Phylogenetic diversity and spatiotemporal dynamics of bacterial and microeukaryotic plankton communities in Gwangyang Bay of the Korean Peninsula

Dukki Han1,2*, Hanseob Shin2, Ji-Hoon Lee3, Chang-Keun Kang2, Dong-Gyun Kim4 & Hor-Gil Hur2

Nutrient dynamics function globally, flowing from rivers to the ocean (estuarine–coastal zone), and are vulnerable to climate change. Microbial habitats can be affected by marine nutrient dynamics and may provide a clue to predict microbial responses to environmental heterogeneity in estuarine–coastal zones. We surveyed surface seawater in Gwangyang Bay, a semi-enclosed estuary in Korea, from 2016 to 2018 using a metabarcoding approach with prokaryotic 16S and eukaryotic 18S rRNA genes. Bacterial and microeukaryotic communities in these waters showed distinct local communities in response to environmental heterogeneity and community transition at spatiotemporal scales in the estuarine–coastal zone. The relative abundance of prokaryotic and eukaryotic operational taxonomic units suggested a microbial trophic interaction in the Gwangyang Bay waters. We found that the community assembly process in prokaryotic communities was primarily influenced by biological interaction (immigration–emigration), whereas that in eukaryotic communities was more affected by environmental stress (habitat specificity) rather than by biotic factors. Our findings in the Gwangyang Bay waters may provide information on underlying (biotic or abiotic) factors of the assembly process in microbial communities in the estuarine–coastal zone.

The estuarine–coastal transitional zone has a strong gradient of the salinity and organic matters from rivers to the ocean, and the organic-rich river waters contribute to nutrient cycling in the marine environment. The marine nutrient cycle in the coastal zone is generally linked to river discharge and the subsequent mixing with coastal waters. The river discharge regulates freshwater input and organic matter contents, and such regulating factors vary seasonally in temperate estuaries. The recent observation argued that the estuaries under the climate change may be more concerned than the early prediction. Various information on the response of the estuarine–coastal zone to the climate change is required for more accurate prediction. Useful predictive models in the coastal system need to consider the effect of biological contribution as well as the physical and biogeochemical factors. For example, climate-related changes in the marine environment and their possible impacts on biodiversity in vulnerable ecosystem deserve more consideration. In particular, the microbial contribution to marine nutrient dynamics is an important issue, and numerous oceanic surveys have been performed to increase the understanding of microbial habitats in marine environments.

Gwangyang Bay (GB), a semi-enclosed estuary, forms the estuarine–coastal zone at the southern tip of the Korean Peninsula and is a suitable area to monitor the spatiotemporal variability of environmental heterogeneity.
in the estuarine–coastal zone18–21. Furthermore, a recent metabarcoding survey of GB revealed that water mass mixing shapes bacterial communities in the estuarine–coastal zone and provided valuable insights into bacterial contributions to phytoplankton-derived organic matter under seasonal variation and phylogenetic bacterial diversity at euphotic depths16. Although the previous GB survey by Han et al.16 improved our understanding of the phylogenetic structuring (phylogenetic over-dispersion or clustering) of bacterial communities in the estuarine–coastal zone, the ecological significance of eukaryotic communities and its comparison with that of prokaryotic communities remains unknown. However, considering the preliminary findings of Han et al.16, GB may provide fundamental information regarding the phylogenetic responses of microbial (prokaryotic and eukaryotic) communities to the seasonal climate change in the estuarine–coastal zone.

The phylogenetic turnover of local communities is estimated using the net relatedness index (NRI), nearest taxon index (NTI), and β-nearest taxon index (βNTI)22,23. Briefly, NRI and NTI can determine the influence of biotic and abiotic factors on community assembly with two phylogenetic structuring patterns: (1) phylogenetic over-dispersion (biotic interaction with immigration–emigration) and (2) phylogenetic clustering (abiotic interaction with habitat specificity). In addition, βNTI can be used to predict the relative influence of deterministic (environmental selection) and stochastic (ecological drift or dispersal ability) processes in microbial assemblages in various environments23–29.

The present study primarily aimed to estimate the phylogenetic diversity of prokaryotic and eukaryotic communities and their ecological significance at the spatiotemporal scale in the estuarine–coastal zone. The microbial diversity and community composition in surface seawater (< 0.3 m depth) in GB were surveyed using a metabarcoding approach with prokaryotic 16S and eukaryotic 18S rRNA genes. Furthermore, the phylogenetic diversity was estimated using ecological statistics with metabarcoding sequences.

