MODIFIED VERTEX FOLKMAN NUMBERS

ALEKSEANDAR BI Kov AND NEDYALKO NENOV

Abstract. Let a_1, \ldots, a_s be positive integers. For a graph G the expression
$G \rightarrow (a_1, \ldots, a_s)$
means that for every coloring of the vertices of G in s colors (s-coloring) there exists $i \in \{1, \ldots, s\}$, such that there is a monochromatic a_i-clique of color i. If m and p are positive integers, then
$G \rightarrow m|_p$
means that for arbitrary positive integers a_1, \ldots, a_s (s is not fixed), such that
$\sum_{i=1}^{s} (a_i - 1) + 1 = m \frac{\max\{a_1, \ldots, a_s\}}{m}$
we have $G \rightarrow (a_1, \ldots, a_s)$. Let
$\tilde{H}(m|_p; q) = \{G : G \rightarrow m|_p \text{ and } \omega(G) < q\}$.
The modified vertex Folkman numbers are defined by the equality
$\tilde{F}(m|_p; q) = \min\{|V(G)| : G \in \tilde{H}(m|_p; q)\}$.

If $q \geq m$ these numbers are known and they are easy to compute. In the case $q = m - 1$ we know all of the numbers when $p \leq 5$. In this work we consider the next unknown case $p = 6$ and we prove with the help of a computer that
$\tilde{F}(m|_6; m - 1) = m + 10$.

1. Introduction

In this paper only finite, non-oriented graphs without loops and multiple edges are considered. The following notations are used:
$V(G)$ - the vertex set of G;
$E(G)$ - the edge set of G;
\overline{G} - the complement of G;
$\omega(G)$ - the clique number of G;
$\alpha(G)$ - the independence number of G;
$\chi(G)$ - the chromatic number of G;
$N(v), N_G(v), v \in V(G)$ - the set of all vertices of G adjacent to v;
d$(v), v \in V(G)$ - the degree of the vertex v, i.e. $d(v) = |N(v)|$;
$G - v, v \in V(G)$ - subgraph of G obtained from G by deleting the vertex v and all edges incident to v;
$G - e, e \in E(G)$ - subgraph of G obtained from G by deleting the edge e;
$G + e, e \in E(\overline{G})$ - supergraph of G obtained by adding the edge e to $E(G)$.
K_n - complete graph on n vertices;
C_n - simple cycle on n vertices;
$m_0 = m_0(p)$ - see Theorem 2.1.
$G_1 + G_2$ - a graph G for which: $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y] : x \in V(G_1), y \in V(G_2)\}$, i.e. G is obtained by connecting every vertex of G_1 to every vertex of G_2.

2000 Mathematics Subject Classification. Primary 05C35.
Key words and phrases. Folkman number, clique number, independence number, chromatic number.
All undefined terms can be found in [18].

Let \(a_1, \ldots, a_s \) be positive integers. The expression \(G \stackrel{v}{\rightarrow} (a_1, \ldots, a_s) \) means that for any coloring of \(V(G) \) in \(s \) colors (\(s \)-coloring) there exists \(i \in \{1, \ldots, s\} \) such that there is a monochromatic \(a_i \)-clique of color \(i \). In particular, \(G \stackrel{v}{\rightarrow} (a_1) \) means that \(\omega(G) \geq a_1 \).

Define:
\[
\mathcal{H}(a_1, \ldots, a_s; q) = \left\{ G : G \stackrel{v}{\rightarrow} (a_1, \ldots, a_s) \text{ and } \omega(G) < q \right\}.
\]
\[
\mathcal{H}(a_1, \ldots, a_s; q; n) = \left\{ G : G \in \mathcal{H}(a_1, \ldots, a_s; q) \text{ and } |V(G)| = n \right\}.
\]

The vertex Folkman number \(F_v(a_1, \ldots, a_s; q) \) is defined by the equality:
\[
F_v(a_1, \ldots, a_s; q) = \min \{|V(G)| : G \in \mathcal{H}(a_1, \ldots, a_s; q)\}.
\]

Folkman proves in [5] that:
\[
(1.1) \quad F_v(a_1, \ldots, a_s; q) \text{ exists } \iff q > \max \{a_1, \ldots, a_s\}.
\]

Other proofs of (1.1) are given in [4] and [9].

