Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment

Jiahang Zhang¹, Yanan Gao², Lixin Xu¹*, Liebao Han¹*

¹ College of Grassland Science, Beijing Forestry University, Beijing, People’s Republic of China, ² College of Grassland Science and Technology, China Agricultural University, Beijing, People’s Republic of China

* lixinxu@bjfu.edu.cn (LX); hanliebao@163.com (LH)

Abstract

Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde content were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.

1. Introduction

Environmental factors (such as light, temperature, water, soil, etc.) are very important to the growth and survival of plants, because slight changes of these environmental factors may make plants suffer from stress, thus affecting their normal growth and survival [1]. Drought stress is one of the major factors limiting plant growth and crop productivity in many areas [2]. It reduces the turf quality of Kentucky bluegrass by influencing the shoot density, texture, uniformity, color, growth habit and recuperative capacity [3, 4]. The common responses of plants to drought stress include the expression changes of many genes, such as genes related to signal
transduction, and the transcription and regulation of thousands of functional proteins, which are involved in the molecular regulation of drought resistance [5].

The phytohormone ethylene is a key signaling molecule in plants for regulating multiple developmental processes and stress responses [6, 7]. As an ethylene releasing reagent, ethephon can overcome the disadvantage of inconvenient application of gaseous ethylene and has great potential in practice for various reasons [8, 9]. For example, researches on Maize (Zea mays) [10], rice (Oryza sativa) [11] and Arabidopsis thaliana [12] have revealed that ethephon could improve plants drought tolerance. Few studies focused on the potential of ethephon application in turfgrass species for water saving reasons. Zhang et al. [13] found that ethephon seeds treatment improved drought tolerance of Kentucky bluegrass seedlings by increasing antioxidant enzyme activity and soluble protein content under PEG-induced drought conditions. Han [14] found that specific concentration of ethephon could effectively improve the drought tolerance of Kentucky bluegrass. However, it is still unclear how ethephon affect the response mechanism of Kentucky bluegrass under drought.

At present, a large number of studies have revealed the mechanism for plants drought tolerance through transcriptome sequencing [15–18]. Illumina sequencing technology has been used in the study of turfgrass genome such as Lolium temulentum L. [19], orchardgrass (Dactylis glomerata L.) [20] and creeping bentgrass (Agrostis stolonifera) [21]. For species without genome information, transcriptome sequencing can effectively characterize and identify the biosynthesis pathway of secondary metabolites in plants, reveal the growth, development, physiological adaptability of plants, and explore the gene sequence and expression level [22–24]. Zhang et al. [25] compared the transcriptome of drought resistant and sensitive plant collections of Qinghai wild Poa pratensis under drought, and found that genes involved in the starch and sucrose metabolism pathways, and bHLH, AP2/EREPB and C2H2 zinc finger family transcription factors played important roles in drought tolerance of Kentucky bluegrass. Leng et al. [26] revealed that genes encoding protein kinase, protein phosphatase, genes involved in carbon metabolism and ABA synthesis and transduction are crucial in Kentucky bluegrass ‘Nuglade’ drought defense responses. Gene expression changes on a whole transcriptome level associated with ethephon pre-treatment under drought stress of Kentucky bluegrass have not been well-studied yet.

The objective of this study is to investigate the effect of ethephon on drought tolerance of Kentucky bluegrass and to understand the underlying mechanism by analyzing and identifying genes involved in ethephon mediated drought tolerance improvement.

2. Materials and method

2.1 Plant materials and treatment

Seeds of Kentucky bluegrass (cv. Nuglade) were from Beijing Top Green Company. All materials were planted in the greenhouse of Turfgrass Reasearch Station of Beijing Forestry University, Bajia nursery, Beijing, China. The plants were grown in plastic pots (diameter: 20 cm, depth: 18 cm) filled with a mixture of peat, vermiculite and perlite (2:1:1). Plants were watered every 2 days to keep the soil moisture conditions at field capacity. Drought stress was imposed by withdrawing water for 13 days until soil moisture drop to 4% (portable time domain reflectometry)(TZS-I, Zhejiang TOP Instrument Co., Ltd, China). Ethephon solution (200 mg/L) was foliar-sprayed 7 days ahead of drought treatment. After 15 days of drought treatment, the upper 3–5 leaves were sampled from well-watered control plants without ethephon application (CK), drought treated plants without ethphon application (Drought), and drought treated plants with ethphon pre-treatment (ETH_D) for RNA sequencing and real-time PCR analysis (Fig 1).
2.2 Relative water content and malondialdehyde content

The relative water content (RWC) of leaves was determined by drying method \[27\]. The content of malondialdehyde (MDA) (\(\mu\)mol\cdot g\(^{-1}\)) was determined by thiobarbituric acid method \[28\].

2.3 RNA isolation and library preparation

Total RNA was extracted using TRIzol kit (Invitrogen, CA, USA) according to the manufacturer’s instructions and was treated with DNaseI. RNA purity was checked using the NanoPhotometer\(^\text{®}\) spectrophotometer (IMPLEN, CA, USA); RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). RNA integrity number for the RNA samples are in the range from 6.3 to 7.2.

The cDNA library was prepared by pooling RNA from the leaf samples of CK, Drought, ETH_D. Three biological replicates for each treatment were used for RNA sequencing and real-time PCR analysis.

A total amount of 3 \(\mu\)g RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext\(^\text{®}\) UltraTM RNA Library Prep Kit for Illumina\(^\text{®}\) (NEB, USA) following manufacturer’s recommendations and index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNase H-). Second strand cDNA synthesis was subsequently
performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 150~200 bp in length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37˚C for 15 min followed by 5 min at 95˚C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system.

2.4 Sequencing, assembly, and annotation
Sequencing, assembly, and annotation were performed by Novogene Bioinformatics Technology Co. Ltd (https://www.novogene.com/). The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer’s instructions. After cluster generation, the library preparations were sequenced on an Illumina Hiseq platform and paired-end reads were generated.

The raw reads were sequenced on the Illumina HiSeq™ 4000 platform. After the raw reads containing adapter sequences, reads containing poly-N (≥10%) and low quality reads had been removed, the clean reads were assembled de novo using the Trinity (http://trinityrnaseq.github.io) as previous described [22]. It was a K-mer length of 25 and a minimum assembly length at 200bp that default parameters were set for fast and efficient transcript assembly. The longest transcript of each gene is used as a representative of the gene, called Unigene, for subsequent analysis. Taxonomic and functional annotation of all spliced sequences was obtained by comparing with seven databases which were the NCBI non-redundant protein sequences (NR) database, NCBI nucleotide sequences (NT) database, protein family (PFAM) database, eukaryotic ortholog groups (KOG) database, Swiss-Prot database, Kyoto Encyclopedia of Genes and Genomes (KEGG) database and Gene Ontology (GO) database. Based on the protein annotation result of NR and PFAM, analysis of the Gene Ontology (GO) term was conducted for functional annotations (E-values < 10^-6). The KAAS software was used to blast the gene sequences in the unigene and the KEGG gene database.

2.5 Identification of differentially expressed genes
The transcriptome obtained by Trinity splicing were the reference sequence, and the clean reads of each sample were mapped directly to the reference transcriptome libraries using the RSEM (v1.2.15) software [29] with default parameters. Readcount for each gene was obtained from the mapping results. Differential expression analysis of three treatments was performed using the DESeq R package [30]. The resulting P values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery rate [31]. Genes with an adjusted P-value <0.05 found by DESeq were assigned as differentially expressed.

