A genome-wide association study follow-up suggests a possible role for PPARG in systemic sclerosis susceptibility

Elena López-Isac1, Lara Bossini-Castillo1, Carmen P Simeon2, María Victoria Egurbide3, Juan José Alegre-Sancho4, Jose Luis Callejas5, José Andrés Roman-Ivorra6, Mayka Freire7, Lorenzo Beretta8, Alessandro Santaniello8, Paolo Airò9, Claudio Lunardi10, Nicolas Hunzelmann11, Gabriela Riemekasten12, Torsten Witte13, Alexander Kreuter14, Jörg H W Distler15, Annemie J Schuenwegh16, Madelon C Vonk17, Alexandre E Voskuyl18, Paul G Shiels19, Jacob M van Laar20, Carmen Fonseca21, Christopher Denton21, Ariane Herrick22, Jane Worthington22, Shervin Assassi23, Bobby P Koeleman24, Maureen D Mayes23, Timothy RDJ Radstake25, Javier Martin1* and Spanish Scleroderma Group

Abstract

Introduction: A recent genome-wide association study (GWAS) comprising a French cohort of systemic sclerosis (SSc) reported several non-HLA single-nucleotide polymorphisms (SNPs) showing a nominal association in the discovery phase. We aimed to identify previously overlooked susceptibility variants by using a follow-up strategy.

Methods: Sixty-six non-HLA SNPs showing a P value <10⁻⁴ in the discovery phase of the French SSc GWAS were analyzed in the first step of this study, performing a meta-analysis that combined data from the two published SSc GWASs. A total of 2,921 SSc patients and 6,963 healthy controls were included in this first phase. Two SNPs, PPARG rs310746 and CHRNA9 rs6832151, were selected for genotyping in the replication cohort (1,068 SSc patients and 6,762 healthy controls) based on the results of the first step. Genotyping was performed by using TaqMan SNP genotyping assays.

Results: We observed nominal associations for both PPARG rs310746 (P_MH = 1.90 x 10⁻⁶, OR, 1.28) and CHRNA9 rs6832151 (P_MH = 4.30 x 10⁻⁶, OR, 1.17) genetic variants with SSc in the first step of our study. In the replication phase, we observed a trend of association for PPARG rs310746 (P value = 0.066; OR, 1.17). The combined overall Mantel-Haenszel meta-analysis of all the cohorts included in the present study revealed that PPARG rs310746 remained associated with SSc with a nominal non-genome-wide significant P value (P_MH = 5.00 x 10⁻⁷; OR, 1.25). No evidence of association was observed for CHRNA9 rs6832151 either in the replication phase or in the overall pooled analysis.

Conclusion: Our results suggest a role of PPARG gene in the development of SSc.
Introduction
Systemic sclerosis (SSc) is a complex autoimmune disease with heterogeneous clinical manifestations characterized by extensive fibrosis in the skin and multiple internal organs, vascular damage, and immune imbalance with autoantibody production [1]. SSc patients are commonly classified in two major subtypes: limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc), the latter with more progressive fibrosis of the skin, lungs, and other internal organs and, ultimately, with worse prognosis [2].

The etiology of this disorder is still unclear. However, epidemiologic and genetic studies clearly reflect the existence of a complex genetic component together with the influence of environmental factors [1]. During recent years, great advances have been made in our knowledge of the genetic basis of SSc [3,4], in part, thanks to the two independent genome-wide associations studies (GWASs) conducted in Caucasian populations that have been recently published [5,6], and several consequent follow-up studies [7-10].

However, despite these advances, the number of currently known loci explaining the genetic component of SSc is limited. To date, 13 loci have been identified as genetic risk factors for SSc at the genome-wide significance level. In other autoimmune diseases with multifactorial inheritance, such as Crohn disease, ulcerative colitis, and systemic lupus erythematosus, individual GWAS scans and follow-up meta-analyses have identified more than 71, 47, and 35 susceptibility loci, respectively [11-13]. Therefore, it is expected that additional risk factors for SSc remain to be discovered, and further meta-analyses and large replication studies are needed to identify part of the missing heritability of this disease.

