A 12,000 Kyr Paleohydroclimate Record in the Southeastern, U.S.A based on Deuterium from Bat Guano

Alexandra Tsalickis (✉ atsalickis52@gmail.com)
Auburn University https://orcid.org/0000-0002-5643-5551

Matthew Neal Waters
Auburn University

Joshua William Campbell
USDA-ARS Northern Plains Agricultural Research Laboratory

Research Article

Keywords: Gray bat, Caves, Isotopes, Holocene Climatic Optimum, Pleistocene, Pollen

Posted Date: March 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-310486/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Environmental Earth Sciences on February 22nd, 2022. See the published version at https://doi.org/10.1007/s12665-022-10234-x.
Abstract

The southeastern United States endures environmental change from human population increase, climate change, and land use alterations creating the need to understand baseline conditions and environmental patterns prior to human impacts. While paleoenvironmental data can be reconstructed from a variety of archives (e.g. lake sediments, tree rings, speleothems), some geographic areas contain fewer of such records. One archive capable of recording moisture regimes and other paleoenvironmental changes over millennia but has received little attention relative to other climate proxies, are bat guano deposits in cave systems. Bat guano deposits are found in many cave environments in the southeastern United States and can be used as an archive of paleoenvironmental data including precipitation, vegetation, and aspects associated with the ecology of bats. Here, we present a 12,000-year record of paleoenvironmental change based on δ^2H stable isotopes in a guano core collected from Cave Springs Cave in Alabama, USA. Results suggest distinct shifts in moisture during the lower Holocene/upper Pleistocene (9,551 – 12,131 cal yr BP) (δ^2H values -86.82 – -77.70) and during the middle Holocene (3,886 – 9,351 cal yr BP) (δ^2H values -125.74 – -80.63), roughly coinciding with the Holocene Climatic Optimum (HCO) time interval (5,000 – 9,000 cal yr BP). During the last 4,000 years, conditions in the region shifted once again in the southeastern United States region. Climate inferences based on guano δ^2H are consistent with the role of atmospheric moisture on regional vegetation changes suggested by previous pollen records obtained from lake sediment cores. This study suggests bat guano δ^2H may be a reliable method to provide a long-term paleoclimate record.

Introduction

In recent decades, interannual variability in summer precipitation has intensified significantly over the southeastern United States, with an increased frequency of both abnormally wet and dry summers (Wang et al. 2010). Summer rainfall is essential to support agriculture, energy production and the economy of this region (e.g. Manuel 2008; Martinez et al. 2009; Gotvald and McCallum 2010). It is therefore crucial to understand the driver of summer precipitation variability from interannual to multidecadal timescales. It remains unclear the extent to which natural climate varies and climate changes due to the increasing atmospheric concentration of greenhouse gases which controls precipitation fluctuation in the southeastern region of the United States. Regional and global climate models suggest that increasing greenhouse gases can influence summer rainfall patterns in the southeast although the extent to which natural processes versus anthropogenic drivers control rainfall variability remains uncertain (Li et al. 2013).

Paleoclimate and paleoenvironmental records offer the opportunity to investigate the role of natural climate processes on precipitation patterns in the southeastern United States and examine the magnitude of past changes in precipitation and moisture availability. Paleoclimate reconstructions from tree rings, pollen, and lake sediment cores have focused on the polar, temperate, and tropical regions of the globe with fewer records from subtropical areas. The subtropical southeastern United States is home to
environments typically useful for paleoreconstructions (e.g., natural lakes, tree rings), but most records contain short chronologies beginning in the mid Holocene or later (Larson and Schaetzl 2001). Natural lakes in the southeast are uncommon outside of the coastal plain compared to areas in higher latitudes with histories of glaciers and ice sheets. Most paleoclimate data in the southeastern region have resulted from dendrochronology records (Stahle et al. 1998; Stahle et al. 2019) which are limited to the most recent millennia (Therrell et al. 2006) or from coastal-plain lakes (Watts 1971; Watts 1975; Whitehead and Sheehan 1985). Current instrumental data of air surface temperatures and rainfall amount, in addition to tree ring chronologies provide accurate and high-resolution environmental information but do not extend beyond the time interval when the region experienced the first European settlements ~1600s-1700s (Stahle et al. 1998; Cleaveland et al. 2003; Therrell et al. 2006).

Two documented paleoclimate events that have been supported by pollen records from the southeastern United States are the Holocene Climatic Optimum (HCO) and the Hypsithermal Event (Delcourt 1980; Delcourt and Delcourt 1983; Folland et al. 1990; Marcott et al. 2013; Mendieta et al. 2018). Both events were characterized by warm periods from 5000 – 9000 years before present (cal yr BP) that coincided with a transition from Quercus spp. (oak) dominance to increased Pinus spp. (pine) densities across the southeastern United States landscape as indicated by lake sediment pollen records (Watts 1971; Delcourt 1980; Grimm and Jacobson 1992; Grimm et al. 1993). Additional lake sediment studies have assessed pollen species and abundances to document environmental shifts in vegetation, moisture, and temperature changes over time in the southeast region (Watts 1971; Watts 1975; Filley et al. 2001; Donar et al. 2009). However, few of these studies examined direct moisture regimes from δ¹⁸O or δ²H, which has been used in tropical systems (Curtis et al. 1998; Hodell et al. 1999).

