INTRODUCTION

Chinese herbal medicine (CHM) that forms an integral component of traditional Chinese medicine (TCM) keeps growing popular worldwide [1,2]. The past few decades have seen increased scientific investigations on commonly used CHMs often reflective of the ethnobotanical context, in which they are used. As a result, it is common to find scientific studies on whole Chinese herbal formulas, whereby the pharmacological and therapeutic effects are attributed to the entire components of the herbal formula. This has always been the source of criticism of CHM therapy just like other indigenous herbal remedies, especially from adherents of western medicine. There has been a paradigm shift in recent years with regards to research on CHMs which have seen an incredible focus on mechanistic elucidation as well as structural and functional characterization of individual components of CHMs. Many scientific efforts have been made to highlight the mechanisms of the action of CHMs [3], but there is still more work to be done. Hepatitis B virus (HBV) is a leading cause of liver fibrosis and its attendant complications including cirrhosis and hepatocellular carcinoma (HCC). China is noted for a high incidence of HBV infections and alcohol abuse [4]. Coincidentally, these two factors are crucial risk factors for HCC [4]. Almost 80-90% of HBV-related HCC in Asia and Africa occur in China [5,6]. Although, many scientific efforts have been made to highlight the mechanism of action of CHMs [3] used in the treatment of hepatocarcinogenic disorders, nonetheless the mechanistic elucidation of CHMs remains incomplete. This review provides a mechanistic overview of CHMs which have demonstrated in vitro and in vivo anti-fibrosis, anti-cirrhosis, and anti-HCC effects.

ANTI-FIBRO-HEPATO-CARCINOCENIC CHINESE HERBAL MEDICINES: A MECHANISTIC OVERVIEW

Alex Boye1,2, Yan Yang2, James Asenso3, Wei Wei3

Address for correspondence:
Alex Boye, Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana. E-mail: boye_alex@yahoo.com

ABSTRACT

Chinese herbal medicine (CHM) is an integral component of complementary/alternative medicine and it is increasingly becoming the preferred therapeutic modality for the treatment of liver fibrosis and hepatocellular carcinoma (HCC) worldwide. Accordingly, the World Health Organization (WHO) has attested to the popularity and efficacy of indigenous herbal therapies including CHM as a first line of treatment for some diseases including liver disorders. However, the WHO and drug discovery experts have always recommended that use of indigenous herbal remedies must go hand-in-hand with the requisite mechanistic elucidation so as to constitute a system of verification of efficacy within the ethnobotanical context of use. Although many CHM experts have advanced knowledge on CHM, nonetheless, more enlightenment is needed, particularly mechanisms of action of CHMs on fibro-hepato-carcinogenesis. We, herein, provide in-depth mechanisms of the action of CHMs which have demonstrated anti-fibro-hepatocarcinogenic effects, in pre-clinical and clinical studies as published in PubMed and other major scientific databases. Specifically, the review brings out the important signaling pathways, and their downstream targets which are modulated at multi-level by various anti-fibro-hepatocarcinogenic CHMs.

KEY WORDS: Chinese herbal medicine, fibro-hepato-carcinogenesis, immunomodulation, inflammation, mechanistic elucidation
in published scientific articles from PubMed and other major scientific databases. Specifically, it highlights the mechanisms of the action of CHMs in the light of specific therapeutic targets that can be explored in future studies.

CHM

CHM is an integral component of TCM. CHM has multi-compound composition, multi-modulatory, and multi-target action [1] [Figure 1]. It produces less adverse effects in the treatment of liver diseases [7-9]. In CHM practice, liver disease is assumed to be caused by a number of factors including poor blood circulation and dysregulated metabolism [10]. Thus, CHM therapy against liver disease is solely to reduce blood stagnation, eliminate toxins and improve the immune system. CHM practice involves the use of either one herb/plant extract or a mixture of two or more herbal extracts based on a time-tested system of herbology. According to the principles and theories governing CHM practice, one pharmacologically active compound from one of the constituent herbs is normally regarded as “King herb” [11]. The “King herb” is the main medicine which exerts the expected therapeutic action. To enhance the therapeutic action of the “King herb,” the other component herbs play auxiliary functions, such as enhancing delivery of the “King herb” to target site, reduce toxicity/side effects of the “King herb,” and most importantly, provide synergistic effect to the “King herb.”

PATHOGENESIS OF FIBRO-HEPATOCARCINOGENSES

Fibro-hepato-carcinogenesis epitomizes a spectrum of pathological events in the liver manifesting as liver fibrosis, cirrhosis and HCC if not treated at the initial stages. The whole pathological process begins as a result of dysregulated wound healing process secondary to chronic hepatic inflammation. Hepatic stellate cell (HSC) is the key hepatic cell implicated in liver fibrosis. Under normal physiological conditions, quiescent ito cells store retinoids (vitamin A) and play crucial homeostatic roles in the liver. However, in response to chronic inflammatory and fibrogenic stimuli, quiescent ito cells do not only transform into a fibrogenic phenotype (myofibroblasts) but also proliferate and increase the synthesis and the accumulation of extracellular matrix (ECM) in liver sinusoidal space. HSC morphological transformation represents the crucial pathological event for the initiation of fibrogenesis and its progression to fibrotic liver disease. As a result, increased output of fibrogenic and inflammatory genes mainly precede secretion of fibrogenic (transforming growth factor beta 1 [TGF-β1], and inflammatory (tumor necrosis factor-alpha [TNF-α], interleukin 1 beta [IL-1β], IL-6) cytokines to sustain fibrogenesis. Furthermore, there is ECM accumulation, the proliferation of myofibroblasts, and recruitment and activation of other hepatic and non-hepatic cells in an autocrine and paracrine manner. If left untreated, liver fibrosis progresses to cirrhosis, but this transition can be hastened by comorbidity factors including HBV and hepatitis C viral (HCV) infections and alcohol abuse [Figure 2]. Cirrhosis is a manifestation of advanced liver fibrosis and it is characterized by hepatic nodules that progressively distort normal hepatic architecture and function resulting in increased resistance to portal blood flow. These pathological events elevate sinusoidal pressure leading to portal hypertension and the risk of HCC

![Figure 1: A diagramatic depiction of the multi-modulatory and multi-target pharmacological effects of Chinese herbal medicine (CHM) which underpin the promising efficacy of CHM against liver disease in general.](image1)

![Figure 2: An illustration of the multi-etiology of fibro-hepato-carcinogenesis. Many etiological factors may act synergistically to promote progression of chronic liver injury to liver fibrosis and cirrhosis if left untreated, and this ultimately increases the risk of HCC and the manifestation of the six phenotypic hallmarks of HCC.](image2)
and death [12]. Underpinning fibro-hepatocarcinogenesis is a constellation of dysregulated cell signaling pathways mainly mediated by growth factors, cytokines, chemokines, transcriptional factors, and their resultant target genes. Thus, molecular underpinnings of fibro-hepatocarcinogenesis are not only diverse but also play crucial roles in homeostasis.

