Gas-grain model of carbon fractionation in dense molecular clouds

Jean-Christophe Loison1*, Valentine Wakelam2, Pierre Gratier2 and Kevin M. Hickson1

*Corresponding author: jean-christophe.loison@u-bordeaux.fr

1 Institut des Sciences Moléculaires (ISM), CNRS, Univ. Bordeaux, 351 cours de la Libération, 33400, Talence, France
2 Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France.

Accepted in MNRAS

Key words: ISM: abundances - ISM: clouds - ISM: molecules - astrochemistry

Carbon containing molecules in cold molecular clouds show various levels of isotopic fractionation through multiple observations. To understand such effects, we have developed a new gas-grain chemical model with updated \(^{13}\text{C}\) fractionation reactions (also including the corresponding reactions for \(^{15}\text{N}, ^{18}\text{O}\) and \(^{34}\text{S}\)). For chemical ages typical of dense clouds, our nominal model leads to two \(^{13}\text{C}\) reservoirs: CO and the species that derive from CO, mainly s-CO and s-CH\(_{3}\)OH, as well as C\(_{3}\) in the gas phase. The nominal model leads to strong enrichment in C\(_{3}\), c-C\(_{3}\)H\(_{2}\) and C\(_{2}\)H in contradiction with observations. When C\(_{3}\) reacts with oxygen atoms the global agreement between the various observations and the simulations is rather good showing variable \(^{13}\text{C}\) fractionation levels which are specific to each species. Alternatively, hydrogen atom reactions lead to notable relative \(^{13}\text{C}\) fractionation effects for the two non-equivalent isotopologues of C\(_{2}\)H, c-C\(_{3}\)H\(_{2}\) and C\(_{2}\)S. As there are several important fractionation reactions, some carbon bearing species are enriched in \(^{13}\text{C}\), particularly CO, depleting atomic \(^{13}\text{C}\) in the gas phase. This induces a \(^{13}\text{C}\) depletion in CH\(_{4}\) formed on grain surfaces, an effect that is not observed in the CH\(_{4}\) in the solar system, in particular on Titan. This seems to indicate a transformation of matter between the collapse of the molecular clouds, leading to the formation of the protostellar disc, and the formation of the planets. Or it means that the atomic carbon sticking to the grains reacts with the species already on the grains giving very little CH\(_{4}\).
1. Introduction

The study of molecular isotopologues provides an important opportunity to understand the transformation of interstellar matter from gas and dust to the eventual formation of planetary systems. In order to gain a better insight into the various processes leading to isotope fractionation in N-bearing, O-bearing and S-bearing molecules, we have performed a series of investigations related to the chemistry occurring in dense molecular clouds with a particular emphasis on 15N (Loison et al. 2018), 18O (Loison et al. 2019) and 34S (Loison et al. 2019) reactions. In these regions, low temperatures are thought to play an important role in the enrichment process, as zero point energy (ZPE) differences between the reagents and products of a fractionation reaction favor the formation of molecules containing heavy isotopes. During these earlier studies, we demonstrated that the observed 14N/15N ratios in nitrogen containing molecules could not be explained by the differing reactivity of these species. In contrast, the chemistry was shown to induce a significant enrichment in 18O, 13C18O, 15N18O and 18O molecules (with a low corresponding enrichment in 34S), allowing the chemical age of dense interstellar clouds to be better constrained. Here, we describe a study of 13C fractionation in interstellar molecules that have the characteristic of involving a large number of observed species which also present diverse fractionation levels. While carbon-bearing molecules display variable, and sometimes large, isotopic fractionation levels in diffuse (Liszt 2007, Ritchey et al. 2011) and dense molecular clouds (see Table 1), the derived 12C/13C ratios in the Solar System are remarkably constant, with values close 90 in solar CO (Ayres et al. 2013), in Titan’s atmosphere (Courtin et al. 2011, Gurwell 2004, Jennings et al. 2008, Jennings et al. 2009, Mandt et al. 2012) and in comets (Bockelée-Morvan et al. 2015), all three being close to the telluric value. It should be noted that the solar system 12C/13C ratio close to 90 is different from the local ISM value of 12C/13C = 68 ± 15 suggested by (Milam et al. 2005) as the sun may have migrated from its original birthplace closer to the Galactic Centre (Romano et al. 2017). The first study on 13C fractionation was carried out by Langer et al. (1984) showing the importance of the 13C$^+$ + CO → C$^+$ + 13CO reaction. Roueff et al. (2015) expanded on this earlier work by showing that it was necessary to include other processes such as the 13C + CN → C + 13CN reaction. Very recently, Colzi et al. (2020) have performed the first gas-grain model for 13C fractionation adding few 13C fractionation reactions from Roueff et al. (2015). In their study, Colzi et al. (2020) have considered all carbons of a given species as equivalents, e.g. they do not differentiate 13CCH and C13CH, which induces several biases in the results and does not allow a realistic comparison with most of the observations. We have extended these 13C fractionation studies considering the various positions for 13C as specific species (e.g. 13CCH...
and C13CH are different species) and including various new chemical reactions such as those involving secondary carbon reservoirs such as C$_3$ and HCN. We limited our study to dense clouds where photodissociation induced fractionation is minor. In diffuse molecular clouds and circumstellar disks, 12CO self-shielding provides a mechanism for selective photodissociation of 13CO, thereby increasing the 12CO/13CO ratio (Visser et al. 2009).

Table 1: Observations for 13C in dense molecular clouds.

species	ratio	Cloud	references
C18O/13C18O	70(20)	L1527	(Yoshida et al. 2019)
C17O/13C17O	42(13)	L483	(Agúndez et al. 2019)
HCO$^+$/13CO$^+$	49(14)	TMC1	(Turner 2001)
C13H$^+$	> 250	TMC1	(Sakai et al. 2010)
	> 250	L1527	(Yoshida et al. 2019)
	> 210(60)	L1527	(Yoshida et al. 2019)
	>162	L483	(Agúndez et al. 2019)
C13CH	> 170	TMC1	(Sakai et al. 2010)
	> 140(40)	L1527	(Yoshida et al. 2019)
	>70	L483	(Agúndez et al. 2019)
c-C$_3$H$_2$/c-CC13CH	61(11)	L1527	(Yoshida et al. 2015)
	41(8)	L1527	(Yoshida et al. 2015, Yoshida et al. 2019)
	53(16)	L483	(Agúndez et al. 2019)
c-C$_3$H$_2$/c-CC13CH	310(80)	L1527	(Yoshida et al. 2015)
	200(30)	L1527	(Yoshida et al. 2019)
	458(138)	L483	(Agúndez et al. 2019)
CH$_3$C13H$_2$/CH$_3$C13H	60(18)	L483	(Agúndez et al. 2019)
	53(16)	L483	(Agúndez et al. 2019)
CH$_3$C13H$_2$/CH$_3$C13CH	58(17)	L483	(Agúndez et al. 2019)
CN/13CN	50(20)*	B1	(Daniel et al. 2013)
	44(8)	OMC-2	(Kahane et al. 2018)
	61(17)	L1527	(Yoshida et al. 2019)
HCN/H13CN	30(7)**	B1	(Daniel et al. 2013)
	45(3)**	L1498	(Magalhães et al. 2018)
HNC/H13C	43-72**	TMC1	(Liszt & Ziurys 2012)
	20(5)**	B1	(Daniel et al. 2013)
HC$_3$N/13CCN	79(11)	TMC1	(Takano et al. 1998, Liszt & Ziurys 2012)
	132(10)	TMC1	(Gratier et al. 2016)
	57(7)	OMC-2	(Kahane et al. 2018)
	86(16)	L1527	(Araki et al. 2016)
	85(22)	L1527	(Yoshida et al. 2019)
	91(27)	L483	(Agúndez et al. 2019)
HC$_3$N/HC$_3$CCN	75(10)	TMC1	(Takano et al. 1998, Liszt & Ziurys 2012)
	129(10)	TMC1	(Gratier et al. 2016)
	59(11)	OMC-2	(Kahane et al. 2018)
	85(17)	L1527	(Araki et al. 2016)
	51(7)	L1527	(Yoshida et al. 2019)
	93(28)	L483	(Agúndez et al. 2019)
HC$_3$N/HCC13CN	55(7)	TMC1	(Takano et al. 1998, Liszt & Ziurys 2012)
	79(8)	TMC1	(Gratier et al. 2016)
	46(6)	OMC-2	(Kahane et al. 2018)
	64(2)	L1527	(Araki et al. 2016)
	49(15)	L1527	(Yoshida et al. 2019)
	79(24)	L483	(Agúndez et al. 2019)
Table 1

Isotopologue	Abundance	Source
HC₅N/HC₅¹⁵CN	85(35)	TMC1 (Burkhardt et al. 2018)
HC₅N/HC₅¹³CC₅N	110(16)	TMC1 (Cordiner et al. 2017)
HC₅N/HC₅¹³CC₅N	90(33)	TMC1 (Burkhardt et al. 2018)
CS/¹³CS	68(5)	TMC1 (Liszt & Ziurys 2012) using CS/C³⁴S = 22.7
H₃CS/ H₃¹³CS	79(26)	TMC1 (Liszt & Ziurys 2012) using H₂CS/ H₂C³¹³S = 22.7
CCS/¹³CCS	230(130)	TMC1 (Sakai et al. 2007)
CCS/C¹³CS	54(2)	TMC1 (Sakai et al. 2007)

*: main isotopologue shows opacity
**: main isotopologue shows very strong opacity

In Section 2, we present the chemical model, describing the important isotopic exchange reactions and the main changes from Roueff et al. (2015). The results of the nominal model, the various tests used to examine the effects of certain reactions and the comparison with dense molecular cloud observations and the comparison with the results from Colzi et al. (2020) are shown in Section 3. Our conclusions are presented in Section 4.

