Total Phenolics, Flavonoids Contents, Antioxidant Activity and DNA Protective Effect of Lenten Rose (Helleborus orientalis)

Meral Öztürk¹, Ibrahim Bulduk²*, Safiye Elif Korcan³, Recep Liman¹, Funda Karabağ Çoban¹, Mustafa Kargıoğlu⁴ and Muhsin Konuk⁵

¹Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Uşak University, 64200 Uşak, Turkey.
²Uşak Health Training School, Uşak University, 64200 Uşak, Turkey.
³School of Health, Uşak University, 64200 Uşak, Turkey.
⁴Department of Molecular Biology and Genetics, Faculty of Science and Arts, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
⁵Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, İstanbul, Turkey.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors SEK and IB designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors MO, RL and FKC managed the analyses of the study. Authors M.Konuk and M.Kargıoğlu managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJBGMB/2018/v1i430047

Editor(s):
(1) Dr. Mohammed Rachidi, Director of Research, Molecular Genetics of Human Diseases (MGHD), French Polynesia, University Paris Denis Diderot, Paris, France.

Reviewers:
(1) Maria Bintang, Bogor Agriculture University (IPB University), Indonesia.
(2) Mustafa Sevindik, Akdeniz University, Turkey.
(3) Izharul Hasan, India.

Complete Peer review History: http://www.sdiarticle3.com/review-history/47680

Received 17 November 2018
Accepted 24 February 2019
Published 12 March 2019

ABSTRACT

The aims of the present study were to evaluate the antioxidant activity and DNA Protective effect of Helleborus orientalis (HO) leaf extract against oxidative damage, and to determine the total phenolic and flavonoid contents of the plant species studied.

*Corresponding author: E-mail: bulduki@mynet.com, ibrahim.bulduk@usak.edu.tr;
1. INTRODUCTION

There is little information on the therapeutic properties of Helleborus (family Ranunculaceae) species known as ornamental plants. For this reason, studies on the phytochemical structure and phytochemical properties of Helleborus species have been of interest in the last few years. There are studies including inherent extracts from these species which indicate that Helleborus plants are a helpful origin of chemical compounds with excellent therapeutic potency years.[1]

Some Helleborus extracts have immuno-stimulatory molecules and are used in anticancer treatment [2]. In vitro application of H. niger water extract resulted in a minor induction of sister chromatid exchanges in blood mononuclear cells from a healthy person. Additionally, Lindholm et al. noticed a powerful antitumor potential of some Helleborus species (H. cyclophyllus Boiss. H. multifidus and H. hercegovicinus) [3]. In cancer cells, the Reactive oxygen species (ROS) is maintained at higher level, the pro-apoptotic effects of ROS may exceed its proliferative effects and cytotoxic effects display in cancer cells, whereas the ROS levels in normal cells remain below the borderline level which is nontoxic to normal cells. Antioxidants treat cancers as cancer inhibiting agents [4].

Polyphenolic antioxidants are flavonoids and phenolic acid. These compounds most important natural bioactive secondary metabolites in plants [5,6]. In addition, phenolic antioxidant compounds reduce the risk of cancer by clearing free superoxide radicals. Phenols include both hydroxyl group and aromatic ring. It has been reported that phenols are involved in the defense system against microorganisms. Phenols directly cleans free radicals or act as electron donors against hydrogen peroxide in reactions catalyzed by ascorbate peroxidase. Thus they reduce the oxidative stress in the cell [7,8]. In recent years it has been determined that flavonol glycoside and phenolic glucoside derivatives isolated from some Helleborus species and exhibit significant anti-proliferative and potent antioxidant activity [9,10,11].
H. orientalis is a perennial plant and is indigenous to Greece and Turkey [12]. Same antioxidant compounds have nowadays been isolated from plants of this genus but information on the antioxidant activity of HO is limited. In order to use this plant in modern medicine, it must be determined whether or not it causes antioxidant effects in the cell. Comet assay is a technically easy, fast and highly sensitive test to detects the small changes in the DNA structure [13]. According to our literature search, antioxidant effects of H. orientalis have not been examined yet by comet assay.

