В линейной и нелинейной постановках сформулирована самосогласованная математическая модель, включающая в себя уравнение изгибных колебаний балки и кинетическое уравнение накопления повреждений в ее материале. Балка считается бесконечной. Такая идеализация допустима, если на ее границах находятся оптимальные демпфирующие устройства, то есть параметры граничного закрепления таковы, что падающие на него возмущения не будут отражаться. Это позволяет рассматривать модель балки без учета граничных условий, а вибрации, распространяющиеся по балке, считать безусловными изгибающими волнами.

В результате аналитических исследований и численного моделирования, показано, что поврежденность материала привносит частотно-зависимое затухание и существенно изменяет характер дисперсии фазовой скорости изгибной упругой волны. Если в классической балке Бернулли-Эйлера у изгибных волн имеется одна дисперсионная ветвь при любом значении частоты, то для балки, материал которой накапливает повреждения, во всем частотном диапазоне существует две пары дисперсионных ветвей, при этом одна пара описывает распространение волны, а другая — ее затухание. В рамках геометрически нелинейной модели поврежденной балки изучается формирование интенсивных изгибных волн стационарного профиля. Показано, что такие существенно несинусоидальные волны могут быть как периодическими, так и уединенными (локализованными в пространстве). Определены зависимости, связывающие параметры волн (амплитуду, ширину, длину волны) с поврежденностью материала. Выявлено, что с ростом параметра поврежденности материала амплитуда периодической и уединенной волны увеличивается, а в то время как длина периодической волны и ширина уединенной волны уменьшаются.

Ключевые слова: балка, поврежденность материала, изгибная волна, дисперсия, затухание, геометрическая нелинейность, математическое моделирование

THE PROPAGATION OF BENDING WAVES IN A BEAM, THE MATERIAL OF WHICH ACCUMULATES DAMAGE DURING ITS OPERATION

D.M. Brikkel¹, V.I. Erofeev¹,² and A.V. Leontyeva¹,²

¹National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
²Mechanical Engineering Research Institute of RAS, Nizhny Novgorod, Russian Federation

The linear and nonlinear formulations of a self-consistent material model are developed based on the equation of the bending vibrations of the beam and the kinetic equation of damage accumulation in its material. The beam is considered endless. Such idealization is permissible if optimal damping devices are located at its boundaries, that is the parameters of boundary fixing are such that disturbances acting on it will not be reflected. This allows us to exclude boundary conditions from the beam model and consider the vibrations propagating along the beam as traveling bending waves. As a result of analytical studies and numerical modeling, it was found that the damage of the material involves a frequency-dependent attenuation and significantly changes the nature of the dispersion of the phase velocity of a bending elastic wave. Note that in a classical Euler–Bernoulli beam there is one dispersion branch for bending waves at any frequency value, whereas for a beam with accumulated material damage in the entire frequency range there are two dispersion branches, characterizing wave propagation, and two dispersion branches, characterizing its attenuation. The problem of the formation of intense bending waves of a stationary profile is considered in the framework of a geometrically nonlinear model of a damaged beam. It is shown that such essentially non-sinusoidal waves can be either periodic or solitary (localized in space). The dependencies relating the parameters of the waves (amplitude, width, wavelength) with the damage to the material are determined. It is shown that the amplitude of the periodic wave and the amplitude of the solitary wave increase with increasing material damage parameter, while the length of the periodic wave and the width of the solitary wave decrease with increase of this parameter.

Key words: beam, material damage, bending wave, dispersion, attenuation, geometric nonlinearity, mathematical modeling

1. Введение

Конструкционные материалы на протяжении всего срока эксплуатации должны удовлетворять требованиям прочности. В процессе работы под воздействием нагрузок увеличивается количество рассеянных в объеме материала микроповреждений различной природы — микротрещин, микропор, дефектов, вызванных напряжениями на поверхности ядер кристаллизации, и другого. В результате этого процесса, называемого накоплением повреждений [1–9], элемент конструкции может потерять свои эксплуатационные свойства, что приведет к невозможности его нормальной работы и даже к полному разрушению, что может стать причиной серьезной аварии.

