K-ATHENA: a performance portable structured grid finite volume magnetohydrodynamics code

Philipp Grete, Forrest W. Glines, and Brian W. O’Shea

Abstract—Large scale simulations are a key pillar of modern research and require ever increasing computational resources. Different novel manycore architectures have emerged in recent years on the way towards the exascale era. Performance portability is required to prevent repeated non-trivial refactoring of a code for different architectures. We combine ATHENA++, an existing magnetohydrodynamics (MHD) CPU code, with KOKKOS, a performance portable on-node parallel programming paradigm, into K-ATHENA to allow efficient simulations on multiple architectures using a single codebase. We present profiling and scaling results for different platforms including Intel Skylake CPUs, Intel Xeon Phis, and NVIDIA GPUs. K-ATHENA achieves $> 10^8$ cell-updates/s on a single V100 GPU for second-order double precision MHD calculations, and a speedup of 30 on up to 24,576 GPUs on Summit (compared to 172,032 CPU cores), reaching 1.94×10^{12} total cell-updates/s at 76% parallel efficiency. Using a roofline analysis we demonstrate that the overall performance is currently limited by DRAM bandwidth and calculate a performance portability metric of 83.1%. Finally, we present the implementation strategies used and the challenges encountered in maximizing performance. This will provide other research groups with a straightforward approach to prepare their own codes for the exascale era. K-ATHENA is available at https://gitlab.com/pgrete/kathena.

Index Terms

1 INTRODUCTION

The era of exascale computing is approaching. Different projects around the globe are working on the first exascale supercomputers, i.e., supercomputers capable of conducting 10^{18} floating point operations per second. This includes, for example, the Exascale Computing Initiative working with Intel and Cray on Aurora as the first exascale computer in the US in 2021, the EuroHPC collaboration working on building two exascale systems in Europe by 2022/2023, Fujitsu and RIKEN in Japan working on the Post-K machine to launch in 2021/2022, and China who target 2020 for their first exascale machine. While the exact architectural details of these machines are not announced yet and/or are still under active development, the overall trend in recent years has been manycore architectures. Here, manycore refers to an increasing number of (potentially simpler) cores on a single compute node and includes CPUs (e.g., Intel’s Xeon Scalable Processor family or AMD’s Epyc family), accelerators (e.g., the now discontinued Intel Xeon Phi line), and GPUs for general purpose computing. MPI+OpenMP has been the prevailing parallel programming paradigm in many areas of high performance computing for roughly two decades. It is questionable, however, whether this generic approach will be capable of making efficient use of available hardware features such as parallel threads and vectorization across different manycore architectures and between nodes.

In addition to extensions of the MPI standard such as shared-memory parallelism, several approaches in addition to MPI+OpenMP exist and are being actively developed to address either on-node, inter-node, or both types of parallelism. These include, for example, partitioned global address space (PGAS) programming models such as UPC++ [1], or parallel programming frameworks such as Charm++ or Legion, which are based on message-driven migratable objects [2], [3].

Our main goal is a performance portable version of the existing MPI+OpenMP finite volume (general relativity) magnetohydrodynamics (MHD) code ATHENA++ [4], [5]. This goal includes enabling GPU-accelerated simulations while maintaining CPU performance using a single code base. More generally, performance portability refers to achieving consistent levels of performance across heterogeneous platforms using as little architecture-dependent code as possible [6]. In order to keep the code changes minimal and given the MPI+OpenMP basis of ATHENA++ we decided to keep MPI for inter-node parallelism and focus on on-node performance portability.

For on-node performance portability several libraries and programming language extensions exist. With version 4.5 OpenMP [7] has been extended to support offloading to devices such as GPUs, but support and maturity is still highly compiler and architecture dependent. This similarly applies to OpenACC, which has been designed from the beginning to target heterogeneous platforms. While these two directives-based programming models are generally less intrusive with respect to the code base, they only expose a limited fraction of various platform specific features. OpenCL [8] is much more flexible and allows fine grained control over hardware features (e.g., threads), but this, on the other hand, adds substantial complexity to the code. Kokkos [9] and RAJA [10] try to combine the strength of...
flexibility with ease of use by providing abstractions in the form of C++ templates. Both KOKKOS and RAJA focus on abstractions of parallel regions in the code, and KOKKOS additionally provides abstractions of the memory hierarchy. At compile time the templates are translated to different (native) backends, e.g., OPENMP on CPUs or CUDA on NVIDIA GPUs.

We chose KOKKOS for the refactoring of ATHENA++ for several reasons. KOKKOS offers the highest level of abstraction without forcing the developer to use it by setting reasonable implicit platform defaults. Moreover, the KOKKOS core developer team actively works on integrating the programming model into the C++ standard. New, upcoming features, e.g., in OPENMP, will replace manual implementations in the KOKKOS OPENMP backend over time. KOKKOS is already used in several large projects to achieve performance portability, e.g., the scientific software building block collection Trilinos [11] or the computational framework for simulating chemical and physical reactions Uintah [12]. In addition, KOKKOS is part of the DOE’s Exascale Computing Project and we thus expect a backend for Aurora’s new Intel Xe architecture when the system launches. Finally, the KOKKOS community, including core developers and users, is very active and supportive with respect to handling issues, questions and offering workshops.

The resulting K-ATHENA code successfully achieves performance portability across CPUs (Intel, AMD, and IBM), Intel Xeon Phis, and NVIDIA GPUs. We demonstrate weak scaling at 76% parallel efficiency on 24,576 GPUs on OLCF’s Summit, reaching 1.94×10^{12} total cell-updates/s for a double precision MHD calculation. Moreover, we calculate a performance portability metric of 83.1% across Xeon Phis, 5 CPU generations, and 4 GPU generations. We make the code available as an open source project.

