A one-pot synthesis of a monolithic Cu₂O/Cu catalyst for efficient ozone decomposition†

Mohammad Ghasem Rahimi,ab Anqi Wang,ab Guojun Ma,c,d Ning Han,g,*ac and Yunfa Chenac

Nowadays, it is necessary and challenging to prepare monolithic catalysts, which are ready for use, preventing the tedious and complicated integration procedure of the powder materials onto a porous substrate. Herein, Cu₂O nanoparticles are successfully synthesized onto a porous Cu foam in one pot via photo-chemical reactions over the past few decades in the summers and is commonly detected in surrounding human environments, such as aircraft cabins, photocopier offices, laser printers, and sterilizers. (Batakliev et al., 2018; Rime et al., 2018). Therefore, the ozone exposure standard has regularly been set at about 70 ppb over an average time of 8 hours. The obtained Cu₂O/Cu catalyst (mostly <100 nm) shows a highly active O₃ decomposition performance with >98% and >80% conversion efficiency in dry and 90% relative humidity air for >10 h at an O₃ concentration of 20 ppm and a gas hourly space velocity of 12 500 h⁻¹. The high efficiency can be attributed to the porous Cu foam providing a large contact area, abundant crystal defects in the nanometer-sized Cu₂O materials serving as the active sites, and also to the Schottky barrier formed in the Cu₂O/Cu interface facilitating the electron transfer for O₃ degradation. All these results show the potency of the easily fabricated monolithic Cu₂O/Cu catalyst for the highly efficient O₃ contaminant removal.

Introduction

It is well understood that the stratospheric ozone layer hinders short-wavelength ultraviolet light from threatening lives on the surface of Earth. However, the ground-level ozone is a destructive chemical, which has been generated in high concentrations via photo-chemical reactions over the past few decades in the summers and is commonly detected in surrounding human environments, such as aircraft cabins, photocopier offices, laser printers, and sterilizers. (Batakliev et al., 2015; Hollós, 2002; Oyama, 2000; Rim et al., 2018). Therefore, the ozone exposure standard has regularly been set at about 70 ppb over an average time of 8 hours.³

The degradation rate of ozone in ambient atmosphere is comparatively low, and thus the contaminants cannot be entirely removed naturally. Hence, the catalytic ozone decomposition process has received considerable attention than other removal techniques such as adsorption⁶–⁷ and thermal decomposition.⁸–⁹ Lately, the catalytic ozone decomposition technique at low temperatures has also been communicated,¹⁰–¹² and long-term studies confirmed the approach as safe, efficient, cost-effective, and fast ozone conversion under ambient conditions.¹¹–¹² A series of essential catalysts for ozone decomposition have been developed, of which the most active and productive candidates for catalytically converting ozone to oxygen molecules are indeed noble metals and transition metal oxides.¹³,¹⁴ Transition metal oxide-based catalysts are incredibly efficient from an environmental perspective and simultaneously provide a convenient and affordable way to decompose the ozone molecules. In this regard, transition metal oxides including MnO₂,¹⁵–¹⁷ Cu₂O/CuO,¹⁸,¹⁹ Fe₂O₃,¹⁹,²⁰ and NiO²¹ have been reported as active catalysts.¹²

Due to the low price, environmental friendliness, and other versatile functionalities, Cu-based materials have been extensively studied and synthesized through various routes in the recent past decades. Our group has recently communicated Cu₂O powder as a promising catalyst to decompose 20 ppm ozone with 100% conversion at space velocity of 240 000 mL g⁻¹ h⁻¹, which has been acknowledged as one of the most active powder-based catalysts.¹⁶,²¹,²² However, the reported powder-based catalysts are not practical to render for the gas-phase catalytic decomposition until they are integrated into a porous substrate to form a monolithic catalyst. Then, problems such as weak adhesion between the substrate and catalyst powders,
sophisticated multi-step or long term integration, and fabrication at high temperatures have been encountered.23-27 In this study, we successfully propose a one-pot synthesis of the monolithic Cu\textsubscript{2}O nanocatalyst on the surface of a Cu foam by a facile chemical oxidation approach without using additives, which offer superior ozone catalytic performance with high stability and low production cost. This study provides not only a simple synthesis method of the supported catalyst, but also a highly active Cu\textsubscript{2}O/Cu ozone decomposition material.