The progression of liver fibrosis to cirrhosis through to HCC usually takes many years or decades. In view of this, most infected persons are asymptomatic [13]. However, this progression can be hastened within few months by factors such as neonatal liver disease, HCV infections, human immunodeficiency virus/ HBV/HCV co-infections, severe delta hepatitis, and drug-induced liver disease [13]. HCC accounts for most liver-related mortality [14] and tumor progression is implicated as the main cause of death in HCC patients [15]. Furthermore, a significant percentage of patients may die from other complications arising from liver fibrosis and cirrhosis such as ascites, spontaneous peritonitis, hepatic encephalopathy, hepato-pulmonary syndrome, porto-pulmonary hypertension, and pain. The early detection and treatment of liver fibrosis and cirrhosis are crucial for overall management of HCC risk. However, the treatment of HCC is a major problem partly because of its complex nature such as high degree of cancer clonal heterogeneity, intra-tumor genetic heterogeneity, and emerging compensatory pathways in response to therapy-related inhibition of some pathways in cancer [5,16]. Among primary liver cancers, HCC represents the major histological subtype, accounting for 70-85% of the total liver cancer burden worldwide [4].

EPIDEMIOLOGY OF LIVER DISEASE IN CHINA

China has the largest population (1.3 billion people) in the world comprising 56 different ethnic groupings [17]. With the establishment of Central Cancer Registries by the Health Ministry of China in 2002 to take records of cancer cases and deaths, there has been a consistent increase in both the incidence and mortality of cancer [18-20]. For example, in 2006 the 3rd National Death Survey report showed that cancer is the second leading cause of death in China, before then a report from 2004 to 2005 had placed the national mortality rate of cancer at 135.88/100,000, with 170.17/100,000 in males and 99.97/100,000 in females (Ministry of Health, National Death Survey Report 2004-2005, Beijing). Liver cancer is the second leading cause of death in China, before then a report from 2004 to 2005 had placed the national mortality rate of cancer at 135.88/100,000, with 170.17/100,000 in males and 99.97/100,000 in females (Ministry of Health, National Death Survey Report 2004-2005, Beijing). Liver cancer is the third reported cancer case in both rural and urban China and among the top 10 cancers in recent years [21]. HBV and alcohol abuse which account for the most reported cases of liver fibrosis and cirrhosis were reported to have changed, with the former decreasing while the latter increases [21]. Hospitalization due to the alcohol-related and non-viral-related cirrhosis was shown to have increased [21]. Viral related liver disease burden has increased quiet significantly. For example, in Guangdong province (the most populous province in China), the predicted annual cost of HBV-related liver disease was purged at RMB 10.8 billion [22], speculatively, more than twice the annual budget of a developing country. Meanwhile, novel therapeutic agents locked up in CHMs remain untapped or poorly explored. If this rich readily available ethnobotanical heritage is properly harnessed through cutting edge scientific approaches, it can save the increasing disease burden.

CHMS EXERT ANTI-INFLAMMATORY EFFECTS

Chronic hepatic inflammation has been widely implicated in the initiation of liver fibrosis [23-25]. Many CHMs produce their effects by modulating pro-inflammatory factors including IL-1β, IL-2, IL-6, IL-8, IL-12, TNF-α, nuclear factor kappa B (NF-κB), prostaglandin E 2 (PGE2), interferon gamma (IFN-γ), nitric oxide (NO), cyclooxygenase-2 (COX-2), intercellular adhesion molecule 1 (ICAM-1), and activator protein 1 (AP-1). The modulation of inflammatory mediators and their downstream protein scaffolds have become crucial targets for the treatment of liver fibrosis, cirrhosis, and HCC. Below are some specific inflammatory mediators modulated by some CHMs to cause attenuation of fibro-hepato-carcinogenesis.

NF-κB

NF-κB is an important target for therapy against liver fibrosis, in view of its role in inflammation. Lu et al. had demonstrated that myeloid differentiation protein 88 (MyD88) inactivated phosphorylation of IkBα in an NF-κB/IκBα trimmer complex leading to activation of IκBα and toll-like receptors (TLRs) [26], and this cascade led to the release of pro-inflammatory cytokines [27]. The role of NF-κB activation in inflammation, particularly how it induces the expression of pro-inflammatory cytokines, cell cycle regulatory molecules, and angiogenic factors have been elaborated [28]. By using a direct kinase assay and immunoblot analyses, it was shown that a seed extract of *Phaseolus angularis* markedly inhibited NF-κB expression and effectively ameliorated hepatic inflammation [29]. An extract of *Cinnamomum cassia* inhibited mRNA expression of induced nitric oxide synthase (iNOS), COX-2, and TNF-α through suppression of NF-κB activation [30]. Furthermore, an extract from the roots of *Polygala tenuifolia* inhibited the translocation of NF-κB by blocking TLR4 and MyD88 expression in lipopolysaccharide (LPS)-stimulated BV2 cell lines [31] indicating that TLRs and adaptor proteins such as MyD88 could be important targets of some CHMs.

TNF-α

A number of CHMs inhibited TNF-α expression to modulate TNF-α in experimentally induced liver fibrosis. CHMs with specific negative modulatory effects on TNF-α include extracts from *Zanthoxylum schinifolium* [32], *P. tenuifolia* [31], *Clematis chinensis* [33], and *Angelica sinensis* and *Sophora flavescens* [34].

IL

Interleukins play crucial roles in the inflammatory reactions including cell adhesion, neutrophil aggregation, inflammatory gene expression, and release of neurotoxic substances to exacerbate inflammatory response. Inhibition of interleukins by CHMs may significantly account for the anti-inflammatory
effects of most CHMs. Extracts from *Glossogyne tenuifolia* [35], *Vitex trifolia* [36], *Glycyrrhiza uralensis* [37], *Scutellaria baicalensis* and *Andrographis paniculata* [38], *Caesalpinia sappan* [39,40], and *Phellodendron chinense* [41] were shown to have down-regulated expression of IL-1β, IL-2, IL-6, and IL-12. IL-10 has reportedly been reported as a negative regulator of inflammation [42]. The mechanism of IL-10-dependent anti-inflammatory effects is linked to suppression of inflammatory cytokines [43]. Some CHMs were reported to have up-regulated IL-10 expression. For example, the root extract of *Astragalus membranaceus* reversed down-regulation of IL-10 expression under colitis-inducing conditions [44].

IFN-γ

The role of IFN-γ in inflammation has been well-elaborated [45]. IFN-γ activates macrophages to release IL-1, TNF-α, IL-6, IL-8 and several pro-inflammatory mediators, playing major roles in inflammation. A root extract of *A. membranaceus* markedly reduced the expression of IFN-γ [44].

PGE

PGE₂ causes vasodilation of peripheral blood capillaries at inflammatory sites, thereby increasing vascular permeability, plasma exudation, edema, and inflammation and these effects can potentiate inflammatory reaction. Therefore, cessation of PGE₂ activity may enhance anti-inflammation. An extract of *Houttuynia cordata* successfully inhibited PGE₂ release in LPS-induced activation of mouse peritoneal macrophages [46]. Similarly, extracts of the flowers of *Carthamus tinctorius* markedly reduced the release of PGE₂ [47].

iNOS and NO Production

Vascular dilatation, vascular permeability, cell infiltration, and release of pain mediators are all orchestrated by NO production under the regulation of iNOS in smooth muscle cells. Inhibition of this pathway may significantly halt inflammation and its associated complications. Lim et al. had reported inhibition of iNOS-dependent NO synthesis from RAW 264.7 cells by the action of phylligenin, a compound isolated from *Forsythia koreana* and it led to abrogation of the inflammatory response in the studied cells [48].