Анализ большого числа повреждений объектов из различных областей жизнедеятельности человека показывает, что их можно было избежать при своевременном выявлении чрезмерного накопления микродефектов и образования микроповреждений или спрогнозировать при проектировании на основе точных теорий.
Таким образом, выявление и численный анализ микродефектов — важные проблемы современной науки и техники. Для их решения существуют различные подходы, позволяющие оценить прочность конструкций, повреждённость их материала, например, неразрушающий контроль. Одним из его наиболее перспективных методов является акустический [10, 11].

Как правило, в механике деформируемого твёрдого тела задачи динамики рассматриваются отдельно от задач накопления повреждений. При разработке методов их решения принято заранее постулировать, что скорость упругой волны является заданной функцией повреждённости, а затем экспериментально определять коэффициенты пропорциональности. Фазовая скорость волны и её затухание считаются обычно степенными функциями частоты и линейными функциями повреждённости [11]. При несомненных достоинствах (простоте) такой подход, как и любой другой, не оперирующий на математические модели процессов и систем, обладает целым рядом недостатков.

Авторы работ [12–14] считают задачу самосогласованной, включающей в постановку, кроме уравнения развития повреждённости, динамическое уравнение теории упругости. Такой подход позволяет рассмотреть некоторые прикладные задачи волновой динамики поврежденных материалов и элементов конструкций [15–21].

В настоящей работе сформулирована (в линейной и нелинейной постановках) и исследована математическая модель, позволяющая описывать распространение изгибных волн в балке с учетом повреждённости ее материала.

2. Математическая модель изгибных колебаний

Пусть имеется балка, совершающая изгибные колебания. В технической теории Бернулли–Эйлера [22] предполагается:
1) Поперечные сечения балки, плоские и перпендикулярные ее оси, во время изгиба остаются плоскими и перпендикулярными деформированной оси балки.
2) Продольные сечения балки сопротивляются изгибу независимо, не оказывая друг на друга влияния (то есть нормальные напряжения на площадках, параллельных оси балки, пренебрежимо малы).
3) Инерцию вращения балки при изгибе можно не принимать во внимание.

Из второго предположения следует, что из компонент тензора напряжений и деформаций существенным признаются только σ_{11} и ϵ_{11}, то есть волокна либо растягиваются, либо сжимаются, в результате чего запасается потенциальная энергия.

Положим, что балка подверглась статическим или циклическим испытаниям и в ее материале накопились повреждения. Меру повреждённости представим в виде функции Качанова–Работнова $\Psi(x,t)$, которая равна нулю, когда повреждения отсутствуют, и близка к единице в момент разрушения материала [1, 2]. Обозначим через $W(x,t)$ перемещение точек срединной линии балки при изгибе. Динамику балки с учетом повреждённости ее материала описываем системой уравнений:

$$\begin{align*}
\frac{\partial^2 W}{\partial t^2} + c^2 r^2 \frac{\partial^2 W}{\partial x^2} &= \beta_1 \frac{\partial \Psi}{\partial x} , \\
\frac{\partial \Psi}{\partial t} + \alpha \Psi &= \beta_2 E \frac{\partial W}{\partial x}.
\end{align*}$$

Здесь W — перемещение, x — продольная координата, совпадающая со срединной линией балки; α, β_1, β_2 — константы, характеризующие повреждённость материала, при этом $\alpha = 1/T$, где T — время релаксации [16], β_1, β_2 < 0, но физический смысл этих величин не столь очевиден; E — модуль Юнга; $c = \sqrt{E/\rho}$, $r = \sqrt{J/\rho F}$, где ρ — плотность материала, J — осевой момент инерции, F — площадь поперечного сечения балки.

