Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma

Mahmoud M Sebaiy1*, Hisham E Abdellatef2, Mohamed A Elmosallamy3 and Mustafa Kh Alshuwaili3,4

1Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
2Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
3Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
4Ministry of Education, Iraq

Abstract

An HPLC method had been developed and validated for rapid simultaneous separation and determination of the two antihypertensive drugs, amlodipine and xipamide in human plasma within 5 minutes. Drugs are extracted from plasma using methanol, the environmentally benign solvent, for protein precipitation technique. Separation was carried out on a Thermo Scientific® BDS Hypersil C8 column (5μm, 2.50x4.60 mm) using a mobile phase of methanol: 0.025M KH2PO4 (70: 30, v/v) adjusted to pH 3.49 with ortho-phosphoric acid at ambient temperature. The flow rate was 1 ml/min and maximum absorption was measured using DAD detector at 235nm. The retention times of amlodipine and xipamide were recorded to be 4.51 and 3.38 minutes, respectively, indicating a shorter analysis time. Limits of detection were reported to be 0.17 and 0.25 μg/ml for amlodipine and xipamide, respectively, showing a high degree of the method sensitivity. The method was then validated according to FDA guidelines for the determination of the drugs clinically in human plasma specially regarding pharmacokinetic and bioequivalence studies.

Introduction

The approach of separation chemistry science is significantly growing and is representing a major challenge for scientists in general, and chemists in particular, to find a compromise between developing or analyzing new products and achieving economical and environmental objectives due to an increased recognition of environmental safety and continuous industrial ecology all over the world [1].

In this analytical study, two antihypertensive drugs are subjected to such analysis using chromatographic chemistry. One of them is amlodipine (AML), which is chemically, 3-ethyl 5-methyl (4RS)-2-[(2-aminoethoxy) methyl]-4-(2-chlorophenyl) 6-methyl- 1,4-dihydropyridine (Figure 1). Amlodipine is a long-acting calcium channel blocker (dihydropyridine derivative) and it is mainly used as an anti-hypertensive and anti-anginal drug [2]. The other drug is xipamide (XIP) which is a sulfonamide diuretic drug. Chemically, It is 4-chloro- 5-sulphamoylsalicylo- 2’,6’-xylidide; (Figure 1) and it is used for the treatment of high blood pressure and edema of cardiac, hepatic, or renal origin. It is a nonthiazide diuretic with a greater natriuretic effect.

Citation: Sebaiy MM, Abdellatef HE, Elmosallamy MA, Alshuwaili MK (2020) Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma. Open J Anal Bioanal Chem 4(1): 001-006. DOI: https://dx.doi.org/10.17352/ojabc.000017
than the thiazides with a less abrupt onset and longer duration of action [3]. Combination of both drugs is synergistic for hypertensive drugs and many medical prescriptions include combinations of both drugs in addition to other β-blockers and ACE inhibitors specially for congestive heart failure (CHF) patients.

Various analytical techniques have been employed for the estimation of amlodipine and xipamide such as UV-vis spectrophotometry [4-12], high-performance liquid chromatography [13-22], voltammetric methods [23-25] and capillary Electrophoresis [26].

To the best of our knowledge and comprehensive survey, amlodipine and xipamide mixture was not determined before by chromatographic techniques neither in pharmaceutical nor in biological samples despite their synergistic action. As such, the present work introduces a simple, rapid, reproducible and sensitive chromatographic method for the determination of amlodipine and xipamide in human plasma samples. The sensitivity of the method would match with the determination of the two drugs in human plasma on the clinical range which is equivalent to pharmacokinetic and bioequivalence studies Figure 1.

Experimental

Apparatus

Agilent 1200® HPLC instrument (Germany) with a Thermo Scientific® BDS Hypersil C₈ column (5µm, 2.50×4.60 mm), DAD absorbance detector, HPLC QUAT pumps and connected to PC computer loaded with Agilent 1200 software.

Labomed® Spectro UV-VIS Double Beam (UVD-2950) Spectrophotometer with matched 1cm quartz cells and connected to windows compatible computer using UV Win 5 Software v6.

HANNA® HI 8314 membrane pH-meter (Romania) for pH adjustment.

Materials and reagents

All solvents and reagents were of an HPLC analytical grade (methanol, acetonicitrile, potassium dihydrogen phosphate and ortho-phosphoric acid were supported from Fisher Scientific, England).

