if \(\text{sig}(e) = \text{inp} \), then \(\text{sig}(e) = \text{res} \) and \(\text{sig}(\overline{E_A}) = \text{out} \); if \(\text{sig}(e) = \text{out} \), then \(\text{sig}(e) = \text{out} \) and \(\text{sig}(\overline{E_A}) = \text{res} \).
If: Let \(R' = (\text{sup}, \text{sig}') \) be a normalized \(\tau \)-region of \(B \), and let \(e \in E_A \) and \(s \xleftarrow{e} t \in B \) and \(s' \xleftarrow{e} t' \in B \) be arbitrary but fixed. First of all, we argue that if \(\text{sup}(s) \neq \text{sup}(t) \), then \(\text{sup}(s) = \text{sup}(s') \) and \(\text{sup}(t) = \text{sup}(t') \): By definition of \(B \), we have that \(t \xrightarrow{\tau} s \) and \(t' \xrightarrow{\tau} s' \) are present. If \(\text{sup}(s) = 1 \) and \(\text{sup}(t) = 0 \), then \(s \xleftarrow{e} t \) and \(t \xrightarrow{\tau} s \) imply \(\text{sig}'(e) \in \{\text{inp}, \text{res}\} \) and \(\text{sig}'(\tau) = \text{out} \). By \(\xleftarrow{e} t' \) and \(\xrightarrow{\tau} s' \), this immediately implies \(\text{sup}(s') = 1 \) and \(\text{sup}(t') = 0 \). Similarly, if \(\text{sup}(s) = 0 \) and \(\text{sup}(t) = 1 \), then \(\text{sig}'(e) = \text{out} \) and \(\text{sig}'(\tau) \in \{\text{inp}, \text{res}\} \), which implies \(\text{sup}(s') = 0 \) and \(\text{sup}(t') = 1 \). Consequently, since \(s \xleftarrow{e} t \) was arbitrary, the claim follows. Note that this implies in return that if \(\text{sup}(s) = \text{sup}(t) \), then \(\text{sup}(s') = \text{sup}(t') \). Since both edges were arbitrary, it is easy to see that the following \(\tau_0 \)-region \(R = (\text{sup}, \text{sig}) \) of \(A \) is well defined: for all \(e \in E_A \), if there is \(s \xleftarrow{e} t \in B \) such that \(\text{sup}(s) \neq \text{sup}(t) \), then \(\text{sig}(e) = \text{inp} \) if \(\text{sup}(s) = 1 \) and \(\text{sup}(t) = 0 \), else \(\text{sig}(e) = \text{out} \); otherwise, \(\text{sig}(e) = \text{nop} \).

(2): Only-if: Recall that \(0 \xrightarrow{\text{res}} 0 \) and \(1 \xrightarrow{\text{set}} \text{nop} \) are present in \(\tau \). Consequently, if \(R = (\text{sup}, \text{sig}) \) is a \(\tau_0 \)-region of \(A \), then the region \(R' = (\text{sup}, \text{sig}') \), similarly defined to the one for the Only-if-direction of (1), but replacing out by set, is a \(\tau \)-region of \(D \), cf. Figure 6.

If: If \(R' = (\text{sup}, \text{sig}') \) is a normalized \(\tau \)-region of \(D \), then it holds \(\text{sig}'(e) \in \{\text{nop}, \text{res}, \text{set}\} \) for all \(e \in E_D \). This is due to the fact that if \(s \xleftarrow{e} s' \in D \), then \(s' \xrightarrow{\tau} s' \in D \) for all \(x \in E_D \) and all \(s, t \in S_D \). Thus, \(R = (\text{sup}, \text{sig}) \) is obtained from \(R' \) by the same arguments as the ones presented for the If-direction of (1).

(3): Only-if: Let \(R = (\text{sup}, \text{sig}) \) be a \(\tau_1 \)-region of \(A \). Recall that \(\text{sig}(e) = \text{nop} \) and \(\text{sig}(e) = \text{inp} \) imply \(\text{sup}(s) = \text{sup}(t) \) and \(\text{sup}(s) = 1 \), \(\text{sup}(t) = 0 \) for all edges \(s \xleftarrow{e} t \) of \(A \), respectively. Moreover, \(1 \xrightarrow{\text{res}} 0 \), \(0 \xrightarrow{\text{res}} 0 \) and \(0 \xrightarrow{\text{swap}} \text{swap} \) are present in \(\tau \). Thus, we get a normalized \(\tau \)-region \(R' = (\text{sup}, \text{sig}') \) of \(C \) as follows, cf. Figure 6. For all \(e \in E_A \) and its associated event \(\tau \in E_A \), if \(\text{sig}(e) = \text{nop} \), then \(\text{sig}'(e) = \text{sig}'(\tau) = \text{nop} \); if \(\text{sig}(e) = \text{inp} \), then \(\text{sig}'(e) = \text{res} \) and \(\text{sig}'(\tau) = \text{swap} \).

If: Let \(R' = (\text{sup}, \text{sig}') \) be a normalized \(\tau \)-region of \(C \), and let \(e \in E_A \) and \(s \xleftarrow{e} t \in C \) and \(s' \xleftarrow{e} t' \in C \) be arbitrary but fixed. We argue that \(\text{sup}(s) \neq \text{sup}(t) \) implies \(\text{sup}(s) = \text{sup}(s') = 1 \) and \(\text{sup}(t) = \text{sup}(t') = 0 \): By definition of \(C \) and \(s \xleftarrow{e} t \in C \), we get \(t \xleftarrow{\tau} t' \in C \). Thus, \(\text{sig}'(e) \in \{\text{nop}, \text{res}\} \). Thus, if \(\text{sup}(s) \neq \text{sup}(t) \), then \(\text{sig}'(e) = \text{res} \), which implies \(\text{sup}(s) = 1 \) and \(\text{sup}(t) = 0 \). Moreover, by \(t \xrightarrow{\tau} s \in C \), this also implies \(\text{sig}'(\tau) = \text{swap} \). Finally, by \(\text{sig}'(e) = \text{res} \), \(e \xleftarrow{\tau} t' \), \(\text{sig}'(\tau) = \text{swap} \) and \(t' \xrightarrow{\tau} s \), we get \(\text{sup}(t') = 0 \) and \(\text{sup}(s') = 1 \). Consequently, the following definition of \(\text{sig} \) yields a well-defined \(\tau_1 \)-region \(R = (\text{sup}, \text{sig}) \) of \(A \): for all \(e \in E_A \), if \(\text{sig}'(e) = \text{res} \), then \(\text{sig}(e) = \text{inp} \), otherwise \(\text{sig}(e) = \text{nop} \).
Corollary 1 (Without Proof). Let $\tau_0 = \{\text{nop, inp, out}\}$ and $\tau_1 = \{\text{nop, inp}\}$, and let A be a loop-free TS and B, C and D its backward-, oneway loop- and loop-extension, respectively.

