What do we know about demand, use and outcomes in primary care out-of-hours services? A systematic scoping review of international literature

Hamish Foster, Keith R Moffat, Nicola Burns, Maria Gannon, Sara Macdonald, Catherine A O’Donnell

ABSTRACT

Objective To synthesise international evidence for demand, use and outcomes of primary care out-of-hours health services (OOHS).

Design Systematic scoping review.

Data sources CINAHL; Medline; PsyARTICLES; PsycINFO; SocINDEX; and Embase from 1995 to 2019.

Study selection English language studies in UK or similar international settings, focused on services in or directly impacting primary care.

Results 105 studies included: 54% from mainland Europe/Republic of Ireland; 37% from UK. Most focused on general practitioner-led out-of-hours cooperatives. Evidence for increasing patient demand over time was weak due to data heterogeneity, infrequent reporting of population denominators and little adjustment for population sociodemographics. There was consistent evidence of higher OOHS use in the evening compared with overnight, at weekends and by certain groups (children aged <5, adults aged >65, women, those from socioeconomically deprived areas, with chronic diseases or mental health problems). Contact with OOHS was driven by problems perceived as urgent by patients. Respiratory, musculoskeletal, skin and abdominal symptoms were the most common reasons for contact in adults; fever and gastrointestinal symptoms were the most common in the under-5s. Frequent users of daytime services were also frequent OOHS users; difficulty accessing daytime services was also associated with OOHS use. There is some evidence to suggest that OOHS colocated in emergency departments (ED) can reduce demand in EDs.

Conclusions Policy changes have impacted on OOHS over the past two decades. While there are generalisable lessons, a lack of comparable data makes it difficult to judge how demand has changed over time. Agreement on collection of OOHS data would allow robust comparisons within and across countries and across new models of care. Future developments in OOHS should also pay more attention to the relationship with daytime primary care and other services.

PROSPERO registration number CRD42015029741.

INTRODUCTION

Out-of-hours (OOH) primary care is a key element of many healthcare systems. It is defined as care delivered outside ‘normal working hours’, when daytime family or general practice is closed; typically between 17:00 or 18:00 and 08:00 on weekdays, all weekend and public holidays. However, the provision of OOH care continues to face challenges, in particular rising demand and difficulties in recruiting general practitioners (GP)/family doctors to work in out-of-hours health services (OOHS).

These difficulties have led to numerous attempts at both reorganising OOH healthcare and implementing new models of care. Policy change in many European countries supported a switch from personal or small rota-based systems of family doctors/GPs providing care for their own patients on a practice list or using a commercial depurising services, to regional cooperatives of GPs providing OOHS for all patients within a geographical region. In the UK, a shift in funding arrangements for OOHS in 1995 encouraged GPs to work collaboratively in OOH cooperatives. In 2004, contractual changes to the General Medical Services contract then gave GPs the option...
of transferring responsibility for OOHS to local health authorities. This change, however, presented major challenges for health authorities, with an increasing lack of GPs to run services. As a result, there has been ongoing development of new models of OOHS such as out-of-hours primary care centres (OOHC), walk-in centres (WIC), minor injury units and national or centralised telephone triage and advice (TTA) services. Based on the primary care setting, these models of care are staffed by a range of professionals, including nurse practitioners, call handlers and emergency care practitioners as well as GPs. Similar reorganisations have been documented in other high-income countries. In the Netherlands, for example, around half of the primary care cooperatives have now integrated with hospital emergency departments (ED) to offer a single access point to emergency and OOHS primary care, with the suggestion that attendances at EDs decreased by about 13%. However, to date, little is known about the impact of these different models on demand for, and use of, OOHS across different healthcare systems. Nor is it clear how demand might have changed over this period of service reorganisation. Such information may help policymakers design and provide services that meet population need and demand. As part of a wider scoping review of OOHS commissioned by the Scottish Government to inform their strategy for OOHS nationally, we report here on the international evidence of demand, use and outcomes of care associated with OOHS.

METHODS

The work reported here was part of a wider systematic scoping review designed to identify the international literature relating to the provision of OOHS primary medical care. Scoping reviews are particularly suited to research designed to inform policy, where the research aims are broad in scope and the studies included encompass a range of research approaches and designs. However, scoping reviews are undertaken with the same degree of rigour as more traditional systematic reviews, paying attention to Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. The study review protocol is available at www.crd.york.ac.uk/PROSPERO.

Search strategy

Six databases were searched using Ovid and EBSCO-Host: CINAHL; Medline; PsycARTICLES; PsycINFO; SocINDEX; and Embase using terms related to primary care OOHS services. The full search strategy is included in online supplementary appendix 1. Manual searches of key journals were also conducted and identified two additional papers. The initial search time frame was from 1995, when key changes took place in the organisation of UK OOHS services, to December 2017. An update was conducted in March 2019.

Study selection and quality assessment

All searches were saved into Endnote and duplicates removed. Articles were then screened in the review management software DistillerSR, using predefined inclusion and exclusion criteria (box 1). All study designs were included. Two authors (drawn from CAOD, HF, KM, NB, MG and SmcD) independently assessed the abstracts and full papers for eligibility; disagreements were resolved by discussion, with reference to a third team member if required.

Study characteristics were extracted for all included papers by HF, KM, NB, MG and CAOD (two reviewers per paper). Papers were quality assessed using recognised checklists based on the Critical Appraisal Skills Programme (CASP) checklists (https://casp-uk.net/casp-tools-checklists/) for observational studies, randomised controlled trials and reviews/systematic reviews. Each paper was appraised by two members of the team, led by CAOD and HF, supported by KM, NB, MG and SmcD. Papers were judged good if no element of the design was judged to be poor; fair if they were assigned one poor score; and poor if they were assigned two or more poor scores. CAOD reviewed the papers identified in the update search.

Data extraction and analysis

Thematic analysis focused on the aims of the study; the population group; key findings and how this fitted to the key areas of interest to the Scottish Out-of-Hours Review Group. Discussion with the Review Group identified four major areas of interest, namely: patient demand; new models of care; use of information technology; and quality and safety of care. In this paper, we focus on those papers addressing patient demand, as well as outcomes associated with that demand. The summary table is presented in online supplementary appendix 2. Some papers gave an estimated or adjusted rate of contact per annum. If these data were not provided crude contact rates were calculated, if possible. This relied on the paper giving information on (1) the size of population covered; (2)
the number of patient contacts; and (3) a time frame for data collection. These were calculated by HF, in discussion with CAOD.

Patient and public involvement

Our research question was generated as part of the wider Scottish Government’s National Review of Primary Care Out-of-Hours Services. For that wider review, as part of a National Engagement Programme, there were extensive engagement and consultation exercises. The exercises included health board visits and public discussion groups with OOH services staff and patient representatives. Patients or the public were not directly involved in the design or conduct of this scoping review. The early results of the scoping review were made publicly available at https://www.gov.scot/publications/main-report-national-review-primary-care-out-hours-services/.

