Effects of cytokines on carbon tetrachloride-induced hepatic fibrogenesis in rats

Li-Juan Zhang, Jie-Ping Yu, Dan Li, Yue-Hong Huang, Zhi-Xin Chen, Xiao-Zhong Wang

INTRODUCTION
Hepatic fibrosis is a common process of chronic liver injuries, characterized by increased deposition and altered composition of extracellular matrix (ECM)[1-3]. Its final stage is cirrhosis, with the liver architecture distorted by collagen bands and formation of islands of regenerating parenchymal cells[4,5]. Advanced fibrosis and cirrhosis are generally considered irreversible conditions. Many of the cellular mechanisms have been associated to hepatic fibrosis. Cytokines are soluble autocrine and paracrine mediators[6]. Expression of several cytokines has been described in human liver diseases and experimental liver injuries. Carbon tetrachloride (CCl₄) is a hepatotoxin, causing liver necrosis, fibrosis and cirrhosis when administered sequentially. Hepatotoxicity is thought to involve two phases[7]. First, CCl₄ is metabolized by cytochrome P450 in hepatocytes, giving rise to highly reactive trichloromethyl radicals. Second, inflammatory responses caused by CCl₄ play an important role. In the latter process, some hepatic cells, including Kupffer cells (KCs), hepatic stellate cells (HSCs) and sinusoidal endothelial cells (SECs), are activated to secrete cytokines which mediate the liver fibrogenesis. Several functions have been attributed to cytokines, including activation of HSCs, modulating expression and deposition of matrix proteins and regulating the regeneration of hepatocytes. Therefore, resolution of liver fibrosis could be associated with the downregulation of inflammatory responses mediated by cytokines[8,9]. Among the cytokines, transforming growth factor (TGF) β₁ is associated to the activation of HSC and the following production of ECM[10]. Tumor-necrosis factor (TNF) α and interleukin (IL)-6 are considered major hepatotoxicity mediators in several experimental models of liver injury[11,12]. IL-10 can modulate the inflammatory response and alleviate hepatotoxicity[12]. In the present study, levels of circulating TGFβ₁, TNF-α, IL-6 and IL-10 were measured to investigate their possible roles during CCl₄-induced hepatic fibrogenesis in rats.

MATERIALS AND METHODS

Animals
One hundred SD rats, weighing 140 to 180 g, were divided randomly into control (n=24), fibrogenesis (n=40) and fibrosis-intervention groups (n=36). All rats were bred under routine conditions (room temperature, 22 °C±2 °C; humidity, 55%±5%; light, 12 hrs per day; drinking tap water and eating in any time; animal feed was provided by BK Company in Shanghai, China). The control rats were injected intraperitoneally with saline at a dose of 2 ml·kg⁻¹, twice a week. The rats in the other groups received intraperitoneal injection of 50% CCl₄ (2 ml·kg⁻¹), twice a week, as described previously[13]. From the third week, the rats in intervention group were given intraperitoneally IL-10 (4 µg·kg⁻¹, dissolved in saline) 20 minutes before CCl₄ administration, as proposed by Nelson et al[14]. All injections were performed at Monday and Thursday, with their body weights determined before each injection. In the fifth week, 3 rats in the fibrogenesis group and 2 in the intervention group died. In the seventh week, 8 and 4 animals...
in these two groups died. In the ninth week, 10 and 6 died. At this time point, 3 rats in the control group also died. In the fifth, seventh and ninth weeks, 7 to 10 rats in each group were sacrificed to collect plasma from the common carotid artery and their liver samples.

**Histological examination**
The formalin-fixed liver tissues were embedded in paraffin. Sections were stained with hematoxylin and eosin (HE) and examined under a light microscope independently by two pathologists. Stages of fibrosis were assessed using a semi-quantitative score method as described previously. Histological activity index (HAI) was evaluated using a numerical system proposed by Knodell et al[15].

