Transcriptional analysis of $\text{bla}_{\text{NDM-1}}$ and copy number alteration under carbapenem stress

Deepjyoti Paul, Amitabha Bhattacharjee*, Dibyojyoti Bhattacharjee, Debadatta Dhar, Anand Prakash Maurya and Atanu Chakravarty

Abstract

Background: New Delhi metallo-beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of $\text{bla}_{\text{NDM-1}}$ and plasmid copy number alteration under carbapenem exposure.

Methods: Three $\text{bla}_{\text{NDM-1}}$ harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK) were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of $\text{bla}_{\text{NDM-1}}$. Horizontal transferability and stability of the plasmids encoding $\text{bla}_{\text{NDM-1}}$ were also determined. Changes in copy number of $\text{bla}_{\text{NDM-1}}$ harboring plasmids under exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis.

Results: Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of $\text{bla}_{\text{NDM-1}}$ although it did not follow a specific pattern. All $\text{bla}_{\text{NDM-1}}$ carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of $\text{bla}_{\text{NDM-1}}$ was found for IncF type plasmids compared to the other replicon types.

Conclusion: This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of $\text{bla}_{\text{NDM-1}}$ and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.

Keywords: Escherichia coli, Plasmid stability, Transcriptional expression, Transferability

Background

Since the discovery of New Delhi metallo-β-lactamase (bla_{NDM}) in 2008 from a Swedish patient of Indian origin in New-Delhi, India [1], this enzyme is known for several reasons including treatment failure, emergence of new variants and lateral transfer of the gene coding this enzyme within diverse host range of Gram negative bacilli [2, 3]. The bla_{NDM} is known for its ignominious nature being linked with other resistance determinants along with various mobile elements like plasmid, insertion sequences & transposons which facilitates its horizontal dissemination [2, 4]. In many studies $\text{bla}_{\text{NDM-1}}$ was found to be associated with ISAba125 [2, 5]. However, there were also reports of other insertion elements like ISCR1, ISCR16, IS1, ISEc33 and IS903 associated with this gene [5]. Additionally, the transposons Tn3 and Tn125 were reported to be linked with this resistance determinant and horizontal transfer of $\text{bla}_{\text{NDM-1}}$ is often facilitated by plasmids of IncF, IncA/C, IncL/M, IncH, IncN and more recently by IncX type [6]. Among Enterobacteriaceae, bla_{NDM} was detected in Escherichia coli in many countries worldwide (Australia, France, Germany, Japan, UK and the USA) [7]. E. coli is the most common pathogen associated with nosocomial and community acquired infections and also been considered as a potent host for this
resistance determinant [7]. Dissemination of \(\text{bla}_{\text{NDM-1}} \) through \(E. \text{coli} \) has become a global concern [8] and also in India there were several reports of NDM-producing \(E. \text{coli} \) in all parts of the country [8–14]. Treatment of infections with NDM-producers is restricted due to their multi-drug resistance phenotype [15]. Several studies have highlighted the hydrolytic activity of NDM-1 to carbapenems [2, 16]. However, it is not known how bacteria harboring this resistance gene will respond when carbapenem therapy is initiated to a patient. The present study was designed to investigate the transcriptional response of \(\text{bla}_{\text{NDM-1}} \) in vitro under single dose carbapenem exposure, and also to investigate the transmission dynamics within clinical isolates of \(E. \text{coli} \) in a single center study from India.

Methods

Bacterial strains

The NDM-1 producing \(E. \text{coli} \) isolates \((n = 17) \) were collected from different clinical specimens (stool, \(n = 3 \); surgical wound, \(n = 1 \); urine, \(n = 3 \); pus, \(n = 5 \); throat swab, \(n = 1 \); ear swab, \(n = 1 \); endotracheal aspirates, \(n = 1 \); cerebrospinal fluid, \(n = 1 \); blood, \(n = 1 \)) of seventeen patients who were admitted in different wards or attended to outpatient departments (OPDs) of Silchar Medical College and Hospital (Silchar, India) from March till September 2013. The isolates were identified by standard biochemical characterization and 16s rDNA sequencing [17]. Presence of \(\text{bla}_{\text{NDM-1}} \) was determined by PCR assay using primers (NDM-F 5’-GGGCAGTCGCTTCCAACGGT-3’ and NDM-R 5’-GTAGTGCTCAGTGTCGGC-3’). The amplified products were purified using MinElute PCR Purification Kit (Qiagen, Germany) and were sequenced.

