ADORYM: A MULTI-PLATFORM GENERIC X-RAY IMAGE RECONSTRUCTION FRAMEWORK BASED ON AUTOMATIC DIFFERENTIATION

Ming Du  
Advanced Photon Source  
Argonne National Laboratory  
Lemont, Illinois 60439, USA  
mingdu@anl.gov

Saugat Kandel  
Applied Physics Program  
Northwestern University  
Evanston, Illinois 60208, USA

Junjing Deng  
Advanced Photon Source  
Argonne National Laboratory  
Lemont, Illinois 60439, USA

Xiaojing Huang  
National Synchrotron Light Source II  
Brookhaven National Laboratory  
Upton, New York 11973, USA

Arnaud Demortiere  
Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314  
Université de Picardie Jules Verne, Hub de l’Energie  
80039 Amiens Cedex, France

Tuan Tu Nguyen  
Laboratoire de Réactivité et Chimie des Solides (LRCS), CNRS UMR 7314  
Université de Picardie Jules Verne, Hub de l’Energie  
80039 Amiens Cedex, France

Remi Tucoulou  
European Synchrotron Radiation Facility  
38000 Grenoble, France

Vincent De Andrade  
Advanced Photon Source  
Argonne National Laboratory  
Lemont, Illinois 60439, USA

Qiaoling Jin  
{Department of Physics & Astronomy, Chemistry of Life Processes Institute}  
Northwestern University  
Evanston, Illinois 60208, USA

Chris Jacobsen  
Advanced Photon Source  
Argonne National Laboratory, Lemont, Illinois 60439, USA  
{Department of Physics & Astronomy, Chemistry of Life Processes Institute}  
Northwestern University, Evanston, Illinois 60208, USA  
cjacobsen@anl.gov

December 24, 2020

ABSTRACT
We describe and demonstrate an optimization-based x-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to and fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement.
1 Introduction

Most image reconstruction problems can be categorized as inverse problem solving. One begins with the assumption that a measurable set of data \( y \) arises from a forward model \( F(x, \theta) \), which in turn depends on an object function \( x \) and parameters \( \theta \), giving

\[
y = F(x, \theta).
\]

(1)

With experimental data \( y_{\text{meas}} \) and additive noise \( \epsilon \), imaging experiments build a relation of

\[
y_{\text{meas}} = F(x, \theta) + \epsilon.
\]

(2)

When \( F \) is a non-linear function of \( x \), or when the problem size is very large, a direct solution of Eq. 2 is either intractable or non-existent at all. In other scenarios where a computationally feasible direct solution does exist, the quality of the solution can degrade when the known information is noisy or incomplete. A common example is standard filtered-backprojection tomography, which is known to produce significant artifacts when the projection images are sparse in viewing angles [1]. These issues motivate the use of iterative methods in solving Eq. 2, where \( x \) is gradually adjusted to find a minimum of a loss function \( L \) that is often formulated as

\[
L = \| y_{\text{meas}} - y \|^2 = \| y_{\text{meas}} - F(x, \theta) \|^2,
\]

(3)

where the \( \| \cdot \|^2 \) operation computes the Euclidean distance between \( y_{\text{meas}} \) and \( F(x) \). Loss function \( L \) formulations other than Eq. 3 are also frequently used [2], but they all include a metric measuring the mismatch between \( y_{\text{meas}} \) and \( F(x) \). The object function \( x \) may be a collection of coefficients for a certain basis set (such as for Zernike polynomials [3]), which might yield a relatively small number of unknowns with easy solution. However, letting \( x \) be a complex 2D pixel or 3D voxel array provides a more general description for complicated objects. Furthermore, the parameter \( \theta \) may include a complex finite-sized illumination wavefield (a probe function) with a variety of positions or angles that sample the object array, and a variety of propagation distances leading to a set of intensity measurements \( y_{\text{meas}} \).

In some cases, \( \theta \) is also unknown and need to be solved along with \( x \). For example, in more complicated imaging methods such as far-field ptychography [4, 5] and its near-field counterpart [6], the probe function might itself be finite sized but unknown, but it can be recovered along with the object as part of recovering \( x \). In other methods such as holotomography [7], at each object rotational angle one might have a set of intensity measurements \( y_{\text{meas}} \) acquired at different Fresnel propagation distances from the object \( x \), and each measurement might have experimental errors in position or rotation, collectively symbolized by \( \theta \).

The fact that a wide range of imaging problems can be framed in terms of minimizing the loss function \( L \) of Eq. 3 suggests that object reconstruction algorithms should be generic to some degree, or at least highly modular. One example of this can be found in multislice ptychography [8], which can be thought of as combining the probe-scanning of ptychography with multiple Fresnel propagation distances as in holotomography. There has also been an evolution in approaches to ptychographic tomography. It was first demonstrated using 2D ptychography to recover a complex exit wave at each rotation angle, followed by phase unwrapping, followed by standard tomographic reconstruction of these set of projection images [9]. An extension of this approach to objects that are thick enough that propagation effects arise was done by using multislice ptychography reconstruction to generate a synthesized projection, followed by phase unwrapping and standard tomographic reconstruction [10]. Since ptychographic image reconstruction [5] by itself can be treated as a nonlinear optimization problem [11], an alternative approach is to do the entire ptychographic tomography reconstruction as a nonlinear optimization problem. One can then be flexible on the ordering of scanned probe positions versus rotations [12], and one can incorporate multislice ptychography effects [13, 14]. In this case, one uses the full set of intensities recorded at all probe positions and object rotations as \( y_{\text{meas}} \), and recovers the 3D object as well as the probe function using the loss function minimization approach of Eq. 3. One can also include a noise model in the loss function, which might be the Gaussian approximation to the Poisson distribution at higher photon count, or a Poisson model at lower photon count [2]. The point of these examples is that a nonlinear optimization approach allows one to change the forward model \( F \) and the loss function \( L \) to match the conditions of the experiment, and use a sufficiently flexible optimization approach to minimize \( L \) and thus find a solution for \( x \).

The loss function \( L \) of Eq. 3 is a scalar, but it depends on a large number of unknowns in \( x \), and furthermore the forward model \( F(x) \) may by itself be nonlinear. In addition, the loss function \( L \) can also include many regularizers \( R \) with weighting \( \lambda \) [15] to incorporate known or desired properties of the image such as sparsity [16]. Minimizing a multivariate scalar quantity can be done using gradient-based methods, which requires one to calculate the partial derivative of \( L \) with regards to each element of \( x \) to give \( \frac{\partial L}{\partial x_i} \).

For an example, we can look at the gradient-based minimization strategy for the ptychography application (the PIE algorithm [5] is one such procedure). PIE can be shown [2] to be the equivalent of gradient descent minimization of a loss function \( L = \| F_1(o, p) - y_{\text{meas}} \|^2 \). This loss function is the \( l_2 \)-norm of the difference between \( F_1(x) \) and
\[ \frac{\partial L}{\partial p} \] is known!
\[ \frac{\partial L}{\partial o} \] is known!
\[ \frac{\partial y}{\partial p} \] is known!
\[ \frac{\partial y}{\partial o} \] is known!

Figure 1: When modifying an existing forward model, the gradient of the new loss function often needs to be re-derived by going into the depth of the model.

\( y_{\text{meas}} \). In this case \( F_1 \) is the ptychographic forward model as a function of the object \( o \) and probe \( p \), with the forward model accounting for object sampling, probe modulation, and far-field diffraction. The structure of the problem is illustrated schematically at left in Fig. 1, where the gradient of \( L \) with regards to both \( o \) and \( p \) (denoted as \( \frac{\partial L}{\partial o} \) and \( \frac{\partial L}{\partial p} \)) is used to optimize the guesses of both the object and the probe. Now, let us consider optimization of probe positions (so as to account for differences between intended and actual positions) along with reconstructing the object \([11, 17, 18, 19]\). One way to incorporate probe position corrections \( \Delta r \) into the forward model is to use the Fourier shift theorem \([20]\), an operation denoted by \( F_2 \). The new forward model is then constructed by placing \( F_2 \) before \( F_1 \) – that is, first apply Fourier shift to get the shifted probe \( p' \) at the current scan position, then perform object modulation and far-field propagation. This is shown schematically at right in Fig. 1. Modifying the forward model can be done trivially by simply inserting the Fourier shift code at the right location, but we would also have to re-derive the gradients in order to solve the unknowns. Since \( o \) enters the forward model after \( F_2 \), we still know the gradient \( \frac{\partial L}{\partial o} \). However, our previous knowledge of \( \frac{\partial L}{\partial p} \) no longer holds, since we now must differentiate through \( F_2 \) to get the new gradient with regards to \( p \). In other words, the updated \( \frac{\partial L}{\partial p} \) now requires additional derivatives \( \frac{\partial y}{\partial p} \) and \( \frac{\partial p'}{\partial p} \) (Fig. 1), which are not known before. Moreover, the gradient with regards to \( \Delta r \) should also be derived in order to optimize \( \Delta r \). Modifying the gradients requires much more effort than modifying the forward model! The former can be tedious, and prone to errors, and often needs to be redone when changes to the forward model are made. The disproportional difficulty of re-deriving the gradients introduces heavy burdens to algorithm development tasks beyond the parameter refinement example described above – for example, testing out new noise models, developing more complicated physical models \((e.g., one that accounts for multiple scattering), and extending existing algorithms from one imaging setup to another.

These complexities have inspired the use of an alternative approach for image reconstruction problems: the use of automatic differentiation (AD) \([21]\) for loss function minimization. Automatic differentiation involves the estimation of partial derivatives of mathematical operations as expressed in computer code, by storing intermediate results from small variations of the input vector \( x \) on a forward pass and using these in a backward pass to accumulate the final derivative. The use of AD was suggested for iterative phase retrieval at a time before easy-to-use AD tools were available \([22]\). However, even in the short time since that suggestion, the explosion in machine learning (where AD is often used to train a neural network \([23]\)) has led to the development of powerful AD toolkits, which have then been exploited for parallelized ptychographic image reconstruction \([24]\). Because one does not have to manually calculate a new set of derivatives as the forward problem is modified, AD has subsequently been used for image reconstruction in near-field and Bragg ptychography \([25]\), and for comparing near-field and far-field ptychography with near-field holography with both Gaussian and Poisson noise models \([26]\). Automatic differentiation has also been used to address 3D image reconstruction beyond the depth-of-focus limit by using multislice propagation for the forward model \([14]\). These successes have motivated our development of the software framework we report here, whose primary aim is to extend the application of AD beyond a specific imaging modality.

In designing an AD-based framework for image reconstruction, we have attempted to follow these guidelines:

- The framework should be generic and able to work with a variety of imaging techniques by assuming the general abstract model of image reconstruction. That is, the essential components of the framework should include the object function, the probe, the forward model, the loss, the optimizer, and the AD-based differentiator, but each of them should be subject to as few assumptions as possible, and whenever an assumption is necessary, it should be preferably a general one. For example, the object function is assumed to be 3D, which is downward-
compatible with 2D image reconstruction problems. Another example is in regard to the forward model: one of the several forward model classes provided in the framework is a ptychotomography model assuming multiple viewing angles and multiple diffraction patterns per angle. By setting the number of diffraction patterns per angle to 1 and using a larger probe size, it can also work for full-field holography.

- The framework should be able to not only optimize the object function, but also refine experimental parameters such as probe positions or projection alignments in order to address practical issues one would encounter in experiments.

- The forward model part should have a plug-and-play characteristic, which would allow users to conveniently define new forward models to work with the framework, or to modify the existing ones. We will show in Section 2.2 that we achieved this by packaging each forward model as an individual Python class that contains the prediction function and the loss function. As long as new variants of the class are created with both components following the input/output requirements, users can get it to work with AD immediately after telling the program to calculate the loss using that forward model. The same plug-and-play readiness also applies to refinable parameters and optimizers.

- The framework should not be bound to a certain AD library. There are a variety of AD packages available, and each of them are uniquely advantageous in some aspects. We have thus created a unified frontend in our framework that wraps two AD libraries, namely PyTorch and Autograd, and used the application programming interfaces (APIs) from that frontend to build all forward models. In this way, the user can switch between both AD backends by simply changing an option. The frontend may also be expanded to other AD backends as long as they are added to the frontend following the stipulated input/output of each function.

- The framework should be able to run on both single workstations and high-performance computers (HPCs), which allows one to freely choose the right platform and optimally balance convenience and scalability. This means that it should support parallelized processing using a widely available protocol. As will be introduced in Section 2.5, we used the MPI protocol [27] in our case. We have also implemented several strategies for parallelization, ranging from data parallelism [28] to more memory-efficient schemes based on either MPI communication or parallel HDF5 [29].

- The framework also needs to be implemented in a language that has a large community of scientific computation users, and has the API support of most popular AD libraries. The language itself should also be portable, so that the program can be run on a wide range of platforms. As such, we choose to implement our framework in Python.

Our design following these criteria leads to Adorym, which stands for Automatic Differentiation-based Object Retrieval with Dynamical Modeling. The same name appeared in our early publication on the algorithm for reconstructing objects beyond the depth-of-focus limit [14], where the notion of “dynamical modeling” means both that the forward model accounts for dynamical scattering in thick samples using multislice propagation, and that the forward model can be dynamically adjusted for various scenarios thanks to AD. The source code of Adorym is openly available on our GitHub repository (https://github.com/mdw771/adorym). We have also prepared a detailed documentation (https://adorym.readthedocs.io/). The rest of this paper will describe the overall architecture of Adorym and each component of it. We will then show reconstruction results of both simulated and experimental, and demonstrate Adorym’s performance for varying experimental types and imaging techniques.
2 Methods and theories

With the aim of maximizing the applicability of Adorym to a wide range of x-ray imaging techniques, we adhered to modular and object-oriented programming principles when designing it. In this section, we briefly introduce the most crucial modules and infrastructures of Adorym – namely, its data format, its forward models and loss functions, its AD backends, and its parallelization scheme. These parts are directly relevant to the realization of Adorym’s versatility, flexibility, and scalability. While we will limit our narrative to these key features of Adorym in the main text, readers can refer to the supplementary materials for further detail. A full picture illustrating its architecture is shown in Fig. 2.

2.1 Data format and array structures

Adorym uses HDF5 files [29] for input and output, where acquired images are saved as a 4D dataset with shape \( \text{[num_angles, num_tiles, len_detector_y, len_detector_x]} \). This is a general data format that is compatible towards more specific imaging types: for example, 2D ptychography has \( \text{num_angles} = 1 \) and \( \text{num_tiles} > 1 \), while full-field tomography has \( \text{num_tiles} = 1 \) and \( \text{num_angles} > 1 \). The last two dimensions specify a 2D image which is referred to as a “tile.” For ptychography, a tile is just a single diffraction pattern. When dealing with full-field data from large detector arrays, Adorym provides a script to divide each image into several subblocks or tiles, so that the divided image data can be treated in a way just like ptychography, where only a small number of these tiles are processed each time. When applied to wavefield propagation, this is known as a “tiling-based” approach; it allows single workstations to work with very large arrays [30], or parallel computation on large arrays when using HPCs [31].

During reconstruction, the object function being solved is stored as a 4D array, with the first 3 dimensions representing the spatial axes. Depending on user setting, the last dimension represents either the \( \delta/\beta \)-parts of the object’s complex refractive indices, or the real/imaginary parts of the object’s multiplicative modulation function (i.e., for an incident wavefield \( \psi(x,y) \) on a 2D plane \( xy \), the wavefield modulated by object function \( O(x,y) \) is given by \( \psi(x,y) \cdot (\Re(O(x,y)) + i \Im(O(x,y))) \)). While the real/imaginary representation is more commonly used in coherent diffraction...
imaging with non-uniform illumination such in ptychography [5], the \( \delta/\beta \) representation can potentially remove the need for phase wrapping when a proper regularizer is used (this is discussed in Section S1.2 of Supplementary Material). The array geometry of the raw data file and the object function is shown in Fig. 3.

### 2.2 Forward model and refinable parameters

Adorym comes with a `propagate` module for simulating wave propagation. Near-field and far-field propagation can be done using the built-in Fresnel propagation and Fraunhofer functions. Furthermore, Adorym can also model diffraction in the object using the multislice method [32, 33], so that multiple scattering in thick samples beyond the depth of focus can be accounted for in object reconstruction [14]. In Adorym, two variants of the multislice algorithm are implemented: the first assumes a constant slice spacing, so that the Fresnel convolutional kernel can be kept constant. This implementation is intended for performing joint ptychotomography reconstruction for thick samples with isotropic voxel size. The other variant allows the slices to be separated by unequal spacing, which is more suitable for single-angle multislice ptychography [8, 34, 35]. For the latter, Adorym allows the slice spacings to be refined in the AD framework. Moreover, Adorym allows one to use and reconstruct multiple mutually incoherent probe modes, which can be used to account for partial coherence [36] or continuous motion scanning [37, 38, 39].

Adorym also allows other experimental parameters to be refined along with the minimization of the loss function, as long as these parameters can be incorporated in the forward model as differentiable functions. An example is probe position refinement in ptychography, as shown in Algorithm 1 and demonstrated in Sec. 3.4. A full list of refinable parameters currently provided by Adorym can be found in Section S1.D.2 of the supplementary material.

The fact that Adorym assumes a 4D data format, and a 3D object function with 2 channels, means that it can use a ptychotomographic forward model to work with many imaging techniques. Holography data, for instance, is interpreted by Adorym as a special type of ptychography with 1 tile per angle, with detector size equal to the \( y \)- and \( x \)-dimensions of the object array, and with a near-field propagation from the sample plane to the detector plane. However, this does not prevent us from creating forward models dedicated for more specific imaging techniques. In fact, since all forward models are packaged as individual classes, users will find it easy to define new forward models, and then use them in the reconstruction routine.

### 2.3 Loss functions

For the final loss function, Adorym has two built-in types of data mismatch term. The first is the least-square error (LSQ), expressed as

\[
D_{\text{LSQ}} = \frac{1}{N_d} \sum_{m} \left\| \sqrt{I_{\text{pred},m}} - \sqrt{I_{\text{meas},m}} \right\|^2
\]

(4)
Algorithm 1: An example predict function in the forward model of far-field ptychotomography. This is for data parallelism mode, with probe position refinement and multiple probe modes.

Input:
- detector size $[l_y, l_x]$
- object size $[L_y, L_x, L_z]$
- full object function $O$
- a list of probe modes $\Psi$
- probe positions $R$
- probe position corrections $\Delta R$
- wavelength $\lambda$
- pixel size $\delta$
- current rotation angle $\theta$

Initialization
- $o \leftarrow []$
- $\Psi_{\text{detector}} \leftarrow []$
- $\Psi_{\text{shifted}} \leftarrow []$

Procedure
- $O' \leftarrow \text{Rotate}(O)$
  - for $r$ in $R$ do
    - $o$.append($\text{TakeObjectChunk}(O', r)$)
    - $\Psi_{\text{shifted}}$.append($\text{FourierShift}(\Psi, \Delta R)$)
  - for $\psi_i$ in $\Psi_{\text{shifted}}$ do
    - $\psi_i \leftarrow \text{MultislicePropagate}(\psi_i, o, \lambda, \delta)$
    - $\psi_i \leftarrow \text{FarFieldPropagate}(\psi_i)$
    - $\Psi_{\text{detector}}$.append($\psi_i$)

Output: $\Psi_{\text{detector}}$

where $N_d$ is the number of detector (or tile) pixels. The second is the Poisson maximum likelihood error, expressed as [2]:

$$D_{\text{Poisson}} = \frac{1}{N_d} \sum_m I_{\text{pred}, m} - I_{\text{meas}, m} \log(I_{\text{pred}, m}).$$

(5)

While both loss functions have their own merits in terms of numerical robustness and noise resistance [2, 26], we provide both of them for users’ choice. Furthermore, Adorym also allows users to conveniently add new loss function types (for example, mixed Gaussian-Poisson).

Adorym allows users to provide a finite support constraint to supply prior knowledge about the sample. This is commonly used in coherent diffraction imaging [40, 41, 42]. Furthermore, Adorym comes with Regularizer classes which contains several types of Tikhonov regularizers [43, 44]. These include the $l_1$-norm [16], the reweighted $l_1$-norm [45], and total variation [46]. A detailed description of these regularizers can be found in the supplementary materials. Additional regularizers can be added by creating new child classes of Regularizer.

