Information Uncertainty Evaluated by Parameter Estimation and Its Effect on Reliability-based Multiobjective Optimization

メタデータ	言語: eng		
出版者:			公開日: 2018-01-24
キーワード (Ja):			
キーワード (En):			
作成者: Ito, Makoto, Kogiso, Nozomu			
メールアドレス:			
所属:			URL
Information Uncertainty Evaluated by Parameter Estimation and Its Effect on Reliability-based Multiobjective Optimization

Makoto ITO* and Nozomu KOGISO*
* Department of Aerospace Engineering, Osaka Prefecture University
1-1 Gakuen-Cho, Naka-Ku, Sakai, Osaka, 599-8531 Japan
E-mail: st102005@edu.osakafu-u.ac.jp
Received XX May 2016

Abstract
Reliability-based multiobjective optimization (RBMO) is a method that integrates multiobjective optimization with a reliability analysis. The method is useful for a large or complicated design problem such as aerospace structure design. Reliability analysis generally requires the probabilistic distribution parameters of random variables such as the mean and standard deviation. However, for an actual design problem, the probabilistic parameters are sometimes estimated with insufficient accuracy because of a limited number of experiments. In that case, the uncertainty in the distribution parameter is not negligible. This study proposes the evaluation method to estimate the effect of the information uncertainty at first, where the uncertainty is evaluated by using the confidence interval. Some numerical examples illustrates the effectiveness of the proposed method in comparison with a conventional method, Gibbs sampling. Then, the effect of the parameter uncertainty on the RBMO is illustrated through numerical examples. The RBMO problem is formulated by using the satisficing trade-off method (STOM), where the multiobjective optimization problem is transformed into the equivalent single-objective optimization method. For the reliability-based design optimization, a modified SLSV (single-loop-single-vector) method is adopted for the computational efficiency. The effects of the parameter uncertainty on the selected Pareto solutions according to the aspiration level are investigated by using the confidence intervals of the Pareto solutions.

Key words: Parameter Estimation, Information Uncertainty, Bayesian Statistics, Reliability-based Multiobjective Optimization, Satisficing Trade-off Method

1. Introduction

The reliability of huge and complicated structural designs, such as aerospace structures, has a significant effect on design problems that require decision-making under uncertainties. Many design optimization methodologies with reliability theory have been developed as reliability-based design optimization (RBDO) [Aouse and Chateaneuf, 2010]. RBDO generally requires the probabilistic parameters of random variables to evaluate the reliability. For example, the first-order reliability method (FORM) [Madsen et al., 1986] converts the probabilistic distribution of random variables into a standardized normal distribution to evaluate the probability of failure.

Recently, reliability-based multiobjective optimization (RBMO), which integrates the multiobjective optimization method with reliability analysis, was developed. Many researchers have focused on evolutionary algorithms such as multiobjective genetic algorithms [Sinha, 2007] and multiobjective particle swarm optimization (MOPSO) [Reyes-Sierra and Coello Coello, 2006]. One of the authors previously proposed a hybrid-type MOPSO for RBMO problems [Kogiso et al., 2012a, Kogiso et al., 2013] to improve the computational efficiency. However, the computational efficiency of RBMO remains inferior to that of mathematical programming methods. Then, one of the authors proposed a new method by applying the satisficing trade-off method (STOM) to the RBMO problem [Kogiso et al., 2014].

However, in actual design problems, the probabilistic parameters of random variables are sometimes estimated with insufficient accuracy, because the number of experiments is limited. In this case, the probabilistic parameters such as the mean and standard deviation also have uncertainties. This uncertainty of information is not negligible for design
problems with high accuracy requirements. However, it may be prohibitive to increase the number of experiments in actual situations.

Instead, the uncertainty should be reduced by adopting a data assimilation method. This type of statistics modeling is also employed for estimating the distribution of failure probability. [Gunawan and Papalambros, 2006] proposed a method for considering the uncertainties surrounding incomplete information and assumed the reliability to be estimated by a beta distribution. [Wang et al., 2009] obtained an extreme case of the beta distribution from insufficient information by applying Bayes’ theorem and extreme distribution theory. [Cho et al., 2012, Cho et al., 2014] proposed a method to estimate the confidence level of the reliability. They showed that Bayesian statistics is a useful tool for estimating the probabilistic parameter and that the Bayesian updating method improves the estimated reliability with sufficient accuracy. However, for methods using Bayes’ theorem, it is possible to improve the estimation accuracy of the reliability from a limited number of sample data.

The authors previously proposed a new method to estimate the confidence interval of the reliability [Ito and Kogiso, 2015]. In this paper, this method is applied to the RBMO using STOM considering the information uncertainty. Through numerical examples, the effect of information uncertainties of the distribution parameters on the Pareto solutions obtained by the RBMO approach is investigated through the confidence interval of the Pareto solutions.

