In 1959, Richard Feynman gave the visionary talk "There's plenty of room at the bottom" \cite{1} and drew the road map for the coming quantum technologies. Half a century later, we are still amidst the silicium era and enjoy many gadgets based on lithographically manufactured nano-electronics. In terms of miniaturization, many sectors of nano-technology \cite{2} have reached the proverbial quantum bottom, but today, this mile stone is recognized rather as a resource for novel devices \cite{3, 4} than the ultimate limit.

Currently, there are many activities \cite{4, 5} to combine well characterized individual quantum systems, like trapped ions \cite{6, 7}, degenerate quantum gases \cite{8}, superfluid/superconducting Josephson junctions \cite{9}, quantum dots \cite{10}, or nano-mechanical oscillators \cite{11, 12}, with microwave guides, optical resonators or fibers \cite{13}, to form hybrid quantum systems. Possible applications of such systems range from high-precision force and mass measurements to quantum computation \cite{15, 19}.

In this context, carbon nano-tubes \cite{20, 21} are a particularly promising form of rolled-up, mono-layered carbon sheets. These families of fullerenes \cite{22} combine fascinating aspects of electrical conductivity, exceptional mechanical tension moduli with the ability to be grown on demand, or to be deposited mechanically on atomic chips \cite{23, 25}. Such features render carbon nano-tubes on atom chips ideal candidates to explore quantum mechanical limits \cite{11, 13, 26, 27}, to construct single atom detectors \cite{28} with them, or to hybridize them with matter waves \cite{29}.

Polarizable particles in front of surfaces are affected by Casimir-Polder potentials \cite{30, 32}. The measurement of such minute forces with ultra-cold atoms is of high interest \cite{33, 34}. In particular, the interaction and trapping of atoms in front of nano-tubes has been explored \cite{37, 38}.

However, so far only a few experiments have been performed with carbon-nano tubes immersed in ultra-cold alkali gases \cite{29, 39}.

In this paper, we will combine aspects of the quantum motion of carbon nano-tubes as well as the quantum degeneracy of the matter waves to examine the prospects for the sympathetic cooling due to the Casimir-Polder interaction of a free-standing carbon nano-tube mounted on an atom-chip. In Sec. \textbf{III} we discuss a micro-mechanical model of the oscillating carbon nano-tube and quantize the phononic excitations. We introduce the energies of the atomic gas, phonons, and atom-phonon interaction. Within the Heisenberg picture, we model the temporal evolution and obtain equilibrium relaxation rates versus the temperature for different densities of the atomic cloud in Sec. \textbf{III}. This approach is generalized in Sec. \textbf{IV} where we formulate a fully dynamical theory for the density operator of the phonons. We conclude the theoretical analysis with a numerical study of the cooling efficiency of a carbon nano-tube due to the interaction with the cold atoms. Two short appendices summarize properties of the carbon nano-tubes and thermodynamic correlation functions for degenerate bosonic gases.

\section{Atoms hitting carbon nano-tubes}

In the present section, we will introduce the basic mechanical features of single-walled carbon nano-tubes. In particular, we will consider the experimental setup of P. Schneeweiss et al. \cite{29}, where free-standing carbon nano-tubes are grown on an atomic chip \cite{23, 25} and interact with ultra cold-atoms in ultra-high vacuum systems.

From a continuum model of a free-standing carbon nano-tube, we derive a quantized description of the phononic excitations. This carbon nano-tube is embed-
ded in an ultra-cold atomic bosonic gas at temperatures above the critical temperature for Bose-Einstein condensation (BEC). In particular, we model the interaction between a carbon nano-tube and a 87Rb alkali atom by a Casimir-Polder interaction potential [29]. This approach leads to a total energy for the carbon nano-tube immersed in an atomic bath.

A. Vibrating carbon nano-tube

The vibrations of a carbon nano-tube can be well described by the Euler-Bernoulli model of an oscillating beam [13, 24, 40, 41]. Here, we use a real, transversal displacement field $\mathbf{u}(z,t) \equiv u_x(z,t)\mathbf{e}_x + u_y(z,t)\mathbf{e}_y$ to represent the two-dimensional bending of an elastic beam of the length L, which is aligned along the surface-normal (z-axis) of an atomic chip. The transverse polarization directions are denoted by \mathbf{e}_x and \mathbf{e}_y.

To be precise, we have to specify the boundary conditions $\mathbf{u}(0,t) = \partial_t \mathbf{u}(0,t) = 0$, for the fixed end on the chip and $\partial_z^2 \mathbf{u}(L,t) = \partial_z^2 \mathbf{u}(L,t) = 0$ on the loose end.

In the case of small displacements, the vibration of the tube follows from the linear Euler-Bernoulli equation

$$ (\rho_c \partial_t^2 + EI \partial_z^4) \mathbf{u}(z,t) = 0. \tag{1} $$

The general solution of Eq. (1) can be written as

$$ \mathbf{u}(z,t) = \frac{1}{\sqrt{2}} \sum_{l=0}^{\infty} \mathbf{e}_\sigma \phi_l(z)(e^{-i\omega lt} \beta_{l\sigma} + e^{i\omega lt} \beta_{l\sigma}^*), \tag{2} $$

if we can determine the eigenfrequencies ω_l and the phononic eigenmodes $\phi_l(z)$ of the problem. From the axial symmetry of Eq. (1), it follows that the transverse oscillation frequencies must be degenerate for both polarization directions. The complex amplitudes $\beta_{l\sigma}$ are determined from the initial conditions.

This model of an oscillating beam, together with the boundary conditions leads to a self-adjoint eigenvalue problem for the modes with respect to the real scalar product

$$ \langle \phi_l | \phi_m \rangle \equiv \int_0^L dz \phi_l(z)\phi_m(z) = a_l^2 \delta_{l,m}. \tag{3} $$

Explicitly, the eigenmodes read

$$ \phi_l(z) = \hat{a}_l[\cos \kappa_l z + \cosh \kappa_l z \cos \kappa_l z - \cosh \kappa_l z] + (\sin \kappa_l z + \sinh \kappa_l z)(\sin \kappa_l z - \sinh \kappa_l z)], \tag{4} $$

where the normalization constants \hat{a}_l, defined by Eq. (A1), are proportional to the harmonic oscillator length $a_l \equiv \sqrt{\hbar/\omega l \rho_c L}$.

However, a mechanical oscillation is only possible, if the wave numbers κ_l satisfy the condition

$$ \cos(\kappa_l L) \cosh(\kappa_l L) = -1. \tag{5} $$

At first glance, the solution of this equation looks like a formidable task, but in fact the phononic wave numbers can be approximated quite well [23] by an equidistant array $\kappa_l \equiv \pi(l + 1/2)/L$, for $l \geq 0$.

From the solution of Eq. (1), we obtain finally the particle-like dispersion relation

$$ \omega_l = \sqrt{\frac{EI}{\rho_c} \kappa_l^2}, \tag{6} $$

for the phononic frequency ω_l of mode l. Such a quadratic phonon dispersion relation can be derived also microscopically from the zone-folding method [44], considering the lattice symmetries of graphene [23].

Having determined the eigenmodes of the tube, we represent the energy of the phonon field

$$ H \equiv \int_0^L dz \left[\frac{\rho_c}{2} (\partial_t \mathbf{u})^2 + \frac{EI}{2} (\partial_z^2 \mathbf{u})^2 \right] = \sum_{l=0}^{\infty} \hbar \omega_l |\beta_{l\sigma}|^2, \tag{7} $$

as a separable sum of independent oscillator modes, which is necessary for the quantization of the phononic field

$$ \hat{u}(z) = \frac{1}{\sqrt{2}} \sum_{l=0}^{\infty} \sum_{\sigma=x,y} \mathbf{e}_\sigma \phi_l(z)(\hat{b}_{l\sigma} + \hat{b}_{l\sigma}^*), \tag{8} $$

in terms of bosonic excitations $[\hat{b}_{l\sigma}, \hat{b}_{l\sigma}^*] = \delta_{ll'}\delta_{\sigma\sigma'}$, acting on the multi-mode phononic Fock-states $|\ldots, n_{l\sigma}, \ldots\rangle$.

