Nano emulsified diesel - biodiesel blend selection through a MCDM technique

Aakula Swathi* and Chiranjeevarao Seela
Department of Mechanical Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India.

* Corresponding Author: swathi.090793@gmail.com

Abstract. The populace growth and their expectations for everyday comforts have prompted impressive utilization of renewable energy sources. Biodiesel blends and its nano emulsions is a decent option for engine application. This paper depicts the use of crossover Multi Criteria Decision Making for the determination of best nano emulsion for engine. Here, two MCDM techniques TOPSIS and VIKOR used to get the best Nano biodiesel emulsion. Diesel, Jatropha biodiesel blend of B10, nano emulsions of B10 with 25, 50 and 100 ppm of Al2O3 are used. The Brake thermal efficiency (BTE), Smoke, Carbon monoxide (CO), Carbon dioxide (CO2), Hydrocarbon (HC), Specific Fuel Consumption(SFC), excess Oxygen(O2), Oxides of Nitrogen (NOx) are considered as the assessment criteria. It shows that Diesel is positioned first for 0%,25%,50% and 100% load and fourth for 75% burden using AHP-TOPSIS and Diesel is positioned first for 25% & 50%, second at 0% & 100% and third for 75% load using AHP- VIKOR. Consequently, it is consistent that blending B10+50PPM and B10+25PPM biodiesel is recommended as a decent swap for diesel.

Keywords: AHP, Diesel, Emission, Energy, Engine, Jatropha oil, MCDM

1. Introduction
The world biggest challenge is depletion of fossil fuel and the environmental concerns. A study was performed with various blend proportions for diesel−PFADE and diesel−PFAD−hydrous ethanol [1]. Experiment conducted on an engine, which is fueled with diesel and blends of different proportions, at last MIMO fuzzy modelling, was developed [2]. So finding the suitable and sustainable alternative fuels has become a most important [3]. Most of the nation’s focusing more on the biodiesels extracted from both non-edible and edible oils like Mahua, Karanja, Neem, Jatropha, coconut, sunflower, rapeseed and Neem etc. [4,5]. The suitability of these biodiesels and their blends in an unmodified engine depends on the ease of production, handling and considerable performance within the emission standards [6, 7]. When the biodiesels and their blend, which are extracted from edible oils like palm, tested on the engine, the lower blend (B20) was identified as an optimum blend ratio based on its emissions and performance [8, 9, and 10]. In the present scenario of nano technology, the influence of nanoparticle in biodiesel and its blends was also investigated and reported by different researchers. The nano emulsions has come about in marginally higher BSFC (5.49% expansion in 100% load) at a consistent speed for all types of loads. [11,12]. It is very essential to ensure the stability of nano
particle in biodiesel in order to ensure their influence on the engine emission trends and performance. From available research it was observed that less amount of nano in lower blend ratios like B10 and B20 is stable and exhibiting its relatively good dispersion stability [13, 14]. Compared to nano ZnO, the stability of Al2O3 in biodiesels and their blends is more [15, 16]. Similar to the nano ZnO, the nano Cerium oxide in the blends like Mauve Methyl Ester –diesel is also contributing to the improved performance of CI engine [17, 18]. Irrespective of the biodiesel, its blend with diesel and their nano emulsions, it was observed that there is a continuous increment in efficiency when load increases [19]. Both the proportion of biodiesel and nano particle in biodiesel-diesel blends is the key influencing parameters of the emissions of CI engine and performance too. To predict and optimize theses proportions, few of the researchers have done the numerical analysis [20, 21]. Also, evaluation of beat biodiesel blend for IC engine has done using hybrid MCDM methods like FAHP which is integrated with TOPSIS, VIKOR, ELECTRE and then the results are compared [22,23]. In MCDM techniques like TOPSIS and VIKOR for blend selection, nine criteria’s had taken and different biofuels are mixed with diesel and the results are finally compared [24, 25]. Fuzzy AHP is used to find the criteria weights and then it is combined with TOPSIS to rank the alternatives [26]. In this paper, AHP combined with TOPSIS and VIKOR techniques was proposed for selecting the best suitable nano added blend, which is used for IC engines.

