Combining Ability and Heterosis for Some Yield Component Traits in a 10x10 Diallel Cross of Rice (Oryza sativa L.)

T. Vange¹, G. O. S. Ojo²* and A. M. Ladan¹

¹Department of Plant Breeding and Seed Science, Federal University of Agriculture, Makurdi, Nigeria.
²Department of Crop Production, Federal University of Agriculture, Makurdi, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GOSO wrote the protocol and first draft of the manuscript. Authors TV and GOSO managed the analysis and literature searches. Author AML performed the experiment as part of his M.Sc. research under the supervision of authors TV and GOSO. All authors read and approved the final script.

ABSTRACT

A ten – parent diallel experiment was carried out at the Teaching and Research Farms of the Federal University of Agriculture, Makurdi, Nigeria, to estimate combining ability and heterosis in rice. The design was a 10x10 alpha lattice with three replications and data was collected on plant height (PH), tiller numbers/plant (TN), leaf length (LL) and width (LW), days to flowering (DF), panicle length (PL), panicle exsertion (PE), spikelet numbers/panicle (SN), 100 seed weight (100SW) and days to maturity (DM). A preponderance of both additive and non – additive gene action with both negative and positive GCA, SCA and % heterosis was observed in the control of yield component traits in the studied rice varieties and their hybrids. Non – additive variance was higher, except for DF, SN and DM where additive variance was higher compared to non – additivity. Six parents, namely MGD 101, FARO 44, FARO 52, FARO 57, STRASSA 58 and IR 72 recorded the highest GCA values for most of the traits and the least values in terms of days to flowering and maturity. These parents were the most frequent in crosses with the
highest SCA effects and % heterosis for Tiller number, Leaf length, leaf width, panicle length and Spikelet numbers/panicle. Crosses involving these six parents also recorded the least SCA effects and % heterosis for days to flowering and maturity. Based on the results of GCA, SCA and % heterosis, backcross breeding of F1:s to their respective parents (the six parents), was recommended for improvement of yield component traits.

Keywords: Additive; GCA; gene action; heterobeltiosis; non-additive; SCA.

1. INTRODUCTION

Rice is generally a very important staple food crop in the developing countries in general and particularly in Sub-Saharan Africa. Garg et al. [1] therefore proposed rice as a cereal crop that could be used to stem the problem of global malnutrition. It is an annual crop which can survive as a perennial crop for several years via ratoons in the tropics [2]. Farmers prefer to produce rice because of ease of adaptability and low input requirement compared to maize [3]. The average annual per capita consumption of 24.8 kg of rice provide 9% of the total calorie requirements of Nigerians [4]. Thus, developing high yielding varieties will directly increase the quantity of food available to poor households and will subsequently benefit others by keeping its price low.

Adequate selection of planting material and use of appropriate mating design is a prerequisite towards a good success in any breeding programme [5] for yield maximization.

The low grain yield of 2.2 tha−1 observed for the rain fed crop and 3.5 tha−1 recorded for the irrigated system in previous studies [6] cannot sustain the rapidly growing population of Nigeria. The need for a 40% increase in rice production by the year 2025 has been proposed by FAO [7]. There is need for annual increase of 2 million metric tonnes via innotative approaches like heterosis breeding [8]. The exploitation of heterosis breeding strategies would lead to the emergence of new line(s) with more diverse genetic base and yield higher than the average recorded so far.

The ethical problem of rejection of GMOs and the challenge of adequate resources to access novel techniques, coupled with inconsistent supply of electricity, leaves the third world countries of sub-saharan Africa with no other option, but conventional plant breeding.

The concept of combining ability is very useful in identifying parent with maximum benefit and complementarity in hybrid combinations. The general combining ability (GCA), which indicates the additive nature of a trait, identifies superior parental genotypes; while specific combining ability (SCA) is relevant to a cross combination. SCA indicates the dominant nature of a trait and helps in the identification of good hybrid combinations that will ultimately lead to the development of new lines for release to farmers as cultivars.

Previous studies [9; 10; 11; 12] have observed high GCA to SCA ratio due to preponderance of additivity to non – additivity in gene action for grain yield/plant, plant height and days to 50% flowering in rice.

Heterosis or hybrid vigour measures the performance of the hybrid, relative to the parents. Three types of heterosis have been identified, namely; high parent heterosis (heterobeltiosis), mid – parent heterosis and standard heterosis. While mid – parent heterosis measures the performance of the hybrid relative to the average performance of its parents, heterobeltiosis compares the hybrid with the better parent. Standard heterosis evaluates the performance of the hybrid relative to the adapted/improved variety in production within the environment of evaluation. While some researchers use any or all the three in analysis, Chopra [13], recommended the use of heterobeltiosis.

