Data-driven discovery of high performance layered van der Waals piezoelectric NbOI₂

Yaze Wu1,2,9, Ibrahim Abdelwahab1,2,10, Ki Chang Kwon3, Ivan Verzhbitskiy1,2, Lin Wang3, Weng Heng Liew4, Kui Yao4, Goki Eda1,2, Kian Ping Loh2,3,5, Lei Shen6,7 & Su Ying Quek1,2,5,8

Using high-throughput first-principles calculations to search for layered van der Waals materials with the largest piezoelectric stress coefficients, we discover NbOI₂ to be the one among 2940 monolayers screened. The piezoelectric performance of NbOI₂ is independent of thickness, and its electromechanical coupling factor of near unity is a hallmark of optimal interconversion between electrical and mechanical energy. Laser scanning vibrometer studies on bulk and few-layer NbOI₂ crystals verify their huge piezoelectric responses, which exceed internal references such as In₂Se₃ and CuInP₂S₆. Furthermore, we provide insights into the atomic origins of anti-correlated piezoelectric and ferroelectric responses in NbOX₂ (X = Cl, Br, I), based on bond covalency and structural distortions in these materials. Our discovery that NbOI₂ has the largest piezoelectric stress coefficients among 2D materials calls for the development of NbOI₂-based flexible nanoscale piezoelectric devices.

1Department of Physics, National University of Singapore, Singapore, Singapore. 2Centre for Advanced 2D Materials and Graphene Research Centre, Singapore, Singapore. 3Department of Chemistry, National University of Singapore, Singapore, Singapore. 4Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 5NUS Graduate School, Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore. 6Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore. 7Engineering Science Programme, National University of Singapore, Singapore, Singapore. 8Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore. 9Present address: Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 10These authors contributed equally: Yaze Wu, Ibrahim Abdelwahab.✉email: chmlohkpi@nus.edu.sg; shenlei@nus.edu.sg; phyqsy@nus.edu.sg
Piezoelectric materials enable the interconversion between mechanical and electrical energy. This is made possible by the change in polarization of the material when it is stretched or compressed. As such, piezoelectric materials are integral components of intelligent, multi-functional devices and drive a multi-billion dollar industry through their applications as sensors, actuators, energy harvesters, etc. The recent thrust toward flexible nanoscale devices creates a need for two-dimensional (2D) piezoelectric materials. Piezoelectric materials comprised of one or few layers of layered van der Waals (vdW) systems are particularly useful for increasingly important niche applications such as actuators with extreme atomic-scale deformation. 2D piezoelectric materials provide a practical alternative to micro-scale battery packs, functioning as nano-generators to power nanoscale devices.

Thus far, the discovery of 2D piezoelectric materials has mostly been ad hoc, for example, by performing calculations on specific 2D materials that are known to be ferroelectric. However, with an ad hoc approach, it is difficult to ascertain if the 2D material indeed has optimal piezoelectric coefficients. Experimentally, it is also challenging to quantitatively compare the piezoelectric coefficients of 2D materials. The objective of this work is to perform a systematic high throughput search through a 2D material database, in order to rank the 2D materials according to the size of their intrinsic piezoelectric coefficients. While 2D materials down to nanometers in thickness are sufficient for flexible nanoscale devices, symmetry-breaking in the monolayer can lead to the emergence of piezoelectricity in the monolayer even when the parent bulk materials are not piezoelectric. Thus, we focus our search on monolayers. Out of 109 piezoelectric monolayers that we identify, the family of niobium oxyhalides NbOX2 (X = Cl, Br, I) is predicted to have among the largest in-plane piezoelectric stress coefficients, an order of magnitude larger than those of most reported 2D materials. We note that NbOX2 has recently been independently identified to be a robust room temperature ferroelectric in another high-throughput study searching for 2D ferroelectric materials. While all ferroelectric materials are piezoelectric, there is no direct correlation between the magnitude of spontaneous polarization |P| and the magnitude of piezoelectric coefficients (see Supplementary Fig. S1). Within the NbOX2 family, our calculations in fact show that the piezoelectric and ferroelectric effects have opposing trends down the halogen group. We further show that the large piezoelectric effect is independent of crystal thickness, in contrast to MoS2 and similar 2D in-plane piezoelectrics, where the piezoelectricity vanishes for an even number of layers. This thickness-independent piezoelectric effect is a practical advantage in isolating 2D nanoscale piezoelectrics. Experimental validations of the piezoelectric effect were carried out on few-layer NbOBr2 and NbOCl2 crystals, where significantly larger piezoelectric coefficients were obtained compared to internal references such as In2Se3 and CuInP2S6 (known 2D piezoelectrics). Our findings pave the way for the development of NbOBr2-based flexible nanoscale piezoelectric devices, such as high precision actuators and wearable electronics or energy harvesters.

