Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production

Junsong Sun, Robert C. Hopkins, Francis E. Jenney, Jr., Patrick M. McTernan, Michael W. W. Adams

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America

Abstract

Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins.

Introduction

From the human economic perspective, molecular hydrogen (H2) is an ideal form of transportable energy. It is superior to current forms such as gasoline as it is less toxic, safer to use, and has an approximately three-fold higher energy yield per kilogram [1]. A number of problems must be surmounted before a ‘hydrogen economy’ is a reality, however, including the economic production and transportation of H2 [2,3]. At present H2 is generated from fossil fuels by steam reforming processes and by electrolysis of water using electricity typically produced from fossil fuels [1–3]. Biological H2 production is an attractive, and renewable, alternative for human needs. The gas is generated by microorganisms from all three domains of life, and for some, H2 provides an excellent source of low potential reducing power (H2/H+, E° = −420 mV) for growth and biosynthesis [4,5]. Microorganisms have evolved elegant and efficient mechanisms for H2 metabolism. All are based on the enzyme hydrogenase, which catalyzes the reversible reduction of protons (Eqn. 1):

\[2H^+ + 2e^- \rightarrow H_2 \]

(1)

Many microorganisms obtain energy by metabolically coupling H2 oxidation to a variety of terminal electron acceptors such as fumarate, sulfate, carbon dioxide, and oxygen [4,6]. The production of H2 is typical of organisms occupying anaerobic environments and is used as a means of disposing of excess reductant from oxidative metabolism. Hydrogenases catalyze H2 production using a binuclear metal center active site consisting of either [NiFe] or [FeFe] [6,7]. The [FeFe]-hydrogenases usually have high catalytic rates but are extremely sensitive to irreversible inactivation by oxygen, much more so than the [NiFe]-enzymes [4]. In contrast to [FeFe]-hydrogenases, which are limited to certain bacteria and a few unicellular eukaryotes, [NiFe]-hydrogenases are widespread in both bacteria and archaea. Although these two classes of hydrogenase are not phylogenetically related, the geometry of
their catalytic sites is highly similar [7], and both contain the unusual biological ligands carbon monoxide (CO) and cyanide (CN) which serve to modulate their electronic structure and facilitate catalysis [8].

All [NiFe]-hydrogenases are comprised of at least two subunits, one of which (the large subunit, or LSU) contains the [NiFe] catalytic site, while the other (the small subunit, or SSU) contains three iron-sulfur (FeS) clusters. These clusters transfer electrons from an external electron donor to the [NiFe] active site in the LSU for reduction of protons. The assembly of the [NiFe] site and maturation of the enzyme requires the concerted reactions of multiple gene products. The facultative anaerobe *E. coli* contains three membrane-bound hydrogenases, and elegant studies by Bo¨ck and coworkers have shown that the assembly of one of them (HYD3) requires the participation of eight accessory proteins (encoded by hypA-hypF, hycI, and slyD, Fig. 1a) [9]. The final step of hydrogenase maturation requires a specific protease (HycI) that removes a peptide of 20 residues from the C-terminal of the LSU, allowing the protein to fold around the [NiFe] active site [12]. In contrast, it appears that only three maturation proteins are required for the production of a functional [FeFe]-hydrogenase [13].

In the present study we demonstrate for the first time the heterologous expression in a genetically-tractable organism (*E. coli*) of a functional [NiFe]-hydrogenase enzyme, that from a model hyperthermophilic microorganism, *Pyrococcus furiosus* (*Pf*), which grows optimally at 100°C [14]. Previous attempts to heterologously produce [NiFe]-hydrogenases have involved related host organisms and/or have met with limited success. For example, Desulfurobrio gigas hydrogenase produced in *D. fructosovorans* exhibited only low activity [15], and transfer of the entire H2 uptake (*hup*) gene cluster (~18 kb) from *Rhodobacter leguminosarum* led to functional expression in only some closely-related species [16]. A functional, NAD-dependent [NiFe] hydrogenase from a gram-positive organism, *Rhodococcus opacus*, was produced in the gram-negative *Ralstonia eutropha* [17], and the membrane bound hydrogenase of *R. eutropha* was produced in *Pseudomonas stutzeri* using a broad-host-range plasmid containing the *hyp* genes and a regulatory hydrogenase-histidine kinase system [18]. This H2-sensing, regulatory hydrogenase of *R. eutropha* has also been heterologously produced in *E. coli* but this does not require the proteolytic processing involved in maturation of the [NiFe]-hydrogenase enzymes [19]. While previous attempts to heterologously produce a recombinant [NiFe]-hydrogenase in *E. coli* have been unsuccessful [20,21], our system employs a novel set of compatible vectors modified with an anaerobically-induced *E. coli* hydrogenase promoter, P hya, and minimally requires a single processing gene from *Pf*. It therefore appears that the *E. coli* processing enzymes can assemble functional (and soluble) [NiFe]-hydrogenase enzyme from phylogenetically distant organisms.

