Transmission Design of Bevel Gear with Arbitrary Crossed Axes and Its Application in the Knotter

Jianjun Yin (✉ yinjianjun@ujs.edu.cn)
Jiangsu University https://orcid.org/0000-0002-7068-3092

Han Wu
Jiangsu University

Zheng Ji
Jiangsu University

Maile Zhou
Jiangsu University

Ruipeng Guo
Jiangsu University

Original Article

Keywords: gear transmission, bevel gear with crossed axes, tooth profile calculation, knotter

Posted Date: September 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-924003/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Transmission Design of Bevel Gear with Arbitrary Crossed Axes and Its Application in the Knotter

Jianjun Yin*, Han Wu, Zheng Ji, Maile Zhou and Ruipeng Guo

Abstract: The bevel gear transmission with crossed axes is widely used, but there are the difficulty of tooth profile calculation and modeling in the design and manufacturing process. This paper analyzes firstly the parameter solving equation of the bevel gear pair with arbitrary crossed axes. Based on the meshing principle of the bevel gear pair and numerical analysis method, the meshing equations of the bevel gear pair with crossed axes are derived, which provide the calculation models for the design of spatial bevel gear tooth surface. Taking the bevel gear pair with crossed axes in two kinds of the knitter as two design examples, the geometric parameters of the bevel gear pair in the knitter are solved, and the mathematical models of the tooth surface are programmed and calculated by using MATLAB. Through the graphic display of the tooth surface point set under MATLAB software and the 3D modeling function of Pro/Engineering software, the accurate 3D models of the tooth surface are established. The meshing transmission simulations of the established bevel gear pair are respectively carried out by using ADAMS, and their physical prototype and transmission tests are also implemented. The test results showed that the transmission of the designed bevel gear pair is accurate and stable, which proves the correctness of the derived calculation model of the tooth surface of the bevel gear with crossed axes.

Key words: gear transmission; bevel gear with crossed axes; tooth profile calculation; knitter

1 Introduction

It is generally known that gear transmission has an extremely important role in the equipment manufacturing of industry and agriculture. With the continuous progress of gear technology research, the requirements of higher performance are also directly put forward, such as higher transmission efficiency, transmission accuracy and reliability [1]. As an important form of gear transmission, the bevel gear with crossed axes is widely used in industrial and agricultural fields. Its design theory and modeling method have always been a hot topic in the field of gear transmission [2]. The research on the parameter calculation model and accurate three-dimensional modeling of the bevel gear with arbitrary crossed axes has great significance to improve of the bevel gear transmission.

At present, the researches of gear transmission mainly focus on gear life assessment techniques [3-6], theoretical research on gear reinforcement [7-10], computer-aided design method of gear [11-13] and gear fault detection research [14-18]. There are few theoretical studies on gear mathematical models based on numerical analysis methods. The relationship among tooth pressure, helix angle and tool system parameter was established according to the accurate geometry of tool system in hyperbolic gear forming, and a new parameterization method of gear tooth surface was introduced [19]. Based on the mathematical modeling method of helical bevel gear, the deviation between the actual tooth surface shape and the theoretical tooth surface shape was expressed by polynomial expression, and a method of remanufacturing the existing helical bevel gear pinion by using NC machining center was proposed [20]. The concept of auxiliary surface of Camus is extended to the design case of involute gear with crossed axes [21]. The geometric characteristics of tooth profile of crossed shaft gear set are studied by using pressure angle function, meshing equation and continuity condition constraints [22]. By studying the surface modification method of helical bevel gear, an accurate computer design method of spur bevel gear and helical bevel gear is proposed [23]. According to the requirements of helical gear installation position, a pre size method of helical gear transmission data based on application requirements is proposed [24]. It can be seen that research on gear transmission design is mostly concentrated in the field of cylindrical gear, and there is relatively little knowledge about bevel gear transmission design. The derivation of meshing equation of bevel gear tooth surface based on bevel gear meshing principle and accurate modeling of bevel gear pair are a challenge faced by the machinery industry [25].

