Profiling of secondary metabolites and DNA typing of three different *Annona* cultivars grown in Egypt

Mona Arafah Mohammed1 · Manal A. Hamed2 · Souad Eisawy El-Gengaihi1 · Ahmed Mahmoud Aboul Enein3 · Piotr Kachlicki4 · Emad Mohamed Hassan1

Received: 3 March 2022 / Accepted: 15 June 2022 / Published online: 4 July 2022
© The Author(s) 2022

Abstract

**Objectives** Natural products are often efficacious and safe alternatives to synthetic drugs. This study explored secondary leaves and bark metabolites profiles in extracts of a new Egyptian hybrid, *Annona cherimola × Annona squamosa*, known as Abdel Razek. This hybrid exhibited 100% similarity with *A. cherimola* as evidenced by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses.

**Methods** Primary constituents in methanol extracts of different plant organs were identified. Extracts richest in alkaloids and polyphenolics were assessed for in vitro antioxidant activity and the most potent were further studied in vivo for treating gastric ulcer in rats. The latter activity was assessed histopathologically.

**Results** Structural analysis with HPLC/ESI-MSn, and UPLC/HESI-MS/MS identified 63 metabolites, including seven amino acids, 20 alkaloids, 16 flavonoids, eight phenolics and other compounds. Severe stomach alteration was observed after ethanol induction in rats. Ulcer score, oxidative stress biomarkers, cell organelles biomarker enzymes, and gastrointestinal histological features improved to variable degrees after treatment with *Annona* Abdel Razek hybrid leaves and bark methanol extracts.

**Conclusion** Extracts of *Annona* Abdel Razek had showed in vitro antioxidant effect and may be promising for the treatment of gastric ulcers.
1 Introduction

Gastric ulcers affect a large percentage of the world’s population and are caused by a variety of conditions, including stress, smoking, alcohol intake, nutritional deficiencies, *H. pylori* infection, and NSAIDs (Martel et al., 2020). A metabolic imbalance in stomach mucosal defenses is involved in the pathogenesis of ulceration. Acid, pepsin, and *H. pylori* are common stressors, and mucus, prostaglandins, bicarbonate, nitric oxide, and growth factors are protective elements (Graham, 2014). Damage to the gastrointestinal mucosa caused by alcohol involves microvascular injury, rupture of the vascular endothelium, increased vascular permeability, edema, and epithelial elevation (Penninger et al., 2020). Treatment of peptic ulcers first focuses on lowering stomach acid production, and then on restoring gastric mucosal protection. Proton pump inhibitors, histamine receptor blockers, mucosal barrier medicines, and prostaglandin analogues are all used in modern treatment (Graham, 2014).

Several species of *Annona* (Family: Annonaceae) are used in traditional medicine, reflecting their anti-anxiety, antidepressant, anticonvulsant, and tranquilizing properties.
(Martínez-Vázquez et al., 2012). *Annona* is the second largest genus in the family, containing approximately 166 species (Nagy & Wardowski, 1990). *A. squamosa* and *A. cherimola* and their hybrid (Abdel Razek) rich produce substantial amounts of secondary metabolites, including phenolics, flavonoids, alkaloid isoquinolines, peptides, acetogenins, lectins, and volatile oils (Dahiya & Dahiya, 2021). Acetogenins are most commonly isolated from *A. muricata*, *A. squamosa*, *A. cherimola* and *A. classiflora* (Prabhakaran et al., 2016). This situation prompted scientists to look for novel anti-ulcer medications in natural materials due to the fact that the side-effects of the natural compounds are comparatively lower than those of the synthetic ones. Therefore, many *Annona* species exhibit anticancer, antioxidant, antibacterial, and antifungal properties (Leite et al., 2020). Such properties are the basis for substantial research on natural products (Huang et al., 2019), and the present study explored secondary metabolites in leaves and bark from the new hybrid *Annona* Abdel Razek for their antioxidant and anti-ulcerative effects in rats.

## 2 Material and methods

### 2.1 Phytochemical study

#### 2.1.1 Chemicals

Analytical grade solvents and chemicals used in this study were purchased from Fisher Scientific Co. (Bishop Meadow Road, Loughborough, UK).

#### 2.1.2 Plant products and DNA fingerprinting

Tissues from three *Annona* cultivars, *A. squamosa*, *A. cherimola*, and Abdel Razek, were collected from a private farm in Mansoriya district, Giza, Egypt. Plants were identified by Prof. Dr Mona Marzouk, Plant and Systematic Department at the National Research Centre, Egypt and voucher specimens numbers 521, 522, and 523 were deposited in the herbarium. Presence/absence of RAPD and ISSR markers were scored using DNA fragments of gels (Tables 1, S1–S3).

| No | Name | Sequence                  | Name | Sequence                  |
|----|------|---------------------------|------|---------------------------|
| 1  | OP-A01 | 5′ GAA AGG GGT G 3′        | 14A  | 5′ CTC TCT CTC TCT CTC TTG3′ |
| 2  | OP-B02 | 5′ TCG GGG ATA G 3′        | 44B  | 5′ CTC TCT CTC TCT CTC TTG3′ |
| 3  | OP-B07 | 5′ GAA AGG GGT G 3′        | HB-08 | 5′ GAG AGA GAG AGA GG3′ |
| 4  | OP-B11 | 5′ GTA GAC CCG T 3′        | HB-11 | 5′ GTG TGT GTG TGT CC 3′ |
| 5  | OP-C04 | 5′ CCG CAT CTA C 3′        | HB-15 | 5′ GTG GTG GTG GC 3′     |

Table 1: RAPD and ISSR primers and nucleotide sequences

Only five primers were successful in producing repeatable polymorphic DNA products. A UV transilluminator was used to record RAPD and ISSR patterns (Pharmawati et al., 2004).

### 2.1.3 Successive extraction and evaluation of total polyphenolics, flavonoids, and alkaloids *A. Abdel Razek* plant tissues

Five hundred grams from different parts (leaves, barks, fruits, and seeds) were extracted by soaking in 10 L MeOH (100, 80, and 50%) for 48 h at room temperature. Using a rotary evaporator, the mixed alcoholic extracts were concentrated under decreased pressure at 40 °C. The complete extract of each part was suspended in 0.5 L water for 24 h, then partitioned with 0.5 L of different solvent (Me2Cl2, EtOAc), and BuOH before being filtered through Whatman No. 54. Total flavonoids and polyphenols were assessed according to (Hamed et al., 2019), whereas total alkaloids were determined according to (El-Gengaihi et al., 2020).

### 2.1.4 Profiling of secondary metabolites using LC–MS/MS

Two hundred mg of dried leaves and bark were separately sonicated with two ml methanol for 5 min at 37 °C. The filtered extract was injected in negative and positive ion mode into an ion-trap Esquire 3000 mass spectrometer with an ESI ion source. Analysis conditions for nebulizer, dry gas flow, and dry gas temperature were 30 psi, 9.0 L/min, and 310 °C, respectively. Skimmer 1 was set to a negative voltage of – 10.0 V. Scan resolution was 13,000 m/z/sec with a range of 150–3000 m/z. An Acquity system (Waters, Milford, USA) was combined with a Q-Exactive hybrid MS/MS quadrupole—Orbitrap mass spectrometer (Thermo, Bremen, Germany). A BEH shield C18 column (1502.1 mm, 1.7 m) was used for chromatographic separation with deionized water acidified with 0.1 percent formic acid (solvent A) and acetonitrile (solvent B). The mobile phase gradient was 0–14 min from 5% B to 50% B, then 14–20 min to 98% B, and sustained for 5 min. The system was reset to initial settings and re-equilibrated for 3 min between runs. Q-Exactive MS conditions were HESI ion source voltage of – 3 kV or
3 kV, gas (N2) flow rate of 48 L/min, and auxiliary gas flow rate of 13 L/min. Ion source capillary and auxiliary gas heater temperatures were 250 °C and are 380 °C, respectively. Collisions power for CID MS/MS studies was 15 eV (Mohammed et al., 2021).

2.1.5 Data processing

MSMS fragmentation patterns were generated for 63 phenolics, alkaloids, terpenes, and other metabolite using ion mobility tandem mass spectrometry to allow identification of extract composition. These four fractions from raw MS data were output to analysis base file (abf) format and packaged in MSDIAL 4.60 (http://prime.psc.riken.jp/). MSP format libraries were used with enhanced standardized untargeted lipidomic and metabolomic patterns to filter noisy spectra via classical spectral similarity calculations. Selected metabolites were identified by comparing fragmentation patterns and retention indices with similar information from KNApSAcK, Metlin, Golm, MassBank, Fiehn Bin Base, LipidBlast, ReSpect, and RIKEN databases (Ammar et al., 2021; Mohammed et al., 2021).

2.2 Pharmacological Investigation

2.2.1 In vitro antioxidant analysis

The ABTS⁺ was determined in various extracts using the methods provided by (Dinkova-Kostova et al., 2007)). The DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals scavenging test was carried out according to Ammar et al. (2021). The Percent of inhibition of DPPH and ABTS⁺ radicals was estimated using the following formula:

\[
\text{Percent of inhibition} = \left( \frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100,
\]

where A is the absorbance of DPPH⁻ and ABTS⁺ at 517 and 734 nm, respectively.

2.2.2 Acute toxicity

Forty-eight rats, weighing 100–120 g were separated into two groups of 24 animals. Each group was subdivided into three subgroups of eight. Each animal received an oral dose of 250, 500, or 1000 mg/kg body weight of Abdel Razek leaves or bark alcoholic extract. Numbers of dead animals were counted over 15 days. The mortality rate and LC50 were also recorded. Extracts were safe at all tested concentrations, and a dose of 500 mg/kg body weight was chosen for further investigation (El-Gengaihi et al., 2013).

2.2.3 Doses and administration routes

Rats were administered 0.5 ml/100 g body weight absolute ethanol orally after a 24-h fast (Fahmi et al., 2019). Abdel Razek extracts were administered orally for 1 week after ulcer development in therapeutic model and 1 week before ulcer development as protective model (Mohammeda et al., 2020). Ranitidine given orally (100 mg/kg bw/day for one week) as a reference drugs for antiulcer effects (Fahmi et al., 2019).

