I. INTRODUCTION

The state-of-art measurements [1] on Higgs mass $M_h = 125.10 \pm 0.14$ GeV and top quark mass $M_t = 172.9 \pm 0.4$ GeV continue to reinforce the longstanding conspiracy of Higgs near-criticality [2-6] (see also [7, 8] for recent reviews and references therein). The running of Higgs quartic self-coupling starts becoming negative around the dubbed instability scale $\Lambda_I = 9.92 \times 10^9$ GeV [9] (see also [10, 13] for its gauge dependence), where the Higgs potential develops a shallow barrier unstable against quantum fluctuations of order $H_{inf}/(2\pi)$ during inflation if the inflationary Hubble scale H_{inf} is larger than Λ_I. Therefore, the survival of our current electroweak (EW) vacuum throughout a high scale inflation seems highly unnatural and undesirable, even though we are temporarily safe in the EW vacuum for a lifetime of order 10^{161} yrs against Coleman-de Luccia (CdL) instanton with decay rate estimated around 10^{-554} Gyr$^{-1}$Gpc$^{-3}$ [15, 19] (see also [17] for lattice simulation result and [13] for most recent results with thermal corrections). This is known as Higgs meta-stability, a special case of Higgs near-criticality, since the running of Higgs quartic self-coupling could otherwise be fairly stable all the way to Planck scale within the current uncertainties mainly from top quark mass and strong coupling.

The attitude toward Higgs near-criticality could be either desirable or deniable. In the former case, the Higgs near-criticality could be the plausible smoking gun for the possible ultraviolet completion of the standard model (SM) of particle physics, for example, asymptotic safe gravity [19], meta-stable Higgs inflation [20], dynamical criticality [21], to name just a few. In the latter case, the Higgs near-criticality could also be a mirage for our ignorance of new physics, for example, the Planckian physics with higher-order Higgs self-interactions [22-25], and the extra contributions to Higgs effective mass-squared during inflation from the quadratic coupling to inflaton field [26, 28] (see also [29]) or the non-minimal coupling to Ricci scalar [30, 32]. The corresponding post-inflationary investigations [31, 35] are also crucial for the eventual fate determination [34-36]. Although the gravitational corrections to Higgs decay from EW vacuum are negligible [47-53], the catalyzed vacuum decay by black holes [54-56] (see [63, 64] for its thermal interpretation and [65] for its thermal extension) or other compact objects [66], braneworld [67-69], cosmic string [70, 72] and naked singularity [73] should be of special concern. Similar consideration of excited initial states at false vacuum [74] could also affect the decay rate, even possibly in real-time [75-80].

Inspired by the chameleon mechanism [81-85] by coupling the chameleon to ambient matter where the effective potential of chameleon becomes heavier in the denser environment, we propose in Sec. II to stabilize the Higgs field in the early Universe by recognizing Higgs as chameleon coupled to inflaton after we first generalize the chameleon coupling for arbitrary background in Sec. II. The idea is simple enough but has never been explored before, which is also free from all the current constraints on Higgs from particle colliders and on chameleon from local gravity experiments if we restrict ourselves to couple Higgs chameleon to inflaton alone.

II. HIGGS AS CHAMELEON

Choosing the scalar field h as the chameleon field introduces extra interactions between h and other matter...
fields ψ_i with action in the Einstein frame of form

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{Pl}^2}{2} R - \frac{1}{2}(\partial h)^2 - V(h) \right) + \sum_i S_m^{(i)} \left(\Omega_i^2(h) g_{\mu\nu}, \psi_i \right),$$

(1)

where the reduced Planck mass $M_{Pl}^2 = (8\pi G)^{-1}$ and the chameleon couplings to the metric $g_{\mu\nu}$ induce new metrics $\tilde{g}_{\mu\nu}^{(i)} = \Omega_i^2(h) g_{\mu\nu}$ for each fields ψ_i that are assumed to be independent for simplicity. The corresponding action variation (the variations $\delta \psi_i$ are not shown here) reads

$$\delta S = \int d^4x \sqrt{-\tilde{g}} \left(\frac{M_{Pl}^2}{2} G_{\mu\nu} - \frac{1}{2} \tilde{T}_{\mu\nu}^{(i)} \right) \delta g^{\mu\nu}$$

(2)

$$+ \int d^4x \sqrt{-\tilde{g}} \left(\nabla^2 h - V'(h) \right) \delta h$$

(3)

$$+ \sum_i \int d^4x \sqrt{-\tilde{g}} \left(- \frac{1}{2} \tilde{T}_{\mu\nu}^{(i)} \right) \delta \tilde{g}_{\mu\nu}^{(i)}$$

(4)

with the Einstein tensor $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R$ and the energy-momentum tensors defined by

$$T_{\mu\nu}^{(h)} = \frac{-2}{\sqrt{-g}} \partial g^{\mu\nu} = \frac{-2}{\sqrt{-g}} \partial \left(\sqrt{-g} \frac{\partial h}{\partial \tilde{g}_{\mu\nu}} \right)$$

$$= \nabla_{\mu} h \nabla_{\nu} h + g_{\mu\nu} \left(- \frac{1}{2} \partial h \right)^2 - V(h),$$

(5)

$$\tilde{T}_{\mu\nu}^{(i)} = \frac{-2}{\sqrt{-\tilde{g}}} \frac{\partial}{\partial \tilde{g}_{\mu\nu}} \left(\sqrt{-\tilde{g}} \frac{g^{\mu\nu}}{\Omega_i^2} \tilde{g}_{\mu\nu} \partial h \right)$$

