Contribution of population-level phenotypic plasticity to the invasiveness of *Zaprionus indianus* (Diptera: Drosophilidae)

Nicolás José Lavagnino, Marcos Imberti, Nicolás Flaimani, Victoria Estefanía Ortiz and Juan José Fanara

Laboratorio de Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IEGEB-CONICET, Ciudad Universitaria, Pabellón II, Buenos Aires 1428, Argentina; e-mails: nlavagnino@gmail.com, paicos@gmail.com, n flaiba@gmail.com, vicrotas@gmail.com, juan_jose_fanara@yahoo.com

Key words. Diptera, Drosophilidae, *Zaprionus indianus*, phenotypic plasticity, life history traits, morphological traits, invaded range, native range

Abstract. *Zaprionus indianus* is a species of fly native to the Afrotropical biogeographic region, which around twenty years ago invaded the American continent. Several studies have shown that local adaptation and phenotypic plasticity of an invasive species in its native range could favour the colonization of new environments. *Zaprionus indianus* is a holometabolous generalist polyphagous species that breeds and feeds on the fruits of several different species, which constitute different environments. In this context, we performed a comparative analysis of the phenotypic plasticity of morphological and life history traits in response to seven different breeding environments (i.e. different breeding fruits). The comparison was of native (Africa) vs. invaded range (South America) wild-derived populations. The population-level phenotypic plasticity values related to heterogeneity in different breeding environments for most traits analysed were higher for one of the native range population. This differentiation was also recorded for the ranking across breeding environments of developmental time and wing length mean phenotypic values. In addition, mean phenotypic values pooled across fruit treatments were larger for individuals from the invaded range, which suggests local adaptation. Results define a scenario in which, although not for all the populations analysed, phenotypic plasticity contributes to the invasiveness and local adaptation in native range population of *Z. indianus*.

INTRODUCTION

There is evidence that biological invasions involving phylogenetically distant taxa are rapidly increasing (Ricciardi & Atkinson, 2004; van Kleunen et al., 2010; Blackburn et al., 2011; Pimentel, 2011; Seebens et al., 2017). The proliferation of alien invasive species provides a unique opportunity to study ecological and evolutionary causes and consequences of a biological invasion. In this sense, numerous studies dealing with the role of phenotypic plasticity in biological invasions have shown that this mechanism could favour the colonization of new environments (Richards et al., 2006; Hulme, 2008; Zenni et al., 2014). Moreover, intraspecific comparative studies have shown that populations in the invaded range of an invasive species are more plastic than are native range populations, and this could facilitate the invasion process (Kaufman & Smouse, 2001; Sexton et al., 2002; Parker et al., 2003). The most generally accepted concept of phenotypic plasticity is that a single genotype can produce alternative phenotypes under different environmental conditions (Schlichting & Pigliucci, 1998). Nevertheless, a broader understanding of phenotypic plasticity does not limit it to being only a characteristic of single genotypes. In this sensu lato conceptualization, any phenotypic change in a biological entity induced by the environment is legitimately considered as phenotypic plasticity and thus it includes the plastic responses of populations and species in their particular ecological contexts (see for example Pigliucci, 2001; Valladares et al., 2006; Gianoli & Vallarades, 2012; Forsman, 2015). For example, plastic responses of trait-mediated interactions among plants may allow them to adjust to the composition of their communities, promoting coexistence and community diversity (Callaway et al., 2003). It has also been shown that different levels of phenotypic plasticity at the population level in Mediterranean oaks favour their survival in fragmented habitats (Balaguer et al., 2001; Gratani et al., 2003). Therefore, the sensu lato consideration of phenotypic plasticity allows to evaluate this mechanism’s relevance in ecological and phylogenetic contexts (Miner et al., 2005; Richards et al., 2006). Also, since this framework is suitable for comparisons of the magnitude and composition of phenotypic plasticity among populations or species it is possible to determine its role in adaptation or invasiveness by means of comparative studies.
Zaprionus indianus Gupta, 1970 is a species of fly native to the Afrotropical biogeographic region (Chassagnard & Kraaijeveld, 1991; Yassin et al., 2008a, b), which about 40 years ago began to extend its geographical distribution from its native range in Africa to other areas in the world (Commar et al., 2012). In South America it was found for the first time in São Paulo city area near the Atlantic coast of Brazil in 1999 (Vilela, 1999). Since then, Z. indianus has been also detected in North and Central America (van der Linde et al., 2006; Castrezzana, 2007, 2011; Renkema et al., 2013; Joshi et al., 2014; Markow et al., 2014; Van Timmeren & Isaacs, 2014; Lasa & Tadeo, 2015; Holle et al., 2019). In South America it has been found in Ecuador (Acurio & Rafael, 2009), in many states of Brazil, both north and south from the initial point of detection (Castro & Valente, 2001; De Toni et al., 2001; Vilela et al., 2001; Santos et al., 2003; Tidon et al., 2003; Kato et al., 2004; Leao & Tidon, 2004; Chaves & Tidon, 2008; Furtado et al., 2009; Oliveira et al., 2009; Fernandes Rodrigues & Araújo, 2011; Pasini & Link, 2011; Ribeiro Barbosa et al., 2012; Poppe et al., 2014; Ferreira Mendes et al., 2017; Vasconcelos et al., 2017), and further south in Paraguay (Benitez Diaz, 2015), Uruguay (Goñi et al., 2001, 2002) and Argentina (Soto et al., 2006; Lavagnino et al., 2008). The most robust hypotheses about the introduction and subsequent spread of Z. indianus on the American continent points to human activity, more precisely fruit trade (Tidon et al., 2003; Galego & Cararetto, 2007). Zaprionus indianus is classified as a category E invasive species according to Blackburn et al. (2011), since it is fully invasive, with individuals dispersing, surviving and reproducing at multiple sites in many habitats.