Experimental

Material and method

Hydrochloric acid (HCl), aqueous ammonia (NH\textsubscript{4}OH), and acetone (CH\textsubscript{3}COCH\textsubscript{3}) of analytical grade were purchased from Sinopharm Chemical Reagent Co. Ltd. and utilized as received without further purification. The ultrapure water with a resistivity of 18.2 M\Omega cm was used for all the synthesis and experiments. A commercial Cu foam sample (500 mesh) was first cut into round-shape pieces (diameter 12 mm, thickness 2 mm). In general, the foam was first immersed in diluted HCl and thoroughly washed with deionized water, then put in acetone and sonicated for 5 min to remove impurities and native oxides on the Cu foam. Afterward, the sample was dried in N\textsubscript{2} gas for further use. In a typical synthesis experiment, the pre-processed Cu foam was quickly transferred to a glass beaker and immersed in a solution containing 0.4 mL of 1 M HCl, 27 \mu L of 13.38 M NH\textsubscript{4}OH and 20 mL distilled water. The glass beaker was covered by an aluminum foil. Then, the experiments were carried out at constant temperatures (60, 70, 80, and 90 °C) for a given oxidation time (8, 12, 18, and 24 h). The Cu oxidation condition in the solution was then labeled as Cu\textsubscript{Temperature}, Time (\textit{e.g.}, Cu\textsubscript{80}, 8 h denotes 80 °C, 8 h).

Characterization

The crystalline structures were recorded using a powder X-ray diffractometer (XRD) on a PANalytical X’Pert high score system (40 kV, 40 mA) with Cu-K\alpha radiation (\lambda = 0.15418 nm). The diffraction angles were selected from 5° to 90° with a step size of 0.033° and at a rate of 17° min-1. The morphology was studied using a scanning electron microscope (SEM, JEOL JSM-6700F, Japan, 15 kV, 10 mA). The Raman spectra were recorded on Jobin-Yvon LABRAM HR800 Raman Microscope with a resolution of 2 cm-1 at an excitation of 532 nm laser. The surface analyses were determined via X-ray photoelectron spectroscopy (XPS) on an XLESCALAB 250Xi electron spectrometer from VG Scientific with mono-chromatic Al-K\alpha radiation. The surface area was characterized by a BET specific surface area and pore size analyser (BJBUILDER SSA-7300, China). The humidity was measured by a humidity sensor (Center 310 RS-233, TES, Taiwan).

Catalyst test

The as-synthesized sample was loaded in a continuous tube reactor (inner diameter 14 mm). 20 ppm ozone was generated by a commercial ozone generator (COM-AD-01-OEM, Anseros Company, Anshan, China) and the total flow rate was maintained at 200 standard cubic centimeters per minute (sccm, 190 scm air and 10 scm oxygen) using mass-flow controllers, equivalent to a gas hourly space velocity (GHSV) of 12 500 h-1. The inlet and outlet ozone concentrations (\textit{C}_{\text{in}} and \textit{C}_{\text{out}}) respectively in the gas phase were determined by an ozone detector (Model 106M, 2B Technologies, USA), and the conversion was calculated as 100% \times (\textit{C}_{\text{in}} - \textit{C}_{\text{out}})/\textit{C}_{\text{in}}.

Results and discussions

Cu\textsubscript{2}O/Cu was initially synthesized \textit{via} a simple oxidation approach in the solution containing 0.4 mL 1 M HCl, 27 \mu L 13.38 M NH\textsubscript{4}OH and 20 mL distilled water. Upon the introduction of fresh Cu foam into the solution, the first sign of the oxidation reaction appeared from the change in the solution color to blue after a couple of minutes, as shown in Fig. S1 in the ESI.† Also, the molar ratio of NH\textsubscript{4}OH : HCl was optimized as 1 : 0.9, as shown in Table S1.†