Transcriptional expression analysis of \(\text{bla}_{\text{NDM-1}} \)

Transcriptional expression of \(\text{bla}_{\text{NDM-1}} \) in response to imipenem, meropenem and ertapenem stress was determined by inoculating the organisms harboring \(\text{bla}_{\text{NDM-1}} \) in Luria Bertani broth (Hi-Media, Mumbai, India) with and without antibiotics. Antibiotic concentration used was 1 \(\mu \text{g/ml} \). For a period of 16 h, total RNA was isolated at the interval of 1 h using Qiagen RNasea Mini Kit (Qiagen, Germany), immediately reverse transcribed into cDNA by using QuantiTect reverse transcription kit (Qiagen, Germany). The cDNA was quantified by Picodrop (Pico 200, Cambridge, UK) and real time PCR was performed using Power Sybr Green Master Mix (Applied Biosystem, USA) using a set of primer (NDM-F 5’-GGGCAGTCGCTTCCAACGGT-3’ and NDM-RT-R 5’-CGACCAGGCGCATGTGATCTCC-3’). The relative expression of \(\text{bla}_{\text{NDM-1}} \) in each interval with and without carbapenem pressure was determined by \(\Delta \Delta C_\text{t} \) method [19]. Relative quantification was done using a transformant (\(E. \text{coli} \) DH\(\alpha \) harboring \(\text{bla}_{\text{NDM-1}} \), p\(\text{FC-611} \)) grown for 4 h without any antibiotic pressure.

Transformation and Conjugation assay

Transformation was performed by heat shock method [15] using \(E. \text{coli} \) DH\(\alpha \) as a recipient and the transformants were selected on Luria Bertani agar (Hi-Media, Mumbai, India) containing 0.25 \(\mu \text{g/ml} \) of imipenem. Conjugation experiment was carried out using \(\text{bla}_{\text{NDM-1}} \) harboring clinical strains as donors and a streptomycin resistant \(E. \text{coli} \) recipient strain B (Genei, Bangalore, India). The MIC of clinical isolates against streptomycin was pre-determined to optimize the agar for selection of transconjugants. Both the donor and recipient cells were cultured in Luria Bertani Broth (Hi-Media, Mumbai, India) till it reach an O.D. of 0.8–0.9 at \(A_{660} \). Cells were mixed at 1:5 donor-to-recipient ratios and transconjugants were selected on agar plates containing imipenem (0.25 \(\mu \text{g/ml} \)) and streptomycin (1000 \(\mu \text{g/ml} \)). The \(E. \text{coli} \) strain B is chromosomally resistant to streptomycin which can grow on media containing streptomycin at a concentration of 1000 \(\mu \text{g/ml} \). However, the donors although resistant to aminoglycoside had the minimum inhibitory concentration ranging from 100-200 \(\mu \text{g/ml} \). Therefore, selection of transformants in 1000 \(\mu \text{g/ml} \) rules out false selection of donor strains. The accuracy of conjugation was further cross checked by typing all the transconjugants by enterobacterial repetitive intergenic consensus PCR [20] and pulsed field gel electrophoresis using Xba1 restriction enzyme.

Replicon typing and plasmid stability analyses

Incompatibility type of the plasmid encoding \(\text{bla}_{\text{NDM-1}} \) was determined by PCR based replicon typing targeting 18 different replicons viz. FIA, FIB, FIC, H1, H2, II/1Y, L/M, N, P, W, T, A/C, K, B/O, X, Y, F and FIIA as described previously [21]. Also IncX types i.e. IncX1, IncX2, IncX3 and IncX4 were also targeted [22]. Purified plasmid DNA was used as template for the reaction.

