Fuzzy Paranormal Operators

A.Radharamani, A.Brindha

Abstract: In this paper, we introduced and discussed about fuzzy paranormal operators. A fuzzy bounded linear operator on a fuzzy Hilbert space is fuzzy paranormal if \(\|T^2 a\| \geq \|Ta\|^2 \) for every unit vector \(a \) in \(\mathcal{H} \). It is easily known that this class includes fuzzy hyponormal operators.

Keywords: Fuzzy Hilbert space, Self-adjoint fuzzy operator, Fuzzy Normal operator, Fuzzy Hyponormal operator, Fuzzy Paranormal operator.

I. INTRODUCTION

Let \(\mathcal{H} \) be a fuzzy Hilbert space and \(FB(\mathcal{H}) \) is the set of all fuzzy bounded linear operators on \(\mathcal{H} \). Biswas [10] first introduced the definition of fuzzy inner product space. In 2009, Goudarzi and Vaezpour [8] has been introduced the definition of a fuzzy Hilbert space. Sudad M Rasheed [4] was first introduced the concept and properties of adjoint fuzzy operator using the triplet \((\mathcal{H}, \mathcal{F}, \ast) \) and which is a fuzzy Hilbert space. An operator \(T \in FB(\mathcal{H}) \) is a \(\mathcal{F} \)–continuous linear functional, there exist \(T^* \in FB(\mathcal{H}) \) such that \((Ta, b) = (a, T^* b) \) \(\forall a, b \in \mathcal{H} \). Also \(T \) is a self – adjoint fuzzy operator if \(T = T^* \) and also it commutes with its adjoint fuzzy operator i.e. \(T \cdot T^* = T^* \cdot T \) with this \(T \) is said to be fuzzy normal operator which was introduced by Radharamani et al. [1].

If \(T \in FB(\mathcal{H}) \) is said to be fuzzy unitary operator if \(T \cdot T^* = I = T^* \cdot T \). It is also a fuzzy isometry operator from \(\mathcal{H} \) onto \(\mathcal{H} \). In 2019, Fuzzy hyponormal operators and their properties are studied by Radharamani et al.[3] and investigated many interesting properties of Fuzzy hyponormal operators similar to these of fuzzy normal operators. An operator \(T \) is said to be fuzzy hyponormal if \(T \cdot T^* \geq T \cdot T \). Also fuzzy class of N operators were defined if \(\|T^2 a\| \geq \|Ta\|^2, \forall a \in \mathcal{H}, \|a\| = 1 \).

Now we introduced fuzzy paranormal operator if \(\|T^2 a\| \|a\| \geq \|Ta\|^2, \forall a \in \mathcal{H} \) which is equivalent to \(\|T^2 a\| \geq \|Ta\|^2 \) for every unit vector \(a \) in \(\mathcal{H} \). We have given an example, some lemmas for fuzzy paranormal operator and some properties like, sum and product of fuzzy paranormal operators are also fuzzy paranormal. An operator \(T \) is invertible and fuzzy paranormal, then \(T^{-1} \) also fuzzy paranormal. An operator \(T \) is fuzzy paranormal then its powers also fuzzy paranormal, also an operator \(T \) is fuzzy normal then \(T \) and \(T^* \) are also fuzzy paranormal. We will discuss these in detail.

II. PRELIMINARIES

Definition 2.1: [9] Fuzzy Hilbert space (FH-space)

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \). If \(T \) is complete in the \(\|\| \), then \(\mathcal{H} \) is called Fuzzy Hilbert space(FH-space).

Definition 2.2: [4] Adjoint Fuzzy operator

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space and let \(T \in FB(\mathcal{H}) \) be \(T_p \) continuous linear functional. Then \(\exists \) unique \(T^* \in FB(\mathcal{H}) \) such that \((Ta, b) = (a, T^* b) \) \(\forall a, b \in \mathcal{H} \).

Definition 2.3: [4] Self-Adjoint Fuzzy operator

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let \(T \in FB(\mathcal{H}) \) Then \(T \) is self–adjoint Fuzzy operator if \(T = T^* \).

Theorem 2.4: [4]

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let \(T \in FB(\mathcal{H}) \) then \(\|Ta\| = \|T^* a\| \) for all \(a, b \in \mathcal{H} \).

Theorem 2.5:[4]

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let \(T \in FB(\mathcal{H}) \) then \(T \) is self–adjoint Fuzzy operator.

