On a successive property of strongly starlikeness for multivalent functions

Mamoru Nunokawa 1 · Janusz Sokół 2

Received: 31 May 2019 / Accepted: 6 August 2019 © The Author(s) 2019

Abstract

For f analytic in the unit disk \mathbb{D}, of the form $f(z) = z^p + \cdots$, we consider some consequences of strongly starlikeness of $f^{(p-1)}(z)/p!$.

Keywords Starlike · Strongly starlike · Multivalent

Mathematics Subject Classification Primary 30C45; Secondary 30C80

1 Introduction

We denote by \mathcal{H} the class of functions $f(z)$ which are holomorphic in the open unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Denote by \mathcal{A}_p, $p \in \mathbb{N} = \{1, 2, \ldots\}$, the class of functions $f(z) \in \mathcal{H}$ given by

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n, \quad (z \in \mathbb{D}). \quad (1.1)$$

Lemma 1.1 [2, Theorem 5] If $f(z) \in \mathcal{A}_p$, then for all $z \in \mathbb{D}$, we have

$$\Re \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} > 0 \quad \Rightarrow \quad \forall k \in \{1, \ldots, p-1\} : \quad \Re \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} > 0. \quad (1.2)$$

In this paper we consider a generalization of the above result. In Lemma 1.1 we have assumed that $zf^{(p)}(z)/f^{(p-1)}(z)$ lies in the right half-plane while in this paper we work with a sector. The problem we solve here is: for what values of α, β does an analytic function of the form (1.1) satisfy...
\[\arg \left\{ \frac{zf((p-1)(z))}{f(p-1)(z)} \right\} < \frac{\pi \alpha}{2} \Rightarrow \forall k \in \{1, \ldots, p-1\} : \arg \left\{ \frac{zf((k)(z))}{f(k-1)(z)} \right\} < \frac{\pi \beta}{2} \]

Recall that if \(f(z) \in \mathcal{A}_p \) and

\[\Re \left\{ \frac{zf(p)(z)}{f(p-1)(z)} \right\} > 0 \quad (z \in \mathbb{D}), \]

then \(f^{(p-1)}(z)/p! \in \mathcal{A}_1 \) is univalent in \(\mathbb{D} \) and \(f^{(p-1)}(z)/p! \) is called a starlike function. If \(f(z) \in \mathcal{A}_p, \gamma \in (0, 1) \), and

\[\arg \left\{ \frac{zf(p)(z)}{f(p-1)(z)} \right\} < \frac{\pi \gamma}{2}, \quad z \in \mathbb{D}, \quad (1.3) \]

then \(f^{(p-1)}(z)/p! \) is called a strongly starlike function of order \(\gamma \) and such functions we consider in the paper. This class for the case \(p = 1 \) was introduced by Brannan and Kirwan [1]. Also, if \(f(z) \in \mathcal{A}_p \) satisfies (1.3), then \(f(z) \) is called \(p \)-valently strongly starlike function of order \(\gamma \). For the proof of main result we need the following lemma.

Lemma 1.2 [3] Let \(q(z) = 1 + \sum_{n \geq m} c_n z^n, c_m \neq 0 \) be analytic function in \(|z| < 1 \) with \(q(0) = 1, q(z) \neq 0 \). If there exists a point \(z_0, |z_0| < 1 \), such that

\[|\arg \{q(z_0)\}| < \frac{\pi \beta}{2}, \quad z \in \mathbb{D}, \]

then \(q(z_0)/z \) is analytic in \(|z| < |z_0| \), and

\[|\arg \{q(z_0)\}| = \frac{\pi \beta}{2} \]

for some \(\beta > 0 \), then we have

\[\frac{zq'(z_0)}{q(z_0)} = \frac{2ik \arg \{q(z_0)\}}{\pi}, \]

for some \(k \geq m(a + a^{-1})/2 \geq m \), where

\(\{q(z_0)\}^{1/\beta} = \pm ia, \quad \text{and} \quad a > 0. \)

2 Main results

For given \(0 < \beta_{s-1} \leq 1 \) let us consider the number

\[\beta_s = \beta_{s-1} + \frac{2}{\pi} \tan^{-1} \frac{\beta_{s-1} n(\beta_{s-1}) \sin[\pi(1 - \beta_{s-1})/2]}{sm(\beta_{s-1}) + \beta_{s-1} n(\beta_{s-1}) \cos[\pi(1 - \beta_{s-1})/2]}, \quad s = 2, 3, \ldots, p, \]

(2.1)

where

\[m(\beta_{s-1}) = (1 + \beta_{s-1})^{(1 + \beta_{s-1})/2}, \quad \text{and} \quad n(\beta_{s-1}) = (1 - \beta_{s-1})^{(1 - \beta_{s-1})/2}. \]