2.4 AD engines and optimizers

The automatic differentiation (AD) engine is the cornerstone of Adorym: it provides the functionality to calculate the gradients of the loss function with regards to the object, the probe, and other parameters. Adorym uses two AD backends: Autograd [47], and PyTorch [48]. Autograd builds its data type and functions on the basis of the popular scientific computation package NumPy [49] and SciPy [50]; these in turn can make use of hardware-tuned libraries such as the Intel Math Kernel library [51]. However, Autograd does not have built-in support for graphical processing units (GPUs). This shortcoming is addressed in PyTorch, which also has a larger user community. Both libraries are dynamic graph tools that allow the computational graph (representing the forward model) to be altered at runtime [52]. This allows for more flexible workflow control, and easier debugging. In order for users to easily switch between both backends, we have built a common front end for them in the wrapper module. This module provides a unified set of APIs to create optimizable or constant variables (arrays in Autograd, or tensors in PyTorch), call functions, and compute gradients.

Optimizers define how gradients should be used to update the object function or other optimizable quantities. Adorym currently provides 4 built-in optimizers: gradient descent (GD), momentum gradient descent [53], adaptive momentum
estimation (Adam) [54], and conjugate gradient (CG) [55]. Moreover, Adorym also has a ScipyOptimizert class that wraps the optimize.minimize module of the SciPy library [50], so that users may access more optimization algorithms coming with SciPy when using the Autograd backend on CPU. More details about these optimizers can be found in the supplementary materials.

2.5 Parallelization modes

Adorym supports parallelized processing based on the message passing interface (MPI) [27], which allows the software to spawn multiple processes using different GPUs, or many nodes on an HPC. Parallel processing based on MPI can be implemented in several different ways, each of which differs from others in terms of computational overhead and memory consumption. On the most basic level, Adorym allows users to run in its data parallelism (DP) mode, where each MPI rank saves a full copy of the object function and all other parameters [28]. Before updating the parameters, the gradients are averaged over all ranks. While the DP mode is low in overhead, it has high memory consumption. This in turn limits the ability to reconstruct objects when one has limited memory resources. Thus, Adorym also provides another two modes of parallelization, namely the distributed object (DO) mode, and the HDF5-file-mediated low-memory (H5) mode.

Figure 4: Workflow diagram of Adorym in DP mode, DO mode, and H5 mode.
2.5.1 Distributed object (DO) mode

Figure 5: Illustration of the distributed object (DO) scheme. With multiple MPI ranks, the object is divided into a vertical stack of slabs, which are kept separately by all ranks. When a rank processes a diffraction image, it gets data from ranks that possess the parts of the object function that it needs, after which it assembles these partial slabs into the object chunk corresponding to the beam path of the diffraction image that it is processing. After gradient of the chunk is calculated, it is scattered back into the same positions of the gradient slabs kept by relevant ranks. Object update is done by each rank individually using the gathered gradient array.

In distributed object (DO) mode, only one object function is jointly kept by all ranks. This is done by separating the object along the vertical axis into several slabs, and letting each rank store one of them in its available RAM as 32-bit floating point numbers. In this way, standard tomographic rotation can be done independently by all ranks in parallel. The stored object slab does not enter the device memory as a whole when GPU acceleration is enabled; instead, only partial chunks of the object that are relevant to the tiles being processed (i.e., on the beam paths of these tiles) are extracted from the object slabs in the CPU, and only these partial chunks are sent to GPU memory for gradient computation. Since the shape of a slab is usually different from an object chunk (whose $x$-$y$ cross sections should match the size of a tile), we use MPI's AlltoAll communication [27] for a rank to gather the voxels it needs to assemble an object chunk from other ranks. This is illustrated in Fig. 5, where we assume the MPI command spawns 8 ranks, and the object function is evenly distributed among these ranks. For simplicity, we assume a batch size of 1, meaning a rank processes only 1 tile at a time. Before entering the differentiation loop, the object slab kept by each rank is duplicated as a new array, which is then rotated to the currently processed viewing angle. In our demonstrative scenario, rank 0 processes the top left tile in the first iteration, and the vertical size of the tile spans four object slabs. As ranks 0–3 have knowledge about rank 0’s job assignment, they extract the part needed by rank 0 from their own slabs, and send them to rank 0. Rank 0 then assembles the object chunk from the partial slabs by concatenating them along $y$ in order. Since rank 0 itself contains the object slab needed by other ranks, it also needs to send information to them. The collective send/receive can be done using MPI's AlltoAll communication in a single step. The ranks then send the assembled object chunks to their assigned GPUs (if available) for gradient computation, yielding the gradient chunks. These gradient chunks are scattered back to the “storage spaces” of relevant ranks on RAM – but this time to “gradient slab” arrays that are one-to-one related to the object slabs. After all tiles on this certain viewing angle are processed, the gradient slabs kept by all ranks are reverted back to 0\(^\circ\). Following that, the object slab is updated by the optimizer independently in each rank. When reconstruction finishes, the object slabs stored by all ranks are dumped to a RAM-buffered hard drive, so that they can be stacked to form the full object. The optimization workflow of the DO mode is shown in Fig. 4(b).

While the DO mode has the advantage of requiring less memory per rank, a limitation is that tilt refinement about the $x$- and $z$-axis is hard to implement. That is because tilting about these axes requires a rank to get voxel values from other slabs, which not only induces excessive MPI communication, but also requires AD to differentiate through MPI operations. The latter is not impossible, but existing AD packages may need to be modified in order to add that feature. Another possible approach among the slabs kept by different MPI ranks is to introduce overlapping regions along $y$; in
this case, tilting about $x$ and $z$ can be done individually by each rank, though the degree of tilt is limited by the length of overlap. This is not yet implemented in Adorym, but could be added in the future.

2.5.2 HDF5-file-mediated low-memory mode (H5)

When running on an HPC with hundreds or thousands of computational nodes, the DO mode can significantly reduce the memory needed by each node to store the object function if one uses many nodes (and only a few ranks per node) to distribute the object. If one is instead using a single workstation or laptop, the total volume of RAM is fixed, and very large-scale problems are still difficult to solve even if one uses DO. For such cases, Adorym comes with an alternative option of storing the full object function in a parallel HDF5 file [29] on the hard drive that is accessible to all MPI ranks. This is referred to as the H5 mode of data storage. In the H5 mode, each rank reads or writes only partial chunks of the object or gradient that are relevant to the current batch of raw data it is processing, similar to the DO mode except that the MPI communications are replaced with hard drive read/write instructions. While the H5 mode allows the reconstruction of large objects on limited memory machines, I/O with a hard drive (even with a solid state drive) is slower than memory access. Additionally, writing into an HDF5 file with multiple ranks is subject to contention, which may be mitigated if a parallel file system with multiple object storage targets (OSTs) is available [56]. This is more likely to be available at an HPC facility than on a smaller, locally managed system, and precise adjustment of striping size and HDF5 chunking are needed to optimize OST performance [57]. Despite these challenges, the HDF5 mode is valuable because it enables reconstructions of large objects and/or complex forward models on limited memory machines. It also provides future-proofing because, as fourth-generation synchrotron facilities deliver higher brightness and enable one to image very thick samples [58], we may eventually encounter extra-large objects which might be difficult to reconstruct even in existing HPC machines.

A comparison of the three parallelization modes is shown in Fig. 4.
3 Results

Having described the key elements of Adorym, we now demonstrate its use for reconstructing several simulated and experimental datasets.

3.1 Computing platforms

This section involves several different computing platforms, on which Adorym or other referenced packages were run:

- The machine “Godzilla” is a HP Z8 G4 workstation with two Intel Xeon Silver 4108 CPUs (8 cores each), 768 GB DDR4 RAM, one NVIDIA P4000 GPU (8 GB), a 256 GB solid state drive for the Red Hat Enterprise Linux 7 operating system and swap files, and a 18-TB, 3-drive RAID 5 disk array.

- The machine “Blues” is an HPC system at Argonne’s Laboratory Computing Resource Center (LCRC). It includes 300 nodes equipped with 16-core Intel Xeon E5-2670 CPUs (Sandy Bridge architecture), and 64 GB of memory per node.

- The machine “Cooley” is an HPC system at the Argonne Leadership Computing Facility (ALCF). It has 126 compute nodes with Intel Haswell architecture. Each node has two 6-core, 2.4-GHz Intel E5–2620 CPUs, and NVIDIA Tesla K80 dual GPUs.

- The machine “Theta” is a HPC system at the Argonne Leadership Computing Facility (ALCF). This Cray XC40 system uses the Aries Dragonfly interconnect for inter-node communication [59]. Each node of Theta possesses a 64-core Intel Xeon Phi processor (Intel KNL 7230) and 192 GB DDR4 RAM. An additional 16 GB multi-channel dynamic RAM (MCDRAM) is also available with each node; this is used as the last-level cache between L2 and DDR4 memory in our case. Up to 4392 nodes are available, though we used no more than 256 in the work reported here. The storage system of Theta uses the Lustre parallel file system, which allows data to be striped among 56 of its object storage targets (OSTs). This system was used to analyze the charcoal dataset shown in Fig. 13.

We indicate the platform used for each demonstration of Adorym below, and show compute time metrics in Table 1.
3.2 Multi-distance holography for heterogeneous samples: a simulation case study

![Ground truth images](image_url)

Figure 6: Ground truth images used in the simulation. Images (a) and (b) show the magnitude and phase of the simulated object, which are uncorrelated. In (c) we show the artificial affine errors added to the holograms. Transformation matrices used for all 4 holograms at different defocusing distances (where the one for the first hologram is an identity transformation matrix) are applied to the vertices of $4 \times 1$ squares, and the distorted squares are shown in the figure. In (d) we show a high-pass filtered version of (b), which is used for calculating the SSIM of reconstructed phase maps. The first (40 cm distance) and last (100 cm) of four recorded holograms are shown in (e) with $\bar{n} = 4000$ photons per pixel incident, and in (f) with $\bar{n} = 400$ photons per pixel incident.

Multi-distance holography (MDH) [7, 60] is an in-line coherent imaging technique, where holograms are collected at multiple distances to provide diversity for robust phase retrieval. These distances should be chosen to minimize the overlap of spatial frequencies for which the contrast transfer function (CTF) from Fresnel propagation crosses zero [61]. The recorded data are non-linearly related to both the magnitude and phase of the object, but a linear approximation can be taken if one assumes that the object is pure-phase [7] or weak in absorption, and has uniform composition so that $\delta(r) = (1/\kappa)\beta(r)$ [62]. In this case the linearized CTF can be easily inverted, and the phase of the object can be found directly from a combination of the back-propagated holograms [7]. Even when these conditions are not fully satisfied, the multiple hologram distances provide phase diversity, allowing object reconstruction using an iteratively regularized Gauss–Newton (IRGN) method with the addition of either a finite-support constraint [63] or the pure-phase object approximation [60].

In order to test the ability of Adorym to reconstruct multi-distance holography data, we created a $512 \times 512$ 2D simulated object shown in Fig. 6. The well-known “cameraman” image was used as the magnitude of the object modulation function, in which the magnitude ranges from 0.6 to 1.0. The “mandrill” image was used for the phase, with a range of $-0.5$ to $+0.5$ radians. Because an optimization approach allows one to use an accurate forward model, there is also no need to require compositional uniformity or weak object conditions. By using separate images for magnitude and phase, we effectively gave individual pixels wildly differing ratios of $\delta/\beta$ in the x-ray refractive index of $n = 1 - \delta - i\beta$. Thus the simulated object satisfied neither the weak absorption nor the uniform composition approximations. As a simplification, we assumed that the object and detector had the same 1 $\mu$m pixel size (a simplification from the common practice of using geometric magnification from a smaller source), which means a hologram recorded using 17.5 keV X rays would have a depth of focus of about 7.3 cm. We then simulated the recording of holograms at $z = 40, 60, 80,$ and $100$ cm distance from the object, so these holograms are noticeably different from each other as shown in Fig. 6.

The intensity of an in-line hologram is unable to record the zero-spatial-frequency phase of an object; in fact, phase contrast is only transferred at spatial frequencies that appear outside the first Fresnel zone of radius $r_1 = \sqrt{\lambda z}$ in the hologram. Therefore we show in Fig. 6(d) a version of the “mandrill” phase object which has been highpass filtered to include only those spatial frequencies above $1/4\sqrt{\lambda z}$, with $\bar{z} = 70$ cm representing the mean hologram

---

13
Figure 7: Multi-distance holography test using the “cameraman” image for magnitude and the “mandrill” image for phase. Images (a-d) show Adorym reconstructions from noise-free holograms, either with both affine transformation and distance refinement enabled, or with just one of them. In the former case, both LSQ (Eq. 4) and Poisson (Eq. 5) loss function results are shown. We then show magnitude and phase reconstructions that include both distance and transformation refinement with limited per-pixel photons of $\bar{n} = 4000$ using LSQ (e) and Poisson (g) noise models, and for $\bar{n} = 400$ using LSQ (f) and Poisson (h) noise models – in both cases, use of the Poisson noise model reduces crosstalk between the magnitude “cameraman” and phase “mandrill” images. If we add a total variation (TV) regularizer to the reconstruction, the image quality is degraded (with significant crosstalk between magnitude and phase images) because both the “cameraman” and “mandrill” images contain high spatial frequency detail. This is shown in (i) for $\bar{n} = 4000$ and in (j) for $\bar{n} = 400$ with the LSQ noise model.
recording distance (and with the filter cutoff smoothed using a Gaussian with $\sigma = 2.5$ pixels). Combined with the “cameraman” magnitude image, this highpass-filtered phase image serves as a modified ground-truth object when evaluating multi-distance hologram reconstructions. We then incorporated several types of measurement error into our simulated hologram recordings:

1. When recording holograms at multiple distances, it is possible for the translation stage of the detector system (typically a scintillator screen followed by a microscope objective and a visible light camera) to introduce slight translation and orientation errors between the recordings, and a scaling error can arise from imperfect knowledge of the source-to-object and object-to-detector distances used to provide geometric magnification. These misalignment factors can be collectively described and refined by Adorym as an affine transformation matrix. We therefore applied random affine transformations to the second, third, and fourth holograms, resulting in misalignment in translation, tilt, and non-uniform scaling. Fig. 6(c) shows the distortion that would result if the same affine transformations were applied to full $512 \times 512 \mu m$ hologram recordings in Cartesian coordinates. To measure the error in the recovered inverse affine transformation matrix $A_r$ versus the actual affine matrix $A_0$, we used a vector $r_0 = (1, 1)$ in a Euclidian distance metric $d_{\text{affine}}$ of

$$d_{\text{affine}} = \frac{|A_r A_0 r_0 - r_0|}{|r_0|}$$

which has a value of zero if the recovered affine matrix matches the actual matrix.

2. In order to test refinement of propagation distances, we gave Adorym deliberately erroneous starting values of $z = 38, 58, 78$ and $98$ cm for the hologram recording distances, rather than the actual distances of $z = 40, 60, 80$, and $100$ cm.

3. When indicated, we also added Poisson-distributed noise corresponding to $\tilde{n} = 4000$ or $\tilde{n} = 400$ incident photons per pixel, so that each of the four holograms had an average of either 1000 or 100 photons per pixel before accounting for absorption in the object.

These errors were incorporated into the set of simulated holograms, with two of the four holograms shown in Figs. 6(e) and (f). We then set the object size to $512 \times 512 \times 1$, and ran 1000 epochs of reconstruction using PyTorch as the GPU-enabled backend on our workstation “Godzilla.” This led to the results shown in Fig. 7. With both projection affine transformation refinement and propagation distance refinement turned on with the LSQ loss function (Eq. 4), a clear and sharp magnitude image was obtained as shown in Fig. 7(a). The propagation distances were refined to $z = 39.7, 59.7, 79.9$, and $100.1$ cm, which are close to the true values of $z = 40, 60, 80$, and $100$ cm, especially considering the $7.3$ cm depth of focus. When we instead used the Poisson loss function (Eq. 5), we obtained the reconstructed image of Fig. 7(b), which is as good as the LSQ result; in addition, the refined hologram distances of $z = 39.9, 59.9, 80.0$, and $100.0$ cm were also very accurate. When we turned off affine transformation refinement while using LSQ, the reconstruction was significantly degraded, showing both significant magnitude/phase crosstalk and also fringe artifacts as shown in Fig. 7(c). When we turned off distance refinement but kept transformation refinement, the reconstructed images showed higher fidelity than in the distance-refinement-only case, as shown in Fig. 7(d). This indicates that affine transformation refinement plays a crucial role in this example.

In order to quantitatively compare these outcomes, we calculated the structural similarity indices (SSIMs) of the various reconstructed magnitude and phase images in comparison with the modified ground truth object as described above. Readers could consult the cited paper, or the supplementary material, for the detailed definition. We used the magnitude image of Fig. 6(a) and the highpass filtered phase image of Fig. 6(d) as ground truth images, with the phase image normalized using its mean $\bar{\varphi}$ and standard deviation $\sigma_{\varphi}$ as $\varphi' = (\varphi - \bar{\varphi})/\sigma_{\varphi}$ so as to eliminate phase offsets and scalings from the SSIM calculation. The results of SSIM comparisons of these ground truth images with various reconstructions are presented in Fig. 8(a), showing significant improvement with affine transformation refinement turned on. The influence of distance error, on the other hand, is relatively small. We now consider a more realistic situation where the measured images are subject to photon noise. For this, the holograms were created with Poisson noise assuming two incident photon fluence levels: $\tilde{n} = 4000$ photons per pixel total over the 4 holograms, and $\tilde{n} = 400$; examples of 2 of the 4 holograms at each fluence are shown in Figs. 6(e) and (f). For each noise level, we repeated the reconstruction using both LSQ and Poisson loss functions, with both transformation and distance refinement turned on. In addition to that, we also include in our test scenarios the use of LSQ along with a total variation (TV) regularization described in Table S1 of the supplementary material (TV regularization is often used for noise suppression by guiding the reconstruction algorithm towards a spatially smoother solution [46, 64]). The TV regularizer weighting hyperparameter was set to $\gamma = 0.01$, since higher weightings resulted in “blocky” looking reconstructions with significant loss of high-frequency information. From the results shown in Fig. 7, we can see that the Poisson loss function leads to the best visual appearance for both fluence levels. The
addition of the TV term reduces the contrast of crosstalk artifacts between phase and magnitude, but it also affects high-spatial-frequency features.

For distance refinement under noisy imaging conditions, LSQ+TV yielded the worst performance: the reconstruction from dataset with $\bar{n} = 4000$ total photons/pixel ended up with refined distances of $z = 37.8$, 45.2, 107.1, and 116.1 cm. The average distance error of LSQ+TV at $\bar{n} = 400$ is about 20% lower than that with $\bar{n} = 4000$, which is counterintuitive. Because distance refinement is highly dependent on the gradient yielded from the mismatch of Fresnel diffraction fringes, it may be incompatible with the preference for smoothing provided by TV. Use of LSQ and Poisson error functions without TV regularization work well: for $\bar{n} = 400$ photons/pixel total, LSQ yielded $z = 38.7$, 56.1, 79.0, and 101.8 cm, while Poisson gave $z = 39.2$, 59.2, 79.1, and 99.1 cm. With $\bar{n} = 4000$ photons/pixel, distance refinement using Poisson is almost as accurate as the noise free case.

Now we compare the results of affine transformation refinement for both noise-free and noisy cases in Fig. 8(b). For noise-free data, the transformation refinement results are almost the exact inverse of the original distorting matrix, giving a normalized Euclidean error (Eq. 6) of $d_{\text{affine}} \approx 10^{-3}$ which, for an image less than 512 pixels across, corresponds to a residual error of less than one pixel. When noise is present, using affine refinement together with Poisson loss function leads to significant improvements.

### 3.3 Experimental multidistance holography with material homogeneity constraint

The numerical experiment shown in Sec. 3.2 assumed an extreme case where the magnitude and phase of the object modulation function are completely uncorrelated. In reality, it is more often the case that these two parts show significant spatial correlation, and this can be exploited as an additional constraint. As noted above, if one can make the heterogeneous material assumption of $\delta(r) = (1/\kappa) \beta(r)$, then both the contrast transfer function (CTF) approach as well as a transport of intensity equation (TIE) based approach can be used in a linear approximation to relax the requirement on the diversity of Fresnel recording distances [62]. This assumption of fixed $\kappa$ can also be incorporated
into the Fresnel diffraction model of Adorym, so it is our forward model of choice for multi-distance holography (MDH).

