Thermodynamic modeling of the synthesis of the main minerals of cement clinker from technogenic raw materials

1Kolesnikov A. S., 1Zhanikulov N. N., 1,2Zhakipbayev B. Ye., 1Kolesnikova O. G., 1Kuraev R. M.

1 M. Auezov South- Kazakhstan University, Shymkent, Kazakhstan
2 Silkway International University, Shymkent, Kazakhstan

* Corresponding author email: kas164@yandex.kz, ogkolesnikova@yandex.ru

ABSTRACT

In this article, thermodynamic studies of modeling the formation of the main minerals of cement clinker as a function of the Gibbs energy (ΔG) on temperature were investigated. The temperature range of the studies was 873-1873 K. In the course of modeling studies, the reactions of formation of cement clinker minerals (C₃S - belite, C₃S - alite, C₂A – three calcium aluminates, C₄AF – four calcium aluminium ferrite) from standard raw materials and non – standard-technogenic raw materials containing non-ferrous metals were calculated. Equations describing the dependence of the Gibbs energy on temperature with approximation coefficients (R²) equal to 0.99 are found. According to the results of the conducted studies, the beginning (Tb) temperatures of the course of the compared clinker formation reactions were determined, which were 1008 K for the standard reaction, and 1023 K for the non-standard reaction. It was found that the reactions begin to occur in the temperature intervals for the standard (1008 K – 1873 K), for the non - standard (1023 K - 1873 K). At the same time, the values at the initial stage of the course of the standard reaction have a more negative value of the Gibbs energy than the non-standard reaction. With a further increase in temperature, it becomes evident that the Gibbs energy of the non-standard reaction of mineral formation in the temperature range 1173-1873K becomes more negative in comparison with the values of the standard reaction and exceeds its values from 9 to 19.01%.

Keywords: Technogenic raw materials, processing waste, thermodynamics, Gibbs energy, cement clinker minerals, non-ferrous metals.

Information about authors:

Kolesnikov Alexandr Sergeevich
Candidate of Technical Sciences, leading researcher of the Department of Science and Production, Innovation, Associate Professor of the Department «Life Safety and Environmental Protection», M. Auezov South-Kazakhstan University, Shymkent, Kazakhstan. Email: kas164@yandex.kz, orcid id: https://orcid.org/0000-0002-8060-6234

Zhanikulov Nurgali Nadiruly
Doctor of PhD, Senior Researcher of the Department of Science, Production and Innovation, M. Auezov South-Kazakhstan University, Shymkent, Kazakhstan. Email: nurgali.zhanikulov@mail.ru orcid id: https://orcid.org/0000-0002-0750-9753

Zhakipbayev Bibol Yermuratovich
Doctor of PhD, Senior Researcher of the Department of Science, Production and Innovation, M. Auezov South-Kazakhstan University, Shymkent, Kazakhstan. Vice-rector of the Science and Innovations, Silkway International University, Shymkent, Kazakhstan Email: bibol_8484@mail.ru orcid id: https://orcid.org/0000-0002-1412-7796

Kolesnikova Olga Gennadievna
Master of Engineering and Technology, Junior Researcher of the Department of Science, Production and Innovation, M. Auezov South- Kazakhstan University, Shymkent, Kazakhstan. Email: ogkolesnikova@yandex.ru, orcid id: https://orcid.org/0000-0001-6871-8367

Kuraev Rasim Muradovich
Master of Engineering and Technology, specialist of the highest qualification level of the Department of Science Production and Innovation, M. Auezov South- Kazakhstan University, Shymkent, Kazakhstan. Email: kuraevrm@yandex.ru, orcid id: https://orcid.org/0000-0001-9758-760X

Introduction

Over the long-term period of intensive development of all industries in Kazakhstan, including the mining and metallurgical complex (MMC), more than 26 billion tons of solid production waste have accumulated, which is annually replenished in dumps by another 1 billion tons. Most of them (58%, or 15.1 billion tons) are waste from
the mining and metallurgical industries, considered an independent raw material base. In non-ferrous metallurgy (copper-aluminium, lead-zinc, gold-rare-metal industries), the total amount of waste reaches more than 5 billion tons, including rocks of associated mining and overburden - 72%, tailings of enrichment - 26 and metallurgical processing – 1,6 %. The area of land occupied by waste is more than 13 thousand hectares. The total amount of accumulated waste in the ferrous metallurgy of Kazakhstan (iron ore, chromium ore and manganese ore industries) is more than 6,2 billion tons, of which: associated mining and overburden — 92,8 %, enrichment-6,1 and metallurgical processing-1,1 %. The area of land occupied by waste is more than 15 thousand hectares [1].

The reasons for the formation of technogenic waste are the deterioration of the technological quality of ores, a significant lag in the technologies of extraction, processing and metallurgical processing from the changing characteristics of ore raw materials, an increase in the loss of mineral carriers of metals [2-10].

Society's consumption of natural resources is becoming an acute problem due to the quantitative growth of their use, which leads to environmental and other problems. The fact is that the country's MMC is special in terms of resources, since it is characterized by an increased level of resource consumption, which naturally increases as mining operations decrease, as well as due to the deterioration of the quality of minerals, mining-geological and mining-technical conditions for the development of deposits [1-15].

In Kazakhstan, the problem of increasing the resource productivity of MMC and its environmental safety has not yet been given due attention, because of which the traditional low level of productivity of the use of basic production resources and environmental safety provides reason to consider mining and metallurgical production as a whole as a factor hindering the overall economic and social development of the country [2, 15-27].

Solving the problem of increasing the resource productivity of MMC production and preserving the environment is becoming increasingly important. It will only increase over time, especially due to the increasing scarcity of natural resources as their available sources are exhausted. In accelerated scientific and technological progress, one of the main issues of economic policy is to ensure high production efficiency. With the ever-increasing shortage of natural resources, a special role is played by the rational, integrated and economical use of all types of raw materials. Therefore, in recent years, the recovery of raw materials from mining waste and their integrated use is a matter of national importance [3, 9-27].

The level of involvement of human-made industrial waste as secondary raw materials is frankly low, namely: in the context of ferrous metallurgy - 3,3%, in the context of the coal industry - 5,2% and in the context of non-ferrous metallurgy – 5,6%, which is a very low indicator concerning the developed economies of the world [3-28].

Most developed foreign countries have long practiced saving their mineral resources, intensively involving man-made deposits in processing, disposing of production waste, and developing technologies for processing this waste. For example, in the United States back in 1993, the share of secondary raw materials in the production of non-ferrous metals was: copper - 55 %, tungsten - 28 %, nickel - 25 %. A similar trend in secondary resources is observed in Canada, the United Kingdom, South Africa, Spain, and other countries [29].

