Radio—X-ray Correlation and the “Quiescent State” of Black Hole Sources

Feng Yuan and Wei Cui

Department of Physics, Purdue University, West Lafayette, IN 47907
fyuan@physics.purdue.edu; cui@physics.purdue.edu

ABSTRACT

Recently a correlation between the radio and X-ray luminosities is found, \(L_R \propto L_X^{0.7} \), in black hole sources including black hole candidates in our galaxy and active galactic nuclei. We first show that the correlation can be understood in the context of an accretion-jet model developed for explaining the spectral and timing properties of XTE J1118+480. More importantly, we show that when the X-ray luminosity is below a critical value, \(\lesssim (10^{-5}–10^{-6}) L_{\text{Edd}} \), if the jet persists, the correlation should turn and become steeper, \(L_R \propto L_X^{1.23} \), and the X-ray radiation of the system should be dominated by the emission from the jet, rather than by the accretion flow. Possible observational evidence for our predictions is presented and future observations to further test our predictions are proposed.

Subject headings: accretion, accretion disks — black hole physics — galaxies: active — ISM: jets and outflows — X-rays: stars

1. Introduction

In the low/hard state, the radio spectrum of black hole candidates (BHCs) is usually flat or even inverted, which is often taken as evidence for the presence of jets (Fender 2004 and references therein). This is because, on one hand, such a spectrum is characteristic of jets in active galactic nuclei (AGNs; e.g., Blandford & Königl 1979); on the other hand, it is difficult to explain it by invoking emission from the underlying accretion flow (Yuan, Cui, & Narayan 2005, hereafter YCN05). A strong correlation between the radio and X-ray luminosities of BHCs in the hard state has been found recently (Corbel et al. 2003; Gallo, Fender, & Pooley 2003), \(L_R \propto L_X^{0.7} \), where \(L_R \) is the radio luminosity at 8.6 GHz and \(L_X \) is the 2-11 keV X-ray luminosity. The correlation extends more than three decades in \(L_X \), from \(L_X \gtrsim 10^{-2} L_{\text{Edd}} \) to \(L_X \lesssim 10^{-5} L_{\text{Edd}} \) (\(L_{\text{Edd}} \) is the Eddington luminosity). The lowest
luminosity is close to the quiescent state luminosity of V404 Cyg, but is still much higher than that of typical BHCs (e.g., Kong et al. 2002; McClintock et al. 2003). The correlation also holds for AGNs (Merloni, Heinz, & Di Matteo 2003, hereafter MHD03; Falcke, Körding, & Markoff 2004).

It is generally thought that the X-ray emission from BHCs originates in the accretion flows (see a review by Narayan 2004). The observed radio—X-ray correlation strongly implies a casual connection between the accretion flow and jet. Recently coupled accretion-jet models have been proposed and applied to the hard state of XTE J1118+480, a source to which we have almost the best spectral and timing observational results among all BHCs (YCN05; Malzac, Merloni, & Fabian 2004). In these models, the accretion flow is composed of an inner ADAF-like hot accretion flow and an outer standard thin disk (Esin, McClintock & Narayan 1997; Malzac, Merloni, & Fabian also discuss the possibility that the X-rays may come from a patchy corona rather than an ADAF). An additional jet component is assumed to form at the innermost region of the accretion flow. The X-ray emission is dominated by the hot accretion flow, while the radio emission comes from the jet. The accretion-jet models can not only explain the broadband spectral energy distribution of XTE J1118+480 ranging from radio to X-ray (YCN05), but also account for most of its complicated timing features (YCN05; Malzac, Merloni, & Fabian 2004).

It is natural to ask whether the models can explain the observed radio—X-ray correlation in a quantitative manner, or what constraints the correlation can put on the models. One critical parameter in the problem is how the fraction of the accreted matter that goes into the jet, $\eta (\equiv \dot{M}_{\text{jet}}/\dot{M})$, changes with \dot{M}. Unfortunately, no good theoretical constraint can be put on it due to our poor understanding of the jet formation. Assuming η is constant, MHD03 find that an ADAF-jet model is roughly consistent with the observations at the 3σ level.