We used Adorym to reconstruct a MDH dataset of a battery electrode that contained porous lithium peroxide (Li$_2$O$_2$) formed as the product of a cathodic reaction. The sample was prepared following the procedure used for a transmission x-ray microscope study of the same type of materials [65]. The MDH data were collected at the ID16B beamline of the European Synchrotron Radiation Facility (ESRF) using a beam energy of 29.6 keV and a point-projection microscope setup. The source-to-detector distance was fixed at about 75 cm, and holograms were collected at four sample-to-detector distances so as to minimize zero-crossings in the CTF phase retrieval equation [61]. We used only three of the four holograms for our Adorym reconstruction in order to challenge it with reduced information redundancy. The selected sample-to-detector distances are $z_{sd} = 69.61$, 69.51, and 69.11 cm, which convert to effective distances of $z_{\text{eff}} = 5.366$, 5.450, and 5.785 cm if a plane-wave illumination were to have been used based on the Fresnel scaling theorem [66]. The holograms were rescaled so that they have the same pixel size of 50 nm. Before reconstruction, the holograms were coarsely aligned using phase correlation. Reconstruction of the phase image was performed first on the workstation “Godzilla” which was run for 200 epochs with $\kappa$ initialized to be 0.01. After this, refinement was enabled for $\kappa$, propagation distance, and hologram affine transformation. The resulting phase contrast image is shown in Fig. 9(a), and performance metrics are shown in Table 1. For comparison purposes, we also obtained a phase contrast image using the CTF algorithm in the weak phase and weak absorption assumption, and where the pre-reconstruction alignment was done separately for both translation and tilt; this image is shown in Fig. 9(b). In comparing these two images, the Adorym reconstruction of Fig. 9(a) allows one to distinguish many individual particles even at the center of the deposition cluster where the particles are most densely stacked. In addition, because the raw holograms are slightly misaligned in tilt angle while the simple phase correlation method we used only fixes translational misalignment, our input images to Adorym were well aligned at the center but not near the edges. The affine transformation refinement feature of Adorym was able to effectively fix the misalignment issue: in the final result of Fig. 9(a), we do not see any duplicated “ghost features” that would typically come from the misalignment of multiple transmission images taken from the same viewing angle. Rather, the reconstructed phase contrast image shows good
contrast, and standalone particles at the boundary of the deposited Li$_2$O$_2$ cluster appear to be well defined. Minor fringe artifacts remain visible in the empty region, which can be attributed to the slight deviation of the sample from the homogeneous object assumption. By comparing the intermediate phase map at different stages of the reconstruction process, we do observe the effect of misalignment far away from the image center. Fig. 9(b-f) tracks the evolution of a local region near the lower right corner of the phase map from epoch 40 to 200; the location of the region in the whole image is indicated by the green dashed box in Fig. 9(a). At epoch 40, this part of the phase map is severely impacted by feature duplication resulting from hologram misalignment. As the reconstruction continues, the correcting transformation matrices of the second and third hologram are refined further, and feature duplication keeps getting reduced (the first hologram was used as the reference upon which the other two were aligned). The refinement process also adjusted the phase-absorption correlation coefficient $\kappa$ from 0.01 to 0.1, with convergence achieved before epoch 40; the supplied propagation distances on the other hand were already sufficiently accurate and the refinement did not significantly alter their values.

### 3.4 2D fly-scan ptychography with probe position refinement

While multidistance holography does not require any beam scanning, ptychography has emerged as a powerful imaging technique for extended objects with no optics-imposed limits on spatial resolution and no approximations required on specimen material homogeneity [67, 68]. However, practical experiments often encounter two complications. The first is that the probe positions (the scanned positions of the spatially-limited coherent illumination spot) might be imperfectly controlled or known; this error can be corrected for using either correlative alignment-based [17, 18, 19] or optimization-based [11, 69, 70] approaches. The second is that the probe is often in motion during the recording of a diffraction pattern in a so-called “fly scan” or continuous motion scanning approach; one can use mixed-state ptychographic reconstruction methods [36] to compensate for probe motion in ptychography [71, 37, 38, 39]. One can also correct for both complications together in one optimization-based approach [69]. We show here that Adorym can handle both issues without explicitly implementing the closed-form gradient.

A Siemens star test pattern of 500 nm thick gold was imaged using a scanning x-ray microscope at the 2-ID-D beamline of the Advanced Photon Source (APS). A double-crystal monochromator was used to deliver a 8.8 keV x-ray beam with a bandwidth of $\Delta E/E \approx 1.4 \times 10^{-4}$ and an estimated flux in the focus of $1 \times 10^{9}$ photons/s. The beam was focused on the sample using a gold zone plate with 160 $\mu$m diameter, 70 nm outermost zone width, and 700–750 nm thickness; a 30 $\mu$m diameter pinhole combined with a 60 $\mu$m beam stop is placed downstream serving as an order-selecting aperture to isolate the first diffraction order focus. This produces a modified Airy pattern at the focus, and a ring-shaped illumination pattern at far upstream and downstream planes. The detector was placed 1.75 m downstream the sample, which resulted in a sample-plane pixel size of 13.2 nm. A 70 $\times$ 70 scan grid with a step size about 48 nm was used to collect 4900 diffraction patterns in fly-scan mode, each with an exposure time of 50 ms. A Dectris Eiger 500K detector was used to collect the diffraction patterns, and all images were cropped to 256 $\times$ 256 pixels before reconstruction. This dataset included deliberate errors in illumination probe positions for a demonstration of position refinement using an established approach [72].

We used Adorym on the workstation “Godzilla” (Sec. 3.1) to reconstruct this dataset to yield an object of 618 $\times$ 606 $\times$ 1 pixels, adding 50 pixels on each side to accommodate specimen regions that were illuminated by the tails of the probe. The probe was initialized using an aperture-defocusing approach: a 256 $\times$ 256 annular wavefront with an outer radius of 10 pixels and an inner radius of 5 pixels was first created to mimic the ring-shaped aperture used in experiment. It was then defocused by 70 $\mu$m using Fresnel propagation, which constituted the initial guess for the first probe mode; the other modes were seeded with duplicates of the first mode with Gaussian noise added to create perturbations. To accommodate the fly-scan scheme, we used 5 probe modes, and we used the Fourier shift method to optimize each probe position as described in Sec. 2.2. To prevent drifting of the entire image, we subtracted the mean value of all probe positions from the set after they were updated at the end of each iteration. With both multi-mode reconstruction and probe position refinement turned on, we obtained the reconstructed phase map shown in Fig. 10(a), which has had the surrounding empty regions cropped out. The reconstruction appears sharp, and the spokes of the Siemens star stay straight as expected for this sample fabricated using a precision electron beam lithography system. The image quality remains high even beyond the rectangular region of the main scan (indicated by the green dashed box) due to the tails of the beam, with decreasing quality only seen at the outer edges due to reduced fluence. To illustrate probe position correction, we show in Fig. 10(b) the initial guesses of the probe positions (which were known to be in disagreement with the actual positions [72]) as hollow black circles, with lines connecting to solid blue circles representing the refined positions. If instead we turn off probe position refinement but still use 5 probe modes, the spokes of the Siemens star in the reconstructed image appear distorted, as shown in Fig. 10(c). For the whole image, the mean distance by which the refined probe positions are moved is 6.24 pixels or about 80 nm, which can be seen by the shift of the yellow-boxed region between Fig. 10(a) and (c). Alternatively, if we keep probe position refinement but use only 1 probe mode, we end up with the result of Fig. 10(d) yielding straight spokes as in Fig. 10(c), but with lower image resolution due to the
Figure 10: Ptychography reconstruction results of the Siemens star sample with deliberately-included errors in actual probe position. (a) Reconstruction with 5 probe modes, and probe position refinement. The area covered by the scan grid is shown in the green dashed boxes; the larger reconstructed image area arises due to the large finite size of the illumination probe. In (b), we show the probe position refinement results within the region bounded by the smaller yellow box of (a); here the assumed positions are represented by open dots on a square grid, with the refined positions shown by blue dots. Also shown is the reconstruction with probe modes included but no position refinement (c), or with position refinement included but no probe modes (d). All reconstructed images are shown over the same dynamic range. Comparing the yellow boxes in (a) and (c), one can see that the bounded segment of the Siemens star spoke in (c) is shifted slightly to the left. Thus, the refined probe positions are mostly to the right of the original positions within that window, which agrees with (b).

probe motion being incorporated into the image. In addition, the central part of the test pattern exhibits lower contrast, indicating an increased reconstruction error at high spatial frequencies.

3.5 2D multislice ptychography

Adorym can also handle a mixture of near-field and far-field propagation in the forward model. While we have shown that automatic differentiation can be used for multislice ptychotomography [14], we show here the simpler case of multislice ptychography of reconstructing several planes at different distances from the probe focus using data collected from a single viewing angle [8, 35]. We term it “sparse multislice ptychography” to distinguish it from the multislice ptychotomography in [14] which reconstructs a dense and continuous object. For validation of our approach, we used a dataset that has already been analyzed using SMP [73]. The specimen is of Au and Ni nanoflakes on two sides of a 10 μm thick silicon window (the silicon window was largely transparent at the 12 keV photon energy used). The ptychography dataset consisted of 1414 128 × 128 diffraction patterns acquired using a 12 nm FWHM beam focus from a multilayer Laue lens (MLL), with the specimen located 20 μm downstream of the focus (the depth of focus for this optic of 3.9 μm). The sample plane pixel size is 7.3 nm. The object shape in Adorym was 501 × 500 × 2, where the last dimension represents the number of slices. In previous work, the probe function reconstructed from a
Figure 11: Reconstruction results of a multislice ptychography dataset [73] consisting of gold (upstream sample surface; left panels) and nickel (downstream sample surface; right panels) nanoflakes on either side of a 10 µm thick silicon window. The initial retrieved phase images shown in (a) and (b) are from slice 1 and 2, respectively, where features appear to be sharp and clearly defined, yet with crosstalk at low spatial frequencies due to separation by only a small multiple of the 3.9 µm depth of focus of the illuminating optic. To improve the reconstruction, simultaneously-obtained x-ray fluorescence data was used to provide an initial estimate at lower resolution of the magnitude (whose minus-logarithm is coded by brightness) and phase (coded by hue) of each slice, as shown in (c) and (d). With this improved starting guess, as well as a finite support constraint derived from the x-ray fluorescence maps, we obtained improved reconstructions as shown in (e) and (f) with the finite support constraint boundaries shown as dashed lines (yellow for Au, and white for Ni). An alternative approach without finite support is to impose sparsity by incorporating a reweighted $l_1$-norm regularizer leading to images (g) and (h); in these images, crosstalk is suppressed at the cost of degrading the contrast and sharpness of the reconstructed images.
ptychographic dataset with only a gold particle in the field of view was used as the initial probe function [73]; with Adorym, we used the inverse Fourier transform of the average magnitude from all diffraction patterns to initialize the probe function. While slice spacing refinement was enabled in this reconstruction, the spacing was known sufficiently well from both the previous SMP reconstruction, and from electron microscopy, that no significant adjustment was made from the 10 μm separation specified at reconstruction initiation. The Adorym reconstruction was run for 50 epochs with the probe function fixed, after which it was run for an additional 1950 epochs with probe optimization, all using the Adam optimizer. This led to a reconstructed phase of both slices shown in Fig. 11(a) and (b), which closely match the SMP results reported previously [73].

Both this reconstruction and the previous reconstruction [73] show low-spatial-frequency crosstalk between the two slices, which is a well-known issue [35] in the case where the separation between slices is not much larger than the depth-of-focus. For this particular sample with known differences in material between the two planes, one can use x-ray fluorescence maps acquired simultaneously with the ptychography data to greatly reduce this crosstalk [74]. We employed an approach in Adorym of creating finite support constraints based on the x-ray fluorescence images. We first convolved the x-ray fluorescence images (Au $L_α$ for slice 1, and Ni $K_α$ for slice 2) with a Gaussian with $σ = 5$ pixels or about 36.5 nm, and then creating a binary mask by thresholding the XRF maps using a value determined through k-means clustering [75] implemented in the SciPy package [50]. We also used the XRF maps to generate the initial guess for the object function. For this, the XRF images were normalized to their maxima, and multiplied with an approximate phase shifting value estimated from the refractive indices of Au and Ni. The magnitude and phase guesses for both slices are shown in Fig. 11(c) and (d). These guessed slices roughly match the shape of the reconstructed nanoflakes in Fig. 11(a) and (b), and do not contain any crosstalk from the other slice, but they also do not show detail beyond that enabled by the focusing optic, unlike the case of a ptychographic reconstruction. Therefore, a subsequent ptychographic reconstruction of 2000 epochs was performed using Adorym with the addition of finite support constraint masks at each epoch, yielding the crosstalk-free images of Fig. 11(e) and (f) with the boundaries of the respective finite support constraint masks indicated by dashed lines. Additionally, the “gap” region of the finite support in Fig. 11(e), indicated by the green arrow, is uniform and clean. This is not achievable if one simply multiplies the support mask with (a). This reconstruction also reveals a small Au flake on the upstream plane which was previously obscured by larger, higher contrast Ni flake on the downstream plane. Using the XRF-derived initial image guesses alone did not lead to much improvement over the images (a) and (b); it was mainly the finite support constraint that led to the improved results of images (e) and (f).

The loss-function based approach of Adorym allows one to test other reconstruction approaches with ease. We therefore tested out the use of a reweighted $l_1$-norm regularizer [45] as a Tikhonov regularizer [43] in the reconstruction, without using the finite support constraint. The reweighted $l_1$-norm seeks to suppress weak pixel values, and can therefore take advantage of the initial guess of the object. The reconstruction results using $α_1 = α_2 = 0.01$ as regularizer weights for planes 1 and 2 respectively are shown in Fig. 11(g) and (h). For slice 1, the regularizer is indeed effective in suppressing the crosstalk coming from the large Ni flake on slice 2. However, there are disadvantages: the small Au flake pointed to with a the blue arrow in Fig. 11(e) becomes hardly visible in (g) because its values were overly penalized. On slice 2, the Ni flake was correctly reconstructed in terms of its overall shape, but at lower contrast and a loss of internal detail so that it had a “hollow” appearance. The $l_1$-norm reconstruction reduces the presence of ghost images when comparing Figs. 11(b) and (h), and the images show increased high-spatial-frequency “salt and pepper” noise. This type of noise comes from the XRF-derived initial guess, which contains a slight scattering-based signal even in empty regions, and the noise level of these pixels are slightly magnified by the reweighted $l_1$-norm during reconstruction since low-voxel pixels were subject to heavier suppression while high-value pixels could grow in value.

The ability of Adorym to explore a wide range of constraints in an automatic-differentiation-based image reconstruction approach is illustrated by the above examples. One can try other regularizers beyond what is demonstrated here, change the forward models, and alter the workflow in a flexible manner.

### 3.6 Joint ptychotomography

Ptychotomography was originally done in a two-step fashion, where ptychography was done to obtain high-resolution 2D projection images at each viewing angle, and those projections were then used in a conventional tomographic reconstruction algorithm to obtain a 3D volume [9]. More recently, a joint ptychotomography approach has been developed where the 3D object is directly reconstructed from the set of diffraction patterns acquired over scanned positions and rotations [12]. This approach can relax the probe position overlap requirements in 2D ptychography at one rotation angle, since there is sufficient information overlap in position and angle to obtain a 3D reconstruction as demonstrated in simulations [12] and in experiments [77].

We show here a joint ptychotomography reconstruction obtained using Adorym to analyze previously-published data [76] from the frozen-hydrated single-cell algae *Chlamydomonas reinhardtii*. This data was acquired using the
Figure 12: Adorym reconstruction of a tomographic x-ray fluorescence and ptychography dataset of a frozen hydrated alga cell *Chlamydomonas reinhardtii* acquired using 5.5 keV X rays [76]. The phosphorus K fluorescence projection (a) at 0° through the 3D volume highlights polyphosphate bodies, which are also seen at somewhat lower resolution in the 90° projection through the reconstruction due to the limited tomographic tilt range of -68° to +56°. As in a previously-reported reconstruction of this dataset [76], this phosphorus reconstruction used refinement of the tomographic tilt angles, leading to angular corrections about all three axes as shown in (c). These refined angles were then employed in a subsequent ptychotomography reconstruction, yielding a 3D volume rendered in (d). Sub-images in (e) show optical sections from the reconstructed volume cut at indicated z-positions after it is rotated about the y-axis by 30°. In (f), the power spectra of the reconstructions in the x-, y-, and z-direction are shown. For each case, two lines with the same color are fitted respectively using datapoints with spatial frequency in the range of 0.008–0.31 f_{Ny} and 0.47–1.0 f_{Ny}. As the latter fits the noise plateau, the intersection between both lines (marked by dotted vertical lines) provides a measure of spatial resolution.
Bionanoprobe at the Advanced Photon Source at Argonne [78] at 5.5 keV photon energy and a Fresnel zone plate with an approximate Rayleigh resolution of 90 nm. 2D scans were acquired using 50 nm spacing in continuous scan mode, with typically 38,000 diffraction patterns acquired to give a field of view of nearly (10 μm)$^2$. An Hitachi Vortex ME-4 detector mounted at 90° was used to record the x-ray fluorescence signal from intrinsic elements, and a Dectris Pilatus 100K hybrid pixel array detector recorded the ptychographic diffraction data with the center 256$^2$ pixels used in the subsequent reconstruction with voxel size of 10.2 nm. 2D images were recorded at a total of 63 angles of a tilt range of -68° to +56°. The original reconstruction in [76] was done following the two-step method, using PtychoLib [79] for 2D ptychographic reconstruction, and GENFIRE [80], a Fourier iterative reconstruction algorithm, for tomographic reconstruction. The projection images used by GENFIRE were twice downsampled so that the pixel size was about 21 nm, and the 3D reconstruction was done using projections in a range of 124°.

Since x-ray fluorescence (XRF) data are available along with the ptychographic diffraction patterns, we can use them to do a preliminary cross-angle alignment before conducting reconstruction. Similar to [76], we estimated the positional offsets at different viewing angles using the P-channel XRF maps which have the best signal-to-noise ratio. Before alignment, we performed a series of quick (3 epochs) 2D ptychography reconstructions for all viewing angles using downsampled ptychographic data, and selected 43 viewing angles from -68° to 56° whose 2D reconstructions exhibited acceptable quality; the data quality for the rest is worse due to beam profile fluctuation. Correspondingly, P maps from these 43 angles were used in our own processing. The pre-alignment was performed using the iterative reprojection method [81] implemented in TomoPy [82]. After acquiring the alignment data, we first did a tomography reconstruction on the aligned P-channel XRF maps using Adorym in order to examine the consistency with the images shown in the original report [76]. The reconstruction was run for 50 epochs using the CG optimizer. The reconstructed P map projected through the volume is shown at 0° (a) and 90° (b) in Fig. 12(a) (the corresponding images obtained previously are Figs. 2A and 4G in [76]). During reconstruction, we allowed Adorym to refine both the cross-angle positional offsets, and the tilt angles of the object along all 3 axes at each nominal specimen tilt about y. As the pre-alignment provided by iterative reprojection was already highly accurate, the alignment refinement returned only marginal corrections. On the other hand, the tilt refinement yielded interesting results: as shown in Fig. 12(c), the change of x- and z-axis tilt corrections are relatively continuous with the nominal viewing angle, instead of showing random fluctuations around 0°. This is the expected outcome when the actual rotation axis is not strictly vertical, or when it precesses continuously during data acquisition.

We then applied the results of tilt refinement and the reprojection-based pre-alignment to the joint ptychotomography reconstruction. Since joint ptychotomography reconstruction is more computationally intensive than tomography, we downsampled the size of diffraction patterns and the object function by 4 times, where all diffraction patterns were cropped to 64 × 64 (while the original 2D ptychography reconstruction reported in [76] cropped the diffraction patterns to 256 × 256 but tomography reconstruction in that work downsampled the phase maps by twice), and the object size was set to 256 × 256 × 256 with a voxel size of 42 nm. We used 5 probe modes to account for fly-scan data acquisition; this probe function is commonly used and jointly updated by all specimen tilt angles. Although this may not properly account for beam fluctuation during acquisition, holding onto the same probe further improves the utilization of information coupling among different angles, which is favorable under the condition of angular undersampling [77]. The reconstruction was run for 3 epochs using the Adam optimizer on the “Godzilla” workstation, using the PyTorch backend with GPU acceleration. Using the Adam optimizer, the learning rate was set to 1 × 10$^{-6}$. The probe function was initialized to be the one retrieved from an individual 2D ptychographic reconstruction, but was constantly optimized during reconstruction to account for the fluctuation of beam profile throughout acquisition. The probe and all refined parameters were held fixed for the first 100 minibatches, and then optimized until the reconstruction finished.

