The distribution and expression of the Bloom’s syndrome gene product in normal and neoplastic human cells

H Turley1,2, L Wu2, M Canamero1, KC Gatter1 and ID Hickson2

Department of Cellular Science1 and ICRF Laboratories, Weatherall Institute of Molecular Medicine2, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK

Summary Bloom’s syndrome (BS) is an autosomal recessive disorder associated with a predisposition to cancers of all types. Cells from BS sufferers display extreme genomic instability. The BS gene product, BLM, is a 159 kDa DNA helicase enzyme belonging to the RecQ family. Here, we have analysed the distribution of BLM in normal and tumour tissues from humans using a recently characterized, specific monoclonal antibody. BLM was found to be localized to nuclei in normal lymphoid tissues, but was largely absent from other normal tissues analysed with the exception of the proliferating compartment of certain tissues. In contrast, expression of BLM was observed in a variety of tumours of both lymphoid and epithelial origin. A strong correlation was observed between expression of BLM and the proliferative status of cells, as determined by staining for markers of cell proliferation (PCNA and Ki67). We conclude that BLM is a proliferation marker in normal cells, as determined by staining for markers of cell proliferation (PCNA and Ki67). © 2001 Cancer Research Campaign

Bloom’s syndrome is a rare autosomal recessive disorder characterized phenotypically by retarded growth, sun sensitivity, immuno-deficiency and predisposition to a wide variety of cancers at an early age (German, 1993, 1995). This cancer predisposition is of particular interest given that leukaemias, lymphomas and epithelial cancers are all represented. Cells from affected individuals show genomic instability, manifested as an elevated frequency of chromosome breaks and aberrations, as well as the hallmark feature of an approximately 10-fold elevation in the frequency of reciprocal exchanges between sister-chromatids (SCEs) (German, 1993, 1995). The gene mutated in Bloom’s syndrome, BLM, encodes a member of the RecQ family of DExH box-containing DNA helicases (Ellis et al, 1995). Other RecQ family members include Saccharomyces cerevisiae Sgs1p, Schizosaccharomyces pombe Rqh1p, and the REQL, REQ4, RECQ5 and WRN proteins from human cells (reviewed in Chakraverty and Hickson, 1999; Karow et al, 2000a). Studies using either native or recombinant proteins have indicated that these proteins are helicases that unwind DNA in a 3′→5′ direction (Umezu and Nakayama, 1993; Puranam and Blackshear, 1994; Seki et al, 1994; Gray et al, 1997; Karow et al, 1997; Suzuki et al, 1997; Bennett et al, 1998; Shen et al, 1998). BLM is not the only member of the RecQ family to be mutated in a human genetic disorder. The WRN gene is mutated in the premature ageing disorder, Werner’s syndrome (Yu et al, 1996), in which individuals also have an elevated incidence of cancer, particularly sarcomas. Moreover, the RecQ4 gene is mutated in some cases of Rothmund-Thomson syndrome (Kitao et al, 1999), a rare disorder associated with skin and skeletal abnormalities, some features of premature ageing, and a predisposition to certain cancers.

Cells from Bloom’s syndrome individuals show a variety of defects in the maintenance of genome stability. In addition to an elevated frequency of SCEs, Bloom’s syndrome cells have a mutator phenotype and an elevated rate of genetic recombination events between homologous sequences, including the formation of quadriradial chromosomes (German, 1993, 1995). Although the precise role of the BLM protein (or indeed of any of the RecQ family helicases) in DNA metabolism remains to be elucidated, many of these proteins appear to play roles in genetic recombination, particularly during DNA replication (Chakraverty and Hickson, 1999). Consistent with such a role, the BLM protein has been shown to interact physically and functionally with replication protein A (RPA) (Brosilow et al, 2000), and to bind selectively to the Holliday junction recombination intermediate (Karow et al, 2000b). Indeed, BLM has been shown to promote efficient branch migration of Holliday junctions (Karow et al, 2000b), suggesting a possible role in the production of mature DNA recombinants during repair of DNA damage.

