ON EXISTENCE AND NONEXISTENCE OF NONNEGATIVE SOLUTIONS TO SEMILINEAR DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLDS

FANHENG XU

Abstract. In this paper, we give a clear cut relation between the volume growth $V(r)$ and the existence of nonnegative solutions to parabolic semilinear problem

$$\begin{cases}
\Delta u - \partial_t u + u^p = 0, \\
u(x, 0) = u_0(x),
\end{cases} \quad (*)$$

on a large class of Riemannian manifolds. We prove that for parameter $p > 1$, if

$$\int_{+\infty}^{+\infty} \frac{t}{V(t)^{p-1}} dt = \infty,$$

then $(*)$ has no nonnegative solution. If

$$\int_{+\infty}^{+\infty} \frac{t}{V(t)^{p-1}} dt < \infty,$$

then $(*)$ has positive solutions for small u_0.

1. Introduction

Let (M, g) be a noncompact complete connected n-dimensional Riemannian manifold and consider nonnegative solutions to differential equations

$$\begin{cases}
\Delta u - \partial_t u + u^p = 0 \quad \text{in } M \times (0, \infty), \\
u(x, 0) = u_0(x) \quad \text{in } M,
\end{cases} \quad (1)$$

where parameter $p > 1$, Δ is the Laplace-Betrami operator of M, and $u_0(x) \geq 0$ not identically zero.

Fujita in [5] proved the following results in the case of $M = \mathbb{R}^n$:

(a) if $1 < p < 1 + \frac{2}{n}$ and $u_0 > 0$, equation (1) has no solution;

(b) if $p > 1 + \frac{2}{n}$ and $u_0 > 0$ is smaller than a small Gaussian, then equation (1) possesses positive solutions.

Later, several authors [1] [6] [8] showed that the critical case for problem (1), that is $p = 1 + \frac{2}{n}$, belongs to blow-up case (a).

In [23], Zhang proved several nonexistence results for semilinear and quasilinear parabolic problems on manifolds provided the following setting:

(i) $V_{x_0}(r) \leq Cr^\alpha$;

(ii) Condition (G) (see Definition [12]).

Especially, he proved that: Assume conditions (i) and (ii) on manifold are satisfied, and $\alpha \geq 1$. If $1 < p \leq 1 + \frac{2}{n}$, then problem (1) possesses no global positive solution.

1991 Mathematics Subject Classification. Primary: 58J35, Secondary: 35K61.

Key words and phrases. differential equation; Riemannian manifolds; volume growth.
The celebrated idea of studying the nonnegative solutions in terms of the volume of the geodesic ball was due to Cheng and Yau [4]. They proved that if the inequality
\[V_{x_0}(r) \leq Cr^2 \]
holds for some point \(x_0 \in M \) with all large enough \(r \), then any positive solution to \(\Delta u \leq 0 \) is identically constant, here \(V_{x_0}(r) \) is the volume of geodesic ball of radius \(r \) centered at \(x_0 \in M \).

Recently, this idea was used and developed for solutions to both elliptic equations (see, e.g. [11, 12, 18, 19]) and parabolic equations (see [15]). Particularly in [15], Mastrolia, Monticelli and Punzo proved that if
\[V_{x_0}(r) \leq Cr^\frac{2}{p-1}(\ln r)^\frac{1}{p-1}, \]
then (1) has no weak supersolutions.

Definition 1.1. We say the volume condition
\[\int_{r_0}^{+\infty} \frac{t}{V(t)^{p-1}} dt = (or <) \infty \]
is satisfied if there exists constant \(r_0 > 0 \) and \(x_0 \in M \) such that
\[\int_{r_0}^{+\infty} \frac{t}{V_{x_0}(t)^{p-1}} dt = (or <) \infty \]

Noting that the choice of \(r_0 \) and \(x_0 \) doesn’t affect this condition, we can omit them in (3) and specify proper value if needed.