In Canada, 40% of copper is recovered from copper mining waste containing 0,45% copper, thanks to new enrichment methods (heap acid leaching, heap pyrite and bacterial leaching). In the US, in the state of Montana, 2 tons of gold and 4 tons of silver are extracted annually from the Mandiski mine dumps containing 0,84 g/t of gold and 2,8 g/t of silver. In the state of Michigan, 60% of copper is extracted from the tailings of the enrichment (copper content – 0,3%). In Bulgaria, copper concentrate is obtained from waste containing 0,1 - 0,15% copper, the cost of which is 3 times lower than when it is obtained from natural raw materials. In the Republic of South Africa, 3,5 tons of gold and 696 tons of uranium per year are obtained from the dumps of gold recovery factories with a gold content of 0,53 g/t and 40 g/t uranium [29].

As the reserves of the developed fields are exhausted, human-made objects may become a priority. In some cases, the only source of mineral raw materials for numerous mining and metallurgical enterprises. At the same time, it should be borne in mind that the waste of mining and industrial production, representing a large reserve of raw materials for the extraction of metals and non-metals, at the same time are hotbeds of local or regional environmental pollution. The waste mass accumulated in dumps and tailings dumps with an average layer thickness of 20 m covers more than 1300 km². The annual increase in the area of alienated land is at least 85-90 km². The negative impact on the environment is manifested in an area
that is 10 times or larger than the area occupied by waste. A significant part of the alienated land is located in industrially developed areas, often within the borders of settlements and large cities [29].

One of such multi-tonnage wastes of technogenic nature is the tailings from the enrichment of non-ferrous metal ores of the Balkhash processing plant located near the city of Balkhash (Kazakhstan), which during the economic activity of the processing plant for decades hurt the natural environment of the region. And from an ecological point of view, they are a hotbed of pollution of the surrounding natural environment, particularly the soil cover, the air basin, surface, and underground waters containing non-ferrous metals in their composition.

The Balkhash tailings storage facility is of particular great interest, as it is one of the oldest in the industry and one of the largest tailings storage facilities in Kazakhstan. In addition, it is not located in a simple, arid zone, which significantly increases the impact of the tailing dump on the environment [1-3,15-29], it is in significant proximity to Lake Balkhash, which has a large, even enormous economic purpose [15-29].

The Balkhash processing plant, which owns the tailings storage facility, enriches copper-molybdenum ores from the Kounrad and Sayak deposits. During the day, the factory processes an average of 33.7 thousand tons of Kounrad and 9.5 thousand tons of Sayak ores. The enrichment waste is stored in the tailings storage facility.

In Kazakhstan, where 360-390 thousand tons of refined copper are produced annually [1-3, 30], the amount of copper ore flotation waste is growing by 1.8-2.5 million tons per year.

The result of many years of operation of the processing plant, which processes various ores, including copper-zinc ores, is the formation of production waste on the earth’s surface on the territory of the enterprise or near it. Such formations are a relatively low content of non-ferrous metals and a decrease in the quality of processed ores. Natural leaching of stored formations [1-30].

Study object, research methods, and calculation methods

Thermodynamic studies were carried out using the software package "HSC Chemistry 6.1", developed by the metallurgical company Outokumpu (Finland). The software package used in this work is based on the ideology of the European consortium SGTE (Scientific Group Thermodata Europe), which is engaged in the development, support and distribution of high-quality databases. The SGTE structure is represented by specialized research centres in Germany, Canada, France, Sweden, the United Kingdom, and the United States. The database of the software package contains information about 22,000 individual substances [31].

To calculate the thermodynamic functions that characterize the individual, the substance used is stored in the database of the standard values of enthalpy H_{298}, S_{298} entropy, and the polynomial coefficients A, B, C, D, by which the calculated value of the molar heat capacity at arbitrarily given temperature T according to equation (1).

Individual enthalpy of a substance at the temperature T, different from the standard, equal to 298 K, was calculated by the formula:

$$H_T = H_{298} + \int_{298}^{T} C_p \, dT + \sum H_F ,$$

(1)

H_{298} - is the value of a given substance under standard conditions; C_p - is the molar heat capacity; $\sum H_F$ - is the enthalpy of phase transitions (polymorphic transformations, melting, evaporation).

The entropy value is defined as:

$$S_T = S_{298} + \int_{298}^{T} \frac{C_p}{T} \, dT + \frac{\sum H_F}{T} ,$$

(2)

Where S_{298} - is the entropy value of a given substance under standard conditions; C_p - is the molar heat capacity; $\sum H_F$ - is the enthalpy of phase transitions (polymorphic transformations, melting, evaporation).
Table 1 - Calculation of the Gibbs energy of the reaction 12CaCO₃+2SiO₂+2Al₂O₃+Fe₂O₃=
=Ca₃SiO₅+Ca₂SiO₄+Ca₃Al₂O₆+Ca₃Al₂Fe₂O₁₀+12CO₂↑

T, K	deltaH, kJ	deltaS, J/K	deltaG, kJ	K	Log(K)
873.000	1447.213	1436.921	192.781	2.913E-012	-11.536
973.000	1379.154	1363.127	52.831	1.457E-003	-2.836
1073.000	1312.193	1297.626	-80.159	7.990E+003	3.903
1173.000	1253.513	1245.225	-207.136	1.678E+009	9.225
1273.000	1182.795	1187.380	-328.740	3.092E+013	13.490
1373.000	1110.083	1132.404	-444.708	8.317E+016	16.920
1473.000	1035.284	1079.827	-555.301	4.936E+019	19.693
1573.000	958.322	1029.283	-660.741	8.772E+021	21.943
1673.000	433.018	702.365	-742.039	1.479E+023	23.170
1773.000	347.830	652.963	-809.873	7.275E+023	23.862
1873.000	247.568	597.956	-872.403	2.147E+024	24.332

Results and its discussion

Having considered the chemical composition of the tailings from the enrichment, which according to various data [29, 30, 32,33] contains an average of SiO₂ - 53%, Al₂O₃ - 13,1%, CaO - 8.3%, Fe₂O₃ - 8,2%, MgO-0.55%, as well as residual non-ferrous metals Cu - 0,8%, ZnO - 0.5%. From which it follows that the tailings from the enrichment of non-ferrous metal ores may be considered as a secondary mineral raw material for the cement industry as an aluminum-silicate component of the raw material mixture during synthesis cement clinker. Thus, we have modeled the conditions for the formation of the main minerals of cement clinker (Ca₃SiO₅ - alite, Ca₂SiO₄ - belite, Ca₃Al₂O₆ - tricalcium aluminate, Ca₃Al₂Fe₂O₁₀ - four-calcium aluminoferrite) in the classic form. The standard chemical reaction was used as the basis of our research for comparison:

12CaCO₃+2SiO₂+2Al₂O₃+Fe₂O₃=Ca₃SiO₅+Ca₂SiO₄ +Ca₃Al₂O₆+Ca₃Al₂Fe₂O₁₀+12CO₂↑ (3)

The results of the thermodynamic calculation of the possibility of the standard reaction (3) are shown in Table 1.

