Bleomycin, an Antitumor Antibiotic: Improved Microbiological Assay and Tissue Distribution Studies in Normal Mice

ROBERT F. PITTILLO, CAROLYN WOOLLEY, AND LOUISE S. RICE
Kettering-Meyer Laboratories, Southern Research Institute, Birmingham, Alabama 35203

Received for publication 21 July 1971

A microbiological assay was developed for bleomycin, an antitumor antibiotic reported to be active in human trials. The assay bacterium was a strain of Escherichia coli which is resistant to ethionine. Studies revealed relatively high concentrations of bleomycin in the blood and urine of mice after a single dose, < 0.33 LD10, injected intraperitoneally.

Streptomyces verticillus produces a group of antibiotics originally designated as bleomycin but subsequently subdivided into bleomycin A and B (13). In turn, bleomycin A was found to consist of six structurally closely related antibiotics, and bleomycin B was found to consist of five structurally closely related antibiotics (14). All of the bleomycins showed marked inhibitory activity against a broad spectrum of gram-positive and gram-negative bacteria. Inhibitory activity against Ehrlich carcinoma, sarcoma 180, and other transplantable mouse ascites tumors has also been reported (5, 6, 11, 12). Recent reports indicate that bleomycin is effective against certain types of cancer in humans (2, 3, 7, 10, 15). Microbiological assays for bleomycin employing Mycobacterium phlei NIHJ (13) or Bacillus subtilis PC1219 (6) have reportedly been used in purification and pharmacological studies, but detailed descriptions of the procedures were not published. Ohnema et al. (8) recently described in detail a bioassay for bleomycin with B. subtilis ATCC6633; the minimal inhibitory concentration of bleomycin was between 0.5 and 2.0 μg/ml, varying with different lots.

The purpose of this communication is to describe a new microbiological assay for bleomycin. This assay is capable of detecting concentrations of bleomycin as low as 0.1 μg/ml in blood. The distribution of bleomycin in blood and tissues of mice is described.

MATERIALS AND METHODS

Previously described methods (4) were used to find an appropriate microorganism for the assay of bleomycin. From approximately 100 species of bacteria tested for sensitivity to this compound, a strain of E. coli ATCC9637 resistant to ethionine (designated E. coli/ETH) was selected as the assay organism because of its unique sensitivity. The culture was maintained on agar slants of a glucose-salts medium (9) supplemented with 1.0 mg of ethionine per ml. Stationary cultures of E. coli/ETH were grown for 16 to 18 hr at 37 C in glucose-salts broth, supplemented with 100 μg of ETH/ml, for the preparation of seeded agar assay plates (100 by 15 mm, Lab-Tex Products, Division Miles Laboratories, Inc., Westmont, Ill.). Cells from these cultures were collected and washed twice by centrifugation in saline (0.85% NaCl), resuspended in saline, and adjusted to 20% light transmittance (660 nm) in a Spectronic-20 colorimeter (Bausch & Lomb, Inc., Rochester, N.Y.). This suspension was diluted 1:200 with saline, and 10 ml of this suspension was added to 1 liter of cooled (50 C) glucose-salts agar medium supplemented with 10 μg of guanine per ml. Earlier studies with a variety of individual metabolites revealed that the addition of guanine to the medium increased the sensitivity of E. coli/ETH to inhibition by bleomycin. A 6-ml amount of the inoculated agar was dispensed into the previously described petri plates.

A stock solution of bleomycin was prepared in sterile saline and was suitably diluted. When 0.08 ml of the various dilutions was added to filter paper discs (1.27 cm in diameter), the following concentrations were obtained (micrograms of bleomycin per disc): 0.008, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0. An additional bleomycin stock solution was prepared in which the drug was dissolved in freshly drawn mouse blood and diluted with saline. Filter paper discs (1.27 cm in diameter, no. 740-E; Schleicher and Schuell Co., Keene, N.H.) were impregnated with 0.08 ml of the respective solutions containing graded concentrations of the drug. The moist discs were placed on the surface of each seeded agar plate and pressed down securely with flame forceps. All samples and standards were tested in triplicate. Each individual plate contained a maximum of three discs. Two of these discs contained either...
Fig. 1. Standard curves (constructed by method of least squares) for the logarithmic-ratio microbiological assay of bleomycin in the body fluids of mice. Assay microorganism: Escherichia coli ATCC9637/ethionine. (A) Blood standard curve (index of precision, 0.049); (B) saline standard curve (index of precision, 0.049).

In all experiments, BDF1 mice (mixed sexes, 18 to 22 g) were used.

