SUPPORTING INFORMATION

Increased Indoor Exposure to Commonly Used Disinfectants
during the COVID-19 Pandemic

Guomao Zheng,1 Gabriel M. Filippelli2,3, Amina Salamova1*

1 Paul H. O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana 47405
2 Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202
3 Environmental Resilience Institute, Indiana University, Bloomington, Indiana 47405

*Corresponding author:
Amina Salamova
702 N Walnut Grove Ave., Bloomington, IN 47405
Email: asalamov@indiana.edu

Number of pages: 14
Number of Figures: 4
Number of Tables: 6
Chemicals and reagents. Nineteen native standards, including benzyldimethylhexylammonium chloride (C6-BAC), benzyldimethyloctylammonium chloride (C8-BAC), benzyldimethyldecylammonium chloride (C10-BAC), benzyldimethyldecylammonium chloride (C12-BAC), benzyldimethyltetradecylammonium chloride (C14-BAC), benzyldimethylhexadecylammonium chloride (C16-BAC), stearyldimethylbenzylammonium chloride (C18-BAC), dioctyldimethylammonium bromide (C8-DDAC), didecyldimethylammonium bromide (C10-DDAC), dodecyldimethylammonium bromide (C12-DDAC), dimethylditetradecylammonium bromide (C14-DDAC), didecyltrimethylammonium bromide (C16-DDAC), hexadecyltrimethylammonium bromide (C18-DDAC), octyltrimethylammonium chloride (C8-ATMAC), decyltrimethylammonium bromide (C10-ATMAC), dodecyltrimethylammonium chloride (C12-ATMAC), tetradecyltrimethylammonium chloride (C14-ATMAC), hexadecyltrimethylammonium chloride (C16-ATMAC), and octadecyltrimethylammonium chloride (C18-ATMAC) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Two labeled standards, including benzyltrimethylammonium-d$_7$ chloride (d$_7$-C12-BAC) and benzyltrimethyltetradecylammonium-d$_7$ chloride (d$_7$-C14-BAC) were obtained from Toronto Research Chemicals (Toronto, ON, Canada). All solvents and chemicals used in this study were HPLC grade or higher.

Instrumental analysis. An ultra-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer (Agilent 1290 Infinity II UPLC – 6470 QQQ-MS) in the positive electrospray ionization (ESI+) mode was used for the analysis. The UPLC separation was carried out using an Acquity UPLC BEH C$_{18}$ column (50 mm, 2.1 mm i.d., 1.7 μm thickness, Waters, Milford, MA) heated to 30 °C. The mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). The gradient was as follows: 10% B for 0.5 min initially, then increased to 100% B at 6 min and held for 4 min, returned to 10% B at 10.5 min and equilibrated
for 3.5 min after every run. The injection volume and flow rate were 5 μL and 0.4 mL/min, respectively. The nebulizer, gas flow, gas temperature, capillary voltage, sheath gas temperature, and sheath gas flow were set to be 25 psi, 10 L/min, 300 °C, 3500 V, 350 °C, and 12 L/min, respectively. A multiple reaction monitoring (MRM) mode was used for data acquisition. The optimized MRM transitions, fragmentors, and collision energies are presented in Table S4. The representative chromatograms of samples and standards are shown in Figure S4.

Quality assurance and quality control. Six procedural blanks and six spiked samples prepared with Ottawa sand (muffled at 400 °C for 4 hours) were extracted together with the dust samples. The spiked amount was 50 ng for each analyte and the average absolute recoveries for the spiked samples (mean ± standard error) were 113 ± 5, 117 ± 3, 110 ± 4% for BACs, DDACs, and ATMACs (see Table S5 for each analyte’s recovery). The recovery of the surrogate standard d7-C12-BAC was 118 ± 4%. The recoveries above 100% may be related to matrix interferences, but are all within the accepted limits.1 Blanks constituted less than 0.1% of the sample levels. Method detection limits (MDLs) were set at three times the standard deviation of the target analyte levels detected in blanks. For compounds not detected in blanks, MDLs were based on a signal-to-noise ratio of three. Blank levels and method detection limits for each QAC are included in Table S6. All data were blank-corrected by subtracting blank levels from sample levels.