RESULTS

Study characteristics

The search identified 2548 papers, with 400 finally included (figure 1). A description of all the identified papers is available on request to CAOD. Here, we report on the 105 papers which reported on the theme of demand, use and outcomes (see online supplementary appendix 2 for a summary of these papers). Over half were studies conducted in mainland Europe or Ireland, with the Netherlands (n=18) and Norway (n=11) predominant; one-third were set in the UK, mainly England; six were based

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram. OOH, out of hours; OOHS, out-of-hours health services.
in the USA, Australia or New Zealand; and five were set in multiple countries (table 1). The majority of papers focused on the general population of users rather than on particular groups. Observational study designs predominated, in particular the use of routinely collected data from OOHS (n=41, 39.1%); prospective or retrospective record reviews (n=31, 29.5%) and questionnaire surveys (n=14, 13.3%). Most reported studies were cross-sectional in design. Study quality was generally fair or good. A majority of studies reported on GP-led OOHS cooperative models (n=86), but there were also studies examining use in EDs (n=21); telephone triage services (n=12); GP deputising services (n=9); and urgent care or WICs (n=7).

Six main subthemes were identified: patterns of use; time of use and demographics of users; urgency and presenting symptoms; proximity to OOHS and relationship with daytime services; OOHS outcomes; and the wider impact of new models of OOHS. These are discussed in turn below.

Patterns of use

Prior to services recording patient contacts themselves, either manually or electronically, studies used proxies for OOH work (eg, night visit claim fees) which failed to capture all OOHS contacts and made overall OOHS use levels difficult to ascertain. In general, there was little attempt to standardise data reporting across settings—for example, by reporting contact rates per head of population served. While many studies reported on the OOH period covered, there was often no clear description of the characteristics of the population beyond age and gender. To explore trends in OOHS use we characterised the 40 studies identified in this review that gave OOHS contact rates or reported data from which a contact rate could be calculated (table 2). This was not possible for the remaining 65 papers due to a lack of population denominators, individual patient-level data, duplicate data, in-hours and OOHS contacts combined, or data that were restricted to particular patient groups or face-to-face contacts.

Overall, crude OOHS contact rates by country and year of data collection show no clear trend. Variation within country settings was apparent. For example, analysis of routine data comparing 20 GP cooperatives in England and Scotland showed an overall OOHS contact rate of 159 calls per 1000 patients per year but a rate of 221 calls/1000/year in Scotland compared with 45 calls/1000/year in England. However, variation in OOHS model type, population covered and operational hours by the service made rate comparisons difficult. This heterogeneity in the data collected is described in table 2. Adjusting for the number of hours covered by OOHS made little difference to the crude contact rates presented in table 2 (data not shown). However, variation in use might be due to more than demographic factors of the population or opening hours of the service; one international comparison suggested cultural differences accounted for more OOHS use in Denmark than in the Netherlands.

More recently, routine electronic data for the entire countries have become available. Data from the national TTA service in Scotland, NHS 24, showed there were 1 285 038 calls in 2011, with 82% of calls occurring during OOH period. This equated to an OOHS contact rate of roughly 200/1000/year. Country-wide data from Norway explored

Table 1 Characteristics of the included papers addressing demand, use and outcomes in OOHS

Characteristics	Number (%)
Country/regional setting (n=105)	
Mainland Europe and Republic of Ireland	57 (54.3)
UK	37 (35.2)
USA, Australia, or New Zealand	6 (5.7)
International	5 (4.8)
Year of publication (n=105)	
1995–1999	14 (13.3)
2000–2004	14 (13.3)
2005–2009	16 (15.2)
2010–2014	29 (27.7)
2015–2019 (up to March 2019)	32 (30.5)
Study design (n=105)	
Routine data analysis	41 (39.1)
Retrospective case review	17 (16.2)
Prospective case review	14 (13.3)
Observational (case–control or cohort studies)	6 (5.7)
Questionnaire/survey	14 (13.3)
Mixed methods	5 (4.8)
Reviews/systematic reviews	5 (4.8)
Other	3 (2.8)
Patient focus (n=101)	
General	63 (63.4)
Adults (aged 16 and over)	2 (2.0)
Elderly only (65 years and over)	2 (2.0)
Children (under 16 years)	6 (5.9)
Cancer/palliative patients	6 (5.9)
Mental health/psychiatric patients	4 (4.0)
Other (includes frequent attenders; patients with	18 (17.8)
chronic disease; migrant patients (n=2))	
Main setting (n=151)	
GP out-of-hours cooperative	86 (57.0)
Accident and emergency/emergency department	21 (13.9)
Telephone triage service (eg, NHS Direct, NHS 24,	12 (8.0)
NHS 111)	
GP deputising service	9 (5.9)
Urgent care centre	4 (2.6)
Walk-in clinic	3 (2.0)
Other (eg, ambulance; casualty clinic; community	16 (10.6)
hospital; minor injury unit; OOHS palliative care	
service; daytime general practice)	

*More than 105 due to multiple settings in some papers. GP, general practitioner; NHS, National Health Service; OOH, out of hours; OOHS, out of-hours health services.
Study	Country	Model	Data origin (OOHS period definition, excluding holidays)	Number of hours covered by OOHS per week	Crude contacts/1000/year*
Majeed	England	Rota and deputising	Night visit rates from 129 practices collected over 12 months from 1993 to 1994; London (22:00–08:00, Monday to Sunday).	70	25 night visits/1000/year
Heaney	Scotland	Rota	8 GP practices; 2236 contacts over 10 weeks in 1995 (OOHS opening hours not stated).	Not stated	265
Brogan	England	Rota and deputising	Buckinghamshire; population 660 000; 21 649 contacts; March to April 1995 (19:00–08:00, Monday to Friday+all weekend).	113	197
Toivanen	Finland	Co-op	2 semirural health centres; population 46 438; 2926 ‘office visits’ over 2 months in 1993; no telephone contacts (16:00–08:00 Monday to Friday+all weekend).	128	378
Avery	England	Rota and deputising	6 inner-city GP practices; Nottingham; population 451 826; 3181 GP contacts; 6-month period in 1996 (19:00–08:00 Monday to Friday+weekend from Saturday 12:00).	109	136
O'Donnell	Scotland	Co-op	Whole city of approximately 950 000 population; Glasgow; 3193 contacts in 1 week in October 1996, rate given by authors (OOHS opening hours not stated).	Not stated	158
Salisbury	England+Scotland	Co-op	20 cooperatives; population 4 677 855; 899 657 calls over 12 months in 1997–1998 (19:00–07:00 Monday to Friday+weekend from Saturday 12:00).	104	159
O'Reilly	Northern Ireland	Co-op	1 cooperative (4 primary care centres); population 394 000; 110 357 OOH calls in 1 year, 1998 (OOHS opening hours not stated).	Not stated	280
Payne	England	TTA	One city area; population 900 000; 56 450 calls in 1 year (1999–2000) although not all calls recorded. Total calls ‘likely’ between 74 706 and 56 450. Estimated taken as 65 000 calls; 68% of calls OOH (18:00–08:00 Monday to Friday+all weekend).	118	49
Munro	England	Co-op	1 primary care centre; population 230 000; 31 048 OOH calls over 14 months in 1997–1998 (OOHS opening hours not stated).	Not stated	116
van Uden	Netherlands	Co-op	2 regions; Heerlen; population 278 000; 3 weeks in June 2001; Maastricht population 190 000; 3 weeks in October to September 2001; 3825 and 3054 contacts (OOHS opening hours not stated).	Not stated	258
Beale	England	TTA	3 postcode areas; population not given; 4 months in 2004; rate stated in paper (19:00–07:00 Monday to Friday+weekends from Saturday 12:00).	103	77
Bury	ROI	Co-op	8 non-urban and 3 urban co-ops; population 1 523 500; 336 466 contacts in 1 year, 2002 (OOHS opening hours not stated).	Not stated	221