Previous studies using cultured cell lines have indicated that the BLM protein is poorly expressed in non-proliferating cells and peaks during S/G2-phases of the cell division cycle (Dutertre et al, 2000). Moreover, BLM protein has been shown to localize to the nucleoli and at certain stages of the cell cycle to be present both in nucleoli and in PML nuclear bodies (Ishov et al, 1999; Zhong et al, 1999; Wu et al, 2000a, 2000b; Yankiowski et al, 2000). However little is known about the expression of the BLM protein in cells and tissues in vivo, or whether BLM is generally expressed in human cancers. Using a specific anti-BLM antibody, which we have validated previously using cell lines and recombinant proteins (Wu et al, 2000a), we have characterized the expression of BLM in normal and neoplastic tissues using immunohistochemistry. We show that BLM is a nuclear protein in human tissues and

Received 24 January 2001
Revised 13 March 2001
Accepted 22 March 2001

Correspondence to: ID Hickson

doi: 10.1054/ bjoc.2001.1874, available online at http://www.idealibrary.com on
is expressed at a higher level in proliferating cells of lymphoid origin than in other normal tissues. In contrast, BLM is widely expressed in tumour cells of both lymphoid and epithelial origin.

MATERIALS AND METHODS

Antibodies

Generation of the BFL-103 antibody has been described previously (Wu et al, 2000a). The antigen used to raise this mouse monoclonal antibody was full-length recombinant BLM expressed in Saccharomyces cerevisiae (Karow et al, 1997). Antibodies specific for proliferating cell nuclear antigen (PCNA; PC10) and Ki67 were obtained from Dako (Denmark).

Tissues

A range of normal tissues (tonsil, spleen, lymphoid node, thymus, skin, pancreas, testis, colon, kidney, liver, brain and lung) were obtained from the Cellular Pathology Department at the John Radcliffe Hospital, Oxford, UK. Tumour samples from several organ sites were obtained from the frozen tissue bank in the same University Department. The diagnosis was reviewed and confirmed in each case. Cryostat sections of 8 μm were prepared and mounted on poly-L-lysine coated multi-well microscope slides (C. A. Hendley-Essex Ltd, Loughton, Essex, England.) After overnight drying, slides were processed for immunostaining immediately or stored at –20°C until required.

Immunohistochemistry

Slides were fixed for 10 min in 4% formaldehyde in phosphate-buffered saline. Endogenous peroxidase activity in the samples was blocked for 5 min in Peroxidase Block (Dako K4007) before rinsing in distilled water and washing in PBS. Primary antibodies were then applied to the slides for 90 min at the following concentrations: BFL-103, undiluted tissue culture supernatant from hybridoma cultures; Ki67 (10 μg ml⁻¹); PC10 (1 μg ml⁻¹). For BFL-103, the secondary antibody used was an Envision Mouse kit (1:200 dilution, Dako K4006). For the Ki67 and PC10 samples, the secondary was a goat anti-mouse HRP conjugate (1:200; Dako PO447). All secondary antibodies were applied for 30 min at room temperature. Slides were counterstained with haematoxylin before mounting in Aquamount (BDH). Substitution of the primary antibody with PBS was used as a negative control.

RESULTS

Characterization of a BLM-specific monoclonal antibody

The generation of the BFL-103 anti-BLM mouse monoclonal antibody has been described previously (Wu et al, 2000a). BFL-103 was raised in Balb-C mice following injection of purified, recombinant BLM protein. BFL-103 recognizes full-length recombinant BLM using Western blotting, as well as a recombinant fragment representing residues 1–447 of BLM, indicating that the BFL-103 epitope lies in the N-terminal domain of the 1417 amino acid BLM protein. BFL-103 was shown to be specific for BLM by demonstrating a lack of staining of GMO8505 cells isolated from an individual with BS and shown to lack expression of the BLM protein (Wu et al, 2000a).

