Glycosylphosphatidylinositol-Anchored Proteins in *Arabidopsis* and One of Their Common Roles in Signaling Transduction

Ke Zhou*

FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China

Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in *Arabidopsis* have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in *Arabidopsis*, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.

Keywords: glycosylphosphatidylinositol (GPI), GPI-anchored protein (GPI-AP), receptor-like kinase (RLK), ligand, signaling transduction

GLYCOSYLPHOSPHATIDYLINOSITOL (GPI) MODIFICATION AND GPI-ANCHORED PROTEIN (GPI-AP) BIOSYNTHESIS

The GPI oligosaccharide structure is ubiquitous among eukaryotes with a common minimal backbone consisting of three mannoses, one non-N-acetylated glucosamine (GlcN), and inositol phospholipid, which covalently links the carboxyl terminus (C terminus) of GPI-APs to the lipid bilayer (Figure 1A) (Stevens, 1995; Oxley and Bacic, 1999; Kinoshita and Fujita, 2016). Catalyzed by a series of enzyme complexes, GPI biosynthesis starts with a lipid molecule at the rough side of the endoplasmic reticulum (ER), and this then flips and the synthesis is completed on the luminal side of the ER (Figure 1C) (Stevens, 1995; Takeda and Kinoshita, 1995; Kinoshita and Fujita, 2016). The typical GPI-AP precursors possess a common structure that lead them to be modified by GPI moieties inside endomembrane systems: amino-terminal (N-terminal) hydrophobic signal peptides lead them to enter the ER lumen, and during translation and maturation, C-terminal hydrophobic signals are recognized and cleaved at the ω position by a series of catalytic complexes, where the peptide bond is replaced by a bond with ethanolamine phosphate (Figures 1A–C) (Eisenhaber et al., 1998; Kinoshita, 2014a; Kinoshita and Fujita, 2016).

The GPI moiety allows these GPI-APs, which possess no transmembrane region, to be anchored to membrane lipid bilayers. Compared to transmembrane association, GPIanchoring has its advantages: GPI-AP shedding and release due to the presence of GPI-specific phospholipases (PLC)
makes this association reversible in mammalian cells (Orihashi et al., 2012; Fujihara and Ikawa, 2016). In plants, although similar shedding and release mechanisms are indicated as various GPI-APs were identified in cell walls, thus far, no GPI-specific PLC has been identified yet (Bayer et al., 2006; Yeats et al., 2018). However, a bacterial phosphatidylinositol-specific PLC (PI-PLC) has been used for shedding GPI-APs from lipid bilayers in vitro and identifying them by further proteomic analysis in Arabidopsis (Borner et al., 2003; Elortza et al., 2003; Takahashi et al., 2016; Yeats et al., 2018).

IMPORTANCE OF GPI ANCHORING FOR GPI-APS

GPI-APs and their GPI moieties were demonstrated to be crucial for diverse developmental processes in mammals and in plants, because development was found to be broadly and severely affected if GPI moiety biosynthesis is disrupted (Kawagoe et al., 1996; Gillmor et al., 2005; Kinoshita, 2014b; Bundy et al., 2016).

As the most noticeable feature, GPI anchoring was thought to be essential for the functions of GPI-APs, and their enzymatic activities or subcellular localizations could be altered by the removal of the GPI moiety (Tozeren et al., 1992; Butikofer et al., 2001; Davies et al., 2010). However, there are exceptions: the GPI anchoring of ZERZAUST and FLA4/SOS5 was shown to be dispensable for their functions in Arabidopsis (Vaddepalli et al., 2017; Xue et al., 2017).

GPI moieties also play crucial roles for driving the transient, relatively ordered membrane domains rich in sphingolipids and sterols, which are called lipid rafts or microdomains, to their target regions (Saha et al., 2016; Sezgin et al., 2017; Hellwing et al., 2018; Lebreton et al., 2018). In mammalian and yeast cells, GPI-APs are co-clustered and organized in a mixture of monomers and cholesterol-dependent nanoclusters in the same lipid raft. These exit the ER in vesicles distinct from other secretory proteins and are predominantly sorted to the apical surface to serve in protein trafficking and signaling transduction (Eisenhaber et al., 1998; Morsomme et al., 2003; Legler et al., 2005; Muniz and Zurzolo, 2014; Miyagawa-Yamaguchi et al., 2015; Sezgin et al., 2017). In Arabidopsis, although GPI modification was found essential for protein delivery from the ER to the plasma membranes (Zavaliev et al., 2016), the lipid raft mechanism has not been well revealed yet.

PREDICTION AND IDENTIFICATION OF GPI-APS IN ARABIDOPSIS

To identify GPI-APs, various bioinformatics tools were developed, generally depending on the prediction of a specific...
hydrophobic region at the C terminus. Examples are big-PI Plant Predictor (http://mendel.imp.ac.at/sat/gpi/gpi_server.html) (Eisenhaber et al., 1998), PredGPI (http://gpcr2.biocomp.unibo.it/gpipe/info.htm) (Pierleoni et al., 2008), GPI-SOM (http://gpi.unibe.ch/) (Fankhauser and Maser, 2005), and fragAnchor (Poisson et al., 2007). According to the latest genomic scanning by these tools, among lower and higher eukaryotes, about 0.21% to 2.01% of total proteins from diverse families are predicted to be modified by GPI moieties, and the percentage in Arabidopsis is 0.83% (Eisenhaber et al., 2001; Poisson et al., 2007). In the meantime, proteomic assays, which depend on cleavage from membranes by bacterial PI-PLC treatment in vitro and enrichment in particular membrane fractions, were performed to compare proteomic data to bioinformatic data. To date, more than 300 GPI-APs have been identified in Arabidopsis (Borner et al., 2002; Borner et al., 2003; Elortza et al., 2003; Bayer et al., 2006; Takahashi et al., 2016).

Arabidopsis GPI-APs identified in 2003 (Borner et al., 2003; Elortza et al., 2003) and 2016 (Takahashi et al., 2016) are assembled in Tables 1 and 2, respectively, and their functions are discussed.

In Table 1, 248 genes predicted to encode GPI-APs in 2003 have been listed. Some corrections have been made, as some of them could not be found in databases or turned out to encode non-coding RNA. However, according to more recent experimental data, genes not included in 2003 also turned out to encode GPI-APs, such as At1g09460, At2g30933, At2g03505, and At4g13600 (Simpson et al., 2009), LORELEI (Tsukamoto et al., 2010), and XYP2 (Motose et al., 2004). Interestingly, due to recent achievements on alternative splicing, transcriptional variants of SK33 (Zhou, 2019a) and CRK10 (Grojean and Downes, 2010) have been found to encode GPI-APs besides their ordinarily reported proteins (Figure 2). Alternative splicing largely enhanced the diversity of transcriptome and proteome, and more and more genes (up to 80% according to recent RNA-seq achievements) have been found to be alternatively spliced in Arabidopsis, which could greatly increase the abundance of GPI-APs (Wang et al., 2009; Flichkin et al., 2010; Severing et al., 2011; Reddy et al., 2013; Lee and Rio, 2015; Bush et al., 2017).

In addition, 163 GPI-APs were predicted in 2016, and those not included in Table 1 are listed in Table 2. In this study, a large proportion of possible GPI-APs were discounted as typical GPI-APs in spite of being predicted to possess a GPI signal at the C terminus by various bioinformatics tools. Some of those discounted were transmembrane proteins, such as PIN3 and PIN4 and some receptor-like kinases (RLKs), and the other were cytoplasmic proteins without N-terminal secretory signal peptide, such as SNARE family proteins (listed at the end of Table 2).

