Adenosine Diphosphate (ADP)-Ribosylation of the Guanosine Triphosphatase (GTPase) Rho in Resting Peripheral Blood Human T Lymphocytes Results in Pseudopodial Extension and the Inhibition of T Cell Activation

By Darren G. Woodside, David K. Wooten, and Bradley W. McIntyre

From the Department of Immunology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030

Summary

Scrape loading Clostridium botulinum C3 exoenzyme into primary peripheral blood human T lymphocytes (PB T cells) efficiently adenosine diphosphate (ADP)-ribosylates and thus inactivates the guanosine triphosphatase (GTPase) Rho. Basal adhesion of PB T cells to the β1 integrin substrate fibronectin (Fn) was not inhibited by inactivation of Rho, nor was upregulation of adhesion using phorbol myristate acetate (PMA; 10 ng/ml) or Mn²⁺ (1 mM) affected. Whereas untreated PB T cells adherent to Fn remain spherical, C3-treated PB T cells extend F-actin–containing pseudopodia. Inactivation of Rho delayed the kinetics of PMA-dependent PB T cell homotypic aggregation, a process involving integrin αLβ2. Although C3 treatment of PB T cells did not prevent adhesion to the β1 integrin substrate Fn, it did inhibit β1 integrin/CDC3-mediated costimulation of proliferation. Analysis of intracellular cytokine production at the single cell level demonstrated that ADP-ribosylation of Rho inhibited β1 integrin/CDC3 and CD28/CDC3 costimulation of IL-2 production within 6 h of activation. Strikingly, IL-2 production induced by PMA and ionomycin was unaffected by C3 treatment. Thus, the GTPase Rho is a novel regulator of T lymphocyte cytoarchitecture, and functional Rho is required for very early events regulating costimulation of IL-2 production in PB T cells.

Key words: integrins • cytoskeleton • interleukin 2 • cell adhesion • extracellular matrix

The actin cytoskeleton is clearly important in the regulation of T lymphocyte activity at a variety of different levels. A number of cell surface proteins involved in T cell function are associated with cytoskeletal complexes, including integrin receptors of the β1 and β2 subfamilies (1), CD45 (2, 3), CD2, CD4, CD8, CD44, class I MHC (4), and the ζ chain of the TCR–CD3 complex (5–7). As such, an intact cytoskeleton is essential for sustained signals required for T cell activation and may be necessary for TCR aggregation (8), as well as the spatial redistribution of cell surface molecules at the contact site between antigen-presenting cells and T cells (9). The role of the actin cytoskeleton is emerging as not just a conglomeration of protein subunits maintaining cell shape, but rather, as a highly coordinated molecular array providing a scaffold for the spatial distribution of mechanistic and signaling components requisite for physiologic function of T lymphocytes.

Key regulators of the actin cytoskeleton involve small GTPases of the Rho family. These include RhoA, RhoB, RhoC, Rac1, Rac2, Cdc42, TC10, G25K, and RhoD (for review see references 10, 11). Rho proteins are biochemical switches that when in the GTP-bound state regulate diverse biological phenomenon ranging from morphological changes to cytokinesis and gene induction. C3 exoenzyme from Clostridium botulinum specifically inhibits Rho activity, and not that of Rac or Cdc42 proteins, by adenosine diphosphate (ADP)¹-ribosylating Rho on Asn¹⁰ of the Rho effector domain. By using this Rho-specific inactivator, it has been demonstrated in leukocytes that Rho activity is required for B cell homotypic aggregation (13) and chemokine-induced adhesion (14), neutrophil migration and upregulated adhesion (14–16), NK cell mobility and cytolysis (17, 18), and the maintenance of monocyte morphology (19, 20). Recently, thymus-targeted C3 transgenic mice have been developed that demonstrate markedly decreased thymic mass and decreased numbers of mature T cells (21). In contrast, no studies to date have addressed the function of Rho in regulation of human peripheral blood T lymphocyte (PB T cell) activity.

Abbreviations used in this paper: 4,5-PIP₂, phosphatidylinositol 4,5-bisphosphate; ADP, adenosine diphosphate; Fn, fibronectin; GTP, guanosine triphosphatase; PB, peripheral blood; PIP₅-kinase, phosphatidylinositol 4-phosphate 5-kinase; PLC, phospholipase C.
activation or in the regulation of the actin cytoskeleton. We have used the Rho-specific inactivator, C3 exoenzyme (12), to demonstrate the requirement of functional Rho in homotypic aggregation, maintenance of cell shape, and finally, in the codulation of proliferation and IL-2 production in primary PB T cells.

Materials and Methods

Reagents. PMA, ionomycin, poly-L-lysine, and TRITC-phalloidin were purchased from Sigma Chemical Co. (St. Louis, MO). Fibronectin (Fn) was affinity purified from 200 ml of human plasma (Gulf Coast Regional Blood Center, Houston, TX) according to Hynes (22). Fn purity was determined by SDS-PAGE. Ig from the anti-CD3 mAb OKT3 hybridoma was purified from ascites. Anti-β1 integrin mAb 33B6 and anti-α4β1 integrin mAb 19H8 were generated in this laboratory and have been previously described (23, 24). The anti-αLβ2 mAb 8SG1 was generated in this laboratory. mAbs rat anti-human IL-2–PE (Pierce Chemical Co., Rockford, IL). Chemiluminescence was performed as described elsewhere (25). In brief, mononuclear cells were isolated from the buffy coats (Gulf Coast Regional Blood Center) of healthy donors by density-dependent cell separation on Ficoll-Hypaque (1.077 g/ml; Amersharm Pharmacia Biotech Inc., Piscataway, NJ). Mo monocytes were removed by several rounds of plastic adherence on tissue culture-treated petri dishes (Corning Glass Works, Corning, NY) for 45 min at 37°C and 5% CO2. Further density-dependent cell separation was performed on discontinuous percoll (295 mOsm; Sigma Chemical Co.) gradients (44, 48, and 60% vol/vol percoll in RPMI-1640; GIBCO BRL, Gaithersburg, MD). Purified T cells were obtained by negative selection as previously described (25). In brief, mononuclear cells were isolated from the buffy coats (Gulf Coast Regional Blood Center) of healthy donors by density-dependent cell separation on Ficoll-Hypaque (1.077 g/ml; Amersharm Pharmacia Biotech Inc., Piscataway, NJ). Mo monocytes were removed by several rounds of plastic adherence on tissue culture-treated petri dishes (Corning Glass Works, Corning, NY) for 45 min at 37°C and 5% CO2. Further density-dependent cell separation was performed on discontinuous percoll (295 mOsm; Sigma Chemical Co.) gradients (44, 48, and 60% vol/vol percoll in RPMI-1640; GIBCO BRL) to remove residual monocytes, PMNs, and red blood cells. The 48%/60% interface layer was carefully collected, washed in RPMI-1640, and then B lymphocytes were removed by adherence to nylon wool (Polysciences Inc., Warrington, PA) columns for 45 min at 37°C and 5% CO2. The resultant lymphocyte population was routinely >95% CD3+ as determined by flow cytometric analysis (Epics Profile; Coulter Immunology, Hialeah, FL). Purified T cells were maintained in complete media and used within 24 h of isolation.

