A weak comparison principle for solutions of very degenerate elliptic equations

Giulio Ciraolo

May 2, 2014

Abstract

We prove a comparison principle for weak solutions of elliptic quasi-linear equations in divergence form whose ellipticity constants degenerate at every point where \(\nabla u \in K \), where \(K \subseteq \mathbb{R}^N \) is a Borel set containing the origin.

1 Introduction

Let \(K \subseteq \mathbb{R}^N \), \(N \geq 2 \), be a Borel set containing the origin \(O \). We consider a vector function \(A : \mathbb{R}^N \rightarrow \mathbb{R}^N \), \(A \in L^\infty_{\text{loc}}(\mathbb{R}^N) \), such that

\[
\begin{cases}
A(\xi) = 0, & \text{if } \xi \in K, \\
[A(\xi) - A(\eta)] \cdot (\xi - \eta) > 0, & \forall \eta \in \mathbb{R}^N \setminus \{\xi\}, \text{ if } \xi \not\in K,
\end{cases}
\]

where \(\cdot \) denotes the scalar product in \(\mathbb{R}^N \). In this note we prove a comparison principle for Lipschitz weak solutions of

\[
\begin{cases}
-\operatorname{div} A(\nabla u) = g, & \text{in } \Omega, \\
u = \psi, & \text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \), \(\psi \in W^{1,\infty}(\Omega) \) and \(g \in L^1(\Omega) \). As usual, \(u \in W^{1,\infty}(\Omega) \) is a weak solution of (1.2) if \(u - \psi \in W^{1,\infty}_0(\Omega) \) and \(u \) satisfies

\[
\int_{\Omega} A(\nabla u) \cdot \nabla \phi dx = \int_{\Omega} g \phi dx, \quad \text{for every } \phi \in C_0^1(\Omega). \tag{1.3}
\]

For weak comparison principle we mean the following: if \(u_1, u_2 \) are two solutions of (1.2) with \(u_1 \leq u_2 \) on \(\partial \Omega \), then \(u_1 \leq u_2 \) in \(\Omega \). Clearly, the weak comparison principle implies the uniqueness of the solution.

It is well known that if \(K \) is the singleton \(\{O\} \), then (1.1) guarantees the validity of the weak comparison principle (see for instance [11] and [18]). For this reason, from now on \(K \) will be a set containing the origin and at least another point of \(\mathbb{R}^N \).

*Department of Mathematics and Informatics, Università di Palermo, Via Archirafi 34, 90123, Italy. E-mail: g.ciraolo@math.unipa.it
Our interest in this kind of equations comes from recent studies in traffic congestion problems (see [2] and [3]), complex-valued solutions of the eikonal equation (see [13]–[16]) and in variational problems which are relaxations of non-convex ones (see for instance [4] and [10]).

As an example, we can think to
\[f : [0, +\infty) \to [0, +\infty) \]

given by
\[f(s) = \frac{1}{p}(s - 1)^p, \tag{1.4} \]

where \(p > 1 \) and \((\cdot)_+\) stands for the positive part, and consider the functional
\[I(u) = \int_{\Omega} \left[f(|\nabla u(x)|) - g(x)u(x) \right] dx, \quad u \in \psi W^{1,\infty}_0(\Omega). \tag{1.5} \]

As it is well-known, (1.3) is the Euler-Lagrange equation associated to (1.5) with
\[A(\nabla u) = \frac{f'(|\nabla u|)}{|\nabla u|} \nabla u, \tag{1.6} \]

and it is easy to verify that \(A \) satisfies (1.1) with \(K = \{ \xi \in \mathbb{R}^N : |\xi| \leq 1 \} \). It is clear that in this case the monotonicity condition in (1.1) can be read in terms of the convexity of \(f \). Indeed, \(f \) is not strictly convex in \([0, +\infty)\) since it vanishes in \([0, 1]\); however, if \(s_1 > 1 \) then
\[f((1 - t)s_0 + ts_1) < (1 - t)f(s_0) + tf(s_1), \quad t \in [0, 1], \]

for any \(s_0 \in [0, +\infty) \) and \(s_0 \neq s_1 \); the convexity holds in the strict sense whenever a value greater than 1 is considered.

