Phylogenetic Relationships among Deep-Sea and Chemosynthetic Sea Anemones: Actinoscyphiidae and Actinostolidae (Actiniaria: Mesomyaria)

Estefanía Rodríguez1, Marymegan Daly2

1 Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America, 2 Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America

Abstract

Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the superfamily Mesomyaria, which includes most of the species that live in chemosynthetic, deep-sea, and polar sea habitats and to test the monophyly of the recently defined clades Actinostolina and Chemosynthina. We found that sea anemones of chemosynthetic environments derive from at least two different lineages: one lineage including acintae deep-sea taxa and the other primarily encompassing shallow-water taxa.

Introduction

Since their discovery thirty years ago, biological communities at chemosynthetic sites such as hydrothermal vents, cold seeps, and whale falls, have proven to be a rich source of new species, attracting the interest of scientists [1]–[4]. Many of the species found in these habitats have morphologies or biologies distinct from those of their close relatives. The organisms are inferred to have adapted to the distinctive chemical, temperature, and biological circumstances of their particular chemosynthetic habitats [reviewed in [5]–[7]]. The physical conditions of chemosynthetic habitats are presumed to exclude organisms that lack mechanisms for coping with high temperatures, sulfide, methane, or metal concentrations [6].

The occurrence of unique organisms and the absence of members of the “background” fauna contribute to the remarkable degree of endemism reported for chemosynthetic environments [8]. Even more remarkable is the high endemism at a supraspecific taxonomic level (family or genus) suggesting ancient origins of the fauna (back to the Paleozoic, 540–248 ma), with a long and continuing evolutionary history [9]. Because of their reliance on an in situ chemosynthetic food source, these communities may have had an independent evolutionary history [2], [10]. Chemosynthetic environments also have been posited as stable refugia from global extinction events that devastated biological diversity in euphotic zones [2], [10], [11]. However, other interpretations of the diversity of chemosynthetic habitats postulate relatively recent (late Cenozoic) in situ radiations, with taxa from shallow water repopulating these environments after global extinctions events in the late Cretaceous and Cenozoic [12], [13]. Since different taxa show different evidence of evolutionary history [reviewed in [14]–[16]], robust patterns are not established yet [13]. More comprehensive phylogenetic studies are required to elucidate the origin and history of this endemic chemosynthetic fauna.

Sea anemones (Phylum Cnidaria, Order Actiniaria) are present in all marine ecosystems, including chemosynthetic environments [17]. Some of these actiniarians inhabit the vent zone while others can be considered peripheral fauna associated with vents and seeps. Although present, sea anemones are not very abundant in the Atlantic and Pacific vent systems, but they dominate some microhabitats on the East-Lau Spreading Center (ELSC) in the Indian Ocean [18].

The high level of endemicity of chemosynthetic sea anemones and taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure [18], [19]. Prior to the description of Boloceroides daphneae [20], a species from the vent periphery of the East Pacific Rise (EPR), all taxa found at chemosynthetic habitats were described within Actinostolidae, a family mainly comprised of polar and deep-sea taxa [21], [22]. Traditionally, actinostolids have been placed in Mesomyaria, one of the two major superfamilies of Actiniaria characterized as having a mesogleal marginal spherincter [21], [22]. Molecular phylogenetic analyses support the grouping of members of Mesomyaria together with the other lineage having mesogleal marginal spherincter muscles and with a few lineages whose members lack marginal musculature, in a group called the...
and thus provide a strong test of monophyly of mesomyarian sea anemones. We root our analysis with *Savalia savaglia*, a member of the order Zoanthidea, the sister group of Actiniaria [25]. We have included only those taxa from which we were able to amplify at least three of the five markers, and thus have analyzed a total of 301 sequences for 63 taxa. Comparative sequences from GenBank were also included as appropriate (Table S1).

Specimens were collected by hand intertidally, through SCUBA diving, via trawls or using Remote Operate Vehicles (ROV). All specimens were identified using polyp anatomy and the distribution and size of cnidaria in various regions of the polyp. Voucher specimens in formalin have been deposited at the American Museum of Natural History (AMNH), the Bavarian State Collection of Zoology (ZSM), the collection of Biodiversidad y Ecología de Invertebrados Marinos (BEIM) at the University of Seville, California Academy of Sciences (CAS), Field Museum of Natural History (FMNH), University of Kansas Natural History Museum (KUNHM), and the U. S. National Museum of Natural History (USNM).

