Ag₃PO₄ decorated black urchin-like defective TiO₂ for rapid and long-term bacteria-killing under visible light

Yingde Xu¹, Xiangmei Liu¹,⁎, Yufeng Zheng², Changyi Li³, Kelvin Wai Kwock Yeung⁴, Zhenduo Cui¹, Yanqin Liang³, Zhaoyang Li³, Shengli Zhu³, Shuilin Wu²,⁎⁎

¹ School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
² Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
³ College of Engineering, State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, Peking University, Beijing, 100871, China
⁴ Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, China
⁵ Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China

⁎ Corresponding author.
⁎⁎ Corresponding author.
E-mail addresses: liuxiangmei1978@163.com (X. Liu), shuilinwu@tju.edu.cn (S. Wu).

https://doi.org/10.1016/j.bioactmat.2020.11.013

1. Introduction

By 2050, the long-term overuse of antibiotics may lead to a tenfold increase in the rate of mortality from incurable infections [1]. Since bacteria have become resistant to antibiotics, new antibacterial materials and techniques are emerging with increasing speed. It takes only two weeks for bacteria to develop resistance to new antibiotics that have taken several years, and great expense, to be developed [2–4]. Accordingly, innovative, antibiotics-free treatment strategies are expected; bacteria would either have no drug resistance to these treatments or could not develop resistance in a short time. Among new therapeutic methods [5–9], photodynamic therapy (PDT) can effectively inactivate bacteria via the reactive oxygen species (ROS) quickly produced by certain photo-responsive materials under light irradiation. Titanium dioxide (TiO₂) is one of most common semiconductor photocatalysts, but its large bandgap of 3.0–3.2 eV restricts its phototherapy application because it can only be excited by ultraviolet (UV) light [10,11]. Although black TiO₂, due to the lower bandgap and large amount of oxygen vacancy on its surface [12,13], exhibits better photocatalytic performance than untreated TiO₂, the fatal flaw of using a
mono-photocatalyst for phototherapy is the rapid recombination of electron–hole pairs [14,15], which reduce ROS yields under light irradiation. A heterojunction composed of two or more semiconductors could benefit the transfer of photo-generated electrons between different components, thus relieving this issue to some extent [16–18].

Trisilver phosphate (Ag₃PO₄), an important semiconductor with an indirect bandgap (2.36 eV), is attracting the increasing attention in the photocatalytic field because of its great oxidation capacity [19]. However, the reduction power of Ag₃PO₄ under visible light irradiation is too weak to conduct a photocatalytic reaction, which causes serious photo-corrosion of the Ag₃PO₄ [20,21]. However, a sacrificial reagent, such as silver nitrate (AgNO₃) can suppress the Ag⁺ of Ag₃PO₄ to form Ag⁰, which is conducive to the photostability of Ag₃PO₄ [22,23]. However, it is unrealistic to provide a sacrificial agent for Ag₃PO₄ in biologic applications. The Ag₃PO₄ particle also maintains a relatively large size (0.5–2 μm), which further affects its photocatalytic efficiency because it has a low specific surface area [22]. Loading Ag₃PO₄ on other semiconductors or two-dimensional (2D) materials can effectively enhance its photostability and reduce its size [24–26], whereas Ag₃PO₄-based traditional heterojunction and Z-scheme heterojunction either weaken its oxidation/reduction capacity or decrease the number of photoexcited carriers, which also weakens the photocatalytic performance [27–35].

Recent studies have disclosed that single-mode treatment cannot achieve ideal therapeutic effects for bacterial infectious diseases [36]. Higher concentrations of ROS are essential for effective photodynamic bacteria-kill[ing] [37,38], but large amounts of ROS are harmful for normal tissues [7,36]. In addition, both the lifespan and action radius of ROS are very finite [39,40], making them effective only for killing bacteria with which they come into direct contact. A higher photothermal temperature is necessary for inactivating bacteria effectively during photothermal therapy, but such a temperature will inevitably damage normal cells and tissues [6,41]. Therefore, synergistic action through two or more therapeutic modes has been proven to be more effective for killing bacteria—such as photodynamic therapy paired with Ag ions [42,43] or with photothermal action [44–47], as well as combined photodynamic and photothermal therapy paired with Zn²⁺ [48], Cu²⁺ [49], etc.

Physical puncture has also been reported to be an effective bacteria-killing mode, which neither produces bacterial resistance nor damages normal tissues and cells [50–52]. A few studies have been carried out to determine whether nanospikes or nanorods on a planar substrate could puncture the bacterial cell envelope [50,53,54]. However, these 2D approaches are not suitable for solution-based three-dimensional (3D) environment. As far as the current authors know, no reports have considered the synergy of phototherapy and mechanical puncture without a planar substrate. Therefore, since TiO₂ has various morphologies, including one-dimensional (1D) nanotubes [55], nanorods [56], 2D nanosheets [57], and 3D nanoflowers [58], in addition to its aforementioned outstanding photocatalytic performance, the authors hypothesized that photodynamic therapy and physical puncture may be combined to achieve satisfactory synergistic efficacy without adverse effects.

Based on this hypothesis, the researchers constructed a heterojunction system, in which Ag₃PO₄ nanoparticles (NPs) were grown in situ on black, urchin-like TiO₂X. This created NPs have large amount of surface oxygen defects (BU−TiO₂X). The synthesis process of BU−TiO₂X/Ag₃PO₄ is schematically illustrated in Scheme 1. Surface deficiencies such as oxygen vacancy on the surface of urchin-like TiO₂ produced by NaBH₄, can serve as the nucleation site of Ag₃PO₄, and a large number of nanospikes on the surface of black urchin-like TiO₂X restricted the growth of Ag₃PO₄, leading to a higher specific surface area than pure and unloaded Ag₃PO₄ [15,58,59]. Therefore, black urchin-like TiO₂X/Ag₃PO₄ NPs, under visible light, can inactivate bacteria in a short period of time. In addition, the extensive nanospikes of the black urchin-like TiO₂X NPs, combined with the Ag⁺ released by Ag₃PO₄ in water, inhibit bacterial growth in long term [25].