The ptychotomography reconstruction results are shown in Fig. 12(d) and (e). To generate (d), the reconstructed object array was thresholded with voxels below the threshold assigned with zero opacity, so that the rendered 3D volume reveals a sharp spherical outline of the cell, with the internal organelles clearly visible. Next, we rotated the 3D array about the y-axis by 30° (so that its orientation matches what is written as a 60° orientation in Fig. 2D of [76]). We then show 6 x–y plane optical slices at indicated z positions in this new orientation in Fig. 12(e). In order to estimate the reconstructed spatial resolution, we also plot its power spectra along all the 3 spatial axes in Fig. 12(f). Each power spectrum is expected to be composed of 2 segments: a power-law decline in from low to middle spatial frequencies of 0.008 fNy, to 0.31 fNy, and a more level section at higher frequencies of 0.47 fNy to 1 fNy, corresponding to noise uncorrelated from one pixel to the next (where fNy is spatial frequency corresponding to the Nyquist sampling limit). The intersection between the two fitting lines represents the point where high-frequency noise starts to dominate, and can be considered as an approximate measure of the resolution. With this, we found the average x-y-resolution is approximately 70 nm, and the z-resolution is approximately 100 nm. The previous reconstruction [76] reports the resolutions to be 45 and 55 nm, respectively; however, Given that we downsampled the data twice more in our case, the joint ptychotomography capability of Adorym is able to provide reasonably good reconstruction quality compared to
the more computationally intensive iterative method of image reconstruction steps followed by reprojection alignment steps.

3.7 Conventional tomography on HPC

Adorym’s optimization framework can also work with conventional tomography. When using the LSQ loss function and GD optimizer, Adorym’s tomography reconstruction is equivalent to the basic algebraic reconstruction technique (ART) [1], but more advanced optimizers like Adam can be used to accelerate the reconstruction.

The tomographic data to be reconstructed was an activated charcoal dataset [83]. The original data were collected at the APS 32-ID beamline using a beam energy of 25 keV, filtered using a crystal monochromator, and the images were recorded by a CMOS camera (1920 × 1200 GS3-U3-2356M-C) after the x-ray beam was converted into visible light by a LuAG:Ce scintillator. This resulted in a sample-plane pixel size of 600 nm. Since the size of the pellet (about 4 mm in diameter) was larger than the detector’s field of view, full rotation sets were taken with the beam located at different offsets from the center of rotation in a Tomosoaic approach [83]. Each assembled projection image was 4204 × 6612 pixels in size. For this demonstration, we used 900 projections evenly distributed between 0 and 180°, downsampled the projections by 4 times in both x and y, and then selected the first 800 lines after downsampling for each projection angle, so that the size of each projection image is 800 × 1653 pixels with an angular sampling that is coarser than required by the Crowther criterion [84]. Before reconstruction, all projection images were divided into tiles that are 25 × 52 in size, so each viewing angle contained a tile grid of 32 × 32, or 1024 tiles in total.

Tomographic reconstruction was performed on the supercomputer “Theta” (Sec. 3.1). We used 256 nodes with 4 MPI ranks per node, so that the total number of ranks exactly matched the number of tiles per angle. We used Adorym’s distributed object (DO) scheme to parallelized the reconstruction; in this case, each of first 800 MPI ranks saved one slice of the object, and the corresponding gradient, with a horizontal size 1653 × 1653. The remaining 224 ranks did not serve as containers for object or gradient slabs, but were still responsible for calculating the gradients of their assigned tiles. Since each tile contained 25 pixels in the y direction, assembling an object chunk on each rank required the incoming transfer of 25 ranks (including itself); this rank, at the same time, also sent parts of its own object slab to 32 ranks, which is the number of tiles horizontally across the object. Therefore the array size that a rank sent to another rank is 1 × 52 × 1653 × 2, where the last dimension is for both δ(r) and β(r) (although only β(r) is reconstructed in conventional absorption tomography). With this configuration, the AlltoAll MPI communication for object chunk assembly took 0.7 s on average. The gradient synchronization, which is essentially the reverse process and requires each rank to send a 25 × 52 × 1653 × 2 gradient array to 25 ranks, took an average of 0.5 s. Using a LSQ loss function and the Adam optimizer, gradient calculation and object update took about 0.7 s and 0.3 s on average. Along with rotation (1 s for both object rotation and gradient rotation) and other overheads, each batch (which involved 1024 tiles or exactly one viewing angle) took roughly 5.8 s to process, excluding the time spent for occasionally saving checkpoints for the object and other parameters.

After 3 epochs of reconstruction, we obtained the 3D volume whose orthogonal slices are shown in Fig. 13, where sub-image (a) displays the xz-cross section cut from the vertical center of the volume (slice 400 out of the 800 slices). Figures 13(b) and (c) respectively show the xy- and yz-cross sections cut at the positions indicated by the dashed lines in (a). Since Crowther criterion [84] requires 1653πr = 5193 projection angles for complete coverage in reciprocal space, while we used only 900 angles for this reconstruction, it is to be expected that our ART-like approach would outperform filtered backprojection methods such as Gridrec [85, 86, 87], with a Gridrec reconstructed middle slice shown in Fig. 13(d). Comparing Fig. 13(a) and (d), we observed that the result of Adorym shows a much better contrast than Gridrec. The difference is made clearer when we compare the histograms of the reconstructed slice. The histogram of optical densities in the Adorym’s reconstruction shown in Fig. 13(e) exhibits 2 distinct peaks, which correspond to the vacuum background surrounding the charcoal pellet and the pellet itself. The background peak on the left is much sharper than the charcoal peak, indicating that the background is uniformly reconstructed and numerically well separated from the non-vacuum features. The histogram of the Gridrec result shown in Fig. 13(f), on the other hand, exhibits only one broad Gaussian peak, meaning that the background and the sample features are somewhat intermingled.

We utilized the Intel VTune™ profiler available on “Theta” to obtain the memory profile of Adorym during runtime. Fig. 13(g) shows the memory consumption of rank 0 through a 66-second window of the reconstruction process, where 10 minibatches were computed sequentially (the average per-batch walltime was slightly longer than 5.8 s due to the added overhead of VTune itself). The profile shows obvious periodicity, with each period corresponding to a minibatch. The two highest peaks of around 650 MB in each minibatch are caused by rotating the object slice and the gradient slice, respectively, as both rotation operations involve considerable intermediate memory usage (contributed by loading the transformation coordinates, performing bilinear interpolation, and so on). The other peaks result from gradient calculations and the update step of Adam, which involves several intermediate variables that have the same size as the
Figure 13: Reconstruction of conventional projection tomography data from an activated charcoal pellet [83]. In (a-c), we show slices from the 3D volume reconstructed by Adorym: (a) shows the horizontal cross section cut at slice 400, and (b, c) show the cross sections cut from locations indicated by the green dashed lines. In (d), we show the same slice as in (a) but reconstructed using conventional filtered backprojection (FBP), exhibiting much lower contrast. The histogram of the Adorym reconstruction slice (a), and the filtered backprojection slice (d), are shown in (e) and (f) respectively; they indicate that Adorym better represents the density differences between different features in the sample. In (g), we show the memory profile during 10 minibatches of Adorym reconstruction.

object array. Beyond that, the baseline memory is jointly comprised of the stored object array, gradient array, Adam parameter arrays, and auxiliary data including the tile allocation over all ranks. The overall memory usage is steady, and no memory leakage is found. If data parallelism was used, each rank would then require at least 70 GB of memory to store the whole object function and the associated gradient and optimizer parameters, not to mention the additional usage caused by intermediate and auxiliary variables. The reconstruction times are included in Table 1.
Table 1: Performance data of all test cases shown in Sec. 3, using the compute platforms described in Sec. 3.1. Walltimes shown in seconds do not include the time spent for saving intermediate results, or for providing diagnostic checkpoint results after each epoch.
4 Discussion

We have shown that Adorym provides a reconstruction framework for several imaging methods, including multi-distance near-field holography (MDH), sparse multislice ptychography (SMP) and 2D ptychography, and projection as well as ptychographic tomography. This framework allows for the refinement of imperfectly-known experimental parameters, resulting in substantial improvements in reconstruction quality. The forward model class ForwardModel allows for the treatment of ptychotomography with multiple viewing angles and multiple images per angle; a simpler variant allows for simple projection tomography with a per-angle tile number of 1 and a single illumination mode.

This flexibility is made possible through the use of automatic differentiation (AD) for gradient derivation. While AD drastically reduces the development cost, does it mean that the runtime speed has to be sacrificed as a trade-off? There are several reasons to think this might be the case:

• Some AD libraries (like PyTorch and Autograd) create dedicated data types for node variables, so that each of them knows the operations that connect it with other nodes, as well as the list of nodes that it is connected to. This genre of AD is known as “operator overloading” [24], and is favorable for its flexibility and ease of implementation, but logging these interconnections at runtime means that each operation causes a slight additional overhead [88].

• In manual differentiation, the expression of the gradient can be often simplified to reduced the number of numerical evaluations needed. In contrast, it is difficult for AD to fully take this advantage because each step in backpropagation is local to a primitive function. An illustrative example is a scalar that contains \( x \log(x) \): the derivative with regards to \( x \) is \( x(1/x) + \log(x) \), so that in a manual differentiation one would simplify the first term to 1 while AD would mindlessly follow the backpropagation procedure and evaluate both \( x \) and \( 1/x \). Nevertheless, the influence of this kind of situation is usually minor, and one can define custom functions in many AD libraries to explicitly inform AD of the derivatives of these special composite functions.

However, the runtime penalties are not necessarily unacceptably high. In the case of multislice x-ray ptychotomography of a 256\(^3\) voxel simulated object that extends beyond the depth-of-focus limit, a C code with manually derived gradients took 6.48 core hours per illumination angle to arrive at a solution [13] using the HPC system “Blues” (Sec. 3.1), while a Python code using TensorFlow for the AD implementation [14] took 8.25 core hours for a similar reconstruction step using the CPUs only on the HPC system “Cooley” (Sec. 3.1). This may be in part due to AD’s “cheap derivative principle” [21], where the cost of evaluating the gradient with reverse-mode AD is generally bound to small multiple of the cost needed to evaluate the forward model. Moreover, well-developed AD libraries can incorporate low-level optimizations, which can help them relative to basic manual differentiation implementations. For example, when working with GPUs, PyTorch uses the CUDA stream mechanism to queue on-device instructions to the GPU’s command buffer, so that tensor operations on GPU can be concurrent with Python interpretation on CPU [48]. The most effective way to accelerate image reconstruction computations is to increase the degree of parallelization and improve interprocess communication – a principle that applies to both AD and manually coded implementations. Finally, it is known that interpreted languages like Python and MATLAB might have inferior execution speeds compared to compiled languages, but the advent of just-in-time (JIT) compilers [89] is likely to change the situation. We are aware of a few AD libraries which are already using JIT, such as JAX [90]; meanwhile, efforts on incorporating JIT support into PyTorch are also ongoing [88], which Adorym can gain from when it becomes available.

The memory consumption of AD is another concern, though this can be offset in part by the use of well-developed AD libraries. In some cases, one might have similar storage requirements for a manual differentiation implementation. For example, in multislice imaging where the wavefield at the \( j \)-th slice, \( \psi_j(\mathbf{r}_{x,y}) \), is modulated by this object slice \( O_j(\mathbf{r}_{x,y}) \), the modulated wavefield is given by \( \psi_{j+1}(\mathbf{r}_{x,y}) = \psi_j(\mathbf{r}_{x,y})O_j(\mathbf{r}_{x,y}) \). The derivative of \( \psi_{j+1}(\mathbf{r}_{x,y}) \) with regards to \( O_j(\mathbf{r}_{x,y}) \) is given by \( \psi_j^*(\mathbf{r}_{x,y}) \). That is, to update the object slice \( O_j(\mathbf{r}_{x,y}) \), one needs to know \( \psi_j(\mathbf{r}_{x,y}) \) which is calculated in the forward pass. Both AD and manual differentiation may inevitably choose to store \( \psi_j(\mathbf{r}_{x,y}) \) during the forward pass and reuse it for gradient calculation, especially when recalcultating \( \psi_j(\mathbf{r}_{x,y}) \) in the differentiation stage is too costly. Most AD libraries do not blindly store all intermediate variables, but only those needed to be reused for differentiating a non-linear operation, or a linear operation with a variable operator. The advanced memory management strategies in well-developed AD libraries also help. For example, PyTorch features a reference counting scheme which deallocates the memory of variables immediately when their usage counts down to zero, preventing the extra memory consumption in the traditional garbage collection scheme [48]. Additionally, while in manual differentiation one can freely adjust the workflow of the program, it is also possible in AD to not store some intermediate variables, but recalculate them in the backward pass. This strategy, known as checkpointing [91], leads to a tradeoff between memory consumption and computation time. Manually scheduled checkpointing is available with PyTorch [92] and can be conveniently added into the forward model if desirable; on the other hand, automatic scheduling of checkpointing
has also been proposed and implemented [93], which could potentially reach a better balance between storage and recomputation.

AD has a profound value when developing new methods, as making improvements on existing forward models or devising new forward models are made much less laborious without needing to hand-derive gradients. Beyond the parameter refinement capabilities demonstrated in Section 3, one could also consider adding the following example capabilities:

- Optimizing structured illumination function for ptychographic or holographic imaging. Structured illumination is often used as a way to improve the resolution and reconstruction robustness of these techniques by enhancing the contrast transfer function of the imaging system, and choosing the optimal illumination function for a certain imaging technique or sample condition is usually of interest [6, 94, 95]. With AD, one possible way to get an optimal illumination function would be to add the structured modulator into the forward model as an optimizable variable, and set the loss function to measure the disparity between the predicted intensity and the desired far-field intensity distribution.

- Speckle tracking. For imaging techniques like point-projection microscopy, where x-ray beams are focused using optics such as multi-layer Laue lenses, it is often important to accurately retrieve the illuminating wavefield in order to reconstruct the phase images with good quality. When the reconstruction algorithm is based on the generalized Fresnel-scaling theorem [96], the forward model involves resampling of the measured intensity following a function without a closed-form expression. While an optimization-based speckle tracking algorithm applicable in this case has been proposed [96], AD can potentially address the problem using a similar strategy, but without the need of hand-deriving and implementing the differentiation through the resampling operation. One could instead use the grid_sample function in PyTorch for a well-optimized implementation.

- In-situ 3D imaging. In many cases, it is of interest to track the structural evolution over time inside a 3D sample. This means that conventional tomography reconstruction algorithms must be modified to account for the continuous deformation of the sample during acquisition. One way to address this issue is to represent the time-space dependence of the object function as the linear superposition of a series of spatial basis functions, where the superposition coefficients depends only on time [97]. With AD, this strategy can be conveniently implemented by adding the time-dependent coefficient as a refinable variable. Alternatively, AD may also solve the time-dependency by refining a vector field deformor that dictates the distortion of the object function [98]. This approach involves grid-based resampling, but as mentioned above, AD libraries like PyTorch provide easy-to-use interfaces for this operation. This application is very closely related to the optical flow problem in computer vision, where AD has been demonstrated to provide good performance [99].

In Adorym, these additional capabilities can be achieved by modifying or creating new forward models.

In addition to extending towards more forward models, another field of future improvement for Adorym or any optimization-based reconstruction methods is the underlying optimization algorithm. First-order methods like Adam and CG are fast and robust in many cases, but they are not advantageous compared to second-order methods when the loss is a well structured convex function. Second order algorithms based on Gauss-Newton approximation provide a relatively easy and low-cost way to utilize the curvature of the loss function, with the Curveball algorithm [100] being a particularly light-weight variant. As Gauss-Newton methods approximate the Hessian matrix using the “internal” Jacobian of the forward model (i.e., the derivatives of the prediction function), the power of AD can be again exploited in this case to calculate the desired vector-Jacobian products and Jacobian-vector products without manual derivation. Finally, since the capability of AD is often part of common machine learning tools like PyTorch, it is also easy to seamlessly combine a physical model and a neural network into one pipeline and optimize the parameters in both parts. This has already been demonstrated in full-field coherent diffraction imaging [101].

AD toolkits are often built and optimized by operators of supercomputer systems, allowing an Adorym user to piggyback on those efforts. Thus the DO parallelization scheme described in Sec. 2.5.1 can provide a well-supported approach to reconstructing gigavoxel datasets on HPCs.

5 Conclusion

We have developed Adorym as a generic image reconstruction framework that utilizes the power of automatic differentiation. It works with a variety of imaging techniques, ranging from near-field 2D holography to far-field 3D ptychographic tomography. It is able to refine a series of experimental parameters along reconstructing the object. It has a modular architecture so that it can be extended to cover new forward models or refinable parameters without lengthy manual derivations of gradients. It can be operated on platforms ranging from workstations to HPCs, and comes with
several parallelization schemes that provide different balances between computational overhead and memory usage. Future efforts will be aimed at improving speed and memory consumption. Adding JIT support, and incorporating “smarter” checkpointing strategies, are both potential approaches towards this objective.
Acknowledgement

The authors would like to thank Taylor Childers and Corey J. Adams for their support in the scaling and benchmarking of Adorym on ALCF Theta. The authors would also like to thank Sajid Ali for helpful discussions on parallel array operations on Theta and on the distribution of the software package.

Funding

This research used resources of the Advanced Photon Source (APS) and the Argonne Leadership Computing Facility (ALCF), which are U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. It also used 3ID of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. We also thank the Laboratory Computing Resource Center (LCRC) at Argonne for additional computational access. We thank the Argonne Laboratory Directed Research and Development for support under grant 2019-0441. We also thank the National Institute of Mental Health, National Institutes of Health, for support under grant R01 MH115265.

Disclosure

The authors declare no conflicts of interest.

References

[1] A.C. Kak and M. Slaney. Principles of Computerized Tomographic Imaging. IEEE Press, New York, 1988.
[2] Pierre Godard, Marc Allain, Virginie Chamard, and John Marius Rodenburg. Noise models for low counting rate coherent diffraction imaging. Optics Express, 20(23):25914–25934, November 2012.
[3] John C Zingarelli and Stephen C Cain. Phase retrieval and Zernike decomposition using measured intensity data and the estimated electric field. Applied Optics, 52(31):7435, 2013.
[4] Walter Hoppe. Beugung im Inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung. Acta Crystallographica A, 25:495–501, 1969.
[5] John M Rodenburg and Helen ML Faulkner. A phase retrieval algorithm for shifting illumination. Applied Physics Letters, 85(20):4795–4797, 2004.
[6] Marco Stockmar, Peter Cloetens, Irene Zanette, Bjorn Enders, Martin Dierolf, Franz Pfeiffer, and Pierre Thibault. Near-field ptychography: phase retrieval for inline holography using a structured illumination. Scientific Reports, 3:1927, 2013.
[7] Peter Cloetens, W Ludwig, J Baruchel, José Baruchel, D Van Dyck, J Van Landuyt, J P Guigay, and M Schlenker. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays. Applied Physics Letters, 75(19):2912–2914, 1999.
[8] A M Maiden, M J Humphry, and J M Rodenburg. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. Journal of the Optical Society of America A, 29(8):1606–1614, August 2012.
[9] Martin Dierolf, Andreas Menzel, Pierre Thibault, Philipp Schneider, Cameron M Kewish, Roger Wepf, Oliver Bunk, and Franz Pfeiffer. Ptychographic x-ray computed tomography at the nanoscale. Nature, 467(7314):436–439, September 2010.
[10] Peng Li and Andrew Maiden. Multi-slice ptychographic tomography. Scientific Reports, 8:2049, January 2018.
[11] Manuel Guizar-Sicairos and James R Fienup. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Optics Express, 16(10):7264–7278, 2008.
[12] Dogă Gürsoy. Direct coupling of tomography and ptychography. Optics Letters, 42(16):3169–3172, 2017.
[13] M A Gilles, Y S G Nashed, M Du, C Jacobsen, and S M Wild. 3D x-ray imaging of continuous objects beyond the depth of focus limit. Optica, 5:1078–1085, 2018.
[14] Ming Du, Youssef S G Nashed, Saugat Kandel, Dogă Gürsoy, and Chris Jacobsen. Three dimensions, two microscopes, one code: automatic differentiation for x-ray nanotomography beyond the depth of focus limit. Science Advances, 6:eaay3700, March 2020.
[15] Arnold Neumaier. Solving ill-conditioned and singular linear systems: A tutorial on regularization. *SIAM Review*, 40(3):636–666, January 1998.

[16] Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B*, 59(1):267–288, 1996.

[17] A M Maiden, M J Humphry, M C Sarahan, B Kraus, and J M Rodenburg. An annealing algorithm to correct positioning errors in ptychography. *Ultramicroscopy*, 120:64–72, September 2012.

[18] Fucai Zhang, Isaac Peterson, Joan Vila-Comamala, Ana Diaz, Felisa Berenguer, Richard Bean, Bo Chen, Andreas Menzel, Ian K Robinson, and John Marius Rodenburg. Translation position determination in ptychographic coherent diffraction imaging. *Optics Express*, 21(11):13592, 2013.

[19] Ashish Tripathi, Ian McNulty, and Oleg G Shpyrko. Ptychographic overlap constraint errors and the limits of their numerical recovery using conjugate gradient descent methods. *Optics Express*, 22(2):1452–1466, 2014.