The objective of this research was to estimate combining ability, heterosis and gene action of some yield component traits in rice with a view of identifying genotypes to be selected for the improvement of these traits.

2. MATERIALS AND METHODS

2.1 Sources of the Germplasms

A total number of ten (10) varieties/lines of rice were used as parents for the diallel experiment. Seeds of nine (9) varieties were obtained from the National Cereals Research Institute (NCRI),
2.3 Development of Genetic Materials

The first phase of this research, involves the planting of the parental lines in pots and monitoring them to the time of flowering, emasculation and pollination to generate all the possible set of crosses (excluding reciprocals).

2.4 Field Experiment

The forty-five (45) F₁s along with their ten (10) parents were treated with seed dressing chemical (Dress Force™) and sown separately, each on 30 x 30cm nursery beds. The seedlings from the nursery beds were transplanted to the main field at 14DAP using Randomized Complete Block Design (RCBD) with three replications. Each of the fifty-five (55) genotypes was assigned to a plot of 1m x 1m (1m²). Two seedlings/hill were transplanted to the main plot at an inter and intra row spacing of 20cm x 20cm [14] and maintained to maturity. The inter-plot distance was maintained at 0.5m with a distance of 1m between replications. NPK 20:10:10 was broadcasted to the seedlings at one week after transplanting. Urea fertilizer (46% N) was broadcasted to the field at 4 and 6 WAT (weeks after transplanting). The field was weeded with hoe and on some occasions with hands as at when due. No herbicide was used.

2.5 Data Collection

Data from each plot was collected on plant height, tiller numbers/plant, leaf length and width, days to flowering, panicle length, Panicle exsertion, Spikelet numbers/panicle, 100 seed weight and Days to maturity.

Table 1. Names of parental lines used in the 10x10 diallel experiment and their sources

S/No.	Parental number	Genotype	Variety name	Source
1	P1	WAB-450-1-B-P-103-HB	MGD 101	IITA, Kano
2	P2	SIPI	FARO 44	NCRI, Badeggi
3	P3	WITA 4	FARO 52	NCRI, Badeggi
4	P4	Tox 4004-43-1-2-1	FARO 57	NCRI, Badeggi
5	P5	NERICA L19	FARO 60	NCRI, Badeggi
6	P6	NERICA L34	FARO 61	NCRI, Badeggi
7	P7	STRASSA 11	Treatmt 11	NCRI, Badeggi
8	P8	STRASSA 58	Treatmt 58	NCRI, Badeggi
9	P9	IR 72	IR 72	NCRI, Badeggi
10	P10	WAB-759-55-2-HB	Kano line	NCRI, Badeggi

Key: IITA-International Institute for Tropical Agriculture; NCRI-National Cereals Research Institute

Badeggi, Niger State, Nigeria, while seeds of one (1) variety, namely MGD 101(WAB-450-1-B-P-103-HB) was obtained from IITA sub-station in Kano, Nigeria. The varietal name, genotypic name and parental number (given specifically for this research) of each genotype is presented in Table 1. FARO 44 is popularly referred to as SIPI and it’s a long grain rice that is favoured by farmers and consumers in the Southern Guinea Savanna ecology of Nigeria. FARO 44, FARO 52 (WITA 4) and FARO 57 are all high yielding lowland varieties in Nigeria. MGD 101 is a semi-dwarf (100-110cm) variety that is resistant to leaf and neck blast. FARO 60 (NERICA L19) and FARO 61 (NERICA 24) are long grain high yielding (6tha⁻¹), late maturing varieties developed from Oryza sativa x Oryza glaberrima crosses. STRASSA 11 and STRASSA 58 are stress tolerant varieties developed for Africa and South Asia. IR 72 is a high yielding (6.55tha⁻¹) slender grain rice. WAB-759-2-HB (Kano line) is an improved variety adapted to the Sudan Savanna ecology of Kano, Nigeria.

The total number of crosses = \(\frac{n(n-1)}{2} = 45 \)

The number of entries = \(\frac{n(n+1)}{2} = 55 \);
Where; n = number of parental lines = 10.