Amlodipine & xipamide were kindly provided by the Egyptian Company for Pharmaceutical & Chemical Industries (EIPICO), 10th of Ramadan City, Egypt. Standard solutions of 100 µg/ml were prepared by dissolving 10 mg of each pure drug in 100 ml of the mobile phase.

Mobile phase was a freshly prepared binary mixture of methanol : 0.025 M potassium dihydrogen phosphate (70 : 30, v/v) adjusted to pH 3.49 using ortho-phosphoric acid, filtered and degassed using 0.45 µm membrane filter (Millipore, USA). Other mobile phase compositions are stated in Results and Discussion.

The human plasma was kindly provided by Zagazig University Hospital and was tested to be drug and disease free. Plasma was kept frozen before use, and was then stored either at -4°C between uses or at -20°C for freeze–thaw cycle stability studies.

Procedures

Preparation of standard calibration curves: Appropriate mixed dilutions of amlodipine and xipamide standard stock solutions were done in 10 ml volumetric flasks to get final concentrations of 0.62, 2.50, 5, 10, 12.50 and 25µg/ml for both drugs. A 10µl of each mixture was injected into the column and the chromatogram was obtained at 235nm. A graph was plotted as concentration of drugs against response (peak area).

Human plasma samples preparation: Both amlodipine and xipamide were extracted from the plasma samples through protein precipitation technique. Calibration curve and validation QC samples at concentrations of 2.50, 5 and 15 µg/ml for amlodipine and 0.50, 2.50 and 5 µg/ml for xipamide in plasma were prepared as Low (LQC), Medium (MQC) and High (HQC) levels, respectively. Aliquots of 200 µl plasma samples and different drug mixture volumes ranging from 100 up to 200 µl were added into 10 ml centrifuge tubes and vortexed for 1 min. The mixture was then precipitated with methanol (total volume 2 ml). After vortexing for 1 min, the samples were centrifuged at 5000 rpm for 15 min. A aliquots of 10 µl of the supernatant was filtered through 0.45 µm PTFE syring filters (Membrane solutions, USA) and directly injected into the HPLC system for analysis.

Results and discussion

Optimization of Chromatographic Conditions

All chromatographic conditions are illustrated in Table 1. Spectroscopic analysis of the drugs in the range of 200-400 nm showed that amlodipine and xipamide have UV absorbance maxima (λmax) at 237 nm and 231 nm, respectively, as depicted in Figure 2. Therefore, the chromatographic detection was performed at 235 nm as the appropriate wavelength using a DAD detector. The method was performed on a Thermo Scientific® BDS Hypersil C₈ column (5µm, 2.50×4.60 mm) Figure 2, Table 1.

Furthermore, under several trials of mobile phase

Parameters	Conditions
Column	Thermo Scientific® BDS Hypersil C₈ (2.50×4.60 mm)
Mobile phase	Isocratic binary mobile phase of methanol : 0.025 M KH₂PO₄, adjusted to pH 3.49 using ortho-phosphoric acid (70 : 30, v/v), filtered and degassed using 0.45µm membrane filter.
UV detection, nm	235
Flow rate, ml/min	1
Injected volume, µl	10
Pressure, psig	98
Temperature	Ambient

Table 1: Chromatographic conditions of the proposed method.

Citation: Sebaiy MM, Abdellatief HE, Elmosallamy MA, Alshuwaili MK (2020) Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma. Open J Anal Bioanal Chem 4(1): 001-006. DOI: https://dx.doi.org/10.17352/ojabc.000017
optimization regarding its composition ratio and pH, it was observed that both mobile phases composed of acetonitrile: 0.025 M potassium dihydrogen phosphate adjusted to pH 3.49 using ortho-phosphoric acid (45: 55, v/v) and methanol: 0.025 M KH₂PO₄ adjusted to the same pH using ortho-phosphoric acid (70: 30, v/v) achieved the baseline separation for both antihypertensive drugs (Figure 3 A & B). Under these conditions, amlodipine and xipamide can be separated and eluted at 5.62 and 6.43 minutes in case of acetonitrile-based mobile phase and at 4.51 and 3.38 minutes in case of methanol-based mobile phase, as illustrated in Figure 3 A & B, respectively. However, in both cases, each mobile phase showed symmetrical peaks (T ≤ 1.2), capacity factor (1<k<10), resolution >2 and theoretical plates >2000. Table 2 shows all system suitability parameters for simultaneous determination of the two antihypertensive drugs in both mobile phases. Due to safety issues related with acetonitrile, longer retention times and lower resolution power than methanol-based mobile phase, methanol: 0.025 M KH₂PO₄ (70: 30, v/v) buffer was chosen as the optimal buffer for the proposed HPLC method Figure 3 Table 2.

