Comparison of deoxynivalenol and zearaleone concentration in conventional and organic cereal products in western Poland

Kinga Mruczyk1,A,B,D,E, Małgorzata Mizgier1,E,F, Rafał W. Wójciak1,C,E,F, Angelika Cisek-Woźniak1,F

1 Faculty of Physical Culture in Gorzów Wlkp. University of Physical Education, Poznan, Poland
2 Department of Clinical Psychology, University of Medical Sciences, Poznan, Poland
A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of article

Mruczyk K, Mizgier M, Wójciak RW, Cisek-Woźniak A. Comparison of deoxynivalenol and zearaleone concentration in conventional and organic cereal products in western Poland. Ann Agric Environ Med. 2021; 28(1): 44–48. doi: 10.26444/aaem/116417

Abstract
Introduction and objective. Deoxynivalenol (DON, vomitoxin) and Zearalenone (ZEA) are mycotoxin contaminants of cereals and cereal products that pose a significant threat to food safety. The aim of the study was to investigate the occurrence of DON and ZEA in different organic and conventional unprocessed cereals and cereal products that are available on the Polish agricultural fields and market. A total of 78 unprocessed cereal and cereal product samples of organic and conventional production were sampled from agricultural fields situated in western Poland and from available on the Polish market packaged commercial products produced by different domestic manufacturers. All samples were analyzed for DON and ZEA by HPLC with fluorescence detection (HPLC-FLD).

Results. Co-occurrence of DON was detected in cereals from the organic production system, the average content was 285.25 ± 134.04 μg kg⁻¹ and from the conventional system – 373.71 ± 171.20 μg kg⁻¹. In flour from organic farming, the average DON content was 213.80 ± 151.28 μg kg⁻¹, in conventional flour the average was 336.29 ± 188.90 μg kg⁻¹. The range of DON concentrations in samples of cereal products from organic and conventional farms was detected in 26.3% and 31.6%, whereas the average concentrations of DON in cereal products was 199.60 ± 149.82 μg kg⁻¹ and 285.25 ± 134.04 μg kg⁻¹, respectively.

Conclusion. Mycotoxins contamination seen in organic cereals and cereal products does not statistically differ from that witnessed in their conventional counterparts.

Key words
mycotoxins, ochratoxins A, zearalenone, contaminatins, cereal products, cereals

INTRODUCTION

Food contamination with mycotoxins is a public health threat [1]. Mycotoxins are regarded as priority food contaminants by the Global Environmental Monitoring System/WHO Monitoring Programme on Food Pollutants (GEMS/Food 1995) [2]. They are usually thermostable and tend to survive during the transformation and processing of contaminated plants, and are not usually eliminated during cooking and sterilization [3].

Several factors can affect the occurrence of mycotoxins: harvesting, storage, transport of grain, and agricultural technology, are some of the basic factors. Therefore, the right approach and actions in this area can significantly reduce mould growth, as well as affect the presence of mycotoxins [4]. Because of their ability to bind to plasma proteins, mycotoxins can persist in organisms if the exposure is repeated or chronic [5]. Due to the variety of chemical and biosynthetic structures, mycotoxins have innumerable biological effects and some of these are classified as carcinogenic, immunosuppressive or estrogenic, potentially causing serious metabolic disturbances in humans [6].

DON are highly toxic mycotoxins [7] and occur in basic food products and commonly consumed products, such as cereals, milk and dairy products, dried fruit and legumes, coffee, wine and beer [8]. The toxicological effects and diseases associated with exposure to DON have recently been investigated; however, epidemiological studies are required to critically examine the potential connection between the consumption of large quantities of DON and the incidence of gastro-enteritis and chronic diseases.

ZEA (Zearalenone) and its metabolites can be found worldwide in a range of cereals, including corn, sorghum, wheat, rice, barley and oats. ZEA may also be consumed as a result of ingesting meat, milk and eggs from animals exposed to these disease toxins, or which received ZEA to promote their growth. ZEA and its metabolites show strong estrogenic activity, hence it is often referred to as mycogen. ZEA plays an important role in increasing the risk of hormone-dependent cancers [9].