Definition 2.6: [1] Fuzzy Normal operator

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let \(T \in FB(\mathcal{H}) \) then \(T \) is said to be Fuzzy Normal operator if it commutes with its (fuzzy) adjoint i.e.\(T \cdot T^* = T^* \cdot T \).

Definition 2.7: [2] Fuzzy isometry operator

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be an FH-space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let an operator \(T \) on a Fuzzy Hilbert space \(\mathcal{H} \) i.e., \(T \in FB(\mathcal{H}) \) then \(T \) is said to be a Fuzzy isometry operator if \(\|Ta\| = \|a\| \) for any \(a \in \mathcal{H} \) i.e., \((Ta, Tb) = (a, b) \).

Remark 2.8: [1]

Let \(FB(\mathcal{H}) \) the set of all fuzzy linear operators on \(\mathcal{H} \).

Definition 2.8: [2] Fuzzy Unitary operator

Let \(T \in FB(\mathcal{H}) \) is said to be a fuzzy unitary operator if \(T \) is a Fuzzy isometry operator from \(\mathcal{H} \) onto \(\mathcal{H} \).

Definition 2.9: [1] Fuzzy Hyponormal operator

Let \((\mathcal{H}, \mathcal{F}, \ast) \) be a FH – space with IP: \((a, b) = \text{Sup} \{u \in R : \mathcal{F}(a, b, u) < 1\} \) \(\forall a, b \in \mathcal{H} \) and let \(T \in FB(\mathcal{H}) \) then \(T \) is a fuzzy hyponormal operator if \(\|T^* a\| \leq \|Ta\| \) \(\forall a \in \mathcal{H} \) and or equivalently \(T \cdot T^* - T^* \cdot T \geq 0 \).

Revised Manuscript Received on October 05, 2019

A Radharamani, Faculty of Mathematics, Chikkanna Govt. Arts College, Bharathiar University, Tamil Nadu, India.

Email: radhabtk@gmail.com

A Brindha, Faculty of Mathematics, Tiruppur Kumaran College for Women, Bharathiar University, Tamil Nadu, India.

Email: brindhaaree14@gmail.com

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

DOI: 10.35940/ijeat.F8309.109119
Theorem 2.11: [1]
Let $T \in FB(\mathcal{H})$ be fuzzy hyponormal iff $\|T^*a\| \leq \|Ta\|$ for all $a \in \mathcal{H}$.

III. MAIN RESULTS OF FUZZY PARANORMAL OPERATORS

Then T is a fuzzy paranormal operator if $\|T^2a\|\|a\| \geq \|Ta\|^2 \forall a \in \mathcal{H}$.

Note:
Let $T \in FB(\mathcal{H})$, then T is a fuzzy paranormal operator if $\|T^2a\| \geq \|Ta\|^2 \forall a \in \mathcal{H}$.

Example 3.2:
Let $(\mathcal{H}, \mathcal{F}, \ast)$ be a fuzzy Hilbert space, $\mathcal{H} = l^2$, i.e. $l^2 = \{a = (a_1, a_2, a_3, \ldots) \}_{i=1}^\infty$ $\sum_{i=1}^\infty |a_i|^2 < \infty, a_i \in \mathbb{C}$ for $a \in l^2$, defined $\|a\| = (\sum_{i=1}^\infty |a_i|^2)^{\frac{1}{2}}$. Let $\mathcal{F}: l^2 \times (0, \infty) \rightarrow [0, 1]$ define an operator $T: l^2 \times (0, \infty)$ such that $T(a_1, a_2, \ldots, a_n) = (0, a_1, a_2, \ldots)$ $\forall (a_1, a_2, \ldots) \in l^2$

i) To find T is linear
Take $a = (a_1, a_2, \ldots, b) = (b_1, b_2, \ldots, \in l^2$ and scalar α.

$T(a + b) = T(a_1 + b_1, a_2 + b_2, \ldots) = (0, a_1 + b_1, a_2 + b_2, \ldots)$

$T(a + b) = T(a) + T(b)$

$T(\alpha a) = (0, \alpha a_1, \alpha a_2, \ldots)$

$= \alpha(0, a_1, a_2, \ldots)$

$= \alpha(Ta)$

ii) To find T is finite
Take $(a_1, a_2, \ldots, \in l^2$.

$\|T(a_1, a_2, \ldots)\|^2 = \|(0, a_1, a_2, \ldots)\|^2$

$= \sum_{i=1}^\infty |a_i|^2$

$= \|a\|^2$

i.e. $\|T(a_1, a_2, \ldots)\|^2 = \|a\|^2$

$\|T(a)\| = \|a\|$ iff $\|T(a)\| = \|a\|$

$\Rightarrow T$ is finite

$\therefore T \in FB(l^2)$

iii) To find T is fuzzy paranormal operator
Take $(a_1, a_2, \ldots, \in l^2$.

