Review

Historical Review of Studies on Cyrtophorian Ciliates (Ciliophora, Cyrtophoria) from China

Zhishuai Qu 1,*, Hongbo Pan 2, Jun Gong 3, Congcong Wang 4, Sabine Filker 5 and Xiaozhong Hu 4,*

1 State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361104, China
2 Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China; hbpan@shou.edu.cn
3 School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; gongj27@mail.sysu.edu.cn
4 Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China; wangcocoh@163.com
5 Department of Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany; filker@rhrk.uni-kl.de
* Correspondence: zqu@xmu.edu.cn (Z.Q.); xiaozhonghu@ouc.edu.cn (X.H.)

Abstract: The subclass Cyrtophoria are a group of morphologically specialized ciliates which mainly inhabit soil, freshwater, brackish water, and marine environments. In this study, we revise more than 50 publications on the taxonomy, phylogeny, and ecology of cyrtophorian ciliates in China since the first publication in 1925, most of which were carried out in coastal areas. The research history can be divided into three periods: the early stage, the Tibet stage, and the molecular stage. To date, 103 morpho-species (147 isolates) have been formally recorded in China, with ciliature patterns described for 82 of them. A species checklist and an illustrated identification key to the genera are provided. A total of 100 small subunit rDNA sequences have been obtained for 74 taxonomic hits (lowest taxonomic rank to species or genus). These sequences are used for the study of molecular phylogeny. Based on these morphological data and molecular phylogeny analyses, we synthesize the understanding of the phylogeny of cyrtophorian ciliates. We hypothesize that the key evolutionary event of cyrtophorian ciliates lies in the separation of the stomatogenesis zone (postoral kineties) from the left kineties, namely, the formation of an independent “sexual organelle”. We, furthermore, briefly summarize the ecological features of cyrtophorian ciliates and provide a comprehensive bibliography of related research from China. Finally, we give an outlook on the future research directions of these taxa.

Keywords: morphology; phylogeny; SSU rDNA; taxonomy

1. Introduction

As evidenced by an increasing number of publications, China is now recognized as one of the hotspots for the study of the taxonomy and systematics of ciliates [1–5]. Among ciliates, cyrtophorians (subclass Cyrtophoria) are a morphologically specialized group that feature a unique combination of morphological characteristics: (1) The cytostome is reinforced by a special buccal structure called the pharyngeal basket which is made up of fibers that are usually organized in the form of nematodesmal rods [6]. (2) The oral ciliature consists of a few short kinetal segments, with usually one preoral kinety (sometimes in several short fragments) and two circumoral kineties (see oral kineties—OK—in Figure 1) [7]. Some species have a degenerated oral structure or more circumoral kineties. During stomatogenesis, the oral kineties are formed by an anticlockwise rotation of the oral anlagen (see stomatogenetic zone—SZ—in Figure 1) [8]. (3) The cilia are mainly restricted to the ventral side, and only a few are located at the anterior part of the dorsal side [7,9]. (4) Some species have organelles adapted to the adhesion on the substrate, such as podites.
(e.g., Dysteria and Hartmannula), glandules (e.g., Trichopodiella), and finger-like tentacles (e.g., Lynchella and Chlamydonella) (Figure 1) [7,9,10]. From more “general” cyrtophorians to highly specialized ones, the left kineties tend to degenerate and move to the frontal and right part of the cell. The right kineties are also inclined and mostly restricted to the right margin as a result of the lateral compression of the body in the order Dysteriida (Figure 1).

Figure 1. Schematic ciliary patterns of cyrtophorian ciliates. (A) Order Chlamydodontida. (B) Order Dysteriida. Abbreviations: EF—equatorial fragment; LK—left kineties; OK—oral kineties; P—podite; PK—postoral kineties; RK—right kineties; SZ—stomatogenetic zone; and TF—terminal fragment.

Most cyrtophorian ciliates live as periphyton and feed on bacteria (including cyanobacteria) and/or eukaryotic microalgae [11–14]. They are widely distributed in a variety of habitats including soil [15,16], freshwater [11,16,17], marine environments [4,6,9,17–22], brackish waters [12,13,23–26], and even glaciers in Antarctica [27,28]. As active bacterivores, some species commonly occur in eutrophic manmade ecosystems, such as Chilodonella uncinata, Gastronauta spp., and Trochilia minuta, which have been used as bio-indicators for monitoring sludge performance in wastewater treatment plants [11,29–32]. Several free-living species thrive in mariculture [33–35] and freshwater fish aquaculture tanks [36]. A few species even live as obligate parasites on the gills and skin of fish [36–40], or on the mucosa of the blowholes of sea mammals [41–43], and hence are target organisms in pathogenic studies [44].

To date, more than 180 cyrtophorian ciliate species are known worldwide, divided into 2 orders, 10 families, and 45 genera [3,8,9]. Several milestones can be identified in the research history: (1) Müller [45] reported two cyrtophorian ciliates (Trithigmostoma cucullulus and Chlamydodon triquetrus, according to the current nomination). (2) Klein [46] first applied silver impregnation (dry silver nitrate) on ciliates and revealed the ciliature of the cyrtophorian Chilodonella uncinata. (3) Kahl [17] summarized more than 80 species with fine descriptions based on previous works (e.g., [47–49]) and his own. (4) Deroux [6,18–22] conducted a long-term, exclusive study mainly on cyrtophorian ciliates, documenting about 50 marine species with fine ciliary patterns. (5) Snoeyenbos-West et al. [50] analyzed, for the first time, the systematic position of cyrtophorian ciliates using SSU rDNA sequences.

In this paper, we review the research on cyrtophorian ciliates in China, covering aspects of taxonomy, molecular phylogeny, and ecology, and provide an up-to-date literature guide to related research. We, furthermore, present a revised phylogeny of cyrtophorian ciliates based on existing morphological knowledge and the molecular phylogenetic tree inferred from updated SSU rDNA sequences. As a closing remark, we give an outlook on the future research prospects of this special group of ciliates.
2. Morphological Taxonomy

2.1. Brief Research History

For this section, we collected and reviewed 50 publications (Table 1) with morphological descriptions, excluding those where the species identification could not be traced and confirmed. To the best of our knowledge, the very first report of cyrtophorian ciliates from China was given by Wang [51] in the year of 1925. He isolated and described three species, *Chilodon caudata* Stokes, 1885, *C. cucullulus* (Müller, 1786) Klein, 1927, and *C. vorax* Stokes, 1887 (current names are *Chilodonella caudata*, *Trithigmostoma cucullulus* and *Chilodonella vorax*, respectively), from freshwater lakes in Nanjing. Only a couple of years later, he amended the list with a new species, *Dysteria amoyensis* Wang, 1934, which was discovered in a marine aquarium in Xiamen [52]. Nie and Ho [53] also established a new species, *Gastronauta fontzoui* Nie and Ho, 1943, extracted from freshwater shrimps; however, they only had a vague morphological description. After an almost three-decade blank, Wang [54] recorded 16 more species, including a new one, during a massive investigation on Mount Everest; unfortunately, only five were described with morphological characteristics. Subsequently, Shen [16] summarized her own novel studies and previous results on ciliate fauna investigation from the Tibet Plateau, and briefly described 22 species (including all the species from Wang [54]). Until then, studies were only conducted using live observation. Since the 2000s, more advanced studies have been based on a combination of live observation and silver staining, mainly focusing on marine and brackish water habitats (e.g., [1,3,4,9,55]). During this period, some scattered studies on soil species and parasites were also published (e.g., [37–40,56]). Research history in China can, therefore, be divided into three stages (Figure 2.1): (A) During the early stage from 1925 to 1973, only a handful of studies were published, with six species reported including two new taxa. (B) The Tibet stage (1974–2000) includes the massive faunal investigations summarized by Wang [54] on Mount Everest and the summary by Shen [16] on the Tibet Plateau. In total, they described 22 species, with one new form. This stage also included a few publications by Song and his collaborator [55,57,58]. (C) The molecular stage began after 2000. From then on, most species were described by both live observation and silver staining (mostly protargol staining). During this period, the number of recorded species, new species and species with ciliature patterns increased strongly. The molecular studies also had a rapid growth in this period (see the Molecular Phylogenetic Studies section below).

Table 1. Checklist of cyrtophorian ciliate species/isolates with morphological descriptions from China. New species are highlighted in bold. Species are presented with current names. * Ref. [4] by Song et al. summarizes 32 species found by Song’s group (Ocean University of China) from 1991 to 2008. Here, only seven species/populations not published before 2009 are listed. † This species was isolated from marine water, which is different from those populations of *Chilodonella uncinata* isolated from soil or freshwater habitats; thus, we count it as a different species. § Previous name was *Chilodonella parauncinata* [59].