Results and discussion

The workflow of our high-throughput calculations is shown in Fig. 1. Our results are publicly available in 2DMatPedia, an open database of 2D materials that shares the same infrastructure and basic workflow as the Materials Project database. We focus only on the 2940 “top-down” materials within the database, which are obtained by exfoliation of known bulk layered materials, and are more likely to be dynamically stable and experimentally available. Next, we perform a rapid screening process based on the band gap and decomposition energy (both documented in 2DMatPedia) as well as the space group (piezoelectric space groups lack inversion symmetry). A total of 225 materials pass this screening process. We then limit our high-throughput density functional perturbation theory (DFPT) calculations to materials with less than 13 atoms per unit cell (160 of the 225 materials). Following conventions for 2D materials, we compute the sheet piezoelectric stress tensor elements, eij defined as 〈δ Pj/δ Lk〉, the rate of change in polarization P with homogeneous strain j multiplied by the cell height L. The index i runs from 1 to 3 (x, y, z) and j ranges from 1 to 6 (xx, yy, zz, yz, zx, xy) where the Voigt notation is used. A series of automated checks and analyses is carried out and the relevant data is saved into the database. 51 materials did not pass the automated checks. This is similar in proportion to those in other high throughput studies; these materials were not studied in detail. The dynamical stability of individual materials is checked manually as needed outside this workflow.

The final results are summarized in Fig. 2a. All the 109 materials (see Supplementary Table S15 for the full list) have an ej value greater than 0.05 × 10−10 C m−1. These 109 2D piezoelectric materials are observed to belong to only a few space groups (Fig. 2a). Space groups 17, 26, 31, 149, 156, and 187 each have more than nine 2D piezoelectric materials. Our high throughput calculations also found that 48 of the 109 2D piezoelectric materials are not ferroelectric (see Supplementary Table S15). 2D materials previously identified to be piezoelectric are also found to be piezoelectric in our calculations, with values of ej very close to their reported values (Supplementary Table S2). Almost all materials have maximum ej values below 5 × 10−10 C m−1, while a few have significantly larger ej values. These larger ej values correspond to in-plane piezoelectricity.

We identify eight materials with maximum sheet ej values larger than 10 × 10−10 C m−1, namely, SbF3, NbOBr2, NbOCl2, MoBr2O2, GeSe, SbAsO3, CuInP2S6. The structures of these eight materials (referred to as the ‘top 8’ materials) are presented in Fig. 2a–d. SbF3, which has the largest sheet ej, is found to be dynamically unstable in the monolayer form. Niobium oxyhalides, NbOX2, with X = Cl, Br, or I, have the next highest sheet ej with NbOBr2 having the largest ej value of ~32 × 10−10 C m−1. We have verified explicitly that monolayer NbOBr2 is dynamically stable (Supplementary Fig. S2 and Fig. S3) and we expect the same to be true for the other members of the family. The exfoliation energy for NbOBr2 monolayers is 18.2 meV Å−2, lower than that of graphene (25.5 meV Å−2).

Besides the piezoelectric stress tensor elements ej, the piezoelectric strain tensor elements dij are also widely discussed in the literature. The dij values are defined as 〈δ Pij/δ Lk〉, the rate of change in polarization P with homogeneous stress σi (see SI), and are related to ej according to dij = ej,ij Sij, where Sij is the compliance tensor (the inverse of the elastic tensor). Unlike ej and Sij which have a different definition for the 2D case, the dij values are defined in the same manner for both bulk and 2D (see Formalisms in SI). The d11 values for monolayer NbOBr2 are ~42, 30 and 27 pm V−1 for NbOBr2, NbOBr2 and NbOCl2, respectively (see Supplementary Table S4). We note that all the dij values for bulk NbOBr2 are almost the same as for the monolayer (Table 2 and Supplementary Table S5), indicating that the piezoelectric properties of NbOBr2 are very similar from monolayer to bulk form. In the bulk material, the ratio of mechanical stress energy density to the electrical energy density is given by a dimensionless number k2 = εij dij, where k is known as the electromechanical coupling factor. We obtain an
The interconversion between electrical and mechanical energy.

When the passive elastic layer is much thicker than the piezoelectric material, it is particularly important for 2D piezoelectrics discussed in the literature are also plotted in Fig. 3a. Some materials such as monolayer GeSe\(^2\), As\(_2\)S\(_3\), and As\(_2\)Se\(_3\) have large piezoelectricity in NbOX\(_2\) provides for highly efficient interconversion between electrical and mechanical energy.

