Cell cycle progression requires repression by Groucho during S-phase and its relief at G2-phase

Shaked Bar-Cohen§ and Ze'ev Paroush§*

§Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel

*To whom correspondence should be addressed; Tel: +972 26758308; FAX: +972 26757482; E-mail: zparoush@cc.huji.ac.il

Keywords: Cyclin-dependent kinase 1, cell cycle regulation, cell division, Drosophila, E2F1, Groucho, protein phosphorylation, transcriptional repression
Abstract

The cell cycle depends on a sequence of steps that are triggered and terminated via the synthesis and degradation of phase-specific transcripts and proteins. While much is known about how stage-specific transcription is activated, less is understood about how inappropriate gene expression is suppressed. In this paper we demonstrate that Groucho, the *Drosophila* orthologue of TLE1 and other related human transcriptional corepressors, regulates cell cycle progression *in vivo*. We show that although Groucho is expressed throughout the cell cycle, its activity is selectively inactivated by phosphorylation, except during S-phase when it represses *e2f1* expression. Misregulated Groucho activity causes cell cycle arrest; in particular, both constitutive Groucho activity and failure to repress *e2f1* cause cell cycle arrest phenotypes. We also show that the Cdk1 kinase is responsible for stage-specific phosphorylation of Groucho *in vivo*. We propose that Groucho and its orthologues play key roles in the metazoan cell cycle that may explain the links between TLE corepressors and several types of human cancer.
Introduction

The cell cycle is composed of a programmed sequence of events, including DNA synthesis, chromosome separation and cytokinesis. Progression through the cycle is highly regulated by protective checkpoints at which intrinsic or extrinsic conditions are monitored. The cycle arrests if suboptimal conditions are sensed, and recommences only once these are resolved through appropriate cellular response mechanisms (Clarke and Giménez-Abián, 2000; Kastan and Bartek, 2004; Musacchio and Salmon, 2007).

Cell cycle-related proteins are regulated at different levels. In the early *Drosophila* embryo, before the maternal-to-zygotic transition, rapid nuclear divisions are mainly controlled via translational and post-translational regulation of maternaly-deposited determinants (Becker et al., 2018; Groisman et al., 2002). As zygotic transcription is induced later in development, additional mechanisms are incorporated as examplified by the surge of *string (cdc25)* expression that is responsible for introducing the Gap 2 (G2)-phase in otherwise Synthesis (S)-to-Mitosis (M) cycling embryonic cells (Budirahardja and Gönczy, 2009; Edgar et al., 1994). Other genes that play a part in the cell cycle are also transcriptionally regulated, e.g., those involved in processes such as DNA replication and chromosome segregation, many of which are highly expressed in human tumors (Whitfield et al., 2002). Thus, transcriptional regulation in the context of the cell cycle is an important path to explore.

E2F1, a key cell cycle transcription factor, is an activator of *cyclin E (cycE)* expression, as well as that of additional target genes whose protein products are required at the initiation of S-phase, and at the G2- and M-phases (Bennett et al., 1996; Dimova and Dyson, 2005; Dimova et al., 2003; Herr et al., 2012). The E2F1 protein is detectable during all stages of the cell cycle except for S-phase, when it is degraded (Davidson and Duronio, 2012; Reis and Edgar, 2004; Shibutani et al., 2008). Preventing E2F1 protein degradation during S-phase leads to acceleration of the cell cycle and/or to apoptosis, highlighting the requirement for its removal at this
stage (Shibutani et al., 2008). The activator functions of E2F1 and other cell cycle
factors have been studied in depth; less is known, however, about transcriptional
repressors in this process.

We have previously shown that Transducin-like enhancer of split 1 (TLE1), a human
orthologue of the Drosophila developmental corepressor Groucho (Gro), acts as an
anti-proliferative factor (Zahavi et al., 2017), and TLE family members have been
linked to human cancers (Dali et al., 2018; Kokabu et al., 2017). Furthermore, Gro
and TLE1 are both phosphorylated in a cell cycle-regulated manner in vitro and in
cultured cells (Nuthall et al., 2002), a modification previously shown to mitigate their
corepressor activity downstream of receptor tyrosine kinase (RTK) pathways
(Cinnamon et al., 2008; Hasson et al., 2005; Helman et al., 2011; Helman et al., 2012;
Johnston et al., 2016; Nuthall et al., 2002; Paroush et al., 1997; Zahavi et al., 2017).
Herein, we explore the possibility that Gro fulfils an in vivo regulatory function in the
cell cycle.

We now demonstrate that Gro-mediated repression at S-phase, and its relief at G2-
phase, are both critical for cell cycle progression. Specifically, we show that Gro is
unphosphorylated and therefore active as a repressor only at S-phase, when it
represses e2f1 expression. gro-deficient cells display accelerated cell cycles and
accumulate at Gap 1(G1)-phase, a phenotype resembling that caused by E2F1
overexpression. In addition, we find that overexpression of Gro leads to a G2-phase
arrest, and identify phosphorylation by Cyclin-dependent kinase 1 (Cdk1) as a
mechanism that attenuates Gro’s repressor activity at this stage in vivo, thus
permitting entry into mitosis. Together, our results reveal an essential role for Gro in
the cell cycle, showing that it switches between active and inactive states and restricts
gene expression in a phase-specific manner. We propose that a similar level of
regulation underlies the involvement of TLE corepressors in cancer.
Results

Groucho is selectively phosphorylated and inactive at mitosis and in the two Gap phases

Gro is uniformly expressed throughout *Drosophila* development (Delidakis et al., 1991). In any given nucleus, however, it is either fully phosphorylated or completely unmodified (Cinnamon et al., 2008; Helman et al., 2011; Johnston et al., 2016) (Suppl. Fig. S1; see Materials and Methods). In previous work we demonstrated that phosphorylation of Gro, particularly by extracellular signal-regulated kinase (Erk) in response to RTK signaling, downregulates its repressor function (Cinnamon et al., 2008; Hasson et al., 2005; Helman et al., 2011; Helman et al., 2012). Thus, Gro has a regulated ability to switch between two modes: an active (unphosphorylated) or an inactive (phosphorylated) corepressor.

Staining of cycling cells in wing and eye imaginal discs with antibodies specific for Gro and phosphorylated Gro (pGro; raised using a synthetic phosphopeptide containing one of two putative Erk consensus sites in Gro) revealed that they display minimal overlap in their respective signals; only 10% of cells in wing imaginal discs (n=1031) and 11% of cells in eye imaginal discs (n=492) show overlapping nuclear signals for both antibodies (Suppl. Fig. S1; see Materials and Methods) (Cinnamon et al., 2008; Delidakis et al., 1991; Hasson et al., 2005; Helman et al., 2011; Johnston et al., 2016). Using these two antisera, we find that phosphorylation of Gro fluctuates dynamically in a cell cycle phase-dependent manner, and that it is modified at all stages of the cell cycle except for S-phase.

Specifically, mitotic cells, distinguishable by anti-phospho-Histone 3 at Serine 10 (pH3) staining, are consistently positive for pGro, both in embryos (Fig. 1a-b) as well as in wing imaginal discs (Fig. 1e-f quantified in Fig. 1i). In contrast, the pH3 signal complements that of the unphosphorylated, active form of Gro in both tissues (Fig. 1c-d and Fig. 1g-h quantified in Fig. 1i), indicating that Gro is phosphorylated, and therefore inactive as a repressor, at mitosis.
Not all pGro positive nuclei are mitotically active, however; we find that Gro is also phosphorylated at the G1- and G2-phases as determined using Fly-FUCCI, an in vivo fluorescent, ubiquitination-based indicator system (Fig. 2) (Zielke et al., 2014). In Fly-FUCCI wing imaginal discs, individual cells appear in different colours according to their cell cycle stage (Fig. 2a-b and e-f) (Zielke et al., 2014). Staining with anti-pGro and anti-Gro antibodies demonstrates that Gro is also phosphorylated at the G2/M- and G1-phases (Fig. 2c-d and f-g). We surmise that Gro is phosphorylated and, consequently, inactive at M-, G1- and G2-phases.

Groucho is unphosphorylated, and therefore an active repressor, at S-phase

The Fly-FUCCI system also indicated that Gro is unphosphorylated at S-phase (Fig. 2). To confirm this, we carried out two additional experiments. First, wing imaginal discs of PCNA-GFP flies, in which expression of cytoplasmic GFP is a reliable marker for early S-phase (Strzalka and Ziemienowicz, 2011; Thacker et al., 2003), were stained for pGro. As shown in Fig. 3a-c, the pattern of GFP complements that of pGro (Fig. 3a-c). Second, we stained wing imaginal discs with the nucleoside thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), which labels cells at late S-phase (Buck et al., 2008). Here, too, we find that nearly all EdU-positive cells co-stain for unphosphorylated Gro but not for pGro (Fig. 3d-f; quantified in Fig. 3j).

A similar result is also observed in eye imaginal discs, which allow the analysis of a relatively synchronized S-phase cell population. In this tissue, differentiation proceeds as a wave across the disc such that a stereotypic stripe of undifferentiated cells, located posteriorly to the morphogenetic furrow, synchronously enter S-phase (arrows in Fig. 3g-i) (Wolff and Ready, 1991). The vast majority of these EdU-positive S-phase cells stain for Gro but not for pGro (Fig. 3g-i; quantified in Fig. 3j), leading us to conclude that, in cycling cells, Gro is unphosphorylated only at S-phase, thereby restricting its repressive activity to this single stage of the cell cycle.
Ectopic expression of Groucho reduces the number of mitotic cells

The non-overlapping patterns of anti-pH3 and anti-Gro staining (Fig. 1) suggests that Gro is phosphorylated in mitotic cells, and therefore inactive at this stage. To determine the significance of Gro phosphorylation to mitosis, we assessed the effects of expressing a non-phosphorylatable Gro mutant on the number of mitotic cells in the rapidly dividing wing imaginal disc. Towards this end, we employed a non-phosphorylatable Gro variant mutated in its two phosphoacceptor sites (Gro^{AA}), in addition to a phosphomimetic Gro mutant derivative (Gro^{DD}) (Cinnamon et al., 2008; Hasson et al., 2005; Helman et al., 2011; Helman et al., 2012; Johnston et al., 2016). If phosphorylation of Gro is a precondition for mitosis, we expect that expression of the constitutively active Gro^{AA} repressor should dominantly reduce the pH3 signal, but not that of Gro^{DD} whose repressor activity is attenuated.