Exposure assessment. Estimated daily intakes (EDIs, ng/kg body weight [bw]/day via dust ingestion were calculated using Equation 1:

\[
\text{EDI} = \frac{(C_{\text{dust}} \times I_{\text{rate}}) \times T}{bw} \tag{1}
\]

where \(C_{\text{dust}}\) is the concentration of a chemical in dust (ng/g), \(I_{\text{rate}}\) is the ingestion rate (0.06 and 0.03 g/day for toddlers and adults, respectively),\(^2\) \(T\) is the time spent at home (assumed to be 1 day),\(^3\) and \(bw\) is the mean body weight (12 and 70 kg for toddlers and adults, respectively).\(^3\)
Data Analysis. Pearson coefficients were used to examine the correlations of logarithmically transformed QAC concentrations in dust, and a Mann-Whitney test was used for comparative statistics. The significance level was set at $p < 0.05$.
Table S1. Pearson correlation coefficients for correlations among QAC concentrations in dust collected during the pandemic ($n = 40$).

	C6-BAC	C8-BAC	C10-BAC	C12-BAC	C14-BAC	C16-BAC	C18-BAC	C8-DDAC	C10-DDAC	C12-DDAC	C14-DDAC	C16-DDAC	C18-ATMAC	C10-ATMAC	C12-ATMAC	C14-ATMAC	C16-ATMAC	C18-ATMAC	
C6-BAC	1.000	.728**	.811**	.669**	.646**	.755**	.664**	.404**	.581**	.530**	.445**	.431**	.730**	.600**	.790**	.386	.039**	.527**	.654**
C8-BAC	1.000	.710**	.621**	.583**	.634**	.512**	.396**	.208**	.357**	.299**	.288**	.549**	.470**	.575**	.369**	.413**	.381**	.505**	
C10-BAC	1.000	.829**	.800**	.854**	.805**	.570**	.651**	.323**	.711**	.593**	.757**	.391**	.545**	.493**	.658**				
C12-BAC	1.000	.941**	.866**	.850**	.727**	.701**	.642**	.462**	.275**	.756**	.629**	.663**	.579**	.632**	.603**	.563**			
C14-BAC	1.000	.921**	.801**	.722**	.710**	.625**	.398**	.210**	.719**	.631**	.658**	.605**	.613**	.575**	.591**				
C16-BAC	1.000	.752**	.664**	.764**	.682**	.412**	.263**	.706**	.632**	.680**	.561**	.542**	.568**	.771**					
C18-BAC	1.000	.630**	.685**	.573**	.317**	.176**	.893**	.805**	.711**	.443**	.461**	.454**	.519**						
C8-DDAC	1.000	.667**	.612**	.398**	.230**	.796**	.874**	.457**	.548**	.612**	.491**	.493**							
C10-DDAC	1.000	.907**	.554**	.418**	.608**	.580**	.492**	.625**	.522**	.702**	.576**								
C12-DDAC	1.000	.686**	.533**	.547**	.517**	.423**	.611**	.567**	.697**	.583**									
C14-DDAC	1.000	.814**	.371**	.320**	.217**	.485**	.512**	.782**	.361**										
C16-DDAC	1.000	.313**	.276**	.175**	.323**	.367**	.711**	.184**											
C18-DDAC	1.000	.903**	.770**	.396**	.443**	.505**	.548**												
C8-ATMAC	1.000	.629**	.431**	.421**	.421**	.516**													
C10-ATMAC	1.000	.364**	.270**	.332**	.633**														
C12-ATMAC	1.000	.664**	.628**	.425**															
C14-ATMAC	1.000	.626**	.384**																
C16-ATMAC	1.000	.322**																	
C18-ATMAC	1.000																		

* represents significance at $p < 0.05$; ** represents significance at $p < 0.01$.

S5
Table S2. Concentrations in cleaning products commonly used in participants’ homes (mg/L). MDL: method detection limit.

	Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7
BACs							
C6-BAC	283	0.0446	0.0171	0.0116	<MDL	0.0179	<MDL
C8-BAC	206	1.86	0.018	0.0146	0.0123	0.0039	<MDL
C10-BAC	384	0.0513	0.0052	0.0037	<MDL	<MDL	<MDL
C12-BAC	6240	208	16.7	<MDL	<MDL	<MDL	<MDL
C14-BAC	4240	567	76.7	0.77	<MDL	<MDL	0.208
C16-BAC	2480	425	49	0.138	<MDL	<MDL	<MDL
C18-BAC	60.9	141	10.2	0.327	<MDL	<MDL	0.0352
∑BAC	13800	1340	153	1.27	0.016	0.0218	0.243
DDACs							
C8-DDAC	255	<MDL	<MDL	<MDL	<MDL	<MDL	<MDL
C10-DDAC	400	1.20	0.924	0.704	0.446	0.524	0.476
C12-DDAC	249	0.597	0.319	0.261	0.103	0.242	0.206
C14-DDAC	207	<MDL	<MDL	0.0156	<MDL	<MDL	<MDL
C16-DDAC	164	<MDL	<MDL	<MDL	<MDL	<MDL	<MDL
C18-DDAC	170	1.16	0.211	0.259	0.172	0.125	0.127
∑DDAC	1440	2.96	1.45	1.24	0.721	0.891	0.809
ATMACs							
C8-ATMAC	271	<MDL	0.126	0.33	<MDL	0.22	<MDL
C10-ATMAC	221	<MDL	<MDL	<MDL	<MDL	<MDL	<MDL
C12-ATMAC	359	<MDL	<MDL	<MDL	<MDL	<MDL	<MDL
C14-ATMAC	71.5	4.35	1.93	1.75	3.01	1.79	1.44
C16-ATMAC	146	0.228	0.0494	0.446	0.292	0.0252	0.0284
C18-ATMAC	246	0.103	<MDL	0.563	<MDL	<MDL	<MDL
∑ATMAC	1310	4.68	2.11	3.09	3.31	2.04	1.47
∑QAC	16600	1350	156	5.6	4.04	2.95	2.52
Table S3. Median QAC concentrations (μg/g) in dust samples collected from Indiana homes with increased \((n = 29)\) and not changed \((n = 11)\) disinfection frequencies, and more frequent \((1-5 \text{ per week}, n = 27)\) and less frequent \(< 1 \text{ per week}, n = 13\) disinfecting during the COVID-19 pandemic. Contributions \((\text{contr.}, \%)\) of each QAC to the \(\Sigma\) QAC concentrations are also included.

BACs	Increased Median	Contr	Not changed Median	Contr	More disinfecting Median	Contr	Less disinfecting Median	Contr
C6-BAC	0.00422	0.01	0.00161	0.01	0.00432	0.01	0.00229	0.01
C8-BAC	0.0843	0.2	0.0256	0.2	0.106	0.2	0.0352	0.1
C10-BAC	0.0708	0.1	0.0234	0.2	0.0699	0.1	0.0234	0.1
C12-BAC	15.0	27	6.10	40	16.6	28	9.10	32
C14-BAC	12.4	23	2.38	16	14.2	24	3.46	12
C16-BAC	4.23	7.7	0.827	5.5	4.79	8.1	1.1	3.9
C18-BAC	1.28	2.3	0.233	1.6	1.44	2.5	0.612	2.2
ΣBAC	37.5	59	11.4	55	39.9	63	14.3	51

DDACs								
C8-DDAC	2.18	4.0	0.420	2.8	1.69	2.9	1.13	4.0
C10-DDAC	5.96	11	0.956	6.3	6.89	12	3.71	13
C12-DDAC	0.0796	0.2	0.0178	0.1	0.0828	0.1	0.0315	0.1
C14-DDAC	0.0249	0.1	0.00718	0.1	0.0269	0.0	0.0101	0.0
C16-DDAC	0.494	0.9	0.143	1.0	0.435	0.7	0.148	0.5
C18-DDAC	3.48	6.3	1.45	9.6	3.54	6.0	2.00	7.1
ΣDDAC	13.6	22	6.27	30	13.3	21	7.22	26

ATMACs								
C8-ATMAC	0.0576	0.1	0.0233	0.2	0.0465	0.1	0.0563	0.2
C10-ATMAC	0.312	0.6	0.0844	0.6	0.312	0.5	0.199	0.7
C12-ATMAC	1.40	2.6	0.693	4.6	1.59	2.7	0.752	2.7
C14-ATMAC	0.382	0.7	0.0972	0.7	0.375	0.6	0.184	0.7
C16-ATMAC	6.30	11	1.32	8.8	5.50	9.3	5.17	18
C18-ATMAC	1.32	2.4	0.271	1.8	1.26	2.1	0.517	1.8
ΣATMAC	12.1	19	3.15	15	10.1	16	6.33	23
ΣQAC	65.2	100	21.7	100	64.6	100	28.0	100
Table S4. The optimized MRM transitions, fragmentors, and collision energies for target analytes.

