The YouTube-8M Kaggle Competition:
Challenges and Methods

Haosheng Zou*, Kun Xu*, Jialian Li, Jun Zhu
Presented by: Yinpeng Dong
All from Tsinghua University
2017.7.26
Contents

- Introduction & Definition
- Challenges
- Our Methods & Results
- Other Methods
Introduction

- GAP evaluation

\[GAP = \frac{20N}{\sum_{i=1}^{M} \frac{p(i)}{i} \cdot \frac{1}{M}} \]

- GAP = 1.0 ⇔

 ![Diagram](3.4 labels / video on average)

- Low confidence predictions should be suppressed enough (3.4 labels / video on average).
Problem Definition

- We focus on exploiting frame-level features.
- 4716 binary classification tasks.

- Input: $\{v_1, v_2, ..., v_T\}, \{a_1, a_2, ..., a_T\}$
- Output: Probability of labelling $e_1, e_2, ..., e_{4716}$.

- Rough model:
- Frame understanding block: fixed-length descriptor x_{video}
- Classifiers block: 4716 binary classifications
Challenges

1. Dataset Scale
2. Noisy Labels
3. Lack of Supervision
4. Temporal Dependencies
5. Multi-modal Learning
6. Multiple Labels
7. In-class Imbalance
Challenges (cont.)

1. Dataset Scale:
 - 5M (or 6M) training videos, 225 frames / video, 1024 (+128) dimension features / frame.
 - Disk I/O in each mini-batch.
 - Validation takes several (~10) hours.
 - Downsample; smaller validation set; …

2. Noisy Labels:
 - Rule-based annotated labels, not crowdsourcing
 - 14.5% recall w.r.t. crowdsourcing, positive→negative
 - Negative dominates; learning the annotation system
 - Ensemble; more randomness; …
Challenges (cont.)

3. Lack of Supervision:
 - No information about each frame.
 - Only video-level supervision for the whole model.
 - Attention; auto-encoders; …

4. Temporal Dependencies:
 - Features haven’t yet taken into account.
 - Humans can still understand videos at 1 fps.
 - RNNs; clustering-based models (e.g. VLAD); …
Challenges (cont.)

5. Multi-modal Learning:
 - “every label in the dataset should be distinguishable using visual information alone”
 - Audio features do help.
- Different fusion techniques.

6. Multiple Labels:
 - Uniquely extracted x_{video} should be incredibly descriptive for 4716 binary classification tasks.
 - Labels all usually present or not in groups. Implicit correlation from a shared frame understanding block may not be sufficient.
Challenges (cont.)

7. In-class Imbalance:
 - 5M training videos
 - > 500K positive: 3 labels
 - > 100K positive: < 400 labels
 - Hundreds of positive: ~ 1000 labels
 - Imbalance ratio $\frac{100K}{5M} = \frac{1}{50}$ for 90% binary classification
 - Loss manipulation; specific techniques; ...

Our Methods, High-Level

- Random cropping: Take 1 frame every 5 frames
 - Rougher temporal dependencies
 - Only the start index is randomized

- Multi-Crop Ensemble:
 - One model, varying the start index
 - Uniformly averaging

- Early Stopping:
 - Fix 5 epochs of training at most
 - Train directly on training and validation sets.
Our Methods, Model

- Prototype: stacked LSTM (1024-1024) + LR / 2MoE
 - 4716 binary classifiers
 - Stacked (Bi)LSTM (Late Fusion) (Layer Normalization) etc.
- Layer Normalization
- Late Fusion
Our Methods (cont.)

- **Attention**

- **Bidirectional LSTM**
Our Results

Model	Public	Private
baseline (on Kaggle)	0.74711	0.74714
prototype (full, visual only)	0.78105	0.78143
prototype (full)	0.80224	0.80207
prototype (crop)	0.80204	0.80190
BiLSTM+LR+LN	0.80761	0.80736
BiLSTM+MoE	0.81055	0.81067
BiLSTM+MoE+attention	0.81232	0.81227
BiLSTM+MoE (full)	0.81401	0.81399
ENSEMBLE (16)	0.83477	0.83470
ENSEMBLE (36)	**0.83670**	**0.83662**
Other Methods

- Separating Tasks
 - Different frame understanding block, thus different video descriptor for each meta-task
 - 25 verticals as meta-tasks, too slow (15 examples / s)

- Loss Manipulation
 - Ignore negative labels when predicted confidence < 0.15

- Unsupervised Representation Learning
 - Using visual to reconstruct both visual and audio features
Conclusion

1. Dataset Scale
2. Noisy Labels
3. Lack of Supervision
4. Temporal Dependencies
5. Multi-modal Learning
6. Multiple Labels
7. In-class Imbalance
Thank you!
Q & A