On the generalized Fibonacci and Lucas 2^k—ions

Sure Köme1 and Hafize Kirik2

1 Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Turkey
e-mail: sure.kome@nevsehir.edu.tr

2 Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Turkey
e-mail: hhafize4@gmail.com

Received: 29 February 2020 Revised: 13 August 2020 Accepted: 2 September 2020

Abstract: This study introduces the modified generalized Fibonacci and Lucas 2^k—ions which are the generalizations of several quaternions, octonions and higher order dimensional algebras. We give the generating functions, the Binet formulas and well-known identities such as Catalan’s identity and Cassini’s identity for the modified generalized Fibonacci and Lucas 2^k—ions.

Keywords: Modified generalized Fibonacci sequence, Modified generalized Lucas sequence, Recurrence relations, 2^k—ions.

2010 Mathematics Subject Classification: 11B39, 05A15.

1 Introduction

The Fibonacci and Lucas numbers arise in several areas such as mathematics, physics, computer science and related fields. The Fibonacci and Lucas numbers are defined by the recurrence relations, for $n \geq 0$,

\[F(0) = 0, \quad F(1) = 1, \quad F_{n+2} = F_{n+1} + F_n, \]

and

\[L(0) = 2, \quad L(1) = 1, \quad L_{n+2} = L_{n+1} + L_n, \]

respectively. For more information about the Fibonacci and Lucas numbers, we refer the readers to book [12]. Until this time, there have been a lot of applications and generalizations of the Fibonacci and Lucas numbers [1, 5, 6, 19–21]. For example, Falcon and Plaza found the general k–Fibonacci sequence $\{F_{k,n}\}_{n=0}^{\infty}$ by studying the recursive application of two geometrical transformations used in the well-known 4–triangle longest-edge (4TLE) partition [6].
Furthermore, Yayenie [19] defined the modified generalized Fibonacci sequence as

\[Q_0 = 0, \quad Q_1 = 1, \quad Q_n = \begin{cases} aQ_{n-1} + cQ_{n-2} & \text{if } n \text{ is even} \\ bQ_{n-1} + dQ_{n-2} & \text{if } n \text{ is odd} \end{cases}, \quad n \geq 2, \tag{3} \]

where \(a, b, c \) and \(d \) are real numbers. Also he gave generating function, the generalized Binet formula and some basic identities for \(Q_n \). By analogy to the studies [5] and [19], Bilgici [1] defined the bi-periodic Lucas numbers and modified generalized Lucas numbers and gave generating functions, the Binet formulas and some special identities for these sequences. He defined the modified generalized Lucas sequence as

\[U_0 = \frac{d+1}{d}, \quad U_1 = a, \quad U_n = \begin{cases} bU_{n-1} + dU_{n-2} & \text{if } n \text{ is even} \\ aU_{n-1} + cU_{n-2} & \text{if } n \text{ is odd} \end{cases}, \quad n \geq 2, \tag{4} \]

where \(a, b, c \) and \(d \) are real numbers. The generating functions of \(Q_n \) and \(U_n \) are given by

\[H(x) = \sum_{n=0}^{\infty} Q_n x^n = \frac{x (1 + ax - cx^2)}{1 - (ab + c + d) x^2 + cd x^4} \tag{5} \]

and

\[U(x) = \sum_{n=0}^{\infty} U_n x^n = \frac{1}{d} \left(\frac{d + 1 + adx - (ab + cd + c) x^2 + adx^3}{1 - (ab + c + d) x^2 + cd x^4} \right), \tag{6} \]

respectively. In addition, the Binet formulas of the sequences \(Q_n \) and \(U_n \) are also given by the following formulas:

\[\frac{Q_n}{(ab)^{\lfloor \frac{n}{2} \rfloor}} = \frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{n-\lfloor \frac{n}{2} \rfloor} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{n-\lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \tag{7} \]

and

\[\frac{U_n}{(ab)^{\lfloor \frac{n}{2} \rfloor}} = \frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d + 1)^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{n}{2} \rfloor} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d + 1)^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} \tag{8} \]

where \(\alpha = \frac{ab + c - d + \sqrt{(ab + c - d)^2 + 4abd}}{2} \) and \(\beta = \frac{ab + c - d - \sqrt{(ab + c - d)^2 + 4abd}}{2} \) are the roots of the polynomial \(x^2 - 2(ab + c - d)x - abd = 0 \) and \(\xi(n) = n - 2\lfloor \frac{n}{2} \rfloor \) is the parity function which we use throughout the paper. Note that, we also assume that \(\Delta = (ab + c - d)^2 + 4abd > 0 \).

