On the optimal paving over MASAs in von Neumann algebras

by Sorin Popa1 and Stefaan Vaes2

Abstract

We prove that if A is a singular MASA in a II$_1$ factor M and ω is a free ultrafilter, then for any $x \in M \otimes A$, with $\|x\| \leq 1$, and any $n \geq 2$, there exists a partition of 1 with projections $p_1, p_2, \ldots, p_n \in A^\omega$ (i.e., a paving) such that $\left\| \sum_{i=1}^n p_i x p_i \right\| \leq 2\sqrt{n - 1}/n$, and give examples where this is sharp. Some open problems on optimal pavings are discussed.

1 Introduction

A famous problem formulated by R.V. Kadison and I.M. Singer in 1959 asked whether the diagonal MASA (maximal abelian $*$-subalgebra) D of the algebra $B(\ell^2 N)$, of all linear bounded operators on the Hilbert space $\ell^2 N$, satisfies the paving property, requiring that for any contraction $x = x^* \in B(\ell^2 N)$ with 0 on the diagonal, and any $\varepsilon > 0$, there exists a partition of 1 with projections $p_1, \ldots, p_n \in D$, such that $\| \sum_{i=1}^n p_i x p_i \| \leq \varepsilon$. This problem has been settled in the affirmative by A. Marcus, D. Spielman and N. Srivastava in [MSS13], with an actual estimate $n \leq 12^4 \varepsilon^{-4}$ for the paving size, i.e., for the minimal number $n = n(x, \varepsilon)$ of such projections.

In a recent paper [PV14], we considered a notion of paving for an arbitrary MASA in a von Neumann algebra $A \subset M$, that we called so-paving, which requires that for any $x = x^* \in M$ and any $\varepsilon > 0$, there exist $n \geq 1$, a net of partitions of 1 with n projections $p_{1,i}, \ldots, p_{n,i} \in A$ and projections $q_i \in M$ such that $\| q_i (\Sigma_{k=1}^n p_{k,i} x p_{k,i} - a_i) q_i \| \leq \varepsilon, \forall i$, and $q_i \rightarrow 1$ in the so-topology.

This property is in general weaker than the classic Kadison-Singer norm paving, but it coincides with it for the diagonal MASA $D \subset B(\ell^2 N)$. We conjectured in [PV14] that any MASA $A \subset M$ satisfies so-paving. We used the results in [MSS13] to check this conjecture for all MASAs in type I von Neumann algebras, and all Cartan MASAs in amenable von Neumann algebras and in group measure space factors arising from profinite actions, with the estimate $12^4 \varepsilon^{-4}$ for the so-paving size derived from [MSS13] as well.

We also showed in [PV14] that if A is the range of a normal conditional expectation, $E : M \to A$, and ω is a free ultrafilter on \mathbb{N}, then so-paving for $A \subset M$ is equivalent to the usual Kadison-Singer paving for the ultrapower MASA $A^\omega \subset M^\omega$, with the norm paving size for $A^\omega \subset M^\omega$ coinciding with the so-paving size for $A \subset M$. In the case A is a singular MASA in a II$_1$ factor M, norm-paving for the ultrapower inclusion $A^\omega \subset M^\omega$ has been established in [P13], with paving size $1250 \varepsilon^{-3}$. This estimate was improved to $< 16 \varepsilon^{-2} + 1$ in [PV14], while also shown to be $\geq \varepsilon^{-2}$ for arbitrary MASAs in II$_1$ factors.

In this paper we prove that the paving size for singular MASAs in II$_1$ factors is in fact $< 4 \varepsilon^{-2} + 1$, and that for certain singular MASAs this is sharp. More precisely, we prove that for any contraction $x \in M^\omega$ with 0 expectation onto A^ω, and for any $n \geq 2$, there exists a partition of 1 with n projections $p_i \in A^\omega$ such that $\| \Sigma_{i=1}^n p_i x p_i \| \leq 2\sqrt{n - 1}/n$. In fact, given any finite

1Mathematics Department, UCLA, CA 90095-1555 (United States), popa@math.ucla.edu

2KU Leuven, Department of Mathematics, Leuven (Belgium), stefaan.vaes@wis.kuleuven.be

Supported by NSF Grant DMS-1401718

Supported by ERC Consolidator Grant 614195 from the European Research Council under the European Union’s Seventh Framework Programme.
set of contractions $F \subset M^d \otimes A^d$, we can find a partition $p_1, ..., p_n \in A^d$ that satisfies this estimate for all $x \in F$, so even the multipaving size for singular MASAs is $< 4e^{-2} + 1$.