The paper is organized as follows. In Section 2 we introduce KOKKOS, ATHENA++, and the changes made and approach chosen in creating K-ATHENA. In Section 3 we present profiling, scaling and roofline analysis results. Finally, we discuss current limitations and future enhancements in Sec. 4 and make concluding remarks in Sec. 5.

2 Method

2.1 KOKKOS

KOKKOS is an open source C++ performance portability programming model [9]. It is implemented as a template library and offers abstractions for parallel execution of code and data management. The core of the programming model consists of six abstractions.

First, execution spaces define where code is executed. This includes, for example, OPENMP on CPUs or Intel Xeon Phis, CUDA on NVIDIA GPUs, or ROCm on AMD GPUs (currently experimental). Second, execution patterns are parallel patterns, e.g. parallel_for or parallel_reduce, and are the building blocks of any application that uses KOKKOS. These parallel regions are often referred to as kernels as they can be dispatched for execution on execution spaces.

1. K-ATHENA’s project repository is located at https://gitlab.com/pgrete/kathena.
2. See https://github.com/kokkos for the library itself, associated tools, tutorial and a wiki.

(such as GPUs). Third, execution policies determine how an execution pattern is executed. There exist simple range policies that only specify the indices of the parallel pattern and the order of iteration (i.e., the fastest changing index for multidimensional arrays). More complicated policies, such as team policies, can be used for more fine-grained control over individual threads and nested parallelism. Fourth, memory spaces specify where data is located, e.g., in host/system memory or in device space such as GPU memory. Fifth, the memory layout determines the logical mapping of multidimensional indices to actual memory location, cf., C family row-major order versus Fortran column-major order. Sixth, memory traits can be assigned to data and specify how data is accessed, e.g., atomic access, random access, or streaming access.

These six abstractions offer substantial flexibility in fine-tuning application, but the application developer is not always required to specify all details. In general, architecture-dependent defaults are set at compile time based on the information on devices and architecture provided. For example, if CUDA is defined as the default execution space at compile time, all Kokkos::Views, which are the fundamental multidimensional array structure, will be allocated in GPU memory. Moreover, the memory layout is set to column-major so that consecutive threads in the same warp access consecutive entries in memory.

2.2 ATHENA++

ATHENA++ is a radiation general relativistic magnetohydrodynamics (GRMHD) code focusing on astrophysical applications [4], [5]. It is a rewrite in modern C++ of the widely used ATHENA C version [13]. ATHENA++ offers a wide variety of compressible hydro- and magnetohydrodynamics solvers including support for special and relativistic (M)HD, flexible geometries (Cartesian, cylindrical, or spherical), and mixed parallelization with OPENMP and MPI. Apart from the overall feature set, the main reasons we chose ATHENA++ are a) its excellent performance on CPUs and KNLs due to a focus on vectorization in the code design, b) a generally well written and documented code base in modern C++, c) point releases are publicly available that contain many (but not all) features, and d) a flexible task-based execution model that allows for a high degree of modularity.

ATHENA++’s parallelization strategy evolves around so-called meshblocks. The entire simulation grid is divided into smaller meshblocks that are distributed among MPI processes and/or OPENMP threads. Each MPI process (or OPENMP thread) owns one or more meshblocks that can be updated independently after boundary information have been communicated. If hybrid parallelization is used, each MPI process runs one or more OPENMP threads that each are assigned one or more meshblock. This design choice is often referred to as coarse-grained parallelization as threads are used at a block (here meshblock) level and not over loop indices. In general, ATHENA++ uses persistent MPI
communication. Moreover, each thread makes its own MPI calls
to exchange boundary information. As a result, using more
than one thread per MPI process may increase overall on-
node performance due to hyperthreading but also increases
both the number of MPI messages sent and the total amount
of data sent. The latter may result in overall worse parallel
performance and efficiency, as demonstrated in Sec. 3.3.2.

Listing 1. Example triple for loop for a typical operation in a finite
volume method on a structured mesh such as in a code like AThENA++,
where ks, ke, js, je, is, and ie are loop bounds and u is an
athaena_array object of, for example, an MHD variable.

```cpp
for (int k = ks; k < ke; k++) {
    for (int j = js; j < je; j++){
        #pragma omp simd
        for (int i = is; i < ie; i++){
            /* Loop Body */
            u(k,j,i) = ...
        }
    }
}
```

Given the coarse-grained OPENMP approach over
meshblocks the prevalent structures in the code base are
triple (or quadruple) nested for loops that iterate over the
content of each meshblock (and variables in the quadruple
case). A prototypical nested loop is illustrated in Listing 1.
Generally, all loops (or kernels) in AThENA++ have been
written so that OPENMP simd pragmas are used for the
innermost loop. This helps the compiler in trying to auto-
matically vectorize the loops resulting in a more performant
application.

2.3 K-AThENA = KOKKOS + AThENA++

In order to combine AThENA++ and KOKKOS, four ma-
jor changes in the code base were required: 1) making
Kokkos::View the fundamental data structure, 2) con-
verting nested for loop structures to kernels, 3) converting
“support” functions, such as the equation of state, to inline
functions, and 4) converting communication buffer filling
functions into kernels.

First, Views are the KOKKOS’ abstraction of multidi-
imensional arrays. Thus, the multidimensional arrays origi-
nally used in AThENA++, e.g., the MHD variables for
each meshblock, need to be converted to Views so that
these arrays can transparently be allocated in arbitrary
memory spaces such as device (e.g., GPU) memory or
system memory. AThENA++ already implemented an ab-
stract athena_array class for all multidimensional ar-
rays with an interface similar to the interface of a View.
Therefore, we only had to add View objects as member
variables and to modify the functions of athena_arrays
to transparently use functions of those member Views.
This included using View constructors to allocate memory, us-
ing Kokkos::deep_copy or Kokkos::subview for copy
constructors and shallow slices, and creating public member
functions to access the Views. The latter is required in order
to properly access the data from within compute kernels.