Follow-up studies focused on the so-called grey zone of the GWASs, where SNPs with tier 2 associations (P values between 5×10^{-8} and 5×10^{-3}) are located, constitute one of the most useful GWAS data-mining methods, because possible real association signals could be masked in that area because of a lack of statistical power. On this basis, we aimed to perform a follow-up study of the SNPs located in the grey zone of the GWAS by Allanore et al. [6], taking advantage of our GWAS data sets. We hypothesize that using a larger cohort would increase the statistical power and might lead to the identification of new suitable SSc genetic risk factors.

Methods
Study design
In the first step of this study, we focused on the 90 GWAS-genotyped SNPs that reached a P value $< 10^{-8}$ in the discovery phase of the GWAS carried out by Allanore et al. [6]. Then, we analyzed the SNPs overlapping with those included in Radstake et al. [5]. After excluding those SNPs located within MHC genes or in previously associated loci, data for 66 SNPs were selected. A meta-analysis including these 66 SNPs was performed on the combined data set from the two SSc GWASs, showing only two SNPs (rs310746 PPARG and rs6832151 CHRNA9 genetic variants) with a P value $< 10^{-5}$ (see later). These two genetic variants were genotyped in independent replication cohorts. Finally, we performed a meta-analysis for these two selected SNPs combining genotype data from both first and replication steps.

Study population
The first step of the study comprised a total of 2,921 SSc patients and 6,963 healthy controls of Caucasian ancestry from two previously published GWASs (European, USA, and French) [5,6]. The replication cohort was composed of 1,068 SSc patients and 1,490 healthy controls from two case–control sets of European ancestry (Italy and United Kingdom). We also included 5,272 extra English controls from The Wellcome Trust Case Control Consortium for the replication step comprising a total of 6,762 controls for this stage.

All SSc patients fulfilled the classification criteria by LeRoy et al. [2]. Approval from the local ethical committees (Comitè de Bioética del Consejo Superior de Investigaciones Científicas, U.O. Comitato di Etica e Sperimentazione Farmaci Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico di Milano, Comitato Etico Azienda Ospedaliera Universitaria Integrata di Verona, The Ethics Committee of the Spedali Civili, Brescia, Royal Free Hospital and Medical School Research Ethics Committee, Manchester University Research Ethics Committee, Local Research Ethics Committee at Glasgow Royal Infirmary, Newcastle University Ethics Committee, Ethical Committee of the University Erlangen-Nuremberg, Local Ethics Committee of the Radboud University Nijmegen Medical Centre, Medical Ethics Review Committee of the VU University, Medische Ethische Commissie Leids Universitair Medisch Centrum, Ethics Review Board of the Ruhr University Bochum, Ethics Committee of the University of Cologne, Ethical Committee from the Charité University Hospital, Ethik-Kommission der MHH, Internal Review Board of Texas University), and written informed consents from all participants were obtained in accordance with the tenets of the Declaration of Helsinki.

Genotyping
In the first stage, genotype data for the 66 selected SNPs were obtained from both published SSc GWASs [5,6]. QC filters and principal component analysis were applied to the GWASs data, as described in Radstake et al. [5] and Allanore et al. [6].

In the replication phase, DNA from patients and controls was obtained by using standard methods. Genotyping was performed by using TaqMan 5′ allele discrimination
Table 1 Meta-analysis of 66 GWAS-genotyped SNPs in scleroderma (SSc) patients and healthy controls of Caucasian origin

