Genetic factors related to the widespread dissemination of ST11 extensively drug-resistant carbapenemase-producing *Klebsiella pneumoniae* strains within hospital

Dai-Xi Li¹, Yao Zhai², Zhao Zhang¹,²,³, Ya-Tao Guo¹, Zhan-Wei Wang⁴, Zi-Long He⁵, Song-Nian Hu⁵, Yu-Sheng Chen⁶, Yu Kang⁵, Zhan-Cheng Gao¹

¹Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China; ²University of Technology Sydney, Ultimo, NSW 2007, Australia; ³Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China; ⁴Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China; ⁵Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100044, China; ⁶Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350000, China.

Abstract

Background: Carbapenemase-producing *Klebsiella pneumoniae* (CP-Kp) poses distinct clinical challenges due to extensively drug resistant (XDR) phenotype, and sequence type (ST) 11 is the most dominant *bla*KPC-2-bearing CP-Kp clone in China. The purpose of this current retrospective study was to explore the genetic factors associated with the success of XDR CP-Kp ST11 strains circulated in the intensive care unit (ICU) of a Chinese tertiary hospital.

Methods: Six ST11 XDR CP-Kp strains were identified between May and December 2014 and validated by minimum inhibitory concentration examination, polymerase chain reaction, and pyrosequencing. The six ST11 XDR CP-Kp, as well as three multi-drug resistant (MDR) and four susceptible strains, were sequenced using single-molecule real-time method. Comprehensive structural and functional analysis based on comparative genomics was performed to identify genomic characteristics of the XDR ST11 CP-Kp strains.

Results: We found that ST11 XDR *bla*KPC-2-bearing CP-Kp strains isolated from inpatients spread in the ICU of the hospital. Functionally, genes associated with information storage and processing of the ST11 XDR CP-Kp strains were more abundant than those of MDR and susceptible strains, especially genes correlative with mobile genetic elements (MGEs) such as transposons and prophages. Structurally, eleven large-scale genetic regions taken for the unique genome in these ST11 XDR CP-Kp strains were identified as MGEs including transposons, integrons, prophages, genomic islands, and integrative and conjugative elements. Three of them were located on plasmids and eight on chromosomes; five of them were with antimicrobial resistance genes and eight with adaptation associated genes. Notably, a new *bla*KPC-2-bearing ΔTn1721-*bla*KPC-2 transposon, probably transposed and truncated from ΔTn1721-*bla*KPC-2 by IS903D and ISKpn8, was identified in all six ST11 XDR CP-Kp strains.

Conclusion: Our findings suggested that together with clonal spread, MGEs identified uniquely in the ST11 XDR CP-Kp strains might contribute to their formidable adaptability, which facilitated their widespread dissemination in hospital.

Keywords: Whole genome sequencing; Carbapenemase-producing *Klebsiella pneumoniae*; Mobile genetic elements; Antimicrobial resistance genes; Adaptation associated genes

Introduction

The human pathogenic carbapenemase-producing *Klebsiella pneumoniae* (CP-Kp) bacterium poses distinct clinical challenges due to its extensively drug resistant (XDR) phenotype.¹⁰ CP-Kp causes hospital-acquired and long-term care-related infections that feature high morbidity and mortality.²⁻⁴ It is now known that enzymes like *Klebsiella pneumoniae* carbapenemase (KPC) are important products of CP-Kp.⁵ KPC-2 (with the identical protein sequence to KPC-1) was the first known variant of the KPC enzymes, and it was identified in a *K. pneumoniae* strain in North Carolina, USA in 1996.⁶ In China, the first report of a KPC-producing *K. pneumoniae* strain was from Zhejiang province in 2007.⁷ Since then, this pathogen has been identified in several Chinese provinces; and it has been demonstrated that sequence type (ST) 11 is the dominant clone amongst the CP-Kp strains in China.⁸⁻¹⁷

Many researchers have explored the potential molecular
factors that govern the success of the ST258 CP-Kp clone,\(^5\)\(^,\)\(^18\) which is threatening European and American countries; however, relatively little progress has been made in the ST11 strains; so it is urgent to identify which characteristics have granted ST11 its particularly strong ability to spread rapidly.

Mobile genetic elements (MGEs), including plasmids, insertion sequences (ISs), transposons, integrons, and prophages, as well as integrative and conjugative elements (ICEs) and genomic islands,\(^9\)\(^,\)\(^19\) are important carriers of antimicrobial resistance genes (ARGs) and adaptation associated genes.\(^20\) Previous pan-genome comparative analyses has shown that horizontal gene transfer of MGEs across much of the bacterial world can explain many of the key differences between core genomes (the genes present in all strains within a group).\(^21\) XDR CP-Kp strains of ST11 are common vehicle of MGEs, and thus, we speculate that the successful widespread of XDR CP-Kp strains of ST11 is related to certain MGEs, which are always closely related to the acquisition and spread of resistance and/or adaptation associated genes as well as the broader evolution of bacteria.

