Groups that have the same holomorph as a finite perfect group

Andrea Caranti1 & Francesca Dalla Volta2
Lecce, 5 September 2017

1Dipartimento di Matematica
Università degli Studi di Trento

2Dipartimento di Matematica e Applicazioni
Università degli Studi di Milano–Bicocca
Four questions
Let G be a group.
Let G be a group.

Consider the opposite group (G, \circ), where

$$x \circ y = yx.$$
Let G be a group.

Consider the opposite group (G, \circ), where

$$x \circ y = yx.$$

The opposite group of G is isomorphic to G.

Let G be a group.

Consider the opposite group (G, \circ), where

$$x \circ y = yx.$$

The opposite group of G is isomorphic to G via

$$\text{inv} : G \rightarrow (G, \circ)$$

$$x \mapsto x^{-1}$$
Let \(G = H \times K \) be a direct product.
Let $G = H \times K$ be a direct product.

Let (G, \circ) be obtained from G by replacing H with its opposite.
Let $G = H \times K$ be a direct product.

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$
Let $G = H \times K$ be a direct product.

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1x_1, x_2y_2).$$

Is (G, \circ) isomorphic to G?
Let $G = H \times K$ be a direct product.

Let (G, \circ) be obtained from G by replacing H with its opposite

$$(x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).$$

Is (G, \circ) isomorphic to G? Yes, via

$$H \times K \to (H \times K, \circ)$$

$$(x, y) \mapsto (x^{-1}, y)$$
Let $G = HK$ be a central product
Let $G = HK$ be a central product, so $H, K \leq G$, and $H \cap K \leq Z(G)$.
Let $G = HK$ be a central product, so $H, K \trianglelefteq G$, and $H \cap K \leq Z(G)$.

Let (G, \circ) be obtained from G by replacing H with its opposite.
Let $G = HK$ be a central product, so $H, K \subseteq G$, and $H \cap K \leq Z(G)$.

Let (G, \circ) be obtained from G by replacing H with its opposite.

Is (G, \circ) isomorphic to G?
Let $G = HK$ be a central product, so $H, K \trianglelefteq G$, and $H \cap K \leq Z(G)$.

Let (G, \circ) be obtained from G by replacing H with its opposite.

Is (G, \circ) isomorphic to G?

The answer is possibly not obvious.
Let $G = H_1 H_2 \cdots H_n$ be a central product
Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Characteristic subgroups
Let $G = H_1H_2\cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Assume all H_i are characteristic in G.
Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Assume all H_i are characteristic in G.

Let (G, \circ) be obtained from G by replacing H_1 with its opposite.
Let $G = H_1 H_2 \cdots H_n$ be a central product, so $H_i \trianglelefteq G$, and $H_i \cap H_j \leq Z(G)$ for $i \neq j$.

Assume all H_i are characteristic in G.

Let (G, \circ) be obtained from G by replacing H_1 with its opposite.

Are the H_i still characteristic in (G, \circ)?
(Multiple) holomorphs
We will be discussing *regular subgroups of the holomorph of a group.*
We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to:

- Skew right braces, which are equivalent to these subgroups.
- Hopf Galois extensions, which are linked to these subgroups.
 - C. Greither, B. Pareigis. Hopf Galois theory for separable field extensions. *J. Algebra* 106 (1987), 239–258.
 - N. P. Byott. Uniqueness of Hopf Galois structure of separable field extensions. *Comm. Algebra* 24 (1996), 3217–3228.
We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

- **skew right braces**,

\[(ab) \circ c = (a \circ c)c^{-1}(b \circ c).\]

which are equivalent to these subgroups.
We will be discussing regular subgroups of the holomorph of a group. Therefore we have connections to

- skew right braces,

\[(ab) \circ c = (a \circ c)c^{-1}(b \circ c)\]

which are equivalent to these subgroups.

- Hopf Galois extensions, which are linked to these subgroups:
We will be discussing *regular subgroups of the holomorph* of a group. Therefore we have connections to

- **skew right braces**,

\[(ab) \circ c = (a \circ c)c^{-1}(b \circ c).\]

which are equivalent to these subgroups.

- **Hopf Galois extensions**, which are linked to these subgroups:

C. Greither, B. Pareigis

Hopf Galois theory for separable field extensions

J. Algebra **106** (1987), 239–258
We will be discussing regular subgroups of the holomorph of a group. Therefore we have connections to

- skew right braces,

\[(ab) \circ c = (a \circ c)c^{-1}(b \circ c)\]

which are equivalent to these subgroups.

- Hopf Galois extensions, which are linked to these subgroups:

C. Greither, B. Pareigis

Hopf Galois theory for separable field extensions

J. Algebra **106** (1987), 239–258

N. P. Byott

Uniqueness of Hopf Galois structure of separable field extensions

Comm. Algebra **24** (1996), 3217–3228
The Holomorph

The holomorph of a group G is the natural semidirect product $\text{Aut}(G)G$.
The Holomorph

The holomorph of a group \(G \) is the natural semidirect product \(\text{Aut}(G)G \).

If \(S(G) \) is the group of permutations on the set \(G \), and

\[
\rho : G \rightarrow S(G) \\
g \mapsto (x \mapsto xg)
\]

is the right regular representation

is (isomorphic to) the holomorph of \(G \). More generally, if \(N \leq S(G) \) is a regular subgroup, then

\[
N S(G) (N) \cong \text{Hol}(N)
\]
The holomorph of a group G is the natural semidirect product $\text{Aut}(G)G$.

If $S(G)$ is the group of permutations on the set G, and

$$\rho : G \to S(G)$$

$$g \mapsto (x \mapsto xg)$$

is the right regular representation, then

$$N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G)$$

is (isomorphic to) the holomorph of G.
The Holomorph

The holomorph of a group G is the natural semidirect product $\text{Aut}(G)G$.

