ADVANCING IN SCHAAF-YANG SYNDROME PATHOPHYSIOLOGY: FROM BEDSIDE TO SUBCELLULAR ANALYSES OF TRUNCATED MAGEL2

Laura Castilla-Vallmanya,1,2,3 Mónica Centeno-Pla,1,2,4 Mercedes Serrano,2,3,5 Héctor Franco-Valls,1 Raúl Martínez-Cabrera,1 Aina Prat-Planas,1,2,3 Elena Rojano,5 Juan A G Ranea,3,6 Pedro Seoane,3,6 Clara Oliva,2,4 Abraham J Paredes-Fuentes,2,4 Gemma Marfany,1,2,3 Raquel Rabionet,1,2,3 Susanna Balcells,1,2,3 Roser Urreizti,1,2,3

ABSTRACT

Background Schaan-Yang syndrome (SYS) is caused by truncating mutations in MAGEL2, mapping to the Prader-Willi region (15q11-13). We analysed the secretion levels of amyloid-β 1–40 peptide (Aβ1–40) and performed targeted metabolomic analyses of truncated proteins in fibroblasts of patients with SYS (n=7) compared with controls (n=11). We also transfected cell lines with vectors encoding wild-type (WT) or mutated MAGEL2 to assess stability and subcellular localisation of the truncated protein.

Methods We performed an extensive phenotypic and mutational revision of previously reported patients with SYS. Aβ1–40 peptide levels were measured by ELISA. Metabolite analysis was performed using liquid chromatography and mass spectrometry. Subcellular localisation of the truncated protein was assessed using immunofluorescence microscopy.

Results Functional studies show significantly decreased levels of secreted Aβ1–40 and intracellular glutamine in SYS fibroblasts compared with WT. We also identified 122 differentially expressed genes, including non-coding RNAs (ncRNAs) such as HOTAIR, and many of them related to developmental processes and mitotic mechanisms. The truncated form of MAGEL2 displayed a stability similar to the WT but it was significantly swapped to the nucleus, compared with a mainly cytoplasmic distribution of the WT MAGEL2. Based on the updated knowledge, we offer guidelines for the clinical management of patients with SYS.

Conclusion A truncated MAGEL2 protein is stable and localises mainly in the nucleus, where it might exert a pathogenic neomorphic effect. Aβ1–40 secretion levels and HOTAIR mRNA levels might be promising biomarkers for SYS.

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ MAGEL2 truncation mutations cause Schaaf-Yang syndrome (SYS), but the functional effects of the truncated MAGEL2 protein have been poorly defined.

WHAT THIS STUDY ADDS

⇒ By expressing truncated MAGEL2 in cell lines, we now know that a truncated version of the protein is retained in the nucleus, thus exerting a novel behaviour in addition to the loss of some of its main functions. Patients’ fibroblasts show reduced levels of excreted amyloid-β 1–40 and intracellular glutamine as well as an altered transcriptomic profile, including overexpression of the major regulator HOTAIR.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ Based on a comprehensive review of genetic and clinical aspects of all reported cases, families and physicians will benefit from the Clinical Management Recommendations that we provide here.

INTRODUCTION

In 2013, truncating mutations in MAGEL2 (OMIM 605283) were associated with a new clinical entity,1 first described as a Prader-Willi-like syndrome and currently named as Schaaf-Yang syndrome (SYS, OMIM 615347). MAGEL2 is one of the five maternally imprinted protein-coding genes contained in the Prader-Willi region (15q11-13). Lack of expression of the paternal alleles in this region causes Prader-Willi syndrome (PWS; OMIM 176270). In contrast, non-sense or frameshift mutations in the paternal allele of MAGEL2 are predicted to encode a truncated protein lacking the MAGE Homology Domain (MHD) and have been associated with SYS.1 Since then, over a hundred patients with SYS have been reported and phenotypically described.1-25 Patients with SYS and PWS show overlapping clinical phenotypes, including neonatal hypotonia, intellectual disability (ID), developmental delay (DD), early feeding difficulties, endocrinological disturbances (hypogonadism and other hormonal imbalances) and sleep disorders. However, some of the clinical criteria for PWS diagnosis, such as hypopigmentation, characteristic
facial dysmorphisms, small hand and feet, hyperphagia, obesity and obsessive-compulsive behaviours, are frequently absent in patients with SYS, who, on the other hand, present more frequently with severe ID, autism spectrum disorder (ASD) behaviours and joint contractures. Some truncating variants in MAGEL2 have also been associated with Chitayat-Hall syndrome (CHS). However, a systematic review of all patients with SYS and CHS showed that there is no discernible genetic or clinical difference between both syndromes, and the latter has been renamed as SYS in OMIM. In contrast, two particular MAGEL2 truncating mutations have been recurrently identified in patients affected by lethal arthrogryposis multiplex congenita (AMC), a much more severe phenotype, distinct from SYS. All in all, there is no specific constellation of symptoms pathognomonic or specific for any of these clinical syndromes; furthermore, they probably conform to a clinical continuum, therefore denoting the need to address clinical denomination according to molecular findings.

MAGEL2 shows a wider expression in human fetal tissues than in adult tissues, where it is predominantly present in brain (according to GTEx35). In adult mice, it also becomes mostly restricted to the central nervous system, specifically to the amygdala and the hypothalamus, and predominantly in the suprachiasmatic, the paraventricular and the supraoptic nuclei. It is a single-exon gene that encodes one of the largest proteins of the type II MAGE protein family consisting of 1249 amino acids. At a structural level, the N-terminal region of MAGEL2 contains a proline-rich domain, whose function remains unclear. The C-terminus, from amino acids 1027 to 1195, there is the MHD, a highly conserved 170-amino acid sequence present in both type I and type II MAGEs, crucial for protein–protein interaction. Through it, MAGEL2 recognises and binds the coiled-coil domain of the E3 ubiquitin ligase TRIM27. The MHD is also crucial for binding VPS35, a subunit of the retromer cargo-selective complex. MAGEL2, TRIM27 and USP7 form the MUST complex, which is recruited to endosomes through direct binding of MAGEL2 to VPS35 and plays a role in retrogade endosomal transport. These specialised endosomes participate in endosomal export pathways that deliver membrane protein cargoes either to the trans-Golgi network through retrograde pathways or to the plasma membrane through recycling pathways.