Single-molecule real-time (SMRT) based whole genome sequencing (WGS) has emerged as a powerful tool for deep dissection of bacterial genomes and their functions, and its ability to generate long reads (with an average size of 10 Kb) that can cross complex repeat regions has substantially facilitated functional genomics research about many species.\(^22\) In the current study, we report a dissemination of ST11 XDR CP-Kp strains in intensive care unit (ICU) of a Chinese hospital between May 1st and December 31st, 2014 retrospectively. Then we assembled the complete genomes and plasmids of 13 clinical \(K.\ pneumoniae\) isolates based on SMRT sequencing data, including six ST11 CP-Kp XDR group strains, three non-CP-Kp multi-drug resistant (MDR) group strains and four susceptible (S) group strains, and performed comparative genomics analysis to explore the genetic factors unique to the ST11 XDR CP-Kp strains. Our analyses revealed extensive MGEs carrying ARGs and adaptation associated genes that can help to explain the widespread dissemination of XDR CP-Kp strains of ST11, and might facilitate the development of novel targets to these unique genetic factors.

Methods

Ethical approval

The retrospective study was approved by the Ethics Committee of Peking University People’s Hospital (2015PHB037-01) and the requirement of written informed consent was waived.

Klebsiella pneumoniae strains and bacterial experiments

We analyzed six patients with CK-Kp infection who were admitted to a five-ward ICU of a Fujian tertiary hospital with 2400 beds in China between May 1st and December 31st, 2014. Six \(K.\ pneumoniae\) strains were isolated from urine, sputum, bile, ascites, end of catheter, and blood. Multi-locus sequence typing, ARGs including \(bla_{KPC-2}\), and later gene confirmation was determined by polymerase chain reaction (PCR) and pyrosequencing.\(^23\) Minimum inhibitory concentrations were determined using a VITEK2 automated system (Biomerieux Vitek, Inc., France), and antibiotic susceptibilities were assessed according to the Clinical and Laboratory Standards Institute.\(^24\) According to the Clinical and Laboratory Standards Institute, the isolates were defined as XDR ST11 CP-Kp strains. Besides, another seven non-CP-Kp strains were isolated in the same hospital during the same period to compare with XDR CP-Kp strains, and three of these non-CP-Kp strains were defined as MDR and four were defined as susceptible (S) strains.

Genomic DNA extraction, genome sequencing, and assembly

Bacterial cells of a total 13 \(K.\ pneumoniae\) strains were collected at the stationary phase by centrifugation (12,000 \(xg\) for 10 min at 4°C. Total DNA was extracted using a Qiagen DNA Mini Kit (Qiagen, Valencia, CA, USA) according to its protocol. The integrity of extracted DNA was assessed by gel electrophoresis using 0.7% agarose gel, and the quantification was performed using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Libraries were constructed according to the large SMRT Bell gDNA protocol (Pacific Biosciences, Menlo Park, CA, USA), and the whole genomes of isolates were sequenced via SMRT sequencing with the PacBio RS II platform. Genomes were assembled by using the Short Oligonucleotide Analysis Package (SOAPdenovo 2.3.0). The final contigs were checked for circularization, and the overlapping ends were trimmed.

Pan-genome analysis

The protein coding sequences (CDSs) were predicted using GeneMarkS software (http://topaz.gatech.edu/genemark/genemarks.cgi), and annotated via BLAST analysis against the NCBI non-redundant (NR) protein sequence database. The core genome for XDR, MDR, or S group strains was determined as homologous proteins (as defined by 70% coverage and 50% sequence identity using cd-hit\(^25\)\(^,\)\(^26\)) presenting in all of the isolates inside the group. Each of the three intra-group sets of core genes were created by extracting one sequence for every core gene in each group. Three intra-group sets of core genes were then compared and clustered by cd-hit\(^23\) (using the same coverage and sequence identity above) and the “supercore” genes (core genes that were present in all three groups) were determined. The dispensable genome of XDR, MDR, or S group, designated as DI, DII, or DIII, was created by subtracting the “supercore” genes from each group’s core genome. A Venn diagram was generated to depict the number of core genes in each of the three groups as well as the “supercore” genes and the dispensable genes.

Single-nucleotide polymorphisms (SNPs) and phylogenetic analysis

The 13 \(K.\ pneumoniae\) genomes we sequenced were used for phylogenetic analysis along with 12 \(K.\ pneumoniae\) and two \(Klebsiella variicola\) genomes from GenBank. The core
SNPs inside each group strains and across the 27 examined genomes were called from the de novo-assembled sequences using the kSNP with k-mers size of 21. The core SNPs across the 27 examined genomes were used to construct a phylogenetic tree using the maximum-likelihood based approach in FastTreeMP with 1000 bootstraps. K. variicola X39 and K. variicola DSM 15968 set as the out-group sequences. Local support values for each node were calculated. The tree was visualized in iTOL (https://itol.embl.de/).

Structural and functional analyses of bacterial genomes

All proteins were aligned against specialized databases such as the Clusters of Orthologous Groups (COG), and the All proteins were aligned against specialized databases such as the Clusters of Orthologous Groups (COG), and the

Structural and functional analyses of bacterial genomes

All proteins were aligned against specialized databases such as the Clusters of Orthologous Groups (COG), and the All proteins were aligned against specialized databases such as the Clusters of Orthologous Groups (COG), and the

Results

Dissemination of six ST11 XDR CP-Kp strains

The six CP-Kp strains, which were resistant to imipenem and meropenem, were isolated from different wards of the ICU in the hospital within 8 months (between May 1st and December 31st, 2014) [Table 1]. They were all identified as the ST11 type, and the capsular type K47. The six CP-Kp strains. Phylogenetic analysis was performed and visualized using EasyFig v2.3.