This study derives the mathematical model of tooth profile of bevel gear with arbitrary crossed axes and proposes an accurate 3D modeling method of tooth profile of bevel gear. The organization of this paper is as follows: Section 2 presents a brief summary on parameter calculation model of bevel gear pair with crossed axes; The establishment of mathematical model for tooth surface of bevel gear pair with crossed axes is introduced in Section 3; Section 4 gives the two calculation and design examples of bevel gear pair in the knitter; and Section 5 has concluding remarks.

2 Parameter Calculation Model of Bevel Gear Pair with Crossed Axes

The layout form of the bevel gear pair studied in this paper is shown in Figure 1 [26, 27]. The axis of bevel gear 2 is located at the rear and fixed, the big ends of the two bevel
The installation parameter method is used to solve the geometric parameters of the bevel gear pair [28]. The known parameters include gear normal modulus \(m_n \), normal pressure angle \(\alpha_n \), helical angle \(\beta_n \), number of teeth \(z_1 \) and \(z_2 \), pitch cone angle \(\delta_n \), crossed axis angle \(\Sigma \), wheel base \(a \), and installation distance of gear 1 \(l_i \). Firstly, the tooth profile angle coefficient of the bevel gear \(\xi_{11} \) is preset, and the pitch radius \(r_i \) of the bevel gear is calculated by Eq. (1).

\[
r_i = \frac{r_i}{\xi_{11}} = \frac{m_n \xi_{11}}{2 \cos \beta n \xi_{11}}
\]

The indexing plane and the normal modulus of the bevel gear 1, and the pitch pressure angle \(\delta_1 \), and crossed axis angle \(\Sigma \), wheel base \(a \), and installation distance of gear 1 \(l_i \) are calculated by Eq. (2) and Eq. (3).

\[
\begin{align*}
\tan \alpha_{11} &= \frac{\tan \alpha_n \cos \delta_1}{\cos \beta_n} - \sin \delta_1 \tan \beta_n \\
\tan \alpha_{11R} &= \frac{\tan \alpha_n \cos \delta_1}{\cos \beta_n} + \sin \delta_1 \tan \beta_n \\
\cos \alpha_{11L} &= \xi_{11 \beta} \cos \alpha_{11L} \\
\cos \alpha_{11R} &= \xi_{11 \beta} \cos \alpha_{11R}
\end{align*}
\]

The intersection angle \(\delta_1 \) between the imaginary common gear rack indexing plane and the axis of bevel gear 1 can be calculated by Eq. (4).

\[
\begin{align*}
\delta_1 &= \arctan \left(\frac{\tan \beta_n - \tan \alpha_{11L}}{2 \cos \delta_1 \tan \beta_n} \right) (\beta_n \neq 0) \\
\delta_1 &= \arctan \left(\frac{\tan \alpha_n \sin \delta_1}{\xi_{11 \beta} \tan \alpha_{11L}} \right) (\beta_n = 0)
\end{align*}
\]

The sharp angle \(\varepsilon \) between the imaginary common gear rack indexing plane and the axis of bevel gear 1 can be expressed as follows:

\[
\varepsilon = \arccos \left(\frac{\cos \delta_1 \sin \delta_2}{\cos \delta_1 \cos \delta_2} \right)
\]

Then, wheel base \(a \), and installation distance of gear 1 \(l_i \) can be expressed as follows:

\[
l_i = \frac{(r_i \cos \delta_1 + r_2 \cos \delta_2)(\sin \delta_1 + \sin \delta_2 \cos \Sigma)}{\cos \delta_1 \cos \delta_2 \sin \Sigma} - r_i \tan \delta_1
\]

\[
a = \frac{(r_i \cos \delta_1 + r_2 \cos \delta_2) \sin \varepsilon}{\sin \Sigma}
\]

To the imaginary common gear rack, the normal pressure angle \(\alpha_n \), the inclination angle \(\beta_n \) of the tooth trace of the indexing plane and the normal modulus \(m_n \) can be calculated by Eq. (5) - (7).

