Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus)

Ying Bai1☯*, Lela Urushadze2,3☯, Lynn Osikowicz1, Clifton McKee1,4, Ivan Kuzmin5, Andrei Kandaurov6, Giorgi Babuadze2,3, Ioseb Natradze6, Paata Imnadze2, Michael Kosoy1

1 Division of Vector-Borne Disease, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America, 2 National Center for Disease Control and Public Health, Tbilisi, Republic of Georgia, 3 Institute of Chemical Biology, Ilia State University, Tbilisi, Republic of Georgia, 4 Department of Biology, Colorado State University, Fort Collins, Colorado, United States of America, 5 Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America, 6 Institute of Zoology, Ilia State University, Tbilisi, Republic of Georgia

☯ These authors contributed equally to this work.

* bby5@cdc.gov

Abstract

Bats are important reservoirs for many zoonotic pathogens. However, no surveys of bacterial pathogens in bats have been performed in the Caucasus region. To understand the occurrence and distribution of bacterial infections in these mammals, 218 bats belonging to eight species collected from four regions of Georgia were examined for Bartonella, Brucella, Leptospira, and Yersinia using molecular approaches. Bartonella DNA was detected in 77 (35%) bats from all eight species and was distributed in all four regions. The prevalence ranged 6–50% per bat species. The Bartonella DNA represented 25 unique genetic variants that clustered into 21 lineages. Brucella DNA was detected in two Miniopterus schreibersii bats and in two Myotis blythii bats, all of which were from Imereti (west-central region). Leptospira DNA was detected in 25 (13%) bats that included four M. schreibersii bats and 21 M. blythii bats collected from two regions. The Leptospira sequences represented five genetic variants with one of them being closely related to the zoonotic pathogen L. interrogans (98.6% genetic identity). No Yersinia DNA was detected in the bats. Mixed infections were observed in several cases. One M. blythii bat and one M. schreibersii bat were co-infected with Bartonella, Brucella, and Leptospira; one M. blythii bat and one M. schreibersii bat were co-infected with Bartonella and Brucella; 15 M. blythii bats and three M. schreibersii bats were co-infected with Bartonella and Leptospira. Our results suggest that bats in Georgia are exposed to multiple bacterial infections. Further studies are needed to evaluate pathogenicity of these agents to bats and their zoonotic potential.
Introduction

Bats (Chiroptera) represent one of the most successfully evolved mammalian groups on Earth for their unique characteristics, such as a long lifespan, the capability to fly long distances during foraging and particularly during seasonal migrations, the ability to inhabit a multitude of diverse ecological niches, and the colonial habitation. The role of bats in epidemiology of zoonotic diseases is very important as they frequently live in close proximity to humans and serve as reservoirs to different pathogens that include viruses, bacteria, fungi and parasites [1,2]. Many previous and ongoing research activities predominantly focused on viral agents in bats [3,4], but little is known about a presence of bacterial pathogens [5].

The bacterial genera Bartonella, Brucella, Leptospira, and Yersinia each consist of multiple species, some of which are zoonotic pathogens causing diseases in domestic or companion animals and in humans. Bartonella infections have been reported from a variety of animals occurring over a broad geographic distribution. Around 30 species have been described within the genus and the number is still increasing [6]. Controversy has been raised in several studies regarding host specificity of Bartonella [7–9]. Importantly, bats in the Northern Hemisphere have been implicated as a reservoir of B. mayotimonensis that was described from a human case of endocarditis in the USA [10,11], although the mechanism of transmission between bats and humans remains unresolved.

Brucellosis is an important zoonotic disease caused by bacteria of the genus Brucella. Domestic animals such as cattle, goats, pigs, camel, buffalo and dogs serve as reservoir hosts. Humans can be infected after contacting infectious animals or drinking raw milk [12]. Knowledge of Brucella ecology in wildlife is limited although several species were described in rodents, foxes, and marine mammals [13–17]. Except for an old report of anti-Brucella agglutinins in vampire bats (Desmodus rotundus) in Brazil [18], no other studies have reported Brucella infection in bats.

Leptospirosis is a bacterial zoonosis caused by L. interrogans and other pathogenic spirochetes of the genus Leptospira. Animals and humans acquire the infection through contact with water or soil contaminated with the urine of infected animals or by direct contact with these animals [19,20]. Leptospira spp. are distributed worldwide in rats and many other mammalian species [21]. Recently, leptospiral infections have been identified in bats from several countries [22–24].

Among infections caused by Yersinia species, plague (Y. pestis) causes the most notorious disease, infecting many mammalian species along with humans. Yersiniosis, occurring as an enteric disease in humans, is caused by Y. pseudotuberculosis and Y. enterocolitica, both of which have a broad distribution [25]. These bacteria have been frequently isolated from a variety of wild and domestic animals [26,27], but compared to Y. pestis their association with wildlife is not as well studied. Recently, bats have been reported to be infected with Yersinia [28,29].

