Collins Effect in SIDIS and in e^+e^- Annihilation

A. V. Efremov*, K. Goeke† and P. Schweitzer‡

*Joint Institute for Nuclear Research, Dubna, 141980 Russia. E-mail: efremov@theor.jinr.ru
†Institut für Theoretische Physik II, Ruhr-Universität Bochum, Germany

Abstract. We review the present understanding of the nucleon transversity distribution and Collins fragmentation function, based on Ref.[1], and discuss how Drell-Yan experiments will improve it.

Keywords: QCD; partons; polarization; asymmetry; chiral model
PACS: 13.88.+e, 13.60.Br, 13.85.Ni, 13.85.Qk

1. Introduction. The chirally odd transversity distribution function $h_{a1}(x)$ cannot be extracted from data on semi-inclusive deep inelastic scattering (SIDIS) alone. It enters the expression for the Collins single spin asymmetry (SSA) in SIDIS together with the chirally odd and equally unknown Collins fragmentation function [2] (FF) $H_{a1}(z)$

$$A_{UT}^{\sin(\phi + \phi_S)} = 2 \sum_a e_a^2 h_{a1}(x) B_G H_{a1}(z) \sum_a e_a^2 x f_{a1}(x) D_{a1}(z)$$

(1)

However, $H_{a1}(z)$ is accessible in $e^+e^- \rightarrow \bar{q}q \rightarrow 2\text{jets}$ where the quark transverse spin correlation induces a specific azimuthal correlation of two hadrons in opposite jets [5]

$$d\sigma = d\sigma_{\text{unp}} \left[1 + \cos(2\phi_1) \frac{\sin^2 \theta}{1 + \cos^2 \theta} C_G \times \sum_a e_a^2 H_{a1}^2(z) D_{a1}^2(z) \right]$$

(2)

where ϕ_1 is azimuthal angle of hadron 1 around z-axis along hadron 2, and θ is electron polar angle. Also here we assume the Gauss model and $C_G(z_1, z_2) = \frac{16}{\pi} z_1 z_2 / (z_1^2 + z_2^2)$.

First experimental indications for the Collins effect were obtained from studies of preliminary SMC data on SIDIS [6] and DELPHI data on charged hadron production in e^+e^- annihilations at the Z^0-pole [7]. More recently HERMES reported data on the Collins (SSA) in SIDIS from proton target [8, 9] giving the first unambiguous evidence that H_{a1}^q and $h_{a1}^q(x)$ are non-zero, while in the COMPASS experiment [10] the Collins effect from a deuteron target was found compatible with zero within error bars. Finally, last year the BELLE collaboration presented data on sizeable azimuthal correlation in e^+e^- annihilations at a center of mass energy of 60MeV below the Υ-resonance [11, 12].

The question which arises is: Are all these data from different SIDIS and e^+e^- experiments compatible, i.e. due to the same effect, namely the Collins effect?

1 We assume a factorized Gaussian dependence on parton and hadron transverse momenta [3] with $B_G(z) = (1 + z^2 \langle p_T^2 \rangle / \langle K_T^2 \rangle)^{-1/2}$ and define $H_{a1}^q(z) \equiv H_{a1}^{(1/2)q}(z) = \int d^2K_T \frac{K_T^2}{2\pi} H_{a1}^q(z, K_T)$ for brevity. The Gaussian widths are assumed flavor and x- or z-independent. We neglect throughout soft factors [4].
In order to answer this question we extract H_1^a from HERMES [9] and BELLE [11, 12] data, and compare the obtained ratios H_1^a/D_1^a to each other and to other experiments. Such “analyzing powers” might be expected to be weakly scale-dependent, as the experience with other spin observables [13, 14] indicates.

