On Schur Multipliers of Pairs and Triples of Groups with Topological Approach

Hanieh Mirebrahimi and Behrooz Mashayekhy *
Department of Pure Mathematics,
Center of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad,
P. O. Box 1159-91775, Mashhad, Iran.

Abstract

In this paper, using a relation between Schur multipliers of pairs and triples of groups, the fundamental group and homology groups of a homotopy pushout of Eilenberg-MacLane spaces, we present among other things some behaviors of Schur multipliers of pairs and triples with respect to free, amalgamated free, and direct products and also direct limits with topological approach.

A. M. S. Classification (2000): 20J06; 55P20; 55U25; 57M07.
Keywords: Schur multiplier of a pair of groups; Schur multiplier of a triple of groups; Homology group; Homotopy group; Eilenberg-MacLane space; homotopy pushout.

*Correspondence: mashaf@math.um.ac.ir
1. Introduction and Preliminaries

The Schur multiplier of a group G is defined to be

$$M(G) = (R \cap F')/[R, F],$$

where F/R is any free presentation of G. It is a well-known fact that $M(G)$ depends, up to isomorphism, only on G. Furthermore, it is easy to see that $M(-)$ is a functor from the category of groups to the category of abelian groups (see [5] for further details).

By a pair of groups (G, N) we mean a group G with a normal subgroup N. A homomorphism of pairs $(G_1, N_1) \rightarrow (G_2, N_2)$ is a group homomorphism $G_1 \rightarrow G_2$ that sends N_1 into N_2. The Schur multiplier of a pair of groups (G, N) which was first defined by G. Ellis [4] will be a functorial abelian group $M(G, N)$ whose principal feature is a natural exact sequence

$$\cdots \rightarrow H_3(G) \rightarrow H_3(G/N) \rightarrow M(G, N) \rightarrow M(G) \rightarrow$$

$$M(G/N) \rightarrow N/[N, G] \rightarrow G^{ab} \rightarrow (G/N)^{ab} \rightarrow 0 \quad (1.1)$$

in which $H_3(G)$ is the third homology group of G with integer coefficient.

There are several possible definitions of the Schur multiplier of a group and the Schur multiplier of a pair of groups. We are going to deal with topological one that we present in this note.

First, we note that for any group G one can construct functorially a connected CW-complex $K(G)$, called Eilenberg-MacLane space, whose fundamental group is isomorphic to G which has all higher homotopy groups trivial [8]. By considering $H_n(X)$ as the nth singular homology group of a topological space X, with coefficients in the group Z, we recall the relation $H_n(G) \cong H_n(K(G))$, for all $n \geq 0$, [1, Prop. 4.1].

By Hopf formula for any CW-complex K with $\pi_1(K) = G$ and F/R as a free presentation for G we have the following isomorphism

$$\frac{H_2(K)}{h_2(\pi_2(K))} \cong \frac{R \cap F'}{[R, F]},$$

where h_2 is the corresponding Hurewicz map [3]. Hence a topological definition of the Schur multiplier of a group G can be considered as the second homology group of the Eilenberg-MacLane space $K(G)$, $H_2(K(G))$. This topological interpretation of $M(G)$ can be extended to one for $M(G, N)$ as follows.
For any two group extensions $1 \rightarrow M \rightarrow P \rightarrow Q \rightarrow 1$ and $1 \rightarrow N \rightarrow P \rightarrow R \rightarrow 1$ we consider the following homotopy pushout
\[
\begin{array}{ccc}
K(P) & \rightarrow & K(P/M) \\
\downarrow & & \downarrow \\
K(P/N) & \rightarrow & X.
\end{array}
\]

By Mayer-Vietoris sequence for pushout, we have the following exact sequence
\[
\cdots \rightarrow H_3(P) \rightarrow H_3(Q) \oplus H_3(R) \rightarrow H_3(X) \rightarrow H_2(P) \rightarrow \\
H_2(Q) \oplus H_2(R) \rightarrow H_2(X) \rightarrow H_1(P) \rightarrow H_1(Q) \oplus H_1(R) \rightarrow \\
H_1(X) \rightarrow H_0(P) \rightarrow H_0(Q) \oplus H_0(R) \rightarrow H_0(X) \rightarrow 0. \tag{1.2}
\]

Using [2, Corollary 3.4] we have
\[
\pi_1(X) \cong \frac{P}{MN} \quad \text{and} \quad \pi_2(X) \cong \frac{M \cap N}{[M,N]}.
\]

If we make the assumption $P = MN$, then X is 1–connected and so by Hurewicz Theorem we have
\[
H_1(X) = 0 \quad \text{and} \quad H_2(X) \cong \pi_2(X) \cong \frac{M \cap N}{[M,N]}.
\]

Hence the exact sequence (1.2) becomes as follows
\[
\cdots \rightarrow H_3(P) \rightarrow H_3(Q) \oplus H_3(R) \rightarrow H_3(X) \rightarrow H_2(P) \rightarrow \\
H_2(Q) \oplus H_2(R) \rightarrow \frac{M \cap N}{[M,N]} \rightarrow P^{ab} \rightarrow Q^{ab} \oplus R^{ab} \rightarrow 0. \tag{1.3}
\]

Now, in special case, if we consider the two group extensions $1 \rightarrow N \rightarrow G \rightarrow G/N \rightarrow 1$ and $1 \rightarrow G \rightarrow G \rightarrow 1 \rightarrow 1$ corresponding to a pair of groups (G, N) and the following homotopy pushout
\[
\begin{array}{ccc}
K(G) & \rightarrow & K(G/N) \\
\downarrow & & \downarrow \\
1 & \rightarrow & X, \tag{1.4}
\end{array}
\]

then we have the following natural exact sequence as (1.1)
\[
H_3(G) \rightarrow H_3(G/N) \rightarrow H_3(X) \rightarrow H_2(G) = M(G) \rightarrow
\]

3
\[H_2(G/N) = M(G/N) \to H_2(X) = N/[N,G] \to G^{ab} \to (G/N)^{ab} \to 0. \]

Hence a topological interpretation of the Schur multiplier of a pair of groups \((G, N)\) can be considered as the third homology group of a space \(X\) which is the homotopy pushout corresponding to the pair of groups \((G, N)\) as (1.4).

