Genus-one correction to asymptotically free
Seiberg-Witten prepotential from
Dijkgraaf-Vafa matrix model

Mitsutoshi Fujita∗ Yasuyuki Hatsuda† Ta-Sheng Tai‡

Abstract

We find perfect agreements on the genus-one correction to the prepotential of $SU(2)$
Seiberg-Witten theory with $N_f = 2, 3$ between field theoretical and Dijkgraaf-Vafa-
Penner type matrix model results.

∗e-mail address: mfujita@gauge.scphys.kyoto-u.ac.jp
†e-mail address: hatsuda@riken.jp
‡e-mail address: tasheng@riken.jp
1 Introduction

Recently, owing to a milestone discovery made by Alday, Gaiotto and Tachikawa \[1\], there have been lots of publications and research related to their work \[2\]-\[30\]. In particular, Dijkgraaf and Vafa \[31\] proposed a Penner type matrix model whose classical spectral curve can reproduce the so-called Gaiotto curve \(\mathcal{G}\) \[32\]. Note that \(\mathcal{G}\) consists of a punctured Riemann surface \(C_{g,n}\) whose moduli space \(\mathcal{M}_{g,n}\) (\(g\): genus, \(n\): puncture) is referred to as a Teichmuller space. Surprisingly, \(\mathcal{M}_{g,n}\) boils down to the space of exactly marginal gauge couplings of a large family of 4D \(\mathcal{N} = 2\) superconformal gauge theories whose weakly-coupled \textit{cusps} correspond to various patterns of colliding punctures on \(C_{g,n}\). In addition, when \((g,n) = (0,6)\) there appear \textit{generalized} quiver SCFTs in contrast to known linear quiver SCFTs. Further studies towards this newly proposed matrix model can be found in \([33, 34, 35, 36]\). Because \(\mathcal{G}\) is a rewritten Seiberg-Witten curve which emerges by taking a thermodynamic limit of Nekrasov’s partition function \(Z_{\text{Nekrasov}} = Z_{\text{classical}}Z_{\text{1-loop}}Z_{\text{inst}}\) \[37, 38, 39\], attempts towards proving an equivalence between both sides are naturally expected.

At the level of \(\mathcal{F}_0\) (tree-level free energy), Eguchi and Maruyoshi \[34\] showed that \(\mathcal{F}_0\) (including asymptotically free cases) coincides with the original Seiberg-Witten prepotential \[40\]. Moreover, in \[35, 36\] all-genus proofs in certain restricted cases are presented by executing exact matrix integrals and comparing them with \(Z_{\text{Nekrasov}}\). Motivated by these works, in this letter we would like to show agreements between matrix model and field theoretical results on the genus-one free energy \(\mathcal{F}_1\) of \(\mathcal{N} = 2\ SU(2)\) Seiberg-Witten theory with \(N_f = 2, 3\). As a matter of fact, we have closely followed previous approaches in \[41, 42\].

In Section 2, we begin with a topologically twisted theory living on a hyperKähler manifold and extract a physical \(\mathcal{F}_1\). In Section 3, a matrix model proposed by \[34\] is used to compute \(\mathcal{F}_1\). We summarize our result in Section 4.

2 Field theory

Gravitational couplings of the form \(\int d^4x \mathcal{F}_g R_g^2 F_+^{2g-2}\) \((g \geq 1)\) due to a curved four-manifold \(\mathcal{M}_4\) give rise to a corrected Seiberg-Witten prepotential in terms of a \textit{genus}
expansion:

\[\mathcal{F} = \sum_{g \geq 0} \hbar^{2g-2} \mathcal{F}_g(a, m) = - \log Z_{\text{Nekrasov}}, \]

\(a \) : Coulomb branch parameters, \(m \) : hypermultiplet masses. \hspace{1cm} (2.1)