2.2.4 Experimental groups

Seventy-two male albino Wistar rats were divided equally into nine groups.

- Group 1 rats served as controls.
- Groups 2 and 3 animals received alcoholic extracts of bark or leaves daily for 1 week.
- Group 4 rats received ethanol dose on an empty stomach for 24 h. Animals were euthanized one hour later to provide a baseline for ulcer production.
- Groups (protective model) 5 and 6 rats received plant extracts or ranitidine daily for 7 days before receiving one oral dose of absolute ethanol on an empty stomach for 24 h and sacrificed 1 h later.
- Group 7 animals received ethanol and then euthanized after seven days.
- Groups (therapeutic model) 8 and 9 rats received one oral dose of absolute ethanol and then plant extracts or ranitidine daily for 7 days and sacrificed 24 h after the last administration.

2.2.5 Samples preparations

Stomach tissue was homogenized in a normal physiological saline solution (0.9% NaCl) (1:5 w/v). The homogenate was centrifuged for 15 min at 300 g at 4 °C, and the supernatant kept at −80 °C until further analysis (Khalaf-Allah et al., 2016).

2.2.6 Ulcer index

2.2.6.1 Stomach lesion counts Stomachs were removed, opened from the long curvature, cleaned with saline solution, expanded, and placed on the dissection plate. Numbers of lesions were counted using a magnifying glass (Guedes et al., 2008; Mohammeda et al., 2020).

2.2.6.2 Stomach total acidity Gastric contents were collected and centrifuged for 15 min at 300 g. Supernatant vol-
umes (ml) were measured and total acidity determined by titration with 0.1 N NaOH using 2% phenolphthalein as an indicator. The results are expressed as milliequivalents per liter (mEq/L), where:

\[
m\text{Eq} = \frac{\text{Vol of NaOH} \times \text{normality of NaOH} \times \text{equivalent weight of HCl}}{1000/\text{Sample volume}}
\]

### 2.2.7 Oxidative stress and cell organelles markers

Glutathione (GSH) (Bhardwaj et al., 2000), malondialdehyde (MDA) (Buege & Aust, 1978), superoxide dismutase (SOD) (Nishikimi et al., 1972), nitric oxide (NO) (Montgomery & Dymock, 1961), catalase (CAT) (Shelton & Rice, 1957), succinate dehydrogenase (SDH) (Swanson, 1955), lactate dehydrogenase (LDH) (Wattiaux & De Duve, 1956), glucose-6 phosphatase (G-6-Pase) (Bodansky & Schwartz, 1963), acid phosphatase (AP) (Bodansky & Schwartz, 1963), alkaline phosphatase (ALP), 5′-nucleotidase (5′NT) and total protein (Bradford, 1976) were measured in stomach tissue.

### 2.2.8 Histopathological analysis

Slices of stomach tissues were embedded in paraffin blocks after fixation in 10% formalin. Masson’s trichrome and hematoxylin and eosin (H&E) were used to stain 5 µm thick sections. Sections were examined under a light microscope for pathological abnormalities (Bancroft, 1996).

### 2.2.9 Statistics

All biochemical data are presented as means ± SD of eight rats per group. Statistical analysis used one-way analysis of variance (ANOVA), with Costat Software, followed by least significance difference (LSD) tests between groups; p < 0.05 was used as a threshold for significance.

### 3 Results

#### 3.1 DNA Fingerprinting

Primer OP-A01 showed eight bands of 270–1200 bp showing four monomorphic and four polymorphic bands indicating 50% polymorphism (Tables S3 and figure S1 A (supplementary data)). OP-B02 showed 11 bands of 260–1390 bp. Two monomorphic and nine polymorphic bands were noted, suggesting 81.82% polymorphism. Similar results for OP-B07, OP-B11, and OP-C04 were 11 bands of 155 to 1350 bp, 11 bands of 225 to 1455 bp, and seven bands of 180 to 680 bp, respectively. These primers displayed nine monomorphic and two polymorphic bands indicating 18.18% polymorphism, three monomorphic and eight polymorphic bands suggesting 72.73% polymorphism, and three monomorphic and four polymorphic bands indicating 57.14% polymorphism, respectively.

Likewise, primers A, 44B, HB-08, HB-11, and HB-15 produced six bands of 295–820 bp, eight bands of 280–640 bp, nine bands of 145–825 bp, 12 bands of 295–1040 bp, and eight bands of 340–1070 bp, respectively. These primers exhibited four monomorphic and two polymorphic bands suggesting 33.33% polymorphism, six monomorphic and two polymorphic bands indicating 25% polymorphism, no monomorphic and nine polymorphic bands suggesting 100% polymorphism, four monomorphic and eight polymorphic bands indicating 66.67% polymorphism, and five monomorphic and three polymorphic bands suggesting 37.5% polymorphism, respectively (figure S1 B).

### Table 2 Total polyphenolic, flavonoid and alkaloid contents

| Annona Abdel Razeq parts | Chloroform | Ethyl Acetate | Butanol | Total alcohol |
|---------------------------|------------|---------------|---------|---------------|
| Total phenolics (mg/g Dw) |            |               |         |               |
| Leaves                    | 1.3 ± 0.02 | 15.65 ± 0.36  | 18.36 ± 0.32 | 20.36 ± 0.32  |
| Bark                      | 0.9 ± 0.10 | 13.36 ± 0.42  | 15.36 ± 0.25 | 12.87 ± 0.46  |
| Fruit                     | 0.2 ± 0.01 | 8.96 ± 0.20   | 6.32 ± 0.42  | 5.65 ± 0.85   |
| Seed                      | 0.12 ± 0.01| 6.65 ± 0.21   | 8.63 ± 0.52  | 7.89 ± 0.45   |
| Total flavonoids (mg/g Dw)|            |               |         |               |
| Leaves                    | 0.07 ± 0.01| 1.02 ± 0.02   | 3.2 ± 0.03  | 4.2 ± 0.01    |
| Bark                      | 0.04 ± 0.00| 0.98 ± 0.21   | 1.86 ± 0.21 | 0.98 ± 0.02   |
| Fruit                     | 0.02 ± 0.00| 0.78 ± 0.10   | 2.32 ± 0.02 | 1.9 ± 0.01    |
| Seed                      | 0.02 ± 0.00| 0.45 ± 0.02   | 0.87 ± 0.14 | 0.6 ± 0.02    |
| Total alkaloids (mg/g Dw) |            |               |         |               |
| Leaves                    | 0.01 ± 0.002| 0.001 ± 0.005| 0.009 ± 0.002| 0.05 ± 0.005  |
| Bark                      | 0.02 ± 0.001| 0.001 ± 0.004| 0.02 ± 0.001| 0.08 ± 0.004  |
| Fruit                     | 0.01 ± 0.006| 0.001 ± 0.001| 0.01 ± 0.001| 0.05 ± 0.003  |
3.2 Phytochemical analysis

3.2.1 Total polyphenolic, flavonoid and alkaloid contents

Bark, fruit, and seed extracts showed lower total phenol and flavonoid content than leaves extracts (Table 2). The highest total polyphenolic and flavonoid concentrations were found in butanol and total alcohol extracts of Abdel Razek (18.36, 20.36, 3.2, and 4.2 mg/g, respectively). Further, total alkaloids extracted by different solvents were limited, and no significant differences were observed among plant parts extracts. The total alkaloid content was greater in bark than in seeds as 0.08 vs. 0.06 mg/g DW, respectively.

3.3 Metabolomics analysis

Metabolomic studies established profiles of 63 compounds, consisting of phenols, flavonoids, coumarins, amino acids, and alkaloids, from leaves and bark. Compounds were identified by comparing their molecular mass (<5 ppm), mass spectroscopy, and retention times to standard compounds, data from the ChEBI, PubChem, Metlin, and KNApSAck databases, and results from earlier research. Several compounds co-eluted from the LC column, and the mass spectrometer was unable to fragment these compounds independently. This limitation was addressed by: (i) extending the separation period of HPLC-MS runs to 1 h and (ii) using a C18 reversed-phase UPLC-HESI-MSMS to analyze fractions derived from polyamide preparative LC runs. Secondary metabolites included alkaloids, phenolic acids, flavonoids and polyphenols, such as coumaric acid, coumaroyl quinic acid, kaempferol, feruloyl hexoside, feruloyl-quinic acid, caffeoyl quinic acid, caffeic acid, caffeic acid hexoside, epicatechin, catechin, alkaloids (boldine, caranine, o xoanolobine, reticuline, 1-psecoside, coclaurine), and amino acid derivatives (n-fructosyl isoleucine, n-fructosyl pyroglutamate, and tryptophan) (Table 3 and Figs. 1, 2, & S3).

3.4 Biochemical investigations

3.4.1 In vitro antioxidant effect

Evaluation of the in vitro antioxidant activity of the alcoholic extracts from leaves, bark, fruits and seeds of Abdel Razek hybrid, as well as the total alkaloids, flavonoids and polyphenolics fractions are presented in (Table 4). The leaves, fruits and bark of this species were examined against vitamin C and trolox as standards. The results revealed that both leaves and barks of hybrid Abdel Razek extract induced 16.66 and 13.33, 22.85 and 9.22% of inhibition by using DPPH\(^{\pm}\) and ABTS\(^{+}\) as free radicals scavenging agents, respectively (Table 4).