Remark 1.1. As we mentioned before, the notion of the Schur multiplier of a pair of groups was introduced by G. Ellis in [4]. He presented several possible definitions of the notion through them the topological one is as follows.

For a pair of groups \((G, N)\), the natural epimorphism \(G \to G/N\) induces functorially the continuous map \(f : K(G) \to K(G/N)\). Suppose that \(M(f)\) is the mapping cylinder of \(f\) containing \(K(G)\) as a subspace and is also homotopically equivalent to the space \(K(G/N)\). Take \(K(G, N)\) to be the mapping cone of the cofibration \(K(G) \hookrightarrow M(f)\). By Mayer-Vietoris, the cofibration sequence \(K(G) \hookrightarrow M(f) \to K(G, N)\) induces a natural long exact homology sequence

\[\cdots \to H_{n+1}(G/N) \to H_{n+1}(K(G, N)) \to H_n(G) \to H_n(G/N) \to \cdots \]

for \(n \geq 0\). G. Ellis [4] showed that the Schur multiplier of the pair \((G, N)\) can be considered as the third homology group of the cofiber space \(K(G, N)\). We note that the mapping cone \(K(G, N)\) of the cofiber \(K(G) \to M(f)\) is homotopically equivalent to the space \(X\) which is the homotopy pushout corresponding to the pair of groups \((G, N)\). Therefore our topological interpretation of the Schur multiplier of a pair of groups \((G, N)\) is equivalent to the topological definition of G. Ellis.

In section two, using the topological interpretations, we present among other things some behaviors of the Schur multiplier of pairs of the free product, the amalgamated free product, and the direct product. Also, we show that the Schur multiplier of a pair commutes with direct limits in some cases.

By a triple of groups \((G, M, N)\) we mean a group \(G\) with two normal subgroups \(M\) and \(N\). A homomorphism of triples \((G_1, M_1, N_1) \to (G_2, M_2, N_2)\) is a group homomorphism \(G_1 \to G_2\) that sends \(M_1\) into \(M_2\) and \(N_1\) into \(N_2\). G. Ellis [4] defined the Schur multiplier of a triple \((G, M, N)\) as a functorial abelian group \(M(G, M, N)\) whose principle feature is a natural exact sequence

\[\cdots \to H_3(G, N) \to H_3(G/M, MN/M) \to M(G, M, N) \to M(G, N) \]
\[
M(G/M, MN/M) \rightarrow M \cap N/[M \cap N, G][M, N] \\
\rightarrow N/[N, G] \rightarrow NM/M[N, G] \rightarrow 0. \quad (1.5)
\]

He also gave a topological interpretation for \(M(G, M, N) \). In section three, first we give a topological definition for the Schur multiplier of a triple which is equivalent to the one of Ellis. Then we show that the Schur multiplier of a triple commutes with direct limits with some conditions. Second, we define a new version of the Schur multiplier of a triple \((G, M, N) \) which is more natural generalization of the Schur multiplier of a pair \((G, N) \) than the one of Ellis. We show that our new notion is coincide with the one of Ellis if \(G = MN \). Finally, we present behaviors of this new version of the Schur multiplier of a triple with respect to free, amalgamated free and direct products and also a better behavior with respect to direct limits than the one of Ellis.

2. Schur Multipliers of Pairs

The following two known results obtained from the existence of the natural long exact sequence (1.1). Using the properties of Eilenberg-MacLane spaces, we reprove them by topological viewpoints.

Theorem 2.1. The Schur multiplier of a group \(G \) is a special case of the Schur multiplier of a pair of groups that is \(M(G, G) \cong M(G) \).

Proof. First, we know that Eilenberg-MacLane space \(K(G/G) \) can be considered contractible. Hence using the fact that \(H_i(K(G/G)) = 1 \), for \(i \geq 1 \), and also by the Mayer-Vietoris sequence due to the corresponding pushout diagram, the result holds. \(\square \)

Theorem 2.2. For any group \(G \), the Schur multiplier of the pair \((G, 1) \) is trivial.

Proof. First, we recall that \(M(G, 1) \) is equal to the third homology group \(H_3(X) \), where \(X \) is the mapping cone of the cofibration \(i : K(G) \hookrightarrow K(G) \). Hence \(X \) is the quotient space of \((K(G) \times I) \sqcup K(G) \) with respect to the equivalent relation \((x, 0) \sim (x', 0) \), \((x, 1) \sim i(x) \), for all \(x, x' \in K(G) \). Thus the space \(X \) is a contractible and so with trivial homology groups which completes the proof. \(\square \)

We recall that by Miller Formula [5] for any two groups \(G_1 \) and \(G_2 \) we have \(M(G_1 \ast G_2) \cong M(G_1) \oplus M(G_1) \). The authors have also presented a topological proof for this note in [6]. In the following, we prove a new result for the structure of the Schur multiplier of pairs of the free product with topological method.
Theorem 2.3. For any two groups G_1, G_2 and their normal subgroups $N_i \trianglelefteq G_i$ $(i = 1, 2)$ we have the following isomorphism

$$M(G_1 * G_2, \langle N_1 * N_2 \rangle^{G_1*G_2}) \cong M(G_1, N_1) \oplus M(G_2, N_2),$$

where $\langle N_1 * N_2 \rangle^{G_1*G_2}$ is the normal closure of $N_1 * N_2$ in $G_1 * G_2$.

