Progressive Transactional Memory in Time and Space

Petr Kuznetsov1 Srivatsan Ravi2
1Télémocom ParisTech
2TU Berlin

February 18, 2015

Abstract

Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared \textit{data items} into atomic transactions. A transaction may commit, in which case it appears to have executed sequentially or it may abort, in which case no data item is updated.

The TM programming paradigm emerged as an alternative to conventional fine-grained locking techniques, offering ease of programming and compositionality. Though typically themselves implemented using locks, TMs hide the inherent issues of lock-based synchronization behind a nice transactional programming interface.

In this paper, we explore inherent time and space complexity of lock-based TMs, with a focus of the most popular class of \textit{progressive} lock-based TMs. We derive that a progressive TM might enforce a read-only transaction to perform a quadratic (in the number of the data items it reads) number of steps and access a linear number of distinct memory locations, closing the question of inherent cost of read validation in TMs. We then show that the total number of \textit{remote memory references (RMRs)} that take place in an execution of a progressive TM in which \(n\) concurrent processes perform transactions on a single data item might reach \(\Omega(n \log n)\), which appears to be the first RMR complexity lower bound for transactional memory.

1 Introduction

Transactional memory (TM) allows concurrent processes to organize sequences of operations on shared \textit{data items} into atomic transactions. A transaction may \textit{commit}, in which case it appears to have executed sequentially or it may \textit{abort}, in which case no data item is updated. The user can therefore design software having only sequential semantics in mind and let the TM take care of handling \textit{conflicts} (concurrent reading and writing to the same data item) resulting from concurrent executions. Another benefit of transactional memory over conventional lock-based concurrent programming is \textit{compositionality}: it allows the programmer to easily
compose multiple operations on multiple objects into atomic units, which is very hard to achieve using locks directly. Therefore, while still typically implemented using locks, TMs hide the inherent issues of lock-based programming behind an easy-to-use and compositional transactional interface.

At a high level, a TM implementation must ensure that transactions are consistent with some sequential execution. A natural consistency criterion is strict serializability [21]; all committed transactions appear to execute sequentially in some total order respecting the timing of non-overlapping transactions. The stronger criterion of opacity [14], guarantees that every transaction (including aborted and incomplete ones) observes a view that is consistent with the same sequential execution, which implies that no transaction would expose a pathological behavior, not predicted by the sequential program, such as division-by-zero or infinite loop.

Notice that a TM implementation in which every transaction is aborted is trivially opaque, but not very useful. Hence, the TM must satisfy some progress guarantee specifying the conditions under which a transaction is allowed to abort. It is typically expected that a transaction aborts only because of data conflicts with a concurrent one, e.g., when they are both trying to access the same data item and at least one of the transactions is trying to update it. This progress guarantee, captured formally by the criterion of progressiveness [13], is satisfied by most TM implementations today [6, 7, 16].

There are two design principles which state-of-the-art TM [6–8, 12, 16, 23] implementations adhere to: read invisibility [4, 9] and disjoint-access parallelism [5, 18]. Both are assumed to decrease the chances of a transaction to encounter a data conflict and, thus, improve performance of progressive TMs. Intuitively, reads performed by a TM are invisible if they do not modify the shared memory used by the TM implementation and, thus, do not affect other transactions. A disjoint-access parallel (DAP) TM ensures that transaction accessing disjoint data sets do not contend on the shared memory and, thus, may proceed independently. As was earlier observed [14], the combination of these principles incurs some inherent costs, and the main motivation of this paper is to explore these costs.

Intuitively, the overhead invisible read may incur comes from the need of validation, i.e., ensuring that read data items have not been updated when the transaction completes. Our first result (Section 4) is that a read-only transaction in an opaque TM featured with weak DAP and weak invisible reads must incrementally validate every next read operation. This results in a quadratic (in the size of the transaction’s read set) step-complexity lower bound. Informally, weak DAP means that two transactions encounter a memory race only if their data sets are connected in the conflict graph, capturing data-set overlaps among all concurrent transactions. Weak read invisibility allows read operations of a transaction T to be “visible” only if T is concurrent with another transaction. The lower bound is derived for minimal progressiveness, where transactions are guaranteed to commit only if they run sequentially. Our result improves the lower bound [13, 14] derived for strict-data partitioning (a very strong version of DAP) and (strong) invisible reads.

Our second result is that, under weak DAP and weak read invisibility, a strictly
serializable TM must have a read-only transaction that accesses a linear (in the size of the transaction’s read set) number of distinct memory locations in the course of performing its last read operation. Naturally, this space lower bound also applies to opaque TMs.

We then turn our focus to strongly progressive TMs [14] that, in addition to progressiveness, ensures that not all concurrent transactions conflicting over a single data item abort. In Section 5, we prove that in any strongly progressive strictly serializable TM implementation that accesses the shared memory with read, write and conditional primitives, such as compare-and-swap and load-linked/store-conditional, the total number of remote memory references (RMRs) that take place in an execution of a progressive TM in which \(n \) concurrent processes perform transactions on a single data item might reach \(\Omega(n \log n) \). The result is obtained via a reduction to an analogous lower bound for mutual exclusion [3]. In the reduction, we show that any TM with the above properties can be used to implement a deadlock-free mutual exclusion, employing transactional operations on only one data item and incurring a constant RMR overhead. The lower bound applies to RMRs in both the cache-coherent (CC) and distributed shared memory (DSM) models, and it appears to be the first RMR complexity lower bound for transactional memory.

2 Model

TM interface. A transactional memory (in short, TM) supports transactions for reading and writing on a finite set of data items, referred to as t-objects. Every transaction \(T_k \) has a unique identifier \(k \). We assume no bound on the size of a t-object, i.e., the cardinality on the set \(V \) of possible different values a t-object can have. A transaction \(T_k \) may contain the following t-operations, each being a matching pair of an invocation and a response: \(\text{read}_k(X) \) returns a value in some domain \(V \) (denoted \(\text{read}_k(X) \rightarrow v \)) or a special value \(A_k \notin V \) (abort); \(\text{write}_k(X,v) \), for a value \(v \in V \), returns \(\text{ok} \) or \(A_k \); \(\text{tryC}_k \) returns \(C_k \notin V \) (commit) or \(A_k \).