**Enzyme-linked immunosorbent assay (ELISA)**
Serum was collected by centrifugation at 4 °C and frozen till use. The levels of TGF-β1, TNF-α, IL-6 and IL-10 were measured by ELISA using the kits following the manufacturer's instructions (Endogen Company, USA). Briefly, diluted serum samples were added in duplicate to 96-well plates coated with antibody and incubated at 37 °C for 2 hours. After each well was washed five times with washing buffer, peroxidase-labeled secondary antibody was added to each well and the plate was incubated at 37 °C for 1 hour. After each well was washed in a similar manner, the plate was incubated with tetramethylbenzine at room temperature for 20 minutes. The reaction was stopped by adding 1 N sulfuric acid. Optical density was measured at 450 nm using a spectrophotometric reader. Sample concentration was accessed by a standard curve.

**Statistical analysis**
All data were expressed as $\bar{x} \pm s$, $t$ test was used for comparison between groups. $P$ values less than 0.05 were regarded as statistically significance.

**RESULTS**

**Animal model**
Liver fibrosis, as shown histologically, became remarkable during the treatment with CCl4. In the fifth week, steatosis and ballooning degeneration were obvious. In the seventh week, the collagen fibers increased and began to extend to the parenchyma. In the ninth week, complete fibrous septa were seen and pseudolobular structures were also present occasionally. In the IL-10-intervention group, the CCl4-caused alterations as described above seemed to be markedly alleviated, with no evident changes observed in the fifth week, less profound steatosis and necrosis noted in the seventh week, and only early-stage fibrosis found in the ninth week. HAI decreased from 7.9±1.2 in the fibrogenesis group to 4.7±0.9 in the IL-10-intervention group ($P<0.05$) (Figures 1-5).

As shown in Figure 6, the level of circulating IL-10 was lower in fibrogenesis group than in the control group ($P<0.05$). The levels of TGF-β1, TNF-α and IL-6 in were higher in
fibrogenesis group than in the control group \( (P<0.05) \). However, values of these three cytokines were significantly reduced after the intervention treatment with IL-10 \( (P<0.05) \), being similar to the levels in the control group \( (P>0.05) \). Therefore, serum concentrations of TGF-\( \beta_1 \), IL-6 and TNF-\( \alpha \) were increased during CCl\(_4\)-caused hepatic fibrogenesis.

**Table 1** Concentrations of TGF-\( \beta_1 \), TNF-\( \alpha \), IL-6 and IL-10 in sera from different groups (ng·L\(^{-1}\))

| Groups      | Numbers of rats | TGF-\( \beta_1 \) | TNF-\( \alpha \) | IL-6       | IL-10       |
|-------------|-----------------|-------------------|-----------------|------------|------------|
| Control (N) | 21              | 25.49±5.56        | 15.18±3.83      | 63.64±13.03| 132.90±12.13\* |
| Fibrogenesis (C) | 30              | 31.13±6.41        | 18.91±5.31      | 89.08±25.39| 57.63±18.88 |
| IL-10-     | 30              | 26.11±5.32        | 13.99±1.86      | 74.71±21.15| 88.19±20.81 |
| Intervention (E) |               |                   |                 |            |            |

\* \( p<0.05 \) vs. C, \( p<0.05 \) vs. E, \( p>0.05 \) vs. C.

**Figure 6** Levels of TGF-\( \beta_1 \), TNF-\( \alpha \), IL-6 and IL-10 in serum from control, fibrogenesis and IL-10-intervention groups.

As shown in Figures 7-10, concentrations of TGF-\( \beta_1 \), TNF-\( \alpha \) and IL-6 were gradually increased along with CCl\(_4\)-intoxification \( (P<0.05) \). These changes were partially reversed by the treatment with IL-10, particularly in the ninth week \( (P<0.05) \).

**Figure 7** Levels of TGF-\( \beta_1 \) in serum from control (-\( \bullet \)), fibrogenesis (-\( \square \)) and IL-10-intervention groups (-\( \triangle \)).

**Figure 8** Levels of TNF-\( \alpha \) in serum from control (-\( \bullet \)), fibrogenesis (-\( \square \)) and IL-10-intervention groups (-\( \triangle \)).

**Figure 9** Levels of IL-6 in serum from control (-\( \bullet \)), fibrogenesis (-\( \square \)) and IL-10-intervention groups (-\( \triangle \)).

