Kinetic Study of Adsorption of Malachite Green Dye on Poly Aniline-Formaldehyde/Chitosan Composite

Juman A. Naser*, Fatimah A. A. Al-ani, Israa M. Radhi and Taki A. Himdan

Department of Chemistry, College of Education for Pure Science- Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

*Corresponding author E-mail: Juman_chem@yahoo.com, drjumannaser@gmail.com

Abstract. Poly aniline-formaldehyde/chitosan composite (PAFC) was prepared by the in situ polymerization method. It was characterized by FTIR spectroscopy in addition to SEM, EDS and TGA techniques. The adsorption kinetics of malachite green dye (MG) on (PAFC) were studied for various initial concentrations (20, 30 and 40) mg/L at three temperatures (308, 313 and 318) K. The influence factors of adsorption; adsorbent dose, contact time, initial concentration and temperature were investigated. The kinetic studies confirmed that adsorption of MG obeyed the pseudo-second-order model and the adsorption can be controlled through external mass transfer followed by intraparticle diffusion mass transfer. A study of the temperature effect was indicated that the adsorption process was endothermic. The activation energy value for each concentration of the dye was calculated, it is observed that it decreases with increasing initial dye concentration.

Keywords: Adsorption, Kinetic, Malachite green, Poly aniline-formaldehyde, Chitosan.

Introduction

In recent years, the textile industry produces a large amount of dyed wastewater, this causes serious environmental problems [1]. These effluents hinder the light penetration in water bodies and may affects negatively on the biological processes [2]. Additionally, dyes are toxic to most organisms and harmful to aquatic animals. Also, some dyes are very carcinogenic hence the removing of dyes before elimination of wastewater is extremely important [3].

Malachite green (MG) is one of the most dyes is utilized in the textile industry [4-6]. The exposure to MG can have teratogenic, mutagenic and carcinogenic effects on humans [7].

Various chemical and physical processes are used to remove MG dye from wastewater [8-12]. Adsorption is an effective and versatile process as a result to its easy operation [13-15].
Poly aniline-formaldehyde (PAF) is widely employed as an adsorbents for dyes removal from wastewater. It is a functional polymer containing amine group (NH$_2$) which can act coordination bond with the cationic species as a result of the presence of the electronic lone pair in sp3 hybridized amine nitrogen.

Currently, biopolymer such as chitosan has been applied as one of the most emerging adsorption methods to remove dyes, even at low concentrations [16]. Different materials were used to form a composite with chitosan such as polyvinyl alcohol, polyurethane and montmorillonite [17-19]. This work aims to develop the adsorption capacity of chitosan by modifying it with poly aniline-formaldehyde resin to adsorb malachite green and to explain the adsorption processes and assess the probability of using the modified chitosan as an adsorbed in the practical removal of the dye. To predict the kinetics of the adsorption process; pseudo-first-order model, pseudo-second-order model and intra-particle diffusion model have been examined for several initial concentrations of dye and temperatures.

Experimental

Chemical materials

Chitosan, aniline, formaldehyde (37%) and malachite green dye were obtained from Sigma Aldrich Company. Acetic acid was purchased from Merck Company. All this chemical materials have been used without purification processes.

Preparation of poly aniline-formaldehyde/ chitosan composite (PAFC)

9 g of aniline and 0.5 g of chitosan were mixed slowly with continuous stirring then 10 drops of concentrated acetic acid were added to the mixture with constant stirring in a thermostatic water bath 353 K for two hours. After that the product was cooled then formaldehyde solution 5 mL was added to it and heated to 353 K for two hours with continuous stirring. The product was collected and washed with distilled water to remove the acid residue, then dried in an oven at 363 K for 6 hours. The resulted polymer composite has been grind and sieved by a sieve ≤100 µm. Hence it was characterized and kept for adsorption experiments.

Adsorbate

The concentrations of malachite green dye were observed by using double beam UV-Vis spectrophotometer PG Instrument T80. The absorbance was determined at λ_{max} =610 nm. The chemical structure of MG dye is shown in Figure 1.

