Original Research Paper

Chimpanzees behavioral response to a shift in number of visitors during autumn holiday in Aalborg zoo

Ottosen MP¹,², Kjær JW¹,², Andersen M,¹,², Bach LA¹,², Pagh S¹,²

¹Department of Chemistry and Bioscience - Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark
²Aalborg Zoo, Mølleparkvej 63, 9000 Aalborg, Denmark

Corresponding Author: Sussie Pagh, Department of Chemistry and Bioscience - Section of Biology and Environmental Science, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Denmark; Email: sup@bio.aau.dk

Abstract
This study examine how the number of visitors affects the behavior of four chimpanzees Pan troglodytes in Aalborg Zoo. Overall, continuous focal sampling showed no significant changes in the chimpanzee’s behaviors that could be linked to the number of visitors. However, the youngest individual showed significant more shifts in behavior during holidays than during the control days. Individual differences were found in behavioural interactions, fouraging and stereotypical behavior.

Keywords: animal personality, captivity, behaviour, welfare, Pan troglodytes

Introduction

Natural Environment For Chimpanzees

Chimpanzees (Pan troglodytes verus) live in numerous different habitats throughout the equatorial part of Africa (Stanford, 1998). The natural habitat of chimpanzee vary from deep forests to open mixed forest-savannas in both lowlands and in relatively high altitudes (AZA Ape TAG, 2010). The size of the chimpanzee’s communities in the wild are determined by their habitat, such as the density of the forest and the accessibility to food. The distribution of females and males in wild chimpanzee communities are typically relatively even (AZA Ape TAG, 2010). Boesch (1996) studied the group size of several wild chimpanzee communities, and found a mean group size of 5.7 individuals. However, the size of chimpanzee communities may be as large as 20-100 individuals (AZA Ape TAG, 2010). Chimpanzees are living in societies with competition among goup members as well as between groups, but also with high level of cooperation between individuals (de Waal, 2005).
Chimpanzees in Captivity

Chimpanzees in zoos play an important role in species conservation by acting as ambassadors for their wildliving counterparts. Captive chimpanzees are used for education and research, and as genetically population assurance if the wild population gets critically low (Ralls and Ballou, 1992; Lecturer and Booth, 2013; Penfold et al., 2013; Skibins and Powell, 2013). The western chimpanzee is losing its habitats, including rainforest and savanna woodland habitat. Chimpanzees are still hunted illegally primarily for food and because they may damage crops, and especially infant chimpanzees are caught and traded by wildlife dealers (Kühl et al., 2017).

Knowledge and understanding of the natural behaviour of animals in zoos is important in order to secure the wellbeing of animals (Kreger and Mench, 1995; Hosey, 2005). One way to achieve welfare for captive animals is to secure access to natural behaviour as e.g. foraging and interact with conspecifics and to avoid stress from a changing environment. Across varying animal species research has shown that deprivation of behaviour, typical for the species, is correlated with reduced welfare e.g. hens deprived of sand to dust bath can lead to self- or allopecking (Vestergaard and Lawson, 1997; Clubb and Mason, 2006; Pomerantz and Terkel, 2013; Cronin, West and Ross., 2016). Studies show that wild chimpanzees spend about half of their life sleeping and resting, therefore captive chimpanzees must be provided with elevated sleeping platforms or beds and bedding material that contributes to appropriate sleep (Pruetz and McGrew, 2001). Chimpanzees in the wild live in fission-fusion social systems in contrast to the relatively permanent social groups in most zoos (Pruetz and McGrew, 2001). According to AZA Ape TAG, (2010) chimpanzee groups should consist of multi-male/multi-female groups and newly established groups are recommended to contain three males and five females (AZA Ape TAG, 2010). Another way of increasing the well being of captive individuals is enrichment of their experienced environment as for example placing objects that invite to tool-use, object-play, or foraging (Wood, 1998). As vision is essential in social and non-social life in most primates, recent research efforts have furthermore explored the effects of visual enrichment in orangutans (Pongo pygmaeus) (Garcia et al. 2020). For the well being of chimpanzees the access to outdoor facilities seems crucial judging from their behaviour and utilisation of physical features (AZA Ape TAG, 2010; Martinez, 2014). Clarke and Maple (1982) found a large reduction in stereotyped and self-directed behavior, after translocation to a naturalistic island from laboratory environments. Another study showed a decrease in attention behaviors (towards visitors) and abnormal behavior for chimpanzees when translocated from an indoor hardscape-type exhibition to a naturalistic enclosure with access to outside areas, while gorillas showed reduced agonism and attention behavior (Ross et al., 2011). The complexity and features of the enclosure seems to be more important than the space itself when creating functionally appropriate captive environments (Webb et al., 2018). It is important that the design contribute to that the chimpanzees have control over their environment by providing the opportunity for the chimpanzees to choose microenvironments (AZA Ape TAG, 2010). Hiding places are both intended to escape conspecifics and to block the view by visitors.

Several studies indicate that visitors may be a source of stress for animals, depending on the species and the behaviour of visitors (Fernandez et al., 2009). Carder and Semple (2008) found a positive association between self-scratching and number of visitors for gorillas and Wood (1998) found that many visitors caused a decrease in frequencies of foraging, grooming, play and object-using. Multiple studies indicate that zoo visitor presence, density, activity, size and position are linked to specific animal behaviour. Previous studies interpret that visitor's effect on animals can be both negative and enriching (Davey, 2007). Thompson (1976) found that sexual behaviour between chimpanzees increased when zoo visitor numbers were higher. Hosey and Druck (1987) studied 12 captive primate species, they observed that visitor presence had an effect on mobility and spatial dispersion, it was also noticed that primate behaviours was mostly directed at active visitor groups instead of the passive (Davey, 2007).

Captive chimpanzees have behaviour that is considered as abnormal. The abnormal behaviour varies but indicate possible signs of poor mental health (Birkett and Newton-Fisher, 2011, Pomerantz et al., 2013). Captive environments often lead to abnormal behaviour in several species (Birkett and Newton-Fisher, 2011). Studies shows considerable individual variation in stress physiology (Carere et al., 2010). Inheritage and accumulated experiences through lifetime expressed as for example aggression, boldness, fearfulness, cooperativeness, and exploration tendencies may influence the behaviour of individual chimpanzees to
different kind of disturbance from their environment (Wolf and Wessing, 2012; Dingemanse and Reale, 2005).

The aim of this study is to evaluate a number of different behavioural expressions of four chimpanzees, housed at Aalborg zoo, in response to the number of visitors.

Methods

Subjects

This study concern the behaviour of four chimpanzees, housed in Aalborg zoo. The chimpanzee, Jutta is 45 years old and the mother of the other three chimpanzees; My a female, age of 7, Sebastian a 12 years old male, Laura a 25 years old female. Jutta was born in Africa but was moved to Aalborg Zoo when she was about 6 years old, the other chimpanzees are all born in Aalborg zoo.

Enclosure

The chimpanzee enclosure consists of an outside area around 125 m², and an inside area around 100 m². Both areas contain several large rocks and a large climbing tree with vertical and horizontal trunks and ropes between them allowing the chimpanzees to climb (Appendix A). Both areas have containers with small holes, containing oatmeal, for which the chimpanzees must use tools to get. In the outside enclosure there is a tire swing, a shelter, and multiple trunks on the ground. The inside area also contains wooden platforms and bedding material. Despite the are between the indoor and outdoor enclosure, the enclosures does not contain covers where chimpanzees can hide from the observing visitors.

Procedure

The behavioural observations were collected between 9.00 and 16.00 every day in two periods: 1) The 30/9 to the 6/10 and 2) The 14/10 to the 20/10. Chimpanzees in Aalborg Zoo are fed between 9.00-10.00 and is open to visitors from 10-16 on weekdays and from 10-17 on holidays and weekend. The first period was a normal week and served as a control week. The second period was Autumn holiday, where the number of guests was 32% higher compared to the control week. The chimpanzee behaviour was recorded based on an ethogram constructed by the aid from the zookeepers as well as own observations of the chimpanzees e.g. passive behaviour, movement, foraging, reaction to guests or zookeepers, abnormal behaviour and interaction (Appendix B).

The behaviour of the chimpanzees was collected by using five cameras (ANNOX outdoor action and y-cams); three overlooking the outdoor area and two the indoor area. It was not possible to record the area between the outdoor and indoor part of the enclosure, hence chimpanzees that stayed in this area were not recorded. During the control week period 1) the chimpanzees were video recorded September 30th, October 2nd and 5th and in during Autumn holiday 2) period the chimpanzees were video recorded October 16th, 18th and 20th. Three independent researchers watched the recorded videos separately, discussed discrepancies and guidelines for the behavioural tendencies in order to standardize the ethogram. In addition a correlation test was made in Past to secure that recordings were made in the same way by different observers. While watching the recorded videos the start- and stop points for all behavioural tendencies was noted in Excel. It was converted to seconds after 9.00 AM and afterwards calculated to intervals of each behaviour.

Data Analysis

All statistical tests were made using the free statistical software program “Past” (Hammer et al., 2001). Behavioral observations were used to: 1) examine if there was an overall difference in how the chimpanzees behave between the control week and the holiday week. 2) to examine if there was an individual difference in the behaviour of the chimpanzees between the control week and the holiday week.

The average time when chimpanzees were “out of view” in all collected data was 21.8 %. Prior to the analysis the data were tested for normal distribution with Shapiro-Wilks test (Zar, 1999). As some data were not normally distributed non-parametric tests were used. Level of significans was < 0.05.

Pairwise comparisons between behavioural recordings in period 1) the control week- and 2) Autumn holiday was made borth for each individual separatly and pooled for all four individuals behavioural.
Comparisons were tested using Kruskal Wallis and Mann-Whitney pairwise tests (Mann, 2013; MacFarland and Yates, 2016). The correction for multiple comparisons were not corrected because of the reduction in statistical power and the increased possibility for a type two error as the observations were not independent (Nakagawa, 2004). The differences in skewness and kurtosis were checked comparing bootstrap confidence intervals between the groups. To illustrate the differences in behaviour between the chimpanzees, figures were made for the medians, interquartile range, skewness and kurtosis in Excel. Furthermore, cumulative frequency curves were made to estimate how each behaviour was distributed during the day for each chimpanzee (Appendix C).

The percent of the total time consumption of each behaviour for either the control or the holiday was tested for significant differences by a c2 test in Past. The variance was calculated by the interquartile range (IQR); removing data outside the 25th and 75th percentiles, prior to Levene’s test.

A shift from one behavior to another is defined as when the chimpanzee stops one type of behavior and begins with another.

Results

The only behavioural interaction that differed between the individuals in both control week and holiday week was the percentage of time spent with interaction. Jutta spent significantly more time interacting with other individuals than her offspring in the control week and also than Sebastian in the holiday week. Only My spent significantly more time with interaction than Jutta during the holiday week (Appendix D).

Number of visitors did not affect behavior of chimpanzee significantly

Comparisons of behavioural expressions between the days of control and holiday show no clear tendencies for the medians, IQR, skewness and kurtosis. Although significant individual behavioural differences were found in the data, no overall consensus in significant difference for median, IQR, skewness and kurtosis was found when comparing control days and holidays (Appendix E and F). Hence, the number of visitors is not the main determinant for the significant differences that was observed between control and holiday.

Individual differences in behaviour of the four chimpanzees

Passive behaviour (Figure 1). My showed significantly lower median passive behaviour than Jutta and Sebastian during the holidays (Figure 1.A). My’s and Laura’s IQR was significantly lower than that of Sebastian’s and Jutta’s during the control days. Jutta’s IQR was significantly higher than that of the rest of the chimpanzees during the holidays. Laura’s IQR was significantly lower than Sebastian’s and My’s during both control days and holidays (Figure 1.B).

Moving behavior (Figure 2). There is significant difference in the time spent moving between My and Jutta for both the control days and the holiday. In the control week the median for moving is lowest for Jutta, whereas in the holiday the median for moving is higher than that of My (Figure 2.A). Laura and Jutta’s skewness and kurtosis are significantly lower than both My’s and Sebastian’s skweness and kurtosis for the control (Figure 2.C and 2.D). In the control days the IQR for movements for My is significantly higher than the other chimpanzees. Laura’s IQR is also significantly higher than both My’s and Sebastian’s for the control. Laura’s IQR is also significantly lower than the others for the holiday (Figure 2.B).

Fouraging behaviour Figure 3. Jutta's fouraging median is higher than that of the other chimpanzees and significantly higher during the holiday week. The median for Jutta is significantly higher compared to Sebastian’s and My’s during the control week. My’s median fouraging behaviour is significantly lower than Laura's during the control week. (Figure 3.A). My’s IQR is also significantly lower than the others in the control week and Laura’s and My’s IQR significantly lower than Jutta and Sebastian during the holiday week (Figure 3.B).

Reaction to guests or zookeepers (Figure 4). Jutta’s reacts less to presence of guests and zookeepers (median is significantly lower) than My’s in the control week. During the holiday, Sebastian’s median is significantly lower than Jutta's (Figure 4.A). Also IQR of Sebastian is significantly higher than Jutta's during the control week. Jutta’s IQR is significantly higher than Sebastian's during for the holiday (Figure 4.B). Laura was excluded from figure 4 due to lack of data.
Stereotypic behaviours (Figure 5). My was less stereotypic than Jutta and Laura (median of My significantly lower than Jutta’s and Laura’s) both in the control week and during the holidays. Also, My’s IQR was significantly lower than the others during the control week. Jutta’s IQR is significantly higher than My’s in the holiday (Figure 5.B) Sebastian is excluded in stereotypic behaviour due to lack of data.