During this work, we discovered one specimen of a new species of sea anemone from the EPR. A preliminary identification of the specimen reveals that it is a new species: it has an endodermal marginal sphincter, a character unknown among sea anemones from chemosynthetic environments. The specimen has been preliminarily identified as *Isotealia* sp. nov. It does not match any described species of *Isotealia* in anatomy or cnidome. We decided to include this specimen in our analysis despite the preliminary state of its identification because of its relevance to the aim of this work. The formal morphological description of this new taxon is currently in progress and will be published after a thorough comparison with morphologically related taxa, a goal beyond the aim of this contribution. Genomic DNA was isolated from tentacle or column tissue using the Qiagen DNAeasy® kit or standard CTAB extraction. We sequenced three mitochondrial (partial 12S and 16S rDNA and COIII) and two nuclear (18S and partial 28S rDNA) markers from genomic DNA using primers published previously (12S: [26]; 16S, COIII: [27]; 18S: [28]; 28S: [29]). Samples which could not be readily amplified using standard protocols were amplified with the high-fidelity enzyme HercuLase® (Stratagene, La Jolla, CA), using manufacturer supplied protocols. All PCR products were cleaned using AmPure® magnetic bead solution (AgenCourt, Beverly, MA) and rehydrated with de-ionized, double-distilled water. Sequencing reactions used a total of 10 μL of cleaned PCR product, at a concentration of 25 ng product for every 200 base pairs of marker length. Cleared PCR products were sequenced using amplification primers on an ABI

Table 1. Results of parsimony analysis of each data set.

Marker or data set	Marker aligned length	# Parsimony Informative Characters (% informative)	# Equally parsimonious trees	Tree Length	# taxa
COIII	714	236 (33.0%)	59	1192	59
12S	976	171 (17.5%)	21	679	55
16S	569	148 (26.0%)	90	627	63
18S	2154	292 (13.6%)	50	1630	63
28S	1203	452 (37.6%)	8	3180	61
Mitochondrial	2259	554 (24.5%)	12	2786	64
Nuclear	3357	744 (21.7%)	9	4919	64
Combined	5616	1298 (23.1%)	1	8145	64

Fo doi:10.1371/journal.pone.0010958.t001
3730x by staff at the sequencing facilities of GenBank (New Haven, CT) and Cogenics (Houston, TX). Forward and reverse sequences were assembled in Sequencher v.4.8 (Gene Codes Corporation, Ann Arbor, MI) and blasted against the nucleotide database of GenBank to determine whether the target locus and organism were sequenced rather than a symbiont or other contaminant. All sequences have been deposited in GenBank (Table S1).

Data analysis

Sequences for each marker were aligned in Muscle [30] using the default parameters. The Incongruence Length Difference test (ILD; [31], [32]) was used to identify instances of incongruence within and between the nuclear and mitochondrial markers. The resulting alignments and the combined data sets of mitochondrial, nuclear, and all markers were analyzed using random and consensus sectorial searches, tree drifting, and 100 rounds of tree fusing in TNT v.1.1 [33]. In all analyses, gaps were treated as ambiguous (?) rather than as a fifth state. Trees of minimum length were found at least three times. The combined data were subjected to 1000 rounds of jackknife resampling (36% probability of removal, collapse clades with <50% support) to assess support for clades.

The appropriate model of nucleotide substitution for each gene was evaluated using Modeltest 3.7 [34]; selection of models was based on the Akaike Information Criterion (AIC), which rewards models for good fit but penalizes them for unnecessary parameters [35]. This combined alignment is archived in TreeBase (http://www.treebase.org/treebase/index.html), and was used for all phylogenetic inference. Maximum likelihood analyses were performed in RAXML 7.0.4 [36], using 1000 replications. Model parameters were estimated by RAXML. Clade support was assessed with 1000 rounds of bootstrap re-sampling.

Results and Discussion

Parsimony analysis

The markers range in length from 569 to 2154 bases, and contained 148–452 parsimony informative sites after alignment (Table 1). Trends in marker variability followed those previously reported for actiniarians: the longest marker (18S) was the least variable and nuclear markers were slightly less variable than mitochondrial ones [23], [24].

