Upper Embeddability of Graphs and Products of Transpositions Associated with Edges

Shuhei Tsujie * Ryo Uchiumi †

Given a graph, we associate each edge with the transposition which exchanges the endvertices. Fixing a linear order on the edge set, we obtain a permutation of the vertices. Dénes proved that the permutation is a full cyclic permutation for any linear order if and only if the graph is a tree.

In this article, we characterize graphs having a linear order such that the associated permutation is a full cyclic permutation in terms of graph embeddings. Moreover, we give a counterexample for Eden’s question about an edge ordering whose associated permutation is the identity.

Keywords: full cyclic permutation ordering, upper-embeddable graph, 2-cell embedding, rotation system

2020 MSC: 05C25, 05C10, 57M15

Contents

1 Introduction 2
2 Proof that (3) implies (1) 4
3 Proof that (1) implies (2) 6
4 Identity permutation ordering 8

*Department of Mathematics, Hokkaido University of Education, Asahikawa, Hokkaido 070-8621, Japan. E-mail:tsujie.shuhei@a.hokkyodai.ac.jp
†Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. E-mail:uchiumi.ryou.1xu@ecs.osaka-u.ac.jp
Figure 1: A butterfly graph.

Figure 2: A dumbbell graph.

1 Introduction

In this article, a graph G stands for a connected multigraph $G = (V_G, E_G, r_G)$, where

- V_G is a finite set of vertices,
- E_G is a finite set of edges,
- r_G is a map from E_G to $\binom{V_G}{2}$, the collection of subsets of V_G consisting of 2 elements.

Note that $r_G(e)$ represents the endvertices of the edge e. Also note that loops are not allowed.

Let n be a positive integer and suppose that $V_G = [n] := \{1, 2, \ldots, n\}$. When an edge $e \in E_G$ satisfies $r_G(e) = \{u, v\}$, we associate the transposition $\tau_e := (u \ v) \in S_n$ with the edge e, where S_n denotes the symmetric group of degree n.

An edge ordering of a graph G is a linear order \leq_ω on E_G, denoted as a sequence $\omega = (e_1, \ldots, e_m)$ in which $e_i <_\omega e_j$ if and only if $i < j$. Given an edge ordering $\omega = (e_1, \ldots, e_m)$, we associate the product $\pi_\omega := \tau_{e_m} \cdots \tau_{e_1} \in S_n$.

Definition 1.1. A permutation $\sigma \in S_n$ is called a full cyclic permutation if σ is a cyclic permutation of length n. An edge ordering $\omega = (e_1, \ldots, e_m)$ of a graph G is a full cyclic permutation ordering if the corresponding permutation $\pi_\omega = \tau_{e_m} \cdots \tau_{e_1}$ is a full cyclic permutation.

Dénes proved the following theorem to state a connection between labeled trees and factorization of a full cyclic permutation into transpositions.

Theorem 1.2 (Dénes [1]. See also [7, Section 2] and [11, Lemma 2.1]). Given a graph G, the following are equivalent.

(i) Any edge ordering of G is a full cyclic permutation ordering.

(ii) G is a tree.

Note that Theorem 1.2 plays an important role in the studies of the chromatic symmetric functions and the chromatic operator for trees [3, 11]. Also, note that recently the second author [16] studied an analogue of Theorem 1.2 for signed graphs and the hyperoctahedral group.
It is a natural question to ask what graphs admit a full cyclic permutation ordering. For example, let G be the butterfly graph pictured in Figure 1 and define the edge ordering $\omega := (e_1, e_2, e_3, e_4, e_5, e_6)$. Then

$$\pi_\omega = \tau_{e_6} \tau_{e_5} \tau_{e_4} \tau_{e_3} \tau_{e_2} \tau_{e_1} = (3 \ 5)(1 \ 3)(4 \ 5)(3 \ 4)(2 \ 3)(1 \ 2) = (1 \ 3 \ 2 \ 5 \ 4).$$

Therefore ω is a full cyclic permutation ordering of the butterfly graph G.