In [10] for arbitrary positive integers \(a_1, \ldots, a_s \) the following are defined
\[
(1.2) \quad m(a_1, \ldots, a_s) = m = \sum_{i=1}^{s} (a_i - 1) + 1 \quad \text{ and } \quad p = \max \{a_1, \ldots, a_s\}.
\]

Obviously, \(K_m \stackrel{v}{\rightarrow} (a_1, \ldots, a_s) \) and \(K_{m-1} \stackrel{v}{\rightarrow} (a_1, \ldots, a_s) \). Therefore,
\[
F_v(a_1, \ldots, a_s; q) = m, \quad q \geq m + 1.
\]

The following theorem for the numbers \(F_v(a_1, \ldots, a_s; m) \) is true:

Theorem 1.1. Let \(a_1, \ldots, a_s \) be positive integers and \(m \) and \(p \) are defined by (1.2). If \(m \geq p + 1 \), then:

(a) \(F_v(a_1, \ldots, a_s; m) = m + p \). [10], [9].

(b) \(K_{m+p} - C_{2p+1} = K_{m-p-1} + C_{2p+1} \)

is the only extremal graph in \(\mathcal{H}(a_1, \ldots, a_s; m) \). [9].

The condition \(m \geq p + 1 \) is necessary according to (1.1). Other proofs of Theorem 1.1 are given in [12] and [13].

Very little is known about the numbers \(F_v(a_1, \ldots, a_s; q) \), \(q \leq m - 1 \). In this work we suggest a method to bound these numbers with the help of the modified vertex Folkman numbers \(\tilde{F}_v(m|_p; q) \), which are defined below.

Definition 1.2. Let \(G \) be a graph and \(m \) and \(p \) be positive integers. The expression
\[
G \stackrel{v}{\rightarrow} m|_p
\]
means that for any choice of positive integers \(a_1, \ldots, a_s \) (\(s \) is not fixed), such that
\[
m = \sum_{i=1}^{s} (a_i - 1) + 1 \quad \text{and} \quad \max \{a_1, \ldots, a_s\} \leq p,
\]
we have
\[
G \stackrel{v}{\rightarrow} (a_1, \ldots, a_s).
\]

Define:
\[
\tilde{\mathcal{H}}(m|_p; q) = \left\{ G : G \stackrel{v}{\rightarrow} m|_p \text{ and } \omega(G) < q \right\}.
\]
\[
\tilde{\mathcal{H}}(m|_p; q; n) = \left\{ G : G \in \tilde{\mathcal{H}}(m|_p; q) \text{ and } |V(G)| = n \right\}.
\]
The modified vertex Folkman numbers are defined by the equality:

\[\tilde{F}_v(m_p|q) = \min \left\{ |V(G)| : G \in \tilde{H}(m_p|q) \right\}. \]

The graph \(G \) is called a maximal graph in \(\tilde{H}(m_p|q) \) if \(G \in \tilde{H}(m_p|q) \), but \(G + e \not\in \tilde{H}(m_p|q), \forall e \in E(G) \), i.e. \(\omega(G + e) \geq q, \forall e \in E(G) \).

For convenience, we will also define the following term:

Definition 1.3. The graph \(G \) is called a \((+K_t)\)-graph if \(G + e \) contains a new \(t \)-clique for all \(e \in E(G) \).

Obviously, \(G \in \tilde{H}(m_p|q) \) is a maximal graph in \(\tilde{H}(m_p|q) \) if and only if \(G \) is a \((+K_q)\)-graph.

From the definition of the modified Folkman numbers, it becomes clear that if \(a_1, \ldots, a_s \) are positive integers and \(m \) and \(p \) are defined by (1.2), then

\[F_v(a_1, \ldots, a_s; q) \leq \tilde{F}_v(m_p|q). \]

Defining and computing the modified Folkman numbers is appropriate because of the following reasons:

1) On the left side of (1.3), there is actually a whole class of numbers, which are bound by only one number \(\tilde{F}_v(m_p|q) \).

2) The upper bound for \(\tilde{F}_v(m_p|q) \) is easier to compute than the numbers \(F_v(a_1, \ldots, a_s) \) because of the following

Theorem 1.4. ([1]), Theorem 7.2) Let \(m, m_0, p \) and \(q \) be positive integers, \(m \geq m_0 \) and \(q > \min \{m_0, p\} \). Then

\[\tilde{F}_v(m_p|m_0 + q) \leq \tilde{F}_v(m_0_p|q) + m - m_0. \]

Therefore, if we know the value of one number \(\tilde{F}_v(m_p|q) \) we can obtain an upper bound for \(\tilde{F}_v(m_p|q) \) where \(m \geq m' \).

