Theoretical and Experimental Substractions of Device Temperature Determination Utilizing I-V Characterization Applied on AlGaN/GaN HEMT

Martin Florovič 1,*, Jaroslav Kováč, Jr. 1, Aleš Chvála 1, Jaroslav Kováč 1, Jean-Claude Jacquet 2 and Sylvain Laurent Delage 2

1 Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia; jaroslav_kovac@stuba.sk (J.K.J.); ales.chvala@stuba.sk (A.C.); jaroslav.kovac@stuba.sk (J.K.)
2 III-V Lab, Route de Nozay, 91460 Marcoussis, France; jean-claude.jacquet@3-5lab.fr (J.-C.J.); sylvain.delage@3-5lab.fr (S.L.D.)
* Correspondence: martin.florovic@stuba.sk

Abstract: A differential analysis of electrical attributes, including the temperature profile and trapping phenomena is introduced using a device analytical spatial electrical model. The resultant current difference caused by the applied voltage variation is divided into isothermal and thermal sections, corresponding to the instantaneous time- or temperature-dependent change. The average temperature relevance is explained in the theoretical section with respect to the thermal profile and major parameters of the device at the operating point. An ambient temperature variation method has been used to determine device average temperature under quasi-static state and pulse operation, was compared with respect to the threshold voltage shift of a high-electron-mobility transistor (HEMT). The experimental sections presents theoretical subtractions of average channel temperature determination including trapping phenomena adapted for the AlGaN/GaN HEMT. The theoretical results found using the analytical model, allow for the consolidation of specific methodologies for further research to determine the device temperature based on spatially distributed and averaged parameters.

Keywords: AlGaN; FET; GaN; HEMT; thermal current; temperature profile; average temperature

1. Introduction

The commercial wireless market requires more demanding microwave operation with higher requirements in terms of self-heating, high operating voltage and inherent processes and their impact on the device reliability in consumer electronics [1–3]. The presence of two-dimensional electron gas (2DEG) in a gallium nitride (GaN) based structure presents the potential to fabricate high electron mobility transistors (HEMTs) with Schottky diodes employed as excellent devices for application in the microwave and power conversion field. The suppression of the critical temperature increase, caused by high power density along the device active area, requires the utilization of high thermal conductance substrates e.g., silicon carbide (SiC) [4]. Since the devices are microscopic in size, the conventional methods lack the accuracy to estimate the device operating temperature.

Numerous experimental methods were developed to determine the temperature inside and nearby active device area such as Raman spectroscopy or interferometric mapping [5–7]. Additionally, various methods utilizing external heating, or a low-power operating regime were employed, taking advantage of specific electro-thermal device properties. However, these methods, that are widely applied to determine average temperature of HEMT operating in the saturation regime, suffer from a lack of accuracy due to the marginalization of the drain current increase caused by, e.g., gate length modulation or leakage effects [8–10]. Moreover, the current comparison at the defined operating point
to the peak current under short-pulsed operation at various ambient temperatures [11] in these devices does not account for time dependent isothermal phenomena caused processes such as by charge trapping.

Although device thermal simulations, based on non-linear equations, resolve thermal processes inside the structure [12], the combined integral and differential analysis of the resultant current and the separation of the isothermal and thermal sections are emphasized in this work. The complex theoretical considerations, utilizing thermal profile variation, were simplified and adapted for the practical purposes to acquire the average HEMT channel temperature. The theoretical and experimental results obtained are present the potential to improve and consolidate the already utilized methodologies described empirically for specific devices.

2. Theory

2.1. Electrical Model

The presented model is possible to be applied to an n-port device with applied voltage V_n considering resultant current I at one port and neglecting the other port current. Devices meeting these requirements are e.g., Schottky diode, ungated or gated transmission line model (TLM) structure such as field-effect transistor (FET) when neglecting the gate current.

The resultant current change dI (ΔI) consists of an isothermal section dI_E (ΔI_E) induced by applied voltage change dV_n (ΔV_n) and isothermal trapped charge variation $dQ_{TE}(X)$ ($\Delta Q_{TE}(X)$) and thermal section dI_T (ΔI_T) assigned to spatial temperature change $dT(X)$ ($\Delta T(X)$) and the thermal trapped charge variation $dQ_{TT}(X)$ ($\Delta Q_{TT}(X)$):

$$dI = dI_E + dI_T$$ \hspace{1cm} (1)