If $S(G)$ is the group of permutations on the set G, and

$$\rho : G \rightarrow S(G) \quad g \mapsto (x \mapsto xg)$$

is the right regular representation, then

$$N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G)$$

is (isomorphic to) the holomorph of G.

More generally, if $N \leq S(G)$ is a regular subgroup
The holomorph of a group G is the natural semidirect product $\text{Aut}(G)G$.

If $S(G)$ is the group of permutations on the set G, and

$$\rho : G \rightarrow S(G)$$

$$g \mapsto (x \mapsto xg)$$

is the right regular representation, then

$$N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G)$$

is (isomorphic to) the holomorph of G.

More generally, if $N \leq S(G)$ is a regular subgroup, then

$$N_{S(G)}(N)$$

is isomorphic to the holomorph of N.
So if $N \leq S(G)$ is regular
So if $N \leq S(G)$ is regular, we may say
So if $N \leq S(G)$ is regular, we may say *(warning: abuse of notation ahead)*
So if $N \leq S(G)$ is regular, we may say (warning: abuse of notation ahead) that G and N have the same holomorph.
So if $N \leq S(G)$ is regular, we may say \textbf{(warning: abuse of notation ahead)} that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G).$$
So if $N \leq S(G)$ is regular, we may say (warning: abuse of notation ahead) that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)
So if $N \leq S(G)$ is regular, we may say *(warning: abuse of notation ahead)* that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph
So if $N \leq S(G)$ is regular, we may say (\textbf{warning: abuse of notation ahead}) that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic.
So if $N \leq S(G)$ is regular, we may say (warning: abuse of notation ahead) that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \operatorname{Aut}(G)\rho(G) = \operatorname{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic, then $\rho(G)$ and N are conjugate under an element of

$$N_{S(G)}(\operatorname{Hol}(G)) = N_{S(G)}(N_{S(G)}(\rho(G))),$$

the multiple (double) holomorph of G
So if $N \leq S(G)$ is regular, we may say \((\text{warning: abuse of notation ahead})\) that G and N have the same holomorph if

$$N_{S(G)}(N) = N_{S(G)}(\rho(G)) = \text{Aut}(G)\rho(G) = \text{Hol}(G).$$

Note that such G and N need not be isomorphic. (Dihedral vs. Quaternionic)

If G and N have the same holomorph, and G and N are isomorphic, then $\rho(G)$ and N are conjugate under an element of

$$N_{S(G)}(\text{Hol}(G)) = N_{S(G)}(N_{S(G)}(\rho(G))),$$

the multiple (double) holomorph of G, and the group

$$T(G) = N_{S(G)}(\text{Hol}(G))/\text{Hol}(G)$$

acts regularly on the set

$$\mathcal{H}(G) = \{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \text{Hol}(G) \text{ and } N \cong G \}.$$
Three sets

In increasing order

\[H(G) = \{ N \leq S(G) : N \text{ is regular}, N \cap S(G) = \text{Hol}(G) \} \subseteq I(G) = \{ N \leq S(G) : N \text{ is regular} \} \subseteq J(G) = \{ N \leq S(G) : N \text{ is regular, } N \triangleright Hol(G) \} \]
In increasing order

\[\mathcal{H}(G) = \{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \text{Hol}(G) \text{ and } N \cong G \} \]
Three sets

In increasing order

\[\mathcal{H}(G) = \{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \text{Hol}(G) \text{ and } N \cong G \} \]

\[\cap \]

\[\mathcal{I}(G) = \{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \text{Hol}(G) \} \]

The latter appears to be easier to compute.
Three sets

In increasing order

\[\mathcal{H}(G) = \{ N \leq S(G) : N \text{ is regular}, N_{S(G)}(N) = \text{Hol}(G) \text{ and } N \cong G \} \]
\[\subseteq I(G) = \{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \text{Hol}(G) \} \]
\[\subseteq J(G) = \{ N \leq S(G) : N \text{ is regular, and } N \sqsubseteq \text{Hol}(G) \}. \]
Three sets

In increasing order

\[\mathcal{H}(G) = \{ N \leq S(G) : N \text{ is regular, } N_{S(G)}(N) = \text{Hol}(G) \text{ and } N \cong G \} \]

\[\cap \]

\[\mathcal{I}(G) = \{ N \leq S(G) : N \text{ is regular, and } N_{S(G)}(N) = \text{Hol}(G) \} \]

\[\cap \]

\[\mathcal{J}(G) = \{ N \leq S(G) : N \text{ is regular, and } N \trianglelefteq \text{Hol}(G) \}. \]

The latter appears to be easier to compute.
Describing the regular (normal) subgroups of the holomorph
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$.
Regular subgroups of the holomorph

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Here $\cdot \circ y = x \circ y y$ is a group operation on G, $\cdot \circ : (G; \circ) \to N$ is an isomorphism, $x \circ (y) = x \circ (y) = x \circ (y) y = x \circ y$; to be compared with $x \circ (y) = xy$.

10/22
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G) \rho(G) \ni \nu(g) = \gamma(g) \rho(g),$$
Regular subgroups of the holomorph

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N.
Regular subgroups of the holomorph

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$$
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ can be written uniquely as $\nu(g)$, with $1^\nu(g) = g$.

Now

$$\text{Aut}(G) \rho(G) \ni \nu(g) = \gamma(g) \rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)} y) = \gamma(x) \gamma(y).$$

Here
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on G,
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \rightarrow \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on G,
- $\nu : (G, \circ) \rightarrow N$ is an isomorphism,
Regular subgroups of the holomorph

An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ can be written uniquely as $\nu(g)$, with $1^{\nu(g)} = g$.