Implementations. We assume an asynchronous shared-memory system in which a set of \(n > 1 \) processes \(p_1, \ldots, p_n \) communicate by applying operations on shared objects. An object is an instance of an abstract data type which specifies a set of operations that provide the only means to manipulate the object. An implementation of an object type \(\tau \) provides a specific data-representation of \(\tau \) by applying primitives on shared base objects, each of which is assigned an initial value and a set of algorithms \(I_1(\tau), \ldots, I_n(\tau) \), one for each process. We assume that these primitives are deterministic. Specifically, a TM implementation provides processes with algorithms for implementing \(\text{read}_k, \text{write}_k \) and \(\text{tryC}_k() \) of a transaction \(T_k \) by applying primitives from a set of shared base objects. We assume that processes issue transactions sequentially, i.e., a process starts a new transaction only after the previous transaction is committed or aborted. A primitive is a generic read-modify-write (RMW) procedure applied to a base object [10,15]. It is characterized by a pair of functions \((g,h) \): given the current state of the base object, \(g \) is an update function
that computes its state after the primitive is applied, while \(h \) is a response function that specifies the outcome of the primitive returned to the process. A RMW primitive is trivial if it never changes the value of the base object to which it is applied. Otherwise, it is nontrivial. An RMW primitive \(\langle g, h \rangle \) is conditional if there exists \(v, w \) such that \(g(v, w) = v \) and there exists \(v, w \) such that \(g(v, w) \neq v \) \([11]\). For e.g., compare-and-swap (CAS) and load-linked/store-conditional (LL/SC) are nontrivial conditional RMW primitives while fetch-and-add is an example of a nontrivial RMW primitive that is not conditional.

Executions and configurations. An event of a process \(p_i \) (sometimes we say step of \(p_i \)) is an invocation or response of an operation performed by \(p_i \) or a rmw primitive \(\langle g, h \rangle \) applied by \(p_i \) to a base object \(b \) along with its response \(r \) (we call it a rmw event and write \((b, \langle g, h \rangle, r, i) \)). A configuration specifies the value of each base object and the state of each process. The initial configuration is the configuration in which all base objects have their initial values and all processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution of an implementation \(I \) is an execution fragment where, starting from the initial configuration, each event is issued according to \(I \) and each response of a rmw event \((b, \langle g, h \rangle, r, i) \) matches the state of \(b \) resulting from all preceding events. An execution \(E \cdot E' \), denoting the concatenation of \(E \) and \(E' \), is an extension of \(E \) and we say that \(E' \) extends \(E \).

Let \(E \) be an execution fragment. For every transaction identifier \(k \), \(E|k \) denotes the subsequence of \(E \) restricted to events of transaction \(T_k \). If \(E|k \) is non-empty, we say that \(T_k \) participates in \(E \), else we say \(E \) is \(T_k \)-free. Two executions \(E \) and \(E' \) are indistinguishable to a set \(\mathcal{T} \) of transactions, if for each transaction \(T_k \in \mathcal{T} \), \(E|k = E'|k \). A TM history is the subsequence of an execution consisting of the invocation and response events of t-operations.

The read set (resp., the write set) of a transaction \(T_k \) in an execution \(E \), denoted \(Rset(T_k) \) (and resp. \(Wset(T_k) \)), is the set of t-objects on which \(T_k \) invokes reads (and resp. writes) in \(E \). The data set of \(T_k \) is \(Dset(T_k) = Rset(T_k) \cup Wset(T_k) \). A transaction is called read-only if \(Wset(T_k) = \emptyset \); write-only if \(Rset(T_k) = \emptyset \) and updating if \(Wset(T_k) \neq \emptyset \). Note that, in our TM model, the data set of a transaction is not known apriori, i.e., at the start of the transaction and it is identifiable only by the set of data items the transaction has invoked a read or write on in the given execution.

Transaction orders. Let \(txns(E) \) denote the set of transactions that participate in \(E \). An execution \(E \) is sequential if every invocation of a t-operation is either the last event in the history \(H \) exported by \(E \) or is immediately followed by a matching response. We assume that executions are well-formed: no process invokes a new operation before the previous operation returns. Specifically, we assume that for all \(T_k \), \(E|k \) begins with the invocation of a t-operation, is sequential and has no events after \(A_k \) or \(C_k \). A transaction \(T_k \in txns(E) \) is complete in \(E \) if \(E|k \) ends with a response event. The execution \(E \) is complete if all transactions in \(txns(E) \) are
complete in \(E \). A transaction \(T_k \in \text{txns}(E) \) is \(t \)-complete if \(E|k \) ends with \(A_k \) or \(C_k \); otherwise, \(T_k \) is \(t \)-incomplete. \(T_k \) is committed (resp., aborted) in \(E \) if the last event of \(T_k \) is \(C_k \) (resp., \(A_k \)). The execution \(E \) is \(t \)-complete if all transactions in \(\text{txns}(E) \) are \(t \)-complete.

For transactions \(\{T_k, T_m\} \in \text{txns}(E) \), we say that \(T_k \) precedes \(T_m \) in the real-time order of \(E \), denoted \(T_k \prec_{RT}^{E} T_m \), if \(T_k \) is \(t \)-complete in \(E \) and the last event of \(T_k \) precedes the first event of \(T_m \) in \(E \). If neither \(T_k \prec_{RT}^{E} T_m \) nor \(T_m \prec_{RT}^{E} T_k \), then \(T_k \) and \(T_m \) are concurrent in \(E \). An execution \(E \) is \(t \)-sequential if there are no concurrent transactions in \(E \).

Contention

We say that a configuration \(C \) after an execution \(E \) is quiescent (and resp. \(t \)-quiescent) if every transaction \(T_k \in \text{txns}(E) \) is complete (and resp. \(t \)-complete) in \(C \). If a transaction \(T \) is incomplete in an execution \(E \), it has exactly one enabled event, which is the next event the transaction will perform according to the TM implementation. Events \(e \) and \(e' \) of an execution \(E \) contend on a base object \(b \) if they are both events on \(b \) in \(E \) and at least one of them is nontrivial (the event is trivial (and resp. nontrivial) if it is the application of a trivial (and resp. nontrivial) primitive). We say that a transaction \(T \) is poised to apply an event \(e \) after \(E \) if \(e \) is the next enabled event for \(T \) in \(E \). We say that transactions \(T \) and \(T' \) concurrently contend on \(b \) in \(E \) if they are each poised to apply contending events on \(b \) after \(E \).

We say that an execution fragment \(E \) is step contention-free for \(t \)-operation \(op_k \) if the events of \(E|op_k \) are contiguous in \(E \). We say that an execution fragment \(E \) is step contention-free for \(T_k \) if the events of \(E|k \) are contiguous in \(E \). We say that \(E \) is step contention-free if \(E \) is step contention-free for all transactions that participate in \(E \).