The current change is defined for the time interval dt (Δt) considering the device area consisting of spatial elements dX (ΔX) and thermal profile $T(X)$. The resultant trapped charge $dQ_T(X)$ ($\Delta Q_T(X)$) is defined in a similar way, as follows:

$$dQ_T(X) = dQ_{TE}(X) + dQ_{TT}(X)$$ \hspace{1cm} (2)

In general, dI_E is related to dV_n and $dQ_{TE}(X)$ by time invariant coefficients k_{Vn} and $k_Q(X)$, respectively, whereas dI_T is related to $dT(X)$ and $dQ_{TT}(X)$ by time invariant coefficients $k_T(X)$ and $k_Q(X)$, respectively:

$$dI_E = k_{Vn}dV_n + \iiint_X k_Q(X)dQ_{TE}(X)dX$$ \hspace{1cm} (3)

$$dI_T = \iiint_X [k_T(X) + k_Q(X)k_{TT}(X)]dT(X)dX$$ \hspace{1cm} (4)

In (4) $k_{TT}(X) = dQ_{TT}(X)/dT(X)$ is time and state dependent variable. The coefficients $k_Q(X)$, $k_T(X)$, $k_{TT}(X)$ and k_{Vn} at the operating point defined by V_n, I and $T(X)$ at time t can be obtained using an analytical solution or advanced simulation software calibrated by experimental results. Although the majority of commercially utilized simulation software allows for self-heating to be switched off/on [12] or DC measurements to be realized in a pulse or quasi-static state [13], it is impossible to turn self-heating on separately to obtain $T(X)$ and I at a predefined operating point and to subsequently turn it off for Δt and ΔV_n to separate ΔI_T and ΔI_E.

It is recommended that the device current response of a stepping and rectangular pulse source is differentiated into time elements Δt to find the particular ΔI_E and ΔI_T as shown in Figure 1a,b, respectively. The small parasitic capacitance, typical for GaN-based devices, and a short switching time of the stepping source in comparison with thermal and trapping time constants make it possible for ΔI_T to be obtained as the difference between I acquired at $t_1 + \Delta t$ and at $t_1 + \Delta t$ in the case of a negligible $\Delta Q_{TE}(X)$. To reach an equilibrium
state during quasi-static stepping, the voltage source measurements shown in Figure 1a, \(\Delta I \) is utilized much higher than the thermal and trapping time constants. For the pulse voltage source measurements initialized at time \(t_0 \) depicted in Figure 1b, the temperature \(T(X) \approx T_0 \) is found along the active device area at \(t \approx t_1 \), that it is zero \(\Delta V_n \) at \(t > t_1 \) and a negligible \(\Delta Q_{TE}(X) \) results in \(\Delta I_T \approx \Delta I \). Otherwise, \(\Delta Q_{TE}(X) \) is required to be incorporated into \(\Delta I_E \) as illustrated below.

![Current time response I for (a) stepping \(V_n \) and (b) \(V_n \) pulse.](image)

Figure 1. Current time response \(I \) for (a) stepping \(V_n \) and (b) \(V_n \) pulse.

2.2. Average Temperature Definition

To avoid thermal gradient calculations, the average temperature contribution \(dT_A \) in the active device area \(X_A \) is defined by the substitution of \(k^I_T(X) = k_T(X) + k_Q(X)k_{TT}(X) \) and the spatially independent thermal coefficient \(k_T \) related to the operating point:

\[
dI_T = k_T(T_A, V_n, t)dT_A = \iiint_{X_A} k^I_T(X)dT(X)dX
\]

(5)

To eliminate the \(k^I_T(X) \) spatial determination, the approximation, demonstrated by an infinite thermal conductance for which the power density of \(X_A \) does not perform a function, is usually utilized to calculate average temperature \(T_A \) with trapping centers thermally excited by the same \(dT_A \). Therefore the \(k_T = \iiint_{X_A} k^I_T(X)dX \) as \(T_A, V_n \) and \(t \) dependent are used in the following way:

\[
dI_T = k_T(T_A, V_n, t)dT_A = \left[\iiint_{X_A} k^I_T(X)dX \right]dT_A
\]

(6)

The deviation between (5) and (6) leads to a discrepancy in \(T_A \) determination, especially for different heat flux distributions caused by power dissipation, ambient temperature and time variation. For a spatially independent \(k_T(X), k_Q(X) \) or \(k_{TT}(X) \) in \(X_A \), (5) and (6) appear identical, resulting in \(k_T = k^I_T(X)X_A \) and subsequently \(dT_A \) as the thermodynamic average temperature contribution in \(X_A \):

\[
dT_A = X_A^{-1} \iiint_{X_A} dT(X)dX
\]