Now

$$\text{Aut}(G) \rho(G) \ni \nu(g) = \gamma(g) \rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)}y) = \gamma(x) \gamma(y).$$

Here

- $\circ y = x^{\gamma(y)}y$ is a group operation on G,
- $\nu : (G, \circ) \to N$ is an isomorphism,
- $x^{\nu(y)} = x^{\gamma(y) \rho(y)} = x^{\gamma(y)} y = x \circ y$,
- $\gamma(x^{\gamma(y)}y) = \gamma(x) \gamma(y)$.

10/22
An element of the regular subgroup $N \leq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ can be written uniquely as $\nu(g)$, with $1_{\nu(g)} = g$.

Now

$$\text{Aut}(G)\rho(G) \ni \nu(g) = \gamma(g)\rho(g),$$

for some

$$\gamma : G \to \text{Aut}(G)$$

which completely describes N. Such γ are characterized by

$$\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y).$$

Here

- $x \circ y = x^{\gamma(y)}y$ is a group operation on G,
- $\nu : (G, \circ) \to N$ is an isomorphism,
- $x^{\nu(y)} = x^{\gamma(y)}\rho(y) = x^{\gamma(y)}y = x \circ y$,
 - to be compared with $x^{\rho(y)} = xy$.
A regular normal subgroup $N \trianglelefteq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ is described by the map

$$\gamma : G \to \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.
A regular normal subgroup $N \trianglelefteq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ is described by the map

$$\gamma : G \to \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g) \rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by
A regular normal subgroup $N \trianglelefteq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ is described by the map

$$\gamma : G \to \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g) \rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for } \beta \in \text{Aut}(G),$$
A regular normal subgroup $N \trianglelefteq \operatorname{Hol}(G) = \operatorname{Aut}(G) \rho(G)$ is described by the map

$$\gamma : G \rightarrow \operatorname{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g) \rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

$$\gamma(x^\beta) = (\gamma(x))^\beta \text{ for } \beta \in \operatorname{Aut}(G),$$

and
A regular normal subgroup $N \trianglelefteq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ is described by the map

$$\gamma : G \to \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1_{\nu(g)} = g$.

γ is characterized by

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for } \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y),$$
A regular normal subgroup $N \trianglelefteq \text{Hol}(G) = \text{Aut}(G)\rho(G)$ is described by the map

$$\gamma : G \rightarrow \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g)\rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G),$$

and

$$\gamma(yx) = \gamma(x)\gamma(y),$$

to be compared with $\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y)$.
A regular normal subgroup \(N \trianglelefteq \text{Hol}(G) = \text{Aut}(G)\rho(G) \) is described by the map

\[
\gamma : G \rightarrow \text{Aut}(G)
\]
such that

\[
N \ni \nu(g) = \gamma(g)\rho(g),
\]
where \(1^{\nu(g)} = g \).

\(\gamma \) is characterized by

\[
\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G),
\]
and

\[
\gamma(yx) = \gamma(x)\gamma(y),
\]
to be compared with \(\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y) \).

For the braces:
A regular normal subgroup \(N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G) \) is described by the map

\[
\gamma : G \to \text{Aut}(G)
\]

such that

\[
N \ni \nu(g) = \gamma(g) \rho(g),
\]

where \(1^{\nu(g)} = g \).

\(\gamma \) is characterized by

\[
\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for } \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(xy) = \gamma(x)\gamma(y),
\]

to be compared with \(\gamma(x^{\gamma(y)}y) = \gamma(x)\gamma(y) \).

For the braces:

\[
\text{Aut}(G) \leq \text{Aut}(G, \circ).
\]
A regular normal subgroup $N \leq \text{Hol}(G) = \text{Aut}(G) \rho(G)$ is described by the map

$$\gamma : G \to \text{Aut}(G)$$

such that

$$N \ni \nu(g) = \gamma(g) \rho(g),$$

where $1^{\nu(g)} = g$.

γ is characterized by

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y),$$

to be compared with $\gamma(x^{\gamma(y)} y) = \gamma(x)\gamma(y)$.

For the braces:

$$\text{Aut}(G) \leq \text{Aut}(G, \circ).$$
In

A. Caranti and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra 481 (2017), 327–347
(Aside) Groups and rings

In

A. Caranti and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra **481** (2017), 327–347

we have redone the work of
In

A. Caranti and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra **481** (2017), 327–347

we have redone the work of

W. H. Mills

Multiple holomorphs of finitely generated abelian groups

Trans. Amer. Math. Soc. **71** (1951), 379–392
In

A. Caranti and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra 481 (2017), 327–347

we have redone the work of

W. H. Mills

Multiple holomorphs of finitely generated abelian groups

Trans. Amer. Math. Soc. 71 (1951), 379–392

Here the condition $\text{Aut}(G) \leq \text{Aut}(G, \circ)$ translates into the study of the commutative rings $(G, +, \cdot)$
In

A. Caranti and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group

J. Algebra 481 (2017), 327–347

we have redone the work of

W. H. Mills

Multiple holomorphs of finitely generated abelian groups

Trans. Amer. Math. Soc. 71 (1951), 379–392

Here the condition $\text{Aut}(G) \leq \text{Aut}(G, \circ)$ translates into the study of the commutative rings $(G, +, \cdot)$ such that every automorphism of the group $(G, +)$ is also an automorphism of the ring $(G, +, \cdot)$.
\[\iota : G \rightarrow \text{Inn}(G) \leq \text{Aut}(G) \]

\[g \mapsto (x \mapsto g^{-1}xg) \]
\[\iota : G \rightarrow \text{Inn}(G) \leq \text{Aut}(G) \]
\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \trianglelefteq \text{Hol}(G) \), where \(\lambda \) is the left regular representation.
\(\iota : G \rightarrow \text{Inn}(G) \leq \text{Aut}(G) \)

\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \trianglelefteq \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).)
\[\iota : G \rightarrow \text{Inn}(G) \leq \text{Aut}(G) \]

