ON INTEGRATION IN BANACH SPACES AND TOTAL SETS

JOSÉ RODRÍGUEZ

Dedicated to the memory of Joe Diestel

Abstract. Let X be a Banach space and $\Gamma \subseteq X^*$ a total linear subspace. We study the concept of Γ-integrability for X-valued functions f defined on a complete probability space, i.e. an analogue of Pettis integrability by dealing only with the compositions $\langle x^*, f \rangle$ for $x^* \in \Gamma$. We show that Γ-integrability and Pettis integrability are equivalent whenever X has Plichko’s property (D') (meaning that every w^*-sequentially closed subspace of X^* is w^*-closed). This property is enjoyed by many Banach spaces including all spaces with w^*-angelic dual as well as all spaces which are w^*-sequentially dense in their bidual. A particular case of special interest arises when considering $\Gamma = T^*(Y^*)$ for some injective operator $T : X \to Y$. Within this framework, we show that if $T : X \to Y$ is a semi-embedding, X has property (D') and Y has the Radon-Nikodým property, then X has the weak Radon-Nikodým property. This extends earlier results by Delbaen (for separable X) and Diestel and Uhl (for weakly K-analytic X).

1. Introduction

A result attributed to Delbaen, which first appeared in a paper by Bourgain and Rosenthal (see [6, Theorem 1]), states that if $T : X \to Y$ is a semi-embedding between Banach spaces (i.e. an injective operator such that $T(B_X)$ is closed), X is separable and Y has the Radon-Nikodým property (RNP), then X has the RNP as well (cf. [7, Theorem 4.1.13]). That result was also known to be true if X is weakly K-analytic, see [14, footnote on p. 160]. No proof nor authorship info of that generalization was given in [14]. In our last email exchange I asked Prof. Joe Diestel about that and he told me:

"The result was realized as so, around the time that semi-embeddings were being properly appreciated, as almost immediate consequences of the more general notions of K-analyticity. Jerry and I understood what we understood thru Talagrand’s papers. So if attribution is the issue, it’s Talagrand’s fault!"

Loosely speaking, a key point to get such kind of results is to deduce the integrability of an X-valued function f from the integrability of the Y-valued composition $T \circ f$,

2010 Mathematics Subject Classification. 46B22, 46G10.

Key words and phrases. Pettis integral; Γ-integral; Radon-Nikodým property; weak Radon-Nikodým property; weakly Lindelöf determined Banach space; property (D'); semi-embedding.

Research supported by projects MTM2014-54182-P; MTM2017-86182-P (AEI/FEDER, UE) and 19275/P1/14 (Fundación Séneca).
which quite often reflects on the family of real-valued functions
\[\{y^*, T \circ f : y^* \in Y^*\} = \{x^*, f : x^* \in T^*(Y^*)\}, \]
i.e. the compositions of \(f \) with elements of the total linear subspace \(T^*(Y^*) \subseteq X^* \).

In this paper we study Pettis-type integration of Banach space valued functions with respect to a total linear subspace of the dual. Throughout \((\Omega, \Sigma, \nu)\) is a complete probability space and \(X \) is a Banach space. Let \(\Gamma \subseteq X^* \) be a total linear subspace and let \(f : \Omega \to X \) be a function. Following [28], \(f \) is said to be:

(i) \(\Gamma \)-scalarly integrable if \(\langle x^*, f \rangle \) is integrable for all \(x^* \in \Gamma \); (ii) \(\Gamma \)-integrable if it is \(\Gamma \)-scalarly integrable and for every \(A \in \Sigma \) there is an element \(\int_A f \, d\nu \in X \)
such that \(x^*(\int_A f \, d\nu) = \int_A \langle x^*, f \rangle \, d\nu \) for all \(x^* \in \Gamma \). This generalizes the classical Pettis and Gelfand integrals, which are obtained respectively when \(\Gamma = X^* \) or \(X \) is a dual space and \(\Gamma \) is the predual of \(X \). When does \(\Gamma \)-integrability imply Pettis integrability? Several authors addressed this question in the particular case of Gelfand integrability. For instance, Diestel and Faires (see [12, Corollary 1.3]) proved that Gelfand and Pettis integrability coincide for any strongly measurable function \(f : \Omega \to X^* \) whenever \(X^* \) contains no subspace isomorphic to \(\ell_\infty \), while Musiał (see [28, Theorem 4]) showed that one can give up strong measurability if the assumption on \(X \) is strengthened to being \(w^* \)-sequentially dense in \(X^{**} \). More recently, \(\Gamma \)-integrability has been studied in [2, 25] in connection with semigroups of operators.

This paper is organized as follows.

Section 2 contains some preliminaries on scalar measurability of Banach space valued functions and total sets. Special attention is paid to Banach spaces having Gulisashvili's property \((D)\) [22], i.e. those for which scalar measurability can be tested by using any total subset of the dual.

In Section 3 we analyze \(\Gamma \)-integrability and discuss its coincidence with Pettis integrability. We show (see Theorem 3.2) that this is the case whenever \(X \) has Plichko's property \((D')\) [32], which means that every \(w^* \)-sequentially closed subspace of \(X^* \) is \(w^* \)-closed. By the Banach-Dieudonné theorem, property \((D')\) is formally weaker than property \((E')\) of [27], which means that every \(w^* \)-sequentially closed convex bounded subset of \(X^* \) is \(w^* \)-closed. The class of Banach spaces having property \((E')\) includes those with \(w^* \)-angelic dual as well as all spaces which are \(w^* \)-sequentially dense in their bidual (see [1 Theorem 5.3]). On the other hand, we also study conditions ensuring the \(\Gamma \)-integrability of a \(\Gamma \)-scalarly integrable function. This is connected in a natural way to the Mazur property of \((\Gamma, w^*)\) and the completeness of the Mackey topology \(\mu(X, \Gamma) \) associated to the dual pair \((X, \Gamma) \), which have been topics of recent research in [3, 20, 21]. If \(X \) has property \((E')\) and \(\Gamma \) is norming, we prove that a function \(f : \Omega \to X \) is Pettis integrable whenever the family \(\{\langle x^*, f \rangle : x^* \in \Gamma \cap B_{X^*}\} \) is uniformly integrable (Theorem 3.7).