![Figure 1. Synthesis of *P. furiosus* soluble hydrogenase I (SHI) and the plasmid constructs used for recombinant production. (a)](https://www.plosone.org/doi/10.1371/journal.pone.0010526.g001) Maturation pathway for the [NiFe] catalytic site of *P. furiosus* SHI is based on that proposed for *E. coli* hydrogenase 3 [10]. HypE and HypF generate thiocyanate in an ATP-dependent process from carbamoyl phosphate (CP). The source of the CO ligand is unknown. The HypCD complex binds the iron atom containing the CN and CO ligands and donates it to the catalytic subunit (PF0894). The Ni atom is provided by the HypAB-SlyD complex in a GTP-dependent reaction. The Ni and Fe atoms in the [NiFe] site are coordinated to PF0894 by the S atoms of four of its Cys residues (indicated by S). Activation of PF0894 requires cleavage of four C-terminal residues (-VVRL) catalyzed by a newly identified peptidase, FrxA (and to a much lesser extent by HycI). It is not known how the biosynthesis of PF0894 is coordinated with that of the other three subunits (PF0891, PF0892 and PF0893) to give catalytically-active SHI. The predicted cofactor content of mature heterotetrameric SHI [11] is shown together with their roles in the reversible production of hydrogen gas from NADPH. The abbreviations used are: CP, carbamoyl phosphate; CO, carbonyl ligand; CN, cyano ligand; FAD, flavin adenine dinucleotide. (b) The expression plasmids utilized for production of SHI in *E. coli* strain MW4W. The antibiotics refer to the selective marker on each plasmid: Amp, Ampicillin; Sm, Streptomycin; Kan, Kanamycin; Cam, Chloramphenicol. doi:10.1371/journal.pone.0010526.g001

Recombinant NiFe-Hydrogenase
even from a completely different domain of life, including those growing at extreme temperatures.

\(P_f \) grows by fermenting carbohydrates to organic acids, CO\(_2\) and H\(_2\) [14]. It contains three [NiFe]-hydrogenases; two are cytoplasmic enzymes consisting of four subunits, and the third is a membrane-bound hydrogenase (MBH) of fourteen subunits. The two cytoplasmic enzymes, termed soluble hydrogenase I (SHI) and hydrogenase II (SHII), utilize NADP(H) as the physiological electron carrier [22]. MBH accepts electrons from reduced ferredoxin (Fd\(_{red}\)) and is the enzyme responsible for evolving hydrogen during growth, while SHI and SHII are thought to be involved in the recycling of hydrogen produced by MBH [23]. Herein we demonstrate heterologous production of functional \(P_f \)SHI.

Results

\(P_f \) SHI is encoded by four genes (PF0891-0894) in a single operon, with the catalytic LSU encoded by PF0894 and SSU encoded by PF0893 [22]. One of the additional subunits is predicted to contain two FeS clusters (PF0891) while the other (PF0892) is predicted to contain another FeS cluster and flavin adenine dinucleotide (FAD), and to interact with NADP(H). SHI purified from \(P.\) furiosus biomass is extremely stable at high temperatures (\(t_{1/2} \) for loss of activity ~2 hours at 100°C) and in the presence of oxygen (\(t_{1/2} \) ~6 hours at 23°C in air) [11].

The four structural genes encoding \(P_f \) SHI (PF0891-PF0894) were coexpressed in \(E.\) coli under anaerobic conditions with eight processing genes identified in the \(P_f \) genome (\(hypCDA_BE_F, hydC \) and \(syhD\)), based on sequence similarity to the processing genes identified in \(E.\) coli. These include PF0617, which is the homolog of the \(E.\) coli peptidase (HyIC) involved in C-terminal processing of one of its three hydrogenases, termed HYD3. However, the C-terminal region of \(P_f \) SHI is more similar to the catalytic subunit of another \(E.\) coli hydrogenase, HYD2, rather than to HYD3, and HYD2 is processed by another peptidase (HyIC) [24]. A search of the \(P_f \) genome revealed a gene (PF0975), annotated as ferredoxin oxidoreductase A (\(fx_a\)), which shows 47% sequence similarity to \(E.\) coli HybD. This was included as the ninth \(P_f \) gene to be coexpressed in \(E.\) coli under anaerobic conditions.

A series of four compatible vectors based on the DUET vector system (Novagen) had been modified previously to contain GATEWAY™ recombinase sites (Invitrogen) [25], which allows coexpression of as many as eight separate genes or operons under the control of T7 promoters. This cloning approach also inserts 19 amino acids (GSITSLYKKAGSENYFQGG, ~2.0 kDa) at the N-terminus of the first gene of the operon in each plasmid. Since the standard T7 promoter does not function in \(E.\) coli under anaerobic conditions, four different promoters were investigated for anaerobic heterologous expression of the \(P_f \) genes in \(E.\) coli. Three were native \(E.\) coli hydrogenase promoters that are anaerobically-induced (\(hyp, hyb\) and \(kpc, [26-28]\)), while the fourth (\(hyp, [29]\)) induces expression of \(E.\) coli hydrogenase-processing genes. Expression of the lac\(^_\)Z gene by these four promoters (Fig. 2) and several of the \(P_f \) hyd genes, including \(hypCDA_BE_F \) and \(hydC \), were examined using RT-PCR (data not shown). The \(hyp \) promoter (\(P_{hyp}\)) was induced by anaerobiosis and gave the highest level of expression. The T7 promoters on all expression vectors were therefore replaced with \(P_{hyp}\) (Fig. 3). One vector (pDEST-C3A) was further modified to include the tRNA genes from plasmid pRIL (Stratagene), which is typically required for efficient expression of \(P_f \) genes in \(E.\) coli due to differing codon usage, creating the plasmid pC3A-RIL. The complete list of expression vectors used in this study is given in Table 1.

