Abstract

In this paper we are looking at the problem of determining the composition factors for the affine graded Hecke algebra via the computation of Kazhdan-Lusztig type polynomials. We review the algorithms of [9, 10], and use them in particular to compute, at every real central character which admits tempered modules, the geometric parameterization, the Kazhdan-Lusztig polynomials, the composition series, and the Iwahori-Matsumoto involution for the representations with Iwahori fixed vectors of the split p-adic groups of type G_2 and F_4 (and by the nature of the algorithms, for their Levi subgroups).

Contents

1 Introduction 2
2 Ingredients 6
3 Bases 10
4 Examples: the regular case, $gl(4)$, $sp(4)$, $sp(6)$, and G_2 15
5 Polynomials for F_4 21

*Supported by the NSF grant FRG-0554278.
1 Introduction

1.1
Let G be a complex, connected, simply-connected, semisimple Lie group, let H be a Cartan subgroup, and $B \supset H$ a Borel subgroup. Let \mathfrak{g}, \mathfrak{h} denote the respective Lie algebras, and let Δ, Δ^+, Π be the corresponding roots, positive roots, and simple roots respectively, and let W be the Weyl group. If $\alpha \in \Delta$, the corresponding coroot is $\check{\alpha} \in \mathfrak{h}^*$, and the reflection in W is s_{α}. The pairing between \mathfrak{h} and \mathfrak{h}^* is denoted $\langle \cdot, \cdot \rangle$.

The affine graded Hecke algebra \mathbb{H} was introduced in [11]. We will only consider a special case of the definition, the “equal parameters” case. The generators of \mathbb{H} are the elements $\{t_{s_{\alpha}} : \alpha \in \Pi\}$ and $\{\omega : \omega \in \mathfrak{h}^\ast\}$. Here Π denotes the set of simple roots. As a \mathbb{C}-vector space,

$$\mathbb{H} = \mathbb{C}[W] \otimes \mathbb{A}, \quad (1.1.1)$$

where

$$\mathbb{A} = \text{Sym}(\mathfrak{h}^\ast). \quad (1.1.2)$$

The following commutation relations hold:

$$\omega t_{s_{\alpha}} = t_{s_{\alpha}} s_{\alpha}(\omega) + 2\langle \omega, \check{\alpha} \rangle, \quad \alpha \in \Pi, \ \omega \in \mathfrak{h}^\ast. \quad (1.1.3)$$

The center $Z(\mathbb{H})$ of \mathbb{H} consists of the W-invariants in \mathbb{A} ([11]):

$$Z(\mathbb{H}) = \mathbb{A}^W. \quad (1.1.4)$$

On any irreducible \mathbb{H}-module, which is necessarily finite dimensional, $Z(\mathbb{H})$ acts by a central character. Therefore, the central characters are parameterized by W-conjugacy classes in \mathfrak{h}. Let $\text{mod}_\chi(\mathbb{H})$ be the category of finite dimensional modules of \mathbb{H} with central character χ. This will be the main object of interest in this paper.

1.2
The connection with the representation theory of p-adic groups is well-known, and we briefly recall it next. Let G be the split adjoint p-adic group whose dual group (in the sense of Langlands) is G. Let I denote an Iwahori subgroup of G. The Iwahori-Hecke algebra, denoted \mathcal{H} is the algebra of locally constant compactly supported I-biinvariant functions under convolution. If a G-representation (π, V) has I-fixed vectors, then \mathcal{H} acts on V^I. Let $C(I, 1)$ be the category of admissible representations whose every subquotient is generated by its I-fixed vectors.

Theorem 1 (Borel). The association $V \mapsto V^I$ is an equivalence of categories between $C(I, 1)$ and the category $\text{mod}(\mathcal{H})$ of finite dimensional representations of \mathcal{H}.

2
Casselman proved that every subquotient of a minimal principal series $I(\lambda)$ of G, where λ is an unramified character of the maximal (split) torus of G dual to H, is in $C(I, 1)$, and in fact every irreducible object in $C(I, 1)$ is of this form.

In [8], the Langlands (geometric) classification for the category $mod(H)$ is proved. By a result of Bernstein, the central characters of H are parameterized by W-orbits of elements in H. If $\bar{\chi} \in H$, let $mod_{\bar{\chi}}(H)$ be the subcategory of modules with central character $\bar{\chi}$. The connection with the graded Hecke algebra is in [11]. The algebra \mathbb{H} is the associated graded object to a certain filtration in the Iwahori-Hecke algebra H. Assume χ is a hyperbolic element of h, and then $\bar{\chi} = exp(\chi)$ is a hyperbolic element of H. There is a natural correspondence between irreducible objects

$$Irr \; mod_{\bar{\chi}}(H) \leftrightarrow Irr \; mod_{\chi}(\mathbb{H}).$$

We emphasize that, in (1.2.1), $\bar{\chi}$ is hyperbolic. If the category is $mod_s(H)$, with s arbitrary, one decomposes $s = s_e \cdot \bar{\chi}$ into the elliptic and hyperbolic parts. A similar correspondence holds, but the graded Hecke algebra in the right hand side is one for a root system defined by the centralizer of s_e in G (which is connected by Steinberg’s theorem).

1.3

The geometric classification for $mod_\chi(H)$ exists as well ([12]: also [8], [11]), and we have standard modules X and irreducible quotients L. In the bijections of section 1.2, the standard, respectively irreducible, modules correspond.

The classification is expressed in terms of the geometry of the spaces $g_n(\chi)$:

$$G(\chi) = \{g \in G : Ad(g)\chi = \chi\}, \quad g_n(\chi) = \{y \in g : [\chi, y] = ny\}. \tag{1.3.1}$$

Let $Orb_n(\chi)$ denote the set of $G(\chi)$ orbits on $g_n(\chi)$. Assume that $n \in \mathbb{Z} \setminus \{0\}$. Then $g_n(\chi)$ is a prehomogeneous $G(\chi)$-vector space ([7]), and in fact $Orb_n(\chi)$ is finite. For every $O \in Orb_n(\chi)$, $\overline{O} \setminus O$ is the union of some orbits O' with $\dim O' < \dim O$.

Theorem 2 ([12]). The standard and irreducible objects in $mod_\chi(H)$ are in bijection with pairs $\xi = (O, L)$, where

1. O is a $G(\chi)$-orbit on $g_2(\chi)$;
2. L is a $G(\chi)$-equivariant local system on O of Springer type.

More precisely, choose some $e \in O$. Then L corresponds to a representation ϕ of the component group $A(e, \chi) = G(e, \chi)/G(e, \chi)^0$. The representations ϕ which are allowed must be in the restriction from $A(e) = G(e)/G(e)^0$ to $A(e, \chi)$ of a representation which appears in the Springer correspondence.
1.4

In this setting, the Kazhdan-Lusztig conjectures take the following form.

Theorem 3 ([12]). In (the Grothendieck group of) $\text{mod}_\chi(\mathbb{H})$:

$$X_{\xi'} = \sum_{\xi} P_{\xi, \xi'}(1) \cdot L_\xi, \text{ with }$$

$$P_{\xi, \xi'}(q) = \sum_{i \geq 0} [\mathcal{L} : \mathcal{H}^iIC(O', \mathcal{L}') |_{\mathcal{O}}] \cdot q^i,$$

where $\mathcal{H}^jIC()$ denotes the j-th cohomology sheaf of the intersection cohomology complex.

(In the setting of the affine Iwahori-Hecke algebra, the similar result was established in [13].)

Corollary 1. In particular, $P_{\xi, \xi} = 1$, and if $\xi \neq \xi'$, then $P_{\xi, \xi'} = 0$, unless $O' \subseteq \overline{O}$.

1.5

An important feature of \mathbb{H} is the Iwahori-Matsumoto involution IM,

$$IM(t_w) = (-1)^{\ell(w)} t_w, \quad w \in W, \quad IM(\omega) = -\omega, \quad \omega \in \mathfrak{h}^*.$$

which gives a bijection

$$IM : \text{Irr mod}_\chi \mathbb{H} \leftrightarrow \text{Irr mod}_{-\chi} \mathbb{H}.$$

(1.5.2)

One also has an obvious involution

$$\kappa : \mathbb{H} \to \mathbb{H}, \quad \kappa(w) = w, \quad \kappa(\omega) = -\omega. \quad (1.5.3)$$

Finally, there is the geometric Fourier-Deligne transform FD ([10], 2.1; [6]) which induces a bijection between irreducible $G(\chi)$-equivariant local systems supported on orbits in $\text{Orb}_2(\chi)$ and irreducible $G(\chi)$-equivariant local systems supported on orbits in $\text{Orb}_{-2}(\chi)$. The connection between these maps is given by $[6]$.