Thus, we obtain the Hamiltonian operator

$$ \hat{H} = \sum_{l=0}^{\infty} \hbar \omega_l |\beta_{l\sigma}|^2 \tag{9} $$

of the vibrating carbon nano-tube.

B. Cold atomic gas

Atoms colliding with the carbon nano-tube are modeled as a homogeneous gas of scalar bosons represented in a discrete plane-wave basis as $[\hat{a}_k, \hat{a}_k^\dagger] = \delta_{kk'}$. This representation implies periodic boundary conditions for all spatial fields, e.g., the atomic field $\Psi(r + e_i L_i) = \Psi(r)$, where L_x, L_y and L_z are the lengths of the quantization box.
Normalized plane-waves $\langle r|k \rangle \equiv \exp(ikr)/\sqrt{V}$, are then a complete set of basis functions within the quantization volume $V \equiv L_\parallel L_y L_z$. For the length of the quantization volume in the z-direction, we choose the length $L_z = L$ of the carbon nano-tube.

This spatial periodicity leads to a discrete set of atomic wave vectors $k_i = 2\pi n_i/L_i$, $n_i \in \mathbb{Z}$. Hence, we obtain for the spatial amplitude of the atomic field the expression

$$\hat{\Psi}(r) = \sum_k \langle r|k \rangle \hat{a}_k,$$

and the density of the atomic gas follows as

$$\hat{n}(r) \equiv \hat{\Psi}^\dagger(r) \hat{\Psi}(r) = \sum_{k,q} \hat{a}_q^\dagger \hat{a}_k \langle r|k \rangle \langle q|r \rangle.$$

In this article, we consider atomic temperatures above the Bose-Einstein condensation temperature, where corrections to the ideal gas energy are minute. Therefore, we only keep in the energy the kinetic energy

$$\hat{H}_n = \sum_k \varepsilon_k \hat{a}_k^\dagger \hat{a}_k, \quad \varepsilon_k = \frac{\hbar^2 k^2}{2m} = \hbar \omega_k.$$

of the gas.

C. Casimir-Polder potential

The interaction of a neutral, polarizable atom in front of a surface is described by the Casimir-Polder theory [31, 32, 33, 45, 47]. In principle, a full three-dimensional geometric modeling of the Casimir-Polder potential surface would be in place to describe all details of the interaction. However, we assume for simplicity that the dominant contribution to the dynamics is obtained by the axis-symmetric, translationally invariant part of the Casimir-Polder potential $V(r) = V(\rho)$, where $\rho \equiv \sqrt{x^2 + y^2}$ is the radius in cylindrical coordinates with the z-axis oriented along the tube.

Recent experiments [29, 36], have provided evidence that the dominant contribution is given by an inverse power-law term $\sim C_5/\rho^5$. However, in order to keep the model flexible, we approximate the Casimir-Polder potential as an inverse power series

$$V(\rho) = \sum_{n=n_m}^{\infty} \frac{C_n}{\rho^n},$$

for distances well above the tube’s physical radius $\rho > R$.

For example, in case of a single-walled carbon nano-tube $R = 1$ nm.

The different contributions to the short-range part of the potential are parameterized by real coefficients C_n, starting at least with terms beyond $n_m > 2$. The surface physics (adhesion/adsorption) at $\rho = R$ is unknown but should be of no concern for the calculation of the collisional relaxation. Thus, we assume that the potential is real and vanishes within the tube $V(\rho \leq R) = 0$.

The later analysis requires the Fourier-transform

$$V(q) = \int_V \int d^3 r \langle q|r \rangle V(r) = \frac{\delta_{q,0}}{\sqrt{V}} LV(q) \quad (14)$$

of the Casimir-Polder potential, where $V(q)$ is the two-dimensional, axis-symmetric Fourier-transform of the Casimir-Polder-potential.

If the size of the periodic box is much larger than the finite range of the potential, one can simply extend the integration limits to the full plane

$$V(q) = \sum_{n=n_m}^{\infty} C_n \int_0^{2\pi} d\rho \int_0^\infty d\varphi \frac{e^{-iq \rho \cos \varphi}}{\rho^{n-1}}\quad (15)$$

With defining a dimensionless wave number $\bar{q} = qR$, the expression

$$V_n(\bar{q}) = \frac{1}{\bar{q}^2} \frac{\psi_2(1; \frac{1}{2}; \{1, 2 - \frac{\bar{q}^2}{2}; \frac{\bar{q}^2}{2}); \frac{n!}{2} \Gamma(-\frac{3}{2})}{\Gamma(-\frac{1}{2})} \bar{q}^{-n-2} \quad (16)$$

for the partial potential amplitudes is formed with the generalized hyper-geometric function $\psi_2(a_1; \{b_1, b_2\}; z)$, as well as the gamma function $\Gamma(z)$ [48].

Figure 1. [Color online]: Dimensionless Fourier amplitudes $V_n(\bar{q})$ of the Casimir-Polder potential vs. the dimensionless wave number \bar{q} for different inverse power laws: $n = 3$ (dashed orange), $n = 4$ (large-dashed blue), $n = 5$ (solid red), $n = 6$ (dot-dashed green), and $n = 7$ (dotted black).
In order to obtain the interaction energy between atoms and the tube, we have to sum the Casimir-Polder potential weighted by the atomic density over all space and over the whole length of the tube leading to the expression

$$\hat{H}_i = \int_0^L \frac{dz}{L} \int d^3r \tilde{n}(r)V [\hat{u}(z') - r].$$ \hspace{1cm} (17)

We note that \hat{H}_i is given by a convolution integral. For computational purposes, it is more convenient to transform it into the Fourier domain where it becomes a separable sum of products of atomic and tube variables. Indeed, by introducing the atomic density fluctuations \hat{N}_q as the Fourier transform

$$\hat{N}_q \equiv \sqrt{V} \int \frac{d^3r}{V} e^{iq \cdot r} \tilde{n}(r) = \sum_k \hat{a}_{k-q} \hat{a}_k = \hat{N}^\dagger_{-q},$$ \hspace{1cm} (18)

of the atomic density and a translation operator

$$\hat{T}_q \equiv \frac{L}{L} \int_0^L dz \exp[iq \cdot \hat{u}(z)],$$ \hspace{1cm} (19)

of the tube, we can express the interaction energy as

$$\hat{H}_i \equiv \hbar \sum_q w_q \hat{N}_q \hat{T}_q.$$ \hspace{1cm} (20)

Here, we have defined the frequency $w_q \equiv V_q / \hbar \sqrt{V}$ to measure the strength of the Casimir-Polder potential.

D. Total Energy

Therefore, the total Hamiltonian

$$\hat{H} \equiv \hat{H}_c + \hat{H}_a + \hat{H}_i$$ \hspace{1cm} (21)

of the system is the sum of the phonon energy \hat{H}_c, the atomic kinetic energy \hat{H}_a, and the atom-phonon interaction energy \hat{H}_i.