Chr	Locus	SNP	Minor/major	MAF cases	MAF controls	PMH OR (CI 95%)a	BD P	
3	PPARG	rs310746	C/T	0.108	0.086	1.90E-06	1.28	
4	CHRNA9	RHCH	rs6832151	G/T	0.315	0.281	4.30E-06	1.17
2	DYSF	rs11692280	A/G	0.195	0.220	2.31E-04	0.86	
4	PGDS	rs17021463	T/G	0.393	0.421	2.45E-04	0.89	
17	DSGR6	rs3543958	G/T	0.127	0.109	4.98E-04	1.18	
2	ORMID3/GSDML	rs8079416	C/T	0.435	0.461	1.13E-03	0.90	
1	-	rs6679637	A/G	0.100	0.116	2.35E-03	0.85	
1	CSFR3	rs4653210	G/T	0.111	0.122	3.71E-03	0.86	
3	PPARG/TSEN2	rs9855622	T/C	0.124	0.110	4.75E-03	1.14	
7	CACNA2D1	rs1544461	A/G	0.349	0.409	5.14E-03	1.09	
18	CNDP2	rs2241508	G/A	0.421	0.401	5.26E-03	1.09	
11	PHF21A/CREB3L	rs7128538	A/G	0.491	0.470	5.51E-03	1.09	
14	NAP53	rs1299512	G/A	0.228	0.211	7.76E-03	1.10	
13	RFC3	rs7335534	G/A	0.398	0.415	8.61E-03	0.91	
8	DDEF1	rs7817803	A/C	0.437	0.421	0.012	1.08	
8	DDEF1	rs3057	C/T	0.439	0.423	0.012	1.08	
17	TMEM132E/CCDC16	rs887081	T/G	0.115	0.129	0.013	0.88	
5	CDH18	rs1911856	T/C	0.059	0.048	0.013	1.18	
7	CAV1	rs2402091	A/G	0.110	0.122	0.014	0.88	
7	-	rs1228966	A/G	0.222	0.208	0.015	1.09	
7	SEMA3A	rs1228870	T/G	0.222	0.208	0.017	1.09	
5	LOC389293	rs7708428	G/A	0.401	0.418	0.019	0.92	
9	XPA	rs2808699	A/C	0.403	0.423	0.021	0.92	
8	DDEF1	rs7839523	G/T	0.440	0.425	0.021	1.07	
9	XPA	rs2805790	A/G	0.403	0.422	0.022	0.92	
3	IRAK2	rs1170650	T/C	0.465	0.482	0.024	0.93	
9	XPA	rs2805815	A/G	0.403	0.422	0.024	0.93	
2	NOL10	rs4668690	A/G	0.067	0.059	0.026	1.15	
7	-	rs1029541	T/C	0.230	0.219	0.028	1.08	
9	XPA	rs2668797	A/G	0.071	0.112	0.029	0.933	
14	-	rs1036570	A/G	0.322	0.335	0.032	0.92	
3	-	rs4128236	T/C	0.322	0.306	0.034	1.07	
1	-	rs1025871	A/G	0.193	0.181	0.038	1.08	
7	CADPS2	rs2501439	G/A	0.418	0.432	0.042	0.93	
7	-	rs757747	T/C	0.229	0.218	0.047	1.07	
7	WBSCR17	rs4585627	T/C	0.323	0.308	0.051	1.07	
10	-	rs1254860	C/T	0.110	0.100	0.064	1.09	
8	DDEF1	rs6470805	G/A	0.333	0.344	0.069	0.94	
9	LCN9	rs541131	G/A	0.400	0.385	0.071	1.06	
5	CDH18	rs2202798	T/C	0.080	0.069	0.078	1.11	
3	TGFBI	rs6799581	G/T	0.260	0.268	0.080	0.94	
5	CDH18	rs12655266	A/G	0.074	0.065	0.111	1.10	
4	NPY2R	rs2880417	G/A	0.292	0.281	0.117	1.05	

López-Isac et al. Arthritis Research & Therapy 2014, 16:R6
http://arthritis-research.com/content/16/1/R6
predesigned assays from Applied Biosystems (rs310746 ID: C___8756618_10; rs6832151 ID: C__29224385_10, Foster City, CA, USA) in both 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA), and LightCycler 480 Real-Time PCR System (Roche Applied Science, Mannheim, Germany). Genotyping call rate was >98% for both genotyped SNPs.

Table 1 Meta-analysis of 66 GWAS-genotyped SNPs in scleroderma (SSc) patients and healthy controls of Caucasian origin (Continued)

SNP	Genotype	MAF	P-value	OR (95% CI)	P-value	Genotype effect	
rs10756265	A/G	0.342	0.352	0.251	0.96	0.00-0.10	2.18E-04
rs443042	G/A	0.366	0.376	0.261	0.96	0.00-0.10	2.01E-04
rs9696357	T/C	0.154	0.160	0.268	0.95	0.87-1.03	2.11E-03
rs10974423	A/C	0.439	0.442	0.282	0.96	0.89-1.04	1.22E-03
rs7422405	A/G	0.428	0.433	0.385	0.97	0.91-1.03	1.93E-04
rs35883	A/G	0.457	0.4564	0.556	1.019	0.94-1.10	1.04E-04
rs2248200	C/T	0.484	0.4815	0.598	1.01	0.96-1.07	1.35E-03
rs1688165	A/G	0.485	0.4820	0.628	1.01	0.96-1.07	8.62E-04
rs1477020	T/C	0.121	0.1235	0.649	0.97	0.86-1.10	8.30E-06
rs631090	C/T	0.073	0.0702	0.729	1.02	0.90-1.15	3.73E-04
rs1990629	G/A	0.128	0.1308	0.736	0.98	0.87-1.10	2.13E-05
rs1123237	T/C	0.275	0.2721	0.759	1.01	0.92-1.10	1.40E-04
rs322151	T/C	0.252	0.2527	0.909	0.99	0.94-1.06	3.37E-04