FUNCTIONAL DIVERSITY OF GPI-APS IN ARABIDOPSIS

GPI-APs listed in Tables 1 and 2 are from diverse families, such as cell wall structure proteins, proteases, enzymes, receptor-like proteins (RLPs), lipid transfer proteins, and GPI-anchored peptides, which imply a functional diversity of GPI-APs: indeed, they were found functional in most processes, such as cell wall composition, cell wall component synthesis, cell polar expansion, stress responses, hormone signaling responses, pathogen responses, stomatal development, pollen tube elongation, and double fertilization in Arabidopsis.

Among these GPI-APs, the arabinogalactan protein (AGP) family, LORELEI family, COBRA family, and some RLKs, were better characterized. AGP family proteins are ubiquitous cell wall components anchoring on the plasma membrane throughout the Plant Kingdom and abundantly decorated at their Hyp residues by arabinogalactan polysaccharides, which make them be one of the most complex families of macromolecules in plants and play roles in various processes (Schultz et al., 2000; Ellis et al., 2010; Marzec et al., 2015; Showalter and Basu, 2016; Losada and Herrero, 2019; Palacio-Lopez et al., 2019). COBRA families were reported to be involved in various processes by regulating cell wall synthesis in plants (Hochholdinger et al., 2008; Caö et al., 2012; Niu et al., 2015; Niu et al., 2018). LORELEI family proteins associate with cell surface RLK, which is essential not only for ligand recognition but also for RLK transport (Capron et al., 2008; Duan et al., 2010; Tsukamoto et al., 2010; Meng et al., 2012; Yu et al., 2012; Li et al., 2015; Li et al., 2016; Liao et al., 2017; Stegmann et al., 2017; Feng et al., 2018; Guo et al., 2018; Yin et al., 2018).

INVolVEMENT OF GPI-APs IN SIGNALING TRANSDUCTION IN ARABIDOPSIS

In Arabidopsis, hundreds of RLKs, which possess extracellular ligand recognition domains and intracellular kinase domains, control a wide range of processes, including development, disease resistance, hormone perception, and self-incompatibility (Shiu and Bleecker, 2001; Muschietti and Wengier, 2018; Wei and Li, 2018). Their association with extracellular ligands, including phytohormones, signaling polypeptides, and pathogen molecules, leads to the phosphorylation of the intracellular kinase domain, which consequently activate cytoplasmic signaling components and switch on response mechanisms (Figure 3A) (Pearce et al., 2001; Asai et al., 2002; Geldner and Robatzek, 2008; Murphy et al., 2012; Breiden and Simon, 2016; Yamaguchi et al., 2016; Chardin et al., 2017).

By summarizing the functional mechanism of those listed GPI-APs in Tables 1 and 2, a group of GPI-APs from various families was found to share a common mechanism of action involving RLK-related signal transduction (Table 3). The same mechanism has been reported in mammalian cells, for example, that GPI-anchored CD14 possessing leucine-rich repeats (LRR) region associates with not only Toll-like receptor TLR4 to perceive their polypeptide ligand lipopolysaccharide (LPS) leading them to activate mitogen-activated protein kinase (MAPK) cascades (Wright et al., 1990; Schumann, 1992; Zanoni et al., 2011; Li X. et al., 2015) but also TLR3 to perceive viral double-stranded RNA (dsRNA) leading them to activate (Vercammen et al., 2008). This common mechanism
TABLE 1 | A review of predicted GPI-APs updated from (Borner et al., 2003; Elortza et al., 2003).

Group	Sub-group	Total	Gene No.	Name	Descriptions
AGP	Classical AGP	17	At1g68725	AGP19	AGP17-19 encode a subclass of lysine-rich AGPs, among which AGP18 was reported to be essential for the initiation of female gametogenesis both at the sporophytic and gametophytic levels, and AGP19 functions in cell division and expansion (Acosta-Garcia and Vielle-Calzada, 2004; Sun et al., 2005; Yang et al., 2007; Yang et al., 2011; Zhang et al., 2011a; Zhang et al., 2011b).
AGP			At4g37450	AGP18	AGP6 and AGP10 are co-expressed and co-localized in pollen grains and pollen tubes and essential for pollen grain development and pollen early germination, possibly because they are essential components of the nexine layer in pollen cell wall (Levitin et al., 2008; Coimbra et al., 2009; Coimbra et al., 2010; Costa et al., 2013; Palareti et al., 2016).
AGP			At2g23130	AGP17	AGP17-19 encode a subclass of lysine-rich AGPs, among which AGP18 was reported to be essential for the initiation of female gametogenesis both at the sporophytic and gametophytic levels, and AGP19 functions in cell division and expansion (Acosta-Garcia and Vielle-Calzada, 2004; Sun et al., 2005; Yang et al., 2007; Yang et al., 2011; Zhang et al., 2011a; Zhang et al., 2011b).
AGP			At5g14380	AGP6	AGP6 and AGP10 are co-expressed and co-localized in pollen grains and pollen tubes and essential for pollen grain development and pollen early germination, possibly because they are essential components of the nexine layer in pollen cell wall (Levitin et al., 2008; Coimbra et al., 2009; Coimbra et al., 2010; Costa et al., 2013; Palareti et al., 2016).
AGP			At4g09030	AGP10	AGP10 is essential for the degeneration of synergid cells, which guide the pollen tube attraction after acceptance of the unique pollen tube, and for prohibition of polytubey (Pereira et al., 2016a; Pereira et al., 2016b).
AGP			At4g09030	AGP3	AGP3 is essential for the degeneration of synergid cells, which guide the pollen tube attraction after acceptance of the unique pollen tube, and for prohibition of polytubey (Pereira et al., 2016a; Pereira et al., 2016b).
AGP			At5g01700	AGP11	AGP11 is essential for the degeneration of synergid cells, which guide the pollen tube attraction after acceptance of the unique pollen tube, and for prohibition of polytubey (Pereira et al., 2016a; Pereira et al., 2016b).
AG peptides	(Schultz et al., 2004), a group of GPI-anchored arabinogalactan polypeptides	12	At3g13520	AGP12	AGP12 is essential for the degeneration of synergid cells, which guide the pollen tube attraction after acceptance of the unique pollen tube, and for prohibition of polytubey (Pereira et al., 2016a; Pereira et al., 2016b).
FLAs (fasciclin-like AGPs)		16	At5g55730	FLA1	FLA1 is involved in lateral root initiation and shoot regeneration potentially by regulating cell-type specification (Johnson et al., 2011).
FLAs (fasciclin-like AGPs)			At4g12730	FLA2	FLA2 is specifically expressed in pollen grains and tubes and involved in microspore development potentially through the regulation of cellulose deposition (Li et al., 2010).
FLAs (fasciclin-like AGPs)			At2g24450	FLA3	FLA3 is specifically expressed in pollen grains and tubes and involved in microspore development potentially through the regulation of cellulose deposition (Li et al., 2010).
FLAs (fasciclin-like AGPs)			At3g46550	FLA4/SOS5	FLA4/SOS5 is directly associated with cell wall RLKs FEI1/2 to perceive environmental stimuli in apoplast by altering its conformation and association with FEI1/2. This complex could regulate cell wall synthesis and composition by collaborating with CESA5. Interestingly, this regulation could also be controlled by ethylene and ABA with unclear mechanism. Surprisingly, the absence of GPI anchors only affected their PM localization but not their function (Harpaz-Saad et al., 2012; Seifert et al., 2014; Basu et al., 2016; Griffiths et al., 2016; Xue et al., 2017; Turupcu et al., 2018).