This paper is organized as follows. The RBMO using STOM as the multiobjective optimization method is reviewed in the next section. Then, the proposed method is described in Section 4 and the validity of the proposed method is illustrated through simple numerical examples in Section 5. Finally, several conclusions are remarked.

2. Nomenclature

\(d \) Design variable vector
\(D \) Experimental data vector \([M \times 1]\) generated by \(x \)
\(\bar{D} \) Sample mean of \(D \)
\(\tilde{D} \) Variance of \(D \)
\(F \) Objective function vector
\(f_i \) The \(i \)-th objective function
\(f_i^* \) The ideal points of the \(i \)-th objective function
\(\bar{f}_i^A \) The aspiration level of the \(i \)-th objective function
\(g_j \) The \(j \)-th constrained function that corresponds to the failure mode in the reliability analysis
\(k_{\text{max}} \) Maximum iteration number of Gibbs sampling
\(k_b \) Number of rejected samples
\(m \) Number of failure modes
\(M_D \) Number of chosen \(\tilde{D} \)
\(n \) Number of the design variables
\(N_D \) Number of data
\(N_{\text{set}} \) Number of “data set”
\(r \) Number of objective functions
\(x \) Random variable vector
\(\tilde{x} \) Deviation of \(x \)
\(w_i \) The weighting factor of the \(i \)-th objective function
\(\alpha \) Hyper parameter (shape parameter) of \(\sigma^2 \)
\(\beta \) Hyper parameter (scale parameter) of \(\sigma^2 \)
\(\beta_j^0 \) Target reliability of the \(j \)-th failure mode
\(\mu \) Probabilistic parameter (mean value) of \(x \)
\(\mu_i^0 \) Mean value of each “data set”
\(\nu_0 \) Hyper parameter (mean value) of \(\mu \)
\(\sigma^2 \) Probabilistic parameter (mean value) of \(x \)
\(\sigma_i^2 \) Variance of each “data set”
\(\tau_0 \) Hyper parameter (variance) of \(\mu \)
3. Satisficing Trade-off Method (STOM)

3.1. Formulation of STOM in Multiobjective Optimization

The multiobjective optimization problem is intended to simultaneously optimize multiple objective functions described as follows:

$$F(d) = [f_1(d), f_2(d), \ldots, f_r(d)]^T$$

(1)

where \(r\) is the number of objective functions, \(d = [d_1, d_2, \ldots, d_n]\) are the design variables and \(n\) is the number of design variables.

Then, the multiobjective optimization problem is formulated as follows:

Minimize : \(F(d) = [f_1(d), f_2(d), \ldots, f_r(d)]^T\) \hspace{1cm} (2)

subject to : \(g_j(d) \geq 0 \quad (j = 1, 2, \ldots, m)\)

\(d^L \leq d \leq d^U\)

where \(g_j(d)\) is the \(j\)-th constrained function that corresponds to the \(j\)-th failure mode in the reliability analysis. \(d^L\) and \(d^U\) are the upper and lower bounds of the design variables, respectively. In this study, STOM [Kogiso et al., 2014] is applied to solve the multiobjective optimization problem. The algorithm of STOM is described as follows.

Step 1 The ideal points \(f_i^*(i = 1, 2, \ldots, r)\) of the objective functions are determined. Generally, the ideal point \(f_i^*\) is set as the optimal point of the single objective problem optimization corresponding to each objective function. Then, the aspiration level \(\bar{f}_i\), \((i = 1, 2, \ldots, r)\) is set as each objective function.

Step 2 The following weighting factor is introduced for each objective function:

\[w_i = \frac{1}{\bar{f}_i - f_i^*} \quad (i = 1, 2, \ldots, r) \hspace{1cm} (3) \]

Step 3 The multiobjective optimization problem is set as the following Chebyshev norm problem.

Minimize : \(\max_{1 \leq i \leq r} w_i f_i(d)\) \hspace{1cm} (4)

subject to : \(g_j(d) \geq 0 \quad (j = 1, 2, \ldots, m)\)

\(d^L \leq d \leq d^U\)

Step 4 Equation (4) is transformed into an auxiliary single optimization problem and is solved by a conventional single objective optimization algorithm. In this study, sequential quadratic programming (SQP) is adopted. The formulation of the auxiliary optimization problem is described as follows:

Minimize : \(z + y \sum_{i=1}^r w_i f_i(d)\) \hspace{1cm} (5)

subject to : \(w_i(f_i(d) - \bar{f}_i) \leq z \quad (i = 1, 2, \ldots, r)\)

\(g_j(d) \geq 0 \quad (j = 1, 2, \ldots, m)\)

\(d^L \leq d \leq d^U\),

where \(y\) is a small positive number used to avoid convergence to weak Pareto solutions.