1. If $\tau = \{\text{nop, out, res}\} \cup \omega$ and $\omega \subseteq \{\text{inp, used, free}\}$, then A has the τ_0-SSP if and only if B has the τ-SSP.
2. If $\tau \supseteq \{\text{nop, res, set}\}$, then A has the τ_0-SSP if and only if D has the τ-SSP.
3. If $\tau = \{\text{nop, res, swap}\} \cup \omega$ and $\omega \subseteq \{\text{inp, used, free}\}$, then A has the τ_1-SSP if and only if C has the τ-SSP.

4 Deciding the State Separation Property for nop-free Types

The following theorem summarizes the complexity of τ-SSP for nop-free Boolean types:

Theorem 3. Let τ be a nop-free type of nets and A a TS.

1. If swap $\notin \tau$ or swap $\in \tau$ and $\tau \cap \text{save} = \emptyset$, then deciding if A has the τ-SSP is polynomial.
2. If swap $\in \tau$ and $\tau \cap \text{save} \neq \emptyset$, then deciding if A has the τ-SSP is NP-complete.

The tractability of τ-SSP for nop-free types that are also swap-free has been shown in the broader context of τ-synthesis in [21]. Thus, restricted to Theorem 3, it remains to argue that τ-SSP is polynomial if $\tau = \{\text{swap}\} \cup \omega$ and $\omega \subseteq \{\text{inp, out}\}$. The following lemma states that separable inputs of τ-SSP are trivial for these types and thus proves its tractability:

Lemma 6. Let $\tau = \{\text{swap}\} \cup \omega$, where $\omega \subseteq \{\text{inp, out}\}$, and $A = (S, E, \delta, \iota)$ be a TS. If A has the τ-SSP, then it has at most two states.

Proof. If there is $\epsilon \xrightarrow{e} s \in A$, then A has no τ-regions. Hence, if such A has more than one state, then it does not have the τ-SSP.

Let’s consider the case when A is loop-free, that is, $\epsilon \xrightarrow{e} s \in A$ implies $s \neq s\prime$. First of all, note that there is at most one outgoing edge $\epsilon \xrightarrow{e} s$ at ι, since if $\epsilon \xrightarrow{s} s\prime$ and $s \neq s\prime$, then s and $s\prime$ are not separable. This can be seen as follows: If $R = (\text{sup, sig})$ is a τ-region that solves $(s, s\prime)$, then $\text{sup}(s) = 0$ and $\text{sup}(s\prime) = 1$ or $\text{sup}(s) = 1$ and $\text{sup}(s\prime) = 0$. If $\text{sup}(s) = 0$ and $\text{sup}(s\prime) = 1$, then $\text{sup}(\iota) = 0$ contradicts $\text{sig}(e) \in \tau$, and $\text{sup}(\iota) = 1$ contradicts $\text{sig}(e\prime) \in \tau$. Similarly, $\text{sup}(s) = 1$ and $\text{sup}(s\prime) = 0$ yields a contradiction. Thus, a separating region R does not exist, which proves the claim. Secondly, if $\epsilon \xrightarrow{e} s \xrightarrow{e} s'' \in A$, then $\iota = s''$, since otherwise, ι and s'' are not separable. This can be seen as follows: If $R = (\text{sup, sig})$ is a τ-region that solves (ι, s''), then $\text{sup}(\iota) = 0$ and $\text{sup}(s'') = 1$ or $\text{sup}(\iota) = 1$ and $\text{sup}(s'') = 0$. If $\text{sup}(\iota) = 0$ and $\text{sup}(s'') = 1$, then $\text{sup}(s\prime) = 0$ contradicts $\text{sig}(e) \in \tau$, and $\text{sup}(s\prime) = 1$ contradicts $\text{sig}(e\prime) \in \tau$.

Similarly, \(sup(\ell) = 1 \) and \(sup(s') = 0 \) yields a contradiction. This implies again that a separating region does not exist, which proves the claim and, moreover, proves the lemma.

To complete the proof of Theorem 3.2 it remains to prove the NP-completeness of \(\tau\)-SSP for the types listed in §9 of Figure 1 which are exactly covered by Theorem 3.2. Thus, in the remainder of this section, if not stated explicitly otherwise, we let \(\tau \) be a \(\text{nop} \)-free type such that \(\text{swap} \in \tau \) and \(\tau \cap \text{save} \neq \emptyset \). Moreover, we reduce CM 1-in-3 3SAT to \(\tau\)-SSP again.

Basic Ideas of the Reduction. Similar to our previous approach we build a TS \(A_\varphi \) that has for every clause \(\zeta_i = \{X_{i_0}, X_{i_1}, X_{i_2}\} \), a (bi-directed) path \(P_i = \ldots \rightarrow X_{i_0} \rightarrow \ldots \rightarrow X_{i_2} \rightarrow \ldots \) on which the elements of \(\zeta_i \) occur as events. Together, the corresponding paths \(P_0, \ldots, P_{m-1} \) are meant to represent \(\varphi \). However, the current types are more diverse than \(\{\text{nop}, \text{inp}\} \), since they also allow \(\text{swap} \) and other interactions. Simultaneously, they are more restricted than \(\{\text{nop}, \text{inp}\} \), since they lack of \(\text{nop} \). One of the main obstacles that occur is that if \(s,s' \in A_\varphi \), then the current types basically allow \(sup(s) = 1 \) and \(sup(s') = 0 \) as well as \(sup(s) = 0 \) and \(sup(s') = 1 \) for a \(\tau\)-region \(R = (\text{sup}, \text{sig}) \) that solves \((s,s') \). It turns out that this requires a second representation of \(\varphi \). To do so, we use a copy \(\varphi' \) that originates from \(\varphi \) by simply renaming its variables. That is, \(\varphi' \) originates from \(\varphi \) by replacing every variable \(v \in X \) of \(\varphi \) by a unique and fresh variable \(v' \).