In this paper we begin by investigating this question again. Instead of assuming a constant η, we investigate what functional form of $\eta(\dot{M})$ is required to explain the radio—X-ray correlation (§2.1). Such a study may supply us with some clue on the jet formation mechanism. In §2.2 and §2.3, we investigate what the correlation will be below the lowest observed X-ray luminosity ($\sim 10^{-5}L_{\text{Edd}}$). We find that when $L_X \lesssim 10^{-5}-10^{-6}L_{\text{Edd}}$, the radio—X-ray correlation will become much steeper, $L_R \propto L_X^{1.23}$, and the X-ray emission of the source should be dominated by the jet, rather than by the accretion flow.
2. Model

2.1. Radio—X-ray correlation in the context of accretion-jet model

There are some uncertainties in the normalization of the observed radio—X-ray correlation (e.g., Gallo, Fender & Pooley 2003). Without losing generality, in our calculation we determine the normalization from the observed outburst-state radio and X-ray fluxes of XTE J1118+480 (see YCN05 for the observational data). Then the observed correlation is expressed as,

\[
\left(\frac{L_R}{L_{\text{Edd}}} \right) = 10^{-7.34} \left(\frac{L_X}{L_{\text{Edd}}} \right)^{0.7}.
\]

This is shown by the segment “AB” in Figure 1. The point “A” corresponds to the outburst state of XTE J1118+480, and the point “B” the lowest X-ray luminosity to which the observed correlation in BHCs extends, \(\sim 10^{-5.2}L_{\text{Edd}} \) (Gallo, Fender & Pooley 2003).

The details of the accretion-jet model are described in YCN05. Briefly, the accretion flow is described as a geometrically thin cool disk outside a transition radius and a geometrically-thick hot accretion flow (i.e, ADAF) inside the transition radius. The effect of outflow/convection is taken into account in calculating the dynamics of the hot accretion flow. The main parameters are \(\alpha = 0.3, \beta = 0.9, \) and \(\delta = 0.5 \). Near the black hole, we assume that a fraction of the accretion flow, \(\eta \), is transferred into the vertical direction to form a jet. The half-opening angle of the jet is \(\phi = 0.1 \) and the bulk Lorentz factor is \(\Gamma_j = 1.2 \). Within the jet, internal shocks occur due to the collision of shells with different velocities. These shocks accelerate a fraction of the electrons into a power-law energy distribution. The steady state energy distribution of the accelerated electrons is self-consistently determined, taking into account the effect of radiative cooling. Following the widely adopted approach in the study of GRBs, the energy density of accelerated electrons and amplified magnetic field is determined by two parameters, \(\epsilon_e \) and \(\epsilon_B \), which describe the fraction of the shock energy going into electrons and magnetic field, respectively. The values of \(\epsilon_e \) and \(\epsilon_B \) are 0.06 and 0.02, respectively, which are well within the range of typical range obtained in GRB afterglows (see YCN05 for details). We then calculate the synchrotron emission from these accelerated electrons. Of course, like any other jet models published in the literature, our jet model is only phenomenological because the physics of jet formation is still poorly understood.

We calculate the values of \(L_R \) and \(L_X \) at various \(\dot{M} \), adjusting \(\eta \) so that eq. (1) can be satisfied. The radio luminosity \(L_R \) is always dominated by the emission from the jet (by optically-thick synchrotron emission) while \(L_X \) is the sum of the emissions from the accretion flow (by thermal Comptonization and bremsstrahlung emissions) and jet (by optically-thin
synchrotron emission). We assume that the intrinsic physics of accretion and jet does not depend on \dot{M}, so all the other model parameters are fixed in the process. Since outflow and convection are taken into account in our model, \dot{M} is a function of radii. We therefore define $\eta \equiv \dot{M}_{\text{jet}}/\dot{M}(5R_s)$, where $\dot{M}(5R_s)$ is the accretion rate at 5 Schwarzschild radii. When the luminosity is relatively high, such as at the point “A” in Fig. 1, L_X is dominated by the accretion flow (ref. Fig. 2 in YCN05). With the decrease of \dot{M}, however, the contribution of the jet to L_X becomes more and more important. This is because X-ray emission from the accretion flow scales as $L_{X,\text{acc}} \propto \dot{M}^{q}$ with $q \sim 2$ (see below for details), while that from the jet is due to the optically-thin synchrotron emission and thus $L_{X,\text{jet}} \propto \dot{M}$ (e.g., Heinz 2004). The radio luminosity is always dominated by the jet.

