Sampling Associated with a Unitary Representation of a Semi-Direct Product of Groups: A Filter Bank Approach

Antonio G. García 1,* Miquel Angel Hernández-Medina 2 and Gerardo Pérez-Villalón 3

1 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés-Madrid, Spain
2 Information Processing and Telecommunications Center and Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Madrid, Avda. Complutense 30, 28040 Madrid, Spain; miguelangel.hernandez.medina@upm.es
3 Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Madrid, Nicola Tesla s/n, 28031 Madrid, Spain; gperez@euitt.upm.es
* Correspondence: agarcia@math.uc3m.es

Received: 18 March 2019; Accepted: 9 April 2019; Published: 12 April 2019

Abstract: An abstract sampling theory associated with a unitary representation of a countable discrete non abelian group G, which is a semi-direct product of groups, on a separable Hilbert space is studied. A suitable expression of the data samples, the use of a filter bank formalism and the corresponding frame analysis allow for fixing the mathematical problem to be solved: the search of appropriate dual frames for $\ell^2(G)$. An example involving crystallographic groups illustrates the obtained results by using either average or pointwise samples.

Keywords: semi-direct product of groups; unitary representation of a group; LCA groups; dual frames; sampling expansions

1. Statement of the Problem

In this paper, an abstract sampling theory associated with non abelian groups is derived for the specific case of a unitary representation of a semi-direct product of groups on a separable Hilbert space. Semi-direct product of groups provide important examples of non abelian groups such as dihedral groups, infinite dihedral group, Euclidean motion groups or crystallographic groups. Concretely, let $(n,h) \mapsto U(n,h)$ be a unitary representation on a separable Hilbert space H of a semi-direct product $G = N \rtimes_{\phi} H$, where N is a countable discrete LCA (locally compact abelian) group, H is a finite group, and ϕ denotes the action of the group H on the group N (see Section 2 infra for the details); for a fixed $a \in H$ we consider the U-invariant subspace in H

$$A_a = \left\{ \sum_{(n,h) \in G} a(n,h) U(n,h) a : \{a(n,h)\}_{(n,h) \in G} \in \ell^2(G) \right\},$$

where we assume that $\{U(n,h)a\}$ is a Riesz sequence for H, i.e., a Riesz basis for A_a (see Ref. [1] for a necessary and sufficient condition). Given K elements b_k in H, which do not belong necessarily to A_a, the main goal in this paper is the stable recovery of any $x \in A_a$ from the given data (generalized samples)

$$L_k x(n) := \langle x, U(n,1_H) b_k \rangle_H, \quad n \in N \text{ and } k = 1,2,\ldots,K.$$
where 1_H denotes the identity element in H. These samples are nothing but a generalization of average sampling in shift-invariant subspaces of $L^2(\mathbb{R}^d)$; see, among others, Refs. [2–9]. The case where G is a discrete LCA group and the samples are taken at a uniform lattice of G has been solved in Ref. [10]; this work relies on the use of the Fourier analysis in the LCA group G (see also Ref. [11]). In the case involved here, a classical Fourier analysis is not available and, consequently, we need to overcome this drawback.

Having in mind the filter bank formalism in discrete LCA groups (see, for instance, Refs. [12–14]), the given data $\{L_k x(n)\}_{n \in N; k=1,2,...,K}$ can be expressed as the output of a suitable K-channel analysis filter bank corresponding to the input $a = \{a(n,h)\}_{(n,h) \in C}$ in $\ell^2(G)$. As a consequence, the problem consists of finding a synthesis part of the former filter bank allowing perfect reconstruction; in addition, only Fourier analysis on the LCA group N is needed. Then, roughly speaking, substituting the output of the synthesis part in $x = \sum_{(n,h) \in C} a(n,h) U(n,h)a$, we will obtain the corresponding sampling formula in A_a.

