Exact Relativistic Magnetized haloes around Rotating Disks

Antonio C. Gutiérrez-Piñeres1,2,* and Abraão J. S. Capistrano3,†

1Facultad de Ciencias Básicas, Universidad Tecnológica de Bolívar, Cartagena 13001, Colombia
2Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, México, DF 04510, México
3Federal University of Latin-American Integration, Technological Park of Itaipu, PO box 2123, Foz do Iguaçu-PR 85867-670, Brazil

The exact relativistic treatment of a rotating disk surrounded by a magnetized material halo is presented. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

I. INTRODUCTORY REMARKS

In the observational context, many ambiguities still exist about the main constituents, geometry and dynamics (thermodynamics) of the galactic disk-haloes. However, there are several different observations which probe the galactic and surrounding galactic magnetic field. A current revision of the status of our knowledge about the magnetic fields in our Milky Way and in nearby star-forming galaxies is summarized in [1]. Additionally, a study of the disk and halo rotation are reported in [2], whereas the possibility of magnetic fields can be generated in the outskirts of disks is studied in [3]. Solutions for the Einstein and Einstein-Maxwell Field Equations which are consistently applicable to the context of astrophysics remains a topical problem. Nevertheless, the effects of magnetic fields on the physical processes in galaxies and their disk-halo interaction have been scarcely considered in the past. Similarly, the relevance of relativistic models of disks around black holes in a magnetic field is discussed in [4].

The presence of the electric field on the dark matter halo models has been considered in [5], whereas the presence of electromagnetic field in the halo-disk system has been studied in [6, 7] in which the gravitational sources are statics. In [6] we provided a detailed overview of the research in the relativistic disks, accordingly we shall not repeat them here.

In this paper we considered the conventional treatment of galaxies modelled as a stationary thin disk and, correspondingly, we associate the halo with the region surrounding the disk. We present the conformastationary version of the static thin disk-halo systems studied in [6]. In addition, we study the features of the principal quantities characterizing the dynamic of the magnetized haloes corresponding to the disks presented in [8]. Therefore, we take the definition in Ref. [9] as standard, following the original terminology by Synge [10]: conformastationary are those stationary spacetimes with a conformally flat space of orbits.

Accordingly, we show that the rotating disk-haloes with isotropic pressure, stress tensor and heat flow generalize the static disk-haloes obtained in [6]. Our results are compatible with those presented in [5] on possible features of galactic halo. Moreover, the description of the motion of charged particles on disk is deduced and is in agreement with the results of the similar analysis discussed in [11]. As far as we know, this is the first relativistic model describing analytically the relativistic magnetized halo of a rotating disk.

The paper is organized as follows. In Section II the distributional Einstein-Maxwell equations for haloes surrounding thin disks are obtained. In Section III we obtain expressions, in terms of an arbitrary harmonic function, for the most important quantities characterizing the dynamic of the disk and halo. In Section IV we first calculate quantities for an harmonic function described by the generalized Kuzmin-disk potential. Then, we analyze the obtained results and calculate the constants of motion of the disk. Moreover, the description of the motion of a charged particle on the halo is shown in Section V whereas the stability of the orbits of test particles in the halo is studied in Section VI. Finally, we complete the paper with a discussion of the results in Section VII.
II. EXACT SOLUTIONS FOR RELATIVISTIC MAGNETIZED HALOES SURROUNDING THIN DISKS

In this section we consider the conventional treatment of rotating galaxies modelled as a stationary thin disk and, correspondingly, we associate the magnetized halo with the region surrounding the disk. To do so, we formulate the distributional Einstein-Maxwell field equations assuming axial symmetry [12]. We also suppose that the derivatives of the metric and electromagnetic potential across the disk space-like hyper-surface are discontinuous. To formulate the corresponding distributional form of the Einstein-Maxwell field equations, we introduce the usual cylindrical coordinates $x^a = (t, r, z, \phi)$ and assume that there exists an infinitesimally thin disk located at the hypersurface $z = 0$. Accordingly, we identify the halo surrounding the disk with the positive $(z \geq 0)$ and negative $(z \leq 0)$ regions around the equatorial plane $z = 0$, denoted here by the superscripts “±”. So that the metric and the electromagnetic potential can be written, respectively, as $g_{\alpha \beta} = g_0^{\alpha \beta}(z) + g_\alpha\beta\{1 - \theta(z)\}$ and $A_\alpha = A^+_\alpha\theta(z) + A^-_\alpha\{1 - \theta(z)\}$. Here $\theta(z)$ denotes the Heaviside distribution. As a consequence, the Ricci tensor reads

$$R_{\alpha \beta} = R^+_\alpha \beta \theta(z) + R^-_{\alpha \beta}\{1 - \theta(z)\} + H_{\alpha \beta}\delta(z),$$

(1)

where $\delta(z)$ is the Dirac distribution and

$$H_{\alpha \beta} = \frac{1}{2}\left\{g_\alpha \gamma_{\beta \gamma}^z + g_\beta \gamma_{\alpha \gamma}^z - g_\gamma \gamma_{\alpha \beta}^z - g_\gamma \gamma_{\beta \alpha}^z\right\},$$

(2)

with $g_{\alpha \beta} = 2g_\alpha\beta z$ and all the quantities are evaluated at $z = 0^+$. In agreement with (1) the energy-momentum tensor and the electric current density acquire the form

$$T_{\alpha \beta} = T^+_\alpha \beta \theta(z) + T^-_{\alpha \beta}\{1 - \theta(z)\} + Q_{\alpha \beta}\delta(z),$$

(3a)

$$J_\alpha = J^+_\alpha \theta(z) + J^-_\alpha\{1 - \theta(z)\} + I_\alpha\delta(z),$$

(3b)

where $T^\pm_{\alpha \beta}$ and J^\pm_α are, respectively, the energy-momentum tensors and electric current density of halo. Moreover, $Q_{\alpha \beta}$ and I_α represent the part of the energy-momentum tensor and the electric current density of disk. The energy-momentum tensor $T^\pm_{\alpha \beta}$ in (3a) is taken to be the sum of two distributional components, the purely electromagnetic (trace-free) part and a “material” (trace) part,

$$T^\pm_{\alpha \beta} = E^\pm_{\alpha \beta} + M^\pm_{\alpha \beta},$$

(4)

where $E^\pm_{\alpha \beta}$ is the electromagnetic energy-momentum tensor

$$E_{\alpha \beta} = F_{\alpha \mu}F^\nu_{\beta} - \frac{1}{4}g_{\alpha \beta}F_{\mu \nu}F^{\mu \nu},$$

(5)

with $F_{\alpha \beta} = F_{\alpha \beta} - A_{\alpha \beta}$ and $M^\pm_{\alpha \beta}$ is an unknown “material” energy-momentum tensor to be obtained. Accordingly, the Einstein-Maxwell equations, in geometrized units such that $c = 8\pi G = \mu_0 = \epsilon_0 = 1$, are equivalent to the system of equations

$$G^\pm_{\alpha \beta} = R^\pm_{\alpha \beta} - \frac{1}{2}g_{\alpha \beta}R^\pm = E^\pm_{\alpha \beta} + M^\pm_{\alpha \beta},$$

(6a)

$$H_{\alpha \beta} - \frac{1}{2}g_{\alpha \beta}H = Q_{\alpha \beta},$$

(6b)

$$F^\pm_{\alpha \beta} = J^\pm_\alpha,$$

(6c)

$$[F^\alpha_{\beta +}]n_\beta = T^\alpha,$$

(6d)

where $H \equiv g^{\alpha \beta}H_{\alpha \beta}$. The square brackets in expressions such as $[F^\alpha_{\beta +}]$ denote the jump of $F^{\alpha \beta}$ across of the surface $z = 0$ and n_β denotes a unitary vector in the direction normal to it. To obtain a solution of the distributional Einstein-Maxwell describing a system composed by a magnetized halo surrounding a rotating thin disk we shall restrict ourselves to the case where the electric potential $A_\phi = 0$.