Western Blotting. Cell lysates from ~2×106 cell equivalents (J45.01) or 3×105 cell equivalents (PB T cells) were subjected to 12.5% SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes (Bio-Rad Laboratories, Hercules, CA). The following Western blotting steps were carried out at 4°C for at least 2 h. PVDF membranes were blocked with 5% BSA and 5% nonfat milk in TBS/Tween (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-20) after transfer from gels. Membranes were extensively washed and then incubated with the primary (0.5 μg/ml) goat anti-RhoA polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA). After washing, membranes were incubated with goat anti-rabbit HRP (Cappel Laboratories, Malvern, PA). Chemiluminescence was performed as described by the manufacturer (Pierce Chemical Co., Rockford, IL).

Cell A dhesion Assays. Adhesion assays were performed in modified Ty rodes buffer (26) composed of 12 mM NaHCO3, pH 7.4, 150 mM NaCl, 2.5 mM KCl, 2 mM MgCl2, 1 mg/ml BSA, and 1 mg/ml glucose. Plates were precoated with Fn (10 μg/ml) for at least 2 h at room temperature in 0.1 M NaHCO3. BSA (2% wt/vol) was then added to block unbound sites. Cells were resus- tained in modified Ty rodes buffer alone or in modified Ty rodes buffer containing PM A (10 ng/ml) or M n+ (1 mM). After 1 × 106 cells were added to the washed plates in 100 μl of modified Ty rodes, plates were spun at 300 rpm for 5 min and then incubated for 45 min at 37°C and 5% CO2. Two digitized images captured as described in Szabo et al. (27) were analyzed using N ational Institutes of H ealth Image software (available from ftp:// cdc.nih.gov/pub/nih-image/nihimage161 fat.hpx) from each well before washing and then plates were carefully washed 4× with prewarmed (37°C) modified Ty rodes buffer. After washing, images from the prewash position were analyzed again. Cell numbers were quantitated using NIH Image software and adhesion assays are graphed as the percentage of input cells remaining after washing.

Quantitation of Cell Morphology. Quantitation of cell morphology by digital image analysis was performed as described previously (27). Images of Fn adherent cells (obtained from the same cells used in the adhesion assays described above) were digitized and analyzed with NIH Image software. Dividing the theoretical maximum area for a given perimeter (perimeter^2/4π) by the observed area provides a spreading index where absolute roundness is 1.0 (27). Any deviation from roundness gives a spreading index >1.0. Random fields of adherent cells were captured from various treatment groups and the spreading index quantitated. A percent change from roundness was calculated according to the following formula: % change = ([morphological index C3 treated − 1.0]/[morphological index C3 control − 1.0]) × 100.

Intracellular Incorporation of M acromolecules into Freshly Isolated PB T Lymphocytes. C3 was scaped loaded into freshly isolated PB T lymphocytes. Bacteriological petri dishes (35 mm; Becton Dickinson Labware (Lincoln Park, NJ)) were coated with the nonspecific cell attachment factor pol y-L-lysine (10 μg/ml) during exponential growth phase for 4 h. Bacteria were washed 4× in RPMI-1640 and resuspended at 1 × 106 cells/ml in RPMI-1640. These cells were plated (≤15 × 106 cells/dish) onto PBS washed poly-L-lysine dishes and incubated for 30 min at 37°C. After incubation, supernatants were removed and at least 200 μl of prewarmed (37°C) RPMI-1640 containing C3 (50 μg/ml) or appropriate controls were gently layered over the cells. After further incubation for 5 min at 37°C, cells were physically removed from the surface with a cell scraper (Costar, Cambridge, MA). These cells were then collected and placed in a 37°C 5% CO2 humidified incubator for at least 1 h before use. Cells treated under the scrape loading conditions maintain functionality and sufficient quantities can be recovered for biochemical analysis (28).

C3 Purification. C3 purification has been described in detail elsewhere (29). In brief, JM 109 transformed with C3 plasmid pGEX2T-C3 (provided by Dr. L. Feig, Tufts University, Boston, MA) were incubated with isopropyl-β-thiogalactopyranoside (100 μg/ml) during exponential growth phase for 4 h. Bacteria were lysed in cold PBS containing 1 mg/ml lysozyme, 1% Triton X-100, 25% sucrose, 1 mM EDTA, 5 mM 2-mercaptoethanol, and 1 mM PMF. After sonication and DNase I (100 μg/ml; Boehringer Mannheim Corp., Indianapolis, IN) treatment, the lysate was centrifuged and supernatant was added to glutathione-agarose beads (Amersharm Pharmacia Biotechnology Inc.), which
were then plated (5 × 10^5) at 37°C (50 μg/ml) of peripheral blood T cells that had been scrape loaded with BSA washed extensively before use with RPMI-1640. Purified human NaHCO3, pH 8.0), all in conjunction with the anti-CD3 mAb anti-OKT3 (1 μg/ml) by first incubating 50 μg purified C3 and 2 μCi [32P]-NAD (Dupont-NEN, Boston, MA) were added. After incubation for 1 h at 37°C, SDS was added to 2% final wt/vol and this mixture was immersed in a boiling water bath for 10 min. Eight volumes of ice-cold ethanol was then added and these samples were kept at −20°C for at least 1 h. Precipitated proteins were pelleted and dissolved in SDS-PAGE sample buffer by boiling for 10 min. 10 μg purified C3 was cleaved from washed cold sonication buffer (250 mM sucrose, 10 mM Hepes, pH 7.4, 1 mM EDTA, 5 mM MgCl2, 1 mM dithiothreitol [DTT], 0.1 mM GTP, 1 μg/ml leupeptin, 1 μg/ml pepstatin A, 1 μg/ml aprotenin, and 1 mM PMSF) and sonicated for 10 s. After purification, 100 μl of the mixture was added to 50 μl of 3× reaction buffer containing 150 mM Tris-HCl, pH 8.0, 30 mM thymidine, 3 mM DTT, 5 mM MgCl2, and 0.3 mM GTP. To this mixture, 1.0 μg purified C3 and 2 μCi [32P]-NAD (Dupont-NEN, Boston, MA) were added. After incubation for 1 h at 37°C, SDS was added to 2% final wt/vol and this mixture was immersed in a boiling water bath for 10 min. Eight volumes of ice-cold ethanol was then added and these samples were kept at −20°C for at least 1 h. Precipitated proteins were pelleted and dissolved in SDS-PAGE sample buffer by boiling for 10 min. Samples were then subjected to 12.5% SDS-PAGE and analyzed by autoradiography.