Past climate changes can be reconstructed from lacustrine sediments, ice cores, speleothems, and soils (Grimm et al. 1993; Waters et al. 2009; Medina-Elizalde and Rohling 2012). Isotope time-series from bat guano is one paleoclimate record that effectively tracks moisture regimes but has received less investigation in the southeastern United States (Bird et al. 2007; Wurster et al. 2007; Wurster et al. 2010; Onac et al. 2014; Forray et al. 2015; Wurster et al. 2017; Cleary et al. 2017; Cleary et al. 2018; Cleary et al. 2019). Bat guano cores can be collected from large, undisturbed guano deposits in cave environments and can be a useful archive for paleoclimate reconstructions (Bird et al. 2007; Wurster et al. 2007; Onac et al. 2014; Forray et al. 2015; Cleary et al. 2016; Campbell et al. 2017; Cleary et al. 2018; Cleary et al. 2019). Guano cores are suitable for study from caves with constant or seasonal bat presence and ideally from areas within the caves that have remained largely isolated from surficial weathering processes (e.g. low ventilation) and human disturbances (Onac et al. 2014; Cleary et al. 2016). In the southeastern United States, unfortunately, these types of deposits are rare since guano mining for the production of gunpowder, particularly during the Civil War, depleted the largest/oldest deposits (Hubbard 2019). Many bat species in the southeastern United States migrate seasonally to caves elsewhere, making guano deposits within a single cave seasonally specific (Wurster et al. 2008; Cleary et al. 2016). Previous studies have shown that guano cores record past environmental conditions from an array of climates including tropical, semi-arid, and temperate (Wurster et al. 2017; Campbell et al. 2017; Cleary et al. 2019). When
present, guano deposits can provide largely undisturbed depositional environments that can be radiocarbon dated (Onac et al. 2013; Wurster et al. 2017). Primary analyses that have been applied to guano deposits include stable isotopes (Wurster et al. 2008; Wurster et al. 2010), organic matter (Shahack-Gross et al. 2004; Campbell et al. 2017), pollen (Maher 2006; Geantă et al. 2012; Campbell et al. 2017), elements such as magnesium, calcium, phosphorous, iron (Giurgiu and Tămas 2013), and nutrients (Hill et al. 1997; Giurgiu and Tămaș 2013).

Bat guano research has been primarily conducted in the southwestern United States (Wurster et al. 2008; Wurster et al. 2010), the Caribbean (Mizutani et al. 1992a, b; McFarlane et al. 2002; Gallant et al. 2020), Romania (Giurgiu and Tamas 2013; Onac et al. 2014; Forray et al. 2015; Cleary et al. 2016; Cleary et al. 2018; Cleary et al. 2019), and southeast Asia (Bird et al. 2007). Therefore, the southeastern region of the United States is lacking in guano studies, despite having a large density of caves (over 3,000 in the Appalachian region and over 2,300 in Alabama) (Culver et al. 1999; Culver et al. 2006) and roosting bat hibernacula. Currently, only two guano core studies have been published in this region (Campbell et al. 2017; Tsalickis et al. Accepted Manuscript). Given the need for paleoreconstructions in the non-coastal southeastern United States, we analyzed δ²H values as well as elements, and nutrients from a guano core collected at Cave Springs Cave in northern Alabama (Figure 1) to provide one of the longest records of paleoclimate and paleoenvironmental change for the southeastern United States. Here, we expand upon data described in Tsalickis et al. (Accepted Manuscript). The guano core spanned the Holocene time interval (last 11,650 cal yr BP) and was collected from a maternal colony of gray bats (Myotis grisescens) that roost in this cave during summer months. From this data, we inferred changes in precipitation and climate patterns from δ²H (Deuterium) via bulk guano over the Holocene. Three objectives were investigated: 1) to establish a dated record of isotopic chemistry and precipitation patterns from northern Alabama, 2) to compare the Cave Springs Cave guano record to other paleoclimate records in the southeastern United States in order to examine their regional context, and 3) to determine environmental drivers of isotopic changes in guano for δ²H over time.

Methods

Study site and core collection

Cave Springs Cave is located in northern Alabama near the city of Priceville (34.5251° N, 86.8947° W) and is part of the Wheeler National Wildlife Refuge (Figure 1). Cave Springs Cave is 3,371 meters in total length and is well mapped. The dominant bat species occupying the cave is the gray bat (Myotis grisescens Howell). The guano pile was ~ 2 meters above the cave floor and was cored approximately 487 meters from the entrance. The core was retrieved in two sections of polyvinyl chloride (PVC) pipe hammered into the pile with a mallet totaling around 87 cm compacted and 183 cm uncompacted. To prevent overlap and disturbance between the core sections, the guano pile was removed while the first section was intact so that the beginning of the second section was undisturbed forming one continuous
core. Core sections were returned to the lab, stored in a freezer at 0°C, and were later sectioned at 1 cm intervals.

Based on available climate data from the Priceville meteorological station, the present-day climate of the area can be characterized as humid subtropical, with no seasonality in precipitation and monthly averages ~ 107 millimeters of rain for 2018. The annual temperature fluctuates between 10°C-32°C. Various factors have been invoked to influence summer precipitation variability in the southeastern United States, including sea surface temperatures (SSTs) and associated atmospheric circulation anomalies (Wang and Enfield 2001; Seager et al. 2003; Schubert et al. 2009; Kushnir et al. 2010), hurricane activity (Elsner and Tsonis 1993; Chan and Misra 2010), soil moisture (Koster et al. 2004; Wu et al. 2007, Wei et al. 2016) and the subtropical high over the North Atlantic (Katz et al. 2003). On interannual to decadal time scales changes in the intensity and position of the North Atlantic subtropical high (NASH) has been linked to precipitation and intensity of drought in the southeastern United States (Li and Li 2011). Studies have recently suggested that the position and intensity of the NASH and moisture flux convergence are major drivers of precipitation variability in the southeastern region (Li and Li 2011; Li et al. 2013, Wei et al. 2016).

Gravimetric analysis, nutrients, and isotopes

Guano core sections were analyzed gravimetrically for bulk density and organic matter. For bulk density, 5 cm3 of raw guano from each 1 cm interval was weighed, dried, and processed similarly to lake sediments (Brenner and Binford 1988; Campbell et al. 2017). Dried samples of bulk guano from each 1 cm interval were burned at 550°C for three hours and organic matter was reported as percent loss on ignition (LOI). Bulk density is reported as g dry cm$^{-3}$ wet.

Total phosphorus (P), sulfur (S), and other nutrients (Ca, Fe, Mg, K, Al, Na, S) were measured from dried sediments using an ARL 3560 ICP-AES following complete acid digestion using standard EPA methods (Waters et al. 2009). Total organic carbon (TOC) and total nitrogen TN were measured using a Costech Combustion Elemental Analyzer with an attached auto-sampler. Prior to analysis, samples were acidified for 12 hours in HCl vapors to remove inorganic carbon.

