Coastal Habitats as Surrogates for Taxonomic, Functional and Trophic Structures of Benthic Faunal Communities

Anna Törnroos*, Marie C. Nordström, Erik Bonsdorff

Åbo Akademi University, Department of Biosciences, Environmental and Marine Biology, Turku, Finland

Abstract

Due to human impact, there is extensive degradation and loss of marine habitats, which calls for measures that incorporate taxonomic as well as functional and trophic aspects of biodiversity. Since such data is less easily quantifiable in nature, the use of habitats as surrogates or proxies for biodiversity is on the rise in marine conservation and management. However, there is a critical gap in knowledge of whether pre-defined habitat units adequately represent the functional and trophic structure of communities. We also lack comparisons of different measures of community structure in terms of both between- (β) and within-habitat (α) variability when accounting for species densities. Thus, we evaluated a priori defined coastal habitats as surrogates for traditional taxonomic, functional and trophic zoobenthic community structure. We focused on four habitats (bare sand, canopy-forming algae, seagrass above- and belowground), all easily delineated in nature and defined through classification systems. We analyzed uni- and multivariate data on species and trait diversity as well as stable isotope ratios of benthic macrofauna. A good fit between habitat types and taxonomic and functional structure was found, although habitats were more similar functionally. This was attributed to within-habitat heterogeneity so when habitat divisions matched the taxonomic structure, only bare sand was functionally distinct. The pre-defined habitats did not meet the variability of trophic structure, which also proved to differentiate on a smaller spatial scale. The quantification of trophic structure using species density only identified an epi- and an infaunal unit. To summarize the results we present a conceptual model illustrating the match between pre-defined habitat types and the taxonomic, functional and trophic community structure. Our results show the importance of including functional and trophic aspects more comprehensively in marine management and spatial planning.

Introduction

The great challenge facing conservation today is how to include the many aspects of biodiversity and ecosystem functioning when establishing and managing protected areas and reserves. The technical innovations in sensing and rapid global habitat change which directly affects these both terrestrial and marine systems because of the extensive mapping of the environment give researchers and managers the means to overcome the practicalities of this issue. However, as there always will be costs and limitations associated with gathering data, the use of different surrogate estimates and proxies is growing. These are aimed to encompass the variety of biological diversity, from genes to ecosystems [1]. A surrogate variable approximates the less easily quantifiable measure of interest that would otherwise remain unknown, e.g. the overall richness of species in an area [2]. This means that the efficiency of the surrogate or the proxy must be measurable in terms of how well it correlates with the target feature in space and time, and how well it performs when used for selecting new protected areas [2]. The surrogate can be biotic, such as other taxa [3–5], or abiotic and thus refer to environmental variables [6,7]. An increasingly utilized proxy for biodiversity is some type of pre-defined or classified landscape patch or habitat [8]. Habitats as units have proven popular since they are recognizable and separable in nature based on physical-biological structures such as vegetation types, or abiotic attributes like topography, sediment characteristics or hydro-chemical variables. Thus, mapping of these on a large scale is fairly easily done [9,10]. The use of habitats as surrogates for species diversity have been a given choice in both terrestrial and marine systems because of the extensive and rapid global habitat change which directly affects these...
recent theoretical and empirical progress in this field has been
diversity have been used in a wide variety of habitats [5].
Habitats as surrogate units have on the other hand mostly
been applied in and assessed for tropical coral reefs and
adjacent ecosystems [8,15–17]. However, habitats have
recently also been used to describe the functional structure of
communities and particularly fish assemblages [15,17]. The
suitability of habitats as proxies for faunal functional structure is
usually assessed through determining number of functional
groups composed of generally three organism traits (trophic
group, size and mobility) [17]. More advanced measures such
as functional indices or multitrait analysis have to our
knowledge not been used to evaluate the surrogates, although
recent theoretical and empirical progress in this field has been
rapid [18–21]. Evaluation of functional characteristics is central,
as functional divergence between communities in two habitats
is not automatically evident from taxonomic composition, which
theoretically can deviate substantially without affecting the
functional or trophic diversity [22].

The use of surrogates is also on the rise for European
temperate benthic ecosystems, as more comprehensive and
univocal marine benthic habitat maps and classification
schemes (e.g. EUNIS) have been produced [23–26]. Thus, at
this stage of the development of benthic marine conservation,
asking what actually is conserved when a certain habitat or
biotope is safeguarded and managed is not irrelevant. This
type of surrogate unit for prediction and planning is to a large
extent the level on which future marine environmental
legislation and management are set (e.g. EU Habitats
Directive1992/2007, EU Water Framework Directive 2000, EU
Marine Strategy Framework Directive 2008). Apart from the
fact that the accuracy of habitats as proxies for functional
structure of communities has rarely been assessed empirically,
there are other general gaps in surrogacy and theoretical
literature. It is unclear what constitutes an appropriate unit on a
community level for conserving trophic structure in nature.
Although functional diversity has been taken into consideration
to some degree, the functioning of an ecosystem is also
dependent on the linkages between and within its components,
which relates to food web structure [27]. This aspect of
biodiversity and ecosystem functioning adds an important level
of complexity and is acknowledged as a critical criterion for
implementing a sound and holistic ecosystem-based
management [28]. If habitat maps and habitat definitions are
going to be used as tools for managers, scientific knowledge is
also required about how the trophic structure corresponds to
these. The knowledge about the relationships between trophic
structure and functioning in marine systems has evolved but
has mainly been focused on effects of species loss on different
trophic levels and groups [29,30]. Recently, the habitat concept
and trophic measures have also been discussed from a more
applied perspective [31–34]. Examining stable isotope signals,
especially carbon ($\delta^{13}C$), of both producers and consumers
makes it possible to establish the origins and flow of organic
matter that incorporates into food webs in different
environments [27]. Spatial differences in consumer isotopic
signatures may be due to site-specificity in diets or spatial
variability in the signal of the same food source [27]. Studies
have shown that isotopic composition of faunal organisms on
larger scales, i.e. over hundreds of meters, often show a
homogenous pattern due to water movement of particulate
organic matter [32]. In comparison, consumers seem to
assimilate carbon on much finer scales, within meters, and thus
within habitats rather than on a gradient across habitat
boarders [33,35]. The question for managers and spatial
planners would then be whether the isotope signatures correspond with the pre-defined and mapped habitat units. If
this is not the case then either a re-assessment of the precision
of habitat maps or a rethinking of suitable units to safeguard
trophic structure is needed.