WGS data were then used to analyze the dissemination of the six ST11 XDR CP-Kp strains. Phylogenetic analysis was employed to assess the relationships between the 13 SMRT sequenced strains along with 12 K. pneumoniae and two K. variicola strains from GenBank [Supplementary Table 4, http://links.lww.com/CM9/A320]. The six ST11 XDR CP-Kp strains (F1, F5, F77, F127, F132, and F138) were significantly supported as a single clade that was clearly separate from other groups [Figure 1A]. There were fewer core SNPs (68) among the six ST11 XDR CP-Kp strains, while there were much more core SNPs among the three MDR strains (26,131), or the four susceptible strains (32,724). The numbers of core SNPs between each pair of the six ST11 CP-Kp XDR strains ranged from 4 to 55 [Supplementary Figure 2, http://links.lww.com/CM9/A319].

Statistical analysis

The patients’ ages, genome sizes, and numbers of predicted CDSs and MGEs, as well as positive genes percentages of the PCR confirmation test, were compared using the Kruskal-Wallis and Mann-Whitney test. Categorical variables of predicted functional genes were compared by the Chi-square test. Using Prism GraphPad software version 6.01 (GraphPad software Inc.; La, Jolla, CA, USA), P ≤ 0.05 was considered significant.

Sequence data accession numbers

The whole genomes we sequenced in this study are available in the NCBI repository under the accession numbers CP026130-CP026131 (F1), CP026132-CP026135 (F5), CP026136-CP026139 (F77), CP026140-CP026142 (F127), CP026145-CP026148 (F132), CP026149-CP026152 (F138), CP026153-CP026154 (F10(AN)), CP026155-CP026156 (B12(AN)), CP026157-CP026158 (F127), CP026162-CP026163 (F13), CP026164-CP026166 (F81), CP026159 (F89-1), and CP026160-CP026161 (F93-1).

WGS data were then used to analyze the dissemination of the six ST11 XDR CP-Kp strains. Phylogenetic analysis was employed to assess the relationships between the 13 SMRT sequenced strains along with 12 K. pneumoniae and two K. variicola strains from GenBank [Supplementary Table 4, http://links.lww.com/CM9/A320]. The six ST11 XDR CP-Kp strains (F1, F5, F77, F127, F132, and F138) were significantly supported as a single clade that was clearly separate from other groups [Figure 1A]. There were fewer core SNPs (68) among the six ST11 XDR CP-Kp strains, while there were much more core SNPs among the three MDR strains (26,131), or the four susceptible strains (32,724). The numbers of core SNPs between each pair of the six ST11 CP-Kp XDR strains ranged from 4 to 55 [Supplementary Figure 2, http://links.lww.com/CM9/A319],...
thus suggesting the phylogenetically high similarity of these strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains of F1 and F127 from the strains of F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differentiating the strains. Furthermore, there were seven core SNPs between F1 and F127 and 4 to 14 core SNPs among F5, F77, F132, and F138. According to a recently published study, the distance of strains of F1 and F127 from the strains of F5, F77, F132, and F138, while there were 50 to 55 core SNPs differenti
Figure 1: (A) The phylogeny analysis of *K. pneumoniae* strains. SNPs across the 27 examined genomes were called. The core SNPs were used to construct phylogenetic trees using the ML method based approach FastTreeMP with 1000 bootstraps. *K. variicola* X39 and DSM 15968 was included as the out-group sequences. The branch bearing double hatch marks indicates that it has been truncated and is not proportional to the rest. (B) Venn diagram of the tally of homologous proteins shared by or unique among *K. pneumoniae* strains of the XDR, MDR, and S groups. The core genome for XDR, MDR, or S group was determined as homologous proteins presenting in all of the isolates inside the group. The “supercore” genome was determined as the core genes that were present in each of the groups. The dispensable genome of each group were created by subtracting the “supercore” from each group’s core genome. (C) Distribution of COG functional categories among DI, DII, and DIII. All proteins in DI, DII, and DIII were aligned against the COG database and comparisons among DI, DII, and DIII were conducted. COG: Clusters of Orthologous Groups; *K. pneumoniae*: Klebsiella pneumoniae; MDR: Multidrug-resistant; ML: Maximum-likelihood; SNPs: Single-nucleotide polymorphisms; XDR: Extensively drug resistant.
group, compared with that of only 0.33 and 0 in the MDR group and susceptible group, respectively. The number of prophages identified in the strains of XDR (13.33) group was much larger than that of MDR (4.00) and S (4.25) groups (P = 0.0238 and 0.0048, respectively), whereas there was no significant difference between MDR and S groups (P = 0.8857). Similarly, the average numbers of genomic islands in XDR group (21.17) were larger than that in MDR group (15.67) and S group (5.75) significantly (P = 0.0238 and 0.0048, respectively), yet not in the S group compared with that of the three MDR genomes (P = 0.0857). The distributions of prophages and genomic islands of the XDR group strains were similar, but there were significant differences between groups. The detailed information of prophages and genomic islands was listed in Supplementary Table 4, http://links.lww.com/CM9/A323.

Different predicted functional genes between XDR strains and MDR and S strains

There were 4264 core genes in the MDR strains and 4155 genes in the S strains, markedly lower than the number (5036) of core genes in the XDR group. Pan-genome analysis based on the three groups showed that there were a total of 5158 genes comprising their pan-genome. In the pan-genome, 4009 genes were identified to be shared by all three groups; these were defined as the supercore genome. The non-supercore genes within the XDR, MDR, and S groups were assigned to dispensable genomes and defined as, respectively, DI (1027), DII (255), and DIII (146) [Figure 1B].