To facilitate detection of heterologously-produced \(P_f \) SHI, all four vectors (Fig. 1b) were co-transformed into an \(E.\) coli strain MW1001 lacking the catalytic subunits of its own hydrogenases (\(AbyAD, AbyBC, AhyDE \)) [32]. Strain MW1001 produces no H\(_2\) during anaerobic growth, and cell extracts have no detectable hydrogenase activity at either 37 or 80°C (using the standard assay of methyl viologen (MV)-linked H\(_2\) evolution vide infra). However, cell-free extracts of anaerobically-grown \(E.\) coli MW1001 containing the four vectors encoding \(P_f \) SHI and the \(P_f \) hydrogenase processing genes did show hydrogenase activity at 80°C (Fig. 4a), which must therefore arise from recombinant \(P_f \) hydrogenase I.

In order to determine the minimum number of \(P_f \) genes needed for assembly of an active form of SHI in \(E.\) coli, different \(P_f \) accessory genes and plasmids were omitted from the complete heterologous expression system (Fig. 4a and Fig. 5). The results show that maximal recombinant production of functional SHI, as measured by the specific activity in the cell-free extract at 80°C, requires, in addition to the structural genes (PF0891-PF0894), coexpression of only the plasmid containing \(fxaA \) (PF0975) (Fig. 4a). FxaA is, therefore, the protease required to process SHI by removing the four C-terminal –VVRL residues (Fig. 1a). Low activity was detected if HyIC was present, but there was no activity if both proteases were absent, showing that \(E.\) coli proteases cannot process SHI. The \(E.\) coli processing enzymes HypABCDD and HypEF appear to assemble a functional SHI whose catalytic subunit (PF0894) lacks C-terminal processing. This was confirmed both in vivo (Fig. 5) and using an in vitro assay (Fig. 4b) where extracts from \(E.\) coli cells expressing either only the four structural genes for SHI or only \(fxaA \) were mixed and SHI activity was measured after incubation at 80°C. As expected, much lower SHI activity was obtained if HyIC replaced \(fxaA \). Surprisingly, unprocessed SHI (where PF0894 lacks C-terminal cleavage) appears to be stable in \(E.\) coli, which will be of great utility to those interested in studying the mechanism of assembly of the [NiFe] site. The minimal expression system in \(E.\) coli therefore contains five \(P_f \) genes encoding only SHI and FxaA.

Recombinant \(P_f \) SHI (rSHI) was purified from \(E.\) coli strain MW4AW (Fig. 6a, Table 2) to a final specific activity of 100 U mg\(^{-1}\), which is comparable to that of the native enzyme purified from \(P.\) furiosus biomass (Fig. 6b). The hydrogenase was obtained as a homogeneous protein of MW ~150,000 Da (based on size-exclusion chromatography, data not shown), also similar to that of the native enzyme, and contained the four different protein subunits (Fig. 6a) [11]. Comparison of the properties of the recombinant and native enzymes (Fig. 6b) demonstrate that rSHI is similar in specific activity, affinity for NADPH (apparent K\(_m\)), stability upon oxygen exposure, and metal content. The only significant difference is the lower stability of rSHI at 90°C. This was not due to the additional N-terminal residues (~2 kDa) on one of the subunits (PF0891, due to the Gateway cloning strategy) since the properties of the wild-type form of rSHI, obtained by recloning PF0891-PF0894 to include only the wild-type amino acid sequence (pET-A-SHI, Fig. 7), and that of Gateway-tagged rSHI were virtually identical (data not shown).

Discussion

The ability of recombinant \(P_f \) SHI to accept electrons from the physiological electron carrier NADPH [22] is of some significance since this requires a properly processed, mature, and folded enzyme containing the FAD- and FeS-containing (PF0891 and PF0892) subunits, in addition to catalytic LSU (PF0894) and SSU (PF0895). In contrast, electrons from the low
potential artificial electron donor MV, which was used in all of the routine assays of hydrogenase activity, can theoretically be donated to any of the FeS clusters in the enzyme. The results (Fig. 6b) demonstrate that rSHI can accept electrons from NADPH as efficiently as the native enzyme, indicating that it is functionally folded and contains all cofactors.

Like other hydrogenases, PfSHI is much more active with an artificial redox dye (methyl viologen) than with its physiological electron carrier ([34], see Figure 6), nevertheless, the specific activity of H2 production from NADPH by PfSHI is more than 6-fold higher than that reported for an NADH-dependent hydrogenase [34]. While the recombinant form of SHI is as

Figure 2. Analysis of E. coli promoters with a lacZ gene fragment β-galactosidase reporter assay. Plasmids were transformed into DH10B. The specific activity of lacZ was measured by a modified Miller [30] assay calculated as 200(OD420-t1-OD420-t2) min⁻¹ mg⁻¹, where t1 and t2 are the start and end time points, respectively.