A dysfunction of the retrograde transport could be disturbing for many cellular processes. Loss of MAGEL2 expression causes a reduction in secretory granules protein levels due to impaired endosomal protein trafficking and subsequent lysosomal degradation, resulting in a reduction of circulating bioactive hypothalamic hormones. A well-coordinated trafficking network is also key for the correct regulation of amyloid precursor protein (APP) cleavage. APP family members are relevant for neuronal differentiation and migration during cortical development and proper neuromuscular junction formation and neurotransmission. Many studies support a model where retromer deficiency leads to increased APP cleavage, Aβ peptide production and exocytosis. In addition, protein levels of the glucose transporter GLUT1 in the cell membrane are reduced after VPS35 and SNX27 inhibition, showing that they are also tightly regulated by the retromer.

Here, we have performed an extensive literature revision and based on it, we have expanded the clinical and genetic delineation of SYS and developed a standardised set of guidelines for its clinical management. We also contribute to the knowledge of the cellular phenotype by assessing the effect of a recurrent truncating variant on MAGEL2 protein stability and subcellular localisation using heterologous expression vectors. Finally, we have performed a transcriptomic and metabolomic characterisation of fibroblasts derived from patients with SYS and interpreted the results in the context of molecular and clinical findings.

RESULTS
Clinical management of patients with SYS requires a coordinated multidisciplinary approach
We performed a systematic revision of all the published patients with SYS to date, who were all carriers of MAGEL2 mutations (table 1 and online supplemental table 1), carefully inspecting both the molecular and phenotypic data, with the aim to propose a set of guidelines for SYS clinical management.

The literature-based recommendations have been divided into two life periods: the perinatal period (first 28 days of life) and infancy/adolescence. They include the most relevant medical problems associated with each period and the specific concerns or interventions advisable for each area. A schematic version of the different clinical areas and tests included in the guidelines are represented in figure 1, and a detailed, printable version is supplied as online supplemental table 2 (both in Spanish as online supplemental figure 1 and online supplemental table 3).

In most instances, pregnancy was uneventful (only polyhydramnios has been reported in some cases), although there is a high rate of caesarean sections (over 50% of the patients where delivery information is available). Clinical symptoms appear early in life showing a complex phenotype that includes neuromuscular symptoms, respiratory and endocrinological problems, feeding difficulties and dysmorphic traits. Other clinical issues can appear later and may affect almost any organ or system, requiring a coordinated multidisciplinary approach.

SYS variants are mostly truncating and located in the C-terminal domain
To date, 61 different variants have been associated with SYS or AMC (figure 2). Mutation p.(Gln666Profs*47), present in 80 individuals, is considered a recurrent mutational hotspot. These variants are mostly truncating and predominantly located in the C-terminal region of the protein, leading to a partial or a total lack of the MHD domain and compromising the functions that MAGEL2 carries out through this domain. Three different missense variants and a small in-frame duplication have also been associated with SYS phenotypes (in grey in figure 2). These atypical variants are not predicted to encode a truncated form of the protein, and there are no functional studies to support their pathogenicity. Thus, their clinical implication remains to be proven.

Fibroblasts from patients with SYS show altered gene expression patterns
To better understand the effect of MAGEL2 truncating mutations on gene expression patterns, we performed an mRNA whole transcriptome analysis (mRNAseq) on fibroblasts from six healthy donors and three SYS subjects: a girl carrying p.(Gln638*) and a boy and an unrelated girl, both carrying p.(Gln666Profs*47). Using the ExpHunter Suite, we identified 132 differentially expressed genes, 76 upregulated and 56 downregulated (online supplemental figure 1 and online supplemental table 3). The top 10 upregulated and downregulated genes, showing the most significant changes in the expression fold, are listed in table 2. Four genes were tested by quantitative PCR (qPCR) in fibroblasts from five patients with SYS and four control individuals,
Table 1 Clinical overview of patients with MAGEL2-related disorders

Category	Total	AMC	
Total diagnostic individuals	122	13	
Gender			
F	43	7	
M	42	5	
Unk	38	1	
Protein change	59 different mutations	p.Gln666Serfs*36; p.Leu708Trpfs*7	
Phenotype (HPO term)			
Pregnancy complications			
Decreased fetal movement	HP:0001558	12/37 (32.4%)	4/4
Polyhydramnios	HP:0001561	7/16 (43.75%)	5/5
Neurodevelopmental delay	HP:0012758	100/100 (100%)	
Intellectual disability	HP:0001249	92/97 (94.8%)	
Autistic behaviour	HP:0000729	55/76 (72.4%)	
Abnormality of brain morphology	HP:0012443	19/32 (59.4%)	1/1
Infantile lethargy/weak cry	HP:0001254/HP:0001612	15/24 (62.5%)	
Epilepsy	HP:0001250	24/79 (30.4%)	
Respiratory			
Respiratory difficulties	HP:0002098	60/74 (81.8%)	1/1
Apnoea	HP:0002104	11/18 (61.6%)	
Sleep apnoea	HP:0010535	53/75 (70.7%)	
Respiratory failure requiring mechanical ventilation	HP:0004887	44/73 (60.3%)	
Respiratory distress requiring endotracheal intubation	HP:0004887	16/50 (32.0%)	
Recurrent respiratory infections	HP:0002205	5/6 (83.3%)	
Feeding and growth			
Feeding difficulties	HP:0011968	92/106 (86.8%)	1/1
Poor suck	HP:0002033	72/81 (88.9%)	
Dysphagia	HP:0002015	35/50 (70.0%)	
Nasogastric tube feeding in infancy	HP:0011470	41/63 (65.1%)	
Gastrostomy tube feeding in infancy	HP:0011471	26/54 (48.5%)	
Hyperphagia	HP:0002591	17/63 (27.0%)	
Increased body weight/obesity	HP:0004324/HP:0001513	24/79 (30.4%)	
Gastro-oesophageal reflux	HP:0002020	38/76 (50.0%)	
Chronic constipation	HP:0012450	46/76 (60.5%)	
Physical characteristics			
Neonatal hypotonia	HP:0001319	54/79 (68.4%)	2/2
Congenital contractures	HP:0002803	93/106 (87.7%)	
AMC	HP:0002804	15/31 (48.4%)	11/11
Abnormality of the eye	HP:0000478	41/52 (78.8%)	
Scoliosis	HP:0002650	38/66 (57.6%)	
Short stature	HP:0004322	34/49 (69.4%)	
Small hands	HP:0200055	30/49 (61.2%)	
Camptodactyly of finger	HP:0100490	27/54 (50.0%)	4/4
Tapered fingers	HP:0001182	15/44 (34.1%)	
Small feet	HP:0001773	14/38 (36.8%)	
Bilateral clubfoot	HP:0001776	8/27 (29.6%)	4/4
Facial dysmorphism	HP:0001999	64/70 (91.4%)	5/5
Endocrinology			
Hypopituitarism	HP:0040075	7/13 (53.8%)	1/1
Growth hormone deficiency	HP:0000824	16/22 (72.7%)	
Hypothyroidy	HP:0000821	8/27 (29.6%)	
Hypoglycaemia	HP:0001943	14/22 (63.6%)	
Temperature instability	HP:0005968	39/62 (62.9%)	
Diabetes insipid	HP:0000873	5/17 (29.4%)	
Hyponagadism	HP:0000135	40/80 (50%)	2/2
Cryptorchidism	HP:0000028	8/12 (66.7%)	
Other alterations			
Congenital heart defect	HP:0001627	7/20 (35.0%)	
Bradycardia	HP:0001662	3/4 (75.0%)	
Sleep disturbance	HP:0002360	13/13 (100%)	
Death in infancy/childhood	HP:0001522/HP:0003819	10 cases (100%)	