C3 Ribosylation. C3 was scrape loaded into PB T lymphocytes at a concentration of 50 μg/ml. After scrape loading, cells were transferred into 1.5-ml eppendorf tubes and incubated for 1 h at 37°C to allow ribosylation. Cells were then washed extensively in 1% BSA/PBS to remove any C3 not incorporated into the cells. Next, the cells were resuspended at 5 × 10^6 cells/ml in ice-cold sonication buffer (250 mM sucrose, 10 mM Hepes, pH 7.4, 1 mM EDTA, 5 mM MgCl2, 1 mM dithiothreitol [DTT], 0.1 mM GTP, 1 μg/ml leupeptin, 1 μg/ml pepstatin A, 1 μg/ml aprotenin, and 1 mM PMSF) and sonicated for 10 s. After purification, 100 μl of the mixture was added to 50 μl of 3× reaction buffer containing 150 mM Tris-HCl, pH 8.0, 30 mM thymidine, 3 mM DTT, 5 mM MgCl2, and 0.3 mM GTP. To this mixture, 1.0 μg purified C3 and 2 μCi [32P]-NAD (Dupont-NEN, Boston, MA) were added. After incubation for 1 h at 37°C, SDS solubilized C3 was cleaved from washed cold sonication buffer (250 mM sucrose, 10 mM Hepes, pH 7.4, 1 mM EDTA, 5 mM MgCl2, 1 mM dithiothreitol [DTT], 0.1 mM GTP, 1 μg/ml leupeptin, 1 μg/ml pepstatin A, 1 μg/ml aprotenin, and 1 mM PMSF) and sonicated for 10 s. After purification, 100 μl of the mixture was added to 50 μl of 3× reaction buffer containing 150 mM Tris-HCl, pH 8.0, 30 mM thymidine, 3 mM DTT, 5 mM MgCl2, and 0.3 mM GTP. To this mixture, 1.0 μg purified C3 and 2 μCi [32P]-NAD (Dupont-NEN, Boston, MA) were added. After incubation for 1 h at 37°C, SDS was added to 2% final wt/vol and this mixture was immersed in a boiling water bath for 10 min. Eight volumes of ice-cold ethanol was then added and these samples were kept at −20°C for at least 1 h. Precipitated proteins were pelleted and dissolved in SDS-PAGE sample buffer by boiling for 10 min. Samples were then subjected to 12.5% SDS-PAGE and analyzed by autoradiography.

F-A din Staining. PB T cells that had been scrape loaded with BSA (50 μg/ml) or C3 (50 μg/ml) were incubated in modified T yodies buffer on glass coverslips that had been precoated with Fn (10 μg/ml, in Tris-HCl, pH 9.5). Adherent PB T cells were then fixed overnight at 4°C in 2% paraformaldehyde. After fixation, cells were then treated with 0.1% Triton X-100 in PBS for 1 h at 4°C. Cells were then washed and incubated with 0.8 μM TRITC-phalloidin for 2 h at 4°C in PBS containing 1% FBS. After washing, coverslips were air dried and mounted in n-propyl gal late (2% wt/vol) in glycerol containing 10% PBS and then visualized on a Nikon Diaphot TMD inverted microscope.

Results and Discussion

C3 Induces A D P-Ribosylation of Rho in Human PB T Cells. Western blotting analysis confirmed the presence of RhoA (~25 kD) in the Jurkat variant J45.01 and PB T cells (Fig. 1A). To study the role played by Rho in PB T cells we developed a technique allowing intracellular incorporation of macromolecules into freshly isolated T cells that maintain their functional cellular integrity and allows recovery of quantities of cells sufficient for biochemical analyses (28). This technique involves scrape loading T cells that are firmly adherent to the nonspecific cell attachment factor poly-L-lysine. After scrape loading BSA (50 μg/ml) as a control or C3 exoenzyme (50 μg/ml), cells were incubated overnight at 4°C. C3 was cleaved from washed cold sonication buffer. Cells were fixed in 2% (wt/vol) paraformaldehyde overnight at 4°C, then permeabilized by washing once and resuspending with 0.1% (wt/vol) saponin (Sigma Chemical Co.), 1% FBS, and 0.1% NaN3 in PBS (permeabilization buffer). Directly conjugated anti-IL-2 mAb was then added. After 30 min at 4°C, cells were again washed in permeabilization buffer two times, once in stain/wash buffer, and then read on an Epics Profile flow cytomter (Coulter Immunology). Control staining was performed with directly conjugated isotype and fluorochrome-matched immunoglobulin and then a minimum of 2 × 10^4 events were counted per test sample.

Figure 1. (A) Western blot of RhoA protein in whole cell lysates of the T cell line J45.01 and purified PB T lymphocytes. (B) Scrape loading efficiently incorporates enough C3 into freshly isolated, highly purified PB T lymphocytes for full ribosylation of RhoA. Purified resting PB T cells were untreated (lane 1), scrape loaded with 50 μg/ml BSA and control buffer (lane 2), non-scrape loaded but incubated in the presence of C3 (50 μg/ml, lane 3), or scrape loaded in the presence of C3 (50 μg/ml, lane 4). See Materials and Methods for ribosylation reaction. Equal cell equivalents were loaded per lane. One of two representative experiments is shown.
bated for 1 h at 37°C to allow in vivo ribosylation. Cells were then washed thoroughly, sonicated, and lysates subjected to further C3 ribosylation by the addition of 2 μCi 32P-NAD and 1 μg of C3 in ribosylation buffer. If full ribosylation of Rho proteins occurred before cell lysis due to effective C3 incorporation, then Rho would not be further ADP-ribosylated using 32P-NAD as the ADP-donor (30). As Fig. 1B demonstrates, scrape loading was a very effective procedure for incorporating C3 into PB T cells. Cells that were scrape loaded with BSA control (Fig. 1B, lane 2), or cells that were not plated on poly-L-lysine but incubated in the presence of C3 (Fig. 1B, lane 3), both could be further ribosylated by C3 in vitro after cell lysis. However, scrape loading of C3 (50 μg/ml) and thus causing in vivo ribosylation before cell lysis was very efficient, as no further in vitro ribosylation of Rho occurred after cell disruption (Fig. 1B, lane 4).