COX-2

COX-2 is a member of the cyclooxygenase family. It is constitutively expressed on inflammatory cells [49]. It is only expressed on tissues secondary to stimulation by inflammatory stimuli or tissue injury. A number of CHMs have been shown to markedly decrease iNOS and COX-2 expressions in experimental models of liver fibrosis. For example, extracts of the Ramulus of *Taxillus liquidadarbitcola* [50], and the aerial parts of *Pogostemon cablin* [51]. Further, some CHMs were shown to down-regulate a panel of pro-inflammatory mediators including IL-1β, TNF-α, iNOS, ICAM-1, and COX-2. A typical example is the extracts of *A. sinensis* and *S. flavescens* which significantly inhibited IL-1β, TNF-α, iNOS, ICAM-1, and COX-2 [34]. Extracts of *P. angulares* inhibited NF-kB and AP-1 [3].

Mitogen-activated Protein Kinases (MAPKs)

MAPK pathway is crucial in inflammatory responses, particularly its downstream mediators such as p38. Essentially, p38 enhances assembly and activation of leukocytes, regulates transcription factors and cytokine biosynthesis [3]. MCP-1 regulates many cells in the inflammatory process such as mononuclear cells, B cells, and T cells causing cell migration and aggregation at the site of inflammation. p38 and MCP-1 represent major targets for anti-inflammatory agents. Many CHMs exert their effects by inhibiting p38, and MCP-1 mRNA expression. For instance, extract of *Z. schinifolium* suppressed p38 and TNF-α-induced MCP-1 expression [32]. It was practically impossible to include in this review all CHMs with anti-inflammatory effects, and we seldom tried it, nonetheless those captured in this review comprehensively reflect the general picture. We wish to state that there are many other CHMs with anti-inflammatory effects, which readers can source elsewhere.

CHMS DEMONSTRATE INHIBITION OF HSC ROLE IN FIBROGENESIS

Many reports have conclusively implicated HSCs as the main hepatic cell responsible for liver fibrosis [52,53]. CHMs may interrupt one or more stages of HSC transformation, to attenuate liver fibrosis. For example, genipin, an isolate from one of the herbal components of *Yinchenhao Tang*, suppressed wound-induced HSC migration and proliferation to ameliorate liver fibrosis [54].

HSC Activation

HSC activation was also inhibited by Fuzheng Huayu, Chinese herbal formula, through blockade of fibronectin/integrin-β1 signaling pathway [55,56]. Xiao Chaihu Tang inhibited HSC proliferation by suppressing cell secretion [57]. Root extracts of two Chinese herbs (*A. membranaceus* and *Salvia miltiorrhiza*) inhibited HSC activation and proliferation in keloid fibroblasts [58].

HSC Proliferation

Gypenosides inhibited platelet-derived growth factor (PDGF)-induced HSC proliferation via suppression of PDGF-Akt-p70S6k and inhibition of cyclin D1 and D2 expression [59]. Ganoderic and ganodenic acids derived from *Ganoderma lucidum* (“Lingzhi”) significantly inhibited HSC proliferation via suppression of platelet-derived growth factor β receptor (PDGFβR) phosphorylation [60].

HSC Apoptosis

Some CHMs selectively inhibited hepatocyte apoptosis but enhanced apoptosis of HSCs. Genipin, the pharmacologically active agent isolated from one of the herbal components...
of Yinchenhao Tang inhibited in vitro TGF-β₁-induced hepatocyte apoptosis [61]. Subsequently, it was confirmed that genipin suppressed hepatocyte apoptosis in primary cultured murine hepatocytes via Fas-mediation [62]. Further genipin-treated mice resisted Ca²⁺-induced mitochondrial permeability transition (MPT) compared to control and model [63]. Tetrandrine, an isolate from the roots of Stephaniae tetrandrae potently induced apoptosis of T-HSC/Cl-6 cells by activating caspase-3 protease and cleavage of poly (ADP-ribose) polymerase [64].

CHMS EXERT ANTI-OXIDANT AND ANTI-LIPID PER-OXIDATIVE EFFECTS

Many CHMs inhibit oxidant and lipid peroxidation whiles at the same time enhance in-built hepatic antioxidant machinery to attenuate reactive oxygen species (ROS)-mediated inflammation and fibrogenesis. The production of ROS in hepatocytes as well as perisinusoidal cells has been attributed to many factors including oxidant activity, lipid peroxidation, mitochondrion electron transport chain, damaged mitochondria, cytochrome P450 isoforms, e.g., P450 2E1 (CYP2E1), xanthine oxidases, nicotinamide adenine dinucleotide phosphate oxidoases, and altered metabolism [65]. ROS-dependent oxidative stress causes increase in MPT leading to hepatocyte necrosis and apoptosis [24]. Moreover, ROS (e.g. hydrogen peroxide, superoxide radical, and nitrosative species) increases the expression of specific genes linked to fibrogenesis, among which are pro-collagen type 1, monocyte chemoattractant protein 1 (MCP-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) through activation of many signal transduction pathways and transcription factors such as c-jun N-terminal kinases, AP-1, and NF-κB [66]. ROS generated by activated Kupffer cells and damaged hepatocytes activate HSCs by increasing their fibrogenic potential. It is therefore of enormous significance in the treatment of liver disease to arrest or suppress oxidative stress and lipid peroxidation. A typical CHM shown to produce suppression of oxidant and lipid peroxidation activities is extracts from S. miltiorrhiza. Extracts from S. miltiorrhiza enhanced superoxide dismutase (SOD) activity whiles reducing malondialdehyde (MDA) levels in experimentally induced liver fibrosis [67]. Furthermore, extracts from S. miltiorrhiza up-regulated glutathione levels whilst at the same time reduced lipid peroxidation in a dose-dependent manner [68]. Other CHMs have shown significant anti-oxidant and anti-lipid peroxidation effects both in vitro and in vivo by reducing oxidant biomarkers (MDA, alanine aminotransferase, aspartate aminotransferase, total bilirubin, and alkaline phosphatase), fibrogenic biomarkers (hyaluronic acid, laminin, type III procollagen, and type IV collagen) but increased anti-oxidant activity (increased glutathione S-transferase and SOD activities). CHMs in this group (anti-oxidant and anti-lipid peroxidation promoters) worth mentioning include Panax notoginseng (Tianqi) extract [69], Gingko biloba (Yinxing) extract [70], berberine [71,72], Yichenhao Tang extract [72], extract of Solanum nigrum [73], Xiao Chaihu Tang [74], Handan Ganle, taurine [75], and several other CHMs [Table 1].

CHMS EXERT ANTI-VIRAL REPLICATIVE EFFECTS

Cessation and inhibition of virus-derived ROS are important in the treatment of hepatitis-related liver fibrosis. Worldwide HBV and HCV have been acclaimed as the most common causes of chronic liver disease [4]. Pathologically, HBV can integrate into host genome (insertional mutagenesis) to induce chromosomal instability leading to liver disease progression. Unlike HBV, various HCV proteins such as core protein, the envelope, and non-structural proteins have been shown to exert oncogenic potential [24]. Several CHMs were shown to exert antiviral effects in both pre-clinical and clinical studies. In vitro berberine, artemisinin and artesunate inhibited viral reproduction [143]. Other CHMs including aucubin [144], nobiletin an isolate from the peelings of Citrus unshiu [145], and oxytetracycline [146] inhibited viral reproduction and replication. Handan Ganle [76] inhibited viral replication in patients with decompensated cirrhosis [147]. Moreover, Xiao Chai Hu Tang enhanced IFN-γ and antibody production against hepatitis B core and antigens in chronic HBV patients [148].