The country of Georgia is located between the Greater Caucasus and Lesser Caucasus mountain ridges at the intersection of Europe and Asia. There are 109 mammalian species and many associated zoonotic agents in this region [30,31]. Recent studies conducted in this country have demonstrated the presence of diverse Bartonella species in wild rodents [32] and suggested the role of rat-associated Bartonella as a causative agent for a human illness [33]. Brucellosis is endemic in the area, with B. abortus and B. melitensis actively circulating in livestock and affecting local residents [34]. Leptospirosis is also broadly distributed in the country with increasing morbidity in recent years [35].

Bats are abundant in Georgia with at least 29 species identified [36]. However, information on bacterial infectious agents in bats from this region was absent. Understanding the prevalence and distribution of zoonotic pathogens in local bats would be significant from the
veterinary and public health perspectives. In this study, we evaluated the presence and distribution of *Bartonella, Brucella, Leptospira*, and *Yersinia* in bats collected from eight colonies located in four regions of Georgia.

**Material and Methods**

**Ethics statement**

The work was performed in compliance with the protocol approved by the CDC Institutional Animal Care and Use Committee (protocol #2096FRAMULX-A3). Permits for the list of bat species sought and the number of animals per colony available for sampling were obtained from the Ministry of Environmental and Natural Resources Protection of Georgia.

**Study sites and bat tissues collection**

In June 2012, bats were captured manually or by using nets from eight colonies (found in caves, building attics, or monasteries) within four sites located in four regions of Georgia: one colony in Martvili (42˚N, 42˚E, Samegrelo-Zemo Svaneti region in western Georgia); three colonies in Tskaltubo (42˚N, 42˚E, Imereti region in west-central Georgia); one colony in Gardabani district (41˚N, 45˚E, Kvemo Kartli region in southern Georgia); and three colonies in David Gareja (41˚N, 45˚E, Kakheti region in eastern Georgia). Martvili and Tskaltubo, Gardabani and David Gareja, are neighboring sites, respectively (Fig 1).

**Fig 1. Bat sampling sites, Georgia, June 2012.**

doi:10.1371/journal.pone.0171175.g001
Captured bats were delivered to the processing site in individual cotton bags. The bats were sexed, weighed, and identified to species based on external morphological characteristics. Bats were anesthetized using ketamine (0.05–0.1 mg/g body mass) and exsanguinated by cardiac puncture. Tissue samples (including spleen, kidney, intestine, and others) were collected from the bats. Samples were stored on dry ice in the field, then transferred to a -80°C freezer in the laboratory of Georgian NCDC before shipping to the US CDC’s laboratory in Fort Collins, Colorado for bacterial testing.

**DNA extraction and PCR detection**

A small piece (~10 mg) of spleen, kidney, and intestine of each bat were homogenized separately using a Bullet Blender Gold homogenizer (Next Advance, Averill Park, NY) following the protocols provided by the manufacturer. The homogenates were then transferred to a QIAxtractor (Qiagen, Valencia, CA) platform for DNA extraction using the tissue protocol, and the DNA was used as the template for downstream analyses. The kidney DNA was tested for *Bartonella* and *Leptospira*; the spleen DNA was tested for *Brucella* and *Yersinia*; and the intestine DNA was tested for *Yersinia* only. Molecular detection was performed using a conventional PCR assay carried out in a C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA) and/or real-time PCR assay carried out in a CFX96 Real-Time System (Bio-Rad, Hercules, CA). The relevant genes targeted were 16S – 23S internal transcribed spacer (ITS), insertion sequence (IS711), 32-kDa lipoprotein (*lipL32*) gene, and peptidoglycan-associated lipoprotein (*pal*) gene for *Bartonella*, *Brucella*, *Leptospira*, and *Yersinia*, respectively. The reactions for ITS were run under conventional PCR settings; the reactions for IS711, *pal*, and *lipL32* were run under the real-time multiplex PCR settings, following protocols published elsewhere [37–39]. Ct value < 36 with an amplification curve is recorded as positive. Positive samples for *Brucella* DNA (IS711) and *Leptospira* DNA (*lipL32*) identified by real-time PCR were further tested by conventional PCR targeting a 223 base pair-fragment in 31 kDa gene (*bcsp31*) for *Brucella* [40] and a 423 base pair-fragment in *lipL32* for *Leptospira* using primers [41] different from the real-time PCR. All primers and probes used in this study are listed in Table 1. The *pal* primers and probes for detection of *Yersinia* species were developed for this study based on a whole-genome scan (M. Diaz, unpublished data). For any conventional PCR, the PCR products were