(Continued)
Group	Sub-group	Total	Gene No.	Name	Descriptions	
Extensin related	Extensin related	7	A1g02405	Proline-rich protein		
			A1g70990	Proline-rich protein		
			A4g16140	Proline-rich protein		
			A5g11990	Proline-rich protein		
			A3g006750	Hydroxyproline-rich glycoprotein family protein		
			A1g23040	Hydroxyproline-rich glycoprotein family protein		
			A5g49280	Hydroxyproline-rich glycoprotein family protein		
Phytocyanins	Stellacyanin like	4	A5g20230	BCB/ SAG14	Regulates lignin biosynthesis induced by oxidative stress (Ezaki et al., 2005; Kim et al., 2011; Ji et al., 2015; Tang et al., 2016).	
([Nersissian et al., 1998])			A2g31050	Copredoxin superfamily protein		
			A2g28720	Copredoxin superfamily protein		
			A5g26330	Copredoxin superfamily protein		
			A1g22480	Copredoxin superfamily protein		
			A1g72230	Copredoxin superfamily protein		
			A3g27200	Copredoxin superfamily protein		
	Uclacyanin like	8	A2g23300	UCC1	UCC1, UCC2 and UCC3 encode copper binding proteins (Nersissian et al., 1998).	
			A2g47790	UCC2		
			A3g60280	UCC3		
			A3g60270	Copredoxin superfamily protein		
			A5g07475	Copredoxin superfamily protein		
	ENODL (early nodulin like)	17	A5g3870	ENODL1	Catalyzes the formation of pyroglutamic acid at the N-terminus of several peptides and proteins (Schilling et al., 2007).	
			A4g27520	ENODL2		
			A4g28365	ENODL3		
			A4g32490	ENODL4		
			A3g18590	ENODL5		
			A1g49840	ENODL6		
			A1g78000	ENODL7		
			A1g66460*	ENODL8		
			A3g20570	ENODL9		
			A2g23990	ENODL11		
			A4g30590	ENODL12		
			A5g25090	ENODL13		
			A2g25060	ENODL14		
			A4g31840	ENODL15		
			A3g01070	ENODL16	ENODL14 and ENODL15 directly interact with RLK FERONIA and regulate maternally controlled male-female communication and fertilization (Escobar-Restrepo et al., 2007; Hou et al., 2016).	
			A5g15350	ENODL17		
			A1g08500	ENODL18		
			A5g60920	COBRA/ COB	Classified as unknown/hypothetical in Borner et al. (2003). Involved in starch mobilization and reproductive progresses (Khan et al., 2007).	
COBRA family	COBRA family	10	A3g02210	COBL1		
([all 12 COBRA members, except COBL5, was predicted to be GPI-AP (Roudier et al., 2002)])			A3g29810	COBL2		
			A5g15630	COBL4/ IRX6	Localizes on plasma membrane polarly and regulates cell wall biosynthesis and cellulose microfibrils in Arabidopsis and tomato (Schindelman et al., 2001; Roudier et al., 2003). Its regulation responses to various stresses potentially by involving in jasmonic acid-related signaling pathway (Ko et al., 2006; Dinneny et al., 2008; Sorsk et al., 2019).	
			A1g09790	COBL6	Plays a role in the deposition of crystalline cellulose in secondary cell wall structures during seed coat epidermal cell differentiation, and the regulation is independent of the FEI-SOS pathway (Ben-Tov et al., 2015; Ben-Tov et al., 2018). Participates in regulating secondary cell wall biosynthesis (Taylor-Teeples et al., 2015; Niu et al., 2018).	
			A3g16860	COBL8		
			A5g20080	COBL10		
			A4g16120	COBL7/ SEB1		
			A4g27110	COBL11		
			A5g49270	COBL9/ DER8/ SHV2		
(Continued)						
TABLE 1 | Continued

Group	Sub-group	Total	Gene No.	Name	Descriptions
GDPDL		6	At1g66970	GDPDL1/SHV3-	Homologue of the extracellular domain of RLK GDPDL2/SHV3-Like2/SVL2. Possesses the capacity to hydrolyze glycerophosphodiesters, which is stimulated by Ca$^{2+}$ in Arabidopsis, and plays an important role in various physiological processes (Cheng et al., 2011).
			At1g66980	SHV3-	
			At4g26690	GDPDL3/SHV3	
			At3g20520	GDPDL5	SHV3 and GDPDL4 are involved in primary cell wall organization, which regulates cell polar expansion by coordinating proton pumping and cellulose synthesis (Parker et al., 2000; Hayashi et al., 2008; Yeats and Somerville, 2018; Yeats et al., 2018).
			At3g20520	GDPDL4/SHV3	
			At5g55480	GDPDL5/SLV1	
			At5g58050	GDPDL6/SLV4	
			At5g58170	GDPDL7/SLV5	
HIPL		3	At1g74790	ZERZAUST,	Shown in Borner et al. (2003) but could not be found in databases
			At5g39970	ZET	Carbohydrate-binding X8 domain superfamily protein
			At5g62630	PDCB1	Regulates the gating of plasmodesmata and the plasmodesmatal transport through plasmodesmal callose degradation (Zavaliev et al., 2016).
			At2g19440	ZETH	Homolog of ZET and works redundantly with ZET (Vaddepalli et al., 2019).
			At1g26450	BG_PPAP	
			At1g64760	ZERZAUST,	Carbohydrate-binding X8 domain superfamily protein
			At3g04010	ZET	Required for cell wall organization during tissue morphogenesis potentially by being mediated by RLKs. Interestingly, the presence of GPI anchor is dispensable for its function (Fulton et al., 2009; Vaddepalli et al., 2017; Vaddepalli et al., 2019).
			At3g13560	ZET	
			At3g24330	ZET	
			At4g29360	ZET	
			At4g31140	ZET	
			At5g18220	ZET	
			At5g20870	ZET	
			At5g42720	ZET	
			At5g56590	ZET	
			At5g58090	ZET	
			At5g58480	ZET	
			At5g64790	ZET	
			At5g42100	BG_PPAP	Regulates the gating of plasmodesmata and the plasmodesmatal transport through plasmodesmal callose degradation (Zavaliev et al., 2016).
			At5g61130	PDCB1	PCDB1-PDCB3, At1g69295, and At3g58100 encode a subgroup of X8-domain containing GPI-APs, which localize to the plasmodesmata and predicted to bind callose (Sim physician et al., 2009; Zavaliev et al., 2016).
			At5g08000	PDCB2	
			At1g18650	PDCB3	
			At1g69295	PCDB3	
			At1g69295	PCDB3	
			At1g58100	PCDB3	
			At1g09960	BG_PPAP	At1g09960, At2g30933, At2g03505, and At4g13600 encode a subgroup of X8-domain-containing GPI-APs (Sim physician et al., 2009) but not included in Borner et al. (2003).
			At2g30933	BG_PPAP	
			At2g03505	BG_PPAP	
			At4g13600	BG_PPAP	
Polygalacturonase	1		At3g15720	BG_PPAP	Regulates the gating of plasmodesmata and the plasmodesmatal transport through plasmodesmal callose degradation (Zavaliev et al., 2016).
Pectate lyases	3		At3g53190	PMR6	Required for fungal infection progress and effects cell wall composition through pectin synthesis (Vogel et al., 2002; Vogel et al., 2004).
			At3g54920	PMR6	Pectin lyase-like superfamily protein
			At5g04310	PMR6	Pectin lyase-like superfamily protein