The Cayley–Dickson algebras are a sequence \{\(A_0, A_1, A_2, \ldots \)\} of non-associative \(\mathbb{R} \)-algebras with involution. Every algebra \(A_k \) is built up from the previous one \(A_{k-1} \) with a procedure which destroy some algebra properties. The first five Cayley–Dickson algebras are familiar: \(A_0 = \mathbb{R} \), \(A_1 = \mathbb{C} \), \(A_2 = \mathbb{H} \) (Quaternions), \(A_3 = \mathbb{O} \) (Octonions) and \(A_4 = \mathbb{S} \) (Sedenions). The concept of the quaternion algebra, 4-dimensional associative and a non-commutative algebra over \(\mathbb{R} \), was discovered by William Rowan Hamilton in October 1843. Two months later, John Graves made a discovery on 8-dimensional associative and a non-commutative algebra over \(\mathbb{R} \) and called as octonions. Quaternions and high order dimension algebras, arise in many areas especially in mathematics, coding theory, physics, robotics, computer science, etc. In recent years, several
researchers have studied the quaternions and their generalizations [2, 7–9, 11, 13, 14, 17]. For example, Halıcı investigated the Fibonacci and Lucas quaternions and presented their generating functions, the Binet formulas [9]. She also derived some sums formulas for these quaternions. Keçilioğlu and Akkus defined the Fibonacci and Lucas octonions and they gave some identities such as Catalan identity, Cassini’s identity and d’Ocagne’s identity for these octonions [11]. Bilgici et al. proposed the Fibonacci and Lucas sedenions, 16–dimensional non-associative and non-commutative algebra over \mathbb{R}, and then they gave some identities for these sedenions by using the Binet formula [2]. Gül illustrated the k–Fibonacci and k–Lucas trigintaduonions, 32–dimensional non-associative and non-commutative algebra over \mathbb{R}, and she gave some properties of these trigintaduonions and derive relationships between them [8]. Göcen and Soykan defined the Horadam 2^k–ions, which are the generalization of the some earlier studies, and investigated their properties [7]. Moreover, the authors defined the 2^k–ions $S \in A_k$ as

$$S = \sum_{i=0}^{N-1} a_i e_i = a_0 + \sum_{i=1}^{N-1} a_i e_i,$$

(9)

where $N = 2^k$ is the dimension of A_k, e_0 is the unit, $e_1, e_2, \ldots, e_{N-1}$ are imaginaries and $a_0, a_1, a_2, \ldots, a_{N-1}$ are real numbers. Furthermore, for $S_1, S_2 \in A_k$, the multiplication of two 2^k–ions are

$$S_1S_2 = \left(\sum_{i=0}^{N-1} a_i e_i\right) \left(\sum_{i=0}^{N-1} b_i e_i\right) = \sum_{i,j=0}^{N-1} a_i b_j (e_i e_j).$$

(10)

In this paper, by analogy to the earlier studies, we define a new generalization of the 2^k–ions. The rest of the paper is organized as follows. In section 2 and 3, we define the modified generalized Fibonacci 2^k–ions and modified generalized Lucas 2^k–ions, respectively. Besides that, we give generating functions, Binet formulas and some well-known identities for these 2^k–ions. In the last section, we give a concise conclusion.

2 Modified generalized Fibonacci 2^k–ions

In this section, by virtue of the Eq. (3), we define the modified generalized Fibonacci 2^k–ions. By the help of formal power series representation, we give the generating functions for these 2^k–ions. Also, we derive the Binet formula for the modified generalized Fibonacci 2^k–ions with the help of Eq. (7).

Definition 1. For $n \in \mathbb{N}_0$, the modified generalized Fibonacci 2^k–ions Θ_n is defined by

$$\Theta_n = \sum_{l=0}^{N-1} Q_{n+l} e_l,$$

(11)

where Q_n is the nth modified generalized Fibonacci numbers that is defined in (3).

It is clear from the following Table 1 that the modified generalized Fibonacci 2^k–ions are the generalization of many studies in the literature for the special cases of a, b, c, d and k.

n	Q_n	Θ_n			
0	Q_0	$Q_0 e_0$			
1	Q_1	$Q_1 e_0 + Q_0 e_1$			
2	Q_2	$Q_2 e_0 + Q_1 e_1 + Q_0 e_2$			
a	b	c	d	k	Modified Generalized Fibonacci 2^k–ions
-----	-----	-----	-----	-----	--
1	1	1	2		Fibonacci quaternions [10]
a	b	1	1	2	Biperiodic Fibonacci quaternions [17]
k	k	1	1	2	k–Fibonacci quaternions [14]
2	2	1	1	2	Pell quaternions [15]
1	1	1	1	3	Jacobsthal quaternions [16]
a	b	1	1	3	Biperiodic Fibonacci octonions [22]
k	k	1	1	3	k–Fibonacci octonions
2	2	1	1	3	Pell octonions [15]
1	1	2	2	3	Jacobsthal octonions [4]
1	1	1	1	4	Fibonacci sedenions [2]
a	b	1	1	4	Biperiodic Fibonacci sedenions
k	k	1	1	4	k–Fibonacci sedenions
2	2	1	1	4	Pell sedenions
1	1	2	2	4	Jacobsthal sedenions

Table 1. The modified generalized Fibonacci 2^k–ions

Theorem 2.1. The generating function for the modified generalized Fibonacci 2^k–ion Θ_n is

$$G(t) = \frac{\Theta_0 + (\Theta_1 - b\Theta_0) t + (a - b)R_1(t) + (c - d)R_2(t)}{1 - bt - dt^2},$$

where

$$R_1(t) = e_0 tf(t) + \sum_{l=1}^{N-1} e_l \left(\frac{f(t) - \sum_{s=1}^{\left\lceil \frac{l}{2} \right\rceil} Q_{2s-1} t^{2s-1}}{t^{l-1}} \right),$$

$$R_2(t) = \sum_{l=0}^{2} e_l t^{2-l} h(t) + \sum_{l=3}^{N-1} e_l \left(\frac{h(t) - \sum_{s=1}^{\left\lceil \frac{l}{2} \right\rceil} Q_{2s} t^{2s}}{t^{l-2}} \right),$$

$$f(t) = \frac{t - ct^3}{1 - (ab + d + c) t^2 + cdt^4},$$

$$h(t) = \frac{a t^2}{1 - (ab + d + c) t^2 + cdt^4}.$$

Proof. We use formal power series representation in order to find the generating function of Θ_m.

