Original article

Taxonomy and distribution of termite fauna (Isoptera) in Riyadh Province, the Kingdom of Saudi Arabia, with an updated list of termite species on the Arabian Peninsula

Mostafa R. Sharaf\(^a\), Mureed Husain\(^a\), Khawaja Ghulam Rasool\(^a\), Muhammad Tufail\(^a,b\), Abdulrahman S. Aldawood\(^a,\ast\)

\(^a\) Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
\(^b\) Ghazi University, Dera Ghazi Khan, Punjab, Pakistan

ABSTRACT

The present study shows an updated synoptic list of the 30 known Isoptera of the Arabian Peninsula which are classified under four families and nine genera. Twenty-seven species are hitherto known from the Kingdom of Saudi Arabia (KSA). The present inventory of the termites of Riyadh Province (KSA) indicated three species, *Anacanthotermes ochraceous* (Burmeister 1839), *Psammotermes hypostoma* Desneux, 1902 and a rare species, *Coptotermes heimi* (Wasmann 1902). We present an illustrated key to species based on the soldier caste. *Anacanthotermes ochraceous* and *P. hypostoma* are widely distributed Palearctic species whereas *C. heimi* seems rare and is a new record for KSA. Distribution maps for the three species are provided based on recently collected material and literature records and remarks on species habitat preference are given.

© 2021 Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Termites (Isoptera) are eusocial monophyletic insects (Legendre et al., 2008) composed of distinct castes including worker, soldier, reproductive, queen, and larva that are widely distributed in tropics and subtropics, where they can make up to 95% of the soil insect biomass (Eggleton et al., 1996; Bechly, 2007). Isoptera are closely related to the two other major lineages of Dictyoptera (Blattaria and Mantodea) (Inward et al., 2007; Engel et al., 2009) and it is thought to have evolved from cockroach-like ancestor 200 million years ago (Bechly, 2007; Djemaës et al., 2015). Phylogenetically, termites are separated into lower termites (Hodotermitidae, Kalotermitidae, Mastotermitidae, Rhinotermitidae, Serritermitidae, and Termopsidae) and higher termites (Termitidae) (Krishna et al., 2013). Of the over 2600 termite species worldwide, belonging to 290 genera within 12 families and 14 subfamilies, 183 species are known to damage buildings and 83 species cause significant damage to wooden structures (Edwards and Mill, 1986; Krishna et al., 2013). Termites can be grouped into four ecological types: drywood, damp wood, harvester, and subterranean termites (Nutting and Jones, 1990). Only the subterranean termites continued contact with soil to complement moisture requirements. Subterranean termites are responsible for 80% of the economically important species. Unlike drywood termites that are easily transported from region to region, most subterranean species are restricted in their native distribution (Su and Scheffrahn, 1998).

Riyadh Province of the Kingdom of Saudi Arabia (KSA) is located at the eastern part of the Najd Plateau, in the center of the ar-Nafud desert and has an area of 404,240 km\(^2\). The extensive urbanization projects coupled with reclamation have created a favorable environment for termite infestation (Faragalla and Al Qhtani, 2013). Recent surveys have shown that the number of termite species occurring in KSA have increased (Faragalla, 2002; Kaakeh,
2006; Faragalla and Al Qhtani, 2013; Khan et al., 2018). However, few reports are available on the termites of Riyadh Province, with numerous misidentifications included. Taxonomy of termites is challenging due to ambiguities in their diagnostic morphological characters and crypto-biotic social structure (Evans, 2010). The morphology of termite is an essential key in identifying termite species. While the worker and reproductive castes are extremely similar among species, the soldier castes are useful for species recognition. The current molecular techniques are also useful for species identification.