The method was then applied for determination of the drugs in human plasma using protein precipitation procedure. This technique was accurate and more preferred than liquid-liquid extraction where methanol was used for drugs extraction instead of other toxic organic solvents like chloroform, dichloromethane, ethylacetate and petroleum ether beside avoidance of sample loss accompanied with liquid-liquid extraction technique. Regarding the plasma chromatogram, the mixture determination in plasma didn’t show any kind of matrix interference effect as the human plasma was eluted at 2.80 minute in correspondence with the migration times of amlodipine and xipamide (Figure 4).

Method Validation

The method was validated according to food and drug administration guidelines for bioanalytical methods validation [27,28].

Linearity: Six different concentrations of the drug mixture were specified for linearity studies. The calibration curves obtained by plotting peak area against concentration showed linearity in the concentration range of 0.62–25 μg/ml for both drugs (Table 3). Linear regression equations of amlodipine and xipamide were found to be y = 13.94x + 2.66 and y = 30.60x + 0.17, respectively and the regression coefficient values (r) were calculated to be 0.9999 and 0.9998, respectively, indicating a high degree of linearity for both drugs (Figure 5) (Table 3).

Accuracy: The accuracy of the method was determined by investigating the recoveries of the six concentrations of amlodipine and xipamide. From the amount of the drug estimated, the percentage recovery was calculated and the results shown in Table 3 are indicating excellent mean recoveries of 99.69 and 100.12 for amlodipine and xipamide, respectively.

Selectivity and Specificity: Selectivity of the method was checked by injecting the solutions of amlodipine and xipamide into the column separately where two sharp peaks were obtained at retention times of 4.51 and 3.38 minutes, respectively, and

Table 2: System suitability parameters comparison for amlodipine and xipamide in both mobile phases.

Parameters	Mobile phase (acetonitrile: KH₂PO₄)	Mobile phase (methanol: KH₂PO₄)	Reference values [30]
Retention time, tr	XIP 6.43 AML 5.62	XIP 3.38 AML 4.51	Accepted k' value (1-10)
Capacity factor, k'	XIP 3.32 AML 3.95	XIP 1.60 AML 2.47	Accepted T value ≤ 2
Peak asymmetry (Tailing factor, T)	XIP 0.99 AML 0.43	XIP 1.38 AML 0.84	Accepted N value >2000
Theoretical plates, N	XIP 11162 AML 7440	XIP 10742 AML 5092	Accepted value >2
Resolution, Rs	XIP 3.23 AML 6.43	Accepted value >2	
Selectivity (Separation factor, α)	XIP 1.19 AML 1.63		

Figure 2: Overlain spectra of amlodipine (AML) and xipamide (XIP) at concentrations of 25 and 10 μg/ml, and maximum wavelengths of 237 and 231 nm, respectively.

Figure 3: HPLC Chromatogram of amlodipine (AML) and xipamide (XIP) using mobile phase (A) acetonitrile: 0.025 M KH₂PO₄ adjusted to pH 3.49 using ortho-phosphoric acid (45: 55, v/v), (B) methanol: 0.025 M KH₂PO₄ adjusted to pH 3.49 using ortho-phosphoric acid (70: 30, v/v). Other chromatographic conditions are stated in Table 1.

Citation: Sebaiy MM, Abdellatef HE, Elmosallamy MA, Alshuwaili MK (2020) Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma. Open J Anal Bioanal Chem 4(1): 001-006. DOI: https://dx.doi.org/10.17352/ojabc.000017
these peaks were not obtained for the blank solution. Also, the specificity studies revealed that the presence of human plasma didn’t show any kind of interference with the sharp and well-resolved peaks of amlodipine and xipamide (Figure 4).

Robustness: The robustness of the methods was evaluated by making deliberate subtle changes (± 0.05) in the flow rate, pH of mobile phase and mobile phase composition ratio keeping the other chromatographic conditions constant. The changes effect was studied on the basis of percent recovery and standard deviation of both drugs. Table 4 shows that the changes had negligible influences on the results as revealed by mean recoveries in the acceptable range (99.5 - 101.38) and small SD values (≤ 1.92) for both drugs Table 4.

