Betti numbers of Stanley–Reisner rings with pure resolutions

Gábor Hegedüs

Johann Radon Institute for Computational and Applied Mathematics

February 1, 2011

Abstract

Let Δ be simplicial complex and let $k[\Delta]$ denote the Stanley–Reisner ring corresponding to Δ. Suppose that $k[\Delta]$ has a pure free resolution. Then we describe the Betti numbers and the Hilbert–Samuel multiplicity of $k[\Delta]$ in terms of the h–vector of Δ. As an application, we derive a linear equation system for the components of the h–vector of the clique complex of an arbitrary chordal graph.

1 Introduction

Let k denote an arbitrary field. Let R be the graded ring $k[x_1, \ldots, x_n]$. The vector space $R_s = k[x_1, \ldots, x_n]_s$ consists of the homogeneous polynomials of total degree s, together with 0.

In [9] R. Fröberg characterized the graphs G such that G has a linear free resolution. He proved:

Theorem 1.1 Let G be a simple graph on n vertices. Then $R/I(G)$ has linear free resolution precisely when \overline{G}, the complementary graph of G is chordal.

0 Keywords. Betti number, Hilbert function, Stanley-Reisner ring

2000 Mathematics Subject Classification. 05E40, 13D02, 13D40

1
In [6] E. Entander generalized Theorem 1.1 for generalized chordal hypergraphs.

In this article we prove explicit formulas for the Betti numbers of the Stanley–Reisner ring \(k[\Delta]\) such that \(k[\Delta]\) has a pure free resolution in terms of the \(h\)-vector of \(\Delta\).

In Section 2 we collected some basic results about simplicial complexes, free resolutions, Hilbert functions and Hilbert series. We present our main results in Section 3.

2 Preliminaries

2.1 Free resolutions

Recall that for every finitely generated graded module \(M\) over \(R\) we can associate to \(M\) a minimal graded free resolution

\[
0 \rightarrow \bigoplus_{i=1}^{\beta_p} R(-d_{p,i}) \rightarrow \bigoplus_{i=1}^{\beta_{p-1}} R(-d_{p-1,i}) \rightarrow \ldots \rightarrow \bigoplus_{i=1}^{\beta_0} R(-d_{0,i}) \rightarrow M \rightarrow 0,
\]

where \(p \leq n\) and \(R(-j)\) is the free \(R\)-module obtained by shifting the degrees of \(R\) by \(j\).

Here the natural number \(\beta_k\) is the \(k\)’th total Betti number of \(M\) and \(p\) is the projective dimension of \(M\).

The module \(M\) has a pure resolution if there are constants \(d_0 < \ldots < d_p\) such that

\[
d_{0,i} = d_0, \ldots, d_{p,i} = d_p
\]

for all \(i\). If in addition

\[
d_i = d_0 + i,
\]

for all \(1 \leq i \leq p\), then we call the minimal free resolution to be \(d_0\)-linear.

In [20] Theorem 2.7 the following bound for the Betti numbers was proved.

Theorem 2.1 Let \(M\) be an \(R\)-module having a pure resolution of type \((d_0, \ldots, d_p)\) and Betti numbers \(\beta_0, \ldots, \beta_p\), where \(p\) is the projective dimension of \(M\). Then

\[
\beta_i \geq \binom{p}{i}
\]

for each \(0 \leq i \leq p\).
2.2 Hilbert–Serre Theorem

Let $M = \bigoplus_{i \geq 0} M_i$ be a finitely generated nonnegatively graded module over the polynomial ring R. We call the formal power series

$$H_M(z) := \sum_{i=0}^{\infty} h_M(i) z^i$$

the Hilbert–series of the module M.

The Theorem of Hilbert–Serre states that there exists a (unique) polynomial $P_M(z) \in \mathbb{Q}[z]$, the so-called Hilbert polynomial of M, such that $h_M(i) = P_M(i)$ for each $i >> 0$. Moreover, P_M has degree $\dim M - 1$ and $(\dim M - 1)!$ times the leading coefficient of P_M is the Hilbert–Samuel multiplicity of M, denoted here by $e(M)$.

Hence there exist integers m_0, \ldots, m_{d-1} such that $h_M(z) = m_0 \cdot \binom{z}{d-1} + m_1 \cdot \binom{z}{d-2} + \ldots + m_{d-1}$, where $\binom{z}{r} = \frac{1}{r!} z(z-1) \ldots (z-r+1)$ and $d := \dim M$. Clearly $m_0 = e(M)$.