Based on the results of the calculation of the Gibbs energy (ΔGTₒ) of the reaction (3), shown in Table 1, it can be seen that the reaction is limited and begins to flow at T=1073K, reaching a Gibbs energy value of -80,159 kJ and with increasing temperature becomes more negative reaching a value of -872,403 kJ at T=1873K. Based on the results of the obtained values of the Gibbs energy as a function of temperature, we we found an equation describing the dependence of the Gibbs energy on the temperature of the reaction (3) and were able to determine the temperature of the beginning (Tb) of the reaction (3). Thus, the dependence of the Gibbs energy on the reaction temperature (3) is described by the following equation (and has an approximation coefficient R²=0,99):

ΔGTₒ = -1437ln(T) + 9933.6 (4)

And the temperature of the beginning of the reaction (Tb) according to equation (4) was 1008K.

Based on the chemical composition of the tailings from the enrichment of non-ferrous metal ores, we considered the following non-standard reaction to obtain information on the formation of the main minerals of cement clinker with simultaneous distillation of zinc into the gas phase:

12CaCO₃+2SiO₂+2Al₂O₃+Fe₂O₃=MgO+Zn↑+2Cu↑ +Ca₃Al₂Fe₂O₁₀+12CO₂↑+SO₂↑ (5)

The calculation of the Gibbs energy (ΔGTP) of the reaction (5) is shown in Table 2. Table 2 shows that the non-standard reaction (5) is limited and begins to flow at T=1073K, reaching a Gibbs energy value of -71.262 kJ. With increasing temperature becomes more negative getting a value of -1077,296 kJ at T=1873K.

Based on the results of the obtained values of the Gibbs energy as a function of temperature, we
found an equation describing the dependence of the Gibbs energy on the temperature of the reaction (5) and were able to determine the temperature of the beginning (Tb) of the reaction (5). Thus, the dependence of the Gibbs energy on the temperature of the reaction (5) is described by the following equation (and has an approximation coefficient R²=0.99):

$$\Delta G = -1801\ln(T) + 12484 \quad (6)$$

And the temperature of the beginning of the reaction (Tb) according to equation (5) was 1023K.

A comparison of reaction (3) with reaction (5) shows that new reaction participants have appeared in reaction (5), in particular magnesium oxide, zinc sulfide, and copper oxide. At the same time, the course of these reactions in the temperature range of 873-1873 K is limited. Based on the results of the calculations in Tables 1 and 2, their flow is possible in the temperature range of 1073-1873 K when negative values of ΔG are reached and is almost identical at the beginning temperature (Tb) of the reaction (3 and 5), where Tb was 1008K and 1023K, respectively, which is not a significant difference in high-temperature synthesis. At a temperature of 1073 K, the reaction ΔG (3) has a value of -80,159 kJ, and the reaction ΔG (5) has a less negative value of -71,262 kJ, which indicates a slight advantage of reaction (3) over reaction (5). However, with a further increase in temperature from 1173K to 1873K, the ΔG of the reaction (5) begins to have more negative values (from 227,641 kJ to -1077,296 kJ, respectively) than the values of the ΔG of the reaction (3), from 207,136 kJ to -872,403 kJ, respectively. This indicates the intensification of the reaction (3) due to the presence of zinc compounds, which contributes as a mineralizer not only to the intensification of the clinker formation reaction [34-46], but also to a decrease in the formation temperature of clinker minerals by approximately 100-120 K, which in the future when synthesizing cement clinker minerals, will help to save energy of the process.

Conclusions

Thus, based on the conducted research, we can draw the following conclusions:
- reaction $12\text{CaCO}_3+2\text{SiO}_2+2\text{Al}_2\text{O}_3+\text{Fe}_2\text{O}_3=$
 $\text{Ca}_2\text{SiO}_3+\text{Ca}_3\text{SiO}_4+\text{Ca}_3\text{Al}_2\text{O}_6+\text{CaAl}_2\text{Fe}_2\text{O}_10+\text{MgO}+\text{Zn}↑+2\text{Cu}+12\text{CO}_2↑+\text{SO}_2↑.$
- Tb of the reaction $12\text{CaCO}_3+2\text{SiO}_2+2\text{Al}_2\text{O}_3+\text{Fe}_2\text{O}_3+\text{MgO}+\text{Zn}↑+2\text{Cu}+12\text{CO}_2↑+\text{SO}_2↑$ is limited and begins to occur at $T=1073K$, at a Gibbs energy value of -80,159 kJ and reaches a value of ΔG -872,403K at $T=1873K$;
- reaction $12\text{CaCO}_3+2\text{SiO}_2+2\text{Al}_2\text{O}_3+\text{Fe}_2\text{O}_3+\text{MgO}+\text{Zn}↑+2\text{Cu}+12\text{CO}_2↑+\text{SO}_2↑$ in the studied temperature range is limited and begins to flow at $T=1073K$, having a Gibbs energy of -71.262 kJ with an increase in the Gibbs energy to 1077.296 kJ at 1873K;
- Tb of the reaction $12\text{CaCO}_3+2\text{SiO}_2+2\text{Al}_2\text{O}_3+\text{Fe}_2\text{O}_3+\text{MgO}+\text{Zn}↑+2\text{Cu}+12\text{CO}_2↑+\text{SO}_2↑$ was

T. K	δG_{H} kJ	δG_{S} J/K	δG_{O} kJ	K	Log(K)
873.000	1779.155	1738.591	261.364	2.293E+016	-15.640
973.000	1708.063	1661.508	91.415	1.236E+005	-4.908
1073.000	1638.050	1593.022	-71.262	2.947E+003	3.469
1173.000	1576.335	1537.916	-227.641	1.374E+010	10.138
1273.000	1502.639	1477.635	-378.390	3.370E+015	15.528
1373.000	1453.366	1439.856	-523.556	8.316E+019	19.920
1473.000	1375.424	1385.070	-664.784	3.768E+023	23.576
1573.000	1196.041	1266.296	-795.842	2.690E+026	26.430
1673.000	665.874	936.380	-900.690	1.330E+028	28.124
1773.000	575.810	884.147	-991.782	1.665E+029	29.222
1873.000	470.661	826.459	-1077.296	1.113E+030	30.046
1023 K and is described by the following equation

\[\Delta G = -1801 \ln(T) + 12484; \]

- according to the reaction (5), it is theoretically possible to form the main minerals of cement clinker (similar to reaction 3), to distil zinc and sulfur-containing gases into the gas phase, for their further capture and processing.