(6)

where the last contribution (4) could be rewritten with respect to the Einstein-frame metric as

$$\sum_i \int d^4x \sqrt{-g} \Omega_i^2 \left(\frac{1}{2} \tilde{T}_{\mu\nu}^{(i)} \right) \left(\Omega_i^{-2} g^{\mu\nu} - \frac{2}{\Omega_i^2} g^{\mu\nu} \delta h \right)$$

$$= \sum_i \int d^4x \sqrt{-g} \left(\frac{1}{2} \tilde{T}_{\mu\nu}^{(i)} \Omega_i^2 \delta g^{\mu\nu} + \Omega_i' h (h) \Omega_i^2 \tilde{T}_{\mu\nu} \delta h \right),$$

(7)

with trace $\tilde{T}_i = \tilde{T}_{\mu\nu}^{(i)} g^{\mu\nu}$. On the other hand, δS_m could also be expressed in terms of chain rule as

$$\sum_i \int d^4x \left(\delta S_m^{(i)} g^{\mu\nu} + \frac{\delta S_m^{(i)}}{\delta h} \delta h \right)$$

$$= \sum_i \int d^4x \sqrt{-g} \left(- \frac{1}{2} \tilde{T}_{\mu\nu}^{(i)} \delta g^{\mu\nu} + \Omega_i' h (h) \Omega_i^2 \tilde{T}_{\mu\nu} \delta h \right),$$

(8)

which, after compared with (7), leads to identification

$$\tilde{T}_{\mu\nu}^{(i)} \Omega_i^2 = T_{\mu\nu}^{(i)} \equiv - \frac{2}{\sqrt{-g}} \delta S_m^{(i)}.$$

(9)

Thus $\tilde{T}_{\mu\nu}^{(i)} \Omega_i^2 = T_{\mu\nu}^{(i)}$, $\tilde{T}_{\mu\nu}^{(i)} \Omega_i^2 = T_{\mu\nu}^{(i)}$ and $\tilde{T}_i \Omega_i^4 = T_i$. The energy-momentum tensor $\tilde{T}_{\mu\nu}^{(i)}$ is conserved by $\nabla_{\mu} \tilde{T}_{\mu\nu}^{(i)} = 0$ in Jordan frame where ψ_i is minimally coupled to the Jordan-frame metric $g_{\mu\nu}$. However, the energy-momentum tensor is not conserved as $\nabla_{\mu} T_{\mu\nu}^{(i)} = 0$ in Einstein frame. In fact, note that $\Gamma_{\mu\nu}^{(i)} = \Gamma_{\mu\nu} + C_{\mu\nu}^{(i)}$ with $C_{\mu\nu}^{(i)} = \Omega_i^{-1} \left(\delta g_{\mu\nu} \Omega_i + \delta g_{\mu\nu} \partial h \Omega_i - g_{\mu\nu} \partial h \Omega_i \right)$, we have $\nabla_{\mu} \tilde{T}_{\mu\nu}^{(i)} = \Omega_i \nabla_{\nu} T_{\mu\nu}^{(i)} - T_i \Omega_i^{-1} \nabla_{\nu} \Omega_i = 0$, namely,

$$\nabla_{\mu} T_{\mu\nu}^{(i)} = T_i \Omega_i^{-1} \nabla_{\nu} \Omega_i,$$

(10)

For a perfect fluid ansatz for $T_{\mu\nu}^{(i)} = \text{diag}(\rho_i, p_i, p_i, p_i)$ with equation-of-state (EoS) parameter w_i defined by $p_i = w_i \rho_i$, the $\nu = 0$ component of (10) reads \(\nabla_{\nu} \rho_i = (1 - 3 w_i) \rho_i \nabla \ln \Omega_i\), which could be rearranged into

$$\nabla_{\nu} (\Omega_i^{3w_i-1} \rho_i) = 0,$$

(11)

if EoS parameter w_i is treated as a constant. This defines a covariantly conserved density in Einstein frame by

$$\dot{\rho}_i = \Omega_i^{3w_i-1} \rho_i = \Omega_i^{3w_i+3} \dot{\rho}_i,$$

(12)

which is also h-independent from $0 = \nabla \dot{\rho}_i = \dot{\rho}_i' (h) \nabla h$. Now requiring vanishing variation for the sum of (2), (3) and (7) gives rise to the equation-of-motions (EoMs) for the metric field $g_{\mu\nu}$ and scalar field h as

$$G_{\mu\nu} = 8\pi G \left(T_{\mu\nu}^{(i)} + \sum_i T_{\mu\nu}^{(i)} \right),$$

(13)

$$\nabla^2 h = V'(h) - \sum_i \Omega_i^2 (h) \Omega_i^2 \tilde{T}_{\mu\nu} \delta h,$$

(14)

where the scalar EoM (14) could be rewritten as $\nabla^2 h = V'(h)$ with respect to an effective potential $V_{\text{eff}}(h) = V(h) + \sum_i U_i(h)$ with $U_i(h)$ of form

$$U_i(h) = \Omega_i^{1-3w_i} (h) \rho_i = \left\{ \begin{array}{ll}
\Omega_i^{4e\text{vac}} \dot{\rho}_{\text{vac}}, & i = \text{vacuum energy} \\
\Omega_i^{4e\text{rad}} \rho_{\text{e}}, & i = \text{radiation} \\
\Omega_i^{4e\text{mat}} \rho_{\text{m}}, & i = \text{matter}.
\end{array} \right.$$

(15)

Note that for radiation domination, $\dot{\rho}$ is covariantly constant in time and hence h-independent. Hereafter, we will choose the scalar field h as Higgs field specifically.