CHMS PRODUCE IMMUNOMODULATORY EFFECTS

TGF-β and PDGF are the two most potent fibrogenic cytokines [24] and have classically been considered to provide fibrogenic and proliferative stimuli to HSC.

TGF-β

The specific role of TGF-β in liver fibrosis has severally been elucidated [149,150]. Yang et al. have shown effective modulation of TFG-β1/Smad signaling by a synergized root extract derived from A. membranaceus and S. miltiorrhiza, which led to decreased fibrogenic biomarkers and liver fibrosis [9]. Subsequently, the synergized root extract inhibited TGF-β₁-induced HepG2 cell proliferation and invasion by modulating TGF-β1/Smad signaling [151]. The synergized root extract suppressed DEN-induced HCC, decreased pro-neoplastic markers (GGT and GST-P) and down-regulated PAI-I mRNA expression in TGF-β₁-stimulated HepG2 cells [152]. To further elaborate the mechanism of action of the synergized root extract, it was observed that it switched pSmad3L-dependent signaling (oncogenic) to that of pSmad3C (tumor suppression) [153]. S. miltiorrhiza extracts A&B downregulated TGF-β₁, and TIMP-1 gene expressions and blocked MAPK activity [154]. Rehin and emodin, isolated from Rheum palmatum inhibited TGF-β₁ expression [155]. Buzhong Yiqi Tang and Renshen Yangrong Tang produced significant immunomodulatory effects to reduce liver fibrosis [156]. Put together, this observation with specific regard to the synergized root extract needs further investigations, in view of the fact that DEN-induced HCC model is highly sensitive and accurately mimic the pathological features of human liver fibrosis and HCC [157]. Many other Chinese herbal formulae modulate several signaling pathways at multi-level to produce anti-fibro-
Table 1: A list of some extracts and isolated phyto-compounds from CHMs and their mechanisms of action against fibro-hepatocarcinogenesis

Phyto-compound	Botanical source	Pharmacological activity	Putative mechanism of action	Target	References	
Phenyl ethanol glycosides (glycosides)	Cistanche tubulosa	Anti-fibrotic, hepatoprotective	Restores ECM metabolism by modulating TGF-β,-dependent signaling	TGF-β, NF-κB	[76]	
Berberine (quaternary ammonium salt)	Coptis chinensis	Anti-lipogenic, hepatoprotective	Represses expression of lipogenic genes; general restoration of hepatic lipid metabolism	IRS-1, SREBP1c, CPT1, SCD1, FAS	[77-80]	
Ombuine (flavonoid)	Gynostemma pentaphyllum	Anti-lipogenic, hepatoprotective	Repression of lipogenic genes to restore hepatic lipid metabolism	NO, AST, ALP, TMAO, insulin pathway	[81-83]	
Glycyrrhizin^a	Glycyrrhiza uralensis	Anti-hepatocarcinogenic	Inhibits HBV replication; modulates PLA2; activates IL-10 activity	Apolipoprotein B, IL-10, AST	[90-94]	
Silymarin^b (silibinin, isosilibinin, silicostatin, silidianin) (flavonolignans)	Silybum marianum	Anti-viral	Blocks integration of virus DNA into host cells; inhibits absorption and translocation of transferrin			
Quercetin rhamnoside, gallic acid, geraniin, quercetin glycoside	Phyllanthus niruri	Anti-viral, anti-hepatotoxic	Clears viral proteins (HBsAg, HBeAg, HBV DNA)	Annexin A7 protein	[95-97]	
Resveratrol, polydatin (anthraquinones)	Polygonum cuspidatum	Anti-viral, anti-hepatopotective	Represses expression of HBeAg, HBV DNA	HBeAg, HBV DNA	[98-100]	
Saikosaponins C₁ and B₂ (terpenoids)	Bupleurum chinense	Anti-oxidant, hepatoprotective, anti-viral	Free radical scavenging of reactive chemical species; suppresses viral attachment, entry and fusion	Viral homing factors	[101-106]	
Astragaloside^d, astragalus polysaccharide, salvianolic acid (flavonoids and saponins)	Salvia miltiorrhiza, Astragalus membranaceus	Anti-viral, anti-fibrosis, anti-HCC	Attenuate fibrosis and HCC by modulating fibrogenic factors	MAPKs, TGF-β, Smad proteins, Imp7/8, PAI-1, GSH, SOD, MMP9, NF-KB, TNF-α, TLR9, IL-8, IL-6, sICAM-1, eNOS IL-4, IFN-γ	[107-112]	
Matrine, oxymatrine (alkaloids)	Sophora flavescens	Anti-viral, anti-inflammatory	Improves liver vasomotion in NO-dependent manner		[113-115]	
Periploside A (pregnane glycosides)	Periploca sepium	Hepatoprotective	Reverses liver damage by modulating inflammatory cytokines and hepatic enzymes		[116,117]	
Baicalein^e	Scutellaria baicalensis	Anti-inflammatory, anti-oxidant, anti-apoptotic	Attenuates liver injury via chelation and anti-oxidant activity	SOD, GSH, NF-KB, JNK, ERK, IL-6, TNF-α	[118-122]	
Lignans, schischine, schischandrin B (lignans)	Schisandra chinensis	Anti-viral, anti-inflammatory	Inhibits viral replication; increases HO-1 expression	MDA, GSH, CYP2E1, SOD, TNF-α, IL-6	[123-127]	
Extracts of Panax	Panax notoginseng	Anti-oxidant, hepatoprotective, anti-inflammatory	Attenuates NAFLD in rats by modulation both inflammation and lipid accumulation	Acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, carnitine palmitoyltransferase I, PAP	[128,129]	
Penta-oligogalacturonides (glucuronides)	Crapeagus pinnatifida	Anti-lipidemic	Negatively regulate triglycerides, PAF, and GPAT			
Kernels of Prunus	Prunus armeniaca	Anti-steatosis, anti-oxidant, free radical scavenging activity	Attenuates experimental liver steatosis via regulation of lipid metabolism and hepatic enzymes	ALT, AST	[130,131]	
Saucernoeil G (lignans)	Saururus chinensis	Anti-fibrotic, hepatoprotective, anti-inflammatory	Attenuates liver fibrosis in rats by regulating hepatic enzyme and anti-oxidant activity	MDA, ALT, AST, HA, SOD, NF-KB, MAPKs	[132,133]	
Salvianolic acid^d B	Salvia miltiorrhiza	Anti-fibrotic, hepatoprotective	Inhibits HSC activation, ECM accumulation and HSC proliferation by modulating TGF-β,	Cytochrome c, caspase3	[134,135]	
Extract of Brucea	Brucea javanica	Anti-cancer, pro-HCC-specific apoptosis	Selectively induces HCC apoptosis by activating mitochondria-dependent apoptotic pathways		[136,137]	

(Contd...)
carnogenic effects [Table 2].

PDGF

Many other CHMs in like manner have modulated cytokines involved in fibrogenesis. Example, *Canadertm lucidum* extract and *Ganoderma* polysaccharide inhibited HSC proliferation through blockade of PDGF receptors phosphorylation [165]. *Berberis anisata* fruit extract down-regulated expression of NF-κB, α-SMA, and TGF-β1 [166,167]. *Ginkgo biloba* extract down-regulated expression of NF-κB, TGF-β1, and collagen genes [70]. Cordyceps polysaccharide inhibited PDGF expression [168].

