Do the stellar populations of the brightest two group galaxies depend on the magnitude gap?

M. Trevisan1⋆, G. A. Mamon1, H. G. Khosroshahi1,2
1 Institut d’Astrophysique de Paris (UMR 7095; CNRS & UPMC, Sorbonne Universités), 98 bis Bd Arago, 75014 Paris, France
2 School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran

ABSTRACT
We investigate how the stellar populations of the inner regions of the first and the second brightest group galaxies (respectively BGGs and SBGGs) vary as a function of magnitude gap, using an SDSS-based sample of 550 groups with elliptical BGGs. The sample is complete in redshift, luminosity and for \(\Delta M_{12} \) up to 2.5 mag, and contains 59 large-gap groups (LGGs, with \(\Delta M_{12} > 2.0 \) mag). We determine ages, metallicities, and SFHs of BGGs and SBGGs using the STARLIGHT code with two different single stellar population models (which lead to important disagreements in SFHs), and also compute \([\alpha/Fe] \) from spectral indices. After removing the dependence with galaxy velocity dispersion or with stellar mass, there is no correlation with magnitude gap of BGG ages, metallicities, \([\alpha/Fe] \), and SFHs. The lack of trends of BGG SFHs with magnitude gap suggests that BGGs in LGGs have undergone more mergers than those in small-gap groups, but these mergers are either dry or occurred at very high redshift, which in either case would leave no detectable imprint in their spectra. We show that SBGGs in LGGs lie significantly closer to the BGGs (in projection) than galaxies with similar stellar masses in normal groups, which appears to be a sign of the earlier entry of the former into their groups. Nevertheless, the stellar population properties of the SBGGs in LGGs are compatible with those of the general population of galaxies with similar stellar masses residing in normal groups.

Key words: galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies: formation – galaxies: evolution – galaxies: stellar content

1 INTRODUCTION
Galaxy groups are believed to play a key role in the formation and evolution of galaxies. There are several observational pieces of evidence suggesting that the environment where galaxies reside affects their evolution, changing their properties (Oemler 1974; Dressler 1980; Weimann et al. 2006; Peng et al. 2010; von der Linden et al. 2010; Mahajan et al. 2011). Determining how environmental processes operate is of particular importance to understand the formation of massive elliptical galaxies, which are known to reside preferentially in the cores of groups. Gravitational phenomena such as interactions and mergers of galaxies are more frequent in high-density environments than in the field (Mamon 1992). Also, dynamical friction (Chandrasekhar 1943) dissipates orbital energy and angular momentum of the satellite galaxies, driving them to the group centre until they finally merge with the central galaxy in a few Gyr (White 1976; Schneider & Gunn 1982; Mamon 1987; Ponman et al. 1994). Therefore, the formation and evolution of the brightest galaxies in the Universe are expected to be closely linked to the growth of their host groups.

The \(r \)-band absolute magnitude gap (hereafter magnitude gap or simply gap), which we denote \(\Delta M_{12} \), between the group first and second-ranked galaxies, in \(r \)-band luminosity (hereafter BGG for Brightest Group Galaxy and SBGG for Second Brightest Group Galaxy), is often used as a diagnostic of past mergers among the more massive (or luminous) galaxies in groups (Ponman et al. 1994; van den Bosch et al. 2007; Dariush et al. 2010; Hearin et al. 2013).

Many studies have shown that there is a class of systems characterized by bright isolated elliptical galaxies embedded in haloes with X-ray luminosities comparable to those of an entire group. The magnitude gap observed in these systems point to a very unusual luminosity function (LF), and these objects – usually referred as fossil groups (hereafter FGs) – have been puzzling the astronomical community for over two decades, since their discovery by Ponman et al. (1994). Jones et al. (2003) established the first formal definition, in which a system is classified as fossil if their bolometric X-ray luminosity is greater than \(L_{X,bol} \geq 10^{42}h_{50}^{-2} \) erg s\(^{-1}\), and if they are large-gap groups (LGGs), i.e., the magnitude gap within 0.5 virial radius is \(\Delta M_{12} > 2 \) mag (in the \(r \)-band).

The origin and nature of FGs is still matter of debate. It is not clear if the merger scenario (Carnevali et al. 1981; Mamon 1987)
can account for groups with such large magnitude gaps, and alternative scenarios have been proposed to explain the formation of these systems. They could be “failed groups” with atypical LFs missing high-luminosity (≈ L^*) galaxies, while including very high ones (Mulchaey & Zabludoff 1999). Based on differences between the isophotal shapes of central galaxies located in FGs (which are often disky) and in normal groups (which have boxy shapes), Khosroshahi, Ponman & Jones (2006) suggested that, unlike the central galaxies of normal groups, the first-ranked galaxies in FGs were produced in a wet merger event at high redshift.

Studies of the evolution of FGs in cosmological simulations seem to suggest that the mass assembly histories of FG haloes differ from those of small luminosity gap groups (D’Onghia et al. 2005; Dariush et al. 2007; Raouf et al. 2014). A natural question is whether such a difference in the evolution of FGs is imprinted in the global properties of the stellar content and in the star formation history of the brightest group galaxies. The detailed reconstruction of the stellar assembly of galaxies is, therefore, a powerful tool to constraint different scenarios and processes taking place during the formation and evolution of these objects.

It is still not clear whether the stellar population properties of FG BGGs differ from those of BGGs located in regular groups. Several studies show that FGs have lower optical to X-ray luminosity ratios compared to regular systems (Jones et al. 2003; Yoshioka et al. 2004; Khosroshahi et al. 2007; Proctor et al. 2011), indicating that FGs have abnormally high M/L_* at given M_{halo} (but see Voevodkin et al. 2010, Harrison et al. 2012, and Girardi et al. 2014 for an alternative view). While these results are usually interpreted as a lack of cold baryons at given halo mass, one may wonder whether part of those trends is caused by differences in the stellar population properties. If it is the case, galaxy properties that are the properties of FGs have abnormally high M/L_* ratios, such as age and metallicity, may vary with the magnitude gap, and the high M_*/L_* ratios of FG BGGs could indicate that these systems are older and/or more metal-rich than those residing in normal groups.

La Barbera et al. (2009) used Sloan Digital Sky Survey Data Release 4 (SDSS-DR4) and ROntgen SATellite (ROSAT) All Sky Survey X-ray data to define a sample of 25 FGs, and compared their properties with “field” galaxies selected from the same dataset. The examination of stellar populations revealed that FG BGGs have similar ages, metallicities, and $σ$-enhancements compared to the field galaxies. More recently, Eisenhauer & Zeilinger (2013) determined the age and metallicity gradients in a sample of six FGs in FGs from deep long-slit observations with ISIS spectrograph at the William Herschel Telescope. They found that metallicity gradients are weak ($\nabla \log[M/H] = -0.19 ± 0.08$), while age gradients are negligible ($\nabla \log(t_{age}) = 0.00 ± 0.05$), suggesting that FGs are the result of multiple major mergers. The comparison of their results with gradients in early-type galaxies determined by Koleva et al. (2011) indicates that FG BGGs follow similar $\nabla \log(t_{age}), \nabla \log[M/H]$ vs. stellar mass trends as regular elliptical galaxies. However, these studies suffer from low number statistics, therefore limiting their conclusions.

Finally, previous studies show that, at fixed halo mass, the stellar mass of BGGs in FGs are greater than those of their counterparts in regular groups (e.g. Diaz-Giménez et al. 2008; Harrison et al. 2012). Since galaxy properties (e.g. morphology, colour, ages, and metallicities) seem to be strongly related to stellar mass (Balogh et al. 2009; McGee et al. 2011; Trevisan et al. 2012; Woo et al. 2013), the differences between fossil and regular groups — if they exist — could be at least partially related to differences in stellar mass.

In this paper, we aim to obtain a clearer picture of the formation of the brightest galaxies and their host groups by studying how their stellar population properties and SFHs vary with the magnitude gap after correcting for the variations with the velocity dispersion, which is a proxy for the galaxy stellar mass. We use a large sample of 550 SDSS groups at 0.015 ≤ zgroup ≤ 0.07 and more massive than $\log(M_{halo}/M_*) ≥ 13.1$. Our sample is complete up to $\Delta M_{12} = 2.5$ mag, and contains 59 groups with $\Delta M_{12} ≥ 2.0$ mag.

This paper is organized as follows. In Section 2, we describe the sample of groups and the data used in our analysis. In Section 3, we investigate how the properties of groups and their brightest two galaxies vary with ΔM_{12}. In Section 4, we discuss the possible implications of our findings to the origin of FGs. Finally, in Section 5, we present the summary and the conclusions of our study. All masses and distances are given in physical units unless otherwise specified. To be consistent with the group catalogue used in this study, we adopt, throughout this paper, a $Λ$CDM cosmology with $Ω_M = 0.238$, $Ω_Λ = 0.762$, $Ω_b = 0.042$ and $H_0 = 73\, \text{km}\, \text{s}^{-1}\, \text{Mpc}^{-1}$.

