High Prevalence of *icaABCD* Genes Responsible for Biofilm Formation in Clinical Isolates of *Staphylococcus aureus* From Hospitalized Children

Abdolmajid Ghasemian 1; Shahin Najar-Peeryeh 1,2; Bita Bakhshi 1; Mohsen Mirzaee 1

1Department of Bacteriology, Tarbiat Modares University, Tehran, IR Iran
2Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, IR Iran

Corresponding author: Shahin Najar-Peeryeh, Department of Bacteriology, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-92862883870. E-mail: najaarp_s@modares.ac.ir

Received: May 26, 2014; **Revised:** July 7, 2014; **Accepted:** May 11, 2015

Background: The *icaABCD* genes encode a Polysaccharide Intercellular Adhesion (PIA), which is a tight structure protecting *Staphylococcus aureus* community against adverse environmental conditions. The *ica* dependent biofilm formation plays an important role in persistent infections in hospitalized patients.

Objectives: The aim of this study was to detect *icaABCD* genes encoding PIA among *S. aureus* isolates from children in Loghman Hospital of Tehran.

Materials and Methods: We collected 22 clinical specimens from hospitalized pediatrics and identified the isolates. Then, we detected *mecA* gene among Methicillin Resistant *S. aureus* (MRSA), SCCmec types and *icaABCD* genes by PCR assay and specific primers.

Results: Five isolates (22.7%) were methicillin resistant (MRSA) and *mecA* gene was detected among them. All the MRSA isolates harbored SCCmec type III. Prevalence of *icaA*, *icaB*, *icaC* and *icaD* in the isolates were 16 (73%), 14 (63.6%), 16 (73%) and 16 (73%), respectively. Moreover, all the MRSA strains were *icaABCD* positive.

Conclusions: Prevalence of *icaABCD* genes was relatively high among children and also all the four *ica* genes were detected among MRSA strains.

Keywords: *Staphylococcus aureus*; MRSA; Biofilms; Pediatrics

1. Background

S. aureus clinical isolates, especially methicillin resistant strains, are the causative agents of various clinical signs such as folliculitis, boils, impetigo and cellulitis, which are important in children (1, 2). *S. aureus* infections have been sharply increased during the recent years and associated with more mortality than other bacterial agents (3). Attachment and colonization is the first step for *Staphylococcus aureus* pathogenesis. Biofilm formation leads to bacterial resistance to higher concentrations of antimicrobial agents in addition to host immune responses (4). The self-produced polymeric matrices adhere to inert and living surfaces (5). Penetration of antibiotics reduces through *S. aureus* and *S. epidermidis* biofilms (6), although carbon and amino acids can be adsorbed by the biofilm layers (7). Some of special clonal complexes (e.g. clonal complex 8) are capable to adhere to different surfaces and produce a large amount of biofilm (8). The *icaABCD* genes, encoding PIA play important roles in biofilm formation among *S. aureus* and *S. epidermidis* isolates (9). Infections caused by isolates producing slime layer are difficult to treat. Many chronic infections due to *S. aureus*, especially through medical devices, are associated with biofilm formation (10, 11). Strong biofilm producer isolates are more virulent with severe post-surgical infections (12). The *ica* dependent biofilm formation develops by production of a polysaccharide intercellular adhesion (PIA- PNSG/ poly- beta-1, 6-N-acetylglucosamine polymer) by the N-acetyl glucose amyl transferase enzyme (13). Two *ica A and D* genes in the operon encode this enzyme. The other genes in this operon include *icaB* (polysaccharide deacetylase), *icaC* (transporter of PIA) and *icaR* (the regulatory gene). In Akiyama’s study, all *S. aureus* strains tested in skin lesions of impetigo, atopic dermatitis and pemphigus were covered with glycocalyx and formed microcolonies (14). Systemic and intravenous *Staphylococcal* isolates have been shown to harbor *ica* genes as twice as the normal flora of healthy volunteers (15). Most reports have detected some of these genes.

2. Objectives

The aim of this study was to detect the *icaABCD* genes encoding PIA among clinical isolates of *S. aureus* from children in Loghman Hospital of Tehran.

