Research on grid supervision index system based on AHP and Multi-level Matter-element Analysis Model in China

Yi Huang1, Hui Li1, Zhidong Wang1, Xiaopeng Yu2 and ShiYue Wang3,*

1State Grid Economic and Technological Research Institute Co., Ltd, Beijing, China
2Economics &Technology Research Institute, State Grid Henan Electric Power Company, Henan Zhengzhou, China
3School of North China Electric Power University, Department of Economics and Management, Hebei Baoding, China

*Corresponding author e-mail: 1152504814@qq.com

Abstract. In the context of the new situation of electricity reform, the Chinese government has strengthened the supervision of power grid enterprises. By sorting out the power grid supervision documents issued by the government in recent years, it classifies and analyzes its specific requirements for power grid enterprises; classifies and summarizes government regulatory requirements; designs a regulatory model to build a hierarchical model. Using the combination of statistical principle and Delphi method, the index weight of the index system is designed based on AHP; the multi-level matter-element analysis model is used to evaluate the implementation of policies in recent years.

Keywords: multi-level matter-element; analysis model; policy research; AHP; grid supervision index system

1. Introduction
In 2015, the "Several Opinions of the Central Committee of the Communist Party of China and the State Council on Further Deepening the Reform of the Electric Power System" ([2015] No. 9) issued a document marking the official launch of the government's new requirements for strengthening the power grid supervision, followed by a series of supporting departments. As the most important change since the power system reform in 2002, the above series of policy documents put forward new requirements for the government to strengthen the power grid supervision, and will guide the development plan of the power grid company. At present, China's power grid is shifting from safety to "safety and efficiency". At the same time, the government changed the profit model of the power grid, separated the purchase and distribution of the power grid, redefined the pricing methods for power transmission and distribution, audited effective assets, opened up market competition, and formulated new market trading mechanisms to fundamentally change the operation of China's power grid. Compared with before the power reform, the number of policy documents related to price regulation and market supervision has increased year by year after the start of power reform. At present, many programmatic policy documents are still in the trial stage, and the government's supervision status on the power grid is gradually being compared with the power grid. Adaptation, it
can be seen that the government's policy documents on the regulation of prices and markets will increase in the future, until the final government regulation is compatible with the development of the power grid, in line with China's future development goals.

2. Literature review
At present, there are many researches on the new power reform policy, which are mainly divided into the discussion of policy mechanisms, the evaluation of policies, and the research aspects of power grid development based on policy background.

Yang et al. constructed an investment management optimization system for power grid companies, based on the realization of the new round of economic situation and the implementation of a new round of power system reform [1]. Zhou et al. studied the impact of effective FIT policy on PV-MG investment and applied the model to an actual microgrid in Shenzhen to verify its effectiveness, based on the current PV-MG's feed-in tariff (FIT) policy [2]. Li et al. used the method of fitting, game theory and empirical analysis to evaluate the policy from the perspective of overall planning, support policy and policy implementation, and combined international experience to propose improvements to China's wind power policy from seven aspects [3]. Luo et al. proposed that the construction policy of distributed generation can be considered from three aspects: distributed power generation access policy, power grid construction cost policy and government incentive policy. The government should adjust its policies to influence the development direction of distributed generation, and achieved good results in practice [4]. Zhang et al. discussed the factors driving the growth of wind power installed capacity in China's provinces, especially the provincial wind energy policy. The results show that the adoption of provincial wind energy policies and general energy plans has had a positive impact on the growth of wind power installed capacity in various provinces in China [5]. Lin et al. analyzed the principles of China's differential electricity pricing policy, the externalities of energy and the revised Ramsey pricing rules, and pointed out the policy implications of China's differential electricity pricing policy. The results show that the main role of differential electricity pricing policy is that enterprises are expected to be higher. When the price of electricity is reduced, the total cost is reduced in advance to increase production efficiency [6]. Hou et al. discussed the impact of renewable energy policies on large-scale power generation systems and constructed a system dynamics (SD) energy generation model to simulate the results of wind power policies based on complex systems [7]. Zhang et al. systematically collected and combed the policies of China's biomass power generation policy from 2006 to 2012, and analyzed the policy issues according to the effect of policy implementation, based on the actual demand of biomass power generation projects [8]. Xu et al. proposed a dynamic integrated resource strategic planning (DIRSP) model based on semi-Markov decision process, and discussed the impact of different policy combinations and input intensity on the low carbon transition time and scale in the power planning process [9].

3. Design of grid supervision indicators based on policy text research
Considering the power reform No. 9 document is the implementation of the spirit of “making the market play a decisive role in resource allocation and better playing the role of the government” proposed at the Third Plenary Session of the 18th Central Committee held in November 2013, combined with the delivery time of the project task. The subject of the project will be released from January 1, 2014 to December 31, 2017.

From the perspective of the collection of policy documents, the new requirements for government policy supervision of this topic mainly come from the regulatory documents issued by relevant government departments, including the National Development and Reform Commission, the National Energy Administration and other relevant national ministries.