To construct pavings satisfying this estimate, we first use Theorem 4.1(a) in [P13] to get a unitary $u \in A^d$ with $u^i = 1$, $\tau(u^k) = 0$, $1 \leq k \leq n - 1$, such that any word with alternating letters from $\{u^k \mid 1 \leq k \leq n - 1\}$ and $F \cup F^*$ has trace 0. This implies that for each $x \in F$ the set $X = \{u^{-i}xu^{-i+1} \mid i = 1, 2, ..., n\}$ satisfies the conditions $\tau(\Pi_{k=1}^n(x_k^2 - 1x_k)) = 0 = \tau(\Pi_{k=1}^n(x_k^2 - 1x_k^2))$, for all m and all $x_k \in X$ with $x_k \neq x_{k+1}$ for all k. We call L-freeness this property of a subset of a II$_1$ factor. We then prove the general result, of independent interest, that any L-free set of contractions $\{x_1, ..., x_n\}$ satisfies the norm estimate $\|\sum_{i=1}^n x_i\| \leq 2\sqrt{n} - 1$. We do this by first “dilating” $\{x_1, ..., x_n\}$ to an L-free set of unitaries $\{U_1, ..., U_n\}$ in a larger II$_1$ factor, for which we deduce the Kesten-type estimate $\|\sum_{i=1}^n U_i\| = 2\sqrt{n} - 1$ from results in [AO74]. This implies the inequality for the L-free contractions as well. By applying this to $\{u^{-i}xu^{-i} \mid i = 1, ..., n\}$ and taking into account that $\frac{1}{n}\sum_{i=1}^n u^{-i}xu^{-i} = \sum_{i=1}^n p_ip_x$, where $p_1, ..., p_n$ are the minimal spectral projections of u, we get $\|\sum_{i=1}^n p_ip_x\| \leq 2\sqrt{n} - 1/n, \forall x \in F$.

We also notice that if M is a II$_1$ factor, $A \subset M$ is a MASA and $v \in M$ a self-adjoint unitary of trace 0 which is free with respect to A, then $\|\sum_{i=1}^n p_ip_x\| \geq 2\sqrt{n} - 1/n$ for any partition of 1 with projections in A^d, with equality if and only if $\tau(p_i) = 1/n, \forall i$. A concrete example is when $M = L(Z \ast (Z/2Z))$, $A = L(Z)$ (which is a singular MASA in M by [PS1]) and $v = v^* \in L(Z/2Z) \subset M$ denotes the canonical generator. This shows that the estimate $4e^{-2} + 1$ for the paving size is in this case optimal.

The constant $2\sqrt{n} - 1$ is known to coincide with the spectral radius of the n-regular tree, and with the first eigenvalue less than n of n-regular Ramanujan graphs. Its occurrence in this context leads us to a more refined version of a conjecture formulated in [PV14], predicting that for any MASA $A \subset M$ which is range of a normal conditional expectation, any $n \geq 2$ and any contraction $x = x^* \in M$ with 0 expectation onto A, the infimum $\varepsilon(A \subset M; n, k)$ for all norms of pavings of x, $\|\sum_{i=1}^n p_ip_x\|$, with n projections $p_1, ..., p_n$ in A^d, $\sum_{i=1}^n p_i = 1$, is bounded above by $2\sqrt{n} - 1/n$, and that in fact $\sup\{\varepsilon(A \subset M; n, x) \mid x = x^* \in M \subset A, \|x\| \leq 1\} = 2\sqrt{n} - 1/n$. Such an optimal estimate would be particularly interesting to establish for the diagonal MASA $D \subset B(\ell^2Z)$.

2 Preliminaries

A well known result of H. Kesten in [K58] shows that if F_k denotes the free group with k generators $h_1, ..., h_k$, and A is the left regular representation of F_k on ℓ^2F_k, then the norm of the Laplacian operator $L = \sum_{i=1}^k (\lambda(h_i) + \lambda(h_i^{-1}))$ is equal to $2\sqrt{2k} - 1$. It was also shown in [K58] that, conversely, if k elements $h_1, ..., h_k$ in a group Γ satisfy $\|\sum_{i=1}^k (\lambda(h_i) + \lambda(h_i^{-1}))\| = 2\sqrt{2k} - 1$, then $h_1, ..., h_k$ are freely independent, generating a copy of F_k inside Γ. The calculation of the norm of L in [K58] uses the formalism of random walks on groups, but it really amounts to calculating the higher moments $\tau(L^{2n})$ and using the formula $\|L\| = \lim_m (\tau(L^{2n}))^{1/2m}$, where τ denotes the canonical (normal faithful) tracial state on the group von Neumann algebra $L(F_k)$.

Kesten’s result implies that whenever $u_1, ..., u_k$ are freely independent Haar unitaries in a type II$_1$ factor M (i.e., $u_1, ..., u_k$ generate a copy of $L(F_k)$ inside M), then one has $\|\sum_{i=1}^k u_i + u_i^*\| = 2\sqrt{2k} - 1$. In particular, if M is the free group factor $L(F_k)$ and $u_i = \lambda(h_i)$, where $h_1, ..., h_k \in F_k$ as above, then $\|\sum_{i=1}^k \alpha_i u_i + \overline{\alpha_i} u_i^*\| = 2\sqrt{2k} - 1$, for any scalars $\alpha_i \in \mathbb{C}$ with $|\alpha_i| = 1$.