Proof. Suppose that $X_i (i = 1, 2)$ is the pushout of corresponding diagram

$$K(G_i) \rightarrow K(G_i N_i) \downarrow \downarrow 1 \rightarrow X_i.$$

Using the fact that any two direct limits commute, we conclude that the space $X_1 \vee X_2$ is also a pushout for the following diagram

$$K(G_1) \vee K(G_2) \rightarrow K(G_1 N_1 \vee G_2 N_2) \downarrow \downarrow 1 \rightarrow X_1 \vee X_2.$$

According to Van-Kampen Theorem, we rewrite the above diagram as follows

$$K(G_1 * G_2) \rightarrow K(G_1 N_1 * G_2 N_2) = K(G_1 * G_2 \langle N_1 * N_2 \rangle^{G_1*G_2}) \downarrow \downarrow 1 \rightarrow X_1 \vee X_2.$$

Now by the definition and the Mayer-Vietoris sequence for the above diagram we have

$$M(G_1 * G_2, \langle N_1 * N_2 \rangle^{G_1*G_2}) = H_3(X_1 \vee X_2)$$

$$\cong H_3(X_1) \oplus H_3(X_2) = M(G_1, N_1) \oplus M(G_2, N_2). \square$$

We recall that the authors [6] proved that if G is the free amalgamated product of its two subgroups G_1 and G_2 over a subgroup H, then the following exact sequence holds

$$\cdots \rightarrow M(H) \rightarrow M(G_1) \oplus M(G_2) \rightarrow M(G)$$

$$\rightarrow H_{ab} \rightarrow G_{1ab} \oplus G_{2ab} \rightarrow G_{ab} \rightarrow \cdots.$$
Theorem 2.4. Let \((G_1, N_1), (G_2, N_2)\) be two pairs of groups and \(H \leq N_1 \cap N_2\). Then the Schur multiplier of the pair of amalgamated free products \((G_1 *_H G_2, N_1 *_H N_2)\), satisfies the following exact sequence

\[\cdots \to H_3(K(G_1 \ast G_2)) \to H_3(G_1 N_1) \oplus H_3(G_2 N_2) \to M(G_1 *_H G_2, N_1 *_H N_2) \to M(G_1 N_1) \oplus M(G_2 N_2) \to \cdots.\]

Proof. In order to introduce the Eilenberg-MacLane space corresponding to the group \(G_1 *_H G_2\), first consider the space \(K(H)\) and then by attaching cells to this space in suitable ways, construct spaces \(K(G_1)\) and \(K(G_2)\) (for further details see [6, Theorem 2.5]). In this case, using Van-Kampen Theorem, we have the isomorphism \(\pi_1(K(G_1) \cup K(G_2)) \cong G_1 *_H G_2\), and by the way of constructing the spaces \(K(G_1)\) and \(K(G_2)\) we can consider \(K(G_1) \cup K(G_2)\) as an Eilenberg-MacLane space for the group \(G_1 *_H G_2\).

Also we recall that for any \(i \in \{1, 2\}\), \(M(G_i, N_i)\) is the third homology group \(H_3(X_i)\), where \(X_i\) is pushout of the following diagram

\[K(G_i) \longrightarrow K(G_i N_i)\]
\[\downarrow \quad \downarrow \quad \downarrow\]
\[1 \longrightarrow X_i.\]

Using the fact that union preserves direct limit of spaces, the following diagram is also a pushout diagram

\[K(G_1) \cup K(G_2) \longrightarrow K(G_1 N_1) \cup K(G_2 N_2)\]
\[\downarrow \quad \downarrow \quad \downarrow\]
\[1 \longrightarrow X_1 \cup X_2.\]

Note that by the assumption \(H \subseteq N_1 \cap N_2\), \(K(G_1 N_1)\) and \(K(G_2 N_2)\) has one-point intersection. Roughly speaking, \(K(G_1 N_1) \cup K(G_2 N_2)\) is indeed a wedge space and so it is an Eilenberg-MacLane space corresponding to the free product \(G_1 N_1 \ast G_2 N_2\). On the other hand, by the following isomorphism

\[\frac{G_1 *_H G_2}{N_1 *_H N_2} \cong \frac{G_1}{N_1} \ast \frac{G_2}{N_2},\]

the two Eilenberg-MacLane spaces \(K\left(\frac{G_1 *_H G_2}{N_1 *_H N_2}\right)\) and \(K\left(\frac{G_1}{N_1} \ast \frac{G_2}{N_2}\right) = K\left(\frac{G_1}{N_1}\right) \cup K\left(\frac{G_2}{N_2}\right)\) are homotopic. Hence we can rewrite above diagram as follows

\[K(G_1 *_H G_2) \longrightarrow K\left(\frac{G_1 *_H G_2}{N_1 *_H N_2}\right)\]
\[\downarrow \quad \downarrow \quad \downarrow\]
\[1 \longrightarrow X_1 \cup X_2.\]
Now using the Mayer-Vietoris sequence for this recent pushout diagram, we obtain the following exact sequence

\[\cdots \rightarrow H_3(K(G_1 \ast H G_2)) \rightarrow H_3(K(G_1 \ast H G_2, N_1 \ast H N_2)) \rightarrow H_3(X_1 \cup X_2) \rightarrow \]

\[H_2(K(G_1 \ast H G_2)) \rightarrow H_2(K(G_1 \ast H G_2, N_1 \ast H N_2)) \rightarrow \cdots. \]

Also using Mayer-Vietoris sequence for join spaces, we have the isomorphism

\[H_n(K(G_1 \ast H G_2, N_1 \ast H N_2)) \cong H_n(K(G_1 \ast H G_2)) \oplus H_n(K(G_1 \ast H G_2)), \]

for any \(n \in \mathbb{N} \). Finally, by the topological definitions of the Schur multiplier of a group and a pair of groups, \(M(G_1 \ast H G_2, N_1 \ast H N_2) \cong H_3(X_1 \cup X_2) \) and \(M(G_1 \ast H G_2) \cong H_2(K(G_1 \ast H G_2)) \). Hence we get the following exact sequence

\[\cdots \rightarrow H_3(K(G_1 \ast H G_2)) \rightarrow H_3(G_1 \ast H G_2) \oplus H_3(G_2 \ast H G_2) \rightarrow \]

\[M(G_1 \ast H G_2, N_1 \ast H N_2) \rightarrow M(G_1 \ast H G_2) \rightarrow M(G_1 \ast H G_2) \oplus M(G_2 \ast H G_2) \rightarrow \cdots. \] \(\square \)

Note that the authors [6], using topological methods, proved that for any two groups \(G_1 \) and \(G_2 \), the following isomorphism holds

\[M(G_1 \times G_2) \cong M(G_1) \oplus M(G_2) \oplus (G_1)_a \otimes (G_2)_b. \]

In the following we extend this result.

