Concerted Trafficking Regulation of Kv2.1 and K_{ATP} Channels by Leptin in Pancreatic β-Cells**

Yi Wu‡, Show-Ling Shyng†, and Pei-Chun Chen‡

From the ‡Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the †Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan

Background: Leptin recruits K_{ATP} channels to the pancreatic β-cell membrane.

Results: Leptin causes a parallel increase in Kv2.1 channel density that is dependent on AMPK, PKA, and actin depolymerization.

Conclusion: Leptin signaling leads to simultaneous increases in K_{ATP} and Kv2.1 channel densities.

Significance: Concerted K_{ATP} and Kv2.1 channel trafficking regulation by leptin may result in coordinated inhibition of β-cell excitability.

In pancreatic β-cells, voltage-gated potassium 2.1 (Kv2.1) channels are the dominant delayed rectifier potassium channels responsible for action potential repolarization. Here, we report that leptin, a hormone secreted by adipocytes known to inhibit insulin secretion, causes a transient increase in surface expression of Kv2.1 channels in rodent and human β-cells. The effect of leptin on Kv2.1 surface expression is mediated by the AMP-activated protein kinase (AMPK). Activation of AMPK mimics whereas inhibition of AMPK occludes the effect of leptin. Inhibition of Ca²⁺/calmodulin-dependent protein kinase β, a known upstream kinase of AMPK, also blocks the effect of leptin. In addition, the cAMP-dependent protein kinase (PKA) is involved in Kv2.1 channel trafficking regulation. Inhibition of PKA prevents leptin or AMPK activators from increasing Kv2.1 channel density, whereas stimulation of PKA is sufficient to promote Kv2.1 channel surface expression. The increased Kv2.1 surface expression by leptin is dependent on actin depolymerization, and pharmacologically induced actin depolymerization is sufficient to enhance Kv2.1 surface expression. The signaling and cellular mechanisms underlying Kv2.1 channel trafficking regulation by leptin mirror those reported recently for ATP-sensitive potassium (K_{ATP}) channels, which are critical for coupling glucose stimulation with membrane depolarization. We show that the leptin-induced increase in surface K_{ATP} channels results in more hyperpolarized membrane potentials than control cells at stimulating glucose concentrations, and the increase in Kv2.1 channels leads to a more rapid repolarization of membrane potential in cells firing action potentials. This study supports a model in which leptin exerts concerted trafficking regulation of K_{ATP} and Kv2.1 channels to coordinately inhibit insulin secretion.

Pancreatic β-cells secrete insulin to maintain glucose homeostasis. Glucose-stimulated insulin secretion occurs as a consequence of Ca²⁺ influx through voltage-gated calcium channels following membrane depolarization. The β-cell membrane potential is under the control of a constellation of ion channels and transporters (1–3). A key player that couples glucose stimulation to membrane depolarization is the ATP-sensitive potassium (K_{ATP}) channel (4–6). Abnormal gating or expression of components of the β-cell membrane that results in ketosis or a loss of channel function is now well recognized to underlie neonatal diabetes or congenital hyperinsulinism, respectively (7). The recovery of β-cell membrane potential to a resting hyperpolarized state is due to outward potassium currents carried largely by the voltage-gated delayed rectifier potassium channel Kv2.1 (1, 3, 8, 9). Pharmacological inhibition or genetic ablation of Kv2.1 results in prolonged glucose-evoked action potential duration in β-cells, elevated serum insulin, and increased glucose tolerance (10).

In addition to glucose and other nutrient signals, neuronal and hormonal signals also play important roles in regulating insulin secretion (11). Among them, leptin, a peptide hormone predominantly secreted by white adipocytes, has been shown to inhibit insulin secretion (12). Two recent studies demonstrated that leptin increases the density of K_{ATP} channels in the β-cell membrane by regulating channel trafficking (13, 14), a mechanism that likely contributes to the inhibitory effect of leptin on insulin secretion. A study by Park et al. (14) showed that leptin activates the AMP-activated protein kinase (AMPK) through phosphorylation by the Ca²⁺/calmodulin-dependent protein kinase kinase β (CaMKKβ) to increase K_{ATP} channel trafficking.

*This work was supported by National Institutes of Health Grants R01DK057699 and 3R01DK057699–14S1 (to S.-L. S) and by Ministry of Science and Technology Grant MOST 103-2320-B-006-05MY2 (to P.-C. C). The authors declare that they have no conflicts of interest with the contents of this article.

† This article was selected as a Paper of the Week.

‡ To whom correspondence may be addressed: Dept. of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd., Portland, OR 97239. Tel.: 503-494-2694; Fax: 503-494-3849; E-mail: shyngs@ohsu.edu.

§ To whom correspondence may be addressed: Dept. of Physiology, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan 701, Taiwan. Tel.: 011-886-6-235-3535, ext. 5423; Fax: 011-886-6-236-2780; E-mail: pcchen@mail.ncku.edu.tw.

The abbreviations used are: AMPK, AMP-activated protein kinase; AICAR, 5-aminoinimidazole-4-carboxamide-1-β-D-ribofuranoside; TEA, tetraethylammonium; CaMKKβ, Ca²⁺/calmodulin-dependent protein kinase kinase β; pF, picofarad; ANOVA, analysis of variance; 8-Br-cAMP, 8-bromo-cAMP; AP, action potential.

29676 JOURNAL OF BIOLOGICAL CHEMISTRY

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
to the cell surface. Another paper by our group (13) reported a similar finding that leptin up-regulates K\textsubscript{ATP} channel density in the β-cell membrane by activating AMPK. Furthermore, we found that the cAMP-dependent protein kinase (PKA) also has a role in leptin-induced K\textsubscript{ATP} channel trafficking to the plasma membrane and that signaling through leptin, AMPK, and PKA all result in actin depolymerization, which is both necessary and sufficient to promote channel trafficking to the cell surface.

In this study, we show that leptin not only up-regulates surface expression of K\textsubscript{ATP} channels but also Kv2.1 channels. The signaling mechanism for Kv2.1 surface expression regulation involves CaMKK\textbeta, AMPK, PKA, and actin depolymerization, similar to that reported recently for K\textsubscript{ATP} channels. In INS-1 cells, the increase in K\textsubscript{ATP} channel density resulted in a more hyperpolarized membrane potential, and the increase in Kv2.1 channel density shortened the duration of action potentials and facilitated recovery of membrane potentials back to a hyperpolarized resting state. Our findings suggest that leptin regulates the trafficking and surface abundance of K\textsubscript{ATP} and Kv2.1 channels in β-cells in a concerted manner to achieve coordinated inhibition of β-cell excitability and insulin secretion.

Materials and Methods

Cell Culture, Transfection, and Viral Transduction—INS-1 cell clone 832/13 was cultured in RPMI 1640 medium with 11.1 mM d-glucose (Invtrogen) supplemented with 10% fetal bovine serum (FBS), 100 units/ml penicillin, 100 µg/ml streptomycin, 10 mM HEPES, 2 mM glutamine, 1 mM sodium pyruvate, and 50 µM β-mercaptoethanol (15). Cells at ~70% confluency were transfected with a Kv2.1 tagged with the fluorescent protein mCherry at the C terminus in pcDNA3 (Kv2.1-mCherry; a generous gift from Dr. H. Gaisano) using Lipofectamine 2000 according to the manufacturer’s instruction.

Drug Treatments—All drugs were purchased from Sigma. For stimulation with leptin, AICAR, or 8-bromo-cAMP (8-Br-cAMP), INS-1 cells grown in 6-well plates were exposed to regular RPMI 1640 medium without serum for 30 min before treatment with leptin, AICAR, or 8-Br-cAMP for the indicated time or 30 min (unless specified otherwise). Pharmacological inhibitors, including the AMPK inhibitor compound C or the PKA inhibitor fragment 14–22 (PKI), were added 30 min before leptin, AICAR, or 8-Br-cAMP treatment. For manipulating actin, the actin-stabilizing agent jasplakinolide or the actin destabilizing drug latrunculin B was added 10 min prior to treatment with or without leptin, AICAR, or 8-Br-cAMP.

