Farelo de arroz modula os fatores de risco de doença renal em animais submetidos a uma dieta rica em gordura e açúcar

Rice bran modulates renal disease risk factors in animals submitted to high sugar-fat diet

Resumo

Introdução: Obesidade, diabetes e hipertensão arterial são fatores de risco comuns para doenças renais crônicas (DRC). A DRC surge devido a muitos insultos patológicos, incluindo inflamação e estresse oxidativo, que afetam a função renal e destroem os néfrons. O farelo de arroz (FA) é rico em vitaminas e minerais, e contém uma quantidade significativa de antioxidantes. O objetivo deste estudo foi avaliar o efeito preventivo do FA nos fatores de risco de doenças renais. Métodos: Ratos Wistar machos (±325 g) foram dividos em dois grupos experimentais para receber uma dieta rica em gordura e açúcar (DRGA, n = 8) ou uma dieta rica em gordura e açúcar com farelo de arroz (DRGA + FA, n = 8) por 20 semanas. Ao final, foram analisados a função renal, composição corporal, parâmetros metabólicos, marcadores renais inflamatórios e de estresse oxidativo. Resultados: FA preveniu a obesidade [IA (DRGA= 9,92 ± 1,19 vs DRGA + FA= 6,62 ± 0,78)], resistência à insulina [HOMA (DRGA= 83 ± 8 vs DRGA + FA= 42 ± 11)], dislipidemia [TG (DRGA= 167 ± 41 vs. DRGA + FA=92 ± 40)], inflamação [FNT-α (DRGA= 80 ± 12 vs. DRGA + FA=57 ± 14), IL-6 (903 ± 274 vs. DRGA + FA= 535 ± 277)], estresse oxidativo [carbonilação de proteína (DRGA= 3.38 ± 0,18 vs. DRGA + FA=2,68 ± 0,29), RAGE (DRGA=702 ± 36 vs. DRGA + FA=570 ± 190)], e doença renal [relação proteína/creatinina (DRGA=1,10 ± 0,38 vs. DRGA + FA=0,49 ± 0,16)]. Conclusão: Em conclusão, o farelo de arroz preveniu doenças renais através da modulação dos fatores de risco.

Descritores: Testes de Função Renal; Compostos Fitoquímicos; Inflamação; Estresse Oxidativo.

Abstract

Introduction: Obesity, diabetes, and hypertension are common risk factors for chronic kidney disease (CKD). CKD arises due to many pathological insults, including inflammation and oxidative stress, which affect renal function and destroy nephrons. Rice bran (RB) is rich in vitamins and minerals, and contains significant amount of antioxidants. The aim of this study was to evaluate the preventive effect of RB on renal disease risk factors. Methods: Male Wistar rats (±325 g) were divided into two experimental groups to received a high sugar-fat diet (HSD, n = 8) or high sugar-fat diet with rice bran (HSD + RB, n = 8) for 20 weeks. At the end, renal function, body composition, metabolic parameters, renal inflammatory and oxidative stress markers were analyzed. Results: RB prevented obesity [AI (HSD= 9.92 ± 1.19 vs HSD + RB= 6.62 ± 0.78)], insulin resistance [HOMA (HSD= 83 ± 8 vs. HSD + RB= 42 ± 11)], dyslipidemia [TG (HSD= 167 ± 41 vs. HSD + RB=92 ± 40)], inflammation [TNF-α (HSD= 80 ± 12 vs. HSD + RB=57 ± 14), IL-6 (903 ± 274 vs. HSD + RB= 535 ± 277)], oxidative stress [protein carbonylation (HSD= 3.38 ± 0.18 vs. HSD + RB=2.68 ± 0.29), RAGE (HSD=702 ± 36 vs. HSD + RB=570 ± 190)], and renal disease [protein/creatinine ratio (HSD=1.10 ± 0.38 vs. HSD + RB=0.49 ± 0.16)]. Conclusion: In conclusion, rice bran prevented renal disease by modulating risk factors.