Estimates of norms of linear combinations of elements satisfying more general free independence
relations in group Π_1 factors $L(\Gamma)$ have later been obtained in [L73], [B74], [AO74]. These estimates involve elements in $L(\Gamma)$ (viewed as convolvers on $\ell^2(\Gamma)$) that are supported on a subset $\{g_1, \ldots, g_n\} \subset \Gamma$ satisfying the following weaker freeness condition, introduced in [L73]: whenever $k \geq 1$ and $i_s \neq j_s$, $j_s \neq i_{s+1}$ for all s, we have that

$$g_{i_1}g_{j_1}^{-1} \cdots g_{i_k}g_{j_k}^{-1} \neq e.$$

In [B74] and [AO74], this is called the Leinert property and it is proved to be equivalent with $\{g_1^{-1}g_2, \ldots, g_n^{-1}g_n\}$ freely generating a copy of F_{n-1}. The most general calculation of norms of elements $x = \sum c_i \lambda(g_i) \in L(\Gamma)$, supported on a Leinert set $\{g_i\}$, with arbitrary coefficients $c_i \in \mathbb{C}$, was obtained by Akemann and Ostrand in [AO74]. The calculation shows in particular that if $\{g_1, \ldots, g_n\}$ satisfies Leinert’s freeness condition then $\|\sum_{i=1}^n \lambda(g_i)\| = 2\sqrt{n-1}$. Since $h_1, \ldots, h_k \in \Gamma$ freely independent implies $\{h_i, h_i^{-1} \mid 1 \leq i \leq k\}$ is a Leinert set, the result in [AO74] does recover Kesten’s theorem as well. Like in [K58], the norm of an element of the form $L = \sum_{i=1}^n c_i \lambda(g_i)$ in [AO74] is calculated by evaluating $\lim n \tau((L^*L)^n)^{1/2n}$ (by computing the generating function of the moments of L^*L).

An argument similar to [K58] was used in [Le96] to prove that, conversely, if some elements g_1, \ldots, g_n in a group Γ satisfy $\|\sum_{i=1}^n \lambda(g_i)\| = 2\sqrt{n-1}$, then g_1, \ldots, g_n is a Leinert set. On the other hand, note that if g_1, \ldots, g_n are arbitrary elements in an arbitrary group Γ and we denote $L = \sum_{i=1}^n \lambda(g_i)$ the corresponding Laplacian, then the nth moment $\tau((L^*L)^n)$ is bounded from below by the nth moment of the Laplacian obtained by taking g_i to be the generators of F_n. Thus, we always have $\|\sum_{i=1}^n \lambda(g_i)\| \geq 2\sqrt{n-1}$. More generally, if v_1, \ldots, v_n are unitaries in a von Neumann algebra M with normal faithful trace state τ, such that any word $v_{i_1}^* v_{j_1} v_{i_2} v_{j_2}^* \cdots v_{i_m} v_{j_m}^*$, $\forall m \geq 1$, $\forall i_k, j_k \leq n$, has trace with non-negative real part, then $\|\sum_{i=1}^n \tau(v_i)\| \geq 2\sqrt{n-1}$. In particular, for any unitaries $u_1, \ldots, u_n \in M$ one has $\|\sum_{i=1}^n u_i \otimes \overline{u_i}\| \geq 2\sqrt{n-1}$.

For convenience, we state below some norm calculations from [AO74], formulated in the form that will be used in the sequel:

Proposition 2.1 ([AO74]). If $v_1, v_2, \ldots, v_{n-1} \in M$ are freely independent Haar unitaries, then

$$\|1 + \sum_{i=1}^{n-1} v_i\| = 2\sqrt{n-1}. \tag{2.1}$$

Also, if $\alpha_0, \ldots, \alpha_{n-1} \in \mathbb{C}$, $\sum_i |\alpha_i|^2 = 1$, then

$$\|\alpha_0 1 + \sum_{i=1}^{n-1} \alpha_i v_i\| \leq 2\sqrt{1 - 1/n}. \tag{2.2}$$

Note that (2.1) above shows in particular that if $p, q \in M$ are projections with $\tau(p) = 1/2$ and $\tau(q) = 1/n$, for some $n \geq 3$, and they are freely independent, then $\|pq\| = 1/2 + \sqrt{n-1/n}$. Indeed, any two such projections can be thought of as embedded into $L(F_2)$ with p and q lying in the MASAs of the two generators, $p \in A_1$, respectively $q \in A_2$. Denote $v = 2p - 1$. Let $g_1 = q_1, q_2, \ldots, q_n \in A_2$ be mutually orthogonal projections of trace $1/n$ and denote $u = \sum_{j=1}^n \lambda^{-1} j$, where $\lambda = 2\exp(2\pi i/n)$. It is then easy to see that the elements $v_k = vu^k v u^{-k}$, $k = 1, 2, \ldots, n-1$ are freely independent Haar unitaries. By (2.1) we thus have

$$\|\sum_{k=0}^{n-1} u^k v u^{-k}\| = \|1 + \sum_{k=1}^{n-1} vu^k v u^{-k}\| = 2\sqrt{n-1}.$$ But $\sum_{k=0}^{n-1} u^k v u^{-k} = n(\sum_{j=1}^n g_j v q_j)$, implying that.