Electrophysiology—Whole-cell patch clamp recording was used to measure Kv2.1 current density in INS-1 cells and in β-cells dissociated from human islets obtained through the Integrated Islets Distribution Program as described previously (13). Identification of human β-cells was aided by brief staining with 100 µg/ml dithizone (2–3 min) followed by quick washout and confirmed by glucose-induced membrane depolarization. The bath solution contained (in mM) the following: 140 NaCl, 5 KCl, 4 MgCl\textsubscript{2}, 11 glucose, 10 HEPES, pH 7.3. Calcium was excluded from the bath solution to eliminate calcium channel currents. Micropipettes were pulled from non-heparinized Kimble glass on a horizontal puller (Sutter Instrument, Novato, CA) and had typical resistance of 2–4 megohms when filled with an internal solution containing (in mM) the following: 140 KCl, 1 CaCl\textsubscript{2}, 2 MgCl\textsubscript{2}, 5 EGTA, 5 ATP, 10 glucose and 10 HEPES, pH 7.3. All recordings were performed using an Axon 200B amplifier and Digidata 1322A and controlled using Clampex 8.1 (Molecular Devices). Data were digitized at 10 kHz and filtered at 2 kHz. P/4 leak subtraction was used to compensate for linear leak currents. Series resistance and capacitance were compensated. Cells with a series resistance of >30 megohms were not included in the analysis.

A 30-ms prepulse to −10 mV was used to inactivate transient potassium channel currents and voltage-dependent Na+ currents. The sustained current at +80 mV was divided by cell capacitance for current density calculation. Currents were also recorded in the presence of 10 mM tetraethylammonium (TEA). Kv2.1 currents were estimated by subtracting currents observed in the presence of TEA from those in the absence of TEA.

For conductance-voltage (G-V) curves, cells were held at −90 mV and stepped from −100 mV to +80 mV in +10-mV steps using a 200-ms test pulse. A 30-ms prepulse to −10 mV was again used to inactivate transient potassium channel currents and voltage-dependent Na+ currents. The Nernst potential for K+ using the solutions above was calculated to be −84 mV, and this value was used to convert the ionic currents to conductance (G) using Ohm’s law. To generate steady-state G-V curves, the normalized conductance was plotted as a function of the test potential and fitted with Boltzmann Equation 1,

\[
G = G_{\text{min}} + \frac{G_{\text{max}} - G_{\text{min}}}{1 + e^{-(V - V_{1/2})/k}},
\]

where \(G_{\text{max}}\) is the maximal conductance; \(G_{\text{min}}\) is the minimal conductance after subtracting TEA-insensitive currents. \(V_{1/2}\) is the midpoint potential for activation, and \(k\) is a slope factor.

For whole-cell K\textsubscript{ATP} current density measurements, INS-1 cells were held at −70 mV, and K\textsubscript{ATP} currents were recorded at two voltage steps (−50 and −90 mV) applied every 2 s as described previously (13). The pipette was filled with K-INT solution containing (in mM) 140 KCl, 10 K-HEPES, 1 K-EGTA, pH 7.3, and the cells were bathed in Tyrode’s solution containing (in mM) 137 NaCl, 5.4 KCl, 1.8 CaCl\textsubscript{2}, 0.5 MgCl\textsubscript{2}, 5 Na-HEPES, 3 NaHCO\textsubscript{3}, 0.16 NaH\textsubscript{2}PO\textsubscript{4}, pH 7.2. Diazoxide (200 µM) was applied to the bath solution immediately after break-in to maximally stimulate K\textsubscript{ATP} channels. After the current had plateaued, 300 µM tolbutamide (a K\textsubscript{ATP} channel antagonist) was applied to ascertain the specificity of the K\textsubscript{ATP} currents.

For whole-cell Na+ current density measurements, INS-1 cells were held at −80 mV, and voltage was stepped from −80 mV to +50 mV in +10-mV increments using a 20-ms test pulse following a 100-ms hyperpolarizing pre-pulse to −150 mV to exclude the interference of Na+ channel inactivation. The pipette was filled with an internal solution containing (in mM) the following: 130 cesium methanesulfonate (CsMeS), 10 CsCl, 6 EGTA, 10 HEPES, 5 ATP, 2 MgCl\textsubscript{2}, 10 TEA-Cl, pH 7.2. The bath solution contained (in mM) the following: 137 NaCl, 5.4 KCl, 5 HEPES, 5 MgCl\textsubscript{2}, 1 CdCl\textsubscript{2}, pH 7.2. The sweep with the largest current was analyzed. P/4 leak subtraction was used to compensate for linear leak currents.
Leptin and Kv2.1 Channel Trafficking

For whole-cell Ca\(^{2+}\) current density measurements, INS-1 cells were held at -90 mV and voltage stepped from -80 mV to +80 mV in +10 mV increments using a 200 ms test pulse. The pipette was filled with an internal solution containing (in mM): 130 CsMeS, 10 CsCl, 6 EGTA, 10 HEPES, 5 ATP, 1 MgCl\(_2\), 0.2 CaCl\(_2\), 10 TEA-Cl, pH 7.2. The bath solution contained (in mM) the following: 137 NaCl, 5.4 KCl, 5 HEPES, 2 MgCl\(_2\), 5 CaCl\(_2\), pH 7.2. CdCl\(_2\) (100 \(\mu\)M) was added to identify the current. The sweep with the largest current over the last 100 ms of the test pulse was analyzed. P/4 leak subtraction was used to compensate for linear leak currents.

For monitoring membrane potential, whole-cell current clamp recording was used. The extracellular solution contained (in mM) the following: 137 NaCl, 5.4 KCl, 1.8 CaCl\(_2\)\(\cdot\)H\(_2\)O, 0.5 MgCl\(_2\), 5 HEPES, 3 NaHCO\(_3\), 0.16 NaH\(_2\)PO\(_4\) and 11 glucose, pH 7.2. The internal solution contained 140 potassium gluconate, 10 KCl, 6 EGTA, 5 HEPES, 5 Na\(_2\)ATP, 1 MgCl\(_2\), 0.1 CaCl\(_2\), pH 7.2. The membrane potential was recorded in the absence of current injection (\(I = 0\)). The amplifier was periodically switched to voltage clamp mode to verify seal resistance, and the recording was discontinued if the seal resistance changed significantly. The measurement was started immediately after the rupture of the cell (<70 ms). To assess the effects of drugs, the membrane potential was measured at least 2 min after drug application.

Action potentials (APs) were analyzed using Clampfit. The AP repolarization duration was measured from the peak to baseline, and the AP amplitude was taken as the difference between baseline and the peak. Only events with a complete baseline, and the AP amplitude was taken as the difference between baseline and the peak. Differences were tested using one-way analysis of variance (ANOVA) and the Student’s t-test was used. The level of statistical significance was set at \(p < 0.05\).

Surface Biotinylation—INS-1 cells were washed twice with cold phosphate-buffered saline (PBS). Biotinylation of surface protein was carried out by incubating cells with 1 mg/ml of the membrane-impermeant, thiol-cleavable, amine-reactive biotin-containing (Pierce) overnight at 4 °C. The measurement was started immediately after the rupture of the cell (<70 ms). To assess the effects of drugs, the membrane potential was measured at least 2 min after drug application.