Publication	Species Name (Current Name)	Ciliature	Site	Habitat
Wang (1925) [51]	*Chilodonella caudata* Stokes, 1885	-	Nanjing	Freshwater
	Chilodonella vorax Stokes, 1887	-	Nanjing	Freshwater
	Trithigmostoma cucullulus (Müller, 1786) Jankowski, 1967	-	Nanjing	Freshwater
Wang (1934) [52]	*Dysteria amoyensis* Wang, 1934	-	Xiamen	Marine
	Hartmannula entzi Kahl, 1931	-	Xiamen	Marine
Nie and Ho (1943) [53]	*Gastronauta fontzoui* Nie & Ho, 1943	-	-	Freshwater shrimps
Wang (1974) [54]	*Chilodonella aplanata* Kahl, 1931	-	Mount Everest	Soil
	Chilodonella parauncinata Wang, 1974	-	Mount Everest	Soil
	Chilodonella uncinata (Ehrenberg, 1838) Strand, 1928	-	Mount Everest	Soil
	Odontochlamys contexia (Kahl, 1931) Blatterer & Foissner, 1992	-	Mount Everest	Soil
	Pseudochilodonopsis algivora (Kahl, 1931) Foissner, 1979	-	Mount Everest	Soil
Table 1. Cont.

Publication	Species Name (Current Name)	Ciliature	Site	Habitat	
Shen (1983) [16]	Chilodonella aplanata Kahl, 1931	-	Tibetan plateau	Freshwater	
	Trithigmostoma bavaricepsis (Kahl, 1931) Foissner, 1987	-	Tibetan plateau	Sodium sulfate lake	
	Chilodonella capucina (Penard, 1922) Kahl, 1931	-	Tibetan plateau	Freshwater	
	Chilodonella dentata Faugue, 1876	-	Tibetan plateau	Freshwater	
	Chilodonella flaviatilis Stokes, 1885	-	Tibetan plateau	Freshwater	
	Chilodonella granulata Penard, 1922	-	Tibetan plateau	Freshwater	
	Chilodonella nana Kahl, 1928	-	Tibetan plateau	Freshwater	
	Chilodonella parauncinata Wang, 1974	-	Tibetan plateau	Freshwater	
	Chilodonella piscicola Zacharias, 1894	-	Tibetan plateau	Freshwater	
	Chilodonella turgidula Penard, 1922	-	Tibetan plateau	Freshwater	
	Chilodonella uncinata (Ehrenberg, 1838) Strand, 1928	-	Tibetan plateau	-	
	Lophophorina capronata Penard, 1922	-	Tibetan plateau	Freshwater	
	Odontochlamys contexa (Kahl, 1931) Blatterer & Foissner, 1990	-	Tibetan plateau	Freshwater	
	Odontochlamys gourandi Certes, 1891	-	Tibetan plateau	-	
	Pseudochilodonopsis algicora (Kahl, 1931) Foissner, 1979	-	Tibetan plateau	Freshwater	
	Pseudochilodonopsis labiata (Stokes, 1891) Packroff, 1988	-	Tibetan plateau	Freshwater	
	Trithigmostoma cucullulus (Müller, 1786) Jankowski, 1967	-	Tibetan plateau	Freshwater	
	Trochilia minuta (Roux, 1901) Kahl, 1931	-	Tibetan plateau	Freshwater	
	Trochilia palustris Stein, 1859	-	Tibetan plateau	Freshwater	
	Trochilia sulcata (Claparède & Lachmann, 1858)	-	Tibetan plateau	Freshwater	
Song (1991) [55]	Pseudochilodonopsis marina Song, 1991	√	Qingdao	Marine	
Song (1997) [57]	Chilodonella uncinata (Ehrenberg, 1838) Blatterer & Foissner, 1990	√	Qingdao	Freshwater	
Song and Packroff (1997) [58]	Dysteria brasiensis Faria et al., 1922	√	Qingdao	Marine	
Gong et al. (2002) [60]	Dysteria cristata (Gourret & Roeser, 1888) Kahl, 1931	√	Zhanjiang	Marine	
	Dysteria monostyla (Ehrenberg, 1838) Kahl, 1931	√	Qingdao	Marine	
Song (2003) [61]	Chlamydonella derouxi Song, 2003	√	Qingdao	Marine	
	Orthotrochilia pilata (Deroux, 1976) Song, 2003	√	Qingdao	Marine	
Gong and Song (2003) [33]	Dysteria magna Gong & Song, 2003	√	Qingdao	Mariculture water	Marine
Gong et al. (2003) [35]	Dysteria pusilla (Claparède & Lachmann, 1859) Kahl, 1931	√	Qingdao	Mariculture water	Marine
Gong and Song (2004) [34]	Coeloperix sleighi Gong & Song, 2004	√	Qingdao	Mariculture water	Marine
Gong and Song (2004) [62]	Hartmannula angustipilosa Deroux & Dragesco, 1968 Hartmannula derouxi Gong & Song, 2004	√	Qingdao	Mariculture water	Marine
Gong and Song (2004) [63]	Dysteria derouxi Gong & Song, 2004	√	Qingdao	Mariculture water	Marine
Gong et al. (2005) [64]	Chlamydonon mnemosyne Ehrenberg, 1835 Chlamydonon obliquus Kahl, 1931	√	Qingdao	Mariculture water	Marine
	Chlamydonon triquetrus (Müller, 1786) Kahl, 1931	√	Qingdao	Mariculture water	Marine
Gong and Song (2006) [65]	Brooklynella sinensis Gong & Song, 2006	√	Qingdao	Mariculture water	Marine
Gong and Song (2006) [66]	Chlamydonella derouxi Song, 2003 Chlamydonella pseudochilodon (Deroux, 1970)	√	Qingdao	Mariculture water	Marine
	Chlamydonellopsis caikini (Kahl, 1928) Blatterer & Foissner, 1990	√	Qingdao	Mariculture water	Marine
Gong et al. (2007) [67]	Dysteria brasiensis Faria et al., 1922 Dysteria crassipes Claparède & Lachmann, 1859 Dysteria pectinata (Nowlin, 1913) Kahl, 1931 Dysteria semilunaris (Gourret & Roeser, 1886) Kahl, 1931	√	Qingdao	Mariculture water	Marine
Liu et al. (2008) [68]	Dysteria subtropica Qu et al., 2015 Pseudochilodonopsis marina Song, 1991	√	Qingdao	Huizhou	Marine
Table 1. Cont.