To solve the Einstein-Maxwell equation (6) we assume the conformastationary space-time given by the line element

$$ds^2 = -e^{2\phi}(dt + \omega d\phi)^2 + e^{-2\beta\phi}(dr^2 + dz^2 + r^2 d\phi^2),$$

(7)

where ϕ depending only on r and z and β is an arbitrary real constant. We also assume that the magnetic potential A_ϕ is time-independent. Accordingly, by computing the Einstein tensor $G_{\alpha \beta}$ explicitly from the line element (7) and

$$T_{\alpha \beta} = 0,$$

(8)

and

$$J_\alpha = 0,$$

(9)
the electromagnetic energy-momentum tensor \(\mathbf{E}^{\pm}_{\alpha\beta} = \mathbf{G}^{\pm}_{\alpha\beta}\), we obtain for the non-zero components of the energy-momentum tensor of the halo (EMTH) \(\mathbf{M}^{\pm}_{\alpha\beta} = \mathbf{E}^{\pm}_{\alpha\beta} - \mathbf{G}^{\pm}_{\alpha\beta}\).

\[
\begin{align*}
 M^{\pm}_{tt} &= -e^{2(1+\beta)\phi}\left\{\beta^2 A_{\phi} \cdot \nabla \phi - 2\beta A_{\phi} \cdot \nabla \phi + \frac{1}{r^2} e^{2(1+\beta)\phi} \nabla A_{\phi} \cdot \nabla A_{\phi} - \frac{3}{4} r^{-2} e^{2(1+\beta)\phi} \nabla \phi \cdot \nabla \phi\right\} \\
 M^{\pm}_{r\phi} &= e^{2(1+\beta)\phi}\left\{\frac{\beta}{2} \nabla \omega \cdot \nabla \phi + \frac{3}{4} r^{-2} e^{2(1+\beta)\phi} \omega \nabla \phi \cdot \nabla \phi - \beta^2 \omega \nabla \phi \cdot \nabla \phi + 2 \beta \omega \nabla \phi \cdot \phi_{zz} + \frac{3}{2} \nabla \omega \cdot \nabla \phi - \frac{1}{2} r^{-2} e^{2(1+\beta)\phi} \omega \nabla A_{\phi} \cdot \nabla A_{\phi} + \frac{1}{2} \nabla \omega \cdot r^{-1} \nabla \omega \cdot r\right\} \\
 M^{\pm}_{rr} &= \frac{1}{r^2} r^{-2} e^{2(1+\beta)\phi} \omega, r, \omega, z - (1 - \beta) \phi, r, r, z = (1 - \beta) \phi, r, r, z - r^{-2} e^{2(1+\beta)\phi} A_{\phi, r} A_{\phi, z}, \\
 M^{\pm}_{zz} &= -\frac{1}{r^2} r^{-2} e^{2(1+\beta)\phi} \omega, r, \omega, z + \phi_{rr} - (1 - \beta) \phi, z, z + (1 - \beta) \nabla^2 \phi + (\beta^2 - 2\beta) \phi_{zz}^2 + \frac{1}{2} r^{-2} e^{2(1+\beta)\phi} \omega, A_{\phi, r} - A_{\phi, z}, \\
 M^{\pm}_{\phi \phi} &= r^2 \nabla \phi \cdot \nabla \phi + (1 - \beta)^2 \nabla^2 \phi - (1 - \beta)r \nabla \phi \cdot \nabla r - \frac{1}{2} e^{2(1+\beta)\phi} \nabla A_{\phi} \cdot \nabla A_{\phi} + e^{2(1+\beta)\phi}\left\{\frac{1}{4} (1 + 3r^{-2} e^{2(1+\beta)\phi} \omega, \phi, r, r, z - (1 - \beta) \phi, r, r, z - r^{-2} e^{2(1+\beta)\phi} A_{\phi, r} A_{\phi, z}, \right. \\
 &\left. - 2r^{-1} \nabla \omega \cdot r + (3 + \beta) \omega \nabla \phi \cdot \nabla \phi - \frac{1}{2} r^{-2} e^{2(1+\beta)\phi} \omega, A_{\phi} \cdot \nabla A_{\phi}\right\}.
\end{align*}
\]

Moreover, from (oc) the non-zero components of the electric current density on the halo have the form

\[
\begin{align*}
 J^t_{\pm} &= e^{-1-3\beta\phi} \nabla \cdot \{\omega r^{-2} e^{1+\beta\phi} \nabla A_{\phi}\}, \\
 J^\phi_{\pm} &= e^{-1-3\beta\phi} \nabla \cdot \{\nabla r^{-2} e^{1+\beta\phi} \nabla A_{\phi}\},
\end{align*}
\]

where all the quantities depending on \(r\) and \(z\).

The discontinuity in the \(z\)-direction of \(Q_{\alpha\beta}\) and \(I^\alpha\) defines, respectively, the surface energy-momentum tensor (SEMT) and the surface electric current density (SECD) of the disk \(S_{\alpha\beta}\), more precisely

\[
\begin{align*}
 S_{\alpha\beta} &= \int Q_{\alpha\beta}\delta(z)dz = \sqrt{g_{zz}} Q_{\alpha\beta}, \\
 J^\alpha &= \int I^\alpha\delta(z)dz = \sqrt{g_{zz}} J^\alpha,
\end{align*}
\]

where \(dz = \sqrt{g_{zz}}dz\) is the “physical measure” of length in the direction normal to the \(z = 0\) surface. Accordingly, for the metric (7), the non-zero components of \(S_{\alpha\beta}\) and \(J^\alpha\) are given by

\[
\begin{align*}
 S_{tt} &= 4\beta e^{2+\beta\phi} \phi_{zz}, \\
 S_{r\phi} &= e^{2+\beta\phi}\left\{4(3\omega \phi_{zz} + 2\omega, z)\right\}, \\
 S_{rr} &= 2(1 - \beta) e^{-\beta\phi} \phi_{zz}, \\
 S_{\phi \phi} &= e^{2+\beta\phi}\left\{4(3\omega \phi_{zz} + 2(1 - \beta)r^2 e^{-2(1+\beta\phi)} \phi_{zz} + 2\omega, z)\right\},
\end{align*}
\]

and

\[
\begin{align*}
 J^t &= -r^{-2} e^{3\beta\phi} \omega [A_{\phi, z}], \\
 J^\phi &= -r^{-2} e^{3\beta\phi} [A_{\phi, z}],
\end{align*}
\]

respectively. Note that in (11) and (12) all the quantities are evaluated on the surface of the disk \((z = 0)\).

