Cholesterol implications on coconut liposomes encapsulation of beta-carotene and vitamin C

Dwi Hudiyanti1*, Siti Aminah1, Yuanita Hikmahwati1, Parsaoran Siahaan1

1Chemistry Department, Diponegoro University, Semarang, Indonesia

* Corresponding e-mail address: dwi.hudiyanti@live.undip.ac.id

Abstract. The implication of cholesterol on coconut liposomes encapsulation of beta-carotene and vitamin C was investigated through their encapsulation efficiency (EE) and partition coefficient (log P). In sole encapsulation the presence of cholesterol up to 40\% showed a decline in beta-carotene’s EE while for vitamin C the EE was improved. The presence of cholesterol affects co-encapsulation both vitamin C and beta-carotene. The beta-carotene EE decreases as the cholesterol increases but vitamin C achieves optimum value at 90.05\% in 20\% cholesterol. The log P value of coconut phospholipids, vitamin C, cholesterol and beta-carotene were 4.87-11.2; -1.91; 7.11; and 11.12 respectively. The encapsulation efficiency and partition coefficient reveals that co-encapsulation of Vitamin C and beta-carotene in coconut liposomes is influenced by cholesterol because of their unique molecular lipophilicity.

Keywords: liposomes, cholesterol, vitamin C, beta-carotene, membrane, encapsulation, partition coefficient, Marvin Sketch, hydrophobicity, \textit{Cocos nucifera L.}

1. Introduction

Beta-carotene and vitamin C (ascorbic acid) are important bioactive compounds for the human body. Both of them are needed because of their antioxidant properties [1, 2]. Antioxidant properties of beta-carotene and vitamin C play an important role in preventing various diseases such as heart disease, cancer, diabetes and cataracts [3, 4]. In spite of all that, beta-carotene and vitamin C have some drawbacks in their uses [5]. Beta-carotene has high hydrophobicity, low bioavailability and low chemical stability [6, 7]. The oxygen, high temperature, humidity and heavy metals cause vitamin C to be unstable and easily oxidized [1]. These deficiencies can be resolved by encapsulating beta-carotene and vitamin C in liposomes [2, 8]. The stability and bioavailability of beta-carotene can be amplified in liposomes [5]. Vitamin C can be protected from oxidation and increase its stability [1].

Liposomes are lipid vesicles that have the ability to carry either hydrophobic or hydrophilic active substances. Hydrophilic compounds will be inside the interior cavity of the liposomes while hydrophobic compounds will be in the liposome membranes. Liposomes are biodegradable, biocompatible, good safety profile, have low toxicity and small in size [9, 10]. The structure and nature of the liposomes cause vitamin C and beta-carotene suitable to be encapsulated in liposomes. Beta-carotene will be encapsulated in the liposome membrane. Vitamin C will be encapsulated in the interior cavity of the liposome [11].

The liposomes are build up from phospholipid molecules which are amphiphilic molecules [12, 13]. Phospholipids can be acquired from natural sources, including coconut meat and sesame seeds [10, 14]. In general, when manufacturing liposomes, the cholesterol is added. The addition of cholesterol will affect the rigidity of liposome membranes and so too their permeability [15].
Hudiyanti et al. [14] Hudiyanti et al. have used sesame liposomes to encapsulate beta-carotene and vitamin C. They found that cholesterol had different effects on the encapsulation of these two compounds. Cholesterol increases the vitamin C encapsulation but decreases beta-carotene. In different studies, Hudiyanti et al. have encapsulated vitamin C in coconut liposomes and the presence of cholesterol up to 30% increased its encapsulation efficiency [16]. In this paper we present the implications of cholesterol in coconut liposomes when encapsulating both vitamin C and beta-carotene either separately or concurrently. We discovered that concurrent encapsulation of both vitamin C and beta-carotene in coconut liposomes was influenced by cholesterol due to their different molecular hydrophobicity.

2. Materials and method

2.1. Materials
Coconut phospholipids isolated in house (with head groups composition were choline, ethanolamine and serine while the acyl tail were 22.75% dodecanoic acid, 14.60% hexadecanoic acid and 48.22% octadecanoic acid), cholesterol and beta-carotene from Sigma Aldrich, uncoated vitamin C from Brataco.

