Thawing k-essence dark energy in the PAge space

Zhiqi Huanga,b)†

\textsuperscript{a) School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Road, Tangjia, Zhuhai, 519082, China
b) CSST Science Center for the Guangdong-Hongkong-Macau Greater Bay Area, Sun Yat-sen University, 2 Daxue Road, Tangjia, Zhuhai, 519082, China

(Received XXXX; revised manuscript received XXXX)

A broad class of dark energy models can be written in the form of k-essence, whose Lagrangian density is a two-variable function of a scalar field ϕ and its kinetic energy $X \equiv \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$. In the thawing scenario, the scalar field becomes dynamic only when the Hubble friction drops below its mass scale in the late universe. Thawing k-essence dark energy models can be randomly sampled by generating the Taylor expansion coefficients of its Lagrangian density from random matrices \cite{1}. Ref. \cite{1} points out that the non-uniform distribution of effective equation of state parameters (w_0, w_a) of thawing k-essence model can be used to improve the statistics of model selection. The present work studies the statistics of thawing k-essence in a more general framework that is Parameterized by the Age of the universe (PAge) \cite{2}. For fixed matter fraction Ω_m, the random thawing k-essence models cluster in a narrow band in the PAge parameter space, providing a strong theoretical prior. We simulate cosmic shear power spectrum data for the Chinese Space Station Telescope optical survey, and compare the fisher forecast with and without the theoretical prior of thawing k-essence. For an optimal tomography binning scheme, the theoretical prior improves the figure of merit in PAge space by a factor of 3.3.

Keywords: dark energy, cosmological parameters, large-scale structure of Universe

†Corresponding author, E-mail: huangzhq25@mail.sysu.edu.cn

1. Introduction

Since the discovery of the accelerated expansion of the late Universe \[3, 4, 5\], it has been widely accepted that the current Universe is dominated by a dark energy component with negative pressure, whose microscopic nature is often interpreted as a cosmological constant (vacuum energy) that is conventionally denoted as Λ. Over the past two decades, the standard six-parameter Λ cold dark matter (ΛCDM) model has been confronted with a host of observational tests. The high-precision measurements of the temperature and polarization anisotropies of the cosmic microwave background (CMB) provide so far the most stringent constraints on the cosmological parameters \[6, 7\], which agree well with many other observations such as the baryon acoustic oscillations (BAO) \[8, 9, 10, 11, 12\], the Type Ia supernovae (SN) \[13, 14\], the redshift-space distortion (RSD) \[15, 16\], and the cosmic chronometers (CC) \[17, 18, 19, 20, 21, 22, 23, 24\].

Despite the observational success, the extraordinary smallness of the vacuum energy (fine-tuning problem) and the coincidence that Λ dominates the universe only recently (coincidence problem) have, at least philosophically, disturbed cosmologists for decades \[25\]. Moreover, as the accuracy of observations improves, the great observational success of the ΛCDM model is now challenged by a few anomalies. For instance, the Hubble constant H_0 inferred from CMB + ΛCDM is in $\sim 5\sigma$ tension with the distance-ladder measurements \[26, 27\]. Less significant challenges include a 3.4σ tension in the matter density fluctuation parameter S_8 between CMB and some cosmic shear data \[28, 29, 30\], a 2.8σ excess of lensing smearing in the CMB power spectra \[7\], and the lack of large-angle correlation in CMB temperature \[31, 32, 33, 34\], etc. See Ref. \[35\] for a recent comprehensive review of the observational challenges to the ΛCDM model.

Given that Λ might not be the ultimate truth, we are well motivated to construct alternative dark energy models. A simple and in some sense also minimal construction is to introduce a scalar degree of freedom. Because high-order derivative theories typically suffer from the Ostrogradsky instability \[36\], it is often assumed that the Lagrangian density only depends on the scalar field value and its kinetic energy $X = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi$. This class of dark energy models, often dubbed as k-essence models, allows a variety of cosmological solutions with rich phenom-
In the early time when k-essence dark energy was first proposed, interests were more focused on using the so-called tracking solutions, where the field has attractor-like dynamics in the early universe, to resolve the coincidence problem [74, 75, 76, 77]. It was understood later that the tracking k-essence models are not very successful solutions to the coincidence problem, because they require additional fine-tuning and superluminal fluctuations [78, 79, 80]. Moreover, tracking models typically predict moderate deviation from Λ, which is more and more disfavored as the accuracy of observations improves [81, 1]. Alternatively, one can consider the so-called thawing k-essence [82, 83, 84, 85, 1], whose mass scale is close to or less than the current expansion rate of the Universe. In the thawing picture, the k-essence field is frozen by the large Hubble friction in the early Universe. Only at low redshift when the expansion rate drops below its mass scale, the field starts to roll.

The lightness assumption (mass $\lesssim H_0$) of thawing k-essence naturally leads to non-clustering dark energy whose perturbations are suppressed on sub-horizon scales. There do exist, however, models of dark energy with noticeable sub-horizon perturbations [86, 87, 88, 89, 90, 91]. In the present work we do not discuss clustering dark energy models, as they typically need to be treated in a one-by-one manner.

