A case of postoperative recurrent intussusception associated with indwelling bowel tube

Yoshitaka Furuya, Takashi Wakahara, Harutoshi Akimoto, Chu Manh Long, Hironobu Yanagie, Hiroshi Yasuhara

© 2010 Baishideng. All rights reserved.

Key words: Intussusception; Recurrence; Feeding tube; Ileus tube; Small intestine

Peer reviewers: Tsukasa Hotta, MD, PhD, Second Department of Surgery, Wakayama Medical University, School of Medicine, 811-1, Kimiidera, Wakayama 641-8510, Japan; Vijay P Khatri, MB, ChB, FACS, Professor of Surgery, Department of Surgery, Division of Surgical Oncology, University of California, Davis Cancer Center, 4501 X Street, Suite 3010, Sacramento, CA 95817, United States

Furuya Y, Wakahara T, Akimoto H, Long CM, Yanagie H, Yasuhara H. A case of postoperative recurrent intussusception associated with indwelling bowel tube. World J Gastrointest Surg 2010; 2(3): 85-88 Available from: URL: http://www.wjgnet.com/1948-9366/full/v2/i3/85.htm DOI: http://dx.doi.org/10.4240/wjgs.v2.i3.85

INTRODUCTION

Intussusception is a rare cause of postoperative intestinal obstruction in adults[1,2] and recurrent intussusception seldom occurs in patients who have undergone surgical resection[3]. We present here the case of a patient with small bowel intussusception induced by jejunal feeding tube placement and with re-intussusception induced by an ileus tube inserted after operative reduction of intussusception. Finally, both the part of the jejunum with re-intussusception including adhesion and the place where the previous reduced intussusception had occurred was resected.

CASE REPORT

A 76-year-old man was transferred to our hospital with a chief complaint of dyspnea. He had a history of chronic obstructive pulmonary disease (COPD) combined with emphysema, bronchial asthma and distal gastrectomy for gastric ulcer. After being given artificial respiration for 1...
Recurrent intussusception associated with indwelling bowel tubes

Furuya Y et al. Recurrent intussusception associated with indwelling bowel tubes

mo because of deterioration in dyspnea, unexpected dysphagia appeared, the cause of which could not be detected by computed tomography and gastrointestinal fibroscope. A Witzel jejunostomy was carried out to allow feeding because of the impossibility of swallowing and his small residual stomach, and early enteral nutrition was begun on the 3rd postoperative day. About 3 wk after the initial feeding tube placement, the patient had occasional episodes of vomiting and abdominal pain without palpation of an abdominal mass. As an X-ray of the abdomen revealed distention of the proximal jejunum, a nasogastric tube was inserted into the stomach to decompress the jejunal gas. Because we assumed there was postoperative adhesion of the jejunum, we performed an X-ray examination using a water-soluble contrast medium from the nasogastric tube and jejunal feeding tube. This revealed the retention of contrast medium from the stomach to the proximal jejunum and normal caliber of the distal jejunum. Judging from the small bowel series results, we did not suspect intussusception associated with the feeding tube but rather postoperative adhesive bowel obstruction or torsion around the tube. We therefore performed exploratory laparotomy. A fleshy sausage-like tubular intestinal mass 10 cm in length (arrowhead), showed slightly edematous changes without necrosis, and started at a site about 15 cm distal from the entry of the jejunal feeding tube; B: Schematic diagram of the intussusception.

DISCUSSION

It is generally believed that any lesion in the bowel wall or irritant within the bowel lumen that alters normal peristaltic activity is able to initiate an invagination\(^{10,11}\). On the oth-
er hand, uneven return of peristalsis after surgery, with possible local spasms or edema of the bowel, is a plausible explanation in cases without obvious lead points. Ein et al. claimed that postoperative intussusceptions are likely to be caused by altered peristalsis following prolonged and excessive manipulation with drying and bruising of the bowel, extensive preperitoneal dissection, abdominal serum electrolyte levels, local hypoxia, anesthetic agents, postoperatively administered drugs, or neurogenic factors. In our case, the location of the ‘re-intussusception’ was different from that of the first intussusception that had been reduced. The main cause of the ‘re-intussusception’ may have been the ileus tube and adhesion, whilst the first intussusception was caused by the feeding tube and adhesion. In the present case, there were no pathological problems, such as a tumor, in our resected specimen. The probable causes of this intussusception are believed to be: (1) restriction of peristalsis due to adhesion of mesentery or bowel in front of or behind the tip of the tube; (2) excessive dilatation of the small intestine before decompression; (3) a decrease in the degree of freedom of the small intestine due to the presence of a tube in the bowel which acts as a stent; (4) rise of abnormal abdominal pressure due to coughing; (5) abnormal and irregular peristalsis without cooperation; and (6) functional disorder of ganglion cells or neuron transmission after expanded bowel etc. However, the mechanism of intussusception that occurs following the placement of an ileus tube or jejunal feeding tube is still unknown.