- reaction (5) proceeds more intensively than reaction (3) in the temperature range 1173-1873 K due to the participation of zinc in the reaction as an intensifier, which also contributes to a decrease in the process temperature by 100-120 K compared to the standard reaction (3);

- at the initial stage of the flow at T=1073 K, the reaction (3) has a more negative value of the Gibbs energy than the reaction (5), but with increasing temperature, it becomes obvious that the Gibbs energy of the reaction (5) in the temperature range 1173-1873 K becomes more negative compared to the values of the reaction (3) and exceeds its values from 9 to 19.01%.

Conflicts of interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgement. This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (grant AP 08053015).

Cite this article as: Kolesnikov A. S., Zhanikulov N. N., Zhakipbayev B. Ye., Kolesnikova O. G., Kuraev R. M. Thermodynamic modeling of the synthesis of the main minerals of cement clinker from technogenic raw materials. *Kompleksnoe Isspol'zovanie Mineral'no-go Syr'a. = Complex Use of Mineral Resources = Mineral'dik Shikisattardy Keshendi Paidalanu*. - 2021. №3 (318), pp. 24-34. https://doi.org/10.31643/2021/6445.25

Техногенді шикізаттардан цемент клинкерінің негізгі минералдарының синтездеуді термодинамикалық моделдөу

1 Колосников А. С., 1 Жаникулов Н. Н., 1,2 Жакипбаев Б. Е., 1 Колосникова О. Г., 1 Курәев Р. М.

2 М. Жүзөв отындайды Өңтүстік-Қазақстан Университеті, Шымкент қ, Қазақстан

Мақала келді: 27 сауәр 2021
Сараптамадан отти: 19 мамыр 2021
Қабылданды: 16 шілде 2021

ТУНІНДІМЕ

Маклада Гиббс энергиясының (ΔG) температурага байланысты цемент клинкерінің негізгі минералдарының тұзулық моделиндеу термодинамикалық жөндөріс жұрғызилады. Зерттеуді моделиндеу барысында стандартты шикізаттан цемент клинкерінің негізгі минералдарының тұзулу реакцияларының түзілуін қатқысыз ету үшін қажет. Моделиндеу барысында Гиббс энергиясының априкизация коэффициенттері (R) 0,99-ға тең температурага тауелділігін сипаттайтyn төмендегі табылды. Жұрғызілген зерттеулердің натығалы айырышта бойынша клинкер тұзулу реакцияларының басталу температурасы (Тb) анықталаған. Негізгі стандартты реакция үшін (стандартты шикізатты қолдану ұтырғы 1008 К, ал стандартты емес реакция үшін (байыту қалдықтарын қолдану ұтырғы) 1023 К құрады. Сондай-ақ, стандартты реакциялар (1008К – 1873 K), стандартты емес (1023 K - 1873 K) реакциялар температураппін интервалдарда басталатыны анықталаған. Соньмен қатар, стандартты реакцияның бастылығы (Гиббс энергиясының мәні стандартты емес реакцияға қарқындан тәрізді мәнге не болады. Температура өзендрі жітірелік интервалдарды анықталаған стандартты емес реакцияның энергиясы, стандартты реакция мандрерімен салыстырылғанда тәрізді болып, әр төрдің 9-дан - 19,01% - га дейін асағын айырмашылық болады.

Түйін сөзбірлер: техноген, шикізат, байыту қалдықтары, термодинамика, Гиббс энергиясы, цемент клинкерінің минералдары, түсті металдар.

Аурулор: Колосников Александр Сергеевич
Техникалық ғылымдардың қандайсыз, өндіріс және инновация ғылымдары департаментінің жетекші ғылым қызметкері. "Техникалық қауіпсіздігі және қоршаған ортаны қорғау" кафедрасының доценті, М. Жүзөв отындайды Өңтүстік-Қазақстан Университеті, Шымкент, Қазақстан. ORCID ID: 0000-0002-8060-6234. Email: ko5164@yandex.kz
Термодинамическое моделирование синтеза основных минералов цементного клинкера из техногенного сырья

1 Колесников А. С., 1 Жаникулов Н. Н., 1,2 Жакипбаев Б. Е., 1 Колесникова О. Г., 1 Кураев Р. М.

1 Южно-Казахстанский университет имени М. Ауэзова, Шымкент, Казахстан
2 Международный Университет Silkway, Шымкент, Казахстан

АННОТАЦИЯ
В настоящей статье проведены термодинамические исследования моделирования образования основных минералов цементного клинкера в зависимости энергии Гиббса (ΔG) от температуры. Температурный интервал исследований составил 873-1873 К. В ходе моделирования исследованный процесс, расчет реакций образования основных минералов цементного клинкера (C3S - бетула, C2S - афилит, C3A - трех кальциевого алюмината, CAF – четырех кальциевого алюмоферрита) из стандартного сырья и нестандартного – техногенного сырья, содержащего цветные металлы.

Обсуждено, что реакции начинают протекать в температурных интервалах для стандартной (1008 К), а для нестандартной (1023 К) – 1873 К. При этом значения энергии Гиббса на начальном этапе протекания стандартной реакции обладают более отрицательным значением чем нестандартная реакция. С дальнейшим увеличением температуры, становится очевидным, что энергия Гиббса нестандартной реакции манекрообразования в температурном интервале 1173-1873 К становится более отрицательной по сравнению со значениями стандартной реакции и энергии Гиббса нестандартной реакции.

Ключевые слова: техногенное сырье, отходы обогащения, термодинамика, энергия Гиббса, минералы цементного клинкера, цветные металлы.

