INTRODUCTION

Stroke is a common cause of epilepsy, accounting for 11% of all epilepsy cases and 55% of newly diagnosed seizures in the elderly population. Moreover, the relationship between stroke and epilepsy appears to be bidirectional, since middle-aged and elderly patients with newly diagnosed epilepsy have a twofold to threefold increased risk of stroke within approximately 2 years of epilepsy onset. Post-stroke seizures usually have a focal seizure semiology, with approximately one third of cases presenting with focal to bilateral tonic-clonic seizures.

Abstract

Objectives: To assess the effectiveness and safety/tolerability of eslicarbazepine acetate (ESL) in patients included in the Euro-Esli study who had focal seizures associated with post-stroke epilepsy (PSE).

Materials and Methods: Euro-Esli was a pooled analysis of 14 European clinical practice studies. Effectiveness assessments (evaluated after 3, 6 and 12 months of ESL treatment and at final follow-up ["last visit"]) included rates of response (≥50% seizure frequency reduction), seizure freedom (no seizures since at least the prior visit) and retention. Safety/tolerability was assessed throughout ESL treatment by evaluating adverse events (AEs) and discontinuation due to AEs. A post hoc analysis was conducted of patients with PSE versus patients without PSE ("non-PSE").

Results: Of 1656 patients included in the analysis, 76 (4.6%) had PSE and 1580 (95.4%) had non-PSE. Compared with non-PSE patients, PSE patients were significantly older, had significantly shorter epilepsy duration, significantly lower total baseline seizure frequency, and were treated with significantly fewer prior and concomitant antiepileptic drugs (P < .001 for all). At the last visit, the responder rate was significantly higher in PSE versus non-PSE patients (72.9% vs 60.6%; P = .040), as was the seizure freedom rate (48.6% vs 31.7%; P = .003). After 12 months, retention was significantly higher in PSE versus non-PSE patients (87.8% vs 77.4%; P = .035). The incidence of AEs was similar for PSE versus non-PSE patients (36.0% vs 35.8%; P = .966).

Conclusions: These findings suggest that ESL may be an effective and well-tolerated treatment option for patients with focal seizures due to PSE.

KEYWORDS

Epilepsy, eslicarbazepine acetate, seizures, stroke
Post-stroke epilepsy (PSE)—defined as two or more unprovoked epileptic seizures occurring at least 1 week after the stroke—is thought to occur in at least 4-6% of the stroke population. Factors associated with a higher risk of PSE include the presence of cortical lesions, a haemorrhagic component, early seizures and younger age at stroke onset. PSE may be associated with unfavourable outcomes and increased mortality, and the European Stroke Organisation has therefore published evidence-based guidelines on the management of PSE. Since observational studies have demonstrated a high risk of seizure recurrence (70%) after one post-stroke unprovoked seizure, the European Stroke Organisation guidelines recommend that antiepileptic drug (AED) treatment after one unprovoked seizure should be considered. However, evidence for the effectiveness and safety/tolerability of AEDs in the PSE setting is currently limited. Moreover, psychiatric comorbidities, particularly depression, are frequent in patients with epilepsy and in those who have suffered a stroke, but information on AED treatment in patients with PSE who have psychiatric comorbidities is also lacking at present.

Eslicarbazine acetate (ESL) is a once-daily AED that is approved in Europe for the treatment of focal-onset seizures as monotherapy in adults with newly diagnosed epilepsy, and as adjunctive therapy in adults, adolescents and children aged above 6 years. In the United States, ESL is indicated for the treatment of focal-onset seizures in patients 4 years of age and older. ESL is thought to act on the slowly inactivated state of sodium channels. The Euro-Esli study investigated the real-world effectiveness, safety and tolerability of ESL when used in everyday clinical practice in Europe. Euro-Esli included over 2000 patients, representing the largest ESL clinical practice study conducted to date. The size of this cohort allows for meaningful subgroup analyses to be conducted.

The primary objective of this study was to assess the effectiveness and safety/tolerability of ESL in patients with focal seizures associated with PSE who were included in Euro-Esli, in comparison with those who did not have PSE. However, since a previous assessment of Euro-Esli data in special populations demonstrated significant differences in the effectiveness and safety/tolerability of ESL between patients who did and did not have psychiatric comorbidities at study entry, additional subanalyses were conducted to evaluate the impact of this factor on the effectiveness and safety/tolerability of ESL in patients with and without PSE.