For δ^2H analysis, bulk, freeze-dried guano from each 1 cm interval was weighed (~1 mg) and folded in tin sample capsules using a Mettler Toledo XPR2U microbalance and sent to the Cornell University Stable Isotope Laboratory (http://www.cobsil.com/, Ithaca, New York, USA). Deuterium isotopic measurements were calculated using an isotope ratio mass spectrometer (IRMS) relative to an internal standard and calibrated to the international reference standard of V-SMOW (Vienna Standard Mean Ocean Water). The standard is an average of different ocean water samples around the world:
\[\delta^2H (\text{%o}) = \left[\frac{D_{\text{Hsamp}}}{D} - 1 \right] \times 1000 \quad (1) \]

Radiocarbon dating

Approximately one gram of guano was sampled from 25, 36, and 51 cm depths in the core. Depths were chosen visually where abrupt color changes were found. All samples were dried for 24 hours in a drying oven and sent to the Center for Applied Isotope Studies, University of Georgia (Athens, Georgia, USA) for Accelerator Mass Spectrometry (AMS) \(^{14}\)C analysis. AMS \(^{14}\)C ages were calibrated using the IntCal13 calibration curve as part of the BACON model package in R which uses Bayesian based modelling statistics (Blaauw and Christen 2011) (Table I). To calculate ages for depths where \(^{14}\)C measurements were unavailable, the core top was marked as the date of collection and the uncalibrated \(^{14}\)C dates were incorporated into the BACON model package in R.

Table I

Depth (cm)	\(^{14}\)C Cal (cal yr BP)	\(^{14}\)C Age (cal yr BP)	UGAMS#
25	4570 ± 20	4070 ± 20	35051
36	6351 ± 25	5560 ± 25	35052
51	9151 ± 50	8190 ± 50	34438

Statistical analyses

Distinctions between lower Holocene/upper Pleistocene (9,551 – 12,131 cal yr BP), middle (3,886 – 9,351 cal yr BP), and late (0 – 3,715 cal yr BP) Holocene were chosen utilizing the \(\delta^2\)H measurements from the guano core. A Kruskal-Wallis non-parametric AOV was used for each isotope system using Statistix 9.0, Analytical Software (Tallahassee, FL). A Principal Component Analyses (PCA) was performed on H\(^2\) isotopic values as well as elemental concentrations (Fe, Al, K, Ca, P, Mg) in order to determine the ordination of \(\delta^2\)H and elements throughout each Holocene period. PCA was conducted using R statistical software.

Results
Core description and age

The Cave Springs Cave guano core was 87 cm in total length when compacted and the area cored from did not show any visual signs of anthropogenic or biological disturbance (e.g., foot traffic and mining). Based on microscopic analysis, the Cave Springs Cave guano core consisted of chitinous insect pieces, bat hair, and fecal material. The bottom of the core was lighter in color and densely packed with clay-like consistency, while the top of the core had recent guano deposits and was dark brown in color with pellet-like consistency (Figure 2). Between 87-67 cm, guano was not observed. Instead, this section of the core was inferred to be the mineral brushite, due to the lack of organic matter and high percentages of P and Ca which are characteristic of brushite found in other guano cores (Giurgiu and Tamas 2013; Onac et al. 2015). Given the objectives of the study, the brushite part of the core (87-67 cm) was not included in the paleoreconstructions (Giurgiu and Tamas 2013). From 66 cm to 42 cm, the guano showed light tan striations. Starting at 41 cm depth, the guano was consolidated and became lighter in color through 28 cm (Figure 2). The top portion of the core (0-27 cm) was dark brown in color with pellet-like guano (Figure 2).

The Cave Springs Cave guano core provided a dated record of environmental change from present day to 9,151±30 cal yr BP at 51 cm based on calibrated AMS 14C dates and a BACON model projected age of ~12,000 cal yr BP at 66 cm (Figure 3). The measured AMS 14C dates along with the top of the core were fitted with a best-fit line ($r^2=0.99$), a slope of $y=0.0054X + 0.3415$, and minimal age uncertainty (± 20-50 years), suggesting constant deposition throughout the Holocene period.

Elements and nutrients

Organic matter was measured as loss on ignition (LOI) and generally increased up the core (Figure 4). Organic matter content was the highest at 66 cm (71%) and the lowest 20 cm (22%). Bulk density decreased up the core from 66-22 cm corresponding to depth and compaction of the guano through time (Figure 4). Total carbon (TC) increased up the core, containing minimal values of 1.1% at 66 cm and a peak value of 39.4% at 3 cm. Total nitrogen (TN) followed the same pattern of increasing up the core and a peak value of 9.1% at 9 cm. Calcium and Phosphorus both were the highest in concentration at the bottom of the core with values of 90.53 mg/g and 54.24 mg/g, respectively. Calcium was most concentrated at 37 cm as well (7,500 cal yr BP) while Phosphorus peaks at 57 cm (~12,000 cal yr BP) (Figure 4).

δ^2H isotopes

Between 66-53 cm, the δ^2H values were consistently heavier averaging -79.9 ‰, whereas between 10,916 cal yr BP and 4,177 cal yr BP, δ^2H values were lighter averaging -116.3‰ (Figure 5). From 4,177 cal yr BP
to present day, δ^2H values are again heavier (-77.69‰). The transition from middle to the upper Holocene is marked as a pronounced positive shift in δ^2H.

There were significant differences between upper, middle, and lower Holocene time periods for δ^2H ($\chi^2 = 38.8$, $p = 0.001$). Lower Holocene/upper Pleistocene and upper Holocene were not statistically different based on δ^2H, whereas middle Holocene was significantly different compared to the lower Holocene/upper Pleistocene and upper Holocene based on δ^2H. The PCA confirmed that there were three distinct time periods (lower Holocene/upper Pleistocene, middle, and upper Holocene) ordinated differently from each other with 77.5% of the dataset's variance accounted for by PC1 and PC2 (Figure 6).

