This may be the author’s version of a work that was submitted/accepted for publication in the following source:

Dagasso, Gabrielle, Conley, Joslyn, Steele, Lisa, Parfitt, Elizabeth, Pasquill, Kelsey, & Laupland, Kevin B. (2020)
Risk of bloodstream infection in patients with renal dysfunction: A population-based cohort study.
Epidemiology and Infection, 148, Article number: e105.

This file was downloaded from: https://eprints.qut.edu.au/209133/

© 2020 American Medical Association

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1017/S0950268820001041
Risk of bloodstream infection in patients with renal dysfunction: a population-based cohort study

Gabrielle Dagasso1, Joslyn Conley2, Lisa Steele3, Elizabeth E. C. Parfitt2, Kelsey Pasquill3 and Kevin B. Laupland4,5

1Faculty of Science, Thompson Rivers University, Kamloops, British Columbia, Canada; 2Department of Medicine, Royal Inland Hospital, Kamloops, British Columbia, Canada; 3Department of Pathology and Laboratory Medicine, Royal Inland Hospital, Kamloops, British Columbia, Canada; 4Department of Intensive Care Services, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia and 5Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia

Abstract
Although patients with end-stage renal disease (ESRD) are known to be at high risk for developing bloodstream infections (BSI), the risk associated with lesser degrees of renal dysfunction is not well defined. We sought to determine the risk for acquiring and dying from community-onset BSIs among patients with renal dysfunction. A retrospective, population-based cohort study was conducted among adult residents without ESRD in the western interior of British Columbia. Estimated glomerular filtration rates (eGFR) were determined for cases and incidence rate ratios (IRR) were calculated using prevalence estimates. Overall, 1553 episodes of community-onset BSI were included of which 39%, 32%, 17%, 9%, 2% and 1% had preceding eGFRs of ≥90, 60–89, 45–59, 30–44, 15–29 and <15 ml/min/m², respectively. As compared to those with eGFR ≥60 ml/min/m², patients with eGFR 30–59 ml/min/m² (IRR 4.4; 95% confidence interval (CI) 3.9–4.9) and eGFR <30 ml/min/m² (IRR 7.0; 95% CI 5.0–9.5) were at significantly increased risk for the development of community-onset BSI. An eGFR <30 ml/min/m² was an independent risk factor for death (odds ratio 2.3; 95% CI 1.01–5.15). Patients with renal dysfunction are at increased risk for developing and dying from community-onset BSI that is related to the degree of dysfunction.

Introduction
Patients with end-stage renal disease (ESRD) including those receiving dialysis treatment and recipients of kidney transplants are known to be at a high risk for the development of bloodstream infections (BSI) [1–3]. However, it is not well defined whether renal dysfunction in the absence of ESRD increases the risk for BSI. James et al. conducted a large cohort study of adults aged >65 years in Calgary, Canada during 2001 and 2004 and observed that patients with estimated glomerular filtration rates (eGFR) of 45–59, 30–44 and <30 ml/min/1.73 m² had stepwise increased hazard ratios for BSI of 1.24, 1.59 and 3.53, respectively [4]. A number of other studies have investigated links between renal dysfunction and infection risk in other cohorts [4–7].

Population-based studies that include all episodes of disease occurring among residents of a defined region are optimal designs for defining the epidemiology of an infectious disease. While there are population-based studies that have examined the risk for the development of BSI related to ESRD, to our knowledge, no previous studies have examined renal dysfunction risk for BSI in non-selected populations [1–3]. The objective of this study was to quantify the risk for the development of and mortality from community-onset BSI associated with varying levels of renal function among residents of the western interior of British Columbia, Canada.

Methods

Study population
Population-based surveillance was conducted in the western interior of British Columbia, Canada. The study population (2017 population 182,422) included residents of the city of Kamloops and a number of surrounding smaller towns, villages and rural areas within a large geographical area [8]. All residents 18 years of age and older with incident community-onset BSIs between April 2010 and March 2017 were included. The Interior Health Research Ethics Board approved this study (File 2013-14-052-I).
the degree of renal dysfunction, age, gender, diabetes mellitus and other variables significant to the \(P < 0.1 \) level as identified in univariate analyses. The most parsimonious model was then derived using backward stepwise variable elimination. Eliminated variables were tested by reininsertion into the prescriptive model to test significance one-by-one. Model calibration and discrimination were assessed in the final model using the goodness of fit test and the area under the receiver operator characteristic curve. A \(P \)-value of \(<0.05\) was considered statistically significant for all analyses.

Results

A total of 1663 episodes of community-onset BSI were identified among residents of the western interior during the study period of which 1597 (96%) were in adults. Forty-four cases occurred among ESRD patients and were further excluded leaving a final cohort of 1553 episodes for analysis.