Let $\beta(G) := |E_G| - |V_G| + 1$ denote the Betti number (also called the circuit rank) of the connected graph G. When a graph G has a full cyclic permutation ordering, considering the signature of a full cyclic permutation ordering, one can show that the Betti number $\beta(G)$ is even. However, the converse is false. For example, the dumbbell graph (Figure 2) has no full cyclic permutation orderings although its Betti number is 2.

We regard a graph as a topological space by identifying each edge with the unit interval $[0, 1]$ and gluing them at vertices. Then $\beta(G)$ coincides with the Betti number of G as a topological space. In this article, we will show that having a full cyclic permutation ordering is a topological property as follows.

Let Σ be an orientable closed surface and $\iota: G \to \Sigma$ an embedding. We call a connected component of the complement of the image of ι a face. An embedding ι is a 2-cell embedding if every face is homeomorphic to an open disk. For any 2-cell embedding $\iota: G \to \Sigma$,

$$|V_G| - |E_G| + f_\iota = 2 - 2g_\Sigma,$$

where f_ι denotes the number of faces of the 2-cell embedding ι and g_Σ the genus of Σ. Then

$$2g_\Sigma + f_\iota = \beta(G) + 1.$$

Therefore maximizing the genus g_Σ is equivalent to minimizing the number of faces f_ι. Hence the maximum genus $\gamma_{\max}(G)$, the maximum of genus g_Σ such that there exists a 2-cell embedding $G \to \Sigma$, satisfies

$$\gamma_{\max}(G) \leq \left\lfloor \frac{\beta(G)}{2} \right\rfloor,$$

where $\lfloor \rfloor$ denotes the floor function. If the equality holds, then we say that G is upper embeddable.

Upper embeddable graphs are well-studied objects by many researchers [4, 5, 8–10, 12–15, 17, 18]. Jungerman and Xuong gave a combinatorial characterization of upper embeddability independently.

Theorem 1.3 (Jungerman [5, Theorem 2], Xuong [18, Theorem A]). A connected graph G with even (odd) Betti number is upper embeddable if and only if there exists a spanning tree T of G such that all (all but one) connected components of $G \setminus T$ consists of an even number of edges.
Here is the main theorem of this article.

Theorem 1.4. Given a graph G, the following are equivalent.

1. G has a full cyclic permutation ordering.
2. There exists a 2-cell embedding $\iota : G \to \Sigma$ such that $f_\iota = 1$.
3. The Betti number $\beta(G)$ is even and G is upper embeddable, that is, $\beta(G) = 2\gamma_{\text{max}}(G)$.
4. There exists a spanning tree T of G such that every connected components of $G \setminus T$ consists of an even number of edges.

Note that the conditions (2), (3), and (4) are equivalent by the definition of upper embeddability and Theorem 1.3. Figure 3 shows how the butterfly graph can be embedded into a torus with exactly one face.

The organization of this article as follows. In Section 2, we will prove that (3) implies (1) and give an example of constructing a full cyclic permutation ordering. In Section 3, we will review the relation of 2-cell embeddings and rotation systems and we will prove that (1) implies (2). Combining the proofs in Section 2 and Section 3, we will complete the proof of Theorem 1.4.

In Section 4, we will study another extreme condition, that is, edge orderings ω such that π_ω is the identity permutation, which Eden [2] studied. Eden gave necessary conditions for such orderings and asked whether the condition is also sufficient. We will give a counterexample for this question.

2 Proof that (3) implies (1)

First, we introduce the following lemma.

Lemma 2.1. Let π be a full cyclic permutation in S_n. If the distinct numbers u, v, w appear in π in this cyclic order, then the product $(u \ v)(v \ w)\pi$ is a full cyclic permutation.

Proof. By the assumption, we can write

$$\pi = (u \ a_1 \ \cdots \ a_r \ v \ b_1 \ \cdots \ b_s \ w \ c_1 \ \cdots \ c_t),$$

Figure 3: A 2-cell embedding of the butterfly graph into a torus with exactly one face.
where \(a_i, b_i, c_i \) denote distinct numbers in \([n] \setminus \{u, v, w\}\). Then we obtain
\[
(u \ v)(v \ w)\pi = (u \ v)(v \ w)(u \ a_1 \ \cdots \ a_r \ v \ b_1 \ \cdots \ b_k \ w \ c_1 \ \cdots \ c_t)
\]
\[
= (u \ a_1 \ \cdots \ a_r \ w \ c_1 \ \cdots \ c_t \ v \ b_1 \ \cdots \ b_k),
\]
which is a full cyclic permutation ordering.

