In mammals, the ovarian follicle consists of the oocyte and granulosa cells, which are surrounded by interstitial steroidogenic cells such as theca cells and ovarian interstitial gland cells [1, 2]. Forkhead box L2 (FOXL2) is known to play a central role in the differentiation and maintenance of granulosa cells in developing ovaries [3–6]. In XX gonads, FOXL2 is activated primarily in pre-granulosa cells at 12.0 days post coitum (dpc) in a female-specific manner, approximately one day later than the onset of two major testis factors, sex-determining region of chromosome Y (SRY) and SRY-box 9 (SOX9), in XY gonads [11.0–11.25 dpc] [1, 7]. In a heat-inducible SRY transgenic line, pre-granulosa cells are shown to maintain SRY-dependent SOX9 inducibility (SDSI) by 11.5 dpc [8, 9], but most of them undergo a rapid loss of SDSI between 11.5–12.0 dpc, suggesting that the loss of SDSI is the earliest sign of pre-granulosa cell differentiation in XX gonads [9]. Most importantly, a certain population of FOXL2-positive pre-granulosa cells near the ovarian medullary region continuously maintain SDSI throughout the fetal stages, and then contribute to the initial round of folliculogenesis soon after birth. Such loss or maintenance of SDSI in pre-granulosa cells appears to be regulated in a manner independent from other ovarian factors, including FOXL2, wingless-type MMTV integration site family, member 4 (WNT4), or retinoic acids [9], suggesting the heterogeneity of pre-granulosa cells in developing mouse ovaries.

In mammalian folliculogenesis, ovarian follicles can be categorized into two different granulosa cell populations: i) the first wave of folliculogenesis, which occurs in the medullary region soon after birth [10, 11], and ii) the subsequent waves of folliculogenesis near the surface cortical region, which contribute to the primordial follicle pool in the ovarian cortex [10, 12, 13]. In the first follicles, the pre-granulosa cells contribute to the first wave of follicular growth near the ovarian medullary region [10]. In contrast, the granulosa cells of the resting primordial follicles in the surface cortical region are newly recruited from the ovarian epithelium soon after birth.

A recent in vivo tracing experiment using a Foxl2-CreER²² line revealed that the minimum developmental time from primordial to antral follicles is faster in the first follicles than in the subsequent waves of cortical follicles at later stages [11, 14]. As described above, the first follicles contain SDSI-positive granulosa cells [9], indicating the presence of sexually bipotential granulosa cells in the first folliculogenesis. This is consistent with the sex reversal phenotypes in the first folliculogenesis located in the centromedullary region of female pups with Foxl2-null or estrogen receptor (Esr1) I/2-double null mutations [15–19]. Because the first follicles grow before individual sexual maturation, most of them undergo atresia prior to ovulation [11, 12]. In contrast, fertility drug treatment and in vitro fertilization make it possible to produce the next generation from

Defects in the first wave of folliculogenesis in mouse XO ovaries

Kento MIURA¹⁾, Chiharu MURATA¹⁾, Kyoko HARIKAE¹⁾, Hitomi SUZUKI²⁾, Masami KANAI-AZUMA²⁾, Masamichi KUROHMARU¹⁾, Naoki TSUNEKAWA¹⁾ and Yoshiakira KANAI¹⁾

¹⁾Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan
²⁾Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Abstract. In mouse ovaries, the first wave of folliculogenesis perinatally starts near the medullary region, which directs the initial round of follicular growth soon after birth. At the same time, cortical primordial follicles start forming in the ovarian surface region, and then some are cyclically recruited for the second and subsequent rounds of follicular growth. Recent studies suggest different dynamics between the first and subsequent waves of follicular growth in postnatal ovaries. However, the phenotypic differences between these phases remain unclear. Here, we show direct evidence that XO female mice, a murine model for Turner Syndrome, lack the first wave of folliculogenesis. Our histopathological analyses of XX and XO littersmates revealed a lack of anti-Müllerian hormone (AMH)-positive primary follicles in the XO ovaries by 4 days post partum (dpp). This loss of first follicles was also confirmed by histological bioassay for SRY-dependent SOX9 inducibility, a specific marker for the first follicular granulosa cells. In contrast, cortical primordial follicles formed properly in XO ovaries, and some of them formed primary and secondary follicles in the subcortical region by 7 dpp. They rapidly developed into late antral follicles, showing similarities to XX littermate ovaries by 21 dpp. These results suggest distinct X-monomosity effects between the first and subsequent waves of follicular growth, highlighting the high susceptibility to elimination of XO oocytes in the first wave of mammalian folliculogenesis.

