Genealogy, Dendritic Cell Priming, and Differentiation of Tissue-Resident Memory CD8+ T Cells

Michel Enamorado1, Sofia C. Khouili1, Salvador Iborra2*† and David Sancho1*†

1 Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, 2 Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain

Tissue-resident memory CD8+ T (Trm) cells define a distinct non-recirculating subset. Trm cells constitute a first line of defense against local infections in barrier tissues, but they are also found in non-barrier tissues and play a role in antitumor immunity. Their differentiation in tissues and their phenotypical, transcriptional, and functional characteristics are the object of active research. Herein, we will discuss the potential existence of committed CD8+ Trm precursors and the genealogy of memory CD8+ T cell subsets. In addition to the priming of naive T cells, there is some plasticity of antigen-experienced effector and memory T cell subsets to generate Trm precursors. Local inflammation, antigen presentation, and cytokines drive Trm differentiation. It is of prime interest how specific dendritic cell subsets modulate priming and differentiation of Trm cells, as well as their reactivation within tissues. Research on how we can manipulate generation of memory T cells subsets is key for improved vaccination strategies.

Keywords: memory CD8+ T cell, circulating memory, tissue-resident memory, infection, plasticity, priming, differentiation, dendritic cells

ARE THERE COMMITTED Trm PRECURSORS?

Dendritic cells (DCs) prime naive T cells in secondary lymphoid organs generating both a short-term effector response and a memory response. Memory T cells are further subdivided based on their distribution and trafficking properties. Circulating memory T cells can be further subdivided as central memory T (Tcm) cells that re-circulate between secondary lymphoid organs, blood and lymph, and effector memory T (Tem) cells that can also access the tissues (1, 2). Conversely, a distinct subset of sessile tissue-resident memory T (Trm) cells has been defined in the last years. Trm cells are long-lived and confined in a wide variety of tissues, including barrier tissues, such as the skin and lung, where they comprise the first line of defense against local re-infections and provide superior protective immunity compared with circulating memory cells (3–7). However, Trm cells are also found in non-barrier tissues like brain (8), heart (9), and play a role in tumor immunity (Box 1) (10–12). Trm cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Trm cells do not express the lymph node homing receptors CCR7 or CD62L, and expression of CD69 and the integrin CD103 is often used to define T cells as tissue resident (7, 13). However, CD103+ CD69+ cells make up almost half of the dermal Trm population (3, 14), while the intestine and the lung contain subsets of T cells that lack CD103 and/or CD69 expression but are nonetheless capable of maintaining tissue residence (15–17). This phenotypic heterogeneity among Trm populations is dependent not only on the tissue of residence but also on how Trm cells are...
generated by local tissue infection. In addition, Trm cells exhibit a unique transcriptional signature that comprises modulation of chemokine receptors like CXCRC3 (4), upregulation of genes associated to tissue residency including Cdh1 (E-cadherin) (18), Itgae (CD103) (8, 19), and Itga1 (CD49a) (13, 20–22), and down-regulation of genes related to tissue egress, such as Klf2, Sipr1 (23), and Ccr7 (4, 24) among others. They also show augmented effector function compared with circulating memory cells, with elevated expression of Granzyme B and Tnf-a, and genes encoding immunoregulatory molecules such as ICOS and CTLA-4, indicating tight modulation of the robust effector function of Trm cells (4, 24). Importantly, this transcription core is shared between human and mouse Trm cells (25–27).

Trm cells can be generated from KLRG1lo memory precursors (4). These KLRG1lo memory precursors are either KLRG1−IL-7Rα+ memory precursor CD8+ effector T cells or KLRG1+ effector cells that have lost KLRG1 expression (ExKLRG1) (35). These cells seed in non-lymphoid tissue where differential modulation of mTOR-genealogy of CD8+ T cell subsets, as explained below. We will thus discuss the genealogy of CD8+ Trm cell generation and the differential role of DCs during priming, differentiation, and reactivation of Trm cells, highlighting them as a strategy in vaccination and tumor immunotherapies.