3.4.2 In vivo protective effect of Annona Abdel Razek

3.4.2.1 Ulcer index

Regarding the pH level in control rats protected with the plant extracts, the results revealed insignificant changes (Table S4 and Fig. 3a). Gastroulcerative rats recorded significant decrease by 40.90% compared with the control group. Gastroulcerative rats protected with the leaves and bark of Annona Abdel Razek, and ranitidine drug showed significant increase in the pH level by 61.53, 61.53, and 72.92%, respectively, compared with the ulcer group. The gastric volume in control rats protected with the plant extracts and ranitidine drug recorded insignificant changes indicating extract safety (Table S4 and Fig. 3a). The ulcerative stomach showed significant increase in its volume content by 2260.08% compared with the control group. Protected rats with leaves and bark of Annona Abdel Razek and ranitidine drug recorded significant decrease in gastric volume by 64.40, 57.40 and 34.30%, respectively in comparison with the ulcer group. Regarding to the gastric total acidity, normal rats protected with the plant extracts showed insignificant changes as compared with the control group (Table S4 and Fig. 3a). The gastric ulcerative rats showed significant decrease in the total acidity by 76.65% versus the control group. Protective rats with leaves and bark of the plant extract and ranitidine drug proved significant increase in the total acidity level by 194.00, 229.00 and 171.64%, respectively as compared with the ulcerative group. By examining the lesions counts in the stomach of ulcerative group, it showed eleven ulcer lesions per stomach (Table S4 and Fig. 3a). In protected rats with leaves and bark of the plant extract and ranitidine drug, the gastric lesions count decreased by 73.33, 84.44 and 70.84%, respectively as compared with the ulcerative group.

3.4.2.2 Oxidative stress

The oxidative stress markers, protective rats with extracts of Abdel Razek and ranitidine drug produced did not significantly alter catalase, NO, SOD, glutathione, malondialdehyde and total protein levels as compared with control group (Table S5 and Fig. 3b). Significant increases in these indices were recorded in gastroulcerative rats amounted to 141.22, 280.00, 64.10 and 55.36%, respectively as compared with control group. Protection of gastro-ulcerative rats with leaves and bark Abdel Razek, and ranitidine drug recorded significant decrease in catalase activity by 50.11, 68.93, and 71.70%, respectively, while, nitric oxide significantly decreased by 56.84, 75.78, and 63.15%, respectively. Similarly, superoxide dismutase significantly decreased by 86.45, 82.06, and 80.72%. In the same manner, glutathione level decreased by 70.63, 70.47, and 71.56%, respectively. Malondialdehyde also decreased by 51.56, 46.87, and 39.84%, while the total protein content decreased by 22.56, 16.99, and 30.71%, respectively (Table S5 and Fig. 3b).
Table 3  Secondary metabolites profiles identified in *Annona* Abdel Razek leaves and bark using complementary systems: HPLC-ESI-MS$^a$ and UPLC-HESI-MS/MS

| No | Rt [Min] | Tentative metabolite identification | Classes             | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | A ppm | Fragmentation in Low Resolution | λ max [nm] | References |
|----|----------|-----------------------------------|---------------------|------------------|---------------------------------------------------------------|-------|---------------------------------|------------|------------|
|    |          |                                    |                     |                  | [M-H]$^-$ Fragmentation ions [M + H]$^+$ Fragmentation ions      |       | Negative ion mode Positive ion mode ESI (−) (+) |            |            |
| 1  | 1.72     | 2,6-dihydroxy-4-Methoxytoluene$^{ab}$ | Organic compound   | C$_8$H$_{10}$O$_3$ | 153.0546, 130.0860, 155.0703, 113.9643, 109.1015              | 0.1376| – – 237, 280, 208, 225         |            |            |
| 2  | 2.25     | N-Fructosyl isoleucine$^a$ | Amino acid         | C$_7$H$_{11}$O$_5$ | 292.1405, 294.2100, 293.1387, 230.1387, 132.1021            | 4.866/5.250| – – 208, 225 |            | XCMS, MS-Dial |            |
| 3  | 2.48     | N-Fructosyl pyroglutamate$^{ab}$ | Amino acid         | C$_{11}$H$_{17}$NO$_8$ | 290.0872, 290.0870, 230.0672, 200.0559, 170.0447, 128.0340 | 0.7132| – – 213, 222, 270      |            |            |
| 5  | 3.29     | Pantothenic acid$^a$ | vitamin            | C$_7$H$_{12}$O$_5$N | 218.1027, 218.1023, 146.0809, 88.0388                  | 1.999 | – – – |            |            |            |
| 10 | 3.88     | Tryptophan$^{ab}$ | Amino Acid         | C$_{11}$H$_{14}$O$_4$N$_2$ | 203.0818, 203.0815, 142.0652, 116.0489, 97.0283  | 1.2432| – – 215, 239, 258 |            |            |            |
| 27 | 5.61     | Acetylleucine$^{ab}$ | Amino Acid         | C$_{11}$H$_{13}$NO$_3$ | 172.0969, 172.0968, 130.0860                   | 0.2497| – – – |            |            |            |
| 35 | 6.31     | AcetylPhenylalanine$^{ab}$ | Amino Acid         | C$_{11}$H$_{13}$NO$_3$ | 206.0218, 206.0812, 164.0706, 147.0439, 91.0538, 72.0076 | 0.7931| – – 237, 280, 208, 225 |            |            |            |

**Amino acids groups and organic acids**

| 1  | 1.72     | 2,6-dihydroxy-4-Methoxytoluene$^{ab}$ | Organic compound   | C$_8$H$_{10}$O$_3$ | 153.0546, 130.0860, 155.0703, 113.9643, 109.1015              | 0.1376| – – 237, 280, 208, 225 |            |            |
| 2  | 2.25     | N-Fructosyl isoleucine$^a$ | Amino acid         | C$_7$H$_{11}$O$_5$ | 292.1405, 294.2100, 293.1387, 230.1387, 132.1021            | 4.866/5.250| – – 208, 225 |            | XCMS, MS-Dial |            |
| 3  | 2.48     | N-Fructosyl pyroglutamate$^{ab}$ | Amino acid         | C$_{11}$H$_{17}$NO$_8$ | 290.0872, 290.0870, 230.0672, 200.0559, 170.0447, 128.0340 | 0.7132| – – 213, 222, 270      |            |            |
| 5  | 3.29     | Pantothenic acid$^a$ | vitamin            | C$_7$H$_{12}$O$_5$N | 218.1027, 218.1023, 146.0809, 88.0388                  | 1.999 | – – – |            |            |            |
| 10 | 3.88     | Tryptophan$^{ab}$ | Amino Acid         | C$_{11}$H$_{14}$O$_4$N$_2$ | 203.0818, 203.0815, 142.0652, 116.0489, 97.0283  | 1.2432| – – 215, 239, 258 |            |            |            |
| 27 | 5.61     | Acetylleucine$^{ab}$ | Amino Acid         | C$_{11}$H$_{13}$NO$_3$ | 172.0969, 172.0968, 130.0860                   | 0.2497| – – – |            |            |            |
| 35 | 6.31     | AcetylPhenylalanine$^{ab}$ | Amino Acid         | C$_{11}$H$_{13}$NO$_3$ | 206.0218, 206.0812, 164.0706, 147.0439, 91.0538, 72.0076 | 0.7931| – – 237, 280, 208, 225 |            |            |            |

**Alkaloids groups**

| 4  | 3.10     | Ipecoside$^{ab}$ | Alkaloid terpene glycosides | C$_3$H$_{35}$O$_{12}$ | 52.0158, 207.1143, 161.0598, 107.0497 | 2.0040/–0.5801 | – – 237, 280, 208, 225 |            | (Wu et al., 1993) |
| 8  | 3.64     | Caranine$^{ab}$ | Alkaloid terpene glycosides | C$_3$H$_{25}$O$_{12}$ | 252.1016, 272.1281, 227.1281, 161.0598, 107.0497 | 0.1384| – – 272, 255, 107, 123 |            | (Harborne, 1999) |