N, 2,921 SSc/6,963 controls. *Odds ratio for the minor allele. Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; \(P_{\text{BD}} \), Breslow–Day test P-value; \(P_{\text{MH}} \), allelic Mantel-Haenszel fixed effects model P-value; SNP, single nucleotide polymorphism.

Statistical analysis
Association analyses of the genotype data was carried out with StatsDirect V.2.6.6 (StatsDirect, Altrincham, UK) and PLINK V.1.07 [14] software. Statistical significance was calculated by 2 × 2 contingency tables and \(\chi^2 \) or Fisher Exact test, when necessary, to obtain \(P \) values, odds ratios (ORs), and 95% confidence intervals (CIs) in the population-specific analyses. Mantel-Haenszel tests under fixed effects or random effects, when appropriate, were performed to meta-analyze the combined data. Breslow–Day method (BD) was used to assess the homogeneity of the associations among the different populations (Breslow–Day \(P \) values < 0.05 were considered statistically significant). Hardy-Weinberg equilibrium (HWE) was tested for all cohorts (HWE \(P \) values lower than 0.01 were considered to show significant deviation from the equilibrium). None of the included cohorts showed significant deviation from HWE for the two genotyped SNPs. Since the analyses were performed by using GWAS data, the statistical threshold for considering a \(P \) value as a significant \(P \) value in the allelic association analyses was set at \(5 \times 10^{-8} \).

The statistical power of the combined analysis was 70% for the \(PPARG \) rs310746 and 100% for the \(CHRNA9 \) rs6832151 to detect associations with OR = 1.3 and a statistical significance of \(5 \times 10^{-8} \), according to Power Calculator for Genetic Studies 2006 software [15].

Results
Table 1 shows the results of the 66 GWAS-genotyped SNPs selected for the combined meta-analysis of the two GWAS data sets performed in the first step of this study (see Additional file 1: Table S1 provides the results from both GWASs and the combined meta-analysis for the 66 selected SNPs). Two SNPs showed a \(P \) value lower than \(10^{-5} \) (\(PPARG \) rs310746: \(P_{\text{MH}} = 1.90 \times 10^{-6} \); OR, 1.28; CI,
95%, 1.12 to 1.47; and CHRNA9 rs6832151: $P_{MH} = 4.30 \times 10^{-6}$, OR, 1.17; CI 95%, 1.08 to 1.27), and presented no significant Breslow-Day P values (P_{BD}) showing homogeneity in the ORs among populations. Therefore, these two SNPs were selected to genotype in independent cohorts. Patients and healthy controls were found to be in HWE at 1% significance level for both selected SNPs.

In the replication phase, we observed a trend of association for the PPARG rs310746 genetic variant (P value = 0.066; OR = 1.17; CI 95%, 0.99 to 1.27), and presented no significant Breslow-Day P values (P_{BD}) showing homogeneity in the ORs among populations. However, no evidence of association with the disease when the meta-analysis was performed either under a random-effects model (heterogeneity of the ORs was observed for this SNP; P value = 5.10 × 10^{-2}, OR = 1.10; CI 95%, 0.99 to 1.22), or a fixed-effects model (P value = 1.07 × 10^{-4}; OR = 1.12; CI 95%, 1.06 to 1.19) (Table 2, lower rows; Figure 1).

Discussion

In this study we conducted a meta-analysis combining previously published SSc GWASs data for 66 SNPs and analyzed the possible role of two selected SNPs, PPARG rs310746 and CHRNA9 rs6832151, in SSc risk by using independent replication cohorts.