CHM TARGETS SPECIFIC GENES

Some CHMs exert specific effects on some genes, especially genes implicated in fibro-hepatocarcinogenesis.
c-fos and c-jun

Tetrandrine down-regulated c-fos and c-jun gene expressions, while they up-regulated expression of Smad7 [169].

Smurf2

Glycyrrhizin an isolate from *G. uralensis* decreased NF-κB binding activity and also down-regulated smurf2 gene expression [63]. *Buchong Yiqi Tang* and *Renshen Yangrong Tang* produced significant immunomodulatory effects to reduce liver fibrosis [156].

CONCLUSION

Admittedly, pathogenesis of liver disease is complex, normally enjoying the participation of many cell types, cytokines, chemokines, adhesion molecules and genes, notwithstanding, efforts should be made to tailor scientific investigations to specific targets which are crucial for treatment of liver diseases. It is heartwarming the array of isolated phyto-compounds from CHMs which have demonstrated efficacy against various pathological manifestations of fibro-hepato-carcinogenesis such as liver fibrosis, steatohepatitis, cirrhosis, and HCC. Indeed, there has been an increased effort to characterize these phyto-compounds in the light of their reported indigenous uses but more still needed to be done. For instance, efforts should be focused on structure activity relations of these compounds to help advance understanding of their specific effects at the molecular level. It is long held that Chinese herbal formulas are the historical antecedents of modern-day combination therapy, valid as it may be, it is important that future studies thoroughly investigate individual compounds as single chemical entities, then their combined effects can be predicted with certainty. As it is now, it is difficult to tell which compound or extract from which component herb is producing which effect and to what extent. Although the “one fits all” leaning of westernized medicine is without challenges, it is also important that “many fits all” characteristic of CHMs is subjected to thorough component analysis. We agree with others who are in support of combinatorial approach since it taps into the enhanced synergistic actions of many compounds with varying pharmacological activities. However, the question of herb-herb and herb-drug interactions remains outstanding just as toxicity details. It is worth notice that future studies should address these concerns. CHMs exert multi-modulatory and multi-target effects against pathological manifestations (liver fibrosis, cirrhosis, and HCC) of fibro-hepato-carcinogenesis but future research efforts must focus on structural and functional elucidation of single compounds isolated from herbal components of Chinese herbal formulae.

ACKNOWLEDGMENT

This study was supported by the National Natural Science Foundation of China (No. 81330081, No. 81302845).

REFERENCES

1. Song YN, Sun JJ, Ly Y, Xu LM, Gao YQ, Zhang W, et al. Therapeutic efficacy of fuzheng-huayu tablet based traditional chinese medicine syndrome differentiation on hepatitis-B-caused cirrhosis: A multicenter double-blind randomized controlled trial. Evid Based Complement Alternat Med 2013;2013:709305.
2. Liu HX, Wang SR, Lei Y, Shang JJ. Characteristics and advantages of traditional Chinese medicine in the treatment of acute myocardial infarction. J Tradit Chin Med 2011;31:269-72.
3. Wang Q, Kuang H, Su Y, Sun Y, Feng J, Guo R, et al. Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J Ethnopharmacol 2013;146:9-39.
4. Perz JF, Armstrong GL, Farrington LA, Hutin YJ, Bell BP. The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol 2006;45:529-38.
5. Wu Q, Qin SK. Features and treatment options of Chinese hepatocellular carcinoma. Chin Clin Oncol 2013;2:38.
6. Ismail BE, Cabrera R. Management of liver cirrhosis in patients with hepatocellular carcinoma. Chin Clin Oncol 2013;2:34.
7. Tan K, Brayshaw N, Tomaszewski K, Troke P, Wood N. Investigation of the potential relationships between plasma vonciraole concentrations and visual adverse events or liver function test abnormalities. J Clin Pharmacol 2006;46:235-43.
8. Sun WY, Wei W, Wu L, Gui SY, Wang H. Effects and mechanisms of extract from *Paonia lactiflora* and *Astragalus membranaceus* on liver fibrosis induced by carbon tetrachloride in rats. J Ethnopharmacol 2007;112:514-23.
9. Yang Y, Yang S, Chen M, Zhang X, Zou Y, Zhang X. Compound Astragalus and *Salvia miltiorrhiza* extract exerts anti-fibrosis by mediating TGF-beta/smadr signaling in myofibroblasts. J Ethnopharmacol 2008;118:264-70.
10. Feng ZQ, Chu X, Huang NP, Wang T, Wang Y, Shi X, et al. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 2009;30:2763-63.
11. Seeff LB, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH. Complementary and alternative medicine in chronic liver disease. Hepatology 2001;34:595-603.
12. Kuiper JJ, de Man RA, van Buuren HR. Review article: Management of ascites and associated complications in patients with cirrhosis. Aliment Pharmacol Ther 2007;26:183-93.
13. Friedman SL. Hepatic Fibrosis: Pathogenesis, Diagnosis, and Emerging Therapies. Philadelphia, PA: Saunders; 2008.
14. Fattovich G, Pantaleo M, Zagni I, Realldi G, Schalm SW, Christensen E. European Concerted Action on Viral Hepatitis (EUROHEP). Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: A cohort study of 297 patients. Am J Gastroenterol 2002;97:2886-95.
15. Mukerji AN, Patel V, Jain A. Improving survival in decompensated cirrhosis. Int J Hepatol 2012;2012:316827.
16. Li F, Zhao C, Wang L. Molecular-targeted agents combination therapy for cancer: Developments and potentials. Int J Cancer 2014;134:1257-68.
17. You H, Ding W, Dang H, Jiang Y, Rountree CB. c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 2011;54:879-89.
18. Chen J, Talwalkar JA, Yin M, Glaser KJ, Sanderson SO, Ehman RL. Early detection of nonalcoholic steatohepatitis in patients with nonalcoholic fatty liver disease by using MR elastography. Radiology 2011;259:749-56.
19. Chen JY, Chen HL, Cheng JC, Lin JH, Tung YT, Lin CF, et al. A Chinese herbal medicine, Gexia-Zhiyu Tang (GZT), prevents dimethylß-nitrosamine-induced liver fibrosis through inhibition of hepatic stellate cells proliferation. J Ethnopharmacol 2012;142:811-8.
20. Chen W, Chen JY, Tung YT, Chen HL, Kuo CW, Chuang CH, et al. High-frequency ultrasound imaging to evaluate liver fibrosis progression in rats and ty guan jian herbal therapeutic effects. Evid Based Complement Alternat Med 2013;2013:302325.
21. Bao XY, Xu BB, Fang K, Li Y, Hu YH, Yu GP. Changing trends of hospitalisation of liver cirrhosis in Beijing, China. BMJ Open Gastroenterol 2015;2:e000051.
22. Xiao J, Lin H, Liu T, Zeng W, Li X, Shao X, et al. Disease burden from hepatitis B Virus infection in guangdong province, China. Int J Environ Res Public Health 2015;12:14056-67.

23. Chor SY, Hui AY, To KF, Chan KK, Go YY, Chan HL, et al. Anti-proliferative and pro-apoptotic effects of herbal medicine on hepatic stellate cell. J Ethnopharmacol 2005;100:180-6.

24. Mormone E, George J, Nieto N. Molecular pathogenesis of hepatic fibrosis and current therapeutic approaches. Chem Biol Interact 2011;193:225-31.

25. Lin X, Zhang S, Huang O, Wei L, Zheng L, Chen Z, et al. Protective effect of Fufang-Liu-Yue-Qing, a traditional Chinese herbal formula, on CC4 induced liver fibrosis in rats. J Ethnopharmacol 2012;142:548-56.