(2.2)

\(\square \) Springer
Notice that if \(0 < \beta_{s-1} \leq 1 \), then \(0 < \beta_s \leq 1 \) too because from (2.1), (2.2), we have
\[
\beta_s = \beta_{s-1} + \frac{2}{\pi} \tan^{-1} \frac{\beta_{s-1} n(\beta_{s-1}) \sin[\pi (1 - \beta_{s-1})/2]}{\beta_{s-1} n(\beta_{s-1}) + \beta_{s-1} n(\beta_{s-1}) \cos[\pi (1 - \beta_{s-1})/2]},
\]
\[
\leq \beta_{s-1} + \frac{2}{\pi} \tan^{-1} \frac{\beta_{s-1} n(\beta_{s-1}) \sin[\pi (1 - \beta_{s-1})/2]}{\beta_{s-1} n(\beta_{s-1}) \cos[\pi (1 - \beta_{s-1})/2]},
\]
\[
= 1.
\]

Therefore, if we have a number \(\beta_1 \in (0, 1) \), then from (2.1), we can find a sequence \(\beta_p, \beta_{p-1}, \ldots, \beta_2, \beta_1 \), such that
\[
0 < \beta_1 \leq \beta_2 \leq \cdots \leq \beta_{p-1} \leq \beta_p \leq 1. \tag{2.3}
\]

Theorem 2.1 Let \(f(z) \in A_p, p \geq 2 \). For given \(\beta_{p-1} \in (0, 1) \) there exists \(\beta_p \in (0, 1) \) of the form (2.1) such that for all \(z \in \mathbb{D} \), we have
\[
\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_p}{2} \Rightarrow \left| \arg \left\{ \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)} \right\} \right| < \frac{\pi \beta_{p-1}}{2}. \tag{2.4}
\]

Proof Let us put
\[
q_1(z) = \frac{zf^{(p-1)}(z)}{2f^{(p-2)}(z)}, \quad q_1(0) = 1.
\]
Then it follows that
\[
\frac{zq_1'(z)}{q_1(z)} = 1 + \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} - \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)}
\]
and
\[
2q_1(z) + \frac{zq_1'(z)}{q_1(z)} = 1 + \frac{zf^{(p)}(z)}{f^{(p-1)}(z)}
\]
and so
\[
\arg \{q_1(z)\} + \arg \left\{ 2 + \frac{zq_1'(z)}{q_1(z)} \right\} = \arg \left\{ 1 + \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\}.
\]

If there exists a point \(z_0 \in \mathbb{D} \) such that
\[
|\arg\{q_1(z)\}| < \pi \beta_{p-1}/2 \quad \text{for} \quad |z| < |z_0|, \quad |\arg\{q_1(z_0)\}| = \pi \beta_{p-1}/2,
\]
\[
\{q_1(z_0)\}^{1/\beta_{p-1}} = \pm ia, \quad \text{and} \quad a > 0,
\]
then from Lemma 1.2, we have
\[
\frac{z_0q_1'(z_0)}{q_1(z_0)} = \frac{2ik \arg\{q_1(z_0)\}}{\pi} \tag{2.5}
\]
for some real \(k \) with \(k \geq (a + a^{-1})/2 \geq 1 \). For the case \(\arg\{q_1(z_0)\} = \pi \beta_{p-1}/2 \), we have
\[
\arg\left\{ \frac{z_0f^{(p)}(z_0)}{f^{(p-1)}(z_0)} \right\} \geq \arg\left\{ 1 + \frac{z_0f^{(p)}(z_0)}{f^{(p-1)}(z_0)} \right\}
\]
\[
= \arg\{q_1(z_0)\} + \arg\left\{ 2 + \frac{z_0q_1'(z_0)}{q_1(z_0)} \frac{1}{q_1(z_0)} \right\}
\]
\[
\geq \frac{\pi \beta_{p-1}}{2} + \arg\left\{ 2 + e^{i\pi(1-\beta_{p-1})/2} \frac{1}{(ia)^{\beta_{p-1}}} \right\}.
\]
where \(q_1(z_0) \) is a positive real number. Applying Lemma 1.2 we obtain
\[
\arg \left\{ \frac{z_0f^{(p)}(z_0)}{f^{(p-1)}(z_0)} \right\} \geq \frac{\pi \beta_{p-1}}{2} + \arg \left\{ e^{i\pi(1-\beta_{p-1})/2} \left(\frac{1 + \beta_{p-1}}{1 - \beta_{p-1}} \right)^{(1-\beta_{p-1})/2} \right\} + 2
\]
\[
= \frac{\pi \beta_{p-1}}{2} + \tan^{-1} \frac{\beta_{p-1}}{2 + \beta_{p-1}} \left(\frac{1 - \beta_{p-1}}{1 + \beta_{p-1}} \right)^{(1-\beta_{p-1})/2} \sin \frac{\pi(1-\beta_{p-1})}{2} \cos \frac{\pi(1-\beta_{p-1})}{2}
\]
\[
= \frac{\pi \beta_{p-1}}{2} + \tan^{-1} \frac{\beta_{p-1}n(\beta_{p-1})}{2m(\beta_{p-1}) + \beta_{p-1}n(\beta_{p-1})} \sin \frac{\pi(1-\beta_{p-1})}{2} \frac{\pi(1-\beta_{p-1})}{2}.
\]