2. Collins effect in SIDIS. In order to extract information on Collins FF from SIDIS a model for the unknown $h_1^a(x)$ is needed. We use predictions from chiral quark-soliton model [15] which provides a good description of unpolarized and helicity distribution [16]. On the basis of Eq. (1), the assumptions in Footnote 1, and the parameterizations [17, 18] for $f_1^a(x)$ and $D_1^a(z)$ at $Q^2 = 2.5\,\text{GeV}^2$, we obtain from the HERMES data [9]:

$$\langle 2B_G H_1^{\text{fav}} \rangle \approx (3.5 \pm 0.8) \, , \quad \langle 2B_G H_1^{\text{unf}} \rangle = - (3.8 \pm 0.7) \, .$$

Here “fav” (“unf”) means favored $u \rightarrow \pi^+, d \rightarrow \pi^-$, etc. (unfavored $u \rightarrow \pi^-$, etc.) fragmentation, and $\langle \ldots \rangle$ denotes average over z within the HERMES cuts $0.2 \leq z \leq 0.7$.

Thus, the favored and unfavored Collins FFs appear to be of similar magnitude and opposite sign. The string fragmentation picture [19] and Schäfer-Teryaev sum rule [20] provide a qualitative understanding of this behavior. The important role of unfavored FF becomes more evident by considering the analyzing powers

$$\left| \frac{\langle 2B_G H_1^{\text{fav}} \rangle}{\langle D_1^{\text{fav}} \rangle} \right|_{\text{HERMES}} = (7.2 \pm 1.7)\% \, , \quad \left| \frac{\langle 2B_G H_1^{\text{unf}} \rangle}{\langle D_1^{\text{unf}} \rangle} \right|_{\text{HERMES}} = - (14.2 \pm 2.7)\% \, .$$

Fit (3) describes satisfactorily the HERMES proton target data [9] on the Collins SSA (see Figs. 1a, b) and is in agreement with COMPASS deuteron data [10] (Figs. 1c, d).

3. Collins effect in $e^+ e^-$. The specific $\cos 2\phi$ dependence of the cross section (2) could arise also from hard gluon radiation or detector acceptance effects. These effects, being flavor independent, cancel out from the double ratio of A_1^U, where both hadrons $h_1 h_2$ are pions of unlike sign, to A_1^L, where $h_1 h_2$ are pions of like sign, i.e.

$$\frac{A_1^U}{A_1^L} \approx 1 + \cos(2\phi_1)P_1(z_1, z_2) \, .$$
In order to describe the BELLE data \cite{11} we have chosen the Ansatz and obtained the best fit
\[H_1^{a}(z) = C_a z D_0^a(z), \quad C_{\text{fav}} = 0.15, \quad C_{\text{unf}} = -0.45, \] (6)
shown in Fig. 2 with 1-\(\sigma\) error band (the errors are correlated). Other Ansätze gave less satisfactory fits.

Notice that azimuthal observables in \(e^+e^-\) annihilation are bilinear in \(H_1^{a}\) and therefore symmetric with respect to the exchange of the signs of \(H_1^{\text{fav}}\) and \(H_1^{\text{unf}}\). Thus in our Ansatz \(P_1(z_1,z_2)\) is symmetric with respect to the exchange \(\text{sign}(C_{\text{fav}}) \leftrightarrow \text{sign}(C_{\text{unf}})\). (And not with respect to \(C_{\text{fav}} \leftrightarrow C_{\text{unf}}\) as incorrectly remarked in \cite{1}.)

The BELLE data \cite{11} unambiguously indicate that \(H_1^{\text{fav}}\) and \(H_1^{\text{unf}}\) have opposite signs, but they cannot tell us which is positive and which is negative. The definite signs in (6) and Fig. 2 are dictated by SIDIS data \cite{9} (and our model \cite{15} with \(h^U(x) > 0\), see Sect.2).

In Fig.3a-d the BELLE data \cite{11} are compared to the theoretical result for \(P_1(z_1,z_2)\) obtained on the basis of the best fit shown in Fig. 2b.

Most interesting recent news are the preliminary BELLE data \cite{12} for the ratio of azimuthal asymmetries of unlike sign pion pairs, \(A_1^U\), to all charged pion pairs, \(A_1^C\). The new observable \(P_C\) is defined analogously to \(P_1\) in Eq. (5) as \(A_1^U / A_1^C \approx (1 + \cos(2\phi) P_C)\).

The fit (6) ideally describes the new experimental points (see Figs. 3a-h)!