Информация об авторах:

Колесников Александр Сергеевич
Кандидат технических наук, ведущий научный сотрудник департамента науки производства и инноваций, доцент кафедры «Безопасность жизнедеятельности и защита окружающей среды», Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан.
ОСРИД: 0000-0002-8060-6234. Email: kas164@yandex.kz

Жаникулов Нургул Надырыулы
Доктор философских наук, доцент, старший научный сотрудник департамента науки производства и инноваций, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан.
ОСРИД: 0000-0002-0750-9753. Email: nurgali.zhanikulov@mail.ru

Жакипбаев Бибол Ермуратович
Доктор философских наук, младший научный сотрудник департамента науки производства и инноваций, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан.
ОСРИД: 0000-0002-1412-7796. Email: bibol_8484@mail.ru

Колесникова Ольга Геннадиевна
Магистр техники и технологий, младший научный сотрудник департамента науки производства и инноваций, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан.
ОСРИД: 0000-0001-6871-8367. Email: ogkolesnikova@yandex.ru

Кураев Расим Муратович
Магистр техники и технологий, специалист высшего уровня квалификации департамента науки производства и инноваций, Южно-Казахстанский университет им. М. Ауэзова, Шымкент, Казахстан.
ОСРИД: 0000-0001-9758-760X Email: kuraetvm@yandex.ru
Литература

[1] Уманец В.Н., Бугаева Г.Г., Завалишин В.С. и др. Перспективы освоения техногенных месторождений Казахстана // Научно-техническое обеспечение горного производства: Сб. трудов. - Алматы, Казахстан 2002, Т. 63. - С. 153-160.

[2] Каренов Р.С. Эколого-экономические проблемы деятельности предприятий горно-металлургического комплекса Республики Казахстан. [Электрон. ресурс] – 2014. - URL: https://articlekz.com/article/11963 (дата обращения: 12.03.2021)

[3] Артемьева, К. Р. Разработка хвостохранилищ – запас минерально-сырьевого комплекса России // Экономика, управление, финансы: матер. междунар. конф. - Пермь, Россия, 2011. - С. 8-11. - URL: https://moluch.ru/conf/econ/archive/10/773/ (дата обращения: 18.03.2021)

[4] Kolesnikov, A.S. Kinetic Investigations into the Distillation of Nonferrous Metals during Complex Processing of Waste of Metalurgical Industry // Russian Journal of Non-Ferrous Metals. - 2015. - V. 56. N1.- P. 1–5. DOI: 10.3103/S0167821215010113

[5] Кенжаилов Б.К. О концепции развития рационального использования минерального, техногенного сырья и вторичных металлов для организации производства 4-го и 5-го переделов в металлургическом комплексе Республики Казахстан // Комплексное использование минерального сырья. - 2001. - N6. - C. 117-136.

[6] Khudyakova, T.M., Kenzhibaeva, G.S., Kutzhanova, A.N., Iztleuov, G.M., Mynbaeva E. Optimization of Raw Material Mixes in Studying Mixed Cements and Their Physichemical Properties // Refract. Ind. Ceram. -2019.-V. 60, N1.- P. 76-81. DOI: 10.1007/s11148-019-00312-2

[7] Khudyakova, T.M., Taimasov, B.T., Sarsenbayev, B.K., Dauletiarov, M.S., Karshygayev, R.O. Receiving Portland Cement from Technogenic Raw Materials of South Kazakhstan // Eurasian Chemico-Technological Journal. - 2019. V. 21. N4. P. 333-340, DOI: 10.18321/ectj890

[8] Kolesnikov, A.S., Sergeeva, I.V., Botabaev, N.E., Al'zhanova, A.Zh., Ashirbaev Kh.A. Chemical and Phase Transitions in Oxidized Manganese Ore in the Presence of Carbon // Steel in Translation. -2017. - V. 47. - N9. - P. 605-609. DOI: 10.3103/S0967091217090078

[9] Bayeshov, A.B., Zhurinov, M.Z., Abduvaliyeva, U.A., Adaibekova, A.A, Gaipov, T.E., Myrzabekov, B.E. Research of regularities of electroreduction of nickel powders at polarization by the cathodic impulse current in the ultrasonic field. // News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. - 2017. - N6. - P. 178-185.

[10] Agapova, L.Ya., Abisheva, Z.S., Kilibaeva, S.K., Yakhnyaeva, Zh.E. Electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions // Tsvetnye Metally. – 2017. - N 1. P. 24-30 DOI: 10.17580/tsm.2017.10.08

[11] Kenzhaliyev, B., Trebukhov, S, Nitsenko, A., Burabaeva, N. Extraction of selenium from the dusts of bag dust filters of the kaldo furnace // International Journal of Mechanical and Production Engineering Research and Development.-2020. – V. 10. N3. - P. 547–552. DOI: 10.24247/jmperdjun202050.

[12] Vasilyeva N V, Ivanov P V. Implementation of fuzzy logic in the smelting process of control algorithms of the kaldo furnace // Steel in Translation. 2017.

[13] Vasilyeva N.V, Ivanov P.V. Implementation of fuzzy logic in the smelting process of control algorithms of the kaldo furnace // Steel in Translation. 2017.

[14] Kolesnikov, A. S., Naraev V.N., Natorhin M.I., Saipov A.A., Kolesnikova O.G. Review of the processing of minerals and recovering elemental sulfur by electrochemical methods // Refractories and Industrial Ceramics. – 2011.

[15] Kolesnikov, A. S., Naraev V.N., Natorhin M.I., Saipov A.A., Kolesnikova O.G. Review of the processing of minerals and recovering elemental sulfur by electrochemical methods // Refractories and Industrial Ceramics. – 2011.

[16] Kolesnikov, A. S., Naraev V.N., Natorhin M.I., Saipov A.A., Kolesnikova O.G. Review of the processing of minerals and recovering elemental sulfur by electrochemical methods // Refractories and Industrial Ceramics. – 2011.

[17] Kolesnikov, A. S., Naraev V.N., Natorhin M.I., Saipov A.A., Kolesnikova O.G. Review of the processing of minerals and recovering elemental sulfur by electrochemical methods // Refractories and Industrial Ceramics. – 2011.

[18] Myrzabekov, B.E., Bayeshov, A.B., Makhanbetov, A.B., Mishra, B., Bajzenzhoven, O.S. Dissolution of Platinum in Hydrochloric Acid Under Industrial-Scale Alternating Current Polarization // Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. – 2018. – V. 49. N1. – P. 23–27. DOI:10.1007/s11663-017-1139-x

[19] Kolesnikov, A.S. [et al.] Thermodynamic Modeling of Chemical and Phase Transformations in a Waelz Process-Slag – Carbon System // Refractories and Industrial Ceramics. - 2020. - V. 61. N3. - P. 289-292. DOI: 10.1107/s11148-020-00474-4

[20] Andrianov, I.K. Modeling of Effective Material Distribution of Stamping Equipment in Forming Processes // International science and technology conference "EASTCONF 2019"- Vladivostok, Russia, 2019. - P. 1-3. DOI: 10.1109/FarEastCon.2019.8933949.

[21] Boikov A., Savelev R., Payor V., Vasilieva N. DEM calibration approach: orthogonal experiment // Journal of Physics. - 2019. - N1210. P. 012025. DOI: 10.1088/1742-6596/1210/1/012025.