3) As we will see below (Theorem 2.1), the computation of the numbers \(\tilde{F}_v(m_p|m - 1) \) is reduced to finding the exact values of the first several of these numbers (bounds for the number of exact values needed are given in 2.1 (c)).

Let \(A \) be an independent set of vertices in \(G \). If \(V_1 \cup \ldots \cup V_s \) is \((a_1, \ldots, a_s)\)-free \(s \)-coloring of \(V(G - A) \) (i.e. \(V_i \) does not contain an \(a_i \)-clique, \(i = 1, \ldots, s \)), then \(A \cup V_1 \cup \ldots \cup V_s \) is \((2, a_1, \ldots, a_s)\)-free \((s + 1)\)-coloring of \(V(G) \). Therefore

\[G \rightarrow (2, a_1, \ldots, a_s) \Rightarrow G - A \rightarrow (a_1, \ldots, a_s). \]

Further we will need the following

Proposition 1.5. Let \(G \rightarrow (m_p|m) \) and \(A \) is an independent set of vertices in \(G \). Then \(G - A \rightarrow (m - 1)|m \).

Proof. Let \(a_1, \ldots, a_s \) be positive integers, such that

\[m - 1 = \sum_{i=1}^{s} (a_i - 1) + 1 \quad \text{and} \quad 2 \leq a_i \leq p. \]

Then

\[m = (2 - 1) + \sum_{i=1}^{s} (a_i - 1) + 1. \]

It follows that \(G \rightarrow (2, a_1, \ldots, a_s) \) and from (1.4) we obtain \(G - A \rightarrow (a_1, \ldots, a_s). \) □
It is easy to see that if \(q > m \), then \(F_v(a_1, ..., a_s; q) = \tilde{F}_v(m_{|p}; q) = m \). From Theorem 1.1 it follows that \(F_v(a_1, ..., a_s; m) = \tilde{F}_v(m_{|p}; m) = m + p \). In the case \(q = m - 1 \) the following general bounds are known:

\[
(1.5) \quad m + p + 2 \leq \tilde{F}_v(m_{|p}; m - 1) \leq m + 3p, \quad m \geq p + 2.
\]

The upper bound follows from the proof of the Main Theorem from [7] and the lower bound follows from (1.3) and \(F_v(a_1, ..., a_s; q) \geq m + p + 2, \quad [12] \).

We know all the numbers \(\tilde{F}_v(m_{|p}; m - 1) \) where \(p \leq 5 \) (in the cases \(p \leq 4 \) see the Remark after Theorem 4.5 and (1.5) from [1], and in the case \(p = 5 \) see Theorem 7.4 also from [1]). It is also known that

\[
m + 9 \leq \tilde{F}_v(m_{|p}; m - 1) \leq m + 10, \quad [1]
\]

In this work we complete the computation of the numbers \(\tilde{F}_v(m_{|p}; m - 1) \) by proving

Main Theorem 1. \(\tilde{F}_v(m_{|p}; m - 1) = m + 10, \quad m \geq 8 \).

2. A theorem for the numbers \(\tilde{F}_v(m_{|p}; m - 1) \)

We will need the following fact:

\[
(2.1) \quad G \rightarrow (a_1, ..., a_s) \Rightarrow \chi(G) \geq m, \quad [13] \quad (\text{see also [1]}).
\]

It is easy to prove (see Proposition 4.4 from [1]) that

\[
(2.2) \quad \tilde{F}_v(m_{|p}; m - 1) \exists \quad m \geq p + 2.
\]

In [1] (version 1) we formulate without proof the following

Theorem 2.1. Let \(m_0(p) = m_0 \) be the smallest positive integer for which

\[
\min_{m \geq p+2} \{ \tilde{F}_v(m_{|p}; m - 1) - m \} = \tilde{F}_v(m_0_{|p}; m_0 - 1) - m_0.
\]

Then:

(a) \(\tilde{F}_v(m_{|p}; m - 1) = \tilde{F}_v(m_0_{|p}; m_0 - 1) + m - m_0, \quad m \geq m_0 \).

(b) if \(m_0 > p + 2 \) and \(G \) is an extremal graph in \(\tilde{H}(m_0_{|p}; m_0 - 1) \), then

\(G \rightarrow (2, m_0 - 2) \).

(c) \(m_0 < \tilde{F}_v((p+2)_{|p}; p + 1) - p \).