4. BELLE vs. HERMES. In order to compare Collins effect in SIDIS at HERMES \cite{8, 9} and in \(e^+e^-\) annihilation at BELLE \cite{11} we consider the ratios \(H_1^{\text{fav}} / D_0^a\) which might be less scale dependent. The BELLE fit in Fig. 2 yields in the HERMES \(z\)-range:
\[
\left| \frac{\langle 2H_1^{\text{fav}} \rangle}{\langle D_0^{\text{fav}} \rangle} \right|_{\text{BELLE}} = (5.3 \cdots 20.4)\%, \quad \left| \frac{\langle 2H_1^{\text{unf}} \rangle}{\langle D_0^{\text{unf}} \rangle} \right|_{\text{BELLE}} = -(3.7 \cdots 41.4)\% . \quad (7)
\]

Comparing the above numbers (the errors are correlated!) to the result in Eq. (4) we see that the effects at HERMES and at BELLE are compatible. The central values of

![FIGURE 2. Collins FF \(H_1^a(z)\) needed to explain BELLE data \cite{11}.](image)

![FIGURE 3. a-d: \(P_1(z_1,z_2)\) as defined in Eq. 5 for fixed \(z_2\)-bins as function of \(z_1\) vs. BELLE data \cite{11}. e-h: The observable \(P_C(z_1,z_2)\) defined analogously, see text, vs. preliminary BELLE data reported in \cite{12}.](image)
the BELLE analyzing powers seem to be systematically larger but this could partly be attributed to evolution effects and to the factor $B_G < 1$ in Eq. (4).

By assuming a weak scale-dependence also for the z-dependent ratios

$$\frac{H^u_1(z)}{D^u_1(z)}_{\text{BELLE}} \approx \frac{H^u_1(z)}{D^u_1(z)}_{\text{HERMES}}$$

and considering the 1-σ uncertainty of the BELLE fit in Fig. 2 and the sensitivity to unknown Gaussian widths of $H^u_1(z)$ and $h^u_1(x)$, c.f. Footnote 1 and Ref. [1], one obtains also a satisfactory description of the z-dependence of the SIDIS HERMES data [9], see Fig. 4.

These observations allow — within the accuracy of the first data and the uncertainties of our study — to draw the conclusion that it is, in fact, the same Collins effect at work in SIDIS [8, 9, 10] and in e^+e^--annihilation [11, 12]. Estimates indicate that the early preliminary DELPHI result [7] is compatible with these findings, see [1] for details.

5. Drell-Yan process. The double-spin asymmetry observable in Drell-Yan (DY) lepton-pair production in proton-proton (pp) collisions is given in LO by

$$A_{TT}(x_F) = \frac{\sum_a e_a^2 h^u_1(x_1) h^\pi_1(x_2)}{\sum_a e_a^2 f^u_1(x_1) f^\pi_1(x_2)}$$

where $x_F = x_1 - x_2$ and $x_1x_2 = \frac{Q^2}{s}$. In the kinematics of RHIC A_{TT} is small and difficult to measure [21].

In the J-PARC experiment with $E_{\text{beam}} = 50$GeV A_{TT} would reach -5% in the model [15], see Fig. 5, and could be measured [23]. The situation is similarly promising in proposed U70-experiment [24].

Finally, in the PAX-experiment proposed at GSI [25] in polarized $\bar{p}p$ collisions one may expect $A_{TT} \sim (30 \cdots 50)\%$ [26]. There $A_{TT} \approx h^u_1(x_1) h^\pi_1(x_2)$ to a good approximation, due to u-quark (\bar{u}-quark) dominance in the proton (anti-proton) [26].

6. Conclusions. We studied the presently available data on the Collins effect. Within the uncertainties of our study we find that the SIDIS data from HERMES [8, 9] and COMPASS [10] on the Collins SSA from different targets are in agreement with each other and with BELLE data on azimuthal correlations in e^+e^--annihilations [11].

The following picture emerges: favored and unfavored Collins FFs appear to be of comparable magnitude but have opposite signs, and $h^u_1(x)$ seems close to saturating the Soffer bound while the other $h^\pi_1(x)$ are presently unconstrained [1].

These findings are in agreement with the most recent BELLE data [12] and with independent theoretical studies [27].