3See also the more “rough” norm estimates for elements in $L(F_n)$ obtained by R. Powers in 1967 in relation to another problem of Kadison, but published several years later in [Po75], and which motivated in part the work in [AO74].
\[\|qvq\| = \|q(2p - 1)q\| = 2\sqrt{n - 1}/n = 2\sqrt{\tau(q)(1 - \tau(q))} \]

or equivalently
\[\|qpq\| = 1/2 + \sqrt{n - 1}/n = \tau(p) + \sqrt{\tau(q)(1 - \tau(q))}. \]

The computation of the norm of the product of freely independent projections \(q, p \) of arbitrary trace in \(M \) (in fact, of the whole spectral distribution of \(qpq \)) was obtained by Voiculescu in [Vo86], as one of the first applications of his multiplicative free convolution (which later became a powerful tool in free probability). We recall here these norm estimates, which in particular show that the first of the above norm calculations holds true for projections \(q \) of arbitrary trace (see also [ABH87] for the case \(\tau(q) = 1/n, \tau(p) = 1/m \), for integers \(n \geq m \geq 2 \):

Proposition 2.2 (Vo86). If \(p, q \in M \) are freely independent projections with \(\tau(q) \leq \tau(p) \leq 1/2 \), then
\[\|qpq\| = \tau(p) + \tau(q) - 2\tau(p)\tau(q) + 2\sqrt{\tau(p)\tau(1 - p)\tau(q)\tau(1 - q)}. \]

If in addition \(\tau(p) = 1/2 \) and we denote \(v = 2p - 1 \), then
\[\|qvq\| = 2\sqrt{\tau(q)\tau(1 - q)}. \]

3 \(L \)-free sets of contractions and their dilation

Recall from [P13] that two selfadjoint sets \(X, Y \subset M \ominus C1 \) of a tracial von Neumann algebra \(M \) are called freely independent set\(^4\) if the trace of any word with letters alternating from \(X \) and \(Y \) is equal to 0. Also, a subalgebra \(B \subset M \) is called freely independent of a set \(X \), if \(X \) and \(B \ominus C1 \) are freely independent as sets. Several results were obtained in [P13] about constructing a “large subalgebra” \(B \) inside a given subalgebra \(Q \subset M \) that is freely independent of a given countable set \(X \). Motivated by a condition appearing in one such result, namely [P13] Theorem 4.1, and by a terminology used in [AO74], we consider in this paper the following free independence condition for arbitrary elements in tracial algebras:

Definition 3.1. Let \((M, \tau) \) be a von Neumann algebra with a normal faithful tracial state. A subset \(X \subset M \) is called \(L \)-free\(^5\) if
\[\tau(x_1x_2^*x_2^* \cdots x_{2k-1}x_{2k}^*) = 0 \quad \text{and} \quad \tau(x_1^*x_2 \cdots x_{2k-1}x_{2k}^*) = 0, \]

whenever \(k \geq 1, x_1, \ldots, x_{2k} \in X \) and \(x_i \neq x_{i+1} \) for all \(i = 1, \ldots, 2k - 1 \).

Note that if the subset \(X \) in the above definition is taken to be contained in the set of canonical unitaries \(\{u_g \mid g \in \Gamma\} \) of a group von Neumann algebra \(M = L(\Gamma) \), i.e. \(X = \{u_g \mid g \in F\} \) for some subset \(F \subset \Gamma \), then \(L \)-freeness of \(X \) amounts to \(F \) being a Leinert set. But the key example of an \(L \)-free set that is important for us here occurs from a diffuse algebra \(B \) that is free independent from a set \(Y = Y^* \subset M \ominus C1 \); given any \(y_1, \ldots, y_n \in Y \) and any unitary element \(u \in U(B) \) with \(\tau(u^k) = 0, 1 \leq k \leq n - 1 \), the set \(\{u^{k-1}y_ku^{-k+1} \mid 1 \leq k \leq n\} \) is \(L \)-free.

\(^4\)We specifically consider this condition for subsets \(X, Y \subset M \ominus C1 \), not to be confused with the freeness of the von Neumann algebras generated by \(X \) and \(Y \).

\(^5\)Note that this notion is not the same as (and should not be confused with) the notion of \(L \)-sets used in [P92].
Note that we do not need to impose both conditions on the traces being zero in Definition 3.1, because we cannot deduce $\tau(x_i^* x_2 x_3 x_1) = 0$ from $\tau(y_1 y_2^* y_3 y_1^*) = 0$ for all $y_i \in X$ with $y_1 \neq y_2$, $y_2 \neq y_3$, $y_3 \neq y_4$. However, if $X \subset U(M)$ consists of unitaries, then only one set of conditions is sufficient. We in fact have:

Lemma 3.2. Let $X = \{u_1, \ldots, u_n\} \subset U(M)$. Then the following conditions are equivalent:

(a) X is an L-free set.
(b) $\tau(u_{i_1}^* u_{j_1}^* \cdots u_{i_k}^* u_{j_k}) = 0$ whenever $k \geq 1$ and $i_s \neq j_s$, $j_s \neq i_{s+1}$ for all s.
(c) $u_1^* u_2, \ldots, u_n^* u_n$ are free generators of a copy of $L(\mathbb{F}_{n-1})$.

