Prevalence and Predictive Factors of Irritable Bowel Syndrome in a Community-dwelling Population in Japan

Ryu Satake¹, Norio Sugawara², Ken Sato¹, Ippei Takahashi³, Shigeyuki Nakaji¹, Norio Yasui-Furukori² and Shinsaku Fukuda¹

Abstract

Objective Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by chronic, relapsing abdominal pain or discomfort and is associated with disturbed defecation. The pathogenesis of IBS is multifactorial. The aim of this study was to investigate the prevalence of IBS using the Rome III criteria and to assess the effects of mental and lifestyle factors on IBS in a community-dwelling population in Japan.

Methods The diagnosis of irritable bowel syndrome was based on the Japanese version of the Rome III Questionnaire. The questionnaire was administered to 993 volunteers who participated in the Iwaki Health Promotion Project 2013. Diet was assessed with a validated brief-type self-administered diet history questionnaire. Dietary patterns based on 52 predefined food groups [energy-adjusted food (g/dl)] were extracted using a principal component analysis. The Center for Epidemiologic Studies Depression Scale with a cut-off point of 16 was used to assess the prevalence of depression.

Results A total of 61 subjects (6.1%) were classified as having IBS. Three dietary patterns were identified: “Healthy”, “Western” and “Alcohol and accompanying” dietary patterns. After adjusting for potential confounders, the “Alcohol and accompanying” dietary pattern and depression were related to the risk of IBS.

Conclusion We found that an “Alcohol and accompanying” dietary pattern and depression were related to the risk of IBS in a Japanese community population. However, we could not rule out the possibility of some selection bias. Further studies with longitudinal observations are therefore warranted.

Key words: cross-sectional studies, dietary patterns, Japanese, irritable bowel syndrome, depression

(Intern Med 54: 3105-3112, 2015)
(DOI: 10.2169/internalmedicine.54.5378)

Introduction

Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by chronic, relapsing abdominal pain or discomfort and is associated with disturbed defecation (1). The prevalence of IBS is estimated to be in the range from 3 to 20% based on the Rome III criteria (2-5). Although the symptoms of IBS often impair the patient’s quality of life (QOL) (6), many individuals with IBS ignore their symptoms and tend not to seek medical care (7).

Although the pathogenesis of IBS is still largely unknown, several factors, including psychiatric disorders (2), stressful experiences (8), infection (9) and inflammation (10), have been suggested to play a role in the development of IBS. In particular, psychological stress has been recognized to be a causative factor (11) because of the high prevalence of psychiatric comorbidities (2).

Individuals with IBS believe that diet may play a role in triggering their gastrointestinal symptoms and may therefore avoid certain foods with changes in their dietary intake (12-14). Previous studies (15-17) have primarily focused on the effects of individual nutrients or foods but have rarely examined dietary patterns. However, nutrients and/or foods are consumed in dietary combinations and may...
have interactive or synergistic effects. Surveys examining single foods or single nutrients within foods may not adequately assess the complex effects on human health. Dietary patterns that represent a combination of foods may be more strongly associated with disease risk than individual foods or nutrients.

To date, there is limited evidence concerning the associations between predictive factors and IBS in community-dwelling populations. In the present study, we aimed to investigate the prevalence of IBS in a community-dwelling population using the Rome III criteria and to assess the effects of mental and lifestyle factors that affect IBS. We hypothesized that dietary patterns and/or mental distress would be associated with the risk of IBS.

Materials and Methods

Participants

The subjects included 993 volunteers (382 men and 611 women) who participated in the Iwaki Health Promotion Project in 2013. The data collection for this study was approved by the ethics committee of the Hirosaki University School of Medicine, and all subjects provided their written informed consent before participating in the project. Demographic data (age, sex, level of education and marital status), smoking, exercise habits (defined as 4 or more times of exercise per week) and medical history were obtained from self-reported questionnaires and interviews. Marital status was evaluated on the basis of the response (“yes”or “no”) to the following question: “Do you have a spouse?” As to exercise habits, the respondents were asked to answer a question regarding their frequency of exercise. Those answering “4 or 5 times per week” or “everyday” were included in the “having exercise habits” group, while those answering “not at all,” “once a week” or “2 or 3 times per week” were assigned to the “not having exercise habits” group. The subject’s height and weight were measured, and the body mass index (BMI) was calculated.