GO enrichment analysis of differentially expressed genes (DEGs) was performed by GOseq method [32] based on Wallenius non-central hyper-geometric distribution. The analysis first mapped all the differentially expressed genes to each term of the Gene Ontology database, calculated the number of genes for each term, and then found the significant enrichment in the differentially expressed genes compared to the entire genome background. Simultaneously, up regulated and down regulated genes was performed separately for enrichment analysis in order to better study the function of differential genes.
2.6 Validation of differential expression genes by qRT-PCR

Eight differentially expressed genes were randomly selected for qRT-PCR analysis, and high-throughput data were validated (the prime pairs of these eight genes were listed in S1 Data). Total RNA was extracted respectively from the leaves of each sample as previously described. Complementary DNA from total RNA was prepared using HiScript® II Q RT SuperMix for qPCR kit (with the gDNA wiper) (Vazyme Biotech Co., Ltd, Nanjing, China) according to the manufacturer’s protocol. The primers were designed for qRT-PCR and the Actin gene was used as the internal reference gene. The qRT-PCR was carried out using the Applied Biosystems 7500 real-time PCR system. The relative quantitative data were calculated using the $2^{-\Delta\Delta CT}$ method [33].

3. Results and discussion

3.1 Relative water content and malondialdehyde content

Relative water content (RWC) can be used as an index to measure the internal water loss and water holding capacity of plants. Higher RWC under drought stressed conditions means better drought tolerance of Kentucky bluegrass [2, 34]. The value of RWC in Kentucky bluegrass leaves decreased significantly by drought. Ethephon pre-treated plants maintained a higher level of RWC under drought stress relative to non-ethephon treated control plants (Fig 2A). Therefore, ethephon could improve the drought tolerance of Kentucky bluegrass. Malondialdehyde (MDA) is a final product of plant cell membrane lipid peroxidation and is widely used as a biomarker of oxidative stress in plants [35]. Under drought stress, lower MDA content is associated with better stress tolerance of turfgrasses [36]. MDA content in Kentucky bluegrass leaves increased significantly by drought, ethephon pre-treatment lowered the level of MDA under drought (Fig 2B). These results together confirmed that ethephon could improve the drought tolerance of Kentucky bluegrass by combining the photos of ethephon and drought treatment (Fig 3).

3.2 Sequence assembly

A set of 435,250 transcripts was produced using Trinity. We selected 254,331 sequences (58.43% of the total transcripts) as unigenes, with a mean length of 581 bp and an N50 of 818 bp (see S2–S4 Data for data used to summarize the quality of sequencing, assembly and alignment). The Kentucky bluegrass 254,331 assembled unigenes were queried against seven

Fig 2. A. Relative water content of each samples B. Malondialdehyde content of each treatment. CK means well-watered control plants without ethephon application. Drought means drought-stressed plants without ethephon application. ETH_D means drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g002
protein databases, results showed that among the NR BLASTx best hits, Kentucky bluegrass unigenes were significantly similar to *Brachypodium distachyon* proteins (14,815, 19.1%), followed by *Aegilops tauschii* (14,710, 18.9%), *Hordeum vulgare* (10,517, 13.5%), *Triticum urartu* (7,283, 9.4%) and *Oryza sativa* (5,988, 7.7%) (Fig 4).

3.3 Differential expression and gene ontology

A total of 24,643 transcripts were identified as DEGs in one or more of the pairwise comparisons (Fig 5A). A large change of the transcriptome occurred in Kentucky bluegrass in response to drought stress (Fig 5A). A relative smaller change of transcriptome occurred in Kentucky blue grass in response to drought due to ETH pre-treatment (Fig 5A). The heatmap also indicates the overall effect of drought stress on transcription and allows for visualization of how ETH moderated the effects of drought stress on the transcriptome (Fig 6).

A total of 24,465 genes were either up- or down-regulated when comparing drought stressed to well-watered control plants (Fig 5A). Gene ontology (GO) and enrichment analysis identified 2877 biological processes, 1422 molecular functions, and 622 cellular components (Fig 7A). A total of 3,890 genes were either up- or down-regulated when comparing ETH

Fig 3. Effects of ethephon on Kentucky bluegrass under drought. CK means well-watered control plants without ethephon application. Drought means drought-stressed plants without ethephon pre-treatment. ETH_D means drought-stressed plants with ethephon pre-treatment. https://doi.org/10.1371/journal.pone.0261472.g003

Fig 4. Summary and taxonomic source of BLASTx matches for Kentucky bluegrass unigenes. Percentage of unique best BLASTx matches of unigenes grouped by genus. https://doi.org/10.1371/journal.pone.0261472.g004
primed drought stressed to well-watered control plants (Fig 5A). Gene ontology (GO) and enrichment analysis identified 1892 biological processes, 863 molecular functions, and 404 cellular components (Fig 7B).

It seemed that ETH treatment help plants dealing with drought by regulating muchlesser genes (3,890 vs 24,465) (Fig 5A). Therefore, only the genes most relevant to drought stress and ETH application are focused on the discussion part.

3.4 qRT-PCR validation of RNA-Seq results

Eight differentially expressed genes were randomly selected, including four genes from CK. (c111268_g1, c145507_g1, c117236_g1, c119413_g2) and four genes from ETH_D (c145664_g1, c128115_g1, c135104_g1, c93924_g1). Results showed that these genes used for qRT-PCR were all consistent with the RNA-Seq results (Pearson’s r = 0.98, P < 0.001, Fig 8) (see S5 Data for data used to calculate the qRT-PCR validation of RNA-Seq).

3.5 Differentially expressed genes due to drought and ETH

Drought caused extensive gene expression changes while drought and ETH caused less gene expression changes in Kentucky bluegrass plants, which indicated that ETH help plants coping with drought by mediating the regulation of fewer genes in response to drought. Therefore, in order to find the genes only regulated by ETH under drought stress, DEGs of these two comparisons [(ETH_D vs CK) vs (Drought vs CK)] were compared. Results showed 5.8% (123 out of 2105) of the transcripts were up-regulated (Fig 5B) and 2.5% (44 out of 1785) were down-regulated (Fig 5C) (DEGs up-regulated and down-regulated of [(ETH_D vs CK) vs (Drought vs CK)] were listed in S6 and S7 Data respectively). The mechanism of ethephon on drought tolerance of Kentucky bluegrass was analyzed by identifying DEGs involved in [(ETH_D vs CK) vs (Drought vs CK)] (Fig 9).

3.5.1 Plant hormone, signal transduction and plant defense. Ethylene Responsive Factor (AP2/ERF) family are conservatively widespread in the plant kingdom. Although the

Fig 5. A. Venn diagram for all differentially expressed genes (DEGs) in Kentucky bluegrass. B. Venn diagram for up-regulated genes in Kentucky bluegrass. C. Venn diagram for down-regulated genes in Kentucky bluegrass. 'CK' means well-watered control plants without ethephon pre-treatment. 'Drought' means drought-stressed plants without ethephon application. 'ETH_D' means drought stressed plants with ethephon pre-treatment. DEGs were quantified at false discovery rate threshold (FDR) of 0.001 and log2 (fold change) larger than 2. Total DEGs for each comparison are shown in parenthesis.

https://doi.org/10.1371/journal.pone.0261472.g005
Fig 6. Heat map of all differentially expressed genes in Kentucky bluegrass. ‘CK’ means well-watered control plants without ethephon pre-treatment. ‘Drought’ means drought-stressed plants without ethephon application. ‘ETH_D’ means drought-stressed plants with ethephon pre-treatment.

https://doi.org/10.1371/journal.pone.0261472.g006
original acronym ERF, Ethylene-responsive transcription factor, has been maintained, responsiveness to the growth regulator ethylene is not a universal feature of this protein superfamily [37]. Two ERF genes were up regulated by ETH under drought in our study, ERF113 (2.3 fold) and ERF115 (2.4 fold). ERF113, also known as RELATED TO APETALA2.6L (RAP2.6L) in Arabidopsis, is induced by salt stress and drought [38, 39]. Additionally, ERF113 transcription is responsive to JA, salicylic acid, ABA and ethylene [39]. Correspondingly, ERF113 overexpression confers resistance to stresses that activate these hormones. For instance, overexpression of ERF113 triggers stomatal closure and enhances waterlogging tolerance [40]. In addition to the response to hormonal cues, ERF113 activity can further be linked to...
developmental processes, such as shoot regeneration from root explants and ovule development [41]. ERF113 also has a role in promoting cell division that is induced by wounding [38, 42]. ERF115 drives the quiescent center (QC) cell division in a brassinosteroid-dependent way but is restrained through proteolysis by ubiquitin ligase. The QC plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Maintaining a stem cell subpopulation that is used to replace damaged stem cells might represent a general mechanism to maintain a functional stem cell niche under stress conditions [43].