Пусть балка является бесконечной. Такая идеализация допустима, если на ее границах находятся оптимальные демпферирующие устройства, то есть параметры граничного закрепления таковы, что падающие на него волны не будут отражаться. В [23] на основе точных решений модельных задач для упрощенных систем обосновано существование согласованных концевых гасителей различных типов колебаний, не дающих отраженных возмущений в системе. Это позволяет применять модель балки (1) без учета граничных условий, а вибрации, распространяющиеся по балке, рассматривать как бегущие изгибные волны. Вследствие сказанного система (1) сводится к одному уравнению относительно поперечного перемещения $W(x,t)$:

$$\begin{align*}
\frac{\partial^2 W}{\partial t^2} + \frac{\beta_1 \beta_2 E}{\alpha} \frac{\partial^2 W}{\partial x^2} + c^2 r^2 \frac{\partial^2 W}{\partial x^2} + \frac{1}{\alpha} \frac{\partial^2 W}{\partial t^2} + \frac{c^2 r^2}{\alpha} \frac{\partial W}{\partial x} \frac{\partial W}{\partial t} = 0.
\end{align*}$$
Легко видеть, что наличие поврежденности материала приводит к появлению в уравнении (2) слагаемых, эквивалентных тем, что описываются поведение балки, если бы она сжималась продольной силой (второе слагаемое) и в ее материале возникло внутреннее трение (третье и четвертое слагаемое).

Осуществим обозначение величин поперечного перемещения, поперечной координаты z и времени:

$$U = \frac{W}{W_0}, \quad z = x \sqrt{\frac{\alpha}{(c_1 \cdot r_e)}}, \quad \tau = \alpha \cdot t,$$

где W_0 — максимальное поперечное перемещение, при котором балку еще можно считать нерастяжимой. Тогда уравнение (2) преобразуется к виду:

$$\frac{\partial^2 U}{\partial z^2} + a \frac{\partial^2 U}{\partial z^2} + \frac{\partial^4 U}{\partial z^2} + \frac{\partial^4 U}{\partial \tau^2} = 0,$$

где $a = \frac{-\beta \beta}{\alpha^2 c_1^2 r_e^2} > 0$.

Исследуем далее на основе (4) влияние поврежденности материала на параметры изгибной волны, распространяющейся в балке. Будем отыскивать решение уравнения (4) в виде бегущей гармонической волны: $U = A \cdot e^{i(\omega t - k z)}$ (здесь A — комплексная амплитуда, ω — круговая частота, k — волновое число). Получим дисперсионное уравнение

$$\omega^2 + ak^2 - k^4 + i\omega^2 - i\omega k^4 = 0,$$

из которого следует, что волновое число должно быть комплексным:

$$k = k_1 + ik_2, \quad k_2 < 0.$$

(6)

Полагаем (6) в комплексное дисперсионное уравнение (5) и выделяем его действительную и мнимую части, придем к системе алгебраических уравнений:

$$\begin{cases}
-\omega^2 - ak_1^2 + ak_2^2 + k_1^4 - 6k_1^2 k_2^2 + k_2^4 - 4\omega k_1 k_2 + 4\omega k_1 k_2 = 0, \\
-2ak_2 k_2 + 4k_1^2 k_2 - 4k_1 k_2 - \omega^2 + 4\omega k_1 = 0.
\end{cases}$$

(7)

3. Аналит дисперсионных зависимостей

Поскольку аналитическое исследование системы (7) крайне затруднительно, для ее анализа применим численное моделирование, в результате которого получим частотные зависимости действительной — $k_1(\omega)$, и мнимой — $k_2(\omega)$, частей волнового числа (Рис. 1). Если в классической балке Бернулли–Эйлера у изгибных волн имеется одна дисперсионная ветка, которой отвечают $k_1 = \sqrt{\omega}$ и $k_2 = 0$ при любом значении ω (пунктирная линия на рисунке 1), то у волн в балке, описываемой уравнением (4), во всем частотном диапазоне существуют две дисперсионных ветвей как для k_1 (характеризует распространение волны), так и для k_2 (характеризует ее частотно-зависимое затухание).