We say that two edges \(e \) and \(e' \) are adjacent if \(r_G(e) \cap r_G(e') \neq \emptyset \), that is, they have a common endvertex. Note that the case \(r_G(e) = r_G(e') \) is allowed.

Lemma 2.2. Let \(e \) and \(e' \) be two adjacent edges in a graph \(G \). If \(G \setminus \{e, e'\} \) has a full cyclic permutation ordering, then \(G \) has a full cyclic permutation ordering.

Proof. Let \(\omega' = (e_1, \ldots, e_m) \) be a full cyclic permutation ordering of \(G \setminus \{e, e'\} \). If \(r_G(e) = r_G(e') \), then \(\omega := (e_1, \ldots, e_m, e', e) \) is a full cyclic permutation ordering of \(G \) since \(\pi_\omega = \pi_{\omega'} \).

Now, suppose that \(r_G(e) = \{u, v\} \) and \(r_G(e') = \{v, w\} \) with \(u \neq w \). If the cycle order of \(u, v, w \) in \(\pi_{\omega'} \) is \(u, v, w \), then \(\omega := (e_1, \ldots, e_m, e', e) \) is a full cyclic permutation ordering of \(G \) by Lemma 2.1. In a symmetrical manner, if the cycle order is \(w, v, u \), then let \(\omega := (e_1, \ldots, e_m, e, e') \).

The following lemma is required.

Lemma 2.3 (Young [17, Lemma 3]). Suppose that \(G \) is upper embeddable and \(\beta(G) \) is even. If \(G \) is not a tree, then there exist two adjacent edges \(e \) and \(e' \) such that \(G \setminus \{e, e'\} \) is upper embeddable.

Proof that (3) implies (1) in Theorem 1.4. We will show that \(G \) has a full cyclic permutation ordering by induction on the Betti number \(\beta(G) \). When \(\beta(G) = 0 \), \(G \) is a tree and has a full cyclic permutation ordering by Dénes’ theorem (Theorem 1.2).

Assume \(\beta(G) > 0 \). By Lemma 2.3, there exist two adjacent edges \(e \) and \(e' \) such that \(G' := G \setminus \{e, e'\} \) is upper embeddable. By the induction hypothesis, \(G' \) has a full cyclic permutation ordering. By Lemma 2.2, \(G \) has a full cyclic permutation ordering.

Example 2.4. Consider the wheel graph \(W_5 \) pictured in Figure 4. The Betti number of \(W_5 \) is 4. Let \(T \) be the spanning tree of \(W_5 \) consisting of the edges \(12, 23, 34, 45 \). Then \(W_5 \setminus T \) is connected and consisting of 4 edges. Therefore \(W_5 \) satisfies the condition (4) in Theorem 1.4 and hence has a full cyclic permutation ordering. We will construct a full cyclic permutation ordering following by the proof of Lemma 2.2.

We partition the edges of \(W_5 \setminus T \) into two adjacent pairs \(\{25, 35\} \) and \(\{14, 15\} \). Define the edge ordering \(\omega_1 \) of \(T \) by \(\omega_1 := (12, 23, 34, 45) \). By Dénes’ theorem (Theorem 1.2), \(\pi_{\omega_1} \) is a full cyclic permutation. Indeed we have
\[
\pi_{\omega_1} = (4 \ 5)(3 \ 4)(2 \ 3)(1 \ 2) = (2 \ 1 \ 5 \ 4 \ 3).
\]

Next we define the edge ordering \(\omega_2 \) of \(T \cup \{25, 35\} \). Following the proof above, define \(\omega_2 \) by \(\omega_2 := \omega_1 * (35, 25) \), where * denotes the concatenation. Then
\[
\pi_{\omega_2} = (2 \ 5)(3 \ 5)(2 \ 1 \ 5 \ 4 \ 3) = (4 \ 2 \ 1 \ 3 \ 5).
\]
Similarly, define ω_3 by $\omega_3 := \omega_2 \ast (15, 14)$. Then

$$\pi_{\omega_3} = (1 4)(1 5)(4 2 1 3 5) = (4 2 5 1 3).$$

Thus we obtain a full cyclic permutation ordering $\omega_3 = (1 2 3 4 5)$ of W_5.

