Genetic analysis of plasmid-encoded mcr-1 resistance in Enterobacteriaceae derived from poultry meat in the Netherlands

Casper Jamin1, Bazante K. Sanders2,3, Miaomiao Zhou2, Adalberto Costessi4, Danny Duijsings4†, Jan A. W. Kluymans5,6, Lieke B. van Alphen1 and Eefje J. A. Schrauwen2,3*

1Department of Medical Microbiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center, Maastricht, The Netherlands; 2Academy for Technology of Health and Environment, Avans University of Applied Science, Breda, The Netherlands; 3Research Group Analysis Techniques in Life Sciences, Avans University of Applied Sciences, Breda, The Netherlands; 4BaseClear B.V., Leiden, The Netherlands; 5Department of Infection Control, Amphia Hospital, Breda, The Netherlands; 6Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands

*Corresponding author. E-mail: eja.schrauwen@avans.nl
†Present address: Viroclinics Biosciences B.V., Rotterdam, The Netherlands.

Received 13 September 2021; accepted 20 September 2021

Background: Colistin is classified as the highest priority and critically important antimicrobial for human medicine by WHO as it is the last resort agent for treatment of carbapenem-resistant Enterobacteriaceae in humans. Additional research is necessary to elucidate the genetic structure of mcr-1 resistance genes, commonly found on plasmids, using WGS.

Objectives: To map and compare the genetic characteristics of 35 mcr-1-mediated colistin-resistant Enterobacteriaceae isolated from chicken meat to highlight the genetic variation of the mcr-1-containing plasmids.

Methods: Sequencing was performed using Illumina HiSeq2500, Novaseq6000 and ONT’s GridION. GridION data was locally basecalled and demultiplexed using ONT’s Albacore 2.3.4 followed by Porechop 2.3. Quality filtering was performed using Filtlong 2.0. Hybrid Assembly was performed using Unicycler 4.7. Plasmids were compared with reference sequences in plasmid-RefSeq and pATLAS.

Results: A total of 35 mcr-1 positive Enterobacteriaceae were investigated, which resulted in 34 qualitatively robust hybrid assemblies of 2 Klebsiella pneumoniae and 32 Escherichia coli. mcr-1.1 was present in 33/34 isolates. One isolate contained an mcr-1.1-like resistance gene, due to a deletion of one codon. Two mcr-1.1 genes were located on the chromosome, while the majority of the mcr-1 genes were found on IncX4 type plasmids (n = 19). Almost all plasmids identified in this study were highly similar to plasmids found in human-derived strains.

Conclusions: The mcr-1.1-containing plasmids from retail chicken show high sequence similarity to human mcr-1.1 plasmids, suggesting that this may be a contributor to the presence of colistin resistance in humans.

Introduction
In 2015, a plasmid-mediated colistin resistance gene was reported in China.1 From that moment on, many more mobile colistin resistance (mcr) genes and variants have been detected all over the globe.2 This discovery represents a mechanism for an easy transferable resistance mechanism to colistin, which is seen as a last-resort antibiotic to treat carbapenem-resistant Enterobacteriaceae.3 In Europe, colistin is used to treat infections caused by Enterobacteriaceae in sheep, cows, pigs, goats and chicken.4 Therefore, the detection of mcr-1-harbouring Enterobacteriaceae isolates in chicken meat was self-evident.5,6

In order to understand the molecular epidemiology and resistance mechanism of mcr genes, WGS approaches should be used. Characteristically, high-throughput sequencing platforms (e.g. Illumina) are used in order to sequence the full bacterial genome.7 However, short reads from these high-throughput sequencers can make it challenging to reconstruct plasmids and therefore they are inaccurate for studying antibiotic resistance epidemiology.8

© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Single-molecule sequencing platforms such as the Oxford Nanopore Technologies (ONT) MinION, GridION and PromethION are able to sequence long fragments of DNA. Subsequently, with the use of a hybrid assembly, increased information content can be generated since the genome completeness is increased and the location of resistance genes in the genome can be determined. 9

In this study, short- and long-read sequencing platforms were used in order to study the mcr-1-containing Enterobacteriaceae isolated from retail chicken meat.5,6 We used a hybrid-assembly approach to extract the plasmid sequences that contain mcr-1 and studied the plasmid relationship compared with publicly available mcr-1 plasmid sequences.