Publication	Species Name (Current Name)	Ciliature	Site	Habitat
Shao et al. (2008) [69]	Hartmannula sinica Shao et al., 2008	✓	Qingdao	Mariculture water
Gong et al. (2008) [70]	Trichopodiella faurei Gong et al., 2008	✓	Qingdao	Marine
Fan et al. (2009) [71]	Chlamydodon obliquus Kahl, 1931	✓	Huizhou	Marine
Pan et al. (2008) [69]	Hartmannula sinica Shao et al., 2008	✓	Qingdao	Marine and Mariculture
* Song et al. (2009) [4]	Aegyria oliva Claparede & Lachmann, 1859	✓	Qingdao	Marine
Deng et al. (2015) [37]	Chilodonella piscicola	✓	Qingdao	Marine
Chen et al. (2012) [23]	Aegyria rostellum Chen et al., 2012	✓	Shenzhen	Brackish water
Chen et al. (2011) [72]	Chlamydodon pascidentatus Deroux, 1976	✓	Qingdao	Mariculture water
Pan et al. (2011) [73]	Dysteria derouxi Gong & Song, 2004	✓	Qingdao	Mariculture water
Pan et al. (2013) [12]	Chlamydodon caudatus Pan et al., 2013	✓	Guangzhou	Brackish water
Pan et al. (2013) [12]	Chlamydodon parammossyne Pan et al., 2013	✓	Changyi	Mariculture water
Pan et al. (2013) [75]	Orthotrochilia sinica Pan et al., 2013	✓	Qingdao	Marine
Zhao et al. (2014) [76]	Cryptoparichthyella Sleighi Gong & Song, 2004	✓	Zhanjiang	Marine
Qu et al. (2015) [77]	Pseudochilodonopsis quadrivacuolata Qu et al., 2015	✓	Yantai	Mariculture water
Qu et al. (2015) [59]	§ Chilodonella apouncinata nom. nov.	✓	Qingdao	Freshwater
Qu et al. (2015) [78]	Dysteria brasiliensis Faria et al., 1922	✓	Yantai	Mariculture water
Pan et al. (2016) [24]	Dysteria ovalis (Gourret & Roesser, 1886) Kahl, 1931	✓	Shanghai	Brackish water
Publication	Species Name (Current Name)	Ciliature	Site	Habitat
---------------	---	-----------	---------------------	------------------
Pan et al. (2017) [79]	**Atopochilodon distichum** Deroux, 1976 **Chlamydonon rectus** Ozaki & Yagiu, 1941 **Coeloperis sinica** Pan et al., 2017	√	Hong Kong	Brackish water
	Dysteria compressa (Gourret & Roeser, 1886) Kahl, 1931 **Odontochlamys alpestris bicylata** Foissner et al., 2002	√	Qingdao	Marine
Qu et al. (2017) [25]	**Aegyria foissneri** Qu et al., 2017 **Lynchella minuta** Qu et al., 2017	√	Zhanjiang	Marine
Chen et al. (2018) [80]	**Aegyria apoliva** Chen et al., 2018 **Trithigmostoma cuctillus** (Müller, 1786) Jankowski, 1967	√	Qingdao	Marine
Li et al. (2018) [39]	**Chilodonella hexasticha** Kiernik, 1909	√	Wuhan; Dali; Jiangsu; Hanchuan; Liangshan	Ectoparasite of fish
	Chilodonella piscicola Zacharias, 1894	√	Wuhan; Dali; Jiangsu; Hanchuan; Liangshan	Ectoparasite of fish
Qu et al. (2018) [13]	**Chlamydonon cressidens** Qu et al., 2018 **Chlamydonon oligochaetus** Qu et al., 2018 **Chlamydonon wilberti** Qu et al., 2018	√	Qingdao	Marine
Qu et al. (2018) [81]	**Chlamydonon bourlandi** Qu et al., 2018 **Chlamydonon triquetrus** (Müller, 1786) Kahl, 1931 **Chlamydonon similis** Qu et al., 2018	√	Zhanjiang	Brackish water
	Chlamydonon bourlandi Qu et al., 2018 **Chlamydonon pararoseus** Wang et al., 2019 **Dysteria crassipes** Claparede & Lachmann, 1859 **Dysteria monostyla** (Ehrenberg, 1838) Kahl, 1931	√	Zhanjiang	Marine
Wang et al. (2019) [26]	**Chlamydonon bourlandi** Qu et al., 2018 **Chlamydonon pararoseus** Wang et al., 2019 **Dysteria crassipes** Claparede & Lachmann, 1859	√	Zhanjiang	Marine
Wang et al. (2019) [40]	**Chilodonella uncinata** (Ehrenberg, 1838) Strand, 1928 **Chilodonella hexasticha** Kiernik, 1909	√	Hubei	Ectoparasite of fish
Jin et al. (2021) [41]	**Kyaroikeus paracetarius** Jin et al., 2021	√	Ningbo	Parasite of beluga whale
	Planilamina ovata Ma et al., 2006	√	Ningbo	Parasite of beluga whale
Qu et al. (2021) [14]	**Gastromauta paraoloi** Qu et al., 2021 **Trithigmostoma cuctillus** (Müller, 1786) Jankowski, 1967	√	Shenzhen; Qingdao; Zhanjiang	Freshwater
Wang et al. (2021) [82]	**Dysteria brasiliensis** Faria et al., 1922 **Dysteria compressa** (Gourret & Roeser, 1886) Kahl, 1931 **Dysteria ozakii** Wang et al., 2021	√	Haikou	Brackish water
Zhao et al. (2022) [83]	**Dysteria brasiliensis** Faria et al., 1922	√	Ningbo	Brackish water
	Dysteria crassipes Claparede & Lachmann, 1859 **Dysteria paracrustipes** Zhao et al., 2022	√	Ningbo	Brackish water
Sum	103 species, 147 populations, 39 new species	82		
Figure 2. Timeline and accumulated numbers of studied cyrtophorian ciliates (species) in China. The four lines represent the numbers of recorded species, new species, species with ciliature information, and taxonomic hits (lowest taxonomic rank to species or genus) with SSU rDNA sequences. A, B, and C represent three study periods: the early stage (A) 1925–1973, the Tibet stage (B) 1974–2000, and the molecular stage (C) since the 2000s.

2.2. Species List and Classification

As of May 2022, a total of 103 morpho-species (147 isolates) have been reported in China which can be assigned to 8 families and 31 genera (Table 1). Among them, 82 species with ciliature (mainly from protargol staining) have been reported. Three new genera, Aporthotrochilia Pan et al., 2012, Heterohartmannula Pan et al., 2012, and Paracyrtophoron Chen et al., 2012, and thirty-nine new species have been erected. Here, we list the genus classifications regarding the species (with reported morphology) found in China. The class, subclass, order and family assignments are mainly based on Lynn [8] and subsequent modifications (see references in Table 1). Accordingly, Figures 3 and 4 provide an illustrated key to identify the genera existing in China on the basis of morphological characters (mainly ciliary patterns).

A list of cyrtophorian genera recorded in China and their systematic assignments.

Class Phyllopharyngea de Puytorac et al., 1974
Subclass Cyrtophoria Fauré-Fremiet in Corliss, 1956

Order Chlamydodontida Deroux, 1976

Family Chilodonellidae Deroux, 1970

Chilodonella Strand, 1928
Odontochlamys Certes, 1891
Pseudochilodonopsis Foissner, 1979
Phascolodon Stein, 1859
Trithigmostoma Jankowski, 1967

Family Chlamydodontidae Stein, 1859

Chlamydodon Ehrenberg, 1835
Paracyrtophoron Chen et al., 2012

Family Gastronautidae Deroux, 1994

Gastronauta Engelmann in Bütschli, 1889
Family Lynchellidae Jankowski, 1968
- *Atopochilodon* Kahl, 1933
- *Chlamydonella* Deroux in Petz et al., 1995
- *Chlamydonellopsis* Blatterer & Foissner, 1990
- *Coeloperix* Deroux in Gong & Song, 2004
- *Lynchella* Jankowski, 1968

Family Plesiotrichopidae Deroux, 1976
- *Trochochilodon* Deroux, 1976
- *Incertae sedis* Lophophorina Penard, 1922

Order Dysteriida Deroux, 1976
Family Dysteriidae Claparède & Lachmann, 1859
- *Agnathodysteria* Deroux, 1976
- *Dysteria* Huxley, 1857
- *Microxysma* Deroux, 1977
- *Mirodysteria* Kahl, 1933
- *Trochilia* Dujardin, 1841

Family Hartmannulidae Poche, 1913
- *Aegyria* Chen et al., 2012
- *Aporthroprochilia* Pan et al., 2012
- *Brooklynella* Lom & Nigrelli, 1970
- *Chlamydonyx* Deroux, 1976
- *Hartmannula* Poche, 1913
- *Heterohartmannula* Pan et al., 2012
- *Orthotrochilia* Deroux in Song, 2003
- *Trichopodiella* Corliss, 1960
- *Trochlioides* Chen et al., 2011

Family Kyaroikeidae Sniezek & Coats, 1996
- *Kyaroikeus* Sniezek, Coats & Small, 1995
- *Planilamina* Ma et al., 2006

Figure 3. Illustrated key for the identification to cyrtophorian genera found in China. All the illustrations are original. The arrows and colored circles indicate dichotomic characteristics. Abbreviations: CSB—cross-striated band; TF—terminal fragment.
2.3. Comments on New Taxa Described from China

Three new genera and thirty-seven new species have been established in China. We carefully examined all these new taxa using the descriptions in the original publications and by checking the deposited specimens, and found that the establishment of one genus was not necessary, and the name of one species was already pre-occupied.

Paracyrtophoron Chen et al., 2012, was established mainly because it differed from its closest congener Cyrtophoron by “the lack of a fragment near anterior ends of right kineties and transpodial fragments in the posterior portion of the ventral surface” [23]. Here, the “fragment near anterior ends of right kineties” seems to be a structure only described in Cyrtophoron isagogicum [6], but not in other Cyrtophoron species; thus, it cannot be used as a promising generic difference. Additionally, it is not convincing that the transpodial fragments can be considered as a genus-level discrepancy, because these fragments are not necessarily present among the species of the related genus Chlamydodon (e.g., present in C. pararoseus, but absent in C. wilberti) [26,81]. Therefore, we doubt the necessity and the validation of the establishment of Paracyrtophoron from Cyrtophoron.

Furthermore, we have some comments on another genus, Aporthotrochilia Pan et al., 2012. It has been stated that the difference between Aporthotrochilia and Orthochilia is that the former has fragments on the right, posterior part of the frontoventral kineties and a higher number of terminal fragments [74]. This description is, however, somewhat unclear. In our opinion, the outer right kineties in Aporthotrochilia are interrupted in the middle, which leaves anterior parts (called “several terminal fragments” by the original authors) and posterior parts (corresponding to the posterior fragments). This is supported by L, S and T in the original publication [74], in which the anterior fragments are clearly a part of the outer right kineties. Thus, Aporthotrochilia has only one terminal fragment. Nevertheless, this interruption of the outer right kineties could be considered as a sufficient generic difference, and the establishment of the new genus is hence reasonable.