Key words: Anti-Müllerian hormone (AMH), Folliculogenesis, Granulosa cell, Oocyte, XO mice

(J. Reprod. Dev. 63: 333–338, 2017)
first wave follicles [20]. At present, the biological significance of the first wave of folliculogenesis remains unknown, partly because there are few models in which first wave follicles can be studied [11, 21].

XO mice (a murine model for Turner Syndrome) have only a single X chromosome and no second sex chromosome [22]. Gonadal dysgenesis is seen in the vast majority of human Turner Syndrome cases, and almost all affected individuals are infertile [23]. Unlike their human counterparts, XO mice are typically fertile, albeit with shortened reproductive life spans [24]. These differences are partially due to fewer genes’ escaping X chromosome inactivation and the expression of both X chromosome alleles in mice as opposed to humans [25]. Previous histological analyses showed that XO mice have normal ovarian development during fetal stages (14.5–18.5 dpc), but only approximately half as many oocytes as XX mice postnatally due to excess atresia of oocytes around birth [26, 27]. In contrast to the extensive qualitative and quantitative analyses that have been conducted on the aberrant development of XO oocytes throughout the fetal to adult stages [26–30], little is known about the defects and susceptibilities at the somatic levels of the first and subsequent waves of folliculogenesis in XO ovaries.

In the present study, we conducted comparative histopathological analyses on postnatal ovaries in XX and XO female littermates. We also examined SDSI activity in the first follicles of the XO and XX females using a heat-inducible Sry transgenic line. We observed a complete lack of oocytes in the SDSI-positive first follicles in developing XO ovaries. The cortical follicle pool, in contrast, formed properly, and their subsequent waves of follicular growth lead to the recovery of the defective first folliculogenesis in XO ovaries by 21 dpp.

Materials and Methods

Animals

All animal experiments in this study were carried out in strict accordance with the Guidelines for Animal Use and Experimentation as set out by the University of Tokyo. The procedures were approved by the Institutional Animal Care and Use Committee of the Graduate School of Agricultural and Life Sciences of the University of Tokyo (approval ID: P13-764).

The XO mouse strain and the heat-inducible Sry transgenic line #44 (with the HSP-Sry [Hsp70.3 promoter-driven murine Sry] transgene) [8] were used in this study (ICR/C57BL6-mixed background). The XO mouse strain (RBRC00872) was provided by the RIKEN BioResource Center through the National BioResource Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Karyotyping of the XO line was conducted based on a previous report [31]. In the Sry-inducible transgenic (Hsp-Sry Tg) system, it is possible to induce XX testis sex reversal [8]. In this Hsp-Sry Tg system (referred to as “Tg” hereafter), heat shock (HS) treatment induces ectopic SRY expression (as described below), leading to transient SOX9 induction in XX Tg-supporting cells. The newborn stage, 0 day post partum (dpp), corresponds to 19.5 dpc. The phenotypes of XO and XX littermates were compared at each stage.