We compute the \(d_{ij}\) values for the top 8 materials (excluding SbF\(_3\)) and the largest components of \(e_{ij}\) and \(d_{ij}\) are shown in Fig. 3a and Table 1. The maximum \(e_{ij}\) and \(d_{ij}\) values for other 2D piezoelectrics discussed in the literature are also plotted in Fig. 3a for comparison (see also Supplementary Table S2). Some materials such as monolayer GeSe\(^2\), As\(_2\)S\(_3\), and As\(_2\)Se\(_3\) have large \(d_{ij}\) values but small \(e_{ij}\) values, corresponding to small values of their Young’s moduli. The small Young’s moduli limits the amount of force exerted in electric field-induced deformations. The 2D Young’s moduli \(C_{11}\) for monolayer NbOI\(_2\) is \(-76\) N m\(^{-1}\) (Supplementary Table S7) while the bulk value for \(C_{11}\) is \(-125\) GPa. A figure of merit adopted for thin-film piezoelectrics (TFFOM), when the passive elastic layer is much thicker than the piezoelectric material, is \(e_{ij}^c\), where \(e_{ij}\) is the dielectric constant and \(e_0\) is the vacuum permittivity.\(^2,3\). Thus, the piezoelectric stress coefficients rather than the piezoelectric strain coefficients are particularly important for 2D flexible piezoelectric applications.

It is clear that NbOX\(_2\) has the largest \(e_{ij}\) values in Fig. 3a. To our knowledge, there is only one 2D material, SnSe, with a predicted \(e_{11}\) value\(^2,3\) that is larger than NbOI\(_2\). Recent experiments on SnSe have, however, reported a much weaker piezoelectric performance\(^3\) (see Supplementary Table S8), which we attribute to the Poisson effect, which reduces the effective \(e_{11}\) value of SnSe by \(-51\%\) (see Supplementary Table S1). We note that our high throughput calculations do not account for the Poisson effect. However, the Poisson effect does not change the \(e_{11}\) values for NbOX\(_2\) (see Supplementary Table S1). The figure of merit (TFFOM) for our top 8 candidates from the high throughput calculations (except SbF\(_3\)) are presented in Fig. 3b and Table 1, where it is clear that NbOI\(_2\) has the largest TFFOM.

In Fig. 3a, we also indicate using solid symbols the materials that are piezoelectric in the thermodynamically most stable bulk form, and hollow symbols for those that are not. NbOX\(_2\) are among the minority of 2D materials that are piezoelectric both in the monolayer and in the bulk. The \(d_{ij}\) values are essentially the same for both monolayer and bulk NbOX\(_2\) (see Table S9). Of the 109 piezoelectric materials that we discovered, only 30 are also piezoelectric in the bulk, according to a similar high throughput study\(^1\) on the Materials Project database for bulk materials, from which the candidate monolayers were derived. A comparison of the largest \(e_{ij}\) values from the two independent studies indicates that the piezoelectric coefficients in the monolayer and the bulk are strongly correlated (see Supplementary Table S10 and Supplementary Fig. S4). The thickness-independent piezoelectric effect in NbOX\(_2\) implies that few-layer NbOX\(_2\) can be prepared for nanoscale piezoelectric applications without the need for a pre-selection process based on the number of layers.

The atomic structure of monolayer NbOX\(_2\) is shown in Fig. 2b, c. Along the y-direction, Peierls distortion results in alternating Nb-Nb distances, and along the x-direction, the Nb atom is displaced away from the high symmetry position where \(\delta x = x_1 - x_2\) (Fig. 2d), giving rise to a spontaneous polarization (Table 2). The degree of structural asymmetry along the x-direction is largest for NbOCl\(_2\) and smallest for NbOI\(_2\) (Fig. 2d). The asymmetry along the x-direction can be...
explained by the pseudo-Jahn-Teller effect (PJTE)\(^{32}\), where mixing between the valence O \(p\) orbitals and conduction Nb \(d\) orbitals results in a more energetically favorable configuration accompanied by structural distortion as well as increased Nb-O bond strengths and covalency (see SI for details). The piezoelectric tensor elements in Table 2 reflect the strong in-plane anisotropy of the system. In bulk NbOX\(_2\), the directions for the inversion-symmetry-breaking distortions are the same in all layers, and the difference in \(\delta_{\text{eqm}}\) is within 0.002 Å in the bulk and monolayer systems (Supplementary Table S3 and Table S11). Thus, the piezoelectric properties are similar in bulk, monolayer and thin film form.

Quantitative measurements of piezoelectric coefficients in 2D materials are challenging, since any small parasitic vibration, boundary effect, or electrostatic force during the piezoelectric measurement (especially the single-point measurement) significantly affects the accuracy of the measured values\(^{40}\). To provide quantitative information about the piezoelectric coefficients within the family of NbOX\(_2\), and to compare the piezoelectric coefficients with those of other known 2D piezoelectrics, \(\alpha\)-In\(3\)Se\(_3\) and CuInP\(_2\)S\(_8\), we performed laser scanning vibrometer (LSV)\(^{33}\) measurements on thick bulk-like samples. All these materials are also piezoelectric in the bulk. The existence of ferroelectricity and piezoelectricity in thin films of NbOX\(_2\) was demonstrated using piezoresponse force microscopy (PFM) for thicknesses down to sub-10 nm.

