Monitoring microbial quality of commercial dairy products in West Azerbaijan province, northwest of Iran

Ramin Teymori¹, Naser Ghazanfarirad¹, Kamran Dehghan¹, Aghakhan Kheyri¹, Ghader Hajigholizadeh¹, Behzad Kazemi–Ghoshchi¹, Mahmoud Bahmani¹,²*

¹Deputy for Food and Drug, Urmia University of Medical Sciences, Urmia, Iran
²Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran

ARTICLE INFO

Article history:
Received 25 Feb 2014
Received in revised form 12 May 2014
Accepted 13 Jul 2014
Available online 10 Aug 2014

Keywords:
Microbial quality
Commercial dairy products
West Azerbaijan province
Iran

Objective: To evaluate the extent of microbial contamination such as coliform, Escherichia coli, positive coagulase Staphylococcus aureus, molds and yeast in cheese, buttermilk, yogurt, and milk in West Azerbaijan province.

Methods: Between March and November 2012, 93 samples of cheese, buttermilk, milk, and yogurt were collected from factories of West Azerbaijan province, northwest of Iran. The samples were tested by standard numbers 5486, 5234, 6806, and 10154 for monitoring their microbial quality.

Results: The results of this study revealed that 33% of cheese samples were unauthorized. Also, 22% of buttermilk, 23% samples of yogurt, and 15% of milk samples were unauthorized. Other examples of microbial aspects were normal.

Conclusions: It is necessary to determine the critical control points in organizing factories and automated control systems in order to eliminate or minimize the threat of pollution. Microbial quality of the present products was excellent. Meanwhile, training and familiarizing manufacturers of dairy products are very important in terms of health standards.

1. Introduction

Despite the advances of modern production methods, food safety and consumer safety are increasingly in public health importance. In industrialized countries, 30% of people have been estimated to suffer from eating disorders once a year. So, it is required to reduce or eliminate pathogenic microorganisms in food sources using different methods[1,2]. Dairy foods refer to all the milk products. The first material for producing dairy products is cow milk. However, the milk of other mammals such as goats, sheep, etc. is sometimes used. Milk is a substance that is secreted from the breast tissue of cattle and mammals[3].

Cheese or other fresh products that are obtained from milk cheese juice after coagulation and exit of whole milk, cream, buttermilk, butter, milk fat, or a mixture of them is obtained[3]. Iranian yogurt drink is made by mixing water and enough salt[3]. Yoghurt is the fermented product of milk, which is highly consumed in the Mediterranean, Asian, and Central European countries. Bulgaria has been identified as the original country in terms of yoghurt production[3].

Dairy foods are always exposed to pathogenic microorganisms and infections. Controlling microorganisms in food is one of the most important maintenance aspects[4], because in a country like the United States, 6.5 to 33 million people are annually infected by the disease–causing germs in food, which entails damage of 2.9 to 6.7 billion dollars[5].

Coliform is found in human and animal fecal and is usually plentiful in nature. It is extremely risky and toxic for food and water and could cause an intestinal disease. Coliforms are divided into two categories of non–fecal and fecal, which only live in the intestines, however, some coliforms are not only in the intestine, but also can be seen in the soil and plants. Escherichia coli (E. coli) is one of the
coli forms that exist in large numbers in the human intestine, it also can be present in water, food, and the environment after fecal contamination[6-8].

Staphylococcus aureus (*S. aureus*) is one of the most common infectious pathogens due to having various enzymes such as coagulase, hyaluronidase, uclease, lipase, hemolysin, and leukocidin, which is able to cause an infection anywhere in body[9].

In West Azerbaijan province, there are many traditional farms for produce milk. So milk is produced the form of non industrial. This study was designed to access microbial quality of dirty products.

2. Materials and methods

2.1. Sampling

Between March and November 2012, 93 samples of cheese, buttermilk, milk, and yogurt were collected from factories of West Azerbaijan province, northwest of Iran.

2.2. Microbial tests

Technique and reference methods under International Standardization Organization standards were used for monitoring the samples’ microbial quality.