Assessment of IBS

The Japanese version of the Rome III Questionnaire was used to screen for IBS (18). All subjects were asked to complete self-reported ROME III diagnostic questionnaires. Screening for IBS requires that the subject have abdominal discomfort or pain lasting at least three days per month, not necessarily consecutive, during the previous three months, associated with two or more of the following: relief by defecation; onset associated with a change in stool frequency; onset associated with a change in the form (appearance) of stools.

Assessment of depression

The Japanese version of the Center for Epidemiologic Studies Depression Scale (CES-D) (19) was administered to all of the participants to measure their depressive symptoms. The CES-D is a 20-item self-reported measurement that focuses on depressive symptoms during the week prior to administering the questionnaire. The maximum score on this scale is 60, and depression (CES-D 16 depression) was considered to be present when the subject had a CES-D scale of 16 or more.

Assessment of dietary intake

The subjects were instructed to complete a brief self-administered diet history questionnaire (BDHQ) that included questions on the consumption frequency of 56 foods and beverages and nine dishes commonly consumed in the general Japanese population. For each food item, the subjects indicated their mean frequency of consumption of the food over the past month. The mean daily consumption of nutrients was calculated using an ad hoc computer program developed to analyze the questionnaire. The Japanese food composition tables, 5th edition, (20) and others (21) were used as the nutrient database. The reproducibility and validity of the BDHQ have previously described in detail elsewhere (22).

Statistical analysis

We derived dietary patterns through a principal component analysis of the energy-adjusted intake. The analysis used a density method for the 52 food and beverage items (excluding four items that overlapped with other items). We used eigenvalues, scree plots and the interpretability of the factors to determine the number of factors to retain. The selected factors each had eigenvalues greater than 1. The scree plots dropped substantially after the second factor (from 2.63 to 2.19) and remained similar after the third factor (2.19 for the third and 2.12 for the fourth factor); thus, we decided to retain three factors. The factor scores for each dietary pattern and each individual were calculated by summing the food item intake weighted by their factor loading. The factor scores were categorized into tertiles. Student’s unpaired t-test (for continuous variables) or the Chi-square test (for categorical variables) were used to compare the subjects with and without IBS. Trend associations across the tertile categories of each dietary pattern were assessed using a linear regression analysis for continuous variables, with ordinal values from 0 to 2 assigned to the tertile categories of each dietary pattern.

A logistic regression analysis was used to assess the relationships between the dietary patterns and IBS. A comparison between the high tertile group and others was conducted for each dietary pattern. The adjusted model was adjusted for age, gender, level of education, marital status, exercise habits, body mass index, smoking status and a positive history of diabetes, hypertension and dyslipidemia. A p value of <0.05 was considered to be statistically significant. The data were analyzed using the PASW Statistics PC software program for Windows, Version 18.0.0 (SPSS, Chicago, USA).
Characteristics of the participants

Among the 993 subjects who were available to be analyzed, 61 (6.1%) had self-reported IBS, and 187 (18.8%) had CES-D 16 depression. The characteristics of the study subjects with and without IBS are shown in Table 1.

Dietary patterns identified in the principal component analysis

We identified three dietary patterns using a principal component analysis (Table 2). The first factor, which loaded heavily on Carrots/pumpkin, Cabbage/Chinese cabbage, Green leafy vegetables, Other root vegetables, Seaweed, Mushrooms, Japanese radish/turnip, Tofu/atsuage and Potatoes, was labeled the “Healthy” dietary pattern. The second factor, which had high loading for Ham/sausage/bacon, Pork/beef, Chicken, Eggs, Lettuces/cabbage (raw), Coffee, Mayonnaise dressing, Ice cream and other root vegetables, Cabbage/Chinese cabbage and Spaghetti and macaroni, was labeled the “Western” dietary pattern. The third factor was characterized by a high intake of Beer, Oily fish, Squid/octopus/shrimp/shellfish, Shochu, Lean fish, Chicken and Small fish with bones and thus termed the “Alcohol and accompanying” dietary pattern. These three dietary patterns explained 10.5%, 5.1% and 4.2%, respectively, of the variance in food intake.

