A field-theoretic approach to non-equilibrium work identities

Kirone Mallick1, Moshe Moshe2 and Henri Orland1

1 Institut de Physique Théorique, Centre d’Études de Saclay, 91191 Gif-sur-Yvette Cedex, France
2 Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel

E-mail: kirone.mallick@cea.fr

Received 24 September 2010
Published 9 February 2011
Online at stacks.iop.org/JPhysA/44/095002

Abstract
We study non-equilibrium work relations for a space-dependent field with stochastic dynamics (model A). Jarzynski’s equality is obtained through symmetries of the dynamical action in the path-integral representation. We derive a set of exact identities that generalize the fluctuation–dissipation relations to non-stationary and far-from-equilibrium situations. These identities are prone to experimental verification. Furthermore, we show that a well-studied invariance of the Langevin equation under supersymmetry, which is known to be broken when the external potential is time dependent, can be partially restored by adding to the action a term which is precisely Jarzynski’s work. The work identities can then be retrieved as consequences of the associated Ward–Takahashi identities.

PACS numbers: 05.70.Ln, 05.20.-y, 05.40.-a, 11.30.Pb

1. Introduction

In the last decade, many exact relations for non-equilibrium processes have been derived. The Jarzynski equality is one of these remarkable results:

$$\langle e^{-\beta W} \rangle = e^{-\beta \Delta F}. \quad (1)$$

This relation implies that the statistical properties of the work performed on a system in contact with a heat reservoir at temperature $kT = \beta^{-1}$ during a non-equilibrium process are related to the free energy difference ΔF between two equilibrium states of that system. This identity was derived originally using a Hamiltonian formulation [1] and was extended to systems obeying a Langevin equation or a discrete Markov equation [2]. This result was generalized by Crooks [3, 4], who showed that identity (1) results from a remarkable relation between the probability $P_F(W)$ of performing the quantity of work W in a given (forward) process and the probability $P_R(-W)$ of performing $-W$ in the reversed process, namely

$$\frac{P_F(W)}{P_R(-W)} = e^{\beta(W-\Delta F)}. \quad (2)$$
Jarzynski and Crooks’ identities are now well-established results (a review of the state of the art can be found for example in [5]). These relations have been verified on exactly solvable models [6] and by explicit calculations in the kinetic theory of gases [7, 8]. These equalities have also been used in various single-molecule pulling experiments [9–11] to measure folding free energies (for a review of biophysical applications, see e.g. [12]), and have been checked against analytical predictions on mesoscopic mechanical devices such as a torsion pendulum [13]. Experimental verifications are delicate to carry out because the mathematical validity of Jarzynski’s theorem is insured by rare events that occur with a probability that typically decreases exponentially with the system size [14].

Another type of physical systems where large fluctuations are expected to occur is extended statistical models in the vicinity of a phase transition. Such systems are often modeled by a continuous spacetime description with a local coarse-grained order parameter, \(\phi(x) \), which minimizes a Ginzburg–Landau-type free energy. The equilibrium properties of these models have been thoroughly studied, in particular using renormalization group techniques [15–17]. Besides, in the vicinity of a critical point, the dynamic properties also display anomalous behavior. If one assumes that universality remains valid [16], it is natural to construct and investigate the simplest dynamical models, with a given static behavior, which respect some physical constraints such as symmetries and conservation laws. The coarse-grained order parameter of a microscopic system is then represented by a space- and time-dependent field \(\phi(x, t) \) that evolves according to an effective stochastic differential equation. Different possible types of evolution equations have been classified (see e.g. the review paper of Halperin and Hohenberg [18]).

In this work, we derive non-equilibrium work relations for a field \(\phi(x, t) \) that follows the simplest dynamics in Halperin and Hohenberg’s scheme: model A dynamics describes the kinetic Ising model with a non-conserved order parameter. We represent the stochastic evolution as a path integral weighted by a dynamical action [17]. Our method is closely related to the one used in [20, 21] to study the case of a Langevin equation for a zero-dimensional scalar coordinate that depends only on time. Adding a spatial dependence allows us to use the powerful response-field formalism that was developed in [19]. The work relations are then derived from the elementary invariance properties of the path-integral measure under changes of variables that affect simultaneously the original field \(\phi(x, t) \) and its conjugate response-field \(\tilde{\phi}(x, t) \). From the work relations, we derive correlator identities that generalize the equilibrium fluctuation–dissipation relations (FDRs) for situations that can be arbitrarily far from equilibrium.

One advantage of introducing space and time varying fields is to extend the possible symmetries of the system and to consider transformations that can mix space and time. In the present context, this can be achieved by introducing two conjugate auxiliary Grassmann fields, \(\epsilon(x, t) \) and \(\tilde{\epsilon}(x, t) \). The new dynamical action, which now depends on four fields \(\phi, \tilde{\phi}, e, \tilde{e} \), exhibits a larger invariance which is a manifestation of a hidden supersymmetric invariance [22, 23]. This property is true at thermodynamic equilibrium and it is known that the equilibrium fluctuation–dissipation theorem as well as the Onsager reciprocity relations can be derived from it [24–26] (see also [17]). In other words, supersymmetry is a fundamental invariance property of the full dynamical action that embodies the principle of microscopic reversibility. For a system out of equilibrium (for example, a system subject to a time-dependent external drive), supersymmetric invariance is broken. This leads to a violation of the fluctuation–dissipation theorem or, equivalently, to the occurrence of corrective terms in the formulation of this theorem: this fact was clearly recognized in [27, 28]. Here, we remark that weighing the expectation values by the Jarzynski term \(e^{-\beta W} \) amounts to modifying the dynamical action of the model and we show that the modified action exhibits an invariance...
under a specified supersymmetric transformation. This invariance manifests itself as correlator identities known as the Ward–Takahashi identities (a field-theoretic counterpart to Noether’s theorem). Finally, we prove that the non-equilibrium work relation can be deduced from the Ward–Takahashi identity that encodes the underlying supersymmetry. Therefore, the supersymmetric invariance of the stochastic evolution equation is a fundamental property that embodies equilibrium relations (Onsager reciprocity, fluctuation–dissipation theorem) as well as non-equilibrium work identities.

The outline of this work is as follows. In section 2, we define the model, use the response-field formalism to derive the work relations for a spacetime-dependent field, and obtain a FDR, valid far from equilibrium, which can be shown to be mathematically equivalent to the Jarzynski relation. In section 3, we use the formalism of Grassmann fields for the equilibrium case and define precisely the various supersymmetric transformations that leave the dynamical action invariant. We then show that supersymmetry, which is broken when the system is out of equilibrium, is restored by modifying suitably the action and we prove that Jarzynski’s equation can be viewed as a consequence of the Ward–Takahashi identity that encodes the restored invariance. Concluding remarks are given in section 4. Technical details are given in the appendices. In particular, the superfield formalism and the derivation of the Ward–Takahashi identities are recalled in appendices B and C.

2. Stochastic evolution of a scalar field

In this section, we derive the field-theoretic version of the non-equilibrium work relations for a system that obeys a time-dependent Ginzburg–Landau equation. The dynamics considered will be purely relaxational and we shall focus on the most elementary case with no conservation laws, described by model A dynamics. We shall express the probability distribution function (PDF) of the field at a given time as a path integral. The Jarzynski and Crooks’ relations will be obtained via this path-integral formalism.