Now we define

$$G(t) = \sum_{m=0}^{\infty} \Theta_m t^m = \Theta_0 + \Theta_1 t + \sum_{m=2}^{\infty} \Theta_m t^m.$$ (13)

Note that,

$$btG(t) = \sum_{m=0}^{\infty} b\Theta_m t^{m+1} = \sum_{m=1}^{\infty} b\Theta_{m-1} t^m = bt\Theta_0 + \sum_{m=2}^{\infty} b\Theta_{m-1} t^m$$ (14)
and

\[dt^2 G(t) = \sum_{m=0}^{\infty} d\Theta_m t^{m+2} = \sum_{m=2}^{\infty} d\Theta_{m-2} t^m. \]

(15)

Since \(Q_n \) satisfies the recurrence relations \(Q_{2m} = aQ_{2m-1} + cQ_{2m-2} \) and \(Q_{2m+1} = bQ_{2m} + dQ_{2m-1} \), we obtain

\[
(1-bt-dt^2) G(t) = \Theta_0 + (\Theta_1 - b\Theta_0) t + \sum_{m=2}^{\infty} (\Theta_m - b\Theta_{m-1} - d\Theta_{m-2}) t^m
\]

\[
= \Theta_0 + (\Theta_1 - b\Theta_0) t
\]

\[
+ e_0 \left((a-b) \sum_{m=1}^{\infty} Q_{2m-1} t^{2m-1} + (c-d) t^2 \sum_{m=1}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
+ e_1 \left((a-b) \sum_{m=2}^{\infty} Q_{2m-1} t^{2m-1} + (c-d) t \sum_{m=2}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
+ e_2 \left(\left(\frac{a-b}{t} \right) \sum_{m=2}^{\infty} Q_{2m-1} t^{2m-1} + (c-d) \sum_{m=2}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
+ e_3 \left(\left(\frac{a-b}{t^2} \right) \sum_{m=3}^{\infty} Q_{2m-1} t^{2m-1} + \left(\frac{c-d}{t} \right) \sum_{m=3}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
+ \cdots +
\]

\[
+ e_{N-1} \left(\left(\frac{a-b}{t^{N-2}} \right) \sum_{m=\lceil \frac{N-2}{2} \rceil}^{\infty} Q_{2m-1} t^{2m-1} + \left(\frac{c-d}{t^{N-3}} \right) \sum_{m=\lceil \frac{N-3}{2} \rceil}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
= \Theta_0 + (\Theta_1 - b\Theta_0) t
\]

\[
+ \sum_{l=0}^{N-1} e_l \left((a-b) \sum_{m=\lceil \frac{l+1}{2} \rceil}^{\infty} Q_{2m-1} t^{2m-1} + (c-d) \sum_{m=\lceil \frac{l+2}{2} \rceil}^{\infty} Q_{2m-2} t^{2m-2} \right)
\]

\[
= \Theta_0 + (\Theta_1 - b\Theta_0) t
\]

\[
+ e_0 \left((a-b) t f(t) + (c-d) t^2 h(t) \right)
\]

\[
+ e_1 \left((a-b) (f(t) - Q_1 t) + (c-d) t h(t) \right)
\]

\[
+ e_2 \left(\left(\frac{a-b}{t} \right) (f(t) - Q_1 t) + (c-d) h(t) \right)
\]

\[
+ e_3 \left(\left(\frac{a-b}{t^2} \right) (f(t) - Q_1 t - Q_3 t^3) + \left(\frac{c-d}{t} \right) (h(t) - Q_2 t^2) \right)
\]

\[
+ \cdots +
\]

\[
+ e_{N-1} \left(\left(\frac{a-b}{t^{N-2}} \right) (f(t) - Q_1 t - Q_3 t^3 - Q_5 t^5 - \cdots - Q_{N-1-\xi(N)} t^{N-1-\xi(N)}) \right)
\]

\[
+ e_{N-1} \left(\left(\frac{c-d}{t^{N-3}} \right) (h(t) - Q_2 t^2 - Q_4 t^4 - Q_6 t^6 - \cdots - Q_{N-3+\xi(N-1)} t^{N-3+\xi(N-1)}) \right)
\]

\[
= \Theta_0 + (\Theta_1 - b\Theta_0) t + (a-b) R_1(t) + (c-d) R_2(t),
\]

177
where

\[R_1(t) = e_0 f(t) + \sum_{l=1}^{N-1} e_l \left(\frac{f(t) - \sum_{s=1}^{\left\lfloor \frac{l-1}{2} \right\rfloor} Q_{2s-1} t^{2s-1}}{t^{l-1}} \right) \]

\[R_2(t) = \sum_{l=0}^{2} e_l t^{2-l} h(t) + \sum_{l=3}^{N-1} e_l \left(\frac{h(t) - \sum_{s=1}^{\left\lfloor \frac{l-1}{2} \right\rfloor} Q_{2s} t^{2s}}{t^{l-2}} \right) \]

\[f(t) = \sum_{m=1}^{\infty} Q_{2m-1} t^{2m-1} \]

\[h(t) = \sum_{m=1}^{\infty} Q_{2m-2} t^{2m-2}. \]

