Learning First-Order Symbolic Planning Representations That Are Grounded

Andrés Occhipinti,1 Blai Bonet,1 Hector Geffner1,2,3
1 Universitat Pompeu Fabra, Barcelona, Spain
2 Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
3 Linköping University, Linköping, Sweden

\texttt{andres.occhipinti@upf.edu, bonetblai@gmail.com, hector.geffner@upf.edu}

Abstract

Two main approaches have been developed for learning first-order planning (action) models from unstructured data: combinatorial approaches that yield crisp action schemas from the structure of the state space, and deep learning approaches that produce action schemas from states represented by images. A benefit of the former approach is that the learned action schemas are similar to those that can be written by hand; a benefit of the latter is that the learned representations (predicates) are grounded on the images, and as a result, new instances can be given in terms of images. In this work, we develop a new formulation for learning crisp first-order planning models that are grounded on \textit{parsed images}, a step to combine the benefits of the two approaches. Parsed images are assumed to be given in a simple O2D language (objects in 2D) that involves a small number of unary and binary predicates like ‘left’, ‘above’, ‘shape’, etc. After learning, new planning instances can be given in terms of pairs of parsed images, one for the initial situation and the other for the goal. Learning and planning experiments are reported for several domains including Blocks, Sokoban, IPC Grid, and Hanoi.

Introduction

One of the key open problems in AI is how to combine learning and reasoning, in particular when the learning data is not structured for reasoning. In planning, there are effective reasoning mechanisms for planning but they rely on models comprised of predicates and action schemas which are usually provided by hand. A number of proposals have been advanced for learning and refining these models, but most assume that the domain predicates are known (Yang, Wu, and Jiang 2007; Zhuo et al. 2010; Mourao et al. 2012; Zhuo and Kambhampati 2013; Aineto, Celorrio, and Onaindia 2019; Lamanna et al. 2021). The problem of learning the domain predicates and the action schemas at the same time is more challenging. A clever approach for addressing this problem given sequences of grounded actions was developed in the LOCM system (Cresswell, McCluskey, and West 2013; Gregory and Lindsay 2016), although the approach is heuristic and incomplete. Two recent formulations have addressed the problem more systematically and without assuming that action arguments are observable. One is a combinatorial approach that yields crisp action schemas from the structure of the state space (Bonet and Geffner 2020; Rodriguez et al. 2021); the other is a deep learning approach that produces action schemas from states represented by images (Asai 2019). A benefit of the combinatorial approach is that it accommodates and exploits a natural inductive bias where fewer, simpler action schemas and predicates are preferred; a bias that results in learned action schemas that are similar to those that can be written by hand. A benefit of deep learning approaches is that the learned representations (predicates) are grounded on the images, and as a result, new instances can be given in terms of them.

The aim of this work is to develop a new formulation for learning crisp first-order planning models that are grounded on \textit{parsed images}, a step to combine the benefits of the combinatorial and deep learning approaches. Parsed images are assumed to be given in a simple O2D language, for “objects in 2D”, that involves a small number of unary and binary “visual” predicates like ‘left’, ‘above’, ‘shape’, etc. The learning problem becomes the problem of learning the lifted domain (action schemas and domain predicates) along with the \textit{grounding} of the learned domain predicates so that they can be evaluated on any parsed image.1 A number of vision modules can be used to map images into the parsed representations (Redmon et al. 2016; Redmon and Farhadi 2017; Locatello et al. 2020), but this is outside the scope of this work. After learning, new planning instances can be given in terms of pairs of parsed images, one corresponding to the initial situation and the other to the goal, and such instances can be solved with any off-the-shelf planner and may involve many more objects than those used in training. Learning and planning results for several domains are reported, including Blocks, Towers of Hanoi, the \textit{n-sliding-puzzle}, IPC Grid, and Sokoban.

The paper is organized as follows. We discuss related work, review the basics of classical planning, and introduce the O2D language and the learning formulation. An implementation of the learning formulation as an answer set program is then sketched (full details in the appendix), and experimental results are presented and analyzed.

1Grounding a predicate (symbol) means to provide a semantics for it in the form of a denotation function, and should not be confused with grounding of the action schemas. For the problem of grounding symbols in the “real world”, see Harnad [1990].
Related Work

Most works on learning action schemas from traces assume that the domain predicates are known (Yang, Wu, and Jiang 2007; Walsh and Littman 2008; Zhuo et al. 2010; Mourao et al. 2012; Zhuo and Kambhampati 2013; Stern and Juba 2017; Aitene, Celorio, and Onaindia 2019; Lamanna et al. 2021). The problem of learning the action schemas and the predicates at the same time is more challenging as the structure of the states is not available at all. The LOCM systems (Cresswell, McCluskey, and West 2013; Cresswell and Gregory 2011; Gregory and Lindsay 2016; Lindsay 2021) addressed this problem assuming input traces that feature sequences of ground actions. The inference of action schemas and predicates follows a number of heuristic rules that manage to learn challenging planning domains but whose soundness and completeness properties have not been studied. A general formulation of the learning problem from complete input traces that feature just action names and black-box states is given by Bonet and Geffner [2020], and extensions for dealing with incomplete and noisy traces by Rodriguez et al. [2021] (see also Verma, Marpally, and Srivastava [2021]). An alternative, deep learning approach for learning action schemas and predicates from states represented by images is advanced by Asai [2019]. The advantages of a deep learning approach based on images are several: it does not face the scalability bottleneck of combinatorial approaches, it is robust to noise, and it yields representations grounded in the images. The limitation is that the learned planning domains tend to be complex and opaque. For example, Asai reports 518,400 actions for a Blocks-world instance with 3 blocks. Some recent approaches learn more compact, rule-based representations from images without resorting to deep learning. One such approach is that of (Xie et al. 2022) in which so-called visual rewrite rules are learned, which are action-dependent graphical rules that describe action effects as local visual changes around the agent. Methods for learning propositional planning representations that are grounded have also been proposed (Konidaris, Kaelbling, and Lozano-Perez 2018; Asai and Fukunaga 2018; Asai and Muise 2020) but they are bound to work in a single state space involving a fixed set of objects.

Classical Planning

A (classical) planning instance is a pair \(P = (D, I) \) where \(D \) is a first-order planning domain and \(I \) represents instance information (Geffner and Bonet 2013; Ghallab, Nau, and Traverso 2016; Haslum et al. 2019). The planning domain \(D \) contains a set of predicates (predicate symbols) \(p \) and a set of action schemas with preconditions and effects given by atoms \(p(x_1, \ldots, x_k) \) or their negations, where \(p \) is a domain predicate and each \(x_i \) is a variable representing one of the arguments of the action schema. The instance information is a tuple \(I = (O, Init, Goal) \) where \(O \) is a (finite) set of objects (object names) \(o_i \), and \(Init \) and \(Goal \) are sets of ground atoms \(p(o_1, \ldots, o_k) \) or their negations, with \(Init \) being consistent and complete; i.e., for each ground atom \(p(o_1, \ldots, o_k) \), either the atom or its negation is (true) in \(Init \). The set of all ground atoms in \(P = (D, I) \), \(At(P) \), is given by all the atoms that can be formed from the predicates in \(D \) and the objects in \(I \), while the set of ground actions \(A(P) \) is given by the action schemas with their arguments replaced by objects in \(P \). A state \(s \) over \(P \) is a maximally consistent set of ground literals representing a truth valuation over the atoms in \(At(P) \), and a ground action \(a \in A(P) \) is applicable in \(s \), written \(a \in A(s) \) when its preconditions are (true) in \(s \). A state \(s' \) is the successor of ground action \(a \) in state \(s \), written \(s' = f(a, s) \) for \(a \in s \) if the effects of \(a \) are true in \(s' \) and the truth of atoms not affected by \(a \) is the same in \(s \) and \(s' \). Finally, an action sequence \(a_0, \ldots, a_n \) is a plan for \(P \) if there is a state sequence \(s_0, \ldots, s_{n+1} \) such that \(s_0 \) satisfies \(Init \), \(s_{n+1} \) satisfies \(Goal \), and \(a_i \in A(s_i) \), and \(s_{i+1} = f(a_i, s_i) \).

