Complete Genome Sequence of *Streptomyces* sp. Strain SGAir0924, an Actinobacterium Isolated from Outdoor Air in Singapore

Anjali Bansal Gupta,a Akira Uchida,a Rikky W. Purbojati,a Anthony Wong,a Kavita K. Kushwaha,a Alexander Putra,a Balakrishnan N. V. Premkrishnan,a Cassie E. Heinle,a Merrilyn Eng,a Vineeth Kodengil Vettath,a Ana Carolina M. Junqueira,b Daniela I. Drautz-Moses,a Stephan C. Schuster*a

a Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore

b Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

ABSTRACT

Streptomyces sp. strain SGAir0924 was isolated from outdoor air collected in Singapore. Its genome was assembled using long reads generated by single-molecule real-time sequencing. The final assembly had one chromosome of 7.65 Mb and three plasmids with an average length of 142 kb. The genome contained 6,825 protein-coding genes, 68 tRNAs, and 18 rRNAs.

Streptomyces spp. are Gram-positive filamentous bacteria belonging to the phylum *Actinobacteria*. They are well known for the production of a large variety of natural antibiotics and antifungal and antiparasitic compounds (1). More than 600 species of *Streptomyces* bacteria have been recorded, with the majority of them being recognized as important producers of bioactive compounds (2, 3).

Streptomyces spp. primarily inhabit soil and water (4, 5). Here, we report a new strain, *Streptomyces* sp. strain SGAir0924, isolated from outdoor air in Singapore at global positioning system coordinates 1.35°N, 103.68°E. Air was sampled by impaction onto an electrostatic filter attached on an SASS 3100 dry air sampler (Research International, USA). After sampling, the filter was soaked in phosphate-buffered saline containing 0.1% Triton X-100 to suspend the captured particles. The suspension was then plated onto marine agar (Becton, Dickinson, USA), followed by aerobic incubation at 30°C. Colonies were repeatedly picked and plated onto malt extract agar to obtain clonal colonies. For genomic DNA extraction, a single colony was then inoculated in lysogeny broth (Becton, Dickinson) and incubated at 30°C. DNA extraction was performed with the Wizard genomic DNA purification kit (Promega, USA), following the manufacturer’s instructions. The extracted genomic DNA was subjected to library preparation with the SMRTbell template preparation kit 1.0 (Pacific Biosciences, USA), following the manufacturer’s instructions. The finished library was then sequenced on the RS II single-molecule long-read sequencing platform (Pacific Biosciences). In total, 45,198 subreads with a mean length of 9,337 bp were obtained.

The sequenced genome of *Streptomyces* sp. strain SGAir0924 was *de novo* assembled using Hierarchical Genome Assembly Process (HGAP) version 3 (6) implemented in the PacBio SMRT Analysis package version 2.3.0 using a seed read length of 500 bp. The consensus assembly generated four contigs with a total length of 8,079,654 bp. This included a linear chromosomal contig (7,653,753 bp, 45.3-fold coverage) and a linear plasmid (377,458 bp, 39.6-fold coverage). Two other plasmids (26,627 bp and 21,816 bp) were able to be circularized using Circulator version 1.1.4 (7). The mean G+C content of the chromosome was 72.6%. The average nucleotide identity (ANI) using the Microbial Species Identifier (MiSI) (8) method revealed *Streptomyces silaceus* to be the
closest relative, with an identity of 83% and an alignment fraction value of 0.22. However, based on the 16S rRNA gene sequence, the closest known species is *Streptomyces* sp. strain NEAU-L11, with 100% identity. As such, strain SGAir0924 can only be identified up to the genus but not the species level. Default parameters were used for all programs unless otherwise specified.