[22] Aigull Mamyrbekova, A.D. Mamitova, A. Iznatova, K. Mamyrbekova Electrical Conductivity of Solutions of Copper(II) Nitrate Crystalhydrate in Dimethyl Sulfoxide // Russian Journal of Physical Chemistry A. – 2016. – V. 90. N6. – P. 1265–1268. DOI: 10.1134/S003602441606011X
Комплексное Использование Минерального Сырья. №3 (318), 2020

[23] Erokhina O., Vasileva N. Post-impact recovery coefficient calibration in DEM modeling of granular materials // Obogashchenie Rud. – 2020. -N5. – P. 42-48. DOI:10.17580/or.2020.04.07.

[24] Volodin V., Burabaeva N., Trebukhov S. Liquid-Vapor Phase Equilibrium in a Tin-Selenium System // Russian Journal of Physical Chemistry. – 2014. – V. 88. N12. -P. 2029-2034. DOI: 10.1134/S0036024414120413.

[25] Andrianov I.K. Optimization Model of Thermal Loading of Multilayer Shells Based on the Strength Criterion // International science and technology conference "EASTCONF 2019": - Vladivostok, Russia, 2019. - P. 1-4. DOI: 10.1109/FarEastCon.2019.8934017.

[26] Smirnova N.V., Sokova S. D. Reliability assessment of waterproofing systems of buildings underground parts. // IOP Conf. Series: Materials Science and Engineering - 2018. - P. 052028. DOI:10.1088/1757-899X/365/5/0520

[27] Makhanbetov A.B., Li E.M., Gaipov T.E., Myrzabekov B.E. Study of the material composition of the sample manganese-containing ore deposits "Karamola" // News of the National Academy of Sciences of the Republic of Kazakhstan-Series Chemistry and Technology. -2020.-N6. – P. 95-101 DOI: 10.32040/2020.2518-1491.103

[28] Гельманова З.С., Жаксыбаев Д.М. Особенности образования и использования вторичных ресурсов в металлургическом производстве // Международный журнал прикладных и фундаментальных исследований. – 2016. -V.7. N-5. – С. 749-753

[29] Руднев Б.П. Обзор мирового опыта переработки хвостов обогащения и отвалов металлургического производства обогатительными методами // Цветная металлургия. – 2009. - N5. С. 16-25.

[30] Kolesnikov A.S., Zhakipbaev B. Ye, Zhanikulov N.N., Kolesnikova O.G., Akhmetova Е.K., Kuraev R.M., A.L. Shal. Review of technogenic waste and methods of its processing for the purpose of complex utilization of tailings from the enrichment of non-ferrous metal ores as a component of the raw material mixture in the production of cement clinker. // Rasayan Journal of Chemistry. -2021. - V. 14. N2. - P. 997-1005.

[31] Roine A. Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Pori: Outokumpu Research OY, 2002. 268 p.

[32] Азарова, С. В. Перегрузка Е. В., Бучельников В. С. Комплексное использование техногенных минеральных образований // Молодой ученый. - 2015. - N 11. - C. 530-532.

[33] Кожахан, А. К., Умбетова Ш. М. Научно-технологический анализ вторичной переработки техногенных отходов энергетики и горно-химических предприятий // Молодой ученый. - 2009. - N 12. - C. 54-57.

[34] Taimasov, B.T., Borisov, I.N. Dauletiyarov M. S., Aitureev M. Zh., Dzhanmuldaeva Zh. K. Preparation Low. // International Journal of Earth Sciences. -2020. -V. 14. N2. - P. 217 – 224.

[35] Демидов А.И. Термодинамические характеристики квазибинарной системы СаО – SiO2 в твёрдом состоянии // Научно-технические ведомости СПбПУ. - 2018. - Т. 24. N 2. - С. 134-139. DOI: 10.18721/JEST.240211.

[36] Працкова С.Е., Старикова А.А., Термодинамическое моделирование расплавов системы CaO – Al2O3 в приближении теории регулярных ионных растворов // Евразийское научное объединение. -2015. - P. 27 – 41.

[37] Зелезненк, F.J., Gordon S. Calculation of complex chemical equilibria // Industrial & Engineering Chemistry. – 1968. –V. 60. N 6. – P. 27 – 57.

[38] Nagata, K., Tanabe, J., Goto, K.S. Activity of components in oxide melts CaO – Al2O3 // Proc. VI Int. Iron and Steel Congr. Nagaya, Japan. – 1990. – V. 1. – P. 217 – 224.

[39] Fujisawa, T., Yamachi, C., Sakao A. Thermodynamics of liquid CaO, Al2O3 // Proc. VI Int. Iron and Steel Congr. Nagaya, Japan. – 1990. – V. 1. – P. 201 – 208.

[40] Rog, G. Kozlowska – Rog, A., Zakula – Sokol, K. Thermodynamic functions of calcium aluminate // J. Chem. Thermodyn. – 1993. – V. 25. – N 7. – P. 807 – 810.

[41] Працкова С.Е., Бурмистров В.А., Старикова А.А. Термодинамическое моделирование оксидных расплавов системы CaO – Al2O3 – SiO2. Изв. вузов. Химия и хим. технология. -2020. - T. 63. N 1. - C. 45-50

[42] Robbie A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298,15 K and 1 bar (105 paskals) pressure and at higher temperatures // U.S. Geological survey. Bull. 2173. United States government printing office. Washington, 1995. 461 p.

[43] Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. Термодинамика силикатов. / Под ред. О.П. Мчедлова-Петроясна. 4-e изд., перераб. и доп. М.: Стройиздат, 1986. 408 с.

[44] Baret G., Madar B., Bernard C. SilicaBased Oxide Systems I. Experimental and Calculated Phase Equilibria in Silicon, Boron, Phosphorus, Germanium, and Arsenic Oxide Mixtures // J. Electrochem. Soc. - 1991. V. 138. N9. - P. 2830-2835.

[45] Brown P.W., Pommersheim J., Frohnordorf G. A kinetic model for the hydration of tricalcium silicate // Cem. Conc. Res. - 1985. - V. 15. N1. - P. 35-41.

[46] Tennis P.D., Jennings H.M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes // Cem. Conc. Res. - 2000. - V. 30. N6. - P. 855-863.

Reference

[1] Umanets V.N., Bugayeva G.G., Zavalishin V.S. et al. Perspektivny osvoeniya tekhnogenykh mestorozhdeniy Kazakhstana (Prospects for the development of technogenic deposits in Kazakhstan) // Nauchno-tehnicheskie obespecheniye gorno proizvodstva: Sb. trudov. (Scientific and technical support of mining production: Collec. of works) Almaty, Kazakhstan, 2002. 63. 153-160. (in Russ.)