$\|T(a_1, a_2, \ldots)\|^2 = \|(0, a_1, a_2, \ldots)\|^2$

$= \sum_{i=1}^\infty |a_i|^2$

$= \|(a_1, a_2, \ldots)\|^2$

$\Rightarrow \|T(a_1, a_2, \ldots)\|^2 = \|(a_1, a_2, \ldots)\|^2$

iv) Take $(a_1, a_2, \ldots, \in l^2$.

$\|T(a_1, a_2, \ldots)\| = \|(0, a_1, a_2, \ldots)\|$

Let $T^2(a_1, a_2, \ldots) = T(T(a_1, a_2, \ldots)) = (0, 0, a_1, a_2, \ldots)$

$\|T^2(a_1, a_2, \ldots)\| = \|(0, 0, a_1, a_2, \ldots)\|$

$= \sum_{i=1}^\infty |a_i|^2$

v) Take any $(a_1, a_2, \ldots, \in l^2$.

$T(a_1, a_2, \ldots, \in l^2$)

$\|T(a_1, a_2, \ldots)\| = \|(0, a_1, a_2, \ldots)\|$

Definition 3.1:
Let $(\mathcal{H}, \mathcal{F}, \ast)$ be a FH – space with IP: $(a, b) = Sup \{u \in R: \mathcal{F}(a, b, u) < 1\}$ $\forall a, b \in \mathcal{H}$ and let $T \in FB(\mathcal{H})$.

$$\|T(a_1, a_2, \ldots)\|^2 = \|T(0, a_1, a_2, \ldots)\|^2$$

$$= \sum_{i=1}^\infty |a_i|^2$$

From (iv) and (v),

$$\|T^2(a)\| \geq \|T(a)\|^2$$

Thus T is fuzzy paranormal operator.

Lemma 3.3:
Let $(\mathcal{H}, \mathcal{F}, \ast)$ be a FH – space with IP: $(a, b) = Sup \{u \in R: \mathcal{F}(a, b, u) < 1\}$ $\forall a, b \in \mathcal{H}$ and let $T \in FB(\mathcal{H})$ be a fuzzy paranormal operator then $\|T^3a\| \geq \|T^2a\|\|Ta\|$ for every unit vector $a \in \mathcal{H}$.

Proof:
For a unit vector $a \in \mathcal{H}$, Let $\|T^3a\| = \|T^2a, T^3a\|$

$= Sup \{u \in R: \mathcal{F}(T^3a, T^3a, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^2a, T^2a, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^4a, T^4a, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^4a, T^4a, u) < 1\}$

$= T^4a, T^3a\|

$\leq \|T^4a\|\|T^2a\|$

$\|T^3a\|^2 \geq \|Ta\|^2\|Ta\|$ [since T is fuzzy paranormal]

$\Rightarrow \|T^3a\| \geq \|T^2a\|\|Ta\|$ [Hence $\|T^3a\| \geq \|T^2a\|\|Ta\|$]

Lemma 3.4:
Let $(\mathcal{H}, \mathcal{F}, \ast)$ be a FH – space with IP: $(a, b) = Sup \{u \in R: \mathcal{F}(a, b, u) < 1\}$ $\forall a, b \in \mathcal{H}$ and let $T \in FB(\mathcal{H})$ be a fuzzy paranormal operator. Then $\|T^{k+1}a\|^2 \geq \|T^ka\|^2\|T^2a\|$ for every positive integer $k \geq 1$ and every unit vector $a \in \mathcal{H}$.

Proof:
Let $T \in FB(\mathcal{H})$ be a fuzzy paranormal operator. By using the induction hypothesis, we will prove the theorem.

For the case $k = 1$, $\|T^2a\|^2 \geq \|Ta\|^2\|T^2a\|$.

Now suppose that $\|T^{k+1}a\|^2 \geq \|T^ka\|^2\|T^2a\|$ is valid for k. Then $k = k + 1$.