2 DATA

2.1 Sample selection

The galaxy groups were selected from the updated version of the catalogue compiled by Yang et al. (2007). The group catalogue contains 468,822 groups drawn from a sample of 593,617 galaxies from the Main Galaxy Sample (Strauss et al. 2002) of the SDSS- Data Release 7 (DR7, Abazajian et al. 2009) database and 3234 galaxies with redshift determined by alternative surveys: Two Degree Field Galaxy Redshift Survey (2dFGRS, Colless et al. 2001), Point Source Catalog Redshift Survey (PSCz, Saunders et al. 2000), and the Third Revised Catalog of Galaxies (RC3, de Vaucouleurs et al. 1991). The radii r_{180}, i.e., the radii of spheres that are 180 times denser than the mean density of the Universe, are derived from the M_{180} masses given in the Yang et al. catalogue, which are based on the ranking of Petrosian luminosities. We then calculated the virial radii ($r_{vir} = r_{200}$, where r_{200} are the radii of spheres that are 200 times denser than the critical density of the Universe) and masses ($M_{halo} ≡ M_{vir} = M_{200} = 100 H^2(z) r_{200}^3 G$) by assuming the NFW (Navarro, Frenk & White 1996) profile and the concentration-mass relation given by Dutton & Macciò (2014).

We selected groups that satisfy the following criteria:

(i) redshifts in the range from 0.015 to 0.07;
(ii) at least 5 member galaxies;
(iii) masses $\log(M_{halo}/M_*) ≥ 13.1$.

1 Their sample was not selected from a group catalogue. The magnitude gaps of the optical FG candidates and the control sample were defined within a cylinder with radius of 350 kpc and $Δz = 0.001$ centered on the galaxy.

2 The group catalogue is publicly available at gax.shao.ac.cn/data/Group.html.

3 This corresponds to sample2_L_petro among the Yang et al. group catalogues.

4 See appendix A for the conversion of Yang’s virial radii to our definition.
Figure 1. Luminosity versus magnitude gap diagram to extract the completeness limit for the magnitude gap of our sample. The BGGs and SBGGs are shown as red and black symbols. The solid magenta lines indicates the linear fit to the 95-percentiles of M_{Petro}^{viro} in bins of ΔM_{12}. The 95% completeness magnitude limit of our full sample is shown as the black dashed horizontal line ($M_{\text{Petro}}^{viro} = -19.57$). Therefore, the 90% complete magnitude gaps for the full sample is found where the solid magenta line meets the dashed horizontal line.

(iv) at least two member galaxies within 0.5 r_{vir} brighter than $M_{\text{Petro}}^{viro} \leq -19.57$, where M_{Petro}^{viro} is the k-corrected SDSS Petrosian absolute magnitude in the r band;

(v) the magnitude gap, defined as the difference between the k-corrected SDSS r-band Petrosian absolute magnitudes of the BGG and SBGG galaxies within half the viral radius, i.e.,

$$\Delta M_{12} = M_{r,2}^{\text{Petro}} - M_{r,1}^{\text{Petro}},$$

is smaller than 2.47 mag;

(vi) first-ranked galaxy classified as an elliptical galaxy according to the information retrieved from Galaxy Zoo 1 project database (Lintott et al. 2011);

(vii) the relative velocity of the SBGG with respect to the BGG must be $< 2.7\sigma^{\text{los}}(R)$, where $\sigma^{\text{los}}(R)$ is the predicted line-of-sight velocity dispersion at a projected distance R from the BGG.

The lower redshift limit was chosen to avoid selecting groups too close to the edge of the catalogue (the groups were defined using galaxies at 0.01 < z_{gal} < 0.2). The upper limit was obtained to limit the largest possible number of groups with $\Delta M_{12} \geq 2$ mag, given the other criteria and taking into account the variation of M_{Petro}^{viro} and ΔM_{12} limits with z.

The log $M_{\text{halo}}, M_{\text{Petro}}^{viro}$, and ΔM_{12} completeness limits were established as follows. We compared the halo mass function of our sample with the theoretical halo mass function computed using the NumCosmo package5 (Dias Pinto Ventiti & Penna-Lima 2014). The adopted halo mass lower limit, log(M_{halo}/M_\odot) \geq 13.1, corresponds to the value above which the difference between the observed and theoretical mass functions is smaller than \sim 0.1 dex.

Figure 2. Distribution of SBGGs in projected phase space (line-of-sight velocity relative to the BGG versus projected distance to the BGG). The velocities and distances are normalized to the virial velocity (v_{vir}, see text) and radius (r_{vir}), respectively. The dashed line corresponds to $2.7\sigma^{\text{los}}(R)/v_{\text{vir}}$, where $\sigma^{\text{los}}(R)$ is the predicted line-of-sight velocity dispersion at a projected distance R from the BGG (see text). The groups that lie above the curve are discarded from the sample (red crosses).

The sample limit in absolute magnitude cannot be simply derived from our adopted maximum redshift and the limit of extinction-corrected apparent magnitudes of the SDSS MGS (which would yield $M_{\text{Petro}}^{viro} = -19.64$), because the reference frame for the k-corrections is at $z = 0.1$ and different galaxies have slightly different k-corrections. We therefore determine the 95 percent limit in absolute magnitudes following the geometric approach similar to that described by Garilli et al. (1999) and La Barbera et al. (2010). We first determine the 95 percentile of m_{Petro}^{viro} in bins of M_{Petro}^{viro} and then perform a linear fit to the 95-percentile points, so that the the value of m_{Petro}^{viro} where the best-fit line intersects $m_{\text{Petro}}^{viro} = 17.77$ defines the absolute magnitude of 95 percent completeness. This leads to a 95 percent completeness limit of $M_{\text{Petro}}^{viro} \leq -19.57$ for our sample.

This absolute magnitude limit in turns leads to a sample complete up to $\Delta M_{12} = 2.47$ mag, as illustrated in Fig. 1.

Finally, the upper limit for the absolute value of the relative line-of-sight velocity between the SBGG and the BGG was adopted to avoid projection effects, as illustrated in Fig. 2 (where the virial velocity is defined with $v_{\text{vir}}^2 = G M_{200}/r_{200} = 10 H(z) r_{200}$). This predicted limit, 2.7σ^{los}, was computed by assuming a single-component NFW profile of concentration $c = 6$ (the value expected for haloes with log(M_{halo}/M_\odot) \sim 13.4), with a velocity anisotropy that varies with physical radius according to the formula of Mamon & Lokas (2005), which is a good approximation to the measured velocity anisotropy in simulated ΛCDM haloes (Mamon et al. 2010).

The criteria above lead to a sample of 657 groups. The conclusions of this work depend little on the precise values used in these selection criteria. The k-corrections were obtained with the kCorrect code (version 4.2) of Blanton et al. (2003), choosing as reference the median redshift of the SDSS MGS ($z = 0.1$).6

6 Although the median redshift of our sample is 0.05, we kept the median redshift of the SDSS MGS as the reference for the k-corrections. The difference between $M_{\text{Petro}}^{0.1}, M_{\text{Petro}}^{0.05}$, is \sim 0.1 mag, and has no effect on the results and conclusions of our study.
2.2 Spectroscopic incompleteness

The completeness of the SDSS spectroscopy in high-density regions is affected by the fibre collision limit, which prevents neighbouring fibres from being closer than 55″/′. This spectroscopic incompleteness might affect the correct identification of the BGGs and SBGGs. To address this issue, we used the SDSS photometric catalogue to identify galaxies that could be BGGs or SBGGs, but have no SDSS-DR7 spectra.

We first investigate if there are galaxies within 1 r_vir from the luminosity-weighted center of each group that are brighter than the BGG of that group. We then used the SDSS-DR12 redshifts (when available) to check if the galaxy is within the redshift range of the group, i.e.,

\[|z - z_{\text{group}}| < (2.7 \sigma_{\text{group}}), \]

If there is no SDSS-DR12 spectrum, we discard the group. We discard 12 groups that contain galaxies brighter than the BGG with redshifts in the range given by equation (1) and 30 groups with galaxies brighter than the BGG but no spectroscopic redshifts.

Following a similar approach, we retrieved from the photometric catalogue all galaxies within 0.5 r_vir from the BGGs that are brighter than the SBGG of that group and have spectroscopic redshifts according to Eq. (1), or that do not have spectroscopic redshift available (31 and 34 objects, respectively). We discard all the 65 groups that contain galaxies that follow these criteria.

In summary, following the criteria (i) to (vii) listed in Section 2.1 but discarding a total of 107 groups with incomplete SDSS-DR7 spectroscopy we obtain our final sample of 550 groups, among which 59 have \(\Delta M_{12} > 2 \) mag.

2.3 Galaxy properties

The galaxy magnitudes, stellar masses, velocity dispersions, and specific star formation rates (sSFR) were retrieved from the SDSS-DR12 database\(^7\) (Alam et al. 2015). The match between the Yang et al. catalogue and the SDSS-DR12 sample was performed with TOPCAT\(^8\) (Taylor 2005) by assuming a maximum separation of 5″ between the sky positions and a maximum difference in redshift of \(\Delta z < 0.0005 \) (i.e. velocity differences less than 150 km s\(^{-1}\)). The stellar masses and sSFR correspond to the estimates available in the MPA-JHU spectroscopic catalogue, and described in Brinchmann et al. (2004). We also retrieved the eClass parameter from the SDSS-DR7 database, which is based on the first two eigencoefficients from the Principal Component Analysis (PCA) of galaxy spectra (Yip et al. 2004). The eClass parameter ranges from about −0.35 to 0.5 for early- to late-type galaxies.