2. Experimental

2.1. Materials

Anhydrous ethanol, silver nitrate (AgNO₃), disodium hydrogen phosphate (Na₂HPO₄), hydrogen peroxide (H₂O₂, 30%) and sodium boron hydride (NaBH₄, 98%) were all purchased from Aladdin (Shanghai). Nitric acid (HNO₃, 65.0%–69.0%) and sodium hydroxide (NaOH, 96%) were purchased from Jiangtian (Tianjin). TiO₂ (Macklin P25) was purchased from Macklin (Shanghai).

2.2. Urchin-like TiO₂ NPs fabrication

Urchin-like TiO₂ NPs were synthesized via a two-stage hydrothermal reaction with slight modifications [58]. Briefly, TiO₂ (Macklin P25) powders (1 g) were dispersed in 60 mL of a NaOH aqueous solution (5 M), continuously stirred for 30 min, and then transferred into a Teflon-lined, stainless-steel autoclave and heated at 120 °C for 24 h. After reaction, the precipitates were collected by centrifugation, and subsequently washed with deionized (DI) water five times. These precipitates were dried at 60 °C in a vacuum for further use. The dried precipitates (0.3 g) were dispersed in a mixture of 57 mL of the NaOH aqueous solution (1 M) and 3 mL of a H₂O₂ (30%) solution. The

Scheme 1. The synthesis process of BU−TiO₂X/Ag₃PO₄.
transferred into a Teflon-lined, stainless-steel autoclave at 150 °C for 8 h. The precipitates were again collected by centrifugation, washed with DI water five times, and dried at 60 °C in a vacuum to generate urchin-like sodium titanate particles. The urchin-like particles were then treated with excess HNO₃ solution (0.1 M) with continuous magnetic stirring to produce urchin-like hydrogen titanate particles. The urchin-like hydrogen titanate particles were then washed with DI water five times and calcined at 400 °C for 1 h to produce the urchin-like TiO₂ particles.

2.3. Black urchin-like TiO₂ₓ NPs fabrication

0.5 g of urchin-like TiO₂ powders were mixed with 0.5 g of NaBH₄, and the mixture was thoroughly ground for 30 min under the infrared baking lamp [60,61]. The mixture then was placed in a tubular furnace and heated at a rate of 5 °C min⁻¹ to 350 °C, and then kept for 2 h under an argon atmosphere with subsequent furnace cooling to room temperature. The collected powders were rinsed with ethanol and DI water repeatedly.

2.4. Black urchin-like TiO₂ₓ/Ag₃PO₄ NPs fabrication

The black urchin-like TiO₂ₓ/Ag₃PO₄ NPs were synthesized via the following process. Briefly, 0.4 g of synthesized black urchin-like TiO₂ₓ powders were added to 100 mL of ethanol under ultrasonication. A stoichiometric amount of AgNO₃ was mixed with the black urchin-like TiO₂ₓ suspension and vigorous stirred for 1 h. During the stirring process, stoichiometric Na₃HPO₄ dissolved in 20 mL of distilled water, was added, drop by drop, into the above dispersion. The mixture was then continuously stirred for 3 h. The obtained precipitates were separated by centrifugation and washed eight times with ethanol and DI water. The prepared powders were then dried overnight in a vacuum oven at 60 °C. The entire synthesis was carried out in the dark. Pure and unloaded Ag₃PO₄ was prepared under identical experimental conditions without the presence of black urchin-like TiO₂ₓ.

2.5. Characterizations

The crystal structures of TiO₂ NPs and Ag₃PO₄ were determined using an X-ray diffractometer (XRD; D8 Advanced, Germany) with Cu-Kα as the radiation source (λ = 1.5406 Å). Samples and bacteria morphologies were observed via scanning electron microscope (SEM; Hitachi S-4800, Japan) and Transmission electron microscope (TEM; JEM-2100F, Japan). The elements composition of the samples were investigated via energy-dispersive X-ray spectroscopy (EDS; Oxford X-max20, UK) and a transmission electron microscopy (TEM; JEM-2100F, Japan). The bacterial morphology changes were observed via SEM. After being treated with the above procedures, the 96-well plate was deposited in a Finite Element Modeling (FEM) environment (COMSOL Multiphysics), and the process of a bacterium being punctured was simulated by the model of an inflated shell with isotropic elasticity being punctured by a nanospike. The researchers hypothesized that Young’s modulus (E) would encompass the entire cell envelope in these simulations and that the modulus of S. aureus and E. coli should be 30 MPa and 5 MPa, respectively [53,62]. The bacterial turgor pressure (ΔP) can be assessed by the modulus of S. aureus and E. coli, and the ratio of the turgor pressure to the modulus can be considered a constant (E/ΔP~100) [63]. The E. coli model was assumed to have a spherocylindrical shape, with a radius of 250 nm and a length of 2000 nm, while S. aureus model was assumed to have a

2.6. Photo-electrochemical performance

Transient photocurrent response measurement and linear sweep voltammetry (LSV) were carried out to further illustrate the photocatalytic performance of the samples under visible light irradiation. Samples were tested on an electrochemical workstation (Gamry Instrument, INTERFACE 1000) in a standard three-electrode system, and the electrolyte was a 0.5 mol L⁻¹ sodium sulfate (Na₂SO₄) aqueous solution. The photocatalyst samples were created as follows: 8 mg of the samples and 80 μL Nafion were added to 2 mL of ethanol to create a solution under ultrasonication. Then 80 μL of the mixed solution were added to a 10 × 10 mm indium tin oxide (ITO) glass electrode to make a coating.

2.7. Ag ions release

Ag₃PO₄ and BU-TiO₂ₓ/Ag₃PO₄ samples soaked in 100 mL of DI water (pH = 7.4), were stored in darkness at 37 °C for 21 days. 3 mL of the solutions were sucked out by a pipette gun at 1, 2, 3, 5, 7, 10, 14, and 21 days and added another 3 mL of DI water as supplementary. Ag⁺ released concentration was detected via inductively coupled plasma-optical emission spectrometry (ICP-OES; ICAP7000 series).