The median age of the cohort was 68.1 (IQR 55.3–78.5) years, 841 (54%) were male, and most cases (1379; 89%) were admitted to hospital for management. Among these community-onset BSI, 905 (58%) and 648 (42%) were community- and healthcare-associated, respectively. Overall, 612 (39%), 498 (32%), 259 (17%), 142 (9%), 34 (2%) and 8 (1%) had preceding eGFRs of \(\geq 90, 60–89, 45–59, 30–44, 15–29 \) and \(<15\) ml/min/m\(^2\), respectively. Where data were unavailable, these were assumed to be \(\geq 90\) ml/min/m\(^2\). The presence of renal dysfunction was associated with significantly increased risk for the development of community-onset BSI among the western interior population as shown in Table 1. There was a categorical stepwise increase in risk for the development of BSI associated with a decrease in kidney function that was most notable among those with healthcare-associated infection (Table 1).

A number of characteristics were investigated as the determinants of community-onset BSI in association with varying levels of kidney function and are shown in Table 2. Although there was a significant proportional variability observed between age and renal function, there was no evident trend across ordered categories (Table 2). Among each of the individual co-morbid illnesses included in the Charlson Comorbidity Index that were evaluated, only hemiplegia, liver disease and HIV infection showed significant proportional variability according to kidney function categories (Table 2; non-significant variables not shown). Diabetes mellitus was present in 247 (22%), 92 (23%)
and 14 (33%) episodes associated with eGFRs of ≥60, 30–59 and <30 ml/min/m² (P = 0.2), respectively.

Among the cohort of first presentations with community-onset BSI (n = 1401), crude 30-day case-fatality rates were 14% (77/551), 15% (69/461), 10% (24/234), 17% (20/118), 29% (9/31) and 33% (2/6) with preceding eGFRs of ≥90, 60–89, 45–59, 30–44, 15–29 and <15 ml/min/m² (P = 0.04), respectively. A multivariable logistic regression model was developed that had good discrimination (area under receiver operator characteristic curve 0.77) and calibration (goodness of fit P = 0.8). As shown in Table 3, after controlling for a number of co-variates, patients with eGFR <30 ml/min/m² (odds ratio (OR) 2.3, 95% CI 1.0–5.2) but not 30–59 ml/min/m² (OR 1.0, 95% CI 0.6–1.4) were at increased risk for death.

Discussion

This study is important as it adds to the small body of literature identifying renal dysfunction in the absence of ESRD as a significant risk factor for developing BSI. Additionally, we identified that eGFR <30 is an independent risk factor for mortality from BSI. These data raise the important possibility that renal dysfunction is a modifiable risk factor for serious infection and that enhanced preventative and management efforts may not only lead to a reduction in morbidity and mortality from kidney disease directly but also indirectly through infection prevention.

There are few studies for which to directly compare. Most importantly, James et al. in their study in Calgary found that increasing degrees of renal dysfunction were associated with concomitant increased risk for BSI in subjects aged 65 and older [4]. They further found an increased risk for death associated with renal dysfunction. Our results are similar and extend findings to a different population in Canada that includes young and middle-aged adults. Other studies have examined renal dysfunction and associated risk with pneumonia, infections in general and community-acquired infections [5, 15–17]. While limited, there is an increasing body of evidence that supports the risk for infection in association with renal dysfunction.

There are a number of limitations that merit discussion. First, although we had a sizable cohort of 1553 cases, we had relatively small numbers of cases in the more advanced degrees of kidney dysfunction such that we may have underpowered to detect

Table 2. Characteristics of adult patients with episodes of community-onset bloodstream infection according to renal function

Variable	eGFR ≥60 (n = 1110)	eGFR 30–59 (n = 401)	eGFR <30 (n = 42)	P-value
Median age (interquartile range)	69.2 (58.2–78.7)	63.4 (46.3–77.6)	69.4 (52.2–78.8)	0.001
Male	670 (80%)	150 (18%)	21 (3%)	<0.001
Female	440 (62%)	251 (35%)	21 (3%)	
Infection source	0.4			
No focus	143 (13%)	59 (15%)	6 (14%)	
Bone/joint	77 (7%)	31 (8%)	1 (2%)	
Soft tissue	98 (9%)	38 (9%)	5 (12%)	
Lower respiratory	124 (11%)	40 (10%)	10 (24%)	
Endovascular	71 (6%)	22 (5%)	4 (10%)	
Intrabdominal	221 (20%)	69 (17%)	10 (24%)	
Central nervous	5 (<1%)	2 (<1%)	0	
Genitourinary	360 (32%)	137 (34%)	6 (14%)	
Neck/upper respiratory	11 (1%)	3 (1%)	0	
Organisms	0.2			
Escherichia coli	379 (34%)	141 (35%)	8 (19%)	
Staphylococcus aureus	173 (16%)	67 (17%)	6 (14%)	
Streptococcus pneumoniae	59 (5%)	26 (6%)	4 (10%)	
Enterobacteriaceae	119 (11%)	36 (9%)	6 (14%)	
Streptococcus species	133 (12%)	62 (15%)	8 (19%)	
Other Gram positive	68 (6%)	17 (4%)	2 (5%)	
Anaerobes	46 (4%)	13 (3%)	0	
Other	59 (5%)	13 (3%)	2 (5%)	
Polymicrobial	74 (7%)	26 (6%)	6 (14%)	
Hemiplegia	17 (2%)	8 (2%)	4 (10%)	0.009
HIV	3 (<1%)	10 (2%)	0	0.001
Liver disease	85 (8%)	55 (14%)	1 (2%)	0.001

eGFR, estimate glomerular filtration rate.
significant differences among groups. Second, we based our assessment on determining the best eGFR within 3 months of admission such that the possibility exists that some of the abnormal renal functions may have been a result rather than a contributing factor infection. Third, we did not have linked individual-level data on co-morbidities and renal function among population controls. This precludes multivariable analysis of risk for acquiring BSI. In addition, although the prevalence rates we used are based on an extensive systematic review, they do add a degree of imprecision to our findings. Finally, not all of our subjects had preceding renal function documented and we assumed missing cases to have normal function. Thus, our estimates should be viewed as conservative.