We find that our results are not sensitive to all the model parameters except δ, which describes the fraction of the viscously dissipated energy in directly heating electrons in the hot accretion flow (YCN05). We first consider the case of $\delta = 0.5$, the value required in the detailed modeling of Sgr A* by a most updated ADAF model (Yuan, Quataert & Narayan 2003). The solid line in Fig. 2 shows the dependence of η on \dot{M}. We can see from the figure that in this case to fit the radio—X-ray correlation, η must be a strongly decreasing function of \dot{M}. If $\eta = \text{const.}$, the predicted radio—X-ray correlation index would be $\xi_{RX} \sim 1.3 - 1.4 \gg 0.7$. This seems to be at odds with the result of MHD03. We find that the discrepancy is mainly due to their adoption of a smaller δ (= 0.3). Following the notations in MHD03, if $L_R \propto \dot{M}^{\xi_M}$ and $L_{X,\text{acc}} \propto \dot{M}^{q}$ ($L_{X,\text{acc}}$ is the X-ray luminosity emitted from the accretion flow), the correlation index $\xi_{RX} = \xi_M/q = 1.4/q$ ($\xi_M = 1.4$: see Heinz & Sunyaev 2003), if η is assumed to be constant. MHD03 find that $q \sim 2.3$ for $\delta = 0.3$. We do the calculations using $\delta = 0.3$ and find that our result is in general agreement with MHD03. But for $\delta = 0.5$, we find $q \approx 1.1, 1.4,$ and 1.8 for \dot{M} in the ranges of $(5 \times 10^{-2}, 2.5 \times 10^{-3}), (2.5 \times 10^{-3}, 5 \times 10^{-4})$ and $(5 \times 10^{-4}, 1 \times 10^{-4})$ in units of L_{Edd}, respectively. The reason for the difference in q for different δ is as follows. The value of $L_{X,\text{acc}}$ depends on the density n_e and temperature T_e. With the decreasing of \dot{M}, the density decreases but T_e increases. For larger δ, T_e increases faster thus q is smaller. For comparison, we also calculate the case of $\delta = 0.01$ and find that η is nearly constant. In this case, $q \sim 2.4$, so the correlation index $\xi_{RX} = 1.4/q \sim 0.6$ for a constant η, which is very close to 0.7. Another reason for the discrepancy between our result and that of MHD03 is that we take into account the contributions of both the accretion flow and jet (MHD03 attribute L_X only to the accretion flow), which results in a smaller “effective” q. The third (minor) reason is that we consider the effects of outflow and convection.
2.2. The Steepening of Correlation and the Quiescent State of BHCs

In the following we investigate the correlation below the point “B” in Fig. 1. We assume that the jet persists and the physics of jets does not change significantly at low luminosities. We extrapolate the derived $\eta(\dot{M})$ (which is approximately a power-law) to lower \dot{M} and calculate L_R and L_X for different \dot{M}. The segments “B-C-D” in Fig. 1 show our predicted radio—X-ray correlation at low \dot{M}. It is interesting to see that below a certain luminosity, represented by the point “C” in Fig. 1, the correlation deviate from the extrapolation of the observed radio—X-ray correlation and approach asymptotically the segment “DE”,

$$\left(\frac{L_R}{L_{\text{Edd}}}\right) = 10^{-4.1} \left(\frac{L_X}{L_{\text{Edd}}}\right)^{1.23}. \quad (2)$$

The segment “DE” shows the correlation of a pure-jet model, with the radio/X-ray emission being due to the optically thick/thin synchrotron emission of the electrons in the jet. The normalization of the segment “DE” is determined by the results of modeling the outburst state of XTE J1118+480 (YCN05). (The point “D” represents the emission from the jet in XTE J1118+480 at the quiescent state, see Fig. 3(a)). The change of the correlation is because, as we stated above, the contribution of jet to the total X-ray emission is becoming more and more important compared to that of the accretion flow as \dot{M} becomes smaller. Below a certain \dot{M} (the point “C” in Fig. 1), the X-ray luminosity will be completely dominated by the jet and thus the correlation of the system will follow that of the pure jet model. This prediction is particularly relevant to the quiescent state of BHCs, because their X-ray luminosity is typically $\lesssim 10^{-6}L_{\text{Edd}}$ (Kong et al. 2002; McClintock et al. 2003). We will discuss it further in §3.

The index of the correlation of a pure-jet model is ~ 1.23. This is in general agreement with Heinz (2004), where he obtained $\xi_{\text{RX, jet}} \approx 1.4$. On the other hand, Markoff et al. (2003) obtained $\xi_{\text{RX, jet}} \approx 0.7$. We find that the discrepancy is mainly because Markoff et al. did not take into account the cooling break in the electrons energy distribution, as also pointed out by Heinz (2004). 1 We should note that our results are not very sensitive to the exact form of η. We examine the two cases, $\delta = 0.5$ and 0.01, as well as one in which the value of η at the lowest \dot{M} in Fig. 2 is used. We find that the result remains qualitatively the same, although the exact location of “C” and the slope of the segment “BC” in Fig. 1 are slightly different. So we conclude that the change in slope from “AB” to “DE” is robust. The location of the intersection point “C” mainly depends on the normalization of the two segments. For different BHCs, the normalization of “AB” may vary by a factor of ~ 5

1The effect of cooling break is correctly included in other jet models, e.g., Markoff, Falcke & Fender 2001.
(Gallo, Fender & Pooley 2003). The uncertainties in the normalization of “DE” have two origins. One is from the jet model for a single source. Unlike the accretion flow, the jet parameters are not well constrained and there are some degeneracy. However, we find that because of the excellent observational data of XTE J1118+480, the arisen uncertainty in the normalization is not large. The uncertainty arisen from various sources depends on the diversity in the jet properties such as its velocity. These quantities are poorly constrained currently, but we feel they should not differ too much among various sources.