An important characteristic of Z. indianus is that, both in its native and invaded ranges, it can use a wide variety of decaying fruit as breeding and feeding resources (Lachaise & Tscacas, 1983; Goñi et al., 2002; van der Linde et al., 2006; Schmitz et al., 2007; Lavagnino et al., 2008) what makes it a generalist polyphagous species (Aluja & Mangan, 2007). The different breeding resources represent different environmental patches where individuals spend their embryonic and larval stages. Due to its particular ecological characteristics, Z. indianus provides a unique opportunity to investigate the role of phenotypic plasticity in its invasion of the American continent. Studies on the phenotypic plasticity of Z. indianus have mainly focused on plastic responses of individual genotypes to changes in rearing temperature (Karan et al., 1999; Loh & Bitner Mathé, 2005; Loh et al., 2008; Bitner-Mathé & David, 2015). These studies have detected differences in phenotypic plasticity due to thermal variation and only focus on either invaded or native ranges. Testing hypotheses on what determines the invasiveness of a given species requires comparison of populations of the species in different stages of the invasion process (van Kleunen et al., 2010), for example those in the native range with those that invaded other areas. In this sense, we have performed an intraspecific comparison between native range (Africa) and invaded range (South America) wild-derived populations of Z. indianus focusing on nutrient plasticity. Specifically, we compared sensu lato phenotypic plasticity and adaptive responses of morphological and life history traits of flies reared in 7 different fruit diets. Our main hypothesis is that Z. indianus wild-derived populations from the invaded range will differ in the magnitude and composition of morphological and life history traits phenotypic plasticity when reared on different fruit. The prediction is that larger values of plasticity and different plastic response profiles recorded in populations in invaded ranges indicate a significant contribution of population-level phenotypic plasticity in determining the invasiveness of Z. indianus. Also, we tested the adaptive hypothesis, which states that under the adverse environmental conditions in the habitats in invaded ranges, organisms that mature early, i.e. have shorter developmental times, have a negative cost in terms of fitness associated with a reduction in body size, which has an adverse effect on fertility (Roff, 1992; Stearns, 1992). Our related prediction is that natural selection favoured longer developmental times and large morphological traits in populations from the invaded range in South America.

MATERIALS AND METHODS

Collection sites and establishment of laboratory cultures

Zaprionus indianus flies were collected from two populations in its invaded range in South America and two populations in its native range in Africa (Fig. 1). South American populations were collected by the authors at Yuto (Province of Jujuy, Argentina, coordinates: 23°35´2.1˝ S, 54°40´15.4˝ E) in 2009 from the wild and then donated to the National Drosophila Species Stock Centre (blogs.cornell.edu/drosophila). We obtained African cultures from the Stock Centre (Yokodouma: DSSC stock number: 50001-1031.02; Lujeri: DSSC stock number: 50001-1031.07). The four cultures were set up by massive breeding using the offspring of several Z. indianus single gravid females collected in the wild. Thus, these cultures represent wild-derived populations of Z. indianus and are equivalent samples of the natural genetic variation in each population. All cultures were maintained by full-sib mating for more than 20 generations before the experiments in the first half of 2012. The cultures were kept in 300-ml bottles, 4 bottles per population and fed a standard fly laboratory medium of cornmeal-sugar-agar and never exposed to a growth medium containing fruit (see below). Density was controlled by maintaining cultures stocks with ~50 adults per bottle as recommended for Z. indianus laboratory breeding to avoid negative effects of high population density on developing larvae (David et al., 2006b). All lines were kept at all times under controlled conditions of 25 ±1°C, 60–70% of humidity and 12L: 12D photoperiod.