---

(Wu et al., 1993)  
(Harborne, 1999)  
(Wu et al., 1993)  
(Harborne, 1999)
| No | Rt [min] | Tentative metabolite identification | Classes | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | \( \Delta \) ppm | Fragmentation in Low Resolution | \( \lambda_{max} \) [nm] | References |
|----|---------|-----------------------------------|---------|-----------------|------------------------------------------------------------|----------|-------------------------------|-----------------|----------------|
| 12 | 4.20    | Fenfangjine \(^6\)                 | Isoquinolines, Alkaloids | \( \text{C}_{22}\text{H}_{28}\text{NO}_8 \) | 432.1667, 432.1647, 270.1138, 162.0549, 434.1810, 434.1809 | 0.1302  | –                             | 206, 234       | (Ogino et al., 1998) KNAPSAcK |
| 13 | 4.50    | Oxanolobinea,b                      | Oxoaporphine Alkaloids | \( \text{C}_{17}\text{H}_{20}\text{O}_4\text{N} \) | – – 302.1387, 302.1392 | – 1.8151 | –                             | 234, 310        | (Simeon et al., 1989) KNAPSAcK |
| 14 | 4.53    | (-)-Phanosteninea,b                | Aporphine Alkaloid      | \( \text{C}_{19}\text{H}_{20}\text{O}_4\text{N} \) | – – 326.1386, 326.1387 | – 3.9663 | –                             | 203, 277, 300   | (Rábello et al., 2013) KNAPSAcK |
| 16 | 4.82    | Tembetarinea,b                     | Isoquinolines, Alkaloids | \( \text{C}_{19}\text{H}_{20}\text{O}_4\text{N} \) | – – 344.1852, 344.1856 | – 1.1421 | –                             | 192, 237, 177   | (Nishiyama et al., 2004) KNAPSAcK |
| 18 | 5.23    | Corytuberine abc                    | Aporphine Alkaloid      | \( \text{C}_{19}\text{H}_{21}\text{NO}_4 \) | – – 328.1553, 328.1557 | – 1.0290 | –                             | 230, 280        | (Harborne, 1999) KNAPSAcK |
| 19 | 5.28    | Laurifoline ab                      | Aporphine Alkaloid      | \( \text{C}_{19}\text{H}_{22}\text{O}_4\text{N} \) | 340.1558, 340.1557, 325.1324, 310.1091, 179.0340, 135.0441 | -0.7188  | –                             | 270             | (Saxena, 1979) KNAPSAcK |
| 22 | 5.45    | Reticulinea,b                      | Benzylisoquinoline Alkaloids | \( \text{C}_{19}\text{H}_{23}\text{O}_4\text{N} \) | 328.0965, 328.0968 | – 2.0276 | –                             | 280, 320        | (Simeon, Rios, Villar, 1989) KNAPSAcK |
| 29 | 5.80    | Coquarine b                        | Isoquinoline Alkaloids | \( \text{C}_{15}\text{H}_{20}\text{O}_4\text{N} \) | 284.1258, 284.1300, 245.0671, 176.0707, 107.0488 | 1.9256   | –                             | 211, 278        | (Nishiyama et al., 2006) |
| 30 | 5.84    | Anomolineb                         | Isoquinoline Alkaloids | \( \text{C}_{15}\text{H}_{20}\text{O}_5\text{N} \) | 314.1398, 314.1400 | – 3.6460/0.2160 | –                             | 316, 267        | (Harborne, 1999) |
| 33 | 6.15    | Thalifoline b                      | Quinolone Alkaloids     | \( \text{C}_{19}\text{H}_{20}\text{O}_4\text{N} \) | 206.0819, 206.0812 | 208.0970, 208.0968, 190.1308, 151.0758, 104.0471 | 3.6620  | 206, 164, 147                | 211, 278        | (Chen et al., 1999) |
| 39 | 7.18    | Dehydronuciferine                  | Isoquinoline Alkaloids | \( \text{C}_{19}\text{H}_{19}\text{NO}_2 \) | – – 294.1483, 294.1489 | – – – – | –                             | –              | (Li et al., 2014) metlin |
| No | Rt [Min] | Tentative metabolite identification | Classes | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | ∆ ppm | Fragmentation ions | Fragmentation ions | Negative ion mode ESI (−) | Positive ion mode ESI (+) | λ max [nm] | References |
|----|---------|-----------------------------------|---------|------------------|-------------------------------------------------------------|------|-------------------|-------------------|-----------------------|---------------------|------------|------------|
| 52 | 9.80    | Liriodenine<sup>b</sup>          | Aporphine Alkaloids | C<sub>17</sub>H<sub>9</sub>O<sub>3</sub>N | [M–H]<sup>−</sup> 276.0656, 276.0655 188.0970 0.0668 | –    | 276, 188, 117, 75 | 247, 269, 302 | (Chen & Wu, 2001) |
| 53 | 9.90    | Oxostephanosine<sup>b</sup>      | Aporphine Alkaloids | C<sub>17</sub>H<sub>9</sub>O<sub>4</sub>N | [M–H]<sup>−</sup> 292.0604, 292.0604 237.0477, 177.0917 – 0.1370 | –    | 292, 263, 234, 205, 177, 150 | 215, 245, 275, 320, 364,448 | (Pharadai et al., 1985) |
| 54 | 10.30   | Lanuginosinea,b                   | Aporphine Alkaloids | C<sub>18</sub>H<sub>11</sub>O<sub>4</sub>N | [M–H]<sup>−</sup> 306.0761, 306.0761 291.0513, 263.0513, 222.0036, 179.0766 0.0865 | –    | 306, 275, 263, 221, 205 | 246, 271, 315 | (Chen et al., 1998) |
| 60 | 12.47   | (+)-Stepharine<sup>b</sup>       | Proaporphine Alkaloids | C<sub>18</sub>H<sub>19</sub>O<sub>3</sub>N | [M+ H]<sup>+</sup> 298.1436, 298.1438 177.0547, 145.0284 – 1.8519/0.6085 | –    | 296, 251, 183 | 298, 177, 145, 117 | (Chen et al., 1997) |
| 61 | 12.58   | N-Methylcrotsparine<sup>b</sup>  | Proaporphine Alkaloids | C<sub>18</sub>H<sub>20</sub>O<sub>3</sub>N | [M+ H]<sup>+</sup> 280.2633, 250.2538, 177.0546, 163.0390, 105.0705 | –    | 280, 107 | 290, 350 | (Simeon et al., 1989) KNApSAcK |
| 62 | 12.70   | Crabbine<sup>b</sup>             | Aporphine Alkaloids | C<sub>20</sub>H<sub>19</sub>O<sub>3</sub>N | [M+ H]<sup>+</sup> 313.1433, 281.1169, 135.0807 | 3.6119 | – | 358, 313, 281, 190, 135 | 212, 280 | (Yang et al., 1993) |
| 63 | 13.07   |                      |                  |                  |                                              |      |                   |                  |                      |                     |            |
| 66 | 13.87   |                      |                  |                  |                                              |      |                   |                  |                      |                     |            |
| 67 | 14.01   |                      |                  |                  |                                              |      |                   |                  |                      |                     |            |