RESULTS AND DISCUSSION

E. coli ATCC9637/ETH was selected as the microorganism for the assay of bleomycin because of its sensitivity to this inhibitor, its linear dosage response, and its rapid growth rate. Representative standard assay curves, obtained with bleomycin dissolved in saline and in heparinized freshly drawn whole mouse blood, are shown in

Fig. 2. Concentrations of bleomycin detected in the body fluids of mice by microbiological assay. Each point represents the mean drug level of five mice. Assay organism: Escherichia coli ATCC9637/ethionine. Animals were injected with a single intraperitoneal dose of 20 mg of drug per kg.
Fig. 1. In either diluent, concentrations as low as 0.1 μg/ml could be detected. The concentrations of bleomycin detected in the blood and urine of mice, which were injected intraperitoneally with a 20 mg/kg (<0.33 LD₉₀) dose of drug, are shown in Fig. 2. No bleomycin was detected in the kidneys, lung, spleen, liver, or brain of the mice under these conditions of drug administration, indicating that <0.1 μg of bleomycin per g of tissue was present.

ACKNOWLEDGMENTS

Bleomycin, prepared for human trials, was obtained from Stephen Carter, National Cancer Institute, National Institutes of Health.

This investigation was supported by the Cancer Chemotherapy National Service Center, National Cancer Institute, under National Institutes of Health contract PH43-65-594.

LITERATURE CITED

1. Bliss, C. I. 1952. The statistics of bioassay, p. 472. Academic Press Inc., New York.
2. Bonadonna, G., M. DeLena, C. Bartoli, E. Bajetta, R. Molinari, A. Guzzon, G. Beretta, F. Fossati-Bellani, and S. Monfardini. 1971. Clinical trial with bleomycin in lymphomas and solid tumors. 62nd Annu. Mtg. Amer. Ass. Cancer Res., Milan, Italy. Amer. Ass. Cancer Res., Chicago.
3. Cunningham, T. J., K. B. Olson, J. Horton, A. Wright, and G. Harrington. 1971. Initial clinical experiences with bleomycin. 62nd Annu. Mtg. Amer. Ass. Cancer Res., Albany, N.Y. Amer. Ass. Cancer Res., Chicago.
4. Hunt, D. E., and R. F. Pittillo. 1968. Determination of certain antitumor agents in mouse blood by microbiological assay. Cancer Res. 28:1095-1109.
5. Ichikawa, T., A. Matsuda, K. Miyamoto, M. Tsubosaki, T. Kaidara, K. Sakamoto, and H. Umezawa. 1967. Biological studies on bleomycin A. J. Antibiot. Ser. A. 28:149-155.
6. Ishizuka, M., H. Takayama, T. Takeuchi, and H. Umezawa. 1967. Activity and toxicity of bleomycin. J. Antibiot. Ser. A 28:15-24.
7. Luce, J. K., E. J. Freireich, M. A. Luna, J. M. Miller, A. G. Goldman, and R. K. Kalett. 1971. Clinical trials with daily i.v. bleomycin. 62nd Annu. Mtg. Amer. Ass. Cancer Res., Houston, Tex. Amer. Ass. Cancer Res., Chicago.
8. Ohnuma, T., S. A. Martin, and J. F. Holland. 1971. Bioassay of bleomycin. 62nd Annu. Mtg. Amer. Ass. Cancer Res., Buffalo, N.Y. Amer. Ass. Cancer Res., Chicago.
9. Pittillo, R. F., and B. G. Quinnelly. 1962. Further studies on the antimicrobial nature of action of azaserine. Antimicrob. Ag. Chemother. 1961, p. 245-253.
10. Selawry, O. S., T. Ohnuma, and D. P. Shed. 1971. Bleomycin: tolerance of cancer patients to twice weekly dosage. 62nd Annu. Mtg. Amer. Ass. Cancer Res., Washington, D. C., and Buffalo, N. Y. Amer. Ass. Cancer Res., Chicago.
11. Takeuchi, M., and T. Yamamoto. 1968. Effects of bleomycin on mouse transplantable tumors. J. Antibiot. Ser. A 21: 631–637.
12. Umezawa, H., M. Ishizuka, K. Kimura, J. Iwanaga, and T. Takeuchi. 1968. Biological studies on individual bleomycins. J. Antibiot. Ser. A 21:592-602.
13. Umezawa, H., K. Maeda, T. Takeuchi, and Y. Okami. 1966. New antibiotics, bleomycin A and B. J. Antibiot. Ser. A 19:200–209.
14. Umezawa, H., Y. Suhara, T. Taketa, and K. Maeda. 1966. Purifications of bleomycin. J. Antibiot. Ser. A 19:210–215.
15. Yagoda, A., I. Krakoff, C. LaMonte, and C. Tan. 1971. Clinical trial of bleomycin. 62nd Annu. Mtg. Amer. Ass. Cancer Res., New York, N. Y. Amer. Ass. Cancer Res., Chicago.