Results of the MAJORANA DEMONSTRATOR’s Search for Double-Beta Decay of 76Ge to Excited States of 76Se

I.S. Guinn1,18, I.J. Arnquist2, F.T. Avignone III10,15, A.S. Barabash3, C.J. Barton16, F.E. Bertrand3, B. Bos1,14,18, M. Busch7,18, M. Buuck8, T.S. Caldwell1,18, Y-D. Chan4, C.D. Christofferson14, P-H. Chu5, M.L. Clark1,18, C. Cuesta8, J.A. Detwiler8, A. Drobižev4, D.W. Edwins15, Yu. Efremenko10,17, H. Ejiri11, S.R. Elliott5, T. Gilliss1,18, G.K. Giovanetti22, M.P. Green9,10,18, J. Gruszko21, V.E. Guiseppe10, C.R. Haufe1,18, R.J. Hegedus1,18, R. Henning1,18, D. Hervas Aguilar1,18, E.W. Hoppe2, A. Hostiuc8, M.F. Kidd13, I. Kim5, R.T. Kouzes2, A.M. Lopez, J.M. López-Castaño16, E.L. Martin1,18, R.D. Martin6, R. Massarczyk5, S.J. Meijer5, S. Mertens19,20, J. Myslik4, T.K. Oli16, G. Othman1,18, W. Pettus8, A.W.P. Poon4, D.C. Radford10, J. Rager1,18, A.L. Reine1,18, K. Rielage5, N.W. Ruof8, M.J. Stortini5, D. Tedeschi15, R.L. Varner10, J.F. Wilkerson1,10,18, C. Wiseman8, W. Xu16, C.-H. Yu10, B.X. Zhu5

1Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27514, USA
2Pacific Northwest National Laboratory, Richland, WA 99354, USA
3National Research Center “Kurchatov Institute” Institute for Theoretical and Experimental Physics, Moscow, 117218 Russia
4Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
5Los Alamos National Laboratory, Los Alamos, NM 87545, USA
6Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, ON K7L 3N6, Canada
7Department of Physics, Duke University, Durham, NC 27708, USA
8Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98195, USA
9Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
10Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
11Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
12Pacific Northwest National Laboratory, Richland, WA 99354, USA
13Tennessee Tech University, Cookeville, TN 38505, USA
14South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
15Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208, USA
16Department of Physics, University of South Dakota, Vermillion, SD 57069, USA
17Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37916, USA
18Triangle Universities Nuclear Laboratory, Durham, NC 27708, USA
19Max-Planck-Institut für Physik, München, 80805 Germany
20Physik Department and Excellence Cluster Universe, Technische Universität, München, 85748 Germany
21Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
22Department of Physics, Williams College, Williamstown, MA 01267, USA
E-mail: iguinn@email.unc.edu

Abstract. The MAJORANA DEMONSTRATOR is searching for double-beta decay of 76Ge to excited states (E.S.) in 76Se using a modular array of high purity Germanium detectors. 76Ge can decay into three E.S.s of 76Se. The E.S. decays have a clear event signature consisting of a $\beta\beta$-decay with the prompt emission of one or two γ-rays, resulting in with high probability in a multi-site event. The granularity of the DEMONSTRATOR detector array enables powerful discrimination of this event signature from backgrounds. Using 21.3 kg-y of isotopic exposure, the DEMONSTRATOR has set world leading limits for each E.S. decay, with 90% CL lower half-life limits in the range of $(0.56 - 2.1) \cdot 10^{24}$ y. In particular, for the 2ν transition to the first 0$^+$ E.S. of 76Se, a lower half-life limit of $0.68 \cdot 10^{24}$ at 90% CL was achieved.

1. Introduction
Double-beta ($\beta\beta$) decay is the subject of a varied experimental program. Of particular interest is neutrinoless double-beta decay ($0\nu\beta\beta$), a hypothetical lepton number violating process that would indicate that the neutrino is a Majorana fermion. While two-neutrino double-beta ($2\nu\beta\beta$) decay has been directly observed in eleven isotopes, $0\nu\beta\beta$ has not yet been observed. Most $\beta\beta$ isotopes have multiple daughter excited states (E.S.) that they can decay into; for example, the decay scheme of 76Ge is shown in Figure 1. Such decays will have a reduced Q-value, with the remaining decay energy emitted as one or more γs. These γs will typically travel a few centimeters before interacting in bulk material, resulting in multiple energy deposition sites.