\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \trianglelefteq \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).) Then
\(\iota : G \to \text{Inn}(G) \leq \text{Aut}(G) \)

\(g \mapsto (x \mapsto g^{-1}xg) \)

Take \(N = \lambda(G) \leq \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).) Then

- \(\lambda(x) = \gamma(x)\rho(x) \)
\[\iota : G \to \text{Inn}(G) \leq \text{Aut}(G) \]
\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \trianglelefteq \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).) Then

- \(\lambda(x) = \gamma(x)\rho(x) \) for \(\gamma(x) = \iota(x^{-1}) \)
\[\iota : G \rightarrow \text{Inn}(G) \leq \text{Aut}(G) \]
\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \triangleleft \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).) Then

- \(\lambda(x) = \gamma(x)\rho(x) \) for \(\gamma(x) = \iota(x^{-1}) \), as

\[y^{\iota(x^{-1})}\rho(x) = (yx^{-1})x = xy = y^{\lambda(x)}. \]
\[\iota : G \to \text{Inn}(G) \leq \text{Aut}(G) \]

\[g \mapsto (x \mapsto g^{-1}xg) \]

Take \(N = \lambda(G) \trianglelefteq \text{Hol}(G) \), where \(\lambda \) is the left regular representation. (Actually, \(N_{S(G)}(\lambda(G)) = \text{Hol}(G) \).) Then

- \(\lambda(x) = \gamma(x)\rho(x) \) for \(\gamma(x) = \iota(x^{-1}) \), as

\[y^{\iota(x^{-1})}\rho(x) = (xyx^{-1})x = xy = y^{\lambda(x)}. \]

- Here \(y \circ x = y^{\gamma(x)}x = y^{x^{-1}}x = xy \) yields the opposite group.
Commutators and perfect groups
If \(N \trianglelefteq \text{Hol}(G) \) is regular, then \(\gamma : G \rightarrow \text{Aut}(G) \) satisfies

\[
\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G),
\]
and

This suggests to look at perfect groups \(G = G' \), where all values of

\[
\text{are inner automorphisms.}
\]
If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\gamma : G \to \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y).$$
If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\gamma : G \to \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for } \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y).$$

These yield

$$\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$$
If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\gamma : G \to \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y).$$

These yield

$$\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

$$\gamma([h, g^{-1}]) = \iota([\gamma(g), h]).$$
If $N \subseteq \text{Hol}(G)$ is regular, then $\gamma : G \to \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \text{ for } \beta \in \text{Aut}(G),$$

and

$$\gamma(yx) = \gamma(x)\gamma(y).$$

These yield

$$\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

$$\gamma([h, g^{-1}]) = \iota([\gamma(g), h]).$$

This suggests to look at perfect groups $G = G'$.
If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\gamma : G \rightarrow \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for} \quad \beta \in \text{Aut}(G),$$

and

$$\gamma(yx) = \gamma(x)\gamma(y).$$

These yield

$$\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$$

When $\beta = \nu(h)$, for some $h \in G$, we obtain

$$\gamma([h, g^{-1}]) = \nu([\gamma(g), h]).$$

This suggests to look at perfect groups $G = G'$, where all values of γ are inner automorphisms.
Commutators

If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\gamma : G \to \text{Aut}(G)$ satisfies

$$\gamma(x^\beta) = \gamma(x)^\beta \quad \text{for } \beta \in \text{Aut}(G), \quad \text{and} \quad \gamma(yx) = \gamma(x)\gamma(y).$$

These yield

$$\gamma([\beta, g^{-1}]) = [\gamma(g), \beta].$$

When $\beta = \iota(h)$, for some $h \in G$, we obtain

$$\gamma([h, g^{-1}]) = \iota([\gamma(g), h]).$$

This suggests to look at perfect groups $G = G'$, where all values of γ are inner automorphisms.
\[\gamma([h, g^{-1}]) = \iota([\gamma(g), h]) \]
Perfect groups

\[\gamma([h, g^{-1}]) = \nu([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]
\[
\gamma([h, g^{-1}]) = \nu([\gamma(g), h])
\]
yields
\[
[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}.
\]
Key fact: central automorphisms of perfect groups are trivial.
Perfect groups

\[\gamma([h, g^{-1}]) = \iota([\gamma(g), h]) \]

yields
\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then Z(G) ≤ ker(\gamma).
γ([h, g^{-1}]) = i([γ(g), h])
yields
[γ(g), h] ≡ [g^{-1}, γ(h^{-1})] \ (mod \ Z(G)).

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then Z(G) ≤ ker(γ).

Proof.
Perfect groups

\[\gamma([h, g^{-1}]) = \iota([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then Z(G) \(\leq \) ker(\(\gamma \)).

Proof.

If \(g \in Z(G) \)
Perfect groups

\[\gamma([h, g^{-1}]) = \iota([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then Z(G) \leq \ker(\gamma).

Proof.

If \(g \in Z(G), \) the relation \[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)} \]
Perfect groups

\[\gamma([h, g^{-1}]) = \nu([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If G is a perfect group, then Z(G) \leq \ker(\gamma).

Proof.

If \(g \in Z(G) \), the relation \([\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)} \) yields

\[[\gamma(g), h] \in Z(G) \]
Perfect groups

\[\gamma([h, g^{-1}]) = \nu([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If \(G \) *is a perfect group, then* \(Z(G) \leq \ker(\gamma) \).

Proof.

If \(g \in Z(G) \), the relation \([\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)} \)

yields

\[[\gamma(g), h] \in Z(G) \]

i.e. \(\gamma(g) \) is a central automorphism of \(G \) \(\square \)
Perfect groups

\[\gamma([h, g^{-1}]) = \nu([\gamma(g), h]) \]

yields

\[[\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)}. \]

Key fact: central automorphisms of perfect groups are trivial.