The assumption of thawing scenario significantly reduces the model complexity. By generating the Taylor expansion coefficients of $L(\phi, X)$ from random matrices, Ref. [1] shows that a majority of k-essence dark energy models follows an approximate consistency relation $w_a \approx -1.42 \left(\frac{\Omega_m}{0.3}\right)^{0.64} (1 + w_0)$, where Ω_m is the present matter density fraction and w_0, w_a are the Chevallier-Polarski-Linder (CPL) parameters for dark energy equation of state [92, 93]. The consistency relation can be understood as follows. Due to the thawing nature, the present rolling speed of the scalar field, which is characterized by $1 + w_0$, is typically correlated to the acceleration of late-time rolling, which is characterized by w_a.

The approximate consistency relation can be combined with observational data to improve the constraining power of cosmological data, which is often measured with the so-called figure of merit in marginalized w_0-w_a space. For a concrete model, however, the dark energy equation of state does not exactly follow the CPL form $w(a) = w_0 + w_a(1 - a)$, where a denotes the
scale factor. The parameters w_0, w_a therefore only have an approximate meaning and should be considered as an effective description of dark energy at low redshift. In the present work, we consider another effective description of dark energy with the Parameterization based on cosmic Age (PAge) \cite{2, 94, 95, 96, 97, 98, 99}. Compared to the CPL w_0-w_a effective description, PAge does not suffer from a strong parameter degeneracy that is commonly found between w_0 and w_a. Thus, the parameter space of PAge is more compact. The FiguRe Of Merit for the parameterization based on cosmic Age, which we abbreviate as FROMAge to show our French taste, is an equally good, if not better, indicator of the constraining power of cosmological data.

The article is organized as follows. Section 2 briefly reviews PAge cosmology. In section 3, we use the numerical tool developed in Ref. \cite{1} to generate an ensemble of random thawing k-essence dark energy models, which are then mapped into PAge parameter space. In section 4, we take a future cosmic shear survey as a working example to quantify by how much the thawing k-essence prior may improve the constraining power of cosmological data. Section 5 concludes. Throughout the paper we work with natural units $c = \hbar = 1$ and a spatially-flat Universe with Friedmann-Lemaître-Robertson-Walker background. The cosmological time and Hubble parameter are denoted as t and H, respectively. The dark energy equation of state (EOS) is denoted as w, which in general is a function of redshift z. A dot represents derivative with respect to the cosmological time. The current scale factor is normalized to unity. The Hubble constant is denoted as $H_0 = 100\, h\, \text{km/s/Mpc}$. The square root of the cosmic variance of the mean density in a sphere with radius $8h^{-1}\text{Mpc}$ is denoted as σ_8, which then defines the $S_8 \equiv \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{0.5}$ parameter.

\section{PAge cosmology}

At redshift $z \lesssim 100$, where the radiation component can be ignored, PAge approximates the expansion history of the Universe with the following ansatz \cite{2}

$$
\frac{H}{H_0} = 1 + \frac{2}{3} \left(1 - \eta \frac{H_0 t}{p_{\text{age}}} \right) \left(\frac{1}{H_0 t} - \frac{1}{p_{\text{age}}} \right),
$$

(1)
where $p_{\text{age}} = H_0 t_0$ is the age of the Universe measured in unit of H_0^{-1} and $\eta < 1$ is a phenomenological parameter approximately describing the deviation from an Einstein de-Sitter universe.

Although it may seem like a casual assumption, the PAge ansatz (1) makes use of quite a few physical conditions. First of all, the parameters H_0 and p_{age} are physical quantities that can be directly computed for any given physical model. Secondly, ansatz (1) automatically sets the matter-dominated behavior at high redshift ($\lim_{t \to 0^+} H t = \frac{2}{3}$). Finally, ansatz (1) guarantees that the expansion rate H monotonically decreases as the Universe expands. Thanks to these physically motivated features, PAge well approximates many dark energy and modified gravity models [2, 94], and performs better than many other phenomenological approaches, such as the oft-used polynomial approximation [100].

At the background level, when H_0^{-1} is treated as a time unit, the expansion history is determined by p_{age} and η, and therefore Ω_m is not a parameter in PAge. While perturbation calculation is needed for the simulation of the cosmic shear data, we add Ω_m to the PAge framework and employ the following linear growth equation

$$\frac{d^2 D}{dt^2} + 2H \frac{dD}{dt} - \frac{3H_0^2}{2a^3} \Omega_m D = 0.$$ \hfill (2)

The assumption goes into the above equation is that dark energy perturbations at sub-horizon and linear scales can be ignored.

Although more sophisticated approaches exist, for simplicity and to show the robustness of PAge approximation, we follow the simple method in Ref. [2] to map dark energy models to PAge space. The η parameter is calculated using the deceleration parameter $q \equiv -\frac{a\ddot{a}}{a^2}$ evaluated at redshift zero.

3. Thawing k-essence in PAge space

We use the numerical tool developed in Ref. [1], which has been made publicly available at http://zhiqihuang.top/codes/scan_kessence.tar.gz to generate random k-essence dark energy models. The program settings are shown in Table [1] See also Ref. [1] for more detailed
Table 1: k-essence generator program settings

term in [1]	program variable	definition	value		
n	dimX, dimV	Taylor expansion truncation	10		
σ	rand_width	sampling width	3		
k_{pivot}	khMpc_pivot	wavenumber to compute perturbations	0.05		
ultraviolet stability	min_cs2	lower bound for sound speed	0		
acceleration	max_w	upper bound for dark energy EOS	$-\frac{1}{3}$		
smoothness	max_growth	upper bound for growth of perturbations	100		
thawing condition	frozen_cut	upper bound for early-Universe $	1 + w	$	0.01

documentation of the program parameters.