Behavioural interactions (Figure 6). Laura spent longer time interacting than the other chimpanzees. Laura’s median was significantly higher than Sebastian’s and My’s. During the holiday My’s median was significantly lower than Jutta’s and Laura’s. Laura’s median is significantly higher than Sebastian’s median (Figure 6.A). Laura’s IQR and kurtosis was significantly lower than Sebastian’s in the control week (Figure 6.D). Sebastian’s IQR was significantly lower than Jutta’s and Laura’s in the holiday (Figure 6.B).

Laura’s number of behavioural shifts were significantly higher than Sebastian’s and lower than My’s in the control week. In addition, Laura’s number of behavioural shifts were significantly higher than Jutta’s and Sebastian’s in the holiday. My’s number of behavioural shifts was significantly higher than the others during the holiday (Appendix J).

Figure 1-6 show the different behaviours; 1) passive behaviour, 2) movement, 3) foraging, 4) reaction to guests/zookeepers, 5) stereotype behaviour and 6) interaction.

All the figures show a) medians, b) interquartile range, c) skewness and d) kurtosis for the behaviour in the control week and the autumn holiday for the four chimpanzees (For further details see Appendix G and H).
Discussion

No change in Behaviour As A result Of An Increase In Visitors

Even though there were 32% increase in the number of visitors during the holiday week this study found no clear patterns indicating that the number of zoo visitors had an effect on the behaviour of the chimpanzees. Several studies found that zoo visitor’s presence, density, noise and activity have an influence on animal behaviour (Davey, 2007; Fernandez et al., 2009; De Azevedo 2012; Quadros et al., 2014). Larsen et al. 2014 found that noise influenced koalas making them more vigilance and Mitchell et al. (1992) found that if there was a large active audience primate’s behaviour were directed at them.

Individual Variation In Behaviour Of The Four Chimpanzees

One of the most notable results found was that My generally performed significantly more shifts in behaviour i.e shorter behaviour intervals (Appendix J) and Jutta’s higher percent interactions compared to her offspring (Appendix D). This may be due to age, individual behavioural trends and Jutta’s role as a mother. When chimpanzees reach adolescence, spontaneous behaviour tend to decrease (Schrier and Stillnitz, 1974). Another reason could be her young age because play frequency decreases from puberty and is approximately proportional to increasingly longer and more intense grooming sessions (Van Lawick-Goodall, 1968).

Jutta’s more interactive behavioural may be due to her role as a mother and her higher rank. Female primates with high rank has previously been shown to receiving more grooming than others (Seyfarth, 1977; Tiddi et al. 2012). Jutta’s significantly long foraging time may be explained by her older age. Logan and Sanson (2002) found that koalas (Phascolarctos cinereus) compensate for tooth wear by increased food intake (enhanced average number of consumed leaves, daily chews and feeding time) and King et al. (2005) found that sifakas with tooth wear had a poorer reduction in particle size in dentally sentence compared to conspecifics in dental prime.

Although, Birkett and Fisher-Newton (2011) found that variation in stereotypic behaviour could not be explained by age, My’s significantly less stereotypic behaviour, may be explained by her young age. In our study there was tendency for the youngest chimpanzee being less stereotypic than the older chimpanzees. Stereotypic behaviour may be caused by boredom, restlessness and fatigue contrary to more spontaneous and playfull behaviour in young chimpanzees. However, stereotypic behaviour may also be related to differences in personalities. Maternal separation cause stereotypical behaviour (Birkett and Fisher-Newton 2011). Jutta was transferred to Aalborg zoo when she was only six years old and may have been separated from her mother in a young age. As Jutta was born in Africa, in a different environment, while the other three chimpanzees are born in Aalborg zoo, may also have affected Jutta’s behaviour.

Conclusion

This study revealed no significant differences in the behaviour of the chimpanzees related to an increase in the number of visitors in Aalborg Zoo during Autumn holiday. Individual behavioural differences were found in interaction behaviour, foraging behaviour and stereotypic behaviour. This may be explained by the age or individual behavioural trends in the four chimpanzees.

Acknowledgments

The authors want to thank the staff at Aalborg Zoo, with special thanks to the staff at the primate department for their time and participation in this study. Also, thanks to Cino Pertoldi for guidance in writing this paper.

Author`s Contributions

All authors contributed equally.

References

AZA Ape TAG 2010. Chimpanzee (Pan troglodytes) Care Manual, Association of Zoos and Aquariums, Silver Spring, MD.

Boesch C. 1996. Social grouping in Tai chimpanzees in McGrew WC, Merchant LF, Nashida T. (eds.), Great Ape Societies, Cambridge: Cambridge University Press, pp. 103-113.
Birkett LP, Newton-Fisher NE. E. 2011. How Abnormal Is the Behaviour of Captive, Zoo-Living Chimpanzees?, Plos One 6: 1-7, doi: https://doi.org/10.1371/journal.pone.0020101.

Carere C, Caramaschi D, Fawcett TW 2010. Covariation between personalities and individual differences in coping with stress: Converging evidence and hypotheses, Current Zoology 56 (6): 728-740.

Carder G, Semple S 2008. Visitor effects on anxiety in two captive groups of western lowland gorillas, Animal Behaviour Science 115: 211-220

Clarke AS, Juno C, Maple TL 1982. Behavioral Effects of a Change in the Physical Environment: A Pilot Study of Captive Chimpanzees, Zoo Biology 1: 371-380

Clubb R, Mason GJ 2006. Natural behavioural biology as a risk factor in carnivore welfare: How analysing species differences could help zoos improve enclosures, Elsevier B. V., doi: 10.1016/j.applanim.2006.05.033.

Cronin KA, West V, Ross SR 2016. Investigating the relationship between welfare and rearing young captive chimpanzees (Pan troglodytes), Applied Animal Behaviour Science 181 pp. 166-172, doi: 10.1016/j.applanim.2016.05.014.

Davey G 2007. Visitors’ Effects on the Welfare of Animals in the Zoo: A Review, Applied Animal Welfare Science 10(2): 169-183, doi: 10.1080/10888700701313595.

De Azevedo CS, Lima MF, Da Silva VCA. Young RJ, Rodrigues M 2012. Visitor Influence on the Behavior of Captive Greater Rheas (Rhea americana, Rheidae Aves), Journal of Applied Animal Welfare Science15(2): 113-125, doi: 10.1080/10888705.2012.624895.

De Waal FBM 2005. A century of getting to know the chimpanzees, Nature 437: 56-59.

Dingemanse NJ, Reale D 2005. Natural Selection and Animal Personality. Behaviour 142 (9-10): 1159-1184, doi: 10.1163/156853905774539445.

Fernandez EJ, Tamborski MA, Pickens SR, Timberlake W 2009. Animal–visitor interactions in the modern zoo: Conflicts and interventions, Applied Animal Behaviour Science 120: 1-8, doi: 10.1016/j.applanim.2009.06.002.

García JOP, Miani A, Alstrup AKO. Malmkvist J, Pertoldi C, Jensen TH, Nielsen RK, Hansen DW. Bach LA 2020. Orangutans: effect of scheduled visual enrichment on behavioral and endocrine aspects of a captive orangutan (Pongo pygmaeus). Journal of Zoo and Aquarium Research 8: 67-72. https://doi.org/10.19227/jzar.v8i1.416.

Hammer Ø, Harper DAT, Ryan PD 2001: PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1) 9, http://palaeo-electronica.org/2001_1/past /issue 1_01.h tm [12.12.2019]

Hosey GR 2005. How does the zoo environment affect the behaviour of captive primates?, Elsevier 90(2): 107-129, doi:10.1016/j.applanim.2004.08.015

Hosey G, Druck P 1987. The influence of zoo visitors on the behavior of captive primates, Applied Animal Behavior Science18: 19–29.

King SJ, Arrigo-Nelson SJ, Pochron ST, Semprebon GM, Godfrey LR, Wright PC, Jernvall J. 2005. Dental senescence in a long-lived primate links infant survival to rainfall, The National Academy of Science of the USA102 (46):16579-16583, doi: 10.1073pnas.0508377102.

Kreger MD, Mench JA. 1995. Visitor-Animal Interactions At the Zoo in Anthrozoös 8(3): 143-158.

Kühl H, S. Sop T, Williamson EA, Mundry R, Brugi ère D, Campbell G, Cohen H, Danquah E, Ginn L, Herbinger I, Jones S, Junker J, Kormos R, Kouakou C, Y N’Goran P, K, Normand E, Shutt-Phillips K, Tickle A, Vendras E, Welsh A, Wessling EG, Boesch C 2017. The Critically Endangered western chimpanzee declines by 80%. American Journal of Primatology 79 (9), doi: 10.1002/ajp.22681.

Larsen MJ, Sherwen SL, Rault J 2014. Number of nearby visitors and noise level affect vigilance in captive koalas in Applied Animal Behaviour Science 156: 76-82, doi: 10.1016/j.applanim.2014.02.005

Lecturer ATS. Booth R. 2013. Assessing the Role of Zoos in Wildlife Conservation in Human Domensions of Wildlife, vol. 8, iss. 1, pp. 65-74, doi: 10.1080/10871200390180163

Logan M, Sanson GD 2002. The effect of tooth wear on the feeding behaviour of free-ranging koalas (Phascolarctos cinereus), Goldfluss, The Zoological Society of London 256, pp. 63-69, doi: 10.1017/S0952836902000080

MacFarland TW, Yates JM 2016. Introduction to Nonparametric Statistics for the Biological Sciences Using R, Springer Nature, pp. 47-48, ISBN: 978-3-319-30634-6
Mann S 2013. Introductory Statistics – international student version, 8th edition, John Wiley & Sons Singapore, chapter 12 and 15, ISBN: 978-1-118-31870-6

Martínez RC 2014. Use of natural resources by sanctuary chimpanzees (Pan troglodytes): understanding the significance of naturalistic environments, Master in Applied Ecology, Hedmark University College

Mitchell G. Tromborg C. Kaufman J. Bargabus S. Simoni R. Geissler V 1992. More on the ‘influence’ of zoo visitors on the behaviour of captive primates, Applied Animal Behaviour Science, vol. 35, iss. 2, pp. 189-198, doi: 10.1016/0168-1591(92)90009-Z

Penfold LM. Powell D. Traylor-Holzer K. Asa CS 2013. "Use it or Lose it": Characterization, Implications, and Mitigation of Female Infertility in Captive Wildlife, Wiley Periodicals, Inc., doi:10.1002/zoo.21104

Pomerantz O. Meiri S. Terkel J 2013. Socio-ecological factors correlate with levels of stereotypic behaviour in zoo-housed primates, Behavioural Processes 98 pp. 85-91, doi: 10.1016/j.beproc.2013.05.005

Pruetz JDE. McGrew WC 2001. What does a chimpanzee need? Using natural behaviour to guide the care and management of captive populations. In: Brent L. (ed.), The Care and Management of Captive Chimpanzees. San Antonio, Texas: The American Society of Primatologists, pp. 17-37

Quadros S. Goulart VDL. Passos L. Vecci MAM. Young RJ 2014. Zoo visitor effect on mammal behaviour: Does noise matter?, Applied Animal Behaviour Science, vol. 156, pp. 78-84

Ralls KB. Ballou JD 1992. Managing Genetic Diversity in Captive Breeding and Reintroduction Programs, Transactions of the 57th North American Wildlife and Natural Resources Conference, Wildlife Management Institute.

Ross SR. Wagner KE. Schapiro SJ. Hau J. Lukas KE 2011. Transfer and Acclimatization Effects on the Behavior of Two Species of African Great Ape (Pan troglodytes and Gorilla gorilla gorilla) Moved to a Novel and Naturalistic Zoo Environment, Int J Primatol, vol. 32, pp. 99-117, doi: 10.1007/s10764-010-9441-3

Schrier AM. Stollnitz F 1974. Behavior of Nonhuman Primates; Modern Research Trends, vol. 5, Academic Press, Inc., USA, pp. 451.

Seyfarth RM 1977. A model of Social Grooming Among Adult Female Monkeys, J. Theor. Biol. 65: 671-698.

Standford CB 1998. The Social Behavior of Chimpanzees and Bonobos, Current Anthropology 39 (4): 399-420.

Skibins JC. Powell B 2013. Conservation Caring: Measuring the Influence of Zoo Visitors’ Connection to Wildlife on Pro-Conservation Behaviors in Zoo Biology 32: 528-540.

Thompson V 1976. Observation of the great apes in a naturalistic zoo environment, Chicago: Lincoln Park Zoo, Unpublished manuscript.

Tiddi B. Aureli F. Schino G 2012. Grooming Up the Hierarchy: The Exchange of Grooming and Rank-Related Benefits in a New World Primate, PLoS ONE 7 (5), doi: 10.1371/journal.pone.0036641

Van Lawick-Goodall J. 1968. The Behaviour of Free-living Chimpanzees in the Gombe Stream Reserve 1(3) 161-311, doi: 10.1016/S0066-1856(68)80003-2

Vestergaard KS. Skadhauge E. Lawson L. G 1997. The Stress of Not Being Able to Perform Dustbathing in Laying Hens, Physiology & Behaviour, 62 (2): 413-419.

Webb SJN. Hau J. Schapiro SJ 2018 Captive chimpanzee (Pan troglodytes) behaviour as a function of space per animal and enclosure type, American Journal of Primatology, doi: 10.1002/ajp.22749

Wolf M. and Weissing F. J. 2012. Animal personalities: consequences for ecology and evolution, Trends in Ecology and Evolution 27 (8): 452-461.