In addition to independent analyses of each marker, a mitochondrial (12S+16S+COII) and a nuclear (18S+28S) data set, we combined all five markers into a simultaneous analysis of mitochondrial and nuclear sequences. Based on previous analyses of actinian DNA sequences (e.g., [23]–[25]) and studies in other taxa [28], [37], we expect the most robust and well-supported tree to result from such an analysis. There are no known processes that would lead to discordant phylogenies for the combination and nuclear genomes in actinarians. The ILD test did not detect significant incongruence for the comparison between mitochondrial and nuclear data sets nor within mitochondrial (12S, 16S and COII) and nuclear (18S and 28S) data sets at p = 0.05.

Each data set showed resolution at different levels in consensus, and depicted slightly different relationships; however, disagreements seem to be confined to basal nodes. Many of these differences can be explained by divergent sequences for specific markers for some taxa and the resulting “long-branch” attraction of these taxa [38], [39]. An example is the relationship between Isotealia-Haloclava in the parsimony tree (Figure 1); the long branches of both taxa are distinct in the likelihood analysis (Figure 2), and previous analyses [23], [25], [40] including those with broader sampling of Endomyaria, find Haloclava nested within Endomyaria. Thus, the relationship between Isotealia and Haloclava, and the placement of this clade at the base of the ABM clade is suspect. For this and other suspect placements (e.g., Liponema + Actinostephania, Boloceroides among Diadumeniidae), not all sequences were available for every taxon (Table S1). Because the effect of these artifacts is buffered in the combined data set [37], we show and discuss only those results.

The basic topology of the tree derived from parsimony analysis of the combined data set shows a monophyletic Edwardsiidae basal to the rest of the nynanthean actiniarians; this relationship is well supported with 100% jackknife frequency (see Figure 1).

Note that Metedwardsia is recovered among Endomyaria rather than Edwardsiidae (Figure 1); this placement is concordant with the morphology of this genus (e.g., [41], Daly pers. obs.) although it disagrees with current taxonomy. Mesomyaria is polyphyletic, with members distributed at least in three clades. One clade includes Actinostolina members Actinostola and Stomphia, these are basal to a second mesomyarian clade that includes Hemosoma and Anthoscyphia januarensis, other members of Actinostolina. This second mesomyarian clade is basal to a large clade that includes two previously resolved clades: Endomyaria and ABM (see [23]). However, there is no support for the node dividing Actinostolina into a paraphyletic grade. The remaining mesomyarian taxa in our analysis are distributed across the ABM clade, including the chemosynthetic taxa with a mesogleal marginal sphincter (Alicinactis and Cyananthea) and Anthohaloa, the remaining included member of Actinostolina. All actinarians with an endodermal marginal sphincter except the chemosynthetic Isotealia are recovered within the Endomyaria clade. This chemosynthetic endomyarian is recovered as sister of Haloclava in a clade basal to ABM but without support. ABM contains several subclades, but only two of them are relatively well supported in our analysis. The first of these is a deep-sea/vent clade that includes the mesomyarian taxa Alicinactis and Cyananthea as sister taxa, clustering then with the deep-sea acontiates Kadosactis and Sagartiogeton erythraios. A close relationship between S. erythraios and Kadosactis has been proposed based on morphology [18]. All members of this clade are known only from depths exceeding 1000 m or from chemosynthetic environments. The second is the clade that includes Phellia + Anodokia and Hormathiidae + Nemanthis + Actinocyphia (named Aconitace 1 hereafter, 56% jackknife). This clade renders families Sagardiidae and Hormathiidae polyphyletic, concordant with previous results [23], [24]. Anthoscyphia pearseae, known only from whale-falls, does not nest with the deep-sea/vent clade or with Actinocyphia as suggested by morphological analysis [19]. Within the ABM clade, some terminal relationships are recovered consistently (e.g., monophyletic family Isanthidae, a monophyletic Aiptasiidae sister to the alciid Triactis, a sister relationship between Haloplanella and Diadumene), but disagreements in the basal nodes render deeper relationships within ABM unclear. The sister relationship between Diadumene and Haloplanella substantiates Manuel’s [42] synonymy of these taxa, but does not address the issue of family-level synonymies, as these analyses do not include Triactidae, the lone genus remaining in Haloplanellidae (see [43]).

