Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells

Ping Zuo, Dušan Stanojević, John Colgan, Kyuhyung Han, Michael Levine, and James L. Manley

Department of Biological Sciences, Columbia University, New York, New York 10027 USA

We have studied the ability of the Drosophila gap proteins Krüppel and hunchback to function as transcriptional regulators in cultured cells. Both proteins bind to specific sites in a 100-bp DNA fragment located upstream of the segment polarity gene engrailed, which also contains functional binding sites for a number of homeo box proteins. The hunchback protein is a strikingly concentration-dependent activator of transcription, capable of functioning both by itself and also synergistically with the pair-rule proteins fushi tarazu and paired. In contrast, Krüppel is a transcriptional repressor that can block transcription induced either by hunchback or by several different homeo box proteins. While repression of the homeo box protein activators requires a Krüppel-binding site on the DNA, repression of hunchback can occur efficiently in the absence of a Krüppel-binding site. We discuss the possible molecular mechanisms underlying these activities, as well as the potential significance of these results with respect to segmentation in Drosophila.

[Key Words: Drosophila gap proteins; segment polarity gene; pair-rule proteins; homeo box protein]

Received August 20, 1990; revised version accepted November 27, 1990.

The segmentation process in Drosophila is controlled by a set of ~25 regulatory genes that are active in the early embryo (for review, see Akam 1987, Ingham 1988). Localized expression of the segmentation genes depends on a hierarchy of regulatory interactions (for review, see Scott and O'Farrell 1986). The first step is the establishment of broadly distributed gradients of maternal morphogens during oogenesis. The best understood of these is the homeo box protein bicoid [bcd], which plays a key role in localized expression of the next class of genes in the hierarchy, the gap genes (Frigerio et al. 1986; Frohnhofer and Nüsslein-Volhard 1986; Driever and Nüsslein-Volhard 1988a,b). Each gap gene is expressed in one or two broad domains that span several adjacent segment primordia. They influence the segmentation process by regulating the expression of the pair-rule genes, which are each expressed as seven stripes in alternating segment primordia along the length of the embryo (Carroll and Scott 1986; Ingham et al. 1986; Frasch et al. 1987). The pair-rule genes implement segmentation by controlling the expression of the segment polarity genes, which are each expressed as seven stripes in alternating segment primordia along the length of the embryo (Carroll and Scott 1986; Ingham et al. 1986; Frasch et al. 1987).

A recurring theme of this regulatory hierarchy is the progressive refinement in the patterns of gene expression. This process transduces the broad gradients of maternal morphogens (e.g., bcd) into the precise, single-cell limits of expression seen for the segment polarity genes. Perhaps the most dramatic increase in the complexity of these patterns involves the transition from the broad domains of the gap genes to the periodic expression of the pair-rule genes. A central problem in understanding the molecular basis of segmentation is how relatively few, broadly expressed gap genes are able to specify periodic patterns of stripes. The domains of gap gene expression are now known to result in overlapping concentration gradients of each of the different gap proteins (Gaul and Jäckle 1989, Stanojevic et al. 1989). Consistent with the view that these expression patterns are functionally significant, genetic studies suggest that both the concentrations and combinations of gap proteins are in some way important for determining the on/off periodicity of pair-rule promoters (for review, see Carroll 1990).

The gap genes characterized to date all encode DNA-binding proteins, and the most thoroughly studied contain DNA-binding Zn²⁺ fingers (Rosenberg et al. 1986, Tautz et al. 1987, Nauber et al. 1988, Redemann et al. 1988). Krüppel (Kr) and hunchback (hb) proteins have both been shown to bind to specific DNA sequences, each recognizing a distinct 10-bp consensus. Binding sites have been detected upstream of several potential target genes (Pankratz et al. 1989, 1990, Stanojevic et al. 1989, 1990).
1989; Treisman and Desplan 1989), the most striking example being the localization of >20 hb-binding sites in a 1.7-kb DNA segment situated upstream of the pair-rule gene even-skipped (eve) (Stanojevic et al. 1989). A number of genetic studies are consistent with the idea that hb can be an activator and Kr a repressor of gene expression (Jäckle et al. 1986; Frasch and Levine 1987; Carroll and Vavra 1989; Pankratz et al. 1990). However, it is difficult from genetic studies alone to distinguish between direct and indirect effects, and it has also been suggested that hb can act negatively and Kr positively (e.g., Pankratz et al. 1989, 1990; Struhl 1989).

Most of the other segmentation genes that have been cloned and characterized also encode sequence-specific DNA-binding proteins (for review, see Levine and Manley 1990). Mechanistically, the best understood are the homeo box-containing proteins, including the bcd protein, the pair-rule proteins eve, fushi tarazu (ftz), and paired (prd), and the protein encoded by the segment polarity gene en (en). With the exception of bcd (Driever and Nüsslein-Volhard 1989), all recognize a common 10-bp consensus sequence (Desplan et al. 1988; Hoey and Levine 1988). Furthermore, all five are able to modulate transcription, as demonstrated by transient cotransfection (Jaynes and O’Farrell 1988; Han et al. 1989; Winslow et al. 1989), embryo microinjection (Driever and Nüsslein-Volhard 1989), expression studies in yeast (Fitzpatrick and Ingles 1989; Struhl et al. 1989), and in vitro transcription assays (Biggin and Tjian 1989; Okhuma et al. 1990). These types of experiments have also provided evidence that the concentration gradient of bcd in the early embryo is functionally significant, as activation of the hb promoter by bcd was found to be markedly dependent on the concentration of the activator (Driever et al. 1989, Struhl et al. 1989). Likewise, the notion that combinatorial interactions between different segmentation gene products are important for correct pattern formation was strengthened by the observations that the ftz and prd proteins can function cooperatively to bring about strong synergistic activation of transcription (Han et al. 1989), while eve and en proteins are able to block the activation induced by ftz and/or prd (Jaynes and O’Farrell 1988; Han et al. 1989).

Here we show that the gap proteins Kr and hb function as transcriptional regulators in cultured cells. Unexpectedly, binding sites for both proteins were found in a well-characterized DNA segment located upstream of the en gene, which also contains functional binding sites for several of the pair-rule proteins mentioned above. We present evidence that hb can function as an activator of transcription and Kr as a repressor. We show further that these two gap proteins can functionally interact, not only with each other but also with several homeo box proteins.