3. Materials and Methods

We collected 22 *S. aureus* isolates and then identified them with coagulase, manitol fermentation, colony mor-
phology and DNase tests. Methicillin resistant isolates were identified in the phenotypic test by disk diffusion with oxacillin disk. Bacterial isolates were suspended in 200 µL of TE buffer and then lysostaphin was added (comprising 200 µL of TE buffer and 20 µL of lysostaphin [2 µg/mL, Sigma]). Genomic DNA of S. aureus isolates was isolated according to Straubinger method (15). The meca gene was detected with specific primers indicated in Table 1 (16). PCR reaction mixture comprised of 9.5 µL distilled water (DW), 2 µL DNTPs (10 mM), 1.5 µL MgCl2 (50 mM), 1 µL of each primer, 3 µL 10X PCR buffer (200 mM), 2µL Taq polymerase (500 U) and 5 µL template DNA. The thermal profile included initial denaturation at 94°C for 5 min, followed by 30 cycles of 94°C (30 s), 55°C (30 s) and 72°C (30 s) and final extension of 72°C (4 min). Reaction mixture for SCCmec types was 94°C (1 min), 51°C (1 min), 72°C (1.5 min) and final extension of 72°C for 10 min. Moreover, thermal profile for icaA gene concluded with 94°C (5 min), followed by 30 cycle of 94°C (1 min), 52°C (30 s) and 72°C (1.5 min) with final extension of 72°C (10 min). The annealing temperature for icaB, icaC and icaD set as 55°C for 1 min (17), shown in Table 2. PCR products were electrophoresed in 1% gel agarose in IX TBE buffer with staining of 1 µL of each loading buffer and gel red and then observed under UV emission. Pearson Chi-Square was used to data analysis. A P < 0.05 considered significant.

Table 1. Primers for the meca and SCCmec Types Used in This Study

Primer	Sequence 5’ → 3’	Size (bp)	Reference
meca	F: GTG AAG ATA TAC CAA GTG ATT		
R: ATG CGC TATAGATTGAAA GGA	147	(16)	
SCCmecI	F: GCTTTAAGAGTGTCGTTACAGG		
R: GTTCTCTCATAGTATGACGTCC	613	(16)	
SCCmecII	F: CGTTGAAGATGATGAAGCG		
R: CGAAATCAATGGTTAATGGACC	398	(16)	
SCCmecIII	F: CCATAATGGTGATGAGCG		
R: CCTTAGTTGCTGTAACAGATCG	280	(16)	
SCCmecIVa	F: GCCTTATTGGAAGAAACCG		
R: CTACTCTTCTGAAAGGCTG	776	(16)	
SCCmecV	F: GAACATTGTTACTTAAATGAGCC		
R: TGAAAGTTGACCCCTGACACC | 325 | (16) |

Table 2. Primers Sequences Used for Amplification of icaADBC Genes

Primer	Sequence 5’ → 3’	Size (bp)	Reference
icaA	F: ACACTTGCGTGGCGCAGTCAA		
R: TCTGAAAACACATCCAA	188	(17)	
icaB	F: AGAATCGTGAAAGATAGAAAATT		
R: TCTAATCTTTCTGGAAATCTG	900	(17)	
icaC	F: ATGGGACGGAGATCCATGAAAGA		
R: TAAACGATTTAATGCTG	1100	(17)	
icaD	F: AGTTCAAGGCCAGAGGAG		
R: AGATTTTCAATGGTTAAGCAA | 198 | (17) |
Table 1. Characteristics of MRSA Isolated From Hospitalized Children

MRSA	Clinical Origin	meca	SCCmec	ica Genes	Gender
1	Trachea	+	III	ADBC	Male
2	Blood	+	III	ADBC	Male
3	Lesion	+	III	ADBC	Female
4	Trachea	+	III	ADBC	Male
5	Lesion	+	III	ADBC	Male

4. Results

Five (22.7%) isolates were resistant to oxacillin (1 µg), moreover all the isolates were susceptible to vancomycin (2 µg) and linezolid (30 µg) disks. The meca gene was detected in all five isolates (22.7%) with 147 bp size. All the MRSA isolates harbored SCCmec type III.

Furthermore, the prevalence of icaA, B, C, and D in the isolates were 16 (73%), 14 (63.7%), 16 (73%) and 16 (73%), respectively as depicted in Figure 1. Interestingly, all MRSA isolates harbored all of icaADBC genes, suggesting that MRSA isolates may be more capable of PIA synthesis and biofilm formation (Table 3). However, there was no significant difference between MRSA and MSSA strains for the presence of icaADBC operon.