The velocity dispersions are measured through the fixed aperture of the SDSS fibre (diameter of 3″), therefore they need to be normalized to the same physical aperture. We assume that the velocity dispersion profile is well described by \(\sigma_{\text{ap}} = \sigma_{e8} [R_{\text{ap}}/(R_{e}/8)]^{0.606} \) (Cappellari et al. 2006), where \(R_e \) is the effective radius of the galaxy (containing half the projected luminosity) and normalize the velocity dispersions to \(\sigma_{e8} \), which corresponds to the dispersion measured through an aperture with a radius of one eighth of the effective radius.

\(^7\) The spectra of many objects that are not in SDSS-DR7 are now available in DR12. However, these objects were observed with the BOSS (Baryon Oscillation Spectroscopic Survey) spectrograph, whose fibres are smaller than those of the SDSS spectrograph (2″ rather than 3″). The difference in the fibre aperture might introduce bias in our results and, for this reason, we opted for not using these new spectra in our study. Therefore, we discard the groups with incomplete SDSS-DR7 spectroscopy.

\(^8\) The stellar mass and sSFR estimates correspond to the parameters lgm_tot_p50 and specsfr_tot_p50 from the SDSS table galSpecExtra (Kauffmann et al. 2003; Brinchmann et al. 2004; Salim et al. 2007).

Figure 3. Uncertainties in ages and metallicities, estimated from differences between the properties derived from multiple spectroscopic observations of the same objects (d). The left and the right panels show the results obtained with BC03 and V15 models, respectively. The long and the short dashed lines indicate \(\delta = 0 \pm \sigma \), where \(\sigma \) is the standard deviation of the distribution of \(\delta \).

2.3.1 Star formation histories and metallicities

We derived ages and metallicities from the SDSS spectra using the STARLIGHT spectral fitting code (Cid Fernandes et al. 2005). For each galaxy, STARLIGHT combines single stellar population (SSP) model spectra of given age and metallicity and returns the contribution, as a percentage of mass, from each basic SSP. This distribution traces directly the SFH. For each galaxy in the sample, we determine the “cumulative” mass fraction, i.e., the fraction of stars older than a given age, as a function of age. We then interpolate the cumulative SFH of each galaxy to obtain the galaxies ages, defined as the age when half of the stellar mass was already formed (i.e., age \(\equiv \text{age}_{e50} \)), and the age when 90% of the stellar mass was formed (\(\text{age}_{e90} \)). From the STARLIGHT results, we also compute the mass-weighted metallicities.

To check the dependency of the stellar population properties with the models used, we selected two sets of SSP models. One of them is based on the Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES, Sánchez-Blázquez et al. 2006), using the updated version 10.0 (Vazdekis et al. 2015, hereafter V15) of the code presented in Vazdekis et al. (2010). We selected models computed with Kroupa (2001) universal initial mass function (IMF), and isochrones from BaSTI (Bag of Stellar Tracks and Isochrones, Pietrinferni et al. 2004, 2006). We also used (Bruzual & Charlot 2003, BC03) models, calculated with Padova 1994 evolutionary tracks (Bressan et al. 1993; Fagotto et al. 1994a,b; Girardi et al. 1996) and with the
Chabrier (2003) IMF. The BC03 model employs the STELIB stellar library (Le Borgne et al. 2003). For both sets of models, we adopted a constant log age step of 0.2, and the grids cover ages from 0.03 to 13.5 Gyr. For the BC03 models, we selected SSPs with metallicities $[\text{M/H}] = \{-1.7, -0.7, -0.4, 0.00, +0.40\}$ and the grid of V15 models contains SSPs with $[\text{M/H}] = \{-1.26, -0.66, -0.25, +0.06, +0.15, +0.40\}$.

The fit was performed in the wavelength region from 3800 to 7400 Å. Before running the code, the observed spectra are corrected for foreground extinction and de-redshifted, and the SSP models are degraded to match the wavelength-dependent resolution of the SDSS spectra, as described in La Barbera et al. (2010) and Trevisan et al. (2012). We adopted the Cardelli, Clayton & Mathis (1989) extinction law, assuming $R_V = 3.1$.

To estimate the uncertainties in the stellar population properties, we retrieved from the SDSS database all objects in our sample that have multiple spectroscopic observations. We found 168 galaxies, 62 of them being elliptical, with multiple spectra with signal-to-noise (S/N) ratio greater than 5.

In Fig. 3, we show the differences between the properties derived from multiple spectroscopic observations as a function of velocity dispersion for galaxies of all morphological types. After dividing the values of σ shown in Fig. 3 by $\sqrt{2}$, we find that the typical errors in log age$_{501}$, log age$_{90}$, and $[\text{M/H}]$ are 0.08, 0.16, and 0.06 (BC03), and 0.08, 0.13, and 0.04 (V15). If we consider only elliptical galaxies, whose spectra tend to have higher S/N ratios, the typical uncertainties (in dex) are 1.2 to 3 times smaller:

$$\sigma(\text{age}_{501}, \text{age}_{90}, [\text{M/H}])_E = (0.03, 0.10, 0.04) \quad (\text{BC03})$$
$$= (0.06, 0.08, 0.04) \quad (\text{V15})$$

2.3.2 $[\alpha/\text{Fe}]$ ratios

The α-elements (O, Mg, Si, S, Ca, Ti) are synthesized primarily in supernovae (SN) type II (e.g. Arnett 1978; Woosley & Weaver 1995), while SNe Ia yield mostly iron-peak elements with little α-element production (e.g. Nomoto et al. 1984, Thielemann et al. 1986). Since SN Ia events are delayed relative to SNe II10, the $[\alpha/\text{Fe}]$ ratios are believed to be closely related to the star-formation timescales of galaxies (Tinsley 1979; Thomas et al. 2005; de La Rosa et al. 2011; Walcher et al. 2015).

To estimate the $[\alpha/\text{Fe}]$ ratios of our BGGs and elliptical SBGs, we adopted the approach described in La Barbera et al. (2013) and Vazdekis et al. (2015), which is based on the spectral indices Mgβ and Feδ.11 We measured the line-strengths with the INDEX12 code (Cardiel 2010), and applied corrections for the broadening due to the internal velocity dispersion of the galaxy following the prescriptions of de La Rosa et al. (2007).

The procedure to determine the proxy of $[\alpha/\text{Fe}]$ is illustrated in Fig. 4, where we show the BGG and the SBGG luminosity-weighted ages obtained using STARLIGHT with V15 models, as described in Section 2.3.1 as a function of Mgβ and Feδ, as well as the predictions from the V15 models with different metallicities. For each galaxy, we estimate two independent metallicities, Z_{Mg\beta$}$ and Z_{Fe\delta$}$, by fixing the galaxy age and interpolating the model grid.

\[Z_{\text{Mg}β} = \left(2.083 + \frac{\text{Mg} \beta}{1+0.2}\right) \]
\[Z_{\text{Fe}δ} = 2.10 - \frac{\text{Fe} \delta}{1+0.2} \]

For typical elliptical galaxies, the peak of SN Ia rates occur $\sim 0.1 - 1$ Gyr later than that of SN II rates (see e.g. Matteucci & Tornambe 1987; Thomas et al. 1999; Matteucci & Recchi 2001).

\[Z_{\text{Mg}β/Feδ} = \left(2.083 + \frac{\text{Mg} \beta}{1+0.2}\right) - \frac{\text{Fe} \delta}{1+0.2} \]

10 For typical elliptical galaxies, the peak of SN Ia rates occur $\sim 0.1 - 1$ Gyr later than that of SN II rates (see e.g. Matteucci & Tornambe 1987; Thomas et al. 1999; Matteucci & Recchi 2001).

\[Z_{\text{Mg}β/Feδ} = \left(2.083 + \frac{\text{Mg} \beta}{1+0.2}\right) - \frac{\text{Fe} \delta}{1+0.2} \]

11 Feδ = (Fe$3383 +$ Fe$5270 +$ Fe$5335)/3 (Kuntschner 2000)

12 http://pendientedemigracion.ucm.es/info/Astrof/ellipt/pages/page4.html

\[\text{Mg} \beta = \text{Mg} \beta (0.72 \text{Fe}5270 + 0.28 \text{Fe}5335) \] (Thomas et al. 2003)
after TMJ11). First, we estimate the metallicity [M/H]$_{\text{TMJ}}$ from the [Mg/Fe]$_{\text{r}}$ index, which is independent of [α/Fe] (Thomas et al. 2003; see also Vazdekis et al. 2015), by fixing the galaxy age and interpolating the TMJ11 model grid (i.e., we applied same procedure as illustrated in Fig. 4, but using [Mg/Fe]$_{\text{r}}$ and different models). We then fitted the models to obtain the predicted polynomial relation $[\alpha/\text{Fe}] = \hat{p}([\text{Fe}/\text{H}], [\text{M}/\text{H}], \text{age})$, and used this relation with STARLIGHT ages and [M/H]$_{\text{TMJ}}$ to obtain the $[\alpha/\text{Fe}]_{\text{TMJ11}}$ estimates. As in the previous studies by La Barbera et al. (2013) and Vazdekis et al. (2015), we find a very tight correlation between $[\alpha/\text{Fe}]_{\text{TMJ11}}$ and $[Z_{\text{Fe}}/Z_{\text{H}}]$. Selecting all elliptical galaxies within 0.5 r_{vir} in our sample to fit the relation between these two quantities, we find

$$[\alpha/\text{Fe}]_{\text{TMJ11}} = -0.07 + 0.51 [Z_{\text{Fe}}/Z_{\text{H}}]$$

(2)

with a very small scatter of 0.019 dex. If we consider only the BGGs and elliptical SBGGs, we obtain an even smaller scatter of 0.017 dex. Finally, in Fig. 5 we compare $[\alpha/\text{Fe}]_{\text{TMJ11}}$ with our final values of $[\alpha/\text{Fe}]$, i.e., the proxy $[Z_{\text{Fe}}/Z_{\text{H}}]$ calibrated according to Eq. 2.