XRD and SEM were employed to investigate the crystal structure and morphology of the samples prepared at different reaction temperatures of 60–90 °C for 12 h. As exhibited in Fig. 1a, the XRD patterns of the Cu foam reacted at 60, 70 and 90 °C were observed with three sharp peaks at 43.4°, 50.6° and 74.3°, which can be indexed to the (111), (200) and (220) planes of the Cu crystal structure (JCPDS 03-065-9743), respectively. However, after the reaction at 80 °C, the oxidation of superficial Cu leads to the formation of the Cu\textsubscript{2}O nanocatalyst, which can be verified by the additional XRD peak at 2\theta = 36.6°, contributing to the (111) plane of the face-centered cubic structure of Cu\textsubscript{2}O (JCPDS 00-001-1142). This confirms that the hybrid Cu\textsubscript{2}O/Cu...
nanocatalysts have been successfully obtained by the one-pot synthesis method, which can be further verified by the SEM images in Fig. 1b and c. Fig. 1b shows a relatively smooth surface of pure Cu foam with a three-dimensional open network framework. Notably, crystalline Cu$_2$O particles were observed at Cu$_{80}$ °C, 12 h (mean < 100 nm), as shown in Fig. 1c. Therefore, the synthesis temperature was set at 80 °C, and the growth time was further investigated in order to obtain as much Cu$_2$O particles as possible on the surface of the Cu foam. The size of Cu$_2$O formed at 60 °C is 90 nm, and at 70 and 90 °C are less than 115 nm. It should also be noted that after 8 h treatment at 80 °C, the BET specific surface area of the Cu foam was only 5.8 m2/g, as shown in Fig. S2,† showing the existence of few pores in the Cu$_2$O/Cu catalyst.

Afterward, the reaction time was varied from 8 to 24 h, and the XRD patterns were obtained and are shown in Fig. 2a. It is clear that the Cu$_2$O peaks at 36.6° become more visible as the reaction time increases from 8 to 18 h, thereby signifying that the crystallinity of Cu$_2$O was controlled by the oxidation time and temperature and the Cu foam turned brick reddish after 18 h, as shown in the inset of Fig. 2a. It should also be noted that the XRD patterns only belong to the deposited Cu$_2$O layer and the underlying Cu metal substrate without any detectable impurities such as CuO. However, after 24 h reaction time, the surface Cu$_2$O was partially dissolved in the solution as clearly depicted in Fig. 2b. As a comparison, the Cu$_2$O layer obtained after 18 h (mostly < 100 nm) is dense and homogeneously covers the entire surface of the Cu foam as shown in the surface and cross-sectional SEM images in Fig. 2c and d. The micro and nanoscale morphology of Cu$_2$O plays a vital role in determining their properties such as catalytic activity. Further, the cross-sectional SEM images are employed to measure the average thickness of the layer, which is about 2.67 μm for the Cu$_{80}$ °C, 18 h sample. The SEM images reveal that the proper depth and the bridging structure of the as-synthesized irregular Cu$_2$O nanoparticles provide a significantly extra high contact surface area for ozone decomposition.

Fig. 2 (a) XRD patterns of Cu$_2$O/Cu obtained at different oxidation times, SEM images of (b) Cu$_{80}$ °C, 24 h, (c) surface SEM and (d) cross-sectional SEM images of Cu$_{80}$ °C, 18 h.

Fig. 3 Schematic of (a) the Cu$_2$O formation mechanism and (b) the lattice model.

To understand the reaction mechanism of the Cu$_2$O formation on the Cu foam, control experiments were carried out. If aqueous ammonia was solely used without HCl, the Cu foam would dissolve gradually and the solution would change into blue color, which infers that the role of aqueous ammonia is to dissolve Cu. On the other side, if aqueous ammonia is not used, Cu foam would remain unchanged in HCl as HCl cannot dissolve Cu. Therefore, initially, Cu dissolves readily with the help of dissolved oxygen in aqueous ammonia, as shown in eqn (1). This step is fast to occur and the deep blue color infers the product of the Cu and NH$_3$H$_2$O complex (Cu(NH$_3$)$_4^{2+}$, coordination constant 10$^{10.86}$), as shown in eqn (2). Further, with the help of Cl$^-$, CuCl would precipitate onto the surface of the Cu foam due to the low solubility product of 1.72 × 10$^{-7}$, as shown in eqn (3). Then, CuCl would react fast with local OH$^-$ to form less soluble CuOH (solubility product 1 × 10$^{-15}$), as shown in eqn (4). Finally, the intermediate CuOH would immediately decompose into Cu$_2$O due to its thermodynamic instability, as shown in eqn (5).