2.3. Coliform (standard no. 5486)

About 1 mL of the samples was taken and dilution 10^{-3} was prepared thus added to sterile plates. The medium (lauryl sulfate tryptose broth) was then added to tube. The plates were incubated at 30 °C for 1–3 d[10].

2.4. *E. coli* (Iranian national standard no. 5234)

About 1 mL of sterile sample was poured and added to lauryl sulfate tryptose medium. Then, it was incubated at 37 °C. If gas was formed, the sample was reported as negative; and after culturing the samples, if gas was observed, it was positive. From positive (gas+) samples were taken and was added to the second tube. One was added to peptone water tube and incubated at 44 °C and for another tube and other tube to the EC broth. On Day 3, if the EC broth was positive, pepton water medium was added. Ultimately of the tube shall be counted[10].

2.5. *S. aureus* (positive coagulase) (Iranian national standard no. 6806)

The samples were prepared and incubated. If black colonies were observed, the sample test was positive[10].

2.6. Mold and yeast (Iranian national standard no. 10154)

First, standard dilution was prepared and into 15 mL of medium containing tetracycline and chloramphenicol oxytocin was inoculation into the plates and incubated at 45 °C. The colonies were then counted by the following formula: $N=\Sigma c/(n_1+0.1N_2)\ d$

Where Σc is total number of colonies on selective plates from two successive dilutions; n_1 is number of plates with minimum 10 and maximum 150 colonies in the countable dilution; n_2 is number of plates with minimum 10 and maximum 150 colonies to be counted in the second dilution; d is coefficient dilution in the first choice.

If more than 2 dilutions were counted between 10 and 150 colonies, the results are going to change formula so that subsequent dilution are taken into account[10].

3. Results

After examination of microbial and fungal contamination, the samples were observed low. Survey results showed that milk production was processed with the mechanization of good quality and was sanitary. The results of this study revealed that 33% samples of cheese, 22% samples of buttermilk, 23% samples of yogurt, and 15% samples of milk were unauthorized. Other examples of microbial aspects were normal.

Detailed results of the microbial quality of the tested samples for cheese, buttermilk, yoghurt, and milk are given in Tables 1–5.

According to Table 1, 8 out of 30 samples of cheese were above coliform. Six of the *E. coli* were positive. *Staphylococcus* was observed in 2 and 4 of them were from standard molds and yeast. In total, 18 out of 27 samples were acceptable. Microbial quality of the present products was excellent. About 67% of the cheese samples were acceptable in terms of microbial.

According to Table 2, for buttermilk samples were determined. For the 4 cases were positive to coliform. All samples of buttermilk were negative *E. coli* and no cases of *Staphylococcus* were reported. In total, 25 out of 32 samples of buttermilk were acceptable. Microbial quality of the products was excellent. About 78% of the buttermilk samples were acceptable in terms of microbial.

According to Table 3, for buttermilk samples were determined. For the 4 cases were positive to coliform. All samples of buttermilk were negative *E. coli* and no cases of *Staphylococcus* were reported. In total, 25 out of 32 samples of buttermilk were acceptable. Microbial quality of the products was excellent. About 78% of the buttermilk samples were acceptable in terms of microbial.

Based on Table 3, 18 out of 23 samples were acceptable. Four and three samples were contaminated with coliform and *E. coli* and were positive, respectively. In the present samples, one *S. aureus* was positive and three samples were also contaminated with mold and yeast. Microbial quality of
the products was excellent. About 77% of the yogurt samples were acceptable in terms of microbial.

None of the milk samples had a bump and protuberance and all the samples were acceptable. Fresh milk was positive in 3 cases (for \(E. \ coli\)) and 3 cases were unacceptable. Microbial quality of the products was excellent. 85% of the pasteurized milk samples were acceptable in terms of microbial.

