ABELIAN STRICT APPROXIMATION IN AW*-ALGEBRAS
AND WEYL-VON NEUMANN TYPE THEOREMS

Claudio D’Antoni and László Zsidó

Dedicated to Professor E. Effros on his 70th birthday

Abstract. In this paper, for a C*-algebra A with $M = M(A)$ an AW*-algebra, or equivalently, for an essential, norm-closed, two-sided ideal A of an AW*-algebra M, we investigate the strict approximability of the elements of M from commutative C*-subalgebras of A. In the relevant case of the norm-closed linear span A of all finite projections in a semi-finite AW*-algebra M we shall give a complete description of the strict closure in M of any maximal abelian self-adjoint subalgebra (masa) of A. We shall see that the situation is completely different for discrete respectively continuous M:

In the discrete case, for any masa C of A, the strict closure of C is equal to the relative commutant $C' \cap M$, while in the continuous case, under certain conditions concerning the center valued quasitrace of the finite reduced algebras of M (satisfied by all von Neumann algebras), C is already strictly closed. Thus in the continuous case no elements of M which are not already belonging to A can be strictly approximated from commutative C*-subalgebras of A.

In spite of this pathology of the strict topology in the case of the norm-closed linear span of all finite projections of a continuous semi-finite AW*-algebra, we shall prove that in general situations including also this case, any normal $y \in M$ is equal modulo A to some $x \in M$ which belongs to an order theoretical closure of an appropriate commutative C*-subalgebra of A. In other words, if we replace the strict topology with order theoretical approximation, Weyl-von Neumann-Berg-Sikonia type theorems will hold in substantially greater generality.

Introduction

Let A be a C*-algebra. The multiplier algebra of A is the C*-subalgebra

$$\{x \in A^{**}; \ xa, \ ax \in A \ \text{for all} \ a \in A\}$$

of the second dual A^{**} (see [Ped 2], Section 3.12 or [WO], Chapter 2). A natural locally convex vector space topology on $M(A)$, called the strict topology β, is defined by the seminorms

2000 Mathematics Subject Classification: Primary 46L05; Secondary 46L10
Supported by MIUR, INDAM and EU.
It is complete and compatible with the duality between $M(A)$ and A^*. Hence the strict topology is weaker than the norm-topology on $M(A)$, but stronger than the restriction to $M(A)$ of the weak * topology of A^{**}.

We notice that for A the C^*-algebra $K(H)$ of all compact linear operators on a complex Hilbert space H, $M(A)$ can be identified with the C^*-algebra $B(H)$ of all bounded linear operators on H and on every bounded subset of $B(H)$ the strict topology coincides with the s^*-topology.

More generally, if M is an AW^*-algebra (see [Kap 1] or [Be], §4 or [S-Z], §9) and A is an essential, norm-closed, two-sided ideal of M, then, by a theorem of B. E. Johnson, M can be identified with $M(A)$ (see [J] or [Ped 3]). Thus the pairs $(A, M(A))$, where A is a C^*-algebra such that $M(A)$ is an AW^*-algebra, are exactly the pairs (A, M), where M is an AW^*-algebra and A is an essential, norm-closed, two-sided ideal of M.

A relevant case of essential, norm-closed, two-sided ideal of an AW^*-algebra is the norm-closed linear subspace A generated by all finite projections of a semi-finite AW^*-algebra M. Then there are central projections p_1, p_2, p_3 of M with $p_1 + p_2 + p_3 = 1_M$ such that Mp_1 is finite, Mp_2 is properly infinite and discrete, while Mp_3 is properly infinite and continuous (see [Be], §15, Theorem 1). Since $Ap_1 = Mp_1$, the non-trivial cases are Ap_2 and Ap_3, with $M(Ap_3) = Mp_3$ properly infinite and discrete and $M(Ap_3) = Mp_3$ properly infinite and continuous.

In the previous paper [D-Z] we investigated the strict approximability of a normal element x of $M(A)$ from a commutative C^*-subalgebra of A. More precisely, we say that x belongs to the abelian strict closure of A if there exists a commutative C^*-subalgebra C_x of A such that $x \in \overline{C_x}^\beta$. Abelian strict approximability is closely related to the classical Weyl-von Neumann-Berg-Sikonia (WNBS) Theorem, which claims that in the case of $A = K(H)$, H a separable complex Hilbert space, every normal element of $M(A) = B(H)$ is of the form $a + x$ with $a \in A$ and x in the abelian strict closure of A. For a general σ-unital C^*-algebra A, that is a C^*-algebra having a countable approximate unit, we proved a partial extension in [D-Z], Theorem 1, which implies that all elements $y \in M(A)$ are of the form $a + x_1 + x_2$, where $a \in A$ and $x_1 \in B_1, x_2 \in B_2$, where B_1, B_2 are separable C^*-subalgebras of $M(A)$ such that every normal element of $B_j, j = 1, 2$, belongs to the abelian strict closure of A. Moreover, if y is self-adjoint then x_1, x_2 can be chosen self-adjoint, so in this situation x_1, x_2 themselves belong to the abelian strict closure of A.

We notice that if the multiplier algebra of a σ-unital C^*-algebra A is of real rank zero (see [Br-Ped]), then, according to [M] and [Zh], the WNBS Theorem holds in the same formulation as in the classical case.

In this paper we discuss abelian strict approximability for a C^*-algebra A which is the norm-closed linear subspace generated by all finite projections of some semi-finite AW^*-algebra M. Since the abelian strict closure of A is the union of all $\overline{C_x}^\beta$ with C a maximal abelian self-adjoint subalgebra (masa) of A, we are interested in describing $\overline{C_x}^\beta$ for any masa C of A. We shall see that the situation is completely different for discrete respectively continuous $M(A) = M$.

In the discrete case $\overline{C_x}^\beta$ is equal to the relative commutant $C^\prime \cap M(A)$ (Theorem 1), while in the continuous case, under a certain condition on the centre valued quasitrace of the reduced AW^*-subalgebra of $M(A)$ by a finite projection of central
WEYL-VON NEUMANN TYPE THEOREMS

support $1_{M(A)}$ (always satisfied if $M(A)$ is a von Neumann algebra), C is already strictly closed (Theorem 3).

Consequently, if $M(A)$ is a properly infinite, continuous AW^*-algebra satisfying the above mentioned condition, then the unit of $M(A)$ does not belong to the abelian strict closure of A, that is it does not exist an approximate unit for A contained in a commutative $*$-subalgebra of A. In particular, in this case A is not σ-unital. We notice that it was already shown in [Ak-Ped], Proposition 4.5, that the norm-closed linear span of all finite projections of a type Π_∞ factor is a non-σ-unital C^*-algebra. Nevertheless, also in this case WNBS type theorems can be proved. Indeed, if A is the norm-closed linear subspace generated by all finite projections of some countably decomposable semi-finite W^*-factor M, then, according to [Z], Theorem 3.1, every normal $y \in M(A) = M$ is of the form $a + x$ with $a \in A$ and x in the s^*-closure in M of some masa C of A. Since the s^*-closure of a commutative $*$-subalgebra of a W^*-algebra is equal to its monotone order closure (cf. [Kad 1] and [Ped 1]), it is natural to expect that for extensions of the WNBS Theorem to non-σ-unital C^*-algebras the strict closure should be replaced by an order theoretical closure. Along this line we prove several WNBS type theorems in a general setting which includes the case of the norm-closed linear span of all finite projections of a countably decomposable semi-finite AW^*-algebra.

More precisely, we prove that if J is a norm-closed two-sided ideal of a (unital) Rickart C^*-algebra M, which has a countable “order theoretical approximate unit”, then any normal $y \in M$ is of the form $y = a + x$, where $a \in A$ is of arbitrarily small norm and x belongs to the order theoretical closure of some masa of J (Theorem 4 and the subsequent remark). Moreover, the above x can be chosen as a particular infinite linear combination of a sequence of mutually orthogonal projections from J (Theorems 5 and 6).

Since only little of the specific properties of Rickart C^*-algebras is used, we are left with the question, to which extent the above mentioned WNBS type theorems hold if M is assumed to be only a C^*-algebra of real rank zero.

1 Abelian Strict Closure in Discrete AW^*-algebras

First we prove a general result concerning a masa C of a C^*-algebra A, whose multiplier algebra is an AW^*-algebra, that is, according to the theorem of B. E. Johnson quoted in Introduction (see [J] or [Ped 3]), a masa C of an essential, norm-closed, two-sided ideal A of some AW^*-algebra. We notice that a part of this result holds for a masa of an essential, norm-closed, two-sided ideal of any Rickart C^*-algebra. We shall restrict us to unital Rickart C^*-algebras, because adjoining a unit to a non-unital Rickart C^*-algebra M, we obtain a unital Rickart C^*-algebra \tilde{M} (see [Be], §5, Theorem 1 or [S-Z], 9.11.(1)) and it is easy to see that every essential, norm-closed, two-sided ideal of M is an essential, norm-closed, two-sided ideal also of \tilde{M}.

Any essential two-sided ideal J of a C^*-algebra M induces a strict topology β_J on M, defined by the seminorms

$$M \ni x \mapsto \|xa\| \text{ and } x \mapsto \|ax\|, \quad a \in J.$$

With this definition, the usual strict topology on the multiplier algebra of a C^*-algebra A is β_A.

For the basic facts concerning Rickart C^*-algebras and AW^*-algebras see [Be], §§ 3, 4 and 5, or [S-Z], §9.
Lemma 1. Let M be a unital C^*-algebra, J an essential, norm-closed, two-sided ideal of M, and C a masa of J. By the strict topology on M we shall understand β_J, which of course is the usual strict topology when M is an AW^*-algebra and so can be identified with the multiplier algebra $M(J)$. Then

(i) every $x \geq 0$ in the strict closure of C in M belongs to the strict closure of $\{b \in C : 0 \leq b \leq x\}$ in M.

Let us next assume that M is a Rickart C^*-algebra. Then

(ii) for every $0 \leq b \in C$ and every $\delta > 0$ there is a projection $f_\delta \in C$ such that

$$bf_\delta \geq \delta f_\delta, \quad b(1_M - f_\delta) \leq \delta(1_M - f_\delta),$$

so C is the norm-closed linear span of its projections;

(iii) any projection e in the strict closure of C in M belongs to the strict closure of $\{f \in C : f \leq e$ projection $\}$ in M;

(iv) any projection e in the relative commutant $C' \cap M$ is the least upper bound of $\{f \in C : f \leq e$ projection $\}$ in the projection lattice of M, in particular $C' \cap M$ is a masa of M.

Finally, assuming M to be an AW^*-algebra,

(v) the relative commutant $C' \cap M$ is the AW^*-subalgebra of M generated by C, so $C' \cap M$ can be identified with $M(C)$;

(vi) the strict closure of C in M coincides with $C' \cap M$ if and only if C contains a two-sided approximate unit for J, in which case the strict topology of $M(C) = C' \cap M$ is the restriction of the strict topology of $M(J) = M$.

Proof. The strict closure $\overline{C^\beta_J}$ of C being an abelian C^*-subalgebra of $M(A)$, we have for every $b \in C$

$$(x - b)^*(x - b) \geq (x - \text{Re } b)^2 \geq (x - (\text{Re } b)_+)^2 \geq (x - b_0)^2,$$

where

$$b_0 = \frac{1}{2}(x + (\text{Re } b)_+ - |x - (\text{Re } b)_+|)$$

denotes the greatest lower bound of x and $(\text{Re } b)_+$ in the Hermitian part of $\overline{C^\beta_J}$.

Since

$$0 \leq b_0 \leq (\text{Re } b)_+ \in C \subset J,$$

by [Ped 2], Prop. 1.4.5 we have $b_0 \in J$, so

$$b_0 \in C' \cap J = C.$$

Thus, for every $a \in J$ and $b \in C$ we have $\|(x - b)a\| \geq \|(x - b_0)a\|$ for some $0 \leq b_0 \leq x$ in C and (i) follows.

For (ii) put

$$f_\delta = \text{ support of } (b - \delta 1_{A^\sim})_+ \text{ in } M.$$

Then f_δ commutes with every element of C and

$$bf_\delta \geq \delta f_\delta, \quad b(1_M - f_\delta) \leq \delta(1_M - f_\delta).$$

In particular, $f_\delta \leq \frac{1}{\delta}b \in A$ and [Ped 2], Prop.1.4.5 yields $f_\delta \in J$. Consequently $f_\delta \in C' \cap A = C$.

For (iii) let $0 \neq a \in J$ and $\varepsilon > 0$ be arbitrary. According to (i) there exists $0 \leq b \leq \varepsilon$ in C such that
\[\| (e - b)a \| < \frac{\varepsilon}{2}, \]

Further, by (ii) there is a projection \(f \in C \) with
\[bf \geq \frac{\varepsilon}{2\|a\|} f, \quad b(1_A^*-f) \leq \frac{\varepsilon}{2\|a\|} \cdot (1_A^*-f). \]

Then \(f \leq e \) and \(e - f \leq (e - bf)^2 \), so
\[
\| (e - f)a \| = \| a^*(e - f)a \|^{1/2} \leq \\
\leq \| a^*(e - bf)^2a \|^{1/2} = \| (e - bf)e \| \leq \\
\leq \| (e - b)e \| + \| b(1_A^* - f)e \| < \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2\|a\|} \|a\| = \varepsilon
\]

For (iv) we have to show that if a projection \(g \in M \) majorizes all projections \(C \ni f \leq e \), then \(g \geq e \), that is \(e \) is equal to the greatest lower bound \(e \wedge g \) of \(e \) and \(g \) in the projection lattice of \(M \). Let us assume that
\[e_o = e - e \wedge g \neq 0. \]

Since \(J \) is essential ideal in \(M \), there exists \(a \in J \) with \(ae_o \neq 0 \). Choosing some \(0 < \delta < \|e_o a^* a e_o\| \) and putting
\[e_1 = \text{support of } (e_o a^* a e_o - \delta 1_M)_{+} \text{ in } M, \]
we have
\[0 \neq e_1 \leq \frac{1}{\delta} e_o a^* a e_o \in J. \]

Clearly, \(e_1 \leq e_o \) and [Ped 2], Prop. 1.4.5 yields also \(e_1 \in J \). Furthermore, for every projection \(f \in C \) we get successively
\[fe \in C' \cap J = C \text{ and } fe \leq e, \]
\[fe \leq e \wedge g, \text{ hence } fe_o = (fe)e_o = 0, \]
\[fe_1 = (fe_o)e_1 = 0. \]

Taking into account (ii), it follows that
\[be_1 = 0 \text{ for all } b \in C, \]
in particular
\[e_1 \in C' \cap J = C. \]

But then \(e_1 \leq e_o \leq e \) implies \(e_1 \leq e \wedge g \), which contradicts \(0 \neq e_1 \leq e_o = e - e \wedge g \).