A new species of Chilodonella, C. parauncinata, was suggested by Qu et al. [59], and the separation from its congeners is undoubtable. However, the authors neglected the preoccupation of the species name, which was also a new species established by Wang [54] from Mount Everest (no deposited type material). This highlights the importance of an extensive literature search, especially for taxonomic study. C. parauncinata Wang, 1974, was originally published in Chinese; we provide herein a translation of the vague diagnosis of the poorly known species (no staining information): “Cell length 45–48 µm in vivo; body

Figure 4. Illustrated key for the identification to cyrtophorian genera found in China (Figure 3 continued). All the illustrations are original. The arrows and colored structures indicate dichotomic characteristics. Abbreviations: NR—nematodesmal rods; PK—postoral kineties; and Pr—preoral kinety.
shape irregularly oval, beak-shaped protrusion to left in anterior end; posterior end more or less rounded, concave on right margin; four right and four or five left kineties; isolated from soil on the Mount Everest”. These two isolates can be clearly distinguished by the numbers of somatic kineties: the form in Qu et al. [59] had five right (vs. four) and six or seven left kineties (vs. four or five). Therefore, *Chilodonella parauncinata* sensu Qu et al., 2015 is a junior primary homonym, and it is permanently invalid according to article 57.2 of the ICZN [84]. Thus, we replace *Chilodonella parauncinata* sensu Qu et al., 2015 with a new name, *Chilodonella apouncinata* nom. nov.

Chilodonella apouncinata nom. nov.

Chilodonella parauncinata—Qu et al., J. Eukaryot. Microbiol. 2015, 62, 267–279 (primary homonym, non *Chilodonella parauncinata* Wang, 1974).

ZooBank registration number of present paper. urn:lsid:zoobank.org:pub:CBB2291F-05EC-4840-8979-01F28FF6DB83.

ZooBank registration number of Chilodonella apouncinata nom. nov. urn:lsid:zoobank.org:act:5E887B0E-B6DC-462A-9C20-9A1CE6721CE44.

Type specimen. See Qu et al. [59] (p. 269, Figure 3H).

Type locality. See Qu et al. [59] (p. 275).

Deposition of type materials. See Qu et al. [59] (p. 275).

Etymology. The species-group name *apouncinata* is a composite of the Greek adjective *apo*- (from) and the species-group name *uncinata*, indicating that the species is similar to *Chilodonella uncinata*.

Morphological description and morphogenesis. See Qu et al. [59] (pp. 269–271).

Comparison with congeners. See Qu et al. [59] (pp. 272–273).

3. Molecular Phylogenetic Studies

A new perspective on the systematics of cyrtoophorid ciliates emerged at the turn of the millennium with the advent of molecular techniques. Molecular research corresponds to the molecular stage of morphological research (stage C in Figure 2.1). The first two SSU rDNA (small subunit ribosome DNA) sequences from China of the species *Dysteria derouxi* (AY378112) and *Hartmannula derouxi* (AY378113) were released in 2003. Shortly after that, the number of species studied with molecular sequences increased rapidly. By May 2022, 100 SSU rDNA sequences of Chinese origin had been deposited in the GenBank database with to 74 taxonomic hits (lowest taxonomic rank to species or genus), of which 66 had verifiable morphological records (Table 2). The molecular signatures (mainly the SSU rDNA) were then used to study the phylogeny of cyrtoophorian ciliates. By this, Li and Song [85] revealed the phylogenetic positions of *Dysteria derouxi* and *Hartmannula derouxi*, the monophyly of families Chilodonellidae, Chlamydodontidae and Dysteriidae, and the clustering of Hartmannulidae with *Isochona* species (subclass Chonotrichia). Gong et al. [70] constructed phylogenetic trees using SSU rDNA and group I introns. Although only a few representatives were involved, the possible close relationship of Hartmannulidae and the subclass Chonotrichia was also indicated.

Table 2. NCBI-deposited SSU rDNA sequences of cyrtoophorian ciliates from China. One hundred sequences in total belonging to seventy-four cyrtoophorid taxonomic hits.

Taxonomic Hit	Accession(s)	Taxonomic Hit	Accession(s)
Aegyria apoliva	FJ998028	*Dysteria ovalis*	KX258193
Aegyria foissneri	KX364493	*Dysteria ozakii*	MW046154
Aegyria oliva	FJ998029	*Dysteria paracrassipes*	OL527698
Agnathodysteria littoralis	KC753482	*Dysteria paraprocera*	KM103263
Aporhithrochilia pulex	HQ605947	*Dysteria pectinata*	FJ870068
Atopochilodon distichum	KT461933	*Dysteria procera*	DQ057347
Table 2. Cont.

Taxonomic Hit	Accession(s)	Taxonomic Hit	Accession(s)
Brooklynella sinensis	KC753483	**Dysteria proarafons**	KM103261
§ Chilodonella apouncinata	KJ509197	§ Dysteria sp.	FJ868205
Chilodonella hexasticha	MH342041, MH342042, MH342045, MH342046	Dysteria semilunaris	KX258194
Chilodonella piscicola	MH341624, MH342043	Dysteria subtropica	KC753494
Chlamydotodon bournlandi	MG566059, MG5882887	Gastronauta paraloisi	MW072507
Chlamydotodon caudatus	JQ904058	Hartmannula derouxi	AY378113
Chlamydotodon mnemosyne	FJ998031	Hartmannula sinica	EF623827
Chlamydotodon obliquus	FJ998030	Heterohartmannula fungi	HQ605946, FJ868204
Chlamydotodon oligochaetus	KY496620	Kyaroikus paracretarius	MN830168
Chlamydotodon paramnemosyne	JQ904059	Lychella minuta	KX364494
Chlamydotodon parareseus	MK882886	Lynchella nordica	FJ998036
Chlamydotodon rectus	KT461932	³Lynchella sp.	FJ998036
Chlamydotodon salinus	JQ904057	Microxysma acutum	JN870069
Chlamydotodon similis	KY496621	Mirodysteria decora	JN870020
Chlamydotodon tripetrous	KX302700, MG566058	Odontochlamys alpestris biciliata	KC753484
Chlamydotodon wibrerti	MG566056	Paracyrtophilanthropic	FJ998035
Chlamydotonella derouxi	KJ509198	Planilamina ovata	MN830169
Chlamydotonella irregularis	KC753486	Pseudochilodonopsis mutabilis	JN870121, KR611083
Chlamydotonellopsis calcisini	FJ998033, KC753487	Pseudochilodonopsis flaviatilis	JN870121, KR611083
Coeloperix sinica	FJ998034	Pseudochilodonopsis mutabilis	KR611084, KC753498
Coeloperix sleighi	KC753489	Pseudochilodonopsis quadrivacuolata	KR611082
* Coeloperix sp.	FJ998034	* Pseudochilodonopsis sp.1	KC753495
Dysteria brasilensis	EU242512, MW046155, OL527700-OL5277004	* Pseudochilodonopsis sp.2	KC753496
Dysteria compressa	KC753491, MW046156	* Pseudochilodonopsis sp.3	KC753497
Dysteria crassipes	FJ868206, KC753492, KC753493, MK882889, OL527699	* Spirodysteria kahli	KC753499
Dysteria cristata	KC753488	Trichopodiella faurei	EU515792, KC753500, FJ870071
Dysteria derouxi	AY378112, KX302697	Trithigmostoma cacicularbes	FJ998037, MW116158, MW116159
Dysteria lanceolata	KC753490	Trochiloides recta	JN870171
Dysteria monostyla	MK882888	Trochiloides flavus	JN870171
Dysteria nabia	KM103262	Trochiloides flavus	JN870171

* No corresponding morphological data. § The deposited species name in NCBI is Chilodonella parauncinata.
All subsequent work followed the systematic scheme proposed by Lynn [8] that cypertophorian ciliates belong to the subclass Cyrtophoria, with two orders assigned: Chlamy-
dodontida Deroux, 1976 and Dysteriida Deroux, 1976. Gao et al. [86] comprehensively
analyzed the phylogeny of cypertophorian ciliates using SSU rDNA sequences from 7 families
and 17 genera, and portrayed the overall phylogenetic structure for the first time, which
then became the template for the following studies: The non-monophyly of the order
Chlamydomontida and the monophyly of Dysteriida were confirmed; a new family, Pithiti-
dae Gao et al., 2012, was established based on its special phylogenetic position and unique
morphological feature; and the position of the family Plesiotrichopidae was found to be
uncertain. However, we agree with Lynn [87] that the sequence of Plesiotrichopus, the type
genus of Plesiotrichopidae, is still missing; thus, the certainty of the family transfer needs
further testing in the future. Following that, Chen et al. [88] conducted complementary
analyses with additional SSU rDNA sequences. The phylogenetic topology was consistent
with that in Gao et al. [86], but with further discussion on some newly sequenced taxa such
as Brooklynella. Based on these results, the possible evolutionary pattern of cypertophorian
ciliates was proposed. However, this evolutionary routine was without sufficient references
from either morphological data or molecular phylogeny. The authors also showed the
prediction of the secondary structures of the hypervariable region 4 (V4) of the SSU rDNA
of the representative cypertophorian genera. Later, Wang et al. [89] analyzed the phylogeny
of class Phyllopharyngea—including Cyrtophoria—using two genes: the mitochondrial
SSU rDNA (mtSSU rDNA) and the nuclear SSU rDNA. The phylogenetic results were gen-
erally consistent with previous works. Recently, Pan et al. [90] employed high-throughput
sequencing to obtain the genomic and transcriptomic data of seven species, including
five cypertophorians. The emphasis of this paper, however, was to solve the uncertain
phylogenetic position of Synhymenia, and was not focused on cypertophorian ciliates.