Keywords: Kidney Function Tests; Phytochemicals; Inflammation; Oxidative Stress.
epidemiológicos mostram que a DRC afeta de 10 a 16% dos adultos no mundo², sendo considerada um problema de saúde global. O diagnóstico de DRC é geralmente estabelecido pela taxa de filtração glomerular (TFG). Entretanto, o intervalo de referência da TFG não exclui a doença renal, uma vez que a mesma leva à diminuição da função renal. Dentro deste contexto, a National Kidney Foundation recomenda a análise de proteinúria para a detecção de estágio inicial, e estimativas de TFG para avaliar a progressão da doença renal³.

Obesidade, diabetes e hipertensão são fatores de risco comuns para DRC⁴. A DRC surge devido a muitos insultos patológicos, incluindo inflamação e estresse oxidativo, que afetam a função renal e destroem os néfrons. A literatura relata uma associação entre insuficiência renal e diferentes mediadores de inflamação, incluindo interleucina-6 (IL-6) e fator de necrose tumoral-α (FNT-α), sugerindo que a DRC é um processo inflamatório de baixo grau⁵,⁶.

O estresse oxidativo pode ser considerado um desequilíbrio na relação produção/degradação de espécies reativas de oxigênio (ERO). Níveis excessivos de ERO podem produzir dano celular ao interagir com biomoléculas (proteínas, lipídios e ácidos nucléicos) resultando em efeitos negativos na função e estrutura dos tecidos, incluindo os rins. Estudos mostram que marcadores de estresse oxidativo aumentados, como malondialdeído (MDA) e proteína carbonilada, estão inversamente correlacionados com a função renal⁵,⁷. Como resultado, os néfrons compensam a função de néfrons lesionados com hiperfiltração, levando à hipertensão glomerular, proteinúria e, eventualmente, perda da função renal ao longo do tempo¹.

Vários mecanismos estão associados à inflamação renal e ao estresse oxidativo. Quando ativado, o receptor para produtos da degradação avançada de glicose (RAGE), um membro multi-ligante da superfamília de imunoglobulina de receptores da superfície celular, leva a uma sequência de sinalização com a ativação do fator nuclear kappa-B (FNκB) resultando na produção de citocinas pró-inflamatórias, tais como FNT-α, IL-6 e proteína quimioatraente de monócitos (MCP-1)⁸. A ativação do RAGE também pode induzir diretamente o estresse oxidativo pela ativação de nicotinamida adenina dinucleotídeo fosfato (NADPH)-oxidase (NOX), especialmente NOX-4. Assim, essa ativação é uma interface entre estresse oxidativo e inflamação, que são pilares para o desenvolvimento de várias doenças, especialmente em órgãos que expressam esses receptores de AGE, como cérebro, coração e rins⁹.

Neste contexto, surgiu o interesse pelo papel dos alimentos funcionais na prevenção de algumas doenças. O farelo de arroz é um dos produtos mais abundantes produzidos na indústria de moagem de arroz que é rico em vitaminas, incluindo vitamina E, tiamina, niacina e minerais como alumínio, cálcio, cloro, ferro, magnésio, mangânês, fósforo, potássio, sódio e zinco. Também contém uma quantidade significativa de antioxidantes como tocoferóis, tocotrienóis e oryzanol. O farelo de arroz também possui proteínas de alto valor nutricional e é uma boa fonte de fibra alimentar solúvel e insolúvel¹⁰. Assim, considerando que o consumo de uma dieta rica em gordura e açúcar pode levar à obesidade e ao desenvolvimento de fatores de risco de doenças renais, e a falta de estudos sobre o efeito do farelo de arroz sobre esses aspectos fisiopatológicos, o objetivo deste estudo foi avaliar o efeito do farelo de arroz na modulação dos fatores de risco de doenças renais em animais submetidos a uma dieta rica em gordura e açúcar.

