A SHORT PROOF OF REISNER’S THEOREM ON
COHEN-MACAULAY SIMPLICIAL COMPLEXES

SILVANO BAGGIO

Abstract. We present a short proof of Reisner’s Theorem, characterizing which
simplicial complexes have a Cohen-Macaulay face ring. In some cases, we can
also express some homological invariants of the face ring in terms of the reduced
homology of the complex.

Keywords: Stanley-Reisner rings, sheaves on simplicial complexes.

Introduction

Let Σ be a simplicial complex on the set
V = {v1, . . . , vs}, and k[Σ] the face ring
(or Stanley-Reisner ring) over the field k. A theorem by Reisner ([Reis Page 2 of 2],
here Proposition 1.3) states that k[Σ] is Cohen-Macaulay if and only if the reduced
homology of Σ, and that of all the links of its faces, is zero, except possibly in the
top degree (that is, a geometric realization |Σ| of Σ is a homology sphere).

The proof presented here avoids using local cohomology, neither directly as in
Reisner’s paper, or indirectly, via Hochster’s theorem as in [BH 5.3.9]. Here the
technical difficulty relies in some homological algebra, applied to certain sheaves on
Σ, with the topology induced by the (reverse) face order. In fact, in [Yuz] Reisner’s
Theorem is proven as a corollary of a more general theorem on the rings of sections of
sheaves on posets. Our method is quite similar to his, and also to that used in [Bac].
Our proof is more direct and self contained, and we treat separately the case where
|Σ| is a homology manifold: in that case, proposition 2.1 provides a description of
the homology invariants Tori R(k[Σ], k) in terms of the reduced cohomology of Σ.

1. Simplicial complexes and sheaves on them

1.1. Notations and basic facts. By a simplicial complex over the finite set (of
vertices) V = {v1, . . . , vs} we mean the pair (V, Σ), where Σ is a set of subsets of V
(the simplexes or faces), such that:

σ ∈ Σ, τ ⊂ σ ⇒ τ ∈ Σ;
{v} ∈ Σ ∀v ∈ V.

The dimension of a face σ is the number of vertices of σ minus one; so, by definition,
dim ∅ = −1. The dimension of Σ is max{dim σ | σ ∈ Σ}. A simplicial complex is
pure if all its maximal faces have the same dimension.

Definition 1. Let R be a ring, and Σ a simplicial complex with vertices V = {v1, . . . , vs} and faces S ⊂ P(V). The Stanley-Reisner algebra, or face ring on R
relative to Σ is the R-algebra

R[Σ] = R[X1, . . . , Xs]
I,

where I ⊂ R[X1, . . . , Xs] is the ideal generated by all monomials Xs i=1 Xs i with
{v1, . . . , vih} ∈ S.
Definition 2. (See [BH, 5.3]) Let \((V, \Sigma)\) be a simplicial complex of dimension \(n - 1\), and let \(V\) be given a total order. For each \(i\)-dimensional face \(\sigma\) we write \(\sigma = [v_0, \ldots, v_i]\) if \(\sigma = \{v_0, \ldots, v_i\}\) and \(v_0 < \cdots < v_i\).

The \emph{augmented chain complex} of \(\Sigma\) is:

\[
\mathcal{C}(\Sigma) : 0 \to \mathcal{C}_{n-1} \xrightarrow{\partial} \mathcal{C}_{n-2} \to \cdots \to \mathcal{C}_0 \xrightarrow{\partial} \mathcal{C}_{-1} \to 0
\]

where we set

\[
\mathcal{C}_i = \bigoplus_{\sigma \in \Sigma, \dim \sigma = i} \mathbb{Z}\sigma \quad \text{and} \quad \partial \sigma = \sum_{j=0}^{i} (-1)^j \sigma_j
\]

for all \(\sigma \in \Sigma\), and \(\sigma_j = [v_0, \ldots, \hat{v}_j, \ldots, v_i]\) for \(\sigma = [v_0, \ldots, v_i]\).