Finally, in Section 4 we focus on the interplay between the integrability of a function \(f : \Omega \to X \) and that of the composition \(T \circ f : \Omega \to Y \), where \(T \) is an injective operator from \(X \) to the Banach space \(Y \). We extend the aforementioned results of Delbaen, Diestel and Uhl by proving that if \(T \) is a semi-embedding, \(Y \) has the RNP.
and X has property (D'), then X has the weak Radon-Nikodým property (WRNP), see Theorem 4.8. In this statement, the RNP of X is guaranteed if the assumption on X is strengthened to being weakly Lindelöf determined (Corollary 4.12).

Notation and terminology. We refer to [7, 13] (resp. [29, 35]) for detailed information on vector measures and the RNP (resp. Pettis integrability and the WRNP). All our linear spaces are real. An operator between Banach spaces is a continuous linear map. By a subspace of a Banach space we mean a closed linear subspace. No closedness is assumed when we just talk about “linear subspaces”. We write $B_X = \{ x \in X : \|x\| \leq 1 \}$ (the closed unit ball of X). The topological dual of X is denoted by X^*. The evaluation of $x^* \in X^*$ at $x \in X$ is denoted by either $x^*(x)$ or $\langle x^*, x \rangle$. A set $\Gamma \subseteq X^*$ is total (over X) if it separates the points of X, i.e. for every $x \in X \setminus \{0\}$ there is $x^* \in \Gamma$ such that $x^*(x) \neq 0$. A linear subspace $\Gamma \subseteq X^*$ is said to be norming if the formula

$$|||x||| = \sup \{ x^*(x) : x^* \in \Gamma \cap B_{X^*} \}, \quad x \in X,$$

defines an equivalent norm on X. The weak topology on X and the weak * topology on X^* are denoted by w and w^*, respectively. Given another Banach space Z, we write $X \not\supseteq Z$ if X contains no subspace isomorphic to Z. The convex hull and the linear span of a set $D \subseteq X$ are denoted by $co(D)$ and $span(D)$, respectively. The Banach space X is said to be weakly Lindelöf determined (WLD) if (B_{X^*}, w^*) is a Corson compact, i.e. it is homeomorphic to a set $K \subset [-1,1]^I$ (for some non-empty set I), equipped with the product topology, in such a way that $\{ i \in I : k(i) \neq 0 \}$ is countable for every $k \in K$. Every weakly K-analytic (e.g. weakly compactly generated) Banach space is WLD, but the converse does not hold in general, see e.g. [23] for more information on WLD spaces. Finally, we recall that a locally convex Hausdorff space E is said to have the Mazur property if every sequentially continuous linear functional $\varphi : E \to \mathbb{R}$ is continuous.

2. Preliminaries on scalar measurability and total sets

Given any set $\Gamma \subseteq X^*$, we denote by $\sigma(\Gamma)$ the smallest σ-algebra on X for which each $x^* \in \Gamma$ is measurable (as a real-valued function on X). According to a result of Edgar (see [15, Theorem 2.3]), $\sigma(X^*)$ coincides with the Baire σ-algebra of (X,w), that is, $\sigma(X^*) = \text{Baire}(X,w)$ (cf. [29, Theorem 2.1]). The following Banach space property was introduced by Gulisashvili [22].

Definition 2.1. The Banach space X is said to have property (D) if the equality $\text{Baire}(X,w) = \sigma(\Gamma)$ holds for every total set $\Gamma \subseteq X^*$.

Equivalently, X has property (D) if and only if for every total set $\Gamma \subseteq X^*$ and every measurable space $(\tilde{\Omega}, \tilde{\Sigma})$ we have:

- a function $f : \tilde{\Omega} \to X$ is Γ-scalarly measurable (i.e. $\langle x^*, f \rangle$ is measurable for every $x^* \in \Gamma$) if and only if it is scalarly measurable (i.e. $\langle x^*, f \rangle$ is measurable for every $x^* \in X^*$).
Any Banach space with w^*-angelic dual has property (D), see [22, Theorem 1]. The converse fails in general: this is witnessed by the Johnson-Lindenstrauss space $JL_2(\mathcal{F})$ associated to any maximal almost disjoint family \mathcal{F} of infinite subsets of \mathbb{N} (see the introduction of [11] and the references therein). More generally, property (D') implies property (D), see [32, Proposition 12].

Lemma 2.2. If X has property (D), then any subspace of X has property (D).

Proof. Let $Y \subseteq X$ be a subspace. Given any set $\Gamma \subseteq Y^*$, for each $\gamma \in \Gamma$ we take $\tilde{\gamma} \in X^*$ such that $\tilde{\gamma}|_Y = \gamma$. Define $\tilde{\Gamma} := \{ \tilde{\gamma} : \gamma \in \Gamma \} \subseteq X^*$. The following three statements hold true without the additional assumption on X:

(i) $\text{Baire}(Y, w) = \{ Y \cap A : A \in \text{Baire}(X, w) \}$, as an application of the aforementioned result of Edgar (see e.g. [29, Corollary 2.2]).

(ii) $\sigma(\Gamma) = \{ Y \cap A : A \in \sigma(\tilde{\Gamma} \cup Y^\perp) \}$. Indeed, since every element of $\tilde{\Gamma} \cup Y^\perp$ is $\sigma(\Gamma)$-measurable when restricted to Y, the inclusion operator from Y into X is $\sigma(\Gamma)$-$\sigma(\tilde{\Gamma} \cup Y^\perp)$-measurable, that is, $A := \{ Y \cap A : A \in \sigma(\tilde{\Gamma} \cup Y^\perp) \} \subseteq \sigma(\Gamma)$.

On the other hand, A is a σ-algebra on Y for which every element of Γ is A-measurable, hence $\sigma(\Gamma) = A$.

(iii) If Γ is total (over Y), then $\tilde{\Gamma} \cup Y^\perp$ is total (over X). Indeed, just bear in mind that $Y^\perp \cap X = Y$ (by the Hahn-Banach separation theorem).

So, if X has property (D) and Γ is total, then (i), (ii) and (iii) ensure that $\text{Baire}(Y, w) = \sigma(\Gamma)$. This shows that Y has property (D). □

It is easy to check that any WLD Banach space has w^*-angelic dual (so it has property (D)). On the other hand, a non-trivial fact is that any WLD Banach space has a Markushevich basis (see e.g. [23, Theorem 5.37]). The following result might be compared with that of Vanderwerff, Whitfield and Zizler that a Banach space having a Markushevich basis and Corson’s property (C) is WLD (see [36, Theorem 3.3], cf. [23, Theorem 5.37]).