Важным фактором для процеса распространения изгибной волны является частотная зависимость параметра $\gamma = k_2^2/k_1$ — отношения коэффициента затухания волны k_2 к постоянной ее распространения k_1. Из (7) находим явное уравнение зависимости параметра γ от частоты:

$$a^2 \omega^7 - 4m \gamma^6 - 2(\omega^2 a^2 + 8a^2 - 4m)^2 - 4n \gamma^2 + a^2 \omega^5 = 0,$$

где для сокращения записи введено обозначение $m = a^2 + 4\omega^2 (1 + \omega^2)^2$. Зависимость изображена на рисунке 1 (см. линию 3). Из рисунка видно, что для нижней по k_1 дисперсионной ветви во всем частотном диапазоне спределиво неравенство $\gamma > 1$, следовательно, здесь преобладает затухание, и бегущих изгибных волн не существует. Для верхней по k_1 дисперсионной ветви $\gamma < 1$ во всем частотном диапазоне, следовательно, здесь имеют место бегущие затухающие изгибные волны.
Динамика зависимости $\gamma(\omega)$ при различных значениях параметра a изображена на рисунке 2. Координаты точки максимума нижней ветви кривой зависят от значений a и определяются из решения системы уравнений. Производная $\gamma'(\omega)$ обращается в нуль на кривой

$$a^2\gamma^4 + 2\left(a^2 - 8(3\omega^2 + 1)(\omega^2 + 1)\right)\gamma^2 + a^2 = 0.$$

(9)

Совместное решение уравнений (8) и (9) позволяет найти координаты точки максимума $(\omega_{\max}, \gamma_{\max})$ при фиксированном значении a. При увеличении значения a кривая приближается к асимптоте, а точка максимума сдвигается в направлении увеличения частоты и коэффициента затухания (см. Рис. 3).
На рисунке 4 показаны зависимости от постоянной распространения \(k_1 \) фазовой — \(v_{ph} = \omega/k_1 \), и групповой — \(v_{gr} = \partial \omega/\partial k_1 \), скоростей изгибной волны. Штриховой линией на рисунке отображен линейный рост в зависимости от \(k_1 \) фазовой и групповой скоростей изгибных волн, распространяющихся в классической балке Бернулли—Эйлера.

На рисунке 5 представлена зависимость фазовой скорости от частоты \(v_{ph}(\omega) \) при фиксированном значении параметра \(a \).

4. Учет геометрической нелинейности

Рассмотрим случай распространения по волне интенсивных вибраций, когда уже нельзя ограничиться изучением гармонических или квазигармонических процессов, а необходимо учитывать широкополосность изгибных волн. Примем во внимание геометрическую нелинейность балки (то есть нелинейную связь деформации и перемещения), считая при этом, что средняя линия балки остается нерастяжимой.

Система уравнений (1) в этом случае примет вид:

\[
\frac{\partial^3 W}{\partial \tau^3} + c_1^2 r^2 \frac{\partial^4 W}{\partial \tau^4} + \frac{c_1^2}{2} \frac{\partial}{\partial \chi} \left(\frac{\partial W}{\partial \chi} \right)^3 = \beta_1 \frac{\partial \Psi}{\partial \chi},
\]

и может быть сведена к одному уравнению относительно поперечного перемещения:

\[
\frac{\partial^3 W}{\partial \tau^3} - \frac{\beta_1 E}{\alpha} \frac{\partial^3 W}{\partial \chi^3} + c_1^2 r^2 \frac{\partial^4 W}{\partial \chi^4} + \frac{1}{\alpha} \frac{\partial^2 W}{\partial \tau^2} + \frac{c_1^2}{2} \frac{\partial^3 W}{\partial \chi^3} \frac{\partial}{\partial \tau} + \frac{c_1^2}{2 \alpha} \frac{\partial^2 W}{\partial \chi^2} \frac{\partial}{\partial \tau} \left(\frac{\partial W}{\partial \chi} \right)^3 = 0.
\]

Вводя, как и выше, следующие переменные: \(U = \frac{W}{W_0} \), \(z = x/r_0 \), \(\tau = c_1 t/r_0 \), запишем уравнение (11) в безразмерном виде:

\[
\frac{\partial^3 U}{\partial \tau^3} + a_1 \frac{\partial^2 U}{\partial z^2} + a_2 \frac{\partial^2 U}{\partial \tau^2} + a_3 \frac{\partial^3 U}{\partial z^2} \frac{\partial}{\partial \tau} + a_4 \frac{\partial^2 U}{\partial z^2} \frac{\partial}{\partial \tau} \left(\frac{\partial U}{\partial z} \right)^3 = 0,
\]

где \(a_1 = -\frac{\beta_1 E}{\alpha c_1^3} \), \(a_2 = \frac{c_1}{\alpha r_0} \), \(a_3 = \frac{c_1}{\alpha r_0} \).