It is well known that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) plays important roles not only as a precursor lipid for generating second messengers but also as a regulator of cytoskeletal re-organization [44]. Recent examples of ion channel regulation by PI(4,5)P2 have been recently reported in plants. Since PI(4,5)P2 is mostly found in the plasma membrane, PI (4,5)P2 dependence is thought to restrict channel/transporter activity into this compartment and is important for stomatal opening [45]. As for the metabolizing pathways of PI(4,5)P2, there are three possible routes. One is conversion to PI(3,4,5)P3 by phosphatidylinositol 3-kinase. Second is hydrolysis to I(1,4,5)P3 and diacylglycerol by phospholipase C (PLC). Third is hydrolysis by PI(4,5)P2 phosphatase to PI(4)P [46]. Thus, PI(4,5)P2 levels are regulated by a balance of these metabolizing enzymes and synthesizing enzymes [47]. Type II PI (4,5)P2 phosphatase (Transmembrane protein 55A, 4.7 fold) is involved in the third PI(4,5)P2 metabolizing route: dephosphorylating the D4 position of PI(4,5)P2. Therefore, up regulation of this gene might decrease content of PI(4,5)P2 which may assist plant drought adaptation through stomata closure, ion channels activity and other transduction pathways involving second messengers derived from PI(4,5)P2 [48].

Transcript of a remorin gene (c103095_g1, Inf) was only detected in drought-stressed plants with ETH pre-treatment. This protein was named remorin due to its hydrophilic profile and its ability to attach to plasma membrane [49]. They probably facilitate cellular signal transduction by direct interaction with signaling proteins such as receptor-like kinases and may dynamically modulate their lateral segregation within plasma membranes [50]. The diverse and precise biological roles of different remorins remain to be investigated. However, the absence of remorins in algae, but their presence in mosses, ferns, and higher plants, suggests that the emergence of remorins coincided with the colonization of land and dealing with adverse drought and other osmotic stressed conditions [51, 52]. Transgenic Arabidopsis plants overexpressed heterologous remorin gene from mulberry [53] or foxtail millet (Setaria italica) [49] showed improved tolerance to abiotic stress including dehydration and salinity. How ETH treatment regulated remorin gene in response to drought is not clear. Yue et al. [49]
reported that there is an DRE core elements in the promoter region of foxtail millet remorin gene 6 (SiREM6). One ABA responsive DREB transcription factor can bind to the DRE core elements. These results together suggest that ETH treatment might promote gene expression of remorin gene during drought stress in an ABA dependent signal transduction pathway.

Plant defensin (c126749_g1) gene is up regulated in ETH pre-treated Kentucky bluegrass plants under drought stressed conditions (2.7 fold). Plant defensins are small, highly stable, cysteine-rich peptides and they constitute an important part of the innate immune system primarily against fungal pathogens [54, 55]. In addition to their role in biotic response, plant defensin also has potential in inducing abiotic stress tolerance. Many reports revealed that plant defensin is also up regulated by salicylic acid, abscisic acid, ethephon and wounding [56–58]. Therefore, under drought stress conditions ethephon may up-regulate defensin expression to induce drought tolerance.

3.5.2 Protein degradation and stabilization. A few genes associated with protein degradation and stabilization were up-regulated by ETH and drought treatment. For instance, a gene encoding chaperone protein ClpD1 (3.7 fold) was up-regulated in ETH treated plants under drought. ClpD1 may interact with a ClpP-like protease involved in degradation of denatured proteins in the chloroplast [59]. Previous studies revealed that ClpD1 plays a positive role during dehydration and salt stress [59, 60]. Ubiquitin (1.7817 fold) was also up-regulated by ETH under drought. The major function of ubiquitin is to facilitate protein degradation as an important component of the ubiquitin 26S proteasome system (UPS) in plant responses to abiotic stresses [61]. Proteasome activator pa28 beta subunit gene (1.8587 fold) was up regulated by ETH under drought. PA28 are activators that bind to proteasomes and stimulate the hydrolysis of peptides [62, 63]. Proteins of these up-regulated genes might perform an important role of removing potentially toxic proteins and misfolded or oxidized proteins that may accumulate as a result of exposure to drought stress. However, a cysteine proteinase inhibitor gene (1.74 fold) was up-regulated by ETH under drought. Cysteine proteases play an essential role in plant growth and development but also in senescence and programmed cell death [64]. They are among the plant proteases and are increased in their activity following stress [65, 66]. If the activity of the cysteine proteinases is too high, proteins required for metabolic processes degraded rapidly due to proteolysis [67]. It is therefore of great importance that the activity of the cysteine proteinases are accurately controlled in order to cope with drought. This is achieved, possibly through up regulation of cysteine proteinase inhibitor. Previous transgenic studies confirmed that cysteine proteinase inhibitor played active role in response to stress including drought [67–69].

3.5.3 Transportation and osmosis. ARFs confers tolerance to biotic and abiotic stresses in plant species [70]. Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis [71]. Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis [72]. ADP-ribosylation factor-like protein (ARL) (Inf) (If the normalized read-counts of one particular gene in one sample is 0 and not 0 in another sample, fold change would be Inf or -Inf) belong to Ras superfamily of small GTP-binding proteins (GTPases). ARLs were identified on the basis of their sequence similarity with ARFs. GTP-binding has been shown for most ARL proteins, but all ARLs are essentially devoid of GTPase activity and activities described for ARF isotypes. Some ARLs appear to be involved in the regulation of protein and/or vesicle transport between cell organelles (ARL1, ARL4) or in the regulation of enzymatic activities controlling these processes (Arfrp1). In potato (Solanum tuberosum), six clones of ADP-ribosylation factor-like protein were up-regulated by salt treatment [73]. Gene expression induction of ARL in ETH treated plants under drought might facilitate the plants
for higher exchange rates of ions, proteins and other molecules by protein and/or vesicle transport pathway.

Amino acids are essential components of plant metabolism, not only as constituents of proteins, but also as precursors of important secondary metabolites and as carriers of organic nitrogen between the organs of the plant. Transport across intracellular membranes and translocation of amino acids within the plant are mediated by membrane amino acid transporters. However, the substrate selectivity and affinity of membrane amino acid transporters are generally different. Amino acid transport also plays a key role in leaf senescence and seed germination. Clearly, amino acid transport is a fundamental activity in plant growth [74]. A putative amino acid permease (AAP, 4.6 fold) was identified in ETH treated drought stressed plants. AAP is a family of amino acid transporters that preferentially transport glutamine, asparagine, glutamate, and neutral amino acids into plant cells [75]. GABA is a key regulator of ion channels in plants and animals [76]. Abiotic stresses including salt, anoxia, hypoxia, heat, mechanical damages, drought, cold, and waterlogging drive GABA accumulation in plants [77]. Vesicular GABA transporter (VGAT) belongs to solute carrier family 32 (vesicular inhibitory amino acid transporter) [78]. We identified a VGAT like protein (5.3 fold) regulated by ETH and drought in Kentucky bluegrass. The VGAT is known as the amino acid/auxin permease superfamily [79]. Two genes with low similarity to a vesicular GABA transporter, potentially functioning in cellular transport processes were also found to be commonly up-regulated in response to cellular water deficit in Arabidopsis [80]. It is possible that up-regulation of these amino acid transporters might be involved in amino acid-based osmotic regulation under drought in response to ETH treatment.

