Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes

Almando Geraldi¹,²,*

Abstract
Minor ginsenosides are of great interest due to their diverse pharmacological activities such as their anti-cancer, anti-diabetic, neuroprotective, immunomodulator, and anti-inflammatory effects. The miniscule amount of minor ginsenosides in ginseng plants has driven the development of their mass production methods. Among the various production methods for minor ginsenosides, the utilization of microorganisms and their enzymes are considered as highly specific, safe, and environmentally friendly. In this review, various minor ginsenosides production strategies, namely utilizing microorganisms and recombinant microbial enzymes, for biotransforming major ginsenosides into minor ginsenoside, as well as constructing synthetic minor ginsenosides production pathways in yeast cell factories, are described and discussed. Furthermore, the present challenges and future research direction for producing minor ginsenosides using those approaches are discussed.

Keywords
biotransformation, biosynthesis, β-glucosidase, Ginsenosides, minor ginsenosides.

Introduction
Ginseng, a plant belonging to the Araliaceae family and the genus Panax, has been used to treat different kinds of ailments and disease in East Asian countries for millennia [1, 2]. Recently, the popularity of ginseng as a nutraceutical and alternative medicine has been increasing worldwide [3, 4]. The global ginseng market has been reported to be valued at over two billion U.S. dollars and is expected to grow exponentially [5].

The beneficial health effects of ginseng are mainly attributed to ginsenosides, the major bioactive compound of ginseng [6, 7]. Various in vitro and in vivo studies have demonstrated the diverse pharmacological activities of ginsenosides such as anti-microbial, antioxidant, anti-inflammatory, skin-protective, neuroprotective, anti-cancer, and anti-diabetic effects (Table 1). Most of ginsenosides are classified as protopanaxadiol (PPD), and protopanaxatriol (PPT) types [8]. Both types consist of an aglycon (a non-sugar component) of a dammarane skeleton (PPD or PPT) as an aglycon and one to four molecules of sugar moieties at C-3 and C-20 positions in the case of PPD-type ginsenosides or at C-6 and C-20 positions in the case of PPT-type ginsenosides [9, 10].

Meanwhile, based on their abundance in ginseng, ginsenosides can be classified as major ginsenoside and minor ginsenosides. Major ginsenosides [i.e., Rd, Rc, Rb₂, and Rb₁ (PPD-type); Rg₁, Rf, and Re (PPT-type)] constitute more than 90% of the total ginsenosides, while minor ginsenosides [i.e. F₂, Rg₂, Rh₁, and Compound K (PPD-type); Rg₂, Rh₁, and F₁ (PPT-type)] are only present in small quantities in ginseng [50, 51]. Despite showing some therapeutic effects such as, anti-inflammatory, anti-diabetic, and neuroprotective effects, major ginsenosides are not easily absorbed by the human body [52]. On the other hand, while they are only present in very low amounts in ginseng, minor ginsenosides are considered as being more pharmacologically active than major ginsenosides due to their smaller molecule size, better permeability across the cell membrane, and thus their higher bioavailability [53, 54].

Minor ginsenosides are of commercial interest due to their diverse biological activities and high pharmacological activities. However, the miniscule amount of minor ginsenosides extracted from ginseng cannot satisfy the needs of scientific and clinical studies, as well as commercial purposes.
Table 1 Example of PPD- and PPT-type Ginsenosides with Their Health Benefits

Name	R1 (C3)	R3 (C20)	Health Benefits	References
20(S)-Protopanaxadiol-type ginsenoside				
Rb₁, Rb₂, Rc, Rd	Major ginsenosides	Glc₁–₂Glc	Glc₁–₆Glc	Neuroprotective and anti-diabetic effects [11, 12]
Rf, Rg₁, F₂, Rg₂	Minor ginsenosides	Glc–	Glc–	Anti-cancer and neuroprotective effects [17, 18]
Gypenoside XVII (GypXVII)	H–	Glc₁–₆Glc	Neuroprotective and anti-oxidant, anti-cancer, and skin-protective effects [19–21]	
Gypenoside LXXV (GypLXXV)	H–	Glc₁–₆Glc	Cardioprotective and neuroprotective effects [25, 26]	
Rh₂	H–	Glc–	Skin-protective and anti-cancer effects [27, 28]	
Compound K (CK)	H	Glc–	Anti-epileptic, anti-cancer, and skin-protective effects [33–35]	

Name	R2 (C6)	R3 (C20)	Health Benefit	References
20(S)-Protopanaxatriol-type ginsenoside				
Re, Rf, Rh₁	Major ginsenosides	Rha₁–₂Glc	Glc–	Anti-diabetic, kidney-, and heart-protective effects [36–38]
Rg₁, Rg₂, F₁	Minor ginsenosides	Rha₁–₂Glc	H	Neuroprotective and anti-inflammatory effects [39, 40]
		Glc–	Glc–	Neuroprotective and hepatoprotective effects [41, 42]
		H–	H–	Skin-protective, antidepressant, and anti-inflammatory effects [43–45]
		H	Anti-oxidant, anti-inflammatory, immunomodulator, and anti-cancer [46, 47]	
		Glc–	Anti-aging, anti-oxidant, skin-protective, immunomodulator [48, 49]	

Ara(f): α-L-arabinofuranosyl; Ara(p): α-L-arabinopyranosyl; Glc: α-D-glucopyranosyl; Rha: α-L-ahammopyranosyl.
Minor ginsenosides production methods