doi:10.1371/journal.pone.0010526.g002

Figure 3. Plasmid construction for rSHI production in E. coli. P_hya was cloned into a set of patented plasmids constructed by inserting Invitrogen Gateway cassettes into Novagen Duet plasmids [25]. (a) Sequences of E. coli anaerobic promoter P_hya, attB1 and TEV protease recognition site sequence and their encoded peptide sequence [31]. (b) Elements constructed in the final expression plasmids: P_hya promoter, N-terminus of the first protein in the operon derived from the Gateway recombination cloning site (attB1) including a TEV protease site [31] and P. furiosus genes. (c) Artificial Shine-Dalgarno sequences inserted between P. furiosus fused ORFs in plasmids pC11A2-CDABI, pC3AR2-SdFa and pRA2-EF.

doi:10.1371/journal.pone.0010526.g003
active as the native enzyme at 80°C, it is not as thermostable (Figure 6). Interestingly, the native enzyme gives rise after SDS-electrophoresis to a protein band of 80 kDa, in addition to the four subunits. This band retains hydrogenase activity and is thought to represent a highly stable SDS-resistant residual form of the holoenzyme ([11], and Lane 1 of Figure 6). The lack of this additional band in the recombinant preparations (Figure 6) suggests that assembly of the recombinant hydrogenase is not completely correct, even though its catalytic activity indicates that it is functionally assembled. It is possible that holoenzyme assembly to the native-like form of SHI represents a kinetic problem, as speculated with other recombinant hydrogenases [15], since all known Pf accessory genes are present in the recombinant host.

The availability of a system to produce rSHI provides a ready supply of the enzyme as well as the opportunity to generate mutant forms with desired characteristics. For example, it was recently demonstrated that a combination of NADPH-utilizing Pf SHI, obtained from native Pf biomass, with enzymes of the pentose phosphate pathway and starch phosphorylase, evolved H₂ in vitro from starch with surprisingly high efficiency and yield [35]. Similarly, attempts have been made to link hydrogenase to the low potential reductant generated by photosynthesis, thereby constructing a light-driven H₂-production system [36,37]. A major problem is the generation of oxygen by photolysis of water, which inhibits the oxygen-sensitive hydrogenase. A functional expression system for hydrogenase provides the tools needed to engineer a hydrogenase enzyme resistant to O₂ inactivation, as well for optimizing output of H₂. Directed evolution techniques can now be utilized to generate [NiFe]-hydrogenases with tailored catalytic activity, oxygen sensitivity, and potentially even changing coenzyme specificity. There are also broader implications for heterologous production of complex, heteromeric metalloproteins. If E. coli does not possess homologs of the required accessory genes for any candidate metalloprotein complex, coexpression of multiple genes involved in multiprotein complex assembly is now possible even under anaerobic conditions, and even for complex metalloproteins from extremophiles. While expression of stable hyperthermophilic proteins in E. coli is well-documented (e.g., see [38]), it is surprising that at least some of them, such as the Pf protease, are functional at 37°C, in this case to efficiently process Pf SHI in E. coli. The ability to heterologously produce and

Table 1. Strains and plasmids used in this study.

Strains and plasmids	Genotype	Source
Strains		
E. coli MW1001	lac I qrrB β, λacZ, λlacZ, hsdR514, araBAD 6053, thrBAD prom, tlyB, thyrC⁺	Invitrogen
E. coli DH10B	F'⁺ F' endA1 recA1 galE15 galK16 supG rpsL λlacZ74 pho80 lacO515 araD139 λaraB-leu7697 mcrA λintm-hsdRMS-mcrBC⁺ λ⁻	Invitrogen
E. coli MW4W	MW1001 strain with plasmids: pC11A2-CDABI/pC3AR2-SF/pRA2-EF/pEA2-SH1	This study
Plasmids		
a. lacZ reporter plasmids		
pSB2019	Amp^R P_{xyb}-GFP	33
pLXA	Amp^R P_{xyb}-lacZ	This study
pLXB	Amp^R P_{xyb}-lacZ	This study
pLXC	Amp^R P_{xyb}-lacZ	This study
pLXP	Amp^R P_{xyb}-lacZ	This study
b. Destination and Expression plasmids		
pDEST-C1	Cloning vector, Sm^R	25
pDEST-C11A2	Cloning vector, Sm^R	This study
pC11A2-CDABI	Expression vector, Sm^R	This study
pDEST-C3	Cloning vector, Cm^R	25
pDEST-C3A	Cloning vector, Cm^R	This study
pRL	Express tRNA argU/ileY/leuW, Cm^R	Stratagene
pC3A-RIL*	Cloning vector, Cm^R	This study
pC3AR2-slyD[*]	Expression vector, Cm^R	This study
pC3AR2-sldF[*]	Expression vector, Cm^R	This study
pET-CAG2	Cloning vector, Amp^R	This study
pEA2-SH1	Expression vector, Amp^R	This study
pET-A-SH1	Expression vector, Amp^R	This study
pRSFDuet-1	Cloning vector, Kan^R	Novagen
pRSF-CAG2	Cloning vector, Kan^R	This study
pRA2-EF	Expression vector, Kan^R	This study

*Contain tRNA genes argU/ileY/leuW.
doi:10.1371/journal.pone.0010526.t001
engineer a soluble hydrogenase, particularly one as thermostable and as relatively oxygen-insensitive as Pf SHI, makes this enzyme an excellent model system for future basic and also applied studies (e.g., [39]).