GENERATION OF MEMORY CD8+ T CELL PRECURSORS

The traditional definition of memory T cells is based on the survival time after infection, once antigen-specific T cell numbers stabilize, which normally occurs several weeks to months after priming. However, this survival-based definition does not take into account some key functional aspects of memory T cells that, on the other hand, define diverse memory subsets. These characteristics comprise the capacity of memory cells to develop rapid recall responses, the high proliferative capacity or stemness, and the homeostatic turnover. We could hypothesize that CD8+ T cells do not acquire these memory-related functional features until infection has been controlled, meaning that effector cytotoxic T lymphocytes only become Trm-committed cells once they have been established in their destination tissue.
Alternatively, divergent differentiation fates of T cell progeny could be specified when a naive T cell is activated during the acute phase of the immune response. Several evidences suggest that the fate of memory versus effector CD8+ T cells is determined early after priming or gradually during their development, meaning that memory cells are derived from early committed precursors (44–47). Notwithstanding, it is still not well understood whether this paradigm can be applied to Trm differentiation. The existence of an imprinted Trm precursor generated in secondary lymphoid organs is supported by the reconstitution of mature Trm cells upon KLRG1− adoptive transfer (4). In this study, CD8+ effector cells isolated from spleen of gBT-I.1 transgenic mice expressing a TCR specific for the MHC class I-restricted immunodominant peptide from HSV glycoprotein B (gB498-505) were sorted 6 days after infection with HSV based on KLRG1 expression. The authors showed that, upon adoptive transfer, only the KLRG1− population generated matured CD103+ Trm cells in the skin of HSV-infected recipient mice. Moreover, Trm differentiation requires a distinct program that combines effector and memory cell transcriptional programs, sharing some features with early effector CD8+ T cells or Tem cells but also some of the Tcm cell properties (39, 48).

There are several models that explain generation of committed precursors for Tcm, Tem, and Trm cells (Figure 1). The “one cell, one fate” model (Figure 1A) proposes that distinct fates emerge from different naive T cells, with one single activated T cell giving rise to daughters of only one fate. In other words, this “one cell, one fate” model suggests that naive T cells are predetermined during thymic development to give rise to effector or memory T cells. Therefore, we can speculate that specific TCR-bearing cells will give rise to circulating (Tcm or Tem) memory cells, while other CD8+ T clones expressing a different TCR will generate Trm cells. Nevertheless, Trm cell clones generated in the skin and Tcm cell clones in the draining lymph nodes (dLN) show a similar abundance of particular TCR clones tracked by CDR3 sequences, suggesting that a common naive T cell precursor is able to give rise to both Trm and Tcm cells after skin immunization (40). However, there may also be some pre-determination to become Trm or Tcm cells based on TCR-MHC interaction strength. For example, Trm cells in brain and kidney express TCRs with higher affinity to MHC-I tetramers (up to 20-fold) than their splenic memory T cells counterparts, whereas effector cells express similar high-affinity TCRs in all organs (49). Conversely, low-affinity T cells, with reduced T-bet expression during priming, preferentially differentiate into Tcm precursors (50). Similarly, different CD8 T cell clones have a distinct and fixed hierarchy in terms of effector function in response to the same Toxoplasma antigen measured as proliferation capacity, trafficking, T cell maintenance, and memory formation. Homing to the brain was directly related to TCR affinity. The highest affinity clone

![Figure 1](https://example.com/figure1.png)
signals will determine the expansion amplitude and the fate of the B.2), the strength of the three “Signal strength model” (Figure 1) that modulate T cell differentiation (signal 3). According to the recognition (signal 1), co-stimulation (signal 2), and cytokines during primary versus recall infections. Therefore, individual naive T lymphocytes contributed differentially to short- and long-term protection (53, 54). In addition, the progeny of naive CD8 T cells displayed unique profiles of differentiation based on extrinsic antiviral- or antibacterial-induced environmental cues. A single naive CD8+ T cell exhibited distinct fates that were controlled by tissue-specific events (55, 56). Following oral infection with Listeria monocytogenes, an antigen-specific CD8 T cell population can be separated into cells with a memory precursor phenotype in the intestine, whereas in the spleen and lung, L. monocytogenes-specific CD8 T cells maintained a prolonged short-lived effector phenotype. This intestinal CD127+ KLRG1+ CD8 T cell population resembling memory precursor formed in response to TGF-β following oral L. monocytogenes infection. This subset rapidly upregulated CD103 needed for association to the epithelium and survived long-term, identifying mucosal Trm precursors (56). In either case, these observations exclude models in which each naive T cell exclusively yields progeny with the same distribution of either short- or long-term potential phenotype, arguing against asymmetric division as a singular driver of CD8+ T cell heterogeneity.

During priming, T cells receive three key signals: antigen recognition (signal 1), co-stimulation (signal 2), and cytokines that modulate T cell differentiation (signal 3). According to the “Signal strength model” (Figure 1B.2), the strength of the three signals will determine the expansion amplitude and the fate of the primed T cell (57). Generation of short-lived or terminally differentiated CD8+ T cells is favored by a strong pro-inflammatory signal (58), whereas precursors for Tcm cells are increased by the deficiency in type I interferon signaling (59), or deficiency in IFN-γ or IL-12 (60). Contrary to Tcm generation, inflammation drives Trm differentiation in several non-lymphoid tissues (9). Many tissue-specific cytokines including IL-15, TGF-β, IL-12, and type I IFN are produced upon infection and inflammation and regulate differentiation and persistence of Trm cells in non-lymphoid tissues, with differential requirements that may be tissue specific (4, 61, 62).