Proof. This is a trivial verification. \square

Corollary 3.3. If $\{u_1, \ldots, u_n\}$ is an L-free set of unitaries in $U(M)$, then $\|\Sigma_{i=1}^n u_i\| = 2\sqrt{n-1}$. Moreover, if $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ with $\Sigma_{i=1}^n |\alpha_i|^2 \leq 1$, then

$$\left\|\sum_{i=1}^n \alpha_i u_i\right\| \leq 2\sqrt{1-1/n}.$$

Proof. Since $\|\Sigma_{i=1}^n \alpha_i u_i\| = \|\alpha_1 + \Sigma_{i=2}^n \alpha_i u_i^* u_i\|$, the statement follows by applying (2.2) to the freely independent Haar unitaries $v_j = u_i^* u_j$, $2 \leq j \leq n$. \square

Proposition 3.4. Let M be a finite von Neumann algebra with a faithful tracial state τ. If $\{x_1, \ldots, x_n\} \subset M$ is an L-free set with $\|x_i\| \leq 1$ for all i, then there exists a tracial von Neumann algebra (M, τ), a trace preserving unital embedding $M \subset M$ and an L-free set of unitaries $\{U_1, \ldots, U_n\} \subset U(M)$ with $M = M_{n+1}(\mathbb{C}) \otimes M$ so that, denoting by $(e_{ij})_{i,j=0, \ldots, n}$ the matrix units of $M_{n+1}(\mathbb{C})$, we have $e_{00}U_ie_{00} = x_i$ for all i.

Proof. Define $\mathcal{M} = M * L(\mathbb{F}_{n(n-1)})$ and denote by $u_{i,j}$, $i \neq j$, free generators of $L(\mathbb{F}_{n(n-1)})$. For every $i \in \{1, \ldots, n\}$, define

$$c_i = \sqrt{1-x_i^* x_i} \quad \text{and} \quad d_i = -\sqrt{1-x_i^* x_i}.$$

Put $\tilde{M} = M_{n+1}(\mathbb{C}) \otimes \mathcal{M}$ and define the unitary elements $U_i \in U(\tilde{M})$ given by

$$U_i = (e_{00} \otimes x_i) + (e_{ii} \otimes x_i^*) + (e_{0i} \otimes c_i) + (e_{i0} \otimes d_i) + \sum_{j \neq i} (e_{jj} \otimes u_{i,j}).$$

Note that U_i is the direct sum of the unitary

$$\begin{pmatrix} x_i & c_i \\ d_i & x_i^* \end{pmatrix}$$

in positions 0 and i, and the unitary $\bigoplus_{j \neq i} u_{i,j}$ in the positions $j \neq i$.

By construction, we have that $e_{00}U_i e_{00} = x_i e_{00}$. So, it remains to prove that $\{U_1, \ldots, U_n\}$ is L-free.

Take $k \geq 1$ and indices i_s, j_s such that $i_s \neq j_s$, $j_s \neq i_{s+1}$ for all s. We must prove that

$$\tau(U_{i_1}^* U_{j_1}^* \cdots U_{i_k}^* U_{j_k}^*) = 0.$$ \hspace{1cm} (3.1)

Consider $V := U_{i_1}^* U_{j_1}^* \cdots U_{i_k}^* U_{j_k}^*$ as a matrix with entries in \mathcal{M}. Every entry of this matrix is a sum of “words” with letters

$$\{x_i, x_i^*, c_i, d_i \mid i = 1, \ldots, n\} \cup \{u_{i,j}, u_{i,j}^* \mid i \neq j\}.$$

We prove that every word that appears in a diagonal entry V_{ii} of V has zero trace. The following types of words appear.
1° Words without any of the letters \(u_{a,b} \) or \(u_{a,b}^* \). These words only appear as follows:

- in the entry \(V_{00} \) as \(x_{i_1} x_{j_1}^* \cdots x_{i_k} x_{j_k}^* \), which has zero trace;
- if \(i_1 = j_k = i \), in the entry \(V_{ii} \) as \(w = d_i x_{j_1}^* x_{i_2} \cdots x_{i_{k-1}} x_{j_{k-1}} x_{i_k} d_i^* \). Then we have
 \[
 \tau(w) = \tau(x_{j_1}^* x_{i_2} \cdots x_{j_{k-1}} x_{i_k} d_i^* d_i) \\
 = \tau(x_{j_1}^* x_{i_2} \cdots x_{j_{k-1}} x_{i_k} x_i) - \tau(x_{j_1}^* x_{i_2} \cdots x_{j_{k-1}} x_{i_k} x_i) \\
 = 0 - \tau(x_{i_1} x_{j_1}^* \cdots x_{i_k} x_{j_k}^*) = 0 ,
 \]
 because \(i = i_1 \) and \(i = j_k \).