3 Proof that (1) implies (2)

Let $I_G(v)$ denote the set of edges of G incident to a vertex $v \in V_G$. A rotation system of G is a collection $\rho = (\rho_v)_{v \in V_G}$ consisting of cyclic orders ρ_v on $I_G(v)$, where a cyclic order on $I_G(v)$ is an equivalence class of linear orders on $I_G(v)$ obtained by identifying (e_1, e_2, \ldots, e_s) with its circular shift (e_2, \ldots, e_s, e_1), denoted by $[e_1, \ldots, e_s]$.

Every embedding of G on an orientable closed surface defines a rotation system with the clockwise ordering for each vertex. Conversely, from a rotation system, we can obtain a 2-cell embedding of G on an orientable closed surface as follows.

Define D_G by

$$D_G := \{(e, u) \in E_G \times V_G \mid u \in r_G(e)\}.$$

We call an element of D_G a dart. When $r_G(e) = \{u, v\}$, the dart (e, u) shows an orientation of the edge e from the source u to the target v. Define the involution α on D_G by $\alpha(e, u) := (e, v)$.

Given a rotation system $\rho = (\rho_v)_{v \in V_G}$, we will define bijections σ and ϕ from D_G to itself. Suppose that $\rho_v = [e_1, \ldots, e_s]$. Define σ by $\sigma(e, v) := (e_{i+1}, v)$, where we consider $e_{s+1} = e_1$. Let $\phi := \sigma \circ \alpha$.

For every dart d, the target of d coincides with the source of $\phi(d)$. Therefore each orbit in $D_G/\langle \phi \rangle$ determines a closed walk on G and we can make a polygon whose sides are formed by the darts in the orbit. Gluing the sides of the polygons obtained from the orbits in $D_G/\langle \phi \rangle$ by the involution α, we obtain an embedding of G on a closed surface. One can show that this surface is actually orientable (See [6, Subsection 3.2]) and hence this embedding is the desired 2-cell embedding.

Theorem 3.1 (See [6, Theorem 3.2.4]). Given a graph G, there exists a one-to-one correspondence between rotation systems of G and 2-cell embeddings of G on oriented closed surfaces up to orientation-preserving homeomorphism.
Note that, from the construction, the number of the faces of the embedding corresponding to a rotation system is equal to the number of the orbits in $D_G/\langle \phi \rangle$.

Let ω be an edge ordering of G. For each $v \in V_G$, let ω_v denote the linear order on $I_G(v)$ induced by ω. Moreover, let $\rho_{v,\omega}$ be the cyclic order on $I_G(v)$ determined by ω_v. Thus we obtain the rotation system $\rho_\omega := (\rho_{v,\omega})_{v \in V_G}$ from an edge ordering ω and hence the corresponding bijections σ_ω and $\phi_\omega = \sigma_\omega \circ \alpha$.

Lemma 3.2. Let $\omega = (e_1, \ldots, e_m)$ be an edge ordering of a graph G. For each $v \in V_G$, let f_v denote the minimal edge in $I_G(v)$ with respect to ω. Define a map $\Psi : V_G/\langle \pi_\omega \rangle \to D_G/\langle \phi_\omega \rangle$ by

$$\Psi([v]) := [(f_v, v)],$$

where the brackets denote equivalence classes. Then Ψ is a bijection.

Proof. First, we will show that the map Ψ is well-defined. It is sufficient to show that $[(f_v, v)] = [(f_{\pi_\omega(v)}, \pi_\omega(v))]$ for each $v \in V_G$.