Results

To determine whether the proteins encoded by the gap genes Kr and hb can function as sequence-specific transcription factors, we employed a transient expression assay similar to that utilized previously by us and others to examine the activities of several Drosophila homeo box proteins (e.g., Jaynes and O’Farrell 1988; Han et al. 1989; Krasnow et al. 1989). Specifically, Schneider line 2 cells were cotransfected with plasmids capable of expressing Kr or hb proteins, an appropriate reporter plasmid, and an internal control plasmid (see Materials and methods). Indirect immunofluorescence assays indicated that both proteins were efficiently expressed in transfected cells (results not shown). Reporter plasmids used in this study contained, except where otherwise indicated, the metallothionein “basal” promoter [i.e., TATA box plus transcriptional start site] fused to the Escherichia coli chloramphenicol acetyltransferase (CAT) gene, with DNA fragments containing Kr- and hb-binding sites ligated upstream (e.g., see Fig. 2). In preliminary experiments, we tested fragments from the eve 5′-flanking region shown previously to contain multiple hb- and/or Kr-binding sites (Stanojevic et al. 1989). Cotransfection with hb and/or Kr expression vectors failed to reveal significant effects on promoter activity with these reporter plasmids (results not shown), perhaps reflecting requirements for additional factors. However, we were surprised to observe that a plasmid nominally used as a control, k′−TATA−CAT, was, under certain conditions, responsive to both Kr and hb (see below).

The k′ fragment is a 100-bp DNA segment naturally located 5′ to the en promoter and was shown previously to contain five consensus binding sites for a number of different homeo box proteins (Desplan et al. 1988; Hoey and Levine 1988), all of which can modulate transcription in response to these sequences (Han et al. 1989). To determine whether Kr and/or hb proteins might also be able to function by directly binding to sequences within k′, we analyzed the ability of Kr and hb proteins synthesized in E. coli to footprint on the k′ fragment. The results, shown in Figure 1A, indicate that both proteins bind specifically to sequences within fragment k′. hb protein protects two regions from DNase I digestion, whereas Kr protects one site. Examination of the nucleotide sequences of the protected regions revealed in each case an excellent match to the previously determined consensus for each protein (Stanojevic et al. 1989). These findings are summarized in Figure 1B, which also indicates the previously defined homeo box protein-binding sites. Note the striking overlap of the Kr site with the two head-to-head homeo box-binding sites. An additional match [8/10] to the hb consensus overlaps the second of the three head-to-tail homeo box sites. However, we have never observed protection of this site, and its significance is unknown.

The hb protein is a transcriptional activator

To investigate the ability of the hb protein to modulate transcription in response to the en k′ fragment, we first asked whether CAT expression from reporter plasmids containing single or multiple copies of either k′ or smaller subfragments was affected by hb in cotransfection assays. The sequences of the k1 and kII subfrag-
Figure 1. *Kr* and *hb* proteins bind to specific sites in the *k' fragment of the *en* promoter. (A) Footprint analysis of *hb*- and *Kr*-binding sites in the *k' fragment. A 500-bp *HindIII-EcoRI* fragment containing the *k' fragment from *k'-TATA-CAT* was ²P-labeled at the *HindIII* site and incubated with increasing amounts of *Kr* or *hb* protein extracts. Following DNase digestion, samples were resolved on an 8% polyacrylamide-7.5 M urea gel. The samples shown in lanes 3 and 4 contained 50 or 75 μg, respectively, of *Kr* protein extract. One region was protected from digestion with DNase I (indicated by the solid rectangle, right). The samples in lanes 5-7 contained 25, 75, or 150 μg, respectively, of *hb* protein extract. Two regions of protection were observed, *hb1* and *hb2* (open rectangles, right). Lane 2 (−) displays a control in which DNase I digestion of the *HindIII-EcoRI* fragment was performed without added protein. Lane 8 (C) shows a control done with 75 μg of protein extract from cells containing the T7 expression vector without *hb* or *Kr* cDNA inserts. Lane 1 (GA) shows a G + A sequencing reaction of the *HindIII-EcoRI* DNA fragment. (B) Position of binding sites in the *k' fragment. The numbers −949 and −849 indicate the distance (in bp) of the *k' fragment from the *en* transcription start site. The thin arrows indicate the five binding sites for a number of different homeo box proteins. The bold arrows indicate the *hb*- and *Kr*-binding sites determined from the DNase I protection analysis shown in Fig. 1A. The match of each site to previously established *hb* and *Kr* consensus sequences (Stanojevic et al. 1989) is indicated, and these sequences are shown at the bottom. A *PvuII* site that defines the boundary between the *kl* and *kll* subfragments is indicated.

...gements are indicated in Figure 1B. The 63-bp *kl* fragment contains the three head-to-tail homeo box protein-binding sites and a *hb* site, while the 37-bp *kll* fragment contains the second, inverted *hb* site, the single *Kr* site, and the two head-to-head homeo box protein sites.

Figure 2 displays the relative CAT activities obtained when the indicated reporter plasmids were cotransfected with the actin 5C promoter-containing expression vector either lacking an insert (Act−PPA) or with *hb*-coding sequences inserted (Act−*hb*). To facilitate comparisons of the effects of *hb* on the different reporter constructs, all values were normalized so that in each case the CAT activities from the cotransfections with Act−PPA were set at 1.0 (see legend to Fig. 2). The results indicate that the *hb* protein is a sequence-specific activator of transcription, giving rise to a 20-fold activation with the reporter construct containing a single copy of the *kl* fragment. However, the behavior of *hb* was somewhat unusual. Although activation was observed with both the intact *k' fragment and the *kl* subfragment, increasing the number of either of these fragments resulted in significantly decreased *hb*-dependent promoter activity. This is in contrast to many previous studies showing that multimerization of transcription factor-binding sites, including the homeo box-binding sites in the *k' fragment itself, frequently leads to substantial increases in promoter activity (e.g., Herr and Clarke 1986; Zenke et al. 1986; Jaynes and O'Farrell 1988; Han et al. 1989). A decrease in activity has not, to our knowledge, been observed previously. Consistent with the fact that increasing the number of potential binding sites decreased activation by *hb*, the *k' fragment, which contains two binding sites, was only half as active as the *kl* fragment, which contains just one. Indeed, the only detectable effect of the *kll* subfragment was to reduce activation mediated through *kl*, as a reporter plasmid containing only the *kll* fragment (*kll-TATA-CAT*) was unresponsive to *hb*. Although we do not know why the *hb*-binding site in *kll* was not functional, it does not appear to reflect the inverted orientation of this site, as reversing the orientation of *kl* resulted in only a slight reduction in *hb*-induced activation (cf. 2kl−TATA−CAT and 2kl−TATA−CAT−rr).

