High spin states in the heavy nucleus 208Pb and the coupling of one-particle one-hole states to platonic shapes

A Heusler
Heidelberg, Gustav-Kirchhoff-Strasse 7/1 (Germany)
E-mail: A.Heusler@mpi-hd.mpg.de

Abstract. Structure, spin, and parity of states in 208Pb at $9 < E_x < 17$ MeV are explained by the weak coupling of the 3^-, 4^+, 6^+ yrast, and the 12^+ yrare states to one-particle one-hole yrast and yrare states. The spins of the particle and the hole are coupled in the stretched or nearly stretched mode. The n-isomerism of three states is shown to derive from the exchange of an intruder hole and the $p_{1/2}$ hole.

1. Introduction
In 208Pb about 500 neutron bound ($S(n) = 7368$ keV) and proton bound ($S(p) = 8004$ keV) states are known [1]. The mean distance between two states is 3.0 keV. The excitation energies are known with an uncertainty of 10 eV for the lowest states and a few 100 eV for higher lying states. Most states are described in the shell model as one-particle one-hole (1p1h) configurations. Thirty-six states have different structures [2, 3]. Eighteen states are described by the coupling of 1p1h states to the 3^- yrast state [4], four states as pairing vibrations [5], ten states are suggested as tetrahedral configurations [6], and five collective states with spins 3^-, 5^-, 5^+, 6^+, and 12^+ are not described by any existing theory, the platonic shape of dodecahedrons or icosahedrons is suggested [3].

Deep inelastic scattering on 208Pb revealed a γ-cascade starting with the 16375 keV state and feeding 28 states down to the 9061 keV state; γ-transitions proceed further down to the 4895 keV 10^+ isomer and finally to the ground state [7]. The 4895 keV 10^+ state is an isomer with the extraordinary life time of 0.5 μs [1]. It mainly feeds the 7^+ yrast state which bears only 70% of the configuration $g_{9/2}f_{5/2}$ [8]; the remaining strength is of a type differing from 1p1h configurations.

2. Discussion
The spin of the 6101 keV state was first determined by the Heisenberg group with (e,e') [9] and verified with (p,p') [10]. The new data from Broda et al. [7] confirmed spin and parity beyond any doubt by the feeding from the 13^- yrast state and the feeding of the 11^+ yrast and yrare states [11] (Fig. 1). The 6435 keV, 6449 keV, 6744 keV states were identified by (e,e') as the 12^-, 13^-, 14^- members of the $j_{13/2}i_{13/2}$ multiplet [1, 12, 13].

In the weak coupling model (WCM) [14] the coupling of the 3^- yrast state to the 6435 keV 12^-, 6449 keV 13^-, 6744 keV 14^- states in a stretched mode predicts three states with spins 15^+,
Figure 1. High spin states in 208Pb at $6 < E_x < 10$ MeV. At left an extract from the level scheme determined by Broda et al. (Fig. 4 in [7]) is shown.

$16^+, 17^+$ at $E_x^{WCM} = 9050, 9064, 9359$ keV. The 9061, 9103, 9394 keV states are interpreted to correspond to the predicted $15^+, 16^+, 17^+$ states. The similarity of the γ-transitions for the $12^-, 13^-, 14^- j_{15/2,13/2}$ states and for the three states generated by the coupling to the 3^- yrast state is striking (Fig. 1).

γ-transitions from the highest observed state in 208Pb at $E_x = 16375$ keV feed the 9394 keV suggested with spin 17^+. Among them five transition multipolarities were measured [7].

An extended WCM explains the excitation energies, spin, and parity as well as the structure of seven states in the γ-cascade from 13675 keV to 9394 keV (Fig. 2) by the coupling of the tetrahedral state 3^-_1 [6] and $6^+_1, 12^+_2$ suggested as dodecahedral or icosahedral states [3] to 1p1h yrast states $5^-_1, 6^-_2, 9^+_{1,2}, 14^+_{1,2}$. In the WCM the hamiltonian H_{WCM} has four constituents

$$H_{WCM} = H_{Th} + H_{6^+_1} + H_{12^+_2} + H_{1p1h} + H_{residual},$$

where $H_{residual} \approx 0$ defines the weak coupling.