2.3. Extension from BHCs to AGNs

While the radio—X-ray correlation index does not depends sensitively on the black hole mass \(M^2 \), as shown by Heinz (2004), the normalization does. To extend our result to AGNs, we need the dependence of the correlation on the mass of the black hole. At relatively high luminosities (above the point “C” in Fig. 1), MHD03 found, from analyzing a sample of AGNs and BHCs,

\[
\log L_R = 0.6 \pm 0.11 \log L_X + 0.78 \pm 0.11 \log \left(\frac{M}{M_\odot} \right) + 7.33 \pm 4.05.
\]

Neglecting the uncertainties, we re-write this correlation as

\[
\log \left(\frac{L_R}{L_{Edd}} \right) = 0.6 \log \left(\frac{L_X}{L_{Edd}} \right) + 0.38 \log \left(\frac{M}{M_\odot} \right) - 7.926.
\]

Eq. (4) is almost identical to eq. (1), but with additional dependence on \(M \) included.

Using a jet model, Heinz (2004) investigated the correlation index between \(L_R \) and \(M \), \(\xi_{RM, jet} \), and found that \(\xi_{RM, jet} \sim 0 \). We use our pure jet model to calculate the value of \(\xi_{RM, jet} \).\(^3\) We calculate the radio luminosity \(L_R \) at various \(M \), adjusting \(\dot{M}_{jet} \) to keep \(L_X \) constant, and obtaining the value of \(\xi_{RM, jet} = \partial \log L_R / \partial \log M \sim 0.25 \). This result is similar to that obtained by Heinz. Therefore, eq. (2) can be generalized as,

\[
\log \left(\frac{L_R}{L_{Edd}} \right) = 1.23 \log \left(\frac{L_X}{L_{Edd}} \right) + 0.488 \log \left(\frac{M}{M_\odot} \right) - 4.53,
\]

\(^2\)From BHCs to AGNs, the synchrotron peak from the ADAF will move from optical to radio. Depending on the value of \(\eta \), the contribution of the ADAF to \(L_R(8.6\,\text{GHz}) \) could become important when \(L_X \) is very low. In this case, the correlation index will become smaller. At frequencies far below 8.6 GHz, however, this effect is not important.

\(^3\)Our jet model developed in YCN05 also works for large \(M \), because the basic physics of jet should not depend on \(M \), and the dependence of quantities (such as the frequency of the cooling break) on \(M \) have been self-consistently taken into account in our jet code.
or equivalently,
\[
\log L_R = 1.23 \log L_X + 0.25 \log (M/M_\odot) - 13.45. \tag{6}
\]
This equation describes the segment “DE” in Fig. 1, with additional dependence on \(M\) included. From eqs. (4) and (5), we can estimate the X-ray luminosity at the point “C” (which is very close to the intersection point in Fig. 1),
\[
\log \left(\frac{L_{X,\text{crit}}}{L_{\text{Edd}}} \right) = -5.356 - 0.17 \log \left(\frac{M}{M_\odot} \right). \tag{7}
\]

3. Observational tests

3.1. Radio—X-ray correlation at low luminosities

Jonker et al. (2004) obtained (nearly) simultaneous radio and X-ray fluxes of XTE J1908+094 during the decaying phase of an X-ray outburst. Their X-ray measurements were taken on 2003 March 23, April 19, and May 13, but the radio measurements only on March 25 and April 12. We fit the X-ray fluxes with a parabola and estimate the X-ray flux for April 12 from the best-fit curve. Similarly, we obtain the radio flux for March 23 by linearly interpolating the March 25 and April 12 measurements. From the measured and estimated radio and X-ray fluxes for March 23 and April 12, we derive a radio—X-ray correlation index, \(\xi_{RX} \approx 1.28\), which is significantly different from \(\xi_{RX} \approx 0.7\).\(^4\) Jonker et al. (2004) speculated that the discrepancy may imply that, different from other BHCs, the accretion flow in this source is in the form of a standard thin disk rather than an ADAF, even at low luminosities.

Given that our predicted value for the correlation index is consistent with the range allowed by the J1908+094 data, however, we believe that a more likely scenario for the steeper radio—X-ray correlation is that the X-ray emission of XTE J1908+094 is already dominated by the jet at the observed X-ray fluxes. If our explanation is correct, the X-ray luminosity of the source would have to be below the critical value (as indicated by the point “C” in Fig. 1), i.e., \(L_X \lesssim L_{X,\text{crit}} \approx 10^{-5.5}L_{\text{Edd}}\). The mass of the compact object in XTE J1908+094 is not known. Assuming a mass of 10\(M_\odot\), we found that its X-ray luminosity would be \(L_X \sim 8 \times 10^{-4}(d/8.5\text{kpc})^2L_{\text{Edd}}\) on March 23, and \(\sim 3 \times 10^{-4}(d/8.5\text{kpc})^2L_{\text{Edd}}\) on