We synthesize large-sized NbO\(_{1.2}\) and NbOCl\(_2\) crystals grown by the chemical vapor transport method (refer to Methods for details). The crystal structures of the as-grown NbO\(_{1.2}\) and NbOCl\(_2\) crystals are confirmed by single-crystal X-ray diffraction (SC-XRD) (Supplementary CIFs and Supplementary Table S11). The crystallographic directions of the NbOX\(_2\) crystals are also similar in bulk, monolayer and thin film form.

Fig. 2 Maximum sheet piezoelectric tensor elements and atomic structures of selected materials. a High-throughput calculation results for maximum sheet piezoelectric stress tensor elements \((\varepsilon_{ij})\). The radial axis represents the magnitude of \(\varepsilon_{ij}\) in units of \(10^{-10}\) C m\(^{-1}\) on a log scale and the angular axis represents the 230 space groups. Materials with \(\varepsilon_{ij}\) larger than \(10 \times 10^{-10}\) C m\(^{-1}\) are labeled and their atomic structures are presented. The maximum \(\varepsilon_{ij}\) corresponds to \(\varepsilon_{26}\) for SbF\(_3\) and to \(\varepsilon_{11}\) for NbOX\(_2\). Atomic structures of selected materials are also presented. b Top view and c Side view down the \(x\)-axis to the atomic structure of monolayer NbOX\(_2\) (\(X = \text{I, Br, Cl}\)). Dark green balls denote Nb atoms; purple balls denote halogens; red balls denote O atoms. Dashed lines mark the unit cell boundaries. d Schematic, viewed along \(y\)-axis, showing relative displacement of Nb atoms along the \(x\)-axis away from the high symmetry position where \(\delta x = 0\) Å, to the equilibrium position where \(\delta x = \delta_{\text{eqm}}\). Additional structural parameters are provided in Supplementary Table S3. PJTE refers to the pseudo-Jahn-Teller effect.
corresponding piezoelectric strain tensor elements (eij) measured for various 2D materials. For additional notes on GeSe, please see Supplementary Table S3. (a) Plot of maximum sheet piezoelectric stress tensor elements (eij) and corresponding phase (Fig. 4b) and amplitude (Fig. 4c) images constructed using an in-plane (IP) PFM output channel. A clear contrast exists between different domains in the lateral phase and amplitude. The PFM phase indicates the direction of the ferroelectric polarization, whereas the PFM amplitude reflects the magnitude of the local piezoelectric response. The bright and dark contrasts in the PFM phase image indicate that there exist two oppositely polarized ferroelectric domains, characterized by a ~180° phase difference (Fig. 4d). Supplementary Fig. S6–S10 display additional PFM data for NbO12 and NbOCl2, demonstrating piezoelectric response down to 4.3 nm-thickness for NbO12.

To confirm the in-plane piezoelectric anisotropy, vector PFM36,37 is conducted on 10-nm-thick NbO12 (Fig. 4e–h) and 17-nm-thick NbOCl2 (Supplementary Fig. S11) flakes with height profiles shown in Supplementary Fig. S12. As expected, the in-plane PFM response is strongest when the polar axis is orthogonal to the cantilever long axis, as shown in Fig. 4e (φ is the polarization angle relative to the cantilever long axis). When the sample is rotated by 90 degrees, no lateral PFM contrast is observed (Fig. 4g, h). In addition, the out-of-plane piezoresponses for the NbOCl2 nanoflakes are typically negligible, as displayed in Supplementary Fig. S6 and Figs. S8–S10. The vector PFM results as well as predominantly in-plane response confirms that the physical origin of the PFM signals is piezoelectricity rather than electrostatic tip-sample interactions38,39.

We quantified the lateral (d11, d22) and vertical (d33) piezoelectric coefficients of NbO12 through laser scanning vibrometer (LSV)33 measurements. LSV is a non-contact optical technique that measures the vibration velocity of a moving piezoelectric surface by monitoring the interference pattern (Doppler frequency shift) between the scattered light and the incident light. By integrating the vibration velocity, the mechanical displacement in response to an applied electric field can be determined. The LSV vibration moduli are measured along the x (d11) (Fig. 5a, d), y (d22) (Fig. 5b, e) and z (d33) (Fig. 5c, f) directions of NbO12. Consistent with the

Table 1: Materials with eij > 10^{-10} C m^{-1}.

Material	ij	eij (10^{-10} C m^{-1})	dij (pm V^{-1})	Cij (N m^{-1})	TFFOM (nN)
NbO12	11	31.6	42.2	75.6	71.7
NbOBr2	11	26.4	30.0	89.0	63.2
NbOCl2	11	25.1	27.4	92.9	59.6
MoBr2O2	22	16.6	100.1	33.8	39.3
GeSe	22	12.3	122.2	18.2	6.0
SbAsO3	11	10.6	48.7	22.3	18.4
CuInP2Se6	22	10.1	62.3	44.5	3.1

* eij is the piezoelectric stress tensor element, dij is the piezoelectric strain tensor element, Cij is the elastic tensor element, and TFFOM is the figure of merit for thin film piezoelectric devices. Our computed in-plane dielectric constant of NbO12 is 12-15 (see Supplementary Table S6).