Experimental design

Zaprionus indianus were reared on one of seven different media that included different semi-natural fruit. Approximately 100 pairs of mature flies from each of the four cultures were each placed in separate oviposition chambers for 8 h where the females laid eggs in a 10 cm Petri dish containing 10 ml of 2.5% agar. Then, the eggs were left to hatch and 16 first-instar larvae were transferred to individual vials containing 5 ml of one of the...
Fig. 1. Geographical locations on a world-map of the populations of *Z. indianus* analysed. Yokadouma (Cameroon) and Lujeri (Malawi) are in the native range of this fly on the African continent and Montecarlo (Argentina) and Yuto (Argentina) are in the invaded range at southern latitudes on the American continent.

Analytical and descriptive analyses of phenotypic variation and plasticity of morphological and life history traits of *Z. indianus* were carried out using R software (R Core Team, 2016). First, the analytical analyses using generalized linear mixed models (GLMM) were done using the *lme4* package (Bates et al., 2015). Models were constructed using the phenotypic values of each trait as variables and Fruit (all 7 semi-natural media) as fixed effects and Population (Origin) (the four populations analysed) as random effects nested in Origin. All variables except viability were modelled with a normal distribution. Viability was modelled with a binomial error distribution and a logit link function (Zuur et al., 2009) using the *lme4* package (Bates et al., 2015). Over dispersion was corrected for by including a random variable at the level of observations (Harrison, 2014). Wald chi-squared tests were used to test significance of fixed effects using the *car* package (Fox & Weisberg, 2019). Likelihood ratio tests were used to test the significance of random factors, for each factor the full model (including fixed and random factors) was compared with the reduced model (without the random factor). Multiple testing was corrected using FDR correction (Benjamini & Hochberg, 1995). A significant effect of Origin indicates that mean phenotypic values for individuals derived from the invaded range in South America differed from those from its native range in Africa without differentiating for the others factors. A significant effect of Population (Origin) effect means that the mean phenotypic values of the trait analysed across breeding fruits and sexes differed between populations. If the *Fruit* effect is significant, it means that population mean phenotypic values for this trait varies significantly depending on which host fruit the flies were bred and our biological interpretation is that population-level phenotypic plasticity for different breeding resources exist. This is based on all cultures being equivalent samples of the natural genetic variation in each population and that the other environmental factors were controlled for. Since the plastic response is for a sample of similar genotypes within each population (each
culture), we refer to it as population-level phenotypic plasticity. This conceptualization and estimate of plasticity is used in other studies (Pigliucci, 2001; Einhorn, 2005; Valladares et al., 2006; Gianoli & Vallarades, 2012; Forsman, 2015). In the cases where the interaction Population (Origin) × Fruit was significant it means that population-level phenotypic plasticity varies between populations. If Origin × Fruit is also significant, it indicates that phenotypic plasticity changes tend to be more similar for populations from the same origin than for those from the other continent. A significant Sex term is interpreted as the existence of sexual dimorphism, and significant interactions of Sex with the other effects represent variations in sexual dimorphism in relation to the origin of the flies, the population and fruit.

Secondly, descriptive analyses were carried out to compare the magnitude of phenotypic plasticity between populations. We used two quantitative estimators of population-level phenotypic plasticity for each trait analysed and fruit: Coefficient of Variation among the environments based on means (CV_m) and Phenotypic Plasticity Index based on the maximum and minimum medians (PI_m). CV_m differences between populations were defined by a descriptive criterion, which indicates there is an inter-population difference if a CV_m value of population x falls outside the CV_m 95% confidence interval of population y, and the reciprocal is also true; i.e., CV_m value of population y falls outside the confidence interval of population x. CV_m 95% confidence intervals were estimated for each trait for each of the four populations studied. Intervals were estimated by means of a quantile function in the `stats` package. PI_m = (maximum median – minimum median) / maximum median); where maximum and minimum refers to the median phenotypic value for a population reared on a particular fruit, that is the largest or smallest for all the media used (Valladares et al., 2006). Finally, to compare if the composition of phenotypic plasticity varied among populations, rankings of mean phenotypic values of viability, developmental time and wing length in different breeding treatments were constructed and compared among populations. Wilcoxon ranked sum non-parametric tests for independent samples were performed for all pairs of populations.

RESULTS

Mean phenotypic values for life history and morphological traits from native and invaded range populations

Wild-derived *Z. indianus* flies from native range populations in Africa developed significantly faster than flies derived from the invaded range in South America, with the mean developmental times of African and South American flies being 312 and 330.76 h, respectively (Table 1, significant Origin effect). African derived flies developed 5.66% faster. Also, developmental time differed significantly between populations regardless of shared origin (Table 1, significant Population (Origin) effect; Table S1). In contrast, flies from both origins had similar values for viability (Table 1, non-significant Origin effect). Overall for all the different kinds of fruit used, 77% of the African larvae completed development to the adult stage and 78% of the South American larvae. Finally, mean values for all morphological traits were significantly larger for individuals derived from the invaded range than for those from the native range, with the exception of thorax length that had a p-value of 0.0511 for the effect of Origin (Table 1, S1).