The \(i\)-th \emph{reduced simplicial homology} of \(\Sigma\) with values in an abelian group \(G\) is:

\[
\tilde{H}_i(\Sigma, G) = H_i(C(\Sigma) \otimes G) \quad i = -1, \ldots, n - 1.
\]

The dual cochain complex \(\operatorname{Hom}_\mathbb{Z}(\mathcal{C}(\Sigma), G)\) has differentials \(\bar{\partial}\), defined as: \((\bar{\partial}\phi)(\alpha) = \phi(\partial \alpha)\), for \(\phi \in \operatorname{Hom}_\mathbb{Z}(\mathcal{C}_i, G)\), \(\alpha \in \mathcal{C}_{i+1}\). The \(i\)-th group of \(\text{reduced simplicial cohomology}\) of \(\Sigma\) with values in \(G\) is:

\[
\tilde{H}^i(\Sigma, G) = H^i(\operatorname{Hom}_\mathbb{Z}(\mathcal{C}(\Sigma), G)) \quad i = -1, \ldots, n - 1.
\]

If \(\sigma\) is a face of the simplicial complex \(\Sigma\), the \emph{link} of \(\sigma\) in \(\Sigma\) is \(\operatorname{lk}_\Sigma \sigma = \{\tau \in \Sigma \mid \sigma \not\subset \tau, \sigma \cap \tau \in \Sigma\}\). It is easy to see that \(\operatorname{lk}_\Sigma \sigma\) is itself a simplicial complex over the set \(\{v \in V \mid v \in \tau \exists \tau \in \operatorname{lk}_\Sigma \sigma\}\).

We denote by \(\operatorname{St} \sigma = \{\tau \in \Sigma \mid \sigma \subset \tau\}\) the \emph{star} of \(\sigma\) in \(\Sigma\), and by \(\overline{\operatorname{St}} \sigma\) the least subcomplex of \(\Sigma\) containing \(\operatorname{St} \sigma\).

Lemma 1.1. \(\Sigma\) be a simplicial complex on the vertices \(\{v_1, \ldots, v_t\}\), \(\sigma = [v_1, \ldots, v_l]\) a face of \(\sigma\). Then we have an isomorphism of localizations of Stanley-Reisner rings:

\[
k[\Sigma](X_\sigma) \cong k[\overline{\operatorname{St}} \sigma](X_\sigma),
\]

where \(X_\sigma\) is the image of the monomial \(X_1 \cdots X_t\).

Proof. Let the vertices of \(\overline{\operatorname{St}} \sigma\) be \(\{v_1, \ldots, v_t\}\) \((1 \leq r \leq t)\). By definition \(k[\Sigma] = k[X_1, \ldots, X_t]/_{\Sigma}\), where \(I_{\Sigma} = (X_i, \ldots, X_k \mid [v_i, \ldots, v_k] \not\in \Sigma)\), while \(k[\overline{\operatorname{St}} \sigma] = k[X_1, \ldots, X_t]/_{\sigma}\), where \(I_{\sigma} = (X_i, \ldots, X_k \mid [v_i, \ldots, v_k] \not\in \overline{\operatorname{St}} \sigma)\). After we localize to the multiplicative system \(\{X_\sigma^n \mid n \geq 0\}\), all monomials \(X_{i_1} \cdots X_{i_k} \in k[\Sigma]\) such that \([v_{i_1}, \ldots, v_{i_k}] \not\in \overline{\operatorname{St}} \sigma\) vanish: so the inclusion \(k[X_1, \ldots, X_t] \hookrightarrow k[X_1, \ldots, X_t]\) can be lifted to a well defined ring homomorphism \(k[\Sigma](X_\sigma) \to k[\overline{\operatorname{St}} \sigma](X_\sigma)\) that is easily seen to be injective and surjective.

