High prevalence of nonalcoholic fatty liver in patients with idiopathic venous thromboembolism

Matteo Nicola Dario Di Minno, Antonella Tufano, Anna Rusolillo, Giovanni Di Minno, Giovanni Tarantino

Abstract

AIM: To assess the prevalence of nonalcoholic fatty liver disease (NAFLD) in patients with idiopathic venous thromboembolism (VTE).

METHODS: In a case-control study, after excluding subjects with well-consolidated risk factors for VTE, idiopathic VTE was documented in 138 consecutive patients who were referred to our department. Two hundred and seventy-six healthy sex/age/body-mass-index-matched subjects, without any clinical/instrumental evidence of VTE, served as controls. All underwent a clinical/laboratory/ultrasound assessment for the presence of metabolic syndrome and NAFLD.

RESULTS: NAFLD was detected in 112/138 cases (81%) and in 84/276 controls (30%) [risk ratio: 2.7, 95% confidence interval (CI): 2.2-3.2, P < 0.0001]. Metabolic syndrome and smoking habit were more prevalent in patients with idiopathic VTE. The high prevalence of NAFLD in VTE was also confirmed after adjustment for inherited thrombophilia. NAFLD was clearly predicted by VTE (odds ratio: 1.8, 95% CI: 1.2-2.7, P < 0.0001).

CONCLUSION: NAFLD was independently associated with idiopathic VTE.

Key words: Thromboembolism; Metabolic syndrome; Nonalcoholic fatty liver disease

Peer reviewer: Astrid van der Velde, PhD, Team Wetenschap, Netherlands Heart Foundation, PO Box 300, 2501 CH, The Hague, The Netherlands

Di Minno MND, Tufano A, Rusolillo A, Di Minno G, Tarantino G. High prevalence of nonalcoholic fatty liver in patients with idiopathic venous thromboembolism. World J Gastroenterol 2010; 16(48): 6119-6122 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i48/6119.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i48.6119

INTRODUCTION

Venous thromboembolism (VTE) has an annual incidence of 1-2 events/1000 people in the general population, and is considered to be an emerging health problem[1,2]. Arterial and venous thromboses have been historically considered as distinct entities due to thrombus composition and different response to antplatelet or anticoagulant drugs[3]. Metabolic syndrome (MS), which affects > 20% of the whole population[4,5], increases cardiovascular risk[6]. Indeed, antiphospholipid syndrome and hyperhomocysteinemia predispose to venous and
cardiovascular events[13-15]. Ageno et al[16] have reported an association between idiopathic VTE and MS, which has been confirmed by Ay et al[17]. Arterial hypertension is a cardiovascular risk factor for VTE[18,19]. In addition, type 2 diabetes is associated with several coagulation and fibrinolysis alterations that lead to a procoagulant, thrombogenic predisposition, and is likely to have a significant impact on VTE occurrence. Abdominal obesity is currently accepted as an independent risk factor for VTE[20].

Nonalcoholic fatty liver disease (NAFLD) has been strictly associated with MS[21]. Insulin resistance is reckoned to be the major mechanism. NAFLD refers to a wide spectrum of liver damage, which ranges from simple steatosis to nonalcoholic steatohepatitis, advanced fibrosis and cirrhosis.

In a series of patients with idiopathic VTE, we tried to assess the prevalence of NAFLD, further expression of MS, comparing the data with those achieved in control subjects.

MATERIALS AND METHODS

Inclusion criteria
One hundred and thirty-eight patients with recent (< 6 mo) objective diagnosis of idiopathic VTE were enrolled in the study. One hundred and twenty patients had deep vein thrombosis (DVT), of which, 21 were associated with superficial vein thrombosis, nine were suffering from isolated pulmonary embolism (PE), and 16 with PE plus DVT. DVT was confirmed by Doppler ultrasonography (DUS). PE was documented by computed tomography.