III. HIGGS CHAMELEON IN THE EARLY UNIVERSE

For the sake of simplicity, Higgs field is assumed to have no chameleon coupling to all the other fields except inflaton field, then the Higgs effective potential V_{eff} only receives its contribution of U_i from inflaton field alone as

$$V_{\text{eff}}(h) = V(h) + \dot{\rho}_\phi \Omega_\phi^{-3w_{{\phi}}}(h).$$

(16)
The SM Higgs potential at zero temperature with higher loop-order quantum corrections could be approximated as

\[V(h) = V_0(h) \approx -b \log \left(\frac{h^2}{h_c^2} \right) \frac{h^4}{4}, \]

(17)

where the Higgs quartic coupling turns negative at a critical value \(h_c \approx 5 \times 10^{10} \text{ GeV} \) and \(b \approx 0.16/(4\pi)^2 \). To save Higgs from the instability developed around \(h_c \), there are infinitely many choices for the conformal factor \(\Omega^{-3w_\phi}(h) \) as long as it exhibits a higher power than \(h^4 \).

A. Dilatonic chameleon coupling

As an illustrative example, the conformal factor is parameterized as

\[\Omega(h) = \Omega(0)e^{\alpha h/h_c}, \quad \alpha = \frac{d \ln \Omega}{d(h/h_c)}, \]

(18)

where the dimensionless conformal factor \(\alpha \) is regarded as a constant parameter for simplicity. Now the Higgs effective potential could be normalized with respect to \(V_c = V_0(h_c) = (b/8)h_c^4 \) as

\[\frac{V_{\text{eff}}}{V_c} = -2 \log \left(\frac{h^2}{h_c^2} \right) \frac{h^4}{h_c^4} + c e^{\xi h/h_c}, \]

(19)

where the second term is characterized by two effective parameters defined by

\[c = \frac{\hat{\beta}}{V_c} \Omega(0)^{1-3w_\phi}, \quad \xi = (1-3w_\phi)\alpha. \]

(20)

This effective potential is shown in the upper left panel of Fig. 1 where the SM Higgs potential (red line) corrected by the chameleon contribution from coupling to inflaton could be easily stabilized with appearance of a second minimum (blue lines) until its disappearance at an inflection point (green line) with increasing \(\xi \) or \(c \).

The second minimum \(h_{\text{min}} \) is one of the roots of the extreme points \(h_0 \) from \(V''_{\text{eff}}(h_0) = 0 \) by

\[\frac{\xi h_0}{h_c} = W \left(\frac{16}{c} \frac{h_0^4}{h_c^2} \log \frac{h_0}{h_c} \right), \]

(21)

with Lambert function \(W(z) \) defined by \(z = W(z)e^{W(z)} \). On the one hand, for the second minimum being the degeneracy case with \(V''_{\text{eff}}(h_0) = V''_{\text{eff}}(0) = c V_c \), it admits

\[\frac{\xi h_0}{h_c} = \frac{16(h_0/h_c)^4 \log(h_0/h_c)}{c + 4(h_0/h_c)^4 \log(h_0/h_c) - (h_0/h_c)^4}, \]

(22)

which, after combing with (21), could solve for \(\xi_{\text{deg}} \) from given \(c \) as shown in red line in the right panel of Fig. 1.

On the other hand, for the second minimum being the inflection point with \(V''_{\text{eff}}(h_0) = 0 \), it admits

\[\frac{\xi h_0}{h_c} = \frac{1 + 3 \log(h_0/h_c)}{\log(h_0/h_c)}, \]

(23)

which, after combing with (21), could solve for \(\xi_{\text{inf}} \) from given \(c \) as shown in blue line in the upper right panel of Fig. 1. The difference between \(\xi_{\text{deg}} \) and \(\xi_{\text{inf}} \) is asymptotically vanishing at large \(c \) limit, both of which are decreasing with power-law at large \(c \) limit, approaching to the green dashed line, \(\xi_{\text{inf}} = 4c^{-1/4} \), determined by first solving \(\log(h_{\text{deg}}/h_c) \) as a whole from (22) and then plugging into (21) with asymptotic expansion of Lambert function \(W(z \to 0) \sim z + O(z^2) \). The corresponding \(h_{\text{deg}}/h_c \) in the \(c \to \infty \) limit approaches \(c^{1/4} \).

B. Absolutely stable region

Without the appearance of the second minimum when \(\xi > \xi_{\text{inf}} \), the Higgs field is absolutely stable against any quantum fluctuations. For large enough \(c \), the absolutely stable region could be approximately estimated by

\[\xi > \xi_{\text{inf}} \approx \xi_{\text{deg}} \sim 4c^{-1/4}. \]

(24)

To further transform above constraints on \(c, \xi \) into more physical constraints on the inflationary Hubble scale \(H_{\text{inf}} \) and the dimensionless conformal factor \(\alpha \), we could first set the EoS parameter \(w_\phi = -1 \) during inflation without loss of generality, then \(\alpha = \xi/4 \) and \(c \) is related to \(H_{\text{inf}} \) by

\[c = \frac{3M_{\text{Pl}}^2 H_{\text{inf}}^2}{V_c} \Omega(0)^{1/4} = \frac{24}{b} \left(\frac{M_{\text{Pl}}}{h_c} \right)^4 \left(\frac{H_{\text{inf}}}{M_{\text{Pl}}} \right)^2 \Omega(0)^{1/4}. \]

(25)

To ensure that the Higgs effective potential energy \(V_{\text{eff}}(0)/V_c \equiv c \) at the desirable stable vacuum \(h = 0 \) is sub-dominated to the background Hubble expansion, namely \(c \ll 3M_{\text{Pl}}^2 H_{\text{inf}}^2/V_c \), the amplitude of conformal factor should be small, \(\Omega(0) \ll 1 \). Now the absolute stability condition \(\xi \geq \xi_{\text{inf}} \) reads

\[\frac{\alpha \Omega(0)}{1.6 \times 10^{-7}} \geq \left(\frac{b}{10^{-3}} \right)^{1/2} \left(\frac{h_c}{10^{13} \text{ GeV}} \right)^{1/2} \left(\frac{H_{\text{inf}}}{10^{13} \text{ GeV}} \right)^{-1/2}. \]

