Abstract

A “fiducial” kinematical region for our calculations of instanton (I)-induced processes at HERA within I-perturbation theory is extracted from recent lattice simulations of QCD. Moreover, we present the finalized I-induced cross-sections exhibiting a strongly reduced residual dependence on the renormalization scale.

*Talk presented at the 6th International Workshop on Deep-Inelastic Scattering and QCD (DIS 98), Brussels, April 1998; to be published in the Proceedings (World Scientific).
1 Introduction

In this contribution, we briefly summarize some recent progress in our ongoing systematic study [1, 2, 3, 4, 5, 6, 7] of the discovery potential of DIS events induced by QCD instantons.

Instantons [8] are non-perturbative gauge field fluctuations. They describe tunnelling transitions between degenerate ground states (vacua) of different topology in non-abelian gauge theories like QCD. Correspondingly, (anti-)instantons carry an integer topological charge $|Q| = 1$, while the usual perturbation theory resides in the sector $Q = 0$. Unlike the latter, instantons violate chirality (Q_5) in (massless) QCD and the sum of baryon plus lepton number ($B + L$) in QFD, in accord [9] with the general ABJ-anomaly relation. An experimental discovery of instanton (I)-induced events would clearly be of basic significance.

The deep-inelastic regime is distinguished by the fact that here hard instanton-induced processes may both be calculated [10, 5] within instanton-perturbation theory and possibly detected experimentally [1, 2, 3, 7]. As a key feature we have recently shown [5], that in DIS the generic hard scale Q cuts off instantons with large size $\rho \gg Q^{-1}$, over which we have no control theoretically.

There has been much recent activity in the lattice community to “measure” topological fluctuations in lattice simulations [11, 12] of QCD. Being independent of perturbation theory, such simulations provide “snapshots” of the QCD vacuum including all possible non-perturbative features like instantons. They also provide crucial support for important prerequisites of our calculations in DIS, like the validity of I-perturbation theory and the dilute I-gas approximation for small instantons of size $\rho \lesssim Q^{-1}$. As one main point of this paper (Sect. 2), these lattice constraints will be exploited and translated into a “fiducial” kinematical region for our predictions of the instanton-induced DIS cross-section based on I-perturbation theory. In Sect. 3 we display the finalized calculations of the various instanton-induced cross-sections [6]. The essential new aspect here is the strong reduction of the residual dependence on the renormalization scale μ_r resulting from a recalculation based on improved instanton densities [13], which are renormalization group (RG) invariant at the 2-loop level.
Figure 1: The leading instanton-induced process in the DIS regime of $e^\pm P$ scattering, violating chirality by $|\Delta Q_5| = 2n_f$.

2 Validity of Instanton Perturbation Theory in DIS

- Restrictions from Lattice-QCD Simulations

The leading instanton (I)-induced process in the DIS regime of $e^\pm P$ scattering is displayed in Fig. 1. The non-trivial topology of instantons is reflected in a violation of chirality by $|\Delta Q_5| = 2n_f$, in accord \[9\] with the general ABJ-anomaly relation (while in pQCD always $\Delta Q_5 \equiv 0$). The dashed box emphasizes the so-called instanton-subprocess with its own Bjorken variables,

$$Q'^2 = -q'^2 > 0; \quad 0 \leq x' = \frac{Q'^2}{2p \cdot q'} \leq 1. \tag{1}$$

The cross-section of interest may be shown \[1, 3, 6\] to exhibit a convolution-type structure, consisting of a smooth, calculable “flux factor” $P^{(I)}(x', \ldots)$ from the the $\gamma^* q\bar{q} t$ vertex, and the I-subprocess total cross-section $\sigma^{(I)}_{q\bar{g}}(Q', x')$, containing the essential instanton dynamics. We have evaluated the latter \[6\] by means of the optical theorem and the so-called IT-valley approximation \[14\] for the relevant $q'g \Rightarrow q'g$ forward elastic scattering amplitude.
in the \mathcal{IT} background. This method resums the exponentiating final state gluons in form of the known valley action $S^{\mathcal{IT}}$ and reproduces standard I-perturbation theory at larger \mathcal{IT} separation $\sqrt{R^2}$.

Corresponding to the symmetries of the theory, the instanton calculus introduces at the classical level certain (undetermined) “collective coordinates” like the I (\mathcal{T})-size parameters ρ ($\overline{\rho}$) and the \mathcal{IT} distance $\sqrt{R^2/\rho \overline{\rho}}$ (in units of the size). Observables like $\sigma^{(I)}_{q'q}(Q',x')$, must be independent thereof and thus involve integrations over all collective coordinates. Hence, denoting the density of I (\mathcal{T})’s by $D(\rho \overline{\rho})$ (see Eq. (3)), we have generically,

$$
\sigma^{(I)}_{q'q}(Q',x') = \int_0^\infty d\rho \int_0^\infty d\overline{\rho} \frac{D(\rho)D(\overline{\rho})}{\mathcal{IT} \text{-densities=Lattice!}} e^{-(\rho+\overline{\rho})Q'} \times \int_0^\infty d\xi M(\xi,x',Q',\ldots) e^{-\frac{4\pi}{\alpha_s}(S_{\mathcal{IT}}(\xi)-1)},
$$