Lemma 1.2. With the same notation as above,

\[
k[\operatorname{lk} \sigma] = \frac{k[\overline{\operatorname{St}} \sigma]}{(X_\sigma)}.
\]

Proof. \(k[\operatorname{lk} \sigma] = k[X_{l+1}, \ldots, X_t]/_{I_{\operatorname{lk} \sigma}}\), with \(I_{\operatorname{lk} \sigma} = I_{\sigma} \cap k[X_{l+1}, \ldots, X_t]\).

Proposition 1.3. \textbf{Reis, Theorem 2].}

Let \((V, \Sigma)\) be a simplicial complex.

The ring \(k[\Sigma]\) is Cohen-Macaulay if and only if

(1) \(\tilde{H}_i(\operatorname{lk} \sigma, k) = 0 \quad \forall i < \dim(\operatorname{lk} \sigma) \quad \forall \sigma \in \Sigma\),

and

(2) \(\tilde{H}_i(\Sigma, k) = 0 \quad \forall i < \dim \Sigma\).
Remark 1. Condition (1) depends only on the topology of the support of Σ. In fact, by [Sta Prop. 4.3], it is equivalent to:

$$\bar{H}_i((\Sigma_1, |\Sigma| \setminus x, k) \quad \forall i < \dim(\Sigma), \forall x \in |\Sigma|,$$

where $|\Sigma|$ is a given geometric realization of Σ.

Moreover, we can replace condition (II) with

$$\bar{H}^i(lk \sigma, k) = 0 \quad \forall i < \dim(lk \sigma) \quad \forall \sigma \in \Sigma,$$

that is, replace (reduced) homology with cohomology. This is a consequence of the Universal Coefficient Theorems ([Mac], Thm III.4.1 and Thm V.11.1), and shall be used in the proof of Proposition 2.1.

1.2. Sheaves on simplicial complexes

Sheaves on posets have been often used to study properties of rings which can be expressed as global sections (See [Bac], [Yuz], and also [BBFK], [BreLu], [Bri]).

A simplicial complex Σ can be considered as a topological space, where the open sets are the subcomplexes. More generally, every poset (X, \leq) can be given a topology, where the open sets are the increasing subsets, that is, the subsets $Y \subset X$ satisfying: $y \in Y, x \in X, y \leq x \Rightarrow x \in Y$. These two topologies coincide on a simplicial complex, provided we take the the reverse face order.

Some obvious remarks: every point (face) σ is contained in a least open subset, the subcomplex $\bar{\sigma}$ generated by σ. The closure of $\{\sigma\}$ is its star $\text{St} \sigma = \{\tau \in \Sigma \mid \sigma \subset \tau\}$. The empty set \emptyset is the maximum element in Σ for the reverse face order, and the closure of $\{\emptyset\}$ is the whole Σ; in particular Σ is an irreducible topological space.

A sheaf \mathcal{F} of abelian groups on Σ is by definition the data of an abelian group $\mathcal{F}(\Sigma')$ (sections of \mathcal{F} on Σ') for every subcomplex $\Sigma' \subset \Sigma$, and a group homomorphism (restriction) $\phi^\Sigma_{\Sigma_1} : \mathcal{F}_{\Sigma_2} \to \mathcal{F}_{\Sigma_1}$ for every pair $\Sigma_1 \subset \Sigma_2 \subset \Sigma$, such that for $\Sigma_1 \subset \Sigma_2 \subset \Sigma_3$, we have $\phi^\Sigma_{\Sigma_1} \phi^\Sigma_{\Sigma_2} = \phi^\Sigma_{\Sigma_3}$.

For $\Sigma' = \cup_i \Sigma_i \subset \Sigma$, if $x_i \in \mathcal{F}(\Sigma_i)$ for every i, and $\phi^\Sigma_{\Sigma_i \cap \Sigma_j}(x_i) = \phi^\Sigma_{\Sigma_i \cap \Sigma_j}(x_j)$ for every i, j, then there exists a unique $x \in \mathcal{F}(\Sigma')$ such that $\phi^\Sigma_{\Sigma_i}(x) = x_i$ for every i.

