Review

Non-invasive evaluation of lower urinary tract symptoms (LUTS) in men

Reshma Mangat, Henry S.S. Ho, Tricia L.C. Kuo*

Department of Urology, Singapore General Hospital, Singapore

Received 4 April 2017; received in revised form 25 September 2017; accepted 9 October 2017
Available online 8 December 2017

KEYWORDS
Bladder outlet obstruction; Benign prostatic enlargement; Intravesical prostatic protrusion; Lower urinary tract symptoms; Bladder wall thickness; Ultrasound estimated bladder weight; Near infrared spectroscopy

Abstract
Lower urinary tract symptoms (LUTS) are common in males over the age of 40 years old and are likely to increase with an aging population. Currently urodynamic studies are the gold standard to determine the aetiology of voiding dysfunction and LUTS. However, due to its invasive nature, a great number of non-invasive ultrasound based investigations have been developed to assess patients with symptomatic LUTS. The clinical application of non-invasive tests could potentially stratify patients who would require more invasive investigations and allow more precise patient directed treatment. A PubMed literature review was performed and we will discuss the non-invasive investigations that have been developed thus far, focusing on bladder wall and detrusor wall thickness (BWT & DWT), ultrasound estimated bladder weight (UEBW) and intravesical prostatic protrusion (IPP).

© 2018 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
Lower urinary tract symptoms (LUTS) are a common group of conditions affecting aging males. LUTS encompass a variety of storage, voiding, and post-micturition symptoms [1,2]. The aetiology of LUTS is multifactorial and can be associated with pathology of the prostate (benign prostatic enlargement (BPE), prostatitis), urethra (urethral stricture), bladder (detrusor under/over activity) and kidney (nocturnal polyuria) [3]. In epidemiological studies, LUTS were present in 57.1% of men and 48% of women [4]. The recorded prevalence of clinically significant LUTS (International Prostate Symptom Score, IPSS ≥8) in a community-based study in Singapore was 16.5% and 20.7% in males
above 40 and 50 years respectively [5]. As populations continue to age, the prevalence and societal impact of LUTS will progressively increase.

Urodynamic studies (UDS) are the most definitive tests available to determine the aetiology of voiding dysfunction. Although considered the current gold standard for the diagnosis of bladder outlet obstruction (BOO), the use of catheters in conventional UDS can cause discomfort to patients and is associated with a 1% risk of adverse events e.g., urinary retention, macroscopic haematuria or urinary tract infection [6,7]. It is also possible that the presence of a catheter in the urethra would influence the reproducibility of the patient’s symptoms and the urodynamic readings, despite its small size. There are also cost issues and potential embarrassment to the patient. Hence, a number of non-invasive investigations have been developed. The goal is not to replace, but rather to provide alternatives that may better suit patients and the logistics of different environments (e.g., primary care centres, mobile or remote clinics). These innovations in healthcare enable us to expand our knowledge, modify clinical practice and provide better, more tailored service to patients.

We will discuss these non-invasive investigations that have been developed thus far.

2. Methods

A literature review from 1994–2017 was performed utilizing PubMed using the following MESH terms: non-invasive uro-dynamics, urodynamic studies, bladder outlet obstruction, LUTS, bladder wall and detrusor wall thickness, ultrasound estimated bladder weight, prostate volume (PV), intravesical prostate protrusion, resistive index, prostate urethral angle, and near infrared spectroscopy. We narrowed our search to studies involving male patients. Where possible we focused on studies published within the last 5 years.

2.1. Bladder ultrasound techniques

2.1.1. Bladder and detrusor wall thickness

Chronic BOO results in significant detrusor muscle hypertrophy with thickened or trabeculated bladder wall. It is a well-recognized clinical finding in patients with obstructive LUTS [8]. Studies on animal models have revealed that even with partial urethral obstruction, BOO ensues which results in detrusor muscle hypertrophy and increased bladder weight [9]. There has been an increasing interest in the clinical significance of measurement of bladder wall thickness (BWT) and detrusor wall thickness (DWT). However, to date the clinical value of these parameters remains controversial [10].