The two variants were ectopically expressed in wing imaginal discs under Gal4/UAS control (Brand and Perrimon, 1993). Expression of Gro^{AA} using an early driver (nubbin-Gal4) resulted in small and dysmorphic discs, preventing their subsequent analysis. Instead, we utilized MS1096-Gal4, which drives non-uniform expression relatively late and mainly in the dorsal wing compartment (Suppl. Fig. S2). In this case, expression of Gro^{AA} but not of the converse phosphomimetic Gro^{DD} variant significantly reduces the number of pH3-positive cells relatively to control, LacZ-expressing wings (Fig. 4a-d, g-h), and the ensuing adult wings are markedly smaller (Suppl. Fig. S2). We conclude that phosphorylation of Gro is required for mitosis. In further support of this idea, there is a significantly greater overlay between the pH3 and Gro^{DD} signals (42% of 381 pH3-positive cells scored) than between those of pH3 and Gro^{AA} (14% of 254 pH3-positive cells scored) (Suppl. Fig. S2), indicating that cells expressing Gro^{DD}, but not those expressing Gro^{AA}, enter mitosis readily and that, therefore, phosphorylated Gro is compatible with M-phase.

Induced expression of native Gro also causes a significant reduction in the number of pH3-positive mitotic cells, both in wing imaginal discs (Fig. 4e-f; cf. with control,
LacZ-expressing disc in Fig. 4g-h) as well as in the embryo, which represent a
different developmental tissue (using the Krüppel (Kr)-Gal4 driver; Fig. 4i-j) (Chu et
al., 1998). To quantify Gro effects on mitosis, while controlling for changes its
expression exerts on cell size, we calculated the ratio between the number of pH3-
positive cells and the total number of cells in the wing pouch region (mitotic index).
We find that the mitotic indices of wing imaginal discs overexpressing Gro (37.5%) and
GroAA (46.8%), but not GroDD (87%), are significantly lower than the mitotic
index observed in control, LacZ-expressing discs (related to as 100%). Notably,
expression of native transcriptional regulators and their non-phosphorylatable
derivatives, besides Gro and GroAA, often exerts similar effects in other biological
settings [see Fig. 4 in (Cinnamon et al., 2008); Figs. 3d-f and 4c in (Li et al., 2016);
Figs. 5A-B in (Lee et al., 2010)].

Strikingly, irregular Gal4-driven expression (Suppl. Fig. S2) (Barth et al., 2012; Ward
et al., 2002) revealed that the negative effect of GroAA and Gro on mitosis is largely
cell-autonomous, since most of the remaining pH3-positive cells in the MS1096-Gal4
and Kr-Gal4 expression domains are consistently those that express null or low levels
of induced GroAA and Gro (insets in Fig. 4b, h, f; quantified in Fig. 4k; Supplemental
Movie 1). We conclude that entry into M-phase necessitates the prior attenuation of
Gro repressive activity by phosphorylation.

Cyclin-dependent kinase 1 phosphorylates Groucho in vivo

The above data indicate that phosphorylation of Groucho fluctuates dynamically in a
cell cycle phase-dependent manner. Accordingly, Gro must be phosphorylated by a
kinase that is active at G2-phase but inactive at S-phase. Although Erk activity
impinges on cell cycle regulation at different levels (Mirzoyan et al., 2019; Mogila et
al., 2006; Prober and Edgar, 2000), there is no evidence that it exhibits similar
activation and inactivation dynamics, so Erk is probably not the kinase modulating
Gro in this context.
Instead, we considered Cdk1 as the prime candidate for phosphorylating Gro (Vidwans and Su, 2001). Of the three fly Cdks, Cdk1 activity shows the appropriate dynamics for regulating Gro activity, being essential at G2- and M-phases but inactive at S-phase (Bettencourt-Dias et al., 2004). Additionally, Cdk1 (also known as cdc2) phosphorylates Gro and its human TLE1 orthologue in vitro and in cell culture (Nuthall et al., 2002). Finally, like Erk, Cdk1 is a Pro-directed Ser/Thr kinase (Malumbres, 2014) whose phosphorylation site in Gro was mapped to a fragment encompassing the Erk phosphorylation motif recognized by the pGro antibodies (see Materials and Methods) (Nuthall et al., 2002).

To test if Gro undergoes phosphorylation by Cdk1 in vivo, RNA interference (RNAi) was used to deplete it. Expression of cdk1 RNAi in wing imaginal discs results in fewer and larger cells, a known phenotype caused by Cdk1 deficiency (Suppl. Fig. S3) (Bettencourt-Dias et al., 2004) (Johnston, 1998). As Fig. 5 shows, the amount of unphosphorylated Gro increases in such MS1096>cdk1 RNAi wing imaginal discs, predominantly in the dorsal compartment (Fig. 5). The observed increase in unphosphorylated Gro is not simply due to a G2/M-phase arrest caused by cdk1 depletion; cdk1 knock-down leads to accumulation of cells at G2/M-phases (Fig. 5f) (Bettencourt-Dias et al., 2004), which are stages of the cell cycle in which Gro is normally phosphorylated (Fig. 2). Our results, therefore, probably reflect a direct role for Cdk1 in Gro phosphorylation in vivo, and are consistent with Cdk1 being the kinase responsible for inactivating Gro during G2 in this tissue.

Phosphorylation of Groucho is mandatory for progression into mitosis

The Cdk1-mediated phosphorylation of Gro at the exit from S-phase appears to be obligatory for cell cycle progression. When Gro is overexpressed in Fly-FUCCI wing imaginal discs, a substantial enrichment in yellow-stained, G2/M-phase cells relative to control discs occurs (Fig. 6a-b; ImageJ measurements reveal a three-fold relative increase in the yellow-stained wing disc area) (Zielke et al., 2014). Since similar Gro expression leads to a cell-autonomous reduction in pH3 staining (Fig. 4), we conclude
that the yellow staining reflects a significant increase in the number of cells at G2-phase.

To confirm this result, we conducted flow cytometric analysis of dissociated wing imaginal disc cells. As Fig. 4c shows, a higher proportion of cells ectopically expressing Gro are in G2/M-phases compared to cells from control wings (Fig. 4c). Gro-expressing cells are also larger in size than control cells (Fig. 4c) (Bettencourt-Dias et al., 2004). These results, together with the overlapping expression patterns of pH3 and pGro (but not Gro) staining (Fig. 1) and the Gro-induced decline in pH3-positive mitotic cells (Fig. 4), indicate that cells overexpressing Gro arrest at G2-phase, prior to mitosis, leading us to conclude that unphosphorylated, repressive Gro obstructs cell cycle progression.

Groucho negatively regulates e2f1 expression

An *in silico* approach was used to identify potential cell cycle targets of Gro-mediated repression. Multiple independent studies, using different methodologies, profiled Gro binding to chromatin in both *Drosophila* embryos and cultured cells (Suppl. Fig. S4) (Chambers et al., 2017; Kaul et al., 2014; Orian et al., 2007; Roy et al., 2010; Shibutani et al., 2008). Cell cycle and/or cell proliferation genes, closely located to Gro peaks, represent candidate Gro-regulated targets at S-phase. Moreover, the untimely transcriptional repression of some of these genes could also account for the G2-phase arrest imposed by overexpressed Gro (see Discussion).

From this gene set we chose, as case in point, the *e2f1* gene for further investigation. *e2f1* stands out as an attractive Gro target, since it encodes a key cell cycle regulator that activates genes required for the initiation of S-phase as well as for G2- and M-phases (Bennett et al., 1996; Dimova et al., 2003; Erez et al., 2008; Herr et al., 2012; Hurford et al., 1997; Ishida et al., 2001; Liu et al., 1996; Polager et al., 2002; Ren et al., 2002; Shibutani et al., 2008). The E2F1 protein is detectable at all phases of the cell cycle except for S-phase, when it is degraded (Bennett et al., 1996; Davidson and Duronio, 2012; Dimova et al., 2003; Herr et al., 2012). The inappropriate presence of
E2F1 at S-phase can lead to accelerated cell cycle and/or apoptosis (Bennett et al., 1996; Davidson and Duronio, 2012; Dimova et al., 2003; Herr et al., 2012). While post-translational regulation of E2F1 has been extensively studied, regulation of e2f1 gene expression is, as yet, largely unexplored (Goulev et al., 2008; Johnson et al., 1994; Øvrebø et al., 2022).

Several analyses support the notion that Gro represses e2f1 gene expression during S-phase, and that phosphorylation of Gro attenuates this repression. Immunofluorescence staining of wild-type wing imaginal discs shows that signals of E2F1 and non-phosphorylated, repressive Gro do not overlap (Fig. 6a-aô (Shibutani et al., 2008), and the pattern of the PCNA-GFP reporter, commonly used as proxy for E2F1 transcriptional activity (Buttitta et al., 2010), complements that of pGro (Fig. 3a-c). Moreover, ectopic non-phosphorylatable GroAA expression reduces anti-E2F1 staining, whereas GroBD expression does not affect E2F1 levels or distribution (Suppl. Fig. S4). Real-time polymerase chain reaction (RT-PCR) analysis reveals that overexpression of Gro in wing imaginal discs decreases the relative transcript levels of e2f1 and several of its targets (Fig. 7b). Also, E2F1 is derepressed in homozygous groE48 mutant clones, induced in either wing (Fig. 7c-e) or eye imaginal discs (Fig. 7f-h). Finally, Gro is a direct or indirect repressor of e2f1 transcription, rather than a controller of E2F1 post-translational levels, since it negatively regulates reporter expression derived from an e2f1-lacZ enhancer-trap line in eye imaginal discs (Fig. 7i-j) (Brook et al., 1996; Duronio et al., 1995).