Functional classification analysis of DI, DII, DIII, and the supercore genome was carried out by comparison against the COG database [Figure 1C, Supplementary Table 6, http://links.lww.com/CM9/A325]. We classified the COG functional categories into four classes, namely, metabolism, information storage and processing, cellular processes and signaling, and “poorly characterized.” An apparently high proportion of genes in DI (32.47%) were assigned to COG categories involved in information storage and processing, in comparison with that in supercore genome (18.61%), DII (17.60%), and DIII (16.33%) (P = 0.0329, 0.0206 and 0.0124, respectively) [Supplementary Table 6, http://links.lww.com/CM9/A325]. In particular, the proportion of COG categories [X] (mobility: prophages, transposons; 13.89%) within DI is apparently higher than that in the supercore genome, DII, or DIII (0.0002, 0.0054, and 0.0054, respectively), suggesting the presence of a large amount of MGEs and implying that much of the genetic and phenotypic diversity amongst the clinical isolates may be a result of horizontal gene transfer. As expected, a relatively low proportion of genes dispersed in the DI were predicted to be involved in metabolic profiles (32.64%) compared with that in supercore genome (48.90%) (P = 0.0295), reflecting a relatively low proportion of essential genes supporting basic bacterial activities and, therefore, a relative abundance of unessential genes such as MGEs. For genes involved in cellular processes and signaling and in the “poorly characterized” class, there was no significant discrepancy between supercore genome, DI, DII, and DIII.

Linking unique large genomic regions in XDR genomes to MGEs

We conducted a further inspection of a large number of genes unique to the XDR ST11 CP-Kp strains with the idea that these unique genomic regions may be related to MGEs that may have contributed to the wide dissemination of these strains. Gene names and genomic positions for the 818 genes unique to the core genome of XDR ST11 CP-Kp strains were extracted and manually inspected: this identified 11 large (>9 Kb) genomic regions that ranged in size from 9.21 to 143.20 Kb. Three regions were in the IncFII plasmids, and eight were in the chromosomes. These 11 unique large genomic regions in the XDR group strains basically match to five MGEs carrying ARGs and eight MGEs carrying adaptation associated genes.

Of the five MGEs carrying ARGs, three were located on IncFII plasmids and two on chromosomes. For plasmids, XDR group-specific MGEs included a 16.05 Kb IncFII plasmid partial backbone and two prophages (ProphagePlas1_1 and ProphagePlas1_2) [Figure 2A, Supplementary Table 7, http://links.lww.com/CM9/A326, and Supplementary Table 8, http://links.lww.com/CM9/A327]. The IncFII plasmid itself is a large MGE, and many IncFII plasmid carry blaKPC-2 as well as other ARGs.[41] Homologous sequences of this region in GenBank are from K. pneumoniae, Proteus mirabilis, Escherichia coli, and Escherichia albertii which are all opportuntic pathogens of the Enterobacteriaceae. BlaKPC-2 is carried by ProphagePlas1_2 and is located within a transposon that is a variant of the ΔTn1721-blaKPC-2.[19] We named it as ΔΔTn1721-blaKPC-2 [Figure 2B]. The unique 25.45 Kb prophage region (ProphagePlas1_1) carries a chloramphenicol acetyltransferase catI, which can inactivate chloramphenicol.[42] Homologous sequences of this region in GenBank are from opportunistic pathogens of the Enterobacteriaceae such as K. pneumoniae, E. coli, Citrobacter freundii, or Enterobacter cloacae. The composite transposon of catI composed of catII and a transferase of IS26, tnpAIS26), the ProphagePlas1_1, and the IncFII plasmid might collectively contribute the horizontal genetic exchange of catI. Besides, the two XDR group-specific chromosome-bearing MGEs carrying ARGs included a class 1 integron In127 (carrying sul1 and aadA) that was carried by ProphageChr1_6, and another class 1 integron In610 (carrying cmlA, ANT(2")-Ia, APH(3")-I, APH(6)-I, and a gene for a puromycin acetyltransferase) that was carried by ICE_F1 [Figure 3, Supplementary Table 7, http://links.lww.com/CM9/A326, and Supplementary Table 8, http://links.lww.com/CM9/A327].

We also detected a variety of adaptation associated genes that were carried by 8 of the eleven XDR group-specific MGEs from chromosomes, including six prophages, one genomic island, and one ICE. The functions of these adaptation associated genes could be classified into five classes: cell wall/membrane/envelope, DNA operation, defense mechanisms, cell motility, and respiratory chain [Table 2]. Of particular note, we found that cell wall/membrane/envelope associated genes—responsible for the biosynthesis of lipopolysaccharide and biofilms—were present in ProphageChr1_2 of the XDR strains. Moreover, we found on ICE_F1 both LytM and the regulator LytR,
Figure 2: (A) Alignment of the plasmid sequences of the *K. pneumoniae* strains. BLASTN-based whole genome comparison was performed and visualized using BRIG to exhibit the architecture and gene repertoire of a total of twelve *K. pneumoniae* plasmids, using the plasmid sequence of pF1_1 as a reference. Part of the IncFII plasmid backbone region, ProphagePlas1_1, ProphagePlas1_2, and the significant genes are indicated by rectangles. (B) Transposon carrying *bla*^{KPC}-2 located in our isolates (ΔΔ*Tn1721*-*bla*KPC-2) was compared with that in pKPHS2 (Δ*Tn1721*-*bla*KPC-2) and that in the unnamed plasmid of SWU01 (ΔΔ*Tn1721*-*bla*KPC-2). Regions of synteny between adjacent schematics are indicated by the shaded areas; the matching percentage nucleotide sequence identity for each such region is indicated. These schematics are drawn to scale. *K. pneumoniae*: Klebsiella pneumoniae.
which are known to participate in the synthesis of bacterial cell wall and the formation of biofilms and which likely enhance virulence, and the ability of anti-innate immune killing\(^{43-45}\); these may also participate in maintaining the integrity of bacterial plasma membrane and promoting β-lactam resistance.\(^{46}\)