2.4 Stellar population properties vs. velocity dispersion relations

Many studies suggest that the properties of elliptical galaxies are more correlated to velocity dispersions than to stellar masses (e.g. Bernardi et al. 2003; La Barbera et al. 2014). In addition, the uncertainties on log σ_{eb}, as listed in the SDSS database, are typically 0.1 dex, while the errors on stellar masses are 0.2 dex (e.g. Duarte & Mamon 2015). Therefore, we analyse how the properties of the BGGs and the elliptical SBGGs vary with ΔM_{12} (see Section 3.2) after correcting the relations with log σ_{eb} instead of stellar masses.

To fit the relations between galaxy properties and log σ_{eb}, we selected all elliptical galaxies within 0.5 r_{vir} in our sample groups and divided them in bins of log σ_{eb}, with ~100 galaxies per bin. We adopt a non-parametric approach by computing the median values of the distributions of the galaxy properties in each bin and fitting these values using the locally-weighted polynomial regression method (LOESS). The relations were fit using the R function loess14 (R Core Team 2015). The fit is performed locally using the data points in the neighbourhood of x, weighted by their distance from x. The neighbourhood includes a proportion γ of all the points; we adopted $\gamma = 1$, i.e., all points. A 2nd-order polynomial is then fit using weighted least squares, and each data point i receives the weight proportional to $\left(1 - \frac{d_i}{\max(d)}\right)^3$, where d_i is the distance of the data point i to x and $\max(d)$ is the maximum distance among the data points in the neighbourhood of x.

The fitted relations are shown in Fig. 6. Some properties such as ages and sSFR show a large scatter at low velocity dispersions. To estimate how the scatter varies with log σ_{eb}, we also computed the 16th and the 84th percentiles, q_{16} and q_{84}, of the distributions in bins of velocity dispersion and fitted the percentiles versus log σ_{eb} relations using the same approach described above.

For each galaxy, we then computed the normalized distance to the best fit:

$$\delta P = \frac{P - f_P(\log \sigma_{\text{eb}})}{\text{IPR}_P(\log \sigma_{\text{eb}})},$$

(3)

where $f_P(\log \sigma_{\text{eb}})$ is the best fit to the relation between the median value of the galaxy property P and log σ_{eb}, and IPR_P is the “interpercentile” range of the distribution of the property P for galaxies with a given velocity dispersion, defined as:

$$\text{IPR}_P(\log \sigma_{\text{eb}}) = f_P(\log \sigma_{\text{eb}}) - q_{16}(\log \sigma_{\text{eb}}), \quad \delta P < 0$$

$$\text{IPR}_P(\log \sigma_{\text{eb}}) = q_{84}(\log \sigma_{\text{eb}}) - f_P(\log \sigma_{\text{eb}}), \quad \delta P > 0$$

The errors in the fitted relations were estimated by bootstrapping the full sample 1000 times, and the 95% confidence intervals are shown as shaded areas in Fig. 6.

2.5 Differences in the star formation histories according to the single stellar population model

The star formation histories of the BC03 and V15 models turn out to be strikingly different for elliptical galaxies, as seen in Fig. 6: in comparison with the BC03 model, elliptical galaxies (within half of their virial radius of their groups) with the V15 model have formed half of their stellar masses at lower redshifts. While with BC03, elliptical galaxies formed very quickly, with 50% of their total stellar masses already formed 12 Gyr ago (Fig. 6c), with V15, 50% of the stellar mass is formed from ~8 to 11 Gyr ago, depending on their velocity dispersion (Fig. 6i). These differences are also clearly seen in log age$_{\text{f,50}}$ (compare Figs. 6f and 6h) and in the durations of star formation (compare Figs. 6g and 6k).

14 https://stat.ethz.ch/R-manual/R-patched/library/stats/html/loess.html
3 RESULTS

3.1 Stellar masses and velocity dispersions of BGGs and SBGGs in groups with large and small gaps

In Fig. 7, we compare the stellar masses and velocity dispersions of BGGs and SBGGs residing in groups with large (> 2 mag, 59 groups) and small (< 0.3 mag, 74 groups) magnitude gaps. For simplicity, we refer to groups with $\Delta M_{12} > 2$ and < 0.3 as large-gap (LGG) and small-gap groups (SGGs), respectively. At fixed halo mass, the stellar masses of BGGs in LGGs are ~ 0.2 dex greater than those of their counterparts in groups with small gaps (Fig. 7a), as previously noted by Díaz-Giménez et al. (2008) and Harrison et al. (2012). By construction, SBGGs in large-gap and small-gap groups have different log M_* distributions; the difference in stellar masses is ~ 0.6 dex in haloes with $\log(M_{\text{halo}}/M_\odot) \sim 13.5$ and ~ 0.8 dex for $\log(M_{\text{halo}}/M_\odot) \sim 13.1$ (Fig. 7b). Nevertheless, the log M_* versus log M_{halo} relations of BGGs and SBGGs in large-gap groups have slopes similar to that of their counterparts in SGGs. We fitted the $M_* \propto M_{\text{halo}}^{\alpha}$ relation and found $\alpha = 0.44 \pm 0.06$ and 0.39 ± 0.05 for BGGs in LGGs and SGGs, respectively. For the SBGGs, we get $\alpha = 0.51 \pm 0.11$ in LGGs and $\alpha = 0.38 \pm 0.05$ in SGGs.

On the other hand, BGGs in large-gap and in small-gap groups follow slightly different $M_* - \sigma_{e8}$ relations, as presented in Fig. 7c. Assuming that $M_* \propto \sigma_{e8}^{\beta}$, we obtain $\beta = 4.78 \pm 0.06$ for all BGGs in our sample, $\beta = 3.95 \pm 0.16$ for BGGs in SGGs, and a slightly steeper relation with $\beta = 5.61 \pm 0.26$ for BGGs in large-gap groups. Finally, we find that the slope of the SBGG $M_* - \sigma_{e8}$ relation is smaller than that of the BGG relation ($\beta = 4.30 \pm 0.08$, Fig. 7d).

3.2 Stellar populations and star formation histories versus magnitude gap

To explore the variations of the stellar population properties of elliptical BGGs and SBGGs with ΔM_{12}, we first correct the dependency of these properties with the galaxy velocity dispersion, as described in Section 2.4. In Fig. 8, we present the extinction- and k-corrected galaxy $g - i$ colour, the eClass parameter, the sSFR, and $[\alpha/Fe]$ values of the BGGs and elliptical SBGGs as a function of log σ_{e8} (panels a-d). The figure also shows (in panels e–h) the residuals δP (eq. [3]) of these properties as a function of magnitude gap. In each panel, we show the Kendall and Spearman correlation coefficients. We re-
repeated the same procedure for stellar ages, metallicities, \(\log \text{age}_{\text{petro}} \), and \(\log (\text{age}_{\text{petro}}/\text{age}_{\text{halo}}) \), as shown in Figs. 9 (BC03) and 10 (V15).

Once we correct for the trend with velocity dispersion, the BGGs and SBGGs appear to share the same properties regardless of the magnitude gap of the group where they reside. The statistical tests indicate that there is no significant trend of \(\sigma_{\text{e8}} \)-corrected properties with \(\Delta M_{12} \) for all the galaxy properties analysed (Figs. 8 to 10, panels c–l), except for the positive trend of SBGG sSFRs with gap (\(\tau = 0.13, \rho = 0.19, p = 0.02 \), Fig. 8k). However, this trend appear to be a consequence of galaxies having different fractions of light within the SDSS fibre, as we discuss in the next Section.