Language of Parsed Images: O2D

Object-recognition vision systems typically map images into object-tuples of the form \(\{ (type(c), loc(c), bb(c), att(c)) \} \), that encode the different objects \(c \) in the scene, their type or class, their location and bounding box coordinates, and some visual attributes like color or shape (Redmon et al. 2016; Redmon and Farhadi 2017; Locatello et al. 2020). We use a similar encoding of scenes but rather than representing the exact locations of objects, spatial relations are represented qualitatively (Cohn and Renz 2008). More precisely, a scene is represented by a set of ground atoms over a language that we call O2D for Objects in 2D space. O2D is a first-order language with signature \(\Sigma = (C, U, R) \) where \(C \) stands for a set of constant symbols representing objects and shapes, \(U \) stands for a set of unary predicates, and \(R \) stands for a set of binary predicates. The unary predicates in \(U \) stand for visually different object types and characteristics, while the binary predicates are \(R = \{ left, below, overlap, smaller, shape \} \), representing if one object is right to the left of or right below another object, if two objects overlap, if one object is smaller than another, and the shape of an object; see Figure 1.

A scene is represented in O2D as a set of ground atoms over the symbols in \(\Sigma = (C, U, R) \). We refer to scene representations in O2D as O2D states. Scenes and their corresponding O2D states for Blocks-world, Tower-of-Hanoi, and Sokoban are shown in Figure 2, with renderings obtained with PDDLGym (Silver and Chitnis 2020).

Groundings

A grounded predicate \(q \) is a predicate that can be evaluated in any O2D state \(s \); i.e., if \(o \) is a tuple of objects in \(s \) of the same arity as \(q \), then \(q(o) \) is known to be true or to be false in \(s \).

Figure 1: Depiction of the five binary relations in O2D.
The predicates p appearing in a planning domain D are grounded by assuming a pool \mathcal{P} of grounded predicates and a grounding function σ that maps the domain predicates to a pool of ground predicates $q = \sigma(p)$ in the pool with the same arity as p. The result is a grounded domain.

Definition 1 (Grounded Domain). A grounded domain over a pool of grounded predicates \mathcal{P} is a pair (D, σ) where D is a planning domain and σ is a function that maps each predicate p in D into a predicate $q = \sigma(p)$ in \mathcal{P}.

The truth value of an atom $p(o)$ in a scene s is the value of the atom $q(o)$ when q is the grounding of p: i.e., when $\sigma(p) = q$. The way in which the pool of grounded predicates \mathcal{P} is constructed is similar in the way in which a pool of unary predicates is defined by Bonet, Frances, and Geffner [2019] for generating Boolean and numerical features: there is a set of *primitive predicates* and a set of description logic grammar rules (Baader, Horrocks, and Sattler 2008) for defining new compound predicates from them.

The differences are that \mathcal{P} contains nullary and binary predicates as well, and that the primitive predicates are not the domain predicates, that are to be learned, but the O2D predicates that are known and grounded. The denotation of the predicates defined by a grammar rule is determined by the semantics of the rule and the denotation of predicates appearing in the right hand side. The actual description logic (DL) grammar considered for unary predicates (concepts) is

$\mathcal{C} \leftarrow U \mid T \mid \bot \mid 3R.C \mid C \sqcap C'$

meaning that unary O2D predicates (U), the universal true/false predicates, existential restrictions, and intersections (conjunctions) are all unary predicates. The rules for binary predicates (roles) are:

$\mathcal{R} \leftarrow \mathcal{R} \mid \mathcal{R}^{-1} \mid \mathcal{R} \circ \mathcal{R}'$

meaning that binary O2D predicates (R_0), inverses, and role compositions are binary predicates. Finally, nullary predicates are obtained from unary predicates \mathcal{C} and \mathcal{C}' as $C \subseteq C'$, an expression that is true in states where the extension of C is a subset of the extension of C'.

The set of predicates of complexity no greater than i is denoted as \mathcal{P}_i, where the complexity of top and bottom is 0, the complexity of the O2D predicates is 1, and the complexity of derived predicates is 1 plus the sum of the complexities of the predicate involved in the rule. For a given pool of O2D states, the sequent $\mathcal{P}_0, \ldots, \mathcal{P}_m$ is constructed iteratively, pruning duplicate predicates (predicates with the same denotation).

The pool \mathcal{P} is \mathcal{P}_m for some bound $m > 0$.

Example. In Blocks, the atom `clear(b)` is true when no block is above b (not `some_above(b)`), and b is not held by the robot (not `holding(b)`). Given the O2D representation of Blocks in Fig. 2, `some_above` and `holding` can be grounded to the derived O2D predicates $\sigma(\text{some_above}) = \exists \text{below}. \text{block}$ and $\sigma(\text{holding}) = \exists \text{overlap}. \text{robot}$, both of complexity 2.

Learning: Formulation

The training data \mathcal{D} for learning grounded domains is $\mathcal{D} = \langle \mathcal{T}, \mathcal{S}, L, F \rangle$, where \mathcal{T} and \mathcal{S} are sets of O2D states (scene representations) over one or more instances, $\mathcal{T} \subseteq \mathcal{S}$; L is a set of action labels α (schema names), and $F_\alpha(s)$ is the multiset of O2D states s' that follow s in \mathcal{T} when an action with label $\alpha \in L$ is performed.

Such states s' are part of \mathcal{S} but not necessarily of \mathcal{T} that is a subset of \mathcal{S}. In the formulation of Bonet and Geffner [2020], the states in the data are black-boxes, not O2D states, and $\mathcal{T} = \mathcal{S}$.

The grounded domain (D, σ) to be learned from this input contains one action schema per action label α, and determines a function $h = h_\alpha^{\mathcal{D}}$ that maps arbitrary O2D states s into planning states $h(s)$ over D with the same set of objects. More precisely, $h(s)$ is the truth valuation over the atoms $p(o)$, where p is a predicate in D and o is a tuple of objects from s of the same arity as p, given by set of literals:

$h(s) \equiv \{ p(o) \mid q(o) = 1, \sigma(p) = q, p \text{ in } D, o \text{ in } s \} \cup \{ \neg p(o) \mid q(o) = 0, \sigma(p) = q, p \text{ in } D, o \text{ in } s \}$

which has positive literals $p(o)$ for $\sigma(p) = q$ and $q(o)$ true in s, and negative literals $\neg p(o)$ for $\sigma(p) = q$ and $q(o)$ false in s.

For action schema α in D, and planning state \bar{s}, let $F_\alpha^{D}(\bar{s})$ represent the multiset formed by the states s' that follow \bar{s} after ground instantiations of the schema α in \bar{s}; i.e.,

$F_\alpha^{D}(\bar{s}) \equiv \{ s' \mid s' = f(a, \bar{s}), a \in A(\bar{s}), \text{label}(a) = \alpha \}$

where $A(\bar{s})$ is the set of ground instantiations of schema α over the objects in \bar{s} that are applicable in \bar{s}, and f is the state-transition function determined by D for the ground action a in state \bar{s}. The learning task can be formally defined as follows:

Definition 2 (Learning Task). Let $\mathcal{D} = \langle \mathcal{T}, \mathcal{S}, L, F \rangle$ be the input data, and let \mathcal{P} be a pool of grounded predicates. The learning task $L(D, \mathcal{P})$ is to obtain a (simplest) grounded
domain \(\langle D, \sigma \rangle\) with one action schema per label \(\alpha\) in \(L\) such that the resulting abstraction function \(h = h^D_\alpha\) complies with the following two constraints:

1. If \(s \neq s'\), then \(h(s) \neq h(s')\), for \(s, s' \in T\); and
2. \(\big\{ h(s') \mid s' \in F_\alpha(s) \big\} \) for \(s \in T, \alpha \in L\).

The first constraint says that the abstract (planning) states for different O2D states in \(T\) must be different, while C2 says that the abstraction function \(h\) must represent an isomorphism. Indeed, if \(G_D\) is the data graph with vertex set \(S\) and edges \((s, \alpha, s')\) for \(s \in T, s' \in F_\alpha(s)\) and \(\alpha \in L\), and \(G_h\) is the planning graph with vertex set \(V_h\) equal to the planning states reachable from \(\{ h(s) \mid s \in S\} \) and edges \((s', \alpha, s)\) for \(s \in V_h, \alpha \in A(s), label(\alpha) = \alpha, \) and \(s' \in F^D_\alpha(s)\), then:

Theorem 3. If \(\langle D, \sigma \rangle\) is a solution of the learning task \(L(D, \mathcal{P})\) and \(T = S\), the data and planning graphs \(G_D\) and \(G_h\) for \(h = h^D_\alpha\) are isomorphic.