The aims of this study are to evaluate the antioxidant activity using different methods and to determine the protective effect of H. orientalis extract against oxidative DNA damage by employing a Comet assay.

2. MATERIALS AND METHODS

2.1 Reagents and Plant Materials

H. orientalis (Ranunculaceae) were collected from Piraziz, Giresun, Turkey (Latitude 40.924° - Longitude 38.128° - Height 290 m) in April 2017. The plant was identified by Professor Mustafa Kargıoğlu, from the Department of Biology, Faculty of Science and Literatures, Afyon Kocatepe University. An authenticated voucher specimen (AKU9324) was deposited in the Herbarium of Faculty of Science and Literatures Afyon Kocatepe University. Its leaves and branches were dried at 27±2 °C in a dark room for two weeks. Dried materials were milled (80–100 mesh) before extraction.

All the chemicals (Sigma-Aldrich) used in this study were filtered through a 0.45 Millipore membrane filter.

2.2 Ultrasound-assisted Extraction

Extraction was performed utilizing Wise bath brand ultrasonic bath with 50 kHz frequency. 1 g dried part of plant material powdered was extracted with 30 mL of a methanol solution (70% methanol in distilled H2O) in an ultrasonic bath at 27°C temperature for 30 min. It was watched out that the solvent and water level of flask in the ultrasonic bath remained the same. After fixing the ultrasonic bath temperature and time value, extraction proces was started. When the extraction was complete, the mixture was first filtered with Whatman filter paper and then filtered with a 0.45 micron membrane filter.

2.3 Determination of Total Phenolic Content (TPC)

The Folin-Ciocalteu technique protocol was done according Kähkönen et al.[14]. Absorbance was measured at 765 nm by a UV-Vis spectrophotometer and compared to a Gallic acid (GA) calibration curve. The amount of the absorbance measured in the extract was calculated from the equation of the standard curve prepared with GA. TPC in the extract is expressed in terms of "mg GA/g sample".

2.4 Determination of Total Flavonoid Content (TFC)

The TFC of the extract was determined by the aluminum chloride colorimetric assay [15]. The absorbance of the samples was read at 510 nm. The same processes were used for quercetin used as standard and flavonoid contents of the samples were calculated as equivalent to quercetin (mg QE / g sample).

2.5 Analysis of Phenolic Acids by High-Performance Liquid Chromatography (HPLC)

Determination of phenolic acids in extract was carried out with HPLC system (Agilent 1260 series). Instrument control and data analysis were performed using Agilent HPLC Chemstation 10.1 edition through Windows 2000. Zorbax Extend-C18 (5 µm, 4.6 mm -150 mm, Agilent) column was used. The flow rate of the mobile phase was adjusted at 0.5 mL/min. Mobile phase A was 0.02% Trifluoroacetic acid (TFA) solution in water, and phase B was 0.02% TFA solution in methanol. The gradient conditions were as follows: 0-5 min, 25% B; 5-10 min, 25-30% B; 10-16 min, 30-45% B; 16-18 min, 45% B; 18-25 min, 45-60% B; 25-30 min, 80% B; 30-40 min, 80-25% B (The column temperature: 25 °C, injection volume: 10 µL). As standard Vanillic acid (254), gallium and syringic acid (275, 305), and rosmarinic acid (320 nm) were used [16].

2.6 Fourier Transform Infrared Spectrophotometer (FTIR)

FTIR Analysis has been applied to determine functional groups present in the methanol extracts of H. orientalis About 1 mg of dried material was analyzed by FTIR (spectra frequency zones 3500-500 cm- 1) (Perkin Elmer Lambda 35).
2.7 LC-Mass Analysis

LC-Mass Analysis was applied to determine unknown substances in the structure of H. orientalis. The dried ground samples were weighed 1 g and extracted in an ultrasonic bath with 30 mL of 70% methanol. The analysis was performed by using the 6460 mass detector with the C18 column at 325 °C of the ionization temperature using the Jetstream ionization technique. The mobile phase A was 20% acetonitrile and mobile phase B was 80% distilled water containing 0.1% formic acid. The analysis was performed with Triple Quadrupole LC-MS-MS device. Separation process was performed with a 1200 model UPLC device. The injection volume was 10 µL.

