Comparative Study On Mechanical Behaviour Of Synthetic, Natural And Hybrid Composite Laminates.

N Rajamurugu¹, P Karthikeyan², A Aakash³, A Abhilash Meshak⁴, K. Ajithkumar⁵
¹,² Asst Prof, Department of Aeronautical Engineering, Apollo Engineering College, Chennai, India.
³,⁴,⁵ U.G Student, Department of Aeronautical Engineering, Apollo Engineering College, Chennai, India.
{n.rajamurugu, propkarthik.12, Aakash.anandan3330, meshakabi, ajithaeroak} @gmail.com.

Abstract. Composites play a significant role as an engineering material and their use has been increasing day by day due to their specific properties such as high strength to weight ratios, high modulus to weight ratio, corrosion resistance and wear resistance. In composite material matrix and fiber play an important role; as the load is taken by matrix and transmitted to the reinforcement. Reinforcement can be either synthetic or natural fiber. Manufacturing of synthetic fibers is harmful from the environmental point of view; hence recent research work is focused on the use of natural fiber as reinforcement. In this current work jute as natural fiber taken into account for reinforcement along with synthetic glass fiber along with LY556 Epoxy resin and HY951 hardener. Three types of composites materials were prepared such as Glass-Epoxy unidirectional, Jute-Epoxy, Glass & Jute Epoxy hybrid composite laminates had been prepared using hand lay-up process and the testing was done by using ASTM Standards. The major properties that govern the strength of composites materials are tensile strength, compressive strength, flexural strength, and vibration characteristics. The content of natural and synthetic reinforcement was found to be 60% and 40% respectively. The experimental results show that the Glass & jute Epoxy composites give the major withstanding capacity for tension and flexural test. Vibration test exhibits higher natural frequency, but in compression test Glass epoxy reflects its higher mechanical strength, whereas in compression test delamination occurs. The additional use of jute with glass reduces the cost and thus it is eco-friendly.