In fact, morphological traits of South American flies were between 6.5% and 6.8% larger than those of African flies.

Population-level phenotypic plasticity in life history and morphological traits of *Z. indianus*

Results show that the mean values of each trait for the populations varied significantly depending on which fruit the flies were reared on (Table 1, significant Fruit effect). However, the significant Population (Origin) × Fruit interaction revealed significant differences in the phenotypic plasticity between populations (Table 1). When considering flies derived from different origins without distinguishing between populations, differences in phenotypic plasticity in response to breeding fruit are not maintained for most traits (Table 1, non-significant Origin × Fruit effect), with the exception of viability (Table 1, significant Origin × Fruit effect). This means that the plastic responses for developmental time and morphological traits of native range populations did not differ in the same way from those of invaded range populations. While for viability, plastic responses between breeding fruits vary in a similar way for African populations and differently from American populations (see Table S1). Thus, the pattern of population-level phenotypic plasticity variation between populations from both ranges is quite complex and will be addressed in the following section.

Sexual dimorphism was recorded for all traits when sexes could be measured separately (Table 1, significant Sex effect). In general, females developed faster (mean DT of females was 311.88 h and of males 330.87 h) and were smaller independently of their origins or the fruit they were reared on. Developmental time of females was 6.1% faster than that of males and males were 4.7% to 4.8% larger than females for all morphological traits. This dimorphism was independent of origin and the fruit flies were reared on. With the exception of developmental time, that significant Origin × Sex interaction, showing faster development for flies populations from Africa (Table 1).

Table 1. Summary table of GLMM analyses of all traits after FDR correction. | V | DT | WL | WW | TL | HW | ID |
|---|---|---|---|---|---|---|
| Origin | NS | S | S | S | NS* | S |
| Population (Origin) | NS | S | NS | NS | NS | NS |
| Fruit | S | S | S | S | S | S |
| Sex | – | S | S | S | S | S |
| Origin × Fruit | S | NS | NS | NS | NS | NS |
| Origin × Sex | – | S | NS | NS | NS | NS |
| Fruit × Sex | – | NS | NS | NS | NS | NS |
| Origin × Fruit × Sex | – | NS | NS | NS | NS | NS |
| Population (Origin) × Fruit | S | S | S | S | S | S |
| Population (Origin) × Sex | – | NS | NS | NS | NS | NS |
| Population (Origin) × Fruit × Sex | – | NS | NS | NS | NS | NS |

121
Comparison of population-level phenotypic plasticity of native and invaded range populations

First, we compared the magnitude of phenotypic plasticity among populations using the coefficient of variation (CVm) and the Phenotypic Plasticity Index (PI\textsubscript{md}) as estimators (Table S2). Yuto population in the invaded range had a larger population-level phenotypic plasticity, estimated using CVm, than any other population included in this study for all traits other than viability (Fig. 2). For PI\textsubscript{md}, although it could not be used for comparison, the pattern of population-level phenotypic plasticity was similar since the Yuto population had the largest PI\textsubscript{md} values for all traits. The Yokadouma population in the native range had the second largest PI\textsubscript{md} values for all traits other than viability (Fig. 2). In terms of median phenotypic values associated with rearing on different fruit, these two populations both had long developmental times and were larger when reared on ‘kaki’ (Table S1). Then, we compared the rankings of mean phenotypic values for viability, developmental time and wing length when reared on the different fruit. The Yuto population from the invaded range differed significantly in developmental time and wing length from Yokadouma and Lujeri, the two populations from the native range of Z. indians (Fig. 3).

DISCUSSION

Studies dealing with phenotypic plasticity in Z. indians have focused on plastic responses caused by temperature changes (Karan et al., 1999; Loh & Bitner Mathé, 2005; Loh et al., 2008; Bitner-Mathé & David, 2015). This is based on the reasonable premise that temperature is one of the most important environmental determinants of development and adult lifestyle of a holometabolous insect like Z. indians. However, as this species is polyphagous and uses several different kinds of fruit for breeding and feeding, it is likely that these resources are also important ecological characteristics. In this context, our results indicate that there is a difference in the magnitude and composition of population-level phenotypic plasticity associated with feeding on different types of fruit between native and invaded ranges populations of this fly. Although the phenomenon of different phenotypic plasticity between native and invaded populations was found, this may not be a general phenomenon as only the phenotypic plastic-

Fig. 2. Magnitude of population-level phenotypic plasticity of all traits and populations analysed independent of the type of fruit. The panels on the left show Phenotypic Plasticity Index based on maximum and minimum medians (PI\textsubscript{md}). The panels on the right show Coefficient of Variation over the environments based on means (CV\textsubscript{m}) for each population. Letters indicate differences between populations evaluated by means of analytical methods, see Materials and Methods for details. Each estimation was based on 70 replicates, with the exception of viability for which 35 replicates were used.