2. Proposed Methodology for Optimum Solution

Experiments conducted on a single cylinder diesel engine with diesel, Jatropha biodiesel blend of B10, nano emulsions of B10 with 25, 50 and 100 ppm of Al2O3. To find out the fuel among tested different alternatives, the criteria weights are estimated using Analytical Hierarchy Process (AHP). Based on the criteria weights the ranking for all the alternatives are estimated by using the MCDM techniques, TOPSIS and VIKOR separately. Finally, the ranks of all alternatives for different loads were compared to select the best blend. The Figure 1, illustrates the process.

![Diagram](Figure 1. Proposed Methodology)

2.1. Analytical Hierarchal Process (AHP)

The criteria weights are estimated using AHP, which involves 3 steps. **Step 1:** Developing a hierarchal structure shown in Figure 2 with a Best fuel selection at the top level, different criteria’s at the second level and the blends at third level. Here the goal is nothing but finding weights for each criterion.
Step 2: To determine the relative significance of different criteria and pair wise comparison matrix is developed based on the scale of relative importance. The Scale of general importance are 1,3,5,7,9 rating low to high whereas 2,4,6,8 - intermediate values. All the elements in the column of pair wise comparison matrix are obtained by dividing the first element in a row with the remaining every elements in that row respectively as in Table 1. Next, normalized matrix is created by adding all elements in a column of pair wise matrix, to get a value for every criteria in every column. Then every element in a column of pair wise matrix is divided with respective sum value of that column. The prepared normalized matrix is as in Table 2.

Step 3: Calculating the consistency to check whether the obtained criteria weights are right or not, for this pair wise matrix (Table 1) is taken and the column elements are multiplied with the weight from (Table 2). The Consistency matrix is to be calculated. Then the weighted sum value is calculated by adding all the values in the particular row. Then the ratio of weighted sum value to the criteria weight are calculated for each row. By considering the average of these values the lambda max is calculated. Then consistency index (CI) and consistency ratio are estimated.

Using equation (1) the resulting value shown in Table 3

Consistency index (C.I) = \(\frac{\lambda_{\text{max}} - n}{n-1} \)

To estimate the Consistency Ratio, Random Consistency Index (RCI) is to be considered.

Consistency Ratio = \(\frac{C.I}{R.C.I} \)

Random index is given Table 4. The obtained criteria weights are considered as correct when the consistency ratio is less than 0.1.

2.2. TOPSIS Method

Technique for order preference by similarity to ideal solution is established on the idea of finest alternative, which is having ideal distance. This research deals with the selection of best blend out of all 5 alternatives and for which the CO%, HC (ppm), CO2%, \(O_2 \)%, NOx ppm, Smoke Mg/m3, BTE and Sfc (Kg/kWh) are considered as criteria.

The process of TOPSIS method:

Step 1: Normalized matrix:
It is aimed to convert various units in different criteria into same units to do comparisons among the criteria’s. The matrix is formed as in Table 6.

For the elective j on criteria I, of normalized values of alternatives Xij Xij is defined below:

\[\bar{X}_{ij} = \frac{x_{ij}}{\sum_{i=1}^{n}(x_{ij})^2}, \quad i = 1,2,\ldots;p; \quad j = 1,2,\ldots,q. \] (4)

Step 2: Creating a weighted normalized matrix:
This matrix will be prepared by multiplying the normalized matrix Xij with its associated weight wj

\[V_{ij} = \bar{X}_{ij} \times W_j \] (5)

Step 3: To determine the positive and negative ideal solutions:
Positive ideal solution \(V^+ \) shows utmost better blend and the negative ideal solution \(V^- \) indicate the least desirable blend. \(V^+ \) is maximum value as a best alternative for beneficial. \(V^- \) is minimum value as a worst alternative for beneficial.

Step 4: Calculation of the separation measure by Euclidean separation:

\[S_i^+ = \sqrt{\sum_{j=1}^{m} (v_{ij} - v_{ij}^+)^2} \] (6)

\[S_i^- = \sqrt{\sum_{j=1}^{m} (v_{ij} - v_{ij}^-)^2} \] (7)

Using equations (6) & (7), \(S_i^+ \) & \(S_i^- \) is shown in Table 7.

Step 5: To calculate Performance score:

\[P_i = \frac{S_i^-}{S_i^+ + S_i^-} \] (8)

Using equation (8) \(P_i \) is shown in Table 8.

Step 6: Ranking the best blend:
Ranked based on descending order of \(P_i \).