Risk of IBS in relationship to depressive symptoms and dietary pattern scores

The crude and adjusted odds ratios (with 95% confidence intervals) with regard to depressive symptoms and dietary pattern scores are shown in Table 3. Individuals with high depressive symptoms (CES-D score) had a higher risk of IBS, and those with the “Healthy” dietary pattern had a lower risk of IBS than those with the “Western” dietary pattern.
Table 2. Factor Loading Matrix for Major Dietary Patterns Identified by Principal Component Analysisa.

Food Item	Healthy dietary pattern	Western dietary pattern	Alcohol and accompanying dietary pattern
Reduced fat milk and yogurt	-0.197	0.244	
Chicken	0.408	0.544	0.549
Pork/beef	0.544	0.549	
Liver	0.151	0.312	
Squid/octopus/shrimp/shellfish	0.208	0.324	
Small fish with bones	0.249	-0.274	0.209
Canned tuna	0.173	0.172	
Dried fish/salted fish	0.308	-0.187	0.194
Oily fish	0.344	-0.263	0.317
Lean fish	0.292	-0.185	0.281
Egg	0.374		
Tofu/atsuage b	0.525		
Natto c	0.259	-0.207	
Potatoes	0.511		
Pickled green leaves vegetables	0.390	-0.287	
Other pickled vegetables	0.307	-0.276	-0.166
Lettuces/cabbage (raw)	0.480	0.295	
Green leaves vegetables	0.610	0.171	
Cabbage/Chinese cabbage	0.679	0.213	
Carrots/pumpkin	0.695	0.181	
Japanese radish/turnip	0.570		
Other root vegetables	0.581	0.229	
Tomatoes	0.491		
Mushrooms	0.576		
Seaweeds	0.578		-0.541
Western-type confectionneries			-0.405
Japanese-type confectionneries	0.188	-0.242	-0.495
Rice crackers/rice cake/okonomiyaki		-0.159	-0.191
Ice cream		0.248	
Citrus fruit	0.359	-0.173	
Persimmons/strawberries/kiwifruit			0.325
Other fruit	0.428	-0.302	-0.265
Mayonnaise dressing	0.173	0.250	-0.244
Bread			-0.453
Buckwheat noodles			-0.228
Japanese wheat noodles			-0.214
Chinese noodles	-0.323	0.196	
Spaghetti and macaroni		0.211	
Green tea	0.233	-0.226	
Black tea/oolong tea			-0.189
Coffee			
Cola drink/soft drink	-0.306	0.188	
100% fruit and vegetable juice			-0.176
Rice	-0.327	-0.377	0.157
Miso soup			-0.299
Sake			0.188
Beer	-0.219	0.331	
Shochu	-0.192	0.286	

a Factor loading less than ±0.15 represented by a dash for simplicity. Omitted in the table were food items with factor loadings less than ±0.15 for all dietary patterns (milk and yogurt, Whisky, Wine).
b Deep fried tofu.
c Fermented soybeans.

Discussion

The present study investigated the prevalence of IBS in a community-dwelling population using the Rome III Questionnaire and assessed mental and lifestyle factors that affect IBS using a cross-sectional design. In this study, the prevalence of IBS (based on the Rome III Questionnaire) was 6.1%. The prevalence of IBS in our study was within the
Table 3. Characteristics According to Tertile Categories of Dietary Pattern Scores.