Step 5 If the user is satisfied with the optimum solution obtained from the equivalent problem, terminate the search process; otherwise, update the aspiration level \(\bar{f}_i\) \((i = 1, 2, \ldots, r)\) and return to Step 2.

3.2. RBMO using STOM

RBMO is formulated as follows:

Minimize : \(F(d) = [f_1(d), f_2(d), \ldots, f_r(d)]\) \hspace{1cm} (6)

subject to : \(P(g_j(x) \leq 0) \leq \Phi(-\beta_j^2) \quad (j = 1, \ldots, m)\)
where \(\beta_i \) is the \(i \)-th target reliability index and \(x \) and \(d \) are random variables and design variables, respectively. In this paper, the values of \(x \) are assumed to be independent from each other and to follow a normal distribution. In many cases, the mean values of the random variables are adopted as the design variables.

In Eq. (6), the probability of failure is given by the following integral:

\[
P[g(x) \leq 0] = \int \cdots \int_{g(d, x) \leq 0} f_x(x)dx,
\]

where \(f_x(x) \) is the joint density function. The difficulty of calculating this integral has led to the use of approximate methods such as the first-order reliability method (FORM [Madsen et al., 1986]).

The solution of problem (7) is generally given by an approximation approach such as the double-loop approach (e.g. RIA (reliability index approach) [Enevoldsen and Sorensen, 1994], PMA (performance measure approach) [Tu et al., 1999]). As the double-loop approach requires computational effort, the following efficient approaches such as mono-level approach [Kuschel and Rackwitz, 1997], the single loop approach (e.g. SLSV (single-loop-single-vector) [Chen et al., 1997]) and decoupled approach (e.g. SORA (sequential optimization and reliability analysis) [Du and Chen, 2004], SAP (sequential approximate programming strategy) [Chen et al., 2006]) have been developed.

This study adopts the single-level approach. This procedure transforms the RBDO problem into a deterministic optimization problem and converts the double-loop optimization loop into the single-loop optimization. In this study, the modified-SLSV [Kogiso et al., 2012b] is adopted as the single-loop procedure of the RBDO algorithm. The original SLSV method converts the double-loop optimization loop of the RBDO into a single-loop approach by approximating the most probable point (MPP). The modified-SLSV method improves the convergence by eliminating zigzagging iteration to avoid divergence in the search for the optimum design. The formulation of STOM with the modified-SLSV method is formulated as follows. Further details have been published in references [Chen et al., 1997, Kogiso et al., 2012b].

Minimize : \(z + y \sum_{i=1}^{r} w_i f_i(x) \)

subject to : \(w_i (f_i(d) - \bar{f}_i) \leq z \quad (i = 1, 2, \cdots, r) \)

\(g_j(d, d - \beta_j^i \sigma_j^i) \leq 0 \quad (j = 1, \cdots, m) \)

\[d^l \leq d \leq d^U \]

where : \(\alpha_j^i = \frac{\sigma_j^i \nabla g_j(\mu, x^*_j)}{[\sigma \nabla g_j(\mu, x^*_j)]^T} \quad (j = 1, \cdots, m) \)

In Eq. (8), \(\mu \) is the mean value of the random vector \(x \) that is allocated as design variables \(d \). \(\sigma \) is a diagonal matrix whose diagonal element consists of the standard deviation of each random variable.

4. Parameter Estimation Method

4.1. Estimation of Hyper Parameter

Assume that we have \(N_p \) experimental data with variations for random variables and the experimental data set \(D \) follows a normal distribution. When \(N_D \) is not large, the differences between the sample parameter (mean and variance) and the population parameter may not be negligible. Focusing on the uncertainty of the variance, the modified experimental data \(\tilde{D} \) are introduced by shifting the sample mean \(\bar{D} \).

\[
\tilde{D} = \bar{D} - \bar{D}
\]

Sampling is used to estimate the unknown parameter by choosing \(M_D \) data from \(\tilde{D} \) without repetition. This combination is known as the “data set” and the number of “data sets” is denoted as \(N_{set} = \frac{1}{M_D} C_{M_D} \). Each “data set” has its own estimated mean value and variance, \((\mu_{i1}, \cdots, \mu_{iN_p}) \) and \((\sigma_{i1}^2, \cdots, \sigma_{iN_p}^2) \). From the \(N_{set} \) mean values and variances, the prior estimation of the hyper parameters are estimated by using the maximum likelihood method. This estimation process is illustrated in Fig. 1.