Meta-analyses are a useful tool to increase the statistical power of genetic studies, thus improving the accuracy of the estimations of statistical significance. Of

Table 2 Analysis of rs310746 and rs6832151 minor allele frequencies in the GWASs, replication, and combined cohorts

Cohort, N (cases/controls)	Chr	Locus	SNP	Minor/major	MAF cases	MAF controls	P_{MH}	OR (CI 95%)	P_{BD}
GWASs	3	SYN2	PPARG	rs310746 C/T	0.108	0.087	1.90E-06	1.28 (1.12-1.47)	0.334
2921/6963	4	CHRNA9	RHOH	rs6832151 G/T	0.315	0.282	4.30E-06	1.17 (1.075-1.27)	0.054
Replication	3	SYN2	PPARG	rs310746 C/T	0.099	0.103	0.066	1.17 (0.99-1.38)	0.231
1068/5762	4	CHRNA9	RHOH	rs6832151 G/T	0.296	0.280	0.962	0.99 (0.89-1.11)	0.934
Combined	3	SYN2	PPARG	rs310746 C/T	0.106	0.094	0.006	1.25 (1.15-1.37)	0.324
3099/17325	4	CHRNA9	RHOH	rs6832151 G/T	0.310	0.281	1.07E-04	1.12 (1.06-1.19)	0.017

*Odds ratio for the minor allele. aP value from meta-analysis under random effects = 0.051; OR = 1.10 (0.99-1.22).

Chr, chromosome; CI, confidence interval; MAF, minor allele frequency; OR, odds ratio; P_{BD}, Breslow–Day test P value; P_{MH}, allelic Mantel-Haenszel fixed-effects model P value; SNP, single-nucleotide polymorphism.

![Figure 1 Forest plots of PPARG rs310746 and CHRNA9 rs6832151](http://arthritis-research.com/content/16/1/R6)

Figure 1 Forest plots of PPARG rs310746 and CHRNA9 rs6832151. Forest plots showing the odds ratios and confidence intervals of both PPARG rs310746 (under a fixed-effects model) and CHRNA9 rs6832151 (under a random-effects model) in all the populations included in the combined analysis.
note, associations identified from a single GWAS often tend to have inflated effect sizes [16]. On this basis, our data suggest that most signals from the grey zone observed in the discovery phase of the GWAS by Allanore et al. [6] presented inflated effect sizes, also called the winner’s curse. In fact, this effect was already observed in the replication study conducted by our group for the novel SSc genetic risk factors identified by Allanore et al. [6], in which we could not replicate the association described for RHOB [17].

Our overall combined meta-analysis showed that the association of the PPARG rs310746 genetic variant with SSc remained with a nominal but non-genome-wide significant \(P \) value. This SNP is located upstream of PPARG, which encodes the peroxisome proliferator-activated receptor gamma (PPARG). PPARG was initially identified in adipose tissue, where this nuclear receptor plays important roles in adipogenesis, insulin sensitivity, and homeostasis [18]. Interestingly, during recent years, several studies have identified a novel role of PPARG as an antifibrotic effecter. Thus, it has been reported that fibroblasts exposure to pharmacologic PPARG ligands give rise to suppression of collagen synthesis, myofibroblast differentiation, and other TGF-\(\beta \)-induced fibrotic responses in vitro [19-21]. Moreover, functional studies showed that PPARG agonist attenuated dermal fibrosis in mice with bleomycin-induced scleroderma [22,23].

These findings are remarkable in SSc, in which fibrosis is one of the main hallmarks of the disease. In this regard, Wei et al. [24] demonstrated that PPARG expression and function are impaired in SSc patients. Therefore, defects in PPARG expression may influence the uncontrolled progression of fibrosis in SSc. In addition, PPARG has been associated with other autoimmune diseases, such as inflammatory bowel disease [25,26] and psoriatic arthritis [27], and it is also a confirmed susceptibility locus in type 2 diabetes mellitus [28].

Although PPARG was the most likely biologic candidate gene for the reported suggestive association signal, we could not rule out TIMP4 as another possible gene for this signal. Further analyses are required to elucidate the functional implication of the reported signal.

Regarding the CHRNA9 genetic variant, despite the suggestive association found in the first step of the present study, the overall combined meta-analysis did not show evidence of association with SSc. Moreover, the effect size of the analyzed genetic variant was heterogeneous between the different populations. Although our data showed heterogeneity and lack of association in this locus, a slight or modest effect of CHRNA9 cannot be ruled out, and further studies will be required to determine whether this region is associated with SSc.

It is worth mentioning that the analyzed CHRNA9 SNP has been previously associated with Graves disease (first, through a GWAS performed in the Chinese Han population [29], and subsequently, in a replication study performed in a Polish Caucasian population [30]), but this is the only reported association between this gene and an autoimmune disease.

