Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts

Yongye Liang,¹ Hailiang Wang,² Jigang Zhou,³ Yanguang Li,¹ Jian Wang,² Tom Regier² and Hongjie Dai¹

¹Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
²Canadian Light Source Inc., Saskatoon, SK S7N 0X4, Canada.

ABSTRACT: Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co₃O₄ nanoparticles, a manganese-cobalt spinel MnCo₂O₄/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrid results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co³⁺ sites by Mn⁴⁺, which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared to the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo₂O₄/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with superior stability to Pt/C in alkaline solutions.

INTRODUCTION

The oxygen reduction reaction (ORR) has been one of the focuses of electrochemistry in the past decades owing to its importance and continued challenges to a variety of energy applications including fuel cells¹ and metal-air batteries.² Platinum based materials are known to be the most active catalysts for ORR in both acidic and alkaline conditions, but come at a high price and limited stability.³ Compared to its behaviors in acidic conditions, ORR in alkaline conditions is more facile and can be catalyzed by a broader range of materials more stable in base than in acid.⁴ Metal oxides,⁵ nitrogen coordinated metal on carbon matrices⁶ and doped carbon materials⁷ have been investigated as ORR catalysts in alkaline solutions. However, it remains a challenge to develop an ORR catalyst with a high activity comparable to Pt, but with higher durability and much lower cost.

Mixed valence oxides of transition metals with a spinel structure are an important class of metal oxides that exhibit ORR catalytic activity in alkaline conditions.⁸ Due to the activity, low cost, simple preparation and high stability, cobalt based spinel oxides have been investigated extensively as electrocatalysts.⁹ In particular, substituted Co₃O₄ with Ni, Cu and Mn have shown high activity and stability as electrocatalysts for ORR.¹⁰ However, despite these efforts, substituted spinel oxides still exhibit a much lower mass activity when compared to Pt based materials. For example, in 6 M KOH at ~0.2 V vs. Hg/HgO, a MnCo₂O₄-carbon black catalyst at 14 mg/cm² loading gave current density of 300 mA/cm² at 60 °C, while Pt/CNT/C at 0.1 mg/cm² loading gave current density of 125 mA/cm² at 25 °C.¹¹ Despite the low cost, there is a maximum acceptable electrode loading of the catalyst due to the resistivity in oxygen and electrolyte transport.¹² Thus, it is highly desirable to develop spinel oxide catalysts with much improved mass/volume catalytic activity.

Recently, we showed that the direct nucleation, growth and anchoring of nanocrystals of various shapes on graphene oxide (GO) sheets result in a series of hybrid materials with optimal electrical and chemical coupling between the nanoparticles and the GO substrates.¹² In particular, we found that direct nucleation and growth of Co₃O₄ nanoparticles on N-doped (with carbon atoms covalently bonded to nitrogen containing functional groups), reduced graphene oxide (N-rmGO) afforded intimate bonding and synergetic coupling effects, leading to significantly higher electrocatalytic ORR activity than either Co₃O₄ or N-doped graphene alone or their physical mixture.¹³ The Co₃O₄/graphene hybrid catalyst was superior to Pt in terms of stability and durability, but lower in ORR activity than Pt in basic solutions.¹³ Here, we report the synthesis of a MnCo₂O₄/graphene hybrid for high performance ORR electrocatalysis, by taking advantage of the higher activity of MnCo₂O₄ than pure Co₃O₄ and the strong coupling with N-doped graphene. Spinel manganese cobalt oxide could be synthesized by various preparation techniques, such as ceramic method, organic co-precipitation.¹⁴ Recently, a rapid reduction-
recrystallization method was developed to form nanocrystalline spinel oxide from amorphous MnO₂ at room temperature. In order to achieve selective growth of MnCo₂O₄ nanoparticles on graphene sheets, we used a simple two-step solvothermal method to synthesize MnCo₂O₄/graphene hybrid material. The hybrid showed more positive onset and peak potential for ORR and a greater electron transfer number than the corresponding physical mixture of MnCo₂O₄ nanoparticles and N-doped graphene sheets. Not only did the MnCo₂O₄/graphene exhibit higher activity than the Co₃O₄/graphene hybrid, it also outperformed Pt/C in terms of the ORR current density for the same mass loading in alkaline solutions under medium to high overpotentials. This was accompanied by superior stability to Pt/C. X-ray spectroscopy revealed the covalent coupling of the MnCo₂O₄ nanoparticles with N-doped graphene, suggesting that strongly coupled hybrid materials offer a promising strategy for advanced electrocatalysts.