Under the assumption that the mean value follows a normal distribution, the hyper parameters are estimated as follows:

\[
v_0 = \frac{1}{N_{set}} \sum_{i=1}^{N_{set}} \mu^*_i
\]

(10)
Fig. 1 Estimating the hyper parameter from limited data

![Diagram showing the process of estimating the hyper parameter from limited data.]

\[
\tau_0^2 = \frac{1}{N_{set}} \sum_{i=1}^{N_{set}} (\mu_i^* - v_0)^2
\]

(11)

Under the assumption that the variance follows an inverse gamma distribution, it is too difficult to use the maximum likelihood method directly. Therefore, the hyperparameters are estimated by the solution of the maximum optimization problem as follows:

Maximize : \[
\prod_{i=1}^{N_{set}} f(\alpha, \beta, \sigma_i^{*2})
\]

where : \[
f(\alpha, \beta, \sigma_i^{*2}) = \frac{\beta^{\alpha/2} \sigma_i^{*2}^{\alpha-1} \exp(-\beta \sigma_i^{*2})}{\Gamma(\alpha)}
\]

subject to : \[\alpha > 0 \quad \beta > 0\]

Sequential quadratic programming (SQP) is also adopted to obtain the hyperparameters in this study.

Then, the mode of the variance \(\sigma^2\) is estimated using \(\alpha\) and \(\beta\) as follows:

\[
\sigma^{2\text{mode}} = \frac{\beta}{\alpha + 1}
\]

(13)

4.2. Sample Sequence Creation

The probabilistic parameters are estimated by creating sample sequences using Gibbs sampling. As shown above, the hyper parameter of the Gibbs sampling has already been obtained. However, we assumed that the number of experimental data points are insufficient to obtain the estimated value properly.

It is important to confirm the difference between the estimated parameter and initial data. In this study, the log likelihood is evaluated for each sample. Under the assumption that the variance of experimental data \(\tilde{D}\) follows a normal distribution, the log likelihood is formulated as follows:

\[
L(\mu^{(k)}, \sigma^{2(k)}, \tilde{D}) = -\frac{N_D}{2} \log(2\pi\sigma^{2(k)}) - \frac{1}{2\sigma^{2(k)}} \sum_{i=1}^{N_D} (\tilde{D}_i - \mu^{(k)})^2,
\]

(14)

where \(k\) is the sample number. If the log likelihood becomes worse than the previous value, the sample is rejected by a probability of 90%.

The above process is summarized as follows.

1. Set the initial value of \(\mu^{(k)}\) and \(\sigma^{2(k)}\), where \(k\) is set to 1. In this study, these initial values are set as \(\mu^{(k)} = v_0\) and \(\sigma^{2(k)} = \beta/(\alpha + 1)\).

2. \(\mu^{(k+1)}\) is generated by a series of random numbers, which follows the conditional posterior distribution, \(f(\mu^{(k+1)}|\sigma^{2(k)}, \tilde{D})\).
Fig. 2 Histogram of mean value and variance by the proposed method

Fig. 3 Histogram of mean value and variance by Gibbs sampling

Table 1 Comparison of the 90% confidence interval of probabilistic parameter estimated using the proposed method

Method	Mean value	Variance
Proposed method	(-0.1037, 0.1023)	(0.05726, 0.1205)
Gibbs sampling	(-0.1240, 0.1690)	(0.1116, 0.3889)

(3) $\sigma^2(k+1)$ is generated by a series of random numbers, which follows the conditional posterior distribution, $f(\sigma^2(k+1) | \mu^{(k+1)}, D)$.

(4) The log likelihood is evaluated. If the log likelihood becomes worse than the previous value, the sample is rejected by a probability of 90%.

(5) Until the iteration number k reaches the maximum value k_{max}, repeat the above step. Otherwise, the initial sample sequence $k = 1$ to k_b is rejected. Then, the confidence interval of μ and σ^2 is evaluated from the remaining sample sequence.

For example, it is considered that the probabilistic parameters are estimated using the following experimental data of X, which follow a normal distribution:

$$D = \begin{pmatrix} -0.2842 & 0.1620 & -0.0650 & 0.3567 & 0.3951 \end{pmatrix}^T$$

Actually, these data are obtained from the normally distributed random number set, $N(0, 0.3^2)$. However, the estimation is performed under the assumption that we don’t know the fact.

The distribution of the sample mean and variance and the confidence interval obtained by the proposed method are shown in Fig. 2, where $M_D=3$, $k_{\text{max}}=100000$, and $k_b=1000$. Figure 2 (a) and (b) show the histogram of μ and σ^2, respectively. For comparison, histograms of μ and σ^2 evaluated by a general Gibbs sampling method is illustrated in Figure 3 (a) and (b).

The 90% confidence intervals of the mean value and variance determined by the proposed method is compared with those by the Gibbs sampling in Table 1. The 90% confidence interval by the proposed method includes the true value of
0.3^2. On the other hand, Gibbs sampling does not include the true value. In addition, the mean value range indicates that the proposed method is more accurate than Gibbs sampling.