Rho Differentially Regulates β1 and β2 Integrin-dependent Adhesive Interactions in PB T Lymphocytes. Freshly isolated resting PB T cells generally demonstrate low adhesion to β1 integrin substrates such as the extracellular matrix component Fn (31). However, adhesion can be augmented by various agents that seem to act by distinct methods. PMA can increase integrin-dependent cellular interactions not necessarily by increasing integrin affinity, but by events that strengthen intracellular integrin–cytoskeletal contacts and, thus, increase overall cellular avidity (26). Mn+++, on the other hand, binds to divalent cation binding sites in the extracellular regions of integrins and causes a conformational change into a high affinity form also resulting in increased cellular adhesion (32). As demonstrated in Fig. 2A, basal adhesion of PB T cells to Fn was <10%, and this was dependent on α4β1 and α5β1 integrins (data not shown). Baseline adhesion was not inhibited by the ADP-ribosylation of Rho in C3 scrape-loaded cells (Fig. 2A). U regulation of PB T cell adhesion to Fn induced by PMA (10 ng/ml) or Mn+++(1 mM) was also unaffected by C3 treatment (Fig. 2A). Like basal adhesion, PMA-induced adhesion was maximally inhibited with a combination of mAb specific for integrins α4β1 and α5β1, for both BSA scrape-loaded control cells and C3 scrape-loaded cells (Fig. 2B). In summary, active Rho is not required for baseline or upregulated PB T cell adhesion to Fn mediated by phorbol ester or Mn+++. Previous studies have shown that phorbol ester induction of B lymphoblastoid adhesion to vascular cell adhesion molecule 1 (mediated through α4 integrins; reference 33) can be inhibited in a dose-dependent manner by C3 exoenzyme (14), and NIH 3T3 cells microinjected with C3 detach from β1 integrin substrate (34). Conversely, inactivation of Rho in monocytes can promote integrin α5β1-dependent adhesion to Fn (35). In fact, elongation of the neuronal cell growth cone (38) and extension of dendritic-like pseudopodal processes in T cell lines plated on β1 integrin substrates occurs upon inactivation of Rho (data not shown). According to models of cellular motility, pseudopod extension requires de novo formation of adhesive sites (37), implying that in neuronal cells and PB T cells, inactivation of Rho does not prevent the formation of adhesive contacts. Thus it appears that Rho regulation of integrin adhesion is unique to the cellular background within which Rho is studied.

Although inactivation of Rho in PB T cells does not affect adhesion to the β1 integrin substrate Fn as regulated by PMA or Mn+++, it does inhibit PMA-dependent homotypic aggregation (Fig. 3). Treatment of resting PB T cells with PMA induces the formation of cellular aggregates, as seen in the BSA scrape-loaded control cells (Fig. 3C), whereas scrape loading C3 exoenzyme into PB T cells inhibits the formation of large aggregates (Fig. 3D). This is similar to previous reports in B cell lines, where treatment with C3 inhibits PMA-induced αLβ2 integrin aggregation (13). C3-treated PB T cells still have the ability to aggregate, as an activating antibody specific for integrin αL, mAb 85G1, can overcome the inhibitory effects of C3 and induce aggregate formation (data not shown). Also, as aggregation progresses over 18–24 h, PMA-induced aggregation of the C3-treated cells approximates that of control BSA scrape-loaded cells (data not shown). This suggests
that the kinetics of PMA-induced aggregation are slower in the presence of C3. PMA-induced homotypic aggregation is a dynamic process, which in PB T cells predominantly involves integrin αLβ2/ICAM interactions (data not shown). In contrast, PB T cell adhesion to Fn can be mediated by α4β1 interaction with the alternatively spliced connecting segment-1 sequence EILDV (39) and/or via the canonical Fn receptor α5β1 interaction with RGD sequences (40). If β2 integrin–dependent homotypic aggregation can be equated with β1 integrin–dependent adhesion to Fn, then the above results suggest that Rho may differentially regulate β2 and β1 integrins within PB T cells. It will be interesting to determine if Rho plays a role in the complex pathways regulating a variety of recently described integrin related phenomena, such as transdominant regulation of integrin activity, whereby engagement of one integrin can regulate the function of other heterologous integrins (25, 41–45), or in the sequential solicitation of integrin α4β1 and α5β1 in monocyte adhesion to Fn induced by the CC chemokines MIP1-α or RANTES (46).

ADP-ribosylation of Rho in PB T Cells Causes F-Actin–rich Pseudopodial Extension on Fn Adherent Cells Without Any Prior Cellular Activation. Although the inhibition of Rho activity by C3 exoenzyme did not prevent constitutive or up-regulated cell adhesion to the matrix component Fn, what was striking was the profound influence that scrape loading C3 exoenzyme had on the morphology of Fn adherent PB T cells. Adherent PB T cells generally remain round (Fig. 4 A, left). By scrape loading C3 alone, pseudopodal extension occurs without any prior T cell stimulation (Fig. 4 A, right). This morphological change occurred within 1 h of T cell plating and is quantitated in Fig. 4 B. Fn adherent C3-treated cells have a morphological index of 2.01 ± 0.08, whereas Fn adherent control PB T cells have a morphological index of 1.39 ± 0.04 (Fig. 4 B). This represents a 259.0% change from roundness (see Materials and Methods) in the C3-treated cells. A representative experiment is shown. (D) Filamentous actin staining in C3-treated PB T cells adherent to Fn. Cells were either scrape loaded with BSA (50 μg/ml, left) or C3 (50 μg/ml, right) then plated in modified Tyrode's buffer on glass coverslips that had been coated with Fn (10 μg/ml). After 2 h, adherent cells were fixed in 2% paraformaldehyde and stained with TRITC-phalloidin. Arrows in the right panel represent clusters of filamentous actin in the extended pseudopods.
stable state levels of 4,5-PIP2 being altered because a vari-

ant nucleation and/or elongation may occur due to

herent PB T cells that have been treated with C3. Actin fil-

could be responsible for pseudopodial extension in Fn ad-

phology have been shown to interact with, or be regulated

ty of cytoskeletal proteins involved in regulating cell mor-

phology is involved in the production of phosphatidylinosito-

ol 4,5-bisphosphate (4,5-PIP2). It is interesting to speculate

that dysregulated 4,5-PIP2 levels could be responsible for pseudopodial extension in Fn ad-

herent PB T cells that have been treated with C3. Actin fil-

ament nucleation and/or elongation may occur due to

steady state levels of 4,5-PIP2 being altered because a vari-

ety of cytoskeletal proteins involved in regulating cell mor-

phology have been shown to interact with, or be regulated

by, 4,5-PIP2 (for review see reference 48). Also, pseudopo-

somatic cells inherently regulate T cell activation (8, 9, 49). Mor-

phological changes are linked to T cell activation as cy-

toskeletal regulatory proteins such as gelsolin can modulate phospholipase C (PLC) activity by competing for binding

to PLC's preferred substrate, 4,5-PIP2 (50). It is interesting

mechanisms before entry into S phase of the cell cycle. In

cell proliferation (52). Since ADP-ribosylation of Rho by scrape loading of C3 exoenzyme

y than that besides the morphological changes regulated by

GT Pases of the Rho subfamily, a number of studies in

other cell types have demonstrated that these GT Pases are

involved in the control of gene expression (51) and cell cy-

cle progression (52). Since ADP-ribosylation of Rho by C3

eoxenzyme results in such profound morphological changes in resting PB T cells, it was important to deter-