Plasmid stability analysis of parent strains and transformants was done by serial passage method for consecutive 100 days at 1:1000 dilutions without any antibiotic pressure [23]. After each passage, 1 ml of the culture was diluted in normal saline (1:1000) and 40 \(\mu \text{L} \) of the diluted sample was spread on to the LB agar plate. After overnight incubation, 50 colonies from the agar plates were randomly picked and subjected to phenotypic detection of MBL and further confirmed by PCR assay for the presence of \(\text{bla}_{\text{NDM-1}} \) using primers (NDM-F 5’-GGGCAGTCGCTTCCAACGGT-3’ and NDM-R 5’-GTAGTGCTCAGTGTCGGC-3’).
Copy number determination of plasmid encoding \textit{bla}\textsubscript{NDM-1}
Clinical isolates of \textit{Escherichia coli} harboring \textit{bla}\textsubscript{NDM-1} carried by plasmids of incompatibility groups IncFIC, IncA/C or IncK were selected for determining the copy number under exposure of different concentrations of carbapenem antibiotics. Single colony of each incompatibility type was inoculated into LB broth containing 0.5 μg/ml, 1 μg/ml, 2 μg/ml and 4 μg/ml of each imipenem, meropenem and ertapenem and also without any antibiotic (considered as a reference), was incubated at 37 °C for 5–6 h until the OD reached 0.9 at A\textsubscript{600}. Transformants with different \textit{bla}\textsubscript{NDM-1} carrying plasmid types (IncFIC, A/C & K) were used as control (without any antibiotic pressure). Plasmid DNA was extracted using QIAprep Spin Miniprep Kit (Qiagen, Germany). Quantitative Real Time PCR was performed using Step One Plus real time detection system (Applied Biosystem, USA) to estimate the relative copy number of \textit{bla}\textsubscript{NDM-1} for different concentrations of each antibiotic for three different incompatibility types. The copy number of \textit{bla}\textsubscript{NDM-1} within the wild type plasmid of different incompatibility types were also determined to know the type of Inc group where copy number of \textit{bla}\textsubscript{NDM-1} gene was maintained in high number. Quantitative real time PCR reaction was carried out using 10 μl of SYBR® Green PCR Master Mix (Applied Biosystem, Warrington, UK), 4 ng plasmid DNA as template and 3 μl of each primer (10 Picomol) in a 20 μl reaction under a reaction condition of initial denaturation at 94 °C for 5 min, 40 cycles of denaturation 94 °C for 20 s, annealing 52 °C for 40 s and extension at 72 °C for 30 s. The relative fold change was measured by \textit{ΔΔCT} method and Ct value of each sample was normalized against a housekeeping gene \textit{rpsel} of \textit{E. coli} [19].

Antimicrobial susceptibility testing and MIC determination
Antibiotic susceptibility of \textit{bla}\textsubscript{NDM-1} harboring parent strains, transformants and transconjugants were determined by Kirby Bauer disc-diffusion method including piperacillin-tazobactam (100/10 μg), co-trimoxazole (25 μg), amikacin (30 μg), gentamicin (10 μg), ciprofloxacin (5 μg), netilmicin (30 μg), carbenicillin (100 μg), tigecycline (30 μg) and faropenem (5 μg) (Hi-Media, Mumbai, India). MICs of imipenem, meropenem, ertapenem, cefepime, aztreonam, gentamicin, amikacin, ciprofloxacin, piperacillin-tazobactam & polymixin-B were determined for parent strains harboring \textit{bla}\textsubscript{NDM-1}, as well as transformants and transconjugants by agar dilution method. Each stock solution for the corresponding antibiotic was made at 1 mg/ml concentration in nuclease free water and was stored at −80 °C. The quality control for stock solution was checked each time against \textit{E. coli} ATCC 25922. The result of the susceptibility testing was interpreted as per CLSI guidelines [24]. However, for polymixin B, faropenem and carbenicillin, the organisms were considered as non susceptible if the MIC value was higher and diameter of the zone of inhibition was lower than the values given in CLSI guidelines for respective antibiotics against \textit{E. coli} ATCC 25922.

