Orthogonally a-Jensen mappings on C^*-modules

Ali Zamani

Abstract. We investigate the representation of the so-called orthogonally a-Jensen mappings acting on C^*-modules. More precisely, let \mathfrak{A} be a unital C^*-algebra with the unit 1, let $a \in \mathfrak{A}$ be fixed such that $a, 1 - a$ are invertible and let $\mathcal{E}, \mathcal{F}, \mathcal{G}$ be inner product \mathfrak{A}-modules. We prove that if there exist additive mappings φ, ψ from \mathcal{F} into \mathcal{E} such that $\langle \varphi(y), \psi(z) \rangle = 0$ and $a \langle \varphi(y), \varphi(z) \rangle a^* = (1 - a) \langle \psi(y), \psi(z) \rangle (1 - a)^*$ for all $y, z \in \mathcal{F}$, then a mapping $f : \mathcal{E} \to \mathcal{G}$ is orthogonally a-Jensen if and only if it is of the form $f(x) = A(x) + B(x, x) + f(0)$ for $x \in \mathcal{K} := \varphi(\mathcal{F}) + \psi(\mathcal{F})$, where $A : \mathcal{E} \to \mathcal{G}$ is an a-additive mapping on \mathcal{K} and B is a symmetric a-biadditive orthogonality preserving mapping on $\mathcal{K} \times \mathcal{K}$. Some other related results are also presented.

Mathematics Subject Classification. 46L05, 47B49, 39B55.

Keywords. Orthogonality preserving mapping, Orthogonally a-Jensen mapping, Additive mapping, Hilbert C^*-module.

1. Introduction

Orthogonal functionals on an inner product space when the orthogonality is the ordinary one were considered by Pinsker [10]. Next Sundaresan [13] generalized the result of Pinsker to arbitrary Banach spaces equipped with the Birkhoff–James orthogonality. In recent decades, mappings satisfying a functional equation under some orthogonality conditions have been investigated by several mathematicians, who have presented many interesting results and applications, see, e.g., [1–4, 7, 9, 11].

Jensen [5] first studied functions satisfying the condition $f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}$. It is easy to see that every continuous Jensen function on \mathbb{C} is affine in the sense that $f - f(0)$ is additive. The Jensen functional equation has been extensively studied from many points by many mathematicians, see, e.g., [8, 12] and the references therein.

Let us recall some definitions and introduce our notation. An inner product module over a C^*-algebra \mathfrak{A} is a (right) \mathfrak{A}-module \mathcal{E} equipped with an \mathfrak{A}-valued inner product $\langle \cdot, \cdot \rangle$, which is \mathbb{C}-linear and \mathfrak{A}-linear in the second variable and
has the properties $\langle x, y \rangle^* = \langle y, x \rangle$ as well as $\langle x, x \rangle \geq 0$ with equality if and only if $x = 0$. An inner product \mathfrak{A}-module \mathcal{E} is called a Hilbert \mathfrak{A}-module if it is complete with respect to the norm $\|x\| = \|\langle x, x \rangle\|^{\frac{1}{2}}$.

Although inner product C^*-modules generalize inner product spaces by allowing inner products to take values in an arbitrary C^*-algebra instead of the C^*-algebra of complex numbers, some fundamental properties of inner product spaces are no longer valid in inner product C^*-modules. For example, not each closed submodule of an inner product C^*-module is complemented. Therefore, when we are studying inner product C^*-modules, it is always of some interest to find conditions to obtain results analogous to those for inner product spaces. We refer the reader to [6] for more information on the theory of C^*-algebras and the structure of Hilbert C^*-modules.

Let \mathcal{E} and \mathcal{F} be two inner product \mathfrak{A}-modules. A morphism between inner product \mathfrak{A}-modules \mathcal{E} and \mathcal{F} is a mapping $\varphi : \mathcal{E} \rightarrow \mathcal{F}$ satisfying $\langle \varphi(x), \varphi(y) \rangle = \langle x, y \rangle$ for all $x, y \in \mathcal{E}$. A mapping $t : \mathcal{E} \rightarrow \mathcal{F}$ is called adjointable if there exists a mapping $s : \mathcal{F} \rightarrow \mathcal{E}$ such that $\langle tx, y \rangle = \langle x, sy \rangle$ for all $x \in \mathcal{E}, y \in \mathcal{F}$. The unique mapping s is denoted by t^* and is called the adjoint of t. Furthermore, inner product \mathfrak{A}-modules \mathcal{E} and \mathcal{F} are unitarily equivalent (and we write $\mathcal{E} \sim \mathcal{F}$) if there exists an adjointable mapping $u : \mathcal{E} \rightarrow \mathcal{F}$ such that $u^*u = id_\mathcal{E}$ and $uu^* = id_\mathcal{F}$. A closed submodule \mathcal{G} of an inner product \mathfrak{A}-module \mathcal{E} is said to be orthogonally complemented if $\mathcal{E} \oplus \mathcal{G}^\perp = \mathcal{E}$, where $\mathcal{G}^\perp = \{x \in \mathcal{E} : \langle x, y \rangle = 0 \text{ for all } y \in \mathcal{G}\}$. A closed submodule \mathcal{K} of an inner product \mathfrak{A}-module \mathcal{E} is said to be fully complemented if \mathcal{K} is orthogonally complemented and $\mathcal{K} \sim \mathcal{E}$. Note that the theory of inner product C^*-modules is quite different from that of inner product spaces. For example, not any closed submodule of an inner product C^*-module is complemented and there might exist bounded \mathfrak{A}-linear operators that are not adjointable.