It’s easily see that, if \(V_{x_0}(r) \) satisfy (2) or the following inequality
\[V_{x_0}(r) \leq Cr^{\alpha_1}(\ln r)^{\alpha_2}(\ln \ln r)^{\alpha_3} \times \cdots \times (\ln \ln \cdots \ln r)^{\alpha_k}, \quad k \geq 3 \]
with parameter
\[\alpha_1 = \frac{2}{p-1}, \quad \alpha_i = \frac{1}{p-1}, \quad (i = 2, 3, \cdots, k), \]
then \(V_{x_0}(r) \) satisfy
\[\int_{r_0}^{+\infty} \frac{t}{V(t)^{p-1}} dt = \infty. \]

In this paper, we show that volume condition (4) is indeed the sufficient condition to the nonexistence of solutions to equation (1) on a large class of manifolds. Moreover, if we assume the initial value \(u_0 \) is small, then (4) is also necessary.

Let us introduce our setting. Unless specified, let \(M \) be a connected geodesically complete noncompact Riemannian manifold and satisfy condition (G) and (H).

Definition 1.2 (Condition (G)). We say condition (G) is satisfied if there exists a constant \(C_0 \) such that
\[\frac{\partial \log g^{1/2}}{\partial r} \leq \frac{C_0}{r}, \]
here \(g^{1/2} \) is the volume density of the manifold;

If the Ricci curvature of \(M \) is nonnegative, it is well known that condition (G) hold, in fact, \((\partial \log g^{1/2})/\partial r \leq 0\).
ON EXISTENCE AND NONEXISTENCE OF NONNEGATIVE SOLUTIONS TO SEMILINEAR DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLDS

Definition 1.3 (Condition (H)). We say condition (H) is satisfied if \(P_t(x,y) \), the smallest fundamental solution of the classical heat equation
\[
\frac{\partial}{\partial t} u - \Delta u = 0, \quad \text{in } M
\]
exists and satisfies the following estimate
\[
P_t(x,y) \leq C \frac{1}{V_x(\sqrt{t})}, \quad (5)
\]
for all \(t > 0 \) and almost all \(x,y \in M \).

We know that \(P_t(x,y) \) is called heat kernel of \(\Delta \) and has the following properties

- Symmetry: \(P_t(x,y) = P_t(y,x) \), for all \(x,y \in M, t > 0 \).
- \(P_t(x,y) \geq 0 \), for all \(x, y \in M \) and \(t > 0 \), and
\[
\int_M P_t(x,y)dy \leq 1, \quad \text{for all } x \in M \text{ and } t > 0. \quad (6)
\]
- The semigroup identity: for all \(x, y \in M \) and \(t, s > 0 \),
\[
P_{t+s}(x,y) = \int_M P_t(x,z)P_s(z,y)dz. \quad (7)
\]

If the manifold has nonnegative Ricci curvature, by a famous result of Li and Yau in [13], we have
\[
P_t(x,y) \asymp C \frac{1}{V_x(\sqrt{t})} \exp \left(-\frac{d^2(x,y)}{ct} \right),
\]
where the sign \(\asymp \) means that both \(\leq \) and \(\geq \) are true but with different values of \(C, c \). It follows that (H) is satisfied if the manifold has nonnegative Ricci curvature.

The main results of the paper are the following.

Theorem 1.4. (a). If
\[
\int^{+\infty} \frac{t}{V(t)^{p-1}}dt = \infty
\]
then equation (1) has no nonnegative solutions.
(b). If
\[
\int^{+\infty} \frac{t}{V(t)^{p-1}}dt < \infty
\]
and \(u_0 \) is smaller than a small Gaussian, then (1) has positive solutions.

In the part (a) of Theorem 1.4 the “solution” can also be understood in a weak sense. Our proof are based on a method originating from [23] (also see [22]) and the proof of Theorem 11.14 in [10], that uses the Laplacian of the distance function and a carefully chosen test function. The arguments of part (b) are purely functional analytic.