Coming back to our original problem we notice that, since \(A \) vanishes in \(K \), (1.2) is strongly degenerate and no more than Lipschitz regularity of the solution can be expected. It is clear that if \(g = 0 \), then every function with gradient in \(K \) will satisfy the equation. Besides the papers cited before, we mention [1, 5, 9, 17] where regularity issues were tackled and [6] where it is proven that solutions to (1.2) satisfy an obstacle problem for the gradient in the viscosity sense. Here, we will not specify the assumptions on \(A \) and \(g \) that guarantee the existence of a Lipschitz solution and we refer to the mentioned papers for this interesting issue.

We stress that some regularity may be expected if we look at \(A(\nabla u) \). In [3] and [4] the authors prove some Sobolev regularity results for \(A(\nabla u) \) under more restrictive assumptions on \(A \) and \(g \). We also mention that results on the continuity of \(A(\nabla u) \) can be found in [8] and [17].

In Section 2 we prove a weak comparison principle for Lipschitz solutions of (1.3) by assuming the following: (i) one of the two solutions satisfies a Sobolev regularity assumption on \(A(\nabla u) \); (ii) the Lebesgue measure of the set where \(g \) vanishes is zero. As we shall prove, the former guarantees that the set where \(\nabla u \in K \) and \(g \) does not vanish has measure zero. The latter seems to be optimal for proving our result. Indeed, if we assume that \(g = 0 \), then any Lipschitz function with gradient in \(K \) would be a solution and we can not have a comparison between any two of such solutions. For instance, if we consider \(A \) as in (1.6) with \(f \) given by (1.4), then a simple example of functions that satisfy (1.2) is given by \(u_\sigma(x) = \sigma \text{dist}(x, \partial \Omega) \), with \(\sigma \in [-1, 1] \). Since every \(u_\sigma = 0 \) on \(\partial \Omega \), (1.2) does not have a unique solution and a comparison principle
can not hold. Generally speaking, any region where \(g \) vanishes will be source of problems for proving a comparison principle. We mention that, for \(A \) as in (1.6) and \(g = 1 \), a comparison principle for minimizers of (1.5) was proven in [7].

2 Main result

Before proving our main result, we need the following lemma which generalizes a result obtained in [12] for the p-Laplacian. In what follows, \(|D| \) denotes the Lebesgue measure of a set \(D \subset \mathbb{R}^N \).

Lemma 2.1. Let \(u \in W^{1,\infty}(\Omega) \) be a solution of (1.3), with \(A \) satisfying (1.1) and let
\[
Z = \{ x \in \Omega : \nabla u(x) \in K \}.
\]
If \(A(\nabla u) \in W^{1,p}(\Omega) \) for some \(p \geq 1 \), then
\[
|Z \setminus G_0| = 0,
\]
where
\[
G_0 = \{ x \in \Omega : g(x) = 0 \}.
\]
In particular, if \(|G_0| = 0 \) then \(|Z| = 0 \).

