Targeting USP47 overcomes tyrosine kinase inhibitor resistance and eradicates leukemia stem/progenitor cells in chronic myelogenous leukemia

Supplementary Information

Contents

Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6
Supplementary Figure 7
Supplementary Figure 8

Supplementary Table 1
Supplementary Table 2
Supplementary Table 3
Supplementary Table 4
Supplementary Fig. 1 USP47 is regulated by the RAS/ERK pathway. a The mRNA expression of different USPs in vector (32D^{MIGIR}) and P210^{BCR-ABL} stably transfected 32D (32D^{BCR-ABL}) cells by real-time quantitative PCR (n=3 biologically independent samples per group). Data are mean ± s.d., two-sided Student’s t-test. ***, *p*<0.0001. b-c Primary CML cells, K562, and KBM5^{T315I} cells were treated with indicated inhibitors for 24 hours, and the indicated proteins were detected by Western blot. Source data are provided as a Source Data file.
Supplementary Fig. 2 USP47 promotes CML cell survival in vivo.

a-c USP47 knockdown K562 cells (ShUSP47-2) and control K562 cells (Ctrl ShRNA) (8×10^6) were subcutaneously transplanted into nude mice. Tumor sizes at day 21 are shown (a), and tumor volumes were measured every 4 days (b). USP47 expression was measured by Western blot in tumor cells (c). Data are mean ± s.d., *P* values were analyzed by two-way analysis of variance (ANOVA), ****, *p*<0.0001.

d The expression of indicated proteins was examined by immunohistochemistry in tumor tissues. Scale bar: 50 μm. Source data are provided as a Source Data file.
Supplementary Fig. 3 Usp47 knockout mice have normal hematopoietic system.

Number of total white blood cells, red blood cells, granulocytes, lymphocytes, and platelets were analyzed with a blood analyzer in the PB of the *Usp47*+/+ (n=12) and *Usp47*−/− (n=13).
mice. WBC, total number of white blood cells; RBC, total number of red blood cells; PLT, platelets; HGB, hemoglobin. b, c Percentages and number of different blood cells in PB (b) and BM (c) were evaluated. (n=3 biologically independent samples per group) B220, B cells; CD3, T cells; CD4, helper T cells; CD8, cytotoxic T cells; G/M (Gr-1/Mac-1), myeloid cells; Ter119, erythroid cells. Data are mean ± s.d., two-sided Student’s t-test. ns, not significant. Source data are provided as a Source Data file.
Supplementary Fig. 4 *Usp47* knockout does not affect the homing efficacy of CML LSKs but eliminates GFP*+*LSKs in CML mice. a Number of GFP*+*Gr-1*+* cells was measured in PB at different times after BCR-ABL*T315I* retrovirus transplantation (n=6 biologically independent samples per group). Data are mean ± s.d., two-sided Student’s t-test. **, p<0.01; ***, p<0.001;
ns, not significant. **Usp47−/− and Usp47+/+ BM cells were infected with BCR-ABL retrovirus for 48 hours, and the percent of GFP+LSK cells were measured by FACS. The infected BM cells were injected into lethally irradiated Usp47+/+ mice. GFP+LSK cells were monitored by FACS in BM after 18 hours. The homing efficacy was calculated by the ratio of the percentage of GFP+LSK cells ([GFP+LSK] after transplantation 18 h/[GFP+LSK] before transplantation) in BM (n=3 biologically independent samples per group). Data are mean ± s.d., two-sided Student’s t-test. ns, not significant. At 35 days after BCR-ABL^{T315I} retrovirus transplantation, the number of GFP+LSKs in BM was examined by FACS (n=3 biologically independent samples per group). Data are mean ± s.d., two-sided Student’s t-test. **, p<0.01. Source data are provided as a Source Data file.
Supplementary Fig. 5 USP47 interacts with and stabilizes YB-1. a The indicated proteins were detected by Western blot in USP47 stably knockdown K562 cells. b K562 cells were treated with P22077 (5 μM) or DMSO for 6 hours first. The cells were then treated with cycloheximide (CHX, 10 μM) for different times; the indicated proteins were determined by Western blot. c The mRNA expression of USP47, YB-1, and POLB in USP47 stably knockdown K562 cells compared to the control cells (n=3 biologically independent samples per group). Data are mean ± s.d., two-sided Student’s t-test. ns, no significant. d The expression of YB-1 in BM mononuclear cells from CML patients (n=41) compared to normal BM CD34+ cells (n=8). Data are mean ± s.d., two-sided Student’s t-test. ns, no significant. Source data are provided as a Source Data file.
Supplementary Fig. 6 YB-1 and USP47 regulate DNA damage repair in CML cells.

