Nuclear Scission and Quantum Localization

W. Younes and D. Gogny
Lawrence Livermore National Laboratory, Livermore, CA 94551
(Dated: January 15, 2013)

We examine nuclear scission within a fully quantum-mechanical microscopic framework, focusing on the non-local aspects of the theory. Using 240Pu hot fission as an example, we discuss the identification of the fragments and the calculation of their kinetic, excitation, and interaction energies, through the localization of the orbital wave functions. We show that the “disentanglement” of the fragment wave functions is essential to the quantum-mechanical definition of scission and the calculation of physical observables. Finally, we discuss the fragments’ pre-scission excitation mechanisms and give a non-adiabatic description of their evolution beyond scission.

Nuclear scission, the process wherein a nucleus breaks into two or more fragments, poses a fundamental challenge to quantum many-body theory: scission implies a separation of the nucleus into independent fragments, while the Pauli exclusion principle introduces a persistent correlation between the fragments, no matter how far apart they are. The objective of this paper is to resolve this paradox by disentangling the fragments in a fully quantum-mechanical description that is consistent with experimental data. In addition to shedding light on fundamental aspects of many-body physics, a microscopic theory of scission is needed to make reliable predictions of fission-fragment properties, such as their excitation and kinetic energies, and their shapes. In particular, we revisit in a microscopic approach the question of the energy partition between light and heavy fragments which was addressed in a recent letter [1] within a statistical-mechanic treatment. While many technical challenges remain in the 70-year quest to develop a predictive theory of fission, understanding scission, remains a formidable conceptual obstacle to such a theory.

Previous descriptions of scission have always been formulated within the context of a nuclear density, with an identifiable neck joining two pre-fragments. The neck ruptures at some point along its length, and all the matter to one side or the other of the rupture is reaggregated to the corresponding fragment. Despite its usefulness, this is ultimately a classical view of scission. In 1959 [2], this picture was used to qualitatively account for the different observed mass divisions in fission and the well-known “sawtooth” shape of the average neutron-multiplicity distribution. Later on, a more quantitative description of the nuclear shape was introduced [3], and scission was equated with a vanishing neck size. This criterion was later improved [4] by requiring that scission occurs when the Coulomb repulsion exceeds the attractive nuclear force between the fragments. Nörenberg [5] took a step toward a more microscopic description using a molecular model of fission calculated in a two-center Hartree-Fock+BCS approach. Bonneau et al. [6] used separate microscopic calculations of each fragment and a phenomenological nuclear interaction between them to define a scission criterion based on the ratio of their mutual nuclear and Coulomb energies. In recent calculations [6, 8, 10] the entire fissioning nucleus was treated within a single microscopic framework and the properties of the nucleus at scission were calculated. In those calculations however, the identification of scission and calculations of fragment properties still relied on the nuclear density. In contrast to previous approaches, we present here a fully quantum-mechanical description of scission that accounts for the nonlocality of the many-body wave function of the nucleus. The need for, and difficulty of disentangling the fragment wave functions was alluded to in [6]. Our solution is in the spirit of the Localized Molecular Orbital (LMO) technique used in molecular physics [9]: we localize individual orbitals on the fragments while the nucleons themselves, described by a Bogoliubov vacuum built from these states, remain delocalized. This powerful technique has never been used to describe nuclear scission before.

The work described in this paper is based on constrained Hartree-Fock-Bogoliubov (HFB) calculations of 240Pu with a finite-range (D1S) interaction. Details of the calculation are given in [10]. We have chosen to focus on the hot-scission point with constrained quadrupole moment $Q_{20} = 370$ b [17], and used the constraint on neck size, Q_N, to approach scission. This constraint lets us vary the density of matter in the neck. HFB calculations produce self-consistent solutions that minimize the total energy of the nucleus. In order to describe the nuclear near scission, we introduce here the additional requirement that the interaction energy between pre-fragments must be minimized. This criterion is consistent with the physical picture of the pre-fragments evolving into independent fragments that move increasingly further apart. We have shown in previous work [10, 11] that the pre-fragments in the HFB solutions near scission generally exhibit “tails”, portions of individual orbital wave functions that extend into the complementary fragment. Our calculations show that the size of these tails is closely related to the strength of the interaction between the fragments. Therefore, minimization of the interaction energy between fragments is essentially equivalent to localization of the orbitals on the fragments.

