Chiral order in spin-S XY chains

Thierry Jolicoeur* and Philippe Lecheminant**

*Laboratoire de Physique de la Matière Condensée, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
**Laboratoire de Physique Théorique et Modélisation, Université de Cergy Pontoise, 5 Mail Gay-Lussac, Neuville sur Oise, 95301 Cergy Pontoise, France

(Received March 22, 2022)

We consider the issue of chiral ordering in spin chains for an arbitrary value of the spins \(S \). By use of bosonization according to a scheme developped by H.-J. Schulz, we obtain the phase diagram of the chain with XY exchange couplings between nearest and next-to-nearest neighbors. We obtain a satisfactory picture including a so-called chiral spin nematic phase which is gapless, has long-range chiral order and incommensurate spin correlations. We perform a stability analysis of this phase and point out that this analysis is in conflict with existing DMRG results that shows a difference between integer and half-integer spin case.

§1. Introduction

Quantum antiferromagnetic spin chains display a variety of phases that have no classical counterpart. This variety is even increased if we consider the effect of frustration. Many studies\textsuperscript{1) have been devoted in the past to the simple AF chain with nearest neighbor exchange \(J_1 \) and next-to-nearest neighbor \(J_2 \). In the isotropic case, the Hamiltonian is then simply:

\begin{equation}
\mathcal{H} = J_1 \sum_n (S_n S_{n+1}) + J_2 \sum_n (S_n S_{n+2}),
\end{equation}

where \(S_n^+ = S_n^x \pm iS_n^y \) is a spin operator at site \(n \) and there are competing antiferromagnetic interactions \(J_1, J_2 > 0 \) which introduces frustration in the model. In the spin-1/2 case, for small \(J_2 \), there is a spin-fluid phase whose effective theory is that of a massless free boson. It has quasi-long range spin order with algebraic decay of spin correlations. For larger values of \(J_2 \), the ground state is spontaneously dimerized : this appears through a quantum phase transition of Kosterlitz-Thouless type.

\footnote{e-mail : Thierry.Jolicoeur@lpnc.ens.fr}

\footnote{** A common friend of Fermi and Bose. e-mail : phle@lptl.jussieu.fr}
and eventually incommensurability develops within this gapped phase for even larger values of J_2 but without any additional phase transition. The situation is remarkably different if we now consider XY exchange:

$$
\mathcal{H} = J_1 \sum_n (S^x_n S^x_{n+1} + S^y_n S^y_{n+1}) + J_2 \sum_n (S^x_n S^x_{n+2} + S^y_n S^y_{n+2}).
$$ \hspace{1cm} (1.2)

Starting from the limit with large J_2, Nersesyan et al.\cite{2} used a mean-field treatment and then bosonization to predict the occurrence of a new phase with many unconventional characteristics. In this limit, they predicted that there is long-range chiral order:

$$
\langle (\vec{S}_n \wedge \vec{S}_{n+1})_z \rangle \neq 0.
$$ \hspace{1cm} (1.3)