Fluorescence Microscopy—To follow Kv2.1 channel trafficking in response to leptin, INS-1 cells were transfected with the cDNA for Kv2.1-mCherry and plated onto 18-mm, number 1.5 glass coverslips (Warner Instruments) 24 h post-transfection. Cells were treated with leptin or vehicle control for 30 min, fixed with 4% paraformaldehyde, and processed for confocal microscopy on a Zeiss LSM710 three-channel spectral confocal microscope with a 63 × 1.4 numerical aperture (NA) objective (Carl Zeiss) under identical conditions with randomly selected regions of each coverslip.
Leptin recruits Kv2.1 channels to the cell surface in INS-1 cells. A, INS-1 cells were treated with 10 nM leptin for the times indicated and subjected to surface biotinylation. Top, representative Western blots showing surface-biotinylated Kv2.1 pulled down with NeutrAvidin beads (upper blot) and total Kv2.1 in the cell lysate (lower blot). Molecular mass markers in this and subsequent figures are given in kDa. Bottom, bar graph showing the fold increase in surface Kv2.1 relative to total Kv2.1 and normalized to time 0 (n = 4, *p < 0.05 by one-way ANOVA and Dunnett’s post hoc test). Leptin caused a gradual and transient increase in surface abundance of Kv2.1 channels. B, same as A except the blots were probed with an anti-GIRK1 (Kir3.1) antibody. Top, representative blots. Bottom, bar graph showing the fold change in surface GIRK1 relative to total GIRK1, normalized to time 0 (n = 3). No statistically significant changes were found. C, Kv2.1 tagged with mCherry (Kv2.1-m) was used to monitor the relative distribution of channels following leptin treatment. To first confirm that Kv2.1-mCherry is regulated by leptin similar to endogenous Kv2.1 channels, INS-1 cells were transfected with Kv2.1-mCherry and treated with or without 10 nM leptin for 30 min, followed by surface biotinylation to assess surface expression of both exogenous Kv2.1-mCherry and endogenous Kv2.1. Blots shown are duplicates of vehicle-treated (V1 and V2) and leptin-treated (L1 and L2) cells. Leptin increased surface expression of exogenously expressed Kv2.1-mCherry like endogenous Kv2.1 channels without altering total protein levels. D, INS-1 cells transfected with Kv2.1-mCherry and treated with or without 10 nM leptin for 30 min (scale bar, 10 μm). Images shown were obtained by integrating signals from a z-stack confocal images. In control cells, a significant amount of fluorescence signal was observed intracellularly. In leptin-treated cells, there was a marked shift in the distribution of the mCherry fluorescence with most signal associated with the cell periphery, consistent with increased plasma membrane localization demonstrated by surface biotinylation.

Leptin-induced Kv2.1 Channel Trafficking to the Cell Surface Corresponds to an Increase in Kv2.1 Currents—To determine whether the leptin-induced increase in Kv2.1 surface expression observed using surface biotinylation results in an increase in Kv2.1 current density, whole-cell patch clamp recordings were made in control and leptin-treated INS-1 cells. In these experiments, cells were held at −90 mV. A brief (30 ms) depolarizing pulse (to −10 mV) was applied to minimize the rapidly inactivating A-type Kv currents and sodium currents. The membrane potential was then stepped from −100 mV to +80 mV to activate Kv2.1 channels as described under “Materials and Methods.” The Kv2.1 currents were identified by the slowly inactivating (or non-inactivating within 250 ms) characteristic and sensitivity to inhibition by TEA (Fig. 2A) (17); at 10 mM, TEA blocked the maximal currents at +80 mV by 80.35 ± 5.56% in control cells and 95.84 ± 5.97% in leptin-treated cells (Fig. 2B). The increased percentage of TEA-sensitive currents is consistent with an increase in Kv2.1 channels. The currents were also blocked by stromatoxin-1, a spider toxin known to block Kv2.1 (18). At 10 mM, stromatoxin-1 blocked the currents by 51 ± 0.08% (traces not shown); the extent of inhibition is consistent with that observed on Kv2.1 channels expressed in COS cells reported previously by others (18). Because inhibition of the non-inactivating potassium currents by 10 mM TEA is more complete than by 100 mM stromatoxin, we took the TEA-sensitive currents as an estimate of Kv2.1 currents. After subtracting TEA-resistant currents, the average current density in leptin-treated cells was ~2-fold (288.7 ± 52.09 pA/pF) that seen in control cells (150.08 ± 16.84 pA/pF) (Fig. 2C; n = 16, p < 0.05). The extent of increase was comparable with that
observed for K\textsubscript{ATP} channels where the average current density for control cells was 125.19 ± 24.07 pA/pF, and for leptin-treated cells it was 298.45 ± 54.23 pA/pF (fold increase = 2.4; Fig. 2C; n = 5, p < 0.05).

A recent study found that leptin (at 100 nM) causes a significant hyperpolarizing shift in the voltage dependence of Kv2.1 channels in HEK293 cells co-expressing Kv2.1 and the long isoform of the leptin receptor LepRb (19). We therefore tested whether leptin at the 10 nM concentration we used affects the voltage dependence of Kv2.1 currents in INS-1 cells (Fig. 2D). The half-maximal activation voltage (V\textsubscript{1/2}) for control cells is −1.11 ± 1.34 mV, with the slope factor k of 10.64 ± 1.20 mV. For cells treated with 10 nM leptin for 30 min, the V\textsubscript{1/2} is −5.17 ± 1.91 mV, and k is 12.04 ± 1.72 mV (see under “Materials and Methods”). The values are not significantly different between the control (n = 7) and leptin-treated cells (n = 8) (p > 0.05). Taken together, our results show that leptin at 10 nM, which is closer to the physiological concentration of the hormone, increases surface expression of Kv2.1 channels and Kv2.1 current amplitude without altering the voltage dependence of these channels.

Leptin Has No Effects on Na+ or Ca2+ Current Density in INS-1 Cells—Because both K\textsubscript{ATP} and Kv2.1 channels are up-regulated by leptin, we sought to determine whether other ion channels involved in β-cell excitability and insulin secretion are affected. In particular, we examined Na+ and Ca2+ currents as they are major contributors of β-cell action potentials. Whole-cell Na+ currents were recorded using the voltage step protocol and the 10 mM TEA-containing internal, Ca2+-free external solutions described under “Materials and Methods.” We observed large Na+ currents that inactivated quickly and also smaller currents that persisted throughout the 200-ms test pulse (Fig. 3B, panel i). Removal of external Ca2+ eliminated the non-inactivating currents but not
the rapidly inactivating currents, confirming that the non-inactivating component was carried by Ca\(^{2+}\) (data not shown). Moreover, addition of 100 μM CdCl\(_2\), which blocks Ca\(^{2+}\) channels, greatly diminished the non-inactivating currents (Fig. 3B, panel ii). Again, analysis of the non-inactivating Ca\(^{2+}\) current density as described under “Materials and Methods” revealed no significant difference between control and leptin-treated cells. Thus, in contrast to Kv2.1 or K\(_{ATP}\) channels, neither Na\(^{+}\) nor Ca\(^{2+}\) current was affected by leptin. These results further indicate the selectivity of the effect of leptin on Kv2.1 and K\(_{ATP}\) channels.

AMPK and PKA Are Involved in Surface Expression Regulation of Kv2.1 Channels—Recently, we showed that AMPK and PKA are involved in the signaling mechanism underlying K\(_{ATP}\) channel trafficking regulation by leptin; activation of either kinase mimicked the effect of leptin and increased surface expression of K\(_{ATP}\) channels, whereas inhibition of either abrogated the effect of leptin (13). Moreover, AMPK likely lies upstream of PKA, as PKA inhibitors preclude the effect of AMPK activators but not vice versa (13). To test whether a similar signaling mechanism was responsible for Kv2.1 trafficking regulation, we examined how AMPK and PKA activators or inhibitors affect the surface density of Kv2.1 channels in control and leptin-treated cells. Stimulation of AMPK with AICAR or PKA with 8-Br-cAMP led to significantly increased surface Kv2.1, as observed in leptin-treated cells. Inhibition of AMPK with compound C, or PKA with the specific peptide inhibitor
Leptin and Kv2.1 Channel Trafficking

A surface-biotinylated and total Kv2.1 in INS-1 cells treated with various combinations of drugs. Treating cells with 10 nM leptin (Lep), 250 μM of the AMPK activator AICAR (AIC), or 10 μM of the PKA activator 8-bromo-cAMP (8Br) for 30 min all increased surface abundance of Kv2.1. Pre-treatment of cells with 10 μM of the AMPK inhibitor compound C (CC) for 30 min before treatment with the vehicle (Veh) DMSO (0.1%), 10 nM leptin, 250 μM AICAR, or 10 μM 8-bromo-cAMP for another 30 min precluded the ability of leptin and AICAR, but not 8-bromo-cAMP, to increase surface expression of Kv2.1. In comparison, pre-treatment of cells with 1 μM of the PKA inhibitor PKI for 30 min before treatment with 0.1% DMSO, 10 nM leptin, 250 μM AICAR, or 10 μM 8-bromo-cAMP for another 30 min precluded the ability of leptin, AICAR, as well as 8-bromo-cAMP, to increase surface expression of Kv2.1.