2.3. VIKOR Method

This method is to find the best one among the blends. Similar to TOPSIS, an initial decision matrix is formed Table 6 to identity beneficial (whose higher value is desired) and non-beneficial criteria. Let \(W_j \) is the weightage of that particular criteria \(x_i^* \) that is the best value for that particular criteria. \(x_i \) is the value in the alternatives up on \(x_i^* - x_i \) (best –worst). Next we have to calculate \(R_i \) which is known as individual regret from the formula the \(R_i \) value is the maximum value among all the criteria of that particular.

The step by step procedure of VIKOR is as follows:

Step 1: Determine the Normalized matrix.

\[\bar{F}_{ij} = \frac{f_{ij}}{\sum_{i=1}^{n}(f_{ij})^2}, \quad i = 1,2,\ldots;m; \quad j = 1,2,\ldots,n. \] (9)

Step 2: Determine the best \(f_i^+ \) and the worst \(f_i^- \) values for each criteria, \(I = 1,2,\ldots,q. \)

\[f_i^+ = (\max f_{ij}) \quad f_i^- = (\min f_{ij}) \] (10)

Step 3: Find the utility and regret measure

\[S_i = \sum_{n=0}^{n}(w_i * \frac{f_i^* - f_{ij}}{F_i^* - F_i^-}) \rightarrow \text{Beneficial} \] (11)

\[S_i = \sum_{n=0}^{n}(w_i * \frac{f_{ij} - f_i^-}{F_i^* - F_i^-}) \rightarrow \text{Non-beneficial} \] (12)

\[R_i = \max_i(w_i * \frac{f_i^* - f_{ij}}{F_i^* - F_i^-}) \rightarrow \text{Beneficial} \] (13)

\[R_i = \min_i(w_i * \frac{f_{ij} - f_i^-}{F_i^* - F_i^-}) \rightarrow \text{Non-beneficial} \] (14)

Where \(S_i \) represents the utility measure and \(R_i \) represents the regret measure.
Using equations (11) to (14) S_i and R_i values are shown in Table 9.

Step 4: Compute the VIKOR index

\[
Q_j = v \cdot \left(\frac{S_i - S^*}{S^* - S_{\min}} \right) + (1 - v) \cdot \left(\frac{R_i - R^*}{R^* - R_{\min}} \right)
\]

(15)

Using equation (15) VIKOR Index values are shown in Table 10.

Next we have to find out the best value and worst value of S_i and R_i, where $S^* = \min s_i$ and $R^* = \min R_i$ whereas S_{\max} and R_{\max} are the maximum values of S_i and R_i respectively. Then we have to calculate Q_j.

The decisions makes can select the best alternative based on these ranking in VIKOR a compromise solution is proposed.

Step 5: Ranking order of preference

Ranked based on increasing order of Q_j value.

3. Computations Through Proposed Methodology

Firstly, the weights of each criteria has to find using AHP method. Next, these weights will be used in TOPSIS and VIKOR methods to rank the blends.

3.1. Different Criteria’s for selecting a best blend

For selecting a best blend among 5 alternatives, below criteria’s had considered.

1. Carbon monoxide
2. Hydrocarbon
3. Carbon dioxide
4. Oxygen
5. Oxides of Nitrogen
6. Smoke
7. Brake thermal efficiency
8. Specific Fuel Consumption

3.2. AHP Computations

Criteria	CO %	HC (PPM)	CO₂ %	O₂ %	NOₓ PPM	Smoke Mg/m³	BTE	Sfc (Kg/KWh)
CO %	1	3	4	5	4	2	0.333	2
HC (PPM)	0.333	1	2	4	3	2	0.5	4
CO₂ %	0.25	0.5	1	0.5	0.5	0.333	0.333	0.25
O₂ %	0.2	0.25	2	1	0.333	0.333	0.333	0.333
NOₓ PPM	0.25	0.333	2	3	1	2	0.5	2
Smoke Mg/m³	0.5	0.5	3	3	0.5	1	0.333	0.5
BTE	3	2	4	3	2	3	1	2
Sfc (Kg/KWh)	0.5	0.25	2	3	0.5	2	0.5	1