Other works involving molecular phylogeny (SSU rDNA) were combined with mor-
phological descriptions, serving as a complementary method for species identification [12–
14,24–26,37,39,41,59,74,77–81].

In the present work, we reconstruct a comprehensive phylogenetic tree inferred from
updated SSU rDNA sequences (Figure 5). Sequence selection and alignment, and phyloge-
netic tree construction methods are described in the Supplementary Materials. The topo-
logy of the present phylogenetic tree is consistent with previous works (e.g., [14,41,59,77–
81,85,88–90]), and similar conclusions can be drawn: (1) The order Clamydomontida
are monophyletic, while the order Dysteriida are non-monophyletic. (2) The subclass
Chonotrichia are nested within Dysteriida, on the level of the family Hartmannulidae.
(3) Kyarokeidae display as a subfamily of Dysteriidae. (4) Gastronautidae represent a
transitional family among Chilodonellidae, Chlamydomontidae, and Lynchellidae.
Figure 5. Phylogenetic tree inferred from SSU rDNA sequences. The trees were reconstructed by two algorithms: IQTREE and MrBayes. Support values from the two methods are provided at the branching points (IQTREE/MrBayes). Bold dots at the branching points indicate full support from both analyses. “-” indicates discrepancy between the topologies of IQTREE and the MrBayes trees. The scale bar represents five substitutions per hundred nucleotide positions.

4. Proposed Phylogeny

With some key members not yet uncovered, as well as missing molecular representatives, a detailed evolutionary relationship (phylogeny) of the subclass Cyrtophoria cannot be drawn satisfactorily. As mentioned above, Chen et al. [88] have attempted to illustrate the evolutionary relationships among the recognized cyrtophorian genera. However, these relationships were not strictly based on morphological and molecular data. For example, the solid separation of the two orders, Chlamydodontida and Dysteriida, were not supported by molecular phylogenetic analyses (Figure 5), and the positions of Chlamydonodon and Cyrtophoron at the end of the Lychellidae branch were confusing. Nevertheless, what we can infer is that there is an obvious discrepancy between the considerable knowledge on the morphological diversity of cyrtophorian ciliates and their phylogeny and evolution.
It has been emphasized that the morphogenetic data have to be taken into account in order to reconstruct evolutionary and phylogenetic relationships in ciliates. However, investigations show that the morphogenetic process of cyrtophorians seems quite identical among all groups [6,13,14,19,57,59,91,92], thus providing only limited information. Based on the review of the morphological (including feeding- and motility-associated morphological traits) and phylogenetic works mentioned above, and the one constructed ourselves (Figure 5), we propose the phylogeny of 29 genera from 9 families for which molecular data are available (Figure 6).

Figure 6. Evolutionary pattern of the subclass Cyrtophoria inferred from species with both morphological and molecular data. All illustrations are original.

The separation of the two orders, Chlamydomontida and Dysteriida, is mainly based on the form of the cell (dorso-ventrally compressed in the former and laterally compressed in the latter) and the posterior adhere organelles (podite and/or glandule absent in the former and present in the latter). However, nothing has been mentioned about the trend of the morphogenesis-related postoral kineties (see stomatogenesis zone—SZ—in Figure 1). In the order Chlamydomontida, the postoral kineties are not well separated from either the left or right kineties (Lynchellidae, Chlamydomontidae, and Trithigmostoma), or are merged as the inner part of the left kineties (Chilodonellidae and Gastronauta). Despite the highly degenerated left kineties, the postoral kineties are still connected with the left kineties in Hartmannulidae. Then, the postoral kineties tend to separate from the left kineties and become independent in Dysteriidae and Kyaroikeidae. We here hypothesize that the key evolutionary event of cyrtophorian ciliates lies in the separation of the stomatogenesis zone (postoral kineties) from the left kineties, namely, the formation of an independent “sexual organelle”.

As shown in Figure 5, the phylogenetic positions of the families Lynchellidae, Chilodonellidae, Chlamydomontidae, Hartmannulidae, and Dysteriidae are clear, with strong support from abundant morphological and molecular data [86,88,89]. In contrast, the positions of the families Pithitidae, Gastronautidae, Plesiotrichopidae, and Kyaroikeidae appear vague, mainly because of the lack of morphological and/or molecular data. It should be kept in mind that one should not over interpret the topology of phylogenetic trees derived from limited molecular data. Pithitidae and Plesiotrichopidae comprise only a few morpho-species and only one molecular representative each, which largely obscures phylogenetic study. Nevertheless, we agree with Gao et al. [86] that
these two families are intermediate groups between the orders Chlamydodontida and Dysteriida, mainly from the aspect of morphological comparison. Similarly, although Gastronutidae has only one sequence positioned within the family Chilodonellidae, this family is valid and represents an intermediate group within the order Chlamydodontida based on its unique combination of morphological characteristics [14]. The separation of Kyaroikeidae (Kyaroikeus and Planilamina) from Dysteriidae is not well supported by either morphological or molecular data, and Kyaroikeidae species could be seen as highly specialized Dysteriidae adapted to parasitism [41]. Therefore, we place it at the basal position of Dysteriidae.

Several intermediate genera are also recognized: Trithignonstoma belongs to the family Chilodonellidae, but shares some characteristics with the Chlamydodontidae family, which is why it is placed at the basal position within the Chilodonellidae [14]. Brooklynella, Trochilioides and Microxysma represent transitional genera between Hartmannulidae and Dysteriidae [86,88] with intellectual morphological characteristics [65,72,75,76].

5. Ecology

5.1. Sites, Habitats, and Distribution

China is characterized by a vast diversity of habitats, including plateau regions, deserts, rain forests, wetlands, rivers, lakes, coastal areas, and deep sea. Accordingly, it is reasonable to assume that there should also be a high degree of ciliate biodiversity. However, apart from in the very early stage, respective investigations have mostly been carried out along coastal areas (Figure 7), while other habitats are only sporadically studied. The sampled sites can, therefore, be categorized into coastal areas and inland areas. Coastal areas can further be classified into three parts: (1) The northern part (the coasts of the Bohai Sea and the Yellow Sea) is located in a temperate zone. Sampling sites include Qingdao, Yantai, Changyi, and Dongying. (2) The eastern part (the estuary of Yangtze River) includes Shanghai, Ningbo, and Hangzhou. (3) The southern part (the coasts of the Southern China Sea and the estuary of the Pearl River) includes Xiamen, Huizhou, Hong Kong, Shenzhen, Guangzhou, Zhuhai, Zhanjiang, and Haikou. The inland areas cover the Tibet Plateau (including Mount Everest), Gansu province, and cities along the Yangtze River and its tributary (Dali, Lhasa, Huzhou, Hanchuan, Wuhan, Nanjing, and Changzhou).

The investigated areas covered five habitat types or lifestyles (Figure 7), namely, marine, brackish water, freshwater, soil, and parasitism. Studies on the northern coastal areas focused mainly on marine habitats (coastal waters, indoor or open sea mariculture waters), while studies on the eastern and southern coasts were mainly conducted from brackish waters. Freshwater habitats were mainly investigated along the Yangtze River and its tributary, and on the Tibetan Plateau. Most evidence of cyrtophorian parasitic lifestyles also comes from these areas. Soil cyrtophorians were mainly isolated from Gansu and Mount Everest.

Many studies on pelagic and soil habitats indicate that the dispersal and distribution of ciliates follow the moderate endemicity model (e.g., [93]). Apparently, this also holds true for cyrtophorian ciliates. Currently, more than one third of cyrtophorians discovered in China are new and possibly endemic, while the rest can be found in other countries or on other continents as well. The only attempt to analyze the biogeographic distribution patterns of cyrtophorian ciliates was briefly conducted on a well-studied genus: Chlamydodon [13]. This work summarized the historical studies on the morphology of this genus worldwide, showed the global distribution of Chlamydodon species, and indicated possible cosmopolitan and endemic species. However, as stated by the authors, the analyses were very limited, mainly because of the scattered studies on this genus. This limit also applies to the studies on cyrtophorians in China. For instance, a cosmopolitan species, Chlamydodon memnosyne, has only been formally reported once in a publication from China [64], but sampled and recorded in master’s and PhD theses several times (by personal communication). This issue prevents a thorough diversity study and also hinders intra- and interspecific comparisons for both morphological and molecular aspects. There-
fore, in order to obtain more detailed data (at population level) with a higher geographical resolution, extensive sampling must be carried out in different habitats at a larger scale.

Figure 7. Sampling sites and habitat categories (or lifestyles) of studied cyrtophorian ciliate populations from China. The dots represent study sites, and the sizes of the dots indicate the number of populations studied. Colors represent different habitat types or lifestyles.