5. Discussion

All the studied isolates were susceptible to vancomycin and linezolid; although these drugs are the last choices for treatment of S. aureus infections, resistance to vancomycin has been sporadically reported from some areas of the world, similar to Iran (18, 19). Moreover, resistance to linezolid was detected in 19 of 20 isolates studied by Armin et al. (20). In this study, all MRSA strains harbored SCCmec type III. In the study of Japoni et al. (21) from south of Iran, SCCmec type III was the predominant type. MRSA strains harbor several virulence factors that develop more clinical signs (17, 22). Also the study by Imani Fouladi et al. (22), 75% of Staphylococcus aureus isolates with the SEB gene were Methicillin resistant and 15% were MSSA. In the study of Rahimi et al. (23), all the isolates were susceptible to vancomycin and most were susceptible to SXT. MRSA isolates harbored all icaADBC genes, suggesting that these isolates are strong biofilm producers and considered to cause chronic and persistent infections (24). Polymeric Intercellular Adhesion (PIA) plays an important role in attachment of bacteria to each other and to accumulate with multilayered biofilm. Catheter and blood stream Staphylococcal infections play an important role in biofilms (25, 26). We confirmed no significant difference between MSSA and MRSA isolates of S. aureus regarding the presence of icaADBC genes, similar to survey Atshan et al. (27), in which icaADBC genes were compared between MRSA and MSSA. Furthermore, we previously observed that most isolates belonged to accessory gene regulator (agr) group I (28), but the relationship of agr groups and icaADBC expression needs more studies. Several studies indicated the role of icaA and icaD genes in biofilm production and several reported that all of isolates were icaA positive (29). In the study by Hou et al. (30), among 55.56% of isolates that produced biofilm phenotypically, 11.11% had icaA gene, but other genes were not investigated. In this study, methicillin resistant isolates harbored higher rate of icaADBC genes, similar to studies conducted by Khan et al. (31) and O’neill et al. (32). However, Smith et al. (33) detected no significant correlation between susceptibility to methicillin and biofilm formation. Variations in the presence of icaADBC genes from studies might be due to epidemiological varieties and periods that these isolates have been collected.

Most of previous studies focused on the icaAD genes that encode PIA; likewise, these studies have not determined whether MRSA strains could produce PIA significantly more than MSSA isolates. For instance, Nasr et al. (34) detected icaAD genes in 32% of blood and catheter isolates. In the other study, 36 of 46 Staphylococcal isolates harbored icaA and icaB genes; while Grinholc and coworkers did not detect icaD, but all strains were icaA
positive (35). Terki et al. (36) detected icaAD genes in 17 (38.5%) of 44 staphylococcal isolates from urinary tract. In the other study, biofilm formation in most isolates was PLA dependent (37). Smith et al. (33) depicted that isolates of S. aureus from infected skin lesions were significantly more capable of producing biofilms than those isolated from blood and other infected sites. In the study of Semczuk et al. (38), all the isolates forming biofilm phenotypically, harbored icaAD genes. Satorres and Alcaraz (13) suggested that the ica genes might be more prevalent in Staphylococcus strains isolated from hospitalized patients or staff, than healthy individuals or the community. The limitations of this study were loss of healthy individuals, environmental strains and low number of isolates. In conclusion, the prevalence of icaADBC genes was high in hospitalized children in center of Tehran. There was no significant difference between MRSA and MSSA isolates regarding the presence of icaADBC genes, although all methicillin resistant strains harbored all the icaADBC genes.

Acknowledgements

The authors acknowledge the staff of the Laboratory of Loghman Hospital of Tehran for providing clinical isolates. This study was obtained from a thesis of Master of Sciences in Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran.

Authors’ Contributions

Abdolmajid Ghasemian followed the microbiological and molecular laboratory studies. Shahin Najar Peereyeh designed the thesis of research, Bita Bakhshi and Mohsen Mirzae advised the research.

Funding/Support

This work was supported by grants for a thesis from Faculty of Medical Sciences of Tarbiat Modares University, Tehran, IR Iran.