Parsimony analysis supports the previously recovered relationship between Boloceroidaria and the acontiate taxa but not the sister relationship between Boloceroides and Triactis (see [23]). Boloceroides is resolved as the sister of Haloplanella-Diadumene instead, a relationship that is difficult to explain in terms of morphology. However, Boloceroides has very divergent sequences, with a distinct long-branch in the likelihood analysis (Figure 2), and therefore this relationship is suspect [36], [39].
Figure 1. Parsimony tree. Tree resulting from combined parsimony analysis of COIII, 12S, 16S, 18S, and 28S data sets. Species epithets are given only for genera represented by more than one species; for complete list of taxa, see Table S1. Numbers above the branches are jackknife resampling values expressed as a percent; numbers <50 not indicated. Lineages marked with a star are inferred to have lost acontia. Taxa from chemosynthetic environments in bold and followed by two asterisks; those from deep seas (>1000 m) underlined and followed by one asterisk. Shaded boxes indicate clades defined in the text; name of each clade is next to the shaded box.

doi:10.1371/journal.pone.0010958.g001
Figure 2. Maximum likelihood tree. Maximum likelihood tree resulting from combined analysis of COIII, 12S, 16S, 18S, and 28S data sets under the model GTR + gamma. Relative branch lengths indicated. Species epithets are given only for genera represented by more than one species; for complete list of taxa, see Table S1. Numbers above the branches are bootstrap resampling values expressed as a percent; numbers <50 not indicated. Lineages marked with a star are inferred to have lost acontia. Taxa from chemosynthetic environments in bold and followed by two asterisks; those from deep seas (>1000 m) underlined and followed by one asterisk. Shaded boxes indicate clades defined in the text; name of each clade is next to the shaded box.

doi:10.1371/journal.pone.0010958.g002
Model-based analyses

The basic topology of the tree of highest likelihood coincides roughly with the parsimony (see Figures 1, 2); the two major differences correspond to nodes with low support in the parsimony tree. The tree of maximum likelihood contains a basal, well-supported, monophyletic Edwardsiidae. The Endomyaria and ABM clades are also recovered; however, the Endomyaria clade of the likelihood tree includes *Iotealia* and *Haloclava* (not as sister taxa) with moderate support (59% bootstrap). In the likelihood tree, *Haloclava* is the sister of *Bondosoma*, a relationship previously recovered [23], [25], [40] but without support. As in the parsimony tree, Mesomyaria is polyphyletic, but the mesomyarian taxa are spread between two clades rather than three: i) one corresponding to Actinostolina with the exclusion of *Antholoba* (see [19]), which is basal to Endomyaria + ABM; and ii) within ABM.

The two well-supported subclades of ABM resolved in the parsimony tree are also resolved by the likelihood analysis. In this case, *Anthosactis pearseae* is basal to the deep-sea/vent clade but without support. Most terminal relationships recovered by parsimony are also recovered by likelihood (e.g., a monophyletic Aiptasidae sister to the alician *Triactis*, a sister relationship between families Haliplanellidae and Diadumenidae, monophyletic Isanthidae, etc.). In the likelihood analysis, *Bolocerodes* groups with *Verrillactis* rather than with *Haliplanella* and Diadumenia.

Relationships among sea anemones from the deep-sea and chemosynthetic habitats

Despite the slight disagreement between the parsimony and the model-based analyses, both approaches show that sea anemones from chemosynthetic habitats derive from different lineages: i) one associated with Endomyaria, and ii) one or more within the ABM clade. The sole endomyarian from chemosynthetic habitats is *Iotealia sp. nov.*, a recently discovered species known from a single specimen. The clade to which it belongs primarily encompasses shallow-water taxa, although at least four genera (*Epiactis, Iotealia, Liponema, Urticina*) have members that reportedly live in deep waters [21], [22]. Despite the relationship of *Iotealia* to other endomyarians is obscure, we are confident it belongs within Endomyaria: all taxa with an endodermal marginal sphincter are consistently recovered together within the same clade in every study until now [23], [24], [25]. An endodermal marginal sphincter is one of the few morphological characters that seem to have phylogenetic information for sea anemones up to now.