Theorem 4. In $\text{mod}_\chi(\mathbb{H})$, the Fourier-Deligne transform and the (modified) involution IM induce the same bijection on irreducible modules:

$$\kappa \circ IM = FD.$$

(1.5.4)
The goal is to compute the matrix of multiplicities of theorem 3 for \(mod_\chi(H) \). We will restrict ourselves (as we may by the theorems exposit ed in section 1.2) to the case when \(\chi \in h \) is hyperbolic ("real"). We follow the algorithms presented in [9, 10]. In sections 2 and 3 we review in a combinatorial way these algorithms. We should mention that there is no resemblance between this “p-adic” algorithm, and the classical algorithms for computing Kazhdan-Lusztig polynomials for complex or real groups. One of the very particular features of this algorithm, at the same time its main difficulty, is the use of the Fourier-Deligne transform. As a byproduct of the calculations (and by theorem 4), one obtains a (difficult) procedure for computing the Iwahori-Matsumoto involution on the \(G \)-modules in \(Irr C(I, 1) \). An explicit, “closed formula”, description of the action of \(IM \) on \(Irr C(I, 1) \) is only known for \(GL(n) \), by [17, 13].

A second feature of the algorithm is that in order to carry out the calculation for \(G \), one needs to have done this first for all Levi subgroups of \(G \).

Let \(\upsilon \) denote an indeterminate, which in the end will be specialized to \(\upsilon = 1 \). We will only consider real central characters, i.e. \(W \)-conjugacy classes of hyperbolic semisimple elements in \(h \). The output of the algorithm is a square matrix of size \(#Irr mod_\chi(H) \) with (polynomial) entries in \(\mathbb{Z}[\upsilon] \). If \(c_{\xi, \xi'}(\upsilon) \) is such an entry, then the relation with the (Kazhdan-Lusztig) polynomial \(P_{\xi, \xi'}(q) \) from theorem 3 is

\[
\varepsilon \cdot c_{\xi, \xi'}(\upsilon) = \upsilon^{\dim O' - \dim O} \cdot P_{\xi, \xi'}\left(\frac{1}{\upsilon^2} \right),
\]

where \(\varepsilon \in \{+1, -1\} \) is a sign depending only on \(\xi' \).

In other words, the polynomials \(c_{\xi, \xi'} \) computed by the algorithm are, up to sign, those which give conjecturally the degrees in the Jantzen filtration.

In section 4 we give some simple examples of how the algorithm is applied. The regular case, when \(\chi = 2\rho \), so that the trivial module is in \(mod_\chi(H) \), is geometrically trivial. We present it just as an illustration of the combinatorics of sections 2 and 3. For the same reason, we also present a well-known example from \(GL(4) \) ([15, 17]). In \(GL(n) \), [15] relates the polynomials \(P_{\xi, \xi'}(q) \) with Kazhdan-Lusztig polynomials in category \(O \), giving therefore a different, indirect, way to determine them. Finally, we present the cases in \(g = sp(6) \) and \(g = G_2 \) where there are cuspidal (in the sense of Lusztig) local systems.

In section 5 we calculate the polynomials when \(g = F_4 \), for all \(\chi \) which are middle elements of nilpotent orbits. By the geometric classification, they are precisely the (hyperbolic) central characters which afford tempered modules. These are the difficult cases of the algorithm. The most interesting case is when \(\chi \) is the middle element of the unique nilpotent orbit in \(F_4 \) which has a cuspidal local system. This is presented in more detail in section 5.1.

For parts of these calculations (most notably, Weyl group conjugations in \(F_4 \), and checking if certain vectors are in the radical of the bilinear form defined in 2.5), I used a computer and a computer algebra system. In all the examples, the notation for nilpotent orbits is as in [2].
Acknowledgments. I thank G. Lusztig for illuminating discussions about his preprint [10], and also P. Trapa for his generous help with Kazhdan-Lusztig theory in the real and complex groups setting.

2 Ingredients

We recall the algorithm in [9] [10] in a combinatorial language. The intention is to express all the elements of the algorithm purely in terms of the Weyl group and the roots in Δ. To this end, we will record two equivalent descriptions for the same object: the first labeled (∗) as in [10], and the second, equivalent, but more combinatorial, labeled (**) (which often appears in [9] as well).

Throughout sections 2 and 3, we fix a semisimple element $\chi \in \mathfrak{h}$ such that χ is the middle element of a Lie triple in \mathfrak{g}. We assume that χ is dominant with respect to Δ^+:

$$\langle \alpha, \chi \rangle \geq 0, \text{ for all } \alpha \in \Delta^+, \quad (2.0.2)$$

so that, in particular, $w_0\chi = -\chi$, where w_0 is the longest Weyl group element.

2.1

The assumption on χ is that there exists a Lie algebra homomorphism

$$\phi : sl(2, \mathbb{C}) \to \mathfrak{g}, \quad \phi\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right) = \chi. \quad (2.1.1)$$

By the representation theory of $sl(2, \mathbb{C})$, this implies that the element χ induces a grading on the Lie algebra \mathfrak{g}, by its ad-action:

$$\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}_n, \quad \mathfrak{g}_n = \{ x \in \mathfrak{g} : [\chi, x] = nx \}. \quad (2.1.2)$$

For any subalgebra \mathfrak{p} of \mathfrak{g}, we will denote similarly $\mathfrak{p}_n = \mathfrak{g}_n \cap \mathfrak{p}$. We also define

$$r_n(R) = \{ \alpha \in R : \langle \alpha, \chi \rangle = n \}, \text{ for any subset of roots } R \subset \Delta, \text{ and }\quad \quad \quad (2.1.3)$$

$$r_n(w) = r_n(\Delta) \cap (w^{-1} \cdot \Delta^+), \text{ for any element } w \in W.$$

Some immediate properties that we will need later are:

Lemma 1. For all $w \in W, n \in \mathbb{Z}$:

(a) $r_n(w) = r_{-n}(w_0w)$;

(b) $r_n(w) \cap r_n(w_0w) = \emptyset$;

(c) $r_n(w) \cup r_n(w_0w) = r_n(\Delta)$.

Proof. Straightforward.

\qed
2.2

Define

\[G(\chi) = \{ g \in G : Ad(g)\chi = \chi \}, \quad (2.2.1) \]
\[W(\chi) = \{ w \in W : w\chi = \chi \}, \]
\[B(\chi) = G(\chi)\text{-orbits in } \{ b' : \text{b' Borel subalgebra with } \chi \in b' \}. \]

The space in which the constructions will take place is \(K(\chi) \), defined as

\[(\ast) : K(\chi) = \mathbb{Q}(v)\text{-vector space with basis } B(\chi), \quad (2.2.2) \]
\[(\ast\ast) : K(\chi) = \mathbb{Q}(v)\text{-vector space with basis } W/W(\chi). \]

The space \(K(\chi) \) has two involutions that we consider. The first is

\[\beta : K(\chi) \to K(\chi), \text{ determined by } \beta(v) = v^{-1}, \text{ and the identity on the } \mathbb{Q}(v)\text{-basis.} \quad (2.2.3) \]

The second involution \(\sigma \) associates to each Borel subalgebra, the opposite Borel subalgebra, and it is the identity on \(\mathbb{Q}(v) \). On \(W(\chi)\text{-cosets}, \) this is determined by

\[(\ast\ast) : \sigma(w) = w_0 \cdot w \text{ and } \sigma(v) = v. \quad (2.2.4) \]

2.3

Consider the variety

\[S_\chi = \{(b', b'') : \chi \in b' \cap b''\}, \quad (2.3.1) \]

with the natural diagonal action of \(G(\chi) \). One defines the space \((B \times B)(\chi) \):

\[(\ast) : (B \times B)(\chi) = G(\chi)\text{-orbits on } S_\chi, \text{ which can naturally be identified with } (2.3.2) \]
\[(\ast\ast) : (B \times B)(\chi) = (W \times W)/W(\chi) \text{ (where } W(\chi) \text{ is regarded as the diagonal subgroup)}. \]

This space is equipped with a function

\[\tau : (B \times B)(\chi) \to \mathbb{Z} \quad (2.3.3) \]

as follows. For a Borel subalgebra \(b' \), let \(u' \) denote the unipotent radical. Then

\[(\ast) : \tau((b', b'')) = -\dim \frac{u'_0 + u''_0}{u'_0 \cap u''_0} + \dim \frac{u'_0 + u''_0}{u'_0 \cap u''_0}, \text{ or, equivalently,} \]
\[(\ast\ast) : \tau((w_1, w_2)) = \#(r_2(w_1) \lor r_2(w_2)) - \#(r_0(w_1) \lor r_0(w_2)), \quad (2.3.4) \]

where \(\lor \) denotes the symmetric difference set operator. It is proved in [10] that \(\tau \) is the same if one replaces 2 in the formulas above by \(-2\).
2.4

Set

\[c = \#r_2(\Delta) - \#r_0(\Delta), \quad (2.4.1) \]

where \(r_n \) is defined in (2.1.3).

