MULTIPARTICULATE COMBINED APPROACHES FOR COLON SPECIFIC DRUG DELIVERY

Saroj Kumar Pradhan*

Srinivasarao College of Pharmacy, Pothinamallayapalem, Visakhapatnam-530041, Andhra Pradesh.

Corresponding author*: mr.sarojpradhan@yahoo.com

This article is available online at www.ssjournals.com

ABSTRACT

In order to achieve a successful colon targeted drug delivery system, a drug needs to be protected from degradation, release and/or absorption in the upper portion of the gastrointestinal tract (GIT) and then ensure abrupt or controlled release in the proximal colon. Such a system can be formulated by utilizing microbial triggering degradation of polymer coating/ gastrointestinal (GI) transit time (time dependent)/ pH dependent approach etc. But unfortunately it has been found that colonic microflora, GI transit time and pH varies considerably inside a human system by several factors, in addition to this the native biodegradable polysaccharides which are used widely for the microbial triggering colonic drug delivery system (CDDS), are having high aqueous solubility on account of which a single unit colon targeted drug delivery systems may suffer from dose dumping due to overall catastrophic failure of the film around a monolith, which would then release the whole drug, that may lead to drastically compromised systemic drug bioavailability or loss of local therapeutic action in the colon. This review emphasizes some of the causes which make a single unit dosage form unsuitable for targeting to colon by using microbial triggering/GI transit time/pH dependent approach, and at the same time discusses researches which have been carried out to alleviate these problems by utilizing multiparticulate combined approaches.

KEY WORDS: Microbial triggering, Time dependent, pH dependent, Colonic drug delivery system, Multiparticulate combined approach

1. INTRODUCTION

Oral administration of different dosage forms is the most commonly used method due to greater flexibility in design of dosage form and high patient acceptance. Among oral dosage forms, increasing interest has currently turned to systems designed to achieve time specific and site specific delivery of drugs\(^1, 2\). Colon has large amount of lymphoma tissue, negligible brush border membrane activity, near neutral pH, reduced digestive enzymatic activity and high responsiveness towards the action of absorption enhancers\(^3, 4\) and a much longer transit time as compared to small intestine\(^5\) due to which many benefits achieved. Some of which are mentioned below:

i. For treating colonic diseases, i.e. ulcerative colitis, crohn’s disease and constipation etc., the optimal drug delivery system, is colonic drug delivery system, because it selectively delivers the drug to the colon, but not to the upper GIT\(^6\). For this reason, the drug
concentration was significantly lessened in the upper part of GIT, while increased considerably in the colon, resulting in alleviated GI side effects.

ii. Colon is referred to as the optimal absorption site for proteins and polypeptides after oral administration, because of the existence of relatively low proteolytic enzyme activities and quite long transit time in the colon.

iii. Colon has a large amount of lymphoma tissue which facilitates direct absorption in to the blood and uptake of antigens into the mast cells of the colonic mucosa produces rapid local production of antibodies and this helps in efficient vaccine delivery.

iv. CDDS would be advantageous when a delayed pulsatile release is desirable as a means of achieving chronotherapy for the treatment of diseases that have peak symptoms in the early morning and that exhibit circadian rhythms, such as nocturnal asthma, angina and rheumatoid arthritis.

Although large intestine is difficult to reach by peroral delivery, is still deemed to be the ideal site for the delivery of agents to cure the local diseases of the colon by using rectal dosage forms such as suppositories and enemas, which are always not effective since a high variability in the distribution of these forms is observed. Irrespective of therapy desired for local (colonic) or systemic delivery of drug, the development and aim of the drug delivery to colon remain same, that is

- The drug must not absorb from other regions of the GIT.
- It should only suffer negligible degradation in the small intestine lumen.
- The release of the drug in the colon should be at quantitatively controlled rate and the released drug in the colon should be absorbed from the lumen of the large intestine without any appreciable degradation.