On the other hand, the modified generalized Fibonacci numbers satisfy

\[Q_{2m-1} = b Q_{2m-2} + d Q_{2m-3} \]
\[= b (a Q_{2m-3} + c Q_{2m-4}) + d Q_{2m-3} \]
\[= (ab + d) Q_{2m-3} + bc Q_{2m-4} \]
\[= (ab + d) Q_{2m-3} + c Q_{2m-3} - cd Q_{2m-5} \]
\[= (ab + d + c) Q_{2m-3} - cd Q_{2m-5}, \quad (16) \]

and

\[Q_{2m-2} = a Q_{2m-3} + c Q_{2m-4} \]
\[= a (b Q_{2m-4} + d Q_{2m-5}) + c Q_{2m-4} \]
\[= (ab + c) Q_{2m-4} + ad Q_{2m-5} \]
\[= (ab + c) Q_{2m-4} + d Q_{2m-4} - cd Q_{2m-6} \]
\[= (ab + d + c) Q_{2m-4} - cd Q_{2m-6}. \quad (17) \]

Using (16) and (17), we obtain

\[(1 - (ab + d + c) t^2 + cd t^4) f(t) = t + (ab + d) t^3 - (ab + d + c) t^3 \]
\[+ \sum_{m=3}^{\infty} (Q_{2m-1} - (ab + d + c) Q_{2m-3} + cd Q_{2m-5}) t^{2m-1}, \]

and

\[(1 - (ab + d + c) t^2 + cd t^4) h(t) = a t^2 + \sum_{m=3}^{\infty} (Q_{2m-2} - (ab + d + c) Q_{2m-4} + cd Q_{2m-6}) t^{2m-2}. \]

Rearranging the above expressions, we get

\[f(t) = \frac{t - ct^3}{1 - (ab + d + c) t^2 + cd t^4} \]

and

\[h(t) = \frac{a t^2}{1 - (ab + d + c) t^2 + cd t^4}. \]
Therefore, by using \(f(t), h(t), R_1(t)\) and \(R_2(t)\), we obtain the generating function of \(\Theta_n\) as:

\[
G(t) = \frac{\Theta_0 + (\Theta_1 - b\Theta_0) t + (a - b)R_1(t) + (c - d)R_2(t)}{1 - bt - dt^2}.
\]

This completes the proof.

Now, we derive the Binet formula of the modified generalized Fibonacci \(2^k\)–ion by the help of the Binet formula of \(Q_n\).

Theorem 2.2. For \(n \in \mathbb{N}_0\), the Binet formula for the modified generalized Fibonacci \(2^k\)–ion is

\[
\Theta_n = \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \frac{\alpha_{\xi(n)} (\alpha + d - c)^n - \beta_{\xi(n)} (\beta + d - c)^n}{\alpha - \beta},
\]

where

\[
\alpha_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{\xi(l+1-\xi(n))}}{(ab)^{\lfloor \frac{l+\xi(n)}{2} \rfloor}} (\alpha + d - c)^{\lfloor \frac{l+\xi(n)}{2} \rfloor} e_l
\]

and

\[
\beta_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{\xi(l+1-\xi(n))}}{(ab)^{\lfloor \frac{l+\xi(n)}{2} \rfloor}} (\beta + d - c)^{\lfloor \frac{l+\xi(n)}{2} \rfloor} e_l.
\]

Proof. By using the Binet formula of the modified generalized Fibonacci sequence, we can write

\[
\Theta_{2n} = \sum_{l=0}^{N-1} Q_{2n+l} e_l
= e_0 \frac{a^n}{(ab)^n} \left(\frac{\alpha^n (\alpha + d - c)^n - \beta^n (\beta + d - c)^n}{\alpha - \beta} \right)
+ e_1 \frac{1}{(ab)^n} \left(\frac{\alpha^n (\alpha + d - c)^{n+1} - \beta^n (\beta + d - c)^{n+1}}{\alpha - \beta} \right)
+ e_2 \frac{a}{(ab)^{n+1}} \left(\frac{\alpha^{n+1} (\alpha + d - c)^{n+1} - \beta^{n+1} (\beta + d - c)^{n+1}}{\alpha - \beta} \right)
+ e_3 \frac{1}{(ab)^{n+1}} \left(\frac{\alpha^{n+1} (\alpha + d - c)^{n+2} - \beta^{n+1} (\beta + d - c)^{n+2}}{\alpha - \beta} \right)
+ \ldots
+ e_{N-2} \frac{a}{(ab)^{n+N-2}} \left(\frac{\alpha^{n+N-2} (\alpha + d - c)^{n+N-2} - \beta^{n+N-2} (\beta + d - c)^{n+N-2}}{\alpha - \beta} \right)
+ e_{N-1} \frac{1}{(ab)^{n+N-2}} \left(\frac{\alpha^{n+N-2} (\alpha + d - c)^{n+N} - \beta^{n+N-2} (\beta + d - c)^{n+N}}{\alpha - \beta} \right)
\]

\[
\Theta_{2n} = \frac{1}{(ab)^n} \frac{\alpha^n (\alpha + d - c)^n}{\alpha - \beta} \times \left(e_0 a + e_1 (\alpha + d - c) + e_2 \left(\frac{a\alpha (\alpha + d - c)}{ab} \right) \right)
+ e_3 \left(\frac{\alpha (\alpha + d - c)^2}{ab} \right) + \ldots + e_{N-2} \left(\frac{a\alpha^{N-2} (\alpha + d - c)^{N-2}}{(ab)^{N-2}} \right)
\]