![Fig. 1. The chemical structure of Malachite Green dye.](image)

Adsorption experiments
The studies of adsorption kinetic were performed by adding 0.006 g (particle size ≤100 µm) of adsorbent to 20 mL of MG dye solutions for specific concentrations (20, 30, and 40) mg/L. The adsorbent dose, contact time, initial concentration and temperature were examined using a shaking water bath Laptech LSB-015S with a shaking speed 60 rpm. These samples were withdrawn from the water bath shaker at specific time periods and the dye solution has been separated from the adsorbent by a centrifuge at 90 rpm for 2 min. The remaining dye concentration was determined by spectrophotometer. The adsorption studies were conducted at different temperatures (308, 318 and 328) K to determine the effect of temperature on the kinetics of adsorption process.

The amount of absorbed dye \(q \) (mg/g) was estimated as follows:

\[
q = \frac{(C_o - C)V}{w}
\]

(1)

where \(C_o \) is the initial dye concentration (mg/L), \(C \) is the remaining dye concentration (mg/L), \(V \) is the dye solution volume (L) and \(w \) is the adsorbent mass (g).

Results and discussion

Infrared spectroscopy

Infrared spectrum of polymer composite (PAFC) was obtained by a FT-IR spectrophotometer Shimadzu 8400S. It was recorded using KBr pellet method with a spectrum range 4000-400 cm\(^{-1}\).

FTIR spectrum of the prepared polymer composite (PAFC) was shown in Figure 2. A broad band was observed at 3410 cm\(^{-1}\) due to the stretching vibrations of O-H groups of the polymer composite. The stretching vibrations of C-H groups appeared at 3030 cm\(^{-1}\) and 2883 cm\(^{-1}\). The C-N groups axial deformation 1369 cm\(^{-1}\), including the characteristic bands of polysaccharide at (1070-1028) cm\(^{-1}\). So, there is a strong absorption band appeared at 1662 cm\(^{-1}\) attributed to the characteristic vibrations of of azomethine C=N [20], which is not observed in chitosan. The bands at 1500 cm\(^{-1}\) and 810 cm\(^{-1}\) were attributed to the stretching of C=C and C-H groups in the aromatic ring, respectively.

Fig. 2. FTIR spectrum of poly aniline-formaldehyde/chitosan (PAFC).

SEM technique
Figure 3 shows the SEM micrographs of the grinded powder of poly aniline-formaldehyde/chitosan composite surface which were performed using a scanning electron microscope Zeiss SEM EVO18. There are many particles fragments are observed that have irregular structure.

![Fig. 3. SEM micrograph of poly aniline-formaldehyde/chitosan (PAFC).](image)

EDS technique

In order to confirm the components and purity of the prepared polymer composite (PAFC), the energy dispersive X-ray spectroscopy (EDS) was done using a spectrometer EDS Oxford Xmax50. Figure 4 show only three characteristic signals attributed to the main constituents C, O, and N with composition ratio 78.5%, 14.3% and 7.2% respectively.

![Fig. 4. Energy dispersive spectrum of poly aniline-formaldehyde/chitosan (PAFC).](image)

TGA technique

The TGA thermograms of polymer composite (PAFC) was shown in Figure 5, which was recorded by a thermogravimetric analyzer PerkinElmer TGA8000. The thermogravimetric analysis shows that the mass loss has occurred in four stages. A mass loss is ~10% at range 70-170 °C related to the loss of moisture that adsorbed on the surface of polymer composite. So, a mass loss is ~10% at 170-250 °C and ~35% at 250-350 °C due to the degradation of (PAFC) composite. Final, a mass loss is ~20% at around 350-700°C due to the degradation in polymer composite chains. Additionally, there is no mass loss was observed when the temperature was increased to 800 °C, which confirms the higher thermal stability of prepared polymer composite. So, the residue ratio of (PAFC) was 25%.
Adsorption experiments

Influence of adsorbent dose

The effect of adsorbent dose was examined to determine the adsorption optimization. The experiments of adsorption were performed by various masses of the prepared polymer composite (PAFC) (0.002, 0.004, 0.006, 0.008 and 0.01) g (particle size ≤100 µm), 20 mL of MG dye concentration 20 mg/L at 308 K and 30 min. The results are illustrated in Figure 6. The adsorbed amount increases until it reaches the highest value at 0.006g. As a result of the increase in the number of active adsorption sites that increases by increasing the adsorbent mass [21].