Typing of \textit{bla}\textsubscript{NDM-1} harboring isolates
All \textit{bla}\textsubscript{NDM-1} harboring \textit{E. coli} isolates were typed by pulsed field gel electrophoresis (PFGE), genomic DNA was prepared in agarose blocks and digested with the restriction enzyme Xba1 (Promega, Madison, USA) and the DNA fragments were separated with a CHEF-DR III (Bio-Rad, USA) for 24 h at 6 V/cm with a pulses at 120\textdegree angle in a 10–40 s pulse time [25].

Results
During the study period (March-September), 17 isolates were obtained carrying \textit{bla}\textsubscript{NDM-1}, collected from different clinical samples mostly associated with surgical wound infection from surgery ward of the hospital (Table 1). Transcriptional expression of \textit{bla}\textsubscript{NDM-1} with or without carbapenem stress is shown in Fig. 1. It was observed that at the initial stage, under meropenem pressure the transcriptional level of \textit{bla}\textsubscript{NDM-1} was low. However, there was a sharp increase from 12th hour of incubation for meropenem and ertapenem (approximately 2 fold and 4 fold respectively), whereas imipenem did not cause any alteration in transcriptional response. Overall the transcriptional expression did not show any specific pattern of response.

Plasmids carrying \textit{bla}\textsubscript{NDM-1} were selected in the medium containing imipenem and could be conjugatively transferred from all 17 clinical \textit{E. coli} isolates into recipient \textit{E. coli} strain B. The transformation experiment revealed that the size of the transferable plasmids was approximately of 50-60 kb. Replicon typing showed that FIC was the predominant replicon type \textit{(n = 7)} followed by A/C \textit{(n = 4)} and K \textit{(n = 3)} whereas 3 isolates were untypeable (Table 1). The copy number of \textit{bla}\textsubscript{NDM-1} was found to be variable. The copy number of \textit{bla}\textsubscript{NDM-1} gene within IncFIC and IncA/C type of plasmids showed an increasing trend when increasing concentrations of imipenem and meropenem were added whereas for ertapenem, the case was reverse (Figs. 2 & 3). For IncK type plasmids, the copy number of \textit{bla}\textsubscript{NDM-1} consistently raised when meropenem concentration was increased whereas with the increasing concentration of imipenem and ertapenem, the copy number of \textit{bla}\textsubscript{NDM-1} reduced (Fig. 4). The overall copy number of F-Inc type was six fold higher compared to IncA/C and K type (Fig. 5). Complete loss of plasmids for all the isolates containing...
Table 1 Characteristics of seventeen *Escherichia coli* isolates carrying *bla*~NDM-1~ on conjugative plasmids

Strain ID	Date of Isolation	Patient’s Sex & Age	Sample origin	Ward	*bla*~NDM-1~ positive plasmids	Pulsotypes	
					Name	Inc-type	
EC51	5-3-2013	M-27 years	Stool	Medicine	EC-51	FIC	P1
EC54	11-3-2013	M-26 years	Stool	Medicine	EC-54	A/C	P4
EC61	11-3-2013	M-31 years	Surgical wound	Surgery	EC-61	K	P1
EC75	13-3-2013	F-47 years	Stool	Medicine	EC-75	untypeable	P1
EC177	7-4-2013	M-33 years	Urine	Medicine	EC-177	A/C	P3
EC178	7-4-2013	F-12.5 years	Urine	Surgery	EC-178	FIC	P2
EC55	13-3-2013	M-48 years	Urine	Surgery	EC-55	FIC	P2
EC355	27-6-2013	M-10 years	Urine	Medicine	EC-355	untypeable	P2
EC456	6-7-2013	F-25 years	Throat swab	ENT	EC-456	A/C	P5
EC472	9-7-2013	F-62 years	Pus	Orthopedics	EC-472	K	P6
EC477	9-7-2013	F-32 years	Ear swab	ENT	EC-477	FIC	P3
EC489	16-7-2013	M-85 years	Pus	Surgery	EC-489	K	P2
EC492	19-7-2013	M-11 years	Endotracheal aspirates	OPD	EC-492	untypeable	P6
EC571	15-8-2013	F-21 years	Cerebrospinal fluid	Surgery	EC-571	FIC	P2
EC611	29-8-2013	F-42 years	Blood	Surgery	EC-611	A/C	P2
EC639	7-9-2013	M-20 years	Urine	Medicine	EC-639	FIC	P5
EC678	16-9-2013	M-38 years	Pus	Surgery	EC-678	FIC	P4

bla~NDM-1~ was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn.