2° Words with exactly one letter of the type \(u_{a,b} \) or \(u_{a,b}^* \). These words have zero trace because \(\tau(Mu_{a,b}M) = \{0\} \).

3° Words \(w \) with two or more letters of the type \(u_{a,b} \) or \(u_{a,b}^* \). Consider two consecutive such letters in \(w \), i.e. a subword of \(w \) of the form

\[
u_{i,j}^* w_0 \nu_{i',j'}^*
\]

with \(\varepsilon, \varepsilon' = \pm 1 \) and where \(w_0 \) is a word with letters from \(\{x_i, x_i^*, c_i, d_i \mid i = 1, \ldots, n\} \). We distinguish three cases.

- \((\varepsilon', i', j') \neq (-\varepsilon, i, j) \).
- \(u_{i,j} w_0 u_{i,j}^* \).
- \(u_{i,j}^* w_0 u_{i,j} \).

To prove that \(\tau(w) = 0 \), it suffices to prove that in the last two cases, we have that \(\tau(w_0) = 0 \). A subword of the form \(u_{i,j} w_0 u_{i,j}^* \) can only arise from the \(jj \)-entry of

\[
U_s U_{j_s}^* \cdots U_{i_t} U_{j_t}^* \quad \text{with} \quad i_s = j_t = i , \quad j_s = j_t = j
\]

(and thus, \(t \geq s + 2 \)). In that case,

\[
w_0 = c_j^* x_{i_{s+1}} x_{j_{s+1}}^* \cdots x_{i_{t-1}} x_{j_{t-1}}^* c_j .
\]

Thus,

\[
\tau(w_0) = \tau(x_{i_{s+1}} x_{j_{s+1}}^* \cdots x_{i_{t-1}} x_{j_{t-1}}^* c_j c_j^*) \\
= \tau(x_{i_{s+1}} x_{j_{s+1}}^* \cdots x_{i_{t-1}} x_{j_{t-1}}^*) - \tau(x_{i_{s+1}} x_{j_{s+1}}^* \cdots x_{i_{t-1}} x_{j_{t-1}}^* x_j x_j^*) \\
= 0 - \tau(x_j x_{j_{s+1}}^* \cdots x_{j_{t-1}} x_{j_{t-1}} x_i) = 0 ,
\]

because \(j = j_s \) and \(j = i_t \).

Finally, a subword of the form \(u_{i,j}^* w_0 u_{i,j} \) can only arise from the \(jj \)-entry of

\[
U_{j_s}^* U_{j_s} \cdots U_{j_{t-1}} U_{j_t} \quad \text{with} \quad j_{s-1} = i_t = i , \quad i_s = j_{t-1} = j
\]

(and thus, \(t \geq s + 2 \)). In that case,

\[
w_0 = d_j x_{j_{s+1}} x_{i_{s+1}}^* \cdots x_{j_{t-2}} x_{i_{t-1}}^* d_j^* .
\]

As above, it follows that \(\tau(w_0) = 0 \).
So, we have proved that every word that appears in a diagonal entry \(V_{ii} \) of \(V \) has trace zero. Then also \(\tau(V) = 0 \) and it follows that \(\{U_1, \ldots, U_n\} \) is an L-free set of unitaries.

Corollary 3.5. Let \((M, \tau)\) be a finite von Neumann algebra with a faithful normal tracial state. If \(\{x_1, \ldots, x_n\} \subset M \) is L-free with \(\|x_i\| \leq 1 \) for all \(i \), then

\[
\left\| \sum_{i=1}^{n} x_i \right\| \leq 2\sqrt{n - 1}.
\]

More generally, given any complex scalars \(\alpha_1, \ldots, \alpha_n \) with \(\sum_{i=1}^{n} |\alpha_i|^2 \leq 1 \), we have

\[
\left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \leq 2\sqrt{1 - 1/n}.
\]

Proof. Assuming \(n \geq 2 \), with the notations from Proposition 3.4 and by using Corollary 3.3, we have

\[
\left\| \sum_{i=1}^{n} \alpha_i U_i \right\| \leq 2\sqrt{1 - 1/n}.
\]

Reducing with the projection \(e_{00} \), it follows that

\[
\left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \leq 2\sqrt{1 - 1/n}.
\]

\[\square \]

4 Applications to paving problems

Like in [P13], [PV14], if \(A \subset M \) is a MASA in a von Neumann algebra and \(x \in M \), then we denote by \(n(A \subset M; x, \varepsilon) \) the smallest \(n \) for which there exist projections \(p_1, \ldots, p_n \in A \) and \(a \in A \) such that \(\|a\| \leq \|x\| \), \(\sum_{i=1}^{n} p_i = 1 \) and \(\left\| \sum_{i=1}^{n} p_i x p_i - a \right\| \leq \varepsilon \|x\| \) (with the convention that \(n(A \subset M; x, \varepsilon) = \infty \) if no such finite partition exists), and call it the **paving size** of \(x \).