2.1. Model A dynamics

We consider a scalar field \(\phi(x, t) \) that evolves in a \(d \)-dimensional space according to model A dynamics [18], given by the following stochastic equation of motion:

\[
\frac{\partial \phi}{\partial t}(x, t) = -\Gamma_0 \frac{\delta U[\phi(x, t), t]}{\delta \phi(x, t)} + \zeta(x, t),
\]

where the dynamics is governed by the time-dependent potential

\[
U[\phi(x, t), t] = \mathcal{F}_{GL}[\phi(x, t)] - \int d^d x h(x, t) \phi(x, t),
\]

\(h(x, t) \) being an external applied field. The time-independent part of the potential assumes the familiar Ginzburg–Landau form and is given by

\[
\mathcal{F}_{GL}[\phi] = \int d^d x \left\{ \frac{1}{2} r_0 \phi^2 + \frac{1}{2} |\nabla \phi|^2 + \frac{u_0}{4} \phi^4 \right\}.
\]

The fluctuating driving field \(\zeta(x, t) \) is assumed to be a Gaussian white noise of zero mean value and of correlations given by

\[
\langle \zeta(x, t) \zeta(x', t') \rangle = \frac{2 \Gamma_0}{\beta} \delta(t - t') \delta^d(x - x'),
\]
where $\beta = (kT)^{-1}$ is the inverse temperature. The fact that the auto-correlation of the noise satisfies Einstein’s FDR ensures that the dynamics is microscopically reversible and obeys detailed balance $[30]$. The Langevin equation (3) for model A thus reads

$$\frac{\partial \phi}{\partial t}(x, t) = -\Gamma_0 f(\phi(x, t), t) + \xi(x, t),$$ \hspace{1cm} (7)

where, for later convenience, we have defined

$$f(\phi(x, t), t) = \frac{\delta U[\phi(x, t), t]}{\delta \phi(x, t)} = -\nabla^2 \phi(x, t) + r_0 \phi(x, t) + u_0 \phi^3(x, t) - h(x, t).$$ \hspace{1cm} (8)

The dynamics of the order parameter can also be described in terms of the PDF $P(\phi_1|\phi_0)$ of observing the field $\phi(x, t) = \phi_1(x)$ at time $t = tf$, knowing that the initial field is $\phi_0(x)$ at time $t = 0$. By definition, this PDF is given by

$$P(\phi_1|\phi_0) = \langle \delta(\phi(x, tf) - \phi_1(x)) \rangle, \hspace{1cm} (9)$$

where the expectation value is taken over all possible realizations of the noise $\zeta(x, t)$ between the initial and the final times (the initial value of the field $\phi_0(x)$ being fixed). Substituting the Gaussian measure for the noise, this expression becomes

$$P(\phi_1|\phi_0) = \int D\zeta(x, t) e^{-\frac{1}{\Gamma_0} \int d^d x d\tau \zeta^2} \delta(\phi(x, tf) - \phi_1(x)) \ \text{with} \phi(x, 0) = \phi_0(x).$$ \hspace{1cm} (10)

This expression is nothing but a formal path-integral solution of the functional Fokker–Planck equation associated with the Langevin dynamics (3):

$$\frac{\partial P}{\partial t} = \Gamma_0 \int d^d x \frac{\delta}{\delta \phi} \left(f(\phi, t) P + \frac{1}{\beta} \frac{\delta P}{\delta \phi} \right).$$ \hspace{1cm} (11)

When the external field is constant in time $h(x, t) = h(x)$, this Fokker–Planck equation has a stationary solution, which is the equilibrium Gibbs–Boltzmann distribution:

$$P_{eq}[\phi] = \frac{e^{-\beta U[\phi]}}{Z[\beta, h]} \ \text{with} \ \ Z[\beta, h] = \int D\phi \ e^{-\beta U[\phi]}. \hspace{1cm} (12)$$

Finally, we recall that the equilibrium free energy $F[\beta, h]$ is defined by

$$F[\beta, h] = -\frac{1}{\beta} \log Z[\beta, h].$$ \hspace{1cm} (13)

2.2. Dynamic action for the probability distribution

The probability $P(\phi_1|\phi_0)$ of observing the field $\phi_1(x)$ at time tf starting from $\phi_0(x)$ at time $t = 0$ is given by equation (10). We now rewrite the path integral in terms of the variable $\phi(x, t)$ using the response-field formalism of Martin–Siggia–Rose, de Dominicis–Peliti and Janssen $[19]$. We start with the following identity (that can be found e.g. in $[17]$):

$$1 = \int D\phi_1(x) \int_{\phi(x, 0) = \phi_0(x)}^{\phi(x, tf) = \phi_1(x)} D\phi(x, t) \ \delta \left(\phi(x, t) + \Gamma_0 \frac{\delta U}{\delta \phi} - \xi(x, t) \right) \ | \det M|$$

$$= \int_{\phi(x, 0) = \phi_0(x)} D\phi(x, t) \ \delta \left(\phi(x, t) + \Gamma_0 \frac{\delta U}{\delta \phi} - \xi(x, t) \right) \ | \det M|. \hspace{1cm} (14)$$

Note that in the second equality, the configuration $\phi(x, t_f)$ of the field at time t_f appears as an integration variable (i.e. $0 < t < t_f$). The linear operator M is defined as

$$M = \frac{\delta \xi(x, t)}{\delta \phi(x, t)} = \frac{\partial}{\partial t} + \Gamma_0 \frac{\partial f(\phi(x, t), t)}{\partial \phi}.$$ \hspace{1cm} (15)
The determinant of this operator can be written as
\[
\det \mathbf{M} = \exp\{\text{Tr}(\log \mathbf{M})\} = e^{\int \frac{\delta U}{\delta \phi} \frac{\delta U}{\delta \phi}},
\]
where the last equation is found by discretizing the operator \(\mathbf{M} \) and using the Stratonovich convention [17, 30]. We substitute this expression into identity (14) and introduce the response field \(\bar{\phi}(x, t) \) that allows us to rewrite the functional Dirac distribution \(\delta() \) as an exponential. Thus, we obtain
\[
1 = \int_{\phi(x,0)=\phi_0(x)} \mathcal{D}\phi(x,t) \mathcal{D}\bar{\phi}(x,t) \det \mathbf{M} e^{-\int d^d x \, d\bar{\phi} \delta\phi \phi + \frac{\beta U}{2} \bar{\phi}^2} \quad \text{where} \quad 0 < t < t_f.
\]
(17)

We now insert this identity into equation (10), perform the Gaussian integral over the noise variable \(\xi(x, t) \) and substitute expression (16) for the Jacobian of \(\mathcal{M} \). Finally, the following expression for the PDF is obtained:
\[
\mathcal{P}(\phi_1|\phi_0) = \int_{\phi(x,0)=\phi_0(x)} \mathcal{D}\phi \mathcal{D}\bar{\phi} e^{-\int d^d x \, d\bar{\phi} \Sigma(\phi, \bar{\phi}, \phi)}.
\]
(18)

The PDF is thus expressed as a path integral over the order parameter \(\phi(x, t) \), with an effective dynamical action \(\Sigma \) given by
\[
\Sigma(\phi, \bar{\phi}, \phi) = \Gamma_0 \bar{\phi} \left(\frac{\phi}{\Gamma_0} + \frac{\delta U}{\delta \phi} - \frac{\bar{\phi}}{\beta} \right) - \Gamma_0 \frac{\delta^2 U}{2 \delta \phi^2}.
\]
(19)

The non-equilibrium identities will arise from the invariance properties of the path integral with action \(\Sigma \).

2.3. Non-equilibrium correlation identities

We consider the case where the applied field varies with time according to a well-defined protocol: for \(t \leq 0 \), we have \(h(x, 0) = h_0(x) \) and the system is in its stationary state; for \(t > 0 \), the external field varies with time and reaches its final value \(\bar{h}_f(x) \) after a finite time \(t_f \) and remains constant for \(t \geq t_f \). The values of the potential \(U \) for \(t \leq 0 \) and \(t \geq t_f \) are denoted by \(U_0 \) and \(U_f \), respectively.

Let \(\mathcal{O}[\phi] \) be a functional that depends on the values of the field \(\phi(x, t) \) for \(0 \leq t \leq t_f \). The average of \(\mathcal{O}[\phi] \) with respect to the stationary initial ensemble and the stochastic evolution between times 0 and \(t_f \) is given by the path integral
\[
\langle \mathcal{O} \rangle = \frac{1}{Z_0} \int \mathcal{D}\phi_0(x) e^{-\beta U_0[\phi_0]} \int_{\phi(x,0)=\phi_0(x)} \mathcal{D}\phi \mathcal{D}\bar{\phi} e^{-\int d^d x \, d\bar{\phi} \Sigma(\phi, \bar{\phi}, \phi)} \mathcal{O}[\phi]
\]
(20)

where we have defined
\[
\langle \phi_1 | \mathcal{O} | \phi_0 \rangle = \int_{\phi(x,0)=\phi_0(x)} \mathcal{D}\phi(x, t) \mathcal{D}\bar{\phi}(x, t) e^{-\int d^d x \, d\bar{\phi} \Sigma(\phi, \bar{\phi}, \phi)} \mathcal{O}[\phi],
\]
(21)