Example 2 (Renaming of \(\varphi \)). The instance \(\varphi' = \{\zeta_0', \ldots, \zeta_5'\} \) that originates from \(\varphi \) of Example 1 is defined by \(X' = \{X_0', \ldots, X_5'\} \) and \(\zeta_0' = \{X_0', X_1', X_2'\}, \zeta_1' = \{X_0', X_2', X_3'\}, \zeta_2' = \{X_0', X_1', X_3'\}, \zeta_3' = \{X_2', X_3', X_4'\}, \zeta_4' = \{X_1', X_4', X_5'\} \) and \(\zeta_5' = \{X_3', X_4', X_5'\} \).

It is immediately clear that \(\varphi \) is one-in-three satisfiable if and only if \(\varphi' \) is one-in-three satisfiable. The TS \(A_\varphi \) additionally has for every clause \(\zeta_i' = \{X_{i_0}', X_{i_1}', X_{i_2}'\} \), where \(i \in \{0, \ldots, m-1\} \), of \(\varphi' \) also a (bi-directed) path \(P_i' = \ldots \rightarrow X_{i_0}' \rightarrow \ldots \rightarrow X_{i_2}' \rightarrow \ldots \) on which the elements of \(\zeta_i' \) occur as events. Moreover, by the construction, the TS \(A_\varphi \) has a SSP atom \(\alpha = (s, s') \) such that if a \(\tau\)-region solves \(\alpha \), then either the signatures of the variable events \(X \) of \(\varphi \) define a one-in-three model of \(\varphi \) or the signatures of the variable events \(X' \) of \(\varphi' \) define a one-in-three model of \(\varphi' \). Obviously, both cases imply the one-in-three satisfiability of \(\varphi \).

Conversely, the construction ensures, if \(\varphi \) has a one-in-three model then \(A_\varphi \) has the \(\tau\)-SSP.

Similar to our approach for Theorem 1 the TS \(A_\varphi \) is a composition of several gadgets. The next Lemma 7 introduces some basic properties of \(\tau\)-regions in bi-directed TS for \(\text{nop} \)-free types that we use to prove the functionality of \(A_\varphi \)'s gadgets. After that, Lemma 8 introduces TS that are the (isomorphic) prototypes of the gadgets of \(A_\varphi \) and additionally proves the essential parts of their intended functionality.
Lemma 7. Let τ be a nop-free Boolean type of nets and A a bi-directed TS; let $s \xrightarrow{e} s'$ be an edge of A. $P_0 = s_0 \xrightarrow{e_1} \ldots \xrightarrow{e_m} s_m$ and $P_1 = q_0 \xrightarrow{e_1} \ldots \xrightarrow{e_m} q_m$ be two simple paths of A that both apply the same sequence $e_1 \ldots e_m$ of events, and $R = (\sup, \sig)$ be a τ-region of A.

1. If $\sig(e) \in \text{save}$, then $\sup(s) = \sup(s') = \sup(q) = \sup(q')$ for every edge $q \xrightarrow{e} q' \in A$.
2. If $\sup(s_m) \neq \sup(q_m)$, then $\sig(e_i) = \text{swap}$ for all $i \in \{1, \ldots, m\}$.
3. If $\sup(s_0) = \sup(s_m)$, then $|\{e \in \{e_1, \ldots, e_m\} \mid \sig(e) = \text{swap}\}|$ is even.

Proof. (1): A is bi-directed and $\xrightarrow{i} p \in \tau$ and $\xrightarrow{i} p' \in \tau$ imply $p = p'$ for all $i \in \text{save}$.

(2): By definition of τ, if $\sup(s_m) \neq \sup(q_m)$, then, by $e_m s_m$ and $e_m q_m$, we get $\sig(e_m) = \text{swap}$. Clearly, by $\sup(s_m) \neq \sup(q_m)$, this implies $\sup(s_m) \neq \sup(q_m)$.

(3): Since $\sup(s_0) = \sup(s_m)$, the image P_0^R of P_0 is a path of τ that starts and terminates at the same state. Consequently, the number of changes between 0 and 1 on P_0^R is even. Since A is bi-directed, $\sup(s) \neq \sup(s')$ if and only if $\sig(e) = \text{swap}$ for all $s \xrightarrow{e} s' \in P_0$. Thus, the number of events of P_0 with a swap-signature must be even. Hence, the claim.\square

Lemma 8 (Basic Components of A_φ). Let τ be a nop-free Boolean type and A a bi-directed TS with the following paths G, F, T and Q, and let $R = (\sup, \sig)$ be a τ-region of A:

$$
G = 0 \xrightarrow{v} 1 \xleftarrow{w} 2 \xleftarrow{v} 3 \xleftarrow{k_0} 4 \quad F = t_0 \xrightarrow{v} t_1 \xleftarrow{w} t_2 \xleftarrow{v} t_3 \xleftarrow{X_0} t_4 \xleftarrow{t_5} t_6 \xleftarrow{X_1} t_7 \xleftarrow{v} t_8 \xleftarrow{v} t_9 \\
T = t_0 \xleftarrow{k_0} t_1 \xleftarrow{v_0} t_2 \xleftarrow{v_1} t_3 \xleftarrow{X_0} t_4 \xleftarrow{t_5} t_6 \xleftarrow{X_1} t_7 \xleftarrow{v_3} t_8 \xleftarrow{v_4} t_9
$$

1. If R solves $\alpha = (g_2, g_4)$, then either $\sig(k_0) \in \text{save}$ and $\sig(k_1) = \text{swap}$ or $\sig(k_0) = \text{swap}$ and $\sig(k_1) \in \text{save}$.
2. If $\sig(k_0) \in \text{save}$ and $\sig(k_1) = \text{swap}$ or $\sig(k_0) = \text{swap}$ and $\sig(k_1) \in \text{save}$, then $\sig(v) = \sig(w) = \text{swap}$.
3. If $\sig(k_0) \in \text{save}$ and $\sig(v_1) = \text{swap}$ for all $i \in \{0, \ldots, 6\}$, then there is exactly one $X \in \{X_0, X_1, X_2\}$ such that $\sig(X) \neq \text{swap}$.