\[
\alpha_n = \arcsin \left(\frac{\sin \delta_1}{\sin \delta_1} \right)
\]

\[
\beta_n = \arctan \left(\frac{\cos \delta_1 \tan \beta_n}{\xi_{11 \beta} \cos \delta_1} \right)
\]

\[
m_n = \frac{m \cos \beta_n}{\xi_{11 \beta} \cos \beta_n}
\]
of bevel gear, the geometric parameter equation of the line segments can be expressed as follows:

\[f_1^c(t) = \begin{bmatrix} x_1^c \\ y_1^c \\ z_1^c \\ t_1^c \end{bmatrix} = \begin{bmatrix} x^c_1 = t \cos \alpha_v - h^c_v m_n \\ y^c_1 = \pm(t \sin \alpha_v - \frac{P}{4} - h^c_v m_n \tan \alpha_v) \\ z^c_1 = 0 \end{bmatrix} \] \tag{15}

where \(f_1^c(t) \) is the coordinate value of the point on the skew straight tooth profile of the gear rack in the coordinate system \(S_r \) shown in Figure 3. \(t \) is a parametric variable, and represents the distance from any point on the oblique line to point \(C \) or point \(F \), and satisfies this inequality constraint \(0 \leq t \leq 2h^c_v m_n / \cos \alpha_v \). \(p \) is gear pitch, and \(p = \pi m \).

Similarly, the arc segments \(BC \) and \(FG \) envelop the transition curve between the tooth root and the involute tooth surface, the geometric parameter equation of the arc segments can be expressed as follows:

\[f_2^c(\theta) = \begin{bmatrix} x_2^c \\ y_2^c \\ z_2^c \\ t_2^c \end{bmatrix} = \begin{bmatrix} x^c_2 = r - (h^c_v + c^c_n) m + r \cos \theta \\ y^c_2 = \pm(r \cos \alpha_v - \frac{P}{4} - h^c_v m_n \tan \alpha_v + r \sin \theta) \\ z^c_2 = 0 \end{bmatrix} \] \tag{16}

where \(f_2^c(\theta) \) is the coordinate value of the point on the transition arc of the gear rack in the coordinate system \(S_r \) shown in Figure 3. \(\theta \) is a parameter variable, represents the angle of the transition arc, and ranges from \(\frac{\pi}{2} + \alpha_v \) to \(\pi \). \(r \) is fillet radius of tooth top, and \(r = \frac{c^c_m n}{1 - \sin m_n} \).

As shown in Figure 3, the imaginary common gear rack indexing plane is tangent to the pitch cone of bevel gear, and the pitch plane is tangent to the indexing cylinder of bevel gear. \(S_n \) is the coordinate system of the imaginary common gear rack normal section. \(S_p \) is the coordinate system of the imaginary common gear rack indexing plane. \(\beta \) is the inclination angle of tooth trace on the indexing plane when the gear meshes with the imaginary common gear rack. \(S_r \) is the coordinate system of the pitch plane of the imaginary common gear rack, which is tangent to the indexing cylinder of bevel gear. \(S_0 \) is the coordinate system of gear, the coordinate system \(S_0 \) changes to the coordinate system \(S_i \) when the gear rotates at an angle of \(\phi_i \). \(\delta \) represents the angle between the imaginary common gear rack indexing plane and the axis of the gear.

\[\text{Figure 3. Definition of the coordinate systems and relative position relationship between gear and gear rack} \]

For the normal section plane equation of the gear rack, the transformation relationship from the coordinate system \(S_r \) to the coordinate system \(S_i \) can be expressed in Eq. (17):

\[
\begin{bmatrix} x_i \\ y_i \\ z_i \\ t_i \end{bmatrix} = M_{ci} \begin{bmatrix} x_r \\ y_r \\ z_r \\ t_r \end{bmatrix}
\] \tag{17}

where \(M_{ci} \) is the transition matrix of gear rack normal section equation from the coordinate system \(S_r \) to \(S_i \), and

\[
M_{ci} = \begin{bmatrix}
\cos \delta & -\sin \delta & \cos \beta & k \sin \delta \cos \beta \\
\sin \delta & \cos \beta & \sin \cos \beta & k \sin \cos \beta \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

By substituting Eq. (15) into Eq. (17), Eq. (18) can be obtained as follows:

\[
f^c_i(k, t) = M_{ci} \cdot f^c_1(t)
\] \tag{18}

where \(f^c_i(k, t) \) represents the equation of the tooth surface formed by the normal section straight segment of the imaginary common gear rack in the coordinate system \(S_i \); \(k \) represents the tooth width, and \(t \) represents a parameter of the tooth depth; and superscript 1 denotes a surface generated by a straight segment of the imaginary common gear rack.