The “decreasing potential model” (Figure 1B.3) states that the history and accumulative duration of signals that a CD8+ T cell has encountered during infection impacts on its differentiation state. Repetitive antigen encounter and/or exposure to inflammatory cytokines, differentiates T cells toward terminal effector T cells that retain their cytolytic capacity but lose features owned by Tcm cells, such as longevity, proliferative potential, and IL-7Ra expression. In this sense, and contrary to Tcm cells, local antigen presentation may favor the expansion of Trm cells in the skin (14, 63). The composition of the local Trm cell pool is shaped by antigen-dependent competition between CD8+ T cells of different specificities in the infected tissue (64). Therefore, Trm cells development seems to be favored by antigen encounter and/or specific inflammatory signals in the tissue that favor, or are even needed for their retention (4, 9, 65). Regardless of the apparently contradictory different mechanisms proposed by these models, they are not necessarily mutually exclusive and multiple models may simultaneously contribute to in vivo induction of memory T cells.

PLASTICITY AMONG DIFFERENT T CELL SUBSETS

Independently of the existence or not of a committed Trm precursor, it is well documented that naive (CD8+CD44−CD62L+) T cells differentiate into Trm cells in multiple scenarios: skin infection with VACV (3), or HSV (66), intranasal infection with influenza (67) or in non-infectious disorders, such as chemical hapten inflammation (40). In several cases, optimal generation of committed Trm precursors requires further antigen presentation in the inflamed tissue (Figure 2A). However, Trm differentiation and maintenance is dependent on tissue-specific signals that may be antigen independent. Inflammation drives Trm differentiation in many non-lymphoid tissues (9) (Figure 2B). Many tissue-specific cytokines including IL-15, TGF-β, IL-12, and type I IFN are produced upon infection and inflammation and regulate differentiation and persistence of Trm cells in non-lymphoid tissue, with differential requirements that may be tissue specific (4, 61, 62). Effector CD8+ T cells can also differentiate into nasal Trm cells independently of local antigen (68) (Figure 2C).

However, it is difficult to know if the conversion of effector T cells into Trm occurs in all effector cells infiltrating the tissues, or whether there are specific features in the effector T cells that commit them to Trm differentiation under the right tissue environment, as we have discussed in the former section.
In steady state or upon challenge, Trm cells may also be generated from antigen-experienced cells: Tcm, Tem, and Trm cells themselves (self-maintenance) (65, 69–71). Local antigen reactivation of pre-existing Trm in the female reproductive tract (70) or the skin (69) results in their arrest and *in situ* division (Figure 2D). These proliferating Trm also exhibit some plasticity and can exit non-lymphoid tissues to convert into new Trm in the draining lymphoid tissue (71, 72) (Figure 2D). Although local mucosal recall response is dominated by proliferating pre-existing Trm that contribute most substantially to the boosted secondary Trm population, Trm reactivation also induces the antigen-independent recruitment of Tcm that differentiate into Trm *in situ* (69, 70). Maintenance of a Trm pool in the lung by conversion of incoming circulating memory CD8+ T cells is critical for protection after influenza A virus infection (73). Lung Trm cells are replenished mainly from circulating CD8+CD69+CD103− Tem rather than Tcm cells, even in the absence of persisting antigen (Figure 2E). However, this lung Trm pool declines with time as circulating memory CD8+ T cells lose migratory capacity to the lung, together with an enrichment of Tcm versus Tem among circulating population of memory cells, thus reducing the efficiency of conversion to Trm cells. These findings support a model where gradual loss of protection to influenza is linked to a decline of Trm cells in the lungs caused by apoptosis and decreased input from the circulating memory CD8+ T cell population (73).
Transfer of CD8+CD44+CD62L+ Tcm cells specific for ovalbumin (OT-I) followed by epicutaneous VACV-OVA infection also induced Trm cells in the skin (12) (Figure 2F). The efficiency of Trm generation is, however, not equal depending on the different T cell source. For example, although both Tcm and naive T cells induce Trm cells that persist at least 2 months after infection, Tcm cells are less efficient at producing Trm cells (12). Most Trm cells generated from adoptively transferred Tcm cells showed hallmark CD69 expression, with half of them co-expressing CD103. Trm cells derived from adoptively transferred Tcm cells were unable to migrate via blood or lymph (12), supporting that they are bona fide Trm cells without recirculating capacity (74). Plasticity of transferred Tcm to become Trm cells does not only occur upon infection but also in the context of tumor challenge. Mice transferred with OVA-specific Tcm cells and challenged with intradermal inoculation of B16-OVA melanoma developed cells with a Trm cell phenotype (CD69+CD103+) within the tumor mass. Furthermore, when mice transferred with Tcm cells were challenged with MC38-OVA colon adenocarcinoma, CD69+CD103+ OVA-specific CD8+ T cells were found in the skin proximal to rejected MC38-OVA tumors 45 days after inoculation (Box 1) (12). However, whether the conversion of Tcm into Trm occurs directly or is mediated by Tcm conversion into effector or Tem needs to be further studied.