2.8. In vitro antimicrobial tests

The samples’ antimicrobial performances were tested against typical bacteria—Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)—through the spread plate method. The bacterial suspension was cultured separately in sterile Luria–Bertain (LB) media at 37 °C and was then diluted with LB media to 10⁷ CFU/mL before use. After being mixed with 200 μL of diluted bacterial suspension, all samples (control, BU-TiO₂ₓ, Ag₃PO₄, BU-TiO₂ₓ/Ag₃PO₄ (6:1), BU-TiO₂ₓ/Ag₃PO₄ (3:1), BU-TiO₂ₓ/Ag₃PO₄ (1:1)) at concentrations of 200 ppm, were added to 96-well plates. Each sample was irradiated with double solar intensity for 20 min via the Xenon lamp to simulate natural light. All samples have matched to samples without irradiation. Moreover, the samples, including the control, BU-TiO₂ₓ, Ag₃PO₄, BU-TiO₂ₓ/Ag₃PO₄ (3:1) and BU-TiO₂ₓ/Ag₃PO₄ (3:1) + light (20 min), were mixed with the bacterial suspension and placed in a constant-temperature shaker set to 160 rpm at 37 °C for 12 h without irradiation. In the end, each 20 μL amount of diluted solution was spread in a well-distributed fashion, on the agar plate, which was then cultured at 37 °C for 24 h. The antibacterial rate of each plate was calculated by measuring the number of bacterial colonies on the plate according to the following equation:

\[
\text{Antibacterial ratio (\%)} = \frac{(\text{number of CFUs in control sample} - \text{number of CFUs in experimental sample})}{(\text{number of CFUs in control sample})} \times 100\% \] (1)

The bacterial morphology changes were observed via SEM. After being treated with the above procedures, the 96-well plate was deposited for 2 h. Then, the bacteria were fixed for 2 h with 200 μL of 2.5% glutaraldehyde in the dark. Subsequently, handled with 30%, 50%, 70%, 90%, and 100% ethanol solutions were applied to dehydrate bacteria, with each step taking 15 min. The bacterial morphology was observed by SEM after drying.

2.9. Simulation computation methods of cell membrane puncture

Cell membrane penetration was conducted in a Finite Element Modeling (FEM) environment (COMSOL Multiphysics), and the process of a bacterium being punctured was simulated by the model of an inflated shell with isotropic elasticity being punctured by a nanospike. The researchers hypothesized that Young’s modulus (E) would encompass the entire cell envelope in these simulations and that the modulus of S. aureus and E. coli should be 30 MPa and 5 MPa, respectively [53,62]. The bacterial turgor pressure (ΔP) can be assessed by the modulus of S. aureus and E. coli, and the ratio of the turgor pressure to the modulus can be considered a constant (E/ΔP~100) [63]. The E. coli model was assumed to have a spherocylindrical shape, with a radius of 250 nm and a length of 2000 nm, while S. aureus model was assumed to have a
spherical shape, with a radius of 250 nm, according to the statistical data from the SEM results. The researchers hypothesized that the driving force for bacterial deformation would be the centripetal force of BU-TiO$_2$ and could be written as:

\[F_c = M_{BU} \omega^2 R, \]

where M_{BU} is the mass of BU-TiO$_2$, ω is the angular velocity; and R is the mean moving radius of BU-TiO$_2$ in the constant-temperature shaker. Based on the above conditions, the driving force could be calculated and was approximately 150 pN. In addition, both *E. coli* and *S. aureus* were punctured by a truncated cone nanospike, the mean diameter was 20 nm.

2.10. In vitro cell viability

Cell cytotoxicity was assessed via the water-soluble tetrazole (2-(2-methoxy-4nitrobenzene)-3-(4-nitrobenzene) -5- (2,4-disulfobenzene) -2H-tetrazole monosodium salt) (CCK-8) method using NIH-3T3 cells. All samples and 96-well plates were disinfected with UV light for 30 min. During the cytotoxicity assay, the samples were dipped in the cell culture medium for one, three, and five days, and the leach liquors (cell density 1×10^5 cells/mL$^{-1}$) were placed in the 96-well plate and cultured for one, three, and five days in a 5% carbon dioxide (CO$_2$) incubator at 37 °C. Then, 10 μL of the CCK-8 solution were added to the cell culture medium and put in the CO$_2$ incubator for 2.5 h. Finally, the cell viability of each sample was measured through a microplate reader (wavelengths of 450 nm), which can obtain the optical density (OD).

2.11. Statistical analysis

All the quantitative data were analyzed by the one-way ANOVA and expressed as means ± standard deviations with $n = 3$. P values < 0.05 were considered statistically significant.

3. Results and discussion

3.1. Morphologies and structure

Fig. 1 shows the morphologies of prepared BU-TiO$_2$ and BU-TiO$_2$/Ag$_3$PO$_4$ with different molar ratios of BU-TiO$_2$ and Ag$_3$PO$_4$ (6:1, 3:1, 1:1). The synthesized BU-TiO$_2$ particle clearly exhibited an urchin-like structure (Fig. 1(a)) composed of numerous nanospikes (Fig. 1(b)). After *in situ* growth of Ag$_3$PO$_4$, small nanoparticles appeared uniformly on the surfaces of the nanospikes (marked by red arrows in Fig. 1(c), (d), and (e)), and, as the Ag$^+$ content increased during the *in situ* loading process, the number of Ag$_3$PO$_4$ nanoparticles also increased, as proven by the corresponding EDS, shown in Fig. 1(f), (g), and (h). The average size of these nanoparticles was about 10 nm. In contrast, the synthesized Ag$_3$PO$_4$ exhibited a far larger size of over 200 nm under the same conditions but without BU-TiO$_2$ (Fig. S1), indicating that the BU-TiO$_2$...
nanospikes provided many nucleation sites for Ag$_3$PO$_4$ and facilitated the distribution of Ag$_3$PO$_4$ on BU-TiO$_{2-x}$.

