Evolution of large-scale perturbations in quintessence models

Michaël Malquarti and Andrew R. Liddle

Astronomy Centre, University of Sussex, Brighton BN1 9QJ, United Kingdom

(Dated: March 19, 2022)

We carry out a comprehensive study of the dynamics of large-scale perturbations in quintessence scenarios. We model the contents of the Universe by a perfect fluid with equation of state w_f and a scalar field Q with potential $V(Q)$. We are able to reduce the perturbation equations to a system of four first-order equations. During each of the five main regimes of quintessence field behaviour, these equations have constant coefficients, enabling analytic solution of the perturbation evolution by eigenvector decomposition. We determine these solutions and discuss their main properties.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Recent observations seem to indicate that the Universe is undergoing a period of accelerated expansion [1]. Whereas cosmologists initially introduced a cosmological constant in order to explain this, a range of different models have emerged, amongst which quintessence has been particularly prominent in the literature [2, 3]. It is defined as a scalar field rolling down its potential and presently dominating the dynamics of the Universe. An important class of quintessence models are known as tracking models [2, 3], where the late-time evolution of the field has an attractor behaviour rendering its evolution fairly independent of initial conditions. In contrast to a cosmological constant, which is by definition perfectly homogeneous, the quintessence field can, and indeed must, have perturbations.

The evolution of perturbations in quintessence models have been studied by many authors [2, 4, 5, 6]. In this paper we carry out an exhaustive and elegant analysis of those in the large-scale approximation. We model the contents of the Universe by a perfect fluid with equation of state w_f and a scalar field Q with potential $V(Q)$. We assume a flat Universe throughout.

II. BACKGROUND EVOLUTION

Before studying the perturbations, we recall some results for the homogeneous background evolution. The geometry of the Universe is described by a flat Robertson–Walker metric

$$ds^2 = -dt^2 + a^2(t)dx^2.$$ (1)

The Einstein equations

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3m_{Pl}^2}(\rho_f + \rho_Q),$$ (2)

$$2\dot{H} + 3H^2 = 2\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2 = -\frac{8\pi}{m_{Pl}^2}(p_f + p_Q)$$ (3)

relate the matter components to the geometry. The indices “f” and “Q” always refer to the perfect fluid and the quintessence field respectively, and dots are time derivatives. We will use a prime to denote a derivative with respect to $N \equiv \log(a/a_0)$.

The evolution of the fluid is straightforward, with its energy density scaling as $a^{-3(1+w_f)}$, where w_f is the ratio of pressure to energy density of the fluid. The quintessence field follows the Euler–Lagrange equation

$$\dot{Q} = -3H\dot{Q} - \frac{dV}{dQ}$$ (4)

and its equation of state is

$$w_Q = \frac{p_Q}{\rho_Q} = \frac{-\dot{Q}^2/2 - V(Q)}{Q^2/2 + V(Q)}.$$ (5)

Depending on the precise model and on the choice of initial conditions, the quintessence dynamics can feature up to five main regimes, which were classified by Brax et al. [5] and which appear in a sequential order. During the first three the quintessence field is sub-dominant. The “kinetic” regime is characterized by the domination of the kinetic energy which scales as a^{-6}. In the “transition” and “potential” regimes the potential energy dominates and the energy density remains constant. The sound speed of the quintessence field is defined by

$$c_{sQ}^2 \equiv \frac{\ddot{Q}}{\dot{Q}} = w_Q - \frac{w_f}{3(1 + w_f)} = 1 + \frac{2}{3} \frac{dV/dQ}{HQ},$$ (6)

and is equal to 1 or $-2 - w_f$ respectively during those regimes. During the “tracker” regime the quintessence field approximately mimics the behaviour of the fluid, and usually its energy density is still sub-dominant when tracking begins. If $w_Q = w_f$ there is perfect tracking, even if the quintessence field is not sub-dominant. Finally the field enters its “domination” phase, during which w_Q tends to -1 in most cases.