Seeds of the 10 parents along with 45 F₁s (total of 55 genotypes) were harvested, dried and stored for evaluation in the next rain fed cropping season.
Table 2. Mean squares of analysis of variance for yield component traits in a 10 x 10 diallel cross of rice

SOV	DF	Plant Height	Tiller numbers/plant	Leaf length	Leaf width	100 seed weight	Days to flowering	Panicle length	Panicle exsertion	Spikelet numbers/panicle	Days to maturity
Rep.	2	543.62**	691.15**	76.63**	0.04**	0.00	5.86	4.67	15.73**	5763.08**	2.62
Entries	54	202.69**	59.39*	30.20**	0.016**	0.067**	81.02**	9.00**	5.57**	5424.44**	127.32**
Error	108	34.20	37.20	9.80	0.004	0.00	3.10	3.40	1.79	380.02	1.93

Table 3. Mean squares of combining ability analysis of variance for yield component traits in a 10 x 10 diallel cross of rice

SOV	DF	Plant Height	Tiller numbers/plant	Leaf length	Leaf width	Days to flowering	Panicle length	Panicle exsertion	Spikelet numbers/panicle	Days to maturity
GCA	9	236.66**	46.93**	29.76**	0.02**	95.67**	9.03**	5.42**	7310.06**	162.32**
SCA	45	33.74**	14.37	6.13**	0.003**	13.28**	1.79**	1.14**	707.76**	18.47**
Error	108	11.66	12.40	3.27	0.001	1.03	1.13	0.60	126.67	0.64
δ_A	-	1:0.9	1:2	1:1.4	2:3	1:0.9	1:4	1:1.3	1:0.6	1:0.8

\[\delta_D = 1:0.9 \]
Mean squares of Analysis of variance for Plant

Where,

Heterobeltiosis is mathematically expressed as

\[\delta^2_A = 2 \delta^2_g \delta^2_D = \delta^2_s \]

\[\delta^2_g \] and \(\delta^2_s \) were estimated from the GCA, SCA and error mean squares.

Heterobeltiosis (heterobeltiosis) was estimated according to Chopra [13].

Heterobeltiosis is mathematically expressed as

\[\frac{F_{1\times BP}}{BP} \times 100 \]

Where,

\(F_{1} \) = mean value of the F_{1}s of the cross
\(BP \) = mean value of the better parent in the cross.

3. RESULTS

3.1 Analysis of Variance for Yield Component Traits in Rice

Mean squares of Analysis of variance for Plant height (PH), Tiller numbers (TN), Leaf length (LL), leaf width (LW), days to 50% flowering(DF), panicle length (PL), Panicle Exsertion (P.Exs) Spikelets numbers/panicle (SN), 100 seed weight (100SW) and days to maturity (DM) is presented in Table 2. Significant difference (P < 0.01) in replications was observed for all the traits except 100SW, DF, PL and DM. However, genotypes were significantly different (P < 0.05 and P < 0.01) for all the traits studied.

3.2 Combining Ability Analysis of Variance for Yield Component Traits in Rice

Significant difference (P < 0.01) in GCA and SCA were observed for all the traits studied, except for TN where SCA was not significant (Table 3). Non-additive variance was higher, except for DF, SN and DM where additive variance was higher compared to non-additivity.

3.3 GCA Effects for Yield Component Traits in Rice

Table 4 summarizes the GCA effects for yield component traits. The best parent, with high positive GCA value (7.38) for plant height was P_4, followed by P_8 (4.60) and P_7 (3.08). Parents with the highest GCA value in tiller numbers were P_2 (1.75), P_8 (1.60) and P_7 (1.04). Parents with the highest GCA value for leaf length were P_4 (1.93), P_1 (1.32) and P_5 (1.11). Parents P_8 (0.07) and P_7 (0.03) recorded the highest values of GCA effect for leaf width. Parents P_8 (4.55) and P_3 (2.66) recorded the highest GCA effects while P_10 (-5.228) and P_9 (-2.56) recorded the least GCA effects for days to 50% flowering. Parents P_4 and P_8 shows the highest GCA value in panicle length with 1.65 and 0.86 respectively. The highest GCA value for panicle exsertion was observed in P_7 (0.97), P_8 (0.86) and P_4 (0.54). The highest GCA effects for the

```
| Parent | PH  | TN  | LL  | LW  | DF  | PL  | P.Exs | SN  | DM  |
|--------|-----|-----|-----|-----|-----|-----|-------|-----|-----|
| P_1    | 2.19| -5.07| 1.32| 0.03| -1.98| -1.36| 0.26  | 44.47| -2.46|
| P_2    | -3.24| 1.75| 0.57| 0.01| -0.39| 0.04 | 0.09  | -4.55| -1.98|
| P_3    | 3.08| -0.02| 0.15| -0.02| 2.66| 0.38 | 0.97  | 15.08| 2.91 |
| P_4    | 7.38| -0.32| 1.93| 0.02| 1.91| 1.65 | 0.54  | 2.79 | 2.68 |
| P_5    | -3.98| 0.68 | 1.11| 0.02| 0.91| 0.06 | -0.25 | -13.77| -0.15|
| P_6    | -5 | 1.6 | -3.58| -0.06| -0.67| -0.66| -0.34 | -29.48| -1.79|
| P_7    | 2.6 | 1.04| 0.12| 0.01| 0.69| -0.06| -0.27 | 15.77| 1.41 |
| P_8    | 4.6 | 0.71| 0.36| 0.07| 4.55| 0.86 | 0.86  | -1.16| 7.18 |
| P_9    | -3.4| 0.73| -1.43| -0.02| -2.56| 0.03 | -1.08 | 12.96| -1.79|
| P_10   | -4.23| -1.09| -0.54| -0.05| -5.23| -0.94| -0.78 | -42.11| -6.01|
```