It is clear that the stalk of \mathcal{F} at $\sigma \in \Sigma$ is $\mathcal{F}_\sigma = \mathcal{F}(\bar{\sigma})$. The sections of \mathcal{F} on the subcomplex Σ' can be described as

$$\mathcal{F}(\Sigma') = \{x \in \prod_{\sigma \in \Sigma'_{\text{max}}} \mathcal{F}_\sigma \mid x_{\sigma | \sigma \cap \sigma'} = x_{\sigma' | \sigma \cap \sigma'}\},$$

where Σ'_{max} are the maximal faces of Σ'. This implies that assigning a sheaf \mathcal{F} on Σ is the same as assigning the stalks \mathcal{F}_σ for all $\sigma \in \Sigma$, and the restrictions $\phi^\Sigma_{\sigma_1} : \mathcal{F}_{\sigma_2} \to \mathcal{F}_{\sigma_1}$ for every pair of faces $\sigma_1 \subset \sigma_2$, with the only condition that, for $\sigma_1 \subset \sigma_2 \subset \sigma_3$, we have $\phi^\Sigma_{\sigma_2} \phi^\Sigma_{\sigma_1} = \phi^\Sigma_{\sigma_3}$.

The simplest sheaves on Σ can be defined in the following way on the stalks. If G is an abelian group, and $\sigma \in \Sigma$: $G(\sigma)_{\bar{\sigma}} = G$, while $G(\sigma)_\tau = 0$ if $\tau \neq \sigma$; all restrictions are zero. We call $G(\sigma)$ the simple sheaf with support in σ and values in G. The cohomology of such sheaves can be described directly in terms of the reduced cohomology of the links in Σ.

Lemma 1.4. (See [Bac] Lemma 3.1)

(i) The global sections of the simple sheaf $G(\sigma)$ are

$$G(\sigma)(\Sigma) = H^0(\Sigma, G(\sigma)) = \begin{cases} G & \text{if } \sigma \text{ is a maximal cone,} \\ 0 & \text{otherwise.} \end{cases}$$

(ii) If $i \geq 1$, then $H^i(\Delta, G(\sigma)) \cong \bar{H}^{i-1}(lk \sigma, G)$.
Proof. (i) follows from [4]. Let us prove (ii). The map \(j_\sigma : \text{lk} \sigma \to \Sigma \), sending \(\tau \to \tau \cup \sigma \) is a continuous injection, and its image is \(\text{St} \sigma \), which is closed in \(\Sigma \). Since \(G(\sigma) \) is the push forward via \(j_\sigma \) of the sheaf \(G(\emptyset) \) on \(\text{lk} \sigma \), we have: \(H^i(\Sigma, G(\sigma)) = H^i(\text{lk} \sigma, G(\emptyset)) \). We need only to prove that \(H^i(\Sigma, G(0)) = \tilde{H}^{i-1}(\Sigma, G) \) for \(i > 0 \).

Let \(\tilde{G} \) the constant sheaf on \(\Sigma \), with values in \(G \). \(G(\emptyset) \) is a subsheaf of \(\tilde{G} \). Let \(G_\emptyset = \tilde{G}/G(\emptyset) \). Since \(\tilde{G} \) is acyclic, the short exact sequence \(0 \to G(\emptyset) \to \tilde{G} \to G_\emptyset \to 0 \) induces the long exact sequence in cohomology (assume \(\dim \Sigma > 0 \):

\[
0 \to H^0(\Sigma, \tilde{G}) \to H^0(\Sigma, G_\emptyset) \to H^1(\Sigma, G(\emptyset)) \to H^1(\Sigma, \tilde{G}) = 0,
\]

which implies \(H^1(\Sigma, G(\emptyset)) \cong \tilde{H}^0(\Sigma, G) \); moreover, \(H^{i-1}(\Sigma, G_\emptyset) \cong H^i(\Sigma, G(0)) \) for \(i \geq 2 \). We can conclude by applying the following lemma. \(\square \)

Lemma 1.5. [Bac] Theorem 2.1

\[
H^i(\Sigma \setminus \{ \emptyset \}, \tilde{G}) \cong \tilde{H}^i(\Sigma, G),
\]

where \(\tilde{G} \) is the constant sheaf with values in \(G \), on \(\Sigma \setminus \{ \emptyset \} \).