a Time course analysis of the USP47 knockdown-induced DNA damage response by Western blot in KBM5^T315I cells.

b YB-1, PCNA, and TOPO IIα mRNA levels after YB-1 knockdown at day 7 in KBM5^T315I and K562R cells (n=3 biologically independent samples per group). Data are mean ± s.d., P values were analyzed by one-way analysis of variance (ANOVA). *, p<0.05; **, p<0.01.

c DNA damage protein expression was measured by Western blot after YB-1 knockdown in the KBM5^T315I cells.

d In USP47 or YB-1 silenced KBM5^T315I cells, γH2AX foci were detected by immunofluorescence staining. Scale bars = 7.5 μm.

e γH2AX expression was measured by Western blot after POLB knockdown in the K562 and
KBM5^{T315I} cells. f Overexpress USP47 in YB-1 and/or POLB depleted K562 cells, then the indicated proteins were detected by Western blot. g After transfected with USP47 specific shRNA or control shRNA in K562 cells for 48 hours, then the cells were treated with AZD6738 (50 nM or 2500 nM) for 12 hours. Cell viability was measured by CCK-8. (n=3 biologically independent samples per group) Data are mean ± s.d., P values were analyzed by one-way analysis of variance (ANOVA). *, p<0.05; **, p<0.01. Source data are provided as a Source Data file.
Supplementary Fig. 7 P22077 targets USP47 and shows toxic effects on CML cells.

Protein level of USP47 and YB-1 in primary CML cells (left) and their correlations were shown (middle). Primary CML cells were treated with P22077. The IC50 value was measured. The correlation between USP47 level and IC50 to P22077 was shown (right) (n=3 biologically independent samples per group). **, p<0.01. P value was analyzed by Pearson’s r correlation test, r=0.9733, r²=0.9473.

b P22077 (30 mg/kg/day) or vehicle were given to mice transplanted with primary CML-R cells by intraperitoneal injection (n=6 biologically independent samples per group) from day 30 to day 45. ***, p<0.001. P value was analyzed by Mantel–Cox-log-rank test.

c KBM5T315I cells were treated with P22077 (10 μM) with or without MG132 (10 μM) for 8 hours, then proteins were extracted and subjected to Western
The band intensity is shown by histogram (n=3 biologically independent experiments). Data are presented as mean ± s.d. P values were analyzed by one-way analysis of variance (ANOVA), **, p<0.01. d USP7 or USP10 was silenced in KBM5T315I cells with a retroviral transduction system, and the expression of YB-1 protein was examined by Western blot. e USP7 or USP10 stably-knockdown K562 cells were treated with different concentrations of P22077 for 48 hours, the cell viability was measured by CCK8 assay (n=3 biologically independent samples per group). Data are mean ± s.d. P values were analyzed by one-way analysis of variance (ANOVA). *, p<0.05, **, p<0.01. f Wild-type female C57BL/6 mice (6 weeks, n=5 biologically independent samples per group) were treated with P22077 (30 mg/kg) or control solvent for 14 days. The mice were weighed every two days. Source data are provided as a Source Data file.
Supplementary Fig. 8 Gating strategy for human leukemia stem/progenitor cells (CD45+CD34+CD38⁻) in the BM of B-NDG mice. The gating strategy corresponds to Figure 7i.
Supplementary Table 1 The information of CML patients

ID	Age (years)	Gender (F/M)	Imatinib-resistant	2nd TKIs-resistant
CML-1	52	F	Yes	No
CML-2	60	M	No	No
CML-3	68	M	Yes	No
CML-4	58	M	No	No
CML-5	60	M	No	No
CML-6	57	M	No	No
CML-7	53	F	No	No
CML-8	57	F	No	No
CML-9	59	M	No	No
CML-10	55	M	No	No
CML-11	60	M	Yes	Yes
CML-12	61	M	No	No
CML-13	56	F	No	No
CML-14	57	F	No	No
CML-15	53	M	No	No
CML-16	58	M	Yes	Yes
CML-17	67	M	No	No
CML-18	65	M	No	No
CML-19	65	M	No	No
CML-20	70	M	Yes	No
CML-21	66	M	No	No
CML-22	71	M	No	No
CML-23	70	M	No	No
CML-24	63	M	Yes	Yes
CML-25	59	M	No	No
CML-26	56	F	No	No
CML-27	63	F	Yes	No
CML-28	73	M	No	No
CML-29	68	M	No	No
CML-30	73	M	No	No
CML-31	61	F	Yes	No
CML-32	63	M	No	No
CML-33	59	M	No	No
CML-34	57	F	No	No
CML-35	54	M	Yes	No
CML-36	65	F	Yes	No
CML-37	57	M	No	No
CML-38	64	M	No	No
CML-39	65	F	No	No
CML-40	68	M	No	No
CML-41	73	M	No	No
Supplementary Table 2. ShRNA target sequences