1. Introduction
Material science is an interdisciplinary field involving the properties of matter and its applications to various areas of science and engineering. It includes elements of applied physics as well as mechanical property, electrical engineering and civil. In material science rather than haphazardly looking for and discovering materials and exploiting their properties fundamentally so that new materials with the desired properties can be created. It involves relating the desired properties and relative performance of a material in a certain application to the structure of the atoms and phases in that material through
characterization. A composite material is a material made from two or more constituent materials with significantly different physical or chemical properties that, when combined, produce a material with characteristics different from the individual components. The individual components remain separate and distinct within the finished structure, differentiating composites from mixtures and solid solutions. The new material may be preferred for many reasons. Common examples include materials that are stronger, lighter or less expensive when compared to traditional materials. Typical engineered composites include reinforced concrete and masonry, composite wood such as plywood, reinforced plastics, such as fiber-reinforced polymers or fiberglas, ceramic and matrix composites, Metal Matrix composites and other advanced composites materials. Hybrid materials are composites consisting of two constituents at the nanometer or molecular level. Commonly one of these compounds is inorganic and the other one organic in nature. Thus, they differ from traditional composites where the constituents are at the macroscopic (micrometer to the millimeter) level. Mixing at the microscopic scale leads to a more homogeneous material that either show characteristics in between the two original phases or even new properties. Many natural materials consist of inorganic and organic building blocks distributed on the nanoscale. In most cases, the inorganic part provides mechanical strength and an overall structure to the natural objects while the organic part delivers bonding between the inorganic building blocks and/or the soft tissue. Typical examples of such materials are bone or nacre. The literature survey has to be conducted and as per our survey, we took a survey from the following paper. (1) Ramesh.et.al investigated on the hybrid composites and the effect of various parameters on the performance of the hybrid composites are subjected to mechanical testing, flexural and impact tests. The results indicated that the jute composite material shows maximum tensile strength and the jute composite material shows the incorporation of sisal – jute fiber with GFRP can improve the properties and as an alternate material for glass fiber reinforced polymer composites. (2) Boopalan.et.al made a comparative study on the mechanical properties of jute and sisal fiber-reinforced polymer composites and concludes that the mechanical properties of the jute fiber-reinforced composites are higher than the sisal fiber-reinforced composites. (3) M. Muthuvel.et.al investigated that the jute and glass fiber hybrid composite leads to the successful fabrication of Glass, Jute fiber and chopped fiber reinforced polyester composites with different fiber lengths is possible by simple hand lay-up technique. The mechanical properties of the composites like tensile, flexural and impact strength of the composites are also greatly influenced by the fiber lengths. (4) M Alamgir Kabir.et.al studied that with the increase of fiber loading the values of flexural strength and Charpy impact strength of composite material have been decreased. But the values of other mechanical properties remain almost the same. (5) Sanjay M R.et.al This experimental investigation on Jute - Glass Fiber Reinforced Polyester composites leads to the high tensile strength for the 50%-50% of glass & jute for flexural specimen 60%-40% of glass & jute shows higher flexural strength and for impact strength, 50%-50% of glass & jute shows higher impact energy. (6) Zhanh.et.al The tensile properties of the flax/glass fiber reinforced hybrid composites were improved with the increasing of glass fiber content. The interlaminar shear strength and the interlaminar fracture toughness of flax/glass fiber reinforced hybrid composites were higher than those of GFRP. (7) D. Dash.et.al Mechanical properties are decreased with decreasing in the total percentage of the reinforcement of the glass. (8) T. Munikenche Gowda.et.al concluded that although the mechanical properties of jute/polyester composites do not possess strengths and modules as high as those of other conventional composites, they can possess better strengths than wood composites and some plastics. (9) Satish Pujari.et.al explores the potentiality of jute &banana fiber composites, emphasizes both mechanical and physical properties and their chemical composition. The utilization and application of the cheaper goods in the high-performance appliances are possible with the help of this composite technology. (10) Md Rafiquzzaman .et.al. glass-jute fiber polymer composites were studied, results showed that by incorporating the optimum amount of natural fibers, the overall strength of glass fiber reinforced hybrid composites can be increased and cost saving of more than 30% can be achieved. The utilization and application of cheaper goods in higher performance appliances are possible with the help of this composite technology. Combining the higher properties of two different materials, lower manufacturing
cost, versatility, etc., Hence with this background, it is concluded that, the composites stand the most wanted technology in the fast-growing trend.

![Glass fiber](image1.png)
Figure 1.1. Glass fiber

![Jute fiber](image2.png)
Figure 1.2. Jute fiber

2 Experimental Study

The material used in the project is selected based on their properties. The materials are classified as synthetic and natural fibers based on their nature. Here we chose glass fiber as synthetic, jute as natural and Glass-Jute fiber composition as hybrid composites. Jute material shows high corrosive resistance and comparatively low cost. Glass material is also well known for its heat resistance and corrosive resistant properties, it shows high strength to less weight ratio, thus combining both the materials shows combined mechanical properties for the materials obtained. To manufacture the composites there are so many methods that are used currently some of the manufacturing procedures are mainly classified into two types: open mold and closed mold. In open mold, hand layup, spray up, and filament winding processes are used. In closed mold, vacuum bag molding, vacuum infusion processing, Resin transfer molding, compression molding, pultrusion molding, reinforced reaction injection molding, centrifugal casting, continuous lamination process are used. We selected the hand lay-up process because it is an easier process and a more effective one. The fabrication process includes unidirectional laminate; it includes the basic principle of hand lay-up process with the binding of epoxy resin; the process is done in three separate processes as Glass epoxy composites, Jute epoxy composites, and Glass-Jute epoxy composites. The fabrication of glass epoxy includes 12 plies of fiber mixed with 10:1 ratio of resin and binder, the geometry of jute epoxy includes 6 ply of jute fiber and the hybrid laminate is fabricated in the of 60 & 40% as 6 plies of jute fiber and 4 plies of glass fiber, thus the fabricated composite is set to dry for 4 days and it is bought for testing. The final fabricated plates were cut into required dimensions for testing.