3 TM classes

TM-correctness

We say that \(\text{read}_k(X) \) is legal in a \(t \)-sequential execution \(E \) if it returns the latest written value of \(X \), and \(E \) is legal if every \(\text{read}_k(X) \) in \(H \) that does not return \(A_k \) is legal in \(E \).

A finite history \(H \) is opaque if there is a legal \(t \)-complete \(t \)-sequential history \(S \), such that (1) for any two transactions \(T_k, T_m \in \text{txns}(H) \), if \(T_k \prec_{RT}^{H} T_m \), then \(T_k \) precedes \(T_m \) in \(S \), and (2) \(S \) is equivalent to a completion of \(H \).

A finite history \(H \) is strictly serializable if there is a legal \(t \)-complete \(t \)-sequential history \(S \), such that (1) for any two transactions \(T_k, T_m \in \text{txns}(H) \), if \(T_k \prec_{RT}^{H} T_m \), then \(T_k \) precedes \(T_m \) in \(S \), and (2) \(S \) is equivalent to \(\text{cseq}(\bar{H}) \), where \(\bar{H} \) is some completion of \(H \) and \(\text{cseq}(\bar{H}) \) is the subsequence of \(\bar{H} \) reduced to committed transactions in \(\bar{H} \).

We refer to \(S \) as an opaque (and resp. strictly serializable) serialization of \(H \).

TM-liveness

We say that a TM implementation \(M \) provides interval-contention free (ICF) TM-liveness if for every finite execution \(E \) of \(M \) such that the configuration after \(E \) is quiescent, and every transaction \(T_k \) that applies the invocation of
a t-operation \(op_k \) immediately after \(E \), the finite step contention-free extension for \(op_k \) contains a matching response.

TM-progress. We say that a TM implementation provides sequential TM-progress (also called minimal progressiveness [14]) if every transaction running step contention-free from a t-qiuescent configuration commits within a finite number of steps.

We say that transactions \(T_i, T_j \) conflict in an execution \(E \) on a t-object \(X \) if \(X \in Dset(T_i) \cap Dset(T_j) \), and \(X \in Wset(T_i) \cup Wset(T_j) \).

A TM implementation \(M \) provides progressive TM-progress (or progressiveness) if for every execution \(E \) of \(M \) and every transaction \(T_i \in txns(E) \) that returns \(A_i \) in \(E \), there exists a transaction \(T_k \in txns(E) \) such that \(T_k \) and \(T_i \) are concurrent and conflict in \(E \) [14].

Let \(COb_jH(T_i) \) denote the set of t-objects over which transaction \(T_i \in txns(H) \) conflicts with any other transaction in history \(H \), i.e., \(X \in COb_jH(T_i) \), iff there exist transactions \(T_i \) and \(T_k \) that conflict on \(X \) in \(H \). Let \(Q \subseteq txns(H) \) and \(COb_jH(Q) = \bigcup_{T \in Q} COb_jH(T_i) \).

Let \(CTrans(H) \) denote the set of non-empty subsets of \(txns(H) \) such that a set \(Q \) is in \(CTrans(H) \) if no transaction in \(Q \) conflicts with a transaction not in \(Q \).

Definition 1. A TM implementation \(M \) is strongly progressive if \(M \) is weakly progressive and for every history \(H \) of \(M \) and for every set \(Q \in CTrans(H) \) such that \(|COb_jH(Q)| \leq 1 \), some transaction in \(Q \) is not aborted in \(H \).

Invisible reads. A TM implementation \(M \) uses invisible reads if for every execution \(E \) of \(M \) and for every read-only transaction \(T_k \in txns(E) \), \(E|k \) does not contain any nontrivial events.

In this paper, we introduce a definition of weak invisible reads. For any execution \(E \) and any t-operation \(\pi_k \) invoked by some transaction \(T_k \in txns(E) \), let \(E|\pi_k \) denote the subsequence of \(E \) restricted to events of \(\pi_k \) in \(E \).

We say that a TM implementation \(M \) satisfies weak invisible reads if for any execution \(E \) of \(M \) and every transaction \(T_k \in txns(E) \); \(Rset(T_k) \neq \emptyset \) that is not concurrent with any transaction \(T_m \in txns(E) \), \(E|\pi_k \) does not contain any nontrivial events, where \(\pi_k \) is any t-read operation invoked by \(T_k \) in \(E \).

Disjoint-access parallelism (DAP). Let \(\tau_E(T_i, T_j) \) be the set of transactions \((T_i, T_j)\) that are concurrent to at least one of \(T_i \) and \(T_j \) in \(E \). Let \(G(T_i, T_j, E) \) be an undirected graph whose vertex set is \(\bigcup_{T \in \tau_E(T_i, T_j)} Dset(T) \) and there is an edge between t-objects \(X \) and \(Y \) iff there exists \(T \in \tau_E(T_i, T_j) \) such that \(\{X, Y\} \in Dset(T) \).

We say that \(T_i \) and \(T_j \) are disjoint-access in \(E \) if there is no path between a t-object in \(Dset(T_i) \) and a t-object in \(Dset(T_j) \) in \(G(T_i, T_j, E) \). A TM implementation \(M \) is weak disjoint-access parallel (weak DAP) if, for all executions \(E \) of \(M \), transactions \(T_i \) and \(T_j \) concurrently contend on the same base object in \(E \) only if \(T_i \) and \(T_j \) are not disjoint-access in \(E \) or there exists a t-object \(X \in Dset(T_i) \cap Dset(T_j) \) [5,22].
Figure 1: Executions in the proof of Lemma 2. By weak DAP, T_0 cannot distinguish this from the execution in Figure 1a.

Lemma 1. ([5], [20]) Let M be any weak DAP TM implementation. Let $\alpha \cdot \rho_1 \cdot \rho_2$ be any execution of M where ρ_1 (and resp. ρ_2) is the step contention-free execution fragment of transaction $T_1 \not\in \text{txns}(\alpha)$ (and resp. $T_2 \not\in \text{txns}(\alpha)$) and transactions T_1, T_2 are disjoint-access in $\alpha \cdot \rho_1 \cdot \rho_2$. Then, T_1 and T_2 do not contend on any base object in $\alpha \cdot \rho_1 \cdot \rho_2$.

4 Time and space complexity of sequential TMs

In this section, we prove that (1) that a read-only transaction in an opaque TM featured with weak DAP and weak invisible reads must incrementally validate every next read operation, and (2) a strictly serializable TM (under weak DAP and weak read invisibility), must have a read-only transaction that accesses a linear (in the size of the transaction’s read set) number of distinct base objects in the course of performing its last t-read and tryCommit operations.