Another related issue is the lack of comparisons of how well
pre-defined habitat units simultaneously cover the three focal
aspects of community structure: taxonomic, functional and
trophic structure. In fact, the relationship between habitat
attributes and functional or trophic variables can differ from
relationships found for species diversity or compositional
patterns [17,36]. Contrasts between specifically taxonomic and
functional structures in relation to different environmental
variables have been shown in previous work [37–40]. Similarly,
taxonomic and trophic structures have shown to vary differently
on large and small spatial scales [41]. Therefore, as pointed
out above, simultaneous quantifications of all three measures are
preferred [36]. This applies especially to marine systems
for which more sophisticated marine spatial planning efforts
(e.g. Integrated coastal zone - and Ecosystem-based
management) and applications of habitat-classification
frameworks are on the way [26].

In this study, we are not trying to re-define the habitat
concept or definitions, rather test generally accepted types of
“habitats” which are easily delineated in nature and defined
through classification systems. Instead, our focus is to re-
assess the surrogate units when accounting for species
density. Variation in organism abundances between habitats is
implicit, due to different resource requirements of species. The
importance of abundance for understanding habitats in a
functional and trophic perspective is not well studied, nor
properly considered in marine management [37]. Since the
effectiveness of identifying community structure through habitat
units is also dependent on the variability among patches of the
same habitat, we do not only focus on between-habitat (β)
differences but also on within-habitat (α) heterogeneity [16,42].

The general objective of this study was to evaluate a priori
defined coastal habitats as surrogates for (i) traditional
taxonomic, (ii) functional and (iii) trophic zoobenthic community
structure. More specifically, we sought to do this by 1)
determining between and within-habitat differences for four
habitats (sand, canopy-forming algae, and above- and
belowground of a mixed seagrass meadow) using univariate
community data. We used data on species richness and
density as well as functional trait data covering number of traits
expressed and species richness within traits. An initial
assessment of trophic habitat differences was accomplished by
comparing variability in isotope signals between habitats.
Furthermore, to comparatively test the efficiency of the
surrogates when accounting for species density, 2) we used the subsequent multivariate data on traditional taxonomic composition, functional trait expressions and stable isotope ratios (13C:12C and 15N:14N) of benthic primary consumers. We hypothesized that the match between habitats and community structure would vary between the different measures leading to the importance of within-habitat variability. The best match, separate units in all four habitats, was expected for the taxonomic structure since this is to a large extent the information on which we base habitat categorizations. A less accurate match was predicted for the functional and trophic structure in general because of a lower between-habitat heterogeneity, or in other words higher similarity of habitat units.

Material & Methods

Coastal habitats and numerical data collection

Macrozoobenthos was sampled in four coastal habitats; bare sand, canopy-forming algae and above and belowground parts of a mixed seagrass bed (hereafter seagrass aboveground and seagrass belowground) in a moderately exposed shallow bight in the Åland Islands, Northern Baltic Sea in July 2010. These types of habitats are common in shallow coastal bays worldwide and are especially important for primary and secondary production and as nursery habitats for fish [43]. In the Baltic Sea, they are threatened by general habitat degradation e.g. by habitat fragmentation and loss (seagrass meadow), eutrophication and reduced light levels (canopy-forming algae) or drifting algal mats (both bare sand and vegetation) [44–46]. The habitats and the type of higher hierarchy or setting in which they can be found, a “large shallow bay”, are both valued as important. They provide provisional (e.g. food and other resources), regulatory (e.g. sediment retention, eutrophication mitigation) and cultural (e.g. recreational and aesthetic values) goods and services [43,47].

In addition, the embayment and the habitats have high priority in national and international marine conservation and protection strategies (the EU Habitats Directive, the EU Marine Strategy Framework Directive and the HELCOM BSAP 2007). The study was carried out on private land and the owner gave permission to conduct the sampling on this site.

The rocky shore canopy-forming algal habitat sampled in this study consisted predominantly of bladderwrack (*Fucus vesiculosus* L.) and associated epiphytic algae, as well as annual red and green algae to a small extent. The mixed seagrass meadow was dominated by eelgrass (*Zostera marina* L.), but other angiosperm plant species, such as *Potamogeton* spp., *Nitella* sp., *Ruppia maritima* L. and *Ruppia cirrosa* L. were also noted (see 48 for more specific site characteristics). Sampling in the canopy-forming algae and the mixed seagrass meadow was conducted in central parts of the vegetation patches to avoid possible edge effects. The organic content (loss on ignition, %) did not differ between the non-vegetated bare sand habitat and the mixed seagrass meadow (Mann-Whitney $p = 0.222$), although it was lower in the sand (mean 0.20 ± 0.01 SE) compared to the meadow (mean 0.32 ± 0.06 SE). Concerning trophic structure, previous studies have shown a distinct isotopic pattern in the benthic food web in the area, both temporally stable - between and within years - and spatially consistent over kilometers [49,50]. Therefore, we chose to replicate within different habitats, rather than regionally. The canopy-forming algal habitat and the seagrass habitats sampled in this study were separated from the sand habitat with a distance of about 100 meters, and were approximately some 300 meters apart from each other.

In each of the four habitats, macrofauna was quantitatively sampled at five locations with three replicates each. All sampling was conducted through SCUBA diving at a depth of 0.5-2.5 m. The epifauna was sampled with a net-bag in a 25 cm × 25 cm area in the canopy-forming algal belt and in the seagrass aboveground habitat. Infauna in bare sand and seagrass belowground was sampled using a sediment core (10 cm diameter and 15 cm height, total volume 4.71 cm3, $n = 4$) in a 25 cm × 25 cm area. The choice of equipment was to attain a reliable estimate of quantified community structure in each habitat. The sampling techniques enabled us to standardize the faunal densities to volume for each replicate (mean volume ± SE for seagrass aboveground and canopy-forming algae respectively: 0.06 ± 0.01 and 0.68 ± 0.08 dm$^{-3}$) rather than 1m2. The latter is not a comparable measure to use between these types of habitats due to different sampling methods and physical structure of the habitats. Faunal samples were sieved (0.5 mm) in the field and later stored in 70 % ethanol. Taxonomic resolution was set at species level when possible, or in accordance with the available resolution of trait information. Organisms were collected for stable isotope analysis within three days of the quantitative sampling, to minimize the possible mismatch between habitat-specific community patterns and effects of temporal change in isotopic values [49].