Further data from SIDIS (COMPASS, JLAB [28], HERMES) and e^+e^- colliders (BELLE) will help to refine and improve this first picture.
The understanding of the novel functions $h_1^A(x)$ and $H_1^A(z)$ emerging from SIDIS and e^+e^--annihilations, however, will be completed and critically reviewed only due to future data on double transverse spin asymmetries in the Drell-Yan process. Experiments are in progress or planned at RHIC, J-PARC, COMPASS, U70 and PAX at GSI.

ACKNOWLEDGMENTS

This work is supported by BMBF (Verbundforschung), COSY-Jülich project, the Transregio Bonn-Bochum-Giessen, and is part of the by EIIIHT project under contract number RII3-CT-2004-506078. A.E. is also supported by RFBR grant 06-02-16215, by RF MSE RNP.2.2.2.2.6546 (MIREA) and by the Heisenberg-Landau Program of JINR.

REFERENCES

1. A. V. Efremov, K. Goeke and P. Schweitzer, Phys. Rev. D73 094025 (2006).
2. J. C. Collins, Nucl. Phys. B396 161 (1993).
3. A. V. Efremov, L. Mankiewicz and N. A. Tornqvist, Nucl. Phys. B284 394 (1992).
4. P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461 197 (1996).
5. X. D. Ji, J. P. Ma and F. Yuan, Phys. Rev. D71 034005 (2005); Phys. Lett. B587 299 (2004).
6. J. C. Collins and A. Metz, Phys. Rev. Lett. 93 252001 (2004).
7. D. Boer, R. Jakob and P. J. Mulders, Nucl. Phys. B504 345 (1997); Phys. Lett. B424 143 (1998).
8. A. V. Efremov, O. G. Smirnova and L. G. Tkachev, Nucl. Phys. B74 49c (1999); ibid. B79 520c (1999).
9. A. Airapetian et al. [HERMES Collaboration], Phys. Rev. Lett. 94 012002 (2005).
10. M. Diefenthaler, AIP Conf. Proc. 792 933 (2005).
11. V. Y. Alexakhin et al. [COMPASS Collaboration], Phys. Rev. Lett. 94 (2005) 202002.
12. A. Bravar, Nucl. Phys. B79 520c (1999).
13. A. V. Kotikov and D. V. Peshekhonov, Phys. Atom. Nucl. 60 653 (1997); Eur. Phys. J. C9 55 (1999).
14. P. Schweitzer et al., Phys. Rev. D64 034013 (2001).
15. D. Diakonov et al., Nucl. Phys. B480 341 (1996), Phys. Rev. D56 4069 (1997). P. V. Pobylitsa et al., Phys. Rev. D59 034024 (1999). M. Wakamatsu and T. Kubota, JPhys. Rev. D60 034020 (1999).
16. K. Goeke et al., Acta Phys. Polon. B32 1201 (2001).
17. M. Glück, E. Reya and A. Vogt, Eur. Phys. J. C5 461 (1998).
18. S. Kretzer, E. Leader and E. Christova, Eur. Phys. J. C22 269 (2001).
19. X. Artru, J. Czyżewski and H. Yabuki, Z. Phys. C73 527 (1997); Acta Phys. Polon. B29 2115 (1998).
20. A. Schäfer and O. V. Teryaev, Phys. Rev. D61 077903 (2000).
21. G. Bunce, N. Saito, J. Soffer and W. Vogelsang, Ann. Rev. Nucl. Part. Sci. 50 525 (2000).
22. A. V. Efremov, K. Goeke, S. Arnold, A. Metz and P. Schweitzer, in progress.
23. D. Dutta et al., J-PARC Letter of Intent (2002).
24. V. V. Abramov et al., arXiv:hep-ex/0510464.
25. P. Lenisa and F. Rathmann et al. [PAX Collaboration], arXiv:hep-ex/0505054.
26. A. V. Efremov, K. Goeke and P. Schweitzer, Eur. Phys. J. C35 207 (2004); arXiv:hep-ph/0412427.
27. W. Vogelsang and F. Yuan, Phys. Rev. D72 054028 (2005).
28. J. P. Chen, X. Jiang, J. C. Peng and L. Zhu [JLab Hall A Collaboration], arXiv:nucl-ex/0511031.
29. H. Avakian et al. [CLAS Collaboration], AIP Conf. Proc. 792 (2005) 945 [arXiv:nucl-ex/0509032].