### Table 1. Molecular detection of bacterial agents in bats from Georgia, June 2012.

| Agents  | Gene target | PCR assay | Primer/probe sequences | Reference |
|---------|-------------|-----------|------------------------|-----------|
| *Bartonella* | ITS         | conventional | Forward: CTT CAG ATG ATG ATC CCA AGC CTT CTG GCG Bradt et al. [39] |
|          |             |           | Reverse: GAA CCG ACC ACC CCC TGG TTG CAA ACG A          |
| *Brucella* | IS711       | real-time  | Forward: GCT TGA AGC TGG CCA ACA GT | Mitrofanova et al. [37] |
|          |             |           | Reverse: GGG CTA CCG CTG CAG AT |                     |
|          |             |           | Probe: AAG ACA ACC GCC CAT TAT GGT |                     |
| *Brucella* | bcsp31      | conventional | Forward: TGG CTC GGT TGG CAA TAT CAA | Nesterov et al. [40] |
|          |             |           | Reverse: CCG GCT TGG CTT TCA GGT CTG |                     |
| *Leptospira* | lipL32    | real-time  | Forward: GAA CTC CCA TTT CAG CGA TT | Goubet et al. [38] |
|          |             |           | Reverse: AA AAG CAG GAC AAG GCC CG |                     |
|          |             |           | Probe: AAA ACC CCC GCA ATT TAT TGC |                     |
| *Leptospira* | lipL32    | conventional | Forward: CGC TGA AAT GGG AGT TGG TAT GAT T | Oprea et al. [41] |
|          |             |           | Reverse: CCA ACA GAT GCA AAG GAT CCT TT |                     |
| *Yersinia* | Pal         | real-time  | Forward: CGC AAA TAA TGA CCA AAT TGC | This study |
|          |             |           | Reverse: CGT TGC CTT CAA CAA CAA C |                     |
|          |             |           | Probe: CGG TTC TGA CTT CCG TCA AAT GCT GG |                     |

doi:10.1371/journal.pone.0171175.t001
analyzed for the presence of amplicons of the expected size by electrophoresis on 1.5% agarose gels containing GelGreen stain (Biotium, Hayward, CA). Positive and negative controls were included in each PCR assay to evaluate the presence of appropriately sized amplicons and to rule out potential contamination, respectively.

Leptospira infection rate was compared between study sites and between bat species using chi-square tests.

**Sequencing and phylogenetic analysis for Bartonella species and Leptospira species**

Samples positive for Bartonella (ITS) and Leptospira (lipL32) were further identified by sequencing analyses. The PCR amplicons were purified using a QIAquick PCR Purification Kit (Qiagen, Valencia, CA) according to manufacturer’s instructions, and then sequenced in both directions using ABI 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA). Forward and reverse sequences were assembled using the SeqMan Pro program in Lasergene v.12 (DNASTAR, Madison, WI). Assembled sequences obtained from all samples in the present study were compared between themselves and with reference sequences available in GenBank after alignment using the Clustal algorithm in the MegAlign program in Lasergene. Using the neighbor-joining method, cladogram (showing the cladistics relationship rather than phylogenetic relationship) was generated for Bartonella among the ITS sequences. Sequences were assigned to clades visually based on monophyletic clusters. Phylogenetic tree was constructed for Leptospira, Branch support was estimated using 1000 bootstrap replicates. Newly identified sequence variants were submitted to GenBank.

**Results**

**Bat sampling**

A total of 236 bats were captured from the trapping sites. Samples with incomplete or missing information were excluded, which resulted in 218 bats available for analysis. The animals belonged to eight species of five genera, including *Eptesicus serotinus* (n = 17), *Miniopterus schreibersii* (n = 27), *Myotis blythii* (n = 68), *Myotis emarginatus* (n = 42), *Myotis mystacinus* (n = 1), *Pipistrellus pygmaeus* (n = 11), *Rhinolophus euryale* (n = 28), and *R. ferrumequinum* (n = 24) (Table 2). The *Myotis* spp. bats accounted for more than half of the tested bats. Other bat species accounted for a smaller portion, ranging from 5% to 13%.

The number of bat species varied by site, with three, four, five, and three in Martvili, Tskaltubo, Gardabani, and David Gareja, respectively. All *M. schreibersii* bats (n = 27) were collected in Tskaltubo. *M. blythii* bats were mainly captured in Tskaltubo and David Gareja. All *M. schreibersii* bats (n = 27) were collected in Tskaltubo. *M. blythii* bats were mainly captured in Tskaltubo and David Gareja (Table 3).