Results

Environmental heterogeneity in the estuarine–coastal zone. Nine sampling stations in GB (stations 1–9) were selected. The endpoint of water mass mixing between stations 3 and 4 was determined on the basis of their geographic locations (Fig. 1a), and the temperature-salinity gradient (Fig. 1b) driven by the mixing of water masses was analyzed as previously reported16. GB metadata were assigned to two water types such
as estuarine (stations 1–3) and coastal (stations 4–9) according to the previous separation of GB waters16, and their spatiotemporal distribution was explained using principal component analysis (PCA) with water mass properties (temperature, salinity, PO\textsubscript{4}, NH\textsubscript{4}, NO\textsubscript{2}, NO\textsubscript{3}, SiO\textsubscript{2}, and ChlA). In the present study, environmental heterogeneity under the extended temporal scale against the previous study16 revealed the similar PCA pattern (Fig. 1c) to the previous pattern16, indicating the consistence of seasonal water mass mixing in GW. Permutational multivariate analysis of variance (PERMANOVA) supported the spatiotemporal separations of PCA with a significance level of $R^2 = 0.46$ and $P < 0.01$ between estuarine and coastal types and of $R^2 = 0.28$ and $P < 0.01$ among sampling times (Table S1). The post-hoc PERMANOVA showed that most of the pairwise comparisons of sampling times within the coastal type were significantly different ($P < 0.01$), whereas the comparisons of sampling times within the estuarine type were not significant ($P > 0.01$) (Table S1).

Microbial diversity and community composition at the spatiotemporal scale. A total of 1,808,000 sequences (1,027,000 sequences of prokaryotic 16S rRNA gene from 79 samples and 781,000 sequences of eukaryotic 18S rRNA gene from 71 samples) were obtained from GB waters. These sequences were independently clustered into 6092 prokaryotic and 2693 eukaryotic operational taxonomic units (OTUs) to analyze microbial diversity (alpha and beta) and community composition. The indices of alpha diversity (species richness) in both prokaryotes and eukaryotes showed relatively similar distributions in estuarine and coastal types and moved up and down the temporal scale periodically (Fig. S1). This alpha diversity distribution revealed a significant negative correlation with temperature change in the GB ($P < 0.05$). In particular, the prokaryotic indices of Chao and Ace were more strongly correlated (Chao: -0.56 and Ace: -0.57) than the eukaryotic indices (Chao: -0.30 and Ace: -0.22) (Fig. 2). Non-metric multidimensional scaling (NMDS) used to view microbial beta diversity (Fig. S2) revealed the community transitions of prokaryotes and eukaryotes in GW waters at the spatiotemporal scale. The beta diversity patterns in prokaryotes and eukaryotes were statistically supported by analysis of molecular variance (AMOVA) (Table S2). The spatial separation between estuarine and coastal types was significant in both prokaryotic ($P < 0.01$) and eukaryotic ($P < 0.01$) communities, and in the temporal separation, the two communities showed a significant difference among the sampled months ($P < 0.01$). Particularly, in prokaryotic communities, there were significant differences in all pairwise comparisons, except in the pair of March and November 2018 ($P > 0.01$). Similarly, eukaryotic communities revealed significant differences in most pairs of temporal comparisons, except in three pairs ($P > 0.01$; June 2017 and May 2018, March and May 2018, and May and November 2018). Overall, the beta diversity patterns indicated the existence of local prokaryotic and eukaryotic communities in response to the spatiotemporal separation in GB waters.