Theorem 2.5. For any two pairs of groups \((G_1, N_1), (G_2, N_2)\), the Schur multiplier of a pair of the direct products \((G_1 \times G_2, N_1 \times N_2)\) satisfies the following exact sequence

\[\cdots \rightarrow H_3(G_1) \oplus (M(G_1) \otimes G_2^{ab}) \oplus (G_1 \otimes M(G_2)) \oplus \]

\[H_3(G_2) \oplus \text{Tor}(G_1^{ab}, G_2^{ab}) \rightarrow H_3(G_1 \ast H G_2) \oplus (M(G_1 \ast H G_2) \otimes G_2^{ab} \ast H N_2) \oplus \]

\[(G_1^{ab} \ast H G_2) \oplus H_3(G_2 \ast H G_2) \oplus \text{Tor}(G_1^{ab} \ast H G_2) \rightarrow \]

\[M(G_1 \times G_2, N_1 \times N_2) \rightarrow M(G_1 \times G_2) \rightarrow M(G_1 \times G_2) \rightarrow \cdots. \]

Proof. First, we consider the following pushout diagram

\[K(G_1 \times G_2) \rightarrow K(G_1 \times G_2) \]

\[\downarrow \quad \downarrow \]

\[1 \rightarrow X. \]
By the definition, we know that $M(G_1 \times G_2, N_1 \times N_2) = H_3(X)$. On the other hand, by Mayer-Vietoris sequence for the above diagram we conclude the following exact sequence

$$
\cdots \rightarrow H_3(K(G_1 \times G_2)) \rightarrow H_3(K\left(\frac{G_1 \times G_2}{N_1 \times N_2}\right)) \rightarrow H_3(X) \rightarrow \\
H_2(K(G_1 \times G_2)) \rightarrow H_2(K\left(\frac{G_1 \times G_2}{N_1 \times N_2}\right)) \rightarrow \cdots.
$$

Using $K(G_1 \times G_2) = K(G_1) \times K(G_2)$, the Künneth Formula and some properties of the functor Tor and tensor product we have

$$
H_3(K(G_1 \times G_2)) = H_3(K(G_1) \times K(G_2)) \cong \\
H_3(K(G_1)) \oplus (H_2(K(G_1)) \otimes H_1(K(G_2))) \oplus (H_1(K(G_1)) \otimes H_2(K(G_2))) \oplus \\
H_3(K(G_2)) \oplus \text{Tor}(H_1(K(G_1)), H_1(K(G_2))).
$$

By the similar argument for $H_3(K\left(\frac{G_1 \times G_2}{N_1 \times N_2}\right)) = H_3(K\left(\frac{G_1\times G_2}{N_1\times N_2}\right))$ and the isomorphisms $H_1(K(G)) \cong G^{ab}$, $H_2(K(G)) \cong M(G)$ we obtain the following exact sequence

$$
\cdots \rightarrow H_3(K(G_1)) \oplus (M(G_1) \otimes G^{ab}_2) \oplus (G^{ab}_1 \otimes M(G_2)) \oplus \\
H_3(K(G_2)) \oplus \text{Tor}(G^{ab}_1, G^{ab}_2) \rightarrow H_3(K\left(\frac{G_1}{N_1}\right)) \oplus (M\left(\frac{G_1}{N_1}\right) \otimes \frac{G^{ab}_2N_2}{N_2}) \oplus \\
\left(\frac{G^{ab}_1N_1}{N_1} \otimes M\left(\frac{G_2}{N_2}\right)\right) \oplus H_3(K\left(\frac{G_2}{N_2}\right)) \oplus \text{Tor}\left(\frac{G^{ab}_1N_1}{N_1}, \frac{G^{ab}_2N_2}{N_2}\right) \rightarrow \\
M(G_1 \times G_2, N_1 \times N_2) \rightarrow M(G_1 \times G_2) \rightarrow M\left(\frac{G_1}{N_1} \times \frac{G_2}{N_2}\right) \rightarrow \cdots \square
$$

Remarks 2.6. Using the isomorphism $H_3(\mathbb{Z}_m) \cong \mathbb{Z}_m[1]$, we can rewrite the above exact sequence in some special cases as follows:

1. If $\frac{G_i}{N_i}$ is a finite cyclic group of order m_i ($i = 1, 2$), then we have the following exact sequence

$$
\cdots \rightarrow \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \mathbb{Z}_d \rightarrow M(G_1 \times G_2, N_1 \times N_2) \rightarrow \\
M(G_1) \oplus M(G_2) \oplus (G_1 \otimes G_2) \rightarrow \mathbb{Z}_d \rightarrow \cdots,
$$

where $d = \gcd(m_1, m_2)$. Moreover, if G_1 and G_2 are also cyclic, then we get the following exact sequence

$$
\cdots \rightarrow \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \mathbb{Z}_d \rightarrow M(G_1 \times G_2, N_1 \times N_2) \rightarrow \\
M(G_1) \oplus M(G_2) \oplus (G_1 \otimes G_2) \rightarrow \mathbb{Z}_d \rightarrow \cdots.
$$
\[G_1 \otimes G_2 \to \mathbb{Z}_d \to \cdots. \]

(ii) If \(\gcd(|G_1|, |G_2|) = 1 \), then the following exact sequence holds
\[\cdots \to H_3\left(\frac{G_1}{N_1}\right) \oplus H_3\left(\frac{G_2}{N_2}\right) \to M(G_1 \times G_2, N_1 \times N_2) \to M(G_1) \oplus M(G_2) \oplus (G_1 \otimes G_2) \to M\left(\frac{G_1}{N_1}\right) \oplus M\left(\frac{G_2}{N_2}\right) \to \cdots. \]

Moreover, if \(\gcd(|G_1|, |G_2|) = 1 \), then we conclude the following exact sequence
\[\cdots \to H_3\left(\frac{G_1}{N_1}\right) \oplus H_3\left(\frac{G_2}{N_2}\right) \to M(G_1 \times G_2, N_1 \times N_2) \to M(G_1) \oplus M(G_2) \to M\left(\frac{G_1}{N_1}\right) \oplus M\left(\frac{G_2}{N_2}\right) \to \cdots. \]

(iii) Finally, if \(G_i \) is a finite cyclic group \((i = 1, 2) \) such that \(\gcd(|G_1|, |G_2|) = 1 \), then we have the following exact sequence
\[\cdots \to \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \to M(G_1 \times G_2, N_1 \times N_2) \to 0. \]

The following theorem has been proved by Ellis [4]. Here we present a topological proof for this note.