Fix $v \in V_G$. The edge ordering $\omega = (e_1, \ldots, e_m)$ defines the set T_v as follows.

$$T_v := \{ e_i \in E_G \mid (\tau_1 \tau_{i-1} \cdots \tau_1)(v) \neq (\tau_{i-1} \cdots \tau_1)(v) \},$$

where we agree with $(\tau_{i-1} \cdots \tau_1)(v) = v$ if $i = 1$. Suppose that $T_v = \{ e_{j_1}, e_{j_2}, \ldots, e_{j_s} \}$ with $j_1 < j_2 < \cdots < j_s$. Then $(e_{j_1}, \ldots, e_{j_s})$ is a trail from v to $\pi_\omega(v)$. Let $v_0 := v$ and for $k \in \{1, \ldots, s\}$ define v_k recursively as the endvertex of e_{j_k} other than v_{k-1}. Note that $v_s = \pi_\omega(v)$.

From the definition of T_v, for each $k \in \{1, \ldots, s-1\}$, e_{j_k+1} covers e_{j_k} in $I_G(v_k)$ with respect to ω. Therefore $\phi_\omega(e_{j_k}, v_{k-1}) = (e_{j_k+1}, v_k)$. Since e_{j_k} is the maximal element in $I_G(v_k)$ with respect to the order ω, we have $\phi_\omega(e_{j_k}, v_{s-1}) = (f_v, v_s) = (f_{\pi_\omega(v)}, \pi_\omega(v))$. Thus Ψ is well-defined.

Next, to prove the surjectivity, take an orbit $W \in D_G/\langle \phi_\omega \rangle$. Let f be the minimal element in

$$\{ e \in E_G \mid (e, v) \in W \text{ for some } v \in V_G \}$$

with respect to ω. Suppose $(f, v) \in W$. Assume f is not minimal in $I_G(v)$ with respect to ω_v. Then $f' := \sigma_\omega^{-1}(f)$ is less than f in $I_G(v)$ with respect to ω. Let $r_G(f') = \{ v, v' \}$. Then $\phi_\omega(f', v') = (f, v)$ and hence $(f', v') \in W$. This contradicts to the minimality of f. Therefore f is minimal in $I_G(v)$ and hence $f = f_v$. Hence $\Psi([v]) = [(f, v)] = W$.

Finally, we prove the injectivity. Let $u, v \in V_G$ and suppose that $\Psi([u]) = \Psi([v])$. Then we have $\phi_\omega(u, f_u) = (f_v, v)$ for some $s \in \mathbb{Z}$. Without loss of generality, we can assume that $s > 0$.

Recall the edges of G are ordered by $\omega = (e_1, \ldots, e_m)$. We can write the edge f_u as $f_u = e_{j_0}$ with some $j_0 \in \{1, \ldots, m\}$. Moreover we can obtain the walk $(e_{j_0}, e_{j_1}, \ldots, e_{j_k})$ by $(e_{j_k}, v_k) := \phi_\omega(e_{j_{k-1}}, v_{k-1})$ for $k \in \{1, \ldots, s\}$, where $v_0 := u$. Note that $(e_{j_0}, v_0) = (f_u, u)$ and $(e_{j_k}, v_s) = (f_v, v)$. Suppose that

$$\{ k \in \{1, \ldots, s\} \mid j_{k-1} \geq j_k \} = \{ p_1, \ldots, p_t \}$$
with \(p_1 < \cdots < p_t = s \). Then \(\pi^i_\omega(v_0) = v_{p_i} \) for \(i \in \{1,\ldots,t\} \). In particular, \(\pi^t_\omega(u) = \pi^t_\omega(v_0) = v_{p_t} = v_s = v \). Thus \([u] = [v]\) and hence \(f\) is injective. \(\square\)

Now we are ready to prove that (1) implies (2).