[20] Jae S. Lim. *Two-Dimensional Signal and Image Processing*. Prentice-Hall, Inc., USA, 1990.

[21] A Griewank and A Walther. *Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation*. Society for Industrial and Applied Mathematics, second edition, 2008.

[22] Alden S Jurling and James R Fienup. Applications of algorithmic differentiation to phase retrieval algorithms. *Journal of the Optical Society of America A*, 31(7):1348–12, 2014.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2017.

[24] Youssef S G Nashed, Tom Peterka, Junjing Deng, and Chris Jacobsen. Distributed automatic differentiation for ptychography. *Procedia Computer Science*, 108:404–414, 2017.

[25] Saugat Kandel, S Maddali, Marc Allain, Stephan O Hruszkewycz, Chris Jacobsen, and Youssef S G Nashed. Using automatic differentiation as a general framework for ptychographic reconstruction. *Optics Express*, 27(13):18653–18672, 2019.

[26] Ming Du, Doğan Gürsoy, and Chris Jacobsen. Near, far, wherever you are: simulations on the dose efficiency of holographic and ptychographic coherent imaging. *Journal of Applied Crystallography*, 53(3):748–759, May 2020.

[27] Message Passing Interface Forum. A message-passing interface standard, version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[28] Eric P. Xing, Qirong Ho, Pengtao Xie, and Dai Wei. Strategies and principles of distributed machine learning on big data. *Engineering*, 2(2):179–195, 2016.

[29] The HDF Group. Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/.

[30] David Blinder and Tomoyoshi Shimobaba. Efficient algorithms for the accurate propagation of extreme-resolution holograms. *Optics Express*, 27(21):29905–29915, October 2019.

[31] Sajid Ali, Ming Du, Mark Adams, Barry Smith, and Chris Jacobsen. A comparison of distributed memory algorithms for x-ray wave propagation in inhomogeneous media. *Optics Express*, 28:29590, 2020.

[32] J M Cowley and A F Moodie. The scattering of electrons by atoms and crystals. I. a new theoretical approach. *Acta Crystallographica A*, 33(5):740–749, September 1977.

[33] Kazuo Ishizuka and Natsu Uyeda. A new theoretical and practical approach to the multislice method. *Acta Crystallographica A*, 33(5):740–749, September 1977.

[34] Akihiro Suzuki, Shin Furutaku, Kei Shimomura, Kazuto Yamauchi, Yoshiki Kohmura, Tetsuya Ishikawa, and Yukio Takahashi. High-resolution multislice x-ray ptychography of extended thick objects. *Physical Review Letters*, 112(5):053903, February 2014.

[35] Esther H R Tsai, Ivan Usov, Ana Diaz, Andreas Menzel, and Manuel Guizar-Sicairos. X-ray ptychography with extended depth of field. *Optics Express*, 24(25):29089–29108, 2016.

[36] Pierre Thibault and Andreas Menzel. Reconstructing state mixtures from diffraction measurements. *Nature*, 494(7435):609–619, October 2013.

[37] Philipp M Pelz, Manuel Guizar-Sicairos, Pierre Thibault, Ian Johnson, Mirko Holler, and Andreas Menzel. On-the-fly scans for x-ray ptychography. *Applied Physics Letters*, 105:251101, December 2014.

[38] Junjing Deng, Youssef S G Nashed, Si Chen, Nicholas W Phillips, Tom Peterka, Rob Ross, Stefan Vogt, Chris Jacobsen, and David J Vine. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging. *Optics Express*, 23(5):5438–5451, February 2015.
[39] Xiaojing Huang, Kenneth Lauer, Jesse N Clark, Weihe Xu, Evgeny Nazaretski, Ross Harder, Ian K Robinson, and Yong S Chu. Fly-scan ptychography. *Scientific Reports*, 5:9074, March 2015.

[40] J. R. Fienup. Reconstruction of an object from the modulus of its Fourier transform. *Optics Letters*, 3(1):27–29, 1978.

[41] J. Miao, P. Charalambous, J. Kirz, and D. Sayre. An extension of the methods of x-ray crystallography to allow imaging of micron-size non-crystalline specimens. *Nature*, 400:342–344, 1999.

[42] S. Marchesini, H. He, H.N. Chapman, S.P. Hau-Riege, A. Noy, M.R. Howells, U. Weierstall, and J.C.H. Spence. X-ray image reconstruction from a diffraction pattern alone. *Physical Review B*, 68(14):140101, 2003.

[43] A N Tikhonov. On the solution of ill-posed problems and the method of regularization. *Doklady Akademii Nauk SSSR*, 151(3):501–504, 1963.

[44] Michael T. McCann and Michael Unser. Biomedical image reconstruction: From the foundations to deep neural networks, 2019.

[45] Emmanuel J Candès, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted $\ell_1$ minimization. *Journal of Fourier Analysis and Applications*, 14(5-6):877–905, October 2008.

[46] Grasmair, Markus and Lenzen, Frank. Anisotropic total variation filtering. *Applied Mathematics & Optimization*, 62(3):323–339, May 2010.

[47] Autograd tutorial, 2020. https://github.com/HIPS/autograd/blob/master/docs/tutorial.md.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 8024–8035. Curran Associates, Inc., 2019.

[49] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy array: A structure for efficient numerical computation. *Computing in Science & Engineering*, 13(2):22, 2011.

[50] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing. *Nature Methods*, 17:261–272, 2020.

[51] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel Math Kernel Library, pages 167–188. Springer International Publishing, Cham, 2014.

[52] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep learning with dynamic computation graphs, 2017.

[53] Ning Qian. On the momentum term in gradient descent learning algorithms. *Neural Networks*, 12(1):145–151, 1999.

[54] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv*, 2014.

[55] B.T. Polyak. The conjugate gradient method in extremal problems. *USSR Computational Mathematics and Mathematical Physics*, 9(4):94–112, 1969.

[56] Babak Behzad, Joseph Huchette, Hoang Vu Thanh Luu, Ruth Aydt, Surendra Byna, Yushu Yao, Quincey Koziol, and Prabhat. A framework for auto-tuning hdf5 applications. In *Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing*, HPDC ’13, page 127–128, New York, NY, USA, 2013. Association for Computing Machinery.

[57] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, and John Shalf. Tuning HDF5 for Lustre file systems.

[58] Mikael Eriksson, J Friso van der Veen, and Christoph Quittmann. Diffraction-limited storage rings – a window to the science of tomorrow. *Journal of Synchrotron Radiation*, 21(5):837–842, September 2014.

[59] Scott Parker, Vitali Morozov, Sudheer Chunduri, Kevin Harms, Chris Knight, and Kalyan Kumaran. Early evaluation of the Cray XC40 Xeon Phi system ‘theta’ at Argonne. In *2017 Cray Users Group meeting*, Redmond, WA, USA, 2017. Cray.
[60] M. Krenkel, M. Toepperwien, F. Alves, and T. Salditt. Three-dimensional single-cell imaging with x-ray waveguides in the holographic regime. *Acta Crystallographica A*, 73(4):282–292, 2017.

[61] S Zabler, P Cloetens, J P Guigay, J Baruchel, and M Schlenker. Optimization of phase contrast imaging using hard x rays. *Review of Scientific Instruments*, 76(7):073705 – 8, 2005.

[62] L D Turner, B B Dhal, J P Hayes, A P Mancuso, K A Nugent, D Paterson, R E Scholten, C Q Tran, and A G Peele. X-ray phase imaging: Demonstration of extended conditions with homogeneous objects. *Optics Express*, 12(13):2960, 2004.

[63] Simon Maretske, Matthias Bartels, Martin Krenkel, Tim Salditt, and Thorsten Hohage. Regularized Newton methods for x-ray phase contrast and general imaging problems. *Optics Express*, 24(6):6490–17, 2016.

[64] Ulugbek S Kamilov, Ioannis N Papadopoulos, Morteza H Shoreh, Alexandre Goy, Cedric Vonesch, Michael Unser, and Demetri Psaltis. Optical tomographic image reconstruction based on beam propagation and sparse regularization. *IEEE Transactions on Computational Imaging*, 2(1):39–70, February 2016.

[65] Zeliang Su, Vincent De Andrade, Sorina Cretu, Yinghui Yin, Michael J Wojcik, Alejandro A Franco, and Arnaud Demortière. X-ray nanocomputed tomography in Zernike phase contrast for studying 3D morphology of Li–O₂ battery electrode. *ACS Applied Energy Materials*, 3(5):4093–4102, 2020.

[66] D. Paganin. *Coherent X-ray Optics*. Oxford University Press, Oxford, 2006.

[67] H M L Faulkner and J Rodenburg. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm. *Physical Review Letters*, 93(2):023903, July 2004.

[68] J Rodenburg, A Hurst, A Cullis, B Dobson, P Ffieffer, O Bunk, C David, K Jefimovs, and I Johnson. Hard-x-ray lensless imaging of extended objects. *Physical Review Letters*, 98(3):034801, 2007.

[69] Michal Odstrčil, Andreas Menzel, and Manuel Guizar-Sicairos. Iterative least-squares solver for generalized maximum-likelihood ptychography. *Optics Express*, 26(3):3108–3123, 2018.

[70] Priya Dwivedi, Sander Konijnenberg, Silvania Pereira, and Paul Urbach. Lateral position correction in ptychography using the gradient of intensity patterns. *Ultramicroscopy*, 192(Phys. Rev. Lett. 92 2 2004):29–36, 2018.

[71] Jesse N Clark, Xiaojing Huang, Ross J Harder, and Ian K Robinson. A continuous scanning mode for ptychography. *Optics Letters*, 39(20):6066–6069, October 2014.

[72] Junjing Deng, Yudong Yao, Yi Jiang, Si Chen, Jeffrey A. Klug, Michael Wojcik, Fabricio S. Marin, Curt Preissner, Christian Roehrig, Zhonghou Cai, Stefan Vogt, and Barry Lai. Instrumentation and method developments of x-ray ptychography at the Advanced Photon Source. *Proceedings SPIE*, 11112:111120E, 2019.

[73] Hande Öztürk, Hanfei Yan, Yan He, Mingyuan Ge, Zhihua Dong, Meifeng Lin, Evgeny Nazaretski, Ian K Robinson, Yong S Chu, and Xiaojing Huang. Multi-slice ptychography with large numerical aperture multilayer Laue lenses. *Optica*, 5(5):601–607, May 2018.

[74] Xiaojing Huang, Hanfei Yan, Yan He, Mingyuan Ge, Hande Öztürk, Yao-Lung L. Fang, Sungsoo Ha, Meifeng Lin, Ming Lu, Evgeny Nazaretski, Ian K. Robinson, and Yong S. Chu. Resolving 500 nm axial separation by multi-slice x-ray ptychography. *Acta Crystallographica Section A*, 75(2):336–341, 2019.

[75] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina Chau. Image segmentation using k-means clustering algorithm and subtractive clustering algorithm. *Procedia Computer Science*, 54:764–771, 2015.

[76] Junjing Deng, Yuan Hung Lo, Marcus Gallagher-Jones, Si Chen, Alan Pryor, Qiaoling Jin, Young Pyo Hong, Youssef S. G. Nashed, Stefan Vogt, Jianwei Miao, and Chris Jacobsen. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. *Science Advances*, 4(11):eaau4548, 2018.

[77] Maik Kahnt, Johannes Becher, Dennis Brückner, Yakub Fam, Thomas Sheppard, Tobias Weissenberger, Felix Wittwer, Jan-Dierk Grunwaldt, Wilhelm Schwieger, and Christian G Schroer. Coupled ptychography and tomography algorithm improves reconstruction of experimental data. *Optica*, 6(10):1282, 9 2019.

[78] S Chen, J Deng, Y Yuan, C Flachenecker, R Mak, B Hornberger, Q Jin, D Shu, B Lai, J Maser, C Roehrig, T Paunesku, S-C Gleber, D J Vine, L Finney, J Von Osinski, M Bolbat, I Spink, Z Chen, J Steele, D Trapp, J Irwin, Michael Feser, E Snyder, K Brister, Chris Jacobsen, G Woloschak, and S Vogt. The Bionanoprobe: hard x-ray fluorescence nanoprobe with cryogenic capabilities. *Journal of Synchrotron Radiation*, 21(1):66–75, January 2014.

[79] Youssef S.G. Nashed, David J. Vine, Tom Peterka, Junjing Deng, Rob Ross, and Chris Jacobsen. Parallel ptychographic reconstruction. *Optics Express*, 22(26):223015, 2014.
[80] Alan Pryor, Yongsoo Yang, Arjun Rana, Marcus Gallagher-Jones, Jihan Zhou, Yuan Hung Lo, Georgian Melinte, Wah Chiu, Jose A Rodríguez, and Jianwei Miao. GENFIRE: A generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. *Scientific Reports*, 7(1):1–12, August 2017.

[81] Dog˘a Gürsoy, Young Pyo Hong, Kuan He, Karl Hujsak, Seunghwan Yoo, Si Chen, Yue Li, Mingyuan Ge, Lisa M Miller, Yong S Chu, Vincent De Andrade, Kai He, Olivier Cossairt, Akgelos K Katsaggelos, and Chris Jacobsen. Rapid alignment of nanotomography data using joint iterative reconstruction and reprojection. *Scientific Reports*, 7(1):11818, 2017.

[82] Dog˘a Gürsoy, Francesco De Carlo, Xiangwei Xiao, and Chris Jacobsen. TomoPy: a framework for the analysis of synchrotron tomographic data. *Journal of Synchrotron Radiation*, 21(5):1188–1193, August 2014.

[83] Rafael Vescovi, Ming Du, Vincent De Andrade, William Scullin, Dog˘a Gürsoy, and Chris Jacobsen. Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using limited-size synchrotron x-ray beams. *Journal of Synchrotron Radiation*, 25(5), September 2018.

[84] R A Crowther, D J DeRosier, and A Klug. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. *Proceedings of the Royal Society of London A*, 317(1530):319–340, June 1970.

[85] J D O’Sullivan. A fast sinc function gridding algorithm for Fourier inversion in computer tomography. *IEEE Transactions on Medical Imaging*, 4(4):200–207, December 1985.

[86] Betsy A. Dowd, Graham H. Campbell, Robert B. Marr, Vivek Nagarkar, Sameer Tipnis, Lisa Axe, and D Peter Siddons. Developments is synchrotron x-ray computed microtomography at the National Synchrotron Light Source. *Proceedings SPIE*, 3772:224–236, 1999.

[87] Federica Marone and M Stampanoni. Regridding reconstruction algorithm for real-time tomographic imaging. *Journal of Synchrotron Radiation*, 19(6):1029–1037, November 2012.

[88] Bart van Merriënboer, Olivier Breuleux, Arnaud Bergeron, and Pascal Lamblin. Automatic differentiation in ML: Where we are and where we should be going. *arXiv*, 2018.

[89] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based Python JIT compiler. In *LLVM 2015: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC*, page 7, New York, New York, USA, November 2015. ACM Press.

[90] Samuel S Schoenholz and Ekin D Cubuk. Jax, m.d.: End-to-end differentiable, hardware accelerated, molecular dynamics in pure python, 2019.

[91] Charles C Margossian. A review of automatic differentiation and its efficient implementation. *arXiv*, 2018.

[92] PyTorch documentation, 2020. https://pytorch.org/docs.

[93] Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. *ACM Transactions on Mathematical Software*, 26(1):19–45, 2000.

[94] Michal Odstrˇcil, Maxime Lebugle, Manuel Guizar-Sicairos, Christian David, and Mirko Holler. Towards optimized illumination for high-resolution ptychography. *Optics Express*, 25(10):14981, 2019.

[95] Daniel J Ching, Selin Aslan, Viktor Nikitin, Michael J Wojcik, and Dog˘a Gursoy. Evaluation of modified uniformly redundant arrays as structured illuminations for ptychography. *arXiv*, 2020.

[96] Andrew J. Morgan, Kevin T. Murray, Mauro Prasciolu, Holger Fleckenstein, Oleksandr Yefanov, Pablo Villanueva-Perez, Valerio Mariani, Martin Domaracky, Manuela Kuhn, Steve Aplin, Istvan Mohacsi, Marc Messerschmidt, Karolina Stachnik, Yang Du, Anja Burkhardt, Alke Meents, Evgeny Nazaretski, Hanfei Yan, Xiaojing Huang, Yong S. Chu, Henry N. Chapman, and Saša Bajt. Ptychographic x-ray speckle tracking with multi-layer laue lenses systems. *Journal of Applied Crystallography*, 53(Pr 4):927–936, 2020.

[97] Viktor V. Nikitin, Marcus Carlsson, Fredrik Andersson, and Rajmund Mokso. Four-dimensional tomographic reconstruction by time domain decomposition. *IEEE Transactions on Computational Imaging*, 5(3):409–419, 2018.

[98] Michal Odstrcil, Mirko Holler, Jörg Raabe, Alessandro Sepe, Xiaoyuan Sheng, Silvia Vignolini, Christian G Schroer, and Manuel Guizar-Sicairos. Ab initio nonrigid x-ray nanotomography. *Nature Communications*, 10(1):2600, 2019.

[99] Zhengyang Shen, François-Xavier Vialard, and Marc Niethammer. Region-specific diffeomorphic metric mapping. *arXiv*, 2019.

[100] Joao Henriques, Sebastien Ehrhardt, Samuel Albanie, and Andrea Vedaldi. Small steps and giant leaps: Minimal Newton solvers for deep learning. *arXiv*, 2018.
[101] Henry Chan, Youssef Nashed, Saugat Kandel, Stephan Hruszkewycz, Subramanian Sankaranarayanan, Ross Harder, and Mathew Cherukara. Real-time 3D nanoscale coherent imaging via physics-aware deep learning abstract. *arXiv*, 2020.
ABSTRACT
We describe and demonstrate an optimization-based x-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to and fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement.

Contents

1 Modules and components

1.1 Data format ................................................................. 3
1.2 Module LargeArray ...................................................... 4
1.3 Module Propagate ....................................................... 5
1.4 Module ForwardModel .................................................. 6
1.4.1 Loss function ....................................................... 8
1.4.2 Parameter refinement ............................................. 9
1.5 Module Wrapper and backends ........................................ 11
1.6 Module Optimizer ...................................................... 12
1.7 Parallelization modes .................................................. 13
1.7.1 Data parallelism (DP) mode ..................................... 13
1.7.2 Distributed object (DO) mode ................................... 14
1.7.3 HDF5-file-mediated low-memory mode (H5) .................. 15
1.7.4 User interface ..................................................... 15

2 Definition of structural similarity index (SSIM) 16

1 Modules and components

As noted in Section 2 of the main manuscript, Adorym is written in a modular and object-oriented programming style, consisting primarily of the following classes:

- The ForwardModel class discussed in Sec. 1.4, which contains the forward model corresponding to a particular imaging method.
- The Optimizer class discussed in Sec. 1.6, which provides options on what optimization method to use for minimizing the loss function $L$.
- The LargeArray class discussed in Sec. 1.2, which manages the large array of the object, or $x$.
- The propagate class discussed in Sec. 1.3, which handles wavefield propagation for those forward models that require it.
- The wrapper module that provides a common interface for functions in the two AD engines provided: Autograd, and PyTorch.

Modules like ForwardModel and Optimizer each contain several child classes, providing support for different types of imaging techniques or setups, numerical optimization algorithms, distributed computation methods, and automatic differentiation backends (and computation devices, namely CPU and GPU). We have therefore attempted to make it easy to combine varying detailed methods within the above categories. The image reconstruction task is streamlined by the ptychography module, which is named in such a way because it supports the 4D-type (rotation angle, scan position, and 2D diffraction patterns) data processing that is common in ptychography. However, this module is also
In the original image of size $L_y \times L_x$ is divided into interconnected tiles with size given by $L_{tile,y} = \lceil L_y / N_{tile,y} \rceil$. When dealing with full-field data from large detector arrays, Adorym provides a script to divide each image into several subblocks called "tiles." It follows that the divided image data can be treated in a way just like ptychography, where only a small number of these tiles are processed each time. This can be an effective way of reducing per-node memory usage.