We reasoned that if the G2-phase arrest induced by overexpression of Gro involves the inappropriate repression of e2f1 at G2-phase, a stage when it should be retranscribed, then the concomitant expression of E2F1 will rescue this phenotype. As Fig. 6 shows, the coexpression of E2F1 and Dimerization partner (Dp) suppresses the G2-phase arrest prompted by Gro overexpression (Fig. 6a-cô, and cell size reverts to normal (Fig. 6d-dô. This functional link between Gro and E2F1 reinforces the notion
that relief of Groucho-mediated e2f1 repression at G2-phase, via Cdk1-dependent phosphorylation, is crucial.

Gro-mediated repression at S-phase is essential for proper cell cycle progression

The derepression of E2F1 does not induce apoptosis of gro-deficient cells, possibly because the level of upregulated E2F1 in gro mutant cells is still below the threshold required to trigger cell death, attainable by E2F1 overexpression (Suppl. Fig. S5) (Bennett et al., 1996; Davidson and Duronio, 2012; Dimova et al., 2003; Herr et al., 2012). To establish the significance of Gro-dependent repression at S-phase, we determined how genetic depletion of gro affects the fate of eye imaginal disc cells posterior to the morphogenetic furrow. These cells are normally in S-phase and, hence, are EdU-positive (Fig. 3g-i) (Wolff and Ready, 1991). When homozygous mutant groE48 clones intersect this domain, however, cells in which E2F1 is derepressed and consequently upregulated are consistently EdU-negative, indicating that they are not in S-phase (Fig. 8a-aâ†¥. The minority of gro-deficient cells that still stain for EdU, usually found at the margins of the clones, are typically E2F1-negative (Fig. 8a-aâ†¥ see Discussion).

We hypothesized that if Gro-mediated repression at S-phase is critical, then perhaps its absence would perturb proper cell cycle progression. To address this point, we profiled the cell cycle distribution of GFP-marked eye clones of cells heterozygous for the groMB36 null allele, in which gro levels were further knocked-down (gro RNAi) (Suppl. Fig. S1) (Jennings et al., 2008). Flow cytometry analysis revealed that a significantly greater proportion of GFP-positive cells and, hence, with reduced gro levels have a 2N DNA content (Fig. 8b). Moreover, such eye imaginal disc clones show reduced staining for S-, G2- and M-phase markers (Suppl. Fig. S5). They, therefore, accumulate predominately at G1-phase.

We considered two possibilities that can explain this result: gro depletion either i) leads to a cell cycle arrest prior to DNA synthesis or 2) accelerates the cell cycle such that cells pass through G2/M-phases faster. To distinguish between these options, we
determined the doubling times of clonal cells overexpressing LacZ, or of cells in which RNAi was used to knockdown gro, by quantifying the number of GFP-positive cells per clone (Fig. 8c). Based on this data, we find that the respective doubling time of LacZ-expressing control clones is, on average, 15.9h as previously reported (Tseng and Hariharan, 2002). Strikingly, gro-knockdown clones exhibit a significantly faster doubling time of 12h. The accelerated cell cycle phenotype of cells with lower levels of gro is remarkably similar to that caused by E2F1 overexpression (Davidson and Duronio, 2012; Shibutani et al., 2008), consistent with the idea that Gro normally represses e2f1 at S-phase (Fig. 7). Moreover, the higher proportion of cells at G1-phase in gro-knockdown clones (Fig. 8b) resembles the accumulation of cells overexpressing E2F1 at G1-phase (Davidson and Duronio, 2012; Shibutani et al., 2008).

In summary, our data indicates that Gro repression is essential in S-phase for silencing e2f1 expression and, possibly, of other genes (see Discussion). In Gro’s absence, the cycle accelerates and cells ultimately accumulate at G1-phase. Conversely, relief of Gro-mediated repression by Cdk1 activity is required for the correct progression through the G2-phase and for entry into mitosis (Fig. 8d). We conclude that Gro is an integral component of the cell cycle control system.
Discussion

Our results uncover a previously unrecognized layer of cell cycle regulation by the Gro corepressor, indicating that Gro's phosphorylation and dephosphorylation fulfil an integral regulatory function that is essential for cell cycle progression (Fig. 8d). We identify e2f1 as a key target for repression by Gro at S-phase. Thus, Gro is a negative regulator of E2F1, a transcription factor that functions at the heart of the cell cycle by activating multiple genes required for the initiation of the cycle, as well as for the G2- and M-phases (Bennett et al., 1996; Dimova et al., 2003; Erez et al., 2008; Herr et al., 2012; Hurford et al., 1997; Ishida et al., 2001; Liu et al., 1996; Polager et al., 2002; Ren et al., 2002; Shibutani et al., 2008).

Previous reports had shown that preventing E2F1 proteolysis at S-phase brings about accelerated cell cycles and/or apoptosis (Davidson and Duronio, 2012; Shibutani et al., 2008). Repression of e2f1 by Gro does not appear to provide a robust, backup mechanism for preventing E2F1-induced apoptosis, because gro mutant cells are viable despite the upregulation of E2F1 (Figs. 7, 8; Suppl. Fig. S5) (Hasson et al., 2005). We surmise that elevated E2F1 protein levels in gro deficient cells, in which the E2F1 degradation apparatus is presumably still operational, are not high enough to instigate cell death (Suppl. Fig. S5) (Davidson and Duronio, 2012). Instead, loss of Gro and the associated E2F1 upregulation leads to accelerated cell cycles.

Surprisingly, a minority of gro-deficient cells do not upregulate E2F1 and still stain for EdU (Fig. 8a-aÔ). It is conceivable that these EdU-positive cells, usually found at the periphery of gro clones, are exposed to non-cell autonomous signals from surrounding cells that drive them into S-phase, when E2F1 is robustly degraded. Their ability to continue dividing could explain why gro mutant clones are not eliminated.

Although the negative regulation of e2f1 could be indirect, due to repression by Gro of other genes that impinge on the cell cycle, several observations nevertheless point to a direct effect of Gro on e2f1. First, Gro binds to several chromatin sites within the
first e2f1 intron (Suppl. Fig. S4) (Chambers et al., 2017; Kaul et al., 2014; Orian et al., 2007; Roy et al., 2010; Shibutani et al., 2008), which is also included in the e2f1-enhancer trap line that is silenced by Gro (Fig. 7i-j) (Brook et al., 1996; Duronio et al., 1995). Second, E2F1 is repressed in cells arrested by ectopic Gro at G2-phase (Figs. 6, 7), despite the fact that it should be normally expressed at this stage (Davidson and Duronio, 2012; Shibutani et al., 2008). Third, Gro represses reporter gene expression derived from an e2f1-lacZ enhancer-trap line (Fig. 7i-j).

Surprisingly, Gro overexpression arrests cells at G2-phase, and not at G1-phase as expected from depletion of e2f1 (Dobrowolski et al., 1994; Dyson, 1998; Fan and Bertino, 1997; Ishizaki et al., 1996; Wu et al., 1996). We surmise that overexpressed Gro blocks de novo e2f1 transcription at G2-phase (following its repression by Gro at S-phase) and, consequently, Gro aborts progression of the cycle at this stage. In contrast, the G1-to-S-phase transition is refractory to Gro overexpression since the E2F1 protein has already accumulated, and is post-transcriptionally regulated (via Rb and its phosphorylation), at this stage of the cycle. Consistent with this interpretation, coexpression of E2F1 and Dp suppresses the G2-phase phenotypes induced by Gro overexpression (Fig. 6d-dê.

In our work we have focused on e2f1 as a key target regulated by Gro. However, it is also conceivable that Gro represses additional genes, in proximity to which it binds, that must be silenced during S-phase. Prospective candidates for Gro repression are genes encoding the auroraA and auroraB kinases that are required for the control of mitosis (Goldenson and Crispino, 2015; Orian et al., 2007), and transforming acidic coiled coil (TACC) which maintains spindle bipolarity and microtubule stability during mitosis (Trivedi, 2013). We do not rule out the possibility that silencing of these (and perhaps other) genes contributes to the predominant G2-phase arrest exerted by Gro expression (Fig. 6).

The majority of pGro-positive cells are negative for pH3 staining and are, therefore, not mitotic (Fig. 1). These could be non-dividing cells or, if cycling, could be in one
of the two Gap-phases at which Gro is also phosphorylated (Fig. 2). Regardless, we propose that for cell division to occur, the attenuation of Gro repression must be accompanied by specific pro-proliferative cues (Fig. 8d). Similar context-dependent positive inputs, each exclusive to a particular cellular process, will ensure that the downregulation of Gro by phosphorylation results in induction of a restricted sets of genes in each case, depending on the cellular context.

The full scope of Gro’s regulatory functions in the framework of the cell cycle will come to light once the complete repertoire of its targets is revealed and its DNA-binding partner proteins in this framework identified. How phosphorylated Gro is replaced by unphosphorylated Gro at S-phase also remains an open question. We assume that either Gro is dephosphorylated by a Ser/Thr phosphatase, or that phosphorylated Gro is degraded at G1- or early S-phase, with non-phosphorylated Gro newly transcribed and translated during S-phase. Further studies will be required to discern between these possibilities.

To date, Gro has been mainly implicated in transcriptional repression events controlling cell fate specification and differentiation (Cinnamon and Paroush, 2008; Hasson and Paroush, 2006). The new roles we have uncovered for Gro and its phosphorylation in the cell cycle raise the possibility that they also function in additional basic cellular processes. Other kinases, besides Erk and Cdk1, have been shown to phosphorylate Gro (Choi et al., 2005; Nuthall et al., 2002; Nuthall et al., 2004), and software programs predict yet additional kinases that could potentially modify the motif recognized by the anti-pGro antibodies. Accordingly, other physiological and/or metabolic processes, each employing a specific effector kinase(s), may derepress their unique arrays of downstream target genes via phosphorylation of Gro.

