Cardiac mechanisms for low aerobic power in anthracycline treated, older, long-term breast cancer survivors

Rhys I. Beaudry¹, Mark J. Haykowsky¹,², James P. MacNamara³,⁴, Wesley J. Tucker⁵, Roshni Rao⁶, Barbara Haley⁷ and Satyam Sarma³,⁴*

Abstract

Breast cancer survivors have reduced peak aerobic capacity (VO₂peak) which may be related to latent or lingering chemotherapy induced cardiac damage. Nine, older (67 ± 3 years), long-term survivors (9.8 years) of anthracycline based chemotherapy and age- and sex-matched healthy controls were recruited and tested to determine whether: i) VO₂peak remains reduced in long-term survivorship; and ii) reductions in VO₂peak are due to cardiac dysfunction. VO₂peak was significantly reduced in breast cancer survivors relative to healthy controls (15.9 ± 2.0 vs 19.9 ± 3.1 ml/kg/min, p = 0.006), however the heart rate and stroke volume responses to exercise were normal (heart rate reserve; 88 ± 9 vs 85 ± 10 bpm, p = 0.62; stroke volume reserve; 13 ± 6 vs 13 ± 9 ml, p = 0.94). These findings indicate low-normal ventricular size in long-term breast cancer survivors, but normal reserve function.

Keywords: Breast cancer, Anthracycline, Cardiac function, Exercise, Aerobic capacity, VO₂peak

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Group differences were tested using Student’s t-tests with an alpha level set at \(p < 0.05 \) using SPSS (version 24, IBM SPSS, Armonk, USA). A priori, this study was powered to detect a 5 ± 3.5 ml/kg/min group difference in VO\(_{2\text{peak}}\) (\(\alpha = 0.05, \beta = 0.20 \)) This study was approved by the University of Texas Southwestern Ethics Review Board (STU112016–029).

Age, body mass index and self-reported weekly physical activity were similar between BC and control subjects (Table 1). Resting end-diastolic volume, stroke volume (SV), Qc, and sub-maximal (20 and 40 W) SV were significantly lower in BC survivors compared to controls. Peak power output, VO\(_2\), SV, and Qc were significantly lower in BC survivors with no difference between groups for peak heart rate, arterial-venous oxygen difference, mean arterial pressure, or the ΔQc/ΔVO\(_2\) slope (BC: 6.7 ± 0.5 vs. Controls: 6.3 ± 0.5, \(p = 0.20 \), Table 1).

The novel findings of this study are: i) a lower VO\(_{2\text{peak}}\) in older, long-term BC survivors, ii) a lower rest SV and peak exercise SV and Qc, and iii) similar relative matching of Qc for achieved metabolic work (ΔQc/ΔVO\(_2\) slope) between older long-term BC survivors and controls.

BC survivors had severe and marked exercise intolerance as demonstrated by 20% lower VO\(_{2\text{peak}}\) compared to age-and-sex-matched controls. Their mean VO\(_{2\text{peak}}\) was similar to the threshold level required for full and independent living (e.g. 15.4 ml/kg/min), and occurred a decade earlier than expected for healthy sedentary women without a history of BC (e.g. 77 years of age) [4]. This accelerate physiological aging was accompanied by reduced cardiac size (EDV, ESV, SV) despite indicators of LV filling pressure and relaxation (E/e', E/A ratio) being normal. It is unknown whether the smaller SV and EDV with normal diastolic pressure gradients at rest and exercise is a consequence of smaller geometric chamber properties or cardiac atrophy and altered tissue characteristics (fibrosis and stiffening) consistent with mechanisms of anthracycline cardiotoxicity.

In contrast to the marked impairment in VO\(_{2\text{peak}}\) in BC, the cardiac responses to submaximal and peak exercise appeared normal. While SV was lower in BC at rest, SV reserve (rest to peak exercise) was not different between groups, nor was the ΔQc/ΔVO\(_2\) slope, indicating appropriate regulation of cardiac output for the metabolic demands of exercise. Rather, a close link persists between gross ventricular size and peak exercise capacity whereby a “small heart” phenotype is observed in our BC survivors accounting for reduced peak Qc. In our sample, the mean LV EDV for BC survivors fell towards the lower end of normal, while controls averaged near the upper end of normal. We have reported similar findings of low cardiac volumes and output relative to body size in BC patients prior to receiving cardiotoxic anthracycline therapy.