Antimicrobial susceptibility result showed that the 17 *bla*~NDM-1~ harboring isolates were resistant to cotrimoxazole, ciprofloxacin, carbenicillin and faropenem whereas very few isolates were found to be susceptible to polymyxin B (*n* = 4) and tigecycline (*n* = 3) (Additional file 1: Table S1). MIC results revealed that the parent strains carrying *bla*~NDM-1~ showed MIC range above the breakpoint for all three carbapenems (≥64 μg/ml), third generation cephalosporin (≥256 μg/ml), piperacillin/tazobactam (≥32 μg/ml), polymyxin-B (≥1 μg/ml) aminoglycosides, quinolone and monobactam (≥64 μg/ml) (Additional file 1: Table S1). Transformants and transconjugants carrying *bla*~NDM-1~ were also resistant to cephalosporin, piperacillin/tazobactam, aminoglycosides, quinolone and all carbapenems (Additional file 1: Table S2). PFGE analysis revealed the presence of six different *E. coli* clones with clone 2 (pulsotype 2) as the most frequent one (*n* = 6) (Additional file 2: Figure S1). However, the replicon types of the *bla*~NDM-1~ carrying plasmids were different in this clone (IncFIC, *n* = 3; IncA/C, *n* = 1; IncK, *n* = 1; untypeable, *n* = 1).

Fig. 1 Transcriptional response of *bla*~NDM-1~ against carbapenem exposure at different time interval
Discussion

Resistance to carbapenems due to the production of New Delhi metallo-β-lactamase among enterobacterial isolates has become a very common phenomenon and the expansion of $\text{bla}_{\text{NDM-1}}$ among the members of Enterobacteriaceae is increasing and in consequence this resistance determinant has been reported across the globe [26]. Earlier studies demonstrated that the sub-inhibitory concentrations of antibiotics interfere the expression of the genes, colonization and motility of the cell [27]. Therefore, we have investigated the transcriptional response of NDM-1 against carbapenem antibiotics below the inhibitory concentration level. Under the pressure of imipenem, no significant change was observed in the pattern of transcriptional level for 16 h duration, which is in contrast to the previous report of Liu et al. 2012 [28], as they reported that under the pressure of imipenem $\text{bla}_{\text{NDM-1}}$ gene was expressed (0.83 times higher) than that of the control. In this study, a possible down regulated expression of $\text{bla}_{\text{NDM-1}}$ took place under the exposure of meropenem, however to support our data no existing literature is available till date. This study has pointed that no specific or defined transcriptional response is initiated for $\text{bla}_{\text{NDM-1}}$ when carbapenem stress is created and the overall response is partially chaotic. Thus, there could be other inducing factors which trigger its response in order to synthesis this carbapenemase. The study isolates showed resistance to almost all the antibiotics especially high rate of polymyxin resistance was also observed. The emergence of different E. coli clones with pulsotype 2 as the most common, indicates a possible clonal spread but different

Fig. 2 Copy number of $\text{bla}_{\text{NDM-1}}$ within IncFIC plasmid. 0 μg/ml (control) = copy number of $\text{bla}_{\text{NDM-1}}$ without any antibiotic pressure. 0.5, 1, 2 and 4 μg/ml = change in copy number of $\text{bla}_{\text{NDM-1}}$ under 0.5, 1, 2 and 4 μg/ml exposure of imipenem (blue bar), meropenem (red bar) and ertapenem (green bar) pressure. The error bars represent the standard deviation of the three replicates of one sample.