AMC, arthrogryposis multiplex congenita; F, female; HPO, Human Phenotype Ontology; M, male; SYS, Schaaf-Yang syndrome; Unk, unknown.
which confirmed significant upregulation of HOTAIR and PITX1 and downregulation of TBX5 (online supplemental figure 2C).

Enrichment analysis on the 132 identified DEGs highlighted a group of five genes related to ‘collagen formation’ and various mitosis-related REACTOME categories, such as ‘Resolution of Sister Chromatid Cohesion’ and ‘Mitotic Spindle Checkpoint’ (online supplemental figure 2D). Consistently, most of those genes were also present in the ‘Kinetochore’ and ‘Chromosome, centromeric region’ categories according to Gene Ontology cellular component enrichment (online supplemental table 5).

SYS fibroblasts show decreased Aβ₁₋₄₀ peptide secretion levels

Given MAGEL2 function in the retromer, the truncation of MAGEL2 could affect APP cleavage and Aβ₁₋₄₀ peptide production rates. Thus, levels of Aβ₁₋₄₀ and Aβ₁₋₄₂ peptides were measured by ELISA in the extracellular medium from SYS, PWS and control fibroblasts in the search for a potential biomarker of truncated MAGEL2 function. SYS fibroblasts showed significantly decreased extracellular levels of the Aβ₁₋₄₀ processed peptide, both compared with PWS and control fibroblasts. No differences were observed in the PWS group compared with the control (figure 3A). Levels of Aβ₁₋₄₂ peptide were extremely low and no differences were observed between conditions (data not shown).

SYS fibroblasts show altered levels of organic acids and amino acids (metabolic profiling in fibroblasts)

Mass spectrometry analysis of intracellular metabolites from extracts of SYS (n=4), PWS (n=9) and control (n=5) fibroblasts showed a robust and significant decrease in glutamine levels for SYS fibroblasts (figure 3B), as well as a significant increase of suberic, sebacic, adipic and malic organic acids levels (online supplemental figure 3).

We investigated if any of the genes involved in these metabolites’ pathways were differentially expressed in the transcriptomic analysis (online supplemental table 4). The only differentially expressed gene involved in glutamine (GO:0006541) or organic acid (GO:0006082) metabolic processes was ME1 (ENSG00000065833), encoding the NADP-dependent malic enzyme protein, which was upregulated in SYS fibroblasts.

Truncated form of MAGEL2 remains stable in the cell

To evaluate the stability and recycling of a truncated form of MAGEL2, HEK293T cells were transfected with haemagglutinin...
Functional genomics

HA-tagged expression vectors containing either the wild-type (WT) cDNA sequence of MAGEL2 (MAGEL2-WT) or the c.1912C>T (MAGEL2-Gln638*) mutation, which encodes a protein 611 amino acids shorter than the WT form and has been reported in nine patients (online supplemental table 1). Blocking of the proteasomal degradation pathway with MG132 (online supplemental figure 4A) or the lysosomal pathway with bafilomycin (online supplemental figure 4B) showed that MAGEL2 is mostly degraded via proteasome with no differences between WT and truncated MAGEL2 (online supplemental figure 4A,B). A time-course of cycloheximide treatment (2, 4, 6, 12 hours) showed also a similar stability and half-life for both MAGEL2 forms (online supplemental figure 4C).

Increased nuclear localisation of the truncated form of MAGEL2

To determine the subcellular localisation of the p.Gln638* truncated form of MAGEL2, HEK293T, SAOS-2 and HeLa cells were transfected with the expression vectors MAGEL2-WT or MAGEL2-Gln638*. Immunocytochemistry assays detecting HA showed that in SAOS-2 cells transfected with the MAGEL2-Gln638* construct and quantified by Mander’s coefficient there was a shift of the protein towards the nucleus, while the MAGEL2-WT form was mainly located in the cytoplasm (figure 3C,D). A similar localisation pattern was observed in HEK293T and HeLa cells (data not shown), supporting the idea that presence of variant p.Gln638*, which leads to the lack of part of the C-terminal sequence, affects protein subcellular localisation independently of the cell type. This result is consistent with predictions obtained following the Scandinavian Protocol, which combines different online tools to predict protein subcellular localisation.52 53

DISCUSSION

Since its first description in 2013,1 more than 150 SYS individuals carrying MAGEL2-truncating mutations have been published. Most publications include one or a reduced group of patients, often with scarce clinical descriptions, hampering the definition of the syndrome’s characteristics. Families, already burdened by the solitude of having an ultrarare condition, lack clear and established clinical guidelines for their treatment and follow-up. Once available, such evidence-based recommendations will help reduce inequity in healthcare and empower both families and clinicians facing such a rare disease. To develop the recommendations, we performed an extensive revision of all the SYS subjects published so far at both the phenotypic and genetic level and elaborated a comprehensive and detailed follow-up programme. Despite the comprehensive revision, to date, no clear phenotype–genotype correlation was observed, with the exception of two particular variants [p.(Gln666Serfs*36) and p.(Leu708Trps*7)] which are associated with the much more severe phenotype of AMC leading to perinatal death.