**Polyphenol and Flavonoid Groups**

| No | Rt [Min] | Tentative metabolite identification | Classes | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | ∆ ppm | Fragmentation ions | Fragmentation ions | Negative ion mode ESI (−) | Positive ion mode ESI (+) | λ max [nm] | References |
|----|---------|-----------------------------------|---------|------------------|-------------------------------------------------------------|------|-------------------|-------------------|-----------------------|---------------------|------------|------------|
| 6  | 3.38    | Catechola,b                       | Organic compound | C<sub>6</sub>H<sub>6</sub>O<sub>2</sub> | [M–H]<sup>−</sup> 109.0280, 109.0284 81.0331, 67.0173 | –    | – | – | – | MS-Dial |
| 7  | 3.58    | N-cis-caffeyltyramine<sup>b</sup> | Phenolic acid | C<sub>27</sub>H<sub>35</sub>O<sub>12</sub> | [M–H]<sup>−</sup> 548.1784, 548.1790 254.0822 | – | – | – | 548, 254, 238 | 540, 256, 184 | 280, 330 | (Martins & Nunez, 2015) |
| 11 | 4.17    |                      | Lignan Glycosides | C<sub>27</sub>H<sub>35</sub>O<sub>12</sub> | [M–H]<sup>−</sup> 548.1784, 548.1790 254.0822 | 548.1784, 548.1790 254.0822 | 550.1905, 550.1898 | 256.0925 | 1.3099 | 548, 254, 238 | 540, 256, 184 | 280, 330 | (Martins & Nunez, 2015) |
| 15 | 4.60    | Benzoic acid+ IO, 2MeO, O-Hex<sup>b</sup> | Hydrolyzable tannins | C<sub>17</sub>H<sub>19</sub>O<sub>10</sub> | [M–H]<sup>−</sup> 359.0964, 359.0973 191.0555, 145.0284 | – | – | – | 2.4176 | – | – | 201, 222, 270 | MS-Dial |
| 17 | 5.20    | Coumaroyl quinic acid             | Phenolic acid | C<sub>18</sub>H<sub>18</sub>O<sub>8</sub> | [M–H]<sup>−</sup> 337.0782, 337.0765 191.0555, 145.0284 | – | – | – | 5.0711 | – | – | 234, 275 | MS-Dial |
| 20 | 5.36    | (Apfelin) Kaempferol 3-O-alpha-rhamnoside<sup>a</sup> | Flavonoid | C<sub>21</sub>H<sub>20</sub>O<sub>10</sub> | [M–H]<sup>−</sup> 431.0973, 431.0978 282.0511, 89.0226 | – | – | – | 1.2721 | 431, 281, 235, 178, 131, 89 | 443, 476, 415, 361, 272, 361, 272, 184, 123, 363, 294, 251, 174, 209, 110 | 270 | (Chang et al., 1998a) KNApSAcK |
| No | Ret [Min] | Tentative metabolite identification | Classes | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | ∆ ppm | Fragmentation in Low Resolution | λ max [nm] | References |
|----|---------|------------------------------------|--------|-----------------|------------------------------------------------|--------|-----------------------------|----------|-----------|
|    |         |                                    |        |                 | [M–H]− Fragmentation ions | [M + H]⁺ Fragmentation ions |           | Negative ion mode ESI (−) | Positive ion mode ESI (+) |          |
| 21 | 5.42    | 6,7-Dihydroxycoumarina,b           | Coumarins | C₇H₆O₄   | 177.0184, 177.0182, 133.0282, 105.0328, 179.0349, 179.0339, 151.0388, 123.0444, 109.0652 | 0.8569 0.7925 | -                           | -        | 206, 237, 280 MS-Dial      |
| 23 | 5.52    | Feruloyl Hexosida,b                | Phenolic acid | C₁₆H₂₀O₉ | 355.1042, 355.1024, 193.0499, 149.0595, 103.0022, 85.0279 | -               | 5.2350 | 355, 191, 129, 85          | 210, 239 MS-Dial |
| 24 | 5.55    | Caffeoylquinic acid,a,b             | Phenolic acid | C₁₆H₁₈O₉ | 353.0883, 353.0881, 191.0554, 179.0340, 161.0256, 135.0437, 85.0281 | 0.1650 | 355, 323, 191, 135         | 213, 252, 280 (Simeon et al., 1989) |
| 25 | 5.57    | Caffeic acid hexoside,a             | Phenolic acid | C₁₇H₂₀O₉ | 341.0793, 191.0552, 179.0341, 135.0439 | 343.0818, 343.0812 | 191.0338, 191.0441 | - | - | 213, 234, 277 MS-Dial |
| 26 | 5.68    | Coumaric acid                      | Phenolic acid | C₁₅H₁₈O₉ | 163.0390, 163.0390, 119.0489 | 165.0547, 165.0546 | 147.0442, 119.0493 | 0.0957 | 239, 277 | - | MS-Dial |
| 31 | 5.86    | Feruloyl quinic acid,a,b           | Phenolic acid | C₁₆H₂₀O₉ | 367.1038, 367.1024, 193.0499, 173.0450, 149.0233, 134.0360 | - | - | 3.9892 | - | 201, 234, 277 MS-Dial |
| 32 | 5.88    | Caffeic acid,a,b                   | Phenolic acid | C₁₅H₁₈O₉ | 341.0793, 179.0341, 135.0438 | 181.0493, 181.0495 | 171.0653, 163.0390, 145.0283, 121.0652, 107.0860 | 0.9630/−1.4617 | - | - | 208, 237, 277 MS-Dial |
| 34 | 6.16    | Catechin,a                         | Flavanols | C₁₅H₁₀O₅ | 289.0717, 289.0707, 245.0814, 205.0708, 151.0389, 125.0230 | 291.0889, 291.0863 | 207.0562, 147.0440, 139.0392, 123.0444 | 3.5327 | - | - | 237, 289 MS-Dial |
| 36 | 6.34    | (−)-Epicatechin,a                  | Flavanols | C₁₅H₁₀O₅ | 289.0717, 289.0707, 245.0816, 205.0900, 179.0340, 151.0390, 125.0229 | - | - | 3.9550 | - | 237, 289 MS-Dial |
| 37 | 7.00    | Kaempferol 3-rutinoside-7-glucoside,a,b | Flavonoid | C₁₃H₁₉O₉ | 755.2029, 755.2035, 285.0403 | - | - | 0.7262 | 755, 593, 285, 230, 211 | 218, 282, 321 (Beckmann & Geiger, 1963) KNApSAcK |
| 38 | 7.10    | Isohamnetin 3-glucoside,a,b        | Flavonoid | C₁₃H₁₉O₁₂ | 477.1028, 477.1033, 314.0437, 271.0280 | - | - | 1.1494 | 477, 334, 135, 479, 460, 306 | 212, 321 (Santos & Salatino, 2000) |
| No | Rt [Min] | Tentative metabolite identification                          | Classes   | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | Δ ppm | Fragmentation in Low Resolution | λ max [nm] | References                                      |
|----|---------|--------------------------------------------------------------|-----------|------------------|--------------------------------------------------------------|-------|-------------------------------|------------|-----------------------------------|
| 40 | 7.69    | Quercetin 3-rutinoside-7-glucoside ab                        | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 771.1998, 771.1994 | 609.1608, 300.0278, 271.0238, 178.9975 | 1.8754 | 771, 609, 300, 271, 179       | –          | (Beckmann & Geiger, 1983)          |
| 41 | 7.76    | Quercetin 3,7-O-beta-diglucopyranosideab                    | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 625.1399, 625.1405 | 301.0358, 627.1555, 627.1563, 303.0500, 314.1380, 177.0548 | –0.8772/1.1548 | 625, 579, 372, 301, 627, 314, 177 | 222, 331   | (Santos & Salatino, 2000)         |
| 42 | 8.09    | Kaempferol 3-rhamnosyl-(1->2)-galactoside ab                 | Flavonoid | C$_{27}$H$_{30}$O$_{15}$  | 593.1523, 593.1501 | 285.0403, 595.1642, 595.1663, 475.4135, 287.0548 | 3.7887/–3.4433 | 593, 285, 255, 595, 558, 474, 335, 287, 236 | 226, 278   | (Yasukawa & Takido, 1987)         |
| 43 | 8.20    | Kaempferol 3-rhamnosyl-(1->2)-galactoside-7-glucoside ab    | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 755.2029, 755.2091 | 285.0403, 757.2211, 757.2219, 527.0624, 353.0652, 287.0549 | 1.0564 | 755, 594, 498, 425, 359, 299, 285 | –          | (Harborne & Baxter, 1999)         |
| 44 | 8.49    | Rutin (Quercetin 3-O-rutinoside) a                           | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 609.1584, 609.1814 | 300.0276, 611.1592, 611.1607, 303.0500 | −2.3241 | 609, 301, 178, 254, 611, 465, 367, 303, 249, 272, 202, 153, 110 | 256, 352   | (Mohammed, Hamed et al., 2021)    |
| 45 | 8.50    | Hirsutin (Quercetin 3-O-beta-n-glucopyranoside)             | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 463.0898, 463.0871 | 300.0277, 465.1022, 465.1028 | 303.0497, 5.721/–1.2461 | 463, 301, 255, 110 | 465, 303, 165, 229 | 223, 278   | (Mohammed, Hamed et al., 2021)    |
| 46 | 9.06    | Wogonin a Methoxyflavone                                     | Methoxyflavone | C$_{17}$H$_{15}$O$_{5}$ | 283.0632, 283.0596 | 239.0709, 259.0709, 245.0281, 117.0330, 93.0329, 65.0233 | –       | –                               | –          | (Santos & Salatino, 2000)         |
| 47 | 9.30    | Trifolin (Kaempferol 3-O-beta-D-galactopyranoside) a        | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | –                     | –                     | 449.1078, 449.1084 | 287.0551, 127.0394 | 1.2211   | 449, 287, 172, 280               | (Santos & Salatino, 2000)         |
| 48 | 9.50    | Plantaginin b Glycosoxyflavone                               | Glycosoxyflavone | C$_{26}$H$_{26}$O$_{21}$ | 447.0942, 447.0922 | 284.0329, 255.0297, 161.0701 | 449.1081, 449.1090 | 303.0500, 287.0553, 3.16.1577 | 4.4498/0.840 | 447, 284, 383, 297, 221, 163, 123 | 241, 277   | (Santos & Salatino, 2000)         |
| 49 | 9.52    | Isonhamnetin 3-O-galactoside a                               | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 477.1028, 477.1028 | 314.0438, 269.1769, 163.0378 | 479.1184, 479.1199 | 317.0656, 293.0294 | 0.0645/-1.1446 | –          | 479, 295, 241, 166, 259, 163, 115, 97 | (Santos & Salatino, 2000)         |
| 50 | 9.67    | Quercetin 3-O-vicianoside                                    | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 595.1369, 595.1372 | 300.0276, 597.1461, 597.1460, 303.0500, 97.0921 | 0.5040 | 595, 300, 135, 177 | 239, 270, 308 | (Santos & Salatino, 2000)         |
| 51 | 9.79    | Quercetin 3-sophoroside                                      | Flavonoid | C$_{26}$H$_{26}$O$_{21}$ | 787.1927, 787.1927 | 478.0904, 385.0577, 352.0215 | –       | –                               | –          | 789, 481, 303, 165, 287, 280     | (Harborne, 1999)                   |
| No | Rt {[min]} | Tentative metabolite identification | Classes | Chemical formula | HRMS of exact mass measured, calculated and fragmentation ions | Δ ppm | Fragmentation in Low Resolution | λ max [nm] | References |
|----|----------|-----------------------------------|--------|-----------------|---------------------------------------------------------------|-------|-------------------------------|------------|-----------|
|    |          |                                   |        |                 | [M-H]^- Fragmentation ions [M + H]^+ Fragmentation ions        |       | Negative ion mode ESI (-)     | Positive ion mode ESI (+) |           |
| 55 | 10.42    | Cis N-Feruloyltyramine<sup>ab</sup> | Phenolic Acid | C<sub>18</sub>H<sub>19</sub>NO<sub>4</sub> | 312.12415, 312.1225, 190.0501, 178.0500, 148.0517, 135.0441 | 314.1385, 314.1387 | 206.0819, 177.0546, 145.0284, 121.0652 | -0.6234/3.3380 | 312, 177, 135 | 314, 206, 177, 255 | 280, 360 | (Chang et al., 1998b) |
| 56 | 11.65    | Quercetin<sup>ab</sup>            | Flavonoid | C<sub>15</sub>H<sub>9</sub>O<sub>7</sub> | 301.0348, 301.0354, 178.9983, 151.0026, 121.0281 | 303.2312, 303.2319 | 257.2276 | 1.8144/-2.1619 | 301, 153, 149, 165, 137 | 303, 179, 121, 151, 273, 257, 229 | 215, 278, 241, 280 | (Mohammed et al., 2020) |
| 57 | 11.73    | Kaempferol<sup>ab</sup>           | Flavonoid | C<sub>15</sub>H<sub>10</sub>O<sub>6</sub> | 285.0399, 285.0405, 151.0033, 133.0291 | - | - | -1.9120 | 287, 153, 133, 165, 121 | (Mohammed et al., 2020) |
| 58 | 12.03    | 2'-Hydroxyflavanone<sup>ab</sup>  | Flavanone | C<sub>15</sub>H<sub>12</sub>O<sub>3</sub> | 239.0713, 239.0703, 145.0283, 119.0489, 93.0328 | - | - | 4.3872 | 239, 145, 119 | 241, 223, 129 | 241, 270 | Ms-dial |
| 59 | 12.15    | Patrinoside<sup>b</sup>           | Iridoid Glucosides | C<sub>21</sub>H<sub>34</sub>O<sub>11</sub> | 461.2014, 461.2017, 321.2769, 210.0682 | - | - | 3.2736 | 461, 323, 143 | 212, 306 | (Demirezer et al., 1999) |
| 63 | 15.10    | Apigenin<sup>a</sup>              | Flavonoid | C<sub>15</sub>H<sub>10</sub>O<sub>5</sub> | 269.0458, 269.0444 | - | - | 5.0438 | 269, 162 | - | - | Ms-dial |

Based on the basis of exact masses recorded in HESI-MS/MS, chemical formulae were estimated, and fragmentation paths were detailed using ESI-MS<sup>a</sup>. Superscript Letters represent tentative identification from total alcohol extract of Abdel Razek (a), leaves fraction (b), bark fraction.
3.4.2.3 Cell organelles marker enzymes The present study revealed insignificant changes in SDH, LDH, G-6-Pase, AP and 5′-Nu in normal rats protected with the plant extracts and ranitidine drug as compared with the control group (Table S6 and Fig. 3c) in concerning cell organelles marker enzymes. Gastroulcerative rats showed significant increase in SDH, LDH, G-6-Pase, AP and 5′-Nu activities by 209.27, 390.29, 102.03, 172.04 and 116.56%, respectively as compared with the control group. Ulcerative rats protected with plant extracts and ranitidine drug recorded significant decrease in the selected enzyme markers with variable degrees as compared with the ulcerative group. SDH showed significant decrease by 78.86, 71.87 and 71.60% after protection with leaves and bark of hybrid Abdel Razek, and ranitidine drug, respectively. LDH recorded inhibition activity by 76.64, 74.53, and 79.23%, while G-6-Pase showed inhibition by 40.50, 35.13, 37.56, 32.84 and 37.16%, respectively. In addition, AP enzyme decreased by 51.56, 59.22,

**Table 4** In vitro antioxidant effect of *Annona Abdel Razek* different plant parts

| Sample                    | ABTS (%) | DPPH (%) |
|---------------------------|----------|----------|
| Vit. C                    | 46.88 ± 0.15 | 52.67 ± 0.32 |
| Trolox                    | 31.72 ± 0.05 | 33.34 ± 0.06 |
| Leaves extract            | 22.85 ± 0.10 | 16.66 ± 0.19 |
| Barks extract             | 9.22 ± 0.25 | 13.33 ± 0.37 |
| Fruits extract            | 117.50 ± 0.86 | 76.65 ± 0.48 |
| Seeds extract             | 151.80 ± 0.85 | 101.4 ± 0.14 |
| Total alkaloids extract   | 227.90 ± 0.45 | 94.11 ± 0.16 |
| BuOH extract (flavonoids) | 101.30 ± 0.1 | 47.5 ± 0.58 |
| EtOAc extract (polyphenolics) | 49.44 ± 0.07 | 50.82 ± 0.04 |

Data represented as % of inhibition of triplicate readings

**Fig. 1** Structure of compounds A Lanuginosine, B Liriodenine, C Stepharine, D Cochlaurine, E Oxostephanosine, F Ipecoside, G (−)-Pphanoste-nine, H Kaempferol-3-α-rhamnopyranoside, I N-cis-cafeoyltyramine, J Caffeic acid hexoside and K Rutin
and 52.85%, while 5′-Nu decreased by 47.12, 44.68, and 50.27%, respectively.