Let $\|T^{k+2}a\|^2 = \|T^{k+2}a, T^{k+2}a\|$

$= Sup \{u \in R: \mathcal{F}(T^{k+2}a, T^{k+2}a, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^ka, T^ka, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^{k+2}a, T^ka, u) < 1\}$

$= Sup \{u \in R: \mathcal{F}(T^ka, T^ka, u) < 1\}$

$= (T^{2(k+1)}a, T^2a)$

$\leq \|T^{k+1}a\|\|T^2a\|$

Since $\|T^2a\| \geq \|Ta\|^2\|a\|$ $\forall a \in \mathcal{H}$,

$\|T^{k+2}a\|^2 \geq \|T^{k+1}a\|^2\|T^2a\|\|a\|$
Hence the proof is obvious.

Lemma 3.5:

Let $T \in FB(H)$ be a fuzzy paranormal operator. Then T^n is also fuzzy paranormal for every integer $n \geq 1$.

Proof:

It is sufficient to prove that if T and T^k are fuzzy paranormal then T^{k+1} is also fuzzy paranormal operator.

For every unit vector a in H

Let $\|T^{2(k+1)}a\|^2 = \|T^{2(k+1)}a, T^{2(k+1)}a\|$

$= \sup \{u \in R : F(T^{2(k+1)}a, T^{2(k+1)}a, u) < 1\}$

$= \sup \{u \in R : F((T^{2(k+1)})^2a, (T^{2(k+1)})^2a, u, u) < 1\}$

$= \sup \{u \in R : F(T^a, T^a, u, u) < 1\}$

$= \sup \{u \in R : F(T^a)^2a, a, u, u) < 1\}$

$\leq \|T^{2(k+1)}a\|^2 \leq \|T^{2(k+1)}a\|^2$

By the above lemma.

So T^{k+1} is also fuzzy paranormal operator.

Theorem 3.6:

Let $T \in FB(H)$ be a self-adjoint fuzzy operator then T is a fuzzy paranormal.

Proof:

For any a in H with $\|a\| = 1$, we know that T is a self-adjoint fuzzy operator.

Let $\|Ta\|^2 = (Ta, Ta)$

$= \sup \{u \in R : F(Ta, Ta, u) < 1\}$

$= \sup \{u \in R : F(T^a, T^a, u) < 1\}$

$= \sup \{u \in R : F((TTa)a, a, u) < 1\}$

$= \sup \{u \in R : F(T^a, a, u) < 1\}$

$\leq \|T^a\|^2 \leq \|T^2a\|^2$

By the above lemma.

So T is a fuzzy paranormal operator.

Theorem 3.7:

Let $T \in FB(H)$ be a fuzzy paranormal operator and self-adjoint fuzzy operator. Then T^* is fuzzy paranormal.

Proof:

For any a in H, $\|a\| = 1$

Let $\|T^*a\|^2 = (T^*a, T^*a)$

$= \sup \{u \in R : F(T^*a, T^*a, u) < 1\}$

$= \sup \{u \in R : F((TT^*a)a, a, u) < 1\}$

$= \sup \{u \in R : F(T^*a, a, u) < 1\}$

$\leq \|T^*\|^2 \leq \|T^2a\|^2$

By the above lemma.

So T^* is a fuzzy paranormal operator.

Theorem 3.8:

Let S and $T \in FB(H)$ is a fuzzy paranormal operator and self-adjoint fuzzy operator. Then $S + T$ and ST are also a fuzzy paranormal operator.

Proof:

For every unit vector a in H, we know that $\|T^2a\| \geq \|T^2a\|^2, \|S^2a\| \geq \|S^2a\|^2$ and $S = S^*, T = T^*$.

i). To prove that $S + T$ is a fuzzy paranormal operator.

Let $\|(S + T)a\|^2 = \|(S + T)a, (S + T)a\)$

$= \sup \{u \in R : F((S + T)a, (S + T)a, u) < 1\}$

$= \sup \{u \in R : F((S + T)^2a, (S + T)^2a, u, u) < 1\}$

$= \sup \{u \in R : F((S + T)^2a), (S + T)^2a, u, u) < 1\}$

$\leq \|(S + T)^2a\|^2$

Implies that $\|(S + T)a\|^2 \leq \|(S + T)^2a\|^2$

Therefore $S + T$ is a fuzzy paranormal operator.

ii). To prove that ST is a fuzzy paranormal operator.

Let $\|(ST)a\|^2 = \|(ST)a, (ST)a\)$

$= \sup \{u \in R : F((ST)a, (ST)a, u) < 1\}$

$= \sup \{u \in R : F((ST)^2a, (ST)^2a, u, u) < 1\}$

$= \sup \{u \in R : F((ST)^2a), (ST)^2a, u, u) < 1\}$

$\leq \|(ST)^2a\|^2$

Implies that $\|(ST)a\|^2 \leq \|(ST)^2a\|^2$

Therefore ST is a fuzzy paranormal operator.