We first prove the following lemma concerning strictly serializable weak DAP TM implementations.

Lemma 2. Let M be any strictly serializable, weak DAP TM implementation that provides sequential TM-progress. Then, for all $i \in \mathbb{N}$, M has an execution of the form $\pi^{i-1} \cdot \rho^i \cdot \alpha^i$ where,

- π^{i-1} is the complete step contention-free execution of read-only transaction T_0 that performs $(i-1)$ t-reads: $\text{read}_\phi(X_1) \cdots \text{read}_\phi(X_{i-1})$.
- ρ^i is the t-complete step contention-free execution of a transaction T_i that writes $nv_i \neq v_i$ to X_i and commits.
- α_i is the complete step contention-free execution fragment of T_0 that performs its i^{th} t-read: $\text{read}_\phi(X_i) \rightarrow nv_i$.

Proof. By sequential TM-progress, \(M \) has an execution of the form \(\rho^1 \cdot \pi^{i-1} \). Since \(Dset(T_0) \cap Dset(T_i) = \emptyset \) in \(\rho^1 \cdot \pi^{i-1} \), by Lemma \[1\] transactions \(T_0 \) and \(T_i \) do not contend on any base object in execution \(\rho^1 \cdot \pi^{i-1} \). Thus, \(\rho^1 \cdot \pi^{i-1} \) is also an execution of \(M \).

By assumption of strict serializability, \(\rho^1 \cdot \pi^{i-1} \cdot \alpha_i \) is an execution of \(M \) in which the t-read of \(X_i \) performed by \(T_0 \) must return \(n v_i \). But \(\rho^1 \cdot \pi^{i-1} \cdot \alpha_i \) is indistinguishable to \(T_0 \) from \(\pi^{i-1} \cdot \rho^1 \cdot \alpha_i \). Thus, \(M \) has an execution of the form \(\pi^{i-1} \cdot \rho^1 \cdot \alpha_i \).

\[\square \]

Theorem 3. For every weak DAP TM implementation \(M \) that provides ICF TM-progress and uses weak invisible reads,

1. If \(M \) is opaque, for every \(m \in \mathbb{N} \), there exists an execution \(E \) of \(M \) such that some transaction \(T \in \text{txns}(E) \) performs \(\Omega(m^2) \) steps, where \(m = |Rset(T_i)| \).
2. If \(M \) is strictly serializable, for every \(m \in \mathbb{N} \), there exists an execution \(E \) of \(M \) such that some transaction \(T_0 \in \text{txns}(E) \) accesses at least \(m - 1 \) distinct base objects during the executions of the \(m \)th t-read operation and \(\text{tryC}_k() \times \).

Proof. For all \(i \in \{1, \ldots, m\} \), let \(v \) be the initial value of t-object \(X_i \).

1. Suppose that \(M \) is opaque. Let \(\pi^m \) denote the complete step contention-free execution of a transaction \(T_0 \) that performs \(m \) t-reads: \(\text{read}_0(X_1) \cdot \ldots \cdot \text{read}_0(X_m) \) such that for all \(i \in \{1, \ldots, m\} \), \(\text{read}_0(X_i) \rightarrow v \).

 By Lemma \[2\] for all \(i \in \{2, \ldots, m\} \), \(M \) has an execution of the form \(E^i = \pi^{i-1} \cdot \rho^1 \cdot \alpha_i \).

 For each \(i \in \{2, \ldots, m\} \), \(j \in \{1, 2\} \) and \(\ell \leq (i - 1) \), we now define an execution of the form \(E^i_{\ell, j} = \pi^{i-1} \cdot \beta^\ell \cdot \rho^j \cdot \alpha^j_\ell \) as follows:
 - \(\beta^\ell \) is the t-complete step contention-free execution fragment of a transaction \(T_\ell \) that writes \(n v_\ell \neq v \) to \(X_\ell \) and commits
 - \(\alpha^j_\ell \) (and resp. \(\alpha^j_\ell \)) is the complete step contention-free execution fragment of \(\text{read}_0(X_i) \rightarrow v \) (and resp. \(\text{read}_0(X_i) \rightarrow A_0 \)).

Claim 4. For all \(i \in \{2, \ldots, m\} \) and \(\ell \leq (i - 1) \), \(M \) has an execution of the form \(E^i_{\ell, j} \) or \(E^i_{\ell, j}^\ell \).

Proof. For all \(i \in \{2, \ldots, m\} \), \(\pi^{i-1} \) is an execution of \(M \). By assumption of weak invisible reads and sequential TM-progress, \(T_\ell \) must be committed in \(\pi^{i-1} \cdot \rho^\ell \) and \(M \) has an execution of the form \(\pi^{i-1} \cdot \beta^\ell \). By the same reasoning, since \(T_i \) and \(T_\ell \) have disjoint data sets, \(M \) has an execution of the form \(\pi^{i-1} \cdot \beta^\ell \cdot \rho^i \).

Since the configuration after \(\pi^{i-1} \cdot \beta^\ell \cdot \rho^i \) is quiescent, by ICF TM-liveness, \(\pi^{i-1} \cdot \beta^\ell \cdot \rho^i \) extended with \(\text{read}_0(X_i) \) must return a matching response. If \(\text{read}_0(X_i) \rightarrow v_i \), then clearly \(E^i_{\ell, j} \) is an execution of \(M \) with \(T_0, T_{i-1}, T_\ell \) being a valid serialization of transactions. If \(\text{read}_0(X_i) \rightarrow A_0 \), the same serialization justifies an opaque execution.
Suppose by contradiction that there exists an execution of M such that $\pi^{i-1} \cdot \beta_i \cdot \rho_i$ is extended with the complete execution of $\text{read}_\phi(X_i) \rightarrow r$; $r \notin \{A_\phi, v\}$. The only plausible case to analyse is when $r = m$. Since $\text{read}_\phi(X_i)$ returns the value of X_i updated by T_i, the only possible serialization for transactions is T_ℓ, T_i, T_ρ; but $\text{read}_\phi(X_i)$ performed by T_i that returns the initial value v is not legal in this serialization—contradiction.

We now prove that, for all $i \in \{2, \ldots, m\}$, $j \in \{1, 2\}$ and $\ell \leq (i - 1)$, transaction T_ρ must access $(i - 1)$ different base objects during the execution of $\text{read}_\phi(X_i)$ in the execution $\pi^{i-1} \cdot \beta_i \cdot \rho_i \cdot \alpha_i$. By the assumption of weak invisible reads, the execution $\pi^{i-1} \cdot \beta_i \cdot \rho_i \cdot \alpha_i$ is indistinguishable to transactions T_ℓ and T_i from the execution $\tilde{\pi}^{i-1} \cdot \beta_i \cdot \rho_i \cdot \alpha_i$, where $\text{Rset}(T_\rho) = \emptyset$ in π^{i-1}. But transactions T_ℓ and T_i are disjoint-access in $\pi^{i-1} \cdot \beta_i \cdot \rho_i$ and by Lemma 1 they cannot contend on the same base object in this execution.