2.2. Encapsulation of Vitamin C and Beta-Carotene in Coconut Liposomes
Coconut liposomes were prepared based on method by Hudiyanti et al. [10]. Coconut liposomes were made with composition 0%, 10%, 20%, 30%, and 40% cholesterol. The manufacture of liposomes involved three stages, namely the manufacture of thin layers, hydration and sonication. Beta-carotene, a nonpolar compound, with concentration \(C_i \), was added to the phospholipids and cholesterol mixtures before thin layers formation. Vitamin C solution in a phosphate buffer, with concentration \(C_i \), was added in the hydration process. The dispersion that formed was then centrifuged. The supernatant produced by centrifugation was analysed by UV-Vis spectrophotometer at a wavelength of 453 nm for beta-carotene and 265 nm for vitamin C. The encapsulation efficiency (EE) was measured to determine the ability of liposomes for encapsulating vitamin C and beta-carotene. \(EE \) values were calculated from the concentration of vitamin C and beta-carotene which was not encapsulated \((C_f) \) as in equation 1.

\[
EE\% = \left(\frac{C_i - C_f}{C_i} \right) \times 100\%
\]

Co-encapsulation was performed with 20% of beta-carotene and 5% of vitamin C as the initial concentration [14, 16].

2.3. Determination of Partition Coefficient (Log P)
Log P of every component contained in coconut liposomes was calculated. Log P was calculated for coconut phospholipids, vitamin C, cholesterol and beta-carotene. Log P calculation was conducted based on its chemical structure [17] by Marvin Sketch application. For coconut phospholipids, log P was calculated based on the arrangement of head and tail composition as mention in the materials section. The chemical structures were presented in table 1 below.
Table 1. Chemical structures for partition coefficient calculation.

Compounds	Chemical structures
Coconut Phospholipids:	![Chemical structure](image1)
Phosphatidylcholine	![Chemical structure](image2)
Acyl tail (R): dodecanoic acid,	![Chemical structure](image3)
hexadecanoic acid, octadecanoic	![Chemical structure](image4)
acid	![Chemical structure](image5)
Coconut Phospholipids:	![Chemical structure](image6)
Phosphatidylethanolamine	![Chemical structure](image7)
Acyl tail (R): dodecanoic acid,	![Chemical structure](image8)
hexadecanoic acid, octadecanoic	![Chemical structure](image9)
acid	![Chemical structure](image10)
Coconut Phospholipids:	![Chemical structure](image11)
Phosphatidylserine	![Chemical structure](image12)
Acyl tail (R): dodecanoic acid,	![Chemical structure](image13)
hexadecanoic acid, octadecanoic	![Chemical structure](image14)
acid	![Chemical structure](image15)
Vitamin C	![Chemical structure](image16)
Cholesterol	![Chemical structure](image17)
Beta-carotene	![Chemical structure](image18)

3. Results and discussion

3.1. Efficiency of Beta-carotene Encapsulation in Coconut Liposomes

Encapsulation efficiency (EE) shows the ability of coconut liposomes in encapsulating beta-carotene. The lower the EE value, the lower the ability of liposomes to encapsulate beta-carotene. Results of EE beta-carotene are presented in Figure 1. Figure I shows that the highest EE value of beta-carotene occurs at 0% cholesterol. The lowest EE value at 40% cholesterol. This shows that addition of cholesterol can reduce the EE of beta-carotene in coconut liposomes. The decline in EE occurs due to high competition between beta-carotene and cholesterol to be in the interior of the liposome membranes. From the molecular structure point of view, see table 1, cholesterol is more adaptable within the liposome membranes than beta-carotene since the cholesterol structure is smaller and more flexible than beta-carotene [18]. Cholesterol has an amphiphilic structure such as phospholipid which makes it easier to slip in the membrane and orient itself in line to the phospholipid molecule whereas beta-carotene is a a bulky stiff nonpolar molecule that will make it more difficult to go to the nonpolar part of the membrane. As a result cholesterol molecules will block beta-carotene from reaching the nonpolar part of the membrane. Therefore, an increase in cholesterol concentration has induced a reduction of the beta-carotene encapsulation and the EE beta-carotene decreases.
3.2. **Efficiency of Vitamin C Encapsulation in Coconut Liposomes**

The encapsulation efficiency value (EE) shows the ability of liposomes in encapsulating vitamin C. The higher the EE, the better the ability of coconut liposomes to encapsulate vitamin C. The EE of vitamin C in coconut liposomes is presented in Figure 2. The graph shows that the EE increases as the cholesterol concentration increase. This is slightly different from the previous research by Hudiyanti *et al.* [16] which states that the encapsulation efficiency of vitamin C rises up to maximum at 30% cholesterol and then decreases at 40% cholesterol. We assume it due to the differences of the phospholipid acyl chains. Our phospholipids are dominated by octadecanoic acid while the previous research are dodecanoic acid. The differences in the composition of the acyl chain is common for phospholipids derived from nature since they are a mixture of various phospholipid species that have similar polarity.

EE of vitamin C in coconut liposomes increases after the addition of cholesterol. This increase in *EE* value is affected by the rigidity (stiffness) of the bilayer membrane. Cholesterol makes the bilayer membrane more rigid [10, 13]. Adding cholesterol to the liposome bilayer membranes causes the phospholipid tail groups become more regular. As a result cholesterol occupies the liposome membrane pores easily so its permeability decreases [10]. Liposomes entrap vitamin C better when there is cholesterol inside the membrane.