Discussion

Dating record

Based on the BACON dating calculations, the Cave Springs Cave guano core spanned the last ~12,000 cal yr BP and constitutes the oldest guano core environmental record from the southeastern United States. It is important to address only three radiocarbon dates were used to construct the model, however other studies reconstructing paleoclimate utilizing bat guano have also used three or less radiocarbon dates (Bird et al. 2007; Wurster et al. 2010; Onac et al. 2014; Cleary et al. 2016). The comparison of radiocarbon dates between guano core studies has been described in Tsalickis et al. (Accepted Manuscript). The calibrated radiocarbon ages contain multiple paleoclimatic events in this region. The Hypsithermal event occurred 5000-9000 cal yr BP and has been characterized by a warmer environment (Delcourt 1980; Delcourt and Delcourt 1980; Driese et al. 2008; Tanner et al. 2015). The HCO occurred at the same time (5000-9000 cal yr BP) and is characterized by increases in *Quercus* spp. transition from *Pinus* spp. and a moisture shift from dry to wet conditions, inferred from pollen (Frey 1953; Watts 1970; Delcourt and Delcourt 1980; Watts and Hansen 1994). Unlike other sources of paleo data (e.g., lake sediment cores, ice cores) guano cores contain few disturbances related to climate, bioturbation, or redox alteration (Onac et al. 2014; Cleary et al. 2016). The cavern where the guano pile occurred did not show signs of historic flooding or water disturbance as noted in other areas of the cave. As a result, the bat colonies are assumed to have maintained a consistent migratory pattern with summer roosting and did not interact with the guano piles below the roosting areas.

Elemental changes

Calcium has the highest concentrations (>80 mg/g) in the early middle Holocene to lower Holocene while Phosphorus has higher concentrations (>40 mg/g) in the lower Holocene/upper Pleistocene. Bird et al. 2007 also documented an increase in phosphorus concentrations in the older portion of his bat guano core, calcium however, was not measured. Phosphate minerals are common in caves containing bat guano and form due to reactions between guano and clay minerals in acidic conditions (Giurgiu and Tămaş 2013). This could explain why phosphorus and calcium concentrations are highest in the oldest
portion of the Cave Springs Cave core – more time allows for phosphate minerals such as brushite, hydroxylapatite, or variscite to form through digestion, dissolution, double replacement, and redox reactions (Onac and Forti 2011; Giurgiu and Tâmaș 2013). Additionally, there are few studies that have examined minerals from bat guano deposits in caves (Fiore and Laviano 1991; Dumitraș et al. 2002; Dumitraș et al. 2004; Onac et al. 2004; Marinea et al. 2006; Frost and Palmer 2011).

Deuterium evidence

Hydrogen (H) isotopes can undergo fractionation through evaporation, condensation, and precipitation as well as through trophic interactions (Schimmelmann and DeNiro 1986; Gröcke et al. 2006; Wurster et al. 2008; Wurster et al. 2010; Peters et al. 2012). According to Peters et al. (2012), evaporation favors light isotopes therefore, the water in the bodies of animals, and in this case bats, tends to be deuterium enriched. This causes trophic enrichment of H\(^2\) as the H incorporated into animal tissues is from an enriched source. When considering this mechanism in insectivorous bat guano, there is a three-tier or four-tier trophic system possible (plant tissue, insect chitin, bat guano) or (plant tissue, plant-eating insect, carnivorous insect, bat guano) allowing H\(^2\) to become enriched by the time it is deposited in bat guano (Gröcke et al. 2006; Onac et al. 2014; Cleary et al. 2016). H\(^2\)/H\(^1\) ratios have frequently been used as measures of paleoclimate (Birchall et al. 2005) despite a lack of understanding trophic discrimination of H isotopes between resources and consumer tissues (Peters et al. 2012). Many paleoclimate studies utilizing bat guano have also not incorporated H\(^2\) isotope fractionation through trophic levels into their interpretation (Bird et al. 2007; Onac et al. 2014; Forray et al. 2015; Choa et al. 2016; Cleary et al. 2016). Wurster et al. (2010) is the first guano study that has applied effects of H\(^2\) isotopic fractionation in their guano cores via labile hydrogen exchange with atmospheric H\(_2\)O and reported H\(^2\) values from their study fall between -188‰ to -143‰.

Hydrogen isotopic fractionation is a process that was not considered in this study and is also not often considered in other bat guano studies reconstructing paleoclimate (Bird et al. 2007; Onac et al. 2014; Forray et al. 2015; Choa et al. 2016; Cleary et al. 2016). One reason δ\(^2\)H is not often considered in bat guano studies is due to its high vulnerability to error. δ\(^2\)H profiles can be highly influenced by degradation or contamination, or environmental effects (Wurster et al. 2010). It is accepted that bat guano δ\(^2\)H reflects shifts in moisture source or precipitation amount (Wurster et al. 2008; Wurster et al. 2010), but interpretation is lacking. According to the interpretation of Wurster et al. 2010, lighter δ\(^2\)H values reflect higher precipitation while heavier δ\(^2\)H values indicate more aridity. Using the δ\(^2\)H values from Cave Springs Cave and based on our statistical analysis, we are not interpreting between wet versus dry periods, but instead indicating that there are three distinct shifts in moisture for the region: 1) the upper Holocene (0 – 4,000 cal yr BP), 2) the middle Holocene (4,000 – 10,000 cal yr BP), and 3) the lower Holocene/upper Pleistocene (11,000 – 12,000 cal yr BP).
\(^{\delta} \text{H} \) and pollen comparisons