In particular, \(C' \cap M \) is commutative. For the proof we notice that, since \(C' \cap M \) is a Rickart \(C^* \)-subalgebra of \(M \) (see [Be], §5, Proposition 5 or [S-Z], 9.12.(1)), it is the norm-closed linear span of its projections (see e.g. [S-Z], 9.4) and therefore it is enough to show that any two projections \(e_1, e_2 \in C' \cap M \) commute. But the \(*\)-automorphism \(M \ni x \mapsto (2e_2 - 1_M)x(2e_2 - 1_M) \in M \) leaves fixed \(C \), hence also the least upper bound of any projection family in \(C \) in the projection lattice of \(M \). Therefore it leaves fixed \(e_1 \), that is \(e_1 e_2 = e_2 e_1 \).

Moreover, \(C' \cap M \) is a masa of \(M \). Indeed, if \(C_o \supset C' \cap M \) is a commutative subalgebra of \(M \), then \(C_o \supset C \) and thus we have also \(C_o \subset C_o' \cap M \subset C' \cap M \).
For (v) we first notice that $C' \cap M$ is an AW^*-subalgebra of M containing C (see [Be], §4, Proposition 8 or [S-Z], 9.24.(1)). Now let N be any AW^*-subalgebra of M containing C. By (iv) N contains all projections from $C' \cap M$, hence $N \supset C' \cap M$. Consequently $C' \cap M$ is the AW^*-subalgebra of M generated by C.

Further, C is a two-sided ideal of $C' \cap M$:

$$b \in C \text{ and } y \in C' \cap M \implies by \in C' \cap J = C.$$

Moreover, it is essential, because a projection $e \in C' \cap M$ with $Ce = \{0\}$ belongs to the AW^*-subalgebra of $C' \cap M$ generated by C only if $e = 0$. Hence we can identify $C' \cap M$ with $M(C)$ (see [J] or [Ped 3]).

Finally we prove (vi). If the strict closure of C in M is $C' \cap M \ni 1_M$, then there exists a net $(u_i)_i$ in C with $u_i \to 1_M$ strictly in M, that is

$$\|a - u_i a\| \to 0 \text{ and } \|a - u_i a\| \to 0 \text{ for all } a \in J.$$

Conversely, let us assume that C contains a two-sided approximate unit $(u_i)_i$ for J. Then the strict topology β_C of $M(C) = C' \cap M$ agrees with the strict topology β_J of $M(J) = M$ on every norm bounded subset of $C' \cap M$. Indeed, if $(y_\lambda)_\lambda$ is a norm bounded net in $C' \cap M$, convergent to 0 with respect to β_C, and $0 \neq a \in J$, $\varepsilon > 0$ are arbitrary, then there exists ι_α such that

$$\|y_\lambda\| \cdot \|a - u_{\iota_\alpha} a\| < \frac{\varepsilon}{2} \text{ for all } \lambda,$$

and then there exists some λ_α with

$$\|y_\lambda u_{\iota_\alpha}\| < \frac{\varepsilon}{2\|a\|} \text{ for every } \lambda \geq \lambda_\alpha.$$

It follows for every $\lambda \geq \lambda_\alpha$:

$$\|y_\lambda a\| \leq \|y_\lambda(a - u_{\iota_\alpha} a)\| + \|y_\lambda u_{\iota_\alpha} a\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2\|a\|} \|a\| = \varepsilon.$$

But β_C is the finest locally convex vector space topology on $C' \cap M$ that agrees with β_C on every norm bounded subset of $C' \cap M$ (see [T], Cor. 2.7). Thus the restriction of β_J to $C' \cap M$, which is plainly finer than β_C, is actually equal to β_C. In particular, the β_C-density of C in $M(C)$ implies the β_J-density of C in $C' \cap M$.

It is well known that every commutative AW^*-algebra Z is monotone complete (see e.g. [S-Z], 9.26, Proposition 1). If M is an arbitrary AW^*-algebra, we call

$$\Phi : \{e \in M; e \text{ projection} \} \to Z^+$$

completely additive whenever, for every family $(e_i)_i$ of mutually orthogonal projections in M, we have

$$\Phi(\bigvee_i e_i) = \sum_i \Phi(e_i),$$

where the sum stands for the least upper bound in Z^+ of all finite sums of $\Phi(e_i)$’s.

Now we describe the strict closure of a masa of the norm-closed two-sided ideal generated by the finite projections of a discrete semi-finite AW^*-algebra:
Theorem 1 (on the abelian strict closure in discrete AW*-algebras). Let M be a discrete AW*-algebra, A the norm-closed linear span of all finite projections of M, and C a masa of A. Then the strict closure of C in $M(A) = M$ is equal to $C' \cap M$.

Proof. According to Lemma 1 (vi), we have to show that C contains a two-sided approximate unit for A. Without loss of generality we may assume that $A \neq \{0\}$, hence $C \neq \{0\}$.

Let $(e_i)_{i \in I}$ be a maximal family of mutually orthogonal non-zero projections in C. Then

$$\bigvee_i e_i = 1_M.$$

Indeed, $e_o = 1_M - \bigvee_i e_i$ belongs to $C' \cap M$, so Lemma 4 (iv) yields $e_o = \bigvee \{f \in C; f \leq e_o \text{ projection}\}$. Thus $e_o \neq 0$ would imply the existence of some projection $0 \neq f \leq e_o$ in C, contradicting the maximality of $(e_i)_{i \in I}$.

Denoting by Z the centre of M, we call central partition of 1_M any set of mutually orthogonal projections in Z with least upper bound 1_M. The projections

$$\bigvee_{p \in \mathcal{P}} (\sum_{i \in I_p} e_i) p, \quad \mathcal{P} \text{ central partition of } 1_M, \quad I_p \subset I \text{ finite for any } p \in \mathcal{P}$$

belong to $C' \cap M$ and are finite (see [Be], §15, Proposition 8), hence they belong to $C' \cap M = C$. We show that their family is an (increasing positive) approximate unit for A. For we have to prove that every finite projection e in M has the property

(P)

$$\Bigl\| (1_M - \bigvee_{p \in \mathcal{P}} (\sum_{i \in I_p} e_i) p) e \Bigr\| \leq \varepsilon.$$

But standard arguments show that every finite projection e in M is of the form

$$e = \bigvee_{n \geq 1} (e_{n,1} + \cdots + e_{n,n}) p_n,$$

where $p_n, n \geq 1$ are mutually orthogonal projections in Z and, for every $n \geq 1, e_{n,1}, \ldots, e_{n,n}$ are mutually orthogonal abelian projections of central support p_n (use [Be], §18, Exercises 3, 4 and Proposition 1), so it is enough to prove (P) for every abelian projection e in M. Moreover, since every abelian projection is majorized by an abelian projection of central support 1_M, without loss of generality we can restrict us to the case of an abelian projection e of central support 1_M.

For every $x \in M$ there exists a unique $\Phi_e(x) \in Z$ such that

$$exe = \Phi_e(x)e$$

(see [Be], §15, Proposition 6 and §5). Clearly, $\Phi_e : M \to Z$ is a conditional expectation and, according to [Kap 2], Lemma 7, it is completely additive on the projection lattice of M. Furthermore, $Z \ni z \mapsto ze \in Ze$ being *-isomorphism, we have

$$\|xe\|^2 = \|ex^*xe\| = \|\Phi_e(x^*xe)\| = \|\Phi_e(x^*x)\|, \quad x \in M.$$

Now, by the complete additivity of Φ_e,

$$\sum_i \Phi_e(e_i) = \Phi_e(1_M) = 1_M.$$
Thus, according to [Kap 2], Lemma 5, for every $\varepsilon > 0$ there exist a central partition \mathcal{P} of 1_M and finite sets $I_p \subset I, p \in \mathcal{P}$ such that
\[
\left\| \left(1_M - \sum_{i \in I_p} \Phi(e_i) \right)p \right\| \leq \varepsilon^2 \quad \text{for all } p \in \mathcal{P}.
\]
But then we have for every $p \in \mathcal{P}$
\[
\left\| \left(1_M - \sum_{i \in I_p} e_i \right)pe \right\|^2 = \left\| \Phi_e((1_M - \sum_{i \in I_p} e_i)p) \right\| = \left\| \left(1_M - \sum_{i \in I_p} \Phi(e_i) \right)p \right\| \leq \varepsilon^2,
\]
so, taking into account [Kap 1], Lemma 2.5,
\[
\left\| \left(1_M - \bigvee_{p \in \mathcal{P}} \left(\sum_{i \in I_p} e_i \right)p \right)e \right\| = \sup_{p \in \mathcal{P}} \left\| \left(1_M - \sum_{i \in I_p} e_i \right)pe \right\| \leq \varepsilon.
\]

2 Abelian Strict Closure in Continuous AW^*-algebras

For the treatment of the case of continuous M we need several lemmas on AW^*-algebras, which could be of interest for themselves. First we extend [Z], Lemma 2.2, concerning a Darboux property of normal functionals on von Neumann algebras without minimal projections, to the case of centre valued completely additive maps on the projection lattice of a continuous AW^*-algebra (similar results can be found in [Ars-Z] and, for tracial maps, in [Kad 2], Prop. 3.13, [Kaf], Prop. 27).

Lemma 2. Let M be a continuous AW^*-algebra, Z its centre, C a masa of M, and
\[
\Phi : \{ e \in M; e \text{ projection } \} \to Z^+
\]
a completely additive map such that
\[
\Phi(ep) = \Phi(e)p, \quad e \in M \text{ and } p \in Z \text{ projections}.
\]
Then, for every projection $e \in C$,
\[
\{ z \in Z; 0 \leq z \leq \Phi(e) \} = \{ \Phi(f); e \geq f \in C \text{ projection} \}.
\]

Proof. a) First we prove that for every projection $0 \neq g \in C$ there exists a projection $0 \neq h \leq g$ in C such that
\[
\Phi(h) \leq \frac{1}{2} \Phi(g).
\]
The case $\Phi(g) = 0$ being trivial, we can assume without loss of generality that $\Phi(g) \neq 0$.

Let $(g_i)_i$ be a maximal family of mutually orthogonal projections in Cg such that $\Phi(g_i) = 0$ for every i. Put $g_1 = g - \bigvee_i g_i \in C$. Then
\[
\Phi(g_1) = \Phi(g) - \sum_i \Phi(g_i) = \Phi(g) \neq 0,
\]
so $g_1 \neq 0$. By the maximality of $(g_i)_i$, for no projection $0 \neq g' \leq g_1$ in C can hold $\Phi(g') = 0$.
Now there exists a projection \(g_2 \leq g_1 \) in \(C \) such that \(g_2 \notin Zg_1 \). For let us assume the contrary, that is that

\[C = Zg_1 + C(1_M - g_1). \]

There exist projections \(h_1, h_2 \in M \) such that \(g_1 = h_1 + h_2 \) and \(h_1 \sim h_2 \) ([Be], §19, Th. 1) and then

\[C \subset Zh_1 + Zh_2 + C(1_M - g_1) \]

and the maximal abelianness of \(C \) imply that

\[C = Zh_1 + Zh_2 + C(1_M - g_1). \]

Thus

\[h_1, h_2 \in Cg_1 = Zg_1. \]

But, denoting by \(z(g_1) \) the central support of \(g_1 \),

\[Zz(g_1) \ni z \mapsto zg_1 \in Zg_1. \]

is a \(\ast \)-isomorphisms and it follows that \(h_1 \) and \(h_2 \) have orthogonal central supports, in contradiction to \(h_1 \sim h_2 \neq 0 \).

We claim that \(\Phi(g_2)\Phi(g_1 - g_2) \neq 0 \). Indeed, otherwise it would exist a projection \(p \in Z \) such that

\[\Phi(g_2) = \Phi(g_2)p \text{ and } \Phi(g_1 - g_2)p = 0 \]

and it would follow successively

\[\Phi(g_2(1_M - p)) = 0 \text{ and } \Phi((g_1 - g_2)p) = 0, \]

\[(g_2(1_M - p)) = 0 \text{ and } (g_1 - g_2)p = 0, \]

\[g_2 = g_2p = g_1p \in Zg_1. \]

Let \(q \in Z \) denote the support projection of \((\Phi(g_1) - 2\Phi(g_2))_+\). Then

\[\Phi(g_1q) - 2\Phi(g_2q) = (\Phi(g_1) - 2\Phi(g_2))_+ \geq 0, \]

\[\Phi(g_2q) \leq \frac{1}{2}\Phi(g_1q) \leq \frac{1}{2}\Phi(g_1) \leq \frac{1}{2}\Phi(g). \]

Similarly,

\[\Phi((g_1 - g_2)(1_M - q)) \leq \frac{1}{2}\Phi(g). \]

But we can not have simultaneously

\[\Phi(g_2q) = 0 \text{ and } \Phi((g_1 - g_2)(1_M - q)) = 0, \]

because this would imply

\[\Phi(g_2)\Phi(g_1 - g_2) = \Phi(g_2q)\Phi(g_1 - g_2) + \Phi(g_2)\Phi((1_M - q)(g_1 - g_2)) = 0. \]

Therefore, putting \(h = g_2q \) if \(\Phi(g_2q) \neq 0 \) and \(h = (g_1 - g_2)(1_M - q) \) otherwise, \(h \) is a non-zero projection in \(C \), majorized by \(g \), such that \(\Phi(h) \leq \frac{1}{2}\Phi(g) \).

b) Now let \(e \in C \) be a projection and let \(x \in Z, 0 \leq z \leq \Phi(e) \) be arbitrary. Choose a maximal family \((f_i)\), of mutually orthogonal projections in \(Ce \) satisfying
\[\sum_{i} \Phi(f_i) \leq z. \]

Then the projection \(f = \bigvee_{i} f_i \leq e \) belongs to \(C \) and
\[\Phi(f) = \sum_{i} \Phi(f_i) \leq z. \]

We claim that actually \(\Phi(f) = z \).