(7)
2.3. Ambient Temperature Variation

The average temperature determination method depicted in Figure 2a is based on the resultant current I comparison with an isothermal current IE at time t1 after the measurement initialization at time t0, where the maximum I and IE should be reached at time t0’. The trapping effects must be included in IE as illustrated below. In spite of the zero thermal contribution $$\int_{X} k^E_f(X) dT_E(X) dX$$ to IE, the variation of the isothermal temperature profile $$T_E(X)$$, together with a spatially dependent $$k^E_f(X)$$, results in a thermodynamic average temperature deviation from the initial temperature at t0, caused by the difference between (5) and (6). Therefore, this method is found to be sufficient for devices with a relatively small active area or negligible spatial $$k^E_f(X)$$ variation.

![Figure 2. Current time response comparison for various T_0 for (a) V_n pulse and (b) time interval Δt.](image)

Two identical measurements at distinct ambient temperatures, such that $$T_{01} \approx T_0$$ and $$T_{02} \approx T_0 + \Delta T^*$$ with a small temperature difference $$\Delta T^*$$ result in the current $$I_1$$ and $$I_2$$, temperature profiles $$T_1(X)$$ and $$T_2(X)$$, as depicted in Figure 2b, and exhibit the temperature profile difference $$\Delta T^*(X) = T_2(X, t_1) - T_1(X, t_1) \approx T_2(X, t_1 + \Delta t) - T_1(X, t_1 + \Delta t)$$, $$\Delta T(X) = T_1(X, t_1 + \Delta t) - T_1(X, t_1)$$ and the differential current $$\Delta I = I_1(t_1 + \Delta t) - I_1(t_1)$$, $$\Delta I^* = I_2(t_1) - I_1(t_1) \approx I_2(t_1 + \Delta t) - I_1(t_1 + \Delta t)$$. The assumption of a low $$\Delta t$$ means that the following formula is applicable for quasi-static and pulsed operations:

$$\Delta I^* = \int_{X} k^E_f(X) \Delta T^*(X) dX$$ \hspace{1cm} (8)

The substitution of $$\Delta T^*(X) = \Delta T(X) - \Delta T_E(X)$$ and $$\Delta T_E(X) = T_1(X, t_1 + \Delta t) - T_2(X, t_1)$$ in (8), utilized for the $$dI_T$$ comparison with $$\Delta I_T = \int_{X} k^E_f(X) \Delta T(X) dX$$ based on the comparison of difference and differential substitution $$dI_T / \Delta I_T = dT(X) / \Delta T(X)$$, results in:

$$\frac{dI_T}{\Delta I^*} = \frac{\int_{X} k^E_f(X) dT(X) dX}{\int_{X} k^E_f(X) \Delta T^*(X) dX}$$ \hspace{1cm} (9)

As a result, a $$T_A$$ definition utilizing (6) and substitution $$X \approx X_A$$, $$dI_T$$ and $$\Delta I^*$$ caused by $$\Delta V_n$$ and $$\Delta T_0$$ leading to $$dT_A$$ and $$\Delta T_A^*$$, respectively, leads (9) to the following relationship:

$$\frac{dI_T}{\Delta I^*} = \frac{dT_A}{\Delta T_A^*}$$ \hspace{1cm} (10)

However, despite the zero $$I_E$$ thermal current, a non-zero $$\Delta T_E(X)$$ variation results in a discrepancy between the definition of $$dT_A$$ and $$\Delta T_A^*$$ by (7) and the definition utilizing infinite thermal conductance of the device active area, on the other side. Nevertheless, the $$T_A$$ determination methods utilizing (10) are found to be sufficient for devices with a negligible spatial $$k^E_f(X)$$ variation or a relatively small active area.
Already known ΔT_A^* and ΔI_E time dependence allows to obtain T_A as the sum of dT_A calculated in (10) in the quasi-static or pulsed operating regime. Temperature dependent thermal resistance and thermal capacity result in a ΔT_A^* deviation from ΔT_0. Quasi-static state methods, utilizing the T_0 variation, allows for the calculation of dT_A and ΔT_A^* [9,14].

2.4. Trapping Effects Approximation in FET

We further consider the T_A determination of the FET-neglecting parasitic gate, and its entire electric capacitance. Even a relative carrier velocity v change, and pinchoff area formation are thought to have no impact on channel potential distribution along the channel [15,16].