Furthermore, to confirm preliminarily that these MGEs were XDR CP-Kp group specific, we detected some genes of these XDR-specific MGEs by PCR using a total of 98 K. pneumoniae strains we collected subsequently as templates [Supplementary Table 9, http://links.lww.com/CM9/A328]. The percentage of positive genes detected in XDR strains was larger than that in MDR \((P = 0.0045)\) and S \((P < 0.0001)\) strains significantly, whereas there was no significant difference between MDR and S strains \((P = 0.7081)\) [Supplementary Table 10, http://links.lww.com/CM9/A329].

Discussion

ST11 is a high-risk clone often presented as the XDR phenotype, which is associated with KPC-2 dissemination, and is commonly found in Asian countries especially in
China, and in Latin American countries. The ST11 genomes were found to be highly heterogeneous based on the patterns of SNPs. In the present study, we found and WGS confirmed a dissemination of ST11 XDR CP-Kp strains in a Fujian tertiary teaching hospital within eight months in 2014, and it has a warning role on the infection prevention and control in this hospital. Two extremely close clones were identified in these ST11 blaKPC-2-bearing K. pneumoniae strains, and they were considered to spread in the ICU of the hospital with open genomes and with evolution of chromosomes or plasmids mutations and/or genetic recombination from a common ancestor or clone.

Then, we found that the unique genes in the XDR group strains are related to MGEs either functionally or structurally. Horizontal gene transfer and subsequent recombination was considered another considerable factor for the widespread dissemination of ST11 XDR CP-Kp strains apart from clonal spread. We will discuss this MGEs from two aspects: MGEs carrying ARGs and MGEs carrying adaptation associated genes.

Table 2: Adaptation associated genes on MGEs unique to the chromosomes of XDR *Klebsiella pneumoniae* strains.

Number	Gene ID	Annotation	Class	Reference
1	F1GM001432	DNA damage inducible protein DinI	DNA operation	[69]
2	F1GM001446	Putative membrane protein, related to biofilm formation	Cell wall/membrane/envelope	[70]
3	F1GM001571	DNA adenine methylase Dam	DNA operation	[71]
4	F1GM001579	XRE family transcriptional regulator with helix-turn-helix structure	Defense mechanisms	[63]
5	F1GM001598	Glycopeptide alpha-N-acetylgalactosaminidase (GalNAc)	Cell wall/membrane/envelope	[72]
6	F1GM001619	O-antigen ligase-like membrane protein	Cell wall/membrane/envelope	[73]
7	F1GM001622	Type 1 fimbrial protein	Cell motility	[67]
8	F1GM001968	dTDP-4-dehydrorhamnose reductase rfbD	Cell wall/membrane/envelope	[74]
9	F1GM001969	dTDP-4-dehydrorhamnose 3, 5-epimerase rfbC	Cell wall/membrane/envelope	[74]
10	F1GM001977	O-antigen export-TMD component	Cell wall/membrane/envelope	[75]
11	F1GM001978	O-antigen export-NBD component	Cell wall/membrane/envelope	[75]
12	F1GM002223	Pathogenic specific protein	Cell wall/membrane/envelope	[70]
13	F1GM002228	Uropathogenic specific protein	Cell wall/membrane/envelope	[70]
14	F1GM003286	DNA adenine methylase Dam	DNA operation	[71]
15	F1GM003481	5-Methylcytosine-specific restriction endonuclease McrA	DNA operation	[76]
16	F1GM003483	SOS-response transcriptional repressor LexA	DNA operation	[60]
17	F1GM003484	DNA damage inducible protein DinI	DNA operation	[69]
18	F1GM003786	DNA adenine methylase Dam	DNA operation	[74]
19	F1GM004955	Arabinose operon transcriptional regulator AraC	Defense mechanisms	[66]
20	F1GM004973	Arabinose efflux permease	Defense mechanisms	[62]
21	F1GM005017	DNA cytosine methyltransferase Dcm	DNA operation	[67]
22	F1GM005040	Soluble lytic murein transglycosylase LytM	Cell wall/membrane/envelope	[43,46]
23	F1GM005041	LytR family DNA-binding response regulator	Cell wall/membrane/envelope	[44,45]
24	F1GM005054	DNA repair protein RadC	DNA operation	[61]
25	F1GM005082	Excision nuclease subunit A uvrA	DNA operation	[64]
26	F1GM005085	NADH dehydrogenase NDH	Respiratory chain	[68]
multiple replicons, and exist widely in different species of the Enterobacteriaceae[53,54] especially amongst opportunistic pathogens. We found that \(\text{bla}_{\text{KPC-2}}\) genes in the ST11 CP-Kp strains are located on transposons nested into prophages and plasmids.