Influence of contact time

The effect of contact time for the adsorption of MG dye on 0.006 g (particle size ≤100 µm) of poly aniline-formaldehyde/chitosan composite surface was investigated at 20 mL of initial concentrations (20, 30, and 40) mg/L and 308 K as shown in Figure 7. Obviously, the time has a great effect on the studied adsorption system. It was noted that the adsorbed quantity of MG dye molecules from aqueous solution increases gradually with the time and reaches to up 10.619 mg/g within 15 min. Then, it increases slowly through 45 min to reaches 10.852 mg/g. After that the adsorbed quantity becomes steady, this is due to the saturation state of surface adsorption capacity.
Fig. 7. Effect of contact time on the adsorption of MG dye on (PAFC).

Influence of initial concentration

To determine the optimum initial concentration of malachite green dye MG, the concentrations (20, 30, and 40) mg/L with a volume 20 mL were examined at adsorbed mass 0.006 g (particle size ≤100), contact time 45 min and 308 K. Figure 8 refers to the initial concentration effect on the adsorbed dye by the prepared composite (PAFC). It is clear the adsorbed quantity of MG dye decreases with increase in the concentration, it possibly due to the saturation of active sites of the adsorbent surface when the concentration is increasing.

Fig. 8. Effect of initial dye concentration on the adsorption of MG dye on (PAFC).

Influence of temperature

The effect of temperature for the adsorption of MG dye on the surface of prepared composite (PAFC) was investigated within temperatures (308, 313 and 318) K on the adsorption of initial dye concentration (20, 30 and 40) mg/L with volume 20 mL and 0.006 g of adsorbent, results are shown in Figure 9. It was observed that the adsorption amount of MG dye increases with increasing temperature that related to the increasing of kinetic energy of dye molecules then increasing their ability to pass the energy barrier.
Adsorption kinetics

The kinetics of adsorption is essential to investigate the solute adsorption rate which is determining the adsorbent efficiency and adsorption mechanism. Therefore, different models of kinetic the pseudo-first-order, pseudo-second-order and intra-particle diffusion have been used. Pseudo-first-order equation can be applied in the following formula [22]:

$$ln(q_e - q_t) = lnq_e - k_1t$$ \hspace{1cm} (2)

where q_e is the adsorbed capacity in the equilibrium (mg/g), q_t is the adsorbed quantity at time t (mg/g), k_1 is the pseudo-first-order rate constant (min$^{-1}$) and t is the time (min). The results of fitted are presented in Table 1 with the values of correlation coefficient. The plot of $ln(q_e - q_t)$ versus t at the studied temperatures represents the fitted of pseudo-first-order equation, Figure 10.
Fig. 10. Pseudo-first-order model fitted for adsorption of MG dye on (PAFC).

Table 1. Pseudo-first-order model constants and correlation coefficients for adsorption of MG dye on (PAFC).

C (mg/L)	T (K)	$q_{e\,\text{cal.}}$ (mg/g)	$q_{e\,\text{exp.}}$ (mg/g)	k_1 (min$^{-1}$)	R^2
20	308	2.191	10.774	0.082	0.798
	313	2.589	17.053	0.079	0.631
	318	2.439	17.906	0.078	0.719
30	308	2.320	7.131	0.094	0.802
	313	1.793	6.976	0.063	0.638
	318	1.989	8.681	0.057	0.689
40	308	2.218	10.543	0.067	0.746
	313	2.827	15.271	0.082	0.803
	318	3.594	16.667	0.111	0.706

It was found that difference in the experimental and theoretical values of (q_e). In addition to low correlation coefficient values. This supports the suggestion that the adsorption of MG dye on (PAFC) does not obey the kinetic of pseudo-first-order model.