2 The chemical model

2.1 Model description

Our model is the same as in our recent studies of ¹⁵N, ¹⁸O and ³⁴S fractionation (Loison et al. 2018, Loison et al. 2019) based on the chemical model Nautilus in its 3-phase version from Ruaud et al. (2016) using kida.uva.2014¹ (Wakelam et al. 2015) as the basis for the reaction network. The new network is limited to carbon skeletons up to C₃Hₙ (x = 0-2) and C₃H₊ₙ (x = 0-3), to limit the number of reactions when considering all the ¹⁵N and ¹³C species. Species with a carbon ¹³C and having several non-equivalent carbons (C₂H, C₂S, C₃, c-C₃H, l-C₃H, ...) are treated as different species. We did not consider multiple fractionations (with two or more ¹³C or with one ¹³C and one ¹⁵N, ¹⁸O, ³⁴S) as they involve very minor species. We did not include either CH₃CCH or C₃H₆ because these species cannot be efficiently produced by current gas-grain models and are not strongly linked to species present in our reduced network. The low production of CH₃CCH or C₃H₆ by current gas-grain models is due to the fact that the ionic pathway via the C₃H₃⁺ + H₂ reaction is supposed to be inefficient according to Lin et al. (2013a), and the desorption mechanisms are not efficient enough either despite the relatively large amount of CH₃CCH and C₃H₆ formed on the surface of grains (formed by successive hydrogenation reactions of s-C₃) considering the usual desorption processes. The current

¹ http://kida.obs.u-bordeaux1.fr/models
network includes 4096 gas-phase reactions and 5586 grain reactions. We have checked that the new network reproduces the abundances of the complete network for the main species studied here. We have also introduced the ^{15}N, ^{13}C, ^{18}O and ^{34}S exchange reactions using an updated version of the network presented in Roueff et al. (2015) and Colzi et al. (2020) including various new exchange reactions, the nitrogen network being presented in our recent study (Loison et al. 2018) and the oxygen and sulfur exchange reactions in (Loison et al. 2019). The surface network is similar to the one developed by Ruaud et al. (2015) with additional updates from Wakelam et al. (2017).

The chemical composition of the gas-phase and the grain surfaces is computed as a function of time. The gas and dust temperatures are equal to 10 K, the total H$_2$ density is equal to 2×104 cm$^{-3}$ (various runs have been performed with a total H density between 1×104 cm$^{-3}$ and 2×105 cm$^{-3}$, although the density does not appear to be a critical factor for fractionation). The cosmic-ray ionization rate is equal to 1.3×10$^{-17}$ s$^{-1}$ and the total visual extinction is set equal to 10. All elements are assumed to be initially in atomic form (elements with an ionization potential below the maximum energy of ambient UV photons (13.6 eV, the ionization energy of H atoms) are initially in a singly ionized state, i.e., C, S and Fe), except for hydrogen, which is entirely molecular. The initial abundances are similar to those of Table 1 of Hincelin et al. (2011), the C/O elemental ratio being equal to 0.7 in this study. The grains are considered to be spherical with a 0.1 µm radius, a 3 g.cm$^{-3}$ density and about 106 surface sites, all chemically active. The dust to gas mass ratio is set to 0.01.

2.2 Update of the chemistry (13C exchange reactions)

In interstellar media, fractionation reactions are driven by zero point energy (ZPE) differences that favor one direction (reverse or forward) for barrierless exchange reactions at low temperature. Following our previous study of 18O fractionation (Loison et al. 2019) based on Henchman and Paulson (1989) we consider for the various fractionation reactions (forward (k_f) corresponds to the exothermic pathway and reverse (k_r) the opposite pathway, see Table 2 for the units):

\[
k_f(T) = \alpha \times (T/300)^\beta \times f(B,M)/(f(B,M) + \exp(\Delta E/kT)),
\]

\[
k_r(T) = \alpha \times (T/300)^\beta \times \exp(\Delta E/kT)/(f(B,M) + \exp(\Delta E/kT))
\]

with α and β given by capture theory, $f(B,M)$ is related to the symmetry of the system (Terzieva & Herbst 2000) and $\Delta E = \text{exothermicity of the reactions}$ (see Table 2) and T is the temperature.
We have extensively updated the exchange reactions from Roueff et al. (2015) and Colzi et al. (2020), introducing 10 new fractionation reactions. We highlight the role of the barrierless 13C + C$_3$ (number 8 of Table 2) reaction (Wakelam et al. 2009), as Colzi et al. (2020), but also of the C + 13CCC reaction (number 9 of Table 2), which play a crucial role if C$_3$ is present at high abundance levels (specifically in the case where C$_3$ is unreactive with atomic oxygen). The 13C exchange reactions are listed in Table 2 (and are cited in the text by their number in the same table). It should be noted that there are considerably more exchange reactions for 13C than for 14N, 18O or 34S isotopes.

Exchange reactions are efficient only in the gas-phase because the addition channel is always favored in ice surface reactions (for example s-13C + s-C$_2$ \rightarrow s-13CCC only, s- meaning on grain, with no isotopic exchange). However, diffusion and tunneling are mass dependent and are then not strictly equivalent for the various isotopologues. These differences are included in our model but have only a very small effect on 13C fractionation.

For reactions involving C$_3$, there are two possibilities to incorporate a 13C atom in the terminal position. Then the elemental C$_3$/13CCC ratio is equal to 34 instead of 68.

For electronic Dissociative Recombination (DR) branching ratios, considering the large exothermicity of such processes, we always consider scrambling of the 13C distribution among the carbon skeleton. For example, the 13CCH$^+$ + e$^-$ and C13CH$^+$ + e$^-$ DR reactions lead to equal amounts of CH and 13CH.

For bimolecular reactions we used existing theoretical calculations to deduce whether or not there was mixing of the carbon structure according to the possibilities of isomerization of the transient species. It should be noted that this possibility of scrambling does not affect the overall fractionation of the species but simply the relative fractionation of non-equivalent carbon atoms for a given species.

Table 2. Review of isotopic exchange reactions.

Reaction	α	β	$\Delta E(K)$	f(B,M)	Reference
1. 13C + C$_2$ \rightarrow C$^+$ + 13CC	1.86e-9	0	-26.4	2	This work. Low uncertainty for this reaction. See also Colzi et al. (2020).
2. 13C + C$_3$ \rightarrow C$^+$ + 13CC	1.80e-9	0	-28.0	2	This work. Low uncertainty for this reaction. See also Colzi et al. (2020).
3. C$^+$ + 13CCC \rightarrow C$^+$ + 13CC	1.80e-9	0	-15.0	1	This work. Low uncertainty for this reaction.
4. 13C + CN \rightarrow C$^+$ + 13CN	3.82e-9	-0.4	-31.1	1	(Roueff et al. 2015). Low uncertainty for this reaction.
5. 13C + CO \rightarrow C$^+$ + 13CO	4.6e-10	-0.26	-34.8	1	(Watson et al. 1976, Liszt & Ziurys 2012). Low uncertainty for this reaction.
Table 2