The threshold voltage V_{TH} shift is related to the time and temperature variation of energy barrier height, free charge concentration along the conductive channel as well as charge trapping, resulting in the additional virtual gate electrode. The gate voltage V_{GS}, drain voltage V_{DS} and ambient temperature T_0 variation causes dT_A, with a direct impact on the v and V_{TH} change. These variations result from the isothermal section dV_{THN}, caused by an immediate band energy diagram and free charge concentration change. The isothermal section dV_{TH}, is a result of the trapping phenomena during the defined time and the thermal section dV_{THT} originates from thermal carrier and trap center density change.

A widely utilized FET approximation [15] in the case of stepping V_{DS} and/or V_{GS} at a defined T_0 is as follows:

$$dl = g_{M0}(dV_{GS} - dV_{THE} - dV_{THT}) + g_{D0}dV_{DS} + dI_{TV}$$ \(\text{(11)}\)

It is possible to acquire the isothermal transconductance g_{M0} and output conductance g_{D0} via immediate isothermal V_{DS} and V_{GS} responses, including dV_{THN}/dV_{DS} and dV_{THN}/dV_{GS}. The term dI_{TV} represents the thermal change caused by dV_{DS}, dV_{GS} and dT_0 and has a major impact on v, excluding V_{TH}. A substitution of $dl_0 = g_{M0}dV_{GS} + g_{D0}dV_{DS}$ and $dl = dl_E + dl_T$, as applied in (11), results in:

$$dl_E = dl_0 - g_{M0}dV_{THE}$$ \(\text{(12)}\)

$$dl_T = dl - dl_E = dl_{TV} - g_{M0}dV_{THT}$$ \(\text{(13)}\)

A common way to obtain V_{TH} is pulsed and/or quasi-static transfer I-V characteristics utilization at defined T_0 and V_{DS} assuming V_{TH} independent on V_{GS} as well as an approximation of isothermal and measured I-V characteristics pointing on the same V_{TH} shift at T_0 in the operating range. Trapping phenomena and voltage drop in the source-to-gate and drain-to-source area have a partial influence on the V_{TH} determination especially for low applied V_{DS} or non-linear V_{TH} vs. V_{DS} dependence. The following ways of trapping effects incorporation in T_A calculation coming out of V_{TH} determination from transfer I-V characteristics are explained.

In the case of the quasi-static state operation V_{TH} shift, resulting in $(dV_{THE} + dV_{THN})/dV_{DS}$ caused by T_0 and V_{DS} variation, can be simply obtained from quasi-static I-V characteristics. Transfer I-V characteristics, measured by short-pulsed V_{GS} and V_{DS} offering trap influence separation, allow to get dV_{THN}/dV_{DS} obtained from negative V_{TH} shift caused by roll-off effect in short-channel FET [15,17]. Subsequently, the ratio dV_{THE}/dV_{DS} dependent on V_{DS} and T_0 acquired and utilized in (12), whereby dl_0 is acquired at the beginning of V_{DS} and/or V_{GS} step, a measured transconductance $g_M \gg |g_M - g_{M0}|$ is supposed. For a significant $g_{M0}dV_{THE}/dV_{DS}$ temperature variation in comparison with dl_{TV}/dV_{DS} an iteration process is required for T_A determination.

For V_{DS} and/or V_{GS} pulse responses, depicted in Figure 1b, the pulsed transfer I-V characteristics are measured utilizing V_{GS} and/or V_{DS} quiescent biasing and/or voltage pulses. At T_0 and the defined time t_1 after the increase of constant amplitude V_{DS} and the sweeping amplitude V_{GS}, drain currents are acquired to extract the V_{TH} as t_1 and T_0 functions. At the time interval Δt, during the pulse, $\Delta V_{THE} = V_{TH}(T_A, t_1 + \Delta t) -$
$V_{TH}(T_A, t_1)$ gives the opportunity to utilize $\Delta I_E = -g_{M0}\Delta V_{TH}$ for both a small Δt and ΔV_{TH} corresponding to the virtual gate electrode potential shift, neglecting the g_{M0} time variation. The maximum resultant current I_E and V_{TH} obtained immediately after V_{GS} and/or V_{DS} rising edges at t_0, provides the opportunity to plot the I_E time dependence at T_0, depicted in Figure 2a:

$$I_E(t_1) = I_E(t_0) - g_{M0}[V_{TH}(t_1) - V_{TH}(t_0)]$$

In the considerations above a thermal gradient along the active device area that effects the trap spatial localization is truncated. Isothermal trapping phenomena and a voltage drop in the source-to-gate and the drain-to-source area having a partial influence on V_{TH} shift are neglected as well. Despite this, an appropriate analytical approximation of the I-V characteristics provides an opportunity to predict the trapping phenomena in particular devices. An advantage of the T_0 variation method during the device operation is that the calibration of for dI_{TV}/dT_A vs. T_A, V_{DS} and V_{GS} with an additional trapping phenomena analysis is not required.