There are also local spin currents polarized along the anisotropy z-axis. This phase is gapless and there are incommensurate spin correlations that decay algebraically with an exponent which they found to be $1/4$. The existence of this phase has been recently demonstrated numerically. Such a phase has been disclosed in a ladder model formulated first as an array of Josephson junctions which is equivalent to a spin-1/2 half model\cite{3}. this ladder has square plaquettes so it is not frustrated as model Eq.(1.2) but frustration is introduced by half a flux quantum piercing the plaquettes. Then a study\cite{4} using the DMRG algorithm gave evidence for this phase in model Eq.(1.2) : the spin fluid phase is stable up to $J_1/J_2 \approx 0.33$ then the chain undergoes dimerization and at $J_1/J_2 \approx 1.26$ there is a second transition to the chiral critical phase. This new phase has also been reported\cite{5,6} in the S=1 chain with the same Hamiltonian Eq.(1.2). Here the situation is even more richer. When $J_2 = 0$, we are in the XY phase which destroyed immediately by adding even an infinitesimal J_2, the phase that appears then is the celebrated gapped Haldane phase. This phase resists the perturbing influence of J_2 for a while but at $J_1/J_2 \approx 0.47$ there is a phase transition to chiral order but the gap remains nonzero. Then very close, at $J_1/J_2 \approx 0.49$, there is a distinct transition to a critical phase with chiral order as in the S=1/2 case. So the integer S=1 case has an additional phase w.r.t. the S=1/2 case, a gapped chiral phase. This difference persists for higher spins\cite{7}. For S=3/2, there is an intermediate dimerized phase which is replaced in a single transition by a chiral critical phase. For S=2, the Haldane phase is destroyed by two successive transitions as for S=1. To understand this pattern of phase transition we use the bosonization technique which has been adapted to the case of generic spin-S by Schulz\cite{8}. This method is able to capture the phase diagrams as a function of exchange anisotropy as well as single-ion anisotropy and it correctly captures the
§ 2. Weak coupling limit

The idea is to write down each spin-S as a sum spins 1/2:

$$S^+_n = \sum_{a=1}^{2S} \lambda_{a,n}^+.$$

Each spin 1/2 is then bosonized by the standard technique. There is a bosonic field $\phi_a, a = 1 \ldots 2S$ associated with each spin. The first possibility is to treat J_2 as a perturbation. So we start from an isolated spin-S chain and write its effective theory in terms of the bosons ϕ_a. Due to the appearance of couplings $s^+_a s^-_b$, there are operators that induce gaps for some linear combination of the basic bose field. More precisely, only the "acoustic" mode remains massless:

$$\Phi = \frac{1}{\sqrt{2S}} (\phi_1 + \ldots + \phi_{2S}).$$

The effective Hamiltonian for the acoustic mode is thus a simple free theory:

$$H_{XY1} \simeq \frac{v}{2} \left(\Pi^2 + (\partial_x \Phi)^2 \right),$$

where Π is the canonical momentum conjugate to Φ. The coefficient v is an unimportant velocity and we have used the conventional name "XY1" coming from the standard S=1 chain phase diagram. The spin operator can be expressed in terms of the field Θ which is dual to Φ:

$$S^\pm \sim (-1)^{\mp a} \exp \left(\pm i \sqrt{\pi/2S} \Theta \right).$$

This expression shows easily that the XY spin correlations decay algebraically with an exponent $\eta = 1/4S$. This is in agreement with numerical findings \cite{10}. In the S=1 case it is also in agreement with work by Kitazawa et al. \cite{11}. If we now bosonize the perturbation J_2, we find that there is a simple renormalization of the previous free hamiltonian Eq.(2.3) but in addition vertex operators appear in perturbation expansion. For integer spin, the most relevant operator appear at S^{th} order and it appears at $2S^{th}$ order for half-integer spins. The effective theory is then:

$$H \simeq \frac{v}{2} \left(K \Pi^2 + \frac{1}{K} (\partial_x \Phi)^2 \right) - \frac{g_{eff}}{a} \cos(\beta \Phi),$$

where $\beta = \sqrt{8\pi S}$ for integer spins and $\beta = \sqrt{32\pi S}$ for half-integer spins. The Luttinger parameter K is obtained in perturbation $K = 1 - (4/\pi)J_2/J_1 + O(J_2^2)$.

The difference between integer and half-integer spins.
This effective leads then immediately to the phase diagram of the spin-S XY chain for small J_2/J_1. The scaling dimension of the vertex operator in the effective theory Eq. (2,3) is \(K \beta^2/4\pi \) and thus is irrelevant for small J_2, the XY1 phase will have thus a finite extent. With increasing J_2, the vertex operator becomes relevant and drives the system towards a massive phase through a KT transition. Depending upon the spin parity, it will be the Haldane or the dimerized phase. If we take seriously the approximate formula for K, we deduce $J_2/J_1 \approx 0.29$ at the KT transition for $S=1/2$, which compares quite favorably to the numerical estimate of ≈ 0.324. We also predict that $S=1$ is special: in this case indeed the operator is marginal for $J_2 \to 0$ hence the instability takes place immediately upon switching an infinitesimal value of J_2, as seen in DMRG studies.