Lemma 2. (a) The map \(\tau \) in definition \((**) \) of (2.3.4) is well-defined, i.e.

\[\tau((w_1w, w_2w)) = \tau((w_1, w_2)), \quad \text{for any } w \in W(\chi). \]

(b) Since \(w_0\chi = -\chi \), \[\tau((w_1, w_2)) = \tau((w_1w_0, w_2w_0)), \quad \text{for every } (w_1, w_2) \in W \times W. \]

(c) For any \(w_1, w_2 \in W \),

\[\tau((w_1, w_2)) + \tau((\sigma(w_1), w_2)) = c. \]

(2.5.1)

\(\text{(So this sum is independent of } w_1, w_2). \)

Proof. Part (a) is immediate. For part (b), one uses lemma 1.(a) and the observation after the equation (2.3.4). Part (c) follows from lemma 1, parts (b) and (c).

2.5

Let

\[pr_j : (B \times B)(\chi) \to B(\chi), \quad j = 1, 2 \quad (2.5.1) \]

denote the projection onto the \(j \)-th coordinate. One defines a symmetric bilinear form on \(K(\chi) \)

\[(:) : K(\chi) \times K(\chi) \to \mathbb{Q}(v) \]

by

\[(*) : e_\chi^{-1} \cdot ([b'] : [b'']) = \sum_{\Omega \in (B \times B)(\chi)} (-v)^{\tau(\Omega)}, \quad (2.5.2) \]

\[(**) : e_\chi^{-1} \cdot ([w_1] : [w_2]) = \sum_{([w_1'], [w_2']) \in pr_1^{-1}([w_1]) \cap pr_2^{-1}([w_2])} (-v)^{\tau([w_1', w_2'])} \quad (2.5.3) \]

\[= \sum_{w \in [w_1]} (-v)^{\tau((w, w_2))} = \sum_{w \in [w_2]} (-v)^{\tau((w_1, w))}. \]

In these formulas, \([\bullet]\) denotes the class of an element \(\bullet \) in \(B(\chi) \), and similarly in \((B \times B)(\chi)\).

The factor \(e_\chi \in \mathbb{Q}(v) \) is a normalization factor, and it depends only on \(\chi \). The choice that we will use is \(e_\chi = (1 - v^2)^{-rk_0} \) (9), so that we have the identity

\[\beta((\beta(\xi), \beta(\xi')) = (-1)^{rk_0}(-v)^{2rk_0-c}(\sigma(\xi) : \xi'), \quad \text{for all } \xi, \xi' \in K(\chi). \quad (2.5.4) \]
In general, the bilinear form (\cdot, \cdot) is degenerate. Let Rad denote its radical. From equation (2.5.4), we see that

$$\beta(\text{Rad}) = \text{Rad}. \quad (2.5.5)$$

Proposition 1 ([10]). The dimension of $\mathcal{K}(\chi)/\text{Rad}$ equals $\#\text{Irr mod}_\chi(\mathbb{H})$, the number of inequivalent, irreducible representations with central character χ.

2.6 Examples

To illustrate the definitions so far, we give some examples. In the following tables, for simplicity, we will take the normalization factor $e_\chi = 1$.

2.6.1 A_2

The simple roots are $\{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3\}$, and let the simple reflections be denoted by s_1 and s_2. Then $W = \{1, s_1, s_2, s_1s_2, s_2s_1, s_1s_2s_1\}$. We look at $\chi = 2\hat{\rho} = (2, 0, -2)$. The bilinear form is

$$
\begin{array}{cccccc}
1 & s_1s_2s_1 & s_1s_2 & s_2s_1 & s_1 & s_2 \\
1 & 1 & v^2 & -v & -v & -v \\
s_1s_2s_1 & v^2 & 1 & -v & -v & -v \\
s_1s_2 & -v & -v & 1 & v^2 & v^2 \\
s_2s_1 & -v & -v & v^2 & 1 & 1 & v^2 \\
s_1 & -v & -v & v^2 & 1 & 1 & v^2 \\
s_2 & -v & -v & 1 & v^2 & v^2 & 1 \\
\end{array}
$$

In this case, $\dim(\text{Rad}) = 2$, and a basis is given by $\{s_1 - s_2s_1, s_2 - s_1s_2\}$. This is a particular case of section 4.1.

2.6.2 C_2, $\chi = (1, 1)$.

The simple roots are $\{\epsilon_1 - \epsilon_2, 2\epsilon_2\}$. We look at $\chi = (1, 1)$, the middle nilpotent element of the nilpotent orbit (22) in $\mathfrak{sp}(4, \mathbb{C})$. Then $W(\chi) = \{1, s_1\}$, and $W/W(\chi) = \{[1], [s_2], [s_1s_2], [s_2s_1s_2]\}$. The bilinear form is

$$
\begin{array}{cccccc}
1 & [s_2] & [s_1s_2] & [s_2s_1s_2] \\
1 + v^2 & -v^{-1} - v & 1 + v^2 & -v - v^3 \\
-v^{-1} - v & 2 & -2v & 1 + v^2 \\
1 + v^2 & -2v & 2 & -v^{-1} - v \\
-v - v^3 & 1 + v^2 & -v^{-1} - v & 1 + v^2 \\
\end{array}
$$

In this example, the form is nondegenerate.
2.7

We have defined the space $K(\chi)$ equipped with a degenerate bilinear form. The final basic ingredient of the algorithm is an induction map. Let p be a parabolic subalgebra of g, such that $\chi \in p$. The parabolic p is not necessarily standard with respect to the fixed Borel b (i.e. the choice of positive roots Δ^+). Let l denote the Levi component of p, and let u_p be the nilradical.

One can define $K_l(\chi)$, $W_l(\chi)$ etc. similarly to the definitions for g in the previous sections. Let $\proj : p \to l$ denote the projection onto the Levi factor.

The induction map is defined as

\[(*) : \text{ind}_p : B_l(\chi) \to B(\chi), \quad \text{ind}_p(b') = \proj^{-1}(b'). \tag{2.7.1}\]

One can define the same map in terms of the Weyl group. The roots in u_p are a subset of Δ, but not necessarily of Δ^+. Let w_p be a Weyl group of minimal length such that $w_p(\Delta(u_p)) \subset \Delta^+$. Then

\[(**) : \text{ind}_p : B_l(\chi) \to B(\chi), \quad \text{ind}_p([w]) = [w \cdot w_p^{-1}]. \tag{2.7.2}\]

3 Bases

The goal is to construct two pairs of bases $(\mathcal{Z}_+, \mathcal{U}_+)$ and $(\mathcal{Z}_-, \mathcal{U}_-)$ for $K(\chi)/\text{Rad}$. The definition is inductive. The construction of the bases $\mathcal{Z}_+, \mathcal{U}_+$, respectively $\mathcal{Z}_-, \mathcal{U}_-$ is done in parallel in the space $K(\chi)$, so we will use the subscript \pm for simplicity when there is no risk of confusion.

In the end, the change of bases matrix for the pair $(\mathcal{Z}_+, \mathcal{U}_+)$ (equivalently for $(\mathcal{Z}_-, \mathcal{U}_-)$) is the desired multiplicity matrix.

3.1

The standard modules with central character χ (and so the sets \mathcal{Z}_\pm and \mathcal{U}_\pm) are parameterized, as in theorem 2, by $\text{Orb}_{\pm2}(\chi)$, the $G(\chi)$-orbits on $g_{\pm2}$ and local systems. [9] gives a parameterization of the orbits in terms of certain parabolic subalgebras of g. We recall next the parameterization of orbits in g_2. (The case of g_{-2} is absolutely analogous.) Let e be a (nilpotent) representative of an orbit $O = O_e$ of $G(\chi)$ in g_2.

By the graded version of the Jacobson-Morozov triple ([9]), $e \in g_2$ can be embedded into a Lie triple $\{e, h, f\}$, such that $h \in h \subset g_0$, and $f \in g_{-2}$. From the pair of semisimple elements χ and h, one can define two associated parabolic subalgebras p_\pm as in [9].

Define a gradation of g with respect to h as well,

\[g^r = \{y \in g : [h, y] = ry\}, \quad r \in \mathbb{Z}, \tag{3.1.1}\]

and set

\[g^r_t = g_t \cap g^r. \tag{3.1.2}\]
Then
\[g = \bigoplus_{t,r \in \mathbb{Z}} g_{t,r}^e. \]
(3.1.3)

Set
\[l = \bigoplus_{t=r} g_{t,r}^e, \quad u_- = \bigoplus_{t < r} g_{t,r}^e, \quad u_+ = \bigoplus_{t > r} g_{t,r}^e, \]
(3.1.4)
\[p_+ = l \oplus u_+, \quad p_- = l \oplus u_. \]

Since we want to emphasize the nilpotent element \(e \), we will write in this section \(p^e = p_+ \) and similarly \(l^e, u^e \). Clearly, \(\mathfrak{h} \subset \mathfrak{g}_0^0 \subset l^e \).

Definition 1. One says that \(\chi \) is rigid for a Levi subalgebra \(l \), if \(\chi \) is congruent modulo the center \(Z(l) \) to a middle element of a nilpotent orbit in \(l \).

We record the important properties of \(p^e \). The centralizer of an element \(t \) in a group \(Q \) will be denoted below by \(Z_Q(t) \), and its group of components by \(A_Q(t) \).

Proposition 2 ([9]). Consider the subalgebra \(p^e \) defined by (3.1.4), and let \(P^e \) be the corresponding parabolic subgroup.

