Two ancient genome duplication events shape diversity in *Hibiscus* L. (Malvaceae)

Jonna Sofia Eriksson (jonna.eriksson@bioenv.gu.se)
Goteborgs Universitet https://orcid.org/0000-0002-1303-730X

Christine D. Bacon
Department of Biological and Environmental science

Dominic J. Bennett
Department of biological and environmental sciences

Bernard E. Pfeil
Department of Biological and Environmental Sciences

Bengt Oxelman
Department of biological and environmental science

Alexandre Antonelli
Royal Botanic Gardens Kew

Research article

Keywords: Ancient genome duplication, gene copy, *Hibiscus*, Malvaceae, paralogy, polyploidy

Posted Date: August 1st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-48002/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The great diversity in plant genome size and chromosome number is partly due to polyploidization (i.e., genome doubling events). The differences in genome size and chromosome number among diploid plant species can be a window into the intriguing phenomenon of past genome doubling that may be obscured through time by the process of diploidization. The genus *Hibiscus* L. (Malvaceae) has a wide diversity of chromosome numbers and an allegedly complex genomic history. *Hibiscus* is ideal for exploring past genomic events because although two ancient genome duplication events have been identified, as more are still likely to be found, considering its diverse background. To reappraise the group’s genomic history, we tested a series of scenarios describing different polyploidization events using previously identified duplications in *Hibiscus syriacus*.

Results: The data showed that >54% of the single-copy genes where in fact paralogues. When testing for different genome duplication scenarios using gene count data; species of *Hibiscus* was shown to have shared one genome duplication with *H. syriacus*, – while one whole genome duplication was contained within *H. syriacus*, – to be the preferred model given the observed distribution of paralogous gene copies in *Hibiscus*.

Conclusions: Here, we corroborated the independent genome doubling previously found in the lineage leading to *H. syriacus* and a shared genome doubling of this lineage and the remainder of *Hibiscus*. Additionally, we found a previously undiscovered genome duplication shared by the /Pavonia and /Malvaviscus clades (both nested within *Hibiscus*) with the occurrences of two copies in what were otherwise single-copy genes. Our results highlight the complexity of genomic diversity in some plant groups, which makes orthology assessment and accurate phylogenomic inference difficult.

Introduction

Whole-genome duplication (WGD), defined as the doubling of an entire genome (Jiao et al. 2012), is a well-known phenomenon in eukaryotes and is especially prevalent in plants (Stebbins 1947; Stebbins Jr 1950; Grant 1981; Otto and Whitton 2000; Soltis et al. 2009; Wendel 2015; Kim et al. 2017). Genomic studies in plants have demonstrated multiple WGD events throughout angiosperm evolution (Wendel and Cronn 2003; Cannon et al. 2006; Tuskan et al. 2006; Jaillon et al. 2007; Tang et al. 2008; Fawcett et al. 2009; Soltis et al. 2015) and c. 15% of the angiosperm species are considered to be of polyploid origin (Wood et al. 2009). Polyploidy causes a great diversity in genome size and chromosome numbers, which can vary considerably even within families and genera (Wanscher 1934; Pellicer et al. 2018). With the increased availability of high-throughput DNA sequence data, recently formed polyploid species that arose from extant progenitor lineages with the original ploidy level/s have received more attention in phylogenetic studies (Buggs et al. 2012; Borrill et al. 2015). The vast amount of emerging genetic data, however, opens up potential insight into ancient polyploidization.

The challenge of detecting ancient WGD can mainly be explained by diploidization, where polyploid genomes undergo genomic restructuring leading towards a diploid-like state (Blanc and Wolfe 2004; Soltis et al. 2015; Pellicer et al. 2018). While some loci are retained as singletons and others as duplicates, diploidization does not return the polyploid to its original diploid state (Soltis et al. 2015). Examples of mechanisms behind this
are gene loss and chromosomal rearrangement (Schranz and Mitchell-Olds 2006). Moreover, mutations leading to shifts in gene expression, such as neofunctionalization and subfunctionalization, will also render the diploidized polyploid unique. Diploidization can also result from entire chromosomes being lost (aneuploidy), where synthetic polyploids have been demonstrated to suffer from an elevated chromosomal instability after genome duplication (Soltis et al. 2015). Apart from diploidization, fractionation can result in losses of entire chromosomes and copies of gene pair duplicated through polyploidy (homoeologs). These can occur randomly with the respect to either parental genome, but in some cases, losses have predominantly occurred more often in one of the parental genomes (Soltis et al., 2015). In a phylogenetic context these losses can mislead species tree inference, due to mistaken orthology. Repeated cycles of polyploid formation followed by genome rearrangement (Wendel and Cronn 2003; Soltis et al. 2015) and fractionation likely hinder the recognition of ancient WGD (Zhang et al. 2005).

The most common methods to identify where on a phylogeny WGD events have occurred have been done using synteny blocks, \(K_s \)-rates and phylogenetic approaches. The location of similar synteny blocks of genes within a species and from \(K_s \)-rates of synonymous substitutions with time calibration require information from complete genomes (Rabier et al. 2013). While the use of synteny blocks is powerful, it requires dense a priori genomic information and is limited by genomic rearrangement and loss of duplicated haplotypes (group of allelesgenes that occur on the same chromosome inherited from a single parent (Rabier et al. 2013). The \(K_s \)-based method, on the other hand, is limited by saturation effects (Vanneste et al. 2012). Thus, it can be useful for detecting relatively recent WGD events yet older than those detectable by chromosome number additive series alone, but fails to detect ancient ones. A phylogenetic approach has the power of detecting older WGDs on a time-calibrated tree (Bowers et al. 2003; Jiao et al. 2011). This method is limited by the arbitrary nature of selecting the node where duplication took place (Rabier et al., 2013), rather than the method identifying possible WGD along branches or nodes. Another major limitation with this method is the need for fully bifurcating, single-labeled trees for representing the species relationships. Although, for polyploids and WGD (i.e., allopolyploidy) the phylogeny is actually a species network or multi-labeled tree (MUL-trees) where a species can be represented by multiple tips (Gregg et al. 2017), representing the homoeologues or subgenomes.

Distance methods for inferring a species tree using a collection of gene trees are particularly convenient for genomic data, as they are not linked to biological processes such as deep coalescence, gene duplications and losses, which are a likely cause for gene tree discordance (Chaudhary et al., 2013). A statistical method such as the Robinson-Foulds (RF) has been shown to be robust for supertree methods and single-label trees using maximum likelihood, however, computing a RF distance between two MUL-trees for predicting when and where WGD events took place has been shown to be NP-hard (Chaudhary et al. 2013). Gene tree reconciliation methods attempt to map duplication events onto a species tree by quantifying the number of gene duplications on each branch in the species tree (Gregg et al., 2017). This approach relies on gene trees that have been simplified in such a way that diploids are represented by one sequence and polyploids may have more than one sequence (Bowers et al. 2003; Jiao et al. 2011; Li et al. 2015). However, gene tree reconciliation methods will, in the event of diploids that have traces of ancient genome duplications, diploidizations or segmental duplication, become too complex when they are not represented by one sequence anymore. An alternative approach is to use a species tree and gene count number, which has been shown to perform as
good as or better than gene tree reconciliation methods (Rabier et al., 2013). Gene count methods require a species tree where different hypotheses can be made as to where a WGD event occurred (either along a branch or at a node), together with data on how many copies a species has in different genes (genes affected by duplication). The basic assumption is that WGD events should result in species with twice as many copies than species not affected by WGD. It should be noted that this approach does not deal with the underlying process leading to genome duplication (i.e. auto- or allopolyploidization). In addition, copies that are not linked to WGD but instead arise from single gene duplications are included in this approach, with rates of birth and loss of copies parameterized. This method circumvents the computational difficulties associated with gene tree reconciliation and MUL-trees.