179
Combining the equations (20) and (21), we get
\[\Theta_n = \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{n}{2} \rfloor} \right), \]
\[\Theta_{2n+1} = \frac{1}{(ab)^{n}} \frac{\alpha_1 \alpha^n (\alpha + d - c)^{n+1} - \beta_1 \beta^n (\beta + d - c)^{n+1}}{\alpha - \beta}, \]
where
\[\alpha_0 = \sum_{l=0}^{N-1} \frac{a^l}{(ab)^{\lfloor \frac{l}{2} \rfloor}} (\alpha + d - c)^{\lfloor \frac{l}{2} \rfloor} \alpha^{\lfloor \frac{l}{2} \rfloor} e_{l}, \]
and
\[\beta_0 = \sum_{l=0}^{N-1} \frac{a^l}{(ab)^{\lfloor \frac{l}{2} \rfloor}} (\beta + d - c)^{\lfloor \frac{l}{2} \rfloor} \beta^{\lfloor \frac{l}{2} \rfloor} e_{l}. \]
Similarly, we can obtain
\[\alpha_1 = \sum_{l=0}^{N-1} \frac{a^l}{(ab)^{\lfloor \frac{l}{2} \rfloor}} (\alpha + d - c)^{\lfloor \frac{l}{2} \rfloor} \alpha^{\lfloor \frac{l}{2} \rfloor} e_{l}, \]
and
\[\beta_1 = \sum_{l=0}^{N-1} \frac{a^l}{(ab)^{\lfloor \frac{l}{2} \rfloor}} (\beta + d - c)^{\lfloor \frac{l}{2} \rfloor} \beta^{\lfloor \frac{l}{2} \rfloor} e_{l}. \]
Combining the equations (20) and (21), we get
\[\Theta_n = \frac{1}{(ab)^{\lfloor \frac{n}{2} \rfloor}} \left(\frac{\alpha^{\lfloor \frac{n}{2} \rfloor} (\alpha + d - c)^{\lfloor \frac{n}{2} \rfloor}}{\alpha - \beta} - \beta^{\lfloor \frac{n}{2} \rfloor} (\beta + d - c)^{\lfloor \frac{n}{2} \rfloor} \right), \]
where
\[\alpha_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{l+\lfloor \frac{\xi(n)}{2} \rfloor}}{(ab)^{\lfloor \frac{l}{2} + \frac{\xi(n)}{2} \rfloor}} (\alpha + d - c)^{\lfloor \frac{l+1-\xi(n)}{2} \rfloor} \alpha^{\lfloor \frac{l+\xi(n)}{2} \rfloor} e_{l}, \]
and
\[\beta_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{l+\lfloor \frac{\xi(n)}{2} \rfloor}}{(ab)^{\lfloor \frac{l}{2} + \frac{\xi(n)}{2} \rfloor}} (\beta + d - c)^{\lfloor \frac{l+1-\xi(n)}{2} \rfloor} \beta^{\lfloor \frac{l+\xi(n)}{2} \rfloor} e_{l}. \]
In the following theorem we derive the Catalan’s identity with the help of the Binet formula of \(Q_n \). Furthermore, we give the Cassini’s identity which is the special case of the Catalan’s identity for \(r = 1 \).
Theorem 2.3 (Catalan’s identity). For \(n, r \in \mathbb{N}_0 \) and \(r \leq n \), we have the identity
\[
\Theta_{2(n+r)+\xi(i)} \Theta_{2(n-r)+\xi(i)} - \Theta_{2n+\xi(i)}^2
= \frac{(-c)^{\xi(i)}}{(ab)^{2r} (\alpha - \beta)^2}
\times \left[\alpha_{\xi(i)} \beta_{\xi(i)} \left((ab)^{2r+\xi(i)} (cd)^{n} - (ab)^{2r+\xi(i)} (cd)^{n} \frac{\alpha + d}{\beta + d} \right) \right.
+ \left. \beta_{\xi(i)} \alpha_{\xi(i)} \left((ab)^{2r+\xi(i)} (cd)^{n} - (ab)^{2r+\xi(i)} (cd)^{n} \frac{\beta + d}{\alpha + d} \right) \right],
\]
where \(\alpha_{\xi(i)} \) and \(\beta_{\xi(i)} \) are defined in Theorem 2.2 and \(i \in \{0, 1\} \).