DWT and BWT can be measured with transabdominal ultrasound (TAUS). DWT may be superior in this respect as pathologies such as infection and malignancy affect the mucosal layer of the bladder while the detrusor layer is predominantly affected in BOO [10]. Oelke et al. [11] found that DWT decreased rapidly during the first 250 mL of bladder filling, but remained almost stable thereafter. No statistical difference was found between the DWT at 250 mL and at higher volumes. Men had a greater DWT than women (1.4 mm vs. 1.2 mm, \(p < 0.001 \)). Age and body mass index (BMI) did not have a significant impact on DWT [11].

There have been large discrepancies between previous studies regarding the optimal cut-off point of BWT/DWT that should be used to diagnose BOO. Hakenberg et al. [12] assessed the BWT in 3 groups and found the mean BWT was 3.04 mm in healthy women, 3.33 mm in healthy men, and 3.67 mm in men with LUTS and BPE [12]. Manieri et al. [8] determined that the best cut-off point for BWT to diagnose BOO was 5 mm. AUC for BWT and uroflowmetry was 0.860 and 0.688, respectively in the receiver operator characteristics analysis. Oelke et al. [13] on the other hand proposed that a cut-off of ≥2.0 mm diagnosed BOO in 95.5% of men with a positive predictive value (PPV) of 94%, negative predictive value (NPV) of 86%, specificity of 95%, specificity of 86% and AUC of 0.93.

Oelke et al. [13] determined that DWT was a more accurate test for BOO compared to uroflowmetry, PVR or prostatic volume. Kessler et al. [14] found a DWT cut-off >2.9 mm had a specificity and PPV of 100% and a sensitivity of 43% in the diagnosis of BOO in men, and suggested that this could replace pressure flow studies. Franco et al. [15] investigated men with LUTS and compared a number of parameters, but determined that only intravesical prostate protrusion (IPP) and DWT were associated with obstruction. The AUC for IPP was 0.835 and for DWT, it was 0.845. Combining these two parameters produced the best diagnostic accuracy of 87%.

Although BWT and DWT appear promising in diagnosing BOO, clinical application remains limited. Discrepancies with regards to optimal cut-off may be due to variability in bladder volume, area of bladder measured and differences in resolution of the ultrasound probe. In addition, the difference between DWT and BWT may be that perivesical tissue is involved in the latter. In measurement of BWT, low frequency probes are used, while DWT is measured using high frequency probes, which enable delineation of the true detrusor wall. However, the major concern is still the reporting accuracy of wall thickness measurement, which needs clear standardization. The International Consultation on Incontinence-Research Society has proposed standardization techniques for future research. They recommended that all future reports should provide information about the frequency of ultrasound probes, bladder filling volume, magnification factors, bladder area measured (BWT vs. DWT), and one ultrasound image with marker positioning [16]. Using these standardized measures and controls, DWT and BWT may be considered suitable to quantify bladder wall hypertrophy secondary to BOO.

2.1.2. Ultrasound estimated bladder weight

DWT and BWT measurement can be influenced by bladder volume. In order to overcome this, Kojima et al. [17] assessed ultrasound estimated bladder weight (UEBW) to detect slight changes in bladder wall hypertrophy. UEBW is calculated from an applied formula using the BWT and the intravesical volume, assuming a spherical bladder. At autopsy, excised bladder weight correlated well with calculated bladder weight [17]. However another study found that inter- and intra-observer variability in the measurement of BWT resulted in significant differences in UEBW [18]. Kojima et al. [17,19] found that 94% of obstructed
patients had an UEBW of >35.0 g; in addition, using this as a cut-off value had a diagnostic accuracy of 86.2% for BOO.