In order to reduce the complexity of the last field equation systems we assume that the halo’s electric current density vanishes (i.e. \(J^t_{\pm} = J^\phi_{\pm} = 0\) in [9]), it turns out that the magnetic potential and the metric functions \(\phi\) and
\(\omega \) become completely determined in terms of an arbitrary harmonic function \(U(r, z) \) as follows (see [6, 8] for more details),

\[
A_{\varphi, r} = -\frac{1}{k} r U_z,
\]

\[
A_{\varphi, z} = \frac{1}{k} r U_r,
\]

\[
(\beta + 1) \phi = -\ln (1 - U),
\]

\[
\omega = k_\omega U,
\]

with \(k \) and \(k_\omega \) arbitrary constants. Since the non-zero components of the EMTD and EMTH and the electric current density directly depend on the metric functions and magnetic potential, we observe that the entire solution is determined by a single harmonic function.

III. EXACT RELATIVISTIC MODEL FOR MAGNETIZED DISK-HALOES

So far, by using the inverse method and the distributional formulation of the Einstein-Maxwell equations, we have obtained the separate energy-momentum tensors of the disk and halo. In addition, we have discussed out a method to determine it in terms of an arbitrary harmonic function. Now, the behavior of the energy-momentum tensors obtained must be investigated to find what conditions must be imposed on the solutions and the parameters that appear in the disk-halo models in such a way that it can describe reasonably physical sources. We shall now study the possible features of the disk by assuming that it is possible to express its energy-momentum tensor in the canonical form

\[
S_{\alpha\beta} = (\mu + P)V_\alpha V_\beta + P g_{\alpha\beta} + Q_\alpha V_\beta + Q_\beta V_\alpha + \Pi_{\alpha\beta}, \tag{14}
\]

where \(Q_\alpha V^\alpha = 0 \), \(\alpha = (t, r, \varphi) \) and all the quantities are evaluated in \(z = 0^+ \). Similarly, we assume that its possible to express the energy-momentum tensor of the halo in the canonical form

\[
M_{\alpha\beta}^{\pm} = (\mu^{\pm} + P^{\pm})V_\alpha V_\beta + P^{\pm} g_{\alpha\beta} + Q_{\alpha}^{\pm} V_\beta + Q_{\beta}^{\pm} V_\alpha + \Pi_{\alpha\beta}^{\pm}, \tag{15}
\]

where \(Q_{\alpha}^{\pm} V^\alpha = 0 \), \(\alpha = (t, r, \varphi) \) and all the quantities depend on \(r \) and \(z \). Consequently, we can say that the disk and halo are constituted by a some mass-energy distributions described by the energy-momentum tensors \([14]\) and \([15]\), respectively. The \(V^\alpha \) is the four velocity of certain observer. Correspondingly, \(\mu, P, Q_\alpha \) and \(\Pi_{\alpha\beta} \) are then the energy density, the isotropic pressure, the heat flux and the anisotropic tensor on the surface of the disk. Analogously, \(\mu^{\pm}, P^{\pm}, Q_{\alpha}^{\pm} \) and \(\Pi_{\alpha\beta}^{\pm} \) are then the energy density, the isotropic pressure, the heat flux and the anisotropic tensor on the halo, respectively. Thus, it is straightforward to see that for the halo we have

\[
\mu^{\pm} = M_{\alpha\beta}^{\pm} V^\alpha V_\beta, \tag{16a}
\]

\[
P^{\pm} = \frac{1}{3} \mathcal{H}^{\alpha\beta} M_{\alpha\beta}^{\pm}, \tag{16b}
\]

\[
Q_{\alpha}^{\pm} = -\mu^{\pm} V_\alpha - M_{\alpha\beta}^{\pm} V_\beta, \tag{16c}
\]

\[
\Pi_{\alpha\beta}^{\pm} = \mathcal{H}_{\alpha\mu}^{\gamma\nu} \mathcal{H}^{\beta\nu} (M_{\mu\nu}^{\pm} - P^{\pm} H_{\mu\nu}), \tag{16d}
\]

where the projection tensor is defined by \(\mathcal{H}_{\mu\nu} \equiv g_{\mu\nu} + V_\mu V_\nu \) and all the quantities depending on \(r \) and \(z \). Whereas, for the disk we have

\[
\mu = S_{\alpha\beta} V^\alpha V_\beta, \tag{17a}
\]

\[
P = \frac{1}{3} \mathcal{H}^{\alpha\beta} S_{\alpha\beta}, \tag{17b}
\]

\[
Q_\alpha = -\mu V_\alpha - S_{\alpha\beta} V_\beta, \tag{17c}
\]

\[
\Pi_{\alpha\beta} = \mathcal{H}_{\alpha\mu}^{\gamma\nu} \mathcal{H}^{\beta\nu} (S_{\mu\nu} - P H_{\mu\nu}), \tag{17d}
\]

where all the quantities are evaluated in \(z = 0^+ \). It is easy to note that by choosing the angular velocity to be zero in Equation \([A7] \) we have then a fluid comoving in our coordinates system. Hence, we may introduce a suitable reference frame in terms of the local observers tetrad \([A3]\) and \([A4]\) in the form

\[
\{V^\alpha, I^\alpha, K^\alpha, Y^\alpha\} = \{h_{(t)}^\alpha, h_{(r)}^\alpha, h_{(z)}^\alpha, h_{(\varphi)}^\alpha\}, \tag{18}
\]
with the corresponding dual tetrad
\[\{V_\alpha, I_\alpha, K_\alpha, Y_\alpha\} \equiv \{-h^{(t)}_\alpha, h^{(r)}_\alpha, h^{(z)}_\alpha, h^{(\varphi)}_\alpha\}. \] \tag{19}

Since the SECD of the disk \(J^\alpha \) can be also written in the canonical form \(J^\alpha = \sigma V^\alpha + j Y^\alpha \), \(\sigma \) can be interpreted as the surface electric charge density and \(j \) as the “current of magnetization” of the disk. A direct calculation shows that the surface electric charge density \(\sigma = 0 \), whereas the “current of magnetization” of the disk is given by \(j = -r^{-1}e^{2\beta\phi} [A_\varphi, z] \), where, as above, \([A_\varphi, z]\) denotes the jump of the \(z \)-derivative of the magnetic potential across the disk and, all quantities are evaluated on the disk.