\(^4\)If we estimate the X-ray flux on April 12 by linearly interpolating the March 25 and April 19 (or April 19 and May 13) measurements, the correlation index would be \(\xi_{RX} \approx 1.48\) (or 1.0). If we estimated the X-ray flux on April 12 by assuming an exponential decay in X-ray flux with time between March 23 and April 19, as Jonker et al. (2004) did, the correlation index would be \(\xi_{RX} \approx 1.12\).
April 12, which implies that the source would have to be very nearby, \(d \approx 1 \) kpc. It remains to be seen whether this is the case. At present, the distance to the source is poorly constrained, as pointed out by Jonker et al. (2004). We should stress that due to the uncertainty in the location of the point “C”, the uncertainty in \(d \) is significant.

As for AGN, the observations of M31 seem to provide evidence that supports our predictions. The source was not included in the sample used by MHD03, presumably because the X-ray data were not available at the time. In this source, the mass of the black hole is \(10^{7.5} M_\odot \). The radio luminosity of the source (at 3.6 cm) is \(10^{32.2} \) and \(10^{32.37} \) erg s\(^{-1}\) based on two different observations (Crane et al. 1992; 1993). The X-ray luminosity is very weak, \(L_X \sim 10^{35.5} \) erg s\(^{-1}\) \(\sim 10^{-3.5} L_{X,\text{crit}} \) \(\sim 2.5\sigma \) detection; Garcia et al. 2004). So this source is very appropriate for testing our prediction. From \(L_X \) and \(M \), eq. (3) predicts that the radio luminosity is \(\sim 10^{34.45} \) erg s\(^{-1}\), which is \(\sim 100 \) times higher than the observed value, while eq. (6) predicts a value of \(\sim 10^{32.4} \) erg s\(^{-1}\), which is in good agreement with the observation. The spectral fitting result is shown in Fig. 3(b). In addition, Garcia et al. (2004) estimated the value of \(M \) to be \(\dot{M} \sim 6 \times 10^{-6} \dot{M}_{\text{Edd}} \). But the X-ray luminosity predicted by an ADAF with such a \(\dot{M} \) is only \(\sim 10^{31} \) erg s\(^{-1}\), which is about 4 orders of magnitude lower than the observed value, as shown by the dashed line in Fig. 3(b). On the other hand, we find that to produce the observed \(L_X \) by a jet, the required \(\dot{M}_{\text{jet}} \sim 5 \times 10^{-9} \dot{M}_{\text{Edd}} \ll 6 \times 10^{-6} \dot{M}_{\text{Edd}} \), which is reasonable. Of course, the X-ray detection by Garcia et al. (2004) needs confirmation.

Most sources in the sample of MHD03 are observed at relatively high X-ray luminosities which are not good for testing our predictions. Here we briefly summarize the results on the few sources in MHD03 that satisfy \(L_X \lesssim 0.1 L_{X,\text{crit}} \). We should keep in mind that large uncertainties exist in the normalizations of both correlations in eqs (3) and (6) for individual sources.

NGC 2841. \(M = 10^{8.42} M_\odot \), \(L_X = 10^{38.26} \) erg s\(^{-1}\) \(\approx 0.03 L_{X,\text{crit}} \), and \(L_R = 10^{36} \) erg s\(^{-1}\). Eq. (3) predicts \(L_R = 10^{36.9} \) erg s\(^{-1}\), nearly 10 times higher than observation, while eq. (6) predicts \(L_R = 10^{35.9} \), which is close to the observed value.

NGC 3627. \(M = 10^{7.26} M_\odot \), \(L_X < 10^{37.6} \) erg s\(^{-1}\) \(\approx 0.07 L_{X,\text{crit}} \), \(L_R = 10^{36.74} \) erg s\(^{-1}\). Eqs. (3) and (6) predict \(L_R < 10^{35.55} \) erg s\(^{-1}\) and \(L_R < 10^{34.76} \) erg s\(^{-1}\), respectively, both of which are significantly smaller than the observed value.

Sgr A*. \(M = 10^{6.41} M_\odot \), \(L_X = 10^{33.34} \) erg s\(^{-1}\) \(\approx 10^{-4.8} L_{X,\text{crit}} \), and \(L_R = 10^{32.5} \) erg s\(^{-1}\). Like M31, it should also be a good source to test our prediction, given its extremely low \(L_X \). The predicted radio luminosity from eq. (3) \((L_R \sim 10^{32.3} \) erg s\(^{-1}\)) is much closer to the observed value.