Theorem 3.9:

Let $T \in FB(H)$ is a fuzzy normal operator. Then T is a fuzzy paranormal operator.

Proof:

For every unit vector a in H

Let $\|Ta\|^2 = (Ta, Ta)$

$= \sup \{u \in R : F(Ta, Ta, u) < 1\}$

$= \sup \{u \in R : F(T^a, T^a, u) < 1\}$

$= \sup \{u \in R : F((TTa)a, a, u) < 1\}$

$= \sup \{u \in R : F(Ta, a, u) < 1\}$

$\leq \|T^2a\|^2 \leq \|T^2a\|^2$

i.e. $\|Ta\|^2 \leq \|T^2a\|^2$

Implies that $\|Ta\|^2 \leq \|T^2a\|^2$

Therefore T is a fuzzy paranormal operator.

Theorem 3.10:

Let $T \in FB(H)$ is a fuzzy paranormal operator and a fuzzy hyponormal operator. Then T is a fuzzy paranormal operator.

Proof:

For every unit vector a in H

Let $\|Ta\|^2 = (Ta, Ta)$

$= \sup \{u \in R : F(Ta, Ta, u) < 1\}$

$= \sup \{u \in R : F(T^a, T^a, u) < 1\}$

$\geq \sup \{u \in R : F((TT^a)a, a, u) < 1\}$

$\geq \|T^a, T^a, a, a\|

Since $\|T^2a\| \geq 0 \forall a \in H$.
Theorem 3.11:
Let $T_n \in FB(\mathcal{H})$ is a sequence of fuzzy paranormal operator and $T_n \rightarrow T$. Then T is a fuzzy paranormal operator.

Proof:
For every unit vector a in \mathcal{H}
\[
\|T_n a\|^2 = (Ta, a) = 0
\]
Hence T is a fuzzy paranormal operator.

Theorem 3.12:
Let $T \in FB(\mathcal{H})$ is a fuzzy paranormal operator and S is unitarily equivalent to T. Then S is a fuzzy paranormal operator.

Proof:
For every unit vector a in \mathcal{H}
\[
\|S a\|^2 = (S^* S a, a) = (T a, a) = 0
\]
Hence S is a fuzzy paranormal operator.

Theorem 3.13:
An operator $T \in FB(\mathcal{H})$ is an invertible and fuzzy paranormal operator. Then T^{-1} is also a fuzzy paranormal operator.

Proof:
For every unit vector a in \mathcal{H}
\[
\|T^{-1} a\|^2 = (T^{-1} a, a) = 0
\]
Hence T^{-1} is also a fuzzy paranormal operator.

Theorem 3.14:
If $T^* T \geq (T^* T)^2$, then T is a fuzzy paranormal operator.

Proof:
For every a in \mathcal{H}
\[
\|T^* T a\|^2 = (T^* T a, a) = 0
\]
Hence T is a fuzzy paranormal operator.

Theorem 3.15:
An operator $T \in FB(\mathcal{H})$ is fuzzy paranormal if and only if $T^* T - 2kT^2 + k^2 \geq 0$ for all $k \in R$.

Proof:
For every a in \mathcal{H}
\[
\|T^* T a - 2kT^2 + k^2\|^2 = 0
\]
Hence T is a fuzzy paranormal operator.
Since T is a fuzzy normal operator. We know that $T^* T = T T^*$ iff $\|T^* a\| = \|T a\|$ for every unit vector a in H.

Let $\|T^* a\|^2 = (T^* a, T^* a)$

$= \sup \{ u \in R : F(T^* a, T^* a, u) < 1 \}$

$= \sup \{ u \in R : F((TT^*) a, a, u) < 1 \}$

$= \sup \{ u \in R : F(T (T^* T) a, a, u) < 1 \}$

$= (T^* T a, a) \leq \|T^* T a\| \| T a \|$\n
$\|T^* a\|^2 \leq \|T^* T a\| \| T a \|$\n
Implies that $\|T^* a\|^2 \leq \|T^* T a\|$. Therefore T is fuzzy paranormal.

Theorem 3.17: Let $T \in FB(\mathcal{H})$ is a fuzzy paranormal operator commutes with a fuzzy isometry operator S. Then TS is a fuzzy paranormal operator.

Proof:

Let TS for any real number k. To prove S is a fuzzy normal operator. That is to prove $A^* A - 2k A A^* A + k^2 \geq 0$.