(Continued)
TABLE 1 | Continued

Group	Sub-group	Total	Gene No.	Name	Descriptions
Proteases	Aspartyl proteases	10	A1g05840	A36	A36 and A39 co-localize with GPI-anchored COBL10 and involved in pollen tube germination, vitality, and pollen tube guidance (Gao et al., 2017; Gao et al., 2017).
			A1g08210	A39	
			A1g535280		
			A1g65240		
			A1g27760		
			A1g02740		
			A1g51330		
			A1g51350		
			A4g35880		
			A5g10080		
	Metalloproteases	5	A1g24140	AT3-MMP	This subgroup of proteases contribute to the MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, which suggests their involvement in the pattern-triggered immunity in interactions with necrotrophic and biotrophic pathogen (Zhao et al., 2017).
			A1g59970	AT5-MMP	
			A1g70170	AT2-MMP	
			A2g45040	AT4-MMP	
			A4g16640	AT1-MMP	
	Cys proteases	1	A3g43960		Regulates root hair elongation (Lin et al., 2011).
LTPL (lipid transfer-like protein)		26	A1g06450	LTPG3	LTPG1, LTPG2, LTPG5, and LPTG6 are involved in cuticular wax export or accumulation in epidermal cells and during pathogen defense (Debono et al., 2009; Kim et al., 2012; Guo et al., 2013; Edstam and Edqvist, 2014; Fahlgberg et al., 2019).
			A1g18280	LTPG1/	
			A1g27950	LTPG	
			A3g43720	LTPG2	
			A3g22600	LTPG5	
			A1g55260	LTPG6	
			A1g62790		
			A1g73890		
			A2g13830		
			A2g27130		
			A2g44290		
			A2g44300		
			A2g48130	LTPG15	Involved in suberin monomer export in seed coats (Lee and Suh, 2019).
			A2g48140	EDA4	
			A1g36150		
			A3g22611		Does not exist
			A3g58550	LTPG4	
			A4g08670		
			A4g12360		
			A4g14805		
			A4g14815		
			A4g22630		
			A4g22640		
			A5g09137		
			A5g13900		
			A5g64080	XYP1	XYP1 and XYP2 function as mediators of inductive cell-cell interaction in vascular development (Motosose et al., 2004). XYP2 was not shown in (Borner et al., 2003) due to its alternative splicing.
			A2g18320	XYP2	
SKU5-Similar family		4	A4g12420	SKU5	SKU5 is involved in root directional growth (Sebrock et al., 2002), and this group of genes is redundantly essential for root development by regulating cell polar expansion and cell wall synthesis (Zhou, 2019a, Zhou, 2019b). SKS3 was not shown in Borner et al. (2003) due to alternative splicing.
			A4g25240	SKS1	
			A5g51480	SKS2	
			A5g48450	SKS3	
RLP	RLK3 like (DUF26)	5	A1g63550		This subgroup of RLPs homolog with the extracellular region of a group of cysteine-rich RLKs (CRKs).
			A1g63580		
			A5g41280		
			A5g41290		
			A5g41300		
PRKs like		3	A1g20030		This subgroup of pathogenesis-related thaumatin superfamily proteins are similar with the extracellular region of an osmotin/thaumatin-like protein kinase PRSK (PR5-like receptor kinase) (Wang et al., 1996; Abdin et al., 2011).
			A4g36010		
			A4g38660		
Lectin like		1	A1g07460		Homologue of L-type lectin receptor kinase III, 1 (LECRK-III, 1)

(Continued)
Group	Sub-group	Total	Gene No.	Name	Descriptions
	LysM domains	3	At1g21880	LYM1/LYP2	LYM1 and LYM3 physically interact with the major components of bacterial cell walls and peptidoglycans and work together with a LysM RLK CERK1 to mediate perception and immunity to infection (Willmann et al., 2011).
			At1g77630	LYM3/LYP3	
			At2g17120	LYM2/LYP1	Forms various complexes with different transmembrane RLKs from ERECTA family (ER) and/or SERKs to recognize their ligands, such as epidermal patterning factors (EPFs) and CHAL, and then to regulate stomatal development and immune response through the activation of intracellular MAPK cascade (Bundy et al., 2016; Abrash and Bergmann, 2010; Geisler et al., 2000; Geisler et al., 1998; Jakoby et al., 2006; Jorda et al., 2016; Kobe and Kajava, 2001; Lee et al., 2015; Lee et al., 2012; Lin et al., 2017; Meng et al., 2015; Rasmussen et al., 2011; Wang et al., 2008; Yan et al., 2014; Bhave et al., 2009).
			At1g80080	ATRLP17/TMM	Interacts with a component of the vesicle trafficking machinery and acts as its linker with ROP2 (Jeon et al., 2008; Xu et al., 2010; Hwang et al., 2011; Hong et al., 2016). However, the presence of its GPI anchoring is doubted (Jeon et al., 2008; Yeats et al., 2018).
	Cf-2/Cf-5 like	3	At1g77630	LYP3/LYP1	
			At2g17120	ATRLP17/TMM	
	Other	1	At1g10375**	Does not exist	Shown in Borner et al. (2003) but could not be found in databases.
			At4g23180***		Encoded by an alternative variant of CRK10, which was believed to encode a cysteine-rich RLK (Grojean and Downes, 2010). Not shown in Borner et al. (2003) due to alternative splicing.
GPI-anchored peptides	GPI-anchored peptides	8	At3g01940		
			At3g01950		
	LORELEI-like family	4	At4g26468***	LORELEI	LLG1 chaperones transmembrane RLK FERONIA from the ER to the plasma membrane, where both LORELEI and LLG1 could associate with FERONIA to recognize extracellular ligands to regulate sperm cell release during double fertilization and early seed development (Capron et al., 2008; Duan et al., 2010; Tsukamoto et al., 2010; Meng et al., 2012; Yu et al., 2012; Li C et al., 2015; Li et al., 2016; Liao et al., 2017; Stegmann et al., 2017; Feng et al., 2018; Guo et al., 2018; Yin et al., 2018). Interestingly, LLG1 was also reported to associate with RLK FLS2 and mediate PAMP recognition (Shen et al., 2017). LORELEI was not shown in Borner et al. (2003).
			At2g20700	LLG2	
			At4g28280	LLG3	
			At5g56170	LLG1	
	PLC-like phosphodiesterases	1	At5g67130*		Regulates gametophytic self-incompatibility (Qu et al., 2017). Shown as At5g67131 in Borner et al. (2003).
	Other	6	At5g07190	SEED GENE 3	
			At5g26200	AT3SB	Active in both diploid tapetum and haploid microspores and required for pollen fertility (Theerakulpisut et al., 1991; Xu et al., 1995; Luo et al., 2000). A glycine-rich protein
			At5g26210	AT3S	
			At3g07390	BCP1	
Unknown/ hypothetical		33	At1g15460		
			At1g54860		
			At3g06035		
			At5g19230		
			At5g19250		
			At1g07135		
			At1g09175		
			At3g04640		
			At3g55790		
			At1g29980		
			At2g34510		
			At5g14150		
			At3g18050		

(Continued)
GPI-Anchored Proteins Participate in Arabidopsis

Zhou

August 2019 | Volume 10 | Article 1022

www.frontiersin.org

found in both animals and plants suggests that important and common roles are played by GPI-APs in signal transduction (Figure 3B).

ASSOCIATION BETWEEN GPI-AP AND RLK

Interestingly, the association between GPI-AP and RLK could be involved in not only ligand recognition but also RLK transport and subcellular localization. One of the best characterized GPI-APs, LORELEI, not only participates in ligand recognition by associating with FERONIA but also plays a crucial role in chaperoning the transport of FERONIA from the ER to the plasma membrane (Capron et al., 2008; Duan et al., 2010; Tsukamoto et al., 2010; Meng et al., 2012; Yu et al., 2012; Li et al., 2015; Li et al., 2016; Liao et al., 2017; Stegmann et al., 2017; Feng et al., 2018; Guo et al., 2018; Yin et al., 2018) (Figure 3C). This special chaperone and transport mechanism might be due to the GPI-APs becoming involved with lipid rafts, which determine distinct protein sorting and protein traffic (Eisenhaber et al., 1998; Legler et al., 2005; Miyagawa-Yamaguchi et al., 2015; Sezgin et al., 2017).