In Eq. (1) H_{Th} describes a tetrahedral state, 3^+_1 or 4^+_1 are relevant for explaining seventeen states excited in the γ-cascade from 13632 keV to 9061 keV. $H_{6^+_1}$ and $H_{12^+_2}$ are suggested as icosahedral configurations; the two collective states do not appear in shell model calculation [2, 3]. H_{1p1h} are 1p1h states with spin I where particle LJ^{+1} and hole lj^{-1} are coupled in a (nearly) stretched mode,

$$J^{+1} - j^{-1} - x \leq I \leq J^{+1} + j^{-1},\quad 0 \leq x \leq 2, \quad 1 \leq M \leq 4.$$
Figure 2. High spin states in 208Pb at $9 < E_x < 14$ MeV. At left the level scheme shown by Fig. 4 in [7] is reproduced.

The sum of the excitation energies of the constituents defines the energy

$$E_{WCM}^x = E_{Th}^x + E_{6^-}^{I_{6^-}} + E_{12^2}^{I_{12^2}} + E_{1p1h}^{1p1h}.$$

The coupling of the spins of the constituents in the stretched mode describes the total spin

$$I_{WCM}^x = I_{Th}^{I_{Th}} + I_{6^-}^{I_{6^-}} + I_{12^2}^{I_{12^2}} + I_{1p1h}^{1p1h}.$$

The product of the parities yields the parity

$$\pi_{WCM}^x = \pi_{Th}^{\pi_{Th}} \times \pi_{6^-}^{\pi_{6^-}} \times \pi_{12^2}^{\pi_{12^2}} \times \pi_{1p1h}^{\pi_{1p1h}}.$$

From the analysis of 1p1h states at $E_x < 6.2$ MeV the mean deviation of the excitation energy from shell model calculations is determined to be about 30 keV [2]. Allowing a factor four for the additional residual interaction with the three other constituents the WCM should predict the observed state within a range

$$-100 \lesssim E_{WCM}^x - E_{exp}^x \lesssim +100 \text{ keV.}$$

Starting from a state with known spin and parity $I_i^{\pi_i}$, the next higher lying state connected by the measured transition multipolarity $E \lambda$ may have spins from $I_i - (2\lambda - 1)$ to $I_i + 2\lambda - 1$. Broda et al. [7] measured four transition multiplicities connecting the states 9394 keV 17$^+$ \rightarrow 10342 keV 18$^-$ \rightarrow 11361 keV 21$^+$ \rightarrow 12949 keV 21$^+$ \rightarrow 13675 keV 24$^-$. Eqs. (1)- (4) restrict the choice for the sequence in a unique manner (Fig. 2). Similarly the spins of the intermediate
Table 1. States in ^{208}Pb excited in the γ-cascade from $E_x = 13675$ keV to $E_x = 9061$ keV. Underlined values of excitation energies indicate ns-isomers [7]. Constituting states in the WCM with excitation energies below 7 MeV are shown at bottom.

E_x^{\exp}	I^π	E_x^{WCM}	I_x^{WCM}	γ-transition	configuration
[keV]		[keV]	[keV]		
1 13675 24$^-$	yrare	13726	-51	E3 to 3	$\nu\ g_{9/2}\ i_{13/2}\ 9_1^+$ yrast
				E2 to 2	
2 13536 22$^+$	yrare	13488	+48	? to 3	$\nu\ i_{11/2}\ p_{1/2}\ 6_2^-$ yrare stretched
3 12949 21$^+$	yrast	12922	+27	E2 to 5	$\nu\ i_{11/2}\ p_{1/2}\ 6_2^-$ yrare stretched
				M1 to 4	
4 11958 20$^+$	yrare	11914	+44	? to 5	$\nu\ g_{9/2}\ p_{1/2}\ 5_1^-$ yrast stretched
5 11361 21$^+$	yrare	11263	+98	E3 to 6	$\pi\ h_{9/2}\ h_{11/2}\ 9_2^+$ yrare
6 10342 18$^+$	yrare	10307	+35	E1 to 7	$\nu\ i_{11/2}\ p_{1/2}\ 6_2^-$ yrare stretched
7 9394 17$^+$	yrast	9359	+35	M1+E2 to 8	$\nu\ j_{15/2}\ i_{13/2}\ 14_1^-$ yrast stretched
8 9103 16$^+$	yrast	9064	+39	? to 9	$\nu\ j_{15/2}\ i_{13/2}\ 13_1^-$ yrast
9 9061 15$^+$	yrast	9050	+11	E3 to 10	$\nu\ j_{15/2}\ i_{13/2}\ 12_1^-$ yrast
10 6744 14$^+$	yrast	M1+E2 to 11		ν $j_{15/2}\ i_{13/2}\ 14_1^-$ yrast stretched	
11 6449 13$^-$	yrast			ν $j_{15/2}\ i_{13/2}\ 13_1^-$ yrast	
6435 12$^-$	yrast			ν $j_{15/2}\ i_{13/2}\ 12_1^-$ yrast	
6101 12$^+$	yrare			collective	
4424 6$^+$	yrast			collective	
2615 3$^-$	yrast			collective	