1 Actually, one can consider initial conditions with domination of the quintessence field, but they usually lead to an “overshoot” of the required present energy density, and are therefore not interesting.
Four useful parameters can be defined to describe these five regimes. They are the quintessence density parameter \(\Omega_Q \), the equation of state conveniently parametrized as \(\gamma_Q \equiv 1 + w_Q \), the speed of sound \(c_{sQ}^2 \) as defined in Eq. (6), and one further parameter relating to the speed of sound defined as

\[
\theta_Q \equiv \frac{(c_{sQ}^2)'}{1-c_{sQ}^2} = -3(1+c_{sQ}^2) - \frac{d}{dN} \log (Q'dV/dQ).
\]

In order to simplify the notation, we define the vector \(\mathbf{x} \equiv (\Omega_Q, \gamma_Q, c_{sQ}^2, \theta_Q) \). In Fig. 1, we show an example of the evolution of these parameters. We take the realistic case \(w_l = 1/3 \) during radiation domination and \(w_l = 0 \) during matter domination, and we use an inverse power-law quintessence potential. We clearly see the five different regimes, and also the transition between radiation domination and matter domination which in this case occurs during the tracking regime. In Table I we give the values of the parameters in the general case for each regime.

\(\Omega_Q \)	\(\gamma_Q \)	\(c_{sQ}^2 \)	\(\theta_Q \)	
Kinetic	0	2	1	-3(3+w_l)/2
Transition	0	0	1	-3(3+w_l)/2
Potential	0	0	-2-w_l	0
Usual Tracker	0	\(\gamma_Q \)	\(w_Q \)	0
Perfect Tracker	\(\Omega_Q \)	\(\gamma_l \)	\(w_Q \)	0
Domination	1	\(\gamma_Q \)	\(w_Q \)	0

TABLE I: Values of the four parameters \(\Omega_Q, \gamma_Q, c_{sQ}^2, \) and \(\theta_Q \) during the different regimes.

III. Perturbation Evolution

In order to describe the perturbations we choose the conformal Newtonian gauge [7]. As long as there is no anisotropic stress, the perturbed metric is

\[
ds^2 = -(1 + 2\Phi)dt^2 + a^2(t)(1 - 2\Phi) dx^2 ,
\]

where in this case \(\Phi \) is equal to the gauge-invariant potential defined as in Ref. [7]. We work in Fourier space and compute the first-order perturbed Einstein equations

\[
-3H (H\dot{\Phi} + \dot{\Phi}) - \frac{k^2}{\omega^2} \Phi = 4\pi G (\delta \rho_{el} + \delta \rho_Q) ,
\]

\[
\ddot{\Phi} + 4H\dot{\Phi} + (2\dot{H} + 3H^2)\Phi = 4\pi G (\delta \rho_{el} + \delta \rho_Q) ,
\]

where the perturbed fluid pressure \(\delta p_{el} = w_l \delta \rho_{el} \) and the perturbations in the quintessence energy density and pressure are given by

\[
\delta \rho_Q = \dot{Q}\delta \dot{Q} - \dot{Q}^2 \Phi + \frac{dV}{dQ}\delta Q ,
\]

\[
\delta p_Q = \dot{Q}\delta \dot{Q} - \dot{Q}^2 \Phi - \frac{dV}{dQ}\delta Q .
\]

The perturbed Euler–Lagrange equation and fluid conservation equation lead to

\[
\ddot{\delta} + 3H \delta \dot{\Phi} + \frac{k^2}{\omega^2} \delta Q + \frac{d^2V}{dQ^2}\delta Q = 4Q\dot{\Phi} - 2\frac{dV}{dQ}\dot{\Phi} ,
\]

\[
\delta_t - 3(1+w_l)\dot{\Phi} = -(1+w_l)\frac{k}{a} \nu_l ,
\]

where \(\delta_t \equiv \delta \rho_t / \rho_t \) and \(\nu_l \) gives the fluid velocity. From now on we use \(N \) as a time variable and study the evolution of \(\Phi, \delta_t, \delta Q \equiv \delta \rho_Q / \rho_Q \) and \(\delta P \equiv \delta \rho_Q / \rho_Q \) in the long-wavelength limit \((k/aH \ll 1) \). We define the vector \(y \equiv (\Phi, \delta_t, \delta_Q, \delta_P)^T \), and considerable algebra leads to the expression