2 | MATERIALS AND METHODS

2.1 | Study design

Euro-Esli was an exploratory, pooled analysis of data from 14 European clinical practice studies (both prospective and retrospective), full details of which have been published previously. Effectiveness was assessed after 3, 6 and 12 months of ESL treatment and at final follow-up (“last visit”). For the final assessment, monthly seizure frequency was based on the last visit, which could have been at 3, 6 or 12 months; therefore, seizure frequency at the last visit was based on the number of seizures experienced during at least the previous 3 months. Safety and tolerability were assessed for the duration of ESL treatment. For all assessments, “baseline” was defined as the time point at which ESL was initiated (ie the time point immediately prior to ESL initiation).

2.2 | Study population

Studies included in Euro-Esli employed broad inclusion/exclusion criteria, to be representative of patients encountered in clinical practice. All patients who initiated ESL for the treatment of epilepsy were included. Seizure types were originally classified according to the International League Against Epilepsy 1989 definitions, but were subsequently reclassified using the updated 2017 definitions. Most patients were treated for focal seizures, although patients with generalized seizures were not specifically excluded; however, analyses of effectiveness focused on focal seizures, with or without focal to bilateral tonic-clonic seizures. Patients were excluded if records contained insufficient data for analysis. Duplicate data from patients included in more than one study were excluded.

The current analysis included all patients for whom epilepsy aetiology (stroke or other aetiology) was known. Effectiveness and safety/tolerability assessments were analysed and compared for patients with stroke as aetiology (“PSE patients”) versus patients without stroke as aetiology (“non-PSE patients”). An additional subanalysis was conducted for PSE and non-PSE patients to compare the effectiveness and safety/tolerability of ESL in those who did and did not have psychiatric comorbidities (including depression) at baseline.

2.3 | Study assessments

Effectiveness was assessed by evaluating rates of response, seizure freedom and retention. Response was defined as ≥50% seizure frequency reduction from baseline. Seizure freedom was defined as the occurrence of no seizures since at least the prior visit (either 3 or 6 months). For analysis of retention rate, the censored event was defined as discontinuation of ESL treatment for any reason.

Safety was assessed by evaluating adverse events (AEs). Tolerability was assessed by evaluating discontinuation due to AEs.

2.4 | Statistical methodology

Details of the statistical methodology employed in Euro-Esli have been published previously. The safety population was defined as all patients who initiated ESL treatment; the effectiveness population, as all patients who initiated ESL treatment with ≥1 effectiveness assessment.

Effectiveness, safety and tolerability data were not available for all patients at all time points. Missing data were not imputed, except
in cross-sectional studies, in which the last visit data were captured and included in the established cut-off points (3, 6 or 12 months). The denominator used for all frequency assessments was the total number of patients for whom the data in question were available. Patients who withdrew from ESL treatment were included in the analysis up until the time of withdrawal, and the last visit time point was created in order to capture the patients’ last recorded observation for each assessment.

Comparison between subgroups of patients was performed using the chi-squared test for qualitative variables and Student’s t test (or Mann-Whitney U test, if parametric criteria were not met) for quantitative variables. Changes between the initial and final number of concomitant AEDs used were assessed using the Wilcoxon signed-rank test. Time to ESL discontinuation was assessed using Kaplan-Meier methodology. Mean time on ESL treatment was calculated with 95% confidence intervals (CIs) and compared between patient subgroups using the log-rank test. The Statistical Package for the Social Sciences version 19.0 was used for all analyses, and the significance level was 5%.

3 | RESULTS

3.1 | Patient population

Euro-Esli included a total of 2058 patients. In the current subgroup analysis, information on aetiology was known for 1656 patients (Table 1). Of these 1656 patients, 76 (4.6%) had PSE, of whom 60.5% were male, and 1580 (95.4%) had non-PSE, of whom 51.7% were male. In comparison with patients with non-PSE, patients with PSE were significantly older at baseline (P < .001) and at onset of epilepsy (P < .001), had significantly shorter duration of epilepsy (P < .001), and had significantly lower baseline seizure frequency (total seizures [P < .001], focal aware seizures [P = .036], focal impaired awareness seizures [P < .001] and focal to bilateral tonic-clonic seizures [P < .001]). Patients with PSE had also been treated with significantly fewer previous AEDs (P < .001) than patients with non-PSE.