Normal tissue distribution of the BLM protein

In all tissues examined, where seen, BLM protein expression was confined to cell nuclei. In normal tissues, no positive staining with the BFL-103 antibody was observed (Figure 1 shows kidney as an example) except in areas where cell proliferation is ongoing. There was high expression in thymic cortex, lymphoid follicles of the tonsil, and around the periarteriolar lymphoid sheath of the spleen. Scattered staining for BLM was also evident in cells from the medulla of the thymus, the cortex and paracortex of the tonsil, the red pulp of the spleen, the placenta, and the basal layers of the skin. These are the areas of cell proliferation in these tissues.

Expression of the BLM protein in tumour tissues

Positive staining for BLM was observed in tumours of both lymphoid and epithelial origin (Figure 1; Tables 1 and 2). Generally, 5–50% of cells in each tumour sample stained positive for BLM using BFL-103, but in rare cases more than 60% of cells

Tumour type	No of cases	Nuclear positive (%)	
Breast cancers		<5 5–30 30–60 >60	
Grade 1	1	– 1 – –	
Grade 2	3	– 3 – –	
Grade 3	5	1 4 – –	
Lymphomas			
Follicular lymphoma	6	– 6 – –	
Large B cell lymphoma	5	– 2 3 –	
Anaplastic large cell	4	– 3 1 1	
T cell lymphomas	5	– 3 1 1	
Kidney carcinoma	5	3 2 –	
Lung cancers			
Small cell carcinoma	4	– 1 1 2	
Squamous cell carcinoma	4	– 3 1 –	
Adenocarcinoma	4	– 3 1 –	
Colon cancer	4	– 3 1 –	

Tumours are classified both by type and by the percentage of nuclei showing positive staining with BFL-103.
There was a good correlation between the expression of BLM and that of 2 independent, well-established markers of proliferation; PCNA and Ki67 (Table 2). In general, the percentage of cells scoring positive for BLM expression was equal to or a little below the equivalent percentage values for PCNA and Ki67.

DISCUSSION

We have conducted a detailed analysis of the distribution and expression of the BLM protein in normal and neoplastic human tissues using a specific monoclonal antibody. We have shown that BLM is expressed in only a limited range of normal tissues, such as in lymphoid tissue, and in the skin and digestive tract, with a pattern of expression indicative of BLM being a marker of cellular proliferation. Consistent with this finding, BLM was shown to be widely expressed in tumours of both lymphoid and epithelial origin. In the range of tumours that we studied, the percentage of cells expressing BLM was very similar to the equivalent values for two established proliferation markers, PCNA and Ki67. The slightly lower percentage values for BLM probably reflects the fact that the intensity of staining using the BFL-103 anti-BLM
antibody was consistently somewhat weaker than that seen when using the PC-10 or Ki67 antibodies.

BLM is defective in BS, a rare disorder which is associated with several phenotypic abnormalities. Of greatest relevance to the findings of this study, is the fact that BS individuals are cancer prone and, more particularly, succumb at an early age to cancers of all (or nearly all) types, including leukaemias, lymphomas and epithelial tumours (German, 1993, 1995). There is the possibility, therefore, that the BLM gene will be defective in a proportion of tumours that arise sporadically in the general population. Although we have not addressed this question directly, it might have been expected that we would have detected loss of BLM expression in some of the tumour samples if BLM expression was lost in a high percentage of any of the tumour types studied. However, we did not obtain any evidence of loss of BLM expression in these tumour samples and therefore we would tentatively conclude that loss of BLM expression does not occur at a high frequency in any of the tumour types studied here. This does not exclude the possibility that mechanisms of BLM inactivation other than loss of BLM protein expression will be found in a significant number of sporadic cancers in humans.