[2] Karenov R.S. Ekologo-ekonomicheskiye problemy deyatelnosti predpriyatiy gorno-metallurgicheskogo kompleksa Republiki Kazakhstan (Ecological and economic problems of the enterprises of the mining and metallurgical complex of Kazakhstan) // Proceedings of Chemtech of the Republic of Kazakhstan. – 2003. – V. 2. – P. 35-41.
the Republic of Kazakhstan). [Elektron. resurs] – 2014. – URL: https://articlekz.com/article/11963 (date of application: 12.03.2021). (in Russ.).

[3] Argimbayev K. R. Razrabotka khvostokhraniilishcha – zapas mineralno-syrevogo kompleksa Rossii (Development of a tailings storage facility-a reserve of the mineral resource complex of Russia) // Ekonomika. upravleniye. finansy: mater. mezhdunar. konf. (Economy, management, finance: proceedings of Internation. Conf.) Perm, Russia, 2011. 8-11. (in Russ.).

[4] Kolesnikov, A.S. Kinetic Investigations into the Distillation of Nonferrous Metals during Complex Processing of Waste of Metallurgical Industry. Journal of Non-Ferrous Metals. 2015. 56, 1, 1-5. (in Eng.). DOI: 10.3103/S01067821210510113

[5] Kenzhaliev B.K. O kontseptsii razvitiya rationalnogo ispol'zovaniya mineralnogo. tekhnogennogo syria i vtorichnykh metallov (On the concept of the development of rational use of mineral resources. industrial raw materials and secondary metals for the organization of production of the 4th and 5th processing stages in the metallurgical complex of the Republic of Kazakhstan). Kompleksnoe ispol'zovanie Mineral'nogo syr'ya: Complex Use of Mineral Resources=Mineraldik Shikisattardy Keshendi Paidaalanu. 2001. 6, 117–136. (in Russ.).

[6] Khudyakova, T.M., Kenzhibaeva G. S., Kutzhanova A. N., Izteleuov G. M., Mynbaeva E. Optimization of Raw Material Mixes in Forming Processes, International Science and Technology conference "EASTCONF 2019". DOI: 10.1134/S003602441606011X

[7] Khudyakova T.M., Taimasov B.T., Sarsenbayev B.K., Dauletiarov M.S., Karshygayev R.O. Receiving Portland Cement from Technogenic Raw Materials of South Kazakhstan, Eurasian Chemico-Technological Journal. 2019. 21. 4. 333-340. (in Eng.). DOI: 10.18321/ectj890

[8] Kolesnikov, A.S., Sergeeva I. V., Botabaev N. E., Al'zhanova A. Zh., Ashirbaev Kh. A. Chemical and Phase Transitions in Oxidized Manganese Ore in the Presence of Carbon. Steel in Translation. 2017. 47. 9. 605-609. (in Eng.). DOI: 10.3103/S0967091217090078.

[9] Bayeshov A.B., Zhurinov M.Z., Abduvaliyeva, U.A., Adaibekova A.A, Gaipov T.E., Myrzabekov, B.E. Research of regularities of electroreduction of nickel powders at polarization by the cathodic impulse current in the ultrasonic field. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences. 2017. 6, 178-185. (in Eng.).

[10] Agapova L. Ya., Abisheva Z. S., Kilibaeva S. K., Yahkiyaeva Zh. E. Electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions. Tsvetnye Metally. 2017. 1. 24-30. (in Eng.). DOI: 10.17580/tms.2017.10.08

[11] Kenzhaliyev B., Trebukhov S, Nitsenko A., Burabaeva N. Extraction of selenium from the dusts of bag dust filters of the k.... DOI: 10.1134/S003602441606011X

[12] Kolesnikov A.S., Karshygayev R.O. Modeling of Effective Material Distribution of Stamping Equipment in Studying Mixed Cements and Their Physicochemical Properties. Refractories and Industrial Ceramics 2019. DOI: 10.1088/1742-6596/1384/1/012065.

[13] Abisheva, Z.S., Bochevskaya, E.G., Zagorodnyaya, A.N. et al. Technology of phosphorus slag processing for the production of ferroalloys. Journal of Physics: Conference Series 2019. 27. 129. 1-3. (in Eng.). DOI: 10.1088/1742-6596/1384/1/012065.

[14] Agapova L. Ya., Abisheva Z. S., Kilibaeva S. K., Yahkiyaeva Zh. E. Electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions. Tsvetnye Metally. 2017. 1. 24-30. (in Eng.). DOI: 10.17580/tms.2017.10.08

[15] Kenzhaliyev B., Trebukhov S, Nitsenko A., Burabaeva N. Extraction of selenium from the dusts of bag dust filters of the k.... DOI: 10.1134/S003602441606011X

[16] Kolesnikov A.S., Karshygayev R.O. Modeling of Effective Material Distribution of Stamping Equipment in Studying Mixed Cements and Their Physicochemical Properties. Refractories and Industrial Ceramics 2019. DOI: 10.1088/1742-6596/1384/1/012065.

[17] Abisheva, Z.S., Bochevskaya, E.G., Zagorodnyaya, A.N. et al. Technology of phosphorus slag processing for the production of ferroalloys. Journal of Physics: Conference Series 2019. 27. 129. 1-3. (in Eng.). DOI: 10.1088/1742-6596/1384/1/012065.

[18] Agapova L. Ya., Abisheva Z. S., Kilibaeva S. K., Yahkiyaeva Zh. E. Electrochemical processing of technogenic wastes of rhenium-containing heat-resistant nickel alloys in sulfuric acid solutions. Tsvetnye Metally. 2017. 1. 24-30. (in Eng.). DOI: 10.17580/tms.2017.10.08

[19] Kenzhaliyev B., Trebukhov S, Nitsenko A., Burabaeva N. Extraction of selenium from the dusts of bag dust filters of the k.... DOI: 10.1134/S003602441606011X

[20] Kolesnikov A.S., Karshygayev R.O. Modeling of Effective Material Distribution of Stamping Equipment in Studying Mixed Cements and Their Physicochemical Properties. Refractories and Industrial Ceramics 2019. DOI: 10.1088/1742-6596/1384/1/012065.

[21] Abisheva, Z.S., Bochevskaya, E.G., Zagorodnyaya, A.N. et al. Technology of phosphorus slag processing for the production of ferroalloys. Journal of Physics: Conference Series 2019. 27. 129. 1-3. (in Eng.). DOI: 10.1088/1742-6596/1384/1/012065.
[25] Andrianov I.K. Optimization Model of Thermal Loading of Multilayer Shells Based on the Strength Criterion, International science and technology conference "EASTCONF 2019", Vladivostok, Russia. 2019. 1-4. (in Eng.). DOI: 10.1109/FarEastCon.2019.8934017.