The taxonomic history of the termite fauna of the Arabian Peninsula began with a faunal review of the termite species of KSA (Chhotani and Bose, 1979), recording five species, Anacanthotermes ochraceous (Burmeister, 1839), Psammothoracantermes hypostoma Desneux, 1902, Microtermes najdensis Harris, 1964, Microcerotermes buettikeri Chhotani & Bose, 1979 and Angulitermes arabiae Chhotani and Bose, 1979 belonging to three families, Hodotermitidae, Rhinotermitidae and Tetritidae. Microcerotermes buettikeri and A. arabiae were described as new species. In addition, they provided a list of 18 species belonging to 11 genera and four families in the Arabian Peninsula. This study was followed by a series of treatments dealing with numerous aspects of the termite fauna of the KSA and the entire Arabian Peninsula including checklists, distribution records, zoogeography, ecology and molecular studies of some species (Nasr et al., 1978, 1980; Badawi et al., 1984a, 1984b, 1986a, b; Cowie 1988, Faragalla, 2002; Kaakeh, 2006; Faragalla and Al Qhtani, 2013; Khan et al., 2018). The termite fauna hitherto known from the Arabian Peninsula includes 22 species (Badawi et al., 1986a, b; Chhotani and Bose, 1979, 1982, 1991; Cowie, 1989; Kaakeh, 2005).

Termites have increasing become one of the most destructive pests (Wood and Sands, 1978; Faragalla, 1983; Faragalla, 1988) capable of reducing wooden structures to “dust” in KSA (Nasr et al., 1978, 1980; Su and Scheffrah, 1990; Koehler et al., 1998). Therefore, we initiated a survey of the termites of Riyadh Province. An integral aspect of our study was to provide for the first time keys to the soldier caste of the termites of the Riyadh Province, assisting termite control strategies.

2. Material and methods

2.1. Sample collection

During the sampling more than 2000 termite specimens were collected from diverse habitats including drywood, damp wood, cartoon objects, dead wood of Accacia, Calotropis, Tamarix, imported wood, cartoons, wooden building, dead date palm frond on wet soil, plywood, branch of live Cypress trees, and dead date palm trunk in 228 sites in Riyadh Province (Fig. 1). Surveyed sites in Riyadh Province and other sites, the KSA are shown in Fig. 1. The specimens/samples were collected by hand picking and using an aspirator. The specimens were taken to the Economic Entomology Research Unite (EERU), Plant Protection Department, College of Food and Agriculture Science, King Saud University, Riyadh, The Kingdom of Saudi Arabia. Throughout the work, “s” stands for soldier(s), “w” stands for worker(s), and SE for “sexual(s).
3.2. Key to families of termites of KSA (Soldier caste)

- Eyes pigmented; cerci large Hodotermitidae
- Eyes absent or unpigmented; cerci absent 2
- Fontanelle present 3
- - Fontanelle absent Kalotermitidae
- Pronotum flat without anterior lobes Rhinotermitidae
- Pronotum saddle-shaped with anterior lobes Termitidae

3.3. Key to species collected in Riyadh Province (Soldier caste)

Large species, HL 3.08 or more; eyes present (Fig. 2A) Anacanthotermes ochraceus
- Smaller species, HL 2.12 or less; eyes absent 2

2. Mandibles with marginal teeth, left mandible with a terminal tooth and 3 marginal teeth, right mandible with a terminal tooth and two marginal teeth only (Fig. 2B); number of antennal segments 16–17 (Fig. 2B); labrum well-developed extending anteriorly to half-length of mandible (Fig. 2B) Psammotermes hybostoma
- Mandibles without marginal teeth (Fig. 2C); number of antennal segments 13; labrum small concealing about one fourth of mandible length (Fig. 2C) Coptotermes heimi

3.4. Family Hodotermitidae

Members of this family feed on damp wood, with a single exception (subfamily Hodotermitinae or harvester termites), which feed on vegetation. Species of this family forage above ground. They are easily separable from other termites by the well-developed eyes. The geographic occurrence ranges from the Palaearctic Region through North Africa, the East African savannas to southern Africa.

Anacanthotermes ochraceus (Burmeister)
Termes ochraceus Burmeister, 1839: 765 (imago).

Type data: Lectotype: RIB imago Paralectotypes: ZMB imago Egypt, MCZ No. 10,108 imagoes.

Lectotype designation: Mathot, 1979: 9 [inadvertent selection by inference of “holotype” (ICZN, 1999, art. 74.6)].

Type locality: Egypt.