Будем искать решение уравнения (12) в классе стационарных волн:

\[
U = U(\xi),
\]

где \(\xi = z - V\tau \) — бегущая координата, \(V = \text{const} \) — скорость волны. При малых временах релаксации \(T \to 0 \) (то есть при \(\alpha \to \infty \)) коэффициент \(a_1 \to 0 \). Предположим, что \(\beta_1 \beta_2 \sim \alpha \). Тогда, при подстановке (13), уравнение (12) сводится к уравнению Дуффинга [24]:

\[
\frac{d^4 \theta}{d\xi^4} + m_0 \dot{\theta} + m_0 \theta^3 = 0.
\]
Здесь: $\theta = \frac{dW}{d\xi}$ — угол поворота поперечного сечения балки; $m_1 = a_1 + V^2$; $m_2 = -a_2/2$.

О возможности существования нелинейных стационарных изгибных волн можно судить по знакам коэффициентов m_1 и m_2, при этом первый коэффициент всегда положителен ($m_1 > 0$), а второй всегда отрицателен ($m_2 < 0$).

На фазовой плоскости $\left(0, \frac{d\theta}{d\xi}\right)$ уравнения (14) точка (0,0) является устойчивым положением равновесия типа «центр», а точки $\left(\pm \frac{m_1}{m_2}, 0\right)$ — неустойчивые положения равновесия типа «седло» (Рис. 6). Фазовый портрет показывает, что в балке могут существовать как периодические волны (им соответствуют движения по фазовым траекториям вокруг устойчивого положения равновесия), так и единицённая стационарная волна (движение по сепаратрисе, идущей из «седла» в «седло»).

Периодическая волна описывается эллиптическим синусом [24], форма которого близка к меандру (Рис. 7)

$$\theta = A \text{sn}(k\xi, S),$$

где A — амплитуда волны, $k = \sqrt{\frac{2m_1 + m_2 A^2}{2}}$ — волновое число, $S^2 = \frac{m_2 A^2}{2m_1 + m_2 A^2}$ — квадрат модуля эллиптической функции, изменяющийся в интервале $0 \leq S^2 \leq 1$.

Через параметры исходной задачи амплитуда и волновое число выражаются следующими соотношениями:

$$A = \sqrt{\left[4 - \left(\frac{-r \beta E}{\alpha c^2}\right)^2 + V^2\right]r^2 - S^2 \left[W_0^2 \left(1 + S^2\right)\right]},$$

$$k = \sqrt{\frac{-r \beta E}{\alpha c^2} + V^2} \left[1 + S^2\right].$$

(16) (17)
Уединенная стационарная волна имеет форму перепада (кинка) (Рис. 8) и описывается гиперболическим тангенсом:

$$\theta(\xi) = A^{(c)} \operatorname{th} \left(\frac{\xi}{\Delta} \right),$$ \hspace{2cm} (18)

где $A^{(c)}$ — амплитуда волны, Δ — ее ширина:

$$A^{(c)} = \pm \sqrt{2 \left(\frac{\beta_1 \beta_2 E}{\alpha c_r^2} + V^2 \right) r^2 / W_0^2},$$ \hspace{2cm} (19)

$$\Delta = \sqrt{2 \left(\frac{\beta_1 \beta_2 E}{\alpha c_r^2} + V^2 \right)}.$$ \hspace{2cm} (20)

Из выражений (16) и (19) следует, что амплитуда периодической волны — A, и амплитуда уединенной волны — $A^{(c)}$, увеличиваются с ростом параметра поврежденности материала. В свою очередь, длина периодической волны $\lambda \sim 1/k$ (см. (17)) и ширина уединенной волны Δ (см. (20)) с ростом параметра поврежденности уменьшаются.