Consider the $(i - 1)$ different executions: $\pi^{i-1} \cdot \beta^1 \cdot \rho^1, \ldots, \pi^{i-1} \cdot \beta^{i-1} \cdot \rho^1$. For all $\ell, \ell' \leq (i - 1); \ell' \neq \ell$, M has an execution of the form $\pi^{i-1} \cdot \beta^\ell \cdot \rho^\ell \cdot \beta^\ell'$ in which transactions T_ℓ and T_ℓ' access mutually disjoint data sets. By weak invisible reads and Lemma 1 the pairs of transactions T_ℓ', T_ℓ do not contend on any base object in this execution. This implies that $\pi^{i-1} \cdot \beta^\ell \cdot \rho^\ell \cdot \beta^\ell'$ is an execution of M in which transactions T_ℓ and T_ℓ' each apply nontrivial primitives to mutually disjoint sets of base objects in the execution fragments β^ℓ and β^ℓ' respectively (by Lemma 1).

This implies that for any $j \in \{1, 2\}, \ell \leq (i - 1)$, the configuration C^j after E^i differs from the configurations after $E^i_{j\ell}$ only in the states of the base objects that are accessed in the fragment β^ℓ. Consequently, transaction T_ρ must access at least $i - 1$ different base objects in the execution fragment π^j_ρ to distinguish configuration C^j from the configurations that result after the $(i - 1)$ different executions $\pi^{i-1} \cdot \beta^1 \cdot \rho^1, \ldots, \pi^{i-1} \cdot \beta^{i-1} \cdot \rho^i$ respectively.

Thus, for all $i \in \{2, \ldots, m\}$, transaction T_ρ must perform at least $i - 1$ steps while executing the ρ^i-t-read in π^j_ρ and T_ρ itself must perform $\sum_{i=1}^{m-1} i = \frac{m(m-1)}{2}$ steps.

(2) Suppose that M is strictly serializable, but not opaque. Since M is strictly serializable, by Lemma 2, it has an execution of the form $E = \pi^{m-1} \cdot \rho^m \cdot \alpha_m$. For each $\ell \leq (i - 1)$, we prove that M has an execution of the form $E_\ell = \pi^{m-1} \cdot \beta^\ell \cdot \rho^m \cdot \alpha_m$ where α_m is the complete step contention-free execution fragment of $\text{read}_\phi(X_m)$ followed by the complete execution of try_C. Indeed, by weak invisible reads, π^{m-1} does not contain any nontrivial events and the execution $\pi^{m-1} \cdot \beta^\ell \cdot \rho^m$ is indistinguishable to transactions T_ℓ and T_m from the executions $\tilde{\pi}^{m-1} \cdot \beta^\ell$ and $\tilde{\pi}^{m-1} \cdot \beta^\ell \cdot \rho^m$ respectively, where $\text{Rset}(T_\rho) = \emptyset$ in π^{m-1}. Thus, applying Lemma 1 transactions $\beta^\ell \cdot \rho^m$ do not contend on any base object in the execution $\pi^{m-1} \cdot \beta^\ell \cdot \rho^m$. By ICF TM-liveness, $\text{read}_\phi(X_m)$ and try_C must return matching responses in the execution fragment α_m that extends $\pi^{m-1} \cdot \beta^\ell \cdot \rho^m$. Consequently, for each $\ell \leq (i - 1)$, M has an execution of the form $E_\ell = \pi^{m-1} \cdot \beta^\ell \cdot \rho^m \cdot \alpha_m$ such that
transactions T_i and T_m do not contend on any base object.

Strict serializability of M means that if $\text{read}_\phi(X_m) \rightarrow m$ in the execution fragment α^m, then $\text{try}_C \phi$ must return A_ϕ. Otherwise if $\text{read}_\phi(X_m) \rightarrow v$ (i.e. the initial value of X_m), then $\text{try}_C \phi$ may return A_ϕ or C_ϕ.

Thus, as with (1), in the worst case, T_ϕ must access at least $m-1$ distinct base objects during the executions of $\text{read}_\phi(X_m)$ and $\text{try}_C \phi$ to distinguish the configuration C^i from the configurations after the $m-1$ different executions $\pi^{m-1} \cdot \beta^1 \cdot \rho^m, \ldots, \pi^{m-1} \cdot \beta^m \cdot \rho^m$ respectively.

\section{RMR complexity of strongly progressive TMs}

In this section, we prove every strongly progressive strictly serializable TM that uses only read, write and \textit{conditional} RMW primitives has an execution in which in which n concurrent processes perform transactions on a single data item and incur $\Omega(\log n)$ remote memory references \cite{2}.

\textbf{Remote memory references (RMR)} \cite{3}. In the cache-coherent (CC) shared memory, each process maintains local copies of shared objects inside its cache, whose consistency is ensured by a coherence protocol. Informally, we say that an access to a base object b is \textit{remote} to a process p and causes a \textit{remote memory reference}
(RMR) if p’s cache contains a cached copy of the object that is out of date or invalidated; otherwise the access is local.

In the write-through (CC) protocol, to read a base object b, process p must have a cached copy of b that has not been invalidated since its previous read. Otherwise, p incurs a RMR. To write to b, p causes a RMR that invalidates all cached copies of b and writes to the main memory.

In the write-back (CC) protocol, p reads a base object b without causing a RMR if it holds a cached copy of b in shared or exclusive mode; otherwise the access of b causes a RMR that (1) invalidates all copies of b held in exclusive mode, and writing b back to the main memory, (2) creates a cached copy of b in shared mode. Process p can write to b without causing a RMR if it holds a copy of b in exclusive mode; otherwise p causes a RMR that invalidates all cached copies of b and creates a cached copy of b in exclusive mode.

In the distributed shared memory (DSM), each register is forever assigned to a single process and it remote to the others. Any access of a remote register causes a RMR.

Mutual exclusion. The mutex object supports two operations: Enter and Exit, both of which return the response ok. We say that a process p_i is in the critical section after an execution π if π contains the invocation of Enter by p_i that returns ok, but does not contain a subsequent invocation of Exit by p_i in π.