mine the effect C3 may have on their activation. Costimu-

lation of proliferation can be accomplished in PB T cells by
delivering signals through the TCR–CD3 complex in con-

junction with signals generated through costimulatory mol-

ecules such as integrins (53–59). Costimulation assays were

performed comparing cells that were scrape loaded with

BSA (50 μg/ml, as a control) to those that were scrape

loaded with C3 (50 μg/ml). To negate transitory effects

that inhibition of Rho activity may have had on T cell ad-

hesion to Fn not detected previously in the adhesion assays,

mAb specific to integrin subunits were used as the costimu-

latory signal instead of Fn. In Fig. 5 it is clear that ADP-

ribosylation of Rho has a dramatic effect on integrin-

dependent T cell costimulation. β1 (mAb 33B6) and α4β1

(mAb 19H8) integrin induced costimulation of T cell pro-

liferation was drastically inhibited, from 30,268 to 12,890

cpm and 20,185 to 9,336 cpm, respectively. Inhibition of

integrin-mediated costimulation of proliferation as mea-

sured by DNA synthesis could occur by a number of

mechanisms before entry into S phase of the cell cycle. In

T lymphocytes, mitogenic signaling induced by the pri-

mary T cell growth factor IL-2 leads to inactivation of p27kip (60). Degradation of p27kip is required for G1 to S transition (61, 62). Inactivation of Rho proteins by C3 trans-

ferase in R at FR T L-5 cells inhibits the degradation of p27kip (62). Also, inactivation of Rho proteins in a gastric

derived tumor cell line results in decreased cyclin A expres-

sion (29), which is required for transition from the G1 to S phase of the cell cycle (63). Inhibiting DNA synthesis in

PB T cells by inactivation of Rho could occur by either of

cell cycle-related processes. However, IL-2 is the ma-

photino that induces T cells to cycle into S phase and synthesizes DNA upon β1 integrin costimulation (57).

Thus, inactivation of Rho could be preventing induction of IL-2 synthesis at very early stages in PB T cell acti-

Figure 5. ADP-ribosylation of Rho inhibits β1 integrin-mediated co-

stitution of proliferation in PB T lymphocytes. Purified PB T lympho-

cyttes that were either scrape loaded with control buffer + BSA (50 μg/ml),
or with C3 transferase (50 μg/ml), were plated onto 96-well plates that

had been precoted with OK T3 alone, or OK T3 coimmobilized with

anti-β1 integrin mAb 33B6 or the anti-α4β1 integrin mAb 19H8. DNA

synthesis was determined as described in the experimental procedures.

n, T lymphocytes, mitogenic signaling induced by the pri-

ary T cell growth factor IL-2 leads to inactivation of p27kip (60). Degradation of p27kip is required for G1 to S transition (61, 62). Inactivation of Rho proteins by C3 trans-

ferase in R at FR T L-5 cells inhibits the degradation of p27kip (62). Also, inactivation of Rho proteins in a gastric

derived tumor cell line results in decreased cyclin A expres-

sion (29), which is required for transition from the G1 to S phase of the cell cycle (63). Inhibiting DNA synthesis in

PB T cells by inactivation of Rho could occur by either of

cell cycle-related processes. However, IL-2 is the ma-

photino that induces T cells to cycle into S phase and synthesizes DNA upon β1 integrin costimulation (57).

Thus, inactivation of Rho could be preventing induction of IL-2 synthesis at very early stages in PB T cell acti-

n, T lymphocytes, mitogenic signaling induced by the pri-

ary T cell growth factor IL-2 leads to inactivation of p27kip (60). Degradation of p27kip is required for G1 to S transition (61, 62). Inactivation of Rho proteins by C3 trans-

ferase in R at FR T L-5 cells inhibits the degradation of p27kip (62). Also, inactivation of Rho proteins in a gastric

derived tumor cell line results in decreased cyclin A expres-

sion (29), which is required for transition from the G1 to S phase of the cell cycle (63). Inhibiting DNA synthesis in

PB T cells by inactivation of Rho could occur by either of

cell cycle-related processes. However, IL-2 is the ma-

photino that induces T cells to cycle into S phase and synthesizes DNA upon β1 integrin costimulation (57).

Thus, inactivation of Rho could be preventing induction of IL-2 synthesis at very early stages in PB T cell acti-

n, T lymphocytes, mitogenic signaling induced by the pri-

ary T cell growth factor IL-2 leads to inactivation of p27kip (60). Degradation of p27kip is required for G1 to S transition (61, 62). Inactivation of Rho proteins by C3 trans-

ferase in R at FR T L-5 cells inhibits the degradation of p27kip (62). Also, inactivation of Rho proteins in a gastric

derived tumor cell line results in decreased cyclin A expres-

sion (29), which is required for transition from the G1 to S phase of the cell cycle (63). Inhibiting DNA synthesis in

PB T cells by inactivation of Rho could occur by either of

cell cycle-related processes. However, IL-2 is the ma-

photino that induces T cells to cycle into S phase and synthesizes DNA upon β1 integrin costimulation (57).

Thus, inactivation of Rho could be preventing induction of IL-2 synthesis at very early stages in PB T cell acti-
inhibited the intracellular production of IL-2 induced by costimulation through β1 integrins and CD3, by at least 81%. Unactivated cells, and cells that were plated on OKT3 alone did not demonstrate any significant production of IL-2 (data not shown). ADP-ribosylation of Rho had very little effect on intracellular IL-2 accumulation when PMA (10 μg/ml) and ionomycin (1 μM) were used to activate T cells, as there was an average 4.4% increase in IL-2 positive cells after C3 treatment (Fig. 6 B).

Since inactivation of Rho was specifically preventing integrin/CD3 costimulation of IL-2 production (but not PMA/ionomycin costimulation), we tested another costimulation scheme for the requirement of Rho activity. PB T cells were plated on anti-CD28 and CD3 mAbs in complete media supplemented with 4 μM monensin. After 6 h activation, intracellular IL-2 was measured in the BSA (50 μg/ml) control scrape-loaded cells and the C3 (50 μg/ml) scrape-loaded cells. As demonstrated in Fig. 7, inactivation of Rho by scrape loading C3 inhibits CD28/CD3 costimulation of IL-2 production by at least 70% in CD4+ T cells.