Theorem 2.7. If \(G = N \rtimes Q \) is the semidirect product of a normal subgroup \(N \) by a subgroup \(Q \), then
\[M(G) \cong M(G, N) \oplus M(Q). \]

Proof. Using the corresponding pushout diagram
\[
\begin{array}{ccc}
K(G) & \to & K(G) = K(Q) \\
\downarrow & & \downarrow \\
1 & \to & X,
\end{array}
\]
and the Mayer-Vietoris sequence for this diagram, we conclude the following exact sequence
\[\cdots \to H_3(K(G)) \to H_3(K(Q)) \to H_3(X) \to \]
\[H_2(K(G)) \to H_2(K(Q)) \to H_2(X) \to \cdots. \quad (2.1) \]

10
Since $G = N \times Q$, there exists a homomorphism $\beta : Q \to G$ such that $\alpha \circ \beta = 1_Q$. $H_n(K(\cdot))$ is the composition of two functors and so the induced homomorphism $\alpha_* : H_n(K(G)) \to H_n(K(Q))$ is surjection; and hence the exactness of (2.1) implies the injectivity of the homomorphism $H_n(X) \to H_{n-1}(K(G))$. Thus we have the following exact split sequence

$$0 \to H_3(X) \to H_2(K(G)) \to H_2(K(Q)) \to 0$$

which completes the proof. □

Theorem 2.8. Suppose that M and N are two subgroups of a group G so that $M \cong MN$, then there exists the following isomorphism

$$M(MN, N) \cong M(M, M \cap N).$$

Proof. By the second Isomorphism Theorem we have $\frac{MN}{N} \cong \frac{M}{M \cap N}$. Because of the functorial property of $K(\cdot)$, we conclude the homotopy equivalences $K(M) \approx K(MN)$ and $K(\frac{MN}{N}) \approx K(\frac{M}{M \cap N})$. Therefore, by the uniqueness of the pushout in the category $hTop$, we can identify two following homotopy pushout diagrams in this category

$$
\begin{array}{ccc}
K(MN) & \rightarrow & K(\frac{MN}{N}) \\
\downarrow & & \downarrow \\
1 & \rightarrow & X,
\end{array}
\begin{array}{ccc}
K(M) & \rightarrow & K(\frac{M}{M \cap N}) \\
\downarrow & & \downarrow \\
1 & \rightarrow & Y.
\end{array}
$$

Hence by the definition,

$$M(MN, N) = H_3(X) \cong H_3(Y) = M(M, M \cap N).$$

Note that applying the five lemma and the properties of the direct limit of a directed system to an exact sequence, namely the fact that this functor is exact and it commutes with homology, one can show that for a directed system $\{(G_i, N_i)\}_{i \in I}$ of any pair of groups, the following isomorphism holds

$$M(\lim\limits_{\rightarrow} G_i, \lim\limits_{\rightarrow} N_i) \cong \lim\limits_{\rightarrow} M(G_i, N_i).$$

However in the following we establish a topological proof for this fact in special case, where $\{(G_i, N_i)\}_{i \in I}$ is a directed system of pairs of abelian groups. First we need the following lemma.

Lemma 2.9. The direct limit of a direct system $\{X_i\}_{i \in I}$ of Eilenberg-MacLane spaces is an Eilenberg-MacLane space. Moreover, if the system $\{X_i\}_{i \in I}$ is directed and $\pi_1(X_i)$ is abelian group, for any $i \in I$, then the
Eilenberg-MacLane space $\varinjlim X_i$ is corresponding to the group $\varinjlim \pi_1(X_i)$.

Proof. Consider the induced direct system $\{\pi_n(X_i)\}_{i \in I}$. In order to prove that $\varinjlim X_i$ is an Eilenberg-MacLane space, first we show that $\pi_1(\varinjlim X_i)$ is abelian. For any α and β in $\pi_1(\varinjlim X_i)$, there exists two paths γ and λ in $\varinjlim X_i$ such that $\alpha = [\gamma]$ and $\beta = [\lambda]$. Note that $\varinjlim X_i$ is a quotient space of the wedge space $\bigvee_{i \in I} X_i$, and so we can consider $\gamma \cap X_i$ and $\lambda \cap X_i$ as two paths in X_i, for any $i \in I$. Since $\pi_1(X_i)$'s are abelian groups, $\gamma \cap X_i$ and $\lambda \cap X_i$ commute with each other in the space X_i ($i \in I$) up to homotopy. Therefore two paths γ and λ commute with each other in the space $\varinjlim X_i$ up to homotopy. Thus $\pi_1(\varinjlim X_i)$ is an abelian group. By a similar argument we can show that $\pi_n(\varinjlim X_i)$ is a trivial group, for any $n \geq 2$. If α is an element of $\pi_n(\varinjlim X_i)$, there exists an n-loop γ in $\varinjlim X_i$ such that $\alpha = [\gamma]$. Similar to the previous note, $\gamma \cap X_i$ is an n-loop in X_i ($i \in I$); and since $\pi_n(X_i)$'s are trivial groups, so $[\gamma \cap X_i]$ is trivial in $\pi_n(X_i)$, for any $i \in I$. Because of the structure of the space $\varinjlim X_i$, $[\gamma]$ is also trivial in $\pi_n(\varinjlim X_i)$. This note is true for any arbitrary $n \geq 2$ and so $\pi_n(\varinjlim X_i)$ ($n \geq 2$) is trivial. So if the space X_i, for any $i \in I$, is Eilenberg-MacLane, then the space $\varinjlim X_i$ should be also Eilenberg-MacLane.