MATERIALS AND METHOD

During the 2014–2015 timeframe, a total of 78 samples were examined, of which 20 were unprocessed cereals (maize, wheat, oat, barley), and 58 were cereal-based products (flour, groats, pasta). Among them, 39 samples were declared to be organic (10 cereals and 29 cereal-based products), while 39 samples were produced in a conventional manner (10 cereals and 29 cereal products). During the harvesting period (July – September) in 2014, unprocessed cereals were sampled from agricultural fields situated in western Poland. In 2015, cereal products were sampled in the form of packaged commercial
products produced by different domestic manufacturers available on the Polish market.

Samples of organically produced products had been labeled in accordance with Regulation 834/2007/EC on organic production and labeling of organic products, which repeals Regulation (EEC) No. 2092/91 [10]. These products also contain the national or private organic producers' logo, the competent authority code and place of cultivation designation. Sampling and sample preparation were carried out in accordance with Commission Regulation 401/2006 [11] establishing sampling methods for the official control of mycotoxins levels in foodstuffs. Aggregate samples were taken of not less than 1 kg, connecting the 3 primary samples (a minimum of 500 g of each sample). Samples were stored in a cool, dry place, and transported to the laboratory within 48 hours.

The prepared test portions were ground to a 1.0 mm fine powder using an analytical mill and then stored in plastic bags at -4 °C until analysis. The mycotoxins were isolated from cereals and cereal products using Donprep® and EASIEXTRAT Zearalenon® immunoaffinity columns by R-Biopharm Rhône for extracting mycotoxins in accordance with the manufacturer's procedures. The mycotoxins were analysed using high-performance liquid chromatography with fluorescence detection (HPLC-FLD).

Determination of DON and ZEA content

DON content was determined according to the National Institute of Hygiene Methodology – ‘Determination of Fusarium toxins – deoxynivalenol (DON) in cereals and its products by high-performance liquid chromatography with purification using immunoaffinity columns’.

The principle of the method is to extract a sample with a mixture of polyethylene glycol and water. The centrifuged and filtered extract is purified and concentrated in immunoenzyme columns. After elution with methanol and water, the methanol/aqueous solution is evaporated to dryness and dissolved in 9.5% methanol. The solution is injected into the chromatographic column. The measurement is carried out at a wavelength of 220 nm. The qualitative determination involves comparing the retention time of the sample and the standard tested. The quantitative determination involves reading the DON content in the test sample from the standard curve and making the appropriate calculation.

The DON content of the sample is expressed in μg kg⁻¹, calculated as:

\[
x = \frac{cxV3xV2}{mxV1V3}
\]

X – DON content in the sample [μg / kg];
C – DON content read from the curve [ng cm⁻³];
V1 – volume applied to the enzyme-linked column [cm³];
V2 – volume of 9.5% methanol used to dissolve the residue after evaporation [cm³];
V3 – volume of extraction solvent [cm³];
V4 – volume of eluate from the enzyme-linked column [cm³];
m – weight [g].

Detection limit (LOD) – 5 μg kg⁻¹, limit of quantification (LQD) – 10 μg kg⁻¹, average recovery – 96; the measurement is made using a fluorescence detector and an excitation wave of 276 nm, emission – 460 nm.

Statistical analysis

The results were analysed statistically using STATISTICA v.10 software. The difference in mycotoxin concentration in the groups was assessed using the Mann-Whitney test. Assumed statistical significance level – p<0.05.

RESULTS

A total of 78 samples from organic and conventional systems were analyzed with HPLC. Occurrence of DON was detected in cereals from both production systems – organic and conventional. In cereals from the organic production system, the average content of DON was 285.25 ± 134.04 μg kg⁻¹ and was detected in 40% of the samples; range of contamination – 130–433 μg kg⁻¹. DON was detected in 70% of the cereal samples from conventional cultivation system, average content – 373.71 ± 171.20 μg kg⁻¹, range of contamination – 137–529 μg kg⁻¹.