Recalling the interaction energy Eq. (20), we notice that the homogeneous background contribution at $q = 0$ depends only on the atomic particle number $\hat{N} \equiv \hat{N}_0$. Hence, it is convenient to shift the individual energies by this amount, that is

$$\hat{H}_i \rightarrow \hat{H}_i - \hbar \omega_0 \hat{N} = \sum_{q \neq 0} \hbar w_q \hat{N} \hat{T}_q,$$ \hspace{1cm} (22)

$$\hat{H}_a \rightarrow \hat{H}_a + \hbar \omega_0 \hat{N} = \sum_k (\varepsilon_k + \hbar \omega_0) \hat{a}_k \hat{a}_k^\dagger.$$ \hspace{1cm} (23)

This energy renormalization amounts to dropping the term $q = 0$ in the interaction and to off-set the atomic dispersion relation by $\varepsilon_k \rightarrow \varepsilon_k + \hbar \omega_0$.

Experimentally relevant temperature scales are given by the cryogenically cooled atom chip, where the carbon nano-tube is mounted on, corresponding to $T_c = 4$ K, and by the temperature $T_a = 100$ nK of the atomic gas.

In Appendix A and Ref. [27], the maximal thermal displacement u of the tube as a function of temperature is estimated. Clearly, u decreases with decreasing the temperature of the chip. On the other hand, the thermal de Broglie wavelength λ_{dB} of the atomic gas increases at lower temperatures. Hence, if we are in a regime where $u \ll \lambda_{dB}$, we can approximate the tube’s displacement operator

$$\hat{T}_q = 1 + \int_0^L \frac{dz}{L} \{ i q \cdot \hat{u}(z) - \frac{1}{2} |q \cdot \hat{u}(z)|^2 + \ldots \}.$$ \hspace{1cm} (24)

by the first two terms of the Taylor series of Eq. (19).

III. STATIC RELAXATION RATE

We are now ready to proceed with the calculation of the static relaxation rate using first-order time-dependent perturbation theory. From the solution of the Heisenberg equations for the phononic fields, we can derive the time-dependent occupation number of the lowest phononic mode. Then, we use Fermi’s Golden Rule [49], to calculate the relaxation rate as a function of the temperature of the atomic gas. Our analysis demonstrates the possibility of carbon nano-tube cooling in the experiment.

A. Heisenberg equations of motion

By evaluating the Heisenberg equations of motion for the atomic and phononic fields, i.e., $i\hbar \dot{\hat{A}}(t) = [\hat{A}, \hat{H}]$, we obtain

$$\dot{\hat{a}}_k = -i\omega_k \hat{a}_k + \sum_{q \neq 0} \sum_{\sigma = x, y} w_q q \cdot \hat{e}_{\sigma} \hat{a}_{k+q} \hat{a}_{k-q}$$

$$\times \sum_{l=0}^{\infty} \{ I_l (\hat{b}_{l,\sigma} + \hat{b}_{l,\sigma}^\dagger) + iJ_l \sum_{\sigma' = x, y} q \cdot \hat{e}_{\sigma'} \times (\hat{b}_{l,\sigma} \hat{b}_{l,\sigma'} + \hat{b}_{l,\sigma'} \hat{b}_{l,\sigma} + \hat{b}_{l,\sigma}^\dagger \hat{b}_{l,\sigma'}^\dagger) \}$$ \hspace{1cm} (25)

and

$$\dot{\hat{b}}_{l,\sigma} = -i\omega_l \hat{b}_{l,\sigma} + \sum_{q \neq 0} w_q q \cdot \hat{e}_{\sigma} \hat{N}_q$$

$$\times \{ I_l + 2iJ_l \sum_{\sigma' = x, y} q \cdot \hat{e}_{\sigma'} (\hat{b}_{l,\sigma'} + \hat{b}_{l,\sigma'}^\dagger) \},$$ \hspace{1cm} (26)

where the constants $I_l \equiv \int_0^L \frac{dz}{L} \phi_l(z) / \sqrt{2L}$ and $J_l \equiv a_l^2 / 4$ reflect the spatial extent of the l-th phononic mode.
From the formal solution of Eq. (25) for the atomic variables, we obtain
\begin{equation}
\hat{a}_k(t) = e^{-i\omega_k t} \hat{a}_k(0) + \mathcal{O}(w),
\end{equation}
that is a free evolution of the atomic field plus corrections.

First, we are only considering the two lowest degenerate phononic modes with \(l = 0 \). Excited-state modes with \(l > 0 \) will contribute little to the collisionally induced excitation rate considering the principle of energy conservation.

The two ground-state modes can be combined into a vector
\begin{equation}
b_0(t) = \sum_{\sigma=x,y} \hat{b}_{0\sigma}(t) e_{\sigma}.
\end{equation}
Within the rotating-wave approximation, we drop the counter-rotating term in Eq. (26) and obtain a Langevin equation
\begin{equation}
\dot{b}_0(t) = -i[\omega_0 - \hat{\Omega}(t)]b_0(t) + \hat{F}(t),
\end{equation}
for the phononic Kubo-oscillators with a hermitian frequency tensor
\begin{equation}
\hat{\Omega}(t) = 2J_0 \sum_{q \neq 0} w_q(q \otimes q)_{xy} \hat{N}_q(t),
\end{equation}
which results in pressure-broadened oscillation frequencies, and a stochastic force
\begin{equation}
\hat{F}(t) = I_0 \sum_{q \neq 0} w_qq \hat{V}_q(t).
\end{equation}
The linear inhomogeneous Kubo equation (29), can be solved formally as
\begin{equation}
b_0(t) = \hat{U}_\Omega(t,0)b_0(0) + \int_0^t dt_1 \hat{U}_\Omega(t,t_1)\hat{F}(t_1),
\end{equation}
by introducing the retarded propagator
\begin{equation}
\partial_t \hat{U}_\Omega(t,t_1) = -i[\omega_0 - \hat{\Omega}(t)]\hat{U}_\Omega(t,t_1),
\end{equation}
for times \(t \geq t_1 \) with the initial condition \(\hat{U}_\Omega(t,t) = I \).
Thus, we have obtained a linear-response model for the carbon nano-tube immersed in an atomic gas.

B. Occupation number

In the present subsection, we assume that the state \(\hat{\rho}_{\text{tot}} \equiv \hat{\rho}_a \otimes \hat{\rho}_c \) of atoms and phonons is initially uncorrelated. Furthermore, we consider atoms that are prepared in a grand canonical ensemble \(\hat{\rho}_a \) at a temperature \(T_a \equiv 1/k_B \beta_a \) without macroscopic motion. Then, the number of the atoms with wave number \(k \) is given by
\begin{equation}
n_k = \langle \hat{a}^+_k \hat{a}_k \rangle = \frac{1}{e^{\beta_a (\varepsilon_k - \mu)} - 1},
\end{equation}
where we have introduced the chemical potential \(\mu \), or alternatively the fugacity \(\eta \equiv e^{\beta_a \mu} \), to constrain the particle number to \(N \) as shown in App. B2.

Moreover, the tube is prepared in its phononic vacuum \(\hat{\rho}_c \equiv \langle 0,0 \rangle \otimes \langle 0,0 \rangle \), representing the ground-state for the \(x- \) and \(y- \) polarization of the \(l = 0 \) modes.

As an observable, we consider the unpolarized occupation
\begin{equation}
p^0(t) = \langle b_1^+(t)b_0(t) \rangle = \text{Tr} \left\{ \hat{b}_1^+(t)\hat{b}_0(t)\hat{\rho}_{\text{tot}} \right\}
\end{equation}
of the degenerate ground-state manifold. From Eq. (32), it follows that the occupation
\begin{equation}
p^0(t) = \int dt_1 \int dt_2 \langle \hat{F}^+(t_1)\hat{U}_\Omega^+(t,0)\hat{U}_\Omega(t,t_2)\hat{F}(t_2) \rangle
\end{equation}
is determined solely by the force-correlation function. In the evaluation of Eq. (34), we have used the Born approximation keeping only processes up to second order in the Casimir-Polder potential amplitude \(w_q \). In turn, the force-correlation function depends fundamentally on the density-correlation function \(\langle \hat{N}_q(t_1)\hat{N}_k(t_2) \rangle \), which by means of space-time Fourier-transformation is linked to the dynamic structure factor \(\tilde{F}(k) \). For the free fields of Eq. (27), we have evaluated this finite temperature correlation function in App. B2.