We denote by \(W^2_c \) the subspace of \(W^2_{loc} \) of functions with compact support, and by \(B_x(r) \) the geodesic ball of radius \(r \) centered at \(x \in M \). \(V_x(r) \) is the volume of \(B_x(r) \). In all the proof, since the geodesic ball always centered at a fixed point \(x_0 \in M \), we may use the abbreviation \(B \equiv B_{x_0} \) and \(V \equiv V_{x_0} \). The symbol \(C, C_0, C_1, \cdots \) denote positive constants whose values are unimportant and may vary at different occurrences.
2. Proof of Theorem 1.4

Proof of part (a). Suppose u is a solution of u and $\psi \geq 0$ is a function in $W^2_c(M \times [0, \infty))$. Multiplying ψ to both side of u and integrating by part, we have

$$
\int_0^\infty \int_M u^p \psi dxdt = - \int_0^\infty \int_M u \Delta \psi dxdt - \int_0^\infty \int_M u \partial_t \psi dxdt - \int_M u_0 \psi dx
$$

We use the following test function:

$$
\psi(x, t) = \varphi^q(r(x), t)
$$

where $q = p/(p-1)$, and $r(x) = d(x_0, x)$ for some fixed point $x_0 \in M$. It follows that

$$
\Delta \psi = q \varphi^{q-1} \Delta \varphi + q(q-1) \varphi^{q-2} |\nabla \varphi|^2,
$$

$$
\partial_t \psi = q \varphi^{q-1} \partial_t \varphi
$$

Substituting above into (8) we have

$$
\int_0^\infty \int_M u^p \varphi^q dxdt \leq C \left(\int_M u \varphi^{q-1} (-\Delta \varphi) dx + \int_M u \varphi^{q-1} (-\partial_t \varphi) dx \right)
$$

Let $h \in W^2_c([0, \infty)$ be a function satisfying

$$
h(r) = 1, r \in [0, 1]; h(r) = 0, r \in [2, \infty); -C_1 \leq h' \leq 0, |h''| \leq C_1, r \in (1, 2).
$$

Fix a finite increasing sequence $\{r_k\}, \{k = 0, 1, \cdots, i\}$. Let $Q_k = B(r_k) \times [0, r_k^2)$. Define φ by

$$
\varphi(x, t) = \begin{cases} 1, & (x, t) \in Q_0, \\
\alpha \frac{(r_k - r_{k-1})^2}{(V(r_k)r^l)} h\left(\frac{r(x)}{r_k}\right) h\left(\frac{t(x)}{T_k}\right) + T_k, & (x, t) \in Q_k \backslash Q_{k-1}, k = 1, \cdots, i \\
0, & (x, t) \in M \backslash Q_i
\end{cases}
$$

where

$$
\alpha = \left(\sum_{k=1}^i \frac{(r_k - r_{k-1})^2}{V(r_k)r^l} \right)^{-1}
$$

and

$$
T_k = \left\{ \begin{array}{ll}
\alpha \sum_{j=k+1}^i \frac{(r_j - r_{j-1})^2}{V(r_j)r^l}, & k = 1, \cdots, i - 1 \\
0, & k = i
\end{array} \right.
$$

Clearly $\varphi \in W^2_c(M \times [0, \infty))$. Noting $\varphi(\cdot, t)$ is radial on M, we have when $(x, t) \in Q_k \backslash Q_{k-1},$

$$
\Delta \varphi = \frac{\partial^2 \varphi(r, t)}{\partial r^2} + \left(\frac{n - 1}{r} + \frac{\partial \log g^{1/2}}{\partial r} \right) \frac{\partial \varphi(r, t)}{\partial r}
$$

Specifying $\{r_i\}$ to be a geometric sequence with $r_k = 2r_{k-1}$, we have

$$
-C \alpha \frac{(r_k - r_{k-1})}{V(r_k)r^l} \leq \frac{\partial \varphi(r, t)}{\partial r} \leq 0,
$$

where $a = \left(\sum_{k=1}^i \frac{(r_k - r_{k-1})^2}{V(r_k)r^l} \right)^{-1}.$
ON EXISTENCE AND NONEXISTENCE OF NONNEGATIVE SOLUTIONS TO SEMILINEAR DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLDS

\[\left| \frac{\partial^2 \varphi(r, t)}{\partial r^2} \right| \leq \frac{Ca}{V(r_k)^{p-1}}. \] \hspace{1cm} (12)

