Systemic Inflammatory Response Syndrome Is a Major Determinant of Cardiovascular Outcome in Takotsubo Syndrome

Lucie Lachmet-Thébaud, MD; Benjamin Marchandot, MD; Kensuke Matsushita, MD; Charlotte Dagrenat, MD; Marilou Peillex, MD; Chisato Sato, MD, PhD; Antonin Trimaille, MD; Antje Reydel, MD; Annie Trinh, MD; Patrick Ohlmann, MD, PhD; Laurence Jesel, MD, PhD; Olivier Morel, MD, PhD

Background: Recent insights have emphasized the importance of inflammatory response in takotsubo syndrome (TTS). We sought to evaluate the predictors of systemic inflammatory response syndrome (SIRS) and its impact on cardiovascular mortality after TTS.

Methods and Results: The 215 TTS patients were retrospectively included between September 2008 and January 2018. SIRS was diagnosed in 96 patients (44.7%). They had lower left ventricular ejection fraction (LVEF) on admission (34.5% vs. 41.9%; \(P < 0.001 \)) and higher peak brain natriuretic peptide and troponin. At a median follow-up of 518 days, SIRS was associated with increased in-hospital mortality (14.6% vs. 5.0%; \(P = 0.019 \)), overall mortality (29.4% vs. 10.8%; \(P = 0.002 \)), and cardiovascular mortality (10.6% vs. 2.1%; \(P = 0.026 \)). A history of cancer (OR, 3.36; 95% CI: 1.54–7.31; \(P = 0.002 \)) and LVEF <40% at admission (OR, 2.31; 95% CI: 1.16–4.58; \(P = 0.017 \)) were identified as independent predictors of SIRS. On multivariate Cox regression analysis, SIRS (HR, 12.8; 95% CI: 1.58–104; \(P = 0.017 \)), age (HR, 1.09; 95% CI: 1.02–1.16; \(P = 0.01 \)), and LVEF <40% at discharge (HR, 9.88; 95% CI: 2.54–38.4; \(P = 0.001 \)) were independent predictors of cardiovascular death.

Conclusions: SIRS was found in a large proportion of TTS patients and was associated with enhanced myocardial damage and adverse outcome in the acute phase. At long-term follow-up, SIRS remained an independent factor of cardiovascular death.

Key Words: Cardiovascular outcome; Inflammation; Mortality; Systemic inflammatory response syndrome; Takotsubo syndrome
Methods

Study Design and Subjects
We conducted a retrospective study from September 2008 to January 2018 at the University Hospital of Strasbourg, France. Patients with suspected TTS were identified out of 34,037 coronary angiograms recorded in the cardiac catheterization laboratory database, using the key words “stress”, “takotsubo” or “catecholamine”. The diagnosis of TTS was made according to the Madias or the international TTS criteria.7,8 Exclusion criteria included a diagnosis of myocarditis, absence of LVEF recovery at follow-up and cardiac arrest at first medical contact. Two cardiologists reviewed all the cases and the diagnosis of TTS was based on a consensus agreement. Cases were recorded in the Alsace Takotsubo (ATAK) registry. The study protocol was approved by the University institutional review board.

Clinical and Biological Assessment
All baseline clinical data and follow-up variables were recorded and entered into a secure, ethics-approved database, after careful review of patient medical electronic records. Baseline characteristics included medical history, cardiovascular risk factors, medication, electrocardiogram at admission, coronary angiograms and LVEF. LVEF was assessed using 2-D transthoracic echocardiography (TTE) and the biplane Simpson method. Serial biological parameters including C-reactive protein (CRP), white blood cell (WBC) count, brain natriuretic peptide (BNP) and troponin were measured at admission, peak (highest) and discharge. Emotional and physical stressors were defined according to the International Expert Consensus Document on Takotsubo Syndrome.8

SIRS Criteria and Definition
SIRS was defined as the presence of 2 of 3 of the following criteria 12–48 h after TTS diagnosis: (1) WBC count <4 or >12×10^9/L; (2) heart rate >90 beats/min; and (3) temperature <36 or >38°C. The standard definition of SIRS9 is usually based on the occurrence of 2 or more of the preceding criteria, with an additional tachypnea item defined as respiratory rate >20/min or pCO2 <32 mmHg, but this was not reliably assessed in the present study and was therefore excluded from the definition of SIRS.