Our analyses support previous hypothesis of loss of acorina within taxa living in chemosynthetic environments [19], [44]. However, because we find the deep-sea/vent clade only distantly related to *Actinoscyphia*, the particular relationships specified in that hypothesis are not supported, nor is the recent placement of *Alvinactis* and *Gymanthea* within Actinoscyphiidae (see [19]). *Actinoscyphia* is the sister taxa to *Amphianthus* in both analyses (within Acontiate 1 clade), with very high support; this relationship is also recovered by Gusmão and Daly [24]. Those species of sea anemone living in deep-sea chemosynthetic habitats are inferred to have lost acorina independently of deep-sea species like *Actinoscyphia*.

A. pearseae and *Alvinactis*, taxa within the proposed Chemosynthina clade, are recovered as sisters in all analyses. However, because we were able to sample DNA from only two of the six proposed genera in Chemosynthina, the validity of Chemosynthina is not clear. In any case, the original diagnosis of this clade has to be modified to specify that it includes only taxa from chemosynthetic habitats with a mesogleal marginal sphincter. This will make clear the exclusion of *Iotealia* n. sp., the recently discovered species from the EPR.

In this analysis, the closest relative of Chemosynthina is *Kadosactis*, a deep-sea and polar specialist [45], [46]. The relationship of these taxa to the two samples from Chemosynthina suggests that *Alvinactis* and *Gymanthea* (and possibly other members of Chemosynthina) belong in Kadosactidae, a homogeneous monogeneric family [46] until the recent inclusion of the vent genus *Seepactis* [44]. However, as currently defined, Kadosactidae contains only acontiate sea anemones [44], [45], and thus *Alvinactis* and *Gymanthea* cannot easily be included within that group. Acontia, while clearly labile phylogenetically, are significant in terms of identification, and thus generally have been accorded great significance in taxonomy. Furthermore, as relationships within ABM remain especially unclear at the level of family and genus, and as not all relevant taxa have been studied, we refrain from making taxonomic changes at this point.

The whale-fall endemic species *Anthosactis pearseae* does not group with *Anthosactis jamnagensi*, its polar congener and type of the genus. No analysis or data set supports an exclusive relationship between these species, which are consistently recovered in different major clades. The lack of relationship between the two putative species of *Anthosactis* and the equivalency of the original generic assignment [47] argues for a new generic assignment for *A. pearseae*, perhaps as part of a much-needed revision of *Anthosactis* [19].

We recover no evidence in support of a close relationship between deep-sea and polar species, as has been found for other organisms (e.g., Scleractinia: [48]; nematodes: [49]). The polar-inhabiting Mesomyaria largely form a group (= Actinostolina, excluding *Antholoba*). The deep-sea taxa (including those from chemosynthetic habitats) are more broadly distributed in the trees, belonging to several clades (Figures 1, 2). With the exception of the deep-sea/vent clade, the deep-sea species are not part of habitat-specific clades. However, because this was not the focus of our analysis, our sampling strategy is not optimal for this question, and the robustness of this pattern needs to be examined with more concentrated sampling in those lineages.

Summary and conclusions

Our phylogenetic analyses of molecular data from a broad sample of sea anemones, including species from deep-sea, polar, and chemosynthetic environments support at least two origins for those species inhabiting chemosynthetic habitats. One of these is probably within Endomyaria, a group not previously known to include any species endemic to chemosynthetic environments (reviewed in [18]). The phylogenetic placement of the endomyarian *Iotealia* sp. nov. is ambiguous, as it differs between the parsimony and likelihood analyses and is never well-supported. In contrast, the placement of the clade previously called Chemosynthina within the ABM clade is well-supported in all analyses. None of the molecular analyses support the inclusion of the whale-fall endemic *Anthosactis pearseae* in this clade, although *A. pearseae* is frequently associated with the larger clade that includes Chemosynthina.