The Study Group

A high diversity of recent ploidy levels and a wide range of haploid chromosome numbers in diploids suggest that several rounds of WGD have shaped the genomic history of Malvaceae s.l. subfamily Malvoideae (Menzel 1966; Bates 1969; Menzel and Wilson 1969; Bates and Blanchard Jr 1970; Fryxell 1999; Pfeil et al. 2004). For example, in diploid cotton, Gossypium L., multiple instances of genome duplication have been inferred. In other words, cottons are paleopolyploids (Wendel and Cronn 2003) and was first suggested in the early 20th century through studies of chromosome pairing during meiosis (Lawrence 1931; Davie 1933) and results from DNA sequencing support this hypothesis (Wendel and Cronn 2003; Kim et al. 2017). The haploid chromosome number of \(x = 13 \) is understood to be derived from seven homologous chromosome pairs in an ancestral cotton, which may be as old as 20–40 million years (Lawrence 1931; Davie 1933; Seelanan et al. 1997; Wendel and Cronn 2003). Regardless, the paleopolyploidization has been suggested to be even more ancient than presently conceived, predating the origin of Malvaceae itself (Wendel and Cronn, 2003). Further, two ancient genome duplications were found in the genome history of cotton through the analysis of whole-genome sequencing of the diploid Gossypium raimondii Ulbr. (Wang et al., 2012). One of the duplication events took place within the lineage Gossypium itself, while the other duplication event supports a whole-genome multiplication shared by eudicots (Wang et al. 2012).

Hibiscus L. is a widely cultivated genus of Malvaceae, characterized by its numerous rounds of polyploidy (Wilson 1994; Pfeil et al. 2004; Kim et al. 2017). The taxonomic delimitation of Hibiscus has been unstable (Pfeil et al. 2005) and references therein) with nuclear and chloroplast genes suggesting the traditional circumscription being a paraphyletic group. The phylogenetic work showed that traditionally-defined Hibiscus includes representatives of other genera that had been classified in Hibisceae, Malvavisceae (including e.g., Pavonia) and Decaschistieae tribes (Pfeil et al. 2002). Pfeil and Crisp (2005) proposed to treat the three tribes under Hibiscus s.l., which we apply here. Within this classification unranked clade names preceded by a forward slash (/) are used to indicate clades nested within Hibiscus sensu Pfeil and Crisp (2005). Note that not all combinations at the species level have been made in that classification, so we use existing binomials in other genera as necessary.

The diversity of haploid chromosome numbers in Hibiscus may reflect ancient genome doubling events followed by diploidization. A group of species within Hibiscus, clade /Furcaria, is a well-studied group of polyploids (Wilson 1994, 2006). Menzel (1966) proposed that the diploid Hibiscus cannabinus L. in /Furcaria, with a haploid chromosome number of \(x = 18 \), may have been derived through ancient WGD events with a
base chromosome number of either six or nine. In addition, the mostly Neotropical clade /Pavonia, is hypothesized to originate from \(x = 7 \) or 14 based on the multiples of chromosome counts inferred by several species (Fryxell, 1999, treated under Pavonia). Only \(\sim 29 \) Pavonia species of the c. 220 have been counted (Fryxell, 1999 and references therein; Davie 1933; Fernández et al. 2003). Of these, two are \(2n = 28, \) 23 are \(2n = 56, \) and two are \(2n = 112, \) indicating that many of the species are likely to be higher polyploids.

Two ancient genome doubling events followed by diploidization were identified in the H. syriacus L. lineage (clade /Euhibiscus, Kim et al., 2017). The two WGD events are considered to be independent and took place after the divergence from the H. syriacus-G. raimondii common ancestor (Kim et al. 2017). The varying haploid chromosome numbers within Hibiscus and between the sister genus Gossypium, may reflect various degree of diploidization, with chromosomes fusion/fission in different lineages after speciation. Whether diploidization is the underlying cause for the diverse base chromosome number found in extant species of Malvaceae is yet to be understood.

In this study we explore if Hibiscus shows signatures of ancient genome duplications, and if these are shared with the WGDs found in H. syriacus. To this end, we develop a new analytical framework to identify multiple haplotypes and assemble them into full sequences and apply this framework to ask:

Are there paralogous genes in diploid species indicative of ancient WGDs? To address this we use diploid members of Hibiscus clade /Furcaria that have been assumed to be derived from an ancient genome duplication (Menzel 1966). We furthermore select a species from /Pavonia, given the lack of diploids in this group, their relatively high chromosome numbers (\(2n = 56–112, \) Fryxell, 1999 and references therein) and the unknown base chromosome number;

Can paralogous genes in the Hibiscus clades /Furcaria and /Pavonia be linked to genome duplication events detected in the H. syriacus genome, or are indicating independent genome/gene duplication events? Based on previous phylogenetic hypotheses (Pfeil et al. 2002; Baum et al. 2004; Pfeil et al. 2004), we present three hypothetical scenarios that illustrate the likely genomic origins of Hibiscus before diploidization using the two WGD events detected previously in H. syriacus (Fig. 1). In scenario 1 (S1), only H. syriacus show evidence of two WGD events; scenario 2 (S2), one of the WGD in H. syriacus is shared by all species of Hibiscus; and scenario 3 (S3), both WGD in H. syriacus are shared by all species of Hibiscus.

Results

Target capture, mapping and paralogue assembly – Data from six individuals were successfully captured by the MYbaits kit and had a mean number of 1,261,242 reads per individual after trimming [Additional file 1]. The mean read depth (coverage) of each assembly ranged between 81–413 (Table 1). The final alignments had a mean length of 1,972 bp (ranging between 934–3151 bp).
Table 1
Mean read depth per species per gene.