A mutual exclusion implementation satisfies the following properties:

(Mutual-exclusion) After any execution π, there exists at most one process that is in the critical section.

(Deadlock-freedom) Let π be any execution that contains the invocation of Enter by process p_i. Then, in every extension of π in which every process takes infinitely many steps, some process is in the critical section.

(Finite-exit) Every process completes the Exit operation within a finite number of steps.

5.1 Mutual exclusion from a strongly progressive TM

We describe an implementation of a mutex object L(M) from a strictly serializable, strongly progressive TM implementation M (Algorithm 1). The algorithm is based on the mutex implementation in [17].

Given a sequential implementation, we use a TM to execute the sequential code in a concurrent environment by encapsulating each sequential operation within an atomic transaction that replaces each read and write of a t-object with the transactional read and write implementations, respectively. If the transaction commits, then the result of the operation is returned; otherwise if one of the transactional operations aborts. For instance, in Algorithm 1 we wish to atomically read a t-object X, write a new value to it and return the old value of X prior to this write. To achieve this, we employ a strictly serializable TM implementation M. Moreover, we assume that M is strongly progressive, i.e., in every execution, at least one transaction successfully commits and the value of X is returned.
Shared objects. We associate each process \(p_i \) with two alternating identities \([p_i,\text{face}]_j; \text{face}_j \in \{0,1\}\). The strongly progressive TM implementation \(M \) is used to enqueue processes that attempt to enter the critical section within a single t-object \(X \) (initially \(\bot \)). For each \([p_i,\text{face}]_j\), \(L(M) \) uses a register bit \(\text{Done}[p_i,\text{face}]_j \) that indicates if this face of the process has left the critical section or is executing the Entry operation. Additionally, we use a register \(\text{Succ}[p_i,\text{face}]_j \) that stores the process expected to succeed \(p_i \) in the critical section. If \(\text{Succ}[p_i,\text{face}]_j = p_j \), we say that \(p_j \) is the successor of \(p_i \) (and \(p_i \) is the predecessor of \(p_j \)). Intuitively, this means that \(p_j \) is expected to enter the critical section immediately after \(p_i \).

Finally, \(L(M) \) uses a 2-dimensional bit array \(\text{Lock} \): for each process \(p_i \), there are \(n-1 \) registers associated with the other processes. For all \(j \in \{0,\ldots,n-1\} \setminus \{i\} \), the registers \(\text{Lock}[p_i][p_j] \) are local to \(p_i \) and registers \(\text{Lock}[p_j][p_i] \) are remote to \(p_i \). Process \(p_i \) can only access registers in the \(\text{Lock} \) array that are local or remote to it.

Entry operation. A process \(p_i \) adopts a new identity \(\text{face}_j \) and writes \(\text{false} \) to \(\text{Done}[p_i,\text{face}] \) to indicate that \(p_i \) has started the Entry operation. Process \(p_i \) now initializes the successor of \([p_i,\text{face}]_j\] by writing \(\bot \) to \(\text{Succ}[p_i,\text{face}]_j \). Now, \(p_i \) uses a strongly progressive TM implementation \(M \) to atomically store its \(\text{pid} \) and identity i.e., \(\text{face}_j \), to t-object \(X \) and returns the \(\text{pid} \) and identity of its predecessor, say \([p_j,\text{face}]_j \). Intuitively, this suggests that \([p_i,\text{face}]_j\] is scheduled to enter the critical section immediately after \([p_j,\text{face}]_j\] exits the critical section. Note that if \(p_i \) reads the initial value of t-object \(X \), then it immediately enters the critical section. Otherwise it writes \(\text{locked} \) to the register \(\text{Lock}[p_i,p_j] \) and sets itself to be the successor of \([p_j,\text{face}]_j\] by writing \(p_i \) to \(\text{Succ}[p_j,\text{face}]_j \). Process \(p_i \) now checks if \(p_j \) has started the Exit operation by checking if \(\text{Done}[p_j,\text{face}]_j \) is set. If it is, \(p_i \) enters the critical section; otherwise \(p_i \) spins on the register \(\text{Lock}[p_i][p_j] \) until it is \(\text{unlocked} \).

Exit operation. Process \(p_i \) first indicates that it has exited the critical section by setting \(\text{Done}[p_i,\text{face}]_j \), following which it \(\text{unlocks} \) the register \(\text{Lock}[\text{Succ}[p_i,\text{face}]_j][p_i] \) to allow \(p_i \)’s successor to enter the critical section.

5.2 Proof of correctness

Lemma 5. The implementation \(L(M) \) (Algorithm 1) satisfies mutual exclusion.

Proof. Let \(E \) be any execution of \(L(M) \). We say that \([p_i,\text{face}]_j\] is the successor of \([p_j,\text{face}]_j\] if \(p_i \) reads the value of \(\text{prev} \) in Line 25 to be \([p_j,\text{face}]_j \) (and \([p_j,\text{face}]_j\) is the predecessor of \([p_i,\text{face}]_j\)); otherwise if \(p_i \) reads the value to be \(\bot \), we say that \(p_i \) has no predecessor.

Suppose by contradiction that there exist processes \(p_i \) and \(p_j \) that are both inside the critical section after \(E \). Since \(p_i \) is inside the critical section, either (1) \(p_i \) read \(\text{prev} = \bot \) in Line 23, or (2) \(p_i \) read that \(\text{Done} [\text{prev}] \) is true (Line 29) or \(p_i \) reads that \(\text{Done} [\text{prev}] \) is false and \(\text{Lock}[p_i][\text{prev.pid}] \) is \(\text{unlocked} \) (Line 30).

(Case 1) Suppose that \(p_i \) read \(\text{prev} = \bot \) and entered the critical section. Since in this case, \(p_i \) does not have any predecessor, some other process that returns successfully from the while loop in Line 25 must be successor of \(p_i \) in \(E \). Since
there exists \([p_j, \text{face}_j]\) also inside the critical section after \(E\), \(p_j\) reads that either \([p_i, \text{face}_i]\) or some other process to be its predecessor. Observe that there must exist some such process \([p_k, \text{face}_k]\) whose predecessor is \([p_i, \text{face}_i]\). Hence, without loss of generality, we can assume that \([p_j, \text{face}_j]\) is the successor of \([p_i, \text{face}_i]\). By our assumption, \([p_j, \text{face}_j]\) is also inside the critical section. Thus, \(p_j\) \text{ locked} the register \(\text{Lock}[p_j, p_i]\) in Line 27 and set itself to be \(p_i\)'s successor in Line 28. Then, \(p_j\) read that \(\text{Done}[p_i, \text{face}_i]\) is true or read that \(\text{Done}[p_i, \text{face}_i]\) is false and waited until \(\text{Lock}[p_j, p_i]\) is unlocked and then entered the critical section. But this is possible only if \(p_i\) has left the critical section and updated the registers \(\text{Done}[p_i, \text{face}_i]\) and \(\text{Lock}[p_j, p_i]\) in Lines 36 and 37 respectively—contradiction to the assumption that \([p_i, \text{face}_i]\) is also inside the critical section after \(E\).