Proof. Since A is bi-directed, we have $\sig(e) \notin \{\text{inp, out}\}$ for all $e \in E_A$.

(1): R solves α, thus $\sup(g_2) \neq \sup(g_4)$. If $\sig(k_0) \neq \text{swap} \neq \sig(k_1)$ or $\sig(k_0) = \sig(k_1) = \text{swap}$, then $\sup(g_2) = \sup(g_4)$, a contradiction. Hence the claim, cf. Figure 7.
Fig. 7: Illustrations for Lemma 8. The images G^R, F^R, T^R and Q^R, where $R = (sup, sig)$ is a \{swap, free\}-region that solves (g_2, g_4) and satisfies $sig(k_0) = sig(X_0) = free$ and $sig(k_1) = sig(v) = sig(w) = sig(X_1) = sig(X_2) = sig(v_i) = swap$ for all $i \in \{0, \ldots, 6\}$.

Fig. 8: Illustration for Lemma 8. A \{swap, used, free\}-region $R = (sup, sig)$, restricted to T, where $sig(k_0) = sig(X_0) = sig(X_2) = free$, $sig(X_1) = used$ and $sig(v_i) = swap$ for all $i \in \{0, \ldots, 5\}$ and, hence, $|\{e \in \{X_0, X_1, X_2\} \mid sig(e) = swap\}| = 0$. R is not extendable to a region of a TS that has T and Q such that $sig(v_6) = swap$, since $sig(v_6) = swap$ would contradict $sup(q_0) = \cdots = sup(q_3) = 0$, which would be required by $sig(X_0) = sig(X_2) = free$.

(2): If $sig(k_0) \in save$ and $sig(k_1) = swap$, then we have $sup(g_2) = sup(f_3) \neq sup(f_2)$, cf. Figure 7. By symmetry, the latter is also true if $sig(k_0) = swap$ and $sig(k_1) \in save$. Hence, the claim follows from Lemma 7.2.

(3): Since $sig(k_0) \in save$, we get $sup(t_1) = sup(t_10)$. By Lemma 7.3 this implies that $|\{e \in E(T) \mid sig(e) = swap\}|$ is even. Moreover, since $sig(v_0) = \ldots sig(v_5) = swap$, this implies $|\{e \in \{X_0, X_1, X_2\} \mid sig(e) = swap\}| \in \{0, 2\}$. If $|\{e \in \{X_0, X_1, X_2\} \mid sig(e) = swap\}| = 0$ then, we get $sup(t_4) = sup(t_4) \neq sup(t_3) = sup(t_6) \neq sup(t_7)$ by Lemma 7.1. This particularly implies $sup(t_4) = sup(t_7)$ and, again by Lemma 7.1 also $sup(t_4) = sup(q_1) = sup(q_2)$ and contradicts $sig(v_6) = swap$, cf. Figure 8. Thus, we have $|\{e \in \{X_0, X_1, X_2\} \mid sig(e) = swap\}| = 2$, which proves the claim, cf. Figure 7.

Let φ be an instance of CM 1-IN-3 3SAT with the set of variables $X = \{X_0, \ldots, X_{m-1}\}$ and φ' its renamed copy with event set $X' = \{X'_0, \ldots, X'_{m-1}\}$. In the following, we introduce the construction of A_{φ}.

Firstly, for every $i \in \{0, \ldots, 7m - 1\}$, the TS A_i has the following gadgets G_i, F_i, G'_i and F'_i with starting states $g_{i,0}$, $f_{i,0}$, $g'_{i,0}$ and $f'_{i,0}$, respectively, providing the atom $\alpha = (g_{0,2}, g_{0,4})$:
as follows:

\[G_i = \{ g_{i,0} \leftrightarrow g_{i,1} \leftarrow g_{i,2} \rightarrow g_{i,3} \rightarrow g_{i,4} \} \quad F_i = \{ f_{i,0} \leftrightarrow f_{i,1} \leftarrow f_{i,2} \rightarrow f_{i,3} \rightarrow f_{i,4} \} \]

\[G'_i = \{ g'_{i,0} \leftrightarrow g'_{i,1} \leftarrow g'_{i,2} \rightarrow g'_{i,3} \rightarrow g'_{i,4} \} \quad F'_i = \{ f'_{i,0} \leftrightarrow f'_{i,1} \leftarrow f'_{i,2} \rightarrow f'_{i,3} \rightarrow f'_{i,4} \} \]

Secondly, for every \(i \in \{0, \ldots, m-1\} \), the TS \(A_\varphi \) has the following gadgets \(T_{i,0}, T_{i,1} \) and \(T'_{i,0}, T'_{i,1} \) that use the elements of \(\zeta_i = \{ X_{i,0}, X_{i,1}, X_{i,2} \} \) and \(\zeta'_i = \{ X'_{i,0}, X'_{i,1}, X'_{i,2} \} \) as events, respectively; their starting states are \(t_{i,0,0}, t_{i,1,0}, t'_{i,0,0} \) and \(t'_{i,1,0} \):

\[T_{i,0} = t_{i,0,0} \leftarrow k \leftarrow t_{i,0,1} \leftarrow v_{t_{i,0}} \leftarrow v_{t_{i,0} + 2} \leftarrow t_{i,0,2} \leftarrow t_{i,0,3} \leftarrow X_{i,0} \leftarrow t_{i,0,4} \leftarrow t_{i,0,5} \leftarrow t_{i,0,6} \leftarrow t_{i,0,7} \]

\[T_{i,1} = t_{i,1,0} \leftarrow X_{i,0} \leftarrow t_{i,1,2} \leftarrow t_{i,1,3} \leftarrow t_{i,1,4} \leftarrow t_{i,1,5} \leftarrow t_{i,1,6} \leftarrow t_{i,1,7} \]

\[T'_{i,0} = t'_{i,0,0} \leftarrow k \leftarrow t'_{i,0,1} \leftarrow v'_{t'_{i,0}} \leftarrow v'_{t'_{i,0} + 2} \leftarrow t'_{i,0,2} \leftarrow t'_{i,0,3} \leftarrow X'_{i,0} \leftarrow t'_{i,0,4} \leftarrow t'_{i,0,5} \leftarrow t'_{i,0,6} \leftarrow t'_{i,0,7} \]

\[T'_{i,1} = t'_{i,1,0} \leftarrow X'_{i,0} \leftarrow t'_{i,1,2} \leftarrow t'_{i,1,3} \leftarrow t'_{i,1,4} \leftarrow t'_{i,1,5} \leftarrow t'_{i,1,6} \leftarrow t'_{i,1,7} \]

Finally, the gadgets are connected via their starting states to finally build \(A_\varphi \) as follows:

\[T_{m-1,1} \leftarrow T_{m-1,0} \cdots \leftarrow T_{0,1} \leftarrow T_{0,0} \leftarrow G_0 \leftarrow F'_0 \cdots \leftarrow G'_{m-1} \leftarrow F'_{m-1} \]

The following Lemma 9 and Lemma 10 prove the validity of our polynomial-time reduction and, hence, complete the proof of Theorem 4.