In this section we present a proof of Theorem 2.1.

The condition \(m \geq p + 2 \) is necessary according to (2.2).

Proof. (a) According to the definition of \(m_0(p) = m_0 \) we have

\[
\tilde{F}_v(m_{|p}; m - 1) \geq \tilde{F}_v(m_0_{|p}; m_0 - 1) + m - m_0, \quad m \geq p + 2.
\]

According to Theorem 1.4 if \(m \geq m_0 \) the opposite inequality is also true.

(b) Assume the opposite is true and let

\[
V(G) = V_1 \cup V_2, \quad V_1 \cap V_2 = \emptyset,
\]

where \(V_1 \) is an independent set and \(V_2 \) does not contain an \((m_0 - 2)\)-clique. Let \(G_1 = G[V_2] = G - V_1 \). According to Proposition 1.5, from \(G \rightarrow m_0_{|p} \) it follows

\[
G_1 \rightarrow (m_0 - 1)_{|p}. \quad \text{Since} \quad \omega(G_1) < m_0 - 2, \quad G_1 \in \tilde{H}((m_0 - 1)_{|p}; m_0 - 2). \quad \text{Therefore}
\]

\[
|V(G)| - 1 \geq |V(G_1)| \geq \tilde{F}_v((m_0 - 1)_{|p}; m_0 - 2).
\]

Since \(|V(G)| = \tilde{F}_v(m_0_{|p}; m_0 - 1) \), from these inequalities it follows that
From these inequalities the inequality (c) follows easily.

Since

Therefore

The following proposition for maximal graphs in $\tilde{\mathcal{H}}(m_0; m_0 - 1)$, with the help of the computer, results for Folkman numbers are obtained in [14] (see Algorithm 1). Similar algorithms are used in [1], [2], [19], [8], [15].

Also with the help of a computer. The remaining graphs in this set can be obtained by

and therefore in this case the inequality (c) is true.

Let $m_0 > p + 2$ and G be an extremal graph in $\tilde{\mathcal{H}}(m_0; m_0 - 1)$. If a_1, \ldots, a_s are positive integers, such that $m = \sum_{i=1}^{s} (a_i - 1) + 1$ and $\max \{a_1, \ldots, a_s\} \leq p$, then $G \rightarrow^a (a_1, \ldots, a_s)$ and according to (2.1), $\chi(G) \geq m_0$. From (b) and Theorem 1.1 we see that $|V(G)| \geq 2m_0 - 3$ and $|V(G)| = 2m_0 - 3$ only if $G = \overline{C_{2m_0-3}}$. However, the last equality is not possible because $\chi(G) \geq m_0$ and $\chi(\overline{C_{2m_0-3}}) = m_0 - 1$.

Therefore

Since $m_0 > p + 2$ from the definition of m_0 we have

$F_{\varepsilon}(m_0; m_0 - 1) - m_0 < F_{\varepsilon}((p + 2); p + 1) - p - 2$.

From these inequalities the inequality (c) follows easily.

3. Algorithms

In this section we present algorithms for finding all maximal graphs in $\tilde{\mathcal{H}}(m_0; q; n)$ with the help of a computer. The remaining graphs in this set can be obtained by removing edges from the maximal graphs. The idea for these algorithms comes from [13] (see Algorithm 1). Similar algorithms are used in [1], [2], [19], [8], [15].

Also with the help of the computer, results for Folkman numbers are obtained in [6], [17], [16] and [3].

The following proposition for maximal graphs in $\tilde{\mathcal{H}}(m_0; q; n)$ will be useful

Proposition 3.1. Let G be a maximal graph in $\tilde{\mathcal{H}}(m_0; q; n)$. Let v_1, v_2, \ldots, v_k be independent vertices of G and $H = G - \{v_1, v_2, \ldots, v_k\}$. Then:

(a) $H \in \tilde{\mathcal{H}}((m-1); q; n-k)$

(b) H is a $(+K_{q-1})$-graph

(c) $N_G(v_i)$ is a maximal K_{q-1}-free subset of $V(H)$, $i = 1, \ldots, k$

Proof. The proposition (a) follows from Proposition 1.1 (b) and (c) follow from the maximality of G.

We will define an algorithm, which is based on Proposition 3.1 and generates all maximal graphs in $\tilde{\mathcal{H}}(m_0; q; n)$ with independence number at least k.