From (2.1), we can see that
\[
\arg \left\{ \frac{z_0f^{(p)}(z_0)}{f^{(p-1)}(z_0)} \right\} \geq \frac{\pi \beta_{p}}{2}. \tag{2.6}
\]

This contradicts hypothesis in (2.4).

For the case \(\arg q_1(z_0) = -\pi \beta_{p-1}/2 \), applying the same method as the above, gives
\[
\arg \left\{ \frac{z_0f^{(p)}(z_0)}{f^{(p-1)}(z_0)} \right\} \leq -\frac{\pi \beta_{p}}{2}. \tag{2.7}
\]

This also contradicts hypothesis in (2.4) and therefore, we have
\[
|\arg q_1(z)| < \pi \beta_{p-1}/2 \quad \text{for} \quad |z| < |1|.
\]

This completes the proof. \(\square\)

Let us go to next step and define the function
\[
q_2(z) = \frac{zf^{(p-2)}(z)}{3f^{(p-3)}(z)}, \quad q_2(0) = 1
\]

and applying the same method as the above, we have the following theorem.

Theorem 2.2 Let \(f(z) \in A_p, \ p \geq 2, \ 0 < \beta_2 \leq 1 \) and suppose that
\[
\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_{p}}{2}, \quad z \in \mathbb{D}. \tag{2.8}
\]

Then we have
\[
\left| \arg \left\{ \frac{zf^{(p-2)}(z)}{f^{(p-3)}(z)} \right\} \right| < \frac{\pi \beta_{p-2}}{2}, \quad z \in \mathbb{D}. \tag{2.9}
\]

where \(\beta_{p-2} \) we obtain from \(\beta_{p-1} \) using formula (2.1). Furthermore,
and where β_{p-1} we obtain from β_p using formula (2.1) too.

Applying the same step as the above and under the hypothesis of Theorem 2.1, we have the following theorem

Theorem 2.3 Let $f(z) \in A_p$, $p \geq 2$. For given $\beta_1 \in (0, 1]$ there exist $\beta_k \in (0, 1]$, $k = 2, \ldots, p$, of the form (2.1) such that for all $z \in \mathbb{D}$, we have

$$\left| \arg \left\{ \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)} \right\} \right| < \frac{\pi \beta_p}{2}, \quad z \in \mathbb{D}, \quad (2.10)$$

Furthermore

$$0 < \beta_1 \leq \beta_2 \leq \cdots \leq \beta_{p-1} \leq \beta_p \leq 1.$$

It is easy to see that Theorem 2.3 holds for the case $\beta_p = \beta_{p-1} = \cdots = \beta_1 = 1$ and then Theorem 2.3 becomes Lemma 1.1 and in this sense Theorem 2.3 improves Lemma 1.1.

Corollary 2.4 Let $f(z) \in A_p$, $p \geq 2$. If $\beta_1 \in (0, 1]$ and $\beta_k \in (0, 1]$, $k = 2, \ldots, p$ are of the form (2.1), then for all $k = 1, \ldots, p - 1$ and for all $z \in \mathbb{D}$, we have

$$\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_k}{2} \quad \Rightarrow \quad \left| \arg \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} \right| < \frac{\pi \beta_k}{2}.$$

Proof For given $\beta_1 \in (0, 1]$ there exist $\beta_k \in (0, 1]$, $k = 2, \ldots, p$, of the form (2.1) such that

$$\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_p}{2} \quad \Rightarrow \quad \left| \arg \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} \right| < \frac{\pi \beta_k}{2},$$

where

$$0 < \beta_1 \leq \beta_2 \leq \cdots \leq \beta_{p-1} \leq \beta_p \leq 1. \quad (2.11)$$

Therefore, from (2.11), we have

$$\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_p}{2} \quad \Rightarrow \quad \left| \arg \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} \right| < \frac{\pi \beta_k}{2}.$$