Biological traits

Biological traits of benthic species were applied based on previously gathered information in a trait dataset of northern Baltic Sea macrozoobenthos [51]. This trait dataset is publicly available as a supplement to [51].The information in the trait dataset was collected on lowest possible taxonomic level and only later adjusted to comparable higher taxonomic levels. Thus, if species/genera displayed differing expressions, the taxon was given equal probabilities of expressing the trait modality. The information was gathered and used based on i) peer-reviewed published sources, ii) phenotype or other species-specific characteristics, or iii) expert knowledge [51]. The same standards regarding trait information were applied in this study. An exception regarding trait information in this study was the trait Mean Size, which here refers to species-specific individual lenght measurements for each habitat (mean size per habitat, measured under a light microscope to nearest mm). The methodology of assigning traits follows the categorical approach where a trait (e.g. Mobility) is divided into sub-categories or “modalities” (e.g. sessile, semi-mobile or mobile). Species are then scored using a fuzzy coding procedure [52], so that they express each modality on a scale from 0 to 3. These scores are then standardized to 1 within traits. This coding procedure accounts and allows for species
plasticity in expressing traits. For assessment of functional differences within and between the habitats, we used 13 traits, encompassing a total of 55 modalities (Table 1). Our rationale for choosing traits was to adequately capture a broad set of different taxonomic characteristics across the macrofaunal community, which can depict differences between habitats.

To compare the functional approach to the two others, the information on faunal densities in each habitat were combined with the respective trait scores. In this procedure, trait scores were multiplied by species abundance and then summed over all species in each replicate in a habitat. This habitat-by-trait matrix was used for both univariate and multivariate analyses on differences in trait expressions within and between habitats.

Stable isotope analysis

To assess differences in isotope signatures between the habitats and, as a first step, portray the principal food web structure, we sampled sediment organic matter, suspended organic matter, primary producers (macrophytes and associated flora) as well as primary consumers (macrofauna). Organic matter from the sediment and the seawater was sampled in the bare sand habitat, from the top 2 cm of the seafloor and with a 10 μm mesh net, respectively. Both types of organic matter were collected on pre-combusted (500 C, 4h) Whatman GF/C glass fiber filters, which were dried, acidified with 1 N HCl and dried again before cut into pieces and packed into tin capsules. Macrophytes were rinsed in distilled water and cleared of all associated biota by hand. Epiphytes were collected from *F. vesiculosus* and *Potamogeton pectinatus*. Infaunal and epifaunal organisms were determined to the lowest taxonomic level possible (Table 2). The material was stored in -20°C before being treated with HCl, oven-dried in 60°C (48h), and ground to a fine homogenous powder, after which an aliquot of the sample was packed in a tin capsule. All samples consisted of several whole individuals. Mollusc samples consisted of soft tissue, removed from the shells. The analysis of stable isotope ratios was conducted at the Stable Isotope Facility, UC Davis. Carbon and nitrogen isotope ratios are reported in units of per mille (‰) delta (δ) values according to:

\[
\delta^{13}C = \left[\frac{R_{sample}}{R_{standard}} - 1\right] \times 10^3 \quad (1)
\]

where \(R \) is \(^{13}C/^{12}C \) or \(^{15}N/^{14}N \). The standard for carbon is Vienna-PDB and for nitrogen atmospheric N\(_2\) [53]. We analyzed three and five replicate samples per species per habitat for macrofauna and macrophyta, respectively.

In order to quantitatively compare the ability of the surrogates to target all three measures of community structure, we also weighted the isotopic values of the primary consumers associated flora) as well as primary consumers (macrofauna). To assess principal habitat differences in consumer community isotopic niches, we used a one-way PERMANOVA on \(\delta^{13}C \) and \(\delta^{15}N \) values of benthic macrofauna. A similar but separate analysis was applied on the two sources of organic matter and the primary producers.

Multivariate analyses were also used to depict and assess habitat differences in taxonomic composition (traditional abundance weighted habitat-by-species data), functional trait expression (abundance weighted habitat-by-traits data) and trophic composition based on isotope values (abundance weighted habitat-by-stable isotope data). For the first two data sets, a nested PERMANOVA with ‘Location’ (5 levels, random) nested within ‘Habitat’ (4 levels, fixed)) was run to determine between and within habitat differences, which were visualized using MDS (based on Bray-Curtis similarity) with a cluster overlay. Since one outlier was removed, the design was unbalanced. This issue was checked, according to procedures for unbalanced designs with PERMANOVA [56], and corrected using the conservative Type III sum of squares. A one-way PERMANOVA analysis (factor: ‘Habitat’ (4 levels, fixed)) was run on the abundance weighted habitat-by-stable isotope matrix. The result was visualized according to the other multivariate analysis on abundance-weighted data, using a MDS (Bray-Curtis similarity) with a cluster overlay. Permutational tests of multivariate dispersion (PERMDISP, [57]) were used alongside all PERMANOVA analyses to check for homogeneity in average dispersion of samples from their group centroids. Prior to the analyses using density data, abundance values were square root transformed. To identify contributions of species and traits to possible within and between habitat differences, SIMPER analyses were used [58]. All multivariate analyses were run in PRIMER v.6.

Coastal Habitats as Surrogates

Table 1. Traits and modalities included in the study.

Trait	Modality
Mean Size	1-5mm
	5mm-1cm
	1-3cm
	3-5mm *
	>5cm
Longevity	Very short
	Short
	Long
	Very long
Reproductive technique	Asexual
	Sexual
Sexual differentiation	Gonochoristic
	Hermaphroditic
	Parthenogenetic *
Developmental technique	Fragmentation
	Oviparous
	Ovoviviparous
	Viviparous
Reproductive frequency	Semelparous
	Annual episodic
	Annual protracted
Living Habit	Attached
	Tube dweller
	Burrow dweller
	Case builder *
	Free
Environmental position	Infauna deep (>5cm)
	Infauna middle (2-5cm)
	Infauna top (2cm)
	Epibenthic
	Bentho-pelagic
Feeding habit	Suspension feeder
	Surface feeder
	Sub-surface feeder
	Selection feeder
	Miner
	Parasite *
Resource capture type	Jawed
	Siphon
	Tentaculate
	Pharynx
	Radula
	Net
Mobility	Sessile
	Semi-mobile
	Mobile
Movement type	Swimmer
	Rafter-drifter
	Crawler
	Byssus threads
	Tube
	Burrower
Dispersal habit	Non dispersal
	Local
A total of 13 traits and 55 modalities were used in the multivariate (abundance-weighted) analysis. All modalities were expressed in the canopy-forming habitat. The following four modalities indicated with an asterisk (*) were not expressed in all habitats: 3-5mm (sand, seagrass belowground), parthenogenetic (sand), case builder (sand, seagrass above- and belowground), parasite (sand).

doi: 10.1371/journal.pone.0078910.t001

Table 2. Benthic macrofaunal species found in the sampled habitats.