Microbial communities in GB waters are characterized by a few major prokaryotic and eukaryotic taxa (with a frequency of more than 1% in the sum of sequences) at the phylum level. Further, 99.96% of the prokaryotic sequences were bacterial sequences; however, there were only 0.04% archaeal sequences. Among the major prokaryotic taxa, Proteobacteria (48.71%) were predominant, followed by Bacteroidetes (19.65%), Actinobacteria (11.78%), Verrucomicrobiota (8.24%), Cyanobacteria (5.35%), Planktomyctetota (2.22%), and Firmicutes...
Although the relative abundances of these prokaryotic taxa showed a variable distribution in GB waters, this variation indicated distinctive local communities, as shown by the beta diversity data (Fig. S3). Particularly, the distribution of heterotrophic Proteobacteria, Bacteroidetes, and Actinobacteria showed remarkable changes in response to the spatiotemporal separation. In contrast, eukaryotic sequences originated from phytoplankton (74.96%), zooplankton (18.66%), fungi (5.47%), fish (0.14%), and unknown eukaryotic sequences (5.47%). The eukaryotic communities comprised the following major eukaryotic taxa: Diatomea (35.69%, phytoplankton), Dinoflagellata (30.54%, phytoplankton or zooplankton), Ciliophora (16.01%, zooplankton), Ascomycota (3.63%, fungi), Cryptophyceae (3.55%, phytoplankton), Chlorophyta (2.70%, phytoplankton), Ochrophyta (2.26%, phytoplankton), and Cnidaria (1.42%, zooplankton). Similar to the relative abundance of prokaryotic taxa, that of these major eukaryotic taxa represented the distinctive local communities in GB waters, and the predominant phytoplankton populations (Diatomea and Dinoflagellata) revealed spatiotemporal variations (Fig. S3). Among these major prokaryotic and eukaryotic taxa, the relative abundance of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Dinoflagellata, Chlorophyta, and Cnidaria was significantly correlated with the gradient of temperature or salinity (Table S3), and Actinobacteria showed a strong correlation with the salinity change (cor: −0.63).

Phylogenetic diversity patterns. From the prokaryotic (n = 6092) and eukaryotic (n = 2693) OTUs, the 500 most abundant OTUs (accounting for 96.19% of total prokaryotic sequences and 97.29% of eukaryotic sequences) were selected for further calculation of NRI, NTI, and βNTI because of limited computing resources. Phylogenetic structuring patterns were determined using NRI and NTI values: phylogenetic over-dispersion (NRI and NTI < 0), which implies the assembly of microbial communities under biological interactions, or phylogenetic clustering (NRI and NTI > 0) for the assembly process associated with abiotic factors. GB waters showed a distinguishable balance of phylogenetic structuring between prokaryotic and eukaryotic communities. For example, most prokaryotic communities from 79 GB waters (53 coastal and 26 estuarine samples) were classified as over-dispersed type (n = 63), followed by clustered (n = 13) and ambiguous type (n = 3; NRI < 0 and NTI > 0, NRI < 0 and NTI > 0) (Fig. 3a). Of prokaryotic communities, coastal waters (n = 53) were primar-
ily classified as over-dispersed type (n = 50), whereas estuarine waters (n = 26) were in over-dispersed (n = 13) or clustered type (n = 10). In contrast, the eukaryotic patterns of phylogenetic structuring in 71 GB waters (47 coastal and 24 estuarine samples) comprised mostly of clustered type (n = 47), and the remaining waters were of the over-dispersed type (n = 15) or ambiguous type (n = 9) (Fig. 3b). Of eukaryotic communities, most of coastal waters (n = 24) were classified as clustered type (n = 15), whereas estuarine waters (n = 10) were similarly in over-dispersed (n = 11) and ambiguous type (n = 10). Interestingly, the predominant patterns of both prokaryotic (over-dispersed type) and eukaryotic (clustered type) communities occurred primarily in the GB coastal waters. βNTI values were calculated to determine the relative influence of deterministic (|βNTI|> 2) and stochastic (|βNTI|< 2) processes on community assembly23,27 in GB waters. The assembly of prokaryotic communities was primarily dominated by the stochastic process (Fig. 4a), whereas more than half of the coastal waters (53%) in eukaryotic communities were influenced by the deterministic process (Fig. 4b).

Spatiotemporal distribution and microbial association network of prokaryotic and eukaryotic OTUs. The 10 most abundant prokaryotic and eukaryotic OTUs were selected from the total microbial OTUs, and their distribution was visualized using a heatmap with indicator species analysis. The taxonomy of prokaryotic and eukaryotic OTUs was identified against the NCBI database (https://www.ncbi.nlm.nih.gov/). Overall, the heatmap visualization of the 10 most abundant prokaryotic OTUs partially represented the spatiotemporal variation of GB waters (Fig. 5a). Particularly, prokaryotic OTU1, OTU6, OTU7, and OTU9 significantly occurred in coastal waters (indicator value >0.6, P<0.01); however, their distribution showed less or non-significant temporal (month) specificity (indicator value <0.6, P>0.01) (Table S4). The other prokaryotic OTUs had non-significant spatial (type) specificity (indicator value <0.6, P>0.01), whereas OTU2 and OTU5 significantly occurred in February 2017 and November 2016 (indicator value >0.6, P<0.01), respectively (Table S4). The 10 most abundant prokaryotic OTUs were taxonomically identified as Proteobacteria (OTU1, OTU3, OTU4, OTU5, and OTU9), Actinobacteria (OTU6 and OTU10), Verrucomicrobiota (OTU2), Cyanobacteria (OTU7), and Bacteroidetes (OTU8), and these taxonomies are all common bacteria in GB waters16.