For let us assume the contrary. Then there exist a projection \(0 \neq p \in Z \) and \(\varepsilon > 0 \) such that
\[(z - \Phi(f))p \geq \varepsilon p. \]

The projection \(g = (e - f)p \in C \) is not zero, because otherwise it would follow
\[0 = (\Phi(e) - \Phi(f))p \geq (z - \Phi(f))p \geq \varepsilon p, \]
contradicting \(p \neq 0, \varepsilon > 0 \). Choosing an integer \(n \geq 1 \) with \(2^{-n}\|\Phi(e - f)\| \leq \varepsilon \), \(n \)-fold application of a) yields the existence of a projection \(0 \neq h \leq g \) in \(C \) such that
\[\Phi(h) \leq 2^{-n}\Phi((e - f)p) \leq \varepsilon p. \]

Since \(0 \neq h \in Ce \) is orthogonal to every \(f_i \) and
\[\Phi(h) + \sum_{i} \Phi(f_i) = \Phi(h) + \Phi(f) \leq \varepsilon p + \Phi(f) \leq z, \]
the maximality of \((f_i)_i\) is contradicted.
\[\square \]

It is well known that if the projection family \((e_i)_i\) in a finite \(AW^* \)-algebra \(M \) is upward directed and, for some projection \(f \in M, e_i \prec f \) for all \(i \), then \(\bigvee_{i} e_i \prec f \) (see [Be], §33, Exercise 1). The above statement actually holds in any \(AW^* \)-algebra \(M \) under the only assumption of the finiteness of \(f \) (see Appendix, Cor. 1). Here we give a proof for this, assuming additionally that the projections \(e_i \) are the finite partial sums of a family of mutually orthogonal projections in \(M \):

Lemma 3. Let \(M \) be an \(AW^* \)-algebra, \(f \in M \) a finite projection, and \((e_i)_{i \in I}\) a family of mutually orthogonal projections in \(M \) such that
\[\sum_{i \in F} e_i \prec f \text{ for every finite } F \subset I. \]

Then
\[\bigvee_{i \in I} e_i \prec f. \]

Proof According to the theory of Murray-von Neumann equivalence for projections in \(AW^* \)-algebras, we can assume without loss of generality that either \(fMf \) is of type \(I_n \) for some natural number \(n \geq 1 \), or that it is continuous (see [Be], §15, Th.1, §18, Th. 2, §6, Cor. 2 of Prop. 4).

Let us first assume that \(fMf \) is of type \(I_n \). By the Zorn Lemma there exists a maximal set \(P \) of mutually orthogonal central projections in \(M \) such that
\[\text{card } \{ i \in I; pe_i \neq 0 \} \leq n \text{ for every } p \in P. \]

We claim that \(\bigvee P = 1_M \). For let us assume that \(p_o = \bigvee P \neq 1_M \). Then we can find recursively \(n + 1 \) indices \(i_1, \ldots, i_{n+1} \in I \) such that
p_1 = (1_M - p_0)z(e_{i_1}) \ldots z(e_{i_{n+1}}) \neq 0,

where z(e_i) denotes the central support of e_i. By the assumption of the lemma there exist mutually orthogonal projections f_{i_1}, \ldots, f_{i_{n+1}} \leq f in M such that e_{i_j} \sim f_{i_j} for every 1 \leq j \leq n+1. For every 1 \leq j \leq n+1, the central support of p_1 f_{i_j} is p_1, so there exists an abelian projection g_j \leq p_1 f_{i_j} of central support p_1 (see [Be], §18, exercise 4). But then g_1, \ldots, g_{n+1} are mutually orthogonal, equivalent, non-zero projections in fMf (see [Be], §18, Prop.1), which contradicts [Be], §18, Prop. 4.

By the very orthogonal additivity of equivalence in AW*-algebras (see [Be], §11, Prop. 2) we conclude that

\[\bigvee_{i \in I} e_i = \bigvee \left\{ \sum_{p e_i \neq 0} p e_{i_j}; p \in \mathcal{P} \right\} < \bigvee \{ p f; p \in \mathcal{P} \} = f. \]

Let us next assume that fMf is continuous and let \(x \mapsto x^z \) denote the centre valued dimension function of the finite AW*-algebra fMf (see [Be], Ch.6).

For every \(i \in I \) there exists a projection \(e_i' \leq f \) in M such that \(e_i \sim e_i' \). Since \((e_i')^z \) does not depend on the choice of \(e_i' \), we can put

\[e_i^z = (e_i')^z. \]

By the assumption of the lemma, for every finite \(F \subset I \) we can choose the projections \(e_i', i \in F \), mutually orthogonal and then

\[\sum_{i \in F} e_i^z = \sum_{i \in F} (e_i')^z = \left(\sum_{i \in F} e_i' \right)^z \leq f. \]

It follows that all sums

\[\sum_{i \in J} e_i^z \leq f, \quad J \subset I \]

exist in the monotone complete centre of fMf.

Now let us consider the set of all families of mutually orthogonal projections in fMf

\[(f_i)_{i \in J} \text{ with } J \subset I, \]

for which \(f_i \sim e_i \) for every \(i \in J \). We can endowe this set with the partial order

\[(f_i)_{i \in J} \leq (f'_i)_{i \in J'} \iff J \subset J' \text{ and } f_i = f'_i \text{ for all } i \in J. \]

By the Zorn lemma there exists a maximal element \((f_i)_{i \in J} \) of the above partially ordered set. We claim that then \(J = I \). For let us assume the existence of some \(i_0 \in I \setminus J \). Since

\[e_{i_0}^z + \left(\bigvee_{i \in J} f_i \right)^z = e_{i_0}^z + \sum_{i \in J} f_i^z \leq \sum_{i \in I} e_i^z \leq f, \]

that is

\[e_{i_0}^z \leq \left(f - \bigvee_{i \in J} f_i \right)^z, \]

by [Be], §33, Th.3 (particular case of the above Lemma 5) there exists a projection \(f_{i_0} \leq f - \bigvee_{i \in J} f_i \) in M such that \(f_{i_0}^z = e_{i_0}^z = (e_{i_0}')^z \), hence \(f_{i_0} \sim e_{i_0}' \sim e_{i_0} \). But this contradicts the maximality of \((f_i)_{i \in J} \).
By the general additivity of equivalence in AW^*-algebras (see [Be], §20, Th. 1) we can conclude also in this case that

$$\bigvee_{i \in I} e_i \sim \bigvee_{i \in I} f_i \leq f.$$

Let M be a semi-finite AW^*-algebra, and A the norm-closed linear span of all finite projections of M. We recall that then $M = M(A)$.

Let us call a masa \tilde{C} of M M-semi-finite if $\tilde{C} \cap A$ is an essential ideal of \tilde{C} or, equivalently, if every non-zero projections in \tilde{C} majorizes a non-zero projection in $\tilde{C} \cap A$ (cf. with [Kaf]. Def. 1). For $\tilde{C} \subset M$ are equivalent:

1) \tilde{C} is an M-semi-finite masa of M;
2) $\tilde{C} = C' \cap M$ for some masa C of A.

Indeed, 2) implies 1) by Lemma 1 (iv), while 1) \Rightarrow 2) follows by noticing that, according to the M-semifiniteness of \tilde{C}, every projection in \tilde{C} is the least upper bound of a family of mutually orthogonal projections from $C = \tilde{C} \cap A$, and so $C' \cap M = C' \cap M = \tilde{C}$, $C' \cap A = (C' \cap M) \cap A = \tilde{C} \cap A = C$.

The following result extends [Kad 2], Th. 3.18 and [Kaf], Cor. 31 in the case of an M-semi-finite masa:

Theorem 2 (on labeling Murray-von Neumann equivalence classes). Let M be a semi-finite AW^*-algebra, A the norm-closed linear span of all finite projections of M, and C a masa of A. Then

(i) for any projections $M \ni f \leq e \in C' \cap M$ there exists a projection $f \sim g \leq e$ in $C' \cap M$;
(ii) for any projections $M \ni f \leq e \in C' \cap M$ of equal central supports, f finite and e properly infinite, there is a set \mathcal{P} of mutually orthogonal central projections in M with $\bigvee \mathcal{P} = 1_M$ such that, for every $p \in \mathcal{P}$, ep is the least upper bound in the projection lattice of M of some family of mutually orthogonal projections from C, each one of which is equivalent in M to fp.

Proof. (a) First we prove (i) in the case $e \in C$. Similarly as in the proof of Lemma 3, we can assume without loss of generality that either $eMe = eAe$ is of type I_n for some natural number $n \geq 1$, or it is continuous.

If eMe is of type I_n, by [Kad 2], Lemma 3.7 there exist mutually orthogonal projections $e_1, \ldots, e_n \in C$ with $\sum_{j=1}^n e_j = e$, such that each e_j is abelian in M and has the same central support in M as e (actually [Kad 2], Lemma 3.7 is proved only for von Neumann algebras, but an inspection of the proof shows that it works without any change also in the realm of the AW^*-algebras). On the other hand, using [Be], §18, Exercise 4 and Prop. 4, it is easy to see that there exist mutually orthogonal abelian projections $f_1, \ldots, f_n \in M$ with $\sum_{j=1}^n f_j = f$ and central supports $z(f) = z(f_1) \geq \cdots \geq z(f_n)$. By [Be], §18, Prop. 1 it follows that $f_j \sim e_j z(f_j)$ for all $1 \leq j \leq n$, so f is equivalent to $C \ni \sum_{j=1}^n e_j z(f_j) \leq e$.

Now let us assume that eMe is continuous and let $x \mapsto x^\sharp$ denote the centre valued dimension function of finite AW^*-algebra eMe. Then Lemma 2 yields the existence of a projection $C \ni g \leq e$ such that $g^\sharp = f^\sharp$, hence $g \sim f$.

□
(b) Next we prove (i) in the case \(f \in A \).

By Lemma 1 (iv) there exists a family \((e_i)_{i \in I} \) of mutually orthogonal projections in \(C \) such that

\[
e = \bigvee_{i \in I} e_i.
\]

Let \(\mathcal{P} \) be a maximal set of mutually orthogonal central projections in \(M \) such that, for every \(p \in \mathcal{P} \), there is a finite set \(F_p \subset I \) with

\[
fp < p \sum_{i \in F_p} e_i \in C.
\]

By the above part (a) of the proof, for every \(p \in \mathcal{P} \) there exists a projection \(g(p) \in C \) with \(fp \sim g(p) \leq p \sum_{i \in F_p} e_i \).

If \(\bigvee \mathcal{P} = 1_M \) then \(f = \bigvee \{ fp ; p \in \mathcal{P} \} \) is equivalent to \(C' \cap M \ni \bigvee \{ g(p) ; p \in \mathcal{P} \} \leq e \), so let us assume in the sequel that \(p_o = 1_M - \bigvee \mathcal{P} \neq 0 \).

By the maximality of \(\mathcal{P} \) and by the comparison theorem (see [Be], §14, Cor. 1 of Prop. 7) we have

\[
p_o \sum_{i \in F} e_i < f \quad \text{for every finite } F \subset I.
\]

According to Lemma 3 it follows that

\[
p_o e = \bigvee_{i \in I} p_o e_i < f,
\]

so by the Schröder-Bernstein theorem (see [Be], §12) we have

\[
fp_o \sim ep_o.
\]

Consequently \(f = fp_o + \bigvee \{ fp ; p \in \mathcal{P} \} \) is equivalent to

\[
C' \cap M \ni ep_o + \bigvee \{ g(p) ; p \in \mathcal{P} \} \leq e.
\]

(c) Now we prove (ii).

Let \(\mathcal{P} \) be a maximal set of mutually orthogonal central projections in \(M \) such that, for every \(p \in \mathcal{P} \), \(ep \) is the least upper bound in the projection lattice of \(M \) of some family of mutually orthogonal projections from \(C \), each one of which is equivalent in \(M \) to \(fp \). We claim that then \(\bigvee \mathcal{P} = 1_M \).

For let us assume that \(p_o = 1_M - \bigvee \mathcal{P} \neq 0 \). We notice that \(fp \neq 0 \) for any central projection \(0 \neq p \leq p_o \) in \(M \) : indeed, otherwise \(p \) would be orthogonal to the common central support of \(f \) and \(e \), so \(ep = 0 \) would be equal to \(fp = 0 \in C \), in contradiction with the maximality of \(\mathcal{P} \).

Let \((e_i)_{i \in I} \) be a maximal family of mutually orthogonal projections in \(C \) such that \(fp_o \sim e_i \leq ep_o \) for all \(i \in I \). By the comparison theorem there exists a central projection \(p_1 \leq p_o \) in \(M \) such that

\[
\left(ep_o - \bigvee_{i \in I} e_i \right) p_1 \prec fp_1,
\]

\[
\left(ep_o - \bigvee_{i \in I} e_i \right) (p_o - p_1) \succ f(p_o - p_1).
\]

Then \(p_1 \neq 0 \) : indeed, \(p_1 = 0 \) would imply

\[
A \ni fp_o \prec \bigvee_{i \in I} e_i \in C' \cap M
\]
and, by the above proved (b), it would exist a projection \(fp_0 \sim e' \leq e_0_\cap e_v \in (C' \cap M) \cap A = C \), contradicting the maximality of \((e_i)_{i \in I}\). Put
\[
e_0 = e_0 - \bigvee_{i \in I} e_i p_1 < fp_1.
\]
Then \(e_0 \) is finite and belongs to \(C' \cap M \), so it belongs to \(C' \cap A = C \). On the other hand, the proper infiniteness of \(e \) and \(e_0 \neq 0 \) imply that \(e_1 = e_0 + \bigvee_{i \in I} e_ip_1 \) is properly infinite. It follows that the set \(I \) is necessarily infinite, hence containing an infinite sequence \(\ell_1, \ell_2, \ldots \).