Emerging evidence supports the notion that Gro’s human TLE orthologues may act similarly to Gro in the context of the cell cycle. TLE1 and TLE3 are both implicated in cancer; TLE1, for example, promotes glioblastoma propagation (Dali et al., 2018).
and TLE3 stimulates cell division by suppressing myogenic differentiation via transcriptional repression of the master regulator MyoD (Kokabu et al., 2017). Moreover, a large-scale analysis found that TLE1 is a mitotic bookmarking factor in development and in stem cells (Festuccia et al., 2017), and TLE3 was identified in a phosphoproteomics analysis of full phosphorylation site occupancy during mitosis (Olsen et al., 2010). Finding that TLE corepressors function comparably to Gro in cell cycle regulation may ultimately offer new therapeutic strategies for preventing uncontrolled cell division in cancerous settings.
Materials and Methods

Fly culture and stocks. Flies were cultured and crossed on standard yeast-cornmeal-molasses-malt extract-agar medium at 25°C.

cDNAs for Gro, GroAA and GroDD were cloned into the pUAST-attB vector, and all constructs were subsequently integrated at the attP40 site (BestGene Inc., USA) to generate transgenic lines with comparable expression levels (Suppl. Fig. S2d) (Markstein et al., 2008).

The following GAL4 drivers and responders were used: kr-Gal4 (BDSC #58800); MS1096-Gal4; groMB36, UAS-gro RNAi/TM6B (generously provided by Gerardo Jiménez) (Jennings et al., 2008); UAS-cdk1 RNAi (BDSC #28368 and #36117); UAS-cdk2 RNAi (BDSC #28952 and #34856); UAS-cdk4 RNAi (BDSC #36060 and #27714); UAS-LacZ (Brand and Perrimon, 1994); UAS-GFP (Yeh et al., 1995); UAS-E2F1, UAS-Dp/CyO (BDSC #4774); PCNA-GFP (kind gift of Robert Duronio); P[rm729] e2f1-lacZ (BDSC #34054); and Fly-FUCCI (BDSC #55124 and #55123) (Zielke et al., 2014). yellow white flies served as wild-type controls.

Generating groucho loss-of-function and overexpression clones. Mutant clones lacking functional Gro (groE48) were generated using FLP-mediated mitotic recombination in the progeny of the following cross: hsflp; P[FRT82B] ubi-GFP/TM6B virgin females and P[FRT82B] groE48/TM6B males. Clones were induced 48-72hr after egg laying by heat-shock (60min at 37°C), and were identified by the loss of the GFP marker and the concurrent appearance of a twin spot clone. Gro knock-down was attained by crossing hsflp; actin>CD2>Gal4; UAS-nlsGFP/TM6B virgins to groMB36, UAS-gro RNAi/TM6B males (Jennings et al., 2008). Clones, induced 48-72hr after egg laying by heat-shock (10min at 37°C), were distinguishable via the GFP marker.

Preparing wing imaginal disc lysates for immunoblotting. Wing imaginal disc lysates were prepared as described (Kushnir et al., 2020).
Antibody staining. Primary antibodies used in this study were: rabbit anti-phospho-Histone 3 (1:100; Cell Signaling #9701); mouse anti-phospho-Histone 3 (1:100; Cell Signaling #9706); rabbit anti-pGro (1:100) (Cinnamon et al., 2008; Hasson et al., 2005); mouse anti-Gro (diluted 1:1000 for immunofluorescence and 1:5000 for Western blot analysis; generously contributed by Christos Delidakis) (Delidakis et al., 1991); rat anti-total Gro (1:1000 for Western blot analysis; Santa Cruz sc-15786); rabbit anti-panTLE (1:100, Cell Signaling #4681); mouse anti-GFP (1:100; Developmental Studies Hybridoma Bank (DSHB) #8H11); mouse anti-Cyclin A (1:20; DSHB #A12); mouse anti-Cyclin B (1:20; DSHB #F2F4); rabbit anti-Dcp1 (1:100; Cell Signaling #9578); and rat anti-E2F1 (1:100; generous gift by Stefan Thor). Secondary antibodies were 488-, Rhodamine Red-X- or Cy5-conjugated (1:400; Jackson Laboratories).

Nuclei were labeled using DAPI (1:1000; Sigma), and embryos and wing imaginal discs were mounted using Vectashield medium (Vector Laboratories, Inc.).

Immunovisualisation of Gro’s phosphorylation state in vivo. Rabbit anti-phosphorylated-Gro (pGro) polyclonal antibodies were raised using a synthetic phosphopeptide containing one of two putative Erk consensus sites (phospho-Thr308). Subsequently, the antibodies were affinity-purified on a column with a corresponding non-phosphorylated peptide, and the flow-through was later bound on a column with the phosphorylated peptide. These anti-pGro antibodies detect Gro in its phosphorylated state in vivo, particularly in domains of ongoing and earlier (given the persistence of Gro phosphorylation) RTK pathway activity (Cinnamon et al., 2008; Hasson et al., 2005; Helman et al., 2011; Johnston et al., 2016).

Immunofluorescence staining, using a monoclonal mouse anti-Gro antibody raised against amino acids 120-380 (Delidakis et al., 1991), generates a signal that largely complements the domain of pGro throughout embryonic and adult development (Suppl. Fig. S1) [see Figs. 1-3 in (Cinnamon et al., 2008) and Fig. 5 in (Johnston et al., 2016)]. Note that the anti-Gro antibody detects signals across a range of Gro
protein levels (i.e., downregulation as well as overexpression; Suppl. Fig. S1 and Fig. 4). The general lack of anti-Gro staining in anti-pGro-positive nuclei implies that the protein is completely phosphorylated in these nuclei. Importantly, the mutually exclusive recognition by the anti-pGro and anti-Gro antibodies is also observed in vitro [(Fig. 1 in (Cinnamon et al., 2008)], indicating that phosphorylation is enough to cause differential detection of the same, or neighboring, epitopes by the two anti-sera.

The specific recognition of nonphosphorylated Gro by the anti-Gro antibody is further illustrated by its failure to detect phosphomimetic Gro^{DD}, while strongly recognizing the nonphosphorylatable Gro^{AA} variant when similarly overexpressed (cf. insets in Figs. 4c and 4a, respectively). Finally, commercially available polyclonal anti-total Gro antibodies (Santa Cruz) were used to detect total Gro levels (i.e., Gro, Gro^{AA} and Gro^{DD}) in immunoblots (Suppl. Fig. S2), and commercially available anti-panTLE antibodies (Cell Signaling) were used to follow transgenic expression in vivo (Suppl. Fig. S2).

EdU incorporation. Third instar larval wing and eye imaginal discs were submerged in 1xPBS in the presence of 1:1000 EdU for 1hr with gentle rolling at RT. EdU was detected using the Click-iT EdU Alexa Fluor 555 Imaging Kit (Life Technologies).

Real-time polymerase chain reaction (RT-PCR). Total RNA was extracted using Aurum Total RNA Mini Kit (Bio-Rad). RT-PCR was performed using iTaq Universal SYBR Green Master Supermix (BioRad) and CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Expression was normalized to GAPDH transcripts in all cases, and each experiment was carried out in biological triplicates (one representative experiment is shown). Data analysis was preformed using Bio-Rad CFX manager 3.1 (Bio-Rad).

Flow cytometry. Samples were prepared as described (Davidson and Duronio, 2012), and DNA content was determined using Hoechst 33342 (Sigma). Cells were subjected to flow cytometry using LSR-Fortessa Analyzer (BD Biosciences), and results were analyzed by FCS express 4 software (De-Novo software). Each
experiment was carried out at least three independent times, of which a single representative experiment is presented.

Quantifying mitotic indices and doubling time of cell populations. Mitotic indices, which take into account Gro’s effect on mitosis while controlling for the changes its expression exerts on cell size, were calculated by counting pH3-positive cells in a known, constant area and dividing them by the number of nuclei.

For doubling time measurement, clones were induced by heat shock at 72h and fixed at 124h. Doubling time was calculated using the following formula: \((\log 2 / \log N)\) hr, where \(N\) is the median cell number per clone and \(hr\) is the age of the clones in hours (Tseng and Hariharan, 2002).

Mounting of fly wings Adult wings were mounted as described in (Kushnir et al., 2020).

Microscopy. Confocal images were attained using a Zeiss LSM710 confocal microscopy. Images were processed using Adobe Photoshop software.

Statistical analyses. Statistical analyses were conducted using Prism software. ImageJ was used to measure the intensity of yellow-stained cells and Zen software to quantify the numbers of DAPI, pH3-, EdU-, Gro- or pGro-positive cells.
Figure legends

Fig. 1. Groucho is phosphorylated in pH3-positive mitotic cells. (a-h') Confocal images of stage 11 wild-type embryos (lateral views; a-d') and wing imaginal discs from wild-type third instar wandering larvae (e-h'), co-stained for pH3 (red; a-h') together with either pGro (green; b-b'and f-f') or Gro (green; d-d'and h-h'). (b' d' f' h') Magnified views of (b, d, f and h), respectively. In both tissues, pH3 staining overlaps extensively with that of pGro (b-b'and f-f') and complements that of Gro (d-d' and h-h'). (i) Percentage of pH3-positive nuclei co-stained (black), or not (grey), with pGro or with Gro in embryos (two left columns) and in wing imaginal discs (two right columns). n = number of pH3-positive cells scored in each case. Scale bars = 100 µm (a-h) and 16.6 µm (b' d' f' h').