Here, \(R_+ \) and \(F_+ = \hbar \) are the self-dual part of the Riemann curvature and the graviphoton field strength respectively. In particular, when \(\mathcal{M}_4 \) is Euclidean, the genus-one correction is given by

\[
\int d^4 x \mathcal{F}_1 \text{Tr} R^2_+ = \frac{1}{2} \mathcal{F}_1(\chi - \frac{3}{2} \sigma), \quad R_\pm = \frac{1}{2} (R \pm R^*)
\]

\[
\chi = \frac{1}{32\pi^2} \int R \wedge R^*, \quad \sigma = \frac{1}{24\pi^2} \int R \wedge R \hspace{1cm} (2.2)
\]

where \(\chi(\mathcal{M}_4) \) and \(\sigma(\mathcal{M}_4) \) denote the Euler number and the Hirzebruch signature respectively.

Now, let us focus on a topologically twisted \(\mathcal{N} = 2 \) \(SU(2) \) theory with hypermultiplets living on \(\mathcal{M}_4 \). The low-energy partition function looks like

\[
Z = \int [du] A^x B^x \exp (-S),
\]

\[
A = \alpha \sqrt{\frac{\partial u}{\partial a}}, \quad B = \beta \Delta_{SW}^{\frac{1}{2}}, \quad \alpha, \beta : \text{constants}
\]

where \(u \) stands for the gauge- and monodromy-invariant coordinate of the complex one-dimensional Coulomb branch. Forms of \(A \) and \(B \) appearing above are required to ensure the modular invariance of \(Z \) and necessarily cancel the modular anomaly caused by \([du]\) \[43,44\]. These considerations then define a field theoretical version of the coupling to gravity, i.e.

\[
A^x B^x = \exp \left(b(u) \chi + c(u) \sigma \right), \quad b(u) = \frac{1}{2} \log \left(\frac{du}{da} \right), \quad c(u) = \frac{1}{8} \log \left(\Delta_{SW} \right). \hspace{1cm} (2.3)
\]

Here, \(a \) is the electric period integral of the corresponding Seiberg-Witten curve and \(\Delta_{SW} \) denotes its discriminant. When \(\mathcal{M}_4 \) is hyperKähler (\(\sigma = -2\chi/3 \)) or a \(K3 \) manifold (\(\chi = 24 \) and \(\sigma = -16 \)), the effect of twist\(^1\) is not visible and (2.3) of a twisted theory becomes

\(^1\)The topological twist is performed through replacing \(SU(2)_+ \subset SO(4) \cong SU(2)_+ \times SU(2)_- \) by the diagonal part of \(SU(2)_+ \times SU(2)_R \) where \(SU(2)_R \) represents the \(R \)-symmetry. For hyperKähler manifolds, that no holonomy is involved in \(SU(2)_+ \) implies that to twist will not be visible.
compatible with that of a physical theory. Therefore, equating \(b(u)\chi + c(u)\sigma \) of a hyperKähler \(M_4 \) in \(2.3 \) we see that

\[
\mathcal{F}_1 = b(u) - \frac{2}{3} c(u). \tag{2.4}
\]

In order to determine \(b(u) \) and \(c(u) \), one needs an explicit Seiberg-Witten curve \(\Sigma \)

\[
\Sigma : \prod_{l=0}^{n} (t - t_l) v^2 = M_{n+1}(t) v + U_{n+1}(t), \quad (t, v) \in (\mathbb{C}^* - \{t_0, \ldots, t_n\}) \times \mathbb{C} \tag{2.5}
\]

and notices that (\(\lambda_{SW} \): Seiberg-Witten one-form)

\[
\frac{da}{du} = \frac{d}{du} \int_A \lambda_{SW}.
\]