One possible explanation of the above results is that increasing the local concentration of the *hb* protein might by some mechanism result in reduced activity. An implication of such a model is that the activity of *hb* might also be reduced at higher concentrations of protein. To address this possibility, we performed a dose-response analysis over a wide range of concentrations of *hb* expression vector, using a constant amount of *kl-TATA-CAT*. The results, shown in Figure 3, reveal a somewhat skewed, bell-shaped activation curve. Significant [fourfold] enhancement of CAT expression was achieved with only 10 ng of Act−*hb*, and optimal [20-fold] activation was observed with 200 ng. Above this amount, significant decreases in activation were detected, with CAT activity dropping to only threefold above the base line with 1.5 μg of Act−*hb*. That increasing amounts of Act−*hb* resulted in elevated concentrations of *hb* protein in the transfected cells was verified.
Activation and repression of transcription

Figure 2. *hb* is a sequence-specific transcription activator. The schematic at the top displays features of the parental reporter plasmid used in these experiments, k'–TATA–CAT. The arrows denote the *hb* consensus-binding sites present in the two regions of fragment k', referred to as kl and kll. The bottom displays the results of cotransfection experiments containing 0.2 µg Act–PPA or Act–hb and 5.0 µg of the indicated reporter plasmids [see Materials and methods]. To compare the effects of *hb* on the different reporter constructs, all CAT activities were normalized so that in each case the values from the cotransfections with Act–PPA were set at 1.0. The actual basal CAT activities from the different reporter plasmids varied by a factor of 3 or less.

Table 1. *hb* functions cooperatively with *ftz* or *prd* but not *zen*

Expression vectors	k'–TATA–CAT
Act–PPA	1.0
Act–hb	6.3
Act–ftz	1.1
Act–hb + Act–ftz	53
Act–prd	1.8
Act–hb + Act–prd	19
Act–zen	1.6
Act–hb + Act–zen	8.2

Cotransfections were carried out as described in Materials and methods. In each case, 0.5 µg of the indicated expression vector was used, together with an appropriate amount of Act–PPA so that all transfections contained 1.0 µg of expression vector. The numbers shown are the ratios of the CAT activity obtained from the indicated cotransfection with the CAT activity obtained when k'–TATA–CAT was cotransfected with Act–PPA, which was set at 1.0.

Figure 3. Activation by *hb* is concentration-dependent. A dose-response analysis was performed over a wide range of concentrations of Act–hb (0.01–1.5 µg) with a constant amount of k'–TATA–CAT (5 µg). The amount of expression vector in each sample was adjusted to 1.5 µg by addition of Act–PPA [see Materials and methods]. CAT activities are expressed relative to the activity from k'–TATA–CAT plus 1.5 µg of Act–PPA, which was taken as 1.0. The insert shows the *hb* protein, detected by Western blotting, in extracts of cells transfected with the indicated amounts of Act–hb.

The fact that *hb* can interact with the *en* k' fragment to activate transcription raises the question of whether the protein can function synergistically with other proteins that bind this DNA. Specifically, we showed previously that several homeo box proteins that recognize the multiple binding sites within k' can, by themselves, enhance transcription only weakly, but together result in much greater synergistic increases in activity [Han et al. 1989]. These include the products of the pair-rule genes *prd* and *ftz*, and the dorsal–ventral gene *zerknullt* (*zen*). To test whether these proteins can function synergistically with *hb*, we performed cotransfection experiments with plasmids expressing each of the proteins, alone or in combinations, along with k'–TATA–CAT [Table 1]. Although each of these proteins can give rise to significant activation with reporter plasmids containing multiple copies
of k' (Han et al. 1989), they were almost inactive with a single copy of k'. However, when cotransfected with Act–hb, synergistic activation of transcription was observed with both ftz and prd. In contrast, the zen protein, although able to function synergistically with ftz and/or prd, was essentially inactive with hb. These results indicate that not only can hb interact synergistically with certain pair-rule proteins but that this synergism is not entirely promiscuous with respect to the nature of the second activator.

The above experiments indicate that hb functions more efficiently with either prd or ftz than it does by itself. An interesting question then becomes whether higher concentrations of hb expression vector, which alone give rise to relatively poor activation, can function effectively with prd or ftz. We therefore carried out a dose-response analysis similar to that shown in Figure 3, except that 0.5 μg of Act–prd vector was also included in the transfections and k'–TATA–CAT was used as the reporter plasmid. The results, shown graphically in Figure 4, reveal that the concentration of hb that gave optimal activation with prd was significantly higher than when hb was transfected alone. Specifically, 1.2 μg of Act–hb gave rise to maximal CAT activity with prd, and activation was only slightly lower with 1.8 μg of hb expression vector. This contrasts markedly with the results observed with Act–hb alone, which again showed maximal activation at 200 ng. These findings are not likely to reflect differences in hb expression in the cotransfected cells, because expression from an Act–hb vector was not influenced by cotransfection with Act–prd (results not shown). These results suggest that the high levels of hb protein that alone lead to reduced promoter activation function effectively in the presence of a second activator protein.

Kr protein is a transcriptional repressor

To examine the ability of Kr to function as a transcriptional repressor, we carried out a series of experiments with an Act–Kr expression vector similar to those shown in Figures 2 and 3 with Act–hb. Under no conditions tested was any evidence obtained suggesting that Kr could activate CAT expression. Rather, reductions of approximately twofold in CAT activity produced from plasmids containing the k' fragment were frequently observed (results not shown). However, because the magnitude of these effects was low and they were not seen reproducibly, we have not pursued further the possibility that Kr can function as a direct repressor [Levine and Manley 1989; see Discussion]. Instead, we have studied the ability of Kr to affect the activation induced by other proteins that interact with the k' fragment.