Proposition 2.3. If X has a Markushevich basis and property (D), then X is WLD.

Proof. Let $\{(x_i, x_i^*) : i \in I\} \subseteq X \times X^*$ be a Markushevich basis of X. Then $\{x_i^* : i \in I\}$ is total and property (D) ensures that $\text{Baire}(X, w) = \sigma(\{x_i^* : i \in I\})$. Take any $x^* \in X^*$. By [34, Lemma 3.5], there is a countable set $I_{x^*} \subseteq I$ such that $x^* \in \overline{\text{span}\{x_i^* : i \in I_{x^*}\}}^{w^*}$, hence $x^*(x_i) = 0$ for every $i \in I \setminus I_{x^*}$. This implies that X is WLD (see e.g. [23, Theorem 5.37]). □

Bearing in mind that $\ell_1(\omega_1)$ is not WLD, Lemma 2.2 and Proposition 2.3 yield the following known result (cf. [32, Lemma 11]).

Corollary 2.4. A Banach space having property (D) contains no subspace isomorphic to $\ell_1(\omega_1)$.

To the best of our knowledge, the next question remains open:
Question 2.5 (Gulisashvili, [22]). Is \((X^{**}, w^*)\) angelic whenever \(X^*\) has property \((D)\)?

This question has affirmative answer if \(X\) is separable (see [22, Theorem 2]). Indeed, the Odell-Rosenthal and Bourgain-Fremlin-Talagrand theorems ensure that \((X^{**}, w^*)\) is angelic whenever \(X\) is a separable Banach space such that \(X \not\supseteq \ell^1\) (see e.g. [35, Theorem 4.1]). On the other hand, property \((D)\) of \(X^*\) implies that \(X \not\supseteq \ell^1\), even for a non-separable \(X\). Indeed, this follows from the following result (see [34, Proposition 3.9]):

Fact 2.6. Let us consider the following statements:

(i) \(X^*\) has property \((D)\).

(ii) Baire\((X^*, w) = \sigma(X)\).

(iii) \(X\) is \(w^*\)-sequentially dense in \(X^{**}\).

(iv) \(X \not\supseteq \ell^1\).

Then (i) \(\Rightarrow\) (ii) \(\Leftrightarrow\) (iii) \(\Rightarrow\) (iv).

It is known that \(X^*\) is WLD if and only if \(X\) is Asplund and \(X\) is \(w^*\)-sequentially dense in \(X^{**}\), see [10, Theorem III-4, Remarks III-6] and [31, Corollary 8]. Recall that \(X\) is said to be Asplund if every subspace of \(X\) has separable dual or, equivalently, \(X^*\) has the RNP (see e.g. [13, p. 198]). Therefore, Question 2.5 has affirmative answer for Asplund spaces:

Corollary 2.7. If \(X\) is Asplund and \(X^*\) has property \((D)\), then \(X^*\) is WLD.

In particular, since a Banach lattice is Asplund if (and only if) it contains no subspace isomorphic to \(\ell_1\) (see [13, p. 95] and [19, Theorem 7]), we have:

Corollary 2.8. If \(X\) is a Banach lattice and \(X^*\) has property \((D)\), then \(X^*\) is WLD.

3. Integration and total sets

Throughout this section \(\Gamma \subseteq X^*\) is a total linear subspace. Given a function \(f : \Omega \to X\), we write

\[Z_{f,D} := \{ \langle x^*, f \rangle : x^* \in D \} \]

for any set \(D \subseteq X^*\). Note that if \(f\) is \(\Gamma\)-integrable, then the map

\[I_f : \Sigma \to X, \quad I_f(A) := \int_A f \, d\nu, \]

is a finitely additive vector measure vanishing on \(\nu\)-null sets. It is countably additive (and it is called the indefinite Pettis integral of \(f\)) in the particular case \(\Gamma = X^*\).

Statement (i) of our next lemma is an application of a classical result of Diestel and Faires [12], while part (iii) is similar to [9, Lemma 3.1]. Recall first that a set \(H \subseteq L_1(\nu)\) is called uniformly integrable if it is bounded and for every \(\varepsilon > 0\) there is \(\delta > 0\) such that \(\sup_{h \in H} \int_A |h| \, d\nu \leq \varepsilon\) for every \(A \in \Sigma\) with \(\nu(A) \leq \delta\).

Lemma 3.1. Let \(f : \Omega \to X\) be a \(\Gamma\)-integrable function.

(i) If \(X \not\supseteq \ell_\infty\), then \(I_f\) is countably additive.
(ii) If I_f is countably additive, then $Z_{f,\Gamma\cap B_X^*}$ is uniformly integrable.
(iii) If I_f is countably additive and there is a partition $\Omega = \bigcup_{n\in\mathbb{N}} A_n$ into countably many measurable sets such that each restriction $f|_{A_n}$ is Pettis integrable, then f is Pettis integrable.

Proof. (i) follows from [12, Theorem 1.1] (cf. [13, p. 23, Corollary 7]).
(ii) Since I_f is countably additive, it is bounded and $\lim_{\nu(A)\to 0} \|I_f\|(A) = 0$, where $\|I_f\|(\cdot)$ denotes the semivariation of I_f (see e.g. [13, p. 10, Theorem 1]).

Now, the uniform integrability of $Z_{f,\Gamma\cap B_X^*}$ follows from the inequality

$$\sup_{x^*\in \Gamma\cap B_X^*} \int_A |\langle x^*, f \rangle|\,d\nu \leq \|I_f\|(A) \quad \text{for all } A \in \Sigma.$$

(iii) We write $\Sigma_A := \{B \cap A : B \in \Sigma\}$ for every $A \in \Sigma$. Clearly, f is scalarly measurable. We first prove that f is scalarly integrable. Fix $x^* \in X^*$. Take any $N \in \mathbb{N}$ and set $B_N := \bigcup_{n=1}^N A_n$. Note that $f|_{B_N}$ is Pettis integrable and its indefinite Pettis integral coincides with I_f on Σ_{B_N}. Hence

$$\int_{B_N} |\langle x^*, f \rangle|\,d\nu \leq \|I_f\|(B_N) \leq \|I_f\|{\Omega} < \infty.$$

As $N \in \mathbb{N}$ is arbitrary, $\langle x^*, f \rangle$ is integrable. This shows that f is scalarly integrable.