It can be seen in Figure 1 that in all kinds of dairy products (cheese, yogurt, buttermilk, and milk), suspected microbial

\begin{table}[h]
\centering
\caption{Results of microbial tests for cheese.}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Sample of tested \hspace{1cm} & C. coli & \hspace{1cm} E. coli & S. aureus & Mold and yeast & Result \\
cheese & - & - & - & - & - \\
\hline
1 & 2.8 \times 10^5 & - & - & <1 & acceptable \\
2 & <10 & - & - & <10 & unacceptable \\
3 & <10 & - & - & <10 & acceptable \\
4 & 1.5 \times 10^5 & 4.7 \times 10^5 & 1.2 \times 10^6 & unacceptable \\
5 & <10 & - & - & <10 & unacceptable \\
6 & <10 & - & - & <10 & acceptable \\
7 & <10 & - & - & <10 & acceptable \\
8 & 1.1 \times 10^5 & - & - & 6.1 \times 10^5 & unacceptable \\
9 & <10 & - & - & <10 & acceptable \\
10 & 1.1 \times 10^5 & - & - & <10 & unacceptable \\
11 & <10 & - & - & <10 & acceptable \\
12 & <10 & - & - & <10 & acceptable \\
13 & <10 & - & - & 6.4 \times 10^5 & acceptable \\
14 & <10 & - & - & <10 & acceptable \\
15 & <10 & - & - & <10 & acceptable \\
16 & 7.2 \times 10^5 & - & - & <10 & unacceptable \\
17 & 2.4 \times 10^6 & - & - & <10 & unacceptable \\
18 & <10 & - & - & <10 & acceptable \\
19 & 2.1 \times 10^6 & - & - & <10 & unacceptable \\
20 & <10 & - & - & <10 & acceptable \\
21 & 6.1 \times 10^5 & - & - & <10 & unacceptable \\
22 & <10 & - & - & <10 & acceptable \\
23 & <10 & - & - & <10 & acceptable \\
24 & <10 & - & - & <10 & acceptable \\
25 & <10 & - & - & <10 & acceptable \\
26 & <10 & - & - & <10 & acceptable \\
27 & <10 & - & - & <10 & acceptable \\
28 & 2.4 \times 10^5 & 2.8 \times 10^5 & - & unacceptable \\
29 & 22 & <10 & - & - & acceptable \\
30 & 22 & <10 & - & - & acceptable \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Results of microbial tests for yogurt.

Sample of tested yogurt & \hspace{1cm} C. coli & \hspace{1cm} E. coli & S. aureus & Mold and yeast & Result \\
\hline
1 & 1.5 \times 10^5 & - & - & <1 & acceptable \\
2 & 4.2 \times 10^5 & - & - & <1 & acceptable \\
3 & 2.0 \times 10^6 & - & - & <1 & acceptable \\
4 & <10 & - & - & <10 & unacceptable \\
5 & <10 & - & - & <10 & unacceptable \\
6 & <10 & - & - & <10 & unacceptable \\
7 & <10 & - & - & <10 & acceptable \\
8 & 4.0 \times 10^5 & - & - & <10 & unacceptable \\
9 & 2.4 \times 10^5 & - & - & <10 & unacceptable \\
10 & 2.4 \times 10^5 & - & - & <10 & unacceptable \\
11 & <10 & - & - & <10 & acceptable \\
12 & <10 & - & - & <10 & acceptable \\
13 & <10 & - & - & <10 & acceptable \\
14 & <10 & - & - & <10 & acceptable \\
15 & <10 & - & - & <10 & acceptable \\
16 & <10 & - & - & <10 & acceptable \\
17 & <10 & - & - & <10 & acceptable \\
18 & <10 & - & - & <10 & acceptable \\
19 & <10 & - & - & <10 & acceptable \\
20 & <10 & - & - & <10 & acceptable \\
21 & <10 & - & - & <10 & acceptable \\
22 & <10 & - & - & <10 & acceptable \\
23 & <10 & - & - & <10 & acceptable \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Results of microbial tests for buttermilk.