It has been shown in Ref. [1], and also tested in the present work, that increasing the truncation order and the sampling width do not change much the distribution of sampled trajectories. This is because models with increasing complexity typically violate the thawing condition ($|1 + w| \ll 1$ in the early Universe), the acceleration assumption ($w < -\frac{1}{3}$) or the smoothness assumption (growth of density contrast $\lesssim 10^2$), and thus are rejected by the program.

We generate 41000 random k-essence dark energy models for a flat prior $\Omega_m \in [0.25, 0.35]$. The models are then mapped into PAge space to generate a joint distribution of $(p_{page}, \eta, \Omega_m)$, which we refer to as the thawing k-essence prior. The mapping procedure comes with a tiny accuracy loss in predictions of cosmological observables. In the left panel of Figure 1, we show a few k-essence dark energy EOS trajectories with different colors. The relative difference between the luminosity distances predicted from each model and that from its PAge approximation is shown with the same color in the right panel. The errors are typically at sub-percent level. These tiny errors may be relevant for future cosmological surveys and can be corrected with a more sophisticated approach [97]. We nevertheless work in the original simple PAge framework that is easier to interpret, because the main purpose of the present work is to study the impact of the thawing k-essence prior, rather than the accuracy of PAge approximation.

Due to parameter degeneracy, if the dark energy EOS is a free function of redshift, exact
Figure 1: The accuracy of PAge approximation. Left panel: EOS $w(z)$ of a few randomly sampled k-essence dark energy models; Right panel: relative error in luminosity distances when the models in the left panel are approximated with PAge. In all cases Ω_m is fixed to 0.3.

Figure 2: Randomly sampled k-essence dark energy models mapped into the PAge space.
reconstruction of Ω_m from the expansion history of the universe is impossible. Since the Lagrangian density $L(\phi, X)$ is a free function, the EOS of k-essence is almost free, too. However, when the aforementioned physical assumptions are applied, the EOS of thawing k-essence dark energy is not free in a statistical sense. In Figure 2 we compare the mapped (p_{age}, η) samples for $\Omega_m = 0.25, 0.3$ and 0.35, respectively. It is evident that one can obtain a statistical constraint on Ω_m from the evolution history that is determined by (p_{age}, η). This is a non-trivial result. For a cosmic shear survey, the additional information on Ω_m can break the strong degeneracy between Ω_m and σ_8 and lead to a better reconstruction of low-redshift physics. To make the idea more concrete, in the next section we take a future cosmic shear survey as a working example to quantify the impact of the thawing k-essence prior.

4. Cosmic Shear Fisher Forecast

To make the analysis simple and easy to interpret, we only consider the statistics of the convergence field. The angular power spectrum between the redshift bins i and j is given by the Limber approximation \cite{101, 102, 103, 104}

$$C_{\ell;i,j} = \int_0^\infty W_i(z)W_j(z)P_m\left(k = \frac{\ell}{\chi(z)}; z\right)\frac{d\chi}{dz} dz,$$

where the comoving angular diameter distance in a spatially flat universe is given by

$$\chi(z) = \int_0^z \frac{dz'}{H(z')}.$$ \hspace{1cm} (4)

The non-linear matter power spectrum at redshift z, $P_m(k; z)$ where k denotes the wavenumber, is calculated with the Bardeen-Bond-Kaiser-Szalay (BBKS) fitting formula \cite{105} and the halo-fit formula \cite{106, 107}. The weight function in the i-th bin $z \in [z_i^{\text{min}}, z_i^{\text{max}}]$ is given by

$$W_i(z) = \begin{cases} \frac{3}{2}\Omega_mH_0^2(1+z) \frac{1}{n_i} \int_{z_i^{\text{max}}(z, z_i^{\text{min}})}^{z_i^{\text{max}}} \left(1 - \frac{\chi(z)}{\chi(z')}\right) \frac{dn}{dz'} dz', & \text{if } z < z_i^{\text{max}}, \\ 0, & \text{if } z \geq z_i^{\text{max}}, \end{cases}$$

(5)

where $\frac{dn}{dz}$ is the observed galaxy number per unit sky area per unit redshift. The observed galaxy number density in the i-th bin is an integral

$$\bar{n}_i = \int_{z_i^{\text{min}}}^{z_i^{\text{max}}} \frac{dn}{dz} dz.$$ \hspace{1cm} (6)
Figure 3: Simulated cosmic shear data with two redshift bins: \(z \in [0, 1] \) (bin 0) and \(z \in [1, 3] \) (bin 1).

The total number density of observed galaxies is then the sum \(n_{\text{total}} = \sum_i n_i \).

The observed convergence power spectrum with shot noise is modeled as

\[
C_{\ell, i,j}^{\text{obs}} = C_\ell + \frac{\sigma_\epsilon^2}{\bar{n}_i} \delta_{ij},
\]

where \(\delta_{ij} \) is the Kronecker delta function and \(\sigma_\epsilon \) is the root mean square of the galaxy intrinsic ellipticity.