The most critical challenge in such drug delivery approach is to preserve the formulation during its passage through the stomach and about first six meters of the small intestine. In order to achieve this, each colon-specific drug delivery system has been designed based on one of the following mechanisms or a combination of them with varying degrees of success: (1) prodrugs, (2) pH-sensitive polymer coating, (3) time-controlled dissolution, (4) microflora-activated drug release, and (5) pressure-dependent delivery.

However, a CDDS is primarily dependent on the microbial environment, transit time and pH level in the colon, governing the release of drug from different designs of CDDS but these conditions may vary depending on various factors, which limit the success of a CDDS. In addition, a single unit colon targeted drug delivery system may suffer from the disadvantage of unintentional disintegration of the formulation due to manufacturing deficiency or unusual gastric physiology that may lead to drastically compromised systemic drug bioavailability or loss of local therapeutic action in the colon.

1.1 Causes of variation of colonic microbe: The bioenvironment inside the human GIT is characterized by presence of complex microflora, especially the colon is rich in microorganisms, consisting mainly of anaerobic bacteria, e.g. bacteroïdes, bifidobacteria, eubacteria, clostridia, enterococci, enterobacteria and ruminococcus etc. The microbial environment which is responsible for degradation of polymeric coating by producing a vast number of enzymes like glucoronidase, xylosidase, arabinosidase, galactosidase, nitroreductase, azareducatase, deaminase,
and urea dehydroxylase differs among individuals, and also during life within the same individual. Many factors, such as diet or climate, aging, medication (especially antibiotics), illness, stress, pH, infection, geographic location, race, socioeconomic circumstances, lifestyle can upset this balance, some of which are given below.

a. **Administration of chemotherapeutics:** Administration of other drugs changes the colonies of colonic microflora e.g., Gemifloxacin (Fluoroquinolone) suppresses Enterobacteria, Enterococci, Streptococci, Anaerobic cocci, Lactobacilli. Administration of chemotherapeutics: Administration of other drugs changes the colonies of colonic microflora e.g., Gemifloxacin (Fluoroquinolone) suppresses Enterobacteria, Enterococci, Streptococci, Anaerobic cocci, Lactobacilli.

b. **Age:** Recent studies suggest that age affects the intestinal microflora with a decrease in anaerobes and bifidobacteria population and an increase in enterobacteria of the aged. Polyphasic analysis of faecal bacteria showed that significant structural changes occur in the microbiota with aging and the principal microbiological difference between adults and children was the occurrence of higher numbers of enterobacteria in the latter group and this was especially evident with respect to putatively protective bifidobacteria.

c. **GI diseases:** GI diseases also affect the microflora population e.g., high number of facultative anaerobes and low levels of bifidobactria, and bacterioids were found in Clostridium difficile associated diarrhea.

d. **Probiotics:** Probiotic bacteria are generally, though not exclusively, lactic acid bacteria and include Lactobacillus acidophilus, L. casei, L. bulgaricus, L. plantarum, L. salivarius, L. rhamnosus, L. reuteri, Bifidobacterium bifidum, B. longum, B. infantis and S. thermophilus. Probiotic bacteria are used in the production of yoghurt, various fermented milk products and dietary supplements.

Studies have demonstrated that probiotics sift significantly the bacterial counts by increasing health promoting genera (Lactobacillus and Bifidobacterium) and decreasing harmful ones (Helicobacter pylori, Salmonella sp., C. difficile).

1.2 Causes of variation of GI transit

The transit of perorally administered formulation through the GI tract is highly variable and depends on various factors.

a. **Co-administration of drugs:** Concomitant administration of other drugs like domperidone, cisapride, metoclopramide etc, alters GI transit e.g., codein slow down transit.

b. **Age:** Aging is frequently associated with increased cholecystokinin levels, which can inhibit distal gastric contractions and slow gastric emptying.

c. **Disease state of lumen:** Various diseases like diarrhea, constipation, diabetes, peptic ulcer etc alter GI transit e.g., diarrhea increases colonic transit and constipation decreases it e. g., Small intestinal transit time reduces significantly in crohn's disease with ileocecal-resection.

d. **Body posture:** Vertical body posture increases GI transit while supine posture decreases.

e. **Diet:** Dietary fiber increases faecal weight, partly by retention of water and partly by increasing bacterial mass and reduces colonic transit times but ingestion of food accelerates colonic activity.