Key: PH-Plant height; TN-Tiller numbers/plant; LL-Leaf length; LW-Leaf width; DF-Days to flowering; PL-Panicle length; P.Exs-Panicle exsertion; SN-Spikelet numbers/panicle; DM-Days to maturity.
number of spikelets/panicle were observed in parents P₁ (44.47), P₇ (15.77) and P₉ (15.08). Parents P₈ (7.18), P₂ (2.91), P₄ (2.68) had the highest GCA effect while P₁₀ (-6.01), P₁ (-2.46) and P₉ (-1.983) recorded the least GCA effect in days to maturity.

3.4 SCA Effects for Yield Component Traits in Rice

The best hybrid combinations with high positive values of SCA effect for PH were P₃ x P₆, P₅ x P₄, P₁ x P₄, P₄ x P₇, P₃ x P₈, and P₃ x P₉; whereas those with high negative values were P₅ x P₈ and P₆ x P₁₀ (Table 5). For SCA on tillering ability (TN), P₂ x P₆, P₂ x P₇, P₂ x P₉, P₂ x P₅ and P₂ x P₆ were observed as the best hybrids with positive value. Hybrids with the highest SCA effects for LL were P₁ x P₄, P₄ x P₅, P₅ x P₆, P₄ x P₇ and P₇ x P₈. The best hybrid combinations with positive value of SCA effects for LW were P₁ x P₂, P₁ x P₄, P₄ x P₆, P₅ x P₆ and P₇ x P₈. As expected, almost all the crosses involving P₈ and P₁₀ were negative. Most crosses involving P₇ were however negative, except P₂ x P₇ and P₇ x P₈. All crosses involving P₈ were however predominantly negative. Most of the hybrids (93.33%) and all the hybrids (100%) expressed hybrid vigour for earliness for days to flowering and days to maturity respectively. More than 60% of the hybrids had negative heterosis while two crosses involving P₃ x P₉ (15.19%) and P₁ x P₉ (15.19%) recorded the highest heterosis for panicle length. Heterosis for panicle exsertion was predominantly negative (70%). However, crosses involving P₉ and P₄ recorded positive heterosis, with P₁ x P₉ (57.07%), P₃ x P₄ (37.53%) and P₄ x P₅ (31.33%) recording the highest % heterosis for panicle exsertion. Crosses P₆ x P₇ (43.52%), P₅ x P₈ (31.16%), P₃ x P₉ (30.19%) and P₈ x P₉ (29.94%) exhibited the highest heterosis for spikelet numbers/panicle (SN).

4. DISCUSSION

The highly significant and significant differences in entry obtained for all the traits in the current study was due to variability among the genotypes (parents + F₁ hybrids) evaluated and it's consistent with previous findings [8; 10; 11; 16; 17; 18].

The preponderance of additive gene action observed for four traits (plant height, days to flowering, days to maturity and spikelet number/panicle) in the current study had been previously observed. The preponderance of additive gene action for plant height, is consistent with the previous findings [11; 17; 19; 20]. It is also consistent with previous results [11; 16; 18] on days to flowering and days to maturity. The inconsistency in the results of these authors with the current findings for tiller numbers/plant, leaf length, leaf width, panicle length and panicle exsertion in terms of gene action, could be attributed to differences in parental genotypes used for the diallel study. The preponderance of non-additive gene action in the expression of these traits could be
Table 5. SCA effects for yield component traits in a 10 x 10 diallel cross of rice