2.5. Short Time Response Current Utilization

Many of the experimental methods that are widely utilized for the T_A acquisition of FET in a saturation regime are based on a zero isothermal drain current change dI_E/dV_{DS} at constant V_{GS}. The requirement of zero dI_E in (12) is satisfied for a gate length modulation or a leakage current increase compensated by the trapping phenomena in the saturation regime, resulting in $dI_E \ll dI_T$. Long-channel FET excluding V_{DS} such as V_{GS} dependent charge trapping variation meets this condition therefore the methods to acquire T_A in quasi-static operation coming out from temperature calibration of major electrical parameters [8,16] or ambient temperature variation [9,18] require standard DC measuring equipment. The dI_E prediction at various ambient temperatures, using an analytical model or simulation software also makes such methods applicable for short-channel FET [17,18].

In general, the resultant current acquisition after a short period after the voltage step/pulse is required, to obtain the dI_0. The method depicted in Figure 2a is simply applicable for devices exhibiting relatively short time responses t_0'-t_0, operating in the quasi-static and dynamic state as well providing the opportunity to obtain an isothermal trapping effects approximation. However a switching time of $\sim 10^{-8}$ s is required for full load turning-on, which makes the experimental setup more expensive.

3. Experimental

3.1. Structure Design and Experimental Setup

The investigated Al$_{0.25}$Ga$_{0.75}$N/GaN HEMT structure, including 14 nm Al$_{0.25}$Ga$_{0.75}$N/1.5 nm AlN/1700 nm GaN/75 nm thermal boundary resistance layer (TBR) heterostructure was grown by MOVPE on a 70 µm thick 4H-SiC substrate, containing the backside Au contact, which was soldered to 1 mm thick CuMo leadframe using a 60 µm thick AuSn solder. The top ohmic drain/source and gate contacts were created via standard Au-based metallization. A gated transmission line model (GTLM) HEMT with a width of $w \approx 100$ µm, a gate with a length of $g_C \approx 0.15$ µm, asource to gate gap of length $d_{GS} \approx 0.75$ µm and the drain to gate gap of length $d_{CG} \approx 1.5$ µm was investigated [14]. The device is placed in an open package located on the Al thermal chuck and maintained at a constant temperature.

A semiconductor parameter analyzer Agilent 4155C and controlled thermal chuck were utilized to acquire the output characteristics at zero gate-source voltage V_{GS} and the drain-source voltage V_{DS} varied from 0 V up to 20 V. The chuck temperature was set in the range of 25–185 °C to demonstrate methods based on ambient temperature and threshold voltage variation. The device trapping level was reset via white LED illumination for one minute between quasi-static measurements. The 3D model incorporating device geometry, layout and thicknesses of individual layers was created using the 3D thermal FEM simulations performed by Synopsys TCAD Sentaurus [12]. The material thermal conductivity and capacity values were obtained from the previous work and calibrated.
utilizing the measurements provided [19,20]. The constant ambient temperature boundary condition was set to the structure backside, assuming an ideal heat transfer between leadframe and heatsink. The structure’s self-heating is simulated by three thermal contacts placed along 2DEG, between the drain and source, representing heat contribution from the drain to the source access region, under the gate electrode and the pinch-off region located at the drain side gate edge [19].