BLM is much more widely expressed in human tumours than in normal tissues, particularly those of epithelial origin. This presumably reflects the far greater fraction of proliferating cells that exists

Table 2 Results of staining a variety of neoplastic tissues with BFL 103, compared with staining for two proliferation markers, PC10 (for PCNA) and Ki67

Tissue	Diagnosis	BFL103	PC10	Ki67
Kidney	Renal cell carcinoma	0	0	0
Kidney	Renal cell carcinoma	<50	<50	<50
Kidney	Renal cell carcinoma	0	<1	<1
Kidney	Wilms	<1	<1	<1
Lung	Small Cell Carcinoma	40	60	60
Lung	Small Cell Carcinoma	70	70	70
Lung	Small Cell Carcinoma	30	30	30
Lung	Squamous Cell Carcinoma	30–40	30	30
Lung	Squamous Cell Carcinoma	30	30	25
Lung	Squamous Cell Carcinoma	15	15	15
Lung	Squamous Cell Carcinoma	10	10	10
Lung	Mixed adeno &SQC	0	<1	<1
Lung	Adenocarcinoma	20	20	20
Lung	Adenocarcinoma	30	30	30
Lung	Adenocarcinoma	15–20	15	10
Lung	Papillary Adenocarcinoma	<5	<5	<5
Colon	Adenocarcinoma	35	40	40
Colon	Adenocarcinoma	20	30	30
Colon	Adenocarcinoma	15	20	20
Colon	Adenocarcinoma	20	30	30
Breast	Adenocarcinoma	3–5	15–20	15–20
Breast	Adenocarcinoma	–	–	–
Breast	Adenocarcinoma	3–5	5–15	5–10
Breast	Adenocarcinoma	5	5	5
Breast	Adenocarcinoma	10	25	25
Breast	Adenocarcinoma	5–10	15–20	15–20
Breast	Adenocarcinoma	15	15–20	15–20
Breast	Adenocarcinoma	10–15	10–15	10–15
Breast	Adenocarcinoma	3–7	5–10	5–10
Lymph node	Follicular Lymphoma	<5	5–10	5–10
Lymph node	Follicular Lymphoma	5	5–10	5–10
Lymph node	Follicular Lymphoma	5–10	5–10	5–10
Lymph node	Follicular Lymphoma	15–20	15–20	15–20
Lymph node	Follicular Lymphoma	5	5–10	5–10
Lymph node	Follicular Lymphoma	5	5–10	5–10
Lymph node	Follicular Lymphoma	25	40	40
Lymph node	Follicular Lymphoma	25	35	40
Lymph node	Follicular Lymphoma	15	30	30
Lymph node	Large B cell lymphoma	10	20–25	20–25
Lymph node	Large B cell lymphoma	5	25	25
Lymph node	Large B cell lymphoma	10–15	25–30	20–25
Lymph node	Large B cell lymphoma	15	25	25
Lymph node	T cell lymphoma	20	20–30	20–30
Lymph node	T cell lymphoma	10	20	20
Lymph node	T cell lymphoma	5–10	25	25
Lymph node	T cell lymphoma	20	20–30	20–30
Lymph node	T cell lymphoma	15	25	25
Lymph node	T cell lymphoma	35	80	80
Lymph node	T cell lymphoma	15	15	15
Testis	T cell lymphoma	20	55	45
in tumours than in normal tissues of the same origin. As with other proliferation markers of this sort there is the possibility that BLM might be considered a suitable target for the development of anti-tumour strategies aimed at the elimination of proliferating tumour cells. Moreover, measurement of BLM expression could have some utility in cancer prognosis. Clearly, further work is required to obtain additional evidence that there is any validity to these suggestions.

In summary, we have developed a BLM-specific antibody that is suitable for use in immunohistochemical analysis of human tissues, including primary human tumours. We have shown that the expression of BLM is restricted to the proliferating compartment of normal human tissues, but is widely expressed in tumour tissue of both lymphoid and epithelial origin. BLM is apparently localized exclusively to the nucleus in vivo. With the development of BFL-103, we now have the capability to analyse BLM expression more generally in tumour biopsy material to ascertain whether alterations/abnormalities in BLM expression occur at a measurable frequency in human tumours both before and after antitumour therapy.

ACKNOWLEDGEMENTS

We thank members of the ICRF Genome Integrity group for valuable discussions, Dr C Norbury for critical reading of the manuscript, and Mrs J Pepper for preparation of the manuscript. Work in the authors’ laboratory is supported by the Imperial Cancer Research Fund.