ZEA was determined according to the National Institute of Hygiene Methodology – Determination of Fusarium toxins – zearalenol in cereals, and dairy products by high-performance liquid chromatography purification using immunoaffinity columns. The principle of the method is to extract the sample with 75% acetonitrile and water. The extract then filtered through filter paper, 20 cm³ of the filtrate removed and mixed with 80 cm³ of saline (PBS), and pH 7.4 adjusted using HCl (0.1 mol/l). 25 cm³ of the solution was passed through a bed of EASIEXTRAT Zearalenon® enzyme immunoassays. Purification and concentration in the columns was performed according to R-Biopharm Rhône applications.

After elution, the acetonitrile-aqueous solution was injected into the chromatographic column. The ZEA quality assay consisted of comparing the retention time of the standard and the sample being tested, along with quantitative determination of the content of the mycotoxin tested in a sample from the standard curve the appropriate calculation was made.

ZEA content in the sample is expressed in μg kg⁻¹, calculated as:

\[
x = \frac{cxV2V4xV5}{mxV1xV3}
\]

X – ZEA content in the product [μg kg⁻¹];
C – ZEA content read from the calibration curve [ng cm⁻³];
V1 – volume of extract extracted [cm³];
V2 – volume after dilution in PBS [cm³];
V3 – volume applied to the affinity column [cm³];
V4 – volume of eluate from the enzyme-linked column [cm³];
V5 – volume of extraction solvent [cm³];
m – weight [g].

Detection limit (LOD) – 5 μg kg⁻¹, limit of quantification (LQD) – 10 μg kg⁻¹, average recovery – 96; the measurement is made using a fluorescence detector and an excitation wave of 276 nm, emission – 460 nm.

Measurement conditions: RP C18 chromatographic column 250 x 4.6 mm, 5μm, mobile phase composition, acetonitrile 60% – water 40%, mobile phase flow – 1 cm³/ min, injection volume – 100 μl, column temperature – 40°C, autosampler temperature – 4°C, wavelength – 220 nm.
In flour from organic farming, the average DON content was 213.80 ± 151.28 μg kg⁻¹ and detected in 50% of samples (range 104–459 μg kg⁻¹), in flour from conventional cultivation the average was 336.29 ± 188.90 μg kg⁻¹, level between 146–646 μg kg⁻¹, 70% of the flour samples were contaminated with the test mycotoxin.

The range of DON concentrations in samples of cereal products from organic and conventional cultivation was 102.00–465.00 μg kg⁻¹ and 137.00–792.00 μg kg⁻¹. It was detected in 26.3 and 31.6%, whereas the average concentrations of DON in cereal products was 199.60 ± 149.82 μg kg⁻¹ and 387.67 ± 250.24 μg kg⁻¹ in samples of cereal products from organic and conventional cultivations (Tab. 1).

There was no ZEA presence in cereals from either organic or conventional cultivation. Only one sample of flour from conventional cultivation was found to contain ZEA. ZEA was also found in one sample of cereal products from organic cultivation and 3 samples from conventional cultivation. Furthermore, ZEA was detected in 5.3 and 15.8%, whereas the average concentrations of ZEA in cereal products was 13.00 μg kg⁻¹ and 14.45 ± 2.76 μg kg⁻¹ in samples of cereal products from organic and conventional cultivations (Tab. 2).

DISCUSSION

Interest in organic food has increased worldwide in response to concerns about conventional farming practices, food safety, human health, animal welfare and the environment. In the EU, organic farming is an agricultural practice and modality of food production that combines favourable environmental and animal welfare standards and is supported by EU law [12, 10].

Today, many consumers prefer organic rather than conventional food because synthetic fungicides and mineral fertilizers are not used in organic production. It is generally believed that organic practices reduce the risk of plant infection [13], but at the same time there is an awareness that the worse use of fungicides may promote the presence of mycotoxins in ‘natural’ or ‘home’ chemicals – free products [14].

Data published insofar have shown that the presence of mycotoxins as frequent contaminants of different foodstuffs and feedstuffs greatly varies dependent on many parameters of influence, such as the type of cereal, weather conditions and among others [15, 16, 17, 18].