### Table 2. Detection of Bartonella, Brucella, and Leptospira in bats from Georgia, 2012.

| Bat species          | # Tested | Bartonella | Brucella | Leptospira | Yersinia |
|----------------------|----------|------------|----------|------------|----------|
|                      | # Pos    | Prevalence (%) | # Pos    | Prevalence (%) | # Pos | Prevalence (%) | # Pos | Prevalence (%) |
| Eptesicus serotinus  | 17       | 6          | 0        | 0          | 0       | 0          | 0     | 0            |
| Miniopterus schreibersii | 27   | 48         | 2        | 7          | 4       | 15         | 0     | 0            |
| Myotis blythii       | 68       | 38         | 2        | 3          | 21      | 31         | 0     | 0            |
| Myotis emarginatus   | 42       | 29         | 0        | 0          | 0       | 0          | 0     | 0            |
| Myotis mystacinus    | 1        | 0          | 0        | 0          | 0       | 0          | 0     | 0            |
| Pipistrellus pygmaeus| 11       | 9          | 0        | 0          | 0       | 0          | 0     | 0            |
| Rhinolophus euryale  | 28       | 43         | 0        | 0          | 0       | 0          | 0     | 0            |
| Rhinolophus ferrumequinum | 24 | 50         | 0        | 0          | 0       | 0          | 0     | 0            |
| Total                | 218      | 35         | 4        | 2          | 25      | 11         | 0     | 0            |

doi:10.1371/journal.pone.0171175.t002
Molecular detection

*Bartonella* DNA was detected in 77 of the 218 tested bat kidneys, giving the overall prevalence of 35%. *Bartonella* DNA was detected in all bat species but *M. mystacinus*, for which there was only one sample available for testing. The prevalence of *Bartonella* infection ranged from 6% in *E. serotinus* to 50% in *R. ferrimequinum* (Table 2). The *Bartonella*-positive bats were present in all colonies, with variable numbers of 4–23 per colony (the proportion of infected bats per colony cannot be estimated as the size of the colonies was not evaluated).

*Brucella* DNA was detected in spleen samples of four bats by real-time PCR (IS711) and confirmed by conventional PCR (*bcsp31*). The positive bats include two *M. schreibersii* and two *M. blythii*. All of the four *Brucella*-positive bats were obtained from one site (Tskaltubo) with three of them from one colony and the last one (*M. schreibersii*) from a neighboring colony.

*Leptospira* DNA was amplified from kidneys of 25 bats by real-time PCR (lipL32) and confirmed by conventional PCR (lipL32). The positive bats were *M. schreibersii* (n = 4) or *M. blythii* (n = 21). The prevalence in *M. blythii* (31%; 21/68) was significantly higher ($\chi^2 = 1.89, p < 0.05$) than that in *M. schreibersii* (15%; 4/27). The *Leptospira*-positive bats were found in four colonies within two sites—on colony in David Gareja and the other three colonies in Tskaltubo. All four positive *M. schreibersii* were collected in Tskaltubo; the *M. blythii* were distributed in David Gareja (n = 8) and Tskaltubo (n = 13). The infection rate of *Leptospira* in *M. blythii* was 36% (8/22) in David Gareja and 30% (13/44) in Tskaltubo, with no statistical difference observed between the two sites ($\chi^2 = 0.20, p > 0.05$).

*Yersinia* DNA was detected in none of the bats, neither in spleen nor intestine.

Mixed infection

Two or three pathogens were detected in *M. blythii* and *M. schreibersii*. Two bats (one *M. blythii* and one *M. schreibersii*) captured in different colonies within site Tskaltubo were co-infected with all three pathogens—*Bartonella*, *Brucella*, and *Leptospira*. Two bats (one *M. blythii* and one *M. schreibersii*) captured in the same colony within site Tskaltubo were co-infected with *Bartonella* and *Brucella*; and eighteen bats (15 *M. blythii* and three *M. schreibersii*) captured in one colony in site David Gareja and in two colonies in site Tskaltubo were co-infected with *Bartonella* and *Leptospira*. No mixed infections were observed in the remaining bat species.

Sequencing analysis

Sequencing analyses were performed on ITS sequences of *Bartonella* and lipL32 sequences of *Leptospira*, both of which were amplified from bat kidney DNA.
The ITS sequences of *Bartonella* exhibited considerable heterogeneity. The 77 *Bartonella*-positive DNA represented 25 genetic variants (a variant is defined when at least one nucleotide difference is observed between compared sequences). These variants were all unique and submitted to GenBank (accession numbers KX420713—KX420737). Only a few variants were relatively close (96.3% similarity) between themselves, while the majority were largely distant from each other and clustered into 21 clades (a clade is a cluster of sequences following neighbor-joining analysis) (Fig 2). Except for *E. serotinus* and *P. pygmaeus* in which *Bartonella* was detected in one individual for each species, each of the other bat species was associated with 4 to 9 *Bartonella* clades. For example, *M. blythii* was associated with nine lineages (I—IV, XV, 