DCs DRIVE Trm CELL PRIMING AND REACTIVATION

While most of the studies in Trm generation and development have focused on differentiation and maintenance dependent on specific tissue-derived signals, priming of committed precursors in the secondary lymphoid organs has been less explored. The analysis of mice deficient in DNGR-1 or Batf3 (75, 76) has shown the relevance of cDC1 in priming of CD8+ T cell memory subsets. High expression of DNGR-1 is restricted to the cDC1 subset, where DNGR-1 plays an essential role in cross-presentation to VACV antigens (77, 78). In addition, the cDC1 subset depends on the Batf3 transcription factor for their development and/or function (76, 79). Deficient cross-presentation by cDC1 results in a threefold reduction in the numbers of Trm cells in a model of skin VACV infection, while circulating memory CD8+ T cells are not affected (14) (Figure 3A). The cDC1 subset provides the antigen for priming by cross-presentation in this context of infection, but also provide specific signals 2 (CD24) and 3 (IL-12 and
IL-15) (47, 80–83). These specific priming signals from cDC1s are also essential for optimal priming of Trm precursors (14), suggesting that priming by cDC1s is key for optimal Trm cell priming in this context of VACV infection, and cross-priming is the operational manner in which the antigen is presented in this setting. The key role of cDC1 for priming of Trm cells could be extended to additional infection models: for example, targeting malaria antigen to DNGR-1-expressing cDC1s in the presence of adjuvant generates Trm cells in the liver upon trapping primed T cells with a recombinant adeno-associated virus that targets hepatocytes to express the same malaria antigen (84).

Following viral infection, cross-priming transiently induces T-bet and its target CXCR3 in CD8+ T lymphocytes in the dLN, correlating with the generation of Trm precursors (14). T-bet induction at priming may contribute to longer retention in the LN of T cells that eventually egress to the tissue with low expression of T-bet and KLRG1. Consistent with the notion that high expression of T-bet inhibits Trm differentiation in the skin (36, 85), cross-priming ultimately favors T cells with delayed egress and lower expression of T-bet and KLRG1 in the skin (14). In addition, cross-priming transiently phosphorylates Foxo1 in CD8+ T cells (14), resulting in its degradation that favors retention of CD8+ T cells in the LN. However, cross-priming deficiency does not affect expression of the transcription factor Eomes, involved in Tcm generation (44, 58). Thus, this early transcriptional regulation by cross-priming does not affect effector or circulating memory CD8+ T cell development, IFN-γ production, or viral clearance mediated by CD8+ T cells. However, the analysis of CD103+ Trm cell differentiation in the skin revealed that formation of CD103+CD8+ T cells was slower between 7 and 14 days in the absence of cross-priming, suggesting a lower number of Trm cell precursors seeding the skin. Impaired Trm but not Tcm cell generation in vaccinated DNGR-1-deficient mice results in defective viral clearance (14).

Cross-priming through cDC1 also results in more prolonged downregulation of KLF2 and S1P (14). Downregulation of the KLF2-dependent S1P receptor leads to retention during priming (86). Weak priming in the absence of cross-presentation by cDC1s leads to early upregulation of KLF2 and S1P, leading to early egress of KLRG1+ cells that are not Trm precursors (4, 14) and migrate to the skin to generate terminal effector CD8+ T cells (58, 87). Once in the skin, inflammatory signals downregulate again KLF2 and S1P contributing to retention (23). Consistently, the inhibition of T cell egress with FTY720 treatment increases generation of both circulating memory and Trm cells in WT mice, partially rescuing the defect in Trm cell generation in mice deficient in cross-priming by cDC1s (14). These data highlight that retention of CD8+ T cells during priming in the LN favors Trm cell generation. However, it is not sufficient to compensate the specific signals provided by Batf3-dependent DNGR-1+ DCs. In vitro co-culture of CD8+ T cell with different DC subsets shows that CD103+ and CD8ar+ DC (cDC1s) but not CD11b+ CD8ar- (cDC2s) induce generation of Trm cells, in a DNGR-1-dependent fashion. The blockade of specific priming signals provided by cDC1s such as CD24, IL-12, and IL-15 reduces T-bet induction and generation of Trm precursors; however, cDC1 priming blockade does not affect the generation of circulating memory T cells (14).