Table 2 displays the relative CAT activities from cotransfections with several expression vectors encoding homeo box proteins plus or minus a similar amount of the Kr expression plasmid, along with k'–TATA–CAT. In one experiment, we examined the ability of Kr to influence the activity of the homeo box protein z2. The z2 gene, which is related to the dorsal–ventral gene zen (Rushlow et al. 1987; Kaufman et al. 1990), encodes a protein that is the strongest k'-dependent activator in the cotransfection assays that we have performed (Han et al. 1989). In the experiment shown, z2 induced a 70-fold activation of k'–TATA–CAT in the absence of Kr but only a 2.5-fold activation in its presence. In a second experiment, we asked whether Kr could function through the 37-bp kll fragment, which contains the Kr binding site centered over two head-to-head homeo box protein sites [see Fig. 1B]. Cotransfection of expression vectors encoding ftz and prd, together with kll–TATA–CAT, resulted in a 15-fold increase in relative CAT activity (Table 2). When Act–Kr was included in the cotransfection, however, CAT activity was reduced to near basal levels. In contrast, CAT activity was reduced only slightly when a Kr expression vector encoding a mutant, DNA binding-defective [results not shown] protein deleted for 183 carboxy-terminal amino acid residues [Kr(-2)], including two of the four putative Zn^2+ fingers, was cotransfected with either z2- or ftz- plus prd-encoding plasmids. These results together provide strong support for the notion that the Kr protein can function as a transcriptional repressor to block activation induced by several different positive transcription factors.

Kr specifically blocks activation by hb independent of Kr DNA-binding sites

The possibility that Kr and hb proteins might functionally interact during embryogenesis has been raised by
very efficiently but also suggest that this repression can occur in the absence of detectable sequence-specific DNA binding by Kr. The Kr-2 mutant was unable to repress hb-mediated activation from either k'- or kl-containing plasmids (Fig. 5). Thus, the sequences deleted in Kr-2 appear to be necessary for both binding site-dependent and binding site-independent repression.

To investigate the binding site-independent repression further, we tested whether the ability of Kr to block the activation induced by several homeo box proteins was dependent on the presence of a Kr DNA-binding site. We first tested the strong activator protein z2 (Fig. 5). As described above, when the z2 expression vector was cotransfected with k'-TATA-CAT, a strong activation was observed, which was almost totally repressed by Kr. In contrast, when Act-z2 was cotransfected with kl-TATA-CAT, an even greater increase in CAT expression was observed, but this activation was almost unaffected by coexpression of Kr. We also tested whether a Kr DNA-binding site was required for repression of the synergistic activation induced by two homeo box proteins. Figure 5 shows that with k'-TATA-CAT, the combination of the ftz and zen expression vectors brought about a 25-fold increase in CAT activity was observed, but this activation was almost unaffected by coexpression of Kr. We also tested whether a Kr DNA-binding site was required for repression of the synergistic activation induced by two homeo box proteins. Figure 5 shows that with k'-TATA-CAT, the combination of the ftz and zen expression vectors brought about a 25-fold increase in CAT activity.

Repression of z2-dependent activation by Kr is not dependent on binding site orientation or position

The above results indicate that Kr, presumably by binding to its recognition site in the kl fragment, can block activation induced by homeo box proteins interacting with the upstream kl fragment. This observation allowed us to determine whether the spacing or orientation of the Kr and homeo box protein-binding sites influences Kr function. In one experiment, the orientation of the k' fragment was inverted. This changes the orientation of all the binding sites in k' relative to the basal promoter and also places the Kr-binding site upstream of the homeo box-binding sites in the kl fragment. In addi-

Table 2. Kr blocks activation by homeo box proteins

Promotor–CAT fusions	Expression vectors	− Kr	+ Kr	+ Kr-2					
	Act–PPA	ftz + prd	z2	Act–PPA	ftz + prd	z2	Act–PPA	ftz + prd	z2
kl–TATA–CAT	1.0	15	0.9	1.5	2.5	0.9	62		
k'–TATA–CAT	1.0	70	0.8	2.5	0.9	0.9	9.5		

Cotransfections with the indicated plasmids were performed as described in Materials and methods. Transfections contained 0.5 μg each of Act–ftz and Act–prd, 0.2 μg of Act–z2, and/or 0.8 μg of Act–Kr, as indicated. Act–PPA was added where appropriate so that all transfections contained equivalent amounts of expression vector. Blank spaces indicate combinations that were not tested.
In contrast, Kr and function as transcriptional regulators in Drosophila. The experiments described above have provided evidence that the products of the gap genes can function synergistically with the pair-rule proteins. Interestingly, a DNA-binding protein is a strongly concentration-dependent activator of expression, functioning relatively poorly at high concentrations or with reporter plasmids containing multiple hb-binding sites. hb can also function synergistically with the pair-rule proteins ftz and prd. In contrast, Kr is a repressor, capable of blocking activation induced by a number of homeo box proteins, as well as by hb. Interestingly, a Kr DNA-binding site is apparently not required for repression of hb but is required for repressing the homeo box proteins.

hb is a concentration-dependent transcriptional activator

The properties of the hb protein described here are consistent with several previous genetic studies and also provide some insights into the mechanisms by which it might function in the early embryo. The activity of hb has been shown to be required for proper expression of three of the seven eve stripes (2, 3, and 7; Frasch and Levine 1987; Goto et al. 1989, Harding et al. 1989). Consistent with the findings described here that hb is a transcriptional activator, the cis-acting elements required for expression of these stripes contain multiple hb-binding sites, suggesting a direct positive role for hb in eve regulation.

Discussion

The experiments described above have provided evidence that the products of the gap genes hb and Kr can function as transcriptional regulators in Drosophila tissue culture cells. The hb protein is a strongly concentration-dependent activator of expression, functioning relatively poorly at high concentrations or with reporter plasmids containing multiple hb-binding sites. hb can also function synergistically with the pair-rule proteins ftz and prd. In contrast, Kr is a repressor, capable of blocking activation induced by a number of homeo box proteins.