For every \(j \geq 1 \), \(e_0 \sim f p_1 \sim e_{i} p_1 \in C \) and the above proved a) yield the existence of some projection \(e_0 \sim e_{i}^{(1)} \leq e_{i} p_1 \) in \(C \). In particular, all projections \(e_{i}^{(1)} \) are equivalent, hence, the projections \(e_{i} p_1 \) being finite, the projections \(e_{i}^{(2)} = e_{i} p_1 - e_{i}^{(1)} \) are also all equivalent (see [Be], §17, Exercise 3). Consequently, the projections from \(C \)
\[
e_{i} = e_{o} + e_{i}^{(2)} \text{ and } e_{i}^{(2)} = e_{i}^{(1)} + e_{i}^{(2)}, \quad j \geq 2
\]
are all equivalent in \(M \) to \(e_{i}^{(1)} + e_{i}^{(2)} = e_{i} p_1 \sim f p_1 \). Clearly, they are mutually orthogonal and
\[
\bigvee_{j \geq 1} e_{i}^{(1)} = e_0 \vee \bigvee_{j \geq 1} e_{i}^{(2)} = e_0 \vee \bigvee_{j \geq 1} e_{i} p_1.
\]
Letting
\[
e_i' = e_i p_1 \text{ for } i \in I \setminus \{\ell_1, \ell_2, \ldots\},
\]
we conclude that all projections \(e_i' \), \(i \in I \), belong to \(C \) and are equivalent in \(M \) to \(f p_1 \). Moreover, they are mutually orthogonal and
\[
\bigvee_{i \in I} e_i' = \bigvee_{i \neq \ell_j} e_i' \vee \bigvee_{i \neq \ell_j} e_i = e_0 \vee \bigvee_{i \neq \ell_j} e_i p_1 \vee \bigvee_{i \neq \ell_j} e_i p_1 = e_0 \vee \bigvee_{i \neq \ell_j} e_i p_1 = e_0 \vee \bigvee_{i \in I} e_i p_1.
\]
But this contradicts the maximality of \(P \).

(d) Finally we prove (i) in full generality.

We can assume without loss of generality that either \(f \) is finite, or it is properly infinite. The case of finite \(f \) was already settled in (b), so it remains to consider only the case of properly infinite \(f \).

Choose some finite projection \(M \ni f_0 \leq f \) of the same central support as \(f \) (see [Be], §17, Exercise 19 iii)). According to the above proved (c), we can assume without loss of generality that there are families \((e_i)_{i \in I}\) and \((f_\kappa)_{\kappa \in K}\) of mutually orthogonal projections in \(M \) such that
\[
e_i \sim f_0 \sim f_\kappa \text{ for all } i \in I \text{ and } \kappa \in K
\]
\[
\bigvee_{i \in I} e_i = e, \quad \bigvee_{\kappa \in K} f_\kappa = f.
\]
If \(\text{card} \ K \leq \text{card} \ I \), that is if there exists an injective map \(K \ni \kappa \mapsto i(\kappa) \in I \), then the projection \(g = \bigvee_{\kappa \in K} e_i(\kappa) \leq e \) belongs to \(C' \cap M \) and is equivalent to \(\bigvee_{\kappa \in K} f_\kappa = f \). On the other hand, if \(I \leq \text{card} \ K \), then \(e = \bigvee_{i \in I} e_i \sim \bigvee_{\kappa \in K} f_\kappa = f \leq e \) and the Schröder-Bernstein theorem imply that \(e \sim f \).

Let us now prove the statement of [Kad 2], Th. 3.18 and [Kaf], Cor. 31 in the case of an \(M \)-semifinite masa of an arbitrary semifinite \(AW^* \)-algebra \(M \):
Corollary. Let M be a semifinite AW^*-algebra, A the norm-closed linear span of all finite projections of M, and C a masa of A. If $e \in C' \cap M$ is a projection and $1 \leq n \leq \aleph_0$ is a cardinal number such that e is the least upper bound of n mutually orthogonal, equivalent projections from M, then there exist n mutually orthogonal projections in $C' \cap M$, all equivalent in M, whose least upper bound is e.

Proof. It is enough to treat separately the case of finite respectively properly infinite e. If e is finite, n can be only a natural number. Let f_1, \ldots, f_n be mutually orthogonal, equivalent projections in M with $\sum_{j=1}^n f_j = e$. By (i) in the above theorem there exists a projection $f_1 \sim e_1 \leq e$ in C. Since e is finite, it follows that $\sum_{j=2}^n f_j \sim e - e_1$, so we can apply again (i) in the above theorem to get a projection $f_2 \sim e_2 \leq e - e_1$ in C. By induction we obtain n mutually orthogonal projections $e_1, \ldots, e_n \in C$ such that $f_j \sim e_j$ for all j and $\sum_{j=1}^n e_j = e$.

Now let us assume that e is properly infinite and consider a set I of cardinality n. Choosing a finite projection $M \ni f \leq e$ of the same central support as e (see [Be], §17, Exercise 19 iii)), (ii) in the above theorem entails the existence of a set \mathcal{P} of mutually orthogonal central projections in M with $\sqrt{\mathcal{P}} = 1_M$ such that, for every $p \in \mathcal{P}$, ep is the least upper bound of some set \mathcal{E}_p of mutually orthogonal projections from C, each one of which is equivalent in M to fp. If $ep \neq 0$ then \mathcal{E}_p must be infinite, so there exists a partition $(\mathcal{E}_{p,e})_{e \in I}$ of \mathcal{E}_p in n sets of equal cardinality. Then the projections $e_e = \bigvee_{ep \neq 0} \bigvee_{e \in I} \mathcal{E}_{p,e}$, $e \in I$, belong to $C' \cap M$, are mutually orthogonal and equivalent in M, and $\bigvee_{e \in I} e_e = e$.

Let M be a finite AW^*-algebra with centre Z and let $x \mapsto x^z$ denote its centre valued dimension function (see [Be], Ch. 6). It is known (see [Bl-Ha], II, 1) that Φ can be uniquely extended to a centre valued quasitrace on M, that is to a map $\Phi : M \to Z$ such that
- Φ is linear on commutative $*$-subalgebras of M,
- $\Phi(a + ib) = \Phi(a) + i\Phi(b)$ for all selfadjoint $a, b \in M$,
- Φ acts identically on Z,
- $0 \leq \Phi(x^*x) = \Phi(xx^*)$ for all $x \in M$,
and then
- $\Phi(a) \leq \Phi(b)$ whenever $a \leq b$ are selfadjoint elements of M,
- Φ is norm continuous, more precisely, $\|\Phi(a) - \Phi(b)\| \leq \|a - b\|$ for all selfadjoint $a, b \in M$.

We shall use the symbol \natural to denote also the above Φ.

According to classical results of F.J. Murray and J. von Neumann, the centre valued quasitrace of every finite W^*-algebra is additive, hence linear.

It is an open question, raised by I. Kaplansky, whether the centre valued quasitrace of every finite AW^*-algebra is additive. Recently U. Haagerup has proven that the answer to Kaplansky’s question is positive for any finite AW^*-algebra which is generated (as an AW^*-algebra) by an exact C^*-subalgebra (see [Haa], Th. 5.11, Prop. 3.12 and Lemma 3.7 (4)).

We notice that if M is a finite AW^*-algebra and $n \geq 1$ is an integer, then the $*$-algebra $\text{Mat}_n(M)$ of all $n \times n$ matrices over M is again a finite AW^*-algebra (see
[Be], §62). Denoting by \sharp_n and \sharp_n the respective centre valued quasitraces, it is easily seen that

$$n \cdot \begin{pmatrix} x & 0 & 0 \\ 0 & 0 & \ddots \\ 0 & \cdots & 0 \end{pmatrix}^{\sharp_n} = \begin{pmatrix} x^{\sharp_n} & 0 & 0 \\ 0 & x^{\sharp_n} & \ddots \\ 0 & \cdots & x^{\sharp_n} \end{pmatrix}, \quad x \in M.$$

Moreover the additivity of \sharp is equivalent with the validity of

$$2 \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}^{\sharp_2} = \begin{pmatrix} x_{11}^{\sharp_2} + x_{22}^{\sharp_2} & 0 \\ 0 & x_{11}^{\sharp_2} + x_{22}^{\sharp_2} \end{pmatrix}.$$

Indeed, using the above equality, we get for all $0 \leq a, b \in M$

$$\begin{pmatrix} (a + b)^{\sharp} & 0 \\ 0 & (a + b)^{\sharp} \end{pmatrix} = 2 \cdot \begin{pmatrix} a + b & 0 \\ 0 & 0 \end{pmatrix}^{\sharp_2} = 2 \cdot \left[\begin{pmatrix} a^{1/2} & b^{1/2} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a^{1/2} & 0 \\ b^{1/2} & 0 \end{pmatrix} \right]^{\sharp_2} = 2 \cdot \left[\begin{pmatrix} a^{1/2} & 0 \\ b^{1/2} & 0 \end{pmatrix} \begin{pmatrix} a^{1/2} & b^{1/2} \\ 0 & 0 \end{pmatrix} \right]^{\sharp_2} = 2 \cdot \begin{pmatrix} a^{\sharp_2} + b^{\sharp_2} & 0 \\ 0 & a^{\sharp_2} + b^{\sharp_2} \end{pmatrix}.$$

Conversely, assuming that \sharp is additive, it is easy to verify that

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}^{\sharp} \mapsto \frac{1}{2} \begin{pmatrix} x_{11}^{\sharp_2} + x_{22}^{\sharp_2} & 0 \\ 0 & x_{11}^{\sharp_2} + x_{22}^{\sharp_2} \end{pmatrix}$$

is a centre valued quasitrace on $\text{Mat}_2(M)$.

For a given $\delta > 0$, we say that the centre valued quasitrace \sharp of a finite AW^*-algebra M is δ-subadditive (resp. δ-superadditive) if the map $M_+ \ni a \mapsto (a^{\sharp})^{\delta}$ is subadditive (resp. superadditive). Clearly, δ-subadditivity (δ-superadditivity) of \sharp implies its δ'-subadditivity (δ'-superadditivity) whenever $\delta' < \delta(\delta' > \delta)$. It was proven by U. Haagerup that \sharp is always $\frac{1}{2}$-subadditive (see [Haa], Lemma 3.5 (1)) and it seems reasonable to conjecture that it is also always 2-superadditive (or, at least, k-superadditive for some $k \geq 1$).

We notice as a curiosity that, for any two projections p, q in a finite AW^*-algebra M with centre valued quasitrace \sharp,

$$(p + q)^{\sharp} = p^{\sharp} + q^{\sharp}.$$

Indeed, since

$$\begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} = \begin{pmatrix} p & \pm q \\ 0 & \pm q \end{pmatrix} \begin{pmatrix} p & 0 \\ \pm q & q \end{pmatrix} = \begin{pmatrix} p & \pm pq \\ \pm qp & q \end{pmatrix} = \begin{pmatrix} p & 0 \\ \pm q & 0 \end{pmatrix} \begin{pmatrix} p & \pm q \\ 0 & 0 \end{pmatrix},$$

and $\begin{pmatrix} p & pq \\ q & -qp \end{pmatrix}, \begin{pmatrix} p & -pq \\ q & q \end{pmatrix}$ commute, we have
This can be deduced also from Haagerup’s result, taking to account that the C^*-algebra generated by two projections is of type I, hence nuclear, hence exact.

Lemma 4. Let M be a finite \AW^*-algebra, whose centre valued quasitrace \natural is k-superadditive for some $k \geq 1$. Let further $e_1, \ldots, e_n \in M$ be mutually equivalent projections with $\sum_{j=1}^n e_j = 1_M$. Then there exists a projection $e_1 \sim p \in M$ such that, for every projection $f \in \{e_1, \ldots, e_n\}' \cap M$,

$$f^2 \geq (1 - \|(1_M - f)p\|^2)n^{\frac{k}{k-1}}1_M.$$

Proof. Let $v_1, \ldots v_n \in M$ be partial isometries such that

$$v_j^* v_j = e_1, \quad v_j v_j^* = e_j, \quad 1 \leq j \leq n.$$

Since

$$\left(\frac{1}{\sqrt{n}} \sum_{j=1}^n v_j\right)^* \frac{1}{\sqrt{n}} \sum_{j=1}^n v_j = \frac{1}{n} \sum_{j_1, j_2=1}^n v_{j_1}^* v_{j_2} = \frac{1}{n} \sum_{j=1}^n v_j^* v_j = e_1,$$

$$p = \frac{1}{n} \sum_{j_1, j_2=1}^n v_{j_1} v_{j_2}^* = \frac{1}{\sqrt{n}} \sum_{j=1}^n v_j \left(\frac{1}{\sqrt{n}} \sum_{j=1}^n v_j\right)^*$$
is a projection in M equivalent to e_1.