MATERIAL E MÉTODOS

ANIMAIS E PROTOCOLO EXPERIMENTAL

No presente estudo, ratos Wistar machos (±325 g) do Biotério da Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP, Botucatu, SP, Brasil), foram divididos em dois grupos experimentais para receber uma dieta rica em gorduras e açúcar (DRGA, n = 8) ou uma dieta rica em gorduras e açúcar com farelo de arroz (DRGA + FA, n = 8) por 20 semanas. As dietas e a água foram fornecidas ad libitum. A composição da dieta foi descrita em nosso estudo anterior¹¹. Todos os animais foram alojados em uma sala ambientalmente controlada (22±3 ºC, 12 h de ciclo luz-escuro e umidade relativa de 60±5%). Todos os experimentos foram realizados de acordo com o Conselho Canadense de Cuidados com Animais (CCCA)¹² e os procedimentos foram aprovados pelo Comitê de Ética Animal da Faculdade de Medicina de Botucatu (1305/2019). A fim de confirmar os efeitos da dieta rica em gordura e açúcar no desenvolvimento de fatores de risco renal no grupo da DRGA, Wistar machos (n=8, ±325 g, e mesma idade), alimentados com uma dieta padrão, foram utilizados como grupo de referência (grupo de controle basal). Ao final do
experimento, os animais foram submetidos à eutanásia por decapitação após anestesia com tiopental (120 mg/kg, injeção intraperitoneal) e todos os esforços foram feitos para minimizar qualquer sofrimento. O sangue foi coletado com os animais em jejum e em tubos contendo EDTA e centrifugado a 3500 rpm e o plasma foi coletado para análise. Depósitos de gordura e rins foram coletados para análise.

DOSAGEM DE FARELO DE ARROZ

Como o farelo de arroz contém componentes antinutricionais, como lipases e inibidores de tripsina\(^{10}\), o mesmo foi submetido a um processo de estabilização, que consistiu no aquecimento em um forno a 100°C, durante 4 minutos. Após o processo de estabilização, foi misturado à ração em uma dose de 11% (p/p). A dose foi escolhida com base em estudos anteriores\(^{13}\).

PARÂMETROS NUTRICIONAIS

Os parâmetros nutricionais avaliados foram: ingestão de ração, ingestão de água e ingestão calórica. A ingestão calórica foi determinada multiplicando o valor energético de cada dieta (g x Kcal) pelo consumo diário de alimentos mais as calorias da água (0,25 x 4 x mL consumidas).

COMPOSIÇÃO CORPORAL

A composição corporal foi avaliada considerando o peso corporal final (PCF), e o índice de adiposidade (IA). Após a eutanásia, os tecidos adiposos (visceral (TAV), epididimal (TAE) e retroperitoneal (TAR)) foram usados para calcular o IA pela seguinte fórmula:

\[
IA = TAV + TAE + TAR / PCF \times 100^{14}.
\]

ANÁLISE METABÓLICA

Após jejum de 8 horas, o sangue foi coletado e o plasma foi usado para medir os parâmetros bioquímicos. A concentração de glicose foi determinada usando um glicosímetro (Accu-Chek Performa, Roche Diagnostics Brazil Limited) e os triglicerídeos foram medidos com um sistema de analisador enzimático automático (Chemistry Analyzer BS-200, Mindray Medical International Limited, Shenzhen, China). O nível de insulina foi medido usando o método EIE usando kits comerciais (EMDMillipore Corporation, Billerica, MA, EUA). O modelo de avaliação da homeostase da resistência à insulina (Homeostasis Model Assessment Insulin Resistance - HOMA-IR) foi utilizado como um índice de resistência à insulina, calculado de acordo com a fórmula: HOMA-IR = (glicose de jejum (mmol/L) x insulina de jejum (µU/mL))/22,5\(^{15}\).

