Supporting Information

Metal-Free Domino Amination-Knoevenagel Condensation Approach to Access New Coumarins as Potent Nanomolar Inhibitors of VEGFR-2 and EGFR

Essam M. Eliwaa,b,*, Marcel Fresea, Ahmed H. Halawab, Maha M. Soltanc, Larissa V. Ponomarevad,e, Jon S. Thorsond,e, Khaled A. Shaaband,e, Mohamed Shaabana,f, Ahmed M. El-Agrodyb & Norbert Sewalda

aOrganic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld D-33501, Germany
bChemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo 11884, Egypt
cBiology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El Buhouth St. 33 Dokki-Giza Cairo 12622, Egypt
dCenter for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
eDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
fChemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt

*Corresponding author (emails: essameliwa85@azhar.edu.eg; essameliwa24@gmail.com)

Table of Contents

Figures	Page No.
Figure S1. 1H NMR (500 MHz, DMSO-d_6) of 4a	4
Figure S2. 13C NMR (125 MHz, DMSO-d_6) of 4a	4
Figure S3. (+)-ESI-MS of 4a	5
Figure S4. 1H NMR (500 MHz, DMSO-d_6) of 4b	5
Figure S5. 13C NMR (125 MHz, DMSO-d_6) of 4b	6
Figure S6. (+)-ESI-MS of 4b	6
Figure S7. 1H NMR (500 MHz, DMSO-d_6) of 4c	7
Figure S8. 13C NMR (125 MHz, DMSO-d_6) of 4c	7
Figure S9. (+)-ESI-MS of 4c	8
Figure S10. 1H NMR (500 MHz, DMSO-d_6) of 4d	8
Figure S11. 13C NMR (125 MHz, DMSO-d_6) of 4d	9
Figure S12. (+)-ESI-MS of 4d	9
Figure S13. 1H NMR (500 MHz, DMSO-d_6) of 4e	10
Figure S14. 13C NMR (125 MHz, DMSO-d_6) of 4e	10
Figure S15. (+)-ESI-MS of 4e	11
Figure S16. 1H NMR (500 MHz, DMSO-d_6) of 4f	11
Figure S17. 13C NMR (125 MHz, DMSO-d_6) of 4f	12
Figure S18. (+)-ESI-MS of 4f	
Figure S19. 1H NMR (500 MHz, DMSO-d_6) of 8a	
Figure S20. 13C NMR (125 MHz, DMSO-d_6) of 8a	
Figure S21. (+)-ESI-MS of 8a	
Figure S22. 1H NMR (500 MHz, DMSO-d_6) of 8b	
Figure S23. 13C NMR (125 MHz, DMSO-d_6) of 8b	
Figure S24. (+)-ESI-MS of 8b	
Figure S25. 1H NMR (500 MHz, DMSO-d_6) of 8c	
Figure S26. 13C NMR (125 MHz, DMSO-d_6) of 8c	
Figure S27. (+)-ESI-MS of 8c	
Figure S28. (+)-ESI-MS of 8d	
Figure S29. 1H NMR (500 MHz, DMSO-d_6) of 8e	
Figure S30. 13C NMR (125 MHz, DMSO-d_6) of 8e	
Figure S31. (+)-ESI-MS of 8e	
Figure S32. 1H NMR (500 MHz, DMSO-d_6) of 5a	
Figure S33. 13C NMR (125 MHz, DMSO-d_6) of 5a	
Figure S34. (+)-ESI-MS of 5a	
Figure S35A. 1H NMR (500 MHz, DMSO-d_6) of 5d	
Figure S35B. 1H NMR (500 MHz, DMSO-d_6) of 5d	
Figure S36. 13C NMR (125 MHz, DMSO-d_6) of 5d	
Figure S37. (+)-ESI-MS of 5d	
Figure S38A. 1H NMR (500 MHz, DMSO-d_6) of 5e	
Figure S38B. 1H NMR (500 MHz, DMSO-d_6) of 5e	
Figure S39. 13C NMR (125 MHz, DMSO-d_6) of 5e	
Figure S40. (+)-ESI-MS of 5e	
Figure S41A. 1H NMR (500 MHz, DMSO-d_6) of 5f	
Figure S41B. 1H NMR (500 MHz, DMSO-d_6) of 5f	
Figure S42. 13C NMR (125 MHz, DMSO-d_6) of 5f	
Figure S43. (+)-ESI-MS of 5f	
Figure S44A. 1H NMR (500 MHz, DMSO-d_6) of 9a	
Figure S44B. 1H NMR (500 MHz, DMSO-d_6) of 9a	
Figure S45. 13C NMR (125 MHz, DMSO-d_6) of 9a	
Figure S46. (+)-ESI-MS of 9a	
Figure S47A. 1H NMR (500 MHz, DMSO-d_6) of 9d	
Figure S47B. 1H NMR (500 MHz, DMSO-d_6) of 9d	
Figure S48. 13C NMR (125 MHz, DMSO-d_6) of 9d	
Figure S49. (+)-ESI-MS of 9d	30
Figure S50. 1H NMR (500 MHz, DMSO-d_6) of 9e	31
Figure S51. 13C NMR (125 MHz, DMSO-d_6) of 9e	31
Figure S52. (+)-ESI-MS of 9e	32
Figure S53. 1H NMR (500 MHz, DMSO-d_6) of 9f	32
Figure S54. 13C NMR (125 MHz, DMSO-d_6) of 9f	33
Figure S55. (+)-ESI-MS of 9f	33
Figure S1. 1H NMR (500 MHz, DMSO-d_6) of 4a.