Sulfur plays a pivotal role in plant metabolism and development. Evidence is emerging that a number of non-protein and protein thiols, together with a network of sulphur-containing molecules and related compounds, also fundamentally contribute to plant stress tolerance [81]. A serine acetyltransferase like protein (SERAT like, 4.6 fold) and a probable thiol methyltransferase 2 (2.6 fold) were up regulated by ETH and drought. Cysteine (Cys), as the first organic-reduced sulfur compound, contributes not only to life as building blocks in proteins, but it also serves as a precursor for the synthesis of Methionine (Met), glutathione (GSH), cofactors, essential vitamins, sulfur esters, and other sulfur derivatives. Cys synthesis is catalyzed by the sequential action of SERAT and O-acetylserine (thiol)lyase (OASTL), links Ser metabolism to Cys biosynthesis [82]. Overexpressing of bacterial SERAT in transgenic tobacco plants lead to increased resistance to oxidative stress [83]. Sulfite exporter TauE/SafE family gene (2.5 fold) were involved in regulation of plant-type hypersensitive response and they were defense-related and enriched with clock regulatory elements [84]. The proteins are involved in the transport of anions across the cytoplasmic membrane during taurine metabolism as an exporter of sulfoacetate [85]. Sulfite exporter TauE/SafE family gene was also up-regulated in drought-stressed P. euphratica leaves [86].

Biopterin transporter (BT1 family, transmembrane protein, 4.1 fold, PFAM ID PF03092) belongs to the folate-biopterin transporter (FBT) family [87]. Folates take part in virtually every aspect of plant physiology. They play a role of donors and acceptors of one-carbon groups in one-carbon transfer reactions that take part in formation of numerous important biomolecules, such as nucleic acids, panthothenate (vitamin B5), amino acids [88]. The role of folates in plant stress response are also important. Folate supplementation was demonstrated to improve plant biotic stress resistance. Moreover, folate metabolism was shown to be differentially regulated in response to various abiotic stress conditions that pointed out its importance and possible specific adjustment in response to different stresses. Altogether these findings indicate that physiological roles and regulation of folate metabolism during development and stress response are important elements to be considered in the pursuit of crops with
better productivity and improved stress tolerance [88]. Folate/biopterin transporter gene was induced by 48-h rehydration and inhibited by drought stress in shoot and panicle of rice (Oryza sativa) [89]. BT1 is also induced by Nitro-Linolenic Acid which plays strong signaling role in the defense mechanism against different abiotic-stress situations in Arabidopsis [90].

3.5.4 Antioxidant system and the glyoxalase pathway. Oxidative stress is one of the common consequences of abiotic stress including drought in plants, which is caused by excess generation of reactive oxygen species (ROS). SRG1 protein (c127636_g2, 2.3 fold), senescence-related gene, is a new member of the Fe(II)/ascorbate oxidase superfamily and SRG1 protein detoxify reactive oxygen produced during the oxidative stress induced by drought. It is revealed that SRG1 homolog gene in potato putatively contributes to potato drought tolerance [91]. SRG1 is regulated by WRKY transcription factors and involved in defense signaling pathways in Arabidopsis [92]. Therefore, up regulation of SRG1 protein by ETH might help improving ROS scavenging ability of Kentucky bluegrass under drought.

In line with ROS, plants also produce a high amount of methylglyoxal (MG) in response to various abiotic stresses, which is highly reactive and cytotoxic. MG and ROS accumulation results in an imbalance in different cellular metabolic processes. The glyoxalase pathway acts to control excessive accumulation of MG and ROS in the system, either directly or in cooperation with other pathways involved in stress response [93, 94]. In addition, transgenic approaches in various plant models also have demonstrated the ability of glyoxalases in imparting abiotic stress tolerance [95, 96]. Therefore, we propose that up regulation of glyoxalase (c124305_g1, 3.8 fold) by ETH might help Kentucky bluegrass plants detoxify MG and improve plants performance under drought.

Two proline dehydrogenase unigene (-2.3 and -2.6) catalyzes the first step in proline degradation and it is the rate-limiting enzyme in proline degradation [97]. Down regulation of proline dehydrogenase gene could lead to slower degradation of proline which would be an advantage [98].

3.5.5 Cell wall and cuticular wax. During drought, it is important for plants that the cell wall is rigid enough to resist internal turgor pressure. The plant invertase/pectin methyl esterase inhibitor (PMEI, c133760_g1, 2.1 fold) inhibits demethylesterification of pectins by inhibition of endogenous PME, which keeps up highly methylated pectin [99]. Pectin, one of major components of the plant cell wall, has been shown to play a key role in modulating cell wall structure in response to drought stress [100, 101]. Degree of methylesterification of pectins related to interaction of PME and PMEI could affect mechanical properties of cell wall such as plasticity, extensibility, fluidity and thickening and those properties could enable adaptation and/or resistance to abiotic stress [102, 103]. In addition, pectin may play important roles in drought adaptation through modulating stomata movement [99, 104]. Our study suggested that inductions of PMEI expression provide beneficial effects in plants drought responses and this result was consistent with other studies [86, 105]. A reduced amount of pectin, coincided with an increase in firmness. Putative galacturonosyltransferase (GAUT, c121058_g1, -2.8 fold) are required for the synthesis of pectin [106, 107]. Expansins are cell wall proteins that are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. Since they function as cell wall-loosening proteins [108], down regulation of expansin (EXPB2, c139601_g1, -1.9 fold) by ETH may improve cell wall plasticity of plants during prolonged drought.

Cuticular wax has been implicated in defense mechanisms against biotic and abiotic stress including drought [109–111], possibly because the waterproof cuticular wax can counteract non-stomatal water loss during periodic drying and drought stress [112]. Two genes contributing to cuticular wax synthesis were identified in ETH and drought treated Kentucky bluegrass plants, ECERIFERUM3 (CER3, c90612_g1, 2.5 fold) and WAX2 (c135869_g1, Inf). CER3 is
important for cuticular wax synthesis [113]. WAX2 is involved in synthesis of leaf cuticular wax and also cutin composition [114, 115]. One plant non-specific lipid-transfer protein (nsLTP, c120612_g1, 2.6 fold) was also up regulated by ETH in Kentucky bluegrass under drought. Plant non-specific lipid-transfer protein form a protein family of small, basic proteins ubiquitously distributed throughout the plant kingdom [116]. The members of this family are located extracellularly, usually associated with plant cell walls, and possess a broad lipid-binding specificity [117]. Plenty of studies reported that nsLTP genes played important roles in plants’ drought responses. For example, three nsLTPs genes are drought inducible in tomato [118] and one sugarcane (Saccharum hybrid complex) NsLTPs gene was up-regulated by PEG-simulated drought [119]. Over expression of nsLTP gene from Setaria italic in tobacco resulted in higher levels drought tolerance compared to wild type plants [120]. Similarly, enhanced drought tolerance of transgenic potato plants over-expressing non-specific lipid transfer protein-1 (STnsLTP1) was also observed [121]. While the mechanisms remain elucidated, one possible role of LTP in elevating drought tolerance is to promote cuticle deposition [117, 122].

3.5.6 Fatty acid unsaturation. Glycerol-3-phosphate acyltransferase (GPAT, 2.9 fold) catalyzes the transfer of an acyl group from an acyl donor to the sn-1 position of glycerol 3-phosphate. There are three types of GPAT in plant cells; they are localized in plastids (including chloroplasts), in the cytoplasm, and in mitochondria, respectively. Genetic engineering of the unsaturation of fatty acids has been achieved by manipulation of the cDNA for the GPAT found in chloroplasts and has allowed modification of the ability of tobacco to tolerate chilling temperatures [123]. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice [124]. Xu et al. [125] suggest that leaf dehydration tolerance and post-drought recovery in Kentucky bluegrass was associated with their ability to maintain relative higher proportion and level of unsaturated fatty acids. These studies together with ours suggested that higher expression of GPAT by ETH may lead to higher level of unsaturated fatty acids and therefore increased drought performance of ETH treated Kentucky bluegrass.

3.5.7 Photosynthesis. Photosynthesis is one of the key processes to be affected by water deficits [126]. RbcS gene was down regulated under both drought (-5.5 fold) and ETH treated drought (-3.2 fold) conditions while down regulation of RbcL (-3.1 fold) was only detected in drought treated plants. This indicates CO₂ assimilation in ETH treated plant might be less inhibited by drought. Proton-transporting ATP synthase complex, coupling factor F0 (-3.2068 fold) was only down regulated in ETH treated plants under drought. ATP synthase activity is strictly related to photosynthesis because it transfers protons through the thylakoid membrane. Decrease expression of ATP synthase complex coupling factor F0 may protect the photosynthetic apparatus from photo-damage by mediating non-photochemical quenching [127]. In addition, decreased ATP under low RWC impairs protein synthesis, through inadequate energy supply, but may increase some types of proteins, e.g. molecular chaperones, because their production is regulated in different ways.