References

1. Nkwelang G, Akoachere JT, Kamga LH, Nfoncham ED, Ndip RN. Staphylococcus aureus isolates from clinical and environmental samples in a semi-rural area of Cameroon: phenotypic characterization of isolates. Afr J Microbiol Res. 2009;3(1):73–8.
2. Post V, Wahl P, Uckay I, Ochsner F, Zimmerli W, Corvec S, et al. Phenotypic and genotypic characterisation of Staphylococcus aureus causing musculoskeletal infections. Int J Med Microbiol. 2014;304(5-6):565–76.
3. Naber CK. Staphylococcus aureus bacteriaemia: epidemiology, pathophysiology, and management strategies. Clin Infect Dis. 2009;48 Suppl 4:S23–7.
4. Verma P, Maheshwari SR, Mathur A. A review on bacterial biofilm formation and disassembly. Int J Pharm Sci Res. 2013;4(4):2990–6.
5. Diemond-Hernandez B, Solorzano-Santos F, Leano-Miranda B, Peregrino-Bejarano I, Miranda-Novales G. Production of icaADBC-encoded polysaccharide intercellular adhesion and therapeutic failure in pediatric patients with Staphylococcal device-related infections. BMC Infect Dis. 2010;10:68.
6. Nathan KA, Mark JM, William C. Staphylococcus aureus biofilms. Vir. 2011;2(3):1-15.
7. Zhu Y, Weiss EG, Otto M, Fey PD, Smeltzer MS, Somerville GA. Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesion synthesis, biofilm formation, and pathogenesis. Infect Immun. 2007;75(9):4229–26.
8. Cazes S, Deurenberg RH, Bounmans ML, Beisser PS, Neef C, Stoberingh EE. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009;9:229.
9. Eftekhari F, Dadaei T. Biofilm formation and detection of icaAB genes in clinical isolates of methicillin resistant staphylococcus aureus. Iran J Basic Med Sci. 2012;15(2):32-6.
10. Martin-Lopez P, Perez-Roth E, Claverie-Martín F, Díez Gil O, Batti- na T, Morales M, et al. Detection of Staphylococcus aureus Clinical Isolates Harboring the ica Gene Cluster Needed for Biofilm Establishment. J Clin Microbiol. 2002;40(4):1356-70.
11. Glinska K, Tkacikova L. Detection of icaA gene encoding the biofilm formation in S.aureus isolates. Folia Veterinaria. 2009;53(1):101-1.
12. Bekir K, Haddad O, Grissa M, Chaieb K, Bakhrouf A, Elgammadi SI. Molecular detection of adhesins genes and biofilm formation in methicillin resistant Staphylococcus aureus. Afric J Microbiol Res. 2012;6(20):4903-17.
13. Satorres SE, Alcaraz LE. Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Central Eur J Public Health. 2007;15(2):27-90.
14. Akiyama H, Hamada T, Huh WK, Yamasaki O, Oono T, Fujimoto W, et al. Confocal laser scanning microscopic observation of glycolalycy production by Staphylococcus aureus in skin lesions of bullous impetigo, atopic dermatitis and pemphigus foliaceus. Br J Dermatol. 2003;148(3):526–32.
15. Gey A, Werckenthin C, Poppert S, Straubinger RK. Identification of pathogens in mastitis milk samples with fluorescent in situ hybridization. J Vet Diagn Invest. 2013;25(3):386-94.
16. Zhang K, Sparling J, Chow BL, Elsayed S, Hussain Z, Church DL, et al. New quadruplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J Clin Microbiol. 2004;42(1):4947-55.
17. Hoseini Alfatemis SM, Motamedifar M, Hadji N, Sedigh Ebrahim Sa- raie H. Analysis of Virulence Genes Among Methicillin Resistant Staphylococcus aureus (MRSA) Strains. Jundishapur J Microbiol. 2014;7(6):10741.
18. Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):399-139.
19. Azimian A, Havaei SA, Fazeli H, Naderi M, Ghazvini K, Samee MI, et al. Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a university hospital in northeastern Iran. J Clin Microbiol. 2012;50(1):3581-5.
20. Armin S, Rouhipour A, Fallah F, Rahbar M, Ebrahimi M. Vancomyci- cin and linezolid resistant staphylococcus in hospitalized children. Arch Pediatr Infect Dis. 2012;1(3):4-8.
21. Japoni A, Jamalidoust M, Farshad S, Ziyaeian M, Alborzi A, Japoni S, et al. Characterization of SCCmec types and antibacterial sus- ceptibility patterns of methicillin-resistant Staphylococcus aureus in Southern Iran. Iran J Infect Dis. 2011;14(4):28-33.
22. Imami Fouladi AA, Choupani A, Fallah Mehrabadi J. Study of prevalence of Enterotoxin type B gene in Methicillin Resistant Staphylococcus aureus (MRSA) isolated from wound. Kowsar Med J. 2016;18(1):21-5.
23. Rahimi F, Bouzari M, Malezi Z, Rahimi F. Antibiotic susceptibility pattern among Staphylococcus spp. with emphasis on detection of mecA gene in methicillin resistant Staphylococcus aureus iso- lates. Arch Clin Infect Dis. 2009;4(3):3241-50.
24. Begum J, Gaiani JM, Rohde H, Mack D, Calderwood SB, Ausubel FM, et al. Staphylococcal biofilm exopolysaccharide protects against Caenorhabditis elegans immune defenses. PLoS Pathog. 2007;3(4):e57.
25. O’Gara JP. ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 2007;270(2):179-88.

26. Ziebuhr W, Heilmann C, Götz F, Meyer F, Wilms K, Straube E, et al. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun. 1997;65(3):890-6.

27. Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunananidhi A, et al. Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J Biomed Biotechnol. 2012;2012:976972.

28. Ghasemian A, Peerayeh SN, Bakhshi B, Mirzaee M. Accessory Gene Regulator Specificity Groups Among Staphylococcus aureus Isolated From Hospitalized Children. Arch Pediatr. 2014;21(2):e16096.

29. O’Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, et al. Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J Clin Microbiol. 2007;45(5):1379-88.

30. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol. 2008;57(Pt 8):208-21.

31. Nasr RA, Abushady HM, Hussein HS. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egypt J Med Human Genetics. 2012;13(3):269-74.

32. Smith K, Perez A, Ramage G, Lappin D, Gemmell CG, Lang S. Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. J Med Microbiol. 2008;57(Pt 8):208-21.