$$\begin{align*}
2Cu + 8NH_3 + O_2 + 2H_2O &\rightarrow 2Cu(NH_3)_4^{2+} + 4OH^- \\
Cu(NH_3)_4^{2+} + Cu &\rightarrow 2Cu(NH_3)_2^{2+} \\
Cu(NH_3)_2^{2+} + Cl^- &\rightarrow 2NH_3 + CuCl \\
2CuCl + 2OH^- &\rightarrow 2CuOH + 2Cl^- + H_2O \\
2CuOH &\rightarrow Cu_2O + H_2O
\end{align*}$$

Herein, a stable layer of Cu$_2$O was formed with noticeable thickness as Cu was exposed to NH$_3$H$_2$O and Cl$^-$. The outline mechanism of the Cu$_2$O synthesis is illustrated schematically in Fig. 3.

In order to further verify the crystal structure of the product, Raman spectra were obtained, as shown in Fig. 4. The Cu$_2$O layer exhibited four distinct peaks in the spectra at 150, 220, 420, and ~640 cm$^{-1}$. The origin of 150, 220, and ~640 cm$^{-1}$ peaks are known to be due to the $\Gamma_{15}^{(1)}$, $\Gamma_{12}^{(2)}$ and $\Gamma_{15}^{(2)}$ phonons in good agreement with the literature. Additionally, the peak at 420 cm$^{-1}$ is assigned to the region of the multiphonon process. Different orientations of the samples may cause a discrepancy in the Cu$_2$O Raman peak intensities.
the $\Gamma_{15}^{(1)}$ and $\Gamma_{12}^{(2)}$ phonons can be activated by either local defects or impurities in Raman scattering. The Raman results are consistent with the SEM results, in which catalysts are formed incompletely. The $\Gamma_{15}^{(1)}$ and $2\Gamma_{12}^{(2)}$ phonons at 150 and 220 cm$^{-1}$ can be ascribed to the Cu tetrahedron rotations around its center and was reported to be very sensitive to the surface damages.\(^{39}\)

Then, the catalytic performances of the Cu$_2$O/Cu samples were tested for the removal of O$_3$ at ambient temperature, as depicted in Fig. 5. In general, three dimensional porous Cu foam provides the contact possibility and Cu$_2$O provides the active sites compared with the bulk Cu.\(^{40}\) In this study, 20 ppm ozone with 200 sccm flow rate (190 sccm air and 10 sccm O$_2$) and a GHSV of 12 500 h$^{-1}$ was introduced into the as-prepared Cu$_2$O/Cu. The efficiency remains 100% over 6 h of continuous operation in dry air conditions for the Cu$_2$O/Cu catalyst prepared at 80 °C for 12 h and 24 h, and then slightly deviated. The efficiency of the Cu$_2$O/Cu catalyst for 18 h oxidation time is up to 98% over 10 h among the other samples. Also, to explore the catalytic activity and stability in the real situation, ozone conversion was performed in the presence of water vapor (relative humidity, RH). It is not much affected by 90% RH, and after an 8 h test, the ozone conversion maintained approximately 80% efficiency. This high performance can be ascribed to the as-prepared interconnected Cu$_2$O nanoparticles and ultra-high surface area on the surface of porous Cu foam. However, the activity was dramatically dropped for a higher flow rate of 800 sccm (GHSV of 50 000 h$^{-1}$), which might be the result of the low contact time of O$_3$ with the catalyst for such a high flow rate. Besides, the Cu foam was separately verified and possessed low efficiency (less than 15 min activity) in ozone decomposition performance. The monolithic ozone catalysts are compared in Table 1, where it is clear that the obtained catalyst shows highly active O$_3$ decomposition performance in dry and relative humidity compared to other monolithic catalysts.

