Orthogonal Stability and Nonstability of a Generalized Quartic Functional Equation in Quasi-\(\beta\)-Normed Spaces

Nazek Alessa, K. Tamilvanan, K. Loganathan, T. S. Karthik, and John Michael Rassias

1Department of Mathematical Sciences, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
2Department of Mathematics, Government Arts College for Men, Krishnagiri, 635 001 Tamilnadu, India
3Research and Development Wing, Live4Research, Tiruppur, 638 106 Tamilnadu, India
4Department of Electronics and Communication Engineering, Aditya College of Engineering and Technology, Surampalem, 533 437 Andhra Pradesh, India
5Pedagogical Department-Mathematics & Informatics, The National and Kapodistrian University of Athens, 4, Agamemnonos Str., Agia Paraskevi, Attikis 15342, Greece

Correspondence should be addressed to K. Loganathan; loganathankaruppusamy304@gmail.com

Received 11 January 2021; Revised 28 January 2021; Accepted 4 February 2021; Published 15 February 2021

In this work, we examine the generalized Hyers-Ulam orthogonal stability of the quartic functional equation in quasi-\(\beta\)-normed spaces. Moreover, we prove that this functional equation is not stable in a special condition by a counterexample.

1. Introduction

In this paper, \(\mathbb{R}\) and \(\mathbb{C}\) denote sets of all real numbers and complex numbers, respectively. In the fall of 1940, Ulam [1] suggested the stability problem of functional equations concerning the stability of group homomorphisms as follows:

Ulam’s question: let \((G_1, \ast), (G_2, \star)\) be two groups and \(d : G_2 \times G_2 \to [0, \infty)\) be a metric. Given \(\delta > 0\), does there exist \(\varepsilon > 0\) such that if a function \(g : G_1 \to G_2\) satisfies the inequality

\[
d(g(x \ast y), g(x) \star g(y)) \leq \delta,
\]

for all \(x, y \in G_1\), then there is a homomorphism \(h : G_1 \to G_2\) with

\[
d(g(x), h(x)) \leq \varepsilon \text{ for all } x \in G_1.
\]

In other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equation arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, Hyers [2] gave the first affirmative answer to the question of Ulam for Banach spaces. This result was generalized by Aoki [3] for additive mappings.

During the past few years, several mathematicians have published on various generalizations and applications of generalized Hyers-Ulam stability to a number of functional equations and mappings (see, for instance, [4–15]).

In [16], Xu et al. obtained the general solution and investigated the Ulam stability problem for the quintic functional equation in quasi-\(\beta\)-normed spaces via fixed point method. This method is different from the direct method, initiated by Hyers in [2]. And also, Eskandani et al. [17, 18] obtained the general solution for the mixed additive and quadratic functional equation and a cubic functional equation and established its generalized Hyers-Ulam stability in quasi-\(\beta\)-normed spaces.

The Ulam-type stability result for the quartic functional equation

\[
F(x_1 + 2x_2) + F(x_1 - 2x_2) + 6F(x_1) = 4[F(x_1 + x_2) + F(x_1 - x_2) + 6F(x_2)],
\]
was first developed by Rassias [19]. Subsequently, Sahoo and Chung [20] determined the general solution of (3) without assuming any regularity conditions on the unknown function. In fact, they proved that the function \(f : \mathbb{R} \rightarrow \mathbb{R} \) is a solution of (3) if and only if \(f(x) = A(x, x, x, x) \), where the function \(A : \mathbb{R}^4 \rightarrow \mathbb{R} \) is symmetric and additive in each variable. Since the solution of (3) is even, we can rewrite (3) as

\[
f(2x + y) + f(2x - y) = 4f(x + y) + 4f(x - y) + 24f(x) - 6f(y).
\]

(4)

Lee et al. [21] obtained the general solution of (4) and proved the Hyers-Ulam-Rassias stability of this equation. It is easy to show that the function \(f(x) = x^4 \) satisfies the functional equation (4), which is called a quartic functional equation, and every solution of the quartic functional equation is said to be a quartic function. In [22] Ravi et al. have investigated the generalized Hyers-Ulam product-sum stability of functional equations and have the following theorem.