Fig. 2. Groucho is phosphorylated during G1-, G2- and M-phases. (a) Schematic representation of the central part of the wing imaginal disc. In this region, a stripe of anterior cells that are arrested at G1-phase (grey) are flanked by cells arrested at G2-phase (black). Cells in the posterior domain are arrested at G1-phase [adapted from (Zielke et al., 2014)]. (b-g') Confocal images of Fly-FUCCI third instar wandering larval wing imaginal discs, stained for pGro (blue; c-d') or for Gro (blue; f-g'). In this system, the S-phase cell population is in red, cells at G2/M-phases are stained yellow and those at G1-phase are in green (b-b' d-d' e-e' g-g') (Zielke et al., 2014). (b' c' d' e' f' g') Magnified views of the central region of the wing imaginal disc blade shown in (b, c, d, e, f, g), respectively. Insets in panels of magnified views show representative cells either in G2/M (yellow; left) or in G1 (green; right). Note that pGro staining is evident in G2/M-phase nuclei, as well as in cells at G1-phase (arrow and arrowhead, respectively, in b' c' d'), but that of Gro is undetectable in these cells (arrowhead and arrow in e' f' g'). The red, S-phase, marker alone was not analyzed due to intensity ambiguity. Scale bars = 100 µm (b, c, d, e, f, g) and 16.6 µm (b' c' d' e' f' g').
Fig. 3. Groucho is unphosphorylated during S-phase. (a-c) Confocal image of PCNA-GFP third instar wandering larval wing imaginal disc, stained for pGro (red; a, c). GFP-positive, S-phase cells (green; b-c) do not stain for pGro. (d-i) Confocal images of third instar wild-type wandering larval wing (d-f) and eye (g-i) imaginal discs, stained for pGro (blue; d, f, g-gâ†’ i), Gro (green; e, f, h-hâ†’ i) and EdU (red; d-i). (d-e and g-hâ†’ Magnified views of the boxed regions in (f and i), respectively. Arrow in (g-i) points at the stripe of EdU-positive, S-phase cells posterior to the morphogenetic furrow. Insets in (d-e, g-h) show magnified views of individual cells stained either for pGro and EdU (d, g) or for Gro and EdU (e, h). Note the overlap between EdU and anti-Gro staining, and the lack of correspondence between EdU and anti-pGro staining, in both wing and eye imaginal discs. (g) Percentage of EdU-positive nuclei co-stained with the anti-Gro antibody (black) or with the anti-pGro antibodies (grey) in wing and eye imaginal discs. n = number of EdU-positive cells scored in each case. Scale bars = 100 µm (a-c, f), 33.3 µm (d, e, g-hâ†’ and 200 µm (i).

Fig. 4. Ectopic expression of Groucho reduces the number of pH3-positive cells. (a-jâ†’ Confocal images of wing imaginal discs (a-h) and stage 11 embryo (lateral view; i-jâ†’, ectopically expressing a non-phosphorylatable Gro variant (GroAA; a-b), a phosphomimetic Gro derivative (GroDD; c-d) or native Gro (e-f, i-jâ†’. LacZ-expressing wing disc served as control (g-h). Embryos and imaginal discs were co-stained for pH3 (red; a-jâ†’ and for Gro (green; b, d, f, h, j-jâ†’. Note that overexpression of GroAA and Gro in wing imaginal discs (a-b and e-f, respectively) decreases the number of pH3-positive nuclei relatively to GroDD-expressing discs or to those expressing LacZ (c-d and g-h, respectively). Similarly, ectopic expression of Gro under Kr->Gal4 regulation in the domain delineated by brackets (i-jâ†’ reduces the number of pH3-positive nuclei. (b, d, f, h, j-jâ†’ Magnified views of cells in panels (a, c, e, g and i), respectively. Note that the majority of persistent pH3-positive cells are those that essentially express minimal or null levels of GroAA or Gro. Insets in (a, c, e, g) show that ectopic expression of either GroAA (a) or Gro (e) masks the detection of
endogenous Gro by the anti-Gro antibody, and that this anti-Gro antibody does not recognize ectopically-expressed GroDD due to its specificity towards unphosphorylated Gro (c). Hence, endogenous Gro is only observed in discs expressing GroDD or LacZ (c and g, respectively; see Materials and Methods). (b, e, j-o Patchy Gal4-driven expression leads to uneven Gro protein levels (Suppl. Fig. S3) (Barth et al., 2012; Ward et al., 2002). (k) Percentage of pH3-positive nuclei coinciding (grey) or not (black) with Gro staining in the indicated wing imaginal discs. n = number of pH3-positive cells scored in each case. Scale bars = 100 µm (a, c, e, g), 16.6 µm (b, d, f, h), 100 µm (i), 50 µm (j), and 33.3 µm (j′).

Fig. 5. Cdk1 phosphorylates Groucho in vivo. (a-d) Confocal images of third instar wandering larval wing imaginal discs expressing either LacZ (a) or RNA interference (RNAi) constructs for cdk1 (b), cdk2 (c) or cdk4 (d), stained for Gro (green; a-d). Two RNAi lines were used to target each Cdk, resulting in similar outcomes. The boxed regions in all panels demarcate the predominantly dorsal expression domain of the MS1096-Gal4 driver (Suppl. Fig. S2). Note that RNAi-based knock-down of cdk1 (b), but not of cdk2 or cdk4 (c and d, respectively), leads to the accumulation of unphosphorylated Gro (cf. control, LacZ-expressing disc in a). (e) Western blot analysis of whole wing imaginal disc lysates from the indicated genetic backgrounds, immunoblotted with anti-Gro and anti-Actin (anti-Act) antibodies. Relative Gro levels were determined based on the ratio between Gro and Actin, normalized to that in LacZ-expressing controls. The fold increase in the level of unphosphorylated Gro upon cdk1 knockdown (2.222 ± 0.3975; p=0.0152; five biological repeats) is not observed in cdk2 or cdk4 knockdowns (1.152 ± 0.3023; p=0.51; and 1.045 ± 0.3030; p=0.8, respectively; three biological repeats for each; in all cases, data represents the mean ± SD, two-tailed t-test). Note that the increase in the level of unphosphorylated Gro following cdk1 knockdown is probably a gross underestimate, given that MS1096-Gal4 drives non-uniform expression in only a subset of cells in the wing imaginal disc (see Suppl. Fig. S2). (f) Cell cycle distribution of GFP-positive cells,
dissociated from larval wing imaginal discs co-expressing either GFP together with
LacZ (black) or along with cdk1 RNAi (red contour) under the MS1096-Gal4 driver.
DNA content was determined using Hoechst 33342 and normalized to number of
events. Note the relative increase in the number of cells at G2/M-phases following
cdk1 knockdown. Scale bar = 100 µm (a-d).

Fig. 6. Ectopic expression of Groucho arrests cells at G2-phase. (a-b) Confocal
images of wing imaginal discs, dissected from *Fly-FUCCI* third instar wandering
larvae expressing either LacZ (a) or Gro (b) under *MS1096-Gal4* regulation. In the
Fly-FUCCI background, cells at S-phase are stained red, those at G2/M-phases are
stained yellow and the G1-phase population is in green (Zielke et al., 2014). Note that
ectopic Gro expression significantly enriches the number of yellow, G2/M-phase cells
in the dorsal compartment. (c-c') Flow cytometric analyses of GFP-positive cells,
dissociated from wing imaginal discs of flies expressing GFP together with LacZ
(black), or GFP along with Gro (red contour), under the regulation of the *MS1096-
Gal4* driver. The DNA content was determined using Hoechst 33342, and normalized
to number of events. (c) Cell cycle distribution of GFP-positive, LacZ-expressing
cells or of GFP-positive, Gro-expressing cells is depicted as percentages in black and
red, respectively. Note the increased number of cells at G2/M-phases following Gro
misexpression. (c') Forward scatter-height (FSC-H) from the same experiment,
showing cell size distribution. The relative size of cells from the Gro-expressing
population (red contour) is generally larger than that of cells from the control
population (black).

(d-d') Cell cycle distribution (d) and FSC-H reflecting cell size (d' of GFP-positive
cells, dissociated from larval wing imaginal discs co-expressing either GFP together
with LacZ (black); GFP together with Gro alone (red contour); or GFP together with
Gro, E2F1 and Dp (pink contour) under the *MS1096-Gal4* driver. DNA content was
determined using Hoechst 33342 and normalized to number of events. Note that the
concomitant expression of E2F1 and Dp partially suppresses the Gro-induced G2-

phase arrest phenotype, as reflected by both cell cycle distributions and by cell size.
Scale bar = 100 µm (a-b).

Fig. 7. Groucho represses e2f1 expression. (a-a') Confocal image of wild-type third instar wandering larval wing imaginal disc, co-stained for E2F1 (red) and Gro (green). (a') Magnified view of boxed region in (a). There is clear mismatch between the Gro and E2F1 nuclear signals. (b) RT-PCR analyses of mRNA extracted from third instar wandering larval wing imaginal discs expressing either Gro (grey) or LacZ (black) under MS1096-Gal4 regulation. Relative transcript levels of e2f1 and its G1- and G2-phase targets pcna, cycE, neb and bub1 are reduced in Gro-expressing discs, normalized to LacZ controls. The ~30% reduction in e2f1 levels is probably an underestimation, given the mosaic expression driven by MS1096-Gal4 (Suppl. Fig. S2). (c-h) Homozygous groF48 loss-of-function clones (demarcated by white contours in c-d and f-g), discernable as GFP-negative and accompanied by GFP-positive twin spot clones (green; c, e, f, h), were induced in larval wing (c-e) and eye (f-h) imaginal discs. (c-d) and (f-g) are magnified views of clones in (e and h), respectively. E2F1 (red; d-e and g-h) is derepressed and ectopically accumulates in gro mutant clones.