On the other hand, the pseudo-second-order model was applied in the linear form [23], as following:

$$\frac{t}{q_t} = \frac{1}{k_2q_e^2} + \left(\frac{1}{q_e}\right)t \quad (3)$$

where k_2 is the pseudo-second-order rate constant (g/mg.min). A plot of t/q_t versus t was drawn, Figure 11. The adsorbed amount at equilibrium q_e and the pseudo-second-order constant k_2 were estimated from the slope and intercept respectively. The $k_2,$ q_e and correlation coefficient values are showed in Table2. It was observed that there is a good agreement between the calculated and experimental values of adsorbed quantity. So, the correlation coefficient values indicate the adsorption of MG dye on (PAFC) composite agree with the pseudo-second-order model for all studied temperatures.
Fig. 11. Pseudo-second-order model fitted for adsorption of MG dye on (PAFC).

Table 2. Pseudo-second-order model constants and correlation coefficients for adsorption of MG dye on (PAFC).

C (mg/L)	T (K)	\(q_{e\, cal.} \) (mg/g)	\(q_{e\, exp.} \) (mg/g)	\(k_2 \) (min\(^{-1}\))	\(R^2 \)
20	308	11.155	10.691	0.130	0.997
	313	16.810	16.588	0.402	0.997
	318	16.981	16.598	0.458	0.997
30	308	7.934	7.131	0.063	0.996
	313	7.137	6.821	0.132	0.996
	318	9.528	8.991	0.148	0.996
40	308	10.801	10.465	0.085	0.998
	313	14.342	15.271	0.117	0.999
	318	15.659	15.891	0.132	0.999

Continuously, the adsorption rate of dye increases when the temperature rises, which means that the adsorption process is endothermic and there is a diffusion in addition to the adsorption.
The activation energy value E_a is estimated from the slope of plot $\ln k$ versus $1/T$, Figure 11 according to the following Arrhenius equation [24]:

$$\ln k = \ln A - \frac{E_a}{RT} \quad (4)$$

where k is the rate constant, A is the pre-exponential factor, E_a is the activation energy, R is the universal gas constant 8.314 J/mol.K and T is the absolute temperature in kelvin.

The values of activation energies E_a and Arrhenius factor A were estimated from the slope and intercept respectively of the straight line. The calculated values of activation energy was reported in Table 3. It was founded that an increase in the concentration of the initial dye concentration leads to a decrease in the activation energy value, can be due to increase in the mobility of dye molecules that may occur at a high concentration that needs a lower activation energy to pass the energy barrier hence adsorbed on the adsorbent surface.

![Fig. 12. Arrhenius equation fitted for adsorption of MG dye on (PAFC) composite.](image)

Table 3. Kinetic energy values for adsorption of MG dye on (PAFC).

C (Mg/L)	E_a (kJ/mol)	A
20	107.518	2.503x1017
30	86.133	3.872x1013
40	36.095	1.166x105

Additionally, intra-particle diffusion is an alternative method to express the kinetic and predict the mechanism of the adsorption process. This kinetic model depends on the transfer of the target species from their aqueous solutions to the adsorbents through intra-particle diffusion according to Weber’s equation [25]:

$$q_t = k_id t^{1/2} + C \quad (5)$$

where k_id is intra-particle diffusion constant (mg/g.min$^{1/2}$) and C is the influence secondary layer. The plot of q_t values versus $t^{1/2}$ represented in Figures 13, 14, and 15. The value of k_id and C were estimated from the slope and intercept the drawn straight line. The calculated values of intra-particle diffusion coefficient are listed in Table 4.
It is worth mentioning, the plots of q_t against $t^{1/2}$ had two lines part and the intraparticle diffusion rate constant k_{id} was calculated directly from the slope of the second line.