122
ity of the Yuto population was greater than in one of the populations from native range. These differences were not found for the other invaded range population analysed, the Montecarlo population. It was also the Yuto population that had a different composition of phenotypic plasticity from both native range populations for developmental time and wing length. Differences in the composition of phenotypic plasticity were recorded in changes in the ranking of mean phenotypic values per type of fruit between populations. The lack of generality in the patterns identified could be the consequence of differences in the genetic bases of phenotypic plasticity between populations, which probably resulted from drastic demographic events during the invasion of South America. In particular, reductions in the effective population size at the time of population foundation, or population bottlenecks in subsequent generations, may have affected the expression of phenotypic plasticity. This could be the case for the particular demographic history of the native range population Montecarlo, which differed in its plasticity pattern.

The occurrence of phenotypic plasticity in invaded ranges is generally interpreted as positive for a successful invasion because it could be beneficial for coping with new and heterogeneous environments in invaded ranges (Kaufman & Smouse, 2001; Sexton et al., 2002; Parker et al., 2003; Fordyce, 2006; Richards et al., 2006; Chun et al., 2007; Matesanz et al., 2010; Davidson et al., 2011; Zenni et al., 2014).

Our results revealed that all traits were sexually dimorphic when the sexes could be measured separately, with females developing faster and being smaller in terms of all the morphological traits measured. Although previous studies on *Z. indianus* show the same expected direction for sexual dimorphism, they also indicate that the dimorphism is less marked than in other drosophilids (see Karan et al., 1999; Loh & Bitner Mathé, 2005; Bitner-Mathé & David, 2015). It is also reported that sexual dimorphism tends to disappear in laboratory cultures of *Z. indianus* (Loh & Bitner Mathé, 2005; Loh et al., 2008). Thus, it is possible that the sexual dimorphism recorded in our study was a consequence of the semi-natural fruit medium used in laboratory breeding of the flies. This hypothesis was not tested in the present study and should be further analysed. The comparisons we made also enabled the evaluation of whether natural selection had a role in determining the invasiveness of *Z. indianus*. Mean phenotypic values pooled across the fruit treatments for most traits analysed were larger for individuals derived from the invaded range on the American continent than those derived from the native range in Africa. Exceptions to this pattern were thorax length and viability, although thorax length was marginally significant. Even if trait values are disaggregated between breeding fruit, larger phenotypic means were recorded for population in the invaded range for most morphological traits and types of fruit. For developmental time, larger values for invaded range populations were also found as a general trend. In the light of life history theory, these results could be interpreted as adaptive (Roff, 1992; Stearns, 1992). Under adverse environmental conditions, such as poor nutrients, different predators, competitors...
and/or extreme temperatures, there is a cost in terms of fitness for organisms that mature earlier, i.e. have a shorter developmental time, which is associated with a reduction in body size and fertility (Roff, 1992; Stearns, 1992). In invaded ecosystems that are different from those in the native range, it is likely that either the physicochemical or biological conditions will be unfavourable for *Z. indianus*. So, in terms of life history theory natural selection is likely to favour a longer developmental time in populations in the invaded than in native ranges. The same can be proposed for morphological traits. In concordance with our results, previous surveys also report higher values for the morphological traits of the South American populations than the African populations (David et al., 2006a, b). Nevertheless, it should be noticed that differences in the phenotypic values of morphological and life history traits among populations in different environments may only indicate the action of natural selection that results in local adaptation. But as Reznick & Travis (1996) point out, that although phenotypic differences between populations in different environments may indicate that adaptation is occurring in nature it must be confirmed by another kind of evidence. At this point, it is worth mentioning that since the populations analysed were kept in the laboratory for several generations before the experiments we cannot rule out potential effects of laboratory adaptation and genetic drift. However, given that these populations were maintained at large numbers and reared on a standard laboratory medium it is unlikely that laboratory selection and/or genetic drift or bottlenecks affected the patterns recorded. In fact, a study by Maclean et al. (2018) report that laboratory maintenance does not affect comparisons of the patterns in the traits of flies similar to those used in this study.