Wood W 1998. Interactions Among Environmental Enrichment, Viewing Crowds, and Zoo Chimpanzees (Pan troglodytes), Zoo Biology 17: 211-230

Zar JH 1999. Biostatistical Analysis, 4th Edition, Prentice Hall, Upper Saddle River
Appendix A
Chimpanzee enclosure
Appendix B
Ethogram

Passive behaviour	Sleep, rest, limited movement. It is okay for the chimpanzee to sit and handle objects, to stand up and look around and take two steps maximum, if they afterwards is passive again. If they are partly ‘out of view’, but most of chimpanzee is visible it is okay to note the behaviour as ‘passive behaviour’, as well if it sits with the back towards the camera, but it is clear that the chimpanzee do not perform any other behaviours.
Movement	Movement, walking, running (with or without objects), swinging in the tireswing, playing alone and climbing trees or rocks. It is okay for the chimpanzee to perform ‘passive behaviour’ if it do not exceed 10 seconds, if they afterwards moves again.
Foraging	Food intake, drinking, putting stick into the container with holes to eat the content. The behaviour ‘foraging’ starts at the point the chimpanzee touch the food item. It is okay for the chimpanzee to move from one food item to another and move while eating (foraging is considered higher ranking than movement).
Reaction to guests/zookeepers	Activity related to guests or zookeepers, banging on rocks or the walls.
Stereotype behaviour	Coprophagy, lubricating feces out on objects
Interaction	Not necessarily positive interaction between individuals, grooming, breeding behaviour, greetings, dominant/submissive behaviour
Appendix C

Cumulative curves

Not enough data for the following: Reaction to guests/zookeepers (30.09, 02.10, 16.10, 18.10) and Stereotype behaviour (30.09, 02.10, 16.10, 18.10).

30.9
Ottosen et al, 2020. *Genet. Biodiv. J*, Special issue (Behavioural Instability), 1-60

05.10

![Graph](image-url)
Ottosen et al, 2020. *Genet. Biodiv. J*, Special issue (Behavioural Instability), 1-60
Appendix D

Time consumption

	Sebastian	Laura	My			
Control						
Passive behaviour						
Jutta	Chi2 0.38	P 0.83				
Sebastian	Chi2 2.15	P 0.34	Chi2 0.37	P 0.83		
Laura	1.51	0.47				
My	1.04	0.60				
Movement						
Jutta	Chi2 0.41	P 0.98				
Sebastian	Chi2 1.20	P 0.55	Chi2 0.87	P 0.65		
Laura	0.59	0.74				
My	0.17	0.92				
Foraging						
Jutta	Chi2 0.65	P 0.72				
Sebastian	Chi2 1.25	P 0.54	Chi2 1.43	P 0.49		
Laura	0.49	0.78				
My	1.90	0.39				
Reaction to guests/zoo keepers						
Jutta						
Sebastian	-	-				
Laura	-	-				
My						
Stereotype behaviour						
Jutta						
Sebastian						
Laura	3.43	0.18				
My						
Interaction						
Jutta	Chi2 8.58	P 0.014*	18.13	0.00012	** 3.03	6.72*10 ^2**
Sebastian						
Laura	0.92	0.63	5.92	0.052		
My	3.29	0.19				
Holiday						
Passive behaviour						
Jutta	Chi2 0.65	P 0.72				
Sebastian	Chi2 1.98	P 0.37	Chi2 3.66	P 0.16		
Laura	0.62	0.73				
My						
Movement						
Jutta	Chi2 0.24	P 0.89				
Sebastian	Chi2 0.62	P 0.74	Chi2 0.48	P 0.79		
Laura	1.45	0.48				
My						
Foraging						
Jutta	Chi2 0.052	P 0.97				
Sebastian	Chi2 0.11	P 0.95	Chi2 0.26	P 0.88		
Laura	0.18	0.92				
My						
Reaction to guests/zoo keepers						
Jutta	-	-				
Sebastian	-	-				
Laura	0	1				
My						
Stereotype behaviour						
Jutta	Chi2 0.92	P 0.63				
Sebastian	Chi2 1.2	P 0.27	Chi2 0.23	P 0.89		
Laura	0	1				
My						
Interaction						
Jutta	Chi2 6.82	P 0.033*	3.58	0.17	8.39	0.015*
Sebastian	Chi2 1.29	P 0.53	Chi2 0.23	P 0.89		
Laura	0.91	0.63				
My						

*P<0.05
**P<0.01
¥ Pga. mulrakke var denne sammenligning ikke mulig
Appendix E
Kruskal Wallis and Mann-Whitney pairwise tests
Comparisons Between The Periods

Jutta
Passive behaviour
Kruskal-Wallis test for equal medians
H (chi2): 9.471
Hc (tie corrected): 9.473
p (same): 0.09162
There is no significant difference between sample medians

Movement
Kruskal-Wallis test for equal medians
H (chi2): 11.93
Hc (tie corrected): 11.94
p (same): 0.0356
There is a significant difference between sample medians

Foraging
Kruskal-Wallis test for equal medians
H (chi2): 12.22
Hc (tie corrected): 12.22
p (same): 0.03185
There is a significant difference between sample medians

Interaction
Kruskal-Wallis test for equal medians
H (chi2): Hc (tie corrected): p (same):
There is a significant difference between sample medians

Sebastian
Passive behaviour
Kruskal-Wallis test for equal medians
H (chi2): 5.89
Hc (tie corrected): 5.891
p (same): 0.3169
There is no significant difference between sample medians

Movement
Kruskal-Wallis test for equal medians
H (chi2): 9.727
Hc (tie corrected): 9.737
p (same): 0.08303
There is no significant difference between sample medians
Foraging
Kruskal-Wallis test for equal medians

H (chi2): 7.769
Hc (tie corrected): 7.771
p (same): 0.1693

There is no significant difference between sample medians

Interaction
Kruskal-Wallis test for equal medians

H (chi2): 5.956
Hc (tie corrected): 5.963
p (same): 0.3099

There is no significant difference between sample medians

Laura
Passive behaviour
Kruskal-Wallis test for equal medians

H (chi2): 17.02
Hc (tie corrected): 17.02
p (same): 0.004454

There is a significant difference between sample medians

Movement
Kruskal-Wallis test for equal medians

H (chi2): 2.408
Hc (tie corrected): 2.411
p (same): 0.7899

There is no significant difference between sample medians

Foraging
Kruskal-Wallis test for equal medians

H (chi2): 7.183
Hc (tie corrected): 7.184
p (same): 0.2073

There is no significant difference between sample medians

Stereotype behaviour
Kruskal-Wallis test for equal medians

H (chi2): 0.1026
Hc (tie corrected): 0.1026
p (same): 0.7488
There is no significant difference between sample medians

Interaction
Kruskal-Wallis test for equal medians

Test Statistic	Value
H (chi2)	2.954
Hc (tie corrected)	2.957
p (same)	0.7067

There is no significant difference between sample medians

My
Passive behaviour

Kruskal-Wallis test for equal medians

Test Statistic	Value
H (chi2)	18.92
Hc (tie corrected)	18.93
p (same)	0.001981

There is a significant difference between sample medians

Movement

Kruskal-Wallis test for equal medians

Test Statistic	Value
H (chi2)	18.1
Hc (tie corrected)	18.12
p (same)	0.0028

There is a significant difference between sample medians

Foraging

Kruskal-Wallis test for equal medians

Test Statistic	Value
H (chi2)	10.28
Hc (tie corrected)	10.28
p (same)	0.06766

There is no significant difference between sample medians

Reaction to guests/zookeepers

Kruskal-Wallis test for equal medians

Test Statistic	Value
H (chi2)	8.095
Hc (tie corrected)	8.112
p (same)	0.01732

There is a significant difference between sample medians

Interaction
There is a significant difference between sample medians

Mann-Whitney Pairwise

Sample	Passive behaviour	Jutta	Sebastian	Laura	My
C1	C1	C1	C1	C1	C1
C2	C2>C1*	n.s.	n.s.	C1>C3*	C1>C2*
C3	n.s.	C2>C3*	n.s.	C2>C3*	n.s.
H1	n.s.	n.s.	n.s.	n.s.	C1>H1**
H2	n.s.	n.s.	n.s.	n.s.	n.s.
H3	n.s.	C2>H3*	n.s.	n.s.	H2>H3*

Sample	Movement	Jutta	Sebastian	Laura	My
C1	n.s.	n.s.	n.s.	n.s.	C1>C2*
C2	n.s.	n.s.	n.s.	n.s.	C1>C3**
C3	n.s.	n.s.	n.s.	n.s.	C1>C3**
H1	H1>C1**	H1>C2**	H1>C3**	H1>H2*	H1>H3*
H2	n.s.	n.s.	n.s.	H1>H2*	H1>H3*
H3	n.s.	n.s.	n.s.	H1>H3*	n.s.

Sample	Foraging	Jutta	Sebastian	Laura	My
C1	n.s.	n.s.	n.s.	n.s.	n.s.
C2	C1>C2*	n.s.	n.s.	n.s.	n.s.
C3	C1>C3**	n.s.	n.s.	n.s.	n.s.
H1	C1>H1**	n.s.	n.s.	H2>H1*	n.s.
H2	C1>H2*	n.s.	n.s.	H2>H1*	n.s.
H3	C1>H3**	n.s.	n.s.	H3>H2*	n.s.

Kruskal-Wallis test for equal medians

- H (chi2): 12.7
- Hc (tie corrected): 12.73
- p (same): 0.02609

There is a significant difference between sample medians.
	C2	C3	H1	H2	H3																						
Ottosen et al., 2020. Genet. Biodiv. J, Special issue (Behavioural Instability), 1-60																											
Sebastian																											
C1	n.s.	n.s.	H1>C1**	n.s.	n.s.																						
C2				n.s.	n.s.																						
C3	n.s.	n.s.	H1>C3**	n.s.	n.s.																						
H1	n.s.	n.s.	n.s.	n.s.	n.s.																						
H2				n.s.	n.s.																						
H3	n.s.	n.s.	n.s.	n.s.	H1>H3*																						
Laura																											
C1	C2>C1*	n.s.	n.s.	n.s.	n.s.																						
C2				n.s.	n.s.																						
C3	n.s.	n.s.	n.s.	n.s.	n.s.																						
H1	H1>C1*	n.s.	n.s.	n.s.	n.s.																						
H2	n.s.	n.s.	n.s.	n.s.	n.s.																						
H3	n.s.	n.s.	n.s.	n.s.	n.s.																						
My																											
C1		n.s.	n.s.	n.s.	n.s.																						
C2	n.s.	n.s.	n.s.	n.s.	n.s.																						
C3	n.s.	n.s.	n.s.	n.s.	n.s.																						
H1	H1>C1*	n.s.	n.s.	n.s.	n.s.																						
H2	n.s.	n.s.	n.s.	n.s.	n.s.																						
H3	n.s.	C2>H3*	n.s.	n.s.	n.s.																						
Jutta																											
C1																											
C2																											
C3																											
H1																											
H2																											
H3																											
Reaction to guests/zookeepers																											
Sebastian																											
C1																											
C2																											
C3																											
H1																											
H2																											
H3																											
Laura																											
C1																											
C2																											
C3																											
H1																											
H2																											
H3																											
	My	C1	-	-	-	-	-	-	-	C2	n.s.	-	n.s.	C2>H1**	-	-	-										
-------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---------	-----	-----	-----										
	C3	n.s.	n.s.	n.s.	n.s.	-	-	-	-	-	-	-	-	-	-	-	-										
	H1	-	-	n.s.	-	-	-	-	-	C2>H1**	-	-	-	-	-	-	-										
	H2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-										
	H3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-										
										Stereotype								Jutta									
										C1	-	-	-	-	-	-	-	-									
										C2	-	-	-	-	-	-	-	-									
										C3	-	-	-	-	-	-	-	-									
										H1	-	-	-	-	-	-	-	-									
										H2	-	-	-	-	-	-	-	-									
										H3	-	-	-	-	-	-	-	-									
															Laura												
															C1	n.s.	n.s.	n.s.	n.s.	H2>C1*	n.s.	H2>C2*	n.s.				
															C2	n.s.	n.s.	n.s.	n.s.	H2>C3*	n.s.	H2>H1**	n.s.				
															C3	n.s.	n.s.	n.s.	n.s.	H2>H3**	n.s.	H2>H3**	n.s.				
															H1	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	H2>C1*	n.s.	H2>C2*	n.s.		
															H2	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.	H2>C3*	n.s.	H2>H1**	n.s.		
															H3	C1>H3*	n.s.	H2>H3**	n.s.								
																				Laura							
															C1	n.s.											
															C2	n.s.											
															C3	n.s.											
															H1	n.s.											
															H2	n.s.											
															H3	n.s.											
																				My							
															C1	n.s.	C1>C3*	C1>H1**	n.s.	C1>H3**	n.s.	C1>H3**	n.s.	C1>H3**	n.s.	C1>H3**	n.s.
															C2	n.s.											
															C3	C1>C3*	n.s.										
															H1	C1>H1**	n.s.										
															H2	n.s.											
															H3	C1>H3**	n.s.										