Proof. By using the Binet formula of the modified generalized Fibonacci \(2^k \)-ion, for \(i = 0 \), we get
\[
\Theta_{2(n+r)} \Theta_{2(n-r)} - \Theta_{2n}^2
= \frac{1}{(ab)^{n+r}} \frac{\alpha_0 \alpha_{n+r} (\alpha + d - c)^{n+r} - \beta_0 \beta_{n+r} (\beta + d - c)^{n+r}}{\alpha - \beta}
\times \left(\frac{1}{(ab)^{n-r}} \frac{\alpha_0 \alpha_{n-r} (\alpha + d - c)^{n-r} - \beta_0 \beta_{n-r} (\beta + d - c)^{n-r}}{\alpha - \beta} \right)
- \frac{1}{(ab)^{n}} \frac{\alpha_0 \alpha_{n} (\alpha + d - c)^{n} - \beta_0 \beta_{n} (\beta + d - c)^{n}}{\alpha - \beta}^2
= \frac{1}{(ab)^{2n} (\alpha - \beta)^2} \left[\alpha_0 \beta_0 \left(\alpha^n \beta^n (\alpha + d - c)^{n} (\beta + d - c)^{n}
- \alpha^{n+r} \beta^{n-r} (\alpha + d - c)^{n+r} (\beta + d - c)^{n-r} \right)
+ \beta_0 \alpha_0 \left(\alpha^n \beta^n (\alpha + d - c)^{n} (\beta + d - c)^{n}
- \alpha^{n-r} \beta^{n+r} (\alpha + d - c)^{n-r} (\beta + d - c)^{n+r} \right) \right]
= \frac{1}{(ab)^{2r} (\alpha - \beta)^2} \left[\alpha_1 \beta_1 \left((ab)^{2r} (cd)^{n} - (ab)^{2r} (cd)^{n} \frac{\alpha + d}{\beta + d} \right) \right.
+ \left. \beta_1 \alpha_1 \left((ab)^{2r} (cd)^{n} - (ab)^{2r} (cd)^{n} \frac{\beta + d}{\alpha + d} \right) \right].
\]
(22)

Similarly, for \(i = 1 \), we get
\[
\Theta_{2(n+r)+1} \Theta_{2(n-r)+1} - \Theta_{2n+1}^2
= \frac{c}{(ab)^{2r} (\alpha - \beta)^2} \left[\alpha_1 \beta_1 \left((ab)^{2r+1} (cd)^{n} - (ab)^{2r+1} (cd)^{n} \frac{\alpha + d}{\beta + d} \right) \right.
+ \left. \beta_1 \alpha_1 \left((ab)^{2r+1} (cd)^{n} - (ab)^{2r+1} (cd)^{n} \frac{\beta + d}{\alpha + d} \right) \right].
\]
(23)
By combining the equations (22) and (23), we obtain
\[
\Theta_{2(n+r)+\xi(i)}\Theta_{2(n-r)+\xi(i)} - \Theta_{2n+\xi(i)}^2 = (-c)^\xi(i) \frac{(ab)^{2r}(\alpha - \beta)^2}{(ab)^2(\alpha - \beta)^2} \\
\times \left[\alpha_\xi(i) \beta_\xi(i) \left((ab)^{2r+\xi(i)}(cd)^n - (ab)^{2r+\xi(i)}(cd)^n \frac{(\alpha + d)}{(\beta + d)} \right) \right] \\
+ \beta_\xi(i) \alpha_\xi(i) \left((ab)^{2r+\xi(i)}(cd)^n - (ab)^{2r+\xi(i)}(cd)^n \frac{(\beta + d)}{(\alpha + d)} \right),
\]
where \(\alpha_\xi(i) \) and \(\beta_\xi(i) \) are defined in Theorem 2.2 and \(i \in \{0, 1\} \).

\[\square\]

Corollary 2.3.1 (Cassini’s identity). For \(n \in \mathbb{N}_0 \), we have the identity
\[
\Theta_{2(n+1)+\xi(i)}\Theta_{2(n-1)+\xi(i)} - \Theta_{2n+\xi(i)}^2 = (-c)^\xi(i) \frac{(ab)^{2r}(\alpha - \beta)^2}{(ab)^2(\alpha - \beta)^2} \\
\times \left[\alpha_\xi(i) \beta_\xi(i) \left((ab)^{2r+\xi(i)}(cd)^n - (ab)^{2r+\xi(i)}(cd)^n \frac{(\alpha + d)}{(\beta + d)} \right) \right] \\
+ \beta_\xi(i) \alpha_\xi(i) \left((ab)^{2r+\xi(i)}(cd)^n - (ab)^{2r+\xi(i)}(cd)^n \frac{(\beta + d)}{(\alpha + d)} \right),
\]
where \(\alpha_\xi(i) \) and \(\beta_\xi(i) \) are defined in Theorem 2.2 and \(i \in \{0, 1\} \).

3 Modified generalized Lucas \(2^k \)–ions

In this section, we define the modified generalized Lucas \(2^k \)–ion \(\vartheta_n \). We give the generating function, the Binet formula and some important identities for this \(2^k \)–ion. The theorems and results in this section can be proven similar to the results in Section 2. Hence, we omit the proofs.

Definition 2. For \(n \in \mathbb{N}_0 \), the modified generalized Lucas \(2^k \)–ion \(\vartheta_n \) is defined by
\[
\vartheta_n = \sum_{l=0}^{N-1} U_{n+l} e_l,
\] (24)
where \(U_n \) is the modified generalized Lucas numbers that is defined in (4).