B bar graph showing the average fold change in the ratio of surface-biotinylated and total Kv2.1 in INS-1 cells pretreated for 10 min with 100 nM jasplakinolide, a cyclic peptide that binds and stabilizes filamentous actin (25), leptin failed to increase surface biotinylated Kv2.1 (Fig. 6A). Likewise, jasplakinolide pretreatment blocked the ability of the AMPK activator AICAR and the PKA activator 8-bromo-cAMP to increase surface abundance of Kv2.1 (Fig. 6A). By contrast, treating cells with latrunculin B, an F-actin-destabilizing agent, at 100 nM for 10 min in the absence of leptin, or AMPK or PKA activators, led to an increase in surface density of Kv2.1. These results indicate that F-actin depolymerization is a requisite step in leptin-induced recruitment of Kv2.1 channels to the cell surface and that actin depolymerization alone is sufficient to trigger increased trafficking of Kv2.1 channels to the plasma membrane.

Increased Surface Densities of KATP and Kv2.1 Channels—We have previously shown that leptin increases AMPK phosphorylation (13). Park et al. (14) made similar observations and further showed that leptin-induced AMPK phosphorylation is mediated by CaMKKβ, a Ca2+-calmodulin-modulated upstream kinase of AMPK. To test whether CaMKKβ plays a role in mediating the effect of leptin on AMPK and the resulting trafficking regulation of Kv2.1 channels, we used surface biotinylation to evaluate the effects of CaMKKβ inhibitors on leptin-induced up-regulation of surface Kv2.1 channels. KATP channel surface expression was analyzed in parallel to serve as a positive control. Inhibition of CaMKKβ by 10 μM STO-609 blocked the ability of leptin, but not AICAR, to activate AMPK based on the level of phosphorylated AMPK recognized by an antibody against phospho-Thr-172 in the catalytic α-subunit of AMPK (Fig. 5A). In addition, we examined whether removal of external Ca2+ disrupts leptin signaling as CaMKKβ is activated by increased intracellular Ca2+ concentrations. Inclusion of EGTA (5 mM) in the medium, which chelates external Ca2+, diminished pAMPK levels upon leptin treatment but did not affect the ability of AICAR to increase pAMPK. These results suggest that leptin increases phosphorylation of AMPK by increasing Ca2+ influx and activating CaMKKβ, in agreement with the findings reported by Park et al. (14).

Next, we tested whether inhibition of CaMKKβ affects the ability of leptin to promote surface expression of KATP and Kv2.1 channels. As shown in Fig. 5, B and C, STO-609 prevented or attenuated the ability of leptin to increase surface expression of KATP and Kv2.1 channels. By contrast, inhibition of CaMKKβ did not interfere with the ability of AICAR to increase KATP or Kv2.1 channel surface expression, which was expected since AICAR increases AMPK phosphorylation and activates the kinase independent of the kinases upstream of AMPK (23). These results suggest that CaMKKβ is responsible for activating AMPK following leptin treatment.

Leptin-induced Up-regulation of Kv2.1 Channel Surface Expression Requires F-actin Depolymerization—Actin depolymerization has been reported to accompany leptin signaling (24) as well as activation of AMPK or PKA (13). We have shown that actin depolymerization is both necessary and sufficient for recruitment of KATP channels to the cell surface in INS-1 cells (13). We therefore determined whether the increased surface expression of Kv2.1 following activation of leptin receptors, AMPK, and PKA also involves actin depolymerization. In INS-1 cells pretreated for 10 min with 100 nM jasplakinolide, a cyclic peptide that binds and stabilizes filamentous actin (25), leptin failed to increase surface biotinylated Kv2.1 (Fig. 6A). Likewise, jasplakinolide pretreatment blocked the ability of the AMPK activator AICAR and the PKA activator 8-bromo-cAMP to increase surface abundance of Kv2.1 (Fig. 6A). By contrast, treating cells with latrunculin B, an F-actin-destabilizing agent, at 100 nM for 10 min in the absence of leptin, or AMPK or PKA activators, led to an increase in surface density of Kv2.1. These results indicate that F-actin depolymerization is a requisite step in leptin-induced recruitment of Kv2.1 channels to the cell surface and that actin depolymerization alone is sufficient to trigger increased trafficking of Kv2.1 channels to the plasma membrane.

Increased Surface Densities of KATP and Kv2.1 Channels Affect β-Cell Electrical Activity—Open probability of KATP channels is dictated mainly by the intracellular ATP and ADP concentrations, which are in turn linked to glucose metabolism. As such, KATP channels have a pivotal role in transitioning β-cells from a resting hyperpolarized state to an excited depolarized state during glucose stimulation. Increased surface expression of KATP channels is predicted to increase the resting state K+ conductance to impede β-cell depolarization. Kv2.1 channels, by contrast, are important for repolarizing the β-cell membrane potential back to the resting state. An increase in Kv2.1 channel density is expected to accelerate the repolariza-
tion process and shorten the action potential duration. To test these predictions, whole-cell current clamp recordings were made in control and leptin-treated INS-1 cells to monitor changes of membrane potentials and action potentials.

Control INS-1 cells exposed to Tyrode’s solution containing 11 mM glucose exhibited an average membrane potential of −22.04 ± 4.17 mV (n = 20), whereas cells pretreated with 10 nM leptin for 30 min had an average membrane potential of −45.4 ± 3.88 mV (n = 20), which is significantly less depolarized than that of control cells (p < 0.0001). To confirm that the more hyperpolarized membrane potential in leptin-treated cells is due to increased K_{ATP} conductance, tolbutamide (300 μM) was added to the bath solution to block K_{ATP} channels. Application of tolbutamide had little effect on the membrane potential in control cells (from −17.42 ± 5.53 to −16.93 ± 7.14 mV; n = 9, p = 0.83; Fig. 7), indicating that at 11 mM glucose, there was little K_{ATP} channel conductance. By contrast, in leptin-treated cells tolbutamide caused a significant depolarizing shift of the membrane potential (from −38 ± 6.42 to −14.65 ± 5.67 mV; n = 9, p < 0.001; Fig. 7), indicative of the presence of substantial K_{ATP} channel conductance. These results are consistent with a scenario in which leptin increases K_{ATP} channel density, hence conductance, to render β-cell membrane potential less responsive to glucose stimulation.