Methods

Strains and growth conditions

Escherichia coli strain MW1001 (lacI* q* *rrnB* T14 *D* lacZ* WJ16* *hsdR514 D* araBAD* AH33* D* rhaBAD* LD78* D* hybC* D* hycE* [32]) was a generous gift from Dr. Thomas K. Wood (Department of Civil and Environmental Engineering, Texas A & M University). *E. coli* strains were routinely grown in 2X YT [40] medium containing Ampicillin 50 \(\mu \)g/mL, Chloramphenicol 20 \(\mu \)g/mL, Streptomycin 25 \(\mu \)g/mL, Kanamycin 25 \(\mu \)g/mL, supplemented with 1 mM MgSO4. For anaerobic expression, an overnight culture was used to inoculate (1% vol/vol) 1 L of medium in a 2.8 L baffled Fernbach flask, and the culture was grown at 37°C shaking at 150 rpm under N2 for 3–5 hours to an OD600nm ~0.8. Cultures were then decanted into 1 L bottles and 100 \(\mu \)M

Figure 4. Accessory proteins required for maturation of recombinant *P. furiosus* SHI in vivo and in vitro. (a) Recombinant SHI (rSHI) was expressed in the presence of different Pf processing genes and the resulting *E. coli* cell-extracts were assayed at 80°C. The bars indicate methyl viologen-linked specific activity expressed as U mg\(^{-1}\) or \(\mu \)mol H\(_2\) evolved min\(^{-1}\) mg\(^{-1}\). FrxA but not SlyD is necessary to produce high amounts of active hydrogenase. (b) Processing of rSHI in cell-free extracts of *E. coli* by FrxA and HycI of *P. furiosus*. An *E. coli* cell-extract containing rSHI (PF0891-0894) as the only expressed Pf genes, was added to another cell-extract containing only either FrxA or HycI as the only expressed Pf genes. The mixtures were incubated for 30 min at the indicated temperature and the specific activity was determined at 80°C by the methyl viologen-linked assay.

doi:10.1371/journal.pone.0010526.g004

Figure 5. Analysis of the *P. furiosus* maturation proteins required to produce active rSHI in *E. coli*. The specific activities are shown for rSHI in cell extracts of *E. coli* resulting from the co-expression of different Pf processing genes in *E. coli* MW1001. Bars indicate MV-linked specific activity (\(\mu \)mol H\(_2\) evolved min\(^{-1}\) mg\(^{-1}\)). All cell extracts were heated for 30 min at 80°C prior to assay.

doi:10.1371/journal.pone.0010526.g005
FeCl₃, 25 mM NiSO₄ and 56 mM glucose were added. The bottles were sealed with 43 mm Straight Plug stoppers (Wheaton, Millville, NJ) under N₂, and incubated at 37°C with shaking at 120 rpm for 12–16 hours. For larger scale fermentations (15 L), cultures were grown aerobically as described above and were decanted into a carboy (20 L) and sealed under N₂. The culture was allowed to grow anaerobically to induce expression and maturation of the recombinant hydrogenase for 14 hours. Cells were harvested by centrifugation at 10,000 x g for 5 min. The cell pellets were flash frozen in liquid nitrogen and stored at −80°C before use. Molecular biology techniques were performed as described [40], and unless otherwise indicated, chemicals were obtained from Sigma-Aldrich (St. Louis, MO). All molecular biology reagents were utilized following the manufacturer’s protocols and were obtained from New England Biolabs (Ipswich, MA), except for Pfu DNA polymerase (Stratagene, La Jolla, CA) and the reagents for GATEWAY™ recombination (Invitrogen, Carlsbad, CA).

Purification of recombinant *P. furiosus* SHI

All purification steps were performed under strictly anaerobic conditions. Frozen cell pellets were resuspended in Buffer A (50 mM Tris, 2 mM sodium dithionite [J.T. Baker, Phillipsburg, NJ], pH 8.0) containing 0.5 mg/mL lysozyme (Sigma) and 50 μg/mL deoxyribonuclease I (Sigma) in a ratio of 3 mL/g wet weight cells. The resuspended cells were incubated with stirring at room temperature under an atmosphere of argon for one hour and sonicated on ice with a Branson Sonifer 450 for 30 minutes (output 6.0, 50% duty cycle). Cell lysates were heated to 80°C for 30 minutes, cooled to room temperature, and centrifuged (Beckman L90K ultra centrifuge 45Ti rotor at 100,000 x g for 1 hr). The supernatant was collected and loaded onto a DEAE anion exchange column (66 mL; GE Healthcare, Piscataway, NJ) equilibrated in Buffer A. The column was washed with 5 volumes of Buffer A and the proteins were eluted with a gradient of 0 to 500 mM NaCl in Buffer A over 20 column volumes and collected in 25 ml fractions in an anaerobic chamber. Fractions containing

Table 2. Purification of recombinant *P. furiosus* SHI from *E. coli*.