Second, all nested for loop structures (see Listing 1 need
to be converted to so-called kernels, i.e., parallel region that
can be dispatched for execution by an execution space. As
described in Sec. 2.1 multiple execution policies are possible,
filling functions need to be converted too. Thus, we changed all buffers to be Views and converted the buffer filling functions into kernels that can be executed on any execution space. In addition, this allows for CUDA-aware MPI–GPU buffers can be directly copied between the memories of GPUs (both on the same node and on different nodes) without an implicit or explicit copy of the data to system memory.

In general, the first three changes above are required in refactoring any legacy code to make use of KOKKOS. The fourth change was required for ATHENA++ due to the existing MPI communication patterns.

Finally, for the purpose of the initial proof-of-concept, we only refactored the parts required for running hydrodynamic and magnetohydrodynamic simulations on static and adaptive Cartesian meshes. Running special and general relativistic simulations on spherical or cylindrical coordinates is currently not supported. However, the changes required to allow for these kind of simulations are straightforward and we encourage and support contributions to re-enable this functionality.

2.4 Development process and tools

Overall, the development process was driven and accompanied by several key decisions. First, we wanted to be able to continuously track potential overhead and changes in performance. Therefore, we added so-called KOKKOS profiling regions to the original codebase covering all relevant parts of the code, e.g., the main loop, communication, reconstruction, and the Riemann solve. This allowed us to obtain detailed timings (across MPI processes) with the KOKKOS profiling tools of all parts of the code including those that were not converted to make use of KOKKOS yet. In addition to manual regions, all kernels are automatically profiled once a parallel execution pattern is used.

In order to ensure that the code keeps producing correct results we employ automated regression testing using GitLab’s continuous integration features. ATHENA++ already provides a regression test suite cover many aspect of the code. For K-ATHENA we extended this suite to specifically address changes related to KOKKOS. For example, we test different execution policies for the kernels, KOKKOS’ partition_master for multi-threaded operation, and run tests both on CPUs and GPUs. The tests are automated and are triggered for every Git merge request. Moreover, we required that any merge request that added functionality or converted parts of the code to make use of KOKKOS needs to be accompanied by a new test case addressing that change. NVIDIA’s unified memory allowed us to run tests on GPUs without having converted the entire code. With unified memory a virtual memory space is available that can be accessed from both CPU and GPU. Page migrations occur automatically and transparently, i.e., no manual data movement is required.

In general, unified memory eased our refactoring experience. Originally, we used Kokkos::DualViews in the transition. DualViews store data in two different memory spaces, e.g., on the system memory and GPU memory. However, synchronization between the memory spaces requires manually specifying which memory space is needed and when they have been modified at different points in the algorithm. This introduced additional code overhead. For this reason, we decided to discontinue using DualViews and instead used normal Views with default allocations in unified memory space. In addition, being able to change the default memory space from unified memory to pure GPU memory at compile time allowed us to easily identify all parts of the code that need to be converted by tracking segmentation faults with a debugger.

3 Results

If not noted otherwise, all results in this section have been obtained using a double precision, shock-capturing, unsplit, adiabatic MHD solver consisting of Van Leer integration, piecewise linear reconstruction, Roe Riemann solver, and constrained transport for the integration of the induction equation (see, e.g., [14] for more details). The test problem is a linear fast magnetosonic wave on a static, structured, three-dimensional grid. Unified memory in GPU runs was not used, i.e., there was no data transfer between system and GPU memory after the problem initialization. Generally, we used the Intel compilers on Intel platforms, and gcc and nvcc on other platforms as we found that (recent) Intel compilers are more effective in automatic vectorization than (recent) gcc compilers. We used the identical software environment and compiler flags for both K-ATHENA and ATHENA++ where possible. Details are listed in Table 1. We used ATHENA++ version 1.1.1 (commit 4d0e425) and K-ATHENA commit 73fec12d for the scaling tests. Additional information on how to run K-ATHENA on different machines can be found in the documentation.

3.1 Profiling

In order to evaluate the effect on performance of the different loop structures presented in Sec. 2.3 we compare the timings of different regions within the main loop of the code. The results using both an NVIDIA V100 GPU and an Intel Skylake CPU for a selection of the computationally most expensive regions are shown in Fig. 1. The MDRange loop structure refers to a one dimensional range policy over a single index that is explicitly unpacked to the multidimensional indices in the code. While this MDRange is the fastest loop structure for all regions on the GPU, it is the slowest for all regions on the CPU. We suspect that this is related to the inability of the compiler to vectorize the loops on CPUs. All other loop structures tested, i.e., simd-for, MDRange, and TeamPolicy logically separate the nested loops and, thus, make it easier for the compiler to automatically vectorize the innermost loop. This also explains why the results for simd-for, MDRange, and TeamPolicy are very close to each other for all regions except the Riemann solver. Given that the Riemann solve is the most complex loop/kernel, we again suspect that the compiler is unable to vectorize that loop if KOKKOS templates add additional complexity to the loop structure. We expect that these differences will become less pronounced with continued compiler development.

On the GPU, MDRange is the slowest loop structure, being several times slower than the MDRange across all regions. TeamPolicy is on par with MDRange for half of
TABLE 1

Software Environment and Compiler Flags Used In Scaling Tests.