Under a change of the integration variable \(\bar{\phi} \) in equation (20),
\[
\bar{\phi}(x, t) \rightarrow -\bar{\phi}(x, t) + \beta \frac{\delta U[\phi(x, t), t]}{\delta \phi(x, t)},
\]
(22)

the path-integral measure is invariant but not the action \(\Sigma \) which varies as
\[
\Sigma(\phi, \bar{\phi}, \bar{\phi}) \rightarrow \Sigma(\phi, -\bar{\phi}, \bar{\phi}) + \beta \phi \frac{\delta U[\phi(x, t), t]}{\delta \phi(x, t)}.
\]
(23)
Noting that
\[
\dot{\phi} \frac{\delta U[\phi(x, t), t]}{\delta \phi(x, t)} = \frac{\delta U[\phi(x, t), t]}{\delta t} - \frac{\partial U[\phi(x, t), t]}{\partial t},
\]
we obtain
\[
\int dq^t \int_0^{t_f} dt \, \dot{\phi} \delta U[\phi(x, t), t] = U_1[\phi_1] - U_0[\phi_0] - \mathcal{W}_J[\phi].
\]
The last term in this equation represents Jarzynski’s work, defined by
\[
\mathcal{W}_J[\phi] = \int_0^{t_f} dt \frac{\partial U}{\partial t} = -\int dq^t dx \partial h(x, t) \phi(x, t),
\]
the last equality being a consequence of equation (4). The change of sign of the time derivative \(\dot{\phi}\) in equation (23) is now compensated by the change of variables in the path integral
\[
(\phi(x, t), \bar{\phi}(x, t)) \rightarrow (\phi(x, t_f - t), \bar{\phi}(x, t_f - t)).
\]
This time-reversal transformation leaves the functional measure invariant and restores \(\Sigma\) to its original form but with a time-reversed protocol for the external applied field \(h(x, t) \rightarrow h(x, t_f - t)\). Performing the above change of variables (22) and (27) in equation (21) and using equations (23) and (25), we find, recalling that the work \(\mathcal{W}_J\) is odd under time reversal,
\[
\langle \phi_1 | O | \phi_0 \rangle = e^{\beta (U_0[\phi_0] - U_1[\phi_1])} \langle \phi_1 | e^{-\beta \mathcal{W}_J} \hat{O} | \phi_0 \rangle_R.
\]
On the right-hand side, the subscript \(R\) on the expectation value denotes a time-reversed protocol. The notation with a hat \(\hat{}\) over an operator denotes the time-reversed operator, more precisely
\[
\hat{O}[\phi] = O[\phi(x, t_f - t)].
\]
Inserting this identity into equations (20) and (21) allows us to derive the following general relation:
\[
\langle O \rangle = \frac{1}{Z_0} \int D\phi_1(x) e^{-\beta U_0[\phi_0]} (\phi_0) e^{-\beta \mathcal{W}_J} \hat{O}[\phi_1] \big| R
\]
\[
\times \frac{Z_1}{Z_0} \langle \hat{O} e^{-\beta \mathcal{W}_J} \rangle_R = e^{-\beta \Delta F} \langle \hat{O} e^{-\beta \mathcal{W}_J} \rangle_R,
\]
where \(\Delta F\) is the free energy difference between the final and the initial states. Finally, redefining \(O\) as \(O e^{-\beta \mathcal{W}_J}\), we deduce that
\[
\langle O e^{-\beta \mathcal{W}_J} \rangle = e^{-\beta \Delta F} \langle \hat{O} \rangle_R.
\]
When \(O = 1\), we obtain Jarzynski’s theorem
\[
\langle e^{-\beta \mathcal{W}_J} \rangle = e^{-\beta \Delta F}.
\]
Taking \(O = e^{(\beta - \lambda)\mathcal{W}_J}\), where \(\lambda\) is an arbitrary real parameter, we derive the following symmetry property:
\[
\langle e^{\lambda \mathcal{W}_J} \rangle = e^{-\beta \Delta F} (e^{(\lambda - \beta)\mathcal{W}_J})_R.
\]
The Laplace transform of this equation leads to Crooks relation (2) in its usual form [3, 4]:
\[
\frac{P_F(W)}{P_R(-W)} = e^{\beta (W - \Delta F)},
\]
where \(P_F\) and \(P_R\) represent the PDFs of the work for the forward and the reverse processes, respectively. We emphasize that the proof of Crooks and Jarzynski identities is based on the invariance properties of the path integral and does not involve any \(a\ priori\) thermodynamic
definition of heat and work. Expression (26) for the Jarzynski work appears here as a natural outcome of this invariance. It is important to note that time reversal is crucial to obtain the general identity (31) and Crooks’ theorem. However, it is known that Jarzynski’s identity can be proved without assuming time-reversal invariance [9].

We emphasize that Jarzynski’s identity is valid only under carefully defined boundary conditions: (i) the system is at thermal equilibrium at time $t = 0$; (ii) during the finite time interval $0 \leq t \leq t_f$, the system is subject to an external protocol that drives it away from equilibrium; (iii) after the finite time t_f, all time-dependent parameters are frozen: these fixed parameters define a new state of thermodynamic equilibrium toward which the system relaxes after an infinite amount of time. According to this scheme, all path integrals must range over the finite interval of time $0 \leq t \leq t_f$ and the expectation value of the operator \mathcal{O}, defined in (20), has to be taken with respect to the Boltzmann distribution at $t = 0$ and the uniform distribution at the final time t_f. However, these stringent boundary conditions, necessary for Jarzynski’s identity to be valid, allow us to embed naturally all the path integrals over the infinite range of time $-\infty < t < +\infty$ by using the following properties of the probability distribution:

$$\frac{1}{Z_0} e^{-\beta U_0[\phi_0]} = \lim_{\tau \rightarrow -\infty} P(\phi_0|\phi_\tau), \quad (35)$$

$$1 = \int \mathcal{D}\phi(x,\tau) P(\phi_\tau|\phi_f) \quad \text{for any} \quad \tau > t_f. \quad (36)$$

The first property assumes ergodicity (i.e. the Gibbs–Boltzmann distribution is reached at time $t = 0$ by starting from any initial condition at $t = -\infty$). The second equality simply results from normalization. In terms of path integrals, the first expression becomes

$$\frac{1}{Z_0} e^{-\beta U_0[\phi_0]} = \int_{\phi(x,-\infty)=\phi_{-\infty}(x)} \mathcal{D}\phi(x,\tau) \mathcal{D}\bar{\phi}(x,\tau) e^{-\int d^3x dt \Sigma(\phi,\dot{\phi},\bar{\phi})} \quad \text{for} \quad -\infty < \tau < 0, \quad (37)$$

where the condition at $t = -\infty$ is taken to be an arbitrary value $\phi_{-\infty}$ (or more generally a distribution of values, normalized to 1). Similarly, equation (36) is rewritten as

$$1 = \int_{\phi(x,t_f)=\phi_{t_f}(x)} \mathcal{D}\phi(x,\tau) \mathcal{D}\bar{\phi}(x,\tau) e^{-\int d^3x dt \Sigma(\phi,\dot{\phi},\bar{\phi})} \quad \text{where} \quad t_f < \tau < +\infty. \quad (38)$$

We now consider an operator $\mathcal{O}[\phi]$ that differs from a constant only for $0 \leq t \leq t_f$ (i.e. the operator $\mathcal{O}[\phi]$ depends on the values taken by ϕ only over the finite range of time $0 \leq t \leq t_f$). Using relations (37) and (38), the expectation value of $\mathcal{O}[\phi]$, defined in equation (20), can be expressed as

$$\langle \mathcal{O} \rangle = \int \mathcal{D}\phi(x,\tau) \mathcal{D}\bar{\phi}(x,\tau) e^{-\int d^3x dt \Sigma(\phi,\dot{\phi},\bar{\phi})} \mathcal{O}[\phi] \quad \text{for} \quad -\infty < \tau < +\infty, \quad (39)$$

and where the spacetime fields $\phi(x,\tau)$, $\bar{\phi}(x,\tau)$ are integrated over an infinite range of time and over the whole space. The only restriction on this path integral is that the initial condition at $t = -\infty$ is fixed (or more generally, the values at $t = -\infty$ are sampled from a normalized distribution). We note that the Jarzynski term $e^{-\beta W_J}$ is equal to 1 outside the interval $0 \leq t \leq t_f$ and therefore we can also write

$$\langle e^{-\beta W_J} \rangle = \int \mathcal{D}\phi \mathcal{D}\bar{\phi} \ e^{-\int d^3x dt \Sigma(\phi,\dot{\phi},\bar{\phi})} \ e^{-\beta W_J}. \quad (40)$$

We emphasize that the boundary conditions at finite time, as well as the average over the Boltzmann factor, have been eliminated and all path integrals are now evaluated over the full time line $-\infty < \tau < +\infty$.