Downregulation of the αβ-TCR is unaffected by inactivation of Rho in PB T cells. Next we tested whether other receptor mediated events would be impaired upon the inactivation of Rho with C3 exoenzyme. Ligation of the TCR is associated with its internalization and thus downregulation from the cell surface (65, 66). To test if this was affected by C3 treatment, we took advantage of the ability to measure intracellular accumulation of IL-2 while simultaneously monitoring cell surface expression of the αβ-TCR at the single cell level. Control (BSA scrape loaded) and test cells (C3 scrape loaded) were treated under various activation conditions. Cells were then harvested and stained for the αβ-TCR, fixed in paraformaldehyde, solubilized with saponin, and stained for intracellular IL-2. The results are presented in Fig. 8. As expected, C3 treatment of peripheral blood lymphocytes inhibited CD28/CD3-dependent costimulation of IL-2 production, by 43% (Fig. 8 A). The percentage of cells positive for IL-2 in this experiment was relatively low as compared with that reported in Fig. 7. This is due to the absence of the Golgi disrupting agent monensin. It was unclear what affect monensin would have on normal intracellular trafficking and cell surface expression of the αβ-TCR-CD3 complex, so it was not included in these experiments. In part C of Fig. 8 the upper panels contain αβ-TCR expression histograms for BSA scrape-loaded PB T cells (controls). The lower panels contain αβ-TCR expression histograms for C3 scrape-loaded cells. As can be seen, even though there was ~40% inhibition in the percentage of cells positive for IL-2 after C3 treatment (Fig. 8 A), there was no change in these cells due to treatment with C3 when cell surface expression of the αβ-TCR was examined. For example, when CD28 was cross-linked alone, the αβ-TCR mean fluorescence intensity was 11.3 and 11.6 for BSA and C3 scrape-loaded cells, respectively. When the CD3 complex was cross-linked with immobilized mAb OKT3, cell surface expression of the αβ-TCR decreased slightly, but again the mean fluorescence intensity for BSA- or C3-treated cells was almost identical (10.5 and 10.4, respectively). When both CD28 and CD3 were cross-linked at the same time with immobilized mAb, the
mean fluorescence intensity of the αβ-TCR decreased log-
arithmically. The αβ-TCR mean fluorescence intensity of
BSA scrape-loaded cells was 0.93, and the mean fluores-
cence intensity of C3 scrape-loaded cells was 0.74. Again,
there was little difference between the downregulation of
TCR expression on C3 treated or control cells due to
costimulatory signals. To summarize, receptor-mediated
tCR downregulation was unaffected by C3 treatment of
PB T cells even though C3 treatment did inhibit IL-2 pro-
duction by 40% in the same cell population.

Both β1 integrin and CD28 costimulation of PB T cell
IL-2 production require functional Rho. One possible ex-
planation of this is that Rho is regulating a common signal-
ing pathway used by both these costimulatory molecules.
Costimulatory signals such as those delivered by integrins
in PB T cells have been compared with adhesion depend-
ent signals required for anchorage dependent growth in fi-
broblast models, which are thought to provide substrate for
enzymes activated by growth factors (67). As previously
mentioned, Rho activity is required for PIP5-K–depen-
dent production of 4,5-PIP2 (47), which is the preferred
substrate for PLC. Cleavage of 4,5-PIP2 by PLC results in
the production of diacylglycerol (DAG), and inositol tri-
phosphate (IP3; for review see reference 68), both of which
have been implicated in PB T cell activation (for review
see reference 69). Expanding upon the anchorage-depen-
dent growth analogy in PB T cells treated with C3 exoen-
zyme, TCR signals activating PLC would be unproductive
with regard to cellular activation as inactive Rho may not
be sufficiently regulating levels of the PLC substrate 4,5-
PIP2. Since PMA activation of PKC (70) and ionomycin-
mediated Ca2+ release are thought to mimic the effects of
the products of the lipase activity of PLC on 4,5-PIP2,
namely DAG and IP3, our finding that PMA and ionomy-
cin costimation overcomes the C3 inhibitory effects sup-
port a role for Rho in the regulation of 4,5-PIP2 in PB T
cells. Consistent with this is the recent finding that transient
cytosolic Ca2+ increases induced by Fc receptor cross-link-
ing in monocytes diminished after C3 microinjection (71).

Alternatively, as the common denominator between cos-
timulatory pathways involving CD28/CD3 and β1 inte-
grin/CD3 is cross-linking the CD3 complex, it is also pos-
sible that Rho activity is required for initiation or
propagation of TCR/CD3-specific signals. In this regard, it
has recently been demonstrated by Han et al. (72) that the
src tyrosine kinase lck regulates vav activity. Phosphory-
lated vav, which has a Dbl homology domain thought to
be responsible for guanine nucleotide exchange activity
(73, 74), has been implicated as a guanine nucleotide ex-
change factor for Rho family GTPases (72). If this is the
case in PB T cells, where the importance of lck activity is
well documented (for review see reference 75), activation
of Rho may be a key component of the TCR signal trans-
duction process.

That Rho may be a participant in costimulatory signals
or in TCR signals alludes to a third possibility. Rho could
be at a point of convergence or at the crossroads of TCR
and costimulatory molecule signaling mechanisms as Rho
activity could influence other GTPases important in PB T
cell activation. For example, phosphorylated p210 R as
GTPase-activating protein (R as-GAP) complexes with
phosphorylated p190 R ho-GAP (76–78). Dysregulation of
Rho activity could interfere with R as-GAP/R ho-GAP in-
teractions, causing increased or accelerated R as-GTPase
activity effectively blocking R as-dependent signaling path-
ways.

Figure 8. Cell surface expression of the αβ-
TCR and intracellular staining of IL-2. (A) Control
(-bs scrape loaded, 50 μg/ml) and test cells (C3
scrape loaded, 50 μg/ml) were activated with im-
mobilized anti-CD28 and anti-CD3 in the absence
of monensin, harvested, and intracellular staining
for IL-2 was performed after staining for the αβ-
TCR as described in the Materials and Methods.
(B) Control staining for αβ-TCR expression on
BSA scrape loaded PB T cells. (C) Cells were
stained under the various conditions indicated then
stained for the αβ-TCR. The upper panels of his-
tograms represent cells scrape loaded with BSA (50
μg/ml), and the lower panels of histograms repre-
sent C3 exoenzyme (50 μg/ml) scrape loaded PB
T cells. The last column of histograms (treated with
anti-CD28 and anti-CD3 mAbs) were the same
population of cells that were stained for intracellular
IL-2 accumulation in A. This is representative of
two experiments performed with similar results.
This is the first demonstration that Rho activity is required in T lymphocyte activation and the maintenance of normal T lymphocyte cytoarchitecture as inactivation of Rho results in inhibition of IL-2 production and causes pseudopodial extension in quiescent primary T lymphocytes. Determination of cytoskeletal regulatory elements, signaling modules, and transcriptional factors affected when Rho-inactivated T cells are costimulated will be an important area of future study, as it may lead to novel strategies to therapeutically regulate immune function by influencing T lymphocyte activity on at least two different levels, migration and/or activation.

We would like to thank J. N. Wygant for technical assistance.

This work was supported by grant CA62596 from the National Institutes of Health.

Address correspondence to Brad McIntyre, Department of Immunology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Box 180, Houston, TX 77030. Phone: 713-792-8739; Fax: 713-745-0846; E-mail: bmcintyr@notes.utmdacc.tmc.edu

Dr. Woodside's present address is Department of Vascular Biology, The Scripps Research Institute, La Jolla, CA 92037.