RESULTS AND DISCUSSION

A two-step method was developed to synthesize MnCo₂O₄ nanoparticles on graphene oxide sheets. In the first step of the reaction, Co(OAc)₂ and Mn(OAc)₃ at certain ratio were reacted with mildly oxidized graphene oxide (mGO) in an ethanol/water NH₄OH solution at 80 °C (see Experimental Section for details) to selectively form a uniform coating of hydrolyzed precursors on mGO sheets without free growth in solution. This step was referred to as the nucleation step, during which ammonium hydroxide was added to mediate the nucleation of metal species onto the functional groups of mGO and provide a source of nitrogen doping of mGO. Subsequently, hydrothermal treatment at 150 °C was performed to afford N-doped, reduced mGO (N-rmGO) and crystallization of the metal oxide nanoparticles on N-rmGO, yielding the designed spinel manganese-cobalt oxide/N-graphene hybrid material. We aimed at making MnCo₂O₄/N-rmGO with Mn/Co ~ 1/2 by controlling the reactant ratio of Co(OAc)₂/Mn(OAc)₃, since such a composition had been shown to be more active than other Mn substituted cobalt oxide.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) clearly revealed the formation of nanocrystals (average size of ~5 nm) on graphene sheets (Figure 1a and b). X-ray diffraction (XRD) showed that the synthesized nanocrystals were in cubic spinel phase and the peaks were slightly shifted to smaller 2θ angles compared to pure Co₃O₄ due to substitution of larger size Mn cations in a solid solution (Figure 1c). The lattice fringes of the nanocrystals revealed by high resolution TEM were consistent with the MnCo₂O₄ crystal structure (Figure 1d). Both X-ray photoelectron spectroscopy (XPS) (Figure 1e) and energy dispersive spectroscopy (EDS) (Figure 1f) showed that the Co/Mn ratio was ~2 in the hybrid, close to the designed ratio. There was ~4 at% nitrogen in the MnCo₂O₄/N-rmGO hybrid, with N incorporated in reduced graphene oxide instead of in MnCo₂O₄ (Figure 1e and high resolution N1s spectrum in Fig. S1). The amount of N-rmGO in the final hybrid was ~20% by mass measured by thermal analysis.

The electrocatalytic activity of MnCo₂O₄/N-rmGO hybrid for ORR was first characterized by cyclic voltammetry (CV) in 1 M KOH on a glassy carbon electrode and compared with several other catalysts (Figure 2a). The ORR onset potential and peak potential of MnCo₂O₄/N-rmGO hybrid were 0.95 V and 0.88 V respectively vs. the reversible hydrogen electrode (RHE), ~20 mV more positive than those of pure Co₃O₄/N-rmGO hybrid (onset potential of 0.93 V and peak potential of 0.86 V vs. RHE). Note that the ORR peak potential for Pt/C catalyst (20 wt% Pt on Vulcan XC-72) was located at 0.90 V, only ~20 mV more positive than that of MnCo₂O₄/N-rmGO hybrid (Fig. S2a). This suggested that Mn substitution in the cobalt oxide/graphene hybrid enhanced the ORR catalytic activity to approach that of Pt/C in 1 M KOH. Free MnCo₂O₄ nanoparticles alone showed very poor ORR catalytic activity (Fig. S2b). N-rmGO sheets alone without any metal oxides showed certain ORR catalytic activity, but the ORR onset potential (0.89 V) and peak potential (0.82 V) were more negative than the hybrid materials (Figure 2a). The physical mixture of MnCo₂O₄ nanoparticles and N-rmGO showed improved catalytic activity compared to each component alone, but was still inferior to the hybrid in activity with an onset potential of 0.91 V and peak potential of 0.84 V. This suggested that similar to the Co₃O₄/N-rmGO case, the high catalytic activity of MnCo₂O₄/N-rmGO is facilitated by the strong coupling between MnCo₂O₄ nanoparticles and N-rmGO. It should be
pointed out that the physical mixture of free MnCoO₄ nanoparticles and Vulcan carbon black (MnCoO₄ + CB), a conventional way to prepare oxide electrode for ORR, showed much lower activity with more negative peak potential (0.78 V) than the MnCoO₄ + N-rmGO mixture and the MnCoO₄/N-rmGO hybrid.

MnCoO₄/N-rmGO hybrid material[15]. Figure 2c shows the disk and ring currents recorded at 1600 rpm in 1 M KOH for the MnCoO₄/N-rmGO hybrid and the physical mixture of MnCoO₄ nanoparticles and N-rmGO sheets. The hybrid sample exhibited a higher disk current (O₂ reduction) and a smaller ring current (peroxide oxidation) than the mixture. The percentage of peroxide species with respect to the total oxygen reduction products and the electron reduction number (n) calculated from RRDE curves in Figure 2c are shown in Figure 2d. The average electron transfer number was ~3.9 from 0.9 V to 0.5 V for the hybrid catalyst, and was ~3.7 for the mixture. The electron transfer number (n) obtained from the Koutecky-Levich plots[16] based on the RDE measurements (Fig. S4) was consistent with RRDE result, indicating that the ORR catalyzed by MnCoO₄/N-rmGO was mainly through the electron (4 e) pathway.

The MnCoO₄/N-rmGO hybrid also showed high ORR catalytic activity in 0.1 M KOH. CV and RDE measurements with MnCoO₄/N-rmGO in 0.1 M KOH revealed more positive peak potential and half wave potential than other catalysts including pure CoO₂/N-rmGO (Fig. S5 a & b). Both RDE and RRDE measurements suggested the ORR catalyzed by the Mn substituted cobalt oxide hybrid was dominated by a 4-electron reduction pathway in 0.1 M KOH (Fig. S5 b-d).

Similar trends in the ORR activities were observed in rotating disk electrode (RDE) measurements using the catalysts. The RDE linear sweeping voltammograms in O₂ saturated 1 M KOH solution (with the baseline recorded in N₂ saturated 1 M KOH subtracted) at a rotation rate of 1600 rpm were compared in Figure 2b and Fig. S3a. The MnCoO₄/N-rmGO hybrid catalyst outperformed other catalysts including the MnCoO₄ + N-rmGO mixture, CoO₂/N-rmGO hybrid and N-rmGO in terms of disk current density and half-wave potential. The half-wave potential difference between the MnCoO₄/N-rmGO hybrid and the Pt/C catalyst was only 20 mV at the same mass loading. The high catalytic activity of MnCoO₂/N-rmGO hybrid was also revealed by the small Tafel slope of kinetic current, which was 36 mV/decade in 1 M KOH at low overpotential, similar to that of the CoO₂/N-rmGO hybrid (38 mV/decade) (Figure S3b). The Tafel slope is close to 2.303(RT/3F) V/decade (R, universal gas constant; F, faraday constant), suggesting that the ORR rate limiting step is related to the protonation of O₂⁻ on the active sites of catalyst[10].