Pollen records from locations in northwest Georgia, Alabama, Florida, South Carolina, and North Carolina (Frey 1953; Watts 1971; Watts 1975; Delcourt 1980) provide evidence for a hypsithermal event in the southeastern United States occurring between 9000 and 5000 cal yr BP (Delcourt 1980; Delcourt and Delcourt 1980; Whitehead and Sheehan 1985). The hypsithermal event is coeval with persisting negative guano \(^{\delta} \text{H} \) values interpreted to reflect a wet period. Pollen records also provide evidence for the HCO which has been frequently observed in previous cores collected from lake sediments across the Gulf Coastal Plain (Frey 1953; Watts 1970; Watts 1971; Watts 1975; Delcourt 1979; Delcourt and Delcourt 1980; Whitehead and Sheehan 1985; Watts and Hansen 1994). Additionally, \textit{Quercus} is at its maximum and \textit{Pinus} at its minimum from 9000 to 5000 cal yr BP and this was apparent in lake sediment cores from Bartow County, Georgia, USA (241 km east of Priceville, Alabama) when pine began to dominate about 5000 cal yr BP and replaced oak forests during the upper Holocene (Figure 7). Thus, the \textit{Quercus} to \textit{Pinus} shift would also be expected to have occurred in northern Alabama with the most likely explanation for this shift to be a change in precipitation. \textit{Pinus} are better adapted to drier environments (Watts 1971; Watts 1975; Delcourt 1980; LaMoreaux et al. 2009), allowing them to thrive for the last 4000 years since this is when an inferred decrease in moisture in the Cave Springs Cave \(^{\delta} \text{H} \) record is observed. \textit{Quercus} dominated from 10,000 – 4,000 cal yr BP due to wetter conditions (Delcourt 1980; Watts and Hansen 1994), which is also supported by the Cave Springs Cave \(^{\delta} \text{H} \) record.

It is important to take into consideration that pollen may yield different results than bat guano. Pollen producing vegetation can respond to additional environmental factors such as temperature, topography, soil type, and reproductive patterns. \(^{\delta} \text{H} \) stable isotopes provide a direct measure of moisture, which could cause stratigraphic differences from pollen alterations due to temperature. Furthermore, regional climate differences could cause variations in paleoclimate signals as has been shown from the studies previously mentioned as well as new charcoal records from Florida (Mendieta et al. 2018).

Paleoenvironmental studies based on stable isotope records from wetland and sediment cores disagree on the dominant climate regimes in the southeastern United States across the Holocene. Lake sediment cores from east Georgia, Florida, and the North Carolina and Georgia coastal plains provide evidence for a wet climate during the lower Holocene/upper Pleistocene to middle Holocene (Leigh 2008; Filley et al. 2001; Goman and Leigh 2004; and LaMoreaux et al. 2009), while other studies utilizing sediment and wetland cores interpret the upper to middle Holocene as being a dry period (Delcourt 1979; Driese et al. 2008; Tanner et al. 2015). Other pollen records also support a wet climate during the upper to middle Holocene time period (Watts and Hanson 1994; Goman and Leigh 2004; and LaMoreaux et al. 2009). Whitehead and Sheehan (1985) describe the middle to lower Holocene as being a dry period and attribute the cause to changes in lightning induced fire frequency and anthropogenic changes in land use to southern Florida. The \(^{\delta} \text{H} \) guano record reported here is inferred as being linked to precipitation alone, thus differences between pollen and \(^{\delta} \text{H} \) stratigraphies are not surprising given the lack of additional
environmental factors recorded in guano. An accepted consensus has not been achieved and additional records are needed to provide a regional pattern.

Conclusions
The bat guano core from Cave Springs Cave in northern Alabama provided a well-dated record of paleoclimate and paleoenvironmental change throughout the Holocene for the summer roosting bat colony. Radiocarbon data revealed this core to be the oldest in the region, providing the longest guano record for the southeastern United States. The most reliable proxy from the Cave Springs Cave core was δ²H stable isotopes. Although hydrogen isotope fractionation was not applied to this study (as in other studies), we believe our data supports shifts which corresponded to moisture changes during the upper, middle, and lower Holocene. In addition, the HCO was determined to be a wetter period, with the deuterium record following closely to the nearby pollen record of Bartow County, Georgia (Watts 1970). Growing research has proven bat guano to be an effective tool for paleoenvironmental reconstructions as it provides a robust and complex resource for interpreting past local climates. In areas of the United States that contain caves with roosting bat colonies (e.g. southeastern United States), bat guano can be an important and promising proxy to use for paleoclimate reconstruction of the local area as well as the broader region.

Declarations

Acknowledgements
We thank Wheeler National Wildlife Refuge for granting us permission to Cave Springs Cave and Bill “Gator” Gates for being our guide. We also thank the National Speleological Society for providing funding.

Funding
Auburn University and the National Speleological Society.

Conflicts of interest
Authors declare they have no conflict of interest.

Availability of data and material
Data will be made available.
Code availability

Not applicable.

References

1. Bird MI, Boobyer EM, Bryant C, et al. (2007) A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines. Earth Env Sci T R So 98(1): 59-69. https://doi.org/10.1017/S1755691007000059

2. Blaauw M and Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3): 457-474. https://doi.org/10.1214/11-ba618

3. Brenner M and Binford MW (1988) Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can J Fish Aquat Sci 45(2): 294-300. https://doi.org/10.1139/f88-035

4. Campbell JW, Waters MN, and Rich F (2017) Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitation in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46(3): 462-469. https://doi.org/10.1111/bor.12228

5. Choa O, Lebon M, Gallet X, et al. (2016) Stable isotopes in guano: Potential contributions towards palaeoenvironmental reconstruction in Tabon Cave, Palawan, Philippines. Quatern Int 416: 27-37. https://doi.org/10.1016/j.quaint.2015.12.034

6. Cleary DM, Onac BP, Forray FL, et al. (2016) Effect of diet, anthropogenic activity, and climate on δ15N values of cave bat guano. Palaeogeogr Palaecl 461: 87-97. https://doi.org/10.1016/j.palaeo.2016.08.012

7. Cleary DM, Wynn JG, Ionita M, et al. (2017) Evidence of long-term NAO influence on East-Central Europe winter precipitation from a guano-derived δ 15 N record. Sci Rep-UK 7(1):1-8. https://doi.org/10.1038/s41598-017-14488-5

8. Cleary DM, Onac BP, Tanţău I, et al. (2018) A guano-derived δ13C and δ15N record of climate since the Medieval Warm Period in north-west Romania. J Quaternary Sci 33(6): 677-688. https://doi.org/10.1002/jqs.3044