Moreover, if $\pi_1(X_i)$'s are abelian groups, we have $\pi_1(X_i) \cong H_1(X_i)$, for any $i \in I$. Hence using the fact that homology functors commute with direct limits of directed systems, we conclude that

$$\varinjlim \pi_1(X_i) \cong \varinjlim H_1(X_i) \cong H_1(\varinjlim X_i).$$

Also, $\pi_1(\varinjlim X_i)$, as a homomorphic image of the abelian group $\varinjlim \pi_1(X_i)$, is abelian, and so we have

$$H_1(\varinjlim X_i) \cong \pi_1(\varinjlim X_i)$$

which completes the proof. \square

Theorem 2.10. Let $\{(G_i, N_i)\}_{i \in I}$ be a given directed system of pairs of abelian groups, then $M(\varinjlim G_i, \varinjlim N_i) \cong \varinjlim M(G_i, N_i)$.

Proof. First, for any $i \in I$, we consider the corresponding pushout diagram

$$
\begin{array}{ccc}
K(G_i) & \longrightarrow & K(G_i) \cong \langle \frac{G_i}{N_i} \rangle \\
\downarrow & & \downarrow \\
1 & \longrightarrow & X_i \\
\end{array}
$$
Using the fact that any two direct limits commute, we conclude that the following diagram is also a pushout diagram,

\[
\lim_i K(G_i) \longrightarrow \lim_i \frac{K(G_i)}{N_i} \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad 1 \longrightarrow \lim_i X_i.
\]

Now by Lemma 2.9, we rewrite the above diagram as follow

\[
K(\lim_i G_i) \longrightarrow K(\lim_i \frac{G_i}{N_i}) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad 1 \longrightarrow \lim_i X_i.
\]

Finally, by the definition and the fact that homology groups commute with the direct limit of a directed system, we have

\[
M(\lim_i G_i, \lim_i N_i) = H_3(\lim_i X_i)
\]

\[
\cong \lim_i H_3(X_i) = \lim_i M(G_i, N_i). \square
\]

3. Schur Multipliers of Triples

Let \((G, M, N)\) be a triple of groups. Consider the following homotopy pushout

\[
K(G, N) \longrightarrow K(\frac{G}{M}, \frac{M N}{M}) \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad 1 \longrightarrow X.
\]

Using the Mayer-Vietoris sequence for homotopy pushout, we have the following exact sequence

\[
H_4(K(G, N)) \rightarrow H_4(K(G/M, MN/M)) \rightarrow H_4(X) \rightarrow H_3(K(G, N)) \rightarrow H_3(K(G/M, MN/M)) \rightarrow \\
H_3(X) \rightarrow H_2(K(G, N)) \rightarrow \cdots.
\]

As \(H_4(K(G, N)) = H_3(G, N), M(G, N) = H_3(K(G, N)), H_3(X) = M \cap N/[M \cap N, G]\) and \(H_2(K(G, N)) = 0 \) (see [2]), we obtain the following exact sequence

\[
H_3(G, N) \rightarrow H_3(G/M, MN/M) \rightarrow H_4(X) \rightarrow M(G, N)
\]
$$M(G/M, MN/M) \to M \cap N/[M \cap N, G][M, N]$$
$$\to N/[N, G] \to NM/M[N, G] \to 0.$$

Now, the Schur multiplier of the triple \((G, M, N)\) is defined to be the fourth homology group of the space \(X\), \(M(G, M, N) = H_4(X)\). If \(K(G, M, N)\) denotes the mapping cone of the canonical map \(K(G, N) \to K(G/M, MN/M)\), then it is easy to see that the space \(X\) and \(K(G, M, N)\) have the same homotopy type. Therefore the above definition of the Schur multiplier of a triple is coincide with the definition presented in [4] by Ellis. Using the above topological interpretation of the Schur multiplier of a triple and similar to Theorem 2.7, we can study the behavior of the Schur multiplier of a triple with respect to direct limits as follows.

Theorem 3.1. Let \(\{(G_i, M_i, N_i)\}_{i \in I}\) be a directed system of triples of abelian groups such that \(M_i \cap N_i = 1\) for all \(i \in I\). Then

\[
M(\lim \to G_i, \lim \to M_i, \lim \to N_i) \cong \lim \to M(G_i, M_i, N_i).
\]

Proof. First, by the proof of Theorem 2.7, we recall that for any abelian group \(G_i\), the space \(\lim \to K(G_i, H_i)\) can be considered as \(K(\lim \to G_i, \lim \to H_i)\). For the group \(\lim \to M(G_i, M_i, N_i)\), we have the following diagram

\[
\begin{array}{c}
\lim \to K(G_i, N_i) \\
\downarrow \quad \downarrow \\
1 \to \lim \to X_i.
\end{array}
\]

But by the above facts, we can replace this diagram by the new one

\[
\begin{array}{c}
K(\lim \to G_i, \lim \to N_i) \\
\downarrow \quad \downarrow \\
1 \to \lim \to X_i.
\end{array}
\]

Now by the property of direct limit which preserves exact sequences, we reform the above diagram to the following

\[
\begin{array}{c}
K(\lim \to G_i, \lim \to N_i) \\
\downarrow \quad \downarrow \\
1 \to \lim \to X_i.
\end{array}
\]
The last diagram completes the proof. □

According to our topological definition of the Schur multiplier of a pair of groups in previous section, it seems that we can generalize this notion to triples more natural than the one of Ellis. In order to define this new version of the Schur multiplier of a triple \((G, M, N)\) consider the following homotopy pushout

\[
\begin{array}{ccc}
K(G) & \rightarrow & K(\frac{G}{N}) \\
\downarrow & & \downarrow \\
K(\frac{G}{M}) & \rightarrow & X.
\end{array}
\]

Now we define the new version of the Schur multiplier of the triple \((G, M, N)\) to be the third homology group of the space \(X\), \(H_3(X)\).