2.4. A non-equilibrium FDR

Identity (31), which is at the core of the work fluctuation relations, is valid for any choice of the external field protocol. The free energy variation is a function only of the extremal values of the applied field at $t_0 = 0$ and $t = t_f$ and is independent of the values at intermediate times. Therefore, performing functional derivatives of the Jarzynski identity (32) with respect to $h(x,t)$ at an intermediate time $t_0 < t < t_f$, and at position x, results in new identities. For example, we have

$$
\frac{1}{\Gamma_0} \Delta \langle e^{-\beta W_J(x,t)} \rangle = \left(\phi(x,t) - \frac{\beta}{\Gamma_0} \phi(x,t) \right) e^{-\beta W_J(x,t)} = 0.
$$

(41)

More generally, the nth functional derivative of equation (32) at intermediate times t_1, \ldots, t_n and positions x_1, \ldots, x_n gives the identity

$$
\left\langle e^{-\beta W_J} \prod_{i=1}^n \left(\phi(x_i, t_i) - \frac{\beta}{\Gamma_0} \phi(x_i, t_i) \right) \right\rangle = 0.
$$

(42)

Similarly, the functional derivative of equation (31) leads to

$$
\left(\phi(x,t) - \frac{\beta}{\Gamma_0} \phi(x,t) \right) e^{-\beta W_J(x,t)} = e^{-\beta \Delta F} \langle \phi(x,t) \rangle R.
$$

(43)

In particular, equation (41) follows by choosing $R = \hat{O} = \mathbf{1}$ and taking into account that $\langle \phi \rangle = 0$. (Indeed, if we take the functional derivative of equation (20) with respect to $h(x,t)$ for $R = \mathbf{1}$, we obtain $\langle \phi \rangle = (\frac{\mu}{\Gamma_0} + \frac{\mu t}{\mu^2}) = 0$.)

For the special case $R = \phi(x', t')$, equation (43) leads to

$$
\langle \phi(x,t)\phi(x', t') \rangle - \frac{\beta}{\Gamma_0} \langle \phi(x,t) \phi(x', t') e^{-\beta W_J(x,t)} \rangle = e^{-\beta \Delta F} \langle \phi(x,t) \phi(x', t') \rangle R.
$$

(44)

where $\hat{\phi}$ is obtained from ϕ by time reversal as defined in equation (29). The terms proportional to the response field ϕ in the correlators can be generated as follows: we consider a small perturbation $h_1(x,t)$ that drives the system out of the fixed protocol $h(x,t)$. However, we keep the definition of the Jarzynski work unchanged so that the perturbing field $h_1(x,t)$ is not included in W_J. The field h_1 couples to ϕ in the action Σ: therefore performing functional derivatives with respect to h_1 amounts to inserting the field ϕ inside correlation functions. The previous equation can thus be rewritten as

$$
\frac{\beta}{\Gamma_0} \langle \phi(x,t) \phi(x', t') \rangle e^{-\beta W_J} = \frac{\delta \langle \phi(x', t') \rangle}{\delta h_1(x,t)} \bigg|_{h_1=0} - e^{-\beta \Delta F} \frac{\delta \langle \phi(x,t) \rangle R}{\delta h_1(x,t)} \bigg|_{h_1=0}.
$$

(45)

We emphasize that W_J has to be measured for the fixed protocol $h(x,t)$. In this form, equation (45) appears as an exact generalization of the FDR. The equilibrium FDR [31–33] is retrieved by setting W_J and ΔF to 0. This indeed corresponds to a system prepared in an equilibrium state, which is not subject to any macroscopic protocol (i.e. $h(x,t) = 0$) but which is driven slightly out of equilibrium by the small perturbation $h_1(x,t)$:

$$
\frac{\beta}{\Gamma_0} \langle \phi(x', t') \phi(x,t) \rangle = \langle \phi(x', t') \phi(x,t) \rangle - \langle \phi(x', t') \phi(x,t) \rangle
$$

$$
= \frac{\delta \langle \phi(x', t') \rangle}{\delta h_1(x,t)} \bigg|_{h_1=0} - \frac{\delta \langle \phi(x,t) \rangle R}{\delta h_1(x,t)} \bigg|_{h_1=0}.
$$

(46)

The fact that the equilibrium FDR can be deduced by differentiation from Jarzynski’s identity (or equivalently from Crooks’ relations) has been understood by various authors (see in
particular the works of Chetrite et al [34–37]). This technique can also be used to find analogs of the FDR at higher orders [38]. Generalizations to non-equilibrium stationary states (NESS) have also been proposed [35, 39–41], e.g., starting from the Hatano–Sasa relations which are the counterpart of Jarzynski’s identity for a NESS [42]. We emphasize that the identity obtained in equation (45) belongs to a different class. We do not consider a linear perturbation near a state of thermodynamic equilibrium, or near a NESS. Rather, we first apply, as in Jarzynski’s scheme, a protocol to a system initially in thermodynamic equilibrium (that can be driven as far from equilibrium as wished) and then, we apply linear perturbations around this fixed protocol: this leads to a new fluctuation–dissipation theorem that relates out of equilibrium and non-stationary response functions to non-equilibrium and non-stationary correlation functions. The insertion of the Jarzynski factor $e^{-\beta W_J}$ inside the correlators leads to formulae which are valid far from equilibrium and look very similar to equilibrium relations. Relation (45) could be verified in single molecule pulling experiments where the protocol corresponds to the pulling force $F(t)$ and ϕ does not depend on space. Then, all the quantities that appear in this relation are susceptible to experimental measurements by adding a small perturbation $\delta F(t)$ to the fixed protocol $F(t)$.

The correlator identity (41) was obtained as a consequence of Jarzynski’s equality (32) by taking its first derivative. Conversely, we show in appendix A that equation (41) implies Jarzynski’s equality (32) and is therefore equivalent to it. This converse property will be used in the next section to show that the work relation can be extracted from a hidden supersymmetric invariance of the dynamical action.

3. Supersymmetry and non-equilibrium work relations

Identities between correlators such as equations (41)–(43) suggest the existence of an underlying continuous symmetry of the system. Indeed, it was recognized in the late seventies that the Langevin equation possesses a hidden invariance under supersymmetric transformations. This property was first discussed in the context of dimensional reduction [22] and then used to derive convenient forms for diagrammatic expansion techniques [23] that were used to study critical dynamics of relaxational models [43–45]. Supersymmetry was also used to study mesoscopic quantum systems (see e.g. in [46, 47]). This supersymmetry became an efficient tool to study [48–51] the properties of Fokker–Planck and associated Schrödinger operators (see e.g. [52, 53]). It was also realized that the equilibrium FDR and the Onsager reciprocity relations could be derived from this invariance [24–26, 44]. Conversely, non-equilibrium situations were found to correspond to supersymmetry breaking and corrections to the classic equilibrium relations could formally be calculated [27, 28]. In this section, we extend this investigation further by showing that although supersymmetry is broken under non-equilibrium situations, it is partially recovered by adding to the dynamical action a term which precisely corresponds to Jarzynski’s work. This restored invariance leads to Ward–Takahashi identities amongst correlation functions. Jarzynski’s relation results from these identities. Thus, it is emphasized here that supersymmetry is not imposed but it is rather a result, namely an underlining symmetry of this system.

3.1. Supersymmetric invariance for the time-independent model A

First, we consider the case where the external field does not depend on time: the Langevin equation (3) then has a well-known supersymmetric invariance. We shall review the formalism that allows us to make this invariance explicit, write the Ward–Takahashi and derive the equilibrium FDR following [24].
3.1.1. The supersymmetric action and its invariance properties. To uncover this hidden symmetry, we introduce in addition to the original field \(\phi(x, t) \) and the response field \(\bar{\phi}(x, t) \) two auxiliary anti-commuting Grassmann fields \(c(x, t) \) and \(\bar{c}(x, t) \) that allow us to express the Jacobian of \(M \), defined in equation (15), as a functional integral [17, 24, 25]. These fields \(c(x,t) \) and \(\bar{c}(x,t) \) can be viewed as hidden classical fermionic fields that ensure the volume conservation constraints: they allow us to enforce this conservation property at a dynamical level. Inserting the following identity [17]:

\[
\det M = \int Dc D\bar{c} e^{c(\partial/\partial t + \Gamma_0 \delta^2 U/\delta \phi^2)\bar{c}} = \int Dc D\bar{c} e^{\bar{c}(\partial/\partial t + \Gamma_0 \delta^2 U/\delta \phi^2)\bar{c}},
\]

we observe that the PDF can be rewritten as

\[
P(\phi_1 | \phi_0) = \int D\phi D\bar{\phi} Dc D\bar{c} e^{-\int d^4x dt \Sigma(\phi, \bar{\phi}, c, \bar{c})},
\]

where the effective Lagrangian \(\Sigma \), which is now a function of the Grassmann variables as well, is given by

\[
\Sigma(\phi, \bar{\phi}, c, \bar{c}) = \Gamma_0 \bar{\phi} \left(\frac{\phi}{\Gamma_0} + \frac{\delta U}{\delta \phi} - \frac{\bar{\phi}}{\beta} \right) - c \left(\frac{\partial}{\partial t} + \Gamma_0 \frac{\delta^2 U}{\delta \phi^2} \right) \bar{c}.
\]

The action \(\Sigma \) exhibits two important invariances under infinitesimal transformations that mix ordinary fields with Grassmann fields. We shall now describe them by specifying how each field varies under these transformations. In appendix B, we shall use a more elegant presentation in which the four fields \((\phi, \bar{\phi}, c, \bar{c}) \) appear to be the components of a unique superfield \(\Phi \); also, in this language, the dynamical action \(\Sigma \) will take a more compact form and the infinitesimal transformations that leave it invariant will have a simple interpretation.