Genes	H. cannabinus1	H. cannabinus2	H. cannabinus3	H. mechowii	H. trionum	P. triloba
ACCS	231	179	172	284	42	38
Acylamino	480	300	330	823	122	76
AgluconP	411	638	597	399	171	112
Ankyrin	239	151	145	315	91	77
ATP-DHX36	195	171	155	281	78	89
Bgalactosidase8	256	193	178	322	57	70
Cactin	433	356	297	505	131	101
CAD	406	295	270	381	60	57
Calcium11	494	293	315	600	75	158
Calcium-ATPase1	215	195	196	287	73	72
CesA1	200	209	147	255	79	116
EIF-2B*	133	96	98	160	23	35
F5H	232	200	172	268	66	52
Formin2	141	117	109	151	31	27
Glutamine	425	302	349	744	158	85
GPDH	297	264	258	459	136	100
Kinesin-Kp1	333	410	398	473	106	44
LOC105768717	250	212	211	438	106	95
LOC105792102	187	153	137	221	58	58
LOC108773630	995	829	679	1146	253	191
MAP3K	385	280	274	441	102	78
Phospholipase	212	178	178	299	62	65
Plasma-ATPase	216	189	174	238	73	56
Mean coverage across all loci	320	270	254	413	94	81

Occurrence of paralogous genes - Despite targeting low-copy nuclear genes we found that 54% of the genes contained more than the two variants (i.e. haplotypes) in one of the diploid H. cannabinus accessions (i.e. H.
cannabinus1). The GPDH gene had ten different DNA sequence variants in *H. cannabinus*1 (our sequenced individual), but only a single variant was found in the *H. cannabinus* transcriptome. However, this gene appeared at eight locations in the *G. raimondii* genome. The Glutamine gene (LOC 105 766 149) with three *H. cannabinus*1 variants was only found at one location in the transcriptome and also appeared as a single copy in the *G. raimondii* genome. We consistently observed subtrees that had either one or two or more sequence copies from *H. cannabinus* (Table 2). *Hibiscus syriacus* was often seen to have more than three copies in each subtree, whereas the /Pavonia clade species nearly always had twice as many copies as seen in *H. cannabinus*.
Table 2

Gene count data used for likelihood scenario testing. The number of copies were counted for each gene as the number of sequences from one individual in a clade that had *Gossypium* (G) as an outgroup. The abbreviations are short for *Hibiscus syriacus* (S), *H. cannabinus* (C), *H. mechowii* (W), *H. trionum* (T) and *Pavonia triloba* (P).

Gene name	G	S	C	M	T	P
ABC-c2	1	2	1	1	0	0
ABC-c2	1	1	1	0	1	3
ACCS	1	0	2	1	0	2
ACCS	1	3	2	2	2	1
Acylamino	1	3	3	2	2	5
AglucanP	1	9	2	2	2	12
Ankyrin	3	6	2	2	2	4
Ankyrin	1	1	2	0	0	0
Bgalactosidase8	1	3	2	2	6	4
CAD	4	2	3	2	2	3
CAD	1	1	1	1	1	1
Calcium11	1	4	2	2	0	3
Calcium11	2	5	2	3	6	2
Calcium-ATPase1	1	3	1	1	1	2
Calcium-ATPase1	1	0	1	1	1	2
CesA1	3	4	2	2	2	4
EIF-2B	2	2	1	1	1	2
EIF-2B	1	2	1	1	1	2
F5H	1	1	1	1	1	2
F5H	1	4	2	2	2	4
F5H	1	0	2	2	1	2

Additional file 1. Species name and accession information. BONN stand for Botanische Gärten der Universität Bonn; The Royal Botanic Gardens, Kew; USDA National Plant Germplasm System. *Hibiscus trionum* is kept as a cultivar at Christchurch Botanic Gardens (NZ). Number of reads after quality trimming, in parenthesis the percentage of reduced reads from the original raw data. Percent of GC content after the trimming. Vouchers are deposited at the Gothenburg herbarium (GB).
Number of copies
Formin2
Formin2
Formin2
Glutamine
GPDH
GPDH
GPDH
GPDH
GPDH
Kinesin-KP1
Kinesin-KP1
LOC105792102
LOC105792102
LOC105792102
LOC105792102
LOC105792102
MAP3K
MAP3K
Phospholipase
Phospholipase
Phospholipase
Plasma-ATPase
Plasma-ATPase

Additional file 1. Species name and accession information. BONN stand for Botanische Gärten der Universität Bonn; The Royal Botanic Gardens, Kew; USDA National Plant Germplasm System. *Hibiscus trionum* is kept as a cultivar at Christchurch Botanic Gardens (NZ). Number of reads after quality trimming, in parenthesis the percentage of reduced reads from the original raw data. Percent of GC content after the trimming. Vouchers are deposited at the Gothenburg herbarium (GB).
Number of copies

Species name	Taxon label in study	Accession number	Collection	Voucher barcode	# trimmed reads (percentage of reads after trimming)	% GC
Hibiscus cannabinus L.	H. cannabinus1	XX-0-BONN-19883	BONN	GB-barcode	1460168 (92%)	41.3
H. mechowii Garcke	H. mechowii	PI 500776	USDA	GB-barcode	1892534 (92%)	41.4
H. cannabinus	H. cannabinus2	PI 638930	USDA	GB-barcode	1231966 (90%)	41.1
H. trionum L.	H. trionum	REF: 10	Botanic Garden Christchurch (NZ)	GB-barcode	662426 (92%)	41.3
H. cannabinus	H. cannabinus3	PI 189210	USDA	GB-barcode	1180578 (91%)	41.0
Pavonia triloba Hochst. ex. Webb	P. triloba	Ref: 84822	KEW	GB-barcode	1139782 (92%)	40.3
H. syriacus L.	H. syriacus	GCA_001696755.1	GenBank			
Gossypium raimondii Ulbr.	Gossypium raimondii	GCF_000327365.1	GenBank			

Additional file 1. Species name and accession information. BONN stand for Botanische Gärten der Universität Bonn; The Royal Botanic Gardens, Kew; USDA National Plant Guermpasm System. *Hibiscus trionum* is kept as a cultivar at Christchurch Botanic Gardens (NZ). Number of reads after quality trimming, in parenthesis the percentage of reduced reads from the original raw data. Percent of GC content after the trimming. Vouchers are deposited at the Gothenburg herbarium (GB).

Phylogenetic inference - For the single-copy gene trees (SCG), 10 out of 14 genes showed the same topological relationships with the /Furcaria clade species forming a clade sister to *H. trionum + P. triloba*, and this larger clade in turn sister to *H. syriacus* (Fig. 2), consistent with Pfeil and Crisp (2005). The other four genes often had an extra gene copy from one taxon appearing in a different relationship indicating either a deep coalescence event or another paralogous copy (e.g. gene Oxysterol-D1; Suppl. Figure 1). The phylogenetic trees and subtrees (paralogous clades within one gene tree) strongly support a relationship previously reported (Pfeil et. al. 2002), with *H. syriacus* sister to /Furcaria + (*H. trionum + P. triloba*). In most gene trees, multi-copy genes (MCGs) and SCGs likewise, *Pavonia* possess at least two copies that form a monophyletic clade (Suppl. Figure 2–21).