3.4.3 In vivo therapeutic effect of *Annona* Abdel Razek

3.4.3.1 Ulcer markers In the therapeutic effect of the plant extract under investigation, Stomach pH in control rats treated with plant extracts did not change significantly, suggesting extract safety. Gastro-ulcerative rats showed significant decrease by 38.46% as compared with the control group. After treated with leaves and barks Abel Razek extracts as well as ranitidine drug, it showed significant increase in the pH level by 53.50, 57.50, and 55.00%, respectively when compared with the ulcer group (Table S7 and Fig. 4a). Gastric volume in control rats treated with Abdel Razek extracts and the selected drug, recorded insignificant changes. Ulcerative stomach showed significant increase in its gastric volume content by 185.18% when compared with the control group. Treated rats with leaves and bark of hybrid Abdel Razek, and ranitidine drug recorded significant decrease in gastric volume by 64.90, 60.92, and 53.31%, respectively when compared with the ulcer group (Table S7 and Fig. 4a). Normal rats treated with plant extracts recorded insignificant changes in gastric total acidity when compared with the control group (Table S7). The gastric ulcerative rats showed significant decrease in the total acidity values by 43.90% when compared with the control group. Treated rats with leaves and barks of Abdel Razek, and ranitidine...
drug recorded significant increase in the total acidity level by 71.42, 74.69, and 28.57%, respectively comparing these values with those of the ulcer group (Table S7 and Fig. 4a).

The stomach of ulcerative group showed nearly twenty one ulcer lesions per stomach. Combined treatment with ethanol and two extracts or ranitidine reduced the number of lesions/organ by 71.92%, 58.55%, and 68.41%, respectively compared with the ulcerative group. (Table S7 and Fig. 4a).

### 3.4.3.2 Antioxidant and total protein levels

Rats treated with Abdel Razek extracts or ranitidine showed not significant changes in catalase, NO, SOD, glutathione, malondialdehyde and total protein levels comparison with the control group. Significant increase in catalase, NO, SOD, glutathione, malondialdehyde and total protein levels in gastro-ulcerative rats by 130.23, 732.00, and 558.97 and 61.41%, were observed as compared with the control group, respectively. Similarly, decreased impacts of gastro-ulcerative rats with leaves and barks Abdel Razek and ranitidine drug were observed for nitric oxide 84.80%, 83.65%, and 82.21%; superoxide dismutase, 88.16%, 88.77%, and 86.75%; glutathione level, 73.36%, 75.81%, and 71.76%; malondialdehyde, 77.82, 79.18, and 79.37%, respectively. In contrast, total protein content significantly increased −105.26%, 160.52%, and 251.26%, respectively (Table S8 and Fig. 4a).

### 3.4.3.3 Stomach marker enzymes

Insignificant changes were observed in SDH, LDH, G-6-Pase, AP and 5′-Nu enzymes in normal rats treated with leaves and barks of the plant extract under investigation as well as the reference drug in comparison with the control group. Gastro-ulcerative rats showed significant increase in SDH, LDH, G-6-Pase, AP and 5′-Nu activities by 287.16, 199.50, and 183.55%, respectively versus to the control group. Ulcerative rats treated with Abdel Razek leaves and barks extracts and ranitidine recorded significant decrease in the selected enzymes by variable degrees as compared with the ulcer group. SDH showed significant decrease by 75.61, 75.90, and 81.20%, respectively. Similarly, LDH, G-6-Pase, and AP enzymes decreased by 62.98%, 58.92, and 60.71%; 50.90%, 52.79%, and 44.27%; and 68.81%, 70.37%, and 74.49%, respectively.
Fig. 5 Photograph of rat stomach mucosal layers. A Normal rat stomach showing no damage to the mucosa and normal mucosal and submucosal layers (H&E stain 100). B & C Normal rats treated with Abdel Razek’s leaves and barks, respectively, showing minimal damage of the surface epithelium and no leucocyte infiltration of the submucosal layer (H&E stain 10 ×). D Stomach mucosa after one hour of ethanol ulceration, demonstrating erosion of the surface epithelium (black arrow), moderate edema (red arrow), and moderate leucocyte infiltration of the submucosal layer (yellow arrow) (H&E stain 10 ×). E Stomach mucosa after one hour of ethanol ulceration, revealing erosion of the surface epithelium (black arrow), mild edema (red arrow), mild leucocyte infiltration of the submucosal layer (yellow arrow), and hemorrhage (green arrow) (H&E stain 20 ×). F Ulcerative gastric mucosa treated with Abdel Razek leaves demonstrating minimal rupture of the surface epithelium (healed), considerable edema (black arrow), and minor leucocyte infiltration of the submucosal layer (red arrow) (H&E stain 10 ×). G Ulcerative stomach mucosa treated with Abdel Razek’s barks, demonstrating no damage of the surface epithelium (healed), considerable edema (black arrow), and minor leucocyte infiltration of the submucosal layer (red arrow) (H&E stain 10 ×). H Ulcerative gastric mucosa treated with ranitidine, revealing no disruption of the surface epithelium (healed) and modest leucocyte infiltration of the submucosal layer (H&E stain 10 ×).
while 5′-Nu decreased by 47.12, 61.80, and 62.63%, respectively (Tables S9 and Fig. 4c).

### 3.5 Stomach histopathological features

#### 3.5.1 Protective effect of *Annona* Abdel Razek

No lesions were seen in gastric mucosa, including in normal mucosal and submucosal layers in control rats. Treatment with leaves and bark extracts in normal rats produced no damage to surface epithelia and did not induce leukocyte infiltration into submucosal layers (Fig. 5A, B and C). Surface epithelium was eroded with moderate edema and moderate leucocyte infiltration of the submucosal layer with bleeding in a section of stomach mucosa exposed to ethanol (Fig. 5D). Gastric mucosa was protected by administration of extracts where no disruption of the surface epithelium (healed) with significant edema and minor leucocyte infiltration of the submucosal layer was observed on histological examination (Fig. 5E, F and G).

#### 3.5.2 Therapeutic effect of *Annona* Abdel Razek

A histological section of stomach mucosa one week after ethanol administration (H&E stain 10x) shows a deep ulcer with surface epithelium (black arrow), considerable edema (red arrow), and leucocyte infiltration into the submucosal layer (yellow arrow) (Fig. 6A). Surface epithelium was eroded with mild to moderate edema and minor leucocyte infiltration into the submucosal layer in ulcerative gastric mucosa treated with Abdel Razek leaves (Fig. 6B). After administration of bark extract, surface epithelium of ulcerative gastric mucosa was intact with slight edema and minor leucocyte infiltration of the submucosal layer (Fig. 6C). The ulcerative stomach mucosa treated with ranitidine appeared normal on histological examination (Fig. 6D).

![Photograph of rat stomach mucosal layers.](image-url)

**Fig. 6** Photograph of rat stomach mucosal layers. A Gastric mucosa of ethanol induced ulcer for one week showing deep ulcer with surface epithelium (black arrow) with moderate edema (red arrow) and leucocytes infiltration of the submucosal layer (yellow arrow) (H&E stain 10×). B Ulcerative gastric epithelium pretreated with Abdel Razek leaves revealing surface epithelial degradation (black arrow), mild-moderate edema (red arrow), and minor leucocyte infiltration of the submucosal layer (yellow arrow) (H&E stain 10×). C Ulcerative gastric mucosa treated with Abdel Razek barks shows intact (healed) surface epithelium (black arrow), modest edema (red arrow), and mild leucocyte infiltration of the submucosal layer (yellow arrow) (H&E stain 10×). D Ulcerative gastric mucosa treated with ranitidine, revealing no rupture of the surface epithelium (healed), no edema, and no leucocyte infiltration of the submucosal layer (H&E stain 10×).
4 Discussion

A combination of RAPD and ISSR data indicates 100% similarity between A. cherimola and Annona Abdel Razek and 80% between A. squamosa and Annona Abdel Razek. Sixty-three secondary metabolites were detected in leaves and bark of the new cultivar, Annona Abdel Razek, using UPLC high-resolution MS for simultaneous chromatographic separation and mass spectrometric detection. Phytochemical studies revealed the presence of alkaloids identified as lirdigenine, lanuginosine, oxostephanosine, stephanine, coclaurine, corytuberine, fenfangjine G, o xoanolobine and phanostene. These compounds are belonging to the oxoporphine, aporphine, isoquinolines, and benzylisoquinoline groups. Alkaloids include a basic nitrogen atom and exhibit antiulcer properties. The antiulcer activity of 2-phenylquinoline is demonstrated in several pharmacological investigations that used EtOH to induce (Leite et al., 2020). Malonyl-CoA and p-coumaroyl-CoA are two fundamental metabolites that give flavonoids their fifteen-carbon skeletons (C6–C3–C6). The condensation of three molecules of malonyl-CoA with one molecule of p-coumaroyl-CoA produce a chalcone intermediate, which is key to the biosynthetic process. Chalcones are the building blocks for the wide variety of flavonoid derivatives found in plants (de Lira Mota et al., 2009). Several flavonol glycosides, including kaempferol, quercetin, and isorhamnetin, were found in the leaves and bark of Annona Abdel Razek. Phenolic acids (p-coumaric, ferulic, and caffeic) and their quinic acid derivatives were also identified as chemicals with antioxidant properties.