Conclusion

In conclusion, we report a suggestive association between PPARG rs310746 and SSc. However, further studies are needed to establish this locus firmly as a new susceptibility SSc genetic risk factor.

Additional files

- Additional file 1: GWASs results from Allanore et al. [6] and Radstake et al. [5], and combined meta-analysis. Description: this file contains Additional file 1: Table S1 showing the results for the 66 selected SNPs in Allanore et al. and Radstake et al. GWASs, followed by the results of the combined meta-analysis performed in the present study.
- Additional file 2: Genotype and minor allele frequencies of rs310746 and rs6832151 SNPs in two European cohorts (Replication-step). Description: this file contains: Additional file 2: Table S2 showing the genotype and allele distributions of rs310746 and rs6832151 genetic variants in two European cohorts (1032 SSc cases and 6700 controls).

Abbreviations

- BD test: Breslow-day test
- CHRNA9: cholinergic receptor nicotinic, Alpha 9
- CI: Confidence interval
- dSSc: diffuse cutaneous systemic sclerosis
- DNA: deoxyribonucleic acid
- GWAS: genome-wide association study
- HLA: Human leukocyte antigens
- HD: Hardy-Weinberg equilibrium
- ICSSc: limited cutaneous systemic sclerosis
- MAF: minor allele frequency
- MHC: major histocompatibility complex
- OR: Odds ratio
- PCR: polymerase chain reaction
- PPARG: peroxisome proliferator-activated receptor gamma
- SNP: single nucleotide polymorphism
- SSc: systemic sclerosis
- TGF: transforming growth factor

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ELI and LBC contributed to the analysis and interpretation of data and the drafting of the manuscript. CPS and AH participated in the acquisition of data and the revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We thank Sofia Vargas, Sonia García, and Gema Robledo for their excellent technical assistance, and all the patients and control donors for their essential collaboration. We thank Banco Nacional de ADN (University of Salamanca, Spain), who supplied part of the control DNA samples. This work was supported by the following grants: JM was funded by GEN-FER from the Spanish Society of Rheumatology, SAF2009-11110 and SAF2012-34435 from the Spanish Ministry of Economy and Competitiveness, CTSG-4977, and CTG-180 from Junta de Andalucía, and is sponsored by the Orphan Disease Program grant from the European League Against Rheumatism (EULAR). This study was also funded by PI-0590-2010, from Consejería de Salud y Bienestar Social, Junta de Andalucía, Spain. JLCR and JM are funded by Consejería de Salud, Junta de Andalucía, through PI-0590-2010. ELI was supported by Ministerio de Educación, Cultura y Deporte through the program FPI. TRDJR was funded by the VIDI laureate from the Dutch Association of Research (NWO) and Dutch Arthritis.
Spanish Scleroderma Group