Fix $E \in \Sigma$. Since I_f is countably additive, the series $\sum_{n\in\mathbb{N}} I_f(E \cap A_n)$ is unconditionally convergent in X and for each $x^* \in X^*$ we have

$$x^* \left(\sum_{n\in\mathbb{N}} I_f(E \cap A_n) \right) = \sum_{n\in\mathbb{N}} x^* \left(I_f(E \cap A_n) \right) \overset{(\ast)}{=}= \sum_{n\in\mathbb{N}} \int_{E \cap A_n} \langle x^*, f \rangle\,d\nu = \int_E \langle x^*, f \rangle\,d\nu,$$

where equality (\ast) holds because $I_f|_{\Sigma_{A_n}}$ is the indefinite Pettis integral of $f|_{A_n}$ for every $n \in \mathbb{N}$. This proves that f is Pettis integrable. \hfill \square

The Banach space X is said to have the ν-Pettis Integral Property (ν-PIP) if every scalarly measurable and scalarly bounded function $f : \Omega \to X$ is Pettis integrable. Recall that a function $f : \Omega \to X$ is called scalarly bounded if there is a constant $c > 0$ such that for each $x^* \in X^*$ we have $|\langle x^*, f \rangle| \leq c\|x^*\| \nu$-a.e. (the exceptional set depending on x^*). A Banach space is said to have the PIP if it has the ν-PIP with respect to any complete probability measure ν. In general:

X has property $(D') \Rightarrow (X^*, w^*)$ has the Mazur property \Rightarrow X has the PIP.

Indeed, the first implication is easy to check, while the second one goes back to [10] (cf. Theorem 3.7(i) below).

Theorem 3.2. Suppose X has property (D'). Then every Γ-integrable function $f : \Omega \to X$ is Pettis integrable.

Proof. Since X has property (D), f is scalarly measurable. Then there is a partition $\Omega = \bigcup_{n\in\mathbb{N}} A_n$ into countably many measurable sets such that $f|_{A_n}$ is scalarly bounded for every $n \in \mathbb{N}$ (see e.g. [29, Proposition 3.1]). On the other hand, X has the PIP according to the comments preceding the theorem. Therefore, each $f|_{A_n}$ is Pettis integrable. Bearing in mind that a Banach space having property (D) cannot contain subspaces isomorphic to ℓ_∞ (by Corollary 2.3 and the fact that $\ell_1(c)$ embeds
isomorphically into ℓ_∞), an appeal to Lemma 3.1 allows us to conclude that f is Pettis integrable. \hfill \square

Remark 3.3. From the proof of Theorem 3.2 it follows that the result still holds true if X has property (D) and the ν-PIP. There exist Banach spaces having the PIP but failing property (D), like $\ell_1(\omega_1)$ (see [10] Theorem 5.10, cf. [29] Proposition 7.2). However, we do not know an example of a Banach space having property (D) but failing the PIP.

Question 3.4. Does property (D) imply the PIP?

The previous question has affirmative answer for dual spaces. Indeed, if X^* has property (D), then X is w^*-sequentially dense in X^{**} (Fact 2.6) and so (X^{**}, w^*) has the Mazur property, as it can be easily checked. As a consequence:

Corollary 3.5. Suppose X^* has property (D) and let $\tilde{\Gamma} \subseteq X^{**}$ be a total linear subspace. Then every $\tilde{\Gamma}$-integrable function $f : \Omega \to X^*$ is Pettis integrable.

Given any set $D \subseteq X^*$, we denote by $S_1(D) \subseteq X^*$ the set of all limits of w^*-convergent sequences contained in D. More generally, for any ordinal $\alpha \leq \omega_1$, the α-th w^*-sequential closure $S_\alpha(D)$ is defined by transfinite induction as follows: $S_0(D) := D$, $S_\alpha(D) := S_1(S_\beta(D))$ if $\alpha = \beta + 1$ and $S_\alpha(D) := \bigcup_{\beta<\alpha} S_\beta(D)$ if α is a limit ordinal. Then $S_\alpha(D)$ is the smallest w^*-sequentially closed subset of X^* containing D. Clearly, the Banach space X has property (D') (resp. (\mathcal{E}')) if and only if $S_\alpha(D) = \overline{D}^{w^*}$ for every subspace (resp. convex bounded set) $D \subseteq X^*$.

Lemma 3.6. Let $f : \Omega \to X$ be a Γ-scalarly integrable function. For each $A \in \Sigma$, let $\varphi_{f, A} : \Gamma \to \mathbb{R}$ be the linear functional defined by

$$\varphi_{f, A}(x^*) := \int_A \langle x^*, f \rangle \, d\nu \quad \text{for all } x^* \in \Gamma.$$

The following statements hold:

(i) f is Γ-integrable if and only if $\varphi_{f, A}$ is w^*-continuous for every $A \in \Sigma$.

(ii) Let $D \subseteq \Gamma$. If $Z_{f, D}$ is uniformly integrable, then:

(ii.1) $\varphi_{f, A}$ is w^*-sequentially continuous on D for every $A \in \Sigma$;

(ii.2) $Z_{f, S_\omega(D)}$ is a uniformly integrable subset of $L_1(\nu)$.

Proof. (i) The “only if” part is obvious, while the “if” part follows from the fact that any w^*-continuous linear functional $\varphi : \Gamma \to \mathbb{R}$ is induced by some $x \in X$ via the formula $\varphi(x^*) = \langle x, x^* \rangle$ for all $x^* \in \Gamma$ (see e.g. [24] §10.4).

(ii.1) Let $(x_n^*)_{n \in \mathbb{N}}$ be a sequence in D which w^*-converges to some $x^* \in D$. Then $(\langle x_n^*, f \rangle)_{n \in \mathbb{N}}$ is uniformly integrable and $\lim_{n \to \infty} \langle x_n^*, f \rangle = \langle x^*, f \rangle$ pointwise on Ω. By Vitali’s convergence theorem, we have $\lim_{n \to \infty} \|\langle x_n^*, f \rangle - \langle x^*, f \rangle\|_{L_1(\nu)} = 0$. Hence, $\lim_{n \to \infty} \varphi_{f, A}(x_n^*) = \varphi_{f, A}(x^*)$ for every $A \in \Sigma$.