Theorem 1. Let \(f : E \rightarrow F \) be a mapping which satisfies the inequality

\[
\|f(mx + y) + f(mx - y) - 2f(x + y) - 2f(x - y) - 2(m^2 - 2)f(x) + 2f(y)\|_F \\
\leq \epsilon \left(\|x\|_E^p \|y\|_E^p + \|x\|_E^2 + \|y\|_E^2 \right),
\]

(5)

for all \(x, y \in E \) with \(x \perp y \), where \(\epsilon \) and \(p \) are constants with \(\epsilon > 0 \) and either \(m > 1 \), \(p < 1 \) or \(m < 1 \), \(p > 1 \) with \(m \neq 0 \), \(m \neq \pm 1 \), \(m \neq \pm \sqrt{2} \), and \(-1 \neq |m|^{p-1} < 1 \). Then, the limit \(\lim_{m \to \infty} m^{-2p}f(mx) \) exists for all \(x \in E \), and \(Q : E \rightarrow F \) is the unique orthogonally Euler-Lagrange quadratic mapping such that

\[
\|f(x) - Q(x)\|_F \leq \frac{\epsilon}{2|m^2 - m^2p|} \|x\|_E^{2p},
\]

(6)

for all \(x \in E \).

In 1982, Rassias [23] provided generalizations of the Hyers-Ulam stability theorem which allows the Cauchy difference controlled by a product of different powers of norm. And then, the result of the Rassias theorem has been generalized by Gavruta [24] by replacing the unbounded Cauchy difference by a generalized control function. Also, Rassias (see [23, 25–28]) solved the Ulam problem for different mappings. In addition, Ravi et al. considered the mixed product-sum of powers of norms control function [22]. Note that the mixed product-sum function was introduced by Ravi et al. in 2008-2009 ([22, 29–31]).

In this paper, we examine the generalized Hyers-Ulam orthogonal stability of the quartic functional equation as

\[
\phi \left(\sum_{d=1}^{m} v_d \right) = \sum_{1 \leq a < b < c < d \leq m} \phi(v_a + v_b + v_c + v_d) + (-m + 4) \sum_{i=1}^{m} \phi(v_i) + \frac{(m^2 - 7m + 12)}{2} \sum_{1 \leq a < b} \phi(v_a + v_b) \\
\hspace{1cm} + \frac{3}{6} \sum_{a=1}^{m} \phi(2v_a) - \frac{m^3 + 9m^2 - 26m + 120}{2} \sum_{a=1}^{m} \phi(v_a) + \frac{\phi(-v_a)}{2},
\]

(7)

where \(m \) is a positive integer with \(\mathbb{N} \setminus \{0, 1, 2, 3, 4\} \). It is easy to see that the function \(\phi(v) = av^4 \) is a solution of the functional equation (7).

2. Orthogonal Hyers-Ulam Stability

Lemma 2 (see [32]. Let \(E \) and \(F \) be real vector spaces. If the mapping \(\phi : E \rightarrow F \) satisfies the functional equation (7) for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \perp v_j ; i \neq j, 1, 2, \ldots, m \), then \(\phi \) is quartic.

Remark 3. Let \(E \) be a linear space and \(\phi : \mathbb{R} \rightarrow F \) be a function satisfies (7). Then, the following two assertions hold:

1. \(\phi(r^4v) = r^4\phi(v) \) for all \(v \in \mathbb{R} \) and \(r \in \mathbb{Q} \) and \(k \) integers.
2. \(\phi(v) = v^4\phi(1) \) for all \(v \in \mathbb{R} \) if \(\phi \) is continuous.

Here, let us consider \(E \) to be a linear space over \(\mathbb{F} \) and \(F \) is a \((\beta, p)\)-Banach space with \(p\)-norm \(\|\cdot\|_F \).

Let \(K \) be the modulus concavity of \(\|\cdot\|_F \).