	Healthy dietary pattern	Western dietary pattern	Alcohol and accompanying dietary pattern																		
	Low tertile	Middle tertile	High tertile																		
	Mean	SD	Mean	SD																	
Energy (kcal)	2,014	65.3	1,867	52.3	1,916	60.0	0.034	1,976	61.8	1,975	58.5	1,847	57.9	0.005	1,873.04	587.2	1,936.59	588.3	1,987.25	641.2	0.014
Protein (g/1,000 kcal)	32.2	4.6	37.1	4.8	42.9	7.2	<0.001	37.6	7.6	36.7	6.4	37.8	7.3	0.689	35.5	5.2	37.0	6.3	39.7	8.8	<0.001
Carbohydrate (g/1,000 kcal)	143.4	19.6	139.5	16.8	134.7	18.3	<0.001	148.3	17.4	140.8	15.8	128.6	16.9	<0.001	145.9	14.5	142.2	17.0	129.6	19.8	<0.001
Fat (g/1,000 kcal)	24.8	6.1	27.4	5.3	29.4	5.5	<0.001	23.9	5.1	26.7	5.1	31.0	5.2	<0.001	28.3	5.3	27.1	5.8	26.2	6.5	<0.001
n-3 polyunsaturated fatty acids (g/1,000 kcal)	1.1	0.3	1.5	0.3	1.8	0.5	<0.001	1.5	0.5	1.4	0.4	1.5	0.4	0.334	1.3	0.4	1.4	0.4	1.6	0.6	<0.001
n-6 polyunsaturated fatty acids (g/1,000 kcal)	4.9	1.2	5.5	1.1	5.9	1.3	<0.001	4.8	1.1	5.3	1.1	6.2	1.2	<0.001	5.5	1.1	5.5	1.3	5.3	1.4	0.022
Folate (µg/1,000 kcal)	113.9	27.3	156.1	30.8	219.8	61.4	<0.001	164.2	54.1	154.4	57.0	171.3	69.6	0.133	162.1	60.7	159.0	58.0	168.8	63.7	0.156
Riboflavin (Vitamin B2) (mg/1,000 kcal)	0.5	0.1	0.7	0.1	0.8	0.2	<0.001	0.7	0.2	0.6	0.2	0.7	0.2	0.001	0.7	0.1	0.6	0.2	0.7	0.2	0.046
Pyridoxine (Vitamin B6) (mg/1,000 kcal)	0.5	0.1	0.6	0.1	0.8	0.2	<0.001	0.6	0.2	0.6	0.2	0.7	0.2	0.063	0.6	0.2	0.6	0.2	0.7	0.2	<0.001
Cobalamin (Vitamin B12) (µg/1,000 kcal)	4.0	1.9	5.4	2.3	7.1	3.6	<0.001	6.3	3.6	5.3	2.5	4.9	2.6	<0.001	4.4	2.1	5.3	2.6	6.8	3.6	<0.001
Ascorbic acid (Vitamin C) (mg/1,000 kcal)	28.8	11.7	45.2	12.5	73.1	25.1	<0.001	50.1	25.3	45.5	24.1	51.5	26.2	0.486	52.3	28.3	48.5	23.5	46.3	23.6	0.002
Soluble dietary fibre (g/1,000 kcal)	1.1	0.3	1.5	0.3	2.0	0.5	<0.001	1.6	0.5	1.5	0.5	1.5	0.6	0.561	1.6	0.6	1.5	0.5	1.5	0.6	<0.001
Insoluble dietary fibre (g/1,000 kcal)	3.3	0.6	4.4	0.6	5.8	1.3	<0.001	4.7	1.3	4.4	1.4	4.4	1.5	0.001	4.7	1.5	4.5	1.3	4.3	1.3	<0.001
Total dietary fibre (g/1,000 kcal)	4.5	0.9	6.0	0.9	8.2	1.9	<0.001	6.5	1.9	6.1	2.0	6.1	2.1	0.007	6.6	2.1	6.2	1.9	6.0	1.9	<0.001
Alcohol (g/1,000 kcal)	7.8	9.9	4.5	7.6	2.2	5.1	<0.001	3.7	6.7	4.9	8.2	5.8	9.2	0.001	1.3	3.0	3.3	5.9	9.9	10.7	<0.001

Based on linear regression analysis for continuous variables; ordinal numbers 0–2 were assigned to the tertile categories of each dietary pattern.
range of previous results (2-4). The participants with depression (CES-D 16 depression) had a greater risk of having IBS than those without depression. In addition, three dietary patterns were identified using a principal component analysis. After adjusting for potential confounders, the “Alcohol and accompanying” dietary pattern and depression were found to be related to the risk of IBS.

Previous studies have indicated that individual nutrients play a role in the symptoms of IBS. A study in a US population (23) showed that the studied individuals with IBS consumed a significantly smaller proportion of energy as carbohydrates and a greater proportion of energy as fat. In another study (24, 25), conducted among IBS patients with lactose malabsorption, a lactose-restricted diet significantly improved symptoms, both over the short and long term. In addition, a mixture of fructose and sorbitol is known to be absorbed more poorly and to cause more symptoms than either sugar alone, both in control and IBS patients (26). Several studies (27-29) with double blind testing have shown that individual foods sometimes cause IBS symptoms. In particular, among IBS patients, wheat, corn, dairy products, coffee, tea, citrus fruits, eggs and peas are found to provoke symptoms of IBS.