Throughout the paper let \mathfrak{A} be a unital C^*-algebra with the unit 1 and let $\mathcal{E}, \mathcal{F}, \mathcal{G}$ be inner product \mathfrak{A}-modules. We fix an element $a \in \mathfrak{A}$ such that $a, 1-a$ are invertible. For instance, a can be an element of \mathfrak{A} satisfying $0 < a < 1$, where the order $c < d$ in \mathfrak{A} means that c, d are self-adjoint and the spectrum of $d-c$ is contained in $(m, \infty]$ for some positive number m. An additive mapping $A : \mathcal{E} \rightarrow \mathcal{G}$ is called a-additive if $A(ax) = aA(x)$ for all $x \in \mathcal{E}$. A biadditive mapping $B : \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{G}$ is called a-biadditive if $B(ax, ax) = aB(x, x)$ and $B((1-a)x, (1-a)x) = (1-a)B(x, x)$ for all $x \in \mathcal{E}$. It is symmetric if $B(x, y) = B(y, x)$ for all $x, y \in \mathcal{E}$. Furthermore, B is said to be orthogonality preserving if for all $x, y \in \mathcal{E}$,

$$\langle x, y \rangle = 0 \implies B(x, y) = 0.$$
A mapping $Q : E \rightarrow G$ is said to be quadratic if it satisfies the so-called quadratic functional equation

$$Q(x + y) + Q(x - y) = 2Q(x) + 2Q(y) \quad (x, y \in E).$$

Clearly any biadditive mapping is quadratic. A mapping $f : E \rightarrow G$ is called orthogonally a-Jensen if

$$\langle x, y \rangle = 0 \implies f(ax + (1-a)y) = af(x) + (1-a)f(y) \quad (x, y \in E). \quad (1.1)$$

In particular if $p \in (0,1)$, with $a = p1$ the mapping f satisfying (1.1) is said to be orthogonally p-Jensen. Further if $p = \frac{1}{2}$ we say that f is orthogonally Jensen.

In this paper, we investigate the representation of the so-called orthogonally a-Jensen mappings acting on inner product C^\ast-modules. More precisely, we prove that if there exist additive mappings φ, ψ from F into E such that $\langle \varphi(y), \psi(z) \rangle = 0$ and $a\langle \varphi(y), \varphi(z) \rangle a^* = (1-a)\langle \psi(y), \psi(z) \rangle (1-a)^*$ for all $y,z \in F$, then a mapping $f : E \rightarrow G$ is orthogonally a-Jensen if and only if it is of the form $f(x) = A(x) + B(x,x) + f(0)$ for $x \in H := \varphi(F) + \psi(F)$, where $A : E \rightarrow G$ is an a-additive mapping on H and B is a symmetric a-biadditive orthogonality preserving mapping on $H \times H$. In addition, we show that if F is a fully complemented submodule of E and f is orthogonally Jensen, then f is of the form $f(x) = A(x) + f(0)$ for $x \in F$.

2. Main results

We start our work with the following lemmas. The first lemma follows immediately from (1.1).

Lemma 2.1. If $f : E \rightarrow F$ is orthogonally a-Jensen, then

(i) $af(a^{-1}x) + (1-a)f(0) = f(x)$
(ii) $af(0) + (1-a)f((1-a)^{-1}x) = f(x)$
(iii) $f(a^{-1}x) + a^{-1}(1-a)f(0) = a^{-1}f(x)$
(iv) $(1-a)^{-1}af(0) + f((1-a)^{-1}x) = (1-a)^{-1}f(x)$
(v) $(1-a)^{-1}af(x) + f(0) = (1-a)^{-1}f(ax)$
(vi) $f(0) + a^{-1}(1-a)f(x) = a^{-1}f((1-a)x)$

for every $x \in E$.

Lemma 2.2. Suppose that there exist additive mappings $\varphi, \psi : F \rightarrow E$ such that $\langle \varphi(z), \psi(w) \rangle = 0$ and $a\langle \varphi(z), \varphi(w) \rangle a^* = (1-a)\langle \psi(z), \psi(w) \rangle (1-a)^*$ for all $z,w \in F$. If $f : E \rightarrow G$ is orthogonally a-Jensen, then
\[af(\varphi(x) + \varphi(y)) + (1 - a)f(\psi(x) - \psi(y))\]
\[= a\left[f(\varphi(x)) + a^{-1}(1 - a)f(\psi(x)) - (1 - a)a^{-1}f(0)\right]
\[+ (1 - a)\left[(1 - a)^{-1}af(\varphi(y)) - (1 - a)^{-1}af(0) + f(\psi(-y))\right]\]

for every \(x, y \in \mathcal{F}\).

