Erratum: Lepton flavor violation in type I + III seesaw

Jernej F. Kamenika,c and Miha Nemevšekb,c

aINFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
bII. Institute für Theoretische Physik, Universität Hamburg, Lurper Chaussee 149, 22761 Hamburg, Germany
cJ. Stefan Institute, 1000 Ljubljana, Slovenia

E-mail: jernej.kamenik@lnf.infn.it, miha.nemevsek@desy.de

Erratum to: JHEP11(2009)023

ArXiv ePrint: 0908.3451

On page 5, there is a misprint in equations (3.2), (3.3) which should correctly read

\begin{align}
\tilde{g}^{(p)}_{LV} &= 2 \left(1 - 4s_{w}^{2} \right) L_{12}^{Z}, \\
\tilde{g}^{(n)}_{LV} &= -2L_{12}^{Z}, \\
\tilde{g}^{(p)}_{RV} &= 2 \left(1 - 4s_{w}^{2} \right) R_{12}^{Z}, \\
\tilde{g}^{(n)}_{RV} &= -2R_{12}^{Z}.
\end{align}

((3.2))

((3.3))

Accordingly, eq. (3.4) is modified to

\begin{equation}
|L_{12}^{Z}|^2 + |R_{12}^{Z}|^2 < 2.8 \times 10^{-13}, \quad 2.3 \times 10^{-14}, \quad ((3.4))
\end{equation}

and the last sentence in the paragraph after equation (3.4) now reads as follows: “After allowing to vary the poorly known neutrino mass parameter θ_{13} within the allowed range in table 1 and the unknown phases δ and ϕ, we obtain in the minimal models a bound on $\text{Im}(z) < 8.3(7.9)$ for normal (inverted) hierarchy in case of one triplet and one singlet and $\text{Im}(z) < 8.0(7.6)$ for two triplets, all at the reference mass of $m_T = 100 \text{ GeV}$ for the lightest triplet.”

Appropriate changes affect also figure 1, which is correctly given below.

The change also affects the last sentence in section 5 on page 9, which should read as follows: “For example, if light neutrinos are degenerate with the sum of their masses close to the upper limit from β decay and cosmology (say $\sum m_\nu \lesssim \text{eV}$ [1]), present $\mu-e$ conversion bounds already probe values of $\text{Im}(z_i) \simeq 3-5$.”

Also, the third and fourth sentence in section 6 on page 9 now read: “Such a sensitivity would constrain $\text{Im}(z)$ to 5.0 (4.6) in case of the minimal I + III model and to 4.6 (4.2) for the minimal type III, again for normal (inverted) hierarchy. For non-minimal models with degenerate eV scale neutrinos, these experiments would already probe $\text{Im}(z_i) \simeq 1-2$.”

Finally, we give the corrected figure 2 below.
Figure 1. Comparison of various LFV and LFU bounds on the minimal type III model for normal (top) and inverted (bottom) neutrino mass hierarchy. The bounds coming from $\mu - e$ transitions are plotted in red, $\tau - e$ in blue and $\tau - \mu$ in green. Constraint from the Z width to electrons is shown in magenta, to muons in cyan and to taus in yellow. The bounds constrain $\text{Im}(z)$ at the reference triplets’ mass of 100 GeV and depend on the unknown Majorana phase ϕ. Dependence on the other poorly known neutrino parameters is negligible as explained in the text.
Figure 2. Present and projected sensitivity of $\mu - e$ conversion experiments in non-minimal type III see-saw models for a massless lightest neutrino (in red empty circles, for both hierarchies) and for degenerate scenario at 1 eV (in blue filled spades). Minimal model predictions are drawn in green dashed lines. In all cases we put all the Majorana phases to zero and vary z_i randomly.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] A. Strumia and F. Vissani, Neutrino masses and mixings and... , hep-ph/0606054 [iSPIRE].