The subscript of polynomials \(M \) and \(U \) denotes their degree. According to \[15\], \(\Sigma \) arises from an M-theory lift of Type IIA D4- and NS5-branes engineering \(\mathcal{N} = 2 \) \(SU(n+1) \) Yang-Mills theory with fundamental matters which are encoded at two asymptotic ends (\(t = 0, \infty \)) of \(\Sigma \). The gauge coupling \(\tau_I \) of \(I \)-th gauge factor of a conventional linear quiver is expressed in terms of \(t = \exp \left(x^6 + i x^{10} / R_M \right) \) (\(R_M \): M-circle radius) parameterizing a cylinder along \((x^6, x^{10})\):

\[
i \pi \tau_I = \log \frac{t_{I-1}}{t_I}, \quad \tau = \frac{\theta}{\pi} + \frac{8\pi i}{g^2}.
\]

As shown in \[32\], through performing a change of variables \(v = xt \) and certain proper Möbius transformation on \(t \), one finally obtains a so-called Gaiotto curve:

\[
\mathcal{G} : x^2 = \phi^\text{SW}_2(z), \quad xdz \equiv \lambda_{SW}. \tag{2.6}
\]

For the simplest \(SU(2) \) Seiberg-Witten theory with \(N_f = 2 \) and 3, the period integral \(a(u) \) had been computed by Ohta \[46\] in terms of a large-\(u \) expansion (weak coupling expansion). Therefore, it is straightforward to evaluate \(b(u) \) for \(N_f = 2 \):

\[
b(u) = -\frac{1}{2} \log \left(\frac{da}{du} \right) = \frac{3}{4} \log 2 - \frac{1}{4} \log \zeta - \frac{3\Lambda^2}{2048}(\Lambda^2 + 64m_1m_2)\zeta^2 + \frac{15\Lambda^4}{2048}(m_1^2 + m_2^2)\zeta^3 + \mathcal{O}(\zeta^4) \tag{2.7}
\]

where \(\zeta = 1/u \). Similarly, for \(N_f = 3 \),

\[
b(u) = \frac{1}{2} \log 2 - \frac{1}{4} \log \zeta - \frac{\Lambda^2}{2048}\zeta - \frac{\Lambda}{8388608} \left(7\Lambda^3 + 12288(m_1^2 + m_2^2 + m_3^2)\Lambda + 786432m_1m_2m_3 \right)\zeta^2 + \mathcal{O}(\zeta^3). \tag{2.8}
\]
We have denoted flavor bare masses and the dynamical scale by m_i’s and Λ respectively. In Section 3, we will find perfect agreements with these results in carrying out a computation via the matrix model proposed by Eguchi and Maruyoshi [34].

3 Matrix model

Before computing the genus-one free energy F_1, we first give a brief introduction about the newly proposed Dijkgraaf-Vafa matrix model. Without the background charge $Q = b + b^{-1}$ ($b = i$), in computing correlators of vertex operators $\langle \prod_i V_i(\xi_i) \rangle$ in Liouville theory, Dijkgraaf and Vafa [31] have replaced the usual Liouville wall by a chiral one $\int d\xi e^{\sqrt{2} b \phi(\xi)}$. This results in a hermitian matrix model with an usual Vandermonde, and inserted operators $V_i(\xi_i) = e^{i \sqrt{2} \nu_i \phi(\xi)}$ as a whole consequently lead to a logarithmic potential of Penner type, i.e.

$$Z_{DV} = \left\langle \prod_i V_i(\xi_i) \right\rangle_{\text{chiral Liouville}} = \int_{N \times N} dM \exp \left(\frac{1}{g_s} \text{Tr} W(M) \right) = \exp \left(- \sum_{g \geq 0} g_s^{2g-2} F_g \right),$$

$$W(M) = \sum_i \mu_i \log(M - \xi_i), \quad \mu_i = 2g_s \nu_i, \quad \sum_i \mu_i + \mu_0 + 2g_s N = 0,$$

$p_i, \ N \to \infty, \ g_s \to 0, \ \mu_i, \ g_sN = \text{fixed}. \quad (3.1)$

The charge conservation is respected by placing μ_0 units at infinity.