For the angular scales we take a conservative multipole range \(10 \leq \ell \leq 2500 \). Due to the central limit theorem, the integrated convergence fields over this range are quite close to Gaussian [108, 109, 110], and therefore can be written as

\[
\text{Cov} \left[C_{\ell_1; i_1,j_1}^{\text{obs}}, C_{\ell_2; i_2,j_2}^{\text{obs}} \right] = \frac{\delta_{\ell_1\ell_2}}{(2\ell_1 + 1) f_{\text{sky}}} \left(C_{\ell_1; i_1,j_1}^{\text{obs}} C_{\ell_2; i_2,j_2}^{\text{obs}} + C_{\ell_1; i_1,j_2}^{\text{obs}} C_{\ell_2; i_2,j_1}^{\text{obs}} \right),
\]

where \(f_{\text{sky}} \) is the fraction of sky that is observed.
If the cosmological redshifts of galaxies were all perfectly known, an optimal analysis would be done in the limit of taking infinitely many redshift bins. In practice, however, the redshift of a photometric survey has a large uncertainty, which in our simulation is assumed to be \(\sigma(z) = 0.03(1 + z) \). Conventionally when doing Fisher forecast, the photo-z errors are treated by marginalizing some shift parameters and spreading parameters \([104, 111]\), and the result inevitably depends on many assumptions that are difficult to justify at the stage of forecasting. To make the result robust and easy to interpret, we take a very conservative approach by simply discarding the galaxies samples around the edges of the redshift bins. More concretely, we cut each redshift bin \([z_{\text{min}}^i, z_{\text{max}}^i]\) to a smaller one \([z_{\text{min}}^i + \sigma(z_{\text{min}}^i), z_{\text{max}}^i - \sigma(z_{\text{min}}^i)]\). This approach is conservative because we have assumed almost no knowledge about the photo-z error distribution function, which in realistic surveys will be known to some extent.

We have assumed that many other subtle effects such as the intrinsic alignment contamination \([112]\), catastrophic redshift outliers \([113]\), and the super-sample covariance \([114]\) can be well calibrated. The reader is referred to Refs. \([113, 115, 116, 117, 118, 119]\) for more detailed discussion about calibration of these systematics.

In our simulation we assume a galaxy intrinsic ellipticity \(\sigma_\epsilon = 0.3 \), a galaxy distribution \(n(z) \propto z^2 e^{-z/0.3} \) that is normalized by \(n_{\text{total}} = 28\text{arcmin}^{-2} \), and a sky coverage \(f_{\text{sky}} = 0.424 \). The configuration roughly corresponds to the optical survey that will be carried out by the Chinese Space Station Telescope \([120]\). In Figure 3 we show the simulated \(C^{\text{obs}}_\ell \) and their standard deviations for two redshift bins and thirty \(\ell \)-bins.

We employ the Fisher forecast approach to compute the constraining power on the five dimensional parameter vector: \(\theta = (p_{\text{age}}, \eta, h, \Omega_m, \sigma_8) \). The Fisher matrix is given by

\[
F_{IJ} = \frac{\partial \mathbf{d}^T}{\partial \theta_I} \text{Cov}^{-1} \frac{\partial \mathbf{d}^T}{\partial \theta_J},
\]

where the data vector \(\mathbf{d} \) is the collection of the observed power spectra \(C^{\text{obs}}_{\ell_i,i,j} \) and Cov is the covariance matrix given in Eq. (8). The covariance of parameter vector is estimated with the inverse of the Fisher matrix, \(\text{Cov}(\theta_I, \theta_J) \approx (F^{-1})_{IJ} \).

We first study the dependence of the result on the number of redshift bins by comparing four binning schemes listed in Table 2. The marginalized 68.3% confidence-level constraints for
Figure 4: Fisher forecast for different numbers of tomography bins. Photometric redshift error is taken to be $0.03(1 + z)$.

number of redshift bins	bin boundaries
3	0, 0.5, 1, 3
4	0, 0.5, 1, 1.5, 3
5	0, 0.4, 0.8, 1.2, 1.6, 3
8	0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 3
Figure 5: Fisher forecast of the 1σ and 2σ constraints on cosmological parameters, with and without thawing k-essence prior.

(p_{age}, η), as well as the FROMAges for the four binning schemes are shown in the left panel of Figure 4. As we increase the number of redshift bins, the constraining power (FROMAge) increases at the beginning, and then drops when the photometric redshift error comes into play. A similar tendency is also observed for the other cosmological parameters, such as the (σ_8, Ω_m) combination presented in the right panel of Figure 4.

Finally, we apply the thawing k-essence prior in the Fisher analysis. We first bin and interpolate a prior likelihood $P(\Omega_m, p_{\text{age}}, \eta)$ from the random samples obtained in the previous section. A full likelihood is obtained by multiplying the data likelihood by the prior likelihood. We run Monte Carlo Markov Chain simulations to obtain the posterior covariance matrix, which is plotted in Figure 5 against the original Fisher forecast without thawing k-essence prior. For (p_{age}, η) the thawing k-essence prior improves the FROMAge by a factor of 3.3. A similar improvement is found for (σ_8, Ω_m), too.

5. Conclusions

We have shown, with a simple Fisher forecast of future cosmic shear survey, that a reasonable theoretical prior of dark energy can significantly improve the constraining power of the data.
This raises the question whether it is proper to judge the future dark energy surveys with a
blind figure of merit without any theoretical prejudice. After all, the history of science has
proven that theoretical prejudice is sometimes beneficial.

6. Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under
Grant No. 12073088, National SKA Program of China No. 2020SKA0110402, National key
R&D Program of China (Grant No. 2020YFC2201600), and Guangdong Major Project of Basic
and Applied Basic Research (Grant No. 2019B030302001).

References

[1] Zhiqi Huang. Statistics of thawing k-essence dark energy models. *Phys. Rev. D*,
104(10):103533, 2021.

[2] Zhiqi Huang. Supernova Magnitude Evolution and PAge Approximation. *Astrophys. J. Lett.*, 892(2):L28, 2020.

[3] Adam G. Riess et al. Observational evidence from supernovae for an accelerating universe
and a cosmological constant. *Astron. J.*, 116:1009–1038, 1998.

[4] Brian P. Schmidt et al. The High-Z Supernova Search: Measuring Cosmic Deceleration
and Global Curvature of the Universe Using Type IA Supernovae. *Astrophys. J.*, 507(1):46–63, Nov 1998.

[5] S. Perlmutter et al. Measurements of ω and λ from 42 high redshift supernovae. *The Astrophysical Journal*, 517:565–586, 1998.

[6] G. Hinshaw et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. *Astrophys. J. Suppl.*, 208(2):19, October 2013.
[7] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. *Astron. Astrophys.*, 641:A6, 2020.

[8] Florian Beutler, Chris Blake, Matthew Colless, D.Heath Jones, Lister Staveley-Smith, Lachlan Campbell, Quentin Parker, Will Saunders, and Fred Watson. The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant. *Mon. Not. Roy. Astron. Soc.*, 416:3017–3032, 2011.

[9] Shadab Alam et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. *Mon. Not. Roy. Astron. Soc.*, 470(3):2617–2652, 2017.

[10] Helion du Mas des Bourboux et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at $z = 2.4$. *Astron. Astrophys.*, 608:A130, 2017.

[11] Metin Ata et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. *Mon. Not. Roy. Astron. Soc.*, 473(4):4773–4794, 2018.

[12] Shadab Alam et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. *Phys. Rev. D*, 103(8):083533, 2021.

[13] M. Betoule et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. *Astron. Astrophys.*, 568:A22, August 2014.

[14] D. M. Scolnic et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. *Astrophys. J.*, 859(2):101, 2018.

[15] Seshadri Nadathur et al. The completed SDSS-IV extended baryon oscillation spectroscopic survey: geometry and growth from the anisotropic void–galaxy correlation function in the luminous red galaxy sample. *Mon. Not. Roy. Astron. Soc.*, 499(3):4140–4157, 2020.
[16] A. Pezzotta et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): The growth of structure at $0.5 < z < 1.2$ from redshift-space distortions in the clustering of the PDR-2 final sample. *Astron. Astrophys.*, 604:A33, 2017.

[17] Raul Jimenez and Abraham Loeb. Constraining cosmological parameters based on relative galaxy ages. *Astrophys. J.*, 573:37–42, 2002.

[18] Joan Simon, Licia Verde, and Raul Jimenez. Constraints on the redshift dependence of the dark energy potential. *Phys. Rev. D*, 71:123001, 2005.

[19] Daniel Stern, Raul Jimenez, Licia Verde, Marc Kamionkowski, and S.Adam Stanford. Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: $H(z)$ Measurements. *JCAP*, 02:008, 2010.

[20] Cong Zhang, Han Zhang, Shuo Yuan, Tong-Jie Zhang, and Yan-Chun Sun. Four new observational $H(z)$ data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. *Res. Astron. Astrophys.*, 14(10):1221–1233, 2014.

[21] M. Moresco et al. Improved constraints on the expansion rate of the Universe up to $z \sim 1.1$ from the spectroscopic evolution of cosmic chronometers. *JCAP*, 08:006, 2012.

[22] Michele Moresco. Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at $z \sim 2$. *Mon. Not. Roy. Astron. Soc.*, 450(1):L16–L20, 2015.

[23] Michele Moresco, Lucia Pozzetti, Andrea Cimatti, Raul Jimenez, Claudia Maraston, Licia Verde, Daniel Thomas, Annalisa Citro, Rita Tojeiro, and David Wilkinson. A 6% measurement of the Hubble parameter at $z \sim 0.45$: direct evidence of the epoch of cosmic re-acceleration. *JCAP*, 05:014, 2016.

[24] A.L. Ratsimbazafy et al. Age-dating Luminous Red Galaxies observed with the Southern African Large Telescope. *Mon. Not. Roy. Astron. Soc.*, 467(3):3239–3254, 2017.

[25] S. Weinberg. The cosmological constant problem. *Reviews of Modern Physics*, 61(1):1–23, Jan 1989.
[26] Adam G. Riess, Stefano Casertano, Wenlong Yuan, J. Bradley Bowers, Lucas Macri, Joel C. Zinn, and Dan Scolnic. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. *Astrophys. J. Lett.*, 908(1):L6, 2021.

[27] Adam G. Riess, Wenlong Yuan, Lucas M. Macri, Dan Scolnic, Dillon Brout, Stefano Casertano, David O. Jones, Yuhei Murakami, Louise Breuval, Thomas G. Brink, Alexei V. Filippenko, Samantha Hoffmann, Saurabh W. Jha, W. D’arcy Kenworthy, John Mackenty, Benjamin E. Stahl, and Weikang Zheng. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. *arXiv e-prints*, page arXiv:2112.04510, December 2021.