All patients with enteric lesions who have not had a previous laparotomy should undergo resection without reduction because of the high incidence of associated malignancy. Especially in cases of colonic intussusception, many researchers recommend resection without reduction. On the other hand, the argument for initial resection in small bowel intussusception may not be as convincing as for large bowel intussusception, because the incidence of malignancy ranges from 1%-40% and the vast majority of these are metastasis. Eisen et al. stated that small bowel intussusception should be reduced only in patients in whom a benign diagnosis has been made preoperatively or in patients in whom resection may result in short gut syndrome. If we consider our case only, resection, rather than reduction, was necessary for our intussusception to prevent ‘re-recurrent intussusception’ as the proximal jejunum had become dilated due to the restriction of bowel movement, and there was hard adhesion of the mesentery or the bowel around the place of the first intussusception. While recurrence rates of 3% (after surgical reduction) to 10% (after hydrostatic reduction) have been reported following treatment of primary intussusception, no recurrence has been recorded following surgical reduction of post operative intussusception after up to 20 years follow-up. Yang et al. concluded that recurrent intussusception seldom occurred in patients who underwent surgical reduction. Three case reports have reported ‘recurrent small bowel intussusception after operation of small bowel intussusception’ (Table 1). The recurrent rate of ‘small bowel intussusception’ is only about 0.2% in English publications, according to the results of our searches on PubMed.

The classic pediatric symptoms of intussusception such as abdominal pain, mass, and blood per rectum are rarely found in adults, in whom the predominant symptom is bowel obstruction. Consequently, intussusception is often initially misdiagnosed in the adult population. As mentioned above, we first misdiagnosed the patient with postoperative adhesive bowel obstruction or torsion around the tube because there was no palpable abdominal mass and the only symptoms of intestinal obstruction that had appeared were abdominal pain and vomiting. Aware of the difficulty of diagnosing intussusception from symptoms and contrast medium studies, because we had experienced intussusception in this patient before and despite a negative study using contrast medium, ‘re-intussusception’ was later suspected when he reported intermittent abdominal pain. This diagnosis was confirmed by using CT. Our experience in this case confirms earlier reports that the diagnosis of intussusception is difficult to make before surgery. Some researchers have claimed that a diagnosis of intussusception was suspected preoperatively in 14%-75% of patients. Abdominal CT is the most sensitive radiologic method for confirming a diagnosis of intussusception, with a reported diagnostic sensitivity of 71.4%-87.5%. Even though high resolution CT is now widely used in many institutions, misdiagnoses may occur due to human error when clinicians do not have experience of ‘intussusception’, limiting how many correct preoperative diagnoses can be made. Abdominal ultrasonography (US) is also a very useful and
appropriate technique in the diagnosis of intussusception in adults\(^2\)\(^,\) while contrast medium studies of the small intestine were able to confirm the diagnosis of intussusception preoperatively in only 17% of patients\(^3\)\(^,\). In obese cases or those with full bowel gas, it is difficult to accurately detect intussusception using US. Given these facts, a plural examination including CT, US, contrast studies, and Magnetic Resonance Imaging (MRI) is necessary to improve the diagnosis of intussusception.

In conclusion, the mechanism of the relationship between intussusception and a feeding or ileus tube has not been well understood. There may be complicating factors, such as adhesion, abnormal peristalsis, and the tube itself. When encountering a hard adhesion, inflammation on the bowel surface or a mesenteric obstruction in a patient who has had an intussusception, it is necessary to operate on the patient to resect the intussusception, including the adhesion, in order to prevent 're-intussusception', even if it is predicted that the resected bowel will be long.