This said, as it could be expected, the problem can be mathematically formulated as the search of dual frames for $\ell^2(G)$ having the form

$$\{ T_nh_k \}_{n \in N; k=1,2,...,K} \quad \text{and} \quad \{ T_ng_k \}_{n \in N; k=1,2,...,K}.$$

Here, $h_k, g_k \in \ell^2(G)$, $T_nh_k(m,h) = h_k(m-n,h)$ and $T_ng_k(m,h) = g_k(m-n,h)$, $(m,h) \in G$, where $n \in N$ and $k = 1,2,...,K$. In addition, for any $x \in A_a$, we have the expression for its samples

$$L_k x(n) = \langle a, T_nh_k \rangle_{\ell^2(G)}, \quad n \in N \quad \text{and} \quad k = 1,2,...,K.$$

Needless to say, frame theory plays a central role in what follows; the necessary background on Riesz bases or frame theory in a separable Hilbert space can be found, for instance, in Ref. [15]. Finally, sampling formulas in A_a having the form

$$x = \sum_{k=1}^K \sum_{n \in N} L_k x(n) U(n,1_H) c_k \quad \text{in} \quad H,$$

for some $c_k \in A_a, k = 1,2,...,K$, will come out by using, for $g \in \ell^2(G)$ and $n \in N$, the shifting property $T_{U,a}(T_{n,g}) = U(n,1_H)(T_{U,a}g)$ that satisfies the natural isomorphism $T_{U,a} : \ell^2(G) \rightarrow A_a$ which maps the usual orthonormal basis $\{ \delta_{(n,h)} \}_{(n,h) \in C}$ for $\ell^2(G)$ onto the Riesz basis $\{ U(n,h)a \}_{(n,h) \in C}$ for A_a.

All these steps will be carried out throughout the remaining sections. For the sake of completeness, Section 2 includes some basic preliminaries on semi-direct product of groups and Fourier analysis on LCA groups. The paper ends with an illustrative example involving the quasi regular representation of a crystallographic group on $L^2(\mathbb{R}^d)$; sampling formulas involving average or pointwise samples are obtained for the corresponding U-invariant subspaces in $L^2(\mathbb{R}^d)$.

2. Some Mathematical Preliminaries

In this section, we introduce the basic tools in semi-direct product of groups and in harmonic analysis in a discrete LCA group that will be used in the sequel.

2.1. Preliminaries on Semi-Direct Product of Groups

Given groups (N, \cdot) and (H, \cdot), and a homomorphism $\phi : H \rightarrow Aut(N)$, their semi-direct product $G := N \rtimes_\phi H$ is defined as follows: The underlying set of G is the set of pairs (n,h) with $n \in N$ and $h \in H$, along with the multiplication rule

$$(n_1, h_1) \cdot (n_2, h_2) := (n_1\phi_{h_1}(n_2), h_1h_2), \quad (n_1, h_1), (n_2, h_2) \in G,$$
where we denote \(\phi(h) := \phi_h \); usually, the homomorphism \(\phi \) is referred to as the action of the group \(H \) on the group \(N \). Thus, we obtain a new group with identity element \((1_N, 1_H) \), and inverse \((n, h)^{-1} = (\phi_{h^{-1}}(n^{-1}), h^{-1}) \).

In addition, we have the isomorphisms \(N \cong N \times \{1_H\} \) and \(H \cong \{1_N\} \times H \). Unless \(\phi_h \) equals the identity for all \(h \in H \), the group \(G = N \times \varphi H \) is not abelian, even for abelian \(N \) and \(H \) groups. The subgroup \(N \) is a normal subgroup in \(G \). Some examples of semi-direct product of groups:

1. The dihedral group \(D_{2N} \) is the group of symmetries of a regular \(N \)-sided polygon; it is the semi-direct product \(D_{2N} = \mathbb{Z}_N \rtimes \mathbb{Z}_2 \) where \(\phi_0 \equiv \text{Id}_{\mathbb{Z}_N} \) and \(\phi_1(n) = -n \) for each \(n \in \mathbb{Z}_N \). The infinite dihedral group \(D_\infty \) defined as \(\mathbb{Z} \rtimes \mathbb{Z}_2 \) for the similar homomorphism \(\phi \) is the group of isometries of \(\mathbb{Z} \).