Recently, there has been growing awareness of the importance of dietary patterns in epidemiological studies concerning health issues with complex etiologies (30-32). Okubo and colleagues (33) reported that the “Japanese traditional” dietary pattern with high loading of rice, miso soup and soy products together with low (negative) loading of bread and confectionaries is associated with a significantly lower prevalence of functional constipation in young women (18-20 years of age). However, Guo and colleagues (3) did not find any associations between IBS and dietary patterns among healthy middle-aged Japanese working individuals. In our results, the subjects within the high tertile of the “Alcohol and accompanying” dietary pattern had a significantly lower risk of having IBS than the other groups. The “Alcohol and accompanying” dietary pattern was also associated with the intake of alcohol. Although alcohol consumption was not found to be significantly associated with IBS in several community-based studies (23, 34, 35), up to 21% of individuals with IBS report intolerance to various alcoholic beverages and up to 12% of individuals limit or avoid these drinks (36, 37). Another possible explanation for our results is selection bias. Because all participants were volunteers with an interest in their health, they may have been healthier than the general population. Those with a higher prevalence of IBS related to heavy drinking are not expected to have participated in this study, leaving a cohort of remaining individuals with the “Alcohol and accompanying” dietary pattern.

In this study, we found a significant association between depression (CES-D 16 depression) and IBS. Depressed or distressed psychological conditions have long been thought to play a major role in IBS, although how they relate to IBS or which disorder (psychological condition or IBS) comes first still remains to be identified. Recently, a conceptual model of IBS was developed suggesting bidirectional communication between the central nervous system and gastrointestinal tract. Visceral symptoms arising from the gastrointestinal tract secondarily influence the brain function (bottom-up model). Conversely, psychological factors themselves influence physiological factors, such as the motor, sensory, secretory and immune functions of the gastrointestinal tract (top-down model) (38). Previous studies have shown that early life stressors, such as sexual abuse and maternal separation, are related to the development of IBS (39-41). Understanding the psychological problems of IBS patients might contribute to the development of effective treatments.

There are several limitations to our study. First, the cross-sectional nature of this study does not allow for assessments regarding causal assumptions relating depression to the onset of IBS. Future studies with a longitudinal design are needed to investigate these associations. Second, the diagnosis of depression was established using the CES-D rather

Number of	Crude OR	95% CI	p value	Adjusted OR	95% CI	p value				
Healthy dietary pattern	Others	42	reference	reference	2.62	1.51 - 4.54	0.001	5.14	1.44 - 4.46	0.001
Western dietary pattern	Others	25	reference	reference	0.90	0.51 - 1.57	0.709	0.90	0.54 - 1.38	0.987
Alcohol and accompanying dietary pattern	Others	49	reference	reference	0.90	0.51 - 1.57	0.709	0.90	0.54 - 1.38	0.987
High	19	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	36	1.41	0.83 - 2.40	0.199	1.20	0.67 - 2.16	0.538			
High	42	2.62	1.51 - 4.54	0.001	2.54	1.44 - 4.46	0.001			
High	22	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	49	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	12	0.47	0.25 - 0.90	0.022	0.47	0.24 - 0.90	0.024			
High	19	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	36	1.41	0.83 - 2.40	0.199	1.20	0.67 - 2.16	0.538			
High	42	2.62	1.51 - 4.54	0.001	2.54	1.44 - 4.46	0.001			
High	22	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	49	0.90	0.51 - 1.57	0.709	1.00	0.54 - 1.38	0.987			
High	12	0.47	0.25 - 0.90	0.022	0.47	0.24 - 0.90	0.024			

OR: odds ratio, CI: confidence interval, CES-D: Center for Epidemiologic Studies Depression Scale

a Logistic regression model was adjusted for age, gender, amount of education, marital status, exercise habit, body mass index, smoking status, positive history of diabetes, hypertension, and dyslipidemia. Comparison between high tertile group and the others was conducted in each dietary pattern.
than a clinician-administered structured diagnostic interview. Third, the dietary data were obtained using the brief-type self-administered diet history questionnaire (BDHQ). Although the validity and reliability of our dietary questionnaire have been evaluated (22), potential misclassification of the dietary patterns may have affected our results. Fourth, several potential confounding factors, such as the employment physical activity level and interpersonal relationships among families, were not assessed in our study. Employment physical activity may be a particularly important factor, and high employment physical activity may have confounded the results. Stratification by the employment physical activity level should be a feature of future studies. Finally, as our sample size was relatively small, we were not able to subcategorize the IBS subjects.