§3. Zigzag limit

We now turn to the opposite limit $J_2 \gg J_1$. Then we have a two-leg spin-S XY ladder coupled in a zigzag way. We first bosonize the two independent legs when $J_1 = 0$. So each of the chains can be treated as in the previous section. There are now two acoustic modes Φ_1 and Φ_2 that are the effective low-energy degrees of freedom. It is convenient to introduce the symmetric and antisymmetric combinations of these two modes:

\[
\Phi_\pm = \frac{1}{\sqrt{2}} (\Phi_1 \pm \Phi_2).
\]

(3.1)

The leading contribution to spin correlations comes from the following operator:

\[
S_\pm^a \simeq \frac{\lambda}{\sqrt{a}} (-1)^{x/a} \exp \left(\mp i \sqrt{\pi/2S} \Theta_\pm \right),
\]

(3.2)

where $a = 1, 2$ and Θ_\pm are the fields dual to Φ_\pm. When $J_1 = 0$ the two fields Φ_\pm are free and massless. Introducing J_1, we find the effective theory:

\[
\mathcal{H} \simeq \frac{v}{2} \sum_{a=\pm} \left(\Pi_\pm^2 + (\partial_x \Phi_\pm)^2 \right) + g \partial_x \Theta_+ \sin \left(\sqrt{\frac{\pi}{2S}} \Theta_- \right),
\]

(3.3)

where Θ_\pm are fields dual to Φ_\pm and Π_\pm are canonical conjugate to Φ_\pm, and $g = O(J_1)$. The operator perturbing the free part in Eq. (3.3) is a parity symmetry breaking term with nonzero conformal spin ($=1$). Its effect is thus highly nontrivial. A simple perturbation with nonzero conformal spin is given by the uniform component of the spin density $\partial_x \Phi$. In this case we know its effect: it induces incommensurability.

We treat theory Eq. (3.3) by following exactly the method of nersesyan et al. We
just decouple:
\[\partial_x \Theta_+ \sin \left(\sqrt{\frac{\pi}{S}} \Theta_- \right) \rightarrow \kappa < \partial_x \Theta_+ > + \mu < \sin \left(\sqrt{\frac{\pi}{S}} \Theta_- \right) >. \] (3.4)

We then impose self-consistency. The "+" sector remains massless while the "-" sector is massive due to the vertex operator in Eq.(3.4). The results that follow are then close to the original findings for for S=1/2 critical chiral phase. The most notable difference is that spin correlations decay algebraically with a spin-dependent exponent:
\[\langle S^1_+ (x) S^a_- (0) \rangle \sim \frac{e^{iqx}}{|x|^{1/(8S)}}, \quad a = 1, 2, \] (3.5)

with \(q - \pi/a \sim (J_1/J_2)^{4S/(4S-1)} \). The exponent 1/4 of the S=1/2 case is thus a special case of \(\eta = 1/8S \). This formula is in good agreement with measurements by DMRG up to S=2. There are nontrivial spin currents in the ground state:
\[\langle J^1_z \rangle = \langle J^2_z \rangle = -v \sqrt{\frac{S}{\pi}} \langle \partial_x \Theta_+ \rangle \neq 0. \] (3.6)

In the language of spins, this means intrachain currents:
\[\langle (\vec{S}_{a,n} \wedge \vec{S}_{a,n+1})_z \rangle \propto \sqrt{\frac{\pi}{4S}} \langle \partial_x \Theta_+ \rangle \neq 0, \quad a = 1, 2, \] (3.7)
as well as interchain currents:
\[J_1 \langle (\vec{S}_{1,n} \wedge \vec{S}_{2,n})_z \rangle \propto \langle \sin \left(\sqrt{\frac{\pi}{S}} \Theta_- \right) \rangle \neq 0, \] (3.8)

this also means long-range chiral order.