Table 2: Piezoelectric tensor elements and spontaneous polarizations of NbOX2.

Formula	e11	e12	e13	e24	e26	d11	d22	d33
NbO12	25.1	-1.1	-0.4	0.8	0.0	27.4	-4.1	5.4
NbOBr2	26.4	-1.0	-0.4	0.8	0.0	30.0	-5.8	170
NbOCl2	31.6	-1.0	-0.3	0.7	0.0	42.2	-5.1	52.6

* Sheet piezoelectric tensor elements eij are in units of 10^{-10} C m^{-1} and piezoelectric strain tensor elements dij are in pm V^{-1}. Piezoelectric tensor elements that are zero due to symmetry of the space group are omitted here. Spontaneous polarization along the x-direction (P_x) is calculated as the difference between the polarization of the equilibrium and symmetric structures.
Fig. 4 Piezoelectric force microscopy (PFM) investigation of thin NbOX₂. a Topography, b in-plane (IP) phase, c IP amplitude, and d phase profile across antiparallel polarization states of 82-nm-thick NbOি2 flake. e–g Vector PFM IP amplitude images of 10-nm-thick NbOি2 showing spontaneous polarization at 90°, 45°, and 0° angles relative to the cantilever long axis. h PFM amplitude profiles along the polar and nonpolar axes of the 10-nm-thick NbOি2 flake. Scale bars: 4 μm. Drive voltage: b, c 5 V, e–h 3 V. Drive frequency: b, c 65 kHz, e 827 kHz, f 974 kHz, g 890 kHz.

Fig. 5 Evaluation of the piezoelectric coefficients of NbOX₂ using a laser scanning vibrometer (LSV). 3D graphs of the instantaneous vibration when the displacement magnitude reaches the maximum under the sine-wave driving electrical signal. a, d Measurement along the lateral polar direction (\(d_{11}\)). b, e Measurements along the lateral nonpolar direction (\(d_{22}\)). c, f Measurements along the vertical nonpolar direction (\(d_{33}\)).
vector PFM data, the LSV vibration modalities further confirm the anisotropy of the piezoelectric response in NbOX2. Our measurements reveal that NbOBr exhibits stronger piezoelectric effects than NbOCl2 (the $d_{11(00)}$ values are ~21.8 pm V$^{-1}$ for NbOBr and ~ 9.4 pm V$^{-1}$ for NbOCl2), consistent with our theoretical predictions (Table 2). These values are likely to be underestimated due to the significant electric leakage of the NbOX2 samples. Despite this, our measured $d_{11(00)}$ piezoelectric coefficients are larger than the largest $d_{ij(00)}$ values we measured for common 2D ferroelectrics, such as α-12Se2 and CuInP2S6 (Supplementary Fig. S13). There is also a strong correlation between the measured $d_{11(00)}$ values and the corresponding computed values (Supplementary Fig. S14). These LSV results show that NbOX2 has superior piezoelectric performance compared to other 2D material piezoelectrics.

We analyze the origins of the large piezoelectric and ferroelectric effects in NbOX2, and their trends down the halogen group. The large values of e_{ij} arise predominantly from the lattice response to the applied strain (see Supplementary Table S12). This dominant ionic contribution can be written in an implied sum notation as

$$ e_{ij}^{\text{ion}} = Z_{m,i}^* \frac{\partial u_m}{\partial \xi_j} $$

where $Z_{m,i}^*$ is the dynamical charge (m is a composite label for atom and displacement direction and i is the direction of the polarization), u is the position vector of the atom and ξ denotes the applied strain. The dynamical charge is defined as the rate of change of polarization with atomic displacement, while $\frac{\partial u_m}{\partial \xi_j}$ quantifies the rate of change in atomic displacement with applied strain. The dynamical charges play an important role in both the piezoelectric and ferroelectric effects.

Figure 6a shows that the dynamical charges in the x-direction for Nb and O in NbOCl2 and NbOBr, decrease in magnitude as the off-center displacement, δx, increases. These dynamical charges are significantly larger in magnitude than their expected formal oxidation states (+4 for Nb and -2 for O) as well as their estimated static charges (see Supplementary Table S7). The anomalous dynamical charges can be attributed to the partial covalency present in the Nb-O bonds, which is more significant in NbOBr due to the smaller electronegativity of I compared to Cl (see SI and Supplementary Fig. S16).40 The smaller off-center distortion in NbOBr (smallest δ_{46}^{eqm}) further increases the dynamical charges at equilibrium compared to those for NbOCl2, contributing to the superior piezoelectric performance of NbOBr.