2.8 Antioxidant Activity by DPPH Test Assay

The DPPH assay protocol was carried out according to the method of Thaipong et al. [17]. The absorbance of the samples (Shimadzu UV Mini 1240) was read at 515 nm. Antioxidant activity is expressed as % inhibition of DPPH.

2.9 Protective Effect of Leaf Extract against to H2O2 by Comet Assay

The alkaline comet assay was done according to Singh et al. [18]. Negative and positive controls (1xPBS and H2O2) were also included, and exposure time is in parallel with HO leaf extract dissolved in 1xPBS (500, 1000, 2500, 5000 and 10,000 µg/mL) for 0.5h at 37 °C. While supernatant was used for The oxidative stress index (OSI) determination, the pellet was used for Comet assay. Electrophoresis was then carried out for 20 min at 25 V (1 V cm⁻¹) at 4 °C. Following electrophoresis, slides washed with neutralization buffer (0.4 M Tris, pH = 7.5) three times. The slides were covered with coverslip after staining with 60 µl of 20 µg/ml ethidium bromide. Totally 300 comets per concentration were analyzed using a fluorescence microscope (BAB-TAM-F, Turkey). Scores of slides were classified according to Koçyiğit et al. [19]. The mean ± standard deviations of the obtained data were calculated. Significance levels in different treatment groups were analyzed using Duncan multiple range tests (SPSS 23.0 version).

2.10 Measurement of Total Oxidant Status and Oxidative Stress Index

When Comet assay DNA damage study was carried out, the last supernatants were taken into Eppendorf tubes and stored at -20 °C for used in TOS and TAS studies. The total oxidant (530 nm) and oxidant (660 nm) level was estimated utilizing a completely automated colorimetric technique created by Erel. TOS (530 nm) and TAS (660 nm) levels were evaluated as spectrophotometric (Elisa Thermo Scientific) using Rel Test Kit RL0024 and RL0017 [20, 21]. Stress index was counted up according to the following formula; TOS: (ΔAbsSample)/(ΔAbsStandard) X Conc. of standard TAS: ((ΔAbs H2O) - (ΔAbs Sample))/((ΔAbsH2O) - (ΔAbs Standart)).

The oxidative stress index (OSI) of samples were determined with the ratio of TOS to TAS. Standard deviations of the data obtained from the test samples were calculated and analyzed using Duncan post-hoc one-way variance analysis (ANOVA).

3. RESULTS

3.1 Phenolic Contents

TPC in plant extracts of H. orientalis were given in Table 1. TPC in plant extracts ranged from 19.42 to 4.39 mg GAE/1 g sample. The highest concentration of TPC was measured at FME (Flowers Methanol Extract). TPC in LME (Leaves Methanol Extract) was determined as 17.20 mg GAE/1 g sample. A graph of the absorbance values versus the Gallic acid concentration was given in Fig. 1. Linearity was defined as \(y=98.316 \times +39.945 \) and regression coefficient was defined as \(R^2=0.9990 \).

3.2 Flavonoid Contents

The TFC in the extracts of different parts of the plant were given in Table 2 as quercetin equivalent (QE). The highest amount of flavonoid content was found in FME (11.880 mg QE/g) followed by LME (10.212 mg QE/g) BME (3.116 mg QE/g) and RME (2.567 mg QE/g). A graph of the absorbance values versus the quercetin concentration was drawn and a curve of quercetin calibration was generated. The
calibration curve for quercetin was given in Fig. 2. Linearity was defined as \(y=2438x+0.218 \) and regression coefficient was defined as \(R^2=0.9998 \).

Table 1. The total phenolic contents of various plant extracts parts of *H. orientalis*

The methanol extract of *H. orientalis*	mg GAE/1 gr of sample
Flower (FME)	19.42
Leaf (LME)	17.20
Body (BME)	6.86
Root (RME)	4.39

Table 2. The total flavonoid contents of different parts of *H. orientalis*

The methanol extract of *H. orientalis*	mg QE/1 g. of sample
Flower (FME)	11.880
Leaf (LME)	10.212
Body (BME)	3.116
Root (RME)	2.567
3.3 Phenolic Acid Contents of *H. orientalis*

The presence of Gallic acid, protoacetic acid, vanillic acid, caffeic acid, syringic acid, coumaric acid and rosmarinic acid in phenolic acids was investigated by HPLC method in the parts of *H. orientalis*. 26.52 ppm of Gallic acid in the flowers, 7.48 ppm of rosmarinic acid in the body, 20 ppm of caffeic acid in the leaves and 19 ppm of rosmarinic acid and 20 ppm of Gallic acid in the roots of *H. orientalis* plant were determined by HPLC.