The complexity of a domain \(D\) is defined by a lexicographic cost function that considers, in order, the arity of the action schemas, the sum of the arities for non-static predicates, the same sum for static predicates, the number of effects, and the number of preconditions. The first three criteria are from Rodriguez et al. [2021]. The complexity of a grounded domain \(\langle D, \sigma \rangle\) is the complexity of \(D\), and a grounded domain is simplest when it has minimal complexity. The optimal solutions of the learning task \(L(D, \mathcal{P})\) in Definition 2 are the simplest grounded domains that satisfy constraints C1 and C2.

Given a grounded domain \(\langle D, \sigma \rangle\), any pair of O2D states \(s_0\) and \(s_g\) defines a classical planning problem \(P = \langle D, I\rangle\) where \(I = \langle O, Init, Goal\rangle\) is such that the objects in \(O\) are the ones in \(s_0\) and \(s_g\), \(Init = h(s_0)\), and \(Goal = h(s_g)\).

Properties and Scope

Some assumptions in the formulation are 1) actions that change the planning state must change the O2D state (cf. C1), 2) the objects in the planning instances are the ones appearing in the O2D states, and 3) the target language for learning is lifted STRIPS with negation. These assumptions have concrete implications; e.g., in Sokoban, the cells in the grid must appear as O2D objects, else assumption 1 is violated. Likewise, in Sliding Tile, the tiles suffice for distinguishing O2D states, but cells as objects are needed in STRIPS.

The completeness of the approach can be characterized in terms of a “hidden” domain \(D\). Namely, if the O2D states \(s\) are mere “visualizations” of planning states \(\bar{s}\) over \(D\), and there is a function \(h = h^D_\alpha\) given the pool of predicates \(\mathcal{P}\) that allows us to recover the planning states \(\bar{s}\) from their visualizations, then the grounded domain \(\langle D, \sigma \rangle\) is a solution of the learning task \(L(D, \mathcal{P})\):
The data generated from the planning instances is used incrementally for computing an optimal solution \(\langle D_i, \sigma_i \rangle\) of the learning task \(L(D_i, P)\), \(i = 0, \ldots, n\). \(D_0\) and \(D_0\) are empty, and \(D_{i+1}\) is equal to \(D_i\), when the solution obtained from \((D_i, P)\) verifies (generalizes) over all the data in \(D\) (satisfies constraints \(C1\) and \(C2\) in Definition 2). When not, \(D_{i+1}\) extends \(D_i\) with a set \(\Delta\) of O2D states obtained from the first \(P_k\) instance where the verification fails. If constraint \(C1\) is violated for a pair of states \(\{g(s), g(s')\}\), \(\Delta\) is set to the pair. Else, if \(C2\) is violated for some states \(g(s)\) and label \(\alpha\), \(\Delta\) collects up to the first 10 such states. The set \(\Delta\) extends \(D_i = \langle T_i, S_i, L_i, F_i \rangle\) into \(D_{i+1}\) as follows, where \(\alpha \in D\) stands for the known action labels (schema names), and \(L_{i+1}\) is the set of all such labels for all \(i > 0\):

- \(T_{i+1} = T_i \cup \Delta\),
- \(S_{i+1} = S_i \cup \Delta \cup \bigcup_{\alpha \in D} \{ F_\alpha(g(s)) \mid g(s) \in \Delta, \alpha \in D \}\),
- \(F_{\alpha}^{i+1} = F_{\alpha}^i \cup \{ g(s), F_\alpha(g(s)) \mid g(s) \in \Delta, \alpha \in D \}\).

Results.

Table 2 shows the results of the incremental learner given the pool of data in Table 1.

For each domain, the columns show the number of iterations until an optimal model that verifies over all the instances in the data pool is found, the number of instances and states in the final set \(T\) constructed from the data pool, and the times in seconds for solving and grounding the ASP programs, for verification, and total time.

The learning task \(L(D, P)\) for all domains admit solution with the pool \(P = P_m\) for \(m = 2\), except for IPC Grid and Blocks4ops where no solution exists for \(m = 3\) and require a bound \(m = 4\). In both cases, however, the solver takes less than 20 seconds in total to report lack of solutions for the bounds \(m = 2\) and \(m = 3\).

Some of the domains have been considered before, like Blocks3ops and Hanoi1op (Bonet and Geffner 2020; Rodriguez et al. 2021), but others, like IPC Grid and Sokoban are more challenging. The final model for IPC Grid involves 10 action schemas (6 of arity 2 and 4 of arity 3), while the one for Sokoban involves 8 action schemas (4 of arity 2 and 4 of arity 4). The max number of objects that ended up being used during training was 8 for IPC Grid and 21 for Sokoban.

Learned Representations

In the experiments, data obtained from hidden planning instances was used for generating the training data. The original and learned domains, referred to as \(D_O\) and \(D_L\), must agree on the number and name of the action schemas, but not in their arities or in the predicates involved. Table 3 compares \(D_O\) and \(D_L\) along dimensions reflected in the optimization criterion, and Fig. 3 shows learned schemas for IPC Grid and Sokoban. In general, the learned domains are not equal to the hidden domains, but they are close and equally meaningful and interpretable.

Note:

4 Data and code will be made available.
Table 3: Comparison of original, hidden domains used to generate the data (\(D_O\)) and learned domains (\(D_L\)). The columns show action arities, number of dynamic and static predicates (#pred), and number of constants in \(D_L\) (#c). E.g., \(D_O\) for Blocks4ops has 2 actions of arity 1 (Pickup and Putdown), 2 actions of arity 2 (Stack and Unstack), 5 dynamic predicates (ontable, on, holding, clear, and armempty), and no static predicates. The learned grounded domains for both Sokoban benchmarks are equal; only one is shown.

Domain	Original domain \(D_O\)	Learned domain \(D_L\)
	action arities #pred.	action arities #pred.
Blocks3ops	(2 of 2, 3) (3, 1)	(2 of 2, 3) (2, 0)
Blocks4ops	(2 of 1, 2 of 2) (5, 0)	(2 of 1, 2 of 2) (3, 0)
Hanoi10p	(1 of 3) (2, 3)	(1 of 3) (2, 1)
Hanoi4ops	(4 of 3) (2, 3)	(4 of 3) (2, 2)
Sliding Tile	(4 of 3) (4, 2)	(4 of 3) (2, 2)
IPC Grid	(6 of 2, 4 of 4) (6, 7)	(6 of 2, 4 of 3) (4, 4)
Sokoban	(4 of 3, 4 of 5) (2, 4)	(4 of 2, 4 of 4) (2, 2)

Figure 3: Two learned action schemas for Grid (top) and Sokoban (bottom). Predicates names our own; see text for their grounding.

The groundings obtained for the predicates of the different domains are interesting as well (predicates names are our own). For example, Sokoban uses ‘\(\text{nempty}\)(c)’ atoms that hold when cell \(c\) has either a crate or the sokoban, and ‘\(\text{at}(x, y)\)’ atoms that hold when object \(x\) is at \(y\); the first is grounded on the derived O2D predicate ‘\(\forall \text{overlap} \cdot T\)’ of complexity 2, and the second as ‘\(\text{overlap} \cdot T\)’ of complexity 1. More complex groundings are obtained in IPC Grid. For example, the following groundings have all complexity 4: the nullary ‘\(\text{armempty}\)’ predicate that holds when the robot holds no key, is grounded on the derived O2D predicate ‘\(\text{key} \subseteq \exists \text{overlap} \cdot T\)’ (i.e., all keys are in cells); the unary predicate ‘\(\text{somecell}()\)’ that holds for a key \(k\) if \(k\) is in some cell, is grounded on ‘\(\text{key} \cap \exists \text{overlap} \cdot T\)’, and the binary predicate ‘\(\text{match}(\cdot, \cdot)\)’ that holds when key \(k\) has the shape of the lock at cell \(c\) is grounded on ‘\(\text{shape} \circ \text{shape}^{-1}\)’ (a binary relation that holds for two objects of the same shape).

Planning with Learned Grounded Domains

The computational value of learning grounded domains \(\langle D, \sigma \rangle\) can be illustrated by using them to solve new instances \(P = \langle D, I \rangle\) expressed in terms of pairs of O2D states, \(s_0\) and \(s_g\), for the initial and goal situations encoded as \(h(s_0)\) and \(h(s_g)\) for \(h = h^D\). The new instances may involve sets of objects \(O\) that are much larger than those used in training. The resulting instances are standard and can be solved with any off-the-shelf planner.