On the other hand, the integral of the dynamical charges with respect to atomic displacements, from the centered symmetric structure to the equilibrium off-centered structure, gives the magnitude of the spontaneous polarization at equilibrium, and the larger δ_{46}^{eqm} for NbOCl2 results in a larger $|\vec{P}|$ compared to NbOBr (Fig. 6a inset).

The larger magnitudes of $\frac{\partial u_m}{\partial \xi_j}$ (the superscript for m representing displacements in the x-direction) for Nb and X atoms in NbOBr (Fig. 6b) further contribute to the large e_{11} value for NbOBr (see also Supplementary Table S13). The observed trend in $\frac{\partial u_m}{\partial \xi_j}$ for Nb and X can be traced to the degree of bond covalency/ionicity in these systems, the more ionic NbOCl2 having stiffer bonds and hence smaller magnitudes of $\frac{\partial u_m}{\partial \xi_j}$. This trend can also be observed in the decrease in Young’s modulus C_{11} down the halogen group (see Supplementary Table S7). Figure 6c summarizes the different factors that contribute to e_{11} being largest for NbOCl2, in contrast to $|\vec{P}|$ being largest for NbOBr.

While our top candidates for monolayer piezoelectrics all exhibit in-plane piezoelectricity, we comment that out-of-plane piezoelectricity (non-zero e_{ij}) in the 2D monolayers is found in 46 of the materials in our database, as shown in Supplementary Fig. S17. Most of the non-zero e_{ij} values have magnitudes less...
than 1×10^{-10} C m$^{-1}$, with a few exceptions having values up to -4×10^{-10} C m$^{-1}$, as indicated in Supplementary Fig. S17 and Supplementary Table S14. It has been reported that bulk layered CuInP$_2$S$_6$ has an electromechanical coupling factor of 0.7–0.9, corresponding to a large out-of-plane piezoelectric coefficient which originates from the deformation of the van der Waals gap. Such a mechanism has not been considered in our study on monolayers. Our findings that monolayer and bulk NbOI$_2$ have exceptionally large in-plane piezoelectric effects are especially important for actuator applications that require pure in-plane movement.

In summary, we have identified, from among 2940 candidate monolayers, NbOI$_2$ as the material with the largest piezoelectric stress coefficient. Furthermore, NbOI$_2$ is one of the minority of monolayer piezoelectrics that is also piezoelectric in the bulk. Our experimentally measured values of piezoelectric strain coefficients are within a factor of two of the predicted value for NbOI$_2$, and are much larger than those measured concurrently for α-In$_2$Se$_3$ and CuInS$_2$. We have also verified in-plane ferroelectricity in NbOI$_2$. While NbOI$_2$ has the largest piezoelectric coefficients, NbOCI$_2$ has the largest spontaneous polarization. The excellent piezoelectric and ferroelectric effects in NbOX$_2$, as well as their trends down the halogen group, are rationalized on the basis of bond covalency and symmetry-breaking structural distortions in these materials. The structure-property correlations obtained here provide guidance for the design of functional piezoelectric and ferroelectric materials, while the discovery of 2D NbOI$_2$ as a high-performance piezoelectric paves the way for 2D piezoelectric devices.

Methods

Computational methods. For the high-throughput DFT calculations, only materials from space groups 1, 3, 6, 12, 14, 16, 174, 176, 177, 182, 188–190, 195–199, 207–220 are selected. These space groups lack inversion symmetry. DFT calculations are performed with the plane-wave pseudopotential code VASP, employing the generalized gradient approximation (GGA) for the exchange-correlation functional. We use an energy cutoff of 520 eV, a Monkhorst-Pack k point mesh with a density of 1500 per reciprocal atom (number of atoms per cell multiplied by the number of k-points), a force convergence criterion of 0.005 eV Å$^{-1}$ and a criterion of 10^{-10} eV for the convergence of the self-consistent cycle. The calculations are performed with a vacuum separation of about 20 Å between the 2D materials.

We modify the standard workflows developed by Materials Project to include additional post processing steps that convert the 3D piezoelectric tensor elements to 2D sheet piezoelectric tensor elements in the unit of C m$^{-1}$ by multiplying the former with the cell height. Other results, including the dynamical charge tensor (also known as the Born effective charge tensor), dielectric tensor (ionic and electronic contributions), point phonon eigenvalue and eigenvectors, full piezoelectric tensor (in both C m$^{-2}$ and C m$^{-1}$), maximum (sheet) piezoelectric tensor elements in C m$^{-2}$ and maximum (sheet) out-of-plane piezoelectric tensor elements in C m$^{-2}$ are also captured. Our work also inherits the consistency checks and filters in the Materials Project Workflow to detect errors arising from DFT calculation and convergence-related issues.

For the targeted study on NbOX$_2$, a Monkhorst-Pack k point mesh of $12 \times 6 \times 1$ including the Γ point are used. The atomic coordinates are fully relaxed using the conjugate gradient scheme until the maximum energy difference between iterations is less than 10^{-8} eV and the residual force is less than 0.001 eV Å$^{-1}$. Other parameters are inherited from the high-throughput calculations.