Three up-regulated DEGs (ETH_D vs Drought) related to Photosystem II and electron transport were found in our study, cytochrome b559, plastocyanin like protein and Photosystem II reaction centre N protein (PsbN). Cytochrome b559 [alpha (gene psbE) and beta (gene psbF) subunits (2.9 fold)] is an essential component of photosystem II, catalyzing photosynthetic oxygen evolution [128]. Cytochrome b559 also plays a significant protective role for Photosystem II against photo inhibition during drought stress [129–132]. Plastocyanin like protein (3.1 fold) is involved in electron transport and it is responsive to drought both in barley and cassava [133, 134]. PsbN (2.8 fold) is required for hetero-dimerization of PSII reaction center in the stroma lamellae, and is required for early PSII assembly and repair [135, 136]. In summary,
ETH pre-treatment might help plants maintain higher O₂ evolution rate under drought and protect photosystem from photo-damages.

4. Conclusion
Etaphen could improve the drought tolerance of Kentucky bluegrass by elevating RWC and decreasing MDA under drought. On a whole transcriptome level, etaphen application affected genes associated with plant hormone, signal transduction pathway, plant defense, protein degradation and stabilization, transportation, osmosis, antioxidant system, the glyoxalase pathway, cell wall, cuticular wax, fatty acid unsaturation and photosynthesis of Kentucky bluegrass under drought stress. Genes mentioned in the discussion may be beneficial to better understand the mechanism of etaphen affecting plants stress responses.

Supporting information
S1 Data. Primer pairs for qRT-PCR.
(XLSX)
S2 Data. Summary of sequencing data quality.
(XLS)
S3 Data. Frequency distribution of splicing transcript length.
(XLSX)
S4 Data. Reads alignment efficiency.
(XLSX)
S5 Data. qRT-PCR validation of RNA-Seq results.
(XLSX)
S6 Data. Up-regulated DEGs annotation of (ETH_D vs CK) vs (Drought vs CK).
(XLS)
S7 Data. Down-regulated DEGs annotation of (ETH_D vs CK) vs (Drought vs CK).
(XLSX)

Acknowledgments
The authors wanted to express thanks to Yinan Sun working at Beijing Forestry University for drawing the Kentucky bluegrass in Fig 9.

Author Contributions
Conceptualization: Jiahang Zhang, Lixin Xu, Liebao Han.
Formal analysis: Jiahang Zhang.
Investigation: Jiahang Zhang, Yanan Gao.
Methodology: Yanan Gao, Lixin Xu.
Project administration: Lixin Xu, Liebao Han.
Supervision: Lixin Xu, Liebao Han.
Writing – original draft: Jiahang Zhang, Lixin Xu.
Writing – review & editing: Jiahang Zhang, Lixin Xu.
References

1. Rao DE, Chaitanya KV. Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant. 2016; 60:201–218. https://doi.org/10.1007/s10535-016-0584-8

2. Xu L, Yu J, Han L, Huang B. Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environ Exp Bot. 2013; 89:28–35. https://doi.org/10.1016/j.envexpbot.2012.12.001

3. Saud S, Yajun C, Fahad S, Hussain S, Na L, Xin L, et al. Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ Sci Pollut Res. 2016; 23:17647–17655. https://doi.org/10.1007/s11356-016-6957-x PMID: 27236444

4. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, et al. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions. ScientificWorldJournal. 2014; 2014:368694. https://doi.org/10.1155/2014/368694 PMID: 25054178

5. Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci. 2015; 72:673–89. https://doi.org/10.1007/s00018-014-1767-0 PMID: 25336153

6. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a Bifunctional Transducer of Ethylene and Stress Responses in Arabidopsis. Science. 1999; 284:2148–52. https://doi.org/10.1126/science.284.5423.2148 PMID: 10381874

7. Yang L, Zu Y, Tang Z. Ethylene improves Arabidopsis salt tolerance mainly via retaining K+ in shoots and roots rather than decreasing tissue Na+ content. Environ Exp Bot. 2013; 86:60–69. https://doi.org/10.1016/j.envexpbot.2010.08.006

8. Maruthasalam S, Shiu LY, Loganathan M, Lien WC, Liu YL, Sun CM, et al. Forced flowering of pineapple (Ananas comosus cv. Tainon 17) in response to cold stress, ethephon and calcium carbide with or without activated charcoal. Plant Growth Regul. 2010; 60:83–90. https://doi.org/10.1007/s10725-009-9421-9

9. Han L, Han L, Xu L. Effects of Ethephon Treatment on Plant Drought Tolerance. Acta Agrestia Sinica. 2013; 21:631–636. https://doi.org/10.11733/j.issn.1007-0435.2013.03.001

10. Yu H, Zhang Y, Xie Y, Wang Y, Duan L, Zhang M, et al. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. J Plant Physiol. 2017; 214:123–133. https://doi.org/10.1016/j.jplph.2017.04.008 PMID: 28482333

11. Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One. 2011; 6:e25216. https://doi.org/10.1371/journal.pone.0025216 PMID: 21966459

12. Cui M, Lin Y, Zu Y, Effertth T, Li D, Tang Z. Ethylene increases accumulation of compatible solutes and decreases oxidative stress to improve plant tolerance to water stress in Arabidopsis. J Plant Biol. 2015; 58:193–201. https://doi.org/10.1007/s12374-014-0302-z

13. Zhang N, Han L, Xu L, Zhang X. Ethephon Seed Treatment Impacts on Drought Tolerance of Kentucky Bluegrass Seedlings. Am Soc Hortic Sci. 2018; 28:319–326. https://doi.org/10.21273/HORTTECH03976-18

14. Han L. Effects of ethephon treatment on drought resistance of Kentucky bluegrass (Poa pratensis L.), scholarly journal. M.Sc. Thesis, Beijing Forestry University. 2014. https://kreader.cnki.net/Kreader/CatalogViewPage.aspx?dbCode=CMFD&filename=1014327631.nh&tableName=CMFD201402&composo=&first=1&uid=

15. Zhou J, Chen S, Shi W, David-Schwartz R, Li S, Yang F, et al. Transcriptome profiling reveals the effects of drought tolerance in Giant Junccao. BMC Plant Biol. 2021; 21:2. https://doi.org/10.1186/s12870-020-02785-7 PMID: 33390157

16. Moon KB, Ahn DJ, Park JS, Jung WY, Cho HS, Kim HR, et al. Transcriptome Profiling and Characterization of Drought-Tolerant Potato Plant (Solanum tuberosum L.). Mol Cells. 2018; 41:497–992. https://doi.org/10.14348/molcells.2018.0312 PMID: 30396236

17. Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, et al. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Front Plant Sci. 2021; 11:572137. https://doi.org/10.3389/fpls.2020.572137 PMID: 33488639

18. Dong Y, Fan G, Zhao Z, Deng M. Transcriptome expression profiling in response to drought stress in Paulownia australis. Int J Mol Sci. 2014; 15:4583–607. https://doi.org/10.3390/ijms15034583 PMID: 24642880
19. Dombrowski JE, Kronmiller BA, Hollenbeck VG, Rhodes AC, Henning JA, Martin RC. Transcriptome analysis of the model grass Lolium temulentum exposed to green leaf volatiles. BMC Surg. 2019; 19:222–238. https://doi.org/10.1186/s12870-019-1799-6 PMID: 31138172

20. Qiao D, Zhang Y, Xiong X, Li M, Cai K, Luo H, et al. Transcriptome analysis on responses of orchard-grass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas. 2020; 157:20–35. https://doi.org/10.1186/s41065-020-00134-0 PMID: 32418541