3.4 FT-IR Spectrum Analysis

The FTIR spectrum of *H. orientalis* extracts is given in Figs. 3 to 6. The data on the peak values and the probable functional groups were presented in Tables 3.

Table 3. FTIR spectral peak values and functional groups obtained for the *H. orientalis* extract

Simple	Frequency (cm⁻¹)	Functional group	Possible compound
Stem	3304.0	N-H bending	Amine and Amide Alkaloids
	2930	C-H group	Phenolic Aromatic Compounds
	1723.4	C=O carbonyl group	Saponins
	1592	C=C group	Phenolic Aromatic Compounds
	1035.9/1252.6	C-O-C stretching	Glycosides
Root	3307.1	N-H bending	Amine and Amide Alkaloids
	2855/2921.9 and 3012.8	C-H group	Phenolic Aromatic Compounds
	1707.3	C=O carbonyl group	Saponins
	1035.9/1156.3/1196.4 and 1274	C-O-C stretching	Glycosides
Flower	3248.3	N-H bending	Amine and Amide Alkaloids
	2847/2919.2	C-H group	Phenolic Aromatic Compounds
	1394.3	CH₃	Alkaloids
	1308/1035.9	C-O-C stretching	Glycosides
Leaf	3288.4	N-H bending	Amine and Amide Alkaloids
	2857.7/2921.9	C-H group	Phenolic Aromatic Compounds
	1512	C=C group	Phenolic Aromatic Compounds
	1038.5/1260.6	C-O-C stretching	Glycosides

![Fig. 3. FT-IR analysis of *H. orientalis* stem](image-url)
Fig. 4. FT-IR analysis of *H. orientalis* root

Fig. 5. FT-IR analysis of *H. orientalis* leaf

Fig. 6. FT-IR analysis of *H. orientalis* flower
3.5 LC-MS Results

In LC-MS analysis, glycosides equivalent to the molecular weights of cardioactive glycosides were determined. The hellebrin, hellebrigenin in the leaves of the plant and hellebrigenin in the body, hellebrigenin in the root and the presence of helleborine were determined. In the leaves of the plant hydroxycinnamic acids and other polar compounds containing caffeic acid, flavonol glycosides containing quercetin have been identified. In the roots of the plant, quercetin containing flavonol glycosides was found. The presence of quercetin-containing flavonol glycosides was determined in the body of the plant. Flowers of the plant have hydroxycinnamic acids and other polar compounds containing caffeic acid and flavonol glycosides quercetin were found.

3.6 Antioxidant Activity by DPPH Assay

From the plot plotted against the % inhibition value calculated against different concentrations of antioxidants, linear regression resulted in Antioxidant concentrations which cause 50% inhibition was calculated by linear regression. The results are expressed as EC50 (µl) in Table 4.

3.7 TAS and TOS Levels

There were significant increases of TOS levels whereas decreases TAS in the H2O2 group compared to the control group (Table 5).

4. DISCUSSION

Over the past few years, different Helleborus species have been the subject of phytochemical investigations because of their potential to produce important secondary metabolites. However, studies in the literature have been limited to a few studies with H. orientalis species. To the best of our knowledge, no data have been available for H. nigerisus species. In the present study, the protective effect of leaf extract against to H2O2 is given to Table 6. Exposure of HO leaf extract decreased the DNA damage at all concentrations in a dose-dependent manner (r=0.86 p<0.01) against to H2O2. While the highest DNA damage was observed the positive control (305±5.51), the lowest one observed in the negative control (6±1). The decreasing DNA damage showed statistically significant results (p<0.05) above the 2500 µg/mL of HO leaf extract.
The bands at 1700 levels of phenolic and orientalis reported that the antioxidative properties of followed by the plant leaves plant flowers had the highest phenol content polyphenolic extracts and they show that the evaluated that have a high antioxidant activity that the concentrated orientalis study, ethanol was used as the solvent in rats induced type 2 diabetes model niger Kumar and Giresun, Turkey. orientalis assay. been published on total phenolic and flavonoid content H. orientalis and relationship protective effect of leaf extract against to H₂O₂ by Comet assay. Therefore the aim of our study was to examine the possible antioxidant potential of H. orientalis Lam species with distribution in Piraziz, Giresun, Turkey.