Genetically, SYS is caused by nonsense or frameshift mutations. Only one MAGEL2 missense variant (c.1613C>A;
p.Ala538Glu) has been reliably described as potentially disease-associated. While at the moment of its publication, this change was classified as ‘disease causing’ based on available in silico and frequency data, currently, updated information, including a gnomAD v.3.1 Amish MAF of 0.03, supports its reclassification as ‘likely benign’ according to the American College of Medical Genetics (ACMG) guidelines. Clinically, the patient carrying this variant presented with DD, ASD and dysmorphic traits. While her presentation shares some traits with SYS, the high frequency of this variant in the Amish population, together with the non-specific character of these traits, would suggest that it is not the main cause of the disease. Two other missense mutations have been identified in two different patients: p.Pro564Ala and p.Ala997Thr (with two and four carriers in gnomAD v3.1.1, respectively). However, their potential causality was not further discussed and there are no clinical descriptions of the patients. An in-frame duplication in the paternal chromosome (p.Ser724_Al744dup, two carriers in gnomAD v3.1) has also been identified in a patient with a clinical presentation some resemblances with SYS, but the scarcity of available information makes it difficult to fully understand the clinical role of this variant. We have also noticed some missannotations, probably due to the fact that, originally, MAGEL2 was predicted to encode a 529-amino acid protein (instead of the current 1249 amino acids) lacking the N-terminal domain (hg38). This is the case for reported variants p.(Thr766Hisfs*23) and p.(Glu131Serfs*17), which we have relabelled as p.(Thr769Hisfs*23) and p.(Glu734Serfs*17). To sum up, while the pathogenicity of MAGEL2-missense or in-frame mutation is really a causal variant for SYS.

The phenotypic overlap between SYS and PWS suggests that the alteration of MAGEL2 may contribute to some aspects of the PWS phenotype, but the extent of this contribution is still an open question. Two patients carrying atypical deletions involving only MAGEL2, NDN and MKRN3 did not show a full PWS phenotype: one patient showed only mild delayed motor skills and the other displayed obesity, DD and high pain threshold. At the same time, neither does the deletion lead to SYS, further supporting that it is the presence of the truncated form of the MAGEL2 protein that leads to some of the particular aspects of SYS. As our results show, the truncated protein is synthesised, it supports that it is the presence of the truncated form of the MAGEL2 protein that leads to some of the particular aspects of SYS. As our results show, the truncated protein is synthesised, it suggests that the lack of WT MAGEL2 protein.

The role of MAGEL2 in the regulation of endosomal protein trafficking and recycling has been widely studied. Consistent with this, loss of paternal MAGEL2 expression in Magel2^{−/−} mice and neuronal cell models derived from patient with PWS leads to decreased levels of secretory granule proteins, which lead to reduced levels of circulating bioactive hormones and of mature secretory granules in neurons. Also, dental pulp stem cell-derived neurons from several patients with PWS and

Table 2
Top 10 upregulated and downregulated DEGs identified after mRNaseq analysis of skin fibroblasts in patients with SYS and controls

Gene	ID	Log_FC	FDR	
Upregulated	HOTAIr	ENSG00000228630	7.470	8.02E-30
	MTRNR2L1	ENSG00000256618	5.523	1.14E-05
	PTPRO	ENSG00001537607	4.625	1.23E-06
	SULT1K4	ENSG0000179542	4.524	8.81E-03
	GATA2-AS1	ENSG00000243400	4.304	1.41E-18
	PITX1	ENSG00000669011	4.234	8.16E-03
	CLDN1	ENSG00001633447	4.145	1.12E-06
	ISL2	ENSG00001595566	4.088	1.93E-03
	RARB	ENSG0000077092	4.000	1.49E-02
	VANGL2	ENSG00001627383	3.975	8.09E-07
Downregulated	ANGPTL1	ENSG00000116194	-7.084	3.66E-06
	TBX5	ENSG00000892250	-6.982	9.18E-39
	P16	ENSG00001645303	-6.385	1.29E-03
	TBX5-AS1	ENSG00001555999	-5.457	5.44E-12
	INMT	ENSG00000241644	-5.041	2.56E-03
	CRLF1	ENSG00000606160	-5.029	6.80E-04
	ASPA	ENSG00001083813	-4.813	1.03E-02
	WISP2	ENSG00000646205	-4.420	3.87E-08
	KY	ENSG00001746111	-4.248	1.30E-11
	APOD	ENSG00001890583	-4.213	6.00E-05

Genes analysed by quantitative PCR are given in bold. DEGs, differentially expressed genes; FC, fold change; FDR, false discovery rate; mRNaseq, mRNA sequencing; SYS, Schaaf-Yang syndrome.
one patient with SYS showed impaired trafficking of M6PR (cation-dependent mannose-6-phosphate receptor), indicating impaired endosome-mediated retrograde transport. We hypothesised that this impaired trafficking could also be reflected in an aberrant Aβ peptide production and exocytosis.68–70 Indeed, Aβ40 peptide extracellular levels of SYS fibroblasts were significantly decreased compared with those of PWS and control groups, which showed no difference between them. This result supports the idea that the truncated form of the protein may have a different effect on protein trafficking than the complete loss of the protein itself and establishes Aβ40 levels as a potential biomarker for the disease in patient-derived cells.