Zoogeographical Regions: Afrotropic; Palaearctic.

Material examined. KSA, Riyadh Province: Dirab: Agricultural research and experimental station, 24°25.094’N, 46°39.093’E, 561 m, 16.xii.2020, (4 w); Agricultural research and experimental station, 24°25.322’N, 46°39.183’E, 560 m, 16.xii.2020, (Al Ansi, A., Omar, O. and Sotanto, K.) (2 w, 2 s); Al Muzahmiyah: Dirab-Durma Rd., Qusor Al Moqbel, 24°29.502’N, 46°39.183’E, 560 m, 22.xii.2020, (3 w); Al Hair: Dirab-Al Hair Rd., 5 km to Al Hair, 24°23.690’N, 46°48.073’E, 478 m, 20.xii.2020, (2 w); Al Hair, in front of Al Hair station, 24°23.639’N, 46°49.737’E, 540 m, 20.xii.2020, (6 w); Al Hair, in front of Al Hair park, 24°25.356’N, 46°50.054’E, 529 m, 20.xii.2020, (3 w); Dhurma, Dhurma-Ath Tharmida Rd., 15 km out Dhurma, 24°40.894’N, 46°00.367’E, 657 m, 22.xii.2020, VC, (3 w); Dhurma, Dhurma-Ath Tharmida Rd., 15 km out Dhurma, 24°40.894’N, 46°00.364’E, 653 m, 22.xii.2020, (6 w); Dhurma, 24°39.966’N, 46°00.465’E, 651 m, 22.xii.2020, (4 w); Al Dwadmi: near to Al Zamil palace, Al Najashy, 24°28.887’N, 44°21.540’E, 978 m, 13.i.2021, (3 w); Al Dwadmi-Al Bijadyah Rd., 24°28.791’N, 44°20.891’E, 997 m, 13.i.2021, (3 w); Al Dwadmi-Al Bijadyah Rd., 24°28.805’N, 44°20.881’E, 991 m, 13.i.2021, (3 w); Al Dwadmi-Al Bijadyah Rd., 24°28.806’N, 44°20.881’E, 989 m, 13.i.2021, (3 w); Al Dwadmi, Mushrifah, Hantosh farm, (Mohammed Al Haji), 24°28.781’N, 44°21.178’E, 989 m, 13.i.2021, (4 w); Al Dwadmi, Mushrifah, Hantosh farm, (Mohammed Al Haji), 24°28.726’N, 44°21.207’E, 986 m, 13.i.2021, (4 w); Al Dwadmi, Near to Al Zamil palace, Al Najashy, 24°28.887’N, 44°21.555’E, 990 m, 13.i.2021, (3 w); Sajir: Sajir-Al Sakran Rd., 25°12.645’N, 44°36.095’E, 711 m, 14.i.2021, (4 w); Sajir,

Fig. 2. Key illustrations, A–C Head in full-face view of soldier, A: Anacanthotermes ochraceous; B: Psammotermes hypostoma; C: Coptotermes heimi.
Species of this family build nests underground in moist soil, in buried wood or in wood lying on the ground.

Coptotermes heimi (Wasmann, 1902)

Arhinnoteremis heimi Wasmann, 1902d: 104 (imago), pl. 4: Fig. 1 [described as “Heimi”; synonym of *gestroi* fide Yeap et al., 2010; Senior Subjective Synonym of *Coptotermes parvulus* Holmgen, 1913: 104].

Type data: Syntypes: AMNH imagoes, NHMM imagoes, USNM imago.

Type locality: India: Maharashtra: Ahmadnagar District: Wallon.

Zoogeographical Regions: Palearctic, Oriental.