Kumar and Lalitha show that ethanol extract of H. niger exhibits excellent antioxidant activity in streptozotocin and nicotinamide-induced diabetic rats induced type 2 diabetes model [23]. In our study, ethanol was used as the solvent in H. orientalis extraction. Roman et al results revealed that the concentrated H. purpurascens extracts have a high antioxidant activity [24]. Similar to the findings we have in our study, Paun et al evaluated that H. purpurascens and H. officinale polyphenolic extracts and they show that the plant flowers had the highest phenol content followed by the plant leaves [25]. Dakara et al. reported that the antioxidative properties of H. orientalis leaf extracts were caused by high levels of phenolic and flavonoids [26].

In this study, the concentration of TPC in H. orientalis ethanol extracts ranged from 19.42 to 4.39 mg GAE/1 g of the sample. The plant flowers had the highest phenol content (19.42 mg GAE/1 g) followed by the plant leaves (17.20 mg GAE/1 g) (Table 2). The highest amount of flavonoid content was found in FME (11.880 mg QE/g) followed by LME (10.212 mg QE/g) (Table 4). The maximum total flavonoid content of H. orientalis methanol extracts was found in flowers and leaves (10.212 mg QE / 1 g) in spectrophotometric measurement (11.880 mg QE / 1 g).

The bands at 1700-1600 cm⁻¹ in the FTIR spectrum are caused by the stretching of the carbonyl groups C = O and C = C or also associated with phenolic molecules [27]. It has been reported that the vibration in the spectral region of 1540 2121175 cm⁻¹ may be from O-H, C-O, C-H, and C = C deformation [213], or flavonol and phenol [27, 28, 29]. Masek et al. reported that the vibrations in the spectral region of 940-1175 cm⁻¹ were due to C-OH groups, C-O in phenol, carbohydrate-linked C-C and C-O [29]. In our study, C-H, C = O, C-O-C, C methanol OH, C = C bond stress in root, stem, flower, and leaf methanol extracts. This shows that phenolic compounds are present in the methanol extracts of H. orientalis. In this study, the results of HPLC analysis data, LC- Mass, FTIR spectral findings and spectrophotometric phenolic/ flavonoid substance support each other.

DPPH is considered to be an easy and fast method for the correct determination of antioxidant activity [30]. In this study, the sweeping activity of DPPH radical is found in the highest flower extract. The sweeping activity of the lowest DPPH radical was determined at the root. Plant extracts have higher antioxidant activity than many antioxidant substances. (Table 6). This is probably related to depends on redox properties of phenolic compounds [31,30,32].

The presence of phenolic acids (ferulic acid, caffeic acid and chlorogenic acid) and flavonoids (kaempferol and quercetin derivatives) in the methanolic extract of Helleborus atrorubens leaves was shown [26,33]. Many studies demonstrated that caffeic acid has anti-mutagenic and anti-carcinogenic properties. Chen et al (1995) show that caffeic acid is decrease lipoperoxyl radicals by inhibiting the reaction of lipid peroxidation chain [34].