Proof. We have
\[
\langle \varphi(x) + a^{-1}(1 - a)\psi(x), (1 - a)^{-1}a\varphi(y) - \psi(y) \rangle
\]
\[= \langle \varphi(x), \varphi(y) \rangle(1 - a)^{-1}a^* - \langle \varphi(x), \psi(y) \rangle
\]
\[+ a^{-1}(1 - a)\langle \psi(x), \varphi(y) \rangle(1 - a)^{-1}a^* - a^{-1}(1 - a)\langle \psi(x), \psi(y) \rangle
\]
\[= \langle \varphi(x), \varphi(y) \rangle(1 - a)^{-1}a^* - a^{-1}(1 - a)\langle \psi(x), \psi(y) \rangle
\]
\[\text{(since } \langle \varphi(x), \psi(y) \rangle = 0 \text{ and } \langle \psi(x), \varphi(y) \rangle = \langle \varphi(y), \psi(x) \rangle^* = 0)
\]
\[= \langle \varphi(x), \varphi(y) \rangle(1 - a)^{-1}a^* - a^{-1}(1 - a)[(1 - a)^{-1}a\langle \varphi(x), \varphi(y) \rangle((1 - a)^{-1}a)^*]
\]
\[= (1 - a)\langle \psi(x), \psi(y) \rangle(1 - a)^* = a\langle \varphi(x), \varphi(y) \rangle a^*
\]
\[= 0 \quad (2.1)
\]

for every \(x, y \in \mathcal{F}\). Therefore, we arrive at
\[af(\varphi(x) + \varphi(y)) + (1 - a)f(\psi(x) - \psi(y))
\]
\[= af(\varphi(x + y)) + (1 - a)f(\psi(x - y))
\]
\[= f(a\varphi(x + y) + (1 - a)\psi(x - y)
\]
\[\text{(since } \langle \varphi(x + y), \psi(x - y) \rangle = 0 \text{ and } f \text{ is orthogonally } a\text{-Jensen)}
\]
\[= f\left(a\varphi(x) + a^{-1}(1 - a)\psi(x) \right) + (1 - a)\left[(1 - a)^{-1}a\varphi(y) - \psi(y) \right]
\]
\[= af(\varphi(x) + a^{-1}(1 - a)\psi(x)) + (1 - a)f(1 - a)^{-1}a\varphi(y) - \psi(y)
\]
\[\text{(since } f \text{ is orthogonally } a\text{-Jensen and (2.1) holds)}
\]
\[= af(a^{-1}\varphi(x)) + (1 - a)[(1 - a)^{-1}a^{-1}(1 - a)\psi(x)]
\]
\[+ (1 - a)f\left(a[a^{-1}(1 - a)^{-1}a\varphi(y)] + (1 - a)\left[- (1 - a)^{-1}\psi(y) \right]\right)
\]
\[= af\left(a^{-1}\varphi(x) \right) + (1 - a)f\left((1 - a)^{-1}a^{-1}(1 - a)\psi(x))\right]
\]
\[+ (1 - a)\left[af(a^{-1}(1 - a)^{-1}a\varphi(y)) + (1 - a)f\left(- (1 - a)^{-1}\psi(y) \right)\right]
\]
\[\text{(since } \langle a^{-1}\varphi(x), (1 - a)^{-1}a^{-1}(1 - a)\psi(x) \rangle = 0,
\]
\[\langle a^{-1}(1 - a)^{-1}a\varphi(y), -(1 - a)^{-1}\psi(y) \rangle = 0
\]
and f is orthogonally a-Jensen

$$\begin{align*}
&= a \left[f(\varphi(x)) - (1 - a)f(0) + f(a^{-1}(1 - a)\psi(x)) - af(0) \right] \\
&\quad + (1 - a) \left[f((1 - a)^{-1}a\varphi(y)) - (1 - a)f(0) + f(-\psi(y)) - af(0) \right] \\
&\quad \left(\text{by Lemma 2.1 (i) and (ii)} \right) \\
&= a \left[f(\varphi(x)) - (1 - a)f(0) + a^{-1}f((1 - a)\psi(x)) \right] \\
&\quad - a^{-1}(1 - a)f(0) - af(0) \\
&\quad + (1 - a) \left[(1 - a)^{-1}f(a\varphi(y)) - (1 - a)^{-1}af(0) \right] \\
&\quad - (1 - a)f(0) + f(-\psi(y)) - af(0) \\
&\quad \left(\text{by Lemma 2.1 (iii) and (iv)} \right) \\
&= a \left[f(\varphi(x)) - (1 - a)f(0) + f(0) + a^{-1}(1 - a)f(\psi(x)) \right] \\
&\quad - (1 - a)a^{-1}f(0) - af(0) \\
&\quad + (1 - a) \left[(1 - a)^{-1}af(\varphi(y)) + f(0) \right] \\
&\quad - (1 - a)^{-1}af(0) - (1 - a)f(0) + f(\psi(-y)) - af(0) \\
&\quad \left(\text{by Lemma 2.1 (v) and (vi)} \right) .
\end{align*}$$