Machine	Compiler	Compiler flags	MPI version
Summit GPU	GCC 6.4.0 & Cuda 9.2.148	-O3 -std=c++11 -fopenmp -Xcudafe --diag_suppress=esa_on_defaulted_function_ignored -expt-extended-lambda --arch=sm_70 -Xcompiler	Spectrum MPI 10.2.0.11
Summit CPU	GCC 8.1.1	-O3 -std=c++11 -fopenmp-simd -fwhole-program -flto -ffast-math -fprefetch-loop-arrays -fopenmp -mcpu=power9 -mtune=power9	Spectrum MPI 10.2.0.11
Titan GPU	GCC 6.3.0 & Cuda 9.1.85	-O3 -std=c++11 -fopenmp -Xcudafe --diag_suppress=esa_on_defaulted_function_ignored -expt-extended-lambda --arch=sm_35 -Xcompiler	Cray MPICH 7.6.3
Titan CPU	GCC 6.3.0	-O3 -std=c++11 -fopenmp	Cray MPICH 7.6.3
Theta	ICC 18.0.0	-O3 -std=c++11 -ipo -xMIC-AVX512 -inline-forceinline -qopenmp-simd -qopenmp	Cray MPICH 7.7.3
Electra	ICC 18.0.3	-O3 -std=c++11 -ipo -inline-forceinline -qopenmp-simd -qopt-prefetch=4 -qopenmp -xCORE-AVX512	HPE MPT 2.17

Fig. 1. Profiling results on a GPU (left) and CPU (right) for selected regions (x-axis) within the main loop of an MHD timestep using the algorithm described in Sec. 3. The different lines correspond to different loop structures, see Sec. 2.3 and the timings are normalized to the fastest Riemann region in each panel.

the regions shown. As discussed in more detail in Sec. 4, we expected these non-optimized raw loop structures to not cause any major differences in performance.

The results shown here for V100 GPUs and Skylake CPUs equally apply to other GPU generations and other CPUs (and Xeon Phis), respectively. For all tests conducted in the following, we use the loop structure with the highest performance on each architecture, i.e., 1DRange on GPUs and simd-for on CPUs and Xeon Phis.

3.2 Performance portability

Our main objective for writing K-ATHENA is an MHD code that runs efficiently on any current supercomputer and possibly any future machines. A code that runs efficiently on more architectures is said to be performance portable. Determining what is meant by “efficient code” can be vague, especially when comparing performance across different architectures. The specific memory space sizes, bandwidths, instruction sets, and groupings of cores on different architectures can all affect how efficiently a code can utilize the hardware.

In order to make fair comparisons of K-ATHENA’s performance on different machines, we used the roofline model [15] to quantify the application performance of K-ATHENA, or the fraction of the performance obtained out of the maximum theoretical performance as limited by the arithmetic intensity of the code and the bandwidth and throughput of the processor. With the roofline model, we can take into account the different hardware configurations as we measure K-ATHENA’s performance.

For quantifying the performance portability from the application performance on each machine, we used the metric developed by [16]. This performance portability metric emphasizes high efficiency on all machines as opposed to only some machines.
3.2.1 Roofline models

The roofline model plot is a tool to determine the theoretical peak performance of a code or algorithm on a specific architecture, given the bandwidths of the different memory spaces and the arithmetic intensity, or number of operations vs memory usage of the algorithm for the different spaces. The plot is a condensation of the performance limits imposed by the bandwidth of each memory space. For any given architecture, the maximum obtainable floating point operations per second (FLOP/s) is limited by

\[P_{\text{max}} \leq \min_{m \in M} \{ \min (T_{\text{Peak}}, B_m \times I_m) \}, \]

where \(P_{\text{max}} \) [FLOP/s] is the maximum possible FLOP/s, \(T_{\text{Peak}} \) [FLOP/s] is the peak throughput, or the maximum number of FLOP/s the device can achieve, \(M \) is all the memory spaces on the device (L1 cache, L2 cache, DRAM, etc.), \(B_m \) [Byte/s] is the bandwidth of the memory space \(m \), and \(I_m \) [FLOP/Byte] is the arithmetic intensity of specific algorithm or code for the memory space \(m \), or the number of FLOP executed per number of bytes written and read to and from \(m \).

In the roofline model, throughputs and bandwidths are plotted on a log FLOP/s versus log FLOP/Byte scale, so that throughputs are horizontal lines and bandwidths as \(P \times I \) lines (since bandwidth-limited \(P = B_m \times I \)). The arithmetic intensities of each memory space for a specific algorithm appear as vertical lines, extending up to their bandwidth-limited performance, \(P_{m,\text{max}} = \min (T_{\text{Peak}}, B_m \times I_m) \). The maximum achievable performance of a given algorithm or code is the minimum of these bandwidth-limited performances, although optimizations of the code can change the arithmetic intensities of the different memory spaces. We can also mark the actual performance of K-A\textsc{THENA} with a horizontal dashed line, indicating the average FLOP/s achieved. Figures 2a and 2b show roofline modes for an Intel Skylake CPU on NASA’s Electra and NVIDIA Volta V100 GPU on ORNL’s Summit, respectively.

Although numbers for different bandwidths and throughputs can be obtained through vendor specifications and theoretical arithmetic intensities can be computed by hand, empirical testing is required to more accurately reflect the performance of actual hardware and code. This required a variety of different performance profiling tools on the different architectures and machines, depending on what was available. For gathering the bandwidths and throughputs on both CPUs and GPUs, we used the Empirical Roofline Toolkit [17]. However, the publicly available version of the Empirical Roofline Toolkit does not measure L1 bandwidth for GPUs, for which we used GPUMEMBENCH [18]. For computing arithmetic intensities on GPUs, we were able to use NVIDIA’s NVPROF to measure both the total FLOP per finite volume cell and total reads and writes from the L1 cache, L2 cache, and DRAM/HBM per cell. For Intel CPUs, we used Intel’s Software Development Emulator (SDE) [19] to capture the total FLOP per cell and L1 reads and writes. To measure the reads and writes from L2 and L3 on Intel CPUs, we used LIKWID [20]. For reads and writes to DRAM, we used Intel’s VTUNE [21]. With the data combined from SDE, LIKWID, and VTUNE, we could compute the arithmetic intensities for K-A\textsc{THENA} running on Intel CPUs.

We did find that the L1 memory usage reported by LIKWID was about half of what SDE reported, when we expected the difference would be a few percent. We attribute this to restricted permissions (as non-root user) to model-specific registers that are used for performance profiling. Given that we obtained all L2 arithmetic intensities with LIKWID these numbers must be interpreted with care. However, our primarily focus is on performance relative to the DRAM performance.