26. Yu T, Liu M, Strimbisvik S, Klinge CM, Ramos KS, Colburn NH, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 2008;27:4373-9.

27. Medzhitov R, Preston-Hurlbut P, Janeway CA Jr. A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 1997;388:394-7.

28. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994;12:141-79.

29. Yu T, Ahn HM, Shen T, Yoon K, Jang HJ, Lee YJ, et al. Anti-inflammatory activity of ethanol extract derived from Phaseolus vulgaris beans. J Ethnopharmacol 2011;137:1197-206.

30. Yu T, Lee S, Yang WS, Jang HJ, Lee YJ, Kim TW, et al. The ability of an ethanol extract of Cinnamomum cassia to inhibit Src and spleen tyrosine kinase activity contributes to its anti-inflammatory action. J Ethnopharmacol 2012;139:566-73.

31. Cheong MH, Lee SR, Yoo HS, Jeong JW, Kim GY, Kim WJ, et al. Anti-fibrotic effects of the Drosophila toll protein signals activation of adaptive immunity. Free Radic Biol Med 2008;45:1542-50.

32. Cao LH, Lee YJ, Kang DG, Kim JS, Lee HS. Effect of Zanthoxylum schinifolium on TNF-alpha-induced vascular inflammation in human umbilical vein endothelial cells. Vascular Pharmacol 2009;50:200-7.

33. Peng C, Perera PK, Li YM, Fang WR, Liu LF, Li FW. Anti-inflammatory effects of Clematis chinensis osbeck extract (AR-6) may be associated with NF-κB, TNF-α, and COX-2 in collagen-induced arthritis in rat. Rheumatol Int 2012;32:3119-25.

34. Han C, Guo J. Antibacterial and anti-inflammatory activity of traditional Chinese herb pairs, Angelica sinensis and Sophora flavescens. Inflammation 2012;35:913-9.

35. Wu MJ, Wang L, Ding HY, Ding HY, Weng CY, Yen JH. Glossogyne tenuifolia by Sho-saiko-to in rat’s bile duct ligated model. J Ethnopharmacol 2012;139:1161-71.

36. Chen MH, Chen JC, Tsai CC, Wang WC, Chang DC, Tu DG, et al. The role of TGF-beta 1 and cytokines in the modulation of liver fibrosis by Sho-soa-to in rat’s bile duct ligated model. J Ethnopharmacol 2005;97:7-13.

37. He S, Yang Y, Liu X, Huang W, Zhang X, Yang S, et al. Compound Astragalus and Salvia miltiorhiza extract inhibits cell proliferation, invasion and collagen synthesis in keloid fibroblasts by mediating transforming growth factor-β-1/Smad pathway. Br J Dermatol 2012;166:564-74.

38. Chen MH, Chen SH, Wang QF, Chen JC, Chang DC, Hsu SL, et al. The molecular mechanism of gypenosides-induced G1 growth arrest of rat hepatic stellate cells. J Ethnopharmacol 2008;117:309-17.

39. Wang Z, Li Y, Banerjee S, Sarkar FH. Exploitation of the notch signaling pathway as a novel target for cancer therapy. Anticancer Res 2008;28:3621-30.

40. Yamamoto M, Ogawa K, Morita M, Fukuda K, Komatsu Y. The herbal medicine Inchkio-to inhibits liver cell apoptosis induced by transforming growth factor beta 1. Hepatology 1996;23:552-9.

41. Yamamoto M, Miura N, Ohtake N, Amagaya S, Ishige A, Sasaki H, et al. Genipin, a metabolite derived from the herbal medicine Inchin-ko-to, and suppression of Fas-induced lethal liver apoptosis in mice. Genipin suppresses subconjunctival fibroblast migration, proliferation and myofibroblast transdifferentiation. Ophthalmic Res 2006;38:356-60.

42. Liu JY, Hu JH, Zhu QG, Li FQ, Wang J, Sun HJ. Effect of matrine and current therapeutic approaches. Chem Biol Interact 2011;133:922-7.

43. Jun MS, Ha YM, Kim HS, Jang HJ, Kim YM, Lee YS, et al. Anti-inflammatory action of methanol extract of Carthamus tinctorius involves in heme oxygenase-1 induction. J Ethnopharmacol 2011;133:922-7.

44. Ko JK, Chik CW. The protective action of radix Astragalus membranaceus against hapten-induced colitis through modulation of cytokines. Cytokine 2009;47:85-90.

45. Kelchtermans H, Billiau A, Matthys P. How interferon-gamma kicks autoimmune diseases in check. Trends Immunol 2008;29:479-86.

46. Lim H, Lee JG, Lee SH, Kim YS, Kim HP. Anti-inflammatory activity of phylligenin, a lignan from the fruits of Forsythia koreana, and its cellular mechanism of action. J Ethnopharmacol 2008;118:113-7.

47. Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Wexler BB, et al. Cyclo-oxygenase 2: A pharmacological target for the prevention of cancer. Lancet Oncol 2001;2:544-51.
12 among other potential fibrogenic genes following murine unilateral ureteral obstruction (UUO): Modulation during epithelial-mesenchymal transition. Kidney Int 2003;64:2079-91.

67. Liu CL, Xie LX, Li M, Durairaj SS, Goto S, Huang SD. Salvinolic acid B inhibits hydrogen peroxide-induced endothelial cell apoptosis through regulating PI3K/Akt signaling. PLoS One 2007;2:e1321.

68. Lee TY, Chang HH, Wang GJ, Chiu JH, Yang YY, Lin HC. Water-soluble extract of Salvia miltiorrhiza ameliorates carbon tetrachloride-mediated hepatic apoptosis in rats. J Pharm Pharmacol 2006;58:659-65.

69. Lin CF, Wong KL, Wu RS, Huang TC, Liu CF. Protection by hot water extract of Panax notoginseng on chronic ethanol-induced hepatotoxicity. Phytother Res 2003;17:1119-22.

70. Ding J, Yu J, Yang C, Hu W, Li D, Luo Y, et al. Ginkgo biloba extract alleviates liver fibrosis induced by CCI4 in rats. Liver Int 2005;25:1225-32.

71. Peng PL, Hsieh YS, Wang CJ, Hsu JL, Chou FP. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Toxicol Appl Pharmacol 2006;214:9-15.

72. Inao M, Mochida S, Matsu S, Eguchi Y, Yulutuz Y, Wang Y, et al. Japanese herbal medicine Inchi-kon-to as a therapeutic drug for liver fibrosis. J Hepatol 2004;41:584-91.

73. Lin HM, Tseng HC, Wang CJ, Lin JJ, Lo CW, Chou FP. Hepatoprotective effects of Solanum nigrum Linn extract against CCl4-induced oxidative damage in rats. Chem Biol Interact 2006;171:253-93.

74. Kiyonose M, Bui T, Hamaoka A, Yoshida K, Ono H. Effect of Sho-saiko-to extract on hepatic inflammation and fibrosis in dimethylnitrosamine induced liver injury rats. Biol Pharm Bull 2002;25:1417-21.

75. Miyazaki T, Karube M, Matsuizaki Y, Ikegami T, Doy M, Tanaka N, et al. Taumine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis. J Hepatol 2005;43:117-25.

76. You SP, Zhao J, Ma L, Tuirdmat M, Zhang SL, et al. Preventive effects of phenylethanol glycosides from Cistanche tubulosa on bovine serum albumin-induced hepatic fibrosis in rats. Daru 2015;23:52.