[28] Marika Asgari et al. KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. *Astron. Astrophys.*, 645:A104, 2021.

[29] J. L. van den Busch, A. H. Wright, H. Hildebrandt, M. Bilicki, M. Asgari, S. Joudaki, C. Blake, C. Heymans, A. Kannawadi, H. Y. Shan, and T. Tröster. KiDS-1000: cosmic shear with enhanced redshift calibration. *arXiv e-prints*, page arXiv:2204.02396, April 2022.

[30] A. Amon et al. Consistent lensing and clustering in a low-S_8 Universe with BOSS, DES Year 3, HSC Year 1 and KiDS-1000. *arXiv e-prints*, page arXiv:2202.07440, February 2022.

[31] G. Hinshaw, A. J. Branday, C. L. Bennett, K. M. Gorski, A. Kogut, C. H. Lineweaver, G. F. Smoot, and E. L. Wright. Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps. *Astrophys. J. Lett.*, 464:L25, June 1996.

[32] C. L. Bennett, M. Bay, M. Halpern, G. Hinshaw, C. Jackson, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, L. Page, D. N. Spergel, G. S. Tucker, D. T. Wilkinson, E. Wollack, and E. L. Wright. The Microwave Anisotropy Probe Mission. *Astrophys. J.*, 583(1):1–23, January 2003.
[33] George Efstathiou, Yin-Zhe Ma, and Duncan Hanson. Large-angle correlations in the cosmic microwave background. *MNRAS*, 407(4):2530–2542, October 2010.

[34] P. A. R. Ade et al. Planck 2015 results. XVI. Isotropy and statistics of the CMB. *A&A*, 594:A16, Sep 2016.

[35] Leandros Perivolaropoulos and Foteini Skara. Challenges for ΛCDM: An update. *arXiv e-prints*, page arXiv:2105.05208, May 2021.

[36] M. Ostrogradsky. Mémoires sur les équations différentielles, relatives au problème des isopérimètres. *Mem. Acad. St. Petersbourg*, series 6:385, 1850.

[37] Takeshi Chiba, Takahiro Okabe, and Masahide Yamaguchi. Kinetically driven quintessence. *Phys. Rev. D*, 62(2):023511, July 2000.

[38] Michaël Malquarti, Edmund J. Copeland, Andrew R. Liddle, and Mark Trodden. A new view of k-essence. *Phys. Rev. D*, 67(12):123503, June 2003.

[39] Luis P. Chimento and Alexander Feinstein. Power-Low Expansion in k-ESSENCE Cosmology. *Modern Physics Letters A*, 19(10):761–768, January 2004.

[40] Juan M. Aguirregabiria, Luis P. Chimento, and Ruth Lazkoz. Phantom k-essence cosmologies. *Phys. Rev. D*, 70(2):023509, July 2004.

[41] Luis P. Chimento and Ruth Lazkoz. Atypical k-essence cosmologies. *Phys. Rev. D*, 71(2):023505, January 2005.

[42] Hongsu Kim. Brans Dicke scalar field as a unique k-essence. *Physics Letters B*, 606(3-4):223–233, January 2005.

[43] Ruth Lazkoz. Rigidity of Cosmic Acceleration in a Class of k-ESSENCE Cosmologies. *International Journal of Modern Physics D*, 14(3-04):635–641, January 2005.

[44] Juan M. Aguirregabiria, Luis P. Chimento, and Ruth Lazkoz. Quintessence as k-essence [rapid communication]. *Physics Letters B*, 631(3):93–99, December 2005.
[45] Luis P. Chimento and Mónica Forte. Anisotropic k-essence cosmologies. *Phys. Rev. D*, 73(6):063502, March 2006.

[46] Alan D. Rendall. Dynamics of k-essence. *Classical and Quantum Gravity*, 23(5):1557–1569, March 2006.

[47] Luis P. Chimento and Ruth Lazkoz. Crossing the phantom barrier with purely kinetic multiple k-essence. *Physics Letters B*, 639(6):591–595, August 2006.

[48] Roland de Putter and Eric V. Linder. Kinetic k-essence and quintessence. *Astroparticle Physics*, 28(3):263–272, November 2007.

[49] Norman Cruz, Pedro F. González-Díaz, Alberto Rozas-Fernández, and Guillermo Sánchez. Holographic kinetic k-essence model. *Physics Letters B*, 679(4):293–297, August 2009.

[50] Xiang-Ting Gao and Rong-Jia Yang. Geometrical diagnostic for purely kinetic k-essence dark energy. *Physics Letters B*, 687(2-3):99–102, April 2010.

[51] Luis P. Chimento, Mónica Forte, and Martín G. Richarte. Crossing the Phantom Divide with k-ESSENCE in Braneworlds. *Modern Physics Letters A*, 25(29):2469–2481, January 2010.

[52] Mariam Bouhmadi-López and Luis P. Chimento. k-essence in the DGP brane-world cosmology. *Phys. Rev. D*, 82(10):103506, November 2010.

[53] Luis P. Chimento and Martín G. Richarte. k-ESSENCE and Tachyons in Braneworld Cosmology. *International Journal of Modern Physics D*, 20(9):1705–1712, January 2011.