PRESSÃO ARTERIAL SISTÓLICA

A pressão arterial sistólica (PAS) foi avaliada em ratos conscientes pelo método não invasivo de cauda-manguito com um eletrofígmanomômetro Narco Bio-Systems\(^®\) (International Biomedical, Austin, TX, EUA). Os animais foram mantidos em uma caixa de madeira (50 x 40 cm) entre 38 e 40°C por 4-5 minutos para estimular a vasodilatação arterial\(^{16}\). Após este procedimento, um manguito com um sensor de pulso pneumático foi fixado na cauda de cada animal. O manguito foi inflado a uma pressão de 200 mmHg e posteriormente esvaziado. Os valores da pressão arterial foram registrados em um polígrafo Gould RS 3200 (Gould Instrumental Valley View, Ohio, EUA). A média de três leituras de pressão foi registrada para cada animal.

INFLAMAÇÃO RENAL

O tecido renal (±150 mg) foi homogeneizado (ULTRA-TURRAX\(^®\) T 25 basic IKA\(^®\) Werke, Staufen, Alemanha) em 1,0 mL de tampão fosfato salino (TFS) pH 7,4 em solução fria e centrifugado a 800 g a 4°C por 10 min. O sobrenadante (100 µL) foi utilizado na análise. Os níveis de FNT-α e IL-6 foram medidos usando o método EIE com kits comerciais da R&D System, Minneapolis, EUA. O sobrenadante (100 µL) foi usado para análise e os resultados foram corrigidos pela quantidade de proteína.

NÍVEIS DE MALONDIALDEÍDO RENAL (MDA)

O nível de MDA foi usado para avaliar a peroxidação lipídica. Em resumo, 250 µL de sobrenadante de tecido adiposo do epidídimo foram usados e adicionados a 750 µL de ácido tricloroacético a 10% para precipitação de proteínas. As amostras foram centrifugadas (3000 rpm, durante 5 minutos; Eppendorf\(^®\) Centrifuge 5804-R, Hamburgo, Alemanha) e o sobrenadante retirado. Foi adicionado ácido tiobarbitúrico (ATB) na proporção de 0,67% (1:1) e as amostras foram aquecidas por 15 minutos a 100°C. O MDA reage com ATB na proporção 1:2 (MDA:ATB). Após o resfriamento, a leitura a 535nm foi realizada no leitor de microplacas Spectra Max 190 (Molecular Devices\(^®\), Sunnyvale,
CA, EUA). A concentração de MDA foi obtida pelo coeficiente de extinção molar (1,56 x 105 M^-1-cm^-1) e a absorção das amostras e o resultado final relatado em nmol/g de proteína^{17}.

CARBONILAÇÃO DE PROTEÍNA RENAL

As proteínas carboniladas foram medidas por um método não específico que utiliza DNFH (agente de derivatização 2,4-dinitrofenilhidrazina) e detecção fotométrica de qualquer proteína modificada por carbonilação. Os níveis de proteína carbonilada são relatados em nmol de DNFH/mg de proteína^{18}.

NÍVEIS DE RAGE

O tecido renal (±150 mg) foi homogeneizado (ULTRA-TURRAX® T 25 basic IKA® Werke, Staufen, Alemanha) em 1,0 mL de tampão fosfato salino (TFS) pH 7,4 em solução fria e centrifugado a 800 g a 4°C por 10 min. O sobrenadante (100 µL) foi utilizado na análise. Os níveis de RAGE foram medidos com o método EIE usando kits comerciais da R&D System, Minneapolis, EUA. Os resultados foram corrigidos de acordo com a quantidade de proteína.

FUNÇÃO RENAL

Em 24 horas, a urina foi coletada das gaiolas metabólicas para medir a excreção de creatinina e a proteína total. Todas as análises foram realizadas com um sistema de analisador enzimático automático (analisador bioquímico BS-200, Mindray, China). A taxa de filtração glomerular (TFG = (creatinina urinária × fluxo) / creatinina plasmática) e proteinúria (relação proteína/creatinina) também foram calculadas.