3.2. Average Channel Temperature Determination

The drain-source current I_{DS} dependence on drain-source voltage V_{DS} for gate-source voltage $V_{GS} = 0$ V at varying ambient temperature T_0 in the range of 25–105 °C was acquired during the V_{DS} step, for a period of period ~1 s using the quasi-static operation as depicted in Figure 3. The maximum I_{DS} obtained at the beginning of the extended V_{DS} step $\Delta V_{DS} \approx 2$ V, and subtracted by I_{DS} value, that were acquired under quasi-static operation from the previous V_{DS} step, results in ΔI_{DS}. Quasi-static and pulsed transfer I-V characteristics show soft g_M and a g_{M0} decrease with rising V_{DS} and T_0 as illustrated in Figure 4. In particular, the V_{TH} and V_{THN} were obtained from square rooted transfer I-V characteristics resulting in constant dV_{THE}/dV_{DS} for a defined T_A. Therefore $dV_{THE}/dV_{DS} \approx (dV_{TH} - dV_{THN})/dV_{DS}$ is approximately $dV_{THE}/dV_{DS} \approx k_{THE}(T_A - T_0) + k_{TH00}$, $T_0 \approx 25$ °C, $k_{THE} \approx 8.8 \times 10^{-6}$ K$^{-1}$ and $k_{TH00} \approx 1.97 \times 10^{-3}$ for T_A (°C) in the saturation area. However, T_A above $T_0 \approx 105$ °C was reached, which results in g_MdV_{THE}/dV_{DS} being linearly approximated, exhibiting variations of $~8 \times 10^{-8}$ V/K in the range of 25–225 °C, corresponding to $~10\%$ of dI_{DS}/dV_{DS}. Interpolated thermal and isothermal parts of dI_{DS}/dV_{DS} vs. V_{DS} at $T_0 \approx 25$ °C are depicted in Figure 5. Moreover, the dissipated power contribution $dP^* = V_{DS}\Delta I^*$, caused by dT_0 for low V_{DS} negligible in comparison with $dP = V_{DS}dI_{DS} + I_{DS}dV_{DS}$ caused by dV_{DS}, results in the simplified formula for differential thermal resistance $R_{A0}(T_0)$ calculation [14] utilizing (12):

$$R_{A0} = (dT_0^*/dP)(dI - dI_0 + g_MdV_{THE})/\Delta I^*$$ (15)

![Figure 3. Output I-V characteristics for $V_{GS}= 0$ V at various T_0.](image-url)
Figure 3. Output I-V characteristics for $V_{GS} = 0$ V at various T_0.

Figure 4. Transconductance g_M, g_{M0} and threshold voltage V_{TH} and V_{THN} dependence on V_{DS} at various T_0 required for trapping phenomena incorporation.

Figure 5. Interpolated thermal and isothermal difference current sections dependence on V_{DS} at $T_0 \approx 25$ °C.

The linear approximation $T_A - T_0 \approx R_{A0} P$, utilized in the first $g_M dV_{THE}$ iteration step in (15), leads to a formula resulting in $R_{A0}(T_0)$ plot at different T_0 and V_{DS} as shown in Figure 6:

$$R_{A0} = \frac{dI_{DS} - dI_0 + g_M[k_{THE}(T_0 - T_{00}) + k_{TH0}]dV_{DS}}{(\Delta P/dT_0) - (g_M k_{THE} V_{DS} I_{DS} dV_{DS})}$$ \hspace{1cm} (16)

Increasing V_{DS} results in different R_{A0} values at a defined T_0, which is partially caused by spatially distributed electrical parameters of the active device area such as the $g_M dV_{THE}/dV_{DS}$ variation. The approximation $R_{A0} \approx k_{RA}(T_0 - T_{00}) + R_{00}$, $T_{00} \approx 25$ °C, $k_{RA} \approx 0.2$ W$^{-1}$, $R_{00} \approx 57.0$ K/W at the defined T_0 was utilized to calculate T_A in a recurrent way [14] as illustrated in Figure 7. In [8] the major contribution of the thermal I_{DS} section is assigned to the serial source area resistance increase, caused by self-heating in a saturation regime for AlGaN/GaN HEMT. The simulated average channel temperature of the source to the gate area is in acceptable agreement in comparison to the calculated T_A.
on an ambient temperature variation for a device under a quasi-static state and a device
avoid spatially distributed device parameters acquisition. The particular methods, based
pendence. This approximation is found to be sufficient, although further

Figure 6. Temperature dependence of normalized thermal resistance R_{A0}.

Figure 7. Average channel temperature T_A vs. dissipated power P in quasi-static state and T_A time
dependence for applied V_{DS} pulse.