5.2. Lifestyles

Most cyrtophorian species display a free-living periphyton life, and can thus be easily sampled by gently scratching the substrate or enrichment with artificial substrates such as glass slides [35,67]. Some species are found mainly in aquaculture water bodies, especially mariculture waters [33–35] such as Dysteria crassipes [67,79]. A few species exhibit a parasitic lifestyle. Chilodonella uncinata [40], C. piscicola [37,39], and C. hexasticha [38–40] have been reported to be opportunistic or obligate parasites on gills and the skin of freshwater fish. Furthermore, two mammal parasites, Kyaroikeus paracetarius and Planilamina ovata, were isolated from the mucus of an unhealthy captive beluga [41].

5.3. Food Source and Feeding Types

Cyrtophorian ciliates mainly feed on bacteria (including cyanobacteria) and/or eu-karyotic microalgae, and they are obligate bacterivores, algivores, or omnivores [12–14]. This could be inferred by a direct check of food vacuoles or cultivation attempts using grain-enriched bacteria. Some of this information can be used for species identification. For instance, Pseudochilodonopsis algivora is filled with algae inclusions, which is a promising character to quickly identify this species [16]. Some species such as Aegyria oliva, A. paroliva, Chlamydodon bourlandi, C. obliquus, and Paracyrtophoron tropicum have unusual violet digested inclusions that can be used to aid species identification [4,23,26,82]. We have tried to summarize food inclusions by checking descriptions, photomicrographs, and cultivation attempts in the literature. A large part of cyrtophorian ciliates feed on microalgae (e.g., Chlamydodon, Hartmaniella, Pseudochilonopsis, and Trithigmostoma). This can be best explained by their strong pharyngeal basket which is adapted to undertake microalgae food. Small, spherical algae are mostly observed as food inclusions (e.g., [12,16,55,59]). Large diatoms are also commonly found, and most of them belong to Naviculaceae (e.g., [14,24,80,81]), while Cyclotella is casually identified [24]. Thus far, filamentous cyanobacteria have only been reported in Chlamydodon mnemosyne [64] and
a *Chilodonella* species [59]. Bacterivorous species are also common, especially for those species found in the aquaculture waters (*Chilodonella* spp. and *Dysteria* spp.). These species can be cultivated by the enrichment of bacteria by adding rice or wheat grains. A few species (*Pseudochilodonopsis marina*, *Dysteria brasiliensis*, and *Gastronauta paraloisi*) have been reported to feed on both bacteria and small, spherical algae, and thus are possibly omnivorous [14,55,67,68,77]. No predation has been found in cyrtophorian ciliates. Although *Aegyria oliva* has been reported once to contain small scuticociliates and *Aspidisca* in its inclusions [4], this was likely the result of non-selective feeding, and no predatory behavior was confirmed.

5.4. Abundance

Cyrtophorian ciliates have relatively low abundance in natural habitats compared to other ciliates, but some species (bacterivores or omnivores) are found to be quite abundant in aquaculture or saprobic environments, such as *Dysteria* spp. [26,67,77] and *Gastronauta paraloisi* [14]. Although some diatom consumers, such as *Trithigmostoma*, may be dominant when food diatoms are enriched [14,81], the population density of obligate algivores is usually low.

5.5. Others

A few studies have reported that dysteriid species (mainly *Dysteria*) have possible ectosymbiotic bacteria (most likely bacterial epibionts) on cell surface, e.g., *Aegyria foissneri* [25], *Dysteria brasiliensis* [67], *D. compressa* [80], *D. crassipes* [26,67,79], *D. lanceolata* [72], *D. monostyla* [26], *D. paraprocera* [79], and *D. subtropica* [68,79]. The occurrence and the type of these bacteria seem to be environment-induced [67,77]. However, the exact function of these bacteria is yet unknown.

6. Prospects

With almost a century of research history, studies on the taxonomy, phylogeny, and ecology of cyrtophorian ciliates in China have accumulated substantial results. In addition to this, we offer an outlook on the future research of this group of ciliates.

1. Despite the considerable number of studies published in China, as described above, it is clear that there are still many unknown species that prevent a more detailed and cohesive systematic scheme of Cyrtophoria. Thus, more investigations into fauna need to be conducted on a large regional scale with different habitats. In contrast to massive investigations from marine and brackish water habitats, sampling from freshwater and soil as well as extreme environments such as hypersaline lakes (mostly on the Tibetan Plateau, western China) and cold regions (northern China) are urgently needed;

2. The de facto standard for the taxonomic study of ciliates combining morphology (live observation and silver staining) and molecular phylogeny [94] has been well practiced for Cyrtophoria over the last decade. As high-throughput sequencing becomes cost-efficient and more effective bioinformatic tools are developed, it is possible to use these techniques to perform phylogenomic reconstruction, as indicated by [91]. Thus, in the near future, genomic/transcriptomic data should also be included in taxonomy or phylogenetic study routines to achieve higher phylogenetic resolution;

3. Similarly to other ciliate groups, species separation/circumscription is still a major problem for the taxonomy of cyrtophorian ciliates. Different geographical populations of the same species should be recorded, described and compared on the aspects of morphology and different marker genes;

4. Attention should be paid to the ectosymbiotic bacteria (or bacterial epibionts) on the cell surface of *Dysteria*, with emphasis on trophic function as well as possible phylogenetic signals to their hosts;

5. Detailed ecological roles (niches) of cyrtophorian ciliates should be elucidated. This could be performed by annual or seasonal sampling, cultivation experiments, and
checking food vacuoles or fluorescence in situ hybridization (FISH) to detect species occurrence, food inclusion, and trophic relationships (autecology).

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/microorganisms10071325/s1. Description of the methods of sequence selection, sequence alignment, and phylogenetic tree construction. References [87,95–99] are cited in the Supplementary Materials.

Author Contributions: Conceptualization, Z.Q. and X.H.; literature collection, Z.Q. and H.P.; formal analysis, Z.Q.; visualization, Z.Q. and C.W.; writing—original draft preparation, Z.Q.; writing—review and editing, Z.Q., X.H., H.P., J.G. and S.F.; funding acquisition, Z.Q., H.P. and X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (project numbers: 32100394, 32170533, and 41976086) and the fellowship of China Postdoctoral Science Foundation (2021M691887).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: SSU rDNA were obtained from the NCBI database, the accession numbers are shown in Figure 5.

Acknowledgments: Many thanks are due to Weibo Song, Ocean University of China, for the constructive comments that led to improvement of the image quality. We would like to thank the anonymous reviewers for their constructive comments, which helped to improve the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

General terminology regarding to the morphological structures of cyrtophorian ciliates.

- **Cross-striated band (CSB):** Tubular band with stripes along the cell periphery between ventral and dorsal sides. It can be complete, interrupted or highly shortened. The function is likely to reinforce the cell. Common in the genera Chlamydodon and Coeloperix.

- **Cyrtos (pharyngeal basket):** In some ciliates (including Cyrtophoria), the pharyngeal is highly specialized with supporting fibers and a bunch of microtubes, forming a complex structure. A short fragment on the equatorial position of the right margin of the cell, seldom another one on the left margin (e.g., Chlamydonella). This structure is sometimes difficult to detect. No cilia generated.

- **Equatorial fragment (EF):** A tubular secretion cavity at the posterior part of the cell. The secretion of the mucus or thread can adhere the cell to the substrate. Common in the suborder Dysteriida.

- **Glandule (G):** Two clearly separated parts can be observed; it is called heteromeric. Two forms of heteromeric macronucleus are classified, centrally heteromeric (families Chilodonellidae and Gastromonadidae) and parallelly heteromeric (other families).

- **Heteromeric macronucleus:** An individual rod consists of a bunch of microtubes. Several to many rods around the cytostome, supporting the cytopharyngeal basket. The number of rods is a relatively stable feature, which is often used for species separation. Short kinetal fragments around the cytostome, usually two or several circumoral kineties in front of cytostome, and one preoral kinety on the anterior left. Those kineties are usually composed of dikinetids.

- **Nematodesmal (pharyngeal) rods (NR):** A cone-shaped organelle on ventral side, at the posterior part of the cell. A hollow, tubular secretion cavity can be often observed. The function is to anchor the cell to the substrate, or to assist the ciliate to crawl on the substrate. Common in the suborder Dysteriida.
According to the position to the cytostome, the somatic kineties are divided into three parts: right kineties (RF), postoral kineties (PK), and left kineties (LK). The postoral kineties are responsible for the formation of anlagen during the morphogenesis, but sometimes are not obvious, thus are regarded as part of left kineties in many taxa, e.g., Chilodonella, Dysteria. For species in Dysteriidae, the left kineties are often referred as left frontal kineties.

Somatic kineties (SK):

Stomatogenetic zone (SZ):

The area to form oral anlagen during the stomatogenesis. For ciliophorian ciliates, this zone is located at the equator of postoral kineties.