(26)

This suggests an absolute stability bound by the product \(\alpha \cdot \Omega(0) \) in power law with respect to the inflationary Hubble scale shown as the green region in the lower left panel of Fig. 1, which, without adopting the asymptotic form \(\xi_{\text{inf}} = 4c^{-1/4} \), is precisely computed by \(\xi > \xi_{\text{inf}} \) with respect to the inflection case (blue lines) for \(\Omega(0) \ll 1 \), \(10^{-3}, 3 \times 10^{-3} \), from top to below. Nevertheless, for given \(\Omega(0) \), the corresponding red shaded region below \(\xi = \xi_{\text{inf}} \) is NOT everywhere unstable as specified below.

C. Presence of a second minimum

The second minimum appears when \(\xi < \xi_{\text{inf}} \), which is higher or lower than the \(h = 0 \) vacuum if \(\xi_{\text{deg}} < \xi < \xi_{\text{inf}} \).
or \(\xi < \xi_{\text{deg}} \), respectively. The degeneracy cases \(\xi = \xi_{\text{deg}} \) are shown as red lines in the lower left panel of Fig. 1 for \(\Omega_\phi(0) = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} \) from top to below. In the presence of a second minimum, the Higgs stability against quantum fluctuations is guaranteed in all \(e^{3N_0} \) Hubble patches in our past lightcone if \([36, 45] \).

The region for an absolutely stable Higgs effective potential without presence of a second minimum, the Higgs stability against quantum fluctuations is guaranteed in all \(e^{3N_0} \) Hubble patches in our past lightcone if \([36, 45] \).}

\[
\frac{h_{\text{max}}}{H_{\text{inf}}} > n_{\text{stab}} = \left\{ \begin{array}{ll}
\frac{3\sqrt{N_0}}{4n_{\text{stab}}} H_{\text{inf}} & m_{\text{eff}} < \frac{3}{2} H_{\text{inf}}, \\
\sqrt{\frac{2N_0}{3}} H_{\text{inf}} & m_{\text{eff}} = \frac{3}{2} H_{\text{inf}}, \\
\frac{2N_0}{3} H_{\text{inf}} & m_{\text{eff}} > \frac{3}{2} H_{\text{inf}},
\end{array} \right.
\]

where \(h_{\text{max}} \) is the other root of \(\phi(21) \), \(N_0 \approx 60 \) is the e-folding number of our current Hubble scale leaving the Hubble horizon before the end of inflation, and \(m_{\text{eff}} \) is given by

\[
m_{\text{eff}}^2(h = 0) = \frac{b \xi^2}{16 h_c^2}. \quad (28)
\]

For given \(\Omega_\phi(0) = 10^{-2}, 10^{-3}, 10^{-4} \) (black numbers) in the lower right panel of Fig. 1, we have tested the condition \((27) \) as red curves with red arrows pointing to a larger value than \(n_{\text{stab}} \), which automatically guarantees a much higher potential barrier \(V_{\text{bar}} = V_{\text{eff}}(h_{\text{max}}) - V_{\text{eff}}(h_{\text{inf}}) > H_{\text{inf}}^2 \) (blue curves) than the inflationary Hubble scale for the same \(\Omega_\phi(0) \). This largely suppresses the decay processes via either ODL instanton or Hawking-Moss (HM) instanton depending on the broadness of poten-
tial barrier estimated by $|V_{\text{eff}}''(h_{\text{max}})|/(4H_{\text{reh}}^2)$ (green curves), to the upper-left/lower-right of which are dominated by CdL/HM instantons (if ever happened via decay channel), respectively. Therefore, the Higgs stability region against the quantum fluctuations could be extended from the absolutely stable region (green shaded) into the red shaded region in the lower left panel of Fig. 1 bounded by the red curves in the lower right panel of Fig. 1 for given $\Omega_\phi(0)$.

However, this is not the whole story. Even for the parameter region to the lower-right direction of red curve with given $\Omega_\phi(0)$ where the second minimum is accidentally achieved during inflation either by the rare decay instantons or random walks over the potential barrier in some of the Hubble patches, there is still hope for them to be saved by the thermal corrections to the Higgs potential during radiation dominated era as elaborated below.

D. Thermal rescue

For an instantaneous reheating history, the reheating temperature at the onset of radiation domination approximately reads from the inflationary energy,

$$T_{\text{reh}} \approx \frac{90}{g_{\text{reh}}\pi^2}^{1/4} \left(\frac{H_{\text{inf}}}{M_{\text{Pl}}} \right)^{1/2},$$

(29)

with the number of degrees of freedom $g_{\text{reh}} = 106.75$ for SM. The Higgs effective potential simply reads $V_{\text{eff}}(h) = V_0(h) + V_T(h) + \hat{\rho}_r$ with $\hat{\rho}_r$ independent of h ($\hat{\rho}_r$ could be chosen as zero since the trace of energy-momentum tensor in (14) is vanished for radiation dominance), and the thermal corrections could be conveniently approximated upto $h \lesssim 2\pi T$ by $V_T(h) \approx \frac{1}{2}M_T^2 h^2$ with $\hat{\rho}_r$

$$M_T^2 \approx \left(0.21 - 0.0071 \log \frac{T}{\text{GeV}} \right) T^2,$$

(30)

which pushes the potential barrier to larger position,

$$h_{\text{max}}^T = M_T \left[b W \left(\frac{M_T^2}{\hat{\rho}_r} \right) \right]^{-1/2}.$$

(31)

The thermal rescue [45] occurs when the local maximum h_{max}^T at finite temperature T_{reh} is large enough for the Higgs field in the second minimum h_{min} achieved during inflation could subsequently roll back to $h = 0$ vacuum during radiation era,

$$h_{\text{max}}^T(T_{\text{reh}}) > h_{\text{min}},$$

(32)

which is shown as purple curves in the lower right panel of Fig. 1 with the direction of arrows pointing to the larger ratio of $h_{\text{max}}^T/h_{\text{min}}$ than unity value. After the thermal rescue, the thermal fluctuations of order temperature T have been checked to be much smaller than the thermal potential barrier, $h_{\text{max}}^T \gg T$.