21. Ma Y, Shukla V, Merewitz EB. Transcriptome analysis of creeping bentgrass exposed to drought stress and polyamine treatment. PLoS One. 2017; 12:e175848. https://doi.org/10.1371/journal.pone.0175848 PMID: 28445484

22. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29:644–52. https://doi.org/10.1038/nbt.1883 PMID: 21572440

23. Ha J, Kang YG, Lee T, Kim M, Yoon MY, Lee E, et al. Comprehensive RNA sequencing and co-expression network analysis to complete the biosynthetic pathway of coumestrol, a phytoestrogen. Sci Rep. 2019; 9:1934. https://doi.org/10.1186/s41065-020-00134-0 PMID: 32418541

24. Xu Z, Peters R, Weirather J, Luo H, Liao B, Xin Zhang, et al. Full-length transcriptome sequences and splice variants obtained by a combination of sequencing platforms applied to different root tissues of Salvia miltiorrhiza and tanshinone biosynthesis. The Plant Journal. 2015; 82:951–961. https://doi.org/10.1111/tpj.12865 PMID: 25912611

25. Zhang R, Ma X, Zhu R, Niu K, Zhao C, Ma H. Metabolic Pathway and Transcriptional Regulation of Qinghai Wild Poa pratensis in Response to Drought Stress. Acta Agrestia Sinica. 2020; 28:1508–1518. https://doi.org/10.11733/j.issn.1007-0435.2020.06.003

26. Leng N, Liu X, Zhang N, Xu L. Differential gene analysis of Poa pratensis in response to drought stress. Acta Prataculturae Sinica. 2017; 26:128–137. https://doi.org/10.1186/s41598-020-00134-0 PMID: 32418541

27. DaCosta M, Huang B. Changes in Antioxidant Enzyme Activities and Lipid Peroxidation for Bentgrass Species in Response to Drought Stress. J Am Soc Hortic Sci. 2007; 132:319–326. https://doi.org/10.21273/JAHS.132.3.319

28. Kuk YI, Shin JS, Burgos NR, Hwang TE, Han O, Cho BO, et al. Antioxidative enzymes offer protection from chilling damage in rice plants. Crop Sci. 2003; 43:2109–2117. https://doi.org/10.2135/cropsci2003.2109

29. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011; 12:323. https://doi.org/10.1186/1471-2105-12-323 PMID: 21816040

30. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010; 26:136–8. https://doi.org/10.1093/bioinformatics/btp612 PMID: 19855105

31. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Series B Stat Methodol. 1995; 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

32. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010; 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14 PMID: 20325355

33. Rao X, Huang X, Zhou Z, Lin X. An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath. 2013; 3:71–85. PMID: 25558171

34. Hu L, Wang Z, Huang B. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiol Plant. 2010; 139:93–106. https://doi.org/10.1111/j.1399-3054.2010.01350.x PMID: 20070869

35. Han H, Bai L, Su J, Zhang J, Song L, Gao A, et al. Genetic rearrangements of six wheat—agropyron cristatum 6P addition lines revealed by molecular markers. PLoS One. 2014; 9:e91066. https://doi.org/10.1371/journal.pone.0091066 PMID: 24595330

36. Fu J, Huang B. Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot. 2001; 45:105–114. https://doi.org/10.1016/s0098-8472(00)00084-8 PMID: 11275219

37. Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol. 2013; 199:639–49. https://doi.org/10.1111/nph.12291 PMID: 24010138

38. Heyman J, Canber B, Bişht A, Christiaens F, De Veylder L. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. J Cell Sci. 2018; 131:jcs208215. https://doi.org/10.1242/jcs.208215 PMID: 29242229.
39. Krishnaswamy S, Verma S, Rahman MH, Kav NVN. Functional characterization of four APETALA2-
family genes (RAP2.6, RAP2.6L, DREB19 and DREB26) in Arabidopsis. Plant Mol Biol 2011; 75:107–127.
https://doi.org/10.1007/s11103-010-9711-7 PMID: 21069430

40. Liu P, Sun F, Gao R, Dong H. RAP2.6L overexpression delays waterlogging induced premature
senescence by increasing stomatal closure more than antioxidant enzyme activity. Plant Mol Biol.
2012; 79:609–22. https://doi.org/10.1007/s11103-012-9936-8 PMID: 22661072

41. Che P, Lali S, Nettleton D, Howell SH. Gene Expression Programs during Shoot, Root, and Callus
Development in Arabidopsis Tissue Culture. Plant Physiol. 2006; 141:620–637. https://doi.org/10.
1104/pp.106.081240 PMID: 16648215

42. Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, et al. Wounding Triggers Callus
Formation via Dynamic Hormonal and Transcriptional Changes. Plant Physiol. 2017; 175:1158–1174.
https://doi.org/10.1104/pp.17.01035 PMID: 28904073

43. Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, Van Leene J, Vercauteren I, et al. ERF115
controls root quiescent center cell division and stem cell replenishment. Science. 2013; 342:860–3.
https://doi.org/10.1126/science.1240667 PMID: 24158907

44. Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, et al. The identification and charac-
terization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A.
2005; 102:18854–9. https://doi.org/10.1073/pnas.0509740102 PMID: 16365287

45. Delage E, Puyaubert J, Zachowski A, Ruelland E. Signal transduction pathways involving phosphati-
dylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences
among eukaryotic kingdoms. Prog Lipid Res. 2013; 52:1–14. https://doi.org/10.1016/j.plipres.2012.08.
003 PMID: 22981911

46. Clarke JH, Wang M, Irvine RF. Localization, regulation and function of type II phosphatidylinositol 5-
phosphate 4-kinases. Adv Enzyme Regul. 2010; 50:12–18. https://doi.org/10.1016/j.advenzreg.2009.
10.006 PMID: 19896968

47. Takenawa T, Itoh T, Fukami K. Regulation of phosphatidylinositol 4,5-bisphosphate levels and its roles
in cytoskeletal re-organization and malignant transformation. Chem Phys Lipids. 1999; 98:13–22.
https://doi.org/10.1016/s0009-3084(99)00014-6 PMID: 10358924

48. Alonso A, Nunes-Xavier CE, Bayón Y, Pulido R. The Extended Family of Protein Tyrosine Phospha-
tases. In: Pulido R. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, Humana
Press, New York, NY. 2016; 1447:1–23. https://doi.org/10.1007/978-1-4939-3746-2_1 PMID:
27514797

49. Yue J, Li C, Liu Y, Yu J. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria
italica) promotes high salt tolerance in transgenic Arabidopsis. PLoS One. 2014; 9:e100772. https://
doi.org/10.1371/journal.pone.0100772 PMID: 24967625

50. Marín M, Ott T. Phosphorylation of Intrinsically Disordered Regions in Remorin Proteins. Front Plant
Sci. 2012; 3:86. https://doi.org/10.3389/fpls.2012.00086 PMID: 22639670

51. Jarsch IK, Ott T. Perspectives on remorin proteins, membrane rafts, and their role during plant-microbe
interactions. Mol Plant Microbe Interact. 2011; 24: 7–12. https://doi.org/10.1094/MPMI-07-10-0166
PMID: 21138374

52. Raffaele S, Mongrand S, Gamas P, Niebel A, Ott T. Genome-Wide Annotation of Remorins, a Plant-
Specific Protein Family: Evolutionary and Functional Perspectives. Plant Physiol. 2007; 145:593–600.
https://doi.org/10.1104/pp.107.108639 PMID: 17984200

53. Checker VG, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin
(MIREM) involved in abiotic stress. Plant Cell Rep. 2013; 32:1729–41. https://doi.org/10.1007/s00299-
013-1485-5 PMID: 23942844

54. Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution,
function and mechanisms of action for plant defensins. Semin Cell Dev Biol. 2018; 88:107–116.
https://doi.org/10.1016/j.semcdb.2018.02.004 PMID: 29432955

55. Shafee TMA, Lay FT, Phan TK, Anderson MA, Hulett MD. Convergent evolution of defensin sequence,
structure and function. Cell Mol Life Sci. 2017; 74:663–682. https://doi.org/10.1007/s00018-016-2344-
5 PMID: 27557686