3.2 | ESL treatment and concomitant AEDs

In PSE and non-PSE patients, the main reason for initiating ESL was lack of effectiveness of prior treatment (Table 1). However, there were statistically significant differences between the groups in reasons for initiating ESL, with a lower proportion of PSE versus non-PSE patients initiating ESL due to lack of effectiveness with prior treatment (63.5% vs 79.9%) and a higher proportion of PSE vs non-PSE patients initiating ESL due to adverse reaction(s) with prior treatment (34.9% vs 24.5%) (P = .008). At the time of ESL initiation, there was no significant difference in ESL dosing in patients with PSE versus non-PSE (mean [standard deviation; SD] dose, 565.2 [247.0] vs 571.3 [267.5] mg/day; P = .954). However, at the last visit, ESL dosing was significantly lower in patients with PSE versus non-PSE (mean [SD] dose, 887.7 [260.3] vs 983.3 [325.8]; P = .024). The number of concomitant AEDs was significantly lower in patients with PSE versus non-PSE at baseline (mean [SD], 1.3 [0.7] vs 1.8 [1.1]; P < .001) and at last visit (mean [SD], 0.6 [0.8] vs 1.5 [1.1]; P < .001), and the number of concomitant AEDs decreased significantly from baseline to last visit in patients with PSE and non-PSE (P < .001 for both subgroups).

3.3 | Effectiveness

At the last visit, the responder rate was significantly higher in PSE versus non-PSE patients (72.9% vs 60.6%; P = .040; Figure 1A). There were no significant differences between groups in responder rates at other time points. Seizure freedom rates were significantly higher in PSE versus non-PSE patients at all time points, except 12 months (P = .070) (Figure 1B). At the last visit, seizure freedom rates were 48.6% in PSE patients versus 31.7% in non-PSE patients (P = .003).

Retention on ESL treatment over 12 months of follow-up was higher in PSE patients than in non-PSE patients (Figure 2), and after 12 months of follow-up, retention was significantly higher in PSE patients versus non-PSE patients (87.8% vs 77.4%; P = .035). The primary reasons for discontinuation in PSE and non-PSE patients were adverse drug reactions (5.4% and 9.2%, respectively), lack of efficacy (5.4% and 6.4%, respectively) and adverse drug reactions plus lack of efficacy (1.4% and 2.9%, respectively). During the first 12 months, 8.1% of PSE patients and 12.3% of non-PSE patients were lost to follow-up. After 12 months of follow-up, the mean (95% CI) times on ESL treatment for PSE versus non-PSE patients were 11.2 (10.7-11.8) versus 10.2 (10.0-10.3) months (P = .023).

3.4 | Safety and tolerability

The relative percentage of AEs was similar for patients with PSE versus non-PSE (36.0% vs 35.8%; P = .966) (Table 2). The most frequently reported AEs (≥5% in either group) were somnolence (PSE 10.7% vs non-PSE 5.6%), dizziness (6.7% vs 6.9%) and fatigue (2.7% vs 5.7%). The relative percentage of AEs of the System Organ Class “Psychiatric Disorders” was also similar for the PSE and non-PSE groups (2.7% vs 3.0%).

The incidence of AEs leading to discontinuation was lower in patients with PSE versus non-PSE, although the difference was not significant (6.8% vs 14.5%; P = .063). The most frequently reported AEs leading to discontinuation (≥2% patients in either group) were instability/ataxia (PSE 2.7% vs non-PSE 1.3%), fatigue (1.4% vs 2.1%) and dizziness (0% vs 2.7%). AEs of the System Organ Class “Psychiatric Disorders” led to discontinuation of 1.3% of patients with non-PSE, compared with 0% of patients with PSE.

Hyponatraemia (defined according to the criteria of the treating physician) was reported as an AE in a similar proportion of patients...
Table 1: Demographic and baseline characteristics in patients with PSE and non-PSE

	PSE (N = 76)	Non-PSE (N = 1580)	P
Demographics			
Sex			
N	76	1579	
Male, n (%)	46 (60.5)	817 (51.7)	0.134
Female, n (%)	30 (39.5)	762 (48.3)	
Age, years			
N	76	1579	<0.001
Mean (SD)	60.4 (17.3)	42.9 (15.1)	
Median (range)	63.0 (18-87)	41.4 (14-88)	
Psychiatric comorbidities			
N	45	841	
Any psychiatric comorbidity, n (%)	10 (22.2)	242 (28.8)	
Most frequently reported types of psychiatric comorbidity (≥2% of patients), n (%)			
Depression	6 (13.3)	112 (13.3)	
Anxiety	3 (6.7)	55 (6.5)	
Mood disorder	0	36 (4.3)	
Personality disorder	1 (2.2)	12 (1.4)	
Irritability	1 (2.2)	3 (0.4)	
Epilepsy-related characteristics			
Age at onset of epilepsy, years			
N	75	1497	<0.001
Mean (SD)	50.9 (23.6)	23.7 (18.5)	
Median (range)	54.0 (0-85)	20.0 (0-87)	
Duration of epilepsy, years			
N	75	1497	<0.001
Mean (SD)	9.6 (13.1)	19.4 (14.9)	
Median (range)	4.0 (0-56)	17.0 (0-73)	
Monthly seizure frequency			
Any seizure			
N	65	1401	<0.001
Mean (SD)	4.3 (9.3)	13.8 (53.2)	
Median (range)	1.3 (0.1-60)	3.0 (0.1-1230.0)	
Focal aware seizures			
N	16	270	0.036
Mean (SD)	3.0 (3.4)	17.6 (70.5)	
Median (range)	1.7 (0.7-12.5)	3.3 (0.3-900.0)	
Focal impaired awareness seizures			
N	34	776	<0.001
Mean (SD)	3.4 (7.1)	8.3 (19.2)	
Median (range)	1.2 (0.3-30.0)	3.0 (0.2-240.0)	
Focal to bilateral tonic-clonic seizures			
N	24	494	<0.001
Mean (SD)	1.1 (3.0)	2.9 (6.9)	
Median (range)	0.3 (0.2-15.0)	1.0 (0.1-70.0)	