Now let the projection

$$f \in \{e_1, \ldots, e_n\}' \cap M$$

be arbitrary and set $\delta = \|(1_M - f)p\|$. Since the case $\delta = 1$ is trivial, we can assume without loss of generality that $\delta < 1$. Then

$$\|p - pf p\| = \|(1_M - f)p\|^2 = \delta^2 < 1,$$

so $pf p \geq (1 - \delta^2)p$ is invertible in pMp. Thus the polar decomposition $f p = w \cdot |f p|$ exists in the C^*-algebra generated by p and f and we have

$$w^* w = p, \quad f p f = w(pf p)w^* \geq (1 - \delta^2)ww^*.$$

Let us denote $\zeta = e^{\frac{i\pi}{n}}$. Then
\[u = \sum_{j=1}^{n} \zeta^j e_j \in \{e_1, \ldots, e_n, f\}' \cap M \]
is unitary. Since
\[
u^m p u - m = \frac{1}{n} \sum_{j,j_1,j_2,j'=1}^{n} \zeta^{mj} e_{j_1} v_{j_2}^* \zeta^{-mj'} e_{j_1}' = \]
\[
= \frac{1}{n} \sum_{j_1,j_2=1}^{n} \zeta^{m(j_1-j_2)} v_{j_1} v_{j_2}^* = \]
and
\[
\sum_{m=1}^{n} \zeta^{mj} = 0 \text{ for every } 1 \leq j \leq n - 1,
\]
we have
\[
\sum_{m=1}^{n} u^m p u - m = \frac{1}{n} \sum_{j_1,j_2=1}^{n} \left(\sum_{m=1}^{n} \zeta^{m(j_1-j_2)} \right) v_{j_1} v_{j_2}^* = \]
\[
= \frac{1}{n} \sum_{j_1=1}^{n} n v_{j_1} v_{j_1}^* = 1_M \]
Therefore
\[
f = f \sum_{m=1}^{n} u^m p u - m f = \sum_{m=1}^{n} u^m (fpf) u - m \geq (1 - \delta^2) \sum_{m=1}^{n} u^m w w^* u - m
\]
and, using the superadditivity of \(\zeta \), we get
\[
f^{\sharp} \geq (1 - \delta^2) \left(\sum_{m=1}^{n} u^m w w^* u - m \right)^{\sharp} \geq \]
\[
\geq (1 - \delta^2) \left(\sum_{m=1}^{n} \left((u^m w w^* u - m)^{\sharp} \right)^k \right)^{\frac{1}{k}} \]
\[
= (1 - \delta^2) \left(n (w^* w)^{\sharp} \right)^{\frac{1}{k}} = (1 - \delta^2) n^{\frac{1}{k}} p^{\sharp}.
\]
But \(p^{\sharp} = e_j^\sharp \) for all \(1 \leq j \leq n \), so
\[
n p^{\sharp} = \sum_{j=1}^{n} e_j^\sharp = \left(\sum_{j=1}^{n} e_j \right)^{\sharp} = 1_M
\]
and we conclude that \(f^{\sharp} \geq (1 - \delta^2) n^{\frac{1}{k}} - 11_M. \)

Now we are ready to prove the following

Theorem 3 (on the abelian strict closure in continuous semi-finite AW*-algebras).

Let \(M \) be a continuous semi-finite AW*-algebra such that, for some finite projection \(e_0 \in M \) of central support \(1_M \) and some \(k \geq 1 \), the centre valued quasitrace of \(e_0 M e_0 \) is \(k \)-superadditive. Let further \(A \) denote the norm-closed linear span of all finite projections of \(M \), and \(C \) a masa of \(A \). Then the strict closure of \(C \) in \(M = M(A) \) is \(C \).
Proof. Let us assume that the strict closure $\overline{C}^\beta \subset C' \cap M$ of C contains some $0 \leq x \notin C$.

(a) First we prove that then \overline{C}^β contains some projection $e \notin C$.

For let e_δ denote, for every $\delta > 0$, the support of $(x - \delta 1_M)_+$ in the AW^*-subalgebra $C' \cap M$ of M. Then

$$xe_\delta \geq \delta e_\delta, \quad x(1_M - e_\delta) \leq \delta(1_M - e_\delta).$$

In particular, there exists $0 \leq y \in C' \cap M$ with $yx = e_\delta$. Moreover, $e_\delta \in \overline{C}^\beta$.

Indeed, by Lemma 1 (i) there is a net $(b_i)_i$ in C with

$$0 \leq b_i \leq x$$

for all i and $b_i \to x$ strictly.

Then $0 \leq yb_i \in C' \cap A = C$ for all i and

$$\|(e_\delta - yb_i)a\| = \|y(x - b_i)a\| \leq \|y\| \cdot \|(x - b_i)a\| \to 0.$$

for every $a \in A$.

(b) Next we prove the existence of an infinite sequence of mutually orthogonal projections $0 \neq e_1, e_2, \ldots \in C$, all equivalent in M to e_oq_o for some projection q_o in the centre Z of M, such that $\bigvee_{n \geq 1} e_n \in \overline{C}^\beta$.

Let e be a projection as in (a). Then e is not finite, so there exists a projection $q \in Z$ such that eq is properly infinite. But then, by the comparison theorem, there exists a projection $0 \neq q_o \in Z$ such that $e_oq_o \prec eq$. Since the central support of e_o is 1_M, we have $q_o \leq q$.

Now, according to (ii) in Theorem 2 (on labeling Murray-von Neumann equivalence classes), there exists a family $(e_i)_{i \in I}$ of mutually orthogonal projections in C, all equivalent in M to $e_oq_o \neq 0$, such that $\bigvee_{i \in I} e_i = eq_o$. I must be infinite, so it contains an infinite sequence i_1, i_2, \ldots. Put

$$e_n = e_{i_n}, \quad n \geq 1.$$

Then $\bigvee_{n \geq 1} e_n$ belongs to \overline{C}^β. Indeed, since $\bigvee_{n \geq 1} e_n \in C' \cap M$, if $(b_\kappa)_{\kappa}$ is a net in C which converges strictly to e, then the net $(b_\kappa \bigvee_{n \geq 1} e_n)_{\kappa}$ is contained in C and converges clearly to $e \bigvee_{n \geq 1} e_n = \bigvee_{n \geq 1} e_n$ in the strict topology of M.

(c) Finally we prove that the statement in (b) leads to a contradiction.

Let us denote by \sharp the map $\bigcup_{n \geq 1} e_n M e_n \to Zq_o$ such that, for every $n \geq 1$, $e_n M e_n \ni x \mapsto x^\sharp e_n$ is the centre valued quasitrace of $e_n M e_n$. It is easy to see that \sharp takes the same value in two projections from $\bigcup_{n \geq 1} e_n M e_n$ if and only if they are equivalent in M.

Let $n \geq 1$ be arbitrary and let $j_n = \left\lceil n^{\frac{k+1}{k}} \right\rceil \geq 1$ denote the integer part of $n^{\frac{k+1}{k}}$. According to the corollary of Theorem 2 (on labeling Murray-von Neumann equivalence classes), there exist projections

$$e_{n,1}, \ldots, e_{n,j_n} \in C,$$

such that

$$\sum_{j=1}^{j_n} e_{n,j} = e_n,$$

such that

$$e_{n,j}^k = \frac{1}{j_n} q_o \text{ for all } 1 \leq j \leq j_n.$$
Since $e_n \sim e_o q_o$, the centre valued quasitrace of $e_n M e_n$ is k-superadditive and Lemma 4 yields the existence of a projection $p_n \in e_n M e_n$ with $p_n^2 = \frac{1}{f_n} q_o$ such that, for every projection $g \in \{e_{n,1}, \ldots, e_{n,j_n}\}' \cap e_n M e_n$,
\[
g^2 \geq (1 - \| (e_n - g) p_n \|^2) \frac{1}{f_n} q_o \geq (1 - \| (e_n - g) p_n \|^2) \frac{1}{n} q_o.
\]

Now put $p = \bigvee_{n \geq 1} p_n$. Since $p_n^2 = \frac{1}{f_n} q_o$ and $\sum_{n \geq 1} \frac{1}{f_n} < +\infty$, using Lemma 2 it is easy to verify that p is equivalent to a subprojection of the sum of finitely many e_n's. In particular, p is finite, that is $p \in A$. Therefore, $\bigvee_{n \geq 1} e_n$ being in $\overline{C^g}$, Lemma 1 (iii) yields the existence of a projection $\bigvee_{n \geq 1} e_n \geq f \in C$ with
\[
\left\| \left(\bigvee_{n \geq 1} e_n - f \right) p \right\| \leq \frac{1}{\sqrt{2}}.
\]
But then, for every $n \geq 1$, fe_n is a projection in $C \cap e_n M e_n \subset \{e_{n,1}, \ldots, e_{n,j_n}\}' \cap e_n M e_n$ and the above yields
\[
(f e_n)^2 \geq (1 - \| (e_n - f e_n) p_n \|^2) \frac{1}{n} q_o \geq \frac{1}{2n} q_o.
\]
Since $\sum_{n \geq 1} \frac{1}{2n} = +\infty$, using again Lemma 2, it is easily seen that $f = \bigvee_{n \geq 1} (f e_n)$ is equivalent to $\bigvee_{n \geq 1} e_n$. In particular, f is properly infinite, in contradiction with $f \in C \subset A$. □

3 Weyl-von Neumann-Berg-Sikonia type theorems

We recall that any Rickart C^*-algebra M is σ-normal, what means that, for every increasing sequence $(e_k)_{k \geq 1}$ of projections in M, the least upper bound of $(e_k)_{k \geq 1}$ in the projection lattice of M is actually its least upper bound in the ordered space \overline{M}_h of all self-adjoint elements of M (see [A-Go 2] or [Sa]). Therefore we shall speak in the sequel simply about the least upper bound of increasing sequences of projections in M.

Let us first prove a lemma about the sequential approximability of a projection in a Rickart C^*-algebra from a two-sided ideal:

Lemma 5. Let M be a unital Rickart C^*-algebra, J a two-sided ideal of M, and $f \in M$ a projection. Then the following statements are equivalent:

(a) there exists a sequence $(b_k)_{k \geq 1}$ of positive elements in J such that $b_k \leq f$ for all $k \geq 1$ and every projection $e \in M$ with $b_k \leq e$, $k \geq 1$, satisfies $f \leq e$;

(b) there exists an increasing sequence $(f_k)_{k \geq 1}$ of projections in J, whose least upper bound in M is f.

Proof. Let us assume that (a) holds and put
\[
f_{k,l} = \text{support of} \left(b_k - \frac{1}{l} 1_M \right)_+ \leq f, \quad k, l \geq 1,
\]
\[
f_n = \bigvee_{1 \leq k, l \leq n} f_{k,l} \text{ in the projection lattice of } M \leq f, \quad n \geq 1.
\]
Since \(b_k f_{k,l} \geq \frac{1}{l} f_{k,l} \), and so \(f_{k,l} \) can be factorized by \(b_k \leq f \), we have \(f \geq f_{k,l} \in \mathcal{J} \) for all \(k \) and \(l \). Further, using the validity of the Parallelogramm Law in all Rickart \(C^*\)-algebras (see [Be], §13, Th. 1), we obtain also \(f \geq f_n \in \mathcal{J} \), \(n \geq 1 \).

Now \((f_n)_{n \geq 1} \) is an increasing sequence, whose least upper bound in the projection lattice of \(M \) is \(f \). Indeed, if \(e \in M \) is a projection which majorizes every \(f_n \), hence every \(f_{k,l} \), then we have

\[
\| (1_M - e) b_k \| \leq \frac{1}{l}.
\]

Thus

\[
b_k = e b_k e \leq e \text{ for all } k \geq 1.
\]

and it follows that \(f \leq e \).

Conversely, (b) obviously implies (a) with \(b_k = f_k \).

\[\square\]

For unital Rickart \(C^*\)-algebras we have the following Weyl-von Neumann-Berg-Sikonia type result (cf. with [Z], Theorem 3.1 and [Ak-Ped], §4):

Theorem 4. Let \(M \) be a unital Rickart \(C^*\)-algebra, and \(\mathcal{J} \) a norm-closed two-sided ideal of \(M \), which contains a sequence of positive elements such that \(1_M \) is the only projection in \(M \) majorizing the sequence. Then, for any normal \(y \in M \) and every \(\varepsilon > 0 \), there exist a masa \(C \) of \(\mathcal{J} \) and an element \(x \) of the masa \(C' \cap M \) of \(M \), such that

1) \(C \) contains an increasing sequence of projections, whose least upper bound in \(M \) is \(1_M \),

2) \(y - x \in \mathcal{J} \) and \(\| y - x \| \leq \varepsilon \).

Remark. We notice that in Theorem 4 \(C' \cap M \) is the sequentially monotone closure of \(C \) in the following sense: every \(0 \leq a \in C' \cap M \) is the least upper bound in \(M_h \) of some increasing sequence of positive elements from \(\mathcal{J} \).

Indeed, if \((e_k)_{k \geq 1} \) is an increasing sequence of projections in \(C \), whose least upper bound in \(M \) is \(1_M \), then \((a^{1/2} e_k a^{1/2})_{k \geq 1} \) is an increasing sequence of positive elements from \(\mathcal{J} \), whose least upper bound in \(A_h \) is \(a^{1/2} 1_M a^{1/2} = a \) (see [S-Z], 9.14, the remark after Proposition 3).

\[\square\]

For the proof of Theorem 4 we need the next result on quasi-central approximate units, implicitly contained in [Z], Proposition 1.2:

Lemma 6. Let \(M \) be a unital Rickart \(C^*\)-algebra, \(\mathcal{J} \) an essential, norm-closed, two-sided ideal of \(M \), and \(B \subset M \) a commutative \(C^*\)-subalgebra. Then the upward directed set of all projections of \(\mathcal{J} \) contains a subnet \((e_i)_{i \in I} \) which, besides being automatically approximate unit for \(\mathcal{J} \), is quasi-central for \(B \), that is

\[
\lim_i \| e_i b - b e_i \| = 0 \text{ for all } b \in B.
\]

Proof. Passing to the Rickart \(C^*\)-subalgebra of \(M \) generated by \(B \) and \(1_M \) (see e.g. [S-Z], 9.11 (3)), we can assume without loss of generality that \(B \) is a Rickart \(C^*\)-subalgebra of \(M \) containing \(1_M \).
Let P denote the set of all finite sets P of projections from B satisfying the equality $\sum_{p \in P} p = 1_M$ and set

$$I = \{ f \in A ; f \text{ projection } \} \times P.$$

We endow I with a partial order by putting $(f_1, P_1) \leq (f_2, P_2)$ whenever $f_1 \leq f_2$ and the C^*-algebra $C^*(P_1)$ generated by P_1 is contained in $C^*(P_2)$ (that is the partition P_2 is a refinement of P_1). Clearly, in this way I becomes an upward directed ordered set.