*P<0.05
**P<0.01

Appendix F
Summary Statistics For Comparisons Between The Periods

\textbf{Jutta}

	Passive						
		Lower conf.	Upper conf.	Lower conf.	Upper conf.	Lower conf.	Upper conf.
N	53	53	53	39	39	69	69
Min	3	10	10	10	10	10	10
Max	2141	3651	1338	2882	18238	7926	4168
Sum	8651	2637	13267	11787	2882	18238	7926
Mean	163.23	49.75	250.32	73.90	467.64	114.87	60.41
Std. error	51.93	0.00	71.45	0.00	142.07	25.54	0.00
Variance	142907.50	-31806.39	270542.20	0.00	787158.00	45017.70	0.00
Stand. dev	378.03	192.48	632.48	49.75	632.48	158.20	33.66
Median	28.00	6.00	32.00	27.00	88.00	31.00	12.00
75 prcntil	104.00	-33.00	158.00	-186.00	419.00	93.00	-7.50
Kurtosis	17.05	-3.74	29.87	19.07	9.88	37.48	6.36
Geom. mean	47.12	24.27	61.79	89.83	121.68	46.71	30.34
Coeff. var	231.60	176.73	317.65	214.62	154.45	294.12	184.71
Holiday							
		Lower conf.	Upper conf.	Lower conf.	Upper conf.	Lower conf.	Upper conf.
19	19	19	68	68	68	64	64
10	7	7	3	3	3	3	3
9262	-1387	17185	13319	7768	18231	8725	4435
487.47	-73.00	904.47	195.87	114.24	268.10	136.33	69.30
258.58	0.00	364.91	40.16	25.30	50.50	31.63	42.12
127032.00	-204538.60	2529966.00	109672.50	43526.82	173419.40	64012.83	-9406.74
1127.11	597.33	2150.31	331.17	243.03	448.03	253.01	135.30
38.00	6.00	54.00	62.00	24.50	86.00	35.00	-1.00
18.00	2.00	25.00	24.25	14.50	33.25	15.25	12.00
150.00	-2231.00	250.00	158.50	13.50	205.00	151.25	82.00
2.83	1.32	4.40	2.44	1.15	3.22	3.81	2.46
7.94	-2.95	15.87	4.99	-5.31	8.75	17.91	3.92
71.68	-24.70	108.83	70.52	43.11	90.01	48.17	28.22
231.22	116.02	331.89	169.08	142.73	195.55	185.59	142.67

\textbf{Ottosen et al, 2020. Genet. Biodiv. J, Special issue (Behavioural Instability), 1-60}
Movement

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	77	77	77	70	70	70	147	147	147
Min	1	2	2						
Max	96	155	140						
Sum	1552	1197	1868	1339	930	1652	3170	2658	3666
Mean	20.16	15.55	24.26	19.13	13.29	23.60	21.56	18.08	24.94
Std. error	2.25	1.46	2.74	2.64	0.00	3.49	1.76	1.23	2.10
Variance	388.16	164.17	580.17	486.37	-110.18	854.03	456.36	223.71	648.23
Stand. dev	19.70	14.66	25.40	22.05	11.20	23.60	21.36	16.48	26.46
Median	12.00	7.00	14.00	13.00	10.00	16.00	13.00	9.00	15.00
25 prcntil	7.00	6.00	9.00	7.00	4.00	8.00	8.00	7.00	9.00
75 prcntil	31.50	26.00	43.00	21.50	13.75	26.00	31.00	25.00	41.00
Skewness	1.89	1.29	2.87	4.03	2.87	6.83	2.29	1.55	3.26
Kurtosis	4.29	0.67	8.75	21.34	8.37	41.83	7.26	1.71	13.31
Geom. mean	12.81	9.62	15.36	13.30	10.42	15.57	14.56	12.30	16.56
Coeff. var	97.75	82.07	116.56	115.29	86.57	161.00	99.06	84.24	114.82

Holiday

16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
61	61	61	86	86	86	108	108	108
2	2	2						
151		149		168				
1806	1377	2180	1851	1415	2221	2589	1968	3130
29.61	22.57	35.74	21.52	16.45	25.83	23.97	18.22	28.98
3.41	1.47	4.33	2.39	0.67	3.07	2.75	1.52	3.44
707.88	131.28	1141.76	492.25	38.52	810.42	814.63	248.58	1276.11
26.61	17.37	36.66	22.19	13.62	31.18	28.54	19.93	38.29
24.00	17.00	31.00	15.50	12.00	18.50	14.00	12.00	15.00
11.00	5.50	14.00	8.00	4.25	9.00	9.00	8.00	11.00
39.00	30.00	47.00	25.00	20.25	29.75	28.00	19.75	37.25
2.31	1.60	3.98	3.26	2.18	4.97	2.91	2.00	3.85
7.53	1.58	15.33	13.93	2.67	25.50	9.71	1.09	15.79
20.53	15.24	24.79	15.40	12.50	17.80	15.25	12.31	17.67
89.87	70.59	115.60	103.08	81.38	134.31	119.06	102.15	145.00
Foraging

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	35	35	35	26	26	26	35	35	35
Min	3	2	4						
Max	980	764	928						
Sum	5368	2471	7839	4687	2757	6340	5401	2596	7765
Mean	153.37	70.60	223.97	180.27	106.04	243.85	154.31	74.17	221.86
Std. error	40.23	18.29	53.24	35.97	15.31	47.72	38.42	15.67	51.99
Variance	56654.36	11708.75	99212.28	33642.44	6904.73	59209.72	51660.81	8597.74	94621.38
Stand. dev	238.02	157.30	357.32	183.42	119.47	276.98	227.29	146.81	361.31
Median	48.00	7.00	65.00	127.00	47.50	186.50	53.00	-73.00	76.00
25 prcntil	26.00	13.00	32.00	56.75	6.25	103.50	21.00	3.00	28.00
75 prcntil	134.00	-158.00	187.00	238.00	117.50	324.00	210.00	156.00	349.00
Skewness	2.32	0.74	3.35	1.84	0.89	3.26	2.38	1.09	3.79
Kurtosis	4.67	-7.56	9.21	3.58	-3.47	8.16	5.33	-6.19	11.35
Geom. mean	66.02	30.98	88.21	94.07	29.71	136.80	63.55	27.25	86.90
Coeff. var	155.19	122.40	191.85	101.75	76.81	135.89	147.29	116.02	193.13

Holiday	16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
16	16	11	11	11	11	45	45	45	
29		2							
1325			899						
5005	2354	7032	2915	694	4776	7104	4652	9217	
312.81	147.13	439.50	265.00	63.09	434.18	157.87	103.38	204.82	
78.68	0.00	106.18	98.17	63.41	137.29	26.52	16.46	33.65	
99059.50	-26967.10	180382.70	106014.40	44223.11	207346.80	31639.71	12186.74	50957.39	
314.74	155.04	496.30	325.60	241.56	582.77	177.88	129.71	126.00	
286.00	191.00	495.00	165.00	-101.00	291.00	100.00	79.00	126.00	
67.25	-143.50	94.50	39.00	-87.00	68.00	42.50	11.00	66.00	
400.50	274.00	507.00	431.00	-37.00	697.00	204.50	89.00	289.00	
2.34	1.83	5.28	1.46	-0.09	2.92	1.89	1.02	2.65	
7.22	4.68	16.24	0.75	-7.99	3.76	3.18	-2.68	6.22	
196.86	69.66	275.49	120.96	-29.00	189.82	77.88	39.62	105.51	
100.62	69.50	151.94	122.87	76.15	175.48	112.67	92.19	137.14	
Interaction

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	16	16	16	14	14	12	12	12	
Min	2	5							
Max	94	1114							
Sum	451	256	613	1404	-871	2607	315	59	481
Mean	28.19	16.00	38.31	100.29	-62.21	186.21	26.25	4.92	40.08
Std. err	5.89	1.58	7.76	7.82	0.00	110.55	9.84	0.00	13.69
Variance	555.10	40.06	962.61	85605.60	47995.59	171098.50	1160.93	-471.65	2250.62
Stand. dev	23.56	14.41	34.97	292.58	116.97	574.55	34.07	15.29	59.70
Median	19.00	-7.00	23.00	12.50	-12.00	16.50	19.00	6.50	31.50
25 prentil	12.75	7.00	20.50	7.00	1.00	8.25	5.75	-7.50	8.00
75 prentil	45.00	37.00	70.00	42.50	-252.00	70.00	31.75	-41.25	44.50
Skewness	1.55	0.62	3.16	3.71	3.68	6.75	2.88	2.61	6.24
Kurtosis	2.90	-1.32	7.55	13.80	13.64	28.93	9.10	7.83	20.17
Geom. mean	19.73	9.05	27.04	20.43	-5.56	30.06	15.63	3.34	22.21
Coeff. var	83.58	58.95	115.16	291.75	264.90	514.40	129.80	97.41	212.67

Holiday

16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
4	1	5	1	14	14	1	14	14
30			142	246	2793	1323	4090	2479
197	10.14	17.57	119.65	66.15	204.50	82.63	-26.03	145.37
198	1.17	2.61	35.87	20.48	47.05	49.04	0.00	69.13
55.15	19.13	95.61	25726.87	8387.05	44276.94	72154.59	-52948.03	143361.40
7.43	5.30	11.02	160.40	113.27	236.08	268.62	93.10	506.45
13.00	9.50	18.00	69.50	-66.50	115.00	10.50	-5.00	15.00
7.75	2.50	10.00	20.75	-7.00	36.75	5.00	2.00	8.00
18.00	8.25	23.00	228.00	3.25	373.00	29.25	-63.50	41.75
0.92	0.10	2.41	1.45	0.48	2.55	5.10	4.84	8.72
0.63	-3.44	2.86	1.55	-3.56	4.74	27.03	24.89	53.19
12.29	8.41	15.33	56.77	-0.26	86.67	14.43	2.51	20.72
52.77	38.05	74.81	114.86	77.99	149.36	325.07	256.10	517.17

Ottosen et al, 2020. *Genet. Biodiv. J*, Special issue (Behavioural Instability), 1-60
Sebastian

Passive Control

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	50	50	50	34	34	34	78	78	78
Min	10	7							
Max	2002	4565							
Sum	11144	4939	16150	13365	1843	22356	10978	4487	15996
Mean	222.88	98.78	323.00	393.09	54.21	657.53	140.74	57.53	205.08
Std. error	57.38	16.45	75.31	161.31	0.00	224.78	38.77	0.00	52.82
Variance	164640.90	13522.72	283617.30	884676.90	249668.80	1717898.00	117224.70	35712.43	217619.80
Stand. dev	405.76	249.59	597.83	940.57	460.22	1654.31	342.38	164.99	55.03
Median	44.00	21.50	56.00	36.50	-32.00	45.00	33.00	24.00	41.00
25 prcntil	25.75	17.50	30.00	21.75	13.50	28.75	18.00	14.00	24.00
75 prcntil	231.75	-25.50	398.50	244.25	-369.75	409.50	85.75	-2.50	121.50
Skewness	2.77	1.40	3.88	3.53	1.83	5.20	4.88	3.06	7.17
Kurtosis	8.08	-3.22	14.60	13.04	-2.71	23.82	27.92	4.78	49.51
Geom. mean	72.49	37.36	94.94	75.83	18.27	107.00	45.25	29.67	56.13
Coeff. var	182.05	138.58	223.55	239.28	162.70	326.49	243.27	187.51	330.72

Holiday

16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
53	53	53	78	78	78	64	64	64
6	3	3						
2510	1835					2358		
10082	2693	15735	14344	7854	19981	11697	3913	17848
190.23	50.81	296.89	183.90	100.69	256.17	182.77	61.14	278.88
62.78	0.00	84.73	40.36	19.20	52.57	55.70	0.00	75.18
208895.30	-32555.97	380498.30	127087.20	28761.13	215523.10	198584.60	-10502.49	361692.40
457.05	243.02	720.99	356.49	238.21	516.39	445.63	252.76	702.90
40.00	30.00	51.00	53.50	42.50	72.00	35.50	23.00	45.00
21.50	14.00	27.00	20.00	8.25	24.00	18.00	11.75	22.50
89.50	-95.50	129.00	201.00	134.00	329.25	86.25	44.00	122.25
3.68	1.42	5.20	3.23	1.72	4.23	3.70	1.69	5.05
14.29	-10.39	25.06	10.65	-5.35	17.25	14.33	-7.63	24.30
52.37	27.97	68.05	59.64	36.89	75.93	46.12	25.41	59.67
240.27	179.62	304.44	193.85	160.41	234.34	243.83	184.37	303.93
Movement Control

	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	89	89	89	73	73	73	154	154	154
Min	2	2	2	2	2	2	2	2	2
Max	125	122	122	122	122	122	122	122	122
Sum	2245	1801	2652	1701	1346	2016	3771	2813	4547
Mean	25.22	20.24	29.80	23.30	18.44	27.62	24.49	18.27	29.53
Std. error	2.47	1.63	3.00	2.42	1.29	3.10	2.91	0.00	3.80
Variance	542.88	236.68	802.65	428.16	122.29	674.72	1304.27	102.85	-102.85
Stand. dev	23.30	17.46	29.77	20.69	14.29	27.91	24.49	18.27	29.53
Median	18.00	14.00	22.00	18.00	14.00	22.00	15.00	12.00	18.00
25 prentil	9.00	6.50	10.00	10.00	7.00	13.00	7.75	6.50	9.50
75 prentil	32.50	20.00	40.00	29.00	19.00	35.00	26.00	19.00	29.00
Skewness	2.01	1.39	2.90	2.38	1.58	3.71	5.11	3.67	8.23
Kurtosis	4.87	0.69	9.17	7.49	0.94	14.53	34.86	12.31	65.50
Geom. mean	17.45	13.96	20.33	17.20	13.87	19.94	14.57	12.15	16.61
Coeff. var	92.37	78.13	109.85	88.80	71.87	111.42	147.48	113.48	199.22