1.3 Causes of variation of GI pH

a. **Administration of anti-peptic ulcer drugs:** A number of drugs which are used to cure peptic ulcer reduce the gastric pH to a significant extent e. g., omeprazole, ranitidine.

b. **Age:** Increasing age is associated with changes in GI pH some concepts are, the incidence of achlorhydria is approximately 10–20% among elderly
patients, compared to less than 1% in younger subjects32, hypochlorhydria may be present in approximately 20% of individuals over the age of 70 years33 and also the postprandial pH differs significantly between young and adult34.

c. Disease state: Alterations in gastric pH are seen in gastric disorders35, 36, 37 such as chronic gastritis, gastro duodenal ulcer disease, gastric neoplasm etc. Chronic pancreatitis and cystic fibrosis seem to decrease pH of the proximal small intestine38. Very low colonic pH values have been observed in severe active ulcerative colitis, crohn's disease38, 39, inflammatory bowel disease39, 40, 41.

d. Food: After taking meal the gastric pH climbs to a peak value of 6.7, and then gradually declines back over a period of 2h. In contrast to the pH behavior in the stomach, feeding a meal caused a reduction in the median duodenal pH to 5.431. In addition, there was considerable fluctuation in the postprandial duodenal pH on an intra subject basis31.

1.4 Unsuitability of a CDDS utilizing microbial triggering/GI transit time/pH dependent approaches: The great challenge in using native degradable polysaccharides for the development of drug delivery systems is their high aqueous solubility42, which may contribute to the undesirable premature/burst release55 of drug, in addition polysaccharide based CDDS are effective when they are precisely activated by the physiological conditions of the colon and absence of enzymes during colonic disorders might hinder the activation of the delivery system43, 44. Reports suggest that pH of colon is more acidic than that in the small intestine, especially in inflammatory bowel disease, ulcerative colitis44. Thus, the pH-based CDDS, which are designed to release drug at a higher pH, fail to release drug completely upon encountering the more acidic colonic pH. It has also been shown that pH based approach lack site-specificity40 because of inter/intra subject variation and the similarity of the pH between the small intestine and the colon40, 45. Gastric transit time of single-unit non-disintegrating dosage forms has been reported to vary from 15 min to more than 3h46 but timed-release systems depend on the relative consistency of intestinal transit times, therefore the high variability18 in gastric retention times makes prediction of the accurate location of drug release difficult47 and any variation in gastric emptying time may lead to drug release in small intestine before arrival to colon. Therefore, it is accepted that a CDDS utilizing only polysaccharide based microbial triggering/GI transit time/pH dependent approach would not be reliable18, 44.

2. COMBINED APPROACHES UTILIZING MULTIPARTICULATE SYSTEMS:

2.1 Why multiparticulate systems?

Recently, much emphasis is being laid on the development of multiparticulate (MP) dosage forms in comparison to single unit systems because of their potential benefits like increased bioavailability, reduced risk of systemic toxicity, reduced risk of local irritation and predictable gastric emptying48. The long lag times at the ileo-caecal junction and fast transit indicate that a single unit may not be the best dosage form for a colon targeted drug delivery system. Also the late disintegration of a single unit dosage form creates a particular problem due to the abnormal release of contents and will results in loss of much of opportunity for local action or absorption in the proximal
colon. This can be partially rectified by targeting MP dosage forms because these systems enabled the drug to reach the colon quickly and were retained in the ascending colon for a relatively long period of time\(^{49, 50}\). Hence, additional retention of a dosage form within the colon could be achieved by the use of a multi particulate formulation rather than a large single unit thus ensuring that it does not pass too rapidly through the colon and be excreted before the entire drug has been released. On account of their smaller particle size as compared to single unit dosage forms these systems are capable of passing through the GI tract easily, leading to less inter- and intra subject variability\(^{51}\). Moreover, multiparticulate systems tend to be more uniformly dispersed in the GI tract and also ensure more uniform drug absorption\(^{49, 52}\).