We can summarize the Hilbert-Serre theorem as follows:

Theorem 2.2 (Hilbert–Serre) Let M be a finitely generated nonnegatively graded R–module of dimension d, then the following statements hold:

(a) There exists a (unique) polynomial $P(z) \in \mathbb{Z}[z]$ such that the Hilbert–series $H_M(z)$ of M may be written as

$$H_M(z) = \frac{P(z)}{(1 - z)^d}$$

(b) d is the least integer for which $(1 - z)^d H_M(z)$ is a polynomial.

2.3 Simplicial complexes and Stanley–Reisner rings

We say that $\Delta \subseteq 2^{[n]}$ is a simplicial complex on the vertex set $[n] = \{1, 2, \ldots, n\}$, if Δ is a set of subsets of $[n]$ such that Δ is a down–set, that is, $G \in \Delta$ and $F \subseteq G$ implies that $F \in \Delta$, and $\{i\} \in \Delta$ for all i.

The elements of Δ are called faces and the dimension of a face is one less than its cardinality. An r-face is an abbreviation for an r-dimensional face. The dimension of Δ is the dimension of a maximal face. We use the notation $\dim(\Delta)$ for the dimension of Δ.
If \(\dim(\Delta) = d - 1 \), then the \((d + 1)\)-tuple \((f_{-1}(\Delta), \ldots, f_{d-1}(\Delta))\) is called the \textit{f-vector} of \(\Delta\), where \(f_i(\Delta)\) denotes the number of \(i\)-dimensional faces of \(\Delta\).

Let \(\Delta\) be an arbitrary simplicial complex on \([n]\). The \textit{Stanley–Reisner ring} \(k[\Delta] := R/I(\Delta)\) of \(\Delta\) is the quotient of the ring \(R\) by the \textit{Stanley–Reisner ideal}

\[
I(\Delta) := \langle x^F : F \notin \Delta \rangle,
\]
generated by the non–faces of \(\Delta\).

The following Theorem was proved in [1] Theorem 5.1.7.

Theorem 2.3 Let \(\Delta\) be a \((d - 1)\)-dimensional simplicial complex with \(f\)-vector \(f(\Delta) := (f_{-1}, \ldots, f_{d-1})\). Then the Hilbert–series of the Stanley–Reisner ring \(k[\Delta]\) is

\[
H_{k[\Delta]}(z) = \sum_{i=0}^{d-1} \frac{f_i z^i}{(1 - t)^{i+1}}.
\]

Lemma 2.4 The \(f\)-vector and the \(h\)-vector of a \((d - 1)\)-dimensional simplicial complex \(\Delta\) are related by

\[
\sum_i h_i t^i = \sum_{i=0}^{d} f_{i-1} t^i (1 - t)^{d-i}.
\]

In particular, the \(h\)-vector has length at most \(d\), and

\[
h_j = \sum_{i=0}^{j} (-1)^{j-i} \binom{d-i}{j-i} f_{i-1}
\]
for each \(j = 0,\ldots,d\).
3 Our main result

In the following Theorem we describe the Betti numbers of $k[\Delta]$ in terms of the h–vector of Δ.

Theorem 3.1 Let Δ be a $(d-1)$–dimensional simplicial complex. Suppose that the Stanley–Reisner ring $k[\Delta]$ has a pure free resolution

$$
\mathcal{F}_\Delta : 0 \rightarrow R(-d_p)^{\beta_p} \rightarrow \ldots \rightarrow
$$

$$
\rightarrow R(-d_1)^{\beta_1} \rightarrow R(-d_0)^{\beta_0} \rightarrow R \rightarrow k[\Delta] \rightarrow 0.
$$

Here p is the projective dimension of the Stanley–Reisner ring $k[\Delta]$.

If $h(\Delta) := (h_0(\Delta), \ldots, h_d(\Delta))$ is the h–vector of the complex Δ, then

$$
\beta_i = \sum_{\ell=0}^{d_i} (-1)^{\ell+i+1} \binom{n-d}{\ell} h_{d_i-\ell}
$$

for each $0 \leq i \leq p$.

Remark. Clearly $h_i = 0$ for each $i > d$.

Remark. J. Herzog and M. Kühl proved similar formulas for the Betti number in [16] Theorem 1. Here we did not assume that the Stanley–Reisner ring $k[\Delta]$ with pure resolution is Cohen–Macaulay.