Methods
Sample collection
In total, 35 confirmed mcr-1-holding Enterobacteriaceae were subjected to Illumina short read and ONT sequencing. The isolates derived from previous studies,5,6 with the exception of EC-MCR34. All samples derived from three prevalence surveys in Dutch retail chicken meat performed in 2009, 2014 and 2015, which were initially performed to study the presence of ESBL-producing Enterobacteriaceae. 5,6 The isolates in this study were genotypically mcr-1 PCR positive and phenotypically colistin resistant. 5

Illumina sequencing
The 35 samples were sequenced using paired-end Illumina HiSeq2500.

The library prep for 35 samples was performed using the Nextera XT DNA library prep kit and the Nextera XT Index Kit v2 (Illumina, Eindhoven, The Netherlands), according to the manufacturer's instructions. Libraries were subsequently purified using Agencourt AMPure XP beads (Beckman Coulter, Woerden, The Netherlands) and quantified using the Quant-it dsDNA HS-kit (Thermo Fisher, Bleiswijk, The Netherlands) and using a Fragment Analyzer (Agilent, The Netherlands.) Samples were then loaded on a HiSeq2500 system and run for 251 cycles (PE125) using HiSeq Rapid SBS Kit v2 chemistry.

Due to low quality, EC-MCR10 and EC-MCR21 were re-sequenced using the Illumina NovaSeq 6000 The library prep for these two samples was performed using the Nextera XT DNA library prep kit and the IDT for Illumina Nextera DNA Unique Dual Indexes (Indexa) according to the manufacturer's instructions. Libraries were subsequently purified using Agencourt AMPure XP beads (Beckman Coulter) and quantified using the Quant-it dsDNA HS-kit (Thermo Fisher) and using a Fragment Analyzer (Agilent). Samples were then loaded on an S1 flow cell on the NovaSeq6000 system and run for 301 cycles (PE150) using HiSeq Rapid SBS Kit v2 chemistry.

Fastq read sequence files were generated using bc12fastq2 version 2.1.8. Initial quality assessment was based on data passing the Illumina Chastity filtering. Subsequently, reads containing PhiX control signal were removed using an in-house filtering protocol. In addition, reads containing (partial) adapters were clipped (up to a minimum read length of 50 bp). The second quality assessment was based on the remaining reads using the FASTQC quality control tool version 0.11.5.

ONT sequencing
All 35 samples were sequenced using the ONT GridION (Oxford Nanopore Technologies, Oxford, UK). Libraries were prepared using shearing by needle shearing (KP-MCR01–02 and EC-MCR03–31) or using the Covaris G-tube (EC-MCR32–35). The library was prepared using the ONT 1D ligation sequencing kit (SQK-LSK109) with the native barcoding kit (EXP-NBD103). Samples KP-MCR01–02 and EC-MCR03–29 were loaded on FLO-MIN107 R9.5.1 flow cells and the remaining on a FLO-MIN106 R9.4.1 flow cell.

Sequence data availability
All data is available from the National Center for Biotechnology Information (NCBI) under BioProject number PRJEB44175. Raw short-read Illumina and long-read ONT sequencing data and metadata for all 35 isolates used in this study are available from the NCBI Sequence Read Archive database under accession numbers ERR5727763 to ERR5727797 (short read) and ERR5726838 to ERR5726872 (long read).

Assembly
GridION data were locally basecalled and demultiplexed using ONT's Albacore 2.3.4 followed by Porechop 2.3 to demultiplex the unclassified reads. Quality filtering was performed using Filtlong 2.0 using the following settings: (i) maximum size of 500 Mbp; (ii) keep 90% percentage of the best reads of the data; and (iii) minimum size of 1000 bp. The long-read quality was evaluated using FastQC and NanoPlot v1.13.0 and the short-read quality using FastQC. Hybrid assembly was performed using Unicycler 4.7 using default settings and a minimum length of 1000bp and subsequently assessed using QUAST 5.0.7 Genetic characterization of the hybrid assemblies was performed using the online service of goseqit.com.