It has been earlier reported that the catalytic ozone decomposition on Cu$_2$O can be described as per the eqn (6)–(8), where freeing adsorbed oxygen species such as O$_2$\(^{2-}\) on Cu$_2$O is the rate-determining step (eqn (8)).\(^{18}\)

\[
O_3 + [\text{Cu}^+] \rightarrow O_2 + O_{\text{ads}} [\text{Cu}^{2+}] \quad (6)
\]

\[
O_3 + O_{\text{ads}} [\text{Cu}^{2+}] + [\text{Cu}^+] \rightarrow O_2 + O_2^{2-} [\text{Cu}^{2+}]_2 \quad (7)
\]

\[
O_2^{2-} [\text{Cu}^{2+}]_2 \rightarrow O_2 + 2[\text{Cu}^+] \quad (slow) \quad (8)
\]

To further explore the surface property difference of the catalysts, XPS was conducted to verify and address the Cu$_2$O composites before and after performing the ozone decomposition test, as shown in Fig. 6. The two main peaks located at ~932–935 eV and ~952–955 eV come from the Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ orbitals from Cu$_2$O.\(^{44}\) Moreover, the shakeup satellite feature located at 943–947 eV in Fig. 6a demonstrated the unfilled electron state of Cu 3d orbitals\(^{45}\) and the 3d shell may contain 9.6 or 9.5 electrons,\(^{46,47}\) which can be used to prove the presence of Cu$_2$O. LMM-2 Auger transition in the XPS spectra is checked.

Table 1 A comparison of the ozone decomposition performance of the reported monolithic catalysts

Catalysts	Conc. (ppm)	T (°C)	RH (%)	SV (h$^{-1}$)	Conv. (%)	Reaction rate (mmol L$^{-1}$ h$^{-1}$)	Ref.
MO$_3$/γ-Al$_2$O$_3$	2	40	40	31 940	≤42	1.04	12
MnO$_2$ + MnCO$_3$	14	25	Dry air	460 000	85	244.34	40
Pd-MnO$_2$/La-Al$_2$O$_3$	0.6	14	85–90	380 000	82	7.94	41
Pd-MnO$_2$/SiO$_2$	0.6	14	85–90	380 000	82	7.94	41
Pd-MnO$_2$/γ-Al$_2$O$_3$	0.6	14	85–90	380 000	77	7.45	41
Pd-MnO$_2$/SiO$_2$–Al$_2$O$_3$350 °C	0.6	40	55–65	635 000	90	13.34	42
Pd-MnO$_2$/SiO$_2$–Al$_2$O$_3$ with 80% MnO$_2$	0.58	45	55–65	510 000 >90	10.19		43
Cu$_2$O/Cu	20	25	90	12 500	>80	8.19	This work
Cu$_2$O/Cu	20	25	Dry air	12 500	>98	10.04	This work
to discriminate Cu from Cu2O owing to the overlapping binding energies. The LMM-2 Auger transition peak is located at about 570 eV (Fig. S3† in the ESI) in the samples, which can be ascribed to Cu2O rather than Cu (568 eV).48 Therefore, the Cu foam surface was totally covered by the Cu2O nanoparticles. In the meanwhile, after the ozone decomposition experiment, a shoulder peak at 933 eV and satellite peaks at about 943 and 962 eV appeared, as shown in Fig. 6b, inferring that some of the Cu(i) ions are oxidized into Cu(II). The oxidation of Cu(i) into Cu(II) would not be the main reason of the catalyst activity according to a previous study.19 Therefore, O 1s spectra were obtained and compared as shown in Fig. 6c and d.