Most commonly studied multiparticulate systems for colon specific drug delivery include pellets, granular matrices, beads, microspheres, and nanoparticles\(^{53, 54}\).

2.2 Combination of microbially triggered and pH dependent systems

To guarantee delivery of the drug to the colon and to prevent its premature release, it is preferable to combine polysaccharides with enteric or cellulose polymers. It was shown that (Hydroxypropyl methyl cellulose) HPMC capsules coated with Eudragit FS 30D for the delivery of 5-fluorouracil disintegrated in the distal portion of small intestine and proximal colon. Capsules of this type could, therefore ensure spatial delivery of drug preferentially in colon without substantial release in the upper GI tract up to the ileum. The matrices were coated by Eudragit S100 and were then covered by a layer of chitosan HCl and loaded inside these capsules. Upon hydration, the capsule shell dissolves and the chitosan layer forms a gel (internal pH of 4.5), which generates an acidic environment around the Eudragit film so that it does not dissolve in the ascending colon. In the ascending colon, the chitosan HCl gel is degraded by the colonic micro flora, thereby exposing the Eudragit film to the colonic environment. But since the ascending colon is weakly acidic where pH is less than 7.0, the film coat still remains intact. However, on arrival in the descending colon where pH is greater than 7, the Eudragit film coat dissolves and the drug is released in a controlled fashion from the matrices. In vitro release studies conducted in simulated GIT environment provided good evidence for the proof of concept that successful targeting to the descending colon could be achieved\(^{53}\). In order to avoid the burst release pattern of ondansetron from chitosan microspheres Jose et al., encapsulated the optimized chitosan microspheres with Eudragit S-100 by solvent evaporation technique. From the drug release study they found that formulations which contains 1:10 core/coat ratio released lesser amount of drug in the upper gastro intestinal conditions\(^{55}\). In another study a multiparticulate system was prepared by coating cross linked chitosan microspheres exploriting Eudragit L-100 and S-100 as pH sensitive polymers and metronidazole as the model drug. In-vitro drug release study showed no release of drug at acidic pH and higher drug release was found in presence of rat caecal contents\(^{56}\). In a study by Alonso et al., sodium diclofenac, was entrapped within chitosan microcores and then microencapsulated into Eudragit L-100 and Eudragit S-100. The drug release from microcores was delayed and a combined mechanism of release is proposed, which considers the dissolution of the Eudragit coating, the swelling of the chitosan microcores and the dissolution of drug and its further...
diffusion through the chitosan gel cores57. Multiparticulate systems showing simultaneously specific biodegradability and pH-dependent drug release were prepared based on chitosan, amidated pectin, calcium ions, and using triamcinolone as model drug. Hydroxypropyl methyl cellulose phthalate (HPMCP) and cellulose acetate phtalate (CAP) were successfully incorporated into the system and aided the target action of the carbohydrates. The addition of CAP and HPMCP resulted in the highest control over the drug release in all media. CAP-Triamcinolone formulation presented the slowest drug release rate, of only 1.33\%, in acidic medium after 2h, while the control formulation released 45.52\% after the same time58. Nanoparticulate colloidal carriers composed of natural or synthetic polymers have also been investigated for colon targeting59. These particles for CDDS are known for their specific accumulation in the inflamed tissue in the colon because a strong cellular immune response occurs in the inflamed regions due to presence of increased amount of neutrophils; Natural Killer cells, macrophages etc. and nanoparticles could be efficiently taken up by these macrophages60. They offer the excellent possibility of surface modification with targeting ligands, leading to a specific accumulation in the targeted tissue61. Recently Jain et al., developed Hyaluronic acid-coupled chitosan nanoparticles bearing oxaliplatin encapsulated in Eudragit S100-coated pellets. In therapeutic experiments the pellets of free drug and hyaluronic acid-coupled and uncoupled chitosan nanoparticles bearing oxaliplatin were administered orally at the dose of 10 mg oxaliplatin /kg body weight to tumor-bearing Balb/c mice. In vivo data showed that hyaluronic acid-coupled chitosan nanoparticles delivered 1.99 ±0.82 and 9.36 ± 1.10 µg of oxaliplatin /g of tissue in the colon and tumor, respectively after 12 h, reflecting its targeting potential to the colon and tumor. These drug delivery systems show relatively high local drug concentration in the colonic milieu and colonic tumors with prolonged exposure time, which provides a potential to enhance antitumor efficacy with low systemic toxicity for the treatment of colon cancer62.