Proof. Since \(A(\nabla u) \in W^{1,p}(\Omega) \), then the function
\[
\frac{|A(\nabla u)|}{\varepsilon + |A(\nabla u)|} \in W^{1,p}(\Omega),
\]
for any \(\varepsilon > 0 \). Let \(\psi \in C^0_0(\Omega) \), set
\[
\phi(x) = \frac{|A(\nabla u(x))|}{\varepsilon + |A(\nabla u(x))|} \psi(x),
\]
and notice that \(\phi \in L^\infty(\Omega) \cap W_0^{1,p}(\Omega) \). Since \(u \) is Lipschitz continuous and \(A \in L^\infty_0(\mathbb{R}^N) \), we have that \(A(\nabla u) \in L^\infty(\Omega) \). Hence, by an approximation argument, \(\phi \) can be used as a test function in (1.3), yielding
\[
\int_{\Omega} \frac{|A(\nabla u)|}{\varepsilon + |A(\nabla u)|} A(\nabla u) \cdot \nabla \psi dx + \varepsilon \int_{\Omega} \frac{A(\nabla u) \cdot \nabla |A(\nabla u)|}{(\varepsilon + |A(\nabla u)|)^2} dx = \int_{\Omega} \frac{|A(\nabla u)|}{\varepsilon + |A(\nabla u)|} \psi g dx.
\]
It is clear that
\[
\int_{\Omega} \frac{|A(\nabla u)|}{\varepsilon + |A(\nabla u)|} \psi g dx = \int_{\Omega \setminus Z} \frac{|A(\nabla u)|}{\varepsilon + |A(\nabla u)|} \psi g dx,
\]
and that Cauchy-Schwarz inequality yields
\[
\left| \frac{\varepsilon A(\nabla u) \cdot \nabla |A(\nabla u)|}{(\varepsilon + |A(\nabla u)|)^2} \right| \leq |\nabla(|A(\nabla u)|)|
\]
uniformly for $\varepsilon > 0$. Since $\nabla (|A(\nabla u)|) \in L^p(\Omega)$, from (2.3)–(2.6) and by letting ε go to zero, we obtain from Lebesgue’s dominated convergence theorem that

$$\int_{\Omega} A(\nabla u) \cdot \nabla \psi dx = \int_{\Omega \setminus \bar{Z}} g\psi dx,$$

for any $\psi \in C_0^1(\Omega)$. From (1.3) we have

$$\int_{\Omega} g\psi dx = \int_{\Omega \setminus \bar{Z}} g\psi dx,$$

for any $\psi \in C_0^1(\Omega)$, that is

$$g(x) = 0 \text{ for almost every } x \in Z,$$

which implies (2.2).

Our main result is the following.

Theorem 2.2. Let $u_j \in W^{1,\infty}(\Omega)$, $j = 1, 2$, be two solutions of (1.3), with A satisfying (1.1) and g such that $|G_0| = 0$, with G_0 given by (2.3). Furthermore, let us assume that $A(\nabla u_j) \in W^{1,p}(\Omega)$ for some $p \geq 1$ and $j \in \{1, 2\}$.

If $u_1 \leq u_2$ on $\partial \Omega$ then $u_1 \leq u_2$ in Ω.

Proof. We proceed by contradiction. Let us assume that $U = \{x \in \Omega : u_1 > u_2\}$ is nonempty. Since u_1 and u_2 are continuous, then U is open and we can assume that it is connected (otherwise we repeat the argument for each connected component). Without loss of generality, we can assume that $A(\nabla u_1) \in W^{1,p}(\Omega)$ and we define $E_1 = \{x \in \Omega : \nabla u_1 \notin K\}$.

Let $\phi = (u_1 - u_2)_+$. Since $u_1 \leq u_2$ on $\partial \Omega$, then $\phi \in W^{1,\infty}(\Omega)$ and (1.3) yields:

$$\int_{U} A(\nabla u_j) \cdot \nabla (u_1 - u_2) dx = \int_{U} g(u_1 - u_2) dx, \quad j = 1, 2.$$

By subtracting the two identities, we have

$$\int_{U} [A(\nabla u_1) - A(\nabla u_2)] \cdot (\nabla u_1 - \nabla u_2) dx = 0. \quad (2.7)$$

We notice that Lemma 2.1 yields $|\{\nabla u_1 \in K\}| = 0$ and thus

$$\int_{U} [A(\nabla u_1) - A(\nabla u_2)] \cdot (\nabla u_1 - \nabla u_2) dx =$$

$$= \int_{U \cap E_1} [A(\nabla u_1) - A(\nabla u_2)] \cdot (\nabla u_1 - \nabla u_2) dx; \quad (2.7)$$

and the monotonicity condition in (1.1) imply that

$$\nabla u_1 = \nabla u_2 \text{ a.e. in } U \cap E_1. \quad (2.8)$$

Since $|\{\nabla u_1 \in K\}| = 0$, we obtain that $\nabla u_1 = \nabla u_2$ a.e. in U. Being $u_1 = u_2$ on ∂U, we have that $u_1 = u_2$ in U, which gives a contradiction.