Continued
Study	Country	Model	Data origin (OOHS period definition, excluding holidays)	Number of hours covered by OOHS per week	Crude contacts/1000/year*
Giesen et al²⁴	Netherlands	Co-op	1 cooperative; population 223 410; 4 weeks in February 2003; 4423 contacts (17:00–08:00 Monday to Friday+all weekend).	123	258
Moll van Charante et al⁶⁴	Netherlands	Co-op	1 cooperative; population 62 000; 11 375 contacts; November to March 1997–1998 and November to March 2002–2003; both rates used separately (17:00–08:00 Monday to Friday+all weekend).	123	1997–1998: 283; 2002–2003: 267
Giesen et al⁷⁹	Netherlands	Co-op	1 cooperative; population 165 000; 36 259 contacts; 12 months June 2001 to June 2002 (17:00–08:00 Monday to Friday+all weekend).	123	220
Margas et al²⁰	Poland	Co-op	1 OOHS (multiple OOHC); Krakow; population 420 000; 238 072 contacts; 24 months from 2003 to 2004 (18:00–08:00 Monday to Friday+all weekend).	118	238
Scott-Jones et al⁸⁰	New Zealand	Co-op	1 OOHS; population 9200; 204 contacts; 1 month in 2007 (17:00–08:30 Monday to Friday+all weekend).	125.5	320
Turnbull et al³²	England	Co-op	1 county; Devon; population 928 725; 34 229 calls; 2 months (June and December) in 2003 (OOHS opening hours not stated).	Not stated	221
den Boer-Wolters et al¹⁵	Netherlands	Co-op	1 region; population 270 000; 69 274 contacts in the year 2007 (17:00–08:00 Monday to Friday+all weekend).	123	256
De Korte-Verhoef et al⁹⁹	Netherlands	Co-op	8 cooperatives; Amsterdam; population 800 000; 137 828 calls; 12 months from November 2005 to November 2006 (OOHS opening hours not stated).	Not stated	172
Belche et al⁸¹	Belgium	Co-op	1 OOH; population 24 703; 34 399 contacts in 2009 (21:00–08:00 Monday to Friday+all weekend).	103	139
Flarup et al⁴¹	Denmark	Co-op	1 region; population 1.3 million; 21 457 contacts representing approximately 3.3% of all contacts; 12 months from 2010 to 2011 (16:00–08:00 Monday to Friday+all weekend).	128	500
Huibers et al¹⁶	Denmark; Netherlands	Co-op	1 Danish region; population 1 265 601; 101 429 contacts; 1 Dutch region; population 430 498; 21 410 contacts; 2-month period September to October 2011. Both rates used separately (Denmark: 16:00–08:00 Monday to Friday+all weekend; Netherlands: 17:00–08:00 Monday to Friday+all weekend).	128; 123	Denmark: 481; Netherlands: 298
Buja et al⁴⁴	Italy	Co-op	1 region; population 190 000; 23 980 contacts in 1 year, 2011 (20:00–08:00 Monday to Friday+weekends from 10:00 Saturday).	106	126
Study	Country	Model	Data origin (OOHS period definition, excluding holidays)	Number of hours covered by OOHS per week	Crude contacts/1000/ year*
---------------------	---------------	---------------	--	---	---------------------------
Foster H, et al.					
de Bont et al.	Netherlands	Co-op	1 region; population 270 000; 1 year, 2012; 78 514 contacts (not stated but likely 17:00–08:00 Monday to Friday+weekends).	123	291
Elliott et al.	Scotland	TTA	Country-wide; population 5.3 million (ONS midyear estimate for 2011); 1 061 347 OOH calls; 1 year, 2011 (18:00–08:00 Monday to Friday+weekends).	118	200
Jansen et al.	Netherlands	Co-op	21 cooperatives; population 7 269 160; 1 668 047 contacts; 1 year, 2012 (17:00–08:00 Monday to Friday+weekends).	123	229
van Gils-van Rooij et al.	Netherlands	Co-op; colocation	2 regional models; usual care versus colocation; usual care: population 538 115; 72.4% of 63 441 were GP contacts; colocation: population 533 000; 78.4% of 58 620 were GP contacts; 4 months; March to April and October and November 2011; both rates used separately (17:00–08:00 Monday to Friday+weekends).	123 Co-op: 256; Colocation: 259	
Fisher et al.	England	Co-op	1 region; population 600 000; 496 931 contacts; 51 months from 2010 to 2014; does not include community nursing contacts (18:30–08:00 Monday to Friday+weekends).	115.5	195
Scapinello et al.	Italy	Co-op	1 region; population 53 742; 5217 contacts; 6 months; October 2012 to March 2013 (20:00–08:00 Monday to Friday+weekends from 10:00 Saturday).	106	194
Thoresen et al.	Norway	Casualty clinic	Country-wide; population 5 109 000 (Statistics Norway 2014); Monday to Friday 16:00–07:00 cancer+non-cancer contacts and weekend non-cancer+cancer contacts (5091+977 565+4492+776635); 1 763 783 contacts; 1 year (16:00–07:00 Monday to Friday+weekends).	123	345
Raknes and Hunskaar	Norway	Casualty clinic	Seven OOH districts; population 260 196 (Statistics Norway 2014); 2014–2015 (OOHS opening hours not stated).	Not stated	2014: 331; 2015: 350
Smits et al.	Netherlands	Co-op	119 cooperatives across the country; approximately 16.8 million in 2015 (17:00–08:00 Monday to Friday+weekends).	123	2005: 200; 2015: 245
Brettell et al.	England	Co-op	1 region; population 600 000; 102 877 contacts; 12 months December 2014 to November 2015 (18:30–08:00 Monday to Friday+weekends).	115.5	172
Collins et al.	Ireland	Co-op	1 region; population 550 000; 280 000 episodes of care; 1 year (18:00–09:00 Monday to Friday+weekends).	123	509
Table 2 Continued