Finally, the flow of the proposed method including RBMO is illustrated in Fig. 4. After evaluating the confidence interval of the random variables, the variance of the optimum design considering the uncertainty in the information is investigated. This is evaluated as the confidence interval of the Pareto solution of the RBMO problem.

5. Numerical Examples

The effect of the parameter uncertainties on the RBMO is investigated through numerical examples, where the parameters are set as $N_D=5$, $M_D=3$, $k_{\text{max}}=100000$, and $k_b=1000$.

5.1. Mathematical problem

The following two-dimensional mathematical RBMO problem is considered:

\[
\text{Minimize : } f_1(d) = 3d_1 + d_2 \\
 f_2(d) = -d_1 + d_2 + 10 \\
\text{subject to : } P[g_j(x) \leq 0] \leq \Phi(-\beta_j^2) \quad (j = 1, \cdots, 3) \\
 g_1(x) = \frac{x_1^2 x_2}{20} - 1 \\
 g_2(x) = \frac{(x_1 + x_2 - 5)^2}{30} + \frac{(x_1 - x_2 - 12)^2}{120} - 1 \\
 g_3(x) = \frac{80}{x_1^2 + 8x_2 + 5} - 1 \\
 0 \leq d_i \leq 10 \quad (i = 1, 2),
\]

where x are the normally distributed random variables; the design variables d are set as the mean value of the random variables, $d = \mu = (\mu_1, \mu_2)^T$; and the target reliability is set to $\beta_j^2 = 3.0$. This problem is an extension of the RBDO problem in [Liang et al., 2004]. The standard deviation of x_1 is assumed to be unknown, but that of x_2 is known as $\sigma_2 = 0.3$. Here, the standard deviation of x_1 should be estimated from a limited number of the following experimental data in Eq. (15), where the five values are obtained from the normally distributed random number $N(0,0,0.3^2)$ because the original problem uses $\sigma_1 = 0.3$. The distribution parameters of x_1 are first evaluated by the proposed method. Table 2 lists the sample values, the true value, and the confidence interval of the estimated parameters. It is found that the true value is included in the 90% confidence interval.
Table 2 Estimated parameter values in mathematical problem

Sample value	True value	CI (90%)
\(\mu \)	0.1129	0.0
\(\sigma \)	0.2876	0.3

CI means “confidence interval”.

Then, the Pareto optimum solutions are obtained using the estimated parameters. The Pareto solutions corresponding to the confidence interval of \(\sigma_1 \) are shown in Fig. 5. In these figures, \(\sigma_{\text{Min}} \) and \(\sigma_{\text{Max}} \) correspond to the Pareto set obtained for minimum and maximum values of \(\sigma_1 \) in the confidence interval range, respectively. In Fig. 5, change of the typical three Pareto solutions the leftmost point (Point A), the kink point (Point B) and the rightmost point (Point C) are indicated by arrows. Then, the changes of the design variables and the objective function values are listed in Table 3. As indicated in this table, all absolute values of \(\Delta d_1 / \Delta d_1 \) and \(\Delta f_2 / \Delta f_1 \) in three points are less than 1. It means that the effects of change of \(\sigma_1 \) on \(d_1 \) and \(f_1 \) are larger than those of \(d_2 \) and \(f_2 \), respectively. In addition, the differences of the Pareto solution on point A and C is larger than that on Point B. It means that the variation of \(\sigma_1 \) has a significant effect on both ends of Pareto curve.

5.2. Crash worthiness problem for side impact

As the second numerical example, the following side impact crash worthiness problem [Sinha, 2007] is considered. The original problem is formulated as RBDO problem by Youn et al. [Youn et al., 2004], where design problem is to minimize the body weight subject to nine reliability constraints such as abdomen load, viscous criteria and rib deflection in terms of nine random variables such as the pillar thickness and the door beam thickness, where the mean values are treated as random variables. The limit state functions are approximated by the response surface method. Sinha [Sinha, 2007] extended this design problem to RBMO by adding the door deflection velocity as the objective function and obtained the Pareto solution by using the multiobjective genetic algorithms, NSGA-II. One of the author applied the STOM to this problem and obtained more accurate Pareto solutions [Kogiso et al., 2014].

The formulation is summarized in Table 4 (a) and (b), where the design variable is denoted as \(d \) that is the mean of random variable \(\mu \) and the target reliability is set to \(\beta_1^j = 3 \). The random variables \(x \) have independent normal distributions.