The most common approach to producing minor ginsenosides is by hydrolyzing the sugar moieties of major ginsenosides [57]. The hydrolysis can be conducted through physical (heat and microwave transformation), chemical (acid and alkali hydrolysis), and biological (biotransformation) methods. Heat transformation via baking and steaming transforms PPD-type major ginsenosides Rb₁, Rb₂, and Rc₂ into Rd, and finally into minor ginsenosides Rg₁, F₂, compound K, and Rh₁, as well as PPT-type major ginsenosides Re and Rf into minor ginsenosides Rh₁ and F₁, with by-products of acetyl-ginsenosides [58, 59]. Meanwhile, acid hydrolysis using hydrochloric acid transformed Rb₁ into Rg₂ [60]. The physical and chemical methods are considered to be fast and simple; however, the use of those methods often results in the formation of undesirable by-products due to the low specificity. Moreover, there are safety and environmental issues, for example, due to the use of high temperature in the heat transformation approach, or strong acid/base in the acid/alkali hydrolysis methods. On the other hand, biological methods which involve enzymes offer higher reaction specificity, can be conducted in mild conditions minimizing safety risks, and are more environmentally friendly [61]. Thus, there is growing interest in using biological methods for the mass production of minor ginsenosides.

In general, the biological methods for producing minor ginsenosides can be categorized as; the use of microbial cells and enzymes for hydrolyzing sugar moieties of major ginsenosides, and the emerging biosynthesis methods, where the minor ginsenoside biosynthesis pathway is introduced into microorganism hosts. The present paper reviews the advances on using those biological methods for producing minor ginsenosides.

Table 2 Production of Minor Ginsenosides in Different Microorganism

Microorganism	Source of Microorganism	Transformation Pathway	Remarks
Flavobacterium sp. GE 32 [65]	Root of Panax ginseng (Jilin, China)	Rb₁ → GypXVII	Rg₂ was produced with conversion rate of 98% after 15 h Endophytic fungi
Burkholderia sp. GE 17–7 [66]	P. ginseng (Jilin, China)	Rb₁ → Rd → Rg₃	
Arthrinium sp. GE 17–18 [67]	Root of P. ginseng (Jilin, China)	Rb₁ → Rd → F₂ → CK	Re (30 mg) was transformed into Rg₂ (24 mg) with a yield of 96% Yeast
Cellulosimicrobium sp. TH-20 [68]	Soil of ginseng field (Fusong, China)	Re → Rg₂	
C. allociferrii JNO301 [70]	Meju (dried fermented soybeans) from South Korea	Rb₁ → Rd → F₂ → CK	
Leuconostoc mesenteroides WIKim19 [71]	Kimchi (fermented vegetable) from South Korea	Rb₁ → Rd → F₂	
Lactobacillus rhamnosus GG [72]	Culture collection	Rb₁ → Rd	
Schizopyllum commune [73]	Culture collection	Rb₁ → Rd → F₂ → CK	

Biotransformation of major ginsenosides into minor ginsenosides using microorganisms

A wide variety of microorganisms have been used in the biotransformation of major ginsenosides into minor ginsenosides (Table 2). The biotransformation activities are mainly attributed to β-glucosidases (β-d-glucopyranoside glucohydrolase) [E.C.3.2.1.21] which hydrolyze the glycosidic bonds of the sugar moieties of the major ginsenosides at the C-3, C-6, and C-20 positions [62]. However, due to specific structures of the aglycon (dammaran skeleton), only specific β-glucosidases, thus specific microorganisms are able to hydrolyze ginsenoside-β-glucoside linkages [63].

Ginseng plantation fields are one of the main sources of microorganisms with major ginsenoside-biotransforming activities. Endophytic microorganisms, spend all or part of their life cycle inside ginseng plants without damaging the plant tissues or inducing defense responses, for example, Burkholderia sp. GE 17-7 and Flavobacterium sp. GE 32, as well as fungi Arthrinium sp. GE 17-18 [64]. Those microorganisms exhibit hydrolysis activities on PPD-type ginsenosides. Flavobacterium sp. GE 32 has been reported to hydrolyze the outer glycosidic linkage of Rb₁ at C-3 to produce Gypenoside XVII and the C-20 position to produce Rd. The bacteria also showed hydrolysis activities on the glycosidic linkage at the C-20 position of Rd to generate Rg₃ [65]. Similar hydrolysis activities on the terminal and inner glucopyranosyl moieties at the C-20 position of Rb₁ to produce Rg₃ were also shown by Burkholderia sp. GE 17-7 [66]. Meanwhile Arthrinium sp. GE 17-18 was shown to have hydrolysis activity on terminal and inner glucopyranosyl moieties at the C-3 position and terminal glucopyranosyl moieties at the C-20 position of Rb₁ to generate CK [67]. Finally, Cellulosimicrobium sp. TH-20 isolated from rhizosphere soil of ginseng showed biotransformation activities on PPT-type Re to Rg₂ by hydrolyzing sugar moieties at the C-20 position [68].
Generally recognized as safe (GRAS) microorganisms (i.e., probiotics, microorganisms from fermented foods, etc.), which are non-pathogenic and considered as safe to be used for nutraceutical and pharmaceutical purposes, were also reported to have major ginsenoside-biotransforming activities [69]. Candida allociferri JNO301 yeast isolated from Korean fermented soybean showed hydrolysis activity on outer glucopyranosyl moieties at the C-3 and C-20 positions of Rb1 to produce F2. Interestingly the yeast also exhibited biotransformation activity on PPT-type ginsenoside RF into Rh2, by hydrolyzing outer sugar moieties at the C-6 position [70].