The indicators obtained by sorting are shown in Table 1.
Table 1. Grid regulatory indicators Table

Target Layer	Criteria Layer	Indicator Layer
Grid Regulatory Indicators		Market Order B₁₁
		Renewable Energy Consumption B₁₂
		Electricity Trading B₁₃
		Market Access B₁₄
		Grid Operation Safety B₂₁
		Safe Production B₂₂
		Safety and Operations Supervision B₂
		Information Security B₂₃
		Power Dispatch B₂₄
		Power Grid Planning B₂₅
		Transmission and Distribution Price B₃₁
		Cross Subsidy B₃₂
		Price and Service Supervision B₃
		Renewable Energy Tariff Subsidy B₃₃
		Universal Service B₃₄
		Metering And Charging Service B₃₅

4. Evaluation Model of Supervision Indicators based on AHP

Compared with the 9-level scale obtained by the traditionally used expert method, this paper improves the weight determination method, starting from the data itself and based on the frequency statistics (see Table 2). The policy mentioned frequency is replaced by the expert method and corresponds to the 9-level scale design weight. Firstly, using Matlab to conduct a one-sample non-parametric test on the number of index relationships under different policy mentioned frequencies, determine the characteristics of its distribution, and then classify the index weights according to its distribution, and combine the nine-level gradient method to make different levels. The frequency is referred to in response to different policies to determine the final weight. This method refers to the specific frequency distribution characteristics of relevant policy indicators through the policy, ensures the weight to determine the objectivity, avoids the subjectivity of the expert method, and combines the nine-level gradient method to reduce the inconsistent of final weight due to the large data difference.

Table 2. Indicator relationship frequency distribution table

Frequency of policy reference to relationship between indicators	The number of indicator relationships at this frequency	Scaling
1	64	2
2	55	2
3	17	3
4	18	3
5	9	4
6	12	5
7	5	6
8	3	6
9	6	7
10	4	7
12	2	8
17	2	8
20	1	8
24	7	8
25	4	9
26	1	9
34	1	9
48	1	9
Compared with the traditional Delphi method to determine the weight, this paper improves the weight determination method. By referring to the specific frequency of relevant policy indicators and combining the Delphi method, the importance degree between each index is compared, and the nine-level gradient method is used. A judgment matrix is constructed by comparing the importance value of one index with another. Through calculation, the weights of each index of the grid supervision index evaluation system are obtained, and the final weights are shown in Table 3.

Table 3. Grid Supervision Index Weight Table

Criteria layer	Weights	Indicator layer
B1	0.1283	B11 0.4213
		B12 0.3344
		B13 0.0656
		B14 0.1788
		B21 0.2636
		B22 0.4758
B2	0.2764	B23 0.0538
		B24 0.0981
		B25 0.1087
		B23 0.4005
		B32 0.3261
B3	0.5954	B33 0.1674
		B34 0.0699
		B35 0.0361

5. Policy evaluation based on Multi-Level Matter-Element Analysis Model

5.1. Multi-Level Matter-Element Analysis model

The matter element is also called the elementary element and is represented by the ordered triplet \(R = (N, c, v) \), where \(N \) is the name of the given thing, \(c \) is the characteristic of the thing, and \(v \) is the magnitude of the feature of the thing. If a thing has \(n \) features \(c_1, c_2, \ldots, c_n \) and corresponding feature magnitudes \(v_1, v_2, \ldots, v_n \), then the matter-element model can be described as:

\[
R = (N, c, v) = \begin{pmatrix}
N & c_1 & v_1 \\
& c_2 & v_2 \\
& \vdots & \vdots \\
& c_n & v_n
\end{pmatrix}
\]

The multi-level matter evaluation model constructed in this paper is based on the traditional matter-element evaluation model. The evaluation of the bottom-level single-element in the indicator system is completed first, and then the similar steps are used to recursively from the bottom of the evaluation system to the top layer.

5.2. Case Analysis

Firstly, the experts in the field use the scoring method to divide the implementation level of each evaluation index in the supervision index system mentioned in this paper into \(m \) grades, assuming \(m = 4 \), that is, excellent, good, medium, and poor, respectively. Level 1, Level 2, Level 3, Level 4, according to the "Classification Principle of Grades" in the inspection standard, combined with the experience of experts, determine the safety level evaluation criteria for each indicator.
Table 4. Grid supervision evaluation index level standard

Criteria layer	Indicator layer	excellent	good	medium	poor
B1	B11	90~100	75~90	60~75	0~60
	B12	90~100	75~90	60~75	0~60
	B13	80~100	70~80	60~70	0~60
	B14	85~100	75~85	60~75	0~60
	B15	90~100	75~90	60~75	0~60
	B22	90~100	75~90	60~75	0~60
B2	B21	80~100	70~80	60~70	0~60
	B22	85~100	75~85	60~75	0~60
	B23	90~100	75~90	60~75	0~60
	B24	85~100	75~85	60~75	0~60
	B25	90~100	75~90	60~75	0~60
	B22	80~100	70~80	60~70	0~60
B3	B31	80~100	70~80	60~70	0~60
	B32	85~100	75~85	60~75	0~60
	B33	90~100	75~90	60~75	0~60
	B34	90~100	75~90	60~75	0~60
	B35	90~100	75~90	60~75	0~60

Then, 14 indicators were inspected, and the results of the scoring were shown in Table 5.