Corollary 2.5 If $f(z) \in A_p$, $p \geq 2$, then for all $\gamma \in (0, 1]$ and for all $k \in \{1, \ldots, p\}$ and for all $s \in \{k, \ldots, p - 1\}$, and for all $z \in \mathbb{D}$, we have

$$\left| \arg \left\{ \frac{zf^{(s)}(z)}{f^{(s-1)}(z)} \right\} \right| < \frac{\pi \gamma}{2} \quad \Rightarrow \quad \left| \arg \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} \right| < \frac{\pi \gamma}{2}.$$
Corollary 2.6 Let \(f(z) \in A_p, p \geq 2, 0 < \beta_p \leq 1 \) and suppose that
\[
\left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| < \frac{\pi \beta_p}{2}, \ z \in \mathbb{D}.
\]

Then we have
\[
\sup_{z \in \mathbb{D}} \left| \arg \left\{ \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right\} \right| > \sup_{z \in \mathbb{D}} \left| \arg \left\{ \frac{zf^{(p-1)}(z)}{f^{(p-2)}(z)} \right\} \right| > \cdots > \sup_{z \in \mathbb{D}} \left| \arg \left\{ \frac{zf^{(k)}(z)}{f^{(k-1)}(z)} \right\} \right|.
\]

Theorem 2.7 Let \(\beta = \alpha + \left(\frac{2}{\pi} \right) \tan^{-1} \alpha \) and \(f(z) \in A_p, p \geq 2 \). Suppose also that
\[
\left| \arg \left\{ f^{(p)}(z) \right\} \right| < \frac{\pi \beta_p}{2}, \ z \in \mathbb{D}, \quad (2.12)
\]

Then we have
\[
\left| \arg \left\{ \frac{zf'(z)}{f(z)} \right\} \right| < \frac{\pi \beta_1}{2}, \ z \in \mathbb{D}, \quad (2.13)
\]

where \(\beta_1 \) is described in (2.1) with \(\beta_p = \alpha + \beta \).

Proof If
\[
\left| \arg \left\{ \frac{f^{(p-1)}(z)}{z} \right\} \right| < \frac{\pi \alpha}{2} \quad (2.14)
\]

in \(|z| < |z_0| \) and
\[
\arg \left\{ \frac{f^{(p-1)}(z_0)}{z_0} \right\} = \frac{\pi \alpha}{2} \quad \text{or} \quad \arg \left\{ \frac{f^{(p-1)}(z_0)}{z_0} \right\} = -\frac{\pi \alpha}{2}, \quad (2.15)
\]

then for the first case in (2.15), from Lemma 1.2, we have
\[
\frac{z_0 f^{(p)}(z_0)}{f^{(p-1)}(z_0)} - 1 = ik\alpha
\]

for some \(k \geq 1 \). This gives
\[
\arg \left\{ f^{(p)}(z_0) \right\} = \arg \left\{ \frac{f^{(p-1)}(z_0)}{z_0} (ik\alpha + 1) \right\}
\]
\[
= \arg \left\{ \frac{f^{(p-1)}(z_0)}{z_0} \right\} + \arg \{ik\alpha + 1\}
\]
\[
\geq \frac{\pi}{2} \left\{ \alpha + \left(\frac{2}{\pi} \right) \tan^{-1} \alpha \right\} = -\frac{\pi \beta}{2}.
\]

This contradicts hypothesis (2.12). In the second case in (2.15), applying the same method as in the first case, we obtain
\[
\arg \left\{ f^{(p)}(z_0) \right\} \leq -\frac{\pi}{2} \left\{ \alpha + \left(\frac{2}{\pi} \right) \tan^{-1} \alpha \right\} = \frac{\pi \beta}{2}.
\]
This also contradicts hypothesis (2.12). So (2.14) holds in the whole unit disc \mathbb{D}. From (2.12) and (2.14), we have

$$\left| \arg \left\{ \frac{zf'(p)(z)}{f'(p-1)(z)} \right\} \right| = \left| \arg \left\{ \frac{f'(p)(z)z}{f'(p-1)(z)} \right\} \right|$$

$$\leq \left| \arg \left\{ f'(p)(z) \right\} \right| + \left| \arg \left\{ \frac{f'(p-1)(z)}{z} \right\} \right|$$

$$< \frac{\pi(\alpha + \beta)}{2}, \quad z \in \mathbb{D}.$$

Applying Theorem 2.3, we obtain (2.13). \square

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Brannan, D.A., Kirwan, W.E.: On some class of bounded univalent functions. J. Lond. Math. Soc. 2(1), 1431–1443 (1969)
2. Nunokawa, M.: On the theory of multivalent functions. Tsukuba J. Math. 11(2), 273–286 (1987)
3. Nunokawa, M.: On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A 69(7), 234–237 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.