[26] Smirnova N.V., Sokova S. D. Reliability assessment of waterproofing systems of buildings underground parts. 14.07.2018. IOP Conf. Series: Materials Science and Engineering. 2018. 052028. (in Eng.). DOI:10.1088/1757-899X/365/5/0520

[27] Makhanbetov A.B., Li E.M., Gairov T.E., Myrzabekov B.E. Study of the material composition of the sample manganese-containing ore deposits "Karamola". News of the National Academy of Sciences of the Republic of Kazakhstan-Series Chemistry and Technology. 2020. 6, 95-101. (in Eng.). DOI: 10.32014/2020.2518-1491.103

[28] Gelmanova Z.S., Zhaksybayev D.M. Osobennosti obrazovaniya i ispolzovaniya vtorichnynh resursov v metallurgicheskom proizvodstve (Features of the formation and use of secondary resources in metallurgical production). Mezhduunarodny zhurnal prikladnykh i fundamentalnykh issledovaniy (International Journal of Applied and Fundamental Research). 2016. 7. 5, 749-753. (in Russ.).

[29] Rudnev B.P. Obzor mirovogo opytta pererabotki khvostov obogashcheniya i otvalov metallurgicheskogo proizvodstva obogatitelnymi metodami (Review of the world experience in processing tailings and dumps of metallurgical production by concentrating methods). Tsvetnaya metallurgiya (Non-ferrous metallurgy). 2009. 5. 16-25. (in Russ.).

[30] Kolesnikov A.S., Zhikibbaev B. Ye, Zhanikulov N.N., Kolesnikova O.G., Akhmetova Е.K., Kuraev R.M., A.L. Shal. Review of technogenic waste and methods of its processing for the purpose of complex utilization of tailings from the enrichment of non-ferrous ferrous ores as a component of the raw material mixture in the production of cement clinker. Rasayan Journal of Chemistry. 2021. 2. - P. 997-1005. (in Eng.).

[31] Roine A. Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium software with Extensive Thermochemical Database. Port: Outokumpu Research OY. 2002, 268 p. (in Eng.).

[32] Azarova S.V. Peregudina E.V., Buchelnikov V.S. Kompleksnye ispolzovaniye tekhnogennykh mineralnykh obrazovaniy (Integrated use of technogenic mineral formations). Molodoy uchenyy (Young scientist). 2015. 11. 530-532. (in Russ.).

[33] Kozhakhan A.K., Umboletova Sh.M. Nauchno-tekhnicheskii analiz vtorichnykh pererabotki tekhnogennykh otkhodov energetiki i gorno-khimicheskikh predpriyatii (Scientific and technological analysis of the recycling of technogenic waste from energy and mining and chemical enterprises). Molodoy uchenyy (Young scientist). 2009. 12. 54-57. (in Russ.).

[34] Taijmasov, B.T., Borisov, I.N. Dauletiyarov M. S., Aitureev M. Zh., Dzhanmuldaeva Zh. K. Preparation Low Energy Content Cement from Technogenic Raw Materials. Refractories and Industrial Ceramics. 2020. 61. 163–169. (in Eng.). DOI: 10.1007/s11148-020-00449-5

[35] Demidov A.I. Termodinamicheskiye kharakteristiky kvazibinarnykh sistemy CaO — SiO2 v tverdom sostoyanii (Thermodynamic characteristics of a quasi-binary system CaO — SiO2 in a solid state). Nauchno-tekhnicheskiiy vedomosti SPbPU (Scientific and Technical Vedomosti SPbPU). 2018. 24. 2, 134-139. (in Russ.). DOI: 10.18721/JEST.240211.

[36] Pratxkova S.E., Starkova A.A. Termodinamicheskiye modelirovaniye rasplavov sistemy CaO – SiO2 v priblizenia teorii regulyarnykh ionnykh rastvorov (Thermodynamic modeling of melts of the CaO – SiO2 system in the approximation of the theory of regular ionic solutions). Evrazhskoye nauchnoye obyedineniye (Eurasian Scientific Association). 2020. 4, 66-67. (in Russ.).

[37] Zeleznik, F.J., Gordon S. Calculation of complex chemical equilibria. Industrial & Engineering Chemistry. 1968. 60. 6, 27 – 57. (in Eng.).

[38] Nagata, K., Tanabe, J., Goto K.S. Activity of components in oxide melts CaO – Al2O3. Proc. VI Int. Iron and Steel Congr. Nagaya, Japan. 1990. 1, 217 – 224. (in Eng.).

[39] Fujisawa, T., Yamauchi, C. Sakao A. Thermodynamics of liquid CaO, Al2O3. Proc. VI Int. Iron and Steel Congr. Nagaya, Japan. 1990. 1, 201 – 208. (in Eng.).

[40] Rog, G., Kozlowska - Rog, A, Zakula - Sokol K. Thermodynamic functions of calcium aluminate. J. Chem. Thermodyn. 1993. 25. 7, 807 – 810. (in Eng.).

[41] Pratxskova S.E., Burmistrov V.A., Starkova A.A. Termodinamicheskiye modelirovaniye oksidnykh rasplavov sistemy (Thermodynamic modeling of oxide melts of CaO – Al2O3 – SiO2: systems.) Izv. Vyssh Uchebn. Zaved Khim. Khim. Tekhnol. = Russ. J. Chem & Chem Tech. 2020. 63. 1, 45-50. (in Russ.).

[42] Robie A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298,15 K and 1 bar (105 paskals) pressure and at higher temperatures // U.S. Geological survey. Bul. 2131. United States government printing office. Washington: 1995. 461. (in Eng.).

[43] Babushkin V.I., Matveev G.M., Mchedlov- Petroysan O.P., Termodinamika silikatov (Thermodynamics of silicates), Moscow: Stroiizdat, 1986, 408. (in Russ.).

[44] Baret G., Madar R., Bernard C. SilicaBased Oxide Systems I. Experimental and Calculated Phase Equilibria in Silicon, Boron, Phosphorus, Germanium, and Arsenic Oxide Mixtures. J. Electrochem. Soc. 1991. 138. 9, 2830-2835. (in Eng.).

[45] Brown P.W., Pommersheim J., Frohndorf G. A kinetic model for the hydration of tricalcium silicate. Cem. Conc. Res. 1985. 15. 1, 35-41. (in Eng.).

[46] Tennis P.D., Jennings H.M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem. Conc. Res. 2000. 30. 6, 855–863. (in Eng.).