From this it follows that

$$af(\varphi(x) + \varphi(y)) + (1 - a)f(\psi(x) - \psi(y))$$

$$= a \left[f(\varphi(x)) + a^{-1}(1 - a)f(\psi(x)) - (1 - a)a^{-1}f(0) \right] \\
+ (1 - a) \left[(1 - a)^{-1}af(\varphi(y)) - (1 - a)^{-1}af(0) + f(\psi(-y)) \right]$$

and the lemma is proved. \hfill \Box

Remark 2.3. The condition that additive mappings φ, ψ satisfying $\langle \varphi(x), \psi(y) \rangle = 0$ and $a\langle \varphi(x), \varphi(y) \rangle a^* = (1 - a)\langle \psi(x), \psi(y) \rangle (1 - a)^*$ is not restrictive. In fact, there are non-trivial concrete examples of additive mappings satisfying this condition. A non-trivial example can be given in l^2 by $a = 1 - p$ with $p \in (0, 1)$ and

$$\left\{ \begin{array}{l}
\varphi, \psi : l^2 \longrightarrow l^2 \\
\varphi(\{a_n\}) = (\frac{1}{1-p}a_1, 0, \frac{1}{1-p}a_2, 0, \frac{1}{1-p}a_3, 0, \cdots) \\
\psi(\{a_n\}) = (0, \frac{1}{p}a_1, 0, \frac{1}{p}a_2, 0, \frac{1}{p}a_3, 0, \cdots).
\end{array} \right.$$
One can easily observe that \(\langle \varphi(\{a_n\}), \psi(\{b_n\}) \rangle = 0 \) and
\[
a \langle \varphi(\{a_n\}), \varphi(\{b_n\}) \rangle a^* = (1 - a) \langle \psi(\{a_n\}), \psi(\{b_n\}) \rangle (1 - a)^* = \sum_{n=1}^{\infty} a_n b_n.
\]

The following auxiliary results are needed in our investigation.

Proposition 2.4. Suppose that there exist additive mappings \(\varphi, \psi : \mathcal{F} \to \mathcal{E} \) such that \(\langle \varphi(z), \psi(w) \rangle = 0 \) and \(a \langle \varphi(z), \varphi(w) \rangle a^* = (1 - a) \langle \psi(z), \psi(w) \rangle (1 - a)^* \) for all \(z, w \in \mathcal{F} \). If \(f : \mathcal{E} \to \mathcal{F} \) is an odd orthogonally \(a \)-Jensen mapping, then \(f \) is additive on \(\mathcal{K} := \varphi(\mathcal{F}) + \psi(\mathcal{F}) \).

Proof. Since \(f \) is odd \(f(0) = 0 \). Thus for every \(x, y \in \mathcal{F} \), by Lemma 2.2 we conclude that
\[
a f(\varphi(x) + \varphi(y)) + (1 - a) f(\psi(x) - \psi(y))
= a f(\varphi(x)) + (1 - a) f(\psi(x)) + a f(\varphi(y)) + (1 - a) f(-\psi(y)).
\]
(2.2)
Switching \(x \) and \(y \) in (2.2) we obtain
\[
a f(\varphi(y) + \varphi(x)) + (1 - a) f(\psi(y) - \psi(x))
= a f(\varphi(y)) + (1 - a) f(\psi(y)) + a f(\varphi(x)) + (1 - a) f(-\psi(x)).
\]
(2.3)
Add (2.2) and (2.3) and use the fact that \(f \) is odd to get
\[
2 a f(\varphi(x) + \varphi(y)) = 2 a f(\varphi(x)) + 2 a f(\varphi(y)),
\]
or equivalently,
\[
f(\varphi(x) + \varphi(y)) = f(\varphi(x)) + f(\varphi(y)).
\]
Hence \(f \) is additive on \(\varphi(\mathcal{F}) \). Similarly \(f \) is additive on \(\psi(\mathcal{F}) \). Now for every \(z_1, z_2 \in \mathcal{K} \) there exist \(x_1, x_2, y_1, y_2 \in \mathcal{F} \) such that
\[
z_1 = \varphi(x_1) + \psi(y_1) \quad \text{and} \quad z_2 = \varphi(x_2) + \psi(y_2).
\]
We have
\[
f(z_1 + z_2) = f(\varphi(x_1 + x_2) + \psi(1 + y_2))
= f(a a^{-1} \varphi(x_1 + x_2) + (1 - a)(1 - a)^{-1} \psi(y_1 + y_2))
= a f(a^{-1} \varphi(x_1 + x_2)) + (1 - a) f((1 - a)^{-1} \psi(y_1 + y_2))
\]
(since \(\langle a^{-1} \varphi(x_1 + x_2), (1 - a)^{-1} \psi(y_1 + y_2) \rangle = 0 \)
and \(f \) is orthogonally \(a \)-Jensen)
\[
= f(\varphi(x_1 + x_2)) + f(\psi(y_1 + y_2)) \quad \text{(by Lemma 2.1 (i) and (ii))}
= f(\varphi(x_1)) + f(\varphi(x_2)) + f(\psi(y_1)) + f(\psi(y_2))
\]
(by the additivity of \(f \) on \(\varphi(\mathcal{F}) \) and \(\psi(\mathcal{F}) \))
\[
= a f(a^{-1} \varphi(x_1)) + (1 - a) f((1 - a)^{-1} \psi(y_1))
+ a f(a^{-1} \varphi(x_2)) + (1 - a) f((1 - a)^{-1} \psi(y_2))
\]

Thus \(f \) is additive on \(\mathcal{K} \).

