PARP1 inhibition elicits immune responses against non-small cell lung cancer

Pan Junchenga,b,c, Antoine Lafargea,b,c, Guido Kroemera,b,d, and Maria Castedoe,b

aEquipe 11 Labellisée Par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Paris, France; bMetabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; cFaculté de médecine, Université de Paris Saclay, Kremlin Bicêtre, France; dInstitut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France

ABSTRACT

High levels of intracellular poly(ADP-ribose) (PAR) resulting from an elevated activity of PAR polymerase-1 (PARP1) correlate with poor infiltration of non-small cell lung cancers by cytotoxic T lymphocytes and dismal patient prognosis. Preclinical experimentation now demonstrates that PARP1 inhibition in cancer cells mediates strong immunostimulatory effects.

First, we created two PARhigh NSCLC cell lines (Lewis lung cancer [LLC] and tissue culture number one [TC1]) by selecting them by long-term culture in the presence of low-dose cisplatin (Figure 1a). The resulting PARhigh NSCLC cell lines maintained their elevated PAR level even after several months of culture in the absence of cisplatin, likely due to an increased level of spontaneous DNA damage.6 PARhigh NSCLC cells were cloned to reduce their heterogeneity and then subjected to the knockout (KO) of PARP1 by CRISPR/Cas9 technology, yielding cells that lacked any signs of PAR accumulation (which demonstrates that PARP1 is the sole PARP isofrom generating PAR in these cells) and became sensitive to cisplatin (which demonstrates that PARP1 was indeed responsible for chemotherapy resistance). Of note, PARhigh NSCLC cells exhibited strong responses to the cytostatic and cytotoxic effects of niraparib, a specific PARP1 inhibitor which is clinically approved.10

Conversely, PARP1KO cells became resistant to niraparib, as expected (Figure 1b).

Next, we inoculated PARhigh NSCLC and PARP1KO NSCLC cells into immunodeficient mice, from which T lymphocytes had been deleted by injection of antibodies specific for CD4 or CD8. PARhigh NSCLC and PARP1KO NLCC LLC or TC1 cells indistinguishably formed tumors in these T cell-depleted animals. In sharp contrast, PARP1KO TC1 cells failed to develop tumors in immunocompetent histocompatible mice, in conditions in which PARhigh TC1 cells readily proliferated, forming tumors with similar growth kinetic in immunocompetent and immunodefficient mice. When immunocompetent recipient mice had rejected the inoculation of PARP1KO TC1 cells, they subsequently became resistant against PARhigh TC1 cells implanted into the opposite flank. These findings indicate that PARP1KO TC1 cells cause a durable protective anticancer immune response mediated by T cells. We also found that PARP1KO LLC cells came under immunosurveillance. PARhigh NSCLC LLC cells similarly grew on T cell-depleted and control
of an anticancer immune response even when the malignant cells lack this target. However, the mechanisms of this immunostimulatory effect remain to be elucidated.

Disclosure statement

GK has been holding research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Samsara, Sanofi, Vascage and Vasculos/ Tioma. GK is on the Board of Directors of the Bristol Myers Squibb Foundation France. GK is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio.

Funding

GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence Nationale de la Recherche (ANR) – Projets blancs; AMMIGa US23/CNRS UMS3655; Association pour la recherche sur le cancer (ARC); Association "Ruban Rose"; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipep Onco-Pheno-Screen; European Joint Programme on Rare Diseases (EJPRD); Gustave Roussey Odyssee, the European Union Horizon 2020 Projects Oncobiome and Crimson; Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LabEx Immuno-Oncology [ANR-18-IDEX-0001]; the Leducq Foundation; a Cancer Research ASPIRE Award from...
the Mark Foundation; the RHU Torino Lumière; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. Al was supported by a fellowship from Institut Thématique Multi-Organisme (ITMO Cancer) du Plan Cancer 2014-2019.

ORCID

Maria Castedo [ORCID] http://orcid.org/0000-0001-6855-3451

Data availability statement

This is a commentary on a paper published in Journal for ImunoTherapy of Cancer. All original data are available in this paper.

References

1. Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell. 2010 Jul 9;39(1):8–24. doi:10.1016/j.molcel.2010.06.017.
2. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodeling. Nat Rev Mol Cell Biol. 2017 Oct;18(10):610–621. doi:10.1038/nrm.2017.53.
3. Michels J, Vitale I, Galluzzi L, Adam J, Olaussen KA, Kepp O, Senovilla L, Talhaoui I, Guegan J, Enot DP, et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013 Apr 1;73(7):2271–2280. doi:10.1158/0008-5472.CAN-12-3000.
4. Michels J, Vitale I, Senovilla L, Enot DP, Garcia P, Lissa D, Olaussen KA, Brenner C, Soria JC, Castedo M, et al. Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer. Cell Cycle. 2013 Mar 15;12(6):877–883. doi:10.4161/cc.24034.
5. Olaussen KA, Adam J, Vanhecke E, Vielh P, Pirker R, Friboulet L, Popper H, Robin A, Commo F, Thomale J, et al. PARP1 impact on DNA repair of platinum adducts: preclinical and clinical read-outs. Lung Cancer. 2013 May;80(2):216–222. doi:10.1016/j.lungcan.2013.01.014.
6. Juncheng P, Joseph A, Lafarge A, Martins I, Obrist F, Pol J, Saavedra E, Li S, Sauvat A, Cerrato G, et al. Cancer cell-autonomous overactivation of PARP1 compromises immunosurveillance in non-small cell lung cancer. J Immunother Cancer. 2022 Jun;10(6):e004280. doi:10.1136/jitc-2021-004280.
7. Joseph A, Juncheng P, Mondini M, Labaied N, Loi M, Adam J, Lafarge A, Astesana V, Obrist F, Klein C, et al. Metabolic features of cancer cells impact immunosurveillance. J Immunother Cancer. 2021 Jun;9(6):e002362. doi:10.1136/jitc-2021-002362.
8. Michels J, Adam J, Goubar A, Obrist F, Damotte D, Robin A, Alifano M, Vitale I, Olaussen KA, Girard P, et al. Negative prognostic value of high levels of intracellular poly(ADP-ribose) in non-small cell lung cancer. Ann Oncol. 2015 Dec;26(12):2470–2477. doi:10.1093/annonc/mdv393.
9. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019 Jun;19(6):307–325. doi:10.1038/s41561-019-0144-6.
10. Mateo J, Lord CJ, Serra V, Tutt A, Balmaña J, Castroviejo-Bermejo M, Cruz C, Oaknin A, Kaye SB, de Bono JS. A decade of clinical development of PARP inhibitors in perspective. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2019 Sep 1;30(9):1437–1447. doi:10.1093/annonc/mdz192.