On weighted estimates for a class of Volterra integral operators

Vyacheslav S. Rychkov
Moscow Institute of Physics and Technology

Abstract
Volterra integral operators $A = \sum_{k=0}^{m} A_k$, $(A_k f)(x) = a_k(x) \int_0^x t^k f(t) \, dt$, are studied acting between weighted L_2 spaces on $(0, +\infty)$. Under certain conditions on the weights and functions a_k, it is shown that A is bounded if and only if each A_k is bounded. This result is then applied to describe spaces of pointwise multipliers in weighted Sobolev spaces on $(0, +\infty)$.

1. In the theory of functions, it is rather common to study the possibility of weighted estimates of the kind
\[\| v A f \|_p \leq c \| u f \|_p \] (1)
for Volterra integral operators A, defined by the formula
\[(A f)(x) = \int_0^x A(x, t) f(t) \, dt. \]

Here the function f and its image Af are defined on the half-line $\mathbb{R}^+ = (0, +\infty)$; u, v are nonnegative on \mathbb{R}^+ functions (weights); $\| \cdot \|_p = \| \cdot \|_{L_p(\mathbb{R}^+)}$, $1 < p < +\infty$; constant $c > 0$ is independent of f.

The answer (whether (1) takes place or not) must be given in terms of the kernel $A(x, t)$ and the weights u, v. At present this answer is known only for certain classes of non-negative kernels close in some sense to the kernel of the Riemann-Liouville operator $(x - t)^\alpha$, $\alpha \geq 0$, and imposing at the same time minimal restrictions on the weights u, v. It seems that the most general class of such kernels was pointed out by R. Oinarov [1].

This work considers a new class of kernels of the kind
\[A(x, t) = \sum_{k=0}^{m} a_k(x) t^k, \quad m \in \mathbb{N}. \] (2)

Restrictions on functions a_k are minimal or absent. In particular, these functions are not assumed related and can take values of either sign. Therefore, our class

*Originally published in Doklady Ros. Akad. Nauk (1997), vol. 357, p. 455. Translated in Doklady Mathematics (1997), vol. 56, no. 3, p. 906-908. https://www.elibrary.ru/item.asp?id=13256293
contains sign-changing kernels. On the other hand, estimate (1) for operators with kernels of the kind (2) is studied only for \(p = 2 \). Some rather strong condition is also imposed on the weight \(u \).

2. Denote by \(B_\delta, \delta \geq 0 \), the set of positive locally integrable on \(\mathbb{R}^+ \) functions \(w \) satisfying with some constant \(C_w \) the integral doubling condition

\[
\int_\Delta w(x) \, dx \leq C_w \int_{\frac{1}{2}\Delta} w(x) \, dx
\]

for any interval \(\Delta \subset \mathbb{R}^+ \) of length \(|\Delta| \geq \delta \), where \(\frac{1}{2}\Delta \) is a twice smaller interval centered at the same point.

The main result of this work is the following theorem.

Theorem 1. Let \(u^{-2} \in B_\delta \) for some \(\delta \geq 0 \). If \(\delta > 0 \), then assume in addition \(a_k v \in L^2(0, r) \forall r > 0, k = 0 \ldots m - 1 \). Then to have the estimate

\[
\| vA f \|_2 \leq c \| u f \|_2,
\]

where \(A \) is an operator with the kernel (2), it is necessary and sufficient that

\[
s_k = \sup_{r>0} \| a_k v \|_{L^2(r, +\infty)} \cdot \| x^k u^{-1} \|_{L^2(0, r)} < +\infty, \quad k = 0 \ldots m.
\]

Remarks. 1) Denote by \(\mathcal{L}^2, u \) the weighted space of functions \(f \) on \(\mathbb{R}^+ \) with norm \(\| f u \|_2 \). Having (3) now means that \(A : \mathcal{L}^2, u \to \mathcal{L}^2, v \). Represent \(A \) as a sum

\[
A = \sum_{k=0}^m A_k,
\]

where

\[
(A_k f)(x) = a_k(x) \int_0^x t^k f(t) \, dt.
\]

Inequality (3) for the operator \(A_k \) instead of \(A \) reduces, via the substitution \(f_1(x) = x^k f(x), u_1(x) = x^{-k} u(x), v_1(x) = a_k(x)v(x) \), to the well-studied weighted Hardy inequality

\[
\left\| v_1 \int_0^x f_1(t) \, dt \right\|_2 \leq c \| u_1 f_1 \|_2,
\]

criterion for whose validity is known since a long time (see [2]) and takes the form

\[
\sup_{r>0} \| v_1 \|_{L^2(r, +\infty)} \cdot \| u_1^{-1} \|_{L^2(0, r)} < +\infty.
\]

From here it follows that

\[
s_k < +\infty \iff A_k : \mathcal{L}^2, u \to \mathcal{L}^2, v.
\]