Table 5. results of the scoring

indicators	score	B11	B12	B13	B14	B21	B22	B23
B24	76	76	70	79	77	81	78	
B25	76	76	70	79	77	81	78	
B31	77	77	70	79	77	81	78	
B32	77	77	70	79	77	81	78	
B33	77	77	70	79	77	81	78	
B34	77	77	70	79	77	81	78	
B35	77	77	70	79	77	81	78	

5.3. Result

The secondary indicators belong to each level as follows:

Table 6. The secondary indicators belong to the relevance of each evaluation set

Indicator layer	K1i	K2i	K3i	K4i	Level
B11	-0.273	0.6	-0.36	-0.6	2
B12	-0.333	0.333	-0.2	-0.5	2
B13	-0.115	0.7	-0.233	-0.425	2
B14	-0.317	-0.097	0.8	-0.3	3
B21	-0.386	-0.069	0.867	-0.325	3
B22	-0.353	0.2	-0.12	-0.45	2
B23	-0.3	-0.125	0.5	-0.125	3
B24	-0.273	0.1	-0.04	-0.4	2
B25	-0.419	-0.234	0.267	-0.1	3
B31	-0.4	-0.143	0.667	-0.25	3
B32	-0.344	0.9	-0.3	-0.475	2
B33	-0.258	0.2	-0.08	-0.425	2
B34	-0.321	0.4	-0.24	-0.525	2
B35	-0.353	0.533	-0.12	-0.45	2

The correlation between the primary indicator and the general indicator regarding the grade p, the results are as follows:
Table 7. The primary and secondary indicators belong to the relevance of each evaluation set

Criteria layer	K1i	K2i	K3i	K4i	Level
Market and Sustainable Supervision B₁	-0.2906	0.3927	-0.0908	-0.5015	2
Safety and Operations Supervision B₂	-0.3582	0.0546	0.2234	-0.3566	3
Price and Service Supervision B₃	-0.3508	0.3169	0.1348	-0.3791	2
Grid Regulatory Indicators A	-0.3170	0.2896	0.0250	-0.4458	2

6. Conclusion
After statistical analysis, it was found that through the comprehensive evaluation and analysis of the grid supervision indicators, it is concluded that although the overall policy implementation level is “good”, at the specific level, the policy implementation level is not ideal:

For the first-level indicators, the safety level is “good” in terms of Market and Sustainable Supervision, and Price and Service Supervision; however, the Safety and Operations Supervision level is “medium”.

In terms of secondary indicators, the five aspects of the Market Access, Grid Operation Safety, Information Security, Power Grid Planning, and Transmission and Distribution Price are “medium”, indicating that the current implementation of these aspects needs to be improved.

Acknowledgments
This research was financially supported by the Science and Technology Project of State Grid Corporation Headquarters, and the project name is Research on Evaluation System and Development Strategy Optimizing of Power Grid Development under New Background of Government Supervision (52170018000X)

References
[1] Yang, Chunhui; Su, Zhixiong; Wang, Xin; Design of Investment Management Optimization System for Power Grid Companies under New Electricity Reform. ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS I. AIP Conference Proceedings: 1820.
[2] Zhou, Nan; Liu, Nian; Zhang, Jianhua; Multi-scenarios PV-based Microgrids Investment Decision Considering Feed-in-tariff Regulation. PROCEEDINGS OF THE 2016 IEEE 11TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA). IEEE Conference on Industrial Electronics and Applications: 2311-2316, 2016.
[3] Li, Lingyue; Ren, Xiaoqing; Yang, Yanli; Analysis and recommendations for onshore wind power policies in China. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018: 82 (156-167).
[4] Luo, Fang; Li, Dansheng; Chen, Ning; Construction Policies of Distributed Power Generation. 2015 5TH INTERNATIONAL CONFERENCE ON ELECTRIC UTILITY Deregulation and Restructuring and Power Technologies (DRPT 2015): 2747-2751, 2015.
[5] Zhang, Xiaogang; Wang, Dong; Liu, Yuanhao; Wind Power Development in China: An Assessment of Provincial Policies. SUSTAINABILITY. 2016: 8 (8).
[6] Lin, Boqiang; Liu, Jianghui; Principles, effects and problems of differential power pricing policy for energy intensive industries in China, ENERGY, 2011: 36, 1: 111-118.
[7] Hou, Linna; System Dynamics Simulation of Large-Scale Generation System for Designing Wind Power Policy in China. DISCRETE DYNAMICS IN NATURE AND SOCIETY ,2015.
[8] Zhang, Qin; Zhou, Dequn; Fang, Xiaomeng; Analysis on the policies of biomass power generation in China. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014: 32 (926-935).
[9] Xu, Yan; Yuan, Jiahai; Xu, Huiming; Dynamic Integrated Resource Strategic Planning Model: A Case Study of China's Power Sector Planning into 2050. SUSTAINABILITY, 2017: 9.