\(^5\)We recalculate \(L_R \), using a new distance consistent with that used in calculating \(L_X \).
value than that from eq. (6) \((L_R \sim 10^{29.3} \text{ erg s}^{-1})\), which is opposite to our expectation. On the other hand, it is well known that Sgr A* is a special radio source (e.g., Falcke & Markoff 2000). Unlike the typical core-jet AGNs, Sgr A* is observed to be quite compact (e.g., Lo et al. 1998). One possibility is that there is no jet in Sgr A* thus our assumption of the existence of jets fails. In this case, the radio emission in Sgr A* may come from nonthermal electrons in the ADAF (Yuan, Quataert & Narayan 2003). If a jet does exist in Sgr A*, the power-law energy distribution of electrons in the jet \(N(\gamma) \propto \gamma^{-p}\) must be unusually steep, e.g., \(p > 3.6\), as argued by Falcke & Markoff. Such a steep distribution results in an unusually high radio/X-ray ratio, consistent with the observed low luminosities at infrared and X-ray bands. It may be instructive to compare Sgr A* to M31. Compared to M31, the mass of the black hole in Sgr A* is 10 times lighter, but \(L_R\) is even higher, and \(L_X\) is more than 100 times lower.

\begin{align*}
M32. & \quad M = 10^{6.4} M_\odot, \quad L_X = 10^{35.97} \text{ erg s}^{-1} \approx 10^{-2.1} L_{X, \text{crit}}. \quad \text{This would be another good source to test our predictions, but unfortunately there is only an upper limit on \(L_R\), \(< 10^{33.3} \text{ erg s}^{-1}\). Eq. (3) predicts \(L_R = 10^{33.9} \text{ erg s}^{-1}\), which seems a bit too high, while eq. (6) predicts \(L_R = 10^{32.5} \text{ erg s}^{-1}\), which is in better agreement with the observed value. Future radio measurements may provide more stringent tests.}
\end{align*}

In summary, the current data from AGNs are so far inconclusive and more radio and X-ray observations to low-luminosity sources are required.

3.2. Origin of X-ray emission in the “quiescent state”

We predict that below \(L_{X, \text{crit}}\), the X-ray spectrum should be dominated by the emission from the jet. This prediction provides a good theoretical frame for understanding an otherwise puzzling observational result on M87. The X-ray emission of M87 is usually modeled by an ADAF (e.g., Fabian & Rees 1995; Reynolds et al. 1996). However, a subsequent Chandra observation strongly implies that the emission is dominated by the jet, as argued by Wilson & Yang (2002) based on the similarity of the X-ray spectra between the nucleus and jet knots. The jet dominance in M87 is, in our model, because its X-ray luminosity \(L_X \sim 0.8 L_{X, \text{crit}}\).

Another way to test our prediction is therefore to examine the shape of the X-ray spectrum in the “quiescent state” (defined here as black hole sources with \(L_X \lesssim L_{X, \text{crit}}\)). In

\footnote{Both the theoretical studies to shock acceleration and the observed optically-thin radio synchrotron spectra of extended suggest \(p \gtrsim 2\). We use \(p \approx 2.2\) in the present paper, as in YCN05.}
general the X-ray spectrum of a jet emission is roughly of a power-law shape. On the other hand, if the emission is dominated by an ADAF, as proposed by Narayan, McClintock & Yi (1996) for the quiescent state of BHCs, the X-ray spectrum should be curved due to the Compton scattering by thermal electrons when \dot{M} is very low, as shown, e.g., in McClintock et al. (2003) and in Fig. 3 (a) of the present paper for the quiescent state of XTE J1118+480. Unfortunately, the X-ray data of black hole sources in “quiescent state” are not of sufficient quality to discriminate the models. Thus this important test awaits deep X-ray observations with state-of-the-art instruments like those on XMM-Newton.

Fig. 3 (a) shows our prediction on the quiescent state spectra of XTE J1118+480. In the model, the mass loss rate of the jet is $\dot{M}_{\text{jet}} = 6 \times 10^{-8} \dot{M}_{\text{Edd}}$, which is assumed to be $\sim 15\%$ of the accretion rate in the underlying ADAF. Except for \dot{M} and \dot{M}_{jet}, all other model parameters remain the same as in YCN05. We can see from the figure that the X-ray emission of the quiescent state is dominated by the jet. We predict a power-law X-ray spectrum with photon index of ~ 2, which is in good agreement with the current best fit of the observational result (McClintock et al. 2003). We also note that the photon indices of other quiescent BHCs are also ~ 2 (Kong et al. 2002; McClintock et al 2003). Another issue we would like to mention, as pointed out by McClintock et al. (2003), is the mass accretion rate in the quiescent XTE J1118+480. Assuming that the optical emission comes from a truncated thin disk with an inner radius R_{tr}, the value of R_{tr} can be determined from the optical flux, which is $\sim 1500 R_s$. Combining this result together with the disk instability theory for the outburst, we can estimate the mass accretion rate of the ADAF, which is $\dot{M} \lesssim 10^{-6} \dot{M}_{\text{Edd}}$. However, an ADAF with such an accretion rate would under-predict the X-ray flux by nearly four orders of magnitude (ref. Fig. 3 (a)). On the other hand, if the X-ray flux is from the jet as we suggest above, there will be no such a problem, because this accretion rate is ~ 20 times higher than the above \dot{M}_{jet}. Of course, if the optical flux is generated by the impact of the stream from the companion star on the disk surface, there will be no such a constraint on \dot{M} (McClintock et al. 2003).