The TEM patterns of U–TiO$_2$, BU-TiO$_{2-x}$, and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ are shown in Fig. 2(b). The Ag$_3$PO$_4$ nanoparticles were successfully loading on the surface of nanospikes, which is in accordance with the SEM results. The areas marked by white, dashed circles represent high-resolution TEM (HRTEM) images of U–TiO$_2$, and they reveal that the lattice spacings of 0.354 nm and 0.190 nm corresponded to the anatase (101) plane and (200) plane, respectively [64] (Fig. 2(b)). The HRTEM image of BU-TiO$_{2-x}$ showed that the lattice spacing of 0.354 nm corresponded to the anatase (101) plane, while the HRTEM image of BU-TiO$_{2-x}$/Ag$_3$PO$_4$ showed that lattice spacings of 0.190 nm and 0.245 nm corresponded to the anatase (200) plane and the Ag$_3$PO$_4$ (211) plane [64]. Some clearly observable oxygen defects and disorders are outlined by the yellow circles. The introduction of surface oxygen defects and disorders restrained the recombination of photogenerated electron–hole pairs via carrier trapping.

The XRD patterns in Fig. 2(c) show the crystal structure and phase composition of the as-synthesized U–TiO$_2$, BU-TiO$_{2-x}$, and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (6:1, 3:1, 1:1) samples. In the XRD pattern for U–TiO$_2$, the characteristic peaks at 20 values of 25.3°, 37.7°, 48.6°, and 53.8° corresponded to the (101), (004), (200), and (211) crystal planes of the anatase phase [65], indicating that U–TiO$_2$ was successfully formed during the hydrothermal reaction. After U–TiO$_2$ received a reduction treatment in a tubular furnace at 350 °C (Scheme 1), the corresponding peaks became weak and their breadth decreased, indicating that an oxygen-deficient amorphous TiO$_{2-x}$ layer generated, which is in line with the HRTEM results in Fig. 2(b). In the case of the synthesized Ag$_3$PO$_4$ sample, the XRD pattern contained diffraction peaks at 2θ values of 20.8°, 29.7°, 33.3°, 36.6°, 47.8°, 52.7°, 55.0°, 57.2°, and 71.9°, which were assigned to the (110), (200), (210), (211), (310), (222), (320), (321), and (332) crystal planes of Ag$_3$PO$_4$ [19], suggesting that Ag$_3$PO$_4$ was successfully prepared. Meanwhile, the XRD patterns of BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (6:1, 3:1, 1:1) showed that the peaks intensity was successively increased, indicating that the Ag$_3$PO$_4$ content had also increased in the hybrid. Under visible light for 20 min after three circles, the Ag$_3$PO$_4$ of XRD pattern presented the Ag peaks, while BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) still contained no Ag peaks in Fig. S2, indicating that the oxygen vacancy on the surface of BU-TiO$_{2-x}$ can retard the photocorrosion of Ag$_3$PO$_4$ [66]. To further verify the crystalline structure of the as-synthesized U–TiO$_2$ and BU-TiO$_{2-x}$, Raman spectroscopy was conducted (Fig. 2(d)). The Raman vibration peaks of the U–TiO$_2$, centered at around 143, 197, 394, 515, and 637.0 cm$^{-1}$, were well ascribed to the E_g, E_g, B_1g, A_1g + B_1g, and E_g characteristic vibration modes of anatase [67]. In the inset of Fig. 3(d), a positive shift in BU-TiO$_{2-x}$ can be observed, indicating that oxygen defects (such as

Fig. 2. The micromorphology, crystal structure, and phase composition of synthesized materials: (a) TEM images (Scale bar: 20 nm) and (b) HRTEM images (Scale bar: 2 nm) of U–TiO$_2$, BU-TiO$_{2-x}$, and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1); (c) XRD patterns of U–TiO$_2$, BU-TiO$_{2-x}$, Ag$_3$PO$_4$, and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (6:1, 3:1, 1:1); (d) Raman spectroscopy of U–TiO$_2$, BU-TiO$_{2-x}$. "
oxygen vacancy) formed on the surface of BU-TiO$_{2-X}$ [67]. And the intensity of the BU-TiO$_{2-X}$ peaks decreased and broadened after the reduction process by NaBH$_4$ because the oxygen vacancies decrease the oxygen atom vibration frequency, indicating that the vibration of the O atom is in connection with oxygen defects [68].

XPS analysis was further carried out to determine the elemental composition and chemical states of the synthesized samples. As shown in Fig. 3(a), the peaks of Ag, P, C, Ti, and O were detected in the BU-TiO$_{2-X}$. In addition, the signal intensity of Ag 3d and Ti 2p detected from the hybrid was lower than the corresponding intensity found in the single component, suggesting that the hybrid was successfully prepared. As shown in Fig. 3(b), the high-resolution scan of Ti 2p, detected from the BU-TiO$_{2-X}$ and BU-TiO$_{2-x}$/Ag$_3$PO$_4$, indicated that Ti 2p contained peaks of Ti 2p$_{1/2}$ at 464.2 eV, Ti 2p$_{3/2}$ at 464.8 eV, Ti 2p$_{3/2}$ at 458.3 eV, and Ti 2p$_{1/2}$ at 458.9 eV, which belonged to the Ti$^{4+}$ [69,70]. Compared to BU-TiO$_{2-x}$, the peaks of the BU-TiO$_{2-X}$/Ag$_3$PO$_4$ (3:1) sample showed a positive shift in binding energy, indicating an interfacial interaction between Ag$_3$PO$_4$ and BU-TiO$_{2-X}$. This could be ascribed to the formation of Ti–O–P bonds, which were beneficial for reducing the recombination of the photogenerated electron–hole pairs [58,71,72]. As shown in Fig. 3(c), the high-resolution spectra of Ag 3d, obtained from the Ag$_3$PO$_4$ and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1), showed that Ag 3d contained peaks of Ag 3d$_{5/2}$ at 374.0 eV, Ag 3d$_{3/2}$ at 374.1 eV, Ag 3d$_{5/2}$ at 368.3 eV, and Ag 3d$_{3/2}$ at 368.1 eV, which belonged to the Ag0 [73]. The Ag 3d also contained peaks of Ag 3d$_{5/2}$ at 374.9 eV, Ag 3d$_{3/2}$ at 374.0 eV, Ag 3d$_{5/2}$ at 374.9 eV, Ag 3d$_{3/2}$ at 369.6 eV, and Ag 3d$_{5/2}$ at 369.0 eV, which belonged to the Ag0 [73,74]. Compared with Ag$_3$PO$_4$, the peaks of the Ag0 in the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) sample showed a negative shift in binding energy and a lower intensity, suggesting that the formation of the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ hybrid can prevent Ag0 from becoming Ag0 [74,75]. In Fig. 3(d), the main peak of O 1s, centered at 529.5 eV, could have been caused by oxygen lattices in BU-TiO$_{2-X}$. The peak at 531.4 eV for BU-TiO$_{2-X}$ was also ascribed to surface active oxygen that was chemisorbed by oxygen defects (such as oxygen vacancy) [76]. In addition, the atom percentages of Ti and O could be measured using peak areas and the relative sensitivity factor. The stoichiometric ratio of the O$_{x}$(O–Ti):Ti$_{2p}$ atoms in the BU-TiO$_{2-X}$ sample was 1.88:1, indicating the appearance of oxygen vacancies after the NaBH$_4$ reduction process [77,78]. These results further demonstrated that Ag$_3$PO$_4$ had been successfully combined with the BU-TiO$_{2-X}$, which is in line with the XRD results.