Compound	Abbreviation	Retention time (min)	Precursor ion [M-Cl/Br]+	Fragmentor (volts)	Product ions (m/z)	Collision energy (volts)
Benzyldimethylhexylammonium chloride	C6-BAC	2.82	220.2	88	128.1	17
Benzyldimethyloctylammonium chloride	C8-BAC	3.53	248.2	103	91	29
Benzyldimethyldecylammonium chloride	C10-BAC	4.12	276.3	103	91.1	33
Benzyldimethylldodecylammonium chloride	C12-BAC	4.65	304.3	113	91	41
Benzyldimethyltetradecylammonium chloride	C14-BAC	5.13	332.3	122	91.1	41
Benzyldimethylhexadecylammonium chloride	C16-BAC	5.53	360.4	146	91.1	41
Searyldimethylbenzylammonium chloride	C18-BAC	5.85	388.39	127	296.3	29
Dioctyldimethylammonium bromide	C8-DDAC	4.46	270.3	156	158.2	29
Didecyldimethylammonium bromide	C10-DDAC	5.31	326.4	151	186	33
Didodecyldimethylammonium bromide	C12-DDAC	5.93	382.4	181	214	37
Dimethyllditetradecylammonium bromide	C14-DDAC	6.35	438.5	151	242	41
Dihexadecyldimethylammonium bromide	C16-DDAC	6.63	494.6	151	270	49
Dimethyldioctadecylammonium bromide	C18-DDAC	7.08	550.6	175	298	53
Octyltrimethylammonium chloride	C8-ATMAC	2.73	172.2	132	85.1	21
Decyltrimethylammonium chloride	C10-ATMAC	3.48	200.2	127	85.1	21
Dodecyldimethylammonium chloride	C12-ATMAC	4.09	228.3	137	85.1	21
Tetradecyltrimethylammonium chloride	C14-ATMAC	4.67	256.3	142	85.1	29
Hexadecyltrimethylammonium chloride	C16-ATMAC	5.18	284.3	132	85.1	29
Octadecyldimethylammonium chloride	C18-ATMAC	5.61	312.4	142	85.1	33
Benzyldimethylldodecylammonium-d7 chloride	d7-C12-BAC	4.63	311.34	122	91.1	37
(Surrogate standard)						
(Benzyld7)dimethyltetradecylammonium chloride	d7-C14-BAC	5.11	339.38	127	98.1	41
Table S5. Matrix spike recoveries of target analytes (%).

Compounds	Mean	Standard error
C6-BAC	91	4.3
C8-BAC	68	2.2
C10-BAC	93	3.0
C12-BAC	155	5.5
C14-BAC	99	3.2
C16-BAC	130	4.0
C18-BAC	152	3.6
C8-DDAC	90	2.8
C10-DDAC	119	3.6
C12-DDAC	112	5.0
C14-DDAC	147	3.7
C16-DDAC	120	3.8
C18-DDAC	116	3.1
C8-ATMAC	91	7.2
C10-ATMAC	72	2.2
C12-ATMAC	118	3.6
C14-ATMAC	148	4.6
C16-ATMAC	113	3.5
C18-ATMAC	117	3.2
Table S6. Average blank levels and method detection limits (MDL), μg/g.

QACs	Blanks	MDL
C6-BAC	0.0003	0.0003
C8-BAC	0.0003	0.0001
C10-BAC	0.0001	0.0000
C12-BAC	0.0305	0.0025
C14-BAC	0.0046	0.0008
C16-BAC	0.0067	0.0006
C18-BAC	0.0006	0.0002
C8-DDAC	0.0004	0.0005
C10-DDAC	0.0131	0.0018
C12-DDAC	0.0039	0.0005
C14-DDAC	0.0004	0.0002
C16-DDAC	0.0007	0.0005
C18-DDAC	0.0040	0.0005
C8-ATMAC	0.0009	0.0015
C10-ATMAC	0.0001	0.0001
C12-ATMAC	0.0023	0.0017
C14-ATMAC	0.0156	0.0022
C16-ATMAC	0.0012	0.0009
C18-ATMAC	0.0005	0.0003
Figure S1. Chemical structures of the three main QAC groups.

Figure S2. QAC profiles in cleaning products commonly used in participants’ homes during the pandemic.
Figure S3. The results of the regression between the disinfecting frequency in homes sampled during the pandemic and the average total QAC dust concentrations (only QACs for which concentrations have significantly increased during the pandemic were included, see Table 1 in the main manuscript).
Figure S4. The representative chromatograms of the authentic standard (A, 5ppb) and samples (B).
References

(1) Quality Assurance Project Plan. United States Environmental Protection Agency. Integrated Atmospheric Deposition Network. GRANT #GL00E76601-4, 2018. Available at: https://www.epa.gov/sites/production/files/2019-02/documents/iadn-qapp-201805-164pp.pdf (accessed July 2020).

(2) EPA, U. S., Exposure Factors Handbook. 2011 Edition (Final) (Washington, DC) 2011.

(3) Stubbings, W. A.; Schreder, E. D.; Thomas, M. B.; Romanak, K.; Venier, M.; Salamova, A., Exposure to brominated and organophosphate ester flame retardants in US childcare environments: Effect of removal of flame-retarded nap mats on indoor levels. Environ. Pollut. 2018, 238, 1056-1068.