[54] C. Deffayet, Xian Gao, D. A. Steer, and G. Zahariade. From k-essence to generalized Galileons. *Phys. Rev. D*, 84(6):064039, September 2011.

[55] P. Y. Tsyba, I. I. Kulnazarov, K. K. Yerzhano, and R. Myrzakulov. Pure Kinetic K-essence as the Cosmic Speed-Up. *International Journal of Theoretical Physics*, 50(6):1876–1886, June 2011.
[56] Ratbay Myrzakulov. Cosmology of F(T) Gravity and k-Essence. *Entropy*, 14(12):1627–1651, September 2012.

[57] Ratbay Myrzakulov. F(T) gravity and k-essence. *General Relativity and Gravitation*, 44(12):3059–3080, December 2012.

[58] Josue De-Santiago and Jorge L. Cervantes-Cota. On the dynamics of unified k-essence cosmologies. In *IX Workshop of the Gravitation and Mathematical Physics Division of the Mexican Physical Society*, volume 1473 of *American Institute of Physics Conference Series*, pages 59–67, August 2012.

[59] M. Sharif and Shamaila Rani. The k-essence models and cosmic acceleration in generalized teleparallel gravity. *Physica Scripta*, 84(5):055005, November 2011.

[60] Alberto Rozas-Fernández. Kinetic k-essence ghost dark energy model. *Physics Letters B*, 709(4):313–321, March 2012.

[61] Víctor H. Cárdenas, Norman Cruz, and J. R. Villanueva. Testing a dissipative kinetic k-essence model. *European Physical Journal C*, 75:148, April 2015.

[62] Alexander A. H. Graham. Varying-α and K-essence. *Classical and Quantum Gravity*, 32(1):015019, January 2015.

[63] Mariam Bouhmadi-López, K. Sravan Kumar, João Marto, João Morais, and Alexander Zhuk. K-essence model from the mechanical approach point of view: coupled scalar field and the late cosmic acceleration. *JCAP*, 2016(7):050, July 2016.

[64] Shynaray Myrzakul, Ratbay Myrzakulov, and Lorenzo Sebastiani. k-essence in Horndeski models. *Astrophysics and Space Science*, 361(8):254, August 2016.

[65] Lunchakorn Tannukij and Pitayuth Wongjun. Mass-varying massive gravity with k-essence. *European Physical Journal C*, 76:17, January 2016.
[66] Eduardo Guendelman, Emil Nissimov, and Svetlana Pacheva. Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence. *European Physical Journal C*, 76:90, February 2016.

[67] R. Cordero, O. G. Miranda, and M. Serrano-Crivelli. K-essence and kinetic gravity braiding models in two-field measure theory. *JCAP*, 2019(7):027, July 2019.

[68] Somnath Mukherjee and Debashis Gangopadhyay. An accelerated universe with negative equation of state parameter in inhomogeneous cosmology with k-essence scalar field. *Physics of the Dark Universe*, 32:100800, May 2021.

[69] Jiali Shi and Jian-Pin Wu. Dynamics of k-essence in loop quantum cosmology. *Chinese Physics C*, 45(4):045104, April 2021.

[70] A. O. Barvinsky, N. Kolganov, and A. Vikman. Generalized unimodular gravity as a new form of k-essence. *Phys. Rev. D*, 103(6):064035, March 2021.

[71] S. X. Tian and Zong-Hong Zhu. Early dark energy in k-essence. *Phys. Rev. D*, 103(4):043518, February 2021.

[72] J. Bayron Orjuela-Quintana and César A. Valenzuela-Toledo. Anisotropic k-essence. *Physics of the Dark Universe*, 33:100857, September 2021.

[73] Guillermo Lara, Miguel Bezares, and Enrico Barausse. UV completions, fixing the equations, and nonlinearities in k-essence. *Phys. Rev. D*, 105(6):064058, March 2022.

[74] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. *Phys. Rev. Lett.*, 85(21):4438–4441, November 2000.

[75] Takeshi Chiba. Tracking k-essence. *Phys. Rev. D*, 66(6):063514, September 2002.

[76] C. Armendariz-Picon, V. Mukhanov, and Paul J. Steinhardt. Essentials of k-essence. *Phys. Rev. D*, 63(10):103510, May 2001.
[77] Rupam Das, Thomas W. Kephart, and Robert J. Scherrer. Tracking quintessence and k-essence in a general cosmological background. Phys. Rev. D, 74(10):103515, November 2006.

[78] Michaël Malquarti, Edmund J. Copeland, and Andrew R. Liddle. k-essence and the coincidence problem. Phys. Rev. D, 68(2):023512, July 2003.

[79] Camille Bonvin, Chiara Caprini, and Ruth Durrer. No-Go Theorem for k-Essence Dark Energy. Phys. Rev. Lett., 97(8):081303, August 2006.

[80] Jin U. Kang, Vitaly Vanchurin, and Sergei Winitzki. Attractor scenarios and superluminal signals in k-essence cosmology. Phys. Rev. D, 76(8):083511, October 2007.

[81] P. A. R. Ade et al. Planck 2015 results. XIV. Dark energy and modified gravity. A&A, 594:A14, Sep 2016.