Lemma 9. If \(A_\varphi \) has the \(\tau \)-SSP, then \(\varphi \) is one-in-three satisfiable.

Proof. Let \(G, F, T \) and \(Q \) be the paths defined in Lemma 5. First of all, we observe that \(G \cong G_{T_{i,j}} \cong G'_{T_{i,j}} \) and \(F \cong F_{T_{i,j}} \cong F'_{T_{i,j}} \) and \(T \cong T_{i,0} \cong T'_{i,0} \) and \(Q \cong T_{i,1} \cong T'_{i,1} \) for all \(i \in \{0, \ldots, m-1\} \) and \(j \in \{0, \ldots, 6\} \). Let \(R = (\text{sup}, \text{sig}) \) be a \(\tau \)-region that solves \(\alpha = (g_{0,2}, g_{0,4}) \) (which exists, since \(A_\varphi \) has the \(\tau \)-SSP) and let \(i \in \{0, \ldots, m-1\} \) be arbitrary but fixed. By Lemma 8, we have either \(\text{sig}(k_0) \in \text{save} \) and \(\text{sig}(k_1) = \text{swap} \) or \(\text{sig}(k_0) = \text{swap} \) and \(\text{sig}(k_1) \in \text{save} \). This implies \(\text{sig}(u_{i,1}) = \cdots = \text{sig}(u_{i+6}) = \text{sig}(u'_{i,1}) = \cdots = \text{sig}(u'_{i+6}) = \text{swap} \) by Lemma 8. If \(\text{sig}(k_0) \in \text{save} \) and \(\text{sig}(k_1) = \text{swap} \), then by Lemma 8 this
implies that there is exactly one event \(e \in \{X_{i0}, X_{i1}, X_{i2}\} \) such that \(\text{sig}(e) \neq \text{swap} \). Consequently, since \(i \) was arbitrary, if \(\text{sig}(k_0) \in \text{save} \) and \(\text{sig}(k_1) = \text{swap} \), then \(M = \{e \in X \mid \text{sig}(e) \neq \text{swap}\} \) selects exactly one variable of every clause \(\zeta_i \) for all \(i \in \{0, \ldots, m-1\} \). Thus, \(M \) is a one in three model of \(\varphi \). Otherwise, if \(\text{sig}(k_0) = \text{swap} \) and \(\text{sig}(k_1) \in \text{save} \), then we similarly obtain that \(M' = \{e \in X' \mid \text{sig}(e) \neq \text{swap}\} \) defines a one-in-three-model of \(\varphi' \), which also implies the one-in-three satisfiability of \(\varphi \).

Lemma 10. If \(\varphi \) is one-in-three satisfiable, then \(A_\varphi \) has the \(\tau\text{-SSP} \).

The proof of Lemma 10 is shifted to the appendix, Section B.

5 Conclusion

In this paper, we present the overall characterization of the computational complexity of the problem \(\tau\text{-SSP} \) for all 256 Boolean types of nets \(\tau \). Our presentation includes 154 new complexity results (Figure 1 §1 - §3, §6, §9, §10) and 102 known results (Figure 1 §4 [22], §5 [19,23], §7 [16,22], §8 [21]) and classifies them in the overall context of boolean state separation. Besides the new 150 hardness- and 4 tractability-results, this classification is one of the main contributions of this paper. First of all, it becomes apparent that the distinction between \text{nop}-free and \text{nop}-equipped types is meaningful: Within the class of \text{nop}-free types, \(\tau\text{-SSP} \) turns out to be NP-complete if and only if \(\text{swap} \in \tau \) and \(\tau \cap \text{save} \neq \emptyset \). Within the class of \text{nop}-equipped types, a differentiation between types \(\tau \) that satisfy \(\tau \cap \{\text{res, set}\} = \emptyset \) and the ones with \(\tau \cap \{\text{res, set}\} \neq \emptyset \) is useful: \(\tau\text{-SSP} \) for the former ones is NP-complete if and only if \(\tau \cap \{\text{in}, \text{out}\} \neq \emptyset \) and \(\text{swap} \notin \tau \). In particular, \(\{\text{swap}\} \cup \tau\text{-SSP} \) becomes polynomial for all these types. On the other hand, for the latter ones, which include \(i \in \{\text{res, set}\} \) such that \(i \in \tau \), \(\tau\text{-SSP} \) is NP-complete as long as there is also an interaction in \(\tau \) that opposes \(i \), that is, \(\tau \cap \text{exit} \neq \emptyset \) if \(i = \text{set} \) and \(\tau \cap \text{enter} \neq \emptyset \) if \(i = \text{res} \).

Moreover, our proofs discover that, up to isomorphism, there are essentially four hard kernels that indicate the NP-completeness of \(\tau\text{-SSP} \), namely \{\text{nop, in}\} and \{\text{nop, in, out}\} for the \text{nop}-equipped types and \{\text{swap, free}\} and \{\text{swap, free, used}\} for the \text{nop}-free types. That means, for a \text{nop}-equipped type \(\tau \), the hardness of \(\tau\text{-SSP} \) can either be shown by a reduction of \{\text{nop, in}\}-\text{SSP} or \{\text{nop, in, out}\}-\text{SSP} (or their isomorphic types), which is basically done in the proof of Lemma 5 or \(\tau\text{-SSP} \) is polynomial otherwise. Similarly, one finds out that for the \text{nop}-free types \(\tau \) in question, the hardness of \(\tau\text{-SSP} \) can be shown by a reduction of \{\text{swap, free}\}-\text{SSP} or \{\text{swap, free, used}\}-\text{SSP}. Due to the space limitation, a reduction that covers all hard \text{nop}-free types on one blow is given instead of explicit proof.