Similar to the prokaryotic OTUs, the 10 most abundant eukaryotic OTUs showed the spatiotemporal variation in GB waters (Fig. 5b). For example, eukaryotic OTU1, OTU2, and OTU5 significantly occurred in coastal waters (indicator value >0.6, P<0.01) but was not specific for the temporal separation (indicator value >0.6 or P>0.01) (Table S4). In contrast, eukaryotic OTU8 was significantly distributed in estuarine waters (indicator value >0.6, P<0.01) but was less specific for the temporal separation (indicator value <0.6) (Table S4). Of the other eukaryotic OTUs, the distributions of OTU3, OTU6, and OTU7 were specifically observed during summer (June and August) in 2016 (indicator value >0.6, P<0.01), and OTU10 was specifically distributed in February 2017 (indicator value >0.6, P<0.01) (Table S4). These eukaryotic OTUs were taxonomically assigned to

Figure 4. The relative influence of deterministic and stochastic processes in microbial communities using β-Nearest Taxon Index (βNTI). (a) Prokaryotic community and (b) eukaryotic community. βNTI values determine the relative influence of deterministic (|βNTI|> 2) and stochastic (|βNTI|< 2) processes on community assembly.
Figure 5. Heat-map visualization for distribution of microbial operational taxonomic units (OTUs). (a) Prokaryotic OTUs and (b) eukaryotic OTUs. Numbers in red line box indicate the GB stations.
Dinoflagellata (genera Karenia [OTU1] and Noctiluca [OTU2]), Diatomea (genera Chaetoceros [OTU3, OTU5, and OTU7], Thalassiosira [OTU4], and Cyclotella [OTU6]), and Ciliophora (genera Didinium [OTU8] and Pseu dodontonia [OTU10]). Interactions among these prokaryotic and eukaryotic OTUs with environmental factors were evaluated using the spearman correlation, and their co-occurrence patterns were visualized in the network association (Fig. 6). The network co-occurrence analysis revealed that most of prokaryotic OTUs except for two network nodes (OTU3 and OTU5) were widely connected with other OTUs. In the network association, the isolated nodes with no edge indicate none of interaction at significant level (correlation coefficient < 0.5, P > 0.05).

Discussion

In GB waters, diversity and community composition of prokaryotes and microeukaryotes was surveyed at the spatiotemporal scale using the 16S and 18S rRNA gene metabarcoding approach. The biogeographic patterns of microbial communities represent the environmental heterogeneity at the spatiotemporal scale in the estuarine–coastal zone. The indices of alpha diversity revealed that the estuarine and coastal water types have similar levels of species richness in both prokaryotic and eukaryotic communities and that the microbial species richness is in response to temperature change, indicating the seasonality differences. Moreover, the patterns of beta diversity observed from NMDS and AMOVA supported that the prokaryotic and eukaryotic communities in GB waters are distinguishable at the spatiotemporal scale. In particular, the local community compositions in response to the spatiotemporal separations were represented by the population dynamics of major prokaryotic and eukaryotic taxa.

The network co-occurrence analysis for prokaryotic and eukaryotic OTUs implies their biological interactions including predation, cross-feeding, mutualism, and competition. For example, the strong positive interaction between heterotrophic bacterium (prokaryotic OTU1) and protist (eukaryotic OTU8) suggests a trophic role of protozoans, responsible for energy transfer from primary producers (bacteria and phytoplankton) to fish in