Kojima et al. also found that patients with higher UEBW (UEBW >35.0 g) were 13.4 times more likely to suffer from acute retention of urine (ARU). AUC for UEBW using this cut-off was 0.809. AUC for UEBW was significantly greater than prostate volume (0.631), transitional zone (TZ) volume (0.678) and TZ index (0.641). Thus UEBW would be promising as a non-invasive urodynamic parameter, which is capable of identifying patients at increased risk of ARU [20]. Kojima et al. [21] then investigated the UEBW in 33 obstructed men before and after prostatectomy for BPE. Their results indicated that the bladder weight of the obstructed group was nearly double that of the control group and the UEBW of the obstructed group decreased significantly from 52.9 ± 22.6 g to 31.6 ± 15.8 g (p < 0.05) after surgical relief of BOO. Another study of 97 patients with LUTS/BPE showed on multivariate analysis that only UEBW >35 g and a high IPSS score >20 predicted the need for surgery in these patients (TURP or open prostatectomy) [22].

3D ultrasound corrected UEBW (UEBW/bladder surface area) has recently been shown to correlate better than UEBW in diagnosing BOO [23]. Both correlated with urodynamic parameters bladder contractility index (BCI), bladder outlet obstruction index (BOOI) and detrusor pressure at maximal flow rate (Pdet Qmax), but UEBW had a weaker correlation [23]. However, in this study the AUC for diagnosing BOO was moderate at best for both parameters with scores of 0.609 vs. 0.539 for corrected UEBW and UEBW, respectively [23].

Huang et al. [24] evaluated 202 patients at 6 months follow-up after transurethral resection of the prostate (TURP). The study aimed to assess success of surgery using a variety of parameters between effective and non-effective outcomes following surgery. Significant differences were observed in International Prostate Symptom Score (IPSS), transition zone index (TZI), IPP, resistive index (RI), DWT, UEBW, Qmax, PdetQmax and BOOI. On regression analysis, RI, DWT and UEBW were shown to be the most effective at correlating with efficacy and TURP, and AUC scores were 0.816, 0.762 and 0.723, respectively. Used in combination, the PPV and NPV were 96.3% and 75.6%, respectively.

Limitations with UEBW include the fact that majority of the literature with regards to UEBW comes from Asia where prostate size may be smaller compared to white males [25]. Additionally, there are conflicting data with regards to UEBW in the diagnosis of BOO. Bright et al. [26] assessed UEBW in the outpatient setting and found no significant correlation with symptom scores or Qmax. Another study revealed similar UEBW in men with mild, moderate and severe BOO. In addition, UEBW did not correlate with IPP score or BOO as defined by Schafer nomogram in this study [27].

2.2. Prostatic imaging studies

2.2.1. Prostate volume

PV is measured using the ellipsoid formula on the transverse view of the prostate on TAUS [28]. Epidemiological studies had shown that larger prostate glands are more likely to obstruct and develop ARU [29]. A study by Kuo [30] showed that 95% of patients with PV > 40 g had evidence of obstruction on pressure flow studies. However the extent of obstruction is more dependent on the shape of prostate rather than size alone. Thus a protruding median lobe, though small, can cause severe obstruction because of the associated distortion of the funneling effect.

2.2.2. IPP

IPP is measured using TAUS in the sagittal view. The degree of protrusion can be graded by measuring from the tip of the protruding prostate perpendicularly to the bladder circumference at the base of the prostate gland. The IPP can be classified as: grade 1, 1.5 mm or less; grade 2, from >1.5 mm to 10 mm; and grade 3, >10 mm [31]. The IPP is most reliably measured with bladder volumes between 100 mL to 200 mL and increasing filling volume reduces IPP [28].

In a study correlating IPP and pressure flow on 200 patients, Chia et al. [32] demonstrated that 79% of patients with grade 1 IPP were not obstructed, while 94% of grade 3 IPP were obstructed with sensitivity 76%, specificity 92%, PPV 94%, and NPV 69%. In studies comparing IPP and non-invasive ultrasound urodynamics, IPP was validated as a strong predictor of obstruction [33].