Scenario testing – A species tree was generated with BEAST2 for testing three genome evolution hypotheses using the WGDgc R package (Rabier et al. 2013). All parameters had an ESS value > 200 indicating that the priors had all converged and a maximum clade credibility tree was created summarizing the clade posterior...
probabilities on a single tree. The gene count data consisted of 44 data points (subtrees) over 20 MCG (Table 2). The rates of duplication and loss were estimated to be 0.03 and 0.003, respectively. The scenario testing using gene count data showed that S2 (one shared genome duplication with H. syriacus and one WGD contained within H. syriacus) was the preferred model given the observed distribution of paralogous gene copies in Hibiscus (Fig. 2). We found the null-scenario (no WGD events) to be the least likely model to explain the data among the models we evaluated. Through the process of identifying paralogous copies and constructing the gene count data, we found that: (1) /Pavonia species had twice as many copies as /Furcaria species and (2) the presence of MCG and SCG were congruent with the occurrence of two gene copies within /Pavonia species. Our results thus indicate a third WGD event. All the scenarios had a lower likelihood score with the inclusion of a third WGD event and the preferred scenario (S2; ωAIC > 0.95) did not change with the inclusion of a third WGD in the clade /Pavonia (Table 3).

2 WGD	loglikelihood	AIC	deltaAIC	rel.LL	AIC weights
S1	-294.4646	596.9292	8.2118	0.01647	0.0162
S2	-290.3586	588.7173	0	1	0.9833
S3	-297.9675	603.9350	15.2176	0.0005	0.0005
null	-303.7357	611.4714	22.7540	1.1455e-05	1.1264e-05

3 WGD	loglikelihood	AIC	deltaAIC	rel.LL	AIC weights
S1	-276.8404	563.6808	13.5126	0.0012	0.0012
S2	-270.0841	550.1682	0	1	0.9988
S3	-285.7683	581.5366	31.3684	1.5432e-07	1.5414e-07
null	-303.7357	611.4714	61.3032	4.8771e-14	4.8714e-14

Discussion

While it is widely accepted that recent polyploids originate through complex evolutionary histories, recurrent appearances of diploid species also seem to have complicated patterns to disentangle in order to trace their phylogenetic histories accurately. In this study we present evidence that the evolution of Hibiscus includes several whole genome duplication (WGD) events. Even diploid species (i.e. not subject to recent polyploidy) – H. cannabinus and H. mechwii – contained additional copies of genes that were expected to be single copy. This is consistent with ancient duplications (that duplicate many genes) and the retention of many of these gene lineages, despite a return to diploid genetic state.
We found that whole-genome duplication events best explain the observed number of sequences in *Hibiscus*. The null-hypothesis – where it is assumed that no WGD events took place in *Hibiscus* – had the lowest likelihood compared to the alternative scenarios. Consequently, single gene duplications are a less likely explanation than WGD for the occurrence of multiple gene copies found within subtrees. Instead, we found that S2 (one genome duplication leading to *H. syriacus* and one genome duplication shared by all *Hibiscus* species) best explained the pattern observed in the trees/gene count data. Within each gene subtree (defined by one *Gossypium* copy as outgroup) *H. syriacus* appears to possess on average twice as many copies as *Furcaria* species, indicating an independent genome duplication leading to *H. syriacus* – consistent with the chromosome number ($2n = 40–80$ (Skovsted 1941)). We corroborate the previous findings of two WGDs in *H. syriacus* (Kim et al., 2017), but with one modification; one of the duplication events is older than previously presumed (by Kim et al. 2017) and had already occurred somewhere along the branch leading to *Hibiscus*.

An Additional Recent Polyploid Event in Pavonia’s Past

During the process of identifying sequence copies (alleles and paralogues) we found that /Pavonia, within clade /Trionum, always possessed twice as many copies relative to the other species in the clade (i.e. *H. trionum* in our sample). Furthermore, /Pavonia also possessed twice as many copies than /Furcaria, the sister clade to /Trionum, suggesting that a recent genome duplication occurred in /Pavonia. By including a third genome duplication in our scenario testing, we clearly show that part of the data can be explained by an independent genome duplication in /Pavonia. All three scenarios resulted in lower log-likelihood scores when three WGD events were included.

The haploid chromosome number in /Pavonia – either $n = 7$ or 14 – reflects the uncertainty of the genomic history (Fryxell, 1999). Here, we found that *P. triloba* underwent a separate genome duplication in addition to the shared one with all species included in *Hibiscus*. However, if it is a recent duplication within *P. triloba* or a duplication shared by other related species (/Pavonia and /Trionum) cannot be determined here. We infer from our results that the base chromosome number in /Pavonia and /Trionum is likely to be $n = 14$ and not $n = 7$ (Fryxell, 1999, (Les 2017), due to the shared genome duplication with all species in *Hibiscus*. This hypothesis is also supported by the lack of “diploid” species in *Pavonia* with $2n = 14$ (Fryxell, 1999), if seven is the true haploid chromosome number. No other species in /Trionum have been reported to have $2n = 14$ chromosomes. On the other hand, $2n = 28$ counts and above have been found *H. trionum* (Murray et al. 2008), *Malvaviscus arboreus* (incl. in /Pavonia; (Turner and Mendenhall 1993) and in *Pavonia* species.

Additional copies were found within some of the paralogous genes (Suppl. Figures 3–4, 10, 13) that may either be relics of older genome duplication events or the consequence of gains of extra copies through independent gene duplication. For example, in the Acylamino gene (Suppl. Figure 5) a third clade consisting of sect. *Furcaria* and *Pavonia* without any copies of *H. syriacus* nor *Gossypium*. This suggests an independent gene duplication, or losses of copies in *Gossypium* and *H. syriacus*. Furthermore, in the same gene we find two clades containing *H. cannabinus* gene copies sister to its close relative *H. mechowii* consistent with gene duplication restricted to *H. cannabinus*. These gains and losses of copies are common throughout all the genes and may reflect processes such as independent gene duplications and losses of copies through fractionation or diploidization – complicating an already complex history.
Data Quality

The challenge of separating alleles and copies during sequence read assembly is a crucial one for the success of this study. Current methods typically assume that organisms are diploids and thus must only have two haplotypes at a locus (Browning and Browning 2011). These assumptions are violated in the presence of more than two haplotypes, commonly present in polyploid and paleopolyploid plants, where current methods may produce either chimeric haplotypes or underestimate the number of haplotypes. The cluster analysis is a methodological advance because identifies the possible number of copies that had been sequenced in the sample, if the sequence copies are distinct from each other in the exon regions (or any used reference region). In contrast, using tools that produce maximum two haplotypes/alleles (e.g. Eriksson et al. 2017), we found that most of the copies were not identified and information was lost. One caveat with this approach in this study, however, is the possibility of underestimating the number of copies – sequence copies that we miss due to conserved exon regions, but may have nucleotide differences in the intron regions. While this approach can tease apart distinct haplotypes, it does not separate allelic variants when the polymorphic sites connecting to alleles are too far apart (further away than two paired-end reads can overlap). Thus, possible allelic variants likely have been overlooked in this study as it continues to be impossible to separate variants with current methods.