In our study, 26.52 ppm of gallic acid in the flowers, 7.48 ppm of rosmarinic acid in the body, 20 ppm of caffeic acid in the leaves and 19 ppm of rosmarinic acid and 20 ppm of gallic acid in the roots of H. orientalis plant were determined by HPLC. Also, we couldn’t determine some peaks in HPLC because of didn’t use the standards. Although all of the obtained data show that H. orientalis has got rich antioxidant

Table 6. Protective effect of H. orientalis leaf extract against to H₂O₂

Treatment	DNA Damage (Arbitrary Unit ±SD)
Control	6±1a
H₂O₂ 200 µM	305.33±5.51b
500 µg/mL + H₂O₂	304.33±3.21b
1000 µg/mL + H₂O₂	302±5.57bc
2500 µg/mL + H₂O₂	296.33±2.52cd
5.000 µg/mL + H₂O₂	293.33±3.06de
10.000 µg/mL + H₂O₂	288.67±3.51f

*Means with the same letter do not differ statistically at the level of 0.05. SD: Standard Deviation
content, no literature on the Comet assay of H. orientalis plant extracts was found in the literature review. Although, H. odorus and H. hercegovinus extracts have strong antioxidant activity, H. multifidus has stronger antiproliferative activity [26,34]. The leaves extracts have better antioxidant activity and secondary metabolites are present in higher amounts than the root extracts. On the other hand, H. hercegovinus root extracts exhibit high antitumoral activity. Moreover, Kumar and Lalitha findings directly, verified at the first time that the ethanol extract of H. niger root exhibited perfect activities type 2 diabetic rats [23].

H. orientalis flower development was divided into six stages and the amount of phenolic content varies according to the flowering period [32]. For this reason, Leaf extract was used for determination of protective effect in this study.

Protective effect against oxidative stress of H. orientalis was determined using TAS, TOS method and Comet assay. Exposure of H. orientalis leaf extract decreased the DNA damage at all concentrations in a dose-dependent manner (r=0.86 p<0.01) against to H2O2 in the Comet assay. The decreasing DNA damage showed statistically significant results (p<0.05) above the 2500 µg/mL of HO leaf extract. OSI value was found to decrease significantly (p<0.05) at 2500 4.2g / L of HO leaf extract compared to positive control (4.25 ± 2.14).

5. CONCLUSIONS

This is the first report on the activity of protective effect of leaf extract of H. orientalis against H2O2. The study shows that H. orientalis leaf and flowers extracts have a high antioxidant activity, thus it can be considered a good source for further medicinal applications. The following investigations should be based on the purification and chemical identification of H. orientalis extract.

The results of TAS, TOS and Comet Assay showed that H. orientalis had a protective effect against oxidative stress. H. orientalis leaf extract also reduced DNA damage. While there are many chemicals and other factors that cause DNA damage, the existence of plants that correct DNA damage is promising for the future.

ACKNOWLEDGEMENT

This study was supported by a project of the Uşak University Research Fund, Project No: 2017/TP041 and approved by the Uşak University Ethical Committee, Uşak, Turkey (No. 2017-34).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Maior MC, Dobrata C. Natural natural compounds discovered in Helleborus sp. (Ranunculaceae) with important medical potential Article in Central European Journal of Biological. 2013;8(3):272-285.
2. Büssing A, Schweizer K. Effects of a phytopreparation from Helleborus nigeron immunocompetent cells in vitr. J. Ethnopharmacol. 1998;59:139-146.
3. Lindholm P, Gullbo J, Claeson P, Göransson U, Johansson S, Backlund A. Selective cytotoxicity evaluation in anticancer drug screening of fractionated plant extracts. J. Biomed. Screen. 2002;7:333-340.
4. Jin S, Wu Y. Deng S. Zhang J. Chen XQ. Oxidants and antioxidants in metabolic syndrome and cancer. Oxid Med Cell Longev. 2014;178962.
5. Ghasemzadeh A, Ghasemzadeh N. Flavonoids and phenolic acids: Role and biochemical activity in plants and human. Journal of Medicinal Plants Research. 2011;5(31):6697-6703.
6. Pehlivam M, Sevindik M. Antioxidant and Antimicrobial Activities of Salvia multicaulis. TURJAF. 2018. 6(5). 628-631.
7. Morina F, Jovanović L, Kukavica B, Veljović-Jovanović S. Peroxidase, phenolics, and antioxidative capacity of common mullein (Verbacum thapsus L.) grown in a zinc excess. Archives in Biological Science Belgrade. 2008;60(4): 687–695.
8. Pehlivam M, Mohammed F, Sevindik M, Akgul H. Antioxidant and oxidant potential of Rosa canina. Eurasian Journal of Forest Science, 2018;6(4):22-25. DOI:10.31195/ejejfs.475286
9. Braca A, Prieto JM, De Tommasi N, Tome F, Morelli I. Furostanol saponins and quercetin glycosides from the leaves of
11. Vitalini S, Braca A, Fico G. Study on secondary metabolite content of Helleborus niger L. Leaves. Fitoterapia. 2011;82(2):152-154.

