Case Report

New-Onset Diabetes in Children during COVID-19: Clinical Case Report

M. Aabdi,1 A. Aarab,2 O. Es-Saad,1 K. Malki,1 H. Bkiyar,1 and B. Housni1

1Anesthesiology and Intensive Care Unit Department, MOHAMMED VI University Hospital Center, Oujda, Morocco
2Laboratory Unit Department, MOHAMMED VI University Hospital Center, Oujda, Morocco

Correspondence should be addressed to M. Aabdi; med.aabdi@gmail.com

Received 25 November 2020; Revised 30 December 2020; Accepted 27 January 2021; Published 12 February 2021

Copyright © 2021 M. Aabdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction. Data of COVID-19 in newborns and children are limited, and clinical manifestations are nonspecific and might delay the diagnosis, which might lead to severe complications. In this clinical case, we will describe new-onset diabetes with consciousness impairment as an atypical revealing way of COVID-19.

Case. A 3-year-old child presented to the Emergency Department with loss of consciousness (without fever), lethargy, and stupor. Clinical assessment on admission found an unconscious child with a pediatric Glasgow Coma Scale of 10/15 with no localizing signs or meningeal syndrome, polypneic of 35 breaths/min, pulse oximetry of 90%, with signs of overall dehydration: skin folds, sunken eyes, tachycardia of 160 beats/minute, and recoloring time superior at 3 seconds. Laboratory findings showed hyperleukocytosis of 16000/mm3, lymphopenia of 450/mm3, glycemia of 5 g/L with a correct ionogram: corrected natremia of 139 mmol/L, serum potassium of 4.5 mmol/L, glycosuria of 3+, ketonuria of 2+, and HbA1c of 10%, and COVID-19 RT-PCR came back positive.

Conclusion. COVID-19 might be revealed with atypical symptoms including new-onset diabetes and diabetic ketoacidosis; therefore, clinicians must suspect it in children with blood glucose and HbA1c at the time of admission. This will help to manage patients with hyperglycemia early.

1. Introduction

From March 2020, Anesthesiology and Intensive Care Unit Department, Mohammed VI University Hospital Center, Oujda, Morocco, has been facing an unprecedented outbreak of coronavirus disease and spread of 2019 novel coronavirus disease or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has now become a global pandemic [1, 2]. The disease caused by SARS-CoV-2 was termed “COVID-19,” and the World Health Organization declared the COVID-19 outbreak a public health emergency of international concern and officially was declared a pandemic on March 11, 2020 [2].

Data from the early months of 2020 suggest that there is a bidirectional relationship between COVID-19 and diabetes [3]. Diabetes is associated and is continuously suggested as a risk factor that contributes to the severity and mortality of COVID-19 [1]. Multiple forms of diabetes might be observed in patients with COVID-19 including new-onset diabetes and metabolic complications such as diabetic ketoacidosis and hyperosmolarity [4]. Nonetheless, data on new-onset type 1 diabetes during the COVID-19 pandemic, particularly in children, are limited [5]. In this article, we describe a clinical case of a 3-year-old child who presented to the Emergency Department (ED) in a ketoacidosis decompensation state, a recent diagnosis with COVID-19 infection, and who was retrospectively diagnosed with new-onset diabetes.

2. Clinical Case

A 3-year-old child presented to the ED with loss of consciousness (without fever), lethargy, and stupor. Clinical assessment on admission found an unconscious child with a pediatric Glasgow Coma Scale (GCS) of 10/15 with no localizing signs or meningeal syndrome, polypneic of 35 breaths/min, pulse oximetry of 90%, with signs of overall...
dehydration (skin folds), sunken eyes, tachycardia of 160 beats/minute, and recoloring time superior at 3 seconds.

Laboratory findings showed hyperleukocytosis of 16000 mm³, lymphopenia of 450 mm³, glycemia of 5 g/L with a correct ionogram: corrected natremia of 139 mmol/L, serum potassium of 4.5 mmol/L, glycosuria of 3+, ketonuria of 2+, and HbA1c of 10%.