Outcomes
In-hospital complications such as arrhythmia, cardiogenic shock and death were collected on careful review of the

Table 1. TTS Patient Baseline Characteristics vs. SIRS Status
Total TTS (n=215) vs. Non-SIRS (n=119) vs. SIRS (n=96) P-value
Female sex
Age (years)
Comorbidities
Dementia
Cancer
Cardiovascular risk factors
Hypertension
Diabetes mellitus
Dyslipidemia
Current smoking
Prior smoking
Cardiovascular history
CAD or PAD
History of AF
Permanent AF
Stroke
Prior TTS
β-blocker prior to admission
Clinical characteristics at admission
Dyspnea
Syncope
Heart rate (beats/min)
Temperature (°C)
SBP (mmHg)
DBP (mmHg)
Trigger
Physical
Emotional
Unknown

Data given as n (%) or mean±SD. AF, atrial fibrillation; CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; PAD, peripheral artery disease; SBP, systolic blood pressure; SIRS, systemic inflammatory response syndrome; TTS, takotsubo syndrome.
Demographics

A total of 241 TTS patients were identified and enrolled in the ATAK registry. A total of 215 met the study criteria and were further stratified according to SIRS occurrence (Supplementary Figure). SIRS was documented in 96 TTS patients (44.7%). Patients who developed SIRS were more likely to be men, of younger age and to have a history of cancer (P<0.001). Physical trigger was significantly associated with SIRS (P<0.001). Higher heart rate was evidenced in this subset of patients (111±20 vs. 78±16 beats/min; P<0.001).
Mid- and Long-Term Outcomes

Mid- and long-term outcomes were available for 178 patients (82.8%) with a median follow-up of 518 days (IQR, 128–1,004 days). The 30-day (12.6% vs. 3.4%; P=0.017) and 1-year mortality were higher in SIRS patients (29.4% vs. 10.8%; P=0.002), despite similar LVEF at discharge and at follow-up. Kaplan-Meier curves stratified according to SIRS showed higher survival from cardiovascular death (P=0.015; log-rank test) and non-cardiovascular death (P=0.002; log-rank test) for the non-SIRS group compared with the SIRS patients (Figure). Conversely, neoplasia-related death, TTS recurrence or re-hospitalization for heart failure were not significantly different between the 2 groups.

Predictors of SIRS

On logistic regression analysis, history of cancer, physical trigger, LVEF impairment (<40%) on admission, high BNP (>400ng/L), hypertension, and dyslipidemia were significant predictors of SIRS. On multiple logistic regression analysis, LVEF <40% (OR, 2.31; 95% CI: 1.16–4.58; P=0.017) and history of cancer (OR, 3.36; 95% CI: 1.54–7.31; P=0.02) remained as independent predictors of SIRS (Table 4).

In-Hospital Outcomes

In-hospital death (14.6% vs. 5.0%; P=0.019), cardiacogenic shock (26.0% vs. 5.0%; P<0.001) and supraventricular arrhythmia (33.3% vs. 16.0%; P=0.003) occurred more frequently in SIRS patients. Likewise, in-hospital composite endpoint (acute heart failure, cardiacogenic shock, death) was more frequently observed in the SIRS group (69.8% vs. 32.8%; P<0.001). In contrast, no significant differences in life-threatening arrhythmias or in infections during hospitalization were seen between the 2 groups. In-hospital complications are listed in Table 3. Causes of in-hospital death are given in Supplementary Table.