To evaluate the functional impact of increased Kv2.1 surface expression, we compared the electrical activity of control and leptin-treated cells. In 11 mM glucose, single action potentials as well as rapidly firing action potentials on top of depolarizing waves were observed in some but not all cells from both control and leptin-treated groups (examples shown in Fig. 8A). In the control group, 8 out of the 13 cells recorded (~62%) did not fire action potentials, and these cells all had initial break-in membrane potentials more positive than −15 mV. It may be that the prolonged depolarization in 11 mM glucose rendered voltage-gated calcium and sodium channels unable to recover from inactivation to generate action potentials (26–28). The five control cells that did exhibit action potentials had break-in potentials between −35 and −50 mV. In the leptin-treated group, 12 out of the 20 cells recorded (60%) did not show action potentials. Of the cells that did not fire action potentials, three had very hyperpolarized break-in membrane potentials, below −60 mV, consistent with increased K_{ATP} channel presence in the membrane; however, two cells had membrane potentials more positive than −15 mV, and the rest had membrane potential between −30 and −60 mV. The eight cells that did display action potentials had membrane potentials ranging from −23 to −60 mV. The heterogeneity in the electrical activity of single β-cells in both groups is in line with previous studies on single β-cells (29, 30).
Leptin and Kv2.1 Channel Trafficking

A

DMSO
Veh Lep AICAR 8Br

Jas

surface Kv2.1

Veh Lep AICAR 8Br

8Br

total Kv2.1

B

DMSO
Lat B

surface Kv2.1

Veh Lat B

8Br

total Kv2.1

FIGURE 6. Actin depolymerization is required for increased surface expression of Kv2.1 channels in response to leptin signaling. A, INS-1 cells were treated with 100 nm of the actin-stabilizing agent jasplakinolide 10 min prior to treatment with 10 nm leptin (Lep), 250 μM AICAR (AIC) or 10 μM 8-bromo-cAMP (8Br) for 30 min. Surface Kv2.1 and total Kv2.1 were analyzed as described in previous figures. Stabilization of F-actin by jasplakinolide (Jas) prevented increase of surface SUR1 by leptin, AICAR, or 8-bromo-cAMP. Top, representative blots. Bottom, quantification of surface Kv2.1/total Kv2.1. Each bar is the mean ± S.E. of three independent experiments (*, p < 0.05 by one-way ANOVA and Dunnett’s post hoc test). B, treating INS-1 cells with the F-actin-destabilizing drug latrunculin B (Lat B, 100 nm) for 10 min caused an increase in surface expression of Kv2.1 channels. Top, representative blots. Bottom, bar graph shows the ratio of surface Kv2.1 to total Kv2.1 normalized to that seen in DMSO-treated group. (n = 4; *, p < 0.05 by Student’s t test).

nals are mainly responsible for accelerated membrane repolarization in leptin-treated cells, we applied 10 mM TEA to block Kv2.1 channels after recording the baseline action potential firing pattern in leptin-treated cells. Note we chose TEA rather than stromatoxin-1 because TEA inhibits Kv2.1 currents more completely. Although other K+ channels, including BK (large conductance calcium- and voltage-activated potassium channels), SK (small conductance calcium-activated potassium channels), KATP, and other minor K+ channels, are also blocked by TEA to various extents, these channels are either a very small component of the overall K+ conductance under the recording condition (such as KATP channels; data not shown) or they have been shown in previous studies to not have a significant role in determining the repolarization duration of action potentials in β-cells (31–33). TEA led to broadening of the action potential (Fig. 8B, panel i) and a significant increase in the duration of the repolarizing phase of an action potential (49.49 ± 8.55 ms before TEA treatment and 81.90 ± 7.25 ms after TEA treatment; n = 4 cells, p < 0.05) (Fig. 8B, panel ii). These results are in agreement with the notion that Kv2.1 channels contribute to the increased rate of action potential repolarization in leptin-treated cells.

Effect of Leptin on Kv2.1 Channels Is Conserved in Human β-Cells—In addition to rat INS-1 cells, Kv2.1 is known to be functionally important in human β-cells (31, 34, 35). To test whether leptin also increases Kv2.1 channel density in human β-cells, we performed whole-cell patch clamp recordings using primary β-cells dispersed from human islets. Similar to INS-1 cells, human β-cells displayed voltage-dependent outward currents with sensitivity to external TEA (10 mM) consistent with Kv2.1 channels (Fig. 9). After subtracting TEA-resistant currents, the average current density in leptin-treated cells was ∼2-fold (382.93 ± 77.41 pA/pF) that seen in cells not treated with leptin (161.14 ± 39.44 pA/pF) (n = 10 cells from two batches of human islets, p < 0.05) (Fig. 9C). Notably, although the TEA-sensitive currents represent 56.13 ± 5.50% of total currents in control cells, they represent 79.70 ± 3.99% of total currents in leptin-treated cells. Again, the increased percentage of TEA-sensitive currents is consistent with an increase in Kv2.1 channels and echoes our findings in INS-1 cells. To further confirm that the signaling mechanism in human β-cells is also similar, we determined whether the PKA activator 8-bromo-cAMP, which mimics the effect of leptin and AICAR in INS-1 cells, was able to increase Kv2.1 current density. Results show that treating dissociated human β-cells (from another two batches of human islets) with 10 μM 8-bromo-cAMP for 30 min increased Kv2.1 current density by 2-fold as observed in INS-1 cells, without altering voltage dependence of the current (Fig. 9D). The average TEA-sensitive current density was 135.5 ± 24.8 pA/pF for control cells (n = 7) and 270.5 ± 49.4 pA/pF for 8-bromo-cAMP treated cells (n = 8). The difference between the two groups is statistically significant (p < 0.05; Fig. 9E). Taken together, our results indicate that the regulatory effect of leptin on Kv2.1 channels and the underlying signaling mechanism we found in the rodent INS-1 cells are conserved in human β-cells.

Discussion

In this study, we demonstrate that surface abundance of Kv2.1 channels is subject to regulation by the adipocytoreleased hormone leptin. Leptin leads to a transient increase in the density of Kv2.1 channels in the β-cell membrane by a mechanism that involves CaMKKβ, AMPK, PKA, and actin depolymerization. This regulation is similar to that recently reported for KATP channels (13, 14). Indeed, this serendipitous finding was made while we tested several potassium channels as potential controls to show that the effect of leptin on KATP channels was specific. Although leptin regulates Kv2.1 and KATP channel trafficking in a strikingly similar manner, it has no effect on other membrane proteins and ion channels, including IGFR-1β (13), Kir2.1 (36), Kir3.1 (Fig. 1), Na+ channels, and Ca2+ channels (Fig. 3). This selectivity suggests that the similar response of KATP and Kv2.1 channels to leptin signaling is not simply a coincidence but has biological significance. Importantly, the effects of leptin on Kv2.1 channels, and KATP chan-
nels, are observed not only in the rat insulinoma INS-1 cells but also in human \(\beta \)-cells, indicating that this regulatory mechanism is conserved and could be important for glucose homeostasis in humans.

Leptin has been known to inhibit glucose-stimulated insulin secretion by directly acting on \(\beta \)-cells since the late 1990s (12, 37). As the early studies found that leptin increases \(K_{\text{ATP}} \) conductance (12), subsequent studies have largely focused on \(K_{\text{ATP}} \) channel regulation (13, 14, 36, 38–41). To our knowledge, the study we present here is the first to demonstrate an effect of leptin on Kv2.1 channels in \(\beta \)-cells. In a recent study of AgRp/NPY neurons in the hypothalamus, leptin at 100 nM was shown to modulate neuronal excitability; this was attributed to an effect of leptin on the voltage sensitivity of Kv2.1 channels, as Kv2.1 channels exogenously expressed in HEK293 cells showed a hyperpolarizing shift in their voltage dependence in response to leptin signaling (19). However, we did not observe a change in the voltage dependence of endogenously expressed Kv2.1 channels in INS-1 cells upon leptin treatment, at least at the 10 nM concentration used in our study. Rather, the increase in Kv2.1 currents in \(\beta \)-cells we saw after leptin treatment was due to increased surface abundance of Kv2.1 channels.