1. \(p^e \) depends only on \(e \) and not on the entire Lie triple \(\{ e, h, f \} \).

2. \(\chi \) is rigid for \(l^e \).

3. \(e \) is an element of the open \(L^e(\chi) \)-orbit in \(l_2^e \).

4. The \(P(\chi)^e \)-orbit of \(e \) in \(p_2^e \) is open, dense in \(p^e \).

5. \(Z_{G(\chi)}(e) \subset P^e \).

6. The inclusion \(Z_{L^e(\chi)}(e) \subset Z_{G(\chi)}(e) \) induces an isomorphism of the component groups
\[A_{L^e(\chi)}(e) \cong A_{G(\chi)}(e). \]
(3.1.5)

Remark. Note that, since \(\chi \) is rigid in \(l^e \), the component group \(A_{L^e(\chi)}(e) \) is the component group corresponding to a nilpotent orbit in \(l^e \), and these are all well-known (see [2]). In conclusion, part (6) of proposition 2 gives an effective way to compute the component groups for the orbits in \(Orb_2(\chi) \).

In addition, an immediate corollary of (4) and (5) in proposition 2 is a dimension formula for the orbits in \(Orb_2(\chi) \).

Corollary 2 ([10]). For an orbit \(O_e \in Orb_2(\chi) \),
\[\dim O_e = \dim p^e_2 - \dim p^e_0 + \dim \mathfrak{g}_0, \]
(3.1.6)
where \(p^e_i = p^e \cap \mathfrak{g}_i, i = 0, 2 \).
Definition 2. A parabolic subgroup P with Lie algebra p is called good for χ if $p = p_e$ for some nilpotent $e \in g_2$ (notation as in 3.1.4), and such that it satisfies (2) in proposition 2.

Let $\mathcal{P}(\chi)$ denote the set of good parabolic subgroups for χ. The parameterization of $Orb_2(\chi)$ is as follows.

Theorem 5 ([9]). The map $O_e \mapsto P_e$ defined above induces a bijection between $Orb_2(\chi)$ and $G(\chi)$-conjugacy classes in $\mathcal{P}(\chi)$.

3.2

Perhaps, it is better to think that $Orb_{\pm 2}(\chi)$ are parameterized by a set of pairs (p, h), where h is a middle element of a nilpotent orbit in l, and p is a good parabolic. Let us call $E(\chi)$ this parameter set.

In general, for computations, we will apply the following (equivalent, but inelegant) procedure to determine $E(\chi)$. Let l be a standard Levi subalgebra (corresponding to a subset of the simple roots Π), and let h be a middle element of a Lie triple $\{e, h, f\}$ for l, assumed dominant for $\Delta^+(l)$. For a given g, there are finitely many pairs (l, h) like this. Let $z(e, h, f)$ denote the centralizer of $\{e, h, f\}$ in g. If

$$(**) : \text{there exists } w \in W \text{ such that } w(h + \nu_0) = \chi \text{ for some } \nu_0 \in z(e, h, f) \cap h,$$

then we set

$$s = w \cdot h,$$

and we define the two parabolic subalgebras $p_{s,-}$ and $p_{s,+}$ associated to s, χ as in 3.1.4, with common Levi subalgebra $l_s = p_{s,+} \cap p_{s,-}$. The pair $(p_{s,+}, s)$ parameterizes an orbit in $Orb_2(\chi)$, and similarly $(p_{s,-}, s)$ parameterizes an orbit in $Orb_{-2}(\chi)$. This is how all the orbits are indexed, in other words, our sets $E(\chi)$ are formed of such pairs $(s, p_{s,\pm})$. Note, that by corollary 3.1, one can compute the dimension of the associated orbit at once.

3.3

We retain the notation from the previous subsections.

Consider $\mathcal{O} \in Orb_{\pm 2}(\chi)$, and let $l_s, p_{s,+}, p_{s,-}$ be the corresponding subalgebras defined in section 3.2. The bases Z_{\pm} and U_{\pm} are partitioned as:

$$Z_{\pm} = \bigsqcup_{(s, p_{s,\pm}) \in E(\chi)} Z_{\pm}(\mathcal{O}), \quad U_{\pm} = \bigsqcup_{(s, p_{s,\pm}) \in E(\chi)} U_{\pm}(\mathcal{O}).$$

(3.3.1)

If $l_s = g$, then $\mathcal{O} = O_m$ is necessarily the unique maximal nilpotent orbit in $Orb_{\pm 2}(\chi)$.

Assume that $\mathcal{O} \neq O_m$. Then l_s is a proper Levi subalgebra of g. By construction, there exists a Lie triple (e', s, f') of \mathcal{O}, such that $(e', s, f') \subset l_s$. Let O_{l_s} denote the nilpotent orbit of e' in l_s. By induction, we can assume that the bases $Z_{\pm}(O_{l_s})$ corresponding to central character s are constructed for l_s.

12
Then
\[Z_+ (O) = \text{ind}_{\chi}^\mathbb{G} (Z_+^1 (O_m)), \quad Z_- (O) = \text{ind}_{\chi}^\mathbb{G} (Z_-^1 (O_m)). \quad (3.3.2) \]

We recall that the elements in each set \(Z_\pm (O) \) are parameterized by certain local systems, or equivalently certain representations of the group of components \(\hat{A}_G (\chi, e) \).

Proposition 3 ([10],2.17). If \(O \neq O' \), and if \((\xi, \xi') \in Z_+ (O) \times Z_+ (O') \) or \((\xi, \xi') \in Z_- (O) \times Z_- (O') \), then
\[(\xi : \xi') = 0. \quad (3.3.3) \]

3.4

Let us denote
\[Z'_\pm = Z_\pm \setminus Z_\pm (O_m), \quad U'_\pm = U_\pm \setminus U_\pm (O_m). \quad (3.4.1) \]

The multiplicity matrix computed by the algorithm is a matrix with coefficients in \(\mathbb{Z}[v] \),
\[N = \begin{pmatrix} \mathcal{N}_{1,1} & \mathcal{N}_{1,2} \\ \mathcal{N}_{2,1} & \mathcal{N}_{2,2} \end{pmatrix}, \quad (3.4.2) \]

where
1. \(\mathcal{N}_{1,1} \) is an upper unitriangular matrix of size \(\#Z'_+ \times \#Z'_+ \) which will be computed in equation (3.4.4),
2. \(\mathcal{N}_{1,2} \) is a matrix of size \(\#Z'_+ \times \#Z'_+ (O_m) \) computed in equation (3.4.5),
3. \(\mathcal{N}_{2,1} \) is the zero matrix of size \(\#Z'_+ (O_m) \times \#Z'_+ \),
4. \(\mathcal{N}_{2,2} \) is the identity matrix of size \(\#Z'_+ (O_m) \times \#Z'_+ (O_m) \).

The sets \(Z'_\pm \) were constructed by induction in section 3.3. One sets a partial ordering \(\leq \) on \(Z'_\pm \) given by the dimensions of the corresponding orbits. In this order, the unique element in \(Z_\pm (0) \) is the minimal element.

Now we explain the construction of \(U'_\pm \). Define the matrices
\[\mathcal{M}_\pm = ((\xi : \xi'))_{\xi, \xi' \in Z'_\pm}. \quad (3.4.3) \]

By proposition3 these matrices are block-diagonal, with blocks of sizes \(\#Z'_\pm (O) \).

Lemma 3 ([10],1.11,3.7). The matrices \(\mathcal{M}_\pm \) are invertible.
For every $\xi \in \mathbb{Z}_+^\pm$, we find the vector

$$V_\xi = (a_{\xi,\xi'})_{\xi' \in \mathbb{Z}_+^\pm} = M_+^{-1} \cdot ((\beta(\xi),\xi'))_{\xi' \in \mathbb{Z}_+^\pm}. \quad (3.4.4)$$

By Lemma 1.13 in [10], $a'_{\xi,\xi} = 1$, and $a'_{\xi,\xi'} = 0$ unless $\xi' \leq \xi$. Moreover, from [10], 1.14,

$$\beta(V_\xi^T) \cdot V_\xi' = \begin{cases} 1, & \text{if } \xi = \xi' \\ 0, & \text{if } \xi \neq \xi' \end{cases}, \quad (3.4.5)$$

where V^T denotes the transpose of V.

Proposition 4 ([10]). There exists a unique family $\{c_{\xi,\xi'} : \xi, \xi' \in \mathbb{Z}_+^\pm\}$ such that

(i) $c_{\xi,\xi} = 1$, $c_{\xi,\xi'} = 0$ if $\xi' \not\leq \xi$, and $c_{\xi,\xi'} \in \nu \mathbb{Z}[v]$ if $\xi' < \xi$;

(ii) $c_{\xi,\xi'} = \sum_{\xi'' \in \mathbb{Z}_+^\pm} \beta(c_{\xi,\xi''}) a'_{\xi'',\xi'}$.

Set

$$\mu_\xi = \sum_{\xi' \in \mathbb{Z}_+^\pm} c_{\xi,\xi'} \xi'. \quad (3.4.6)$$

Then $U_+ = \{\mu_\xi : \xi \in \mathbb{Z}_+^\pm\}$.