As shown in Fig. 6c, the broad O 1s peak has been generally deconvoluted into multiple overlapping peaks at about 529.6, 530.2, and 531.4 eV, attributing to the lattice oxygen (O\textsubscript{L}) in CuO, lattice oxygen in Cu2O, and defective oxide (oxygen vacancy),59,60 respectively. It is clear in Fig. 6c that Cu80/C14, 18 h has relatively high oxygen defect, which might be the reason of the relatively higher catalytic property. A very weak peak at 933.66 eV resulting from the Cu=O bonds of a small fraction of none crystalline Cu2O\textsubscript{2.3} (ref. 51) in the O 1s spectra of Cu80/C14, 18 h (Fig. 6c), might also contribute to the high catalytic performance.59 After the O3 test, the appearance of the lattice oxygen of CuO is in good agreement with the Cu 2p spectra. It should be noted that Cu50/C14 would be deactivated if the intermediate surface adsorbed oxygen (O\textsubscript{2}−) would accumulate on the surface, whilst the partial oxidation of Cu(i) would not deactivate the catalyst as revealed in this study. Cu50/O\textsubscript{L} is an intrinsically p-type semiconductor, where the positively charged holes would attract electrons from the O\textsubscript{2}− and thus release the intermediate to accelerate the decomposition of O3.

As a comparison, sodium hydroxide and urea were used instead of NH\textsubscript{3} in the preparation. As shown in Fig. 7, the catalytic effect was clearly worse than using NH\textsubscript{3} when NaOH and urea were applied in the processing of Cu foam. NaOH can react rapidly with HCl, and the product NaCl is too stable to participate in the oxidation reaction; on the other hand, 1 mol urea decomposes in an acidic aqueous solution at 80 °C into 2 mol NH\textsubscript{3}, excessive ammonia can form complex Cu[NH\textsubscript{3}]+, which may destroy the cuprous oxide layer of the Cu foam. When a copper foil was used instead of the copper foam, almost no catalytic effect on ozone decomposition was observed under the same conditions (equal mass). It may be due to the nonporous structure and thus limited the contact of copper foil with ozone.

In the meanwhile, there would also exist a Schottky barrier between the surface Cu2O and the Cu foam, as reported by Iwanoski et al.52 For p-type Cu2O semiconductors, the Fermi level lies approximately at 0.3 eV above the valence band level.51,54 Also, it is reported that the measured electron affinity is about 3.2 eV that does not vary on changing the temperature of the Cu2O samples.55,56 Consequently, considering the estimated energy gap of 2.1–2.2 eV55,56 the work function for Cu2O lies in the range of 5.0–5.1 eV. Furthermore, the reported work function values for bulk Cu vary between 4.2 and 4.6 eV.59,60 Taking these into considerations, it is likely for the electrons to drift from Cu towards Cu2O at the interface. In this study, the most possible scenario for the barrier-height results is establishing an electron-rich region at the Cu2O/Cu interface. Based on the Schottky–Mott rule, a suggested energy band structure diagram of Cu/Cu2O and an ozone reaction process are exhibited in Fig. 8, where the Schottky barrier would also contribute to the electron transfer in the O3 degradation process. Therefore, all these results show the potency of these defective nanometer-sized Cu2O particles heterojunctioned on the Cu foam for highly active ozone decomposition.

![Fig. 6](image_url) Composition study of Cu2O, Cu 2p XPS spectra of (a) Cu80/C14, 18 h, (b) Cu80/C0, 18 h, after the O3 catalytic process, and O 1s XPS spectra of (c) Cu80/C14, 18 h, and (d) Cu80/C14, 18 h after the O3 catalytic process.

![Fig. 7](image_url) Comparison of the catalytic effect in using different alkali at 80 °C, 8 h.

![Fig. 8](image_url) Schematic of the possible charge transfer mechanism at the Cu–Cu2O interface with consideration of ozone decomposition illustration.
Conclusions

A monolithic Cu$_2$O/Cu hybrid catalyst was successfully synthesized by a one pot wet chemical oxidation of Cu foam in an aqueous solution containing NH$_3$ and HCl. The obtained Cu$_2$O/Cu could be readily used for O$_3$ decomposition, and the optimized preparation conditions are NH$_3$: HCl = 1 : 0.9, oxidation temperature of 80 °C and time 18 h. When adopted for decomposing 20 ppm O$_3$, the Cu$_2$O/Cu-supported catalyst not only possesses the high degradation efficiency of >98% in 10 h run in dry air and >80% in 90% relative humidity. The high efficiency can be attributed to the porous structure and abundant defects in Cu$_2$O nanoparticles and also to the Schottky barrier between Cu$_2$O and Cu, facilitating the electron transfer from O$_3$ degradation intermediate O$_2^{2-}$ to the catalyst. Therefore, the Cu$_2$O/Cu-supported catalyst not only possesses the advantage of a facile synthesis and low cost, but also shows its promise in depreating O$_3$ contaminants.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research was financially supported by the National Key R&D Program of China (2016YFC0207100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050400).