ANÁLISE ESTATÍSTICA

Os dados foram submetidos ao teste de normalidade Kolmogorov-Smirnov. As variáveis paramétricas foram comparadas pelo teste t de Student e os resultados são reportados como média ± desvio padrão. Variáveis não paramétricas foram comparadas pelo teste de Mann-Whitney e os resultados são apresentados como mediana (intervalo interquartil (25-75)). A correlação de Pearson foi utilizada para avaliar a associação entre os parâmetros. As análises estatísticas foram realizadas utilizando Sigma Stat para Windows Versão 3.5 (Systat Software Inc., San Jose, CA, EUA). Um valor de $p < 0,05$ foi considerado estatisticamente significativo.

RESULTADOS

EFEITO DO FARELO DE ARROZ NOS PARÂMETROS NUTRICIONAIS

Os parâmetros nutricionais são apresentados na Figura 1. É possível observar a ingestão de ração, água e calorias nos grupos de DRGA e DRGA + FA. O grupo de DRGA + FA apresentou peso corporal final e índice de adiposidade mais baixos do que o da DRGA.

EFEITO DO FARELO DE ARROZ NOS FATORES DE RISCO CARDIOMETABÓLICOS RENAI

Os fatores de risco cardiometabólicos renais são apresentados na Figura 2. É possível verificar a redução de HOMA-IR e triglicérides no grupo de DRGA + FA em comparação com a DRGA. Nenhum efeito do farelo do arroz foi observado na pressão arterial sistólica.

EFEITO DO FARELO DE ARROZ NA INFILTRAÇÃO RENAL

Os parâmetros de inflamação renal são apresentados na Figura 3. O farelo de arroz foi eficaz na redução da inflamação, uma vez que a DRGA + FA apresentou níveis mais baixos de FNT-α e IL-6 em comparação com a DRGA.

EFEITO DO FARELO DE ARROZ NO ESTRESSE OXIDATIVO RENAL

A Figura 4 mostra os parâmetros de estresse oxidativo. O grupo de DRGA + FA apresentou menor carbonilação de proteínas e menor nível RAGE em relação à DRGA. Nenhuma diferença foi observada para os níveis de MDA.

PARÂMETROS DE FUNÇÃO RENAL

A Figura 5 apresenta os parâmetros da função renal. É possível verificar a presença de proteinúria no grupo de DRGA enquanto o da DRGA + FA estava protegido. Não foi observada diferença para a taxa de filtração glomerular entre os grupos de DRGA e DRGA + FA.

CORRELAÇÃO ENTRE OS PARÂMETROS

Foi encontrada uma correlação positiva entre proteinúria e ingestão calórica, índice de adiposidade, triglicérides, HOMA e carbonilação. Em relação à TFG, houve uma correlação positiva com MDA e uma correlação negativa com FNT-α (Figura 6).
DISCUSSÃO

O estudo visou avaliar o efeito do farelo de arroz na modulação do fator de risco de lesão renal. A doença renal tem um efeito significativo na saúde global, tanto como causa direta de morbidade e mortalidade quanto como um importante fator de risco para doenças cardiovasculares. Além disso, a DRC é evitável e tratável e merece maior atenção na tomada de decisões da política de saúde global. Assim, a descoberta de produtos naturais, como farelo de arroz, capazes de evitar esta condição é extremamente relevante. No presente estudo, foi observado um efeito benéfico do farelo de arroz sobre os principais fatores de risco de doenças renais. Ao mesmo tempo, o grupo da DRGA apresentou proteinúria e diversos fatores de risco para lesão renal, entre eles: obesidade, dislipidemia, resistência à insulina, inflamação e estresse oxidativo.