Fig. 3 Copy Number of $\text{bla}_{\text{NDM-1}}$ within IncA/C plasmid. 0 μg/ml (Control) = Copy number of $\text{bla}_{\text{NDM-1}}$ without any antibiotic pressure. 0.5, 1, 2 and 4 μg/ml = Change in copy number of $\text{bla}_{\text{NDM-1}}$ under 0.5, 1, 2 and 4 μg/ml exposure of imipenem (blue bar), meropenem (red bar) and ertapenem (green bar) pressure. The error bars represent the standard deviation of the three replicates of one sample.
replicon types within this clone are uncommon and require further detailed analyses in future studies.

Plasmids encoding blaNDM-1 gene were successfully transferred to the recipient E. coli strain B by conjugation indicating potential horizontal transmission through diverse incompatible plasmid types such as IncFIC, IncA/C and IncK in this hospital setting. Association of blaNDM-1 with IncK type of plasmid in the present study is not commonly reported as coexisting data recorded recent spread of blaNDM-1 in India has been associated with IncA/C type, IncF1/FII-type, or unknown types of plasmids [7]. An earlier study [29] suggested that copy number of blaNDM-1 is affected by the concentration of imipenem. In contrast we observed that plasmid copy number is not only related with high concentration of imipenem but also depends on the replicon type of the blaNDM-1 carrying plasmids. This could be supported by the high copy number of blaNDM-1 within IncF type plasmids compared to the other replicon types (e.g. IncA/C or Inc K).

Conclusion

The expression of blaNDM-1 could predict the bacterial response in different time interval when a single carbapenem exposure is applied. Additionally, this study could underscore that irrespective of plasmid types, blaNDM-1 is highly stable within a host of clinical origin. However, it was also evident from this study that different Inc types of plasmids have a specific pattern in copy number alteration under concentration gradient carbapenem stress. Thus, the study came up with epidemiological knowledge of a stable blaNDM-1 mediated carbapenem resistance in E. coli and further investigation is required to evaluate the risk for their dissemination in health care systems in this geographical part of the world.

Additional files

Additional file 1: Table S1. Antimicrobial profile of blaNDM-1 harboring Escherichia coli isolates SXT: Trimethoprim/sulfamethoxazole, TGC: Tigecycline, FAR: Faropenem, CIP: Ciprofloxacin, CAR: Carbencillin, PMB: Polymixin B, AMK: Amikacin, GEN: Gentamicin, NET: Netilmicin, TIZP: Piperacillintazobactum, IPM: Imipenem, ETP: Ertapenem, MEM: Meropenem, FEP: Cefepime, ATM: Aztreonam. **Table S2.** Susceptibility pattern of transformsants and transconjugants carrying blaNDM-1 IPM: Imipenem, ETP: Ertapenem, MEM: Meropenem, FEP: Cefepime, ATM: Aztreonam, GEN: Gentamicin, AMK: Amikacin, CIP: Ciprofloxacin, TIZP: Piperacillintazobactum, PMB: Polymixin B TF (transfomants) = recipient E. coli DH5α carrying plasmid encoding blaNDM-1, TC (transconjugants) = recipient E. coli strain B strain carrying plasmid encoding blaNDM-1. (DOC 139 kb)
Abbreviation

\(\text{blaNDM-1}\): New-Delhi metallo-\(\beta\)-lactamase; cDNA: Complementary deoxyribonucleic acid; CLSI: Clinical laboratory standard institute; C\(_\text{r}\): Threshold cycle; DHA: Deoxyribonucleic acid; Inc type: Incompatibility type; LB: Luria bertani; MIC: Minimum inhibitory concentration; OD: Optical density; PCR: Polymerase chain reaction; PFGE: Pulsed field gel electrophoresis; RNA: Ribonucleic acid

Acknowledgments

The authors sincerely acknowledge the financial support provided by Council of Scientific and Industrial Research (CSIR) to carry out the work.

Funding

Council of Scientific and Industrial Research (CSIR) Grant number 37(1632)/14/EMR-II and Deepjyoti Paul is a Senior Research Fellow in the Department of Microbiology, Assam University, Silchar and receives CSIR Senior Research Fellowship under the grant number 37(1632)/14/EMR-II.

Availability of data and materials

All the relevant data and information are presented in the manuscript.