In all cases, we found that K-A\textsc{THENA}’s performance is limited by the smallest memory space that will accommodate the data required by a single MPI task. For GPUs, this is on device DRAM/HBM, for CPUs this is the DDR3/DDR4 DRAM, and for KNLs this was the MCDRAM. This is expected, due to the current construction of K-A\textsc{THENA}; the finite volume MHD method is currently implemented as a series of simple kernels for different tasks such as reconstruction or flux calculations. Each kernel is a tightly nested triple or quadruple for-loop. Within each iteration, data is loaded from DRAM up to the registers, then discarded. Future improvements can be made to K-A\textsc{THENA} to explicitly cache data in smaller 1D arrays and kept in higher level caches. This would raise the DRAM arithmetic intensity while lowering the caches’ arithmetic intensity, but overall raising the performance ceiling. Similar improvements have already been implemented upstream in \textsc{ATHENA}++. A more complete solution would involve fusing consecutive kernels into one kernel to reduce DRAM accesses.

3.2.2 Performance portability metric

Performance portability is at present nebulously defined. It is generally held that a performance portable application can execute wide variety of architectures and achieve acceptable performance, preferably maintaining a single code base for all architectures. In order to make valid comparisons between codes, an objective metric of performance portability is needed.

The metric proposed by [16] quantifies performance portability by the harmonic sum of the performance achieved on each platform, so that

\[P(a, p, H) = \begin{cases} \frac{1}{\sum_{i \in H} e_i(a, p)} & \text{if } i \text{ is supported } \forall i \in H \\ 0 & \text{otherwise} \end{cases} \]

where \(a \) is an application, \(p \) is a problem to be solved by the application, \(H \) is the space of all relevant platforms, and \(e_i(a, p) \) is the performance efficiency of application \(a \) to solve the problem \(p \) on a platform \(i \). If an application does not support a platform, then it is not performance portable across the platforms and so is assigned a metric of 0. The performance efficiency can also be defined in several ways, such as the application efficiency and architectural efficiency, as used in [16]. Application efficiency is the achieved performance as a fraction of the theoretical peak performance of the hardware, accounting for bandwidths, throughputs, and arithmetic intensities. We
Fig. 2. Roofline models of a 2 socket Intel Xeon Gold 6148 “Skylake” CPU node on NASA’s Electra (2a) and a single NVIDIA Tesla V100 “Volta” GPU on ORNL’s Summit (2b). For both cases shown here and all other architectures we tested, DRAM bandwidth (or MCDRAM bandwidth for KNLs) is the limiting bandwidth for K-ATHENA’s performance.

Fig. 3. Performance Portability plot of several CPU and GPU machines with different architectures. Individual bars show the performance of K-ATHENA compared to the theoretical peak performance limited by the DRAM and L1 bandwidths. The performance portability metrics computed from the harmonic mean of the two sets of efficiencies.

 GTRE et al: K-ATHENA – A PERFORMANCE PORTABLE STRUCTURED GRID FINITE VOLUME MHD CODE

1Pleiades, 2Electra, 3Stampede 2, 4MSU HPCC, 5Summit

(a) CPU Roofline

(b) GPU Roofline

For our purposes, we used a problem size roughly proportional to the memory space and number of cores available on the device, maximizing the cell updates per second achievable on each device. On CPUs, we used mesh blocks of 64^3, using one MPI task per CPU core and one mesh block per task. We used all sockets on the node for CPU tests, which was a single KNL socket on Stampede 2 and two sockets on all other machines. On KNLs, we also used two OPENMP threads per core instead of one. For GPUs, we used a single mesh block with the largest size that would fit in GPU DRAM, starting at $256 \times 128 \times 128$ on K20’s up to 256^3 on V100’s, using just one GPU on a node. If we used a constant problem size across all the CPU and GPU platforms, the problem would be too large to fit on small GPUs, too small to occupy all of the capabilities on other GPUs, and would not divide evenly across all the CPUs.

In Fig. 3, the architectural efficiencies as measured against the DRAM bandwidth and L1 cache bandwidth are shown with the computed performance portability metrics. K-ATHENA achieved 83.1% DRAM performance portability and 11.6% L1 cache performance portability, measured across a number of CPU and GPU architectures. In general, K-ATHENA achieved higher efficiencies on newer CPUs and older GPUs. This could be due to changes in instructions sets or trends in changing hardware details.

For example, on Summit’s Volta V100s, K-ATHENA achieves 0.61 TFLOP/s while the DRAM/HBM bandwidth ceiling is at 0.76 TFLOP/s, leading to an 80% architectural performance compared to HBM bandwidth. For completeness, we also computed the architectural efficiency as measured against the L1 cache bandwidth.
Overall, the achieved cell-updates/s are better suited for compute-intensive tasks.

In order to compare the degree to which the refactoring of ATHENA++ affected performance we first compare ATHENA++ and K-ATHENA on a single CPU. The right panel of Fig. 4 shows the cell-updates/s achieved on an Intel Broadwell and an Intel Skylake CPU for both codes for varying problem size. Overall, the achieved cell-updates/s are practically independent of problem sizes reaching \(\approx 8 \times 10^6 \) on a single Broadwell CPU and \(\approx 1.4 \times 10^7 \) on a single Skylake CPU. Moreover, without any additional performance optimizations (see discussion in Sec. 3), K-ATHENA is virtually on par with ATHENA++, reaching 95% or more of the original performance. For comparison, we also show the results of GAMER [22]. It is another recent (astrophysical) MHD code with support for CPU and (CUDA-based) GPU accelerated calculations and has directly been compared to ATHENA++ in [22]. We also find that ATHENA++ (and thus K-ATHENA) is about 1.5 times faster than GAMER on the same CPU.