11958 keV and 13536 keV states are found. By assuming transition multipolarities $\lambda \leq 3$, spins of more states are determined (Fig. 3).

3. Summary

Fig. 3 shows the γ-cascade observed by deep inelastic scattering on ^{208}Pb [7] at $9 < E_x < 17$ MeV. Table 2 shows results. The mean deviation between the excitation energies calculated by the weak coupling model (WCM) from the observed excitation energies is

$$\langle E_x^{WCM} - E_x^{\exp} \rangle = +30 \text{ keV.} \quad (5)$$

The size and the sign equals the mean deviation found for 1p1h states at $E_x < 6.2$ MeV [2].

Many states at $E_x < 9$ MeV have the 3$^-$ yrast state (suggested as a tetrahedral configuration) and the 12$^+$ yrare state (suggested as an icosaheiral configuration) as one constituent.

The highest observed state ($E_x = 16362$ keV) with spin 26$^+$ has the 3$^-$ yrast, the 6$^+$ yrast, the 12$^+$ yrare, and the lowest 1p1h state (3192 keV 5$^-$) as constituents.

γ-transitions from ns-isomers involve the exchange of an intruder hole ($h_{11/2}$ or $i_{13/2}$) with a $p_{1/2}$ hole.

The success of the WCM may show the description of the collective 3$^-$, 4$^+$, 6$^+$ yrast states and the 12$^+$ yrare state by platonic shapes differing from 1p1h and 2p2h configurations to be a good assumption.
Figure 3. High spin states at $9 < E_x < 17$ MeV. Eight states complement the γ-cascade displayed in Fig. 2. All shown states have 1p1h states with either an intruder hole or the $p_{1/2}$ hole except for 10552 keV states with a $p_{3/2}$ hole and the 14883 keV state without a 1p1h state.

References

[1] Martin M J 2007 Nucl. Data Sheets 108 1583
[2] Heusler A, Jolos R V, Faestermann T, Hertenberger R, Wirth H-F, and von Brentano P 2016 Phys. Rev. C 93 054321
[3] Heusler A Nuclear Structure and Dynamics IV, Venice(Italy), May 13-17, 2019; Session XVIII
[4] Heusler A, Jolos R V, and von Brentano P 2019 Phys. Rev. C 99 034323
[5] Jolos R V, Heusler A, and von Brentano P 2015 Phys. Rev. C 92 011302(R)
[6] Heusler A 2017 Eur. Phys. J. A 53 215
[7] Broda R et al. 2017 Phys. Rev. C 95 064308
[8] Heusler A and von Brentano P 1973 Ann. Phys. (NY) 75 381
[9] Lichtenstadt J, Papanicolas C N, Sargent C P, Heisenberg J, and McCarthy J S 1980 Phys. Rev. Lett. 44 858
[10] Fujita Y et al. 1990 Phys. Lett. B 247 219
[11] Wrzesiński J et al. 2001 Eur. Phys. J. A 10 259
[12] Lichtenstadt J et al. 1979 Phys. Rev. C 20 497
[13] Heusler A, Jolos R V, and von Brentano P 2013 Yad. Fiz. 76 860; Phys. Atomic Nuclei 76 807
[14] de Shalit A 1961 Phys. Rev. 122 1530