Reaction	Rate Constant (units: 10^{-12} cm3 molecule$^{-1}$ s$^{-1}$)	Branching Ratio	Note
13C + CS \rightarrow C$^+$ + 13CS	2.0e-9 18O $^{-0.4}$ $^{-26.3}$ $^{+49}$	1.0	This work, half of the capture rate constant by comparison with C$^+$ + CO. Low uncertainty for this reaction. Colzi et al. (2020).
13C + C$_2$ \rightarrow C + 13CC	3.0e-10 $^{0.0}$ $^{-26.4}$ 2.0	(Roueff et al. 2015). Low uncertainty for this reaction.	
13C + C$_3$ \rightarrow C + 13CCC	3.0e-10 $^{0.0}$ $^{-28.0}$ 2.0	This work based on (Wakelam et al. 2009). Low uncertainty for this reaction. Colzi et al. (2020).	
C + 13CCC \rightarrow C + CH13CC	3.0e-10 $^{0.0}$ $^{-15.0}$ 1.0	This work based on (Wakelam et al. 2009). Low uncertainty for this reaction.	
13C + CN \rightarrow C + CH13CN	3.0e-10 $^{0.0}$ $^{-31.1}$ 1.0	(Roueff et al. 2015). Low uncertainty for this reaction.	
13C + HCN \rightarrow C + H13CN	2.0e-10 $^{0.0}$ $^{-48.0}$ 1.0	This work and (Loison & Hickson 2015). Relatively low uncertainty for this reaction (see text).	
13C + HNC \rightarrow C + HN13C	3.0e-11 $^{6.0e-11}$ $^{-33.0}$ 1.0	This work and (Loison & Hickson 2015). Relatively large uncertainty on branching ratio for this reaction (see text).	
13C + HCNH$^+$ \rightarrow C + H13CNH$^+$	1.0e-9 $^{0.0}$ $^{-50.0}$ 1.0	This work. Intermediate uncertainty for this reaction (see text).	
13C + HC$_2$N \rightarrow C + H13CCCN	2.0e-11 $^{2.0e-11}$ $^{0.0}$ $^{-48.3}$ $^{+57.4}$ 2	The C + HC$_2$N have been studied theoretically by Li et al. (2006). Isotopic exchanges involve multiple intermediate and are in competition with back dissociation, H + C and C$_2$N + production (C$_2$N not considered in the current isotopic network) and HCN + C$_2$ through spin-orbit coupling. There are large uncertainties for this reaction (see text).	
13C + CS \rightarrow C + 13CS	2.0e-10 $^{0.0}$ $^{-26.3}$ 1.0	This work (see text). Low uncertainty for this reaction.	
H + 13CCH \rightarrow H + C13CH	2.0e-10 $^{0.0}$ $^{-8.1}$ 1.0	This work based on Harding et al. (2005), ΔE in agreement with Furuya et al. (2011). Low uncertainty for this reaction.	
H + c-13C<CHCH \rightarrow H + c-C<CH13HCH	2.0e-10 $^{0.0}$ $^{-26.0}$ 1.0	This work (see text). Large uncertainties for this reaction which may show a barrier in the entrance valley. The c-13C<CHCH notation means that carbon 13C is the one without a hydrogen atom which are described in the Appendix.	
H + 13CCS \rightarrow H + C13CS	4.0e-11 $^{0.0}$ $^{-18.0}$ 1.0	This work. Furuya et al. (2011) gives $\Delta E = -17.4$ K. Low uncertainty for this reaction.	
HCNH$^+$ + H13CN \rightarrow H13CNH$^+$ + HCN	2.0e-9 $^{0.0}$ $^{-0.5}$ $^{-2.9}$ 1.0	This work based on Cotton et al. (2013). Low uncertainty for this reaction.	
HC13N + H13CN \rightarrow HCN$^+$ + H13CN	1.0e-9 $^{1.0e-9}$ $^{0.0}$ $^{-0.5}$ 0.0	This work based on Cotton et al. (2013). Relatively large uncertainty for the HCN/H13CN branching ratio for this reaction.	
13CO + HCO$^+$ \rightarrow H13CO$^+$ + CO	2.6e-10 $^{0.0}$ $^{-0.4}$ $^{-17.4}$ 1.0	(Smith & Adams 1980). Low uncertainty for this reaction.	

Among the various 13C exchange reactions, the reaction 5 of Table 2 have been studied previously in detail (Watson et al. 1976, Liszt & Ziurys 2012). Some others have been estimated in Roueff et al. (2015) and in Colzi et al. (2020) based on the barrierless nature of radical-radical reactions. We extend this work to various new fractionation reactions, namely number 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 of Table 2 (it should be noted that we use our own calculations for the reactions published in (Colzi et al. 2020), which leads to very small differences in the rate constant). All the reactions presented in Table 2 are likely to occur in the absence of a barrier based on their radical character, while certain processes have been studied...
theoretically in detail as noted in the table. Although the absence of an activation barrier is a requirement for effective isotope enrichment at interstellar temperatures, there must also be a reaction pathway that allows exchange. The possibility of exchange is obvious for some reactions such as 1, 7 or 16 it is much less obvious for some others such as 11, 12, 13, 14, 15, 17, 18 and requires theoretical calculations carried out in this work and presented in Appendix or from previous work already published and referenced in the Table 2.

As noted in the introduction, photodissociation of CO can play an important role in the diffuse phase prior to the formation of dense molecular clouds as 12CO self-shielding leads to selective photodissociation of 13CO and an increase in the 12CO/13CO ratio (Visser et al. 2009). This effect also increases the abundance of 13C+. Even if it is not the subject of this study we looked at the influence of the initial conditions starting either from C+ and 13C+ only or with carbon initially present as CO with a variable 12CO/13CO ratio to simulate the fact that 13CO is more easily photo-dissociated than 12CO in diffuse clouds due to the self-shielding effect of 12CO. In the latter case, the excess of 13C+ is rapidly consumed by reaction 5 and transformed into 13CO. Then the abundances of the different species, including 13C species, are similar at the time when C+ is transformed into neutral C (around a few 10^3 years) as long as the initial carbon is not entirely in the form of CO. So, unlike nitrogen chemistry where the preferential photodissociation of 15NN in the diffuse phase prior to the formation of dense molecular clouds may lead to an overabundance of 15N in the gas phase of dense molecular clouds (Furuya & Aikawa 2018), the photodissociation of CO in the diffuse phase prior to the formation of dense molecular clouds does not seem to have a large influence on carbon fractionation in dense molecular clouds even if a dedicated study should be carried out in the future.

3. Results

3.1 General results on the 12C/13C ratios

The time dependence of the 12C/13C ratios given by our nominal model for various species are shown in Figure 1.
Our model leads to high ^{13}C fractionation after few 10^4 years for most of the species because a large part of the ^{13}C is locked into ^{13}CO (and species derived from CO i.e. s-CH$_3$OH and s-CO$_2$ on grains) but also C^{13}CC (C$_3$ reaches a large abundance, up to 10% of total elemental carbon) with a minor contribution from H^{13}CN. It should be noted that fractionation induced by the slight difference in sticking rate between ^{12}C-atoms and ^{13}C-atoms is negligible in the case of carbon as chemical fractionation involves much larger fluxes than the difference induced by depletion. The mechanisms at work in ^{13}C fractionation arise from the efficient enrichment reactions with the main carbon reservoir (CO) and the secondary reservoirs C$_3$ and HCN.

Figure 1: Gas phase species of $^{12}\text{C}/^{13}\text{C}$ ratio abundances of various species as a function of time predicted by our model ($n(\text{H}) = 2 \times 10^4 \text{ cm}^{-3}$, $T = 10\text{K}$) with a rate constant for the O + C$_3$ reaction equal to $1 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The dashed horizontal lines represent the “cosmological” $^{12}\text{C}/^{13}\text{C}$ ratio equal to 68 (34 for C$_3$/CC and c-C$_3$H$_2$/c-C$_3$CHCH taking into account the statistical factor of 2 for the two equivalent carbon atoms). The observations in dense molecular clouds are reported in horizontal rectangles (including the uncertainties), in light grey for TMC-1(CP), in light red for L1527, in light blue for L1498 and in light green for L483 (see Table 1 for the references). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species.
reactions 5, 8 and 9 are efficient at early times when the C\(^+\) abundance is high, and the reactions 8, 9 and 11 are important at later times. It should be noted that to be efficient, the exchange reactions should be barrierless with an exothermicity significantly above the dense molecular cloud temperature (\(> 10\) K). Additionally, as these processes need to involve large fluxes to induce important fractionation effects, they should involve species with large gas phase abundances or fast reaction rates. At early times, around \(10^3\) years, the reaction 5 leads to notable enrichment in CO and, as CO is already quite abundant, this leads to \(^{13}\)C depletion in the majority of other carbon containing species. For intermediate time, between \(10^4\) years and \(10^5\) years, the fractionation reactions lead to enrichment in \(^{13}\)CC and H\(^{13}\)CN. For the longer times characteristic of dense cloud ages (between \(3 \times 10^5\) and \(7 \times 10^5\) years) the fractionation reactions lead to enrichment mainly in \(^{13}\)CC. The estimation of the dense cloud ages is given by the best agreement between calculations and observations for key species given by the so-called distance of disagreement (Wakelam et al. 2006), the chemical age being very likely not the same for the different molecular clouds observed, being function of the density and structure of the observed clouds, and requires a large number of observed species to be determined such as for TMC-1(CP) or L483. The amount of \(^{13}\)C in C\(_3\) is so large that carbon atom in the gas phase becomes highly depleted and species not linked to C\(_3\), such as H\(_2\)CS, are depleted in \(^{13}\)C. Even CO is slightly depleted in \(^{13}\)C due to the very large enrichment of \(^{13}\)CC, but also due to the fact that at late time the C\(^+\) abundance is low and then the \(^{13}\)C\(^+\) + CO reaction is inefficient preventing the CO produced at late time to be enriched in \(^{13}\)C. Species whose observed \(^{12}\)C/\(^{13}\)C ratio is well reproduced by the simulations are those for which fractionation is low (CO, HCO\(^+\), CH\(_3\)OH, H\(_2\)CO, CN, CS). The low enrichment in \(^{13}\)C for CH\(_3\)OH have already been predicted by Charnley et al. (2004) and observed few years latter toward various stars (Wirström et al. 2011). The \(^{13}\)C fractionation of methanol reflects the fractionation of CO in the gas phase, confirming that methanol is very likely formed by protonation of CO on ice. In contrast, species showing a strong depletion in \(^{13}\)C (c-C\(_3\)H\(_2\), C\(_2\)H, \(^{13}\)CCS) are not well reproduced at all because they are linked to C\(_3\) which is highly enriched in \(^{13}\)C.

For c-C\(_3\)H\(_2\) there are two measurements, both leading to similar results. A slight depletion is observed for the asymmetric form, c-C\(_3\)H\(_2\)/c-\(^{13}\)CHCH equal to 61 \pm 11 in TMC-1 (Yoshida et al. 2015) and 53 \pm 16 in L483 (Agúndez et al. 2019), compared with the expected value of 34 taking into account the statistical factor of 2 for the two equivalent carbon atoms c-C\(^{13}\)CHCH and c-CCH\(^{13}\)CH. A strong depletion is observed for the symmetric form with a ratio C\(_3\)H\(_2\)/c-\(^{13}\)CCHCH equal to 310 \pm 80 in TMC-1 and 458 \pm 138 in L483. In our simulations, we
obtain, for a chemical age between 3×10^5 and 7×10^5 years, C_3H_2/c-C^{13}CHCH = 7 (instead of 61 ± 11 and 53 ± 16 observed) and C_3H_2/c-C^{13}CHCH = 43 (instead of 310 ± 80 and 458 ± 138 observed). Obviously, our results are not in agreement with the observed isotope ratios even if the simulated c-13CHCH/c-C^{13}CHCH ratio itself (equal to 6 between 3×10^5 and 7×10^5 years) is relatively close the observed ones (5.1 ± 2.3 in TMC-1 and 10.6 ± 4.3 in L483).