A plan \(\pi = \langle a_0, \ldots, a_n \rangle\) that solves such an instance \(P\) can be used to compute the corresponding sequence of O2D states \(s_0, s_1, \ldots, s_{n+1}\) with \(s_G = s_{n+1}\), as follows. If \(s_0, s_1, s_{n+1}\) are the planning states visited by \(\pi\) with \(s_0 = h(s_0)\), and the label of \(a_0\) is \(\alpha_0\), \(s_1\) is the possible \(\alpha\)-successor of \(s_0\) such that \(h(s_1) = \bar{s}_1\). The successors \(s_2, \ldots, s_{n+1}\) are selected in the same way. 5 This method of “applying” the plans obtained from the learned grounded domain provides an extra verification: if there is no \(\alpha\)-successor \(s_{n+1}\) with \(h(s_{n+1}) = \bar{s}_{n+1}\) or \(s_{n+1} \neq s_g\), the learned domain or its grounding is not generalizing to the new instance. The fact that this does not happen in the experiments below is thus additional evidence that the learned grounded domains are correct.6

Figure 4 depicts the initial and goal O2D states for a large Sokoban instance. Optimal plans of length 156 are found using the original “hidden” domain \(D_O\) and the learned grounded domain \(D_L\).

5The method assumes a simulator that given an O2D state \(s\) produces the possible \(\alpha\)-successors of \(s\). In the experiments, the simulator is determined by a "hidden" domain and the function \(g(\cdot)\) that maps planning states into O2D states, but a different one could be used potentially where the O2D states are obtained from images.

6Equivalence can also be proved formally.
in three large instances of Sokoban and of Blocks4ops using an optimal planner that runs A* with the LM-cut heuristic (Helmert and Domshlak 2009). For the Sokoban instance shown in Fig. 4, an optimal plan of length 156 was found in 27 seconds for P and in 54 seconds for P'. For two other instances, optimal plans of lengths 134 and 135 were found in 65 and 849 seconds for P, and in 130 and 1,520 seconds for P'. Similar results were obtained for the Blocks4ops instances.

Summary

We have introduced a formulation for learning crisp and meaningful first-order planning domains from parsed visual representations that are not far from those produced by object detection modules. For this, the formulation for learning domains (action schemas and predicates) from the structure of the state space (Bonet and Geffner 2020; Rodriguez et al. 2021) was taken to a new setting where the traces do not have to be complete and the states observed are not black boxes but parsed images in O2D. Two results are that the learned planning representations are grounded in O2D states, and hence new problems can be given in terms of pairs of O2D states representing the initial and goal situations, and that the learning scheme scales up better than previous ones, enabling us to learn more challenging domains like the Sliding-tile puzzle, IPC Grid, and Sokoban. We have also run planning experiments using the learned domains and their grounding functions that illustrate that the learned domains can be used with off-the-shelf planners and are not too different than the domains that are written and grounded by hand.

References

Ainetò, D.; Celorio, S. J.; and Onaindia, E. 2019. Learning action models with minimal observability. *Artificial Intelligence*, 275: 104–137.

Alkhazrajì, Y.; Frorath, M.; Grützner, M.; Helmert, M.; Liebetrout, T.; Mattmüller, R.; Ortlièb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan. https://doi.org/10.5281/zenodo.3700819.

Asai, M. 2019. Unsupervised Grounding of Plannable First-Order Logic Representation from Images. In *Proc. ICAPS*.

Asai, M.; and Fukunaga, A. 2018. Classical planning in deep latent space: Bridging the subsymbolic-symbolic boundary. In *AAAI*.

Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Voyage Home (to STRIPS). In *Proc. IJCAI*.

Baader, F.; Horrocks, I.; and Sattler, U. 2008. *Handbook of Knowledge Representation*, chapter Description Logics. Elsevier.

Bonet, B.; Frances, G.; and Geffner, H. 2019. Learning features and abstract actions for computing generalized plans. In *Proc. AAAI*, 2703–2710.

Bonet, B.; and Geffner, H. 2020. Learning first-order symbolic representations for planning from the structure of the state space. In *Proc. ECAI*.

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer set programming at a glance. *Comm. ACM*, 54(12): 92–103.

Cohn, A. G.; and Renz, J. 2008. Qualitative spatial representation and reasoning. *Foundations of Artificial Intelligence*, 3: 551–596.

Cresswell, S. N.; and Gregory, P. 2011. Generalised domain model acquisition from action traces. In *Twenty-First International Conference on Automated Planning and Scheduling*.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013. Acquiring planning domain models using LOCM. *The Knowledge Engineering Review*, 28(2): 195–213.

Geber, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2012. Answer set solving in practice. *Synthesis lectures on artificial intelligence and machine learning*, 6(3): 1–238.

Geber, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T. 2019. Multi-shot ASP solving with clingo. *Theory and Practice of Logic Programming*, 19(1): 27–82.

Geffner, H.; and Bonet, B. 2013. A Concise Introduction to Models and Methods for Automated Planning. Morgan & Claypool Publishers.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. *Automated Planning and Acting*. Cambridge U.P.

Gregory, P.; and Lindsay, A. 2016. Domain model acquisition in domains with action costs. In *Twenty-Sixth International Conference on Automated Planning and Scheduling*.

Harnad, S. 1990. The symbol grounding problem. *Physica D: Nonlinear Phenomena*, 42(1-3): 335–346.

Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C. 2019. An Introduction to the Planning Domain Definition Language. Morgan & Claypool.

Helmert, M.; and Domshlak, C. 2009. Landmarks, critical paths and abstractions: What’s the difference anyway. In *Proc. International Conference on Automated Planning and Scheduling*, volume 9, 162–169.

Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018. From skills to symbols: Learning symbolic representations for abstract high-level planning. *Journal of Artificial Intelligence Research*, 61: 215–289.

Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and Traverso, P. 2021. Online Learning of Action Models for PDPL Planning. In *Proc. IJCAI*, 19–27.

Lifschitz, V. 2019. *Answer set programming*. Springer.

Lindsay, A. 2021. Reuniting the LOCM Family: An Alternative Method for Identifying Static Relationships. In *ICAPS 2021 KEPS Workshop*.

Locatello, F.; Weissenborn, D.; Unterthiner, T.; Mahendran, A.; Heigold, G.; Uszkoreit, J.; Dosovitskiy, A.; and Kipf, T. 2020. Object-centric learning with slot attention. *NeurIPS*.

Mourao, K.; Zettlemoyer, L.; Petrick, R.; and Steedman, M. 2012. Learning STRIPS Operators from Noisy and Incomplete Observations. In *Proc. UAI*, 614–623.

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 779–788.
Redmon, J.; and Farhadi, A. 2017. YOLO9000: better, faster, stronger. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, 7263–7271.

Rodriguez, I. D.; Bonet, B.; Romero, J.; and Geffner, H. 2021. Learning First-Order Representations for Planning from Black-Box States: New Results. In *KR*. ArXiv preprint arXiv:2105.10830.

Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym environments from PDDL problems. *arXiv preprint arXiv:2002.06432*.

Stern, R.; and Juba, B. 2017. Efficient, safe, and probably approximately complete learning of action models. In *Proceedings of the 26th International Joint Conference on Artificial Intelligence*, 4405–4411.

Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking the Right Questions: Learning Interpretable Action Models Through Query Answering. In *Proc. AAAI*, 12024–12033.

Walsh, T. J.; and Littman, M. L. 2008. Efficient learning of action schemas and web-service descriptions. In *AAAI*, volume 8, 714–719.

Xie, Y.; Li, M.; Yu, S.; and Littman, M. L. 2022. Online learning in non-cooperative configurable Markov decision process. In *AAAI-22 Workshop on Reinforcement Learning in Games*.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action models from plan examples using weighted MAX-SAT. *Artificial Intelligence*, 171(2-3): 107–143.

Zhuo, H. H.; and Kambhampati, S. 2013. Action-model acquisition from noisy plan traces. In *Proc. IJCAI*.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning complex action models with quantifiers and logical implications. *Artificial Intelligence*, 174(18): 1540–1569.

Appendix

This appendix contains the proofs of the theorems, further details about the data generation, a full description of the grounded domains learned, the full code of the learner (ASP program $T_\alpha(D,P)$), and additional details of the verifier and of the function $g(\cdot)$ used to generate the data from hidden planning domains.

Proofs

Let us recall the definition and theorem statements.