Sample of tested \hspace{1cm} & C. coli & \hspace{1cm} E. coli & S. aureus & Mold and yeast & Result \\
yoghurt & - & - & - & - & - \\
\hline
1 & 2.8 \times 10^5 & - & - & <1 & unacceptable \\
2 & <10 & - & - & <10 & acceptable \\
3 & <10 & - & - & <10 & acceptable \\
4 & <10 & - & - & <10 & acceptable \\
5 & <10 & - & - & <10 & acceptable \\
6 & <10 & - & - & <10 & acceptable \\
7 & <10 & - & - & <10 & acceptable \\
8 & <10 & - & - & <10 & acceptable \\
9 & <10 & - & - & <10 & acceptable \\
10 & <10 & - & - & <10 & acceptable \\
11 & <10 & - & - & <10 & acceptable \\
12 & <10 & - & - & <10 & acceptable \\
13 & <10 & - & - & <10 & acceptable \\
14 & <10 & - & - & <10 & acceptable \\
15 & <10 & - & - & <10 & acceptable \\
16 & 6.1 \times 10^5 & - & - & <10 & unacceptable \\
17 & <10 & - & - & <10 & acceptable \\
18 & <10 & - & - & <10 & acceptable \\
19 & <10 & - & - & <10 & acceptable \\
20 & <10 & - & - & <10 & acceptable \\
21 & <10 & - & - & <10 & acceptable \\
22 & <10 & - & - & <10 & acceptable \\
\hline
\end{table}

\begin{table}[h]
\centering
\caption{Results of microbial tests for fresh and pasteurized milk.

Sample of tested \hspace{1cm} Total count of microorganisms & C. coli & \hspace{1cm} E. coli & \hspace{1cm} Microbial deterrent test & Result \\
fresh milk & - & - & - & - \\
\hline
1 & 7.15 \times 10^5 & - & - & <1 & acceptable \\
2 & 4.1 \times 10^5 & - & - & <1 & acceptable \\
3 & 2.1 \times 10^5 & 2.4 \times 10^5 & + & <10 & unacceptable \\
4 & 3.71 \times 10^5 & - & - & <10 & acceptable \\
5 & 2.7 \times 10^5 & - & - & <10 & acceptable \\
6 & 7.15 \times 10^5 & - & - & <10 & acceptable \\
7 & 2.02 \times 10^5 & - & - & <10 & acceptable \\
8 & 1.02 \times 10^5 & - & - & <10 & acceptable \\
9 & 2.02 \times 10^5 & - & - & <10 & acceptable \\
10 & \times & \times & \times & <1 & acceptable \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Results of microbial tests for pasteurized milk.

Sample of tested \hspace{1cm} Incubated at 30 °C for 10 d & \hspace{1cm} Incubated at 55 °C for 7 d & \hspace{1cm} Total count \hspace{1cm} at 30 °C for 10 d & \hspace{1cm} Total count \hspace{1cm} at 55 °C for 10 d & \hspace{1cm} Result \\
pasteurized milk & - & - & - & - \\
\hline
1 & - & - & <1 & <1 & acceptable \\
2 & - & - & <1 & <1 & acceptable \\
3 & - & - & <1 & <1 & acceptable \\
4 & - & - & <1 & <1 & acceptable \\
5 & - & - & <1 & <1 & acceptable \\
6 & - & - & <1 & <1 & acceptable \\
7 & - & - & <1 & <1 & acceptable \\
8 & - & - & <1 & <1 & acceptable \\
9 & - & - & <1 & <1 & acceptable \\
10 & - & - & <1 & <1 & acceptable \\
\hline
\end{tabular}
\end{table}

\(\times\) Experiments were no performed. None of the milk samples had a bump and protuberance and all the samples were acceptable. Fresh milk was positive in 3 cases for \(E. \ coli\) and 3 cases were unacceptable. Microbial quality of the products was excellent.
quality was good in most cases of and apparently healthy controls were good. In most studies have been reported worldwide contamination (microbial contamination in food always happen), the microbial quality of the samples was at an acceptable level. The sampling was performed in the case of suspected and in total, microbial quality of the products were excellent.