Despite being its most deeply studied function, dysregulation of protein trafficking and recycling is not the only consequence of MAGEL2 malfunction. The subcellular localisation of the heterologously expressed full MAGEL2 protein,61,62 and its C-terminal part alone69 has been previously studied, both presenting a mainly cytoplasmic localisation. Our immunocytochemistry assays in different transfected cell lines showed that, in contrast, the heterologously expressed MAGEL2-Gln638* (N-terminal part of the protein) was predominantly located inside the nucleus. While the lack of a properly functioning MAGEL2 antibody hampers the validations of these experiments in the endogenous MAGEL2, they point to new functions of the truncated protein. The increased nuclear localisation of the protein suggests that, in addition to the loss of the MAGEL2 normal functions, including the translocation of YTHDF2 to the nucleus,69 SYS-associated mutations could involve new functions of unknown consequences.

To explore if the truncated form of MAGEL2 could be affecting the expression of other genes, we applied an unbiased transcriptomic approach in fibroblasts. We found an enrichment in genes related to mitosis, nuclear function and localisation, as well as in developmental and neurological processes.

Previous studies on the full-length and C-terminal parts of the MAGEL2 protein have shown that this protein is involved in RNA metabolic processes.39 In our transcriptomic analysis, HOTAIR expression was clearly increased in SYS fibroblasts. HOTAIR is a well-known long non-coding RNA that mediates transcriptional silencing in trans. This gene’s promoter contains binding sites for numerous transcription factors, including AP1 (activator protein 1), Sp1 (specificity protein 1) and NF-xB (Nuclear Factor Kappa B Subunit 1).60 It is able to exert epigenetic functions through H3K27 trimethylation and H3K4 demethylation, among other regulatory functions, and has a widely studied role in cancer (reviewed in Ref. 59). HOTAIR promotes transcriptional silencing of the HOXD locus, which plays an essential role in determining body axes and orchestrating organ formation during vertebrate development.60 HOTAIR is also a regulator of mTOR, increasing its phosphorylation and mTOR-mediated exonosome release,61 and its regulation of GLUT1 levels (figure 4).62 While our mRNASeq data do not show an increase in mTOR levels, SYS-derived fibroblasts have been reported to show an increase in mTOR expression and activity.63

Endocrine and metabolic alterations in PWS have been widely studied.64 However, little is known regarding metabolic impairment in SYS. A study including five female and four male patients with SYS showed that they may present some but not all the endocrine alterations also observed in PWS: patients benefit from growth hormone (GH) therapy, show increased ghrelin levels and present a high risk of developing diabetes mellitus.65 A review on the literature on endocrine abnormalities in MAGEL2-related syndromes65 showed that the most common hormonal alterations involve GH, thyroid-stimulating hormone, adrenocorticotropic hormone, antiuretic hormone and gonadotropins, probably caused by hypothalamic impairment.

The targeted metabolic analysis of SYS-derived and PWS-derived fibroblasts was aimed at finding biomarkers that assess the lysosomal, peroxisomal, mitochondrial and cytosolic metabolic pathways. The most relevant finding was a significant reduction in glutamine levels in SYS fibroblasts compared with the other two groups, whereas glutamate levels remained unchanged. Glutamine supplies nitrogen and carbon for biosynthetic reactions in rapidly proliferating cells,65 but in many contexts its key role relies on providing glutamate (figure 4) which has a wider range of metabolic functions than glutamine itself. An example of the relevant functions of glutamine and glutamate is the glutamate/GABA-glutamate cycle in neurons.66 In fact, it has been stated that alterations of the GABAergic system may play an important role in aspects of the pathophysiology of PWS.67 A hypothesis to explain the decrease in glutamine levels in SYS fibroblasts could be a dysregulation in the retrieval and recycling of a glutamate transporter, such as SLC1A5, whose retrieval and recycling is promoted by the retromer and whose degradation is enhanced on retromer knockout.68 Another explanation could be related to the hyperactivation of the mTOR pathway, as mTOR plays a role in the glutamine metabolism by increasing glutamate dehydrogenase activity through the inhibition of SIRT4 (figure 4).69 The hyperactivation of mTOR could drive a glutamate depletion which would be compensated by an increase in glutamine deamination.

In conclusion, our results support the hypothesis that the SYS-specific phenotype might be explained by a neomorphic effect of the truncated protein, rather than by a dose-reduction situation. This is supported by the subtle changes in gene expression patterns and metabolite levels observed in fibroblasts, which suggest novel effects for the truncated protein, which warrant further exploration. In addition, we provide a comprehensive phenotypical delineation of the syndrome and a standardised set of guidelines aimed at the improvement of clinical management of patients with SYS. Finally, we propose to improve SYS...
diagnosis by testing the pathogenicity of doubtful missense mutations through the in vitro overexpression system.

An extended version of the methodology is included as online supplemental material. Briefly, we performed a systematic review of the literature indexed in PubMed from the date of the first clinical description of pathology associated with variants in MAGEL2 until February 2022 using the terms: ‘MAGEL2’, ‘SYS’ and ‘Schaaf-Yang syndrome’. All mutations have been referenced to the MAGEL2 hg38 main transcript NM_019066.5. Fibroblasts were obtained from skin biopsies of 7 SYS individuals, 9 patients with PWS and 11 controls (online supplemental table 6). All cell cultures (fibroblasts, HEK293T, HeLa and SAOS-2) were cultured in standard cell culture conditions. The cDNA sequences of interest were cloned in the mammalian expression vector pcDNA3.1(+) (Invitrogen, ThermoFisher Scientific) including a HA tag and transfected into the different cell lines.

Expression levels of four selected genes were analysed by LEXOGEN and analysed with the ExpHunter suite.70 Expression levels of four selected genes were analysed using ultrahigh-tandem mass spectrometry and organic acids with gas chromatography–mass spectrometry. Statistical analysis was performed using R-Studio. Differences were considered significant if p<0.05.

All skin donors or their legal representative gave their written informed consent. Their samples and data were obtained in accordance with the Declaration of Helsinki 1964, as revised in October 2013 (Fortaleza, Brazil).

Author affiliations
1Department of Genetics, Microbiology and Statistics, IBUB, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
2Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
3Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
4Clinical Biochemistry Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
5Neurology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
6Department of Molecular Biology and Biochemistry; Institute of Biomedical Research in Málaga (BIBM), University of Málaga, Málaga, Spain

Twitter Raquel Rabionet @krabionet and Roser Urreizti @Roser_uf

Acknowledgements We would like to thank the patients’ associations Associacion Sindrome Opitez C, AESYS (Asociación Española del Síndrome Schaaf-Yang) for their generous financial support and Associació PWS-Catalunya and all the families kindly donated samples. We thank Monica Cozar for her technical assistance.