Organ culture and heat shock (HS) treatment

For in vitro HS treatment, neonatal ovaries were isolated from 2 dpp pups in cold Dulbecco’s Modified Eagle’s Medium (DMEM; Sigma). Ovaries were subjected to HS treatment (43°C for 10 min) in a 0.2-ml thin-walled PCR tube, as described previously [9]. After HS treatment, all samples were cultured on Nuclepore Track-Etched Membranes (Whatman) in DMEM containing 10% fetal bovine serum at 37°C for 9 h before fixation in 4% paraformaldehyde (PFA) in phosphate buffered saline (PBS). Histology and immunohistochemistry

The samples were fixed in 4% PFA-PBS at 4°C for 12 h, dehydrated, and embedded in paraffin. Serial sections (approximately 4 μm in thickness) were used for immunostaining for markers, as described previously [21, 32]. The sections were incubated with anti-AMH (1:800 dilution; sc-6886; Santa Cruz), anti-FOXL2 (1:600 dilution; ab5096; Abcam), anti-mouse Vasa homologue (MVH; formally DEAD box polypeptide 4 [Ddx4]; 1:2,000 dilution; ab13840; Abcam), anti-SOX9 (1:10,000 dilution; AB5535; Merck Millipore), or anti-3β-hydroxy-delta-5-steroid dehydrogenase (3β-HSD; 1:200; sc-30821; Santa Cruz) antibody at 4°C for 12 h. The reaction was visualized with a biotin-conjugated secondary antibody in combination with the Elite ABC kit (Vector Laboratories) or by Alexa-Fluor-488/594-conjugated secondary antibodies (Invitrogen).

For morphometric analyses, anti-AMH-stained sectioning samples with maximum ovarian area were photographed, and the numbers of AMH-positive follicles were estimated in each image. The ovarian area was also measured histologically using ImageJ 1.48V software (National Institutes of Health, Bethesda, MD, USA), and the relative numbers of AMH-positive follicles per 100 μm² of ovarian area were estimated.

Statistical analysis

Quantitative data are represented as the means ± SEM. Student’s unpaired t-test was performed for single comparison between XO and XX groups. Statistical significance was assessed at a threshold P-value of 0.05 or less.

Results

XO ovaries lack the first wave of folliculogenesis

To examine the first folliculogenesis in XO mice, we conducted immunohistochemical staining of ovaries at 4 dpp from XO and XX mice of the same litters by using anti-MVH (oocyte marker), anti-AMH (activated primary follicle marker), anti-FOXL2 (granulosa/theca cell marker), or anti-3β-HSD (steroidogenic cell marker) antibody (Fig. 1). In XX ovaries, MVH-positive oocytes were detected throughout the whole ovarian region, including the medullary region. During the first wave of folliculogenesis, AMH-positive follicles were located only in the medullary region (“XX” in Fig. 1A, B), which is consistent with previous reports [21, 33, 34]. However, in XO ovaries, AMH-positive follicles were almost not detected throughout the entire ovarian region (numbers of AMH-positive follicles per 100 μm² = 0.09 ± 0.09 in XO ovaries [n = 3] versus 1.08 ± 0.14 in XX ones [n = 7], P < 0.01; also see “XO” in Fig. 1A, B). In XO ovaries, MVH-positive oocytes were observed in the cortical regions, similar to XX ovaries, but there were no MVH-positive oocytes in the medullary region (Fig. 1B). In XX ovaries, FOXL2-positive
and 3β-HSD-positive follicles were detected in the centromedullary region (Fig. 1C). In the centromedullary region of XO ovaries, despite the lack of MVH-positive oocytes, FOXL2-positive and 3β-HSD-positive ovarian somatic cells were observed (Fig. 1C), suggesting presumptive pre-granulosa cells lacking oocytes. These data suggest a severe defect in the first folliculogenesis in XO ovaries, but no appreciable defects in the formation of a cortical primordial follicle pool in the surface cortical region.

FOXL2/SDSI double-positive granulosa cells completely lack oocytes in the medullary region of XO ovaries

Our previous study demonstrated that, during the fetal stages, SDSI-positive granulosa cells are located near the medullary region, and they contribute to the first wave of folliculogenesis in the medullary region of postnatal ovaries [1, 9]. To examine the distribution of SDSI-positive follicles in neonatal XO ovaries, XO and XX Tg were subjected to HS treatment (43°C, 10 min) at 2 dpp to induce ectopic SRY expression (n = 4 for each karyotype). After the 9-h organ culture, SRY-dependent SOX9-inducible patterns were examined via anti-SOX9 immunohistochemistry.