2. The Euclidean motion group \(E(d) \) is the semi-direct product \(\mathbb{R}^d \rtimes \varphi O(d) \), where \(O(d) \) is the orthogonal group of order \(d \) and \(\varphi \) is the orthogonal group of order \(d \) and \(x \in \mathbb{R}^d \). It contains as a subgroup any crystallographic group \(\mathbb{MZ}^d \rtimes \varphi \Gamma \), where \(\mathbb{MZ}^d \) denotes a full rank lattice of \(\mathbb{R}^d \) and \(\Gamma \) is any finite subgroup of \(O(d) \) such that \(\varphi_\gamma(\mathbb{MZ}^d) = \mathbb{MZ}^d \) for each \(\gamma \in \Gamma \).

3. The orthogonal group \(O(d) \) of all orthogonal real \(d \times d \) matrices is isomorphic to the semi-direct product \(SO(d) \rtimes \varphi C_2 \), where \(SO(d) \) consists of all orthogonal matrices with determinant 1 and \(C_2 = \{ I, R \} \) a cyclic group of order 2; \(\varphi \) is the homomorphism given by \(\varphi(A) = A \) and \(\varphi_R(A) = RAR^{-1} \) for \(A \in SO(d) \).

Suppose that \(N \) is an LCA group with Haar measure \(\mu_N \) and \(H \) is a locally compact group with Haar measure \(\mu_H \). Then, the semi-direct product \(G = N \rtimes \varphi H \) endowed with the product topology becomes also a topological group. For the left Haar measure on \(G \), see Ref. [1].

2.2. Some Preliminaries on Harmonic Analysis on Discrete LCA Groups

The results about harmonic analysis on locally compact abelian (LCA) groups are borrowed from Ref. [16]. Notice that, in particular, a countable discrete abelian group is a second countable Hausdorff LCA group.

For a countable discrete group \((N, \cdot) \), not necessarily abelian, the convolution of \(x, y : N \to \mathbb{C} \) is formally defined as \((x * y)(m) := \sum_{n \in N} x(n)y(n^{-1}m), m \in N \). If, in addition, the group is abelian, therefore denoted by \((N, +) \), the convolution reads as

\[
(x * y)(m) := \sum_{n \in N} x(n)y(m - n), \quad m \in N.
\]

Let \(\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} \) be the unidimensional torus. We said that \(\xi : N \to \mathbb{T} \) is a character of \(N \) if \(\xi(n + m) = \xi(n)\xi(m) \) for all \(n, m \in N \). We denote \(\xi(n) = \langle n, \xi \rangle \). Defining \((\xi + \gamma)(n) = \xi(n)\gamma(n) \), the set of characters \(\hat{N} \) with the operation \(+ \) is a group, called the dual group of \(N \); since \(N \) is discrete \(\hat{N} \) is compact (Ref. [16], Prop. 4.4). For \(x \in L^1(N) \), we define its Fourier transform as

\[
X(\xi) = \hat{x}(\xi) := \sum_{n \in N} x(n)\overline{\xi(n)}, \quad \xi \in \hat{N}.
\]

It is known (Ref. [16], Theorem 4.5) that \(\hat{\mathbb{Z}} \cong \mathbb{T} \), with \(\langle n, z \rangle = z^n \), and \(\hat{\mathbb{Z}} = \mathbb{Z} \) := \(\mathbb{Z}/s\mathbb{Z} \), with \(\langle n, m \rangle = W^n_m \), where \(W_n = e^{2\pi i/n} \).