Contributors MC-P, AP-P, RR, DG and RU gathered and reviewed all the clinical and mutation data previously published and elaborated the corresponding figures and tables. HF-V, LC-V, MC-P, RMC, SB and GM performed and analysed the heterologous expression experiments, WB and ICC. HF-V, VM-C, LC-V, MC-P and RU performed amilod Beta experiments. RA, CO, AJP-C, MC-P and RU performed and analyzed the metabolomics studies. LC-V, ER, JAGR, DG, SB and PS performed and analysed the MRNaSeq experiments and further analysis. LCV, MS, RR, SB and RU drafted the manuscript. RU acts as a guarantor for this manuscript. All authors have critically reviewed and approved the manuscript.

Funding This research was funded through the Spanish Ministerio de Ciencia e Innovación (SAF2016-75946R and PID2019-107188RB-C21), the Instituto de Salud Carlos III-CIBERER (AC119P2AC720-1) and donations from Asociación Síndrome Opitz C y Asociación Española del Síndrome Schaaf-Yang (AESYS). MC-P is supported by a Carmen de Torres fellowship from IRSD. Funding sources were not involved in the study design, collection, analysis or interpretation of data, writing of the report or in the publication of the article.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval The study was approved by the Institutional Review Board (IRB00003099) of the Biochemical Commission of the University of Barcelona (5 October 2020) and Hospital Sant Joan de Déu (PIC-111-19).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request.

Supplemental material This content has been supplied by the author(s), it has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Laura Castilla-Vallmanna http://orcid.org/0000-0002-2260-9664
Mónica Centenero-Péa http://orcid.org/0000-0002-8881-0264
Mercedes Serrano http://orcid.org/0000-0002-2056-2428
Alina Prot-Planas http://orcid.org/0000-0003-3040-6594
Abraham J Paredes-Fuentes http://orcid.org/0000-0002-7163-2385
Gemma Marfany http://orcid.org/0000-0001-7941-983x
Rafael Artuch http://orcid.org/0000-0002-3422-9685
Daniel Grinberg http://orcid.org/0000-0001-9859-2590
Roser Rabionet http://orcid.org/0000-0003-3617-7134
Susanna Balcells http://orcid.org/0000-0003-1211-1907
Roser Urreizti http://orcid.org/0000-0003-3617-7134

REFERENCES
1 Schaan CF, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, Peters BA, McElwain MA, Dorman R, Beaudet AL, Casey CT, Yang Y. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 2013;45:1405–8.
2 Noden SE, Saunders CJ, Willing LR, Farrow EM, Smith LD, Petkini JC, LePichon J-B, Miller JD, Tizzano EF, Cormand B, Vilageliu L, Opitz JM, Neri G, Grinberg D, Balcells S. A de novo nonsense mutation in MAGEL2 in a patient initially diagnosed as Opitz-C: similarities between Schaaf-Yang and Opitz-C syndromes. Sci Rep 2017;7:44138.
3 Fountain MD, Atem E, Cho MT, Juusola J, Walkiewicz MA, Ray JW, Xia F, Yang Y, Graham BH, Bacino CA, Potocki L, van Haeringen A, Ruivenkamp CAL, Pincus M, Northup H, Kukolich MK, Weiss MM, van Ravenswaaij-Arts CMA, Mathijsen IB, Levesque S, Meeks N, Rosenfeld JA, Lemke D, Hamosh A, Lewis SK, Race S, Stewart LL, Hay B, Lewis AM, Gando R, Bruss JT, Martins MP, Derksen-Lusgen S, Peeters E, Stumpel C, Stegmann S, Bok LA, Santen GW, Schaaf CP. The phenotypic spectrum of Schaaf-Yang syndrome: 18 affected individuals from 14 families. Genet Med 2017;19:45–52.
4 Palomares-Bralo M, Vallespin E, De Polo Ángela I, Silla JC, Galán G, Martinez-Glez V, Alba-Valdivia LI, Heath KE, García-Milliaría S, Lapunzina P, Santos-Simarro P. Pifilbra of trio-based exome sequencing: imprinted genes and parental mosaic-MAGEL2 as an example. Genet Med 2017;19:1285–6.
5 Enya T, Okamoto N, Iba Y, Okada Y, Matsumoto T, Imoto T, Fujita A, Miyake N, Nakamoto S, Sugimoto K, Takeura T. Three patients with Schaaf-Yang syndrome exhibiting arthrogryposis and endocrinological abnormalities. Am J Med Genet A 2018;176:707–11.
7 Díidalos Santos A, Del Carmen DelMingo-Alemany M, Moreno-Macías F, Roselló M, Orellana C, Martínez F, Caro-Llopis A, León-Vallmanya L. A novel mutation of MAGEL2 in a patient with Schaaf-Yang syndrome and hypotuitarism. *Int J Endocrinol Metab* 2018;16:e67329.

8 Kleineidam L, P.Castiglioni, C. Caro-Llopis A, Boon EM, van Haelst MM. The role of obesity in the fatal outcome of Schaaf-Yang syndrome: early onset morbid obesity in a patient with a MAGEL2 mutation. *Am J Med Genet A* 2018;176:2456–9.

9 Matuszewski KE, Badura-Stroncig M, Śmigiel R, Cabala B, Biemacka A, Kosinska J, Ryzanicki M, Winczewska-Wiktor A, Sasiadek M, Latos-Bielsińska A, Zemetał J, Ploski R. Phenotype of two Polish patients with Schaaf-Yang syndrome confirmed by identifying mutation in MAGEL2 gene. *Clin Dysmorphol* 2018;27:49–52.

10 McCarthy J, Lupu P, Kovar E, Reich M, Bostwick S, Scott D, Kraft K, Roscilli T, Charron J, Schmier G, Olexa S, LaCroix V, Schaaf CP. Schaaf-Yang syndrome overview: report of 78 individuals. *Am J Med Genet A* 2018;176:2564–74.