In the 2-dpp XX Tg ovaries, SDSI-positive (i.e., SOX9-positive) granulosa cells were predominantly observed in the AMH-positive primary follicles during the first wave of folliculogenesis in the medullary region (“XX Tg” in Fig. 2), in agreement with previous data [9]. In XO ovaries, SDSI/FOXL2 double-positive granulosa cells were detected in the medullary region (“XO Tg” in Fig. 2), but they completely lacked oocytes, leading to AMH-negative/FOXL2-positive cell clusters located within the medullary region (Figs. 1B, 1C, 2B, 2C). These results suggest that the pre-granulosa cells in the medullary region of XO ovaries lose most of their oocytes in the first wave of folliculogenesis.

Defective phenotypes of the first folliculogenesis in XO ovaries are rescued by the second and subsequent waves of follicular growth

In 7-dpp XO ovaries, AMH-positive primary follicles were first detected in the sub-cortical region, although their number in XO ovaries appeared to be smaller than in XX ovaries (Fig. 3A, B). At 14 and 21 dpp, AMH-positive follicles were detected in almost the entire medullary region in XO ovaries, similar to what was observed in their XX littermates (Fig. 3C, D). In both XO and XX ovaries, the early and late antral follicles had the fastest-growing oocytes at 14 and 21 dpp, respectively, and by 21 dpp, XX and XO ovaries showed no apparent histological differences in the developmental stages of the fastest-growing follicles. Moreover, anti-3β-HSD staining showed proper formation of the presumptive theca cells and ovarian interstitial gland cells around the early antral follicles in XO ovaries (Fig. 3E). These results suggest that subsequent waves of follicular growth are recruited and activated at 7 dpp, leading to recovery from defects in the first follicles of XO ovaries by 21 dpp (Fig. 1A, B; see also Fig. 4). Because the first wave of folliculogenesis, with AMH-positive granulosa cells, initiates preferentially in the ovarian medullary region at 2–4 dpp [21, 33, 34], our findings suggest defects and/or delay in the first wave of folliculogenesis in XO ovaries. In our previous study, SDSI-positive granulosa cells were maintained near the mesonephros throughout the fetal stages, and then contributed specifically to the initial wave of folliculogenesis soon after birth [9]. The present study, using an 15-hp-Sry Tg line, showed that SDSI-positive granulosa cells lose oocytes, leading to clusters of AMH-negative and FOXL2/SDSI-double-positive cells in the medullary region by 4 dpp. These findings suggest selective loss of XO oocytes rather than a delay in the first wave of folliculogenesis in neonatal XO ovaries.

Previous extensive morphological studies showed no appreciable differences in cell death of XO oocytes before 18.5 dpc, followed by a rapid reduction in the number of oocytes throughout the ovarian parenchyma at birth [24, 27]. During female germ cell development, X chromosome reactivation for the erasure of genomic imprinting occurs at 10.5 dpc [35–37], suggesting that XO germ cells express approximately half the dose of X-chromosome genes of XX wild-type germ cells at 10.5 dpc. Moreover, an asynapsed single X-chromosome occurs in some of the XO oocytes at prophase I [28, 29, 38, 39]. A recent study suggested that asynapsed chromosomes trigger oocyte elimination at diplonema through H2AFX-dependent transcriptional silencing [30], in which a deletion or point mutation of H2afx restores oocyte numbers in XO females to wild-type XX levels. These findings suggest that such oocyte elimination may be caused mainly by a synaptic failure, rather than the half-dosage of X-chromosome genes, in XO oocytes of neonatal ovaries.