Proof. The set \(\mathcal{S} = \{ C_j = \text{St}(v_j) \mid j = 1, \ldots, n \} \) is a closed covering of \(\Sigma \setminus \{ \emptyset \} \). For any \((p + 1)\)-tuple of indices \(i_0, \ldots, i_p \), the intersection \(C_{i_0} \cap \cdots \cap C_{i_p} \) is either the empty set (if \(\{ v_0 \ldots v_p \} \notin \Sigma \)), or the star \(\text{St}(v_0 \ldots v_p) \). Let \(G_{i_0 \ldots i_p} = \tilde{G}|_{C_{i_0} \cap \cdots \cap C_{i_p}} \); these (constant) sheaves are all flabby and then acyclic.

Consider the complex

\[
(5) \quad 0 \to \tilde{G} \to \bigoplus_{i=1}^{m} G_i \to \bigoplus_{1 \leq i_0 < i_1 \leq m} G_{i_0 i_1} \to \cdots \to \bigoplus_{1 \leq i_0 < \cdots < i_n \leq m} G_{i_0 \ldots i_n} \to 0,
\]

where differentials are defined as follows (indices with \(\sim \) are omitted):

\[
(6) \quad d((a_{i_0 \ldots i_k})_{i_0 \ldots i_k}) = \left(\sum_{h=0}^{k+1} (-1)^h \tilde{a}_{j_0 \ldots j_h \ldots j_{k+1}} \right)_{j_0 \ldots j_{k+1}}.
\]

The above notation means: if \(a \in G_{j_0 \ldots j_h \ldots j_{k+1}}(\Sigma') \), with \(\Sigma' \subset \Sigma \), then \(\tilde{a} \) is the image of \(a \) via the projection \(G_{j_0 \ldots j_h \ldots j_{k+1}}(\Sigma') \to G_{j_0 \ldots j_h \ldots j_{k+1}}(\Sigma') \).

The complex (5) is exact, and so it is an acyclic resolution of the sheaf \(\tilde{G} \) (To see this, check that the complex of the stalks relative to each face of \(\Sigma \) is exact). Since \(H^0(\text{St}(\sigma), \tilde{G}|_{\text{St}(\sigma)}) = G \) for any \(\sigma \), the complex of the global sections of (5) is

\[
0 \to \bigoplus_{\sigma \in \Delta_n} G(\sigma) \to \cdots \to \bigoplus_{\sigma \in \Delta_n} G(\sigma) \to 0.
\]

If we define differentials as in (6), this is the cochain complex of \(S_\Sigma \) with values in \(G \), and its cohomology is the reduced simplicial cohomology of \(S_\Sigma \). \(\square \)

1.3. **Definition of the sheaf \(A \).** Let \(\Sigma \) be a simplicial complex of dimension \(d \) over the set \(V = \{ v_1, \ldots, v_n \} \). From now on, let \(R = k[X_1, \ldots, X_n] \) be the ring of the polynomials in \(n \) indeterminates on the field \(k \).

Let us define the sheaf of \(R \)-algebras \(A \) over \(\Sigma \): its sections over the subcomplex \(\Sigma' \) are \(A(\Sigma') = R/I(\Sigma') \), where \(I(\Sigma') = (X_{i_1} \ldots X_{i_k} \mid [v_{i_1}, \ldots, v_{i_k}] \notin \Sigma') \). If \(\Sigma'_1 \subset \Sigma'_2 \), one can define a surjective homomorphism of \(R \)-algebras \(R/I(\Sigma'_2) \to R/I(\Sigma'_1) \), sending \(X_i \) to itself if \(v_i \in \Sigma'_1 \), to zero otherwise. This homomorphism is the restriction morphism \(A(\Sigma'_2) \to A(\Sigma'_1) \).