Hartree-Fock methods in molecular (or nuclear)
physics generally produce single-particle atomic orbitals that are not spatially localized within a molecule (nucleus). However, it was observed early on that any unitary transformation applied to the single-particle components of a Slater determinant does not affect the global properties of the corresponding system. Since then, unitary transformations have been routinely used to localize electron orbitals and thereby define such chemically meaningful concepts as core and bond orbitals. In nuclear fission, we will use the same concept to localize nuclear quasi-particle states (qp) on the nascent fragments, taking advantage of the fact that the Bogoliubov vacuum is only defined up to a unitary transformation of the qp destruction operators. More precisely, for each qp \(i \), we define a localization indicator \(\ell_i \), as the absolute difference between the qp density to the left and right of the neck position. A value \(\ell_i = 0 \), for example, corresponds to a completely delocalized qp. For a given pair of of qp, \((i,j)\), we can then look for a mixing angle \(\theta \) that maximizes the pair localization parameter \(\sqrt{\ell_i^2 + \ell_j^2} \). Thus, through a systematic search algorithm, a set of qp pairs is found that minimizes the summed tail size of the two fragments. In selecting these pairs, we have required that the level energies of the qp pairs are no more than 2 MeV apart, and have taken care not to mix “mirror” states (nearly degenerate in energy, but very different quasiparticle occupation numbers). The interest of this process is that it unambiguously identifies pre-frags built from qps that are spatially localized. The interaction energy between fragments can now be rigorously calculated as those contributions to the HFB mean and pairing fields that couple qps in complementary fragments. The nuclear component of that interaction energy (i.e., excluding the direct Coulomb repulsion between fragments) is plotted in Fig. 1 before and after tail reduction. In both cases individual qps are assigned to one fragment or the other based on their spatial localization relative to the neck position. The effect of the tail reduction can be rather substantial even when the neck between the fragments is small, e.g. by \(\sim 20 \) MeV even when \(Q_N < 0.5 \).

We show in Fig. 2 more details concerning the localization of the qps with occupation \(v^2 \) according to whether they are preferentially holes \((v^2>1/2)\) or particles \((v^2<1/2)\). We observe that the effect of the localization is most visible for the hole states with \(v^2 > 0.7 \). Note in particular the pair of deep-bound states in the top panel of Fig. 2 with \(v^2 \approx 1 \) and \(\ell \approx 0 \) (i.e., fully delocalized), both with K quantum number 1/2 and only 7 keV apart in energy. These two states become fully localized in the bottom panel. Notice also that a great number of localized qps of particle type can combine with localized qps of hole type to provide a rich spectrum of two-qp states localized on each of the two pre-fragments. These simple excitations or combinations of them describe excited fragments. Not all states are fully localized by the algorithm above, in particular a 2-MeV, \(K = 1/2 \) neutron state remains in the bottom panel with \(v^2 \approx 0.16 \) and \(\ell \approx 0.53 \), but the overall effect on the fragment densities shown in Fig. 3 is significant. The effect of the localization on the interaction energy is even more striking, as shown in Fig. 1. We point out that this analysis includes \(\approx 1100 \) proton and neutron qp states.

If we faithfully apply the variational principle to the fis-
This leads us to describe our system after scission in the Hill-Wheeler approximation as \(\Psi = \int f(\Phi_d)dd \)
whose is the relative distance between the fragments, and \(\Phi_d \equiv \Phi_1 \Phi_2 \) is the two fragments’ wave function. We obtain the collective Hamiltonian \[12, \]
\[H_{coll} = \frac{\vec{p}_d^2}{2\mu m} + V(d) + C \]
where \(\vec{p}_d \) is the momentum operator corresponding to \(d \), \(\mu \) is the reduced mass of the fragments, and \(m \) is the nucleon mass, \(V(d) \) is the fragment interaction potential, and \(C = E_i + \varepsilon_0 \) is a constant with \(E_i (i = 1, 2) \) the internal fragment energy, and \(\varepsilon_0 \) a zero-point correction,

\[E_i = \left\langle \Phi_i \left| H - \frac{\vec{p}_1^2}{2m_A_1} \right| \Phi_i \right\rangle \]

\[\varepsilon_0 = \left\langle \Phi_d \left| \frac{\vec{p}_1^2}{2m_{A_1}} + \frac{\vec{p}_2^2}{2m_{A_2}} - \frac{\vec{p}_1^2}{2m_{A_1}} \right| \Phi_d \right\rangle \]