By substituting Eq. (16) into Eq. (17), Eq. (19) can be obtained as follows:

\[
f^c_i(k, \theta) = M_{ci} \cdot f^c_2(\theta)
\] \tag{19}

where \(f^c_i(k, \theta) \) represents the equation of the tooth surface formed by the transition curve section equation of the imaginary common gear rack normal section in the coordinate system \(S_i \); \(k \) represents tooth width, and \(\theta \) represents a parameter of transition radius; and superscript 2 represents the surface generated by the transition curve segment.

The coordinate transformation relationship from the coordinate system \(S_r \) to the gear coordinate system \(S_i \) is given in Eq. (20):

\[
\begin{bmatrix} x_i \\ y_i \\ z_i \\ t_i \end{bmatrix} = M_{ri} \begin{bmatrix} x_r \\ y_r \\ z_r \\ t_r \end{bmatrix}
\] \tag{20}

where \(M_{ri} \) is the transformation matrix of the equation from the coordinate system \(S_r \) to \(S_i \), and expressed as

\[
M_{ri} = \begin{bmatrix}
\cos \phi_i & -\sin \phi_i & 0 & r(\cos \phi_i + \phi_i \sin \phi_i) \\
\sin \phi_i & \cos \phi_i & 0 & r(\sin \phi_i - \phi_i \cos \phi_i) \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

By substituting Eq. (18) into Eq. (20), the expression of the plane equation formed by the straight segment of the imaginary common gear rack in the coordinate system \(S_i \) may be derived and shown in Eq. (21). Accordingly, by
substituting Eq. (19) into Eq. (20), the expression of the surface equation formed by the transition curve segment of the imaginary common gear rack in the coordinate system S_i may be derived and shown in Eq. (22).

$$f_1^i(\varphi_i, k, t) = M_\nu \cdot f_1^i(k, t) =$$

$$f_2^i(\varphi_i, k, t) = M_\nu \cdot f_2^i(k, t) =$$

3.2 Derivation of Bevel Gear Meshing Equation and Tooth Surface Equation

According to the basic theorem of tooth profile meshing [29], assuming that the meshing points of gear and gear rack are represented by $D(x_c, y_c, z_c)$ in the coordinate system S_n, then they have a common tangent and normal at meshing point D, as shown in Figure 4.

$$\mathbf{\nu}'(12) = \mathbf{\alpha}_D \times \mathbf{MD} = \begin{vmatrix} i_x & j_c & k_c \\ 0 & 0 & -\alpha_k \\ x_c & y_c & z_c \end{vmatrix} = \alpha_k (y_c - r \varphi_i) j_c - x_c \alpha_k j_c$$ (24)

where α_k is angular velocity of gear in the coordinate system S_n, and \mathbf{MD} represents the distance from node M to meshing point D.

The relative partial derivatives of Eq. (18) and Eq. (19) with respect to k, r and ϑ may be solved respectively to obtain the normal vector of any point on the gear rack straight tooth surface and circular arc surface. The solution results are expressed as follows:

$$\mathbf{n}_z = \begin{bmatrix} -\cos \alpha_n \sin \beta \sin \vartheta \mp \cos \vartheta \cos \alpha_n \\ \cos \beta \cos \alpha_n \\ -\sin \beta \cos \alpha_n \pm \sin \vartheta \cos \alpha_n \end{bmatrix}$$ (25)

$$\mathbf{n}_z = \begin{bmatrix} r \sin \beta \sin \alpha_n \pm \sin \vartheta \cos \alpha_n \\ r \cos \beta \cos \alpha_n \\ r \cos \beta \sin \vartheta \mp \cos \alpha_n \end{bmatrix}$$ (26)

where, for the symbols of \mp and \pm, the upper symbols
should be used when the normal vectors corresponded to arc segment BC and line segment CD are calculated, and the lower symbols should be used when the normal vectors corresponded to line segment EF and arc segment FG.