By using the results obtained in the precedent section, we can write the surface energy density of the disk and the energy density of the halo can written as
\[\mu(r) = \frac{4\beta U_z}{(\beta + 1)(1 - U)^{\frac{2}{\beta + 2}}} \] \tag{20}
and
\[\mu^\pm(r, z) = \frac{(U_r^2 + U_z^2)e^{2(1+2\beta)\phi}}{(1 + \beta)^2 r^2} \left\{ \frac{(2\beta + \beta^2)r^2 - (1 + \beta)^2}{2k^2} e^{-2\phi} + \frac{3k^2(1 + \beta)^2}{4} \right\}, \] \tag{21}
respectively. Moreover, we have a barotropic equation of state on the surface of the disk, which can be given by \(P(r) = \eta \mu \), with \(\eta = (1 - \beta)/3\beta \), in such a way that we can use the energy conditions and the causality requirement for the speed of sound on the disk to obtain the physical range of possible values of the parameter \(\beta \). Analogously, the pressure of the halo we have \(P^\pm(r, z) = \Theta \mu^\pm(r, z) \), where
\[\Theta := \frac{(4 - 2\beta - \beta^2)r^2 - (1 + \beta)^2}{2k^2} e^{-2\phi} + \frac{k^2(1 + \beta)^2}{4} (1 + 3k^2 r^2 U^2 e^{2\beta\phi}(1 - e^{2\phi}))}{3 \left((2\beta + \beta^2)r^2 - (1 + \beta)^2 e^{-2\phi} + \frac{3k^2(1 + \beta)^2}{4} \right)}, \]
in such a way that the pressure of the halo not only depends on the energy density but also on the gravitational and magnetic fields through the function \(\Theta \). The Heat function of the disk is given by
\[Q_\alpha(r) = -\frac{k_\alpha U_z}{1 - U} \delta^\alpha, \] \tag{22}
Similarly, by inserting \([15] \) into \([16] \) we obtain for the heat flux of the halo
\[Q^\pm_\alpha = \frac{k_\alpha e^{(1+2\beta)\phi}}{2(1 + \beta)r} \left\{ 2(1 + \beta)U_r - (3 + \beta)r(U_r^2 + U_z^2)e^{(1+\beta)\phi} \right\} \delta^\alpha. \] \tag{23}
The non-zero components of the anisotropic tensor of the disk read \(\Pi_{\varphi \varphi}(r) = r^2 \Pi_{rr}(r) \) where
\[\Pi_{rr}(r) = \frac{2(1 - \beta)U_z}{3(1 + \beta)(1 - U)^{\frac{2}{\beta + 2}}}. \] \tag{24}
Moreover, it is easy to see that the anisotropic tensor of the halo reads
\[\Pi^\pm_{\alpha \beta} = P^\pm_{rr} I_\alpha I_\beta + P^\pm_{\varphi \varphi} K_\alpha K_\beta + P^\pm_{\varphi \rho} Y_\alpha Y_\beta + 2P^\pm_T I_\alpha K_\beta \] \tag{25}
where
\[P^\pm_{rr} = e^{2\beta\phi} \Pi^\pm_{rr}, \] \tag{26}
\[P^\pm_{\varphi \varphi} = e^{2\beta\phi} \Pi^\pm_{\varphi \varphi}, \] \tag{27}
\[P^\pm_{\varphi \rho} = \frac{e^{2\beta\phi}}{r^2} \Pi^\pm_{\varphi \rho}, \] \tag{28}
\[P^\pm_T = e^{2\beta\phi} \Pi^\pm_T. \] \tag{29}
and

\[\Pi^\pm_{rr} = \frac{e^{2(1+\beta)}\phi}{3(1+\beta)^2r^2} \left\{ \left(\frac{k^2_\omega (1+\beta)^2}{2} + \frac{2(1+\beta)^2}{k^2} r^2 e^{-2\phi} - 4(1+\beta - \beta^2)r^2 - \frac{3k^4_\omega (1+\beta)^2}{4} r^{-2} U^2 e^{2\beta\phi}(1-e^{2\phi}) \right) U^2_r
\right. \\
+ \left. \left(-k^2_\omega (1+\beta)^2 - \frac{(1+\beta)^2}{k^2} r^2 e^{-2\phi} + 2(1+\beta - \beta^2)r^2 - \frac{3k^4_\omega (1+\beta)^2}{4} r^{-2} U^2 e^{2\beta\phi}(1-e^{2\phi}) \right) U^2_z
\right. \\
- \left. 3(1-\beta^2)r^2 e^{-(1+\beta)\phi} U_{r}\right\}, \quad (30a) \]

\[\Pi^\pm_{zz} = \frac{e^{2(1+\beta)}\phi}{3(1+\beta)^2r^2} \left\{ \left(-k^2_\omega (1+\beta)^2 - \frac{(1+\beta)^2}{k^2} r^2 e^{-2\phi} + 2(1+\beta - \beta^2)r^2 - \frac{3k^4_\omega (1+\beta)^2}{4} r^{-2} U^2 e^{2\beta\phi}(1-e^{2\phi}) \right) U^2_r
\right. \\
+ \left. \left(\frac{k^2_\omega (1+\beta)^2}{2} + \frac{2(1+\beta)^2}{k^2} r^2 e^{-2\phi} - 4(1+\beta - \beta^2)r^2 - \frac{3k^4_\omega (1+\beta)^2}{4} r^{-2} U^2 e^{2\beta\phi}(1-e^{2\phi}) \right) U^2_z
\right. \\
- \left. 3(1-\beta^2)r^2 e^{-(1+\beta)\phi} U_{z}\right\}, \quad (30b) \]

\[\Pi^\pm_{\varphi\varphi} = \frac{(U^2_r + U^2_z) e^{2(1+\beta)\phi}}{3(1+\beta)^2} \left\{ \left(2(1+\beta - \beta^2)r^2 - \frac{(1+\beta)^2}{k^2} r^2 e^{-2\phi} + \frac{k^2_\omega (1+\beta)^2}{2} \right) (1+3k^2_\omega r^2 U^2 e^{2\beta\phi}(1-e^{2\phi})) \right. \]

\[- \left. \left(\frac{1-\beta}{1+\beta} e^{(1+\beta)\phi} U_r, \quad (30c) \right) \right\} \]

\[\Pi^\pm_{\varphi r} = \frac{e^{2(1+\beta)\phi}}{(1+\beta)^2} \left\{ \left(-2(1+\beta - \beta^2) - \frac{(1+\beta)^2}{k^2} r^2 e^{-2\phi} + \frac{k^2_\omega (1+\beta)^2}{2r^2} \right) U_{r} U_{\varphi} \right. \\
- \left. (1-\beta) e^{-(1+\beta)\phi} U_{r}, \quad (30d) \right\} \]

Notice that \(\mathcal{P}^\pm \equiv P^\pm_{rr} + P^\pm_{zz} + P^\pm_{\varphi\varphi} = 0 \) and, consequently, the trace \(\Pi^\pm_{\alpha\alpha} = 0 \). We have obtained expressions for the energy, pressure and the other quantities characterizing the dynamic of the halo. All the dynamic quantities have been expressed in terms of an arbitrary \(U(r, z) \) harmonic function. Finally, as we know, the electric current density of the halo is zero whereas it is easy to note that the magnetization current density on surface of the disk is

\[j(r) = -\frac{[U_r]}{k(1-U)^{\frac{3\varphi}{r}}} \quad (31) \]