In conclusion, we found that an “Alcohol and accompanying” dietary pattern and depression were related to the risk of IBS in a Japanese community population. However, we could not rule out the possibility of some. Further studies with longitudinal observations are therefore warranted.

The authors state that they have no Conflict of Interest (COI).

References

1. El-Salhy M, Hatlebakk JG, Gilja OH, Hausken T. Irritable bowel syndrome: recent developments in diagnosis, pathophysiology, and treatment. Expert Rev Gastroenterol Hepatol 8: 435-443, 2014.
2. Mykleby L, Jacka F, Williams L, et al. Prevalence of mood and anxiety disorder in self reported irritable bowel syndrome (IBS). An epidemiological population based study of women. BMC Gastroenterol 10: 88, 2010.
3. Guo Y, Niu K, Momm H, et al. Irritable bowel syndrome is positively related to metabolic syndrome: a population-based cross-sectional study. PLoS One 9: e112289, 2014.
4. Grundmann O, Yoon SL. Irritable bowel syndrome: epidemiology, diagnosis and treatment: an update for health-care practitioners. J Gastroenterol Hepatol 25: 691-699, 2010.
5. Miwa H. Prevalence of irritable bowel syndrome in Japan: Internet survey using Rome III criteria. Patient Prefer Adherence 2: 143-147, 2008.
6. Mönkkönen H. Quality of life in patients with irritable bowel syndrome. J Clin Gastroenterol 45: S98-S101, 2011.
7. Tan YM, Goh KL, Muhidayah R, Ooi CL, Salem O. Prevalence of irritable bowel syndrome in young adult Malaysians: a survey among medical students. J Gastroenterol Hepatol 18: 1412-1416, 2003.
8. Faresjo A, Grodzinsky E, Johansson S, Wallander MA, Timpka T, Akerfjord I. A population-based case-control study of work and psychosocial problems in patients with irritable bowel syndrome--women are more seriously affected than men. Am J Gastroenterol 102: 371-379, 2007.
9. Beatty JK, Bhardwaj A, Buret AG. Post-infectious irritable bowel syndrome: mechanistic insights into chronic disturbances following enteric infection. World J Gastroenterol 20: 3976-3985, 2014.
10. Ford AC, Talley NJ. Mucosal inflammation as a potential etiological factor in irritable bowel syndrome: a systematic review. J Gastroenterol 46: 421-431, 2011.
11. Levy RL, Olden KW, Naliboff BD, et al. Psychosocial aspects of the functional gastrointestinal disorders. Gastroenterology 130: 1447-1458, 2006.
12. Hayes P, Corish C, O’Maloney E, Quigley EM. A dietary survey of patients with irritable bowel syndrome. J Hum Nutr Diet 27: 36-47, 2014.
13. Feinte-Bisset C, Azpiroz F. Dietary lipids and functional gastrointestinal disorders. Am J Gastroenterol 108: 737-747, 2013.
14. Böhn L, Störsrud S, Törnblom H, Bengtsson U, Simrén M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am J Gastroenterol 108: 634-641, 2013.
15. Okami Y, Kato T, Nin G, et al. Lifestyle and psychological factors related to irritable bowel syndrome in nursing and medical school students. J Gastroenterol 46: 1403-1410, 2011.
16. Chirila I, Petruisu FD, Ciortescu I, Mihai C, Drug VL. Diet and irritable bowel syndrome. J Gastrointestin Liver Dis 21: 357-362, 2012.
17. Omagari K, Murayama T, Tanaka Y, et al. Mental, physical, dietary, and nutritional effects on irritable bowel syndrome in young Japanese women. Intern Med 52: 1295-1301, 2013.
18. Longstreth GF, Thompson WG, Chey WD, Houghton LA, Mealin FP, Spiller RC. Functional bowel disorders. Gastroenterology 130: 1480-1491, 2006.
19. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1: 385-401, 1977.
20. Science and Technology Agency. Standard Tables of Food Composition in Japan. 5th rev ed. Printing Bureau of the Ministry of Finance, Tokyo, 2005(in Japanese).
21. Science and Technology Agency. Standard Tables of Food Composition in Japan: Fatty Acid Section. 5th rev and enlarged ed. Printing Bureau of the Ministry of Finance, Tokyo, 2005(in Japanese).
22. Kobayashi S, Honda S, Murakami K, et al. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J Epidemiol 22: 151-159, 2012.
23. Saito YA, Locke GR 3rd, Weaver AL, Zinsmeister AR, Talley NJ. Diet and functional gastrointestinal disorders: a population-based case-control study. Am J Gastroenterol 100: 2743-2748, 2005.
24. Vernia P, Ricciardi MR, Frida F, Frieri G. Lactose malabsorption and irritable bowel syndrome. Effect of a long-term lactose-free diet. Ital J Gastroenterol 27: 117-121, 1995.
25. Bohmer CJ, Tuyman HA. The effect of a lactose-restricted diet in patients with a positive lactose tolerance test, earlier diagnosed as irritable bowel syndrome: A 5-year follow-up study. Eur J Gastroenterol Hepatol 13: 941-944, 2001.
26. Rumessen JJ, Gudmud-Hoyer E. Functional bowel disease: Malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterology 95: 694-700, 1988.
27. Jones VA, McLaughlan P, Shorthouse M, Workman E, Hunter JO. Food intolerance: a major factor in the pathogenesis of irritable bowel syndrome. Lancet 2: 1115-1117, 1982.
28. Bentley SJ, Pearson DJ, Rix KJ. Food hypersensitivity in irritable bowel syndrome. Lancet 2: 295-297, 1983.
29. Farah DA, Calder I, Benson L, MacKenzie JF. Specific food intolerance: its place as a cause of gastrointestinal symptoms. Gut 26: 164-168, 1985.
30. Jacques PF, Tucker KL. Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73: 1-2, 2001.
31. Nauru A, Kimura Y, Matsuishi Y, et al. Dietary patterns and depressive symptoms among Japanese men and women. Eur J Clin Nutr 64: 832-839, 2010.
32. Sugawara N, Yasui-Furukori N, Sato Y, et al. Dietary patterns are associated with obesity in Japanese patients with schizophrenia. BMC Psychiatry 14: 184, 2014.
33. Okubo H, Sasaki S, Murakami K, et al. Dietary patterns associated with functional constipation among Japanese women aged 18 to 20 years: a cross-sectional study. J Nutr Sci Vitaminol (Tokyo) 53: 232-238, 2007.