Genetic and pharmacological studies have shown that Kv2.1 plays a major role in membrane repolarization and insulin secretion in both rodent and human \(\beta \)-cells (10, 42–44). Increased expression of Kv2.1 is expected to facilitate membrane repolarization and dampen the excitatory effect of glucose. In agreement, we observed an increased rate of membrane repolarization in action potentials in leptin-treated cells compared with control cells (Fig. 8). As leptin also increases \(K_{\text{ATP}} \) channel surface expression, which exerts a hyperpolarizing force on the \(\beta \)-cell membrane potential, we propose that the concerted increase in \(K_{\text{ATP}} \) and Kv2.1 expression in the \(\beta \)-cell membrane provides a mechanism to efficiently reduce glucose-stimulated insulin secretion. Of note, our recordings were

FIGURE 7. Leptin causes a hyperpolarizing shift in INS-1 cell membrane potential in 11 mM glucose that is reversible by tolbutamide. A, whole-cell recording of membrane potential from control cells and cells pre-treated with 10 nM leptin for 30 min. After the membrane potential stabilized, 300 \(\mu \)M tolbutamide (tolb) was added to block \(K_{\text{ATP}} \) currents. Left, representative recordings. Right, plots showing changes in the membrane potential after tolbutamide application in all cells recorded in control and leptin-treated groups. B, average membrane potentials in control and leptin-treated cells before and after the application of the \(K_{\text{ATP}} \) channel blocker tolbutamide (300 \(\mu \)M). Values were taken after the membrane potential stabilized. The leptin-treated cells showed a more negative average membrane potential than control cells (*, \(p < 0.05; n = 9 \), unpaired \(t \) test). Tolbutamide significantly depolarized the membrane potential in leptin-treated \(p < 0.001; n = 9 \), paired \(t \) test) but not control \(p > 0.05; n = 9 \), paired \(t \) test) cells to levels comparable with those seen in control cells either before or after tolbutamide exposure \(p > 0.05 \).
made in dispersed INS-1 cells that exhibit significant variation in their electrical behavior. Such variable electrical activity is also well documented for isolated primary β-cells (29, 30). In intact islets where β-cells are electrically coupled through gap junctions (45, 46), the electrical silencing effects of leptin expected from the increased KATP and Kv2.1 conductance would be greatly amplified, based on experimental and modeling studies (47–49).

In addition to leptin, glucose starvation (50) and glucose stimulation (51) have also been reported to increase KATP channel trafficking to the plasma membrane. In the case of glucose starvation, a gradual buildup on AMPK activity is linked to

FIGURE 8. Action potential analysis in control and leptin-treated cells. A, whole-cell current clamp recording of a control cell (panel i) and a cell pre-treated with 10 nM leptin for 30 min prior to the recording (panel ii). Below each recording is the expanded view of individual action potentials. Panel iii, repolarization durations (peak of AP to repolarized membrane potential as indicated by the down and up arrows in panels i and ii) from control and leptin-treated cells are compared in the bar graph. Each bar represents the mean ± S.E. of 5–6 cells, and the value of each cell is the average of 3–5 well defined action potentials. *, p < 0.05. Panel iv, same as panel iii except that action potential amplitudes are compared between control and leptin-treated groups. B, panel i a representative recording from a leptin-treated cell before and after application of 10 mM TEA. Expanded views of the two sections of the recording marked by the dotted lines and labeled 1 and 2 are shown on the lower left side of the recording. Panel ii, a plot of the repolarization duration before and after TEA treatment from four leptin-treated cells showing an increase in the repolarization duration after TEA treatment.
increased K_{ATP} channel surface expression (14, 50). In the glucose stimulation study, calcium and PKA were found to be required for K_{ATP} channel translocation to the plasma membrane (51). Considering our previous (13) and present findings that both AMPK and PKA have a role in leptin-induced trafficking of K_{ATP} and Kv2.1 channels, it will be important to

FIGURE 9. Leptin increases Kv2.1 current density in human \(\beta \)-cells. A, whole-cell recordings of dispersed human \(\beta \)-cells were performed as described under "Materials and Methods." Left, representative whole-cell recordings from a control cell (black) and a cell pre-treated with 10 nM leptin for 30 min (red). The voltage step protocol and scales are shown on the right. B, averaged current density in the absence or presence of 10 mM TEA in control and leptin-treated cells plotted against the membrane voltage. Each data point represents mean ± S.E. of 10 cells. C, bar graph showing averaged Kv2.1 current densities, calculated by subtracting TEA-insensitive currents from total currents, in control and leptin-treated cells \((n = 10)\). *, \(p < 0.05\), Student’s t test. D, representative current traces from a control and a cell pre-treated with 10 \(\mu \)M 8-bromo-cAMP for 30 min using the stimulation protocol shown on the right. E, bar graph showing the average Kv2.1 current density calculated by subtracting TEA (10 mM)-resistant currents from total currents. The average current density of 8-bromo-cAMP-treated cells \((n = 8)\) is significantly higher than that observed in control cells \((n = 7)\), *, \(p < 0.05\) by Student’s t test.
Leptin and Kv2.1 Channel Trafficking

![Diagram of leptin receptor signaling](https://example.com/diagram.png)

FIGURE 10. Schematic diagram of concerted trafficking regulation of K\textsubscript{ATP} and Kv2.1 channels by leptin in pancreatic β-cells. Binding of leptin to its receptor induces a signaling cascade that involves activation of CaMKKβ and AMPK, as well as PKA either sequentially or in parallel. Activation of AMPK and PKA leads to filamentous actin (F-actin) depolymerization to promote K\textsubscript{ATP} and Kv2.1 channel trafficking to the plasma membrane. The increased K+ efflux due to increased surface density of K\textsubscript{ATP} channels helps to keep β-cell membrane potential hyperpolarized in the presence of stimulating glucose, whereas the increased K+ efflux due to increased Kv2.1 channel density following an action potential facilitates membrane repolarization, which together reduce glucose-stimulated insulin secretion (GSIS).

determine in the future whether glucose starvation and glucose stimulation also have an effect on Kv2.1 trafficking. Coordinated trafficking of K\textsubscript{ATP} and Kv2.1 channels would be expected to enhance the physiological impact of the various signals.

Strikingly, the effects of leptin on both K\textsubscript{ATP} and Kv2.1 channels are transient. What might be the physiological significance of such transient regulation? We speculate that the transient nature of the leptin effect is important to provide β-cells the ability to respond to and integrate other signals to control insulin secretion. In a study showing that glucose stimulation recruits K\textsubscript{ATP} channels to the cell surface, Yang et al. (51) proposed that the mechanism may allow β-cells to transition more efficiently when blood glucose falls by facilitating membrane potential repolarization and recovery of voltage-gated calcium channels from inactivation such that β-cells can respond better upon subsequent glucose stimulation. In our cells grown in 11 mM glucose, leptin-induced trafficking of K\textsubscript{ATP} and Kv2.1 channels was associated with a more hyperpolarized membrane potential and a more rapid return to resting membrane potential in those cells that did fire action potentials. Transient up-regulation of K\textsubscript{ATP} and Kv2.1 channel density by leptin may thus also serve to prime β-cells to efficiently respond to subsequent glucose stimulation. In this regard, it is worth noting that plasma leptin levels are modulated by physiological factors such as circadian rhythm, nutritional state, insulin levels, and neuronal regulation (52–54) and that acute changes in leptin levels within the physiological range have been shown to markedly inhibit insulin secretion in vivo (55). Moreover, leptin concentrations in humans have been shown to oscillate following a pulsatile pattern with a pulse duration of ~33 min (56). Future studies elucidating the temporal relationship between signaling through leptin and other physiological cues in β-cells will be needed to fully understand the role of the regulatory mechanism we uncovered here in glucose homeostasis.

Another question arising from our study yet to be addressed is whether K\textsubscript{ATP} and Kv2.1 channels are localized to the same secretory vesicle population in β-cells and whether such colocalization underlies the coordinated trafficking regulation by leptin. Presently, the subcellular localization of K\textsubscript{ATP} channels remains unresolved, with some studies suggesting localization in insulin granules (57, 58) and others suggesting localization in chromogranin-positive but insulin-negative dense-core granules (51). Even less is known about the subcellular localization of Kv2.1 channels. An interesting hypothesis to test in the future is that K\textsubscript{ATP} and Kv2.1 channels may be sorted into the same secretory vesicles such that both channels are simultaneously regulated by leptin signaling.