After performing the time integration, we obtain for the occupation the second-order perturbative result
\begin{equation}
p^0(t) = 4I_0^2 \sum_{q \neq 0,k} q_{1q}^2 w_q^2 n_k(1 + n_{k-q}) \sin^2 \left[\frac{\Delta k}{2} \right],
\end{equation}
where we have introduced the wave vector \(q_{1q} \perp \perp \) perpendicular to the tube axis by the relation \(q_{1q}^2 = q_2^2 + q_3^2 \), and the frequency difference \(\Delta k \equiv \omega_0 + \omega_{k-q} - \omega_k \) due to inelastic scattering between the initial and the final state.

Assuming that the temperature \(T_a \) of the gas is above the temperature \(T_{\text{BEC}} \) for Bose-Einstein condensation, that is \(T_a > T_{\text{BEC}} \), the thermal occupation satisfies the inequality \(n_{k-q} < 1 \). Consequently, we can disregard this bosonic enhancement of scattering in Eq. (37) and retain only
\begin{equation}
p^0(t) \approx 4I_0^2 \sum_{q \neq 0,k} q_{1q}^2 w_q^2 n_k \frac{\sin^2 \left[\frac{\Delta k}{2} \right]}{\Delta k}.
\end{equation}
Now, we evaluate the occupation number in the continuum limit \(\sum_k \rightarrow \int d^3k \sqrt{(2\pi)^3} \) and transform the \(k \)-integral to cylindrical coordinates \((k, \phi, k_z) \) with the \(k_z- \)
axis aligned to q, which yields

$$p_0^v(t) = -\frac{mL_0^2 V}{\pi^2 \hbar^2 \beta_a} \sum_{q \neq 0} q_j^2 |w_q|^2 \int_{-\infty}^{\infty} dk_z \log(1 - \eta e^{-\frac{k_z^2 \Delta k_z^2}{\pi m}}) \times \sin^2\left(\frac{\Delta k_z}{2}\right) \rho_{\Delta k_z^2},$$ (39)

with $\Delta k_z \equiv \omega_q + \omega_q - \hbar q z / m$ and $q \equiv \sqrt{q_x^2 + q_y^2}$. For an atomic gas at a temperature $T_a > T_{\text{BEC}}$, the fugacity obeys the inequality $\eta < 1$. Hence, we can Taylor-expand the logarithm in Eq. (39) and arrive at

$$p_0^v(t) = \frac{mL_0^2 V}{\pi^2 \hbar^2 \beta_a} \sum_{j=1}^{\infty} \eta_j^2 \sum_{q \neq 0} q_j^2 |w_q|^2 \mathcal{F}_j(q),$$ (40)

where we have introduced the convolution integral

$$\mathcal{F}_j(q) \equiv \int_{-\infty}^{\infty} d\Delta \frac{\sin^2\left(\frac{\Delta j}{2}\right)}{\Delta^2} e^{-j \frac{\Delta k_z}{\hbar} (\omega_q + \omega_q - \Delta)^2}.$$ (41)

Integrals of this type are the essence of Fermi’s Golden Rule [51]. If either the width $q / \sqrt{\beta_a m}$ of the thermal Gaussian, or its central frequency $\omega_q + \omega_q$ are far bigger than the width $2\pi / t$ of the sinc-function localized at $\Delta = 0$, i.e., $t \gg \min(\sqrt{\beta_a m / q, 2\pi / \omega_0})$, then we can approximate the integral by evaluating the Gaussian function at the maximum of the sinc-function as

$$\mathcal{F}_j(q) \approx e^{-j \frac{\Delta k_z}{\hbar} (\omega_q + \omega_q)^2} \int_{-\infty}^{\infty} d\Delta \frac{\sin^2\left(\frac{\Delta j}{2}\right)}{\Delta^2}$$

$$= \frac{t^2}{2} \frac{\pi}{2} e^{-j \frac{\Delta k_z}{\hbar} (\omega_q + \omega_q)^2}. \tag{42}$$

This expression displays the familiar linear increase of the excitation as a function of time.

C. Relaxation rate

The evaluation of relaxation rates is always based on time-dependent perturbation theory, either in the Schrödinger- or in the Heisenberg picture, and a subsequent evaluation of the amount of excitation observed after turning on the interaction for some time. The linear temporal increase of the excitation then translates into a rate coefficient.

1. General expression

Substituting Eq. (42) into Eq. (40) and taking the time-derivative at the initial instant, $\Gamma_0^v \equiv p_0^v(t = 0)$, we obtain the excitation rate

$$\Gamma_0^v = \frac{m^2 L_0^2 T}{4 \pi^2 \hbar^2 \beta_a} \sum_{j=1}^{\infty} \eta_j^2 \int_0^{\infty} dq q^2 |V(q)|^2 e^{-j \frac{\Delta k_z}{\hbar} (\omega_q + \omega_q)^2}. \tag{43}$$

We note the reappearance of the two-dimensional Fourier-transform of the Casimir-Polder potential $q_0 = \frac{mL_0^2 T}{\hbar^2 \beta_a}$, depicted in Fig. 1.

In terms of the dimensionless wave number $\tilde{q} = q R$ of Eq. (44), we can rewrite Eq. (43) as

$$\Gamma_0^v = A_0 \sum_{j=1}^{\infty} \eta_j^2 \int_0^{\infty} dq |V(q)|^2 \delta_j^0(q). \tag{44}$$

Here, we gathered all the constants into the prefactor $A_0 \equiv 8\pi mL_0^2 T / \hbar^2 \alpha_{\text{DB}}$ and introduced the sharply peaked function

$$\delta_j^0(q) = \frac{4q^2}{\sqrt{\pi} \kappa} \exp\left[-j \left(\frac{q}{\kappa} + \frac{\hbar \omega_q \beta_a}{4}
ight)^2\right]. \tag{45}$$

that depends on the characteristic ratio $\kappa \equiv 4\sqrt{\pi} R / \lambda_{\text{DB}}$ of the tube’s radius R to the thermal de Broglie wavelength $\lambda_{\text{DB}} = \hbar / \sqrt{2 \pi \beta_a} / m$.

Indeed, $\delta_j^0(q)$ decreases very rapidly as $\tilde{q} \to 0$, as well as for $\tilde{q} \to \infty$ and we will treat it like a delta-distribution compared to the smooth potential in the integral of Eq. (44). We can determine its extremum from $\partial_{\tilde{q}} \delta_j^0(q) = 0$, and find its location at

$$\tilde{q}_j^0 = \frac{\kappa}{2 \kappa^2} \left(1 + \frac{j \hbar \omega_q}{2\kappa^2} + \frac{1}{2}\right)^{1/2}. \tag{46}$$

Therefore, we approximate the integral of Eq. (44) with the mean value theorem of integral calculus

$$\int_0^{\infty} dq |V(q)|^2 \delta_j^0(q) \approx |V(\tilde{q}_j^0)|^2 \int_0^{\infty} dq \delta_j^0(q), \tag{47}$$

which with the help of the known integral formula [48]

$$\int_0^{\infty} dq \delta_j^0(q) = \frac{e^{-j \hbar \omega_q \beta_a / j \beta_q^2}}{j \beta_q^2} \left(1 + \frac{j \hbar \omega_q \beta_a}{2j \beta_q^2}\right), \tag{48}$$

finally yields the excitation rate

$$\Gamma_0^v = A_0 \sum_{j=1}^{\infty} \eta_j^2 \int_0^{\infty} dq |V(q)|^2 \delta_j^0(q)^2. \tag{49}$$

Clearly, the first $j = 1$ term dominates the sum.