Algorithm 3.2. Finding all maximal graphs in $\tilde{\mathcal{H}}(m_0; q; n)$ with independence number at least k by adding k independent vertices to the $(+K_{q-1})$-graphs in $\tilde{\mathcal{H}}((m-1); q; n-k)$.

1. Denote by \mathcal{A} the set of all $(+K_{q-1})$-graphs in $\tilde{\mathcal{H}}((m-1); q; n-k)$. The obtained maximal graphs in $\tilde{\mathcal{H}}(m_0; q; n)$ will be output in \mathcal{B}, let $\mathcal{B} = \emptyset$.

2. For each graph $H \in \mathcal{A}$:

2.1. Find the family $\mathcal{M}(H) = \{M_1, \ldots, M_t\}$ of all maximal K_{q-1}-free subsets of $V(H)$.

2.2. Consider all the k-tuples $(M_{i_1}, M_{i_2}, \ldots, M_{i_k})$ of elements of $\mathcal{M}(H)$, for which $1 \leq i_1 \leq \ldots \leq i_k \leq t$ (in these k-tuples some subsets M_i can coincide). For every such k-tuple construct the graph $G = G(M_{i_1}, M_{i_2}, \ldots, M_{i_k})$ by adding to
V(H) new independent vertices \(v_1, v_2, \ldots, v_k\), so that \(N_G(v_j) = M_{ij}, j = 1, \ldots, k\) (see Proposition 3.1(c)). If \(\omega(G + e) = q, \forall e \in E(\overline{G})\), then add \(G\) to \(B\).

3. Exclude the isomorph copies of graphs from \(B\).

4. Exclude from \(B\) all graphs which are not in \(\hat{H}(m_i, q; n)\).

Theorem 3.3. Upon completion of Algorithm 3.2 the obtained set \(B\) is equal to the set of all maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number at least \(k\).

Proof. From step 4 we see that \(B \subseteq \hat{H}(m_i, q; n)\) and from step 2.2 it becomes clear, that \(B\) contains only maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number at least \(k\). Let \(G\) be an arbitrary maximal graph in \(\hat{H}(m_i, q; n)\) with independence number in \(k\). We will prove that \(G \in B\). Let \(v_1, \ldots, v_k\) be independent vertices of \(G\) and \(H = G - \{v_1, \ldots, v_k\}\). According to Proposition 3.1(a) and (b), \(H \in \hat{H}((m - 1)i, q; n - k)\) and \(H\) is a \((+K_{q-1})\)-graph. Therefore in step 1 we have \(H \in A\). According to Proposition 3.1(c), \(N_G(v_i) \in M(H)\) for all \(i \in \{1, \ldots, k\}\), hence in step 2 \(G\) is added to \(B\).

Let us note that if \(G \in \hat{H}(m_i, q; n)\) and \(n \geq q\), then \(G \neq K_n\) and therefore \(\alpha(G) \geq 2\). In this case, with the help of Algorithm 3.2 we can obtain all maximal graphs in \(\hat{H}(m_i, q; n)\) by adding to independent vertices to the \((+K_{q-1})\)-graphs in \(\hat{H}((m - 1)i, q; n - 2)\).

It is clear that if \(G\) is a graph for which \(\alpha(G) = 2\) and \(H\) is a subgraph of \(G\) obtained by removing independent vertices, then \(\alpha(H) \leq 2\). We modify Algorithm 3.2 in the following way to obtain the maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number 2:

Algorithm 3.4. A modification of Algorithm 3.2 for finding all maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number 2 by adding 2 independent vertices to the \((+K_{q-1})\)-graphs in \(\hat{H}((m - 1)i, q; n - 2)\) with independence number not greater than 2.

In step 1 of Algorithm 3.2 we add the condition that the set \(A\) contains only the \((+K_{q-1})\)-graphs \(\hat{H}((m - 1)i, q; n - k)\) with independence number not greater than \(2\), and at the end of step 2.2 after the condition \(\omega(G + e) = q, \forall e \in E(\overline{G})\) we also add the condition \(\alpha(G) = 2\).

Thus, finding all maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number 2 is reduced to finding all \((+K_{q-1})\)-graphs with independence number not greater than \(2\) in \(\hat{H}((m - 1)i, q; n - 2)\) and finding the remaining maximal graphs in \(\hat{H}(m_i, q; n)\) with independence number greater than or equal to 3 is reduced to finding all \((+K_{q-1})\)-graphs in \(\hat{H}((m - 1)i, q; n - 3)\). In this way we can obtain all maximal graphs in \(\hat{H}(m_i, q; n)\) in steps, starting from graphs with a small number of vertices.