It is worth noting that Kv2.1 channels in β-cells have been reported to have other functional roles unrelated to repolarization of membrane potential. For example, Dai et al. (59) recently reported that Kv2.1 regulates insulin secretion independent of its electrical function by interacting with syntaxin 1A-binding domain via the channel’s C terminus. Moreover, increased expression of Kv2.1 has been linked to apoptosis in neurons (60) and β-cells (61) following apoptotic signals. It remains to be determined whether leptin regulation of Kv2.1 channel surface expression also affects the insulin secretion machinery or β-cell survival. Nevertheless, our study here further underscores the complex role and regulation of Kv2.1 in pancreatic β-cells.

In summary, our study reveals concerted regulation of two potassium channels critically important for β-cell electrical activity by the satiety hormone leptin to modulate β-cell electrical response to glucose (Fig. 10). In addition to K\textsubscript{ATP} and Kv2.1, many other ion channels and transporters contribute to shaping the electrical activity of β-cells. Although leptin has little effect on surface expression of Na+ or Ca2+ currents in INS-1 cells (Fig. 3), it has been shown or implicated to regulate several other ion channels in other cell types, including AMPA receptors (62) and TrpC channels (63) in hippocampal neurons. It will be important to determine in future studies whether leptin may regulate additional channels/transporters in β-cells to modulate insulin secretion or other functions.
Acknowledgments—We thank Dr. Christopher Newgard for the INS-1 cell clone 832/13 and Dr. Herbert Gaisano for the Kv2.1-mCherry plasmid. We also thank Erik Olson for technical assistance and the staff of the Advanced Light Microscopy Core at Jungers Center (Oregon Health & Science University, Portland, OR) for their help with image acquisition.

References

1. Jacobson, D. A., and Philipson, L. H. (2007) Action potentials and insulin secretion: new insights into the role of Kv channels. Diabetes Obes. Metab. 9, 89–98
2. Rorsman, P., and Braun, M. (2013) Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179
3. Yang, S. N., Shi, Y., Yang, G., Li, Y., Yu, I., and Berggren, P. O. (2014) Ionic mechanisms in pancreatic beta cell signaling. Cell. Mol. life Sci. 71, 4149–4177
4. Aguilar-Bryan, L., and Bryan, J. (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135
5. Ashcroft, F. M. (2005) K(ATP) channels and insulin secretion: a key role in health and disease. Biochem. Soc. Trans. 34, 243–246
6. Nichols, C. G. (2006) KATP channels as molecular sensors of cellular metabolism. Nature 440, 470–476
7. Ashcroft, F. M. (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058
8. Yan, L. J., Figueroa, D. J., Austin, C. P., Liu, Y., Bugianesi, R. M., Slaughter, R. S., Kaczorowski, G. J., and Kohler, M. G. (2004) Expression of voltage-gated potassium channels in human and rhesus pancreatic islets. Diabetes 53, 597–607
9. Tamarina, N. A., Kuznetsov, A., Fridlyand, L. E., and Philipson, L. H. (2005) Delayed-rectifier (KV2.1) regulation of pancreatic beta-cell calcium responses to glucose: inhibitor specificity and modeling. Am. J. Physiol. Endocrinol. Metab. 289, E578–E585
10. Jacobson, D. A., Kuznetsov, A., Lopez, J. P., Kash, S., Aminmali, C. E., and Philipson, L. H. (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab. 6, 229–235
11. Komatsu, M., Takei, M., Ishii, H., and Sato, Y. (2013) Glucose-stimulated insulin secretion: a newer perspective. J. Diabetes Investig. 4, 511–516
12. Kieffer, T. J., Heller, R. S., Leech, C. A., Holz, G. G., and Habener, J. F. (1997) Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 46, 1087–1093
13. Chen, P. C., Ykurooka, Y. N., and Shyng, S. L. (2013) Leptin regulates KATP channel trafficking in pancreatic beta-cells by a signaling mechanism involving AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). J. Biol. Chem. 288, 34098–34109
14. Park, S. H., Ryu, S. Y., Yu, W. J., Han, Y. E., J. Y. S., Oh, K., Sohn, J. W., Lim, A., Jeon, J. P., Lee, H. G., Lee, K. H., Lee, S. H., Berggren, P. O., Jeon, J. H., and Ho, W. K. (2013) Leptin promotes K(ATP) channel trafficking by AMPK signaling in pancreatic beta-cells. Proc. Natl. Acad. Sci. U.S.A. 110, 12673–12678
15. Hohmeier, H. E., BeltrandelRio, H., Clark, S. A., Henkel-Rieger, R., Normington, K., and Newgard, C. B. (1997) Regulation of insulin secretion from novel engineered insulinoma cell lines. Diabetes 46, 968–977
16. Jensen, M. V., Haldeman, J. M., Zhang, H., Lu, D., Huisin, M. O., Vale, W. W., Hohmeier, H. E., Rosenberg, P., and Newgard, C. B. (2013) Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion. J. Biol. Chem. 288, 23128–23140
17. Bokvist, K., Rorsman, P., and Smith, P. A. (1990) Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta-cells. J. Physiol. 423, 311–325
18. Escoubas, P., Diochot, S., Célérier, M. L., Nakajima, T., and Lazdunski, M. (2002) Novel tarantula toxins for subtypes of voltage-dependent potassium channels in the Kv2 and Kv4 subfamilies. Mol. Pharmacol. 62, 48–57
19. Baver, S. B., Hope, K., Guyot, S., Bjerbaek, C., Kaczorowski, C., and O’Connell, K. M. (2014) Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 34, 5486–5496
20. Ashcroft, F. M., Kelly, R. P., and Smith, P. A. (1990) Two types of Ca channel in rat pancreatic beta-cells. Pflugers Arch. 415, 504–506
21. Satin, L. S., and Cook, D. L. (1988) Evidence for two calcium currents in insulin-secreting cells. Pflugers Arch. 411, 401–409
22. Sherr, E., Giovannini, F., Codignola, A., Passafaro, M., Giorgi-Rossi, P., Volsen, S., Craig, P., Davalli, A., and Carrera, P. (2003) Voltage-operated calcium channel heterogeneity in pancreatic beta cells: physiopathological implications. J. Bioenerg. Biomembr. 35, 687–696
23. Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMP-activated protein kinase: a target for drugs both ancient and modern. Chem. Biol. 19, 1222–1236
24. Ning, K., Miller, L. C., Kaczorowski, G. J., and Kohler, M. G. (2004) Expression of voltage-gated Ca2+ channels in pancreatic beta-cells. Mol. Pharmacol. 66, 1668–1680
25. Rorsman, P., and Trube, G. (1986) Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage clamp conditions. J. Physiol. 374, 531–550
26. Ashcroft, F. M., Rorsman, P., and Trube, G. (1989) Single calcium channel activity in mouse pancreatic beta-cells. Ann. N. Y. Acad. Sci. 560, 410–412
27. Göpel, S., Kanno, T., Barg, S., Galvanovskis, J., and Rorsman, P. (1999) Voltage-gated and resting membrane currents recorded from B-cells in intact mouse pancreatic islets. J. Physiol. 521, 717–728
28. Satin, L. S., and Cook, D. L. (1985) Voltage-gated Ca2+ current in pancreatic B-cells. Pflugers Arch. 404, 385–387
29. Smolen, P., Rinzel, J., and Sherman, A. (1993) Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys. J. 64, 1668–1680
30. Rorsman, P., and Trube, G. (1986) Calcium and delayed potassium currents in mouse pancreatic beta-cells under voltage clamp conditions. J. Physiol. 374, 531–550
31. Braun, M., Ramracheya, R., Bengtsson, M., Zhang, Q., Kananauskaite, J., Partridge, C., Johnson, P. R., and Rorsman, P. (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57, 1618–1628
32. Houamed, K. M., Sweet, I. R., and Satin, L. S. (2010) BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic beta-cells. J. Physiol. 588, 3511–3523
33. Jacobson, D. A., Mendez, F., Thompson, M., Torres, J., Cochet, O., and Philipson, L. H. (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J. Physiol. 588, 3525–3537
34. Herrington, J., Sanchez, M., Wunderler, D., Yan, L., Bugianesi, R. M., Dick, I. E., Clark, S. A., Brochu, R. M., Priest, B. T., Kohler, M. G., and McManus, O. B. (2005) Biophysical and pharmacological properties of the voltage-gated potassium current of human pancreatic beta-cells. J. Physiol. 567, 159–175
35. MacDonald, P. E., Ha, X. F., Wang, J., Smukler, S. R., Sun, A. M., Gaisano, H. Y., Salapatek, A. M., Backx, P. H., and Wheeler, M. B. (2001) Members of the Kv1 and Kv2 voltage-dependent K+ channel families regulate insulin secretion. Mol. Endocrinol. 15, 1423–1435
36. Park, S. H., Ho, W. K., and Jeon, J. H. (2013) AMPK regulates K(ATP) channel trafficking via PTEN inhibition in leptin-treated pancreatic beta-cells. Biochem. Biophys. Res. Commun. 440, 539–544
37. Kieffer, T. J., and Habener, J. F. (2000) The adipoinsular axis: effects of leptin on pancreatic beta-cells. Am. J. Physiol. Endocrinol. Metab. 278, E1–E14
38. Harvey, J., and Ashford, M. L. (1998) Insulin occludes leptin activation of
Leptin and Kv2.1 Channel Trafficking