Table 3. Repression by Kr is not dependent on binding site position or orientation

Promotor–CAT fusions	Expression vectors
	Act–z2
	Act–PPA
	Act–z2
	Act–Kr
k′–hsp–TATA–CAT	1.0
	45
	3.2
rk′–hsp–TATA–CAT	1.0
	38
	1.1
k′–TATA–CAT	1.0
	69
	2.6
kII(90)kI–TATA–CAT	1.0
	95
	7.9

Cotransfections with the indicated plasmids were performed as described in Materials and methods, except that the amount of the hsp–TATA–CAT reporter plasmids was only 0.1 μg. This was because the basal level of CAT expression from this promoter was significantly higher than from the TATA–CAT plasmids used elsewhere in this study. The amounts of expression vectors used were the same as in Table 2. CAT activities were normalized so that in each case the values from the cotransfections with Act–PPA were set at 1.0.
tion or when bound to DNA, and such forms of the protein are less efficient or nonfunctional as transcriptional activators. In keeping with the notion that hb molecules can interact, some evidence suggests that hb can bind DNA cooperatively [Stanojevic et al. 1989]. This model offers an explanation for the lower activity observed with reporter plasmids containing multiple hb-binding sites, as this could facilitate formation of hb multimers. In addition, the prd protein, or other proteins with which hb can functionally interact, might interfere with the formation of such inactive complexes by binding to a nearby DNA site, thereby increasing the concentration required of hb required to form multimers on the DNA. Whatever the mechanism, these properties of hb could play an important role in the ability of the protein to bring about the proper spatially and temporally regulated activation of target genes during embryogenesis.

Kr is a transcriptional repressor

The data presented here and in a recent study employing mammalian tissue culture cells [Licht et al. 1990] indicate that Kr can function as a repressor. This conclusion is consistent with several previous genetic studies. For example, in Kr− embryos the domain of hb expression undergoes a posterior expansion into a region of the embryo that normally expresses high levels of Kr protein [Jacq et al. 1986]. Similarly, eve expression stripe 2 also expands posteriorly in Kr− embryos [Frasch and Levine 1987], while the sixth expression stripe of another primary pair-rule gene, hairy [h], expands anteriorly [Ingham et al. 1986]. The 5′-flanking regions of both of these genes contain Kr-binding sites that are within the cis-acting elements required for stripe 2 [eve] and stripe 6 [h] expression [Stanojevic et al. 1989; Pankratz et al. 1990]. It is therefore likely that Kr can act as a transcriptional repressor in embryos as it does in cultured cells and that this activity helps define the boundaries of expression of other segmentation genes. As mentioned in the introductory section, there are also genetic experiments suggesting that Kr can act positively [and hb negatively]. Whether these findings reflect indirect effects (e.g., Kr-repressing expression of a second repressor) or the ability of these proteins to function as both activators and repressors is not known.

There are several ways by which DNA-binding transcriptional repressors can function to block gene expression (for review, see Levine and Manley 1989), and Kr may exploit at least two of them. In principle, the simplest mechanism is competitive DNA binding, where binding of the repressor prevents or interferes with binding of an activator. It is highly likely that Kr can function in this manner. Specifically, given the positioning of binding sites in the kll fragment, where the Kr site directly overlaps two head-to-head homeodomain boxes, it is probable that the repression of prd and ftz is mediated by competitive DNA binding. A second type of repression, termed quenching, occurs when binding of the repressor does not block the binding of an activator but interferes with its function by some other mechanism, for example, by “masking” its activating domain. It is likely that Kr can also function in this manner, as suggested by the following two examples. First, activation induced by hb, which occurs through a binding site ~50 bp from the Kr-binding site in kll, is efficiently repressed by Kr. Given the size of the DNA footprints, and the fact that Kr and hb proteins can simultaneously occupy their respective DNA-binding sites [P. Zuo and D. Stanojevic, unpublished], we consider it unlikely that Kr interferes with the binding of hb. Furthermore, the fact that a Kr-binding site is not required for repression of hb is not consistent with DNA-binding competition. Second, Kr can repress z2-mediated activation even when the Kr-binding site is situated >120 bp upstream of the z2-binding sites [kll(90)kll–TATA–CAT]. Although it has not been shown directly that Kr and z2 can simultaneously bind to this fragment, it is very likely that they do, given the distance separating the two sites, and a simple binding site competition is again unlikely. Note that these two examples themselves most likely reflect distinct mechanisms, as the latter is dependent on a Kr DNA-binding site while the former is not. In addition, because Kr can function when its binding site is situated 5′ as well as 3′ of the activators, repression must require more than a simple sterical “roadblock” between the activator and the basal transcription machinery. Together, these observations suggest strongly that Kr can repress by mechanisms other than binding-site competition and that specific protein–protein interactions are probably involved in this type of repression.

What is the molecular mechanism underlying the ability of Kr to quench activation induced by several different positive transcription factors? While it is clear that additional studies will be required to answer this question fully, several points merit discussion. It has recently been shown by Licht et al. [1990] that Kr can function as a sequence-specific repressor in mammalian cells and, in the context of fusion proteins with a heterologous DNA-binding domain, that the amino-terminal alanine-rich region of the protein is sufficient to bring about repression. This region may well be necessary for at least some of the effects of Kr described here, and we have found that an alanine-rich region in the eve protein plays an important role in its function as a transcriptional repressor [K. Han and J.L. Manley, unpublished]. The data presented here, however, indicate that the carboxy-terminal third of Kr is necessary for its function in both DNA-binding site-dependent and independent repression. In the former case, this is readily explained by the inability of the Kr-2 mutant to bind DNA. However, in the latter case, the deleted sequences must play another role, and a likely possibility is that they are involved in protein–protein interactions. Indeed, recent studies have implicated sequences in the DNA-binding domains and carboxy termini of several Zn2+ finger steroid receptors as critical for heterodimer formation [thyroid and retinoid acid receptors (Glass et al. 1989); glucocorticoid receptor and AP-1 (Jonat et al. 1990; Schüle et al. 1990; Yang-Yen et al. 1990)]. Although our preliminary experiments have failed to detect such a complex, it is conceivable that Kr
and *hb* can form a heterodimer that is unable to activate transcription. Alternatively, *Kr* might interact with another protein required for *hb* function, such as the hypothetical coactivator mentioned above, thereby preventing activation.