For future work, it remains to completely characterize the computational complexity of deciding if a TS \(A \) is isomorphic to the reachability graph of a Boolean Petri net, instead of only being embeddable by an injective simulation map.
References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: TAPSOFT. Lecture Notes in Computer Science, vol. 915, pp. 364–378. Springer (1995). https://doi.org/10.1007/3-540-59293-8_207
2. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1-2), 107–134 (1997). https://doi.org/10.1016/S0304-3975(96)00219-8
3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in Theoretical Computer Science. An EATCS Series, Springer (2015). https://doi.org/10.1007/978-3-662-47967-4
4. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7), 647–679 (1995). https://doi.org/10.1007/BF01186645
5. Best, E., Devillers, R.R.: Pre-synthesis of Petri nets based on prime cycles and distance paths. Sci. Comput. Program. 157, 41–55 (2018). https://doi.org/10.1016/j.scico.2017.07.005
6. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in boolean networks. Nat. Comput. 19(1), 91–109 (2020). https://doi.org/10.1007/s11047-019-09748-4
7. Esparza, J., Nielsen, M.: Decidability issues for Petri nets - a survey. Bulletin of the EATCS 52, 244–262 (1994)
8. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of boolean nets. Acta Inf. 50(1), 15–39 (2013). https://doi.org/10.1007/s00236-012-0170-2
9. Montanari, U., Rossi, F.: Contextual occurrence nets and concurrent constraint programming. In: Schneider, H.J., Ehrig, H. (eds.) Graph Transformations in Computer Science. pp. 280–295. Springer Berlin Heidelberg, Berlin, Heidelberg (1994)
10. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995). https://doi.org/10.1007/BF01178907
11. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete & Computational Geometry 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-001-0047-6
12. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor arcs. In: ICATPN. Lecture Notes in Computer Science, vol. 1248, pp. 310–327. Springer (1997). https://doi.org/10.1007/3-540-63139-9_43
13. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lecture Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996). https://doi.org/10.1007/3-540-65306-6_14
14. Schlachter, U.: Over-approximative Petri net synthesis for restricted subclasses of nets. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) Language and Automata Theory and Applications - 12th International Conference, LATA 2018, Ramat Gan, Israel, April 9-11, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10792, pp. 296–307. Springer (2018). https://doi.org/10.1007/978-3-319-77313-1_23
15. Schlachter, U., Wimmel, H.: Optimal label splitting for embedding an LTS into an arbitrary Petri net reachability graph is NP-complete. CoRR abs/2002.04841 (2020). https://arxiv.org/abs/2002.04841
16. Schmitt, V.: Flip-flop nets. In: STACS. Lecture Notes in Computer Science, vol. 1046, pp. 517–528. Springer (1996). https://doi.org/10.1007/3-540-60922-9_42
17. Tredup, R.: The complexity of synthesizing nop-equipped boolean nets from g-bounded inputs (technical report) (2019)

18. Tredup, R.: Fixed parameter tractability and polynomial time results for the synthesis of b-bounded petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11522, pp. 148–168. Springer (2019). https://doi.org/10.1007/978-3-030-21571-2_10

19. Tredup, R.: Hardness results for the synthesis of b-bounded Petri nets. In: Donatelli, S., Haar, S. (eds.) Application and Theory of Petri Nets and Concurrency - 40th International Conference, PETRI NETS 2019, Aachen, Germany, June 23-28, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11522, pp. 127–147. Springer (2019). https://doi.org/10.1007/978-3-030-21571-2_9

20. Tredup, R.: Parameterized complexity of synthesizing b-bounded (m, n)-t-systems. In: Chatzigeorgiou, A., Dondi, R., Herodotou, H., Kapoutsis, C.A., Manolopoulos, Y., Papadopoulos, G.A., Sikora, F. (eds.) SOFSEM 2020: Theory and Practice of Computer Science - 46th International Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus, January 20-24, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12011, pp. 223–235. Springer (2020). https://doi.org/10.1007/978-3-030-38919-2_19

21. Tredup, R., Erofeev, E.: On the complexity of synthesis of nop-free boolean Petri nets. In: van der Aalst, W.M.P., Bergenthum, R., Carmona, J. (eds.) Proceedings of the International Workshop on Algorithms & Theories for the Analysis of Event Data 2020 Satellite event of the 41st International Conference on Application and Theory of Petri Nets and Concurrency Petri Nets 2020, virtual workshop, June 24, 2020. CEUR Workshop Proceedings, vol. 2625, pp. 66–84. CEUR-WS.org (2020), http://ceur-ws.org/Vol-2625/paper-05.pdf

22. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 boolean Petri net types. In: TAMC. Lecture Notes in Computer Science, vol. 11436, pp. 615–634. Springer (2019). https://doi.org/10.1007/978-3-030-14812-6

23. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains NP-complete even for extremely simple inputs. In: Petri Nets. Lecture Notes in Computer Science, vol. 10877, pp. 40–59. Springer (2018). https://doi.org/10.1007/978-3-319-91268-4_3

24. Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR'98 Concurrency Theory. pp. 501–516. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

25. Wimmel, H.: Presynthesis of bounded choice-free or fork-attribution nets. Inf. Comput. 271, 104482 (2020). https://doi.org/10.1016/j.ic.2019.104482

26. Yakovlev, A., Koelmans, A., Semenov, A.L., Kinniment, D.J.: Modelling, analysis and synthesis of asynchronous control circuits using Petri nets. Integr. 21(3), 143–170 (1996). https://doi.org/10.1016/S0167-9260(96)00010-7
A Supporting Illustrations for the Proof of Lemma 4.

The depicted TS A_φ originates from φ of Example 1.

Fig. 9: The region R_1 of Lemma 4

Fig. 10: The region R_1^T of Lemma 4
Fig. 11: The region R_2 of Lemma 4.

Fig. 12: The region R_1^G of Lemma 4.
The Proof of Lemma 10.