Notably, a \(\Delta\text{TN1721-bla}_{\text{KPC-2}}\) transposon carried by ProphagePlas1_2 in all of the six ST11 CP-Kp strains sequenced has never been reported before: it might have been transposed and then truncated by an IS903D and an ISKpn8 that is flanked on the left and right sides of a region encompassing \(\text{IS5075}\) (harboring the anti-mercury operon) \(\Delta\text{TN2-I326-\Delta\text{TN3}}\) located on pKPHS2 (\(\Delta\text{TN1721-bla}_{\text{KPC-2}}\)).[59] A study found that the deletion of \(\text{tnpR\text{TN3}}\) increased the transposition frequency by 16-fold.[55]

Likewise, we speculate that the bacteria proactively lost the aforementioned IS5075-\(\Delta\text{TN2-IS26-\Delta\text{TN3}}\) genetic region in order to increase the transposition frequency, thereby promoting horizontal gene transfer. Additionally, the bacteria might passively lose the genetic region \(\text{IS5075}\)-\(\Delta\text{TN2-\Delta\text{IS26-\Delta\text{TN3}}}\) harboring the anti-mercury operon due to the lack of mercury pressure in the environment. Furthermore, considering that the \(\text{bla}_{\text{KPC-2}}\) bearing transposon found in the most similar plasmid from SWU01[56] resembles \(\Delta\text{TN1721-bla}_{\text{KPC-2}}\) in our sequences, we suspect that \(\Delta\text{TN1721-bla}_{\text{KPC-2}}\) in our sequences was transposed, with or without ProphagePlas1_2 or IncFIII plasmid, to the unnamed plasmid of SWU01. Besides \(\text{bla}_{\text{KPC-2}}\), there are also other ARGs carried by MGEs. The selective advantage of XDR phenotypes due to these ARGs may have played an important role in promoting ST11 CP-Kp strains to flourish in the face of heavy antibiotic pressure in the healthcare environment and may have favored their dissemination.

Studies found that prophages, genomic islands, and ICEs of CP-Kp strains always contain some proteins which have putative functions associated with bacterial virulence[57-59] that are speculated to make a contribution to the strong fitness of these strains. XDR group-specific MGEs (on chromosome) including six prophages, one genomic island, and one ICE, carry adaptation associated genes. These adaptation associated genes participate, for example, in SOS responses and help repair damaged DNA,[60,61] potentially protecting ST11 CP-Kp strains from environmental attacks and enhancing of the resistance of these strains to antibiotics,[46,62,63] UV radiation,[64] and other chemical stresses.[65] These adaptation associated genes also likely increase the strain’s abilities for host cell invasion and virulence,[66,67] as they have functional annotations relating to the progress of bacterial recognition, adhesion, and pathogenesis.

Due to the lack of available effective antibiotics, infections caused by CP-Kp strains have significantly higher morbidity and mortality than non-CP-Kp strains.[12-14] The higher risk of CP-Kp infection is associated with a number of patient factors, including being admitted to the ICU, being older, or presenting with pulmonary infection.[14-18] It bears emphasis that the XDR group strains isolated and analyzed in our study were from the ICU and that four of the patients from which these strains were isolated eventually died. Thus, the adaptation associated genes which we identified in these strains are attractive potential drug targets in the future.[68] Moreover, it will be interesting to track possible horizontal gene transfer of MGEs from these strains, as such transfer could promote the strong adaptive traits in other bacteria and thereby favoring their survival and spread.

There were some limitations in our research. This retrospective study could not provide immediate assistance to effectively control CP-Kp, and real-time WGS are urgently required to improve the surveillance and management of nosocomial infection. The sample size was limited, and although PCR confirmation was performed with some genes unique to XDR group in another 98 strains, further verifications based on larger-scale bioinformatics analysis and even biological experiments are waiting to be performed to confirm our findings. However, to some extent, our results could illustrate the cause of the success of XDR ST11 CP-Kp strains, and could provide an idea of identifying important genetic factors of this tricky infection caused by XDR ST11 CP-Kp strains clinically.

In summary, to the best of our knowledge, this is a novel study to investigate the widespread mechanism of the dominant ST11 XDR CP-Kp strains based on WGS and comparative genomics in China. Our study demonstrated a dissemination of ST11 XDR CP-Kp strains in a Chinese hospital, indicating that prevention and control strategies for CP-Kp nosocomial infection needed to be investigated. Using SMRT sequencing, which enables analysis of long and repetitive sequence, we identified MGEs carrying ARGs and adaptation associated genes potentially contribute to the strong fitness of the ST11 XDR CP-Kp strains, and helped probe the genetic basis of their widespread dissemination. Meanwhile, a new \(\text{bla}_{\text{KPC-2}}\)-bearing \(\Delta\text{TN1721-bla}_{\text{KPC-2}}\) transposon identified in all of the ST11 XDR CP-Kp we sequenced was reported. Both clonal spread and horizontal gene transfer were related to the ST11 XDR CP-Kp strains dissemination. Our study assists to define potential new targets to develop more effective strategies for the control and prevention of CP-Kp.

Data availability statement
The datasets generated for this study can be found in the GenBank (https://www.ncbi.nlm.nih.gov/genome/genomes/815).

Acknowledgements
The authors thank Dr. Xing Shi (Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China) for the technical help in figure-drawing assistance. The authors thank the Company of Novogene, Beijing, China for the technical help in WGS data analysis.

Funding
This work was supported by the Chinese Ministry of Science and Technology (No. 2016YFC0903800), the
National Natural Science Foundation of China (No. 81870010), and the Natural Science Foundation of Beijing Municipality (No. 7192217).