GPI-APs appear to be important not only for ligand recognition but also essential for ligand selection. For example, RLK FERONIA recognizes ligands RALF1 or RALF22/23 when associated with GPI-anchored LORELEI or LRX5, respectively (Li C et al., 2015; Li et al., 2016; Zhao et al., 2018). This potential GPI-AP-dependent selection mechanism could greatly enhance the ligand recognition abundance of RLK but could also mediate the cross-talk between various signaling perception and transduction (Figure 3D).

The associations between GPI-AP and RLK could be structure independent, such as SKU5-TMK1, LRE/LLGs-FERONIA, FLA4-FEI1/FEI2, ENODL14-FERONIA, and LRX5-FERONIA, or structure dependent, such as TMM and ERECTA both possessing LRR structure at the extracellular domain and LYM1/LYM3 and CERK1 both possessing LyM structure at extracellular domain in Arabidopsis. Interestingly, the same structure dependence is also present in one of the best characterized GPI-APs in mammalian cells, CD-14, and together with its partner receptor kinases TLR3 and TLR4 all possess an LRR structure. The structure-dependent associations between GPI-APs and RLKs largely increased the curiosities of the group of GPI-anchored RLPs, which shared the same structures or sequence similarities with RLKs but lack intracellular kinase domains. They might recognize specific RLKs depending on sequence and structure similarities and form heterodimers with various

Table 1

Group	Sub-group	Total	Gene No.	Name	Descriptions
At4g28100					
At3g27410					
At5g49260					
At1g23050					
At1g70988					
At5g26290	RAMCAP				Hydroxyproline-rich glycoprotein family protein
At5g26300					TRAF-like protein
At3g24518**					Natural antisense transcript overlaps with AT3G24520
At5g35890					β-galactosidase-related protein
At1g21090					Cupredoxin superfamily protein
At1g63200					
At1g61900					
At2g28410					
At2g29680					Zinc finger (C2H2-type) family protein
At3g26110					Anther-specific protein agp1-like protein
At3g44100					MD-2-related lipid recognition domain-containing protein
At3g58890					RNI-like superfamily protein
At3g61980	KPI-1				Putative Kazal-type serine proteinase inhibitor, which is supposed to limit and control the spread of serine proteinase activity, and function during defense mechanism (Pariani et al., 2016).
At4g14748					Neurogenic locus notch-like protein
At4g28088					
At4g28140					
At5g09210**	MIR834A				Encoded a microRNA of unknown function
At5g14190**	Does not exist				Shown in Borner et al. (2003) but could not be found in genomic or proteomic database actually
At5g16670**	Does not exist				Shown in Borner et al. (2003) but could not be found in genomic or proteomic database actually
At5g22430					Pollen Ole 1 allergen and extensin family protein

*Shown incorrectly in Borner et al. (2003).
**Shown in Borner et al. (2003) but does not exist in genomic or proteomic database or encodes non-coding RNA.
***Not shown in Borner et al. (2003) but could be predicted or studied as GPI-APs.
TABLE 2 | GPI-APs identified in 2016 that not included in previous study in 2003.

Group	Sub-group	Total	Gene No.	Name	Descriptions
GPI-APs identified in 2016 that not included in previous study in 2003.					

Group	Sub-group	Total	Gene No.	Name	Descriptions
LTPL	(lipid transfer protein)	3	AT3g22620	XYP2	Functions as a mediator of inductive cell-cell interaction in vascular development (Motose et al., 2004).
			AT2g13820		
			AT4g22506		
β-1,3 Glucanases		3	AT1g11820		O-Glycosyl hydrolase family 17 protein
			AT4g34480		O-Glycosyl hydrolase family 17 protein
			AT3g57240		
PLC-like phosphodiesterases	RLP	1	AT4g39894		
			AT4g18760		
Oligogalacturonide oxidase		2	AT5g66680	DGL1	Subunit of the oligosaccharidyltransferase complex, which catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the ER (Lerouxel et al., 2005; Qin et al., 2013; Jeong et al., 2018).
			AT4g20830	ATBBE20/OGOX1	Required in plant immunity (Benedetti et al., 2018).
			AT5g07830	GUS2	Contributes to the glycosylation of AGPs (Eudes et al., 2008).
		AT5g34940	GUS3		
		AT4g18670	LRX5		
LRR extensin		1	AT1g28290	AGP31	Involved in cell wall structure and network (Hijazi et al., 2014).
			AT1g69530	EXPA1	Regulates stomatal opening by altering the structure of the guard cell wall (Wei et al., 2011; Zhang et al., 2011c).
AQP		1	AT1g22290		
			AT1g69530		
Expansin		1	AT1g28290		
			AT1g69530		
PME and PMEI proteins	PME (pectin methyltransferase)	1	AT3g14310	PME3	Catalyzes the demethylsterification of pectin homogalacturonan domains in plant cell walls, and its activity could be regulated by PMEIs (Guenin et al., 2011; Senechal et al., 2015).
			AT2g31140	PME5	
			AT5g62360	PMEI13	A pectin methyltransferase inhibitor (Muller et al., 2013).
			AT3g62820		
			AT3g17130		
			AT5g62350		
	PMEI (pectin methyltransferase inhibitors)	5	AT4g30140	CDEF1	Possesses esterase activity and candidates for the unidentified plant cutinase for cuticle biosynthesis (Takahashi et al., 2010).
			AT5g45950	GDSL-motif esterase/acyltransferase/lipase	
			AT4g01130	GDSL-motif esterase/acyltransferase/lipase	
			AT3g16370	GDSL-motif esterase/acyltransferase/lipase	
			AT1g30600	Subtilisin-like serine protease	
			AT4g21650	Subtilisin-like serine protease	
			AT3g61820	Eukaryotic aspartyl protease family protein	
Proteases		3	AT3g20600	SBT3.13	
			AT4g21650		
			AT3g61820		