(ii.2) Fix $c > 0$ such that $Z_{f, D} \subseteq cB_{L_1(\nu)}$ and a function $\delta : (0, \infty) \to (0, \infty)$ such that

$$\sup_{A \in \Sigma} \sup_{\nu(A) \leq \delta(c)} \sup_{x^* \in D} \int_A \|\langle x^*, f \rangle\| \, d\nu \leq \varepsilon \quad \text{for every } \varepsilon > 0.$$
We will prove, by transfinite induction, that for each $\alpha \leq \omega_1$ we have

\[(p_\alpha) \quad Z_{f,S_\alpha(D)} \subseteq cB_{L_1(\nu)} \quad \text{and} \quad (q_\alpha) \quad \sup_{A \in \Sigma} \sup_{x^* \in S_\alpha(D)} \int_A |\langle x^*, f \rangle| \, d\nu \leq \varepsilon \quad \text{for every } \varepsilon > 0.\]

The case $\alpha = 0$ is obvious. Suppose now that $0 < \alpha \leq \omega_1$ and that (p_β) and (q_β) hold true for every $\beta < \alpha$. If α is a limit, then $S_\alpha(D) = \bigcup_{\beta<\alpha} S_\beta(D)$ and so (p_α) and (q_α) also hold. Suppose on the contrary that $\alpha = \beta + 1$. Fix an arbitrary $x^* \in S_\alpha(D) = S_1(S_\beta(D))$. Then there is a sequence $(x^*_n)_{n \in \mathbb{N}}$ in $S_\beta(D)$ which w^*-converges to x^*, hence $\lim_{n \to \infty} \langle x^*_n, f \rangle = \langle x^*, f \rangle$ pointwise on Ω. Since $Z_{f,S_\beta(D)}$ is uniformly integrable (by (p_β) and (q_β)), we can apply Vitali’s convergence theorem to conclude that $\langle x^*, f \rangle \in L_1(\nu)$ and $\lim_{n \to \infty} \|\langle x^*_n, f \rangle - \langle x^*, f \rangle\|_{L_1(\nu)} = 0$. Clearly, this shows that (p_α) and (q_α) hold.

Theorem 3.7. Let $f : \Omega \to X$ be a Γ-scalarly integrable function such that $Z_{f,\Gamma \cap B_X^*}$ is uniformly integrable.

(i) If (Γ, w^*) has the Mazur property, then f is Γ-integrable.

(ii) If X has property (\mathcal{E}') and Γ is norming, then f is Pettis integrable.

Proof. (i) follows at once from Lemma 3.6.

(ii) The fact that Γ is norming is equivalent to saying that $\overline{\Gamma \cap B_X^{w^*}} \supseteq cB_{X^*}$ for some $c > 0$ (by the Hahn-Banach separation theorem). Since X has property (\mathcal{E}'), we have $S_{\omega_1}(\Gamma \cap B_X^{w^*}) = \overline{\Gamma \cap B_X^{w^*}} \supseteq cB_{X^*}$. An appeal to Lemma 3.6(ii.2) ensures that f is scalarly integrable and Z_{f,B_X^*} is uniformly integrable. Since (X^*, w^*) has the Mazur property (by property (\mathcal{D}') of X), statement (i) (applied to $\Gamma = X^*$) implies that f is Pettis integrable.

Remark 3.8. Theorem 3.7(ii) generalizes an earlier analogous result for spaces with w^*-anglic dual, see [9] pp. 551–552.

The Mackey topology $\mu(X, \Gamma)$ is defined as the (locally convex Hausdorff) topology on X of uniform convergence on absolutely convex w^*-compact subsets of Γ. When Γ is norm-closed, $(X, \mu(X, \Gamma))$ is complete if (and only if) it is quasi-complete (see e.g. [3]). This completeness assumption was used by Kunze [25] to find conditions ensuring the Γ-integrability of a Γ-scalarly integrable function provided that Γ is norming and norm-closed. After Kunze’s work, the completeness of $(X, \mu(X, \Gamma))$ has been discussed in [3] [5] [20] [21]. For instance, $(X, \mu(X, \Gamma))$ is complete whenever (X^*, w^*) is angelic and Γ is norming and norm-closed (see [21] Theorem 4)). There is also a connection between the completeness of $(X, \mu(X, \Gamma))$ and the Mazur property of (Γ, w^*), see [21].

The following result is a refinement of [25] Theorem 4.4. We denote by $\sigma(X, \Gamma)$ the (locally convex Hausdorff) topology on X of pointwise convergence on Γ.

Theorem 3.9. Suppose $(X, \mu(X, \Gamma))$ is complete. Let $f : \Omega \to X$ be a Γ-scalarly integrable function such that $Z_{f,\Gamma \cap B_X^*}$ is uniformly integrable and there is a $\sigma(X, \Gamma)$-separable linear subspace $X_0 \subseteq X$ such that $f(\omega) \in X_0$ for μ-a.e. $\omega \in \Omega$. Then f is Γ-integrable.
To deal with Theorem 3.9 we need the following folk lemma:

Lemma 3.10. If X is $\sigma(X,\Gamma)$-separable, then every w^*-compact subset of Γ is w^*-metrizable.

Proof. Let $(x_n)_{n \in \mathbb{N}}$ be a $\sigma(X,\Gamma)$-dense sequence in X. The map

$$\Gamma \ni x^* \mapsto (x^*(x_n))_{n \in \mathbb{N}} \in \mathbb{R}^\mathbb{N}$$

is (w^*-pointwise)-continuous and injective. Hence any w^*-compact subset of Γ is homeomorphic to a (compact) subset of the metrizable topological space $\mathbb{R}^\mathbb{N}$. □

Proof of Theorem 3.9. We will prove that f is Γ-integrable by checking that $\varphi_{f,A}$ is w^*-continuous for every $A \in \Sigma$ (see Lemma 3.6(i)).

Note that $X_1 := X_0 \sigma(X,\Gamma)$ is a subspace of X. We denote by $r : X^* \to X_1^*$ the restriction operator, i.e. $r(x^*) := x^*|_{X_1}$ for all $x^* \in X^*$. Then

$$\Gamma_1 := r(\Gamma) = \{x^*|_{X_1} : x^* \in \Gamma\} \subseteq X_1^*$$

is a total linear subspace (over X_1). Of course, we can assume without loss of generality that $f(\Omega) \subseteq X_1$, so f can be seen as an X_1-valued Γ_1-scalarly integrable function.