- \textbf{Invariance under BRST1 transformation.} Consider \(\epsilon \) to be a time-independent infinitesimal Grassmann field. We consider the following transformation (that we call BRST1):

\[
\begin{align*}
\delta \phi(x, t) &= -\bar{c}(x, t)\epsilon, & \delta \bar{\phi}(x, t) &= 0, \\
\delta c(x, t) &= \bar{\phi}(x, t)\epsilon, & \delta \bar{c}(x, t) &= 0.
\end{align*}
\]

We note that the square of this transformation vanishes. If we calculate the variation of \(\Sigma \) under transformation (50), we obtain using equation (49),

\[
\delta \Sigma = \bar{\phi} \left(\delta \bar{\phi} + \Gamma_0 \frac{\delta^2 U}{\delta \phi^2} \delta \phi \right) - \delta c \left(\frac{\partial}{\partial t} + \Gamma_0 \frac{\delta^2 U}{\delta \phi^2} \right) \bar{c} = -\bar{\phi} \left(\bar{\epsilon} + \Gamma_0 \frac{\delta^2 U}{\delta \phi^2} \bar{c} \right) = 0.
\]

This expression vanishes identically because of algebraic anti-commutation rules. We note that we do not need to suppose that the potential \(U \) is time independent.

- \textbf{Invariance under BRST2 transformation.} The transformation BRST2 mixes the different fields as follows:

\[
\begin{align*}
\delta \phi(x, t) &= c(x, t)\bar{\epsilon}, & \delta c(x, t) &= 0, \\
\delta \bar{\phi}(x, t) &= \frac{\beta}{\Gamma_0} \bar{c}(x, t)\bar{\epsilon}, & \delta \bar{c}(x, t) &= \left(\bar{\phi}(x, t) - \frac{\beta}{\Gamma_0} \phi(x, t) \right) \bar{\epsilon},
\end{align*}
\]

\(\bar{\epsilon} \) being a time-independent infinitesimal Grassmann field. Here again, the square of transformation (52) vanishes. If we calculate the variation of \(\Sigma \) under transformation
\(\delta \Sigma = \frac{d}{dt} \left\{ \left(\frac{\beta}{\Gamma_0} \phi - \phi \right) c \right\} \varepsilon + \frac{\beta}{\delta \phi} \frac{\delta \mathcal{U}}{\delta \phi} \varepsilon + \frac{\beta \delta^2 \mathcal{U}}{\delta \phi \delta t} \phi \varepsilon \)
\[= \frac{d}{dt} \left\{ \left(\frac{\beta}{\Gamma_0} \phi + \frac{\beta}{\delta \phi} \frac{\delta \mathcal{U}}{\delta \phi} - \phi \right) c \right\} \varepsilon - \frac{\beta \delta^2 \mathcal{U}}{\delta \phi \delta t} \phi \varepsilon. \tag{53}\]

If the potential \(\mathcal{U}\) is independent of time, the last term vanishes and \(\Sigma\) is invariant under transformation (52) only up to a total time-derivative term that produces boundary contributions to the total action. This does not affect the dynamics if boundary terms vanish or if the time-integral is defined from \(-\infty\) to \(+\infty\).

The invariance of the dynamical action \(\Sigma\) under both transformations BRST1 (50) and BRST2 (52) is what makes the time-independent dissipative Langevin equation supersymmetric [17]. This supersymmetric property reflects the time-reversal invariance of model A in the absence of an external field and allows us to prove the fluctuation–dissipation theorem [24, 25] as will be recalled below.

It is important to emphasize here that in the general case for the use of time-reversal invariance in a path integral of the type in equation (48), as mentioned above, extra precaution is needed. Whereas the topology seen in equation (48) is trivial, the general case of non-trivial topology is subtle and time-reversal invariance arguments must take this into account. The case of non-trivial topologies was studied in details in [54] where large deviations and global topological currents were discussed in the case of a Heisenberg spin-chain with a Wess–Zumino-type term. Other work on non-trivial topologies can be found in [55].

3.1.2. Ward–Takahashi identities and the equilibrium FDR. Introducing a four-component source \((H, \bar{H}, L, \bar{L})\), we define the generating function

\[Z(H, \bar{H}, \bar{L}, L) = \int D\phi D\bar{\phi} Dc D\bar{c} \times \exp \left(\int d^d x \, dt \left(-\Sigma(\phi, \bar{\phi}, c, \bar{c}) + \bar{H}\phi + H\bar{\phi} + \bar{L}c + L\bar{c} \right) \right). \tag{54}\]

In the appendices, we rederive the following two Ward identities that result from the invariance of the action under transformations (50) and (52). The first Ward–Takahashi identity corresponding to invariance under (50) is

\[\int d^d x \, dt \left(\frac{\delta Z}{\delta L} - \frac{\delta Z}{\delta H} \right) = 0. \tag{55}\]

The second Ward–Takahashi identity corresponding to transformation (52) is given by

\[\int d^d x \, dt \left(\frac{\beta}{\Gamma_0} H \frac{d}{dt} \frac{\delta Z}{\delta L} + L \left(\frac{\delta Z}{\delta H} - \frac{\beta}{\Gamma_0} \frac{d}{dt} \frac{\delta Z}{\delta H} \right) + \bar{H} \frac{\delta Z}{\delta \bar{L}} \right) = 0. \tag{56}\]

We now apply \(\delta^2 Z/\delta \bar{L}(x', t') \delta \bar{H}(x, t)\) to the first Ward–Takahashi identity (55) and then put all the sources \(H, \bar{H}, L, \bar{L}\) to 0. This leads to

\[\frac{\delta^2 Z}{\delta \bar{L}(x', t') \delta \bar{L}(x, t)} - \frac{\delta^2 Z}{\delta \bar{H}(x', t') \delta \bar{H}(x, t)} = 0. \tag{57}\]

This equation implies, using (C.8) and (C.9), the following identity between correlation functions:

\[\langle c(x', t') \bar{c}(x, t) \rangle = \langle \bar{\phi}(x', t') \phi(x, t) \rangle. \tag{58}\]
Similarly, applying $\frac{\delta^2 Z}{\delta \bar{H}(x', t') \delta H(x, t)}$ to the second Ward–Takahashi identity (56), and putting all the sources to zero, we obtain

$$\frac{\delta^2 Z}{\delta \bar{H}(x', t') \delta H(x, t)} = 0.$$

This identity implies that

$$\langle \phi(x', t') \dot{\phi}(x, t) \rangle - \frac{\beta}{\Gamma_0} \langle \phi(x', t') \frac{d \phi}{dt}(x, t) \rangle + \langle \bar{c}(x, t) c(x', t') \rangle = 0. \quad (59)$$

In order to eliminate the correlations between the Grassmann variables, we combine equation (57) with (59) (or equivalently equation (58) with (60)) and use the fact that L and \bar{L} anti-commute (or equivalently that c and \bar{c} anti-commute). This leads us to

$$\frac{\beta}{\Gamma_0} \langle \phi(x', t') \dot{\phi}(x, t) \rangle = \langle \phi(x', t') \bar{\phi}(x, t) \rangle - \langle \bar{c}(x, t) c(x', t') \rangle.$$

Recalling that $\frac{\delta \langle \phi \rangle}{\delta \bar{H}}$ is a response function, we observe that this equation is nothing but the FDR (see equation (46)). Usually, the FDR is derived by invoking invariance under time reversal which implies detailed balance. Here, it is the invariance under supersymmetry that plays the role of time-reversal invariance.