Let $\iota = (f, P) \in I$ be arbitrary. For every $p \in P$, the right support $r(fp)$ of fp is equivalent in M to the left support $l(fp) \leq f \in J$ (see [A] or [A-Go 1]), so it belongs to J. Thus

$$e_\iota = \sum_{p \in P} r(fp)$$

is a projection in J. Since every $r(fp) \leq p$ belongs to the commutant P', also $e_\iota \in P'$. Furthermore,

$$f \leq e_\iota .$$

Indeed, for every $q \in P$,

$$fq = fq r(fq) = \sum_{p \in P} fq r(fp) = fqe_\iota ,$$

so

$$f = f \sum_{q \in P} q = \sum_{q \in P} fqe_\iota = fe_\iota \leq e_\iota .$$

It is easily seen that

$$\iota_1 \leq \iota_2 \Rightarrow e_{\iota_1} \leq e_{\iota_2} ,$$

so $(e_{\iota})_{\iota \in I}$ is a subnet of the upward directed set of all projections of J.

Now, the upward directed set of all projections f of J is an increasing approximate unit for J. Indeed, $\{ x \in J ; \lim_{f} \| x(1_M - f) \| = 0 \}$ is a norm-closed linear subspace of J containing all projections from J, hence it is equal to J. Thus also the subnet $(e_{\iota})_{\iota \in I}$ is an approximate unit for J.

On the other hand, the norm-closed linear subspace $\{ b \in B ; \lim_{k} \| e_\iota b - be_\iota \| = 0 \}$ contains every projection from B: for any projection $p \in B$ and every $\iota = (f, P)$ with $p \in C^*(P)$ we have $e_\iota \in P' \cap A = C^*(P)' \cap J$, so $e_\iota p - pe_\iota = 0$. Consequently the above subspace of B is actually equal to B.

Proof of Theorem 4. Put $y_1 = \frac{1}{2} (y + y^*)$, $y_2 = \frac{1}{2i} (y - y^*)$ and

$$p_j(\lambda) = \text{ support of } (y_j - \lambda 1_M) \text{ in } M , \quad \lambda \in \mathbb{R} .$$

Let further $\{ \lambda_1, \lambda_2, \ldots \}$ be the countable set of all rational numbers. Then

$$a = \sum_{k=1}^{\infty} 3^{-(2k-1)} (2p_1(\lambda_k) - 1_A^{\ast\ast}) + \sum_{k=1}^{\infty} 3^{-2k} (2p_2(\lambda_k) - 1_A^{\ast\ast}) + \frac{1}{2} 1_A^{\ast\ast} \in M ,$$

$$0 \leq a \leq 1_M$$
and it is easy to see that the C^*-subalgebra of M generated by a and 1_M contains all projections $p_j(\lambda), j = 1, 2, \lambda \in \mathbb{Q}$, hence also $y = y_1 + iy_2$. Therefore there exists a continuous function $f : [0, +\infty) \to \mathbb{C}$ such that $y = f(a)$. Furthermore, by a well known continuity property of the functional calculus (see e.g. [S-Z], 1.18 (5)), there exists some $\delta > 0$ such that

$$0 \leq b \in M, \|a - b\| \leq \delta \implies \|f(a) - f(b)\| \leq \varepsilon.$$

Now, by Lemma 5, there exists an increasing sequence $(f_k)_{k \geq 1}$ of projections in \mathcal{J}, whose least upper bound in M is 1_M. Using Lemma 6, we can then construct by induction a sequence $0 = e_o \leq e_1 \leq e_2 \leq \ldots$ of projections in \mathcal{J} such that

$$f_k \leq e_k, \quad \|e_k - ae_k\| \leq 2^{-k-1}\delta.$$

Since the elements e_k and $(e_k - e_{k-1})a(e_k - e_{k-1})$ of \mathcal{J} are mutually commuting, there exists a masa C of \mathcal{J} containing all of them. Then C contains the increasing projection sequence $(e_k)_{k \geq 1}$, whose least upper bound in M is 1_M.

Let us denote

$$b_o = a, \quad b_n = \sum_{k=1}^{n} (e_k - e_{k-1})a(e_k - e_{k-1}) + (1_M - e_n)a(1_M - e_n), \quad n \geq 1.$$

Then, for every $n \geq 1$,

$$b_{n-1} - b_n = (1_M - e_n)(1_M - e_n)(1_M - e_n) = (1_M - e_n) \cdot [e_n, e_n - ae_n] \cdot (1_M - e_n),$$

$$\|b_{n-1} - b_n\| \leq 2\|e_n - ae_n\| \leq 2^{-n}\delta.$$

It follows that $\sum_{n=1}^{\infty} \|b_{n-1} - b_n\| \leq \delta$, so the sequence $(b_n)_{n \geq 1}$ is norm convergent to some $b \in M(A)^+$ and

$$\|a - b\| = \lim_{n \to \infty} \|b_o - b_n\| \leq \delta.$$

Put $x = f(b)$.

We claim that $b \in C' \cap M$, hence also $x \in C' \cap M$. Since $C' \cap M$ is a masa of M (see Lemma 1 (iv)), it is enough to prove that b is commuting with all elements $a' \in C' \cap M \subset \{e_k, (e_k - e_{k-1})a(e_k - e_{k-1}); k \geq 1\}' \cap M$. For we notice that, for every $n \geq 1$,

$$b_n a' - a'b_n = (1_M - e_n)(aa' - a'a)(1_M - e_n),$$

hence

$$|b_n a' - a'b_n|^2 \leq (1_M - e_n)|aa' - a'a|^2(1_M - e_n) \leq \|aa' - a'a\|^2(1_M - e_n).$$

Therefore

$$|b_n a' - a'b_n|^2 \leq \|aa' - a'a\|^2(1_M - e_k), \quad n \geq k \geq 1$$

and, passing to limit for $n \to \infty$, we get for every $k \geq 1$

$$|ba' - a'b|^2 \leq \|aa' - a'a\|^2(1_M - e_k),$$
support of $|ba' - a'b|^2$ in M is $\leq 1_M - e_k$.

Since the least upper bound of $(e_k)_{k \geq 1}$ in M is 1_M, it follows that $ba' - a'b = 0$.

Finally, according to the choice of δ, $\|a - b\| \leq \delta$ implies that

$$\|y - x\| = \|f(a) - f(b)\| \leq \varepsilon.$$

On the other hand,

$$a - b_n = \sum_{k=1}^{n} (b_{k-1} - b_k) = \sum_{k=1}^{n} (1_M - e_{k-1}) \cdot [e_k, e_ka - a\varepsilon_k] \cdot (1_M - e_{k-1}) \in J$$

implies by passing to the limit for $n \to \infty$ that $a - b \in J$. Using the Weierstrass Approximation Theorem, we infer that $y - x = f(a) - f(b) \in J$.

\[\Box\]

We shall prove that in Theorem 4 the element x can be found under the form of an “infinite linear combination” of a sequence of mutually orthogonal projections from J. To this aim we need an appropriate understanding of the summation of series in Rickart C^*-algebras.

We recall that every commutative Rickart C^*-algebra C is sequentially monotone complete (see e.g. [S-Z], 9.16, Proposition 1). Thus, if $(a_k)_{k \geq 1}$ is a sequence in C^+ such that the partial sums $\sum_{n=1}^{\infty} a_k, n \geq 1$, are bounded, then there exists the least upper bound in C^+

$$\sum_{k=1}^{\infty} a_k = \sup \left\{ \sum_{k=1}^{n} a_k; n \geq 1 \right\} \in C^+.$$

Let next M be an arbitrary Rickart C^*-algebra, $(a_k)_{k \geq 1}$ a bounded sequence in M^+ such that the supports $s(a_k), k \geq 1$, are mutually orthogonal, and $(e_k)_{k \geq 1}$ a sequence of mutually orthogonal projections in M, for which $s(a_k) \leq e_k, k \geq 1$ (we can take, for example, $e_k = s(a_k)$). Then $\{a_k; k \geq 1\} \cup \{e_k; k \geq 1\}$ generates a commutative Rickart C^*-subalgebra C of M, so there exists $a = \sum_{k=1}^{\infty} a_k \in C^+$. Moreover, a is the least upper bound of the partial sums $\{\sum_{k=1}^{n} a_k; n \geq 1\}$ even in M_h. Indeed, by the σ-normality of the Rickart C^*-algebras, $\bigvee_{k=1}^{\infty} e_k$ is the least upper bound in M_h of the sequence $(\bigvee_{k=1}^{n} e_k)_{n \geq 1}$ and it follows that

$$a = a^{1/2} \left(\bigvee_{k=1}^{\infty} e_k \right) a^{1/2}$$

is the least upper bound in M_h of the increasing sequence $a^{1/2} \left(\bigvee_{k=1}^{n} e_k \right) a^{1/2} = \sum_{k=1}^{n} a_k, n \geq 1$

(see [S-Z], 9.14, the remark after Proposition 3). In particular, a is the only element of M_h satisfying the conditions

$$a e_k = a_k, k \geq 1, \quad s(a) \leq \bigvee_{k=1}^{\infty} e_k.$$

For sake of completeness we notice that, by the above characterization, if $(e_k)_{k \geq 1}$ is a sequence of mutually orthogonal projections in M, then $\sum_{k=1}^{\infty} e_k = \bigvee_{k=1}^{\infty} e_k$.

Now let \((x_k)_{k \geq 1} \) be a bounded sequence in \(M \) such that, denoting by \(I(x_k) \) the left support of \(x_k \) and by \(r(x_k) \) the right one, the projections \(I(x_k) \lor r(x_k), k \geq 1 \), are mutually orthogonal. Then we can define

\[
\sum_{k=1}^{\infty} x_k = \left(\sum_{k=1}^{\infty} (\text{Re } x_k)_+ - \sum_{k=1}^{\infty} (\text{Re } x_k)_- \right) + i \left(\sum_{k=1}^{\infty} (\text{Im } x_k)_+ - \sum_{k=1}^{\infty} (\text{Im } x_k)_- \right).
\]

It is easy to see that, if \((e_k)_{k \geq 1} \) is any sequence of mutually orthogonal projections in \(M \) such that \(I(x_k) \lor r(x_k) \leq e_k, k \geq 1 \), then \(\sum_{k=1}^{\infty} x_k \) is the only element \(x \in M \), for which

\[
(*) \quad x e_k = e_k x = x_k, \quad k \geq 1, \quad I(x) \lor r(x) \leq \bigvee_{k=1}^{\infty} e_k.
\]

By the aboves, considering the direct product \(C^* \)-algebra

\[
\bigoplus_{k=1}^{\infty} e_k Me_k = \left\{ (y_k)_{k \geq 1} \in \prod_{k=1}^{\infty} e_k Me_k ; \sup_{k \geq 1} \|y_k\| < +\infty \right\},
\]

the mapping

\[
\bigoplus_{k=1}^{\infty} e_k Me_k \ni (y_k)_{k \geq 1} \longrightarrow \sum_{k=1}^{\infty} y_k \in M
\]

is well defined and it is an injective \(*\)-homomorphism. Consequently

\[
(**) \quad \left\| \sum_{k=1}^{\infty} x_k \right\| = \sup_{k \geq 1} \|x_k\|.
\]

Finally, let \((e_k)_{k \geq 1} \) be a sequence of mutually orthogonal projections in \(M \), and \((x_k)_{k \geq 1}, (y_k)_{k \geq 1} \in \bigoplus_{k=1}^{\infty} e_k Me_k \). Denoting by \(\overline{\text{lin}} \{ x_k - y_k ; k \geq 1 \} \) the norm-closed linear subspace of \(M \) generated by \(\{ x_k - y_k ; k \geq 1 \} \), we have

\[
(***) \quad \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{\infty} y_k \in \overline{\text{lin}} \{ x_k - y_k ; k \geq 1 \} \quad \text{if} \quad \|x_k - y_k\| \longrightarrow 0.
\]

Indeed, according to (**), we have:

\[
\left\| \sum_{k=1}^{\infty} x_k - \sum_{k=1}^{n} y_k - \sum_{k=1}^{n} (x_k - y_k) \right\| = \sup_{k \geq n+1} \|x_k - y_k\| - \frac{n \to \infty}{0}.
\]

A slight modification of the proof of Theorem 4 yields the following Weyl-von Neumann-Berg-Sikonia type result, which is much closer to [Z], Theorem 3.1 than Theorem 4:

Theorem 5. Let \(M \) be a unital Rickart \(C^* \)-algebra, and \(\mathcal{J} \) a norm-closed two-sided ideal of \(M \), which contains a sequence of positive elements such that \(1_M \) is the only projection in \(M \) majorizing the sequence. Then, for any normal \(y \in M \) and every \(\varepsilon > 0 \), there are

- a sequence \((p_k)_{k \geq 1} \) of mutually orthogonal projections in \(\mathcal{J} \),
- a sequence \((\lambda_k)_{k \geq 1} \) in the spectrum \(\sigma(y) \) of \(y \),

such that

1) the least upper bound of \((p_n)_{n \geq 1} \) in \(M \) is \(1_M \),
2) \(y - \sum_{k=1}^{\infty} \lambda_k p_k \in J \) and \(\| y - \sum_{k=1}^{\infty} \lambda_k p_k \| \leq \varepsilon \).