Conclusions

Identifying the rich diversity of paralogues, homoeologues and allelic variants has negative implications on phylogenetic reconstruction, as model assumptions are regularly violated. Previous studies have usually relied on whole genome data to discover ancient genome duplications. Here, we demonstrate that target gene capture of a relatively small number of loci can also produce important information for investigating complex histories. Paralogues and polyploids alike are often excluded from phylogenetic inference because of their unpredictable nature: it is well-known that gene copy losses can follow a duplication in such a way that some species may have one or the other copy of a duplicate gene. Thus, orthology can be difficult to assess and paralogous comparisons are often made unwittingly, misleading phylogenetic inferences (Doyle 1992). For polyploid species, multiple copies of parental genome contributions may exist, which in turn can lead to gene trees that are incongruent with species trees. Furthermore, there is a vast number of diploid species that may contain traces of ancient WGDs. There is no general solution that will work for all polyploids – only to acknowledge that different polyploid species may evolve in many different ways. Considering the diverse chromosome numbers in plants, more evidence of ancient genome duplications and processes of diploidizations are yet to be uncovered.

Materials And Methods

Sampling and DNA extraction – Species with known ploidy were selected to reappraise possible genome duplications in Hibiscus (Additional file 1). Two diploid species, with three specimens of H. cannabinus L. and one H. mechowii Garcke (both 2n = 32) were selected from clade /Furcaria (C and M in Fig. 1): Pavonia triboa Hochst. ex. Webb (clade /Pavonia within Hibiscus) with unknown chromosome number (P in Fig. 1: H. trionum L. from clade /Trionum, a diploid/tetraploid species (2n = 28, 56; (Dasgupta 1981); T in Fig. 1); and
two species from previous whole genome sequencing studies, *H. syriacus* from clade /Euhibiscus (GenBank assembly accession GCA_001696755.1, Kim et al., 2017) and *Gossypium raimondii*, the latter not being part of *Hibiscus* (GenBank assembly accession GCF_000327365.1, Paterson et al., 2012, Xu et al., 2013). Silica dried leaves were collected and DNA was extracted from 25–30 mg of plant material using DNeasy Plant mini Kit (Qiagen, Valencia, CA, USA) with two deviations from the manufacturer's protocol: supernatant with AP1 buffer was incubated at 42 °C for 24 h, and a 30 min incubation with AW1 buffer. Samples with excess secondary compounds (polysaccharides) had an additional volume of AP1 buffer added to reduce the viscosity. Samples that discolored the column membrane (e.g. phenol contaminants) incurred an additional step of cleaning with 95% ethanol. Only samples with high quality DNA with an absorbance ratio falling within 1.8-2.0 (260/280 nm and 230/260 nm) were used for the downstream workflow.

Library preparation – Genomic DNA was sheared using Covaris S220 instrument (Covaris, Woburn, Massachusetts, USA) to a fragment size between 600–800 bp and end-repaired with library NEXTflex rapid DNA-Seq kit (BIOO Scientific, Austin, Texas, USA). End-repaired fragments were barcoded using NEXTflex DNA Barcodes and size selected to optimize recovery of fragments between 600–800 bp using Ampure XP beads according to the manufacturer's protocol. A polymerase chain reaction (PCR) was performed using master mix and primer mix provided in the library kit, with the cycling programme: 98 °C, 2'; 14 × (98 °C, 30''; 65 °C, 30''; 72 °C, 60''); 72 °C, 4'. PCR products were purified with 0.4x Agencourt AMPure XP beads (Beckman Coulter) and eluted in 20 µl resuspension buffer.

Target capture and sequencing – Target gene capture was performed using custom made MYbaits (MYcroarray, Ann Arbor, Michigan), targeting 87 low-copy nuclear genes, designed using the *Hibiscus cannabinus* transcriptome (Johnson et al. 2012; Matasci et al. 2014; Wickett et al. 2014; Xie et al. 2014) annotated using the *Gossypium raimondii* genome (Paterson et al. 2012; Xu et al. 2013). Probes were selected from regions with exon lengths >90 bp and intron lengths <1,000 bp. Selected exons were blasted against the *G. raimondii* genome using NCBI megablast with an e-value of 10 (a high e-value was chosen to look for distant homologues between *H. cannabinus* and *G. raimondii*). Only regions with a single copy in the transcriptome and a nucleotide similarity of above 86% to the *Gossypium* genome were accepted.

Six NEXTflex barcoded libraries were pooled per capture reaction following the protocol from the manufacturer. Each pooled reaction was incubated at 65 °C and incubated for 24 h. For libraries prepared from silica dried material incubation was performed for 16 h. Targeted DNA was captured and purified using Dynabeads MyOne Streptavidin C1 beads (Invitrogen Dynal AS, Oslo, Norway), before PCR amplification with the following programme: 98 °C, 2'; 14 × (98 °C, 20''; 65 °C, 30''; 72 °C, 60''); 72 °C, 5'. PCR products were purified using 0.4x AMPure XP beads. To remove any residue of alcohol the tubes were air dried until the beads were visibly dry (over-drying beads results in lower yield of captured PCR products) and eluted in 20 µl resuspension buffer. Fragment size length was checked on a Tapestation 2200 (Agilent Technologies) with D1000 tapes and DNA quantity was checked on an Invitrogen™ Qubit™ 3.0 Fluorometer with HS buffer. The sequencing was performed by the SciLifeLab facility in Stockholm, Sweden, on an Illumina MiSeq (San Diego, California, USA) instrument with 300 bp paired-end reads.

Quality trimming and mapping – The reads were processed with CLC Genomic Workbench (CLC Bio, Aarhus, Denmark) to trim the barcodes and Illumina adaptors from the reads. Low quality reads were removed with a
We constructed a pipeline that assembles sequence copies that may be haplotypes/homoeologues, hereafter multiple variants, by mapping to the references in two steps: the first step (URL: https://github.com/DomBennett/Project-cluster) assembles clusters of identical reads corresponding to all the captured target regions. The second step iteratively adds flanking regions where reads support, to build the original genomic sequences without joining parts of sequences together that come from different copies. The first step in the pipeline uses the SAM files and the tool CD-HIT (Li and Godzik 2006; Fu et al. 2012) to identify multiple variants by clustering similar reads. In brief, reads mapped to one of the exons are removed when found outside the exon boundaries. CD-HIT then identifies reads that are similar above a certain threshold. We used a 1.0 similarity score and a minimum length of 60 bp. If CD-HIT finds a read that does not have sufficient similarity with a cluster, that read forms a new cluster. Clusters that were represented by only 10 reads or less were deleted.

The second part of the pipeline used the mapping tool in Geneious v11.1.3 (https://www.geneious.com, (Kearse et al. 2012) to reconstruct full sequences (i.e., containing both exons and introns) from the identified clusters. The exon that had the highest number of clusters was used for constructing full sequences. A consensus was made for each cluster and used as a reference sequence. We used custom settings where full reads (reads that contain both exon and intron sequence data) mapped to the reference had to be without mismatches or gaps, and a word length of 99 characters. Each assembly was iterated five times, where the consensus sequence made from each assembly served as a new reference for the next iteration. We removed copy assemblies that contained positions with polymorphic sites. This assembly step generates sequences in the form ‘exon-intron-exon’ connecting individual exons by adding intervening introns, unless the introns are so long that the iterations do not produce overlapping contigs. Thus, the exons that had fewer clusters were indirectly included by the ‘exon-intron-exon’ assembly step.