(Continues)
with PSE versus non-PSE (4.0% vs 3.7%). None of the patients with PSE discontinued due to hyponatraemia, compared with 1.1% of patients with non-PSE.

3.5 | Subgroup analysis of patients with/without psychiatric comorbidities (including depression) at baseline

The presence/absence of psychiatric comorbidities (including depression) was known for 45 patients with PSE and 841 patients with non-PSE. Overall, 10/45 (22.2%) PSE patients and 242/841 (28.8%) non-PSE patients for whom data were available had psychiatric comorbidities at baseline (Table 1). The most frequent psychiatric comorbidities were depression (13.3% in both groups) and anxiety (PSE, 6.7%; non-PSE, 6.5%).

In patients with psychiatric comorbidities, responder rates were similar in PSE and non-PSE patients, except at the last visit, where the responder rate in PSE patients was significantly higher than in non-PSE patients (100% vs 61.4%; \(P = .015\); Figure 3A). Seizure freedom rates were higher in PSE patients with psychiatric comorbidities than in non-PSE patients with psychiatric comorbidities at all time points, but the difference was only statistically significant at the last visit (80.0% vs 33.2%; \(P = .004\); Figure 3B). In patients without psychiatric comorbidities, responder and seizure freedom rates were not significantly different in PSE versus non-PSE patients at any time point.

In patients with psychiatric comorbidities, the retention rate over 12 months of follow-up was higher in PSE versus non-PSE patients, although the difference was not statistically significant (100.0% vs 76.3%; \(P = .123\)). The mean time on ESL treatment was not statistically compared because all PSE patients were retained on ESL treatment. Similarly, in patients without psychiatric comorbidities, the retention rate over 12 months of follow-up was higher in PSE versus non-PSE patients, but the difference was not statistically significant (91.2% vs 79.6%; \(P = .121\)). The mean (95% CI) times on ESL treatment for PSE versus non-PSE patients were 11.5 (10.9-12.1) versus 10.4 (10.1-10.7) months (\(P = .089\)).
In patients with psychiatric comorbidities, the incidence of AEs was similar for patients with PSE versus non-PSE (50.0% vs 43.4%; \(P = .680 \)). The incidence of AEs leading to discontinuation was lower in patients with PSE versus non-PSE, but the difference was not statistically significant (0% vs 16.3%; \(P = .369 \)). Similarly, in patients without psychiatric comorbidities, the incidence of AEs was comparable for patients with PSE versus non-PSE (28.6% vs 34.6%; \(P = .468 \)). The incidence of AEs leading to discontinuation was again lower in patients with PSE versus non-PSE, but the difference was not statistically significant (2.9% vs 13.8%; \(P = .070 \)).

4 | DISCUSSION

In this post hoc analysis of Euro-Esli, which was conducted under clinical practice conditions in Europe, ESL was shown to be effective and well tolerated in PSE and non-PSE patients. Although ESL was effective and well tolerated in both groups, there were some differences, and, overall, the effectiveness of ESL (based on retention, responder and seizure-free rates) was greater in patients with PSE, compared with those without PSE. In addition, the safety/tolerability profile of ESL was similar in patients with and without PSE. Taken together, these findings might suggest that patients with PSE are less refractory to treatment than those with non-PSE. This notion is supported by the comparison of demographic and baseline characteristics, which demonstrated that PSE patients were earlier in their disease course and/or less refractory to treatment than those with non-PSE, since they had a significantly shorter duration of epilepsy, significantly lower baseline seizure frequency, had been treated with significantly fewer previous AEDs, and were being treated with significantly fewer concomitant AEDs at study entry (and at the last visit). Nevertheless, given that the PSE patients were earlier in their disease course, this study’s findings therefore demonstrate that PSE
is challenging to treat, since less than 50% of patients achieved seizure freedom at the last visit. However, they also indicate that ESL may have relevant role to play in this setting. It is also important to note that the PSE patients were significantly older than the non-PSE patients (median age at baseline, 63.0 vs 41.4 years). Studies conducted in patients with newly diagnosed epilepsy have indicated that outcomes are more favourable in older versus younger patients. Although it is probable that the majority of patients included in the current study did not have newly diagnosed epilepsy (since > 95% were being treated with concomitant AEDs at baseline), the older age of the PSE versus non-PSE patients, together with their shorter duration of epilepsy, may have contributed to the more favourable effectiveness observed in those with PSE versus non-PSE.