Figure 6. A microbial association network with environmental factors. In the network, each node represents the prokaryotic and eukaryotic OTUs in figure (blue circles: prokaryotic OTUs; green circles: Diatomea OTUs; yellow circles: Dinoflagellata OTUs; red circles: Ciliophora OTUs) or environmental factors in Fig. 1c (grey diamonds). The size of OTU nodes represents its sum of relative abundance, and the edges connecting the nodes (OTUs and environmental factors) represent their correlations. Of the edges, edge (line) thickness indicates the correlation coefficient (the thicker the line, the stronger correlation), and the solid lines and dotted lines represent positive and negative correlations, respectively. The isolated nodes with no edge indicate none of interaction at significant level (correlation coefficient < 0.5, P > 0.05).
the marine food web system. Similarly, a photosynthetic dinoflagellate (eukaryotic OTU1) showed interactions with heterotrophic Roseobacter clade (OTU4) and SAR86 clade (OTU9) bacteria, which possess metabolic pathways for degrading phytoplankton-derived organic matter. Furthermore, the strong negative relation between heterotrophic bacterium (prokaryotic OTU2) and cyanobacterium (prokaryotic OTU7) implies bacterial degradation of cyanobacterial necromass. In contrast to prokaryotic nodes, eukaryotic OTUs were more wide connected with environmental factors rather than OTU nodes. Only two eukaryotic OTUs (OTU1 and OTU8) were strongly linked to other OTUs, and most of eukaryotic OTUs were weakly connected or isolated in the network. In addition, we also found the interactions between ChlA and phytoplanktons (Cyanobacteria, Diatom, Dinoflagellata) (Table S5), but they were removed from the network association due to their weak correlation coefficient (< 0.5).

Interest of ecological processes influencing microbial community assembly has increased in various environments. The previous GB survey provides an understanding of the phylogenetic structuring of bacterial communities in the estuarine–coastal zone. Although the previous study revealed that the assembly process of bacterial communities, which exclude archaea populations from prokaryotic communities, is more influenced by phylogenetic clustering within euphotic layers (< 13 m depth), the comparison of prokaryotic communities (including both bacterial and archaeal populations) with the assembly of eukaryotic communities may need to be considered within the surface (or atmospheric) mixed layer (< 0.3 m depth) having nearly constant environmental conditions. Thus, we newly analyzed the assembly process of prokaryotic and eukaryotic communities. The predominant patterns of phylogenetic structuring in prokaryotic (over-dispersed type: biotic interaction) and eukaryotic (clustered type: abiotic interaction) communities were remarkably observed in coastal waters, suggesting that prokaryotes and eukaryotes follow different strategies in community assembly at least in coastal waters. For example, strong biological interactions were expected to be the main driving force in the prokaryotic community assembly, whereas eukaryotes were more affected by abiotic factors in coastal waters. On the other hand, there was no primary signal from NTR–NTI patterns for both prokaryotic and eukaryotic communities in estuarine waters. Similarly, the balance between deterministic and stochastic processes revealed that prokaryotes and eukaryotes have different community assembly processes in coastal waters although they are primarily influenced by the stochastic process in estuarine waters. Our results suggest that the assembly process of prokaryotic communities was primarily affected by the stochastic process (facilitation and competition among their populations), but the community assembly process for eukaryotic populations was relatively more affected by environmental stress than by the deterministic process (biological interaction) in coastal waters. Indeed, these phylogenetic diversity patterns were supported by distinguishable interactions within prokaryotic or eukaryotic OTUs in the microbial association network. Based on our findings, it can be concluded that prokaryotic and eukaryotic communities in GB waters possess a distinguishable mechanism in their community assembly, although they simultaneously represent the spatiotemporal separation in the estuarine–coastal zone.

Transition of microbial communities in the estuarine–coastal zone may provide information of key microbial groups indicating the mixing from the estuarine to coastal waters. The previous GB survey by Han et al. found dominant bacterial groups showing the gradual distribution from the estuarine to coastal waters with seasonality. Of their spatiotemporal distribution, the SAR11 clade (Candidatus Pelagibacter ubique), a ubiquitous heterotrophic bacterium in oceans, revealed the gradually increasing variation toward coastal waters, representing the water mass mixing in the estuarine–coastal zone. The SAR11 clade could tolerate a wide range of environmental variability including salinity during the water mass mixing due to its oligotrophic lifestyle and the ecological interface with phytoplankton. In the present study, we found that the most predominant prokaryotic OTU (OTU1) in coastal waters was taxonomically identified as a member of the SAR11 clade. The prevalence of prokaryotic OTU1 associated with SAR11 in this study implies the bacterial degradation of phytoplankton-derived organic matter in GB waters as previously reported. Indeed, the most dominant eukaryotic OTUs were found to be affiliated with phytoplankton (Diatom or Dinoflagellata). It was known that phytoplankton-derived organic matter can attract heterotrophic bacteria, and specifically associated bacteria are beneficial for the survival of phytoplankton hosts. Taken together with the specificity of phytoplankton-bacteria interactions, the co-occurrence of heterotrophic bacterial and phytoplankton OTUs in the microbial association network may support trophic interactions in microbial communities in GB waters.