Table 1. Pair-wise comparison matrix

Table 2. Normalised Pair-wise matrix
Criteria	CO %	HC (PPM)	CO₂ %	O₂ %	NOx PPM	Smoke Mg/m³	BTE	Sfc (Kg/KWh)	Criteria Weights
CO %	0.1657	0.3829	0.2	0.2222	0.3380	0.1579	0.0888	0.1621	0.2147
HC (PPM)	0.0551	0.1276	0.1	0.1777	0.2535	0.1579	0.1333	0.3243	0.1662
CO₂ %	0.0414	0.0638	0.05	0.0222	0.0422	0.0262	0.0666	0.0405	0.0441
O₂ %	0.0331	0.0319	0.1	0.0444	0.0281	0.0262	0.0888	0.0270	0.0474
NOx PPM	0.0414	0.0425	0.1	0.1333	0.0845	0.1579	0.1333	0.1621	0.1069
Smoke Mg/m³	0.0828	0.0638	0.15	0.1333	0.0422	0.0789	0.0888	0.0405	0.0850
BTE	0.4972	0.2553	0.2	0.1333	0.1690	0.2368	0.2667	0.1621	0.2400
Sfc (Kg/KW h)	0.0828	0.0319	0.1	0.1333	0.0422	0.1579	0.1333	0.0810	0.0953

Table 3. Calculation of λ

Criteria	Weighted Sum Value	Criteria Weights	λ
CO %	1.995794141	0.214737903	9.294093445
HC (PPM)	1.508208413	0.16621564	9.073482284
CO₂ %	0.394164692	0.044158142	8.926206509
O₂ %	0.395918299	0.047471076	8.340206065
NOx PPM	0.92755194	0.106904056	8.676489693
Smoke Mg/m³	0.731516735	0.08507683	8.598304077
BTE	2.195513857	0.24008269	9.144611149
Sfc (Kg/KW h)	0.81864587	0.095342128	8.586402356

λ_max = Average Value of λ = 8.829973765
From equation (2),
Consistency index (C.I) = 0.1185677
n – number of criteria = 8
Random index is given in Table 4. The obtained criteria weights are considered as correct when the consistency ratio is less than 0.1.

Table 4. Random Consistency Index
From equation (3),
Consistency Ratio = 0.0840906 < 0.10, the error is 8.40906% which is less than 10%.
The criteria weights got from AHP method used in TOPSIS and VIKOR method for computations to
rank the blends.

3.3. TOPSIS Computations

Table 5. Beneficial and Non-beneficial criterion values calculated using AHP

Criteria	CO %	HC (PPM)	CO2 %	O2 %	NOx PPM	Smoke Mg/m3	BTE	Sfc (Kg/KWh)
Non Ben.	Ben.	Non Ben.	Non Ben.	Benf.	Non Ben.	Non Ben.	Non Ben.	
Weight(W_j)	0.2147	0.1662	0.0441	0.0474	0.1069	0.0850	0.2400	0.0953

Table 6. Decision Matrix for alternative blends using AHP

CRITERIA LOAD	BLENDS	CO %	HC (PPM)	CO2 %	O2 %	NOx PPM	Smoke Mg/m3	BTE	Sfc (Kg/KWh)	
Diesel 0 %	B10	0.03	18	2.5	17.3	6	231	1	0.7927	10.560
B10+25PP M	0.02	10	2.1	17.9	2	231	1	0.7885	10.895	
B10+50PP M	0.02	8	2.3	17.7	5	207	0	0.9131	9.2762	
B10+100PP M	0.01	1	2	18.1	7	219	1	0.8699	9.6681	
Diesel 25 %	B10	0.02	19	3.2	16.3	4	407	1	15.5093	0.5398
B10+25PP M	0.02	8	3.1	16.5	7	385	1	15.9164	0.5398	
B10+50PP M	0.02	9	3.2	16.5	4	363	1	14.3152	0.5917	
Table 7. Ideal best S_i+ and from Ideal worst S_i-

BLENDS	0 % Load	25 % Load	50 % Load	75 % Load	100 % Load	0 % Load	25 % Load	50 % Load	75 % Load	100 % Load
Diesel	0.1039	0.0527	0.0070	0.1736	0.1272	0.1271	0.0687	0.0267	0.0738	
B10	0.0825	0.0939	0.0586	0.1743	0.0769	0.0892	0.0601	0.0264	0.0104	0.0399
B10+25PPM	0.1264	0.1322	0.0530	0.0369	0.0432	0.1041	0.0236	0.0219	0.1614	0.0450
B10+50PPM	0.1032	0.0955	0.0592	0.0267	0.0415	0.1079	0.0631	0.0152	0.1736	0.0758
B10+100PPM	0.05190	0.3902	0.3111	0.0563	0.3418	0.5856	3			

Table 8. Performance score using TOPSIS

BLENDS	0 % Load	Rank	25 % Load	Rank	50 % Load	Rank	75 % Load	Rank	100 % Load	Rank
Diesel	0.5503	1	0.7065	1	0.9070	1	0.1334	4	0.8149	1
B10	0.5194	2	0.3902	4	0.3111	2	0.0563	5	0.3418	5
B10+25PPM	0.5190	3	0.4302	2	0.3383	3	0.7722	3	0.5856	3
The below histogram was drawn using Table 8.