Therefore, Theorem 1 is equivalent to the statement that (under its assumptions) we have “splitting” for the operator \(A = \sum_{k=0}^m A_k \), in the sense that

\[
A : \mathcal{L}^2, u \to \mathcal{L}^2, v \iff A_k : \mathcal{L}^2, u \to \mathcal{L}^2, v, \quad k = 0 \ldots m.
\]
2) Our method of proof of Theorem 1 gives the following estimate for the smallest constant c in inequality (3) (or, what is the same, the norm of the operator A acting from $L_{2,u}$ to $L_{2,v}$):

$$c_1 \sum_{k=0}^{m} s_k \leq \|A\|_{L_{2,u} \rightarrow L_{2,v}} \leq c_2 \sum_{k=0}^{m} s_k.$$

Constant c_2 here is universal. As for c_1, this constant depends on m, on C_{n-2} (the doubling constant for u^{-2}), as well as (if $\delta > 0$) on the quantity $\sum_{k=0}^{m-1} \|a_k v\|_{L_2(0,r_0)} \cdot \|x^k u^{-1}\|_{L_2(0,r_0)}$, where r_0 is determined by m, C_{n-2}, δ.

3. The following statement plays the main role in the proof of Theorem 1.

Lemma 1. Let $u^{-2} \in B_\delta, m \in \mathbb{N}$. Then there exists such $r_0 \geq 0$ (for $\delta = 0$), that

$$G(u^{-1} \chi_R, xu^{-1} \chi_R, \ldots, x^m u^{-1} \chi_R) \geq \varepsilon \|u^{-1} \chi_R\|_2 \|xu^{-1} \chi_R\|_2 \cdots \|x^m u^{-1} \chi_R\|_2, \quad r \geq r_0,$$

with a constant $\varepsilon > 0$ independent of $r \geq r_0$.

Here G is the Gram determinant of a system of functions in L_2, $\chi_R = \chi_{(0,r)}$ is a characteristic function of the interval. This statement therefore asserts the uniform in r non-degeneration of the parallelepiped with edges $u^{-1} \chi_R, \ldots, x^m u^{-1} \chi_R$.

Let us show how to derive Theorem 1 from this Lemma. From the above discussion it’s clear that we only need to prove the necessity of conditions (4).

Inequality (3) written for a function f_r supported on $[0, r]$ implies the inequality

$$\left\|v(x)a_0(x) \int_0^r f_r(t) dt + v(x) \sum_{k=1}^{m} a_k(x) \int_0^r t^k f_r(t) dt \right\|_{L_2(r, +\infty)} \leq c \|uf_r\|_{L_2(0, r)}.$$

(5)

Suppose uf_r belongs to the orthogonal complement of the linear span E_r of the set of functions $xu^{-1} \chi_R, \ldots, x^m u^{-1} \chi_R$. By Lemma 1, the angle between the vector $u^{-1} \chi_R$ and the subspace E_r is separated from zero uniformly in $r \geq r_0$. Therefore we can choose f_r so that the angle between uf_r and $u^{-1} \chi_R$ is uniformly separated from $\pi/2$, i.e.

$$\int_0^r f_r(t) dt \geq \alpha \|uf_r\|_{L_2(0, r)} \cdot \|u^{-1}\|_{L_2(0, r)}, \quad r \geq r_0 \quad (\alpha > 0).$$

In this case (5) implies

$$\|a_0 v\|_{L_2(r, +\infty)} \cdot \|u^{-1}\|_{L_2(0, r)} \leq \frac{c}{\alpha}, \quad r \geq r_0,$$

from where $s_0 < +\infty$. Finiteness of the other constants s_k is shown by induction.

We see that the argument uses essentially the geometry of the Hilbert space L_2.

3
4. Let us consider some applications. Consider on \mathbb{R}^+ the weighted Sobolev space $W = W_{2,u}^{(l)}$ with the norm $\|f\|_W = \|f\|_{L^2(0,1)} + \|f^{(l)}u\|_2$. Particularity of this norm is that by taking the norm of the function itself only on an initial interval of \mathbb{R}^+ allows to include into this space polynomials of degree $\leq l - 1$. Spaces $W_{2,u}^{(l)}$ were introduced and studied by L.D. Kudryavtsev in [3], using an equivalent norm $\sum_{k=0}^{l-1} |f^{(k)}(0)| + \|f^{(l)}\|_2$.

Function φ is called (pointwise) multiplier from $1W$ into $2W$, if $\varphi f \in 2W \forall f \in 1W$. The space of multipliers is denoted by $M(1W \rightarrow 2W)$.

Various aspects of the theory of multipliers in unweighted spaces of differentiable functions were studied in the book [4]. G.A. Kalyabin [5] described multipliers in Sobolev spaces on \mathbb{R}^n with the norm $\|f\|_{L^p(B(0,1))} + \|\nabla f\|_p$ in the case $p > n$; he also posed the question of describing multipliers in the considered here weighted case.