For the T_A investigation of HEMT in the pulse operation, V_{GS} and V_{DS} bias was
set to zero, superimposed by a $V_{DS} = 20$ V pulse of length ~ 1 s. In the case of non-zero
biasing, the initial condition of zero power dissipation is required to be satisfied. The
period of ~ 5 s between voltage pulses was found sufficient because of the absence of the
automated white LED illumination during the pulse breaks. The resultant current I_{DS}
acquired at T_0 and delay t_1 after the rising edge of constant amplitude $V_{DS} = 20$ V and
V_{GS} amplitude sweeping from -4 V to -2 V at defined points, allowed us to plot the
transfer I-V characteristics and to subsequently obtain the V_{TH} dependent on t_1 in the
logarithmic scale in the range of 10^{-7}–1 s, where the T_0 step is set linearly in the range
of 25–185 °C. Experimentally acquired I_{DS} in the range of 20–100 ns and 25–185 °C for
pulsed $V_{DS} = 20$ V and zero V_{GS} are depicted in Figure 8. Setting the $V_{GS} = -0.5$ V allows
us to obtain the supposed S_{M0} constant at the defined T_0 due to a small deviation under
isothermal conditions.
channel temperature determination. The calculations were a result of the isothermal and mental section, the theoretical subtractions were adapted for the AlGaN/GaN HEMT result of the FET threshold voltage shift that neglects electric capacitance. In the experimental under pulse operation, were compared by taking the trapping process into account as a cause by trapped and free carrier concentration, the band diagram variation in operating thermal current sections separation, by taking into account the threshold voltage shift.

4. Conclusions

The intersection of the measured I_{DS} time dependence and I_E at defined T_0 allows T_A determination as depicted in Figures 7 and 8. The difference between the T_A obtained by the quasi-static and the pulsed measurements at $t_1 \sim 1$ s can be explained by the partially compensated I_{DS} during the rising time for the voltage pulse $\Delta V_{DS} \approx 20$ V and the uncompensated I_{DS} during the rising time at the voltage step $\Delta V_{DS} \approx 2$ V, which were utilized in the quasi-static measurements. The difference of ~ 20 °C (13%) between simulated and experimental T_A values is assigned to the different heat-flux distributions, resulting in the deviation between (5) and (6), as well as in the electric parameters from the source to the gate area, influencing dI_T and I_E approximation.

4. Conclusions

The average temperature significance was underlined in the theoretical section to avoid spatially distributed device parameters acquisition. The particular methods, based on an ambient temperature variation for a device under a quasi-static state and a device under pulse operation, were compared by taking the trapping process into account as a result of the FET threshold voltage shift that neglects electric capacitance. In the experimental section, the theoretical subtractions were adapted for the AlGaN/GaN HEMT channel temperature determination. The calculations were a result of the isothermal and thermal current sections separation, by taking into account the threshold voltage shift caused by trapped and free carrier concentration, the band diagram variation in operating temperatures and the applied voltage. The calculated and simulated average channel temperature ~ 160 °C of the source to the gate area for power dissipation ~ 2 W exhibits a difference of ~ 20 °C (13%). The considerations applied in the analytical model offer methodological consolidation for use in further research.

![Figure 8](https://example.com/image.png)