REFERENCES

Table 1 Summary of recurrent intussusception after operation of small bowel intussusception in adults

Authors (year)	Age (yr)	Preoperative diagnosis	Diagnosis method	Surgical Treatment	Nature of Lesion
Felix et al\(^1\) (1976)	34	Acute abdomen	Exploratory laparotomy	Resection	Lymphoma nodule (Burkitt’s lymphoma)
Dong et al\(^2\) (2004)	25	Mechanical obstruction	Barium meal	Resection	No tumor
Akimaru et al\(^3\) (2006)	41	Intussusception	Not described	Resection	Hamartoma
Felix EL	76	Ileus	Exploratory laparotomy	Reduction	No tumor (Feeding tube and adhesion)
Our case	76	Intussusception	CT	Reduction	No tumor

1st: Intussusception at the first time; 2nd: Recurrent intussusception.

1. Begos DG, Sandler A, Modlin IM. The diagnosis and management of adult intussusception. Am J Surg 1997; 173: 88-94
2. Felix EL, Cohen MH, Bernstein AD, Schwartz JH. Adult intussusception: case report of recurrent intussusception and review of the literature. Am J Surg 1976; 131: 758-761
3. Yang CM, Hsu HY, Tsao PN, Chang MH, Lin FY. Recurrence of intussusception in childhood. Acta Paediatr Taiwan 2001; 42: 158-161
4. Takeuchi K, Tsuzuki Y, Ando T, Sekihara M, Hara T, Kori T, Kuswano H. The diagnosis and treatment of adult intussusception. J Clin Gastroenterol 2003; 36: 18-21
5. Holcomb GW 3rd, Ross AJ 3rd, O’Neill JA Jr. Postoperative intussusception: increasing frequency or increasing awareness? South Med J 1991; 84: 1334-1339
6. Ein SH, Ferguson JM. Intussusception—the forgotten post-operative obstruction. Arch Dis Child 1982; 57: 788-790
7. Wu TH, Lin CW, Yin WY. Jejunojejunal intussusception following jejunojunal anastomosis. J Formos Med Assoc 2006; 105: 355-358
8. Azar T, Berger DL. Adult intussusception. Ann Surg 1997; 226: 134-138
9. Nagorney DM, Sar MG, McRath DC. Surgical management of intussusception in the adult. Ann Surg 1981; 193: 230-236
10. Weilbaecher D, Bolin JA, Hearn D, Ogden W 2nd. Intussusception in adults. Review of 160 cases. Ann Surg 1971; 121: 535-535
11. Eisen LK, Cunningham JD, Aufses AH Jr. Intussusception in adults: institutional review. J Am Coll Surg 1999; 188: 390-395
12. Eke N, Adolyte JM. Postoperative intussusception, causal or casual relationships? Int Surg 2000; 85: 303-308
13. Soper RT, Brown MJ. Recurrent acute intussusception in children. Arch Surg 1964; 89: 188-198
14. Dong K, Li B. Peutz-Jeghers syndrome: case reports and update on diagnosis and treatment. Chin J Dig Dis 2004; 5: 160-164
15. Akimaru K, Kato T, Ishiguro S, Miyake K, Shimanuki K, Tajiri T. Resection of over 290 polyps during emergency surgery for four intussusceptions with Peutz-Jeghers syndrome: Report of a case. Surg Today 2006; 36: 997-1002
16. Zubaidi A, Al-Saif F, Silverman R. Adult intussusception: a retrospective review. Dis Colon Rectum 2006; 49: 1546-1551
17. Wang LT, Wu CC, Yu JC, Hsiao CW, Hsu CC, Jao SW. Clinical entity and treatment strategies for adult intussusceptions: 20 years’ experience. Dis Colon Rectum 2007; 50: 1941-1949
18. Gayer G, Apter S, Hofmann C, Noss S, Amitai M, Zissin R, Hertz M. Intussusception in adults: CT diagnosis. Clin Radiol 1998; 53: 53-57
19. Erkan N, Haciyanli M, Yildirim M, Sayhan H, Vardar E, Polat AF. Intussusception in adults: an unusual and challenging condition for surgeons. Int J Colorectal Dis 2005; 20: 452-456
20. Marinis A, Yiallourou A, Samanides L, Dafnis N, Anastasopoulos G, Vassiliou I, Theodosopoulos T. Intussusception of the bowel in adults: a review. World J Gastroenterol 2009; 15: 407-411
21. Yakan S, Caliskan C, Makay O, Deneci AG, Korkut MA. Intussusception in adults: clinical characteristics, diagnosis and operative strategies. World J Gastroenterol 2009; 15: 1985-1989
22. Boyle MJ, Arkell LJ, Williams JT. Ultrasonic diagnosis of adult intussusception. Am J Gastroenterol 1993; 88: 617-618

S- Editor Li LF L- Editor Hughes D E- Editor Yang C