Authors' contributions

DP Performed the experimental work, data collection & analysis and prepared the manuscript. AB Supervised the research work and participated in designing the study and drafting the manuscript. DB Analysis of the data. APM Participated in sample collection and part of experiments. DD & AC Participated in experiment designing and manuscript correction. All authors read and approved the final manuscript.

Competing interests

The authors have declared that no competing interests exist.

Consent for publication

All the authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

The work was approved by Institutional Ethical committee of Assam University, Silchar vide Reference Number: IEC/AUS/C/2014-001. The authors confirm that all the participants provided their written informed consent to participate in this study.

Author details

1Department of Microbiology, Assam University, Silchar, India. 2Department of Statistics, Assam University, Silchar, India. 3Department of Microbiology, Silchar Medical College and Hospital, Silchar, India.

Received: 6 October 2016 Accepted: 16 February 2017

Published online: 20 February 2017

References

1. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K. Characterization of a New Metallo-\(\beta\)-Lactamase Gene, \(\text{blaNDM-1}\), and a Novel Esrthymocycin Esterase Gene Carried on a Unique Genetic Structure in \(\text{Klebsiella pneumoniae}\) Sequence Type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.

2. Mishra S, Sen MR, Upadhyay S, Bhattacharjee A. Genetic linkage of \(\text{blaNDM-1}\) among nosocomial isolates of \(\text{Acinetobacter baumannii}\) from a tertiary referral hospital in northern India. Int J Antimicrob Agents. 2013;41:452–6.

3. Pagano M, Poirot L, Martins AF, Rozales FP, Zavascki AP, Barth AL, et al. Emergence of NDM-1-producing \(\text{Acinetobacter pittii}\) in Brazil. doi:10.1016/j.ijantimicag.2014.12.011.

4. Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol. 2008;153:5347–57.

5. Toloman MA, Spencer J, Jones L, Walsh TR. \(\text{blaNDM-1}\): is a chimera likely constructed in \(\text{Acinetobacter baumannii}\). Antimicrob Agents Chemother. 2015;60:2773–6.

6. Wain AI, Paterson DL, Kennedy K, Ingram PR, Burkle E, Sidjabat HE. Genomic characteristics of NDM-producing Enterobacteriaceae isolates in Australia and their \(\text{blaNDM-1}\) genetic contexts. Antimicrob Agents Chemother. 2016;60:136–41.

7. Johnson AP, Woodford N. Global spread of antibiotic resistance: the example of New Delhi metallo-\(\beta\)-lactamase (NDM) mediated carbapenem resistance. J Med Microbiol. 2013;62:499–13.

8. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010. doi:10.1016/S1473-3099(10)70143-2.

9. Kumari S, Sen MR, Upadhyay S, Bhattacharjee A. Dissemination of the New Delhi metallo-\(\beta\)-lactamase-I (NDM-1) among enterobacteriaceae in a tertiary referral hospital in north India. J Antimicrob Chemother. 2011. doi:10.1093/jac/dk1180.

10. Kumar M, Dutta R, Saxena S, Singhial S. Risk factor analysis in clinical isolates of ESB and MBL (including NDM-1) producing \(\text{Escherichia coli}\) and \(\text{Klebsiella}\) species in a tertiary care hospital. J Clin Diagn Res. 2015;9:8–13.

11. Paul D, Bhattacharjee A, Angti B, Choudhury NA, Maunya AP, Dhar D, et al. Occurrence of \(\text{blaNDM-1}\) within IncX3-type plasmid of \(\text{Escherichia coli}\) from India. J Infecrnc. 2016. http://dx.doi.org/10.1111/jiac.2016.12009.

12. Ranjan A, Shaik S, Mondal A, Nandanwar N, Hussain A, Semmler T, et al. Molecular epidemiology and genome dynamics of New Delhi metallo-\(\beta\)-lactamase producing extraintestinal pathogenic \(\text{Escherichia coli}\) strains from India. Antimicrob Agents Chemother. 2016;60:795–805.