Study	Country	Model	Data origin (OOHS period definition, excluding holidays)	Number of hours covered by OOHS per week	Crude contacts/1000/year*
Leutgeb et al⁸⁷	Germany	OOHC centres	1 region; 3.81 million insured individuals; number of contacts not stated, rate given by authors; 1 year, 2014 (19:00–07:00 Monday, Tuesday, Thursday; 14:00–07:00 Wednesday, Friday, weekends).	135	246
Sandvik and Hunskaar¹⁸	Norway	Casualty clinic	Country-wide; population of 4.75 million in 2008, 5.25 million in 2017; 1 402 452 consultations in 2008, 1 399 001 consultations in 2017 (OOHS opening hours not stated).	Not stated	2008: 295; 2017: 267
Heutmekers et al⁸⁸	Netherlands	Co-op	1 region; population of 432 582; 41 166 patients aged 20–65; 1 year, 2014 (17:00–08:00 Monday to Friday+weekends).	123	95 (for patients aged 20–65)

Rota=traditional on-call rota organised on a small scale/by individual GP practices.
Deputising=deputising/commercial service employed by GP practices to provide OOHS.
Co-op=medium to large-scale regional cooperative organised centrally.
TTA=regional or national telephone triage and advice service.
Casualty clinic=cooperative model with regional telephone triage and OOHC available 24 hours/day.
Colocation=colocated OOHC and ED organised within a cooperative model.
*Mean rate given if data from multiple sites unless otherwise stated.
ED, emergency department; GP, general practitioner; ONS, Office of National Statistics; OOH, out of hours; OOHC, out-of-hours primary care centre; OOHS, out-of-hours health services; ROI, Republic of Ireland; TTA, telephone triage and advice.
OOHS use between 2008 and 2017 and found that the number of consultations remained fairly constant at around 1.4 million per year. However, the rise in the population meant that crude contact rates fell from 295/1000/year in 2008 to 267/1000/year in 2017 (table 2).

Time of use and demographics of users

Many papers reported OOHS use by time of the week. This identified a consistent weekly pattern of peak OOHS use across countries (table 3). Weekends were busier than weeknights. During the week, 18:00–23:00 was the busiest period, while Sunday mornings were often the busiest weekend period. Night-time contacts (00:00–08:00) were more common at the weekend than during the week.

Studies which examined the demographics of users found that the most frequent users of OOHS were children, especially those under 5 years old (table 3). Although not always apparent when absolute numbers of contacts were reported, older adults (65 and over) had higher rates of contact than younger adults.

Women tended to use OOHS more than men, but men were more likely than women to use the ED out of hours.

Overall, lower socioeconomic status was associated with higher use of OOHS, although one study reported that this pattern was reversed for patients aged over 65. Data from 21 cooperatives in the Netherlands showed neighbourhood characteristics such as household income and socioeconomic status explained some but not all of the variation in OOHS use. Deprivation also appeared to influence service choice with those from more deprived areas more likely to use ED than OOHS. These deprivation effects may be due to increased need, or to reduced access (or perceived reduced access) to daytime services in more deprived areas. Having a chronic disease was associated with increased use of OOHS, although the chronic disease was often not the reason for contact.

Few studies examined patient ethnicity or migrant status. Of those which did, there appeared to be an association with OOHS use, although the evidence was mixed and studies used various definitions of ethnicity and migrant status. Routine data from 21 Dutch cooperatives showed higher OOHS use in neighbourhoods with more non-Western immigrants while national data from Norway showed that migrant groups had lower emergency primary care contact rates overall although rates were higher for specific migrant groups. In England, TTA data found that, following contact with NHS Direct, white British or Bangladeshi children were most likely to be referred to urgent care services including OOHS while children of Indian and ‘other white’ ethnicity were least likely to be referred.

Summary of OOHS use patterns, user characteristics associated with increased use and common reason for encounter/presenting condition

Time of peak use	References
Weekday: 18:00–23:00 hours	15 19–21 27 45 52 64 76 84 89 90
Weekends>weekdays	15 20 21 32 52 65 76 90–93
Within weekends: Sunday morning>afternoon/evening	15 19 20
00:00–08:00 hours: weekend>weekday	15 21

User characteristics	References
Age: <5 years, children (5–16 years), and >65 years most frequent users	15–17 19–21 23 25 26 28 30–32 38 39 43 44 65 76 90 94–99
Gender: female>male	15 16 18 19 21 23 24 26 27 31 32 36 38 41 43 44 52 64 65 67 77 84 88 90 92 93 95 96 98–101
Socioeconomic status: lower>higher	15 22 28–33 38
Presence of chronic disease	28 35–38

Reason for encounter/presenting symptoms	References
Perceived urgency	34 40–43 74 90 99 102
Symptoms of <24 hours’ duration	17 92 93
Respiratory, skin, abdominal, musculoskeletal or unspecified symptoms	17–19 25 35 43 59 70 81 84 89 92 93 101 103–105
Infection related (viral, upper respiratory tract infection (URTI), diarrhea and vomiting)	19 24 26 59 64 67 76 77 98 105 106
More mental health problems compared with in-hours primary care	35
More severe psychiatric disease	36 38 45 46
Cancer and palliative care issues, including pain and infection	47–51

Geographical proximity and daytime practice	References
Closer to OOHS>farther away from OOHS	30 32 38 52–54
Rural use>urban use	55 56
Rural use<urban use	32
Higher users of daytime services more likely to use OOHS	37 58
Perceived difficulty accessing daytime services	34 59 60

OOHS, out-of-hours health services.
(69.9% of all calls); 62.9% of these calls concerned symptoms of <24 hours’ duration.17

Eighteen papers reported that respiratory, skin, abdominal, musculoskeletal and unspecified symptoms were common presentations (table 3). Symptoms associated with viral and upper respiratory tract infections, diarrhoea and vomiting also featured in 11 papers. Retrospective data from eight European countries showed consistency across countries in the common presenting symptoms: respiratory (20.4% of contacts), musculoskeletal (15.0%), skin (12.5%), abdominal/digestive (11.6%), general and unspecified symptoms (13.2%).85 This is supported by TTA data from Scotland where the most common OOH problems were abdominal symptoms (13.2%), rashes/skin conditions (6.4%), breathing difficulties (6.3%) and genitourinary symptoms (6.2%).17 Symptoms varied with age: fever and gastrointestinal symptoms were the most common in children under-5s; cardiovascular disease and gastrointestinal symptoms were the most common in older patients.44

Few studies focused on mental health; those that did described an increased prevalence of mental health problems in OOHS populations.35 38 The studies also highlighted the higher level of urgency associated with mental health-related OOHS contacts,30 34 and that mental health problems in OOHS were of a greater severity than those in daytime hours.46

Five studies focused on cancer and OOHS use.47–51 Cancer-related symptoms and palliative care accounted for 2% of OOHS contacts in two observational studies in the UK.47 48 Analysis of billing claims in Norway showed contacts by patients with a cancer diagnosis accounted for 1% (4832) of all OOHS contacts in 2014, although only 47.7% of those contacts were cancer related.51 Pain and infection control were the most common reasons for cancer-related contact in two observational studies.50 51

Proximity to OOHS and relationship with daytime services

The relationship of proximity to OOHS to use or interactions with daytime GP services were addressed less frequently. Six studies reported that proximity to an OOHS was associated with higher use.30 32 38 32–54 Three studies showed higher rates of OOHS use in more urban areas.32 33 53 Conversely, routine data in Ireland found rural cooperatives had higher OOHS use than urban cooperatives.55 56 In Finland, a retrospective review comparing three models of care found that OOHS use was higher where patients were able to attend their local primary care centre during out of hours compared with a model where OOHS access was more centralised.57 However, these studies did not adjust for potential confounders such as patient socioeconomic status or need.