Table 3. TTS Patient In-Hospital and Follow-up Outcomes vs. SIRS Status

In-hospital endpoints	Total TTS (n=215)	Non-SIRS (n=119)	SIRS (n=96)	P-value
Arrhythmia				
Supraventricular arrhythmia	51 (23.7)	19 (16.0)	32 (33.3)	0.003
Sinus dysfunction	4 (1.9)	4 (3.4)	0 (0)	0.130
Third-degree AV block	2 (0.9)	2 (1.7)	0 (0)	0.503
Sustained VT	1 (0.5)	0 (0)	1 (1.0)	0.447
Torsade de pointe	1 (0.5)	1 (0.8)	0 (0)	1.000
VF	2 (0.9)	0 (0)	2 (2.1)	0.198
Acute HF	72 (33.5)	31 (26.1)	41 (42.7)	0.010
Cardiogenic shock	31 (14.4)	6 (5.0)	25 (26.0)	<0.001
Mechanical assistance				
IABP	12 (5.6)	2 (1.7)	10 (10.4)	0.007
ECLS	2 (0.9)	0 (0)	2 (2.1)	0.198
Cardiac arrest	10 (4.70)	3 (2.50)	7 (7.3)	0.115
Infection	96 (44.7)	49 (41.2)	47 (49.0)	0.254
Composite endpoint (death, HF, cardiacogenic shock)	106 (49.3)	39 (32.8)	67 (69.8)	<0.001
Length of stay (days)	12.2±20	8.7±7.9	16.5±39	0.037

Follow-up endpoints

	Total TTS (n=215)	Non-SIRS (n=119)	SIRS (n=96)	P-value
LVEF (%)	58.3±11.7	59.4±11.1	57.0±12.4	0.150
TTS recurrence	5 (2.3)	4 (3.4)	1 (1.0)	0.384
Acute HF re-hospitalization	18/211 (8.5)	8/118 (6.8)	10/93 (10.8)	0.330
Other cardiovascular re-hospitalization	28/214 (13.1)	18 (15.1)	10/95 (10.5)	0.322

Mortality

	Total TTS (n=215)	Non-SIRS (n=119)	SIRS (n=96)	P-value
In-hospital	20 (9.3)	6 (5.0)	14 (14.6)	0.019
30-day	16/211 (7.6)	4/116 (3.4)	12/95 (12.6)	0.017
1-year	35/178 (19.7)	10/93 (10.8)	25/85 (29.4)	0.002
Cardiovascular causes	11/181 (6.1)	2/96 (2.1)	9/85 (10.6)	0.026
Neoplasia-related death	6/181 (3.3)	2/96 (2.1)	4/85 (4.7)	0.422
Other causes	27/181 (14.9)	7/96 (7.3)	20/85 (23.5)	0.003

	Total TTS (n=215)	Non-SIRS (n=119)	SIRS (n=96)	P-value
TTS recurrence	5 (2.3)	4 (3.4)	1 (1.0)	0.384
Acute HF re-hospitalization	18/211 (8.5)	8/118 (6.8)	10/93 (10.8)	0.330
Other cardiovascular re-hospitalization	28/214 (13.1)	18 (15.1)	10/95 (10.5)	0.322

Mortality

	Total TTS (n=215)	Non-SIRS (n=119)	SIRS (n=96)	P-value
In-hospital	20 (9.3)	6 (5.0)	14 (14.6)	0.019
30-day	16/211 (7.6)	4/116 (3.4)	12/95 (12.6)	0.017
1-year	35/178 (19.7)	10/93 (10.8)	25/85 (29.4)	0.002
Cardiovascular causes	11/181 (6.1)	2/96 (2.1)	9/85 (10.6)	0.026
Neoplasia-related death	6/181 (3.3)	2/96 (2.1)	4/85 (4.7)	0.422
Other causes	27/181 (14.9)	7/96 (7.3)	20/85 (23.5)	0.003

Data given as n (%) or mean±SD. AV, atrioventricular; ECLS, extra-corporeal life support; HF, heart failure; IABP, intra-aortic balloon pump; VF, ventricular fibrillation; VT, ventricular tachycardia. Other abbreviations as in Tables 1,2.
Predictors of Cardiac Mortality