Furthermore, IPP is able to predict successful trial off catheter (TOC). In a study by Tan and Foo [31] where 100 patients with ARU underwent trial without catheter, grade 3 IPP was found to predict a 67% failure rate. Zhang et al. [34] showed concordant results with a failure rate of 31% for grade 1 IPP and 69% for grade 3 IPP. This was validated in studies in Western populations, in which AUC for IPP was 0.833, while that for PV was 0.72 [35].

In addition, IPP has been shown to predict clinical progression. In a study of patients managed conservatively for LUTS secondary to prostate adenoma, 35 patients had clinical progression at follow-up: 7% for Grade 1, 19% for Grade 2 and 49% for Grade 3. Patients with grade 3 IPP were 7 times more likely to progress than those with grade 1 [36]. Higher grades of IPP have been shown to correlate with BOOI index with AUC of 0.835 [15].

Furthermore, IPP may also predict outcomes in patients with LUTS treated medically or surgically. Patients with grade 3 IPP and PV < 40 g showed less improvement in LUTS when treated with alpha blockers compared to lower grade prostatectomy [25,37]. Finally patients with higher grades of IPP (2–3) had better improvements in IPP symptoms score after TURP [38]. Therefore, IPP in addition to parameters of obstruction can be used to grade and stratify patients with BOO for further individualized management [39].

2.2.2.1. PV and IPP correlation.

In a community study in Minnesota, 10% had Grade 3 IPP. It was shown that IPP was significantly related to PV, obstructive IPP and lower peak flow rates [40]. Prostate adenoma can be graded by the degree of IPP (1, 2 or 3) and sub-classified according to volume (a, b or c). This classification was validated in a study of 408 consecutive patients presenting with LUTS. All patients had IPPS, quality of life index (QoL), uroflowmetry, PVR, IPP and PV measurement performed [41]. A good correlation between PV and IPP (p < 0.0005) was demonstrated. Using Qmax of 10 mL/s or less at
uroflowmetry as a surrogate of obstruction [15], there was significant negative correlation between grading (IPP combined PV) and obstruction. Patients with Grade 1 IPP and a small volume prostate (20 mL or less) usually had flow rates more than 10 mL/s (70% not obstructed), whereas patients with grade 3 IPP and large volume prostate (40 mL or more) usually had flow rates less than 10 mL/s (64% obstructed). However, a small gland, with significant IPP of grade 3 tended to be most obstructive at 82%. These patients with small PV but high grade IPP had prostate adenoma arising from the median lobe, which caused a ball-valve type of obstruction at the bladder neck. These observations suggest that IPP is a better predictor of BOO than PV [41].

2.3. RI

With an enlarging prostate, the transitional zone is thought to compress the artery against the surgical capsule. This is postulated to increase RI. The RI is measured using colour Doppler and calculated with the formula: (peak systolic velocity — end diastolic velocity)/peak systolic velocity. Zhang et al. [42] showed that the RI was significantly higher in patients with BOO and using an RI cut-off of 0.69 predicted BOO with 78% sensitivity and 86.4% specificity. Furthermore, Shinbo et al. [43] in a study of 1962 patients, showed patients with ARU had higher TZI and RI with AUC of 0.860 and 0.867 respectively. In another study by the same center, RI was predictive of outcomes following TURP [44].

2.4. Prostatic urethral angle (PUA)

The anatomical hypothesis behind the PUA describes the prostatic urethra like a bent tube. Thus the PUA may be a causal factor for LUTS and obstruction in BPE [45]. The prostatic urethral angle (PUA) measures the angle between the prostatic urethra and the membranous urethra in the midsagittal plane.