This study additionally demonstrated that ESL was more effective in PSE versus non-PSE patients regardless of the presence or absence of psychiatric comorbidities (including depression) at baseline. However, the greater effectiveness of ESL in PSE versus non-PSE patients was more marked in patients with psychiatric comorbidities than in those without psychiatric comorbidities: at the last visit, responder and seizure freedom rates were significantly greater for PSE versus non-PSE patients in those with psychiatric comorbidities, but the differences were not statistically significant in those without psychiatric comorbidities. Although evidence for the prevalence of psychiatric comorbidities in PSE is currently lacking, post-stroke depression is known to be highly prevalent, affecting up to one third of stroke survivors, and the treatment of depression represents an unmet need in the long-term care of stroke patients. The risk of psychiatric comorbidity is also substantially increased in epilepsy patients, the prevalence of psychiatric disorders being twice as high in epilepsy patients as in the general population. Psychiatric comorbidities—in particular, depression—have a deleterious impact on the quality of life and functional capacity of patients with epilepsy. Moreover, treatment with certain AEDs can cause or exacerbate psychiatric comorbidities. Results of prospective audits have indicated that patients treated with AEDs that work primarily as sodium channel blockers are significantly less likely to develop intolerable psychiatric problems than patients treated with AEDs possessing other mechanisms of action. Consistent with this, a previous subanalysis of Euro-Esli has demonstrated that ESL (which is thought to act primarily by enhancing the slow inactivation of voltage-gated sodium channels) may be effective in patients with focal epilepsy and with concomitant psychiatric comorbidities. The findings from the current study thus add to existing evidence indicating that ESL is a potentially useful AED treatment option for patients with focal seizures who also have psychiatric comorbidities.

Although of differing study designs, the results of the current analyses are also consistent with those of an observational study of patients included in the Mainz Epilepsy Register (MAINZ-EPIREG) and Marburger Stroke Register (MARSTREG) in Germany, which compared different AED monotherapies (ESL, levetiracetam, lacosamide, lamotrigine and sodium valproate) in the treatment of patients with PSE, and concluded that ESL and lacosamide had the most favourable efficacy and safety profiles in this setting. The authors speculated that AEDs that facilitate the slow inactivation of sodium channels (such as ESL) may have the most favourable properties for the treatment of PSE.

Other evidence for the use of AEDs in patients with PSE is limited. Only two randomized controlled trials, both open-label, have specifically investigated the use of AEDs in this setting. A prospective study in which 64 patients with symptomatic post-stroke seizures were randomized to receive monotherapy with either lamotrigine or controlled-release carbamazepine and followed up for 12 months demonstrated a higher seizure freedom rate with lamotrigine versus controlled-release carbamazepine, although the difference
TABLE 2 Summary of AEs and AEs leading to discontinuation in patients with PSE and non-PSE

Patients with AEs	PSE	Non-PSE
N^a	75	1555
n (%)	27 (36.0)	556 (35.8)

Most frequently reported AEs (≥2% of patients)	PSE	Non-PSE
N^a	75	1555
Somnolence, n (%)	8 (10.7)	87 (5.6)
Dizziness, n (%)	5 (6.7)	107 (6.9)
Fatigue, n (%)	2 (2.7)	88 (5.7)
Hyponatraemia, n (%)	3 (4.0)	58 (3.7)
Instability/ataxia, n (%)	2 (2.7)	56 (3.6)
Other laboratory abnormality, n (%)	2 (2.7)	8 (0.5)
Anxiety, n (%)	2 (2.7)	5 (0.3)
Diplopia/blurred vision, n (%)	0	53 (3.4)
Disturbance in attention/concentration, n (%)	0	35 (2.3)
Rash, n (%)	0	31 (2.0)

Patients with AEs leading to discontinuation	PSE	Non-PSE
N^a	74	1493
n (%)	5 (6.8)	216 (14.5)