where $\xi = R^2/\rho \overline{\rho} + \rho/\overline{\rho} + \rho/\rho$ is a convenient conformally invariant variable characterizing the \mathcal{IT} distance. In Eq. (3), the crucial exponential cut-off $e^{-(\rho+\overline{\rho})Q'}$ is responsible for the finiteness of the $\rho, \overline{\rho}$ integrations. In addition, it causes the integrals (2) to be dominated by a single, calculable (saddle) point $(\rho^* = \overline{\rho}^* \sim Q'^{-1}, \xi^*(x',Q'))$, in one-to-one relation to the conjugate momentum variables (x',Q'). This effective one-to-one mapping of the conjugate I-variables allows for the following important strategy: We may determine quantitatively the range of validity of I-perturbation theory and the dilute I-gas approximation in the instanton collective coordinates $(\rho < \rho_{\text{max}}, R/\rho > (R/\rho)_{\min})$ from recent (non-perturbative) lattice simulations of QCD and translate the resulting constraints via the mentioned one-to-one relations into a “fiducial” kinematical region $(x' > x'_{\min}, Q' > Q'_{\min})$ at HERA! Experimentally, these cuts must be implemented via a (x', Q') reconstruction from the final state topology [5], while theoretically, they are incorporated into our I-event generator [2] “QCDINS 1.6.0” and the resulting prediction of $\sigma^{(I)}_{\text{HERA}}(x' > x'_{\min}, Q' > Q'_{\min})$ (see Sect. 3).

In lattice simulations 4d-Euclidean space-time is made discrete, e.g. in case of the “data” from the UKQCD collaboration [12] which we shall use here,

- lattice spacing: $a = 0.055 - 0.1$ fm
- lattice volume: $V = l_{\text{space}}^3 \cdot l_{\text{time}} = [16^3 \cdot 48 - 32^3 \cdot 64] a^4$

In principle, such a lattice allows to study the properties of an ensemble of (anti-)instantons with sizes $a < \rho < V^{1/4}$. However, in order to make
instanton effects visible, a certain “cooling” procedure has to be applied first. It is designed to filter out (dominating) fluctuations of short wavelength $O(a)$, while affecting the instanton fluctuations of much longer wavelength $\rho >> a$ comparatively little. For a discussion of lattice-specific caveats, like possible lattice artefacts and the dependence of results on “cooling” etc., see Refs. [11, 12].

The first important quantity of interest, entering Eq. (2), is the I-density, $D(\rho)$ (tunnelling probability!). It has been worked out a long time ago in the framework of I-perturbation theory: (renormalization scale μ_r)

$$D(\rho) \equiv \frac{dn}{d^4xd\rho} = d\left(\frac{2\pi}{\alpha_s(\mu_r)}\right)^6 \exp\left(-\frac{2\pi}{\alpha_s(\mu_r)}\right)\rho^b \rho^5. \tag{3}$$

Note the power law in the instanton size ρ with the power b given in Table 1, in terms of the QCD β-function coefficients: $\beta_0 = 11 - \frac{2}{3}n_f$; $\beta_1 = 102 - \frac{38}{3}n_f$.

Table 1: The power b in Eq. (3) from Ref. [9] and Ref. [13], making the I-density $D(\rho)$ RG-group invariant at the 1-loop and 2-loop level, respectively.

b	$\frac{1}{b} \frac{dD}{d\mu_r}$	Ref.
β_0	$O(\alpha_s)$	’t Hooft [1]
$\beta_0 + \frac{\alpha_s(\mu_r)}{4\pi}(\beta_1 - 12\beta_0)$	$O(\alpha_s^2)$	Morris, Ross, & Sachrajda [13]

This power law $D(\rho)|_{n_f=0} \propto \rho^6$ of I-perturbation theory is confronted in Fig. 2 (top) with recent lattice “data”, which strongly suggests I-perturbation theory to be valid for $\rho \lesssim \rho_{\text{max}} = 0.3$ fm. Next, consider the square of the total topological charge, $Q^2 = (n \cdot (+1) + \bar{n} \cdot (-1))^2$ along with the total number of charges $N_{\text{tot}} = n + \bar{n}$. For a dilute gas, the number fluctuations are poissonian and correlations among the n and \bar{n} distributions absent, implying $\langle (n - \bar{n})^2 \rangle = \langle n + \bar{n} \rangle$, or $\langle Q^2_{\text{tot}} \rangle = 1$. From Fig. 2 (bottom), it is apparent that this relation characterizing the validity of the dilute I-gas approximation, is well satisfied for sufficiently small instantons! Again, we find $\rho_{\text{max}} \simeq 0.3$ fm, quite independent of the number of cooling sweeps. For increasing $\rho_{\text{max}} \gtrsim 0.3$ fm, the ratio $\langle Q^2_{\text{tot}} \rangle$ rapidly and strongly deviates from one. Crucial information about a second instanton parameter of interest, the average IT distance $\langle R \rangle$, may be obtained as well from the lattice [11, 12]. Actually, the ratio $\left[\frac{\langle R \rangle}{\rho}\right] \simeq 0.83$ has good stability against “cooling”, from
Figure 2: Support for the validity of I-perturbation theory for the I-density $D(\rho)$ (top) and the dilute I-gas approximation (bottom) for $\rho \leq \rho_{\text{max}} \simeq 0.3$ fm from recent lattice data [12].
which we shall take $R/\rho \gtrsim 1$ as a reasonable lower limit for our I-perturbative DIS calculations.