Interpreting the above chiral free boson ϕ as a Kodaira-Spencer (collective) field which is especially powerful in dealing with quantizing the Riemann surface complex moduli, one can express the matrix model quantum spectral curve as

$$-i \langle \partial \phi(z) \rangle = \left(-\nu_0 z^{-1} + \sum_{n>0} n \nu_n z^{n-1} + g_s^2 \sum_{n \geq 0} z^{-n-1} \frac{\partial}{\partial \nu_n} \right) Z_{DV}$$

with z parameterizing it. ν_n and its conjugate are referred to as symplectic coordinates of the moduli space. Eventually, $\langle \partial \phi(z) \rangle_{g_s \to 0}$ just reduces to a Gaiotto curve \mathcal{G} of $\mathcal{N} = 2$ SU(2) SCFTs as will be explained more below. Dijkgraaf and Vafa’s intuition seems due to the marvelous discovery of Alday, Gaiotto and Tachikawa [1] relating correlators in Liouville theory to Nekrasov’s partition function. Recall that \mathcal{G} was yielded by reorganizing a Seiberg-Witten curve which emerges via taking a thermodynamic limit ($\hbar \to 0$) of Z_{Nekrasov}. It is thus very tempting to recognize a full equivalence
\[Z_{DV} = Z_{\text{chiral Liouville correlator}} = Z_{\text{Nekrasov}} \text{ with } g_s = \hbar. \] This line has been pursuit in \[34, 35, 36\].

As pointed out by AGT, one can yield a quadratic Seiberg-Witten differential from Ward identities in Liouville theory:\[3\]:
\[
\phi_2(z)dz^2 = \frac{\left< T(z) \prod_i O_i(z_i) \right>}{\left< \prod_i O_i(z_i) \right>}, \quad T(z) : \text{stress tensor},
\]
\[
\phi_2(z)dz^2 \rightarrow \phi_2^{SW}(z)dz^2 = \lambda_{SW}^2, \quad \text{when } 1 \gg \epsilon_{1,2}. \quad (3.2)
\]

Note that \(O\)'s are inserted at the level of conformal blocks in Liouville theory, while \(\epsilon_i\) denotes the non-self-dual graviphoton field strength appearing in Nekrasov’s formula. Through \(x^2 = \phi_2^{SW}(z)\) one obtains a Gaiotto curve which is a double cover of a punctured sphere with cuts. From \[3.2\], a reasonable analogy is strongly recommended in the aforementioned \(Z_{DV}\). Because a stress tensor on the hermitian matrix model side can be defined through a Kodaira-Spencer field, i.e.
\[
T(z) = -\frac{1}{2}(\partial \phi)^2 = \sum_{n \in \mathbb{Z}} L_n z^{-n-2},
\]
a classical spectral curve emerging in large-\(N\) limit is written as
\[
\langle T(z) \rangle = -\frac{1}{2}\langle \partial \phi(z)^2 \rangle \rightarrow \frac{1}{2} \mathcal{W}'(z)^2 + 2f(z) \quad (3.3)
\]
where the average is w.r.t. \(Z_{DV}\). Equivalently,
\[
-x = i\langle \partial \phi(z) \rangle = -\mathcal{W}'(z) - 2\omega(z), \quad \omega(z) = g_s \text{Tr} \left(\frac{1}{z-M} \right)
\]
with which an \(SU(2)\) Gaiotto curve is identified by Dijkgraaf and Vafa. The arrow in \[3.3\] is completely owing to a factorization of the resolvent operator at large-\(N\) limit:
\[
g_s^2 \left< \text{Tr} \frac{1}{z-M} \text{Tr} \frac{1}{z-M} \right> = \omega(z)^2
\]

\[2\text{An early attempt towards interpreting Nekrasov’s partition function as a kind of tachyon’s scattering amplitude in the self-dual } c = 1 \text{ string theory can be found in } [47]. \text{ There, vertex operators made of a collective field of a Fermi fluid are inserted at } q \text{-numbered positions on two asymptotic regions of a sphere.}
\]

\[3\text{We must apologize for using } \phi \text{ in expressing quadratic differentials and Kodaira-Spencer fields simultaneously.}\]
such that the all-genus loop equation becomes

$$\omega(z)^2 + \omega(z)W'(z) = g_s \left(\frac{W'(z) - W'(M)}{z - M} \right) = f(z).$$

In [34], $x^2 = W'(z)^2 + 4f(z)$ was shown to coincide with $x^2 = \phi_{SW}^2(z)$ in (3.2) by fully exploiting known properties of standard Seiberg-Witten curves.