Several previous studies showed no appreciable regional differences in oocyte death in XO ovaries, in which XO oocytes appear to be lost in the surface region rather than the medullary region [27, Fig. S7 in 30]. Taken together, these findings suggest that the oocyte elimination of the first follicles appear not to be directly associated with the intrinsic differences between XO oocytes near the medullary and the cortex region of the developing ovaries. In the first folliculogenesis, the oocytes near the medullary region directly contribute to activated follicles without a resting state, in contrast to the entry of cortical follicle into the dormant state [10, 11]. Such continuous processes of follicular formation/activation in the medullary region shortly after birth, together with the presence of SDSI-positive granulosa cells, may be associated with the complete lack of XO oocytes in the first folliculogenesis. Further studies on the distinct molecular bases of the first and subsequent waves of the follicles are required to resolve this question.

Our study also showed aberrations in the first wave of folliculogenesis in the medullary region, but the second and subsequent waves of follicular growth occurred in the subcortical region of XO ovaries by 7 dpp. Subsequently, there were no appreciable differences in the fastest-growing antral oocytes between XO and XX ovaries by 21 dpp (Fig. 3). A previous report using a toxin receptor-mediated conditional cell knockout (TRECK) system suggested that new follicles are recruited from the subcortical region of the ovaries, with depletion of the first AMH-positive follicles in the centromedullary region [21]. As Amh^{−/−} ovaries showed increased recruitment of primordial follicles [40, 41], it is likely that the loss of AMH in first follicles...
induces rapid recruitment from the subcortical region, leading to the recovery of first follicle defects in XO ovaries by 21 dpp.

In the interstitial region of XO ovaries, 3β-HSD-positive theca cells appeared to be properly formed at 14 dpp (Fig. 3E). A recent study revealed that in response to oocyte-derived GDF9 signals, granulosa cells express Desert and Indian Hedgehog signaling factors to induce theca cell differentiation around each growing follicle [42], suggesting proper granulosa-theca cell interactions in the early antral follicles of XO ovaries. Moreover, despite the loss of the first folliculogenesis, 3β-HSD-positive presumptive ovarian interstitial gland cells were also formed in XO ovaries (Fig. 3E), in sharp contrast to the drastic reduction in 3β-HSD-positive ovarian...
FIRST FOLLICULOGENESIS IN XO OVARIIES

interstitial glands in the ablation of the AMH-positive granulosa cells of the first folliculogenesis by the TRECK system [21]. The differences between the phenotypes of these models may be explained by the contribution of the pre-granulosa cells in the first follicles to the proper formation of ovarian interstitial glands in the interstitial region of the XO ovaries, in contrast to the ablation of almost all of the AMH-positive granulosa cells in the first follicles by the TRECK system.

In conclusion, the present data provide direct evidence of severe defects in the first folliculogenesis in XO ovaries, while, in sharp contrast, the cortical follicle pool still forms properly, leading to an escape from female sterility through subsequent waves of follicular growth. Such distinct susceptibilities to X-monosomy effects on the first vs. subsequent folliculogenesis highlight the importance of studying the molecular mechanisms of both the first and subsequent waves of follicular formation/activation in mammalian postnatal ovaries.

Acknowledgments

The authors wish to thank Drs Hinako M Takase, Hiroyuki Sumitomo, Hiroki Higashiyama, Yoshiko Kuroda, Yoshikazu Hirate for their helpful supports and advice, and Ms Itsuko Yagihashi and Yuki Uchiyama for their secretarial and technical supports. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI) on Priority Areas and Innovative Areas (YK). KM is DC1 JSPS Research Fellows.
References

1. Suzuki H, Kanai-Azuma M, Kanai Y. From sex determination to initial folliculogenesis in mammalian ovaries: morphogenetic waves along the anteroposterior and dorsoventral axes. Sex Dev 2015; 9: 190–204. [Medline] [CrossRef]

2. Rimon-Dahari N, Yershulshai-Heinemann L, Alyog L, Dekel N. Ovarian follicle differentiation. Dev Biol 2016; 406: 167–190. [Medline] [CrossRef]

3. Uhlenhaut NH, Jakob S, Anlag K, Eisenegger T, Sekido R, Kress J, Treier AC, Klugmann C, Klassen C, Holter NJ, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge R, Treier M. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009; 139: 1130–1142. [Medline] [CrossRef]