Rotating ring disk electrode (RRDE) measurements were performed to determine the ORR pathways catalyzed by MnCoO₄/N-rmGO hybrid material[15].
The MnCoO₂/N-rmGO hybrid afforded significantly higher current densities than each component alone (MnCoO₂ or N-rmGO) or their physical mixture (MnCoO₂ + N-rmGO or MnCoO₂ + carbon black) (Figure 3a). In 1 M KOH at 0.7 V vs. RHE, the MnCoO₂/N-rmGO hybrid afforded an ORR current density of 151 mA/cm², which is about 7 times that of the mixture of MnCoO₂ + N-rmGO (22 mA/cm²). In electrochemical impedance spectroscopy measurements, the MnCoO₂/N-rmGO hybrid showed a much smaller semicircle than the physical mixture and free MnCoO₂ nanoparticles within the ORR active potential range (Figure 3b & Fig. S6). This suggested a much smaller charge transfer resistance for the hybrid materials during ORR, due to the intimate nanocrystal-graphene coupling that enhanced electron transport between spinel oxide and graphene. The MnCoO₂/N-rmGO hybrid showed higher current density than pure CoO₂/N-rmGO hybrid, consistent with CV and RDE data (Figure 2a & 2b). Impressively, the current density of MnCoO₂/N-rmGO hybrid was similar to that of Pt/C catalyst at low overpotentials and exceeded that of Pt/C at higher overpotential (Figure 3c). A similar trend was also observed in 0.1 M KOH (Fig. S7).

Besides a high activity, the MnCoO₂/N-rmGO hybrid also exhibited excellent stability as measured by chronoamperometric measurements. At a constant voltage of 0.70 V vs. RHE, the ORR current density produced in the hybrid catalyst decreased by only 3.5% over 20,000 s of continuous operation, while the corresponding physical mixture sample and Pt/C catalysts exhibited ~25% and 33% decreases in current density, respectively (Figure 3d).

X-ray near edge structure (XANES) measurements using the total electron yield were employed to investigate the interaction between the spinel oxide nanoparticles and N-doped reduced graphene oxide and to examine the impact of Mn substitution in the hybrid materials. Absorption features at 285.5 eV (graphitic C-C π*) and at 291.7 and 292.7 eV (graphitic C-C σ*) in the carbon K-edge XANES (Figure 4a) correspond to graphene with crystalline structural order. The transition at ~288 eV and the nearby shoulders before and after this peak are characteristic of defects in graphene associated with nitrogen and oxygen functional groups, respectively (Figure 4a). Presumably, the features at ~287.5 eV are due to C=N π*; the features at ~288.5 eV are due to O=C=O π*; and the features at ~298.5 eV are due to C=OH and C-O-C σ*.

The much enhanced carbon K-edge peak at ~288 eV and shoulder features near this peak in the hybrid materials (Figure 4a) suggested significantly perturbed bonding between carbon-oxygen and carbon-nitrogen, likely resulted from bonding of the oxygen and nitrogen to metal atoms in the oxide nanoparticles. Such enhanced features had also been observed with metal oxides formed on oxidized carbon nanotubes. The nitrogen K-edge XANES (Figure 4b) of the hybrid exhibited enhanced π* peaks in the range of 398-402 eV (398.7 eV - pyridinic, 400 eV - pyrrolic or amino, 402 eV - graphitic) and broadened σ* peak at ~407 eV compared to the nitrogen K-edge XANES of N-rmGO. Enhancement of the π* peak could be attributed to coordination of nitrogen to metal in the hybrid, causing change transfer from nitrogen to metal. The broadening of σ* peak suggested stronger C-N bonding which could be a result of covalent N-rmGO and metal oxide coupling. All these suggested the formation of covalent interfacial metal-O-C and metal-N-C bonds in the hybrids. Such intimate interaction renders the oxide nanoparticles highly conducting and electrochemically active, much more so than the physical mixture of metal oxide nanoparticles and N-doped graphene.

Figure 4. (a) C K-edge XANES of MnCoO₂/N-rmGO hybrid (red curve), CoO₂/N-rmGO hybrid (blue curve) and N-rmGO (black curve); (b) N K-edge XANES of MnCoO₂/N-rmGO hybrid (red curve), CoO₂/N-rmGO hybrid (blue curve) and N-rmGO (black curve). Peak at 397 eV was attributed to the second order photon excited Co L₂, L₃. (c) Co L-edge XANES of MnCoO₂/N-rmGO hybrid (red curve), and CoO₂/N-rmGO hybrid (blue curve). Spectra were shifted vertically to clearly show the difference in the Co L₂ fine features of the CoO₂ and MnCoO₂ hybrids. The solid and dashed black boxes mark the high and low energy states respectively in the Co L₂ region. (d) Mn L-edge XANES of MnCoO₂/N-rmGO hybrid (red curve) and MnCoO₂ (black curve).