Recall also from [D54] that a MASA \(A \) in a von Neumann algebra \(M \) is called singular, if the only unitary elements in \(M \) that normalize \(A \) are the unitaries in \(A \).

Theorem 4.1. Let \(A_n \subset M_n \) be a sequence of singular MASAs in finite von Neumann algebras and \(\omega \) a free ultrafilter on \(\mathbb{N} \). Denote \(M = \prod_{\omega} M_n \) and \(A = \prod_{\omega} A_n \). Given any countable set of contractions \(X \subset M \ominus A \) and any integer \(n \geq 2 \), there exists a partition of 1 with projections \(p_1, \ldots, p_n \in A \) such that

\[
\left\| \sum_{j=1}^{n} p_j x p_j \right\| \leq 2\sqrt{n - 1/n}, \quad \text{for all } x \in X.
\]

In particular, the paving size of \(A \subset M \),

\[
n(A \subset M; \varepsilon) \overset{\text{def}}{=} \sup\{n(A \subset M; x, \varepsilon) \mid x = x^* \in M \ominus A\},
\]

is less than \(4\varepsilon^{-2} + 1 \), for any \(\varepsilon > 0 \).

Proof. By Theorem 4.1(a) in [P13], there exists a diffuse abelian von Neumann subalgebra \(A_0 \subset A \) such that for any \(k \geq 1 \), any word with alternating letters \(x = x_0 \Pi_{i=1}^{k} (v_i x_i) \) with \(x_i \in X, 1 \leq i \leq k - 1, x_0, x_k \in X \cup \{1\}, v_i \in A_0 \ominus \mathbb{C}1 \), has trace equal to 0.
This implies that if $p_1, \ldots, p_n \in A$ are projections of trace $1/n$ summing up to 1 and we denote $u = \sum_{j=1}^n \lambda^j p_j$, where $\lambda = \exp(2\pi i/n)$, then for any $x \in X$ the set $\{u^{i-1} xu^{-i+1} \mid i = 1, 2, \ldots, n\}$ is L-free. Since $\frac{1}{n} \sum_{i=1}^n u^{i-1} xu^{-i} = \sum_{i=1}^n p_i x p_i$, where p_1, \ldots, p_n are the minimal spectral projections of u, by Proposition 4.3 it follows that for all $x \in X$ we have

$$\|\sum_{i=1}^n p_i x p_i\| = \frac{1}{n} \|\sum_{i=1}^n u^{i-1} xu^{-i+1}\| \leq 2\sqrt{n} - 1/n.$$

To derive the last part, let $\varepsilon > 0$ and denote by n the integer with the property that $2n^{-1/2} \leq \varepsilon < 2(n-1)^{-1/2}$. If $x \in M \ominus A$, $\|x\| \leq 1$, and $p_1, \ldots, p_n \in A$ are mutually orthogonal projections of trace $1/n$ that satisfy the free independence relation with $X = \{x\}$ as above, then $n < 4\varepsilon^{-2} + 1$ and we have

$$\|\sum_{i=1}^n p_i x p_i\| \leq 2\sqrt{n} - 1/n \leq \varepsilon,$$

showing that $n(A \subset M; x, \varepsilon) < 4\varepsilon^{-2} + 1$. \hfill \Box

Remark 4.2. The above result suggests that an alternative way of measuring the so-paving size over a MASA in a von Neumann algebra $A \subset M$ admitting a normal conditional expectation, is by considering the quantity

$$\varepsilon(A \subset M; n) \overset{\text{def}}{=} \sup_{x \in (M_2^n \ominus A^*)_1} \left(\inf\{\|\sum_{i=1}^n p_i x p_i\| \mid p_i \in \mathcal{P}(A^\omega), \Sigma_i p_i = 1\}\right).$$

With this notation, the above theorem shows that for a singular MASA in a II$_1$ factor $A \subset M$, one has $\varepsilon(A \subset M; n) \leq 2\sqrt{n-1}/n$, $\forall n \geq 2$, a formulation that’s slightly more precise than the estimate $n_v(A \subset M; \varepsilon) = n(A^\omega \subset M^\omega; \varepsilon) < 4\varepsilon^{-2} + 1$. Also, the conjecture (2.8.2° in [PV14]) about the so-paving size can this way be made more precise, by asking whether $\varepsilon(A \subset M; n) \leq 2\sqrt{n-1}/n$, $\forall n$, for any MASA with a normal conditional expectation $A \subset M$. It seems particularly interesting to study this question in the classical Kadison-Singer case of the diagonal MASA $D \subset B = B(\ell^2(N))$, and more generally for Cartan MASAs $A \subset M$. So far, the solution to the Kadison-Singer paving problem in [MS13] shows that $\varepsilon(D \subset B; n) \leq 12n^{-1/4}$.

Also, while by [CEKP07] one has $n(D \subset B; \varepsilon) \geq \varepsilon^{-2}$ and by [PV14] one has $n_v(A \subset M; \varepsilon) \geq \varepsilon^{-2}$, for any MASA in a II$_1$ factor $A \subset M$, it would be interesting to decide whether $\varepsilon(D \subset B; n)$ and $\varepsilon(A \subset M; n)$ are in fact bounded from below by $2\sqrt{n-1}/n$, $\forall n$.

