Genome-Wide Identification by Transposon Insertion Sequencing of *Escherichia coli* K1 Genes Essential for *in vitro* Growth, Gastrointestinal Colonizing Capacity and Survival in Serum

Alex J. McCarthy, Richard A. Stabler, Peter W. Taylor

LEGENDS FOR SUPPLEMENTAL TABLES

Table S1. Tab 1: Genes identified by TraDIS as essential for growth of *E. coli* A192PP in Luria-Bertani (LB) broth. Systematic ID, gene identifier in annotated A192PP genome (1); strand, strand location of coding DNA sequence (CDS); gene, predicted gene annotation; size, size of CDS (bp); function, predicted function; pvalue_essential, value of essentiality determined from gamma distribution; K12, essential for growth of *E. coli* K12 MG1655 (2); EC958, essential for growth of *E. coli* ST131 urinary isolate (3); KEGG_no, KEGG orthology number; KEGG_description, KEGG predicted function; ko_no, KEGG pathway number; ko_description, KEGG pathway description; EC_no, Enzyme Commission number (EC number) for enzyme classification. Tab 2: KEGG pathways enriched for, or depleted of, *E. coli* A192PP essential genes. KEGG pathway, KEGG pathway description; whole, total number of CDS in the *E. coli* A192PP genome for each category; Whole%, percentage of CDS for each category in the *E. coli* A192PP genome; Essential, number of CDS defined as essential by TraDIS; Essential%, percentage of CDS for each category; Dif%, Essential% minus whole%; %genome, ratio Essential:Whole (D:B) X 100.

Table S2. *E. coli* K1 A192PP genes required for GI colonization. GeneID, A192PP genome systematic gene number; Norm_in, normalised read depth in input pool; Norm_MSI, normalised read depth in from TraDIS library recovered from the middle section of the small intestine (MSI) 4 h after initiation of colonization; log₂FoldChange, log₂ (Norm_out/Norm_in); * indicates number approaching negative infinity due to division of zero reads in output pool; pval, p-value; Gene, predicted gene name; Function, manually curated gene function; PROKKA function, automated functional annotation using an *E. coli* custom library.

Table S3. *E. coli* K1 A192PP genes required for survival in human serum. GeneID, A192PP genome systematic gene number; Function, manually curated gene function; PROKKA function, automated functional annotation using an *E. coli* custom library. log₂-fold change value and a *p* value for each mutant of each gene are provided.

References

1. McCarthy AJ, Negus D, Martin P, Pechincha C, Oswald E, Stabler RA, Taylor PW. 2016. Pathoadaptive mutations of *Escherichia coli* K1 in experimental neonatal systemic infection. *PLoS One* 11:e0166793.
2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2:2006.0008.
3. Phan MD, Peters KM, Sarkar S, Lukowski SW, Allsopp LP, Gomes Moriel D, Achard ME, Totsika M, Marshall VM, Upton M, Beatson SA, Schembri MA. 2013. The serum resistome of a globally disseminated multidrug resistant uropathogenic *Escherichia coli* clone. *PLoS Genet* 9:e1003834.
FIG S1. Linker PCR was employed to assess Tn5 insertion site diversity in: (A) ten individual adjacent colonies grown on antibiotic-supplemented Luria-Bertani agar and (B) ten individual pools of 2000-5000 colonies each.
| Strain | Mean Generation Time (min ± SD) |
|----------------------------|----------------------------------|
| A192PP | 24.45 ± 0.94 |
| A192PP-Tn5 non-capsulated | 23.64 ± 0.21 |
| A192PP | 30.67 ± 0.52 |
| A192PP\(\Delta\)neuC | 30.21 ± 0.941 |

FIG S2. Comparison of growth kinetics of a randomly selected non-encapsulated mutant from the Tn5 TraDIS library in MH broth (A) and a non-encapsulated single gene mutant constructed using bacteriophage \(\lambda\) Red recombination in LB broth (B). \(n=3\) in both cases. There were no significant differences in absorbance values at any time point when the log-rank [Mantel-Cox] test was applied. Student’s \(t\) test was used to evaluate generation times.
FIG S3. High-complexity cultured *E. coli* A192PP-Tn5 libraries are avirulent in neonatal rats. Survival of P2 rats colonized with *E. coli* A192PP-Tn5 libraries of differing complexities (1,000, 10,000, 100,000 or 281,000 mutants). Libraries were cultured in LB broth (8 h; 37°C) prior to initiation of colonization. Pups (n = 12 for each group) received 2-4x10⁶ CFU by the oral route. Log-rank [Mantel-Cox] was used to compare rat survival following administration of cultured libraries with the uncultured complete library of 775,000 mutants: ns, non-significant, * P < 0.05, ** P < 0.01.
Table S4: Oligonucleotides for construction of targeted mutants