3.2.1 Aperture effects

All the quantities derived from SDSS spectra are affected by the small aperture (diameter = 3') of the fibre, which encompasses only the inner part of the observed galaxy. As discussed by several authors (e.g. Brinchmann et al. 2004; Salim et al. 2007; Guidi et al. 2015), the presence of age and metallicity gradients (Koleva et al. 2011; Pilkington et al. 2012; La Barbera et al. 2012; Eigenthaler & Zeilinger 2013; Hirschmann et al. 2015; Sánchez et al. 2015) can lead to biases and large uncertainties in the physical properties derived from the spectra. Although bright elliptical galaxies appear to have relatively flat age, metallicity, and colour gradients (Koleva et al. 2011; La Barbera et al. 2012; Eigenthaler & Zeilinger 2013), we investigate how our results are affected by aperture effects.

![Figure 7](image_url)

Figure 7. Stellar mass as a function of halo mass (left panels) and velocity dispersion (right panels) for the BGGs (upper panels) and SBGGs lower panels of groups with large (\(\Delta M_{12} > 2.0 \)) and small (\(\Delta M_{12} < 0.3 \)) magnitude gaps (respectively red dots and blue open squares). In panel (b), we indicate the Galaxy Zoo morphologies of the SBGGs by different symbols: elliptical (E), spiral (S), and galaxies with uncertain classification (U). The black solid lines shown in all panels are the best linear fits to the \(\log M_* \) vs. \(\log M_{\text{halo}} \) (panels a,b) and \(\log M_* \) vs. \(\log \sigma_{\text{e8}} \) (c,d) relations for all BGGs (a,c) or SBGGs (b,d) in our sample. The red and blue dashed lines are the best fits for galaxies in groups with \(\Delta M_{12} > 2.0 \) and < 0.3, respectively.

We computed the fraction of Petrosian \(r \)-band light within the fibre as \(f_{\text{e8}} = \text{dex} \left[-0.4 \left(m_{\text{petro}}^{\text{blue}} - m_{\text{petro}}^{\text{red}} \right) \right] \), where \(m_{\text{petro}}^{\text{blue}} \) and \(m_{\text{petro}}^{\text{red}} \) are the fibre and Petrosian magnitudes in \(r \)-band. The maximum value of \(f_{\text{e8}} \) among the BGGs is 33%, and 99% of our BGG sample have less than 28% of the light within the fibre. On the other hand, the SDSS spectra of SBGGs contains a larger fraction of the galaxy total luminosity, with values of \(f_{\text{e8}} \) varying from 6 up to 42% (for elliptical SBGGs). We, therefore, investigate if our results are affected by aperture effects by repeating the analysis for galaxies with similar values of \(f_{\text{e8}} \). Since the range of \(f_{\text{e8}} \) among the BGGs and the SBGGs is very different, we define different ranges of \(f_{\text{e8}} \) to select the subsamples of BGGs and SBGGs, as we describe below.

In Fig. 11 we show how the fraction of light within the fibre varies as a function of \(\Delta M_{12} \). We indicate the 5\(^{\text{th}}\) and 95\(^{\text{th}}\) percentiles of the distribution of \(f_{\text{e8}} \) in bins of gap for the BGGs and the SBGGs. For the BGGs, \(f_{\text{e8}} \) decreases with increasing \(\Delta M_{12} \), and 95 percent of the BGGs in LGGs have \(f_{\text{e8}} < 0.20 \). On the other hand, the 5\(^{\text{th}}\) (95\(^{\text{th}}\)) percentiles of the SBGG \(f_{\text{e8}} \) distributions in bins of \(\Delta M_{12} \) increases from 0.08 (0.30) for SBGGs in groups with \(\Delta M_{12} < 0.3 \) to 0.20 (0.41) in LGGs.

Therefore, to avoid selection effects when defining the subsamples of BGGs and SBGGs with similar \(f_{\text{e8}} \), we require that the \(f_{\text{e8}} \) limits are within the 5\(^{\text{th}}\) and 95\(^{\text{th}}\) of the distribution of \(f_{\text{e8}} \) in bins of \(\Delta M_{12} \), as illustrated in Fig. 11. We then define a subsample of 368 BGGs with \(10\% < f_{\text{e8}} < 20\% \) and another subsample of 63 elliptical SBGGs with \(20\% < f_{\text{e8}} < 30\% \), as shown in Fig. 11.

Following the approach presented in Section 2.4, we fitted the galaxy properties vs. velocity dispersion relations of all elliptical galaxies that lie within 0.5 \(r_{\text{vir}} \) from the BGG and have \(10\% < f_{\text{e8}} < 20\% \) (463 objects). We repeated the procedure for a sample with \(20\% < f_{\text{e8}} < 30\% \) (220 galaxies). The normalized distance to the best fit is computed using Eq. (3), and the results are presented in Tables 1 (BGGs) and 2 (SBGGs).

The correlation coefficients obtained for the BGGs with similar \(f_{\text{e8}} \) are very similar to the ones obtained for the whole sample, with no statistically significant trend with gap of any of the properties. On the other hand, the positive trend of sSFR with gap obtained for the whole sample of elliptical SBGGs (Fig. 8k) is no longer observed when we restrict the analysis to SBGGs with similar values of \(f_{\text{e8}} \), indicating that this trend might be due to aperture effects.

3.3 Second-ranked galaxies in large-gap groups

The distribution of masses, magnitudes, and morphological types of SBGGs in large-gap and in small-gap groups are very different, which makes the comparison between these galaxies very difficult. The fraction of elliptical galaxies among SBGGs in LGGs is smaller than in SGGs (12% and 45%, respectively), with Barnard’s test indicating high statistical significance (\(p < 10^{-4} \)). In Section 3.2, we focused on the variations of the elliptical SBGG properties with \(M_{\text{petro}}^{\text{vir}} \), since galaxy properties versus stellar mass relations of other morphological types have large scatter and are not as well defined as those of elliptical galaxies. Therefore, correcting the trends of properties with \(\log \sigma_{\text{e8}} \) (or \(\log M_* \)) for galaxies other than ellipticals is not straightforward.

To overcome this issue and address the question whether LGG SBGGs of other morphological types have any peculiar property, we built a control sample of galaxies with similar stellar masses and magnitudes as the general population of galaxies residing in groups with \(\Delta M_{12} < 2.0 \) mag by applying the Propensity Score.
Figure 8. Galaxy properties as a function of the magnitude gap. The upper panels (a–d) present the extinction- and k-corrected $g-i$ colour, the parameter e_{Class}, the specific star formation rate, and $[\alpha/\text{Fe}]$ as a function of the log σ_{e8}. The first and the second-ranked galaxies are represented by the red and black symbols, respectively. The solid lines indicate the best fit to the properties vs. velocity dispersion relations from Fig. 6, and the green dashed lines indicate the best fit to the properties vs. velocity dispersion relations from Fig. 8. The uncertainties in the fitted relations are shown as the grey shaded areas (see Sect. 2.4). The lower panels show the difference between first (e–h) and second-ranked (i–l) galaxy properties and the corresponding best-fit relation, normalized by the difference between the median and the 16th percentile (if $\delta < 0$) or the 84th percentile and the median (if $\delta > 0$, Equation 3). In each panel, we indicate the Kendall (τ) and Spearman (ρ) rank correlation coefficients, the p-values, and the fraction (f) of the 1000 realizations of the fit (see Section 2.4) that leads to $p < 0.05$.

Figure 9. Same as Fig. 8 (with the same notation), but for stellar ages and metallicities obtained with the BC03 model. The upper panels (a–d) present log age$_{50}$, log age$_{90}$, log(age$_{50}$/age$_{90}$), and metallicities as a function of log σ_{e8}.

MNRAS 000, 1–20 (2016)
Matching (PSM) technique (Rosenbaum & Rubin 1983). We used the MATCHIT package (Ho et al. 2011) written in R\(^15\) (R Core Team 2015). This technique allows us to select from the sample of galaxies in groups with \(\Delta M_{12} < 2.0\) mag a control sample in which the distribution of observed properties is as similar as possible to that of the SBGGs in LGGs. We adopted the logistic regression approach (see e.g. Hilbe 2009; de Souza et al. 2015) to compute the propensity scores and the nearest-neighbour method to perform the matching (see details in appendix B).

As we discuss in appendix B, LGGs are typically less massive than SGGs. We therefore limit our comparison to SBGGs in LGGs with \(\log(M_{halo}/M_\odot) < 13.7\). The control sample was selected among all satellite galaxies (i.e., rank \(\geq 2\)) within 0.5 \(r_{vir}\), with \(v_{los} < 2.7\sigma_e(R)\) (see Fig. 2), in groups with \(\Delta M_{12} \leq 2.0\) mag and \(13.1 \leq \log(M_{halo}/M_\odot) \leq 13.7\).

Figure 12 shows the distribution of absolute magnitudes, stellar masses and halo masses of the control sample before and after the PSM. We performed the matching by stellar mass\(^16\) and Fig. 12a illustrates the similarity of the distributions of stellar mass of the SBGGs and the control samples, as expected by construction. The distributions of SBGG absolute magnitudes and halo masses are compatible with those of the control sample, as shown in Fig. 12b,c. The sample of SBGGs in LGGs have a smaller fraction of spirals (20.8% of the LGG SBGGs and 25.5% of the control sample), and more ellipticals (9.4 and 8.4 percent) and galaxies with uncertain morphological classification (69.8 and 65.1 percent) than the control sample.