C$_2$H and C$_2$S are also linked to C$_3$ although less directly than c-C$_3$H$_2$. For both C$_3$CH and C13CH as well as C13CS, the simulations lead to 13C enrichment levels that are far too high when compared with observations.

Another species that is potentially directly related to C$_3$ is methylacetylene (CH$_3$CCH). In the isotope network we did not include CH$_3$CCH as this species is difficult to form in the gas-phase in our model. Here, the ionic pathway via C$_3$H$_3^+$ + H$_2$ is inefficient according to Lin et al. (2013a), while current desorption mechanisms do not allow enough surface formed CH$_3$CCH to be liberated into the gas-phase despite its relatively large abundance on grains (formed from the hydrogenation of s-C$_3$). If we consider that CH$_3$CCH forms exclusively from C$_3$ reactions (which is not certain), we expect that the 13C enrichment of the C$_3$ skeleton to be preserved in species related to C$_3$. Then we will not be able to explain the observations for L483, as we should have large 13C fractionation in the central position of the carbon skeleton (or for the mean of the three positions if there are carbon skeleton rearrangement for CH$_3$CCH production from C$_3$ species).

Consequently, it is essential to examine the role of C$_3$ in 13C fractionation. In cold molecular clouds, it is impossible to detect the C$_3$ molecule which possesses no dipole moment, while its abundance is too weak for its detection by direct absorption (Roueff et al. 2002). At higher temperatures, it is possible to populate excited bending vibrational levels which induce a dipole moment, therefore allowing C$_3$ to be detected in dense media (Cernicharo et al. 2000, Giesen et al. 2019). Very recently, 13CCC and C13CC have been detected in SgBr2(M) (Giesen et al. 2019) with an average 12C/13C ratio equal to 20 ± 4.2, which is close to the elemental ratio for SgrB2 (SgrB2 is close to center of the Galaxy with a lower elemental 12C/13C ratio, (Milam et al. 2005)). Additionally, the 13CCC/C13CC ratio was found to be equal to 1.2 ± 0.1 instead of the statistically expected value of 2, showing some 13C fractionation with the central position favored. The observations were made on a warm envelope, thus with a very different chemistry where desorption from ices plays a large role and where relatively high temperatures should limit isotopic fractionation. It should be noted that in addition to C$_3$ (Giesen et al. 2019), the molecules CO, c-C$_3$H$_2$ and C$_2$H also display little or no 13C fractionation in SgBr2(M) (Belloche...
et al. 2013). Realistic chemical simulations of SgBr2(M) are complex as this region is made up of many fragments with a temperature up to 170 K in some parts, even if the region probed by C3 detection is thought to be mainly the envelope with a colder temperature (the average temperature of the observations is estimated to 44 K). Moreover, such simulations would require a good knowledge of the history process of SgBr2(M) formation, as the history of dense core formation, prior to the warm-up phase, plays a large role in isotope fractionation if the compounds present on the grains are derived from species produced in the gas phase at low temperatures. However, despite all the uncertainties, some 13C enrichment is expected in C3 for SgBr2(M).

Considering the 13C depletion for c-C3H2 and C2H, 13CCS in various molecular clouds, and the low 13C fractionation for CH3CCH in L483 and C3 in SgrB2(M), the importance of C3 as a 13C reservoir is questionable.

3.2 Comparison with 13C previous studies of Roueff et al. (2015) and Colzi et al. (2020)

In Roueff et al. (2015), the model did not consider reactions on grains and the isotopic exchange reactions 1, 2, 3, 8-20 were not included, which induces significant differences when compared with our results, especially since there were no fractionation reactions of C3. The model in Colzi et al. (2020) is much more similar to our model, including grain chemistry and considering some of the new fractionation reactions especially one for C3 (reaction 8). They also consider that C3 doesn’t react with atomic oxygen and then C3 reached a high abundance as in our nominal model. The models are different on 2 major points: Colzi et al. (2020) did not take into account non-equivalent carbons and did not take into account some important fractionation reactions (reactions 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 of Table 2). A comparison for time dependence of the 12C/13C ratio given by our nominal model and the one from Colzi et al. (2020) is shown in Figure 2 for various key species (in both cases the parameters, such as density, temperature, initial conditions,… were identical). As in their study Colzi et al. (2020) have considered all carbons of a given species as equivalents, they implicitly sums up all the isotopologues of the same species (for C3, C2H and C2S) and we must do the same to be able to compare the results. The assumption that all carbons of a given species are equivalent is based on the assumption that all reactions proceed via full scrambling of carbon atoms which is not universally true, as they noted in their article, and is not coherent with the observations for C2H, C2S, c-C3H2 and HC3N (see Table 1).
Figure 2: Gas phase species of $^{12}\text{C}/^{13}\text{C}$ ratio abundances of various species as a function of time predicted by our model ($n\text{(H}_2\text{)} = 2 \times 10^4 \text{ cm}^{-3}, T = 10\text{K}$) with a rate constant for the O + ^3C reaction equal to $1 \times 10^{-14} \text{ cm}^3\cdot\text{molecule}^{-1}\cdot\text{s}^{-1}$ (in continuous black line) and from Colzi et al. (2020) (red dashed line). The dashed horizontal lines represent the “cosmological” $^{12}\text{C}/^{13}\text{C}$ ratio equal to 68 (45 for the $^3\text{C}_3/(^3\text{CCC}+^3\text{CC})$ taking into account the statistical factor of 2 for the two equivalent carbon atoms). The observations in dense molecular clouds are reported in horizontal rectangles (including the uncertainties), in light grey for TMC-1(CP), in light red for L1527, in light blue for L1498 and in light green for L483 (see Table 1 for the references). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species.

Up to few 10^5 years, both models leads to relatively similar ^{13}C fractionation behavior for CO (and HCO$^+$) as well as C_3, both being the reservoirs of ^{13}C. At the longest time the models diverge, C_3 not remaining a ^{13}C reservoir in their model unlike ours, this behavior may be due to the fact that they did not take into account the most stable $^3\text{C}_3$ isotopologue. For CN the curves are also similar for time below 2×10^5 years, the ^{13}CN enrichment being due to reactions 4 and 10. For longer time, CN is mainly produced through the DR of HCNH$^+$ and then the ^{13}CN
fraction follows the fractionation of HCN. The fact that Colzi et al. (2020) did not include the reactions of fractionation in 13C for HCN (our reactions 11, 12 and 13) explains the differences. This shows the importance of having a chemical network as complete as possible. This is also the case for CS for which the reaction 15, not present in Colzi et al. (2020), induces notable 13CS fractionation. The comparison for C$_2$H and C$_2$S is particularly complicated because, in addition to the intrinsic differences in the chemical networks, considering the two carbons as equivalent and not taking into account reactions 16 and 17 in Colzi et al. (2020) induce many biases. It can be noted, however, that both models predict a significant enrichment in 13C for C$_2$H and C$_2$S for typical ages of dense clouds, an enrichment that is in contradiction with observations as already noted in the previous sections. Colzi et al. (2020) did not include C$_3$H$_{x=1,2}$ species in their model, but since these species are very strongly chemically bound to C$_3$, the high enrichment of C$_3$ in 13C obtained by Colzi et al. (2020) is expected to be found in these species, as in our model, contrary to observations. Colzi et al. (2020) highlighted the potential role of C$_3$ as a 13C reservoir but did not question the results induced by the high 13C enrichment of C$_3$ as they focused on CN, HCN and HNC, species with little chemical connection to C$_3$.

3.3 Role of the O + C$_3$ reaction

As there is no doubt that the reaction 8 presents no barrier in the entrance valley (Wakelam et al. 2009) leading to efficient fractionation, the differences between the models (our nominal model as well as the one of Colzi et al. (2020)) and the observations may arise from an overestimation of the C$_3$ abundance in current models. Among all the different reactions that can consume C$_3$, the O + C$_3$ reaction is known to play a critical role (Hickson et al. 2016b). An earlier theoretical study by Woon and Herbst (1996) found a small barrier in the entrance valley leading to a negligible rate constant at low temperature. The Woon and Herbst (1996) study forms the basis for the rate constants used in our model (1×10^{-14} cm3.molecule$^{-1}$.s$^{-1}$ at 10 K, the results being the same when considering a smaller rate constant). However, we performed for this work additional calculations on the O + C$_3$ reaction, at several levels with various basis sets showing that the height of the barrier is very method and basis set dependent (presentation of these calculations is out the scope of this paper and will be presented in a future paper). Consequently, there is considerable doubt regarding the low temperature rate constants of this reaction. Interestingly, a related process, the O + propene reaction is also characterized by a small barrier in the entrance valley but with non-negligible experimental rate constants at low temperature (Sabbah et al. 2007, Zhang et al. 2007). It can be noted that a recent observational and modeling study of C$_3$H$_6$ and C$_2$H$_3$CHO in IRAS16293B (Manigand et al.
2020) shows clearly that a much better agreement between the model and the observations is obtained when C\textsubscript{3} reacts with oxygen atom. In order to test the effect of the O + C\textsubscript{3} reaction on our carbon fractionation model, we performed simulations where atomic oxygen is allowed to react with C\textsubscript{3}. The results of these simulations are shown in Figure 3, where the rate constant for the O + C\textsubscript{3} reaction has been set to 2×10-12 cm3.molecule-1.s-1 (dashed red lines) and 2×10-11 cm3.molecule-1.s-1 (dotted blue line).