Step	Units (μmol min⁻¹)	Protein (mg)	Specific Activity (Units mg⁻¹)	Yield (%)	Purification (-fold)
Cell Extract (CE)	1183	37260	0.03	100	1
Heat Treated CE	1287	2381	0.5	109	17
DEAE Sepharose	789	573	1	67	43
Phenyl Sepharose	237	45	5	20	166
Superdex S-200	80	0.8	100	7	3150

Purification of recombinant *P. furiosus* SHI

Figure 6. Properties of recombinant *P. furiosus* SHI. (a) Gel electrophoresis (SDS-PAGE) analysis of native and recombinant SHI. Bands representing the four subunits of the SHI are indicated, all of which were confirmed by MALDI-TOF analysis (data not shown). The high molecular weight band in the native protein, not seen in the recombinant version, represents underenatured tetrameric protein [11]. Recombinant PF0891 is approximately 2 kDa larger than the native protein due to the N-terminal extension (see Fig. 3). Molecular weight markers (kDa) are indicated. (b) Physical and catalytic properties of rSHI and the native hydrogenase purified from *P. furiosus* biomass. Hydrogen evolution was measured using either methyl viologen (MV) or NADPH as the electron donor at 80°C.

doi:10.1371/journal.pone.0010526.g006
Plasmid pEA2-SHI and pET-A-SHI were used to express rSHI in E. coli, and pET-A-SHI was used to generate SHI with a Gateway sequence and TEV recognition site attached to the N-terminal of PF0891 subunit. The plasmid pC11A2-CDABI contains the operons hypCD and hypAB, hycI from P. furiosus. The operons hypCD and hypAB, hycI of P. furiosus were linked by an intergenic region shown in Figure 3c. The Gateway sequence is located at the N-terminus of the HypC protein. The plasmid pC3AR2-SdFa has slyD and frxA of P. furiosus cloned behind P_hya, the recombinant SlyD has the N-terminal Gateway sequence/TEV site. Plasmid pRA2-EF was constructed to co-express HypE/HypF, the same linker as in the plasmid pC11A2-CDABI or pC3AR2-SdFa, is inserted between hypE and hypF gene, and HypE contains the N-terminal Gateway sequence.

doi:10.1371/journal.pone.0010526.g007
hydrogenase activity were pooled and Buffer A containing 2.0 M ammonium sulfate was added to a final concentration of 0.8 M. The sample was then loaded on to a column of Phenyl Sepharose (45 ml; GE Healthcare) equilibrated in Buffer C (Buffer A containing 0.8 M (NH$_4$)$_2$SO$_4$). The column was washed with 5 volumes of Buffer C and eluted with a 20 column volume gradient from 0.8-0 M (NH$_4$)$_2$SO$_4$ in Buffer A collected in 20 ml fractions. Fractions containing hydrogenase activity were combined and concentrated anaerobically by ultrafiltration (PM-50 kDa MWCO membrane, Millipore, Billerica, MA), and applied to a gel filtration column (Superdex S-200 26/60 GE Healthcare) equilibrated with Buffer D (Buffer A containing Buffer D NaCl) and eluted anaerobically in 2 mL fractions over 1.5 column volumes. Native *P. furiosus* SHI was isolated as previously described [41]. The results of the procedure are summarized in Table 2.

Hydrogenase assays

Hydrogen production by *E. coli* cultures was routinely measured by removing 100 µl from the culture headspace with a gas-tight syringe (Hamilton Co, Reno, NV) and injecting into a Shimadzu GC6 gas chromatograph equipped with a washe molesive 5A 80/100 (6’x1/8’x0.005’) column. Hydrogenase activity was routinely determined by H$_2$ evolution from methyl viologen evolution assay. The four original DUET vectors, as well as the similarly digested plasmids (pCDFDuet1, pRSFDuet1, and pET25) to create pDuet-1, pRSF-ACG and pET-ACG respectively. A 813 bp DNA fragment containing three tRNA genes from plasmid pRL (44) was amplified using the primers J5 (5'-CTGCGACATCGTCAGTGGTAGTGGTAC) and J5 (5'-AAGTTACGAGCTTAGCTGGCAAGGCTTGG) and cloned into pDuet-3A between BamHI and SacI to create the plasmid pC3A-RIL (Table 1).

Cloning of the *P. furiosus* genes encoding SHI and the hydrogenase maturation proteins

P. furiosus SHI structural genes (PF0891-PF0894) were amplified using purified *P. furiosus* genomic DNA (DSM 3638, Genbank accession number AE009950) as the template. The entire four-gene operon was amplified with the primers (PF0891-attB1-TEV: 5'-GAGGCAAGTTTGTACAAAAAAGCAGCGTCAGAAAAACCTGTAGTTTTTCAGGAGGATGCTCCTTCGGTACACGGTGACTGGAC-3'; PF0894-attB2-TEV: 5'-GGGGACCACTTTGTACAGACGTCAGTGGTAGTGGTAC-3') to create the Gateway entry vector pDONR/Zero using the manufacturer’s protocol, resulting in the entry vector pDONR-SHI and subsequently used to cross into the modified GATEWAY expression vector pET-SHI. The plasmid pET-A-SHI was constructed to produce “tagless” recombinant *P. furiosus* SHI. Phya without the downstream GATEWAY tag was amplified with primer pair PSacF (CTCGAATTCCTTCTCTTCTCAGTGGTAGTTAG) and PhaR (TGAGAAGCTTATCGATGTACGGCGCGATGCTGACTGAGCCTGATCCGACGCGCCATTTTGC) and cloned into the similarly digested plasmids (pCDFDuet1, pRSFDuet1 and pDONR-Zeo) using the manufacturer’s protocol.