Proof. Repeating word for word the arguments from the first paragraph of the proof of Theorem 4, we get \(a \in M \) with \(0 \leq a \leq 1_M \), a continuous function \(f : [0, +\infty) \to \mathbb{C} \) and \(\delta > 0 \), such that \(y = f(a) \) and

\[(\dagger) \quad 0 \leq b \in M, \|a - b\| \leq \delta \implies \|f(a) - f(b)\| \leq \varepsilon .\]

Subtracting from \(a \) an appropriate positive multiple of \(1_M \) and modifying \(f \) correspondingly, if necessary, we can assume that \(0 \in \sigma(a) \).

Choose a sequence \(\delta/3 = \delta_1 > \delta_2 > \ldots > 0 \) which converges to 0. According to the upper semicontinuity of the spectrum, there exist

\[\eta_1 > \eta_2 > \ldots > 0 \]
\[\wedge \quad \wedge \]
\[\delta/3 = \delta_1 > \delta_2 > \ldots \]

such that the spectrum of every \(b \in M \) with \(\|a - b\| \leq \eta_k \) is contained in

\[U_{\delta_k}(\sigma(a)) = \{ \mu \in \mathbb{C}; |\mu - \lambda(\mu)| < \delta_k \text{ for some } \lambda(\mu) \in \sigma(a) \}. \]

Arguing now again as in the proof of Theorem 4, we can construct a sequence \(0 = e_0 \leq e_1 \leq e_2 \leq \ldots \) of projections in \(J \), whose least upper bound in \(M \) is \(1_M \), such that

\[\|e_k a - ae_k\| \leq 2^{-k-1} \eta_{k+1} \text{ for all } k \geq 1. \]

Setting then

\[b_o = a, \]
\[b_n = \sum_{k=1}^{n}(e_k - e_{k-1})a(e_k - e_{k-1}) + (1_M - e_n)a(1_M - e_n), \quad n \geq 1, \]

we have

\[b_{n-1} - b_n = (1_M - e_{n-1}) \cdot [e_n, e_n a - ae_n] \cdot (1_M - e_{n-1}), \quad n \geq 1, \]

so \(\|b_{n-1} - b_n\| \leq 2^{-n}\eta_{n+1} \leq 2^{-n}\delta/3 \) and \(b_{n-1} - b_n \in J \). Therefore the sequence \((b_n)_{n \geq 1} \) is norm convergent to some \(b_\infty \in M^+ \), for which \(\|a - b_\infty\| \leq \delta/3 \) and \(a - b_\infty \in J \).

We claim that

\[b_\infty = \sum_{k=1}^{\infty}(e_k - e_{k-1})a(e_k - e_{k-1}). \]

Indeed, since

\[b_n(e_k - e_{k-1}) = (e_k - e_{k-1})b_n = (e_k - e_{k-1})a(e_k - e_{k-1}), \quad n \geq k \geq 1, \]

by passing to the limit for \(n \to \infty \) we get

\[b_\infty(e_k - e_{k-1}) = (e_k - e_{k-1})b_\infty = (e_k - e_{k-1})a(e_k - e_{k-1}), \quad k \geq 1. \]

Thus, taking into account that \(\bigvee_{k=1}^{\infty}(e_k - e_{k-1}) = \bigvee_{k=1}^{\infty} e_k = 1_M \), the description \((*)\) yields the desired equality.

We notice that, for every \(k \geq 1 \),

\[(\infty) \quad \sigma((e_k - e_{k-1})a(e_k - e_{k-1})) \subset U_{\delta_k}(\sigma(a)). \]
Indeed, since the norm of
\[
a - \left((e_k - e_{k-1})a(e_k - e_{k-1}) + (1_{A^*} - (e_k - e_{k-1}))a(1_{A^*} - (e_k - e_{k-1})) \right)
\]
was majorized by \(2 \left(\| e_k a - a e_k \| + \| e_{k-1} a - a e_{k-1} \| \right) \leq 2 \left(2^{-k-2} \eta_{k+1} + 2^{-k-1} \eta_k \right) < \eta_k \),
by the choice of \(\eta_k \) we have
\[
\sigma \left((e_k - e_{k-1})a(e_k - e_{k-1}) \right) \\
\subset \sigma \left((e_k - e_{k-1})a(e_k - e_{k-1}) + (1_{A^*} - (e_k - e_{k-1}))a(1_{A^*} - (e_k - e_{k-1})) \right) \cup \{ 0 \}
\subset U_{\delta_k} (\sigma(a)) .
\]

For any \(k \geq 1 \), let \([r_1^{(k)}, r_2^{(k)}]\) denote the smallest compact interval in \(\mathbb{R} \) containing the spectrum \(\sigma \left((e_k - e_{k-1})a(e_k - e_{k-1}) \right) \). Choose
\[
r_1^{(k)} = \mu_1^{(k)} < \ldots < \mu_j^{(k)} < \ldots < \mu_{j_k}^{(k)} = r_2^{(k)}
\]
in \(\sigma \left((e_k - e_{k-1})a(e_k - e_{k-1}) \right) \) such that \(|\mu_j^{(k)} - \mu_{j-1}^{(k)}| \leq \eta_k \) for all \(2 \leq j \leq j_k \). Then there exist mutually orthogonal projections \((p_j^{(k)})_{1 \leq j \leq j_k} \) in \(\mathcal{J} \) such that
\[
\sum_{j=1}^{j_k} p_j^{(k)} = e_k - e_{k-1} \text{ and } \left\| (e_k - e_{k-1})a(e_k - e_{k-1}) - \sum_{j=1}^{j_k} \mu_j^{(k)} p_j^{(k)} \right\| \leq \eta_k .
\]

For example, we can set \(p_j^{(k)} = e_j^{(k)} - e_{j+1}^{(k)} , 1 \leq j \leq j_k \), where
\[
e_j^{(k)} = s \left(\left((e_k - e_{k-1})a(e_k - e_{k-1}) - \mu_j^{(k)} (e_k - e_{k-1}) \right)_+ \right), \quad 1 \leq j \leq j_k
\]
and \(e_{j_k+1}^{(k)} = 0 \) (see e.g. [S-Z], 9.9, Proposition 1). Using \(\langle \infty \rangle \), we can find for every \(\mu_j^{(k)} \) some \(\lambda_j^{(k)} \in \sigma(a) \) with \(|\lambda_j^{(k)} - \mu_j^{(k)}| < \delta_k \) and then
\[
\left\| (e_k - e_{k-1})a(e_k - e_{k-1}) - \sum_{j=1}^{j_k} \lambda_j^{(k)} p_j^{(k)} \right\| \leq \eta_k + \delta_k < 2 \delta_k \leq 2 \delta/3 .
\]

Now \(\bigcup_{k=1}^{\infty} \{ p_j^{(k)} ; 1 \leq j \leq j_k \} \) consists of mutually orthogonal projections in \(M \), whose least upper bound in \(M \) is \(1_M \), while \(\bigcup_{k=1}^{\infty} \{ \lambda_j^{(k)} ; 1 \leq j \leq j_k \} \subset \sigma(a) \). Set \(b = \sum_{k=1}^{j_k} \sum_{j=1}^{j_k} \lambda_j^{(k)} p_j^{(k)} \in M^+ \). Then \(\langle \infty \rangle \) yields
\[
\| b - b_\infty \| = \left\| \sum_{k=1}^{\infty} (e_k - e_{k-1})a(e_k - e_{k-1}) - \sum_{k=1}^{\infty} \sum_{j=1}^{j_k} \lambda_j^{(k)} p_j^{(k)} \right\| = \sup_{k \geq 1} \left\| (e_k - e_{k-1})a(e_k - e_{k-1}) - \sum_{j=1}^{j_k} \lambda_j^{(k)} p_j^{(k)} \right\| \leq 2 \delta/3 ,
\]
so \(\| a - b \| \leq \| a - b_\infty \| + \| b_\infty - b \| \leq \delta/3 + 2 \delta/3 = \delta \). On the other hand, since
\[
\left\| (e_k - e_{k-1})a(e_k - e_{k-1}) - \sum_{j=1}^{j_k} \lambda_j^{(k)} p_j^{(k)} \right\| < 2 \delta_k \longrightarrow 0 ,
\]
\(\in \mathcal{J} \)

\(\langle \infty \rangle \) implies that \(b_\infty - b \in \mathcal{J} \), hence \(a - b = (a - b_\infty) + (b_\infty - b) \in \mathcal{J} \).
Using the characterization (*), it is easy to deduce that

\[f(b) = \sum_{k=1}^{\infty} \sum_{j=1}^{j_k} f(\lambda_j^{(k)}) p_j^{(k)}, \]

where, by the Spectral Mapping Theorem, \(\bigcup_{k=1}^{\infty} \{ f(\lambda_j^{(k)}) : 1 \leq j \leq j_k \} \) is contained in \(f(\sigma(a)) = \sigma(f(a)) = \sigma(y) \). On the other hand, \(\langle \sigma \rangle \) yields the norm estimation

\[\|y - f(b)\| = \|f(a) - f(b)\| \leq \varepsilon. \]

Finally, using \(a - b \in \mathcal{J} \) and the Weierstrass Approximation Theorem, we infer also that \(y - f(b) = f(a) - f(b) \in \mathcal{J} \).

\[\square \]

If in the above theorem we are not requiring the norm estimation in 2), then the coefficients \(\lambda_k \) can be chosen even in the essential spectrum of \(y \) modulo \(\mathcal{J} \):

Theorem 6. Let \(M \) be a unital Rickart \(C^* \)-algebra, and \(\mathcal{J} \) a norm-closed two-sided ideal of \(M \), which contains a sequence of positive elements such that \(1_M \) is the only projection in \(M \) majorizing the sequence. For any normal \(y \in M \) there are

- a sequence \((p_k)_{k \geq 1} \) of mutually orthogonal projections in \(\mathcal{J} \),
- a sequence \((\lambda_k)_{k \geq 1} \) in the spectrum \(\sigma_{\mathcal{J}}(y) \) of the canonical image of \(y \) in the quotient \(C^* \)-algebra \(M/\mathcal{J} \)

such that

1) the least upper bound of \((p_n)_{n \geq 1} \) in \(M \) is \(1_M \),

2) \(y - \sum_{k=1}^{\infty} \lambda_k p_k \in \mathcal{J} \).

For the proof we need the next lifting result, which is essentially [Z], Proposition 2.1:

Lemma 7. Let \(M \) be a unital Rickart \(C^* \)-algebra, and \(\mathcal{J} \) a norm-closed two-sided ideal of \(M \). For any self-adjoint \(a \in M \) there exists a self-adjoint \(b \in M \) such that \(\sigma(b) = \sigma_{\mathcal{J}}(b) \) and \(a - b \in \mathcal{J} \).

Proof. A moment’s reflection shows that the proof of [Z], Proposition 2.1 works for \(M \) unital Rickart \(C^* \)-algebra instead of \(W^* \)-algebra.

\[\square \]

Proof of Theorem 6. Repeating again the arguments from the first paragraph of the proof of Theorem 4, we get some \(a \in M \) with \(0 \leq a \leq 1_M \) and a continuous function \(f : [0, +\infty) \to \mathbb{C} \) such that \(y = f(a) \). Now, according to Lemma 7, there exists a self-adjoint \(b \in M \) such that \(\sigma(b) = \sigma_{\mathcal{J}}(b) \) and \(a - b \in \mathcal{J} \). In particular, \(\sigma(b) = \sigma_{\mathcal{J}}(a) \subset [0, 1] \), and so \(0 \leq b \leq 1_M \).

Let \(x \) denote the normal element \(f(b) \). Using the Weierstrass Approximation Theorem, we infer that \(y - x \in \mathcal{J} \), hence, by the Spectral Mapping Theorem, we have \(\sigma(x) = f(\sigma(b)) = f(\sigma_{\mathcal{J}}(a)) = \sigma_{\mathcal{J}}(y) \). Now Theorem 5 yields the existence of

- a sequence \((p_k)_{k \geq 1} \) of mutually orthogonal projections in \(\mathcal{J} \),
- a sequence \((\lambda_k)_{k \geq 1} \) in \(\sigma(x) = \sigma_{\mathcal{J}}(y) \),

such that the least upper bound of \((p_n)_{n \geq 1} \) in \(M \) is \(1_M \) and \(x - \sum_{k=1}^{\infty} \lambda_k p_k \in \mathcal{J} \). Then \(y - \sum_{k=1}^{\infty} \lambda_k p_k = (y - x) + (x - \sum_{k=1}^{\infty} \lambda_k p_k) \in \mathcal{J} \).

\[\square \]
Let us say that a C^*-algebra A is σ-subunital if there exists a sequence $(b_n)_{n \geq 1}$ in A^+, whose least upper bound in $M(A)_h$ is $1_{A^{**}}$. Clearly, if A is σ-unital then it is σ-subunital. For commutative A the two notions coincide. However, if M is a countably decomposable type Π_∞-factor and A is the norm-closed linear span of all finite projections of M, then A is not σ-unital (see [Ak-Ped], Prop. 4.5), but it is easily seen that it is σ-subunital.

We remark that the sequence $(b_n)_{n \geq 1}$ in the definition of the σ-subunitality can be considered a kind of “approximate unit with respect to the order structure”. Indeed, according to [S-Z], 9.14, the remark after Proposition 3, if the least upper bound of $(b_n)_{n \geq 1}$ in $M(A)_h$ is $1_{A^{**}}$ and $x \in M(A)$, then the least upper bound of the sequence $(x^*b_nx)_{n \geq 1}$ in $M(A)_h$ is x^*x.

By Theorems 5 and 6 we have:

Corollary. Let A be a σ-subunital C^*-algebra, whose multiplier algebra $M(A)$ is a Rickart C^*-algebra. For any normal $y \in M(A)$ and any $\varepsilon > 0$ there exist
- a sequence $(p_k)_{k \geq 1}$ of mutually orthogonal projections in A,
- a sequence $(\lambda_k)_{k \geq 1}$ in the spectrum $\sigma(y)$ of y,

such that

1) the least upper bound of $(p_n)_{n \geq 1}$ in $M(A)_h$ is $1_{A^{**}}$,

2) $y - \sum_{k=1}^{\infty} \lambda_k p_k \in A$ and $\left\| y - \sum_{k=1}^{\infty} \lambda_k p_k \right\| \leq \varepsilon$.