The coverage of the ONT sequence reads was calculated by mapping the long reads back to the assembly using minimap2 (v2.13) and SAMtools (v1.9) using the in-house scripts. Sequence annotation was done using Bakta (v1.1).16

Plasmid analysis
The mcr-1 plasmid sequences were manually identified and extracted from the assembly graphs (.gfa files) using Bondage.14 The mcr-1 gene sequence (AKF16168.1) was used to locate the mcr-1-containing plasmids. mcr-1 gene-containing plasmids from RefSeq plasmid database and pATLAS (accessed April 8, 2020) were retrieved.15 Any duplicates entries were removed prior subsequent analyses. In total 69 publicly available plasmids and mcr-1-containing plasmids from this study were used. Plasmid sequences were clustered using PlasmidSimilarity (v0.3.0, https://github.com/Caserjian/PlasmidSimilarity). In short, dissimilarity among plasmids was calculated using the Jaccard index, using the complete k-mer composition (all subsequences in a sequence of length k) of each plasmid sequence, using k length of 31 bp. Antimicrobial resistance (AMR) genes, virulence genes and plasmid origin of replications were identified with Abricate (v1.1.0, default settings) using the NCBI, virulence factor database and PlasmidFinder database respectively (retrieved on 10 September 2019).16,17

Results and discussion
A total of 35 mcr-1-positive Enterobacteriaceae were investigated, which resulted in 34 qualitatively robust hybrid assemblies of 2 Klebsiella pneumoniae and 32 Escherichia coli isolates (Table S1, available as Supplementary data at JAC-AMR Online). The hybrid assembly substantially improved the reconstruction of the microbial genome (data not shown). The mcr-1.1 gene was present in 33/34 isolates (Table 1). The most common STs for E. coli were ST624 (n = 7), ST10 (n = 5) and ST997 (n = 4). The two K. pneumoniae isolates belonged to ST107 and ST1944. One isolate contained an mcr-1.1-like resistance gene, due to a mutation in the start codon, but still remained resistant to colistin.5 The second codon in mcr-1.1 is ATG and will likely replace the first codon as start codon, leading to a truncated but functional gene. Two mcr-1.1 genes were located on the chromosome, while the majority of the mcr-1 genes were found on IncX4 type plasmids (n = 19, Table 1), which is a common plasmid type harbouring mcr-1 found in Europe.18,19
Table 1. Overview of mcr-1-positive isolates with corresponding Inc type, size and other genetic characteristics