Material examined. **KSA, Riyadh Province:** An Al-Fqlg: Al Badie Al Shemali, 22°01.933’N, 46°33.794’E, 547 m, 7.i.2021, (3 w); Al Badie Al Shemali, Al Hadar Rd., 22°00.395’N, 46°31.972’E, 547 m, 7.i.2021, (2 w, 2 s); Al Badie Al Shemali, Al Hadar Rd., 22°00.399’N, 46°31.983’E, 536 m, 7.i.2021, (5 w); Al Badie Al Shemali, Al Hadar Rd., 22°00.398’N, 46°31.974’E, 538 m, 7.i.2021, (3 w); Al Badie Al Shemali, Al Hadar Rd., 22°00.398’N, 46°31.985’E, 538 m, 7.i.2021, (3 w); Al Badie Al Shemali, Al Hadar Rd., 22°00.398’N, 46°31.989’E, 538 m, 7.i.2021, (2 w, 1 s); Al Badie Al Shemali, Al Hadar Rd., 22°00.390’N, 46°31.985’E, 545 m, 7.i.2021, (2 w, 1 s)

Hawtet bani Tamim: Naam-Al Hareeq Rd., Naam park, 23°36.428’N, 46°39.917’E, 626 m, 8.i.2021, (5 w); Naam, 23°37.267’N, 46°38.028’E, 617 m, 8.i.2021, (3 w, 2 s); Al Hareeq,
dead wood of using by handpicking and aspirator (KSMA). 5.i.2021, (4 w, 1 s). All specimens are collected by Al Ansi & Sotanto/C176

24°29.496 N, 46°22.106 E, 614 m, 22.xii.2020, VC, (3 w, 3 s); Dirab-Dhurma Rd. Al Moqbel Palaces, 24°29.490 N, 46°22.115 E, 610 m, 22.xii.2020, (4 w); Al Hair: Dirab-Al Hair Rd., 5 km to Al Hair, abandoned palm farm, 24°23.690 N, 46°48.073 E, 478 m, 20.xii.2020, (16 w, 5 s); Al Hair, in front of Al-Hair station, 24°23.639 N, 46°49.737 E, 540 m, 20.xii.2020, (3 w); Al Hair-Ryadh Rd., in front of Al-Hair Prison, 24°26.291 N, 46°50.108 E, 527 m, 20.xii.2020, (5 w); Al Hair-Ryadh Rd., in front of Al-Hair Prison, 24°26.289 N, 46°50.123 E, 535 m, 20.xii.2020, (4 w); Al Hair-Ryadh Rd., 24°26.315 N, 46°50.110 E, 525 m, 20.xii.2020, (3 w); Dhurma, 24°36.888 N, 46°05.312 E, 624 m, 22.xii.2020, (9 w); Dhurma, 24°40.900 N, 46°00.396 E, 655 m, 22.xii.2020, (1 w); Dhurma, Dhurma-Ath Tharmida Rd., 15 km out Dhurma, 24°40.896 N, 46°00.367 E, 657 m, 22.xii.2020, (2 w); Dhurma, 24°39.972 N, 46°00.456 E, 654 m, 22.xii.2020, (3 w); Dhurma, 24°26.289 N, 46°50.123 E, 535 m, 22.xii.2020, (4 w); Dhurma, 24°34.363 N, 46°10.924 E, 623 m, 22.xii.2020, (3 w, 4 s); Dhurma-Riyadh Rd., 15 km out of Dhurma, 24°32.678 N, 46°14.555 E, 617 m, 22.xii.2020, (2 w, 5 s); Dhurma-Riyadh Rd., 15 km out of Dhurma, 24°32.678 N, 46°14.555 E, 617 m, 22.xii.2020, (3 w, 1 s); Dhurma, 24°39.978 N, 46°00.458 E, 654 m, 22.xii.2020, (4 w); Al Dwadmi: Al Bijaydy Rd., 24°28.898 N, 999 m, 13.12.2021, (3 w); Al Dwadmi, Near to Al Zamal palace, Al Najasy, 24°28.884 N, 44°21.538 E, 988 m, 13.12.2021, (2 w, 2 s); Al Dwadmi, Mushrifah, (Mohammed Al Haji), 24°28.667 N, 44°21.106 E, 988 m, 13.12.2021, (3 w); Al Dwadmi, Al Dawadmi-Arja Rd, King Khalid Rd., 24°31.613 N, 44°21.294 E, 966 m, 13.12.2021, (3 w, 2 s); Al Dwadmi-Riyadh Rd., 24°34.095 N, 44°29.272 E, 920 m, 13.12.2021, (2 w, 2 s); Al Dwadmi-Riyadh Rd., 24°34.090 N, 44°29.272 E, 912 m, 13.12.2021, (2 w, 2 s); Al Rabwah neighborhood, open area, 24°33.565 N, 44°27.751 E, 928 m, 13.12.2021, (4 w); Afif: Dhalam-Afif Rd., 23°50.494 N, 42°53.029 E, 1014 m, 11.12.2021, (3 w, 1 s); Afif-Mahd Al-Dhabah Rd., 23°52.623 N, 42°51.648 E, 1026 m, 12.12.2021, (3 w, 1 s); Al Mheaneyin neighborhood, near King abdul aziz park, 23°55.567 N.