For our convenience, we use the abbreviation for a function \(\phi : E \rightarrow F \):

\[
\Delta \phi(v_1, v_2, \ldots, v_m) = \phi \left(\sum_{1 \leq a < b < c < d \leq m} v_a + v_b + v_c + v_d \right) \\
\hspace{1cm} - \sum_{1 \leq a < b < c < d \leq m} \phi(v_a + v_b + v_c + v_d) \\
\hspace{1cm} - \sum_{1 \leq a < b} \phi(v_a + v_b) \\
\hspace{1cm} + \sum_{a=1}^{m} \phi(2v_a) - \frac{m^3 + 9m^2 - 26m + 120}{2} \sum_{a=1}^{m} \phi(v_a) + \frac{\phi(-v_a)}{2},
\]

(8)

for all \(v_1, v_2, \ldots, v_m \in E \).
Theorem 4. Let a function \(\phi : E \to F \) which there exists \(\psi : E^m \to [0,\infty) \) such that

\[
\|\Delta \phi(v_1, v_2, \ldots, v_m)\|_F \leq \psi(v_1, v_2, \ldots, v_m), \quad v_1, v_2, \ldots, v_m \in E,
\]

(9)

with \(v_i \neq v_j, i \neq j \in 1, 2, \ldots, m \), and the contractively subadditive function \(\psi \) and a constant \(L \) fulfilling \(2^{(1-\beta)}L < 1 \). Then, there exists a unique mapping \(Q_4 : E \to F \) which is quartic such that

\[
\|\phi(v) - Q_4(v)\|_F \leq \frac{K}{\sqrt{2^{4\beta} - (2L)^p}} \psi(v, 0, \ldots, 0),
\]

(10)

for all \(v \in E \).

Proof. Setting \((v_1, v_2, \ldots, v_m)\) by \((v, 0, \ldots, 0)\) in (9), we have

\[
\|\phi(2v) - 2^4 \phi(v)\|_F \leq \psi(v, 0, \ldots, 0),
\]

(11)

for all \(v \in E \). Replacing \(v \) in (11) by \(2^mv \) and dividing by \(2^{4(m+1)} \) in (11) we attain

\[
\|\phi(2^{m+1}v) - \phi(2^mv)\|_F \leq \frac{K}{2^{4(m+1)} \beta} \psi(2^mv, 0, \ldots, 0), \quad v \in E, m > 0.
\]

(12)

We have

\[
\|\phi(2^{m+1}v) - \phi(2^mv)\|_F^p \leq \sum_{i=1}^m \|\phi(2^{m+1}v) - \phi(2^mv)\|_F^p \leq \sum_{i=1}^m \frac{K}{2^{4(m+1)\beta}} \psi^p(2^mv, 0, \ldots, 0) \leq K \psi^p(v, 0, \ldots, 0) \left(2^{4m} \right)^{\beta p}.
\]

(13)

for all \(v \in E \) and \(m \geq i > 0 \). Clearly, \(F \) is complete, the Cauchy sequence \(\{\phi(2^mv)/2^m\} \) converges for every \(v \in E \). Next, we define a mapping \(Q_4 : E \to F \) by

\[
Q_4(v) = \lim_{m \to \infty} \frac{\phi(2^mv)}{2^m},
\]

(14)

for all \(v \in E \). Letting \(i = 0 \) and taking \(m \to \infty \) in (13), we obtain (10). Next, we want to prove that \(Q_4 \) is quartic. From (9) and (14) that

\[
K \Delta Q_4(v_1, v_2, \ldots, v_m)\|_F \leq \lim_{m \to \infty} \frac{K \Delta \phi(2^mv_1, 2^mv_2, \ldots, 2^mv_m)}{2^m}\|_F \leq \lim_{m \to \infty} K \frac{\psi(2^mv_1, 2^mv_2, \ldots, 2^mv_m)}{2^{4mp}} \psi(2^mv_1, 2^mv_2, \ldots, 2^mv_m) \leq \lim_{m \to \infty} K (2^{4m})^{\beta p} \psi^p(v_1, v_2, \ldots, v_m) = 0,
\]

(15)

for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \neq v_j, i \neq j \in 1, 2, \ldots, m \). Therefore, by Lemma 2, we conclude that \(Q_4 \) is quartic. Next, to show that the function \(Q_4 \) is unique.

Let us consider another quartic function \(R_4 : E \to F \) which fulfills the inequality (10) we get

\[
\|Q_4(v) - R_4(v)\|_F = \lim_{m \to \infty} \frac{1}{2^{4mp}} \|\phi(2^mv) - R_4(2^mv)\|_F \leq \lim_{m \to \infty} K \psi^p(v, 0, \ldots, 0) \left(2^{4m} \right)^{-\beta p} \leq \lim_{m \to \infty} K \psi^p(v, 0, \ldots, 0).
\]

(16)

This shows that \(Q_4 = R_4 \); therefore, \(Q_4 \) is unique mapping. This ends the proof of the theorem.