Holiday

	16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
N	115	115	145	145	145	145	132	132	132
Min	1	2	3	3	3	3	3	3	3
Max	195	114	189	189	189	189	189	189	189
Sum	2814	3398	2897	2400	3362	3268	2620	3832	
Mean	18.45	29.55	19.98	16.55	23.19	24.76	19.85	29.03	
Std. error	1.39	3.58	1.70	1.32	1.97	2.35	1.26	2.93	
Variance	929.16	1477.59	418.52	253.68	563.00	731.80	209.55	1132.97	
Mean	30.48	41.45	20.46	16.76	24.36	27.05	18.69	35.92	
Std. error	1.00	8.00	7.00	6.00	9.00	8.00	6.00	9.00	
Variance	124.57	154.61	102.39	90.80	114.30	109.27	89.07	135.86	
Foraging

Control

	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	46	46	46	29	29	29	36	36	36
Min	2		3						
Max	600			1071			5741		
Sum	4230	2098	6068	4911	2914	6817	5741	2676	8421
Mean	91.96	45.61	131.91	169.34	100.48	235.07	159.47	74.33	233.92
St. error	22.31	12.38	35.54	28.27	43.74	41.23	17.21	55.72	
Variance	22902.84	7051.23	38669.10	36621.52	23180.77	55487.56	61185.28	10665.67	111779.20
Stand. dev	151.34	105.81	218.20	191.37	158.99	249.49	247.36	160.49	391.80
Median	31.50	16.50	41.00	83.00	-9.00	132.00	62.50	5.00	96.00
25 prentil	17.25	9.50	29.50	20.50	-10.50	29.00	16.25	-8.50	26.50
75 prentil	69.50	-49.75	96.00	256.50	-8.00	389.00	173.50	31.00	256.00
Skewness	2.53	0.79	3.26	1.11	0.12	1.81	2.45	1.07	3.64
Kurtosis	2.78	-7.56	8.73	-0.27	-4.70	1.10	5.70	-6.43	11.19
Geom. mean	32.64	15.22	43.99	73.04	23.29	103.83	52.56	14.69	75.35
Coeff. var	164.57	132.49	198.05	113.00	83.33	138.64	155.11	119.74	200.58

Holiday

	16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
28	28	28	23	23	23	23	42	42	42
2	2								
937		600		875					
4061	1829	5790	2710	1295	3913	6632	3467	9469	
145.04	65.32	206.79	117.83	56.30	170.13	157.90	82.55	225.45	
36.94	0.00	50.24	29.76	3.58	39.02	36.86	25.74	45.75	
38203.22	-7733.66	70671.03	20373.24	294.46	35018.77	507066.67	27823.99	87908.85	
195.46	100.84	315.18	142.73	84.34	209.79	238.89	183.99	315.83	
67.50	-15.50	95.00	82.00	53.00	145.00	22.00	-29.50	32.00	
36.50	26.00	53.00	7.00	-39.00	12.00	8.25	3.50	12.50	
193.00	128.50	267.00	190.00	111.00	294.00	231.50	19.00	409.25	
2.92	1.91	5.30	1.96	1.08	3.64	1.58	0.57	2.31	
10.05	2.14	21.26	4.86	-0.03	11.19	1.44	-3.72	3.67	
72.13	29.96	99.87	39.32	-2.76	60.94	34.53	6.88	49.76	
134.76	100.87	191.88	121.14	82.05	162.61	151.29	105.28	185.33	
Interaction

Control

	Lower conf.	Upper conf.	Lower conf.	Upper conf.	Lower conf.	Upper conf.
N	27	27	16	16	27	27
Min	6	3	4			
Max	132	626	72			
Sum	755	431	1012	919	-350	1612
Mean	27.96	15.96	37.48	57.44	-21.88	100.75
Std. error	5.62	0.00	7.72	38.08	0.00	53.79
Variance	851.96	-11.86	1608.36	-14326.53	46286.90	281.13
Stand. dev	29.19	16.95	48.60	152.34	58.22	293.40
Median	20.00	13.00	28.00	17.00	1.00	24.00
25 prcntil	11.00	6.00	13.00	6.25	-3.50	9.50
75 prcntil	35.00	-3.00	50.00	40.50	36.00	63.50
Skewness	2.52	1.09	4.40	3.94	3.90	7.81
Kurtosis	6.50	-5.10	13.71	15.63	15.46	33.04
Geom. mean	19.93	13.08	24.84	17.27	0.68	24.97
Coeff. var	104.38	84.87	156.85	265.23	235.53	470.41

Holiday

	Lower conf.	Upper conf.	Lower conf.	Upper conf.	Lower conf.	Upper conf.
17	17	17	17	17	17	37
3	1	1				
81	170					
386	215	520	469	101	743	2068
22.71	12.65	30.59	27.59	5.94	43.71	55.89
4.73	0.00	6.26	10.30	0.00	14.22	22.49
380.22	-13.32	666.33	1802.01	-459.49	3436.79	18708.88
19.50	11.18	29.30	42.45	21.15	71.97	136.78
14.00	-6.00	16.00	11.00	-5.00	19.00	4.00
11.00	8.50	18.00	2.50	-5.00	4.00	4.50
35.00	26.00	53.00	36.00	-3.00	58.50	30.50
1.80	0.98	3.61	2.69	1.85	4.70	3.65
4.07	0.08	9.82	8.12	2.87	17.36	14.02
16.33	8.42	21.67	10.28	-0.24	15.44	12.57
85.88	61.73	119.33	153.87	105.11	220.09	244.72

	Lower conf.	Upper conf.
Min	6	1
Max	132	626
Sum	755	431
Mean	27.96	15.96
Std. error	5.62	0.00
Variance	851.96	-11.86
Stand. dev	29.19	16.95
Median	20.00	13.00
25 prcntil	11.00	6.00
75 prcntil	35.00	-3.00
Skewness	2.52	1.09
Kurtosis	6.50	-5.10
Geom. mean	19.93	13.08
Coeff. var	104.38	84.87
Laura
Passive behaviour

Control	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	103	103	103	54	54	63	63	63
Min	2	5	7					
Max	1351	3601	1320					
Sum	10833	5587	15219	14978	4541	23068	6357	2648
Mean	105.17	54.24	147.76	277.37	84.09	427.19	100.90	42.03
Std. err	23.99	10.73	31.21	89.11	0.00	120.33	27.29	0.00
Variance	59286.81	11850.14	100314.4	-428828.90	-51197.98	781911.5	46923.3	-6983.71
Stand. dev	243.49	160.29	351.85	654.85	356.36	1034.8	216.62	115.70
Median	31.00	25.00	37.00	48.50	25.00	60.00	26.00	10.00
25 prcntil	18.00	16.00	23.00	25.00	12.50	31.75	19.00	16.00
75 prcntil	57.00	28.00	71.00	128.50	-47.00	186.75	75.00	-12.00
Skewness	3.81	1.74	4.96	3.60	1.73	5.08	4.13	2.10
Kurtosis	14.52	-9.52	22.99	14.04	-5.45	24.65	18.73	-5.61
Geom. mean	37.13	26.89	44.88	69.01	33.78	90.43	39.86	25.97
Coeff. var	231.51	196.88	274.61	236.09	172.64	296.32	214.68	172.17

Holiday	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
16-10	66	66	85	85	85	105	105	105
9	11	2						
3546	3149	1066						
12066	1807	19409	15526	6307	22642	9218	4922	12837
182.82	27.38	294.08	182.66	74.20	266.38	87.79	46.88	122.26
69.58	0.00	97.03	50.05	0.00	67.28	19.53	9.08	25.53
319499.1	-114898.80	621338.50	212907.70	-38352.39	384740.00	40051.26	8649.49	68429.77
565.24	262.21	997.60	461.42	241.54	720.17	200.13	132.95	292.22
39.50	32.00	46.00	36.00	14.00	44.00	30.00	23.00	36.00
22.75	14.25	28.75	23.00	20.00	27.00	16.00	11.50	18.50
64.25	32.50	78.50	87.50	-20.00	109.50	46.50	29.00	54.00
5.04	2.76	7.36	4.51	2.62	6.25	3.86	1.56	5.04
26.40	-3.66	46.51	23.22	0.00	39.44	14.42	-13.45	23.05
48.57	30.34	60.72	54.92	37.13	67.29	34.19	25.65	40.78
309.18	240.48	446.91	252.61	198.59	321.09	227.96	201.05	264.89
Movement

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	r	Upper conf.	05-10	Lower conf.	Upper conf.
N	136	136	136	80	80	80	80	132	132	132
Min	1	3	3							
Max	126		96	138						
Sum	2859	2370	3295	1440	1162	1679	2825	2321	3280	
Mean	21.02	17.43	24.23	18.00	14.53	20.99	21.40	17.58	24.85	
Std. error	1.73	1.16	2.09	1.65	0.68	2.09	1.86	1.18	2.28	
Variance	408.33	183.28	592.41	218.51	37.52	348.71	455.45	182.26	686.45	
Stand. dev	20.21	15.25	25.44	14.78	9.58	20.17	21.34	15.69	27.70	
Median	14.00	11.00	15.50	14.00	10.50	17.00	15.00	14.00	17.00	
25 prentil	8.25	6.50	9.50	8.00	5.75	9.75	8.25	6.25	8.50	
75 prentil	26.25	21.00	30.50	24.00	21.00	29.00	25.75	19.50	31.50	
Skewness	2.41	1.71	3.19	2.65	1.83	4.29	2.79	2.02	3.71	
Kurtosis	7.17	1.32	11.90	10.16	2.29	18.94	9.62	2.23	15.70	
Geom. mean	14.86	12.60	16.76	13.97	11.63	15.96	15.45	13.28	17.36	
Coeff. var	96.12	82.86	112.63	82.12	64.07	105.41	99.72	84.76	120.31	

Holiday

Control	16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
93	93	93	101	101	101	172	172	172	172
2	2	2	2			2			
226		151	147						
2621	1888	3236	2124	1614	2564	3596	3005	4118	
28.18	20.30	34.80	21.03	15.98	25.39	20.91	17.47	23.94	
3.76	1.72	4.75	2.37	1.04	3.04	1.62	1.06	1.96	
1313.39	275.10	2099.89	569.27	108.81	932.37	452.86	194.44	657.82	
36.24	23.99	49.53	23.86	15.63	33.36	21.28	15.89	26.82	
16.00	13.00	19.00	15.00	13.00	19.00	14.00	13.00	16.00	
10.00	7.50	13.50	7.50	5.00	9.00	8.00	6.00	9.00	
28.00	18.50	34.00	22.00	15.50	25.00	26.75	22.75	32.50	
3.02	1.95	4.22	3.24	2.26	4.70	2.75	2.00	3.73	
10.98	0.86	19.45	12.87	2.45	22.66	10.01	3.00	16.75	
16.86	13.04	19.88	14.27	11.65	16.47	14.44	12.45	16.17	
128.59	107.07	157.42	113.46	93.90	145.00	101.79	86.77	119.67	
Foraging Control

	30-09 Lower conf.	30-09 Upper conf.	02-10 Lower conf.	02-10 Upper conf.	05-10 Lower conf.	05-10 Upper conf.
N	28	28	20	20	42	42
Min	6	6	20	20	42	42
Max	662	487	740	740	740	740
Sum	3165	4572	3175	1772	4373	5192
Mean	113.04	163.29	88.60	218.65	123.62	167.57
Std. error	29.35	39.45	24.26	43.54	24.81	31.96
Variance	24117.67	43577.29	11771.21	3175	1772	42902.21
Stand. dev	155.30	242.35	163.29	218.65	123.62	227.71
Median	52.00	77.50	63.50	184.50	51.00	65.50
25 prcntil	13.25	33.00	-16.25	62.00	22.50	27.00
75 prcntil	157.50	248.25	-45.00	249.75	158.00	240.25
Skewness	2.33	3.64	1.13	2.03	1.20	3.26
Kurtosis	5.68	-3.54	1.11	-5.51	1.92	-1.62
Geom. mean	52.07	71.66	90.03	127.77	61.52	80.05
Coeff. var	137.39	181.33	95.91	122.16	130.09	160.89

Holiday

	16-10 Lower conf.	16-10 Upper conf.	18-10 Lower conf.	18-10 Upper conf.	20-10 Lower conf.	20-10 Upper conf.
N	22	22	12	12	49	49
Min	14	14	12	12	49	49
Max	349	1166	1018	3455	5544	2472
Sum	1389	4425	190.42	287.92	113.14	160.67
Mean	63.14	201.14	84.83	287.92	50.45	150.45
Std. error	19.60	50.54	38.75	70.20	28.67	39.35
Variance	8453.51	56191.92	59143.36	59143.36	40284.67	75863.44
Stand. dev	118.73	290.09	187.69	269.03	200.71	332.82
Median	9.00	98.00	87.50	129.50	70.00	112.00
25 prcntil	29.50	51.75	44.25	74.00	11.50	16.00
75 prcntil	-188.25	325.25	123.00	553.25	118.50	153.00
Skewness	1.97	3.25	0.82	-0.62	1.94	2.43
Kurtosis	2.78	-0.72	-6.25	0.67	17.64	33.40
Geom. mean	138.89	107.60	102.94	154.95	42.42	57.34
Coeff. var	123.27	176.82	98.57	134.56	177.40	259.07
Stereotype behaviour