It is clear that Theorem 2.2 implies the uniqueness of a solution for (1.2). Moreover, from Theorem 2.2 we also obtain the following comparison principle.
Corollary 2.3. Let \(u_j, j = 1, 2, \) \(A \) and \(g \) be as in Theorem 2.2. If \(u_1 < u_2 \) on \(\partial \Omega \) then \(u_1 < u_2 \) in \(\Omega \).

Proof. Since \(\partial \Omega \) is compact and \(u_1 \) and \(u_2 \) are continuous in \(\Omega \), there exists a constant \(c > 0 \) such that \(u_1 + c \leq u_2 \) on \(\partial \Omega \). Being \(u_1 + c \) a solution of \((1.3) \), Theorem 2.2 yields \(u_1 + c \leq u_2 \) in \(\Omega \) and, since \(c \) is positive, we conclude.

References

[1] L. Brasco: Global \(L^\infty \) gradient estimates for solutions to a certain degenerate elliptic equation. Nonlinear Anal., 74 (2011), 516-531.
[2] Brasco L., Carlier G.: On certain anisotropic elliptic equations arising in congested optimal transport: local gradient bounds. Preprint (2012). Available at [http://cvgmt.sns.it/paper/1890/]
[3] Brasco L., Carlier G., Santambrogio F.: Congested traffic dynamics, weak flows and very degenerate elliptic equations. J. Math. Pures Appl., 93 (2010), 652-671.
[4] Carstensen C., Müller S.: Local stress regularity in scalar nonconvex variational problems. SIAM J. Math. Anal., 34 (2002), 495-509.
[5] Celada P., Cupini G., Guidorzi M.: Existence and regularity of minimizers of nonconvex integrals with p - q growth. ESAIM Control Optim. Calc. Var., 13 (2007), 343–358.
[6] Ciraolo G.: A viscosity equation for minimizers of a class of very degenerate elliptic functionals. To appear in Geometric Properties for Parabolic and Elliptic PDE’s, Springer INdAM Series (2013).
[7] Ciraolo G., Magnanini R., Sakaguchi S.: Symmetry of minimizers with a level surface parallel to the boundary. Preprint (2012) [arXiv:1208.5295]
[8] Colombo M., Figalli A.: Regularity results for very degenerate elliptic equations. Preprint (2012). Available at [http://cvgmt.sns.it/paper/1996/]
[9] Esposito L., Mingione G., Trombetti C.: On the Lipschitz regularity for certain elliptic problems. Forum Math. 18 (2006), 263–292.
[10] Fonseca I., Fusco N., Marcellini P.: An existence result for a nonconvex variational problem via regularity. ESAIM Control Optim. Calc. Var. 7 (2002), 69–95.
[11] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York, 1977.
[12] Lou H.: On singular sets of local solutions to p-Laplace equations. Chin. Ann. Math. 29B (2008), no. 5, 521-530.
[13] Magnanini R., Talenti G.: On complex-valued solutions to a 2D eikonal equation. Part one: qualitative properties. Nonlinear Partial Differential Equations, Contemporary Mathematics 283 (1999), American Mathematical Society, 203–229.
[14] ______: On complex-valued solutions to a 2D eikonal equation. Part two: existence theorems. SIAM J. Math. Anal. 34 (2003), 805–835.

[15] ______: On complex-valued solutions to a 2D Eikonal Equation. Part Three: analysis of a Backlund transformation. Applic. Anal. 85 (2006), no. 1-3, 249–276.

[16] ______: On complex-valued 2D eikonals. Part four: continuation past a caustic. Milan Journal of Mathematics 77 (2009), no. 1, 1–66.

[17] Santambrogio F., Vespri V.: Continuity in two dimensions for a very degenerate elliptic equation. Nonlinear Anal., 73 (2010), 3832-3841.

[18] Tolksdorf P.: Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations, 51 (1984), 126-150.