	USP47 shRNA		BCR-ABL shRNA		YB-1 shRNA		USP7 shRNA		USP10 shRNA		STAT5 shRNA		POLB shRNA					
USP47-shRNA-1	GAATCTGTCTTGAAACCAA		BCR-ABL-shRNA	AGCAGATCGAGACCATCTT														
USP47-shRNA-2	GCAATGACTTGCTATTTGAA				YB-1-shRNA-1	GGTTCACCCACCTTACTACAT					YB-1-shRNA-2	GGTCATCGCAACGAAGGTT						
USP7-shRNA-1	TGCGAAATCTGCCATGGAA				USP7-shRNA-1	TGCGAAATCTGCCATGGAA					USP7-shRNA-2	CTCAGAACCCCTGTGATCAA						
USP10-shRNA-1	CTCTCTTTTAGTGCTCTTTT				USP10-shRNA-1	CTCTCTTTTAGTGCTCTTTT					USP10-shRNA-2	CCTATGTGGAAACTAAGTA						
STAT5-shRNA-1	GCCATGAATCGCTTCTCTTT				STAT5-shRNA-1	GCCATGAATCGCTTCTCTTT					STAT5-shRNA-2	GCCATGACCTACTCATTAAC						
POLB shRNA-1	TACCCACACAAAATAAAGAG						POLB shRNA-1	TACCCACACAAAATAAAGAG					POLB shRNA-2	CTGATATCAATTCTCTGTG				
Supplementary Table 3. Real-time PCR primer sequences for DUBs