Received for publication 11 November 1997 and in revised form 9 June 1998.

References

1. Pardi, R., L. Inverardi, C. Rugarli, and J.R. Bender. 1992. Antigen-receptor complex stimulation triggers protein kinase C-dependent CD11a/CD18-cytoskeleton association in T lymphocytes. J. Cell Biol. 116:1211–1220.
2. Bourguignon, L.Y., S.J. Suchard, M.L. Nagpal, and J.R. Glenney. 1985. A T-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J. Cell Biol. 101:477–487.
3. Taffs, R.E., and S.J. Ewald. 1989. Concanavalin A induces a cytoskeletal association of T200 molecules in T lymphocytes. Mol. Immunol. 26:925–937.
4. Geppert, T.D., and P.E. Lipsky. 1991. Association of various T cell-surface molecules with the cytoskeleton. Effect of cross-linking and activation. J. Immunol. 146:3298–3305.
5. Caplan, S., S. Zeligier, L. Wang, and M. Baniyash. 1995. Cell surface-expressed T-cell antigen-receptor ζ chain is associated with the cytoskeleton. Proc. Natl. Acad. Sci. USA. 92:4768–4772.
6. Rozdzial, M.M., B. Malissen, and T.H. Finkel. 1995. Tyrosine-phosphorylated T cell receptor ζ chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity. 3:623–633.
7. Caplan, S., and M. Baniyash. 1996. Normal T cells express two T cell antigen receptor populations, one of which is linked to the cytoskeleton via ζ chain and displays a unique activation-dependent phosphorylation pattern. J. Biol. Chem. 271:20705–20712.
8. Valitutti, S., M. Desing, K. Aktories, H. Gallati, and A. Lanzevacchia. 1995. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181:577–584.
9. Shaw, A.S., and M.L. Dustin. 1997. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity. 6:361–369.
10. Ridley, A.J. 1995. Rho-related proteins: actin cytoskeleton and cell cycle. Curr. Opin. Gen. Dev. 5:24–30.
11. van Aelst, L., and C. D’Souza-Schorey. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
12. Ridley, A.J., and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. C. Cell. 70:389–399.
13. Tomina, T., K. Sugie, M. Hirata, N. Morii, J. Fukata, A. Uchida, H. Imura, and S. Narumiya. 1993. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J. Cell Biol. 120:1529–1537.
14. Laudanna, C., J.J. Campbell, and E.C. Butcher. 1996. Role of rho in chemoattractant-activated leukocyte adhesion through integrins. Science. 271:981–983.
15. Koch, G., J. Norgauer, and K. Aktories. 1994. ADP-ribosylation of the GTP-binding protein rho by clostridium limosum exoenzyme affects basal, but not N-formyl-peptide-stimulated, actin polymerization in human myeloid leukemic (HL-60) cells. Biochem. J. 299:775–779.
16. Ehrengbruber, M.U., P. Boquet, T.D. Coates, and D.A. Deranleau. 1995. ADP-ribosylation of rho enhances actin polymerization-coupled shape oscillations in human neutrophils. FEBS Lett. 373:161–164.
17. Lang, P., L. Guizani, I. Vitte-Mony, R. Stancou, O. Dorseuil, G. Gacon, and J. Bertoglio. 1992. ADP-ribosylation of the ras-related, GTP-binding protein RhoA inhibits lymphocyte-mediated cytotoxicity. J. Biol. Chem. 267:11677–11680.
18. Lang, P., F. Gesbert, M. Delespine-Carmagnat, R. Stancou, M. Pouchelet, and J. Bertoglio. 1996. Protein kinase A phosphorylation of RhoA mediates the morphological and functional effects of cyclic AMP in cytotoxic lymphocytes. EMBO (Eur. Mol. Biol. Org.) J. 15:510–519.
19. Aepfelbacher, M., M. Essler, E. Huber, A. Czech, and P.C. Weber. 1996. Rho is a negative regulator of human monocyte spreading. J. Immunol. 157:5070–5075.
20. Allen, W.E., G.E. Jones, J.W. Pollard, and A.J. Ridley. 1997. Rho, rac and cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Biol. 110:707–720.
21. Henning, S.W., R. Galandrini, A. Hall, and D.A. Cantrell. 1997. The GTPase Rho has a critical regulatory role in thymus development. EMBO (Eur. Mol. Biol. Organ.) J. 18: 2397–2407.

22. Hynes, R.O. 1993. Fibronectins. A. Rich, editor. Springer-Verlag, NY. p. 12.

23. Bednarz, J.L., M.C. Szabo, J.N. Wygant, A.L. Lazarovits, and B.W. McIntyre. 1994. Identification of a combinatorial epitope expressed by the integrin α4β1 heterodimer involved in the regulation of cell adhesion. J. Biol. Chem. 269:8348–8354.

24. Bednarz, J.L., J.N. Wygant, M.C. Szabo, L. Molinari-Storey, M. Renz, S. Fong, and B.W. McIntyre. 1993. Homotypic leukocyte aggregation triggered by a monoclonal antibody specific for a novel epitope expressed by the integrin αβ1 subunit: conversion of nonresponsive cells by transfecting human integrin α4 subunit cDNA. J. Cell. Biol. 51:465–478.

25. Woodside, D.G., T.K. Tegude, and B.W. McIntyre. 1996. Specific inhibition of T lymphocyte coactivation by triggering integrin αβ1 reveals convergence of αβ1, β2, and β7 integrin signaling pathways. J. Immunol. 157:700–706.

26. Faull, R.J., N.L. Kovach, J.M. Harlan, and M.H. Ginsberg. 1994. Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: two mechanisms with divergent biological consequences. J. Exp. Med. 179:1307–1316.

27. Szabo, M.C., T.K. Tegude, and B.W. McIntyre. 1995. Regulation of lymphocyte pseudopodia formation by triggering the integrin α4β1. J. Immunol. 154:2112–2124.

28. Woodside, D.G., and B.W. McIntyre. 1998. Inhibition of CD28/CD3 mediated costimulation of naive and memory human T lymphocytes by intracellular incorporation of polyclonal antibodies specific for the AP-1 transcriptional complex. J. Immunol. 161:649–658.

29. Udagawa, T., and B.W. McIntyre. 1996. ADP-ribosylation of Rho enhances integrin αβ1 subunit selectivity and sensitivity to antigen. J. Exp. Med. 177:185–190.

30. Blustone, S.D., I.L. Graham, F.P. Lindberg, and E.J. Brown. 1994. Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. J. Cell Biol. 127:1129–1137.

31. Blustone, S.D., F.P. Lindberg, S.E. LaFlamme, and E.J. Brown. 1995. Integrin β3 cytoplasmic tail is necessary and sufficient for regulation of α5β1 phagocytosis by αvβ3 and integrin-associated protein. J. Cell Biol. 130:745–754.