It is important to remark that \(k_\omega \) is a defining constant in \([22] \) and \([23] \). Indeed, when \(k_\omega = 0 \) the heat flux functions \(Q_n \) and \(Q^\pm_{\alpha} \) vanish, a feature of the static systems. Due to we used the inverse method, no “a priori” restriction are imposed on the physical properties of the material constituting the disk and halo. The non-zero components of the energy-momentum tensors of the disk and halo result of “the nature” of the chosen metric and the corresponding solutions. So, in our case, the non-zero component \(S_{rr} \) and \(S_{\varphi r} \) are conditioned by the parameter \(\beta \) and the metric function \(\omega \) in such a way that when \(\beta = 1 \) the component \(S_{rr} \) vanishes, whereas \(S_{\varphi r} = 0 \) when \(\omega \) vanishes. The decomposition of the energy-momentum tensor of the disk-halo system into \([14] \) and \([15] \) were chosen with the aim to describe the SEMT and EMTH by the more general fluid model. Hence, the heat flux appear here in a “natural” way as a function determined by the metric function \(\omega \) and, consequently, by the “rotation”. Unfortunately, as we can see from \([17c] \) and \([16c] \), this function is oriented along the closed circular orbits and thus its physical interpretation is unclear. It is an issue that remains unanswered in this manuscript, but should be addressed in the future.

IV. ROTATING KUZMIN-LIKE DISK WITH MAGNETIZED HALOES

As an example of application of the formalism described in the precedent sections, we now consider the magnetized haloes surrounding the rotating disks generated by a generalization of the Kuzmin-disk potential in the form \([22] \) \([23] \)

\[U = -\sum_{n=0}^{N} \frac{b_n P_n(z/R)}{R^{n+1}}, \quad P_n(z/R) = (-1)^n \frac{R^{n+1}}{n!} \frac{\partial^n}{\partial z^n} \left(\frac{1}{R} \right), \quad (32) \]

where \(P_n = P_n(z/R) \) is the Legendre polynomials in cylindrical coordinates that was derived in the present form by a direct comparison of the Legendre polynomial expansion of the generating function with a Taylor of \(1/R \) \([22] \), being \(R^2 \equiv r^2 + z^2 \) and \(b_n \) arbitrary constant coefficients. The corresponding magnetic potential, obtained from \([13a] \) and \([13b] \), is

\[A_\varphi = -\frac{1}{k} \sum_{n=0}^{N} b_n \frac{(-1)^n}{n!} \frac{\partial^n}{\partial z^n} \left(\frac{z}{R} \right) \quad (33) \]
FIG. 1. Surface plots of the energy density (a) μ_0^\pm and (b) μ_1^\pm on the halo as a functions depending on r and z with parameters $a = b_0 = b_1 = k = k_\omega = 1$ and $\beta = 0.75$.

where, we have imposed $A_\varphi(0, z) = 0$ in order to preserve the regularity of the axis of symmetry. Next, to introduce the corresponding discontinuity in the first-order derivatives of the metric potential and the magnetic potential required to define the disk we perform the transformation $z \rightarrow |z| + a$. It is worth noting that, for the two first members of the family of solutions ($N = 0$ and $N = 1$) we have

\[U_0 = -\frac{\tilde{b}_0}{\sqrt{\tilde{r}^2 + (|\tilde{z}| + 1)^2}} \]
\[\tilde{A}_{\varphi 0} = -\frac{\tilde{b}_0 (|\tilde{z}| + 1)}{k \sqrt{\tilde{r}^2 + (|\tilde{z}| + 1)^2}} \]

and

\[\tilde{A}_{\varphi 1} = -\frac{\tilde{b}_0 (|\tilde{z}| + 1)}{k \sqrt{\tilde{r}^2 + (|\tilde{z}| + 1)^2}} \left\{ 1 - \frac{\tilde{b}_1 \tilde{r}^2}{\tilde{b}_0 (|\tilde{z}| + 1) (|\tilde{z}| + 1)^2 + \tilde{r}^2} \right\} \]
\[U_1 = -\frac{\tilde{b}_0}{\sqrt{\tilde{r}^2 + (|\tilde{z}| + 1)^2}} \left\{ 1 + \frac{\tilde{b}_1 (|\tilde{z}| + 1)}{\tilde{b}_0 ((|\tilde{z}| + 1)^2 + \tilde{r}^2)} \right\} \]

respectively, where $\tilde{b}_0 = b_0 / a$ and $\tilde{b}_1 = b_1 / a^2$ whereas $\tilde{r} = r / a$ and $\tilde{z} = z / a$, moreover $\tilde{A}_\varphi = A_\varphi / a$. For the two first members of the family of solutions the surface energy density of the disks can be written as

\[\tilde{\mu}_0 = \frac{4\beta \tilde{b}_0}{(1 + \beta)(\tilde{r}^2 + 1)\beta/(2\beta + 2) (\tilde{b}_0 + \sqrt{\tilde{r}^2 + 1})^{(2\beta + 1)/(\beta + 1)}} \]
\[\tilde{\mu}_1 = \frac{4\beta (\tilde{b}_0 - \tilde{b}_1) \tilde{r}^2 + \tilde{b}_0 + 2\tilde{b}_1}{(1 + \beta)(\tilde{r}^2 + 1)^{(2 - \beta)/(2\beta + 2)} ((\tilde{r}^2 + 1)^{3/2} + \tilde{b}_0 (\tilde{r}^2 + 1) + \tilde{b}_1)^{(2\beta + 1)/(\beta + 1)}}. \]
FIG. 2. Surface plots of the pressure (a) P^+_0 and (b) P^+_1 on the halo as functions depending on r and z with parameters $a = b_0 = b_1 = k = k_\omega = 1$ and $\beta = 0.75$.

respectively. Similarly, for the two first members of the family we have the heat flux of the disks

\[
Q_{\alpha 0} = \frac{\tilde{b}_0 k_\omega \delta^\alpha_\alpha}{\sqrt{\tilde{r}^2 + 1 + \tilde{b}_0}},
\]

\[
Q_{\alpha 1} = \frac{k_\omega \delta^\alpha_\alpha \left(\tilde{b}_0 (\tilde{r}^2 + 1) + \tilde{b}_1 \right)}{(\tilde{r}^2 + 1)^{3/2} + \tilde{b}_0 (\tilde{r}^2 + 1) + \tilde{b}_1},
\]

and the corresponding anisotropic tensor

\[
\tilde{\Pi}_{rr0} = \frac{2(1 - \beta) \tilde{b}_0}{3(1 + \beta) \left(\sqrt{\tilde{r}^2 + 1 + \tilde{b}_0} \right)^{(3\beta + 2)/(2 + 2\beta)}},
\]

\[
\tilde{\Pi}_{rr1} = \frac{2(1 - \beta) \left((\tilde{b}_0 - \tilde{b}_1) \tilde{r}^2 + \tilde{b}_0 + 2\tilde{b}_1 \right)}{3(1 + \beta) \left(\sqrt{\tilde{r}^2 + 1} \right)^{(5\beta + 2)/(2 + 2\beta)}}.
\]