Combining (10), (11), (12) and condition (G), we have

\[-\Delta \varphi \leq \frac{Ca}{V(r_k)^{p-1}}, \quad (x, t) \in Q_k \setminus Q_k-1. \] \hspace{1cm} (13)

Also by the definition of \(\varphi \), we have

\[-\partial_t \varphi \leq \frac{Ca}{V(r_k)^{p-1}}, \quad (x, t) \in Q_k \setminus Q_k-1. \] \hspace{1cm} (14)

Substituting (13) and (14) into (9), we have

\[\int_0^\infty \int_M u^p \varphi^q \, dx \, dt \leq C \int_0^\infty \int_M \sum_{k=1}^i \frac{u\varphi^{q-1}}{V(r_k)^{p-1}} \chi_{Q_k \setminus Q_k-1} \, dx \, dt \]

Using the H"older's inequality, we obtain

\[\int_0^\infty \int_M u^p \varphi^q \, dx \, dt \leq C \left(\int_0^\infty \int_M u^p \varphi^q \, dx \, dt \right)^{1/p} \left(\int_0^\infty \int_M \left(\sum_{k=1}^i \frac{\chi_{Q_k \setminus Q_k-1}}{V(r_k)^{p-1}} \right)^q \, dx \, dt \right)^{1/q} \]

\[= C \left(\int_0^\infty \int_M u^p \varphi^q \, dx \, dt \right)^{1/p} \left(\sum_{k=1}^i \int_{Q_k \setminus Q_{k-1}} \frac{1}{V(r_k)^{p-1}} \, dx \, dt \right)^{1/q} \]

It follows that

\[\left(\int_0^\infty \int_M u^p \varphi^q \, dx \, dt \right)^{(p-1)/p} \leq C \left(\sum_{k=1}^i \int_{Q_k \setminus Q_{k-1}} \frac{1}{V(r_k)^{p-1}} \, dx \, dt \right)^{1/q} \]

\[\leq C \left(\sum_{k=1}^i \frac{p_k^2}{V(r_k)^{p-1}} \right)^{1/q} \]

\[\leq C \left(\sum_{k=1}^i \frac{(r_k - r_{k-1})^2}{V(r_k)^{p-1}} \right)^{1/q} \]

\[= C_0 (q-1)/q \] \hspace{1cm} (15)
On the other hands

\[a^{-1} = \sum_{k=1}^{i} \frac{(r_k - r_{k-1})^2}{V(r_k)^{p-1}} = C \sum_{k=1}^{i} \frac{r_k^2 - r_{k-1}^2}{V(r_k)^{p-1}} \geq C \sum_{k=2}^{i} \int_{r_{k-1}}^{r_k} \frac{r}{V(r)^{p-1}} \, dx = C \int_{2r_0}^{r_1} \frac{r}{V(r)^{p-1}} \, dx \quad (16) \]

Using the volume condition

\[\int_{r_0}^\infty \frac{r}{V(r)^{p-1}} \, dx = \infty, \]

for every \(r_0 > 0 \), we have form (16), if \(i \to +\infty \), then \(a \to 0 \). Thus we can choose sufficient large \(i \), such that

\[a \leq \frac{1}{r_0} \]

Substituting above into (15), we have

\[\int_0^{r_0} \int_{B(r_0)} u^p \, dx \, dt \leq \frac{C}{r_0^{p-1}} \]

Let \(r_0 \to +\infty \), we obtain

\[\int_0^{\infty} \int_{M} u^p \, dx \, dt \to 0 \]

which implies that

\[u \equiv 0. \]

But \(u_0 \geq 0 \) is not identically zero, by Maximum principle, we know that \(u \) is positive almost everywhere, which leads a contradiction, and then there’s no nonnegative solution to problem (1).