L-edge XANES involves excitation of 2p electrons into unoccupied states of 3d character and were employed to probe the valence and the coordination environment of the Co and Mn. The Co L₂ edge (transition from Co 2p½ to Co 3d projected unoccupied states) of the pure CoO₂/N-rmGO hybrid (Figure 4c) was found to be consistent with a mixture of octahedrally coordinated Co³⁺ and tetrahedrally coordinated Co²⁺ in a 2:1 ratio. The ratio of high/low energy peaks (marked by solid and dashed black boxes respectively in Figure 4c) decreased markedly for MnCoO₂/N-rmGO hybrid compared to CoO₂/N-rmGO, suggesting an increase in the ratio of Co²⁺/Co³⁺ in the Mn substituted hybrid. A relative increase of Co²⁺ (3d⁷) over Co³⁺ (3d⁸) due to Mn substitution led to a relative decrease in unoccupied high-energy Co 3d states, thus lowering the high/low energy peak ratio in the Co L₂ edge region. The Mn L-edge XANES of MnCoO₂/N-rmGO hybrid was very close to that of a MnO₂ reference (Figure 4d and Fig. S8), suggesting Mn was mainly in the 3+ state and has substituted for the Co³⁺ in the oxide, which led to a spinel structure of Co₃(Co₆Mn₁₀)O₁₂. A slight shoulder observed at 644.5 eV in Mn L-edge may suggest the existence of small amount of Mn₄⁺. Note that Mn³⁺ and Mn⁴⁺ species were considered to be active sites for ORR and were more active than Co species. Although both MnCoO₂/N-rmGO and CoO₂/N-rmGO hybrids showed similar BET surface area (210 m²/g for CoO₂ and 208 m²/g for MnCoO₂), MnCoO₂/N-rmGO showed a larger loop compared to CoO₂ hybrid in the CV data measured under N₂ (Figure 2a), suggesting Mn doping increased the electro-
chemically active surface area of the hybrid. The increased activity of the active sites and higher electrochemically active surface area were likely factors in the enhanced catalytic activity in the Mn substituted hybrid.

MnCo$_2$O$_4$/N-rmGO hybrid with larger nanoparticle size of ~10 nm was prepared and the material showed lower ORR activity (Figure S9a) than the 5 nm ones, indicating smaller MnCo$_2$O$_4$ particle size was more desirable for higher electrochemical activity. We also examined the ORR activities of MnCo$_2$O$_4$/N-rmGO hybrids with various MnCo$_2$O$_4$ contents (Figure S9b). An optimum range of MnCo$_2$O$_4$ content between 65% - 80 wt% was found to afford similarly high ORR performance from carbon fiber paper measurements. Out of this range, too low a MnCo$_2$O$_4$ content could lead to fewer ORR active sites in the hybrid, while too high a MnCo$_2$O$_4$ content could result in aggregation of nanoparticles and even free growth, which were less active than nanoparticles directly grown on graphene sheets.

We synthesized hybrids with various Mn/Co ratios by varying the reactant ratio of cobalt acetate/manganese acetate in the nucleation step of our synthesis and characterized their ORR catalytic performance (Fig. S10). The MnCo$_2$O$_4$/N-rmGO hybrid showed higher ORR current density than Mn$_{1/2}$Co$_{1/2}$O$_4$/N-rmGO. However, increasing the Mn/Co ratio above 1/2 led to a decrease of ORR current density with the Mn$_{1/4}$Co$_{3/4}$O$_4$/N-rmGO, Mn$_{2/4}$Co$_{1/4}$O$_4$/N-rmGO and Mn$_{3/4}$Co$_{1/4}$O$_4$/N-rmGO hybrids. Nanoparticles sizes of ~10-20 nm formed on N-rmGO sheets were observed in Mn$_{1/4}$Co$_{1/4}$O$_4$/N-rmGO and Mn$_{3/4}$Co$_{1/4}$O$_4$/N-rmGO hybrids, and the size further increased with higher Mn/Co ratios (Fig. S11). The increase of nanoparticle size in the hybrid with higher Mn/Co ratio was likely due to a reduced coordination effect of ammonia to Mn cations than to Co cations during the nucleation step. XRD revealed that the oxide in Mn$_{1/4}$Co$_{1/4}$O$_4$/N-rmGO was in a tetragonal spinel phase (Fig. S12) rather than cubic spinel, consistent with previous reports of spinel manganese-cobalt oxide14. It had been reported that the tetragonal spinel exhibited lower intrinsic ORR activity than the cubic phase14. This and the increase of particle size could explain decreased ORR catalytic activity in Mn substituted hybrid with Mn/Co ratio > 0.5. This further suggested that the active site in the hybrid materials was spinel oxide formed on graphene sheets, and the phase and size of nanoparticles were important for optimum ORR performance of the hybrid.

Lastly, we investigated electrocatalysis of the oxygen evolution reaction (OER) with the catalysts loaded on carbon fiber paper (Fig. 5). With Mn substitution, MnCo$_2$O$_4$/N-rmGO hybrid exhibited lower OER currents than the pure Co$_2$O$_4$/N-rmGO hybrid. This was consistent with previous XANES observations that Co$^{3+}$ was considered to be the active sites for OER15, which was reduced due to Mn$^{3+}$ substitution. Still, the MnCo$_2$O$_4$/N-rmGO hybrid showed much higher OER catalytic activity than the physical mixture, suggesting that the MnCo$_2$O$_4$ hybrid is an efficient bi-functional catalyst for ORR and OER.