3.2. Photocatalytic property

Fig. 4(a) presents the UV–Vis absorption spectra of the synthesized samples. The UV–Vis spectrum of the Ag$_3$PO$_4$ sample indicated that it absorbed sunlight with a wavelength less than 532 nm, corresponding to 2.33 eV of the bandgap energy [19]. The U–TiO$_2$ exhibited an absorption tail of less than 390 nm in the ultraviolet light region, corresponding to 3.20 eV of the bandgap energy. These results are in agreement with previous reports [61,64]. Compared to U–TiO$_2$, BU-TiO$_{2-X}$ exhibited a much wider absorption range, from 410 nm to 800 nm, corresponding to 2.72 eV of the bandgap energy (Fig. 4(b)). The edge potentials of the conduction band (CB) and the valence band (VB) of the photocatalysts could be calculated according to Eqs. (3) and (4) [79–81].

$$E_{VB} = \chi - E_v + 1/2E_g$$
$$E_{CB} = E_{VB} - E_g$$

where χ means the absolute electronegativity of the photocatalysts, which can be calculated from the geometric mean of the electronegativity in the constituent atoms (5.75 eV for BU-TiO$_{2-x}$ and 5.96 eV for
Ag₃PO₄ [80]. Eₚ and Eᵥ are the bandgap values of the photocatalyst and the energy of free electrons, with a value of 4.5 eV (vs Normal Hydrogen Electrode (NHE)). From the above, the calculated CB and VB potential of the synthesized BU-TiO₂/X and Ag₃PO₄ were −0.11 eV, 2.61 eV and 0.30 eV, 2.63 eV vs NHE, respectively. For the BU-TiO₂/X/Ag₃PO₄ (6:1, 3:1, 1:1) samples, the absorption spectra not only exhibited a larger characteristic absorption band edge, but also had a better absorption intensity in the visible region. In fact, BU-TiO₂/X enabled the transfer of some photogenerated electrons from Ag₃PO₄ to BU-TiO₂/X because of the oxygen deficiency on the surface of BU-TiO₂/X, thus inhibiting electron–hole recombination and enhancing the photocatalytic ability.

Fig. 4(c) shows the PL spectra of the synthesized samples, which can be used to perceive the recombination and separation efficiency of the photogenerated electron–hole pairs. The intensity of PL emission from the BU-TiO₂/X/Ag₃PO₄ (6:1, 3:1, 1:1) at about 445 nm was far below that of BU-TiO₂/X and Ag₃PO₄, indicating that the combination of BU-TiO₂/X and Ag₃PO₄ is beneficial to the separation of photogenerated electron–hole pairs, which can endow the hybrid with better photocatalytic performance than that of BU-TiO₂/X or Ag₃PO₄ alone. Moreover, the BU-TiO₂/X/Ag₃PO₄ (3:1) showed the lowest intensity of PL emission among three kinds of hybrids. When the molar ratio between BU-TiO₂/X and Ag₃PO₄ is 6:1, the bandgap is further larger than that of other composites, leading to a lower charge excitation efficiency; when the molar ratio between BU-TiO₂/X and Ag₃PO₄ is 1:1, the PL intensity is higher than that of other composites, leading to faster recombination of photogenerated electron–hole pairs. In brief, the molar ratio between BU-TiO₂/X and Ag₃PO₄ plays a critical role in effectively accelerating charge transfer and inhibiting the recombination of photogenerated electron–hole pairs.