Figure 3: Gas phase species of 12C/13C ratio abundances of various species as a function of time predicted by our model (n(H\textsubscript{2}) = 2×104 cm-3, T = 10K) with a rate constant for the O + C\textsubscript{3} reaction equal to 1×10-14 cm3.molecule-1.s-1 (continuous black lines), equal to 2×10-12 cm3.molecule-1.s-1 (dashed red lines), and equal to 2×10-11 cm3.molecule-1.s-1 (dotted blue lines). The dashed horizontal lines on the bottom plots represent the “cosmological” 12C/13C ratio equal to 68 (c-C\textsubscript{3}H\textsubscript{2}/c-C\textsubscript{13}CHCH taking into account the statistical factor of 2 for the two equivalent carbon atoms). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species. The observations in dense molecular clouds are reported in horizontal rectangles (including the uncertainties), in light grey for TMC-1(CP), in light red for L1527, in light blue for L1498 and in light green for L483 (see Table 1 for the references).
When C$_3$ is allowed to react more rapidly with atomic oxygen, its abundance is significantly reduced as shown Figure 4 and it is much less enriched in 13C. Then, the compounds directly linked to C$_3$, especially c-C$_3$H$_2$, are poorly enriched in 13C and even depleted for one isomer. For the 12C/13C ratio, a much better agreement between the model and observations for most of the species in dense clouds is obtained when k(O + C$_3$) is set to an intermediate value of 2×10$^{-12}$ cm3.molecule$^{-1}$.s$^{-1}$.

Figure 4: Gas phase C reservoirs (C, CO, C$_3$, HCN) as a function of time predicted by our model (n(H$_2$) = 2×104 cm$^{-3}$, T = 10K) with a rate constant for the O + C$_3$ reaction equal to 1×10$^{-14}$ cm3.molecule$^{-1}$.s$^{-1}$ (continuous black lines), equal to 2×10$^{-12}$ cm3.molecule$^{-1}$.s$^{-1}$ (dashed red lines), and equal to 2×10$^{-11}$ cm3.molecule$^{-1}$.s$^{-1}$ (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age given by the better agreement between calculations and observations for key species. The HCN observation in TMC-1 is reported in horizontal rectangles (including the uncertainties) (see Table 1 for the reference).

In this case, CO and the daughter species that derive from CO (s-CH$_3$OH, CH$_3$OH but also s-H$_2$CO and s-CO$_2$) are enriched in 13C at times characteristic of dense cloud ages (around 3-7×105 years at a density of n(H$_2$) = 2×104 cm3). However, as the main reservoir of atomic carbon, CO and all the species that derive from CO (such as those formed on grains) inherit similar weak enrichment factors in good agreement with Charnley et al. (2004) and Wirström et al. (2011). The low enrichment of CO does, however, lead to 13C depletion for all other
species less correlated with CO. For a certain number of them, such as HCN and CS, certain fractionation reactions ($^{13}\text{C} + \text{HCN}, \; ^{13}\text{C} + \text{CS}$) partly compensate for the depletion effect generated by CO enrichment. However, these processes involving atomic carbon have a limited effect because carbon is mainly locked up as CO at the typical ages of dense clouds, so its abundance in the gas phase is too low to induce significant fractionation. In addition, the secondary reservoirs of carbon such as C$_3$, HCN and CS have a non-negligible reactivity. Indeed, protonation reactions induce a destruction of C$_3$, HCN and CS because the protonated forms do not recycle back to the precursor species with 100% efficiency contrary to CO. Then, as C$_3$, HCN and CS have a non-negligible reactivity, they do not accumulate, in contrast to CO, and the fractionation produced between 10^4 and 10^5 years does not persist at later times, except for CO.

3.3.1 HCN

The slight ^{13}C enrichment of HCN and HNC observed in some dense molecular clouds (Daniel et al. 2013, Magalhães et al. 2018) is relatively well reproduced by our model when C$_3$ reacts with oxygen atoms for short chemical ages (2×10^5 years), such a short time being compatible with the chemical age for L1498 (Magalhães et al. 2018) and B1b (Daniel et al. 2013) given their high densities which accelerate chemistry. It should be noted that the determination of the abundance of the main isotopes ($^{12}\text{C}^{14}\text{N}, \; ^{14}\text{N}^{12}\text{C}$) is difficult in particular due to the opacity of the lines.

3.3.2 CS

Unlike HCN and HNC, our model predicts a slight enrichment in ^{13}C for CS due to the $^{13}\text{C} + \text{CS}$ reaction. The comparison with the observations is rather confusing in this case because, depending on the measurements, CS is sometimes enriched and sometimes depleted in ^{13}C. It should be noted that the $^{12}\text{C}^{32}\text{S}$ lines are generally optically thick and that the double isotope method is used to determine the level of ^{13}C fractionation assuming a $^{32}\text{S}/^{34}\text{S}$ ratio equal to the solar ratio. This method seems credible for CS according to Loison et al. (2019) showing a low C^{34}S enrichment in dense clouds for non-depleted sulfur, which becomes completely negligible when sulfur is depleted, as observed in dense clouds.

3.3.3 H$_2$CO

H$_2$CO is an interesting case showing variable ^{13}C fractionation, the model being in good agreement with the observation showing a small ^{13}C depletion for typical chemical age of dense
molecular clouds. The variation in 13C fractionation is due to the fact that H$_2$CO is formed by two main pathways. Firstly, a gas phase pathway: O + CH$_3$, inducing 13C depletion as CH$_3$ is directly derived from atomic carbon depleted by CO enrichment. Second, a grain pathway by hydrogenation of s-CO showing an enrichment similar to that of methanol.

3.3.4 H$_2$CS

Contrary to H$_2$CO, the model leads to a substantial depletion for H$_2$CS which is not in agreement with the observations of Liszt and Ziurys (2012) showing no depletion. The depletion given by the model is due to the fact that H$_2$CS is produced essentially from reactions in the gas phase from CH$_4$ or CH$_3$, and as there are no known 13C enrichment reactions for CH$_4$, CH$_3$ and H$_2$CS, it is indeed expected that H$_2$CS is depleted in 13C due to CO enrichment. Future observations seem important to clarify this point as H$_2$CS may be used as a proxy for 13C fractionation of CH$_3$ and CH$_4$.

3.3.5 C$_2$H

For C$_2$H there are no direct fractionation reactions leading to notable 13C enrichment of C$_2$H. Then, when C$_3$ is allowed to react with oxygen atoms, the chemical pathway linking C$_3$ to C$_2$H become less important and C$_2$H become depleted in 13C that is more or less marked depending on whether they are related to partially enriched species. Overall, the depletion observed for C$_2$H is fairly well reproduced in the model. For C$_2$H the carbon atoms are not equivalent and the observed isotope fractionation depends on the carbon position. As suggested by Sakai et al. (2007) and Sakai et al. (2010), the different fractionation for non-equivalent carbons in our network is mainly due to reactions with atomic hydrogen (reaction 16). C$_2$H is not correlated to CO and, since there are no fractionation reactions either for these species or its main precursors (when C$_3$ is allowed to react with atomic oxygen, the various pathways connecting C$_3$ to C$_2$H involve only small fluxes), C$_2$H then shows a global depletion in 13C for both isomers. The reaction 16 favors the C$_{13}$CH isomer, but the energy difference is too low to induce a strong effect, the ratio given by the simulations being in good agreement with the observations of Sakai et al. (2010). As shown in Figure 5 the calculated ratio C$_{13}$CH/13CCH is mostly independent of the rate constant for the O + C$_3$ reaction.
Figure 5: Gas phase 13CH/13CCH ratio as a function of time predicted by our model (n(H$_2$) = 2×104 cm$^{-3}$, T = 10K) with a rate constant for the O + C$_3$ reaction equal to 1×10$^{-14}$ cm3.molecule$^{-1}$.s$^{-1}$ (continuous black lines), equal to 2×10^{-12} cm3.molecule$^{-1}$.s$^{-1}$ (dashed red lines), and equal to 2×10^{-11} cm3.molecule$^{-1}$.s$^{-1}$ (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age given by the better agreement between calculations and observations for key species. The observations for TMC-1(CP) is reported in horizontal light grey rectangle (see Table 1 for the reference).

3.3.6 C$_2$S

For C$_2$S, as for C$_2$H, there are no fractionation reactions leading to notable 13C fractionation of C$_2$S. Then, when C$_3$ is allowed to react with oxygen atoms, C$_2$S become depleted in 13C, with an observed depletion for 13CCS + 13CS fairly well reproduced in the model. As for C$_2$H, the carbon atoms are not equivalent and the observed isotope fractionation depends on the carbon position for which the reaction 18 plays a major role, promoting the formation of the 13CS isomer. As the energy difference between the two isomers is notably larger than in the case of C$_2$H (18 K instead of 8 K) the fractionation effect is larger reaching a 13CS/13CCS ratio equal to 4.2 ± 2.3, in TMC-1 (Sakai et al. 2007).