Proof. Let $M := k[\Delta]$ denote the Stanley–Reisner ring of Δ. Then we infer from Theorem 2.3 that

$$
H_M(z) = \frac{\sum_{i=0}^{d} h_i z^i}{(1 - z)^d}.
$$

(5)

Since the Hilbert–series is additive on short exact sequences, and since

$$
H_R(z) = \frac{1}{(1 - z)^n},
$$

we conclude...
and consequently
\[H_{R(-s)}(z) = \frac{z^s}{(1 - z)^n}, \]
the pure resolution
\[\mathcal{F}_\Delta : 0 \rightarrow R(-d_p)\beta_p \rightarrow \ldots \rightarrow \]
\[R(-d_1)\beta_1 \rightarrow R(-d_0)\beta_0 \rightarrow R \rightarrow M \rightarrow 0. \] (6)
\[\quad \rightarrow R(0) \rightarrow R(0) \rightarrow R(0) \rightarrow R(0) \rightarrow 0. \] (7)
yields to
\[H_M(z) = \frac{1}{(1 - z)^n} + \sum_{i=0}^{p} (-1)^{i+1} \beta_i \frac{z^{d_i}}{(1 - z)^n}, \] (8)
where \(p = \text{pdim}(M). \)

Write \(d := \text{dim}M, \) and let \(m := \text{codim}(M) = n - d. \) It follows from the Auslander–Buchbaum formula that \(m \leq p. \)

Comparing the two expressions (8) and (5) for \(H_M, \) we find
\[(1 - z)^m \left(\sum_{i=0}^{d} h_i z^i \right) = \sum_{i=0}^{p} (-1)^{i+1} \beta_i z^{d_i} + 1 \] (9)

Using the binomial Theorem we get that
\[\left(\sum_{j=0}^{n-d} (-1)^j \binom{n-d}{j} z^j \right) \left(\sum_{i=0}^{d} h_i z^i \right) = \sum_{i=0}^{p} (-1)^{i+1} \beta_i z^{d_i}. \] (10)

Comparing the coefficients on the two sides of (10), we get the result.

Corollary 3.2 Let \(\Delta \) be a \((d-1)\)-dimensional simplicial complex. Then
\[e(k[\Delta]) = f_{d-1}. \]

Proof. It follows from [1] Proposition 4.1.9 and (2) that
\[e(k[\Delta]) = \left(\sum_{i=0}^{d} h_i z^i \right) \bigg|_{z=1} = \sum_{i=0}^{d} h_i = f_{d-1}. \]
Corollary 3.3 Let Δ be a $(d-1)$-dimensional simplicial complex. Suppose that the Stanley–Reisner ring $k[\Delta]$ has an t-linear free resolution

$$
\mathcal{F}_{\Delta} : 0 \rightarrow R(-t - p)^{\beta_p} \rightarrow \ldots \rightarrow R(-t - 1)^{\beta_1} \rightarrow R(-t)^{\beta_0} \rightarrow R \rightarrow k[\Delta] \rightarrow 0. \tag{11}
$$

Here p is the projective dimension of the Stanley–Reisner ring $k[\Delta]$.

If $h(\Delta) := (h_0(\Delta), \ldots, h_d(\Delta))$ is the h-vector of the complex Δ, then

$$
\beta_i = \sum_{\ell=0}^{t+i} (-1)^{\ell+i+1} h_{t+i-\ell} \binom{n-d}{\ell}
$$

for each $0 \leq i \leq p$.

Corollary 3.4 Let Δ be a $(d-1)$-dimensional simplicial complex. Suppose that the Stanley–Reisner ring $k[\Delta]$ has an t-linear free resolution

$$
\mathcal{F}_{\Delta} : 0 \rightarrow R(-t - p)^{\beta_p} \rightarrow \ldots \rightarrow R(-t - 1)^{\beta_1} \rightarrow R(-t)^{\beta_0} \rightarrow R \rightarrow k[\Delta] \rightarrow 0. \tag{13}
$$

Here p is the projective dimension of the Stanley–Reisner ring $k[\Delta]$.

If $h(\Delta) := (h_0(\Delta), \ldots, h_d(\Delta))$ is the h-vector of the complex Δ, then

$$
\sum_{\ell=0}^{j} (-1)^{\ell} h_{j-\ell} \binom{n-d}{\ell} = 0.
$$

for each $j > p+t$.

Proof. Let

$$
P(z) := 1 + \sum_{i=0}^{p} (-1)^{i+1} \beta_i z^{t+i}
$$

Clearly deg$(P) \leq p + t$. Comparing the coefficients of both side of (10), we get the result. \qed
Corollary 3.5 Let \(G \) be an arbitrary chordal graph. Let \(\Delta := \Delta(G) \) be the clique complex of \(G \) and \(d := \dim(\Delta) + 1 \). Let \(h(\Delta) := (h_0(\Delta), \ldots, h_d(\Delta)) \) denote the \(h \)-vector of the complex \(\Delta \). Let \(p \) be the projective dimension of the Stanley–Reisner ring \(k[\Delta] \). Then
\[
\sum_{\ell=0}^{j} (-1)^{\ell} h_{j-\ell} \binom{n-d}{\ell} = 0
\]
for each \(j > p + 2 \).