For non-instantaneous reheating, $U_i(h)$ in (15) during pre/reheating is smaller than that from inflationary era due to smaller power $1 - 3w_i < 4$ with $-1/3 < w_i < 1/3$ and smaller ρ_t that dissipates into radiations, which could push the second minimum (if ever reached during inflation) to larger and deeper values until gradually connecting to the thermal Higgs potential in radiation era, thus invalidating the thermal rescue mechanism. Furthermore, one still has to avoid the broad resonance even though the positive effective mass-squared at either $h = 0$ vacuum or the second minimum could evade the tachyonic resonant production of Higgs during preheating. Therefore, a conservative safe zone is that $V_{\text{eff}}(h)$ never develops a second minimum to be ever reached during inflation and relaxed during pre/reheating, namely [26]. We hope to revisit this issue in more details in a separate paper in future.

IV. CONCLUSION AND DISCUSSIONS

We propose a new mechanism to stabilize the Higgs potential in the early Universe by regarding Higgs as chameleon coupled to inflaton, which simply adds positive contribution to the original Higgs potential as shown in [16]. We have tested this proposal in an illuminating example with conformal factor of form exponential to Higgs field as shown in [19]. Other forms of this conformal factor should also work as long as it contributes positively to the effective potential. The absolutely stability bound (24), or expressed in terms of inflationary Hubble scale as [26], is analytically derived from the disappearance of inflection point in the effective potential. We also preliminarily extend the stability regime beyond the absolutely stable region into the case with the presence of a second minimum. Several comments are in order below.

Firstly, our solution for the Higgs stability problem in the early Universe only requires a chameleon coupling of Higgs to inflaton alone, while the chameleon couplings of Higgs to other fields are not necessarily demanded, which buys us extra benefit of evading all the current constraints on Higgs from either particle colliers or local gravity experiments.

Secondly, we neglect the effects on the running of SM Higgs couplings from Higgs-inflaton chameleon-like coupling, which, after expanding the conformal factor in power of h, only contributes to SM Higgs couplings with terms proportional to the same power of product of $\Omega_\phi(0)$, which is quite small ($\delta m^2 \sim 10^{-14}$, $\delta \lambda \sim 10^{-28}$) according to the typical value of absolute stability bound [26].

Thirdly, three possible traces of Higgs ever as chameleon in the early Universe could be the isocurvature perturbations and non-Gaussianity due to its chameleon coupling to inflaton, as well as the productions of domain walls [80, 88] when the second minimum is accidentally achieved during inflation in some Hubble patches, which merits further studies in future.
ACKNOWLEDGMENTS

We thank Mark Hertzberg, Justin Khoury, Jing Liu, Shan-Ming Ruan, Zhong-Zhi Xianyu and Yue Zhao for helpful correspondences. R.G.C. was supported by the National Natural Science Foundation of China Grants No. 11947302, No. 11991052, No. 11600022, No. 11821505 and No. 11851302, and by the Strategic Priority Research Program of CAS Grant No. XDB23030100, and by the Key Research Program of Frontier Sciences of CAS. SJW is supported by the postdoctoral scholarship of Tufts University from NSF.