For a singular MASA in a II$_1$ factor, $A \subset M$, combining 4.1 with such a lower bound would show that $\varepsilon(A \subset M; n) = 2\sqrt{n-1}/n$, $\forall n$. While we could not prove this general fact, let us note here that for certain singular MASAs this equality holds indeed.

Proposition 4.3. 1° Let M be a II$_1$ factor and $A \subset M$ a MASA. Assume $v \in M$ is a unitary element with $\tau(v) = 0$ such that A is freely independent of the set $\{v, v^*\}$ (i.e., any alternating word in $A \oplus \mathbb{C}1$ and $\{v, v^*\}$ has trace 0). Then for any partition of 1 with projections $p_1, \ldots, p_n \in A^\omega$, we have $\|\sum_{i=1}^n p_i \tau(v) p_i\| \geq 2\sqrt{n-1}/n$, with equality iff all p_i have trace 1/n. Also, $\varepsilon(A \subset M; n) \geq 2\sqrt{n-1}/n$, $\forall n$.

2° If $M = L(\mathbb{Z} \ast (\mathbb{Z}/2\mathbb{Z}))$, $A = L(\mathbb{Z})$ and $v = v^*$ denotes the canonical generator of $L(\mathbb{Z}/2\mathbb{Z})$, then $\varepsilon(A \subset M; v, n) = \varepsilon(A \subset M; n) = 2\sqrt{n-1}$, $\forall n$.

Proof. The free independence assumption in 1° implies that $A^\omega \ominus \mathbb{C} \{v, v^*\}$ are freely independent sets as well. This in turn implies that for each i, the projections p_i and $\tau(v) p_i v^*$ are freely independent, and so by Proposition 2.2 one has $\|p_i \tau(v) p_i\| = \|p_i \tau(v) p_i v^*\| = 2\sqrt{(\tau(p_i))(1 - \tau(p_i))}$.

8
Thus, if one of the projections p_i has trace $\tau(p_i) > 1/n$, then $\|\Sigma_j p_j v p_j\| \geq \|p_i v p_i\| > 2\sqrt{n-1}/n$, while if $\tau(p_i) = 1/n$, $\forall i$, then $\|\Sigma_j p_j v p_j\| = 2\sqrt{n-1}/n$.

By applying 1° to part 2°, then using [L1] and the fact that $A = L(\mathbb{Z})$ is singular in $M = L(\mathbb{Z} \ast \mathbb{Z})$ (cf. [P81]), proves the last part of the statement.

References

[AO74] C.A. Akemann and P.A. Ostrand, Computing norms in group C*-algebras. Amer. J. Math. 98 (1976), 1015-1047.

[ABH87] J. Anderson, B. Blackadar and U. Haagerup, Minimal projections in the reduced group C*-algebra of $\mathbb{Z}_n \ast \mathbb{Z}_m$, J. Operator Theory 26 (1991), 3-23.

[B74] M. Bozejko, On $\Lambda(p)$ sets with minimal constant in discrete noncommutative groups. Proc. Amer. Math. Soc. 51 (1975), 407-412.

[CEKP07] P. Casazza, D. Edidin, D. Kalra and V.I. Paulsen, Projections and the Kadison-Singer problem. Oper. Matrices 1 (2007), 391-408.

[D54] J. Dixmier, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of Math. 59 (1954), 279-286.

[KS59] R.V. Kadison and I.M. Singer, Extensions of pure states, Amer. J. Math. 81 (1959), 383-400.

[K58] H. Kesten, Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 (1959), 336-354.

[Le96] F. Lehner, A characterization of the Leinert property. Proc. Amer. Math. Soc. 125 (1997), 3423-3431.

[L73] M. Leinert, Faltungsoptoparen auf gewissen diskreten Gruppen. Studia Math. 52 (1974), 149-158.

[MSS13] A.W. Marcus, D.A. Spielman and N. Srivastava, Interlacing families II: mixed characteristic polynomials and the Kadison-Singer problem. Ann. of Math. 182 (2015), 327-350.

[Pi92] G. Pisier, Multipliers and lacunary sets in non-amenable groups, American J. Math. 117 (1995), 337-376.

[P81] S. Popa, Orthogonal pairs of *-subalgebras in finite von Neumann algebras, J. Operator Theory, 9 (1983), 253-268.

[P13] S. Popa, A II_1 factor approach to the Kadison-Singer problem. Comm. Math. Phys. 332 (2014), 379-414.

[PV14] S. Popa and S. Vaes, Paving over arbitrary MASAs in von Neumann algebra, to appear in Analysis and PDE. arXiv:1412.0631

[Po75] R. Powers: Simplicity of the C*-algebra associated with the free group on two generators, Duke Mathematical Journal 42 (1975), 151-156.

[Vo86] D. Voiculescu, Multiplication of certain noncommuting random variables. J. Operator Theory 18 (1987), 223-235.