Ku et al. [46] retrospectively studied 260 patients with benign prostatic hypertrophy (BPH)/LUTS and determined that a higher PUA \(\geq 35^\circ \) was associated with higher PSA levels, PV, maximal urethral closure pressure and higher BOOI. Another study showed that PUA \(\geq 34^\circ \) was associated with higher IPP and IPSS voiding component [47]. The same study revealed that IPP was associated with both IPSS storage and voiding components [47]. Bang et al. [48] studied 316 patients with LUTS and determined PUA to be independently associated with the IPSS score and \(Q_{\text{max}} \) with mean PUA of 52.2° ± 7.3°, 45.0° ± 7.9° and 39.8° ± 7.9° in those with a \(Q_{\text{max}} \) of <10 mL/s, 10 mL/s to 20 mL/s, and >20 mL/s, respectively.

2.5. Near infrared spectroscopy (NIRS)

NIRS is a functional imaging technology that measures changes in blood flow that occur during voiding. It enables non-invasive evaluation of oxygen-dependent hemodynamic changes and works on the premise that reactive hyperaemia occurs with voiding.

Oxy-haemoglobin and deoxy-haemoglobin (HHb) respectively represent oxygen supply and consumption of the tissue. The sum of oxy-haemoglobin and HHb represents the total blood perfusion of the tissue [49–51]. NIRS measures changes in the hemoglobin concentration and oxygen consumption in biological tissues, mainly from the venous blood compartment [52,53].

Farag et al. developed a classification model that successfully classified 89% of patients with 89.3% sensitivity, 87.5% specificity, 96.3% PPV and 87.5% NPV for BOO (AUC: 0.96) [54]. However another study showed no significant correlation between NIRS and BOO with an AUC for diagnosing BOO at 0.484 [55].

3. Discussion

In the evaluation of LUTS, although several non-invasive tests are investigated and are available, none have been able to fully replace the gold standard of a pressure flow study. Formal urodynamics evaluation would be able to distinguish between BOO and decreased contractility/detrusor underactivity in the evaluation of male LUTS.

Ultrasound techniques are operator dependent. Some techniques may require special training and involve a learning curve for the urologist. In addition, not all centers would be able to obtain specialized equipment due to cost and accessibility.

Certain measurement such as IPP, PV and DWT show promise and diagnostic accuracy can be increased when used in combination. UEBW, BWT, DWT and RI all have their limitations and studies can be conflicting. Although RI is promising some limitations include the need for optimal positioning of patients. Variability in pulse rate, arthrosclerosis and use of medications can affect RI. Furthermore patients with median lobe obstruction may have normal RI [44].

Near infrared spectroscopy, while conflicting, appears promising in small studies but further large-scale studies are required to validate it use. Studying these modalities in differing populations is required before further conclusions can be made.

A recently published systematic review has made similar observations [56]. A number of non-invasive tests (e.g., DWT, NIRS) have high sensitivity and specificity in diagnosing BOO in men. IPP >10 mm was reported to have similar diagnostic accuracy as \(Q_{\text{max}} <10 \text{ mL/s} \) on free-flow testing. IPP can be easily measured by non-invasive ultrasound in the clinic and is useful in the diagnosis of prostate adenoma and also predicts obstruction for further management.

4. Conclusion

Although a combination of investigative techniques is likely to provide better diagnostic accuracy, no one modality so far has been able to replace invasive pressure-flow UDS which remains the gold standard. However, measurement of IPP with simple non-invasive TAUS is promising.

Conflicts of interest

The authors declare no conflict of interest.
Acknowledgement

The authors would like to thank Professor Foo Keong Tatt for reviewing the article and his editorial input, Ms Ng Mei Yi for help in editing and preparation of this review.

References

[1] Robertson C, Link CL, Onel E, Mazzetta C, Keetch M, Hobbs R, et al. The impact of lower urinary tract symptoms and comorbidities on quality of life: the BACH and UREPIK studies. BJU Int 2007;99:347–54.

[2] Welch G, Weiner K, Barry MJ. Quality-of-life impact of lower urinary tract symptom severity: results from the Health Professionals Follow-Up Study. Urology 2002;59:245–50.

[3] Sexton CC, Coyne KS, Kopp ZS, Irwin DE, Milsom I, Ayler LP, et al. The overlap of lower urinary tract symptoms and treatment-seeking behaviour in males over 40 years in Singapore: a community-based study. Prostate Canc Prostatic Disc 2012;15:273–7.