2.3 Combination of pH and time dependent systems: Appropriate combination of pH sensitivity and time release functions in a dosage form may improve the site specificity of drug delivery to the colon as discussed below. Akhgari et al., evaluated the combination of pH-dependent and time-dependent polymers as a single coating for design of colon delivery system of indomethacin pellets. Eudragit S100 and Eudragit L100 were used as pH-dependent polymers and Eudragit RS was used as a time-dependent polymer. The results of in vitro experiments indicated that the proposed combined time-dependent and pH-dependent polymethacrylate polymer coating is a suitable method to provide specific release of indomethacin to colon63. Gupta et al., made an attempt to combine pH based dissolution characteristics of different Eudragit polymers and that of constant transit time in the small intestine to develop a reliable multiparticulate colonic delivery system. The drug, 5-ASA was layered onto non-pariel beads. For the inner coat, the pellets were coated with a combination of Eudragit RL/RS. For the outer coat, the above pellets were further coated with Eudragit FS 30D. He suggested that the delivery system demonstrated its potential for colonic delivery by resisting drug release up to pH 6.5 and the combination of Eudragit RL and RS proved successful.
for the sustained delivery of 5-ASA at the pH of the colon\(^6\). Recently a novel pH and time controlled nano-particulate colon drug delivery systems was developed by Kshirsagar et al. He used nanoprecipitation method to prepare polymeric nanocapsules (NC) of prednisolone (PD) with pH responsive polymer Eudragit S100. The optimized formulations lead to the preparation of PD-NC with a mean size of 567.87 nm, high encapsulation efficiency of 90.21%. In vitro studies reveal that NC releases the drug after 4.5-h lag time corresponding to time to reach colonic region, and in vivo studies show that NC release drug after 3-h lag time in rat corresponds to arrival in colon\(^65\).

CONCLUSION

Targeting drugs and delivery systems to the colonic region by multiparticulate formulations has received considerable interest because of many advantages over single unit products e.g., poorly absorbed drug molecules may have improved bioavailability, enhanced drug uptake by targeted cells thus the dose required is reduced, reduced side effects, reduced risk of systemic toxicity, reduced risk of local irritation, predictable gastric emptying and retained in the ascending colon for a relatively long period of time, passes through the GI tract easily, leading to less inter- and intra subject variability. Moreover, when multiparticulate systems are developed using combined approaches, minimize the risk of unpredicted release of medicaments by overcoming the demerits individual approaches owing to the variability microbial flora, gastric transit time and pH. Thus multiparticulate systems prepared utilizing combined approaches for CDDS provide numerous advantages and give a powerful tool to optimize therapy.

