Use of Receiver Operating Characteristic (ROC) Curve Analysis for Tyrer-Cuzick and Gail in Breast Cancer Screening in Jiangxi Province, China

Le Zhang
Zhigang Jie
Shengxi Xu
Liqun Zhang
Xiangqu Guo

Background: Breast cancer is a malignant tumor derived from breast gland epithelium. The screening and early diagnosis of breast cancer in high-risk populations can effectively suppress its threat to women's health and improve treatment efficiency, and thus has critical importance. Using various evaluation models, the present study evaluated the 5-year risk of breast cancer in 35–69-year-old women, and the usefulness of models in breast cancer prevention was compared.

Material/Methods: A total of 150 infiltrative breast cancer patients who were diagnosed with breast cancer at our hospital were recruited, along with 130 healthy women as the control group. A retrospective study was performed to collect information. The 5-year risk of breast cancer was evaluated using the Gail and Tyrer-Cuzick models. Diagnostic results were analyzed to plot ROC curves for comparing the value for screening between Gail and Tyrer-Cuzick models.

Results: The Gail model has 53.33% sensitivity and 77.69% specificity, with 73.39% positive prediction value, 59.06% negative prediction value, 86.92% specificity, 85.34% positive prediction value, 68.90% negative prediction value, 75.71% accuracy, and 0.31 Jordon index. The Tyrer-Cuzick model had 66.00% sensitivity, 86.92% specificity, 85.34% positive prediction value, 68.90% negative prediction value, 75.71% accuracy, and 0.53 Jordon index. The area under the curve (AUC) was 0.665 for the Gail model (95% CI: 0.629~0.701) and 0.786 for the Tyrer-Cuzick model (95% CI: 0.757~0.815).

Conclusions: Both Gail model and Tyrer-Cuzick models can be used to evaluate breast cancer risk. The Gail model has relatively lower accuracy in evaluating breast cancer risk in Jiangxi province of China and the Tyrer-Cuzick model had relatively higher accuracy.

MeSH Keywords: BRCA1 Protein • BRCA2 Protein • Breast

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/910108
Background

Breast cancer (BC) is a malignant tumor derived from breast gland epithelium and is the most common cancer in women [1–3]. Most BC patients are already at advanced or terminal stage at the time of primary diagnosis. Due to rapid progression and high metastasis and recurrence rates, treatment efficacy is not satisfactory. Distal metastasis toward other vital organs is an important cause of mortality in BC patients [4,5]. Therefore, effective screening of BC and timely identification of BC patients can reduce BC morbidity and mortality and improve treatment efficiency, thus having important clinical implications.

The feasibility of large-scale screening for BC is limited by medical resources and clinical technique. Therefore, the development of rapid, easy-to-use, and effective screening tools for BC has become the critical challenge for BC prevention and treatment. To date, various BC screening models have been developed, including the Gail, Tyrer-Cuzick, Couch, Frank, BRCAPRO, and Claus models. Among these, the Couch, Frank, BRCAPRO, and Claus models focus more on high-risk populations and special situations, thus having limited usefulness [6–8]. The Gail model was initially proposed in 1989, and has advantages of rapid progress, easy manipulation, low cost, and effectiveness, and thus has become the most widely used and standard risk evaluation model for BC, with wide clinical application [9–11]. The Gail model was derived from the USA, and mainly targets white females, with less study in other regions, thus making its applicability in Chinese women unclear. Compared to the Gail model, the Tyrer-Cuzick model has not been widely assessed in large-population studies. The Tyrer-Cuzick model includes multiple factors such as age at menopause, body-mass index (BMI), benign disease of breast gland, BC in relatives, family history, and hormonal replacement therapy into a comprehensive investigation [7,12,13]. A previous study found the Tyrer-Cuzick model has relatively higher accuracy [14]. The present study took place in Jiangxi province, China and evaluated the utility of the Tyrer-Cuzick and Gail models in BC screening.

Material and Methods

Research objects

This study used a risk evaluation model to analyze BC risk among 35–69-year-old women. The disease group consisted of infiltrative BC patients who received ultrasound or X-ray examination with pathology confirmation at the Affiliated Jiujiang Hospital of Nanchang University (N=150, average age=52.6±11.8 years). The control group consisted of healthy women who received breast ultrasound or X-ray examination in our hospital (N=130, averaged age=54.3±12.6 years). No significant difference was found in age distribution, economic status, occupation, ethnic group, or education level between the 2 groups (p>0.05).

This study was approved by Ethics Committee of the Affiliated Jiujiang Hospital of Nanchang University and all enrolled objects signed informed consent.

Research methodology

Well-trained investigators were employed to perform retrospective information collection using a uniform questionnaire to collect general information in the control and disease groups, including age, history of breast gland disease, family history, menstrual age, pregnancy age, biopsy of breast gland, and ethnic group. Age and breast gland biopsy information were collected based on recall of the last 5 years. Other information regarding risk factors of BC pathogenesis for Gail model were also collected.