Both transient photocurrent response and linear sweep voltammetry (LSV) are significant photoelectrochemical measurements for better understanding electron transfer and separation in the samples under visible light irradiation. As seen in Fig. 4(d), the BU-TiO₂/X, Ag₃PO₄, and BU-TiO₂/X/Ag₃PO₄ (3:1) samples had five repeated photocurrent responses over time (1–5)—on/off cycles, with and without the irradiation of simulated solar light (Xenon lamp light, 0.2 W cm⁻²). Under the light irradiation, BU-TiO₂/X/Ag₃PO₄ (3:1) exhibited the strongest photocurrent, which was far higher than the photocurrents of Ag₃PO₄ or BU-TiO₂/X alone. The current density of the potential (J–V) of the synthesized samples was measured under the irradiation of Xenon lamplight with the same power. As Fig. 4(e) indicates, the current density of BU-TiO₂/X/Ag₃PO₄ (3:1) was obviously higher than those of BU-TiO₂/X and Ag₃PO₄, which was well in accordance with the PL results, suggesting that the synthesized hybrid had a much stronger photocatalytic performance. This enhanced photocatalytic performance indicates that photocatalysts can produce more ROS after absorbing photons in appropriate environments, which can endow the material with better antibacterial activity. The electron spin resonance (ESR) spectrum can be used to evaluate the ROS yields of photocatalysts under light illumination. As shown in Fig. 4(f), obvious six-line peaks were observed, indicating the formation of ⋅O₂ [82]. The strong characteristic peaks, with an intensity ratio of 1:2:2:1, are displayed in Fig. 4(g), suggesting the production of large amount of ⋅OH [52]. The above results demonstrated that BU-TiO₂/X/Ag₃PO₄ (3:1) can produce ⋅OH and ⋅O₂ under visible light irradiation [15]. The photocatalytic mechanism of the BU-TiO₂/X/Ag₃PO₄ hybrid for generating ROS is schematically illustrated in Fig. 4(h). BU-TiO₂/X/Ag₃PO₄ (3:1) is excited to generate electrons and holes under visible light irradiation. The oxygen vacancy of U–TiO₂/X,
produced by NaBH₄ reduction, leads to local states below the conduction band edge [13], and acts as an electron acceptor to inhibit the recombination of photo-generated charges in BU-TiO₂ₓ/Ag₃PO₄ (3:1) [48], consequently enhancing the photocatalysis of BU-TiO₂ₓ/Ag₃PO₄ (3:1). According to the CB and VB potential of synthesized BU-TiO₂ₓ and Ag₃PO₄, the oxygen vacancy in BU-TiO₂ₓ/Ag₃PO₄ (3:1) can retard the flow of electrons to Ag⁺, thus preventing the Ag⁺ of Ag₃PO₄ from forming Ag₃ compared to Ag₃PO₄ alone [19], which is in keeping with the XPS results.

3.3. In vitro antibacterial activity

The spread plate results in Fig. S3 present the antibacterial capability of the synthesized samples against *E. coli* and *S. aureus*. In Fig. S3(a), it is obvious that there was almost no reduction in *E. coli* colonies among the synthesized samples compared to that of the control in the dark, indicating that none of the samples had antibacterial activity against *E. coli* without light irradiation for 20 min. Under the irradiation of Xenon lamp light, the BU-TiO₂ₓ samples exhibited little antibacterial activity, but it was evident that the nanospikes and photodynamic effect of BU-TiO₂ₓ did have some influence on *E. coli* in the short term. In contrast, under light irradiation, all Ag₃PO₄ containing samples, due to their photocatalytic properties, reduced bacterial colonies at different levels compared to the control. However, almost no bacterial colonies remained in the group of BU-TiO₂ₓ/Ag₃PO₄ (3:1) group, suggesting that it had the best antibacterial efficacy against *E. coli* because of its strongest photocatalytic performance. Under the same conditions, the antibacterial activity of all synthesized samples against *S. aureus* exhibited the same trends as against *E. coli* (Fig. S3(b)). The calculated antibacterial efficiencies against *E. coli* and *S. aureus* are shown in Fig. 5(a) and (b). The BU-TiO₂ₓ/Ag₃PO₄ (3:1) sample had the highest antibacterial efficiencies (99.73 ± 0.18% and 98.10 ± 0.09%) against *E. coli* and *S. aureus*, respectively, under visible light irradiation for 20 min. This was followed by Ag₃PO₄, BU-TiO₂ₓ/Ag₃PO₄ (6:1), and BU-TiO₂ₓ/Ag₃PO₄ (1:1), with corresponding antibacterial efficiencies of 90.1 ± 1.65%, 95.31 ± 1.17%, 82.58 ± 0.9% against *E. coli* and 56.85 ± 3.39%, 81.68 ± 1.8%, 89.08 ± 3.09% against *S. aureus*, respectively. The physical puncture administered by the BU-TiO₂ₓ and the Ag⁺ released from the Ag₃PO₄ played significant roles in the samples’ antibacterial activity against *E. coli* and *S. aureus*, as proven by culturing the bacteria with the samples in the dark for 12 h (Figs. S3(c) and S3(d)). The long-term antibacterial efficiency of BU-TiO₂ₓ/Ag₃PO₄ (3:1) was superior to BU-TiO₂ₓ alone, and, after visible light irradiation for 20 min, the BU-TiO₂ₓ/Ag₃PO₄ (3:1) sample had the highest long-term antibacterial efficiency of 99.76 ± 0.15% and 99.85 ± 0.09% against *E. coli* and *S. aureus*, respectively, in the dark for 12 h. In addition, the combination of BU-TiO₂ₓ and Ag₃PO₄ suppressed Ag⁺ leaching from Ag₃PO₄ (Fig. 5(d)), indicating that the increasing antibacterial efficiency of the BU-TiO₂ₓ/Ag₃PO₄ hybrid may be ascribed to physical puncture administered by BU-TiO₂ₓ. The inactivation kinetics of *E. coli* and *S. aureus* in the BU-TiO₂ₓ/Ag₃PO₄ (3:1) sample were investigated via Xenon lamplight in Fig. 5(e) and (f). The antibacterial efficiency of the BU-TiO₂ₓ/Ag₃PO₄ (3:1) sample against *E. coli* was obviously higher than that against *S. aureus* after light irradiation for 15 min. These antibacterial results are mainly ascribed to the samples’ photocatalytic performance, physical structure, and Ag⁺ release, which will be discussed below in the antibacterial mechanism section.