As we know, the another quantities are $P = (1 - \beta)\mu/(3\beta)$ and $\Pi_{\varphi \varphi} = r^2 \Pi_{rr}$. In the last expressions we have used the dimensionless expressions $\tilde{\mu} = a\mu$, $\tilde{\Pi}_{\varphi \varphi} = a\Pi_{rr}$ Finally, for the two first members of the family we have the current of magnetization as

\[
\tilde{j}_0 = -\frac{2\tilde{b}_0 \tilde{r}}{k(\tilde{r}^2 + 1)^{(5-\beta)/(2+2\beta)}} \left(\tilde{b}_0 + \sqrt{\tilde{r}^2 + 1} \right)^{2\beta/(\beta+1)},
\]

\[
\tilde{j}_1 = -\frac{2\tilde{r} \left(\tilde{b}_0 (\tilde{r}^2 + 1) + 3\tilde{b}_1 \right)}{k(\tilde{r}^2 + 1)^{(5-\beta)/(2+2\beta)}} \left(\tilde{r}^2 + 1 \right)^{3/2} + \tilde{b}_0 (\tilde{r}^2 + 1) + \tilde{b}_1 \right)^{2\beta/(1+\beta)}.
\]
where \(j = aj \) and we first have assumed that the \(z \)-derivative of the magnetic potential present a finite discontinuity through the disk. In fact, as we have said above, the derivatives of \(U \) and \(A_\varphi \) are continuous functions across of the surface of the disk. We artificially introduce the discontinuity through the transformation \(z \rightarrow |z| + a \).

It is worth noticing that the mass surface density as well as the isotropic pressure of the disk decay very rapidly (as \(1/r^3 \) and \(1/r^5 \) for \(N = 0 \) and \(N = 1 \), respectively) indicating that the above solution can be associated with a disk with a finite energy-momentum distribution. In every case, the characteristic size can be adjusted through the parameters \(b_0 \) and \(b_1 \) of the solutions. Moreover, a simple calculation of the curvature invariants reveals that the solution is asymptotically flat and singularity-free.

To illustrate the results corresponding to the principal quantities describing the halo in Fig. 1, we show the behavior of energy densities \(\mu^\pm \) on the halo as a function of \(r \) and \(z \). In each case, we plot \(\mu^\pm_0(\mathbf{r},z) \) [Fig. 1(a)] and \(\mu^\pm_1(\mathbf{r},z) \) [Fig. 1(b)] for the indicate values of the parameters. It can be seen that the energy density is everywhere positive and vanishes sufficiently fast as \(r \) increases.

In Fig. 2, we show the behavior of pressure \(P^\pm \) on the halo as a function of \(r \) and \(z \). In each case, we plot \(P^\pm_0(\mathbf{r},z) \) [Fig. 2(a)] and \(P^\pm_1(\mathbf{r},z) \) [Fig. 2(b)] for the indicate values of the parameters. We can see that pressure is always positive and behaves as the energy density of the halo. Thus, we can see that the behavior of these quantities are in agreement with the results published in [5]. Moreover, we also computed these functions for other values of the parameters within the allowed range and in all cases we have found a similar behavior.

A. The constants of motion

To proceed further, we evaluate the constants of motion. Therefore, from (13c) we have

\[
\phi = \frac{1}{1 + \beta} \ln \left(\frac{1}{1 - U} \right). \tag{41}
\]

Then, for the solution (34a) we may write

\[
\phi_0 = \frac{1}{1 + \beta} \ln \left(\frac{\sqrt{R^2 + 2|\tilde{z}|} + 1}{\sqrt{R^2 + 2|\tilde{z}| + 1 + \tilde{b}_0}} \right), \tag{42}
\]

where \(\tilde{R}^2 \equiv \tilde{r}^2 + \tilde{z}^2 \). This follows that the metric potentials \(g_{tt} \) and \(g_{t\varphi} \) for \(R \rightarrow \infty \) in the disk (\(z = 0 \)) become

\[
g_{tt} \simeq -1 + \frac{2\tilde{b}_0}{(1 + \beta)R} - \frac{\tilde{b}_0^2(3 + \beta)}{(1 + \beta)^2 R^2} + O \left(\frac{1}{R^3} \right), \tag{43a}
\]

\[
g_{t\varphi} \simeq \frac{k_\omega \tilde{b}_0}{R} - \frac{2k_\omega \tilde{b}_0^2}{(1 + \beta)R^2} + O \left(\frac{1}{R^3} \right). \tag{43b}
\]

This implies, as is well known (See [15]), that the total mass-energy of space-time associated with the disk is

\[
M_0 = \frac{b_0}{(1 + \beta)}. \tag{44}
\]

On the other hand, in \((x, y, z) \) coordinates we find that

\[
g_{01} \simeq - \frac{k_\omega \tilde{b}_0}{R^3} + O \left(\frac{1}{R^4} \right), \tag{45a}
\]

\[
g_{02} \simeq \frac{k_\omega \tilde{b}_0}{R^3} + O \left(\frac{1}{R^4} \right), \tag{45b}
\]

\[
g_{03} \simeq O \left(\frac{1}{R^4} \right). \tag{45c}
\]

As an application, we use the same procedure as in [16] and see that the angular momentum \(L_{M_0} \) is in the \(z \)-direction and is given by

\[
L_{M_0} = \frac{1}{2} k_\omega \tilde{b}_0. \tag{46}
\]
According to (34b) the magnetic field is

$$B_0 = -\frac{\tilde{b}_0 \tilde{r}}{k(R^2 + 2|\tilde{z}| + 1)^{3/2}} \left(\mathbf{e}_r + \left(\frac{\tilde{z}}{\tilde{r}} + \frac{|\tilde{z}|}{\tilde{r}}\right)\mathbf{e}_z\right),$$

(47)

where \mathbf{e}_α are unit basis vectors in cylindrical coordinates. Accordingly, by expressing the components of the magnetic field in Cartesian coordinates and taking the limit as $R \to \infty$ of $B_0(x,y,z)$ and by using the formula (44.4) of Landau and Lifshitz [17] we may conclude that the magnetic momentum may be written as

$$L_{B0} = \frac{b_0}{k}.$$

(48)

We thus see that constants k and k_ω defines the gyromagnetic ratio $L_{M0}/L_{B0} = (kk_\omega)/2$.

V. MOTION OF A CHARGED TEST PARTICLE IN THE HALO

![Graph showing the velocity of a test particle in the halo](image)

FIG. 3. Surface plot of the velocity (a) v_2^0 and z-slices of the surface plot of the velocity (b) on the halo as a functions depending on r and z with parameters $a = b_0 = b_1 = k = k_\omega = 1$ and $\beta = 0.75$.

The motion of a test particle of charge e and mass m moving in the halo is described by the following Lagrangian density:

$$\mathcal{L} = \frac{1}{2} g_{\alpha\beta} v^\alpha v^\beta + \frac{e}{m} A_\alpha x^\alpha,$$

(49)

where $g_{\alpha\beta}$ and A_α are, respectively, the components of the metric and electromagnetic potential, given here by (13).