Let us pause to see a canonical example $SU(2)$ $N_f = 4$. Four insertions (V_0, V_1, V_2, V_3) are prescribed to be located at $(\infty, q, 1, 0)$ in order and V_0 at ∞ will never show up in W though. It is evident that residues of $x_{DV}(z)$ at $(\infty, q, 1, 0)$ correspond to momenta of V_i's which are identified with flavor bare masses according to AGT dictionary. Also, q stands for the cross-ratio of four distinct punctures on a sphere and hence lives on $\mathbb{CP}^1 \{0, 1, \infty\}$.

More explicitly, one is allowed to choose certain Möbius transformation f:

$$f(z) = \frac{az + b}{cz + d}, \quad ad - bc \neq 0, \quad a, b, c, d \in \mathbb{C}$$

which brings three points (z_1, z_2, z_3) on a sphere to the triple $(0, 1, \infty)$, while z_4 is mapped to $f(z_4) = q$. Ultimately, q is just $q_{UV} = e^{i\pi\tau_{UV}}$ because this interpretation is totally supported by the known space of the exactly marginal (ultra-violet) gauge coupling constant τ_{UV}.

3.1 Genus-one correction

For four insertions at $(\infty, q, 1, 0)$ in (3.1), it is obvious that there will be two critical points (zeros) for $W'(z) = 0$ of Z_{DV} if one recalls that $V_0(\infty)$ does not show up. When quantum effects introduced by the resolvent are incorporated, they blow up into two cuts whose filling fractions N_1 and N_2 subject to the constraint $N_1 + N_2 = N$ (N: rank of M). The classical spectral curve is a double cover of a punctured sphere with two cuts and this kind of two-cut model has been fully investigated [48, 49]. Borrowing Akemann’s analysis, we are able to have the genus-one free energy expressed in an universal form4

$$\mathcal{F}_1 = -\frac{1}{24} \sum_{i=1}^{4} \log M_i - \frac{1}{12} \log \Delta - \frac{1}{2} \log |K(\ell)| + \frac{1}{4} \log |(x_1 - x_3)(x_2 - x_4)|$$

4Strictly speaking, this form was prescribed for a polynomial potential $W(z)$.

6
where
\[M_i = \oint_{C} \frac{dz}{2\pi i (z-x_i)} \sqrt\prod_{i=1}^{4} (z-x_i), \quad C : \text{contour encircling both cuts} \]
\[\ell^2 = \frac{(x_1-x_4)(x_2-x_3)}{(x_1-x_3)(x_2-x_4)}, \quad \Delta = \prod_{i<j} (x_i-x_j)^2. \quad (3.5) \]

\([x_1, x_2]\) and \([x_3, x_4]\) stand for branch points of these two cuts with their cross-ratio denoted by \(\ell^2\), while \(K(\ell)\) is the complete elliptic integral of the first kind. One can soon realize that \(M_i = 0\) when the contour \(C\) is deformed to enclose \(\infty\). Divergent terms like \(\log M_i\) will then be omitted. To deal with subsequent terms without knowing explicitly four branch points, we can appeal to a very helpful formula suggested by Masuda and Suzuki [50]. That is, noting the equality between a hypergeometric function and a complete elliptic integral \(\frac{\pi}{2} 2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \ell^2\right) = 2K(\ell)\), one is able to rewrite the last two terms in (3.4) as

\[-\frac{1}{2} \log \left(\frac{\pi}{2} (-D)^{-\frac{1}{4}} 2F_1\left(\frac{1}{12}, \frac{5}{12}; 1; -\frac{27\Delta_g}{4\Delta_g^3}\right)\right).\]