![Figure 2](image2.png)

Figure 2. Encapsulation efficiency of vitamin C in coconut liposomes.

3.3. **Efficiency of Vitamin C and Beta-carotene Co-encapsulation in Coconut Liposomes**

The *EE* in co-encapsulation of vitamin C and beta-carotene in coconut liposomes are presented on Figure 3. The *EE* of beta-carotene reduces as the cholesterol concentration increases. The lowest *EE* occurs at 40% cholesterol. The highest *EE* occurs when cholesterol is not present inside the liposome membranes. Similar results are displayed in the absence of vitamin C, figure 1. Beta-carotene is a nonpolar compound while vitamin C is a polar compound. These opposite properties suggest that they will reside in different region of liposomes after encapsulation process. Beta-carotene is in the liposome membranes while...
vitamin C is in the liposome core. This way beta-carotene and vitamin C will not interfere to each other during encapsulation. The results confirm that cholesterol has negative effect on beta-carotene encapsulation whether is vitamin C in the vicinity or not.

Compare to single encapsulation of vitamin C (see Figure 2) different results are uncovered from EE of vitamin C in co-encapsulation with beta-carotene in Figure 3. Addition of cholesterol increase EE of vitamin C up to 90.05% at 20% cholesterol then goes down for the remaining concentration. Results signify that both cholesterol and beta-carotene in the liposome membranes affect the encapsulation of vitamin C. Cholesterol increase vitamin C encapsulation by sealing the membrane pores but beta-carotene presence causes cholesterol blockage disrupted. Bulky beta-carotene molecules will be in the centre of the membranes. The two rings of beta-carotene will interact with the cholesterol rings tail. The beta-carotene and cholesterol will push each other causing the membrane to stretch. The liposome membranes become more delicate and cholesterol cannot seal the pores properly. The more the cholesterol in the membranes the wider the pores opened. We believe that 20% cholesterol is the optimum concentration of cholesterol to be in balance with 20% beta-carotene inside the membranes.

![Figure 3. Encapsulation Efficiency of Co-encapsulation of Vitamin C and Beta-carotene in Coconut Liposomes.](image)

3.4. Determination of Partition Coefficient (Log P)

The partition coefficient (log P) is done to determine the inclination of a compound to be in the lipophilic or hydrophilic phases [19]. Compounds with negative log P values are hydrophilic and will be dispersed in the water phase. Compounds with log P positive are lipophilic and will be dissolved in the organic phase [19, 20]. For liposomes it means that lipophilic compounds are in the liposome membranes and hydrophilic compounds are in the interior cavity of the liposomes. The log P value of coconut phospholipids, vitamin C, cholesterol and beta-carotene is presented in Table 2. The greater the log P value, the greater the lipophilicity and the lower the hidrophilicity [20-22].

Log P of Coconut phospholipids are in the range of 4.87-11.2. These values are the partition coefficient of the phospholipid molecules. However, phospholipid itself is an amphiphilic molecule with a hydrophilic head group. This makes phospholipids as amphiphilic compounds which tend to be lipophilic. Phospholipids in the aquos medium (hydrophilic) will easily undergo self-assembly to form liposomes with their head groups facing toward the hydrophilic medium. The beta-carotene has log P 11.12. It is in the region of the coconut phospholipid log P which makes coconut phospholipids suitable to be used as raw materials for making liposomes to encapsulate beta-carotene. Whereas the log P value of vitamin C is -1.91 indicating that vitamin C is hydrophilic. Vitamin C will be in the interior cavity of the liposomes.
Table 2. The Partition coefficient of liposomes components.

Compounds	Partition Coefficient (log P)	Properties
Coconut Phospholipids:		
Phosphatidylcholine		
Phosphatidyethanolamine		
Phosphatidylserine	4.87 – 11.2	Lipophilic
Acyl tail (R):		
dodecanoic acid		
hexadecanoic acid		
octadecanoic acid		
Vitamin C	-1.91	Hydrophilic
Cholesterol	7.11	Lipophilic
Beta-carotene	11.12	Lipophilic

In table 2 we see cholesterol and beta-carotene are both lipophilic compounds base on the log P values. They therefore are in the lipophilic part of liposome membranes. They will be in each other spot and overcrowded to occupy the membranes. The greater log P value of beta-carotene makes beta-carotene more preferable in membrane liposomes than cholesterol. The log P confirms our experimental results obtained above. It is also in agreement with the research conducted by Socaciu et al. that the positions of cholesterol and beta-carotene are in the liposome membranes [23].