Two studies reported that frequent users of daytime services were also frequent users of OOHS37 38; three reported that difficulties accessing daytime services were a reason for using OOHS.34 39 60 Drummond et al found that these difficulties were associated with patients from lower socioeconomic areas.34 Analysis of 100 general practices in the Netherlands found that practices characterised as high users of OOHS were: situated closer to cooperatives; had longer telephone waiting times; had GPs less available for palliative care; performed more tests; had a higher perceived workload; and had more assistants.81 However, this study was unable to assess patient health status and did not adjust for socioeconomic status.

One-third of patients contacting OOHS due to a chronic disease exacerbation had a daytime primary care contact in the preceding 30 days.62 A study of 210 observed OOHS consultations in Norway found that 18% of the clinicians’ time was taken up with dealing with ‘minor ailments’ suggesting that improved self-care for minor ailments might reduce OOHS use.63 Finally, a review of palliative care-related OOHS contacts showed that where information from the daytime GP was available, patients were less likely to be referred by OOHS doctors to hospital, highlighting how communication links with daytime services could influence OOHS care.49

OOHS outcomes

Much of the literature focused on the consultation type after contacting the OOHS, onward referral from the OOHS and outcomes after the contact. Most services offered the option of a home visit, a face-to-face consultation with a GP or other healthcare professional often at a primary care centre, or telephone advice (table 4). Other outcomes included being sent an ambulance or being redirected to an ED. Overall, face-to-face consultations or telephone advice were the most frequent outcomes. However, home visits were much more likely for older patients or patients with cancer or palliative care needs.16 20 22 25 49 50 51 54–64 Younger patients were more likely to be seen at an OOHS centre or receive telephone advice.20 49 50 51

The types of OOHS consultation were associated with geographical distance. Routine data from a cooperative in England found that those who lived further away were less likely to be seen face to face.52 In Ireland, urban cooperatives performed fewer home visits and fewer telephone consultations and more centre-based consultations than rural cooperatives.56

Several studies identified characteristics associated with face-to-face contacts, onward referral to ED and subsequent contacts or escalation in care. Analysis of 4 years’ worth of OOHS contacts in one area of England showed that 1% (4832) of all OOHS contacts had a second OOHS contact within 3 days which resulted in referral to urgent secondary care services (eg, hospital admission, ED or immediate ambulance).57 Increasing age, prior use of OOHS and presentation during periods of low contact rates (eg, overnight) were identified as patient factors associated with this ‘delayed escalation’. In Denmark, patients with chronic disease had a higher risk of subsequent OOHS or daytime GP contact, hospital admission and mortality during a 30-day follow-up period.52 Palliative care patients were also more likely to be referred to hospital by OOHS doctors; this was true across a range
Table 4 Outcomes of OOHS contact

Study	Service and setting	Home visit	Centre visit	Telephone advice	Other
Heaney and Gorman	GP rota, Scotland	63.0	8.0	29.0	–
Hulland et al	GP rota+deputising service, England (children under 5 years only)	–	–	34.0	–
O’Donnell et al	Cooperative, Scotland	22.7	53.7	14.1	34.0
Salisbury et al	Cooperatives, England and Scotland	23.6	53.7	14.1	–
O’Reilly et al	Cooperative, Northern Ireland	19.0	54.0	27.0	–
Payne and Jessopp	Telephone triage and advice service, England	19.0	54.0	27.0	–
Munro et al	Cooperative, England	14.2	42.5	43.3	–
Pooley et al	Cooperatives, England	36.1	29.5	34.3	–
van Uden et al	Two cooperatives, the Netherlands	Site A: 13.4	Site A: 47.6	Site A: 39.0	–
Bury et al	Eleven cooperatives, Ireland	12.3	34.0	–	–
Moll van Charante et al	Cooperative, the Netherlands	9.4	36.6	–	–
Hansen and Hunskaar	Cooperative casualty clinics, Norway	1.9	29.9	–	–
Margas et al	GP deputising service, Poland	9.8	27.2	–	–
Richards et al	Cooperative, England	Precontract: 41.7	Precontract: 36.3	Precontract: 42.4	–
Hansen et al	Cooperative casualty clinics, Norway	3.3	62.7	9.5	6.0
Eichler et al	Cooperative, Switzerland	61.3	24.8	13.9	–
Philips et al	Cooperative, Belgium	Pre co-op: 27.0	Pre co-op: 73.0	–	–
Table 4 Continued

Study	Service and setting	Outcomes as a % of OOHS contacts	Home visit	Centre visit	Telephone advice	Other
Johansen et al\(^5\)	Cooperative ‘casualty clinics’, Norway		0.9	62.6	9.1	
Adam et al\(^6\)	Cooperative, Scotland (cancer contacts only)		71.0	6.0	22.0	–
Flarup et al\(^4\)	Cooperatives, Denmark		9.2	19.8	42.1	Telephone referrals to other services: 28.9
Huibers et al\(^1\)	Cooperatives, Denmark and the Netherlands	Denmark: 13.1				
		Netherland: 10.2 Denmark: 28.4	Netherland: 49.6 Denmark: 58.6	–		
Buja et al\(^4\)	OOHS, Italy		52.1*	37.9	37.9	*Home visits and centre visits combined Referred to ED: 9.2 Referred to other specialist: 0.8
Cook et al\(^0\)	Telephone triage and advice line, England (in-hours and out-of-hours period)		–	–	Urgent redirect to ambulance service: 3.5 Urgent redirect to A&E: 8.6 Urgent redirect to GP service: 7.3 Non-urgent redirect to GP service: 9.9 See GP on same day: 12.1 Self-care advice: 27.9 Health or dental: 14.5 Other: 16.2	
de Bont et al\(^6\)	Cooperative, the Netherlands (contacts for fever in children only)		–	70.0	30.0	–
Elliott et al\(^1\)	Telephone triage and advice service, Scotland (out-of-hours period only)		12.2	34.1	10.2	Ambulance called: 6.9 Advised/sent to ED: 5.8 Advised to contact daytime GP: 8.4 Advised to contact pharmacist: 2.3 Other: 20.2
van Gils-van Rooij et al\(^2\)	Urgent care collaboratives (UCC), the Netherlands		5.1	43.8	29.5	Treatment at ED: 21.6
Gnani et al\(^1\)	Urgent care centres, England (preschool children)		–	–	Discharged home after attendance: 40.0 Discharged home with GP follow-up: 39.0 Referred to specialist: 11.0 Referred to ED: 8.0 Other: 2.0	
Table 4 Continued