The standard deviations of \(x_6 \) and \(x_8 \) were set as unknown to simulate the information uncertainty. These values were determined from the simulation data from the series of random numbers following \(N(\mu_0, \sigma_0^2) = N(1.0, 0.03^2) \) and
Table 4 Formulation of crashworthiness problem [Sinha, 2007]

(a) Design variables, side constraints, and covariance in random variables

Name	Variable	Lower bound	Upper bound	\(\sigma^2 \)
Thickness of B-pillar inner (mm)	\(d_1 \)	0.5	1.5	0.03
Thickness of B-pillar reinforcement (mm)	\(d_2 \)	0.5	1.5	0.03
Thickness of floor side inner (mm)	\(d_3 \)	0.5	1.5	0.03
Thickness of cross members (mm)	\(d_4 \)	0.5	1.5	0.03
Thickness of door beam (mm)	\(d_5 \)	0.5	1.5	0.03
Thickness of door belt line reinforcement (mm)	\(d_6 \)	0.5	1.5	unknown
Thickness of roof rail (mm)	\(d_7 \)	0.5	1.5	0.03
Material yield stress for B-pillar inner (GPa)	\(d_8 \)	0.192	0.750	unknown
Material yield stress for floor side inner (GPa)	\(d_9 \)	0.192	0.750	0.006

(b) Objective functions and nine constraints

Name	Formula	Formulation
Weight (kg)	\(f_1 \)	\(1.98 + 4.36 f_1 + 6.64 f_2 + 6.79 f_3 + 4.01 f_4 + 1.78 f_5 + 2.73 f_7 \)
Door velocity	\(f_2 \)	\(16.45 - 0.489 d_1 d_2 - 0.843 d_3 d_4 \)
Abdomen load (kN)	\(g_1 \)	\(1.163 - 0.371 f_1 f_2 - 0.484 f_3 f_4 \)
VC upper (m/s)	\(g_2 \)	\(0.286 - 0.0159 f_1 f_2 - 0.188 f_1 f_6 - 0.0159 f_2 f_5 + 0.0144 f_7 f_5 + 0.08045 f_8 f_9 \)
VC middle (m/s)	\(g_3 \)	\(0.324 + 0.00817 f_5 f_6 - 0.131 f_1 f_6 - 0.0704 f_1 f_7 + 0.031 f_7 f_6 \)
VC lower (m/s)	\(g_4 \)	\(0.364 - 0.018 f_2 f_7 + 0.021 f_3 f_8 + 0.121 f_3 f_9 - 0.00364 f_3 f_9 \)
Rib deflection upper (mm)	\(g_5 \)	\(28.0 + 3.818 f_1 f_2 - 4.2 f_2 f_3 + 6.035 f_3 f_4 + 7.03 f_4 f_5 \)
Rib deflection middle (mm)	\(g_6 \)	\(30.0 f_6 + 2.95 f_1 f_5 - 5.057 f_1 f_5 - 11.0 f_3 f_6 - 9.9 f_6 f_7 + 22.0 f_7 f_5 f_9 \)
Rib deflection lower (mm)	\(g_7 \)	\(46.36 - 9.9 f_1 f_5 - 12.9 f_3 f_6 f_9 \)
Public symphysis force (kN)	\(g_8 \)	\(4.4 - 0.5 f_4 - 0.19 f_2 f_3 \)
B-Pillar velocity (m/s)	\(g_9 \)	\(9.9 f_9 + 10.58 - 0.674 f_1 f_2 - 1.95 f_2 f_3 \)

Table 5 Estimated parameter values

Sample value	True value	CI (90%)
\(\mu_6 \)	1.0021	1.0 (0.9769, 1.0298)
\(\sigma_6 \)	0.0391	0.03 (0.0298, 0.0962)
\(\mu_8 \)	0.3004	0.3 (0.2535, 0.3662)
\(\sigma_8 \)	0.0076	0.0066 (0.0066, 0.0216)

Table 6 Set of standard deviation values

Pattern	A	B	C	D
\(\sigma_6 \)	0.0298	0.0298	0.0962	0.0962
\(\sigma_8 \)	0.0066	0.0216	0.0066	0.0216

\[N(\mu_6, \sigma_6^2) = N(0.3, 0.006^2), \] where the standard deviations are selected from the original problem [Youn et al., 2004].

\[D_6 = \begin{bmatrix} 1.0634 & 0.9907 & 0.9896 & 0.9604 & 1.0065 \end{bmatrix}^T \]
(17)

\[D_8 = \begin{bmatrix} 0.3127 & 0.2981 & 0.2979 & 0.2921 & 0.3013 \end{bmatrix}^T \]
(18)

First, the distribution parameters of \(x_6 \) and \(x_8 \) are evaluated by the proposed method. Table 5 lists the sample values, the true value, and the confidence interval of the estimated parameters of \(x_6 \) and \(x_8 \). Except for \(\sigma_8 \), the 90% confidence interval includes the true values.