56. George S, Manoharan D, Li J, Britton M, Parida A. Drought and salt stress in Macrotyloma uniflorum
leads to common and specific transcriptomic responses and reveals importance of raffinose family oli-
gosaccharides in stress tolerance. Gene Rep. 2018; 10:7–16. https://doi.org/10.1016/j.genrep.2017.
10.006

57. Do H, Lee SC, Jung HW, Sohn KH, Hwang B. Differential expression and in situ localization of a pepper
defensin (CADEF1) gene in response to pathogen infection, abiotic elicitors and environmental
stresses in Capsicum annuum. Plant Sci. 2004; 166:1287–1305. https://doi.org/10.1016/j.plantsci.
2004.01.008
58. Swathi AT, Jami SK, Kirti PB. A Defensin Gene of Indian Mustard is Stress Induced. J Plant Biochem Biotechnol. 2009; 18:221–224. https://doi.org/10.1007/bf03263323

59. Mishra RC, Richa Grover A. Constitutive over-expression of rice ClpD1 protein enhances tolerance to salt and desiccation stresses in transgenic Arabidopsis plants. Plant Sci. 2016; 250:69–78. https://doi.org/10.1016/j.plantsci.2016.06.004 PMID: 27457985

60. Wu Y, Mizraei M, Pascovici D, Chick JM, Atwell BJ, Haynes PA. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. J Proteomics. 2016; 143:73–82. https://doi.org/10.1016/j.jprot.2016.05.014 PMID: 27195813

61. Lyzena WJ, Stone SL. Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot. 2012; 63:599–616. https://doi.org/10.1093/jxb/err310 PMID: 22016431

62. Li J, Powell SR, Wang X. Enhancement of proteasome function by PA28a overexpression protects against oxidative stress. FASEB J, 2010; 25:883–893. https://doi.org/10.1096/fj.10-160895 PMID: 21098724

63. Rechsteiner M, Hill CP. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 2005; 15:27–33. https://doi.org/10.1016/j.tcb.2004.11.003 PMID: 15653075

64. Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell. 1999; 11:431–444. https://doi.org/10.1105/tpc.11.3.431 PMID: 10072402

65. Grudkowska M, Zagdanska B. Multifunctional role of plant cysteine proteases. Acta Biochim Pol 2004; 51:609–24. https://doi.org/10.45103.0609 PMID: 15448724

66. Khanna-Chopra R, Srivalli B, Ahlawat YS. Drought induces many forms of cysteine proteases not observed during natural senescence. Biochem Biophys Res Commun. 1999; 255:324–7. https://doi.org/10.1006/bbrc.1999.0195 PMID: 10049707

67. Zhang X, Liu S, Takano T. Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol. 2008; 68:131–43. https://doi.org/10.1007/s11103-008-9357-x PMID: 18523728

68. Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA. The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol. 1999; 17:1223–6. https://doi.org/10.1038/70781 PMID: 10585723

69. Li R, Wang W, Wang W, Li F, Wang Q, Xu Y, et al. Overexpression of a cysteine proteinase inhibitor gene from Jatropha curcas confers enhanced tolerance to salinity stress. Electronic Journal of Biotechnology 2015; 18:368–375. https://doi.org/10.1016/j.ejbt.2015.08.002

70. Muthamilarasan M, Mangu VR, Zandkarimi H, Prasad M, Baisakh N. Structure, organization and evolution of ADP-ribosylation factors in rice and foxtail millet, and their expression in rice. Sci Rep. 2016; 6:24008. https://doi.org/10.1038/srep24008 PMID: 27097755

71. Karan R, Subudhi PK. Overexpression of an adenosine diphosphate-ribosylation factor gene from the halophytic grass Spartina alterniflora confers salinity and drought tolerance in transgenic Arabidopsis. Plant Cell Rep. 2014; 33:373–84. https://doi.org/10.1007/s00299-013-1537-8 PMID: 24247851

72. Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N. Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell Tiss Organ Cult. 2014; 117:17–30 https://doi.org/10.1007/s00299-013-0416-x

73. Kim DY, Lee HE., Yi KW, Han SE, Kwon HB, Go SJ, et al. Expression pattern of potato (Solanum tuberosum) genes under cold stress by using cDNA microarray. KOREAN J GENETIC. 2003; 25:345–352.

74. Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot. 2014; 65:5535–5556. https://doi.org/10.1093/jxb/eru320 PMID: 25114014

75. Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol. 2012; 15:315–21. https://doi.org/10.1016/j.pbi.2012.02.001 PMID: 22364888

76. Ramesh SA, Tyerman SD, Gillilah M, Xu B. y-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci. 2017; 74:1577–1603. https://doi.org/10.1007/s00018-016-2415-7 PMID: 27838745

77. Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Sci. 2012; 193–194:130–135. https://doi.org/10.1016/j.plantsci.2012.06.001 PMID: 22794926

78. Sundberg BE, Wååg E, Jacobsson JA, Stephansson O, Rumaks J, Svirskis S, et al. The evolutionary history and tissue mapping of amino acid transporters belonging to solute carrier families SLC32,
SLC36, and SLC38. J Mol Neurosci. 2008; 35:179–93. https://doi.org/10.1007/s12031-008-9046-x PMID: 18418736

79. Gasnier B. The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids. Pfuiers Arch. 2004; 447:756–759. https://doi.org/10.1007/s00424-003-1091-2 PMID: 12750892

80. Bray EA. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot. 2004; 55:2331–2341. https://doi.org/10.1093/jxb/erh270 PMID: 15448178

81. Zagonchle L, Seal CE, Kraner I, Ojjakova M. A Central Role for Thiols in Plant Tolerance to Abiotic Stress. Int J Mol Sci. 2013; 14:7405–7432. https://doi.org/10.3390/ijms1407405 PMID: 23549272

82. Watanabe M, Muchida K, Kato T, Tabata S, Yoshimoto N, Noji M, et al. Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell. 2008; 20:248–96. https://doi.org/10.1105/tpc.108.060335 PMID: 18776059

83. Blasszczuky A, Brodzik R, Sirko A. Increased resistance to oxidative stress in transgenic tobacco plants overexpressing bacterial serine acetyltransferase. Plant J. 1999; 20:237–43. https://doi.org/10.1046/j.1365-313x.1999.00596.x PMID: 10571883

84. Sharma M, Bhatt D. The circadian clock and defence signalling in plants. Mol Plant Pathol. 2015; 16:210–8. https://doi.org/10.1111/mpp.12178 PMID: 25081907

85. Weinitschke S, Denger K, Cook AM, Smits THM. The DUF81 protein TauE in Cupriavidus necator. Front Chem. 2017; 5:21. https://doi.org/10.3389/fchem.2017.00021 PMID: 28424769

86. Zhou J, Wang X, Jiao Y, Qin Y, Liu X, He K, et al. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol. 2007; 63:591–608. https://doi.org/10.1007/s11103-006-0474-y PMID: 17310369

87. Hasan MR, Ghosh A, Kaur C, Pareek A, Singhla-Pareek SL. Glyoxalase Pathway and Drought Stress Tolerance in Plants. In: Hossain M., Wani S., Bhattacharjee S., Burritt D., Tran LS. (eds) Drought Stress. Int J Mol Sci. 2013; 14:7405–7432. https://doi.org/10.3390/ijms14047405 PMID: 23549272

88. Ulker B, Shahid Mukhtar M, Somssich IE. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta. 2007; 226:125–37. https://doi.org/10.1007/s00425-006-0474-y PMID: 17310369

89. Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, et al. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Confering Abiotic Stress Tolerance in Plants. Int J Mol Sci. 2017; 18:200. https://doi.org/10.3390/ijms18010200 PMID: 28117669

90. Gupta BK, Sahoo KK, Ghosh A, Tripathi AK, Anwar K, Das P, et al. Manipulation of glyoxalase pathway confers tolerance to multiple stresses in rice. Plant Cell Environ. 2018; 41:1186–1200. https://doi.org/10.1111/pce.12968 PMID: 28425127