Name	Forward (5’-3’)	Reverse (5’-3’)
USP1	AACTGCCATCATATTATACGT	TTGTGCTCCATTCTTCTTA
USP2	TGCTGAGACCCCGACATCCT	TGGGGTCTATCCGGGTAGCTA
USP3	CTGTTATCGCTGTGATGATG	CCAAGTCTCTGTAAGTGTCTT
USP4	GTCTTTGTGAACCTCCTATG	CAGATTCTTTGCTCATCAT
USP5	TGGCTATTGGTGTTGGAAG	GGCAATCTCCAGGTAATT
USP6	ATGTGGAACCTGAAGGAA	GCAATGATGTAACCTGTA
USP7	GCAAGTGCGAGATAGTCGAGGAGG	CCATGGTCTGAGAGGCTCTGAA
USP8	ACTATACACAATGATGACGGATA	TGGACTGATGGCTTCTCTC
USP9X	AGGTGGTGGGATGCTTAT	GAGGATCTGTTGTATGATAG
USP9Y	CTCAGTATACACAGAATAAATC	TCTTCATGCCCCTCTAAA
USP10	GAATCTGTTCCAAGTTATAC	CCACCAGTCTTCCTCAA
USP11	AGTAGAACTGCTGCTTGT	ATAGAATCGGTATGCTGGA
USP12	TGCGTATAAGAGTGCAACCT	GAGTGGCTATGCTATGGA
USP13	ACGAGCAACGAAATAAATC	TTCCTCCATCTCAATCAGA
USP14	AAATGGCTTCCGCGCAGTAT	TCCACCTTCGCGCAACT
USP15	GACAGGTATTAGTGATAGA	GATAGAGATGAAGGAGAG
USP16	AGAAACCTGAGTTAAGTGATG	CAATCTTGCTGCTCTCTC
USP17L30	AAACAAGATTGCCAAGAATG	TAGAGGACATAGACGAGAG
USP18	AATGGTTCTGCCTCAATG	CCAGTGATGTTAGGATT
USP19	TGGACCTGAGCAAGTTCTC	ATAGTGGTGGATGACAGCATAG
USP20	TATGTTGGCTGCGGAGA	AGGTTCACCGGTCAAGTTGT
USP21	AGAACCTGAGTTAAGTGATG	CAATCTTGCTGTCTCCTC
USP22	GAGAGCAGGATGAATGGA	AACAGCAACAGGGAATAC
USP24	TGAGATGCGCAGTATTAGA	AAGTATCCAGGCAAGTAA
USP25	TCTCTCTTGAGCTGATATTG	TTCTGTTGTGCTGTTGAA
USP27X	ATGTTGTAAGGACTATGATATGAC	GAGGTTGAGGCTTGTAAT
USP28	AATGCTGGAACATTTGGA	GGAAGATTCAGTAAAGAGAT
USP29	ATGCTGTTCTCAAGGTAG	AACTCTTTCTGTTACACAT
USP30	ACTGATGATGAGGCTTTAG	TTCCAATGACGAGGTAAT
USP32	ATGTTGGAACCTGAGAAGA	GCAATGATGTAACCTGTA
USP34	GTTTGGACTATGCTAAT	ACTGAGAAGGATTGATT
Gene	1st DNA Segment	2nd DNA Segment
-------	--------------------------------------	--------------------------------------
USP35	ATTAGCAGGATGATTGAC	TGAACCTTCTTAACACGAG
USP37	CATCAGTGTGTCAGTCA	CTCCAGGTCATTGTAAGTAA
USP38	CAGCATATTCCTCTCAG	ATAGCCAGTCAATCATTC
USP39	GGCATCAGTGAAGAAGAA	AAGATTAGATATGGAGGAGCAACT
USP40	CTCTTCTCAGTTATTATACAC	CAATCTCTTCTTCACTCT
USP41	AATGGTTCTGCTCTCAATG	CCAGTGTTAGTGGAGTGTGTTGGA
USP42	ATCAATGATTCACACGATAGTAG	TTGATGCTCCACACACTTA
USP43	CTGCCTCTGCTACTGTTAA	GCCACATATGTCCACTAT
USP44	CATTCCTCAGTGTTGACTCT	TGTGTGCTGAAAGTCTCT
USP45	GCACATATTCCTCAGTCTGTAA	GCGTGAATAAGTGGAGTCTAAGTA
USP46	AAGCAAGCAACATCTCGAAT	CCTGGAACATACATACCATCAAA
USP47	AGGGTTGTTGATTACTCTGAC	GCTACTTCTCTTGTTGGAAGGA
USP48	GCTTTCTACTTCTCTCTGTAA	ATCAATGATTCACCCCTATT
USP49	GCTTGTGACCAGTGAAC	GAGGTAGTCTGAGATCATTACA
USP50	GAGATTACACTGAGACAT	AGACTTCTCCTTCCTTAGG
USP51	AACAGCAAGCACATGAAACAC	CCTGGAACATACATACATCAAA
USP52	AGGGTTGTTGATTACTCTGAC	GCTACTTCTCTTGTTGGAAGGA
USP53	GCTCCTCAGTAACACGATT	CTCATTGACAGGAGTAGAAGA
USP54	ATTCTTCTCCTTCTCTAATAG	CTTACTCTGTTGATACTGTCT
CYLD	AGGCTTGGAGATAATGATTGG	GCAGAATAAGGTTGAGTCTAAGTA
USPL1	CTCCACATAAGCCTCAGA	TCCACCTCAATGCATAGAATAGA
UCHL1	CAAAGAGTGTAGTCTCTAAAGTGTAA	GCGTGAATAAGTGGAGTCTCCTAA
UCHL3	GGCAATTTCCTTCTGATGTAT	TCTCCCTCTTCTTCTCTGCT
UCHL5	TTTAATAATGCTTGTGCTACTC	CGAATATGATGCTCTCTCTAAT
BAP1	TATCTGTCTGCTTACATG	CAATATCATCATCATTCAATAC
ATXN3	AACATTGCCTGAAATACACT	TAGTAACTCTCCTCTTCTG
ATXN3L	ACCAATGAGAGAAGATGAAC	GAAGCAGGAGTTGACACAT
OTUB1	AGGGATGCTGCTGAGATGAC	CTTGCGGAGATGAGTACAGA
OTUB2	GAGGAGGCAAGATGTTCAAGAA	ACAGTGCCATCTCCTCTCT
OTUD1	AGATGCTGATGATGATA	TAATGAATCATGTTAGACA
OTUD3	TCTGAAAGACAGCCTGAGAG	CGAAGCAGGCAATTATTG
OTUD4	ATCCAAGCAGTCTTATAATCA	ACTTCTCCTCTCCTACAT
HIN1L	GAAGGATTATTAGGAGGAG	AGTTACTGTTGAAGAGAGA
OTUD5	GGACTATCTGATGAAAGAATGC	TCCGCTTTCTGTTAATGTA
Gene	Forward Sequence	Reverse Sequence
-------	-----------------	------------------
OTUD6A	AGTAGCATTGAATCTGTC	ACTCCATTTCTCTCTCT
OTUD6B	CAAGAATGACAAGAAGAG	TAACAGCAACAGAATCTA
YOD1	ATACAAGACAGTAAGAA	TATCATCATTAGAGGAGAA
A20	AATGAGATGAGGAGAAG	ATTAGATGAGATGAGTTTG
OTUD7A	AGCAATTCTAACAGCAATAAC	GTCTTGCTCTTCTCTTG
OTUD7B	AGCAGACACACACAGAATA	TCAGTTCATTTCCACTCCTT
TRABID	GACGTATGGCTCTTCTCTT	TGATGACTTTGTATGCTCTATG
VCP1P1	TGGAGTAGTAACCAATTGAGA	TGAAGCCTGAATAGAAGA
BRCC3	GATTACTATGGTCACCTTG	CATCATCCTCATCAATAG
COPS5	ACTCAGATGCTCAATCAG	TGCGGATATTGCTTCTTG
COPS6	CCCTCTTCTGAAGTTGA	GCCTCTCCATTGATTATAT
PSMD14	CAATGCTAATATGATGCTTTA	GATATGAGAATGAAATGAT
PSMD7	AAGAATAGTTGGCTGGTA	CGGAATTAGGACAGTATCT
AME7	GAGTTGAGATTATCCGAATG	AGAGCGTGATATACTTG
AME7-LP	ATGGGAAGGTAGAGGAGAAT	TTGATAGGAACAGTGAGT
MPND	GCACGCAACACAAAGTC	TCGGACTAGGAGAAT
MYSM1	ATTGTATTGGACGGATTC	GTTGGATGCTTCTACTG
PRPF8	GGATGAGACTGGGAATGAA	TGGTGTGGAAGATGG
EIF3F	TTCCTGATGAGCGCTGGTAA	GGTCATTGATGTTGCTT
EIF3H	GATGGACAGATGGATGAA	GACGCTGCTGATACTG
JOSD1	GTGGATTGGAGGCGGAGAG	AGCAGGAGTTCAGAGT
JOSD2	TGAGATCCTGCAAAGAGGT	ATCAGATTGACATCATAG
JOSD3	TTGACAGTCGATGATA	TTCAGTAAATATCTCCTC
Supplementary Table 4. Real-time PCR primer sequences