In other words, in the multiplicity matrix,

$$N_{1,1} = (c_{\xi,\xi'})_{\xi, \xi' \in \mathbb{Z}_+^\pm}. \quad (3.4.7)$$

3.5

It remains to explain the computation of the sets $\mathcal{Z}_+(\mathcal{O}_m)$ and $\mathcal{U}_+(\mathcal{O}_m)$. (The other pair is computed in the obvious analogue way.)

Since $\mathcal{K}(\chi)$ has a symmetric bilinear form, for every subspace $W \subset \mathcal{K}(\chi)$, we can define the orthogonal complement W^\perp. Clearly, $\text{Rad} \subset W^\perp$.

Let W_+ be the subspace spanned by \mathbb{Z}_+^\prime. In fact, \mathbb{Z}_+^\prime is a basis of W_+. Define the projections Y_+, respectively Y_+^\perp of $\mathcal{K}(\chi)$ onto W_+, respectively W_+^\perp.

Explicitly,

$$Y_+(x) = x - Y_+(x), \quad (3.5.1)$$

where

$$Y_+(x) = \sum_{\xi \in \mathbb{Z}_+^\prime} a_x, \xi_\xi \quad \text{and} \quad (a_x,\xi)_{\xi \in \mathbb{Z}_+^\prime} = M_+^{-1} \cdot ((x : \xi'))_{\xi' \in \mathbb{Z}_+^\prime}. \quad (3.5.2)$$

Proposition 5 ([10]). Let J_- be defined by

$$J_- = \{\xi_0 \in \mathbb{Z}_+^\prime : Y_+^\perp(\mu_{\xi_0}) \notin \text{Rad}\}. \quad (3.5.3)$$

The sets $\mathcal{Z}_+(\mathcal{O}_m)$ and $\mathcal{U}_+(\mathcal{O}_m)$ are then obtained as follows:

$$\mathcal{Z}_+(\mathcal{O}_m) = \{\xi = Y_+^\perp(\mu_{\xi_0}) : \xi_0 \in J_-\}, \quad \mathcal{U}_+(\mathcal{O}_m) = \{\mu_\xi = \mu_{\xi_0} : \xi_0 \in J_-\}. \quad (3.5.4)$$
This concludes the construction of the bases. To complete the matrix of multiplicities, one finds

\[N_{1,2} = \langle \xi, \xi' \rangle_{\xi \in \mathcal{O}_m, \xi' \in \mathbb{Z}_+^*} = \mathcal{M}_+^{-1} \cdot \langle (\mu \xi : \xi'' \rangle_{\xi \in \mathcal{O}_m, \xi'' \in \mathbb{Z}_+}. \quad (3.5.5) \]

Remarks.

(1) The transformation Y_+^\perp encodes the Fourier-Deligne transform FD (see [10]), and the essential fact in the construction of the proposition is that the FD dual of a local system on the open orbit in \mathfrak{g}_2 is a local system which does not live on the open orbit in \mathfrak{g}_{-2}. By theorem [1], the equivalent representation theoretic statement is that the Iwahori-Matsumoto dual of a tempered module is not tempered.

(2) Always, the basis element corresponding to the zero orbit in $\mathbb{Z}_-, \xi_{\text{triv}} \in \mathbb{Z}_-$, is in J_-. In fact, $\xi = Y_+^\perp(\xi_{\text{triv}}) \in \mathbb{Z}_+(\mathcal{O}_m)$ corresponds to the trivial local system on \mathcal{O}_m. The equivalent, representation theoretic statement is a combination of two facts: firstly, that the Iwahori-Matsumoto involution of the generic module is the spherical module, and secondly, that the generic module is parameterized by the trivial local system on \mathcal{O}_m ([1, 14]).

(3) To compute FD in general (not just for the elements supported on the open orbit), one can use the following procedure. Assume $\xi \in \mathbb{Z}_+$ corresponds to $(\mathcal{O}, \mathcal{L})$ and $\xi' \in \mathbb{Z}_-$ corresponds to $(\mathcal{O}', \mathcal{L}')$. Then $FD(\mathcal{L}) = \mathcal{L}'$ if and only if $\mu \xi \in \mathcal{U}_+$ is the (unique) element of \mathcal{U}_+ such that

\[\{Y^+(\mu \xi)\} \cup \{\mathcal{U}_+ \setminus \{\mu \xi\}\} \]

is a linear independent set (actually a basis) of $\mathcal{K}(\chi)/Rad$.

4 Examples: the regular case, $gl(4)$, $sp(4)$, $sp(6)$, and G_2

In the explicit examples in $gl(4)$, $sp(4)$, $sp(6)$, G_2, the symbol used to denote the $G(\chi)$-orbits on \mathfrak{g}_2 and the local systems encodes the dimension of the orbit. When there are more orbits with the same dimension, we add a subscript a, b, \ldots. If the component group is not trivial, then in these examples it is always $\mathbb{Z}/2\mathbb{Z}$, and we add a subscript t or s corresponding to the trivial, respectively the sign representations.

4.1 Regular central character

Recall that $\Pi \subset \Delta^+$ denotes the set of simple roots, and fix root vectors X_α. When $\chi = 2\hat{\rho}$, the orbits and Kazhdan-Lusztig polynomials have an especially simple form:

\[\mathfrak{g}_2(\chi) = \bigoplus_{\alpha \in \Pi} \mathbb{C} \cdot X_\alpha, \quad (4.1.1) \]

\[G(\chi) = \text{the Cartan subgroup } H. \]
There is a one-to-one correspondence

\[\text{Orb}_2(\chi) \leftrightarrow 2^\Pi, \quad (4.1.2) \]

where to every \(\Pi_M \subset \Pi \) we associate the orbit \(\mathcal{O}_M = \sum_{\alpha \in \Pi_M} \mathbb{C}^* \cdot X_\alpha \). All the orbits have smooth closures, and only trivial local systems appear, and therefore, all Kazhdan-Lusztig polynomials are either 0 or 1, depending on the closure ordering. The closure ordering is given by the inclusion of subsets of \(\Pi \).

We include however the combinatorial calculation using the algorithm explained in section 2 and 3 just for the purpose to illustrate the elements of this algorithm.

If \(\chi = 2 \rho \), then \(r_2(\chi, \Delta) = \Pi \) and \(r_0(\chi, \Delta) = \emptyset \).

Let \(\Pi_M \) be a subset of \(\Pi \), and \(w_0(M) \) be the longest Weyl element in \(W(M) \).

Lemma 4.

1. If \(\Pi_M \subset \Pi \), then \(r_2(\chi, w_0(M)) = \Pi \setminus \Pi_M \).
2. For any \(\Pi_{M_1}, \Pi_{M_2} \subset \Pi \),

\[\tau(w_0(M_1) : w_0(M_2)) = |\Pi_{M_1} \setminus \Pi_{M_2}|. \]

In particular, \(\tau(w_0(M), 1) = |\Pi_M| \) and \(\tau(w_0(M), w_0) = |\Pi| - |\Pi_M| \).

Proof. It follows immediately from the fact that \(r_2(\chi, w_0(M)) = \{ \alpha \in \Pi : w_0(M)\alpha \in \Delta^+ \} = \Pi \setminus \Pi_M \).

Since \(W(\chi) = \{1\} \), the bilinear form in this case is \((w_1 : w_2) = (-v)^\tau(w_1, w_2) \), for every \(w_1, w_2 \in W \). The radical can also be easily described. For every \(\Pi_M \subset \Pi \), define

\[S_M = \{ w \in W : w\alpha \notin \Delta^+, \forall \alpha \in \Pi_M \text{ and } w\beta \in \Delta^+, \forall \beta \in \Pi \setminus \Pi_M \}. \quad (4.1.3) \]

Note that \(w_0(M) \in S_M \). Then it follows immediately that a basis for \(\text{Rad} \) is

\[\bigcup_{\Pi_M \subset \Pi} \{ w_0(M) - w' : w' \in S_M, w' \neq w_0(M) \}. \quad (4.1.4) \]

(Note that \(\dim K(\chi) = |W| \), while \(\dim K(\chi)/\text{Rad} = 2^{|\Pi|} \).)

Definition 3. For every subset \(\Pi_{M'} \subset \Pi \), define \(\xi_{M'} = \sum_{\Pi_M \subset \Pi_{M'}} v^{||\Pi_{M'}|-|\Pi_M||} w_0(M) \).

Proposition 6. If \(\Pi_{M'} \subset \Pi \), we have the following identities:

1. \((\xi_{M'}, \xi_{M'}) = \sum_{\Pi_M \subset \Pi_{M'}} (-v)^{||\Pi_{M'}|-|\Pi_M||} = \sum_{\Pi_M \subset \Pi_{M'}} (-v)^{||\Pi_{M}||} \).
2. \((w_0 : \xi_{M'}) = (-v)^{|\Pi| - |\Pi_{M'}|} : (\xi_{M'} : \xi_{M'}) \).
Proof. To prove (1), it suffices to prove the identity when \(M' = G \). We will show first that \((\xi_G : w_0(M_1)) = 0\), for all \(M_1 \subseteq \Pi \). We have \((\xi_G : w_0(M_1)) = \sum_{\Pi \subseteq \Pi} -v^{|\Pi|-|\Pi|} = (-1)^{|\Pi|} \sum_{\Pi \subseteq \Pi} x_{M,M_1}\), where we denoted \(x_{M,M_1} = (-1)^{|\Pi|} (v^2)^{|\Pi|} \).