Brain computed tomography (CT) came back normal; the search for a primary infection site led us to carry out a chest X-ray showing an alveolar-interstitial syndrome (Figure 1), supplemented by a thoracic CT revealing a bilateral ground-glass opacification consistent with viral pneumopathy, with moderate impairment with a level of suspicion scored CO-RADS 4 (Figure 2). Given the epidemiological context, a COVID-19 RT-PCR came back positive.

Diabetic ketoacidosis (DKA) is the most common hyperglycemic emergency and is associated with increased morbidity and mortality. In children and adolescents with type 1 diabetes, DKA accounts for the most common cause of death. DKA is characterized by hyperglycemia, ketosis, and metabolic acidosis [6].

Management of DKA consisted of rehydration with Ringer’s lactate 20 ml/kg initially and physiological serum as well as insulin therapy with a dose of 0.05 IU/kg/h along with monitoring of blood sugar levels and any complications. The prognosis was favorable with neurological, respiratory, and metabolic improvement; the child was transferred to the pediatric endocrinology department for further assessment.

Diabetes is associated with an increased risk of infections, including viral ones due to defects in the innate immunity affecting phagocytosis, neutrophil chemotaxis, and cell-mediated immunity [1, 13]. Besides, diabetes and insulin resistance are associated with endothelial dysfunction and increased platelet aggregation and activation leading to the hypercoagulable prothrombotic state [13]. The latter associated with the low-grade chronic inflammation might promote the cytokine storm, a severe complication of COVID-19 characterized by excessive production of inflammatory cytokines [14]. Furthermore, COVID-19 spike protein gains entry to its target cells by using the angiotensin-converting enzyme 2 (ACE2) as the receptor, which has protective effects primarily regarding inflammation [1]. COVID-19 infection reduces ACE2 expression inducing cellular damage, hyperinflammation, and respiratory failure and can lead to a direct effect on β-cell function, which not only explains that diabetes might be a risk factor for a severe form of COVID-19 disease but also explains that infection could induce new-onset diabetes [1, 9, 15–18].

New-onset diabetes must be detected in all nondiabetic patients especially those at high risk for metabolic disease who have contracted the viral infection. Besides, most patients present multiple stresses with COVID-19 including respiratory failure and sepsis requiring intravenous infusion of insulin and fluid balance to control the glycemia levels [19]. In addition, potassium balance must be carefully considered in the context of insulin treatment, as hypokalemia is a common feature of COVID-19 and may be exacerbated after the introduction of insulin [19].
4. Conclusion

This clinical case supports the strong link between COVID-19 infection and diabetes. Therefore, physicians should consider this in all nondiabetic children and screen them at their admission with blood glucose and HbA1C for appropriate and early management.

Data Availability

The data used to support the findings of this study are available from the corresponding author.

Ethical Approval

This study was exempt from ethical approval at our institution, as it was an observational finding in regular practice.

Consent

Written informed consent was obtained from the child holder for publication of this case report and accompanying images.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Dr. Aabdi Mohammed contributed to conceptualization, methodology, validation, formal analysis, and visualization and wrote the original draft. Dr. Aarab Adnane contributed to formal analysis and visualization and reviewed and edited the manuscript. Dr. Es-Saad Ounci provided resources and developed software and was responsible for data curation. Dr. Malki Khalil, Pr. Housni Brahim, and Pr. Houssam Bkiyar were responsible for visualization. Pr. Houssam Bkiyar reviewed and edited the manuscript. Pr. Housni Brahim was responsible for project administration; provided resources; contributed to conceptualization, methodology, and validation; and reviewed and edited the manuscript. Dr. Aarab Adnane, Dr. Es-Saad Ounci, Dr. Malki Khalil, Pr. Housni Brahim, and Pr. Houssam Bkiyar approved the final version of the manuscript.

Acknowledgments

The authors acknowledge the frontline medical staff working day and night in Morocco to rescue critical cases and protect the public health. The authors know that these great efforts are now and will be in the future crucial in overcoming COVID-19.