Phylum	Group (Order/Class)	Species	Habits			
			Sand	Canopy-forming algae	Seagrass above-ground	Seagrass below-ground
Nemertea	Enopla	Cynophilma obscura (Schultze)	X	X	X	X
Priapulida	Halicryptomorpha	Halicryptus spinulosus (von Siebold)	X			
Annelida	Oligochaeta	Oligochaeta	X	X		
	Hirudinea	Placida gibba (Linnaeus)	X		X	
	Polychaeta	Marenzelleria spp. (Mesnill)	X	X	X	
	Boccardia-Polydora	(Polydora) spp. (Horst)	X			
	Pygoaplo elegans	(Claparide)	X	X	X	
	Hediste (Nereis)	diversicolor (O.F.Müller)	X	X	X	
	Blyngides (Harmothoe)	sarsi (Malmgren)	X			
	Manaysunkia aestuaria (Bourne)		X			
Mollusca	Gastropoda	Hydrobia spp. (Hartmann)	X	X		
	Potamopyrgus antipodarum (Gray)		X		X	
	Radix spp. (Montfort)		X	X		
	Bithynia sp. (Leach)		X			
	Theodoxus fluviatilis (Linnaeus)		X	X		X
Bivalvia	Cerastoderma glaucum (Poirier)		X			
	Macoma balthica (Linnaeus)		X	X		
	Mya Arenaria (Linnaeus)		X			
	Mytilus edulis vel. trossulus (Linnaeus)		X	X		
Crustacea	Isopoda	Idotea balthica (Pallas)	X	X		
	Idotea chelipes (Pallas)		X			
	Idotea granulosa (Pallas)		X			
	Jaera spp. (Leach)		X	X		
	Saduria entomon (Linnaeus)		X			
Amphipoda	Gammarus spp. (J.C.Fabricius)		X	X		
	Calliopus laeviusculus (Kröyer)		X			
	Leptocheirus pilosus (Zaddach)		X			
	Monoporeia affinis (Lindström)		X			
	Bathyporeia pilosa (Lindström)		X	X		
	Corophium volutator (Pallas)		X			
	Mysis mixta (Latreille)		X			
	Praunus flexuosus (O.F.Müller)		X			
Insecta	Coleoptera	Macrolepia mutica (larvae) (Fabricius)	X			
	Diptera	Chironominae spp.	X	X		
	Tanytarsinae spp.		X			
	Orthocladiinae spp.		X	X		
	TOTAL: 36		17	26	29	23

Species indicated with an X in bold were included in the stable isotope-analyses.

doi: 10.1371/journal.pone.0078910.t002
Results

Habitats as surrogates - basic differences in community structure

As we expected, a difference between all four habitats was found for both the taxonomic and the functional structure when assessed with the univariate statistics. Both species richness (Habitat: df = 3 X 2 = 70.26 p = 0.001) and density (Habitat: df = 3, X 2 = 28.52 p = 0.001) differed between habitats, with highest species richness and total abundance found in the seagrass aboveground habitat (29 spp. in total, and mean abundance 18.4 ± 11.5 dm -3). Almost all intra- and between-habitat variability could not be disregarded for understanding between-habitat differences (Location(Habitat): df = 16 X 2 = 42.45 p = 0.001). In general, the seagrass above- and belowground showed the highest number of modalities (average 50.6 ± 3.4, average 51.7 ± 1.1, respectively). In comparison to species richness, which varied between habitats, almost all trait modalities were expressed in all habitats (Table 3). The modality, case builder within the trait Living habit, was unique and only found in one habitat: the canopy-forming algal habitat. The body size modality 3-5mm also was rare and only found in the epifaunal habitats. In addition, the modalities parthenogenetic, sexual differentiation and parasitic were found in all other habitats but the sand habitat (Table 1). The habitats were also distinct when it came to the average number of species per modality (Habitat: df = 3, X 2 = 378.83 p = 0.001, Location(Habitat): non-significant p = 0.630). Interestingly, even though the canopy-forming algal habitat showed higher species richness than the seagrass belowground (26 spp. vs. 23 spp.), the average number of species per modality was still higher in the less diverse habitat (3.7 spp./mod. compared to 4.2 spp./mod. respectively) (Table 3).

Contrary to the results above, no habitat differences were identified for the principal trophic pattern of primary consumers based on the isotope ratios (one-way PERMANOVA: p = 0.241). The species included in the isotope analysis quantitatively ranked within the top 10 species. However, there was a true potential for identifying the habitat differences of the consumers since the resource base, i.e. the sediment and suspended organic matter as well as primary producers and associated epiphytes, varied significantly (one-way PERMANOVA: p < 0.001). The two sources of organic matter in sand and the macrophytes all showed distinct isotopic values (mean values of δ 13C and δ 15N for sediment organic matter: -17.7, 3.3, suspended organic matter: -18.9, 2.3, F. vesiculosus: -11.8, 3.4, Z. marina: -10.5, 3.5 and P. pectinatus: -8.3, 2.8, respectively). Epiphytes also differed from the other sources and showed similar carbon values as the organic matter in the sand habitat but was more depleted in 15N (mean values of δ 13C and δ 15N for epiphytes on F. vesiculosus: -18.5, 1.4 and on P. pectinatus: -19.9, 1.9, respectively). This result indicated that all four habitats comprised one common food web from a primary consumer perspective. Thus on this spatial scale of hundreds of meters without factoring in faunal density, none of the pre-defined habitat units could serve as a surrogate for trophic structure.