77. Fan H, Chen YY, Bei WJ, Wang LY, Chen BT, Guo J. In vitro Screening and potential application of Polygonum cuspidatum Sieb.et Zucc: A review. J Ethnopharmacol 2013;148:729-45.

78. Yeung CY, Lee FT, Wong HN. Effect of a popular Chinese herb on neonatal bilirubin protein binding. Biol Neonate 1990;58:98-103.

79. Wang M, Wang F, Wang Y, Ma X, Zhao M, Zhao C. Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atovastatin for hyperlipidaemia in rats. PLoS One 2013;8:e78731.

80. Müller C, Gardemann A, Keilhoff G, Peter D, Wiswedel I, Schild L. Prevention of free fatty acid-induced lipid accumulation, oxidative stress, and cell death in primary hepatocyte cultures by a Gynostemma pentaphyllum extract. Phytotherapy 2012;39:395-401.

81. Chou SC, Chen KW, Hwang JS, Lu WT, Chu YY, Lin JD, et al. The add-on effects of Gynostemma pentaphyllum on nonalcoholic fatty liver disease. Altern Ther Health Med 2012;18:47-52.

82. Hong M, Li S, Tan HY, Wang N, Tsao SW, Feng Y. Current status of Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine 2015;10:5049-57.

83. Yeung CY, Lee FT, Wong HN. Effect of a popular Chinese herb on neonatal bilirubin protein binding. Biol Neonate 1990;58:98-103.

84. Wang M, Wang F, Wang Y, Ma X, Zhao M, Zhao C. Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atovastatin for hyperlipidaemia in rats. PLoS One 2013;8:e78731.

85. Müller C, Gardemann A, Keilhoff G, Peter D, Wiswedel I, Schild L. Prevention of free fatty acid-induced lipid accumulation, oxidative stress, and cell death in primary hepatocyte cultures by a Gynostemma pentaphyllum extract. Phytotherapy 2012;39:395-401.

86. Chou SC, Chen KW, Hwang JS, Lu WT, Chu YY, Lin JD, et al. The add-on effects of Gynostemma pentaphyllum on nonalcoholic fatty liver disease. Altern Ther Health Med 2012;18:47-52.

87. Hong M, Li S, Tan HY, Wang N, Tsao SW, Feng Y. Current status of herbal medicines in chronic liver disease therapy: The biological effects, molecular targets and future prospects. Int J Mol Sci 2015;16:28705-46.

88. Abe M, Akbar F, Hasabe A, Horikie N, Onji M. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis. J Gastroenterol 2003;38:962-7.

89. Matsuo K, Takenaka K, Shimomura H, Fuji N, Shinagawa K, Kuira K, et al. Lamivudine and glycyrrhizin for treatment of chemotherapy-induced hepatitis B virus (HBV) hepatitis in a chronic HBV carrier with non-Hodgkin lymphoma. Leuk Lymphoma 2001;41:191-5.

90. van Rossum TG, de Jong FH, Hop WC, Boomsma F, Schalm SW. ‘Pseudo-aistolosteronism’ induced by intravenous glycyrrhizin treatment of chronic hepatitis C patients. J Gastroenterol Hepatol 2001;16:789-96.
112. Liu ZY. Progress in pharmacological research on astragalus. Zhong Xi Yi Jie He Za Zhi 1991;11:312-4.

113. Ma ZJ, Li Q, Wang JB, Zhao YL, Zhong YW, Bai YF, et al. Combining omxatrime or matrine with laminuvride increased its antiproliferative effect against the hepatitis B virus in vitro. Evid Based Complement Alternat Med 2013;2013:186573.

114. Liu Q, Liu Y, Feng J, Zhang T, Liu Z, Mu X, et al. Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. J Ethnopharmacol 2009;125:404-9.

115. Yao N, Wang X. In vitro immunomodulatory activity of omxatrime on Toll-like receptor 9 signal pathway in chronic hepatitis B. Am J Chin Med 2014;42:1389-410.

116. Liu J, Zhu Y, Feng JQ, Chen HJ, Zhang RJ, Ni J, et al. Periplocoside A, a pregnane glycoside from Periploca sepium Bge, prevents cancavalan A-induced mice hepatitis through inhibiting NTK-derived inflammatory cytokine productions. Int Immunopharmacol 2008;8:1248-56.

117. Zhang J, Ni J, Chen ZH, Li X, Zhang RJ, Tang W, et al. Periplocoside A prevents experimental autoimmune encephalomyelitis by suppressing IL-17 production and inhibits differentiation of Th17 cells. Acta Pharmacol Sin 2009;30:1144-52.

118. Kim SJ, Moon YJ, Lee SM. Protective effects of baicalin against ischemia/reperfusion injury in rat liver. J Nat Prod 2010;73:2003-8.

119. Zhao Y, L.H, Gao Z, Xu H. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol 2005;509:195-202.

120. Huang HL, Wang YJ, Zhang QY, Liu B, Wang FY, Li JJ, et al. Hepatoprotective effects of baicalin on cc14-induced acute liver injury in mice. World J Gastroenterol 2012;18:6605-13.

121. Wu YL, Yan LH, Wan Y, Nan JX. Baicalin inhibits nuclear factor-kappaB and apoptosis via c-flip and MAPK in D-GalN/LPS induced acute liver failure in murine models. Chem Biol Interact 2010;188:526-34.

122. Wang JY, Lee CY, Pan PJ, Chang WC, Chiu JH, Chen WS, et al. Herb-induced autoimmunelike hepatitis in C57BL/6J mice. Liver Int 2014;34:583-93.

123. Xue Y, Li L, Du X, Li X, Wang W, Yang J, et al. Isolation and anti-hepatitis B virus activity of dibenzocyclooctadiene lignans from the fruits of Schisandra chinensis. Phytochemistry 2015;116:253-61.

124. Cheekier R, Patwardhan RS, Sharma D, Menon J, Zhoh M, Bhilwade HN, et al. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nfr2 and NF-κB. Free Radic Biol Med 2012;53:1421-30.

125. Liu F, Bai X, Ding RB, Hu Y, Su H, Wan J, UPLC/Q-TOFMS-based metabolomics studies on the protective effect of Panax notoginseng saponins on alcoholic liver injury. Am J Chin Med 2015;43:93-114.

126. Ding RB, Tian K, Cao YW, Bao JL, Wang M, He C, et al. Protective effect of Panax notoginseng saponsins on acute ethanol-induced liver injury is associated with ameliorating hepatic lipid accumulation and reducing ethanol-mediated oxidative stress. J Agric Food Chem 2015;63:2413-22.

127. Yang X, Liu M, Yang Z, Guo J, Gao Q. Effect of Panax notoginseng on genes expression of CYP and GST in liver tissues of rats. Zhongguo Zhong Yao Za Zhi 2009;34:2390-3.

128. Li T, Li S, Dong Y, Zhu R, Liu Y. Antioxidant activity of penta- oligogalacturonide, isolated from haw pectin, on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet. J Agric Food Chem 2013;61:7599-605.

129. Ozturk F, Yilmaz M, Ozturk IC, Icli A, Vardi N, et al. The protective effect of apricot (Prunus armeniaca L.) on hepatic steatosis and inflammation related factors in rat intestinal microvascular endothelial cells. J Ethnopharmacol 2009;125:404-9.