Sample	Species	ST	Mcr type	Inc type on mcr1.1 plasmid	Other AMR genes	Transposase gene located near mcr1.1	Contig no.	Contig size	Study reference
KP-MCR01	K. pneumoniae	ST107	1.1	IncX4	—	—	6	33303	
KP-MCR02	K. pneumoniae	ST1944	1.1	IncHI2, IncHI2A	ahp(3')-Ia, sul3, aadA1, dfrA12	IS30-like element ISApl1 family transposase	2	211949	
EC-MCR03	E. coli	ST10	1.1	IncX4	—	—	7	33303	
EC-MCR04	E. coli	ST8262	1.1	IncX4	—	—	5	33303	
EC-MCR05	E. coli	ST8262	1.1	IncX4	—	—	6	33303	
EC-MCR06	E. coli	ST1564	1.1	IncX4	—	—	6	33303	
EC-MCR07	E. coli	ST752	1.1	IncB/O/K/Z	sul2	IS30-like element ISApl1 family transposase	5	93122	
EC-MCR08	E. coli	ST10	1.1	IncX4	—	—	5	23832	
EC-MCR09	E. coli	ST162	1.1	IncX4	—	—	5	35016	
EC-MCR11	E. coli	ST1842	1.1	IncX4	—	—	3	33303	
EC-MCR12	E. coli	ST10	1.1	IncX4	—	—	6	33303	
EC-MCR13	E. coli	ST641	1.1	IncX4	—	—	7	33303	
EC-MCR14	E. coli	ST155	1.1	IncHI2, IncHI2A	aadA2, cmlA1, aadA1, sul3	IS30-like element ISApl1 family transposase	2	243755	
EC-MCR15	E. coli	ST10	1.1	IncX4	—	—	4	34755	
EC-MCR16	E. coli	ST997	1.1	IncHI2, IncHI2A	tet(A), sul1, aadA1, dfrA10, ahp(6)-Ia, ahp(3')-Ia, aadA1, sul3, aadA1, dfrA10	IS30-like element ISApl1 family transposase	2	2114156	
EC-MCR17	E. coli	ST57	1.1	IncHI2, IncHI2A	—	—	2	211552	
EC-MCR18	E. coli	ST997	1.1	IncX4	—	—	5	33303	
EC-MCR19	E. coli	ST997	1.1	IncX4	—	—	5	33303	
EC-MCR20	E. coli	ST624	1.1	IncX4	—	—	5	33303	
EC-MCR21	E. coli	ST624	1.1	IncX4	—	—	6	33303	
EC-MCR22	E. coli	ST10	1.1	IncHI2, IncHI2A	btaTEM-1, tet(A), sul1, aadA1, dfrA1, Inu(F), ahp(3')-Ia	IS30-like element ISApl1 family transposase	2	234218	
EC-MCR23	E. coli	ST93	1.1	none	—	—	1 chromosomal		
EC-MCR24	E. coli	ST48	1.1	IncX4	—	—	6	34639	
EC-MCR25	E. coli	ST624	1.1	IncX4	—	—	3	33303	
EC-MCR26	E. coli	ST997	1.1	IncHI2, IncHI2A, IncQ1	tet(A), sul1, aadA1, dfrA10, ahp(6)-Ia, ahp(3')-Ia, btaTEM-150, aadA2, cmlA1, sul3, aadA1, dfrA1, Inu(F), ahp(3')-Ia	IS30-like element ISApl1 family transposase	2	267214	
EC-MCR27	E. coli	ST1011	1.1	IncX4	—	—	8	33303	
EC-MCR28	E. coli	ST354	1.1	IncHI2, IncHI2A, IncQ1, Col(MG828)	tet(A), sul1, aadA1, dfrA10, ahp(6)-Ia, ahp(3')-Ia, btaTEM-150	IS30-like element ISApl1 family transposase	3	252468	
EC-MCR29	E. coli	ST624	1.1	IncHI2, IncHI2A	cmlA1, aadA10, sul3, ahp(3')-Ia, btaTEM-150, tet(A), aadA2, aac(3)-Vla	IS30-like element ISApl1 family transposase	2	261285	
EC-MCR30	E. coli	ST624	1.1	IncHI2, IncHI2A	—	—	2	261102	

Continued
Table 1. Continued

Sample	Species	ST	Mcr type	Inc type on mcr.1 plasmid	Other AMR genes	Transposase gene located near mcr.1	Contig no.	Contig size	Study reference
EC-MCR31	E. coli	ST624	1.1	IncHI2, IncHI2A	cmvA1, adA1, sul3, aph(3')-Ia, blt(A), adA2, oac(3')-Vla	IS30-like element ISApl1 family transposase	2	260457	
EC-MCR32	E. coli	ST624	1.1	IncHI2, IncHI2A	cmvA1, adA1, sul3, aph(3')-Ia, blt(A), adA2, oac(3')-Vla	IS30-like element ISApl1 family transposase	2	261285	
EC-MCR33	E. coli	ST1564	1.1	IncX4	none	IS30-like element ISApl1 family transposase	4	33303	chromosomal
EC-MCR34	E. coli	ST117	1.1	none	—	IS30-like element ISApl1 family transposase	1	254841	
EC-MCR35	E. coli	ST2079	1.1	IncHI2, IncHI2A	tet(A), sul1, adA1, dfrA1, aph(6)-Id, aph(3'')-Ib, sul3, cmvA1, adA2, catA1	IS30-like element ISApl1 family transposase	2	248481	

*Identity or alignment length is not 100%.
Substitution in second base pair of first starting codon.
Resistance gene detected twice.
Figure 1. Heatmap and dendrogram showing all plasmids analysed in this study. The dendrogram represents the similarity among plasmid sequences based on the Jaccard dissimilarity of 31-mers of each plasmid. Coloured cells in the heatmap indicate either the presence of this gene or the origin of replication of this plasmid.
the possibility of retail meat to be a significant contributor to
the dissemination of mobile colistin resistance in the Netherlands.