(Case 2) Suppose that \(p_i\) did not read \(\text{prev} = \bot\) and entered the critical section. Thus, \(p_j\) read that \(\text{Done}[\text{prev}] = \text{false}\) in Line 29, and \(\text{Lock}[p_i][\text{prev.pid}]\) is unlocked in Line 30 where \(\text{prev}\) is the predecessor of \([p_i, \text{face}_i]\). As with case 1, without loss of generality, we can assume that \([p_j, \text{face}_j]\) is the successor of \([p_i, \text{face}_i]\) or \([p_j, \text{face}_j]\) is the predecessor of \([p_i, \text{face}_i]\).

Suppose that \([p_j, \text{face}_j]\) is the predecessor of \([p_i, \text{face}_i]\), i.e., \(p_j\) writes the value \([p_i, \text{face}_i]\) to the register \(\text{Succ}[p_j, \text{face}_j]\) in Line 28. Since \([p_j, \text{face}_j]\) is also inside the critical section after \(E\), process \(p_j\) must read that \(\text{Done}[p_j, \text{face}_j]\) is true in Line 29 and \(\text{Lock}[p_j, p_i]\) is locked in Line 30. But then \(p_i\) could not have entered the critical section after \(E\)—contradiction.

Suppose that \([p_j, \text{face}_j]\) is the successor of \([p_i, \text{face}_i]\), i.e., \(p_j\) writes the value \([p_j, \text{face}_j]\) to the register \(\text{Succ}[p_j, \text{face}_j]\). Since both \(p_i\) and \(p_j\) are inside the critical section after \(E\), process \(p_j\) must read that \(\text{Done}[p_j, \text{face}_j]\) is true in Line 29 and \(\text{Lock}[p_j, p_i]\) is locked in Line 30. Thus, \(p_j\) must spin on the register \(\text{Lock}[p_j, p_i]\), waiting for it to be unlocked by \(p_i\) before entering the critical section—contradiction to the assumption that both \(p_i\) and \(p_j\) are inside the critical section.

Thus, \(L(M)\) satisfies mutual-exclusion. \(\square\)

Lemma 6. The implementation \(L(M)\) (Algorithm 1) provides deadlock-freedom.

Proof. Let \(E\) be any execution of \(L(M)\). Observe that a process may be stuck indefinitely only in Lines 23 and 30 as it performs the while loop.

Since \(M\) is strongly progressive, in every execution \(E\) that contains an invocation of \(\text{Enter}\) by process \(p_i\), some process returns \text{true} from the invocation of \(\text{func}()\) in Line 22.

Now consider a process \(p_i\) that returns successfully from the while loop in Line 23. Suppose that \(p_i\) is stuck indefinitely as it performs the while loop in Line 30. Thus, no process has unlocked the register \(\text{Lock}[p_i][\text{prev.pid}]\) by writing to it in the Exit section. Recall that since \([p_i, \text{face}_i]\) has reached the while loop in Line 30, \([p_i, \text{face}_i]\) necessarily has a predecessor, say \([p_j, \text{face}_j]\), and has set itself to be \(p_j\)'s successor by writing \(p_i\) to register \(\text{Succ}[p_j, \text{face}_j]\) in Line 28. Consider the possible two cases: the predecessor of \([p_j, \text{face}_j]\) is some process \(p_k: k \neq i\) or the predecessor of \([p_j, \text{face}_j]\) is the process \(p_i\) itself.
(Case 1) Since by assumption, process \(p_j \) takes infinitely many steps in \(E \), the only reason that \(p_j \) is stuck without entering the critical section is that \([p_k, face_k]\) is also stuck in the \(\text{while} \) loop in Line 30. Note that it is possible for us to iteratively extend this execution in which \(p_k \)'s predecessor is a process that is not \(p_i \) or \(p_j \) that is also stuck in the \(\text{while} \) loop in Line 30. But then the last such process must eventually read the corresponding \(\text{Lock} \) to be \(\text{unlocked} \) and enter the critical section. Thus, in every extension of \(E \) in which every process takes infinitely many steps, some process will enter the critical section.

(Case 2) Suppose that the predecessor of \([p_j, face_j]\) is the process \(p_i \) itself. Thus, as \([p_i, face_i]\) is stuck in the \(\text{while} \) loop waiting for \(\text{Lock}[p_i, p_j] \) to be \(\text{unlocked} \) by process \(p_j \), \(p_j \) leaves the critical section, \(\text{unlocks} \) \(\text{Lock}[p_i, p_j] \) in Line 37 and prior to the read of \(\text{Lock}[p_i, p_j] \), \(p_j \) re-starts the Entry operation, writes \(\text{false} \) to \(\text{Done}[p_j, 1 - face_j] \) and sets itself to be the successor of \([p_i, face_i]\) and spins on the register \(\text{Lock}[p_j, p_i] \). However, observe that process \(p_i \), which takes infinitely many steps by our assumption must eventually read that \(\text{Lock}[p_i, p_j] \) is \(\text{unlocked} \) and enter the critical section, thus establishing deadlock-freedom.

We say that a TM implementation \(M \) accesses a single \(t \)-object if in every execution \(E \) of \(M \) and every transaction \(T \in \text{trans}(E) \), \(|Dset(T)| \leq 1 \). We can now prove the following theorem:

Theorem 7. Any strictly serializable, strongly progressive TM implementation \(M \) that accesses a single \(t \)-object implies a deadlock-free, finite exit mutual exclusion implementation \(L(M) \) such that the RMR complexity of \(M \) is within a constant factor of the RMR complexity of \(L(M) \).

Proof. (Mutual-exclusion) Follows from Lemma 5.

(Finite-exit) The proof is immediate since the Exit operation contains no unbounded loops or waiting statements.

(Deadlock-freedom) Follows from Lemma 6.