Lemma

If \(G \) is a perfect group, then \(Z(G) \leq \ker(\gamma) \).

Proof.

If \(g \in Z(G) \), the relation \([\gamma(g), h] \equiv [g^{-1}, \gamma(h^{-1})] \pmod{Z(G)} \) yields

\[[\gamma(g), h] \in Z(G) \]

i.e. \(\gamma(g) \) is a central automorphism of \(G \), and thus \(\gamma(g) = 1 \).
The regular normal subgroups of the holomorph of a perfect group
Two decompositions

Theorem

Let G be a finite perfect group.

- If $N \trianglelefteq \text{Hol}(G)$ is regular, then $\text{Inn}(G) = (G) \times (\ker)$.

- If G is centreless, then $G = (\text{Hol}(G)) \times \ker$ is a product of two characteristic subgroups.

In the general case, $(h) = (h - 1)$; for $h \in (\text{Hol}(G))$, follows from $(x \circ y) = (yx)$.

16/22
Two decompositions

Theorem

Let G be a finite perfect group.
Two decompositions

Theorem

Let G be a finite perfect group.

- If $N \trianglelefteq \text{Hol}(G)$ is regular, then
 \[
 \text{Inn}(G) = \gamma(G) \times \nu(\ker(\gamma)).
 \]
Two decompositions

Theorem

Let G be a finite perfect group.

- If $N \trianglelefteq \text{Hol}(G)$ is regular, then
 \[\text{Inn}(G) = \gamma(G) \times \nu(\ker(\gamma)). \]

- If G is centreless
Two decompositions

Theorem
Let G be a finite perfect group.

- *If $N \trianglelefteq \text{Hol}(G)$ is regular, then*

 $$\text{Inn}(G) = \gamma(G) \times \iota(\ker(\gamma)).$$

- *If G is centreless, then*

 $$G = \iota^{-1}(\gamma(G)) \times \ker(\gamma)$$

 is a product of two characteristic subgroups.
Two decompositions

Theorem

Let G be a finite perfect group.

- *If $N \unlhd \text{Hol}(G)$ is regular, then*

 $$\text{Inn}(G) = \gamma(G) \times \iota(\ker(\gamma)).$$

- *If G is centreless, then*

 $$G = \iota^{-1}(\gamma(G)) \times \ker(\gamma)$$

 is a product of two characteristic subgroups.

In the general case,

$$\gamma(h) = \iota(h^{-1}), \quad \text{for } h \in \iota^{-1}(\gamma(G)),$$
Two decompositions

Theorem

Let G be a finite perfect group.

- If $N \trianglelefteq \text{Hol}(G)$ is regular, then
 $$\text{Inn}(G) = \gamma(G) \times \nu(\ker(\gamma)).$$

- If G is centreless, then
 $$G = \nu^{-1}(\gamma(G)) \times \ker(\gamma)$$
 is a product of two characteristic subgroups.

In the general case,

$$\gamma(h) = \nu(h^{-1}), \quad \text{for } h \in \nu^{-1}(\gamma(G)),$$

follows from $\gamma(x \circ y) = \gamma(yx)$.
Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group
Centreless groups: how to obtain all regular normal subgroups N of the holomorph

Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group be

$$G = L_1 \times \cdots \times L_n.$$
Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group be

$$G = L_1 \times \cdots \times L_n.$$

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.$$

• is trivial on $K = \ker(\)$ and $(h) = (h^{-1})$ on H.

• $(G; \circ) \cong N$ is obtained from $G = H \times K$ by replacing H with its opposite, as in Question 2:

$$(x_1; x_2) \circ (y_1; y_2) = (y_1 x_1; x_2 y_2).$$

• All these N are isomorphic to G (see Question 2), so that $T(G)$ is elementary abelian of order 2^n.

Centreless groups: how to obtain all regular normal subgroups N of the holomorph
Centreless groups: how to obtain all regular normal subgroups N of the holomorph

Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group be

$$G = L_1 \times \cdots \times L_n.$$

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq \text{Hol}(G)$:
Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group be
\[G = L_1 \times \cdots \times L_n.\]

Divide the L_i in two groups, say,
\[H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.\]

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq \text{Hol}(G)$:
- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.

Centreless groups: how to obtain all regular normal subgroups N of the holomorph

Let the Krull-Remak decomposition of G as an Aut(G)-group be

$$G = L_1 \times \cdots \times L_n.$$

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq \text{Hol}(G)$:

- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.
- $(G, \circ) \cong N$ is obtained from $G = H \times K$ by replacing H with its opposite, as in Question 2:

$$(x_1, x_2) \circ (y_1, y_2) = (y_1x_1, x_2y_2).$$
Centreless groups: how to obtain all regular normal subgroups N of the holomorph

Let the Krull-Remak decomposition of G as an $\text{Aut}(G)$-group be

$$G = L_1 \times \cdots \times L_n.$$

Divide the L_i in two groups, say,

$$H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.$$

Now the ordered decomposition $G = H \times K$ corresponds to a regular subgroup $N \trianglelefteq \text{Hol}(G)$:

- γ is trivial on $K = \ker(\gamma)$ and $\gamma(h) = \iota(h^{-1})$ on H.
- $(G, \circ) \cong N$ is obtained from $G = H \times K$ by replacing H with its opposite, as in Question 2:

$$(x_1, x_2) \circ (y_1, y_2) = (y_1x_1, x_2y_2).$$

- All these N are isomorphic to G (see Question 2), so that
Centreless groups: how to obtain all regular normal subgroups \(N \) of the holomorph

Let the Krull-Remak decomposition of \(G \) as an \(\text{Aut}(G) \)-group be

\[
G = L_1 \times \cdots \times L_n.
\]