It is debated to which extent antigen presentation (signal 1), co-stimulation (signal 2), or cytokines (signal 3) derived from different DC subsets are required for differentiation and for reactivation upon rechallenge. The requirement of antigen for Trm cell differentiation in tissues has been described (3, 14, 66, 67). Antigen recognition within the tissue drives expression of CD103 by brain Trm cells (8). The restimulation of Trm cells and induction of IFN-γ is dependent on MHC-I expression on CD301b+ DC (Figure 3B), while inflammatory cytokines alone are likely not sufficient by themselves for full activation of Trm cells responding to genital HSV-2 infection (88). However, antigen presentation is dispensable for Trm generation in other systems (4, 9, 89), supporting the notion that the particular pathogen or inflammatory insult triggers a distinct response that determines the requirements for Trm differentiation (40). Inflammatory signals derived from myeloid cells can also impact in the Trm cell phenotype (Figure 3B). Recruitment of monocyte-derived DCs in the LNs is required for the activation of HSV-specific CD8+ Trm cells (66). Ly6C+ inflammatory monocytes contribute to the persistence, but not generation, of lung memory CD8+ Trm cells, affecting selectively to a CX3CR3+CX3CR1+ subset upon VACV intranasal challenge (90). Moreover, IFN-β and IL-12 derived from monocyte-derived intestinal macrophages during Yersinia infection, favors the differentiation of CD69+CD103+ Trm cells (Figure 3B) (62).

While cDC1s are essential for optimal priming, they are dispensable for differentiation in the skin, which also requires antigen presentation in the VACV infection model (14). Thus, different DC subsets may work cooperatively in the LN priming of Trm precursors and differentiation in the skin in an antigen-cognate fashion. However, the requirement of antigen presentation by different DC subsets may be model dependent. XCR1+ cDC1 seem to be necessary to promote recall of circulating memory CD8+ T cells upon secondary infections with pathogens such as L. monocytogenes or certain viruses (91), or in response to tumors (12). But this particular DC subset does not seem to play a role in the maintenance of Trm cells upon viral infection (14). In a mouse model of HSV-2 intravaginal infection, depletion of CD301b+ cDC2 results in significantly worse clinical symptoms, higher weight loss, and mortality after viral rechallenge (88). However, CD301b+ cDC2 depletion does not affect circulating memory, while stimulates the differentiation and antiviral function of vaginal CD8+ Trm cells (Figure 3B). Accordingly, CD301b+ cDC2 depletion has minimal impact on disease severity and weight loss when protection is exclusively dependent on circulating memory CD8+ T cells (88).

In comparison to murine DCs, less is known about the function of human DCs in tissues. By using lung tissues from humans and humanized mice, it has been found that both lung DC subsets (CD1c+ and CD141+) acquire antigens from live-attenuated influenza virus in vivo and expanded specific cytotoxic CD8+ T cells in vitro (Figure 3C). However, lung tissue-resident CD1c+ DC but not CD141+ DC induce CD103 expression on CD8+ T cells and promoted CD8+ T cell accumulation in lung. Induction of CD103 expression mediated by CD1c+ DCs was dependent on TGF-β1. Thus, CD1c+ and CD141+ DCs generate CD8+ T cells with different properties (92). The results discussed
above are consistent with the notion of division of tasks among DC subsets during the priming and differentiation of Trm cells, although the particular role of a DC subset or even the dependence on antigen presentation or priming by DC-derived cytokines may depend on the particular settings in which Trm cells are generated.

CONCLUDING REMARKS

Following immunization, DCs in the secondary lymphoid organs prime CD8+ T cells for generation of effector and memory responses, but there are different flavors of memory T cells and the specific requirements for priming, differentiation, and reactivation of each subset are different. Tissue-resident memory CD8+ T (Trm) cells represent the newest layer of complexity in memory subsets. By virtue of their location, they act as sensor and effector cells, triggering both innate and adaptive responses, therefore providing a superior immunity against reinfection in the tissue (3, 4, 93).

Current evidences support the idea that Tcm, Tem, and Trm cells are generated from common precursors that are committed upon differential priming in secondary lymphoid organs (14, 40). Asymmetric inheritance of intracellular fate determinants could explain generation of effector and memory T cells from clonal naive T cells (52). TCR affinity and duration of signals during priming can also determine the T cell fate, with Trm cells linked to high-affinity TCR and Tcm cells to low affinity (49, 94).

Naive T cells differentiate into Trm in many scenarios: infectious and even non-infectious, such as chemical hapten inflammation (3, 12, 40, 66, 67). However, independently of the generation of Trm cells from naive cells primed in the LN, there is some degree of plasticity among T cell subsets. Trm cells can be generated from antigen-experienced cells such as effector CD8+ T cells, Tcm, Tem, or even Trm cells (self-maintenance). Several factors may condition the relative efficiency of Trm generation from different sources, including the type of challenge (infection, inflammation), the presence of specific antigen driving reactivation and tissue-specific signals that can promote Trm generation in an antigen-independent fashion (12, 70, 71, 73).