VTE was defined as idiopathic in the absence of pregnancy or puerperium, known active malignancies, recent (< 3 mo) surgery or trauma, fracture, immobilization, lack of prophylaxis, acute medical disease, use of oral contraceptives, long-distance travel, a history of VTE or repeated birth loss. In contrast, when at least one of the previous risk factors was present, VTE was defined as secondary and the patients were excluded from the study.

As many as 276 healthy sex/age/body mass index (BMI)-matched subjects served as controls. In all of them, exclusion of DVT was based on clinical examination, use of D-dimer testing, and clinical pretest probability and, in some uncertain cases, by two DUS examinations within 1 wk of each other.

Exclusion criteria
Cases and controls who presented with unstable medical conditions were excluded. Other exclusion criteria were a history of infectious chronic diseases including hepatitis B and C, autoimmune and storage diseases, drug-induced hepatic steatosis, and prior use of medication known to affect inflammation, glucose metabolism or blood lipids. Alcohol abuse was ruled out, according to the DSM-IV diagnostic criteria, by means of screening tests such as MAST (Michigan Alcohol Screening Test) and CAGE (Cut down, Annoyed, Guilty, and Eye opener), as well as random tests for blood alcohol concentration and the use of a surrogate marker, e.g. mean corpuscular volume. Patients on antihypertensive therapy maintained a balanced medical regimen throughout the study.

Clinical, laboratory and imaging data
Sex, age, BMI, waist circumference, history of symptomatic atherosclerosis (i.e. ischemic stroke, transient ischemic attack, acute myocardial infarction, angina, intermittent claudication), arterial hypertension or use of antihypertensive drugs, diabetes mellitus or use of antidiabetic drugs, hyperlipidemia or use of statins or clofibrate, smoking habit (daily consumption of ≥ 1 cigarette), current use of heparin, oral anticoagulant or antiplatelet drugs were recorded. Subsequently, all patients underwent liver ultrasound (US), measurement of blood pressure, fasting glucose, transaminases and γ-glutamyl transferase activity, high-density lipoprotein (HDL) cholesterol and triglyceride levels. MS was diagnosed by the presence of at least three criteria (National Cholesterol Education Adult Treatment Panel III) on the basis of abdominal obesity (waist circumference > 102 cm for men and > 88 cm for women), triglycerides ≥ 150 mg/dL, HDL-cholesterol < 40 mg/dL for men and < 50 mg/dL for women, blood pressure ≥ 130 mmHg and/or ≥ 85 mmHg, and fasting glucose ≥ 100 mg/dL. Obesity was recognized as a BMI ≥ 30.

The classification of “bright liver” or hepatic steatosis grade was based on the following scale of hyperechogenicity at US: 0 = absent, 1 = light, 2 = moderate, 3 = severe, pointing out the difference between the densities of the liver and the right kidney[22]. Diagnostic criteria for DVT were observation of an intraluminal venous thrombus, loss of compressibility, and lack of flow at DUS.

Statistical analysis
We observed how many times the event of interest, i.e. NAFLD occurred in the experimental group or cases (VTE) and in controls. Statistical confidence was increased by taking two controls per case. The RR and 95% CI was the ratio of the proportions of cases with a positive outcome in the two groups. Patients’ clinical characteristics were compared using Student’s t test (continuous variables) and the χ² test (dichotomous variables). A logistic regression (stepwise model) was adopted, in which NAFLD was the dependent variable and sex, anthropometric parameters (BMI, waist circumference), metabolic features (serum HDL-cholesterol, triglycerides and glucose), systolic blood pressure, diastolic blood pressure, smoking habit and finally VTE were employed as independent variables. MS as entity was not considered in prediction, to avoid multicollinearity. The same tool (enter method) was carried out to predict VTE presence the by US grade of steatosis. Statistical analysis was performed with MedCalc®. 11.2.