The equations of motion of the test particle can be derived from (49) by using the Euler-Lagrange equation. Then,

$$\frac{dv^\alpha}{ds} + \Gamma^\alpha_{\beta\gamma} v^\beta v^\gamma = \frac{e}{m} g^{\mu\lambda} F_{\mu\lambda} v^\lambda.$$

(50)

The velocity of the particle as measured by the local observers is given by $v^\alpha = v^t (t^\alpha + \Omega \rho^\alpha)$, where

$$v^t = \frac{(1 - U)^{1/(1+\beta)}}{(1 + k_\omega U \Omega) \sqrt{1 - v^2}}.$$

(51)
FIG. 4. Surface plot of the velocity (a) v^2 and z-slices of the surface plot of the velocity (b) on the halo as a functions depending on r and z with parameters $a = b_0 = b_1 = k = k_\omega = 1$ and $\beta = 0.75$.

Here, the 3-velocity v and the angular velocity Ω of the particle as measured by the local observers are given by

$$v = \frac{r \Omega (1 - U)}{1 + k_\omega U \Omega}$$ \hspace{1cm} (52)

and

$$\Omega = \frac{k_\omega (U^2_{r} + U^2_z) \left(1 + \beta + \frac{2U}{1-U}\right) \pm \sqrt{(U^2_{r} + U^2_z)D}}{2(1 + \beta) r (1 - U)^2 U_{r} - 2(U^2_{r} + U^2_z) A},$$ \hspace{1cm} (53)

where

$$D = 4(1 + \beta)r(1 - U)U_{r} + (U^2_{r} + U^2_z) \left(k_\omega^2 (1 + \beta)^2 - 4\beta r^2\right),$$

$$A = \beta r^2 (1 - U) + k_\omega^2 U \left(1 + \beta + \frac{U}{1-U}\right),$$

respectively. All the quantities depend on r and z. In Fig. 3(a) and Fig. 3(a) we show the behavior of the velocity v^2_0 and v^2_1 of a charged particle following an “magnetogeodesic” motion on the halo for the values of indicated parameters, respectively. Additionally, in Fig. 4(b) and Fig. 4(b), we plot the z-slices of the surface plot of the velocity and v^2_0 and v^2_1 for the indicated values of the parameters, respectively. These curves are obtained via vertical slices of the surface $v^2 = v^2(r, z)$ (a vertical slice is a curve formed by the intersection of the surface $v^2 = v^2(r, z)$ with the vertical planes). For each curve, we can see that the velocity is always less than 1, its maximum occurs around $r = 0$, and it vanishes sufficiently fast as r increases. It can also be observed that the maximum of the velocity decreases as the values of z increases. We also computed these functions for other values of the parameters within the allowed range and in all cases we found a similar behaviour. Naturally, the description of the motion of charged particles on disk here deduced is in agreement with the results of analysis of the magnetogeodesic motion of the particle in the magnetized disks discussed in [11].
VI. STABILITY OF ORBITS OF PARTICLES IN THE HALO

Since the Lagrangian density (49) does not depend explicitly on variables t and φ, the following two conserved quantities exist

\[p_t = \frac{\partial L}{\partial \dot{t}} = -\frac{E}{m}, \quad (54a) \]
\[p_\varphi = \frac{\partial L}{\partial \dot{\varphi}} = \frac{L}{m}, \quad (54b) \]

where L and E are, respectively, the angular momentum and energy of the particle as measured by an observer at rest at infinity. In the halo near the surface of the disk ($z \to 0^+$) the motion equations can be reduced to the form $\dot{r}^2 + V(r) = E^2/m^2$, which describes the motion inside an effective potential V given by

\[V(r) = \frac{1}{m^2 r^2 (1 - U)^{\frac{2\beta}{1+\beta}}} \left[E^2 r^2 \left((1 - U)^{\frac{2\beta}{1+\beta}} + \frac{m^2}{E^2} (1 - U)^{\frac{4\beta}{1+\beta}} - (1 - U)^2 \right) + \left(E k_\omega U + L \right)^2 \right], \quad (55) \]

where, as we know, U is an arbitrary harmonic solution. Circular orbits are defined by $r = r_c$ is constant, so that $\dot{d}r/\dot{x} = 0$ and, additionally, $\dot{d}V/\dot{x} |_{r=r_0} = 0$. From these two conditions it’s possible to evaluate the conserved quantities E and L. The orbits will be stable if $\dot{d}^2 V/\dot{x}^2 |_{r=r_0} < 0$ and unstable if $\dot{d}^2 V/\dot{x}^2 |_{r=r_0} > 0$.

For the sake of saving text space, we do not present here the explicit expression for the derivative $\dot{d}^2 V/\dot{x}^2 |_{r=r_0}$ and the corresponding values of the quantities E and L. However, in Fig. (5) we have plotted it for the two first members of the family of harmonic solutions U_0 and U_1 given by (32). The plots show that the second derivative is negative for arbitrary ranges of r. So, the orbits of the test particles must be stable in the halo. The plots also reveal that the orbits are unstable near the center of the disk. We have also computed these derivatives for other values of the angular momentum L, in all cases we have found a similar behavior. Moreover, a simple but long calculation shows that $\dot{d}^2 r/\dot{x}^2 < 0$. Thus the particles are attracted towards the center.

VII. CONCLUDING REMARKS

We used the formalism presented in [6] to model an exact relativistic rotating disk surrounded by a magnetized halo. The model was obtained by solving the Einstein-Maxwell distributional field equations. In doing so, we
introduced an auxiliary harmonic function that determines the functional dependence of the metric components and the electromagnetic potential. Accordingly, we separated the total energy-momentum tensor of the system disk-halo. Additionally, we expressed the energy momentum tensor of the halo as a sum of two distributional contributions, one due to the electromagnetic part and the other due to a material part. As we can see, due to the spacetime here considered is non-static (conformastationary), the distributional approach of the Einstein-Maxwell equations allows us to work with a strongly non-lineal partial equations system. We considered, for simplicity, the astrophysical consistent case in that there is no electric charge on the halo. We obtained that the charge density on the disk is zero.

In order to analyze the physical content of the energy-momentum tensor of the halo and disk, we projected each tensor, in the canonical form, in the comoving frame defined by the local observers tetrad. This analysis allowed us to give a complete dynamical description of the system in terms of two parameters (i.e β and k_{ω}) which determine the matter content of the sources. Indeed, the parameter β in the metric vanishes when it is equal to the isotropic pressure and the anisotropic tensor on the material constituting the disk. Similarly, when the parameter k_{ω} is equal to zero the heat flux on the disk and halo vanishes, a feature of the static systems. So, in this paper we presented, for first time, the complete analysis of the most general energy-momentum tensor of a disk-halo system obtained from an exact conformastationary axially symmetric solutions of the Einstein-Maxwell equations.

The expressions obtained here are the generalization of the obtained for the conformastatic disk-haloes without isotropic pressure, stress tensor or heat flow presented in [6]. Moreover, when we take simultaneously $k_{\omega} = 0$ and $\beta = 1$, we obtain its corresponding electrized disk-haloes version. Furthermore, our results are compatibles with the description of the relativistic models of perfect fluid disks in a magnetic field presented in [11] and the halo presented in [13]. Furthermore, we have shown that the description of the motion of charged particles on the disk and is in agreement with the results of analysis of particles motion in the magnetized disks discussed in [11]. In accordance with the results presented in [6] [13], we also shown that the orbits of test particles are stable in the halo for arbitrary ranges of r and unstable near the center of the disk. It is also worth noticing that, one can fix the values of the parameters β, k_{ω} and b_n, as well as the number of members of the particular solutions presented here in order to have velocity increasing linearly with radius of the disk.