2. Fermi’s Golden Rule

A simple view of the previous result comes from considering the unpolarized total transition rate

$$\Gamma_0^v = \sum_{k_f, \sigma_f} \sum_{k_i} \frac{2\pi}{\hbar} |\langle f | \hat{H}_1 | i \rangle|^2 \delta(\varepsilon_f - \varepsilon_i) n_{k_i}. \tag{50}$$
for the inelastic process induced by the Casimir-Polder potential of Eq. (22). This expression represents the signal current of a fictitious detector that records all final states of the atoms and averages it with the distribution of initial states. Here, the initial state $|i⟩ = |k_i, 0ω⟩$ describes a single atom with wave vector k_i and the carbon-nano tube in its ground state. This state has an energy $ε_i = \frac{ℏ^2}{2m}k_i^2$. As we are interested in inelastic collisions, we consider the final state $|f⟩ = |k_f, 1σ⟩$ with one phonon in the $σ$-polarized mode $ω_f$. Now, this state has an energy $ε_f = hω_f + \frac{ℏ^2}{2m}k_f^2$. With a few algebraic transformations, we obtain the excitation rate from Fermi’s Golden Rule and it coincides with the first term $j = 1$ of Eq. (49).

$$\Gamma_0^v = \frac{8πmI_0^3L}{ℏ^3Λ_{dB}}e^β_a(μ−hω_o)(1 + \frac{1}{2}hω_oβ_a)|V(q_1^{(0)})|^2.$$ (51)

In order to bring out the essential physics, one can approximate the fugacity by $e^β_a ≈ n^3Λ_{dB}$ for temperatures $T_a > T_{BEC}$ (comp. Eq. (13)). This simplifies the rate to

$$\Gamma_0^v = \frac{4m^2I_0^3L}{ℏ^5}(k_BT_a + \frac{1}{2}hω_o) ne^{-\frac{ℏω_o}{k_BT_a}}|V(q_1^{(0)})|^2.$$ (52)

Thus, decreasing the thermal energy of the atoms below the excitation energy, i.e., $k_BT_a < hω_o$, suppresses the inelastic relaxation rate exponentially.

3. Application to current experiment

In order to evaluate the relaxation rate Eq. (50) explicitly, we need to know the exact form of the Casimir-Polder potential of Eq. (15). Recent measurements of the interaction potential between the carbon nano-tube and the atomic gas [29] have shown that the effect is very well described by the contribution $C_5/ℏ^4$ with a numerical coefficient $C_5 ≃ 6×10^{-65}±1$Jm5. Thus, we approximate the Casimir-Polder potential Eq. (15) only by that term, i.e.,

$$V(q_1^{(0)}) = 2πC_5 \frac{V_5(q_1^{(0)})}{R^3}.$$ (53)

and $V_5(q) = \tilde{q}^0 + \frac{1}{3}J_2(\frac{q}{\tilde{q}})\{1, -\frac{1}{2}; \tilde{q}^0\} \approx \frac{1}{3} - \frac{q^2}{\tilde{q}^2} + \mathcal{O}[\tilde{q}]^2$. As the $R ≪ Λ_{dB}$, we need to retain only lowest term in this expression and find the following approximation for the rate

$$\Gamma_0^v = \frac{16π^2m^2I_0^3L}{9ℏ^5}(k_BT_a + \frac{1}{2}hω_o) ne^{-\frac{ℏω_o}{k_BT_a}}\frac{C_5^2}{R^6}.$$ (54)

All other relevant parameters of the carbon nano-tube and the atomic gas are listed in Apps. A and B.

Now, figure 2 depicts the dependence of the full excitation rate $Γ_0^v$ of Eq. (49) on the scaled temperature T_a/T_{BEC} of the atomic cloud for different atomic densities. We note that the excitation rate depends strongly on the temperature, as well as on the density of the gas.

For the given parameters, we find the rates of Eq. (49) and Eq. (54) are indistinguishable. When the excitation rates are of the order of the oscillation frequency or below $Γ_0^v < ω_o$, the Fermi-Golden-Rule approach is suitable. Therefore, we conclude that cooling of the carbon nano-tube to the ground mode is feasible in current experimental situations.

IV. DYNAMICS OF RELAXATION

In this section, we will generalize the previous considerations to determine the relevant time scales and study the dynamics of the relaxation process with a master equation approach. Here, the phonons are considered as the system and the atoms are the bath. This analysis yields (i) a dynamic picture of the carbon nano-tube cooling, (ii) its approach towards equilibrium, and (iii) its dependence on temperature.

A. Master equation

In the interaction picture, the time evolution of the total density operator $\hat{ρ}_\text{tot}$ of phonons and atoms is described by the von-Neumann equation

$$\dot{\hat{ρ}}_\text{tot}(t) = \frac{1}{iℏ}[\hat{H}_i(t), \hat{ρ}_\text{tot}(t)].$$ (55)

As usual, the interaction picture is obtained from the Schrödinger picture using the free atom-phonon propa-
gator $\hat{U}(t) \equiv \exp[-i(\hat{H}_a + \hat{H}_c)t/\hbar]$, which yields

$$\hat{\rho}_{\text{tot}}(t) \equiv \hat{U}(t)\hat{\rho}_{\text{tot}}(0)\hat{U}(t),$$ \hspace{1cm} (56)

$$\hat{H}_i(t) \equiv \hat{U}^\dagger(t)\hat{H}_i\hat{U}(t) = \hbar \sum_{q \neq 0} w_q \hat{\mathcal{N}}_q(t)\hat{T}_q(t),$$ \hspace{1cm} (57)

$$\hat{\mathcal{N}}_q(t) = \sum_k e^{-i(\omega_k - \omega_q)\xi t} \hat{a}_{k-q}^\dagger \hat{a}_{k},$$ \hspace{1cm} (58)

$$\hat{T}_q(t) = \int_0^{\Delta t} \frac{dz}{T} \exp[iq\hat{u}(z,t)],$$ \hspace{1cm} (59)

and

$$\hat{u}(z,t) = \frac{1}{\sqrt{2}} \sum_{\sigma = x,y} \int_0^{\Delta t} \frac{dz}{T} \exp[iq\hat{u}(z,t)].$$ \hspace{1cm} (60)

To study the phonon dynamics $\hat{\rho}(t) \equiv \text{Tr}_a[\hat{\rho}_{\text{tot}}(t)]$, we have to average the state of total system over the atomic bath. Considering the deviation $\Delta \hat{\rho}(t) \equiv \hat{\rho}(t + \Delta t) - \hat{\rho}(t)$ for a short time interval Δt, we find from an iterated formal solution of Eq. (35) the expression

$$\Delta \hat{\rho}(t) = \frac{1}{\hbar} \int_t^{t+\Delta t} dt_2 \text{Tr}_a \left\{ \left[\hat{H}_i(t_1), \hat{\rho}_{\text{tot}}(t_1) \right] \right\}$$

$$- \frac{1}{\hbar^2} \int_t^{t+\Delta t} dt_1 \int_t^{t+\Delta t} dt_2 \text{Tr}_a \left\{ \left[\hat{H}_i(t_1), \left[\hat{H}_i(t_2), \hat{\rho}_{\text{tot}}(t_2) \right] \right] \right\}.$$ \hspace{1cm} (61)