Equivalently, \(A \) can be defined as the only sheaf on \(\Sigma \), such that its stalk at \(\sigma = [v_{i_1}, \ldots, v_{i_k}] \) is \(A_\sigma = k[X_{i_1}, \ldots, X_{i_k}] \), and, if \(\tau = [v_{i_1}, \ldots, v_{i_j}] \), with \(j < h \) the map \(A_\sigma \to A_\tau \) (that is, \(A(\sigma) \to A(\tau) \)) sends \(X_{i_l} \) to itself for \(l \leq j \), to zero otherwise.
2. The main proof

First we prove Reisner’s Theorem in a particular case, when the simplicial complex is a homology manifold. The proof of the general case is at the end of this section.

Proposition 2.1. Let \(\Sigma \) be a pure \(d \)-dimensional simplicial complex on \(n \) vertices, satisfying condition \(\square \). Then

\[
\text{Tor}_i^R(k[\Sigma], k) = \bigoplus_{i=0}^n \widetilde{H}^{i-r-1}(\Sigma, \wedge^i k^n).
\]

In particular, the reduced homology of \(\Sigma \) vanishes in degree less than \(d \) if and only if

\[
\text{Tor}_i^R(k[\Sigma], k) = 0 \quad \forall i > n - d - 1,
\]

and this is equivalent to: \(k[\Sigma] \) is a Cohen-Macaulay ring.

Proof. Let \(K^*(X_1, \ldots, X_n) \) be the Koszul complex relative to \(X_1, \ldots, X_n \in R \). It is a free resolution of \(k = R/(X_1, \ldots, X_n) \) as an \(R \)-module. We can consider \(K^*(X_1, \ldots, X_n) \) as a complex of constant sheaves on \(\Sigma \), with negative degree, from \(-n \) to 0. Let \(K \) be the complex of sheaves of \(R \)-algebras, obtained by tensoring \(K^*(X_1, \ldots, X_n) \) with the sheaf \(A \). Every \(K^{-i} \cong \wedge^i A^n \) is flasque and therefore acyclic. We have: \(\text{Tor}_i^R(k[\Sigma], k) = H^{-i}(K^*(\Sigma)) = \mathbb{H}^{-i}(\Sigma, K^*) \) for \(i = 1, \ldots, n \), where \(\mathbb{H} \) denotes the hypercohomology functor.

Let us consider the decreasing sequence of open sets \(\Sigma^i = \{ \sigma \in \Sigma \mid \dim \sigma \leq d - i \} \) \(\longrightarrow \Sigma \). Define \(K^*_i \) as the complex \(f_i! (K^*_i |_{\Sigma^i}) \), that is, \(K \) restricted to \(\Sigma^i \) and then extended by zero to \(\Sigma \). We obtain a sequence of sheaf complexes \(0 = K^*_{d+1} \hookrightarrow K^*_{d} \hookrightarrow \cdots \hookrightarrow K^*_0 = K^* \). Note that the quotient \(K^*_p/K^*_{p+1} \) is supported in \((\Sigma_{p+1})^C \), which is a discrete topological space, so we can express \(K^*_p/K^*_{p+1} \) as a direct sum of sheaves \(\bigoplus_{\dim \sigma = d-p} K^*_\sigma \).

Standard arguments of homological algebra provide us with a spectral sequence \(E_1^{pq} = \mathbb{H}^{p+q}(\Sigma, K^*_p/K^*_{p+1}) \Rightarrow \mathbb{H}^{p+q}(\Sigma, K^*) \).