Comparison of taxonomic, functional and trophic structure in pre-defined habitat types

In agreement with the univariate analyses, the habitat units also reflected distinct taxonomic and functional multivariate community structures (nested PERMANOVA: p < 0.001 and p = 0.028 respectively) (Table 4). The PERMDISP analyses showed the dispersion of samples to be homogenous between groups for both species and trait compositions (Location: p = 0.970 and p = 0.969, respectively). The two measures also showed the same pattern of variation within habitats, among sampling locations. Differences within habitats were not general to all habitats and subsequent pairwise comparisons showed this to only be an effect in the canopy-forming algal habitat. Within this habitat, the taxonomic composition varied between two pairs of stations and the functional composition within one pair of stations. In addition, since the greatest

Table 3. General numerical and functional descriptive statistics of the macrofaunal communities in the habitats.

General descriptive	Total	Sand	Canopy-forming algae	Seagrass aboveground	Seagrass belowground
Traditional numerical variables					
# of species	55	51	55	54	53
# of species found in one habitat	10	2	4	3	1
# of species found in all habitats	13				
Abundance dm -3 (Mean ± SD)	18.4±11.5	2733.8±1624.8	5974.7±1454.3	110.0±44.2	
Functional variables					
# of modalities expressed (Total)	44.3±3.1	48.5±1.8	50.6±3.4	51.7±1.1	
# of modalities (Mean ± SD)	2.4	3.7		4.5	4.2
# of species per modality (Mean)					

Results are given as total number if not indicated otherwise.

doi: 10.1371/journal.pone.0078910.t003
variation was found on the level of habitats and not location, in both the taxonomic and the functional PERMANOVA analysis (square root of the estimated component of variation due to the habitat 53.1 and 46.4 respectively), the between-habitat difference was believed to be valid, despite this within-habitat difference. The comparative trophic analysis, which accounted for density in the trophic structure, showed significant habitat differences contrary to the preliminary trophic analysis that used simple stable isotope ratios. However, these differences did not reflect the a priori habitat divisions (one-way PERMANOVA: \(p < 0.001 \), PERMDISP analysis: \(p = 0.492 \) (Table 4). The Post hoc tests showed that a separation was found between the epifaunal (canopy-forming algae and seagrass aboveground) and the infaunal (bare sand and seagrass belowground) habitat units, not between all of the habitats to be identified as separate units (Figure 1a). This was the highest level of similarity within habitats on which the a priori habitat division was found taxonomically. Higher similarity levels only illustrated smaller within-habitat clusters. The corresponding functional pattern was a distinction of only two groups: the pre-defined bare sand habitat and a cluster including the three other habitat units (Figure 1b). The trophic structure on this level resembled the taxonomic structure more and separated the epifaunal from the infaunal habitats, in accordance with the PERMANOVA analysis (Figure 1c). Thus, on the same level of within-habitat variability that identified all four units based on trait composition, a 65 % within-habitat similarity was needed (Figure 1b). In other words, when the groups conformed to the a priori habitat types, they were within themselves only 35 % dissimilar in terms of trait variability. In comparison, the taxonomic structure showed a dissimilarity of 60 % for the within-habitat variability (40 % similarity level), which was almost twice as high as for the functional structure. The trophic structure was even more heterogeneous on this level and divided the epi- and infaunal groupings further, into four separate clusters (Figure 1c).

Species that contributed most to the taxonomic differences between and within habitats were all generalists and common in terms of both occurrence and high average density in habitats. These were for example: *Chironominae* spp., *Gammarus* spp., *Hydrobia* spp. and *Macoma balthica*. Modalities that drove the functional differences were predominantly associated with reproduction and living habits such as sexual reproduction, gonochoristic differentiation (separate sexes) and annual protracted reproduction as well as free in terms of living habitat (SIMPER analysis). However, mobile and the size category 1-5mm were the trait modalities that continuously grouped as top two for contributing to the habitat differences.

Discussion

Studies that have assessed habitats as surrogates have focused mainly on effectively safeguarding taxonomic diversity [8,15]. Our aim was to broaden this knowledge and test if traditional habitat divisions also encompass the functional and trophic structures of benthic macrofaunal communities. We found a generally good fit between differences in habitat types and taxonomic and functional structure of the community, even though habitats were considerably more similar functionally than taxonomically. The habitat divisions did not meet the variability of the trophic structure, which proved to differentiate within rather than between the pre-defined habitat units. To summarize these results, we choose to conceptually illustrate the contrasts between the three measures of community

Table 4. PERMANOVA results for traditional, functional and trophic measures of habitat differences.

PERMANOVA (nested or one-way)	df	MS	Pseudo-F(perm)
Traditional measure: Species composition			
Habitat	3	42045	48.879 0.0001 ***
Location(Habitat)	16	862.26	1.778 0.0001 ***
Residual	39	484.99	
Functional measure: Trait composition			
Habitat	3	31894	98.024 0.0001 ***
Location(Habitat)	16	325.89	1.419 0.0282 **
Residual	39	229.75	
Trophic measure: Stable Isotope composition			
Habitat	3	8153.3	7.823 0.0002 ***
Residual	23	1.423	
Total	26		

All three measures were based on macrofaunal abundance; species abundance, abundance weighted traits or abundance weighted δ13C and δ15N values, respectively. A nested PERMANOVA design was used for the traditional and the functional measures, while a one-way PERMANOVA design was used for the trophic measure. Significant values are indicated in bold. All analyses were based on 9999 permutations. Sample dispersion was homogenous between groups (PERMDISP all \(p > 0.05 \)).

doi: 10.1371/journal.pone.0078910.t004
Figure 1. MDS configuration on taxonomic, functional and trophic community structure. MDS configuration with superimposed clustering from Bray-Curtis similarities on a) taxonomic b) functional and c) trophic structure of the macrofaunal community. Groupings of habitats are indicated at three different within-group similarity levels (continuous black line 20 %, dashed line 40 % and dotted line 65 % similarity).

doi: 10.1371/journal.pone.0078910.g001
structure for a fine and a course division of the habitat units (Figure 2). Using the habitats as surrogates on a fine level, attention should specifically be paid at the measure of trophic structure for which there is potentially only one unit (isotopic niches) or a division between the infaunal and the epifaunal habitats (abundance - weighted stable isotopes). On the other hand, using habitat units on a more coarse level it is noteworthy that only two units might be enough to encompass the functional structure. Thus, the conceptual model illustrate ecologically important issues with using habitats as surrogates that could specifically be of value for marine conservation and spatial planning decisions.