4. Boulanger L, Pannetier M, Gall L, Allais-Bonnet A, Elzaïat M, Le Bourhis D, Daniel N, Richard C, Cottinot C, Ghysegelinck NB, Pailloux E. FOXL2 is a female sex-determining gene in the goat. Curr Biol 2014; 24: 404–408. [Medline] [CrossRef]

5. Bertho S, Pasquier J, Pan Q, Le Trésorier G, Bobe J, Postlherwaith JH, Pailloux E, Scharrl M, Herpin A, Guiguen Y. FOXL2 and its relatives are evolutionarily conserved players in gonadal sex differentiation. Sex Dev 2016; 10: 111–129. [Medline] [CrossRef]

6. Pannetier M, Chassot AA, Chaboisser MC, Pailloux E. Involvement of FOXL2 and RSPRO1 in ovarian determination, development, and maintenance in mammals. Sex Dev 2016; 10: 47–56. [Medline] [CrossRef]

7. Harikae K, Miura K, Kanai Y. Early gonadogenesis in mammals: significance of long and narrow gonadal structure. Dev Dyn 2013; 242: 330–338. [Medline] [CrossRef]

8. Hiramatu R, Matoba S, Kanai-Azuma M, Tsunekawa N, Katoh-Fukui Y, Kurohmaru M, Morohoshi K, Wilhelm E, Schartl M, J, Wilhelm S, S, Schartl M. The two classes of primordial follicles in the mouse ovary: morphogenetic waves along the anteroposterior and dorsoventral axes. J Reprod Dev 2014; 36: 135: 241–252. [Medline] [CrossRef]

9. Zhang W, Zhang H, Gorre N, Ridal S, Shen Y, Liu K. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 2014; 23: 928–928. [Medline] [CrossRef]

10. Hirshfeld AN. Heterogeneity of cell populations that contribute to the formation of primordial follicles in rats. Biol Reprod 1992; 47: 466–472. [Medline] [CrossRef]

11. Schmidt D, Ottolenghi C, Anlag K, Feusnelsheld S, Gredsted J, Treier AC, Treier M. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary development. Development 2004; 131: 933–942. [Medline] [CrossRef]

12. Uda K, Ottolenghi C, Cisposi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Pillia G, Foxl2 disruption causes mouse ovarian failure by perva- sive blockage of follicle development. Hum Mol Genet 2004; 13: 1171–1181. [Medline] [CrossRef]

13. Uda K, Ottolenghi C, Cisposi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Foxl2 deficiency leads to female-to-male sex reversal among germ cells. Hum Mol Genet 2007; 7: 1759–1764. [Medline] [CrossRef]

14. Uda K, Ottolenghi C, Cisposi L, Garcia JE, Deiana M, Kimber W, Forabosco A, Cao A, Schlessinger D, Foxl2 deficiency leads to female-to-male sex reversal among germ cells. Hum Mol Genet 2007; 16: 50123330. [Medline] [CrossRef]

15. Shinomura M, Kishi K, Tomita A, Kawasumi M, Kanezashi H, Kuroda Y, Tsunekawa N, Oazawa A, Ayama Y, Yoneda A, Suzuki H, Saito M, Picard JY, Kohno K, Kuroshmaru M, Kanai-Azum M, Kanai Y. A novel Anti-Trekk transgenic mouse line allows toxic-independent loss of supporting cells in gonads. Reproduction 2016; 148: 111–149. [Medline] [CrossRef]

16. Probst F, Cooper ML, Cheung SW, Justice MJ. Genotype, phenotype, and karyotype correlation in the XO mouse model of Turner syndrome. J Hered 2008; 99: 512–517. [Medline] [CrossRef]

17. Sybert VP, McGeary E. Turner syndrome. N Engl J Med 2004; 351: 1227–1238. [Medline] [CrossRef]

18. Lyon MF, Hawker SG. Reproductive lifespan in irradiated and unirradiated chromosomally XO mice. Genet Res 1973; 21: 185–194. [Medline] [CrossRef]