As shown in Fig. 6, bacterial microcosmic morphologies were observed via SEM, the ultrathin sectional TEM images, and the corresponding EDS. After visible light irradiation for 20 min (Fig. 6(a) and (b)), the *E. coli* and *S. aureus* cells had intact cell walls with smooth surfaces and full cytoplasm in the control (without samples or light). With respect to the BU-TiO₂ₓ sample, there were some depressed areas on the bacterial membranes and complete cell walls. In contrast, the *E. coli* exposed to the Ag₃PO₄ sample were evidently deformed. Spots of the bacterial membranes had ruptured, and their inner materials had flowed out; however, the bacterial membranes of *S. aureus* did not rupture. The membranes of most *E. coli* and *S. aureus* cells were broken, and the inner content had flowed out, when the cells were exposed to the BU-TiO₂ₓ/Ag₃PO₄ (3:1) sample. With the BU-TiO₂ₓ sample, after remaining in the dark for 12 h (Fig. 6(c)), the membranes of the *E. coli* and *S. aureus* cells showed puncture marks, while the BU-TiO₂ₓ/Ag₃PO₄...
(3:1) sample very obviously ripped and punctured the membranes of both bacterial types. In addition, the ultrathin sectional TEM images and the corresponding EDS (Fig. 6 (d) and (e)) further showed the puncturing behavior of BU-TiO$_2$/Ag$_3$PO$_4$ (3:1). In the control, the *E. coli* and *S. aureus* cells both retained normal-shaped structures with intact bacterial membranes, and EDS showed no signs of Ti or Ag, while the nanospikes on the BU-TiO$_2$/Ag$_3$PO$_4$ (3:1) held tight contact with the *E. coli* and *S. aureus* cells and even visibly deformed the *E. coli* cells. The corresponding EDS results also demonstrated that a small amount of ionic Ti and Ag penetrated the *E. coli* and *S. aureus* cells, which further proved that BU-TiO$_2$/Ag$_3$PO$_4$ (3:1) can puncture the cell membranes. As mentioned above, these results and the spread plate findings corroborated well.

3.4. Computational modeling of cell membrane puncture

Activation energy theory can be used to describe cell membrane puncture [83]. According to previous research, the rupture of the cell membrane depends on the free energy of deformed cells. When the free energy per unit area is larger than the threshold value $(2.9 \times 10^{-3}$ J/m$^2)$, cell membrane puncture occurs [53,84]. In the following simulation, the researchers chose the minimum threshold value $(2.9 \times 10^{-3}$ J/m$^2)$ as the critical value according to their experimental results. Considering the nanospikes on the surface of the BU-TiO$_2$ in all directions, the authors simulated the free energy variety of *E. coli* and *S. aureus* cells with a nanospike at different angles. At the same time, they assumed that angle(θ) was 0° when the nanospike was perpendicular to the *E. coli* or *S. aureus* cells. It is worth noting that when θ goes beyond around 65° for *E. coli* and around 50° for *S. aureus*, the
bacteria–nanospike system is unstable, and the simulation does not converge. As shown in Fig. 7(a), compared to being punctured with a nanospike at 0°, the E. coli cell generated a higher free energy density of $3.31 \times 10^{-3} \text{J/m}^2$ at 45°. The membrane deformation of the E. coli cell at 45° (outlined by the red circle) is visibly larger than 0°. Under the same simulated condition, the free energy density and membrane deformation of S. aureus exhibited the same trend as E. coli (Fig. 7(b)). The density distribution of the bacterial free energy and the membrane deformation for E. coli and S. aureus at each angle are shown in Movies 1 and 2. The free energy value increased as the angle increased for both E. coli and S. aureus (Fig. 7(c)). A puncture criterion (free energy density $2.9 \times 10^{-3} \text{J/m}^2$) separated the free energy density–angle plane into green (punctured) and blank regions. Compared to S. aureus, E. coli reached the free energy threshold at about $32–111$° lower than S. aureus. The difference in deformation was further proved by the bacteria’s corresponding penetration depth results (Fig. 7(d)). The penetration depth for the E. coli cells was greater than that for S. aureus, indicating that E. coli cells are susceptible to the nanospikes, which is in line with the spread plate results.

3.5. Antibacterial mechanism

The above results demonstrate that the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ hybrid had better antibacterial activity against E. coli and S. aureus. The antibacterial mechanisms of the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ hybrid have three aspects, which are shown in Scheme 2 [52, 58, 85], as follows. (A) ROS (Fig. 4(f) and (g)), such as •OH and •O$_2$, are generated by the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ hybrid under visible light; they can disrupt the cell membrane (Fig. 6(a) and (b)) and induce oxidative stress, which causes cell death. (B) Silver ions (Fig. 5(d)), released by the Ag$_3$PO$_4$ NPs, can penetrate cell membranes to inhibit active transport and bacterial metabolism when the concentration reaches a certain level. (C) BU-TiO$_{2-x}$ NPs can puncture bacterial cell walls, leading to deformation and even rupture of the bacterial membranes which causes bacterial death (Fig. 6(c) and (d)). The intense nanospikes, with a mean diameter of 20 nm, on the surface of the BU-TiO$_{2-x}$ NPs provide enough “arms” in all directions.

3.6. In vitro cytotoxicity test

As shown in Fig. S4, the Cell Counting Kit-8 (cck-8) assay evaluated cell viabilities on different leach liquors after one, three, and five days of incubation, since the Ag$^+$ released by Ag$_3$PO$_4$ NPs have higher toxicity than Ag NPs according to previous research [86]. Without visible light irradiation, the cell viability of the Ag$_3$PO$_4$ sample was higher than that of the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) sample at the first day. However, the cell viability of the Ag$_3$PO$_4$ sample was obviously lower than that of the BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) sample by the third day, suggesting that Ag$_3$PO$_4$ was less stable in water than BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1). At the fifth day, the cell viability of the Ag$_3$PO$_4$ and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) samples both approximated that of the control sample, indicating that, while Ag$_3$PO$_4$ and BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) presented some toxicity in the short term, their cell viability was enhanced and close to 95% in the long term. Thus, the CCK-8 assay proved that BU-TiO$_{2-x}$/Ag$_3$PO$_4$ (3:1) had good biocompatibility in vitro.