Proof of part (b). Fix a point \(x_0 \in M \). Let us define the operator

\[Tu(x, t) = \int_{M} P_t(x, y)u_0(y) \, dy + \int_0^t \int_{M} P_{t-s}(x, y)u^p(y, s) \, dx(y) \, ds. \quad (17) \]

acting on the space \(S_M \) defined by

\[S_M = \{ u \in L^\infty(M \times [0, \infty)) | 0 \leq u(x, t) \leq \lambda P_{t+\delta}(x, x_0) \} . \quad (18) \]

where \(\lambda > 0 \) is a constant to be chosen later, and \(\delta > 1 \) is a fixed constant. It is easy to see that \(S_M \) is a close set of \(L^\infty(M \times [0, \infty)) \).

Let \(u_0 \) satisfy

\[0 \leq u_0(x) \leq \frac{\lambda}{2} P_{\delta}(x, x_0). \quad (19) \]
Now let us show \(TS_M \subset S_M \). Using (7) and (19), we have

\[
\int_M P_t(x, y)u_0(y)dx(y) \leq \frac{\lambda}{2} \int_M P_t(x, y)P_\delta(y, x_0)dx(y) = \frac{\lambda}{2}P_{t+\delta}(x, x_0).
\]

(20)

Using (5), (7) and (18), we have

\[
\int_0^t \int_M P_{t-s}(x, y)u^p(y, s)dx(y)ds \leq \lambda^p \int_0^t \int_M P_{t-s}(x, y)P^p_{s+\delta}(y, x_0)dx(y)ds
\]

\[
\leq \lambda^p C_3^{p-1} \int_0^t \frac{1}{V(\sqrt{s+\delta})^p-1} \int_M P_{t-s}(x, y)P_{s+\delta}(y, x_0)dx(y)ds
\]

\[
\leq \lambda^p C_3^{p-1}P_{t+\delta}(x, x_0) \int_0^t \frac{1}{V(\sqrt{s+\delta})^p-1}ds
\]

(21)

By our volume condition

\[
\int_0^\infty \frac{s}{V(s)^{p-1}}ds < \infty,
\]

there exists a constant \(C_4 \) such that

\[
\int_0^t \frac{1}{V(\sqrt{s+\delta})^p-1}ds = \int_\delta^{t+\delta} \frac{1}{V(\sqrt{s})^p-1}ds
\]

\[
= C \int_\delta^{\sqrt{t+\delta}} \frac{s}{V(s)^{p-1}}ds
\]

\[
\leq C_4
\]

(22)

Substituting above into (21), we obtain, for small enough \(\lambda \),

\[
\int_0^t \int_M P_{t-s}(x, y)u^p(y, s)dx(y)ds \leq \lambda^p C_3^{p-1}C_4P_{t+\delta}(x, x_0)
\]

\[
\leq \frac{\lambda}{2}P_{t+\delta}(x, x_0).
\]

(23)

Combining (17), (20) with (23), we obtain

\[
0 \leq Tu \leq \lambda P_{t+\delta}(x, x_0).
\]

Hence

\(TS_M \subset S_M \).

Now let us show that \(T \) is a contraction map. For \(u_1, u_2 \in S_M \), we have

\[
|Tu_1(x, t) - Tu_2(x, t)| \leq \int_0^t \int_M P_{t-s}(x, y)|u_1^p(y, s) - u_2^p(y, s)| dx(y)ds
\]

(24)

Noting that

\[
|u_1^p(y, s) - u_2^p(y, s)| \leq p \max\{u_1^{p-1}(y, s), u_2^{p-1}(y, s)\} |u_1(y, s) - u_2(y, s)|
\]

\[
0 \leq Tu_1 - Tu_2 \leq \lambda |u_1 - u_2|.
\]
and combining with (5), (6), (18) and (22), we obtain that

\[
|Tu_1(x, t) - Tu_2(x, t)| \leq p\lambda^{p-1} \|u_1 - u_2\|_\infty \int_0^t \int_M P_{t-s}(x, y) \frac{1}{V(\sqrt{s + \delta})^{p-1}} dy ds
\]

\[
\leq p\lambda^{p-1} C_1^{p-1} \|u_1 - u_2\|_\infty \int_0^t \int_M \frac{1}{V(\sqrt{s + \delta})^{p-1}} ds
\]

\[
= p\lambda^{p-1} C_1^{p-1} \|u_1 - u_2\|_\infty \int_0^t \int_M P_{t-s}(x, y) dy ds
\]

\[
\leq p\lambda^{p-1} C_4 \|u_1 - u_2\|_\infty
\]