Different subsets of DCs may affect differentially the priming of Trm precursors. cDC1s drive priming of Trm precursors in the LN, but not Trm tissue differentiation, in a VACV skin infection model, and targeting malaria antigen to cDC1s generates antigen-specific Trm in the liver, requiring both models antigen presence in the target tissue (14, 84). Antigen presentation and inflammatory cytokines produced by other myeloid cell subsets contribute to Trm differentiation (62, 88, 90, 92), suggesting a division of tasks among DC subsets in the priming and differentiation of memory T cell subsets that can be model dependent. Further dissection of how DC prime and generate different memory T cell subsets, what are the requirements for differentiation and effector function of each subset, and how these memory T cell subsets act in concert to induce optimal immunity will be important to improve current immunotherapy strategies against pathogens or cancer.

AUTHOR CONTRIBUTIONS

ME, SK, SI, and DS conceived and wrote the manuscript. ME and SI did the figures.

FUNDING

SI is funded by grant SAF2015-74561-JIN from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and FEDER (European Fund for Regional Development). SK is the recipient of a FPU fellowship from the Spanish Ministry of Education, Culture and Sports (FPU16/03142). Work in the DS laboratory is funded by the CNIC and grant SAF2016-79040-R from MINECO, Agencia Estatal de Investigación, and FEDER; B2017/BMD-3733 Immunothercan-CM from Comunidad de Madrid; RD16/0015/0018-REEM from FIS-Instituto de Salud Carlos III, MINECO, and FEDER; Acteria Foundation; Constantes y vitales prize (Atresmedia); La Marató de TV3 Foundation (201723); the European Commission (635122-PROCROP H2020); and the European Research Council (ERC-2016-Consolidator Grant 725091). The CNIC is supported by the MINECO and the Pr CNCIFoundation and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505).

REFERENCES

1. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature (1999) 401(6754):708–12. doi:10.1038/44385
2. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol (2004) 22:745–63. doi:10.1146/annurev.immunol.22.012703.104702
3. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. Skin infection generates non-migratory memory CD8+ T RM cells providing global skin immunity. Nature (2012) 483(7388):227–31. doi:10.1038/nature10851
4. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT, Hafon ML, et al. The developmental pathway for CD103+(+CD8+ tissue-resident memory T cells of skin. Nat Immunol. 2013) 14(12):1294-301. doi:10.1038/ni.2744
5. Mueller SN, Gebhardt T, Carbone FR, Heath WR. Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol (2013) 31:137–61. doi:10.1146/annurev-immunol-032712-095954
6. Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity (2014) 41(6):886-97. doi:10.1016/j.immuni.2014.12.007
7. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol (2016) 16(2):79–89. doi:10.1038/nri.2015.3
8. Wakim LM, Woodward-Davis A, Bevan MJ. Memory T cells persisting within the brain after local infection show functional adaptations to their tissue of residence. Proc Natl Acad Sci U S A (2010) 107(42):17872–9. doi:10.1073/pnas.101020107
9. Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC, Beura LK, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol (2012) 188(10):4866–75. doi:10.4049/jimmunol.1200402
10. Malik BT, Byrne KT, Vella JL, Zhang P, Shabaneh TB, Steinberg SM, et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci Immunol (2017) 2(10):eaam6346. doi:10.1126/sciimmunol.aam6346
11. Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, Voron T, et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat Commun (2017) 8:15221. doi:10.1038/ncomms15221
12. Enamorado M, Iborra S, Priego E, Cueto FJ, Quintana JA, Martinez-Cano S, et al. Enhanced anti-tumour immunity requires the interplay between
resident and circulating memory CD8+ T cells. Nat Commun (2017) 8:16073. doi:10.1038/ncomms16073

13. Giri, K.S., Wieland, L.M., Eidson, L., Reading, PC, Heath WR, Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol (2009) 10(5): 524–30. doi:10.1038/ni.1718

14. Iborra S, Martinez-Moreno, Khouli SC, Cueto FJ, Conde-Garrosa R, et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity (2016) 45(4):847–60. doi:10.1016/j.immuni.2016.08.019

15. Bergsbaken T, Bevan MJ. Proinflammatory microenvironments within the intestine regulate the differentiation of tissue-resident CD8+ T cells responding to infection. Nat Immunol (2015) 16(4):406–14. doi:10.1038/ni.3108

16. Hondoniwicz BD, An D, Schenkel JM, Kim KS, Steach HR, Krishnamurty AT, et al. Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity (2016) 44(1):155–66. doi:10.1016/j.immuni.2015.11.004

17. Steinitz EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Igyártó BZ, et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell (2015) 161(4):737–49. doi:10.1016/j.cell.2015.03.031

18. Hofmann M, Pircher H. E-cadherin promotes accumulation of a unique memory T-cell population in murine salivary glands. Proc Natl Acad Sci U S A (2011) 108(60):16741–6. doi:10.1073/pnas.1107200108

19. Schon MP, Ayra A, Murphy EA, Adams CM, Strauch UG, Agace WW, et al. Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J Immunol (1999) 162(11):6641–9.