Corollary 5. If \(\beta = 1 \) and \(\tau \) be a positive real number and a function \(\phi : E \to F \) for which

\[
\|\Delta \phi(v_1, v_2, \ldots, v_m)\|_F \leq \tau,
\]

(17)

for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \neq v_j, i \neq j \in 1, 2, \ldots, m \). Then, there exists \(Q_4 : E \to F \) which is a unique quartic mapping that fulfills

\[
\|\phi(v) - Q_4(v)\|_F \leq \frac{K \tau}{\sqrt{2^{4\beta} - (2L)^p}}, \quad v \in E.
\]

(18)

The following theorem is obtained by replacing the expansive superadditive instead of the contractive subadditive in Theorem 4.

Theorem 6. Let a function \(\phi : E \to F \) in which exists a mapping \(\psi : E^m \to [0,\infty) \) such that

\[
\|\Delta \phi(v_1, v_2, \ldots, v_m)\|_F \leq \psi(v_1, v_2, \ldots, v_m),
\]

(19)

for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \neq v_j, i \neq j \in 1, 2, \ldots, m \), and the expansively superadditive function \(\psi \) and a constant \(L \) fulfilling \(2^{4(\beta-1)}L < 1 \). Then, there exists a unique mapping \(Q_4 : E \to F \) which is quartic which fulfills
\[\| \phi(v) - Q_4(v) \|_F \leq \frac{KL}{\sqrt{2^p - (2^p L)^p}} \psi(v, 0, \ldots, 0), \quad (20) \]

for all \(v \in E \).

With the upcoming theorems, we establish the stability of the equation \((7) \) by using an idea of Gavrutina in [24].

Theorem 7. Let a mapping \(\psi : E^m \to [0, \infty) \) such that
\[\lim_{m \to \infty} \frac{1}{2^m} \psi(2^m v_1, 2^m v_2, \ldots, 2^m v_m) = 0, \quad (21) \]
for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \perp v_j, i \neq j = 1, 2, \ldots, m \), and
\[\tilde{\psi}_{Q_4}(v) = \sum_{a=0}^{\infty} \frac{K}{2^{a p}} \psi(2^a v, 0, \ldots, 0) < \infty, \quad v \in E. \quad (22) \]

If \(\phi : E \to F \) is a mapping which fulfills
\[\| \Delta \phi(v_1, v_2, \ldots, v_m) \|_F \leq \psi(v_1, v_2, \ldots, v_m), \quad v_1, v_2, \ldots, v_m \in E, \quad (23) \]
with \(v_i \perp v_j, i \neq j = 1, 2, \ldots, m \), then there exists a unique mapping \(Q_4 : E \to F \) which is quartic which satisfies
\[\| \phi(v) - Q_4(v) \|_F \leq \frac{K}{2^{4 p}} \psi_{Q_4}(v)^{1/p}, \quad (24) \]
for all \(v \in E \).

Proof. From equation \((11) \) in Theorem 4, we get
\[\| \phi(2v) - 2^4 \phi(v) \| \leq \psi(v, 0, \ldots, 0), \quad v \in E. \quad (25) \]
Replacing \(v \) through \(2^m v \) in inequality \((25) \) and dividing by \(2^m v \), we obtain
\[\| \phi(2^m v) - 2^m \phi(v) \|_{2^m} \leq \frac{K}{2^{4 p}} \psi(2^{m} v, 0, \ldots, 0), \quad v \in E, m > 0. \quad (26) \]

Already, we know that \(F \) is a \((\beta, p)\)-Banach space; we obtain
\[\| \phi(2^{m+1} v) - \phi(v) \|_{2^{m+1}} \leq \frac{K}{2^{4 p}} \psi(2^{m+1} v, 0, \ldots, 0), \quad (27) \]
for all \(v \in E \) with \(m \geq i > 0 \). From inequalities \((22) \) and \((27) \) that the sequence \(\{ \phi(2^{m} v)/2^{4 m} \} \) is Cauchy in \(F \) for every \(v \in E \). We know that if \(F \) is complete, the sequence \(\{ \phi(2^{m} v)/2^{4 m} \} \) converges for every \(v \in E \). Now, we can define a map-

\[Q_4(v) := \lim_{m \to \infty} \phi(2^m v), \]

for all \(v \in E \). Letting \(i = 0 \) and taking \(m \to \infty \) in \((27) \), we obtain the result \((24) \). The remaining proof is the same as the proof of Theorem 4.