\(^{15}\)https://cran.r-project.org/

\(^{16}\)Note that the PSM technique is not necessary when only one variable is used; other simpler matching methods would work as well as PSM. However, PSM allows us to test how the results change when taking other galaxy properties into account for the matching (see Table 3).
Stellar populations of BGGs versus magnitude gap

4 DISCUSSION

4.1 Stellar populations of the brightest group galaxies

As discussed in Section 3.2.1 and shown in Fig. 11, the fixed aperture of the SDSS fibre might introduce biases in our results. However, the f_2 distributions of the LGG SBGGs and of the control sample are very similar, as indicated by a KS test ($p = 0.7$), and also by differences between their median values ($\Delta = 2.05\%$) and the quantile-quantile distances ($Q - Q = 1.5\%$, see Table 3).

In Figure 13, we compare the properties of the SBGGs in LGGs with those of the control sample. We applied the KS test as a comparison diagnostic, and we indicate the resulting p-value in each panel. No clear distinction between the distributions of galaxy properties can be observed, with all p-values being greater than 0.1.

In Fig. 14a, we revisit the projected phase space diagram of SBGGs (see Fig. 2) to distinguish LGGs from the control sample. While the distribution of normalized line-of-sight velocities of the SBGGs in LGGs resembles the corresponding distribution for the control sample, there appears to be an excess of LGGs whose SBGGs lie closer to the BGG than $\sim 0.25 r_{200}$. This appears more evident in Fig. 14b, which shows that the radial distributions (in virial units) of LGG SBGGs is shifted to smaller distances compared to that of galaxies in the control sample. A KS test indicates that the shift of the distribution of SBGG R_{25}/r_{200} to smaller radii in LGGs is significant ($p = 0.02$). The presence of a dominant BGG tends to bring the SBGGs closer in, which should lead to short times for the next merger between the BGG and the SBGG when the gap is large.

We repeated the matching by adding galaxy morphology and absolute magnitude in addition to stellar mass. As can be seen in Table 3, adding morphology and magnitude leads to similar results, i.e., there are no differences between the distribution of colour, ages, and metallicities of the SBGGs in LGGs and the control sample. On the other hand, we find an even larger difference between the radial distributions of LGG SBGGs and of the galaxies in the control sample ($p < 0.01$).

Figure 12. Stellar masses (top), absolute magnitudes (middle), and halo masses (bottom) before and after the PSM (see text for details). The red histograms show the distributions of $\log M_*$, M_{petro}, and $\log M_{\text{halo}}$ of second-ranked galaxies in groups with $\Delta M_{12} > 2.0$ mag. The properties of the general population of galaxies in groups with $\Delta M_{12} < 2$ mag (excluding the BGGs) are indicated by the black dashed lines. The control sample, drawn from the sample of galaxies in groups with $\Delta M_{12} < 2$ mag by applying the PSM technique, is shown as the green histograms. The curves are obtained by smoothing the positions of the data points (not the histograms) using a Gaussian kernel with standard deviation equal to one third of the standard deviation of the data points. In panels b and c we indicate the p-value of the KS test (median, 1 and 99-percentiles).

As discussed in Section 3.2.1 and shown in Fig. 11, the fixed aperture of the SDSS fibre might introduce biases in our results. However, the f_2 distributions of the LGG SBGGs and of the control sample are very similar, as indicated by a KS test ($p = 0.7$), and also by differences between their median values ($\Delta = 2.05\%$) and the quantile-quantile distances ($Q - Q = 1.5\%$, see Table 3).

In Figure 13, we compare the properties of the SBGGs in LGGs with those of the control sample. We applied the KS test as a comparison diagnostic, and we indicate the resulting p-value in each panel. No clear distinction between the distributions of galaxy properties can be observed, with all p-values being greater than 0.1.

In Fig. 14a, we revisit the projected phase space diagram of SBGGs (see Fig. 2) to distinguish LGGs from the control sample. While the distribution of normalized line-of-sight velocities of the SBGGs in LGGs resembles the corresponding distribution for the control sample, there appears to be an excess of LGGs whose SBGGs lie closer to the BGG than $\sim 0.25 r_{200}$. This appears more evident in Fig. 14b, which shows that the radial distributions (in virial units) of LGG SBGGs is shifted to smaller distances compared to that of galaxies in the control sample. A KS test indicates that the shift of the distribution of SBGG R_{25}/r_{200} to smaller radii in LGGs is significant ($p = 0.02$). The presence of a dominant BGG tends to bring the SBGGs closer in, which should lead to short times for the next merger between the BGG and the SBGG when the gap is large.

We repeated the matching by adding galaxy morphology and absolute magnitude in addition to stellar mass. As can be seen in Table 3, adding morphology and magnitude leads to similar results, i.e., there are no differences between the distribution of colour, ages, and metallicities of the SBGGs in LGGs and the control sample. On the other hand, we find an even larger difference between the radial distributions of LGG SBGGs and of the galaxies in the control sample ($p < 0.01$).

As discussed in Section 3.2.1 and shown in Fig. 11, the fixed aperture of the SDSS fibre might introduce biases in our results. However, the f_2 distributions of the LGG SBGGs and of the control sample are very similar, as indicated by a KS test ($p = 0.7$), and also by differences between their median values ($\Delta = 2.05\%$) and the quantile-quantile distances ($Q - Q = 1.5\%$, see Table 3).

In Figure 13, we compare the properties of the SBGGs in LGGs with those of the control sample. We applied the KS test as a comparison diagnostic, and we indicate the resulting p-value in each panel. No clear distinction between the distributions of galaxy properties can be observed, with all p-values being greater than 0.1.

In Fig. 14a, we revisit the projected phase space diagram of SBGGs (see Fig. 2) to distinguish LGGs from the control sample. While the distribution of normalized line-of-sight velocities of the SBGGs in LGGs resembles the corresponding distribution for the control sample, there appears to be an excess of LGGs whose SBGGs lie closer to the BGG than $\sim 0.25 r_{200}$. This appears more evident in Fig. 14b, which shows that the radial distributions (in virial units) of LGG SBGGs is shifted to smaller distances compared to that of galaxies in the control sample. A KS test indicates that the shift of the distribution of SBGG R_{25}/r_{200} to smaller radii in LGGs is significant ($p = 0.02$). The presence of a dominant BGG tends to bring the SBGGs closer in, which should lead to short times for the next merger between the BGG and the SBGG when the gap is large.

We repeated the matching by adding galaxy morphology and absolute magnitude in addition to stellar mass. As can be seen in Table 3, adding morphology and magnitude leads to similar results, i.e., there are no differences between the distribution of colour, ages, and metallicities of the SBGGs in LGGs and the control sample. On the other hand, we find an even larger difference between the radial distributions of LGG SBGGs and of the galaxies in the control sample ($p < 0.01$).
z ≈ 3.5 for central galaxies in LGGs and z ≈ 3.7 in SGGs, which corresponds to median ages of ≈ 11.8 and 12 Gyr. However, the difference of ≈ 0.2 Gyr in median age is not detectable with the time resolution of our SFH analysis.

Díaz-Giménez et al. furthermore show that, although LGGs assembled most of their virial mass at higher redshifts in comparison with SGGs, BGGs in LGGs merged later compared to their non-LGG counterparts: the last major merger in LGGs and SGGs occurred ≈ 4.3 Gyr and ≈ 4.7 Gyr ago (median), respectively. The stellar population synthesis (SPS) method can trace the SFHs, but not the merger history, i.e., it is possible to determine when the stars were formed but not when they were accreted to the BGG. However, a late wet merger followed by a burst of star formation could be identified in the SFH of a galaxy. But the typical time difference between the last major mergers in LGGs vs SGGs of 0.4 Gyr at a lookback time of over 4 Gyr ago is still challenging to detect in an SPS analysis.

Our results also show that the higher \(M_{\text{halo}}/L_r \) ratios in LGGs compared to that in LGGs found in several studies (Jones et al. 2003; Yoshioka et al. 2004; Khosroshahi et al. 2007; Proctor et al. 2011) are unlikely to be due to differences in the stellar population properties. Since we find no variation of stellar population properties with gap (i.e., \(M_* \)) independent of \(\Delta M_{12} \) and since the halo mass-to-luminosity ratios can be written as \(M_{\text{halo}}/L_r = (M_{\text{halo}}/M_*)(M_*/L_r) \), then any variation of \(M_{\text{halo}}/L_r \) with gap must be a consequence of differences in \(M_*/M_{\text{halo}} \) ratios. Therefore, the high halo mass-luminosity ratios of LGGs can be interpreted as low \(M_*/M_{\text{halo}} \) ratios, as previously suggested. Alternatively, the halo mass-luminosity ratios of LGGs could be, in fact, no different from that of SGGs, as suggested in other studies (e.g., Voepelkin et al. 2010; Harrison et al. 2012; Girardi et al. 2014). In a forthcoming paper (Trevisan et al. 2016), we will address the \(M_*/L_r \) and the \(M_*/M_{\text{halo}} \) ratios versus gap relations in more detail.