Kr and *hb* can functionally interact with homeo box proteins

The demonstration that *hb* can function synergistically with the homeo box proteins *ftz* and *prd*, while *Kr* can block their activity, raises the possibility that direct competitive and/or cooperative interactions between gap and pair-rule gene products are important for the regulation of gene expression during embryogenesis. In particular, it is conceivable that the segment polarity gene *en* is regulated by combinatorial interactions between gap and pair-rule products. Genetic studies have provided strong evidence that *en* expression is controlled by a number of pair-rule genes (DiNardo and O’Farrell 1987; Ingham et al. 1988, and references therein). Because these genes are themselves regulated by the gap genes, it has been assumed that any effects of the gap genes on expression of *en* would be indirect, mediated through the pair-rule genes. Indeed, there is no evidence that gap genes directly participate in regulation of segment polarity gene expression. However, several observations are consistent with the possible involvement of *hb* and *Kr* in the regulation of *en*. First, it is clear that expression of gap genes and segment polarity genes overlap temporally and spatially (e.g., see Ingham 1988), an obvious prerequisite if the gap genes indeed regulate *en* directly. Second, the earliest patterns of *en* expression in the syncytial blastoderm are region specific and not segment specific (Karr et al. 1989), which could reflect the distribution and, hence, the direct involvement, of gap proteins such as *hb* and *Kr* in the control of *en* expression. Third, DNA sequence analysis of the *k'–* region of the *en* promoter from the distantly related species *Drosophila virilis* (Kassis et al. 1989) reveals that both the *Kr*–binding site and the functional (although, intriguingly, not the nonfunctional) *hb* site are conserved, consistent with the idea that these sites are physiologically significant. Finally, it is noteworthy that pair-rule and gap proteins appear to act in concert to initiate stripes of homeotic gene expression in the early embryo.

Materials and methods

Recombinant plasmids

All expression vectors were derived from a plasmid containing the *Drosophila* actin 5C promoter and poly(A) site, Act–PPA, which is described in Han et al. (1989). The expression vector Act–*hb* was constructed from a cDNA clone pEMBL8–*hb* (provided by G. Struhl). pEMBL8–*hb* was cleaved with *XbaI*, the ends were filled in, and the 2.4-kb *XbaI* fragment was inserted into Act–PPA that had been cleaved with *BamHI*, filled in, and digested with *EcoRV*. The 5′-untranslated leader of Act–*hb* contains 88 nucleotides from Act 5C and 13 from *hb*. Act–*Kr* was constructed from *Kr* cDNA clone K405 (provided by G. Struhl), *hsP–CAT*, and Act–PPA. *hsP–CAT*, which contains the heat shock protein 70 promoter–3′ leader fused to the CAT gene, was used as an intermediate to facilitate cloning. Both K405 and *hsP–CAT* were digested with *EcoRI* and *PstI*, and a 3.1-kb fragment from *hsP–CAT* was ligated with a 2-kb fragment of K405. The resulting plasmid, *hsP–Kr* was digested with *PvuII*, and the 1.9-kb fragment was inserted into Act–PPA, which had been cleaved with *BamHI* and filled in. The resulting Act–*Kr* plasmid encodes a *Kr* mRNA with a 5′-untranslated leader composed of 88 nucleotides from Act 5C, 104 from *hsP70*, and 69 from *Kr*. Act–*Kr*, which encodes a protein deleted for 183 carboxy-terminal amino acid residues, was constructed by digesting Act–*Kr–PvuII*, digesting 3′ overhangs with T4 polymerase, and then digesting with *NcoI*. The resulting 1.4-kb fragment was inserted into Act–PPA, which had been cleaved with *BglII*, filled in, and digested with *NcoI*. The resulting *Kr*-protein contains 284 amino acids from the *Kr* protein plus 4 extraneous carboxy-terminal amino acid residues.

All reporter plasmids were constructed from *k′–TATA–CAT* (described by Han et al. 1989). *kl–TATA–CAT* was constructed by digesting *k′–TATA–CAT* with *PvuII* and *HindIII*. The 80-bp fragment containing *kl* was inserted into a metathionein promoter–CAT plasmid (*TATA–CAT*), which had been digested with *Sall*, filled in, and cleaved with *HindIII*. *kl–TATA–CAT* was constructed by cleaving *k′–TATA–CAT* with *EcoRI* and partially with *PvuII*. The 380-bp fragment containing *kl* was isolated and inserted into TATA–CAT, which had been digested with *Sall*, and filled in, and partially cleaved with *EcoRI*. 2kl–TATA–CAT, 2kl–TATA–CAT–*Kr* and 4kl–TATA–CAT were constructed by digesting *pGEM* *kl* (which contains the kl fragment in the *Sall* site of *pGem3*) with *Sall*. The 70-bp kl-containing fragment was inserted into TATA–CAT, which had been cleaved by *Sall*. The resulting recombinant plasmids were sequenced to identify the above three plasmids. kl200kl–TATA–CAT was constructed by digesting *pGEM* *kl* (which contains the kl fragment in the *Sall* site of *pGem3*) with *HindIII* and *PvuII*. The resulting 130-bp fragment containing kl was inserted into k′–TATA–CAT, which had been partially digested with *PstI*, filled in, and cut with *HindIII*. In the resulting recombinant plasmid, the kl fragment is located 90 bp upstream from the kl fragment.

DNA transfection and transient expression assays

Transient cotransfection assays were performed essentially as described previously (Han et al. 1989). *Drosophila* Schneider L2 cells (Schneider 1972) were grown in M3 medium plus 10% fetal calf serum, plated at 2 × 10⁵ to 4 × 10⁵ cells/60-mm tissue culture dish 1 day before transfection, and transfected using calcium phosphate coprecipitation. Except where indicated, each transfection contained 0.2–0.8 μg of expression vector(s), 5 μg of promoter–CAT fusion, and either 2 μg of *copia–lacZ* plasmid or 0.1 μg of Act–*lacZ* plasmid as an internal control. Expression from *copia–lacZ* was observed to be reduced by a factor of ~3 by Act–*Kr*, therefore, Act–*lacZ* (which was not affected by either Act–*Kr* or any of the other expression vectors) was used in transfections containing Act–*Kr*. In a given experiment, the amount of actin promoter was kept constant in each sample by the addition of Act–PPA as required. The total amount of DNA was adjusted to 10 μg by the addition of *pGem3* as carrier. All ex-
periments were performed in duplicate and repeated at least twice. Transfected cells were incubated at 24°C for 48–50 hr before harvesting. Cells were washed twice with PBS, resuspended in 0.1 ml of 0.25 M Tris-HCl (pH 7.8), and extracts were prepared by sonicating for 2 min in an ultrasonic sonifier (Branson), followed by centrifugation for 10 min in a microfuge. Transfection efficiencies were determined by β-galactosidase activity assays as described by Han et al. [1989]. Variations between samples within a given experiment were typically less than twofold. CAT assays were also performed as described previously [Han et al. 1989].