	Control			Holiday		
	05-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
N	6	6	6	6	6	6
Min	34			33		
Max	331			211		
Sum	758	234	1139	600	299	846
Mean	126.33	39.00	189.83	100.00	49.83	141.00
Std. error	43.43	16.78	60.59	25.59	11.50	35.33
Variance	11314.67	1689.17	22027.57	3930.00	792.93	7488.90
Stand. dev	106.37	68.03	188.21	62.69	41.31	106.12
Median	109.00	-8.50	174.50	86.00	3.50	126.50
25 pcntil	48.25	-17.00	62.50	51.75	15.50	70.50
75 pcntil	174.25	17.50	244.00	147.25	83.50	210.50
Skewness	1.84	1.28	5.72	1.22	0.28	3.69
Kurtosis	3.90	1.98	11.08	1.71	-1.84	6.46
Geom. mean	97.49	25.77	139.55	84.96	36.01	116.97
Coeff. var	84.20	57.74	143.27	62.69	40.01	103.86

Interaction

	Control			Holiday					
	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.			
N	14	14	14	11	11	11			
Min	5			9					
Max	319			499					
Sum	702	29	1127	1371	-844	2541			
Mean	50.14	2.07	80.50	124.64	-76.73	231.00			
Std. error	21.79	0.00	30.59	99.08	0.00	140.06			
Variance	6650.29	-2966.60	13099.85	107983.10	-45199.91	215786.10	16888.75	-6417.61	33075.01
Stand. dev	81.55	35.56	148.93	328.61	146.17	643.80	129.96	59.43	233.41
Median	23.50	2.00	35.50	26.00	7.00	43.00	26.00	-27.00	33.00
25 pcntil	11.00	-0.25	13.50	9.00	-8.00	15.00	16.75	7.50	23.75
75 pcntil	48.75	-56.50	71.50	45.00	-1024.00	64.00	83.50	-96.25	145.00
Skewness	3.16	2.75	5.87	3.30	3.29	7.20	2.93	2.32	5.31
Kurtosis	10.68	8.26	22.72	10.92	10.87	23.79	9.23	5.67	19.86
Geom. mean	25.22	4.82	35.73	25.44	-14.92	39.86	39.29	5.34	56.52
Coeff. var	162.63	124.61	263.17	263.65	243.44	478.88	158.21	115.81	246.18

Behavioural Instability

	Control			Holiday					
	06-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.			
N	13	13	14	14	14	14			
Min	3			5					
Max	108			538					
Sum	451	663	1493	331	2416	3175			
Mean	16.54	51.00	106.64	23.64	172.57	102.42			
Std. error	9.08	5.21	40.76	0.00	55.55	57.85			
Variance	1072.90	1819.82	23253.79	-860.65	43193.51	103740.80			
Stand. dev	32.76	23.17	47.46	152.49	87.34	247.42			
Median	25.00	-2.00	42.00	34.50	-70.00	50.50			
25 pcntil	6.50	-12.00	10.00	17.75	-1.25	29.00			
75 pcntil	60.50	30.50	95.50	211.75	96.25	380.50			
Skewness	1.04	-0.03	2.18	2.05	0.73	3.73			
Kurtosis	0.41	-4.10	2.65	4.31	-3.36	10.61			
Geom. mean	19.86	2.67	29.55	43.64	-0.82	65.06			
Coeff. var	94.42	57.99	128.26	142.99	89.76	196.59	314.48	249.21	524.69
My Passive behaviour

Control	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	58	58	58	44	44	44	81	81	81
Min	10	10							
Max	930	3977			1216				
Sum	7431	4230	10178	11379	533	19553	6505	3046	9092
Mean	128.12	72.93	175.48	258.61	12.11	444.39	80.31	37.60	112.25
Std. error	26.29	13.13	33.80	113.88	0.00	159.10	19.17	0.00	26.09
Variance	40100.84	10006.60	66276.35	570653.70	-178860.00	1113823.00	29753.52	-9835.04	55136.51
Stand. dev	200.25	135.56	282.50	755.42	361.85	1345.05	172.49	81.66	278.87
Median	42.50	15.00	55.50	38.00	28.00	51.00	27.00	15.00	32.00
25 prentil	20.00	11.00	22.00	20.00	14.75	25.25	17.00	13.50	21.00
75 prentil	117.00	-55.00	157.75	77.25	-110.75	109.00	56.50	13.50	71.50
Skewness	2.54	1.38	3.47	4.09	1.82	5.85	4.82	3.03	7.09
Kurtosis	6.47	-2.79	11.42	17.09	-7.28	30.04	26.75	2.93	47.24
Geom. mean	56.10	34.82	70.56	51.07	23.78	67.79	35.54	25.78	42.62
Coeff. var	156.30	128.24	188.40	292.10	194.31	396.67	214.79	172.13	300.33

Holiday

16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
43	43	43	106	106	106	66	66	66
6	10							
3235			2042			1395		
9272	105	16246	13689	7195	18876	6436	2888	9083
215.63	2.44	377.81	129.14	67.88	178.08	97.52	43.76	137.62
97.54	0.00	136.64	28.82	0.00	39.39	24.73	0.00	33.31
409140.5	-99622.79	802809.60	88036.45	-13355.63	164473.70	40367.08	-12603.31	73231.98
639.64	321.21	1154.90	296.71	158.18	485.72	200.92	96.32	315.22
20.00	12.00	26.00	36.50	13.00	43.00	21.50	8.00	26.00
10.00	5.00	12.00	18.75	11.50	20.50	14.00	11.25	15.25
51.00	-120.00	79.00	131.75	91.25	193.50	96.50	38.50	150.50
3.87	1.41	5.51	3.34	3.15	7.85	4.68	3.37	7.51
15.09	-10.71	26.59	31.43	-3.51	53.90	27.10	13.08	51.86
31.08	11.19	42.40	52.05	38.63	62.37	36.06	22.90	45.30
296.64	182.72	397.65	229.76	194.45	330.92	206.04	156.07	279.46
Movement Control

	30-09 Lower conf.	Upper conf.	02-10 Lower conf.	Upper conf.	05-10 Lower conf.	Upper conf.
N	104	104	97	97	201	201
Min	2	1	2		2	
Max	449	4951	2348	3059	2231	2937
Mean	38.21	47.61	30.28	30.28	18.78	25.36
Std. error	5.50	7.19	3.31	3.31	1.67	2.06
Variance	3148.11	452.87	5372.60	1062.38	116.34	849.76
Stand. dev	3974	2747	2438	1904	485	3774
Median	23.50	18.00	28.00	21.72	14.00	23.72
75 prcntil	40.00	28.25	31.50	31.50	29.00	32.83
Skewness	4.59	3.32	2.19	1.54	2.94	3.06
Kurtosis	28.49	12.85	5.46	6.72	23.87	11.88
Geom. mean	21.10	12.60	15.69	18.57	15.36	17.07
Coeff. var	146.84	110.96	195.34	205.45	125.02	106.31

Holiday

	16-10 Lower conf.	Upper conf.	18-10 Lower conf.	Upper conf.	20-10 Lower conf.	Upper conf.
141	141	141	150	150	150	150
2	1	1	2	2	2	2
213	259	231	259	231	259	231
2620	2061	3062	3807	2972	4518	3693
18.58	14.62	21.72	25.38	19.81	30.12	23.23
1.82	0.00	2.37	2.65	0.95	3.38	2.47
468.45	-100.47	791.26	1052.14	135.60	1715.67	971.13
21.64	11.08	31.22	32.44	20.50	45.16	31.16
13.00	12.00	16.00	16.00	12.00	19.50	14.00
7.50	6.00	10.00	9.00	8.00	11.00	7.00
25.00	23.50	30.00	30.25	27.50	35.25	27.00
5.61	4.65	10.08	4.12	3.00	6.30	3.81
46.44	32.84	92.24	22.76	7.48	41.48	18.72
12.86	10.97	14.53	16.03	13.50	18.22	13.58
116.48	78.53	159.54	127.80	102.61	165.05	134.17

44
Foraging Control

	30-09	Lower conf.	Upper conf.	02-10	Lower conf.	Upper conf.	05-10	Lower conf.	Upper conf.
N	38	38	38	38	38	38	44	44	44
Min	2	2	2	2	2	2	2	2	2
Max	879	606	741	879	606	741	879	606	741
Sum	3566	1268	5377	5428	3109	7489	4550	2173	6505
Mean	93.84	33.37	141.50	142.84	81.82	197.08	103.41	49.39	147.84
Std. error	28.57	0.00	39.28	29.68	21.04	36.83	26.00	10.04	35.04
Variance	31015.0	-4248.15	58634.68	33477.1	16820.78	51556.1	29738.6	4434.4	54023.0
Stand. dev	176.11	94.78	293.95	182.97	142.03	241.85	172.45	110.29	271.05
Median	27.50	15.50	34.50	52.00	49.50	81.75	-24.00	109.00	
25 prentil	17.75	13.25	30.50	10.00	2.75	13.25	15.75	33.75	
75 prentil	94.00	2.75	153.00	200.25	41.00	280.50	81.75	109.00	
Skewnes s	3.25	1.57	4.84	1.45	0.59	2.13	2.77	1.01	3.87
Kurtosis	11.43	-4.37	21.34	1.07	-3.39	3.03	7.15	-9.67	12.91
Geom. mean	32.10	13.37	43.81	48.36	14.33	68.15	41.10	20.49	54.77
Coeff. var	187.67	142.43	256.96	128.09	95.90	155.97	166.76	138.19	216.22

Holiday

	16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
53	53	53	25	25	25	41	41	41	41
2	2	2	3	3	3	3	3	3	3
635	635	635	635	635	635	635	635	635	635
3747	2061	5148	2783	1207	4043	5222	3006	7089	
70.70	38.89	97.13	111.32	48.28	161.72	127.37	73.32	172.90	
15.26	15.26	15.26	15.26	15.26	15.26	15.26	15.26	15.26	15.26
12341.29	12341.29	12341.29	12341.29	12341.29	12341.29	12341.29	12341.29	12341.29	12341.29
111.09	111.09	111.09	111.09	111.09	111.09	111.09	111.09	111.09	111.09
22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00	22.00
9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50	9.50
85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50	85.50
3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12	3.12
12.44	12.44	12.44	12.44	12.44	12.44	12.44	12.44	12.44	12.44
27.26	27.26	27.26	27.26	27.26	27.26	27.26	27.26	27.26	27.26
157.13	157.13	157.13	157.13	157.13	157.13	157.13	157.13	157.13	157.13

Ottosen et al, 2020. Genet. Biodiv. J, Special issue (Behavioural Instability), 1-60
Reaction to guests/zookeepers

Control	02-10 Lower conf.	Upper conf.	05-10 Lower conf.	Upper conf.	Holiday Lower conf.	Upper conf.
N	6	6	6	7	7	7
Min	19	3			2	
Max	88	33			36	
Sum	229	100	317	111	51	166
Mean	38.17	16.67	52.83	15.86	7.29	23.71
Std. error	10.50	4.62	14.68	4.55	3.57	6.06
Variance	661.37	128.03	1292.73	144.81	89.05	257.14
Stand. dev	25.72	16.87	45.96	12.03	9.91	18.37
Median	30.50	-3.00	41.00	10.00	-9.00	15.00
25 prcntil	20.50	6.00	22.00	5.00	-12.00	7.00
75 prcntil	52.00	16.00	75.75	29.00	25.00	49.00
Kurtosis	4.01	2.26	11.21	-1.79	-9.22	-0.89
Geom. mean	32.94	13.86	42.97	11.61	1.81	17.07
Coeff. var	67.38	53.13	117.60	75.89	45.37	113.50

Interaction

Control	30-09 Lower conf.	Upper conf.	02-10 Lower conf.	Upper conf.	05-10 Lower conf.	Upper conf.	Holiday Lower conf.	Upper conf.
N	14	14	14	19	19	19	30	30
Min	10	2			3			
Max	98	78			499			
Sum	461	265	612	424	225	601	1253	135
Mean	32.93	18.93	43.71	22.32	11.84	31.63	41.77	4.50
Std. error	6.62	1.96	9.17	5.22	3.27	6.79	16.95	0.00
Variance	612.99	53.96	1177.77	517.67	203.06	876.21	8615.50	-4879.61
Stand. dev	24.76	15.28	42.57	22.75	16.66	32.89	92.82	36.94
Median	27.00	20.50	33.00	14.00	0.00	24.00	14.50	10.00
25 prcntil	19.00	11.00	25.75	3.00	-7.00	4.00	0.00	4.00
75 prcntil	35.00	-12.25	43.00	28.00	-5.00	34.00	28.00	-23.00
Kurtosis	3.43	-3.87	8.42	0.72	-4.23	2.90	21.74	15.99
Geom. mean	26.99	16.56	34.07	12.00	3.51	17.10	16.49	7.52
Coeff. var	75.19	59.98	121.62	101.96	69.68	132.52	222.23	170.51

Holiday

16-10	Lower conf.	Upper conf.	18-10	Lower conf.	Upper conf.	20-10	Lower conf.	Upper conf.
38	38	38	12	12	12	58	58	58
1	1	1	1	1	1	1	1	1
193	512	1788	632	899	1130	50	1936	4806
16.63	5.21	23.66	94.17	4.17	161.33	82.86	5.12	136.69
5.00	0.00	6.99	43.64	0.00	60.93	34.40	0.00	47.73
-663.04	-1854.21	22852.52	-3163.70	44546.61	68651.21	-35906.12	132158.20	
30.85	11.04	54.68	151.17	81.28	268.31	262.01	108.33	452.30
10.00	6.50	13.50	23.50	-71.00	43.00	9.00	0.00	12.00
4.00	0.00	5.00	3.50	-19.00	5.75	3.75	1.75	5.50
18.00	12.50	24.00	138.50	-167.00	249.75	26.00	-8.00	33.75
5.32	4.96	10.01	2.27	1.29	4.04	5.36	3.96	8.25
30.73	27.56	61.90	5.42	-0.05	12.54	32.59	17.12	60.11
9.16	5.64	11.68	22.47	-20.78	37.36	12.58	5.29	16.91
185.49	151.39	306.19	160.54	92.98	226.39	316.20	224.50	435.05
Appendix G