In this study, the occurrence of the mycotoxins in different unprocessed cereals cultivated in fields in Poland in an organic and conventional manner, and in cereal-based products available on the Polish market, was investigated. It was found that the average DON content was highest in samples of conventional cereal products and conventional flour – 387.67 and 336.29 μg kg⁻¹ respectively. It should be noted that the highest level of the mycotoxin being tested was recorded in a sample of pasta from conventional grains – 792 μg kg⁻¹. This level exceeded the permissible limit specified in the regulation [19].

Malmauret et al. in France reported a co-occurrence of DON contamination of organic wheat was lower than that in conventional wheat (54.4% vs. 90.9%, respectively), but the medium and maximum levels of this mycotoxin were 2–3 times higher in cereal grains from organic farming than in the conventional (250 vs. 80 and 494 vs. 215 μg kg⁻¹, respectively) [20]. A study conducted in Germany between 1997–1998 [21] reported a greater contamination of DON wheat grains from organic farms. Malmauret et al. [20] noted that more ‘conventional’ seeds were contaminated, although at a low level, while organic grains were less often contaminated, although in a few cases at a high level.

DON has proved to be a more common mycotoxin in cereal grains than ZEA. Many authors confirm the frequent presence of DON in cereals grown both in Poland and in other parts of the world. DON contamination was noted in a large percentage of samples tested in Russia, the USA, Bulgaria, China and Hungary, ranging from 50% – 96% [22, 23, 24]. DON levels in cereal grains increase in years with frequent rainfall and high humidity; for example, there was less pollution of rye with DON in Bavaria in 2000 and 2001, especially in 2001 [25]; and in 2003, despite the presence of Fusarium graminearum, DON was observed in only 18.5% of infected grains.

In a study in the UK, including 247 samples produced organically and 1,377 samples conventionally produced wheat grain, no significant differences in DON content were found in grain from the 2 cultivation systems; an average DON level of 230 μg/kg was recorded for organic.

Table 1. DON content in cereals, flour and cereal products (μg kg⁻¹)

Products	DEOKSYNIVALENOL		CONVENTIONAL		
	Organic	Conventional			
	No./% of contaminated samples	No./% of contaminated samples	Test Mann-Whitney p		
Cereals	4 (10); 40%	7 (10); 70%	373.71 ± 171.20	137–529	p0.2986
Flours	5 (10); 50%	7 (10); 70%	336.29 ± 188.90	146–646	0.1439
Cereal products	5 (19); 26.3%	6 (19); 31.6%	387.67 ± 250.24	137–792	0.1207

Table 2. ZEA content in cereals, flour and cereal products (μg kg⁻¹)

Products	ZEARALENONE				
	Organic	Conventional			
	No./% of contaminated samples	No./% of contaminated samples	Test Mann-Whitney p		
Cereals	0 (10); 0%	0 (10); 0%	10–10		
Flours	0 (10); 0%	1 (10); 10%	10±0.0		
Cereal products	1 (19); 5.3%	3 (19); 15.8%	14.45 ± 2.76	12.5 – 16.4	0.9800
showed that the DON content in cereal products from organic crops. Other studies carried out in Germany by the CVUA of DON grains from organic farming than conventional and Chełkowski [46] in studies carried out at the beginning of conventional manner was close to that obtained by Perkowski concentration of DON in cereal grains cultivated in the average DON contents being exceeded in cereal grains. The average content of DON in cereals from conventional crops was the highest in cereal processed samples (387.67 μg kg\(^{-1}\)) and flour (336.29 μg kg\(^{-1}\)) from organic farming. The acceptable limit of DON concentration was exceeded in one sample from conventional crops, but organic cereals are less contaminated than the conventional ones. They neither support nor reject the hypothesis that organic cereal by-products at levels similar to those found in conventional cereals and cereal products, despite what was observed in their conventional counterparts. It is possible that preventive measures used in organic farming are able to maintain mycotoxin contamination of organic cereals and organic cereal by-products at levels similar to those found in conventional cereals and cereal products, despite the fact that the fungicide is not handled. The findings of this study are important in terms of risk to human health, but they neither support nor reject the hypothesis that organic cereals are less contaminated than the conventional ones.