[1] Particle Data Group Collaboration. M. Tanabashi et al., “Review of Particle Physics,” Phys. Rev. D98 no. 3 (2018) 030001.
[2] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, and A. Strumia, “Higgs mass implications on the stability of the electroweak vacuum,” Phys. Lett. B709 (2012) 222–228. arXiv:1112.3022 [hep-ph].
[3] F. Bezrukov, M. Yu. Kalmykov, B. A. Kniehl, and M. Shaposhnikov, “Higgs Boson Mass and New Physics,” JHEP 10 (2012) 140. arXiv:1205.2893 [hep-ph].
[4] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO,” JHEP 08 (2012) 098. arXiv:1205.6497 [hep-ph].
[5] S. Alekhin, A. Djouadi, and S. Moch, “The top quark and Higgs boson masses and the stability of the electroweak vacuum,” Phys. Lett. B716 (2012) 214–219. arXiv:1207.0980 [hep-ph].
[6] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 12 (2013) 089. arXiv:1307.3536 [hep-ph].
[7] J. R. Espinosa, “Cosmological implications of Higgs near-criticality,” Phil. Trans. Roy. Soc. Lond. A376 no. 2114, (2018) 20170118.
[8] T. Markkanen, A. Rajantie, and S. Stopyra, “Cosmological Aspects of Higgs Vacuum Instability,” Front. Astron. Space Sci. 5 (2018) 40. arXiv:1809.06923 [astro-ph.CO].
[9] A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “Stability of the Electroweak Vacuum: Gauge Independence and Advanced Precision,” Phys. Rev. Lett. 115 no. 20, (2015) 201802. arXiv:1507.08833 [hep-ph].
[10] L. Di Luzio and L. Mihaila, “On the gauge dependence of the Standard Model vacuum instability scale,” JHEP 06 (2014) 079. arXiv:1404.7450 [hep-ph].
[11] A. Andreasen, W. Frost, and M. D. Schwartz, “Consistent Use of Effective Potentials,” Phys. Rev. D 91 no. 1, (2015) 016009. arXiv:1408.0287 [hep-ph].
[12] A. Andreasen, W. Frost, and M. D. Schwartz, “Consistent Use of the Standard Model Effective Potential,” Phys. Rev. Lett. 113 no. 24, (2014) 241801. arXiv:1408.0292 [hep-ph].
[13] J. R. Espinosa, M. Garny, T. Konstandin, and A. Riotte, “Gauge-Independent Scale-Related to the Standard Model Vacuum Instability,” Phys. Rev. D95 no. 5, (2017) 056004. arXiv:1608.06765 [hep-ph].
[14] A. Andreasen, W. Frost, and M. D. Schwartz, “Scale Invariant Instantons and the Complete Lifetime of the Standard Model,” Phys. Rev. D97 no. 5, (2018) 056006. arXiv:1707.08124 [hep-ph].
[15] S. Chigusa, T. Moroi, and Y. Shoji, “State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in the Standard Model,” Phys. Rev. Lett. 119 no. 21, (2017) 211801. arXiv:1707.09301 [hep-ph].
[16] S. Chigusa, T. Moroi, and Y. Shoji, “Decay Rate of Electroweak Vacuum in the Standard Model and Beyond,” Phys. Rev. D97 no. 11, (2018) 116012. arXiv:1803.03902 [hep-ph].
[17] D. G. Figueroa, J. Garcin-Bellido, and F. Torrenti, “Decay of the standard model Higgs field after inflation,” Phys. Rev. D92 no. 8, (2015) 083511. arXiv:1504.04600 [astro-ph.CO].
[18] L. Delle Rose, C. Marzo, and A. Urbano, “On the fate of the Standard Model at finite temperature,” JHEP 05 (2016) 050. arXiv:1507.06912 [hep-ph].
[19] M. Shaposhnikov and C. Wetterich, “Asymptotic safety of gravity and the Higgs boson mass,” Phys. Lett. B683 (2010) 196–200. arXiv:0912.0208 [hep-th].
[20] F. Bezrukov, J. Rubio, and M. Shaposhnikov, “Living beyond the edge: Higgs inflation and vacuum metastability,” Phys. Rev. D 92 no. 8, (2015) 083512. arXiv:1412.3811 [hep-ph].
[21] J. Khoury, “Accessibility Measure for Eternal Inflation: Dynamical Criticality and Higgs Metastability,” arXiv:1912.06706 [hep-th].
[22] V. Branchina and E. Messina, “Stability, Higgs Boson Mass and New Physics,” Phys. Rev. Lett. 111 (2013) 241801. arXiv:1307.5193 [hep-ph].
[23] V. Branchina, E. Messina, and A. Platania, “Top mass determination, Higgs inflation, and vacuum stability,” JHEP 09 (2014) 182. arXiv:1407.4112 [hep-ph].
[24] V. Branchina, E. Messina, and M. Sher, “Lifetime of the electroweak vacuum and sensitivity to Planck scale physics,” Phys. Rev. D 91 (2015) 013003. arXiv:1408.5302 [hep-ph].
[25] Z. Lalak, M. Lewicki, and P. Olszewski, “Higher-order scalar interactions and SM vacuum stability,” JHEP 05 (2014) 119. arXiv:1402.3826 [hep-ph].
[26] A. Kobakhidze and A. Spencer-Smith, “Electroweak Vacuum (In)Stability in an Inflationary Universe,” Phys. Lett. B 722 (2013) 130–134. arXiv:1301.2846 [hep-ph].
[27] M. Fairbairn and R. Hogan, “Electroweak Vacuum Stability in light of BICEP2.,” Phys. Rev. Lett. 112 (2014) 201801. arXiv:1403.6786 [hep-ph].
[28] K. Kamada, “Inflationary cosmology and the standard model Higgs with a small Hubble induced mass,” Phys. Lett. B 742 (2015) 126–135. arXiv:1409.5078 [hep-ph].
[29] M. P. Hertzberg and M. Jain, “An Explanation for why the Early Universe was Dominated by the Standard
K. Kohri and H. Matsui, “Higgs vacuum metastability,” JCAP 05 (2008) 002 [arXiv:0710.2484 [hep-ph]].

M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie, “Spacetime curvature and the Higgs stability during inflation,” Phys. Rev. Lett. 113 no. 21, (2014) 211102 [arXiv:1407.3141 [hep-ph]].

O. Czerwińska, Z. Lalak, M. Lewicki, and P. Olszewski, “The impact of non-minimally coupled gravity on vacuum stability,” JHEP 10 (2016) 004 [arXiv:1606.07808 [hep-ph]].

T. Markkanen, S. Nurmi, and A. Rajantie, “Do metric fluctuations affect the Higgs dynamics during inflation?,” JCAP 1712 (2017) 026 [arXiv:1707.00866 [hep-ph]].

M. Herranen, T. Markkanen, S. Nurmi, and A. Rajantie, “Spacetime curvature and Higgs stability after inflation,” Phys. Rev. Lett. 115 (2015) 241301 [arXiv:1506.04065 [hep-ph]].

Y. Ema, K. Mukaida, and K. Nakayama, “Fate of Electroweak Vacuum during Preheating,” JCAP 1610 (2016) 043 [arXiv:1602.00483 [hep-ph]].

K. Kohri and H. Matsui, “Higgs vacuum metastability in primordial inflation, preheating, and reheating,” Phys. Rev. D94 no. 10, (2016) 103509 [arXiv:1602.02100 [hep-ph]].