![TOPSIS Ranking](image)

Figure 3. Histogram of different load rankings using TOPSIS Method

3.4. VIKOR Computations

Table 9. Utility measure S_i and regret measure R_i using AHP

Blends	0% Load	25% Load	50% Load	75% Load	100% Load	0% Load	25% Load	50% Load	75% Load	100% Load	0% Load	25% Load	50% Load	75% Load	100% Load
Diesel	0.1532	0.2743	0.0901	0.2228	0.1040	0.2147	0.2147	0.2147	0.2147	0.2147	0.1563				
B10	0.1411	0.5091	0.3065	0.4973	0.4633	0.1073	0.2147	0.2147	0.2147	0.2147	0.2400				
B10+25PPM	0.4568	0.3544	0.4489	0.2728	0.4120	0.2161	0.2147	0.2147	0.2147	0.1069	0.2147				
B10+50PPM	0.3489	0.5018	0.3307	0.1222	0.1746	0.1662	0.2147	0.2400	0.0850	0.1073	0.2287				
B10+100PPM	0.4472	0.4918	0.5253	0.2741	0.5068	0.2400	0.2400	0.2400	0.2400	0.2400	0.2287				

Table 10. VIKOR Index Q_j and its ranking using AHP

Blends	0% Load	Rank	25% Load	Rank	50% Load	Rank	75% Load	Rank	100% Load	Rank
Diesel	0.4235	2	0	1	0	1	0.5524	3	0.1845	2
B10	0	1	0.5	4	0.2485	2	0.9182	5	0.9460	4
B10+25PPM	0.9099	4	0.1706	2	0.4121	3	0.2712	2	0.7868	3
B10+50PPM	0.5508	3	0.4844	3	0.7763	5	0	1	0.0875	1
B10+100PPM	0.9847	5	0.9631	5	0.5	4	0.7025	4	0.9574	5

The below histogram was drawn using Table 10.
From the computations of AHP integrated with TOPSIS and VIKOR, our findings are as follows:

- At 0% load Diesel positioned first in ranking with a score of 0.5503 with AHP-TOPSIS, whereas B10 positioned first for the same load with a relative closeness of 1(1-0) with AHP-VIKOR.

 TOPSIS Ranking order (Diesel<B10<B10+25<B10+100<B10+50)

 VIKOR Ranking order (B10>Diesel>B10+50>B10+25>B10+100)

- At 25% load Diesel positioned first in ranking for both the methods.

 TOPSIS Ranking order (Diesel<B10+25<B10+100<B10+50)

 VIKOR Ranking order (Diesel>B10+25>B10+50>B10+100)

- At 50% load Diesel positioned first in ranking for both the methods.

 TOPSIS Ranking order (Diesel<B10+25<B10+100<B10+50)

 VIKOR Ranking order (Diesel>B10+25>B10+50>B10+100)

- At 75% load B10+100PPM positioned first in ranking with a score of 0.8665 with AHP-TOPSIS, whereas B10+50PPM positioned first for the same load with a relative closeness of 1(1-0) with AHP-VIKOR.

 TOPSIS Ranking order (B10+100<B10+50<B10+25<Diesel<B10)

 VIKOR Ranking order (B10+50>B10+25>Diesel>B10+100>B10)

- At 100% load Diesel positioned first in ranking with a score of 0.8149 with AHP-TOPSIS, whereas B10+50PPM positioned first for the same load with a relative closeness of 0.9125(1-0.0875) with AHP-VIKOR.

 TOPSIS Ranking order (Diesel<B10+100<B10+25<B10+50<B10)

 VIKOR Ranking order (B10+50>Diesel>B10+25>B10+100)

The mathematical model of AHP-TOPSIS and AHP VIKOR was proposed and compared to select the best blend. The process timing is more for TOPSIS if the quantity of blends and criteria’s increases and this problem will be minimised by VIKOR. In TOPSIS, the closeness coefficients of blends are
not continuously nearest to ideal solution i.e., 1. From the results, it is observed that for different types of loads AHP-VIKOR had much better nearest ideal value when compares to AHP-TOPSIS.