**Figure 10** Levels of IL-10 in serum from control (-\( \bullet \)), fibrogenesis (-\( \square \)) and IL-10-intervention groups (-\( \triangle \)).

**DISCUSSION**

Previous data have shown that rats chronically exposed to CCl\(_4\) were resistant to cirrhosis. In rats, exposed to CCl\(_4\) for 8 to 12 weeks could result in localized fibrosis\([16]\). In the present study, fully developed hepatic fibrosis was observed in the rats after 9 weeks of CCl\(_4\) intoxication. The contents of cytokines in serum were found to vary during the process. Cytokines constitute a complex network involved in the regulation of inflammatory responses and homeostasis of organ functions. Following liver injury, a wound healing process evolves, including proliferation of surrounding hepatocytes, proliferation and differentiation of stem cells, and conversion of parasinusoidal cells into activated HSCs capable of driving the accumulation of ECM. If the injuries were persistent or the wound healing process was aberrant, the final phenotype might be a fibrotic, dysfunctional liver\([17]\). A number of cytokines and growth factors could augment or inhibit the fibrotic response to injuries\([18]\). Accumulating data indicate that HSCs are the major source of fibrillar and non-fibrillar matrix proteins during hepatic fibrogenesis. When activated, HSCs could proliferate and transform to a myofibroblast-like phenotype, expressing \( \alpha \)-smooth muscle actin (\( \alpha \)-SMA) and collagen types I, III and IV, fibronectin and proteoglycan\([19]\). It has been found several cytokines play roles by acting on HSC, and among them, TGF-\( \beta_1 \) is one of the most important cytokines involved in the fibrotic and cirrhotic transformation of the liver\([20-23]\). After a fibrogenic injury, expression of three forms of TGF-\( \beta \) is greatly upregulated in HSCs. It was reported that administration of TGF-\( \beta \), *in vitro* induced an inflammatory reaction, and knock-out of TGF-\( \beta_1 \) gene resulted in widespread inflammatory diseases. Therefore, TGF-\( \beta_1 \) may have a pro-inflammatory effect.

TNF-\( \alpha \) was originally identified as a circulating factor that resulted in remarkable hemorrhage and necrosis of tumors when administered to tumor-bearing mice. It has been implicated in a number of liver diseases and is an important mediator of...
many physiological conditions. Several evidences suggest that TNF-α is among the most crucial components in the early signaling pathways leading to regeneration. However, there has been evidence that TNF-α is a primary endogenous factor mediating acute inflammatory conditions such as endotoxic shock. It appears that inhibition of the TNF-α effect might have a broader clinical application value than expected previously[20]. In several animal models of immune-mediated liver injury or hepatotoxin sensitization, TNF-α administration could lead to hepatocyte apoptosis and liver failure[27]. Besides its modulation effect on ECM production, TNF-α has been considered a mediator of cell injuries in liver caused by alcoholism, reperfusion, primary graft nonfunctional, graft rejection and endotoxic insult[22,29]. TNF-α is expressed by both infiltrating inflammatory cells and hepatocytes in chronic liver injuries, and it has been proposed to play an important role during tissue damage[30]. Our data provide a further evidence for the role during hepatic fibrosis.

The role of IL-6 during chronic liver injuries and fibrogenesis remains to be clarified. Some reports provided evidences for an important role of IL-6 in reducing CCl₄-induced acute and chronic liver injury and fibrosis[31-33]. However, some other data showed that the serum level of IL-6 was associated with hepatic necroinflammatory activity in patients with chronic hepatitis and cirrhosis[34,35]. Our results support the latter view. Animal experiments showed that IL-6 was associated to activated HSCs during acute and chronic injuries, indicating that IL-6 is a responsive element to liver injuries. Moreover, CCl₄-induced expression of TGF-β₁ and hepatocyte growth factor in liver was shown to be associated with the serum level of IL-6. Thus, IL-6 might be vitally involved in fibrotic changes, partly by modulating inihtrahepatic expression of other cytokines[36-37].