(RMR complexity) First, let us consider the CC model. Observe that every event not on \(M \) performed by a process \(p_i \) as it performs the Entry or Exit operations incurs \(O(1) \) RMR cost clearly, possibly barring the \(\text{while} \) loop executed in Line 30. During the execution of this \(\text{while} \) loop, process \(p_i \) spins on the register \(\text{Lock}[p_i][p_j] \), where \(p_j \) is the predecessor of \(p_i \). Observe that \(p_i \)'s cached copy of \(\text{Lock}[p_i][p_j] \) may be invalidated only by process \(p_j \) as it \(\text{unlocks} \) the register in Line 37. Since no other process may write to this register and \(p_j \) terminates the \(\text{while} \) loop immediately after the write to \(\text{Lock}[p_i][p_j] \) by \(p_j \), \(p_i \) incurs \(O(1) \) RMR’s. Thus, the overall RMR cost incurred by \(M \) is within a constant factor of the RMR cost of \(L(M) \).

Now we consider the DSM model. As with the reasoning for the CC model, every event not on \(M \) performed by a process \(p_i \) as it performs the Entry or Exit operations incurs \(O(1) \) RMR cost clearly, possibly barring the \(\text{while} \) loop executed in Line 30. During the execution of this \(\text{while} \) loop, process \(p_i \) spins on the register \(\text{Lock}[p_i][p_j] \), where \(p_j \) is the predecessor of \(p_i \). Recall that \(\text{Lock}[p_i][p_j] \) is a register
that is local to \(p_i \) and thus, \(p_i \) does not incur any RMR cost on account of executing this loop. It follows that \(p_i \) incurs \(O(1) \) RMR cost in the DSM model. Thus, the overall RMR cost of \(M \) is within a constant factor of the RMR cost of \(L(M) \) in the DSM model.

Theorem 8. ([3]) Any deadlock-free, finite-exit mutual exclusion implementation from read, write and conditional primitives has an execution whose RMR complexity is \(\Omega(n \log n) \).

Theorems 8 and 7 imply:

Theorem 9. Any strictly serializable, strongly progressive TM implementation from read, write and conditional primitives that accesses a single t-object has an execution whose RMR complexity is \(\Omega(n \log n) \).

6 Related work and concluding remarks

Theorem 3 improves the read-validation step-complexity lower bound [13, 14] derived for strict-data partitioning (a very strong version of DAP) and (strong) invisible reads. In a strict data partitioned TM, the set of base objects used by the TM is split into disjoint sets, each storing information only about a single data item. Indeed, every TM implementation that is strict data-partitioned satisfies weak DAP, but not vice-versa. The definition of invisible reads assumed in [13, 14] requires that a t-read operation does not apply nontrivial events in any execution. Theorem 3 however, assumes weak invisible reads, stipulating that t-read operations of a transaction \(T \) do not apply nontrivial events only when \(T \) is not concurrent with any other transaction.

The notion of weak DAP used in this paper was introduced by Attiya et al. [5].

Proving a lower bound for a concurrent object by reduction to a form of mutual exclusion has previously been used in [1, 14]. Guerraoui and Kapalka [14] proved that it is impossible to implement strictly serializable strongly progressive TMs that provide wait-free TM-liveness (every t-operation returns a matching response within a finite number of steps) using only read and write primitives. Alistarh et al. proved a lower bound on RMR complexity of renaming problem [1]. Our reduction algorithm (Section 5) is inspired by the \(O(1) \) RMR mutual exclusion algorithm by Lee [17].

To the best of our knowledge, the TM properties assumed for Theorem 3 cover all of the TM implementations that are subject to the validation step-complexity [6, 7, 16].

It is easy to see that the lower bound of Theorem 9 is tight for both strict serializability and opacity. We refer to the TM implementation in [19] or DSTM [16] for the matching upper bound.

Finally, we conjecture that the lower bound of Theorem 9 is tight. Proving this remains an interesting open question.
References

[1] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui. The complexity of renaming. In *IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011*, pages 718–727, 2011.

[2] T. E. Anderson. The performance of spin lock alternatives for shared-memory multiprocessors. *IEEE Trans. Parallel Distrib. Syst.*, 1(1):6–16, 1990.

[3] H. Attiya, D. Hendler, and P. Woelfel. Tight rmr lower bounds for mutual exclusion and other problems. In *Proceedings of the Twenty-seventh ACM Symposium on Principles of Distributed Computing, PODC ’08*, pages 447–447, New York, NY, USA, 2008. ACM.

[4] H. Attiya and E. Hillel. The cost of privatization in software transactional memory. *IEEE Trans. Computers*, 62(12):2531–2543, 2013.

[5] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel implementations of transactional memory. *Theory of Computing Systems*, 49(4):698–719, 2011.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining stm by abolishing ownership records. *SIGPLAN Not.*, 45(5):67–78, Jan. 2010.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In *Proceedings of the 20th International Conference on Distributed Computing, DISC’06*, pages 194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

[8] D. Dice and N. Shavit. What really makes transactions fast? In *Transact*, 2006.

[9] D. Dice and N. Shavit. TLRW: return of the read-write lock. In *SPAA*, pages 284–293, 2010.

[10] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent objects. *SIAM J. Comput.*, 41(3):519–536, 2012.

[11] F. Fich, D. Hendler, and N. Shavit. On the inherent weakness of conditional synchronization primitives. In *Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC ’04*, pages 80–87, New York, NY, USA, 2004. ACM.

[12] K. Fraser. Practical lock-freedom. Technical report, Cambridge University Computer Laborotory, 2003.

[13] R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transactional memory. *SIGPLAN Not.*, 44(1):404–415, Jan. 2009.
[14] R. Guerraoui and M. Kapalka. *Principles of Transactional Memory, Synthesis Lectures on Distributed Computing Theory*. Morgan and Claypool, 2010.

[15] M. Herlihy. Wait-free synchronization. *ACM Trans. Prog. Lang. Syst.*, 13(1):123–149, 1991.

[16] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional memory for dynamic-sized data structures. In *Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing*, PODC ’03, pages 92–101, New York, NY, USA, 2003. ACM.

[17] L. Hyonho. Local-spin mutual exclusion algorithms on the DSM model using fetch-and-store objects. 2003.

[18] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. In *PODC*, pages 151–160, 1994.

[19] P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. *CoRR*, abs/1103.1302, 2011.

[20] P. Kuznetsov and S. Ravi. On partial wait-freedom in transactional memory. *CoRR*, abs/1407.6876, 2014.

[21] C. H. Papadimitriou. The serializability of concurrent database updates. *J. ACM*, 26:631–653, 1979.

[22] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In *PODC*, pages 16–25, 2010.

[23] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. Nztm: Nonblocking zero-indirection transactional memory. In *Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Architectures*, SPAA ’09, pages 204–213, New York, NY, USA, 2009. ACM.