Заметим, что отношение амплитуды стационарной волны к волновому числу является величиной постоянной:

$$\frac{A}{k} = \frac{2r_S}{W_0} = \text{const},$$ \hspace{2cm} (21)

определяемой только радиусом инерции поперечного сечения балки. Примечательно, что произведение амплитуды волны на её ширину тоже является постоянной величиной:

$$A^{(c)} \Delta = \frac{2r_d}{W_0} = \text{const}.$$ \hspace{2cm} (22)

При $S = 1$ выражения (21) и (22) тождественны, что очевидно, поскольку при этом значении эллиптический синус переходит в гиперболический тангенс. Для балки кругового поперечного сечения осевой радиус инерции равен половине радиуса. Соотношение (22) в этом случае можно переписать в виде: $2A^{(c)} \Delta = d/W_0$, где d — диаметр балки.

Важно, что физическая реализуемость условия $\beta_1 \beta_2 \sim \alpha$ остается недоказанной. Однако рассмотрение этого случая позволило получить точные аналитические решения в виде соотношений (15) и (18), которые в дальнейшем можно использовать в качестве порождающих решений (первого приближения) при исследовании нелинейного уравнения (12).

5. Заключение

По мнению авторов данной работы, разрабатываемый подход, позволяющий сформулировать и решить самосогласованную задачу, включающую в себя уравнение динамики балки и кинетическое уравнение поврежденности ее материала, может найти применение при разработке методик неразрушающего акустического контроля материалов и элементов конструкций.

Работа выполнена при поддержке РФФИ (проект № 19-38-90282).

Литература

1. Качанов Л.М. Основы механики разрушения. М.: Наука, 1974. 312 с.
2. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
3. Maugin G.A. The thermomechanics of plasticity and fracture. Cambridge University Press, 1992. 369 p.
4. Коллинз Дж. Повреждение материалов в конструкциях. Анализ, предсказание, предотвращение. М.: Мир, 1984. 624 с.
5. Махнутов Н.А. Деформационные критерии разрушения и расчет элементов конструкций на прочность. М.: Машиностроение, 1981. 272 с.
References

1. Kachanov L.M. Introduction to continuum damage mechanics. New York, Springer, 1986. 140 p.
2. Rabotnov Yu.N. Creep problems in structural members. Amsterdam, North-Holland Publishing Company, 1969. 836 p.
3. Maugin G.A. The thermomechanics of plasticity and fracture. Cambridge University Press, 1992. 369 p.
4. Collins J.A. Failure of materials in mechanical design: Analysis, prediction, prevention. 2nd Edition, John Wiley & Sons, 1993. 654 p.
5. Makhotin N.A. Deformatsionnye kriterii razrusheniya i raschet elementov konstruktisy na prochnost’. [Deformation criteria of fracture and calculation of construction elements for strength], Moscow, Mashinostroyeniye, 1981. 272 p.
6. Bondar’ V.S. Neuprugost’. Varianty teorii [Inelasticity. Theory options], Moscow, Fizmatlit, 2004. 144 p.
7. Volkov I.A., KorotikkhYu.G. Uravneniya sostoyaniya vyazko-ugprugoplasticheskih sred s povrezhdennyami [Equations of state of viscoelastic-plastic mediums with damage], Moscow, Fizmatlit, 2008. 424 p.
8. Volkov I.A., Igumnov L.A. Vvedenie v kontinuvm. naupy mehaniku povrezhdennoy sredy [Introduction to the continuum mechanics of a damaged medium], Moscow, Fizmatlit, 2017. 304 p.
9. Lokoshchenko A.M. Polzuchest’ i dilit’sya prochnost’ metallov [Creep and durability of metals], Moscow, Fizmatlit, 2016. 504 p.
10. Klyuyev V.V. (ed.) Nerazrushayushchij kontrol’ [Nondestructive testing. Handbook in 7 volumes, Vol. 3: Ultrasound testing], Moscow, Mashinostroyeniye, 2004. 864 p.
11. Uglov A.L., Erofeev V.I., Smirnov A.N. Akusticheskiy kontrol’ oborudovaniya pri izgotovlenii i ekspluatatsii [Acoustic control of equipment during its manufacture and operation], M.: Nauka, 2009. 280 p.
12. Erofeev V.I., Nikitina E.A. Localization of a strain wave propagating in damaged material. J. Mach. Manuf. Reliab., 2010, vol. 39, pp. 559-561. https://doi.org/10.1134/S1052618810060087
14. Erofeev V.I., Nikitina E.A., Sharabanova A.V. Wave propagation in damaged materials using a new generalized continuum. *Mechanics of generalized continua. One hundred years after the Cosserats*, ed. G.A. Maugin, A.V. Metrikine. Springer, 2010, P. 143-148. https://doi.org/10.1007/978-1-4419-5695-8_15