Tentacle(s):

Finger-like tentacles on the ventral side. The function is to adhere the cell to the substrate. These tentacles can be found in species in Lynchellidae.

Terminal fragment (TF):

One to several short kinetal fragments near the anterior part of right kineties in anterior end of the cell; on dorsal side or anterior margin of ventral side. Cilia long and rigid. In some species, the kinetids in the posterior end of right kineties are densely arranged, which assists cell adhesion to substrate.

Transpodial segment (TS):

References

1. Hu, X.Z.; Lin, X.F.; Song, W.B. Ciliate Atlas: Species Found in the South China Sea; Science Press: Beijing, China, 2019; pp. 142–222. [CrossRef]
2. Hu, X.Z.; Zhao, Y.; Huang, J.; Gao, F.; Gao, S.; Shao, C.; Song, W.B. Ciliatology studies by OUC group: Current achievements and future perspectives. *Period. Ocean. Univ. China* 2019, 49, 28–42. [CrossRef]
3. Liu, W.W.; Jiang, J.M.; Xu, Y.; Pan, X.M.; Qu, Z.S.; Luo, X.T.; El-Serehy, A.H.; Warren, A.; Ma, H.G.; Pan, H.B. Diversity of free-living marine ciliates (Alveolata, Ciliophora): Faunal studies in coastal waters of China during the years 2011–2016. *Eur. J. Protistol.* 2017, 61, 424–438. [CrossRef] [PubMed]
4. Song, W.B.; Warren, A.; Hu, X.Z. *Free-Living Ciliates in the Bohai and Yellow Seas, China*; Science Press: Beijing, China, 2009; pp. 49–94.
5. Wang, Z.; Chi, Y.; Li, T.; Song, W.Y.; Wang, Y.F.; Wu, T.; Zhang, G.A.T.; Liu, Y.J.; Ma, H.G.; Song, W.B.; et al. Preliminary findings of an investigation on the biodiversity of freshwater ciliates (Protista, Ciliophora) in the Lake Weishan Wetland, China. *Mar. Life Sci.* 2019, 6, 6689–6691. [CrossRef]
6. Deroux, G. Les dispositifs adhésifs ciliaires chez les Cyrtophorida et la famille des Hypocomidae. *Protistol. 1970*, 6, 155–182.
7. Foissner, W.; Blatterer, H.; Berger, H.; Kohmann, F. *Taxonomische und Ökologische Revision der Ciliaten des Saprobien Systems. Band I: Cystophorida, Oligotrichida, Hypotrichia, Colpodea; Informationsberichte des Bayer; Landesamtes für Wasserwirtschaft: Bavaria, Germany, 1991; pp. 1–478.
8. Pan, H.B.; Li, L.F.; Al-Rasheid, K.A.S.; Song, W.B. Morphological and molecular description of three new species of the ciliophorid genus *Chlamydodon* (Ciliophora, Cytodora). *J. Eukaryot. Microbiol.* 2013, 60, 2–12. [CrossRef]
9. Qu, Z.S.; Li, L.F.; Lin, X.F.; Stoeck, T.; Pan, H.B.; Al-Rasheid, K.A.S.; Song, W.B. Diversity of the ciliophorid genus *Chlamydodon* (Protista, Ciliophora): Its systematics and geographic distribution, with taxonomic descriptions of three species. *Syst. Biodivers.* 2018, 16, 497–511. [CrossRef]
10. Deroux, G. La série “chlamydonellienne” chez les Chlamydodontidae (holotriches, Cytodoriphora Fauré-Fremiet). *Protistol. 1970*, 6, 135–182.
11. Deroux, G. Le plan cortical des Cyrtophorida unité d’expression et marges de variabilité. I. Le cas des Plesiotorichopidae, fam. nov., dans la nouvelle systématique. *Protistol. 1976*, 12, 469–481.
21. Deroux, G. Le plan cortical des Cyrtophorida unité d’expression et marges de variabilité. II. Cyrtophorida a thigmotactisme ventral généralisé. *Protistologica* 1976, 12, 483–500.

22. Deroux, G. Le plan cortical des Cyrtophorida. III. Les structures différenciatriques chez les Dysteriina. *Protistologica* 1976, 12, 505–538.

23. Chen, X.R.; Hu, X.Z.; Gong, J.; Al-Rasheid, K.A.S.; Al-Farraj, S.A. Morphology and infraciliature of two new marine ciliates, *Paracyrtophoron tropicum* nov. gen., nov. spec. and *Aegyria rostellum* nov. spec. (Ciliophora, Cyrtophorida), isolated from tropical waters in southern China. *Eur. J. Protistol.* 2012, 48, 63–72. [CrossRef]

24. Pan, H.B.; Wang, L.Q.; Jiang, J.M.; Stoeck, T. Morphology of four cyrtophorian ciliates (Protozoa, Ciliophorida) from Yangtze Delta, China, with notes on the phylogeny of the genus *Plascodon*. *Eur. J. Protistol.* 2016, 56, 134–146. [CrossRef]

25. Qu, Z.S.; Ma, H.G.; Al-Farraj, S.A.; Lin, X.F.; Hu, X.Z. Morphology and molecular phylogeny of *Aegyria foissneri* sp. n. and *Lynchella minuta* sp. n. (Ciliophora, Cyrtophorida) from brackish waters of southern China. *Eur. J. Protistol.* 2017, 57, 50–60. [CrossRef]

26. Wang, C.C.; Qu, Z.S.; Hu, X.Z. Morphology and SSU rDNA sequences of four cyrtophorian ciliates from China, with description of a new species (Protozista, Ciliophora, Phyllorharyngoea). *Zoobax* 2019, 4664, 206–220. [CrossRef]

27. Petz, W.; Song, W.B.; Wilbert, N. Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. *Stapfia* 1995, 40, 1–223.

28. Xu, Y.; Shao, C.; Fan, X.P.; Warren, A.; Al-Rasheid, K.A.S.; Song, W.B.; Wilbert, N. New contributions to the biodiversity of ciliates (Protozoa, Ciliophora) from Antarctica, including a description of *Gauronauta multistriata* n. sp. *Polar Biol.* 2016, 39, 1439–1453. [CrossRef]

29. Berger, H.; Foissner, W. Biologische Methoden der Gewässeranalyse: Ciliaten III.2.1. Illustrated guide and ecological notes to ciliate indicator species (Protozoa, Ciliophora) in running waters, lakes, and sewage plants. In *Handbuch Angewandte Limnologie* 17; Steinberg, C., Calmano, S., Wilken, K., Eds.; Ecomed Verlag: Hamburg, Germany, 2003; pp. 1–160.

30. Curds, C.R. The ecology and role of protozoa in aerobic sewage treatment processes. *Ann. Rev. Microbiol.* 1982, 36, 27–46. [PubMed]

31. Da Silva, S.B.A.; da Silva-Neto, I.D. Morfologia dos protozoa marinhos. *Zootaxa* 2001, 3, 203–229.

32. Foissner, W. Protists as bioindicators in activated sludge: Identification, ecology and future needs. *Eur. J. Protistol.* 2016, 55, 75–94. [CrossRef]

33. Gong, J.; Song, W.B. Morphology and infraciliature of two marine benthic ciliates, *Dysteria proca* Kahl, 1931 and *Dysteria magna* nov. spec. (Protozoa, Ciliophora, Cyrtophorida), from China. *Eur. J. Protistol.* 2003, 39, 301–310. [CrossRef]

34. Gong, J.; Song, W.B. Description of a new marine cyrtophorid ciliate, *Dysteria derozi* nov. spec., with an updated key to 12 well-investigated *Dysteria* species (Ciliophora, Cyrtophorida). *Eur. J. Protistol.* 2004, 40, 13–19. [CrossRef]

35. Gong, J.; Lin, X.F.; Song, W.B. Redescription of a poorly-known marine cyrtophorid ciliate, *Dysteria pusilla* (Claparède et Lachmann, 1859) (Protozoa: Ciliophora: Cyrtophorida) from Qingdao, China. *Acta Protozool.* 2003, 42, 215–221.