A literatura é escassa em estudos com farelo de arroz e DRC. Um estudo publicado por nosso grupo de pesquisa descobriu que γ-Oz, o principal composto bioativo do farelo de arroz, foi eficaz na recuperação de doenças renais induzidas pela obesidade após 10 semanas de tratamento em ratos Wistar. Outro estudo experimental de Al-Okbi et al. constatou que γ-oryzanol (γ-O) e a combinação de óleo de farelo de arroz/γ-O (OFA/γ-O) teve efeitos protetores sobre as doenças cardiovasculares e a síndrome cardiorrenal, similar a Francisqueti et al., que encontraram um efeito protetor do γ-Oz sobre a síndrome metabólica cardiorrenal.

Figura 1. Parâmetros nutricionais. A, Alimentação com ração (g/dia); B, Ingestão de água (mL/dia); C, Ingestão calórica (kcal/dia); D, Peso corporal final (g); E, Índice de adiposidade (%). Comparação pelo teste t de Student ou teste de Mann-Whitney, n=8 animais/grupo. p < 0.05 foi considerado significativo. DRGA: dieta rica em gordura e açúcar; FA: farelo de arroz. NS: não significativo.
A obesidade tem sido apontada como uma das principais causas de doença renal, uma vez que está associada a alterações hemodinâmicas, estruturais e histopatológicas dos rins, bem como alterações metabólicas e bioquímicas que predispõem à doença renal23,24. Os animais que receberam farelo de arroz apresentaram o mesmo consumo de ração, água e calorias, porém com peso corporal final e índice de adiposidade menores do que o do grupo da DRGA. Embora o mecanismo pelo qual o farelo de arroz protege contra a obesidade não esteja claro, a literatura confirma este efeito anti-obesogênico e atribui os benefícios às fibras dietéticas, oligossacarídeos, hemiceluloses e polissacarídeos não amiláceos, bem como alguns fitoquímicos solúveis em água presentes no farelo de arroz25.

A obesidade é o principal fator de risco para o desenvolvimento de doenças crônicas, tais como diabetes tipo 2 e doenças cardiovasculares, o que aumenta o risco de DRC26. A hiperglycemia aumenta a reação não
enzimática da glicose e de outros compostos glicosados derivados tanto da glicose quanto do aumento da oxidação de ácidos graxos, o que gera produtos finais de glicação avançada em tipos de células com tendência a complicações, incluindo as células renais. O grupo da DRGA não apenas desenvolveu obesidade, mas também resistência à insulina. Entretanto, os animais que receberam farelo de arroz não apresentaram resistência à insulina, o que pode ser explicado pela proteção contra a obesidade no grupo da DRGA + FA. Um tecido adiposo excessivo está associado a uma inflamação crônica de baixo grau que pode explicar o desenvolvimento de patologias relacionadas à obesidade, como o diabetes mellitus tipo 2.

A hipertensão é um fator de risco importante para doenças renais. Múltiplos mecanismos estão envolvidos na determinação do dano renal na hipertensão, tais como o sistema renina-angiotensina-aldosterona (SRAA), estresse oxidativo, disfunção endotelial e inflamação. No presente estudo, não foi observado nenhum efeito do

Figura 4. Parâmetros de estresse oxidativo renal. A, Carbonilação de proteínas (nmol/mg proteína); B, Malondialdeído (nmom/mg proteína); C, RAGE (pg/g proteína). Comparação pelo teste t de Student ou teste de Mann-Whitney. p < 0,05 foi considerado significativo. NS: não significativo.