Within the Born-Markov approximation \[51\], we derive a master equation for the coarse-grained rate of change $\Delta \hat{\rho}(t) \approx \Delta t \frac{d\hat{\rho}}{dt}$. For the particular atom-phonon interaction Hamiltonian given by Eq. (57), we obtain the master equation

$$\frac{d\hat{\rho}}{dt} = \frac{\eta V}{\lambda_3^a} \int_0^\infty \frac{dt}{\Delta t} \int_t^{t+\Delta t} dt' \sum_{q \neq 0} |w_q|^2 e^{-i\omega_q(1-i\tau)}$$

$$\times [\hat{T}_q(t') - \hat{\rho}(t')\hat{T}_q(t') - \hat{T}_q(t')\hat{\rho}(t')] + \text{h.c.}.$$ \hspace{1cm} (62)

In progressing from Eqs. (61) to (62), we have not included linear contributions in the interaction as there is no deterministic motion. Moreover, in evaluating thermal contributions for $T_a > T_{\text{BEC}}$, we have retained only the dominant contributions and encountered the same thermal density-fluctuation correlation function $\langle \hat{N}_k(t_1)\hat{N}_k(t_2) \rangle$, as in Eq. (36) and discussed in App. [32]. Since the thermal correlation functions also decay quickly, it is very well justified to extend the upper limit of the τ-integration to infinity.

B. Ground state excitation rate

As an application of this master equation, we consider a carbon nano-tube that is initially in the multi-mode phononic vacuum $\hat{\rho}(t = 0) = |0, \ldots\rangle\langle 0, \ldots|$. Then, we immerse it into the bath of atoms at temperature T_a, and observe the decrease of the ground-state occupation $\rho^v(t) \equiv \langle 0|\hat{\rho}(t)|0 \rangle$. In this case, the excitation rate into any available phononic mode $l \geq 0$ is given by

$$\Gamma^v = \frac{\eta V}{\lambda_3^a} \int_0^\infty \frac{dt}{\Delta t} \int_0^\infty \frac{dt'}{\Delta t} \sum_{q \neq 0} |w_q|^2 e^{-i\omega_q(1-i\tau)}$$

$$\times \langle 0|\hat{Q}_q(t', t') - \tau |0 \rangle + \text{h.c.}.$$ \hspace{1cm} (63)

$$\hat{Q}_q(t_1, t_2) \equiv \hat{T}_q(t_1)\hat{T}_q(t_2) - \hat{T}_q(t_2)\hat{T}_q(t_1)|0, 0 \rangle.$$ \hspace{1cm} (64)

Clearly, the excitation rate is just the negative depletion rate of the ground-state occupation, i.e., $\Gamma^v = -\rho^v(t)$.

As in Sec. [11], we assume that the thermal de Broglie wavelength of the atomic gas is much longer than the tube’s oscillation amplitude, that is $\lambda_B \gg u$. Hence, we can approximate the translation operator of Eq. (59), as in Eq. (25), by a second-order Taylor series, and find

$$\langle 0|\hat{Q}_q(t', t') - \tau |0 \rangle = \sum_{l = 0}^{\infty} \sum_{\sigma = x, y} \langle q_e \rangle^2 \left\{ \hat{S}_1^l \hat{S}_1^{l'} \right\} e^{-i\omega_l\tau}.$$ \hspace{1cm} (65)

After performing the time integrations and transforming the discrete wave number sums in the continuum limit, we arrive for the vacuum excitation rate at

$$\Gamma^v = \sum_{l = 0}^{\infty} |A_l\rangle \int_0^\infty d\bar{q} |V(q)|^2 |\bar{S}_1(\bar{q})|^2.$$ \hspace{1cm} (66)

The \bar{q}-integration is approximated in a way completely analogous to Eq. (47) and we obtain the expression

$$\Gamma^v = \sum_{l = 0}^{\infty} |A_l| e^{\beta \omega_l(u - h\omega_l)}(1 + \frac{1}{2} \beta \hbar \omega_l)|V(q_1^{(0)})|^2.$$ \hspace{1cm} (67)

for the phononic excitation rate out of the vacuum. Clearly, the sum in Eq. (67) is dominated by the contribution of the lowest phononic mode $l = 0$, that is

$$\Gamma_0^v \approx |A_0| e^{\beta \omega_0(u - h\omega)}(1 + \frac{1}{2} \beta \hbar \omega_0)|V(q_1^{(0)})|^2.$$ \hspace{1cm} (68)

This expression for the rate agrees with the first term of the extended thermal series Eq. (49).

C. Finite temperature thermalization rate

In this subsection, we generalize the previous calculation by assuming that the carbon nano-tube is initially close to a thermal state at temperature $T_e \equiv 1/k_B \beta_e$, which is different from the temperature $T_a \equiv 1/k_B \beta_a$ of the atomic bath. The rate of change of the occupation $\rho_{l, \sigma} \equiv \langle \hat{b}_{l, \sigma}^\dagger \hat{b}_{l, \sigma} \rangle$ of the mode (l, σ) is given by

$$\dot{\rho}_{l, \sigma} = \text{Tr}\left\{ \rho_{l, \sigma} \hat{\rho}(t) \right\}.$$ \hspace{1cm} (69)
Now, we use the master equation Eq. (62) and assume in the evaluation of the averages a canonical density operator parametrized by a time-dependent coefficient \(\beta_c(t) \), as outlined in App. 13. In the continuum-limit, we obtain from Eq. (69) for the unpolarized occupation numbers \(p_l \equiv p_{l,x} + p_{l,y} \) of the \(l \)-th level the rate equation
\[
\dot{p}_l(t) = -\gamma_l(\beta_c)p_l, \tag{70}
\]
with temperature dependent rate coefficients
\[
\gamma_l(\beta_c) \equiv A_l\eta(\epsilon_l \omega_l - \epsilon_l \omega_l^2) \int_0^\infty d\bar{q} |V(\bar{q})|^2 \delta_l^l(\bar{q}). \tag{71}
\]
Integrating over \(\bar{q} \) similarly to Eqs. (44) and (47), we find
\[
\gamma_l = A_l\eta(1 - e^{(\beta_l - \beta_a)\hbar\omega_l})(1 + \frac{\beta_a \hbar\omega_l}{2})|V(\bar{q}_l)|^2, \tag{72}
\]
with \(\bar{q}_l \) given by Eq. (40).

As expected, this expression generalizes Eqs. 40 and 67, as it allows for a finite temperature of the tube that is different from the atomic gas, i.e., \(\beta_c \neq \beta_a \), as well as for excitations into all phononic modes \(l \geq 0 \).

If the carbon nano-tube is colder than the atomic bath, that is \(\beta_c < \beta_a \), then the relaxation rate of Eq. (72) is positive and leads, according to Eq. (70), to a cooling of the tube’s phonons. If the carbon nano-tube is colder than the atoms, i.e., \(\beta_c > \beta_a \), the rate is negative and leads to a heating of the tube. Finally, all rates vanish, when \(\beta_c = \beta_a \), as required for a thermodynamic equilibrium.

V. CONCLUSION

Using time-dependent perturbation theory with finite temperature ensembles, we have calculated the excitation rate of a free-standing single-walled carbon nano-tube immersed in a bath of neutral bosonic atoms. The interaction between the carbon nano-tube and the atoms was modeled by a generic Casimir-Polder potential series. We have assumed that the temperature of the atoms was above the Bose-Einstein condensation transition temperature as the collisional relaxation at the MHz level is insensitive to the phase coherence of the bath.