We have considered specific solutions in which the gravitational and magnetic potential are completely determined by a “generalization” of the Kuzmin-disk potential. Accordingly, we have generated relativistic exact solutions for magnetized haloes surrounding rotating disks from a Newtonian gravitational potential of a static axisymmetric distribution of matter. The solution obtained is asymptotically Minkowskian in general and turns out to be free of singularities.

In short, we concluded that we have presented an exact general relativistic well-behaved rotating disk surrounded by a well-behaved magnetized halo “material”. In our description we do not impose restriction on the kind of “material” constituting the system disk-halo. Consequently, we can speculate that the halo could be made of magnetized dark matter. This work provides a solid footing to refine future studies of relativistic disk-haloes systems.

ACKNOWLEDGEMENT

The author also wishes to acknowledge useful discussions with C. S. Lopez-Monsalvo and H. Quevedo.

Appendix A: The local observers

We write the metric (7) in the form

$$ds^2 = -F(dt + \omega d\varphi)^2 + F^{-\beta}[dr^2 + dz^2 + r^2 d\varphi^2],$$

where we have rewritten $F = e^{2\beta}$. In addition, we define the tetrad of the local observers $h^{(\mu)}_\alpha$, in which the metric has locally the form of Minkowskian metric

$$ds^2 = \eta(\mu)(\nu) h^{(\mu)} \otimes h^{(\nu)},$$

is given by

$$h^{(t)}_\alpha = F^{1/2}\{1, 0, 0, \omega\},$$ \hspace{1cm} (A3a)
$$h^{(r)}_\alpha = F^{-\beta/2}\{0, 1, 0, 0\},$$ \hspace{1cm} (A3b)
$$h^{(z)}_\alpha = F^{-\beta/2}\{0, 0, 1, 0\},$$ \hspace{1cm} (A3c)
$$h^{(\varphi)}_\alpha = F^{-\beta/2}\{0, 0, 0, r\}.$$ \hspace{1cm} (A3d)

(A3e)
The dual tetrad reads
\[h_{(t)}^\alpha = F^{-1/2}\{1, 0, 0, 0\}, \tag{A4a} \]
\[h_{(r)}^\alpha = F^{3/2}\{0, 1, 0, 0\}, \tag{A4b} \]
\[h_{(z)}^\alpha = F^{3/2}\{0, 0, 1, 0\}, \tag{A4c} \]
\[h_{(\varphi)}^\alpha = \frac{F^{3/2}}{r}\{-\omega, 0, 0, 1\}. \tag{A4d} \]

The circular velocity of the system disk-halo can be modelled by a fluid space-time whose circular velocity \(V^\alpha \) can be written in terms of two Killing vectors \(t^\alpha \) and \(\varphi^\alpha \),
\[V^\alpha = V^t(t^\alpha + \Omega \varphi^\alpha), \tag{A5} \]
where
\[\Omega \equiv \frac{u^\varphi}{u^t} = \frac{d\varphi}{dt} \tag{A6} \]
is the angular velocity of the fluid as seen by an observer at rest at infinity. The velocity satisfy the normalization \(V^\alpha V^\alpha = -1 \). Accordingly, for the metric (A1) we have
\[(V^t)^2 = \frac{1}{-t^\alpha t_\alpha - 2\Omega \varphi^\alpha \varphi_\alpha - \Omega \varphi^\alpha \varphi_\alpha}, \tag{A7} \]
with
\[t^\alpha t_\alpha = g_{tt} = -F \tag{A8a} \]
\[t^\alpha \varphi_\alpha = g_{t\varphi} = -\omega F \tag{A8b} \]
\[\varphi^\alpha \varphi_\alpha = g_{\varphi\varphi} = \frac{r^2}{r^2}F^{-\beta}(1 - F^{1+\beta}\omega^2 r^2), \tag{A8c} \]
consequently we write the velocity as
\[V^t = \frac{1}{F^{1/2}(1 + \omega\Omega)\sqrt{1 - V^2_{LOC}}}, \tag{A9} \]
where
\[V_{LOC} = \frac{r\Omega}{F^{(1+\beta)/2}(1 + \omega\Omega)}, \tag{A10} \]
is the velocity as measured by the local observers.

[1] R. Beck, in Magnetic Fields in Diffuse Media (Springer, 2015) pp. 507–528.
[2] F. De Paolis, V. Gurzadyan, A. Nucita, G. Ingrosso, A. Kashin, H. Khachatryan, S. Mirzoyan, E. Poghosian, P. Jetzer, A. Qadir, et al., arXiv preprint arXiv:1404.4162 (2014).
[3] E. Mikhailov, A. Kasparova, D. Moss, R. Beck, D. Sokoloff, and A. Zasov, Astronomy & Astrophysics 568, A66 (2014).
[4] A. C. Gutiérrez-Pineres, G. García-Reyes, and G. A. González, International Journal of Modern Physics D 23 (2014).
[5] K. Chakraborty, F. Rahaman, S. Ray, A. Nandi, and N. Islam, Gen.Rel.Grav. 46, 1807 (2014).
[6] A. C. Gutiérrez-Pineres, G. A. González, and H. Quevedo, Phys. Rev. D 87, 044010 (2013).
[7] A. C. Gutiérrez-Pineres, C. S. Lopez-Monsalvo, and H. Quevedo, arXiv preprint arXiv:1306.6591 (2013).
[8] A. C. Gutiérrez-Pineres, General Relativity and Gravitation 47, 54 (2015) arXiv:1410.3148 [gr-qc].
[9] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact solutions of Einstein’s field equations (Cambridge University Press, 2003).
[10] J. Synge, Relativity: the general theory (North-Holland Pub. Co.; Interscience Publishers, Amsterdam; New York, 1960).
[11] G. García-Reyes and O. A. Espitia, General Relativity and Gravitation 46, 1 (2014).
[12] P. S. Letelier and A. Wang, Journal of Mathematical Physics 36, 3023 (1995).
[13] J. Binney and S. Tremaine, Princeton Series in Astrophysics (Princeton: Princeton Univ. Press) (1998).
[14] G. Arfken, *Mathematical Methods for Physicists*, Mathematical Methods for Physicists No. v. 1 (Academic Press, 1966).
[15] J. Katz, J. Bicák, and D. Lynden-Bell, Classical and Quantum Gravity 16, 4023 (1999).
[16] M. Carmeli, *Classical fields* (J. Wiley, 1982).
[17] L. D. Landau and E. M. Lifshits, *The Classical Theory of Fields*, Vol. 2 (Butterworth-Heinemann, 1975).
[18] K. Nandi, A. Filippov, F. Rahaman, S. Ray, A. Usmani, M. Kalam, and A. DeBenedictis, Monthly Notices of the Royal Astronomical Society 399, 2079 (2009).