By substituting the relative velocity obtained by Eq. (24) and the normal vector obtained by Eq. (25) into Eq. (23), the meshing equation of involute tooth surface of the bevel gear can be expressed as follows:

\[
\mathbf{v}^{(12)} \cdot \mathbf{n}_1 = a_\alpha (y_\gamma - r_\phi r_n (-\cos \alpha_s \sin \beta \sin \delta \mu \cos \delta \sin \alpha_n) - x_\epsilon \epsilon \cos \beta \cos \alpha_n = 0
\]

(27)

Eq. (27) may be deduced by the expression of angle \(\varphi_1 \), and expressed as follows:

\[
\varphi_1 = \frac{y_\gamma}{r_1} - \frac{x_\epsilon \epsilon \cos \beta \cos \alpha_n}{r_1 (-\cos \alpha_n \sin \beta \sin \delta \cos \delta \sin \alpha_n)}
\]

(28)

Similarly, by substituting the relative velocity obtained by Eq. (24) and the normal vector obtained by Eq. (26) into Eq. (23), the meshing equation of the transition surface of the bevel gear can be expressed as follows:

\[
\mathbf{v}^{(12)} \cdot \mathbf{n}_2 = a_\alpha (y_\gamma - r_\phi r_n (r \sin \beta \sin \delta \sin \theta \mu \cos \theta \cos \delta) + x_\epsilon \epsilon \cos \beta \sin \theta = 0
\]

(29)

Eq. (29) may be deduced by the expression of angle \(\varphi_1 \), and expressed as follows:

\[
\varphi_1 = \frac{y_\gamma}{r_1} + \frac{x_\epsilon \epsilon \cos \beta \sin \theta}{r_1 (r \sin \beta \sin \delta \sin \theta \mu \cos \theta \cos \delta)}
\]

(30)

When the gear rotates at an angle of \(\varphi_1 \), a group of \(k \) and \(t \) and another group of \(k \) and \(\theta \) can be obtained by the meshing condition equation. So, Eq. (21) and Eq. (28) are the involute tooth surface equations of involute bevel gear, and Eq. (22) and Eq. (30) are the transition surface equations of the bevel gear.

3.3 Solution of Tooth Surface Point Set of Bevel Gear Pair

Based on the parameters described in section 2 and the mathematical models for tooth surface of bevel gear pair described in section 3.2, the flow chart of solution of tooth surface point set is shown in Figure 5.

4 Calculation and Design Example of Bevel Gear Pair in the Knotter

4.1 Introduction of the Bevel Gear Pair in the Knotter

The bevel gear pair of driving the rope-gripping plate in the D-type knotter is a crossed axes bevel gear pair with shaft intersection angle of 98 degrees, as shown in Figure 6(a). In the knotter driven by double fluted discs, the bevel gear pair of driving the knotter jaw to rotate is an intersecting shaft bevel gear pair with shaft intersection angle of 98 degrees, as shown in Figure 6(b).
4.2 Calculation of Geometric Parameters of Bevel Gear Pair in the Knotter

The known parameters of the bevel gear pair in two kinds of knotter are given in Table 1 and Table 2 respectively, and the solution process of their unknown parameters is shown in Figure 7. The solution results of the unknown parameters are shown in Table 3 and Table 4 respectively.

Table 1. The known parameters of bevel gear pair in D-type knotter

parameter	results
\(m\)	4
\(n\)	20°
\(\alpha\)	8
\(\beta\)	38
\(\delta\)	11.89°
\(\Sigma\)	98°
\(a\)	19mm
\(l\)	80mm

Table 2. The known parameters of bevel gear pair in the knotter driven by double fluted discs

parameter	results
\(m\)	4
\(n\)	20°
\(\alpha\)	8
\(\beta\)	54
\(\delta\)	8.52°
\(\Sigma\)	98°
\(a\)	116mm

Table 3. The solved parameters of bevel gear pair in D-type knotter

parameter	results
\(\xi_{11}\)	1.0001
\(r_{1}\)	15.9984mm
\(a_{11L}\)	19.6166°
\(a_{11R}\)	19.6166°
\(a_{11}'\)	19.5894°
\(a_{n}'\)	19.9848°
\(\beta_{1}'\)	0
\(m_{n}'\)	3.9996
\(\delta_{1}'\)	9.0225°
\(\beta_{2}'\)	14.2317°
\(\delta_{2}'\)	85.4223°
\(r_{2}'\)	79.3721mm