Ethanol destabilizes the mucus-bicarbonate-phospholipid layer, resulting in retro-diffusion of H+ ions and damage to epithelial cells. This damage leads to altered levels of mucosal enzymes, such as SDH, LDH, G-6-Pase, AP and 5′-Nu. Mast cell activation causes the release of inflammatory mediators that encourage neutrophils to migrate to injured areas. Subsequently, generation of ROS increases cellular damage and causes tissue necrosis (Fahmi et al., 2019). Stomach ulcers are also affected by stomach acidity, and controlling acidity is a substantial challenge (Aboul Naser et al., 2020). Antiacids, H2 receptor blockers, such as ranitidine and its analogues, anticholinergics (pirenzepine), and proton pump blockers, such as omeprazole, were all employed (Wallace & Sharkey, 2011). However, most currently available medications have limited efficacy and cause adverse side effects, making stomach ulcer therapy a major concern.

Natural products have a significant role in controlling gastric ulcer disease (Newman & Cragg, 2020), reflecting their notable structural diversity and selective biological activity (Cragg & Newman, 2013). Flavonoids play an essential role in preventing gastric lesions caused by various ulcerogenic agents. They also aid in healing such ulcers and may be novel agents for suppressing peptic ulcers (de Lira Mota et al., 2009). Several reports on Annona species (Ma & Liu, 2014) support our current results that indicate that extracts of Annona Abdel Razek leaves and bark may protect gastromucosal integrity via synergistic actions of flavonoids, condensed tannins, and saponins, in addition to alkaloids. Further, isocorydine, liriodenine, lanuginosine, oxostephanosine, stephanine, and coclaurine have all been identified as aporphine benzylisoquinolinic alkaloids. These alkaloids have been isolated from a variety of plant parts and species, including Annona squamosa twigs (Yadav et al., 2011), Isopyrum thalictroides (Ranunculaceae) roots and rhizomes (Istatkova & Philipov, 2004), and Dactylicapnos scandens (Papaveraceae) roots (Wang et al., 2018).

Qualitative and quantitative differences in phenolic, flavonoid and alkaloid constituents exist between A. cherimolia and A. squamosa and constituents identified in the present work. Current results are most similar to data reported by Yadav et al., 2011, who indicated that antisecretory mechanisms of isolated aporphine alkaloids from twigs A. squamosa such as N-methylcorydaldine, lanuginosine, ( +)-anomuricine, and N-methyl-6,7-dimethoxyisoquinolone, involve inhibition of gastric H+/K+-ATPase activity.

Gastro-duodenal ulcers are associated with marked alterations in multiple biochemical parameters (Esmailnejad et al., 2012). A substantial increase in MDA, SOD, CAT, NO, and GSH was observed in the current study. Gastric mucosal MDA levels in patients with peptic ulcer and gastritis are likely to indicate free radical-mediated gastric mucosal damage (Ren et al., 2021). Hydroxyl radicals oxidize essential cellular structural and functional proteins, as well as membrane lipids. The loss of membrane fluidity, ion transport, integrity, and loss of various cellular functions, are all caused by lipid peroxidation (Aboul Naser et al., 2020). Glutathione levels are dependent on the activity of several enzymes (Rahman et al., 2020). For example, an increase in GSH concentration can be caused by the upregulation of γ -glutamyl-cysteine synthetase, an enzyme involved in GSH synthesis. Increased activity of GSH peroxidase and GSH transferase, however, reduces GSH concentration. Thus, a decrease in glutathione peroxidase and glutathione transferase is reported in indomethacin-induced stomach ulcers (Koc et al., 2008), ethanol-induced mucosal injury (Dejban et al., 2020), and stress ulcers (Liu et al., 2011).

The efficacy of antisecretory and antiulcerogenic actions of selected extracts is supported by an observed decrease in gastric volume, lesion count, and pH (Mohammed et al., 2020). Also, total protein levels can be used as an indicator of the severity of cellular dysfunction in a variety of diseases. Protein synthesis stimulation has been identified as a contributory self-healing mechanism that encourages regeneration (Bryndin & Bryndina, 2020).
The histological sections showed altered gastric mucosa after ethanol ulceration, with deep ulcers reaching the base-ment membrane of the *lamina propria*. Some polymorphous lymphocyte fibrin was found at the swollen ulcer base (Okabe & Pfeiffer, 1972). The ulcer is bordered by hyperplastic gastric glands. Few lymphocytes and polymorphonuclear leucocytes with a high degree of fibrosis are found in the *lamina propria*. Our histological observations of the ulcerative mucosa are consistent with these findings. We also noticed a well-developed epithelium at the ulcer margin in rats protected or treated with plant extracts. Interestingly, ulcer healing occurs either by a slow process involving cell migration to the luminal surface and deposition on the area stripped by an ulcerogenic agent or through a rapid process involving cell migration to the mucosal surface and deposition on areas reduced by the ulcerogenic agent (Joshi et al., 2011).

## 5 Conclusion

The metabolomics profile of crude extracts of *Annona* Abdel Razek contains 63 compounds, including flavonoids, phe-nolic compounds, amino acids, and alkaloids. *Annona* Abdel Razek leaves and bark extracts exhibit anti-ulcerogenic properties. The bark extract shows better protective and healing activity for gastric ulcers than leaves extract. Further, the bark extract is more efficacious for therapy rather than prophylaxis.

**Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1007/s11306-022-01911-w.

**Acknowledgements** The authors express their gratitude and appreciation to the metabolomics team with Prof. Piotr Kachlicki for providing facilities and software.

**Author contributions** MAM, SEG, EMH, PK: Designed the plant experiment, conducted the identification tests, and analyzed the data of this section. MAH, MAM, AMAE: Participated in biological tests and analysis of data of this part. MAH: Analyzed histopathological images and revised the final form of the paper. All authors reviewed the final form of the paper and agreed on submittal for publication.

**Funding** Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). National Research Centre-STF-STDF program No. 24259.

**Data availability** Data availability statements provide a statement about where data supporting the results reported in a published article can be found, including datasets analyzed or generated during the study.

**Declarations**

**Conflict of interest** The authors have no conflicts of interest to declare.

**Ethical approval** Experiments on animals were conducted after the approval of the Institutional Ethical Committee, no. (12/106).

**Consent to participate** Not applicable.

**Consent for publication** Not applicable.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

**References**

Aboul Naser, A., Younis, E., El-Feky, A., Elbatanony, M., & Hamed, M. (2020). Management of *Citrus sinensis* peels for protection and treatment against gastric ulcer induced by ethanol in rats. *Biomarkers*, 25, 349–359.

Ammar, N. M., Hassan, H. A., Mohammed, M. A., Serag, A., Abd El-Alim, S. H., Elmotasem, H., El Raey, M., El Gendy, A. N., Sobeh, M., & Abdel-Hamid, A. H. (2021). Metabolomic profiling to reveal the therapeutic potency of *Posidonia oceanica* nanoparticles in diabetic rats. *RSC Advances*, 11, 8398–8410.

Bancroft, N. H. (1996). Implementing SAP R/3 How to introduce a large system into a large organization. Prentice-Hall Inc.

Beckmann, S., & Geiger, H. (1963). Über zwei kämpferolglykoside des sumpfschachtelhalmes (*Equisetum palustre*). *Phytochemistry*, 2, 281–287.

Bhardwaj, A., Verma, A., Majumdar, S., & Khanduja, K. (2000). Status of vitamin E and reduced glutathione in semen of oligozoospermic and azoospermic patients. *Asian Journal of Andrology*, 2, 225–228.

Bodansky, O., & Schwartz, M. K. (1963). Comparative effects of L-histidine on the activities of 5’-nucleotidase and alkaline phosphatase. *Journal of Biological Chemistry*, 238, 3420–3427.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72, 248–254.

Bryndin, E., & Bryndina, I. (2020). Self healing of healthy condition at cellular level. *Medical Case Reports and Reviews*, 3, 1–4.

Buege, J. A., & Aust, S. D. (1978). *Microsomal lipid peroxidation Methods in enzymology* (Vol. 52, pp. 302–310). Elsevier.

Chang, F.-R., Chen, J.-I., Chiu, H.-F., Wu, M.-J., & Wu, Y.-C. (1998a). Acetogenins from seeds of *Annona reticulata*. *Phytochemistry*, 47, 1057–1061.

Chang, F.-R., Wei, J.-L., Teng, C.-M., & Wu, Y.-C. (1998b). Antiplatelet aggregation constituents from *Annona purpurea*. *Journal of Natural Products*, 61, 1457–1461.

Chen, C.-Y., Chang, F.-R., Chiu, H.-F., Wu, M.-J., & Wu, Y.-C. (1999). Aromin-A, an *Annonaceous acetogenin* from *Annona cherimola*. *Phytochemistry*, 51, 429–433.