Proposition 2.5. Suppose that there exist additive mappings \(\varphi, \psi : \mathcal{F} \to \mathcal{E} \) such that \(\langle \varphi(z), \psi(w) \rangle = 0 \) and \(a \langle \varphi(z), \varphi(w) \rangle a^* = (1 - a) \langle \psi(z), \psi(w) \rangle (1 - a)^* \) for all \(z, w \in \mathcal{F} \). If \(f : \mathcal{E} \to \mathcal{F} \) is an even orthogonally \(a \)-Jensen mapping such that \(f(0) = 0 \), then \(f \) is quadratic on \(\mathcal{K} := \varphi(\mathcal{F}) + \psi(\mathcal{F}) \).

Proof. Since \(f \) is even and \(f(0) = 0 \), putting \(x = y \) in Lemma 2.2 we infer that
\[
af(2\varphi(x)) = 2af(\varphi(x)) + 2(1 - a)f(\psi(x)) \quad (x \in \mathcal{F}).
\]
Similarly, we have
\[
(1 - a)f(2\psi(x)) = 2af(\varphi(x)) + 2(1 - a)f(\psi(x)) \quad (x \in \mathcal{F}).
\]
Therefore, we conclude that
\[
af(2\varphi(x)) = (1 - a)f(2\psi(x)) \quad (x \in \mathcal{F}). \quad (2.4)
\]
If we put \(\frac{x}{2} \) instead of \(x \) in (2.4) we get
\[
af(\varphi(x)) = (1 - a)f(\psi(x)) \quad (x \in \mathcal{F}). \quad (2.5)
\]
Now for every \(x, y \in \mathcal{F} \) we have
\[
f(\varphi(x) + \varphi(y)) + f(\varphi(x) - \varphi(y))
= f(\varphi(x) + \varphi(y)) + a^{-1}(1 - a)f(\psi(x) - \psi(y)) \quad \text{(by (2.5))}
= f(\varphi(x)) + a^{-1}(1 - a)f(\psi(x))
+ f(\varphi(y)) + a^{-1}(1 - a)f(\psi(y)) \quad \text{(by Lemma 2.2)}
= f(\varphi(x)) + f(\varphi(x)) + f(\varphi(y)) + f(\varphi(y)) \quad \text{(by (2.5))}
= 2f(\varphi(x)) + 2f(\varphi(y)).
\]
Thus
\[
f(\varphi(x) + \varphi(y)) + f(\varphi(x) - \varphi(y)) = 2f(\varphi(x)) + 2f(\varphi(y)).
\]
So \(f \) is quadratic on \(\varphi(\mathcal{F}) \). Similarly \(f \) is quadratic on \(\psi(\mathcal{F}) \).
By the same reasoning as in the last part of Proposition 2.4 we conclude that \(f \) is quadratic on \(\mathcal{K} \). \(\square \)

We are now in a position to establish the main result. If \(A : \mathcal{E} \rightarrow \mathcal{G} \) is \(a \)-additive and \(B : \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{G} \) is \(a \)-biadditive orthogonality preserving, then the mapping \(f : \mathcal{E} \rightarrow \mathcal{G} \) defined by

\[
f(x) = A(x) + B(x, x) + f(0) \quad (x \in \mathcal{E})
\]

is an orthogonally \(a \)-Jensen mapping. Namely, if \(\langle x, y \rangle = 0 \) then

\[
\begin{align*}
f(ax + (1 - a)y) & = A(ax + (1 - a)y) + B(ax + (1 - a)y, ax + (1 - a)y) + f(0) \\
& = aA(x) + aB(x, x) + af(0) \\
& \quad + (1 - a)A(y) + (1 - a)B(y, y) + (1 - a)f(0) \\
& = af(x) + (1 - a)f(x).
\end{align*}
\]

The following theorem is a kind of converse of the previous discussion.

Theorem 2.6. Let \(a \) be an element of a unital \(C^* \)-algebra \(\mathfrak{A} \) such that \(a, 1 - a \) are invertible and let \(\mathcal{E}, \mathcal{F}, \mathcal{G} \) be inner product \(\mathfrak{A} \)-modules. Suppose that there exist additive mappings \(\varphi, \psi : \mathcal{F} \rightarrow \mathcal{E} \) such that \(\langle \varphi(z), \psi(w) \rangle = 0 \) and \(a\langle \varphi(z), \psi(w) \rangle a^* = (1 - a)\langle \varphi(z), \psi(w) \rangle (1 - a)^* \) for all \(z, w \in \mathcal{F} \). Let \(\mathcal{K} := \varphi(\mathcal{F}) + \psi(\mathcal{F}) \). If \(f : \mathcal{E} \rightarrow \mathcal{G} \) is an orthogonally \(a \)-Jensen mapping, then there exist unique mappings \(A : \mathcal{E} \rightarrow \mathcal{G} \) and \(B : \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{G} \) such that \(A \) is \(a \)-additive on \(\mathcal{K} \), \(B \) is symmetric \(a \)-biadditive orthogonality preserving on \(\mathcal{K} \times \mathcal{K} \) and

\[
f(x) = A(x) + B(x, x) + f(0) \quad (x \in \mathcal{K}).
\]

Moreover, \(B(x, y) = \frac{1}{8} \left(f(x + y) + f(-x - y) - f(x - y) - f(-x + y) \right) \) and \(A(x) = \frac{1}{2} \left(f(x) - f(-x) \right) \) for every \(x, y \in \mathcal{E} \).