On univariate Cox analysis, age, concomitant significant coronary artery disease (>50% stenosis on a main coronary artery), SIRS and LVEF <40% at discharge were associated with higher rates of cardiac mortality at maximum follow-up. On multivariate Cox regression analysis, age (HR, 1.09; 95% CI: 1.02–1.16; P=0.010), SIRS (HR, 12.8; 95% CI: 1.58–104; P=0.017) and LVEF impairment at discharge (HR, 9.88; 95% CI: 2.54–38.4; P=0.001) remained as independent predictors of cardiac mortality (Table 5).

Figure. (A) Kaplan-Meier analysis of the probability of (A) cardiac survival and (B) survival from non-cardiovascular death according to the presence of systemic inflammatory response syndrome (SIRS) in patients with takotsubo syndrome.
SIRS as a Prognostic Factor in TTS

Table 4. Predictors of SIRS in TTS Patients

	Univariate				Multivariate			
	OR	95% CI	P-value	OR	95% CI	P-value		
Male	2.00	1.00–3.99	0.049					
Age	0.978	0.957–1.00	0.051					
Comorbidities								
Psychiatric disorders	1.32	0.741–2.34	0.349					
Dementia	1.07	0.346–3.29	0.910					
Cancer	3.16	1.66–6.00	<0.001	3.36	1.54–7.31	0.002		
Cardiovascular risk factors								
Hypertension	0.556	0.322–0.959	0.035	0.586	0.290–1.16	0.124		
Diabetes mellitus	0.732	0.382–1.40	0.732					
Dyslipidemia	0.513	0.290–0.906	0.022	0.519	0.250–1.07	0.074		
Current smoking	1.39	0.701–2.74	0.348					
Prior smoking	1.475	0.800–2.72	0.213					
Cardiovascular history								
CAD or PAD	1.74	0.926–3.29	0.085					
History of AF	0.681	0.307–1.51	0.345					
Permanent AF	1.25	0.352–4.46	0.728					
Stroke	0.701	0.265–1.86	0.475					
Prior TTS	2.51	0.224–28.1	0.455					
Regional variant of TTS								
Apical	0.860	0.480–1.54	0.612					
Midventricular	0.953	0.526–1.73	0.874					
Significant concomitant CAD	1.24	0.700–2.20	0.464					
Physical trigger	3.84	2.175–6.794	<0.001	1.51	0.739–3.07	0.259		
Infections	1.37	0.797–2.36	0.254					
LVEF on admission <40%	3.54	1.98–6.33	<0.001	2.31	1.16–4.58	0.017		
Troponin on admission	1.01	0.971–1.05	0.587					
BNP on admission	1.00	1.00–1.00	0.001	1.00	1.00–1.00	0.110		

CI, confidence interval; OR, odds ratio. Other abbreviations as in Tables 1,2.

Discussion

The current report drawn from a cohort of 215 TTS patients is the first study to specifically evaluate the impact of SIRS on in-hospital and late outcomes. The salient results of the present study are as follows: (1) at the acute phase, SIRS was observed in a large proportion of the cohort and was associated with enhanced myocardial damage and LVEF impairment; (2) predictive factors of SIRS are LVEF impairment and a history of cancer; (3) SIRS was associated with sustained inflammatory response and neurohormonal activation at hospital discharge; and (4) SIRS had a dramatic impact on in-hospital mortality and on late outcomes, such as higher cardiovascular mortality. Altogether, these findings suggest that the occurrence of SIRS could identify a subset of vulnerable patients after TTS onset.