§4. Stability analysis

We certainly expect that when increasing the coupling \(J_1 \) the "+" sector of theory (3.3) will not remain massless forever because we know from the analysis of the previous approach in the small \(J_2 \) limit that there is a massive phase. It is likely that some vertex operator will become relevant at some finite value of \(J_1/J_2 \). We try to find this operator by analyzing the symmetry properties of the theory. Taking into account the symmetries of the mean-field Hamiltonian, we find the following effective theory:
\[\mathcal{H}_+ \simeq \frac{v}{2} \left(K \Pi^2_+ + \frac{1}{K} (\partial_x \Phi_+)^2 \right) + \kappa \partial_x \Theta_+ - \frac{g_{eff}}{a} \cos (\gamma \Phi_+), \] (4.1)

where \(\gamma = \sqrt{16\pi S} \) for integer S and \(\gamma = \sqrt{64\pi S} \) for half-integer spins. When this vertex operator becomes relevant, the system is gapped and still incommensurate.
This is consistent with the observation of a "chiral Haldane" phase in numerical studies for integer spins. For half-integer spin, this predicts a phase which is dimerized (due to the value at which Φ is pinned) and has chiral LRO. We are then forced to speculate that there is then an additional Ising transition at which chiral LRO disappear to make contact with the small J_2 limit.

§5. Conclusions

The bosonization approach is able to reproduce the phase diagram of the XY $J_1 - J_2$ chain for integer spins. For all spins it correctly predicts the existence of the chiral critical phase. The spin correlations decay with exponent $1/8S$. For the half-integer case, this approach predicts a dimerized phase with incommensurability and chiral order which is apparently not seen. It is possible that this signals a failure of the mean-field decoupling. For integer spins, there is good agreement with a large-S study\cite{12}. A possible candidate\cite{13} for the chiral critical phase for $S=1$ is CaV$_2$O$_4$ which has $J_1 \approx J_2$. This would require a large single-ion anisotropy\cite{14} to escape from the double Haldane phase.

Acknowledgements

We would like to thank T. Hikihara and M. Kikuchi for information on their recent results.

References

[1] F. D. M. Haldane, Phys. Rev. B25, 4925 (1982); Erratum ibid. 26, 5257 (1982); T. Tonegawa and I. Harada, J. Phys. Soc. Jpn. 56, 2153 (1987).
[2] A. A. Nersesyan, A. O. Gogolin, and F. H. L. Essler, Phys. Rev. Lett. 81, 910 (1998).
[3] Y. Nishiyama, Eur. Phys. J. B17, 295 (2000).
[4] T. Hikihara, M. Kaburagi, and H. Kawamura, Can. J. Phys. 79, 1587 (2001).
[5] M. Kaburagi, H. Kawamura, and T. Hikihara, J. Phys. Soc. Jpn. 68, 3185 (1999).
[6] T. Hikihara, M. Kaburagi, H. Kawamura, and T. Tonegawa, J. Phys. Soc. Jpn. 69, 259 (2000).
[7] T. Hikihara, M. Kaburagi, and H. Kawamura, Phys. Rev. B63, 174430 (2001).
[8] P. Lecheminant, Th. Jolicoeur and P. Azaria, Phys. Rev. B63, 174426 (2001).
[9] H. J. Schulz, Phys. Rev. B34, 6372 (1986).
[10] F. C. Alcaraz and A. Moreo, Phys. Rev. B46, 2896 (1992).
[11] A. Kitazawa, K. Nomura, and K. Okamoto, Phys. Rev. Lett. 76, 4038 (1996).
[12] A. K. Kolezhuk, Phys. Rev. B62, R6057 (2000).
[13] H. Kikuchi, M. Chiba and T. Kubo, Can. J. Phys. 79, 1551 (2001).
[14] T. Hikihara, Can. J. Phys. 79, 1593 (2001); J. Phys. Soc. Jpn. 71, 319 (2002).