Figure S2. 13C NMR (125 MHz, DMSO-d_6) of 4a
Figure S3. (+)-ESI-MS of 4a

Figure S4. 1H NMR (500 MHz, DMSO-d_6) of 4b
Figure S5. 13C NMR (125 MHz, DMSO-d_6) of 4b

Figure S6. (+)-ESI-MS of 4b
Figure S7. 1H NMR (500 MHz, DMSO-d_6) of 4c

Figure S8. 13C NMR (125 MHz, DMSO-d_6) of 4c
Figure S9. (+)-ESI-MS of 4c

![Image](image1)

Figure S10. 1H NMR (500 MHz, DMSO-d_{6}) of 4d

![Image](image2)
Figure S11. 13C NMR (125 MHz, DMSO-d_6) of 4d

Figure S12. (+)-ESI-MS of 4d
Figure S13. 1H NMR (500 MHz, DMSO-d_6) of 4e

Figure S14. 13C NMR (125 MHz, DMSO-d_6) of 4e
Figure S15. (+)-ESI-MS of 4e

![Figure S15](image)

Figure S16. 1H NMR (500 MHz, DMSO-$_d_6$) of 4f

![Figure S16](image)
Figure S17. 13C NMR (125 MHz, DMSO-d_6) of 4f

Figure S18. (+)-ESI-MS of 4f
Figure S19. 1H NMR (500 MHz, DMSO-d_6) of 8a

Figure S20. 13C NMR (125 MHz, DMSO-d_6) of 8a
Figure S21. (+)-ESI-MS of 8a

Figure S22. 1H NMR (500 MHz, DMSO-d_6) of 8b
Figure S23. 13C NMR (125 MHz, DMSO-d_6) of 8b

Figure S24. (+)-ESI-MS of 8b
Figure S25. 1H NMR (500 MHz, DMSO-d_6) of 8c

Figure S26. 13C NMR (125 MHz, DMSO-d_6) of 8c
Figure S27. (+)-ESI-MS of 8c

Figure S28. (+)-ESI-MS of 8d
Figure S29. 1H NMR (500 MHz, DMSO-d_6) of 8e

Figure S30. 13C NMR (125 MHz, DMSO-d_6) of 8e
Figure S31. (+)-ESI-MS of 8e

![Figure S31. (+)-ESI-MS of 8e](image)

Figure S32. 1H NMR (500 MHz, DMSO-d_6) of 5a

![Figure S32. 1H NMR (500 MHz, DMSO-d_6) of 5a](image)
Figure S33. 13C NMR (125 MHz, DMSO-d_6) of 5a

Figure S34. (+)-ESI-MS of 5a
Figure S35A. 1H NMR (500 MHz, DMSO-d_6) of 5d

Figure S35B. 1H NMR (500 MHz, DMSO-d_6) of 5d
Figure S36. 13C NMR (125 MHz, DMSO-d_6) of 5d

Figure S37. (+)-ESI-MS of 5d
Figure S38A. ^1H NMR (500 MHz, DMSO-d_6) of 5e

Figure S38B. ^1H NMR (500 MHz, DMSO-d_6) of 5e
Figure S39. 13C NMR (125 MHz, DMSO-d_6) of 5e

Figure S40. (+)-ESI-MS of 5e
Figure S41A. 1H NMR (500 MHz, DMSO-d_6) of 5f

Figure S41B. 1H NMR (500 MHz, DMSO-d_6) of 5f
Figure S42. 13C NMR (125 MHz, DMSO-$_d_6$) of 5f

Figure S43. (+)-ESI-MS of 5f
Figure S44A. 1H NMR (500 MHz, DMSO-d_6) of 9a

Figure S44B. 1H NMR (500 MHz, DMSO-d_6) of 9a
Figure S45. 13C NMR (125 MHz, DMSO-d_6) of 9a

Figure S46. (+)-ESI-MS of 9a
Figure S47A. 1H NMR (500 MHz, DMSO-d_6) of 9d

Figure S47B. 1H NMR (500 MHz, DMSO-d_6) of 9d
Figure S48. 13C NMR (125 MHz, DMSO-d_6) of 9d

Figure S49. (+)-ESI-MS of 9d
Figure S50. 1H NMR (500 MHz, DMSO-d_6) of 9e

Figure S51. 13C NMR (125 MHz, DMSO-d_6) of 9e
Figure S52. (+)-ESI-MS of 9e

![Figure S52. (+)-ESI-MS of 9e](image)

Figure S53. 1H NMR (500 MHz, DMSO-d_6) of 9f

![Figure S53. 1H NMR (500 MHz, DMSO-d_6) of 9f](image)
Figure S54. 13C NMR (125 MHz, DMSO-d_6) of 9f

Figure S55. (+)-ESI-MS of 9f