Proof that (1) implies (2) in Theorem 1.4. Let \(\omega \) be a full cyclic permutation ordering of \(G \). Then the number of faces of the 2-cell embedding corresponding to the rotation system \(\rho_\omega \) is equal to \(|D_G/\langle \phi_\omega \rangle| = |V_G/\langle \pi_\omega \rangle| = 1\). \(\square\)

4 Identity permutation ordering

In this section, a graph is not necessarily connected. We say that an edge ordering \(\omega \) of a graph \(G \) is an **identity permutation ordering** if \(\pi_\omega = \varepsilon \), where \(\varepsilon \) denotes the identity permutation. Every edgeless graph vacuously has an identity permutation ordering. The minimal example of a non-trivial graph having an identity permutation ordering is the 2-cycle \(C_2 \). Eden \[2\] studied simple graphs that have an identity permutation ordering and mentioned the complete graph \(K_4 \) is the minimal example. Figure 5 shows identity permutation orderings of \(C_2 \) and \(K_4 \).

Eden gave necessary conditions (without proof) for simple connected graphs having an identity permutation ordering as follows.

Proposition 4.1 (Eden \[2, P. 130\]). Let \(G \) be a simple connected graph on \(n \) vertices with \(m \) edges. If \(G \) has an identity permutation ordering, then the following conditions hold.

(1) \(m \) is even.

(2) There exist a set \(C \) consisting of closed trails and a map \(\psi : V_G \to C \) such that the following conditions hold.

(i) \(\psi \) is bijective.

(ii) Every \(v \in V_G \) belongs to the closed trail \(\psi(v) \).

(iii) The sum of the number of edges of closed trails in \(C \) is \(2m \).

(iv) Each edge of \(G \) belongs to exactly two closed trails in \(C \).
For any ψ to ψ be the bijection considered in Lemma \ref{thm:1}. Note that $V_G = V_G/\langle \pi_\omega \rangle$ since $\pi_\omega = \varepsilon$. For each $v \in V_G$, there exists no dart $d \in D_G$ such that both d and $\alpha(d)$ belong to $\Psi(v)$ since π_ω is the identity. Thus, forgetting the direction of each dart in $\Psi(v)$, we obtain the closed trail $\psi(v) \subseteq E_G$. Letting $W := \{ \psi(v) \mid v \in V_G \}$, we have a surjection $\psi : V_G \rightarrow W$.

We will prove ψ is injective. Assume that there exist distinct vertices u, v such that $\psi(u) = \psi(v)$. Let $\omega' = (f_1, \ldots, f_r)$ be the induced order of ω on $\psi(u)$. Since $\pi_\omega(u) = u$, the edges f_1 and f_r are incident to u. Also, f_1 and f_r are incident to v by the same reason. Hence f_1 and f_r are parallel edges between u and v. This contradicts that G is simple. Therefore ψ is injective and hence bijective.

By the definition of maps Ψ and ψ, every $v \in V_G$ belongs to $\psi(v)$. Moreover,

$$\sum_{v \in V_G} |\psi(v)| = \sum_{v \in V_G} |\Psi(v)| = |D_G| = 2m.$$

For any $e \in E_G$, the two darts on e belongs distinct orbits $\Psi(u)$ and $\Psi(v)$. Then e belongs to $\psi(u)$ and $\psi(v)$ and the other trails do not contain e. Thus the map $\psi : V_G \rightarrow C$ has the desired properties. \hfill \square

Example 4.2. For the complete graph K_4 in Figure 5, the following map ψ satisfies the conditions in Proposition 4.1.

$$\psi(1) = \{e_1, e_4, e_5\}, \quad \psi(2) = \{e_1, e_3, e_6\}, \quad \psi(3) = \{e_2, e_4, e_6\}, \quad \psi(4) = \{e_2, e_3, e_5\}.$$

Eden asked whether the necessary conditions in Proposition 4.1 are also sufficient. We will give a counterexample for this question. Let G be the graph on 12 vertices with 20 edges pictured in Figure 6. Define a map ψ by