Coastal habitats as surrogates for multiple community measures?

The results found in this study on the traditionally used measure for surrogates, namely the taxonomic structure, are supported by several empirical studies on diversity of macrofaunal community in the system [59–62]. The taxonomic coherence with habitats is also generally concluded from other marine systems, both temperate and tropical [3]. Thus, the
results found here are to some degree applicable on a larger scale. Unsurprisingly, the largest differences for all three measures were found between the structurally complex habitats (canopy-forming algal habitat and seagrass aboveground) and the other two (sand and seagrass belowground). The clear separation among the habitats associated with the sediment, particularly in the functional analysis, was probably also a result of higher structural complexity and sediment stability. This was most likely due to lower hydrodynamic exposure in the seagrass belowground compared to the homogenous bare sand habitat [59]. The importance of using density-based measures for identifying community differences and efficiency of habitat as surrogates was clear from this study, particularly concerning the functional and trophic analyses. Previous studies have also highlighted the role of density rather than specific traits for understanding the functional structure [37]. In this study the abundance-weighted functional analysis demonstrated a similar community traitscape for the canopy-forming algal and seagrass habitats. By traitscape, we refer to the distribution and composition of biological traits in an area or habitat. Here this corresponds to the clustering together of three habitat types as one functional unit rather than three separate ones on a coarse level of dividing the habitats (Figure 2). Additionally, trophic differences between habitats were only seen when accounting for abundance, not when analyzing stable isotope ratios as such (Figure 2). There could be several mechanisms behind the fact that habitats seemed to be homogenous in terms of trophic and functional structure. The results could be attributed to strong connectivity and metacommunity dynamics between habitats, abiotic movements of nutrients or simply similar food sources (e.g. epiphytes) of species [27]. The similarity of food source was confirmed in our study. However, the importance of consumer plasticity in coastal macrofaunal communities makes it difficult to generalize based on a specific site or habitat [63].

The scale of ecological sampling is always decisive and microhabitat scales have proven to stand for a considerable amount of variation in food web patterns [27,64]. The aim in this study was to compare three measurements of community structure on ecological scales relevant for conservation and spatial planning. The within-habitat scale was, however, the most significant in this study and the stable isotope variability was observed across the whole bay. We argue that the pattern seen in this study is valid and possibly more common than previously thought since previous studies have shown a similar trophic pattern for coastal bays in the region [49,50]. Moreover, the habitat types assessed in this study usually occur in relatively close proximity to each other. Though there are difficulties balancing between the proper scale of measurement and management, we cannot simply disregard the need for marine management efforts that focus on trophic structure and food web dynamics. Instead it could be of advantage to adopt an approach in which especially trophic diversity is safeguarded across habitats on a larger scale, rather than between habitats on a local scale, e.g. within a bay. On the other hand, when organism densities were accounted for trophically, the distinction found between the epifaunal and infaunal habitats gives some positive indication for relying on the traditional habitat divisions (Figure 2). However, we strongly encourage further assessment of the spatial correlation of trophic structure in nature.

The contrast between the measures of taxonomic, functional and trophic structure and the mismatch between especially the trophic variability and the habitats showed that habitats as surrogates may not be empirically adequate for all types of diversity measures (Figure 2). The terrestrial surrogacy literature states that the chosen set of surrogates must ultimately ensure the full representation of the target parameter more so than spatial correlation and congruence [2]. Accordingly, the habitats in this study could be said to effectively represent, besides the taxonomic, also the functional structure even though the habitat division does not completely match the functional variability on both spatial scales. Particularly noteworthy is the lack of accuracy with the predefined habitat units on a within- (α) habitat scale due to the generally high functional similarity (Figure 2). This mismatch does not imply that the functional measure is inaccurate, rather that that it has the potential to illustrate variability on several scales. The importance of this type of low functional beta-diversity despite a simultaneous high taxonomic diversity has recently been highlighted for understanding community assembly and processes structuring communities over different scales [36]. However, this spatial disagreement, probably an effect of the openness of marine systems, is a reason why surrogacy work in marine benthic systems should specifically attend to and tackle this issue [5]. Consequently, planners relying on traditional habitat maps and habitat categorizations may cautiously proceed to do so under the assumption that it captures taxonomic and to some degree also the functional trait diversity. These types of inherent species-related community differences in the habitats are today to some extent incorporated as secondary parameters on lower levels in e.g. the EUNIS habitat classification system [23]. However, including functional aspects more comprehensively in such classifications and in the way habitat maps are constructed is essential for more diverse and targeted future spatial planning. Especially since incorporating a broader knowledge of species traits such as feeding, reproductive, mobility and behavioral ones, a part form the most often used body size, is relevant for understanding and measuring human impacts on benthic communities (e.g. trawling impacts or non-ingenious species invasions) and spatial patterns of benthic functional diversity [65,66].

The contrasting outcomes that we present here should not be seen as a strict either-or scenario or conflicting management choices, rather the opposite. A species-centered way of management, when applied strictly on a habitat level, is appropriate in regard to rare, threatened or endangered species [1]. As we show here, it is essential that we also incorporate an understanding of the optimal unit for safeguarding the functionality of the system, both in terms of functional and trophic diversity. We should not continue to rely on deducing such information from the taxonomic structure only because including such units in conservation actions is challenging. Instead, we should aim to assess the management strategies empirically. This could also mean cost-
Coastal Habitats as Surrogates

effectiveness in terms of safeguarding the diversity of key functional or trophic hot spots, rather than a multitude of functionally similar habitats. As shown in a previous study, the gain of utilizing the biological trait approach over the traditional taxonomic one resulted in a considerable lower sampling effort, with smaller areal coverage required for understanding functional compared to taxonomic patterns [51].

Conclusions and future directions

Our study highlights significant discrepancies when using habitats as surrogates for different measures of biodiversity, reflecting the ecological relevance of habitats in terms of taxonomic, functional and trophic structure. For management, the relevance of our findings arises from current mapping activities, habitat classification and spatial planning efforts. These management interests might not target the proper level for safeguarding functional or trophic properties of diversity. We believe future mapping and modeling of marine habitats should not only emphasize traditional taxonomic diversity, but also aim towards assessing distributions of functionally different units in coastal areas. Knowledge of specific processes such as energy- and elemental transfer between different coastal habitats would benefit from comparisons among biomass-based measures of community structure. In relation to this, the important question for managers and policy makers is what we stand to lose functionally if a certain habitat is lost? As shown in this paper it could be valid to disregard traditional habitat divisions in favor of safeguarding the functioning in a landscape or region. In this specific study, this could have meant conserving any type of aboveground habitat, (either algal or macrophyte) and the bare sediment. Such choices are based on the habitats forming distinct functional and trophic units. It is evident that there is a role for biological trait analysis in assessing trophic and functional relationships, as well as in marine management schemes, however the latter still requires proper protocols and assessments [67].