In this study, we demonstrated the use of metabarcoding approach in surveying microbial biogeography associated with environmental heterogeneity in the estuarine–coastal zone. We surveyed prevalent prokaryotic and eukaryotic taxa in GB waters from 2016 to 2018. Here, phytoplankton sequences were found to be dominant in GB waters and their spatiotemporal distribution was observed. Considering the similar distribution between heterotrophic Proteobacteria and phytoplankton at the spatiotemporal scale in the present study, our findings at 2- to 4-month intervals from 2016 to 2018 may imply the ecological interaction in response to the environmental heterogeneity mediated by seasonal climate change rather than annual change in the estuarine–coastal zone. Information on the microbial biogeography and its community assembly process can provide fundamental knowledge regarding the given ecological system. The fate of heterotrophic prokaryotes in coastal waters is generally associated with factors regulating nutrient flux, including phytoplankton-derived organic matter. Bacterial contribution to oceanic nutrient dynamics was previously studied in GB waters. However, the ecological significance of eukaryotic communities compared with that of prokaryotic communities in this region has never been reported. Here, we proposed ecological interactions microeukaryotes (phyto- and zooplankton) and heterotrophic bacteria such as SAR11 based on their network association. We believe that our study newly facilitates the assessment of ecological significance in microbial trophic interactions and of underlying biotic or abiotic factors for the assembly process of microbial communities in the estuarine–coastal zone.
null
filtered sequences were clustered into the OTUs at 97% similarity level to investigate microbial diversity (alpha and beta), community composition, and phylogenetic turnover.

OTU-based analyses and statistics. For microbial alpha diversity (species richness), abundance-unweighted species richness indices (Chao1 and ACE) were calculated with OTUs using the `summary.single` command, while beta diversity was determined by NMDS and AMOVA calculated using the `nmds` and `amova` commands, respectively. In addition, microbial community composition was profiled using the `classify.otu` command against the Silva seed_v132 database in Mothur. Phylogenetic diversity was analyzed using Phylocom software based on the protocol described previously. Briefly, phylogenetic structure of microbial communities was estimated with NRI and NTI, calculated using the `comstruct` command, whereas βNTI was calculated using `comdistnt` command to determine the influence of deterministic and stochastic processes.

We performed statistical analyses using R software (v.3.5.3) (https://www.R-project.org). From the R stats package, for example, PCA was carried out using the `prcomp` function, and correlation analysis was applied with spearman method using the `cor` function. From the vegan package, PERMANOVA and NMDS were calculated by Bray–Curtis distance with the `adonis` and `metaMDS` functions, respectively. In addition to PERMANOVA, the pairwise multiple comparison (post-hoc) was performed with false discovery rate method in the `pairwise.adonis` package. Association of OTU variations at the spatiotemporal scale was estimated with a heatmap visualization with the `HeatmapAnnotation` function in the ComplexHeatmap package. Microbial network interactions with environmental factors were analyzed using the RCY3 package with Cytoscape software (v.3.8.2) (https://cytoscape.org). Briefly, the spearman correlation matrix was calculated with the relative abundance of prokaryotic and eukaryotic OTUs and measured values of environmental factors. Co-occurrence patterns were determined with significant coefficient values over 0.5 (P < 0.05) in the spearman correlation. The significant correlations between OTUs or between OTU and environmental factor were visualized in network interactions.

Received: 10 July 2021; Accepted: 18 January 2022
Published online: 22 February 2022