Cross	Plant Height	Tiller numbers/plant	Leaf length	Leaf width	Days to flowering	Panicle length	Panicle exertion	Spikelet numbers/panicle	Days to maturity
P₁xP₂	-0.10	-3.35	1.57	0.11	-4.97	0.06	1.76	17.97	-4.74
P₁xP₃	6.45	-4.59	1.53	-0.02	-2.66	0.41	2.54	47.01	-1.85
P₁xP₄	7.70	-5.05	5.92	0.09	-1.66	0.05	-2.26	27.77	-1.40
P₁xP₅	-0.40	-3.70	1.53	0.04	-1.66	0.03	-0.34	17.88	-4.46
P₁xP₆	-1.00	-0.35	-2.78	0.03	-5.08	0.47	0.52	15.33	-5.02
P₁xP₇	4.60	-3.29	1.11	0.06	-2.19	-1.81	0.11	41.45	-0.55
P₁xP₈	5.39	-2.88	2.43	0.07	-2.79	-0.64	-1.02	16.12	-0.30
P₁xP₉	3.64	-0.77	-1.64	0.02	-3.99	-0.80	0.76	39.67	-5.24
P₁xP₁₀	-1.22	-5.13	-1.28	-0.07	-4.22	0.57	-2.04	16.12	-5.55
P₂xP₃	3.01	1.05	0.18	0.002	-0.85	0.69	-0.52	10.04	2.43
P₂xP₄	0.71	1.67	4.30	0.04	-1.10	1.55	-1.19	10.33	1.79
P₂xP₅	-1.50	4.81	1.34	0.03	-0.44	0.52	-0.63	19.40	-2.10
P₂xP₆	-3.36	8.45	-0.11	0.02	-1.44	-0.76	-0.51	22.58	-4.24
P₂xP₇	-0.52	7.38	0.01	0.03	0.13	-0.50	-0.38	19.82	-0.46
P₂xP₈	3.36	4.76	0.19	0.09	0.26	1.58	-0.95	-14.50	-0.10
P₂xP₉	-2.99	5.57	-2.43	-0.04	-2.35	0.47	0.59	4.40	-2.18
P₂xP₁₀	-3.68	-1.70	-1.38	-0.01	-5.77	-0.15	-0.37	-27.40	-6.80
P₃xP₄	9.98	-4.01	3.74	0.03	2.37	2.22	0.60	27.77	4.65
P₃xP₅	-1.14	-1.17	0.39	0.01	1.81	0.82	0.55	8.44	-0.74
P₃xP₆	-1.12	0.74	-2.45	-0.06	-3.52	-0.51	-0.03	9.20	-0.91
P₃xP₇	6.28	0.47	-0.01	0.01	1.42	-0.44	0.40	37.60	2.12
P₃xP₈	7.16	-0.04	-0.04	-0.03	4.45	1.24	-0.06	-12.80	5.40
P₃xP₉	2.61	-1.13	-2.59	-0.06	0.42	0.58	0.38	21.18	0.43
P₃xP₁₀	1.91	-4.75	-0.82	-0.08	0.56	-0.39	-0.19	8.99	0.12
P₄xP₅	1.05	-2.62	5.31	0.04	1.56	1.63	1.49	-1.68	-1.10
P₄xP₆	0.61	-1.33	-1.06	-0.01	0.09	-0.43	1.01	-13.14	-0.74
P₄xP₇	7.27	0.48	2.85	0.04	1.10	-0.15	1.00	21.46	2.72
P₄xP₈	11.56	-2.33	3.91	0.09	1.67	2.32	1.04	-11.02	4.26
P₄xP₉	5.42	-1.02	-0.03	-0.05	-0.33	0.99	0.48	31.19	-0.57
P₄xP₁₀	1.02	-4.02	-0.14	-0.02	-0.69	-0.21	0.01	10.46	-2.38
P₅xP₆	-10.02	2.34	-1.91	0.01	0.01	-0.72	0.36	-42.63	-3.10
Cross	Plant Height	Tiller numbers/plant	Leaf length	Leaf width	Days to flowering	Panicle length	Panicle exsertion	Spikelet numbers/panicle	Days to maturity
----------	--------------	----------------------	-------------	------------	------------------	----------------	-------------------	------------------------	-----------------
P7xP8	0.47	1.97	0.87	0.03	-2.49	-0.14	-0.04	11.44	-1.88
P7xP9	3.12	1.36	0.69	0.08	2.65	1.20	-0.51	-21.71	-0.60
P7xP10	-2.49	1.78	-0.98	-0.08	-0.77	0.57	-2.73	9.65	-2.96
P6xP7	-3.87	0.33	-0.79	-0.08	-0.27	-0.08	0.64	-27.42	-6.07
P6xP9	-2.22	4.46	-2.33	-0.08	-2.33	-1.27	0.71	13.14	-1.27
P6xP10	3.06	2.73	-1.41	-0.05	0.08	-1.17	-0.02	-16.92	0.12
P5xP7	-6.52	2.23	-3.05	0.02	-4.88	-2.36	-0.51	4.61	-3.66
P5xP10	-9.13	0.34	-2.99	-0.02	-3.61	-1.09	0.89	-47.78	-6.71
P8xP8	4.21	2.74	-0.75	0.08	2.51	-1.09	-0.66	13.12	2.46
P8xP9	-6.52	4.46	-2.33	-0.08	-2.33	-1.27	0.71	13.14	-1.27
P8xP10	0.09	-2.40	-0.56	-0.02	0.98	-0.01	1.12	-23.29	0.89
P9xP10	-4.05	-2.40	-2.90	-0.11	-5.55	-0.84	0.46	2.50	-4.96
Table 6. Estimates of Heterobeltiosis (%) for Yield Component Traits in a 10 x 10 Diallel Cross of Rice