20. Ray SJ, Franki SN, Pierce RH, Dimitrova S, Koteliansky V, Sprague AG, et al. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity (2004) 20(2):167–79. doi:10.1016/S1074-7613(04)00021-4

21. Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut resident memory T cells by regulating migration and retention. Immunity (2013) 39(4):687–96. doi:10.1016/j.immuni.2013.08.019

22. Cheuk S, Schlums H, Gallais Serezel I, Martini E, Chiang SC, Marquardt N, et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity (2017) 46(2):287–300. doi:10.1016/j.immuni.2017.01.009

23. Skon CN, Lee JY, Anderson KG, Masopust D, Hogquist KA, Jameson SC. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory T-cell subset associated with improved prognosis. Nat Med (2018) 24(7):986–93. doi:10.1038/s41591-018-0078-7

24. Webb JR, Milne K, Watson P, Deleuwe RJ, Nelson BH. Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer. Clin Cancer Res (2014) 20(2):437–44. doi:10.1158/1078-0432.CCR-13-1877

25. Iborra S, Gerski SA, Hahn S, Murphy KM, Braciale TJ. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8+ T cell differentiation by a CD24-dependent mechanism. Immunity (2014) 40(3):400–13. doi:10.1016/j.immuni.2014.02.004
66. Wakim LM, Waithman J, van Rooijen N, Heath WR, Carbone FR. Dengue infections.

67. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation directs memory precursor and short-lived effector CD8+ T cells with enhanced protective function. Immunity (2018) 48(2):327–38.e5. doi:10.1016/j.immuni.2018.01.015

68. Pizzolla A, Nguyen THO, Smith JM, Brooks AG, Kedzieska K, Heath WR, et al. Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci Immunol (2017) 2(12): eaam6970. doi:10.1126/sciimmunol.aam6970

69. Park SL, Zaid A, Hor JL, Christo SN, Prier JE, Davies B, et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat Immunol (2018) 19(2):183–91. doi:10.1038/s41590-017-0027-5

70. Beura LK, Mitchell JS, Thompson EA, Schenkel JM, Mohammed J, Wijeyesinghe S, et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat Immunol (2018) 19(2):173–82. doi:10.1038/s41590-017-0029-3

71. Schenkel JM, Fraser KA, Casey KA, Beura LK, Pauken KE, Vezys V, et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science (2007) 315(5819):1687–91. doi:10.1126/science.1139933

72. Gerlach C, Rohr JC, Perie L, van Heijst JW, Velds A, et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science (2013) 340(6132):635–9. doi:10.1126/science.1234587

73. Lanzavecchia A,allast F. Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol (2002) 2(12):982–7. doi:10.1038/nrr959

74. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, et al. Inflammation directs memory precursor and short-lived effector CD8+ T cells responding to infection. Immunity (2013) 39(2):347–56. doi:10.1016/j.immuni.2013.07.014

75. Sheridan BS, Pham Q-M, Lee Y-T, Cauley LS, Puddington L, Lefrançois L. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function. Immunity (2014) 40(5):747–57. doi:10.1016/j.immuni.2014.03.007

76. Wiesel M, Crouse J, Bedenikovic G, Sutherland A, Joller N, Oxenius A. Type-I IFN drives the differentiation of short-lived effector CD8+ T cells in vivo. Eur J Immunol (2012) 42(2):320–9. doi:10.1002/eji.201142091

77. Beura LK, Mitchell JS, Thompson EA, Schenkel JM, Mohammed J, Wijeyesinghe S, et al. Intravital mucosal imaging of CD8+ resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat Immunol (2018) 19(2):173–82. doi:10.1038/s41590-017-0029-3

78. Sancho D, Joffre OP, Keller AM, Rogers NC, Pierson MJ, et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells. Immunity (2018) 48(2):327–38.e5. doi:10.1016/j.immuni.2018.01.015

79. Buggert M, Nguyen S, Salgado-Montes de Oca G, Bengsch B, Darko S, Ransier A, et al. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci Immunol (2018) 3(24):eaar4526. doi:10.1126/sciimmunol.aar4526

80. Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent dendritic cell-induced memory T cell activation in nonlymphoid tissues. Mucosal Immunol (2018) 11(1):26–35. doi:10.1038/s41455-017-0007-5