Note that \(V(d) + C \) is nothing but the total Bogoliubov energy at the scission point (i.e., at \(d = d_i \)).

Thus we propose the following two-stage description of fission: 1) the nucleus deforms until it reaches a scission configuration determined with the criteria given above at which point the fragments are “frozen” in their configurations and 2) as a result of their strong mutual repulsion move apart essentially by spatial translation. Eventually these fragments will decay by neutron and gamma emission to their respective ground states.

In the following we investigate the extent to which this picture is consistent with experimental observables. Let us first discuss our predictions assuming a one-dimensional path leading to the hot fission point and that the collective dynamic is adiabatic from the saddle to the scission point. Starting with zero energy at the saddle we are at \(\approx 25 \text{ MeV} \) above the scission point. With our assumption this energy must be interpreted as a collective pre-kinetic energy. Now, the kinetic energy acquired by the fragments after scission is simply given by \(V(d_s) - V(\infty) = V(d_s) \) which is \(\approx 170 \text{ MeV} \) according to our calculations. Adding this pre-kinetic energy, our description gives a total kinetic energy (TKE) of 195 MeV which exceeds by only 10 MeV the experimental value 184.8 \pm 1.7 \text{ MeV} obtained by averaging the data sets available in the literature \[13, 13. \]

The calculation of the fragment excitation energies requires their corresponding ground-state energies. In order to calculate these ground-state energies consistently within the same basis as the excited states, they have been obtained from an HFB calculation starting from the scission configuration, but without the constraint on neck size. Constraints were added to keep the average number of protons and neutrons in each fragment the same as in the excited state, but otherwise the fragments were allowed to drop to their lowest-energy state as they
were pulled further apart. The minimum energies of the fragments were thus found when they were moved an additional 1.6 fm apart. Using these as the ground-state energies, excitation energies of 4.5 MeV and 7 MeV were obtained for the heavy (average mass number \(\approx 132 \)) and light (average mass number \(\approx 108 \)) fragments, respectively. Together, these yield a total excitation energy (TXE) of \(\approx 11.5 \) MeV. By contrast, the average TXE expected from empirical arguments \(^{16}\) in thermal fission on a \(^{239}\)Pu target is \(\approx 26 \) MeV, thus leading to a \(\approx 15\)-MeV discrepancy which we address next.

It is believed that three collective degrees of freedom \((Q_{20}, Q_{30}, Q_{40})\), if not four (triaxial mode), are the barest minimum needed to describe the collective dynamics of fission. If so, one could expect that part of the available energy in the descent from saddle to scission would be transferred to two or three modes transverse to the fission direction. This possibility was studied previously \(^{17}\) with two degrees of freedom \((Q_{20}, Q_{40})\). That work showed that \(\sim 2 \) MeV are already taken by one transverse mode. With two other degrees of freedom a total of 4 or 5 MeV could be taken up in these collective modes, at the expense of the fragment kinetic energy. Finally an other source of dissipation can result from the coupling of the collective dynamic with internal excitations \(^{18}\). A derivation of such coupling can be obtained in the framework of a generalization of the generator coordinate method including two quasiparticle excitations \(^{19}\). Therefore we have sufficiently many degrees of freedom to dissipate part of the available 25 MeV from saddle to scission.

Let us therefore consider different damping scenarios. Suppose that the 25 MeV potential energy liberated in the fission of \(^{240}\)Pu is shared in a 50/50 split between pre-scission fragment kinetic and excitation energies, then our prediction (TKE = 182.5 MeV and TXE = 24 MeV) precisely matches the experimental values. Even if we take a more conservative 25/75 distribution, one way or the other, the scenario we propose is still in remarkable agreement with observations. It is rather striking that, without adjustable parameters, we have formulated a quantum mechanical and dynamical picture of scission that is consistent with experiment.