Most frequently reported AEs leading to discontinuation (≥1% of patients)	PSE	Non-PSE
N^a	74	1493
Instability/ataxia, n (%)	2 (2.7)	20 (1.3)
Fatigue, n (%)	1 (1.4)	32 (2.1)
Hypoesthesia/paraesthesia, n (%)	1 (1.4)	1 (0.1)
Pruritus/burning, n (%)	1 (1.4)	1 (0.1)
Joint pain, n (%)	1 (1.4)	1 (0.1)
Muscle tone disturbance, n (%)	1 (1.4)	0
Dizziness, n (%)	0	40 (2.7)
Rash, n (%)	0	22 (1.5)
Disturbance in attention/concentration, n (%)	0	19 (1.3)
Nausea, n (%)	0	17 (1.1)
Hyponatraemia n (%)	0	16 (1.1)

Abbreviations: AE, adverse event; PSE, post-stroke epilepsy

It was not possible to receive monotherapy with either levetiracetam or sustained-release carbamazepine and followed up for 12 months demonstrated no significant difference in seizure freedom rate at the end of the study for levetiracetam versus carbamazepine (94% vs 85%; P = .08), although time to first seizure recurrence tended to be longer with levetiracetam than with carbamazepine. The incidence of AEs was significantly lower for levetiracetam versus carbamazepine (32.7% vs 38.9%; P = .02), and attention deficit, frontal executive functions and functional scales (Activities of Daily Living and Instrumental Activities of Daily Living indices) were significantly worse with carbamazepine than with levetiracetam. An important limitation of the study was that 22 of the 128 randomized patients discontinued prematurely and were therefore not included in the analyses.

In an uncontrolled prospective observational study in which 35 patients with newly diagnosed late-onset post-stroke seizures were treated with levetiracetam monotherapy, seizure freedom (defined as 1 year without seizures) was achieved by 77.1% of patients and the rate of discontinuation due to AEs was 11.4%. Another uncontrolled trial, conducted in 71 patients with first post-stroke late seizures, evaluated the long-term efficacy and tolerability of gabapentin monotherapy over a mean follow-up duration of 30 months. Overall, 81.7% of patients remained seizure free; the incidence of AEs was 38.0%, and the rate of discontinuation due to AEs was 2.8%. A large population-based cohort study conducted in Taiwan, using data on the new occurrence of PSE from a national health insurance database, examined the effectiveness of a range of AEDs in controlling seizures in 3622 late-onset PSE patients, by evaluating the number of recurrent seizures requiring either emergency room (ER) visits or hospitalization. The incidences of ER visits for patients treated with phenytoin, valproic acid, carbamazepine and “new AEDs” (defined as oxcarbazepine, vigabatrin, tiagabine, lamotrigine, topiramate, gabapentin, levetiracetam and pregabalin) were 1.26, 0.70, 0.43 and 0.38 per 100 person-months, respectively. Compared with phenytoin, the adjusted hazard ratios for ER visits were 0.56 (95% CI, 0.42-0.74; P < .001) for valproic acid, 0.37 (95% CI, 0.18-0.75; P = .006) for carbamazepine and 0.28 (95% CI, 0.15-0.52; P < .001) for new AEDs. Similar results were observed for the adjusted hazard ratios for hospitalizations for seizure recurrence.

The 12-month seizure freedom rate in PSE patients treated with ESL in the current study (53.2%) refers to the rate of seizure freedom for at least 6 months, which is not comparable with the 12-month seizure freedom rates observed with other AEDs in the aforementioned studies. It is also noteworthy that all of these other studies examined the effectiveness of AEDs as monotherapy in patients with post-stroke seizures, whereas only 3.9% of PSE patients in the current analysis were treated with ESL as monotherapy. A recent post hoc analysis of PSE patients included in the ESL Phase III monotherapy trial demonstrated that seizure freedom (defined as no seizures during the entire 26-week evaluation period) was achieved by 69.6% of patients treated with ESL monotherapy versus 69.0% of patients treated with controlled-release carbamazepine monotherapy.

The incidence of AEs in PSE patients in the current analysis (36.0%) was similar to incidences observed with levetiracetam.

However, the number of patients who discontinued due to AEs was significantly lower for lamotrigine versus carbamazepine (3.1% vs 31.3%; P = .02). The incidence of AEs relating to the central nervous system that led to discontinuation was low with lamotrigine (3.1%), as it was for ESL in the current study (4.1%). A multicentre, randomized, open-label study in which 128 patients with post-stroke seizures were randomized...
FIGURE 3 Effectiveness of ESL in patients with PSE and non-PSE who did and did not have psychiatric comorbidities (including depression) at baseline: (A) Responder rate and (B) Seizure freedom rate. Response was defined as ≥50% seizure frequency reduction from baseline. Seizure freedom was defined as no seizures since at least the prior visit; therefore, seizure freedom rates at 3 months, 6 months and the last visit represent the percentages of patients who had no seizures for ≥3 months, and the seizure freedom rate at 12 months represents the percentage of patients who had no seizures for ≥6 months. Statistical comparisons were conducted using the chi-squared test. ESL, eslicarbazepine acetate; PSE, post-stroke epilepsy.
option for patients with PSE. ESL might also be useful for certain types of PSE patients, such as those with psychiatric comorbidities. These data warrant further investigation.