Definition 2 (Learning Task). Let $D = \langle T, S, A, F \rangle$ be the input data, and let P be a pool of grounded predicates. The **learning task** $L(D,P)$ is to obtain a (simplest) grounded domain $\langle D, \sigma \rangle$ with one action schema per label α in A such that the resulting abstraction function $h = h^P_D$ complies with the following two constraints:

- **C1.** If $s \neq s'$, then $h(s) \neq h(s')$, for $s, s' \in T$; and
- **C2.** $F^D_\alpha(h(s)) = \{ h(s') | s' \in F_\alpha(s) \}$ for $s \in T$, $\alpha \in A$.

For a given dataset $D = \langle T, S, L, F \rangle$, the data graph G_D has vertex set $V_D = S$ and labeled edges $E_D = \{(s, \alpha, s') | s \in S, s' \in F_\alpha(s), \alpha \in L \}$. On the other hand, for planning domain D and function h that maps states s in S into planning states \bar{s} in D, the planning graph has as vertex set V_h the set of reachable planning states from $\{h(s) | s \in S \}$, and as labeled edges E_h, the set $\{(s, \alpha, \bar{s}) | \bar{s} \in V_h, \alpha \in A(s), label(a) = \alpha, \bar{s} \in F^D_\alpha(s) \}$.

Theorem 3. If $\langle D, \sigma \rangle$ is a solution of the learning task $L(D,P)$ and $T = S$, the data and planning graphs G_D and G_h for $h = h^P_D$ are isomorphic.

Proof. We first show that the function h is a bijection from V_D onto V_h, and then show that the multisets of labeled edges are preserved by h.

By construction of D, the set of labels in both graphs are equal, and by constraint C1 in Def. 2, the function $h : V_D \rightarrow V_h$ is 1-1. To show that h is onto, we show $|V_h| \leq |V_D|$. For a proof by contradiction, suppose $|V_D| < |V_h|$. Then, either V_h contains a vertex not reachable from $\{h(s) | s \in S \}$, or there is a vertex \bar{s} in V_h and label α in L such that $|\{\bar{s} | \bar{s}' \in F_\alpha(s) \}| < |F^D_\alpha(h(s))|$. The first case is impossible by definition of G_h. In the second case, since $s' \in F_\alpha(s)$ implies $h(s') \in F^D_\alpha(h(s))$ (by constraint C2), then there is a state $s' \in S$ such that $s' \notin F_\alpha(s)$ and $h(s') \in F^D_\alpha(h(s))$, which also contradicts C2.

Finally, to show that h preserves edges, let s and s' be two states in S, and let α be an action label. If $(s, \alpha, s') \in G_D$, then $h(s'), h(s) \in F^D_\alpha(h(s))$ by C2. Likewise, if $(h(s), \alpha, h(s')) \in G_h$, then $s' \in F_\alpha(s)$ also by C2. Hence, h preserves edges and G_D and G_h are isomorphic.

Theorem 4. Let D be a (hidden) planning domain, let $D = \langle T, S, L, F \rangle$ be a dataset, and let g be a 1-1 function that maps planning states s into O2D states $g(s)$ such that $F_\alpha(g(s)) = \{ g(s') | s' \in F^D_\alpha(s) \}$ for $g(s) \in T$ and α in L. If there is a grounding function σ for the predicates in D over a pool P such that $h = h^P_D$ is the right inverse of g on T (i.e., $g(h(s)) = s$ for $s \in T$), then $\langle D, \sigma \rangle$ is a solution for the learning task $L(D,P)$.

Proof. We need to show that the grounded domain $\langle D, \sigma \rangle$ complies with the constraints C1 and C2 in Definition 2.

For C1, let s and s' be different states in T. If $h(s) = h(s')$, then $s = g(h(s)) = g(h(s')) = s'$ by the condition on g.

Let $s \in T$ be an O2D state, and let $\alpha \in L$ be an action label. First notice that for planning state s, $g(h(g(s))) = g(s)$ implies $h(g(s)) = s$ and thus h is a left inverse of g.

Then, $F^D_\alpha(h(s)) = \{ s' | s' \in F^D_\alpha(h(s)) \}$ (definition) $\Rightarrow \{ s' | g(s') \in F_\alpha(g(h(s))) \}$ (def. F_α in Thm) $\Rightarrow \{ s' | g(s') \in F_\alpha(s) \}$ (right inv.) $\Rightarrow \{ h(g(s')) | g(s') \in F_\alpha(s) \}$ (left inv.) $\Rightarrow \{ h(s') | s' \in F_\alpha(s) \}$ (def. F_α in Thm)

Therefore, constraint C2 is satisfied as well.
Data Generation: Details

Blocks3ops and Blocks4ops. Two encodings of the classical planning domain, where stackable blocks need to be re-assembled on a table by a robot. Instances are parametrized by the number \(n \) of blocks. The instances in the dataset have \(n = 1, \ldots, 5 \) blocks. Blocks3ops has 3 action labels (Stack, Newtower, and Move) while Blocks4ops has 4 (Pickup, Putdown, Unstack, and Stack). O2D states are defined based on the corresponding PDDLGym state images for this domain, as illustrated in Figure 2.

Hanoi1op and Hanoi4ops. Two encodings of the Tower of Hanoi problem with arbitrary number of pegs and disks. The datasets in both cases contain the instances for 3 pegs and \(n \) disks, \(n = 1, \ldots, 5 \). Hanoi1op involve a single action label Move while Hanoi4ops has 4 labels: MoveFromPegToPeg, MoveFromPegToDisk, MoveFromDiskToPeg, and MoveFromDiskToDisk.

Sliding Tile. The generalization of the 15-puzzle problem over rectangular grids of arbitrary dimensions, parametrized as \(r \times c \) where \(r \) and \(c \) are the number of rows and columns.

The dataset contains instances \(r \times c \) such that the number of cells \(r \cdot c \leq 6 \). The action labels are MoveUp, MoveRight, MoveDown, and MoveLeft. O2D states are defined based on images such as the one illustrated in Figure 5.

IPC Grid In this planning problem from the Int. Planning Competition (IPC), there is a robot that moves within a rectangular grid where cells may be locked, but that can be opened with matching keys, where a key and a cell match if they have the same shape. Keys can be picked and dropped by the robot, and locked cells can be opened with the right key from an adjacent cell. The goal is to have some of the keys at specified locations. Instances are parametrized by the number of rows \(r \) and columns \(c \) of the grid, the number of key/cell shapes \(s \), the number of keys \(k \), and the number of locked cells \(\ell \). The instances used for learning are generated with \(r \leq 2, c \leq 2, s \leq 2, k \leq 2 \) and \(\ell \leq 1 \). For each combination of parameters, one instance is generated, in which the locations of objects is randomized. The action space has 10 labels: MoveUp, MoveRight, MoveDown, MoveLeft, Pickup, Putdown, UnlockFromAbove, UnlockFromRight, UnlockFromBelow, and UnlockFromLeft. O2D states are defined based on images such as the one illustrated in Figure 6.

Sokoban1 and Sokoban2. A puzzle where a player (Sokoban) pushes boxes (crates) around in a warehouse (represented as a grid), trying to get them to designated storage locations. Instances are parametrized as \((r, c, b, \ell) \) for the number of rows \(r \), the number of columns \(c \), and the number of boxes \(b \) located on the grid, yet the parameter does not determine the instance because the crates and Sokoban may be in different locations initially and at the goal. Two different datasets are considered, one with many but smaller instances, and the other with fewer but bigger instances. The dataset for Sokoban1 consists of 94 instances for \((r, c, b) \) in \(\{(1, 5, b), (2, 3, b), (3, 2, b), (5, 1, b)\} \) for \(b = 0, 1, 2 \) and one extra (larger) instance for \((4, 5, 2) \). The dataset for Sokoban2 consists of 24 instances for \((r, c, b) \) in \(\{(r, 5, b) | r \in \{1, 2, 4, 5\}\} \cup \{(5, c, b) | c \in \{1, \ldots, 5\}\} \) with \(b = 0, 1, 2 \) the action space for Sokoban has 8 labels: MoveUp, MoveRight, MoveDown, MoveLeft, PushUp, PushRight, PushDown, and PushLeft.

Mapping STRIPS States into O2D States

For each planning instance in the data pool expressed as a pair of domain and instance PDDL files, the full reachable state space is enumerated. Then, for each reachable state \(s \), a “rendering” function \(g() \) that maps STRIPS to O2D states is applied. The rendering function is specified by a set of DATALOG rules that say how the visual elements of the O2D scene are obtained.