(i-j) Confocal images of third instar wandering larval eye imaginal discs, in which GMR-Gal4 drives the expression of either GFP (green; i) or of Gro (green; j), co-stained for e2f1-LacZ reporter expression (LacZ; red; i-j). Insets show magnified views of the boxed regions in (i-j), respectively. (i) GMR-Gal4 drives expression of GFP in differentiating retinal neurons (Yeates et al. 2019). These cells also express the LacZ reporter gene derived from the e2f1-LacZ enhancer trap. (j) Gro expression causes an overall reduction in anti-LacZ staining, particularly in the retinal neuronal cells overexpressing Gro (green), indicating that Gro negatively regulates e2f1-LacZ enhancer trap expression. Scale bars = 100 µm (a, c-d, i-j), 50 µm (a' f-g) 200 µm (e, h).

Fig. 8. Cells devoid of groucho undergo accelerated cell cycles and accumulate at G1-phase. (a-a') Confocal images of third instar wandering larval eye imaginal disc,
stained for E2F1 (blue) and EdU (red). gro clones are detectable by lack of GFP staining and by their adjacent GFP-positive twin spot clone (green). (a) Magnification of boxed region in (a), focusing on a gro mutant clone overlapping the morphogenetic furrow. Strikingly, all gro mutant cells that accumulate E2F1 do not stain for EdU and are, therefore, not in S-phase. (b) Flow cytometric analyses of dissociated cells from eye imaginal discs. groMB36/+ cells expressing gro RNAi are labelled with GFP (red contour), whereas groMB36/+ cells that do not express gro RNAi are GFP-negative (black). The DNA content was determined using Hoechst 33342, and normalized to number of events. The cell cycle distribution of GFP-positive cells in which gro was downregulated, or of the remaining GFP-negative cells, is depicted as percentages in red and black, respectively. Note the increased number of cells at G1-phase following Gro downregulation. (c) The number of GFP-positive cells per clone, in LacZ-expressing (left) as well as in groMB36/+ cells expressing gro RNAi (right) clones, under the regulation of hsflp;actin>CD2>nlsGFP driver. Note that RNAi-based reduction in Gro levels results in bigger clones, indicative of rapid cell cycles. 13 clones per each genotype were analyzed. \(p=0.0009 \) (Mann–Whitney U-test). (d) Schematic model. Please see text for details. Scale bars = 100 \(\mu \)m (a) and 16.6 \(\mu \)m (a').
Supplemental Information

Supplemental Fig. S1. Immunovisualisation of Groucho’s phosphorylation state in vivo using anti-Gro and anti-phospho-Gro antibodies. (a-d) Confocal images of wild-type third instar wandering larval wing (a-b) and eye (c-d) imaginal discs, co-stained for pGro (red; a, b) and Gro (green; b-b) d-d. (b-d) Magnified views of boxed regions in (a-b and c-d), respectively. (a-d) The complementarity in epitope detection by the anti-pGro and anti-Gro antibodies is evident (Cinnamon et al., 2008; Johnston et al., 2016). The relative prevalence of anti-pGro staining compared to that of anti-Gro probably stems from the persistence of Gro phosphorylation (Helman et al., 2011). (e-h) Both the anti-Gro antibody and the anti-pGro antibodies are sensitive to RNAi-mediated reduction in Gro levels. Eye imaginal discs in which gro was knocked-down in clones of cells heterozygous for the groMB36 allele, discernable by GFP staining (green; e, g), were stained for Gro (red; e-f) or for pGro (red; g-h). Note that reduced intensity of the anti-Gro (e-f) and anti-pGro (g-h) signals in the clones. Scale bar = 100 µm (a-b, c-d, e-h) and 33.33 µm (b-d).

Supplemental Fig. S2. Transgenic expression of Gro, GroAA and GroDD using the MS1096-Gal4 driver. (a-c) Confocal image of third instar wandering larval wing imaginal disc, in which MS1096-Gal4 drives expression of GFP (green; a, c), counterstained for DAPI (blue; b-c). GFP is expressed predominantly in the dorsal region of the wing imaginal disc, but also in some cells in the ventral compartment (albeit to a lesser extent), probably due to leakiness of the MS1096-Gal4 driver. Note the uneven, irregular nature of the UAS/Gal4 overexpression system.

(d) Immunoblot analysis showing that relative transgenic expression levels of Gro, GroAA and GroDD, driven by MS1096-Gal4, are comparable. Relative levels of GroAA and GroDD, determined based on the ratio between total Gro and Actin levels, were normalized to these values for Gro.

(e-h) Wings of adult females of the indicated phenotypes.
Confocal images of third instar wandering larval wing imaginal discs, overexpressing LacZ (i), GroAA (j) or GroDD (k) under the regulation of the MS1096-Gal4 driver, co-stained for panTLE (green) and pH3 (red). Insets in (i-k) show magnified views of regions marked by respective arrows. Note that anti-panTLE antibodies, which are insensitive to Gro\textalpha's phosphorylation state and therefore recognize both Gro\textalpha and Gro\textdelta, weakly detect endogenous Gro (i) but visibly detect overexpressed Gro\textalpha (j) and Gro\textdelta (k). (l) A significantly larger proportion of pH3-positive mitotic cells overlaps with Gro\textdelta than with Gro\textalpha. Data represents the mean ± SD derived from 10 wings per genotype. ($p=0.0019$; Mann–Whitney U-test).

Scale bars = 50 µm (a-c) and 100 µm (i-k).

Supplemental Fig. S3. RNA interference-based reduction in Cdk1 levels results in fewer and larger cells. (a-b) Confocal images of third instar wandering larval wing imaginal discs, expressing either LacZ (a) or an RNA interference (RNAi) construct for cdk1 (b), stained with 4',6-diamidino-2-phenylindole (DAPI) (blue). Note that fewer and larger nuclei are observed in the domain of cdk1 downregulation, as previously reported (Bettencourt-Dias et al., 2004); (Johnston, 1998). Scale bar = 100 µm.

Supplemental Fig. S4. Gro\textalpha, but not Gro\textdelta, represses e2f1 expression. (a) Gro binds adjacent to the e2f1 locus. Shown is a schematic display from the modENCODE Project (http://www.modencode.org/) depicting significant Gro binding to a region within the first intron of the E2f-RB and E2f-RC transcripts and next to the transcription start site of transcript E2f-RA. Other independent studies also mapped Gro binding to this region. (b-g) Confocal images of third instar wandering larval wing imaginal discs overexpressing Gro\textalpha (b-d) or Gro\textdelta (e-g) under the regulation of the MS1096-Gal4 driver, co-stained for Gro (green; b, d, e, g) and E2F1 (red; c-d, f-g). Note the overall decrease in anti-E2F1 staining in the Gro\textalpha-expressing disc (c), in comparison to the disc expressing Gro\textdelta (f). Scale bar = 100 µm.
Supplemental Fig. S5. Cells with reduced Groucho levels do not undergo apoptosis, and do not stain for S-, G2- and M-phase markers. (a-d) GFP-negative (green; b, d) homozygous groE48 loss-of-function clones (demarcated by white contours), induced in larval eye imaginal discs, were stained for the activated form of the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1) (red; a-d). Anti-Dcp-1 staining is not elevated in gro clones.

(e-j) Confocal images of third instar wandering larval eye imaginal discs, in which gro was knocked-down in GFP-labelled clones of cells heterozygous for the groMB36 allele (green; e, g, i). (f, h, j) Clonal boundaries are outlined, with each inset showing a magnified view of a representative clone. Note that the majority of cells, in which gro levels are reduced, do not stain for the S- and G2-phase marker CycA (red; e-f); for the G2-phase marker CycB (red; g-h); or for the mitotic marker pH3 (red; i-j). Scale bar = 100 µm.

Supplemental Movie 1. Z-stack imaging of a stage 11 Kr>Gro embryo, co-stained for pH3 (red) and Gro (green). Note that the two signals are non-overlapping.
Acknowledgments

We thank Tatyana Kushnir and Rotem Lange for continuous help and encouragement during this project. We are grateful to Einat Cinnamon, Russell Finley Jr., Offer Gerlitz, David Ish-Horowicz, Gerardo Jiménez, Michael Klutstein and Benny Shilo for their invaluable comments on the manuscript; to Ruba Dawud, Shifaa Ghazalin, Yuval Hadar and Tehila Leitner for fly husbandry; to Ruba Dawud for her assistance with the statistical analysis; and to Christos Delidakis, Robert Duronio, Bruce Edgar, Doron Ginsberg, Gerardo Jiménez, Christian Lehner, Marco Milán, Stefan Thor, Hongyan Wang, the Developmental Studies Hybridoma Bank and the Bloomington Stock Centre for DNA constructs, antibodies, reagents and fly stocks. We thank Yael Feinstein-Rotkopf from our Faculty’s Core Research Facility for her technical assistance with microscopy. Work was supported by grants from the Israel Science Foundation (1441/20) and the Król Charitable Foundation to ZP, who is an incumbent of the Lady Davis Professorship in Experimental Medicine and Cancer Research. SBC was supported by a Bester PhD Scholarship.
Author Contributions

SBC and ZP conceived and designed the study. SBC performed the experiments. SBC and ZP analyzed the data and wrote the manuscript.

Declaration of Interests

The authors declare no competing interests.
References

Barth, J.M., E. Hafen, and K. Köhler. 2012. The lack of autophagy triggers precocious activation of Notch signaling during *Drosophila* oogenesis. *BMC developmental biology*. 12:35.

Becker, K., A. Bluhm, N. Casas-Vila, N. Dinges, M. Dejung, S. Sayols, C. Kreutz, J.Y. Roiignant, F. Butter, and S. Legewie. 2018. Quantifying post-transcriptional regulation in the development of *Drosophila melanogaster*. *Nature communications*. 9:4970.

Bennett, J.D., P.G. Farlie, and R.J. Watson. 1996. E2F binding is required but not sufficient for repression of B-myb transcription in quiescent fibroblasts. *Oncogene*. 13:1073-1082.

Bettencourt-Dias, M., R. Giet, R. Sinka, A. Mazumdar, W.G. Lock, F. Balloux, P.J. Zafiropoulos, S. Yamaguchi, S. Winter, R.W. Carthew, M. Cooper, D. Jones, L. Frenz, and D.M. Glover. 2004. Genome-wide survey of protein kinases required for cell cycle progression. *Nature*. 432:980-987.