9. Cleary DM, Feurdean A, Tanţău I, et al. (2019) Pollen, δ15N and δ13C guano-derived record of late Holocene vegetation and climate in the southern Carpathians, Romania. Rev Palaeobot Palyno 265: 62-75. https://doi.org/10.1016/j.revpalbo.2019.03.002

10. Cleaveland MK, Stahle DW, Therrell MD, et al. (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change 59(3): 369-388. https://doi.org/10.1023/A:1024835630188

11. Culver DC, Hobbs H III, Christman MC, et al. (1999) Distribution map of caves and cave animals in the United States. J Cave Karst Stud 61(3): 139-140
12. Culver DC, Deharveng L, Bedos A, et al. (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29(1): 120-128. https://doi.org/10.1111/j.2005.0906-7590.04435.x

13. Curtis JH, Brenner M, Hodell DA, et al. (1998) A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. J paleolimnol 19(2): 139-159. https://doi.org/10.1023/A:1007968508262

14. Delcourt HR (1979) Late Quaternary vegetation history of the eastern Highland Rim and adjacent Cumberland Plateau of Tennessee. Ecol Monogr 49(3): 255-280. https://doi.org/10.2307/1942485

15. Delcourt PA (1980) Goshen Springs: late Quaternary vegetation record for southern Alabama. Ecology 61(2): 371-386. https://doi.org/10.2307/1935195

16. Delcourt PA and Delcourt HR (1980) Late-Quaternary vegetational dynamics and community stability reconsidered. Quaternary Res 19(2): 265-71. https://doi.org/10.1016/0033-5894(83)90010-8

17. Donar C, Stoermer EF, and Brenner M (2009) The Holocene paleolimnology of Lake Apopka, Florida. Nova Hedwigia 135: 57-70

18. Driese SG, Li ZH, and McKay LD (2008) Evidence for multiple, episodic, mid-Holocene Hypsithermal recorded in two soil profiles along an alluvial floodplain catena, southeastern Tennessee, USA. Quaternary Res 69(2): 276-291. https://doi.org/10.1016/j.yqres.2007.12.003

19. Dumitraş DG, Marincea Ş, and Diaconu G (2002) Leucophosphate and taranakite in the bat-guano deposit from Lazulai Cave (Mehedinţi Mountains). Rom J of Mineral Deposits 80: 23-25

20. Dumitraş DG, Marincea Ş and Fransolet AM (2004) Brushite in the bat guano deposit from the "dry" Cioclovina Cave (Sureanu Mountains, Romania). Neues Jb Miner Abh 180(1): 45-64

21. Elsner JB, and Tsonis AA (1993) Nonlinear dynamics established in the ENSO. Geophysical Res Lett 20(3): 213-216. https://doi.org/10.1029/93GL00046

22. Filley TR, Freeman KH, Bianchi T, et al. (2001) An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Org Geochem 32(9): 1153-1167. https://doi.org/10.1016/S0146-6380(01)00063-8

23. Fiore S and Laviano R (1991) Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): New mineralogical data. Am Mineral, 76(9-10): 1722-1727

24. Folland, CK, Karl TR, and Vinnikov KY (1990) Observed climate variations and change. Climate change: the IPCC scientific assessment, 195: 238

25. Forray FL, Onac BP, Tanţău I, et al. (2015) A Late Holocene environmental history of a bat guano deposit from Romania: an isotopic, pollen and microcharcoal study. Quaternary Sci Rev 127:141-154. https://doi.org/10.1016/j.quascirev.2015.05.022

26. Frey DG (1953) Regional aspects of the late-glacial and post-glacial pollen succession of southeastern North Carolina. Ecol Monogr 23(3): 289-313. https://doi.org/10.2307/1943595

27. Frost RL and Palmer SJ (2011) Thermal stability of the 'cave'mineral brushite CaHPO4· 2H2O– Mechanism of formation and decomposition. Thermochim Acta. 521(1-2): 14-17. https://doi.org/10.1016/j.tca.2011.03.035
28. Geantă A, Tanţău I, Tâmaş T (2012) Palaeoenvironmental information from the palynology of an 800 year old bat guano deposit from Măgurici Cave, NW Transylvania (Romania). Rev Palaeobot Palyno 174: 57-66. https://doi.org/10.1016/j.revpalbo.2011.12.009

29. Giurgiu A and Tâmaş T (2013) Mineralogical data on bat guano deposits from three Romanian caves. Stud UBB Geol 58(2): 13-18. https://dx.doi.org/10.5038/1937-8602.58.2.2

30. Grimm EC, Jacobson GL, Watts WA, et al. (1993) A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261(5118): 198-200. https://doi.org/10.1126/science.261.5118.198

31. Grimm EC and Jacobson GL (1992) Fossil-pollen evidence for abrupt climate changes during the past 18,000 years in eastern North America. Clim Dynam 6(3-4): 179-184. https://doi.org/10.1007/BF00193530

32. Gröcke DR, Schimmelmann A, Elias S, et al. (2006) Stable hydrogen-isotope ratios in beetle chitin: preliminary European data and re-interpretation of North American data. Quaternary Sci Rev 25(15-16): 1850-1864. https://doi.org/10.1016/j.quascirev.2006.01.021

33. Goman M and Leigh DS (2004) Wet early to middle Holocene conditions on the upper Coastal Plain of North Carolina, USA. Quaternary Res 61(3): 256-264. https://doi.org/10.1016/j.yqres.2004.02.007

34. Gotvald AJ and McCallum BE (2010) Epic flooding in Georgia, 2009. US Geological Survey Fact Sheet 3107

35. Hill CA, Forti P, and Shaw TR (1997) Cave minerals of the world. Huntsville: National speleological society 238

36. Hodell DA, Brenner M, Kanfoush SL, et al. (1999) Paleoclimate of Southwestern China for the past 50,000 yr Inferred from Lake Sediment Records. Quaternary Res 52(3): 369-380. https://doi.org/10.1006/qres.1999.2072