![Hand lay-up Technique](image3.png)
Figure 2.1. Hand lay-up Technique
Table 2.1 Specimen Dimensions

Specimen	Glass-epoxy	Jute-epoxy	Glass & Jute epoxy
Tension test	100x20x3.2	100x20x5.4	100x20x6.3
Compression test	30x30x3.2	30x30x5.4	30x30x6.3
Flexural test	100x15x3.2	100x15x5.4	100x15x6.3
Vibration test	250x25x3.2	250x25x5.4	250x25x6.3

3 Testing Procedure
The various mechanical properties of the fabricated composites are carried out by different instruments for testing. The specimen was sized as per the ASTM standards for composite materials testing methods.
The Shimadzu AD-Xplus universal testing machine with stroke rate of 0.0005 to 1000 mm/min and top load cell of capacity up to 50KN.

Figure 3.1. Shimadzu AG-Xplus Universal Testing Machine

3.1 Tension Test
The tensile test was carried out by sizing the specimen as per the ASTM D3039 standard. Tensile testing is used to measure the force required to break a polymer composite specimen and the extent to which the specimen stretches or elongates to that breaking point. The specimen is loaded in the universal testing machine and load is applied until the specimen breaks. The maximum tensile load, tensile stress, displacements are noted and the stress-strain curve is generated.

Figure 3.1.1. Tensile Test Setup
3.2 Compression Test
The compression test was carried out by sizing the specimen as per the ASTM D3410 standard. The specimen is loaded in the universal testing machine and the compressive load is applied until the specimen breaks. The maximum compressive load, compressive stress, displacements are noted and the stress-strain curve is generated.

![Compression Test Setup](image)

Figure 3.2.1. Compression Test Setup

3.3 Flexural Test
The flexural or three-point bending test was carried out by sizing the specimen as per the ASTM D7264 standard. Testing of flexural properties of polymer matrix composites using a bar of rectangular cross section supported on a beam and deflected at a specified rate. The specimen is lied on the support span and the load is applied to the center by the loading nose producing three-point bending at a specified rate.

![Flexural Test Setup](image)

Figure 3.3.1. Flexural Test Setup

3.4 Vibrational Test
The vibrational test was carried out as per the ASTM standard. The accelerometer are placed on X and Y axis of the specimen and the test is carried out at each node. The natural frequency and the damping ratio is noted at each nodes.
4 Results And Discussion

4.1 Tension Test
The tensile test results shows that the glass-jute epoxy laminate has higher tensile load carrying capacity and maximum tensile stress.

Composite material	Maximum force(N)
Glass epoxy	2805.77
Jute epoxy	4977.84
Glass-jute epoxy	6953.42

Table 4.1.1. Experimental Values

Graph 4.1.1. Comparative Stress-Strain Curves For Tensile Test
4.2 Compression Test
The compression test results shows that the glass fiber laminate has the higher compressive load carrying capacity and stress.

Composite material	Maximum force(N)
Glass epoxy	11221.1
Jute epoxy	6657.24
Glass-jute epoxy	10762.9

Table 4.2.1. Experimental Values

![Graph 4.2.1. Comparative Stress-Strain Curves For Compressive Test](image1)

4.3 Flexural Test
The flexural test results shows that the glass-jute epoxy laminate has higher load carrying capacity and the glass epoxy has higher flexural modulus.

Composite material	Maximum force(N)
Glass epoxy	98.1808
Jute epoxy	204.285
Glass-jute epoxy	317.955

Table 4.3.1. Experimental Values

![Graph 4.3.1. Comparative Stress-Strain Curves For Flexural Test](image2)
4.4 Vibration Test

The vibration test results show that the glass-jute epoxy laminate has higher natural frequency and its damping ratio has 0.0045.