Figure 8. Measured I_{DS} time dependence (full-dot) at $T_0 \approx 25$ °C and approximated isothermal I_E time dependence (empty-dot) at various T_0 for applied V_{DS} pulse.
Author Contributions: Conceptualization, M.F., J.K.J. and A.C.; methodology, M.F.; software A.C.; validation M.F. and A.C.; device preparation, J.-C.J. and S.L.D.; writing—original draft preparation, M.F., J.K.J., J.K. and A.C.; funding acquisition, J.K.J. and J.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work received funding from the ECSEL JU under grant agreement No 783274, project 5G_GaN2. The JU receives support from the European Union’s Horizon 2020 Research and Innovation Program and France, Germany, Slovakia, Netherlands, Sweden, Italy, Luxembourg, Ireland. This publication reflects only the author’s view and the JU is not responsible for any use that may be made of the information it contains. The work was also supported by Grant VEGA 1/0733/20 through the Ministry of Education, Science, Research and Sport of Slovakia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222. [CrossRef]
2. Chattopadhyay, M.K.; Tokekar, S. Thermal model for dc characteristics of AlGaN/GaN HEMTs including self-heating effect and non-linear polarization. Microelectron. J. 2008, 39, 1181. [CrossRef]
3. Doré, J.-B.; Belot, D.; Mercier, E.; Bicaïs, S.; Gougeon, G.; Corre, Y.; Miscoipe, B.; Ktenas, D.; Strinati, E.C. Technology Roadmap for Beyond 5G Wireless Connectivity in D-band. In Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020. [CrossRef]
4. Chowdhury, S. Gallium nitride based power switches for next generation of power conversion. Phys. Stat. Sol. A 2015, 212, 1066. [CrossRef]
5. Berthet, F.; Guehl, Y.; Gualous, H.; Boudart, B.; Trolet, J.L.; Piccione, M.; Gaquier, C. Characterization of the self-heating of AlGaN/GaN HEMTs during an electrical stress by using Raman spectroscopy. Microel. Rel. 2011, 51, 1796–1800. [CrossRef]
6. Kuball, M.; Rajasingam, S.; Sarua, A. Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Appl. Phys. Lett. 2003, 82, 124. [CrossRef]
7. Kim, J.; Freitas, J.A.; Mittreder, J.; Fitch, R.; Kang, B.S.; Pearton, S.J.; Ren, F. Effective temperature measurements of AlGaN/GaN-based HEMT under various load lines using micro-Raman technique. Solid-State Electr. 2006, 50, 408–411. [CrossRef]
8. Kuzmik, J.; Javorka, P.; Alam, A.; Mars, M.; Heuken, M.; Kordos, P. Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Trans. Electr. Dev. 2002, 49, 1496–1498. [CrossRef]
9. Menozzi, R.; Membreno, G.A.U.; Nener, B.D.; Parish, G.; Sozzi, G.; Faraone, L.; Mishra, U.K. Temperature-dependent characterization of AlGaN/GaN HEMTs: Thermal and source/drain resistances. IEEE Trans. Dev. Mat. Rel. 2008, 8, 255. [CrossRef]
10. Tarter, T.S. A Novel Circuit for the Evaluation of Thermal Impedance Characteristics of MOS Integrated Circuits. In Proceedings of the IEEE Semiconductor Thermal and Temperature Measurement (SEMI-THERM) Symp., San Diego, CA, USA, 7–9 February 1989; pp. 131–135. [CrossRef]
11. Raj, B.; Bindra, S. Thermal Analysis of AlGaN/GaN HEMT: Measurement and Analytical Modeling Techniques. Int. J. Comp. Appl. 2013, 75, 4–13. [CrossRef]
12. Synopsys. Sentaurus Device User Guide; v. L-2017.09; TCAD Sentaurus: San Jose, CA, USA, 2017.
13. Heo, D.; Chen, E.; Gebara, E.; Yoo, S.; Laskar, J.; Anderson, T. Temperature Dependent MOSFET RF Large Signal Model Incorporating Self Heating Effects. In Proceedings of the IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, USA, 13–19 June 1999; Volume 1, pp. 415–418, ISBN 0-7803-5136-3.
14. Florovic, M.; Kovac, J., Jr.; Kovac, J.; Chvala, A.; Weis, M.; Jacquet, J.C.; Delage, S.L. Models for the self-heating evaluation of GaN-based HEMT. Semicond. Sci. Technol. 2021, 36, 025019. [CrossRef]
15. Chenming, C.H. MOS Transistor and MOSFETs in ICs—Scaling, Leakage and Other Topics. In Modern Semiconductor Devices for Integrated Circuits, 1st ed.; Prentice Hall: Midland Park, NJ, USA, 2010; Chapters 6 and 7; pp. 200–214, 266–269; ISBN 9780136085256.
16. Florovic, M.; Szabolovszky, R.; Kovac, J., Jr.; Kovac, J.; Chvala, A.; Weis, M.; Jacquet, J.C.; Delage, S.L. Thermal analysis of AlGaN/GaN HEMT: Measurement and analytical modeling techniques. Semicond. Sci. Technol. 2019, 34, 065021. [CrossRef]
17. Alim, A.A.; Rezazadeh, A.A.; Gaquiere, C. Temperature dependence of the threshold voltage of AlGaN/GaN/SiC high electron mobility transistors. Semicond. Sci. Technol. 2016, 31, 125016. [CrossRef]
18. Florovic, M.; Szabolovszky, R.; Kovac, J., Jr.; Chvala, A.; Jacquet, J.C.; Delage, S.L. AlGaN/GaN HEMT channel temperature determination utilizing external heater. IEEE Semicond. Sci. Technol. 2020, 35, 025006. [CrossRef]
19. Chvala, A.; Szobolovszky, R.; Kovac, J.; Florovic, M.; Marek, J.; Cernaj, L.; Donoval, D.; Dua, C.; Delage, S.L.; Jacquet, J.C. Advanced characterization techniques and analysis of thermal properties of AlGaN/GaN multifinger power HEMTs on SiC substrate supported by three-dimensional simulation. *J. Electron. Packag.* **2019**, *141*, 031007. [CrossRef]

20. Chvala, A.; Marek, J.; Pribytny, P.; Satka, A.; Stoffels, S.; Posthuma, N.; Decoutere, S.; Donoval, D. Analysis of multifinger power HEMTs supported by effective 3-D device-electrothermal simulation. *Microelectron. Reliab.* **2017**, *78*, 148–155. [CrossRef]