Biotransformation of major ginsenosides into minor ginsenosides using β-glucosidase from microorganisms

Purified recombinant enzymes are considered superior to the enzymes isolated and purified from cultured microorganisms due to their higher selectivity and activity [74–76]. Gram-scale quantities of minor ginsenosides were produced using enzymes from Microbacterium sp. Gsoil 167 isolated from ginseng plantation and Lactobacillus ginsenosidimutans EMML 3041 from kimchi (fermented vegetable) [27, 77] (Table 3). Thermostable β-glucosidase were also reported to exhibit ginsenoside-biotransformation activities which resulted in the production of Gram-scale quantities of minor ginsenosides. Those thermostable enzymes are of industrial interest as the enzymes can be used in combination with heat and acid hydrolysis to further accelerate and increase the yield of major ginsenoside biotransformation. While most of ginsenoside-biotransforming microorganisms and enzymes are isolated from the East Asia region, interestingly one bacterial isolate from Indonesia has β-glucosidase that can hydrolyze the outer sugar moieties at C-3 and C-20 of Rb, to produce F2 [62].

Based on the data in Table 3, *Escherichia coli* is the most common host for the production of recombinant β-glucosidase. This is due to the simplicity of *E. coli* genetic modification and its rapid growth in relatively inexpensive media [78, 79]. However, *E. coli* is not preferable for application in food and pharmaceutical industries due to its non-GRAS status [80]. Efforts to produce ginsenoside transforming-β-glucosidase in GRAS microorganisms, such as Corynebacterium glutamicum and Lactococcus lactis have been attempted. Microbacterium testaceum β-glucosidase was successfully expressed in *C. glutamicum* and exhibit biotransformation activity for both PPD- and PPT-type ginsenosides, and resulted in the production of Gram-scale quantities of CK and F1 [56]. However, in general, the quantity and activity of ginsenoside biotransforming-β-glucosidases produced in GRAS hosts are not as high as recombinant β-glucosidases produced in *E. coli* [81, 82].

Biosynthesis of minor ginsenoside in microorganisms

Despite the high efficiency, biotransformation methods for producing minor ginsenosides require ginseng extracts as the raw material which are produced through time-consuming (typically, 5–6 years are required to produce marketable ginseng), labor-intensive, energy-consuming, and high-cost processes and can be affected by many factors such as soil quality, climate, pathogens, and pests [92, 93]. The discovery of genes encoding enzymes involved in the minor ginsenosides synthesis pathway coupled with the advances in synthetic biology tools, has allowed the construction of microbial cell factories, which can provide more sustainable and cost-effective alternative to mass-produced minor ginsenosides from renewable resources [94, 95].

The ginsenoside biosynthesis pathway has mainly been introduced for three species of yeasts (*Saccharomyces cerevisiae, Pichia pastoris*, and *Yarrowia lipolytica*) which are on the GRAS list of microorganisms, and are compatible for the expression of plant-derived heterologous enzymes [95]. In general, there are three general strategies to produce minor ginsenosides in yeast cell factories: (1) improving the yield of the yeast native mevalonic acid (MVA) pathway; (2) introducing genes for the synthesis of ginsenosides aglycons; and (3) introducing uridine diphosphate (UDP)-glycosyltransferase genes for the addition of sugar moieties to the aglycons (Figure 1).

The MVA pathway produces isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) which are important precursors for the synthesis of ginsenosides, from acetyl coenzyme A (acetyl-CoA). The native MVA pathway of yeasts is improved by overexpressing 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) which catalyzes the production of mevalonate from 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA). Furthermore, to eliminate the post-transcriptional feedback inhibition, *hmgr* gene with a truncated N-terminal (*hmgr*), which lacks its N-terminal transmembrane sequence coding for membrane-binding activity, is used [96]. Additionally, the acetyl-CoA supply to the pathway can be improved, for example, via the overexpression of the *ALD6* gene (encoding NADP-dependent aldehyde dehydrogenase) along with the introduction of a synthetic codon-optimized acetyl-CoA synthase mutant from *Salmonella enterica* [97].

IPP and DMAPP are then converted to 2,3 oxidosqualene, the precursor of ginsenoside aglycons. The yield of 2,3 oxidosqualene is improved by the overexpression of squalene synthase (SQS)- and squalene epoxidase (SQE)-encoding genes. To minimize the utilization of 2,3 oxidosqualene by competing yeasts in the native ergosterol pathway, downregulation of the Erg7/LS (lanosterol synthase)-encoding gene is conducted. The subsequent conversion of 2,3 oxidosqualene into dammarenediol and protopanaxadiol/propoxypanaxatriol was facilitated by the introduction of dammarenediol II synthase and cytochrome P450 (CYP) [protopanaxadiol synthase (CYP71A447) and protopanaxatriol synthase (CYP71A53v2)] genes from *P. ginseng* and NADPH-cytochrome P450 reductase (CPR) from *Arabidopsis thaliana* or *P. ginseng* [92, 98, 99].