Cross	PH	TN	LL	LW	100S	DF	PL	P.Ex	SN	DM
P1xP2	-9.62	4.04	-10.24	0.92	5	-9.38	2	12.77	-21.74	-6.99
P1xP3	-1.52	-32.98	-12.24	-6.42	5.26	-18.52	-11.82	57.07	-6.69	-17.89
P1xP4	3.45	-26.16	-7.25	9.17	15.79	-9.71	-15.77	-34.21	-10.26	-8.84
P1xP5	-20	-9.28	9.77	-7.34	-5	-3.13	1.43	-14.49	-18.17	-5.17
P1xP6	12.2	-44.88	-16.49	-9.17	5.26	-6.25	-3.09	-1.05	-30.51	-8.82
P1xP7	-5.3	-41.37	3.02	1.83	4.76	-9.3	0	-6.98	-2.74	-7.56
P1xP8	-5.84	-22.84	-10.49	-5.08	0	-17.18	-21.3	-25.66	-11.06	-16.54
P1xP9	-3.57	-45.77	-5.74	-4.59	0	-6.25	15.29	-9.77	-7.21	-5.17
P1xP1	-	-	-	-	-	-	-	-	-	-

0 13.41 -18.99 -13.75 14.68 -5.26 -11.46 4.61 -52.91 -34.67 -9.73
P2xP3 1.99 55.86 8.19 6.86 15 14.15 -5.38 -11.23 13.95 -13.01
P2xP4 1.83 33.37 10.83 9.62 15 10.68 -11.42 -28.15 27.32 -16.03
P2xP5 7.34 -2.89 11.49 -2.8 5 3.23 -0.44 -31.85 19.88 -2.43
P2xP6 7.7 3.12 -5.23 -1.96 10 -3.13 3.01 -31.23 31.16 -5.79
P2xP7 5.95 2.29 -3.47 -1.96 0 -7.31 2.2 -20.15 -7.93 -7.85
P2xP8 -1.96 4.07 1.06 11.86 -9.09 -10.74 -14.61 -27.06 30.19 -15.75
P2xP9 18.99 -1.46 11.17 -2.94 -5 -2.15 11.87 -25.69 15.6 -3.7
P2xP1 - - - - - - - - - - -

0 9.96 16.02 -8.19 -8.82 0 -3.23 -0.22 -35.85 -0.52 -3.7
P3xP4 8.7 18.62 -1.31 -7.69 23.53 -9.84 -13.41 37.53 1.28 -5.96
P3xP5 -3.16 18 2.9 -9.35 5 -12.31 -9.3 21.95 1.8 -12.2
P3xP6 -6.91 25.32 -11.9 1.02 5.26 -16.92 -9.14 9.35 -2.18 -15.45
P3xP7 12.52 -14.98 -9.26 12.24 4.76 -12.31 -7.18 18.76 11.78 -12.2

0 2.28 -5.57 -6.53 -8.47 13.68 -5.52 -16.08 -2.37 -7.4 -7.09
P3xP9 -0.71 1.04 -1.87 8.16 23.53 -1.6 -6.99 3.19 15.5 -12.2
P3xP1 0 -3.39 -27 -7.18 -4.08 11.11 -19.69 -11.82 -1.88 -9.59 -18.7
P4xP6 12.24 7.7 15.84 1.87 15 -9.71 -4.02 31.33 4.67 -10.5
P4xP6 2.75 -8.44 -8.17 -6.73 10.53 -12.62 -11.75 23.18 -7.5 -14.64
P4xP6 12.14 17.31 7.65 2.88 0 -5.83 -11.57 24.52 -8.47 -7.74
P4xP6 9.25 14.21 1.58 -9.32 4.55 -7.98 -12.13 6.97 2.62 -6.04