Let \(\alpha \) be a root such that \(\alpha \in \Pi \setminus M_1 \). Then, for every \(\Pi_1 \subseteq \Pi \setminus \{ \alpha \} \), \(x_{M,\Pi_1} = -x_{M \cup \{ \alpha \}, M_1} \). The last sum can be written as \(\sum_{\Pi_1 \subseteq \Pi \setminus \{ \alpha \}} x_{M,\Pi_1} = \sum_{\Pi_1 \subseteq \Pi \setminus \{ \alpha \}} \sum_{\Pi_2 \subseteq \Pi_1} x_{M,\Pi_2} = 0 \).

This implies that \((\xi_G : w_0) = \sum_{\Pi_1 \subseteq \Pi \setminus \{ \alpha \}} x_{M,\Pi_1} = \sum_{\Pi_1 \subseteq \Pi \setminus \{ \alpha \}} \sum_{\Pi_2 \subseteq \Pi_1} x_{M,\Pi_2} = 0 \).

Formula (2) follows immediately from (1):
\[
(w_0 : \xi_{M'}) = \sum_{\Pi_M \subseteq \Pi'} -v^{|\Pi_M|-|\Pi_M|} = (-1)^{|\Pi|} \sum_{\Pi_M \subseteq \Pi'} (\xi_{M'} : \xi_M).
\]

The basis elements in \(\mathcal{Z}_+ \), respectively \(\mathcal{U}_+ \) are obtained from those of \(\mathcal{Z}_- \), respectively \(\mathcal{U}_- \) by multiplication by \(w_0 \) on the right. From proposition \(\Box \) and in view of the algorithm, we can determine the basis elements of \(\mathcal{Z}_- \) and \(\mathcal{Z}_+ \).

Corollary 3. The bases are \(\mathcal{Z}_- = \{ \xi_{M'} : \Pi' \subseteq \Pi \} \) and \(\mathcal{U}_- = \{ w_0(M') : \Pi' \subseteq \Pi \} \). Moreover, after the sign normalization, the polynomials are

\[
c_{M_1,M_2} = \begin{cases} 1, & \text{if } \Pi_{M_1} \subseteq \Pi_{M_2}, \\ 0, & \text{if } \Pi_{M_1} \nsubseteq \Pi_{M_2}. \end{cases}
\] (4.1.5)

Proof. It remains to verify that \(\xi_G = w_0 - \sum_{\Pi_M \subseteq \Pi} -v^{|\Pi|-|\Pi|} \xi_M \). The right hand side equals \(\text{RHS} = w_0 - \sum_{\Pi_M \subseteq \Pi} \sum_{\Pi' \subseteq \Pi} (-1)^{|\Pi|-|\Pi|} w_0(M) \).

We rewrite it as \(\text{RHS} = w_0 - \sum_{\Pi_M \subseteq \Pi} v^{|\Pi|-|\Pi|} \left(-1 + \sum_{\Pi_M \supseteq \Pi_M} (-1)^{|\Pi|-|\Pi_M|} \right) \).

Finally, \(\sum_{\Pi_M \supseteq \Pi_M} (-1)^{|\Pi|-|\Pi_M|} = \sum_{S \subseteq \Pi \setminus \Pi_M} (-1)^{|S|} = 0 \).

\[\Box\]

In terms of Kazhdan-Lusztig polynomials, this result is formulated as follows:

\[
P_{M_1,M_2}(q) = \begin{cases} 0, & \text{if } \Pi_{M_1} \nsubseteq \Pi_{M_2}, \\ 1, & \text{if } \Pi_{M_1} \subseteq \Pi_{M_2}. \end{cases}
\] (4.1.6)
4.2 Zelevinsky’s example in $gl(4)$

This is one of the first examples of nontrivial Kazhdan-Lusztig polynomials (see 11.4 in [17]). Consider $\chi = (2, 0, 0, -2)$ in $gl(4)$ for simple roots $\Pi = \{\epsilon_1 - \epsilon_2, \epsilon_2 - \epsilon_3, \epsilon_3 - \epsilon_4\}$. All local systems are trivial. The list of orbits is:

Dimension	x	G-saturation	Z_-	U_-
0	$(0, 0, 0, 0)$	(1)	$1 + v^2$	$1 + v^2$
	$(1, -1, 0, 0)$	(211)	$[x_1] + v[1]$	$[x_1] + v[1]$
2	$(0, 0, 1, -1)$	(211)	$[x_3] + v[1]$	$[x_3] + v[1]$
3	$(1, -1, 1, -1)$	(22)	$[x_1 x_3] + v[x_1] + v[x_3] + v^2[1]$	$[x_1 x_3] + v[x_1] + v[x_3] + v^2[1]$
4	$(2, 0, 0, -2)$	(31)	$v_0 + v^2 - v^3 + v^4$	$v_0 + v^2 - v^3 + v^4$

The change of basis matrix from Z_- to U_- is:

$$
\begin{pmatrix}
1 & -v^2 & -v^2 & v + v^3 & v^4 \\
0 & 1 & 0 & -v & -v^2 \\
0 & 0 & 1 & -v & -v^2 \\
0 & 0 & 0 & 1 & v \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

and the matrix of Kazhdan-Lusztig polynomials is:

$$
\begin{pmatrix}
0 & 2_a & 2_b & 3 & 4 \\
2_a & 0 & 1 & 1 & 1 + q \\
2_b & 0 & 1 & 0 & 1 \\
3 & 0 & 0 & 1 & 1 \\
4 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

The action of the involution IM is:

$$IM(5) = 0, \ IM(3) = 3, \ IM(2_a) = 2_b.$$

(4.2.1)

4.3 $\chi = (1, 1)$ in $sp(4)$

Consider $\chi = (1, 1)$, the middle element of the nilpotent orbit (22) in $sp(4)$. There are 3 orbits in $Orb_2(\chi)$, the open orbit with two local systems. The first one listed below is the trivial. Each Weyl group coset $W/W(\chi)$ is given by the action of a representative element on χ.

Dimension	x	G-saturation	Z_-	U_-
0	$(0, 0)$	$(1, 1)$	$[-1, -1] - v[1, -1] - v^2[1, 1]$	$[-1, -1] - v[1, -1] - v^2[1, 1]$
2	$(0, 1)$	$[-1, -1] + v[1, 1]$	$[-1, -1] + v[1, 1]$	
3	$(1, 1)$	$[-1, 1] - v[1, -1] - v^2[1, 1]$	$[-1, 1] - v[1, -1] - v^2[1, 1]$	

The change of basis matrix is:

$$
\begin{pmatrix}
1 & -v^2 & -v^3 & v \\
0 & 1 & -v & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

and the matrix of Kazhdan-Lusztig polynomials is:

$$
\begin{pmatrix}
0 & 2_a & 2_b & 3 & 4 \\
2_a & 0 & 1 & 1 & 1 + q \\
2_b & 0 & 1 & 0 & 1 \\
3 & 0 & 0 & 1 & 1 \\
4 & 0 & 0 & 0 & 1
\end{pmatrix}
$$

18
Kazhdan-Lusztig polynomials is

\[
\begin{pmatrix}
0 & 2 & 3_{triv} & 3_{sgn} \\
0 & 1 & 1 & q \\
2 & 0 & 1 & 0 \\
3_{triv} & 0 & 0 & 1 \\
3_{sgn} & 0 & 0 & 0
\end{pmatrix}
\]

The action of the involution IM is

\[IM(3) = 1, \ IM(4) = 2.\]
(4.3.1)

4.4 \(\chi = (3, 1, 1)\) in \(sp(6)\)

The central character is \(\chi = (3, 1, 1)\), the middle element of the triangular nilpotent \((4, 2)\) in \(sp(6)\). There are 10 orbits in \(Orb_2(\chi)\), two orbits (one of which is the open orbit) with two local systems. We list the parameterization of these orbits, the dimensions, the corresponding Levi subalgebras and the basis elements \(Z_-\) and \(U_-\). The bases \(Z_+\) and \(U_+\) are obtained by multiplication by \(w_0\).

We encode the cosets \(W/W(\chi)\) by the \(W\) action on \((3, 1, 1)\).