Theorem 8. Let \(\psi : E^m \to [0, \infty) \) be a mapping such that
\[\lim_{m \to \infty} 2^m \psi(2^m v_1, 2^m v_2, \ldots, 2^m v_m) = 0, \quad v_1, v_2, \ldots, v_m \in E, \quad (29) \]
with \(v_i \perp v_j, i \neq j = 1, 2, \ldots, m \), and
\[\psi_Q(v, 0, \ldots, 0) = \sum_{a=0}^{\infty} 2^{4 a p} \psi(2^a v, 0, \ldots, 0) < \infty, \quad (30) \]
for all \(v \in E \). If \(\phi : E \to F \) fulfills
\[\| \Delta \phi(v_1, v_2, \ldots, v_m) \|_F \leq \psi(v_1, v_2, \ldots, v_m), \quad v_1, v_2, \ldots, v_m \in E, \quad (31) \]
with \(v_i \perp v_j, i \neq j = 1, 2, \ldots, m \). Then, there exists a unique function \(Q_4 : E \to F \) which is quartic which fulfills
\[\| \phi(v) - Q_4(v) \|_F \leq \frac{K}{2^4 p} \psi(v, 0, \ldots, 0), \quad v \in E. \quad (32) \]

Proof. From equation \((11) \), we get
\[\| \phi(2v) - 2^4 \phi(v) \| \leq \psi(v, 0, \ldots, 0), \quad v \in E. \quad (33) \]
Setting \(v \) by \(v/2^{m+1} \) in \((33) \) and multiply by \(2^4 m \), we have
\[\| 2^m \phi(v/2^m) - 2^m \phi(v) \|_F \leq \psi(v/2^m, 0, \ldots, 0), \quad v \in E, m > 0, \quad (34) \]
we have
\[\| 2^m \phi(v/2^{m+1}) - 2^m \phi(v/2^{m+1}) \|_F \leq \sum_{i=m}^{\infty} 2^{4 i p} \psi(v/2^{m+1}, 0, \ldots, 0), \quad v \in E, m \geq i > 0. \quad (35) \]

Then, we conclude from \((42) \) and \((34) \) that the sequence \(\{ 2^m \phi(v/2^m) \} \) is Cauchy in \(F \) for every \(v \in E \).

As \(F \) is complete, the sequence \(\{ 2^m \phi(v/2^m) \} \) converges for every \(v \in E \). Next, we define a mapping \(Q_4 : E \to F \) by
\[Q_4(v) := \lim_{m \to \infty} 2^m \phi(v/2^m), \quad (36) \]
for all \(v \in E \). Letting \(i = 0 \) and taking \(m \to \infty \) in \((34) \), we
obtain (32). The remaining proof is the same as the proof of Theorem 4.

Corollary 9. Let \(s, t \) be the positive real numbers such that \(s + t < 4\beta \) or \(s + t > 4 \). If a mapping \(\phi : E \to F \) satisfies the inequality

\[
\| \Delta \phi(v_1, v_2, \ldots, v_m) \|_F \leq \prod_{a=1}^{m} \| v_a \|_E^{(s+t)} + \sum_{a=1}^{m} \| v_a \|_E^{m(s+t)},
\]

(37)

for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \neq v_j, i \neq j = 1, 2, \ldots, m \), then there exists a unique quartic mapping \(Q_4 : E \to F \) which satisfies

\[
\| \phi(v) - Q_4(v) \|_F \leq \frac{K\|v\|^{(s+t)}}{\sqrt{12^{(m+1)} - 2^{(m+3)}t}}.
\]

(38)

for all \(v \in E \).