Finally, the addition of sugar moieties to PPD and PPT aglycons was facilitated by the introduction of glycosyltransferases-encoding genes. UDP-glycosyltransferases from *P. ginseng*, PgUGT45 and PgUGT74AE2, catalyze the transfer of a glucose moiety from UDP-glucose (UDP-Glc) to the C3 hydroxyl groups of PPD to form Rh2, whereas PgUGT29
Table 3 Production of Minor Ginsenosides Using Different Recombinant \(\beta \)-Glucosidase

\(\beta \)-Glucosidase	Source of Microorganism	Transformation Pathway	Yields
Recombinant \(\beta \)-glucosidase from *Microbacterium* sp. Gsoil 167 expressed in *E. coli* BL21(DE3) [27]	Soil of ginseng field (Pocheon, South Korea)	\(\text{GypXVII} \rightarrow \text{GypLXXV} \)	\(\text{GypXVII (10 g) was transformed into GypLXXV (5.7 g; 69.6\% recovery; and 97.8 chromatographic purity)} \)
Recombinant \(\beta \)-glucosidase from *Arachidicoccus ginsenosidimutans* sp. nov. expressed in *E. coli* BL21(DE3) [83]	Ginseng compost (South Korea)	\(\text{Rb} \rightarrow \text{GypXVII} \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \)	\(\text{Rb} (1 mg/ml) was transformed into CK (0.46 mg/ml; 77\% molar conversion yield within 60 min) \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [84]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \)	\(\text{Re (1 mg) was transformed into Rg}_1 \) (0.83 mg; 100\% molar conversion yield within 150 min) \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [85]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_2 \)	\(\text{Re (150 g) was transformed into Rg}_2 \) (150 g; 84.0±1.1\% chromatographic purity) \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [86]	Soil of ginseng field (South Korea)	\(\text{GypXVII} \rightarrow \text{CK} \)	\(\text{GypXVII was transformed into CK (89\% molar conversion yield within 6 h)} \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [87]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \)	\(\text{Re (50 g) was transformed into Rg}_1 \) (30 g; 74.3\% chromatographic purity) \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [88]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \rightarrow \text{CK} \)	\(\text{Re (10 g/L) was transformed into Rg}_1 \) (8.02 g/L) within 60 min at 85 °C and PH 5.5 \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [89]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \rightarrow \text{CK} \)	\(\text{Re (2 mg/ml) was transformed into Rg}_1 \) (1.66 mg/ml; 100\% molar conversion yield) within 3 h at 85 °C and PH 5.5 \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [90]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \rightarrow \text{CK} \)	\(\text{CK (7.59 g/L) was produced from PPD-type ginsenoside mixtures in 24 h)} \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [91]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \rightarrow \text{CK} \)	\(\text{F}_1 \) (9.42 g/L) was produced from PPT-type ginsenoside mixtures in 24 h \)
Recombinant \(\beta \)-glucosidase from *Microbacterium esteraromaticum* expressed in *E. coli* BL21(DE3) [92]	Soil of ginseng field (South Korea)	\(\text{Re} \rightarrow \text{Rg}_1 \rightarrow \text{Rg}_2 \rightarrow \text{F}_2 \rightarrow \text{CK} \rightarrow \text{Rd} \rightarrow \text{F}_2 \rightarrow \text{CK} \)	\(\text{F}_1 \) was produced from PPD-type ginsenoside mixtures with 74\% conversion yield \)
Figure 1: Biosynthetic pathways for minor ginsenosides in metabolically engineered *S. cerevisiae*. Single arrows represent one-step conversions, while multiple arrows represent multiple steps. Bold, blue arrow represents over-expressed modified yeast endogenous genes (hHMGR: truncated 3-hydroxy-3-methylglutaryl-CoA reductase). Bold, green arrows represent over-expressed yeast endogenous genes (FPS: farnesyl pyrophosphate synthase; SS: squalene synthase; SQE: squalene epoxidase). Bold, red arrows represent exogenous plant genes that were introduced into *S. cerevisiae* (PgDDS: *P. ginseng* dammarenediol II synthase; CYP716A47: *P. ginseng* protopanaxadiol synthase; CYP716A53v2: *P. ginseng* protopanaxatriol synthase; CPR: *A. thaliana/P. ginseng* NADPH-cytochrome P450 reductase; PgUGTs: *P. ginseng* UDP-glycosyltransferases). Dashed arrow represents competing pathway (LS: lanosterol synthase).

Table 4: Production of Minor Ginsenosides Using Different Yeast Cell Factories

Host Microorganism	Strategies	Products	Yield
S. cerevisiae strain BY4742 (MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0)	• Enhancing MVA pathway of *S. cerevisiae* strain BY4742	Rh₂, Rg₃	(3.49 ± 0.14 μmol/g dry cell weight) and Rh₂ (1.45 ± 0.27 μmol/g dry cell weight) were produced after 6 days [103]
S. cerevisiae strain ZW-PPD-B (PPD-producing yeast strain) [103]	• Introducing cytochrome P450 CYP716A53v2, cytochrome P450 reductase PgCPR1, and UDP-glycosyltransferase PgUGT100 genes into *S. cerevisiae* strain ZW-PPD-B to construct an Rh1-producing yeast strain	Rh₁, F₁	Rh₁ (92.8 ± 12.5 mg/L) and F₁ (42.1 ± 3.2 mg/L) were produced after 6 days [102]
S. cerevisiae strain ZD-PPD-016 (PPD-producing yeast strain) [96]	• Conducting site-directed mutagenesis and iterative saturation mutagenesis to *S. cerevisiae* glycosyltransferase-encoding gene (*UGT51*)	Rh₂	(300 mg/L) was produced via a 5L fed-batch fermentation [104]
S. cerevisiae strain BY4742 (MATα, his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0)	• Modular engineering of the MVA pathway	Rh₂	(2.25 g/L) was produced via a 10L fed-batch fermentation [105]
Y. lipolytica ATCC 201249	• Overexpressing key genes in the MVA pathway	CK	CK (161.8 mg/L) was produced via a 5L fed-batch fermentation [106]

MVA: Mevalonic acid.

and PgUGT94Q2 catalyze the transfer of a glucose moiety from UDP-Glc to Rh₂ to form Rg₃ [100, 101]. Meanwhile, PgUGT100 and PgUGT1 transfer a glucose moiety from UDP-glucose (UDP-Glc) to the C-6 and C-20 hydroxyl groups of PPT to form Rh₁ and F₁, respectively [102]. The application of the general strategies along with other strategy
such as protein engineering resulted in the production of minor ginsenosides in Gram-scale quantities (Table 4).