Let M be a one-in-three model of φ. In what follows, we assume $\text{free} \in \tau$ and argue that A_φ has the τ-SSP. The assumption $\text{free} \in \tau$ is possible without loss of generality: In particular, every presented region is a $\{\text{free}, \text{swap}\}$-region. Hence, every presented support allows a $\{\text{swap}, \text{res}\}$-region by simply replacing $\text{sig}(e) = \text{free}$ by $\text{sig}(e) = \text{res}$. Thus, by Lemma 2 and $\{\text{swap}, \text{free}\} \cong \{\text{swap}, \text{used}\}$ and $\{\text{res}, \text{swap}\} \cong \{\text{set}, \text{swap}\}$, the τ-SSP of A_φ implies the its $\tilde{\tau}$-SSP also for the types in question where $\tilde{\tau} \cap \text{used}_0 = \emptyset$, which implies $\tilde{\tau} \cap \text{used}_1 \neq \emptyset$.

For abbreviation, let $\top = \{\oplus_0, \ldots, \oplus_{2m-1}\}$, $\otimes = \{\otimes_0, \ldots, \otimes_{14m-1}\}$, $\ominus = \{\ominus_0, \ldots, \ominus_{2m-1}\}$, $\ominus = \{\ominus_0, \ldots, \ominus_{14m-1}\}$, $V = \{v_0, \ldots, v_{7m-1}\}$, $W = \{w_0, \ldots, w_{7m-1}\}$, $X = \{X_0, \ldots, X_{m-1}\}$, $\bot = \{\perp_0, \ldots, \perp_{2m-1}\}$ and $\top = \{\top_0, \ldots, \top_{14m-1}\}$, and let \ominus, \otimes, V', W' and X' be defined accordingly.

First of all, it is easy to see that, for all $s \in \perp \cup \top$, the SSP atom (s, s') is τ-solvable for all $s' \in S_{A_\varphi} \setminus \{s\}$. Secondly, if A is an arbitrary but fixed gadget of A_φ and $s \in S_A$ and $s' \in S_{A^\prime} \setminus S_A$, then the atom (s, s') is τ-solvable. This can be seen as follows: Let $a \in \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus$, then $\text{sig}(e) = \text{free}$, otherwise $\text{sig}(e) = \text{swap}$.

Fig. 13: The region $R_{4,0}^X$ of Lemma 10 where $i = 4$, $j = 0$ and $\ell = 2$.

B The Proof of Lemma 10.

The Proof of Lemma 10. Let M be a one-in-three model of φ. In what follows, we assume $\text{free} \in \tau$ and argue that A_φ has the τ-SSP. The assumption $\text{free} \in \tau$ is possible without loss of generality: In particular, every presented region is a $\{\text{free}, \text{swap}\}$-region. Hence, every presented support allows a $\{\text{swap}, \text{res}\}$-region by simply replacing $\text{sig}(e) = \text{free}$ by $\text{sig}(e) = \text{res}$. Thus, by Lemma 2 and $\{\text{swap}, \text{free}\} \cong \{\text{swap}, \text{used}\}$ and $\{\text{res}, \text{swap}\} \cong \{\text{set}, \text{swap}\}$, the τ-SSP of A_φ implies the its $\tilde{\tau}$-SSP also for the types in question where $\tilde{\tau} \cap \text{used}_0 = \emptyset$, which implies $\tilde{\tau} \cap \text{used}_1 \neq \emptyset$.

For abbreviation, let $\top = \{\oplus_0, \ldots, \oplus_{2m-1}\}$, $\otimes = \{\otimes_0, \ldots, \otimes_{14m-1}\}$, $\ominus = \{\ominus_0, \ldots, \ominus_{2m-1}\}$, $\ominus = \{\ominus_0, \ldots, \ominus_{14m-1}\}$, $V = \{v_0, \ldots, v_{7m-1}\}$, $W = \{w_0, \ldots, w_{7m-1}\}$, $X = \{X_0, \ldots, X_{m-1}\}$, $\bot = \{\perp_0, \ldots, \perp_{2m-1}\}$ and $\top = \{\top_0, \ldots, \top_{14m-1}\}$, and let \ominus, \otimes, V', W' and X' be defined accordingly.

First of all, it is easy to see that, for all $s \in \perp \cup \top$, the SSP atom (s, s') is τ-solvable for all $s' \in S_{A_\varphi} \setminus \{s\}$. Secondly, if A is an arbitrary but fixed gadget of A_φ and $s \in S_A$ and $s' \in S_{A^\prime} \setminus S_A$, then the atom (s, s') is τ-solvable. This can be seen as follows: Let $a \in \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus \cup \ominus$, then $\text{sig}(e) = \text{free}$, otherwise $\text{sig}(e) = \text{swap}$.
On the other hand, there is a region $R_2 = (\text{sup}, \text{sig}_2)$, such that $\text{sup}(i) = 0$ and, for all $e \in E_{A_\tau}$, if $e \in \circ \cup \circ \cup \circ \cup \circ' \cup \circ'$ and $e \neq a$, then $\text{sig}(e) = \text{free}$, otherwise $\text{sig}(e) = \text{swap}$. Notice that for the unique gadget A of A_τ whose starting state is adjacent to a holds, for all $s \in S_{A_\tau}$, that $\text{sup}_2(s) = \text{sup}_1(s)$ if $s \in S_A$, otherwise $\text{sup}_2(s) = 1 - \text{sup}_1(s)$. Thus, if $s \in S_A$ and $s' \in S_{A_\tau} \setminus S_A$, then (s, s') is either solved by R_1 or by R_2.

Justified by these observations, it only remains to consider separation atoms (s, s') where s and s' belong to the same gadget A of A_τ.

Let $i \in \{0, \ldots, m-1\}$ and $j \in \{0, \ldots, 6\}$ be arbitrary but fixed and let’s argue for the solvability of s for all $s \in S_{G_{7i+j}}$. The following τ-region $R^9_{7i+j,3} = (\text{sup}, \text{sig})$ solves $(g_{7i+j,3}, s)$ for all $s \in \{g_{7i+j,0}, g_{7i+j,1}, g_{7i+j,2}, g_{7i+j,4}\}$: $\text{sup}(i) = 0$; for all $e \in E_{A_\tau}$, if $e \in \{k_0, k_1\} \cup \{\circ_2 i, \circ_2 j \mid i \in \{0, \ldots, m-1\}\}$, then $\text{sig}(e) = \text{swap}$, otherwise $\text{sig}(e) = \text{free}$.