[4] Nitti VW. Pressure flow urodynamic studies: the gold standard for diagnosing bladder outlet obstruction. Rev Urol 2005;7(Suppl. 6):S14–21.

[5] Klingler HC, Madersbacher S, Djavan B, Schatzl G, Marberger M, Schmidbauer CP. Morbidity of the evaluation of the lower urinary tract with transurethral multichannel pressure-flow studies. J Urol 1998;159:191–4.

[6] Manieri C, Carter SS, Romano G, Trucchi A, Valenti M, Tubaro A. The diagnosis of bladder outlet obstruction in men by ultrasound measurement of bladder wall thickness. J Urol 1998;159:761–5.

[7] Levin RM, Haagard N, O’Connor L, Buttyn R, Das A, Dixon JS, et al. Obstructive response of human bladder to BPH vs. rabbit bladder response to partial outlet obstruction: a direct comparison. Neurourol Urodon 2000;19:609–29.

[8] Bright E, Oelke M, Tubaro A, Abrams P. Ultrason estimated bladder weight and measurement of bladder wall thickness—useful noninvasive methods for assessing the lower urinary tract? J Urol 2010;184:1847–54.

[9] Oelke M, Hofner K, Jonas U, Ubbink D, de la Rosette J, Wijkstra H. Ultrasonic measurement of detrusor wall thickness in healthy adults. Neurourol Urodon 2006;25:308–17.

[10] Hakenberg OW, Linne C, Manseck A, Wirth MP. Bladder wall thickness in normal adults and men with mild lower urinary tract symptoms and benign prostatic enlargement. Neurourol Urodon 2000;19:585–93.

[11] Oelke M, Hofner K, Jonas U, de la Rosette JJ, Ubbink DT, Wijkstra H. Diagnostic accuracy of noninvasive tests to evaluate bladder outlet obstruction in men: detrusor wall thickness, uroflowmetry, postvoid residual urine, and prostate volume. Eur Urol 2007;52:827–35.

[12] Kessler TM, Gerber R, Burkhard FC, Studer UE, Danuser H. Ultrasonic assessment of detrusor thickness in men—can it predict bladder outlet obstruction and replace pressure flow study? J Urol 2006;175:2170–3.

[13] Franco G, De Nunzio C, Leonardo C, Tubaro A, Cicciariello M, De Dominicis C, et al. Ultrasonic assessment of intravesical prostatic protrusion and detrusor wall thickness—new standards for noninvasive bladder outlet obstruction diagnosis? J Urol 2010;183:2270–4.

[14] Oelke M. International Consultation on Incontinence-Research Society (ICI-RS) report on non-invasive urodynamics: the need of standardization of ultrasound bladder and detrusor wall thickness measurements to quantify bladder wall hypertrophy. Neurourol Urodon 2010;29:634–9.

[15] Kojima M, Inui E, Ochiai A, Naya Y, Ukumura O, Watanabe H. Ultrasonic estimation of bladder weight as a measure of bladder hypertrophy in men with infravesical obstruction: a preliminary report. Urology 1996;47:942–7.

[16] Naya Y, Kojima M,-Honyjo H, Ochiai A, Ukumura O, Watanabe H. Intraobserver and interobserver variance in the measurement of ultrasound-estimated bladder weight. Ultrasound Med Biol 1998;24:771–3.

[17] Kojima M, Inui E, Ochiai A, Naya Y, Ukumura O, Watanabe H. Noninvasive quantitative estimation of infravesical obstruction using ultrasonic measurement of bladder weight. J Urol 1997;157:476–9.

[18] Miyashita H, Kojima M, Miki T. Ultrasonic measurement of bladder weight as a possible predictor of acute urinary retention in men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia. Ultrasound Med Biol 2002;28:985–90.