The resulting sequences were aligned using MAFFT v7.388 (Katoh et al. 2002; Katoh and Standley 2013) with the auto algorithm (selecting the appropriate method according to the size of data) and default gap penalties. For the gene alignments where sequences did not overlap – due to exons position being too far away and the selection of highest number of clusters may differ between samples – a higher number of iterations (up to 25 times) in the assembly step could in some cases lead to the sequences spanning the entire gene length (all exons). Genomic data from *H. syriacus* and *G. raimondii* were downloaded from NCBI (accession numbers GCA_001696755.1 and GCF_000327365.1, respectively). The probes from each gene were mapped to both genomes to find the location of the singletons or duplicated copies using medium sensitivity/fast settings in Geneious. Sequences from both genomes were added to the alignment using the -add option in MAFFT. Only gene alignments where the sequences overlapped the same exon or the neighboring exons were used for phylogenetic analyses, that resulted in 20 multi-copy genes (MCG, where diploid species have more than one haplotype) and nine single-copy genes (SCG, where diploids only have one haplotype). The rest of the genes were either incomplete due to missing taxa or because of non-overlapping sequences in the alignments.
In one of the gene alignments (Phospholipase), one *Pavonia* copy had the 5’ and the 3’ end of two sequences apparently swapped, likely due to a recombination event between two copies. We inspected the assembly in order to find any indication of chimeric mapping that could be the result of conserved regions – in which reads accidentally map to multiple copies – however no such indication could be found. In such cases we created two sequences by separating the front and back half of the recombined sequence.

Phylogenetic analysis - Bayesian inference was performed using MrBayes v3.2.6 (Ronquist and Huelsenbeck 2003) for 20 MCG and nine SCG using a reverse model jumping Markov Chain Monte Carlo method (rjMCMC) to average over all 203 possible combinations of substitution models (Ronquist and Huelsenbeck, 2003). We allowed among site rate heterogeneity (using a gamma distribution with shape parameter alpha) for all models and genes, as we expected difference in rates between exons and introns as well as codon positions. The branch length prior (brlenpr) was set to unconstrained exponential molecular clock set to 100, to allow for smaller branch length prior means (Marshall et al. 2006). All other options were set to program defaults. We ran each analysis on two parallel chains for two independent runs of 10 million generations, sampling every 2,000 generations. We applied a burn-in of 10% after checking convergence such that all parameters had an effective sample size (ESS) > 200 with Tracer v1.6 (Drummond et al. 2012). Trees were annotated using TreeAnnotator v1.8.1 (part of the BEAST package) before being visualized in Figtree v1.4.2 (tree.bio.ed.ac.uk/software/figtree/).

A species tree was constructed for WGD scenario testing using nine SCG that contained one copy per specimen. The analysis was run under the SpeciesTreeUCLN template in BEAST2 (Bouckaert et al. 2014) with a three-rate substitution model (TR93) (Tamura and Nei 1993) chosen by comparing all tracer files from all genes using a MrBayes v3.2.6 mixed model selection with a mean k-revmat of 3.12 (Huelsenbeck et al. 2004). We employed a birth-death process for the tree prior and an uncorrelated lognormal relaxed molecular clock model (Drummond et al. 2006) set to 0.0055 subs/site/Ma based on a priori information for the family (Wendel et al. 1995; Kay et al. 2006; Koopman and Baum 2008) was used. The analysis was run for 40 million generations sampling every 5000 generations. The parameters were checked for convergence in Tracer v1.6 and a burn-in of 10% of the trees was removed using TreeAnnotator in BEAST2 package.

Species tree and scenario testing using likelihood score - We compared the log-likelihood scores for the observed gene copy numbers in each taxon from the 20 MCG on three WGD scenarios (Fig. 1) using the WGDgc v1.2 R package (Rabier et al., 2013). WGDgc uses the number of copies across gene families (defined as a gene that contains more than two gene copies of a given taxa) inferred on a species tree. We counted the number of copies in every gene for each species that formed a clade that had at least one *Gossypium* copy as sister to Hibisceae (i.e., duplications that lead to or are within the Hibisceae lineage, and thus may be linked to gene duplication events). Furthermore, each gene may contain several sequence copies that form subtrees (several clades with *Gossypium* copies sister to Hibisceae copies) that would be each be counted as one data point in the gene count data. Extra clades that were missing a *Gossypium* copy were not used. The number of copies were converted into gene count data manually. We used a Dirac delta prior set to 1 for the number of copies at the root, assuming there is always a single copy present at the root. The starting values of the duplication (birth) and loss (death) rates were set to the default values according to the manual and were estimated using maximum likelihood. The type of conditioning for the likelihood calculation was set to “twoOrMore”, allowing for gene families to have two or more genes. On the species tree, we fixed WGD events
to the mid-point of the species tree branches according to our three scenarios (e.g. for S1 the tree will have
two independent WGD events on the branch leading to S, and so on, as per Fig. 1). Akaike weights (\(\omega_{AIC} \)) are
calculated by estimating the relative model likelihoods by normalizing with the sum of the likelihoods of all
models (Wagenmakers and Farrell 2004) and can be interpreted as the probability that the model is the most
likely given the data (gene count) and candidate models (scenarios) (Wagenmakers and Farrell 2004). R code
for reproducing our analysis can be found on GitHub (https://github.com/AntonelliLab/WGD-scenario-testing-
in-hibiscus).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of supporting data

The data set(s) supporting the results of this article is(are) available in the [repository name] repository,
[unique persistent identifier and hyperlink to dataset(s) in http:// format]. (Data will be deposited before
publication.)

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by grants from the Swedish Research Council, the Royal Swedish Academy of
Sciences [grant number 2009-5206], Lars Hiertas Minne fund, The Royal Physiographic Society in Lund, Helge
Ax:son Johnsons fund and the Lundgrenska fund to BEP; the Swedish Research Council [grand umber
B0569601], the European Research Council under the European Union's Seventh Framework Programme
FP/2007-2013, ERC [grant number 331024], a Wallenberg Academy Fellowship and the Swedish Foundation
for Strategic Research to AA. The funding body had no role in the design, collection and conclusion of this
study.

Authors’ contributions

JSE conceived this study with the support from co-authors. JSE carried out all the field and laboratory work
and performed all the analyses with support from co-authors. JSE and DJB wrote the code. JSE lead the
writing with contributions from all co-authors.

Acknowledgements
We thank Anna Ansebo, Claes Persson and our research group for advice, discussion, access to resources and materials. The authors would like to acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure, NGI, and Uppmax for providing assistance in massive parallel sequencing and computational infrastructure. The analyses were performed on the bioinformatics computer cluster Albiorix (http://albiorix.bioenv.gu.se/) at the Department of Biological and Environmental Sciences, University of Gothenburg.

Abbreviations:

Author abbreviations can be found in (Brummitt and Powell 1992).

References

Bates, D. M., 1969 Generic Relationships in the Malvaceae, Tribe Malvaea. *Gentes Herb.* 10: 117-135.