Corollary 10. Let \(s, t \) be the positive real numbers such that \(s + t < 4\beta \) or \(s + t > 4 \). If a mapping \(\phi : E \to F \) satisfies the inequality

\[
\| \Delta \phi(v_1, v_2, \ldots, v_m) \|_F \leq \prod_{a=1}^{m} \| v_a \|_E^{(s+t)} + \sum_{a=1}^{m} \| v_a \|_E^{m(s+t)},
\]

(39)

for all \(v_1, v_2, \ldots, v_m \in E \) with \(v_i \neq v_j, i \neq j = 1, 2, \ldots, m \), then the mapping \(\phi : E \to F \) is quartic.

3. Counterexample

Here, we proved the nonstability of equation (7) in a special condition by a counterexample which is a modified idea of Gajda [9].

Example 11. Let a mapping \(\phi : \mathbb{R} \to \mathbb{R} \) defined by

\[
\phi(v) = \sum_{m=0}^{\infty} \chi(2^m v^2), \quad \text{where}
\]

\[
\chi(v) = \begin{cases}
\Theta v^4, & -1 < v < 1, \\
\Theta, & \text{otherwise},
\end{cases}
\]

then the function \(\phi : \mathbb{R} \to \mathbb{R} \) fulfills

\[
\| \Delta \phi(v_1, v_2, \ldots, v_m) \| \leq \left(\frac{-m^3 + 12m^2 - 53m + 198}{6} \right) \left(\frac{4096}{15} \right) \sum_{a=1}^{m} |v_a|^4,
\]

(42)

for all \(v_1, v_2, \ldots, v_m \in \mathbb{R} \), but there does not exist a quartic mapping \(Q_4 : \mathbb{R} \to \mathbb{R} \) such that

\[
\| \phi(v) - Q_4(v) \| \leq \varepsilon |v|^4, \quad v \in \mathbb{R},
\]

(43)

where \(\Theta \) and \(\varepsilon \) are constants.

Proof. Clearly, \(\phi \) is bounded by \((16/15)\Theta\) on \(\mathbb{R} \). If \(\sum_{a=1}^{m} |v_a|^4 \geq 1/2^4 \) or 0, then the left side of (29) is less than \(((−m^3 + 12m^2 - 53m + 198)/6)\Theta\), and thus, (29) is true.

Next, we assume that

\[
0 < \sum_{a=1}^{m} |v_a|^4 < \frac{1}{2^4},
\]

then there exists an integer \(i \) such that

\[
\sum_{a=1}^{m} |v_a|^4 < \frac{1}{2^4(1+i)}.
\]

So that \(2^i |v_1| < 1/2, 2^i |v_2| < 1/2, \ldots, 2^i |v_m| < 1/2 \) and \(2^m v_1, 2^m v_2, \ldots, 2^m v_m \in (-1, 1) \) for every \(m = 0, 1, 2, \ldots, i-1 \). For \(m = 0, 1, 2, \ldots, i-1 \),

\[
\chi \left(\sum_{a=1}^{m} 2^m v_a \right) - \sum_{1 \leq a < b < c < d \leq m} \chi(2^m (v_a + v_b + v_c + v_d))
\]

\[
- \left(-m + 4 \right) \sum_{1 \leq a < b < c < d \leq m} \chi(2^m (v_a + v_b + v_c + v_d))
\]

\[
- \left(m^2 - 7m + 12 \right) \sum_{a=1}^{m} \chi(2^m (v_a + v_b + v_c))
\]

\[
\sum_{a=1}^{m} \chi(2^m v_a) - \chi(2^m v_a)
\]

\[
= 0.
\]

(46)
\[
\sum_{n=1}^{m} \left(\frac{\lambda(2^{n} v_{n}) + \lambda(-2^{n} v_{n})}{2} \right) \\
\leq \sum_{n=1}^{m} \left(\frac{n^{3} + 12m - 53m + 198}{6} \right) \Theta \\
\leq \left(\frac{n^{3} + 12m - 53m + 198}{6} \right) \frac{2^{(1-i)}}{15} \Theta.
\]

(47)

It follows from (43) that

\[
|\Delta \phi(v_{1}, v_{2}, \ldots, v_{m})| \leq \left(\frac{n^{3} + 12m - 53m + 198}{6} \right) \frac{4096}{15} \Theta \left(\sum_{n=1}^{m} |v_{n}|^{4} \right),
\]

(48)

for all \(v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{R} \). Thus, \(\phi \) satisfies (29) for all \(v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{R} \) with \(v_{1}, v_{2}, \ldots, v_{m} \in \mathbb{R} \) with \(v_{1} \neq v_{2}, \ldots, v_{m} \).