Conclusion and future perspectives

Due to their medical importance and high economical value, investigations on the mass-production methods of minor ginsenosides, especially those that involve microorganisms and their enzymes, have garnered great interest. Various microorganisms have been reported to be able to convert major ginsenosides into minor ginsenosides, including GRAS microorganisms which would be suitable for the food and drugs industries. To date the highest yield of minor ginsenosides has been obtained via the biotransformation of major ginsenosides using recombinant β-glucosidase expressed in E. coli systems. However, E. coli is considered as unsafe, and is an inedible bacteria, which would limit its application in the nutraceutical and pharmaceutical industries. Thus, the improvements of recombinant β-glucosidase production in GRAS strains such as C. glutamicum and L. lactis, for example, through the optimization of growth condition, and media, as well as genetic engineering, are needed.

Finally, the costly, time-consuming, and labor-intensive process of producing ginseng extract as substrates for bio-transformation, has driven the development of more sustainable ways to produce minor ginsenosides, especially via biosynthesis in yeast cell factories. The introduction of ginsenosides biosynthesis genes from P. ginseng coupled with the optimization of yeast native pathways has led to the successful production of minor ginsenosides. Further optimization using protein engineering, synthetic biology, and metabolic engineering approaches, as well as the development of efficient fermentation strategies are critical to unleash the full potential of yeast cell factories to mass produce minor ginsenosides.

Competing interests

The authors declare that they have no competing interests.

References

[1] Guo D, Cheng L, Zhang Y, Zheng H, Ma H, et al. An improved method for the preparation of Ginsenoside Rg3 from ginseng fibrous root powder. Helijion 2019;5:e02694. [PMID: 31687518 DOI: 10.1016/j.helijion.2019.e02694]

[2] Li X, Sun L, Zhao D. Current status and problem-solving strategies for ginseng industry. Chin J Integr Med 2019;25:883-6. [PMID: 31630359 DOI: 10.1007/s11655-019-3046-2]

[3] Baeg I-H, So S-H. The world ginseng market and the ginseng industry. J Ginseng Res 2013;37:1-7. [PMID: 23717152 DOI: 10.5142/jgr.2013.37.1]

[4] Choe J, Kim Y-H, Choi T-Y, Lee MS. Ginseng for health care: a systematic review of randomized controlled trials in Korean literature. PLoS One 2013;8:e59978. [PMID: 23560064 DOI: 10.1371/journal.pone.0059978]

[5] DesRochers N, Walsh PJ, Renaud BJ, Seifert AK, Yeung K-CK, et al. The full potential of yeast cell factories to mass produce minor ginsenosides. Appl Microbiol Biotechnol 2016;6:81092-100. [DOI: 10.1039/C6RA14831J]

[6] Xu J, Chu Y, Liao B, Xiao S, Yin Q, et al. An improved method for the preparation of Ginsenoside Rg5 from ginseng fibrous root powder. Helijion 2019;5:e02694. [PMID: 31687518 DOI: 10.1016/j.helijion.2019.e02694]

[7] Yu JS, Roh H-S, Baek K-H, Lee S, Kim S, et al. Bioactivity-guided isolation of ginsenosides from Korean red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018;42:562-70. [PMID: 30338717 DOI: 10.1016/j.jgr.2018.02.004]

[8] Wu T, Kwaku OR, Li H-Z, Yang C-R, Ge L-J, et al. Sense ginsenosides from ginseng: structure-activity relationship in apoptosis. Nat Prod Commun 2019;14:1934578X199588223. [DOI: 10.1177/1934578X199588223]

[9] Yang L, Zou H, Gao Y, Luo J, Xie X, et al. Insights into gastrointestinal microbially-generated ginsenoside metabolites and their bioactivities. Drug Metab Rev 2020;52:125-38. [PMID: 31948050 DOI: 10.1080/03602522.2020.1714645]

[10] Park C-S, Yoo M-H, Noh K-H, Oh D-K. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biotechnol 2010;87:9-19. [PMID: 20376631 DOI: 10.1007/s00253-010-2567-6]

[11] Zhou P, Xie W, He S, Sun Y, Meng X, et al. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019;8:204. [PMID: 30823412 DOI: 10.3390/cells8030204]

[12] Ahmed T, Raza SH, Maryam A, Setzer WN, Braidy N, et al. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull 2016;125:30-43. [PMID: 27060612 DOI: 10.1016/j.brainresbull.2016.04.002]

[13] Huang Q, Wang T, Wang H. Ginsenoside Rb2 enhances the anti-inflammatory effect of α-3 fatty acid in LPS-stimulated RAW264.7 macrophages by upregulating GPR120 expression. Acta Pharmacol Sin 2017;38:192-200. [PMID: 28017961 DOI: 10.1038/aps.2016.135]

[14] Kim DH, Kim DW, Jung BH, Lee JH, Lee H, et al. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2019;43:326-34. [PMID: 30976171 DOI: 10.1016/j.jgr.2018.12.002]

[15] Oh Y, Lim H-W, Park KH, Huang Y-H, Yoon J-Y, et al. Ginsenoside Rc protects against UVB induced photooxidative damage in epidermal keratinocytes. Mol Med Rep 2017;16:2907-14. [PMID: 28713942 DOI: 10.3892/mmr.2017.6943]