Measurement of the half-life of $2\nu\beta\beta$ to E.S. provides a useful check on the accuracy of $2\nu\beta\beta$ nuclear matrix element calculations; in turn, this may help evaluate the $0\nu\beta\beta$ matrix elements. In addition, $\beta\beta$ decays to E.S. are sensitive to physics beyond the standard model. The half-life of $0\nu\beta\beta$ decay to E.S. is sensitive to the underlying physics mechanism [1]. The half-life of $2\nu\beta\beta$ decay to 2^+ E.S. is sensitive to a hypothetical bosonic component to neutrinos [2, 3]. So far, $2\nu\beta\beta$ to the first 0^+ daughter E.S. has been observed in 100Mo and 150Nd, with a tension between these observations and theoretical half-life estimates [4].

2. The MAJORANA DEMONSTRATOR
The MAJORANA DEMONSTRATOR [5] is searching for $0\nu\beta\beta$ of 76Ge using HPGe detectors. The experiment consists of two separate modules, consisting of arrays of detectors operated in separate cryostats in vacuum. 44.1 kg of detectors are used, 29.7 kg of which are enriched to 88% in 76Ge, allowing them to act as both the source and detector of $0\nu\beta\beta$. The detectors in each module are shown in Figure 2. In order to minimize backgrounds, the experiment is constructed using ultra-low background materials and is placed within a multi-layered shield shown in Figure 3.

Figure 1. Level diagram of the $\beta\beta$-decay of 76Ge into 76Se.
μββ

one coincident detector must be enriched
16.9 kg (20) enrGe
5.6 kg (9) natGe
12.9 kg (15) enrGe
8.8 kg (14) natGe

Figure 2. A drawing of the content of module 1 (top) and 2 (bottom). Blue detectors have the natural 76Ge isotopic abundance, while green are enriched to 88%.

The experiment is housed at the 4850’ level (4300 m.w.e) of the Sanford Underground Research Facility (SURF) in order to minimize exposure to cosmic ray muons; in addition, scintillating polyethylene veto panels surround the experiment and actively veto additional muons. The HPGe detectors use the P-type Point Contact (PPC) detector geometry, which has advantages in energy resolution. The PPC geometry and the granularity of the detector array enable discrimination of single- and multi-site events.

The Majorana Demonstrator is also searching for $\beta\beta$ decay to excited states in 76Ge, which has not yet been observed in this isotope. 76Se has three E.S. that 76Ge can decay into, as shown in Figure 1. $2\nu\beta\beta$ to the 0^+_{1} state has the shortest expected half-life, with theoretical estimates ranging from $1.0 \cdot 10^{23} - 7.1 \cdot 10^{24}$ y [4]; since the Demonstrator has a sensitivity within this range of half-lives, this state will be the focus of this document. The 0^+_{1} E.S. decay mode has a Q-value of 917 keV and two γs, with energies 559 keV and 563 keV. Because $\beta\beta$ to E.S. is an inherently multi-site event, the Demonstrator can significantly reduce its backgrounds by searching only for events that involve multiple detector hits. In particular, we will search for peaks at 559 keV and 563 keV in individual detectors within multi-detector events. Multi-detector events are built to include all detector hits within a 4 μs rolling window; this is a conservative window that is expected to capture all truly simultaneous detector hits.

3. Background Cuts and Detection Efficiency

This analysis uses the standard channel selection, data cleaning, and muon cuts developed for the Majorana Demonstrator’s $0\nu\beta\beta$ analysis [5]. In addition, the detector hits in coincidence with candidate gamma hits will provide additional observables that can be used to further cut backgrounds. Since 95% of 76Ge is contained in enriched detectors and the $\beta\beta$ site will be contained in a separate detector from the gamma peak, events in which none of the coincident detectors are enriched are cut.

The largest source of backgrounds for this analysis is γ rays, which are often multi-site events. Because background γs will mostly originate from a handful of known isotopes, they can be cut based on the energies of coincident detector hits. Multi-detector events caused by γ cascades will commonly produce coincidence hits with known energies. Compton scattered γs will commonly produce multi-detector events where the sum of energies between detectors has a known energy. For this reason, the sensitivity of the analysis can be improved by selecting a set of energy ranges for coincident detectors and for the sum of all detectors to cut. The energy windows are algorithmically selected in order to optimize the detection sensitivity based on simulations of the backgrounds and each E.S. decay mode. Figure 4 shows the energy ranges selected for the first $0^+\ ^{76}$Se E.S. The expected effect of these energy cuts is to improve the signal to background ratio by a factor of 3.9 for the 559 and 563 keV γ peaks.
Figure 4. Effect of sum and coincident energy cuts on a simulated background model. Left: Sum energy spectrum of multi-detector events. Right: energy spectrum of multiplicity 2 events.

Figure 5. Measured background spectrum with each cut sequentially applied (left), and background and signal ROIs labelled (right).