Using the Mayer-Vietoris sequence for the above diagram we conclude the following exact sequence

\[
\cdots \rightarrow H_3(K(G)) \rightarrow H_3(K(\frac{G}{N})) \oplus H_3(K(\frac{G}{M})) \rightarrow H_3(X) \rightarrow H_2(K(G)) \rightarrow \\
H_2(K(\frac{G}{N})) \oplus H_2(K(\frac{G}{M})) \rightarrow H_2(X) \rightarrow \cdots.
\]

By Hopf Formula [7] for any group \(G\), \(H_2(K(G)) = M(G)\); so we obtain the following exact sequence

\[
\cdots \rightarrow H_3(K(G)) \rightarrow H_3(K(\frac{G}{N})) \oplus H_3(K(\frac{G}{M})) \rightarrow \\
M(G, N, M) \rightarrow M(G) \rightarrow M(\frac{G}{N}) \oplus M(\frac{G}{M}) \rightarrow \cdots.
\]

Remarks 3.2.

(i) Note that if \(G = MN\), then by [2] \(H_3(X) \cong \ker(N \cap M \rightarrow G)\). Also, Ellis [4] mentioned that if \(G = MN\), then \(M(G, N, M) \cong \ker(N \cap M \rightarrow G)\). Hence our definition of the Schur multiplier of a triple of groups coincide with the definition of Ellis, if \(G = MN\).

(ii) Since our definition of the Schur multiplier of a triple of groups is a very natural generalization of the pair’s one, we can present more behaviors of this new notion with respect to free, amalgamated free, and direct products and also a better behavior with respect to direct limits than the one of Ellis.

The following results are evidences for the above claim.

Theorem 3.3. For any two triple of groups \((G_1, N_1, M_1)\) and \((G_2, N_2, M_2)\), we have the following isomorphism

\[
M(G_1 \ast G_2, (N_1 \ast N_2)^{G_1 \ast G_2}, (M_1 \ast M_2)^{G_1 \ast G_2}) \cong M(G_1, N_1, M_1) \oplus M(G_2, N_2, M_2).
\]
Proof. Suppose that \(X_i (i = 1, 2) \) is the pushout of corresponding diagram

\[
K(G_i) \rightarrow K\left(\frac{G_i}{N_i}\right) \\
\downarrow \quad \downarrow \\
K\left(\frac{G_i}{M_i}\right) \rightarrow X_i.
\]

Similar to the proof of the Theorem 2.3, using the fact that any two direct limits commute, we conclude that the space \(X_1 \vee X_2 \) is also a pushout for the following diagram

\[
K(G_1) \vee K(G_2) \rightarrow K\left(\frac{G_1}{N_1}\right) \vee K\left(\frac{G_2}{N_2}\right) \\
\downarrow \quad \downarrow \\
K\left(\frac{G_1}{M_1}\right) \vee K\left(\frac{G_2}{M_2}\right) \rightarrow X_1 \vee X_2.
\]

According to Van-Kampen Theorem, we rewrite the above diagram as follows

\[
K(G_1 * G_2) \rightarrow K\left(\frac{G_1 * G_2}{N_1^\ast N_2}\right) = K\left(\frac{G_1 * G_2}{(N_1 * N_2)^{G_1 * G_2}}\right) \\
\downarrow \quad \downarrow \\
K\left(\frac{G_1 * G_2}{(M_1 * M_2)^{G_1 * G_2}}\right) \rightarrow X_1 \vee X_2.
\]

Now by the definition and the Mayer-Vietoris sequence for the above diagram we conclude the following isomorphism

\[
M(G_1 * G_2, (N_1 * N_2)^{G_1 * G_2}, (M_1 * M_2)^{G_1 * G_2}) = H_3(X_1 \vee X_2) \cong \\
H_3(X_1) \oplus H_3(X_2) = M(G_1, N_1, M_1) \oplus M(G_2, N_2, M_2). \quad \square
\]

Also, by naturalness of our new version of the Schur multiplier of triple, we can give more results about the Schur multiplier of triples of groups deduced with the proofs similar to those of pairs as follows.

Theorem 3.4. Let \((G_1, N_1, M_1), (G_2, N_2, M_2)\) be two triples of groups and \(H \leq N_1 \cap N_2, \ H \leq M_1 \cap M_2 \). Then the Schur multiplier of the triple of amalgamated free products \((G_1 \ast_H G_2, N_1 \ast_H N_2, M_1 \ast_H M_2)\) satisfies the following exact sequence

\[
\cdots \rightarrow H_3(K(G_1 \ast_H G_2)) \rightarrow H_3\left(\frac{G_1}{N_1}\right) \oplus H_3\left(\frac{G_2}{N_2}\right) \oplus H_3\left(\frac{G_1}{M_1}\right) \oplus H_3\left(\frac{G_2}{M_2}\right) \rightarrow \\
M(G_1 \ast_H G_2, N_1 \ast_H N_2, M_1 \ast_H M_2) \rightarrow M(G_1 \ast_H G_2) \\
M\left(\frac{G_1}{N_1}\right) \oplus M\left(\frac{G_2}{N_2}\right) \oplus M\left(\frac{G_1}{M_1}\right) \oplus M\left(\frac{G_2}{M_2}\right) \rightarrow \cdots.
\]
Theorem 3.5. For any two triples of groups \((G_1, N_1, M_1)\) and \((G_2, N_2, M_2)\), the Schur multiplier of the triple of direct products \((G_1 \times G_2, N_1 \times N_2, M_1 \times M_2)\) satisfies the following exact sequence

\[
H_3(K(G_1)) \oplus (M(G_1) \otimes G_2^{ab}) \oplus (G_1^{ab} \otimes M(G_2)) \oplus H_3(K(G_2)) \oplus \text{Tor}(G_1^{ab}, G_2^{ab}) \rightarrow
\]

\[
H_3(K\left(\frac{G_1}{N_1}\right)) \oplus (M\left(\frac{G_1}{N_1}\right) \otimes \frac{G_2^{ab}N_2}{N_2}) \oplus (\frac{G_1^{ab}N_1}{N_1} \otimes M\left(\frac{G_2}{N_2}\right)) \oplus H_3(K\left(\frac{G_2}{N_2}\right)) \oplus
\]