[16] Yu T, Yang Y, Kwak Y-S, Song GG, Kim M-Y, et al. Ginsenoside Rc from Panax ginseng exerts anti-inflammatory activity by targeting TANK-binding kinase 1/interferon regulatory factor-3 and p38/ATF-2. J Ginseng Res 2017;41:127-33. [PMID: 28413316 DOI: 10.1016/j.jgr.2016.02.001]

[17] Cong L, Chen W. Neuroprotective effect of ginsenoside Rd in spinal cord injury rats. Basic Clin Pharmacol Toxicol 2016;119:193-201. [PMID: 26833867 DOI: 10.1111/bcpt.12562]

[18] Zhang E, Shi H, Yang L, Wu X, Wang Z. Ginsenoside Rd regulates the Akt/mTOR/p70S6K signaling cascade and suppresses angiogenesis and breast tumor growth. Oncol Rep 2017;38:359-67. [PMID: 28534996 DOI: 10.3892/ort.2017.6562]

[19] Jeong WI, Kim MH, Jeong JM, Kim SY, Kim SC, inventors; INTELLIGENT SYNTHETIC BIOLOGY CENTER, assignee. Composition for preventing or treating liver cancer containing ginsenoside F2 and its underlying mechanism analysis. Cells 2019;8:204. [PMID: 30823412 DOI: 10.3390/cells8030204]

[20] A. Geraldi: Advances in the Production of Minor Ginsenosides 21
Park S-H, Seo W, Eun HS, Kim SY, Je O, et al. Protective effects of ginsenoside F2 on 12-O-tetradecanoylphorbol-13-acetate-induced skin inflammation in mice. Biochem Biophys Res Commun 2016;478:1713-9. [PMID: 27596969 DOI: 10.1016/j. bbrc.2016.09.009]

Kim S-J, Jang JY, Kim E-J, Cho EK, Ahn D-G, et al. Ginsenoside Rg3 restores hepatitis C virus-induced aberrant mitochondrial dynamics and inhibits virus propagation. Hepatology 2017;66:758-71. [PMID: 28329914 DOI: 10.1002/hep.29177]

Sun M, Ye Y, Xiao L, Duan X, Zhang Y, et al. Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med 2017;39:507-18. [PMID: 28098857 DOI: 10.3892/ijmm.2017.2857]

You Z, Yao Q, Shen J, Gu Z, Xu H, et al. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF-signaling cascade. J Nat Med 2017;71:367-79. [PMID: 28013484 DOI: 10.1007/s11418-016-1066-1]

Meng X, Luo Y, Liang T, Wang M, Zhao J, et al. Gypenoside XVII enhances lysosome biogenesis and autophagy flux and accelerates autophagic clearance of amyloid-β through TFEB activation. J Alzheimers Dis 2016;52:1135-50. [PMID: 27069663 DOI: 10.3233/JAD-160096]

Yang K, Zhang H, Luo Y, Zhang J, Wang M, Liao P, et al. Gypenoside XVII prevents atherosclerosis by attenuating endothelial apoptosis and oxidative stress: Insight into the ERK-mediated PI3K/Akt pathway. Int J Mol Sci 2017;18:77. [PMID: 28208754 DOI: 10.3390/ijms18020077]

Cui C-H, Kim DJ, Jung S-C, Kim S-C, Im W-T. Enhanced production of gypenoside LXXV using a Novel Ginsenoside-transforming β-glucosidase from Ginseng-Cultivating Soil Bacteria and its anti-cancer property. Molecules 2017;22:844. [PMID: 28534084 DOI: 10.3390/molecules22050844]

Park S, Ko E, Lee HJ, Song Y, Cui C-H, et al. Gypenoside LXXV promotes cutaneous wound healing in vivo by enhancing connective tissue growth factor levels via the glucocorticoid receptor pathway. Molecules 2019;24:1595. [PMID: 31018484 DOI: 10.3390/molecules20071595]

Kang S, Im K, Kim G, Min H. Antiviral activity of 20(R)-ginsenoside Rh2 against murine gammaherpesvirus. J Ginseng Res 2016;40:121-6. [PMID: 27158232 DOI: 10.1016/j.jgr.2015.06.003]

Lee DG, Lee JS, Kim K-T, Lee S. Analysis of major ginsenosides in ginseng total saponins by β-glucosidase from commercial enzyme cellulase KN. J Ginseng Res 2016;40:121-6. [PMID: 27158232 DOI: 10.1016/j.jgr.2015.06.003]

Chung YH, Jeong SA, Choi HS, Ro S, Lee JS, et al. Protective effects of ginsenoside Rg2 and astaxanthin mixture against UVB-induced DNA damage. Anim Cells Syst (Seoul) 2018;22:400-6. [PMID: 30533262 DOI: 10.1007/s12515-018-1523-806]

Tarn DNH, Truong DH, Nguyen TTH, Quynh LN, Tran L, et al. Ginsenoside Rg1: a systematic review of its pharmacological properties. Planta Med 2018;84:139-52. [PMID: 29329463 DOI: 10.1055/s-0043-124087]

Lee W, Cho S-H, Kim J-E, Lee C, Lee J-H, et al. Suppressive effects of ginsenoside Rg1 on HMGB1-mediated septic responses. Am J Chin Med 2019;47:119-33. [PMID: 30633044 DOI: 10.1124/ajcm.2018.124087]

Moon SS, Lee JH, Mathiyalagan R, Kim JY, Yang UD, et al. Synthesis of a novel α-glucosyl ginsenoside F1 via cyclodextrin glicantransferase and its in vitro cosmetic applications. Biomolecules 2018;8:142. [PMID: 30423825 DOI: 10.3390/biom8040142]

Kim SC, Kim HS; inventors; INTELLIGENT SYNTHETIC BIOLOGY CENTER, assignee. Composition for enhancing immunity including ginsenoside F1 as an active ingredient. United States patent application US 15/461,722. 2017 Dec 28.