To reduce DON levels in products from organic and conventional farms, regular and increased monitoring supervising the most critical areas where DON contamination takes place, is required. In this respect, the control of pre- and post-harvest, storage and manufacturing processes, consisting of good agricultural practices, good storage practices, good manufacturing practices and hazard analysis critical control points, must abide within the standards of regulatory and monitoring organizations.

CONCLUSIONS

In general, the mycotoxin contamination observed in organic cereals and cereal products does not differ significantly from what was observed in their conventional counterparts. It is likely that preventive measures used in organic farming are able to maintain mycotoxin contamination of organic cereals and organic cereal by-products at levels similar to those found in conventional cereals and cereal products, despite the fact that the fungicide is not handled. The findings of this study are important in terms of risk to human health, but they neither support nor reject the hypothesis that organic cereals are less contaminated than the conventional ones.

ZEA was not found in samples of the tested cereals. The current study shows the presence of ZEA in one sample of flour from conventional crops, and a significant difference in its occurrence in cereal products between two types of crops. The average ZEA content in cereal products was lower in organic farming products compared to conventional plant products (p <0.05). The maximum permissible ZEA content specified in the relevant European Regulation 1881/2006/EC was not exceeded in any of the products tested [19].

Stanisławczyk et al. [44] was also did not find that contamination levels were exceeded, and the ZEA content in the samples they tested was significantly lower than other mycotoxins content. The average content of mycotoxin in cereal products from conventional cultivation was 10 μg kg\(^{-1}\). Much more varied results, although not exceeding the maximum levels, were obtained by Ghali et al. [49] who obtained different average ZEA contents in samples of wheat grains – 2.82 μg kg\(^{-1}\) and barley – 15 μg kg\(^{-1}\) from conventional crops. Solarska et al. [50] detected ZEA in 68.2% of cereal products from organic farming. In the studies of Lacko-Bartosova [36] and Vidal et al. [51], no differences were found in the content of ZEA between wheat produced by organic and conventional methods, while in wheat tests conducted by Meister in 2009 [43] showed lower concentrations of ZEA in samples from organic than in samples from conventional agriculture. In rye studies there was also no difference in ZEA concentration in samples from the 2 cultivation systems [40].

The relatively low sample number of studies, high variability, and the fact that ZEA is often below the detection level in a significant proportion of samples, reduces the possibility of statistical disclosure of the significant differences between organic and conventional agricultural practices.