Figure 6: Gas phase 13CS/13CCS ratio as a function of time predicted by our model (n(H$_2$) = 2×104 cm$^{-3}$, T = 10K) with a rate constant for the O + C$_3$ reaction equal to 1×10$^{-14}$ cm3.molecule$^{-1}$.s$^{-1}$ (continuous black lines), equal to 2×10^{-12} cm3.molecule$^{-1}$.s$^{-1}$ (dashed red lines), and equal to 2×10^{-11} cm3.molecule$^{-1}$.s$^{-1}$ (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age given by the better agreement
between calculations and observations for key species. The observations for TMC-1(CP) is reported in horizontal light grey rectangle (see Table 1 for the reference).

The ratio given by the simulations is not in good agreement with the observations, the ratio being underestimated. It can be noted that, as shown in Figure 6, the calculated ratio is only slightly dependent of the O + C₃ rate constant. One reason for the relative disagreement is due to the fact that even if the H-atom reaction favors the formation of the C¹³CH isomer, the main source of C₂S is the S + C₂H reaction and as the ratio C¹³CH/¹³CCH is above 1 in our model, in agreement with observations, the S + C¹³CH → ¹³CCS + H reaction has a higher flux than the S + ¹³CCH → C¹³CS + H reaction. The S + C₂H reaction is an efficient C₂S pathway production as it cannot lead to CH + CS which is endothermic. The S + ¹⁵CCS → C¹⁵CS + S reaction, proposed by Sakai et al. (2010), leads to the very exothermic CS + CS exit channel and cannot play an important role in ¹³C fractionation. However, for shorter times, around 10⁵ years, the C¹³CS/¹³CCS is in better agreement with observations due to the CH + CS → H + CCS reaction, as CS is slightly enriched in ¹³C and CH slightly depleted. The disagreement of the simulations and the observations at typical chemical age of dense molecular clouds may be due to the overestimation of the S + C₂H pathway (if the rate constant is lower than estimated) associated to the underestimation of the CH + CS one. It should be noted that our model for isotopes, as well as our full model, underestimates the C₂S abundance and therefore some C₂S production routes could be missing which might lead to a different level of ¹³C fractionation.

3.3.7 c-C₃H₂

c-C₃H₂ is a more complex case. c-C₃H₂ has also non-equivalent carbons atoms (see appendix for the drawing of the two isotopologues). In our model, c-C₃H₂ is essentially produced through the DR of c-C₃H₃⁺ and l-C₃H₃⁺, both formed from C₃ (Loison et al. 2017). As we consider that the CCC skeleton is scrambled in these reactions, which is a reasonable assumption considering the very large exothermicity of these reactions, we do not expect the enrichment of the central carbon atom of C₃ to be transferred to c-C₃H₂ as an enrichment of a single carbon atom. However, the model, in fairly good agreement with the observations as shown in Figure 7, shows a ¹³C enrichment of c-C₃H₂ for the two equivalent hydrogen bearing carbon atoms and a depletion for the other. This effect is in fact due to the reaction 17 which has a strong effect due to the large exothermicity.
Figure 7: Gas phase c-C¹³HCH/c-¹³C⁻CHCH ratio as a function of time predicted by our model (n(H₂) = 2×10⁴ cm⁻³, T = 10K) with a rate constant for the O + C₃ reaction equal to 1×10⁻¹⁴ cm³.molecule⁻¹.s⁻¹ (continuous black lines), equal to 2×10⁻¹² cm³.molecule⁻¹.s⁻¹ (dashed red lines), and equal to 2×10⁻¹¹ cm³.molecule⁻¹.s⁻¹ (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species. The observations for TMC-1(CP) is reported in horizontal light grey rectangle and in light green rectangle for L483 (see Table 1 for the reference).

The c-C¹³HCH/c-¹³C⁻CHCH ratio is not dependent on the value of the rate constant for the O + C₃ reaction due to the importance of the reaction 17. However, the total abundance relative to H₂ is highly dependent on the rate of the O + C₃ reaction as well as the global fractionation level. As shown in Figure 2, the global fractionation observations cannot be reproduced if the O + C₃ reaction rate constant is lower than a few 10⁻¹² cm³.molecule⁻¹.s⁻¹. It is interesting to note that when C₃ reacts with oxygen atom, its abundance is much lower, as is the abundance of c-C₃H₂. The model reproduces the observed total abundance of c-C₃H₂ for relatively late molecular cloud ages only (above 6×10⁵ years for n(H₂) = 2×10⁴ cm⁻³ as shown in Figure 8). For these ages the concentration of atomic oxygen is low, with atomic oxygen being mainly depleted from the gas-phase and transformed into H₂O on grains. Thus, the consumption of c-C₃H₂ is low because the reaction O + c-C₃H₂ is the main pathway for c-C₃H₂ loss, the production of c-C₃H₂ being relatively important due to the dissociation of CO by cosmic rays and the chemistry generated by the desorption of CH₄ produced on the grains. This allows the abundance of c-C₃H₂ to reach levels similar to the observations but only for chemical ages above 6×10⁵ years.
Figure 8: Gas phase c-C\textsubscript{3}H\textsubscript{2} abundance relative to H\textsubscript{2} as a function of time predicted by our model (n(H\textsubscript{2}) = 2\times10^4 cm-3, T = 10K) with a rate constant for the O + C\textsubscript{3} reaction equal to 1\times10-14 cm3\textpercmole\textpersec (continuous black lines), equal to 2\times10-15 cm3\textpercmole\textpersec (dashed red lines), and equal to 2\times10-11 cm3\textpercmole\textpersec (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age given by the better agreement between calculations and observations for key species. The observation in TMC-1 is reported in horizontal rectangles (including the uncertainties) (see Table 1 for the reference).

3.3.8 HC\textsubscript{3}N

HC\textsubscript{3}N has formation pathways, with some leading to HC\textsubscript{3}N having low variable 13C depletion levels for each carbon position (such as the CN + C\textsubscript{2}H\textsubscript{2} reaction due to C\textsubscript{2}H\textsubscript{2} depletion, C\textsubscript{2}H\textsubscript{2} being depleted because main C\textsubscript{2}H\textsubscript{2} production is issued from C+ + CH reaction, both C+ and CH being depleted in 13C), while some enrich HC\textsubscript{3}N in 13C due to its connection with C\textsubscript{3} chemistry (through the reactions N + C\textsubscript{3}H\textsubscript{3}, N + t-C\textsubscript{3}H\textsubscript{2}, ...). In figure 9 we present the results of our model (assuming some arbitrary choices as described in section 2.2.1) and the comparison with the observations leads to a globally good agreement if C\textsubscript{3} is allowed to react with oxygen atoms. As for c-C\textsubscript{3}H\textsubscript{2} and C\textsubscript{2}H\textsubscript{2} and despite the uncertainties, the high averaged enrichment of HC\textsubscript{3}N to 13C when C\textsubscript{3} does not react with oxygen atoms is inconsistent with the observations.

Figure 9: Gas phase HC\textsubscript{3}N/H13CCCN, HC\textsubscript{3}N/H13CC\textsubscript{13}C\textsubscript{3}CN and HC\textsubscript{3}N/HCC13CN, ratios as a function of time predicted by our model (n(H\textsubscript{2}) = 2\times10^4 cm-3, T = 10K) with a rate constant for the O + C\textsubscript{3} reaction equal to 1\times10-14 cm3\textpercmole\textpersec.
\[14 \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] (continuous black lines), equal to \[2 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] (dashed red lines), and equal to \[2 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1} \] (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species. The observations for TMC-1(CP) is reported in horizontal light grey rectangle, in light red rectangle for L1527 and in light green rectangle for L483 (see Table 1 for the reference). For TMC-1 and L1527 different observations exists leading to different isotopic ratios.

Considering the various effects, the observations with variable fractionation around the cosmological value (68), with H\[^{13}\]CCN and H\[^{13}\]C\[^{13}\]CN slightly depleted and H\[^{13}\]C\[^{13}\]CN very close to the elemental value, are consistent with the HC\[^3\]N formation pathways in our model but only when C\[^3\] reacts with atomic oxygen.