Leung KW, Wang AS-T. Pharmacology of ginsenosides: a literature review. Chin Med 2010;5:20. [PMID: 20537195 DOI: 10.1016/j.ijpharm.2010.09.004]

Du J, Cui C-H, Park SC, Kim J-K, Yu H-S, et al. Identification and characterization of a ginsenoside-transforming β-glucosidase from Pseudomonas sp. Gsoil 1536 and its application. Biochem Biophys Res Commun 2016;477:287-92. [PMID: 27074714 DOI: 10.1016/j.bbrc.2016.07.013]
preparations. Appl Microbiol Biotechnol 2017;101:4009-32.
[73] Liu Z, Li J-X, Wang C-Z, Zhang D-L, Wen X, et al. Microbial conversion of propanaxadiol-type ginsenosides by the edible and medicinal mushroom schizophyllum commune: a green biotransformation strategy. ACS Omega 2019;4:13114-23.
[74] Shin K-C, Oh D-K. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides. Crit Rev Biotechnol 2016;36:1036-49.
[75] Lee S, Lee Y-H, Park J-M, Bai D-H, Jang JK, et al. Bioconversion of ginseng products. J Microbiol Biotechnol 2016;26:1206-15.
[76] Li X, Yao F, Fan H, Li K, Sun L, et al. In vitro conversion of polar ginsenosides, their transformation into less-polar ginsenosides, and ginsenoside acetylation in ginseng flowers upon baking and steaming. Molecules 2018;23:759.
[77] Shin J-H, Park YJ, Kim W, Kim D-O, Kim B-Y, et al. Change of ginsenoside profiles in processed ginseng by drying, steaming, and puffing. J Microbiol Biotechnol 2019;29:222-9.
[78] Lu C, Yin Y. Optimum conversion of major ginsenoside Rb1 to minor ginsenoside Rg3 (S) by pulsed electric field-assisted acid hydrolysis treatment. Open Chem 2018;16:283-90.
[79] Zheng M, Xu F, Li Y, Xi X, Cui X, et al. Study on transformation of ginsenosides in different methods. In: Mahady GB, editor. Biomed Res Int 2017;2017:860127.
[80] Cui C, Jeon B-M, Fu Y, Im W-T, Kim S-C. High-density immobilization of ginsenoside-transforming Arachidococcus ginsenosidimutans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming microorganism. Biotechnol Lett 2016;38:1187-93.
[81] Fu Y. Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Lett Appl Microbiol 2019;68:134-41.
[82] Fu Y, Yin Z-H, Yin C-Y. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng. J Appl Microbiol 2017;121:1575-85.
[83] Fu Y, Yin Z-H, Wu L-P, Yin C-R. Biotransformation of ginsenoside Rb1 to ginsenoside C by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng. Lett Appl Microbiol 2016;63:196-201.
[84] Yang X-D, Yang Y-Y. Ouyang D-S, Yang G-P. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015;100:208-20.
[85] Khan Chowdhury MDE, Jeon J, Ok Rim S, Park Y-H, Kyu J. A comparative analysis of the expression level of recombinant ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng. Sci Rep 2017;7:10098.
[86] Lee S, Lee Y-H, Park J-M, Dai D-H, Jang JK, et al. Bioconversion of ginsenosides from red ginseng extract using Lactobacillus rhamnosus GG. J Microbiol Biotechnol 2016;26:1206-15.
[87] Park B, Hwang H, Lee J, Sohn S-O, Lee SH, et al. Evaluation of ginsenoside bioconversion of lactate acid bacteria isolated from kimchi. J Ginseng Res 2017;41:524-30.
[88] Ku S, You HJ, Park MS, Ji GE. Whole-cell biocatalysis for producing ginsenoside Rb1 from Rb1 using Lactobacillus rhamnosus GG. J Microbiol Biotechnol 2016;26:1206-15.
[89] Liu Z, Li J-X, Wang C-Z, Zhang D-L, Wen X, et al. Microbial conversion of propanaxadiol-type ginsenosides by the edible and medicinal mushroom schizophyllum commune: a green biotransformation strategy. ACS Omega 2019;4:13114-23.
[90] Kim B-N, Yeom S-J, Kim Y-S, Oh D-K. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Biotechnol Lett 2012;34:125-9.
[91] Hong H, Cui C-H, Kim J-K, Jin F-X, Kim S-C, et al. Enzymatic biotransformation of ginsenosides Rb1 and gypenoside XVII into ginsenosides Rb2 and F2 by recombinant β-glucosidase from Flavobacterium johnsoniae. J Ginseng Res 2012;36:418-24.
[92] Eom SN, Kim K-T, Park H-D. Microbial bioconversion of ginsenosides in Panax ginseng and their improved bioactivities. Food Rev Int 2018;34:698-712.
[93] Siddiqi ZM, Zrinivasan S, Park HY, Im W-T. Exploration and characterization of novel glycoside hydrolyses from the whole genome of Lactobacillus ginsenosidivorans and enriched production of minor ginsenoside Rg3(S) by a recombinant enzymatic process. Biomolecules 2020;10:288.
[94] Hayat SMG, Farahani N, Golichenari B, Sahebkar A. Recombinant protein expression in Escherichia coli (E. coli): What we need to know. Curr Pharm Des 2018;24:718-25.
[95] Siddiqi MZ, Shafii SM, Im W-T. Complete genome sequencing of Arachidococcus ginsenosidivorans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv 2017;7:46457-59.
[96] Quan L-H, Min J-W, Sathiyamoorthy S, Yang D-U, Kim Y-J, et al. Biotransformation of ginsenosides Re and Rg1 into ginsenosides Rg2 and Rb1 by recombinant β-glucosidase. Biotechnol Lett 2012;34:913-7.
[97] Liu X, Yang Y, Zhang W, Sun Y, Peng F, et al. Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications. Crit Rev Biotechnol 2016;36:652-64.
[98] Siddiqi MZ, Shafii SM, Im W-T. Complete genome sequencing of Arachidococcus ginsenosidivorans sp. nov., and its application for production of minor ginsenosides by finding a novel ginsenoside-transforming β-glucosidase. RSC Adv 2017;7:46457-59.
[99] Chu J, Zhang W, Sun Y, Peng F, et al. Expression of recombinant protein using Corynebacterium glutamicum: progress, challenges and applications. Crit Rev Biotechnol 2016;36:652-64.
Bi Y-F, Wang X-Z, Jiang S, Liu J-S, Zheng M-Z, et al. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana. Biotechnol Lett 2019;41:613-23. [PMID: 29468877 DOI: 10.1021/acs.jafc.7b06108]