REFERENCES

1. JECFA, 2002. Evaluation of Certain Mycotoxins in Food: Fifty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series No 906. WHO, Geneva, Switzerland.
2. GEMS/Food-Euro. Reliable evaluation of low-level contamination of food, Report on workshop in the frame of GEMS/Food-Euro. Kulmbach (26–27 May 1995) (Germany): GEMS/Food-Euro. 1995, pp. 1–8.
3. Sirot V, Fremy JM, Leblanc JC. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013; 52: 8481–11.
24. Additives and Contaminants. 2003; 20(4): 396–404.
25. Fusarium toxins in wheat and rye flours on the Danish market, Food 2006; 58: 28–33.
26. Büttner P. Das Artenspektrum der Gattung Fusarium an Weizen und Roggen in Bayern in des Jahren 2003 und 2004, Gesunde Pflanzen. 1999; 147: 466–489.
27. Birzele B, Prange, A, Krämer, J. Deoxynivalenol and ochratoxin A in German winter wheat grown in ecological and integrated systems. Res J Agric Technologia. Jakość. 2010; 6(73): 58–66.
28. Berleth M, Backes F, Kramer J. Schimmelpilzspektroskopie und Mycotoxine (Deoxynivalenol und Ochratoxin A) in Getreideproben aus ökologischem und integrierten Anbau. Agribiological Research. 1998; 51: 369–376.
29. Marx H, Gedek B, Kollarzick B. Vergleichende untersuchungen zum mykotoxikologischen status von okologisch und konventionell angebautem getreide. Zeitschrift für Lebensmittel- Untersuchung und –Forschung. 1995; 201: 83–86.
30. Hoogenboom LAP, Bokhorst G, Northolt MD, Vijer LBD, Vroeg, NJG, Mevius, DJ, Meij, JAC and Roest, JVD. Contaminants and microorganisms in Dutch organic food products; comparison with conventional products. Food Additives and Contaminants Part A. 2005; 23: 1195–1207.
31. Mader P, Hahn D, Dubois, D, Gunst L, Alfoldi, T, Bergmann, H, Oehme M, Amado R, Schneider H, Graf U, Velimirov A, Fliessbach A, Niggli U. Wheat quality in organic and conventional farming: results of a 21 year field experiment. J Sci Food Agric. 2007; 87: 1826–1835.
32. Withanage GS, Murata H, Koyama T, Ishiwata I. Agonistic and antagonistic effect of zearalenone, an estrogenic mycotoxin, on SKN, HHUA, and HepG2 human cancer cell lines. Vet Hum Toxicol. 2001; 43: 6–10.
33. Commission Regulation 834 (2007) /EC of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Off J Eur Union L189: 1–23.
34. Perkovic K, Chelmkowski, J. Mycotoxin Blue Book. Nottingham University Press, Thrumpton, Nottingham, UK. 2005, pp. 1–217.
35. Birzele B, Meier A, Hindorf H, Kramer J, Dehne HWP. Epidemiology of Fusarium infection and deoxynivalenol content in winter wheat in Germany. European J Plant Pathol. 2002; 108: 667–673.
36. Birzele B, Prange, A, Krämer, J. Deoxynivalenol and ochratoxin A in German wheat and changes of levels in relation to storage parameters. Food Control 2015; 50: 157–165.
37. Edwards SG. Fusarium mycotoxin content of UK organic and conventional barley. Food Additives and Contaminants Part A 2009c; 26: 1185–1190.
38. Merkys A. The Apselvöll cropping system experiment. I. III. Yield and grain quality of cereals. Norwegian J Agric Sci. 1996; 10: 7–22.
39. Cravedi P, Pietri A. Preliminary survey on composition and quality of conventional and organic Italian foodstuffs in the years 2008–2012. Food Control 2015; 50: 157–165.
40. Kirincic S, Skrbac J, Kos N, Kozole B, Pirnat N, Tavcar-Kalcher G. Mycotoxins in cereals and cereal products from Spain and Portugal. Food Chem. 2008; 107: 525–530.
41. Birzele B, Meier A, Hindorf H, Kramer J, Dehne HWP. Epidemiology of Fusarium head blight and mycotoxin levels in winter wheat. Plant Breeding Protection. 2006; 9: 735–741.
42. Rossani F, Bertuzzi T, Contozzi S, Turconi G, Roggi C, Pagani M, Cravedi P, Pietri A. Preliminary survey on composition and quality of conventional and organic wheat. Italian J Food Sci. 2006; 18: 355–366.
43. Galtier P, Loisaeu N, Oswald I, Paule Puel O. Toxicologie des mycotoxines: hazards and risks in human and animal food. Academie veterinaire Veterinaire de France 2006; 39: 5–13.
44. Birzele B, Prange, A, Krämer, J. Deoxynivalenol and ochratoxin A in German winter wheat grown in ecological and integrated systems. Res J Agric Sci. 2011; 43: 68–72.
45. Bernhoft A, Clasen PE, Kristoffersen AB, Torp M. Less Fusarium determination of mycotoxins in organic and conventional wheat. Food Control 2015; 52: 98–102.
46. Portkowski J, Chełkowski J. Porównanie zawartości deoksyniwalenolu w zbożach i przetworach zbożowych znajdujących się w placówkach handlowych województwa podkarpackiego. Żywność. Nauka. Prakt. Handlowa. 2010; 43: 6–10.
47. Gutfmacher B, Lauber U, Schnaufer R. Oekomonitoring, CVUA Stuttgart. 2008; 46: 1–105.