ATP-sensitive K⁺ channels in rat CRI-G1 insulin secreting cells. J. Physiol. 511, 695–706

39. Harvey, J., and Ashford, M. L. (1998) Role of tyrosine phosphorylation in leptin activation of ATP-sensitive K⁺ channels in the rat islet cell line CRI-G1. J. Physiol. 510, 47–61

40. Harvey, J., Hardy, S. C., Irving, A. J., and Ashford, M. L. (2000) Leptin activation of ATP-sensitive K⁺ (KATP) channels in rat CRI-G1 insulinoma cells involves disruption of the actin cytoskeleton. J. Physiol. 527, 95–107

41. Holz, G. G., Chepurny, O. G., and Leech, C. A. (2013) Leptin-stimulated KATP channel trafficking: a new paradigm for beta-cell stimulus-secretion coupling? Islets 5, 229–232

42. Li, X. N., Herrington, J., Petrov, A., Ge, L., Eiermann, J., Xiong, Y., Jensen, M. V., Hohmeier, H. E., Newgard, C. B., Garcia, M. L., Wagner, M., Zhang, B. B., Thornberry, N. A., Howard, A. D., Kaczorowski, G. J., and Zhou, Y. P. (2013) The role of voltage-gated potassium channels Kv2.1 and Kv2.2 in the regulation of insulin and somatostatin release from pancreatic islets. J. Pharmacol. Exp. Ther. 344, 407–416

43. MacDonald, P. E., Sewing, S., Wang, J., Joseph, J. W., Smukler, S. R., Sakekaropoulos, G., Wang, J., Saleh, M. C., Chan, C. B., Tsuchima, R. G., Salapatek, A. M., and Wheeler, M. B. (2002) Inhibition of Kv2.1 voltage-dependent K⁺ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J. Biol. Chem. 277, 44938–44945

44. Roe, M. W., Worley, J. F., 3rd, Mittal, A. A., Kuznetsov, A., DasGupta, S., Mertz, R. J., Witherspoon, S. M., 3rd, Blair, N., Lancaster, M. E., McIntyre, M. S., Shehee, W. R., Dukes, I. D., and Philipson, L. H. (1996) Expression and function of pancreatic beta-cell delayed rectifier K⁺ channels. Role in stimulus-secretion coupling. J. Biol. Chem. 271, 32241–32246

45. Meda, P. (2003) Cx36 involvement in insulin secretion: characteristics and mechanism. Cell Commun. Adhes. 10, 431–435

46. Head, W. S., Orseth, M. L., Nunemaker, C. S., Satin, L. S., Piston, D. W., and Benninger, R. K. (2012) Connexin-36 gap junctions regulate delayed rectifier potassium channel subunit Kv2.1 expression and function. J. Physiol. 561, 1707–1707

47. Silva, J. R., Cooper, P., and Nichols, C. G. (2014) Modeling K⁺,ATP-dependent excitability in pancreatic islets. Biophys. J. 107, 2016–2026

48. Rocheleau, J. V., Remedi, M. S., Granada, B., Head, W. S., Koster, J. C., Nichols, C. G., and Piston, D. W. (2006) Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol. 4, e26

49. Benningter, R. K., Zhang, M., Head, W. S., Satin, L. S., and Piston, D. W. (2008) Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061

50. Lim, A., Park, S. H., Sohn, J. W., Jeon, J. H., Park, J. H., Song, D. K., Lee, S. H., and Ho, W. K. (2009) Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells. Diabetes 58, 2813–2819

51. Yang, S. N., Wenna, N. D., Yu, J., Yang, G., Qiu, H., Yu, L., Juntti-Berggren, L., Köhler, M., and Berggren, P. O. (2007) Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules. Cell Metab. 6, 217–228

52. Kalbsek, A., Fliers, E., Romijn, J. A., La Fleur, S. E., Wortel, J., Bakker, O., Endert, E., and Buijs, R. M. (2001) The suprachiasmatic nucleus generates the diurnal changes in plasma leptin levels. Endocrinology 142, 2677–2685

53. Rayner, D. V., and Trayhurn, P. (2001) Regulation of leptin production: sympathetic nervous system interactions. J. Mol. Med. 79, 8–20

54. Szkudelski, T. (2007) Intracellular mediators in regulation of leptin secretion from adipocytes. Physiol. Res. 56, 503–512

55. Cases, J. A., Gabriely, I., Ma, X. H., Yang, X. M., Michaeli, T., Fleischer, N., Rossetti, L., and Barzilai, N. (2001) Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes 50, 348–352

56. Licinio, J., Mantzoros, C., Negrão, A. B., Cizza, G., Wong, M. L., Bon- giorno, P. B., Chrousos, G. P., Karp, B., Allen, C., Flier, J. S., and Gold, P. W. (1997) Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat. Med. 3, 575–579

57. Geng, X., Li, L., Watkins, S., Robbins, P. D., and Drain, P. (2003) The insulin secretory granule is the major site of K(ATP) channels of the endocrine pancreas. Diabetes 52, 767–776

58. Varadi, A., Grant, A., McCormack, M., Nicolson, T., Magistri, M., Mitchell, K. J., Halestrap, A. P., Yuan, H., Schwappach, B., and Rutter, G. A. (2006) Intracellular ATP-sensitive K⁺ channels in mouse pancreatic beta-cells: against a role in organelle cation homeostasis. Diabetologia 49, 1567–1577

59. Dai, X. Q., Manning Fox, J. E., Chikvashvili, D., Casimir, M., Plummer, G., Hajmre, C., Spigelman, A. F., Kin, T., Singer-Lahat, D., Kang, Y., Shapiro, A. M., Gaisano, H. Y., Lotan, I., and Macdonald, P. E. (2012) The voltage-dependent potassium channel subunit Kv2.1 regulates insulin secretion from rodent and human islets independently of its electrical function. Diabetologia 55, 1709–1720

60. Pal, S. K., Takimoto, K., Aizenman, E., and Levitan, E. S. (2006) Apoptotic surface delivery of K⁺ channels. Cell Death Differ. 13, 661–667

61. Kim, S. J., Widmaier, S. B., Choi, W. S., Nian, C., Aio, Z., Warnock, G., and McIntosh, C. H. (2012) Pancreatic beta-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ. 19, 333–344

62. Moult, P. R., Cross, A., Santos, S. D., Carvalho, A. L., Lindsay, Y., Connolly, C. N., Irving, A. J., Leslie, N. R., and Harvey, J. (2010) Leptin regulates AMPA receptor trafficking via PTEN inhibition. J. Neurosci. 30, 4088–4101

63. Dhar, M., Wayman, G. A., Zhu, M., Lambert, T. J., Davare, M. A., and Appleyard, S. M. (2014) Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J. Neurosci. 34, 10022–10033