(Continued)
TABLE 2 | Continued

Group	Sub-group	Total	Gene No.	Name	Descriptions	
Others		25	AT2g30700		Disease resistance responsive	
			AT1g65870		Calcineurin-like metallophosphoesterase superfamily protein	
			AT5g42370		Mediates high-affinity uracil and 5-fluorouracil (a toxic uracil analogue) transport (Schmidt et al., 2004).	
			AT2g03530	UPS2	Localizes to the extracellular matrix and being considered to be involved in many physiological responses including environmental stress (Membre et al., 2003).	
			AT1g72610	GLP1	Glycoprotein membrane precursor GPI anchored	
			AT5g19240		Possesses β-glucosidases activity and works redundantly with its homolog BGLC1 with absent GPI anchor to remove unsubstituted Glc residues from the nonreducing end of xyloglucan molecule (Sampedro et al., 2017).	
			AT5g04885	BGLC3	Pectin acetyesterase 12	
			AT3g05910	PAE12	Galactose mutarotase-like superfamily protein	
			AT3g47800		Hydroxylproline-rich glycoprotein family protein	
			AT5g55730		Carbohydrate esterase	
			AT5g353010	SES1	ER localized molecular chaperone and required for heat tolerance (Guan et al., 2019).	
			AT5g298520		Glycosyl hydrolase	
			AT3g07570	Cytochrome B561	Galacturonidase-like protein (a carbohydrate esterase)	
			AT1g75680	GHIB7	Products UDP-glucuronic acid, which is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues in cell wall biosynthesis (Reboul et al., 2011; Siddique et al., 2012).	
			AT5g14030		Inhibits both plant cell wall invertase and vacuolar invertase (Link et al., 2004).	
			AT3g29360	UGD2	Inhibits both plant cell wall invertase and vacuolar invertase (Link et al., 2004).	
			AT5g64620	C/VIF2	Its allantoate amidohydrolases enzymatic activity is required for nitrogen recycling from purine ring in plants (Werner et al., 2008).	
			AT1g68560	XYL1	Serine carboxypeptidase-like 35	
			AT4g34180	CYCLASE1	Serine carboxypeptidase-like 35	
			AT4g35220	CYCLASE2	Its allantoate amidohydrolases enzymatic activity is required for nitrogen recycling from purine ring in plants (Werner et al., 2008).	
			AT5g08260	SCPL35	Serine carboxypeptidase-like 35	
			AT2g33530	SCPL46	Serine carboxypeptidase-like 35	
			AT5g43600	AAH-2/UAH	Serine carboxypeptidase-like 35	
			AT4g02420		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g3210	ZIP11	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g55910		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT5g42470	ATNPC1-1	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g70940	PIN3	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT2g01420	PIN4	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT5g55960		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
Not typical GPI-APs	**Transmembrane protein with predicted omega domain at C terminus**	**8**	AT4g15630	CASPL1E1	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT4g15620	CASPL1E2	A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT4g02420		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g3210		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g55910		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT5g42470		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT1g70940		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT2g01420		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
			AT5g55960		A negative regulator of cell death and regulates pathogen-induced symptom development in Arabidopsis (Smith et al., 2015).	
RLKs in the ER or Golgi bodies and then chaperone them to specific plasma membrane regions through GPI-AP-driven lipid rafts. On arrival, they select and recognize ligands and activate the intracellular signaling components. Whether the GPI-anchored RLKs encoded by transcriptional variants, such as GPI-CRK10 and its variant of CRK10, can form homodimers based on the same extracellular domains and play a role in RLK regulation, is a very interesting question.
FIGURE 3 | RLK-mediated signaling pathway and various associations between RLKs and GPI-APs. (A) Association with extracellular ligand activates and phosphorylates the intracellular kinase domain of RLK, which activates intracellular signaling components to regulate various processes. (B) GPI-AP is required for ligand recognition and its association with RLK. (C) GPI-AP is required not only for ligand recognition and its association with RLK but also for RLK localization by chaperoning its transport, and those un-chaperoned would reside in ER. (D) GPI-APs are required for ligand selection.
CONCLUSION AND PERSPECTIVES

Previous genomic and proteomic assays that predicted and identified GPI-APs from Arabidopsis have been listed. Due to recent experimental data and knowledge of alternative splicing, more and more GPI-APs have been identified, suggesting that GPI-APs in Arabidopsis might be more abundant than we expected.

Previous studies on those listed GPI-APs from diverse families were discussed, and they were found to be involved in diverse biological processes, including cell wall composition, cell wall component synthesis, cell polar expansion, hormone signaling response, stress response, pathogen response, stomata development, pollen tube elongation, and double fertilization. Those reports demonstrated the functional diversity and indispensability of GPI-APs in Arabidopsis.

Among these reports, direct associations were found between various GPI-APs and their partner cell surface RLKs, demonstrating not only participation in their ligand recognition but also essential roles in RLK transport and localization. Localization might due to specific protein sorting and protein traffic driven by GPI-AP-related lipid rafts.

Surprisingly, GPI-APs have also been shown to participate in ligand selection, which made one RLK and its downstream intracellular target activated by various ligands. Such protein cross-reactivity greatly enhanced the ligand recognition abundance of RLKs, which can also be considered as a common mechanism of cross-talk between various ligands or various signaling pathways.

In this review, the most predicted or identified GPI-APs in Arabidopsis were listed and discussed, and a common involvement of them in signaling transduction was summarized. This involvement could be very helpful for understanding the ligand-RLK signaling transduction in plants, especially for understanding the polar localization of RLKs, and the crosstalk between various ligand-RLK signaling transduction. It would be interesting to identify more associations between various GPI-APs and RLKs and study their recognition and selection of ligands and downstream intracellular signaling components in Arabidopsis.

AUTHOR CONTRIBUTIONS

KZ wrote this manuscript.

REFERENCES

Abdin, M. Z., Kiran, U., and Alam, A. (2011). Analysis of osmotin, a PR protein as metabolic modulator in plants. Bioinformation 5 (8), 336–340. doi: 10.6026/97320630005336
Abrash, E. B., and Bergmann, D. C. (2010). Regional specification of stomatal production by the putative ligand CHALLAH. Development 137 (3), 447–455. doi: 10.1242/dev.040931
Acosta-Garcia, G., and Vielle-Calzada, J. P. (2004). A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16 (10), 2614–2628. doi: 10.1105/tpc.104.024588
Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, I., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 (6875), 977–983. doi: 10.1038/415977a
Basu, D., Tian, L., Debrosse, T., Poirier, E., Emch, K., Heroch, H., et al. (2016). Glycosylation of a fasciclin-like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS One 11 (1), e0145092. doi: 10.1371/journal.pone.0145092
Bayer, E. M., Bottrell, A. R., Walshaw, J., Vigozoux, M., Naldrett, M. J., Thomas, C. L., et al. (2006). Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6 (1), 301–311. doi: 10.1002/pmic.200500046
Benedetti, M., Verrascina, I., Pontiggia, D., Locci, F., Mattei, B., De Lorenzo, G., et al. (2018). Four Arabidopsis berberine bridge enzyme-like proteins are specific oxidases that inactivate the elicitor-active oligogalacturonides. Plant J. 94 (2), 260–273. doi: 10.1111/tpj.13852
Ben-Tov, D., Abraham, Y., Stav, S., Thompson, K., Loraine, A., Elbaum, R., et al. (2015). COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiol. 167 (3), 711–724. doi: 10.1104/pp.114.240671
De Benedictis, M., Bleve, G., Faraco, M., Stigliano, E., Grieco, F., Piro, G., et al. (2013). ATSY5P1/52 functions diverge in the post-Golgi traffic and differently affect vascular sorting. Mol. Plant 6 (3), 916–930. doi: 10.1093/mp/sst117

Debono, A., Yeats, T. H., Rose, J. K., Bird, D., Jetter, R., Kunst, L., et al. (2009). Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21 (4), 1230–1238. doi: 10.1105/tpc.108.064451

Dinneny, J. R., Long, T. A., Wang, J. Y., Jung, J. W., Mace, D., Pointer, S., et al. (2008). Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320 (5878), 942–945. doi: 10.1126/science.1153795

Duan, Q., Kita, D., Li, C., Cheung, A. Y., and Wu, H. M. (2010). FERONIA receptor-like kinase regulates RHO GTase signaling of root hair development. Proc. Natl. Acad. Sci. U.S.A. 107 (41), 17821–17826. doi: 10.1073/pnas.1005366107

Edstam, M. M., and Edqvist, J. (2014). Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen in Arabidopsis thaliana. Physiol. Plant. 152 (1), 32–42. doi: 10.1111/ppl12156

Eisenhaber, B., Bork, P., and Eisenhaber, F. (1998). Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. Protein Eng. 11 (12), 1155–1161. doi: 10.1016/j.pepi.11.12.1155

Eisenhaber, B., Bork, P., and Eisenhaber, F. (2001). Post-translational GPI lipid anchor modification of proteins in kingdoms of life: analysis of protein sequence data from complete genomes. Proteins Eng. 14 (1), 17–25. doi: 10.1016/j.proteins.2011.11.122

Elortza, F., Nuhse, T. S., Foster, L. J., Stensballe, A., Peck, S. C., and Jensen, O. N. (2003). Proteomic analysis of glycosylphosphatidylinositol-anchored membrane proteins. Mol. Cell. Proteomics 2 (12), 1261–1270. doi: 10.1074/mcp.M300079-MCP200