ACKNOWLEDGMENTS

This study was funded by Eisai, and data analysis was funded by Bial – Portela & Cª, SA. Editorial assistance was provided by John Scopes of mXm Medical Communications and funded by Bial – Portela & Cª, SA.

CONFLICT OF INTEREST

FS has received speaker’s honoraria and/or consultancy fees from Bial and Eisai. J-C has received speaker’s honoraria and/or consultancy fees from Bial and Eisai, and a research bursary from Tecnifar. RM is a current employee of Eisai Europe Ltd. RL and HF are current employees of Bial – Portela & Cª, SA. VV has participated in advisory boards and pharmaceutical industry-sponsored symposia for Eisai, UCB Pharma, Bial, Pfizer, GSK, Esteve, Novartis and GW Pharma.

COMPLIANCE WITH ETHICAL STANDARDS

The Euro-Esli study protocol was approved by the Ethics Committee of the Hospital Universitario y Politécnico La Fe, Valencia, Spain, as an extension of the local audit and the study was carried out in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All patients included in Euro-Esli provided informed consent before entering the study.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Francisco Sales https://orcid.org/0000-0003-0834-066X
Helder Fernandes https://orcid.org/0000-0003-0898-932X

REFERENCES

1. Brigo F, Lattanzi S, Zelano J, et al. Randomized controlled trials of antiepileptic drugs for the treatment of post-stroke seizures: a systematic review with network meta-analysis. Seizure. 2018;61:57-62.
2. Cleary P, Shorvon S, Tallis R. Late-onset seizures as a predictor of subsequent stroke. Lancet. 2004;363:1184-1186.
3. Chang CS, Liao CH, Lin CC, Lane HY, Sung FC, Kao CH. Patients with epilepsy are at an increased risk of subsequent stroke: a population-based cohort study. Seizure. 2014;23:377-381.
4. Myint PK, Staufenberg EF, Sabanathan K. Post-stroke seizure and post-stroke epilepsy. Postgrad Med J. 2006;82:569-572.
5. Reddy DS, Bhimani A, Kuruba R, Park MJ, Sohrabi JF. Prospects of modeling poststroke epileptogenesis. J Neurosci Res. 2017;95:1000-1016.
6. Gasparini S, Ascoli M, Brigo F, et al. Younger age at stroke onset but not thrombolytic treatment predicts post-stroke epilepsy: an updated meta-analysis. Epilepsy Behav. 2020;104:106540.
7. Holtkamp M, Beghi E, Benninger F, et al. European Stroke Organisation guidelines for the management of post-stroke seizures and epilepsy. Eur Stroke J. 2017;2:103-115.
8. Winter Y, Daneshkah N, Muller A, Behr A, Lussi F. Efficacy and safety of different antiepileptic drugs in post-stroke epilepsy. Eur J Neurol. 2018;25(Suppl. 2):498 (abstract EPR3038).
9. Patel RS, Elmaadawi A, Mansuri Z, Kaur M, Shah K, Nasr S. Psychiatric comorbidities and outcomes in epilepsy patients: an insight from a nationwide inpatient analysis in the United States. Cureus. 2017;9:e1686.

10. Villa RF, Ferrari F, Moretti A. Post-stroke depression: mechanisms and pharmacological treatment. Pharmacol Ther. 2018;184:131-144.

11. Bial – Portela C*, S.A. Zebinix® Summary of Product Characteristics 2019. https://www.ema.europa.eu/en/documents/product-informatio nz/zebinix-epar-product-information_en.pdf. Accessed July 08, 2020.

12. Sunovion Pharmaceuticals Inc.Aptiom® Prescribing Information 2019. http://www.aptiom.com/Aptiom-Prescribing-Information.pdf. Accessed July 08, 2020.

13. Hebeisen S, Pires N, Loureiro AI, et al. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology. 2015;91:122-135.

14. Villanueva V, Holtkamp M, Delanty N, Rodriguez-Uranga J, McMurray R, Santagueda P. Euro-Esli: a European audit of real-world use of eslicarbazepine acetate as a treatment for partial-onset seizures. J Neurol. 2017;264:2232-2248.

15. Doherty CP, Rheims S, Assenza G, et al. Eslicarbazepine acetate in epilepsy patients with psychiatric comorbidities and intellectual disability: Clinical practice findings from the Euro-Esli study. J Neurol Sci. 2019;402:88-99.