Well-trained investigators were employed to perform retrospective information collection using a uniform questionnaire to collect general information in the control and disease groups for the Tyrer-Cuzick model, including age, height, body weight, menopause age, menstrual age, pregnancy age, history of benign breast gland disease, estrogen exposure experience, family member with BC, and number of bilateral BCs. All information and data related to BC risk factors in the Tyrer-Cuzick model were collected. Personal information was input based on the questionnaire to calculate 5-year BC risk prediction value.

Statistical analysis

All questionnaire data were input into computer software. Using a diagnostic trial approach, sensitivity and specificity of the Gail or Tyrer-Cuzick model in BC risk evaluation were calculated. The 5-year BC risk was estimated using both models for disease and control groups to calculate the ROC AUC, along with the paired chi-square test. A statistically significant difference was defined when p<0.05.

Results

Evaluation results using Gail model

Gail model analysis was performed among all 280 individuals included. High BC risk was defined as higher than 1.2% cancer risk, and other scenarios were defined as low BC risk (boundary level of risk was the upper limit of the ROC curve). The Gail model had 53.33% sensitivity, 77.69% specificity, 73.39% positive prediction value, 59.06% negative prediction value, 64.64% accuracy, and 0.31 Jordon index (Table 1). The difference was statistically significant by paired chi-square test ($\chi^2=16.980$, p<0.001, Table 2).
Tyrer-Cuzick model evaluation results

Tyrer-Cuzick model analysis was performed among all 280 individuals included. High BC risk was defined as higher than 1.59% cancer risk, and other scenarios were defined as low BC risk (boundary level of risk was the upper limit of the ROC curve). The Tyrer-Cuzick model had 66.00% sensitivity, 86.92% specificity, 85.34% positive prediction value, 68.90% negative prediction value, 75.71% accuracy, and 0.53 Jordon index (Table 3).

The difference was statistical significant by paired chi-square test ($\chi^2=17.000$, $p<0.001$, Table 4).

ROC curve analysis for diagnostic values of Gail and Tyrer-Cuzick model

ROC curves were plotted for Gail and Tyrer-Cuzick model to evaluate their predicted risk values for BC diagnosis. ROC analysis showed the area under the curve (AUC) was 0.665 for the Gail model (95% CI: 0.629~0.701, Figure 1A) and 0.786 for the Tyrer-Cuzick model (95% CI: 0.757~0.815, Figure 1B).

Discussion

The incidence for BC is increasing since 1970s worldwide. It is estimated that newly discovered BC cases account for about 25% of all cancers in women, and BC-induced mortality accounts for 15% cancer-related death in women [15]. There are about 1 500 000 newly diagnosed BC patients every year worldwide and about 500 000 (one-third) of these women died from BC [16]. Therefore, BC has become the primary mortality factor threatening women’s health. In both developed and developing countries, BC is the primary cause of death among malignant tumors in women [17]. Compared to Western countries,

Index	Calculated value	95% CI
Sensitivity	53.33%	45.62~61.04%
Specificity	77.69%	69.28~86.10%
Positive prediction value	73.39%	65.51~81.27%
Negative prediction value	59.06%	51.08~67.04%
Jordon index	0.31	0.27~0.35
Accuracy	64.64%	59.16~70.12%

Table 1. Estimation of Gail model diagnostic trial.

Index	Calculated value	95% CI
Sensitivity	66.00%	59.68~72.32%
Specificity	86.92%	81.55~92.29%
Positive prediction value	85.34%	78.59~92.09%
Negative prediction value	68.90%	61.73~76.07%
Jordon index	0.53	0.48~0.58
Accuracy	75.71%	71.06~80.36%

Table 3. Estimation of diagnostic trial parameters in Tyrer-cuzick model.
Compared to the Gail model, the Tyrer-Cuzick model mainly targets British, Australians, and New Zealanders, and incorporates menopausal age, BMI, history of breast gland benign disease, family history of BC, and hormonal replacement therapy, thus increasing its accuracy [7,12,13]. In sharp contrast with the Gail model, the Tyrer-Cuzick model has not been widely studied in large-population investigations, so its sensitivity and accuracy are unclear.

