Systematic Review

Primary cavitary sarcoidosis: A case report, systematic review, and proposal of new diagnostic criteria

Ajay Handa, Sahajal Dhooria¹, Inderpaul Singh Sehgal¹, Ritesh Agarwal¹

Department of Medicine, Command Hospital (Air Force), Bengaluru, Karnataka, ¹Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India

ABSTRACT

Primary cavitary sarcoidosis (PCS) is a rare form of pulmonary sarcoidosis. In this report, we present a case of a 47-year-old male patient with PCS who was initially treated as pulmonary tuberculosis. We also systematically review the literature on PCS and propose a new classification for this entity.

KEY WORDS: Cavity, computed tomography, interstitial lung disease, sarcoidosis, tuberculosis

INTRODUCTION

Pulmonary sarcoidosis most commonly presents with symmetric hilar and mediastinal adenopathy.[¹] Other radiologic manifestations include peribronchovascular nodules, nonresolving consolidation, and fibrocystic lesions.[²] Bullous lesions, cysts, cavities, and traction bronchiectasis are commonly encountered in chronic pulmonary sarcoidosis. However, cavititation as the presenting manifestation of pulmonary sarcoidosis, termed as primary cavitary sarcoidosis (PCS), is extremely rare.[³] Herein, we report a case of PCS and systematically review the literature for this rare form of pulmonary sarcoidosis.

CASE REPORT

A 47-year-old man presented with complaints of cough and progressive breathlessness of 2 months' duration. There was fever, malaise, anorexia, and weight loss. Auscultation revealed crackles in the right mammary region. Rest of the physical examination was unremarkable. Complete blood count, fasting plasma glucose, liver and renal function tests were all within normal limits. Chest radiograph showed bilateral hilar enlargement and nonhomogenous opacities in the mid and lower zones of both lungs along with cavititation in the right middle zone. Sputum examination for acid-fast bacilli performed on 3 consecutive days was negative. The patient received empiric antituberculosis treatment with isoniazid, rifampicin, ethambutol, and pyrazinamide for a period of 2 months, followed by isoniazid and rifampicin for 4 months. Despite good compliance with treatment, cough and dyspnea worsened over the course of treatment. Chest radiograph after 6 months of therapy showed bilateral hilar adenopathy, reticulonodular opacities in both upper zones, bilateral perihilar consolidation, and a cavity in the right middle lobe [Figure 1A]. The patient was referred to us with a suspicion of drug-resistant tuberculosis.

Computed tomography (CT) of the chest showed enlarged intrathoracic lymph nodes with bilateral perihilar consolidation and cavitition in both the lower lobes [Figure 1B]. There were extensive peribronchovascular nodules and subpleural nodules. Tuberculin skin test performed with 5 tuberculin units

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Handa A, Dhooria S, Sehgal IS, Agarwal R. Primary cavitary sarcoidosis: A case report, systematic review, and proposal of new diagnostic criteria. Lung India 2018;35:41-6.
was negative and serum angiotensin-converting enzyme levels were 110 U/L (normal 8–65 U/L). Spirometry showed moderate restrictive defect (forced vital capacity [FVC], 50% predicted). Diffusion capacity for carbon monoxide was decreased (2.74 mmol/min/kPa; 32% predicted). Flexible bronchoscopy revealed widespread fine nodularity in the entire bronchial tree. Transbronchial lung biopsy and endobronchial biopsy showed compact noncaseating epitheloid granulomas; stain for acid-fast bacilli or fungi revealed no organisms. Bronchoalveolar lavage fluid was negative for fungus, *Mycobacterium tuberculosis* (culture and nucleic acid amplification assay) and malignant cells. A diagnosis of PCS was made.

The patient was treated with oral glucocorticoids for 9 months. There was improvement in dyspnea and exercise capacity. CT performed 1 year after stopping treatment showed clearing of perihilar consolidation and peribronchovascular nodules. Furthermore, there was resolution of the cavity on the left side; however, a thin-walled cavity persisted in the right lower lobe [Figure 1C]. There was improvement in lung function (FVC, 65% predicted) and diffusion capacity (68% predicted). The patient remains stable on follow-up without any relapse or complication.