If the straight line of q_t against $t^{1/2}$ passes through the all points that mean the intraparticle diffusion is the limiting-controlling step, but if the line does not pass through all the original points that indicate the intra-particle diffusion is not a specific rate-controlling step. Hence, the line plot of all concentrations could not pass through the origin. This suggests that the intra-particle diffusion was not the only rate-controlling step.

So, the adsorption happens on the outer surface and ends at time (15) min as a first step then the step of intra-particle diffusion control begins and continues until time (45) min where the equilibrium is start. All this can be deduced that the adsorption process of MG dye involves more than one process and the intraparticle diffusion is not a rate-controlling step.

The intra-particle diffusion plots are curved throw small time, this may be due to the mass transfer effect. Thus, can be separate the curve into two regions. The first part represents the effect of boundary layer diffusion and the second part refers to the effect of intra-particle diffusion.

Generally, the correlation coefficients of intra-particle diffusion were smaller than of pseudo-second order model. This confirms the adsorption process mostly followed by intra-particle diffusion process. So, the line which does not pass through the origin that refers to some degree in the boundary layer control.
Fig. 13. Intra-particle diffusion model fitted for adsorption of 20 mg/L MG dye on (PAFC) at studied temperatures.

Fig. 14. Intra-particle diffusion model fitted for adsorption of 30 mg/L MG dye on (PAFC) at studied temperatures.
Fig. 15. Intra-particle diffusion model fitted for adsorption of 40 mg/L MG dye on (PAFC) at studied temperatures.

Table 4. Intra-particle diffusion model constants and correlation coefficients for adsorption of MG dye on (PAFC).

C (mg/L)	T (K)	First part	R²	Second part	R²		
		kᵢ (mg/g.min⁻¹/²)	C	kᵢ (mg/g.min⁻¹/²)	C		
20	308	0.282	9.513	0.994	0.174	9.651	0.889
	313	0.233	15.893	0.994	0.119	16.342	0.862
	318	0.282	16.490	0.994	0.081	17.368	0.802
30	308	0.261	5.649	0.443	0.165	6.189	0.701
	313	0.327	5.601	0.975	0.117	6.368	0.714
	318	0.110	7.899	0.216	0.118	7.962	0.719
40	308	0.282	7.899	0.994	0.100	9.893	0.765
	313	0.380	13.500	0.995	0.091	14.679	0.931
	318	0.331	15.151	1.000	0.099	16.134	0.450
Conclusion

This study illustrated the use of poly aniline-formaldehyde/chitosan composite (PAFC) as an adsorbent surface to MG dye from their aqueous solutions. It was prepared by the in situ polymerization method by the condensation reaction of aniline and chitosan with formaldehyde. The produced polymer composite was characterized by FTIR, SEM, EDS and TGA techniques before the adsorption experiments. The adsorption kinetic of MG dye from the aqueous solution was investigated. The experimental results show that (PAFC) an effective adsorbent to remove MG dye from water. So, the obtained results were described using three kinetic models; pseudo-first-order, pseudo-second-order and intra-particle diffusion. It was found from that the adsorption data is more suitable with the pseudo-second-order model. Thus, the adsorption process is mostly followed by intra-particle diffusion process.

Acknowledgement

We would like to thank the University of Baghdad, deanship of College of Education for Pure Science- Ibn Al-Haitham and chiefship of Department of Chemistry to them support for this research.

References

[1] Yaseen, D. A. and Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol. 16(2), 1193-1226.

[2] Inyinbor Adejumoke, A., Adebesin Babatunde, O., Oluyori Abimbola, P., Adelani Akande Tabitha, A., Dada Adewumi, O. and Oreofe Toyin, A. (2018). Water pollution: effects, prevention, and climatic impact. Water Challenges of an Urbanizing World, 33.

[3] Katheresan, V., Kansedo, J. and Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng., 6(4), 4676-4697.

[4] Gao, M., Wang, Z., Yang, C., Ning, J., Zhou, Z. and Li, G. (2019). Novel magnetic graphene oxide decorated with persimmon tannins for efficient adsorption of malachite green from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp., 566, 48-57.

