New alphabet–dependent morphological transition in a random RNA alignment

O.V. Valbaa,b, M.V. Tammc and S.K. Nechaevb,d

aMoscow Institute of Physics and Technology, 111700, Dolgoprudny, Russia,
bLPTMS, Université Paris Sud, 91405 Orsay Cedex, France,
cPhysics Department, Moscow State University, 119992, Moscow, Russia,
dE-mail: tamm@polly.phys.msu.ru,
dP.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991, Moscow, Russia

We study the fraction f of nucleotides involved in the formation of a cactus–
like secondary structure of random heteropolymer RNA–like molecules as a
function of the number c of different nucleotide species. We show that in the
low–temperature limit there exist two distinct morphologies of the secondary
structures depending on c. For small values of c, $c \leq c_{cr} f(c)$ converges to uni-
ty as the chain length n goes to infinity, signaling the formation of a virtually
“perfect” gapless secondary structure; while for $c > c_{cr} f(c) < 1$, which means
that a non-perfect structure with gaps is formed. The transition between two
morphologies is thus of the type of solvability–unsolvability type, well studied in
computer science, with solvability in this case being interpreted as the existence
of a perfect structure.

The strict upper and lower bounds $2 \leq c_{cr} \leq 4$ are proven, and a possible
generalization of the model to the non-integer values of c is discussed, as well
as the numerical evidence for the generalized model presented.

Also, we argue in favor of a possible relevance of the transition discovered
from the evolutionary point of view. Namely, we point out that RNAs with $c \leq c_{cr}$
cannot form predictable secondary structures, while the secondary structures
of RNAs with $c > c_{cr}$ are unique but rather unstable; therefore, one ex-
pects that alphabets with number of letters slightly more than critical to be the
best for the biological purposes.