91. Sankaranarayanan S, Jamshed M, Kumar A, Skori L, Scandola S, Wang T, et al. Glyoxalase Goes Green: The Expanding Roles of Glyoxalase in Plants. Int J Mol Sci. 2017; 18:898. https://doi.org/10.3390/ijms18040898 PMID: 28441779

92. Funck D, Eckard S, Müller G. Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol. 2010; 10:70. https://doi.org/10.1186/1471-2229-10-70 PMID: 20403182

93. Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 2011; 155:1947–1959. https://doi.org/10.1104/pp.110.167163 PMID: 21311034
99. Huang Y, Wu H, Wang Y, Liu C, Lin C, Luo D, et al. PECTIN METHYLESTERASE34 contributes to Heat tolerance through its role in promoting stomatal movement. Plant Physiology. 2017; 174:748–763. https://doi.org/10.1104/pp.17.00335 PMID: 28381503

100. Cosgrove DJ. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot. 2016; 67:463–76. https://doi.org/10.1093/jxb/erv511 PMID: 26608646

101. Willats WG, McCartney L, Mackie W, Knox JP. Pectin: cell biology and prospects for functional analysis. Plant Mol Biol. 2001; 47:9–27. https://doi.org/10.1023/a:1010662911148 PMID: 11554482

102. Le Gall H, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. Plants (Basel). 2015; 4:112–166. https://doi.org/10.3390/plants4010112 PMID: 27135320

103. Tenhaken R. Cell wall remodeling under abiotic stress. Front Plant Sci. 2015; 5:771. https://doi.org/10.3389/fpls.2014.00771 PMID: 25709610

104. Daszkowska-Golec A, Szarejko I. Open or close the gate—stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci. 2013; 4:138. https://doi.org/10.3389/fpls.2013.00138 PMID: 23717320

105. An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK. Pepper pectin methyl ester inhibitor protein CaPMEI1 is required for an antifungal activity, basal disease resistance and abiotic stress tolerance. Plant. 2008; 228:61–78. https://doi.org/10.1007/s00425-008-0719-2 PMID: 18327607

106. Atmodjo MA, Sakuragi Y, Zhu X, Burrell AJ, Mohanty SS, Atwood JA 3rd, et al. Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex. Proc Natl Acad Sci U S A. 2011; 108:20225–30. https://doi.org/10.1073/pnas.1012816108 PMID: 22135470

107. Sterling JD, Atmodjo MA, Inwood SE, Kumar Kolli VS, Quigley HF, Hahn MG, et al. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proc Natl Acad Sci U S A. 2006; 103:5236–41. https://doi.org/10.1073/pnas.0600120103 PMID: 16540543

108. Leucci MR, Lenucci MS, Piro G, Dalessandro G. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. J Plant Physiol. 2008; 165:1168–1180. https://doi.org/10.1016/j.jplph.2007.09.006 PMID: 18155804

109. Karaba Aarati, Pereira Andy. Improvement of Water Use Efficiency in Rice and Tomato using Arabidopsis Wax Biosynthetic Genes and Transcription Factors, 2007.

110. Wang W, Liu X, Gai X, Ren J, Liu X, Cai Y, et al. Cucumis sativus L. WAX2 Plays a Pivotal Role in Wax Biosynthesis, Influencing Pollen Fertility and Plant Biotic and Abiotic Stress Responses. Plant Cell Physiol. 2015; 56:1339–54. https://doi.org/10.1093/pcp/pcv052 PMID: 26023108

111. Xue D, Zhang X, Lu X, Chen G, Chen ZH. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. Front Plant Sci. 2017; 8:621. https://doi.org/10.3389/fpls.2017.00621 PMID: 28503179

112. Cameron KD, Teece MA, Smart LB. Increased Accumulation of Cuticular Wax and Expression of Lipid Transfer Protein in Response to Periodic Drying Events in Leaves of Tree Tobacco. Plant Physiol. 2006; 140:176–83. https://doi.org/10.1104/pp.105.069724 PMID: 16361524

113. Rowland OR, Lee R, Franke R, Schreiber L, Kunst L. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YYE/FLP1. FEBS letters. 2007; 581:3538–44. https://doi.org/10.1016/j.febslet.2007.06.065 PMID: 17624331

114. Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell. 2003; 15:1170–85. https://doi.org/10.1105/tapl.010926 PMID: 12724542

115. Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, et al. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta, 2011; 235: 39–52. https://doi.org/10.1007/s00425-011-1481-1 PMID: 21809091

116. Wei K, Zhong X. Non-specific lipid transfer proteins in maize. BMC Plant Biol. 2014; 14:281. https://doi.org/10.1186/s12870-014-0281-8 PMID: 2534823

117. Salcedo G, Sánchez-Monge R, Barber D, Díaz-Perales A. Plant non-specific lipid transfer proteins: an interface between plant defence and human allergy. Biochim Biophys Acta. 2007; 1771:781–91. https://doi.org/10.1016/j.bbalip.2007.01.001 PMID: 17349819

118. Trevino MB, O'Connell MA. Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol. 1998; 116:1461–1468. https://doi.org/10.1104/pp.116.4.1461 PMID: 9536064

119. Chen Y, Ma J, Zhang X, Yang Y, Zhou D, Yu Q, et al. A Novel Non-specific Lipid Transfer Protein Gene from Sugarcane (NalLTPs). Obviously Responded to Abiolic Stresses and Signaling Molecules of SA and MeJA. Sugar Tech. 2017; 19:17–25. https://doi.org/10.1007/s12355-016-0431-4
120. Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J. A Non-specific Setaria italica Lipid Transfer Protein Gene Plays a Critical Role under Abiotic Stress. Front Plant Sci. 2016; 7:1752. https://doi.org/10.3389/fpls.2016.01752 PMID: 27933075

121. Gangadhar BH, Sajeeekh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, et al. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses. Front Plant Sci. 2016; 7:1228. https://doi.org/10.3389/fpls.2016.01228 PMID: 27597854

122. Pyee J, Yu H, Kolattukudy PE. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys. 1994; 311:460–8. https://doi.org/10.1006/abbi.1994.1263 PMID: 8203911

123. Murata N, Tasaka Y. Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta. 1997; 1348:10–6. https://doi.org/10.1016/s0005-2760(97)00115-x PMID: 9373031

124. Yokoi S, Higashi SI, Kishitani S, Murata N, Toriyama K. Introduction of the cDNA for shape Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Molecular Breeding. 1998; 4:269–275. https://doi.org/10.1023/A:1009671231614

125. Xu L, Han L, Huang B. Membrane Fatty Acid Composition and Saturation Levels Associated with Leaf Dehydration Tolerance and Post-Drought Rehydration in Kentucky Bluegrass. Crop Sci. 2011; 51:273–281. https://doi.org/10.2135/cropsci2010.06.0368

126. Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011; 62:869–82. https://doi.org/10.1093/jxb/erq340 PMID: 21172816

127. Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S, et al. Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol. 2017; 17:40. https://doi.org/10.1186/s12870-017-0971-0 PMID: 28183294

132. Poulson M, Samson G, Whitmarsh J. Evidence that cytochrome b559 protects photosystem II against photoinhibition. Biochemistry. 1995; 34:10932–10938. https://doi.org/10.1021/bi00034a027 PMID: 7662764

133. Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME. Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet. 2004; 109:1417–1425. https://doi.org/10.1007/s00122-004-1755-0 PMID: 15517148

134. lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA, et al. Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep. 2007; 26:1605–18. https://doi.org/10.1007/s00299-007-0378-8 PMID: 17541599

135. Plochiinger M, Schwenkert S, von Sydow L, Schröder WP, Meurer J. Functional Update of the Auxiliary Proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in Maintenance and Assembly of PSII. Front Plant Sci. 2016; 7:423. https://doi.org/10.3389/fpls.2016.00423 PMID: 27092151

136. Torabi S, Umate P, Manavski N, Plöchinger M, Kleinkecht L, Bogireddi H, et al. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum. Plant Cell. 2014; 26:1183–1199. https://doi.org/10.1105/tpc.113.120444 PMID: 24619613