Conflicts of interest
None.

References
1. Navon-Venezia S, Kondratyev K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and threat for antibiotic resistance. FEMS Microbiol Rev 2017;41:252–275. doi: 10.1093/femsre/fux013.
2. Centers for Disease Control and Prevention. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 2017;66:672–679. doi: 10.15585/mmwr.mm6625e3.
3. Wang Z, Qin RR, Huang L, Sun LY. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection. Chin Med J 2018;131:56–62. doi: 10.4103/0366-6999.221267.
4. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 2013;13:749–756. doi: 10.1016/S1473-3099(13)70180-7.
5. Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. Carbenapemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 2014;22:686–697. doi: 10.1016/j.trendsmicrobio.2014.07.005.
6. Yigit H, Queenan AM, Anderson GJ, Dornench-Sanchez A, Biddle JW, Stewart CD, et al. Novel carbapenem-hydrorylating beta-lactamases, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 2001;45:1151–1161. doi: 10.1128/AAC.45.6.1151-1161.2001.
7. Wei ZQ, Du XX, Yu YS, Shen P, Chen YG, Li LJ. Plasmid-mediated KPC-2 in a Klebsiella pneumoniae isolate from China. Antimicrob Agents Chemother 2007;51:763–765. doi: 10.1128/AAC.01053-06.
8. Qi Y, Wei Z, Ji S, Du X, Shen P, Yu Y, ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother 2011;66:307–312. doi: 10.1093/jac/dkp431.
9. Liu J, Du SX, Zhang JN, Liu SH, Zhang Y, Wang XR. Spreading of extended-spectrum beta-lactamase-producing Escherichia coli ST131 and Klebsiella pneumoniae ST11 in patients with pneumonia: a molecular epidemiological study. Chin Med J 2019;132:1894–1902. doi: 10.1097/CMA.0000000000000368.
10. Gu B, Bi R, Cao X, Qian H, Hu R, Ma P. Clonal dissemination of KPC-2-producing Klebsiella pneumoniae ST11 and ST48 clone among multiple departments in a tertiary teaching hospital in Jiangsu Province, China. Ann Transl Med 2019;7:716. doi: 10.21037/amt.2019.12.01.
11. Chen D, Li H, Zhao Y, Qiu Y, Xiao L, He H, et al. Characterization of carbapenem-resistant Klebsiella pneumoniae in a tertiary hospital in Fuzhou, China. J Appl Microbiol 2020. doi: 10.1111/jam.14700 [PUBLISHED ahead of print].
12. Zhou K, Xiao T, David S, Wang Q, Zhou Y, Guo L, et al. Novel carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis 2020;26:289–297. doi: 10.3201/eid2602.190594.
13. Yu X, Zhang W, Zhao Z, Ye C, Zhou S, Wu S, et al. Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates with focus on antimicrobial resistance. BMC Genomics 2019;20:282. doi: 10.1186/s12864-019-6225-9.
14. Chi X, Hu G, Xu H, Li X, Xiao T, Zhou Y, et al. Genomic analysis of a KPC-2-producing Klebsiella pneumoniae ST11 outbreak from a teaching hospital in Shandong Province, China. Infect Drug Resist 2019;12:2961–2969. doi: 10.2147/IDR.S221788.
15. Chen C, Zhang Y, Yu SL, Zhou Y, Yang SY, Jin JL, et al. Tracking carbapenem-producing Klebsiella pneumoniae outbreak in an intensive care unit by whole genome sequencing. Front Cell Infect Microbiol 2019;9:281. doi: 10.3389/fcimb.2019.00281.
16. Liu L, Feng Y, Tang G, Lin J, Huang W, Qiao F, et al. Carbapenem-resistant isolates of the Klebsiella pneumoniae complex in Western China: the common ST11 and the surprising hospital-specific types. Clin Infect Dis 2018;67:5263–5265. doi: 10.1093/cid/ciy662.
and predictors of mortality: a retrospective study. Pathog Glob Health 2015;109:68–74. doi: 10.1179/2047771514Y.0000000004.

38. Du J, Cao J, Shen L, Bi W, Zhang X, Liu H, et al. Molecular epidemiology of extensively drug-resistant Klebsiella pneumoniae outbreak in Wenzhou, Southern China. J Med Microbiol 2016;65:1111–1118. doi: 10.1099/jmm.0.002038.0.

39. Liu P, Li P, Jiang X, Bi D, Xie Y, Tai C, et al. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J Bacteriol 2012;194:1841–1842. doi: 10.1128/JB.00043-12.

40. Jayol A, Poirel L, Villegas MV, Nordmann P. Modulation of mgrB gene expression as a source of colistin resistance in Klebsiella oxytoca. Int J Antimicrob Agents 2015;46:108–110. doi: 10.1016/j.ijantimicag.2015.02.015.

41. Zhang Y, Li G, Yu L, Wang Y, Jiang X. Pandemic spread of blkBPC-2 among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. Int J Antimicrob Agents 2019;54:117–124. doi: 10.1016/j.ijantimicag.2020.05.009.

42. Murray IA, Martinez-Suarez JV, Close TJ, Shaw WV. Nucleotide substitutions in the GmrA promoter region of Klebsiella pneumoniae contribute to bacterial physiology and innate immune resistance. J Infect Dis 2018;218:1641–1652. doi: 10.1093/infdis/jiy341.