The rules used, in JSON format, are shown in Figure 7. They contain all the information about how planning states are mapped into scene representations in O2D.

Learned Grounded Domains

Figures 8–14 show the learned grounded domains for all the learning tasks in the experiments. In each case, we show the final and optimal value of the (optimized) cost function (lines 357–367 in Fig. 18), the grounded predicates from the pool \(P \) that make up the learned domain, the action schemas in the domain, the constants (if any), and some stats about the incremental solver.

In these models, grounded predicates \(P \) are directly represented by their grounding \(g(P) \) as computed by the learner, and their description is given as \(<\text{predicate}>/<\text{arity}>\) in the top part of each domain. The notation to represent con-
cepts, roles and predicates is as follows, where \(d(\cdot) \) is the denotation function:
- \(\text{O2D concept } C \text{ and role } \ R \text{ denoted by } C \text{ and } R, \text{ resp.} \)
- Concept \('\top'\) denoted by \(\text{Top} \)
- Concept \('\exists \ R. C'\) denoted by \(\text{ER}[d(R),d(C)] \)
- Concept \('C \sqcap C''\) denoted by \(\text{INTER}[d(C),d(C'')] \)
- Role \('R^{-1}'\) denoted by \(\text{INV}[d(R)] \)
- Role \('R \circ R''\) denoted by \(\text{COMP}[d(R),d(R'')] \)
- Predicate \('C \sqsubseteq C''\) denoted by \(\text{SUBSET}[d(C),d(C'')] \)

Recall that concepts and roles directly yield predicates of arity 1 and 2 respectively, while nullary predicates are obtained with the subset construction (i.e., \(C \sqsubseteq C'' \)).

Implementation Details

Full ASP Program The code in ASP for learning the instances \(\mathcal{P}_1 = \langle D, I_1 \rangle \) from multiple input graphs \(G_i \), using a pool of predicates \(\mathcal{P} \), is shown in Figures 15–18. Each graph \(G_i \) is assumed to be encoded using the atoms \(\text{node}(I,S) \) and \(\text{tlabel}(I,T,L) \) where \(S \) and \(T=(S1,S2) \) denote nodes and transitions in the graph \(G_i \) with index \(I \), and \(L \) denotes the corresponding action label.

At each step of incremental learning, each instance \(I \) and node \(S \) from this instance that must be taken into account at that step is marked with an atom \(\text{relevant}(I,S) \). Truth values \(V \) of ground atoms \(\langle P, OO \rangle \) from \(\mathcal{P} \), in the state \(S \) of instance \(I \), are encoded in the input with atoms \(\text{val}(I,(P,OO),S,V) \). When computing the truth values for such atoms, redundant predicates from \(\mathcal{P} \) are pruned. A predicate is redundant when its denotation over all states in the dataset is the same as some previously considered predicate; i.e., given some enumeration of the predicates in the pool, the predicate \(p_j \) is redundant iff there is \(p_i \) such that for each state \(s \) of each instance, \(p_i^s = p_j^s, j < i \). Moreover, for each instance \(I \), we compute the predicates that are static over that instance, mark them with the fact \(\text{f.static}(I,P) \), and encode their truth value \(V \) in all states of that instance with a single fact \(\text{val}(I,(P,OO2),S,V) \). Each predicate \(P \) in \(\mathcal{P} \) is marked with the fact \(\text{feature}(P) \), and their arity \(N \) is encoded by fact \(\text{f.arity}(P,N) \). The number of action schemas is set to the number of action labels and the objects are extracted from the valuation of the concept \(\top \) (line 29). The max number of chosen predicates is set to the value of the constant \(\text{num.predicates} \) (12 by default), while the max arity of actions is set to the value of the constant \(\text{max arity} \) (3 by default, but with max value of 4 for the code shown).

Exploiting the fact that the predicates in the pool have a maximum arity of 2, the applicability relation for grounded actions as well as the successor function are factored (lines 147–249). This makes the code longer but results in improved grounding and solving times.

Verifier The verifier, written in Python, receives the input data graph \(G_D \) for the instance together with the learned grounded model \(D \), and outputs a subset \(\Delta \) of states in \(G_D \); either \(\Delta = \emptyset \) meaning successful verification, \(\Delta = \{ s, s' \} \) of two such states that are identical modulo the grounded predicates in the model (cf. constraint C1 in 2), or a non-empty subset of states in \(G_D \) for which constraint C2 does not hold. The verifier is called from the incremental solver that then uses \(\Delta \) to extend the learning dataset \(D \) as described in the paper.

The verifier works as follows. First, C1 is checked for all pair of states in \(G_D \). If for some pair \((s, s') \) C1 fails, the verifier terminates and outputs \(\{ s, s' \} \). Otherwise, for each state \(s \) in \(G_D \), the verifier checks that each transition \((s, s') \) with label \(\alpha \) in \(G_D \) has a matching transition \((h(s), h(s')) \) in the learned model \(D \) via a grounded action with label \(\alpha \), and vice versa, that each transition \((h(s), s') \) in \(D \) via a grounded action with label \(\alpha \) has a matching transition \((s, s'' \alpha) \) in \(G_D \) with label \(\alpha \) such that \(h(s'') = s' \); if some of these two checks fails, the state \(s \) is added to the output set for the verifier.

Appendix continues with figures in the next few pages.
Figure 7: JSON specification of the O2D rendering function $g(\cdot)$ that is used to generate the datasets from the STRIPS instances. For each reachable STRIPS state \bar{s} in such an instance, the "rules" are applied until reaching a fixpoint, where a rules consists of a head (single O2D atom) and a body (list of atoms). The resulting O2D state is obtained by preserving the resulting O2D atoms, and removing all the STRIPS atoms except the static ones that specify types; i.e., robot, block, table, sokoban, crate, key, and tile.
Optimization: (10,5,0,10,8)
1 constant(s): t
2 predicate(s): ER[below,Top]/1, INV[below]/2

Stack(1,2):
pre: \neg ER[below,Top](1), INV[below](1,t), \neg ER[below,Top](2)
eff: ER[below,Top](2), \neg INV[below](1,t), INV[below](1,2)

Newtower(1,2):
pre: \neg ER[below,Top](1), INV[below](1,2)
eff: \neg ER[below,Top](2), INV[below](1,t), \neg INV[below](1,2)

Move(1,2,3):
pre: \neg ER[below,Top](1), INV[below](1,2), \neg ER[below,Top](3)
eff: \neg ER[below,Top](2), ER[below,Top](3), \neg INV[below](1,2), INV[below](1,3)

#calls=5, solve_wall_time=1.97, solve_ground_time=1.92, verify_time=0.84, elapsed_time=2.97

Figure 8: Learned grounded domain for Blocks3ops

Optimization: (10,7,0,14,9)
2 constant(s): r, t
3 predicate(s): ER[overlap,Top]/1, INTER[ER[below,Top],block]/1, below/2

Pickup(1):
pre: \neg ER[overlap,Top](r), \neg INTER[ER[below,Top],block](1), below(t,1)
eff: ER[overlap,Top](r), ER[overlap,Top](1), \neg below(t,1)

Putdown(1):
pre: ER[overlap,Top](1)
eff: \neg ER[overlap,Top](r), \neg ER[overlap,Top](1), below(t,1)

Unstack(1,2):
pre: \neg ER[overlap,Top](r), \neg INTER[ER[below,Top],block](1), below(2,1)
eff: ER[overlap,Top](r), ER[overlap,Top](1), \neg INTER[ER[below,Top],block](2), \neg below(2,1)

Stack(1,2):
pre: \neg ER[overlap,Top](1), \neg INTER[ER[below,Top],block](2)
eff: \neg ER[overlap,Top](r), \neg ER[overlap,Top](1), INTER[ER[below,Top],block](2), below(2,1)

#calls=7, solve_wall_time=23.66, solve_ground_time=23.37, verify_time=29.42, elapsed_time=53.70

Figure 9: Learned grounded domain for Blocks4ops

Optimization: (4,5,3,4,4)
3 predicate(s): ER[below,Top]/1, below/2, smaller/2
1 static predicate(s): smaller/2

Move(1,2,3):
static: smaller(1,2)
pre: \neg ER[below,Top](1), \neg ER[below,Top](2), below(3,1)
eff: ER[below,Top](2), \neg ER[below,Top](3), below(2,1), \neg below(3,1)

#calls=4, solve_wall_time=1.59, solve_ground_time=1.53, verify_time=0.44, elapsed_time=2.16