13. Datta S, Roy S, Chattjeee S, Saha A, Sen B, Pal T et al. A five-year experience of carbapenem resistance in enterobacteriaceae causing neonatal septicemia: predominance of NDM-1. PLoS ONE. 2010;10(9):e0134079.

14. Hussein A, Ranjan A, Nandanwar N, Babbar B, Jadhav S, Ahmed N. Genotypic and phenotypic profiles of \(\text{Escherichia coli}\) isolates belonging to clinical sequence type 131 (ST131), clinical non-ST131, and fecal non-ST131 lineages from India. Antimicrob Agents Chemother. 2014;58:2740–9.

15. Paul D, Maunya AP, Chanda DD, Sharma GD, Chakravarty A, Bhattacharjee A. Carriage of \(\text{blaNDM-1}\), in \(\text{Pseudomonas aeruginosa}\) through multiple Inc type plasmids in a tertiary referral hospital of northeast India. Indian J Med Res. 2016;143:826–9.

16. Li T, Wang Q, Chen F, Li X, Luo S, Fang H, et al. Biochemical characteristics of New Delhi Metallo-\(\beta\)-Lactamase-1 show unexpected difference to other MBLs. PLoS ONE. 2013;8(4):e019141. doi:10.1371/journal.pone.0019141.

17. Wailan AM, Paterson DL, Kennedy K, Ingram PR, Bursle E, Sidjabat HE. Molecular epidemiology and genome dynamics of New Delhi metallo-\(\beta\)-lactamase producing extraintestinal pathogenic \(\text{Escherichia coli}\) strains from India. Antimicrob Agents Chemother. 2016;60:795–805.

18. Paul D, Maunya AP, Chanda DD, Sharma GD, Chakravarty A, Bhattacharjee A. Carriage of \(\text{blaNDM-1}\), in \(\text{Pseudomonas aeruginosa}\) through multiple Inc type plasmids in a tertiary referral hospital of northeast India. J Antimicrob Chemother. 2016;61:235–40.

19. Swick MC, Morgan-Linnell SK, Carlson KM, Zechiedrich L. Expression of multidrug efflux pump genes acrAB-tolC, mdrA and norF in \(\text{Escherichia coli}\) clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob Agents Chemother. 2011;55:921–4.

20. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–31.

21. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbial Methods. 2005;63:219–28.

22. Johnson TJ, Belak EM, Fortini D, Hansen LH, Haasman H, Deboy C, Nolan LK, et al. Expansion of the IncX3 plasmid family for improved identification and typing of novel plasmids in drug resistant enterobacteriaceae. Plasmid. 2012;68:43–50.

23. Locke JB, Rahawi S, LaMarre J, Mankin LS, Shawa KJ. Genetic Environment and Stability of \(\text{chi}\) in Methylcillin-resistant \(\text{Staphylococcus aureus}\) CM05. Antimicrob Agents Chemother. 2012;56:332–40.

24. Institute CLS. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. M100-S21 CLSI. CLS: Wayne, USA; 2011.

25. Tato M, Coque TM, Ruiz-Garbajosa P, Pintado V, Cobo J, Sader HS, et al. Complex clonal and plasmid epidemiology in the first outbreak of enterobacteriaceae infection involving VIM-1 metallo-\(\beta\)-lactamase in Spain: toward endemicity? Clin Infect Dis. 2007;45:1171–8.
26. Cornaglia G, Giannarelli H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams. Lancet Infect Dis. 2011;11:381–93.
27. Romero D, Trahar MF, Lopez D, Kolter R. Antibiotics as signal molecules. Chem Rev. 2011;111:5492–505.
28. Liu W, Zou D, Wang X, Li X, Zhu L, Yin Z, et al. Proteomic analysis of clinical isolate of Stenotrophomonas maltophilia with blaNDM-1, blaK, and blaL β-lactamase genes under imipenem treatment. J Proteome Res. 2012;11:4024–33.
29. Huang TW, Chen TL, Chen YT, Lauderdale TL, Liao TL, Lee YT, et al. Copy number change of the NDM-1 sequence in a multidrug resistant Klebsiella pneumoniae clinical isolate. Plos One. 2013;8:1–12.