0 1.03 -23.25 -10.02 11.54 23.53 -12.52 -9.06 -0.96 2.45 -13.81
P4xP6 -6.63 0.5 -6.67 -0.96 5.56 -15.53 -8.22 -4.21 14.47 -17.96
P5xP6 11.96 8 -5.72 -6.54 15 1.74 4.9 -6.19 7.23 0
P5xP7 9.11 16.86 -6.92 0.93 -4.76 -5.31 1.19 12.38 0.19 -5.82
P5xP8 -0.87 10.14 -4.43 1.69 0 -9.82 -9.83 -25.66 43.52 -11.81
P5xP9 8.65 -34.3 2.01 -8.41 5 0 6.11 -78.05 -24.55 -5.17
P5xP1 0 7.67 0.99 -5.38 -5.61 -5 -6.45 0.84 -9.38 -2.19 -9.73
P6xP7 5.57 -4 -13.31 3.13 0 -11.29 5.82 23.38 -8.47 -11.05
P6xP8 -7.74 -2.68 -9.14 -17.8 0 -11.66 -18.68 -20.08 29.94 -9.71
P6xP9 1.24 -18.07 -2.41 -2.08 5.26 -6.25 3.13 -0.9 -28.94 -3.66
P6xP1 0 7.64 -13.76 -18.46 -6.25 0 -9.38 -1.86 36.24 13.23 -9.45
P7xP8 -9.7 18.21 -6.01 -7.63 -9.09 -14.12 -20.66 -27.89 -12.32 -4.46
P7xP9 17.59 -35.04 -4.26 10.42 -4.76 -10.3 8.42 -7.41 -0.36 -9.3
P7xP1 0 14.05 -18.17 -12.05 5.21 -4.76 -13.29 3.61 -15.05 -24.6 -11.05
P8xP9 -9.91 -18.43 -6.01 -1.69 -9.09 -17.18 -16.41 -21.48 2.45 -14.96
P8xP1 0 -7.96 6.53 -4.26 -9.32 -9.09 -14.42 -16.73 -10.32 14.18 -16.01
P9xP1 0 2.96 -37.99 -12.05 10.42 -5.56 -3.33 10.93 4.36 0.74 -5.56

Key: PH-Plant height; TN-Tiller numbers/plant; LL-Leaf length; LW-Leaf width; DF-Days to flowering; PL-Panicle length; P.Ex-Panicle exsertion; SN-Spikelet numbers/panicle; 100SW-100seed weight; DM-Days to maturity
attributed to the degree of selection, particularly because the parental lines/varieties used in the current study are highly selected genotypes. The wide range in heterosis in the current work has been previously observed [12; 16; 19; 21; 22; 23], and it’s an indication of the suitability of the parental lines for heterosis breeding.

Six parents, namely MGD 101 (P1), FARO 44 (P2), FARO 52 (P3), FARO 57 (P4), STRASSA 58 (P5) and IR 72 (P6), recorded the highest GCA values for most of the traits and the least values in terms of days to flowering and maturity. These parents were the most frequent in crosses with the highest SCA effects and % heterosis for Tiller number, Leaf length, leaf width, panicle length and Spikelet numbers/panicle. Crosses involving these six parents also recorded the least SCA effects and % heterosis for days to flowering and maturity.

Back cross breeding of the F1s to their respective parents, namely, MGD 101, FARO 44, FARO 52, FARO 57, STRASSA 58 and IR 72, concentrating on selection for higher tiller numbers, longer and wider leaves, longer panicles, more spikelet numbers per panicle, dwarfism and earliness will enhance the improvement of these genotypes towards the development of new varieties of rice.

5. CONCLUSION

Both additive and non – additive gene action was involved in the control of yield component traits in the studied rice varieties and their hybrids. The GCA, SCA and % heterosis were considered as selection criteria in the improvement of the identified genotypes (parents and crosses) for yield component traits via backcross breeding.