Name	Forward (5’-3’)	Reverse (5’-3’)
BCR-ABL	CGGGAGCAGCAGAAGAAGTGT	CGAAAGGTTGGGGGTCATTTTC
hUSP47	GCTATGGGACTTGACTCT	CACTCTCATCATATTCACTATC
hYB-1	AAGTGATGGAGGCTGGCTGAC	TTCTTCATTCCGCTCTCTCTC
hPOLB	GTATTACTGTGGTTCTCTATT	TGGTGACTCATGGATTTGTC
hGAPDH	CTTAGCACCCCTGGCCAAG	TGGTCATGAGTCCTTCCTCAG
mUspl	GGAACACCGACGATGAAG	CACCGAGAATCATAATCC
mUsp2	AGAGACCTGGACTTGAGA	TGATTGGACACAGCATACA
mUsp3	TATTCCAAGTCAGTTCCAG	TCTCATCAAGTTCCCTCTA
mUsp4	TTGAAGGAGACCTTAATCG	ACACAGCCTATCCAAATTTC
mUsp6	GTCCCTACTGCTATGTCT	CTTGAAGTTGGCTCTATTACA
mUsp7	TGATGATGATCTGTCTGT	CAACTGCTGAGGAATATC
mUsp8	CAAGCAACACGCGGGAATTA	ACTTGCGGCTCTTGTATTACA
mUsp9x	GAGAGGATGGCTGAATGGAT	ACTGTGGTTGGATGAAGGCTAT
mUsp10	GATGGAAGTCAAAGAAGG	CACTGGCCTATGTATGATTAGG
mUsp14	TGGTCTACTGACTTCAA	GATTTTGATGACCTTAT
mUsp19	AAGAGGAAGAGAGAAGAGAAG	AAGACTGAATGACGGCTAT
mUsp36	GTGTGCTAAGTGAAGAAGAAGAAGA	AGAGTCAGGAGACTTGAGAT
mUsp47	TATCCAAAGTGTAGTGAAGAAGAAGA	ACTCTGCTCATATTCCTACT
mGAPDH	CTTAGCCCCCCTGGCCAAG	TGGTCATGAGCCTCTCCTCA

h=human, m=mouse