References

1. Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. *Nature* **504**, 61–70 (2013).
2. Murphy, R. R., Kemp, W. M. & Ball, W. P. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. *E斯塔ur. Coast.** **34**, 1293–1309 (2011).
3. Nixson, S. W. et al. The impact of changing climate on phenology, productivity, and benthic–pelagic coupling in Narragansett Bay. *E斯塔ur. Coast. Shelf** **S.** **82**, 1–18 (2009).
4. Testa, J. M., Murphy, R. R., Brady, D. C. & Kemp, W. M. Nutrient- and climate-induced shifts in the phenology of linked biogeochemical cycles in a temperate estuary. *Front. Mar. Sci.* **5**, 114 (2018).
5. Scanes, E., Scanes, P. R. & Ross, P. M. Climate change rapidly warms and acidifies Australian estuaries. *Nat. Commun.* **11**, 1–11 (2020).
6. Statham, P. J. Nutrients in estuaries—An overview and the potential impacts of climate change. *Sci. Total Environ.* **434**, 213–227 (2012).
7. Kolber, Z. S. et al. Contribution of aerobic phototrophic bacteria to the carbon cycle in the ocean. *Science* **292**, 2492–2495 (2001).
8. Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. *Science** **335**, 671–676 (2012).
9. Sul, W. J., Oliver, T. A., Ducklow, H. W., Amaral-Zettler, L. A. & Sogin, M. L. Marine bacteria exhibit a bipolar distribution. *Proc. Natl. Acad. Sci.* **110**, 2342–2347 (2013).
10. Agogué, H., Lamy, D., Neal, P. R., Sogin, M. L. & Herndl, G. J. Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. *Mol. Ecol.* **20**, 258–274 (2011).
11. Ghiglione, J.-F. et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. *Proc. Natl. Acad. Sci.* **109**, 17633–17638 (2012).
12. Techtmann, S. M. et al. The unique chemistry of eastern Mediterranean seawater masses selects for distinct microbial communities by depth. *PLoS ONE* **10**, e0120605 (2015).
13. Han, D. et al. Bacterial communities along stratified water columns at the Chukchi Borderland in the western Arctic Ocean. *Deep-Sea Res. Pt. II** **120**, 52–60 (2015).
14. Han, D. et al. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic ocean during sea-ice melting. *PLoS ONE* **9**, e86887 (2014).
15. Hernando-Morales, V., Amenero, J. & Teira, E. Water mass mixing shapes bacterial biogeography in a highly hydrodynamic region of the Southern Ocean. *Environ. Microbiol*. **19**, 1017–1029 (2017).
16. Han, D., Kang, H. Y., Kang, C.-K., Umno, T. & Hur, H.-G. Seasonal mixing-driven system in Estuarine-Coastal Zone triggers an ecological shift in bacterial assemblages involved in phytoplankton-derived DMSP degradation. *Microb. Ecol.* **79**, 12–20 (2020).
17. Fuhrman, J. A., Gram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. *Nat. Rev. Microbiol.* **13**, 133–146 (2015).
18. Higashi, K., Suzuki, S., Kurosawa, S., Mori, H. & Kurokawa, K. Latent environment allocation of microbial community data. *PLoS Comput. Biol.* **14**, e1006143 (2018).
19. Kim, D. et al. Water quality assessment at Jinhae Bay and Gwangyang Bay, South Korea. *Ocean Sci.* **49**, 251–264 (2014).
20. Chen, S.-M., Kim, D., Liu, H. & Kang, C.-K. Viable and feeding success variability based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. *Biogeosciences* **15**, 2055–2073 (2018).
21. Lee, J. H. et al. The effects of different environmental factors on the biochemical composition of particulate organic matter in Gwangyang Bay. *South Korea. Biogeosciences* **14**, 1903–1917 (2017).
22. Fine, P. V. & Kembl, S. W. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. *Ecography* **34**, 552–565 (2011).
23. Stegen, J. C., Lin, X., Konopka, A. E. & Fredrickson, J. K. Stochastic and deterministic assembly processes in subsurface microbial communities. *ISME J.* **6**, 1653–1664 (2012).
24. Tripathi, B. M. et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. *ISME J.* **12**, 1072–1083 (2018).
25. Feng, Y. et al. Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. *Mol. Ecol.* 27, 5238–5251 (2018).
26. Stegen, J. C., Lin, X., Fredrickson, J. K. & Konopka, A. E. Estimating and mapping ecological processes influencing microbial community assembly. *Front. Microbiol.* 6, 370 (2015).
27. Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. *Proc. Natl. Acad. Sci.* 112, E1326–E1332 (2015).
28. Wang, I. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: Deterministic versus stochastic processes. *ISME J.* 7, 1310–1321 (2013).
29. Lindemann, S. R. et al. The epsonitic phototrophic microbial mat of Hot Lake, Washington: Community structural responses to seasonal cycling. *Front. Microbiol.* 4, 323 (2013).
30. Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. *Annu. Rev. Ecol. Syst.* 33, 475–505 (2002).
31. Amaral-Zettler, L. A. et al. Microbial community structure across the tree of life in the extreme Rio Tinto. *ISME J.* 5, 42–50 (2011).