Bates, D. M., and O. J. Blanchard Jr, 1970 Chromosome numbers in the Malvales. II. New or otherwise noteworthy counts relevant to classification in the Malvaceae, tribe Malveae. *American journal of botany* 927-934.

Baum, D. A., S. DeWitt Smith, A. Yen, W. S. Alverson, R. Nyffeler *et al.*, 2004 Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. *American journal of botany* 91: 1863-1871.

Blanc, G., and K. H. Wolfe, 2004 Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. *The Plant Cell* 16: 1667-1678.

Borrill, P., N. Adamski and C. Uauy, 2015 Genomics as the key to unlocking the polyploid potential of wheat. *New Phytologist* 208: 1008-1022.

Bouckaert, R., J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu *et al.*, 2014 BEAST 2: a software platform for Bayesian evolutionary analysis. *Journal of PLoS computational biology* 10: e1003537.

Bowers, J. E., B. A. Chapman, J. Rong and A. H. Paterson, 2003 Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. *Nature* 422: 433.

Browning, S. R., and B. L. Browning, 2011 Haplotype phasing: existing methods and new developments. *Nature Reviews Genetics* 12: 703.

Brummitt, P., and C. E. Powell, 1992 Authors of plant names. *Royal Botanic Gardens Kew*.

Buggs, R. J., S. Renny-Byfield, M. Chester, I. E. Jordon-Thaden, L. F. Viccini *et al.*, 2012 Next-generation sequencing and genome evolution in allopolyploids. *American journal of botany* 99: 372-382.

Cannon, S. B., L. Sterck, S. Rombauts, S. Sato, F. Cheung *et al.*, 2006 Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. *Proceedings of the National Academy of Sciences* 103: 14959-14964.
Chaudhary, R., J. G. Burleigh and D. Fernández-Baca, 2013 Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance. *Algorithms for Molecular Biology* 8: 28.

Dasgupta, A., 1981 Cytotaxonomy of Malvaceae II. *Cytologia* 46: 149-160.

Davie, J. H., 1933 Cytological studies in the Malvaceae and certain related families. *Journal of Genetics* 28: 33-67.

Doyle, J. J., 1992 Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy. *Systematic Botany* 17: 144-163.

Drummond, A. J., S. Y. Ho, M. J. Phillips and A. Rambaut, 2006 Relaxed phylogenetics and dating with confidence. *Journal of PLoS biology* 4.

Drummond, A. J., M. A. Suchard, D. Xie and A. Rambaut, 2012 Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular biology and evolution* 29; 1969-1973.

Fawcett, J. A., S. Maere and Y. Van de Peer, 2009 Plants with double genomes might have had a better chance to survive the Cretaceous–Tertiary extinction event. *Proceedings of the National Academy of Sciences* 106: 5737-5742.

Fernández, A., A. Krapovickas, G. Lavia and G. Seijo, 2003 Cromosomas de Malváceas. *Bonplandia* 141-145.

Fryxell, P. A., 1999 Pavonia Cavanilles (Malvaceae). Flora neotropica monograph 76.

Fu, L., B. Niu, Z. Zhu, S. Wu and W. Li, 2012 CD-HIT: accelerated for clustering the next-generation sequencing data. *Bioinformatics* 28; 3150-3152.

Grant, V., 1981 Plant speciation. New York: *Columbia University Press*.

Gregg, W. T., S. H. Ather and W. M. Hahn, 2017 Gene-tree reconciliation with MUL-trees to resolve polyploidy events. *Systematic Biology* 66: 1007-1018.

Huelsenbeck, J. P., B. Larget and M. E. Alfaro, 2004 Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. *Molecular biology and evolution* 21: 1123-1133.

Jaillon, O., J.-M. Aury, B. Noel, A. Policriti, C. Clepet et al., 2007 The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. *Nature* 449: 463.

Jiao, Y., J. Leebens-Mack, S. Ayyampalayam, J. E. Bowers, M. R. McKain et al., 2012 A genome triplication associated with early diversification of the core eudicots. *Genome biology* 13: R3.

Jiao, Y., N. J. Wickett, S. Ayyampalayam, A. S. Chanderbali, L. Landherr et al., 2011 Ancestral polyploidy in seed plants and angiosperms. *Nature* 473: 97.

Johnson, M. T., E. J. Carpenter, Z. Tian, R. Bruskiewich, J. N. Burris et al., 2012 Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes.
Katoh, K., K. Misawa, K. i. Kuma and T. Miyata, 2002 MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Journal of Nucleic acids research* 30: 3059-3066.

Katoh, K., and D. M. Standley, 2013 MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30: 772-780.

Kay, K. M., J. B. Whittall and S. A. Hodges, 2006 A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. *BMC Evolutionary Biology* 6: 36.

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung *et al.*, 2012 Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28: 1647-1649.

Kim, Y., S. Kim, N. Koo, A. Shin, S. Yeom *et al.*, 2017 Genome analysis of Hibiscus syriacus provides insights of polyploidization and indeterminate flowering in woody plants. *DNA Research* 24: 71-80.

Koopman, M. M., and D. A. Baum, 2008 Phylogeny and biogeography of tribe Hibisceae (Malvaceae) on Madagascar. *Systematic Botany* 33: 364-374.

Lawrence, W. J. C., 1931 The secondary association of chromosomes. *Cytologia* 2: 352-384.

Les, D. H., 2017 Aquatic dicotyledons of North America: ecology, life history, and systematics. *CRC Press*.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The sequence alignment/map format and SAMtools. *Bioinformatics* 25: 2078-2079.

Li, W., and A. Godzik, 2006 Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22: 1658-1659.

Li, Z., A. E. Baniaga, E. B. Sessa, M. Scascitelli, S. W. Graham *et al.*, 2015 Early genome duplications in conifers and other seed plants. *Science Advances* 1: e1501084.

Marshall, D. C., C. Simon and T. R. Buckley, 2006 Accurate Branch Length Estimation in Partitioned Bayesian Analyses Requires Accommodation of Among-Partition Rate Variation and Attention to Branch Length Priors. *Systematic Biology* 55: 993-1003.

Matasci, N., L.-H. Hung, Z. Yan, E. J. Carpenter, N. J. Wickett *et al.*, 2014 Data access for the 1,000 Plants (1KP) project. *GigaScience* 3: 17.

Menzel, M. Y., 1966 The pachytene chromosome complement of Hibiscus cannabinus. *Cytologia* 31: 36-42.

Menzel, M. Y., and F. D. Wilson, 1969 Genetic relationships in hibiscus sect. Furcaria. *Brittonia* 21: 91.
Murray, B. G., L. A. Craven and P. J. De Lange, 2008 New observations on chromosome number variation in Hibiscus trionum s.l. (Malvaceae) and their implications for systematics and conservation. *New Zealand Journal of Botany* 46: 315-319.

Otto, S. P., and J. Whitton, 2000 Polyploid incidence and evolution. *Annual review of genetics* 34: 401-437.

Paterson, A. H., J. F. Wendel, H. Gundlach, H. Guo, J. Jenkins *et al.*, 2012 Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. *Nature* 492: 423.