Acknowledgements
We thank Carlo Verhulst for technical assistance and Pepijn Huizinga and
Marjolein Kluytmans-van den Bergh for sample collection.

Funding
This work was funded by ZonMw for Enabling Technologies Hotels
(Funding: 40-43500-98-15). Development of Plasmidsimilarity
was made possible by a grant from the Dutch workgroup for molecular diag-
nostics of infectious diseases (WMDI).

Transparency declarations
None to declare.

Supplementary data
Table S1 is available as Supplementary data at JAC-AMR Online.

References
1 Liu YY, Wang Y, Walsh TR et al. Emergence of plasmid-mediated colistin re-

tistance mechanism MCR-1 in animals and human beings in China: a micro-

biological and molecular biological study. Lancet Infect Dis 2016; 16: 161–8.

2 Sun J, Zhang H, Liu YH et al. Towards understanding MCR-like colistin resis-

tance. Trends Microbiol 2018; 26: 794–808.

3 Poulaquet G, Bassetti M, Righi E et al. Current and future treatment options

for infections caused by multidrug-resistant Gram-negative pathogens. Future Microbiol 2014; 9: 1053–69.

4 Catry B, Cavaleri M, Baptiste K et al. Use of colistin-containing products

within the European Union and European Economic Area (EU/EEA): development

of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 2015; 46: 297–306.

5 Schrauwen EJA, Huizinga P, van Spreuwer N et al. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob Resist Infect Control 2017; 6: 83.

6 Kluytmans-van den Bergh MF, Huizinga P, Bonten MJ et al. Presence of

mcr-1-positive Enterobacteriaceae in retail meat but not in humans in

the Netherlands since 2009. Euro Surveill 2016; 21: pii: 30149.

7 Perez-Losada M, Arenas M, Castro-Nallar E. Microbial sequence typing in

the genomic era. Infect Genet Evol 2018; 63: 346–59.

8 Arredondo-Alonso S, Willems RJ, van Schaik W et al. On the (im)possibility

of reconstructing plasmids from whole-genome short-read sequencing data. Microb Genom 2017; 3: e000128.

9 George S, Pankhurst L, Hubbard A et al. Resolving plasmid structures in

Enterobacteriaceae using the MinION nanopore sequencer: assessment of

MinION and MinION/Illumina hybrid data assembly approaches. Microb Genom 2017; 3: e000118.

10 Kluytmans JA, Overdevest IT, Willemsen I et al. Extended-spectrum β-

lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis 2013; 56: 478–87.

11 Overdevest I, Willemsen I, Rijnsburger M et al. Extended-spectrum β-lac-

tamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerg Infect Dis 2011; 17: 1216–22.

12 Wick RR, Judd LM, Gorrie CL et al. Unicycler: resolving bacterial genome

assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595.

13 Swengers O, Jelont L, Dieckmann M et al. Bacta: rapid & standardized an-

notation of bacterial genomes via alignment-free sequence identification. bioRxiv 2021; doi:10.1101/2021.09.02.458689.

14 Wick RR, Schultz MB, Zobel J et al. Bandage: interactive visualization of de

novo genome assemblies. Bioinformatics 2015; 31: 3350–2.

15 Brooks L, Kaze M, Sistrom M A curated, comprehensive database of plas-

mid sequences. Microbial Resour Announc 2019; 8: e01325-18.

16 Carattoli A, Hasman H. PlasmidFinder and in silico pMLST: identification and
typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2020; 2075: 285–94.

17 Chen L, Zheng D, Liu B et al. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 2016; 44: D694–7.

18 Matamoros S, van Hattem JM, Arcilla MS et al. Global phylogenetic anal-

ysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bac-

terial diversity but plasmid restriction. Sci Rep 2017; 7: 15364.

19 Schuele L, Fierers G, Strutzberg-Minder K et al. Detection of a small

IncX4 plasmid carrying the mcr-1.1 gene in a pig oral fluid sample by

shotgun metagenomic sequencing. J Glob Antimicrob Resist 2021; 24: 205–6.