1.A Medians for passive behaviour

1.B IQR for passive behaviour

1.C Skewness for passive behaviour

1.D Kurtosis for passive behaviour

2.A Medians for movement

2.B IQR for movement

2.C Skewness for movement

2.D Kurtosis for movement
5.A Medians for stereotype behaviour
5.B IQR for stereotype behaviour
5.C Skewness for stereotype behaviour
5.D Kurtosis for stereotype behaviour

6.A Medians for Interaction
6.B IQR for interaction
6.C Skewness for interaction
6.D Kurtosis for interaction
Appendix H

Comparisons between the chimpanzees Passive behaviour

Kruskal-Wallis test for equal medians (Control)
H (chi2): 4.02
Hc (tie corrected): 4.02
p (same): 0.26
There is no significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)
H (chi2): 8.03
Hc (tie corrected): 8.03
p (same): 0.05
There is a significant difference between sample medians

Movement
Kruskal-Wallis test for equal medians (Control)
H (chi2): 8.612
Hc (tie corrected): 8.62
p (same): 0.03479
There is a significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)
H (chi2): 5.109
Hc (tie corrected): 5.114
p (same): 0.1636
There is no significant difference between sample medians

Foraging
Kruskal-Wallis test for equal medians (Control)
H (chi2): 10.39
Hc (tie corrected): 10.39
p (same): 0.01554
There is a significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)
H (chi2): 18.56
Hc (tie corrected): 18.57
p (same): 0.0003359
There is a significant difference between sample medians

Reaction to guests/zookeepers
Kruskal-Wallis test for equal medians (Control)
H (chi2): 6.275
Hc (tie corrected): 6.29
p (same): 0.09831
There is no significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)
H (chi2): 5.575
Hc (tie corrected): 5.592
p (same): 0.06104
There is no significant difference between sample medians

Stereotype behaviour

Kruskal-Wallis test for equal medians (Control)

H (chi2):	9.647
Hc (tie corrected):	9.649
p (same):	0.008032

There is a significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)

H (chi2):	11.92
Hc (tie corrected):	11.92
p (same):	0.002581

There is a significant difference between sample medians

Interaction

Kruskal-Wallis test for equal medians (Control)

H (chi2):	6.169
Hc (tie corrected):	6.174
p (same):	0.1034

There is no significant difference between sample medians

Kruskal-Wallis test for equal medians (Holiday)

H (chi2):	14.82
Hc (tie corrected):	14.84
p (same):	0.00196

There is a significant difference between sample medians
Mann-Whitney pairwise

	Control	Holiday						
	Jutta	Sebastian	Laura	My	Jutta	Sebastian	Laura	My
Passive behaviour	n.s.	n.s.	n.s.	n.s.	n.s.	J>M*		
	Sebastian	n.s.	n.s.	n.s.	n.s.	S>M*		
	Laura	n.s.	n.s.	n.s.	n.s.	n.s.		
	My	n.s.	n.s.	n.s.	J>M*	S>M*	n.s.	
Movement	Jutta	n.s.	n.s.	J<M**	n.s.	J>M*		
	Sebastian	n.s.	n.s.	n.s.	n.s.	n.s.		
	Laura	n.s.	n.s.	n.s.	n.s.	n.s.		
	My	J<M**	n.s.	n.s.	J>M*	n.s.	n.s.	
Foraging	Jutta	J>S*	n.s.	J>M**	J>S**	J>L**	J>M**	
	Sebastian	J>S*	n.s.	J>S**	n.s.	n.s.		
	Laura	n.s.	n.s.	L>M*	J>L**	n.s.	n.s.	
	My	J>M**	n.s.	L>M*	J>M**	n.s.	n.s.	
Reaction to guests/zookeepers	Jutta	n.s.	n.s.	J<M*	J>S*	-	n.s.	
	Sebastian	n.s.	n.s.	J>S*	-	n.s.		
	Laura	n.s.	n.s.	n.s.	-	n.s.		
	My	J<M*	n.s.	n.s.	n.s.	n.s.	-	
Stereotype behaviour	Jutta	-	n.s.	J>M**	-	n.s.	J>M**	
	Sebastian	-	-	-	-	-		
	Laura	n.s.	-	L>M*	n.s.	-	L>M*	
	My	J>M**	-	L>M*	J>M**	-	L>M*	
Interaction	Jutta	n.s.	n.s.	n.s.	n.s.	J>M*		
	Sebastian	n.s.	L>S*	n.s.	L>S*	n.s.		
	Laura	n.s.	L>S*	L>M*	n.s.	L>S**	L>M**	
	My	n.s.	L>M*	J>M*	n.s.	L>M**		

*P<0.05 **P<0.01
IQR

	Control	Holiday						
	Jutta	Sebastian	Laura	My	Jutta	Sebastian	Laura	My
Passive behaviour								
Jutta	n.s.	J>L**	J>M**	J>S**	J>L**	J>M**		
Sebastian	n.s.	S>L**	S>M**	J>S**	S>L**	n.s.		
Laura	J>L**	S>L**	n.s.	J>L**	S>L**	M>L**		
My	J>M**	S>M**	n.s.	J>M**	n.s.	M>L**		
Movement								
Jutta	n.s.	J>L*	M>J**	n.s.	J>L**	J>M**		
Sebastian	n.s.	S>L**	M>S**	n.s.	S>L**	n.s.		
Laura	J>L*	S>L**	M>L**	J>L**	S>L**	M>L**		
My	M>J**	M>S**	M>L**	n.s.	n.s.	M>L**		
Foraging								
Jutta	n.s.	n.s.	J>M**	n.s.	J>L**	J>M**		
Sebastian	n.s.	n.s.	S>M*	n.s.	S>L**	S>M**		
Laura	n.s.	n.s.	L>M**	J>L**	S>L**	n.s.		
My	J>M**	S>M*	L>M**	J>M**	S>M**	n.s.		
Reaction to guests/zoo keepers								
Jutta	S>J**	n.s.	n.s.	J>S*	n.s.	n.s.		
Laura	n.s.	n.s.	n.s.	-	-	-		
My	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.		
Stereotype behaviour								
Jutta	-	n.s.	J>M*	-	n.s.	J>M*		
Sebastian	-	-	-	-	-	-		
Laura	n.s.	-	I>M**	n.s.	-	n.s.		
My	J>M*	-	L>M**	J>M*	-	n.s.		
Interaction								
Jutta	n.s.	n.s.	n.s.	J>S*	n.s.	n.s.		
Sebastian	n.s.	L>S**	n.s.	J>S*	L>S*	n.s.		
Laura	n.s.	L>S**	L>M**	n.s.	L>S*	n.s.		
My	n.s.	n.s.	L>M**	n.s.	n.s.	n.s.		

*P<0.05 **P<0.01
Appendix I

Summery statistics for comparisons between the chimpanzees

Passive behaviour

Control	Jutta	Lower conf.	Upper conf.	Lower conf.	Lower conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	161	161	161	162	162	220	220	220	183	183	183
Min	3	7	9	9	9	19	9	19	3	3	3
Max	3651	4565	3610	3977	34607	25315	13138	34607			
Sum	2836	17157	37502	35487	20885	47056	32168	19825	42328	25315	13138
Mean	176.1	106.57	232.93	219.06	128.92	293.25	146.22	90.11	192.40	138.33	71.79
Std. error	32.60	0.00	42.41	42.81	7.89	55.53	26.14	6.77	33.48	30.07	0.00
Variance	1710	53.50	8664.85	289573.60	296875.20	10083.94	499532.10	150302.10	10094.62	246577.00	165491.60
Stand. dev.	413.5	9.59	234.91	597.97	544.86	325.74	782.78	387.69	236.39	542.94	406.81
Median	36.00	22.00	43.00	36.50	27.00	43.00	33.00	26.50	37.00	33.00	25.00
25 prcntil	20.00	15.50	23.00	20.00	15.00	23.00	19.00	17.00	21.00	19.00	17.00
75 prcntil	117.5	35.00	158.00	131.25	21.00	183.50	76.75	62.00	98.50	77.00	41.00
Kurtosis	34.72	10.66	61.75	30.59	6.03	51.92	35.74	8.49	60.95	56.37	11.02
Geom. mean	54.89	41.85	64.98	58.33	43.94	69.46	44.12	35.66	50.89	44.82	35.92
Coeff. var	234.7	96	186.95	296.63	248.73	201.90	308.61	265.14	217.94	319.77	294.08

Holiday

Jutta	Lower conf.	Upper conf.	Lower conf.	Lower conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	151	151	151	195	195	195	256	256	215	215
Min	3	3	2	2						
Max	4342	2510	3546	3235						
Sum	3130	18546	41916	36123	23919	47001	36810	22924	48504	29397
Mean	207.3	122.82	277.59	185.25	122.66	241.03	143.79	89.55	189.47	136.73
Std. error	39.91	0.00	52.35	29.61	18.77	36.36	25.78	10.61	33.20	25.29
Variance	2404	69.60	413879.50	170932.80	68714.62	257734.70	170099.00	28802.59	282222.30	137508.70
Stand. dev.	490.3	8.08	721.80	413.44	304.24	536.83	412.43	266.83	584.08	370.82
Median	47.00	24.00	61.00	40.00	30.00	46.00	34.00	30.00	29.00	23.00
25 prcntil	18.00	13.00	21.00	20.00	16.00	23.00	20.00	17.00	23.00	16.00
75 prcntil	150.0	56.00	181.00	103.00	26.00	134.00	64.75	52.25	74.00	101.00
Kurtosis	53.43	3.72	8.06	3.58	2.44	4.40	5.67	3.92	7.33	5.63
Geom. mean	60.12	44.37	72.57	52.91	40.70	62.52	43.81	36.65	49.84	41.95
Coeff. var	236.5	3.00	185.77	301.93	223.18	194.34	252.41	286.83	246.39	352.28

Ottosen et al, 2020. Genet. Biodiv. J , Special issue (Behavioural Instability), 1-60

54
Movement

	Control	Jutta	Lower conf.	Upper conf.	Sebastian	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.		
N	294	294	316	316	348	348	402	402							
Min	1	2	1	1											
Max	155	325	138	449											
Sum	6061	5340	6737	7717	6635	8969	7124	6408	7819	10897	9366	12188			
Mean	20.62	18.16	22.91	24.42	21.00	27.52	20.47	18.41	22.47	27.11	23.30	30.32			
Std. error	1.23	0.94	1.43	1.67	0.75	2.07	1.05	0.84	1.21	1.80	0.73	2.22			
Variance	443.6	6	258.36	600.79	883.50	179.95	1353.6	6	382.41	244.33	505.71	1303.4	8	212.67	1981.1
Stand. dev	21.06	17.05	25.20	29.72	19.61	39.12	19.56	16.30	23.01	36.10	23.28	47.19			
Median	13.00	11.00	15.00	16.00	14.00	18.00	14.00	12.00	15.00	16.00	13.00	17.50			
25 prcntil	7.00	6.00	7.00	8.00	6.00	8.75	8.00	6.00	8.00	9.00	8.00	10.00			
75 prcntil	28.00	23.75	34.00	28.75	24.50	32.50	24.00	20.00	25.00	32.25	27.50	35.50			
Skewnes s	2.64	2.00	3.60	4.87	3.60	7.72	2.69	2.17	3.28	5.58	4.16	8.70			
Kurtosis	10.06	4.68	17.12	37.69	18.42	70.45	9.20	4.59	13.39	50.81	28.01	94.13			
Geom. mean	13.78	12.28	15.10	15.93	14.20	17.45	14.87	13.60	16.04	16.76	15.10	18.27			
Coeff. var	102.1	79.54	115.99	121.71	94.24	151.81	95.53	85.85	106.97	133.19	110.23	164.75			

Holiday

	Jutta	Lower conf.	Upper conf.	Sebastian	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	255	255	392	392	366	366	450	450				
Min	2	2	1									
Max	168	195	226									
Sum	6246	5389	7037	8979	7939	9930	8341	7262	9295	10120	8839	11240
Mean	24.49	21.13	27.60	22.91	20.25	25.33	22.79	19.84	25.40	22.49	19.64	24.98
Std. error	1.64	1.22	1.93	1.31	1.01	1.52	1.39	1.01	1.63	1.37	0.94	1.64
Variance	684.5	381.99	947.54	675.28	400.28	905.12	709.11	374.02	973.06	844.73	401.31	1206.2
Stand. dev	26.16	20.91	31.80	25.99	21.15	30.87	26.63	20.94	32.16	29.06	22.24	36.15
Median	16.00	14.00	18.00	13.00	10.50	14.00	14.00	12.00	15.00	14.00	12.00	16.00
25 prcntil	9.00	8.00	10.00	7.00	6.00	7.00	8.75	7.50	10.50	8.00	7.00	9.25
75 prcntil	29.00	24.00	32.00	29.00	25.00	32.25	25.25	22.50	28.50	27.00	24.00	30.00
Skewnes s	2.82	2.29	3.44	3.02	2.47	3.95	3.35	2.54	4.26	4.32	3.62	5.43
Kurtosis	9.76	4.94	13.80	12.96	8.00	20.15	15.04	5.92	23.40	24.99	14.56	35.34
Geom. mean	16.43	14.50	18.17	14.46	13.00	15.71	14.97	13.49	16.24	14.11	12.82	15.27
Coeff. var	106.8	94.63	121.89	113.45	100.36	128.40	116.85	102.53	133.03	129.24	111.66	151.76
Foraging