The Pareto solutions corresponding to the confidence interval of \(\sigma_6 \) and \(\sigma_8 \) are shown in Fig. 6. In this figure, “pattern A” to “D” correspond to the set of the standard deviation values consisting of the upper and the lower bounds of the confidence level shown in Table 6. This figure shows that the Pareto solutions corresponding to each “pattern” are shifted to the right.

Then, to confirm this fact in detail, the Pareto solutions under the five given types of different aspiration levels are compared in Fig. 7. These aspiration levels and the Pareto solutions are listed in Table 7. It is found that change of \(f_2 \) is smaller than that of \(f_1 \) through Pattern A to D in each type. However, the left side Pareto solutions such as Types 1 and 2 have larger variation of \(f_2 \) than the right side solution as Types 4 and 5. Differences of \(f_1 \) and \(f_2 \) between “pattern A” and “pattern D” are listed in Table 8. It is found that the variations of \(\sigma_6 \) and \(\sigma_8 \) have significant effects on both objective
functions f_1 and f_2 for the left hand side Pareto solutions. On the other hand, at the right hand side of the Pareto solutions, the variations of σ_6 and σ_8 have effect only on f_1.

5.3. Investigation of effect of confidence interval on the Pareto solution

In the above section, the effect of information uncertainty is investigated by applying the parameter estimation method. It is shown that σ_3 and σ_9 have a large effect on the Pareto solution. Then, in this section, we investigate the most effective random variable. The assumption is made that the confidence intervals from σ_1 to σ_7 and from σ_8 to σ_9 are equal to σ_6 and σ_8, respectively, as listed in Table 5, because they have the same probabilistic parameter in the original problem [Youn et al., 2004].

First, the target reliability is set to $\beta^T = 3$ (this value is the same as in the above section). Then, the Pareto solutions corresponding to the confidence interval of $\sigma_i (i = 1, \cdots, 9)$ are evaluated in Table 9. Except for type 1, the variation of each σ has a greater effect on Δf_1 than on Δf_2. In using type 1, i.e. the left hand side of the Pareto solution, each σ has an effect on either f_1 or f_2. σ_4, σ_5, and σ_6 have a significant effect on each objective function. On the other hand, σ_5 has absolutely no effect on any of the objective functions. Their confidence intervals are compared in Fig. 8 (a) to (d). In

Table 8 Variations of type 1 to 5
Type 1
Type 2
Type 3
Type 4
Type 5

Table 9 Variations of the objective functions ($\beta^T = 3$)
Type 1
Type 2
Type 3
Type 4
Type 5

* Δf means the norm of the variation : $\sqrt{\Delta f_1^2 + \Delta f_2^2}$
these figures, “minimum” and “maximum” indicate the lower and the upper side of the confidence interval, respectively.

Next, the target reliability is set as $\beta^T = 6$. The Pareto solutions corresponding to the confidence interval are compared in Table 10, and the Pareto solutions corresponding to variations of σ_1, σ_2, σ_4, and σ_5 are shown in Fig. 9 (a) to (d), respectively. Table 10 lists the variations of objective functions in case of $\beta^T = 6$. In comparison with Table 9, it is found that the variations of the objective functions become larger, as the target reliability is larger.

Figure 9 (a) to (d) illustrate the confidence intervals in the case of $\beta^T = 6$. The variations of σ_1, σ_2, and σ_4 have a significant effect and the variation of σ_5 has absolutely no effect.
6. Conclusion

This paper proposes an evaluation method to estimate the effect of the information uncertainty on the reliability-based multiobjective optimum design. Our proposed method is applied to the case when the probabilistic parameters are not estimated with high accuracy due to lack of sample numbers. In such a case, the uncertainties in the distribution parameters, that is the variations of the sample mean and sample variance, are not negligible. Our proposed method is developed to improve the estimation accuracy based on Bayes’ theorem, where the distribution parameter uncertainty is evaluated by using the confidence interval. Through numerical examples, the proposed sampling method is shown to be more efficient than conventional Gibbs sampling.

Then, the effects of the uncertainty in the parameters on reliability-based optimum design are evaluated through the confidence interval of Pareto solutions of RBMO. This confidence interval is evaluated by obtaining the Pareto solutions after setting the distribution parameters as the bound values of the confidence interval of the random variable. Through this study, the variation of the Pareto solution considering information uncertainty in addition to physical uncertainty is evaluated by the integration of STOM and the parameter estimation method proposed in our previous paper [Ito and Kogiso, 2015].

To solve the RBMO problem efficiently, this study adopts STOM for evaluating the Pareto solutions. STOM is useful to obtain the single Pareto solution corresponding to an aspiration level. This advantage is appropriate to investigate the effect of the distribution parameter uncertainty on the confidence interval of each Pareto solution as shown in numerical examples.