Proof. By passing to \(f - f(0) \), if necessary, we may assume that \(f(0) = 0 \). We decompose \(f \) into its even and odd parts by

\[
f_o(x) = \frac{1}{2} \left(f(x) - f(-x) \right) \quad \text{and} \quad f_e(x) = \frac{1}{2} \left(f(x) + f(-x) \right)
\]

for all \(x \in \mathcal{E} \). Set \(A(x) := f_o(x) \) and \(B(x, y) := \frac{1}{4} \left(f_e(x + y) - f_e(x - y) \right) \). It is easy to show that \(f_o \) is odd orthogonally \(a \)-Jensen. So by Proposition 2.4, \(f_o \) is additive on \(\mathcal{K} \). Also, by Lemma 2.1 (v), we have

\[
A(ax) = f_o(ax) = af_o(x) + (1 - a)f_o(0) = aA(x) \quad (x \in \mathcal{K}).
\]

Hence \(A \) is \(a \)-additive on \(\mathcal{K} \). Furthermore, \(f_e \) is even orthogonally \(a \)-Jensen. Since \(f_e(0) = f(0) - f_o(0) = 0 \), \(f_e \) is quadratic on \(\mathcal{K} \) by Proposition 2.5. Thus \(f_e(2x) = 4f_e(x) \) and so,

\[
B(x, x) = \frac{1}{4} \left(f_e(2x) - f_e(0) \right) = f_e(x).
\]
This implies
\[f(x) = f_o(x) + f_e(x) = A(x) + B(x, x) \quad (x \in \mathcal{K}). \]

For each \(x, y, z \in \mathcal{E} \) we have
\[
B(x + y, 2z) = \frac{1}{4} \left(f_e(x + y + 2z) - f_e(x + y - 2z) \right) \\
= \frac{1}{4} \left(f_e((x + z) + (y + z)) + f_e((x + z) - (y + z)) \right. \\
- f_e((x - z) + (y - z)) - f_e((x - z) - (y - z)) \right) \\
= \frac{1}{4} \left(2f_e(x + z) + 2f_e(y + z) - 2f_e(x - z) - 2f_e(y - z) \right) \\
= \frac{1}{2} \left(f_e(x + z) - f_e(x - z) + f_e(y + z) - f_e(y - z) \right) \\
= 2B(x, z) + 2B(y, z). \tag{2.6}
\]

In particular, by choosing \(y = 0 \), we get
\[
B(x, 2z) = 2B(x, z) + 2B(0, z) \\
= 2B(x, z) + \frac{1}{4} \left(f(x) + f(-x) - f(x) - f(-x) \right) \\
= 2B(x, z). \tag{2.7}
\]

If we replace \(x \) by \(x + y \) in (2.7), then by (2.6) we obtain
\[
B(x + y, z) = \frac{1}{2} B(x + y, 2z) = \frac{1}{2} [2B(x, z) + 2B(y, z)] = B(x, z) + B(y, z),
\]
and similarly \(B(x, y + z) = B(x, y) + B(x, z) \). Therefore \(B \) is biadditive on \(\mathcal{K} \times \mathcal{K} \). Also, by Lemma 2.1 (vi), we have
\[
B(ax, ax) = f_e(ax) = af_e(x) + (1 - a)f_e(0) = aB(x, x) \quad (x \in \mathcal{K})
\]
and analogously
\[
B((1 - a)x, (1 - a)x) = (1 - a)B(x, x) \quad (x \in \mathcal{K}).
\]

Hence, \(B \) is \(a \)-biadditive on \(\mathcal{K} \times \mathcal{K} \). Further, for each \(x, y \in \mathcal{K} \), it follows from \(\langle x, y \rangle = 0 \) that
\[
B(x, y) = \frac{1}{2} (B(x, y) + B(y, x)) \\
= \frac{1}{2} \left(B(x + y, x + y) - B(x, x) - B(y, y) \right) \\
= \frac{1}{2} \left(f(x + y) - A(x + y) \right) - \frac{1}{2} \left(f(x) - A(x) \right) - \frac{1}{2} \left(f(y) - A(y) \right) \\
= \frac{1}{2} \left(f(x + y) - f(x) - f(y) \right) \quad \left(A \text{ is additive on } \mathcal{K} \right) \\
= \frac{1}{2} \left(f(aa^{-1}x + (1 - a)(1 - a)^{-1}y) - f(x) - f(y) \right)
\]
= \frac{1}{2} (af(a^{-1}x) + (1-a)f((1-a)^{-1}y)) - \frac{1}{2} f(x) - \frac{1}{2} f(y)

\left(\text{since } \langle a^{-1}x, (1-a)^{-1}y \rangle = 0 \text{ and } f \text{ is orthogonally } a\text{-Jensen}\right)

= \frac{1}{2} f(x) + \frac{1}{2} f(y) - \frac{1}{2} f(x) - \frac{1}{2} f(y) \quad \left(\text{by Lemma 2.1 (i) and (ii)}\right)

= 0.