15. Erofeev V.I., Nikitina E.A., Smirnov S.I. Acoustoelasticity of damaged materials. *Kontrol’. Diagnostika – Control. Diagnostics*, 2012, no. 3, pp. 24-26.

16. Stulov A., Erofeev V. Frequency-dependent attenuation and phase velocity dispersion of an acoustic wave propagating in the media with damages. *Generalized Continua as Models for Classical and Advanced Materials*, ed. H. Altenbach, S. Forest, Springer, 2016, P. 413-423. https://doi.org/10.1007/978-3-319-31721-2_19

17. Dar’enkov A.B., Plechkov A.S., Erofeev V.I. Effect of material damage on parameters of a torsional wave propagated in a deformed rotor. *Procedia Engineering*, 2016, vol. 150, pp. 86-90. https://doi.org/10.1016/j.proeng.2016.06.722

18. Erofeev V.I., Lisenkova E.E. Excitation of waves by a load moving along a damaged one-dimensional guide lying on an elastic foundation. *J. Mach. Manuf. Reliab.*, 2016, vol. 45, pp. 495-499. https://doi.org/10.3103/S1052618816060054

19. Erofeev V.I., Leonteva A.V., Malkhanov A.O. Influence of material damage on propagation of a longitudinal magnetoelastic wave in a rod. *Vychisl. mekh. splosh. sred – Computational Continuum Mechanics*, 2018, vol. 11, no. 4, pp. 397-408. https://doi.org/10.7242/1999-6691/2018.11.4.30

20. Antonov A.M., Erofeev V.I., Leonteva A.V. Influence of material damage on Rayleigh wave propagation along half-space boundary. *Vychisl. mekh. splosh. sred – Computational Continuum Mechanics*, 2019, vol. 12, no. 3, pp. 293-300. https://doi.org/10.7242/1999-6691/2019.12.3.25

21. Brikkel D.M., Erofeev V.I., Nikitina E.A. Influence of material damage on the parameters of a nonlinear longitudinal wave which spread in a rod. *IOP Conf. Ser.: Mater. Sci. Eng.*, 2020, vol. 747, 012053. https://doi.org/10.1088/1757-899X/747/1/012048

22. Bolotin V.V. (ed.) *Vibratsii v tekhnike: spravochnik: v 6 tomakh. T. 1. Kolebaniya lineynykh sistem* [Vibrations in the technics. Handbook in 6 volums. Vol. 1: Oscillations of linear systems]. Moscow, Mashinostroyeniye, 1978. 352 p.

23. Vesnitskiy A.I. *Izbrannyye trudy po mekhanike* [Selected works on mechanics]. Nizhny Novgorod, Nash Dom, 2010. 248 p.

24. Moiseyev N.N. *Asimptoticheskiye metody nelinjeynoy mekhaniki* [Asymptotic methods of nonlinear mechanics]. Moscow, Nauka, 1981. 400 p.

Поступила в редакцию 16.04.2020; после доработки 01.05.2020; принята к опубликованию 02.05.2020