There exists a unique measure, the Haar measure \(\mu \) on \(\hat{N} \) satisfying \(\mu(\xi + E) = \mu(E) \), for every Borel set \(E \subset \hat{N} \) (Ref. [16], Section 2.2), and \(\mu(\hat{N}) = 1 \). We denote \(\int_{\hat{N}} X(\xi)d\xi = \int_{\hat{N}} X(\xi)\mu(\xi) \). If \(N = \mathbb{Z} \),

\[
\int_{\hat{N}} X(\xi)d\xi = \int_{\mathbb{C}} X(z)dz = \frac{1}{2\pi} \int_0^{2\pi} X(e^{i\omega})d\omega,
\]

and, if \(N = \mathbb{Z}_s \),

\[
\int_{\hat{N}} X(\xi)d\xi = \int_{\mathbb{C}} X(n)dn = \frac{1}{s} \sum_{n \in \mathbb{Z}_s} X(n).
\]
If \(N_1, N_2, \ldots, N_d \) are abelian discrete groups, then the dual group of the product group is \((N_1 \times N_2 \times \ldots \times N_d)^\wedge \cong \hat{N}_1 \times \hat{N}_2 \times \ldots \times \hat{N}_d \) (see ([16], Prop. 4.6)) with

\[
\langle (n_1, n_2, \ldots, n_d), (\xi_1, \xi_2, \ldots, \xi_d) \rangle = \langle n_1, \xi_1 \rangle \langle n_2, \xi_2 \rangle \cdots \langle n_d, \xi_d \rangle.
\]

The Fourier transform on \(\ell^1(N) \cap \ell^2(N) \) is an isometry on a dense subspace of \(L^2(\hat{N}) \); Plancherel theorem extends it in a unique manner to a unitary operator of \(\ell^2(\hat{N}) \) ([16], p. 99). The following lemma, giving a relationship between Fourier transform and convolution, will be used later (see Ref. [17]):

Lemma 1. Assume that \(a, b \in \ell^2(N) \) and \(\hat{a}(\xi) \hat{b}(\xi) \in L^2(\hat{N}) \). Then, the convolution \(a * b \) belongs to \(\ell^2(N) \) and \(a * b(\xi) = \hat{a}(\xi) \hat{b}(\xi), \) a.e. \(\xi \in \hat{N} \).

3. Filter Bank Formalism on Semi-Direct Product of Groups

In what follows, we will assume that \(G = N \rtimes_H \) where \((N, +) \) is a countable discrete abelian group and \((H, \cdot) \) is a finite group. Having in mind the operational calculus \((n, h) \cdot (m, l) = (n + \phi_h(m), hl) \), \((n, h)^{-1} = (\phi_h^{-1}(-n), h^{-1}) \) and \((n, h)^{-1} \cdot (m, l) = (\phi_h^{-1}(m - n), h^{-1}l) \), the convolution \(a * h \) of \(a, h \in \ell^2(G) \) can be expressed as

\[
(a \ast h)(m, l) = \sum_{(n, h) \in G} a(n, h) h[(n, h)^{-1} \cdot (m, l)] = \sum_{(n, h) \in G} a(n, h) h(\phi_h^{-1}(m - n), h^{-1}), \quad (m, l) \in G.
\]

(1)

For a function \(a : G \to \mathbb{C} \), its \(H \)-decimation \(\downarrow_H a : N \to \mathbb{C} \) is defined as \((\downarrow_H a)(n) := a(n, 1_H) \) for any \(n \in N \). Thus, we have

\[
\downarrow_H (a \ast h)(m) = (a \ast h)(m, 1_H) = \sum_{(n, h) \in G} a(n, h) h(\phi_h^{-1}(m - n), h^{-1}) = \sum_{(n, h) \in G} a(n, h) h[(n - m, h)^{-1}], \quad m \in N.
\]

\[
(2)
\]