Orbit	\(\alpha\)	\(\beta\)	\(\delta\)	\(\gamma\)
0	(0, 0, 0)			
\(2_2\)	(1, -1, 0)	[3, 1, 1]		
\(2_2\)	(0, 0, 1)			
\(3_{triv}\)	(1, 1, 0)			
\(3_{triv}\)	(0, 1, 0)	[3, 1, 1]		
\(3_{triv}\)	(2, 0, 0)	[3, -1, 1]		
\(3_{triv}\)	(3, 0, 0)	[3, 1, 1]		
\(3_{triv}\)	(3, 1, 0)	[3, 1, 1]		
\(3_{triv}\)	(4, 0, 0)	[3, -1, 1]		
\(3_{triv}\)	(4, 1, 1)	[3, 1, 1]		

The change of basis matrix from \(Z_-\) to \(U_-\) is:
and the matrix of Kazhdan-Lusztig polynomials is

\[
\begin{pmatrix}
1 & -v^2 & -v^3 & (v + v^3) & -v^2 & (-v^2 + v^4) & -v^4 & -v^5 & v^3 & -v \\
0 & 1 & 0 & -v & 0 & 0 & v^2 & v^2 & v^3 & 0 \\
0 & 0 & 1 & -v & v & 0 & v^2 & v^2 & v^3 & 0 \\
0 & 0 & 0 & 1 & 0 & v & 0 & v^2 & 0 \\
0 & 0 & 0 & 0 & 1 & -v & 0 & 0 & v^2 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & v & -v \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

The action of the involution \(IM \) is:

\[
IM(1) = 9, \ IM(2) = 5, \ IM(3) = 10, \ IM(4) = 7, \ IM(6) = 8. \quad (4.4.1)
\]

4.5 \(G_2 \)

There are five nilpotent orbits. The regular orbit is a particular case of section 4.1 and we will also ignore the trivial orbit.

4.5.1 \(G_2(a_1) \)

The central character is \(\chi \), the middle element of the nilpotent \(G_2(a_1) \). There are 4 orbits of \(G(\chi) \) on \(g_2(\chi) \), and it turns out they are distinguished by their \(G \)-saturations. They are:

Dimension	\(G \)-saturation
0	0
2	\(A_1 \)
3	\(\tilde{A}_1 \)
4	\(G_2(a_1) \).

The closure ordering is \(0 - 2 - 3 - 4 \).

The stabilizer of a point in the dense orbit (4-dimensional) is \(S_3 \), but only 2 local systems appear for the equal parameter case (the extra local system is cuspidal).

The matrix of Kazhdan-Lusztig polynomials is:
In terms of the classical Langlands classification for the \(p \)-adic group \(G \) of type \(G_2 \) whose dual is \(G \), the rows correspond to the induced standard modules from: the Borel subgroup, the parabolic of type \(A_1 \) short, the parabolic of type \(A_1 \) long, and two discrete series (the first generic) respectively. We denote these induced modules by \(X(0) \) (this is the full unramified principal series), \(X(A^1_s) \), \(X(A^1_l) \), and \(DS(g) \), \(DS(ng) \) respectively. The columns correspond to the Langlands quotients: \(X(0) \), \(X(A^1_s) \), \(X(A^1_l) \), and \(DS(g) \), \(DS(ng) \) respectively. Therefore the character decompositions are:

\[
X(0) = X(0) + X(A^1_s) + 2 \cdot X(A^1_l) + DS(g) + DS(ng); \tag{4.5.1}
\]

\[
X(A^1_s) = X(A^1_s) + X(A^1_l) + DS(g); \tag{4.5.2}
\]

\[
X(A^1_l) = X(A^1_l) + DS(g) + DS(ng); \tag{4.5.3}
\]

\[
DS(g) = DS(g); \tag{4.5.4}
\]

\[
DS(ng) = DS(ng). \tag{4.5.5}
\]

Finally,

\[
IM(DS(g)) = X(0), \quad IM(DS(ng)) = X(A^1_s), \quad IM(X(A^1_l)) = X(A^1_l). \tag{4.5.6}
\]

4.5.2 \(A_1 \) or \(\tilde{A}_1 \)

If \(\chi \) is the middle element of the nilpotent \(A_1 \) or \(\tilde{A}_1 \), then \(Orb_2(\chi) \) has only two elements, the zero orbit and the dense orbit of dimension one, and the component groups are trivial. The matrix of Kazhdan-Lusztig polynomials is, in both cases,

\[
\begin{pmatrix}
0 & 1 \\
1 & 1 \\
1 & 0 \\
\end{pmatrix}
\]

5 Polynomials for \(F_4 \)

There are 16 nilpotent orbits in \(F_4 \). We compute the polynomials for the central characters \(\chi \) that are middle elements of nilpotent orbits. The most interesting example is when \(\chi \) is the middle element of the nilpotent \(F_4(a_3) \). This is the one with component group of \(S_4 \). We first present this example in detail and then record the other 15 cases.
We also give the Iwahori-Matsumoto dual of the tempered modules. When we write $IM(\xi) = \xi'$, we mean that the IM dual of the simple module parameterized by ξ is the simple module parameterized by ξ'.

The simple roots we use for F_4 are
\[
\begin{align*}
\alpha_1 &= (1, -1, -1, -1), \\
\alpha_2 &= (0, 0, 0, 2), \\
\alpha_3 &= (0, 0, 1, -1), \\
\alpha_4 &= (0, 1, -1, 0).
\end{align*}
\]
In these coordinates, the “most interesting” χ is $(3, 1, 1, 1)$.

The notation for orbits and local systems is as explained at the beginning of section 4. The only change is that for the open orbit at $\chi = (3, 1, 1, 1)$, the component group being S_4, we use a subscript denoting the partition of 4 which labels the corresponding irreducible representation of S_4.

5.1 $\chi = (3, 1, 1, 1)$ in F_4

This is the middle element of the nilpotent orbit $F_4(a_3)$. There are 12 orbits and a total of 20 local systems. (This was previously known by [5]). The component group of the stabilizer of a point in the open orbit is S_4, so there are irreducible 5 local systems, one of which is cuspidal in the sense of Lusztig. We will not consider it because it doesn’t parameterize $\text{mod}_4(\mathbb{H})$. Therefore, our matrix has 19 columns and rows (corresponding to 12 orbits), where the last 4 correspond to the open orbit.

The list of orbits follows. For each orbit, we give a label which encodes the dimension as well, the semisimple element s (from which the good parabolic is constructed), the G-saturation of the orbit, and the component group of the stabilizer in $G(\chi)$ of a point in the orbit.

Dimension	s	G-saturation	Components
0	$(0, 0, 0, 0)$	A_1	1
4	$(0, 0, 0, 1)$	\bar{A}_1	$\mathbb{Z}/2\mathbb{Z}$
6	$(0, 0, 1, 1)$	$A_1 + \bar{A}_1$	1
$7'$	$(1/2, -1/2, 1/2, 1/2)$	$A_1 + \bar{A}_1$	1
$7''$	$(0, 1, 1, 1)$	$A_1 + \bar{A}_1$	1
$8'$	$(1, -1, 1, 1)$	A_2	$\mathbb{Z}/2\mathbb{Z}$
$8''$	$(2, 0, 0, 2)$	A_2	1
9	$(1, 0, 1, 2)$	$\bar{A}_1 + A_2$	1
$10'$	$(2, 0, 1, 2)$	$A_1 + \bar{A}_2$	1
$10''$	$(2, 1, 1, 2)$	B_2	$\mathbb{Z}/2\mathbb{Z}$
11	$(\frac{3}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2})$	$C_3(a_1)$	$\mathbb{Z}/2\mathbb{Z}$
12	$(3, 1, 1, 1)$	$F_4(a_3)$	S_4

The Kazhdan-Lusztig polynomials are in the following matrix. There are 19 columns, each corresponding to one of the local systems in the table above. Due to the size of the matrix of polynomials, we break it into three parts. There is a subtle issue of identifying the three nontrivial local systems on the open orbit 12. Note in the matrix, that they are distinguished by their multiplicity in the first row. In representation theoretic language, this means that the three corresponding nongeneric discrete series are distinguished by their multiplicity.
in the spherical principal series. Then to complete the identification, we referred to [4].

The Iwahori-Matsumoto involution gives:

\[IM(12_{(4)}) = 0, \quad IM(12_{(31)}) = 4, \quad IM(12_{(22)}) = 6t, \quad IM(12_{(211)}) = 8_{b,s}. \]

\[(5.1.1)\]
From the list of polynomials, we find that the closure ordering in $Orb_2(\chi)$ is as in figure 5.1.

Figure 1: The closure ordering for $Orb_2(\chi)$ in F_4, where $\chi = (3, 1, 1, 1)$.

5.2 The other 15 cases

For each χ we give the list of orbits and local systems, and the matrix of polynomials.

5.2.1 $\chi = (11, 5, 3, 1), \mathcal{O} = F_4$

This is a particular case of the general case $\chi = 2\tilde{\rho}$ in section 4.