Table 4. The solved parameters of bevel gear pair in the knotter driven by double fluted discs

parameter	results
\(\xi_{11}\)	1.0013
\(r_{1}\)	15.9792mm
\(a_{11L}\)	19.7957°
\(a_{11R}\)	19.7957°
\(a_{11}'\)	19.5894°
\(a_{n}'\)	19.7957°
\(\beta_{1}'\)	0
\(m_{n}'\)	3.9948
\(\delta_{1}'\)	9.0225°
\(\beta_{2}'\)	12.4785°
\(\delta_{2}'\)	85.4223°
\(r_{2}'\)	107.8596mm

4.3 Establishment of Accurate 3D Model of Bevel Gear Pair in the Knotter

According to the flow chart shown in Figure 5, the tooth surface point sets of the bevel gear pair may be programmed to solve and visual display by using powerful calculation and graphic display function of MATLAB software [30, 31]. During the solution, the parameter \(t\) is set to take value at 0.2 intervals within the range from 0 to 0.8. The tooth width \(k\) is set to take value at 0.2 intervals within the range from -10 to 0. The parameters \(\theta\) is set to take value at 0.1° intervals within the range from 110° to 180°. The point set obtained under MATLAB software is imported into Pro/Engineering software, and the accurate 3D model of bevel gear may be established according to the rule of "point - line - surface - body". To the bevel gear pair in the knotter driven by double fluted discs, the process of its accurate modeling is shown in Figure 8. According to the motion requirements of the knotter, the bevel gear pair is designed as an incomplete bevel gear pair.
Similarly, the point set of tooth profile of the bevel gear pair in D-type knotter can be obtained, and their 3D assembly model is shown in Figure 9.

The rotary drive with 540° percent second is added to the rotating pair of the driving bevel gear on the large fluted disc. The simulation time is set to 1 second, and the number of steps is 500. After finishing the simulation under ADAMS, the meshing process of single tooth of the bevel gear pair is shown in Figure 11.

It can be seen from the above simulation results that the meshing point moves smoothly from starting contact point to end contact point, which indicates that the calculation of the bevel gear pair based on the derived gear tooth surface equation is correct. The designed bevel gear pair may have stable meshing transmission, and complete the given...
4.4.2 Meshing transmission simulation of bevel gear pair with 98° crossed shaft in D-type knotter

The same method as section 4.4.1 is used to simulate the transmission of the bevel gear pair with 98° crossed shaft.

The 3D assembly model shown in Figure 12(a) is firstly import into ADAMS software, the material properties of parts are defined and the constraints among parts are added, as shown in Figure 12(b). After finishing the simulation under ADAMS, the meshing process of single tooth of the bevel gear pair is shown in Figure 13, and the simulation results are similar to the simulation in section 4.4.1.

4.5 Prototype Manufacturing and Transmission Test of Bevel Gear Pair in the Knotter

4.5.1 Prototype manufacturing and transmission test of bevel gear pair with 98° intersecting shaft in the knotter driven by double fluted discs

According to the accurate 3D model generated by section 4.3, the prototype of bevel gear pair was manufactured by precision casting method. The actual prototypes are shown in Figure 14. The driving incomplete bevel gear and the large gear disc are integrally cast, and the driven incomplete bevel gear is individually cast.

To carry out the transmission test, the above two bevel gears are assembled with other parts of the knotter. During the transmission test, the large gear disc is firstly driven to rotate, the driven incomplete bevel gear will mesh with the incomplete bevel gear on the large gear disc, and the knotting jaw coaxially fixed with the driven incomplete bevel gear realizes the trope-winding action. The process is shown in Figure 15 by taking a set of photos. The prototype motion of the bevel gear pair is very consistent with the simulation results under ADAMS, and can meet the motion requirements of the knotter.
4.5.2 Prototype manufacturing and transmission test of bevel gear pair with 98° crossed shaft in D-type knotter

As mentioned in section 4.5.1, the actual prototypes are shown in Figure 16. The two bevel gears are assembled with other parts of the D-type knotter. The transmission process is shown in Figure 17 by taking another set of photos. The prototype motion of the bevel gear pair is also very consistent with the simulation results under ADAMS, and can meet the motion requirements of the D-type knotter.