Brand, A.H., and N. Perrimon. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. *Development*. 118:401-415.

Brand, A.H., and N. Perrimon. 1994. Raf acts downstream of the EGF receptor to determine dorsoventral polarity during *Drosophila* oogenesis. *Genes & development*. 8:629-639.

Brook, A., J.E. Xie, W. Du, and N. Dyson. 1996. Requirements for dE2F function in proliferating cells and in post-mitotic differentiating cells. *The EMBO journal*. 15:3676-3683.

Buck, S.B., J. Bradford, K.R. Gee, B.J. Agnew, S.T. Clarke, and A. Salic. 2008. Detection of S-phase cell cycle progression using 5-ethynyl-2'-deoxyuridine incorporation with click chemistry, an alternative to using 5-bromo-2'-deoxyuridine antibodies. *BioTechniques*. 44:927-929.

Budirahardja, Y., and P. Gönczy. 2009. Coupling the cell cycle to development. *Development*. 136:2861-2872.

Buttitta, L.A., A.J. Katzaroff, and B.A. Edgar. 2010. A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. *The Journal of cell biology*. 189:981-996.

Chambers, M., W. Turki-Judeh, M.W. Kim, K. Chen, S.D. Gallaher, and A.J. Courey. 2017. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity. *BMC genomics*. 18:215.

Choi, C.Y., Y.H. Kim, Y.O. Kim, S.J. Park, E.A. Kim, W. Riemenschneider, K. Gajewski, R.A. Schulz, and Y. Kim. 2005. Phosphorylation by the DHIPK2 protein kinase modulates the corepressor activity of Groucho. *The Journal of biological chemistry*. 280:21427-21436.

Chu, H., C. Parras, K. White, and F. Jiménez. 1998. Formation and specification of ventral neuroblasts is controlled by vnd in *Drosophila* neurogenesis. *Genes & development*. 12:3613-3624.
Cinnamon, E., A. Helman, R. Ben-Haroush Schyr, A. Orian, G. Jimenez, and Z. Paroush. 2008. Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis. Development. 135:829-837.

Cinnamon, E., and Z. Paroush. 2008. Context-dependent regulation of Groucho/TLE-mediated repression. Current opinion in genetics & development. 18:435-440.

Clarke, D.J., and J.F. Giménez-Abián. 2000. Checkpoints controlling mitosis. BioEssays : news and reviews in molecular, cellular and developmental biology. 22:351-363.

Dali, R., F. Verginelli, A. Pramatarova, R. Sladek, and S. Stifani. 2018. Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells. Molecular oncology. 12:775-787.

Davidson, J.M., and R.J. Duronio. 2012. S phase-coupled E2f1 destruction ensures homeostasis in proliferating tissues. PLoS genetics. 8:e1002831.

Delidakis, C., A. Preiss, D.A. Hartley, and S. Artavanis-Tsakonas. 1991. Two genetically and molecularly distinct functions involved in early neurogenesis reside within the Enhancer of split locus of Drosophila melanogaster. Genetics. 129:803-823.

Dimova, D.K., and N.J. Dyson. 2005. The E2F transcriptional network: old acquaintances with new faces. Oncogene. 24:2810-2826.

Dimova, D.K., O. Stevaux, M.V. Frolov, and N.J. Dyson. 2003. Cell cycle-dependent and cell cycle-independent control of transcription by the Drosophila E2F/RB pathway. Genes & development. 17:2308-2320.

Dobrowolski, S.F., D.W. Stacey, M.L. Harter, J.T. Stine, and S.W. Hiebert. 1994. An E2F dominant negative mutant blocks E1A induced cell cycle progression. Oncogene. 9:2605-2612.

Duronio, R.J., P.H. O'Farrell, J.E. Xie, A. Brook, and N. Dyson. 1995. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes & development. 9:1445-1455.

Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes & development. 12:2245-2262.

Edgar, B.A., D.A. Lehman, and P.H. O'Farrell. 1994. Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development. 120:3131-3143.

Erez, A., M. Chaussepied, A. Castiel, T. Colaizzo-Anas, P.D. Aplan, D. Ginsberg, and S. Izraeli. 2008. The mitotic checkpoint gene, SIL is regulated by E2F1. International journal of cancer. 123:1721-1725.

Fan, J., and J.R. Bertino. 1997. Functional roles of E2F in cell cycle regulation. Oncogene. 14:1191-1200.

Festuccia, N., I. Gonzalez, N. Owens, and P. Navarro. 2017. Mitotic bookmarking in development and stem cells. Development. 144:3633-3645.

Goldenson, B., and J.D. Crispino. 2015. The aurora kinases in cell cycle and leukemia. Oncogene. 34:537-545.
Goulev, Y., J.D. Fauny, B. Gonzalez-Marti, D. Flagiello, J. Silber, and A. Zider. 2008. SCALLOPED interacts with YORKIE, the nuclear effector of the hippo tumor-suppressor pathway in Drosophila. Current biology : CB. 18:435-441.

Groisman, I., M.Y. Jung, M. Sarkissian, Q. Cao, and J.D. Richter. 2002. Translational control of the embryonic cell cycle. Cell. 109:473-483.

Hasson, P., N. Egoz, C. Winkler, G. Volohonsky, S. Jia, T. Dinur, T. Volk, A.J. Courey, and Z. Paroush. 2005. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nature genetics. 37:101-105.

Hasson, P., and Z. Paroush. 2006. Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE. British journal of cancer. 94:771-775.

Helman, A., E. Cinnamon, S. Mezuman, Z. Hayouka, T. Von Ohlen, A. Orian, G. Jimenez, and Z. Paroush. 2011. Phosphorylation of Groucho mediates RTK feedback inhibition and prolonged pathway target gene expression. Current biology : CB. 21:1102-1110.

Helman, A., B. Lim, M.J. Andreu, Y. Kim, T. Shestkin, H. Lu, G. Jimenez, S.Y. Shvartsman, and Z. Paroush. 2012. RTK signaling modulates the Dorsal gradient. Development. 139:3032-3039.

Herr, A., M. Longworth, J.Y. Ji, M. Korenjak, D.M. Macalpine, and N.J. Dyson. 2012. Identification of E2F target genes that are rate limiting for dE2F1-dependent cell proliferation. Developmental dynamics : an official publication of the American Association of Anatomists. 241:1695-1707.

Hurford, R.K., Jr., D. Cobrinik, M.H. Lee, and N. Dyson. 1997. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes & development. 11:1447-1463.

Ishida, S., E. Huang, H. Zuzan, R. Spang, G. Leone, M. West, and J.R. Nevins. 2001. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Molecular and cellular biology. 21:4684-4699.

Ishizaki, J., J.R. Nevins, and B.A. Sullenger. 1996. Inhibition of cell proliferation by an RNA ligand that selectively blocks E2F function. Nature medicine. 2:1386-1389.

Jennings, B.H., S.M. Wainwright, and D. Ish-Horowicz. 2008. Differential in vivo requirements for oligomerization during Groucho-mediated repression. EMBO reports. 9:76-83.

Johnson, D.G., K. Ohtani, and J.R. Nevins. 1994. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes & development. 8:1514-1525.

Johnston, L.A. 1998. Uncoupling growth from the cell cycle. BioEssays : news and reviews in molecular, cellular and developmental biology. 20:283-286.

Johnston, M.J., S. Bar-Cohen, Z.e. Paroush, and T.G. Nystul. 2016. Phosphorylated Groucho delays differentiation in the follicle stem cell lineage by providing a molecular memory of EGFR signaling in the niche. Development. 24:4631-4642.
Kastan, M.B., and J. Bartek. 2004. Cell-cycle checkpoints and cancer. *Nature*. 432:316-323.

Kaul, A., E. Schuster, and B.H. Jennings. 2014. The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription. *PLoS genetics*. 10:e1004595.

Kokabu, S., C. Nakatomi, T. Matsubara, Y. Ono, W.N. Addison, J.W. Lowery, M. Urata, A.M. Hudnall, S. Hitomi, M. Nakatomi, T. Sato, K. Osawa, T. Yoda, V. Rosen, and E. Jimi. 2017. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. *The Journal of biological chemistry*. 292:12885-12894.

Kushnir, T., S. Bar-Cohen, N. Mooshayef, R. Lange, A. Bar-Sinai, H. Rozen, and A. Salzberg. 2020. An Activating Mutation in ERK Causes Hyperplastic Tumors in a scribble Mutant Tissue in *Drosophila*. *Genetics*. 214:109-120.

Lee, S., J.D. Shuman, T. Guszczyński, K. Sakchaistri, T. Sebastian, T.D. Copeland, M. Miller, M.S. Cohen, J. Taunton, R.C. Smart, Z. Xiao, L.R. Yu, T.D. Veenstra, and P.F. Johnson. 2010. RSK-mediated phosphorylation in the C/EBP[beta] leucine zipper regulates DNA binding, dimerization, and growth arrest activity. *Molecular and cellular biology*. 30:2621-2635.

Li, Z., J. Zhao, I. Tikhanovich, S. Kuravi, J. Helzberg, K. Dorko, B. Roberts, S. Kumer, and S.A. Weinman. 2016. Serine 574 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression. *Cell death and differentiation*. 23:583-595.

Liu, N., F.C. Lucibello, J. Zwicker, K. Engeland, and R. Muller. 1996. Cell cycle-regulated repression of B-myb transcription: cooperation of an E2F site with a contiguous corepressor element. *Nucleic acids research*. 24:2905-2910.

Malumbres, M. 2014. Cyclin-dependent kinases. *Genome biology*. 15:122.

Markstein, M., C. Pitsouli, C. Villalta, S.E. Celniker, and N. Perrimon. 2008. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. *Nature genetics*. 40:476-483.