Study	Service and setting	Outcomes as a % of OOHS contacts	Home visit	Centre visit	Telephone advice	Other
Huibers et al[62]	OOHS, Denmark			40.8*		*Unclear if this includes both home visits and centre attendances
Thoresen et al[51]	Cooperative casualty clinics, Norway (focus on patients with cancer)	Patients with cancer: 3.1 Non-cancer patients: 14.2		Patients with cancer: 42.4 Non-cancer patients: 67.0	Patients with cancer: 26.7 Non-cancer patients: 24.3	Simple contacts (no definition given) Patients with cancer: 2.6 Non-cancer patients: 2.2 Nursing service Patients with cancer: 2.6 Non-cancer patients: 2.2
Hayward et al[67]	OOHS, England					No follow-up: 46.6 Own GP follow-up: 31.5 Acute referral to secondary care: 8.3 Referral to other service: 2.5 OOHS follow-up: 1.6 Failed encounter/not coded: 9.5
Smits et al[6]	Cooperatives, the Netherlands	10.0	50.0	40.0		
Brettell et al[65]	OOHS, England (focus on patients who died within 30 days of contact)	Died within 30 days: 55.8 Alive within 30 days: 9.7		Died within 30 days: 4.2 Alive within 30 days: 55.8	Died within 30 days: 39.9 Alive within 30 days: 34.3	
Lous et al[106]	OOHS, Denmark	12.9	27.6	59.5		

A&E, accident and emergency; ED, emergency department; GP, general practitioner; OOHS, out-of-hours health services.

of palliative conditions including cancer, cardiovascular disease, digestive and endocrine problems. 49 58 62 63

Wider impact of new models of OOHS care

OOHS service reforms leading to the formation of GP cooperatives and primary care centres led to marked changes in consultation types within geographical areas, in particular the development of patient visits to centres, TTA and a decrease in home visits.3 5 14 There was little evidence that reforms to OOHS led to higher use of EDs. Routine data of OOHS and ED use from one region in the Netherlands over 4 weeks before and after the introduction of three OOHS cooperatives showed a 9% decrease in ED contacts and a 10% increase in OOHS contacts.66 Similarly, routine data from a single cooperative and ED in Maastricht, the Netherlands, showed that after introduction of a cooperative ED use dropped by 53% and OOHS use increased by 25%.69

More recently, evaluation of Dutch Urgent Care Collaborations, in which OOHS are colocated with EDs, reported mixed results. One study found no significant difference in ED contact rates but significantly fewer telephone consultations and home visits and more centre visits at the colocated OOHC.70 In another evaluation, GPs dealt with a significantly higher proportion of patients and fewer patients ended up being seen in the ED, compared with separate OOHS and EDs.27 Furthermore, within a colocated OOHS and ED, non-urgent ED contacts received more tests and more follow-up contacts than non-urgent OOHS contacts.71 This might suggest improved efficiency at colocated OOHS and EDs with fewer patients inappropriately diverted to ED. However, these studies did not include quality of care measures or patient perspectives, so it is difficult to corroborate this assertion.27

A prospective case review following introduction of a TTA service in three areas in England showed minimal impact on ED and ambulance services and a small reduction in OOHS use.72 Routine data analysis from Denmark showed that OOHS reform to regional cooperatives was not associated with significant change in ED contact rates.73 However, there was some evidence for inappropriate ED use after OOHS reform and that OOHS organisations could reduce ED workload. For example, after
implementation of new OOHS arrangements in England, a survey of 200 patients admitted via ED to an inner-city hospital showed that although most patients sought primary care advice prior to attending ED, a significant minority attended ED directly and there was incomplete awareness of the new OOHS arrangements. A systematic review of 74 studies identified barriers and facilitators of successful implementation of OOHS models that reduced ED workload. The review cited evidence for: TTA response delays increasing ambulance demand; extended paramedic roles reducing ED demand; and colocation and integration of GP and ED services reducing cost and ED workload.

DISCUSSION

We present here a major update to the literature on OOHS demand, use and outcomes. This literature was predominately observational and cross-sectional, drawing on data collected by the services themselves and originating in UK or western European countries. The literature documents the impact of the widespread policy change in OOHS organisation from smaller, rota-based models to larger, more centralised OOHS models, the development of telephone-based triage and advice lines and colocation of OOHS with EDs. Although there is a generally agreed definition of the OOH period internationally, a lack of comparable collected data (eg, by defining the denominator population or the time frame) means that it is difficult to reliably track demand over time, even within countries. Thus, there is a lack of clear evidence to support claims that demand for OOHS is increasing or that OOHS use has been affected by new models of care. A general absence of contextual data on the setting and/or population served also means that variations in demand across OOHS are difficult to explain. We suggest, therefore, that rather than continuing to collect data on demand, some effort is first put into defining what data should be collected, and by whom, to allow robust comparisons within and across countries.

We did, however, identify clear and consistent patterns of peak OOHS use as well as population groups who are more frequent OOHS users: young children, older adults, women, as well as those with chronic diseases or mental health problems. However, the reason for the actual contact with the OOHS was often unrelated to the chronic illness itself. There was also clear descriptive evidence for the common symptoms and reasons for which people contact OOHS including perceived urgency and infection-related symptoms and these reasons tend to differ from those attending ED out of hours. However, evidence using accurate diagnostic coding for conditions presenting during out of hours is non-existent. Linking high-quality data from OOHS, hospital discharge and daytime primary care could, therefore, generate more definitive diagnostic data that could aid service planning.

Descriptive data here show that palliative-related contacts may account for relatively few numbers of OOHS contacts (1%–2%). However, such contacts were associated with a high rate of home visits; thus although the overall numbers are small, the workload generated is large. The effects of deprivation, distance and rurality on OOHS use highlight the importance of incorporating local sociodemographic variables into OOHS design. Similarly, the effect of culture on OOHS use means that comparisons across countries need to take into account cultural differences as well as structural service differences in order for comparisons to be meaningful.

OOHS reforms and organisational changes led to new types of care being offered to patients, including face-to-face contacts in primary care centres and an increasing use of TTA. However, there was a lack of evidence for an effect of OOHS models on overall OOHS use. There was mixed evidence of the effect of OOHS models on ED use but policy reform towards a colocated model seemed to reduce ED demand. The potential impact that different models of care can have on OOHS use means that new models should be piloted and their impact on other health services evaluated prior to national roll-out. Moreover, the literature highlighted the inter-related nature of daytime services and OOHS. Future developments should, we suggest, pay more attention to this relationship and consider how changes in one setting may impact on care provision in the other setting. In particular, the literature offered observational evidence of opportunities for daytime primary care contacts to reduce OOHS through enhanced chronic disease management and anticipatory palliative care, however there is a lack of experimental evidence of enhancing daytime care to influence OOHS use. However, such developments must be mindful of those who are disadvantaged in terms of healthcare access, and so ensure that health inequalities are not exacerbated.