\[
\text{Tor}\left(\frac{G_1^{ab}N_1}{N_1}, \frac{G_2^{ab}N_2}{N_2}\right) \oplus H_3(K\left(\frac{G_1}{M_1}\right)) \oplus (M\left(\frac{G_1}{M_1}\right) \otimes \frac{G_2^{ab}M_2}{M_2}) \oplus
\]

\[
(\frac{G_1^{ab}M_1}{M_1} \otimes M\left(\frac{G_2}{M_2}\right)) \oplus H_3(K\left(\frac{G_2}{M_2}\right)) \oplus \text{Tor}\left(\frac{G_1^{ab}M_1}{M_1}, \frac{G_2^{ab}M_2}{M_2}\right) \rightarrow
\]

\[
M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \rightarrow M(G_1 \times G_2) \rightarrow M\left(\frac{G_1}{N_1} \times \frac{G_2}{N_2}\right) \oplus M\left(\frac{G_1}{M_1} \times \frac{G_2}{M_2}\right) \rightarrow \cdots.
\]

Remarks 3.6. Some special cases of the above exact sequence are as follows:

(i) If \(\frac{G_1}{N_1}\) and \(\frac{G_2}{M_2}\) are finite cyclic groups of orders \(m_i\) and \(l_i\) \((i = 1, 2)\), respectively, then we have the following exact sequence

\[
\cdots \rightarrow \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \mathbb{Z}_d \oplus \mathbb{Z}_{l_1} \oplus \mathbb{Z}_{l_2} \oplus \mathbb{Z}_c \rightarrow
\]

\[
M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \rightarrow
\]

\[
M(G_1) \oplus M(G_2) \oplus (G_1 \otimes G_2) \rightarrow \mathbb{Z}_d \oplus \mathbb{Z}_c \rightarrow \cdots,
\]

where \(d = \text{gcd}(m_1, m_2)\) and \(c = \text{gcd}(l_1, l_2)\). Moreover, if \(G_1\) and \(G_2\) are also cyclic, then we get the following exact sequence

\[
\cdots \rightarrow \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \mathbb{Z}_d \oplus \mathbb{Z}_{l_1} \oplus \mathbb{Z}_{l_2} \oplus \mathbb{Z}_c \rightarrow
\]

\[
M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \rightarrow
\]

\[
G_1 \otimes G_2 \rightarrow \mathbb{Z}_d \oplus \mathbb{Z}_c \rightarrow \cdots.
\]

(ii) If \(\text{gcd}(\left|\frac{G_1}{N_1}\right|, \left|\frac{G_2}{M_2}\right|) = 1\) and \(\text{gcd}(\left|\frac{G_1}{M_1}\right|, \left|\frac{G_2}{N_2}\right|) = 1\), then the following exact sequence holds

\[
\cdots \rightarrow H_3\left(\frac{G_1}{N_1}\right) \oplus H_3\left(\frac{G_2}{N_2}\right) \oplus H_3\left(\frac{G_1}{M_1}\right) \oplus H_3\left(\frac{G_2}{M_2}\right) \rightarrow
\]

\[
M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \rightarrow M(G_1) \oplus M(G_2) \oplus (G_1 \otimes G_2) \rightarrow
\]

\[
M\left(\frac{G_1}{N_1}\right) \oplus M\left(\frac{G_2}{N_2}\right) \oplus M\left(\frac{G_1}{M_1}\right) \oplus M\left(\frac{G_2}{M_2}\right) \rightarrow \cdots.
\]
Moreover, if G_i is a finite group ($i = 1, 2$) such that $gcd(|G_1|, |G_2|) = 1$, then we conclude the following exact sequence

$$
\cdots \to H_3\left(\frac{G_1}{N_1}\right) \oplus H_3\left(\frac{G_2}{N_2}\right) \oplus H_3\left(\frac{G_1}{M_1}\right) \oplus H_3\left(\frac{G_2}{M_2}\right) \to M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \to M(G_1) \oplus M(G_2) \to M\left(\frac{G_1}{N_1}\right) \oplus M\left(\frac{G_2}{N_2}\right) \oplus M\left(\frac{G_1}{M_1}\right) \oplus M\left(\frac{G_2}{M_2}\right) \to \cdots .
$$

(iii) Finally, if G_i is a finite cyclic group ($i = 1, 2$) such that $gcd(|G_1|, |G_2|) = 1$, then we have the following exact sequence

$$
\cdots \to \mathbb{Z}_{m_1} \oplus \mathbb{Z}_{m_2} \oplus \mathbb{Z}_{l_1} \oplus \mathbb{Z}_{l_2} \to M(G_1 \times G_2, N_1 \times N_2, M_1 \times M_2) \to 0.
$$

Finally, we can use Lemma 2.9 and deduce a similar result for triples, as follows.

Theorem 3.7. The Schur multiplier of a triple of groups commutes with the direct limit of a directed system of triples of abelian groups.

References

[1] K.S. Brown, Cohomology of Groups, G.T.M. 87, Springer-Verlag, New York, 1982.

[2] R. Brown, J.L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311-335.

[3] E.B. Curtis, Simplicial homotopy theory, Advances in Math. 6 (1971) 107-209.

[4] G. Ellis, The Schur multiplier of a pair of groups, Applied Categorical Structures 6 (1998) 355-371.

[5] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, New Series 2, Clarendon Press, Oxford University Press, Oxford, 1987.
[6] B. Mashayekhy, H. Mirebrahimi, Some properties of the Schur multiplier with algebraic topological approach, Inter. J. Math. Game Theory Algebra 17 (2008) 125-130.

[7] J.J. Rotman, An Introduction to Algebraic Topology, G.T.M. 119, Springer-Verlag, New York, 1988.

[8] R.M. Switzer, Algebraic Topology - Homotopy and Homology, Die Grundlehren der mathematischen Wissenschaften in Einzeldatstellungen, Springer-Verlag, Berlin, Heidelberg, New York, 1975.