SOURCE OF SUPPORT

Nil

CONFLICT OF INTEREST

Nil

REFERENCES

1. Howard N, Steven E, Wilson C, Welling P, Bakhshaee M. Evaluation of Pulsincap\(^{TM}\) to provide regional delivery of dofetilide to the human GI tract. *Int J Pharm* 2002; 236: 27-34.
2. Lemmer B. Chronopharmacology and controlled drug release. *Expert Opin Drug Deliv* 2007; 2 (4): 667-680.
3. Sarasija S, Hota A. Colon specific drug delivery systems. *Ind J Pharm Sci* 2000; 62: 1-6.
4. Digenis GA, Sandefer E. Gamma scintigraphy and neutron activation techniques in the in vivo assessment of orally administered dosage forms. *Crit Rev Ther Drug Carrier Syst* 1991; 7(4): 309-345.
5. Hinton JM, Lennard-Jonnes JE, Young AC. A new method for studying gut transit times using radioopaque markers. *Gut* 1969; 10: 842-7.
6. Kinget R, Kalala W, Vervoort L, Mooter G. Colonic drug delivery. *J Drug Target* 1998; 6:129-149.
7. Watts PJ, Iillum L. Colonic drug delivery. *Drug Dev Ind Pharm* 1997; 23: 893-913.
8. Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. *Int J Pharm* 2002; 235: 1-15.
9. Gazzaniga A, Maroni A, Sangalli ME. Oral Pulsatile Delivery Systems – Applications and Design Strategies. *Drug Deliv* 2009: 135-8.
10. Basit A, Bloor J. Perspectives on Colonic Drug Delivery.
11. Halsas M, Penttinen T, Veski P, Jurjenson H, Marvola M. Time controlled release pseudoephedrine tablets: bioavailability and in vitro/in vivo correlations. Pharmazie 2001; 56: 718-23.

12. Davis SS. Overcoming barriers to the oral administration of peptide drugs. Trends Pharm Sci 1990; 11: 355-5.

13. Mooter GV, Kinget R. Oral colon-specific drug delivery: a review. Drug Deliv 1995; 2: 81-93.

14. Jay M, Beihn RM, Digenis GA, Deland FH, Caldwell L, Mlodozeniec AR. Disposition of radiolabelled suppositories in humans. J Pharm Pharmacol 1985; 37(4): 266-268.

15. Vyas SP, Khar RK. Controlled drug delivery concepts and advances. 1st ed. Delhi (IND): Vallabh Prakashan; 2006.

16. Ashford M, Fell JT. Targeting drugs to the colon: delivery systems for oral administration. J Drug Target 1994; 2: 241-58.

17. Vincent HLL, Mukergee SK. Drug delivery oral colon specific. In: Swarbrick J, Boylan JC, editors. Encyclopedia of Pharmaceutical Technology. 1st ed. New York: Marcel Dekker Inc; 2002. p. 871-885.

18. Asghar LFA, Chandran S. Multiparticulate Formulation Approach to Colon Specific Drug Delivery: Current Perspectives. J Pharm Pharmaceut Sci 2006; 9 (3): 327-338.

19. Sinha VR, Kumaria R. Microbially triggered drug delivery to the colon. Eur J Pharm Sci 2003; 18: 3-18.

20. Vassallo M, Camilleri M, Phillip SF, Brow ML, Chapman NJ, Thomforde GM. Transit through the proximal colon influences stool weight in the a

irritable bowel syndrome. Gastroenterology 1992; 102: 102-8.

21. Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 1973; 25 (4): 451-523.

22. Barker PJ, Sheehan R, Teillol-Foo M, Palmgren AC, Nord CE. Impact of gemifloxacin on the normal human intestinal microflora. J Chemother 2001; 13 (1): 47-51.

23. Hebuterne X. Gut changes attributed to ageing: effects on intestinal microflora. Curr Opin Clin Nutr Metab Care 2003; 6 (1): 49-54.

24. Hopkins M, Sharp R, Macfarlane G. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 2001; 48 (2): 198–205.

25. Lenior-Wijnkoop I, Hopkins M. The intestinal microflora: Understanding the symbiosis. France (Montrouge): John Libbey Eurotext; 2003.