Pellicer, J., O. Hidalgo, S. Dodsworth and I. J. Leitch, 2018 Genome size diversity and its impact on the evolution of land plants. *Genes* 9: 88.

Pfeil, B., C. Brubaker, L. Craven and M. Crisp, 2002 Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpl16 intron. *Systematic Botany*: 333-350.

Pfeil, B., C. L. Brubaker, L. A. Craven and M. Crisp, 2004 Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. *Molecular biology and evolution* 21: 1428-1437.

Pfeil, B., and M. Crisp, 2005 What to do with Hibiscus? A proposed nomenclatural resolution for a large and well known genus of Malvaceae and comments on paraphyly. *Australian Systematic Botany* 18: 49-60.

Rabier, C.-E., T. Ta and C. Ané, 2013 Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. *Molecular biology evolution* 31: 750-762.

Ronquist, F., and J. P. Huelsenbeck, 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572-1574.

Schranz, M. E., and T. Mitchell-Olds, 2006 Independent Ancient Polyploidy Events in the Sister Families Brassicaceae and Cleomaceae. *The Plant Cell* 18: 1152-1165.

Seelanan, T., A. Schnabel and J. F. Wendel, 1997 Congruence and consensus in the cotton tribe (Malvaceae). *Systematic Botany* 22: 259-290.

Skovsted, A., 1941 Chromosome numbers in the Malvaceae II. Comptes rendus des travaux du laboratoire Carlberg. *Physiologique*: 195–242.

Soltis, D. E., V. A. Albert, J. Leebens-Mack, C. D. Bell, A. H. Paterson *et al.*, 2009 Polyploidy and angiosperm diversification. *American journal of botany* 96: 336-348.

Soltis, P. S., D. B. Marchant, Y. Van de Peer and D. E. Soltis, 2015 Polyploidy and genome evolution in plants. *Current opinion in genetics & development* 35: 119-125.

Stebbins, G., 1947 Types of polyploids: their classification and significance. *Advances in genetics* 1: 403-429.

Stebbins Jr, C., 1950 Variation and evolution in plants: Progress During the Past Twenty Years. in *Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky*, edited by M. K. Hecht and W. C. Steere. Springer, Boston, MA.
Tamura, K., and M. Nei, 1993 Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. *Molecular biology evolution* 10: 512-526.

Tang, H., X. Wang, J. E. Bowers, R. Ming, M. Alam *et al.*, 2008 Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. *Genome research*; gr. 080978.080108.

Turner, B. L., and M. G. Mendenhall, 1993 A revision of Malvaviscus (Malvaceae). *Annals of the Missouri Botanical Garden*; 439-457.

Tuskan, G. A., S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev *et al.*, 2006 The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). *Science* 313: 1596-1604.

Wagenmakers, E. J., and S. Farrell, 2004 AIC model selection using Akaike weights. *Psychonomic bulletin* 11: 192-196.

Wang, K., Z. Wang, F. Li, W. Ye, J. Wang *et al.*, 2012 The draft genome of a diploid cotton Gossypium raimondii. *Nature Genetics* 44: 1098.

Vanneste, K., Y. Van de Peer and S. Maere, 2012 Inference of genome duplications from age distributions revisited. *Molecular biology and evolution* 30: 177-190.

Wanscher, J., 1934 The basic chromosome number of the higher plants. *J New Phytologist* 33: 101-126.

Wendel, J. F., 2015 The wondrous cycles of polyploidy in plants. *American journal of botany* 102: 1753-1756.

Wendel, J. F., and R. C. Cronn, 2003 Polyploidy and the evolutionary history of cotton. *Advances in agronomy* 78: 139.

Wendel, J. F., A. Schnabel and T. Seelanan, 1995 An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. *J Molecular phylogenetics evolution* 4: 298-313.

Wickett, N. J., S. Mirarab, N. Nguyen, T. Warnow, E. Carpenter *et al.*, 2014 Phylotranscriptomic analysis of the origin and early diversification of land plants. *Proceedings of the National Academy of Sciences* 111: E4859-E4868.

Wilson, F. D., 1994 The genome biogeography of Hibiscus L. section Furcaria DC. *Genetic Resources and Crop Evolution* 41: 13-25.

Wilson, F. D., 2006 A distributional and cytological survey of the presently recognized taxa of Hibiscus section Furcaria (Malvaceae). *Bonplandia*; 53-62.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon *et al.*, 2009 The frequency of polyploid speciation in vascular plants. *Proceedings of the National Academy of Sciences* 106: 13875-13879.

Xie, Y., G. Wu, J. Tang, R. Luo, J. Patterson *et al.*, 2014 SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. *Bioinformatics* 30: 1660-1666.
Xu, Q., G. Xiong, P. Li, F. He, Y. Huang et al., 2013 Correction: Analysis of Complete Nucleotide Sequences of 12 Gossypium Chloroplast Genomes: Origin and Evolution of Allotetraploids. *PloS one* 8.

Zhang, Y., G.-h. Xu, X.-y. Guo and L.-j. Fan, 2005 Two ancient rounds of polyploidy in rice genome. Journal of Zhejiang University. *Science*. B 6: 87-90.

Supplementary Figure Legends

Supplementary fig. 1. Phylogenetic relationships of a single-copy gene (SCG) Oxysterol-D1 inferred by MrBayes.

Supplementary figs. 2-21. MrBayes trees of multi-copy genes (MSC).

Figures

Figure 1

Three hypothetical genome evolution scenarios in Hibiscus with Gossypium raimondii (G) as outgroup. S is short for for H. syriacus; T for H. trionum; P for Pavonia triloba; C for H. cannabinus; and M for H. mechowii. The different colors represent three different genome duplication scenarios, where red = S1 (two independent WGD in S), blue = S2 (one WGD shared by all species of Hibiscus and one independent in S) and green = S3 (two WGD events shared by all species of Hibiscus).
Figure 2

Species tree inferred by StarBEAST using 10 single-copy genes. The blue color indicates the most probable placement of the whole-genome duplication events.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supplfigure1.pdf
- Supplfigure2ABCC2v4.pdf
- Supplfigure3ACCSv4.pdf
- Supplfigure4Acylaminov2.pdf
- Supplfigure5AglucanPv3.pdf
- Supplfigure6Ankyrinv5.pdf
- Supplfigure7Bgalactosidase8v3.pdf
- Supplfigure8CADv3.pdf
- Supplfigure9Calcium11v3.pdf
- Supplfigure10CalciumATPase1v4.pdf
- Supplfigure11CesA1v4.pdf
- Supplfigure12EIF2Bv3.pdf
- Supplfigure13F5Hv3.pdf
- Supplfigure14Formin2v4.pdf
- Supplfigure15glutaminev3.pdf
- Supplfigure16GPDHV3.pdf
- Supplfigure17KinesinKp1v3.pdf
- Supplfigure18LOC105792102v3.pdf
- Supplfigure19MAP3Kv3.pdf
- Supplfigure20Phospholipasev3.pdf
- Supplfigure21PlasmaATPasev4.pdf