In cardiovascular disease, previous studies have underlined that SIRS could occur in a variety of non-infectious major systemic injuries, including acute coronary syndrome (ACS), cardiogenic shock or, more recently, transcatheter valve replacement. SIRS has been identified in 18–40% of cases of myocardial infarction and has been associated with LVEF impairment, leukocytosis and enhanced myocardial damage, evidenced by increased troponin. In ACS, the restoration of blood flow is thought to be the main trigger of cytokine release and widespread systemic inflammation. During SIRS, previous studies have emphasized a key role of the release of inflammatory mediators and the expression of inducible nitric oxide, possibly leading to a decreased myocardial contractility. The proportion of SIRS observed in the present study (44.7% of TTS patients) appears to be in the upper range compared with that reported in ACS. The deleterious impact of SIRS on the myocardium during TTS is reflected in the more pronounced LVEF impairment at the acute phase, together with the higher levels of troponin and BNP. In the present study, recovery of LVEF, however, was greater in SIRS patients, and LVEF at hospital discharge was equivalent between the groups. In contrast, inflammatory response and neurohormonal activation (reflected by BNP level) were still higher at hospital discharge, suggesting an ongoing process of myocardial infiltration, consistent with recent MRI reports. Although the description of the mechanisms relating adrenergic surge and inflammation are far beyond the scope of the present study, several possible physiopathological pathways should be considered. Studies based on animal models and human endomyocardial biopsy have described the time course of inflammation in the myocardium during TTS, consisting of a mononuclear cells infiltrate, contraction band necrosis and myocardial inflammation-mediated edema. Interestingly, similar histological patterns could be seen during septic shock, and a correlation between epinephrine dose and monocyte infiltration has been reported in this setting. The presence of intramyocardial inflammatory activation in patients with...
TTS has also been documented indirectly on technetium pyrophosphate imaging18 and on cardiac MRI.19 Recent insights have emphasized that activation of adrenergic signaling pathways contributes to enhanced cytokadehesis expression by bone marrow cells and also by cardiac endothelial cells (intercellular adhesion molecule-1), which may favor diapedesis and development of sterile inflammation and remodeling of the failing heart.20 According to this view, specific patterns of cytokine release have been described in TTS with respect to those observed in ACS, and controversies are still open concerning the respective importance of anti-inflammatory21 or pro-inflammatory cytokines.3 Among the various mechanisms involved in the induction of cytokine release and cytokadehesis expression by endothelial cells, a key role of p53 has been established. In heart failure, several animal models have highlighted the importance of the catecholamine/β-2-adrenergic/reactive oxygen species (ROS) p53 signaling pathway in the induction of cardiac dysfunction. The primordial importance of this pathway is highlighted by the fact that catecholamine/β-2 stimulation regulates p53 in endothelial cells and macrophages and induces cardiac inflammation, while monocyte infiltration catecholamine/β-2 cardiac dysfunction could be blunted in p53 endothelial cell knockout mice.20 Cytokines and ROS released by activated inflammatory cells could contribute directly to myocardial damage.21 In rats, immobilization stress induces the production of heat shock protein 70 by the myocardium, a potent activator of the inflammatory response,23 and enhances atrial and BNP expression.24 Other hypotheses are based on an adaptive immune response triggered by cardiomyocyte necrosis. Representing an essential mechanism of wound healing, immune cell infiltration into the damaged myocardium could also trigger a process named sterile inflammation, given that the immune system is activated despite the lack of any discernible infectious insult. This mechanism could lead to ongoing inflammation.1 The clinical relevance of this paradigm was recently demonstrated in TTS. Using ultra-small supermagnetic particles of iron oxide to monitor inflammatory macrophage infiltration in the myocardium, Scally et al showed that TTS is characterized by a myocardial macrophage inflammatory infiltrate together with an increase in systemic pro-inflammatory cytokines that persist for at least 5 months, suggesting a low-chronic inflammatory state.3 In line with this observation, other recent cardiac MRI data show that TTS is characterized by a state of intramyocardial edema secondary to a global left ventricular inflammatory response, which is detectable early on after the index event, and persists well beyond the resolution of segmental left ventricular contractile dysfunction.15 Beyond the scope of TTS, the interplay between SIRS and cancer has been extensively investigated in observational studies and a recent metanalysis.25 In the present report, both physical stress and cancer were evidenced as independent predictors of SIRS. In the context of TTS, in line with the present findings, some authors have recently reported that cancer and/or physical stress were associated