37. Hubbard DA Jr (2019) Saltpeter mining. Encyclopedia of Caves AP, 885-888.

38. Katz RW, Parlange MB, and Tebaldi C (2003) Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. Climatic Change. Issues in the Impacts of Climate Variability and Change on Agriculture. Springer, Dordrecht 60: 189–216

39. Koster RD, Dirmeyer PA, Guo Z, et al. (2004) Regions of strong coupling between soil moisture and precipitation. Science 305: 1138–1140. https://doi.org/10.1126/science.1100217

40. Kushnir Y, Seager R, Ting MF, et al. (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Climate 23: 5610–5628. https://doi.org/10.1175/2010JCLI3172.1

41. LaMoreaux HK, Brook GA, and Knox JA (2009) Late Pleistocene and Holocene environments of the Southeastern United States from the stratigraphy and pollen content of a peat deposit on the Georgia Coastal Plain. Palaeogeogr Palaeocl 280(3-4): 300-312. https://doi.org/10.1016/j.palaeo.2009.06.017

42. Larson G and Schaetzl R (2001) Origin and evolution of the Great Lakes. J Great Lakes Res 27(4): 518-546. https://doi.org/10.1016/S0380-1330(01)70665-X
43. Leigh DS (2008) Late Quaternary climates and river channels of the Atlantic Coastal Plain, Southeastern USA. Geomorphology 101(1-2): 90-108. https://doi.org/10.1016/j.geomorph.2008.05.024

44. Li W and Li L (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Climate 24(5): 1499-1506. https://doi.org/10.1175/2010JCLI3829.1

45. Li L, Li W, and Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim dynam 41(3-4): 613-631. https://doi.org/10.1007/s00382-013-1697-9

46. Maher LJ (2006) Drought in the southeast: lessons for water management. Environ Health Persp 116: A168–A171. https://doi.org/10.1289/ehp.116-a168

47. Marcott SA, Shakun JD, Clark PU, et al. (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124): 1198-1201. https://doi.org/10.1126/science.1228026

49. Marinea Ş, Dumitraş DG, Diaconu G, et al. (2004) Mineralogical Data on the Bat Guano Deposit from Gura Ponicovei Cave (Almaj Mountains, Romania). Rom J of Earth Sci 8: 126-129

50. Martinez CJ, Baigorria GA, and Jones JW (2009) Use of climate indices to predict corn yields in southeast USA. Int J Climatol 29: 1680–1691. https://doi.org/10.1002/joc.1817

51. McFarlane DA, Lundberg J, and Fincham AG (2002) A late Quaternary paleoecological record from caves of southern Jamaica, West Indies. J Cave Karst Stud 64(2): 117-25.

52. Medina-Elizalde M and Rohling EJ (2012) Collapse of Classic Maya civilization related to modest reduction in precipitation. Science 335(6071): 956-959. https://doi.org/10.1126/science.1216629

53. Mendieta KL, Gerber S, and Brenner M (2018) Florida wildfires during the Holocene Climatic Optimum (9000–5000 cal yr BP). J Paleolimnol 60(1): 1-16. https://doi.org/10.1007/s10933-018-0023-2

54. Mizutani H, McFarlane DA, and Kabaya Y (1992a) Nitrogen and carbon isotope study of bat guano core from Eagle Creek Cave, Arizona, USA. J Mass Spectrom Soc Japan 40(1): 57-65. https://doi.org/10.5702/massspec.40.57

55. Mizutani H, McFarlane DA, and Kabaya Y (1992b) Carbon and nitrogen isotopic signatures of bat guanos as record of past environments. J Mass Spectro Soc Japan 40(1): 67-82. https://doi.org/10.5702/massspec.40.67

56.

57. Onac BP, Kearns J, Breban R, and Cîntă Pânzaru S (2004) Variscite (AlPO 4 2H 2 O) from Cioclovina Cave (Sureanu Mountains, Romania): a tale of a missing phosphate. Stud UBB Geol, 49(1): 3-14

58. Onac BP and Forti P (2011) Minerogenetic mechanism occurring in the cave environment: an overview. Int J Speleol 40(2): 79-98. https://doi.org/10.5038/1827-806X.40.2.1
59. Onac BP, Forray FL, Wynn JG, et al. (2014) Guano-derived δ 13 C-based paleo-hydroclimate record from Gaura cu Musca Cave, SW Romania. Environ Earth Sci 71(9): 4061-4069. https://doi.org/10.1007/s12665-013-2789-x

60. Onac BP, Hutchinson SM, Geantă A, et al. (2015) A 2500-yr late Holocene multi-proxy record of vegetation and hydrologic changes from a cave guano-clay sequence in Sw Romania. Quaternary Res 83(3): 437-448. https://doi.org/10.1016/j.yqres.2015.01.007

61. Peters JM, Wolf N, Stricker CA, et al. (2012) Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system. PLoS one 7(3): e32744. https://doi.org/10.1371/journal.pone.0032744

62. Seager R, Hamik N, and Kushnir Y (2003) Mechanisms of hemispherically symmetric climate variability. J Climate 16(18): 2960-2978. https://doi.org/10.1175/1520-0442(2003)016%3C2960:MOHSCV%3E2.0.CO;2

63. Schimmelmann, A and DeNiro MJ (1986) Stable isotopic studies on chitin. III. The D/H and 18O/16O ratios in arthropod chitin. Geochim Cosmochim Acta, 50(7): 1485-1496. https://doi.org/10.1016/0016-7037(86)90322-4

64. Schubert S, Gutzler D, Wang H, et al. (2009) A U.S. CLIVAR Project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J Climate 22: 5251–5272. https://doi.org/10.1175/2009JCLI3060.1

65. Shahack-Gross R, Francesco B, Panagiotis K, et al. (2004) Bat guano and preservation of archaeological remains in cave sites. J Archaeology 31(9):1259-1272. https://doi.org/10.1016/j.jas.2004.02.004

66. Stahle DW, D’Arrigo RD, Krusic PJ, et al. (1998). Experimental dendroclimatic reconstruction of the Southern Oscillation. B Am Meteorol Soc 79(10): 2137-2152. https://doi.org/10.1175/1520-0477(1998)079%3C2137:EDROTS%3E2.0.CO;2