Limits of detection and limits of quantification: For determining the limits of detection and quantitation, the method based on signal–to–noise ratio (3:1 for LOD & 10:1 for LOQ) was adopted. Limits of detection were reported to be 0.17 and 0.25 μg/ml, while limits of quantification were calculated to be 0.58 and 0.82 for amlodipine and xipamide, respectively (Table 3) showing that the proposed method is highly sensitive and applicable for pharmacokinetic and bioequivalence studies where detection of small concentrations in plasma is required.

Analysis of human plasma: The proposed method was also applied for determination of amlodipine and xipamide in human plasma samples using protein precipitation procedure. Retention times of amlodipine and xipamide in plasma samples and the other system suitability parameters were also pretty similar to those in pure forms. The calibration curves in the spiked plasma were also found to be linear over the clinical range of 2.50–15μg/ml for amlodipine and 0.50–5μg/ml for xipamide (Table 5). According to Clark’s Analysis book [29], C_max attained for amlodipine after 14 days of 15 mg dosing is 18.10±7.10 μg/mL while C_max for 20 mg xipamide is 3.00±0.30 μg/mL. As such, the concentrations chosen were more or less lying within the acceptable clinical range. The mean recoveries for amlodipine and xipamide in plasma were in the acceptable range of 85.5–101.38 and small SD values (≤ 1.92) for both drugs Table 4.

Table 3: Analytical merits for determination of amlodipine and xipamide in pure samples using the proposed method.

Parameter	XIP	AML					
Conc. taken (μg/ml)	Conc. found (μg/ml)	Recovery	% Accuracy	Conc. taken (μg/ml)	Conc. found (μg/ml)	Recovery	% Accuracy
25	24.96	99.85	-0.15	25	25.15	100.59	0.59
12.50	12.74	101.92	1.92	12.50	12.51	100.10	0.10
10	9.83	98.31	-1.69	10	9.84	98.41	-1.59
5	4.93	98.58	-1.42	5	4.93	98.63	-1.37
2.50	2.54	101.74	1.74	2.50	2.48	99.06	-0.94
0.62	0.62	100.31	0.31	0.62	0.63	101.32	1.32

Table 4: Results of the robustness for the determination of amlodipine, and xipamide (12.5 μg/ml) using the proposed method.

Parameter	XIP	AML				
Mean recovery ± SD	CV (%)	% Accuracy	Mean recovery ± SD	CV (%)	% Accuracy	
Flow rate 0.95 ml (- 0.05)	100.49 ± 1.72	1.71	3.01	100.87 ± 1.50	1.50	2.42
Flow rate 1.05 ml (+ 0.05)	99.95 ± 1.00	1.01	0.31	99.48 ± 1.11	1.12	-1.63
Buffer pH 3.44 (- 0.05)	100.59 ± 1.92	1.91	3.55	99.37 ± 1.28	1.28	-2.21
Buffer pH 3.54 (+ 0.05)	100.85 ± 1.08	1.08	0.85	99.41 ± 1.19	1.20	-1.92
ACN:Buffer ratio 70.5:29.5	100.38 ± 1.52	1.52	2.47	99.42 ± 1.19	1.20	-1.92
ACN:Buffer ratio 69.5:30.5	101.38 ± 1.35	1.35	1.93	99.25 ± 1.47	1.48	-2.79

Figure 4: HPLC Chromatogram of (A) blank plasma sample and (B) amlodipine (AML) and xipamide (XIP) spiked mixture in human plasma sample. All chromatographic conditions are stated in Table 1.
concentrations of 2.50, 5 and 15 μg/ml for amlodipine and 0.50, 2.50 and 5 μg/ml for xipamide in plasma. Intra-day precision was evaluated in respect of both Standard Deviation (SD) and coefficient of variation (CV%) regarding three replicate determinations using the same solution containing drugs mixture in plasma. The SD values (varied from 0.24 to 1.31) and CV% values (varied from 0.28 to 1.08) revealed the high precision of the method. For inter-day reproducibility, the day-to-day SD and CV% values were also in the acceptable range of 0.96 - 2.35 and 1.12 - 2.64, respectively (Table 6) showing that the method is highly precise in plasma samples. Also, Stability studies were conducted by applying plasma freeze-thaw cycles at −20°C (over three days) using the same validation QC samples in plasma and results are summarized in Table 6. These results show that the proposed method has an adequate precision and stability for simultaneous determination of both drugs in plasma Tables 5, 6.