\[
y' = F(\gamma_t, x) \times y ,
\]

where the matrix \(F(\gamma_t, x) \) is given by
\[\mathcal{F}(\gamma_f, x) = \begin{pmatrix} -1 & -\Omega_f/2 & -\Omega_f/2 \\ -3\gamma_f & -3\gamma_f\Omega_f/2 & -3\gamma_f\Omega_f/2 \\ -3\gamma_f & -3\gamma_f\Omega_f/2 & -3\gamma_f\Omega_f/2 + 3\omega_Q \\ -3\gamma_f^2 & -3\gamma_f\Omega_f/2 & 3\gamma_f\Omega_f/2 + \theta_Q \\ 0 & 0 & 0 \\ -3\gamma_f\Omega_f/2 + 3\omega_Q - 3\gamma_f\Omega_f/2 - \theta_Q - 3c^2_Q \end{pmatrix}. \]

where the matrix \(\mathcal{G}(\gamma_f, \Omega_f, \gamma_Q) \) is given by

\[\mathcal{G}(\gamma_f, \Omega_f, \gamma_Q) = \begin{pmatrix} -1 & -\gamma_{\text{tot}}/2\gamma_f & -\gamma_{\text{tot}}/2 \\ -3\gamma_f & -3\gamma_f/2 & -3\gamma_f/2 \end{pmatrix}, \]

where \(\gamma_{\text{tot}} = \gamma_f\Omega_f + \gamma_Q\Omega_f \). The eigenvalues and eigenvectors are given in the upper part of Table II. We see, as is well known, that there are always a constant and a decaying adiabatic mode, the former giving the late-time solution \(\Phi = -\gamma_{\text{tot}}\delta_f/2\gamma_f = -\delta_{\text{tot}}/2 \), where \(\delta_{\text{tot}} \equiv \delta\rho_{\text{tot}}/\rho_{\text{tot}} \).

B. The general case

We now return to the full set of perturbation equations Eq. (15), continuing to consider the regimes in each of which the coefficients of the matrix \(\mathcal{F} \) remain constant. We summarize our main results in the lower part of Table II. For the perfect tracker regime the eigenvectors \(y_3 \) and \(y_4 \) have not been given, since they are long and complicated formulas which are anyway not very relevant. In order to simplify some expressions we have used the variables

\[n_{\text{ut}1} = \frac{3}{4}(\gamma_f - 2\omega_Q), \]
\[n_{\text{ut}2} = \frac{3}{4}(\gamma_f + 2\omega_Q), \]
\[n_{\text{ut}3} = \frac{3}{4}\sqrt{(2\omega_Q + \gamma_f)^2 - 8\gamma_f}, \]
\[n_{\text{pt}1} = -\frac{3}{4}(2 - \gamma_f), \]
\[n_{\text{pt}2} = \frac{3}{4}\sqrt{(2 - \gamma_f)(2 - \gamma_f - 8\gamma_f\Omega_f)}. \]

For each regime the adiabatic modes can easily be identified as the first two entries in the table. Now let us analyze the two other, non-adiabatic, modes. In the kinetic case there are a growing mode, for which \(\delta_P = -\delta_Q \) and thus \(\delta_Q = 0 \) (since \(\Phi = 0 \)), and another constant mode corresponding to \(\delta_Q = 0 \). During the transition and potential regimes the former growing mode becomes constant and for each regime the fourth mode is decaying. Therefore, before entering the tracker the quintessence field may feature large non-adiabatic perturbations. As long as the Universe is dominated by the fluid, they are isocurvature perturbations.