We can decompose the \(E_1 \)-terms as \(E_1^{pq} = \bigoplus_{\dim \sigma = d-p} \mathbb{H}^{p+q}(\Sigma, K^*_\sigma) \).

Claim: condition \(\square \) implies that \(E_1^{pq} = 0 \) for \(0 \leq p \leq d \) and \(p + q < d - n + 1 \), or, equivalently, that, if \(\dim \sigma \geq 0 \), then \(\mathbb{H}^i(\Sigma, K^*_\sigma) = 0 \) for \(l < d - n + 1 \).

Proof of the claim. There is another standard spectral sequence, converging to the hypercohomology: \(E_2^{ij} = H^j(\Sigma, \mathcal{H}^i(K^*_\sigma)) \Rightarrow \mathbb{H}^{i+j}(\Sigma, K^*_\sigma) \), where \(\mathcal{H}^i \) denotes the \(j \)-th cohomology sheaf of a complex of sheaves. Lemma \[\text{Lemma 1.4}\] implies: \(H^j(\Sigma, \mathcal{H}^i(K^*_\sigma)) = \mathbb{H}^{j-\dim \sigma}(\Sigma, \mathcal{H}^i(K^*_\sigma)) \). Because of condition \(\square \), these groups vanish for \(0 < i < \dim(\text{lk} \sigma) + 1 \Leftrightarrow 0 < i < d - \dim \sigma \) (and they vanish trivially for \(i > \dim(\text{lk} \sigma) + 1 = d - \dim \sigma \)). Two cases remain: \(i = 0 \) and \(i = d - \dim \sigma \).

If \(\sigma \) is maximal, \(\dim \sigma = d \), \(\text{projdim}_R(A_\sigma) = n - d - 1 \), and, by Lemma \[\text{Lemma 1.4}\]

\(H^0(\Sigma, \mathcal{H}^j(K^*_\sigma)) = H^{d-\dim \sigma}(\Sigma, \mathcal{H}^j(K^*_\sigma)) = \text{Tor}_j^R(A_\sigma, k) = 0 \) for \(j < d - n + 1 \).

If \(\sigma \) is not maximal, we know, by Lemma \[\text{Lemma 1.4}\] that \(H^0(\Sigma, \mathcal{H}^j(K^*_\sigma)) = 0 \). Since \(\text{Tor}_j^R(A_\sigma, k) = 0 \) for \(j < \text{projdim}_R(A_\sigma) = \dim \sigma - n + 1 \), we conclude that, also when \(i = d - \dim \sigma \), \(E_2^{ij} = 0 \) for \(i + j < (d - \dim \sigma) + (\dim \sigma - n + 1) = d - n + 1 \). **The claim is proved.**

So \(\mathbb{H}^*(\Sigma, K^*_\sigma) = \mathbb{H}^*(\Sigma, K^*_\sigma) \). Since the differentials of \(K^*_\sigma \) are zero, we can decompose \(K^*_\sigma = \bigoplus_{i=-n}^{d} K^*_\sigma \); here \(K^*_\sigma \) is the complex everywhere zero except in degree \(i \), where it is the constant sheaf \(K^*_\sigma \).

Since \(\mathbb{H}^*(\Sigma, K^*_\sigma) = H^{r-i}(\Sigma, K^*_\sigma) =\)
Let $R = k[X_1, \ldots, X_n]$; let S be an R-algebra, finitely generated as an R-module, and such that $\text{ht} \mathfrak{M}$ is the same for all maximal ideals $\mathfrak{M} \subset S$. Then S is Cohen-Macaulay if and only if $\text{Tor}_i^R(S, k) = 0$ for all $i > n - d$, where $d = \dim S$.