130. Fugh-Berman A. Herb-drug interactions. Lancet 2000;356:134-8.

131. Liu FY, Chiu CH, Gamba R, Kok SH, Kan KL, Cheng HY, et al. Antiproliferative and apoptosis-inducing activity of Brueca javanica extract on human carcinoma cells. Int J Mol Med 2005;16:1157-62.

132. Zhao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, et al. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One 2019;4:96699.

133. Huo CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 2007;98:727-35.

134. Yao Naiyaoa, Choi YH, Hyun JW, Kim CM. Camptothecin sensitizes human hepatoma Hep3B cells to TRAIL-mediated apoptosis via ROS-dependent death receptor 5 upregulation with the involvement of MAPKs. Environ Toxicol Pharmacol 2014;38:99-67.

135. Romero MR, Effert H, Serrano MA, Castano B, Macias RI, Briz O, et al. Effect of artemisinin/arsenurate as hepatoprotectants of hepatitis B virus production in an “in vitro” replicative system. Antiviral Res 2006;85:75-83.

136. Man J. Antiviral activity of aucubin against hepatitis B virus replication. Phytother Res 1997;11:189-92.

137. Suzuki M, Sasaki K, Yoshizaki F, Oguchi K, Fujisawa M, Cyong JC. Anti-hepatitis C virus effect of citrus unshiu peel and its active ingredient nobilin. Am J Chin Med 2005;33:87-94.

138. Chen Y, Mao B, Jiang J. [Relationship between serum load of HBV-DNA and therapeutic effect of oxymatrine in patients with chronic hepatitis B]. Zhongguo Zhong yi xie jie he ji zai zhi Zhongguo Zhong yi jie he zai zhi. Chin J Integr Tradit Med West Med/Zhongguo Zhong Yi Yie Jie He Xue Hui, Zhongguo Zhong yi Yie Jia Yuan. Ban 2002;22:326-6.

139. Yao CN, Xie RJ, Geng XG, Liu XH, Han B, Chen ML. Effect of Dan shao Huaxian capsule on expression of metalloproteinase-1 and tissue inhibitor of metalloproteinase-1 in fibrotic liver of rats. World J Gastroenterol 2005;11:4965-3.

140. Cheng PW, Ng LT, Lin CC. Xiao chai hu tang inhibits CVB1 virus infection of CCFS-1 cells through the induction of Type I interferon expression. Int Immunopharmacol 2006;6:79-99.

141. Furukawa F, Matsuoka K, Mori S, Tahashi Y, Yoshida K, Sugano Y, et al. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003;38:879-89.

142. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis and therapeutic targets. J Cell Mol Med 2006;10:76-99.

143. Liu J, Yang Z, Xue M, Liu Q, Li D, Luo S, et al. Combining Compound astragalus and Salvia miltiorrhiza extract suppresses hepatocellular carcinoma cell proliferation by Brucea javanica oil-loaded liposomes via induction of apoptosis. Arch Med Sci 2015;11:865-62.

144. Liu M, Xu Y, Han X, Yin L, Xu L, Qi Y, et al. Diclofenac alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway. Sci Rep 2015;5:18038.

145. Romero MR, Effert H, Serrano MA, Castano B, Macias RI, Briz O, et al. Effect of artemisinin/arsenurate as hepatoprotectants of hepatitis B virus production in an “in vitro” replicative system. Antiviral Res 2006;85:75-83.

146. Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis and oxidative stress in rats. Br J Nutr 2007;98:727-35.

147. Yao N, Wang X. In vivo immunomodulatory activity of omxatrime on Toll-like receptor 9 signal pathway in chronic hepatitis B. Am J Chin Med 2014;42:1389-410.

148. Zhao Y, L.H, Gao Z, Xu H. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol 2005;509:195-202.

149. Wang JY, Lee CY, Pan PJ, Chang WC, Chiu JH, Chen WS, et al. Herb-induced autoimmunelike hepatitis in C57BL/6J mice. Liver Int 2014;34:583-93.

150. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis and therapeutic targets. J Cell Mol Med 2006;10:76-99.
156. Abe S, Ishibashi H, Tansho S, Hanazawa R, Komatsu Y, Yamaguchi H. Protective effect of oral administration of several traditional Kampo-medicines on lethal Candida infection in immunosuppressed mice. Nihon Ishinkin Gakkai Zasshi 2000;41:115-9.

157. Chen G, Dai ZK, Liang RG, Xiao SJ, He SQ, Zhao HL, et al. Characterization of diethylaminoethylamine-induced liver carcinogenesis in Syrian golden hamsters. Exp Ther Med 2012;3:285-92.

158. Zhou J, Chen XM, Liu SW, Fu B, Hong Q, Wang SJ. Effects of Biejia Ruangan Tablet-containing serum on matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 expression in cultured renal interstitial fibroblasts. Chin J Integr Med 2015;21:152-6.

159. Yang FR, Fang BW, Lou JS. Effects of Fufang Biejia Ruangan pills on hepatic fibrosis in vivo and in vitro. World J Gastroenterol 2013;19:5326-33.

160. Wang N, Feng Y, Tan HY, Cheung F, Hong M, Lao L, et al. Inhibition of eukaryotic elongation factor-2 confers to tumor suppression by a herbal formulation Huanglian-Jiedu decoction in human hepatocellular carcinoma. J Ethnopharmacol 2015;164:309-18.

161. Wang RQ, Mi HM, Li H, Zhao SX, Jia YH, Nan YM. Modulation of IKKß/NF-κB and TGF-ß1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice. Iran J Basic Med Sci 2015;18:404-11.

162. Liu C, Jiang CM, Liu CH, Liu P, Hu YY. Effect of Fuzhenghuayu decoction on vascular endothelial growth factor secretion in hepatic stellate cells. Hepatobiliary Pancreat Dis Int 2002;1:207-10.

163. Deng G, Kurtz RC, Vickers A, Lau N, Yeung KS, Shia J, et al. A single arm phase II study of a Far-Eastern traditional herbal formulation (sho-sai-ko-to or xiao-chai-hu-tang) in chronic hepatitis C patients. J Ethnopharmacol 2011;136:83-7.

164. Zhang GB, Song YN, Chen QL, Dong S, Lu YY, Su MY, et al. Actions of Huangqi decoction against rat liver fibrosis: A gene expression profiling analysis. Chin Med 2015;10:39.

165. Park EJ, Ko G, Kim J, Sohn DH. Antifibrotic effects of a polysaccharide extracted from Ganoderma lucidum, glycyrrhizin, and pentoxyfilline in rats with cirrhosis induced by biliary obstruction. Biol Pharm Bull 1997;20:417-20.

166. Watanabe A, Obata T, Nagashima H. Berberine therapy of hypertyraminemia in patients with liver cirrhosis. Acta Med Okayama 1982;36:277-81.

167. Zhang BJ, Xu D, Guo Y, Ping J, Chen LB, Wang H. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors. Clin Exp Pharmacol Physiol 2008;35:303-9.

168. Gong HY, Wang KQ, Tang SG. Effects of cordyceps sinensis on T lymphocyte subsets and hepatofibrosis in patients with chronic hepatitis B. Hunan Yi Ke Da Xue Xue Bao 2000;25:248-50.

169. Hsu YC, Chiu YT, Cheng CC, Wu CF, Lin YL, Huang YT. Antifibrotic effects of tetrandrine on hepatic stellate cells and rats with liver fibrosis. J Gastroenterol Hepatol 2007;22:99-111.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.