In the usual tracker case the last two eigenvalues may have an imaginary part, leading to oscillations, and their
Adiabatic perturbations
\[n_1 = 0 \quad z_1 = (-\gamma_{\text{tot}}/2, \gamma_{\ell}) \]
\[n_2 = -1 - 3\gamma_{\text{tot}}/2 \quad z_2 = (1/3, \gamma_{\ell}) \]

Kinetic regime
\[n_1 = 0 \quad y_1 = (-\gamma_{\ell}/2, 2, 2) \]
\[n_2 = -1 - 3\gamma_{\ell}/2 \quad y_2 = (1/3, \gamma_{\ell}, 2, 2) \]
\[n_3 = +6 \quad y_3 = (0, 0, 1, -1) \]
\[n_4 = 0 \quad y_4 = (0, 0, 1, 1) \]

Transition regime
\[n_1 = 0 \quad y_1 = (-1/2, 1, 0, 0) \]
\[n_2 = -1 - 3\gamma_{\ell}/2 \quad y_2 = (1/3, \gamma_{\ell}, 0, 0) \]
\[n_3 = 0 \quad y_3 = (0, 0, 1, -1) \]
\[n_4 = -6 \quad y_4 = (0, 0, -2, \gamma_{\ell}) \]

Potential regime
\[n_1 = 0 \quad y_1 = (-\gamma_{\ell}/2, \gamma_{\ell}, \gamma_Q, w_Q \gamma_Q) \]
\[n_2 = -1 - 3\gamma_{\ell}/2 \quad y_2 = (1/3, \gamma_{\ell}, \gamma_Q, w_Q \gamma_Q) \]
\[n_3 = n_{\text{ut1}} + n_{\text{ut3}} \quad y_3 = (0, n_{\text{ut2}} + n_{\text{ut3}}, 3\gamma_{\ell}/2) \]
\[n_4 = n_{\text{ut1}} - n_{\text{ut3}} \quad y_4 = (0, n_{\text{ut2}} - n_{\text{ut3}}, 3\gamma_{\ell}/2) \]

Usual tracker regime
\[n_1 = 0 \quad y_1 = (-\gamma_{\ell}/2, \gamma_{\ell}, w_1 \gamma_{\ell}) \]
\[n_2 = -1 - 3\gamma_{\ell}/2 \quad y_2 = (1/3, \gamma_{\ell}, w_1 \gamma_{\ell}) \]
\[n_3 = n_{\text{pt1}} + n_{\text{pt2}} \quad y_3 = \ldots \]
\[n_4 = n_{\text{pt1}} - n_{\text{pt2}} \quad y_4 = \ldots \]

Perfect tracker regime
\[n_1 = 0 \quad y_1 = (-\gamma_{\ell}/2, \gamma_{\ell}, \gamma_{\ell}, w_{1\ell} \gamma_{\ell}) \]
\[n_2 = -1 - 3\gamma_{\ell}/2 \quad y_2 = (1/3, \gamma_{\ell}, \gamma_{\ell}, w_{1\ell} \gamma_{\ell}) \]
\[n_3 = n_{\text{pt1}} + n_{\text{pt2}} \quad y_3 = \ldots \]
\[n_4 = n_{\text{pt1}} - n_{\text{pt2}} \quad y_4 = \ldots \]

Domination regime
\[n_1 = 0 \quad y_1 = (-\gamma_Q/2, \gamma_{\ell}, \gamma_Q, w_Q \gamma_Q) \]
\[n_2 = -1 - 3\gamma_Q/2 \quad y_2 = (1/3, \gamma_{\ell}, \gamma_Q, w_Q \gamma_Q) \]
\[n_3 = 0 \quad y_3 = (0, 1, 0, 0) \]
\[n_4 = -3 + 3\gamma_Q/2 \quad y_4 = (1/3, \gamma_{\ell}, 1/3 - w_Q, -\gamma_Q/3) \]

| TABLE II: Top: eigenvalues and eigenvectors of the matrix \mathcal{G} (adiabatic case). Bottom: eigenvalues and eigenvectors of the matrix \mathcal{F} according to the different regimes; $n_{\text{ut1}}, n_{\text{ut2}}, n_{\text{ut3}}, n_{\text{pt1}}$ and n_{pt2} are given in Eqs. (22)–(26). |