Figure 10: Learned grounded domain for Hanoi1op
Figure 11: Learned grounded domain for Hanoi4ops

Figure 12: Learned grounded domain for Sliding Tile
Optimization: (34, 8, 11, 28, 42)
1 constant(s): r
8 predicate(s): SUBSET[key, ER[overlap, Top]]/0, cell/1, ER[smaller, Top]/1, INTER[key, ER[overlap, Top]]/1,
below/2, overlap/2, INV[left]/2, COMP[shape, INV[shape]]/2
4 static predicate(s): ER[smaller, Top]/1, below/2, INV[left], COMP[shape, INV[shape]]/2

MoveUp(1, 2):
 static: below(1, 2)
 pre: overlap(r, 1), cell(2)
 eff: ¬ overlap(r, 1), overlap(r, 2), ¬ overlap(1, r), overlap(2, r)

MoveRight(1, 2):
 static: INV[left](2, 1)
 pre: overlap(1, r), cell(2)
 eff: ¬ overlap(r, 1), overlap(r, 2), ¬ overlap(1, r), overlap(2, r)

MoveDown(1, 2):
 static: below(2, 1)
 pre: overlap(1, r), cell(2)
 eff: ¬ overlap(r, 1), overlap(r, 2), ¬ overlap(1, r), overlap(2, r)

MoveLeft(1, 2):
 static: INV[left](1, 2)
 pre: overlap(r, 1), cell(2)
 eff: ¬ overlap(r, 1), overlap(r, 2), ¬ overlap(1, r), overlap(2, r)

Pickup(1, 2):
 pre: SUBSET[key, ER[overlap, Top]], overlap(1, r), overlap(1, 2)
 eff: ¬ SUBSET[key, ER[overlap, Top]], ¬ INTER[key, ER[overlap, Top]](2), ¬ overlap(1, 2), ¬ overlap(2, 1)

Putdown(1, 2):
 static: ER[smaller, Top]/1)
 pre: overlap(1, r), ¬ INTER[key, ER[overlap, Top]](2)
 eff: SUBSET[key, ER[overlap, Top]], INTER[key, ER[overlap, Top]](2), overlap(1, 2), overlap(2, 1)

UnlockFromAbove(1, 2, 3):
 static: below(2, 1), COMP[shape, INV[shape]]/2, 3)
 pre: ¬ SUBSET[key, ER[overlap, Top]], overlap(1, r), ¬ cell(2), ¬ INTER[key, ER[overlap, Top]](2)
 eff: cell(2)

UnlockFromRight(1, 2, 3):
 static: INV[left](2, 1), COMP[shape, INV[shape]]/1, 3), ER[smaller, Top]/3)
 pre: ¬ cell(1), overlap(r, 2), ¬ INTER[key, ER[overlap, Top]](3)
 eff: cell(1)

UnlockFromBelow(1, 2, 3):
 static: below(2, 1), COMP[shape, INV[shape]]/1, 3)
 pre: ¬ SUBSET[key, ER[overlap, Top]], ¬ cell(1), overlap(2, r), ¬ INTER[key, ER[overlap, Top]](3)
 eff: cell(1)

UnlockFromLeft(1, 2, 3):
 static: INV[left](1, 2), COMP[shape, INV[shape]]/3, 1), ER[smaller, Top]/3)
 pre: ¬ cell(1), overlap(r, 2), ¬ INTER[key, ER[overlap, Top]](3)
 eff: cell(1)

#calls=27, solve_wall_time=4229.67, solve_ground_time=3536.23, verify_time=2404.87, elapsed_time=6653.03

Figure 13: Learned grounded domain for IPC Grid
Optimization: (32, 5, 64, 32)
1 constant(s): sokoban
4 predicate(s): ER[overlap,Top]/1, below/2, overlap/2, INV[left]/2
2 static predicate(s): below/2, INV[left]/2

MoveUp(1, 2):
static: below(1, 2)
pre: overlap(1, sokoban1), ¬ER[overlap,Top](2)
eff: ¬ER[overlap,Top](1), ER[overlap,Top](2), ¬overlap(sokoban1, 1), overlap(sokoban1, 2), ¬overlap(1, sokoban1), overlap(2, sokoban1)

MoveRight(1, 2):
static: INV[left](2, 1)
pre: overlap(1, sokoban1), ¬ER[overlap,Top](2)
eff: ¬ER[overlap,Top](1), ER[overlap,Top](2), ¬overlap(sokoban1, 1), overlap(sokoban1, 2), ¬overlap(1, sokoban1), overlap(2, sokoban1)

MoveDown(1, 2):
static: below(2, 1)
pre: overlap(1, sokoban1), ¬ER[overlap,Top](2)
eff: ¬ER[overlap,Top](1), ER[overlap,Top](2), ¬overlap(sokoban1, 1), overlap(sokoban1, 2), ¬overlap(1, sokoban1), overlap(2, sokoban1)

MoveLeft(1, 2):
static: INV[left](1, 2)
pre: overlap(1, sokoban1), ¬ER[overlap,Top](2)
eff: ¬ER[overlap,Top](1), ER[overlap,Top](2), ¬overlap(sokoban1, 1), overlap(sokoban1, 2), ¬overlap(1, sokoban1), overlap(2, sokoban1)

PushUp(1, 2, 3, 4):
static: below(3, 1), below(1, 4)
pre: overlap(1, 2), overlap(3, sokoban1), ¬ER[overlap,Top](4)
eff: ¬ER[overlap,Top](3), ER[overlap,Top](4), overlap(sokoban1, 1), ¬overlap(sokoban1, 3), overlap(1, sokoban1), overlap(3, sokoban1), ¬overlap(1, 2), ¬overlap(2, 1), overlap(2, 4), overlap(4, 2)

PushRight(1, 2, 3, 4):
static: INV[left](1, 3), INV[left](4, 1)
pre: overlap(2, 1), overlap(sokoban1, 3), ¬ER[overlap,Top](4)
eff: ¬ER[overlap,Top](3), ER[overlap,Top](4), overlap(sokoban1, 1), ¬overlap(sokoban1, 3), overlap(1, sokoban1), overlap(3, sokoban1), ¬overlap(1, 2), ¬overlap(2, 1), overlap(2, 4), overlap(4, 2)

PushDown(1, 2, 3, 4):
static: below(1, 3), below(4, 1)
pre: overlap(2, 1), overlap(sokoban1, 3), ¬ER[overlap,Top](4)
eff: ¬ER[overlap,Top](3), ER[overlap,Top](4), overlap(sokoban1, 1), ¬overlap(sokoban1, 3), overlap(1, sokoban1), overlap(3, sokoban1), ¬overlap(1, 2), ¬overlap(2, 1), overlap(2, 4), overlap(4, 2)

PushLeft(1, 2, 3, 4):
static: INV[left](3, 1), INV[left](1, 4)
pre: overlap(2, 1), overlap(sokoban1, 3), ¬ER[overlap,Top](4)
eff: ¬ER[overlap,Top](3), ER[overlap,Top](4), overlap(sokoban1, 1), ¬overlap(sokoban1, 3), overlap(1, sokoban1), overlap(3, sokoban1), ¬overlap(1, 2), overlap(2, 1), overlap(2, 4), overlap(4, 2)

#calls=11, solve_wall_time=12565.02, solve_ground_time=5314.35, verify_time=165.19, elapsed_time=12740.43
% Suggested call
% clingo -t 6 --sat-prepro=2 --time-limit=7200 <this-solver> <graph-files>

% Constants and options
% #const max_action arity = 3.
% #const opt_equal_objects = 0. % Allow same obj as argument for grounded actions
% #const opt_all_negative precs = 1. % Allow for negative preconditions
% #const opt_fill = 1. % Fill in missing negative valuations for primitive predicates
% #const opt_symmetries = 1. % Some (simple) symmetry breaking

% Input Instances defined by instance/I, and graphs by tlabel/3 and node/2
% % ODD features defined by feature/I, f arity/2, f static/2, fval/3, and fval/4
nulIy(F) :- feature(F), f arity(F,I), \{ fval(I,F,nullary,F,..) \}. % Explicit zero arity predicates
p arity(F,N) :- feature(F), f arity(F,N), not nullIy(F).
% Explicit zero arity predicates
p arity(F,N) :- nullary(F).
% Explicit zero arity predicates

% Actions and objects (objects come from denotation of concept Top)
action(A) :- tlabel(I,(S,T),A), relevant(I,S).