Fix $A \in \Sigma$. Since $(X,\mu(X,\Gamma))$ is complete, in order to check that $\varphi := \varphi_{f,A}$ is w^*-continuous it suffices to show that the restriction $\varphi|_K$ is w^*-continuous for each absolutely convex w^*-compact set $K \subseteq \Gamma$ (see e.g. [21, §21.9]). Since r is (w^*-w^*)-continuous, $r(K)$ is a w^*-compact subset of Γ_1. Note that $\varphi|_K$ factors as

$$\begin{array}{ccc}
K & \xrightarrow{\varphi|_K} & \mathbb{R} \\
\downarrow{r|_K} & & \downarrow{\psi} \\
r(K) & & \\
\end{array}$$

where $\psi(y^*) := \int_A \langle y^*, f \rangle \, d\nu$ for all $y^* \in r(K)$. Observe that $Z_{f,K}$ is uniformly integrable (because K is a bounded subset of Γ and $Z_{f,\Gamma \cap B_X}$ is uniformly integrable). From Lemma 3.6(ii.1) (applied to f as an X_1-valued Γ_1-scalarly integrable function and $D = r(K)$) it follows that ψ is w^*-sequentially continuous on $r(K)$. Since $r(K)$ is w^*-metrizable (bear in mind the $\sigma(X_1,\Gamma_1)$-separability of X_1 and Lemma 3.10), we conclude that ψ is w^*-continuous, and so is $\varphi|_K$. The proof is finished. □

4. Integration and operators

Throughout this section Y is a Banach space. Any operator $T : X \to Y$ is $(\text{Baire}(X,w)\text{-Baire}(Y,w))$-measurable, in the sense that $T^{-1}(B) \in \text{Baire}(X,w)$ for every $B \in \text{Baire}(Y,w)$. In fact, we have the following lemma, whose proof is included for the sake of completeness.

Lemma 4.1. Let $T : X \to Y$ be an operator. Then

$$\sigma(T^*(Y^*)) = \{T^{-1}(B) : B \in \text{Baire}(Y,w)\}.$$
Proof. Note that $A := \{ T^{-1}(B) : B \in \text{Baire}(Y,w) \}$ is a σ-algebra on X. Since $T^*(y^*) = y^* \circ T : X \to \mathbb{R}$ is A-measurable for every $y^* \in Y^*$, the inclusion $\sigma(T^*(Y^*)) \subseteq A$ holds. On the other hand, define
$$B := \{ B \in \text{Baire}(Y,w) : T^{-1}(B) \in \sigma(T^*(Y^*)) \},$$
which is clearly a σ-algebra on Y. Since each $y^* \in Y^*$ is B-measurable, we have $\text{Baire}(Y,w) = B$ and so $\sigma(T^*(Y^*)) = A$. □

Corollary 4.2. Let $T : X \to Y$ be an operator. The following statements are equivalent:

(i) $\text{Baire}(X,w) = \{ T^{-1}(B) : B \in \text{Baire}(Y,w) \}$.

(ii) For every measurable space $(\tilde{\Omega}, \tilde{\Sigma})$ and every function $f : \tilde{\Omega} \to X$ we have: f is scalarly measurable if (and only if) $T \circ f$ is scalarly measurable.

An injective operator satisfying the statements of Corollary 4.2 is said to be a weak Baire embedding. This concept was considered by Andrews [11, p. 152] in the particular case of adjoint operators. Plainly, if $T : X \to Y$ is an injective operator, then $T^*(Y^*)$ is a total linear subspace of X^*. Therefore:

Corollary 4.3. If X has property (D), then every injective operator $T : X \to Y$ is a weak Baire embedding.

As to strong measurability, in [11, Proposition 4.3(ii)] it was shown that if X is WLD and $T : X \to Y$ is an injective operator, then a function $f : \Omega \to X$ is strongly measurable if (and only if) $T \circ f$ is strongly measurable. The following proposition extends that result:

Proposition 4.4. Suppose X is weakly measure-compact and has property (D). Let $T : X \to Y$ be an injective operator and let $f : \Omega \to X$ be a function. If $T \circ f$ is strongly measurable, then so is f.

Recall that the Banach space X is said to be weakly measure-compact if every probability measure P on $\text{Baire}(X,w)$ is τ-smooth, i.e. for any net $h_\alpha : X \to \mathbb{R}$ of bounded weakly continuous functions which pointwise decreases to 0, we have $\lim \alpha \int_X h_\alpha \, dP = 0$. Every weakly Lindelöf (e.g. WLD) Banach space is weakly measure-compact, see [15, Section 4].

Proof of Proposition 4.4. By Corollary 4.2 f is scalarly measurable. Since X is weakly measure-compact, a result of Edgar (see [13, Proposition 5.4], cf. [29, Theorem 3.3]) ensures that f is scalarly equivalent to a strongly measurable function $f_0 : \Omega \to X$. Scalar equivalence means that for each $x^* \in X^*$ we have $\langle x^*, f \rangle = \langle x^*, f_0 \rangle$ ν-a.e. (the exceptional set depending on x^*). Note that $T \circ f$ and $T \circ f_0$ are scalarly equivalent and strongly measurable, hence $T \circ f = T \circ f_0$ ν-a.e. The injectivity of T implies that $f = f_0$ ν-a.e., so that f is strongly measurable. □

Remark 4.5. The class of weakly measure-compact Banach spaces having property (D) is strictly larger than that of WLD spaces. Indeed, there are compact Hausdorff topological spaces K with the following properties:
(i) K is scattered of height 3,
(ii) $C(K)$ is weakly Lindelöf,
(iii) K is not Corson,
see [33] (cf. [18]). Condition (i) implies that $(B_{C(K)′}, w^*)$ is sequential (see [27]
Theorem 3.2]), thus $C(K)$ has property $(E′)$ and so property (D). (ii) implies that
$C(K)$ is weakly measure-compact. On the other hand, $C(K)$ is not WLD by (iii).

Obviously, if $T : X \to Y$ is an injective operator and the function $f : \Omega \to X$
is $T^*(Y^*)$-integrable, then $T \circ f$ is Pettis integrable. In the opposite direction, we
have the following result:

Proposition 4.6. Let $T : X \to Y$ be a semi-embedding and let $f : \Omega \to X$ be a
function for which there is a constant $c > 0$ such that, for each $y^* \in Y^*$, we have

$$|(T^*(y^*), f)| \leq c\|T^*(y^*)\| \nu\text{-a.e.}$$

(4.1)

If $T \circ f$ is Pettis integrable, then f is $T^*(Y^*)$-integrable.