Here, \(2F_1(\alpha, \beta; \gamma; \delta)\) is the hypergeometric function, \(\Delta_g\) is the discriminant of certain quartic polynomial \(g(y) = y^4 + ay^3 + by^2 + cy + d\) whose four roots are previous \((x_1, x_2, x_3, x_4)\) with

\[\Delta_g = -\left(27a^4d^2 + a^3c(4c^2 - 18bd) + ac(-18bc^2 + 80b^2d + 192d^2) \right. \]
\[+ a^2(-b^2c^2 + 4b^3d + 6c^2d - 144bd^2) + 4b^3c^2 + 27c^4 \]
\[- 16b^4d - 144bc^2d + 128b^2d^2 - 256d^3 \]

and \(D \equiv -b^2 + 3ac - 12d\).

For asymptotically free \(SU(2)\) \(N_f = 2\) and 3, the classical spectral curve can be derived from the original \(N_f = 4\) one via scaling limits which amount to decoupling extremely massive flavors. By adhering to [34] and adopting their convention, adequate candidates responsible for the aforementioned quartic \(g(y)\) extracted from the classical spectral curve are then

\[R_4(y) = y^4 + \frac{4M_+}{\Lambda_2^2} y^3 + \frac{4v}{\Lambda_2^3} y^2 + \frac{4\tilde{M}_+}{\Lambda_2^4} y + 1 \quad (3.6) \]
and
\[Q_4(y) = y^4 + \frac{1}{M_0^2} \left(-v - M_0^2 + M_2^2 + \frac{1}{2} \tilde{M}_+ \Lambda_3 \right) y^3 \]
\[+ \frac{1}{M_0^2} \left(v + \frac{\Lambda_3^2}{4} - \frac{3}{2} \tilde{M}_+ \Lambda_3 \right) y^2 + \frac{1}{M_0^2} \left(-\frac{\Lambda_3^2}{2} + \tilde{M}_+ \Lambda_3 \right) y + \frac{\Lambda_3^2}{4M_0^2} \] (3.7)
for \(N_f = 2 \) and 3 respectively. Through the following identification in (3.6):
\[v = 4u, \quad M_+ = 2m_1, \quad \tilde{M}_+ = 2m_2, \quad \Lambda_2 = \Lambda, \] (3.8)
the last two terms in (3.4) are thus found to be \((\zeta = 1/u)\)
\[-\frac{1}{2} \log \frac{\pi}{8} - \frac{1}{2} \log \Lambda - \frac{1}{4} \log \zeta - \frac{3\Lambda^2}{2048}(\Lambda^2 + 64m_1m_2)\zeta^2 + \frac{15\Lambda^4}{2048}(m_1^2 + m_2^2)\zeta^3 + \mathcal{O}(\zeta^4) \] (3.9)
expressed in terms of a large-\(u \) expansion. Similarly, through
\[v = 4u, \quad M_+ = 2m_1, \quad M_- = 2m_2, \quad \tilde{M}_+ = 2m_3, \quad \Lambda_3 = \frac{\Lambda}{2} \] (3.10)
in (3.7), the last two terms in (3.4) are found to be
\[-\frac{1}{2} \log \frac{\pi}{4} - \frac{1}{2} \log |m_1 - m_2| - \frac{1}{4} \log \zeta - \frac{\Lambda^2}{2048} \zeta \]
\[- \frac{\Lambda}{8388608} \left(7\Lambda^3 + 12288(m_1^2 + m_2^2 + m_3^2)\Lambda + 786432m_1m_2m_3 \right) \zeta^2 + \mathcal{O}(\zeta^3). \] (3.11)

As stressed before, the matrix model classical spectral curve is just the same as the corresponding Gaiotto curve (rearranged Seiberg-Witten curve), henceforth we still have same discriminant \(\Delta_{SW} = \Delta \) in (2.3) and (3.4) even after decoupling massive flavors.\(^5\)

Equipped with these facts, we conclude that computations on both field theory and matrix model sides give perfectly the same \(\mathcal{F}_1 \) up to some irrelevant constant terms by looking at (2.7), (2.8), (3.9) and (3.11).