Acknowledgments

This study is partially supported by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) on Grant Number 16K13738.
References

Aoues, Y. and Chateauneuf, A., Benchmark study of numerical methods for reliability-based design optimization, Structural and Multidisciplinary Optimization, Vol. 41, No. 2 (2010), pp. 277-294.

Chen X., Hasselman T. K. and Neill, D. J., Reliability based structural design optimization for practical applications, 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (1997), AIAA-97-1403.

Cheng, G., Xu, L. and Jiang, L., A sequential approximate programming strategy for reliability-based structural optimization, Computers and Structures, Vol. 84, No. 21 (2006), pp. 1353-1367.

Cho, H., Choi, K. K., Lee, I. and Gorsich, D., Confidence level estimation and design sensitivity analysis for confidence-based RBDO, Proceedings of the ASME 2012 International Design and Engineering Technical Conferences & Computers and Information in Engineering Conference, (2012), DETC2012-70725.

Cho, H., Choi, K. K. and Lamb, D., Confidence-based method for reliability-based design optimization, Proceedings of the ASME 2014 International Design and Engineering Technical Conferences & Computers and Information in Engineering Conference, (2014), DETC2014-34644, pp. 1-12.

Du, X. and Chen, W., Sequential optimization and reliability assessment method for efficient probabilistic design, Journal of Mechanical Design, Vol. 126, No. 2 (2004), pp. 225-233.

Enevoldsen, I. and Sorensen, J., Reliability-based optimization in structural engineering, Structural Safety, Vol. 15 (1994), pp. 169-196.

Gunawan, S. and Papalambros, P. Y., A Bayesian approach to reliability-based optimization with incomplete information, Journal of Mechanical Design, Vol. 128 (2006), pp. 909-918.

Ito, M. and Kogiso, N., Parameter estimation method using bayesian statistics considering uncertainty of information for RBDO, Proceedings of 11th World Congress on Structural and Multidisciplinary Optimization, (2015), 1224, pp. 1-6.

Kogiso, N., Kawaji, S., Ohara, M., Ishigame, A. and Sato, K., Reliability-based multiobjective optimization using hybrid-type multiobjective PSO algorithms incorporating sensitivity analysis on constraints, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 78, No. 790 (2012a), pp. 2229-2240 (in Japanese).

Kogiso, N., Yang, Y. S., Kim, B. J. and Lee, J. O., Modified single-loop-single-vector method for efficient reliability-based design optimization, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 6, No. 7 (2012b), pp. 1206-1221.

Kogiso, N. and Kawaji, S., Convergence improvement of reliability-based multiobjective optimization using hybrid MOPSO, Proceedings of 10th World Congress on Structural and Multidisciplinary Optimization (2013), 5276, pp. 1-10.

Kogiso, N., Kodama, R. and Toyoda, M., Reliability-based multiobjective optimization using the satisfying trade-off method, Mechanical Engineering Journal, Vol. 1 (2014), DSM0063, pp. 1-12.

Kuschel, N. and Rackwitz, R., Two basic problems in reliability-based structural optimization, Mathematical Methods of Operations Research, Vol. 46, No. 3 (1997), pp. 309-333.

Liang, J., Mourelatos, Z. P. and Tu, J., A single-loop method for reliability-based design optimization, Proceedings of the ASME 2014 International Design and Engineering Technical Conferences & Computers and Information in Engineering Conference, (2004), DETC2004/DAC-57255, pp. 1-12.

Madsen H. O., Krenk S. and Lind N. C., Methods of structural safety, (1986), Prentice-Hall.

Reyes-Sierra, M. and Coello Coello, C. A., Multi-objective particle swarm optimizers: a survey of the state-of-the-art, International Journal of Computational Intelligence Research, Vol. 2, No. 3 (2006), pp. 287-308.

Sinha, K., Reliability-based multiobjective optimization for automotive crashworthiness and occupant safety, Structural and Multidisciplinary Optimization, Vol. 33, No. 3 (2007), pp. 255-268.

Tu, J., Choi, K. K. and Park, Y. H., A new study on reliability-based design optimization, ASME Journal of Mechanical Design, Vol. 121, No. 4 (1999), pp. 557-564.

Wang, P., Youn, B., Xi, Z. and Kloess, A., Bayesian reliability analysis with evolving, insufficient, and subjective data sets, Journal of Mechanical Design, Vol. 131, (2009), 111008, pp. 1-11.

Youn, B. D., Choi, K. K., Yang, R.-J. and Gu, L., Reliability-based design optimization for crashworthiness of vehicle side impact, Structural and Multidisciplinary Optimization, Vol. 26, (2004), pp. 272-283.