11 McCarthy JM, McCorm-Crosby BM, Rech ME, Yin J, Chen C-A, Ali MA, Nguyen HN, Miller JL, Schaaf CP, Hormonal SCP. Hormonal, metabolic and skeletal phenotype of Schaaf-Yang syndrome: a comparison to Prader-Willi syndrome. *J Med Genet* 2018;55:307–15.

12 Bajaj P, Bayat M, Lozoya R, Schaaf CP. Chronic infectious pseudo-obstruction syndrome and gastrointestinal malrotation in an infantwith Schaaf-Yang syndrome - Expanding the phenotypic spectrum. *Eur J Med Genet* 2018;61:627–30.

13 Poliak N, Rajan P. MAGEL2 mutation and its associated phenotypic features in a five-month-old female. *Pediatr Neurol Case Rep* 2018.

14 Tong W, Wang Y, Lu Y, Ye T, Song C, Xu Y, Li M, Ding J, Duan Y, Zhang L, Gu W, Zhao X, Yang T-A, Ji D. Whole-exome sequencing helps the diagnosis and treatment in children with neurodevelopmental delay accompanied by unexplained dyspnea. *Sci Rep* 2018;8:5214.

15 Gregory LC, Shah P, Sanner JFR, Arancibia M, Hurst J, Jones WD, Spouplea H, Le Queue Stabé P, Williams HI, Ocaka LA, Louereiro C, Martinez-Aguayo A, Dattani MT. Mutations in MAGEL2 and L1CAM are associated with congenital hypertrophy and arteriopathy. *Am J Med Genet A* 2019;194:537–41.

16 Negishi Y, Ieda D, Hori J, Nozaki Y, Yamagata T, Komaki H, Tohyama J, Nagasaki K, Tada H, Saito M. Schaaf-Yang syndrome shows a Prader-Willi syndrome-like phenotype during infancy. *Orphanet J Rare Dis* 2019;14:277.

17 Paták J, Gillett J, Byler M, Neurunkordova V, Thiffault A, Cross L, Amudhaswili S, Pacion-Migues P, Palamore-Bralo M, Garcia-Minaur S, Santos-Simatore F, Powsz J, Alcarriz WA, Tang S, Junges E, Barco England E, Engle E, Lebel RR. Schaaf-Yang: a disorder and a disease: studies and a case series. *Clin Genet* 2019;96:483–505.

18 de Andrade G, de Oliveira Silva T, Nascimento d, Boa, Cunha K, Chermon T. Schaaf-Yang syndrome: a novel variant in MAGEL2 gene in the first Brazilian preterm neonate. *Int J Case Rep Images* 2020;11.

19 Ahn H, Seo GH, Oh A, Lee Y, Keum C, Heo SH, Kim T, Choi J, Kim G-H, Ko TS, Yum M-S, Lee BH, Choi IH. Diagnosis of Schaaf-Yang syndrome in Korean children with developmental delay and hypotonia. *Medicine* 2020;99:e23864.

20 Xiao B, Ji X, Wei W, Hu Y, Sun Y. A recurrent variant in MAGEL2 in five siblings with severe respiratory disturbance after birth. *Mol Syndromol* 2020;10:286–90.

21 Marbach E, Elgizouli M, Rech M, Bester MJ, Eger F, Velmans C, Stumpel CTRM, Coteffmann APA, Beck-Wöß S, Gillessen-Kaesbach G, Horthorshke B, Schaaf CP, Kuechler A. The adult phenotype of Schaaf-Yang syndrome. *Orphanet J Rare Dis* 2020;15:294.

22 Llamas-Paneque A, Gómez-Garcia A, Rivas-Iglesias C, Garzón-Castro M, Hernández-Ríquez M, Recalde-Baeza M. Schaaf-Yang syndrome: an example of genomic imprinting and expanding phenotype. *J Mol Med Genet* 2020;14.

23 Bertolli-Anna M, Beetz C, Amezná R, Rocha ME, Guatobonzá P, Pereira C, Calvo M, Herrera-Ordóñez N, Segura-Castell M, Diego-Alvarez Z, Zawaeda K, Kandaswamy KK, Werber M, Paknia O, Zielske S, Ugrinovski D, Warnack G, Kampe K, Iurașcu M-Br, Ana M. Schaaf-Yang syndrome shows a Prader-Willi locus, are responsible for severe hypotuitarism. *Am J Hum Genet* 2019;105:936–50.

24 Jeffreys M, Nolten F, Malwięksa J, Rutemjelia-Randhiaoan H, Fullano G, Martínez F, Orellana C, Martínez F, Caro-Llopis A, Bessieres B, Loeuillet L, Attie-Montaux H, Stoeva R, Quevarec L, Nolent F, Biancalana V, Latour P, Sternberg D, Capri Y, Verloes A, Bitachon F, Elgizouli M, Rech M, Beygo J, Erger F, Velmans C, Stumpel CTRM, Sanderson MR, Herzog ED, Stewart CL. The imprinted gene Magel2 regulates normal growth, aging and APP family members. *Embo J* 2004;23:4106–15.

25 Sanderson MR, Fahlman PR, Wievrick R. The N-terminal domain of the Schaaf-Yang syndrome protein Magel2 likely has a role in RNA metabolism. *J Med Genet* 2021;58:9959–55.

26 Baxi S, Ji X, Wei W, Hu Y, Sun Y. A recurrent variant in MAGEL2 in five siblings with severe respiratory disturbance after birth. *Mol Syndromol* 2020;10:286–90.

27 Lee S, Kotsiv J, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, Wievrick R. Expression and imprinting of Magel2: A novel role in Prader-Willi syndrome and the homologous murine imprinting phenotype. *Hum Mol Genet* 2020;5:9183–19.

28 Saunders MR, Fahlman PR, Wievrick R. The N-terminal domain of the Schaaf-Yang syndrome protein Magel2 likely has a role in RNA metabolism. *J Biomed Biotechnol* 2017;47:1277–90.

29 Hao Y-H, Doyle JM, Ramasathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK, Potts PR. Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. *Cell* 2015;162:1051–62.