Results of our study show that the Gail model had 53.33% sensitivity and 77.69% specificity, with 73.39% positive prediction value, 59.06% negative prediction value, 64.64% accuracy, 0.31 Jordon index, and 0.665 ROC AUC. These results reveal that the Gail model has relatively higher sensitivity and specificity in predicting BC in a high-risk population of Jiangxi women. However, the Gail model does not consider information such as family history, lack of secondary relative, contralateral BC information, relative disease onset age, lactation or abortion, or history of hormonal replacement therapy, all of which can form risk factors of BC onset, leading to its relatively lower predictive value. Therefore, the present study used the Tyrer-Cuzick model to investigate its value in screening of female BC. Results showed that the Tyrer-Cuzick model had 66.00% sensitivity, 86.92% specificity, 85.34% positive prediction value, 68.90% negative prediction value, 75.71% accuracy, 0.53 Jordon index, and 0.786 ROC AUC. Warwick et al. [12] showed the ROC AUC was 0.62 using the Tyrer-Cuzick model in female BC screening, similar to our results. Our results showed that the Tyrer-Cuzick model had higher sensitivity, specificity, and diagnostic value for Jiangxi female BC screening than the Gail model. Brentnall et al. [7] observed higher diagnostic value of the Tyrer-Cuzick model compared to the Gail model, further supporting our results. However, in contrast to Boughney et al. [13], who recruited nearly 10,000 cases, our study had a relatively small sample size, compromising its representativeness. Moreover, this was a retrospective case study, and may involve memory bias for information collected 5 years ago. Therefore, large-sample prospective studies are needed.
are required for to compare the Gail and Tyrer-Cuzick models in risk evaluation of BC. In summary, we found that the Gail model had relatively lower accuracy in evaluating BC risk of Jiangxi women, while the Tyrer-Cuzick model had higher accuracy for evaluating BC risk in our province.

Conclusions

The Gail model has relatively lower accuracy in evaluating BC risk in women in Jiangxi province and the Tyrer-Cuzick model has higher accuracy in evaluating BC risk among Jiangxi women.

Conflict of interest

None.

References:

1. Winters S, Martin C, Murphy D, Shokar NK: Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci, 2017; 151: 1–32
2. Rojas K, Stuckey A: Breast cancer epidemiology and risk factors. Clin Obstet Gynecol, 2016; 59(4): 651–72
3. Ghoncheh M, Pournamdar Z, Salehiniya H: Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev, 2016; 17(53): 43–46
4. Pessina F, Navarria P, Cozzi L et al: Outcome evaluation of HER2 breast cancer patients with limited brain metastasis. Anticancer Res, 2017; 37(12): 7057–62
5. Passhak M, Shachar SS, Bar-Sela G, Fried G et al: Breast cancer in young women aged 35 and under: Patterns of care and outcome. Breast J, [Epub ahead of print]
6. Arun BK, Gong Y, Liu D et al: Phase I biomarker modulation study of atorvastatin in women at increased risk for breast cancer. Breast Cancer Res Treat, 2016; 158(1): 67–77
7. Brentnall AR, Harkness EF, Astley SM et al: Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res, 2015; 17(1): 147
8. Subramanian J, Karmegam A, Papageorgiou E et al: An integrated breast cancer risk assessment and management model based on fuzzy cognitive maps. Comput Methods Programs Biomed, 2015; 118(3): 280–97
9. Seyedmoori T, Pakseresht S, Roushan Z: Risk of developing breast cancer by utilizing Gail model. Women Health, 2012; 52(4): 391–402
10. Micallef F, Micallef D, Schembri-Wismayer P et al: Chemoprevention of breast cancer among women at elevated risk as defined by Gail Score. Minerva Ginecol, 2015; 67(4): 335–52
11. Erbil N, Dundar N, Inan C, Bolukbas N: Breast cancer risk assessment using the Gail model: A Turkish study. Asian Pac J Cancer Prev, 2015; 16(1): 303–6
12. Warwick J, Birke H, Stone J et al: Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: Findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res, 2014; 16(5): 451
13. Roughy JC, Hartmann LC, Anderson SS et al: Evaluation of the Tyrer-Cuzick (International Breast Cancer Intervention Study) model for breast cancer risk prediction in women with atypical hyperplasia. J Clin Oncol, 2010; 28(22): 3591–96
14. Jacobi CE, de Boch GH, Siegerink B, van Asperen CJ et al: Differences and similarities in breast cancer risk assessment models in clinical practice: Which model to choose? Breast Cancer Res Treat, 2009; 115(2): 381–90
15. Torre LA, Bray F, Siegel RL et al: Global cancer statistics, 2012. Cancer J Clin, 2015; 65(2): 87–108
16. Liu FC, Lin HT, Kuo CF et al: Epidemiology and survival outcome of breast cancer in a nationwide study. Oncotarget, 2017; 8(10): 16939–50
17. Ban KA, Godellass CV: Epidemiology of breast cancer. Surg Oncol Clin N Am, 2014; 23(3): 409–22
18. Li T, Tang L, Gandomkar Z et al: Mamographic density and other risk factors for breast cancer among women in China. Breast J, 2017 [Epub ahead of print]
19. Dinegde NG, Xuying L: Awareness of breast cancer among female care givers in tertiary cancer hospital, China. Asian Pac J Cancer Prev, 2017; 18(7): 1977–83
20. Zuo TT, Zheng RS, Zeng HM et al: Female breast cancer incidence and mortality in China, 2013. Thorac Cancer, 2017; 8(3): 214–18
21. Al Otaibi HH: Breast cancer risk assessment using the gail model and it’s predictors in Saudi women. Asian Pac J Cancer Prev, 2017; 18(11): 2971–75
22. Khazaee-Pool M, Majlessi F, Nedjat S et al: Assessing breast cancer risk among Iranian women using the gail model. Asian Pac J Cancer Prev, 2016; 17(8): 1759–62