4. Conclusion

In single encapsulation, beta-carotene encapsulation efficiency decreases with the addition of cholesterol while vitamin C increases. The presence of cholesterol influences co-encapsulation of vitamin C and beta-carotene. The beta-carotene encapsulation efficiency decreases with cholesterol up to 40%. However, vitamin C encapsulation efficiency reach the optimum value of 90.05% when cholesterol concentration attain 20%. Encapsulation efficiency and partition coefficient of the compounds of interest indicate that co-encapsulation of vitamin C and beta-carotene in coconut liposomes is affected by cholesterol due to the different molecular lipophilicity.

Acknowledgment

This research was supported by the PDUPT Research Scheme of DRPM, The Ministry of Research Technology High Education 2018.

References

[1] Abbas S, Da Wei C, Hayat K and Xiaoming Z 2012 Ascorbic acid: microencapsulation techniques and trends—a review Food Rev. Int. 28 4 343-74
[2] Tan C, Xue J, Lou X, Abbas S, Guan Y, Feng B, Zhang X and Xia S 2014 Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release Food Funct. 5 6 1232-40
[3] Qian C, Decker E A, Xiao H and McClements D J 2012 Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility Food Chem. 135 3 1440-7
[4] Fraser P D and Bramley P M 2004 The biosynthesis and nutritional uses of carotenoids Prog. Lipid Res. 43 3 228-65
[5] Moraes M, Carvalho J M P, Silva C R, Cho S, Sola M R and Pinho S C 2013 Liposomes encapsulating beta-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles Int. J. Food Sci. Technol. 48 2 274-82
[6] McClements D J 2012 Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems Adv. Colloid Interface Sci. 174 1-30
[7] Porter C J, Trevaskis N L and Charman W N 2007 Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs Nat. Rev. Drug Discov. 6 3 231
[8] Yang S, Liu W, Liu C, Liu W, Tong G, Zheng H and Zhou W 2012 Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization J. Dispers. Sci. Technol. 33 11 1608-14
[9] Emami S, Azadmard-Damirchi S, Peighambardoust S H, Valizadeh H and Hesari J 2016 Liposomes as carrier vehicles for functional compounds in food sector J. Exp. Nanosci. 11 9 737-59
[10] Hudiyanti D, Raharjo T J, Narsito N and Noegrohati S 2015 Study on leakage of sesame (Sesamum indicum L.) and coconut (Cocos nucifera L.) liposomes Orient. J. Chem. 31 435-9
[11] Slingerland M, Guchelaar H-J and Gelderblom H 2012 Liposomal drug formulations in cancer therapy: 15 years along the road Drug Discov. Today 17 3-4 160-6
[12] Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X and Deng Y 2015 A review on phospholipids and their main applications in drug delivery systems Asian J. Pharm. Sci. 10 2 81-98
[13] Maherani B, Arab-Tehrany E, R Mozaferi M, Gaiani C and Linder M 2011 Liposomes: a review of manufacturing techniques and targeting strategies Curr. Nanosci. 7 3 436-52
[14] Hudiyanti D, Fawrin H and Siahaan P 2018 Simultaneous encapsulation of vitamin C and beta-carotene in sesame (Sesamum indicum l.) liposomes IOP Conf. Ser. Mater. Sci. Eng. 349 1 012014
[15] Pezeshky A, Ghanbarzadeh B, Hamishehkar H, Moghadam M and Babazadeh A 2016 Vitamin A palmitate-bearing nanoliposomes: preparation and characterization Food Biosci. 13 49-55
[16] Hudiyanti D, Triana D and Siahaan P 2017 Studi Pendahuluan tentang Enkapsulasi Vitamin C dalam Liposom Kelapa (Cocos nucifera L.) J. Kim. Sains Apl. 20 1 5-8
[17] Leo A J 1993 Calculating log Poct from structures Chem. Rev. 93 4 1281-306
[18] Socaciu C, Jessel R and Diehl H A 2000 Competitive carotenoid and cholesterol incorporation into liposomes: effects on membrane phase transition, fluidity, polarity and anisotropy Chem. Phys. Lipids 106 1 79-88
[19] Leo A, Hansch C and Elkins D 1971 Partition coefficients and their uses Chem. Rev. 71 6 525-616
[20] S Bharate S, Kumar V and A Vishwakarma R 2016 Determining partition coefficient (log P), distribution coefficient (log D) and ionization constant (pKa) in early drug discovery Comb. Chem. High Throughput Screen. 19 6 461-9
[21] Comer J and Tam K 2001 Lipophilicity profiles: theory and measurement: Wiley-VCH: Zürich, Switzerland
[22] Liu X, Testa B and Fahr A 2011 Lipophilicity and its relationship with passive drug permeation Pharma. Res. 28 5 962-77
[23] Socaciu C, Bojarski P, Aberle L and Diehl H A 2002 Different ways to insert carotenoids into liposomes affect structure and dynamics of the bilayer differently Biophys. Chem. 99 1 1-15