4. Discussion

Murinda et al. carried out a study in America in which E. coli O157:H8 was isolated from 30 dairy product factories[11]. Results of this study showed that cheese was a carrier of E. coli[12]. Bonyadian et al. demonstrated that the contamination of traditional cheese in Chaharmahal and Bakhtiari province, Iran with O157:H7 was zero; but, other E. coli serotypes were isolated[13]. The study by Marhamatizadeh et al. on Kazerroun traditional cheese diagnosed Listeria monocytogenes and positive—coagulase Staphylococcus as the cause[14]. Ogier and Serror[15] showed that among Mediterranean cheeses, a number of enterococcus was reached 10^3—10^7 CFU/g[16].

In the present study, 2 cases of Staphylococcus infection was observed in the cheese and buttermilk samples. S. aureus—caused disease has been the third—ranking factor of food poisoning in the world[17].

Aragon—Alegro et al. in Brazil reported that 15.1 dairy and take away food samples were contaminated with S. aureus (positive coagulase)[18]. Akineden et al. in Germany declared that 17.7% of goat cheese had positive coagulase S. aureus[19].

The results of a study in Yazd, Iran demonstrated that 7.1% of samples were unacceptable (microbial quality) and 40.5% of yogurt samples were contaminated with Staphylococcus[20].

Jayarao et al. concluded that coliform in a herd cattle US which health management and good governance to be effective in improving the quality of raw milk[21].

A study by Desai et al. was conducted in India and microorganisms has been reported to be 10^3 to 1.8×10^7[22].

The results of studies in Lorestan province, Iran showed coli form and E. coli contamination of raw milk in the region[23].

Van Schaik et al. believed that there were gathers milk from letdown stage until delivery to factory raw milk has a significant effect on bacterial load[24], which were consistent with the results obtained in this study.

The findings of Sangatashet et al. demonstrated that the yogurt drink not respecting the standards of plant design and production of natural resources there are several pollution of the factories. Also, a variety of bacterial and fungal contamination was reported in the mentioned study[25].

Microbiological and chemical qualities of ayran manufactured by two methods such as of handy and industrial to cities of in Turkey (Ankara and Karz) emphasized that number of mold and yeast was more from standard level[26].

The role of milk and milk products in human nutrition, especially in children and child nutrition and restriction for food’s human in some countries and the risk of existence aflatoxin in human foods and animal that is more important[27]. The results showed that a large percentage of the cheese produced from milk of cattle farms was contaminated with aflatoxins or Aspergillus spores[28]. In other studies, contamination of dairy products and cheese with mold and aflatoxin has been reported[29–32].

Kaniou—Grigoiadou et al. suggested that the contamination of starter of buttermilk, washing with contaminated water, contaminated packaging materials, and lounge air with yeast are causes of yeast infection for buttermilk[33]. Microbial quality of the products was excellent.

However, processed and raw foods are frequently contaminated with a variety of pathogens. Therefore, it is necessary to determine the critical control points in organizing factories and automated control systems in order to eliminate or minimize the threat of pollution.

The use of herbs spice that have the anti—microbial effects in dairy products is a good strategy to reduce the microbial load of the product[34–58].

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are thankful to the Deputy for Food and Drug, Urmia University of Medical Sciences, Urmia, Iran for their financial supports (Grant No. 777–29–92).

References

[1] Burt S. Essential oils: their antibacterial properties and potential
application in foods—a review. *Int J Food Microbiol* 2004; **94**(3): 223–253.

[2] Utee A, Bennik MH, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen *Bacillus cereus*. *Appl Environ Microbiol* 2002; **68**(4): 1561–1568.

[3] Karim G. Hygiene and technology of milk. Tehran: Tehran University Press; 2006.

[4] Beales N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress. *Comp Rev Food Sci Food Safety* 2004; **3**(1): 1–20.

[5] Morgan SM, Galvin M, Kelly J, Ross RP, Hill C. Development of a lactin 3147–enriched whey powder with inhibitory activity against foodborne pathogens. *J Food Prot* 1999; **62**(4): 1011–1016.

[6] Clescerl LS, Greenberg AE, Eaton AD. *Standard methods for the examination of water and wastewater*. New York, USA: Amer Public Health Assn; 1999.