Redoing \(\lambda \) small enough such that \(p\lambda^{p-1} C_4^{p-1} < 1 \), we obtain that \(T \) is a contraction map. Applying fixed point theorem, we derive that there exists a fixed point \(u \in S_M \) satisfying

\[
u(x, t) = \int_M P_t(x, y) u_0(y) dy + \int_0^t \int_M P_{t-s}(x, y) u^p(y, s) dy ds. \quad (25)
\]

Since \(u_0 \geq 0 \), then \(u \) is positive on \(M \). Since \(u_0, u \in L^2(M) \), by a standard argument of regularity (see Theorem 7.6 and 7.7, [10]), we know the integrals in (25) are both smooth on \(M \times (0, \infty) \), hence we obtain that \(u \) is a global positive solution of problem (1).

References

[1] D. G. Aronson, H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. Math. 30 (1978), 33-76.

[2] L. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), 271-297.

[3] G. Caristi, E. Mitidieri, Nonexistence of positive solutions of quasilinear equations, Adv. Differential Equations 2 (1997), 319-359.

[4] S. Y. Cheng, S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333-354.

[5] H. Fujita, On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u + u^{1+\alpha} \), J. Fac. Sci. Univ. Tokyo Sect. I 13 (1066) 109-124.

[6] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505.

[7] I. Holopainen, Volume growth, Green’s functions, and parabolicity of ends. Duke Math. J. 97 (1999), no. 2, 319-346.

[8] R. Kobayashi, T. Sirao, and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), 407-424.

[9] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981) 525-598.

[10] A. Grigor’yan, Heat Kernel and Analysis on Manifolds, AMS/IP, 2009.

[11] A. Grigor’yan, V. A. Konradtive, On the existence of positive solutions of semilinear elliptic inequalities on Riemannian manifolds, Around the research of Vladimir Maz’ya II, 203-218.

[12] A. Grigor’yan, Y. H. Sun, On nonnegative solutions of the inequality \(\Delta u + u^\sigma \leq 0 \) on Riemannian manifolds, Comm. Pure Appl. Math. 67 (2014) 1336-1352.

[13] P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201.

[14] P. Mastrolia, D. D. Monticelli, F. Punzo, Nonexistence results for elliptic differential inequalities with a potential on Riemannian manifolds, Cal. Var. PDEs 54 (2015) no. 2, 1345-1372.

[15] P. Mastrolia, D. D. Monticelli, F. Punzo, Nonexistence of solutions to parabolic differential inequalities with a potential on Riemannian manifolds, Math. Ann. 367 (2017) no. 3-4, 929-963.
ON EXISTENCE AND NONEXISTENCE OF NONNEGATIVE SOLUTIONS TO SEMILINEAR DIFFERENTIAL EQUATION ON RIEMANNIAN MANIFOLDS

[16] W. M. Ni, J. Serrin, Nonexistence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985), 171-185.

[17] W. M. Ni, J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations: The anomalous case, Accad. Naz. Lincei 77 (1986), 231-257.

[18] Y. H. Sun, Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds, J. Math. Anal. Appl. 419 (2014), 643-661.

[19] Y. Wang, J. Xiao, A constructive approach to positive solutions of $\Delta_p u + f(u, \delta u) \leq 0$ on Riemannian manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016) no. 6, 1497-1507.

[20] F. H. Xu, On The Existence Of Nonnegative Solutions To Semilinear Differential Inequality On Riemannian Manifolds, preprint, (2018).

[21] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), no. 7, 659-670.

[22] Q. S. Zhang, A new critical phenomenon for semilinear parabolic problems, J. Math. Anal. Appl. 219 (1998) 125-139.

[23] Q. S. Zhang, Blow-up Results For Nonlinear Parabolic Equations On Manifolds, Duke Math. 97 (1999) 515-539.

School of Mathematical Sciences and LPMC, Nankai University, 300071 Tianjin, P. R. China

E-mail address: xufanheng@mail.nankai.edu.cn