4 Summary

We have provided further evidence on the equivalence between a recently proposed Dijkgraaf-Vafa matrix model and low-energy dynamics of \(\mathcal{N} = 2 \) asymptotically free \(SU(2) \) Yang-Mills theory with \(N_f = 2, 3 \) at the level of \(\mathcal{F}_1 \). We utilized the matrix model technique

\(^5\)In fact, this can be easily checked by comparing our above \(\Delta_g \) with the known \(\Delta_{SW} \).
which prescribes an universal form of \mathcal{F}_1. Ingredients for computing the asymptotically free \mathcal{F}_1 can be gathered just from a classical spectral curve found in [34] by decoupling very massive flavors from an $N_f = 4$ one. Showing perfect agreements with the field theoretical result, we thus extend the equivalence of Z_{DV} and $Z_{Nekrasov}$ at next-to-leading order non-trivially.

It will also be interesting to examine whether this check gets possible in the super-conformal $N_f = 4$ case. As shown by Eguchi and Maruyoshi in this situation $da/du = K(q_{UV})$, so it is quite tempting to consider relations between q_{UV} and the cross-ratio ℓ^2 of four branch points given a complete elliptic integral of the first kind in the universal expression of \mathcal{F}_1 in (3.4).

Acknowledgements

TST is grateful to Takeo Inami, Takahiro Kubota, Wen-Yu Wen and especially Kazutoshi Ohta for directing his attention to this field. He also thanks Robbert Dijkgraaf for an enlightening talk at RIKEN and Kazuhiro Sakai for valuable comments. MF would like to thank Masafumi Fukuma and Shinji Shimasaki for helpful discussions. TST is supported in part by the postdoctoral program at RIKEN. YH is supported in part by JSPS research fellowships for young scientists.

References

[1] L. F. Alday, D. Gaiotto and Y. Tachikawa, arXiv:0906.3219 [hep-th].

[2] V. Alba and A. Morozov, arXiv:0912.2535 [hep-th].

[3] G. Giribet, arXiv:0912.1930 [hep-th].

[4] V. A. Fateev and A. V. Litvinov, arXiv:0912.0504 [hep-th].

[5] S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, arXiv:0911.4787 [hep-th].

[6] A. Mironov and A. Morozov, arXiv:0911.2396 [hep-th].

[7] L. Hadasz, Z. Jaskolski and P. Suchanek, arXiv:0911.2353 [hep-th].

[8] D. Nanopoulos and D. Xie, arXiv:0911.1990 [hep-th].