The regimes of the eigenvalues are shown in Fig. 2. However, since the quintessence field has to dominate at the present epoch, ρ_Q must decrease more slowly than ρ_1, and hence $\gamma_Q < \gamma_{\ell}$. As one can see in Fig. 2, this implies $\text{Re}(n_{3,4}) < 0$. In the perfect tracker case one easily sees that the last two modes decay, possibly oscillating as they do. As long as all the other modes are decaying, during the tracker regime the constant adiabatic mode y_1 is an attractor. As a result, a long tracker period implies the suppression of all non-adiabatic modes [5, 6]. Moreover, in the case of a sub-dominant tracker the late-time evolution of the perturbations is even independent of the quintessence field initial conditions.

Finally, during the domination regime, which is reached after the present epoch, the non-adiabatic modes are constant and decaying.

IV. CONCLUSIONS

We have derived four first-order equations to describe large-scale perturbations in quintessence scenarios. During each of the five main regimes of quintessence behaviour, these equations have constant coefficients, enabling analytic solution of the perturbations by eigenvector decomposition.

We have seen that during the kinetic regime there is a growing isocurvature mode which then remains constant until tracking begins. However, if the quintessence field undergoes a long period of tracking, there remain only adiabatic perturbations which, in case of a sub-dominant tracker, are independent of its initial conditions. A low initial quintessence energy density [8], or a long kinetic period, may prevent the non-adiabatic modes disappearing completely.

It is possible in principle to carry out the same analysis without using the large-scale approximation, although the equations may then be too complicated to be useful.
Acknowledgments

M.M. was supported by the Fondation Barbour, the Fondation Wilsdorf and the Janggen-Pöhnt Stiftung, and A.R.L. in part by the Leverhulme Trust. We thank Pier-Stefano Corasaniti for useful discussions.

[1] A. G. Riess et al., Astron. J. 116, 1009 (1998), astro-ph/9805201; P. Garnavich et al., Ap. J. 509, 74 (1998), astro-ph/9806396; S. Perlmutter et al., Ap. J. 517, 565 (1998), astro-ph/9812133; G. Efstathiou et al., Mon. Not. Roy. Ast. Soc. 330, L29 (2002), astro-ph/0109152.
[2] B. Ratra and P. J. E. Peebles, Phys. Rev. D37, 3406 (1988).
[3] C. Wetterich, Nucl. Phys. B302, 668 (1988); E. J. Copeland, A. R. Liddle, and D. Wands, Ann. N. Y. Acad. Sci. 688, 647 (1993); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998), astro-ph/9708069; P. G. Ferreira and M. Joyce, Phys. Rev. D58, 023503 (1998), astro-ph/971102; E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D57, 4686 (1998), gr-qc/9711068; I. Zlatev, L. Wang, and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999), astro-ph/9807002; A. R. Liddle and R. J. Scherrer, Phys. Rev. D59, 023509 (1999), astro-ph/9809272; V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D9, 373 (2000), astro-ph/9904398.
[4] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998), astro-ph/9708069; P. T. P. Viana and A. R. Liddle, Phys. Rev. D57, 674 (1998), astro-ph/9708247; F. Perrotta and C. Baccigalupi, Phys. Rev. D59, 123508 (1999), astro-ph/9811156.
[5] P. Brax, J. Martin, and A. Riazuelo, Phys. Rev. D62, 103505 (2000), astro-ph/0005428.
[6] L. R. Abramo and F. Finelli, Phys. Rev. D64, 083513 (2001), astro-ph/0101014; M. Kawasaki, T. Moroi, and T. Takahashi, Phys. Lett. B 533, 294 (2002), astro-ph/0105081; R. Dave, R. R. Caldwell, and Paul J. Steinhardt, Phys. Rev. D66, 023516 (2002), astro-ph/0206372.
[7] V. Mukhanov, H. Feldman, and R. Brandenberger, Phys. Rep. 215, 203 (1992).
[8] M. Malquarti and A. R. Liddle, Phys. Rev. D66, 023524 (2002), astro-ph/0203232.