Spanish Scleroderma Group: Norberto Ortego-Centeno and Raquel Ríos, Unidad de Enfermedades Sistémicas Autoinmunes, Department of Internal Medicine, Hospital Clínico Universitario San Cecilio, Granada; Nuria Navarrete, Department of Internal Medicine, Hospital Virgen de las Nieves, Granada; Rosa García Portales, Department of Rheumatology, Hospital Virgen de la Victoria, Málaga; María Teresa Camps, Department of Internal Medicine, Hospital Carlos Haya, Málaga; Antonio Fernández-Nebro, Department of Rheumatology, Hospital Carlos Haya, Málaga; María F. González-Escribano, Department of Immunology, Hospital Virgen del Rocío, Sevilla; Julio Sánchez-Francés, Francisco José García-Hernández and MP Jesús Castillo, Department of Internal Medicine, Hospital Virgen del Rocío, Sevilla; Mª Ángeles Aguirre and Inmaculada Gómez-García, Department of Rheumatology, Hospital Reina Sofia/IMIBIC, Córdoba; Patricia Carreira, Department of Rheumatology, Hospital Universitario 12 de Octubre, Madrid; Benjamín Fernández-Gutierrez and Luis Rodríguez-Rodríguez, Department of Rheumatology, Hospital Clínico San Carlos, Madrid; Esther Vicente, Department of Rheumatology, Hospital La Princesa, Madrid; José Luis Andreu and Mónica Fernández de Castro, Department of Rheumatology, Hospital Puerta de Hierro Majadahonda, Madrid; Paloma García de la Peña, Department of Rheumatology, Hospital Madrid Norte Sanchinarro, Madrid; Francisco Javier López-Longo and Lina Martínez, Department of Rheumatology, Hospital General Universitario Gregorio Marañón, Madrid; Vicente Fonollola and Carmen Pilar Simelón, Department of Internal Medicine, Hospital Valle de Hebrón, Barcelona; Gerard Espinosa, Department of Internal Medicine, Hospital Clínico Barcelona; Iván Castelví, Department of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona; Carlos Toluca, Department of Internal Medicine, Hospital Parc Taulí, Sabadell; Anna Pons, Department of Rheumatology, Hospital Del Mar, Barcelona; Mónica Rodríguez Carballera, Department of Internal Medicine, Hospital Universitari de Bellvitge, Barcelona; Manel Rubio Rivas, Department of Internal Medicine, Hospital Universitari de Bellvitge, Barcelona; Vera Ortiz Santamaría, Department of Rheumatology, Hospital General de Granollers, Granollers; Miguel Ángel González-Gay, Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander; Bernardino Díaz and Luis Trapella, Department of Internal Medicine, Hospital Central de Asturias, Oviedo; Adrián Sousa, Unidad de Trombosis y Vasculitis, Department of Internal Medicine, Hospital Xeral-Complexo Hospitalario de Vigo, Vigo; Pérsia Fanlo Mateo, Department of Internal Medicine Hospital Virgen del Camino, Pamplona; Luis Sáez-Cortes, Unidad de Enfermedades Autoinmunes Sistémicas, Department of Internal Medicine, Hospital Universitario Miguel Servet, Zaragoza; Federico Díaz and María Fernández, Department of Rheumatology, Hospital Universitario de Canarias, Tenerife; Emma Beltrán, Department of Rheumatology, Hospital General Universitario de Valencia, Valencia; and Francisco J. Blanco García and Natividad Oreiro, Department of Rheumatology, Hospital General Universitario de Valencia, Valencia; and Nacional Institute of Arthritis and Musculoskeletal Diseases (NIH-NIAMS) Foundation (National Reumafonds). TW was granted by DFG WI 1031/6.1. Study on USA samples were supported by US National Institutes of Health and National Institute of Arthritis and Musculoskeletal Diseases (NIH-NIAMS) R01-AR-055258, Two-Stage Genome Wide Association Study in Systemic Sclerosis (MDM) and by the NIH-NIAMS Center of Research Translation (CORT) in SSc (PS04056144A) (MDM, FCA, FKT), the NIH-NIAMS SSc Family Registry and DNA Repository (NI01-AR-O-22511) (MDM), NIH-KL2RR024149 (SA), K23AR061436 (SA), and the Department of Defense Congestionally Directed Medical Research Programs (W81XWH-07-01-0111) (MDM).

Author details

1 Instituto de Parasitolatía y Biomedicina López-Neyra, IPRBN-CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento s/n 18016-Armilla, Granada, Spain. 2 Servicio de Medicina Interna, Hospital Valle de Hebron, Barcelona, Spain. 3 Department of Internal Medicine, Hospital Universitario Cruces, Barakaldo, Spain. 4 Department of Rheumatology, Hospital d’Ourense, Ourense, Spain. 5 Department of Rheumatology, Hospital Clínico San Cecilio, Granada, Spain. 6 Department of Rheumatology, Hospital Universitario La Fe, Valencia, Spain. 7 Department of Internal Medicine, Thrombosis and Vasculitis Unit, Complexo Hospitalario Universitario de Vigo, Vigo, Spain. 8 Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy. 9 UO Reumatologia ed Immunologia Clinica, Spedali Civili, Brescia, Italy. 10 Department of Medicine, Università degli Studi di Verona, Verona, Italy. 11 Department of Dermatology, University of Cologne, Cologne, Germany. 12 Department of Rheumatology and Clinical Immunology, Charité University Hospital, and German Rheumatism Research Centre, a Leibniz Institute, Berlin, Germany. 13 Hannover Medical School, Hannover, Germany. 14 Ruhr University of Bochum, Bochum, Germany. 15 Department of Internal Medicine, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany. 16 Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands. 17 Department of Rheumatology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands. 18 Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands. 19 Section of Epigenetics, Inst. Cancer Sciences, MVLs, University of Glasgow, Glasgow, UK. 20 Institute of Cellular Medicine, Newcastle University, Newcastle, UK. 21 Centre for Rheumatology, Royal Free and University College Medical School, London, UK. 22 Arthritis Research UK Epidemiology Unit and NIHR Manchester Musculoskeletal Biomedical Research Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 23 The University of Texas Health Science Center-Houston, Houston, TX, USA. 24 Section Complex Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands. 25 Department of Rheumatology and Clinical Immunology, University Medical Center, Utrecht, The Netherlands.