K. Kohri and H. Matsui, “Electroweak Vacuum Instability and Renormalized Higgs Field Vacuum Fluctuations in the Inflationary Universe,” JCAP 1708 (2017) 011 [arXiv:1607.08133 [hep-ph]].

K. Enqvist, M. Karcauska, O. Lebedev, S. Rusak, and M. Zatta, “Postinflationary vacuum instability and Higgs-inflaton couplings,” JCAP 1611 (2016) 025 [arXiv:1608.08848 [hep-ph]].

M. Postma and J. van de Vis, “Electroweak stability and non-minimal coupling,” JCAP 1705 (2017) 004 [arXiv:1702.07636 [hep-ph]].

Y. Ema, M. Karcauska, O. Lebedev, and M. Zatta, “Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings,” JCAP 1706 (2017) 054 [arXiv:1703.04681 [hep-ph]].

K. Kohri and H. Matsui, “Electroweak Vacuum Instability and Renormalized Vacuum Field Vacuum Fluctuations in Friedmann-Lemaître-Robertson-Walker Background,” Phys. Rev. D98 no. 10, (2018) 103521 [arXiv:1704.08884 [hep-ph]].

Y. Ema, K. Mukaida, and K. Nakayama, “Electroweak Vacuum Metastability and Low-scale Inflation,” JCAP 1712 (2017) 030 [arXiv:1706.08920 [hep-ph]].

D. G. Figueroa, A. Rajantie, and F. Torrenti, “Higgs field-curvature coupling and postinflationary vacuum instability,” Phys. Rev. D98 no. 2, (2018) 023532 [arXiv:1709.00398 [astro-ph.CO]].

A. Hook, J. Kearney, B. Shakyra, and K. M. Zurek, “Probable or Improbable Universe? Correlating Electroweak Vacuum Instability with the Scale of Inflation,” JHEP 01 (2015) 061 [arXiv:1404.5953 [hep-ph]].

J. R. Espinosa, G. F. Giudice, E. Morgante, A. Riotto, L. Senatore, A. Strumia, and N. Tetradis, “The cosmological Higgstory of the vacuum instability,” JHEP 09 (2015) 174 [arXiv:1505.04825 [hep-ph]].

W. E. East, J. Kearney, B. Shakyra, H. Yoo, and K. M. Zurek, “Spacetime Dynamics of a Higgs Vacuum Instability During Inflation,” Phys. Rev. D95 no. 2, (2017) 023526 [arXiv:1607.00381 [hep-ph]].

G. Isidori, V. S. Rychkov, A. Strumia, and N. Tetradis, “Gravitational corrections to standard model vacuum decay,” Phys. Rev. D77 (2008) 025034 [arXiv:0712.0242 [hep-ph]].

V. Branchina, E. Messina, and D. Zappala, “Impact of Gravity on Vacuum Stability,” EPL 116 no. 2, (2016) 21001 [arXiv:1601.06963 [hep-ph]].

A. Rajantie and S. Stoppyra, “Standard Model vacuum decay with gravity,” Phys. Rev. D95 no. 2, (2017) 025008 [arXiv:1606.00849 [hep-th]].

A. Salvio, A. Strumia, N. Tetradis, and A. Urbano, “On gravitational and thermal corrections to vacuum decay,” JHEP 09 (2016) 054 [arXiv:1608.02555 [hep-ph]].

A. Joti, A. Katsis, D. Loupas, A. Salvio, A. Strumia, N. Tetradis, and A. Urbano, “(Higgs) vacuum decay during inflation,” JHEP 07 (2017) 058 [arXiv:1706.00792 [hep-ph]].

A. Rajantie and S. Stoppyra, “Standard Model vacuum decay in a de Sitter Background,” Phys. Rev. D97 no. 2, (2018) 025012 [arXiv:1707.03775 [hep-th]].

J. R. Espinosa, “Vacuum Decay in the Standard Model: Analytical Results with Running and Gravity,” JHEP 2003.06219 [hep-ph].

R. Gregory, I. G. Moss, and B. Wither, “Black holes as bubble nucleation sites,” JHEP 03 (2014) 081 [arXiv:1401.0017 [hep-th]].

P. Burda, R. Gregory, and I. Moss, “Gravity and the stability of the Higgs vacuum,” Phys. Rev. Lett. 115 (2015) 071303 [arXiv:1501.04937 [hep-th]].

P. Burda, R. Gregory, and I. Moss, “Vacuum metastability with black holes,” JHEP 08 (2015) 114 [arXiv:1503.07331 [hep-th]].

P. Burda, R. Gregory, and I. Moss, “The fate of the Higgs vacuum,” JHEP 06 (2016) 025 [arXiv:1601.02152 [hep-th]].

D. Gorbunov, D. Levkov, and A. Panin, “Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating,” JCAP 1710 (2017) 016 [arXiv:1704.05399 [astro-ph.CO]].

D. Canko, I. Giaiolas, G. Jelic-Cizmek, A. Riotto, and N. Tetradis, “On the Catalysis of the Electroweak Vacuum Decay by Black Holes at High Temperature,” Eur. Phys. J. C78 no. 4, (2018) 328 [arXiv:1706.01364 [hep-th]].

K. Kohri and H. Matsui, “Electroweak Vacuum Collapse induced by Vacuum Fluctuations of the Higgs Field hour Evaporating Black Holes,” Phys. Rev. D98 no. 12, (2018) 123509 [arXiv:1708.02138 [hep-ph]].

R. Gregory, K. M. Marshall, F. Michel, and I. G. Moss, “Negative modes of Coleman–De Luccia and black hole bubbles,” Phys. Rev. D98 no. 8, (2018) 085017 [arXiv:1808.02305 [hep-th]].