Divide the \(L_i \) in two groups, say,

\[
H = L_1 \times \cdots \times L_m, \quad K = L_{m+1} \times \cdots \times L_n.
\]

Now the ordered decomposition \(G = H \times K \) corresponds to a regular subgroup \(N \trianglelefteq \text{Hol}(G) \):

- \(\gamma \) is trivial on \(K = \ker(\gamma) \) and \(\gamma(h) = \iota(h^{-1}) \) on \(H \).
- \((G, \circ) \cong N\) is obtained from \(G = H \times K \) by replacing \(H \) with its opposite, as in Question 2:
 \[
 (x_1, x_2) \circ (y_1, y_2) = (y_1 x_1, x_2 y_2).
 \]
- All these \(N \) are isomorphic to \(G \) (see Question 2), so that
 - \(T(G) \) is elementary abelian of order \(2^n \).
The general case

When G is allowed to have a nontrivial centre, things become more complicated.
When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable. The regular subgroups $N \unlhd \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites. But this time

- the groups $(G; \circ) = N$ need not have the same automorphism group of G;
- even if they do, $(G; \circ) = N$ need not be isomorphic to G.

Question 4: in this case $N_S(G)(N) > \text{Hol}(G)$;
Question 3: in this case $N_S(G)(N) = \text{Hol}(G)$ but $N \not\sim G$.

18/22
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \supseteq Z(G)$ characteristic, centrally indecomposable.
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \supseteq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \trianglelefteq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a **central product decomposition**

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \trianglelefteq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \trianglelefteq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time

- the groups $(G, \circ) \cong N$ need not have the same automorphism group of G:
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \trianglelefteq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time

- the groups $(G, \circ) \cong N$ need not have the same automorphism group of G:
 - Question 4: in this case $N_{S(G)}(N) > \text{Hol}(G)$;
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a **central product decomposition**

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \leq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time

- the groups $(G, \circ) \cong N$ need not have the same automorphism group of G:
 - Question 4: in this case $N_{S(G)}(N) > \text{Hol}(G)$;
 - even if they do, $(G, \circ) \cong N$ need not be isomorphic to G:
The general case

When G is allowed to have a nontrivial centre, things become more complicated. One still has a central product decomposition

$$G = L_1 \cdots L_n,$$

with the $L_i \geq Z(G)$ characteristic, centrally indecomposable.

The regular subgroups $N \trianglelefteq \text{Hol}(G)$ are still obtained by replacing some of the L_i with their opposites.

But this time

- the groups $(G, \circ) \cong N$ need not have the same automorphism group of G:
 - Question 4: in this case $N_{S(G)}(N) > \text{Hol}(G);$
 - even if they do, $(G, \circ) \cong N$ need not be isomorphic to G:
 - Question 3: in this case $N_{S(G)}(N) = \text{Hol}(G)$ but $N \not\cong G.$
Examples
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic,
- perfect,
- centrally indecomposable, and such that
- $|\mathbb{Z}(Q_p)| = 3$,
- $\text{Aut}(Q_p)$ acts trivially on $\mathbb{Z}(Q_p)$.

These are obtained from $\text{SL}(3; p)$ by killing the transpose inverse automorphism via the insertion of a non self-dual module underneath.
Killing automorphisms

For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic,
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that

$|\mathbb{Z}(Q_p)| = 3$ and $\text{Aut}(Q_p)$ acts trivially on $\mathbb{Z}(Q_p)$.
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
For primes \(p \equiv 1 \pmod{3} \), there is a family of groups \(Q_p \) which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- \(|Z(Q_p)| = 3 \), and
- \(\text{Aut}(Q_p) \) acts trivially on \(Z(Q_p) \).
For primes \(p \equiv 1 \pmod{3} \), there is a family of groups \(Q_p \) which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- \(|Z(Q_p)| = 3 \), and
- \(\text{Aut}(Q_p) \) acts trivially on \(Z(Q_p) \).

These are obtained from \(\text{SL}(3, p) \).
Killing automorphisms

For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|\mathbb{Z}(Q_p)| = 3$, and
- $\text{Aut}(Q_p)$ acts trivially on $\mathbb{Z}(Q_p)$.

These are obtained from $\text{SL}(3, p)$ by killing the transpose inverse automorphism
For primes $p \equiv 1 \pmod{3}$, there is a family of groups Q_p which are

- pairwise non-isomorphic, even modulo the centre,
- perfect,
- centrally indecomposable, and such that
- $|Z(Q_p)| = 3$, and
- $\text{Aut}(Q_p)$ acts trivially on $Z(Q_p)$.

These are obtained from $\text{SL}(3, p)$ by killing the transpose inverse automorphism via the insertion of a non self-dual module underneath.
Example 1 (Negative answer to Question 3)

\[G = HK, \text{ a central product of two non-isomorphic } Q_p, \text{ with } Z(H) \text{ amalgamated with } Z(K). \]
Example 1 (Negative answer to Question 3)

\[G = HK, \] a central product of two non-isomorphic \(Q_p \), with \(Z(H) \) amalgamated with \(Z(K) \). (Both have order 3.)
Example 1 (Negative answer to Question 3)

\[G = HK, \text{ a central product of two non-isomorphic } Q_p, \text{ with } Z(H) \text{ amalgamated with } Z(K). \text{ (Both have order 3.)} \]

\((G, \circ)\), obtained by replacing \(H\) with its opposite, is not isomorphic to \(G\).
Example 1 (Negative answer to Question 3)

\[G = HK, \text{ a central product of two non-isomorphic } Q_p, \text{ with } Z(H) \text{ amalgamated with } Z(K). \text{ (Both have order 3.)} \]

\((G, \circ), \text{ obtained by replacing } H \text{ with its opposite, is not isomorphic to } G.\)

An isomorphism of \(G \) to \((G, \circ)\) would induce
Example 1 (Negative answer to Question 3)

\[G = HK, \text{ a central product of two non-isomorphic } Q_p, \text{ with } Z(H) \]
\[\text{amalgamated with } Z(K). \text{ (Both have order 3.)} \]

\((G, \circ), \text{ obtained by replacing } H \text{ with its opposite, is not isomorphic to } G.\)

An isomorphism of \(G\) to \((G, \circ)\) would induce

- an automorphism of \(K\)
Example 1 (Negative answer to Question 3)

\[G = HK, \] a central product of two non-isomorphic \(Q_p \), with \(Z(H) \) amalgamated with \(Z(K) \). (Both have order 3.)