Proof. By definition, S is CM if and only if $d = \dim S_{\mathfrak{M}} = \text{depth } S_{\mathfrak{M}}$ for all maximal ideals $\mathfrak{M} \subset S$. The Auslander-Buchsbaum formula ([BH, Theorem 1.3.3]), applied to $S_{\mathfrak{M}}$ as an R_m module (with $m = \mathfrak{M} \cap R$) yields: $\text{depth}_{R_m}(S_{\mathfrak{M}}) + \text{projdim}_{R_m} S_{\mathfrak{M}} = \text{depth } R_m = n$. By [BH, Theorem 1.3.2], $\text{projdim}_{R_m} S_{\mathfrak{M}} = \sup \{i \mid \text{Tor}_i^{R_m}(S_{\mathfrak{M}}, k) \neq 0\}$. We conclude by noting that this last number equals $\sup \{i \mid \text{Tor}_i^{R}(S, k) \neq 0\}$, since $\text{Tor}_i^{R_m}(S_{\mathfrak{M}}, k) \cong R_m \otimes_R \text{Tor}_i^{R}(S, k)$; and $\text{depth}_{R_m}(S_{\mathfrak{M}}) = \text{depth}_{S_{\mathfrak{M}}}(S_{\mathfrak{M}})$ ([BH, Ex. 1.2.26]).

We give now the proof of Reisner’s Theorem for a generic simplicial complex Σ.

Proof. (of Proposition 1.3) First, we recall that a Cohen-Macaulay simplicial complex is pure ([BH, Cor. 5.1.5]). So, if $k[\Sigma]$ is Cohen-Macaulay, we can apply Proposition 2.1 and obtain conditions (1) and (2). Conversely, suppose first that condition (1) holds for Σ, but condition (2) does not. Then we can apply Proposition 2.1 to $k[\Sigma]$ is not Cohen-Macaulay. If condition (1) does not hold, then there exists a maximal face $\sigma \in \Sigma$ among the faces such that $\tilde{H}_i(lk \sigma, k) \neq 0$ for some $i < \dim (lk \sigma)$. Then $lk \sigma$ satisfies condition (1) but not condition (2). We can apply Proposition 2.1 to $lk \sigma$: $k[lk \sigma]$ is not Cohen-Macaulay. By Lemmas 1.1 and 1.2, $k[\Sigma]$ is not Cohen-Macaulay.

References

[Bac] K. Baczynski, *Whitney Numbers of Geometric Lattices*, Advances in Math. 16 (1975), 125–138.

[BBFK] G. Barthel, J. P. Brasselet, K. H. Fieseler, L. Kaup, *Combinatorial intersection cohomology for fans*, Tohoku Math. J. (2) 54 (2002), no. 1, 1–41.

[BreLu] P. Bressler, V. Lunts, *Intersection Cohomology on Nonrational Polytopes*, Compositio Math. 135 (2003), 245–278.

[BH] W. Bruns, J. Herzog, *Cohen-Macaulay rings (revised edition)*, Cambridge University Press, Cambridge studies in advanced mathematics 39, 1993.

[Bri] M. Brion, *The structure of the polytope algebra*, Tohoku Math Journal, 49, 1997, 1–32.

[Eis] D. Eisenbud, *Commutative algebra with a View Toward Algebraic Geometry*, Springer Verlag, Grad. Text in Math. 150, 1995.

[MacL] S. Mac Lane, *Homology*, Springer, 1975.

[Mat] H. Matsumura, *Commutative ring theory*, Cambridge Stud. in Adv. Math. 8, Cambridge University Press, 1989.

[Reis] G. A. Reisner, *Cohen-Macaulay Quotients of Polynomial Rings*, Advances in Math. 21 (1976), 30–49.

[Sta] R. P. Stanley, *Combinatorics and Commutative Algebra*, Birkhäuser, Progress in Math. 41, 1983.

[Yuz] S. Yuzvinsky, *Cohen-Macaulay Rings of Sections*, Advances in Math., 63, 172-195, 1987.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI BOLOGNA, PIAZZA DI PORTA SAN DONATO 5, 40126 BOLOGNA, ITALY

E-mail address: baggio@dm.unibo.it