For calculations with fixed δz, the x-coordinates of the atomic positions are fixed while the y and δz coordinates are allowed to relax. The lattice constants are kept fixed. The obtained strain in the x-direction and allowing the atoms to relax. The elastic properties of NbOX$_2$ are obtained using a finite difference method as implemented in a VASP pseudopotential code. The elastic tensors are adapted for 2D materials according to the treatment by Choudhary et al.

The piezoelectric strain tensor (d_{ij}) is calculated from piezoelectric stress tensor (e_{ij}) through Supplementary Equation S7. Elements in d_{ij} related to the z-direction are set to 0.

Synthesis of single crystals of NbOI$_2$ and NbOCI$_2$. Monolayer NbOI$_2$ and NbOCI$_2$ are grown by the chemical vapor transport method. High-purity Nb (foil), iodine (crystals), and NbOCI$_2$ (powder) with a stoichiometric ratio NbOI$_2$ = 1:1:2 are used as precursors for the growth of NbOI$_2$. The mixture of precursors is placed in a quartz ampule, and the ampule is sealed after being evacuated (10^{-5} Torr).

Similarly, Nb, NbCl$_2$ (powder), and NbOCI$_2$ are used to grow NbOCI$_2$. The sealed quartz ampules are placed at the center of a horizontal dual-zone furnace. Both the heating zones were slowly cooled to 800 °C at a rate of 20 °C/min for 3 days. The ampules are then slowly cooled for 10 days with slightly different rates at the hot (1.2 °C h$^{-1}$) and cold (1.5 °C h$^{-1}$) zones. After the slow-cooling process, the furnace is turned off allowing the ampoules to cool down naturally. Crystals are extracted from the opened ampules under inert conditions of an N$_2$-filled glove box and then stored for future use.

X-ray diffraction (XRD) measurements. Single crystal X-ray diffractions of bulk NbOCI$_2$ and NbOI$_2$ crystals are measured using a four-circle goniometer Kappa geometry, Bruker AXS D8 Venture, equipped with a Photon 100 CMOS active pixel sensor detector. A molybdenum monochromated ($\lambda = 0.71073$ Å) X-Ray radiation is used for the measurement. The frames are integrated with the Bruker SAINT software using a narrow-frame algorithm. Data are corrected for absorption effects using the Multi-Scan method (SADABS). The structures are solved in the monoclinic unit cell and refined using the SHELXT, VERSIO 2014/5 Software. The final anisotropic refinement of the structures is performed by least squares procedures on weighted χ^2 values using the SHELXL-2014/7 (Sheldrick, 2014) included in the APEX v2016, 9.0, AXS Bruker program.

Piezoelectric force microscopy (PFM) characterization. Mechanical exfoliation is performed by peeling off as-grown crystals using the Scotch tape method. Exfoliated crystals are directly transferred onto fresh gold (Au) substrates for PFM characterization. PFM images are obtained using a Bruker Dimension Icon AFM in contact mode. PtIr-coated silicon tips with 0.1° cone angle were used. A constant of 0.4 N m$^{-1}$ are used for the PFM measurements. The drive frequency and drive amplitude for the PFM images are 30–975 kHz and 2.5–10 V, respectively. The PFM amplitude is expressed in pm or mV units depending on the selected PFM output channel. Angular-resolved PFM was performed by rotating the NbOX$_2$ samples with respect to the cantilever axis. The spectroscopic PFM hysteresis loops were acquired with ±10 V DC sweeps while applying an AC voltage of 5 V. PFM was performed in various contact scanning modes to measure both in-plane (buckling and twisting/torsional modes) and out-of-plane (deflection mode) components of the piezoresponse independently and simultaneously.

Laser scanning vibrometer (LSV) measurements. The effective piezoelectric coefficients of NbOX$_2$, α-In$_2$Se$_3$, and CuInS$_2$ (CIPS) are measured with a laser scanning vibrometer (OFOV-3001-S6, PolyTech GmbH) after the crystals are DC polarized under 150 V along the relevant crystallographic direction for 5 min. The LSV data are collected along the x (d_{11}), y (d_{12}) directions of NbOX$_2$ and along the z (d_{33}) directions of α-In$_2$Se$_3$ and CIPS under a unipolar AC signal of amplitude 10 V at 8 kHz through silver electrodes. The α-In$_2$Se$_3$ and CuInS$_2$ crystals were purchased from HQGraphene. The effective piezoelectric coefficients are deduced from the profile analysis of the instantaneous displacement data to determine the strain generated under the sine-wave driving electrical signal.