36. Bastos Gomes, G.; Jerry, D.R.; Miller, T.L.; Hutson, K.S. Current status of parasitic ciliates *Chilodonella* spp. (Phyllorharyngoea: Chilodonellidae) in freshwater fish aquaculture. *J. Fish Dis.* 2017, 40, 703–715. [CrossRef] [PubMed]

37. Deng, Q.; Guo, Q.X.; Zhai, Y.H.; Wang, Z.; Gu, Z.M. First record of *Dysteria pusilla* nov. spec. (Ciliophora, Cyrtophorida), isolated from tropical waters in southern China. *Vet. Parasitol.* 2016, 234, 327–335. [CrossRef] [PubMed]

38. Hu, Y.H. Ciliate ectoparasites (Ciliophora: Trichodinidae/Chilodonellidae) on gills of *Carassius auratus* from the Yangtze River, China, with the description of *Trichodina luzones* sp. n. *Parasitol. Res.* 2012, 111, 433–439. [CrossRef]

39. Li, M.; Wang, R.Q.; Bastos Gomes, G.; Zou, H.; Li, W.X.; Wu, S.G.; Wang, G.T.; Ponce-Gordo, F. Epidemiology and identification of two species of *Chilodonella* affecting farmed fishes in China. *Vet. Parasitol.* 2018, 264, 8–17. [CrossRef]

40. Wang, Z.; Zhou, T.; Yang, H.; Gu, Z.M. First diagnosis of ectoparasitic ciliates (Trichodina and Chilodonella) on farmed juvenile yellow catfish, *Tachysurus fulvidraco* in China. *Aquat. Res.* 2019, 50, 3275–3285. [CrossRef]

41. Jin, D.D.; Qu, Z.S.; Wei, B.J.; Montagnes, D.J.S.; Fan, X.P.; Chen, X.R. Two parasitic ciliates (Protozoa: Ciliophora: Phyllorharyngoea) isolated from respiratory-mucus of an unhealthy beluga whale: Characterization, phylogeny and an assessment of morphological adaptations. *Zool. J. Linn. Soc.* 2021, 191, 941–960. [CrossRef]

42. Ma, H.W.; Overstreet, R.M.; Sniezek, J.H.; Solangi, M.; Coats, D.W. Two new species of symbiotic ciliates from the respiratory tract of cetaceans with establishment of the new genus *Planilamina* n. gen. (Dysteriida, Kyaroikeidae). *J. Eukaryot. Microbiol.* 2006, 53, 407–419. [CrossRef]

43. Sniezek, J.H.; Coats, D.W.; Small, E.B. *Kyaroikeus cetarius* n. g., n. sp.: A parasitic ciliate from the respiratory tract of odontocete Cetacea. *J. Eukaryot. Microbiol.* 1995, 42, 260–268. [CrossRef]

44. Song, W.B.; Zhao, Y.J.; Xu, K.D.; Hu, X.Z.; Gong, J. *Pathogenic Protozoa in Mariculture*; Science Press: Beijing, China, 2003; pp. 84–88, 153–158.

45. Müller, O.F. *Animalcula Infusoria Fluvialitae et Marina*; Typis Nicolai Mölleri: Hauniae, Denmark, 1786.

46. Klein, B.M. Über eine neue Eigentümlichkeit der Pellicula von *Chilodon uncinatus* Ehhrbg. *Zool. Anz.* 1926, 67, 160–162.

47. Claparède, E.; Lachmann, J. Études sur les infusoires et les rhizopodes. *Mém. Inst. Nat. Genève* 1859, 6, 261–482.
76. Zhao, L.; Pan, H.B.; Ma, H.G.; Xu, H.L. Morphological redescription of five marine cyrtophorid ciliates (Protozoa, Ciliophora). *Period. Ocean Univ. China* 2014, 44, 52–56.

77. Qu, Z.S.; Pan, H.B.; Al-Rasheid, K.A.S.; Hu, X.Z.; Gao, S. Morphological and phylogenetic studies on three members of the genus *Pseudochilodonopsis* (Ciliophora, Cyrtophoria) isolated from brackish waters in China, including a novel species, *Pseudochilodonopsis quadriradiata* sp. nov. *Int. J. Syst. Evol. Microbiol.* 2015, 65, 4323–4334. [CrossRef]

78. Qu, Z.S.; Wang, C.D.; Gao, F.; Li, J.Q.; Al-Rasheid, K.A.S.; Hu, X.Z. Taxonomic studies on seven species of *Dysteria* (Ciliophora, Cyrtophoria), including a description of *Dysteria paraparvocra* sp. n. *Eur. J. Protistol.* 2015, 51, 241–258. [CrossRef]

79. Pan, H.B.; Jiang, J.M.; Fan, X.P.; Al-Farraj, S.A.; Gao, S. Phylogeny and taxonomy of five poorly known species of cyrtophorian ciliates (Protozoa, Ciliophora, Phyllopharyngea) from China seas. *Zool. J. Linn. Soc.* 2017, 180, 475–492. [CrossRef]

80. Chen, X.M.; Al-Rasheid, K.A.S.; Hu, X.Z.; Al-Farraj, S.A.; Miao, M. Comparative genomics analysis of ciliates provides insights on the evolutionary history within “Nassophorea-Synhymenia-Phyllopharyngea” assemblage. *Int. J. Syst. Evol. Microbiol.* 2015, 66, 4323–4334. [CrossRef] [PubMed]

81. Qu, Z.S.; Pan, H.B.; Al-Rasheid, K.A.S.; Hu, X.Z.; Gao, S. Taxonomic studies on three members of the genus *Pseudochilodonopsis* (Ciliophora, Cyrtophoria) isolated from brackish waters in China, including a novel species, *Pseudochilodonopsis quadriradiata* sp. nov. *Int. J. Syst. Evol. Microbiol.* 2015, 65, 4323–4334. [CrossRef]

82. Wang, C.C.; Jiang, L.M.; Qu, Z.S.; Al-Farraj, S.A.; Warren, A.; Gao, F. Further consideration on the phylogeny of the Ciliophora, Phyllopharyngea. *Eur. J. Protistol.* 2014, 52–56. [CrossRef]

83. Zhao, L.; Pan, H.B.; Ma, H.G.; Xu, H.L. Morphological redescription of five marine cyrtophorid ciliates (Protozoa, Ciliophora, Cyrtophoria). *Period. Ocean Univ. China* 2014, 44, 52–56.

84. ICZN (International Commission on Zoological Nomenclature). *International Code of Zoological Nomenclature* [CrossRef]

85. Li, L.F.; Song, W.B. Phylogenetic positions of two crytophorid ciliates, *Dysteria procera* and *Hartmannella derouxi* (Ciliophora: Phyllopharyngea). *Protist* 2017, 168, 236–249. [CrossRef]

86. Hofmann, A.H. Stomatogenesis in cyrtophorid ciliates II. *Chilodonella cyprini* (Moroff, 1902): The kinetofragment as an anlagen-complex. *Eur. J. Protistol.* 1987, 23, 165–184. [CrossRef]

87. Foissner, W.; Hawksworth, D.L., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 8, pp. 111–129. [CrossRef]

88. Hofmann, A.H. Stomatogenesis in cyrtophorid ciliates II. *Chilodonella cyprini* (Moroff, 1902): The kinetofragment as an anlagen-complex. *Eur. J. Protistol.* 1987, 23, 165–184. [CrossRef]

89. Wang, P.; Wang, Y.R.; Wang, C.D.; Zhang, T.T.; Al-Farraj, S.A.; Gao, F. Further consideration on the phylogeny of the Ciliophora: Analyses using both mitochondrial and nuclear data with focus on the extremely confused class Phyllopharyngea. *Mol. Phylogenet. Evol.* 2017, 112, 96–106. [CrossRef]

90. Pan, B.; Chen, X.; Hou, L.N.; Zhang, Q.Q.; Su, Z.S.; Warren, A.; Miao, M. Comparative genomics analysis of ciliates provides insights on the evolutionary history within “Nassophorea-Synhymenia-Phyllopharyngea” assemblage. *Front. Microbiol.* 2019, 10, 2819. [CrossRef]

91. Bardele, C.F.; Kurth, T. Light and scanning electron microscopic study of stomatogenesis in the cyrtophorid ciliate *Chlamydomonas reinhardii* Ehrenberg, 1837. *Acta Protozool.* 2001, 40, 49–61.

92. Hofmann, A.H. Stomatogenesis in cyrtophorid ciliates II. *Chilodonella cyprini* (Moroff, 1902): The kinetofragment as an anlagen-complex. *Eur. J. Protistol.* 1987, 23, 165–184. [CrossRef]

93. Foissner, W.; Chao, A.; Katz, L.A. Diversity and Geographic Distribution of Ciliates (Protozoa, Ciliophora). In *Protist Diversity and Geographical Distribution*; Foissner, W., Hawksworth, D.L., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 8, pp. 111–129. [CrossRef]

94. Hofmann, A.H. Stomatogenesis in cyrtophorid ciliates II. *Chilodonella cyprini* (Moroff, 1902): The kinetofragment as an anlagen-complex. *Eur. J. Protistol.* 1987, 23, 165–184. [CrossRef]

95. Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 2020, 37, 1530–1534. [CrossRef] [PubMed]

96. Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. *Mol. Biol. Evol.* 2018, 35, 518–522. [CrossRef] [PubMed]

97. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 2003, 19, 1572–1574. [CrossRef] [PubMed]

98. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In *Proceedings of the 2010 Gateway Computing Environments Workshop (GCE)*; New Orleans, LA, USA, 14 November 2010. [CrossRef]

99. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. *Nat. Methods* 2012, 9, 772. [CrossRef] [PubMed]

100. Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 2003, 19, 1572–1574. [CrossRef] [PubMed]