Conclusion

The developed analytical method represents a kind of chromatographic chemistry for rapid and simultaneous estimation of amlodipine and xipamide within 5 minutes. The results obtained indicate that the proposed method is rapid, sensitive, accurate, selective, robust and reproducible. Protein precipitation was carried out for drug extraction from plasma using methanol instead of liquid liquid extraction. This analytical method is an adequate and useful for the clinical estimation of amlodipine and xipamide in human plasma samples according to FDA guidelines in respect of pharmacokinetic and bioequivalence studies that would be useful in therapeutic drug monitoring.

Authors’ contributions

Authors Mahmoud Sebaiy and Mustafa Alshuwaili have designed and prepared the manuscript. Authors Moustafa Soltan and Mohamed Elmosallamy have read and approved the final manuscript.

References

1. Garrigues S, Armona S, Guardia MDL (2010) Green strategies for decontamination of analytical wastes. Trends Anal Chem 29: 592–601. Link: https://bit.ly/35sfK68
2. Aryal S, Skalko-Basnet N (2008) Stability of amlodipine besylate and atenolol in multicomponent tablets of mono-layer and bi-layer types. Acta Pharm 3: 299-308. Link: https://bit.ly/2YppgW3
3. Sweetman SC (2011) Martindale. The Complete Drug Reference, 37th edn, The Pharmaceutical Press.
4. Walshe MI, EI-Emary N, Eid MI, Fathy ME (2014) Stability-indicating spectrofluorimetric methods for the determination of metolazone and xipamide in their tablets. Application to content uniformity testing. J Fluoresc 2: 363-376. Link: https://bit.ly/3c2jwpv
5. Gaber M, Khedir AM, EI-Kady AS (2011) New and sensitive spectrophotometric method for determination of xipamide in pure and dosage forms by complexation with Fe (III), Cu (II), La (III), UO2 (II), Th (IV) and Zn (II) ions. Int Res J Pharm Pharmacol 1: 215-220. Link: https://bit.ly/3dmhjR
6. Wajieh NE, Abbas SS, Abdelkawy M, Abdelrahman MM (2010) Spectrophotometric and spectrodensitometric determination of triamterene and xipamide in pure form and in pharmaceutical formulation. Drug test anal 3: 113-121. Link: https://bit.ly/2X5PX9K
7. Badran R, Al-khatteeb MJ (2015) A spectrophotometric determination of amlodipine besylate (amb) in pharmaceutical preparations using gresol red (gr) reagent. Int J Chem Tech Res 8 : 229-236. Link: https://bit.ly/3bWVxWd
8. Varma BR, Jampana PK, Babu GR, Surekha PS, Praveen TK, et al. (2014) UV Spectroscopic Method for Estimation of Amlodipine Besylate in Tablets. Int J Pharm Chem Biol Sci 1: 69-73. Link: https://bit.ly/3b7iZWA
9. Ramesh D, Ramakrishna S (2010) New spectrophotometric methods for simultaneous determination of amlodipine besylate and atorvastatin calcium in tablet dosage forms. Int J Pharm Pharm Sci 4: 215-219. Link: https://bit.ly/2WmnrDG
10. Kundawar MS, Kambale KG, Raut KS, Maharshe KH (2011) UV spectrophotometric estimation of amlodipine besylate and telmisartan in bulk drug and dosage form by multilayered analysis. Int J ChemTech Res 3: 1274-1278. Link: https://bit.ly/3ddkb7z
11. Shaalan RA, Belal TS (2010) Simultaneous spectrophotometric determination of amlodipine besylate and valsartan in their combined tablets. Drug test anal 10: 489-493. Link: https://bit.ly/2KYuGz0
12. Kadioglu Y, Ozturk M (2012) Spectrofluorimetric determination of amlodipine...
in human plasma without derivatization. Braz J Pharm Sci 4: 719-725. Link: https://bit.ly/2zO79yX

13. Abd El-Hay SS, Hashem H, Gouda AA (2016) High performance liquid chromatography for simultaneous determination of xipamide, triamterene and hydrochlorothiazide in bulk drug samples and dosage forms. Acta Pharm 1:109-118.