Because of its ability to contain tagged scalar and array data, as well as its support for parallel access, Adorym uses HDF5 files [1] for input and output as noted in Sec. 2.1 of the main manuscript. Acquired images are saved as a 4D dataset under the metadata group [2], and metadata such as beam energy, probe position, and propagation distances are stored under the HDF5 files. Because of its ability to contain tagged scalar and array data, as well as its support for parallel access, Adorym uses HDF5 files for input and output as noted in Sec. 2.1 of the main manuscript. Acquired images are saved as a 4D dataset under the metadata group [2], and metadata such as beam energy, probe position, and propagation distances are stored under the HDF5 files. In the case of multi-distance holography (MDH) where in-line holograms of the object at difference sample-to-detector distances are acquired to provide additional information for phase retrieval [3], holograms collected from the same viewing angle but different defocus distances are treated as different tiles—i.e., they are contiguous along the second (num_tiles) dimension.
and \( L_{\text{tile},x} = \lceil L_x / N_{\text{tile},x} \rceil \), where \( \lceil x \rceil \) is the ceiling function that returns the smallest integer larger or equal to \( x \). If MDH data are being tiled, all the tiles of images acquired at different distances are collectively regarded as “scan spots”, and are saved contiguous in the second dimension of the dataset following a “tile-then-distance” order.

It follows from our introduction above that a “tile” is the fundamental level of data organization scheme used in Adorym for all range of imaging techniques. In far-field ptychography, a tile refers to a diffraction pattern; in full-field imaging methods, a tile may refer to the image acquired at a certain viewing angle if the raw data are undivided, or a subblock of the image if they are divided. We shall thus use the word “tile” as a general term when referring to these data elements.

1.2 Module LargeArray

The LargeArray class for large arrays is used to hold the object (when it is kept or partially kept in memory; more about this will be introduced in subsection 1.7), or arrays that are comparable in size as the object (such as the object gradient and the finite support mask). The parent class of LargeArray contains common methods such as array rotation (important for processing tomographic data), HDF5 read/write (used in HDF5-mediated distribution mode), and MPI-based data synchronization (used in distributed object mode). The latter two methods mentioned above are specifically relevant to distributed reconstruction modes where the object function is either scattered over processes or nodes, or stored in a HDF5 file on the hard drive; distribution schemes for these cases are discussed in Section 1.7. Three child classes, namely ObjectFunction, Mask, and Gradient, inherit properties from the parent class, and possesses additional methods developed for their specific roles and purposes. For example, the ObjectFunction child class contains methods to initialize the object function with Gaussian random values or a user-supplied initial guess, and the Mask class includes a update_finite_support function, which revises the mask by setting voxels associated with low object function values to zero – a technique known as shrink-wrapping in coherent diffraction imaging [4].

The unknown object to be solved is represented by an instance of the ObjectFunction class: a 4D array where the first 3 dimensions correspond to the \( y \) (vertical), \( x \) (horizontal), and \( z \) (beam axial) coordinates of the object (also see Fig. 2 for a illustration of the geometry). The last dimension depends on the mathematical representation of the object: Adorym allows the object function to be reconstructed as either a complex modulation function, where a wavefield \( \psi(r) \) is modulated by the object \( O(r) \) as

\[
M[\psi(r_{x,y})] = \psi(r_{x,y}) \cdot (\Re[O(r_{x,y})] + i\Im[O(r_{x,y})]),
\]

where \( \Re(\cdot) \) and \( \Im(\cdot) \) respectively take the real and imaginary part of the argument, or a distribution of refractive indices \( n(r) = 1 - \delta(r) - i\beta(r) \) [5], where the modulation to a input x-ray wavefield is given as

\[
M[\psi(r_{x,y})] = \psi(r_{x,y}) \exp[-k\beta(r_{x,y})\Delta z] \exp[ik\delta(r_{x,y})\Delta z]
\]

where \( k = 2\pi/\lambda \) is the wavenumber, and \( \Delta z \) is the thickness of the modulating object. Since the object is assumed to be a 3D function while the wavefield is 2D, we use \( r_{x,y} \) to represent the lateral coordinates of a plane in the object. In the case of \( \Re[O(r_{x,y})] + i\Im[O(r_{x,y})] \), the last dimension of the object array stores the real and imaginary part of the complex modulation function \( O(r) \), while in the case of \( \delta(r) + i\beta(r) \), the last dimension stores \( \delta(r) \) and \( \beta(r) \), respectively. The complex multiplicative modulation function representation used in Eq. 1 is more common in phase
retrieval techniques such as ptychography [6], and we have found it sometimes shows better numerical robustness in optimization-based reconstruction because it avoids the ill-conditioned exponential function. However, since the phase angle \( \phi(r) \) can only be recovered from the reconstructed complex object function through \( \text{Arg}[O(r)] \), phase wrapping is present in high phase contrast objects. In that case, post-processing is required to unwrap the phase [7], but this can be complicated when noise or strongly varying phases are present [8]. The situation is easier in the refractive index representation of the object (Eq. 2). When the refractive indices are solved without regularization, the phase part \( \delta(r) \) may still suffer from the \( 2\pi \) ambiguity since it is contained in the periodic function \( \exp[ik\delta(r)\Delta z] \) as in Eq. 2. However, \( \delta(r) \) can be regularized to promote spatial smoothness. That is, if the values of \( \exp[ik\delta(r)\Delta z] \) at two adjacent object pixels are \(-1 + \epsilon_1\) and \(-1 - \epsilon_2\) (where \( \epsilon_1 \) and \( \epsilon_2 \) are complex numbers conjugate about the real axis), then the corresponding value of \( \delta(r) \) for the former is given by

\[
\exp[ik\delta(r_1)\Delta z] = -1 + \epsilon_1 \\
\exp(i\pi) + i\exp(i\pi)[ik\delta(r_1)\Delta z - \pi] \approx -1 + \epsilon_1
\]

\[
k\delta(r_1)\Delta z = i\epsilon_1 + \pi + 2\pi n
\]

and similarly, \( k\delta(r_2)\Delta z = i\epsilon_2 + \pi + 2\pi n \), where \( m \) and \( n \) can be any arbitrary integers. It follows that \( |\delta(r_2) - \delta(r_1)| = \frac{\pi}{\Delta z}[2\pi(n - m) + i(\epsilon_2 - \epsilon_1)] \) is unrestricted. Yet, if one applies TV regularization on \( \delta(r) \), then a small \( |\delta(r_2) - \delta(r_1)| \) is favored. While \( i(\epsilon_2 - \epsilon_1) \) is preserved by the data fidelity term of the loss function, the TV term favors \( |m - n| = 0 \), which leads to a solution that is spatially continuous without the \( 2\pi \) jumps in phase wrapping. More importantly, since the range of \( \delta(r) \) itself is continuous and unbounded, the solved values of \( \delta(r) \) can be ones that push the phase angle \( k\delta(r)\Delta z \) out of the bound of \((-\pi, \pi]\), which would be impossible when one solves for the real and imaginary parts of \( O(r) \) instead: in the latter case, even if one regularizes \( \text{Arg}[O(r)] \), the computed phase is still bounded between \((-\pi, \pi]\), and TV only puts a \( \pi \)-ceiling or \(-\pi \)-floor for slightly out-of-bound pixels aside from smoothing the reconstructed image. By solving for \( \delta(r) \), one may directly obtain a phase-unwrapped solution without any post-processing. Furthermore, since \( \delta(r) \) of natural samples is positive except near an absorption edge, this physical property can be used to further regularize \( \delta(r) \) through a non-negativity constraint. The \( \delta(r) \)-representation is common in direct phase retrieval methods, and one example is the algorithm based on the contrast transfer function (CTF) [9, 3], which derives a linear relation between the phase and the Fourier transform of the detected intensity from Eq. 2, based on the assumption that the object is homogeneous and weak in phase. Moreover, solving the refractive indices of the object is also proven to work with iterative reconstruction algorithms in [10] and by us in [11].

### 1.3 Module Propagate

The propagate module is essentially a toolbox for simulating wave propagation, the central component in building the forward model. For a wavefield propagating in vacuum (or air, without any substantial loss of accuracy), two scenarios are considered: when the Fresnel number of propagation is small as in the case of far-field imaging techniques, Fraunhofer diffraction can be used to calculate the wavefield at the destination plane, which is simply done by Fourier transforming the source wavefield:

\[
P_{\text{fr}}[\psi(r)] = \int \psi(r) \exp[i2\pi(r \cdot \nu)] dr = F[\psi(r)]
\]

One thing to note here is that there exist two sign conventions in formulating wave propagation equations. Most equations in this paper are written assuming a “negative phase convention” – that is, the phase factor of a wavefield evolves with propagation distance as \( \exp(-ikz) \), and accordingly, the refractive index is expressed as \( n(r) = 1 - \delta(r) - i\beta(r) \) [12]. In another often-used sign convention, phase evolves as \( \exp(ikz) \) and refractive index takes the form of \( n(r) = 1 - \delta(r) + i\beta(r) \) [13]. Eq. 5 is consistent with the negative phase convention, which results in a positive argument in the exponential phase factor of the Fourier transform’s integrand. Using the positive phase convention, on the other hand, is associated with a negative sign in the Fourier phase factor’s argument. Some scientific computation packages used in Adorym including Autograd and PyTorch implement Fourier transform (i.e., the \( \text{fft} \) function) with a negative exponential argument for forward Fourier transform, and a positive exponential argument for inverse Fourier transform. Therefore, Fraunhofer diffraction in the negative phase convention should in fact be implemented using the \( \text{ifft} \) functions of these packages, and vice versa for the positive phase convention. While both conventions should lead to the same intensity prediction, it is important to stay consistent with the sign convention throughout the forward model. In Adorym, most optical propagation and modulation functions come with a sign_convention argument, so that users who attempt to create new forward models can switch the convention according to their preference.

When not satisfying the requirements of the Fraunhofer approximation (such as in holography, or cases where the multislice method needs to be applied), Fresnel propagation is used. For propagation over a short distance \( d \) where the
Fresnel number is large [14], Fresnel propagation can be expressed as
\[ P_{F_{r,d}}(\psi(r)) = F^{-1}\{F[\psi(r)]H(\nu, d)\} \] (6)
where the Fresnel propagator kernel \( H \) in Fourier space can be either from the paraxial approximation of
\[ H_1(\nu, d) = \exp(i\pi\lambda d|\nu|^2) \] (7)
or the Sommerfeld-Rayleigh formulation [13] of
\[ H_2(\nu, d) = \begin{cases} \exp \left[ -ikd\sqrt{1 - \lambda^2|\nu|^2} \right], & 1 - \lambda^2|\nu|^2 > 0 \\ 0, & 1 - \lambda^2|\nu|^2 \leq 0 \end{cases} \] (8)
where the frequency components with \( 1 - \lambda^2|\nu|^2 \leq 0 \) result in evanescent waves that die down quickly.

The process through which the sample interacts with the wavefield is modeled using the \texttt{ multislice\_propagate\_batch } function. The multislice method was first used in electron microscopy [15, 16], and is also known as the beam propagation method in optics [17]. Multislice propagation treats a 3D object as a stack of thin slices along the beam axis, assuming the refractive index at each lateral \((x,y)\) point in a slice is axially constant. At each slice, the wavefield is modulated using either Eq. 1 or 2 depending on how the object is represented, and then propagated to the next slice using Fresnel propagation (Eq. 6). The steps above are repeated until the wavefield reaches the last slice of the object. The entire process can be compactly represented in matrix form as
\[ \psi_{\text{exit}} = \prod_{j=1}^{L_z} (P_{\Delta z} M_{j,\Delta z}) \psi \] (9)
where \( M_{n,\theta,\Delta z} \) extracts the \( j \)-th slice of the object with thickness (or spacing) \( \Delta z \), and uses it to modulate wavefield \( \psi \); \( P_d \) is the linear operator that implements Fresnel propagation over slice spacing \( \Delta z \).

The implementation of multislice propagation in Adorym is again generalizable: a 2D object is interpreted to contain just 1 slice, and the wavefield is modulated by the only slice before it is propagated to the detector plane. On the other hand, when the object to be reconstructed is within the depth of focus, the \texttt{ pure\_projection } option can be turned on: in this case, the modulation of the wavefield by the entire object is computed as
\[ M_{\text{obj}}[\psi(r_{x,y})] = \psi(r_{x,y}) \prod_{j=1}^{L_z} O(r_{x,y}, j) \] (10)
if the object is represented as complex modulation function, or
\[ M_{\text{obj}}[\psi(r_{x,y})] = \psi(r_{x,y}) \exp \left[ -k \sum_{j=1}^{L_z} \beta(r_{x,y}) \Delta z \right] \exp \left[ ik \sum_{j=1}^{L_z} \delta(r_{x,y}) \Delta z \right] \] (11)
if it is represented as refractive indices.

The \texttt{ multislice\_propagate\_batch } function is intended for reconstructing a continuous 3D object with isotropic voxel size – that is, it assumes that the spacing \( \Delta z \) between slices is equal to the lateral pixel size \( \Delta x \). By binning the slices, the function can work with \( \Delta z \) being multiples of \( \Delta x \), but the slice spacings are assumed to be constant. This setting works well with common 2D ptychography (which does not need slice spacing at all) and beyond-depth-of-focus ptychotomography [11]. On the other hand, in multislice ptychography [18, 19, 20], multiple slices of the object are reconstructed using ptychography data from one or just a few tilt angles. The slices in these cases are generally much sparser, and the slice spacing can be variable. Thus, we also implemented a sparse-and-variable version of multislice propagation in Adorym, where the positions of each slice are saved as an array. The array is optimizable in the AD framework if slice positions need to be refined.

### 1.4 Module ForwardModel

The \texttt{ForwardModel} class and its child classes define the prediction models corresponding to various types of imaging techniques, which take as inputs the object function to be solved, the probe function that may be known or unknown, and a collection of experimental parameters. They predict (generally the magnitude of) the wavefields at the detector plane according to given experimental setups and optical theories. Although Adorym can be easily adapted to work with complex-valued measurements (for example, obtained using interferometry [21, 22]), intensity-only measurements...
are more common and easier to setup. If multiple probe modes are used, the intensity will be the incoherent sum of all probe modes:

$$I_{\text{pred}} = \sum_{i}^{n_{\text{mode}}} |\psi_{i,\text{detector}}|^2$$

and magnitude is calculated as the square root of the summed intensity.

**Algorithm 1:** An example predict function in the forward model of far-field ptychotomography. This is for data parallelism mode, with probe position refinement and multiple probe modes.

**Input:**
- detector size \([l_y, l_z]\), object size \([L_y, L_z, L_z]\), full object function \(O\), a list of probe modes \(\Psi\), probe positions \(\mathbf{R}\), probe position corrections \(\Delta \mathbf{R}\), wavelength \(\lambda\), pixel size \(\delta\), current rotation angle \(\theta\)

**Initialization**
- \(O' \leftarrow \text{Rotate}(O)\)
- \(\mathbf{r} \in \mathbf{R}\) do
  - \(O' \leftarrow \text{Rotate}(O)\)
  - \(\mathbf{a} \leftarrow \text{TakeObjectChunk}(O', \mathbf{r})\)
  - \(\Psi_{\text{detector}} \leftarrow \text{List of detector-plane waves}\)
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of object chunks each in shape of } [l_y, l_z]\)
- for \(\mathbf{r} \in \mathbf{R}\) do
  - \(O' \leftarrow \text{Rotate}(O)\)
  - \(\mathbf{a} \leftarrow \text{TakeObjectChunk}(O', \mathbf{r})\)
  - \(\Psi_{\text{detector}} \leftarrow \text{List of detector-plane waves}\)
- for \(\mathbf{r} \in \mathbf{R}\) do
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of object chunks each in shape of } [l_y, l_z]\)
  - \(\Psi_{\text{detector}} \leftarrow \text{List of detector-plane waves}\)

**Procedure**
- for \(\mathbf{r} \in \mathbf{R}\) do
  - \(\Psi_{\text{detector}} \leftarrow \text{List of detector-plane waves}\)
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of object chunks each in shape of } [l_y, l_z]\)
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of detector-plane waves}\)
- for \(\mathbf{r} \in \mathbf{R}\) do
  - \(\Psi_{\text{detector}} \leftarrow \text{List of detector-plane waves}\)
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of object chunks each in shape of } [l_y, l_z]\)
  - \(\Psi_{\text{shifted}} \leftarrow \text{List of detector-plane waves}\)

**Output:** \(\Psi_{\text{detector}}\)

Any experimental variables that are to be refined, such as probe positions, geometric transformation of projection images, and propagation distances, should also be incorporated as a part of the model. Collectively, these procedures, or the prediction function, are given in the predict method inside each child class. An example of the predict method used for far-field ptychotomography with probe position correction is shown in Algorithm 1. The example assumes simple data parallelism, where each rank possesses its own copy of the whole object function. In this case, the 3D object is rotated to the current tilt angle \(\theta\), and sub-chunks of the object corresponding to the beam path of each diffraction pattern are extracted. If probe position correction is enabled, the prediction function takes in an optimizable array of probe position corrections, \(\Delta \mathbf{R}\), which has a length equal to the number of probe positions. Each element in the list is a 2D vector \(\Delta \mathbf{r}\) which represents the correction that needs to be made to the user-given position \(\mathbf{r}\), so that the corrected position is \(\mathbf{r}' = \mathbf{r} + \Delta \mathbf{r}\); additionally, when scan positions are not integer pixel, the array \(\Delta \mathbf{R}\) can also be used to hold floating point residuals of probe positions that should be added to the integer pixel positions regardless whether probe position refinement is enabled or not. The correction shift \(\Delta \mathbf{r}\) is then applied to the probe function using the Fourier shift theorem:

$$\psi_{\text{shifted}}(\mathbf{r}) = \mathcal{F}^{-1} \{ \mathcal{F}[\psi(\mathbf{r})] \exp[-i2\pi(\Delta \mathbf{r} \cdot \nu)] \}.$$  \hspace{1cm} (13)

Now this is already enough for the refinement: the gradient of the loss function with regards to the position correction vector \(\Delta \mathbf{r}\) is left for the AD engine to calculate behind the scene, and no explicit derivation or implementation is needed. More information about parameter refinement will be introduced in Section 1.4.2.

When the size of the raw data is large, Adorym can be set to process only a subset, or a minibatch, of the measured data containing batch_size tiles at a time. Thus, we hereby define the terms we will use for describing the workload of reconstruction: an “iteration” is used to refer to the process of finishing a minibatch of data by all parallelized processes (the inner loop), and an “epoch” refers to the work done to cover the entire dataset (all tiles on all viewing angles; the outer loop). Propagation through the object is done using multislice propagation which is capable of simulating multiple scattering within the object volume and is useful when the object thickness is beyond the depth of focus [15, 11].
the other hand, when projection approximation is valid, the multislice simulation can be reduced to a line-integration of the object function. The prediction function is concluded by propagating the wavefield onto the detector plane, and the final complex wavefields are returned.

The above illustrated routine can be easily generalized beyond the settings of far-field ptychography. Full-field CDI data, for instance, is interpreted by Adorym as a special type of ptychography with 1 tile per angle, and with detector size equal to the \( y \)- and \( x \)-dimensions of the object array. Furthermore, propagation from the object’s exiting plane to the detector plane is modeled using far-field diffraction in the example of Algorithm 1, but when working with near-field ptychography or tiled holography data (described in Section 1.1), it can be replaced with a Fresnel propagation function. In addition, when processing tiled data with bright illumination (in contrast to far-field ptychography, where the illumination at each tile or diffraction spot is localized and has most of its energy concentrated to an area much smaller than the detector size), Fresnel propagation in object (when multislice modeling is enabled) and in free space of a wavefield tile may cause diffraction fringes to wrap around, due to the non-zero edges in the modulated wavefield. In this case, Adorym can select a larger area for each object chunk and wavefield tile, leaving a “buffer zone” around the wavefield for wrapping-around fringes to spread, and discard the buffer zones after the wavefield reaches the detector plane [23, 24].

When the illumination is only partially coherent [25] or when fly-scan is used in data acquisition [26, 27, 28], multiple mutually incoherent probe modes can be used for image reconstruction to account for the limited coherence of illumination wavefield. In this case, the prediction function gives the outputs of all probe modes individually, assuming each of them does not interact with others before arriving at the detector plane. As a general convention, the prediction functions in virtually all forward models return the detector-plane wavefields as two separate arrays that respectively stores the real and imaginary parts of the complex magnitude. Each of these arrays has a shape of \([\text{batch}_\text{size}, \ n_\text{probe}_\text{modes}, \ len_\text{detector}_\text{y}, \ len_\text{detector}_\text{x}]\). In this way, multi-mode reconstruction can be realized for various types of imaging experiments in addition to far-field ptychography.

1.4.1 Loss function

Each child class of \texttt{ForwardModel} contains also a \texttt{loss} method that takes in the predicted detector-plane magnitude \( \sqrt{I_{\text{pred}}} \) and the associated experimental measurement \( \sqrt{I_{\text{meas}}} \), and calculates the loss from them (i.e., the last-layer loss function). Combining \texttt{predict} and \texttt{loss}, another method \texttt{get_loss_function}, constructs an end-to-end loss function mapping the input variables to the final loss, optionally with added regularization terms. The data mismatch term in the last-layer loss function can take different forms, each of them has specific advantages in terms of numerical robustness and noise resistance. The expressions of these data mismatch terms are defined in the parent \texttt{ForwardModel} class which are inherited by all its children classes the \texttt{loss} method, so users can easily select from existing types of the data mismatch term, modify them, or plug in new types, and then apply the change to all forward model classes. Adorym has two built-in types of data mismatch term, namely the least-square (LSQ) and the Poisson maximum likelihood type.