Defining the polyphase components of \(a \) and \(h \) as \(a_h(n) := a(n, h) \) and \(h_h(n) := h\lfloor (-n, h)^{-1} \rfloor \) respectively, we write

\[
\downarrow_H (a \ast h)(m) = \sum_{n \in N} \sum_{h \in H} a_h(n) h_h(m - n) = \sum_{h \in H} (a_h \ast_N h_h)(m), \quad m \in N.
\]

For a function \(c : N \to \mathbb{C} \), its \(H \)-expander \(\uparrow_H c : G \to \mathbb{C} \) is defined as

\[
(\uparrow_H c)(n, h) = \begin{cases}
 c(n) & \text{if } h = 1_H, \\
 0 & \text{if } h \neq 1_H.
\end{cases}
\]

In case \(\uparrow_H c \) and \(g \) belong to \(\ell^2(G) \), we have

\[
(\uparrow_H c \ast g)(m, l) = \sum_{(n, h) \in G} (\uparrow_H c)(n, h) g[(n, h)^{-1} \cdot (m, l)] = \sum_{(n, h) \in G} (\uparrow_H c)(n, h) g(\phi_h^{-1}(m - n), h^{-1}l) = \sum_{n \in N} c(n) g(m - n, l) = (c \ast_N g_l)(m), \quad m \in N, \; l \in H,
\]

where \(g_l(n) := g(n, l) \) is the polyphase component of \(g \).
From now on, we will refer to a K-channel filter bank with analysis filters h_k and synthesis filters g_k, $k = 1, 2, \ldots, K$ as the one given by (see Figure 1)

$$c_k := \downarrow H (a \ast h_k), \quad k = 1, 2, \ldots, K, \quad \text{and} \quad \beta = \sum_{k=1}^{K} (\uparrow H c_k) \ast g_k,$$

where a and β denote, respectively, the input and the output of the filter bank. In polyphase notation,

$$c_k(m) = \sum_{h \in H} (a_k \ast N h_{k,h})(m), \quad m \in N, \quad k = 1, 2, \ldots, K,$$

$$\beta_l(m) = \sum_{k=1}^{K} (c_k \ast N g_{l,k})(m), \quad m \in N, \quad l \in H,$$

where $a_k(n) := a(n,h)$, $\beta_l(n) := \beta(n,l)$, $h_{k,h}(n) := h_k[(-n,h)^{-1}]$ and $g_{l,k}(n) := g_k(n,l)$ are the polyphase components of a, β, h_k and g_k, $k = 1, 2, \ldots, K$, respectively. We also assume that $h_k, g_k \in \ell^2(G)$ with $\hat{h}_{k,h}, \hat{g}_{l,k} \in L^\infty(\hat{N})$ for $k = 1, 2, \ldots, K$ and $h \in H$; from Lemma 1, the filter bank (3) is well defined in $\ell^2(G)$.

![Figure 1. The K-channel filter bank scheme.](image)

The above K-channel filter bank (3) is said to be a perfect reconstruction filter bank if and only if it satisfies $a = \sum_{k=1}^{K} (\uparrow H c_k) \ast g_k$ for each $a \in \ell^2(G)$, or equivalently, $a_h = \sum_{k=1}^{K} (c_k \ast N g_{l,k})$ for each $h \in H$.

Since N is an LCA group where a Fourier transform is available, the polyphase expression (4) of the filter bank (3) allows us to carry out its polyphase analysis.