Fig 2. Cladistics relationship of the *Bartonella* variants detected in bats from Georgia based on ITS sequences. A total of 77 *Bartonella* ITS sequences were obtained. The sequences belonged to 25 variants (each indicated by a unique GenBank accession number), and the variants clustered into 21 clades (marked by a unique Roman number). After each variant, it is host species and number of *Bartonella* sequences obtained from the host species. The cladogram was generated by neighboring-joining method. ES: *Eptesicus serotinus*; MB: *Myotis blythii*; ME: *Myotis emarginatus*; MS: *Miniopterus schreibersii*; PP: *Pipistrellus pygmaeus*; RE: *Rhinolophus euryale*; RF: *Rhinolophus ferrumequinum*. 

doi:10.1371/journal.pone.0171175.g002
and XVII—XXI); *M. schreibersii* was associated with six lineages (III—VI, XVI, and XVIII); *R. euryale* was associated with eight lineages (VII—XIII and XVII). Most *Bartonella* lineages were specific to certain bat genus/species. In particular, lineages I—VI and lineages VII—XIII were associated with *Myotis* spp. and *Rhinolophus* spp., respectively; while lineages XV—XXI could be associated with multiple bat genera (Fig 2).

The 25 LipL32 sequences of *Leptospira* detected in the bats represented five variants with sequence distances of 3.7% - 7.3% (Fig 3). All variants were novel and assigned GenBank accession numbers KX420708 – KX420712. Of the 25 sequences, the four sequences recovered from *M. schreibersii* were identical (variant KX420712); while the other 21 sequences from *M. blythii* were of four variants, each of which was detected in 11, 4, 2, and 4 individuals, respectively. These variants were close to some *Leptospira* species that are known zoonotic pathogens. Specifically, variant KX420710 that was detected in 11 *M. blythii* was closest to *L. interrogans* with genetic identity of 98.6%; while a few other variants were relatively close to *L. borgpetersenii* with genetic identity of 96% - 97%.

**Discussion**

Using molecular approaches, we report the detection of multiple potential zoonotic pathogens, including *Bartonella, Brucella*, and *Leptospira* in bats from the country of Georgia.
Similar to early reports from other parts of the world [8,42], Bartonella species are widely distributed in bats in Georgia with very high diversity. All genetic variants discovered in the study were novel and do not belong to any previously described Bartonella species. Further characterization is necessary to verify whether the identified DNA sequences represent novel Bartonella species. Most Bartonella variants described here show specific relationships to their bat hosts at a genus level, particularly Bartonella species. Most characterization is necessary to verify whether the identified DNA sequences represent novel study were novel and do not belong to any previously described distributed in bats in Georgia with very high diversity. All genetic variants discovered in the bats were either M. blythii or M. schreibersii. No Leptospira infection was detected in bats of other species, including the M. emarginatus which is a quite common local species. Species-specific variations in bacterial infection rates may indicate that certain bat species are more exposed habitually (e.g. drinking the same contaminated water) or even more susceptible to Leptospira than other bat species [23,45,46]. Our observation of similar Leptospira infection rates in M. blythii in Tskaltubo and David Gareja suggests that these bats were equally exposed to the infection at different sites; while higher prevalence in M. blythii than in M. schreibersii may suggest that M. blythii is more susceptible to Leptospira. Field observations showed that M. blythii and M. schreibersii share the same roosts and M. schreibersii usually incorporate into the dense groups of M. blythii, which presumably results in close body to body contact between animals of these two species. M. blythii may transmit the infection to M. schreibersii through urinary shedding and other similar routes. The high prevalence observed suggests that these bats might play a possible role in the maintenance of Leptospira spp. in the environment [47]. On the other hand, one Leptospira variant identified in M. blythii was closely related to L. interrogans (98.6% identity), a well-known zoonotic pathogen frequently found in rats [48]. Considering the high frequency of this variant (detected in 11 or 25 or 44% infected bats), it warns that M. blythii may serve as a natural reservoir to L. interrogans and can potentially transmit the infection to humans, particularly when they roost synanthropically, e.g. in monasteries. Furthermore, some of the variants were relatively close to L. borgpetersenii that also is a zoonotic pathogen.