\((G, \circ)\), obtained by replacing \(H \) with its opposite, is not isomorphic to \(G \).

An isomorphism of \(G \) to \((G, \circ)\) would induce

- an automorphism of \(K \)
 - thereby inducing the identity on \(Z(K) \), and
Example 1 (Negative answer to Question 3)

\[G = HK, \text{ a central product of two non-isomorphic } Q_p, \text{ with } Z(H) \text{ amalgamated with } Z(K). \text{ (Both have order 3.)} \]

\((G, \circ), \text{ obtained by replacing } H \text{ with its opposite, is not isomorphic to } G.\)

An isomorphism of \(G\) to \((G, \circ)\) would induce

- an automorphism of \(K\)
 - thereby *inducing the identity on* \(Z(K)\), and
- an anti-automorphism of \(H\)
Example 1 (Negative answer to Question 3)

$G = HK$, a central product of two non-isomorphic Q_p, with $Z(H)$ amalgamated with $Z(K)$. (Both have order 3.)

(G, \circ), obtained by replacing H with its opposite, is not isomorphic to G.

An isomorphism of G to (G, \circ) would induce

- an automorphism of K
 - thereby inducing the identity on $Z(K)$, and

- an anti-automorphism of H
 - which is just the composition of an automorphism of H with inversion,
Example 1 (Negative answer to Question 3)

$G = HK$, a central product of two non-isomorphic Q_p, with $Z(H)$ amalgamated with $Z(K)$. (Both have order 3.)

(G, \circ), obtained by replacing H with its opposite, is not isomorphic to G.

An isomorphism of G to (G, \circ) would induce

- an automorphism of K
 - thereby inducing the identity on $Z(K)$, and

- an anti-automorphism of H
 - which is just the composition of an automorphism of H with inversion,
 - thereby inducing inversion on $Z(H)$.
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), with amalgamated centres.
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\approx M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
Example 2 (Negative answer to Question 4)

\(G = L_1 L_2 M, \) a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M, \) with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1). \)
- Fix an isomorphism \(\zeta : L_1 \to L_2, \) and define \(z_2 = z_1^\zeta \in L_2. \)
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M, \) with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \rightarrow L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \).

Then every isomorphism \(L_1 \rightarrow L_2 \) takes \(z_1 \) to \(z_2 \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \rightarrow L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \). Then every isomorphism \(L_1 \rightarrow L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \to L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \). Then every isomorphism \(L_1 \to L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
- Then \(M \) and the \(L_i \) are characteristic in \(G \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \cong M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \to L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \).
 Then every isomorphism \(L_1 \to L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
- Then \(M \) and the \(L_i \) are characteristic in \(G \): an automorphism of \(G \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \ncong M, \) with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \to L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \).
 Then every isomorphism \(L_1 \to L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
- Then \(M \) and the \(L_i \) are characteristic in \(G \): an automorphism of \(G \)
 - takes \(M \) to \(M \)
Example 2 (Negative answer to Question 4)

$G = L_1L_2M$, a central product of Q_p's, with $L_1 \cong L_2 \cong M$, with amalgamated centres.

- Let z_1 generate $Z(L_1)$.
- Fix an isomorphism $\zeta : L_1 \to L_2$, and define $z_2 = z_1^\zeta \in L_2$. Then every isomorphism $L_1 \to L_2$ takes z_1 to z_2.
- Choose the amalgamation so that $z_2 = z_1^{-1}$.
- Then M and the L_i are characteristic in G: an automorphism of G
 - takes M to M, and thus fixes the centre elementwise;
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \to L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \).

 Then every isomorphism \(L_1 \to L_2 \) takes \(z_1 \) to \(z_2 \).

- Choose the amalgamation so that \(z_2 = z_1^{-1} \).

- Then \(M \) and the \(L_i \) are characteristic in \(G \): an automorphism of \(G \)

 - takes \(M \) to \(M \), and thus fixes the centre elementwise;
 - if it takes \(L_1 \) to \(L_2 \), then it takes \(z_1 \) to \(z_2 \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), with amalgamated centres.

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \to L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \).
 Then every isomorphism \(L_1 \to L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
- Then \(M \) and the \(L_i \) are characteristic in \(G \): an automorphism of \(G \)
 - takes \(M \) to \(M \), and thus fixes the centre elementwise;
 - if it takes \(L_1 \) to \(L_2 \), then it takes \(z_1 \) to \(z_2 = z_1^{-1} \).
Example 2 (Negative answer to Question 4)

\[G = L_1 L_2 M, \text{ a central product of } Q_p \text{'s, with } L_1 \cong L_2 \not\cong M, \text{ with amalgamated centres.} \]

- Let \(z_1 \) generate \(Z(L_1) \).
- Fix an isomorphism \(\zeta : L_1 \rightarrow L_2 \), and define \(z_2 = z_1^\zeta \in L_2 \). Then every isomorphism \(L_1 \rightarrow L_2 \) takes \(z_1 \) to \(z_2 \).
- Choose the amalgamation so that \(z_2 = z_1^{-1} \).
- Then \(M \) and the \(L_i \) are characteristic in \(G \): an automorphism of \(G \)
 - takes \(M \) to \(M \), and thus fixes the centre elementwise;
 - if it takes \(L_1 \) to \(L_2 \), then it takes \(z_1 \) to \(z_2 = z_1^{-1} \), i.e. it inverts the centre.
Example 2 (continued)