[7] Baron EJ, Fingold SM, Peterson LR. *Bailey and Scott’s diagnostic microbiology*. Michigan: Mosby; 1994.

[8] Bitton G. *Wastewater microbiology*. New York, USA: Wiley–Blackwell; 2011.

[9] Naser EW. *Microbiology: a human perspective*. 3 rd ed. Boston: McGraw–Hill; 2001.

[10] International Organization for Standardization. Milk and milk products—general guidance for the preparation of test samples, initial suspensions and decimal dilutions for microbiological examination. Geneva: International Organization for Standardization; 2010. [Online] Available from: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27062 [Accessed on 4th June, 2014]

[11] Murinda SE, Nguyen LT, Ivey SJ, Gillespie BE, Almeida RA, Draymphon FA, et al. Prevalence and molecular characterization of *Escherichia coli* O157:H7 in bulk tank milk and fecal samples from cow cows: a 12–month survey of dairy farms in east Tennessee. *J Food Prot* 2002; **65**(5): 752–759.

[12] Mortazaee A, Motamedzadegan A, Nayebzadeh K. *Modern food microbiology*. Mashhad: Ferdosi University Press; 2007, p. 45–60.

[13] Bonyadliyan M, Zahraei Salehi MT, Moshtaghia HI, Zaerzade A. Study of the contamination of traditional cheeses to *E. coli* serotypes in Chaharmahal and Bakhtiari province. *J Vet Res* 2008; **63**(5): 301–304.

[14] Marhamatizadeh M, Karim G. [Study of microbial contamination of traditional cheese to coagulase-positive *Staphylococcus* in Kazerun]. Ferdowsi University of Mashhad; 2006, Persian.

[15] Ogier JC, Serror P. Safety assessment of food microorganisms: the *Enterococcus* genus. *Int J Food Microbiol* 2008; **126**(3): 291–301.

[16] Mirzaei H, Javadi A, Faraji M, Shah–Mohammadi AR, Monadi AR, Barzegar A. Prevalence of *Staphylococcus aureus* resistant to methicillin in traditional cheese and cream: a study in city of Tabriz, Iran. *J Vet Res* 2012; **67**(1): 65–70.

[17] Boerema JA, Clemens R, Brightwell G. Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of *Staphylococcus aureus*. *Int J Food Microbiol* 2006; **107**(2): 192–201.

[18] Aragon–Alegro LC, Konta EM, Suzuki K, Silva MG, Júnior AF, Rall R, et al. Occurrence of coagulase–positive *Staphylococcus* in various food products commercialized in Botucatu, SP, Brazil and detection of toxins from food and isolated strains. *Food Control* 2007; **18**(6): 630–634.

[19] Akineden O, Hassan AA, Schneider E, Usleber E. Enterotoxigenic properties of *Staphylococcus aureus* isolated from goats’ milk cheese. *Int J Food Microbiol* 2008; **124**(2): 211–216.

[20] Salari MH, Sharifi MR, Golzari SM, Sadrabadi AA, Kaflillian H. Contamination of milk and its products in Yazd. *J School Public Health Inst Public Health Res* 2006; **4**(3): 37–43.

[21] Jayarao BM, Pillai SR, Sawant AA, Wolfgang DR, Hegde NV. Guidelines for monitoring bulk tank milk somatic cell and bacterial counts. *J Dairy Sci* 2004; **87**(10): 3561–3573.

[22] Desai P, Natarajan A. Bacteriological quality of raw milk collected from societies for transportation to chilling centres. *Cheiron* 1981; **10**(4): 149–150.

[23] Yarahmani B, Mahdavi HR, Moayedinejad A. Study of total count, *E. coli* and coliforms contamination of raw milk from letdown stage till delivery to factory in Lorestan province. *Yafteh* 2008; **10**(3): 67–78.

[24] Van Schaik G, Green LE, Guzman D, Esparza H, Tadich N. Risk factors for bulk milk somatic cell counts and total bacterial counts in smallholder dairy farms in the 10th region of Chile. *Pren Vet Med* 2005; **67**(1): 1–17.