The LSQ data mismatch term measures the Euclidian distance between the prediction and the measurement. As pointed out by Godard et al. [29], when the measured intensity \( I_{\text{meas}} \) follows Poisson statistics whose standard deviation is the square root of its mean, then the variance of \( \sqrt{I_{\text{meas}}} \) is insensitive to the expectation of \( I_{\text{meas}} \). That is, using the square root of intensities, instead of intensities themselves in the LSQ loss function, may lead to better numerical robustness. As such, Adorym uses an LSQ-type loss function expressed as

\[
D_{\text{LSQ}} = \frac{1}{N_d} \sum_m N_d \left\| \sqrt{I_{\text{pred},m}} - \sqrt{I_{\text{meas},m}} \right\|^2 \tag{14}
\]

where \( N_d \) is the number of detector (or tile) pixels. If \( I_{\text{meas}} \) and \( I_{\text{pred}} \) are spatially sparse, the intensity terms \( I_k \) in Eq. 14 can be implemented as \( I_k + \epsilon \), where \texttt{eisasmallpositive} is a small positive number, to improve numerical robustness, since \( I_k \) appears in the denominator of the square root function’s derivative.

Alternatively, when the measured data are noisy, one may also explicitly introduce Poisson statistics to account for the noise in \( I_{\text{meas}} \), which leads to the Poisson maximum likelihood mismatch [29]:

\[
D_{\text{Poisson}} = \frac{1}{N_d} \sum_m N_d (I_{\text{pred},m} - I_{\text{meas},m}) \log(I_{\text{pred},m}). \tag{15}
\]

In a previous publication [30], we have shown with numerical simulations that the Poisson loss function of Eq. 15 can provide better resolution and contrast under low-dose conditions compared to the LSQ loss function of Eq. 14, but it takes longer to converge, and may result in indeterministic artifacts for less noisy images. Adorym allows
users to conveniently add new loss function types (for example, mixed Gaussian-Poisson) into the parent class of `ForwardModel`.

When processing data subject to photon noise or information deficiency, it is a common practice to supply the reconstruction algorithm with additional prior knowledge about the sample. The finite support constraint, which is commonly used in full-field coherent diffraction imaging [4] and is also made available in Adorym, is one type of such prior knowledge used to ensure the algorithm converges to a unique solution. Alternatively, some other categories involve assumptions on one or more quantitative indicators of the object function, such as its smoothness or sparsity. The $l_1$-norm, for example, is known to enhance the sparsity of the solution, encouraging more voxels to have near-zero absolute values [31, 32]. If such a quantity $\mathcal{R}[O(r)]$ is constrained to be below a certain value, the constrained optimization can be equivalently solved by adding $\mathcal{R}[O(r)]$ to the original loss function of Eq. 14 or Eq. 15 as a Tikhonov regularizer [33]. The full form of the loss function to be minimized is then

$$\mathcal{L} = \mathcal{D}(I_{\text{pred}}, I_{\text{meas}}) + \sum_i \alpha_i \mathcal{R}_i(O(r))$$

where $\alpha_i$ is the “weighting coefficient” applied to regularizer $i$. The regularizers already available in Adorym include $l_1$-norm [31, 32], reweighted $l_1$-norm, and total variation. The expressions, purposes, and example scenarios of application, are shown in Table 1. Moreover, these regularizer functions are defined as individual `Regularizer` classes, and users can conveniently add their own regularizers.

### 1.4.2 Parameter refinement

In Section 1.4, we have shown the incorporation of probe position correction in the forward model, which is done using the Fourier shift theorem. In addition to that, Adorym also supports the refinement of a range of experimental variables, and the list can be readily expanded by users upon need. At present, the following parameters and variables can be refined:

- **Probe defocus**: in imaging techniques like ptychography, it is often the case where the probe function retrieved from a previous experiment is used to reconstruct a new dataset. However, as the axial position of the sample may differ, the previously recovered probe might be deviated from the incident plane of the new sample. In this case, Adorym can Fresnel propagate (Eq. 6) the probe function according to a list of defocusing distances, $z_{\text{defoc}}$, which stores the defocusing that should be applied for each tilt angle. The gradient of $z_{\text{defoc}}$ can be automatically calculated by AD for optimization.

- **Probe position offset**: Section 1.4 presented an example where all probe positions are refined individually. In the case of ptychotomography, it is often the case that the relative positions of probe positions on a viewing angle are accurate, but there exist offsets among positions on different angles in the sample frame, such as in the case of a not-well-centered rotation axis [35]. Individually refining all probe positions from all angles might still be feasible, but would introduce too many degrees of freedom, making the reconstruction problem badly underconstrained. Adorym can instead refine a list of position offsets across different tilt angles, where each correction vector as an element of the list applies to all probe positions in a certain angle.

- **Slice position**: in sparse multislice imaging, slice positions enter the forward model through Fresnel propagation from a slice to the next, and the gradient of slice positions is thus obtainable through AD.

- **Free propagation distance**: the distance between the exiting plane of the sample to the detector in the case of near-field imaging can be refined as well. In the case of multi-distance holography, the distances from the sample to all projection images can be included in the framework.

- **Object orientation**: the sample stage in nanotomography may suffer from random wobbling, which causes the angular orientation of the sample to fluctuate in all three axes at different viewing angles. Refinement of orientations has already been demonstrated in combined x-ray ptychography and fluorescence microscopy [36], so orientation refinement has been implemented in Adorym as well. When enabled, the object is rotated in its three axes according to an optimizable orientation correction array of shape $[3, \text{num_angles}]$. For each axis, the pixel coordinates on each plane of the rotated object perpendicular to the axis are mapped back to the original object function at $0^\circ$, using the linear transform

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_\theta \\ y_\theta \end{pmatrix}.$$

Subsequently, the rotated object is computed by taking voxel values according to the mapped coordinates from the $0^\circ$ object array using bilinear interpolation. A way to understand how the loss function can be differentiable with regards to rotation angle $\theta$ through this interpolation operation is to regard the interpolation...
A PREPRINT - DECEMBER 24, 2020

Table 1: A list of regularizers available in Adorym. In all equations, \( N_o = L_xL_yL_z \) is the total number of voxels in the object function, and \( i_r \) indexes the object voxels; \( \overline{O} \) is the mean of object modulus \( \text{arg}(\cdot) \) represents the complex argument function which returns the phase of the complex input.

| Name | Expression of \( R \) | Purpose | Application |
|------|------------------------|---------|-------------|
| \( l_1 \)-norm | \( \frac{1}{N_o} \sum_{i_r} \alpha_1 |\delta_{i_r}| + \alpha_2 |\beta_{i_r}| \) if object is represented by refractive indices, or \( \frac{1}{N_o} \sum_{i_r} \alpha_1 |O_{i_r}| - |\overline{O}| + \alpha_2 |\text{arg}(O_{i_r})| \) if object is represented by complex modula- tion function. | Promotes sparsity. | Reduce artifacts in objects with finite extent (smaller than the object array being solved) or porous objects. |
| Reweighted \( l_1 \)-norm [32] | \( \frac{1}{N_o} \sum_{i_r} \alpha_1 W_1 |\delta_{i_r}| + \alpha_2 W_2 |\beta_{i_r}| \) if object is represented by refractive indices, or \( \frac{1}{N_o} \sum_{i_r} \alpha_1 W_1 |O_{i_r}| - |\overline{O}| + \alpha_2 W_2 |\text{arg}(O_{i_r})| \) if object is represented by complex modula- tion function. In both equations, the quantity \( W_i \) as in \( W_i|C| \) is the adaptive weight defined as \( W_i = \max(|C|)/(|C| + \epsilon) \). Values of \( W_i \) are calculated outside the loss function using “snapshots” of the object function, and are treated as no-gradient constants by AD. Their values are updated once upon a fixed number of minibatches are done. | Promotes sparsity adaptively, so that near-zero voxels are penalized more. | Similar to \( l_1 \)-norm, and more desirable if a good initial guess is available. |
| Total variation (TV) [34] | \( \frac{1}{N_o} \gamma \sum_{i_r} \|\nabla \delta_{i_r}\|_1 + \|\nabla \beta_{i_r}\|_1 \) if object is represented by refractive indices, or \( \frac{1}{N_o} \gamma \sum_{i_r} \||O_{i_r}| - |\overline{O}|\|_1 + \|\text{arg}(O_{i_r})\|_1 \) if object is represented by complex modula- tion function. \( \|\nabla C\|_1 \) returns the \( l_1 \)- norm of the spatial gradient of \( C \), given as \( |\nabla_x C| + |\nabla_y C| + |\nabla_z C| \). | Promotes smooth- ness. | Reconstructing the object from noisy data. |
as an \((L_pL_q) \times (L_pL_q)\) matrix \(R_\theta\) parameterized by \(\theta\), where \(L_p\) and \(L_q\) are the numbers of pixels along an object plane perpendicular to the rotation axis. It follows that the interpolation is in fact a linear operation of evaluating \(\bar{\omega} = R_\theta \bar{\omega}_0\), where \(\bar{\omega}\) is a vectorized “pq-plane” of the object, formed by concatenating each row of it. The matrix \(R_\theta\) is sparse, containing at most 4 non-zero elements on each row in the case of bilinear interpolation; therefore, calculating the derivative of \(R_\theta\) to \(\theta\) with a gradient vector can be done efficiently by exploiting its sparsity [37]. In Adorym, we implement differentiable rotation by using the grid_sample function of PyTorch [38, 39].

- Affine transform of projection images: this feature is particularly useful for near-field imaging and especially multi-distance holography. The misalignment of detector or sample stage may cause the acquired projection image to suffer from one or more of three types of distortions, namely translation, tilting, and scaling. These distortions are collectively refined to as the affine transformation. We denote the translation, scaling, and shearing in \(x\) and \(y\) as \(\delta x, \delta y, S_x, S_y, c_x, c_y\), respectively, and also represent the tilt angle as \(\phi\). This leads to an affine transformation matrix \(A\) which is the composite of 4 matrices responsible for translation, scaling, shearing, and tilt:

\[
A = \begin{pmatrix}
\cos \phi & -\sin \phi & 0 & 1 \\
\sin \phi & \cos \phi & 0 & c_x \\
0 & 0 & 1 & S_x \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\cos \beta & 0 & -\sin \beta & 0 \\
0 & 1 & 0 & 0 \\
\sin \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Eq. 18 is apparently an expanded form of the square matrix in Eq. 17 for situations beyond rotation. Adorym can refine an affine transformation matrix for the projection image at each defocus distance to minimize the loss function, and the transformation is differentiable based on the same reason as in the case of sample rotation refinement. The forward model of affine transformation and the associated bilinear interpolation is also implemented using PyTorch’s grid_sample function.

- Linear relation coefficient between phase and absorption. The homogeneous assumption about the object, which assumes that the \(\delta(r)\) and \(\beta(r)\) terms in its refractive index is related through \(\delta(r) = (1/\kappa)\beta(r)\) [9], is sometimes desirable when the measured data do not provide enough information to recover both the phase and magnitude of the object function. By enforcing a linear relation between the phase shifting part and the absorption part of the object, the number of unknowns is effectively reduced to half, which could prevent the reconstruction problem from being too loosely constrained. However, since most real samples have multiple materials present, it is hard to accurately calculate the value of \(\kappa\) using prior knowledge about the object. Adorym on the other hand can include \(\kappa\) into the automatic differentiation loop, so that its value can be adjusted constantly to minimize the loss function.

### 1.5 Module Wrapper and backends

The AD engine is the cornerstone of Adorym: it provides the functionality to calculate the derivative of the loss function with regards to the object, the probe, and other parameters. Because the AD engine needs to keep track of all variables (or “nodes” [40]), and the relationship between them and the loss function (this relationship is known as the “graph”), most AD libraries have their own data types and functions for the parent and child nodes in the forward model. Many AD libraries are quite similar: they come with a comprehensive look-up table that logs the derivatives for many common mathematical and array-manipulation operators (like stacking and reshaping), and some provide an easy interface for users to expand the package by defining derivatives for new functions [41]. On the other hand, packages may differ in performance depending on the environment in which they run, in the ease of setting up the environment interface control clauses (such as an \(\text{if...else...}\) block), which is very helpful for implementing a multi-stage optimization strategy. In this way one can use one type of loss function for the first several iterations, and switch to another after that. Moreover, a dynamic graph tool means the runtime values of any intermediate variables can be easily retrieved by inserting a print function inside the forward model code. With a static graph tool, this can only be done outside the forward model, which makes debugging less intuitive and straightforward. Therefore, Adorym is designed to specifically work with dynamic graph tools.

As we aim to incorporate both Autograd and PyTorch (and more dynamic graph AD libraries in the future) in Adorym, we have built a common front end for them in the wrapper module. This module provides a unified set of APIs to create optimizable or constant variables (arrays in Autograd, or tensors in PyTorch), call functions, and compute gradients. In
order to make sure all frontend APIs know the right backend to use, we keep the setting parameter backend in a specific module named global_settings. This common module is imported by reference (instead of by value) in every relevant module of Adorym, and once its value is changed in any module or script, it is changed for all modules after that point. For example, the line import adorym.global_settings is used in both ptychography and wrapper; once it is changed in ptychography by adorym.global_settings.backend = “pytorch” upon user setting, the value of adorym.global_settings.backend is changed in wrapper immediately as well, so all frontend functions in wrapper referring to the backend setting will use functions from PyTorch in this case.

1.6 Module Optimizer

Optimizers define how gradients should be used to update the object function or other optimizable quantities; these choices are provided by the class Optimizer. Adorym currently provides 4 built-in optimizers: gradient descent (GD), momentum gradient descent, adaptive momentum estimation (Adam), and conjugate gradient (CG). Moreover, Adorym also has a ScipyOptimizer class that wraps the optimize.minimize module of the Scipy library [43], so that users may access more optimization algorithms coming with Scipy when using the Autograd backend on CPU. The simplest GD algorithm updates an optimizable vector $n$ using the gradient of the loss function with regards to it, or

$$ x \leftarrow x - \rho \nabla x \mathcal{L} $$

where $\rho$ is the step size. GD is very low in overhead in that it does not require any additional parameters to be stored and updated. However, when the loss function is ill-conditioned (so that the loss is steep at the vicinity of its minimum) and convex, update iterations can cause it to overshoot the global minimum. As a consequence, the solution may oscillate around the minimum point, taking many iterations to finally converge. One viable workaround is to make $\rho$ variable. If $\rho$ is reduced to $\rho/2$ each time one reduces by half the suboptimality gap $|\mathcal{L}_j - \mathcal{L}_s|$ between the current loss $\mathcal{L}_j$, and the theoretically asymptotic loss value $\mathcal{L}^*$, then GD will monotonically converge to the minimum [46]. In practice, we found the actual halving of the suboptimality gap can be tricky to decide as the loss curve sometimes exhibits a periodically oscillating pattern even if the unknowns are still far away from the global minimum. Nevertheless, if $\rho$ is reduced according to the above mentioned strategy, then the number of iterations needed for the suboptimality gap to drop from $|\mathcal{L}_j - \mathcal{L}_s|$ to $|\mathcal{L}_j - \mathcal{L}^*|/2$ is twice the number needed for it to drop from $2|\mathcal{L}_j - \mathcal{L}_s|$ to $|\mathcal{L}_j - \mathcal{L}^*|$. In other words, the number of iterations before which $\rho$ should be halved doubles each time that halving occurs. Therefore, in our implementation of GD in the GDoptimizer child class, users are allowed to define a “base iteration number” $N_{bi}$, so that $\rho$ is halved each time the iteration index hits $\{\sum_{s=0}^{N_{bi}} 2^S |S = 0, 1, \cdots \}$. Another known problem of GD is that it can also oscillate excessively when it travels through a ravine in the solution space. As the gradient vector can sometimes point to the “side walls” of the ravine, so that GD may dangle between the side walls instead of going straight down along the ravine. The momentum algorithm [47] augments GD by adding the history of past gradients into the update vector, so that Eq. 19 becomes

$$ v \leftarrow \gamma v + \rho \nabla x \mathcal{L} $$

$$ x \leftarrow x - v. $$

This algorithm is implemented as the MomentumOptimizer class of Adorym.

The Adam algorithm [48] makes use of the history of gradients in past iterations, and is among the most popular optimization algorithms in the machine learning community [46]. What distinguishes Adam from many other algorithms in the same category is that it stores both the first-order moment (the mean) and the second-order moment (the variance) of past gradients, and that it involves a correction step for countering the bias of the momenta towards zero. These features provide an advantage in comparison to similar momentum-based algorithms [46]. Another merit of Adam in our specific application is that the magnitude of its update vector is relatively insensitive to the scale of gradient [48], so it can work well with raw data that have various numerical scalings. As an example, full-field tomography and holography data are usually normalized using “white field” images, while far-field ptychography data generally have a high dynamic range and are often used without normalization. Because the update rate in Adam can be imperfectly tuned even by several orders of magnitude, Adam can also work with different types of loss functions which may have very different values. This aligns well with the generalizability concept of Adorym, so we have implemented the algorithm in the AdamOptimizer class.

Our implementations of GD, Momentum, and Adam are designed for stochastic minibatch optimization – in the literature, these are the algorithms of choice for when we have large data sets [46]. For small or medium-sized problems, when the raw data and computational graph fit into the memory, more sophisticated (and hyperparameter-free) conjugate gradient algorithms or higher order algorithms are typically the methods of choice. In Adorym, we implement the non-linear conjugate gradient (CG) method [49, 50], which is implemented as the CGoptimizer in Adorym. Our implementation uses the Polak–Ribière method [51, 52] to find the conjugate gradient vectors, followed by an adaptive
line search [53] to determine the update step size. We also implement a ScipyOptimizer wrapper that can be used to access a variety of sophisticated algorithms (such as BFGS, Newton-CG, and so on) from SciPy within Adorym. One distinction is that while our GD, Momentum, Adam, and CG implementations can be used in both CPUs and GPUs, the Scipy optimizers can only be used in the CPU. However, for small-sized convex problems, this can often be balanced by the reduced number of iterations that some advanced algorithms require [54].

### 1.7 Parallelization modes

Adorym supports parallelized processing based on the message passing interface (MPI) [55], a multiprocessing programming model that is compatible with most modern computation platforms ranging from laptops to HPCs. Specifically, in Adorym we use MPI4py Python API [56]. The MPI interface allows one to conveniently communicate data or synchronize program workflow among multiple processes (or ranks) on CPU cores. Because each spawned MPI rank is independent from others on the Python level, it can individually send data back and forth between RAM and a specified GPU, and run GPU operations without interfering with other ranks as long as the GPU memory does not overflow. Therefore, our MPI-based parallelization is also inherently capable of working with an arbitrary number of GPUs. When it is necessary to communicate between all ranks, each rank needs to retrieve the data back from the GPU to the CPU, and use collective MPI operations such as Allreduce. This is inefficient compared to direct GPU-to-GPU communications using tools such as NVLink [57], but it works on a wider range of devices.

Parallel processing based on MPI can be implemented in several different ways, each of which differs from others in terms of computational overhead and memory consumption. Here we introduce the three types of parallelization modes used in Adorym: data parallelism (DP) mode, distributed object (DO) mode, and the HDF5-file-mediated low-memory (H5) mode.

#### 1.7.1 Data parallelism (DP) mode

In machine learning, “data parallelism” refers to distributed neural network training where each rank has a copy of the full model stored in memory, and process a subset of training data that is distinct from that on other ranks [58]. The model parameters are periodically synchronized by taking their averages over all ranks. In Adorym, the equivalent of a neural network is the forward optical model, where the parameters are the object function and all optimizable variables. When working in DP mode, each rank is allocated with a batch of batch_size tiles, which is used to calculate the gradient of the loss function with regards to the entire object volume and other parameters (probes, probe positions, etc.). Once all ranks have finished their gradient computation, their gradient arrays are synchronized to the same average values through an MPI Allreduce operation, after which they are used to update the optimizable variables using a chosen optimization algorithm. Since gradient averaging is the only major inter-rank communication, the DP mode is low in overhead, but it has high memory consumption due to the need of keeping a copy of the whole object function for every rank. This in turn limits the ability to reconstruct objects with limited resources. A illustrative workflow diagram for the DP mode with 3 MPI ranks is shown in Fig. 3(a).