$G = L_1 L_2 M$, a central product of Q_p's, with $L_1 \cong L_2 \not\cong M$, amalgamating $z_2 = z_1^{-1}$.
Example 2 (continued)

\(G = L_1 L_2 M \), a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.
Example 2 (continued)

\[G = L_1L_2M, \text{ a central product of } Q_p \text{'s, with } L_1 \cong L_2 \not\cong M, \]

amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ) \) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ) \) which
Example 2 (continued)

\[G = L_1 L_2 M, \text{ a central product of } Q_p 's, \text{ with } L_1 \cong L_2 \not\cong M, \]

amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
Example 2 (continued)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \).
Example 2 (continued)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).
Example 2 (continued)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \nsim M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).

In fact for \(x, y \in L_1 \)

\[
(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^\zeta x^\zeta)^{\text{ inv}} = x^{\zeta \text{ inv}} y^{\zeta \text{ inv}},
\]
Example 2 (continued)

\[G = L_1 L_2 M, \]
a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \neq M \),
amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ) \) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ) \) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).

In fact for \(x, y \in L_1 \)

\[(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^\zeta x^\zeta)^{\text{ inv}} = x^{\zeta \text{ inv}} y^{\zeta \text{ inv}}, \]

and

\[z_1^{\zeta \text{ inv}} \]
Example 2 (continued)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \),
amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1\) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M\),
- takes \(L_1\) to \(L_2\), acting like \(\zeta\ inv\) on \(L_1\).

In fact for \(x, y \in L_1\)

\[(x \circ y)^{\zeta \ inv} = (yx)^{\zeta \ inv} = (y^\zeta x^\zeta)^{\zeta \ inv} = x^{\zeta \ inv} y^{\zeta \ inv},\]

and

\[z_1^{\zeta \ inv} = z_2^{\zeta \ inv} \]
Example 2 (continued)

\[G = L_1L_2M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).

In fact for \(x, y \in L_1 \)

\[(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^{\zeta} x^{\zeta})^{\text{ inv}} = x^{\zeta \text{ inv}} y^{\zeta \text{ inv}},\]

and

\[z_1^{\zeta \text{ inv}} = z_2^{\text{ inv}} = z_2^{-1}. \]
Example 2 (continued)

\(G = L_1 L_2 M\), a central product of \(Q_p\)'s, with \(L_1 \cong L_2 \not\cong M\), amalgamating \(z_2 = z_1^{-1}\).

Get \((G, \circ)\) by replacing \(L_1\) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M\),
- takes \(L_1\) to \(L_2\), acting like \(\zeta^{\text{inv}}\) on \(L_1\).

In fact for \(x, y \in L_1\)

\[(x \circ y)^{\zeta^{\text{inv}}} = (yx)^{\zeta^{\text{inv}}} = (y \zeta x^{\zeta})^{\text{inv}} = x^{\zeta^{\text{inv}}} y^{\zeta^{\text{inv}}},\]

and

\[z_1^{\zeta^{\text{inv}}} = z_2^{\text{inv}} = z_2^{-1} = z_1.\]
Example 2 (continued)

\[
G = L_1 L_2 M, \text{ a central product of } Q_p \text{'s, with } L_1 \cong L_2 \not\cong M, \text{ amalgamating } z_2 = z_1^{-1}.
\]

Get \((G, \circ)\) by replacing \(L_1\) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M\),
- takes \(L_1\) to \(L_2\), acting like \(\zeta \text{ inv}\) on \(L_1\).

In fact for \(x, y \in L_1\)

\[
(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^\zeta x^\zeta)^{\text{ inv}} = x^{\zeta \text{ inv} }y^{\zeta \text{ inv}},
\]

and

\[
z_1^{\zeta \text{ inv}} = z_2^{\text{ inv}} = z_2^{-1} = z_1
\]

is compatible with the identity on \(M\).
Example 2 (continued)

\[G = L_1 L_2 M, \text{ a central product of } Q_p \text{'s, with } L_1 \cong L_2 \not\cong M, \]
amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).

In fact for \(x, y \in L_1 \)

\[
(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^\zeta x^\zeta)^{\text{ inv}} = x^{\zeta \text{ inv}} y^{\zeta \text{ inv}},
\]

and

\[
\zeta_1^{\text{ inv}} = \zeta_2^{\text{ inv}} = \zeta_2^{-1} = z_1
\]
is compatible with the identity on \(M \).

So the \(L_i \) are not characteristic in \((G, \circ)\)
Example 2 (continued)

\[G = L_1 L_2 M, \] a central product of \(Q_p \)'s, with \(L_1 \cong L_2 \not\cong M \), amalgamating \(z_2 = z_1^{-1} \).

Get \((G, \circ)\) by replacing \(L_1 \) with its opposite.

There is an automorphism of \((G, \circ)\) which

- is the identity on \(M \),
- takes \(L_1 \) to \(L_2 \), acting like \(\zeta \text{ inv} \) on \(L_1 \).

In fact for \(x, y \in L_1 \)

\[(x \circ y)^{\zeta \text{ inv}} = (yx)^{\zeta \text{ inv}} = (y^\zeta x^\zeta)^{\text{ inv}} = x^{\zeta \text{ inv}} y^{\zeta \text{ inv}}, \]

and

\[z_1^{\zeta \text{ inv}} = z_2^{\text{ inv}} = z_2^{-1} = z_1 \]

is compatible with the identity on \(M \).

So the \(L_i \) are not characteristic in \((G, \circ)\), and \(\text{Aut}(G, \circ) \) is twice as big as \(\text{Aut}(G) \).
That’s All, Thanks!