CONCLUSION

There is a large, international body of quantitative, observational and cross-sectional literature documenting the demand, use and outcomes of OOHS. Changes in patient use of OOHS have been driven by new models of care developed as a result of changes to OOH primary care policy. A lack of internationally agreed standards in data collection and service definitions means that comparison of service demand across and within countries is difficult and makes it difficult to ascertain how that demand is changing; however, there are consistencies with respect to the demographics and presenting symptoms of those who use OOHS. Moving forward, there is an urgent need for robust evaluations of the new models of care being developed, particularly in relation to the OOHS-ED interface and more consideration of how demand in daytime services impacts on OOHS and vice versa.

Twitter Catherine A O’Donnell @odo_kate

Contributors CAO’D, HF and SM conceived the idea and designed the study. CAO’D, NB, MG and SMcD designed and conducted the search strategies, with
input from the University of Glasgow and Health Improvement Scotland subject-specific librarians. All authors (HF, KRM, NB, MG, SM and CAO'D) contributed to the design of data extraction proformas, screening of titles, abstracts and papers, and data extraction. HF, KRM and CAO'D analysed the data. All authors contributed to data interpretation. HF wrote the first draft, CAO'D led the redrafting. All authors contributed to the final version and agreed to its submission. CAO'D is the guarantor of this study.

Funding This study was funded by the Scottish Government through the Primary Care Division and Health Improvement Scotland.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Copies of the search strategy, identified studies and data extraction proformas are available on request to HF or CAO'D.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Catherine A O'Donnell http://orcid.org/0000-0002-5368-3779

REFERENCES

1. BMA General Practitioners Committee. The new GMS contract explained. Focus on...Out of hours, 2003. Available: http://wwwbmaorguk/asnsf/Content/focusooh

2. Berchet C, Nader C. The organisation of out-of-hours primary care in OECD countries. OECD Publishing, 2016.

3. Christensen MB, Giesen F. Out of hours service in Denmark: evaluation five years after reform. BMJ 1998;316:1502–5.

4. Lattimer V, Peckham S, George S. Chronic-disease patients and social deprivation on patients’ unscheduled out-of-hours healthcare seeking behavior: a cross-sectional study. BMC Fam Pract 2015;16:73–4.

5. O’Reilly D, Stevenson M, McCoy C, et al. General practice out-of-hours service, variations in use and equality in access to a doctor: a cross-sectional study. Br J Gen Pract 2001;51:625–9.

6. Beale N, Taylor G, Gwynne M, et al. Council Tax valuation bands and contacts with a GP out-of-hours service. Br J Gen Pract 2006;56:283–5.

7. Turnbull J, Martin D, Lattimer V, et al. Does distance matter? geographical variation in GP out-of-hours service use: an observational study. Br J Gen Pract 2008;58:471–7.

8. Jansen T, Zwaanswijk M, Hek K, et al. To what extent does sociodemographic composition of the neighbourhood explain regional differences in demand of primary out-of-hours care: a multilevel study. BMC Fam Pract 2015;16:54.

9. Drummond N, McConnachie A, O’Donnell CA, et al. Social variation in reasons for contacting general practice out-of-hours: implications for daytime service provision? Br J Gen Pract 2000;50:460–4.

10. den Boer-Wolters D, Knol MJ, Smulders K, et al. Frequent attendance of primary care out-of-hours services in the Netherlands: characteristics of patients and presented morbidity. Fam Pract 2010;27:129–34.

11. Flarup L, Moth G, Christensen MB, et al. Chronic-disease patients and their use of out-of-hours primary care health: a cross-sectional study. BMC Fam Pract 2014;15:114.

12. Flarup L, Moth G, Christensen MB, et al. Daytime use of general practice and use of the out-of-hours primary care service for patients with chronic disease: a cohort study. BMC Fam Pract 2014;15:156.

13. Buja A, Toffanin R, Rigon S, et al. What determines frequent attendance at out-of-hours primary care services? Eur J Public Health 2015;25:563–8.

14. Sandvik H, Hunskaar S, Diaz E. Immigrants’ use of emergency primary care health care in Norway: a registry-based observational study. BMC Health Serv Res 2012;12:308.