![Fig. 7. Computational modeling of cell membrane penetration. The density distribution of bacterial free energy and membrane deformation as the bacteria deform on the nanospikes (d = 20 nm) with two kinds of angles (θ): θ = 0° and θ = 45° for (a) E. coli and (b) S. aureus; (c) the maximum value of bacterial free energy density of E. coli and S. aureus cell punctured by nanospikes rises with increasing θ; (d) The penetration depth of E. coli and S. aureus cell with various θ.](image-url)
4. Conclusions

BU-TiO$_2$/Ag$_3$PO$_4$, with various molar ratio, is controllably designed to enhance its photodynamic therapeutic efficacy to combat *E. coli* or *S. aureus* infections through the synergistic antibacterial effects of ROS, nanospikes, and Ag$^+$ release. The cooperation of BU-TiO$_2$ and Ag$_3$PO$_4$ can decrease their bandgap, inhibit the recombination of photogenerated electron–hole pairs, and effectively promote charge transfer. BU-TiO$_2$/Ag$_3$PO$_4$ may have an optimum molar ratio of 3:1 which showed the best antibacterial efficiency (99.76 ± 0.15% and 99.85 ± 0.09%) against *E. coli* and *S. aureus* after 20 min of light irradiation followed by darkness for 12 h. The BU-TiO$_2$/Ag$_3$PO$_4$ (3:1) heterojunction have great antibacterial efficacy rapidly under visible light. Meanwhile, the physical puncture administered by the nanospikes on the surface of BU-TiO$_2$/Ag$_3$PO$_4$ have long-term bacteriostatic efficacy. Consequently, BU-TiO$_2$/Ag$_3$PO$_4$ has great potential for eliminating infections rapidly and effectively.

CRediT authorship contribution statement

Yingde Xu: Conceptualization, Methodology, Data curation, Writing - original draft. Xiangmei Liu: Conceptualization, Writing - review & editing, Supervision, Project administration. Yufeng Zheng: Conceptualization, Supervision, Project administration. Changyi Li: Methodology. Kelvin Wai Kwok Yeung: Methodology. Zhenduo Cui: Methodology. Yanqin Liang: Methodology. Zhaoyang Li: Methodology. Shengli Zhu: Methodology. Shuilin Wu: Conceptualization, Writing - review & editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgements

This work is jointly supported by the National Science Fund for Distinguished Young Scholars 51925104, National Natural Science Foundation of China nos. 51871162, 51671081, and 81870809, NSFC key program 51631007, Natural Science Fund of Hubel Province, 2018CFA064, RGC/NSFC (N.HKU725-1616), Hong Kong ITC (ITS/287/17, GHX/002/14SZ), as well as Health and Medical Research Fund (No. 03142446).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bioactmat.2020.11.013.

References

[1] B.M. Hover, S.H. Kim, M. Katz, Z. Charlop-Powers, J.G. Owen, M.A. Temei, J. Maniko, A.B. Estrela, H. Molina, S. Park, D.S. Perlin, S.F. Brady, Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens, Nat. Microbiol. 3 (4) (2018) 415–422.
[2] K. Lewis, Platforms for antibiotic discovery, Nat. Rev. Drug Discov. 12 (5) (2013) 371–387.
[3] S. Baker, N. Thomson, F.X. Weill, K.E. Holt, Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens, Science 360 (6390) (2018) 733.
[4] M.P. Paudyal, A.M. Adebesin, S.R. Burt, D.H. Esu, Z. Ma, L. Kurti, J.R. Falck, Dirhodium-catalyzed C-H amination using hydroxylamines, Science 353 (6304) (2016) 1144-1147.
J. Shao, W. Sheng, M. Wang, S. Li, J. Chen, Y. Zhang, S. Cao, T. Wang, Z. Weng, X. Liu, J. Yao, Monolayered Ru1-TiO2 nanosheets enables efficient visible-light-driven hydrogen evolution, Appl. Catal., B 271 (2020) 118925.

J. Wang, H.J. Chen, T. Hang, Y. Yu, G. Liu, C. Yang, J. Li, D. Yi, F. Zhan, B. Zhou, D. Gao, D. Guo, S. Liu, X. Wang, J. Yao, Improving the photocatalytic efficiency, Appl. Catal., B 209 (2017) 311–319.

J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Improving the photocatalytic efficiency, Appl. Catal., B 209 (2017) 311–319.

X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotubes as photoanodes for sensing applications, ACS Appl. Mater. Interfaces 5 (21) (2013) 11129–11135.

M. Michelowirth, M. Rakers, C. Schafer, J. Mattay, M. Neumann, U. Heizmann, Photocycloaddition of anthracene-functionalized monolayers on silicon (100) surface, J. Phys. Chem. B 114 (10) (2010) 3482–3487.

Y. Li, X. Xu, Y. Li, C. Ding, J. Wu, A. Li, H. Ding, S. Qin, C. Wang, Absolute band structure determination on naturally occurring rutile with complex chemistry: implications for mineral photocatalysis on both earth and mars, Appl. Surf. Sci. 439 (2018) 660–671.

C. Fang, E. Liu, J. Wan, X. Hu, J. Fan, Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst, Appl. Catal., B 181 (2016) 707–715.

H. Ding, D. Han, Y. Han, Y. Liang, X. Liu, Z. Li, S. Zhu, S. Wu, Visible light responsive CuS/protonated g-C3N4 heterostructure for rapid sterilization, J. Hazard Mater. 393 (2020) 124425.

P. Kuppusamy, J.L. Zweier, Characterization of free radical generation by xanthine-oxidase: evidence for hydroxyl radical generation, J. Biol. Chem. 264 (17) (1989) 9880–9884.

E. Evans, V. Heinrich, F. Ludwig, W. Rawicz, Dynamic tension spectroscopy and strength of biomembranes, Biophys. J. 85 (4) (2003) 2342–2350.

X. Xie, A.M. Xu, M.R. Angle, N. Tayebi, P. Verma, N.A. Melosh, Mechanical model of vertical nanowire cell penetration, Nano Lett. 13 (12) (2013) 6602–6608.

A. Panacek, L. Kvitak, M. Smekalova, R. Vecerova, M. Kolar, M. Roderova, F. Dycka, M. Sebesta, R. Pucek, O. Tomanc, R. Zbofil, Bacterial resistance to silver nanoparticles and how to overcome it, Nat. Nanotechnol. 13 (1) (2018) 65–71.

Y. Lai, L. Dong, H. Zhou, B. Yan, Y. Chen, Y. Cai, Coexposed nanoparticle Ag alleviates the acute toxicity induced by ionic Ag+ in vivo, Sci. Total ENVIRON. 723 (2020) 138050.