43. Zielinska A, Billini M, Moll A, Kremer K, Briegel A, Izquierdo H. LytM factors affect the recruitment of autolysins to the cell wall in Caulobacter crescentus. Mol Microbiol 2017;106:419–430. doi: 10.1111/mmi.13775.

44. Patras KA, Derieux J, Al-Bassam MM, Adiletta N, Vrbanac A, Lapek D, et al. Group B Streptococcus biofilm regulatory protein A contributes to bacterial virulence and innate immune resistance. J Infect Dis 2018;218:1641–1652. doi: 10.1093/infdis/jny031.

45. Malm S, Maass S, Schaible UE, Ehlers S, Niemann S. Class 1 integrons in Acinetobacter baumannii: a weak expression of gene cassettes to counterbalance the lack of LexA-driven integrase repression. Int J Antimicrob Agents 2019;53:491–499. doi: 10.1016/j.ijantimicag.2018.11.012.

46. Lamers RP, Nguyen UT, Nguyen Y, Buenescuo RN, Burrows LL. Loss of membrane-bound lytic transglycosylases increases outer membrane permeability and beta-lactam resistance in Plutonios aeruginosa. Microbiolgyopen 2015;4:879–895. doi: 10.1002/mbo3.286.

47. Bi W, Liu H, Dunstan RA, Li B, Torres VVL, Cao J, et al. Extensively drug-resistant Klebsiella pneumoniae causing nosocomial blood-stream infections in China: molecular investigation of antibiotic resistance determinants, informing therapy, and clinical outcomes. Front Microbiol 2019;10:2176. doi: 10.3389/fmicb.2019.02176.

48. Qin X, Wu S, Zhang X, Liu H, Dunstan RA, Li B, et al. Molecular epidemiology of extensively drug-resistant Klebsiella pneumoniae strains during a short period of time in a Chinese teaching hospital: epidemiology study and molecular characteristics. Diagn Microbiol Infect Dis 2015;82:240–244. doi: 10.1016/j.diagmicrobio.2015.03.017.

49. Dong N, Zhang R, Liu L, Li R, Lin D, Chan EW, et al. Genome analysis of clinical multidrug resistance type 11 Klebsiella pneumoniae from China. Microbiom Genom 2018;4:149. doi: 10.1099/mgen.0.000149.

50. De Campos TA, Goncalves LF, Magalhaes KG, de Paulo Martins V, Pappas Junior GJ, Peirano G, et al. A fatal bacteremia caused by hypermucovisous carbapenemase KPC-2 producing extensively drug-resistant Klebsiella pneumoniae in Brazil. Front Microbiol 2018;9:2201. doi: 10.3389/fmicb.2018.02201.

51. De Majumdar S, Yu J, Fookes M, McAteer SP, Llobet E, Finn S, et al. Genomic variations between colistin-resistant and -susceptible and -resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J Antimicrob Chemother 2014;69:1248–1256. doi: 10.1093/jac/dkt531.

52. Jan Y, Xie N, Wang M, Zou J, Chen Y, Zhang D, et al. Quantitative proteomics analysis of membrane proteins in Enterococcus faecalis clinical isolates with low-level linezolid-resistance. Front Microbiol 2019;8:1698. doi: 10.3389/fmicb.2018.01698.

53. Branton DJ, Lin X, Lin T, Liu J, Lin ZH, Li Y. The role of Kps Deacetylase in LPS regulation. PLoS Pathog 2015;11:e1004627. doi: 10.1371/journal.ppat.1004627.

54. Branton DJ, Lin X, Lin T, Liu J, Lin ZH, Li Y. The role of Kps Deacetylase in LPS regulation. PLoS Pathog 2015;11:e1004627. doi: 10.1371/journal.ppat.1004627.
71. Fang CT, Yi WC, Shun CT, Tsai SF. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J Microbiol Immunol Infect 2017;50:471–477. doi: 10.1016/j.jmii.2015.08.022.

72. Aquilini E, Azevedo J, Merino S, Jimenez N, Tomas JM, Regue M. Three enzymatic steps required for the galactosamine incorporation into core lipopolysaccharide. J Biol Chem 2010;285:39739–39749. doi: 10.1074/jbc.M110.168385.

73. Yeh KM, Lin JC, Yin FY, Fung CP, Hung HC, Siu LK, et al. Revisiting the importance of virulence determinant magA and its surrounding genes in Klebsiella pneumoniae causing pyogenic liver abscesses: exact role in serotype K1 capsule formation. J Infect Dis 2010;201:1259–1267. doi: 10.1086/606010.

74. Artier J, da Silva Zandonadi F, de Souza Carvalho FM, Pauletti BA, Leme AFP, Carnielli CM, et al. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction. Mol Plant Pathol 2018;19:143–157. doi: 10.1111/mpp.12507.

75. Károlyi S, Morona R, Cygler M. Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 2014;38:1048–1065. doi: 10.1111/1574-6976.12070.

76. Mulligan EA, Hatchwell E, McCorlke SR, Dunn JJ. Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG. Nucleic Acids Res 2010;38:1997–2005. doi: 10.1093/nar/gkp1120.

How to cite this article: Li DX, Zhai Y, Zhang Z, Guo YT, Wang ZW, He ZL, Hu SN, Chen YS, Kang Y, Gao ZC. Genetic factors related to the widespread dissemination of ST11 extensively drug-resistant carbapenemase-producing Klebsiella pneumoniae strains within hospital. Chin Med J 2020;133:2573–2585. doi: 10.1097/CM9.00000000000011101.