The most intriguing finding of this work is probably the discovery of Brucella in bats. Although there was a single report of Brucella agglutinins in Desmodus rotundus bats from Brazil [18], our study represents the first detection of Brucella DNA in bats. Similar to the finding of Leptospira spp., the Brucella infections were found only in M. schreibersii and M. blythii. Interestingly, all Brucella positive bats were from the site Tskaltubo. The habitat preference and geographic origin could influence the infection prevalence in these bats. It was evident for M. schreibersii since this species was only captured in Tskaltubo; whereas absence of Brucella-positive M. blythii bats in David Gareja (where no M. schreibersii were present) may suggest that M. blythii contracted Brucella infection from M. schreibersii in Tskaltubo. Alternatively, as was the case with Leptospira, bats of both species in Tskaltubo might be exposed to Brucella independently by consuming the same contaminated source, such as water. The most studied Brucella species (B. melitensis, B. abortus, and B. suis) are so genetically similar that some researchers have argued for their combination into one species [49]. However, the epidemiological and diagnostic benefits for separating the genus based on phenotypic and ecological characteristics are more compelling. Therefore, it is important to distinguish genotypic and
phenotypic differences between this newly discovered bat-associated Brucella and other Brucella species. In the current presentation, we only report the detection of Brucella DNA in the bats. Further characterization of the bacterium is in progress. Because most Brucella species are highly pathogenic, it is important to determine whether this strain has a zoonotic potential.

We did not find any Yersinia infections in this study using recently designed primers. Since the sensitivity of the utilized primers for detection of all Yersinia species in the field samples has not been sufficiently evaluated in other field studies, the negative results for this bacterial genus in Georgian bats might represent a lack of sensitivity of our assay or a need for more broadly reactive primers.

In conclusion, bats from Georgia harbor several potential bacterial pathogens. These preliminary data highlight that bats may play an important role in maintaining those agents in nature. Further studies need to be carried out to understand the importance of these agents for bats, other wildlife, veterinary and public health.

Acknowledgments
We wish to thank Nikoloz Tsirtsvadze, Ketevan Sidamonidze and many others from the National Center for Disease Control and Public Health, Tbilisi, Georgia for their assistance with the bat trapping, sample collecting and processing. Thanks to Maureen Diaz from Division of Bacterial Diseases, US CDC for helping with designing the primers/probes for Yersinia detection. Special thanks to Ayimgul Kakenova and James Jubilee for supporting the travel of Lela Urushadze to Fort Collins, Colorado to conduct the laboratory analysis in the Bartonella Laboratory at US CDC.

Author Contributions
Conceptualization: YB MK PI.
Formal analysis: YB.
Investigation: YB LU LO CM.
Methodology: YB.
Supervision: MK YB PI.
Writing – original draft: YB.
Writing – review & editing: MK CM IK AK IN GB LO LU.

References
1. Whitaker JO Jr, Ritzi CM, Dick CW. Collecting and preserving ectoparasites for ecological study. In: Kunz TH, Parsons S (eds) Ecological and Behavioral Methods for the Study of Bats. 2009; 2nd edn: 806–827. The Johns Hopkins University Press, Baltimore, MD.
2. Wibbelt G, Speck S, Field H. Methods for assessing diseases in bats. In: Kunz TH, Parsons S (eds) Ecological and Behavioral Methods for the Study of Bats. 2009; 2nd edn: 775–794. The Johns Hopkins University Press, Baltimore, MD.
3. Messenger SL, Smith JS, Orciari LA, Yager PA, Rupprecht CE. Emerging pattern of rabies deaths and increased viral infectivity. Emerg Infect Dis. 2003; 9(2):151–4. doi: 10.3201/eid0902.020083 PMID: 12603983
4. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006; 19(3):531–45. doi: 10.1128/CMR.00017-06 PMID: 16847084
5. Mühldorfer K. Bats and bacterial pathogens: a review. Zoonoses Public Health. 2013; 60(1):93–103. doi: 10.1111/j.1863-2378.2012.01536.x PMID: 22862791
6. Carrasco SE, Chomel BB, Bill VA, Kasten RW, Maggi RG, Breitschwerdt EB, et al. Novel Bartonella infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris nereis). Vet Microbiol. 2014; 170(3–4):325–34. doi: 10.1016/j.vetmic.2014.02.021 PMID: 24629902

7. Bai Y, Calisher C, Kosoy M, Root J, Doty J. Persistent infection or successive reinfection of deer mice with Bartonella vinsonii subsp. arupensis. Appl Environ Microbiol. 2011; 77(5):1728–31. doi: 10.1128/AEM.02203-10 PMID: 21239553

8. Bai Y, Kosoy M, Recuenco S, Alvarez D, Moran D, Turmelle A, et al. Bartonella spp. in bats, Guatemala. Emerg Infect Dis. 2011; 17(7):1269–72. doi: 10.3201/eid1707.101867 PMID: 21762584

9. Bai Y, Malania L, Castillo DA, Moran D, Boonmar S, Chanun A, et al. Global distribution of Bartonella infections in domestic bovine and characterization of Bartonella bovis strains using multi-locus sequence typing. PLoS One. 2013; 8(11):e80894. doi: 10.1371/journal.pone.0080894 PMID: 24278342