Table 1 Subject Characteristics, Hemodynamics and Oxygen Uptake

	Rest (n = 9)	Control (n = 8)	P Value
Age (years)	67 (3)	67 (5)	0.96
BSA (m²)	1.77 (0.14)	1.72 (0.07)	0.38
BMI (kg/m²)	2.76 (4.3)	243 (2.2)	0.08
Self-Reported Physical Activity (minutes/week)	125 (100)	126 (135)	0.96
Time post-anthracycline chemotherapy completion (years)	9.8 (5.2)	–	–

SV (l/min)	0.20 (0.04)	0.34
VO2 (ml/kg/min)	2.7 (0.5)	0.16
Qc (l/min)	3.34 (0.40)	0.003
HR (bpm)	71 (9)	0.99
SV (l/min)	48 (7)	0.01
MAP (mmHg)	101 (10)	0.2
EDV (ml)	64 (9)	0.04
ESV (ml)	30 (5)	0.70
EF (%)	52 (7)	0.06
E/e'	8.7 (2.4)	0.69
e' average	7.0 (1.7)	0.71
E/A	0.89 (0.09)	0.47

Submaximal Exercise, 20W		
VO2 (l/min)	0.55 (0.08)	0.60
VO2 (ml/kg/min)	7.8 (1.4)	0.10
Qc (l/min)	6.36 (0.97)	0.06
HR (bpm)	94 (14)	0.71
SV (l/min)	68 (10)	0.53
MAP (mmHg)	110 (13)	0.49
EDV (ml)	69 (9)	0.07
ESV (ml)	28 (5)	0.14
EF (%)	60 (6)	9.72
E/e'	8.0 (1.3)	0.76
e' average	11.1 (1.7)	0.18
E/A	1.00 (0.22)	0.73

Submaximal Exercise, 40W		
VO2 (l/min)	0.73 (0.13)	0.50
VO2 (ml/kg/min)	10.5 (2.5)	0.35
Qc (l/min)	7.44 (0.81)	0.17
HR (bpm)	112 (19)	0.25
SV (l/min)	68 (11)	0.04
MAP (mmHg)	116 (15)	0.22

Peak Exercise		
Power output (Watts)	81 (12)	0.01
VO2 (l/min)	1.11 (0.09)	0.003
VO2 (ml/kg/min)	15.9 (2.0)	0.006
RER	1.15 (0.07)	0.67
Qc (l/min)	9.49 (1.05)	0.003
aVO2 Diff (ml/dL)	11.8 (0.9)	0.87
HR (bpm)	159 (16)	0.71
obvious scapegoat for cardiac atrophy and impaired exercise capacity [5]. It remains possible that a healthy bias effect may exist within both study arms; particularly as BC participants were ~10 years beyond anthracycline therapy, they are by definition healthier than the subset of BC patients who do not survive a decade beyond diagnosis and treatment. Further work is needed to understand the relationship between anthracycline exposure and aging and whether these are synergistic in accelerating cardiac atrophy and declines in cardiorespiratory fitness.

Table 1 (continued)

	BC (n = 9)	Control (n = 8)	P Value
SV (ml)	60 (9)	72 (9)	0.02
MAP (mmHg)	125 (21)	120 (11)	0.63
Reserve			
Qc (l/min)	6.14 (0.81)	7.21 (0.75)	0.02
HR (bpm)	88 (9)	85 (10)	0.62
SV (ml)	13 (6)	13 (9)	0.94

Abbreviations

BC: Breast Cancer; VO$_{2}$peak: Peak oxygen uptake; Qc: Cardiac output; AR: Acetylene rebreathe; MAP: Mean arterial pressure; E/A: Ejection fraction; E/e': Ratio of early diastolic to late mitral inflow; a-vO$_2$: Diff arterial-venous oxygen content difference

Acknowledgements

Not applicable.

Authors’ contributions

RR, MH, JM, WT and SS collected, analyzed and interpreted the participant data. RB, BH and SS recruited participants. RB, MH, WT and SS were major contributors in writing the manuscript. All authors, read, reviewed and approved the final manuscript.

Funding

Dr Haykowsky was funded by the Moritz Chair in Geriatrics in the College of Nursing and Health Innovation.

Availability of data and materials

The dataset used during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

University of Texas Southwestern Ethics Review Board (STU12016–029); all participants provided written, informed consent to participating.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. University of Texas at Arlington, Arlington, TX, USA. 2. University of Alberta, Edmonton, Canada. 3. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA. 4. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA. 5. Texas Woman’s University, Houston, TX, USA. 6. Columbia University Irving Medical Center, New York Presbyterian, New York, NY, USA. 7. Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Received: 18 October 2021 Accepted: 4 April 2022 Published online: 11 April 2022

References

1. Jones LW, Courneya KS, Mackey JR, Muss HB, Pituskin EN, Scott JM, et al. Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol. 2012;30(20):2530–7.
2. Kirkham AA, Beaudry RI, Paterson DJ, Mackey JR, Haykowsky MJ. Curing breast cancer and killing the heart: a novel model to explain elevated cardiovascular disease and mortality risk among women with early stage breast cancer. Prog Cardiovasc Dis. 2019;62(2):116–26.
3. Peel AB, Thomas SM, Dittus K, Jones LW, Lakoski SG. Cardiorespiratory fitness in breast cancer patients: a call for normative values. J Am Heart Assoc. 2014;3(1):e000432.
4. Fitzgerald MD, Tanaka H, Tran ZV, Seals DR. Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis. J Appl Physiol (Bethesda, Md: 1985). 1997;83(1):160–5.
5. Beaudry RI, Howden EJ, Foulkes S, Bigaran A, Claus P, Haykowsky MJ, et al. Determinants of exercise intolerance in breast cancer patients prior to anthracycline chemotherapy. Physiol Rep. 2019;7(1):e13971.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.