Also, since \(f_e \) is even, \(B \) is symmetric. Thus \(B \) is symmetric \(a \)-biadditive orthogonality preserving on \(\mathcal{K} \times \mathcal{K} \). Finally suppose \(f(x) = A_1(x) + B_1(x, x) + f(0) = A_2(x) + B_2(x, x) + f(0) \) for any \(x \) for the specified kind of mappings \(A \) and \(B \). Hence, \(A_1(x) - A_2(x) = B_1(x, x) - B_2(x, x) \) for any \(x \). However, the left part is an odd mapping, and the right part is an even mapping. So both of these terms are equal to zero for any \(x \). Thus we conclude that \(A \) and \(B \) are uniquely determined by \(f \).

\begin{proof}
\end{proof}

Remark 2.7. The \(a \)-additive mappings \(\varphi, \psi \) from \(\mathcal{F} \) to \(\mathcal{E} \) need not to be injective. Also, the linear span of their ranges need not coincide with \(\mathcal{E} \). So, \(a \) and \(1-a \) might be assumed merely to admit generalized inverses inside the \(C^* \)-algebra \(\mathfrak{A} \). By the requested equality \(a \langle \varphi(z), \varphi(w) \rangle a^* = (1-a) \langle \psi(z), \psi(w) \rangle (1-a)^* \) for any \(z, w \in \mathcal{F} \) the range projections of \(a \) and \(1-a \) in the bidual von Neumann algebra \(\mathfrak{A}^{**} \) of \(\mathfrak{A} \) have to coincide. The domain projections of \(a \) and \(1-a \) in the bidual von Neumann algebra \(\mathfrak{A}^{**} \) of \(\mathfrak{A} \) have to majorize the support projection the subset \(\langle \varphi(\mathcal{F}), \varphi(\mathcal{F}) \rangle \) and of the subset \(\langle \psi(\mathcal{F}), \psi(\mathcal{F}) \rangle \) in \(\mathfrak{A}^{**} \), respectively. For \(a \) and \(1-a \) admitting generalized inverses in \(\mathfrak{A} \) the domain and the range projections belong to \(\mathfrak{A} \subseteq \mathfrak{A}^{**} \). However, they might not belong to the center of \(\mathfrak{A} \), so the Hilbert \(C^* \)-modules \(\mathcal{F} \) and \(\mathcal{E} \) cannot be reduced appropriately compatible with their module structure, in general.

In the following result we obtain the representation of orthogonally \(p \)-Jensen mappings in inner product modules.

Corollary 2.8. Let \(p \in (0, 1) \) be rational. Suppose that there exist additive mappings \(\varphi, \psi : \mathcal{F} \rightarrow \mathcal{E} \) such that \(\langle \varphi(z), \psi(w) \rangle = 0 \) and \((1-p)^2 \langle \varphi(z), \varphi(w) \rangle = p^2 \langle \psi(z), \psi(w) \rangle \) for all \(z, w \in \mathcal{F} \). If \(f : \mathcal{E} \rightarrow \mathcal{G} \) is orthogonally \(p \)-Jensen, then there exists a unique mapping \(A : \mathcal{E} \rightarrow \mathcal{G} \) such that \(A \) is additive on \(\mathcal{K} := \varphi(\mathcal{F}) + \psi(\mathcal{F}) \) and

\[f(x) = A(x) + f(0) \quad (x \in \mathcal{K}). \]

Proof. By Theorem 2.6, there exist unique mappings \(A : \mathcal{E} \rightarrow \mathcal{G} \) and \(B : \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{G} \) such that \(A \) is additive on \(\mathcal{K} \), \(B \) is symmetric biadditive orthogonality preserving on \(\mathcal{K} \times \mathcal{K} \) and

\[f(x) = A(x) + B(x, x) + f(0) \quad (x \in \mathcal{K}). \]

We have

\[A(x) + B(x, x) + f(0) = f(x) \]
\[(1 - p)f(0) + pf\left(\frac{1}{p}x\right) \quad \text{(by Lemma 2.1)}
\]
\[(1 - p)f(0) + p\left(\frac{1}{p}A_{-x} + B_{-x, -x} + f(0)\right) \quad \text{(by Theorem 2.6)}
\]
\[= A(x) + \frac{1}{p}B(x, x) + f(0), \quad \text{(by the } \mathbb{Q}\text{-linearity of } A \text{ and the } \mathbb{Q}\text{-bilinearity of } B)\]

for any \(x \in \mathcal{X}\). Consequently, \((1 - \frac{1}{p})B(x, x) = 0\) and therefore, \(B(x, x) = 0\) for all \(x \in \mathcal{X}\). Thus \(B = 0\) on \(\mathcal{X}\) and \(f(x) = A(x) + f(0)\) on \(\mathcal{X}\).

Note that if \(A(x) = 0\) for some \(x \in \mathcal{X}\) then by the \(\mathbb{Q}\)-linearity of \(A\) we reach \(A(qx) = 0\) for all rational numbers \(q\). So, \(f(qx) = A(qx) + f(0) = f(0)\) for all rational numbers \(q\).