Table 5. Predictors of Cardiac Death in TTS Patients

	Univariate				Multivariate			
	HR	95% CI	P-value	HR	95% CI	P-value		
Male	2.29	0.668–7.84	0.188	1.09	1.02–1.16	0.010		
Age	1.09	1.02–1.16	0.032	1.09	1.02–1.16	0.010		
Comorbidities								
Psychiatric disorders	0.429	0.093–1.99	0.279					
Dementia	2.94	0.633–13.6	0.169					
Cancer	1.73	0.503–5.92	0.385					
COPD/asthma	0.682	0.062–7.52	0.754					
Cardiovascular risk factors								
Hypertension	1.92	0.508–7.23	1.92					
Diabetes mellitus	2.69	0.821–8.81	0.102					
Dyslipidemia	0.515	0.136–1.95	0.328					
Current smoking	0.035	0.001–20.9	0.305					
Prior smoking	0.976	0.259–3.68	0.971					
Cardiovascular history								
CAD or PAD	3.14	0.948–10.389	0.061					
AF	1.56	0.336–7.21	0.571					
Stroke	1.59	0.544–4.66	0.395					
Physical trigger	2.96	0.782–11.2	0.110					
Wall motion								
Apical	1.67	0.355–7.89	0.515					
Midventricular	0.627	0.133–2.95	0.555					
Concomitant CAD	5.07	1.30–19.7	0.019	3.88	0.933–16.1	0.062		
SIRS	5.41	1.17–25.0	0.031	12.8	1.58–104	0.017		
BNP >400ng/L on admission	4.28	0.908–20.2	0.066					
LVEF <40% on admission	1.67	0.444–6.31	0.447					
LVEF <40% at discharge	10.4	3.02–35.7	<0.001	9.88	2.54–38.4	0.001		

HR, hazard ratio. Other abbreviations as in Tables 1–3.
with adverse outcome in the acute phase but also at longer follow-up.27 We have previously established that a diagnosis of malignancy is associated with ongoing inflammatory response in TTS. Moreover, because higher CRP and leukocyte levels were also seen at baseline, we hypothesized that the sustained inflammatory status associated with malignancy may promote the onset of TTS.27 Altogether, these data underline the complex interplay between cancer and physical stress in the induction of acute inflammatory response associated with TTS. In the present study, the paramount importance of SIRS during the early phase is underlined by the higher rates of adverse events seen in the SIRS patients.

To clarify a possible role of the effect of SIRS and ongoing inflammatory response on the cardiovascular compartment, late follow-up was focused on cardiac events. Despite a similar recovery of LVEF, SIRS patients were characterized by ongoing inflammation and neurohumoral activation, consistent with persistent myocardial infiltration by leukocytes. Consistent with the negative impact of ongoing chronic low-grade inflammation, higher rates of cardiovascular mortality were noted in the SIRS group. On multivariable analysis, advanced age, SIRS and LVEF impairment at hospital discharge were the sole independent predictors of cardiovascular death. Other reports have suggested that systemic inflammation could be associated with adverse events in TTS.27 Besides the negative role of inflammation in athero-thrombotic burden, systemic inflammation could also pave the way to arrhythmias as observed in the early phase, possibly causing fatal events.29, 32 Altogether, the present data identify SIRS patients as a vulnerable high-risk subgroup requiring close follow-up. Along these lines, therapies to attenuate SIRS in TTS represent an appealing subject for future research.

Study Limitations
Owing to the retrospective nature of this study, there were inherent limitations related to cofounding known or unknown factors. The time points of heart rate, temperature and WBC count measurement varied. This was a large study, however, and to our knowledge, the only study to specifically focus on SIRS in TTS. Inflammation evaluation was restricted to SIRS. Other parameters, such as pro- and anti-inflammatory cytokines, may have been helpful in detecting the inflammatory responses in TTS.