[5] Murthy, T. K., Gowrishankar, B. S., Prabha, M. C., Kruthi, M. and Krishna, R. H. (2019). Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: Equilibrium, kinetics and thermodynamic studies. Microchem. J., 146, 192-201.

[6] Lin, K. Y. A. and Chang, H. A. (2015). Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere, 139, 624-631.

[7] Zhao, L., Lv, W., Hou, J., Li, Y., Duan, J. and Ai, S. (2020). Synthesis of magnetically recyclable g-C3N4/Fe3O4/ZIF-8 nanocomposites for excellent adsorption of malachite green. Microchem. J., 152, 104425.
[8] Li, X., Zhang, Y., Jing, L. and He, X. (2016). Novel N-doped CNTs stabilized Cu2O nanoparticles as adsorbent for enhancing removal of Malachite Green and tetrabromobisphenol A. Chem. Eng. J., 292, 326-339.

[9] Singh, A., Kumar, S., Ahmed, B., Singh, R. K. and Ojha, A. K. (2019). Temperature induced modifications in shapes and crystal phases of MoO3 for enhanced photocatalytic degradation of dye waste water pollutants under UV irradiation. J. Alloys Compd., 806, 1368-1376.

[10] Zhang, X., Lin, Q., Luo, S., Ruan, K. and Peng, K. (2018). Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion. Appl. Surf. Sci., 442, 322-331.

[11] Mamelkina, M. A., Herraiz-Carboné, M., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R. and Rodrigo, M. A. (2020). Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Sep. Purif. Technol., 237, 116345.

[12] Shi, Z., Xu, C., Guan, H., Li, L., Fan, L., Wang, Y. and Zhang, R. (2018). Magnetic metal organic frameworks (MOFs) composite for removal of lead and malachite green in wastewater. Colloids Surf. A Physicochem. Eng. Asp. 539, 382-390.

[13] Naser, J. A., Himdan, T. A., and Ibraheim, A. J. (2017). Adsorption kinetic of malachite green dye from aqueous solutions by electrospun nanofiber Mat. Orient. J. Chem., 33(6), 3121-3129.

[14] Boudechiche, N., Fares, M., Ouyahia, S., Yazid, H., Trari, M. and Sadaoui, Z. (2019). Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchem. J., 146, 1010-1018.

[15] Fendi, W. J., and Naser, J. A. (2018). Adsorption Isotherms Study of Methylene Blue Dye on Membranes from Electrospun Nanofibers. Orient. J. Chem., 34(6), 2884-2894.

[16] Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol., 97(9), 1061-1085.

[17] Casey, L. S. (2015). Investigation of chitosan-PVA composite films and their adsorption properties. Journal of Geoscience and Environment Protection, 3(02), 78.

[18] Lee, H. C., Jeong, Y. G., Min, B. G., Lyoo, W. S. and Lee, S. C. (2009). Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers Polym., 10(5), 636-642.

[19] Wang, L. and Wang, A. (2007). Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater., 147(3), 979-985.

[20] Ilayaraja, M., Sharmilaparveen, S. and Sayeekannan, R. (2014). Synthesis and adsorption properties of chitosan cross linked with phenol-formaldehyde resin for the removal of heavy metals and dyes from water. IOSR-J. Appl. Chem., 7, 16-26.
[21] Hameed, K. S., Muthirulan, P. and Sundaram, M. M. (2017). Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: equilibrium and kinetics studies. *Arab. J. Chem.*, 10, S2225-S2233.

[22] Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. *Sven. Vetenskapskad. Handingarl*, 24, 1-39.

[23] Ys, H., Mckay, G., Ys, H. and Mckay, G. (1999). Pseudo-second order model for sorption processes. *Process Biochem.*, 34(5), 451-465.

[24] Bayramoglu, G., Altintas, B. and Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. *Chem. Eng. J.*, 152(2-3), 339-346.

[25] Weber, W. J. and Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. *J. Sanit. Eng. Div.*, 89(2), 31-60.