15. Cook EJ, Randhawa G, Guppy A, et al. A study of urgent and emergency referrals from NHS direct within England. BMJ Open 2015;5:e007533.
41 Flarup L, Moth G, Christensen MB, et al. A feasible method to study the Danish out-of-hours primary care service. Dan Med J 2014;61:A4847.
42 Zakariassen E, Hansen EH, Hunskær S. Incidence of emergency contacts (requests for help) to Norwegian emergency primary healthcare services in 2007—a prospective observational study. Scand J Trauma Resusc Emerg Med 2009;17:30.
43 Huibers LAMJ, Moth G, Bondevik GT, et al. Diagnostic scope in out-of-hours primary care services in eight European countries: an observational study. BMC Fam Pract 2011;12:30.
44 Buja A, Toffanin R, Rigon S, et al. Out-of-hours primary care services: demands and patient referral patterns in a Veneto region (Italy) local health authority. Health Policy 2015;119:437–46.
45 Johansen IH, Mørken T, Hunskær S. How Norwegian casualty clinics handle contacts related to mental illness: a prospective observational study. Int J Ment Health Syst 2012;6:3.
46 Johansen IH, Mørken T, Hunskær S. Contacts related to mental illness and substance abuse in primary health care: a cross-sectional study comparing patients’ use of daytime versus out-of-hours primary care in Norway. Scand J Prim Health Care 2010;28:160–5.
47 Burt J, Barclay S, Marshall N, et al. Continuity within primary palliative care: an audit of general practice out-of-hours co-operatives. J Public Health (Oxf) 2004;26:275–6.
48 Richards SH, Winder R, Seamark D, et al. Accessing out-of-hours care following implementation of the GMS contract: an observational study. Br J Gen Pract 2008;58:331–8.
49 De Korte-Veelhoef MC, Pasman HRW, Schweitzer BPM, et al. End-Of-Life Hospital referrals by out-of-hours general practitioners: a retrospective chart study. BMC Fam Pract 2012;13:98.
50 Adam R, Wassell P, Murchie P. Why do patients with cancer access out-of-hours primary care? A retrospective study. Br J Gen Pract 2014;64:e99–104.
51 Thoresen CK, Sandvik H, Hunskær S. Cancer patients’ use of out-of-hours primary care services: a cross-sectional study in Norway. Scand J Prim Health Care 2016;34:232–9.
52 Munro J, Maheswaran R, Pearson T. Response to requests for general practice out of hours: geographical analysis in North west England. J Epidemiol Community Health 2003;57:673–4.
53 Turnbull J, Paris S, Martin D, et al. Do telephones overcome geographical barriers to general practice out-of-hours services? mixed-methods study of parents with young children. J Health Serv Res Policy 2010;15:21–7.
54 Raknes G, Hansen EH, Hunskær S. Distance and utilisation of out-of-hours services in a Norwegian urban/rural district: an ecological study. BMC Health Serv Res 2013;13:222.
55 Murphy A, O’hanlon C, Keown DM, et al. Do rural GPs have more out-of-hours patient consultations? Eur J Gen Pract 2001;7:75–6.
56 Bury G, Dowling J, Janes D. General practice out-of-hours co-operatives—population contact rates. Br Med J 2000;320:73–5.
57 Toivanen A, Rautava P, Koetsenruijter J, et al.Rosary L, Punt J, Wieringa GM. Out-of-hours primary care services: demands and patient referral patterns in a Veneto region (Italy) local health authority. Health Policy 2015;119:437–46.
58 Johansen IH, Mørken T, Hunskær S. How Norwegian casualty clinics handle contacts related to mental illness: a prospective observational study. Int J Ment Health Syst 2012;6:3.
59 Johansen IH, Mørken T, Hunskær S. Contacts related to mental illness and substance abuse in primary health care: a cross-sectional study comparing patients’ use of daytime versus out-of-hours primary care in Norway. Scand J Prim Health Care 2010;28:160–5.
60 Burt J, Barclay S, Marshall N, et al. Continuity within primary palliative care: an audit of general practice out-of-hours co-operatives. J Public Health (Oxf) 2004;26:275–6.
61 Richards SH, Winder R, Seamark D, et al. Accessing out-of-hours care following implementation of the GMS contract: an observational study. Br J Gen Pract 2008;58:331–8.
62 De Korte-Veelhoef MC, Pasman HRW, Schweitzer BPM, et al. End-Of-Life Hospital referrals by out-of-hours general practitioners: a retrospective chart study. BMC Fam Pract 2012;13:98.
63 Adam R, Wassell P, Murchie P. Why do patients with cancer access out-of-hours primary care? A retrospective study. Br J Gen Pract 2014;64:e99–104.
64 Thoresen CK, Sandvik H, Hunskær S. Cancer patients’ use of out-of-hours primary care services: a cross-sectional study in Norway. Scand J Prim Health Care 2016;34:232–9.
65 Munro J, Maheswaran R, Pearson T. Response to requests for general practice out of hours: geographical analysis in North west England. J Epidemiol Community Health 2003;57:673–4.
66 Turnbull J, Paris S, Martin D, et al. Do telephones overcome geographical barriers to general practice out-of-hours services? mixed-methods study of parents with young children. J Health Serv Res Policy 2010;15:21–7.
67 Raknes G, Hansen EH, Hunskær S. Distance and utilisation of out-of-hours services in a Norwegian urban/rural district: an ecological study. BMC Health Serv Res 2013;13:222.
68 Murphy A, O’hanlon C, Keown DM, et al. Do rural GPs have more out-of-hours patient consultations? Eur J Gen Pract 2001;7:75–6.
69 Bury G, Dowling J, Janes D. General practice out-of-hours co-operatives—population contact rates. Br Med J 2000;320:73–5.
70 Toivanen A, Rautava P, Koetsenruijter J, et al. Rosary L, Punt J, Wieringa GM. Out-of-hours primary care services: demands and patient referral patterns in a Veneto region (Italy) local health authority. Health Policy 2015;119:437–46.
71 Huibers L, Moth G, Carlsen AH, et al. Sentinel monitoring of activity of out-of-hours services in Norway in 2007: an observational study. BMC Health Serv Res 2009;9:123.
72 Flarup L, Carlsen AH, Moth G, et al. The 30-day prognosis of chronic-disease patients after contact with the out-of-hours service in primary healthcare. Scand J Prim Health Care 2014;32:209–16.
73 Welle-Nilsen LK, Mørken T, Hunskær S, et al. Minor ailments in out-of-hours primary care: an observational study. Scand J Prim Health Care 2011;29:30–44.
74 Moll van Charante EP, van Steenwijk-Opdam PCE, Bindels PJE. Out-Of-Hours demand for GP care and emergency services: patients’ choices and referrals by general practitioners and ambulance services. BMC Fam Pract 2007;8:465.
75 Hansen EH, Zaat E, Hunskaar S. Sentinel monitoring of activity of out-of-hours services in Norway in 2007: an observational study. BMC Health Serv Res 2009;9:123.
study of efficiency and relevance. *British Journal of General Practice* 2016;66:e667–73.

93 Seeger I, Kreienmeyer L, Hoffmann F, *et al.* Cross-sectional study in an out-of-hours primary care centre in northwestern Germany - patient characteristics and the urgency of their treatment. *BMC Fam Pract* 2019;20:41.

94 Hulland J, Avery AJ, Groom L, *et al.* Use of primary health care and accident and emergency (emergency department) services for children under 5 years outside normal office hours. *Ambulatory Child Health* 1999;5:323–30.

95 Vedsted P, Olesen F. Frequent attenders in out-of-hours general practice care: attendance prognosis. *Fam Pract* 1999;16:283–8.

96 Pooley CG, Briggs J, Gatrell T, *et al.* Contacting your GP when the surgery is closed: issues of location and access. *Health Place* 2003;9:23–32.

97 Giesen P, Smits M, Huibers L, *et al.* Quality of after-hours primary care in the Netherlands: a narrative review. *Ann Intern Med* 2011;155:108–13.

98 Harris T, McDonald K. Is the case-mix of patients who self-present to ED similar to general practice and other acute-care facilities? *Emerg Med J* 2014;31:970–4.

99 Heutmakers M, Naaldenberg J, Verheggen SA, *et al.* Does risk and urgency of requested out-of-hours general practitioners care differ for people with intellectual disabilities in residential settings compared with the general population in the Netherlands? A cross-sectional routine data-based study. *BMJ Open* 2017;7:e019222.

100 Payne F. Utilization of out-of-hours services by patients with mental health problems. *J Public Health* 2000;22:302–6.

101 Philips H, Remmen R, De Paepe P, *et al.* Out of hours care: a profile analysis of patients attending the emergency department and the general practitioner on call. *BMC Fam Pract* 2010;11:88.

102 Keizer E, Bakker P, Giesen P, *et al.* Migrants’ motives and expectations for contacting out-of-hours primary care: a survey study. *BMC Fam Pract* 2017;18:92.

103 Eichler K, Imhof D, Chmiel C, *et al.* The provision of out-of-hours care and associated costs in an urban area of Switzerland: a cost description study. *BMC Fam Pract* 2010;11:99.

104 Huber CA, Rosemann T, Zoller M, *et al.* Out-Of-Hours demand in primary care: frequency, mode of contact and reasons for encounter in Switzerland. *J Eval Clin Pract* 2011;17:174–9.

105 Gnani S, Morton S, Ramzan F, *et al.* Healthcare use among preschool children attending GP-led urgent care centres: a descriptive, observational study. *BMJ Open* 2016;6:e010672.

106 Lous J, Moth G, Huibers L, *et al.* Preschool children in Danish out-of-hours primary care: a one-year descriptive study of face-to-face consultations. *BMC Fam Pract* 2019;20:36.

107 Hansen EH, Hunskaar S. Development, implementation, and pilot study of a sentinel network ("The Watchtowers") for monitoring emergency primary health care activity in Norway. *BMC Health Serv Res* 2008;8:62.