3.2. Model A with a time-dependent potential

We now study the case where the potential $U[\phi(x, t), t]$ that appears in model A (3) depends explicitly on time, and show how properties related to supersymmetry can still be used in this non-equilibrium situation.

3.2.1. Breakdown of the invariance for a time-dependent potential and its restoration by adding the Jarzynski term. When the potential $U[\phi(x, t), t]$ depends on time (by adding for example a time-dependent external field), the action Σ is no more invariant under supersymmetry. More precisely, we observed that invariance under (50) does remain valid even when U is a function of time and therefore the first Ward identity (55) is still satisfied. However, invariance under (52) is broken and according to equation (53), we find the variation of $\Sigma(\phi, \bar{\phi}, c, \bar{c})$ to be

$$\delta \Sigma(\phi, \bar{\phi}, c, \bar{c}) = \frac{dA}{dt} - \beta \left(\frac{\partial}{\partial t} \frac{\delta U}{\delta \phi} \right) c(x, t) \bar{c}.$$

with the total derivative term

$$A = \beta \left(\dot{\phi} \frac{\Gamma_0}{\beta} + \frac{\delta U}{\delta \phi} - \frac{\dot{\phi}}{\beta} \right) c(x, t) \bar{c}. \quad (62)$$

Therefore, $\delta \Sigma$ is not a total derivative and invariance under (52) is not true anymore for a time-dependent potential. In particular, the second Ward identity (56), which was crucial for the proof of the FDR, is no more satisfied.

However, we note that the last term in equation (62), which breaks the invariance under (52), can be rewritten as

$$\beta \frac{\delta^2 U}{\delta \phi \delta t} c \bar{c} = \beta \frac{\delta^2 U}{\delta \phi \delta t} \delta \phi = \delta \left(\beta \frac{\partial U}{\partial t} \right).$$

and can be interpreted as the variation of a function. Therefore, the modified action \(\Sigma_J \), defined as

\[
\Sigma_J = \Sigma + \beta \frac{\partial \mathcal{L}}{\partial t}
\]

and obtained by adding the Jarzynski work (26) to the initial action, is now invariant under the supersymmetric BRST2-transformation (52) because its variation is given by a total derivative term:

\[
\delta \Sigma_J = \frac{dA}{dt} \tag{66}
\]

However, we emphasize that \(\Sigma_J \) is no more invariant under BRST1 (50) although \(\Sigma \) was invariant. We have thus restored BRST2-invariance at the expense of BRST1. Therefore, in the time-dependent case, neither the original action \(\Sigma \) nor the modified action \(\Sigma_J \) is supersymmetric [17]. They only exhibit partial invariances by either BRST1 (in the case of \(\Sigma \)) or BRST2 (in the case of \(\Sigma_J \)). We shall now see that BRST2-invariance is required to derive non-equilibrium work identities.

For a time-dependent external field \(h(x, t) \), the compensating term in equation (64) is given by \(-\beta \dot{h}(x, t)\phi\). The boundary terms at \(t = \pm \infty \) are, conventionally, assumed to vanish. Therefore, the invariance of the dynamical action under (52) breaks down when the potential is time dependent but is restored by adding the Jarzynski term. This observation allows us to use the Ward–Takahashi identity (56) that results from this invariance. We shall prove that this Ward–Takahashi identity leads to the non-equilibrium work relations.

3.2.2. Work relations from supersymmetry.

We now show that the invariance of \(\Sigma_J \) implies the correlator identities (42). We first remark that in the above proofs of supersymmetric invariance it was noted that the boundary terms (a total time-derivative contribution) are harmless if the integration range of the path integral is from \(-\infty \) to \(+\infty \).

We consider an operator \(\mathcal{O}[\phi] \) that differs from a constant only for \(0 \leq t \leq t_f \). Then, as shown in equations (39) and (40), the expectation value \(\langle \mathcal{O} e^{-\beta W_J} \rangle \) can be rewritten over an infinite time range. Using Grassmann variables, we have

\[
\langle \mathcal{O} e^{-\beta W_J} \rangle = \int D\phi D\bar{\phi} Dc D\bar{c} \; e^{-\int d^d x \; dt \left(\Sigma_J(\phi, \bar{\phi}, c, \bar{c}) + \bar{H}\phi + H\bar{\phi} + \bar{L}c + L\bar{c} \right)} \; \mathcal{O}[\phi] \tag{67}
\]

where all the spacetime fields \(\phi(x, t), \bar{\phi}(x, t), c(x, t) \) and \(\bar{c}(x, t) \) are integrated over the time interval \(-\infty \) to \(+\infty \). In the last equation, we have combined the action \(\Sigma \) with the Jarzynski work \(W_J \) to get the modified action \(\Sigma_J \), defined in (65). As shown in (66), the modified action \(\Sigma_J \) is invariant under transformation (52). Therefore, the following generating function \(Z_J(H, \bar{H}, \bar{L}, L) \), built from the modified action \(\Sigma_J \), satisfies the second Ward–Takahashi identity (56):

\[
Z_J(H, \bar{H}, \bar{L}, L) = \int D\phi D\bar{\phi} Dc D\bar{c} \; \exp \left(\int d^d x \; dt \left(-\Sigma_J(\phi, \bar{\phi}, c, \bar{c}) + \bar{H}\phi + H\bar{\phi} + \bar{L}c + L\bar{c} \right) \right) \tag{68}
\]

We apply the following operator to the Ward–Takahashi identity (56) satisfied by \(Z_J \):

\[
\frac{\delta}{\delta L(x, t)} \prod_{i=1}^n \left(\frac{\delta}{\delta H(x_i, t_i)} \right) \tag{69}
\]
and set the source fields H, \dot{H}, \dot{L}, L to zero. For $n = 1$, we find
\[\left\langle \left(\phi(x, t) - \frac{\beta}{\Gamma_0} \dot{\phi}(x, t) \right) e^{-\beta W_J} \right\rangle = 0. \] (70)

More generally, for $n \geq 1$, we have
\[\left\langle \left(\phi_1 - \frac{\beta}{\Gamma_0} \dot{\phi}_1 \right) \left(\phi_2 - \frac{\beta}{\Gamma_0} \dot{\phi}_2 \right) \ldots \left(\phi_n - \frac{\beta}{\Gamma_0} \dot{\phi}_n \right) e^{-\beta W_J} \right\rangle = 0, \] (71)
where $\phi_1 = \phi(x_1, t_1)$ etc. These two relations are identical to equations (41) and (42), respectively. In appendix A, we show that these relations are equivalent to Jarzynski’s identity. This concludes the proof that Jarzynski’s relation can be obtained as a consequence of a Ward–Takahashi identity that itself results from supersymmetric invariance.

4. Conclusion

We have used field-theoretic methods to derive non-equilibrium work identities for a spacetime field driven by a nonlinear stochastic equation (model A). We have obtained a generalization of the FDR that remains valid far from equilibrium and that characterizes the response of a system to infinitesimal perturbations around a given protocol. The introduction of auxiliary fermionic fields has allowed us to explore general symmetries of the dynamical action. In particular, it is well known that the time-independent Langevin equation exhibits a hidden supersymmetric invariance [22, 23] that is known to imply the classic fluctuation–dissipation theorem and Onsager’s relations [17, 24, 25]. However, this invariance breaks down when the potential varies according to a time-dependent protocol and drives the system out of equilibrium. In this work, we have shown that the invariance of the effective action under supersymmetric transformation is restored by adding to the action a counter term which is precisely the Jarzynski work W_J. Furthermore, we proved that the associated supersymmetric Ward–Takahashi identity implies Jarzynski’s theorem. Hence, supersymmetry enforces the exactness of the adiabatic limit even for processes that have a finite duration and that can bring the system arbitrarily far from equilibrium. In other words, weighing all averages with the Jarzynski work (which amounts to modifying the dynamical action by adding to it the Jarzynski work, as in (65)) restores one of the fundamental symmetries valid in equilibrium. Thanks to this invariance, many properties of the system are effectively the same as if it were at equilibrium (although it is neither in equilibrium nor in a stationary state). The idea of considering weighed averages, or equivalently modified path-measure (as was emphasized by Jarzynski himself in his early works [2]), allows us to preserve certain crucial symmetries and has striking consequences in the present context. We believe that a similar argument should apply in many different fields: in particular, supersymmetry exists in classical Hamiltonian systems [26] for which Jarzynski’s equality was initially derived, and can be applied to prove the fluctuation theorem for stochastic dynamics [56]. Besides, the response-field method that we have used here can be extended to multi-component fields, to other stochastic models with conserved order parameter and also to systems with colored noise [57].