MAGE [6], a GEANT4 [7] based simulation package containing a simulated geometry of the Majorana Demonstrator, combined with the DECAY0 [8] \(\beta\beta\)-decay event generator, were used to produce simulations of each E.S. decay mode for \(^{76}\text{Ge}\). Using these simulations, the detection efficiency for the first \(0^+\) \(^{76}\text{Se}\) E.S. decay mode was estimated to be \(2.3 \pm 0.2\%\) for module 1 and \(1.0 \pm 0.2\%\) for module 2.

To test the accuracy of the simulated detection efficiencies, pair production events produced by a \(^{56}\text{Co}\) calibration source acted as a proxy for the \(\beta\beta\) E.S. events. Multi-detector events with a 511 keV annihilation \(\gamma\) detected in coincidence with single- and double-escape peak (SEP and DEP) events are used to imitate the detection signature; single-detector events in the SEP and DEP are used to control for the total rate of these events in order to estimate a detection efficiency. The detection efficiency is measured from \(^{56}\text{Co}\) calibration data and simulations in 16 different SEPs and DEPs. The differences are used to estimate the systematic error associated with the simulated detection efficiencies. The dominant systematic uncertainties originate from the detector dead layer thickness and inaccuracies in the simulation.

4. Results
A 90% confidence limit was set for each E.S. decay mode using frequentist techniques. Open data recorded in both modules between January 12, 2016 and April 18, 2018 were used for this analysis, with a total isotopic exposure of 21.3 kg-y. A Poisson peak counting analysis was
performed; for the first $0^+\ E.S.$, the combined regions of interest, consisting of a 1.6 keV range around the 559 and 563 keV γ peaks, 2 counts were measured, with 2.02 background counts expected. Figure 5 shows multi-site hits after all cuts around these ROIs. For each decay mode, a world leading limit was set, as shown in Table 1.

Decay Mode	Q-value	γ Energies	Previous Limit	MJD Limit
$0^+_{g.s.}\ 2\nu\beta\beta\rightarrow 0^+_1$	916.8 keV	559.1+563.2 keV	3.7×10^{23} y [9]	6.8×10^{23} y
$0^+_{g.s.}\ 2\nu\beta\beta\rightarrow 2^+_1$	1480.0 keV	559.1 keV	1.6×10^{23} y [9]	9.6×10^{23} y
$0^+_{g.s.}\ 2\nu\beta\beta\rightarrow 2^+_2$	822.0 keV	559.1+657.0 keV or 1216.1 keV	2.3×10^{23} y [9]	5.6×10^{23} y
$0^+_{g.s.}\ 0\nu\beta\beta\rightarrow 0^+_1$	916.8 keV	559.1+563.2 keV	1.3×10^{22} y [10]	2.1×10^{24} y
$0^+_{g.s.}\ 0\nu\beta\beta\rightarrow 2^+_1$	1480.0 keV	559.1 keV	1.3×10^{23} y [11]	1.1×10^{24} y
$0^+_{g.s.}\ 0\nu\beta\beta\rightarrow 2^+_2$	822.0 keV	559.1+657.0 keV or 1216.1 keV	1.4×10^{21} y [12]	1.6×10^{21} y

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics and Nuclear Physics Programs of the National Science Foundation, the Russian Foundation for Basic Research, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation John R. Evans Leaders Fund, the National Energy Research Scientific Computing Center, and the Sanford Underground Research Facility.

References
[1] Simkovic F and Faessler A 2002 Prog. Part. Nucl. Phys. 48 201-209.
[2] Dolgov A D and Smirnov A Yu 2005 Phys. Lett. B 621 1-10.
[3] Barabash A S et al 2007 Nucl. Phys. B 783 90-111.
[4] Barabash A S 2017 AIP Conf. Proc. 1894 020002.
[5] Aalseth C E et al (the Majorana Collaboration) 2018 Phys. Rev. Lett. 120 132502.
[6] Boswell M et al 2011 IEEE Trans. Nucl. Sci. 58(3) 1212-1220.
[7] Agostinelli S et al (GEANT4 Collaboration) 2003 NIM A 506(3) 250-303.
[8] Ponkratenko O A, Tretyak V I and Zdesenko Yu G 2000 Phys. Atom. Nucl. 63(7) 1282-1287.
[9] Agostini M et al (GERDA Collaboration) 2015 J. Phys. G 42 115201.
[10] Morales A et al 1988 Nuovo Cim. A 100 525-551.
[11] Maier B 1994 Nucl. Phys. B (Proc. Suppl.) 35 358-362.
[12] Barabash A S et al 1995 Z. Phys. A 352 231-233.