Received: 12 July 2013 Accepted: 18 December 2013 Published: 9 January 2014

References

1. Golabi A, Avvedimento EV, Krieg T: Sclerodermia. N Engl J Med 2009, 360:1989–1993.
2. LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA Jr, Rowell N, Wollheim F: Sclerodermia (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988, 15:202–205.
3. Martín JE, Bosi-CASTILLO L, Martin J: Unrevaling the genetic component of systemic sclerosis. Hum Genet 2012, 131:1101–1119.
4. Assassi S, Radtke TR, Mayes MD, Martin J: Genetics of sclerodermia: implications for personalized medicine? BMC Med 2013, 11:9.
5. Radtke TR, Gorlova O, Rueda B, Martín JE, Aliazei BD, Pizzol-Morales R, Coenen MJ, Vondk MC, Voskyuk AE, Schurenweg AEJ, Broen JC, Van Rei PL, Van't Slot R, Italiaander A, Ophof RA, Riemekasten G, Hunzelmann N, Simeon CP, Ortego-Centeno N, Gonzalez-Gay MA, Gonzalez-Escribano MF, Airo P, Van Laar J, Herrick A, Worthington J, Hesselstrand R, Smith V, De Keyer Y, Houissiau F, Clee MM, et al: Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 2010, 42:426–429.
6. Allarone Y, Saad M, Deude P, Avouac J, DISTLER JH, AMOUYEL P, Mattuch-Cerinic M, Riemekasten G, Airo P, Melchet I, Hachulla E, Cusi G, Wichtmann H, HPF J, LANDBET J, Hunzelmann N, Tiev K, Caramaschi P, Diet E, Kovalie-Blecko G, Valentin G, Mouton L, Cirjak L, Damjanov N, Salvi E, Conti C, Muller M, Muller-Ladenauer U, Riccieri V, Ruiz B, et al: Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 2011, 7:e1002091.
7. Gorlova O, Martin JE, Rueda B, Koelmem BP, Ying J, Tenule M, Diaz-Gallo LM, Broen JC, Vonk MC, Simeon CP, Aliazei BD, Coenen MJ, Voskyuk AE, Schurenweg AJ, Van Rei PL, Vanthuyne M, Van't Slot R, Italiaander A, Ophof RA, Hanzelmann N, Fonollola V, Ortego-Centeno N, Gonzalez-Gay MA, Garcia-Hernandez FJ, Gonzalez-Escribano MF, Airo P, Van Laar J, Worthington J, Hesselstrand R, Smith V, et al: Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 2011, 7:e1002178.
Fat and beyond: the diverse biology of systemic sclerosis. Arthritis Research & Therapy 2011, 13:163–1633.

Lyssenko V, Jonsson A, Almgren P, Pulzzi N, Isomaa B, Tuomi T, Berglund G, Althuler D, Nilsson P, Groop L. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2006, 359:2220–2232.

Chu X, Pan CM, Zhao SK, Liang J, Gao GQ, Zhang XM, Yuan GQ, Li CG, Xue LQ, Shen M, Liu W, Xie F, Yang SY, Wang HF, Shi JY, Sun WW, Du WH, Zuo QL, Shi JX, Xu BL, Guo CC, Zhan M, Gu ZH, Zhang XN, Sun F, Wang ZQ, Song ZY, Zou CY, Sun WH, Guo T, et al. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat Genet 2011, 43:897–901.

Szymanski K, Bednarczuk T, Krajewski P, Ploski R. The replication of the association of the rs6832151 within chromosomal band 4p14 with Graves’ disease in a Polish Caucasian population. Tissue Antigens 2012, 79:380–383.

Cite this article as: López-Isac et al.: A genome-wide association study follow-up suggests a possible role for PPAR in systemic sclerosis susceptibility. Arthritis Research & Therapy 2014 16:R6