References

1 F. Hollósy, *Micron*, 2002, 33, 179–197.
2 D. Rim, E. T. Gall, S. Ananth and Y. Won, *Build. Environ.*, 2018, 130, 40–48.
3 S. T. Oyama, *Catal. Rev. - Sci. Eng.*, 2000, 42, 279–322.
4 T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky and G. E. Zaikov, *Phys. Chem. Res. Eng. Appl. Sci.*, 2015, 1, 273.
5 J. R. Balmes, *Am. J. Respir. Crit. Care Med.*, 2019, 200, 958–959.
6 K. Thomas, P. E. Hoggan, L. Marley, J. Lamotte and J. C. Lavalle, *Catal. Lett.*, 1997, 46, 77–82.
7 K. M. Bulanin, J. C. Lavalle and A. A. Tsyganenko, *J. Phys. Chem.*, 1995, 99, 10294–10298.
8 S. W. Benson and A. E. Axworthy, *J. Chem. Phys.*, 1957, 26, 1718–1726.
9 E. Castellano and H. J. Schumacher, *J. Chem. Phys.*, 1962, 36, 2238.
10 S. Gong, J. Chen, X. Wu, N. Han and Y. Chen, *Catal. Commun.*, 2018, 106, 25–29.
11 J. Ji, Y. Fang, L. He and H. Huang, *Catal. Sci. Technol.*, 2019, 9, 4036–4046.
12 B. Dhandapani and S. T. Oyama, *Appl. Catal., B*, 1997, 11, 129–166.
13 C. Subrahmanyan, D. A. Bulushev and L. Kiwi-Minsker, *Appl. Catal., B*, 2005, 61, 98–106.
14 T. Batakliev, V. Georgiev, M. Anachkov, S. Rakovsky and G. E. Zaikov, *Interdiscip. Toxicol.*, 2014, 7, 47–59.
15 H. Wang, P. Rassu, X. Wang, H. Li, X. Wang, X. Wang, X. Feng, A. Yin, P. Li, X. Jin, S.-L. Chen, X. Ma and B. Wang, *Angew. Chem.*, 2018, 130, 16654–16658.
16 W. Li, G. V. Gibbs and S. T. Oyama, *J. Am. Chem. Soc.*, 1998, 120, 9041–9046.
17 J. Ma, C. Wang and H. He, *Appl. Catal., B*, 2017, 201, 503–510.
18 S. Gong, W. Li, Z. Xie, X. Ma, H. Liu, N. Han and Y. Chen, *New J. Chem.*, 2017, 41, 4828–4834.
19 D. Mehandjiev and A. Naidenov, *Ozone: Sci. Eng.*, 1992, 14, 277–282.
20 L. Yan, J. Bing and H. Wu, *Sci. Rep.*, 2019, 9, 1–10.
21 M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, S. Christoskova and D. Mehandjiev, *Chem. Eng. J.*, 2006, 122, 41–46.
22 S. Gong, X. Wu, J. Zhang, N. Han and Y. Chen, *CrystEngComm*, 2018, 20, 3096–3104.
23 C. H. Kuo and M. H. Huang, *J. Am. Chem. Soc.*, 2008, 130, 12815–12820.
24 X. Liang, L. Gao, S. Yang and J. Sun, *Adv. Mater.*, 2009, 21, 2068–2071.
25 L. Wan, Q. Zhou, X. Wang, T. E. Wood, L. Wang, P. N. Duchesne, J. Guo, X. Yan, M. Xia, Y. F. Li, A. A. Jelle, U. Ulmer, J. Jia, T. Li, W. Sun and G. A. Ozin, *Nat. Catal.*, 2019, 2, 889–898.
26 W. Lu, Y. Sun, H. Dai, P. Ni, S. Jiang, Y. Wang, Z. Li and Z. Li, *Sens. Actuators, B*, 2016, 231, 860–866.