3.4 H\[^{13}\]CN/HC\[^{15}\]N, HN\[^{13}\]C/H\[^{15}\]NC and \[^{13}\]CN/C\[^{15}\]N

As the transitions of the main isotopologues of CN, HCN and HNC are often optically thick, most of the observational values for the ratios HCN/HC\[^{15}\]N, HNC/H\[^{15}\]NC, and some for CN/C\[^{15}\]N, are deduced from the ratios of the minor isotopologues H\[^{13}\]CN/HC\[^{15}\]N, HN\[^{13}\]C/H\[^{15}\]NC and \[^{13}\]CN/C\[^{15}\]N multiplied by a fixed local interstellar medium \[^{12}\]C/\[^{13}\]C value, usually taken to be 68 from Milam et al. (2005) and (Adande & Ziurys 2012). As suggested by Roueff et al. (2015) and shown in more detail here, carbon chemistry induces some \[^{13}\]C fractionation, leading to deviations from the elemental ratio of 6.49 (441/68) for H\[^{13}\]CN/HC\[^{15}\]N, HN\[^{13}\]C/HNC\[^{15}\] and \[^{13}\]CN/C\[^{15}\]N (it should be noted that the elemental \[^{14}\]N/\[^{15}\]N ratio may be smaller than the usual 441 value as suggested by Romano et al. (2017), and could be as small as 330). In Figure 10 we show the various \[^{13}\]C/\[^{15}\]N ratios given by our model which includes also the \[^{15}\]N fractionation reactions (Loison et al. 2018) but neglecting any N\[^2\] self-shielding effects of photodissociation (Furuya et al. 2018, Furuya & Aikawa 2018).
Figure 10: Gas phase species abundances (relative to H$_2$) of HCN, HNC, CN (top) and their 13C/15N ratio (medium and bottom, medium is for an elemental 13C/15N ratio equal to 441/68, scaled to 330/68 on the bottom plots) studied in this work as a function of time predicted by our model (n(H$_2$) = 2×104 cm$^{-3}$, T = 10K) with a rate constant for the O + C$_3$ reaction equal to 1×10$^{-14}$ cm3.molecule$^{-1}$.s$^{-1}$ (continuous black lines), equal to 2×10$^{-12}$ cm3.molecule$^{-1}$.s$^{-1}$ (dashed red lines), and equal to 2×10$^{-11}$ cm3.molecule$^{-1}$.s$^{-1}$ (dotted blue lines). The vertical grey rectangles represent the values given by the most probable chemical age for TMC-1(CP) and L483 given by the better agreement between calculations and observations for key species. The observations for TMC-1(CP) is reported in horizontal light grey rectangle, in light red rectangle for L1527 and in light blue for B1 (see Table 3 for the reference). The dashed horizontal lines on the medium plots represent the “cosmological” 13C/15N ratio equal to 441/68, scaled to 330/68 on the bottom plots.

The amount of the main isotopologues for HCN, HNC and CN are almost independent of the value of the O + C$_3$ rate constant. However, 13C/15N ratios are incompatible with observations in the nominal version of the model where C$_3$ does not react with oxygen atoms. Our model leads to H13CN/HC15N, HN13C/HNC15 and 13CN/C15N ratios highly dependent on the cloud age due to variable 13C fractionation. For molecular clouds of the TMC-1 type (assumed to be best
represented with a chemical age around 3×10^5 years here), our model leads to a $^{13}\text{CN}/\text{HC}^{15}\text{N}$ and $\text{HN}^{13}\text{C}/\text{HNC}^{15}$ ratios close to 5 and a $^{13}\text{CN}/\text{C}^{15}\text{N}$ ratio close to 4. These results can be compared with the observations presented in Table 3, showing a relatively good agreement considering the uncertainties. It should be noted that the observations have been analyzed with various methods (LTE, LVG) and taking or not the opacity into account. Then the comparison between individual observations and also the comparison between observations and the model have to be taken with great care. A comparison with the results of Roueff et al. (2015) is complex because the global networks are very different and the chemistry of interstellar grains and C_3 enrichment are not included in Roueff et al. (2015). Nevertheless, it is clear that there are various efficient ^{13}C fractionation reactions and that the double isotope method should be used carefully to determine ^{15}N fractionation levels. The comparison with Colzi et al. (2020) is not possible as they do not consider ^{15}N fractionation in their model.

Table 3: Observations for $^{13}\text{C}/^{15}\text{N}$ ratio for CN, HCN and HNC in dense molecular clouds.

species	ratio	Cloud	references
$^{13}\text{CN}/^{15}\text{N}$	7.0(1.0)	L1498	(Hily-Blant et al. 2013)
	7.5(1.0)	L1544	(Hily-Blant et al. 2013)
	4.8(2.0)	B1	(Daniel et al. 2013), large C^{15}N uncertainty
	6.2(1.3)	OMC-2	(Kahane et al. 2018)
$^{13}\text{HC}/^{15}\text{N}$	2.7(0.4)	L1521E	(Ikeda et al. 2002) (average of the 4 positions)
	4.9(0.6)	TMC-1	(Ikeda et al. 2002)
	9.5(2.0)	L1498	(Ikeda et al. 2002)
	7.5(0.8)	L1498	(Magalhães et al. 2018)
	5.5(1.0)	B1	(Daniel et al. 2013)
	5.6(0.8)	OMC-2	(Kahane et al. 2018)
$\text{HN}^{13}\text{C}/^{15}\text{NC}$	4.59(0.64)	TMC1(CP)	(Liszt & Zijurys 2012)
	7.56(1.44)	TMC1(NH$_3$)	(Liszt & Zijurys 2012)
	4.78(1.36)	L1527	(Liszt & Zijurys 2012)
	3.75(1.25)	B1	(Daniel et al. 2013)
	6.0(0.8)	OMC-2	(Kahane et al. 2018)

3.5 Grain species

As there are several ^{13}C enrichment reactions for different species, particularly for CO, and there is no reverse reaction producing a surplus of ^{13}C carbon atoms, the carbon atoms in the gas phase are therefore depleted in ^{13}C. Even though most of the carbon is converted to CO, and then to s-CO and its derivatives $\text{s-CH}_3\text{OH}$ and s-CO_2, a significant part of the atomic carbon that depletes onto grains is partially converted to s-CH_4 in our model. The strong depletion of ^{13}C in atomic carbon in the gas phase is thus retained in s-CH_4 as shown Figure 11.
Figure 11: Gas phase species of 12C/13C ratio abundances of various species on grain as a function of time predicted by our model (n(H$_2$) = 2×104 cm$^{-3}$, T = 10K) with a rate constant for the O + C$_3$ reaction equal to 1×10$^{-14}$ cm3.molecule$^{-1}$.s$^{-1}$ (continuous black lines), equal to 2×10$^{-12}$ cm3.molecule$^{-1}$.s$^{-1}$ (dashed red lines), equal to 2×10$^{-11}$ cm3.molecule$^{-1}$.s$^{-1}$ (dotted blue lines). The dashed horizontal lines on the bottom plots represent the “cosmological” 12C/13C ratio equal to 68.

Over a very long period of time this depletion is compensated by the fact that s-CH$_3$OH is partially transformed into s-CH$_4$ through photodissociation. If we consider that the composition of comets reflects the composition of the grains at the time of the formation of the protostellar disc, then this corresponds to ages around 106 years where CO and methanol have similar abundances. In this case the s-CH$_4$ present on the grains is significantly depleted in 13C. One could therefore expect the CH$_4$ observed in planetary atmospheres such as the one of Titan to show a similar depletion if the CH$_4$ present on Titan is primordial. However, the CH$_4$ on Titan shows a 12C/13C ratio equal to 91.1 ± 1.4 (Niemann et al. 2010) very similar to the 13C species detected in the comets (Bockelée-Morvan et al. 2015) or terrestrial ratio (Wilson 1999) which seems to indicate a reprocessing of the matter between the collapse of the molecular cloud, leading to the formation of the protostellar disc, and the formation of the planets. Alternatively, this may also indicate that carbon atoms are not mainly transformed into s-CH$_4$ by reactions with the highly mobile H and H$_2$ species on grain surfaces, whose reactions with atomic carbon are barrier-free (Harding et al. 1993, Krasnokutski et al. 2016). In the current model atomic carbon reacts primarily with water (Hickson et al. 2016a) leading to s-CH$_3$OH rather than s-CH$_4$ but some s-CH$_4$ is produced when carbon atom stick on Ice near s-CO$_2$, s-CH$_4$, s-C$_2$H$_6$ as
we do not consider that the carbon atom will react on ice with these molecules by comparison with the gas phase reactivity.

4. Conclusion

Our new model presented in this study for coupled fractionation of 13C, 15N, 18O and 34S represents a significant improvement over previous models from Roueff et al. (2015) and Colzi et al. (2020). In particular, it shows the importance of using a network as complete as possible and also that the order on non-equivalent carbon atoms need to be tracked. Our results lead to various, in some cases notable, 13C fractionation effects due to efficient carbon chemistry of CO, and of C$_3$ when this species is assumed not to react with atomic oxygen. Due to the importance of C$_3$ as a reservoir of 13C, our study highlights the critical role of the O + C$_3$ reaction, with the 13C fractionation simulations of the nominal model which employ a low rate constant for this process, being largely incompatible with observations. Moreover, when C$_3$ doesn’t react with oxygen atom, the nominal model strongly overestimate the CH$_3$CCH abundance in the envelope of IRAS16293 (Andron et al. 2018), very likely because the model overestimates the C$_3$ abundance. Additionally, a recent observational and modeling study of C$_3$H$_6$ and C$_2$H$_5$CHO in IRAS16293B (Manigand et al. 2020) shows clearly that a much better agreement between the model and the observations is obtained when C$_3$ reacts with oxygen atom. On the other hand, a rapid reaction of C$_3$ with atomic oxygen and the non-reactivity of C$_3$H$_3^+$ with H$_2$ as shown by Lin et al. (2013b), lead to an underestimation by several orders of magnitude of the concentrations of CH$_3$CCH and C$_3$H$_6$ in the dense cloud (Hickson et al. 2016b). An experimental study of the O + C$_3$ rate constant is clearly required to resolve this issue.

The variable 13C fractionation given by our model, in quite good agreement with observations in dense molecular clouds, precludes the use of a fixed 12C/13C ratio to determine accurately nitrogen fractionation using the double isotopes method.