DISCUSSION

Cavitation in sarcoidosis is uncommon. In a study involving 1254 patients from 10 centers, cavitary lesions were reported in only 3 (1.3%) of the 235 patients. In another study involving 200 patients, cavities were reported in only 3 (1.3%) of the 235 patients. Prevalence, however, a thin-walled cavity persisted for months to years [Table 1]. The patients (n = 16) had symptoms of chronic cough and dyspnea; only three patients were asymptomatic and were diagnosed by abnormal chest radiographs. PCS has a good prognosis and majority of the patients improve with treatment. Of the 25 patients, 12 (48%) had complete resolution with treatment while in 11 (44%) thin walled cavities persisted for months to years [Table 1]. The followup information was not available in two cases. Our patient had excellent clinical and radiological response with glucocorticoids. A few complications have been reported in patients with PCS including hemoptysis in three patients, pneumothorax in two cases, aspergilloma in one case, and bronchopneumonia leading to respiratory failure and death in one case. A systematic review of the PubMed database using the free text terms: Sarcoidosis AND cavit* yielded 311 references of which 17 citations [25 cases, Table 1] were that of PCS. The cases have been reported from across the globe including areas with high tuberculosis prevalence [further exemplified by the index case. The patients with PCS are usually young (mean age, 32.4 [range, 12–63] years), show no gender predilection (M:F; 14:11) and can be asymptomatic. As in the index case, cavities can be detected at the time of diagnosis or may develop weeks to months later, either spontaneously or during therapy. The cavities are generally small, round and thin walled. However, it is not uncommon to find cavities of varying shape with thick irregular walls. Generally single, occasionally they may be multiple. Majority of the patients (n = 16) had symptoms of chronic cough and dyspnea; only three patients were asymptomatic and were diagnosed by abnormal chest radiographs. PCS has a good prognosis and majority of the patients improve with treatment. Of the 25 patients, 12 (48%) had complete resolution with treatment while in 11 (44%) thin walled cavities persisted for months to years [Table 1]. The followup information was not available in two cases. Our patient had excellent clinical and radiological response with glucocorticoids. A few complications have been reported in patients with PCS including hemoptysis in three patients, pneumothorax in two cases, aspergilloma in one case, and bronchopneumonia leading to respiratory failure and death in one case.
Table 1: Primary cavitary sarcoidosis cases (n=25) reported in literature

Author	Age	Sex	Race	Symptoms	Cavity number and location	Cavity size	Hilar/mediastinal lymph nodes	Course and complications	Radiologic status after treatment
Harden and Barthakur[^12^]	30	Female	AA	NA	RUL	4-5	No	Pneumothorax, underwent pleurectomy. Developed chronic dyspnea	NA
Hamilton et al[^13^]	30	Male	AA	NA	LUL	3 cm	Yes	Hemothysis, stable after surgery	NA
Bistrong et al.[^14^]	20	Male	C	Asymptomatic	LUL	<3 cm	No	Asymptomatic	NA
Schiffner and Sharma[^13^b]	31	Female	AA	Chronic cough and weight loss	Bilateral RUL, LUL	4 cm×8 cm	No	Left pneumothorax drained with chest tube chest radiograph revealed bilateral cavities and perihilar consolidation. Died due to bronchopneumonia and progressive respiratory failure. Autopsy had thick-walled fibrotic cavities lined with granulomas in both lungs.	NA
Tellis and Putnam[^13^a]	21	Male	C	Chronic cough	Bilateral lung nodules with cavity LUL, Bilateral RUL and left mid lung filed	NA	No	Surgical lung biopsy confirmed sarcoidosis No treatment given Marked improvement with steroids	Partial resolution of lesions at 6 months on CXR Thin-walled cavity persisted after treatment on CXR Lesion remained unchanged at 6 months on CXR Cavitation seen at 7 weeks in RMZ nodular lesion on CXR Chest radiographs showed minimal scarring after 1 year Lung lesions regressed with treatment
Rohatgi and Schwalb[^13^b]	21	Male	AA	Asymptomatic	Bilateral RUL, LUL	NA	Yes	No treatment was given	No treatment was given
	26	Male	AA	Cough	Bilateral RUL and LLL	R 5 cm	Yes	No treatment was given	No treatment was given
	25	Female	AA	Dyspnea	Bilateral nodular lesions without cavity LUL, Bilateral lung cavity RUL and lingula	NA	Yes	Treatment with steroids improved	Treatment with steroids improved
Dauber et al.[^17^c]	24	Female	NA	Cough and weight loss with anorexia	Bilateral lung cavity RUL and lingula, thin-walled cavity at the periphery of right lower lobe	NA	Yes	No improvement with ATT, improved with steroids Also, had skin nodules and left frontal lobe mass lesions which regressed with oral steroids	No improvement with ATT, improved with steroids Also, had skin nodules and left frontal lobe mass lesions which regressed with oral steroids
Morikawa et al.[^19^c]	12	Female	Asian	Dyspnea progressively increased to respiratory failure	Thin-walled cavity at the periphery of right lower lobe mass lesions	NA	Yes	Improved without any treatment	Improved without any treatment
Canessa et al.[^19^b]	25	Male	C	Asymptomatic	Single cavity RMZ	1.5 cm	Yes	Developed RUL thick-walled cavity after 6 years of irregular follow-up and three course of oral steroids. Left pneumothorax requiring needle aspiration	Cavity resolved without treatment
Mihaescu and Veres[^20^b]	27	Male	NA	Cough	Bilateral cavity on HRCT	3 cm	NA	Improved without any treatment	Improved without any treatment
Ichikawa et al.[^21^b]	27	Male	NA	Asymptomatic	Multiple cavitary lesions in both lungs	NA	Yes	Developed multiple cavities at 2 years of follow-up	Improved without any treatment
Ozseker et al.[^22^b]	43	Female	NA	Cough dyspnea and fever	Cavity RUL on HRCT	NA	Yes	Improved with steroid treatment	Improved with steroid treatment
	33	Female	NA	Cough and malaise	Bilateral cavity on HRCT	RUL 3 cm LUL 6 cm	Yes	Resolution with steroid treatment	Resolution with steroid treatment