Figura 5. Avaliação da função renal. A, Relação proteína/creatinina; B, Taxa de filtração glomerular (TFG, mL/min). Comparação pelo teste t de Student ou teste de Mann-Whitney. p < 0,05 foi considerado significativo. NS: não significativo.
Farelo de arroz e fatores de risco de doença renal

Figura 6. Correlação de Pearson entre as variáveis. Valores em vermelho indicam diferença significativa negativa, valores em cinza indicam diferença não significativa, e valores em azul indicam correlação significativa positiva.

farelo de arroz na pressão arterial sistólica. Entretanto, o grupo da DRGA + FA apresentou proteção contra danos renais, o que pode ser explicado pelo efeito sobre a inflamação e o estresse oxidativo. O principal composto bioativo no FA é o gama-orizanol, que tem demonstrado efeitos antioxidantes e antiinflamatórios também em rins de animais obesos.

A suprarregulação de citocinas pró-inflamatórias, como IL-6 e FNT-α, mediada pela AGE/RAGE e FNκB, aumenta o estresse oxidativo, o que leva à inflamação local e sistêmica, lesões glomerulares e tubulares, e proteinúria. Entre as citocinas, o FNT-α é conhecido por causar citotoxicidade direta e apoptose de células renais. Moléculas oxidadas refletem o dano mediado pelo estresse oxidativo em células e tecidos, e sua medição pode ser indicativa de estresse oxidativo em uma doença específica, bem como a eficácia potencial de tratamentos clínicos. Algumas dessas modificações, como a carbonilação, são irreversíveis e podem levar à alteração da expressão e da atividade proteica, resultando no comprometimento dos órgãos. Confirmando o efeito antioxidante e anti-inflamatório do farelo de arroz, os animais da DRGA + FA apresentaram redução de FNT-α, IL-6, RAGE, carbonilação de proteínas e proteinúria em comparação com o grupo da DRGA.

Em resumo, o farelo de arroz foi capaz de prevenir obesidade, resistência à insulina, dislipidemia, inflamação, estresse oxidativo e doença renal. Estas descobertas fornecem informações importantes sobre o uso de compostos bioativos como terapêutica alternativa para a prevenção de doenças renais e fatores de risco associados. Entretanto, como a principal limitação deste estudo não foi avaliar os caminhos envolvidos nos efeitos positivos do farelo de arroz, mais estudos são necessários. Portanto, concluímos que o farelo de arroz foi capaz de prevenir doenças renais pela modulação dos fatores de risco.

CONTRIBUIÇÃO DOS AUTORES

Conceitualização: Siqueira, JS; Garcia JL; Francisqueti-Ferron FV; Minatel IO; Correa CR. Curadoria de dados: Francisqueti-Ferron FV; Garcia JL; Ferron AJT; Siqueira, JS; Nakandakare-Maia ET; Silva, CCVA; Costa MR; Moreto F. Análise formal: Francisqueti-Ferron FV; Minatel IO; Ferron AJT; Ferreira ALA; Correa CR. Aquisição de financiamento: Correa CR. Metodologia: Francisqueti-Ferron FV; Garcia JL; Ferron AJT; Silva CCVA; Siqueira JS. Administração do projeto: Francisqueti-Ferron FV; Correa CR. Redação do rascunho original: Francisqueti-Ferron FV; Minatel IO; Correa CR.

CONFLITO DE INTERESSE

Os autores declaram não haver conflito de interesses.

REFERÊNCIAS

1. Gajjala PR, Sanati M, Jankowski J. Cellular and molecular mechanisms of chronic kidney disease with diabetes mellitus and cardiovascular diseases as its comorbidities. Front Immunol. 2015;6:340. DOI: https://doi.org/10.3389/fimmu.2015.00340
2. Kazancioğlu R. Risk factors for chronic kidney disease: an update. Kidney Int Suppl. 2013 Dec;3(4):368-71. DOI: https://doi.org/10.1038/kisup.2013.79
3. Regeniter A, Freidank H, Dickenmann M, Boesken WH, Siede WH. Evaluation of proteinuria and GFR to diagnose and classify kidney disease: systematic review and proof of concept. Eur J Intern Med. 2009 Oct;20(6):556-61. DOI: https://doi.org/10.1016/j.ejim.2009.03.006
4. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJL, Mann JF, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013 Jul;382(9889):339-52. DOI: https://doi.org/10.1016/S0140-6736(13)60595-4
5. Cachofeiro V, Goicochea M, Vinuesa SG, Oubía P, Lahera V, Lüo J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. 2008 Dec;74(Suppl 111):S4-S9. DOI: https://doi.org/10.1038/kj.2008.516
6. Landray MJ, Wheeler DC, Lip GYH, Newman DJ, Blann AD, McGlynn FJ, et al. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) Study. Am J Kidney Dis. 2004;43(2):244-53. DOI: https://doi.org/10.1053/j.ajkd.2003.10.037
Farelo de arroz e fatores de risco de doença renal