27 B. Long, H. Yang, M. Li, M. S. Balogun, W. Mai, G. Ouyang, Y. Tong, P. Tsiakaras and S. Song, *Appl. Catal., B*, 2019, 243, 365–372.
28 A. J. Zarur and J. V. Ying, *Nature*, 2000, 403, 65–67.
29 E. O. Charles, *J. Chem. Educ.*, 1991, 68, 248–249.
30 J. A. Dean, *Lange’s handbook of chemistry*, 15th edn, 2005.
31 Y. Shang, D. Zhang and L. Guo, *J. Mater. Chem.*, 2012, 22, 856–861.
32 Y. Shang, Y. M. Shao, D. F. Zhang and L. Guo, *Angew. Chem.*, 2014, 126, 11698–11702.
33 Y. Shang, Y. M. Shao, D. F. Zhang and L. Guo, *Angew. Chem., Int. Ed.*, 2014, 53, 11514–11518.
34 C. C. Hou, Q. Q. Chen, C. J. Wang, F. Liang, Z. Lin, W. F. Fu and Y. Chen, *ACS Appl. Mater. Interfaces*, 2016, 8, 23037–23048.
35 H. Solache-Carranco, G. Juárez-Díaz, A. Esparza-García, M. Briseño-García, M. Galván-Arellano, J. Martínez-Juárez, G. Romero-Paredes and R. Peña-Sierra, *J. Lumin.*, 2009, 129, 1483–1487.
36 Y. Deng, A. D. Handoko, Y. Du, S. Xi and B. S. Yeo, *ACS Catal.*, 2016, 6, 2473–2481.
37 N. G. Elfdall, M. R. Hashim, K. M. Chahrour, M. A. Qaed and M. Bououdina, *Superlattices Microstruct.*, 2015, 85, 908–917.
38 P. Y. Yu, Y. R. Shen and Y. Petroff, *Solid State Commun.*, 1973, 12, 973–975.
39 A. Compaan, *Solid State Commun.*, 1975, 16, 293–296.
40 J. Jia and P. Zhang, *Ozone: Sci. Eng.*, 2018, 40, 21–28.
41 C.-J. Ren, L.-N. Zhou, H.-Y. Shang and Y.-Q. Chen, Acta Phys.-
Chim. Sin., 2014, 30, 957–964.
42 Q. Yu, H. Pan, M. Zhao, Z. Liu, J. Wang, Y. Chen and
M. Gong, J. Hazard. Mater., 2009, 172, 631–634.
43 Q. Yu, M. Zhao, Z. Liu, X. Zhang, L. Zheng, Y. Chen and
M. Gong, Chin. J. Catal., 2009, 30, 1–3.
44 O. Akhavan, R. Azimirad, S. Safa and E. Hasani, J. Mater.
Chem., 2011, 21, 9634–9640.
45 X. Xiang, X. Li, Z. Huang, T. Gao, H. Yuan and D. Xiao,
ChemElectroChem, 2019, 6, 1078–1087.
46 M. Grioni, J. B. Goedkoop, R. Schoorl, F. M. F. de Groot,
J. C. Fuggle, F. Schäfers, E. E. Koch, G. Rossi, J.-M. Esteva
and R. C. Karnatak, Phys. Rev. B, 1989, 39, 1541–1545.
47 A. R. Williams and N. D. Lang, Phys. Rev. Lett., 1978, 40, 954–
957.
48 J. Y. Park, Y. S. Jung, J. Cho and W. K. Choi, Appl. Surf. Sci.,
2006, 252, 5877–5891.
49 C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and
G. E. Muilenberg, Handbook of X-ray Photoelectron
Spectroscopy, 1979.
50 J. Ghijsen, L. H. Tjeng, J. Van Elp, H. Eskes, J. Westerink,
G. A. Sawatzky and M. T. Czyzik, Phys. Rev. B, 1988, 38,
11322–11330.