Contd...
Table 1: Contd...

Author	Age	Sex	Race	Symptoms	Cavity number and location	Cavity size	Hilar/mediastinal lymph nodes	Course and complications	Radiologic status after treatment
Sandhu et al.[23b]	44	Male	Asian	Fever, cough and cough	Two cavities RLL apical and basal segments	RLL (apical) 7 cm x 6 cm x 5 cm and RLL (basal) 4 cm x 3 cm	Yes	Improved with treatment	Spontaneous improvement with resolution of cavity
Hours et al.[11b]	28	Male	NA	Dry cough and dyspnea	Two cavities	1.1 cm largest	NA	Improved with treatment	CT chest complete resolution of cavity
	54	Female	NA	Dry cough and dyspnea	Four cavities	1.1 cm largest	NA	Worsened with treatment	HRCT chest worsening of cavity
	39	Male	NA	Dyspnea	Seventeen cavities	6 cm largest	NA	Worsened with treatment	HRCT chest worsening of cavities
	33	Female	NA	Dry cough and dyspnea	Five cavities	2 cm largest	NA	Worsened with treatment	HRCT chest worsening of cavities
Panjabi et al.[24b]	48	Male	NA	Dry cough and dyspnea	2	1.5 cm largest	NA	Improved with treatment	HRCT chest complete resolution of cavity
	35	Male	NA	Dry cough and dyspnea	Two cavities	2 cm largest	NA	Improved with treatment	HRCT chest showed aspergilloma
Okada et al.[25b]	34	Male	NA	Cough	RUL and LUL multiloculated cavities	NA	NA	Became asymptomatic without treatment	HRCT chest complete resolution of cavity
Yap et al.[26b]	37	Female	NA	Dry cough	Single cavity RUL	NA	NA	Treated with glucocorticoids	HRCT chest resolution of cavity
Index case	47	Male	Asian	Fever, cough, dyspnea	RLL and LUL cavities	RLL 6 cm x 5 cm x 4 cm and LUL 3 cm x 2 cm	Yes	Improved with treatment	HRCT resolution of the cavity in LLL, RLL thin-walled cavity persisted at 1 year

*Definite PCS; *Probable PCS; *Possible PCS (see Table 2 for details). AA: African American, C: Caucasian, RUL: Right upper lobe, RLL: Right lower lobe, LUL: Left upper lobe, LLL: Left lower lobe, NA: Information not available, CXR: Chest radiograph, HRCT: High-resolution computerized tomography of the chest, RMZ: Right middle zone, ATT: Antituberculous treatment, PCS: Primary cavitary sarcoidosis

Table 2: Classification of primary cavitary sarcoidosis

Diagnostic criteria

Common features

- Presenting manifestation with cavity or development of cavity within two years of disease onset
- Imaging showing single or multiple cavities without any evidence of surrounding fibrosis as evidenced by lack of architectural distortion, traction bronchiectasis and parenchymal bands on computed tomography. Presence of interlobular septal thickening, peribronchovascular and subpleural nodules point towards the presence of sarcoidosis
- Clinicoradiological response to glucocorticoids

Definite

1. 2, 3 plus surgical lung biopsy demonstrating non-necrotizing granulomas in the wall of the cavity without the presence of any microorganism