Figure 15 Transmission process of bevel gear pair with 98° intersecting shaft

Figure 16 Actual prototype of bevel gear pair with 98° crossed shaft

Figure 17 Transmission process of bevel gear pair with 98° crossed shaft

It can be seen from the above two transmission tests that the tooth profile of the bevel gear pair generated by the tooth surface meshing equation in section 3 may guarantee the
5. Conclusion

(1) On the basis of analyzing the equations for solving the parameters of bevel gear pair with arbitrary crossed axes, the meshing equations of the bevel gears are derived, based on the installation parameter method and the meshing principle of bevel gears, which can provide a calculation model for the design of the tooth profile of space bevel gear.

(2) Taking the bevel gear pair in the knotter as design examples, the geometric parameters of the bevel gear pair of the knotter are solved, and the accurate 3D models of the bevel gear pair are established. Through the meshing transmission simulation of the bevel gear pair, the correctness of the mathematical model of bevel gear transmission is verified and stable, which proves the correctness of the method used in this study.

Authors’ Contributions
JY was in charge of the whole study and manuscript check; HW, RG and ZJ wrote the manuscript and participated in the experiment analysis. All authors read and approved the final manuscript.

Authors’ Information
Jianjun Yin, born in 1973, is currently a professor at School of Agricultural Engineering, Jiangsu University, China. His research interests include advanced agricultural equipment and technology.

E-mail: yinjianjun@ujs.edu.cn

Han Wu, born in 1996, is a Master candidate at School of Agricultural Engineering, Jiangsu University, China.

E-mail: 2221916033@stmail.ujs.edu.cn

Zheng Ji, born in 1991, received his Master degree from School of Agricultural Engineering, Jiangsu University, China, in 2018.

E-mail: 973369227@qq.com

Maile Zhou, born in 1989, is currently an associate professor at School of Agricultural Engineering, Jiangsu University, China.

E-mail: 421247000@qq.com

Ruipeng Guo, born in 1996, is a Master candidate at School of Agricultural Engineering, Jiangsu University, China.

E-mail: 2221916026@stmail.ujs.edu.cn

Acknowledgements
Not applicable

Availability of data and materials
The datasets supporting the conclusions of this article are included within the article.

Funding
Supported by the National Key Research and Development Program of China (Grant No. 2016YFD0701701), National Natural Science Foundation of China (Grant No. 52005221), the National Natural Science Foundation of Jiangsu Province (Grant No. BK20200897), and the China Postdoctoral Science Foundation (Grant No. 2021M691315).

Competing Interests
The authors declare no competing financial interests.

Author Details
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.