	Jutta	Lower conf.	Upper conf.	Sebasti an	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	96	96	96	111	111	111	90	90	90	120	120	120
Min	2	1					6					
Max	980	1012	740	879								
Sum	15456	11045	19466	14882	10730	18731	11532	8526	14255	13544	9552	17117
Mean	161.00	115.05	202.77	134.07	96.67	168.75	128.13	94.73	158.39	112.87	79.60	142.64
Std. error	22.30	15.90	27.12	18.85	13.15	22.77	16.49	11.85	19.83	16.13	11.53	19.39
Variance	47758	24284.80	70582.12	39440.12	19188.18	57527.01	24471.53	12636.04	35373.24	31233.65	15962.05	45125.17
Stand. dev	218.5	170.18	279.17	198.60	152.87	251.06	156.43	122.32	196.38	176.73	137.81	221.77
Median	69.50	36.00	88.00	44.00	25.00	56.00	58.00	25.50	73.50	34.50	21.00	43.00
25 prcntil	27.50	16.00	34.00	18.00	10.00	22.00	23.00	13.25	27.25	15.50	10.00	23.00
75 prcntil	203.2	148.50	273.50	157.00	51.00	219.00	167.00	66.50	210.25	120.75	56.50	166.00
Skewness	2.19	1.43	2.80	2.27	1.50	2.98	1.92	1.28	2.54	2.37	1.57	2.98
Kurtosis	4.31	-1.17	7.24	5.35	0.07	9.28	3.52	-0.39	6.34	5.24	-0.60	8.51
Geom. mean	71.66	49.42	89.19	47.01	30.65	58.87	63.56	45.10	77.84	40.02	27.57	49.35
Coeff. var	135.7	118.07	154.49	148.13	126.16	170.05	122.09	104.58	140.91	156.58	136.14	177.21

Holiday

	Jutta	Lower conf.	Upper conf.	Sebasti an	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	72	72	72	93	93	93	83	83	83	119	119	119
Min	2	1					6					
Max	1325	937	1166	671								
Sum	15024	10765	18798	13403	9367	17078	10896	7108	14017	11752	8607	14543
Mean	208.6	149.51	261.08	144.12	100.72	183.63	131.28	85.64	168.88	98.76	72.33	122.21
Std. error	28.88	15.63	35.96	21.19	14.85	25.62	21.00	8.28	26.78	12.90	8.74	15.76
Variance	60038	17599.03	93079.82	41775.41	20517.10	61038.02	36596.25	5692.09	59511.52	19788.86	9099.69	29548.11
Stand. dev	245.0	169.93	325.75	204.39	157.72	258.74	191.30	122.79	265.64	140.67	106.77	181.20
Median	118.5	72.00	160.00	49.00	69.00	55.00	97.00	42.00	26.00	54.00		
25 prcntil	43.75	13.00	55.50	11.50	2.00	17.00	24.00	8.00	15.00	8.00		
75 prcntil	296.2	187.50	413.50	193.50	118.00	257.50	136.00	75.00	165.00	128.00	78.00	167.00
Skewness	2.23	1.39	3.26	2.04	1.38	2.64	3.02	1.94	4.34	2.56	1.91	3.15
Kurtosis	6.08	-0.19	11.51	3.95	-0.46	6.78	11.27	1.51	20.47	6.91	1.50	10.53
Geom. mean	102.3	64.21	130.75	44.51	25.25	58.21	57.22	36.74	72.33	41.68	30.06	51.13
Coeff. var	117.4	95.40	141.63	141.82	119.65	163.77	145.72	118.49	178.74	142.44	123.58	164.77
Reaction to guests/zookeepers

Control	Jutta (Reak.) C	Lower conf.	Upper conf.	Seb. (Reak.) C	Lower conf.	Upper conf.	Laura (Reak.) C	Lower conf.	Upper conf.	My (Reak.) C	Lower conf.	Upper conf.
N	15	15	15	8	8	8	7	7	7	14	14	14
Min		2			2			5				
Max		33			86			48			88	
Sum	173	95	240	213	49	346	157	71	235	396	222	538
Mean	11.53	6.33	16.00	26.63	6.13	43.25	22.43	10.14	33.57	28.29	15.86	38.43
Std. error	2.49	1.62	3.24	10.15	4.69	13.74	6.43	4.74	8.70	6.03	1.38	8.06
Variance	92.98	39.56	157.61	824.27	175.84	1510.54	289.62	157.33	530.33	508.53	26.83	910.50
Stand. dev	9.64	7.19	13.96	28.71	19.04	45.67	17.02	13.50	27.04	22.55	13.63	34.78
Median	7.00	-5.00	8.00	17.00	-7.00	29.00	21.00	0.00	35.00	24.00	13.00	33.50
25 prectil	3.00	-1.00	4.00	5.25	-16.50	8.50	7.00	-10.00	9.00	9.75	-4.75	15.00
75 prectil	19.00	11.00	31.00	40.50	-5.00	74.00	42.00	36.00	74.00	36.25	8.50	46.50
Skewness	1.05	-0.04	2.05	1.39	0.22	3.54	0.63	-0.84	2.41	1.51	0.64	3.43
Kurtosis	0.18	-4.59	2.03	1.87	-3.26	6.21	-1.24	-7.22	0.19	2.92	-1.34	7.38
Geom. mean	8.06	3.37	11.00	14.10	-3.92	22.10	16.66	3.23	24.22	20.31	8.75	27.95
Coeff. var	83.61	60.92	110.21	107.83	58.43	160.70	75.88	45.90	113.06	79.72	55.05	115.38

Holiday

	Jutta	Lower conf.	Upper conf.	Sebast.	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	7	7	7	8	8	8	27	27	27
Min	8			2					
Max	116			23					
Sum	227	18	374	59	19	86	493	243	678
Mean	32.43	2.57	53.43	7.38	2.38	10.75	18.26	9.00	25.11
Std. error	14.88	4.70	20.98	2.38	0.00	3.32	4.22	0.00	5.72
Variance	1549.29	154.57	3082.57	45.13	-2.82	88.32	479.97	-197.63	881.91
Stand. dev	39.36	24.46	74.72	6.72	3.79	12.05	21.91	9.79	34.98
Median	15.00	-18.00	22.00	4.50	0.00	5.00	14.00	8.00	21.00
25 prectil	8.00	-4.00	8.00	4.00	3.00	6.00	6.00	3.00	10.00
75 prectil	48.00	-20.00	84.00	8.75	-5.50	13.50	25.00	20.00	35.00
Skewness	2.08	1.53	4.51	2.22	1.72	5.11	3.40	2.87	6.69
Kurtosis	4.29	1.68	11.36	5.35	3.13	13.13	14.44	10.92	30.35
Geom. mean	20.01	-1.21	29.16	5.66	1.89	7.66	10.92	5.58	14.54
Coeff. var	121.38	89.63	212.46	91.08	69.25	151.76	119.98	88.39	179.35
Stereotype behaviour

Control	Jutta Lower conf.	Upper conf.	Laura Lower conf.	Upper conf.	My Lower conf.	Upper conf.
N	9	9	13	13	9	9
Min	12		13		9	9
Max	696	-415			85	
Sum	2489	1278	3563	1987	1065	2806
Mean	276.56	142.00	395.89	152.85	81.92	215.85
Std. error	69.63	34.57	94.20	35.58	24.54	46.30
Variance	43639.53	10754.53	79862.19	16453.97	7830.64	27867.36
Stand. dev	208.90	141.17	331.68	128.27	98.19	185.55
Median	213.00	-23.00	294.00	118.00	-30.00	183.00
25 prcntil	135.00	54.50	258.00	47.00	-17.00	70.50
75 prcntil	433.50	171.00	654.00	271.00	169.00	424.00
Skewness	1.00	-0.22	2.62	0.90	-0.32	1.99
Kurtosis	0.78	-0.47	3.71	-0.34	-5.72	1.19
Geom. mean	186.79	27.60	288.53	102.48	33.59	145.43
Coeff. var	75.54	45.65	110.08	83.92	57.20	111.97
Holiday						
N	12	12	12	12	7	7
Min	40		11		7	7
Max	587	626			79	
Sum	2840	1612	3950	1723	445	2611
Mean	236.67	134.33	329.17	143.58	37.08	217.58
Std. error	51.83	36.06	66.67	48.77	0.00	67.77
Variance	32234.24	15608.15	53344.79	28537.36	-7397.92	55118.33
Stand. dev	179.54	138.03	253.61	168.93	83.95	293.63
Median	183.50	-39.00	276.50	94.00	19.50	142.50
25 prcntil	89.75	18.50	131.00	39.25	-15.25	66.25
75 prcntil	411.00	272.50	620.00	189.75	-154.75	282.50
Skewness	0.75	-0.53	1.89	2.43	1.73	4.95
Kurtosis	-0.72	-5.51	0.67	6.64	2.96	14.98
Geom. mean	174.90	73.06	240.04	83.75	11.11	122.40
Coeff. var	75.86	53.49	102.44	117.65	83.52	182.61
Interaction

Control

	Jutta	Lower conf.	Upper conf.	Sebasti an	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	42	42	42	70	70	70	39	39	39	63	63	63
Min	2	3	3				2					
Max	1114	626	1114	499								
Sum	2170	-150	3502	2183	769	3045	3223	456	5077	2138	932	2935
Mean	51.67	-3.57	83.38	31.19	10.99	43.50	82.64	11.69	130.18	33.94	14.79	46.59
Std. error	26.22	0.00	36.98	9.02	0.00	12.63	30.95	0.00	43.38	8.34	0.00	11.48
Variance	28869.	-23740.06	57450.72	5695.37	-4355.01	11161.73	37369.	-19629.12	73387.74	4379.93	-2535.05	8306.80
Stand. dev	15	54.37	322.86	75.47	25.45	135.80	193.31	79.43	349.87	66.18	26.08	111.08
Median	18.50	13.00	25.00	16.00	12.00	20.00	26.00	8.00	33.00	19.00	12.00	25.00
25 ptntil	8.75	3.25	12.50	9.00	6.00	11.00	11.00	0.00	13.00	7.00	1.00	10.00
75 ptntil	33.25	13.50	44.50	27.25	18.25	33.50	58.00	17.00	79.00	29.00	-1.00	32.00
Skewness	6.25	6.12	11.30	7.34	6.83	13.14	4.52	3.18	7.04	5.89	5.07	10.29
Kurtosis	39.92	38.70	78.99	57.94	51.77	113.58	22.47	9.45	41.73	40.41	31.30	79.14
Geom. mean	18.68	11.08	23.96	16.80	12.84	19.97	29.64	14.52	39.21	16.72	11.32	20.80
Coeff. var	328.86	288.59	579.32	241.99	200.96	407.84	233.92	179.95	366.76	195.01	151.20	297.93

Holiday

	Jutta	Lower conf.	Upper conf.	Sebasti an	Lower conf.	Upper conf.	Laura	Lower conf.	Upper conf.	My	Lower conf.	Upper conf.
N	64	64	64	71	71	71	58	58	58	108	108	108
Min	1	1	1									
Max	1472	690		1788		1788						
Sum	5469	1763	8124	2923	1035	4322	5119	870	7850	6568	1846	9962
Mean	85.45	27.55	126.94	41.17	14.58	60.87	88.26	15.00	135.34	60.81	17.09	92.24
Std. error	25.94	0.00	35.54	12.08	0.00	16.68	32.42	0.00	45.18	19.32	0.00	26.43
Variance	43052.	-19293.27	80825.46	10362.66	-3241.79	19763.72	60976.	-39240.86	118373.90	40331.	-19750.01	75443.70
Stand. dev	207.49	90.33	342.32	101.80	48.78	172.58	246.93	92.38	434.05	200.83	84.77	329.41
Median	16.50	6.00	21.00	12.00	7.00	17.00	25.50	11.50	33.50	10.00	6.50	12.00
25 ptntil	7.25	3.25	9.50	5.00	3.00	7.00	9.75	3.00	13.50	4.00	2.00	5.00
75 ptntil	57.50	-77.75	87.25	33.00	22.00	47.00	57.75	7.50	72.50	24.00	6.00	30.00
Skewness	5.21	4.03	8.57	4.87	2.67	7.14	6.06	5.16	10.05	6.65	4.95	10.29
Kurtosis	32.41	19.03	62.39	26.49	-1.98	-46.12	40.86	30.76	78.13	52.62	27.99	96.73
Geom. mean	21.38	10.75	28.24	12.76	7.88	16.26	25.03	13.04	32.90	12.00	7.64	14.96
Coeff. var	242.81	181.84	341.83	247.27	195.84	358.05	279.78	217.61	429.53	330.23	247.87	450.10

Appendix J

Behavioural shifts

	Sebastian	Laura	My			
	Chi²	P	Chi²	P	Chi²	P
Control						
Jutta	9.83	0.080	10.18	0.071	3.62	0.61
Sebastian	23.55	0.00027*	5.44	0.37		
Laura			16.69	0.0051*		
My					12.17	0.033*
Holiday						
Jutta	11.15	0.049*	14.83	0.011*	12.17	0.033*
Sebastian	17.15	0.0042*		11.32	0.045*	
Laura			41.67	6.88*10^-8**		
My						

*P<0.05

**P<0.0