[9] J. F. Wu and Y. Zhou, arXiv:0911.1922 [hep-th].
[10] D. Gaiotto, arXiv:0911.1316 [hep-th].
[11] V. Alba and A. Morozov, arXiv:0911.0363 [hep-th].
[12] A. Mironov and A. Morozov, arXiv:0910.5670 [hep-th].
[13] H. Awata and Y. Yamada, arXiv:0910.4431 [hep-th].
[14] L. F. Alday, F. Benini and Y. Tachikawa, arXiv:0909.4776 [hep-th].
[15] G. Bonelli and A. Tanzini, arXiv:0909.4031 [hep-th].
[16] A. Mironov and A. Morozov, Phys. Lett. B 682 (2009) 118, arXiv:0909.3531 [hep-th].
[17] R. Poghossian, arXiv:0909.3412 [hep-th].
[18] A. Marshakov, A. Mironov and A. Morozov, JHEP 0911 (2009) 048, arXiv:0909.3338 [hep-th].
[19] A. Marshakov, A. Mironov and A. Morozov, Phys. Lett. B 682 (2009) 125, arXiv:0909.2052 [hep-th].
[20] N. Drukker, J. Gomis, T. Okuda and J. Teschner, arXiv:0909.1105 [hep-th].
[21] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, arXiv:0909.0945 [hep-th].
[22] D. V. Nanopoulos and D. Xie, Phys. Rev. D 80 (2009) 105015, arXiv:0908.4409 [hep-th].
[23] N. A. Nekrasov and S. L. Shatashvili, arXiv:0908.4052 [hep-th].
[24] A. Mironov and A. Morozov, Nucl. Phys. B 825 (2010) 1, arXiv:0908.2569 [hep-th].
[25] A. Mironov and A. Morozov, Phys. Lett. B 680 (2009) 188, arXiv:0908.2190 [hep-th].
[26] A. Mironov, S. Mironov, A. Morozov and A. Morozov, arXiv:0908.2064 [hep-th].
[27] D. Gaiotto, arXiv:0908.0307 [hep-th].
[28] A. Marshakov, A. Mironov and A. Morozov, arXiv:0907.3946 [hep-th].
[29] N. Drukker, D. R. Morrison and T. Okuda, JHEP 0909 (2009) 031, arXiv:0907.2593 [hep-th].
[30] N. Wyllard, JHEP 0911 (2009) 002, arXiv:0907.2189 [hep-th].
[31] R. Dijkgraaf and C. Vafa, arXiv:0909.2453 [hep-th].
[32] D. Gaiotto, arXiv:0904.2715 [hep-th].
[33] H. Itoyama, K. Maruyoshi and T. Oota, arXiv:0911.4244 [hep-th].
[34] T. Eguchi and K. Maruyoshi, arXiv:0911.4797 [hep-th].
[35] R. Schiappa and N. Wyllard, arXiv:0911.5337 [hep-th].
[36] A. Mironov, A. Morozov and S. Shakirov, arXiv:0911.5721 [hep-th].
[37] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor. Math. Phys. 7 (2004) 831 [arXiv:hep-th/0206161].
[38] N. Nekrasov and A. Okounkov, “Seiberg-Witten theory and random partitions,” arXiv:hep-th/0306238.
[39] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” arXiv:hep-th/0306211.
[40] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994) 19 [Erratum-ibid. B 430 (1994) 485] arXiv:hep-th/9407087.
[41] A. Klemm, M. Marino and S. Theisen, JHEP 0303 (2003) 051 arXiv:hep-th/0211216.
[42] R. Dijkgraaf, A. Sinkovics and M. Temurhan, Adv. Theor. Math. Phys. 7, 1155 (2004) arXiv:hep-th/0211241.
[43] E. Witten, Selecta Math. 1, 383 (1995) arXiv:hep-th/9505186.
[44] G. W. Moore and E. Witten, Adv. Theor. Math. Phys. 1, 298 (1998) arXiv:hep-th/9709193.
[45] E. Witten, Nucl. Phys. B 500 (1997) 3 arXiv:hep-th/9703166.
[46] Y. Ohta, J. Math. Phys. 38 (1997) 682 arXiv:hep-th/9604059.
[47] T. S. Tai, Prog. Theor. Phys. 119 (2008) 165 arXiv:0709.0432 [hep-th]].
[48] J. Ambjorn, L. Chekhov, C. F. Kristjansen and Yu. Makeenko, Nucl. Phys. B 404 (1993) 127 [Erratum-ibid. B 449 (1995) 681] arXiv:hep-th/9302014.
[49] G. Akemann, Nucl. Phys. B 482 (1996) 403 arXiv:hep-th/9606004.
[50] T. Masuda and H. Suzuki, “Periods and prepotential of $N = 2$ SU(2) supersymmetric Yang-Mills theory with massive hypermultiplets,” Int. J. Mod. Phys. A 12, 3413 (1997) arXiv:hep-th/9609066.