The **nauty** programs [11] have an important role in this work. We use them for fast generation of non-isomorphic graphs and for graph isomorphism rejection.

4. **Computation of the number \(\tilde{F}_6(8i, 7)\)**

From Theorem 2.1 it becomes clear that in order to compute the numbers \(\tilde{F}_6(m_i, m - 1)\) we need the exact value of the number \(m_i(6)\). According to Theorem 2.1(c), to obtain an upper bound for this number we need to know \(\tilde{F}_6(8i, 7)\). In this section we compute this number by proving the following
Theorem 4.1. $\tilde{F}_v(8|_6;7) = 18$.

Proof. The inequality $\tilde{F}_v(8|_6;7) \leq 18$ is proved in [1] with the help of the graph Γ_1 which is given on Figure 1 (see the proof of Theorem 1.10 in version 1 or the proof of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the help of a computer that $\tilde{H}(8|_6;7;17) = \emptyset$.

First, we search for maximal graphs in $\tilde{H}(8|_6;7;17)$ with independence number greater than 2. It is clear that K_6 and $K_6 - e$ are the only $(+K_6)$-graphs in $\tilde{H}(3|_6;7;6)$. With the help of Algorithm 3.2 we add 2 independent vertices to these graphs to find all maximal graphs in $\tilde{H}(4|_6;7;8)$. By removing edges from them we find all $(+K_6)$-graphs in $\tilde{H}(4|_6;7;8)$. In the same way, we successively obtain all maximal and all $(+K_6)$-graphs in the sets:

$\tilde{H}(5|_6;7;10), \tilde{H}(6|_6;7;12), \tilde{H}(7|_6;7;14)$.

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the obtained $(+K_6)$-graphs in $\tilde{H}(7|_6;7;14)$ to find all maximal graphs in $\tilde{H}(8|_6;7;17)$ with independence number greater than 2.

After that, we search for maximal graphs in $\tilde{H}(8|_6;7;17)$ with independence number 2. It is clear that K_5 is the only $(+K_6)$-graph in $\tilde{H}(2|_6;7;5)$. With the help of Algorithm 3.2 we add 2 independent vertices this graph to find all maximal graphs in $\tilde{H}(3|_6;7;7)$ with independence number 2. By removing edges from them we find all $(+K_6)$-graphs in $\tilde{H}(3|_6;7;7)$ with independence number 2. In the same way, we successively obtain all maximal and all $(+K_6)$-graphs with independence number 2 in the sets:

$\tilde{H}(4|_6;7;9), \tilde{H}(5|_6;7;11), \tilde{H}(6|_6;7;13), \tilde{H}(7|_6;7;15)$ and $\tilde{H}(8|_6;7;17)$.

Figure 1. Graph $\Gamma_1 \in \tilde{H}(8|_6;7;18)$
The number of graphs found in each step is described in Table 1 in [1]. In both cases we do not obtain any maximal graphs in \(\mathcal{H}(8|_6; 7; 17) \), therefore \(\tilde{\mathcal{H}}(8|_6; 7; 17) = \emptyset \).

Corollary 4.2. \(8 \leq m_0(6) \leq 11 \)

Proof. The inequality \(m_0(6) \geq 8 \) follows from the definition of \(m_0 \) and the upper bound follows from Theorem 2.1(c), \(p = 6 \). □

5. Proof of the Main Theorem

Since \(\tilde{F}_v(8|_6; 7) = 18 \), according to Theorem 2.1(a) it is enough to prove \(m_0(6) = 8 \). According to Corollary 4.2, this equality will be proved if we prove \(\tilde{F}_v(9|_6; 8) > 18 \), \(\tilde{F}_v(10|_6; 9) > 19 \) and \(\tilde{F}_v(11|_6; 10) > 20 \). The proof of these inequalities is similar to the proof of \(\tilde{F}_v(8|_6; 7) > 17 \) from Theorem 4.1. It is clear that it is enough to prove \(\tilde{F}(m|_6; m - 1; m + 9) = 0 \) for \(m = 9, 10, 11 \).

First, we search for maximal graphs in \(\mathcal{H}(m|_6; m - 1; m + 9) \) with independence number greater than 2. It is clear that \(K_{m-2} \) and \(K_{m-2} - e \) are the only (+\(K_{m-2} \))-graphs in \(\mathcal{H}(m-5|_6; m - 1; m - 2) \). With the help of Algorithm 3.2 we successively obtain all maximal graphs in \(\tilde{\mathcal{H}}(m|_6; m - 1; m + 6) \).