[19] Kojima M, Inui E, Ochiai A, Naya Y, Kamoi K, Ukumura O, et al. Reversible change of bladder hypertrophy due to benign prostatic hyperplasia after surgical relief of obstruction. J Urol 1997;158:89–93.

[20] Akino H, Maekawa M, Nakai M, Shioyama R, Ishida H, Oyama N, et al. Ultrason-estimated bladder weight predicts risk of surgery for benign prostatic hyperplasia in men using a-adrenoceptor blocker for LUTS. Urology 2008;72:817–20.

[21] Lee K, Lee Y, Lee HW, Lee SE, Lee JZ, Kim HY, et al. The diagnostic accuracy of three dimensional ultrasound estimated bladder weight corrected by surface area as an alternative non-urodynamic parameter of bladder outlet obstruction. J Urol 2011;185:964–9.

[22] Huang T, Qi J, Yu YJ, Xu D, Jiao Y, Kang J, et al. Predictive value of resistive index, detrusor wall thickness and ultrasound estimated bladder weight regarding the outcome after transurethral prostatectomy for patients with lower urinary tract symptoms suggestive of benign prostatic obstruction. Int J Urol 2012;19:343–50.

[23] Seo YM, Kim HJ. Impact of intravesical protrusion of the prostate in the treatment of lower urinary tract symptoms/benign prostatic hyperplasia of moderate size by α receptor antagonist. Int Neurourol J 2012;16:187–90.

[24] Bright E, Pearcy R, Abrams P. Ultrason estimated bladder weight in men attending the uroflowmetry clinic. Neurourol Urodon 2011;30:583–6.

[25] Almeida FG, Freitas DG, Bruschini H. Is the ultrasound-estimated bladder weight a reliable method for evaluating bladder outlet obstruction? BJU Int 2011;108:864–7.

[26] Yuen JS, Ngiaj TT, Cheng CW, Foo KT. Effects of bladder volume on transabdominal ultrasound measurements of intravesical prostatic protrusion and volume. Int J Urol 2002;9:225–9.

[27] Jacobsen SJ, Jacobson DJ, Girman CJ, Roberts RO, Rhodes T, Guess HA, et al. Natural history of prostatism: risk factors for acute urinary retention. J Urol 1997;158:481–7.

[28] Kuo HC. Clinical prostate score for diagnosis of bladder outlet obstruction by prostate measurements and uroflowmetry. Urology 1999;54:90–6.

[29] Tan YH, Foo KT. Intravesical prostatic protrusion predicts the outcome of a trial without catheter following acute urine retention. J Urol 2003;170(6 Pt 1):2339–41.

[30] Chia SJ, Heng CT, Chan SP, Foo KT. Correlation of intravesical prostatic protrusion with bladder outlet obstruction. BJU Int 2003;91:371–4.
Non-invasive evaluation of LUTS in men

[33] Nose H, Foo KT, Lim KB, Yokoyama T, Ozawa H, Kumon H. Accuracy of two noninvasive methods of diagnosing bladder outlet obstruction using ultrasonography: intravesical prostatic protrusion and velocity-flow video urodynamics. Urology 2005; 65:493–7.

[34] Zhang KQ, Chen SB, Wang HX. Correlation of intravesical prostatic protrusion with the outcome of voiding trial following acute urine retention. J Clin Urol 2006;21:484–6.

[35] Mariappan P, Brown DJ, McNeil AS. Intravesical prostatic protrusion is better than prostate volume in predicting the outcome of trial without catheter in white men presenting with acute urinary retention: a prospective clinical study. J Urol 2007;178:573–7.

[36] Lee LS, Sim HG, Lim KB, Wang D, Foo KT. Intravesical prostatic protrusion predicts clinical progression of benign prostate enlargement in patients receiving medical treatment. Int J Urol 2010;17:69–74.

[37] Cumpanas AA, Botoca M, Minciu R, Bucuras V. Intravesical prostatic protrusion can be a predicting factor for the treatment outcome in patients with lower urinary tract symptoms due to benign prostatic obstruction treated with tamsulosin. Urology 2013;81:859–63.