Moreover, if we don’t require the second inequality in 2), then the sequence $(\lambda_k)_{k \geq 1}$ can be chosen even in the spectrum of the canonical image of y in the corona algebra $C(A) = M(A)/A$.

□

In particular, the above corollary can be applied to $A = K(H)$, where H is a separable complex Hilbert space, in which case the series $\sum_{k=1}^{\infty} \lambda_k p_k$ converges even with respect to the strict topology of $M(A) = B(H)$. This is the statement of the classical Weyl-von Neumann-Berg-Sikonia Theorem, but convergence with respect to the strict topology is used also in its subsequent extensions to σ-unital C^*-algebras with real rank zero multiplier algebra (see e.g. [M], [Br-Ped], [Zh], [H-Ro], [L1], [L2], [L3]).

On the other hand, in the early extension from [Z] of the Weyl-von Neumann-Berg-Sikonia Theorem to the norm-closed linear span A of all finite projections of an arbitrary semifinite W^*-factor M, which for M of type Π_∞ turns out to be not σ-unital, the series $\sum_{k=1}^{\infty} \lambda_k p_k$ is proved to converge only with respect to the s^*-topology. The reason, why here a weaker topology than the strict topology should be used, is given by Theorem 3: if M is a type $\Pi_\infty W^*$-factor and we assume that a sum $\sum_{k=1}^{\infty} \lambda_k p_k$ with $p_k \in A$ is strictly convergent, then, according to Theorem 3, we must have $\sum_{k=1}^{\infty} \lambda_k p_k \in A$.

Appendix

We give here, for the convenience of the reader, a treatment of a set-theoretical result of T. Iwamura (see [Ma], Appendix II) and two applications to the theory of AW^*-algebras.

Proposition. Let I, \leq be an upward directed partially ordered uncountable set. Then, there exist a well order \preceq on I and a family $(I_\iota)_{\iota \in I}$ of subsets of I such that
- I_ι is upward directed for every $\iota \in I$,
- $\text{card } I_\iota < \text{card } I$, $\iota \in I$,
- $I_{\iota_1} \subset I_{\iota_2}$ whenever $\iota_1 \prec \iota_2$,
- $\bigcup_{\iota \in I} I_\iota = I$.

Proof. By Zermelo’s theorem there exists a well order \preceq on I. We can choose it such that

$$(*) \quad \text{card } \{ \iota' \in I; \iota' \prec \iota \} < \text{card } I \text{ for every } \iota \in I.$$

Indeed, if there exists some $\iota \in I$ such that

$$\text{card } \{ \iota' \in I; \iota' \prec \iota \} = \text{card } I,$$

then there exists a smallest ι with respect to \preceq, having the above property. Choose for this ι a bijection

$$\Phi : I \to \{ \iota' \in I; \iota' \prec \iota \}$$

and replace \preceq by the well order, according to which ι_1 less or equal to ι_2 means $\Phi(\iota_1) \preceq \Phi(\iota_2)$.

We notice that, I being infinite, $(*)$ implies that I does not contain a largest element with respect to \preceq.

Let us denote

$$J_\iota = \{ \iota' \in I; \iota' \prec \iota \}, \quad \iota \in I.$$

Then

$$\text{card } J_\iota < \text{card } I, \quad \iota \in I,$$

$$J_{\iota_1} \subset J_{\iota_2} \text{ whenever } \iota_1 \prec \iota_2,$$

$$\bigcup_{\iota \in I} J_\iota = I.$$

On the other hand, I, \leq being upward directed, we can choose for each finite $F \subset I$ some $\iota(F) \in I$ such that

$$\iota \leq \iota(F) \text{ for all } \iota \in F.$$

Denote for every $J \subset I$

$$D_1(J) = J \cup \{ \iota(F); F \subset J \text{ finite } \}.$$

We notice that

$D_1(J)$ is finite for J finite,

$$\text{card } D_1(J) = \text{card } J \text{ for } J \text{ infinite}$$

and

$$D_1(J_1) \subset D_1(J_2) \text{ whenever } J_1 \subset J_2.$$
Now we define by recursion
\[D_{n+1}(J) = D_1(D_n(J)) \supset D_n(J), \quad n \geq 1 \text{ integer}, \]
\[D_\omega(J) = \bigcup_{n \geq 1} D_n(J). \]
Then
\[D_\omega(J) \text{ is countable for } J \text{ finite}, \]
\[\operatorname{card} D_\omega(J) = \operatorname{card} J \text{ for } J \text{ infinite} \]
and
\[D_\omega(J_1) \subset D_\omega(J_2) \text{ whenever } J_1 \subset J_2. \]
Moreover, \(D_\omega(J), \leq \) is upward directed for every \(J \subset I \).

Now, putting
\[I_\iota = D_\omega(J_\iota), \quad \iota \in I, \]
it is easy to see that all conditions from the statement are satisfied. \(\square \)

The first corollary extends Lemma 3 (compare with [Be], §33, Exercise 1):

Corollary 1. Let \(M \) be an AW*-algebra, \(f \in M \) a finite projection, and \((e_\iota)_{\iota \in I}\) an upward directed family of projections in \(M \) such that
\[e_\iota \prec f \text{ for all } \iota \in I. \]
Then
\[\bigvee_{\iota \in I} e_\iota \prec f. \]

Proof. The case of countable \(I \) can be easily reduced to Lemma 6. Indeed, choosing a cofinal sequence \(\iota_1 \leq \iota_2 \leq \ldots \) in \(I \), we have
\[\bigvee_{\iota \in I} e_\iota = \bigvee_{n \geq 1} e_{\iota_n} = e_{\iota_1} \vee \bigvee_{n \geq 1} (e_{\iota_n+1} - e_{\iota_n}) \]
and we can apply Lemma 3 to \(f \) and the family \(e_{\iota_1}, e_{\iota_2} - e_{\iota_1}, e_{\iota_3} - e_{\iota_2}, \ldots. \)

For the proof in the general case let \(f \in M \) be a finite projection and let us assume the existence of some upward directed family \((e_\iota)_{\iota \in I}\) of projections in \(M \) such that
\[e_\iota \prec f \text{ for all } \iota \in I, \text{ but } \bigvee_{\iota \in I} e_\iota \neq f. \]
Choose among all such families one with \(I \) of the smallest cardinality. By the first part of the proof \(I \) is then uncountable.

Let the well order \(\preceq \) on \(I \) and the family \((I_\iota)_{\iota \in I}\) of subsets of \(I \) be as in the above proposition.

According to the minimality property of \(\operatorname{card} I \), we have
\[p_\iota = \bigvee_{\iota' \in I_\iota} e_{\iota'} \prec f, \quad \iota \in I. \]
On the other hand,
\[p_{\iota_1} \leq p_{\iota_2} \quad \text{whenever} \quad \iota_1 < \iota_2 , \]
\[
\bigvee_{\iota \in I} p_{\iota} = \bigvee_{\iota \in I} e_{\iota} .
\]
Consequently, denoting
\[
q_{\iota} = p_{\iota} - \bigvee_{\iota' \prec \iota} p_{\iota'} , \quad \iota \in I ,
\]
the projections \((q_{\iota})_{\iota \in I}\) are mutually orthogonal and
\[
\sum_{\iota \in F} q_{\iota} \prec f \quad \text{for any finite} \quad F \subset I .
\]
By Lemma 6 it follows that
\[
\bigvee_{\iota \in I} q_{\iota} \prec f .
\]
But
\[
\bigvee_{\iota \in I} q_{\iota} = \bigvee_{\iota \in I} p_{\iota} = \bigvee_{\iota \in I} e_{\iota} .
\]
Indeed, otherwise it would exist a smallest \(\iota \in I\) with respect to \(\preceq\) such that
\[(**)
\[
\bigvee_{\iota' \in I} q_{\iota'} .
\]
But then we would have
\[
\bigvee_{\iota'' \prec \iota} p_{\iota''} \leq \bigvee_{\iota' \in I} q_{\iota'} ,
\]
which contradicts \((**\).

For \(M\) an arbitrary \(AW^*\)-algebra and \(Z\) a commutative \(AW^*\)-algebra we call
\[
\Phi : \{ e \in M : e \text{ projection} \} \to Z^+ \]
normal if, for every upward directed family \((e_{\iota})_{\iota}\) of projections in \(M\), we have
\[
\Phi \left(\bigvee_{\iota} e_{\iota} \right) = \sup \Phi(e_{\iota}) ,
\]
where \(\sup\) denotes the least upper bound in \(Z^+\). Clearly,
\[\Phi \text{ normal } \Rightarrow \Phi \text{ completely additive},\]
but, using the above proposition similarly as in the proof of the Corollary 2, we get also the converse implication (which should be known, but for which we have no reference):

Corollary 2. Let \(M, Z\) be \(AW^*\)-algebras, \(Z\) commutative, and \(\Phi : \{ e \in M : e \text{ projection} \} \to Z^+\). Then
\[\Phi \text{ normal } \iff \Phi \text{ completely additive}.\]

In particular, the centre valued dimension function of a finite \(AW^*\)-algebra is normal (see [Be], §33, Exercise 4). Also, if \(M\) is a discrete \(AW^*\)-algebra and \(e \in M\) is an abelian projection of central support \(1_M\), then the map \(\Phi_e\) considered in the proof of Theorem 1 (on the abelian strict closure in discrete \(AW^*\)-algebras) is normal on the projection lattice of \(M\).
References

[Ak-Ped] C.A. Akemann, G.K. Pedersen, Ideal perturbations of elements in C^*-algebras, Math. Scand. 41 (1977), 117-139.

[A] P. Ara, Left and right projections are equivalent in Rickart C^*-algebras, J. Algebra 120 (1989), 433-448.

[A-Go 1] P. Ara, D. Goldstein, A solution of the matrix problem for Rickart C^*-algebras, Math. Nachr. 164 (1993), 259-270.

[A-Go 2] P. Ara, D. Goldstein, Rickart C^*-algebras are σ-normal, Arch. Math. 65 (1995), 505-510.

[Ars-Z] Gr. Arsene, L. Zsidó, Une propriété de type de Darboux dans les algèbres de von Neumann, Acta. Sci. Math. (Szeged) 30 (1969), 195-198.

[Be] S. K. Berberian, Baer *-Rings, Springer-Verlag, 1972.

[Bl-Ha] B. Blackadar, D. Handelman, Dimension functions and traces on C^*-algebras, J. Funct. Analysis 45 (1982), 297-340.

[Br-Ped] L. G. Brown, G. K. Pedersen, C^*-algebras of real rank zero, J. Funct. Analysis 99 (1991), 131-149.

[D-Z] C. D’Antoni, L. Zsido, Abelian strict approximation in multiplier C^*-algebras and related questions, J. Operator Theory 49 (2003), 99-113.

[Haa] U. Haagerup, Quasitraces on exact C^*-algebras are traces, manuscript (1991).

[H-Ro] N. Higson, M. Rørdam, The Weyl-von Neumann theorem for multipliers of some AF-algebras, Can. J. Math. 43 (1991), 322-330.

[J] B. E. Johnson, AW^*-algebras are QW^*-algebra, Pacific J. Math. 23 (1967), 97-99.

[Kad 1] R. V. Kadison, Operator algebras with a faithful weakly-closed representation, Annals of Math. 64 (1956), 175-181.

[Kad 2] R. V. Kadison, Diagonalizing matrices, Amer. J. Math. 106 (1984), 1451-1468.

[Kaf] V. Kaftal, Type decomposition for von Neumann algebra embeddings, J. Funct. Analysis 98 (1991), 169-193.

[Kap 1] I. Kaplansky, Projections in Banach algebras, Annals of Math 53 (1951), 235-249.

[Kap 2] I. Kaplansky, Algebras of type I, Ann. of Math. 56 (1952), 460-472.

[L 1] H. Lin, Generalized Weyl-von Neumann theorems, International J. Math. 2 (1991), 725-739.

[L 2] H. Lin, Generalized Weyl-von Neumann theorems II, Math. Scand. 77 (1995), 599-616.

[L 3] H. Lin, The generalized Berg theorem and BDF-theorem, Trans. Amer. Math. Soc. 349 (1997), 529-545.

[Ma] F. Maeda, Kontinuierliche Geometrien, Springer-Verlag, 1958.

[M] G. J. Murphy, Diagonality in C^*-algebras, Math. Z. 199 (1988), 279-284.

[Ped 1] G. K. Pedersen, Operator algebras with weakly closed abelian subalgebras, Bull. London Math. Soc. 4 (1972), 171-175.

[Ped 2] G. K. Pedersen, C^*-algebras and their Automorphism groups, Academic Press, 1979.

[Ped 3] G. K. Pedersen, Multipliers of AW^*-algebras, Math. Z. 187 (1984), 23-24.
[Sa] K. Saitô, *On σ-normal C*-algebras*, Bull. London Math. Soc. 29 (1997), 480-482.

[S-Z] Ş. Strâtilă, L. Zsidó, *Operator Algebras*, INCREST Prepublication (1977-1979), 511 p., to appear at The Theta Foundation, Bucureşti.

[T] D. C. Taylor, *The strict topology for double centralizer algebras*, Trans. Amer. Math. Soc. 150 (1970), 633-643.

[WO] N. E. Wegge-Olsen, *K-theory and C*-algebras*, Oxford University Press (1993).

[Zh] S. Zhang, *K₁-groups, quasidiagonality, and interpolation by multiplier projections*, Trans. Amer. Math. Soc. 325 (1991), 793-818.

[Z] L. Zsidó, *The Weyl-von Neumann theorem in semi-finite factors*, J. Funct. Analysis 18 (1975), 60-72.

Dipartimento di Matematica
Università di Roma "Tor Vergata"
Via della Ricerca Scientifica
00133 Roma - Italia
E-mail addresses:
dantoni@axp.mat.uniroma2.it , zsido@axp.mat.uniroma2.it