4. Discussion

Fender, Gallo & Jonker (2003; see also Gallo, Fender & Pooley 2003) compared the power of the jets, P_{jet} (as inferred indirectly from the radio luminosity L_R), and the X-ray luminosity L_X of BHCs. Extrapolating $L_R \propto L_X^{0.7}$ to low luminosities, they showed that when the X-ray luminosity is below a critical value, P_{jet} should be greater than L_X. The implication of this result is, however, not clear. For instance, it does not mean that the quiescent state X-ray emission of BHCs is dominated by the jets, which is what we conclude in the present
work. Moreover, we predict that the radio—X-ray correlation becomes much steeper at low luminosities. In addition, the outburst-state X-ray luminosity of XTE J1118+480 is far above their critical luminosity \(L_{\text{crit}} \sim 4 \times 10^{-5} L_{\text{Edd}} \), so \(P_{\text{jet}} \) should be much smaller than \(L_X \) according to their prediction. However, our calculation (YCN05) shows that \(P_{\text{jet}} \approx 2L_X \), and Malzac, Merloni & Fabian (2004) obtain \(P_{\text{jet}} \approx 10L_X \).

In the quiescent state, BHCs seem to be much less luminous than their neutron star counterparts (e.g., Garcia et al. 2001; McClintock et al. 2003). Narayan, Garcia & McClintock (1997; see also McClintock, Narayan & Rybicki 2004) take this as evidence for the existence of event horizon in BHCs for the following reasons. For neutron star systems, the energy stored in the accretion flow (ADAF) should eventually be released as radiation upon impacting the solid surface of the neutron star. The radiative efficiency is \(\sim GM/R_\ast c^2 \sim 0.15 \). For BHCs, however, the energy stored in the ADAF simply disappear into the event horizon of the black hole, so the luminosity is expected to be much lower. Even if the luminosity of BHCs is dominated by the emission from jets, this argument can still hold. Turning the argument around, the systematic difference in the observed X-ray luminosities of black hole and neutron star systems in the quiescent state poses a constraint on our model. In the jet-dominated case, the radiative efficiency of the whole system will be \(q_{\text{jet,rad}}\eta \), with \(q_{\text{jet,rad}} \) being the radiative efficiency of the jet. To explain the difference of a factor of \(\sim 100 \) between the luminosities of BHCs and their neutron star counterpart (see Fig. 16 in McClintock et al. 2003), \(q_{\text{jet,rad}}\eta \) must be \(q_{\text{jet,rad}}\eta \sim 0.0015 \). Given \(q_{\text{jet,rad}} \sim 0.05 \) (YCN05) and \(\eta \sim 10\% \) or 1\% (see Fig. 2), we have \(q_{\text{jet,rad}}\eta \sim 0.005 \) or 0.0005, which are comparable to the required value.

5. Summary

The main conclusions from this work can be summarized as follows: 1) Our accretion-jet model developed in YCN05 can re-produce the observed radio—X-ray correlation with index of 0.7 (Fig. 2). 2) Assuming that the jet persists, we predict that below a critical X-ray luminosity \(L_{X,\text{crit}} \) defined in eq. (7), the radio—X-ray correlation should turn steeper, from eq. (3) to eq. (6) (Fig. 1). 3) A related prediction is that the X-ray emission of a source is dominated by that from the jet, when its X-ray luminosity is below \(L_{X,\text{crit}} \). This is particular relevant to the X-ray emission of BHCs in the quiescent state and some “quiescent” AGNs (whose X-ray luminosity \(\lesssim L_{X,\text{crit}} \)) (Fig. 3).

We thank Dr. J.E. McClintock for providing us with the data of XTE J1118+480. This work was supported in part by NASA grant NAG5-9998.
REFERENCES