Proof. Since T is a semi-embedding, $T(cB_X)$ is closed. We claim that

$$\frac{1}{\nu(A)} \int_A T \circ f \, d\nu \in T(cB_X)$$

for every $A \in \Sigma$ with $\nu(A) > 0$. Indeed, suppose this is not the case. Then the
Hahn-Banach separation theorem ensures the existence of some $y^* \in Y^*$ such that

$$\frac{1}{\nu(A)} \int_A \langle y^*, T \circ f \rangle \, d\nu = y^*\left(\frac{1}{\nu(A)} \int_A T \circ f \, d\nu\right) > \sup_{x \in B_X} y^*(T(cx)) = c\|T^*(y^*)\|.$$

But, on the other hand, we have

$$\frac{1}{\nu(A)} \int_A \langle y^*, T \circ f \rangle \, d\nu = \frac{1}{\nu(A)} \int_A \langle T^*(y^*), f \rangle \, d\nu \overset{(4.1)}{\leq} c\|T^*(y^*)\|,$$

which is a contradiction. This proves (4.2). Therefore, $\int_A T \circ f \, d\nu \in T(X)$ for every
$A \in \Sigma$, which clearly implies that f is $T^*(Y^*)$-integrable.

Remark 4.7. Let $T : X \to Y$ be a tauberian operator (i.e. $(T^{**})^{-1}(Y) = X$).
In this case, the argument of [17] Proposition 8] shows that a scalarly measurable and
scalarly bounded function $f : \Omega \to X$ is Pettis integrable whenever $T \circ f$ is Pettis
integrable. We stress that an operator $T : X \to Y$ is injective and tauberian if and
only if the restriction $T|_Z$ is a semi-embedding for every subspace $Z \subseteq X$, see [30].

We arrive at the main result of this section:

Theorem 4.8. Let $T : X \to Y$ be a semi-embedding. If X has property $(D′)$ and
Y has the ν-RNP, then X has the ν-WRNP.

Proof. Let $I : \Sigma \to X$ be a countably additive vector measure of σ-finite variation
such that $I(A) = 0$ for every $A \in \Sigma$ with $\nu(A) = 0$. We will prove the existence of a
Pettis integrable function $f : \Omega \to X$ such that $I(A) = \int_A f \, d\nu$ for all $A \in \Sigma$.
We can assume without loss of generality that there is a constant $c > 0$ such that
$\|I(A)\| \leq c\nu(A)$ for every $A \in \Sigma$ (see e.g. [35] proof of Lemma 5.9)).
Define
\[\tilde{I} : \Sigma \to Y, \quad \tilde{I}(A) := T(I(A)) \]
so that \(\tilde{I} \) is a countably additive vector measure satisfying \(\|\tilde{I}(A)\| \leq \|T\|c\nu(A) \) for every \(A \in \Sigma \). Since \(Y \) has the \(\nu \)-RNP, there is a Bochner integrable function \(g : \Omega \to Y \) such that
\[(4.3) \quad T(I(A)) = \tilde{I}(A) = \int_A g \, d\nu \quad \text{for all} \quad A \in \Sigma. \]
The Bochner integrability of \(g \) implies that
\[g(\omega) \in H := \left\{ \frac{1}{\nu(A)} \int_A g \, d\nu : A \in \Sigma, \nu(A) > 0 \right\}^{\|\cdot\|} \quad \text{for} \quad \nu \text{-a.e.} \ \omega \in \Omega, \]
see e.g. [26, Lemma 4.3] (cf. [8, Lemma 3.7]), so we can assume without loss of generality that \(g(\Omega) \subseteq H \). On the other hand, (4.3) yields
\[H \subseteq T(cB_X)^{\|\cdot\|} = T(cB_X), \]
where the equality holds because \(T \) is a semi-embedding. Hence \(g(\Omega) \subseteq T(cB_X) \), so there is a function \(f : \Omega \to cB_X \) such that \(T \circ f = g \).

We claim that \(f \) is Pettis integrable. Indeed, \(f \) is \(T^*(Y^*) \)-integrable by Proposition 4.6. Bearing in mind that \(X \) has property \((D') \), an appeal to Theorem 3.2 ensures that \(f \) is Pettis integrable. Since \(T \) is injective and
\[T\left(\int_A f \, d\nu \right) = \int_A T \circ f \, d\nu = \int_A g \, d\nu \overset{\text{4.3}}{=} T(I(A)) \quad \text{for all} \quad A \in \Sigma, \]
we have \(\int_A f \, d\nu = I(A) \) for every \(A \in \Sigma \). This proves that \(X \) has the \(\nu \)-WRNP. \(\square \)

Remark 4.9. In the previous proof, an alternative way to check the Pettis integrability of \(f \) is as follows. Since \(f \) is \(T^*(Y^*) \)-scalarly measurable and \(X \) has property \((D') \), \(f \) is scalarly measurable. On the other hand, \(f \) is bounded, hence the \(\nu \)-PIP of \(X \) ensures that \(f \) is Pettis integrable.

At this point it is convenient to recall that the RNP (resp. WRNP) is equivalent to the \(\lambda \)-RNP (resp. \(\lambda \)-WRNP), where \(\lambda \) is the Lebesgue measure on \([0,1] \), see e.g. [13, p. 138, Corollary 8] (resp. [29, Theorem 11.3]).

Remark 4.10. The conclusion of Theorem 4.8 might fail if \(Y \) is only assumed to have the WRNP. Indeed, let \(Y \) be any Banach space having the WRNP but failing the RNP (e.g. \(Y = JT^* \), where \(JT \) is the James tree space). Since the RNP is a separably determined property (see e.g. [13, p. 81, Theorem 2]), there is a separable subspace \(X \subseteq Y \) without the RNP. Then \(X \) has property \((D') \) and the inclusion operator from \(X \) into \(Y \) is a semi-embedding, but \(X \) fails the WRNP (which is equivalent to the RNP for separable Banach spaces).

Remark 4.11. Theorem 4.8 cannot be improved by replacing the WRNP of \(X \) by the RNP, even if \(X \) has \(w^* \)-angelic dual. Indeed, let \(Z \) be a separable Banach space not containing subspaces isomorphic to \(\ell_1 \) such that \(X := Z^* \) is not separable (e.g. \(Z = JT \)). Then \((X^*, w^*) \) is angelic (as we already pointed out in Section 2),
X fails the RNP and there is a semi-embedding $T : X \to \ell_2$ (because X is the dual of a separable Banach space, see e.g. [7 Lemma 4.1.12]).