Probable

1. 2, 3 plus bronchoscopic lung biopsy showing non-necrotizing granulomas without the presence of any microorganism; bronchoalveolar lavage (BAL) negative

Possible

1. 2, 3 plus demonstration of non-necrotizing granuloma from any site other than lung without the presence of any microorganism

The pathology of PCS is characterized by noncaseating granulomas with minimal fibrosis in the cavity walls in contrast to dense fibrous tissue with few hyalinized granulomas seen in bullae and cystic bronchiectasis due to chronic sarcoidosis. In the present case, there were classical findings of active sarcoidosis without any granulomatous angiitis or ischemic necrosis in bronchoscopic lung biopsy. Based on the clinical and biopsy findings, we propose a new classification for PCS [Table 2]. In sarcoidosis, the initial two years following diagnosis are considered to be “acute stage”, and cavitation developing beyond this period is likely to be secondary to chronic fibrocystic sarcoidosis. Hence, we have used two years as the cutoff for diagnosing PCS. According to our classification, nodular sarcoidosis with cavitation or sarcoidosis with NSG pattern and cavities would all be classified under PCS as the occurrence of granulomatous angiitis is not specific for NSG but could also be encountered in classical sarcoidosis.[9]

The index case had bilateral cavities in the right and left lower lobes and the cavity in the right lower lobe was larger at 6 cm x 5 cm x 4 cm size. Lung biopsy revealed noncaseating granulomas without any granulomatous angiitis or ischemic necrosis. Tests for the presence of mycobacteria and fungi were negative. The patient responded to corticosteroid treatment. Thus, a diagnosis of probable PCS was tenable. To our knowledge,
there has been a single case of PCS reported from India, while PCS does not find mention in several case series from India.[1,27,28] It is likely that the overwhelming presence of tuberculosis in India “drowns” the occasional cavitary sarcoidosis in primary care.[1] The index case was treated as sputum-negative pulmonary tuberculosis for 6 months before being referred as a case of suspected drug-resistant tuberculosis. The differentiation of sarcoidosis from tuberculosis poses great challenge to physicians, radiologists and pathologists, especially in countries with high prevalence of tuberculosis.[29] Most patients presenting with prolonged cough, cavitary lesions on chest radiograph, and negative sputum smear for acid-fast bacilli are diagnosed as “sputum smear-negative” pulmonary tuberculosis in high tuberculosis burden countries and are empirically treated with antituberculous treatment.[30] There are several features that can help in differentiating between cavitary lesions of sarcoidosis and tuberculosis [Table 3]. Recently, the advent of rapid cartridge-based nucleic acid amplification test such as XpertMTB/RIF has greatly helped in distinguishing pulmonary tuberculosis from pulmonary sarcoidosis.[31]

CONCLUSION

Active sarcoidosis can rarely present with cavitary in the lungs. This diagnosis must be considered in patients with compatible clinicoradiological presentation when microbiological investigations for bacteria, mycobacteria, and fungi are negative.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Jindal SK, Gupta D, Aggarwal AN. Sarcoidosis in developing countries. Curr Opin Pulm Med 2000;6:448-54.
2. Hunninghake GW, Costabel U, Ando M, Baughman R, Cordier JF, du Bois R, et al. ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and Other Granulomatous Disorders. Sarcoidosis Vasc Diffuse Lung Dis 1999;16:149-73.
3. Rockoff SD, Rohatgi PK. Unusual manifestations of thoracic sarcoidosis. AJR Am J Roentgenol 1985;144:513-28.
4. Mayock RL, Bertrand P, Morrison CE, Scott JH. Manifestations of sarcoidosis. analysis of 145 patients, with a review of nine series selected from the literature. Am J Med 1963;35:67-89.
5. Freundlich IM, Libshitz HI, Glassman LM, Israel HL. Sarcoidosis. Typical and atypical thoracic manifestations and complications. Clin Radiol 1970;21:376-83.
6. Tellis CJ, Putnam JS. Cavitary in large multinodular pulmonary disease a rare manifestation of sarcoidosis. Chest 1977;71:792-3.
7. Clinico-Pathological conference, sarcoidosis with lung cavitation. Postgrad Med J 1950;26:49-50.
8. Rosen Y, Moon S, Huang CT, Gourin A, Lyons HA. Granulomatous pulmonary angiitis in sarcoidosis. Arch Pathol Lab Med 1977;101:170-4.
9. Rosen Y. Four decades of necrotizing sarcoïd granulomatosis: What do we know now? Arch Pathol Lab Med 2015;139:252-62.
10. Ziegenhagen MW, Benner UK, Zissel G, Zabel P, Schlaak M, Müller-Quernheim J. Sarcoidosis: TNF-alpha release from alveolar macrophages and serum level of sIL-2R are prognostic markers. Am J Respir Crit Care Med 1997;156:1386-92.
11. Hours S, Nunes H, Kambouchner M, Uzunyan Y, Brauner MW, Valeyre D, et al. Pulmonary cavitary sarcoidosis: Clinico-radiologic characteristics and natural history of a rare form of sarcoidosis. Medicine (Baltimore) 2008;87:142-51.
12. Harden KA, Barthakur A. Cavitary lesions in sarcoidosis. Dis Chest
Handa, et al.: Cavitary sarcoidosis