67. Stahle DW, Edmondson JR, Howard IM, et al. (2019) Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environm Res Communications 1(4): 041002. https://doi.org/10.1088/2515-7620/ab0c4a

68. Tanner BR, Lane CS, Martin EM, et al. (2015) Sedimentary proxy evidence of a mid-Holocene hypsithermal event in the location of a current warming hole, North Carolina, USA. Quaternary Res 83(2): 315-323. https://doi.org/10.1016/j.yqres.2014.11.004

69. Therrell MD, Stahle DW, Diaz JV, et al. (2006) Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Climatic Change 74(4): 493. https://doi.org/10.1007/s10584-006-6865-z

70. Tsalickis A, Waters MN, and Campbell JW (2021) Methods and Analysis of Bat Guano Cores for Paleoecology from Caves in Alabama and Tennessee — Including a Review of Approaches in the Scientific Literature. J Cave Karst Stud (Accepted Manuscript)

71. Wang C and Enfield DB (2001) The tropical Western Hemisphere warm pool. Geophys Res Lett 28(8): 1635-1638. https://doi.org/10.1029/2000GL011763
72. Wang H, Fu R, Kumar A, et al. (2010) Intensification of summer rainfall variability in the southeastern United States during recent decades. J Hydrometeorol 11: 1007–1018. https://doi.org/10.1175/2010JHM1229.1

73. Waters MN, Piehler MF, Rodriguez AB, et al. (2009) Shallow lake trophic status linked to upper Holocene climate and human impacts. J Paleolimnol 42(1): 51-64. https://doi.org/10.1007/s10933-008-9247-x

74. Watts WA (1970) The full-glacial vegetation of northwestern Georgia. Ecology 51(1): 17-33. https://doi.org/10.2307/1933597

75. Watts WA (1971) Postglacial and interglacial vegetation history of southern Georgia and central Florida. Ecology 52(4): 676-690. https://doi.org/10.2307/1934159

76. Watts WA (1975) A late Quaternary record of vegetation from Lake Annie, south-central Florida. Geology 3(6): 344-346. https://doi.org/10.1130/0091-7613(1975)3%3c344:ALQROV%3e2.0.CO;2

77. Watts WA and Hansen BCS (1994) Pre-Holocene and Holocene pollen records of vegetation history from the Florida peninsula and their climatic implications. Palaeogeogr Palaeocl 109(2-4): 163-176. https://doi.org/10.1016/0031-0182(94)90174-0

78. Wei J, Hua S, and Yang ZL (2016) Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim dynam 46(1-2): 467-481. https://doi.org/10.1007/s00382-015-2593-2

79. Whitehead DR and Sheehan MC (1985) Holocene vegetational changes in the Tombigbee River Valley, eastern Mississippi. Am Midl Nat 122-137. https://doi.org/10.2307/2425354

80. Wu W, Dickinson RE, Wang H, et al. (2007) Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. Int J Climatol 27: 429–438. https://doi.org/10.1002/joc.1419

81. Wurster CM, McFarlane DA, and Bird MI (2007) Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States. Geochim Cosmochim Ac 71(13): 3302-3310. https://doi.org/10.1016/j.gca.2007.05.002

82. Wurster CM, Patterson WP, McFarlane DA, et al. (2008) Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. Geology 36(9): 683-686. https://doi.org/10.1130/G24938A.1

83. Wurster CM, McFarlane DA, Bird MI, et al. (2010) Stable isotopes of subfossil bat guano as a long-term environmental archive: insights from a Grand Canyon cave deposit. J Cave Karst Stud 72(2): 111-121. https://doi.org/10.4311/jcksc1009es0109

84. Wurster CM, Rifai H, Haig J, et al. (2017) Stable isotope composition of cave guano from eastern Borneo reveals tropical environments over the past 15,000 cal yr BP. Palaeogeogr Palaeocl 473: 73-81. https://doi.org/10.1016/j.palaeo.2017.02.029
Figures

Figure 1

Map of Southeastern United States showing Cave Springs Cave. Cave Springs Cave (blue dot) is located on Wheeler National Wildlife Refuge in northern Alabama. The city in closest proximity to the cave is Priceville, Alabama. Green dot represents location of pollen record used to compare to the deuterium record in Bartow County, Georgia. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Cores retrieved from Cave Springs Cave. A) The top 0-32 cm the portion of the core is pellet-like and dark brown. B) The bottom 33-87 cm portion of the core has many colored striations with layers of brushite intermixed with the guano. Guano core was 87 centimeters in total length. * indicates the calibrated radiocarbon AMS date while other dates are from the BACON model.
Figure 3

BACON age-depth model for Cave Springs Cave. Blue shaded regions indicate actual 14C dates obtained. Gray area indicates projected years to a 95% confidence interval. Red line indicates the correlation.
Figure 4

Elements and Nutrients of Cave Springs Cave. Bulk density (expressed as dry/wet) increases with depth. TC and TN decrease with depth. Loss on ignition (LOI) decreases with depth. Both elements rapidly increase at the bottom of the core, but at different times. Calcium peaks at 7,908 cal yr BP and phosphorus peaks at 11,121 cal yr BP indicating brushite
Figure 5

δ²H values of Cave Springs Cave guano core from 12,000 cal yr BP to present
Figure 6

Principal Component Analysis of isotope systems ($\delta^{2}H$) and elemental concentrations (Fe, Al, K, Ca, P, Mg) in the Cave Springs Cave guano core. D represents $\delta^{2}H$. Three distinct time periods are revealed (upper Holocene, middle Holocene, and Lower Holocene/Upper Pleistocene)
Figure 7

Quercus and Pinus pollen record from small ponds in Bartow County, Georgia (Watts 1970) compared to the deuterium record from Cave Springs Cave. The units of measurement for Quercus and Pinus are number of individual specimens (NISP). The gray shaded region indicates the Holocene Climatic Optimum (9000-5000 cal yr BP)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaldataEES.xlsx