10. Lin ET, Tsigrelis C, Baddour LM, Lepidi H, Rolain JM et al. Candidatus Bartonella mayotimonensis and endocarditis. Emerg Infect Dis. 2010; 16(3):500–3. doi: 10.3201/eid1603.081673 PMID: 20202430

11. Veikkolainen V, Vesterinen EJ, Lilley TM, Pulliainen AT. Bats as reservoir hosts of human bacterial pathogens, Bartonella mayotimonensis. Emerg Infect Dis. 2014; 20(6):960–7. doi: 10.3201/eid2006.130956 PMID: 24865523

12. Haque N, Bari MS, Hossain MA, Muhammad N, Rahman A, et al. An overview of Brucellosis. Mymensingh Med J. 2011; 20(4):742–7. PMID: 22081210

13. Stoenner HG, Lackman DB. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am J Vet Res. 1957; 18(69):947–51. PMID: 13470254

14. Ewalt DR, Payeur JB, Martin BM, Cummins DR, Miller WG. Characteristics of a Brucella species from a bottlenose dolphin (Tursiops truncatus). J Vet Diagn Invest. 1994; 6(4):448–52. PMID: 7858024

15. Hubálek Z, Scholz HC, Sedláček I, Melzer F, Sanogo YO, Nesvadbova J. Brucellosis of the common vole (Microtus arvalis). Vector Borne Zoonotic Dis. 2007; 7(4):879–87. doi: 10.1089/vbz.2007.0143 PMID: 18021023

16. Scholz HC, Hofer E, Vergnaud G, Le Fleche P, Whatmore AM, Hoffmaster AR, et al. Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol. 2010; 76(17):5837–45. doi: 10.1128/AEM.00620-10 PMID: 20639360

17. Ricciardi ID, Nunes MP, Andrade CM, Da Silva AG. Anti-brucella agglutinins in bats and "Callithrix" monkeys. J Wildl Dis. 1976; 12(1):52–4. PMID: 815569

18. Levet PN. Leptospirosis. Clin Microbiol Rev. 2001; 14(2):296–326. doi: 10.1128/CMR.14.2.296-326.2001 PMID: 11292640

19. Adler B, Miotetzuma AP. Leptospira and leptospirosis. Vet Microbiol. 2010; 140(3–4):287–96. doi: 10.1016/j.vetmic.2009.03.012 PMID: 19345023

20. Acha PN, Szyfres B. Zoonosis y enfermedades transmisibles comunes al hombre y a los animales (3. ed.), 1, Organizacion Panamericana de la Salud, Washington. 2001; pp. 175–186 (Publicación Científica y Técnica, 580).

21. Cox TE, Smythe LD, Leung LK. Flying foxes as carriers of pathogenic Leptospira species. J Wildl Dis. 2005; 41(4):753–7. doi: 10.7589/0090-3558-41.4.753 PMID: 16456164

22. Matthias MA, Diaz MM, Campos KJ, Calderon M, Willig MR, Pacheco V, et al. Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S ribosomal DNA sequences. Am J Trop Med Hyg. 2005; 73(5):964–74. PMID: 16282313

23. Dietrich M, Mühldorfer K, Tortosa P, Markotter W (2015) Leptospira and Bats: Story of an Emerging Friendship. PLoS Pathog. 2015; 11(11):e1005176. doi: 10.1371/journal.ppat.1005176 PMID: 26562435

24. Dollinger P, Baumgartner R, Hatt JM, Isenburg E, Pagán O. Zoonoses surveillance and safeguard measures in Swiss zoos. Proc EAZWV and BVScSII Scientific Meeting, Chester, United Kingdom, 1998;1–12.

25. Mair NS. Pseudotuberculosis in free-living wild animals. Symp Zool Soc Lond. 1968; 24: 107–117.

26. Mair NS. Yersiniosis in wildlife and its public health implications. Wildl Dis. 1973; 9(1):64–71.

27. Childs-Sanford SE, Kollas GV, Abou-Madi N, McDonough PL, Garner MM, Mohammed HO. Yersinia pseudotuberculosis in a closed colony of Egyptian fruit bats (Rousettus aegyptiacus). J Zoo Wildl Med. 2009; 40(1):8–14. doi: 10.1638/2007-0033.1 PMID: 19368235