In the end, with the help of Algorithm 4.2 we add 3 independent vertices to the obtained (+\(K_{m-2} \))-graphs in \(\mathcal{H}(m - 1|_6; m - 1; m + 6) \) to find all maximal graphs in \(\tilde{\mathcal{H}}(m|_6; m - 1; m + 9) \) with independence number greater than 2.

After that, we search for maximal graphs in \(\mathcal{H}(m|_6; m - 1; m + 9) \) with independence number 2. It is clear that \(K_{m-3} \) is the only (+\(K_{m-2} \))-graph in \(\mathcal{H}(m - 6|_6; m - 1; m - 3) \). With the help of Algorithm 5.4 we successively obtain all maximal and all (+\(K_{m-2} \))-graphs with independence number 2 in the sets:

\[
\mathcal{H}(m - 5|_6; m - 1; m - 1) \\
\mathcal{H}(m - 4|_6; m - 1; m + 1) \\
\mathcal{H}(m - 3|_6; m - 1; m + 3) \\
\mathcal{H}(m - 2|_6; m - 1; m + 5) \\
\mathcal{H}(m - 1|_6; m - 1; m + 7) \\
\mathcal{H}(m|_6; m - 1; m + 9).
\]

The number of graphs found in each step is given in Table 2, Table 3 and Table 4 in [1]. In both cases we do not obtain any maximal graphs in the sets \(\tilde{\mathcal{H}}(m|_6; m - 1; m + 9) \), \(m = 9, 10, 11 \), hence it follows \(\tilde{F}_v(9|_6; 8) > 18 \), \(\tilde{F}_v(10|_6; 9) > 19 \), \(\tilde{F}_v(11|_6; 10) > 20 \) and \(m_0(6) = 8 \). Thus we finish the proof of the Main Theorem.

References

[1] A. Bikov and N. Nenov. The vertex Folkman numbers \(F_v(a_1, ..., a_s; m - 1) = m + 9 \), if \(\max\{a_1, ..., a_s\} = 5 \). preprint: arxiv:1503.08444, 2015.

[2] J. Coles and S. Radziszowski. Computing the Folkman number \(F_v(2, 3; 2, 3) \). Journal of Combinatorial Mathematics and Combinatorial Computing, 58:13–22, 2006.

[3] F. Deng, M. Liang, Z. Shao, and X. Xu. Upper bounds for the vertex Folkman number \(F_v(3, 3; 3, 4) \) and \(F_v(3, 3; 3, 5) \). ARS Combinatoria, 112:249–256, 2013.

[4] A. Dudek and V. Rödl. New upper bound on vertex Folkman numbers. Lecture Notes in Computer Science, 4557:473–478, 2008.
[5] J. Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. *SIAM Journal on Applied Mathematics*, 18:19–24, 1970.

[6] T. Jensen and G. Royle. Small graphs with chromatic number 5: a computer research. *Journal of Graph Theory*, 19:107–116, 1995.

[7] N. Kolev and N. Nenov. New upper bound for a class of vertex Folkman numbers. *The Electronic Journal of Combinatorics*, 13, 2006.

[8] J. Lathrop and S. Radziszowski. Computing the Folkman number $F_\varepsilon(2, 2, 2, 2, 2, 2)$. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 78:213–222, 2011.

[9] T. Łuczak, A. Ruciński, and S. Urbański. On minimal vertex Folkman graphs. *Discrete Mathematics*, 236:245–262, 2001.

[10] T. Łuczak and S. Urbański. A note on restricted vertex Ramsey numbers. *Periodica Mathematica Hungarica*, 33:101–103, 1996.

[11] B. McKay. nauty user’s guide (version 2.4). Technical report, Department of Computer Science, Australian National University, 1990. The latest version of the software is available at http://cs.anu.edu.au/~bdm/nauty/.

[12] N. Nenov. On a class of vertex Folkman graphs. *Ann. Univ. Sofia Fac. Math. Inform.*, 94:15–25, 2000.

[13] N. Nenov. A generalization of a result of Dirac. *Ann. Univ. Sofia Fac. Math. Inform.*, 95:59–69, 2001.

[14] K. Piwakowski, S. Radziszowski, and S. Urbanski. Computation of the Folkman number $F_\varepsilon(3, 3; 5)$. *Journal of Graph Theory*, 32:41–49, 1999.