Recent studies have suggested a protective role of IL-10 during liver transplantation and experimental liver injuries induced by galactosamine and lipopolysaccharide[38]. However, the mechanism of the protective effects is not fully understood. IL-10 is a potent anti-inflammatory cytokine that inhibits the synthesis of pro-inflammatory cytokines by T helper type 1 cells. It is produced locally in the liver and acts in an autocrine or a paracrine manner. Previous reports indicated that IL-10 had some role in remodeling ECM[39,40]. IL-10 was shown to downregulate the synthesis of collagen type I and to upregulate expression of metalloproteinase. It could also play an antifibrogenic role by downregulating the profibrogenic cytokines including TGF-β₁ and TGF-β₂[41,42]. Nelson et al treated 24 patients with chronic hepatitis C using IL-10, and found that IL-10 administration resulted in reduction of the serum ALT level, partial resolution of the hepatic inflammation and alleviation of the fibrosis[43,44]. IL-10 may be useful in the treatment of chronic liver diseases regarding the prevention of advanced fibrosis and cirrhosis[45].

REFERENCES

1. Friedman SL. Molecular mechanisms of hepatic fibrosis and principles of therapy. J Gastroenterol 1997; 32: 424-430
2. Du WD, Zhang YE, Zhai WR, Zhou XM. Dynamic changes of type I, III and IV collagen synthesis and distribution of collagen-producing cells in carbon tetrachloride-induced rat liver fibrosis. World J Gastroenterol 1999; 5: 397-403
3. Wang JY, Guo JS, Yang QG. Expression of exogenous rat collagen gene in vitro and in a rat model of liver fibrosis. World J Gastroenterol 2002; 8: 903-907
4. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis: Mechanisms and treatment strategies. N Engl J Med 1993; 328: 1828-1835
5. Abdel-Aziz G, Lebeau G, Rascian PY, Clement B, Rissel M, Deugnier Y, Campion JP, Guillouzo A. Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. A m J Pathol 1999; 137: 1333-1342
6. Nakamura T, Sakata R, Ueno T, Sato M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 2000; 32: 247-255
7. Shi J, Asai K, Ikawa Y, Wake K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. A m J Pathol 1998; 153: 515-525
8. Friedman SL. Cytokines and fibrogenesis. Semin Liver Dis 1999; 19: 129-140
9. Koziel JK. Cytokines in viral hepatitis. Semin Liver Dis 1999; 19: 157-169
10. Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology 2001; 34: 859-867
11. Kovalovich K, DeAngelis RA, Li W, Furtth EE, Cibigleto G, Taub R. Increased toxin-induced liver injury and fibrosis in interleukin-1β deficient mice. Hepatology 2000; 31: 140-factor β response of interstitial cells in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology 2000; 118: 655-660
12. Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, Kierman TW, Wollman J. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. Hepatology 1981; 1: 431-435
13. Tsukamoto H, Matsuoka M, French SW. Experimental models of hepatic fibrosis: a review. Semin Liver Dis 1990; 10: 56-65
14. Missale G, Ferrari C, Fiaccheri F. Cytokine mediators in acute inflammation and chronic course of viral hepatitis. Ann Ital Med Int 1995; 10: 14-18
15. Davis BH, Kresina TF. Hepatic fibrogenesis. Clin Lab Med 1996; 16: 363-375
16. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawlsey S, Hovell C, Arthur M. Mechanisms of spontaneous resolution of liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102: 538-549
17. Nakamura T, Sakata R, Ueno T, Sato M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 2000; 32: 247-255
18. Sweeney D, Devoux B, Lahe M, Mangassier-Stephan K, Gressner AM. Regulation of interleukin-10 mRNA by a hydrogen peroxide-C/EBP α-dependent mechanism in rat liver fibrosis. J Cell Physiol 1999; 182: 129-140
19. Garcia-Trevijano ER, Iraburu M, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor α induces the expression of α1(I) procollagen mRNA by a hydroxy-amine-C/EBP β-dependent mechanism in rat hepatic stellate cells. Hepatology 1999; 29: 960-970
20. Si XH, Yang L. Extraction and purification of TGFβ1 and its effect on the induction of apoptosis of hepatocytes. World J Gastroenterol 2001; 7: 527-531
21. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96: 447-455
22. Knittel T, Jannak T, Muller T, Fellmer P, Ramadori G. Transforming growth factor beta 1-regulated gene expression of Ito cells. Hepatology 1999; 24: 352-361
23. Llorent L, Richard-Petit F, Alcocer-Castillejos N, Ruiz-soto R, Mercado MA, Orozco H, Gamboa-Dominguez A, Alcocer-Varela J. Cytokine gene expression in cirrhotic and non-cirrhotic human liver. J Hepatol 1996; 24: 555-563
on nitric oxide production induced by inflammatory cytokines and endotoxin in cultured rat hepatocytes. World J Gastroenterol 2001; 7: 331-334