Acknowledgments

We are grateful to Jean Zinn-Justin for many insightful conversations and remarks. KM thanks S Mallick for a careful reading of the manuscript. MM thanks the theory group at Saclay for its hospitality.

14
Appendix A. Proof of the equivalence between equation (41) and Jarzynski’s relation

In this appendix, we prove that the correlator identity (41) implies Jarzynski’s relation (32) and is therefore equivalent to it. First, we modify the applied external field \(h(x, \alpha t) \) by considering \(h(x, \alpha t) \) for any \(\alpha > 0 \). We then evaluate the average value \(\langle e^{-\beta W_J}(\alpha) \rangle \) using expression (40).

From (19) and (26), we observe that the external field \(h(x, \alpha t) \) appears only in the following two terms: \(\Gamma_0 \phi(x, t) h(x, \alpha t) + \beta \alpha \dot{h}(x, \alpha t) \phi(x, t) \) (note that the Jacobian term, \(\delta^2 \mathcal{U} / \delta \phi^2 \), does not contain \(h \)). Thus, we have

\[
\frac{d \langle e^{-\beta W_J} \rangle}{d\alpha} = \int D\phi D\bar{\phi} e^{-\beta W_J - \int d^d x \, dt \Sigma(\phi, \bar{\phi})} \\
\times \int d^d x \, dt \left(\Gamma_0 \phi(x, t) \dot{h}(x, \alpha t) + \beta \alpha \dot{h}(x, \alpha t) \phi(x, t) \right).
\]

Integrating by parts the last term with respect to time leads to

\[
\frac{d \langle e^{-\beta W_J} \rangle}{d\alpha} = \int D\phi D\bar{\phi} e^{-\beta W_J - \int d^d x \, dt \Sigma(\phi, \bar{\phi})} \\
\times \int d^d x \, dt \left(\Gamma_0 \phi(x, t) \dot{h}(x, \alpha t) - \beta t \dot{h}(x, \alpha t) \phi(x, t) \right)
\]

\[
= \int D\phi D\bar{\phi} e^{-\beta W_J - \int d^d x \, dt \Sigma(\phi, \bar{\phi})} \int d^d x \, dt \dot{h}(x, \alpha t) (\Gamma_0 \dot{\phi}(x, t) - \beta \dot{\phi}(x, t)).
\]

Note that the boundary terms that result from integration by parts vanish because we are integrating for \(t \in (-\infty, +\infty) \) and because \(\dot{h} = 0 \) outside the time interval \(0 \leq \alpha t \leq t_f \). The last equality can be rewritten as

\[
\frac{d \langle e^{-\beta W_J} \rangle}{d\alpha} = \Gamma_0 \int d^d x \, dt \left(\dot{\phi}(x, t) - \frac{\beta}{\Gamma_0} \phi(x, t) \right) e^{-\beta W_J},
\]

which vanishes because of equation (41). We thus have

\[
\frac{d \langle e^{-\beta W_J} \rangle}{d\alpha} = 0.
\]

Hence, the value of \(\langle e^{-\beta W_J} \rangle \) does not depend on \(\alpha \) and can be evaluated by taking the limit \(\alpha \to 0 \) which corresponds to an adiabatic evolution. But then it is well known, from classical thermodynamics, that \(W_J = -\Delta F \). This implies \(\langle e^{-\beta W_J} \rangle = \exp(-\Delta F) \).

Appendix B. Supersymmetric formalism

In this appendix, we use the superfield formalism, as explained in [17] and [29], to rewrite the dynamical action and to interpret the invariances under transformations (50) and (52) in more compact and elegant language. In this formalism, the origin of these symmetries will appear more clearly. Besides, the effect of adding the Jarzynski term to make the time-dependent action invariant under (52) will also become more transparent.

We introduce two anti-commuting coordinates \(\theta \) and \(\bar{\theta} \) and define the superfield

\[
\Phi(x, t, \theta, \bar{\theta}) = \phi(x, t) + \theta \bar{\epsilon}(x, t) + c(x, t) \bar{\theta} + \theta \bar{\theta} \phi(x, t).
\]

In terms of this superfield, the action \(\Sigma(\phi, \bar{\phi}, c, \bar{c}) \), defined in (49), can be written as

\[
\Sigma(\phi, \bar{\phi}, c, \bar{c}) = \int d\bar{\theta} \, d\theta \Sigma(\Phi) \quad \text{with} \quad \Sigma(\Phi) = \Gamma_0(D\Phi D\Phi + \mathcal{U}(\Phi)),
\]

\cite{MALICK201195002} J. Phys. A: Math. Theor. 44 (2011) 095002

K Mallick et al
where the differential operators D and \bar{D} are given by
\[D = \frac{1}{\beta} \frac{\partial}{\partial \bar{\theta}}, \quad (B.3) \]
\[\bar{D} = \frac{\partial}{\partial \theta} - \frac{\beta}{\Gamma_0} \frac{\partial}{\partial t}. \quad (B.4) \]

These two operators satisfy the anti-commutation relations $D^2 = \bar{D}^2 = 0$ and $\{D, \bar{D}\} = -\frac{1}{\Gamma_0} \frac{\partial}{\partial t}$.

Integration with respect to the Grassmann variables is defined through the following rules [17]:
\[\int d\bar{\theta} d\theta \phi = 0, \quad \int d\bar{\theta} d\theta \phi = 0, \quad \int d\bar{\theta} d\theta \phi = 0, \quad \int d\bar{\theta} d\theta \phi = 1. \quad (B.5) \]
(Integration and derivation are in fact identical.)

The action Σ is invariant under transformations (50) and (52) which act by mixing the four fields $(\phi, \bar{\phi}, c, \bar{c})$. These two symmetries can be viewed as transformations of the superfield Φ that leave the super-action $\Sigma(\Phi)$ invariant.

In the superspace formalism, transformation (50) corresponds to an infinitesimal translation of the θ coordinate, $\theta \to \theta + \epsilon$. The generator of this transformation is given by
\[Q = \frac{\partial}{\partial \theta}. \quad (B.6) \]
Indeed, one can check that the superfield $\delta \Phi = \epsilon Q \Phi = \delta \phi(x, t) + \theta \delta \bar{c}(x, t) + \delta c(x, t) \bar{\theta} + \theta \bar{\theta} \delta \phi(x, t)$ is given by $\delta \Phi = \epsilon \bar{c}(x, t) + \epsilon \bar{\phi}(x, t) = -\bar{c}(x, t) \epsilon + \bar{\phi}(x, t) \epsilon$. If we identify each of the components, we retrieve transformation (50).

Similarly, transformation (52) corresponds to $\bar{\theta} \to \bar{\theta} + \bar{\epsilon}$ and $t \to t + \frac{\beta}{\Gamma_0} \bar{\epsilon} \theta$. This transformation is generated by the operator
\[\bar{Q} = \frac{\partial}{\partial \bar{\theta}} + \frac{\beta}{\Gamma_0} \theta \frac{\partial}{\partial t}. \quad (B.7) \]

The operators Q and \bar{Q} that generate the supersymmetry transformations anti-commute with D and \bar{D}. Besides, they satisfy the anti-commutation relations $Q^2 = \bar{Q}^2 = 0$ and $\{Q, \bar{Q}\} = \frac{\beta}{\Gamma_0} \frac{\partial}{\partial t}$. When the potential U does not depend on time, the action $\Sigma(\Phi)$ is symmetric under Q, and is invariant under \bar{Q} up to a total derivative. This fact was checked in equations (51), (53) and can be verified again using the supersymmetry formalism. If U depends explicitly on time, the action $\Sigma(\Phi)$ is not invariant anymore under \bar{Q}. However, by adding to it the Jarzynski term (26), we obtain the modified action Σ_J, defined in equation (65), which is invariant under \bar{Q}. This property is manifested in the supersymmetric formalism in which the modified action is written as
\[\Sigma_J = \Gamma_0 \left(\bar{D} \Phi D \Phi + U \left(\Phi, t + \frac{\beta}{\Gamma_0} \bar{\theta} \right) \right). \quad (B.8) \]

Appendix C. Supersymmetric Ward–Takahashi identities

When the invariances under the transformations generated by operators (B.6) and (B.7) are implemented in the generating function $Z(H, \bar{H}, \bar{L}, L)$ defined in (54), the Ward–Takahashi identities (55) and (56) are obtained. We follow closely the method of [24] to derive these...
identities. In order to calculate correlation functions, it is helpful to rewrite the sources as a superfield \(\mathbf{J} \), defined as
\[
\mathbf{J} = H + \theta \bar{L} + \bar{\theta} L + \theta \bar{\theta} \bar{H},
\] (C.1)
where \(L(x, t) \) and \(\bar{L}(x, t) \) are Grassmann fields. We thus have
\[
\int d\bar{\theta} \, d\theta \mathbf{J}(x, t, \theta, \bar{\theta}) \delta \Phi(x, t, \theta, \bar{\theta}) = \bar{H} \phi + H \bar{\phi} + \bar{L} c + L \bar{c}.
\] (C.2)
We note from this expression that \(H \) plays the role of an applied external ‘magnetic’ field. In this formalism, the generating function \(Z(H, \bar{H}, L, \bar{L}) \) becomes
\[
Z(\mathbf{J}) = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta (\bar{\Sigma} \Phi \mathbf{J} \Phi)}.
\] (C.3)
(In the following, the integration element \(d^4x \, dt \, d\bar{\theta} \, d\theta \) will be omitted in general.)