Chen, C. Y., Chang, F. R., & Wu, Y. C. (1997). The constituents from the stems of *Annona cherimola*. *Journal of the Chinese Chemical Society*, 44, 313–319.
Chen, C.-Y., Chang, F.-R., Yen, H.-F., & Wu, Y.-C. (1998). Amides from stems of Annona cherimola. Phytochemistry, 49, 1443–1447.
Chen, C. Y., & Wu, Y. C. (2001). Annocherine C, a new C-α hydroxy benzylisoquinoline and other constituents from the leaves of Annona Cherimola. Journal of the Chinese Chemical Society, 48, 1203–1206.
Cragg, G. M., & Newman, D. J. (2013). Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830, 3670–3695.
Dahiyi, R., & Dahiyi, S. (2021). Natural bioeffective cyclooxygenepptides from plant seeds of Annona genus. European Journal of Pharmaceutical Research, 24, 113221.
de Lira Mota, K. S., Dias, G. E., Pinto, M. E., Luiz-Ferreira, Â., Monteiro Souza-Brito, A. R., Hiruma-Lima, C. A., Barbosa-Filho, J. M., & Batista, L. M. (2009). Flavonoids with gastroprotective activity. Molecules, 14, 979–1012.
de Martel, C., Georges, D., Bray, F., Ferlay, J., & Clifford, G. M. (2020). Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. The Lancet Global Health, 8, e180–e190.
Dejban, P., Eslami, F., Rahimi, N., Takzare, N., Jahansouz, M., & Demirezer, L., Güvenalp, Z., Schiewe, H.-J., Strietzel, I., Harmandar, Dinkova-Kostova, A. T., Cheah, J., Samouilov, A., Zweier, J. L., Bozak, R. E., Hicks, R. J., & Talalay, P. (2007). Phenolic Michael reaction acceptors: Combined direct and indirect antioxidant defenses against electrophiles and oxidants. Medicinal Chemistry, 3, 261–268.
El-Gengaihi, S. E., Aboul-Enein, A. M., & Mohammed, M. A. (2020). Antiproliferative effect and chemical constituents of Annona species. Plant Archives, 20, 2650–2657.
El-Gengaihi, S. E., Hamed, M. A., Khalaf-Allah, A. E.-R.M., & Mohammed, M. A. (2013). Golden berry juice attenuates the severity of hepatorenal injury. Journal of Dietary Supplements, 10, 357–369.
Esmaeilionjad, B., Tahavosli, M., & Asri-Rezaei, S. (2012). Investigation of hematological and biochemical parameters in small ruminants naturally infected with Babesia ovis. Veterinary research forum (Vol. 3, p. 31). Urmia, Iran: Faculty of Veterinary Medicine, Urmia University.
Fahm, A. A., Abdur-Rahman, M., Aboul Naser, A. F., Hamed, M. A., Abd-Alla, H. L., & Nasr, M. I. (2019). Punicaria crispa mitigates gastric ulcer induced by ethanol in rats: Role of treatment and auto healing. Biomarkers, 24, 286–294.
Graham, D. Y. (2014). History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World Journal of Gastroenterology: WJG, 20, 5191.
Guedes, A., Valentinim, B., Prieto, A., Sanz, A., Flores, D., & Noronha, F. (2008). Characterization of fly ash from a power plant and surrounding by micro-Raman spectroscopy. International Journal of Coal Geology, 73, 359–370.
Hamed, M. A., Mohammed, M. A., Aboul Naser, A. F., Matloub, A. A., Fayed, D. B., Ali, S. A., & Khalil, W. K. (2019). Optimization of curcumoids extraction for evaluation against Parkinson’s disease in rats. Journal of Biologically Active Products from Nature, 9, 335–351.
Harborne, J. B. (1999). Classes and functions of secondary products from plants. Chemicals from plants (pp. 25–1). World Scientific/Imperial College Press.
Harborne, J., & Baxter, H. (1999). Flavone O-glycosides, flavonol O-glycosides and C-glycosylflavones. The handbook of natural flavonoids (Vol. 1, pp. 297–549). Wiley.
Huang, Y., Ren, J., & Qu, X. (2019). Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119, 4357–4412.
Istakova, R., & Phililop, S. (2004). Alkaloids from Isopyrum thalictroides L. Natural Product Research, 18, 259–263.
Joshi, S. V., Kedar, K. A., Markana, U. V., Lodha, S. R., Shah, P. D., Vyas, H. G., Vyas, R. B., Vyas, B. A., & Kalyankar, G. G. (2011). Alteration of gastric mucus secretion in rats treated with Abelmoschus esculentus seed mucilage. Der Pharmacia Lettre, 3, 183–188.
Khalaf-Allah, A.E.-R.M., El-Gengaihi, S. E., Hamed, M. A., Zahran, H. G., & Mohammed, M. A. (2016). Chemical composition of golden berry leaves against hepatorenal fibrosis. Journal of Dietary Supplements, 13, 378–392.
Koc, M., Imik, H., & Odabasoglu, F. (2008). Gastroprotective and antioxidative properties of ascorbic acid on indomethacin-induced gastric injuries in rats. Biological Trace Element Research, 126, 222–236.
Leite, D. O., de FA Nonato, C., Camilo, C. J., de Carvalho, N. K., da Nobrega, M. G., Pereira, R. C., & da Costa, J. G. (2020). Annona genus: Traditional uses, phytochemistry and biological activities. Current Pharmaceutical Design, 26, 4056–4091.
Liu, C. M., Kao, C. L., Wu, H. M., Li, W. J., Huang, C. T., Li, H. T., & Chen, C. Y. (2014). Antioxidant and anticancer aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn. cv. Rosa-Plena. Molecules, 19, 17829–17838.
Liu, M., Chang, X., Yan, J., Yi, S., Lin, Y., Yue, Z., & Peng, Y. (2011). Effects of moxibustion pretreatment on GSH-Px, SOD and MDA in gastric mucosa of rats with stress ulcer. Journal of Acupuncture and Tuina Science, 9, 17–20.
Ma, L., & Liu, J. (2014). The protective activity of Conyza blinii saponin against acute gastric ulcer induced by ethanol. Journal of Ethnopharmacology, 158, 358–363.
Martínez-Vázquez, M., Estrada-Reyes, R., Escalona, A. A., Velázquez, I. L., Martínez-Mota, L., Moreno, J., & Heinze, G. (2012). Antidepressant-like effects of an alkaloid extract of the aerial parts of Annona cherimolia in mice. Journal of Ethnopharmacology, 139, 164–170.
Martins, D., & Nunez, C. V. (2015). Secondary metabolites from Rauvolfia species. Molecules, 20, 13422–13495.
Mohammed, M. A., Attia, H. N., El-Gengaihi, S. E., Maklad, Y. A., Ahmed, K. A., & Kachlicki, P. (2021). Comprehensive metabolomic, lipidomic and pathological profiles of baobab (Adansonia digitata) fruit pulp extracts in diabetic rats. Journal of Pharmaceutical and Biomedical Analysis, 201, 114139.
Mohammed, M. A., Hamed, M. A., El-Gengaihi, S. E., Enein, A. M. A., Ahmed, O. K., & Hassan, E. M. (2020). In vitro screening of Annona Cherimola leaves and bark for their antioxidant activity and in vivo assessment as protective agents against gastric ulcer in rats. Plant Archives, 20, 2658–2668.
Montgomery, H., & Dymock, J. F. (1961). Determination of nitrite in water (Vol. 86, p. 414). Royal Soc Chemistry thomas Graham House, Science Park Miltonrd.
Nagy, S. S., & Wardowski, W. P. E. (1990). Fruits of tropical and subtropical origin: Composition, properties and uses. Florida Science Source Inc.
Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83, 770–803.
Nishikimi, M., Rao, N. A., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate...
and molecular oxygen. Biochemical and Biophysical Research Communications, 46, 849–854.
Nishiyama, Y., Moriyasu, M., Ichimaru, M., Iwasa, K., Kato, A., Mathenge, S. G., Mutiso, P. B., & Juma, F. D. (2004). Quaternary isoquinoline alkaloids from Xylopia parviflora. Phytochemistry, 65, 939–944.
Nishiyama, Y., Moriyasu, M., Ichimaru, M., Iwasa, K., Kato, A., Mathenge, S. G., Mutiso, P. B., & Juma, F. D. (2006). Secondary and tertiary isoquinoline alkaloids from Xylopia parviflora. Phytochemistry, 67, 2671–2675.
Ogino, T., Katsuhara, T., Sato, T., Sasaki, H., Okada, M., & Maruno, M. (1998). New alkaloids from the root of Stephania tetrandra (Fen-Fang-JI). Heterocycles, 48, 311–317.
Okabe, S., & Pfeiffer, C. J. (1972). Chronicity of acetic acid ulcer in rats and intervention of tert-butylhydroquinone: Involve-
Pasaribu, P., & Buysse, P. (2005). Ethanol-induced gastric damage through the Nrf2/HO-1 signalling pathway. Human & Experimental Toxicology, 24, 547–562.
Pharmacawati, M., Yan, G., & McFarlane, I. (2004). Application of RAPD and ISSR markers to analyse molecular relationships in Grevillea (Proteaceae). Australian Systematic Botany, 17, 49–61.
Prabhakaran, K., Ramasamy, G., Doraisamy, U., Mannu, J., & Rajamani Murugesan, J. (2016). Polyketide natural products, acetogenins from graviola (Annona muricata L.), its biochemical, cytotoxic activity and various analyses through computational and bio-programming methods. Current Pharmaceutical Design, 22, 5204–5210.
Rahman, Z., Dwivedi, D., & Jena, G. (2020). Ethanol-induced gastric ulcer in rats and intervention of tert-butylhydroquinone: Involvement of Nrf2/HO-1 signalling pathway. Human & Experimental Toxicology, 39, 547–562.
Ren, S., Chen, B., Ma, Z., Hu, H., & Xie, Y. (2021). Polygonum hydropiper extract attenuates ethanol-induced gastric damage through antioxidant and anti-inflammatory pathways. Brazilian Journal of Medical and Biological Research. https://doi.org/10.1590/1414-431X2020e10841
Santos, D., & Salatino, M. (2000). Foliar flavonoids of Annonaceae from Brazil: Taxonomic significance. Phytochemistry, 55, 567–573.
Saxena, N. (1979). The quaternary alkaloids of Cocculus laurifolius DC. 1020–1023.
Shelton, E., & Rice, M. E. (1957). Comparison of the reduction of two tetracetyl salts with succinyl oxidase activity of tissue homogenates. Journal of the National Cancer Institute, 18, 117–125.
Simeon, S., Rios, J., & Villar, A. (1989). Pharmacological activities of protoberberine alkaloids. Plant Med Phytother, 23, 202–250.
Swanson, M. A. (1955). Glucose-6-phosphatase from liver. 541–543.
Wallace, J. L., & Sharkey, K. A. (2011). Pharmacotherapy of gastric acidity peptic ulcers and gastroesophageal reflux disease. Goodman & Gilman’s. The pharmacological basis of therapeutics (12th ed., pp. 1309–22). McGraw-Hill Companies.
Wang, B., Yang, Z. F., Zhao, Y. L., Liu, Y. P., Deng, J., Huang, W. Y., Li, X. N., Wang, X. H., & Luo, X. D. (2018). Anti-inflammatory isoquinoline with bis-seco-aporphine skeleton from Dactylilcapnos scanda
do.org/10.1590/1414-431X2020e10841
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.