28 Roberts RA, James NH, Cosulich SC. The role of protein kinase B and mitogen-activated protein kinase in epidermal growth factor and tumor necrosis factor α-mediated rat hepatocyte survival and apoptosis. Hepatology 2000; 31: 420-427

29 Crespo J, Cayon A, Fernandez-Gil P, Hernandez-Guerra M, Mayorga M, Dominguez-Diez A, Fernandez-Escalante JC, Pons-Romero F. Gene expression of tumor necrosis factor α and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 2001; 34: 1158-1163

30 Hernandez-munoz I, de La Torre P, Sanchez-Alcazar JA, Garcia I, Santiago E, Munoz-Yague MT, Solis-Herruzo JA. Tumor necrosis factor α inhibits collagen α1(1) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology 1997; 113: 625-640

31 Selzner M, Camargo CA, Clavien PA. Ischemia impairs liver regeneration after major tissue loss in rodents: protective effects of interleukin 6. Hepatology 1999; 30: 469-475

32 Sakamoto T, Liu Z, Murase N, Ezure T, Yokomuro S, Poli V, Demetris AJ. Mitosis and apoptosis in the liver of interleukin-6-deficient mice after partial hepatectomy. Hepatology 1999; 29: 403-411

33 Peters M, Blinn G, Jostock T, Schirmacher P, Meyer zum Buschenfelde KH, Galle PR, Rose-John S. Combined interleukin-6 and soluble interleukin-6 receptor accelerates murine liver regeneration. Gastroenterol 2000; 119: 1663-1671

34 Wang JY, Wang XL, Lin P. Detection of serum TNF-α, IFN-γ, IL-6 and IL-8 in patients with hepatitis B. World J Gastroenterol 1999; 5: 38-40

35 Zhen Z, Zhou JY, Liu JX, Hong ZJ, Pei X. Relationship between IL-6 and SIL-6R and their pathogenicity in viral hepatitis. Shijie Huan ren Xiaohua Zazhi 2000; 8: 1343-1435

36 Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, Taub R. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 1996; 274: 1379-1383

37 Natsume M, Tsuji H, Harada A, Akiyama M, Yano T, Ishikura H, Nakanishi I, Matushima K, Kaneko S, Mukaid N. Attenuated liver fibrosis and depressed serum albumin levels in carbon tetrachloride-treated IL-6-deficient mice. J Leukoc Biol 1999; 66: 601-608

38 Louis H, Le Moine O, Peny MO, Gulbis B, Nisol F, Goldman M, Deviere J. Hepatoprotective role of interleukin 10 in galactosamine/lipopolysaccharide mouse liver injury. Gastroenterology 1997; 112: 935-942

39 Reitamo S, Remitz A, Tamai K, Uitto J. Interleukin-10 modulates type 1 collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J Clin Invest 1994; 94: 2489-2492

40 Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology 1998; 28: 1597-1606

41 Louis H, Van Laethem JL, Wu W, Quertinmont E, Degaer C, Van den Berg K, Damols A, Goldman M, Le Moine O, Geerts A, Deviere J. Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology 1998; 28: 1607-1615

42 Wang XZ, Zhang LJ, Li D, Huang YH, Chen ZX, Li B. Effects of transmitters and interleukin-10 on rat hepatic fibrosis induced by CCl4. World J Gastroenterol 2003; 9: 539-543

Edited by Su Q and Wang XL