Escober-Restrepo, J. M., Huck, N., Kessler, S., Gagliardini, V., Ghyselinck, N., Yang, W. C., et al. (2007). The feronia receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317 (5838), 656–660. doi: 10.1126/science.1143562

Eudes, A., Mouille, G., Thevenin, J., Goyallon, A., Minic, Z., and Jouanin, L. (2013). Purification, cloning and functional characterization of an endogenous beta-glucuronidase in Arabidopsis thaliana. Plant Cell Physiol. 49 (9), 1331–1341. doi: 10.1093/pcp/pcp108

Ezaki, B., Sasaki, K., Matsumoto, H., and Nakashima, S. (2005). Functions of two genes in aluminum (Al) stress resistance: repression of oxidative damage by the AtBRCB gene and promotion of efflux of Al ions by the NtGDI1gene. J. Exp. Bot. 56 (240), 2661–2671. doi: 10.1093/jxb/erz259

Fahlgberg, P., Buhot, N., Johansson, O. N., and Andersson, M. X. (2003). Maternal control of male-gamete delivery in Arabidopsis thaliana. Plant Physiol. 132 (4), 1123–1130. doi: 10.1104/pp.103.021170

Falkhager, N., and Maser, P. (2005). Identification of GPI anchor attachment sites by a Kohonen self-organizing map. Bioinformatics 21 (9), 1846–1852. doi: 10.1093/bioinformatics/bti299

Feng, W., Kita, D., Peaucelle, A., Cartwright, H. N., Doan, V., Duan, Q., et al. (2018). The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca(2+) signaling. Curr. Biol. 28 (5), 666–75 e5. doi: 10.1016/j.cub.2018.01.023

Flicksin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., et al. (2010). Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. Sex. Plant Reprod. 23 (3), 199–205. doi: 10.1007/s00470-010-0136-x

Flicksin, S. A., Pinto, J., and Pereira, L. G. (2010). Expression and spatio-temporal analysis of ARABIDOPSIS thaliana SYP51/52 and SYP21 functions diverge in the post-Golgi traffic and differently affect vascular sorting. Mol. Plant 6 (3), 916–930. doi: 10.1093/mp/ssl117

Fulton, L., Batoux, M., Vaddepalli, P., Yadav, R. K., Busch, W., Andersen, S. U., et al. (2010). The alpha2delta subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proc. Natl. Acad. Sci. U.S.A. 107 (4), 1654–1659. doi: 10.1073/pnas.0908735107

Gao, H., Li, R., and Guo, Y. (2017). Arabidopsis asparagine protease A36 and A39 play roles in plant reproduction. Plant Signal. Behav. 12 (4), e1304343. doi: 10.1080/15592324.2017.1304343

González-Chertón, D., Cara, M. D., and Puente, A. (2013). AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vascular sorting. Mol. Plant 6 (3), 916–930. doi: 10.1093/mp/ssl117

González-Chertón, D., Cara, M. D., and Puente, A. (2013). AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vascular sorting. Mol. Plant 6 (3), 916–930. doi: 10.1093/mp/ssl117
Gao, H., Zhang, Y., Wang, W., Zhao, K., Liu, C., Bai, L., et al. (2017). Two membrane-anchored aspartic proteases contribute to pollen and ovule development. *Plant Physiol.* 174 (1), 219–229. doi: 10.1104/pp.16.01719

Geisler, M., Nadeau, J., and Sack, F. D. (2000). Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation. *Plant Cell* 12 (11), 2075–2086. doi: 10.1105/tpc.12.11.2075

Geisler, M., Yang, M., and Sack, F. D. (1998). Divergent regulation of stomatal initiation and pattering in organ and suborgan regions of the Arabidopsis mutants too many mouths and four lips. *Planta* 205 (4), 522–530. doi: 10.1007/s004250050351

Geldner, N., and Robatzek, S. (2008). Plant receptors go endosomal: a moving view on signal transduction. *Plant Physiol.* 147 (4), 1565–1574. doi: 10.1104/pp.108.120287

Gillmor, C. S., Lukowitz, W., Reinhardt, G., Sedbrook, J. C., Hamann, T., and Robatzek, S. (2008). The glycerophosphoryl diester phosphodiesterase-like proteins SHV1 and its homologs play important roles in cell wall organization. *Plant Cell* 20 (11), 3031–3040. doi: 10.1105/tpc.108.065353

Griffiths, J. S., Crepeau, M. J., Ralet, M. C., Seifert, G. J., and North, H. M. (2016). Direct hypothalamic cytokinin-binding riboswitches in Arabidopsis. *Proc. Natl. Acad. Sci. U. S. A.* 113 (53), 15087–15092. doi: 10.1073/pnas.1606188113

Guo, H., Nolan, T. M., Song, G., Liu, S., Xie, Z., Chen, J., et al. (2018). FERONIA gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. *Front. Plant Sci.* 9, 1087–1097. doi: 10.3389/fpls.2018.01087

Gunl, M., and Pauly, M. (2011). AXY3 encodes a alpha-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis. *Plant Physiol.* 156 (1), 83–100. doi: 10.1104/pp.110.165114

Harpaz-Saad, S., Western, T. L., and Kieber, J. J. (2012). The FEI2-SOS5 pathway negatively regulates light-induced stomatal opening by inhibiting protein that significantly affects grain yield. *Front. Plant Sci.* 3, 285–288. doi: 10.3389/fpls.2012.00251

Hou, Y., Guo, X., Cyprys, P., Zhang, Y., Bleckmann, A., Cai, L., et al. (2016). Maternal ENODs are required for pollen tube reception in Arabidopsis. *Curr. Biol.* 26 (17), 2343–2350. doi: 10.1016/j.cub.2016.06.053

Hwang, J. U., Jeon, B. W., Hong, D., and Lee, Y. (2011). Active ROP2 GTPase inhibits ABA- and CO2-induced stomatal closure. *Plant Cell Environ.* 34 (12), 2172–2182. doi: 10.1111/j.1365-3040.2011.02413.x

Ichikawa, M., Nakai, Y., Arima, K., Nishiyama, S., Hirano, T., and Sato, M. H. (2015). A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis. *Plant Signal. Behav.* 10 (3), e990847. doi: 10.4161/15592324.2014.990847

Ito, S., Suzuki, Y., Miyamoto, K., Ueda, J., and Yamaguchi, I. (2005). AtFLA11, a fasciclin-like arabinogalactan-protein, specifically localized in sclerchnema cells. *Biosci. Biotechnol. Biochem.* 69 (10), 1963–1969. doi: 10.1271/bbb.691963

Jakoby, M. J., Weinl, C., Pusch, S., Kuijt, S. I., Merkle, T., Dissmeyer, N., et al. (2006). Analysis of the subcellular localization, functional, and proteolytic control of the Arabidopsis cyclin-dependent kinase inhibitor ICK1/KRP1. *Plant Physiol.* 141 (4), 1293–1305. doi: 10.1104/tp.106.081406

Jeon, B. W., Hwang, J. U., Hwang, Y., Song, W. Y., Fu, Y., Gu, Y., et al. (2008). The Arabidopsis small G protein RO2 is activated by light in guard cells and controls light-induced stomatal opening. *Plant Cell* 20 (1), 75–87. doi: 10.1105/tpc.107.054544

Jeong, J. S., Lee, S., Bonkhofer, F., Tolley, J., Fukudome, A., Nagashima, Y., et al. (2018). Purification and characterization of Arabidopsis thaliana oligosaccharide transferase complexes from the native host: a protein super-expression system for structural studies. *Plant J.* 94 (1), 131–145. doi: 10.1111/1365-3102.13847