26. Meier R, Beglinger C, Dederding JP, Meyer-Wyss B, Fumagalli B, Rowedder A, Turberg Y, Brignoli R. Influence of age, gender, hormonal status and smoking habits on colonic transit time. Neurogastroenterol Motil 1995; 7: 235-238.

27. MacIntosh CG, Andrews JM, Jones KL, Wishart JM, Morris HA, Jansen JB, Morley JE, Horowitz M, Chapman IM. Effects of age on concentrations of plasma cholecystokinin, glucagon-like peptide 1 and peptideYYand their relation to appetite and pyloric motility. Am J Clin Nutr 1999; 69: 999–1006.

28. Fallingborg J, Pedersen P, Jacobsen BA. Small intestinal transit time and intraluminal pH in ileocecal resected patients with Crohn's disease. Dig Dis Sci 1998; 43 (4):702-5.
29. Soons PA, Berg G, Danhof M, Brummelen P, Jansen BMJ, Lamers CBHW, Breimer DD. Influence of single- and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. *Eur J Clin Pharmacol* 1992;42 (3), 319-24.

30. Charles JB, Arthur BS, Marvin CM, Meir B, Vashi VI, Lieberman P, et al. The effect of raising gastric pH with ranitidine on the absorption and elimination of theophylline from a sustained-release theophylline tablet. *Pharm Res* 1991; 8 (12), 1516-9.

31. Dressman JB, Berardi RR, Dermentzoglou LC, Russell TL, Schmaltz SP, Barnett JL, et al. Upper gastrointestinal (GI) pH in young, healthy men and women. *Pharm Res* 1990; 7 (7), 756-61.

32. Blechman M.B, Gelb AM. Aging and gastrointestinal physiology. *Clin Geriatr Med* 1999; 15: 429–38.

33. Holt PR, Rosenberg IH, Russell RM. Causes and consequences of hypochlorhydria in the elderly. *Dig Dis Sci* 1989; 34: 933–7.

34. Russell TL, Berardi RR, Barnett JL, Dermentzoglou LC, Jarvenpaa KM, Schmaltz SP, Dressman JB. Upper gastrointestinal pH in seventy-nine healthy, elderly, North American men and women. *Pharm Res* 1993; 10: 187–96.

35. Dragstedt LL. Pathogenesis of gastroduodenal ulcer. *Arch Surg* 1942; 44: 438-51.

36. Byers F, Jordan PH. Effect of bile upon gastric mucosa. *Proc Soc Exp Biol Med* 1962; 110: 864-6.

37. DuPlessis DJ. Pathogenesis of gastric ulceration. *Lancet* 1965; i: 974-8.

38. Fallingborg J. Intraluminal pH of the human gastrointestinal tract. *Dan Med Bull* 1999; 46 (3): 183-96.

39. Fallinborg J. Christenen LA, Jacobson BA, Rasmussen SN. Very low intraluminal colonic pH in patients with active ulcerative colitis. *Dig Dis Sci* 1993; 38: 1983-93.

40. Ashford M, Fell JT, Attwood D, Sharma H, Woodhead PJ. An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. *Int J Pharm* 1993; 95: 193–9.

41. Sandborn WJ, Phillips SF. Pathophysiology of symptoms and clinical features of inflammatory bowel disease. In: Krishner JB, Shorter RG, editors. Inflammatory bowel disease. 4th ed. Baltimore: Williams and Wilkens; 1995. p. 407-36.

42. Koteshwara KB, Naha A, Nampoothiri M. Colon targeted drug delivery system: A review. *Int J Res Ayur Pharm* 2011; 2 (1): 60-5.

43. Philip AK, Philip B. Colon targeted drug delivery systems: A review on primary and novel approaches. *Oman Med J* 2010; 25 (2): 70-8.

44. Nugent SG, Rampton DS, Evans DF, Kumar D. Intestinal luminal pH in inflammatory bowel disease: possible determinants and implications for therapy with aminosalicylates and other drugs. *Gut* 2001; 48: 571–77.