A slightly smaller difference (factor of \(\approx 1.25 \)) is observed when comparing results for GPU runs as shown in the left panel of Fig. 4. On a P100 Pascal GPU, K-ATHENA is about 1.3 times faster than GAMER, suggesting that the difference in performance is related to the fundamental code design and not related to the implementation of specific computing kernels. On a single V100 Volta GPU, K-ATHENA reaches a peak performance of greater than \(10^8 \) cell-updates/s for large problem sizes. In general, the achieved performance in cell-updates/s is strongly dependent on the problem size. For small grids the performance is more than one order of magnitude lower than what is achieved for the largest permissible grid sizes that still fit into GPU memory. This emphasizes that the nature of GPUs are better suited for compute-intensive tasks.

3.3.2 Weak scaling

Weak scaling results (same test problem and algorithm as in Sec. 3.3.1) for K-ATHENA and the original ATHENA++ version on different systems and architectures are shown in Fig. 5. Overall, the differences between K-ATHENA and ATHENA++ on CPUs and Xeon Phis are marginal. This is expected as K-ATHENA employed simd-for loops for all kernels that are similar to the ones already in ATHENA++. Therefore, the parallel efficiency is also almost identical between both codes, reaching \(\approx 80\% \) on NASA's Electra system with Skylake CPUs (first column in Fig. 5) and \(\approx 70\% \) on ALCF's Theta system with Knights Landing Xeon Phis (second column in Fig. 5) at 2,048 nodes each. Using multiple hyperthreads per core on Theta has no significant influence on the results given the intrinsic variations observed on that system\(^4\).

The first major difference is observed on OLCF's Titan (third column in Fig. 5), where results for K-ATHENA on GPUs are included. While the parallel efficiency for both codes remains at 94% up to 8,192 nodes using only CPUs, it drops to 72% when using GPUs with K-ATHENA. However, the majority of loss in parallel efficiency already occurs going from 1 to 8 nodes using GPUs and afterwards remains almost flat. This behavior is equally present for CPU runs but less visible due to the higher parallel efficiency in general. The differences in parallel efficiency between CPU and GPU runs can be attributed to the vastly different raw performance of each architecture. On a single node the single Kepler K20X GPU is about 7 times faster than the 16-core AMD Opteron CPU. Given that the interconnect is identical for GPU and CPU communication, the effective ratio of computation to communication is worse for GPUs. Despite the worse parallel efficiency on GPUs the raw per-node performance using GPUs is still about 5.5 times faster than using CPUs at 8,192 nodes.

K-ATHENA on OLCF's Summit system (last column in Fig. 5) with six Volta V100 GPUs and two 21-core POWER9 CPUs exhibits a GPU weak scaling behavior similar to the one observed on Titan. Going from 1 to 8 nodes results in a loss of 15% and afterwards the parallel efficiency remains almost flat to 76% on 4,096 nodes. The CPU weak scaling results for both codes using CPUs reveal properties of the interconnect. The weak scaling is almost perfect up to 256 nodes using 1 hyperthread per core and afterwards rapidly plummets. Using 2 hyperthreads per core (i.e., doubling the number of threads making MPI calls and doubling the number of MPI messages sent and received, as described in Sec. 2.2) the steep drop in parallel efficiency is already observed beyond 128 nodes. No such drop is observed using GPUs, which perform 42/6 = 7 times fewer MPI calls (compared to using 1 hyperthread per core) with larger messages sizes in general. This suggests that the interconnect is handling fewer but larger messages better than many small messages (which likely results in network congestion).

Naturally, this issue is tightly related to the existing communication pattern in ATHENA++, i.e., coarse grained threading over meshblocks with each thread performing

\(^4\) According to the ALCF support staff, system variability contributes around 10% to the fluctuations in performance between identical runs.
MPI calls. Without making additional changes to the code base, this issue can directly be addressed using KOKKOS nested parallelism in K-Athena. More specifically, we use the triple nested construct illustrated in Listing 3 allowing multiple threads handling a single meshblock. As a proof of concept, the results for using using 1 MPI process per 2 cores each with one thread are shown in the purple dash line in the last column of Fig. 5. While the raw performance on a single node is slightly lower (about 16%), the improved communication pattern results in a higher overall performance for > 1,024 nodes. Similarly, the sharp drop in parallel efficiency has been shifted to first occur at 2,048 nodes.

Finally, the raw per-node performance is overall comparable between Intel Skylake CPUs, Intel Knight Landing Xeon Phis, IBM POWER9 CPUs, and a single NVIDIA Kepler GPU, ranging between \(1.5 \times 10^7\) cell-updates/s/node. The latest NVIDIA Volta GPU is a notable exception, reaching more than \(10^8\) cell-updates/s/GPU. This performance in combination with six GPUs per node on Summit and a high parallel efficiency results in a total performance of \(1.94 \times 10^{12}\) cell-updates/s on 4,096 nodes.

3.4 Strong scaling

Strong scaling results for K-Athena on Summit on both CPUs and GPUs are shown in Fig. 6 (same test problem and algorithm as in Sec. 3.3.1). Overall, strong scaling in terms of parallel efficiency is better on CPUs than on GPUs. For example, for a \(1.408^3\) domain the parallel efficiency using CPUs remains > 83% going from 32 to 512 nodes whereas it drops to 45% for the similar GPU case (1,536\(^3\) domain using 36 to 576 nodes). This is easily explained by comparing to the single CPU/GPU performance discussed in Sec. 3.3.1, which effectively corresponds to on-node strong scaling. The more pronounced decrease in parallel efficiency on the GPUs is a direct result of the decreased raw performance of GPUs with smaller problem sizes per GPU. The increased communication overhead of the strong scaling test plays only a secondary role. As a result, additional performance
improvements, as discussed in the following Section, will greatly benefit the strong scaling behavior of GPUs in general. Nevertheless, the raw performance of the GPUs still outperforms CPUs by a large multiple despite the worse strong scaling parallel efficiency. For example, in the case discussed above on Summit, the per-node performance of GPUs over CPUs is still about 14 times higher at \(\geq 512 \) nodes.