Conclusions
SIRS was noted in a large proportion of TTS patients and was associated with enhanced myocardial damage and adverse outcome at the acute phase. At long-term follow-up, SIRS remained an independent factor of cardiac death. SIRS patients are therefore a high-risk subgroup that should be targeted in future clinical trials with therapies to attenuate SIRS.

Acknowledgment
This project received financial support from GERCA (Groupe pour l’Enseignement, la prévention et la Recherche Cardiovasculaire en Alsace).

Disclosures
The authors declare no conflicts of interest.

References
1. Sattler S, Couch LS, Harding SE. Takotsubo syndrome: Latest addition to the expanding family of immune-mediated diseases? JACC Basic Transl Sci 2018; 3: 779 – 781.
2. Kawai S, Shimada T. Inflammation in takotsubo cardiomyopathy? Inquiry from “Guidelines for Diagnosis and Treatment of Myocarditis” (JCS), J Cardiovasc Dis Res 2014; 63: 247 – 249.
3. Scully C, Abbas H, Ahearn T, Srinivasan J, Mezzinescu A, Rudd A, et al. Myocardial and systemic inflammation in acute stress-induced (takotsubo) cardiomyopathy. Circulation 2019; 139: 1381 – 1392.
4. Morel O, Sauer F, Imperiale A, Cimarelli S, Blondet C, Jesel L, et al. Importance of inflammation and neurohumoral activation in takotsubo cardiomyopathy. J Card Fail 2009; 15: 206 – 213.
5. Wilson HM, Cheyne L, Brown PAJ, Kerr K, Hannah A, Srinivasan J, et al. Characterization of the myocardial inflammatory response in acute stress-induced (takotsubo) cardiomyopathy. JACC Basic Transl Sci 2018; 3: 766 – 778.
6. Gorla R, Erbel R, Eagle KA, Bossone E. Systemic inflammatory response syndromes in the era of interventional cardiology. Vasc Pharmacol 2018; 107: 53 – 66.
7. Madias JE. Why the current diagnostic criteria of takotsubo syndrome are outmoded: A proposal for new criteria. Int J Cardiol 2014; 174: 468 – 470.
8. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, et al. International expert consensus document on takotsubo syndrome (part II): Clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 2018; 39: 2032 – 2046.
9. Bone RC, Balk RA, Gorman AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644 – 1655.
10. Sinning JM, Scheer AC, Adenauer V, Ghanem A, Hammerstingl R, et al. Systemic inflammatory response syndrome predicts increased mortality in patients after transcatheter aortic valve implantation. Eur Heart J 2012; 33: 1059 – 1067.
11. Samimi-Fard S, Dominguez-Rodriguez A, Abreu-Gonzalez P, Do CB, Lim R, et al. Importance of inflammation and neurohumoral activation in acute coronary syndromes in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. Am J Cardiol 2009; 104: 634 – 637.
12. Hochman JS. Cardiogenic shock complicating acute myocardial infarction: Expanding the paradigm. Circulation 2003; 107: 2998 – 3002.
13. Scally C, Rudd A, Mezzinescu A, Wilson H, Srivanasan J, Horgan G, et al. Persistent long-term structural, functional, and metabolic changes after stress-induced (takotsubo) cardiomyopathy. Circulation 2018; 137: 1039 – 1048.
14. Schmittinger CA, Dünser MW, Torgersen C, Luckner G, Lorenz I, Schmid S, et al. Histologic pathologies of the myocardium in tako-tsubo cardiomyopathy: Evidence from T2-weighted images. Int Heart J 2012; 53: 539 – 548.
15. Neil C, Nguyen TH, Kucia A, Crouch B, Sverdlow A, Chirkov Y, et al. Slowly resolving global myocardial inflammation/oedema in tako-tsubo cardiomyopathy: Evidence from T2-weighted cardiac MRI. Heart 2012; 98: 1278 – 1284.