30 Hao Y-H, Mudan T, Foner T, Xiao X, Bi W, Kang S-H, Patel A, Rosenfield JA, Le Caigne C, Isidor B, Krantz ID, Noon SE, Pflotenauer JR, Morgan MM, Moran R, Pleruendes RC, Saenz MS, Schaaf CP, Potts PR. USP7 acts as a molecular rheostat to promote WASH-dependent endosomal protein recycling and is mutated in a human neurodevelopmental disorder. *Mol Cell* 2015;59:956–69.

31 Burd C, Cullen PJ, Retromer: a master conductor of endosome sorting. *Cold Spring Harb Perspect Biol* 2014;6. doi:10.1101/cshperspect.a067744 [Epub ahead of print: 01 Feb 2014].

32 Coteffmann APA, Beck-Wöß S, Gillessen-Kaesbach G, Horsthemke B, Schaaf CP, J Med Genet 2022;59:559–67. doi:10.1136/jmg-2022-108690 on 9 September 2023 by guest. Protected by copyright.http://jmg.bmj.com/ J Med Genet: first published as 10.1136/jmg-2022-108690 on 7 September 2022. Downloaded from
Functional genomics

48 Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel J-P, Kim T-W. Model-guided microarray implicates the retromer complex in Alzheimer’s disease. *Ann Neurol* 2005;58:909–19.

49 Mecozzi VJ, Berman DE, Simoes S, Vatanovetz C, Awal MR, Patel VM, Schneider RT, Petsko GA, Ringe D, Small SA. Pharmacological chaperones stabilize retromer to limit APP processing. *Nat Chem Biol* 2014;10:443–9.

50 Muhammad A, Flores I, Zhang H, Yu R, Stanisiewski A, Planel E, Herman M, Ho L, Kreber R, Honig LS, Ganetzky B, Duff K, Arancio O, Small SA. Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. *Proc Natl Acad Sci U S A* 2008;105:7327–32.

51 Kwanicka A, Jimenez-Orgaz A, Nägele H, Hu Z, Dengjel J, Steinberg F. Cargo-selective SNX-BAR proteins mediate retromer trimer independent retrograde transport. *J Cell Biol* 2017;216:3677–93.

52 Emanuelsson O, Brunk A, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. *Nat Protoc* 2007;2:953–71.

53 Laurila K, Vihinen M. Prediction of disease-related mutations affecting protein localization. *BMC Genomics* 2009;10:122.

54 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkel K, Rehm H, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. *Genet Med* 2015;17:405–24.

55 Kanber D, Gilett J, Wiersczek D, Zogel C, Hochstenbach R, Caliebe A, Kuechler A, Horshemken B, Buitking K. A paternal deletion of MRKRB, MAGEL2 and Ndn does not result in Prader-Willi syndrome. *Eur J Hum Genet* 2009;17:982–90.

56 Buitking K, Di Donato N, Bengo J, Bens S, von der Hagen M, Hackmann K, Horshemken B. Clinical phenotypes of MAGe2 mutations and deletions. *Orphanet J Rare Dis* 2014;9:40.

57 Doyle JM, Gao J, Wang J, Yang M, Potts PR. MAG-EING protein complexes comprise a family of E3 ubiquitin ligases. *Mol Cell* 2010;39:963–74.

58 Cantile M, Di Bonito M, Cerrone M, Collina F, De Laurentis M, Botti G. Long non-coding RNA HOATIR in breast cancer therapy. *Sci Rep* 2020;12. doi:10.3390/scir202006910.

59 Ligorigi G, Cerrone M, De Chiara A, Tafuto S, Tracey de Bellis M, Botti G, Di Bonito M, Cantile M. The role of IncRNAs in rare tumors with a focus on Hox transcript antisense RNA (HOATIR). *Int J Mol Sci* 2021;22:10160.

60 Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, Ehrlich M. DNA methylation and differentiation: Hox genes in muscle cells. *Epigenetics Chromatin* 2013;6:25.

61 Yang L, Peng X, Li Y, Zhang X, Ma Y, Wu C, Fan Q, Wei S, Li H, Liu J. Long non-coding RNA HOATIR promotes exosome secretion by regulating Rab35 and SNAP23 in hepatocellular carcinoma. *Mol Cancer* 2019;18:78.

62 Wei S, Fan Q, Yang L, Zhang X, Ma Y, Zong Z, Hua X, Su D, Sun H, Li H, Liu Z. Promotion of glycosylation by HOATIR through GLUT1 upregulation via mTOR signaling. *Oncol Rep* 2017;38:1902–8.

63 Cruchter E, Pal R, Naini F, Zhang P, Laupsch M, Kim J, Bajic A, Schauf CP. mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. *Sci Rep* 2019;9:15935.

64 Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. *Genet Med* 2012;14:10–26.

65 Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gauthier JB. Acquired amino acid deficiencies: a focus on arginine and glutamine. *Nutr Clin Pract* 2017;32:305–47.

66 Cheung G, Bataveljic D, Visser J, Kumar N, Mouland I, Dalléjac S, Mozheiko D, Rollenhagen A, Ezan P, Chever A, Chevrel O, Bellemans A-P, Libbie J, Leray I, Rouach N. Physiological synaptic activity and recognition memory require astroglial glutamine. *Nat Commun* 2022;13:753.

67 Rice LJ, Lagopoulos J, Brammer M, Einfeld SL. Reduced gamma-aminobutyric acid is associated with emotional and behavioral problems in Prader-Willi syndrome. *Am J Med Genet B Neuropsychiatr Genet* 2016;171:1041–8.

68 Cunnock R, Calcagni A, Ballabio A, Cullen PJ. TFEB controls retromer expression in response to nutrient availability. *J Cell Biol* 2019;219:3954–66.

69 Ciabò A, Fendt S-M, Li C, Psalgogiannis G, Choay AY, Chapski DJ, Jeong SM, Dempsey JM, Parikhtho A, Morrison T, Henske EP, Haigis MC, Cantley LC, Stephanopoulos G, Yu J, Blenis J. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. *Cell* 2013;153:840–54.

70 Jabato FM, Córdoba-Caballero J, Rojano E, Romá-Mateo C, Sanz P, Pérez B, Gallego D, Seoane P, Ranea JAG, Perkins JR. Gene expression analysis method integration and co-expression module detection applied to rare glucide metabolism disorders using ExpHunterSuite. *Sci Rep* 2022;11:15062.