Several studies that compare trait values of invasive species in their invaded and native ranges report large differences (Sakai et al., 2001; Tsutsui & Suarez, 2003; van Kleunen et al., 2010). However, few studies deal with whether the underlying mechanisms are phenotypic plasticity or adaptive evolution in the invaded range or a combination of both. In this sense, our results define a scenario in which population-level phenotypic plasticity associated with heterogeneity in breeding substrates contributes to the invasiveness of *Z. indianus* as well as local adaptation of populations in their native range. All things considered, the results hint at the coexistence of adaptation and phenotypic plasticity being relevant for *Z. indianus* invasiveness. Therefore, when it comes to understanding and explaining the invasion of *Z. indianus* of the southernmost latitudes of the American continent, it is not possible to propose that one mechanism is of greater importance than another. In fact, it seems necessary to consider the possibility that both are acting simultaneously.

AUTHORS’ CONTRIBUTIONS. NJL, MI and JF planned, designed and did the experimental work; NJL, NF and VEO analysed the data, NJL, MI, NF, VEO and JF wrote the manuscript.

ACKNOWLEDGEMENTS. This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (Argentina) (PICT 2012-0640) and Universidad de Buenos Aires (Argentina) (UBACyT 20020100100482). NJL and JF are members of Carrera del Investigador Científico of CONICET (Argentina). MI, NF, and VEO are recipients of a scholarship from Carrera del Investigador Científico of CONICET (Argentina).

REFERENCES

Acuña A.E. & Rafael V.L. 2009: Inventario taxonómico de Drosophilidae (Diptera) en el Parque Nacional Yasuní amazónica ecuatoriana. — Acta Amazon. 39: 713–718.

Aluja M. & Mangas R.L. 2007: Fruit fly (Diptera: Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. — Annu. Rev. Entomol. 52: 473–502.

Balaguer L., Martínez-Ferri E., Valladares F., Pérez-Corona M.E., Baqué D.F.J., Castillo F.J. & Manrique E. 2001: Population divergence in the plasticity of the response of *Quercus cocifera* to the light environment. — Funct. Ecol. 15: 124–135.

Bates D., Maechler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using *lme4*. — J. Stat. Soft. 67: 1–48.

Benítez Díaz E.A. 2015: Primer registro de la Mosca Africana del Higo, *Zaprionus indianus* (Diptera: Drosophilidae) en Paraguay. — Bol. Mus. Nac. Hist. Nat. Parag. 19: 100–110.

Benjamini Y. & Hochberg Y. 1995: Controlling the false discovery rate: A practical and powerful approach to multiple testing. — J. Roy. Stat. Soc. (B) 57: 289–300.

Birner-Mathé B.C. & David J.R. 2015: Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America. — Genetica 143: 441–451.

Blackburn T.M., Pyšek P., Bachov CN., Carlson J.T., Duncan R.P., Jarosik V., Wilson J.R.U. & Richardson D.M. 2011: A proposed unified framework for biological invasions. — Trends Ecol. Evol. 26: 333–339.

Callaway R., Penning S.C. & Richards C.L. 2003: Phenotypic plasticity and interactions among plants. — Ecology 84: 115–128.

Carreras V.J., Mensch J. & Fanara J.J. 2009: Body size in *Drosophila*: genetic architecture, allometries and sexual dimorphism. — Heredity 102: 246–256.

Carreras V.P., Mensch J., Hasson E. & Fanara J.J. 2016: Natural genetic variation and candidate genes for morphological traits in *Drosophila melanogaster*. — PLoS ONE 11: e0160069, 26 pp.

Castrejana S. 2007: New records of *Zaprionus indianus* Gupta, 1970 (Diptera, Drosophilidae) in North America and a key to identify some *Zaprionus* species deposited in the Drosophila Tucson Stock Center. — Dros. Inf. Serv. 90: 34–36.

Castrejana S. 2011: New record on novel hosts for the drosophilid pest *Zaprionus indianus*. — Dros. Inf. Serv. 94: 1–2.

Castro F.L. & Valente V.L.S. 2001: *Zaprionus indianus* invading communities in the southern Brazilian city of Porto Alegre. — Dros. Inf. Serv. 84: 15–17.

Chassagnard M.T. & Kraaijeveld A.R. 1991: The occurrence of *Zaprionus* sensu stricto in the Paleartic region (Diptera, Drosophilidae). — Ann. Soc. Entomol. Fr. 27: 495–496.

Chaves N.B. & Tedon R. 2008: Biogeographical aspects of drosophilids (Diptera, Drosophilidae) of the Brazilian savanna. — Rev. Bras. Entomol. 52: 340–348.