The ν-WRNP and the ν-RNP are equivalent for weakly measure-compact Banach spaces (thanks to [15 Proposition 5.4]). Since every WLD Banach space is weakly measure-compact and has property (D'), from Theorem 4.8 we get:

Corollary 4.12. Let $T : X \to Y$ be a semi-embedding. If X is WLD and Y has the ν-RNP, then X has the ν-RNP.

Acknowledgements. The author wishes to thank A. Avilés, A.J. Guirao and G. Martínez-Cervantes for valuable discussions related to the topic of this paper.

References

[1] K. T. Andrews, *Universal Pettis integrability*, Canad. J. Math. 37 (1985), no. 1, 141–159.
[2] G. Androulakis and M. Ziemke, *The closedness of the generator of a semigroup*, Semigroup Forum 93 (2016), no. 3, 589–606.
[3] A. J. Guirao, G. Martínez-Cervantes, and J. Rodríguez, *Completeness in the Mackey topology of a norming dual pair*, in preparation.
[4] A. Avilés, G. Martínez-Cervantes, and J. Rodríguez, *Weak*-sequential properties of Johnson-Lindenstrauss spaces, preprint, [arXiv:1804.10350](https://arxiv.org/abs/1804.10350).
[5] J. Bonet and B. Cascales, *Noncomplete Mackey topologies on Banach spaces*, Bull. Aust. Math. Soc. 81 (2010), no. 3, 409–413.
[6] J. Bourgain and H. P. Rosenthal, *Applications of the theory of semi-embeddings to Banach space theory*, J. Funct. Anal. 52 (1983), no. 2, 149–188.
[7] R. D. Bourgin, *Geometric aspects of convex sets with the Radon-Nikodým property*, Lecture Notes in Mathematics, vol. 993, Springer-Verlag, Berlin, 1983.
[8] B. Cascales, V. Kadets, and J. Rodríguez, *Radon-Nikodým theorems for multimeasures in non-separable spaces*, Zh. Mat. Fiz. Anal. Geom. 9 (2013), no. 1, 7–24.
[9] B. Cascales and J. Rodríguez, *Birkhoff integral for multi-valued functions*, J. Math. Anal. Appl. 297 (2004), no. 2, 540–560.
[10] R. Deville and G. Godefroy, *Some applications of projective resolutions of identity*, Proc. London Math. Soc. (3) 67 (1993), no. 1, 183–199.
[11] R. Deville and J. Rodríguez, *Integration in Hilbert generated Banach spaces*, Israel J. Math. 177 (2010), 285–306.
[12] J. Diestel and B. Faires, *On vector measures*, Trans. Amer. Math. Soc. 198 (1974), 253–271.
[13] J. Diestel and J. J. Uhl, Jr., *Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977.
[14] J. Diestel and J. J. Uhl, Jr., *Progress in vector measures—1977–83*, Measure theory and its applications (Sherbrooke, Que., 1982), Lecture Notes in Math., vol. 1033, Springer, Berlin, 1983, pp. 144–192.
[15] G. A. Edgar, *Measurability in a Banach space*, Indiana Univ. Math. J. 26 (1977), no. 4, 663–677.
[16] G. A. Edgar, *Measurability in a Banach space. II*, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579.
[17] G. A. Edgar, *An ordering for the Banach spaces*, Pacific J. Math. 108 (1983), no. 1, 83–98.
[18] J. Ferrer, P. Koszmider, and W. Kubiś, *Almost disjoint families of countable sets and separable complementation properties*, J. Math. Anal. Appl. 401 (2013), no. 2, 939–949.
[19] N. Ghousoub and E. Saab, *On the weak Radon-Nikodým property*, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84.
[20] A. J. Guirao and V. Montesinos, *Completeness in the Mackey topology*, Funct. Anal. Appl. 49 (2015), no. 2, 97–105.
[21] A. J. Guirao, V. Montesinos, and V. Zizler, A note on Mackey topologies on Banach spaces, J. Math. Anal. Appl. 445 (2017), no. 1, 944–952.
[22] A. B. Gulisashvili, Estimates for the Pettis integral in interpolation spaces, and a generalization of some imbedding theorems, Soviet Math., Dokl. 25 (1982), 428–432.
[23] P. Hájek, V. Montesinos Santalucía, J. Vanderwerff, and V. Zizler, Biorthogonal systems in Banach spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 26, Springer, New York, 2008.
[24] G. Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969.
[25] M. Kunze, A Pettis-type integral and applications to transition semigroups, Czechoslovak Math. J. 61 (136) (2011), no. 2, 437–459.
[26] J. Kupka, Radon-Nikodym theorems for vector valued measures, Trans. Amer. Math. Soc. 169 (1972), 197–217.
[27] G. Martínez-Cervantes, Banach spaces with weak*-sequential dual ball, Proc. Amer. Math. Soc. 146 (2018), no. 4, 1825–1832.
[28] K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1979), no. 2, 151–173.
[29] K. Musial, Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1993), no. 1, 177–262.
[30] R. Neidinger and H. P. Rosenthal, Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators, Pacific J. Math. 119 (1985), no. 1, 215–228.
[31] J. Orihuela, On weakly Lindelöf Banach spaces, Progress in functional analysis (Peñíscola, 1990), North-Holland Math. Stud., vol. 170, North-Holland, Amsterdam, 1992, pp. 279–291.
[32] A. Plichko, Three sequential properties of dual Banach spaces in the weak* topology, Topology Appl. 190 (2015), 93–98.
[33] R. Pol, A function space C(X) which is weakly Lindelöf but not weakly compactly generated, Studia Math. 64 (1979), no. 3, 279–285.
[34] J. Rodríguez and G. Vera, Uniqueness of measure extensions in Banach spaces, Studia Math. 175 (2006), no. 2, 139–155.
[35] D. van Dulst, Characterizations of Banach spaces not containing l1, CWI Tract, vol. 59, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
[36] J. Vanderwerff, J. H. M. Whitfield, and V. Zizler, Markušević bases and Corson compacta in duality, Canad. J. Math. 46 (1994), no. 1, 200–211.

Dpto. de Ingeniería y Tecnología de Computadores, Facultad de Informática, Universidad de Murcia, 30100 Espinardo (Murcia), Spain
E-mail address: joserr@um.es