In closing, we comment briefly on the nature of the fragment excited states calculated in this microscopic approach. Strictly speaking, the fragments identified on the HFB solution for \(^{240}\)Pu should be analyzed separately on the set of eigenstates of the Hamiltonians describing each of them. The spectrum of nuclei at such high energies is not known and its description would likely require a statistical distribution over all conceivable types of states at those excitation energies (collective, intrinsic, states with one or more nucleons in the continuum, etc.). Whether or not a statistical approach is necessary to perform such an analysis is a separate question. The description of fission we propose does not require any statistical mechanics or any kind of temperature for low-energy fission.

Finally, let us mention that the concept of localization could have interesting applications as we approach the scission point. In effect, as we recognize pre-fragments, the values of the global constraints split into the contributions from those pre-fragments. As the fragments move apart, we expect the correct description of the system to rely on separate collective coordinates for those individual fragments. Although it remains to be verified, we believe that the localization of Fock space could provide a way to impose constraints separately on the pre-fragments, and thereby give a richer description of the nucleus at and beyond scission.

This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Funding for this work was provided by the United States Department of Energy Office of Science, Nuclear Physics Program pursuant to Contract DE-AC52-07NA27344 Clause B-9999, Clause H-9999 and the American Recovery and Reinvestment Act, Pub. L. 111-5.

\(^{[1]}\) K.-H. Schmidt and B. Jurado, Phys. Rev. Lett. 104, 212501 (2010).
\(^{[2]}\) S. L. Whetstone Jr., Phys. Rev. 114, 581 (1959).
\(^{[3]}\) J. R. Nix, Nucl. Phys. A130, 241 (1969).
\(^{[4]}\) K. T. R. Davies, R. A. Managan, J. R. Nix, A. J. Sierk, Phys. Rev. C 16, 1890 (1977).
\(^{[5]}\) W. Nörenberg, Phys. Rev. C 5, 2020 (1972).
\(^{[6]}\) L. Bonneau, P. Quentin, and I. N. Mikhailov, Phys. Rev. C 75, 064313 (2007).
\(^{[7]}\) H. Goutte, J. F. Berger, P. Casoli, and D. Gogny, Phys. Rev. C 71, 024316 (2005).
\(^{[8]}\) N. Dubray, H. Goutte, and J.-P. Delaroche, Phys. Rev. C 77, 014310 (2008).
\(^{[9]}\) J. Lennard-Jones, Proc. Roy. Soc. A 198, 14 (1949).
\(^{[10]}\) W Younes and D. Gogny, Phys. Rev. C 80, 054313 (2009).
\(^{[11]}\) W Younes and D. Gogny, in Proceedings of the Fourth International Workshop on Nuclear Fission and Fission Product Spectroscopy, Cadarache, France 2009 (American Institute of Physics, New York, 2009), p. 3.
\(^{[12]}\) J.-F. Berger and D. Gogny, Nucl. Phys. A333, 302 (1980).
\(^{[13]}\) C. Wagemans, E. Allaert, A. Deruytter, R. Barthélême, and P. Schillebeeckx, Phys. Rev. C 30, 218 (1984).
\(^{[14]}\) K. Nishio, Y. Nakagome, I. Kanno, and I. Kimura, J. Nucl. Sci. Tech. 32, 404 (1995).
\(^{[15]}\) C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moriyama, K. Nishio, I. Kanno, K. Shin, and I. Kimura, J. Nucl. Sci. Tech. 37, 941 (2000).
\(^{[16]}\) D. G. Madland, Nucl. Phys. A772, 113 (2006).
\(^{[17]}\) J.-F. Berger, M. Girod, D. Gogny, Nucl. Phys. A502, 85 (1989).
\(^{[18]}\) E. Moya de Guerra and F. Villars, Nucl. Phys. A285, 297 (1977).
\(^{[19]}\) R. Bernard, H. Goutte, D. Gogny, and W. Younes, to be submitted to Phys. Rev. C (2011).