RESULTS
The mean age in the cases and controls was 41.8 ± 13.0 and 43.4 ± 15.7 years, and the mean BMI in the two groups was 30.4 ± 4.1 and 29.6 ± 3.9 (P = 0.79 and P
is an early clinical event in a generalized vascular disease by-passes the restrictive criteria of MS.

A further expression of MS as a whole is thought to be the main factor that determines VTE in patients with cancer[26], plays a key role in NAFLD[27]. Recent evidence has substantiated that NAFLD is associated with elevated circulating levels of ICAM-1, which throws further light on inflammation-related liver damage[28]. Another intriguing link is represented by smoking, which is a plain risk factor for the development of VTE. Indeed, this relationship could be justified by the presence of NAFLD. In fact, Yuan et al[29] have provided novel evidence to demonstrate that tobacco smoke exposure can accelerate the development of experimental NAFLD.

The limitations of the present study are as follows. Our control group comprised individuals who were referred for signs or symptoms initially suggestive of VTE, and it may not adequately represent a general healthy population. However, the prevalence of MS in our control group was comparable to that reported in the general Italian population[5], which suggests that, with a differently selected control group, our findings could have been comparable to those reported in the previous study. Although patients with cancer were excluded from our study, some VTE patients might have had occult cancer at the time of investigation. The impact of occult cancer on the components of MS is unknown; however, its impact on the results of our analysis was likely to have been low.

In trying to establish the complex interaction between VTE and NAFLD, we stress that they share common mechanisms. First of all, we should pinpoint the role of PAI-1. In fact, abdominal fat, liver steatosis and serum triglycerides levels have been shown to be significant and independent determinants of PAI-1 plasma level in an unselected sample of male adults upon adjustment for age and therapy[25]. Additionally, the pro-angiogenic factor, vascular endothelial growth factor, which is generally thought to be the main factor that determines VTE in patients with cancer[29], plays a key role in NAFLD[26].

In conclusion, an eventual association between VTE and NAFLD is strongly supported. The need for further studies to evaluate the risk of subsequent cardiovascular events in VTE patients without MS, but with NAFLD, is indicated.

DISCUSSION

Our main finding was a significantly higher prevalence of NAFLD in idiopathic VTE patients than in controls, which was confirmed after adjusting for inherited thrombophilia. Although these results were partially unexpected, they were highlighted for the first time in the present study. What is more, this report extends previous findings[22] which were highlighted for the first time in the present study. In a recent report[24], rather than considering “all-or-nothing” definitions for MS, the additive effect of having more than one of the MS features has been considered. This is a controversial point. However, what if physicians use an indirect parameter of MS presence, e.g. NAFLD? The present study supports a significant correlation between every single component of MS and VTE, even though the strictest association was demonstrated between NAFLD, a further expression of MS as a whole[25], and VTE, which by-passes the restrictive criteria of MS.

These data lend credence to the possibility that VTE is an early clinical event in a generalized vascular disease that involves venous and arterial circulation. Our results support the need for further studies to evaluate the risk of subsequent cardiovascular events in VTE patients without MS, but with NAFLD.

In trying to establish the complex interaction between VTE and NAFLD, we stress that they share common mechanisms. First of all, we should pinpoint the role of PAI-1. In fact, abdominal fat, liver steatosis and serum triglycerides levels have been shown to be significant and independent determinants of PAI-1 plasma level in an unselected sample of male adults upon adjustment for age and therapy[25]. Additionally, the pro-angiogenic factor, vascular endothelial growth factor, which is generally thought to be the main factor that determines VTE in patients with cancer[29], plays a key role in NAFLD[26].

Recent evidence has substantiated that NAFLD is associated with elevated circulating levels of ICAM-1, which throws further light on inflammation-related liver damage[28]. Another intriguing link is represented by smoking, which is a plain risk factor for the development of VTE. Indeed, this relationship could be justified by the presence of NAFLD. In fact, Yuan et al[29] have provided novel evidence to demonstrate that tobacco smoke exposure can accelerate the development of experimental NAFLD.