14. El-Kimy EI (2016) Stability-indicating HPLC-DAD method development, validation, and stress degradation studies for triamterene and xipamide in their combined tablet dosage form. Acta Chromatographica 1: 79-98. Link: https://bit.ly/2YvoVi1

15. Maher HM, Youssef RM, Eman I, Hassan EM, Barary MA (2012) Bioavailability study of triamterene and xipamide using urinary pharmacokinetic data following single oral dose of each drug or their combination. J Pharm biomed anal 61: 78-85. Link: https://bit.ly/2WmJJs3

16. Bodenan S, Pailet M, Christen MO (1990) Rapid determination of xipamide in human plasma and urine by high-performance liquid chromatography. J Chromatogr B: Biomed Sci App 533: 275-281. Link: https://bit.ly/3d5VmKS

17. Legorburu MJ, Alonso RM, Jimenez RM (1999) Determination of the non-thiazide diuretic xipamide in pharmaceuticals and urine by HPLC with amperometric detection. J liq chromatogr relat tech 5: 735-746. Link: https://bit.ly/2WIqAh

18. Osman RA, Elbashir AA (2017) A High-Performance Liquid Chromatographic (HPLC) Method for the Determination of Amlodipine Drug in Dosage form Using 1, 2-Naphthoquine-4-Sulfonate (NQS). J Anal Pharm Res 1: 00163. Link: https://bit.ly/2SBT26C

19. Hafez HM, Abdullah AE, Abdelaziz LM, Kamal MM (2014) Quantitative Determination of Amlodipine Besylate, Losartan Potassium, Valsartan and Atorvastatin by HPLC in their Pharmaceutical Formulations. J Chromatogr Sep Tech 5: 1-5. Link: https://bit.ly/2WmPlAm

20. Tatar S, Atmaca S (2001) Determination of amlodipine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B: Biomed Sci App 2: 305-310. Link: https://bit.ly/2YxmlS0

21. Zarghi A, Foroutan SM, Shafaaati A, Khoddam A (2005) Validated HPLC method for determination of amlodipine in human plasma and its application to pharmacokinetic studies. Farmaco 60: 789-792. Link: https://bit.ly/2SvidYb

22. Bahrami G, Mirzaei Sh (2004) Simple and rapid HPLC method for determination of amlodipine in human serum with fluorescence detection and its use in pharmacokinetic studies. J Pharm Biomed Anal 36: 163-168. Link: https://bit.ly/3AhwBP

23. Atta AK, Hendawy HM (2017) Electrochemical Characterization of Xipamide Using Cyclic and Square Wave Voltammetry. Res Re Electrochem 1: 104. Link: https://bit.ly/3fh3lqm

24. Stoiljkovic ZZ, Avramovic IV, Petrovic SD, Mijin ZD, Stevanovic SI, et al. (2012) Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode. Int J Electrochem Sci 7: 2288-2303. Link: https://bit.ly/2BS34V2

25. Dogan-Topal B, Bozal B, Demirciig BT, Uslu B, Ozkan SA (2009) Electroanalytical Studies and Simultaneous Determination of Amlodipine Besylate and Atorvastatin Calcium in Binary Mixtures Using First Derivative of the Ratio-Voltammetric Methods. Electroanal 22: 2427-2439. Link: https://bit.ly/3fDfP3o

26. Modroui A, Hancu G, Vlad RA, Stăcescu Ş, Soare R, et al. (2016) Simultaneous determination of amlodipine and telmisartan from pharmaceutical products by way of capillary electrophoresis. Curr Issu Pharm Med Sci 1: 42-46. Link: https://bit.ly/2YYaUnI

27. US Food and Drug Administration (2018) Guidance for Industry: Bioanalytical Method Validation. Link: https://bit.ly/2WD6U1J

28. Zimmer D (2014) New US FDA draft guidance on bioanalytical method validation versus current FDA and EMA Guidelines: chromatographic methods and ISR. Bioanal 6: 13-19. Link: https://bit.ly/2Swrb7E

29. Moffatt AC, Osselton MD, Widdop B (2004) Clarke’s Analysis of Drugs and Poisons. 3rd Edition. Pharmaceutical Press. BJCP. Link: https://bit.ly/3b34wWS

30. CDER Center for Drug Evaluation and Research (1994) Reviewer Guidance Validation of Chromatographic Methods. Link: https://bit.ly/2YaCkDp

Discover a bigger impact and visibility of your article with Peertechz Publications

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in world renowned service providers such as Portico, CNKI, AGRIS, TONet, Base (Bielefeld University Library), CrossRef, Scite, J-Gate etc.
- Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer-review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services (https://www.peertechz.com/submission).

Peertechz journals wishes everlasting success in your every endeavour.

Copyright: © 2020 Sebaiy MM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Sebaiy MM, Abdellatef HE, Elmosallamy MA, Alshuwaikhi MK (2020) Isocratic HPLC Method for Simultaneous Determination of Amlodipine and Xipamide in Human Plasma. Open J Anal Bioanal Chem 4(1): 001-006. DOI: https://dx.doi.org/10.17352/ojabc.000017