12. Kazuki W, Mimaki Y, Sakagami H, Sashida Y. Bufadienolide and spirostanol glycosides from the rhizomes of Helleborus orientalis L. Nat. Prod. 2003;66,236-241.

13. Liman R. Genotoxic effects of Bismuth (III) oxide nanoparticles by Allium and Comet assay Chemosphere. 2013;93(2):269-273.

14. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M, et al. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 1999;47:3954–3962.

15. Chang C, Yang M, Wen JH. Chern Estimation of total flavonoid contentin propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002;10:178-18.

16. Wen D, Li C, Di H, Liao Y, Liu H, Agric J. A universal HPLC method for the determination of phenolic acids in compound herbal medicines. Food Chem. 2005;53:6624–6629.

17. Thaipong K, Boonprako U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19:669-675.

18. Singh NP, Mc. Coy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988;175:184-191.

19. Koçyiğit A, Keles H, Selak S, Guzel S, Celik H, Erel O. Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutat. Res. 2005;585:71–78.

20. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem. 2004;37:277-285.

21. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38:1103-1111.

22. Shahri W, Tahir I, Islam ST, Bhat MA. Physiological and biochemical changes associated with flower development and senescence in so far unexplored Helleborus orientalis Lam. cv. Olympicus. Physiol Mol Biol Plants. 2011;17(1):33-9.

23. Kumar KV, Lalitha KG. Antihyperglycemic, antihyperlipidemic and antioxidant activities of ethanolic extract of Helleborus niger linn roots in streptozotocin-nicotinamide induced diabetic rats. Journal of Pharmaceutical Research. 2014;13(3):92-101.

24. Roman PG, Neagu E, Radu GL. Membrane processes for the purification and concentration of Helleborus purpurascens extracts and evaluation of antioxidant activity. Rev. Chim. (Bucharest). 2010;61:877-881.

25. Paun G, Litescu SC, Neagu E, Tache A, Radu GL. Evaluation of Geranium spp. J Enzyme Inhib Med Chem. 2014;29(1):28–34.

26. Čakara J, Parić A, Vidic D, Haverić A, Haverić S, Maksimović M. Antioxidant and antiproliferative activities of Helleborusodorous Waldst. & Kit, H. multifidus Vis. and H. hercegovinus Martinis. Nat. Prod. Res. 2011;25:1969–1974.

27. Tahir H, Xiaobo Z, Zhihua L, Jiyong S, Zhai X, Wang S, Mariod A. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chemistry. 2017;226:202–211.

28. Masek A, Chrzeszajnska E, Kosmalska A, Zaborowski M. Characteristics of compounds in hops using cyclic voltammetry, UV–VIS, FTIR and GC–MS analysis. Food Chemistry. 2014;156:353–361.

29. Nickless EM, Holroyd SE, Stephens JM, Gordon KC, Wargent JJ. Analytical FT-Raman spectroscopy to chemotype Leptospermum scoparium and generate predictive models for screening for dihydroxyacetone levels in floral nectar. Journal of Raman Spectroscopy. 2014; 45(10):890–894.

30. Katalinic V. Antioxidant effectiveness of selected wines in comparison with (p)catechin. Food Chemistry. 2004;86:593–600.

31. Adedapo A. Antioxidant properties of the methanol extracts of the leaves andstems
of Celtis. Africana. Records of Natural Products. 2009;3:23–31.

32. Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry. 2001;49:5165–5170.

33. Shahri W, Tahir I, Islam ST, Bhat MA. Physiological and biochemical changes associated with flower development and senescence in so far unexplored $Helleborus orientalis$ Lam. cv. Olympicus. Physiol Mol Biol Plants. 2011;17(1):33–39.

34. Chen YF. Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med. 1995;61(1):2-8.

© 2018 Öztürk et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/47680