Finally, we repeated the analysis presented in Section 3.2 using stellar masses instead of velocity dispersions, and we find no statistically significant trend of the stellar mass-corrected properties with \(\Delta M_{12} \) for any of the BGG and the SBGG properties. In addition, we fitted the properties versus \(\log \gamma_{\text{rel}} \) relations using a second-order polynomial to investigate if a different fitting method affects our results. We also changed the number of bins by choosing bins of 50 galaxies instead of 100. In both cases, the resulting Kendall and Spearman correlation coefficients are very similar to those that we obtain when we fit the relations with LOESS using bins with 100 galaxies (see Section 2.4). Again, we find no significant trends of the residuals of stellar population diagnostics with magnitude gap, except, again for sSFR in SBGGs, but this trend is no longer significant (again) when we limit the range of the fraction of the luminosity within the fibre.
4.2 Projected separation between BGGs and SBGGs versus gap

The comparison between SBGGs and normal galaxies of all morphological types (Section 3.3) shows that the stellar populations of SBGGs in LGGs are statistically compatible with similar galaxies in normal groups (Figs. 13).

However, we find that SBGGs in LGGs lie significantly closer to the BGGs (in projection, Fig. 14). Dynamical friction should cause orbits to decay faster for galaxies whose subhalo masses are greater in terms of the halo (group) mass. But since our control sample was designed to have the same set of stellar masses as our LGG SBGGs, and since we found no trend of lower halo mass for the SBGG LGGs (Fig. 12c), one does not expect to have different orbital decay times. Therefore, the lower normalized radii of SBGGs in LGGs must indicate that these galaxies entered their groups at earlier times than the similar stellar mass galaxies of the control sample.

To estimate the time of entry, one can assume that the mean density scales as \(r^{-2} \) near the group scale radius (\(r_{\text{vir}}/4 \)), and also as \(t^{-2} \) (which is correct for \(\Omega_{\Lambda} = 1 \) and \(\Omega_{\Lambda} = 0 \)). Therefore, the time of entry scales roughly as the radius. According to Table 3 and Fig. 14b, the SBGGs in LGGs lie \(\Delta r \sim 0.05 \, r_{\text{vir}} \), closer to the BGG than similar galaxies in normal groups, which means that they entered the group \(\Delta t \sim \Delta r / r_{\text{vir}} \) earlier. Assuming the NFW profile at all times and that the physical density remains constant within the virial radius (see Mamon 1992), then we are able to compute the time of entry of a galaxy into a group through the relation

\[
\rho_{\text{mean}}(r, t = t_0) = \rho_{\text{mean}}(r_{\text{vir}} = r, t)
\]

which leads to solving

\[
\Delta(z) H^2(z) = \Delta(z = 0) H_0^2 \frac{\ln(c x + 1) - [c x / (c x + 1)]}{\ln(c) - [c / (c + 1)]}
\]

where \(x = r / r_{\text{vir}} \) (\(z = 0 \)) and \(c \) is the concentration. Solving eq. (5) by shifting \(x \) by \(-0.05 \, r_{\text{vir}} \) and comparing the results, we obtain \(\Delta t = 600 \) Myr.

One may wonder whether the viral radii of LGGs could have been overestimated, leading to lower \(H / r_{\text{vir}} \) values for SBGGs within these groups. However, the group masses determined by Yang et al. catalogue (hence the radii derived from them) are not expected to be biased by the magnitude gap, since the abundance matching between observed groups and the theoretical halo mass function is performed using the total group luminosity. On the other hand, if LGGs really have abnormally high \(M_{\text{halo}} / L_r \), as suggested by many authors (Jones et al. 2003; Yoshikawa et al. 2004; Khosroshahi et al. 2007; Proctor et al. 2011; but see Voevodkin et al. 2010; Harrison et al. 2012; Girardi et al. 2014 for an alternative view), Yang et al. could have underestimated the halo masses of LGGs, since they derive halo masses from group optical luminosities with abundance matching. Therefore, the group virial radii may have been underestimated for the LGGs, and hence the normalized projected distances between the SBGGs and BGGs in LGGs may be even smaller, meaning that SBGGs in LGGs may have entered the group more than 600 Myr earlier than similar galaxies in regular groups.

If the earlier entry scenario is correct, and given the known segregation of fraction of quenched (or inversely of star-forming) galaxies (e.g., von der Linden et al. 2010; Mahajan et al. 2011), one...
would expect that the radial segregation of SBGG in LGGs relative to galaxies of the same stellar mass in regular groups would lead to the former having older stellar populations. Nevertheless, we do not observe any difference between the ages of LGG SBGGs and those of similar galaxies in regular groups. In addition, the fractions of star-forming galaxies (log[sSFR/yr] > -11) among the LGG SBGGs and galaxies in the control sample are very similar (25% and 34%, respectively), with Barnard’s test indicating low statistical significance (p > 0.1).

4.3 Fossil versus large-gap groups

In the formal definition (Jones et al. 2003), a group is classified as fossil if its bolometric X-ray luminosity is greater than $10^{42} h^{-2}_7$ erg s$^{-1}$ (in addition to the $\Delta M_{12} > 2$ mag within $0.5 r_{vir}$). Therefore, since our sample definition does not include the X-ray criteria, some of our LGGs might not be FGs17.

Fossil groups are believed to be systems that have assembled their masses at relatively early times. However, according to Raouf et al. (2014), who analyzed a semi-analytical model of galaxy formation, only a fraction of large-gap groups are in fact “old” systems, i.e., assembled at least half of their total mass at $z > 1$. Raouf et al. predict that $\sim 85\%$ of groups with $2 < \Delta M_{12} < 2.5$ and r-band luminosities between 1.9×10^{10} and $2.0 \times 10^{11} h^{-2} L_{\odot}$ are “old” groups. The fraction of old systems decreases to $\sim 50\%$ among high luminosity groups ($2.0 \times 10^{11} < L_r < 5.7 \times 10^{11} h^{-2} L_{\odot}$).

Given that 54 (91\%) of our large-gap groups have luminosities $< 2 \times 10^{11} h^{-2} L_{\odot}$, and all of them have are less luminous than $5 \times 10^{11} h^{-2} L_{\odot}$, we estimate the fraction of old groups (i.e., true FGs) in our sample to be $\sim 80\%$ according to the predictions of Raouf et al. However, since the assembly history of haloes cannot be directly observed, it is very difficult to compare predictions from simulations and observations. So, although a connection between LGGs and FGs must exist, determining the exact relation between these two classes of systems is challenging. Hence, it is not clear whether our conclusions on the lack of differences in the SFHs of BGGs and SBGGs within LGGs and SGGs may be generalized to the 1st and the 2nd-ranked galaxies in fossil vs. non-fossil groups.

17 However, we note that according to Darush et al. (2007), groups with log(M_{halo}/M_{\odot}) \geq 13.2 are typically X-ray FGs.
5 SUMMARY AND CONCLUSIONS

In this study, we used a complete sample of 550 SDSS groups to investigate how the properties and star formation histories of the BGGs (restricted to elliptical morphologies) and SBGGs vary with the magnitude gap, after removing the dependences with velocity dispersion and stellar mass. We computed galaxy median ages, the lookback times at which 90% of the total stellar mass was formed, mass-weighted metallicities, and [α/Fe]. We also examined galaxy colours, specific star formation rates, and the eClass parameter.

While the trends of stellar populations with velocity dispersion (or stellar mass) often show major differences according to the chosen single stellar population model, several conclusions stand out, all of which are independent of the adopted spectral model:

- After correcting for trends with velocity dispersion, the BGGs follow the same distributions of $g – i$ colour, eClass values, sSFRs, [α/Fe] (Fig. 8c–h), ages, metallicities, and SFHs derived with both the Vazdekis et al. (2015) and the Bruzual & Charlot (2003) models (Figs. 9e–h and 10e–h), regardless of the magnitude gap of their host group. We analysed a subsample of BGGs with similar fraction of their total luminosity within the aperture of the SDSS fibre (Table 1), and still no trend of BGG properties with ΔM_{12} is observed.

- We found that elliptical SBGGs in groups with large gaps are very similar to those in small-gap groups, and the analysis of an homogeneous sample of SBGGs shows that there are no significant trends of their properties with gap.

- Similarly, the stellar population properties of SBGGs of all morphologies in groups with $\Delta M_{12} > 2.0$ mag are very similar to the general population of galaxies with similar stellar masses (Fig. 13).

- The projected separation between SBGGs and BGGs is smaller in groups with large gaps than galaxies with similar stellar masses and magnitudes residing in normal groups (Fig. 14). This appears to be due to the earlier entry of SBGGs within their now large-gap groups by \sim 600 Myr compared to similar galaxies in normal groups.

In a companion paper (Trevisan, Mamon & Khosroshahi 2016), we shed light on the merger histories of brightest group
galaxies, thus constraining both their mass assembly histories and star formation histories.