In order to derive the first Ward–Takahashi identity, we proceed as follows. In the functional integral (C.3), we make the change of variable \(\Phi \to \Phi + \epsilon Q \Phi \), where \(Q \), defined in (B.6), is the infinitesimal generator of transformation (50) corresponding to \(\theta \) translations. Taking into account that the Jacobian is 1, we obtain
\[
Z(\mathbf{J}) = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta (\bar{\Sigma} \Phi \mathbf{J} \Phi + \epsilon Q \Phi)} = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta (\bar{\Sigma} \Phi \mathbf{J} \Phi + (1 + \epsilon) Q \Phi)}.
\] (C.4)
(The last equality results simply from the fact that \(\Phi \) is a dummy variable.) The fact that the action is invariant means precisely that \(\int d\bar{\theta} \, d\theta \bar{\Sigma} \Phi (\Phi + \epsilon Q \Phi) = \int d\bar{\theta} \, d\theta \bar{\Sigma} \Phi (\Phi + \epsilon Q \Phi) \). Therefore, we deduce that
\[
Z(\mathbf{J}) = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta \, J Q \Phi} = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta \, J Q \Phi} = \int D\Phi \, e^{\int d^4x \, dt \, d\bar{\theta} \, d\theta \, J Q \Phi}.
\] (C.5)
This equation being true for any value of \(\epsilon \), we conclude that
\[
\int D\Phi \left\{ \int d^4x \, dt \, d\bar{\theta} \, d\theta \, J Q \Phi \right\} e^{\int -\Sigma \Phi J \Phi} = 0.
\] (C.6)
We now calculate explicitly the value of \(\mathbf{J} \cdot Q \Phi \) and substitute it into equation (C.6),
\[
\int D\Phi \left\{ \int d^4x \, dt \, d\bar{\theta} \, d\theta \, (\bar{H}(x, t) \bar{c}(x, t) - \bar{L}(x, t) \bar{\phi}(x, t)) \right\} e^{\int -\Sigma \Phi J \Phi} = 0.
\] (C.7)
By differentiating the generating function \(Z(\mathbf{J}) \) with respect to \(\bar{H} \), we obtain
\[
\frac{\delta Z(\mathbf{J})}{\delta \bar{H}(x_a, t_a)} = \int D\Phi \phi(x_a, t_a) \exp(\int -\Sigma \Phi J \Phi).
\] (C.8)
Similarly, we have
\[
\frac{\delta Z}{\delta L} \to \bar{c}, \quad \frac{\delta Z}{\delta \bar{L}} \to c, \quad \text{and} \quad \frac{\delta Z}{\delta \bar{H}} \to \bar{\phi}.
\] (C.9)
Substituting these relations into equation (C.7) allows us to derive the first Ward–Takahashi identity (55),
\[
\int d^4x \, dt \left(\bar{H} \frac{\delta Z}{\delta L} - L \frac{\delta Z}{\delta \bar{H}} \right) = 0.
\] (C.10)
For the second invariance under the BRST2 transformation (52), we use the infinitesimal generator \(Q \), defined in (B.7). After similar calculations, we find
\[
\int D\Phi \left\{ \int d^4x \, dt \, d\bar{\theta} \, d\theta \, J Q \Phi \right\} e^{\int -\Sigma \Phi J \Phi} = 0.
\] (C.11)
After calculating explicitly $\bar{J} \bar{Q} \Phi$, we obtain
\[
\int D\Phi \left\{ \int d^d x \, d t \frac{\beta}{\Gamma_0} H(x, t) c(x, t) + L(x, t) (\bar{\phi}(x, t) - \frac{\beta}{\Gamma_0} \dot{\phi}(x, t)) + \bar{H}(x, t) c(x, t) \right\}
\times e^{\int \Sigma - J \Phi} = 0. \tag{C.12}
\]
Expressing the fields in this equation as functional derivatives of the generating function Z leads us to the second Ward–Takahashi identity (56):
\[
\int d^d x \, d t \left(\frac{\beta}{\Gamma_0} H \frac{d}{d t} \frac{\delta Z}{\delta L} + L \left(\frac{\delta Z}{\delta H} - \frac{\beta}{\Gamma_0} \frac{d}{d t} \frac{\delta Z}{\delta H} \right) + \bar{H} \frac{\delta Z}{\delta L} \right) = 0. \tag{C.13}
\]

References

[1] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[2] Jarzynski C 1997 Phys. Rev. E 56 5018
[3] Crooks G E 1998 J. Stat. Phys. 90 1481
[4] Crooks G E 1999 Phys. Rev. E 60 2721
[5] Jarzynski C 2000 Phys. Rev. E 61 2361
[6] Jarzynski C 2000 Eur. Phys. J. B 64 331
[7] Crooks G E 2001 Proc. Natl Acad. Sci. USA 98 3658
[8] Liphardt J, Dumont S, Smith S B, Tinoco I and Bustamante C 2002 Science 296 1832
[9] Collin D, Ritort F, Jarzynski C, Smith S B, Tinoco I and Bustamante C 2005 Nature 437 231
[10] Chaikin P M and Lubensky T C 2000 Principles of Condensed Matter Physics (Cambridge: Cambridge University Press)
[11] Ma S K 2000 Modern Theory of Critical Phenomena (New York: Westview)
[12] Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena 4th edn (Oxford: Clarendon)
[13] Callen H B and Welton T A 1951 Phys. Rev. 83 34
[39] Seifert U and Speck T 2010 Europhys. Lett. 89 10007
[40] Seifert U 2010 Phys. Rev. Lett. 104 138101
[41] Bates M, Maes C and Wyants B 2009 Phys. Rev. Lett. 103 010602
[42] Prost J, Joanny J-F and Parrondo J M R 2009 Phys. Rev. Lett. 103 090601
[43] Zinn-Justin J 1986 Nucl. Phys. B 275 (FS18) 135
[44] Zhang M Q 1987 Phys. Rev. B 36 3824
[45] Niel J C 1988 Phys. Rev. B 37 2156
[46] Prigodin V N, Efetov K B and Ida S 1993 Phys. Rev. Lett. 71 1230
Efetov K B 1997 Supersymmetry in Disorder and Chaos (Cambridge: Cambridge University Press)
[47] Zirnbauer M R 1996 J. Math. Phys. 37 4986
Zirnbauer M R 1996 J. Phys. A: Math. Gen. 29 7113
[48] Cooper F and Freedman B 1983 Ann. Phys. 146 262
[49] Bernstein M and Brown L S 1984 Phys. Rev. Lett. 52 1933
[50] Comtet A, Bandrauk A D and Campbell D K 1985 Phys. Lett. B 150 159
[51] Keung W-Y, Kovacs E and Sukhatme U P 1988 Phys. Rev. Lett. 60 41
[52] Risken H 1996 The Fokker–Planck Equation: Methods of Solutions and Applications 3rd edn (Berlin: Springer)
[53] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer)
[54] Chernyak V Y, Chertov M, Malinin S V and Teodorescu R 2009 J. Stat. Phys. 137 109
[55] Abanov A G and Weigmann P B 2001 J. High Energy Phys. JHEP10(2001)030 and references within
[56] Kurchan J 1998 J. Phys. A: Math. Gen. 31 3719
[57] Mallick K, Moshe M and Orland H in preparation