Corollary 2.9. Let \(\mathcal{F}\) be a submodule of \(\mathcal{E}\), and \(\varphi : \mathcal{F} \longrightarrow \mathcal{E}\) be a morphism such that \(\varphi(\mathcal{F}) \subseteq \mathcal{F}^\perp\). If \(f : \mathcal{E} \longrightarrow \mathcal{G}\) is orthogonally Jensen, then there exists a unique mapping \(A : \mathcal{E} \longrightarrow \mathcal{G}\) such that \(A\) is additive on \(\mathcal{K} := \mathcal{F} \oplus \varphi(\mathcal{F})\) and

\[f(x) = A(x) + f(0) \quad (x \in \mathcal{X}).\]

Proof. Let \(id : \mathcal{F} \longrightarrow \mathcal{F}\) be the identity mapping. Since \(\varphi\) is a morphism and \(\varphi(\mathcal{F}) \subseteq \mathcal{F}^\perp\), for every \(x, y \in \mathcal{F}\) we obtain \(\langle \varphi(x), \varphi(y) \rangle = \langle id(x), id(y) \rangle\) and \(\langle \varphi(x), id(y) \rangle = 0\). It remains to apply Corollary 2.8 for \(p = \frac{1}{2}\). \(\square\)

Corollary 2.10. Let \(\mathcal{F}\) be a fully complemented submodule of \(\mathcal{E}\). If \(f : \mathcal{E} \longrightarrow \mathcal{G}\) is orthogonally Jensen, then there exists a unique mapping \(A : \mathcal{E} \longrightarrow \mathcal{G}\) such that \(A\) is additive on \(\mathcal{F}\) and \(f(x) = A(x) + f(0)\) for every \(x \in \mathcal{F}\).

Proof. Since \(\mathcal{F}\) is a fully complemented submodule of \(\mathcal{E}\), \(\mathcal{F} \oplus \mathcal{F}^\perp = \mathcal{E}\) and \(\mathcal{F}^\perp \sim \mathcal{E}\). So, there exists an adjointable mapping \(\phi : \mathcal{E} \longrightarrow \mathcal{F}^\perp\) such that \(\phi^* \phi = id_\mathcal{E}\). We have \(\langle \phi(x), \phi(y) \rangle = \langle \phi^* \phi(x), y \rangle = \langle x, y \rangle\) for all \(x, y \in \mathcal{E}\). Let us define \(\varphi := \phi|_\mathcal{F}\). Then \(\varphi(\mathcal{F}) \subseteq \mathcal{F}^\perp\) and \(\langle \varphi(x), \varphi(y) \rangle = \langle x, y \rangle\) for all \(x, y \in \mathcal{F}\). Thus \(\varphi : \mathcal{F} \longrightarrow \mathcal{E}\) is a morphism such that \(\varphi(\mathcal{F}) \subseteq \mathcal{F}^\perp\). Now the statement follows from Corollary 2.9. \(\square\)

Acknowledgements

The author would like to thank the referee for her/his valuable suggestions and comments. He would also like to thank Professor M. S. Moslehian and Professor M. Frank for their invaluable suggestions while writing this paper.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

[1] Carando, D., Lassalle, S., Zalduendo, S.I.: Orthogonally additive holomorphic functions of bounded type over $C(K)$. Proc. Edinb. Math. Soc. 53(2), 609–618 (2010)

[2] Chmieliński, J., Łukasik, R., Wójcik, P.: On the stability of the orthogonality equation and the orthogonality-preserving property with two unknown functions. Banach J. Math. Anal. 10(4), 828–847 (2016)

[3] Frank, M., Mishchenko, A.S., Pavlov, A.A.: Orthogonality-preserving, C^*-conformal and conformal module mappings on Hilbert C^*-modules. J. Funct. Anal. 260, 327–339 (2011)

[4] Ilišević, D., Turnšek, A., Yang, D.: Orthogonally additive mappings on Hilbert modules. Studia Math. 221(3), 209–229 (2014)

[5] Jensen, J.L.W.V.: Om konvексne Funktioner og Uligheder imellem Middelvaerdier. Mat. Tidsskr. B 16, 49–68 (1905)

[6] Manuilov, V.M., Troitsky, E.V.: Hilbert C^*-modules, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence (2005)

[7] Moslehian, M.S., Zamani, A.: Mappings preserving approximate orthogonality in Hilbert C^*-modules. Math Scand. 122, 257–276 (2018)

[8] Ng, C.T.: Jensen’s functional equation on groups. Aequationes Math. 39, 85–99 (1990)

[9] Palazuelos, C., Peralta, A.M., Villanueva, I.: Orthogonally additive polynomials on C^*-algebras. Q. J. Math. 59, 363–374 (2008)

[10] Pinsker, A. G.: Sur une fonctionnelle dans l’espace de Hilbert, C. R. (Dokl) Acad. Sci. URSS, N. Ser. 20 (1938), 411–414 (in French)

[11] Rätz, J.: Cauchy functional equation problems concerning orthogonality. Aequationes Math. 62, 1–10 (2001)

[12] Sahoo, P.K., Kannappan, P.: Introduction to Functional Equations. CRC Press, Boca Raton (2011)

[13] Sundaresan, K.: Orthogonality and nonlinear functionals on Banach spaces. Proc. Am. Math. Soc. 34, 187–190 (1972)

Ali Zamani
Department of Mathematics
Farhangian University
Tehran
Iran
e-mail: zamani.ali85@yahoo.com

Received: August 28, 2018
Revised: November 16, 2018