7. Dounoussi E, Papavasiliou E, Makedou A, Ioannou K, Katopodis KP, Tselepis A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis. 2006 Nov;48(5):752-60. DOI: https://doi.org/10.1053/j.ajkd.2006.08.015

8. D’Agati V, Schmidt AM. RAGE and the pathogenesis of chronic kidney disease. Nat Rev Nephrol. 2010 Apr;6:352-60. DOI: https://doi.org/10.1038/nrneph.2010.54

9. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab. 2018 Sep;28(3):337-52. DOI: https://doi.org/10.1016/j.cmet.2018.08.014

10. Sharif MK, Butt MS, Anjum FM, Khan SH. Rice bran: a novel functional ingredient rice bran. Crit Rev Food Sci Nutr. 2014 Dec;54(6):807-16. DOI: https://doi.org/10.1080/10408398.2011.608586

11. Francisqueti FV, Minatel IO, Ferron AJT, Bazan SGZ, Silva VS, Garcia JL, et al. Effect of gamma-oryzanol as therapeutic agent to prevent cardiorenal metabolic syndrome in animals submitted to high-sugar-fat diet. Nutrients. 2017 Dec;9(12):1299.

12. Offert ED, Cross BM, McWilliam AA. Guide to the care and use of experimental animals. Ottawa: Canadian Council on Animal Care (CCAC); 1993. v. 1.

13. Kahlon TS, Chow FL, Sayre RN, Betschart AA. Cholesterol-lowering in hamsters fed rice bran at various levels, defatted rice bran and rice bran oil. J Nutr. 1992 Mar;122(3):513-9.

14. Luvizotto RAM, Nascimento AF, Imazaumi E, Perine DT, Conde SJ, Correa CR, et al. Lycopene supplementation modulates plasma concentrations and epididymal adipose tissue mRNA of leptin, resistin and IL-6 in diet-induced obese rats. Br J Nutr. 2013 Nov;110(10):1803-9.

15. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance. Diabetologia. 1985 Jul;28:412-9. DOI: https://doi.org/10.1007/BF00280883

16. Santos PP, Rafacho BPM, Gonçalves ADF, Jaldin RG, Nascimento TB, Silva MAB, et al. Vitamin D induces increased systolic arterial pressure via vascular reactivity and mechanical properties. PLoS One. 2014 Jun;9(6):e98895.

17. Samarghandian S, Farkhondeh T, Samini F, Borji A. Protective effects of carvacrol against oxidative stress induced by chronic stress in rat's brain, liver, and kidney. Biochem Res Int. 2016;2016:2649237.

18. Mesquita CS, Oliveira R, Bento F, Geraldo D, Rodrigues JV, Marcos JC. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal Biochem. 2014 Aug;458:69-71.

19. GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020 Feb;395(10225):709-33.

20. Francisqueti FV, Ferron AJT, Hasimoto FK, Alves PHR, Garcia JL, Santos KC, et al. Gamma oryzanol treats obesity-induced kidney injuries by modulating the adipoceptor receptor 2/PPAR-α axis. Oxid Med Cell Longev. 2018;2018:1278392.