The assembled genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 4.2 (9). A total of 7,166 genes were predicted, including 6,825 protein-coding genes (PCGs), 18 rRNA operons (5S, 16S, and 23S rRNAs), 68 tRNAs, 3 noncoding RNAs, and 252 pseudogenes. Functional annotation with the Rapid Annotations using Subsystems Technology (RAST) server (10–12), using the classic RAST annotation scheme with an option to fix frame shifts, identified a total of 7,054 coding sequences and 85 RNAs covering 445 subsystems. Of those, 49 genes were related to the survival of this strain under arid conditions. Furthermore, the biosynthetic potential of this strain predicted with antiSMASH (15) resulted in 33 secondary metabolite biosynthetic gene clusters; many of them are related to antimicrobial compounds, such as streptothricin and candidicin.

Data availability. The complete genome sequences of *Streptomyces* sp. strain SGAir0924 and its plasmids have been deposited in DDBJ/EMBL/GenBank under accession numbers CP027296, CP027297, CP027298, and CP027299 and in the SRA database under accession number SRR8948646.

ACKNOWLEDGMENT

The work was supported by a Singapore Ministry of Education Academic Research Fund tier 3 grant (MOE2013-T3-1-013).

REFERENCES

1. Harir M, Bendif H, Bellahcene M, Fortas Z, Pogni R. 2018. Streptomyces secondary metabolites, p 99–122. In Enany S (ed), Basic biology and applications of actinobacteria. IntechOpen, London, United Kingdom.
2. Bérdy J. 2005. Bioactive microbial metabolites. J Antibiot (Tokyo) 58: 1–26. https://doi.org/10.1038/ja.2005.1.
3. Chater KF. 2016. Recent advances in understanding Streptomyces. F1000Res 5:2795–2795. https://doi.org/10.12688/f1000research.9534.1.
4. Kharel MK, Shepherd MD, Nybo SE, Smith ML, Bossman MA, Rohr J. 2010. Isolation of Streptomyces species from soil. Curr Protoc Microbiol 19:10E.4.1–10E.4.5. https://doi.org/10.1002/9780471729259.mc10e04s19.
5. Hákavág S, Fjærvik E, Josefsen K, Ian E, Ellingsen T, Zotchev S. 2008. Characterization of Streptomyces spp. isolated from the sea surface microlayer in the Trondheim Fjord, Norway. Mar Drugs 6:620–635. https://doi.org/10.3390/mds6040620.
6. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.
7. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circulator: automated circularization of genome assemblies using long sequencing reads. Genome Biol 16:294. https://doi.org/10.1186/s13059-015-0849-0.
8. Varghese NJ, Mukherjee S, Ivanova N, Kyrpides NC, Konstantinidis KT, Mavrommatis K, Schwalen CJ, Mitchell DA, de los Santos ELC, Nave M, Dickschat JS. 2017. Isolation of Streptomyces spp. from soil. Curr Protoc Microbiol 19:10E.4.1–10E.4.5.
9. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Dicz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226.
10. Aziz RK, Bartels D, Best AA, Dejongh M, Diz D, Edwards RA, Formsmoa K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LE, Paarmann D, Pescian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassievo O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75–75. https://doi.org/10.1186/1471-2164-9-75.
11. Bretton T, Davis JJ, Dicz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, III, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RAST: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365–8365. https://doi.org/10.1038/srep08365.
12. Boylan SA, Redfield AR, Brody MS, Price CW. 1993. Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol 175:7931. https://doi.org/10.1128/jb.175.24.7931-7937.1993.
13. Guldimann C, Boor JJ, Wiedmann M, Guariglia-Dropeza V. 2016. Resilience in the face of uncertainty: sigma factor B fine-tunes gene expression to support homeostasis in Gram-positive bacteria. Appl Environ Microbiol 82:4456. https://doi.org/10.1128/AEM.00714-16.
14. Blin K, Weber T, Kim HU, Lee SY, Takano E, Breitling R, Shelest E, Wolf T, Chevette MG, Suarez Duran HG, Kautsar SA, Lu X, Medema MH, Schwalen CJ, Mitchell DA, de los Santos ELC, Nave M, Dickschat JS. 2017. antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 45:W36–W41. https://doi.org/10.1093/nar/gkw319.