16. International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. 1989;30:389-399.

17. Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58:522-530.

18. Stephen LJ, Kelly K, Mohanraj R, Brodie MJ. Pharmacological outcomes in older people with newly diagnosed epilepsy. Epilepsy Behav. 2006;8:434-437.

19. Brodie MJ, Stephen LJ. Outcomes in elderly patients with newly diagnosed and treated epilepsy. Int Rev Neurobiol. 2007;81:253-263.

20. Hellmann-Regen J, Piber D, Hinkelmann K, et al. Depressive syndromes in neurological disorders. Eur Arch Psychiatry Clin Neurosci. 2013;263(Suppl. 2):S123-136.

21. Bai ZF, Wang LY. Efficacy of sertraline for post-stroke depression: A systematic review protocol of randomized controlled trial. Medicine (Baltimore). 2019;98:e15299.

22. Hotter B, Padberg I, Liebenau A, et al. Identifying unmet needs in long-term stroke care using in-depth assessment and the Post-Stroke Checklist – the Managing Aftercare for Stroke (MAS-I) study. Eur Stroke J. 2018;3:237-245.

23. Gaitatzis A, Carroll K, Majeed A, Sander JW. The epidemiology of comorbidity of epilepsy in the general population. Epilepsia. 2004;45:1613-1622.

24. Hermann BP, Seidenberg M, Bell B. Psychiatric comorbidity in chronic epilepsy: identification, consequences, and treatment of major depression. Epilepsia. 2000;41(Suppl. 2):S31-41.

25. Chen B, Choi H, Hirsch LJ, et al. Psychiatric and behavioral side effects of antiepileptic drugs in adults with epilepsy. Epilepsy Behav. 2017;74:24-31.

26. Stephen LJ, Wishart A, Brodie MJ. Psychiatric side effects and antiepileptic drugs: observations from prospective audits. Epilepsy Behav. 2017;71:73-78.

27. Gilad R, Sadeh M, Rapoport A, Dabby R, Boaz M, Lampi Y. Monotherapy of lamotrigine versus carbamazepine in patients with poststroke seizure. Clin Neuropharmacol. 2007;30:189-195.

28. Consoli D, Bosco D, Postorino P, et al. EPIC Study. Levetiracetam versus carbamazepine in patients with late poststroke seizures: a multicenter prospective randomized open-label study (EPIC Project). Cerebrovasc Dis. 2012;34:282-289.

29. Belcastro V, Costa C, Galletti F, et al. Levetiracetam in newly diagnosed late-onset post-stroke seizures: a prospective observational study. Epilepsy Res. 2008;82:223-226.

30. Alvarez-Sabin J, Montaner J, Padro L, et al. Gabapentin in late-onset poststroke seizures. Neurology. 2002;59:1991-1993.

31. Huang Y-H, Chi N-F, Kuan Y-C, et al. Efficacy of phenytoin, valproic acid, carbamazepine and new antiepileptic drugs on control of late-onset post-stroke epilepsy in Taiwan. Eur J Neurol. 2015;22:1459-1468.

32. Sales F, Loureiro R, Moreira J, Magalhães L, Fernandes H, Gama H. Eslicarbazepine acetate monotherapy in post-stroke epilepsy: a post-hoc analysis from randomized double-blind multicenter clinical trial (BIA-2093-311). Poster presented at the 13th World Congress on Controversies in Neurology (CONy), Madrid, Spain; 4–7 April 2019. https://simul-europe.com/2019/cony/files/271.pdf. Accessed July 08, 2020.

33. Gama H, Vieira M, Costa R, Graça J, Magalhães LM, Soares-da-Silva P. Safety profile of eslicarbazepine acetate as add-on therapy in adults with refractory focal-onset seizures: from clinical studies to 6 years of post-marketing experience. Drug Saf. 2017;40:1231-1240.

34. Saetre E, Perucca E, Isoljärvi J, Gjerstad L;LAM 40089 Study Group. An international multicenter randomized double-blind controlled trial of lamotrigine and sustained-release carbamazepine in the treatment of newly diagnosed epilepsy in the elderly. Epilepsia. 2007;48:1292-1302.

35. Werhahn KJ, Trinka E, Dobesberger J, et al. A randomized, double-blind comparison of antiepileptic drug treatment in the elderly with new-onset focal epilepsy. Epilepsia. 2015;56:450-459.

How to cite this article: Sales F, Chaves J, McMurray R, Loureiro R, Fernandes H, Villanueva V. Eslicarbazepine acetate in post-stroke epilepsy: Clinical practice evidence from Euro-Esli. Acta Neurol Scand. 2020;142:563-573. https://doi.org/10.1111/ane.13323