N. Oshita, K. Ueda, and M. Yamaguchi, “Vacuum decays around spinning black holes,” JHEP 01 (2020) 015 [arXiv:1909.01378 [hep-th]].

N. Oshita and J. Yokoyama, “Entropic interpretation of the Hawking–Moss bounce,” PTEP 2016 no. 5, (2016) 053E02 [arXiv:1603.06671 [hep-th]].

K. Mukaida and M. Yamada, “False Vacuum Decay
[55] R. Gregory, I. G. Moss, and N. Oshita, “Black Holes, Oscillating Instantons, and the Hawking-Moss transition,” arXiv:2003.04927 [hep-th].

[65] L. Cuspinera, R. Gregory, K. Marshall, and I. G. Moss, “Higgs Vacuum Decay from Particle Collisions?,” Phys. Rev. D99 no. 2, (2019) 024046, arXiv:1803.02871 [hep-th].

[66] N. Oshita, M. Yamada, and M. Yamaguchi, “Compact objects as the catalysts for vacuum decays,” Phys. Rev. D96 no. 10, (2017) 103514, arXiv:1706.04523 [hep-th].

[67] L. Cuspinera, R. Gregory, K. Marshall, and I. G. Moss, “Black Holes, Oscillating Instantons, and the Hawking-Moss transition,” arXiv:2003.04927 [hep-th].

[68] L. Cuspinera, R. Gregory, K. Marshall, and I. G. Moss, “Higgs Vacuum Decay in a Braneworld,” Int. J. Mod. Phys. D29 no. 01, (2019) 2050005, arXiv:1907.11046 [hep-th].

[69] K. J. Mack and R. McNees, “Bounds on extra dimensions from micro black holes in the context of the metastable Higgs vacuum,” Phys. Rev. D99 no. 6, (2019) 063001, arXiv:1809.05089 [hep-ph].

[70] I. Koga, S. Kuroyanagi, and Y. Ookouchi, “Instability of Higgs Vacuum via String Cloud,” Phys. Lett. B800 (2020) 135093, arXiv:1910.02435 [hep-th].

[71] I. Koga and Y. Ookouchi, “Catalytic Creation of Baby Bubble Universe with Small Positive Cosmological Constant,” JHEP 10 (2019) 281, arXiv:1909.03014 [hep-th].

[72] H. Firouzjahi, A. Karami, and T. Rostami, “Vacuum decay in the presence of a cosmic string,” arXiv:2002.04856 [gr-qc].

[73] N. Oshita, “Small-mass naked singularities censored by the Higgs field,” Class. Quant. Grav. 37 (2020) 07 arXiv:2002.11175 [hep-th].

[74] L. Darmé, J. Jaeckel, and M. Lewicki, “Towards the fate of the oscillating false vacuum,” Phys. Rev. D96 no. 5, (2017) 056001, arXiv:1704.06445 [hep-ph].

[75] J. Braden, M. C. Johnson, H. V. Peiris, A. Pontzen, and S. Weinifurtner, “New Semiclassical Picture of Vacuum Decay,” Phys. Rev. Lett. 123 no. 3, (2019) 031601, arXiv:1806.06069 [hep-th].

[76] M. P. Hertzberg and M. Yamada, “Vacuum Decay in Real Time and Imaginary Time Formalisms,” Phys. Rev. D100 no. 1, (2019) 016011, arXiv:1904.08565 [hep-th].

[77] J. J. Blanco-Pillado, H. Deng, and A. Vilenkin, “Flyover vacuum decay,” JCAP 1912 (2019) 001, arXiv:1906.09657 [hep-th].

[78] L. Darmé, J. Jaeckel, and M. Lewicki, “Generalized escape paths for dynamical tunneling in QFT,” Phys. Rev. D100 no. 9, (2019) 096012, arXiv:1907.04865 [hep-th].

[79] S.-J. Wang, “Occurrence of semiclassical vacuum decay,” Phys. Rev. D100 no. 9, (2019) 096019, arXiv:1909.11196 [gr-qc].

[80] H. Huang and L. Ford, “Vacuum Decay Induced by Quantum Fluctuations,” arXiv:2005.08355 [hep-th].

[81] J. Khoury and A. Weltman, “Chameleon fields: Awaiting surprises for tests of gravity in space,” Phys. Rev. Lett. 93 (2004) 171104, arXiv:astro-ph/0309300 [astro-ph].

[82] J. Khoury and A. Weltman, “Chameleon cosmology,” Phys. Rev. D69 (2004) 044026, arXiv:astro-ph/0309411 [astro-ph].

[83] J. Khoury, “Chameleon Field Theories,” Class. Quant. Grav. 30 (2013) 214004, arXiv:1208.4612 [astro-ph.CO].

[84] J. Khoury and A. Weltman, “Quantum Stability of Chameleon Field Theories,” Phys. Rev. Lett. 109 (2012) 241301, arXiv:1204.3906 [hep-ph].

[85] A. Upadhye, W. Hu, and J. Khoury, “Quantum Stability of Chameleon Field Theories,” Phys. Rev. Lett. 109 (2012) 041301, arXiv:1204.3906 [hep-ph].

[86] J. Khoury, “Chameleon Field Theories,” Class. Quant. Grav. 30 (2013) 214004, arXiv:1306.4326 [astro-ph.CO].

[87] J. Liu, Z.-K. Guo, and R.-G. Cai, “Primordial Black Holes from Cosmic Domain Walls,” arXiv:1908.02662 [astro-ph.CO].

[88] H. Deng and A. Vilenkin, “Primordial black hole formation by vacuum bubbles,” JCAP 1712 no. 12, (2017) 044, arXiv:1710.02865 [gr-qc].