[25] Sangatash MM, Jamab MS, Karajian R, Nourbakhsh R, Gholasi F, Vosough AS, et al. Evaluation of microbiological contamination sources on swelling of Iranian yoghurt drink during production processes. *J Food Res* 2011; **1**: 45–55.

[26] Gulmez M, Guven A, Sezer C, Duman B. Evaluation of microbiological and chemical quality of aynan samples marketed in Kars and Ankara cities in Turkey. *Kafkas Univ Vet Fak Derg* 2003; **9**: 49–52.

[27] Rahimi E, Dehkordi JM, Iranpoor A. [A survey of aflatoxin M1 contamination in Iranian white cheese]. *J Food Res Technol* 2011; **4**(2): 51–56, Persian.

[28] Ardic M, Karakaya Y, Atasever M, Adiguzel G. Aflatoxin M1 levels of Turkish white brined cheese. *Food Control* 2009; **20**(3): 196–199.

[29] Kaniou-Grigoiadou I, Eleftheriadou A, Mouratidou T, Katikou K, Yafteh, Kaniou-Grigoiadou I, Eleftheriadou A, Mouratidou T, Katikou K. Determination of aflatoxin M1 in ewe’s milk samples and the produced curd and feta cheese. *Food Control* 2005; **16**(3): 257–261.

[30] Kokkonen M, Jestoi M, Rizzo A. Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. *Food Addit Contam* 2005; **22**(3): 449–456.

[31] Kamkar A, Jahed Khaniki G, Bokaie S, Hosseiny H. Aflatoxin M1 and Iranian white cheese. *J Faculty Vet Med Univ Tehran* 2006; **61**: 201–206.

[32] Heshmati M. Occurrence of aflatoxin M1 in Iranian white cheese. *J Food Sci Technol* 2010; **7**(2): 117–122.
P. Determination of aflatoxin M1 in ewe’s milk samples and the produced curd and feta cheese. *Food Control* 2005; 16: 257–261.

[34] Rafieian–Kopaei M. Medicinal plants and the human needs. *J Herb Med Pharmacol* 2012; 1(1): 1–2.

[35] Gholami–Ahangaran M, Bahmani M, Zia–Jahromi N. Comparative and evaluation of anti–leech (*Limnatis nilotica*) effect of olive (*Olea europaea* L.) with levamisole and tiabendazole. *Asian Pac J Trop Dis* 2012; 2(Suppl 1): S101–S103.

[36] Bahmani M, Golshahi H, Mohsenzadegan A, Gholami–Ahangaran M, Ghasemi E. Comparative assessment of the anti–leech (*Limnatis nilotica*) activities of Zingerbine officinale methanolic extract with levamisole. *Comp Clin Pathol* 2013; 22(4): 667–670.

[37] Forousan S, Bahmani M, Parsaee P, Mohsenzadegan A, Gholami–Ahangaran M, Sadeghi E, et al. Anti–parasitic activities of *Zingeribe officinale* methanolic extract on *Limnatis nilotica*. *Global Vet* 2012; 9(2–9): 144–148.

[38] Gholami–Ahangaran M, Bahmani M, Zia–Jahromi N. In vitro antileech effects of *Vitis vinifera* L., niclosamide and iwermetin on mature and immature forms of leech *Limnatis nilotica*. *Global Vet* 2012; 8(3): 229–232.

[39] Bahmani M, Rafieian–Kopaei M, Effekhari Z, Banhabib EB, Hajigholizadeh GH, Bahmani F, et al. Evaluating the anti–leech effects of methanolic extracts of *Peganum harmala* L. and *Olea europaea* L. on *Limnatis nilotica*. *World’s Vet J* 2013; 3(2): 33–37.

[40] Bahmani M, Saki K, Gholami–Ahangaran M, Parsaee P, Mohsenzadegan A, Zia–Jahromi N. Evaluating the anti–leech activity of methanolic extract of *Matricaria chamomilla* L. comparing with iwermeitin, mebendazole, praziquantal, rafoxanide, febandol and albendosolo. *Middle–East J Sci Res* 2012; 12(2): 260–263.