Figure 5. Oxygen evolution currents of MnCo$_2$O$_4$/N-rmGO hybrid, Co$_2$O$_4$/N-rmGO hybrid, MnCo$_2$O$_4$, MnCo$_2$O$_4$ + N-rmGO mixture and MnCo$_2$O$_4$ + CB mixture dispersed on carbon fiber paper in 1 M KOH electrolyte (catalyst loading ~ 0.24 mg/cm2 for all samples).

CONCLUSION

In conclusion, by combining nanoparticle nucleation and growth on graphene oxide sheets and cation substitution of spinel metal oxide nanoparticles, we have developed a MnCo$_2$O$_4$/N-doped graphene hybrid material for highly efficient ORR electrocatalysis in alkaline conditions. The nucleation and growth method results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide sheets, affording much higher activity and stronger durability than the physical mixture of nanoparticles and N-rmGO. Mn substitution increased the activity of catalytic sites of the hybrid materials, further boosting the ORR activity compared to the pure Co$_2$O$_4$/N-rmGO hybrid. At the same mass loading, the MnCo$_2$O$_4$/N-rmGO hybrid can outperform Pt/C in ORR current density at potential < 0.75 V vs. RHE with superior stability to Pt/C. Mn substitution is also found to mediate the nanoparticle size and phase, affecting the hybrid catalytic performance. Ralional design of surface structure and conductivity through cationic substitution and covalent coupling with carbon substrates should benefit the design of advanced ORR electrocatalyst for energy conversion and storage.

EXPERIMENTAL SECTION

Synthesis of mildly oxidized graphene oxide (mGO). mGO was made by a modified Hummers method using a lower concentration of oxidizing agent$^{12, 29}$. Graphite flakes (1 g, Superior Graphite Co.) were grounded with NaCl (20 g) for 10-15 minutes. Afterwards, the NaCl was washed away by repeatedly rinsing with water in a vacuum filtration apparatus. The remaining graphite was dried in an oven at 70°C for 30 minutes. The dried solid was transferred to a 250 ml round bottom flask. 23 ml of concentrated sulfuric acid was added and the mixture was stirred at room temperature for 24 hours. Next, the flask was heated in an oil bath at 40°C. 100 mg of NaNO$_3$ was added to the suspension and allowed to dissolve for 5 minutes. This step was followed by the slow addition of 500 mg of KMnO$_4$ (as opposed to 3 g for Hummers’ GO), keeping the reaction temperature below 45°C. The solution was allowed to stir for 30 minutes. Afterwards, 3 ml of water was added to the flask, followed by another 3 ml after 5 minutes. After another 5 minutes, 40 ml of water was added. 15 minutes later, the flask was...
removed from the oil bath and 140 ml of water and 10 ml of 30% H$_2$O$_2$ were added to end the reaction. This suspension was stirred at room temperature for 5 minutes. It was then repeatedly centrifuged and washed with 5% HCl solution twice, followed by rinsing with copious amounts of water. The final precipitate was dispersed in 100 ml of water and bath sonicated for 30 min. Any indispensible solid was crushed down by a centrifugation at 5000 rpm for 5 minutes, and a brown homogenous supernatant was collected.

Synthesis of MnCo$_2$O$_4$/N-rmGO hybrid, N-rmGO, MnCo$_2$O$_4$ nanoparticles and Mn$_2$Co$_3$O$_6$/N-rmGO hybrids.

mGO was collected from the aqueous solution by centrifugation and washed with ethanol and water. The MnCo$_2$O$_4$/N-rmGO hybrid product was ~36 mg/ml after lyophilization.

N-rmGO was made through the same steps as MnCo$_2$O$_4$/N-rmGO without adding any Co & Mn salt in the first step. This produced N-doped reduced GO due to the hydrothermal step. Free MnCo$_2$O$_4$ nanoparticles were made through the same steps as making MnCo$_2$O$_4$/N-rmGO without adding any mGO in the first step.

Mn$_2$Co$_3$O$_6$/N-rmGO hybrids were synthesized by the same method as MnCo$_2$O$_4$/N-rmGO hybrid by adjusting Co(OAc)$_2$/ Mn(OAc)$_2$ reactants ratio in the first step.

Sample preparation for SEM, TEM, XRD & surface area measurements. SEM samples were prepared by drop-drying the samples from their aqueous suspensions onto silicon substrates. TEM samples were prepared by drop-drying the samples from their dilute aqueous suspensions onto copper grids. XRD samples were prepared by drop-drying the samples from their aqueous suspensions onto glass substrates. Surface area of the samples was measured by Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption isotherms at 77 K with Micromeritics ASAP 2020 instrument.