32. Han, D. et al. Survey of bacterial phylogenetic diversity during the glacier melting season in an Arctic Fjord. *Microb. Ecol.* 81, 579–591 (2021).
33. Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. *Harmful Algae* 14, 156–178 (2012).
34. Escalera, L., Pazos, Y., Moroño, Á. & Reguera, B. Noctiluca scintillans may act as a vector of toxigenic microalgae. *Harmful Algae* 6, 317–320 (2007).
35. Tada, K., Pithakpol, S., Yano, R. & Montani, S. Carbon and nitrogen content of Noctiluca scintillans in the Seto Inland Sea, Japan. *J. Plankton Res.* 22, 1203–1211 (2000).
36. Hyun, B. et al. Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis, Chaetoceros dydamus, Skeletonema costatum and Thalassiosira nordenskioldii) in laboratory experiments. *J. Environ. Sci. Int.* 23, 1003–1012 (2014).
37. Park, J. S., Lee, S. D. & Lee, J. H. Taxonomic study on the euryhaline Cyclotella (Bacillariophyta) species in Korea. *J. Ecol. Environ.* 36, 407–409 (2013).
38. Yun, S. M. & Lee, J. H. Morphology and distribution of some marine diatoms, Family Rhizosoleniaceae, in Korean coastal waters: A genus Rhizosolenia. *Algae* 25, 173–182 (2010).
39. Park, J. S., Jung, S. W., Lee, S. D., Yun, S. M. & Lee, J. H. Species diversity of the genus Thalassiosira (Thalassiosirales, Bacillariophyta) in South Korea and its biogeographical distribution in the world. *Phycologia* 55, 403–423 (2016).
40. Dupont, C. L. et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. *ISME J.* 6, 1186–1199 (2012).
41. Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. *ISME J.* 13, 2536–2550 (2019).
42. Müller, A. L. et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. *Environ. Microbiol.* 20, 2927–2940 (2018).
43. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. *Nature* 420, 806–810 (2002).
44. Giovannoni, S. J. SAR11 bacteria: The most abundant plankton in the oceans. *Annu. Rev. Mar. Sci.* 9, 231–255 (2017).
45. Mühlenbruch, M., Grossart, H. P., Eigemann, F. & Voss, M. Mini-review: Phytoplankton–derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria. *Environ. Microbiol.* 20, 2671–2685 (2018).
46. Stock, W. et al. Host specificity in diatom–bacteria interactions alleviates antagonistic effects. *EMS Microbiol. Ecol.* 95, 171 (2019).
47. Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. *ISME J.* 5, 1571–1579 (2011).
48. Illumina. 16S Metagenomic sequencing library preparation. *Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System* (2013).
49. Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. *Appl. Environ. Microbiol.* 75, 7537–7541 (2009).
50. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl. Environ. Microbiol.* 79, 5112–5120 (2013).
51. Webb, C. O., Ackerly, D. D. & Kemblow, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. *Bioinformatics* 24, 2098–2100 (2008).
52. R Core Team. *The R Stats Package* (R Core Team, 2002).
53. Oksanen, J. & Blanchet, F. G. Package ‘vegan’ (2017).
54. Martinez, P., Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. 1 (2017).
55. Roberts, D. W. & Roberts, M. D. W. Package ‘labdsv’ (2016).
56. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 32, 2847–2849 (2016).
57. Gustavsen, J. A., Pai, S., Isserlin, R., Demchak, B. & Pico, A. R. RCy3: Network biology using cytoscape from within R. *Journal of Computational Biology* 21, 231–255 (2017).
58. Park, J. H., Kim, J. & Kim, J. Environ. Microbiol. 81, 1003–1012 (2013).
59. Han, D. et al. Investigation of bacterial phylogenetic diversity during the glacier melting season in an Arctic Fjord. *ISME J.* 6, 2571–2585 (2012).
60. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. *Bioinformatics* 32, 2847–2849 (2016).
61. Gustavsen, J. A., Pai, S., Isserlin, R., Demchak, B. & Pico, A. R. RCy3: Network biology using cytoscape from within R. *Journal of Computational Biology* 21, 231–255 (2017).
62. Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’ (2019).

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1I1A1A01058140) and NRF-2016R1D1A3B01012231, by a part of the projects titled ‘Long-term Marine Ecosystem Research’ and ‘Analysis acquisition and application study of microbiome on marine organisms for the development of Marinebiotics (20210469)’ funded by the Ministry of Oceans and Fisheries, Korea, and by the National Institute of Fisheries Science (R2021026).

Author contributions

D.H., C.K.K., and H.G.H. conceived and designed research. D.H. and H.S. conducted experiments. D.H., C.K.K., and H.G.H. contributed sample preparation or analytical tools. D.H., J.H.L., and D.G.K. analyzed data. D.H., J.H.L., D.G.K., and H.G.H. wrote the manuscript. All authors read and approved the manuscript.

Competing interests

The authors declare no competing interests.