19. Yang F, Babak T, Shendure J, Disteche CM. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res 2010; 20: 614–622. [Medline] [CrossRef]

20. Burgos PS, Baker TG. Oocyte depletion in XO mice and their XX sibs from 12 to 200 days post partum. J Reprod Fertil 1981; 61: 207–212. [Medline] [CrossRef]

21. Burgos PS, Baker TG. Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women. J Reprod Fertil 1985; 75: 633–645. [Medline] [CrossRef]

22. Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzea G, Xu X, Deng CX, Burgos PS. Silencing of unexpressed meiotic chromosomes in the mouse. Nat Genet 2005; 37: 41–47. [Medline] [CrossRef]

23. Alton M, Lau MP, Villemure M, Tacketo T. The behavior of the X- and Y-chromosomes in the oocyte during meiotic prophase in the B6-Y(TIR)sex-reversed mouse ovary. Reproduction 2008; 135: 241–252. [Medline] [CrossRef]

24. Cloutier JM, Mahadevaiah SK, Ellafni E, Nussenzea A, Töth A, Turner JM. Histone H2A/F Linker Histone Chromosome Asynapsis to Prophase 1 Oocyte Loss in Mammals. PLoS Genet 2015; 11: e1005462. [Medline] [CrossRef]

25. Raznahnah A, Probst F, Palmer M, Gied J, Ler J. High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice. Neuroimage 2013; 83: 962–968. [Medline] [CrossRef]

26. Matoba S, Hiramatu R, Kanai-Azuma M, Tsunekawa N, Harikae K, Kawakami H, Kuroshmaru M, Kanai Y. Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation. Dev Biol 2008; 324: 76–87. [Medline] [CrossRef]

27. Münsterberg A, Lovell-Badge R. Expression of the mouse anti-mullerian hormone gene suggests a role in both male and female sexual differentiation. Development 1991; 113: 613–624. [Medline] [CrossRef]

28. Lécureuil C, Fontaine I, Crepieux P, Guillou F. Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 2002; 33: 114–118. [Medline] [CrossRef]

29. Monk M, McLaren A. X-chromosome activity in fetal germ cells of the mouse. J Embryol Exp Morphol 1981; 46: 75–84. [Medline] [CrossRef]

30. Sugimoto M, Abe K. X chromosome reactivation initiates in nascent primordial germ cells in mice. PLoS Genet 2007; 3: e116. [Medline] [CrossRef]

31. Chavar de Sousa Lopes SM, Hayashi K, Shovill TC, Mifrid W, Surani MA, McLaren A. X chromosome activity in mouse XX primordial germ cells. PLoS Genet 2008; 4: e30. [Medline] [CrossRef]

32. Speed RM. Oocyte development in XO foetuses of man and mouse: the possible role of heterologous X-chromosome pairing in germ cell survival. Chromosoma 1986; 94: 115–124. [Medline] [CrossRef]

33. Mahadevaiah SK, Lovell-Badge R, Burgos PS. Tdy-negative XY, XX and YY female mice: breeding data and synaptosomal complex analysis. J Reprod Fertil 1993; 97: 151–160. [Medline] [CrossRef]

34. Durlinger AL, Kramer P, Kaebels B, de Jong FH, Uilenbroek JT, Grootegees JA, Themmen AP. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrorinology 1999; 140: 5789–5796. [Medline] [CrossRef]

35. Visscher J, Durlinger AL, Peters JJ, van den Heuvel ER, Rose UM, Kramer P, de Jong FH, Themmen AP. Increased oocyte degeneration and follicular atresia during the estrous cycle in anti-Müllerian hormone null mice. Endocrinology 2007; 148: 2301–2308. [Medline] [CrossRef]

36. Liu C, Peng J, Matzuk MM, Yao HY. Lineage specification of ovarian theca cells requires multieellular interactions via oocyte and granulosa cells. Nat Commun 2015; 6: 6934. [Medline] [CrossRef]