81. Hildner K, Edelson RT, Purcell HE, Diamond M, Matsuhashi H, Koyabah M, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science (2008) 322(5904):997–1000. doi:10.1126/science.1164206

82. Sancho D, Mourao-Sa D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest (2008) 118(6):2098–110. doi:10.1172/JCI34584

83. Iborra S, Izquierdo HM, Martinez-Lopez M, Blanco-Mendez N, Reis e Sousa C, Sancho D. The DC receptor DNGR-1 mediates cross-priming of CTLs during vaccinia virus infection in mice. J Clin Invest (2012) 122(5):1628–43. doi:10.1172/JCI60660

84. Seillet C, Jackson JT, Markey KA, Brady HJM, Hill GR, MacDonald KPA, et al. CD8alpha+ DCs can be induced in the absence of transcription factors IId2, Nfil3, and Batf3. Blood (2013) 121(9):1574–83. doi:10.1182/blood-2012-07-445650

85. Martinez-Lopez M, Iborra S, Conde-Garrosa R, Sancho D. Batf3-dependent CD103+ dendritic cells are major producers of IL-12 that drive local Th1 immunity against Leishmania major infection in mice. Eur J Immunol (2015) 45(1):119–29. doi:10.1002/eji.201444651

86. Masayekhi M, Sandaa MN, Dunay IR, Frickel EM, Khan A, Goldszmid RS, et al. CD11c+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity (2011) 35(2):249–59. doi:10.1016/j.immuni.2011.08.008

87. Muzaki AR, Tetlak P, Sheng J, Loh SC, Setiagani YA, Poidinger M, et al. Identification of CD103(+)CD11b(+) dendritic cells restrain colitis via IFN-gamma-induced anti-inflammatory response in epithelial cells. Mucosal Immunol (2016) 9(2):336–51. doi:10.1038/mi.2015.64

88. Sosnowski T, White JT, Cross EW, Haluszczak C, Marrack P, Gapin L, et al. CD8alpha+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-experienced T cells in the periphery with memory phenotype and function. J Immunol (2013) 190(5):1936–47. doi:10.4049/jimmunol.1203149

89. Fernandez-Ruiz D, Ng WY, Holz LE, Ma JZ, Zaid A, Wong YC, et al. Liver-resident memory CD8+ T cells form a front-line defense against
malaria liver-stage infection. *Immunity* (2016) 45(4):889–902. doi:10.1016/j.immuni.2016.08.011

85. Laidlaw BJ, Zhang N, Marshall HD, Storun MM, Guan T, Hu Y et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. *Immunity* (2014) 41(4):633–45. doi:10.1016/j.immuni.2014.09.007

86. Carlson CM, Endrizzi BT, Wu J, Ding X, Weinreich MA, Walsh ER, et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. *Nature* (2006) 442(7100):299–302. doi:10.1038/nature04882

87. Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. *J Exp Med* (2008) 205(3):625–40. doi:10.1084/jem.20071641

88. Shin H, Kumamoto Y, Gopinath S, Iwasaki A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. *Nat Commun* (2016) 7:13346. doi:10.1038/ncomms13346

89. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN, et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. *Proc Natl Acad Sci U S A* (2012) 109(18):7037–42. doi:10.1073/pnas.1202288109

90. Desai P, Tahiliani V, Stanfield J, Abboud G, Salek-Ardakani S. Inflammatory monocytes contribute to the persistence of CXCR3(hi) CX3CR1(lo) circulating and lung-resident memory CD8(+)+ T cells following respiratory virus infection. *Immunol Cell Biol* (2018) 96(4):370–8. doi:10.1111/imcb.12006

91. Alexandre YO, Ghiba S, Sanchez C, Le Bon A, Crozet K, Dalod M. XCR1+ dendritic cells promote memory CD8+ T cell recall upon secondary infections with Listeria monocytogenes or certain viruses. *J Exp Med* (2016) 213(1):75–92. doi:10.1084/jem.20142350

92. Yu CL, Becker C, Wang Y, Marches F, Helft J, Leboeuf M, et al. Human CD1c(+) dendritic cells drive the differentiation of CD103(+) CD8(+) mucosal effector T cells via the cytokine TGF-β. *Immunity* (2013) 38(4):818–30. doi:10.1016/j.immuni.2013.03.004

93. Schenkel JM, Fraser KA, Beura LK, Pauken KE, Vezys V, Masopust D. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. *Science* (2014) 346(6205):98–101. doi:10.1126/science.1254536

94. Knudson KM, Hamilton SE, Daniels MA, Jameson SC, Teixeiro E. Cutting edge: the signals for the generation of T cell memory are qualitatively different depending on TCR ligand strength. *J Immunol* (2013) 191(12):5797–801. doi:10.4049/jimmunol.1300905

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Enamorado, Khouili, Iborra and Sancho. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.