DNase I protection assays

DNA footprinting assays were carried out as described previously [Stanojevic et al. 1989]. k−TATA−CAT was digested with HindIII, end-labeled with [γ-32P]ATP and polynucleotide kinase, and then cleaved with EcoRI. A labeled fragment of ~500 bp containing the k−segment and the TATA box region was purified. Bacterial extracts of strains expressing hb or Kr were prepared, and increasing amounts of protein were used in DNA binding assays. Binding conditions, DNase digestion, and gel electrophoresis were carried out exactly as described [Stanojevic et al. 1989].

Immunofluorescence and immunoblotting

Indirect immunofluorescence assays of transfected cells were performed as described [Han et al. 1989]. Rabbit anti-hb or anti-Kr antibodies, raised against SDS gel-purified proteins made in E. coli, were used as the first antibody, and rhodamine-conjugated goat anti-rabbit as the second. For immunoblot analysis, primary antibody, and these were detected using a Vectastain (Towbin et al. 1979). Rabbit antibodies were used as the first antibody, and labeling assays. Binding conditions, DNase digestion, and gel electrophoresis were carried out through a 12% SDS-polyacrylamide gel. Preparation of bacterial extracts of strains expressing hunchback or Krüppel were performed as described [Dignam et al. 1983], except that the final NaCl concentration during extraction of the nuclei was ~0.7 M. Samples containing ~50 µg of total nuclear protein were resolved by electrophoresis through a 12% SDS–polyacrylamide gel. Proteins were transferred to nitrocellulose essentially as described [Towbin et al. 1979]. Rabbit anti-hb antibodies were used as the primary antibody, and these were detected using a Vectastain ABC kit (Vector Laboratories) as described by the manufacturer.

Acknowledgments

We thank M. Wang for excellent technical assistance, C. Rushlow for providing the anti-Kr antibodies, and M.A. Scott for preparing the manuscript. This work was supported by National Institutes of Health grant GM 37971.

The publication costs of this article were defrayed in part by page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Akam, M. 1987. The molecular basis for metameric pattern formation in the Drosophila embryo. Development **101**: 1–22.

Biggin, M.D. and R. Tjian. 1989. A purified Drosophila homeodomain protein represses transcription in vitro. Cell **58**: 433–440.

Carroll, S.B. 1990. Zebra patterns in fly embryos: Activation of stripe or repression of interstripes? Cell **60**: 9–16.

Carroll, S.B. and M.P. Scott. 1986. Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell **45**: 47–57.

Carroll, S.B. and S.H. Vavra. 1989. The zygotic control of Drosophila pair-rule gene expression. II. Spatial repression by gap and pair-rule gene products. Development **107**: 673–683.

Desplan, C., J. Theis, and P.H. O’Farrell. 1988. The sequence specificity of homedomain-DNA interactions. Cell **54**: 1081–1090.

Dignam, J.D., R.M. Lebovitz, and R.G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from mammalian nuclei. Nucleic Acids Res. **11**: 1475–1489.

DiNardo, S. and P.H. O’Farrell. 1987. Establishment and refinement of segmental pattern in the Drosophila embryo. Spatial control of engrailed expression by pair-rule genes. Genes & Dev. **1**: 1212–1225.

Driever, W. and C. Nüsslein-Volhard. 1986a. A gradient of bicoid protein in Drosophila embryos. Cell **54**: 83–93.

Driever, W. and C. Nüsslein-Volhard. 1986b. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell **54**: 95–104.

Driever, W., G. Thoma, and C. Nüsslein-Volhard. 1989. Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Nature **337**: 138–143.

Driever, W., C. Rushlow, H. Doyle, and M. Levine. 1987. Characterization and localization of the even-skipped and fushi-tarazu expression in the early Drosophila embryo. Nature **337**: 666–668.

Frasch, M. and M. Levine. 1987. Complementary patterns of even-skipped and fushi-tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes & Dev. **1**: 981–995.

Frasch, M., T. Hoey, C. Rushlow, H. Doyle, and M. Levine. 1987. Characterization and localization of the even-skipped protein of Drosophila. EMBO J. **6**: 749–759.

Frigener, G., M. Burri, D. Bopp, S. Baumgartner, and M. Noll. 1986. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell **47**: 735–746.

Frohnhofer, H. and C. Nüsslein-Volhard. 1986. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature **324**: 120–125.

Gaul, U. and H. Jäckle. 1989. Analysis of maternal effect mutant combinations elucidates regulation and function of the overlap of hunchback and Krüppel gene expression in the Drosophila blastoderm embryo. Development **107**: 651–662.

Glass, C.K., S.M. Lipkin, O.V. Devary, and M.G. Rosenfeld. 1989. Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell **59**: 697–708.

Goto, T., P. MacDonald, and T. Maniatis. 1986. Structure of the segmentation gene even-skipped expression by pair-rule genes. Development **107**: 573–583.

Harding, K. and M. Levine. 1988. Gap genes define the limits of anterior pattern in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen. Development **107**: 205–214.

Harding, K., T. Hoey, R. Warrior, and M. Levine. 1989. Auto-regulatory and gap response elements of the even-skipped promoter of Drosophila. EMBO J. **8**: 1205–1212.