32. Hughtala, P., M.J. Humphries, J.B. McCarthy, P.M. Trumble, Z. Werb, and C.H. Damsky. 1995. Cooperative signaling by αvβ1 and αvβ3 integrins regulates metalloproteinase-13 gene expression in fibroblasts adhering to fibronectin. J. Cell Biol. 129:867–879.

33. Díaz-González, F., J. Forsyth, B. Steiner, and M.H. Ginsberg. 1994. Trans-dominant inhibition of integrin function. Mol. Biol. Cell. 7:1939–1951.

34. Weber, C., R. Alon, B. Mozer, and T.A. Springer. 1996. Sequential regulation of α4β1 and α5β1 integrin avidity by C-C chemokines in monocytes: implications for transendothelial chemotaxis. J. Cell Biol. 134:1063–1073.

35. Chong, L.D., A. Traynor-Kaplan, G.M. Bokoch, and M.A. Schwartz. 1994. The small GTP-binding protein rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. J. Biol. Chem. 79:507–513.

36. Jockusch, B.M., P. Bubeck, K. Giehl, M. Kroemker, J. Stanke, and J. Winkler. 1995. The molecular architecture of 40:191–198.

37. van Kooyk, Y., E. van de Wiel-van Kemenade, P. Weder, R.J.F. Huijbens, and C.G. Figdor. 1993. Lymphocyte function-associated antigen 1 dominates very late antigen 4 in binding of activated T cells to endothelium. J. Exp. Med. 177:185–190.

38. Pytela, R., M.D. Pierschbacher, and E. Ruoslahti. 1985. Identification and isolation of a 140 kD cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 40:191–198.

39. Damle, N.K., and A. Aruffo. 1991. Vascular cell adhesion molecule-1 induces T-cell antigen receptor-dependent activation of CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA. 88:6403–6407.
54. Matsuyama, T., A. Yamada, J. Kay, K.M. Yamada, S.K. Akizuki, J.F. Schlossman, and C. Morimoto. 1989. Activation of CD4 cells by fibroblast and anti-CD3 antibody: a synergistic effect mediated by the VLA-5 fibronectin receptor complex. J. Exp. Med. 170:1133-1148.

55. Shimizu, Y., G.A. van Seventer, K.J. Horgan, and S. Shaw. 1990. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with 6-aminofluorocytin. J. Immunol. 145:59-67.

56. Udagawa, T., and B.W. McIntyre. 1992. A VLA-4 α-chain specific monoclonal antibody enhances CD3-induced IL-2/IL-2 receptor-dependent T-cell proliferation. Lymphokine Cytokine Res. 11:193-199.

57. van Seventer, G.A., Y. Shimizu, K.J. Horgan, and S. Shaw. 1990. The LFA-1 ligand ICAM-1 provides an important co-stimulatory signal for T cell receptor-mediated activation of resting T cells. J. Immunol. 144:4579-4586.

58. Bednarczyk, J.L., T.K. Teague, J.N. Wygant, L.S. Davis, P.E. Lipsky, and B.W. McIntyre. 1992. Regulation of T cell proliferation by anti-CD49d and anti-CD29 monoclonal antibodies. J. Exp. Med. 170:1133-1148.

59. Firpo, E.J., A. Koff, M.J. Solomon, and J.M. Roberts. 1994. Inactivation of a Cdk-2 inhibitor during interleukin-2 induced proliferation of human T lymphocytes. Mol. Cell. Biol. 14:4889-4901.

60. Polyak, K., M.H. Lee, H. Erdjument-Bromage, A. Koff, J.M. Roberts, P. Tempst, and J. Massague. 1994. Cloning of p27kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular mitogenic signals. Cell. 78:59-66.

61. Hirai, A., S. Nakamura, Y. Dagochi, T. Yasuda, M. Kitagawa, I. Tatsuno, T. Oeda, K. Tahara, T. Terano, S. Nishimura, et al. 1997. Geranylgeranylated rho small GTPase(s) are essential for the degradation of p27kip1 and facilitate the progression from G1 to S phase in growth-stimulated Rat FRTL-5 cells. J. Biol. Chem. 272:13-16.

62. Wang, J., X. Chenivesse, B. Heneglein, and C. Brechot. 1990. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 343:555-557.

63. Sander, B., J. Anderson, and U. Anderson. 1991. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol. Rev. 119:65-93.

64. Zanders E.D., J.R. Lamb, M. Feldmann, N. Green, and P.C. Beverley. 1983. Tolerance of T-cell clones is associated with membrane antigen changes. Nature. 303:625-627.

65. Krangel, M.S. 1987. Endocytosis and recycling of the T3-T cell receptor complex. The role of T3 phosphorylation. J. Exp. Med. 165:1141-1159.

66. Schwartz, M.A., M.D. Schaller, and M.H. Ginsberg. 1995. Integrins emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11:549-599.

67. Divecha, N., and R.F. Irvine. 1995. Phospholipid Signaling. C. B. 80:269-278.

68. Weiss, A., and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell. 76:263-274.

69. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.

70. Hackam, D.J., O.D. Rotstein, A. Schreiber, W. Zhang, and S. Grinstein. 1997. A rho is required for the initiation of calcium signaling and phagocytosis by Fcγ receptors in macrophages. J. Exp. Med. 186:955-966.

71. Han, J., B. Das, W. Wei, L. Van Aelst, R.D. Mosteller, R. Khosravi-Far, J.K. Westwick, C.J. Der, and D. Broek. 1997. Lck regulates vav activation of members of the rho family of GTPases. Mol. Cell. Biol. 17:1346-1353.

72. Hart, M.J., A. Eva, T. Evans, S.A. Aaronson, and R.A. Cerione. 1991. Catalysis of guanine nucleotide exchange on the cdc42hls protein by the dbl oncogene product. Nature. 354:311-314.

73. Hart, M.J., A. Eva, D. Zangrilli, S.A. Aaronson, T. Evans, R.A. Cerione, and Y. Zheng. 1994. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene. J. Biol. Chem. 269:62-65.

74. Chan, A.C., D.M. Desai, and A. Weiss. 1994. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12:555-592.

75. Ellis, C., M. Moran, F. McCormick, and T. Pawson. 1990. Protein-tyrosine kinases and protein tyrosine phosphatases in T lymphocytes. J. Immunol. 145:59–67.

76. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.

77. Divecha, N., and R.F. Irvine. 1995. Phospholipid Signaling. C. B. 80:269-278.

78. Weiss, A., and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell. 76:263-274.

79. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.

80. Weiss, A., and D.R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell. 76:263-274.

81. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.

82. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.

83. Castagna, M., Y. Takai, K. Kabuchi, K. Sano, U. Kikkawa, and Y. Nishizuka. 1982. Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 247:7847-7851.