Chiu Y.J., Colwell M.L., Moloney K.A. & Nason J.D. 2007: Phenotypic plasticity of native vs. invasive purple loosestrife: a two-state multivariate approach. — Ecology 88: 1499–1512.
GUPTA J.P. 1970: Description of a new species of Zaprionus indi-
Gupta, 1970 (Diptera, Dros-
HARRISON X.A. 2014: Using observation-level random effects
to model overdispersion in count data in ecology and evolu-
— PeerJ. 2: e616, 19 pp.
HOLLE S.G., TRAN A.K., BURKESS E.C., EBBINGA D.N. & HUTCH-
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
dius (Diptera: Drosophilidae) in commercial fruits and vegetables in Pennsylvania. — J. Insect Sci.
14: 259, 4 pp.
KARAN D., MORETEAU B. & DAVID J.R. 1999: Growth temperature
and reaction norms of morphometrical traits in a tropical dros-
ophilid: Zaprionus indi
KATO C.M., FOUREAUX L.V., CESAR R.A. & TORRES M.P. 2004: Oc-
currence of Zaprionus indiana
Gupta, 1970 (Diptera: Droso-
KLAZCO L.B., LEGOUT H., MARTINS M.B., VOUIDIBIO J., YASSIN
A. & MORETEAU B. 2006b: Sexual dimorphism of body size and sternopleural bristle number: a comparison of geographic
populations of an invasive cosmopolitan drosophilid. — Ge-
etica 128: 109–122.
DAVIDSON A.M., JENNINGS M. & NECOTA A.B. 2011: Do invasive
species show higher phenotypic plasticity than native species
and, if so, is it adaptive? A meta-analysis. — Ecol. Lett. 14:
419–431.
DE TONI D.C., HOFMANN P.P.R. & VALENTE V.L.S. 2001: First
record of Zaprionus indianus (Diptera, Drosophilidae) in the State of Santa Catarina, Brazil. — Biotemas 14: 71–85.
EINHORN K.S. 2005: Growth and physiology of ash (Fraxinus ex-
celsior) and beech (Fagus silvatica) seedlings in response to a light gradient following natural gap formation. — Ecol. Bull. 52: 1–53.
FERNANDES RODRIGUES D.R. & ARAUJO E.L. 2011: Ocorrência de
Zaprionus indianus Gupta (Diptera: Drosophilidae) em frutos de juazeiro Ziziphus joaazeiro Mart. (Rhamnaceae) no estado do Rio Grande do Norte. — Rev. Bras. Frutic. 33: 1356–1358.
FERRREIRA MENDES M., BERTI VALER E., ALFONSO VIEIRA J.G., LANER BEAUT M. & GOTSCHALK M.S. 2017: Diversity of Drosophili-
dae (Insecta, Diptera), in the Restinga forest of southern Brazil. — Rev. Bras. Entomol. 61: 248–256.
FORDYCE J.A. 2006: The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. — J. Exp. Biol. 209: 2377–2383.
FOSSMAN A. 2015: Rethinking phenotypic plasticity and its conse-
quences for individuals, populations and species. — Heredity 115: 276–284.
FOX J. & WEISBERG S. 2019: An (R) Companion to Applied Re-
gression. 3rd ed. Sage, Thousand Oaks, CA, 607 pp.
FURTADO I.S., MARTINS M.B. & COSTA J.E. 2009: First record of
Zaprionus indiana
Gupta (Diptera: Drosophilidae) in the Urucu Petroleum Province in Amazonas, Brazil. — Dros. Inf. Serv. 92: 17–18.
GALLEGOL G.C. & CARARETO C.M.A. 2007: Analysis of the dros-
hilid Zaprionus indi
Gupta, 1970 (Diptera, Dros-
Gupta J.P. 1970: Description of a new species of Phorticella and
Zaprionus (Drosophilidae) from India. — Proc. Indian Natl. Sci. Acad. (B) 36: 62–70.
HOLLE S.G., TRAN A.K., BURKESS E.C., EBBINGA D.N. & HUTCH-
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
HARRISON X.A. 2014: Using observation-level random effects
to model overdispersion in count data in ecology and evolu-
— PeerJ. 2: e616, 19 pp.
HOLLE S.G., TRAN A.K., BURKESS E.C., EBBINGA D.N. & HUTCH-
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
JOSHI N.K., BODDINGER D.J., DEMCHAK K. & DEPPEN A. 2014: First
report of Zaprionus indi
— J. Entomol. Sci. 54: 99–102.
HULME P.E. 2008: Phenotypic plasticity and plant invasions: Is it
all just? — Funct. Ecol. 22: 3–7.
Table S1. Mean phenotypic values and standard errors (S.E.) for each trait analysed for each population reared on a particular type of fruit. DT – developmental time, V – viability, WL – wing length, WW – wing width, TL – thorax length, ID – inter-ocular distance, HW – head width. Values are based on 10 replicates for all traits, except for V for which 5 replicates were used.