For the numerical evaluation of the excitation rates, we have used experimentally determined values of the Casimir-Polder potential between a thermal-, as well as a Bose-Einstein condensed \(^{87}\)Rb gas [29]. In this situation, an inverse power-law \(\sim C_5/z^5 \) is very well-suited to approximate this potential. With this analysis and the current data, we find that cooling of the free-standing carbon nano-tube to the phononic ground state due to the Casimir-Polder interaction with a cold atomic gas is feasible.

We emphasize that the excitation rate depends strongly on the temperature and the density of the atomic cloud. The form of the interaction potential, for example interferences between different potential contributions, can influence the rate as well. Hence, more extensive experimental data is needed.

ACKNOWLEDGEMENTS

JF and CTW gratefully acknowledge support from the German BMBF (NanoFutur 03X5506). WPS and JF co-operated within the SFB/TRR 21 “Control of quantum correlations in tailored matter” funded by the Deutsche Forschungsgemeinschaft (DFG), and RW thanks the Deutsche Luft- und Raumfahrtagentur (DLR) for support from grant (50WM 1137).

Appendix A: Properties of the carbon nano-tube

In this appendix, we summarize without much of a derivation properties of the carbon nano-tube relevant for the article.

The normalization constant \(\tilde{a}_l \) of the eigenmode of Eq. (41) reads
\[
\frac{\tilde{a}_l^2}{a_l^2} = 1 + 2 \cos (\kappa_l L) \cosh (\kappa_l L) + \frac{1}{2} \cos (2 \kappa_l L) \tag{A1}
\]
\[
+ \cosh (2\kappa_l L) - \frac{1}{2\kappa_l L} [2 \cosh (\kappa_l L) \sin (\kappa_l L) + 2 \cos (\kappa_l L) \sinh (\kappa_l L) + \cosh^2 (\kappa_l L) \sin (2\kappa_l L) + \cosh^2 (\kappa_l L) \sinh (2\kappa_l L)].
\]

Typical mechanical parameters for single-walled carbon nano-tube are summarized in Tab. I.

\(R \) [nm]	\(L \) [\mu m]	\(p_c \) [kg/m]	\(\omega_0 \) [kHz]	\(a_0 \) [nm]
1	1	\(10^{-15} \)	2\(\pi \cdot 398 \)	0.2

Table I. Mechanical parameters of a single-walled carbon nano-tube.

In the low temperature approximation of Eq. (24), we have assumed that the spatial excursions of the nanotube are much less than the thermal de Broglie wavelength of the atomic gas. Thus, we summarize the maximal thermal excursions \(u = \sqrt{\langle \Delta^2 u \rangle}_{T_c} \) of the tip of the tube \(z = L \) for different temperatures of the tube \(T_c \) in Tab. II.

\(T_c \) [K]	\(u \) [nm]
4	270
0.24	66
0	0.46

Table II. Maximal thermal displacement \(u \) at the tip of the carbon nano-tube for three values of temperature \(T_c \).
Appendix B: Cold bosonic gases

In this appendix, we summarize the central results of equilibrium thermodynamics of bosonic fields that were employed in the main sections of our article.

1. Bose-Einstein condensation

The state of the free atomic gas \([52]\) is described by the density operator of the grand canonical ensemble

\[
\hat{\rho} = e^{\hat{N}^\dagger \hat{H} - \mu \hat{N}}, \quad \text{Tr} \{ \hat{\rho} \} = 1,
\]

held at a temperature \(T_a \equiv 1/k_B \beta_a\) and maintaining an average particle number \(N\). The Hamiltonian is denoted by \(\hat{H}\), \(\hat{\Omega}\) is the grand canonical potential and \(\mu\) is a chemical potential, which is determined self-consistently through the particle number constraint

\[
N \equiv \langle \hat{N} \rangle = \sum_k n_k = n_0 + \tilde{N}(\beta_a). \tag{B2}
\]

Here \(n_0 \equiv n_{k=0}\) is the occupation of the ground-state and \(\tilde{N}(\beta_a)\) denotes the number of thermal particles.

Introducing the fugacity as \(\eta \equiv e^{\beta_a \mu}\), one finds for the occupation number of the ground state, \(n_0 \equiv \eta/(1-\eta)\) and \(\tilde{N}(\beta_a) = V g_{3/2}(\eta)/\lambda_{dB}^3\) for the number of particles in the excited states. The poly-logarithmic function is defined by

\[
g_{3/2}(\eta) \equiv \sum_{j=1}^{\infty} \frac{\eta^j}{j^{3/2}}, \quad g_{3/2}(1) \approx 2.61238. \tag{B3}
\]

In the thermodynamical limit, when particle number and volume increase at constant particle density, i.e., \(n = \lim_{N,V \to \infty} N/V = \text{const.}\), one can identify two cases. The first corresponds to particle densities below the critical density, that is, \(n < g_{3/2}(1)/\lambda_{dB}^3\). There, the occupation number of the ground state \(n_0\) is negligibly small and the total number of atoms is equal to the number of particles in the excited states \(N \approx \tilde{N}(\beta_a)\). In this limit of a dilute quantum gas, the de Broglie wavelength is much smaller than the average distance between the particles. Therefore, the gas behaves classically.

The second regime occurs for densities larger than the critical density \(n > g_{3/2}(1)/\lambda_{dB}^3\). In this case the fugacity attains its maximum value \(\eta \to 1\). The occupation of the ground state

\[
n_0 = N \left[1 - \left(\frac{T_a}{T_{BEC}} \right)^{\frac{2}{3}} \right], \tag{B4}
\]

is not negligible anymore and increases with the decrease of temperature where we have introduced the critical BEC temperature

\[
T_{BEC} \equiv \frac{2\pi h^2}{mk_B^2} \left(\frac{n}{g_{3/2}(1)} \right)^{2/3}. \tag{B5}
\]

Figure 3 presents the behavior of the gas in these two cases. For temperatures below the critical temperature, the ground-state occupation (dashed-dotted line) becomes macroscopic and the fugacity (solid line) is practically one. Above the critical temperature, the fugacity decreases with the increase of temperature and the number of particles in the excited states (dashed line) is equal to the total number of particles.

\(n\) [cm\(^{-3}\)]	\(10^{12}\)	\(5 \cdot 10^{12}\)	\(10^{13}\)	\(5 \cdot 10^{13}\)	\(10^{14}\)
\(T_{BEC}\) [nK]	18	54	85	250	400
\(\lambda_{dB}\) [nm]	610	357	283	165	131

Table III. Parameters of the cold atomic cloud. The mass of a single \(^{87}\)Rb atom is \(m = 1.443 \cdot 10^{-25}\) kg.

From this analysis, we can obtain the values of the thermal de Broglie wavelength, summarized in Tab. III for a range of atomic densities at the critical temperature.

2. Thermal correlation functions

In this part of the appendix we focus on the quantum averages used in the master equation Eq. (62). In particular, we derive single-time averages and two-time correlation functions.
a. Single-time average

With the choice of the interaction Hamiltonian Eq. (57), and assuming that the atomic bath is in a grand-canonical state without macroscopic motion, we find a vanishing quantum average

$$\text{Tr}_a \left\{ \hat{\rho}_a \hat{H}_i \right\} = 0,$$ \hspace{1cm} (B6)

because $\langle \hat{a}^\dagger_{k-q} \hat{a}_k \rangle = 0$, for $q \neq 0$. Therefore, the trace over the single commutator in the first term of Eq. (51), will vanish – which means that we have incorporated this energy shift in the unperturbed Hamiltonian of the atoms. This result is well-known in first-order time-independent perturbation theory.

b. Two-time correlations

The two-time density-fluctuation correlation function $\langle \hat{N}_q(t_1)\hat{N}_k(t_2) \rangle$ evaluated at temperature T_a, emerges ubiquitously in field theory and is proportional to the dynamic structure factor $S(k,\omega)$. In the case of stationary, translationally invariant systems, it simplifies to

$$\langle \hat{N}_q(t + \tau)\hat{N}_k(t) \rangle = \langle \hat{N}_q(\tau)\hat{N}_k(0) \rangle = \delta_{q+k,0} g_q(\tau),$$

where the Kronecker delta enforces momentum conservation and we find the thermal correlation function

$$g_q(\tau) = \sum_k e^{i(\omega_k - \omega_q)\tau} n_{k-q}(1 + n_k)$$ \hspace{1cm} (B7)

with thermal occupations n_k defined in Eq. (43).