Gene	Primer	Sequence (5' to 3')
lacZ	lacZ-P1	tggatcccttacgaaatcaggcagacatgggccctgagggtaattatgcagttggagctcttc
lacZ	lacZ-P2	tggatcccttacgaaatcaggcagacatgggccctgagggtaattatgcagttggagctcttc
neuC	neuC-P1	ctagactgtgaatggaagttgctgcatatatgatttcacacagtgaagacatggcctgccgtttttttttttagcataaagcatagatataatcctcttag
neuC	neuC-P2	ctagactgtgaatggaagttgctgcatatatgatttcacacagtgaagacatggcctgccgtttttttttttagcataaagcatagatataatcctcttag
rfaH	rfaH-P1	ccgtaaagcttttgctatccttgcgccccgattaaacggataaagagtcattgtgtaggctggagctcttc
rfaH	rfaH-P2	ccgtaaagcttttgctatccttgcgccccgattaaacggataaagagtcattgtgtaggctggagctcttc
traL	traL-P1	gttggctgccaccacggatgccaatgtcaaaacactgtttgggattgcgttcatatgatatcccttag
traL	traL-P2	gttggctgccaccacggatgccaatgtcaaaacactgtttgggattgcgttcatatgatatcccttag
vasL	vasL-P1	ctaaagatccgacatcggcaactttgggcctttttagaaatggatttttgctgtaggctggagctcttc
vasL	vasL-P2	ctaaagatccgacatcggcaactttgggcctttttagaaatggatttttgctgtaggctggagctcttc
waaW	waaW-P1	tgcgtattccgttacaatggcctcctgattcgaaaggagttttcttatggcgctgtgtaggctggagctcttc
waaW	waaW-P2	tgcgtattccgttacaatggcctcctgattcgaaaggagttttcttatggcgctgtgtaggctggagctcttc
yaeQ	yaeQ-P1	cgtattccgttacaatggcctcctgattcgaaaggagttttcttatggcgctgtgtaggctggagctcttc
yaeQ	yaeQ-P2	cgtattccgttacaatggcctcctgattcgaaaggagttttcttatggcgctgtgtaggctggagctcttc
0678	0678-P1	gacaaatcattccttttagaatggacttgtgaagagtttttgctgtaggctggagctcttc
0678	0678-P2	gacaaatcattccttttagaatggacttgtgaagagtttttgctgtaggctggagctcttc
3010	3010-P1	gccgagctttcatcattgaaatcattccgacatcggcaactttgggcctttttagaaatggatttttgctgtaggctggagctcttc
3010	3010-P2	gccgagctttcatcattgaaatcattccgacatcggcaactttgggcctttttagaaatggatttttgctgtaggctggagctcttc

Table S5: Oligonucleotides for confirmation of targeted mutants

Gene	Primer	Sequence (5' to 3')	Fragment size	
			wildtype	Δ
lacZ	lacZ-ampF	ATGCCGGTATAATCCACACG	3917	1600
lacZ	lacZ-ampR	TGCCATGTGGCTGTTTCAAA	3917	1600
neuC	neuC-ampF	GACATGCGAAGAACAAG	1510	1600
neuC	neuC-ampR	AAAACGAAAATACGGGAGATTTGAATTTGAACATTCAGTCA	1510	1600
rfaH	rfaH-ampF	ACCACGGATGCAAAGGATACTTGAGT	664	1600
rfaH	rfaH-ampR	GTTACATTTTTGGCTGCTGTT	664	1600
traL	traL-ampF	AACAGATTCTATGGGCTGTTT	873	1600
traL	traL-ampR	GTATTTTTCCGGCTTGCAT	873	1600
vasL	vasL-ampF	TCTGGCGGATCTCAGTCTGAT	1854	1600
vasL	vasL-ampR	GGCGCGATGTAAGAAGTAA	1854	1600
waaW	waaW-ampF	GGTTAATCTTGTCTATCGTG	1308	1600
waaW	waaW-ampR	GTGAAATCTTGTCTATCGTG	1308	1600
yaeQ	yaeQ-ampF	AAACCTGGTCTCCGCAAGG	771	1600
yaeQ	yaeQ-ampR	AAAACGAGATGAAATAGCGG	771	1600
0678	0678-ampF	TGTCAGGGAGTGAAGAGACAA	705	1600
0678	0678-ampR	GGCGTGACAAAGAGCCGGAG	705	1600
3010	3010-ampF	TTTGTGTTCTAGATCAAGGAGG	318	1600
3010	3010-ampR	ATGATGAACTTGGCAAAGGA	318	1600
wzzE	wzzE-ampF	AAACCGAGACTGGTGAAGAAA	1195	1600
wzzE	wzzE-ampR	GGCGCGTACCAATACAGCTGA	1195	1600
Table S6: Oligonucleotides for construction of complemented mutants

Gene	Primer	Sequence (5' to 3')
neuC	neuC-sall-F	CTAGTCGTCGACGACAATGCCAGGAAAAACAAG
	neuC-sphI-R	GACTAGGCATGCACAAAGGATAGCCGAGATTTGT
rfaH	rfaH-sall-F	CTAGTCGTCGACACGGGATGCCAATGTCA
	rfaH-sphI-R	GACTAGGCATGCAGTTCTATTTTGCGATGCTGT
traL	traL-sphI-F	GACTAGGCATGCAGTTCTATTTTGCGATGCTGT
	traL-sall-R	CTAGTCGTCGACGCTTTCAGGGCCCTTCGAT
waaW	waaW-sall-F	CTAGTCGTCGACGGGTGATCATGTCATCGTG
	waaW-sphI-R	GACTAGGCATGCGTAAAGCTGTACGCGAGA