Proof. This follows easily from Theorem 1.1 and Corollary 3.4. \(\square \)

Corollary 3.6 Let \(\Delta \) be a \((d-1) \)-dimensional simplicial complex. Suppose that the Stanley–Reisner ring \(k[\Delta] \) has a pure free resolution
\[
\mathcal{F}_\Delta : 0 \rightarrow R(-d_p)^{\beta_p} \rightarrow \ldots \rightarrow
\]
\[
\rightarrow R(-d_1)^{\beta_1} \rightarrow R(-d_0)^{\beta_0} \rightarrow R \rightarrow k[\Delta] \rightarrow 0.
\]
(15)

Here \(p \) is the projective dimension of the Stanley–Reisner ring \(k[\Delta] \). Then
\[
\sum_{\ell=0}^{d_i} (-1)^{\ell+i+1} \binom{n-d}{\ell} h_{d_i-\ell} \geq \binom{p}{i}
\]
(17)
for each \(0 \leq i \leq p \).

Proof. This follows easily from Theorem 2.1 and Theorem 3.1. \(\square \)

Acknowledgements. I am indebted to Josef Schicho, Russ Woodroofe and Lajos Rónyai for their useful remarks.
References

[1] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.

[2] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms, Springer, 1992.

[3] D. Cox, J. Little, D. O'Shea, Using Algebraic Geometry, Springer, 2005.

[4] Dirac, G. A., On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25 (1961) 7176.

[5] E. Emtander, Betti numbers of hypergraphs. Comm. Algebra 37 (2009), no. 5, 1545–1571.

[6] E. Emtander, A class of hypergraphs that generalizes chordal graphs. Math. Scand. 106 (2010), no. 1, 50–66.

[7] S. Faridi, Cohen-Macaulay properties of square-free monomial ideals. J. Combin. Theory Ser. A 109 (2005), no. 2, 299–329.

[8] S. Faridi, The facet ideal of a simplicial complex Manuscripta Math. 109 (2002), no. 2, 159–174.

[9] R. Fröberg, On Stanley-Reisner rings. Topics in algebra, Part 2 (Warsaw, 1988), 57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990.

[10] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.

[11] H. T. Hà; A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebraic Combin. 27 (2008), no. 2, 215–245.

[12] H. T. Hà; A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals. J. Algebra 309 (2007), no. 1, 405–425.
[13] J. Herzog, T. Hibi, X. Zheng, Dirac’s theorem on chordal graphs and Alexander duality. *European J. Combin.* 25 (2004), no. 7, 949-960.

[14] G. Hegedüs, Betti numbers of edge ideals of uniform hypergraphs, see http://arxiv.org/abs/1009.0394

[15] J. Herzog, T. Hibi, S. Murai, N. V. Trung, X. Zheng, Kruskal-Katona type theorems for clique complexes arising from chordal and strongly chordal graphs. *Combinatorica* 28 (2008), no. 3, 315-323.

[16] J. Herzog, M. Kühl, On the Betti numbers of finite pure and linear resolutions. *Comm. Algebra* 12 (1984), no. 13-14, 16271-1646.

[17] S. Jacques, Betti Numbers of Graph Ideals, PhD Thesis, available online http://arxiv.org/abs/math/0410107

[18] E. Miller; B. Sturmfels, Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005.

[19] S. Morey; E. Reyes; R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of Knig type. *J. Pure Appl. Algebra* 212 (2008), no. 7, 1770–1786

[20] T. Römer, Bounds for Betti numbers. *J. Algebra* 249 (2002), no. 1, 20-37.

[21] R. H. Villarreal, Cohen-Macaulay graphs. *Manuscripta Math.* 66 (1990), no. 3, 277–293.

[22] R. H. Villarreal, Monomial algebras. Monographs and Textbooks in Pure and Applied Mathematics, 238. Marcel Dekker, Inc., New York, 2001

[23] R. Woodroofe, Chordal and sequentially Cohen-Macaulay clutters, available online http://arxiv.org/abs/0911.4697

[24] Zheng, X. Resolutions of facet ideals. *Comm. Algebra* 32 (2004), no. 6, 23012324.

10