$$\begin{align*}
\psi(v_1) &= v_1v_2v_10v_1, \quad \psi(v_2) = v_2v_9v_10v_2, \quad \psi(v_3) = v_3v_10v_4v_3, \quad \psi(v_4) = v_4v_10v_11v_4, \\
\psi(v_5) &= v_5v_6v_12v_5, \quad \psi(v_6) = v_6v_9v_12v_6, \quad \psi(v_7) = v_7v_8v_12v_7, \quad \psi(v_8) = v_8v_11v_12v_8, \\
\psi(v_9) &= v_9v_2v_1v_10v_9, \quad \psi(v_{10}) = v_{10}v_3v_4v_11v_{10}, \quad \psi(v_{11}) = v_{11}v_8v_7v_12v_{11}, \quad \psi(v_{12}) = v_{12}v_5v_6v_9v_{12}.
\end{align*}$$
The conditions in Proposition 4.1 are satisfied. Suppose that G has an identity permutation ordering ω. By Lemma 3.2 there exists a 2-cell embedding ι with $f_\iota = |D_G/\langle \phi_\omega \rangle| = |V_G| = 12$ faces. Then the genus g_ι satisfies

$$2 - 2g_\iota = |V_G| - |E_G| + f_\iota = 12 - 20 + 12 = 4.$$

Therefore $g_\iota = -1$, which is a contradiction.

Problem 4.3. Characterize graphs that have an identity permutation ordering.

Acknowledgment

The authors wish to thank Professor Sachiko Saito for her valuable comments about topics of topology. The authors would also like to express their deepest appreciation to the anonymous referee for careful reading and indicating deficiency in a proof.

References

[1] J. Dénes, *The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs*, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 4 (1959), 63–70.

[2] M. Eden, *On a relation between labeled graphs and permutations*, Journal of Combinatorial Theory 2 (1967), no. 2, 129–134.

[3] A. M. Foley, J. Kazdan, L. Kröll, S. M. Alberga, O. Melnyk, and A. Tenenbaum, *Transplanting Trees: Chromatic Symmetric Function Results through the Group Algebra of S_n*, January 2022, arXiv:2112.09937 [math].

[4] Y. Huang and Y. Liu, *Face Size and the Maximum Genus of a Graph I. Simple Graphs*, Journal of Combinatorial Theory, Series B 80 (2000), no. 2, 356–370.

[5] M. Jungerman, *A characterization of upper-embeddable graphs*, Transactions of the American Mathematical Society 241 (1978), 401–406.

[6] B. Mohar and C. Thomassen, *Graphs on surfaces*, Johns Hopkins studies in the mathematical sciences, Johns Hopkins University Press, Baltimore, 2001.

[7] P. Moszkowski, *A Solution to a Problem of Dénes: a Bijection Between Trees and Factorizations of Cyclic Permutations*, European Journal of Combinatorics 10 (1989), no. 1, 13–16.

[8] L. Nebeský, *Every connected, locally connected graph is upper embeddable*, Journal of Graph Theory 5 (1981), no. 2, 205–207.

[9] ________, *A note on upper embeddable graphs*, Czechoslovak Mathematical Journal 33 (1983), no. 1, 37–40.
[10] , On locally quasiconnected graphs and their upper embeddability, Czechoslovak Mathematical Journal 35 (1985), no. 1, 162–166.

[11] B. Pawlowski, Chromatic symmetric functions via the group algebra of S_n, Algebraic Combinatorics 5 (2022), no. 1, 1–20.

[12] C. Payan and N. H. Xuong, Upper embeddability and connectivity of graphs, Discrete Mathematics 27 (1979), no. 1, 71–80.

[13] M. Škoviera, The maximum genus of graphs of diameter two, Discrete Mathematics 87 (1991), no. 2, 175–180.

[14] , The decay number and the maximum genus of a graph, Mathematica Slovaca 42 (1992), 391–406.

[15] M. Škoviera and R. Nedela, The maximum genus of vertex-transitive graphs, Discrete Mathematics 78 (1989), no. 1-2, 179–186.

[16] R. Uchiumi, Signed graphs and signed cycles of hyperoctahedral groups, Electronic Journal of Graph Theory and Applications 11 (2023), no. 2, 419.

[17] N. H. Xuong, How to determine the maximum genus of a graph, Journal of Combinatorial Theory, Series B 26 (1979), no. 2, 217–225.

[18] , Upper-embeddable graphs and related topics, Journal of Combinatorial Theory, Series B 26 (1979), no. 2, 226–232.