[38] Lee JW, Ryu JH, Yoo TK, Byun SS, Jeong YJ, Jung TY. Relationship between intravesical prostatic protrusion and post-operative outcomes in patients with benign prostate hyperplasia. Korean J Urol 2012;53:478–82.

[39] Foo KT. Decision making in the management of benign prostatic enlargement and the role of transabdominal ultrasound. Int J Urol 2010;17:974–9.

[40] Lieber MW, Jacobson DJ, McGree ME, St Sauver JL, Girman CJ, Jacobsen SJ. Intravesical prostatic protrusion in men in Olmsted County, Minnesota. J Urol 2009;182:2819–24.

[41] Wang D, Huang H, Law YM, Foo KT. Relationships between prostatic volume and intravesical prostatic protrusion on transabdominal ultrasound and benign prostatic obstruction in patients with lower urinary tract symptoms. Ann Acad Med Singap 2015;44:60–5.

[42] Zhang X, Li G, Wei X, Mo X, Hu L, Zha Y, et al. Resistive index of prostate capsular arteries: a newly identified parameter to diagnose and assess bladder outlet obstruction in patients with benign prostatic hyperplasia. J Urol 2012;188:881–7.

[43] Shinbo H, Kurita Y, Takada S, Imanishi T, Otsuka A, Furuse H, et al. Resistive index as risk factor for acute urinary retention in patients with benign prostate hyperplasia. Urology 2010;76:1440–5.

[44] Shinbo H, Kurita Y, Nakanishi T, Imanishi T, Otsuka A, Furuse H, et al. Resistive index: a newly identified predictor of outcome of transurethral prostatectomy in patients with benign prostatic hyperplasia. Urology 2010;75:143–7.

[45] Cho KS, Kim J, Choi YD, Kim JH, Hong SJ. The overlooked cause of benign prostate hyperplasia: prostatic urethral angulation. Med Hypotheses 2008;70:532–5.

[46] Ku JH, Ko DW, Cho JY, Oh SJ. Correlation between prostatic urethral angle and bladder outlet obstruction index in patients with lower urinary tract symptoms. Urology 2010;75:1467–71.

[47] Park YJ, Bae KH, Jin BS, Jung HJ, Park JS. Is increased prostatic urethral angle related to lower urinary tract symptoms in males with benign prostate hyperplasia/lower urinary tract symptoms? Korean J Urol 2012;53:410–3.

[48] Bang WJ, Kim HW, Lee JY, Lee DH, Hah YS, Lee HH, et al. Prostatic urethral angulation associated with urinary flow rate and urinary symptom scores in men with lower urinary tract symptoms. Urology 2012;80:1333–7.

[49] Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 1997;20:435–42.

[50] Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 2004;299:463–87.

[51] Boushel R, Plantadosi CA. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 2000;168:615–22.

[52] Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001;11:213–22.

[53] Mancini DM, Bolinger L, Li H, Kendrick K, Chance B, Wilson JR. Validation of near-infrared spectroscopy in humans. J Appl Physiol 1994;77:2740–7.

[54] Farag FF, Meletiadis J, Saleem MD, Feitz WF, Heesakkers JP. Near-infrared spectroscopy of the urinary bladder during voiding in men with lower urinary tract symptoms: a preliminary study. Biomed Res Int 2013;2013:452857. https://doi.org/10.1155/2013/452857. Epub 2013 Jul 14.

[55] Chung DE, Lee RK, Kaplan SA, Te AE. Concordance of near infrared spectroscopy with pressure flow studies in men with lower urinary tract symptoms. J Urol 2010;184:2434–9.

[56] Malde S, Nambiar AK, Umbach R, Lam TB, Bach T, Bachmann A, et al. Systematic review of the performance of noninvasive tests in diagnosing bladder outlet obstruction in men with lower urinary tract symptoms. Eur Urol 2017;71:391–402.