The following τ-region $R^9_{7i+j,0} = (\text{sup}, \text{sig})$ solves $(g_{7i+j,0}, s)$ for all $s \in \{g_{7i+j,1}, g_{7i+j,2}, g_{7i+j,4}\}$: $\text{sup}(i) = 0$; for all $e \in E_{A_\tau}$, if $e \in \{k_0, k_1\} \cup \circ \cup \circ' \cup V \cup V' \cup X \cup X'$, then $\text{sig}(e) = \text{swap}$, otherwise $\text{sig}(e) = \text{free}$.
The following τ-region $R_{i+j,1}^0 = (\text{sup}, \text{sig})$ solves $(g_{i+j,1}, s)$ for all $s \in \{g_{i+j,2}, g_{i+j,4}\}$: $\text{sup}(i) = 0$; for all $e \in E_{A_p}$, if $e \in \{k_0, k_1\} \cup V \cup V' \cup W \cup W' \cup X \cup X'$, then $\text{sig}(e) = \text{swap}$, otherwise $\text{sig}(e) = \text{free}$.

Restricted to G_{i+j}, it remains to solve the atom $(g_{i+j,2}, g_{i+j,4})$. The following region $R_{i+j,2}^0 = (\text{sup}, \text{sig})$ uses the existence of the one-in-three model M and solves this atom: $\text{sup}(i) = 0$; for all $e \in E_{A_p}$, if $e \in \{k_1\} \cup V \cup V' \cup W \cup W' \cup (X \setminus M) \cup X' \cup \{\odot_{2i+1}, \odot_{2i} \mid i \in \{0, \ldots, 7m - 1\}\}$, then $\text{sig}(e) = \text{swap}$, otherwise $\text{sig}(e) = \text{free}$.
Note that the regions \(R_{i,j}^g \) for all \(i \) and \(j \) such that \(i \neq j \) are \(\tau \)-solvable. Altogether, by the arbitrariness of \(i \) and \(j \) and the symmetry of a gadget \(A \) and its counterpart \(A' \), this shows, for all \(\ell \in \{0, \ldots, 7m - 1\} \), that if \(s \in S_{G_i} \cup S_{F_i} \cup S_{G_i'} \cup S_{F_i'} \), then \(s \) is \(\tau \)-solvable.

Next, we let \(i \in \{0, \ldots, m - 1\} \) be arbitrary but fixed and argue that \(s \) is \(\tau \)-solvable if \(s \in S_{T_{i,0}} \). The following \(\tau \)-region \(R_{i,0,2}^l = (\text{sup, sig}) \) solves \((t_{i,0,2}, s)\) for all relevant \(s \in S_{T_{i,0}} \); \(\text{sup}(a) = 0 \); for all \(e \in E_{A_e} \), if \(e \in \{v_{i,1}, w_{i,1}, v_{i,1,1}, w_{i,1,1}\} \), then \(\text{sig}(e) = \text{swap} \), otherwise \(\text{sig}(e) = \text{free} \). Similarly, one proves that \((t_{i,0,9}, s)\) is \(\tau \)-solvable for all relevant \(s \in S_{T_{i,0}} \).
Let’s consider the τ-solvability of $(t_{i,0,3}, s)$ for all relevant states $s \in S_{T_{i,0}}$. In the following, we argue that there is a τ-region $R'_{i,0,3} = (sup, sig)$ that, for all $e \in E(T_{i,0})$, maps e to swap if $e \in \{v_{7i+1}, X_{i0}\}$ and to res otherwise, such that $\text{sup}(t_{i,0,3}) = 1$ and $\text{sup}(s) = 0$ for all $s \in S_{T_{i,0}} \setminus \{t_{i,0,3}\}$. Since $\text{sig}(X_{i0}) = \text{swap}$, we have to deal with at most five further occurrences of X_{i0} in A_φ: the one in $T_{i,1}$ and at most four further occurrences in say $T_{j,0}, T_{j,1}$ and $T_{k,0}, T_{k,1}$ for some $j, k \in \{0, \ldots, m - 1\} \setminus \{i\}$. Thus, to define $R'_{i,0,3}$ completely, we would have to do lots of tedious and mostly meaningless case analyses. To avoid the latter, in the following, we argue informally for the existence of $R'_{i,0,3}$: The essential observation is that, by construction, if $s X_{u,v} s' \in A_\varphi \setminus \{t_{i,0,3} X_{u,v} t_{i,0,4}\}$, then there is a state $q \in \{s, s'\}$ and an event $v \in V$ such that $\text{sup}(v)$. Notice that there might be events $u, v' \in V$ such that $u s$ and $v' s'$ as to be seen for $s = t_{i,0,3}$ and $s' = t_{i,0,4}$. Anyway, to obtain $R'_{i,0,3}$, we let $\text{sup}(i) = 0$ and select exactly one arbitrary but fixed v-event and its corresponding w-event for every $s X_{u,v} s' \in A_\varphi \setminus \{t_{i,0,3} X_{u,v} t_{i,0,4}\}$ and map it to swap just like X_{i0} and v_{7i+1}. The other events get a free-signature. One finds out that the resulting region is well-defined and behaves as announced. Similarly, one proves the τ-solvability for all $s \in \{t_{i,0,4}, \ldots, t_{i,0,8}\}$.
Restricted to $T_{i,0}$, it remains to argue that $t_{i,0,0}, t_{i,0,1}, t_{i,0,10}$ and $t_{i,0,11}$ are pairwise separable. Fortunately, the corresponding SSP atoms are already solved by regions defined above. More exactly, the region $R_{i,0}^j$ solves $(t_{i,0,0}, t_{i,0,1})$, $(t_{i,0,0}, t_{i,0,11})$ and $(t_{i,0,10}, t_{i,0,11})$; moreover, the region $R_{i,j+1}^2$ solves $(t_{i,0,0}, t_{i,0,10})$ and $(t_{i,0,1}, t_{i,0,11})$. Hence, s is τ-solvable for all $s \in S_{T_{i,0}}$.

Finally, it is easy to see that, on the one hand, the SSP atoms corresponding to $T_{i,1}$ are similarly solvable as the ones of $T_{i,0}$ and, on the other hand, the SSP atoms of $T_{i,0}'$ and $T_{i,1}'$ are similarly solvable by symmetry. Hence, since i was arbitrary, this proves that if $s \in S_{T_{i,0}} \cup S_{T_{i,1}} \cup S_{T_{i,0}'} \cup S_{T_{i,1}'}$, then s is τ-solvable for all $i \in \{0, \ldots, m-1\}$.