16. Ron A, Chappel C, Balazs T, Gaudry R. An infant-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. AMA Arch Pathol 1959; 67: 443 – 453.
17. Schmittinger CA, Dünser MW, Torgersen C, Luckner G, Lorenz I, Schmid S, et al. Histologic pathologies of the myocardium in septic shock: A prospective observational study. Shock 2013; 39: 329 – 335.
18. Ito K, Sugihara H, Katoh S, Azuma A, Nakagawa M. Assessment of takotsubo (ampulla) cardiomyopathy using 99mTc-tetrofosmin myocardial SPECT: Comparison with acute coronary syndrome. Ann Nucl Med 2003; 17: 115 – 122.
19. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, Carbone I, Muellerleile K, Aldrovandi A, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA 2011; 306: 277 – 286.
20. Katsuiumi G, Shimizu I, Yoshida Y, Hayashi Y, Ikegami R, Suda N, et al. Catecholamine-induced senescence of endothelial cells and bone marrow cells promotes cardiac dysfunction in mice. Int Heart J 2018; 59: 837 – 844.
A, Tarantino N, et al. Inflammatory patterns in takotsubo cardiomyopathy and acute coronary syndrome: A propensity score matched analysis. Atherosclerosis 2018; 274: 157 – 161.
22. Singal PK, Kapur N, Dhillon KS, Beamish RE, Dhalla NS. Role of free radicals in catecholamine-induced cardiomyopathy. Can J Physiol Pharmacol 1982; 60: 1390 – 1397.
23. Ueyama T. Emotional stress-induced tako-tsubo cardiomyopathy: Animal model and molecular mechanism. Ann NY Acad Sci 2004; 1018: 437 – 444.
24. Nef HM, Möllmann H, Hilpert P, Hamm C, Elsässer A. Takotsubo-cardiomyopathy. Disch Med Wochenschr 2008; 133: 1629 – 1636; quiz 1637 – 1640.
25. Dolan RD, Laird BJA, Horgan PG, McMillan DC. The prognostic value of the systemic inflammatory response in randomised clinical trials in cancer: A systematic review. Crit Rev Oncol Hematol 2018; 132: 130 – 137.
26. Kim H, Senecal C, Lewis B, Prasad A, Rajiv G, Lerman LO, et al. Natural history and predictors of mortality of patients with takotsubo syndrome. Int J Cardiol 2018; 267: 22 – 27.
27. Girardey M, Jesel L, Campia U, Messas N, Hess S, Imperiale A, et al. Impact of malignancies in the early and late time course of takotsubo cardiomyopathy. Circ J 2016; 80: 2192 – 2198.
28. Santoro F, Tarantino N, Ferraretti A, Ieva R, Musaico F, Guastafierro F, et al. Serum interleukin 6 and 10 levels in takotsubo cardiomyopathy: Increased admission levels may predict adverse events at follow-up. Atherosclerosis 2016; 254: 28 – 34.
29. Jesel L, Berthon C, Messas N, Lim HS, Girardey M, Marzak H, et al. Ventricular arrhythmias and sudden cardiac arrest in takotsubo cardiomyopathy: Incidence, predictive factors, and clinical implications. Heart Rhythm 2018; 15: 1171 – 1178.
30. Jesel L, Berthon C, Messas N, Lim HS, Girardey M, Marzak H, et al. Atrial arrhythmias in takotsubo cardiomyopathy: Incidence, predictive factors, and prognosis. Europace 2019; 21: 298 – 305.
31. El-Battrawy I, Lang S, Ansari U, Tüllmen E, Schramm K, Fastner C, et al. Prevalence of malignant arrhythmia and sudden cardiac death in takotsubo syndrome and its management. Europace 2018; 20: 843 – 850.
32. Stiermaier T, Eitel I, Eitel C. Atrial arrhythmias in takotsubo syndrome: Is inflammation the missing link? Europace 2019; 21: 184 – 185.

Supplementary Files

Please find supplementary file(s):
http://dx.doi.org/10.1253/circj.CJ-19-1088