Ferroelectric measurements. Polarization–electric field (P–E) loops were recorded using a ferroelectric tester (Precision Multifunction II, Radiant Technologies). Ferroelectric NbOX$_2$ devices are fabricated by transferring NbOI$_2$ flakes onto interdigitated platinum (Pt) electrodes (10/5 μm, electrode/gap) via poly (dimethyl siloxane) (PDMS) stamp-transfer method. The Pt contacts (70 nm thick) are patterned on thermally grown silicon dioxide using electron beam lithography, electron beam evaporation, and lift-off process. A transfer station with an optical microscope and a rotating stage is used to transfer the NbOI$_2$ flakes in such a way that the device’s lateral electrical field is aligned along either the in-plane polar or nonpolar axis of the transferred flakes. The P–E loop is acquired with ±10 V sweeps. The device is poled in the positive direction at 120 °C in a Seous furnace. Differential scanning calorimetry (DSC) analysis was performed under a nitrogen atmosphere with a heating rate of 10 °C min$^{-1}$ using Mettler-Toledo DSC.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability. The code used in this work is modified from the open-source tools developed by Materials Project, in particular, Python Materials Genomics (http://pymatgen.org/) and Atome (https://atome.org). The versions used in this work are pymatgen/2018.8.10 and atome/0.8.2 for all the calculations.

Received: 9 January 2022; Accepted: 15 March 2022; Published online: 07 April 2022
References

1. de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).

Gullapalli, H. et al. Flexible piezoelectric ZnO-paper nanocomposite strain sensor. Small 6, 1641–1646 (2010).

3. Wang, X. et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 6, 2768–2772 (2006).

4. Doll, J. C., Peng, A. W., Ricci, A. J. & Pruitt, B. L. Faster than the speed of hearing: nanomechanical force probes enable the electromechanical observation of cochlear hair cells. Nano Lett. 12, 6107–6111 (2012).

5. Yun, Y. et al. A multi-wall carbon nanotube tube electrochemical actuator. Nano Lett. 6, 689–693 (2006).

Romano, G. et al. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401 (2011).

7. Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

8. Wang, X. et al. Subatomic deformation driven by vertical piezoelectricity from CDs ultrathin films. Sci. Adv. 2, e1600209 (2016).

9. Li, P. et al. A self-powered 2D-material sensor unit driven by a SnSe piezoelectric nanogenerator. J. Mater. Chem. A 9, 4716–4723 (2021).

10. Chen, Q. N., Ou, Y., Ma, F. & Li, J. Mechanisms of electromechanical coupling in perovskite oxides: the case of KNbO3. Phys. Rev. B 50, 8911–8914 (1994).

11. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

12. Zhang, L. et al. Dual-stage nanopositioning scheme for 10 Tbit/in2 hard disk drives with a shear-mode piezoelectric single-crystal microactuator. IEEE Trans. Magn. 51, 1–9 (2015).

13. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

14. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation. Phys. Rev. B 53, 1962–1962 (1996).

15. Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Computational Mater. Sci. 139, 140–152 (2017).

16. Jain, A. et al. Flow system designed for high-throughput applications. Concurreny Comput.: Pract. Experience 27, 5037–5059 (2015).

17. Choudhary, K., Cheon, G., Reed, E. & Tavares, F. Elastic properties of bulk and low-dimensional materials using van der Waals density functional. Phys. Rev. B 98, 014107 (2018).

18. Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4, 015042 (2017).

Acknowledgements

Y.W. acknowledges support from the NUS Research Scholarship. K.Y. and W.H.L acknowledge partial support from the National Research Foundation, under the Competitiveness Research Programme of Singapore. NRF-CRP15-2015-04, and A*STAR, under RIE2020 AME Individual Research Grant (IRG) (Grant No.: A20E5E0086). G.E. acknowledges support from the Singapore MOE (Grant No. MOE2018-T3-1-005). L.S. acknowledges support from the Singapore MOE (Grant No. MOE2018-T2-1-005). I.A. acknowledges funding from A*STAR AME-IRG program (Grant No: A19H8c003S). Y.W., I.A., I.V., G.E., K.P.L., and S.Y.Q. wrote the manuscript. All authors read and commented on the manuscript.

Author contributions

S.Y.Q. and L.S. conceived the project. S.Y.Q. led the collaborative effort and direction of the project, and provided guidance on the theoretical analysis and calculations. L.S. provided guidance on the high-throughput piezoelectric calculations. Y.W. performed the calculations and theoretical analysis. I.A. designed the experiments and performed measurements. I.V. performed electron beam milling and micromachining. M.K. performed the PFM measurements. K.P.L. performed the LSV measurements under the supervision of K.P.L. K.C.K., L.W., and I.A. performed the PFM measurements. K.C.K. provided guidance on the high-throughput piezoelectric calculations. S.Y.Q. and I.A. read and commented on the manuscript.

Competing interests

The authors declare no competing interests.
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29495-y.

Correspondence and requests for materials should be addressed to Kian Ping Loh, Lei Shen or Su Ying Quek.

Peer review information Nature Communications thanks the other anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.