Assume that there is a contrary mapping \(Q_{4} : \mathbb{R} \rightarrow \mathbb{R} \)

which is quartic which fulfills (42). We know that, for every \(\lambda \in \mathbb{R} \), \(\lambda \) is bounded and continuous and \(Q_{4} \) is bounded on any open interval containing the origin which is continuous at the origin.

In the view of Remark 3, \(Q_{4} \) must be \(Q_{4}(\lambda) = \lambda v^{4}, \lambda \in \mathbb{R} \). Thus, we have

\[
|\phi(\lambda) - (\lambda |a|) \lambda v^{4}| = \epsilon |a| \lambda v^{4}, \quad \lambda \in \mathbb{R}.
\]

(49)

But we can select an integer \(i \geq 0 \) with \(i \Theta > \epsilon + |a| \). If \(\lambda \in (0, 1/2^{i-1}) \), then \(2^{n} \lambda \in (0, 1) \) for any \(m = 0, 1, \ldots, i - 1 \), and for \(\lambda \), we obtain

\[
\phi(\lambda) = \sum_{m=0}^{\infty} \lambda(2^{m} \lambda) \geq \sum_{m=0}^{i-1} \Theta(2^{m} \lambda)^{4} = i \Theta \lambda^{4} > (\epsilon + |a|) \lambda v^{4},
\]

(50)

which contradicts.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no competing interests.

Authors’ Contributions

All authors contributed equally to this work. And all the authors have read and approved the final version of the manuscript.

Acknowledgments

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-Track Research Funding Program.

References

[1] S. M. Ulam, *Problems in Modern Mathematics*, Chapter IV, Science Editions, Wiley, New York, 1960.

[2] D. H. Hyers, "On the stability of the linear functional equation," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 27, no. 4, pp. 222–224, 1941.

[3] T. Aoki, "On the stability of the linear transformation in Banach spaces," *Journal of the Mathematical Society of Japan*, vol. 2, no. 1-2, pp. 64–66, 1950.

[4] N. Alessa, K. Tamilvanan, G. Balasubramanian, and K. Loganathan, "Stability results of the functional equation deriving from quadratic function in random normed spaces," *AIMS Mathematics*, vol. 6, no. 3, pp. 2385–2397, 2020.

[5] I. El-Fassi and S. Kabbaj, "Non-Archimedean random stability of \(\sigma \)-quadratic functional equation," *Thai Journal of Mathematics*, vol. 14, no. 1, pp. 151–165, 2016.

[6] I. I. El-Fassi and S. Kabbaj, "On the generalized orthogonal stability of the pexiederized quadratic functional equation in modular space," *Mathematica Slovaca*, vol. 6, no. 1, pp. 165–178, 2017.

[7] M. E. Gordji, H. Khodaei, A. Ebadian, and G. H. Kim, "Nearly radical quadratic functional equations in \(p \)-2-normed spaces," *Abstract and applied analysis*, vol. 2012, Article ID 896032, 10 pages, 2012.

[8] G. L. Forti, "Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations," *Journal of Mathematical Analysis and Applications*, vol. 295, no. 1, pp. 127–133, 2004.

[9] Z. Gajda, "On stability of additive mappings," *Journal of Mathematical Analysis and Applications*, vol. 14, no. 3, article 178, 2017.

[10] M. F. Gordji, H. Khodaei, and T. M. Rassias, *A functional equation having monomials and its stability*, vol. 96 of Springer Optimization and Its Applications, Springer New York, New York, NY, 2014.

[11] S. M. Jung, T. M. Rassias, and C. Mortici, "On a functional equation of trigonometric type," *Applied Mathematics and Computation*, vol. 252, pp. 294–303, 2015.

[12] H. Khodaei, M. Eshaghi Gordji, S. S. Kim, and Y. J. Cho, "Approximation of radical functional equations related to quadratic and quartic functions," *Journal of Mathematical Analysis and Applications*, vol. 395, no. 1, pp. 284–297, 2012.

[13] J. M. Rassias and H.-M. Kim, "Generalized Hyers-Ulam stability for a general additive functional equation in quasi-\(\beta \)-normed spaces," *Journal of Mathematical Analysis and Applications*, vol. 356, no. 1, pp. 302–309, 2009.