[41] Bahmani M, Effekhari Z. An ethnobotanical study of medicinal plants in treatment of diseases and syndromes of herd dog in southern regions of flam province, Iran. *Comp Clin Pathol* 2012; 22(3): 403–407.

[42] Bahmani M, Farkhondeh T, Sadighara P. The anti–parasitic effects of *Nicotina tabacum* on leeches. *Comp Clin Pathol* 2012; 21: 357–359.

[43] Bahmani M, Karamati SA, Banhabib EB, Saki K. Comparison of effect of nicotine and levamisole and iwermeitin on mortality of leech. *Asian Pac J Trop Dis* 2014; 4(Suppl 1): S477–S480.

[44] Bahmani M, Banhabib E. Comparative assessment of the anti–annelida (*Limnatis nilotica*) activity of nicotine with Niclosamide. *Global Vet* 2013; 10(2): 153–157.

[45] Amirmohammadi M, Khajoeinia SH, Bahmani M, Rafieian–Kopaei M, Effekhari Z, Qorbani M. In vitro evaluation of antigparasitic effects of *Artemisia abrotanum* and *Salvia officinalis* extracts on *Syphacia olevata*, *Aspicularis tetrapetra* and *Hymenolepis nana* parasites. *Asian Pac J Trop Dis* 2014; 4(Suppl 1): S250–S254.

[46] Bahmani M, Albasri J, Mohsenzadegan A, Sadeghian S, Gholami–Ahangaran M. *Allium sativum* L.: the anti–ammature leech (*Limnatis nilotica*) activity compared to Niclosamide. *Comp Clin Pathol* 2013; 2(2): 165–168.

[47] Effekhari Z, Bahmani M, Mohsenzadegan A, Gholami–Ahangaran M, Abbasi J, Alighazi N. Evaluating the anti–leech (*Limnatis nilotica*) activity of methanolic extract of *Allium sativum* L. compared with levamisole and metronidazole. *Comp Clin Path* 2012; 21: 1219–1222.

[48] Saki K, Kazemi–Ghoshchi B, Asadzadeh J, Kheiri A, Hajigholizadeh G, Sotoudeh A, et al. Quran medicine: studying from modern science perspective. *J Noc Appl Sci* 2014; 3(1): 1298–1302.

[49] Ullah MO, Haque M, Urmi KF, Zulfiker AH, Anita ES, Begum M, et al. Anti–bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. *Asian Pac J Trop Biomed* 2013; 3(1): 1–7.

[50] Sulaiman GM, Mohammed WH, Marzoog TR, Amir Al–Aimiery AA, Kadhum AA, Mohmad AB, et al. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. *Asian Pac J Trop Biomed* 2013; 3(1): 58–63.

[51] Dubey D, Rath S, Sahu MC, Rout S, Dehata NK, Padhry RN, et al. A report on infection dynamics of inducible clindamycin resistance of *Staphylococcus aureus* isolated from a teaching hospital in India. *Asian Pac J Trop Biomed* 2013; 3(2): 148–153.

[52] Al Momani WM, Taha ZA, Ajlouni AM, Abu Shaqqa QM, Al Zoub M. A study of in vitro antibacterial activity of lanthanides complexes with a tetratentate Schiff base ligand. *Asian Pac J Trop Biomed* 2013; 3(5): 367–370.

[53] Rahman MA, Islam MS. Antioxidant, antibacterial and cytotoxic effects of the phytochemicals of whole *Leucas aspera* aspera extract. *Asian Pac J Trop Biomed* 2013; 3(4): 273–279.

[54] Anagaw B, Gezachew M, Biadgelgene F, Anagaw B, Geleshe M, et al. Antibacterial activity of *Peganum harmala* L., niclosamide and ivermectin comparing with ivermectin, mebendazole, praziquantel, foboxanide, febantel and albendazol. *Comp Clin Pathol* 2014; 4(1): S824–S829.