Fig. 4. Distribution map of *Coptotermes heimi*.
There is a specific difference between the armature of the right mandible and the left mandible of *A. ochraceus* and *P. hypostoma*, the former species has the left mandible with 5–7 teeth, and the right mandible with 4–5 teeth, whereas the latter species has the left mandible with a terminal tooth and three marginal teeth while the right mandible with 4–5 teeth, whereas the later species has the left mandible with a terminal tooth and three marginal teeth while the right mandible with a terminal tooth and three marginal teeth.
This morphological mandibular asymmetrical trait is used to dismember ants (Seid et al., 2008).

The geographic location of the Arabian Peninsula at the interchange of three zoogeographical realms, the Palearctic, the Afrotropical and the Oriental, results in a mixing of faunal elements from these regions, especially from the Palearctic and the Afrotropical. In addition, there are limited number of endemic taxa (Larsen, 1984; Cowie, 1989; Delany, 1989; Penati and Vienna, 2006; Sharaf et al., 2020). The lack of systematic revisions and taxonomic keys is a challenge toward the identification of Arabian termite species. During the present work only two Palearctic species were collected from the Riyadh Province, *A. ochraceous* and *P. hypostoma* which are fairly abundant in the deserts of the Arabian Peninsula and their geographical range extends south to several locations in the southwestern mountains (Chhotani and Bose, 1979).

According to literature records and our records, it is apparent that *A. ochraceous* and *P. hypostoma* are the two most widely occurring termite species in the KSA but the later species has apparently a wider geographical distribution, no doubt because of available habitats. *Psammotermes hypostoma* prefers the dry habitats therefore it is rarely represented in the southwestern mountains of the KSA due to the higher percentage of precipitation, moist soils, and lower air temperatures (Badawi et al., 1986b).

Coptotermes heimi is a common invasive species native to India, Nepal, and Pakistan (Chouvenc et al., 2016) thriving in deserts habitats of countries of the Arabian Peninsula including the United Arab Emirates (UAE) and Oman. It is anticipated that this species occurring over a wider geographic range, especially in the vast desert regions of the KSA and the rest of the neighboring countries such as Kuwait, Qatar and Bahrain.

5. Conclusions

In the present study an updated synoptic list of the 30 hitherto known Arabian Isoptera is given of which 27 species are recorded from the KSA. During our survey in Riyadh Province three species are sampled, keyed and illustrated, *A. ochraceous* (Burmeister), *P. hypostoma* Desneux, and *C. heimi* (Wasmann). *Anacanthotermes ochraceous*, and *P. hypostoma* are widely distributed on the Arabian Peninsula whereas *C. heimi* appears rare in the region. We give distribution maps for the collected species and present notes on species habitat preference. It is hoped that future collecting will add additional records of termites for the Arabian Peninsula.

Funding

This work was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdul-Aziz City for Science and Technology, Kingdom of Saudi Arabia (Award Number 13-BIO1410-02).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdul-Aziz City for Science and Technology, the Kingdom of Saudi Arabia (Award Number 13-BIO1410-02). We are indebted to two anonymous reviewers for useful comments. The authors thank the Research Support Service Unit at King Saud University for their technical support. We are grateful to Mahmoud Abdel-Dayem for creating distribution maps. Special thanks to Amin Alanshi and Koko Dwi Sutanto for assistance in field trips, and Ahmed Shams Al ‘Ola for imaging the species.