% Tuples of objects/constants that appear as arguments to atoms
argtuple(null arg,0). % Explicit zero arity predicates
argtuple(C1,J,1) :- constant(C1).
argtuple(V1,V2,1) :- V1 = 1..max action arity.
argtuple(C1,C2,2) :- constant(C1), constant(C2).
argtuple(V1,V2,2) :- constant(C1), constant(C2).

% Tuples of objects that ground the action schemas and atoms
obITule(I, null arg,0) :- instance(I). % Explicit zero arity predicates
obITule(I, O1,O2,2) :- object(I,O1), object(I,O2), not constant(O1), not constant(O2), O1 \ne O2.

% Tuples of objects/consts that appear as arguments to atoms
cons orOb(I,0) :- object(I,0).
cons orOb(I,0) :- instance(I, constant(O0).
constobITule(I, null arg,0) :- instance(I). % Explicit zero arity predicates
constobITule(I, O1,O1,1) :- cons orOb(I,0), O1 = 0.

% Assumption: predicates have arity < 3
:- p arity(F,N), N > 3,

% Assert missing values for atoms (if some atom is not true, it is false)
fval(I,F,0,0,0) :- feature(F), f static(I,F), p arity(F,N), constobITule(I,0,0,N), not fval(I,F,0,0,0), opt_fill = 1.
fval(I,F,0,0,0) :- feature(F), not f static(I,F), p arity(F,N), constobITule(I,0,0,N), not fval(I,F,0,0,0), opt_fill = 1.

% Make sure we have full valuation of atoms
:- f static(I,F), p arity(F,N), constobITule(I,0,0,N), \{ fval(I,F,0,0,0,..) \} \ne 1, opt_fill = 1.
:- not f static(I,F), p arity(F,N), constobITule(I,0,0,N), \{ fval(I,F,0,0,0,..) \} \ne 1, opt_fill = 1.

% Mapping of lifted arguments for atoms into grounded arguments. Lifted atom is pair (P,T) where P is
% predicate and T is tuple of variables and constants used to construct argument OO of grounded atom (P,OO).

% for nullary actions
map(I,(O1,O2,O3,null arg,0),null arg,0) :- instance(I).
map(I,(O1,O2,O3,C1,C2,2),null arg,0) :- cons orOb(I,0), C1 = \{ T \}, constant(C1), constant(C2).

% for unary actions
map(I,(O1,O2,O3,0,0,0,null arg,0),null arg,0) :- obITule(I,O1,O1,1).
map(I,(O1,O2,O3,C1,C2,1),null arg,0) :- obITule(I,O1,O1,1), cons orOb(I,O1,O1,1), constant(C1), constant(C2).

% for actions of arity > 2
map(I,(O1,O2,O3,0,0,0,null arg,0),null arg,0) :- obITule(I,O1,O2,2).
map(I,(O1,O2,O3,0,0,1,null arg,0),null arg,0) :- obITule(I,O1,O2,2), constant(C1,constant(C)).
map(I,(O1,O2,O3,0,0,2,null arg,0),null arg,0) :- obITule(I,O1,O2,2), constant(C1), constant(C2).

Figure 15: Listing of the ASP code (page 1/4)
% Factored next relation in the induced transition system
% Assumption in this implementation: each edge (S1,S2) labeled with unique action, and maps to unique grounded action A(00)

:- tlabel(I,(S1,S2),A), tlabel(I,(S1,S2),B), A ≠ B.

:- relevant(I,S1), tlabel(I,(S1,S2),A), K-th argument of A(00) is object O

% 1. Account for proper def of next(I,A,OO,S1,S2):
% i.e. A(00) must be fully defined for (S1,S2)!
% i.e. A(00) cannot be mapped to two edges (S1,S2) and (S1,S3) with S2 ≠ S3
% i.e. if tlabel(I,(S1,S2),A), then next(I,0,0,S1,S2) or next!I,-1,-S1,-S2
% 1.a. Choose next S2 if ground action A(00) is applicable in S1

:- action(A), a_arity(A,4), relevant(I,S1),
 fnext(I,K,O,S1,S2) : tlabel(I,(S1,S2),A),
% 1.b. If A(k1) -> O1 in (S1,S2), then A(k2) -> O2, for some O2, for each arg k1 of action A in (S1,S2)
 fappl(I,A,(1,2),(O1,O2),S1), fappl(I,A,(1,3),(O1,O3),S1), fappl(I,A,(2,3),(O2,O3),S1).

% 1.d. A(OO) cannot be mapped to two edges (S1,S2) and (S1,S3) with S2 ≠ S3
% 1.c. It cannot be fnext(I,K,O1,S1,S2) and fnext(I,K,O2,S1,S2) with O1 ≠ O2
% 2.a. Check application of effects
% 2.b. If A(00) mapped to (S1,S2) and eff(A,P,002,V), then fval(I,P,002,S1,V)
% 3. Assumption in this implementation: each edge (S1,S2) labeled with unique action, and maps to unique grounded action A(00)

Figure 17: Listing of the ASP code (page 3/4)
\% 2.b. If A(OO1) mapped to (S1,S2), fval(I,(P,OO2),S1,V) and fval(I,(P,OO2),S2,1-V), then eff(A,(P,OO2),1-V).

\% - a_arity(A,3), fappl(I,A,(1,2),(O1,O2),S1), fappl(I,A,(1,3),(O1,O3),S1), fappl(I,A,(2,3),(O2,O3),S1),
\% #minimize
\% -1,I,P,VV,2 : a_atom(I,A,(P,(VV, V)));
\% not eff(A,(P,null_arg),1-V).
\% fappl(I,A,(2,3),(O2,O3),S1), fappl(I,A,(2,4),(O2,O4),S1), fappl(I,A,(3,4),(O3,O4),S1),
\% #show.
\% #show pred/1.
\% \% Break symmetries (taken from STRIPS learner's ASP code)
\% #show prec/1.
\% not fnext(I,2,O2,S1,S2) : fnext(I,1,O1,S1,S2).
\% a_atom(2,A,M) :- eff(A,M,V).
\% \% - Prefer models with minimum number of actions' cardinalities
\% C1. Different nodes are different states with respect to chosen predicates
\% relevant(I,S1), a_arity(A,0), tlabel(I,(S1,S2),A), not fnext(I,0,0,S1,S2).
\% \% Display objects and constants
\% #show object/2.
\% \% Default is to display nothing
\% #show.
\% \% Display action schemas
\% \% Fundamental constraints
\% \% \% - Prefer models with minimum number of (static) predicates' cardinalities
\% C2. If (S1,S2) has label A, then A(00) maps S1 to S2 for some object tuple OO
\% relevant(I,S1), tlabel(I,(S1,S2),A), not fnext(I,0,0,S1,S2)
\% relevant(I,S1), a_arity(A,1), tlabel(I,(S1,S2),A), noount \{ 0 : fnext(I,1,0,1,0,S2) \} \neq 1.
\% relevant(I,S1), a_arity(A,2), tlabel(I,(S1,S2),A), #count \{ 01 : fnext(I,1,0,1,0,1,S2) \} \neq 1.
\% relevant(I,S1), a_arity(A,4), tlabel(I,(S1,S2),A), #count \{ 0102 : fnext(I,1,0,1,0,2,1,S2) \} \neq 1.
\% \% # Optimization (lexicographic ordering)
\% - Prefer models with minimum sum of actions' cardinalities
\% \% - Prefer models with minimum sum of (static) predicates' cardinalities
\% \% - Prefer models with minimum number of actions' cardinalities
\% \% - Prefer models with minimum number of effects
\% \% - Prefer models with minimum number of preconditions
\% \% \% numinize \{ 1=\$\text{def}, A : a_atom(A,N) \}.
\% \% numinize \{ 1=\$\text{def}, P : pred(I), p_arity(P,N), not p_static(P) \}.
\% \% numinize \{ 1=\$\text{def}, P : pred(I), p_arity(P,N), p_static(P) \}.
\% \% numinize \{ \$def, A, P, T : eff(A,P,T,V) \}.
\% \% numinize \{ \$def, A, P, T, V : predc(A,P,V,T) \}.
\% \% Default is to display nothing
\% #show.
\% \% Display selected predicates
\% #show pred/1.
\% #show p_static(P) : p_static(P), pred(P).
\% \% Display action schemas
\% #show action/1.
\% #show a_arity/2.
\% #show prec/3.
\% #show eff/3.

Figure 18: Listing of the ASP code (page 4/4)