Acknowledgements

We thank Julie Brenner for comments on the manuscript and Husö Biological Station, Åbo Akademi University, for providing excellent working facilities. Katri Aarnio, Laura Kauppi, and David Abrahamsson assisted with fieldwork.

Author Contributions

Conceived and designed the experiments: AT MCN EB. Performed the experiments: AT MCN. Analyzed the data: AT MCN. Contributed reagents/materials/analysis tools: AT MCN EB. Wrote the manuscript: AT MCN EB.

References

1. Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu Rev Ecol Evol Syst 38: 713-737. doi:10.1146/annurev.ecolsys.38.091206.095737.
2. Sarkar S, Justus J, Fuller T, Kelly C, Garson J et al. (2005) Effectiveness of environmental surrogates for the selection of conservation area networks. Conserv Biol 19: 815-825. doi:10.1111/j.1523-1739.2005.00236.x.
3. Ward TJ, Vanderklift MA, Nicholls O, Kenchington RA (1999) Selecting marine reserves using habitats and species assemblages as surrogates for biological diversity. Ecol Appl 9: 691-698. doi:10.1890/1051-0761(1999)009[0691:semrma]2.0.co;2.
4. Olsgard F, Sommerfeld PJ, Carr MR (1998) Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. Mar Ecol Prog Ser 172: 25-36. doi:10.3354/meps172025.
5. Mellin C, Delean S, Callej E, Edgar G, Meekan M et al. (2011) Effectiveness of biological surrogates for predicting patterns of marine biodiversity: A global meta-analysis. PLOS ONE 6: e20141. doi:10.1371/journal.pone.0020141. PubMed: 21695119.
6. MacArthur MA, Brook BP, Przeslawski R, Ryan DA, Lucier VL et al. (2010) On the use of abiotic surrogates to describe marine benthic biodiversity. Est Coast Shelf Sci 88: 21-32. doi:10.1016/j.ecss.2010.03.003.
7. Stevens T, Connolly RM (2004) Testing the utility of abiotic surrogates for marine habitat mapping at scales relevant to management. Biol Conserv 196: 351-362.
8. Dalleau M, Andréfouët S, Wabnitz CCC, Payri C, Wantiez L et al. (2010) Use of habitats as surrogates of biodiversity for efficient coral reef conservation planning in Pacific ocean islands. Conserv Biol 24: 541-552. doi:10.1111/j.1523-1739.2009.01394.x. PubMed: 20105207.
9. Olenin S, Ducrotay J-P (2006) The concept of biotope in marine ecology and coastal management. Marine Pol. Bulletin 53: 29-29.
10. Costello MJ (2009) Distinguishing marine habitat classification concepts for ecological data management. Mar Ecol Prog Ser 397: 265-268. doi:10.3354/meps08317.
11. Millenium. Ecosystem Assessment (2005). Ecosystems and human well-being: biodiversity synthesis. Washington, DC, USA: World Resource Institute.
12. Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806-1808. doi:10.1126/science.1128035. PubMed: 16794081.
13. Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F et al. (2008) A global map of human impact on marine ecosystems. Science 319: 948-952. doi:10.1126/science.1149345. PubMed: 18276889.
14. Airoldi L, Beck MW (2007) Loss, status and trends for coastal marine habitats of Europe. Oceanogr Mar Biol 45: 345-405.
15. Mumpj PJ, Broad K, Brumbaugh DR, Dahlgren GP, Harborne AR et al. (2008) Coral reef habitats as surrogates of species ecological functions, and ecosystem services. Conserv Biol 22: 941-951. doi:10.1111/j.1523-1739.2008.00933.x. PubMed: 18477024.
16. H Courtney AR, Mumpj PJ, Kappel CV, Dahlgren GP, Micheli F et al. (2008) Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value. Ecol Appl 18: 1689-1701. doi:10.1890/07-0454.1. PubMed: 18839764.
17. Van Wynsberge S, Andréfouët S, Hamel MA, Kubicki M (2012) Habitats as surrogates of taxonomic and functional fish assemblages in coral reef ecosystems: A critical analysis of factors driving effectiveness. PLOS ONE 7(7): e40997. doi:10.1371/journal.pone.0040997. PubMed: 22815891.
18. Brenner J, Rogers SJ, Frid CLJ (2003) Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar Ecol Prog Ser 254: 11-25. doi:10.3354/meps254011.
19. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9: 741-758. doi:10.1111/j.1461-0248.2006.00294.x. PubMed: 16706917.
20. Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80: 469-484. doi:10.1890/08-2225.1.
21. Tyler EHM, Sommerfeld PJ, Vandenberghe E, Brenner J, Jackson E et al. (2012) Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology, Glob Ecol Biogeogr 21: 922-935. doi:10.1111/j.1466-8238.2011.00726.x.
22. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21: 178–185. doi:10.1016/j.tree.2006.02.002. PubMed: 16701083.
23. Davies CE, Moss D, Hill MO (2004) Eunis Habitat Classification Revised 2004. Retrieved unpublished at whilst December year 1111 from http://eunis.eea.europa.eu/upload/EUNIS_2004_report.pdf.
Habitat Modeling of Reef Fishes with Contrasting Trophic Ecologies. *Mar Ecol Prog Ser* 474: 201-216. doi:10.3354/meps10099.

10.1016/j.marenvres.2013.02.002. PubMed: 23480853.

Based Management: From Characterization to Implementation. *Front (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Estuarine Fish Communities. *PLOS ONE* 7(7): e40679. doi:10.1371/journal.pone.0040679. PubMed: 22792395.

Habitat Variation, Species Diversity and Ecological Functioning in a Marine System. *J Exp Mar Biol Ecol* 390: 106-117. doi:10.1016/j.jembe.2010.05.008.

MacDonald TA, Burd BJ, van Rooiidaelaar A (2012) Facultative Feeding and Consistency of Trophic Structure in Marine Soft-Bottom Macrobenthic Communities. *Mar Ecol Prog Ser* 445: 129-140. doi:10.3354/meps09478.