Herr, W. and I. Clarke. 1986. The SV40 enhancer is composed of multiple functional elements that can compensate for one
another. Cell 45: 461–470.
Hoey, T. and M. Levine. 1988. Divergent homeo box proteins recognize similar DNA sequences in Drosophila. Nature 332: 858–861.
Ingham, P.W. 1988. The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–34.
Ingham, P.W. and A. Martinez-Arias. 1986. The correct activation of Antennapedia and bithorax complex genes requires the fushi-tarazu gene. Nature 324: 592–597.
Ingham, P.W., D. Ish-Horowicz, and K. Howard. 1986. Correlative changes in homeotic and segmentation gene expression in Krüppel mutant embryos of Drosophila. EMBO J. 5: 1659–1665.
Ingham, P.W., N.E. Baker, and A. Martinez-Arias. 1988. Regulation of segment polarity genes in the Drosophila blastoderm by fushi-tarazu and even-skipped. Nature 331: 73–75.
Jäckle, H., D. Tautz, R. Schuh, E. Seifert, and R. Lehmann. 1986. Cross-regulatory interactions among the gap genes of Drosophila. Nature 324: 668–670.
Jaynes, J.B. and P.H. O’Farrell. 1988. Activation and repression of transcription by homeodomain proteins that bind a common site. Nature 336: 744–749.
Jonat, G., H.J. Rahmsdorf, K.-K. Park, and P. Herrlich. 1990. Antitumor promotion and antiinflammation: Down-modulation of AP-1 [Fos/Jun] activity by glucocorticoid hormone. Cell 62: 1189–1204.
Karr, T.L., M.S. Wei, Z. Ali, and T. Kornberg. 1989. Patterns of engrailed protein in early Drosophila embryos. Development 105: 605–612.
Kassir, J.A., C. Desplan, D.K. Wright, and P.H. O’Farrell. 1989. Evolutionary conservation of homeodomain binding sites and other sequences upstream and within the major transcription unit of the Drosophila segmentation gene engrailed. Mol. Cell. Biol. 9: 4304–4311.
Kaufman, T.C., M.A. Seeger, and G. Olsen. 1990. Molecular and genetic organization of the Antennapedia gene complex of Drosophila melanogaster. Adv. Genet. 27: 309–362.
Kornberg, T., I. Siden, P. O’Farrell, and M. Simon. 1985. The engrafted locus of Drosophila in situ localization of transcripts reveals compartment-specific expression. Cell 40: 45–53.
Krasnow, M.A., E.E. Saffman, K. Kornfeld, and D.S. Hogness. 1989. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57: 1031–1043.
Levine, M. and J.L. Manley. 1989. Transcriptional repression of eukaryotic promoters. Cell 59: 405–408.
—–. 1991. Transcriptional control of Drosophila embryogenesis. In Molecular aspects of cellular recognition [ed. P. Cohen and G. Foulkes], vol. 6. 447–467.
Licht, J.D., M.J. Grossel, J. Figge, and U.M. Hansen. 1990. Drosophila Krüppel protein is a transcriptional repressor. Nature 346: 76–79.
Martin, K.J., J.W. Lillic, and M.R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346: 147–152.
Nauber, U., M. Pankratz, A. Kienlin, E. Seifert, U. Klemm, and H. Jäckle. 1988. Abdominal segmentation in the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps. Nature 336: 489–492.
Ohkuma, Y., M. Horikoshi, R.C. Roeder, and C. Desplan. 1990. Binding-site dependent direct activation and repression of in vitro transcription by Drosophila homeodomain proteins. Cell 61: 475–484.
Pankratz, M.J., M. Hoch, E. Seifert, and H. Jäckle. 1989. Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 341: 337–340.
Pankraz, M.J., E. Seifert, N. Gerwin, B. Billi, U. Nauber, and H. Jäckle. 1990. Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo. Cell 61: 309–317.
Pashine, M. 1988. How eukaryotic transcriptional activators work. Nature 335: 683–689.
Pugh, B.F. and R. Tjian. 1990. Mechanism of transcriptional activation by Sp1: Evidence for coactivators. Cell 61: 1187–1197.
Redemann, N., U. Gaul, and H. Jäckle. 1988. Disruption of a putative Cys-zinc interaction eliminates the biological activity of the Krüppel finger protein. Nature 332: 90–92.
Rosenberg, U.B., C. Schroder, A. Preis, A. Kienlin, S. Cote, I. Riede, and H. Jäckle. 1986. Structural homology of the Drosophila Krüppel gene with Xenopus transcription factor IIa. Nature 319: 336–339.
Rushlow, C., H. Doyle, T. Hoey, and M. Levine. 1987. Molecular characterization of the zerknüllt region of the Antennapedia gene complex in Drosophila. Genes & Dev. 1: 1268–1279.
Schneider, I. 1972. Cell lines derived from late embryonic stages of Drosophila melanogaster. In: Embryol. Exp. Morphol. 27: 353–365.
Schüle, P., P. Rangarajan, S. Klieker, L.J. Ransone, J. Bolado, N. Yang, I.M. Vertma, and R.M. Evans. 1990. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62: 1217–1226.
Scott, M.P. and P.H. O’Farrell. 1986. Spatial programming of gene expression in early Drosophila embryogenesis. Annu. Rev. Cell Biol. 2: 49–80.
Stanojevic, D., T. Hoey, and M. Levine. 1989. Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341: 331–335.
Struhl, G. 1989. Differing strategies for organizing anterior and posterior pattern in Drosophila embryos. Nature 338: 741–744.
Struhl, G., K. Struhl, and P.M. MacDonald. 1989. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57: 1259–1273.
Tautz, D., R. Lehmann, H. Schnurch, R. Schuh, E. Seifert, A. Kienlin, K. Jones, and H. Jäckle. 1987. Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327: 383–389.
Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedures and some applications. Proc. Natl. Acad. Sci. 76: 4350–4354.
Treismann, J. and C. Desplan. 1989. The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters. Nature 341: 355–357.
Winslow, G.M., S. Hayashi, M. Krasnow, D.S. Hogness, and M.P. Scott. 1989. Transcriptional activation by the Antennapedia and fushi-tarazu proteins in cultured Drosophila cells. Cell 57: 1017–1030.
Yang-Yen, H.-F., J.-C. Chambard, and Y.-L. Sun. 1990. Transcriptional interference between c-Jun and the glucocorticoid receptor. Cell 62: 1205–1215.
Zanke, M., T. Grundstrom, H. Matthes, M. Wintzerith, C. Schatz, A. Wilderman, and P. Chambon. 1986. Multiple sequence motifs are involved in SV40 enhancer function. EMBO J. 5: 387–397.
Activation and repression of transcription by the gap proteins hunchback and Krüppel in cultured Drosophila cells.

P Zuo, D Stanojevic, J Colgan, et al.

Genes Dev. 1991, 5: Access the most recent version at doi:10.1101/gad.5.2.254

References

This article cites 61 articles, 9 of which can be accessed free at: http://genesdev.cshlp.org/content/5/2/254.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.