Finally, the “fiducial” kinematical region for our cross-section predictions in DIS is found from lattice constraints and the discussed saddle-point translation as

$$\rho / R \gtrsim 0.3 \text{ fm}; \quad \frac{R}{\rho} \gtrsim 1 \quad \Rightarrow \quad \left\{ \begin{array}{l}
Q'/\Lambda \\
50.0 \quad \text{1-loop} \\
70.0 \quad \text{2-loop}
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}
Q' > Q'_{\text{min}} \simeq 8 \text{ GeV} \\
x' > x'_{\text{min}}(Q'_{\text{min}}) \simeq 0.35.
\end{array} \right.$$

\hspace{1cm} (4)

\section{3 I-Induced Cross-Sections for HERA}

We have achieved great progress in stability by using the 2-loop RG invariant form of the I-density $D(\rho)$ from Eq. (3) and Table 1 in a recalculation of the I-subprocess cross-sections [6]: The residual dependence on the renormalization scale μ_r turns out to be strongly reduced (Fig. 3). As “best” scheme we use $\mu_r = 0.15 \, Q'$ throughout, for which $\partial \sigma^{(I)}_{qg}/\partial \mu_r \simeq 0$. The quantitative calculations of $\sigma^{(I)}_{qg}$ (Fig. 4) nicely illustrate the qualitative arguments from Sect. 2, that the Q' dependence probes the effective instanton size ρ (top),
while the x' dependence maps the \IT distance R in units of the I-size ρ (bottom).

Figure 4: Instanton-induced cross-sections

Fig. 5 displays the finalized I-induced cross-section at HERA, as function of the cuts x_{min}' and Q_{min}' in leading semi-classical approximation, as obtained with the new release “QCDINS 1.6.0” of our I-event generator. For the minimal cuts (4) extracted from lattice simulations, we specifically obtain

$$\sigma_{\text{HERA}}^{(I)}(x' \geq 0.35, Q' \geq 8 \text{ GeV}) \approx 126 \text{ pb}; \ x_{\text{Bj}} \geq 10^{-3}; \ 0.9 \geq y_{\text{Bj}} \geq 0.1.$$

(5)
In view of the fact that the cross-section varies strongly as a function of the (x', Q') cuts, the constraints from lattice simulations are extremely valuable for making concrete predictions.

References

[1] A. Ringwald and F. Schrempp, hep-ph/9411217, in: Proc. Quarks ‘94, Vladimir, Russia, May 1994, eds. D. Gigoriev et al., pp. 170-193.

[2] M. Gibbs, A. Ringwald and F. Schrempp, DESY 95-119, hep-ph/9506392, in: Proc. DIS 95, Paris, France, April 1995, eds. J.-F. Laporte and Y. Sirois, pp. 341-344.
[3] A. Ringwald and F. Schrempp, DESY 97-115, hep-ph/9706399, in: Proc. DIS 97, Chicago, IL, April 1997, eds. J. Repond and D. Krakauer, pp. 781-786.

[4] S. Moch, A. Ringwald and F. Schrempp, DESY 97-114, hep-ph/9706400, in: Proc. DIS 97, Chicago, IL, April 1997, eds. J. Repond and D. Krakauer, pp. 1007-1013.

[5] S. Moch, A. Ringwald and F. Schrempp, Nucl. Phys. B 507, 134 (1997).

[6] S. Moch, A. Ringwald and F. Schrempp, to be published.

[7] T. Carli, A. Ringwald and F. Schrempp, in preparation.

[8] A. Belavin, A. Polyakov, A. Schwarz and Yu. Tyupkin, Phys. Lett. B 59, 85 (1975).

[9] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14, 3432 (1976); Phys. Rev. D 18, 2199 (1978) (Erratum).

[10] I. Balitsky and V. Braun, Phys. Lett. B 314, 237 (1993).

[11] For a recent review, see: P. van Baal, INLO-PUB-7/97, hep-lat/9709066, Review at Lattice ’97, Edinburgh.

[12] D. Smith and M. Teper, Edinburgh preprint 98-1, hep-lat/9801008.

[13] T. Morris, D. Ross and C. Sachrajda, Nucl. Phys. B 255, 115 (1985).

[14] A. Yung, Nucl. Phys. B 297, 47 (1988).
 V.V. Khoze and A. Ringwald, Phys. Lett. B 259, 106 (1991).