Electrochemical measurements

1. **Cyclic voltammetry (CV).** 4 mg of catalyst and 13-87 μL of 5 wt% Nafion solution (13 μL for hybrids, 15 wt% of Nafion to catalyst ratio; 87 μL for N-rmGO, 100 wt% of Nafion to catalyst ratio) were dispersed in 1 ml of 2.5:1 v/v water/isopropanol mixed solvent by at least 30 min sonication to form a homogeneous ink. Pt/C ink was prepared by dispersing 4 mg Pt/C (20 wt% Pt on Vulcan XC-72) in 1 mL EtOH with 35 μL of 5 wt% Nafion solution (40 wt% of Nafion to catalyst ratio) by at least 30 min sonication. Then 5 μL of the catalyst ink (containing 20 μg of catalyst) was loaded onto a glassy carbon electrode of 5 mm in diameter (loading ~ 0.10 mg/cm2). Cyclic voltammetry was conducted with a CHI 760 D potentiostat in a three electrode electrochemical cell using saturated calomel electrode as the reference electrode, a graphite rod as the counter electrode and the sample modified glassy carbon electrode as the working electrode. Electrolyte was saturated with oxygen by bubbling O$_2$ prior to the start of each experiment. A flow of O$_2$ was maintained over the electrolyte during the recording of CVs in order to ensure its continued O$_2$ saturation. The working electrode was cycled at least 10 times before data were recorded at a scan rate of 5 mV/s$^{-1}$. In control experiments, CV measurements were also performed in N$_2$ by switching to N$_2$ flow through the electrochemical cell.

2. **Rotating disk electrode (RDE) measurement.** The catalyst modified working electrode was prepared by the same method as CV. The working electrode was scanned cathodically at a rate of 5 mV/s$^{-1}$ with varying rotating speed from 400 rpm to 2025 rpm. Koutecky–Levich plots (I’ vs. $ω^{-1/2}$) were analyzed at various electrode potentials. The slopes of their best linear fit lines were used to calculate the number of electrons transferred (n) on the basis of the Koutecky-Levich equation:

$$B = 0.62nFkC_0D_0^{2/3}v^{-1/6}$$

where J is the measured current density, J_k and J_l are the kinetic- and diffusion-limiting current densities, ω is the angular velocity, n is transferred electron number, F is the Faraday constant, C_0 is the bulk concentration of O$_2$, v is the kinematic viscosity of the electrolyte, and k is the electron-transfer rate constant. For the Tafel plot, the kinetic current was calculated from the mass-transport correction of RDE by:

$$J_k = \frac{J \times I_c}{(I_l - J)}$$

3. **Rotating ring-disk electrode (RRDE) measurement.**

For the RRDE measurements, catalyst inks and electrodes were prepared by the same method as RDE’s. The ink was dried slowly in air and the drying condition was adjusted by trial and error until a uniform catalyst distribution across the electrode surface was obtained. The disk electrode was scanned cathodically at a rate of 5 mV/s$^{-1}$ and the ring potential was constant at 1.3 V vs. RHE. The % HO$^\bullet$ and the electron transfer number (n) were determined by the followed equations:

$$\text{HO}_2^- = 200 \times \frac{I_d/N}{I_d + I_r/N}$$

$$n = 4 \times \frac{I_r}{I_d + I_r/N}$$

where I_d is disk current, I_r is ring current and N is current collection efficiency (N) of the Pt ring. N was determined to be 0.40 from the reduction of K$_2$Fe(CN)$_6$.

4. **Oxygen electrode activities on carbon fiber paper.** For measurements on carbon fiber paper, the working electrode was prepared by loading ~ 0.24 mg of catalyst (for hybrid catalysts and Pt/C) on 1 cm2 carbon fiber paper (purchased from Fuel Cell Store) from its 1 mg/ml ethanol dispersion with a 1:10 Nafion-to-catalyst ratio. It was cycled at least 20 times between 0 and 0.6 V vs. SCE before data were recorded at a scan rate of 5mV/s$^{-1}$ for OER measurement. To obtain OER activities in 1 M KOH, the working electrode was scanned from 0 V to 0.6 V...
vs. SCE. All the data from carbon fiber paper were iR-compensated.

5. RHE calibration We used saturated calomel electrode (SCE) as the reference electrode in all measurements. It was calibrated with respect to reversible hydrogen electrode (RHE). The calibration was performed in the high purity hydrogen saturated electrolyte with a Pt wire as the working electrode. CVs were run at a scan rate of 1 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reactions. In 1 M KOH, E (RHE) = E (SCE) + 1.051 V.

XANES measurements. XANES measurements were performed at the SGM beamline of the Canadian Light Source. Powder samples were held by indium foil. XANES were recorded in the surface sensitive total electron yield (TEY) with use of specimen current. Data were first normalized to the incident photon flux I_s measured with a refreshed gold mesh at SGM prior to the measurement. After background correction, the XANES are then normalized to the edge jump, the difference in absorption coefficient just below and at a flat region above the edge (300, 415,805, and 660 eV for C, N, Co and Mn respectively.

AUTHOR INFORMATION

Corresponding Author
* hdai@stanford.edu

Author Contributions
§ These authors contributed equally.

ACKNOWLEDGMENT

This work was supported by a Stinehart Grant for Energy Research at Stanford from the Stanford Precourt Institute for Energy. CLS is supported by the NSERC, NRC, CIHR of Canada, the Province of Saskatchewan, WEDC, and the University of Saskatchewan.