1959;35:607-14.

13. Hamilton R, Petty TL, Haihy G. Cavitary sarcoidosis of the lung. Arch Intern Med 1965;116:428-30.
14. Bistrong HW, Tenney RD, Sheffer AL. Asymptomatic cavitary sarcoidosis. JAMA 1970;213:1030-2.
15. Schiffner RO, Sharma OP. Acute pulmonary caviation in sarcoidosis. West J Med 1977;127:346-9.
16. Rohatgi PK, Schwab LE. Primary acute pulmonary caviation in sarcoidosis. AJR Am J Roentgenol 1980;134:1199-203.
17. Dauber JH, Kaufman JH, Beswick DR, Rossman MD. Cavitary pulmonary sarcoidosis. Arch Intern Med 1983;143:1058-9.
18. Morikawa A, Matsushima M, Takami M, Kuroume T. Pulmonary nodules with a cavity and intracranial mass: Rare manifestations of childhood sarcoidosis. Pediatr Pulmonol 1985;1:224-6.
19. Canessa PA, Torraca A, Lavecchia MA, Cagetti D, Poletti V, Patelli M. Primary acute pulmonary caviation in asymptomatic sarcoidosis. Sarcoidosis 1989;6:158-60.
20. Mihaescu TT, Veres L. Pneumothorax and pulmonary caviation in a man with systemic sarcoidosis. Sarcoidosis 1990;7:129-32.
21. Ichikawa Y, Fujimoto K, Shiraiishi T, Okuzumi K. Primary cavitary sarcoidosis: High-resolution CT findings. AJR Am J Roentgenol 1994;163:745.
22. Ozseker ZF, Yilmaz A, Bayramgurler B, Guneylioglu D. Cavitary sarcoidosis: Analysis of two cases. Respirology 2002;7:289-91.
23. Sandhu M, Sodhi K, Kalra N, Saxena AK, Kaza RK. Large primary pulmonary sarcoïd cavity: An extremely rare presentation of sarcoidosis. Indian J Chest Dis Allied Sci 2007;49:229-31.
24. Panjabi C, Sahay S, Shah A. Aspergilloma formation in cavitary sarcoidosis. J Bras Pneumol 2009;35:480-3.
25. Okada F, Ando Y, Sugisaki K, Takikawa S, Ono A, Matsumoto S, et al. Radiographic features of primary cavitary sarcoidosis with “lotus seed-like” manifestations. Clin Radiol 2012;67:505-7.
26. Yap V, Salemo E, Datta D. An Unusual Cause of a Solitary Lung Cavity. Conn Med 2016;80:25-8.
27. Gupta SK, Gupta S. Sarcoidosis in India: A review of 125 biopsy-proven cases from eastern India. Sarcoidosis 1990;7:43-9.
28. Sharma SK, Mohan A. Sarcoidosis: Global scenario & Indian perspective. Indian J Med Res 2002;116:221-47.
29. Gupta D, Aggarwal R, Aggarwal AN, Jindal SK. Sarcoidosis and tuberculosis: The same disease with different manifestations or similar manifestations of different disorders. Curr Opin Pulm Med 2012;18:506-16.
30. Jindal SK, Gupta D, Aggarwal AN. Sarcoidosis in India: Practical issues and difficulties in diagnosis and management. Sarcoidosis Vasc Diffuse Lung Dis 2002;19:176-84.
31. Dhooria S, Gupta N, Bal A, Sehgal IS, Aggarwal AN, Sethi S, et al. Role of Xpert MTB/RIF in differentiating tuberculosis from sarcoidosis in patients with mediastinal lymphadenopathy undergoing EBUS-TBNA: A study of 147 patients. Sarcoidosis Vasc Diffuse Lung Dis 2016;33:258-66.