Paganeli D, Marchini A, Occhipinti-Ambrogi A (2012) Functional Structure of Marine Benthic Assemblages Using Biological Trait Analysis (BTA): A Study Along the Emilia-Romagna Coastline (Italy, North-West Adriatic Sea). *Est Coast Shelf Sci* 96: 245-256. doi:10.1016/j.ecss.2009.05.012. PubMed: 18074899.

Nohra A, Bonsdorff E (1996) Rapid zoobenthic community responses to accumulations of drifting algae. *Mar Ecol Prog Ser* 131: 143-157. doi:10.3354/meps11143.

Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effect on associated fauna: a review. *Est Coast Shelf Sci* 68: 383-403. doi:10.1016/j.ecss.2006.01.028.

HELCOM (2009) Biodiversity in the Baltic Sea – An integrated thematic assessment on biodiversity and nature conservation in the Baltic Sea. Helsinki Commission, Baltic Sea Environment Proceedings No. 116B, Helsinki, Finland, 192 pp

Kotulusius AK, Ollikainen M (2011) Economic valuation of ecosystem services provided by coastal habitats in Finland, Sweden, and Lithuania. Discussion Paper-Department of Economics and Management, University of Helsinki No. 97 34 pp

Boström C, Bonsdorff E (2000) Zoobenthic community establishment and habitat complexity—the importance of seagrass shoot-density, morphology and physical disturbance for faunal recruitment. *Mar Ecol Prog Ser* 205: 123-138. doi:10.3354/meps205123.

Nordström M, Aarnio K, Bonsdorff E (2009) Temporal variability of a benthic food web: patterns and processes in a low-diversity system. *Mar Ecol Prog Ser* 378: 13-26. doi:10.3354/meps07872.

Nordström MC, Lindblad P, Aarnio K, Bonsdorff E (2010) A neighbour is a neighbour? Consumer diversity, trophic function and spatial variability in food webs. *J Exp Mar Biol Ecol* 391: 101-111. doi:10.1016/j.jembe.2010.06.015.

Tönnroos A, Bonsdorff E (2012) Developing the multitract concept for functional diversity: lessons from a system rich in functions but poor in species. *Ecol Appl* 22: 2221-2236. doi:10.1893/10.1016/j.marpolbul.2012.09.026. PubMed: 23387121.

Chevenet F, Dodec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. *Fresh Biol* 43: 277-296.

Fry B (2006) Stable isotope ecology. Springer Verlag Science & Business media, New York, USA: LLC 308 pp

Norusis M (2010) PASW Statistics 18 Advanced Statistical Procedures Companion. Chicago, USA: Prentice Hall Inc. p. 416.

Dobson AJ, Barnett AC (2010) An introduction to generalized linear models. USA: Chapman & Hall. pp. 48-69.

Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.

Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. New Zealand: Department of Statistics, University of Auckland.

Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation, 1st edition. Plymouth: PRIMER-E.

Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) in the northern Baltic Sea. *J Exp Mar Biol Ecol* 191:572-592. doi:10.1016/S0044-7447(06)07357-7.

Nordström M, Aarnio K, Bonsdorff E (2009) Temporal variability of a benthic food web: patterns and processes in a low-diversity system. *Mar Ecol Prog Ser* 378: 13-26. doi:10.3354/meps07872.

Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.

Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. New Zealand: Department of Statistics, University of Auckland.

Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation, 1st edition. Plymouth: PRIMER-E.

Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) in the northern Baltic Sea. *J Exp Mar Biol Ecol* 191:572-592. doi:10.1016/S0044-7447(06)07357-7.

Nordström M, Aarnio K, Bonsdorff E (2009) Temporal variability of a benthic food web: patterns and processes in a low-diversity system. *Mar Ecol Prog Ser* 378: 13-26. doi:10.3354/meps07872.

Tönnroos A, Bonsdorff E (2012) Developing the multitract concept for functional diversity: lessons from a system rich in functions but poor in species. *Ecol Appl* 22: 2221-2236. doi:10.1016/j.marpolbul.2012.09.026. PubMed: 23387121.

Chevenet F, Dodec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. *Fresh Biol* 43: 277-296.

Fry B (2006) Stable isotope ecology. Springer Verlag Science & Business media, New York, USA: LLC 308 pp

Norusis M (2010) PASW Statistics 18 Advanced Statistical Procedures Companion. Chicago, USA: Prentice Hall Inc. p. 416.

Dobson AJ, Barnett AC (2010) An introduction to generalized linear models. USA: Chapman & Hall. pp. 48-69.

Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.

Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. New Zealand: Department of Statistics, University of Auckland.

Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation, 1st edition. Plymouth: PRIMER-E.

Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) in the northern Baltic Sea. *J Exp Mar Biol Ecol* 191:572-592. doi:10.1016/S0044-7447(06)07357-7.

Nordström M, Aarnio K, Bonsdorff E (2009) Temporal variability of a benthic food web: patterns and processes in a low-diversity system. *Mar Ecol Prog Ser* 378: 13-26. doi:10.3354/meps07872.

Tönnroos A, Bonsdorff E (2012) Developing the multitract concept for functional diversity: lessons from a system rich in functions but poor in species. *Ecol Appl* 22: 2221-2236. doi:10.1016/j.marpolbul.2012.09.026. PubMed: 23387121.

Chevenet F, Dodec S, Chessel D (1994) A fuzzy coding approach for the analysis of long-term ecological data. *Fresh Biol* 43: 277-296.

Fry B (2006) Stable isotope ecology. Springer Verlag Science & Business media, New York, USA: LLC 308 pp

Norusis M (2010) PASW Statistics 18 Advanced Statistical Procedures Companion. Chicago, USA: Prentice Hall Inc. p. 416.

Dobson AJ, Barnett AC (2010) An introduction to generalized linear models. USA: Chapman & Hall. pp. 48-69.

Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth, UK: PRIMER-E.

Anderson MJ (2004) PERMDISP: a FORTRAN computer program for permutational analysis of multivariate dispersions (for any two-factor ANOVA design) using permutation tests. New Zealand: Department of Statistics, University of Auckland.

Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation, 1st edition. Plymouth: PRIMER-E.
ecosystem functioning, and human wellbeing. New York, USA: Oxford University Press. pp. 281–289.