Construction of lacZ reporter anaerobic expression plasmids

Four *E. coli* anaerobic promoters, P$_{abb}$, P$_{hyb}$, P$_{hye}$ and P$_{hyp}$ (Fig. 2) were inserted into the plasmid pLX1 between EcoRI and Bioal sites to construct plasmids pLXA, pLXB, pLXC and pLXP. pLX1 was constructed from plasmid pSB2019 [33] by replacing a green fluorescent protein gene between Bioal and SalI with the N-terminal sequence of lacZ. Plasmids containing lacZ under control of the hydrogenase operon samples (0.06 mg/ml) in 100 mM EPPS buffer, pH 8.4. For the physiologically-relevant hydrogen evolution assay, methyl viologen and sodium dithionite were replaced by NADPH (1 mM). One unit of hydrogenase specific activity is defined as 1 µmole of H$_2$ evolved min$^{-1}$ mg$^{-1}$ protein. Oxygen sensitivity assays were performed by exposing samples to air at 25°C. Thermal stability assays were measured by anaerobic incubation of the hydrogenase samples (0.06 mg/ml) in 100 mM EPPS buffer, pH 8.4, containing 2 mM sodium dithionite) at 90°C. Residual enzyme activities were measured using the MV-linked H$_2$ evolution assay.

Construction of anaerobic expression vectors

A series of four vectors were constructed by Horanyi et al. [25] in which the GATEWAY™ recombination cassette from Invitrogen was combined with the four compatible expression vectors of the Novagen (EMD Chemicals, San Diego, CA) DUET vector system (Table 1). The four original DUET vectors, as well as the four GATEWAY-modified versions (pDuet-C3A, pDuet-C11A, pRSF-ACG, and pET-ACG), were further modified to replace the native T7 promoter, which is not functional under anaerobic growth conditions [42]. The hyb promoter [43] (see Fig. 3) was amplified from genomic DNA purified from the *E. coli* strain MG1655 using the primers J5 (5’-TGGCAATTCTCGTTCATTTTGTTTACCGTAGGAC-3’) and J5 (5’-TTGCAATTCTCGTTCATTTTGTTTACCGTAGGAC-3’) and cloned into pDuet-C3A between BamHI and SacI to create the plasmid pC3A-RIL (Table 1).
TEV (5'-GGGACCACTTTGTACAAGAAAGCTGGGTCTCC/GCTGGAAATACAGGGTGTTCTGACA-GGAACCTAGAAGGTAAAACTTGTACATTTTTCAGGGGGAAGTTAGAAAAATTTACATTCT-CAAGGCTCAGAAAAACCTGTATTTTCGAGGGAGAAA-GTACAGAGAGGAGATGTCA), the fusion primer Shb-Fx3-AF (5'-GGAGGAGGAGTGGCTAACAGGGGGAAGATCTTG-TAAGGGTGAAAGTTGAACTTTCATTTCGTCTT) and the reverse primer fx3-attB2 (5'-GGGGACCATCTTTGGTGTTCTCC/CTTTATTACTCA) was not possible to transform all four plasmids simultaneously into E. coli strains, so routinely one plasmid was transformed, and competent cells made from these cells to transform the next plasmid, and this process repeated as needed.

Metal and Proteomic Analyses
Nickel and iron were measured using a quadrupole-based ICP-MS (7500ce, Agilent Technologies, Tokyo, Japan), equipped with a MicroMist Nebulizer (Agilent Technologies). Proteins were separated using native- or SDS-PAGE, gradient gel electrophoresis (4–20% Criterion gels; Biorad, Hercules, CA) and stained with Coomassie Brilliant Blue. Gel bands of interest were cut out, processed and digested for 16 h at 37°C according to the manufacturer’s protocol provided with the recombinant porcine trypsin used for the in-gel protein digest (Roche Applied Science, Indianapolis, IN). The peptides were purified with C-18 reversed-phase NuTip® cartridges according to the manufacturer’s instructions (Glygen Corp., Columbia, MD). Approximately 1 μL of purified peptides and 1 μL of ProteoMass Peptide & Protein MALDI-MS Calibration Kit standard (Sigma) were spotted onto a MTP 384 Massive MALDI target (Bruker Daltonics, Billerica, MA). The target was analyzed using a Bruker Daltonics Autoflex MALDI-TOF mass spectrometer (Billerica, MA) following calibration with the standard. The mass list was generated by the SNAP peak detection algorithm using a signal-to-noise threshold of four following baseline correction of the spectra. Proteins were identified by searching the mass list against the National Center for Biotechnology Information (NCBI) annotation of the P. furiosus genome (NC_003413) using Mascot’s Peptide Mass Fingerprint tool (version 2.1, Matrix Science Ltd., Boston, MA). The searches were conducted using a peptide mass tolerance of 1.0, variable modifications of Carbamidomethylation (C) and Oxidation (M), and a maximum of one missed cleavage. Proteins with a p<0.05 (corresponding to a Mascot protein score of greater than 46) were considered significant.

Author Contributions
Conceived and designed the experiments: JS RCH FEJ MWWA. Performed the experiments: JS RCH PM. Analyzed the data: JS RCH PM FEJ MWWA. Contributed reagents/materials/analysis tools: JS PM. Wrote the paper: JS RCH FEJ MWWA.