Mirzoyan, Z., M. Sollazzo, M. Allocca, A.M. Valenza, D. Grifoni, and P. Bellotta. 2019. *Drosophila melanogaster*: A Model Organism to Study Cancer. *Frontiers in genetics*. 10:51.

Mogila, V., F. Xia, and W.X. Li. 2006. An intrinsic cell cycle checkpoint pathway mediated by MEK and ERK in *Drosophila*. *Developmental Cell*. 11:575-582.

Musacchio, A., and E.D. Salmon. 2007. The spindle-assembly checkpoint in space and time. *Nature reviews. Molecular cell biology*. 8:379-393.

Nuthall, H.N., K. Joachim, A. Palaparti, and S. Stifani. 2002. A role for cell cycle-regulated phosphorylation in Groucho-mediated transcriptional repression. *The Journal of biological chemistry*. 277:51049-51057.
Nuthall, H.N., K. Joachim, and S. Stifani. 2004. Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2 is important for inhibition of neuronal differentiation. *Molecular and cellular biology*. 24:8395-8407.

Olsen, J.V., M. Vermeulen, A. Santamaria, C. Kumar, M.L. Miller, L.J. Jensen, F. Gnad, J. Cox, T.S. Jensen, E.A. Nigg, S. Brunak, and M. Mann. 2010. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. *Science signaling*. 3:ra3.

Orian, A., J.J. Delrow, A.E. Rosales Nieves, M. Abed, D. Metzger, Z. Paroush, R.N. Eisenman, and S.M. Parkhurst. 2007. A Myc-Groucho complex integrates EGF and Notch signaling to regulate neural development. *Proceedings of the National Academy of Sciences of the United States of America*. 104:15771-15776.

Øvrebø, J.I., M.-R. Bradley-Gill, N. Zielke, M. Kim, M. Marchetti, J. Bohlen, M. Lewis, M. van Straaten, N.-S. Moon, and B.A. Edgar. 2022. Translational control of E2F1 regulates the Drosophila cell cycle. *Proceedings of the National Academy of Sciences of the United States of America*. 119:e2113704119.

Paroush, Z., S.M. Wainwright, and D. Ish-Horowicz. 1997. Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. *Development*. 124:3827-3834.

Polager, S., Y. Kalma, E. Berkovich, and D. Ginsberg. 2002. E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. *Oncogene*. 21:437-446.

Prober, D.A., and B.A. Edgar. 2000. Ras1 promotes cellular growth in the Drosophila wing. *Cell*. 100:435-446.

Reis, T., and B.A. Edgar. 2004. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. *Cell*. 117:253-264.

Ren, B., H. Cam, Y. Takahashi, T. Volkert, J. Terragni, R.A. Young, and B.D. Dynlacht. 2002. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. *Genes & development*. 16:245-256.

Roy, S., J. Ernst, P.V. Kharchenko, P. Kheradpour, N. Negre, M.L. Eaton, J.M. Landolin, C.A. Bristow, L. Ma, M.F. Lin, S. Washietl, B.I. Arshinoff, F. Ay, P.E. Meyer, N. Robine, N.L. Washington, L. Di Stefano, E. Berezikov, C.D. Brown, R. Candeias, J.W. Carlson, A. Carr, I. Jungreis, D. Marbach, R. Sealfon, M.Y. Tolstorukov, S. Will, A.A. Alekseyenko, C. Artieri, B.W. Booth, A.N. Brooks, Q. Dai, C.A. Davis, M.O. Duff, X. Feng, A.A. Gorchakov, T. Gu, J.G. Henikoff, P. Kapranov, R. Li, H.K. MacAlpine, J. Malone, A. Minoda, J. Nordman, K. Okamura, M. Perry, S.K. Powell, N.C. Riddle, A. Sakai, A. Samsonova, J.E. Sandler, Y.B. Schwartz, N. Sher, R. Spokony, D. Sturgill, M. van Baren, K.H. Wan, L. Yang, C. Yu, E. Feingold, P. Good, M. Guyer, R. Lowdon, K. Ahmad, J. Andrews, B. Berger, S.E. Brenner, M.R. Brent, L. Cherbas, S.C. Elgin, T.R. Gingeras, R. Grossman, R.A. Hoskins, T.C. Kaufman, W. Kent, M.I. Kuroda, T. Orr-Weaver, N. Perrimon, V. Pirrotta, J.W. Posakony, B. Ren, S. Russell, P. Cherbas, B.R. Graveley, S. Lewis, G. Micklem, B. Oliver, P.J. Park, S.E. Celniker, S. Henikoff, G.H. Karpen, E.C. Lai,
D.M. MacAlpine, L.D. Stein, K.P. White, and M. Kellis. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science. 330:1787-1797.

Shibutani, S.T., A.F.A. de la Cruz, V. Tran, W.J. Turbyfill, T. Reis, B.A. Edgar, and R.J. Duronio. 2008. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4(Cdt2)-mediated destruction of E2f1 during S phase. Developmental cell. 15:890-900.

Strzalka, W., and A. Ziemienowicz. 2011. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Annals of botany. 107:1127-1140.

Thacker, S.A., P.C. Bonnette, and R.J. Duronio. 2003. The Contribution of E2F-Regulated Transcription to Drosophila PCNA Gene Function. Current Biology. 13:53-58.

Trivedi, S. 2013. Repeats in transforming acidic coiled-coil (TACC) genes. Biochemical genetics. 51:458-473.

Tseng, A.S., and I.K. Hariharan. 2002. An overexpression screen in Drosophila for genes that restrict growth or cell-cycle progression in the developing eye. Genetics. 162:229-243.

Vidwans, S.J., and T.T. Su. 2001. Cycling through development in Drosophila and other metazoa. Nature cell biology. 3:E35-39.

Ward, E.J., I. Thaipisutitkul, M. Terayama, R.L. French, S.M. Jackson, K.A. Cosand, K.J. Tobler, J.B. Dorman, and C.A. Berg. 2002. GAL4 enhancer trap patterns during Drosophila development. Genesis. 34:46-50.

Whitfield, M.L., G. Sherlock, A.J. Saldanha, J.I. Murray, C.A. Ball, K.E. Alexander, J.C. Matese, C.M. Perou, M.M. Hurt, P.O. Brown, and D. Botstein. 2002. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular biology of the cell. 13:1977-2000.

Wolff, T., and D.F. Ready. 1991. The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development. 113:841-850.

Wu, C.L., M. Classon, N. Dyson, and E. Harlow. 1996. Expression of dominant-negative mutant DP-1 blocks cell cycle progression in G1. Molecular and cellular biology. 16:3698-3706.

Yeh, E., K. Gustafson, and G.L. Boulianne. 1995. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 92:7036-7040.

Zahavi, T., A. Maimon, T. Kushnir, R. Lange, E. Berger, D. Kornspan, R. Grossman, S. Anzi, E. Shaulian, and R. Karni. 2017. Ras-Erk signaling induces phosphorylation of human TLE1 and downregulates its repressor function. Oncogene. 36:3729-3739.

Zielke, N., J. Korzelius, M. van Straaten, K. Bender, G.F. Schuhknecht, D. Dutta, J. Xiang, and B.A. Edgar. 2014. Fly-FUCCI: A versatile tool for studying cell proliferation in complex tissues. Cell reports. 7:588-598.
Figure 1
Figure 2

Wing Pouch
asynchronous divisions

G2-phase
G1-phase
G1-phase
G2-phase
asynchronous divisions
Figure 4
Figure 5

(a) MS1096>LacZ, αGro

(b) MS1096>cdk1 RNAi, αGro

(c) MS1096>cdk2 RNAi, αGro

(d) MS1096>cdk4 RNAi, αGro

(e) Western blot analysis:
- MS1096>LacZ
- MS1096>cdk1 RNAi
- MS1096>cdk2 RNAi
- MS1096>cdk4 RNAi

- Anti Gro: 1.36, 1.06, 0.82
- Anti Act: 1, 1.36, 1.06, 0.82

(f) Cell cycle analysis:
- G1: 24.04% / 10.04%
- S: 22.01% / 15.34%
- G2: 53.95% / 74.62%
Figure 6

Fly FUCCI, MS1096>LacZ

C

MS1096>GFP, LacZ
MS1096>GFP, Gro

G1 - 22.31%/0%
S - 25.21%/32.12%
G2/M - 51.89%/67.88%

C'

Cell size

FCS-H

D

D'

MS1096>GFP, LacZ
MS1096>GFP, Gro
MS1096>GFP, Gro, E2F1, Dp

DNA content

FCS-H

Cell size
Figure 8
Suppl. Figure S2

(a) Image of a tissue sample with fluorescence labeling for MS1096>GFP (green) and DAPI (blue).

(b) Image of a tissue sample labeled with GFP.

(c) Image of a tissue sample labeled with DAPI.

(d) Graph showing relative levels of Gro, Gro\(^{AA}\), and Gro\(^{DD}\) proteins with anti-Total Gro and anti-Actin antibodies. The relative levels are 1, 0.86, and 1.43, respectively.

(e) Images showing MS1096>LacZ (left) and MS1096>Gro (right).

(f) Images showing MS1096>Gro\(^{DD}\) (left) and MS1096>Gro\(^{AA}\) (right).

(g) Image of a tissue sample labeled with MS1096>Gro\(^{DD}\).

(h) Image of a tissue sample labeled with MS1096>Gro\(^{AA}\).

(i) Image of a tissue sample labeled with MS1096>LacZ and αH3 (green) and αpTLE (red).

(j) Image of a tissue sample labeled with MS1096>Gro\(^{AA}\) and αH3 (green) and αpTLE (red).

(k) Image of a tissue sample labeled with MS1096>Gro\(^{DD}\) and αH3 (green) and αpTLE (red).

(l) Graph showing the percentage of pH3-positive cells that overlap with αH3 for MS1096>Gro\(^{AA}\) (12.18%) and MS1096>Gro\(^{DD}\) (39.29%).