REFERENCES

1. Gewirth, A. A.; Thorum, M. S., J. Angew. Chem. 2010, 49, 3557-3566.
2. Armand, M.; Tarascon, J. M., Nature 2008, 451, 652-657.
3. (a) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K., Angew. Chem. Int. Ed. 2006, 45, 2897-2901; (b) Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P., Angew. Chem. Int. Ed. 2007, 46, 8988-8991; (c) Morozan, A.; Jousselme, B.; Palacin, S., Energy & Environmental Science 2011, 4, 1238-1254.
4. Spedalow, J. S.; Wiecekowski, A., Phys. Chem. Chem. Phys. 2007, 9, 2654-2675.
5. (a) Meadower.Dh, Nature 1970, 226, 847-848; (b) Sugawara, M.; Ohno, M.; Matsuki, K., J. Mater. Chem. 1997, 7, 833-836; (c) Verma, A.; Jha, A. K.; Basu, S., J. Power Sources 2005, 141, 30-34.
6. (a) Piana, M.; Catanori, S. & Gasteiger, H. A., Electrochem. Soc. Trans. 2008, 16, 2045-2055; (b) Meng, H.; Jaouen, F.; Proietti, E.; Lefevre, M.; Dodelet, J. P., Electrochem. Commun. 2009, 11, 196-19899.
7. Su, D. S.; Zhang, J; Frank, B.; Thomas, A.; Wang, X.; Paraknowitsch, J.; Scholeg, R., ChemSusChem 2010, 3, 169-180.
8. Nebushchikov, V.; Wang, H.; Martin, J. J.; Qu, W., J. Power Sources 2010, 195, 1271-1291.
9. Hamdani, M.; Singh, R. N.; Chartier, P., Int. J. Electrochem. Sci. 2010, 5, 556-577.
10. De Koninck, M.; Marsan, B., Electrochim. Acta 2008, 53, 7012-7021.
11. Bidault, F.; Brett, D. J. L.; Middleton, P. T.; Brandon, N. P., J. Power Sources 2009, 187, 39-48.
12. (a) Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H., Nano Res. 2010, 3, 701-705; (b) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H., J. Am. Chem. Soc. 2010, 132, 7472-7477; (c) Wang, H.; Cui, L-F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H., J. Am. Chem. Soc. 2010, 132, 13978-13980; (d) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., J. Am. Chem. Soc. 2011, 133, 7296-7299; (e) Wang, H.; Yang, Y.; Liang, Y.; Cui, L-F.; Casalongue, H. S.; Li, Y.; Hong, G.; Cui, Y.; Dai, H., Angew. Chem. Int. Ed. 2011, 50, 7364-7368; (f) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H., Nano Res. 2011, 4, 729-736.
13. Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., Nat. Mater. 2011, 10, 780-786.
14. Devidasile, J. L. M.; Vila, E.; Rojas, R. M.; GarciaMartinezt, O., Chem. Mater. 1995, 7, 1716-1721.
15. Cheng, F.; Shen, J.; Peng, B.; Pan, Y.; Tao, Z.; Chen, J., Nature Chem. 2011, 3, 7984.
16. Rios, E.; Gauthier, T. L.; Poillerat, G.; Chartier, P.; Electrochim. Acta 1998, 44, 1491-1497.
17. Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J., J. Electroanal. Chem. 2001, 495, 134-145.
18. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications. Wiley: New York, 2001.
19. Genies, L.; Bultel, Y.; Faure, R.; Durand, R., Electrochim. Acta 2003, 48, 3879-3890.
20. Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammysnaiken, R.; Sham, T. K.; Pong, W. F.; J. Mater. Chem. 2011, 21, 14622-14630.
21. Kelly, D. N.; Schwartz, C. P.; Uejio, J. S.; Duffin, A. M.; England, A. H.; Saykally, R. J., J. Chem. Phys. 2010, 133.
22. Saxena, S.; Tynon, T. A.; Negussete, E., Journal of Physical Chemistry Letters 2010, 1, 3433-3437.
23. (a) Zhou, J.; Wang, J.; Feng, H.; Sham, T.-K., J. Mater. Chem. 2011, 21, 5944-5949; (b) Zhang, L.-S.; Liang, X.-Q.; Song, W.-G.; Wu, Z.-Y., Phys. Chem. Chem. Phys. 2010, 12, 12055-12059.
24. Leinweber, P.; Kruse, J.; Walley, F. L.; Gillespie, A.; Eckhardt, K.-U.; Blyth, R. I. R.; Regier, T.; J. Synchrotron Radiat. 2007, 14, 500-511.
25. Zhou, J.; Zhou, X.; Li, R.; Sun, X.; Ding, Z.; Cutler, J.; Sham, T.-K., Chem. Phys. Lett. 2009, 474, 320-324.
26. Morales, F.; de Groot, F. M. F.; Glatez, P.; Kleimenov, E.; Bluhm, H.; Havecker, M.; Knop-Gericke, A.; Weckhuysen, B. M., J. Phys. Chem. B 2004, 108, 16201-16207.
27. Zheng, F.; Alayoglu, S.; Guo, J.; Pushkarov, V.; Li, Y.; Glans, P.-A.; Chen, J.-D.; Somorjai, G., Nano Lett. 2011, 11, 847-853.
28. Grush, M. M.; Chen, J.; Stemmler, T. L.; George, S. J.; Ralston, C. Y.; Stelbrany, R. T.; Gelasco, A.; Christou, G.; Gorun, S. M.; PennerHahn, J. E.; Cramer, S. P., J. Am. Chem. Soc. 1996, 118, 6569.
29. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano Res. 2008, 1, 203-212.
Fig. S1. A high resolution N1s XPS spectrum of MnCo$_2$O$_4$/N-rmGO hybrid. The peak was deconvoluted into pyridinic (red), pyrrolic/amino (blue), and graphitic (magenta) N peaks.