The very low 13C fractionation observed in the solar system suggests a significant transformation of matter after the dark cloud phase. Indeed, our model predicts that some molecules should show significant fractionation levels at the end of this phase such as s-CH$_4$ (depleted in 13C) and s-C$_3$H$_8$ (enriched in 13C), levels that are not observed in comets, nor in planetary atmospheres. On the other hand, if the matter is heavily reprocessed, these species could be derived from CO and its derivatives (s-CO, s-CH$_3$OH, s-CO$_2$) showing only little fractionation since CO and its derivatives represent more than 90% of the total amount of carbon. Indeed, if the atomic carbon sticking on grains reacts with other species already on the grains, mainly water (Hickson et al. 2016a) and CO, this C atoms sticking will lead to very little
s-CH$_4$ and the CH$_4$ present in the grains would be derived from the photodissociation of s-CH$_3$OH and would thus possess the same isotopic fractionation derived from the fractionation of CO (Wirström et al. 2011).

This work was supported by the program ”Physique et Chimie du Milieu Interstellaire” (PCMI) funded by CNRS and CNES. VW researches are funded by the ERC Starting Grant (3DICE, grant agreement 336474). We would like to warmly thank Laura Colzi for sharing her results with us, which allowed a fine comparison between the models.

Data availability: Data available on request.
Appendix:

13C + HCN and 13C + HNC:

For 13C + HCN and 13C + HNC reactions we have extended our previous study (Loison & Hickson 2015) showing that the carbon atom exchange is possible through two different 13C attack pathways leading to H13CCN and HC13CN as shown on Figure 12. Although isotope exchange involves a reaction path involving several intermediates, the low energies of the TSs involved are probably compatible with our simplified isotope exchange treatment.

![Partial potential energy diagram for the 13C + HCN relevant for carbon atom exchange calculated at the M06-2X/AVTZ level including ZPE. The TS2 and TS3 correspond to the notation of our previous article (Loison & Hickson 2015).](image)

Figure 12: Partial potential energy diagram for the 13C + HCN relevant for carbon atom exchange calculated at the M06-2X/AVTZ level including ZPE. The TS2 and TS3 correspond to the notation of our previous article (Loison & Hickson 2015).

In the case of 13C + HNC, the bimolecular exit channel 13C + HCN limits the isotope exchange (however there is no pathway leading to C + H13CN).

13C + HCNH$^+$:

For the 13C + HCNH$^+$ reaction we have performed DFT calculations showing that carbon atom exchange is possible through two different 13C attack pathways leading to H13CCNH$^+$ and HC13CNH$^+$ as shown in Figure 13. Since isotope exchange involves several intermediates, with TS close to the entrance energy, our simplified treatment may overestimate the rate of exchange compared to back-dissociation.
\(^{13}\text{C} + \text{HC}_3\text{N}:\)

The \(^{13}\text{C} + \text{HC}_3\text{N}\) reaction is particularly complex. This reaction has been studied theoretically by Li et al. (2006). According to this study, the additions on the different carbon atoms are barrier-free with however unknown relative proportions. As the exit channel on the triplet surface for this reaction, the \(\text{H} + \text{C}_4\text{N}\) pathway, is not very exothermic, some fractionation is expected. However, the precise mechanism for fractionation is very complex in that case as it involves \(\text{C}_4\) skeleton rearrangements on the full surface for the various intermediates, which are produced in unknown relative proportions in the \(\text{C} + \text{HC}_3\text{N}\) reaction. In addition, spin-orbit coupling can promote the formation of \(\text{HCN} + \text{C}_3\) which was neglected in the study by Li et al.

\(^{13}\text{C} + \text{CS}\)

For the \(^{13}\text{C} + \text{CS}\) reaction we performed new theoretical calculations at the M06-2X/AVTZ level using Gaussian and the RCCSD(T)-F12/AVTZ level using Molpro software. found no barrier in the entrance \(^3\Sigma^+\) valley (linear approach) at the RCCSD(T)-F12/AVTZ level as shown in Figure 14. Moreover, in contrast to CCO, the transition state from \(^{13}\text{CCS}\) toward \(\text{S}^{13}\text{CC}\) is located well below the entrance level, making \(^{13}\text{C}\) exchange possible. Additionally, carbon attack on the sulfur atom of CS presents a submerged barrier which also leads to \(^{13}\text{C}\) exchange (not shown on Figure 14). Consequently, there is little doubt that the \(^{13}\text{C} + \text{CS}\) reaction leads to \(^{13}\text{C}\) exchange.

![Figure 13: Partial potential energy diagram for the \(^{13}\text{C} + \text{HCNH}^+\) relevant for carbon atom exchange calculated at the M06-2X/AVTZ level including ZPE.](image-url)
Figure 14: Potential energy diagram for the 13C + CS reaction.
calculated at the CCSD(T)/AVTZ and M06-2X/AVTZ levels.

$\text{H} + \text{c-}^{13}\text{CHCH}/\text{c-}^{13}\text{C}<\text{CHCH}$:

$c\text{-}^{13}\text{CHCH}$:

$c\text{-}^{13}\text{C}<\text{CHCH}$:

Figure 15: Drawing of the 13C isotopologues of c-C$_3$H$_2$

For the reaction of atomic hydrogen with cyclic c-C$_3$H$_2$ (with one 13C atom) reaction we use the work of (Nguyen et al. 2001b, Nguyen et al. 2001a) showing the possibility of isomerization through H atom addition. As this mechanism is direct and as there is no bimolecular exit channel, this reaction can be an efficient way to favor c-C$<^{13}$CHCH versus c-^{13}C$<$CHCH. Nguyen et al found a very small barrier at the RCCSD(T)/6-311+G//B3LYP/6-311G level (with ZPE at B3LYP/6-311G level) equal to 0.4 kJ/mol which is much smaller than the uncertainty of the calculations (this can be estimated at around 5-10 kJ/mol with this level of theory). We continued these calculations at different levels of theory and found that using a more complete base (VQZ) the barrier became slightly submerged (-3 kJ/mol). We therefore consider that this reaction is possible at low temperature even though the uncertainties are quite large.
Liszt H.S., Ziurys L.M., 2012, ApJ, 747, 55
Loison J.-C., et al., 2017, MNRAS, 470, 4075
Loison J.-C., Wakelam V., Gratier P., Hickson K.M., 2018, MNRAS, sty3293
Loison J.-C., et al., 2019, MNRAS, 485, 5777
Loison J.C., Hickson K.M., 2015, Chem. Phys. Lett., 635, 174
Magalhães V.S., Hily-Blant P., Faure A., Hernandez-Vera M., Lique F., 2018, A&A, 615
Mandt K.E., et al., 2012, ApJ, 749, 160
Manigand S., et al., 2020, arXiv e-prints. p. arXiv:2007.04000
Milam S.N., Savage C., Brewster M.A., Ziurys L.M., Wyckoff S., 2005, ApJ, 634
Nguyen T.L., Mebel A.M., Kaiser R.I., 2001a, J. Phys. Chem A., 105, 3284
Nguyen T.L., Mebel A.M., Lin S.H., Kaiser R.I., 2001b, J. Phys. Chem. A, 105, 11549
Niemann H.B., et al., 2010, Journal of Geophysical Research: Planets, 115, E12006
Ritchey A.M., Federman S.R., Lambert D.L., 2011, ApJ, 728, 36
Romano D., Matteucci F., Zhang Z.Y., Papadopoulos P.P., Ivison R.J., 2017, MNRAS, 470, 401
Roueff E., Felenbok P., Black J.H., Gry C., 2002, A&A, 384, 629
Roueff E., Loison J.C., Hickson K.M., 2015, A&A, 576, A99
Ruaud M., Loison J.C., Hickson K.M., Gratier P., Hersant F., Wakelam V., 2015, MNRAS, 447, 4004
Ruaud M., Wakelam V., Hersant F., 2016, MNRAS, 459, 3756
Sabbah H., Biennier L., Sims I.R., Georgievskii Y., Klippenstein S.J., Smith I.W.M., 2007, Science, 317, 102
Sakai N., Ikeda M., Morita M., Sakai T., Takano S., Osamura Y., Yamamoto S., 2007, ApJ, 663, 1174
Sakai N., Saruwatari O., Sakai T., Takano S., Yamamoto S., 2010, A&A, 512, A31
Smith D., Adams N.G., 1980, ApJ, 242, 424
Takano S., et al., 1998, A&A, 329, 1156
Terzieva R., Herbst E., 2000, MNRAS, 317, 563
Turner B.E., 2001, Astrophysical Journal, Supplement Series, 136, 579
Visser R., van Dishoeck E., Black J., H., 2009, A&A, 503, 323
Wakelam V., Herbst E., Selsis F., 2006, A&A, 451, 551
Wakelam V., et al., 2015, ApJ, Supp. Series, 217, 20
Wakelam V., Loison J.C., Herbst E., Talbi D., Quan D., Caralp F., 2009, A&A, 495, 513
Wakelam V., Loison J.C., Mereau R., Ruaud M., 2017, Molecular Astrophysics, 6, 22
Watson W.D., Anicich V.G., Huntress W.T., 1976, ApJ, 205, L165
Wilson T.L., 1999, Rep. Prog. Phys., 62, 143
Wiström E.S., et al., 2011, A&A, 533, A24
Woon D.E., Herbst E., 1996, ApJ, 465, 795
Yoshida K., Sakai N., Nishimura Y., Tokudome T., Watanabe Y., Sakai T., Takano S., Yamamoto S., 2019, Publications of the Astronomical Society of Japan, psy136
Yoshida K., et al., 2015, ApJ, 807, 66
Zhang W., Du B., Feng C., 2007, J. Mol. Struct.: THEOCHEM, 806, 121