It is clear from the following Table 2 that the modified generalized Lucas \(2^k \)–ions are the generalization of many studies in the literature for the special cases of \(a, b, c, d \) and \(k \).
Theorem 3.1. The generating function for the modified generalized Lucas 2^k–ion ϑ_n is

$$L(t) = \frac{\vartheta_0 + (\vartheta_1 - at) t + (b - a) R_1(t) + (d - c) R_2(t)}{1 - at - ct^2},$$

where

$$R_1(t) = e_0 t f(t) + \sum_{l=1}^{N-1} e_l \left(f(t) - \sum_{s=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \frac{U_{2s-1} t^{2s-1}}{t^l-1} \right),$$

$$R_2(t) = \sum_{l=0}^{2} e_l t^{2-l} h(t) - \sum_{l=1}^{2} e_l t^{2-l} U_0 + \sum_{l=3}^{N-1} e_l \left(h(t) - \sum_{s=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} \frac{U_{2s} t^{2s}}{t^{l-2}} \right),$$

$$f(t) = \frac{at + at^3}{1 - (ab + d + c) t^2 + cdt^4},$$

$$h(t) = \frac{(\frac{d+1}{d}) + (ab + d + 1)t^2 - (ab + d + c)(\frac{d+1}{d}) t^2}{1 - (ab + d + c) t^2 + cdt^4}.$$

Proof. Proof can be made similarly to Theorem (2.1).

Theorem 3.2. For $n \in \mathbb{N}_0$, the Binet formula for the modified generalized Lucas 2^k–ion is

$$\vartheta_n = \frac{1}{(ab)^{\left\lfloor \frac{n-1}{2} \right\rfloor}} \left(\alpha_{\xi(n)} (\alpha + d + 1) \alpha^{\left\lfloor \frac{n-1}{2} \right\rfloor} + (\alpha + d - c) \frac{\left\lfloor \frac{n-1}{2} \right\rfloor}{2} \right) \left(\frac{\alpha}{\alpha - \beta} \right)^{\left\lfloor \frac{n-1}{2} \right\rfloor} + \left(\beta_{\xi(n)} (\beta + d + 1) \beta^{\left\lfloor \frac{n-1}{2} \right\rfloor} + (\beta + d - c) \frac{\left\lfloor \frac{n-1}{2} \right\rfloor}{2} \right) \frac{\beta}{\alpha - \beta},$$

where

$$\alpha_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{\xi(l+\xi(n))}}{(ab)^{\left\lfloor \frac{l+\xi(n)-1}{2} \right\rfloor}} (\alpha + d - c)^{\left\lfloor \frac{l+\xi(n)-1}{2} \right\rfloor} \alpha^{\left\lfloor \frac{l+\xi(n)-1}{2} \right\rfloor} e_l$$

and

$$\beta_{\xi(n)} = \sum_{l=0}^{N-1} \frac{a^{\xi(l+\xi(n))}}{(ab)^{\left\lfloor \frac{l-\xi(n)-1}{2} \right\rfloor}} (\beta + d - c)^{\left\lfloor \frac{l+\xi(n)-1}{2} \right\rfloor} \beta^{\left\lfloor \frac{l+\xi(n)-1}{2} \right\rfloor} e_l.$$

Proof. The proof can be made similarly to Theorem 2.2.
In the following theorem we derive the Catalan’s identity with the help of the Binet formula of U_n. Furthermore, we give the Cassini’s identity which is the special case of the Catalan’s identity for $r = 1$.

Theorem 3.3 (Catalan’s identity). For $n, r \in \mathbb{N}_0$ and $r \leq n$, we have the identity

$$
\vartheta_{2(n+r)+\xi(i)}\vartheta_{2(n-r)+\xi(i)} - \vartheta_{2n+\xi(i)}^2 = \frac{(-c)^{1-\xi(i)}(\alpha + d + 1)(\beta + d + 1)}{(ab)^2(\alpha - \beta)^2} \times \left[\alpha_{\xi(i)}^* \beta_{\xi(i)}^* \left((ab)^{2r+1-\xi(i)}(cd)^{n-1+\xi(i)} - (ab)^{2r+1-\xi(i)}(cd)^{n+1+\xi(i)} \frac{\alpha + d}{\beta + d} \right) \right. \\
\left. + \beta_{\xi(i)}^* \alpha_{\xi(i)}^* \left((ab)^{2r+1-\xi(i)}(cd)^{n-1+\xi(i)} - (ab)^{2r+1-\xi(i)}(cd)^{n+1+\xi(i)} \frac{\beta + d}{\alpha + d} \right) \right],
$$

where $\alpha_{\xi(i)}^*$ and $\beta_{\xi(i)}^*$ are defined in Theorem 3.2 and $i \in \{0, 1\}$.

Proof. The proof can be made similarly to Theorem 2.3. \qed

Corollary 3.3.1 (Cassini’s identity). For $n \in \mathbb{N}_0$, we have the identity

$$
\vartheta_{2(n+1)+\xi(i)}\vartheta_{2(n-1)+\xi(i)} - \vartheta_{2n+\xi(i)}^2 = \frac{(-c)^{1-\xi(i)}(\alpha + d + 1)(\beta + d + 1)}{(ab)^2(\alpha - \beta)^2} \times \left[\alpha_{\xi(i)}^* \beta_{\xi(i)}^* \left((ab)^{3-\xi(i)}(cd)^{n-1+\xi(i)} - (ab)^{3-\xi(i)}(cd)^{n+1+\xi(i)} \frac{\alpha + d}{\beta + d} \right) \right. \\
\left. + \beta_{\xi(i)}^* \alpha_{\xi(i)}^* \left((ab)^{3-\xi(i)}(cd)^{n-1+\xi(i)} - (ab)^{3-\xi(i)}(cd)^{n+1+\xi(i)} \frac{\beta + d}{\alpha + d} \right) \right],
$$

where $\alpha_{\xi(i)}^*$ and $\beta_{\xi(i)}^*$ are defined in Theorem 3.2 and $i \in \{0, 1\}$.