[82] R. J. Scherrer and A. A. Sen. Thawing quintessence with a nearly flat potential. Phys. Rev. D, 77(8):083515–+, April 2008.

[83] T. Chiba. Slow-roll thawing quintessence. Phys. Rev. D, 79(8):083517–+, April 2009.

[84] Takeshi Chiba, Sourish Dutta, and Robert J. Scherrer. Slow-roll k-essence. Phys. Rev. D, 80:043517, 2009.

[85] John Kehayias and Robert J. Scherrer. New generic evolution for k-essence dark energy with w ≈-1. Phys. Rev. D, 100(2):023525, July 2019.

[86] Chao-Jun Feng and Xin-Zhou Li. Scalar perturbation and stability of Ricci dark energy. Physics Letters B, 680(2):184–187, September 2009.

[87] J. C. Bueno Sanchez and L. Perivolaropoulos. Evolution of dark energy perturbations in scalar-tensor cosmologies. Phys. Rev. D, 81(10):103505, May 2010.

[88] Giulia Gubitosi, Federico Piazza, and Filippo Vernizzi. The effective field theory of dark energy. JCAP, 2013(2):032, February 2013.
[98] Rong-Gen Cai, Zong-Kuan Guo, Shao-Jiang Wang, Wang-Wei Yu, and Yong Zhou. No-go guide for the Hubble tension: Late-time solutions. *Phys. Rev. D*, 105(2):L021301, January 2022.
[99] Rong-Gen Cai, Zong-Kuan Guo, Shao-Jiang Wang, Wang-Wei Yu, and Yong Zhou. No-go guide for the Hubble tension : matter perturbations. *arXiv e-prints*, page arXiv:2202.12214, February 2022.

[100] Matt Visser. Jerk and the cosmological equation of state. *Class. Quant. Grav.*, 21:2603–2616, 2004.

[101] D. Nelson Limber. The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II. *Astrophys. J.*, 119:655, May 1954.

[102] Nick Kaiser. Weak Gravitational Lensing of Distant Galaxies. *Astrophys. J.*, 388:272, April 1992.

[103] Nick Kaiser. Weak Lensing and Cosmology. *Astrophys. J.*, 498(1):26–42, May 1998.

[104] Wayne Hu. Power Spectrum Tomography with Weak Lensing. *Astrophys. J. Lett.*, 522(1):L21–L24, September 1999.

[105] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay. The Statistics of Peaks of Gaussian Random Fields. *Astrophys. J.*, 304:15, May 1986.

[106] R. E. Smith, J. A. Peacock, A. Jenkins, S. D. M. White, C. S. Frenk, F. R. Pearce, P. A. Thomas, G. Efstathiou, and H. M. P. Couchman. Stable clustering, the halo model and non-linear cosmological power spectra. *MNRAS*, 341(4):1311–1332, June 2003.

[107] Ryuichi Takahashi, Masanori Sato, Takahiro Nishimichi, Atsushi Taruya, and Masamune Oguri. Revising the Halofit Model for the Nonlinear Matter Power Spectrum. *Astrophys. J.*, 761(2):152, December 2012.

[108] Román Scoccimarro and Joshua A. Frieman. Hyperextended Cosmological Perturbation Theory: Predicting Nonlinear Clustering Amplitudes. *Astrophys. J.*, 520(1):35–44, July 1999.

[109] Martin White and Wayne Hu. A New Algorithm for Computing Statistics of Weak Lensing by Large-Scale Structure. *Astrophys. J.*, 537(1):1–11, July 2000.
Asantha Cooray and Wayne Hu. Power Spectrum Covariance of Weak Gravitational Lensing. *Astrophys. J.*, 554(1):56–66, June 2001.

Zhaoming Ma, Wayne Hu, and Dragan Huterer. Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography. *Astrophys. J.*, 636(1):21–29, January 2006.

Masahiro Takada and Martin White. Tomography of Lensing Cross-Power Spectra. *Astrophys. J. Lett.*, 601(1):L1–L4, January 2004.

Dragan Huterer, Masahiro Takada, Gary Bernstein, and Bhuvnesh Jain. Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration. *MNRAS*, 366(1):101–114, February 2006.

Masahiro Takada and Wayne Hu. Power spectrum super-sample covariance. *Phys. Rev. D*, 87(12):123504, June 2013.

Yin Li, Wayne Hu, and Masahiro Takada. Super-sample covariance in simulations. *Phys. Rev. D*, 89(8):083519, April 2014.

Masahiro Takada and David N. Spergel. Joint analysis of cluster number counts and weak lensing power spectrum to correct for the super-sample covariance. *MNRAS*, 441(3):2456–2475, July 2014.

Ryuichi Takahashi, Shunji Soma, Masahiro Takada, and Issha Kayo. An optimal survey geometry of weak lensing survey: minimizing supersample covariance. *MNRAS*, 444(4):3473–3487, November 2014.

Yin Li, Wayne Hu, and Masahiro Takada. Super-sample signal. *Phys. Rev. D*, 90(10):103530, November 2014.

Martin Kilbinger. Cosmology with cosmic shear observations: a review. *Reports on Progress in Physics*, 78(8):086901, July 2015.

Yan Gong, Xiangkun Liu, Ye Cao, et al. Cosmology from the Chinese Space Station Optical Survey (CSS-OS). *Astrophys. J.*, 883:203, 2019.