For further discussions, we separate the ground-state contribution from the sum and approximate the remainder within the continuum-limit. For $T_a > T_{\text{BEC}}$, we find $n_k < 1$ and we will take only the linear term in Eq. (B7) into account. In this regime, we can also approximate the Bose-Einstein distribution by the Maxwell-Boltzmann distribution. Moreover, the occupation number in the lowest level is negligible and the correlation function can be written as

$$g_q(\tau) \approx \frac{n_q}{\lambda_{DB}^2} \exp \left[-i\omega_q \tau \left(1 - i \frac{\tau}{\hbar \beta_a} \right)\right].$$ \hspace{1cm} (B8)

3. Canonical ensemble for phonons

In this subsection, we recall general properties of the canonical ensemble

$$\hat{\rho}_c = e^{\Omega - \beta_c \hat{H}_c}, \hspace{1cm} \text{Tr}_c \{ \hat{\rho}_c \} = 1,$$ \hspace{1cm} (B9)

which is used when the system exchanges energy but no particles with the environment. Here, Ω is a canonical potential, \hat{H}_c is the Hamiltonian defined by Eq. (9) for the phonons of the carbon nano-tube, and $T_c \equiv 1/k_B \beta_c$ is the temperature of the phonons.

Therefore, the occupation of the mode (l, σ) reads

$$p_{l,\sigma}(\beta_c) \equiv \langle \hat{p}_{l,\sigma} \rangle = \frac{1}{e^{\beta_c \hbar \omega_l} - 1},$$ \hspace{1cm} (B10)

and for the density-correlation, we find

$$\langle \hat{p}_{l,\sigma} \hat{p}_{l',\sigma'} \rangle \equiv (1 + \delta_{l,l'} \delta_{\sigma,\sigma'} e^{\beta_c \hbar \omega_l}) p_{l,\sigma} p_{l',\sigma'}.$$ \hspace{1cm} (B11)

Recalling Eq. (62), we obtain from Eq. (B10) the rate of change

$$\dot{p}_{l,\sigma} = \int_0^\infty \frac{d\tau}{\hbar^2 \Delta} \frac{1}{t + \Delta t} \int_0^{t + \Delta t} \frac{dt'}{q^2} \sum_{q \neq 0} g_q(\tau) \left(\langle \hat{T}_q(t') \hat{T}_q(t' - \tau) \rangle - \langle \hat{p}_{l,\sigma} \hat{T}_q(t') \hat{T}_q(t' - \tau) \rangle \right) + \text{h.c.}$$ \hspace{1cm} (B12)

of the occupation of the mode (l, σ).

With the quadratic approximation of the tube’s translation operator Eq. (21), we find

$$\langle \hat{p}_{l,\sigma} \hat{T}_q(t') \hat{T}_q(t' - \tau) \rangle - \langle \hat{T}_q(t') \hat{p}_{l,\sigma} \hat{T}_q(t' - \tau) \rangle = \sum_{l',\sigma'} I_{l,l'}^{l',\sigma'} \times (q e_{\sigma'})^2 \left[\langle \hat{p}_{l,\sigma} \rangle \left(e^{-i\omega_{l} \tau} - e^{-i\omega_{l'} \left(\beta_c \hbar \tau - i\hbar \tau\right)} \right) + \langle \hat{p}_{l',\sigma'} \hat{p}_{l,\sigma} \rangle \right] \times \left(2 \cos(\omega_{l'} \tau) - \frac{e^{i\omega_{l} \tau}}{\beta_c \hbar \tau} - e^{-i\omega_{l'} \left(\beta_c \hbar \tau + i\hbar \tau\right)} \right).$$ \hspace{1cm} (B13)

We note that these expressions are very similar to those considered in Sec. IV B for the ground-state excitation. Using Eqs. (B10)–(B11) and integrating over t' and τ, we obtain

$$\dot{p}_{l,\sigma}(\beta_c) = \frac{n_{\Omega} \beta_c}{\hbar \lambda_{DB}^2} \sum_{q \neq 0} |q|^2 \sum_{l',\sigma'} I_{l,l'}^{l',\sigma'} \times \left(e^{-\beta_c \hbar \omega_{l'} \tau} - e^{-\beta_c \hbar \omega_{l} \tau} \right) \left[1 + (1 + \delta_{l,l'} \delta_{\sigma,\sigma'} e^{\beta_c \hbar \omega_{l'}}) \right] \times \left(1 - e^{\beta_c \hbar \omega_{l'} \tau} \right) |q|^2 e^{-\beta_c \hbar \omega_{l'} \tau} \times \left(e^{\beta_c \hbar \omega_{l} \tau} \right) p_{l,\sigma}(\beta_c).$$ \hspace{1cm} (B14)

With the help of Eq. (B10), Eq. (B14) reduces to

$$\dot{p}_{l,\sigma}(\beta_c) = \frac{n_{\Omega} \beta_c}{\hbar \lambda_{DB}^2} \sum_{q \neq 0} |q|^2 \sum_{l',\sigma'} e^{-\beta_c \hbar \omega_{l'} \tau} \times \left(e^{\beta_c \hbar \omega_{l} \tau} \right) p_{l,\sigma}(\beta_c).$$ \hspace{1cm} (B15)

These technical steps are necessary to obtain the finite temperature thermalization rate of Eq. (72).

[1] R. P. Feynman, \textit{Journal of Micromechanical Systems} \textbf{1}, 20 (1992).
[2] B. Rogers, S. Pennathur, and J. Adams, \textit{Nanotechnol-
ogy: Understanding small systems (CRC Press, Taylor & Francis, Boca Rotan, 2008).
[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[4] M. Aspelmeyer, P. Meystre, and K. Schwab, Phys. Today 65, 29 (2012)
[5] G. Milburn and M. Woolley, Acta Phys. Slovaca 61, 483 (2012).
[6] L. Tian and P. Zoller, Phys. Rev. Lett. 93, 266403 (2004)
[7] S. Schmid, A. Harter, and J. H. Denschlag, Phys. Rev. Lett. 105, 133202 (2010)
[8] S. Gardiner, N. Proukakis, and M. Davis, eds., Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Imperial College Press, London, 2013) and Refs. therein.
[9] M. Grupp, W. P. Schleich, E. Goldobin, D. Koelle, R. Kleiner, and R. Walser, Phys. Rev. A 87, 021602 (2013), and Refs. therein.
[10] M. Aspelmeyer, P. Meystre, and K. Schwab, in Quantum Optics: Understanding small systems (CRC Press, Taylor & Francis, Boca Rotan, 2008)
[11] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A 80, 053619 (2009)
[12] R. Fermani, S. Scheel, and P. L. Knight, Phys. Rev. A 80, 053619 (2009)
[13] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, in Elements of Materials Science and Engineering (McGraw-Hill, New York, 1992).
[14] D. Pines, Elementary Excitations in Solids (W. Benjamin, Inc., New York, 1963).
[15] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interaction (J. Wiley & Sons, Inc., New York, 1992).
[16] L. D. Landau and E. M. Lifshitz, Field Theory (Oxford University Press, Oxford, 1975).
[17] L. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003).