References

[1] S. R. Bornstein, F. Rubino, K. Khunti et al., “Practical recommendations for the management of diabetes in patients with COVID-19,” The Lancet Diabetes & Endocrinology, vol. 8, no. 6, pp. 546–550, 2020.
[2] E. Papadokostaki, N. Tentolouris, and E. Liberopoulos, “COVID-19 and diabetes: what does the clinician need to know?” Primary Care Diabetes, vol. 14, no. 5, pp. 558–563, 2020.
[3] Y. Chen, X. Gong, L. Wang, and J. Guo, “Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis MedRxiv,” p. 280, 2020.
[4] M. Paul Zimmet, M. D. George Alberti, M. D. Stefan Bornstein et al., “New-onset diabetes in COVID-19,” The New England Journal of Medicine, vol. 383, no. 8, pp. 787–789, 2020.
[5] R. Unsworth, S. Wallace, N. S. Oliver et al., “New-onset type 1 diabetes in children during COVID-19: multicenter regional findings in the UK,” Diabetes Care, vol. 43, no. 11, pp. e170–e171, 2020.
[6] M. Fayfman, F. J. Pasquel, and G. E. Umpierrez, “Management of hyperglycemic crises,” Medical Clinics of North America, vol. 101, no. 3, pp. 587–606, 2017.
[7] Y. Dong, Y. Dong, X. Mo, Y. Hu, X. Qi, and F. Jiang, “Epidemiology of COVID-19 among children in China,” Pediatrics, vol. 145, no. 6, 2020.
[8] A. H. De Wilde, J. Eric, M. K. Snijder, and M. J. Van, “Host factors in coronavirus replication,” in Assessment & Evaluation in Higher Education, p. 435, Springer International Publishing, New York, NY, USA, 2012, Available from: http://books.google.com/books?id=_DDwCqx6wpcC&printsec=frontcover&dq=unwritten+rules+of+phd+research&hl=&cd=1&source=gbs_api%255Cnpapers2://publication/uuid/48967E01-55F9-4397-B941-310D9C5405FA%255Cnhttp://medcontent.metapress.com/index/A65RM03P4874243N.p.
[9] J. She, L. Liu, and W. Liu, “COVID-19 epidemic: disease characteristics in children,” *Journal of Medical Virology*, vol. 92, no. 7, pp. 747–754, 2020.

[10] C. Jiehao, X. Jin, L. Daojiong et al., “A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features,” *Clinical Infectious Diseases*, vol. 71, no. 6, pp. 1547–1551, 2020.

[11] T. Sathish, Y. Cao, and N. Kapoor, “Newly diagnosed diabetes in COVID-19 patients,” *Primary Care Diabetes*, vol. 15, no. 1, p. 194, 2020.

[12] Y. Jie, S. Jia, H. Ng, and E. Yeoh, “Diabetic ketoacidosis precipitated by COVID-19 in a patient with newly diagnosed diabetes mellitus,” *Diabetes Research and Clinical Practice*, vol. 164, Article ID 108166, 2020.

[13] W. Abu-ashour, L. Twells, J. Valcour et al., “The association between diabetes mellitus and incident infections: a systematic review and meta-analysis of observational studies,” *BMJ Open Diabetes Research and Care*, vol. 5, no. 1, 2017.

[14] W. Guo, M. Li, Y. Dong et al., “Diabetes is a risk factor for the progression and prognosis of COVID-19,” *Diabetes Metabolism Research and Reviews*, vol. 36, no. 6, Article ID e3319, 2020.

[15] S. M. Bindom and E. Lazartigues, “The sweeter side of ACE2: physiological evidence for a role in diabetes,” *Molecular and Cellular Endocrinology*, vol. 302, no. 2, pp. 193–202, 2020.

[16] M. Apicella, M. C. Campopiano, M. Mantuano, L. Mazoni, A. Coppelli, and S. Del Prato, “COVID-19 in people with diabetes: understanding the reasons for worse outcomes,” *The Lancet Diabetes & Endocrinology*, vol. 8, no. 9, pp. 782–792, 2020.

[17] J.-K. Guo, S.-S. Lin, X.-J. Ji, and L.-M. Guo, “Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes,” *Acta Diabetologica*, vol. 47, no. 3, pp. 193–199, 2010.

[18] L. Fang, G. Karakiulakis, and M. Roth, “Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?” *The Lancet Respiratory Medicine*, vol. 8, no. 4, p. e21, 2020.

[19] R. P. Dellinger, M. M. Levy, A. Rhodes et al., “Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock,” *Critical Care Medicine*, vol. 41, no. 2, pp. 580–637, 2013.