References
[1] S H Liu. Research on the Tooth Surface Construction and Meshing Analysis of Cross-Axis Bevel Gear Based on Spatial Conjugate Curves. Chongqing: Chongqing University of Technology, 2020. (in Chinese)
[2] F Y Zheng. Theory and Application of Moving-axis Gearing. Wuhan: Wuhan University of Technology, 2017. (in Chinese)
[3] F Guo, S C Wu, J X Liu, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing. International Journal of Fatigue, 2020, 132 (Mar.): 105353.1-105353.12.
[4] J H Wang, J W Yang, Q Li, et al. Remaining Useful Life Prediction for Degradation Process of Gear System with Contact Damage Model. International Journal of Performability Engineering, 2019, 15(1).
[5] P Ivkovi, M Og Najmovic, J Camagic, et al. Assessment of Probability of Gear Tooth Side Wear of a Planetary Gearbox. Tehnicki Vjesnik, 2020, 27(2):506-512.
[6] Z Y Wang, Z J Xing, H D Wang, et al. Research Status of Test Method for Bending Fatigue Life of Heavy Duty Gear. Materials Review, 2018. (in Chinese)
[7] D Ghrbi, C Peyrac, M Octtrue. Shot peening of gear tooth flanks: Search for an optimal surface topography against the micropitting. 2017.
[8] J Yan, X Chen, J Chen. Research on Monitoring Method of Gear Wear Status Based on Characteristics of Abrasive Particles. IOP Conference Series: Earth and Environmental Science, 2019, 252 (2): 022082 (8pp).
[9] Y Chen, L B Zang, J U Dong-Ying, et al. Research Status and Development Trend on Strengthening Technology of High Strength Automobile Gear Surface. China Surface Engineering, 2017. (in Chinese)
[10] S Mo, T Zhang, G Jin, et al. Elastohydrodynamic Lubrication Characteristics of Spiral Bevel Gear Subjected to Shot Peening Treatment. Mathematical Problems in Engineering, 2018, 2018(17):3043712.1-3043712.12.
[11] M Du, L Yang. A basis for the computer-aided design of the topological structure of planetary gear trains-ScienceDirect. Mechanism and Machine Theory, 145.
[12] Y Sun, J Hu, G Li, et al. Gear reducer optimal design based on computer multimedia simulation. Journal of Supercomputing, 2018.
[13] MM Kane. Design Automation of Cylindrical Gear Manufacturing Processes, 2020.
[14] S Y Wang, C Meesap. Investigation on Mesh and Sideband Vibrations of Helical Planetary Ring Gear Using Structure, Excitation and Deformation Symmetries. Chinese Journal of Mechanical Engineering, 2018, 31(006):104.
[15] H Ge, C Wang. Research on the influence mechanism of friction factor of gear based on mathematical statistics principle. IOP Conference Series Materials Science and Engineering, 2019, 542:012044.
[16] C Lin, Z Cai. Research on the method to calculate deformation of curve-face gear. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2017:095440621772172.
[17] H Ren, A Yin, W Song, et al. Vibration Monitoring With Dependencies Attention for Gear Hobbing Quality Evaluation. IEEE Sensors
D S Ramteke, A Parey, R B Pachori. Automated gear fault detection of micron level wear in bevel gears using variational mode decomposition. *Journal of Mechanical Science and Technology*, 2019, 33(12).

M Rababah, M Wasif, S A Iqbal. Parametric relationship between hypoid gear teeth and accurate face-milling cutter. *Advances in Manufacturing*, 2020, 8(4): 537-555.

Gunbara, Hiroshi, Houjoh, et al. Method for remanufacturing large-sized skew bevel gears using CNC machining center. *Mechanism and Machine Theory: Dynamics of Machine Systems Gears and Power Transmissions Robots and Manipulator Systems Computer-Aided Design Methods*, 2015.

G Figliolini, H Stachel, J Angeles. The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes. *Journal of Mechanisms & Robotics*, 2015, 7(1): 011003.

Y C Tsai, W K Jehng. A kinematics parametric method to generate new tooth profiles of gear sets with skew axes. *Mechanism & Machine Theory*, 1999, 34(6): 857-876.

A Fuentes, J L Iserte, I Gonzalez-Perez, et al. Computerized design of advanced straight and skew bevel gears produced by precision forging. *Computer Methods in Applied Mechanics and Engineering*, 2011, 200(29–32): 2363-2377.

T Schöler, H Binz, M Bachmann. Method for the pre-dimensioning of beveloid gears. *Forschung im Ingenieurwesen*, 2017.

G Figliolini. On the synthesis of spatial cycloidal gears. *Meccanica*, 2013, 48(5): 1239-1249.

J He, X Wu. Mobbing Tooth Flank Generating Theory and Parameters Calculation of Conical Involute Gears. *Xi'an: Journal of Xi'an Jiaotong University*, 2003(09): 906-909. (in Chinese)

L An, L Zhang, S Qin, et al. Mathematical design and computerized analysis of spiral bevel gears based on geometric elements. *Mechanism and Machine Theory*, 2021, 156: 104131.

B C Wang, L T Zhang, P Xin, et al. Parametric Modeling and Contact Analysis of Skew Spiral Bevel Gears. *IOP Conference Series Materials Science and Engineering*, 2018, 439.

H Ding, R Zhan, X Ad Ayi. Formational principle and accurate fitting methodology for a new tooth surface of the spiral bevel gear. *International Journal of Simulation & Process Modelling*, 2016.

E Faluvegi, C Z Mate, L Cristea. Mathematical Model of the Bevel Gears Flanks Considering the Cutting Machine Type. 2013.

G Liu, H Fan. Pinion Tooth Surface Generation Strategy of Spiral Bevel Gears. *Chinese Journal of Mechanical Engineering*, 2012, 25(4): 753-759.