Now $A^* A^2 - 2k A A^* A + k^2$

$= (T^* T)^2 (S^* S)^2 - 2k (S^* S)(T^* T) + k^2$

$= (S^* S)^2 (T^* T)^2 - 2k (S^* S)(T^* T) + k^2$

$= T^* T S^* S - 2k T S^* S + k^2$

Since T is a fuzzy paranormal operator commutes with an fuzzy isometry operator S.

$= T^* T - 2k T S^* S + k^2$ [by using theorem 2.15]

$A^* A - 2k A A^* A + k^2 \geq 0$

$\Rightarrow (T^* T - 2k T S^* S + k^2) \geq 0$

Hence TS is a fuzzy paranormal operator.

IV. CONCLUSION

The conclusion that can be taken is a new idea of fuzzy paranormal operator in fuzzy Hilbert space, example and properties of fuzzy paranormal operators. Including its relationship with self-adjoint fuzzy operator, fuzzy normal operator and fuzzy hyponormal operators. In future, we hope it is very useful to find many types of fuzzy paranormal operators.

ACKNOWLEDGEMENT

The Authors are gratified to the referees for these helpful and effective ideas.

REFERENCES

1. A. Radharamani et al., “Fuzzy Normal Operator in fuzzy Hilbert space and its properties”, IOSR Journal of Engineering, vol.8(7), 2018, 1-6.
2. A. Radharamani et al., “Fuzzy Unitary Operator in Fuzzy Hilbert Space and its Properties”, International Journal of Research and Analytical Reviews (IJRAR), vol.5(4), 2018, 258-261.
3. A.Radharamani,A.Brindha, “Fuzzy Hyponormal operator in Fuzzy Hilbert space”, International journal of mathematical archive(BMA), vol.10(1), 2019, pp 6-12.
4. Sudhakar Rashheed, “Self-adjoint Fuzzy Operator in Fuzzy Hilbert Space and its Properties”, Journal of Zankoy Sulaimani, vol.19(1), 2017, 233-238.
5. K. Katsaras, “Fuzzy topological vector space-II, Fuzzy Sets and Systems”, vol.12, 1984, 143-154.
6. C. Felbin, “Finite Dimensional Fuzzy Normed Linear Space, Fuzzy Sets and Systems”, vol.48, 1992, 239-248.
7. J.K. Kohli and R. Kumar, “Linear mappings, Fuzzy linear spaces, Fuzzy inner product spaces and Fuzzy Co-inner product spaces”, Bull. Calcutta Math. Soc., vol.87, 1995, 237-246.
8. M. Goudarzi and S.M. Vaezpour, “On the definition of Fuzzy Hilbert spaces and its Applications”, J. Nonlinear Sci. Appl., vol.2(1), 2009, 46-59.
9. P. Majumdar and S.K. Samanta, “On Fuzzy inner product spaces”, J. Fuzzy Math., vol.16(2), 2008, 377-392.
10. R. Biswas, “Fuzzy Inner Product Spaces & Fuzzy Norm Functions”, Information Sciences, vol.53, 1991, 185-190.
11. R. Saadati and S.M. Vaezpour, “Some results on fuzzy Banach spaces”, J. Appl. Math. and computing, vol.17(1), 2005, 475-488.
12. S.C. Cheng, J.N. Mordeson, “Fuzzy linear operators and Fuzzy normed linear spaces”, Bull. Cal. Math.Soc, vol.86, 1994, 429-436.
13. Yongfusu, “Riesz Theorem in probabilistic inner product spaces”, Inter.Math.Forum, vol.2(62), 2007, 3073-3078.
14. T. Bagand S.K. Samanta, “Finite Dimensional fuzzy normed linear spaces”, J.Fuzzy Math., vol.11(3), 2003, 687-705.
15. P.J.Dowari, N.Goswami, “A study of paranormal operators on Hilbert spaces”, International Journal of Advanced Information Science and Technology, vol.5(8), 2016, 69-74.
16. Takayuki Furuta, “On the class of paranormal operators”, J. Appl. Math. and computing, vol.43, 1997, 594-598.
17. N.L. Braha, M.Lohaj and F.H.Masevci and S.H.Lohaj, “Some properties of paranormal and hyponormal operators”, Bull. Math. Anal.and Appl., vol.1(2), 2009, 23-35.
18. Gunawan, D.A.Yuwantiningish and M.Muhammad, “Expansion of Paranormal Operator”, IOP conferences: Journal of Physics, 2019.