4. Conclusion
Overall, it is observed that B10+50 PPM are the best suitable blend among the considered blends for various loads to mitigate the emissions to improve the efficiency of the engine. To overcome the above issue, the mathematical model of AHP-VIKOR method was proposed for the identification of best suitable fuel blend.

The obtained order of ranking for both methods is B10+50> Diesel> B10+25> B10>B10+100.

References

[1] Jarernporn T, Krit S, Ye Min Oo and Gumpon P 2020 ACS Omega 5 20021-20033
[2] Das S, Deb B K, Sastry G R K 2020 Recent Trends in Mechanical Engineering pp 15-28
[3] Jayasinghe P and Hawboldt K 2012 Renewable and sustainable energy reviews 16 798-821
[4] Chiranjeeva Rao Seela, Ravi Sankar B and Sai Kiran D 2017 Biofuels 8 163-179
[5] Ayetor G K, Albert K S and Kesse M A 2019 Biofuels DOI: 10.1080/17597269.2019.1672006
[6] Samuel Erhigare Onoji, Sunny E. Iyuke, Anselm I. Igbafe and Michael O. Daramola 2020 Biofuels DOI: 10.1080/17597269.2020.1738679
[7] Samuel Kofi Tulashie and Francis Kotoka 2019 Biofuels DOI: 10.1080/17597269.2019.1697041
[8] Vedaraman N, Puhan S, Nagarajan G and Velappan K C 2011 International Journal of Green Energy 8 383-397
[9] Chiranjeeva Rao Seela, Neelaiah Gade and Srinivasa Rao M 2019 Recent Advances in Material Sciences 711-721
[10] Banapurmath N R, Tewari P G and Hosmath R S Renewable Energy 200 33 2007-2018
[11] Mirzajanzadeh M, Tabatabaei M, Ardjmand M, Rashidi A, Ghobadian B, Barkhi M and Pazouki M 2015 Fuel 139 374-382
[12] Wega Trisunaryanti, Ika Amalia Kartika, Rino Rakhmata Mukti, Hartati Hartati, Triyono Triyono, Rekna Widyawati and Endah Suarsih 2019 Biofuels DOI: 10.1080/17597269.2019.1669871
[13] Chiranjeeva Rao Seela, B. Ravisankar 2018 Part A: Recovery, Utilization, and Environmental Effects 40 2564-2571
[14] Wu Q, Xie X, Wang Y and Roskilly T 2017 Energy Procedia 142 3603-3608
[15] Venu H and Madhavan, V 2016 Fuel 186 176-189
[16] Chiranjeeva Rao Seela and B Ravi Sankar 2020 International Journal of Ambient Energy 2020 41 146-151
[17] Chiranjeeva Rao Seela, B. Ravi Sankar, D. Kishore and M. V. S. Babu 2019 International Journal of Ambient Energy 40 49-53
[18] Aalam C S, Saravanan C G and Kannan M 2015 Alexandria Engineering Journal 54 351-358
[19] Shaafi T and Velraj R 2015 Renewable Energy 80 655-663
[20] Paul G, Datta A and Mandal B K 2014 Int. J. Curr. Eng. Technol 3 5-9
[21] Chiranjeeva Rao Seela, B Ravisankar and B.M.V.A. Raju 2018 Egyptian Journal of Petroleum 27 641-647
[22] Sivaraja C M and Sakthivel G 2017 Energy 139 118-141
[23] Erdogan S and Sayin C 2018 Sustainability 10 1583-1588
[24] Sakthivel G, Ilangkumaran M and Aditya Gaikwad 2015 Ain Shams Engineering Journal 6 239-256
[25] Sivaraja C M, Sakthivel G and Vivek Ramesh Warke 2018 Part A: Recovery, Utilization, and Environmental Effects 40 693-708

[26] Gnanasekaran Sakthivel, Mani Ilangkumaran, Govindan Nagarajan G, Vasuki Priyadharshini, Subramanian Dinesh Kumar, Shekar Satish Kumar, Kettal Sarangapani Suresh, Govindan Thirumalai Selvan and Thirunavukarasu Thilakavel 2014 International Journal of Ambient Energy 35 139-154

Acknowledgments

Authors of this paper are whole heartedly thankful to all the colleagues of our organisation who supported us in every way, we would like to thank who supported us directly or indirectly for this work to made it happened.