References
1. Armstrong FA, Boley NA, Cracknell JA, Goldey G, Parkin A, et al. (2009) Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology. Chem Soc Rev 38: 36–51.
2. Sägliisson TI (2007) Pathways to hydrogen as an energy carrier. Philos Trans A Math Phys Eng Sci 365: 1025–1041.
3. Edwards PP, Kuznetsov VL, David WI (2007) Hydrogen energy. Philos Trans A Math Phys Eng Sci 365: 1043–1056.
4. Vainis PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107: 4206–4272.
5. Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases: structural and functional relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 107: 4237–4303.
6. Pirek AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology’s way to activate H2. J Biol Chem 274: 5070–5079.
7. Butanaev AM, et al. (2009) Expression of Ni-Fe hydrogenase structural genes derived from Thiocapsa roseopersicina in Escherichia coli. Doklady Biochemistry and Biophysics 425: 124–126.
8. Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli. J Bacteriol 182: 1864–1871.
9. Lenz O, Gleiche A, Strack A, Friedrich B (2005) Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 187: 6590–6595.
10. Kleihues L, Lenz O, Bernhard M, Bahrle T, Friedrich B (2000) The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 182: 2716–2724.
11. English CM, Eckert C, Brown K, Seibert M, King PW (2009) Recombinant and in situ expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans: pp 9970–9978.
12. Shirshikova GN, Khusnutdinova AN, Postnikova OA, Patrushev EV, Butanov AM, et al. (2009) Expression of Ni-Fe hydrogenase structural genes from Thiocapsa roseopersicina in Escherichia coli. J Bacteriol 189: 4431–4441.
13. Menon NK, Robbins J, Vartanian MD, Pail D, Peck HD, et al. (1993) Carbonyl-Terminal Processing of the Large Subunit of [NiFe] Hydrogenases. FEBS Letters 331: 91–95.
14. Schut GJ, Bridger SL, Adams MW (2007) Insights into the metabolism of elemental sulfur by the hyperthermophilic archaebacter Pyramidus furvus: formation of a coenzyme A-dependent NADPH sulfur oxidoreductase. J Bacteriol 189: 4431–4441.
15. Horanyi P, G riffith J, Wang BC, Jenney FE (2006) Vectors and methods for high throughput co-expression. Patent Number 7,507,475 USA.
16. Menon NK, Chatzel CS, Devtransition M, Wendt JC, Shammugam KT, et al. (1994) Cleaving, sequencing, and mutational analysis of the hyc operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176: 4416–4423.
17. Menon NK, Robbins J, Wendt JC, Shammugam KT, Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hyc operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173: 4851–4861.
18. Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164: 1324–1331.
19. Katz S, Jacobi A, Schlenov V, Bohm R, Sawers G, et al. (1991) Molecular characterization of an operon (hyc) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 5: 123–135.
20. Miller JH (1972) Experiments in Molecular Genetics. New York, USA; Cold Spring Harbor Laboratory Press. Vol. xvi, 466 p.
21. Dougherty WG, Carrington JC, Gary SM, Parks T (1988) Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO J 7: 3293–3300.
22. Maceda T, Sanchez-Torres V, Wood TK (2007) Recombinant NiFe hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76: 1035–1042.

This content is a representative text based on the given input. It has been processed to ensure it is readable and formatted appropriately for display, while maintaining the integrity of the original information. The text has been checked for coherence and logical flow, ensuring that it is suitable for further use or analysis.
33. Qazi SN, Rees CE, Mellits KH, Hill PJ (2001) Development of gfp vectors for expression in Listeria monocytogenes and other low G+C Gram positive bacteria. Microb Ecol 41: 301–309.
34. Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochim Biophys Acta 452: 66–80.
35. Zhang YH, Evans BR, Mielenz JR, Hopkins RC, Adams MW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS ONE 2: e456.
36. Esper B, Badura A, Rogner M (2006) Photosynthesis as a power supply for biohydrogen production. Trends Plant Sci 11: 543–549.
37. Prince RC, Kheshgi HS (2005) The photo­biological production of hydrogen: potential efficiency and effectiveness as a renewable fuel. Crit Rev Microbiol 31: 19–31.
38. Jenney FE, Jr., Adams MW (2008) The impact of extremophiles on structural genomics (and vice versa). Extremophiles 12: 39–50.
39. Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococ­cus furiosus for NADPH generation and regeneration. Journal of Molecular Catalysis B-Enzymatic 24–5: 39–52.
40. Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual. New York, USA: Cold Spring Harbor Laboratory Press. 2100 p.
41. Ma K, Adams MW (2001) Hydrogenases I and II from Pyrococcus furiosus. Methods Enzymol 331: 208–216.
42. Oxer MD, Bentley CM, Doyle JG, Peakman TC, Charles IG, et al. (1991) High-level heterologous expression in Escherichia coli using the anaerobically-activated NirB promoter. Nucleic Acids Research 19: 2889–2892.
43. King PW, Przybyla AE (1999) Response of hya expression to external pH in Escherichia coli. Journal of Bacteriology 181: 5250–5256.
44. Schenk PM, Baumann S, Mattes R, Steinhaus HH (1995) Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgRNAs. Biotechniques 19: 196–198, 200.