Li L, Lee SJ, Yuan QP, Im WT, Kim SC, et al. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis. J Ginseng Res 2018;42:412-8. [PMID: 30337801 DOI: 10.1016/j.jgr.2017.04.007]

Li L, Shin S-Y, Lee SJ, Moon JS, Im WT, et al. Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of β-Glucosidase gene from Paenibacillus mucilaginosus. J Agric Food Chem 2016;64:2506-12. [PMID: 26494255 DOI: 10.1021/jacs.5b04098]

Dai Z, Wang B, Liu Y, Shi M, Wang D, et al. Producing aglycons of ginsenosides in bakers’ yeast. Sci Rep 2014;4:3698. [PMID: 24424342 DOI: 10.1038/srep03698]

Kim Y-J, Zhang D, Yang D-C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33:717-35. [PMID: 25747290 DOI: 10.1016/j.biotechadv.2015.03.001]

Dai Z, Liu Y, Guo J, Huang L, Zhang X. Yeast synthetic biology for high-value metabolites. FEMS Yeast Res 2015;15:1-11. [PMID: 25047863 DOI: 10.1111/1567-1364.12187]

Cho LL, Montecillo JAV, Bae H. Recent Advances in the metabolic engineering of yeasts for ginsenoside biosynthesis. Front Bioeng Biotechnol 2020;8:139. [PMID: 32158753 DOI: 10.3389/fbioe.2020.00139]

Dai Z, Liu Y, Zhang X, Shi M, Wang B, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab Eng 2013;20:146-56. [PMID: 24126082 DOI: 10.1016/j.ymben.2013.10.004]

Zhao F, Bai P, Nan W, Li D, Zhang C, et al. A modular engineering strategy for high-level production of protopanaxadiol from ethanol by Saccharomyces cerevisiae. AICChE J 2019;65:866-74. [DOI: 10.1002/aic.16502]

Han J-Y, Hwang H-S, Choi S-W, Kim H-J, Choi Y-E. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng. Plant Cell Physiol 2012;53:1535-45. [PMID: 22875608 DOI: 10.1093/pcp/pcs106]

Park S-B, Chun J-H, Ban Y-W, Han JY, Choi YE. Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2). J Ginseng Res 2016;40:47-54. [PMID: 26843821 DOI: 10.1016/j.jgr.2015.04.001]

Jung S-C, Kim W, Park SC, Jeong J, Park MK, et al. Two Ginseng UDP-glycosyltransferases synthesize ginsenoside Rg3 and Rd. Plant Cell Physiol 2014;55:2177-88. [PMID: 25320211 DOI: 10.1093/pcp/pcu147]

Yang J-L, Hu Z-F, Zhang T-T, Gu A-D, Gong T, et al. Progress on the studies of the key enzymes of ginsenoside biosynthesis. Molecules 2018;23:589. [PMID: 29509695 DOI: 10.3390/molecules23030589]

Wei W, Wang P, Wei Y, Liu Q, Yang C, et al. Characterization of Panax ginseng UDP-glycosyltransferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts. Mol Plant 2015;8:1412-24. [PMID: 26032089 DOI: 10.1016/j.molp.2015.05.010]

Wang P, Wei Y, Fan Y, Liu Q, Wei W, et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab Eng 2015;29:97-105. [PMID: 25769286 DOI: 10.1016/j.ymben.2015.03.003]

Zhuang Y, Yang G-Y, Chen X, Liu Q, Zhang X, et al. Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme. Metab Eng 2017;42:25-32. [PMID: 28479190 DOI: 10.1016/j.ymben.2017.04.009]

Wang P, Wei W, Ye W, Li X, Zhao W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency. Cell Discov 2019;5:5. [PMID: 30652026 DOI: 10.1038/s41421-018-0075-5]

Li D, Wu Y, Zhang C, Sun J, Zhou Z, et al. Production of triterpene ginsenoside compound K in the non-conventional yeast Yarrowia lipolytica. J Agric Food Chem 2019;67:2581-8. [PMID: 30757901 DOI: 10.1021/acs.jafc.9b00009]