Fig. S2. (a) CV curves of Pt/C on glassy carbon electrodes in O$_2$-saturated (solid line) or N$_2$-saturated (dash line) 1 M KOH. (b) CV curves of MnCo$_2$O$_4$/N-rmGO hybrid, MnCo$_2$O$_4$, MnCo$_2$O$_4$+N-rmGO mixture, MnCo$_2$O$_4$+CB mixture and N-rmGO on glassy carbon electrodes in O$_2$-saturated (solid line) or N$_2$-saturated (dash line) 1 M KOH.
Fig. S3. (a) Rotating-disk electrode voltammograms of MnCo$_2$O$_4$/N-rmGO hybrid, MnCo$_2$O$_4$, MnCo$_2$O$_4$+N-rmGO mixture, MnCo$_2$O$_4$+CB mixture and N-rmGO in O$_2$-saturated 1 M KOH with a sweep rate of 5 mV/s at 1600 rpm (Loading is 0.1 mg/cm2). (b) Tafel plots of MnCo$_2$O$_4$/N-rmGO and Co$_3$O$_4$/N-rmGO hybrids derived by the mass-transport correction of corresponding RDE data in (a).

Fig. S4. Rotating-disk voltammograms of MnCo$_2$O$_4$/N-rmGO hybrid in O$_2$-saturated 1 M KOH with a sweep rate of 5 mV/s at different rotation rates indicated. The inset shows the corresponding Koutecky–Levich plots (J^{-1} vs. $\omega^{-0.5}$) at different potentials.
Fig. S5. (a) CV curves of MnCo$_2$O$_4$/N-rmGO hybrid & Co$_3$O$_4$/N-rmGO hybrid on glassy carbon electrodes in O$_2$-saturated (solid line) or N$_2$-saturated (dash line) 0.1 M KOH. (b) Rotating-disk voltammograms of MnCo$_2$O$_4$/N-rmGO hybrid in O$_2$-saturated 0.1 M KOH with a sweep rate of 5 mV/s at different rotation rates indicated. The inset shows the corresponding Koutecky–Levich plots (J^{-1} vs. $\omega^{-0.5}$) at different potentials. (c). Rotating ring-disk electrode voltammogram of MnCo$_2$O$_4$/N-rmGO hybrid and MnCo$_2$O$_4$+N-rmGO mixture in O$_2$-saturated 0.1 M KOH at 1600 rpm. The disk potential was scanned at 5 mV/s and the ring potential was constant at 1.3 V vs RHE. (d) Percentage of peroxide (bottom) and the electron transfer number (n) (top) of MnCo$_2$O$_4$/N-rmGO hybrid and MnCo$_2$O$_4$+N-rmGO mixture at various potentials based on the corresponding RRDE data in (c). Catalyst loading was 0.10 mg/cm2 for both samples.
Fig. S6. Impedance study of hybrid and mixture. MnCo$_2$O$_4$ (a) and the mixture of MnCo$_2$O$_4$ and CB (b) at 0.8 V vs RHE. MnCo$_2$O$_4$/N-rmGO hybrid and the mixture of MnCo$_2$O$_4$ and N-rmGO (c) and MnCo$_2$O$_4$ and the mixture of MnCo$_2$O$_4$ and CB (d) at 1.0 V vs RHE.

Fig. S7. Oxygen reduction polarization curves of MnCo$_2$O$_4$/N-rmGO hybrid, Co$_3$O$_4$/N-rmGO hybrid, and Pt/C on carbon fiber paper in 0.1 M KOH electrolyte. Catalyst loading is ~0.24 mg/cm2 for all samples.
Fig. S8. Mn L-edge XANES of reference Mn_2O_3.

Fig. S9. (a) Oxygen reduction currents of MnCo_2O_4/N-rmGO hybrids with different MnCo_2O_4 particle size dispersed on carbon fiber paper in O_2-saturated 1 M KOH. The hybrid with 10 nm particle size was prepared by the similar method in experimental section, but with water/ethanol = 1/4 volume ratio in second step. Smaller MnCo_2O_4 particle size showed higher ORR activity. (b) Oxygen reduction currents of MnCo_2O_4/N-rmGO hybrids with various MnCo_2O_4 contents dispersed on carbon fiber paper in O_2-saturated 1 M KOH. The sample loading was 0.24 mg/cm2. An optimum range of MnCo_2O_4 content between 65% - 80 wt% was found. Out of this range, too low MnCo_2O_4 content would lead to fewer ORR active sites in the hybrids, while too high MnCo_2O_4 content would result in aggregation of nanoparticles and even free growth, which are less active than nanoparticle in direct contact with graphene sheets.
Fig. S10. Oxygen reduction polarization curves of MnCo$_2$O$_4$/N-rmGO hybrid, Co$_3$O$_4$/N-rmGO hybrid, Mn$_{0.6}$Co$_{2.4}$O$_4$/N-rmGO, Mn$_{1.5}$Co$_{1.5}$O$_4$/N-rmGO, Mn$_2$CoO$_4$/N-rmGO and Mn$_3$O$_4$/N-rmGO on carbon fiber paper in 1 M KOH electrolyte. Catalyst loading is ~0.24 mg/cm2 for all samples.

Fig. S11. Low magnification SEM images of hybrid with different Co/Mn ratio. (a) Mn$_{0.6}$Co$_{2.4}$O$_4$/N-rmGO; (b) Mn$_{1.5}$Co$_{1.5}$O$_4$/N-rmGO; (c) Mn$_2$CoO$_4$/N-rmGO and (d) Mn$_3$O$_4$/N-rmGO.
Fig. S12. XRD spectrum of a compacted film of Mn$_2$CoO$_4$/N-rmGO hybrid.