ACKNOWLEDGEMENT

The National Cereals Research Institute (NCRI), Badeggi, Nigeria and the International Institute for Tropical Agriculture (IITA), Kano sub-station, Nigeria, are hereby acknowledged for the supply of seeds used for the research.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V and Arora P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Frontiers in Nutrition, 2018; 5:12
2. IRRI, 2014. Annual Report. Available on http://www.knowledgebank.irri.org/
3. Vange T, Ojo GOS, Ayuba S. Effect of Sowing Method on the Productivity of Rice in Makurdi, Southern Guinea Savanna Ecology of Nigeria. European Journal of Physical and Agricultural Sciences, 2016; 4(2): 57 – 67.
4. IRRI, 2001. Annual Report. Available on http://www.knowledgebank.irri.org/
5. Nduwumuremyi, A., P. Tongoona and S. Habimana (2013) Mating Design: Helpful Tool for Quantitative Plant Breeding Analysis. Journal of Plant Breeding and Genetics. 01(03):117-129
6. Nwilene FE, Oikeh SO, Agunbiade TA, Oladimeji O, Ajayi O, Sie M, Gregorio GB, Togola A, Toure AD. Growing Lowland Rice: A Production Handbook. Africa Rice Center (WARDA). 2015.
7. FAO. Annual Report, 2004. available on http://fao.org culled on Dec. 7, 2015
8. Prasad SG, Rao LVS, Sujatha M, Chaitanya U. Heterosis and Combining Ability Analysis for few Cold Tolerant Rice Germplasms Lines at their Seedling Stage. International Journal of Development Research, 2013;3(8):10-12.
9. Borgohain R, Sarma NK. Combining Ability for Grain Yield and Its Component Characters in Deepwater Rice. Crop Research Hisar, 1998;16(2): 215.
10. Ahangar L, Ranjbar GA, Nouroozi M. Estimation of Combining Ability for Yield and Yield Components in Rice (Oryza sativa L.) Cultivars Using Diallel Cross. Pakistan Journal of Biological Sciences.2008; 11(9): 1278-1281
11. Akter A, Hasan MJ, Begum H, Kulsum MU, Hossain MK. Combining Ability Analysis in Rice (Oryza sativa L.). Bangladesh Journal of Plant breeding and Genetics. 2010; 23(2): 7 - 13.
12. Rahimi M, Rabiei B, Samizadeh H, Ghasemi AK. Combining Ability and Heterosis in Rice (Oryza sativa L.)
Cultivars. Journal of Agricultural Science and Technology, 2010; 12:223-231

13. Chopra VL. Plant Breeding Theory and Practice 2nd ed. Oxford and IBH publishing Co. Pvt. Ltd. New Delhi, India. 2005; 490Pp.

14. Youdeowei A. Growing Rice in West Africa. West Africa Rice Development Association, Bouake Cote-d’ivoire and National Cereals Research Institute, Badeggi, Bida, Nigeria. 1992; 181Pp.

15. Griffing B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing System. Australian Journal of Biological Sciences, 1956; 9: 463-493.

16. Sarker U, Rasul MG, Mian MAK. Heterosis and Combining Ability in Rice. Bangladesh Journal of Plant Breeding and Genetics, 2002; 15(1): 17-26.

17. El-Namaky RA, Sedeek SEM, Hammoud SAA, Manneh B, El-Shafey RAS. Gene Action and Combining Ability for Agronomic Traits and Biotic Stress Tolerance in Rice In: Innovation and Partnerships to Realize Africa’s Rice Potential. Second Africa Rice Congress, Bamako, Mali, 22nd – 26th March 2010

18. Gila MA, Onovo JC. A 5×5 Diallel Analyses of some Agronomic Characters of Castor (Ricinus communis L.) Accessions in the Southern Guinea Savannah of Nigeria. International Journal of Current Research in Biosciences and Plant Biology, 2015; 2(5): 155-161

19. Saleem SA. Heterosis and Combining Ability in a Diallel Cross of Eight Faba beans (Vicia faba L.) Genotypes. Asian Journal of Crop Science, 2009; 1(2): 66-76.

20. Kamara N, Asante MD, Akromah R, Kamara CS. Genetic Analysis of Yield and Yield Components in Oryza sativa x Oryza sativa Cross. African Crop Science Journal, 2017; 25(4): 539-550

21. Jinhua X., Jiming LY, Tanksley SD. Dominance Is the Major Genetic Basis of Heterosis in Rice as Revealed by QTL Analysis Using Molecular Markers. Genetics, 1995; 140: 745-754.

22. Nuruzzaman M, Alam MF, Ahmed MG, Shohael AM, Biswas MK, Amin MR, Hossain MM. Studies on Parental Variability and Heterosis in Rice. Pakistan Journal of Biological Sciences, 2002; 5(10): 1006 – 1009.

23. Alam MF, Khan MR, Nuruzzaman M, Parvez S, Swaraz AM, Alam I, Ahsan N. Genetic basis of Heterosis and Inbreeding Depression in Rice (Oryza sativa L.). Journal of Zhejiang University of Science, 2004; 5(4): 406-411.

© 2020 Vange et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/61092