Blandford, R.D., Königl, A. 1979, ApJ, 232, 34
Corbel, S. et al. 2003, A&A, 400, 1007
Crane, P.C., Dickel, J.R., Cowan, J.J. 1992, ApJ, 390, L9
Crane, P.C. Cowan, J.J.; Dickel, J.R., Roberts, D.A. 1993, ApJ, 417, L61
Esin, A. A., McClintock, J. E., & Narayan, R. 1997, ApJ, 489, 865
Fabian, A. C.; Rees, M. J. 1995, MNRAS, 277, L55
Falcke, H., Körding, E., & Markoff, S. 2004, A&A, 414, 895
Falcke, H., & Markoff, S. 2000, A&A, 362, 113
Fender, R.P. 2004, To appear in ‘Compact Stellar X-Ray Sources’, eds. W.H.G. Lewin and M. van der Klis, Cambridge University Press (astro-ph/0303339)
Fender, R.P., Gallo, E. & Jonker, P.G. 2003, MNRAS, 343, L99
Gallo, E., Fender, R.P., & Pooley G.G. 2003, MNRAS, 344, 60
Gallo, E., Fender, R.P., & Hynes, R.I. 2004, MNRAS, in press (astro-ph/0410387)
García, M.R., McClintock, J.E., Narayan, R. et al., 2001, ApJ, 553, L47
García, M.R., Williams, B.F., Yuan, F., et al. 2004, submitted to ApJ(astro-ph/0412350)
Heinz, S. 2004, MNRAS, in press (astro-ph/0409029)
Heinz, S., & Sunyaev, R. A. 2003, MNRAS, 343, L59
Jonker, P.G., Gallo, E., Dhawan, V., et al. 2004, MNRAS, 351, 1359
Kong, A.K.H., McClintock, J.E., Garcia, M.R., et al. 2002, ApJ, 570, 277
Lo, K.Y., Shen, Z.Q., Zhao, J.H., Ho, P.T.P. 1998, ApJ, 508, L61
Malzac, J., Merloni, A., Fabian, A. 2004, MNRAS, 351, 253
Markoff S., Falcke, H, & Fender, R. 2001, A&A, 372, L25
Markoff S., Nowak, M., Corbel, S., Fender, R., Falcke, H. 2003, A&A, 397, 645
McClintock J.E., Narayan, R., Garcia, M. et al., 2003, ApJ, 593, 435
McClintock J.E., Narayan, R., & Rybicki, G.B. 2004, ApJ, 615, 402
Merloni A., Heinz, S., & Di Matteo, T. 2003, MNRAS, 345, 1057 (MHD03)
Narayan, R., to appear in “From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales”, edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of ”Astrophysics and Space Science” by Kluwer (astro-ph/0411385)
Narayan, R., Garcia, M.R. & McClintock, J.E. 1997, ApJ, 478, L79
Narayan, R., McClintock, J.E., Yi, I. 1996, ApJ, 457, 821
Reynolds, C. S., Di Matteo, T., Fabian, A. C., et al. 1996, MNRAS, 283, L111
Wilson, A. S.& Yang, Y. 2002, ApJ, 568, 133
Yuan, F., Cui, W., & Narayan, R. 2005, ApJ, 620, 905 (YCN05)
Yuan, F., Quataert, E., Narayan, R. 2003, ApJ, 598, 301

This preprint was prepared with the AAS LaTeX macros v5.2.
Fig. 1.— The radio (8.6 GHz)—X-ray (2-11 keV) correlation for BHCs. The observed correlation is shown by the segment “AB”. Segments “BCD” show the predicted correlation at lower luminosities, which approaches that of a pure-jet model, as shown by the segment “DE”. Note that below point “C” ($\sim 10^{-6}L_{\text{Edd}}$), the X-ray emission is dominated by the jet, and that the correlation steepens.
Fig. 2.— The ratio of the mass loss rate in the jet (\dot{M}_jet) to the accretion rate of the ADAF at $\sim 5r_s$ ($\dot{M}(5r_s)$) as a function of the accretion rate. The solid and dashed lines show results for two values of δ (the fraction of the viscously dissipated energy in directly heating electrons in an ADAF).
Fig. 3.— The accretion-jet model for two “quiescent” black hole sources. (a) The quiescent state of XTE J1118+480. The (optical and X-ray) data is from McClintock et al. (2003). The thin solid line shows the emission of the jet, the dashed line for the ADAF \((\delta = 0.5)\), and the dot-dashed line that of a multi-temperature black body component (e.g., a truncated disk; see McClintock et al. 2003 for details). Their sum is shown by the thick solid line. The parameters are \(\dot{M}_{\text{jet}} = 6 \times 10^{-8} \dot{M}_{\text{Edd}}\) and \(\eta = 15\%\). Note that the X-ray emission is dominated by the jet. The model for the outburst state (YCN05) is also presented for comparison purpose. (b) “Quiescent” AGN—M31. The radio data is from Crane et al. (1992; 1993) and the X-ray flux from Garcia et al. (2004). A power-law X-ray spectrum with photon index of 2 is assumed. The solid line shows the emission of the jet while the dashed line for the ADAF \((\delta = 0.01)\). The parameters are \(\dot{M}_{\text{jet}} = 5 \times 10^{-9} \dot{M}_{\text{Edd}}\) and \(\eta = 1\%\). Again, the X-ray emission is dominated by the jet.