Taxonomic placement of the sea anemones endemic to chemosynthetic habitats based on morphology is problematic. The two species belonging to Chemosynthina included in this analysis are not interpreted as closely related to *Actinoscyphia*, contradicting the relationship supposed by their inclusion in family Actinoscyphiidae by Rodriguez et al. [19]. Instead, these species are more closely related to the acontid *Kadosactis*. Similarly, *A. pearseae* is not closely related to its congener *A. jamnagensi*, casting doubt on its generic (and familial) placement. Nonetheless, the morphological distinction between clades Actinostolina and Chemosynthina is justified, as these groups are individually coherent but widely dispersed in the tree.
Our analyses find multiple lineages of mesomyarians (in the sense of actiniarians with a mesogaeal marginal sphincter and without acontia); those that never had acontia (corresponding with Actinostolina to the exclusion of Antholoba) and those that lost acontia (mixed among ABM clade). This broadly agrees with the split implied by Carlgren's (1949) monograph between the family Actinostolidae (major component of the superfamily Mesomyaria) and the acontiate nannineanths (as a rule with a mesogaeal sphincter too). However, Carlsgren did not take into account the loss of acontia in several lineages (e.g., Actinoscyphia, Isanthidae), including these with Actinostolidae in Mesomyaria.

The sea anemones endemic to chemoautotrophic habitats are not particularly closely related to those from polar seas. The solar taxa belonging to Actinostolina cluster together outside of the split between Endomyaria and the ABM clade; the deep and polar Antipodactis lies within ABM. Neither is closely allied to Isotealia sp. nov., Anthosactis pearseae, or Chemosynthsia. Of the included species from chemoautotrophic habitats, only those belonging to Chemosynthsia are resolved with support in a consistent manner, and these are always found within a clade of acontiate deep-sea species. The position of Isotealia sp. nov. within Endomyaria remains enigmatic, perhaps because close relatives have not been included. Nevertheless, actiniarians with an endodermal marginal sphincter have consistently been recovered within Endomyaria, and this feature appears to be one of the few historically important taxonomic features with phylogenetic significance [23]. Because of the consistency of this feature, and the nature of the ambiguity of the placement of Isotealia sp. nov., we consider a close relationship between Isotealia sp. nov. and Endomyaria highly probable.

Supporting Information

Table S1	Taxa included in this study, with voucher location and accession numbers.
Found at:	doi:10.1371/journal.pone.0010958.s001 (0.16 MB DOCX)
37. Wheeler WC, Cartwright P, Hayashi CY (1993) Arthropod phylogeny: A combined approach. Cladistics 9: 1–39.
38. Anderson FE, Swoford DL (2004) Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 16S rDNA. Mol Phyl Evol 33: 440–451.
39. Bergsten J (2005) A review of long branch attraction. Cladistics 21: 163–193.
40. Daly M, Lipscomb DL, Allard MW (2002) A simple test: evaluating explanations for the relative simplicity of the Eudardiaidae. Evolution 56: 502–510.
41. Song JI (2005) A new species of Synandwakia and two newly recorded species of Athenaria (Anthozoa: Actiniaria) from Korea. Korean J Syst Zool 19(2): 283–296.
42. Manuel RL (1981) British Anthozoa. In: Kermack DM, Barnes RSK, eds. Synopsis of the British fauna, 18. Leiden, New York, København, Köln: Brill EJ/Backhuys Dr W. 241 p.
43. Fautin DG, Hand C, Daly M (2009) Haliplanella Hand, 1956 (Anthozoa, Actiniaria): proposed conservation by suppression of Haliplanella Treadwell, 1943 (Polychaeta). Bull Zool Nomencl 66: 312–316.
44. Sanamyan NP, Sanamyan KE (2007) Deep-seater Actiniaria from East Pacific hydrothermal vents and cold seeps. Invert Zool 4(1): 83–102.
45. Riemann-Zürnec K (1991) The abyssal sea anemone Kadosactis salutata Carlgren, 1934 (Cnidaria: Actiniaria: Kadosactidae nov. fam.). Mitt Hambg Zoologisches Museum 21: 191–204.
46. Rodríguez E, López-González PJ (2005) New record of the sea anemone Kadosactis antarctica (Carlgren, 1928): re-description of an Antarctic deep-sea sea anemone, and a discussion of its generic and familial placement. Helgol Mar Res 59: 301–309.
47. Daly M, Gusmao L (2007) The first sea anemone (Cnidaria, Anthozoa) from a whale fall. J Nat Hist 41: 1–11.
48. Cairns S (1982) Antarctic and Subantarctic Scleractinia. Ant Res Ser 34(1): 1–74.
49. Sebastian S, Raes M, De Mesel I, Vanreusel A (2007) Comparison of the nematode fauna from the Weddell Sea Abyssal Plain with two North Atlantic abyssal sites. Deep Sea 34(16–17): 1727–1736.