	Lujeri	Yokoudoua	Montecarlo	Yuto
	Mean	S.E.	Mean	S.E.
DT (hrs)				
Kaki	352.1092	10.4686	405.6200	9.6578
Peach	287.9903	4.1033	283.9229	3.9139
Guava	297.4614	6.3109	305.5010	6.0429
Mango	289.2747	4.6165	286.3600	7.089
Orange	297.7825	5.2314	290.4657	4.389
Papaya	309.7473	10.1378	285.3457	6.169
Pear	327.0374	13.4954	347.2300	9.1904
Mean			364.5543	9.7458
S.E.			386.7086	7.8160
WL (mm × 100)				
Kaki	265.0754	7.8821	305.3591	7.2716
Peach	216.8050	3.0893	213.7436	2.9468
Guava	223.9357	4.7515	229.8978	4.5497
Mango	217.7722	3.4759	217.0837	5.3375
Orange	224.1770	3.9389	218.6689	3.3044
Papaya	233.1840	7.6331	214.8144	4.4648
Pear	246.2011	10.1609	261.4022	6.9196
Mean			272.6443	3.3970
S.E.			291.1229	5.8949
WW (mm × 100)				
Kaki	121.7164	3.6194	140.2137	3.3388
Peach	99.5517	1.4186	98.1456	1.3532
Guava	102.8257	2.1817	105.6046	2.0891
Mango	99.9955	1.5961	99.6792	2.4509
Orange	102.9366	1.8086	100.4073	1.5174
Papaya	107.0728	3.5049	98.6377	2.1327
Pear	113.0493	4.6657	120.0294	3.1772
Mean			125.2571	1.5413
S.E.			133.6760	2.7022
TL (mm × 100)				
Kaki	148.1967	4.4067	170.7181	4.0653
Peach	121.2101	1.7272	119.4982	1.6476
Guava	125.1964	2.6564	128.5802	2.5343
Mango	121.7509	1.9433	121.3655	2.9841
Orange	125.3515	2.2022	122.2520	1.8475
Papaya	130.3671	4.2674	120.0670	2.5699
Pear	137.6448	5.6808	146.1435	3.8686
Mean			152.4807	1.7686
S.E.			162.7591	3.2901
HW (mm × 100)				
Kaki	111.9855	3.3299	129.0043	3.0719
Peach	91.5930	1.3056	90.2992	1.2450
Guava	94.6051	2.0072	97.1620	1.922
Mango	92.0017	1.4685	91.7105	2.2548
Orange	94.7076	1.6641	92.3801	1.3961
Papaya	98.5124	3.2247	90.7520	1.9623
Pear	104.0116	4.2928	110.4338	2.9233
Mean			115.2350	1.4006
S.E.			122.9894	2.4862
ID (mm × 100)				
Kaki	58.9873	1.7541	67.9518	1.6182
Peach	48.2457	0.6875	47.5645	0.6558
Guava	49.6323	1.0574	51.1794	1.0124
Mango	48.4609	0.7735	48.3073	1.1878
Orange	49.8666	0.8764	48.6606	0.7355
Papaya	51.8907	1.6987	47.8026	1.0336
Pear	54.7873	2.2610	58.1696	1.5397
Mean			60.7008	0.7991
V (proportion			64.7839	1.3096
of larvae that				
emerged as flies)				
Kaki	0.6400	0.0748	0.7070	0.0452
Peach	0.7730	0.1108	0.7870	0.1143
Guava	0.8930	0.03340	0.9070	0.0267
Mango	0.8670	0.0365	0.8670	0.0386
Orange	0.8670	0.0298	0.8800	0.0389
Papaya	0.8130	0.1062	0.5870	0.1062
Pear	0.8800	0.0327	0.8530	0.0442

Published online March 24, 2020
Table S2. Phenotypic Plasticity Index based on maximum and minimum medians (PImd) and Coefficient of Variation over the environments based on means (CVm) for each trait and population.

Trait	Viability	Developmental time	Wing length	Wing width	Thorax length	Head width	Inter-ocular distance					
	PImd	CVm	PImd	CVm	PImd	CVm	PImd	CVm	PImd	CVm	PImd	CVm
Lujeri	0.231	0.22	0.202	0.11	0.202	0.11	0.202	0.11	0.202	0.11	0.189	0.11
Yokadouma	0.231	0.24	0.291	0.15	0.291	0.15	0.291	0.15	0.291	0.15	0.291	0.15
Montecarlo	0.347	0.22	0.210	0.14	0.210	0.11	0.209	0.11	0.209	0.11	0.207	0.11
Yuto	0.800	0.22	0.340	0.17	0.340	0.17	0.340	0.17	0.339	0.17	0.340	0.17