[15] Z. Shao, M. Liang, L. Pan, and X. Xu. Computation of the Folkman number $F_\varepsilon(3, 5; 6)$. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 81:11–17, 2012.

[16] Z. Shao, X. Xu, and H. Luo. Bounds for two multicolor vertex Folkman numbers. *Szlovákia Mathematica*, 80:91–96, 2009. (in Chinese).

[17] Z. Shao, X. Xu, and L. Pan. New upper bounds for vertex Folkman numbers $F_\varepsilon(3, k; k + 1)$. *Utilitas Mathematica*, 80:91–96, 2009.

[18] D. West. *Introduction to Graph Theory*. Prentice Hall, Inc., Upper Saddle River, 2 edition, 2001.

[19] X. Xu, H. Luo, and Z. Shao. Upper and lower bounds for $F_\varepsilon(4, 4; 5)$. *Electronic Journal of Combinatorics*, 17, 2010.
Appendix A. Results of the computations

set	independence number	maximal graphs	(+K_6)-graphs
$\mathcal{H}(3)_{6;7;6}$	-	2	2
$\mathcal{H}(4)_{6;7;8}$	-	8	13
$\mathcal{H}(5)_{6;7;10}$	-	56	324
$\mathcal{H}(6)_{6;7;12}$	-	18	104 271
$\mathcal{H}(7)_{6;7;14}$	≥ 3	0	1825
$\mathcal{H}(8)_{6;7;17}$	-	0	

Table 1. Steps in the search of all maximal graphs in $\mathcal{H}(8)_{6;7;17}$

set	independence number	maximal graphs	(+K_7)-graphs
$\mathcal{H}(4)_{6;8;7}$	-	2	2
$\mathcal{H}(5)_{6;8;9}$	-	8	13
$\mathcal{H}(6)_{6;8;11}$	-	56	326
$\mathcal{H}(7)_{6;8;13}$	-	20	105 125
$\mathcal{H}(8)_{6;8;15}$	≥ 3	0	1844
$\mathcal{H}(9)_{6;8;18}$	= 2	1	
$\mathcal{H}(3)_{6;8;6}$	≤ 2	2	
$\mathcal{H}(4)_{6;8;8}$	= 2	2	
$\mathcal{H}(5)_{6;8;10}$	= 2	5	
$\mathcal{H}(6)_{6;8;12}$	= 2	25	
$\mathcal{H}(7)_{6;8;14}$	= 2	506	
$\mathcal{H}(8)_{6;8;16}$	= 2	0	
$\mathcal{H}(9)_{6;8;18}$	-	0	

Table 2. Steps in the search of all maximal graphs in $\mathcal{H}(9)_{6;8;18}$
Table 3. Steps in the search of all maximal graphs in $\tilde{H}(10|_6; 9; 19)$

set	independence number	maximal graphs	$(+K_8)$-graphs	
$\tilde{H}(5	_6; 9; 8)$	-	2	13
$\tilde{H}(6	_6; 9; 10)$	-	8	327
$\tilde{H}(7	_6; 9; 12)$	-	56	105 281
$\tilde{H}(8	_6; 9; 14)$	≥ 3	20	1845
$\tilde{H}(9	_6; 9; 16)$	-	0	
$\tilde{H}(10	_6; 9; 19)$	-	0	

Table 4. Steps in the search of all maximal graphs in $\tilde{H}(11|_6; 10; 20)$

set	independence number	maximal graphs	$(+K_8)$-graphs	
$\tilde{H}(6	_6; 10; 9)$	-	2	2
$\tilde{H}(7	_6; 10; 11)$	-	8	327
$\tilde{H}(8	_6; 10; 13)$	-	56	105 314
$\tilde{H}(9	_6; 10; 15)$	-	20	1845
$\tilde{H}(10	_6; 10; 17)$	≥ 3	0	
$\tilde{H}(11	_6; 10; 20)$	≤ 2	1	1
$\tilde{H}(6	_6; 10; 8)$	= 2	2	13
$\tilde{H}(7	_6; 10; 10)$	= 2	5	498
$\tilde{H}(8	_6; 10; 12)$	= 2	56	121 863
$\tilde{H}(9	_6; 10; 14)$	= 2	20	2 749 171
$\tilde{H}(10	_6; 10; 16)$	= 2	0	
$\tilde{H}(11	_6; 10; 20)$	-	0	