Composite material	Natural frequency	Damping ratio
Glass epoxy	655	0.1445
Jute epoxy	799	0.1446
Glass-jute epoxy	843	0.0045

Table 4.4.1. Experimental Values

5 Conclusion

The experimental investigation on glass, jute, glass-jute fiber reinforced polymer composites with different fiber composition is possible by simple hand lay-up technique, it has been noticed that the mechanical properties of the glass-jute fiber reinforced polymer composites exhibit the higher tensile, flexural load carrying capacity and also exhibits higher natural frequency on vibration test. While compression glass fiber reinforced composites exhibits higher compressive force. During the
Compression test, the glass-jute fiber doesn’t withstand compressive force due to the delamination of plies. The addition of jute fiber to the glass fiber enhances its tensile load carrying capacity by 60% and flexural load carrying capacity by 70%. In the vibration test, glass-jute fiber reinforced polymer composites exhibits the 22% natural frequency. The results showed that by incorporating the optimum amount of natural fibers, the overall strength of glass fiber reinforced hybrid composites can be increased and a considerable amount of mechanical properties could be achieved.

References
(1) M. Ramesh, Palanikumar K, Hemachandra Reddy K, Mechanical Property evaluation of sisal-jute-glass Fiber Reinforced Polyester Composites, Composites Part B, vol48 pp.1-9, 2012.
(2) M. Boopalan, M. Niranjan, M.J. Umapathy, Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites, Composites: Part B 51 (2013) 54–57.
(3) M. Muthuvel, G. Ranganath, K. Janarthananand K. Srinivasan, Characterization Study of Jute and Glass Fiber Reinforced Hybrid Composite Material, International Journal of Engineering Research & Technology, ISSN: 2278-0181 Vol. 2 Issue 4, April – 2013.
(4) M Alamgir Kabir, M. Monimul Huque, M. Rabiu Islam, Andrzej k., Bledzki, Treated jute-PP composite, Bio Resources 5(3), 1618-1625, 2010
(5) Sanjay, M.R., Arpitha, G.R. and Yogesha, B. (2015) Study on Mechanical Properties of Natural—Glass Fiber ReinforcedPolymer Hybrid Composites:Review.MaterialsToday:Proceedings,22967.http://dx.doi.org/10.1016/j.matpr.2015.07.264
(6) Zhang, Y.L., Li, Y., Ma, H. and Yu, T. (2013) Tensile and Interfacial Properties of Unidirectional Flax/Glass Fiber Reinforced Hybrid Composites. Composites Science and Technology, 88, 172-177.
(7) D. Dash, S. Samanta, S.S. Gautam, M. Murlidhar. Mechanical Characterizations of Natural Fiber Reinforced Composite Materials, Advanced Materials Manufacturing & characterization Vol 3 Issue 1,2013
(8) T. Munikenche Gowda, A.C.B. Naidu, Rajput Chhaya, Some mechanical properties of untreated jute fabric-reinforced polyester composites, Received 10 December 1997; accepted 1 July 1998.
(9) Satish Pujari, A. Ramakrishna, M. Suresh Kumar, Comparison of Jute and Banana Fiber Composites: A Review, Accepted 10 January 2014, Available online 01 February 2014, Special Issue-2, 2014.
(10) Md. Rafiquzzaman “Mechanical property evaluation of glass–jute fiber reinforced polymer composites” polymer advanced technologies 2016.

Acknowledgments
We would like to express our sincere and deepest gratitude to the management of Apollo Engineering College and to The Department Of Aeronautical Engineering for the valuable support and suggestion, we wish to place our sincere thanks to Mr. N. Rajamurugu, head of the department and our project guide Mr. P. Karthikeyan for his excellent guidance in completing our research work well on time. We place our sincere thanks to our friends, family members and staffs for the completion of this research work.