Conclusions

In summary, this study demonstrates that patients who have non-dialysis-dependent renal impairment are at increased risk for the developing and dying from community-onset BSI and that this occurs in an impairment-dependent fashion. Efforts to reduce the occurrence of chronic renal disease may be expected to reduce the major burden associated with these important infections.

Acknowledgements. We thank Ursula Kaeser and Holly Buhler, Interior Health, for providing the kidney function data from the corporate warehouse.

Financial support. This work was supported by the British Columbia Provincial Renal Agency and the Interior Health Renal Program.

Conflict of interest. None.

References

1. Dalgaard LS, et al. (2016) Risk and prognosis of bacteremia and fungemia among peritoneal dialysis patients: a population-based cohort study. Peritoneal Dialysis International 36, 647–654.
2. Skov Dalgaard L, et al. (2015) Risk and Prognosis of bloodstream infections among patients on chronic hemodialysis: a population-based cohort study. PLoS ONE 10, e0124547.
3. Nielsen LH, et al. (2015) Risk and prognosis of Staphylococcus aureus bacteremia among individuals with and without end-stage renal disease: a Danish, population-based cohort study. BMC Infectious Diseases 15, 6.
4. James MT, et al. (2008) Risk of bloodstream infection in patients with chronic kidney disease not treated with dialysis. Archives of Internal Medicine 168, 2333–2339.
5. Dalrymple LS, et al. (2012) The risk of infection-related hospitalization with decreased kidney function. American Journal of Kidney Diseases 59, 356–363.
6. Ishigami J, et al. (2017) CKD and risk for hospitalization with infection: the atherosclerosis risk in communities (ARIC) study. American Journal of Kidney Diseases 69, 752–761.
7. Wang HE, et al. (2011) Chronic kidney disease and risk of death from infection. American Journal of Nephrology 34, 330–336.
8. Laupland KB, et al. (2020) Population-based risk factors for community-onset bloodstream infections. European Journal of Clinical Microbiology and Infectious Diseases 39, 753–758.
9. Laupland KB, et al. (2018) Streptococcus anginosus group bloodstream infections in the western interior of British Columbia, Canada. Infectious Diseases (London) 50, 423–428.
10. Dagasso G, et al. (2018) Risk factors associated with bloodstream infections in end-stage renal disease patients: a population-based study. Infectious Diseases (London) 50, 831–836.
11. Charlson ME, et al. (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of Chronic Diseases 40, 373–383.
12. Friedman ND, et al. (2002) Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Annals of Internal Medicine 137, 791–797.
13. Levey AS, et al. (2009) A new equation to estimate glomerular filtration rate. Annals of Internal Medicine 150, 604–612.
14. Hill NR, et al. (2016) Global prevalence of chronic kidney disease - A systematic review and meta-analysis. PLoS ONE 11, e0158765.
15. Viasus D, et al. (2011) Epidemiology, clinical features and outcomes of pneumonia in patients with chronic kidney disease. Nephrology Dialysis and Transplantation 26, 2899–2906.
16. Xu H, et al. (2017) eGFR and the risk of community-acquired infections. Clinical Journal of the American Society of Nephrology 12, 1399–1408.
17. Foley RN (2007) Infections in patients with chronic kidney disease. Infectious Diseases Clinics of North America 21, 659–672, viii.

Table 3. Logistic regression modelling of factors associated with 30-day all-cause case-fatality among patients with first episodes of community-onset bloodstream infection

Factor	Odds ratio (95% confidence interval)	P-value
eGFR ml/min/m²		
≥60	1 (Reference)	–
30–59	0.95 (0.64–1.41)	0.8
<30	2.29 (1.01–5.15)	0.046
Infective focus		
Other	1 (Reference)	–
Bone/joint	0.26 (0.09–0.74)	0.011
Genitourinary	0.46 (0.30–0.70)	<0.001
Respiratory	2.37 (1.54–3.66)	<0.001
Cancer		
None	1 (Reference)	–
Cancer	1.76 (1.9–2.60)	0.055
Metastatic	4.31 (2.50–7.43)	<0.001
Polymicrobial aetiology	2.94 (1.73–4.98)	<0.001
Age (per year)	1.04 (1.03–1.05)	<0.001
Liver disease	4.50 (2.66–7.60)	<0.001
Myocardial infarction	2.05 (1.12–3.74)	0.019

eGFR, estimate glomerular filtration rate.