45. Sinha VR, Mittal BR, Bhutani KK. Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. *Int J Pharm* 2004; 269: 101-8.

46. Kaus LC, Fell JT, Sharma H, Taylor DC. On the intestinal transit of a single non-disintegrating object. *Int J Pharm* 1984; 14: 143-8.

47. Vishal KG. A novel pH and time based multiunit potential colonic drug delivery system, II. Optimization of multiple response variables. *Int J Pharm* 2001; 213: 93-102.
48. Kramer A, Turk S, Vrecer F. Statistical optimization of diclofenac sodium sustained release pellets coated with polymethacrylic films. *Int J Pharm* 2003; 256: 43-52.

49. Hardy JG, Wilson CG, Wood E. Drug delivery to the proximal colon. *J Pharmacol* 1985; 37: 874-7.

50. Adkin DA, Davis SS, Sparrow RA, Wilding IR. Colonic transit of different sized tablets in healthy subjects. *J Control Rel* 1993; 23 (2): 147-56.

51. Shirsagar SJK, Bhalekar MR, Shukla GN, Mohapatra SK. Development and Evaluation of Multiparticulate Colon Targeted Drug Delivery System by Combine Approach of pH and Bacteria. *Int J PharmTech Res* 2011; 3 (2): 1139-49.

52. Rodriguez M, Vila-Jato JL, Torres D. Design of a new multiparticulate system for potential site-specific and controlled drug delivery to the colonic region. *J Control Rel* 1998; 55: 67-77.

53. Zambito Y, Baggiani A, Carelli V, Serafini MF, DiColo G. Matrices for site-specific controlled delivery of 5-fluorouracil to decending colon. *J Control Rel* 2005; 102 (3): 669-77.

54. Akhgari A, Garekani HA, Sadeghi F, Azimaie M. Statistical optimization of indomethacin pellets coated with pH dependent methacrylic polymers for possible colonic drug delivery. *Int J Pharm* 2005; 305: 22-30.

55. Jose S, Dhanya K, Cinu TA, Aleykutty NA. Multiparticulate system for colon targetted delivery of ondansetron. *Indian J Pharm Sci* 2010; 72 (1): 58–64.

56. Chourasia MK, Jain SK. Design and development of multiparticulate system for target drug delivery to colon. *Drug Del* 2004; 11: 201-7.

57. Alonso MJ, Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL. Design of microencapsulated chitosan microspheres for colonic drug delivery. *J Control Rel* 1998; 52 (1-2): 109-18.

58. Olivera GF, Ferari PC, Carvalho LQ, Evangelistaa RC. Chitosan–pectin multiparticulate systems associated with enteric polymers for colonic drug delivery. *Carbohyd Polym* 2010; 82 (3): 1004-9.

59. Kreuter J. Peroral administration of nanoparticles. *Adv Drug Deliv Rev* 1991; 7: 71-86.

60. Lamprecht A, Scaffer U, Lehr C-M. a. Size dependent targeting of micro- and nano- particulate carriers to the inflamed colonic mucosa. *Pharm Res* 2001; 18: 788-93.

61. Vlerken LE, Amiji MM. Multifunctional polymeric nanoparticles for tumour-targeted drug delivery. *Expert Opin Drug Deliv* 2006; 3(2): 205-16.

62. Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. *Nanomedicine* 2010; 6 (1): 179-90.

63. Akhgari A, Sadeghi F, Garekani HA. Combination of time-dependent and pH-dependent polymethacrylates as a single coating formulation for colonic delivery of indomethacin pellets. *Int J Pharm* 2006; 320 (1-2): 137-42.

64. Gupta VK, Beckert TE, Price JC. A novel pH and time based multi-unit potential colonic drug delivery system. I. Development. *Int J Pharm* 2001; 213: 83-91.

1. Kshirsagar SJ, Bhalekar MR, Patel JN, Mohapatra SK, Shewale NS. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. *Pharm Dev Technol*. In press 2011.