Obtained in Theorem 1 criterion of boundedness in weighted spaces of operators with kernels of the kind (2) is decisive to prove the following result.

Theorem 2. Let $u^{-2} \in B_{\delta}$, $v^{-1} \in L_2(0,r) \forall r > 0$. Then the space $M(W_{2,u}^{(l)} \rightarrow W_{2,v}^{(m)}), m \leq l$, consists of those and only those φ satisfying the following two conditions:

$$\|(\varphi x^k)^{(m)}v\|_2 < +\infty, \quad k = 0 \ldots l - 1 \quad (6)$$

$$\sup_{r>0} \|(\varphi x^k)^{(m)}v\|_{L^2(r, +\infty)} \cdot \|x^j - k - 1u^{-1}\|_{L^2(0,r)} < +\infty, \quad k = 0 \ldots l - 1, \quad (7)$$

to which in the case $m = l$ one more condition is added, namely

$$\|\varphi uv^{-1}\|_{L^\infty(\mathbb{R}^+)} < +\infty. \quad (8)$$

Remark. For $m = l, u = v, (1 + x^{l-1})u^{-1} \in L_2(\mathbb{R}^+)$ the considered space of multipliers was described by the author in [6]. The obtained result had the form of the combination of two conditions (6),(8), which is natural, since in that case (6)\Rightarrow(7). Theorem 3 allows to widen significantly the class of weights for which a description of multipliers is available. Interestingly, multipliers in spaces with exponentially decreasing at ∞ weights remain not studied: their description should become the subject of future investigations.

Two formulas from the following lemma show how operators with kernels of the form (2) appear in the problem about multipliers.

Lemma 2. Let function g on \mathbb{R}^+ be such that

$$g^{(k)}(0) = 0, \quad k = 0 \ldots l - 1. \quad$$

Then

$$(\varphi g)^{(l)}(x) = \varphi(x)g^{(l)}(x) + \frac{1}{(l-1)!} \sum_{k=0}^{l-1} C_{l-1}^{k} (\varphi x^k)^{(l)} \int_0^x (-t)^{l-k-1} g^{(l)}(t) \, dt; \quad (1)$$

$$(\varphi g)^{(m)}(x) = \frac{1}{(l-1)!} \sum_{k=0}^{l-1} C_{l-1}^{k} (\varphi x^k)^{(m)} \int_0^x (-t)^{l-k-1} g^{(l)}(t) \, dt, \quad m < l. \quad (2)$$
Detailed proofs of all statements will be published in Proceedings of Steklov Institute of Mathematics.

Note added (September 1997): In the time since submission of this article, proofs of the given results have appeared in [7]. The authors have also obtained generalizations for \(p \neq 2 \) [8].

References

[1] R. Oinarov, Two-sided norm estimates for certain classes of integral operators, in *Investigations in the theory of differentiable functions of many variables and its applications. Part 16*, Trudy Mat. Inst. Steklov., 204, Nauka, Moscow, 1993, 240250; [Translated in: Proc. Steklov Inst. Math., 204 (1994), 205214] http://mi.mathnet.ru/eng/tm1271

[2] V.G. Maz’ya, *Sobolev Spaces*, Springer, 1985.

[3] L.D. Kudryavtsev, “On norms in weighted spaces of functions given on infinite intervals,” Analysis Mathematica 12, 269282 (1986) https://doi.org/10.1007/BF01909365

[4] V. G. Maz’ya and T. O. Shaposhnikova, *Theory of multipliers in spaces of differentiable functions*, Monographs and Studies in Mathematics, vol. 23, Pitman Publishing Co., Brooklyn, New York, 1985

[5] G.A. Kalyabin, Pointwise multipliers in some Sobolev spaces containing unbounded functions, in *Investigations in the theory of differentiable functions of many variables and its applications. Part 16*, Trudy Mat. Inst. Steklov., 204, Nauka, Moscow, 1993, 160165; [Translated in: Proc. Steklov Inst. Math., 204 (1994), 137141] http://mi.mathnet.ru/tm1266

[6] V. S. Rychkov, Pointwise multiplications in weighted Sobolev spaces on a half-line, Math. Notes, 56:1 (1994), 704710 https://doi.org/10.1007/BF02110561

[7] V. S. Rychkov, Splitting of Volterra integral operators with degenerate kernels, in *Investigations in the theory of differentiable functions of many variables and its applications. Part 17*, Collection of articles, Tr. Mat. Inst. Steklova, 214, Nauka, Moscow, 1997, 267285; [Translated in: Proc. Steklov Inst. Math., 214 (1996), 260278] http://mi.mathnet.ru/eng/tm1040

[8] V.S. Rychkov, “Some weighted Hardy-Type Inequalities and Applications,” Proc. of A. Razmadze Georgian Math. Inst. (1997), vol. 112, p. 113-129 http://www.rmi.ge/proceedings/volumes/ps/v112-5.ps.gz