REFERENCES

Bennett RJ, Sharp JA and Wang JC (1998) Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J Biol Chem 273: 9644–9650
Brosh RM Jr, Li JL, Kenny MK, Karow JK, Cooper MP, Kureekattil RP, Hickson ID and Bohr VA (2000) Replication protein A physically interacts with the Bloom’s syndrome protein and stimulates its helicase activity. J Biol Chem 275: 23500–23508
Chakraverty RK and Hickson ID (1999) Defending genome integrity during DNA replication: a proposed role for RecQ family helicases. BioEssays 21: 286–294
Dutetre S, Ababou M, Onclercq R, Delic J, Chatton B, Jaulin C and Amor-Gueret M (2000) Cell cycle regulation of the endogenous wild type Bloom’s syndrome DNA helicase. Oncogene 19: 2731–2738
Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Pronycheva M and German J (1995) The Bloom’s Syndrome gene product is homologous to RecQ helicases. Cell 83: 655–666
German J (1993) Bloom Syndrome: A mendelian prototype of somatic mutational disease. Medicine 72: 393–406
German J (1995) Bloom’s syndrome. Dermatol Clin 13: 7–18
Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J and Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17: 100–103
Ishov AM, Sotnikov AG, Negorev D, Vladimirova OV, Neff N, Kamitani T, Yeh ETH, Strauss III JF and Mael GC (1999) PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol 147: 221–233
Karow JK, Chakraverty RK and Hickson ID (1997) The Bloom’s syndrome gene product is a 3’–5’ DNA helicase. J Biol Chem 272: 30611–30614
Karow JK, Wu L and Hickson ID (2000a) RecQ family helicases: roles in cancer and aging. Curr Opin Genet Dev 10: 32–38
Karow JK, Constantinoiu A, Li J-L, West SC and Hickson ID (2000b) The Bloom’s syndrome gene product promotes branch migration of Holliday junctions. Proc Natl Acad Sci USA 97: 6504–6508
Kito S, Shimamoto A, Goto M, Miller RW, Smithson WA, Lindor NM and Furuchi Y (1999) Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat Genet 22: 82–84
Purunam LL and Blackshear PJ (1994) Cloning and characterisation of RECQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J Biol Chem 269: 29838–29845
Seki M, Miyazawa H, Tada S, Yanagisawa J, Yamaoka T, Hoshino S, Ozawa K, Eki T, Nogami M, Okumura K, Taguchi H, Hanaoka F and Enomoto T (1994) Molecular cloning of cDNA encoding human DNA helicase Q1 which has homology to Escherichia coli RecQ helicase and localization of the gene at chromosome 12p12. Nucleic Acids Res 22: 4566–4573
Shen JC, Gray MD, Oshima J and Loeb LA (1998) Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26: 2879–2885
Suzuki N, Shimamoto A, Inamura O, Kuromitsu J, Kito S, Goto M and Furuchi Y (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25: 2973–2978
Umezu K and Nakayama H (1993) RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol 230: 1145–1150
Umezu K and Nakayama H (1993) RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol 230: 1145–1150
Yu C, Oshima J, Fu Y, Wijsman EM, Hisama F, Alisch R, Matthews S, Najura J, Suzuki N, Shimamoto A, Inamura O, Kuromitsu J, Kito S, Goto M and Furuchi Y (1997) DNA helicase activity in Werner’s syndrome gene product synthesized in a baculovirus system. Nucleic Acids Res 25: 2973–2978
Yankiwski V, Marciniak RA, Guarente L and Neff NF (2000) Nuclear structure in normal and Bloom syndrome cells. Proc Natl Acad Sci USA 97: 5214–5219
Yu C, Oshima J, Fu Y, Wijsman EM, Hisama F, Alisch R, Matthews S, Najura J, Miki T, Ouais S, Martin GM, Mulligan J and Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272: 258–262
Zhong S, Hu P, Ye T-Z, Sun R, Ellis NA and Pandolﬁ PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18: 7941–7947