The limitations of the present study are as follows. Our control group comprised individuals who were referred for signs or symptoms initially suggestive of VTE, and it may not adequately represent a general healthy population. However, the prevalence of MS in our control group was comparable to that reported in the general Italian population[5], which suggests that, with a differently selected control group, our findings could have been comparable to those reported in the previous study. Although patients with cancer were excluded from our study, some VTE patients might have had occult cancer at the time of investigation. The impact of occult cancer on the components of MS is unknown; however, its impact on the results of our analysis was likely to have been low. With regard to the definition of idiopathic VTE, we have defined it as VTE that occurs in patients without the most common known risk factors. Based on our definition, other risk factors might have been missed, but this is unlikely to have significantly influenced our results. Another potential point of criticism relates to the size of the study, which was not very large.

In conclusion, an eventual association between VTE and NAFLD should be always pursued.
NAFLD and venous thromboembolism

COMMENTS

Background
Venous thromboembolism (VTE) with an annual incidence of 1-2 events/1000 people in the general population is considered to be an emerging health problem.

Research frontiers
Metabolic syndrome affects > 20% of the whole population, and increases the cardiovascular risk by a blood hypercoagulability-related mechanism.

Innovations and breakthroughs
This is believed to be the first evidence to show a strict link between idiopathic VTE and nonalcoholic fatty liver disease (NAFLD). Smoking could increase the risk of VTE by worsening NAFLD.

Applications
Patients suffering from MS should be warned against their increased risk of VTE.

Peer review
In this paper, research on the prevalence of NAFLD in idiopathic VTE is presented, which is an interesting topic.