Ji, H., Wang, Y., Cloix, C., Li, K., Jenkins, G. I., Wang, S., et al. (2015). The Arabidopsis RCCI family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. *PLoS Genet.* 11 (9), e1005471. doi: 10.1371/journal.pgen.1005471

Johnson, K. L., Kibble, N. A., and Basic, A. (2011). Schultz CJ. A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, flat1, shows defects in shoot regeneration. *PLoS One* 6 (9), e25154. doi: 10.1371/journal.pone.0025154

Jolivet, P., Roux, E., D'Andrea, S., Davanture, M., Negroni, L., Zivy, M., et al. (2004). Protein composition of oil bodies in Arabidopsis thaliana ectotype WS. *Plant Physiol. Biochem.* 42 (6), 501–509. doi: 10.1016/j.plaphy.2004.04.006

Jones, M. A., Raymond, M. J., and Smirnoff, N. (2006). Analysis of the root-hair morphology transcriptome reveals the molecular identity of six genes with roles in root-hair development in Arabidopsis. *Plant J.* 45 (1), 83–100. doi: 10.1111/j.1365-313X.2005.02609.x

Jorda, L., Sopena-Torres, S., Escudero, V., Nunez-Corcuera, B., Delgado-Cerezo, M., Torri, K. U., et al. (2016). ERECTA and BAK1 receptor like kinases interact to regulate immune responses in Arabidopsis. *Front. Plant Sci.* 7, 897. doi: 10.3389/fpls.2016.00897

Kawagoe, K., Kitamura, D., Okabe, M., Tanouchi, I., Ikawa, M., Watanabe, T., et al. (1996). Glycosylphosphatidylinositol-anchor-deficient mice: implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. *Blood* 87 (9), 3600–3606.

Khan, J. A., Wang, Q., Sjolund, R. D., Schulz, A., and Thompson, G. A. (2007). An axr1 putative receptor-like protein that affects embryo development and clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. *Blood* 87 (9), 3600–3606.

Kim, J. H., Lee, S. B., Kim, H. J., Min, M. K., Hwang, I., and Suh, M. C. (2012). Expression profiling of the ROS scavenging and signal transduction pathways. *Exp. Mol. Med.* 44 (11), e25154. doi: 10.1371/journal.pone.0025154

Kinosita, T. (2014a). Enzymatic mechanism of GPI anchor attachment clarified. *Cell Cycle* 13 (12), 1838–1839. doi: 10.4161/cc.29379

Kinosita, T. (2014b). Biosynthesis and deficiencies of glycosylphosphatidylinositol. *Progr. Immunol.* 16 (5), 130–140. doi: 10.2183/piab.90.130

Kinosita, T., and Fujita, M. (2016). Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling. *J. Lipid Res.* 57 (1), 6–24. doi: 10.1194/jlr.R063313
Link, M., Rausch, T., and Greiner, S. (2004). In Arabidopsis thaliana, the invertase inhibitors AtCviF1 and 2 exhibit distinct target enzyme specificities and expression profiles. FEBS Lett. 573 (1–3), 105–109. doi: 10.1016/j.febslet.2004.07.062

Liu, Y., Huang, X., Li, M., He, P., and Zhang, Y. (2016). Loss-of-function of Arabidopsis receptor-like kinase BRI1 activates cell death and defense responses mediated by BAK1 and SOBIR1. New Phytol. 212 (3), 637–645. doi: 10.1111/nph.14072

Losada, J. M., and Herrero, M. (2019). Arabogalactan proteins mediate intercellular crosstalk in the ovule of apple flowers. Plant Reprod. 32, 291–305. doi: 10.1007/s00497-019-00370-z

Luo, H., Lyznik, L. A., Gidon, O., and Hodges, T. K. (2000). FLP-mediated recombination for use in hybrid plant production. Plant J. 23 (3), 423–430. doi: 10.1046/j.1365-313x.2000.00782.x

MacMillan, C. P., Mansfield, S. D., Stachurski, Z. H., Evans, R., and Southerton, S. G. (2010). Fasciclin-like arabogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. Plant J. 62 (4), 689–703. doi: 10.1111/j.1365-313X.2010.04181.x

Marzec, M., Szarejko, I., and Melzer, M. (2015). Arabogalactan proteins are involved in root hair development in barley. J. Exp. Bot. 66 (5), 1245–1257. doi: 10.1093/jxb/eru475

Membre, N., Bernier, F., Staiger, D., and Berna, A. (2000). Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Plant Physiol. 121 (3), 345–354. doi: 10.1109/25050000277

Meng, X., Chen, X., Mang, H., Liu, C., Yu, X., Gao, X., et al. (2015). Differential expression of Arabidopsis SORK family receptor-like kinases in stomatal patterning. J. Exp. Bot. 17 (30), 2361–2372. doi: 10.1017/jxb.2015.07.068

Meng, X., Wang, H., He, Y., Liu, Y., Walker, J. C., Torii, K. U., et al. (2012). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell 24 (12), 4948–4960. doi: 10.1105/tc.p.114.104695

Miyagawa-Yamaguchi, A., Kotani, N., and Honke, K. (2015). Each GPI-anchored protein species forms a specific lipid raft depending on its GPI attachment signal. Glycoconj. J. 32 (7), 531–540. doi: 10.1007/s10719-015-9595-5

Morsomme, P., Prescizotto-Baschong, C., and Riezman, H. (2003). The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J. Cell Biol. 162 (3), 403–412. doi: 10.1083/jcb.200212101

Motose, H., Sugiyama, M., and Fukuda, H. (2004). A proteoglycan mediates inductive interaction during plant vascular development. Nature 429 (6994), 873–878. doi: 10.1038/nature02613

Muller, K., Levesque-Tremblay, G., Bartels, S., Weibrecht, K., Wormit, A., Usadel, B., et al. (2013). Demethylesterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol. 161 (1), 305–316. doi: 10.1104/pp.112.205752

Muniz, M., and Zarzolo, C. (2014). Sorting of GPI-anchored proteins from yeast to mammals—common pathways at different sites? J. Cell Sci. 127 (Pt 13), 2793–2801. doi: 10.1242/jcs.140856

Murphy, E., Smith, S., and De Smet, I. (2012). Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. Plant Cell 24 (8), 3198–3217. doi: 10.1105/tc.p.112.099010

Muschietti, J. P., and Wengler, D. L. (2018). How many receptor-like kinases are required to operate a pollen tube.Curr. Opin. Plant Biol. 41, 73–82. doi: 10.1016/j.pbi.2017.09.008

Nerissian, A. M., Immoo, C., Hill, M. G., Hart, P. J., Williams, G., Herrmann, R. G., et al. (1998). Uclacyanins, stellacyanins and plantacyanins are distinct subfamilies of phytocyanins: plant-specific monomeric blue copper proteins. Protein Sci. 7 (9), 1915–1929. doi: 10.1021/pros.5560070907

Niu, E., Fang, S., Wang, X., and Guo, W. (2018). Ectopic expression of GhCOBL9A, a cotton glycosyl-phosphatidyl inositol-anchored protein encoding gene, promotes cell elongation, thickening and increased plant biomass in transgenic Arabidopsis. Mol. Genet. Genomics 293 (5), 1191–1204. doi: 10.1007/s00438-018-1452-3

Niu, E., Shang, X., Cheng, C., Bao, J., Zeng, Y., Cai, C., et al. (2015). Comprehensive analysis of the COBRA-Like (COBL) gene family in Gossypium identifies two COBLs potentially associated with fiber quality. PLoS One 10 (12), e0145725. doi: 10.1371/journal.pone.0145725

Orishishi, K., Tojo, H., Okawa, K., Tashima, Y., Morita, T., and Kondo, G. (2012). Mammalian carboxylesterase (CES) releases GPI-anchored proteins from the
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.