[14] K. Tamilvanan, G. Balasubramanian, N. Alessa, and K. Loganathan, "Hyers–Ulam stability of additive functional equation using direct and fixed-point methods," *Journal of Mathematics*, vol. 2020, Article ID 6678772, 9 pages, 2020.

[15] L. G. Wang and B. Liu, "The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in quasi-\(\beta \)-normed spaces," *Acta Mathematica Sinica, English Series*, vol. 26, no. 12, pp. 2335–2348, 2010.

[16] T. Z. Xu, J. M. Rassias, M. J. Rassias, and W. X. Xu, "A fixed point approach to the stability of quintic and sextic functional equations in quasi-\(\beta \)-normed spaces," *Journal of Inequalities and Applications*, vol. 2010, no. 1, Article ID 423231, 2010.

[17] G. Z. Eskandani, P. Gavruta, J. M. Rassias, and R. Zarghami, "Generalized Hyers-Ulam stability for a general mixed
functional equation in quasi-β-normed spaces,” *Mediterranean Journal of Mathematics*, vol. 8, no. 3, pp. 331–348, 2011.

[18] G. Z. Eskandani, J. M. Rassias, and P. Gavruta, “Generalized Hyers-Ulam stability for a general cubic functional equation in quasi-β-normed spaces,” *Asian-European Journal of Mathematics*, vol. 4, no. 3, pp. 413–425, 2012.

[19] J. M. Rassias, “Solution of the Ulam stability problem for quartic mappings,” *Glasnik matematički*, vol. 34, no. 54, pp. 243–252, 1999.

[20] P. K. Sahoo and J. K. Chung, “On the general solution of a quartic functional equation,” *Bulletin of the Korean Mathematical Society*, vol. 40, no. 4, pp. 565–576, 2003.

[21] Y. -S. Lee and S. -Y. Chung, “Stability of quartic functional equations in the spaces of generalized functions,” *Advances in Difference Equations*, vol. 2009, no. 1, Article ID 838347, 2009.

[22] K. Ravi, M. Arunkumar, and J. M. Rassias, “Ulam stability for the orthogonally general Euler-Lagrange type functional equation,” *International Journal of Mathematics and statistics*, vol. 3, pp. 36–46, 2008.

[23] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” *Journal of Functional Analysis*, vol. 46, no. 1, pp. 126–130, 1982.

[24] P. Gavruta, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings,” *Journal of Mathematical Analysis and Applications*, vol. 184, no. 3, pp. 431–436, 1994.

[25] J. M. Rassias, “On approximation of approximately linear mappings by linear mappings,” *Bulletin des Sciences Mathématiques*, vol. 108, no. 4, pp. 445–446, 1984.

[26] J. M. Rassias, “Solution of a problem of Ulam,” *Journal of Approximation Theory*, vol. 57, no. 3, pp. 268–273, 1989.

[27] J. M. Rassias, “Solution of a stability problem of Ulam,” *Discussiones Mathematicae*, vol. 12, pp. 95–103, 1992.

[28] J. M. Rassias, “On the stability of the non-linear Euler-Lagrange functional equation,” *Chinese Journal of Mathematics*, vol. 20, no. 2, pp. 185–190, 1992.

[29] H. X. Cao, J. R. Lv, and J. M. Rassias, “Superstability for generalized module left derivations and generalized module derivations on a Banach module (I),” *Journal of Inequalities and Applications*, vol. 2009, no. 1, Article ID 718020, 2009.

[30] H. X. Cao, J. R. Lv, and J. M. Rassias, “Superstability for generalized module left derivations and generalized module derivations on a Banach module (II),” *Journal of Inequalities in Pure & Applied Mathematics [electronic only]*, vol. 10, no. 3, article 85, 2009.

[31] K. Ravi, J. M. Rassias, M. Arunkumar, and R. Kodandan, “Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation,” *Journal of Inequalities in Pure and Applied Mathematics*, vol. 10, pp. 1–29, 2009.

[32] S. Pinelas, V. Govindan, and K. Tamilvanan, “Stability of a quartic functional equation,” *Journal of Fixed Point Theory and Applications*, vol. 20, no. 4, 2018.