34. Halder SL, Locke GR 3rd, Schleck CD, Zinsmeister AR, Talley NJ. Influence of alcohol consumption on IBS and dyspepsia. Neurogastroenterol Motil 18: 1001-1008, 2006.

35. Talley NJ, Zinsmeister AR, Melton LJ 3rd. Irritable bowel syndrome in a community: Symptom subgroups, risk factors, and health care utilization. Am J Epidemiol 142: 76-83, 1995.

36. Simren M1, Mansson A, Langkilde AM, et al. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 63: 108-115, 2001.

37. Monsbakken KW, Vandvik PO, Farup PG. Perceived food intolerance in subjects with irritable bowel syndrome—etiology, prevalence and consequences. Eur J Clin Nutr 60: 667-672, 2006.

38. Stasi C, Rosselli M, Bellini M, Laffi G, Milani S. Altered neuroendocrine-immune pathways in the irritable bowel syndrome: the top-down and the bottom-up model. J Gastroenterol 47: 1177-1185, 2012.

39. Chitkara DK, van Tilburg MA, Blois-Martin N, Whitehead WE. Early life risk factors that contribute to irritable bowel syndrome in adults: a systematic review. Am J Gastroenterol 103: 765-774, 2008.

40. Klooker TK, Braak B, Painter RC, et al. Exposure to severe wartime conditions in early life is associated with an increased risk of irritable bowel syndrome: a population-based cohort study. Am J Gastroenterol 104: 2250-2256, 2009.

41. van Tilburg MA, Runyan DK, Zolotor AJ, et al. Unexplained gastrointestinal symptoms after abuse in a prospective study of children at risk for abuse and neglect. Ann Fam Med 8: 134-140, 2010.