![Workflow diagram of Adorym in DP mode, DO mode, and H5 mode.](image-url)
1.7.2 Distributed object (DO) mode

In spite of its simplicity and low overhead, keeping a copy of the object function for every rank as in the DP mode can be impractical with limited memory per rank. We have therefore implemented the distributed object (DO) mode as an alternative option. In DO mode, only 1 object function is jointly kept by all ranks. This is done by severing the object along the vertical axis into several slabs, and letting each rank store one of them in its available RAM as 32-bit floating point numbers. In this way, standard tomographic rotation can be done independently by all ranks in parallel. The stored object slab does not enter the device memory as a whole when GPU acceleration is enabled; instead, object chunks are extracted from the object slabs in the CPU, and only these partial chunks are sent to GPU memory for gradient computation. Since the “thickness” of a slab is usually different from the vertical size of an object chunk (whose $x$-$y$ cross sections should match the size of a tile), we use MPI’s AlltoAll communication for a rank to gather the voxels it needs to assemble an object chunk from other ranks.

This is illustrated in Fig. 4, where we assume the MPI command spawns 8 ranks, and the object function is evenly distributed among these ranks. For simplicity, we assume a batch size of 1, meaning a rank processes only 1 tile at a time. Before entering the differentiation loop, the object slab kept by each rank is duplicated as a new array, which is then rotated to the currently processed viewing angle. In our demonstrative scenario, rank 0 processes the top left tile in the first iteration, and the vertical size of the tile spans four object slabs. As ranks 0–3 have knowledge about rank 0’s job assignment, they extract the part needed by rank 0 from their own slabs, and send them to rank 0 through AlltoAll operation. Rank 0 then assembles the object chunk from the partial slabs by concatenating them along $y$ in order. Besides, since rank 0 itself contains the object slab needed by other ranks, it also needs to send information to them. The collective send/receive can be done using MPI’s AlltoAll communication in a single step. In reality, the vertical size of an object chunk might not be divisible by the number of slices in each slab, so certain ranks may send a partial object that is “thinner” than the slab it keeps. The ranks then send the assembled object chunks to their assigned GPUs for gradient computation, yielding gradient chunks on each rank that have exactly the same shape as the object chunks. These gradient chunks are scattered back to relevant ranks, but this time to their “gradient slab” arrays that identically match the object slabs in position and shape. After all tiles on this certain viewing angle are processed, the gradient slabs kept by all ranks are rotated back to 0°. Following that, the object slab is updated by the optimizer independently in each rank. When reconstruction finishes, the object slabs stored by all ranks are dumped to a RAM-buffered hard drive, so that they can be stacked to form the full object. The optimization workflow of the DO mode is shown in Fig. 3(b).
While it has the advantage of requiring less memory per rank, a limitation of the DO mode is that tilt refinement about the $x$- and $z$-axis is hard to implement; tilting about these axes requires a rank to get voxel values from other slabs, which not only induces excessive MPI communication, but also demands AD to differentiate through MPI operations. The latter is not impossible, but existing AD packages may need to be modified in order to add that feature. Another possible approach among the slabs kept by different MPI ranks is to introduce overlapping regions along $y$; in this case, tilting about $x$ and $z$ can be done individually by each rank, though the degree of tilt is limited by the length of overlap. This is not yet implemented in Adorym, but could be added in the future.

1.7.3 HDF5-file-mediated low-memory mode (H5)

When running on an HPC with hundreds or thousands of computational nodes, the DO mode can significantly reduce the memory needed by each node to store the object function if one uses many nodes (and only a few ranks per node) to distribute the object. On a single workstation or laptop, however, the total volume of RAM is fixed, and very large-scale problems are still difficult to solve even if one uses DO.

For such cases, Adorym comes with an alternative option of storing the full object function in a parallel HDF5 file [1], which is referred to as the H5 mode. The HDF5 library works with the MPI-IO driver to allow a file to be read or written by several MPI ranks, where any modifications to the file’s metadata are done collectively by all ranks to avoid potential conflicts. This feature provides a viable scheme of further reducing the RAM usage of Adorym. At the beginning of the reconstruction job, the object function is initialized and saved as an HDF5 file. Before entering the differentiation loop, the object function is duplicated as a new dataset in the same HDF5 file, and rotated to the viewing angle being processed in a similar fashion as the DO mode: the rotation is done in parallel by all ranks, with each rank handling several $y$-slices. Following that, object chunks are read from the rotated object by each rank, and sent to GPU if GPU acceleration is enabled. The calculated gradient chunks are written by each rank into a separate gradient dataset, which, after all tiles on the current angle are processed, is rotated back to $0^\circ$ collectively. To update the object function, each rank reads in a slice of the object and the corresponding gradient at a time, performs update using the selected optimizer, then writes the updated object slice back to the HDF5 file. The next slice is then processed, until the entire object is updated jointly by all ranks. The workflow [Fig. 3(c)] in fact resembles that of the DO mode, except the distribution of object chunks and synchronization of gradient chunks is done through HDF5 file reading and writing instead of using MPI AlltoAll.

While the H5 mode allows the reconstruction of large objects on limited memory machines, I/O with a hard drive (even with a solid state drive) is slower than memory access. Additionally, writing into an HDF5 with multiple ranks is subject to contention, which may be mitigated if a parallel file system with multiple object storage targets (OSTs) is available [59]. This is more likely to be available at an HPC facility than on a smaller, locally managed system, and precise adjustment of striping size and HDF5 chunking are needed to optimize OST performance [60]. Despite these challenges, the HDF5 mode is valuable because it enables reconstructions of large objects and/or complex forward models on limited memory machines. It also provides future-proofing because, as fourth-generation synchrotron facilities deliver higher brightness and enable one to image very thick samples [61], we may eventually encounter extra-large objects which might be difficult to reconstruct even in existing HPC machines.

With all the above descriptions, we summarize in Fig. 1 the inter-relations among different modules as parts of Adorym’s software architecture.

1.7.4 User interface

If a reconstruction job can be done using the provided ForwardModel classes, users generally just need to call the reconstruct_ptychography function inside the ptychography. Optimizers for different variables can either be explicitly declared using the child classes of Optimizer, or be specified by providing the optimizer name (for object function) and step size while using default values for other parameters. Below is a code example that can be used to generate the fly-scan ptychography results shown in the main text:

```python
import adorym
from adorym.ptychography import reconstruct_ptychography

output_folder = "recon"
distribution_mode = None
optimizer_obj = adorym.AdamOptimizer("obj", output_folder=output_folder,
distribution_mode=distribution_mode,
options_dict={"step_size": 1e-3})
```
optimizer_probe = adorym.AdamOptimizer("probe", output_folder=output_folder,
    distribution_mode=distribution_mode,
    options_dict={"step_size": 1e-3, "eps": 1e-7})
optimizer_all_probe_pos = adorym.AdamOptimizer("probe_pos_correction",
    output_folder=output_folder,
    distribution_mode=distribution_mode,
    options_dict={"step_size": 1e-2})

params_ptych = {"fname": "data.h5",
    "theta_st": 0,
    "theta_end": 0,
    "n_epochs": 1000,
    "obj_size": (618, 606, 1),
    "two_d_mode": True,
    "energy_ev": 8801.121930115722,
    "psize_cm": 1.32789376566526e-06,
    "minibatch_size": 35,
    "output_folder": output_folder,
    "cpu_only": False,
    "save_path": ".",
    "initial_guess": None,
    "random_guess_means_sigmas": (1., 0., 0.001, 0.002),
    "probe_type": "aperture_defocus",
    "forward_model": adorym.PtychographyModel,
    "n_probe_modes": 5,
    "aperture_radius": 10,
    "beamstop_radius": 5,
    "probe_defocus_cm": 0.0069,
    "rescale_probe_intensity": True,
    "free_prop_cm": "inf",
    "backend": "pytorch",
    "raw_data_type": "intensity",
    "optimizer": optimizer_obj,
    "optimize_probe": True,
    "optimizer_probe": optimizer_probe,
    "optimize_all_probe_pos": True,
    "optimizer_all_probe_pos": optimizer_all_probe_pos,
    "save_history": True,
    "unknown_type": "real_imag",
    "loss_function_type": "lsq",
}

reconstruct_ptychography(**params_ptych)

In the code example, we passed adorym.PtychographyModel to "forward_model". This argument can be replaced by a user-defined ForwardModel class whenever desirable. Instructions on creating new forward models and defining new refinable parameters can be found in the documentation of Adorym, which is currently hosted on the GitHub repository (https://github.com/mdw771/adorym/).

2 Definition of structural similarity index (SSIM)

The SSIM [62] is a metric that measures the “degree of match” between two images, and, unlike pixel-to-pixel error metrics such as the mean squared error, it takes into account the interdependence among pixels lying in their local neighborhoods. For reconstructed image $I_a$ and reference image $I_r$, the SSIM is computed as

$$
SSIM(I_a, I_r) = l(I_a, I_r) \cdot c(I_a, I_r) \cdot s(I_a, I_r).
$$

(21)
where $l$, $c$, and $s$ respectively gauge the similarity of the images in terms of luminance, contrast, and structure. These factors are defined as

\[
\begin{align*}
l(I_a, I_r) &= \frac{2\mu_a\mu_r + c_1}{\mu_a^2 + \mu_r^2 + c_1} \\
c(I_a, I_r) &= \frac{2\sigma_a\sigma_r + c_2}{\sigma_a^2 + \sigma_r^2 + c_2} \\
s(I_a, I_r) &= \frac{\sigma_{a,r} + c_3}{\sigma_a\sigma_r + c_3}
\end{align*}
\]

where $\mu_a$ and $\mu_r$ are the mean value of the reconstructed image and the reference image, $\sigma_a$ and $\sigma_r$ are their standard deviations, and $\sigma_{a,r}$ is their correlation coefficient. The parameters appearing in the equations above are given by

\[
\begin{align*}
c_1 &= (k_1L)^2 \\
c_2 &= (k_2L)^2 \\
c_3 &= c_2/2
\end{align*}
\]

where $k_1$ and $k_2$ are set to 0.01 and 0.03 in our case, and $L$ is the dynamic range of the grayscale images.

References

[1] The HDF Group. Hierarchical Data Format, version 5. http://www.hdfgroup.org/HDF5/.
[2] Francesco De Carlo, Dog˘a Gürsoy, Federica Marone, Mark Rivers, Dilworth Y Parkinson, Faisal Khan, Nicholas Schwarz, David J Vine, Stefan Vogt, Sophie-Charlotte Gleber, Suresh Narayanan, Matt Newville, Tony Lanzilotti, Yue Sun, Young Pjo Hong, and Chris Jacobsen. Scientific Data Exchange: a schema for HDF5-based storage of raw and analyzed data. Journal of Synchrotron Radiation, 21(6):1224–1230, 2014.
[3] Peter Cloetens, W Ludwig, J Baruchel, José Baruchel, D Van Dyck, J Van Landuyt, J P Guigay, and M Schlenker. Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays. Applied Physics Letters, 75(19):2912–2914, 1999.
[4] S. Marchesini, H. He, H.N. Chapman, S.P. Hau-Riege, A. Noy, M.R. Howells, U. Weierstall, and J.C.H. Spence. X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68(14):140101, 2003.
[5] B. L. Henke, E. M. Gullikson, and J. C. Davis. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at $E=50–30,000$ eV, $Z=1–92$. Atomic Data and Nuclear Data Tables, 54:181–342, 1993.
[6] J M Rodenburg. Ptychography and related diffractive imaging methods. Advances in Imaging and Electron Physics, 150:87–184, 2008.
[7] Richard M Goldstein, Howard A Zebker, and Charles L Werner. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4):713–720, 1988.
[8] Haiting Xia, Silvio Montresor, Rongxin Guo, Junchang Li, Feng Yan, Heming Cheng, and Pascal Picart. Phase calibration unwrapping algorithm for phase data corrupted by strong decorrelation speckle noise. Optics Express, 24(25):28713–28730, 2016.
[9] L D Turner, B B Dhal, J P Hayes, A P Mancuso, K A Nugent, D Paterson, R E Scholten, C Q Tran, and A G Peele. X-ray phase imaging: Demonstration of extended conditions with homogeneous objects. Optics Express, 12(13):2960, 2004.
[10] Zalan Fabian, Justin Haldar, Richard Leahy, and Mahdi Soltanolkotabi. 3D phase retrieval at nano-scale via accelerated Wirtinger flow. arXiv.org, 2020.
[11] Ming Du, Youssef S G Nashed, Saugat Kandel, Dog˘a Gürsoy, and Chris Jacobsen. Three dimensions, two microscopes, one code: automatic differentiation for x-ray nanotomography beyond the depth of focus limit. Science Advances, 6(eaay3700), March 2020.
[12] Chris Jacobsen. X-ray Microscopy. Cambridge University Press, Cambridge, 2020.
[13] Joseph W Goodman. Introduction to Fourier Optics. W.H. Freeman, New York, fourth edition, 2017.
[14] David Voelz. Computational Fourier optics: a Matlab tutorial. Tutorial text. Society of Photo-Optical Instrumentation Engineers, Bellingham, 2011.
[15] J M Cowley and A F Moodie. The scattering of electrons by atoms and crystals. I. a new theoretical approach. Acta Crystallographica, 10(10):609–619, October 1957.
[16] Kazuo Ishizuka and Natsu Uyeda. A new theoretical and practical approach to the multislice method. *Acta Crystallographica A*, 33(5):740–749, September 1977.

[17] J Van Roey, J van der Donk, and P E Lagasse. Beam-propagation method: Analysis and assessment. *Journal of the Optical Society of America*, 71(7):803–810, July 1981.

[18] A M Maiden, M J Humphry, and J M Rodenburg. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. *Journal of the Optical Society of America A*, 29(8):1606–1614, August 2012.

[19] Akihiro Suzuki, Shin Furutaku, Kei Shimomura, Kazuto Yamauchi, Yoshiki Kohmura, Tetsuya Ishikawa, and Yukio Takahashi. High-resolution multislice x-ray ptychography of extended thick objects. *Physical Review Letters*, 112(5):053903, February 2014.

[20] Esther H R Tsai, Ivan Usov, Ana Diaz, Andreas Menzel, and Manuel Guizar-Sicairos. X-ray ptychography with extended depth of field. *Optics Express*, 24(25):29089–29108, 2016.

[21] Ulugbek S Kamilov, Ioannis N Papadopoulos, Morteza H Shoreh, Alexandre Goy, Cedric Vonesch, Michael Unser, and Demetri Psaltis. Learning approach to optical tomography. *Optica*, 2(6):517–522, 2015.

[22] Ulugbek S Kamilov, Ioannis N Papadopoulos, Morteza H Shoreh, Alexandre Goy, Cedric Vonesch, Michael Unser, and Demetri Psaltis. Optical tomographic image reconstruction based on beam propagation and sparse regularization. *IEEE Transactions on Computational Imaging*, 2(1):59–70, February 2016.

[23] David Blinder and Tomoyoshi Shimobaba. Efficient algorithms for the accurate propagation of extreme-resolution holograms. *Optics Express*, 27(21):29905–29915, October 2019.

[24] Sajid Ali, Ming Du, Barry Smith, and Chris Jacobsen. A comparison of distributed memory algorithms for x-ray wave propagation in inhomogeneous media. *arXiv.org*, 2020.

[25] Pierre Thibault and Andreas Menzel. Reconstructing state mixtures from diffraction measurements. *Nature*, 494(7435):68–71, February 2013.

[26] Philipp M Pelz, Manuel Guizar-Sicairos, Pierre Thibault, Ian Johnson, Mirko Holler, and Andreas Menzel. On-the-fly scans for x-ray ptychography. *Applied Physics Letters*, 105:251101, December 2014.

[27] Junjing Deng, Youssef S G Nashed, Si Chen, Nicholas W Phillips, Tom Peterka, Rob Ross, Stefan Vogt, Chris Jacobsen, and David J Vine. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging. *Optics Express*, 23(5):5438–5451, February 2015.

[28] Xiaojing Huang, Kenneth Lauer, Jesse N Clark, Weihe Xu, Evgeny Nazaretski, Ross Harder, Ian K Robinson, and Yong S Chu. Fly-scan ptychography. *Scientific Reports*, 5:9074, March 2015.

[29] Pierre Godard, Marc Allain, Virginie Chamard, and John Marius Rodenburg. Noise models for low counting rate coherent diffraction imaging. *Optics Express*, 20(23):25914–25934, November 2012.

[30] Ming Du, Do˘ga Gürsoy, and Chris Jacobsen. Near, far, wherever you are: simulations on the dose efficiency of holographic and ptychographic coherent imaging. *Journal of Applied Crystallography*, 53(3):748–759, May 2020.

[31] Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B*, 59(1):267–288, 1996.

[32] Emmanuel J Candès, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted ℓ_1 minimization. *Journal of Fourier Analysis and Applications*, 14(5-6):877–905, October 2008.

[33] Michael T. McCann and Michael Unser. Biomedical image reconstruction: From the foundations to deep neural networks, 2019.

[34] Grasmair, Markus and Lenzen, Frank. Anisotropic total variation filtering. *Applied Mathematics & Optimization*, 62(3):323–339, May 2010.

[35] M Holler, A Diaz, M Guizar-Sicairos, P Karvinen, Elina Färm, Emma Härkönen, Mikko Ritala, A Menzel, J Raabe, and O Bunk. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. *Scientific Reports*, 4:3857, 2014.

[36] Junjing Deng, Yuan Hung Lo, Marcus Gallagher-Jones, Si Chen, Alan Pryor, Qiaoling Jin, Young Pyo Hong, Youssef S. G. Nashed, Stefan Vogt, Jianwei Miao, and Chris Jacobsen. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. *Science Advances*, 4(11):eaauf4548, 2018.

[37] Wei Jiang, Weiwei Sun, Andrea Tagliasacchi, Eduard Trulls, and Kwang Moo Yi. Linearized multi-sampling for differentiable image transformation. *arXiv*, 2019.
[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[39] PyTorch documentation, 2020. https://pytorch.org/docs.

[40] Charles C Margossian. A review of automatic differentiation and its efficient implementation. arXiv, 2018.

[41] Autograd tutorial, 2020. https://github.com/HIPS/autograd/blob/master/docs/tutorial.md.

[42] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy array: A structure for efficient numerical computation. Computing in Science & Engineering, 13(2), 2011.

[43] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17:261–272, 2020.

[44] Endong Wang, Qing Zhang, Bo Shen, Guanyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. Intel Math Kernel Library, pages 167–188. Springer International Publishing, Cham, 2014.

[45] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins, and Peter Norvig. Deep learning with dynamic computation graphs, 2017.

[46] Sebastian Ruder. An overview of gradient descent optimization algorithms, 2016.

[47] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145–151, 1999.

[48] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, 2014.

[49] M R Hestenes and E Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49(6):409, 1952.

[50] R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal, 7(2):149–154, 1964.

[51] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Modélisation Mathématique et Analyse Numérique, 3(R1):35–43, 1969.

[52] B.T. Polyak. The conjugate gradient method in extremal problems. USSR Computational Mathematics and Mathematical Physics, 9(4):94–112, 1969.

[53] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, New York, second edition, 2006.

[54] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. arXiv, 2016.

[55] Message Passing Interface Forum. A message-passing interface standard, version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.

[56] Lisandro Dalcín, Rodrigo Paz, and Mario Storti. MPI for Python. Journal of Parallel and Distributed Computing, 65(9):1108–1115, 2005.

[57] D. Foley and J. Danskin. Ultra-performance pascal GPU and NVLink interconnect. IEEE Micro, 37(2):7–17, 2017.

[58] Eric P. Xing, Qirong Ho, Pengtao Xie, and Dai Wei. Strategies and principles of distributed machine learning on big data. Engineering, 2(2):179–195, 2016.

[59] Babak Behzad, Joseph Huchette, Huong Vu Thanh Luu, Ruth Aydt, Surendra Byna, Yushu Yao, Quincey Koziol, and Prabhat. A framework for auto-tuning hdf5 applications. In Proceedings of the 22nd International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’13, page 127–128, New York, NY, USA, 2013. Association for Computing Machinery.

[60] Mark Howison, Quincey Koziol, David Knaak, John Mainzer, and John Shalf. Tuning HDF5 for Lustre file systems.
[61] Mikael Eriksson, J Friso van der Veen, and Christoph Quitmann. Diffraction-limited storage rings – a window to the science of tomorrow. *Journal of Synchrotron Radiation*, 21(5):837–842, September 2014.

[62] Z Wang, A C Bovik, H R Sheikh, and E P Simoncelli. Image quality assessment: From error visibility to structural similarity. *IEEE T. Image Process.*, 13(4):600–612, April 2004.