REFERENCES
1. Kearon C. Epidemiology of venous thromboembolism. Semin Vasc Med 2001; 1: 7-26
2. Rosendaal FR. Venous thrombosis: a multicausal disease. Lancet 1999; 353: 1167-1173
3. Tsai AW, Cushnir M, Rosamond WD, Heckbert SR, Polak JF, Folsom AR. Cardiovascular risk factors and venous thromboembolism incidence: the longitudinal investigation of thrombosis etiology. Arch Intern Med 2002; 162: 1182-1189
4. Park YW, Zhu S, Palaniappan L, Heshka S, Carnethon MR, Heymsfield SB. The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988-1994. Arch Intern Med 2003; 163: 427-436
5. Miccoli R, Bianchi C, Odoguardi L, Penno G, Caricato F, Giovannitti MG, Pucci L, Del Prato S. Prevalence of the metabolic syndrome among Italian adults according to ATP III definition. Nutr Metab Cardiovasc Dis 2005; 15: 250-254
6. Reusch JE. Current concepts in insulin resistance, type 2 diabetes mellitus, and the metabolic syndrome. Am J Cardiol 2002; 90: 19G-26G
7. Festa A, D’Agostino R Jr, Mykkänen L, Tracy RP, Zaccaro DJ, Hales CN, Haffner SM. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler Thromb Vasc Biol 1999; 19: 562-568
8. Juhan-Vague I, Alessi MC, Morange PE. Hypofibrinolysis and increased PAI-1 are linked to atherothrombosis via insulin resistance and obesity. Ann Med 2000; 32 Suppl 1: 78-84
9. Juhan-Vague I, Morange P, Christine Alessi M. Fibrinolytic function and coronary risk. Curr Cardiol Rep 1999; 1: 119-124
10. Yudkin JS. Abnormalities of coagulation and fibrinolysis in insulin resistance. Evidence for a common antecedent? Diabetes Care 1999; 22 Suppl 3: C25-C30
11. Agewall S, Bokemark L, Wikstrand J, Lindahl A, Fagerberg B. Insulin sensitivity and hemostatic factors in clinically healthy 58-year-old men. Thromb Haemost 2000; 84: 571-575
12. Alessi MC, Juhan-Vague I. Metabolic syndrome, haemostasis and thrombosis. Thromb Haemost 2008; 99: 995-1000
13. Levine JS, Branch DW, Rauch J. The antiphospholipid syndrome. N Engl J Med 2002; 346: 752-763
14. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002; 288: 2015-2022
15. Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost 2005; 3: 292-299
16. Ageno W, Prandoni P, Romualdi E, Ghirarduzzi A, Delti F, Pesavento R, Crowther M, Venco A. The metabolic syndrome and the risk of venous thrombosis: a case-control study. J Thromb Haemost 2006; 4: 1914-1918
17. Ay C, Tengler T, Vormittag R, Simanek R, Dorda W, Vukovich T, Fabinger I. Venous thromboembolism—a manifestation of the metabolic syndrome. Haematologica 2007; 92: 374-380
18. Goldhaber SZ, Grodstein F, Stumper MJ, Manson JE, Colditz GA, Speizer FE, Willett WC, Hennekens CH. A prospective study of risk factors for pulmonary embolism in women. JAMA 1997; 277: 642-645
19. Linnemann B, Zgouras D, Schindewolf M, Schwenborg J, Jarosch-Preusche M, Lindhoff-Last E. Impact of sex and traditional cardiovascular risk factors on the risk of recurrent venous thromboembolism: results from the German MAIST-HRO Registry. Blood Coagul Fibrinolysis 2008; 19: 159-165
20. Petrauskiené V, Falk M, Waerbaum I, Norberg M, Eriksson JW. The risk of venous thromboembolism is markedly elevated in patients with diabetes. Diabetologia 2005; 48: 1017-1021
21. Hansson PO, Eriksson H, Welin L, Swärdssu K, Wihlbom L. Smoking and abdominal obesity: risk factors for venous thromboembolism among middle-aged men: “the study of men born in 1913”. Arch Intern Med 1999; 159: 1886-1890
22. Tarantino G, Saldalamacchia G, Conca P, Arena A. Non-alcoholic fatty liver disease: further expression of the metabolic syndrome. J Gastroenterol Hepatol 2007; 22: 293-303
23. Webb M, Yeshua H, Zelber-Sagi S, Santo E, Brazowski E, Halpern Z, Oren R. Diagnostic value of a computerized hepatorenal index for sonographic quantification of liver steatosis. AJR Am J Roentgenol 2009; 192: 909-914
24. Ray JG, Lonn E, Yi Q, Rathe A, Sheridan P, Kearon C, Yusuf S, Arnold MJ, McQueen MJ, Pogue J, Probstfield J, Fodor G, Held C, Micks M, Genest J Jr. Venous thromboembolism in association with features of the metabolic syndrome. QJM 2007; 100: 679-684
25. Barbato A, Iacone R, Tarantino G, Russo O, Sorrentino P, Avalone S, Galletti F, Farinaro E, Della Valle E, Strazzullo P. Relationships of PAI-1 levels to central obesity and liver steatosis in a sample of adult male population in southern Italy. Intern Emerg Med 2009; 4: 315-323
26. Dogan M, Demirkazik A. Venous thromboembolism in patients with cancer and its relationship to the coagulation cascade and vascular endothelial growth factor. Support Cancer Ther 2005; 3: 28-34
27. Tarantino G, Conca P, Pasanisi F, Acriolo M, Mastrolia M, Arena A, Tarantino M, Scopacasa F, Vecchione R. Could inflammatory markers help diagnose nonalcoholic steatohepatitis? Eur J Gastroenterol Hepatol 2009; 21: 504-511
28. Sookoian S, Castaño GO, Burgueño AL, Rosselli MS, Gianotti TF, Mallardi P, Martinos JS, Pirola CJ. Circulating levels and hepatic expression of molecular mediators of atherosclerosis in nonalcoholic fatty liver disease. Atherosclerosis 2010; 209: 585-591
29. Yuan H, Shyy JY, Martins-Green M. Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1. J Hepatol 2009; 51: 535-547

S- Editor Wang JL L- Editor Kerr C E- Editor Ma WH