5.2.2 $\chi = (7, 3, 1, 1), \mathcal{O} = F_4(a_1)$
\[IM(6_z) = 0, \quad IM(6_s) = 2_z. \] (5.2.1)

Dimension	\(\alpha \)	\(\beta \)	Components
0	(0, 0, 0)	1	\(A_1 \) 1
1	(0, 0, 0)	1	\(A_1 \) 1
2 _a	(0, 0, 1)	1	\(A_1 \) 1
3 _b	(1, -1, -1)	1	\(A_2 \) 1
3 _c	(0, 1, -1)	1	\(A_1 + A_1 \) 1
3 _d	(0, 0, 1)	1	\(A_1 \) 1
4 _a	(0, 2, 0)	1	\(A_2 \) 1
4 _b	(0, 3, 0)	1	\(C_2 \) 1
4 _c	(1, 0, -2)	1	\(A_2 + A_1 \) 1
4 _d	(2, -2, 1)	1	\(B_2 \) 2/\(2\)
5 _a	(3, -3, 1)	1	\(B_3 \) 1
5 _b	(0, 3, 1)	1	\(C_3(1) \) 2/\(2\)
6 _c	\(\frac{1}{2} \) \(-\frac{1}{2} \) - \(\frac{7}{2} \)	1	\(E_4(s_1) \) 2/\(2\)

\[5.2.3 \quad \chi = (5, 3, 1, 1), \quad O = F_4(\alpha_2) \]
\[IM(8_t) = 0, \quad IM(8_s) = 4_{b,s}. \] \hspace{1cm} (5.2.2)

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Dimension} & \chi & Z-gradation & \text{Comp.} \\
\hline
0 & (0, 0, 0) & 0 & 1 \\
2 & (0, 1, -1, 0) & A_1 & 1 \\
3 & (0, 0, 0, 3) & A_1 & 1 \\
4 & (0, 1, -1, 1) & A_1 + A_4 & 1 \\
4_b & (0, 0, 1, 1) & A_1 + A_4 & 2/25 \\
5 & (0, 2, 0, 2) & F_2 & 1 \\
5_b & (0, 0, 0, 0) & A_1 + A_4 & 1 \\
5_c & (0, 1, -1, 1) & C_2 & 1 \\
6 & (0, 2, 1, 0) & A_1 + A_4 & 1 \\
6_a & (1, -1, 1, 1) & C_2 & 2/25 \\
6_b & (0, 3, 1, 1) & C_3(1_1) & 1 \\
7 & (3, 3, 3, 3) & B_3 & 1 \\
7_a & (5, 3, 3, 3) & F_{3(3_3)} & 2/25 \\
8 & & & \\
\hline
\end{array}
\]

\[IM(7) = 0. \] \hspace{1cm} (5.2.3)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Column 1 - 9:} & 0 & 1 & 2 & 3 & 4 \mathbf{a} & 4_b, t & 4_b, s & 5_a & 5_b & 5_c \\
\hline
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
3 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
4 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
4_b & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
5 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
5_a & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
5_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6_c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7_a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\text{Column 10 - 18:} & 0 & 1 & 2 & 3 & 4 & 5 & 6_b, a & 6_b, s & 6_b, t & 7_a & 7_b & 7_a & 7_b & 8_s & 8_s \\
\hline
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
2 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
4 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
4_b & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5_a & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
5_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6_c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7_a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
7_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_a & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_b & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
8_c & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

5.2.4 \[\chi = (5, 1, 1, 1), \ O = B_3 \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Dim.} & \chi & Z-gradation & \text{Comp.} \\
\hline
0 & (0, 0, 0, 0) & 0 & 1 \\
1 & (0, 1, -1, 0) & A_1 & 1 \\
3 & (0, 0, 0, 3) & A_1 & 1 \\
4 & (0, 1, -1, 1) & A_2 & 1 \\
5 & (0, 0, 1, 1) & A_1 + A_4 & 1 \\
5_b & (0, 2, 0, 2) & F_2 & 2/25 \\
6 & (1, -1, 1, 1) & A_1 + A_4 & 1 \\
6_a & (0, 3, 1, 1) & B_2 & 2/25 \\
7 & (3, 3, 3, 3) & B_3 & 1 \\
7_a & (5, 3, 3, 3) & F_{3(3_3)} & 2/25 \\
\hline
\end{array}
\]

\[IM(7) = 0. \] \hspace{1cm} (5.2.3)

26
\[5.2.5 \quad \chi = (5, 3, 1, 0), \mathcal{O} = C_3 \]

Dim	\(z \)	\(G \)-ext	Comp
0	(0, 0, 0, 0)	0	1
1a	(1, 0, 0, 0)	\(A_1 \)	1
1b	(0, 1, –1, 0)	\(A_1 \)	1
2a	(0, 0, 1, 0)	\(A_1 \)	1
2b	(1, 0, 0, 0)	\(A_1 + A_1 \)	1
2c	(0, 3, 1, 0)	\(A_2 \)	1
3	(5, 3, 1, 0)	\(A_3 \)	1

\[IM(3) = 0. \quad (5.2.4) \]

\[5.2.6 \quad \chi = (3, 1, 1, 0), \mathcal{O} = C_3(a_1) \]

\[IM(5_1) = 0, \quad IM(5_a) = 2_b. \quad (5.2.5) \]

\[5.2.7 \quad \chi = \left(2, \frac{2}{3}, 1, \frac{1}{3} \right), \mathcal{O} = A_1 + \overline{A}_2 \]

\[IM(5) = 0. \quad (5.2.6) \]

\[5.2.8 \quad \chi = (3, 1, 0, 0), \mathcal{O} = B_2 \]

\[IM(6_t) = 0, \quad IM(6_s) = 4. \quad (5.2.7) \]

\[5.2.9 \quad \chi = (2, 1, 1, 0), \mathcal{O} = A_2 + \overline{A}_1 \]
5.2.10 \(\chi = (2, 0, 0), \mathcal{O} = A_2 \)

\[
IM(14_a) = 0, \quad IM(14_a^s) = 10_a.
\] (5.2.9)

5.2.11 \(\chi = (2, 2, 0), \mathcal{O} = \bar{A}_2 \)

\[
IM(8) = 0.
\] (5.2.10)

5.2.12 \(\chi = (3, \frac{1}{3}, \frac{1}{7}, \frac{1}{7}), \mathcal{O} = A_1 + \bar{A}_1 \)

\[
IM(6) = 0.
\] (5.2.11)

5.2.13 \(\chi = (1, 1, 0, 0), \mathcal{O} = \bar{A}_1 \)

\[
IM(7t) = 0, \quad IM(7s) = 6.
\] (5.2.12)

5.2.14 \(\chi = (1, 0, 0, 0), \mathcal{O} = A_1 \)

\[
IM(1) = 0.
\] (5.2.13)
5.2.15 \(\chi = (0,0,0,0), \mathcal{O} = 0 \)

There is only the trivial orbit, and only one polynomial equal to 1.

References

[1] D. Barbasch, A. Moy, *Whittaker models with an Iwahori fixed vector*, Representation theory and analysis on homogeneous spaces (New Brunswick, NJ, 1993), 101–105, Contemp. Math., 177, Amer. Math. Soc., Providence, RI, 1994.

[2] R. Carter, *Finite groups of Lie type*, Wiley-Interscience, New York, 1985.

[3] N. Chriss, V. Ginzburg, *Representation theory and complex geometry*, Birkhäuser Boston, Inc., Boston, MA, 1997.

[4] D. Ciubotaru, *The I-spherical unitary dual of split p-adic \(F_4 \)*, Represent. Theory 9(2005), 94–137.

[5] C. De Concini, G. Lusztig, C. Procesi, *Homology of the zero-set of a nilpotent vector field on a flag manifold*, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.

[6] S. Evens, I. Mirković *Fourier transform and the Iwahori-Matsumoto involution*, Duke Math. J. 86 (1997), no. 3, 435–464.

[7] N. Kawanaka, *Orbits and stabilizers of nilpotent elements of a graded semisimple Lie algebra*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 573–597.

[8] D. Kazhdan, G. Lusztig, *Proof of the Deligne-Langlands conjecture for Hecke algebras*, Inv Math., vol 87, 1987, 153-215.

[9] G. Lusztig, *Study of perverse sheaves arising from graded Lie algebras*, Adv. Math. 112 (1995), 147–217.

[10] G. Lusztig, *Graded Lie algebras and intersection cohomology*, preprint.

[11] G. Lusztig, *Affine Hecke algebras and their graded version*, Jour. AMS, vol 2, 1989, 599-635.

[12] G. Lusztig, *Cuspidal local systems and graded algebras II*, Representations of groups (Banff, AB, 1994), Amer. Math. Soc., Providence, 1995, pp. 217-275.

[13] C. Mœglin, J.-L. Waldspurger, *Sur l'involution de Zelevinski*, J. Reine Angew. Math. 372 (1986), 136–177.

[14] M. Reeder, *Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups*, J. Reine Angew. Math. 450 (1994), 83–121.
[15] A. Zelevinski, *The p-adic analogue of the Kazhdan-Lusztig conjecture*, Funktsional. Anal. i Prilozhen. 15 (1981), no. 2, 9–21.

[16] A. Zelevinskii, *Two remarks on graded nilpotent classes*, Uspekhi Mat. Nauk 40 (1985), no. 1(241), 199–200.

[17] A. Zelevinsky, *Induced representations of reductive p-adic groups. II. On irreducible representations of $GL(n)$*, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210.