4 CURRENT LIMITATIONS AND FUTURE ENHANCEMENTS

Our primary goal for the current version of K-ATHENA was to make CPU-accelerated simulations possible while maintaining CPU performance, and to do so with the smallest amount of code changes necessary. Naturally, this resulted in several trade-offs and leaves room for further (performance) improvements in the future.

For example, we are currently not making use of more advanced hardware features such as scratch spaces on GPUs. Scratch space can be shared among threads of a TeamPolicy and allows for efficient reuse of memory. We could use scratch space to reduce the number of reads from DRAM in stenciled kernels (like the reconstruction step). We could also fuse consecutive kernels to further reduce reads and writes to DRAM, although this would also increase register and possibly spill store usage. Moreover, complex kernels such as a Riemann solver could be broken further down by using TeamThreadRanges and ThreadVectorRanges structures that are closer to the structure of the algorithm.

This is in contrast to our current approach where all kernels are treated equally, with the same execution policies independent of the individual algorithms within the kernels. The Riemann solver could also be split into separate kernels to reduce the number of registers needed, eliminate the use of spill stores on the GPU, and allow higher occupancy on the GPU.

Similarly, on CPUs and Xeon Phis we are currently not using a KOKKOS parallel execution pattern. The macro we introduced to easily exchange parallel patterns replaces the parallel region on CPUs and Xeon Phis with a simple nested for loop including a simd pragma, as shown in Listing 1. This is required for maximum performance as current compilers are less effective in automatically vectorizing the more complex KOKKOS patterns compared to simple for loops. On the one hand, we expect that this will become less of an issue with future compiler improvements. On the other hand, more kernels and more fine-tuned kernels, as discussed in the previous paragraph, will also automatically address this issue.

Another possible future improvement is an increase in parallel efficiency by overlapping communication and computation. While ATHENA++ is already built for asynchronous communication and a task based execution model more fine-grained optimizations are possible. For example, spatial dimensions in the variable reconstruction step that occurs after the exchange of boundary information could be split, so that the kernel in the first dimension could run while the boundary information of the second and third dimension are still being exchanged. In addition, the next major KOKKOS release will contain more support for architecture-dependent task based execution and, for example, will allow for the transparent use of CUDA streams.

CUDA streams may also help in addressing another current limitation of K-ATHENA on GPUs. Our minimal implementation approach currently limits all meshblocks to be allocated in a fixed memory space. This means that the total problem size that can currently be addressed with K-ATHENA is limited by the total amount of GPU memory available. An alternative approach is keeping the entire mesh in system memory, which is still several times larger than the GPU memory on many (if not all) current machines. For the execution of kernels individual meshblocks would be copied back and forth between system memory and GPU memory. Here, CUDA streams could be used to hide these expensive memory transfers as they would occur in the background while the GPU is executing different kernels. Theoretically, meshes larger than the GPU memory could already be used right now with the help of unified memory. However, given that the code is not optimized for efficient page migrations the resulting performance degradation is
large (more than a factor of 10). Thus, using unified memory with meshes larger than the GPU memory is not recommended.

5 Conclusions

We presented K-ATHENA – a KOKKOS-based performance portable version of the finite volume MHD code ATHENA++. KOKKOS is a C++ template library that provides abstractions for on-node parallel regions and the memory hierarchy. Our main goal was to enable GPU-accelerated simulations while maintaining ATHENA++’s excellent CPU performance using a single code base and with minimal changes to the existing code.

Generally, four main changes were required in the refactoring process. We changed the underlying memory management in ATHENA++’s multi-dimensional array class to make transparently use of KOKKOS’s equivalent multi-dimensional arrays, i.e., Kokkos::Views. We exchanged all (tightly) nested for loops with the KOKKOS equivalent parallel region, e.g., a Kokkos::parallel_for, which are now kernels that can be launched on any supported device. We inlined all support functions (e.g., the equation of state) that are called within kernels. We changed the communication buffers to be Views so that MPI calls between GPUs buffers are directly possible without going through system memory.

With all changes in place we performed both profiling and scaling studies across different platforms, including NASA’s Electra system with Intel Skylake CPUs, ALCF’s Theta system with Intel Xeon Phi Knights Landing, OLCF’s Titan with AMD Opteron CPUs and NVIDIA Kepler GPUs, and OLCF’s Summit machine with IBM Power9 CPUs and NVIDIA Volta GPUs. Using a roofline model analysis, we demonstrated that the current implementation of the MHD algorithms is memory bound by either the DRAM, HBM, or MCDRAM bandwidths on CPUs and GPUs. Moreover, we calculated a performance portability metric of 83.1% across Xeon Phis, and 5 CPU and 4 GPU generations.

Detailed KOKKOS profiling revealed that there is currently no universal KOKKOS execution policy (how a parallel region is executed) that achieves optimal performance across different architectures. For example, a one-dimensional loop with manual index matching from 1 to 3D/4D is fastest on GPUs (achieving > 10^8) double precision MHD cell-updates/s on a single NVIDIA V100 GPU) whereas tightly nested for loops with simd directives are fastest on CPUs. This is a result of both a lack in compiler capabilities (e.g., with respect to automated vectorization) and KOKKOS’s specific implementation details. Both are expected to improve in the future and KOKKOS allows for the flexibility to easily exchange execution policies in general.

Strong scaling on GPUs is currently predominately limited by individual GPU performance and not by communication. In other words, insufficient GPU utilization outweighs additional performance overhead with decreasing problem size per GPU.

Weak scaling is generally good, with parallel efficiencies of 80% and higher for more than 1,000 nodes across all machines tested. Notably, on Summit K-ATHENA achieves a total calculation speed of 1.94 × 10^{12} cell-updates/s on 24,567 V100 GPUs at a speedup of 30 compared to using the available 172,032 CPU cores.