28. Mühldorfer K, Wibbelt G, Haensel J, Riehm J, Speck S. Yersinia species isolated from bats, Germany. Emerg Infect Dis. 2010; 16(3):578–80. doi: 10.3201/eid1603.091035 PMID: 20202457
30. Bondyrev IV, Davitashvili ZV, Singh VP. The geography of Georgia—problems and perspectives. 2015;228pp. Springer.
31. Han BA, Kramer AM, Drake JM. Global Patterns of zoonotic disease in mammals. Trends Parasitol. 2015 Jul; 32(7):565–77. doi: 10.1016/j.pt.2016.04.007 PMID: 27316904
32. Malania L, Bai Y, Osikowicz LM, Tsertsvesadze N, Katsitadze G, Imnadze P, et al. Prevalence and diversity of Bartonella species in rodents from Georgia (Caucasus). Am J Trop Med Hyg. 2016; 95(2):466–71. doi: 10.4269/ajtmh.16-0041 PMID: 27162268
33. Kandelaki G, Malania L, Bai Y, Chakvetadze N, Katsitadze G, Imnadze P, et al. (2016) Human lymphadenopathy caused by ratborne Bartonella, Tbilisi, Georgia. Emerg Infect Dis. 2016; 22(3):544–6. doi: 10.3201/eid2203.151823 PMID: 26889959
34. Sanodze L, Bautista CT, Garuchava N, Chubinidze S, Tsertsvadze E, Broladze M, et al. Expansion of brucellosis detection in the country of Georgia by screening household members of cases and neighboring community members. BMC Public Health. 2015; 15:459.
35. Mamuchisvili N, Kuchuloria T, Mchedlishvili I, Imnadze P. Leptospirosis in Georgia. Georgian Med News. 2014;(228):63–6. PMID: 24743125
36. Yavruyan E, Rakhmatulina I, Bukhnikashvili A, Kandaurov A, Natradze I, Gazaryan S. Bats conservation action plan for the Caucasus. 2008;83pp. Universal, Tbilisi, Georgia.
37. Halling SM, Tatum FM, Bricker BJ. Sequence and characterization of an insertion sequence, IS711, from Brucella ovis. Gene. 1993; 133(1):123–7. PMID: 8224885
38. Stoddard RA. Detection of pathogenic Leptospira spp. through real-time PCR (qPCR) targeting the LipL32 gene. Methods Mol Biol. 2013; 943:257–66. doi: 10.1007/978-1-60327-353-4_17 PMID: 23104295
39. Diniz PP, Maggi RG, Schwartz DS, Cadenas MB, Bradley JM, Hegarty B, et al. Canine bartonellosis: serological and molecular prevalence in Brazil and evidence of co-infection with Bartonella henselae and Bartonella vinsonii subsp. berkhoffii. Vet Res. 2007; 38(5):697–710. doi: 10.1051/vetres:2007023 PMID: 17583666
40. Baily GG, Krahn JB, Drasar BS, Stoker NG. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg. 1992; 95(4):271–5. PMID: 1495123
41. Levett PN, Morey RE, Galloway RL, Turner DE, Steigerwalt AG, Mayer LW. Detection of pathogenic leptospires by real-time quantitative PCR. J Med Microbiol. 2005; 54(Pt 1):45–9. doi: 10.1099/jmm.0.45860-0 PMID: 15591254
42. Kosoy M, Bai Y, Lynch T, Kuzmin IV, Niezgoda M, Franka R, et al. Bartonella spp. in bats, Kenya. Emerg Infect Dis. 2010; 16(12):1875–81. doi: 10.3201/eid1612.100601 PMID: 21122216
43. Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infest Genet Evol. 2012; 12(8):1717–33. doi: 10.1016/j.meegid.2012.06.008 PMID: 22771358
44. McKee CD, Hayman DT, Kosoy MY, Webb CT (2016) Phylogenetic and geographic patterns of Bartonella host shifts among bat species. Infest Genet Evol. 2016; 16:382–94. doi: 10.1016/j.meegid.2016.07.033 PMID: 27473781
45. Fennestad KL, Borg-Petersen C (1972) Leptospriosis in Danish wild mammals. J Wildl Dis. 1972; 8(4):343–51. PMID: 4564183
46. Bessa TA, Spichler A, Chapola EG, Husch AC, de Almeida MF, Sodré MM, et al. The contribution of bats to leptospirosis transmission in São Paulo City, Brazil. Am J Trop Med Hyg. 2010; 82(2):315–7. doi: 10.4269/ajtmh.2010.09-0227 PMID: 20134010
47. Everard CO, Fraser-Chanpong GM, Bhagwandien LJ, Race MW, James AC. Leptospires in wildlife from Trinidad and Grenada. J Wildl Dis. 1983; 19(3):192–9. PMID: 6644917
48. Cosson JF, Picardeau M, Mielcarek M, Tatar C, Chaval Y, Suputtamongkol Y, et al. Epidemiology of Leptospira transmitted by rodents in Southeast Asia. PLoS Negl Trop Dis. 2014; 8(6):e2902. doi: 10.1371/journal.pntd.0002902 PMID: 24901706
49. Olsen SC, Palmer MV (2014) Advancement of knowledge of Brucella over the past 50 years. Vet Pathol. 2014; 51(6):1076–89. doi: 10.1177/0300988814540545 PMID: 24981716