ACKNOWLEDGMENTS

The authors thank the anonymous referee for very detailed, thoughtful, and constructive comments that led to significant improvements in our manuscript. MT acknowledges financial support from CNPq (process #204870/2014-3). MT acknowledges T. C. Moura for kindly providing us with the spectral indices measurements used to obtain our [α/Fe] estimates (Section 2.3.2). MT thanks the COIN collaboration (https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics) for providing the script to apply the PSM to our data. The preliminary version of the script was developed during the 2nd COIN Residence Program (http://iaacoin.wix.com/crp2015); more details can be found in de Souza et al. (2016). We acknowledge the use of SDSS data (http://www.sdss.org/collaboration/credits.html) and TOPCAT Table/VOTable Processing Software (Taylor 2005, http://www.star.bris.ac.uk/~mbt/topcat/).
APPENDIX A: CONVERSION FROM YANG $R_{180,M}$ TO $R_{200,C}$

The Yang et al. (2007) group catalogue provides group masses defined at the radius where the mean density is $\Delta_Y = 180$ times the mean density of the Universe, $\bar{\rho}_Y(z)$, at the group redshift. Thus, at $z = 0$ and with $\Omega_{m,0} = 0.238$ adopted by Yang et al., the Yang group virial radius, $r_Y \equiv r_{\text{vir,Y}}$, corresponds to a mean density of $180 \Omega_{m,0} \approx 42.8$ times the critical density of the Universe, $\rho_{c,0} \equiv \rho_c(0)$, where

$$\rho_c(z) = \frac{3 H^2(z)}{8 \pi G}.$$ \hspace{1cm} (A1)

The Yang group mean density can be written

$$\bar{\rho}_Y = 180 \bar{\rho}_m(z) = 180 \Omega_m(z) \rho_c(z) = 180 \Omega_{m,0} (1 + z)^3 \rho_{c,0}.$$ \hspace{1cm} (A2)

We now define the groups at the radius r_{200} where the mean density is 200 times the critical density

$$\bar{\rho}_{200} = 200 \rho_c(z),$$ \hspace{1cm} (A3)

so that the mass within the virial radius is

$$M_{200} = 100 \frac{H^2(z) r_{200}^3}{G}.$$ \hspace{1cm} (A4)

From equations (A2) and (A3), the ratio of mean densities is

$$\frac{\bar{\rho}_Y}{\bar{\rho}_{200}} = 0.9 \Omega_{m,0} (1 + z)^3 \frac{E^2(z)}{E^2(z)},$$ \hspace{1cm} (A5)

where $E(z) = H(z)/H_0 = \sqrt{\Omega_{m,0}(1 + z)^3 + 1 - \Omega_m}$ for a flat Universe.

Assuming an NFW model (Navarro et al. 1996) for the mass distribution in the groups, the mean density profile can be expressed as

$$\bar{\rho}(r) = \bar{\rho}(a) \tilde{\rho}\left(\frac{r}{a}\right),$$ \hspace{1cm} (A6)

where

$$\tilde{\rho}(x) = \frac{M(x)}{x^3},$$ \hspace{1cm} (A7)

$$\tilde{M}(x) = \frac{M(a x)}{M(a)} = \frac{\ln(x + 1) - x/(x + 1)}{\ln(2 - 1/2)},$$ \hspace{1cm} (A8)

with $\tilde{\rho}(1) = \tilde{M}(1) = 1$. Since the scale radius a is fixed, equations (A5) and (A6) lead to

$$\frac{\bar{\rho}_Y}{\bar{\rho}_{200}} = \frac{\tilde{\rho}(c_Y)}{\tilde{\rho}(c_{200})} = 0.9 \Omega_{m,0} (1 + z)^3 \frac{E^2(z)}{E^2(z)},$$ \hspace{1cm} (A9)

where $c_{200} = r_{200}/a$ and $c_Y = r_Y/a$. We can use the concentration-mass relation for ΛCDM halos (that of Maccio et al. 2008), $c_{200} = c_{\Lambda CDM}(M_{200})$, and we write the Yang concentration parameter as

$$c_Y = c_{200} \frac{r_Y}{r_{200}} = c_{\Lambda CDM}(M_{200}) \left[\frac{M_Y}{M_{200}} \frac{\bar{\rho}_{200}}{\bar{\rho}_Y} \right]^{1/3} = \frac{200}{180 \Omega_{m,0}} c_{\Lambda CDM}(M_{200}) E^{2/3}(z) \left(\frac{M_Y}{M_{200}} \right)^{1/3}. $$ \hspace{1cm} (A10)

Combining equations (A5) and (A10), one can solve

$$\tilde{M} \left(\frac{0.9 \Omega_{m,0}^{-3/2} c_{\Lambda CDM}(M_{200}) \left[E^{2/3}(z)/(1 + z) \right] (M_Y/M_{200})^{1/3}}{\tilde{M} \left[c_{\Lambda CDM}(M_{200}) \right]} \right) M_{200} = M_Y $$ \hspace{1cm} (A11)

for M_{200}, where we used using equations (A7) and (A8), where the $(\ln 2 - 1/2)$ term in the latter scales out.

The virial radius r_{200} is then obtained by inverting equation (A4) to give

$$r_{200} = \left(\frac{1}{100} \frac{G M_{200}}{H_0^2} \right)^{1/3} \simeq 432 \left(\frac{M_{200}}{10^{13} M_\odot} \right)^{1/3} \text{kpc}$$ \hspace{1cm} (A12)

for $H_0 = 73 \text{km s}^{-1} \text{Mpc}^{-1}$, as adopted by Yang et al.
We adopted the logistic regression approach to compute the propensity scores. Given a set \(\mathbf{X} \) of measured covariates (i.e., galaxy properties), the coefficients \(\beta \) are linearly fit according to the linking function defined as

\[
Y = \ln \left(\frac{\mu}{1 - \mu} \right),
\]

(B1)

where \(Y_i = X_i / \beta_i \), and the propensity scores are then given by

\[
\mu = \frac{1}{1 + \exp(-Y)}.
\]

(B2)

We used the nearest-neighbour method to perform the matching, i.e., the treated unit \(i \) is matched to the untreated unit \(j \) in such a way that the distance \(|p_i - p_j| = \min_{k \in \mathcal{F}} \{|p_i - p_k|\} \). We allow control units to be discarded, and the model for distance measure is re-estimated after units are discarded. The match between the treated units with control units are made in random order, and we performed the matching procedure 1000 times. In each time, we create a control sample with twice as many objects as the treated sample, and computed the KS \(p \)-values for all the galaxy properties. The values shown in Figs. 12 to 14 correspond to the median, 1, and 99-percentiles of the resulting distributions of \(p \)-values.

We first performed the match by \(\log M_{\text{halo}} \) and \(\log M_\star \), as shown in Fig. B1a. Around 48\% of the galaxies in the untreated sample reside in haloes with \(\log(M_{\text{halo}}/M_\odot) > 13.7 \) (Fig. B1a). On the other hand, only 10\% of the groups with \(\Delta M_{12} > 2 \) are more massive than \(\log(M_{\text{halo}}/M_\odot) > 13.7 \). As a consequence, untreated control units with \(\log(M_{\text{halo}}/M_\odot) < 13.7 \) are very likely be matched to the treated sample, regardless of their \(\log M_\star \) value (i.e., the coefficient \(\beta \) for \(\log M_{\text{halo}} \) is much greater than that for \(\log M_\star \)), and the stellar mass becomes less important during the matching procedure. Since many studies suggest that the galaxy properties are more correlated with stellar mass than to the environment where the galaxy reside (e.g. Balogh et al. 2009; McGee et al. 2011; Trevisan et al. 2012; Woo et al. 2013, but see also Peng et al. 2010; von der Linden et al. 2010; Mahajan et al. 2011), it is desirable to get an agreement between the stellar mass distribution better than the one shown in Fig. B1b.

To overcome this issue, one option would be using the propensity score as only part of the matching distance, adding another distance to emphasise the variable of interest (E. Cameron, private communication; see also page 8 in Caliendo & Kopeinig 2008). However, the MATCHIT package does not include variable weighting, and implementing this approach is out of the scope of this paper. Instead, in Section 3.3, we restricted the comparison between SBGGs in LGGs and regular galaxies to groups with \(\log(M_{\text{halo}}/M_\odot) < 13.7 \), and perform the matching by galaxy properties only.

REFERENCES

Abazajian K. N., et al., 2009, ApJS, 182, 543
Alam S., et al., 2015, ApJS, 219, 12
Balogh M. L., et al., 2009, MNRAS, 398, 754
Bernardi M., et al., 2003, AJ, 125, 1849
Blanton M. R., et al., 2003, AJ, 125, 2348
Bressan A., Fagotto F., Bertelli G., Chiosi C., 1993, A&A, 100, 647
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G., Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151

\(^{(18)} \) Other two options are matching from the largest value of the distance measure to the smallest and the other way around.
de la Rosa I. G., de Carvalho R. R., Vazdekis A., Barbuy B., 2007, AJ, 133, 330
van den Bosch F. C., et al., 2007, MNRAS, 376, 841
von der Linden A., Wild V., Kauffmann G., White S. D. M., Weinmann S., 2010, MNRAS, 404, 1231