Finally, there is still a great deal of untapped potential left, e.g., using more advanced hardware features such as fine-grained nested parallelism, scratch pad memory (i.e., fast memory that can be shared among threads), or CUDA streams. Nevertheless, we achieved our primary performance portability goal of enabling GPU-accelerated simulations while maintaining CPU performance using a single code base. Moreover, we consider the current results highly encouraging and will continue with further development on the project’s GitLab repository at https://gitlab.com/pgrete/kathena. Contributions of any kind are welcome!

Acknowledgments

The authors would like to thank the KOKKOS developers, particularly Christian Trott and Steve Bova, and the organizers of the 2018 Performance Portability with KOKKOS Bootcamp for their help using KOKKOS in ATHENA++. We thank Kristian Beckwith for inspiring discussions on KOKKOS. We thank the ATHENA++ team for making their code public and for their well designed code. We acknowledge funding by NASA Astrophysics Theory Program grant #NNX15AP39G. Code development, testing, and benchmarking was made possible through various computing grants including allocations on NASA Pleiades (SMD-16-7720), OLCF Titan (AST133), OLCF Summit (AST146), ALCF Theta (athena_performance), XSEDE Comet (TG-AST090040), and Michigan State University’s High Performance Computing Center.

References

[1] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick, “UpC++: A pgs extension for c++,” in 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 2014, pp. 1105–1114.
[2] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object oriented system based on c++,” Champaign, IL, USA, Tech. Rep., 1993.
[3] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing locality and independence with logical regions,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 66:1–66:11. [Online]. Available: http://dl.acm.org/citation.cfm?id=2388996.2389086
[4] C. J. White, J. M. Stone, and C. F. Gammie, “An extension of the athena++ code framework for grmhd based on advanced riemann solvers and staggered-mesh constrained transport,” The Astrophysical Journal Supplement Series, vol. 225, no. 2, p. 22, 2016. [Online]. Available: http://stacks.iop.org/0067-0049/225/i=2/a=22
[5] J. Stone, K. Tomida, K. G. Felker, and C. White, “Athena++: a new code for radiation grmhd,” in prep., 2019.
[6] T. P. Straatsma, K. B. Antypas, and T. J. Williams, Exascale Scientific Applications: Scalability and Performance Portability, 1st ed. Chapman & Hall/CRC, 2017.
[7] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, Jan. 1998. [Online]. Available: https://doi.org/10.1109/99.660313
[8] J. É. Stone, D. Gohara, and G. Shi, “Opengl: A parallel programming standard for heterogeneous computing systems,” Computing in Science Engineering, vol. 12, no. 3, pp. 66–73, May 2010.
[9] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore performance portability through polymorphic memory access patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 – 3216, 2014, domain-Specific Languages and High-Level Frameworks for High-Performance Computing. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0743731514001257

[10] R. Hornung, H. Jones, J. Keasler, R. Neely, O. Pearce, S. Hammond, C. Trott, P. Lin, C. Vaughan, J. Cook, R. Hoekstra, B. Bergen, J. Payne, and G. Wömel dorff, “ASC Tri-lab Co-design Level 2Milestone Report 2015,” LLNL, Tech Report LLNL-TR-677435, 2015. [Online]. Available: https://e-reports-ext.llnl.gov/pdf/800854.pdf

[11] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, “An overview of the trilinos project,” ACM Trans. Math. Softw., vol. 31, no. 3, pp. 397–423, Sep. 2005. [Online]. Available: http://doi.acm.org/10.1145/1089014.1089021

[12] J. K. Holmen, A. Humphrey, D. Sunderland, and M. Berzins, “Improving untold’s scalability through the use of portable kokkos-based data parallel tasks,” in Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact, ser. PEARC17. New York, NY, USA: ACM, 2017, pp. 27:1–27:8. [Online]. Available: http://doi.acm.org/10.1145/3093338.3093388

[13] J. M. Stone, T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon, “Athena: A new code for astrophysical mhd,” The Astrophysical Journal Supplement Series, vol. 176, no. 1, p. 137, 2008. [Online]. Available: http://stacks.iop.org/0067-0049/178/i=1/a=137

[14] J. M. Stone and T. Gardiner, “A simple unsplit godunov method for multidimensional mhd,” New Astronomy, vol. 14, no. 2, pp. 139 – 148, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1384107608000754

[15] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful Visual Performance Model for Multicore Architectures,” Commun. ACM, vol. 52, no. 4, pp. 65–76, Apr. 2009.

[16] S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for performance portability,” Future Generation Computer Systems, vol. 92, pp. 947 – 958, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167739X17300559

[17] Y. J. Lo, S. Williams, B. Van Straalen, T. J. Ligocki, M. J. Cordery, N. J. Wright, M. W. Hall, and L. Oliker, “Roofline Model Toolkit: A Practical Tool for Architectural and Program Analysis,” in High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright, and S. D. Hammond, Eds. Springer International Publishing, 2015, pp. 129–148.

[18] I. Konstantinidis and Y. Cotronis, “A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling,” Journal of Parallel and Distributed Computing, vol. 107, pp. 37–56, Sep. 2017.

[19] “Intel® Software Development Emulator,” https://software.intel.com/en-us/articles/intel-software-development-emulator, Accessed: May 1, 2019.

[20] J. Treibig, G. Hager, and G. Wellein, “LIKwid: A Lightweight Performance-Oriented Tool Suite for x86 Multicore Environments,” in 2010 39th International Conference on Parallel Processing Workshops, Sep. 2010, pp. 207–216.

[21] “Intel® VTune™ Amplifier,” https://software.intel.com/en-us/VTune, Accessed: May 1, 2019.

[22] U.-H. Zhang, H.-Y. Schive, and T. Chiueh, “Magnetohydrodynamics with gamer,” The Astrophysical Journal Supplement Series, vol. 236, no. 2, p. 50, 2018. [Online]. Available: http://stacks.iop.org/0067-0049/236/i=2/a=50