Theorem 3.4. Let $n \geq 1$ be integer. Then the modified generalized Lucas 2^k-ion satisfies the relation

$$
\vartheta_n = \Theta_{n-1} + \Theta_{n+1}. \tag{27}
$$

Proof. By considering the identity $U_n = Q_{n-1} + Q_{n+1}$, which is given by [1, Theorem 20], we can easily obtain the desired result. \qed

4 Conclusion

In this paper, we define the modified generalized Fibonacci and modified generalized Lucas 2^k-ions. Moreover, we give the Catalan’s identity and Cassini’s identity. Since our study both generalization of several studies in the literature and includes some new results, it contributes to the literature by providing essential information on the generalization of the 2^k-ions.
References

[1] Bilgici, G. (2014). Two generalizations of Lucas sequences. *Applied Mathematical Sciences*, 245, 526–538.

[2] Bilgici, G., Tokeşer, Ü., & Ünal, Z. (2017). *Fibonacci and Lucas sedenions*. *Journal of Integer Sequences*, 20(2), 3.

[3] Biss, D. K., Dugger, D., & Isaksen, D. C. (2008). Large annihilators in Cayley–Dickson algebras. *Communications in Algebra*, 36(2), 632–664.

[4] Çimen, C. B., & İpek, A. (2017). On Jacobsthal and Jacobsthal–Lucas octonions. *Mediterranean Journal of Mathematics*, 14(2), 37.

[5] Edson, M., & Yayenie, O. (2009). A New Generalization of Fibonacci Sequence & Extended Binet’s Formula. *Integers*, 9 (6), 639–654.

[6] Falcón, S., & Plaza, Á. (2007). The k–Fibonacci sequence and the Pascal 2-triangle. *Chaos, Solitons & Fractals*, 33(1), 38–49.

[7] Göcen, M., & Soykan, Y. (2019). Horadam 2^k—ions. *Konuralp Journal of Mathematics*, 7(2), 492–501.

[8] Gül, K. (2018). On k–Fibonacci and k–Lucas Trigintaduonions. *International Journal of Contemporary Mathematical Sciences*, 13(1), 1–10.

[9] Halıcı, S. (2012). On Fibonacci quaternions. *Adv. Appl. Clifford Algebras*, 22(2), 321–327.

[10] Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions. *The American Mathematical Monthly*, 70(3), 289–291.

[11] Keçilioğlu, O., & Akkuş, I. (2015). The Fibonacci octonions. *Advances in Applied Clifford Algebras*, 25(1), 151–158.

[12] Koshy, T. (2001). *Fibonacci and Lucas Numbers with Applications*, John Wiley & Sons.

[13] Köme, S., Köme, C., & Yazlık, Y. (2019). Modified generalized Fibonacci and Lucas quaternions. *Journal of Science and Arts*, 19(1), 49–60.

[14] Ramírez, J. L. (2015). Some combinatorial properties of the k–Fibonacci and the k–Lucas quaternions. *Analele Universitatii “Ovidius” Constanta-Seria Matematica*, 23(2), 201–212.

[15] Szynal-Liana, A., & Włoch, I. (2016). The Pell quaternions and the Pell octonions. Advances in Applied Clifford Algebras, 26(1), 435–440.

[16] Szynal-Liana, A., & Włoch, I. (2016). A note on Jacobsthal quaternions. *Advances in Applied Clifford Algebras*, 26(1), 441–447.
[17] Tan, E., Yılmaz, S., & Şahin, M. (2016). On a new generalization of Fibonacci quaternions. *Chaos, Solitons & Fractals*, 82, 1–4.

[18] Tan, E., Yılmaz, S., & Şahin, M. (2016). A note on bi-periodic Fibonacci and Lucas quaternions. *Chaos, Solitons & Fractals*, 85, 138–142.

[19] Yayenie, O. (2011). A note on generalized Fibonacci sequences. *Applied Mathematics and Computation*, 217 (12), 5603–5611.

[20] Yazlık, Y., Köme, C., & Madhusudanan, V. (2018). A new generalization of Fibonacci and Lucas p–numbers. *Journal of Computational Analysis and Applications*, 25(4), 657–669.

[21] Yazlık, Y., & Taşkara, N. (2012). A note on generalized k-Horadam sequence. *Computers & Mathematics with Applications*, 63(1), 36–41.

[22] Yılmaz, N., Yazlık, Y., & Taşkara N. (2016). The bi-periodic Fibonacci octonions (*arXiv:1603.00681*).

[23] Yılmaz, N., Yazlık, Y., & Taşkara, N. (2017). On the bi-periodic Lucas octonions. *Advances in Applied Clifford Algebras*, 27(2), 1927–1937.