Polyphase Analysis: Perfect Reconstruction Condition

For notational ease, we denote $L := |H|$, the order of the group H, and its elements as $H = \{h_1, h_2, \ldots, h_L\}$. Having in mind Lemma 1, the N-Fourier transform in $c_k(m) = \sum_{h \in H} (a_h \ast N h_{k,h})(m)$ gives $\hat{c}_k(\gamma) = \sum_{h \in H} \hat{h}_{k,h}(\gamma) \hat{a}_h(\gamma)$ a.e. $\gamma \in \hat{N}$ for each $k = 1, 2, \ldots, K$. In matrix notation,

$$C(\gamma) = H(\gamma) A(\gamma) \quad \text{a.e.} \quad \gamma \in \hat{N},$$

where $C(\gamma) = (\hat{c}_1(\gamma), \hat{c}_2(\gamma), \ldots, \hat{c}_K(\gamma))^\top$, $A(\gamma) = (\hat{a}_{h_1}(\gamma), \hat{a}_{h_2}(\gamma), \ldots, \hat{a}_{h_L}(\gamma))^\top$, and $H(\gamma)$ is the $K \times L$ matrix

$$H(\gamma) = \begin{pmatrix}
\hat{h}_{1,h_1}(\gamma) & \hat{h}_{1,h_2}(\gamma) & \cdots & \hat{h}_{1,h_L}(\gamma) \\
\hat{h}_{2,h_1}(\gamma) & \hat{h}_{2,h_2}(\gamma) & \cdots & \hat{h}_{2,h_L}(\gamma) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{h}_{K,h_1}(\gamma) & \hat{h}_{K,h_2}(\gamma) & \cdots & \hat{h}_{K,h_L}(\gamma)
\end{pmatrix},$$

where $\hat{h}_{k,h} \in \ell^2(\hat{N})$ is the Fourier transform of $h_{k,h}(n) := h_k[(-n,h)^{-1}] \in \ell^2(N)$.
The same procedure for $\beta_i(m) = \sum_{k=1}^K (c_k * g_{l,k}) (m)$ gives $\hat{\beta}_i (\gamma) = \sum_{k=1}^K \hat{g}_{l,k} (\gamma) \hat{c}_k (\gamma)$ a.e. $\gamma \in \hat{N}$. In matrix notation,
$$
B(\gamma) = G(\gamma) C(\gamma) \quad \text{a.e. } \gamma \in \hat{N},
$$
where $B(\gamma) = (\hat{\beta}_{h_1}(\gamma), \hat{\beta}_{h_2}(\gamma), \ldots, \hat{\beta}_{h_L}(\gamma))^\top$, $C(\gamma) = (\hat{c}_1(\gamma), \hat{c}_2(\gamma), \ldots, \hat{c}_K(\gamma))^\top$ and $G(\gamma)$ is the $L \times K$ matrix
\begin{equation}
G(\gamma) = \begin{pmatrix}
\hat{g}_{h_1,1}(\gamma) & \hat{g}_{h_1,2}(\gamma) & \cdots & \hat{g}_{h_1,K}(\gamma) \\
\hat{g}_{h_2,1}(\gamma) & \hat{g}_{h_2,2}(\gamma) & \cdots & \hat{g}_{h_2,K}(\gamma) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{g}_{h_1,1}(\gamma) & \hat{g}_{h_2,2}(\gamma) & \cdots & \hat{g}_{h_1,K}(\gamma)
\end{pmatrix},
\end{equation}

where $\hat{g}_{h_i,k} \in L^2(\hat{N})$ is the Fourier transform of $g_{h_i,k}(n) := g_k(n, h_i) \in \ell^2(N)$.

Thus, in terms of the polyphase matrices $G(\gamma)$ and $H(\gamma)$, the filter bank (3) can be expressed as
$$
B(\gamma) = G(\gamma) H(\gamma) A(\gamma) \quad \text{a.e. } \gamma \in \hat{N}.
$$

As a consequence of Equation (7), we have:

Theorem 1. The K-channel filter bank given in Equation (3), where h_k, g_k belong to $\ell^2(G)$ and $\hat{g}_{h_i,k}, \hat{h}_{h_i,k}$ belong to $L^{\infty}(\hat{N})$ for $k = 1, 2, \ldots, K$ and $i = 1, 2, \ldots, L$, satisfies the perfect reconstruction property if and only if $G(\gamma) H(\gamma) = I_L$ a.e. $\gamma \in \hat{N}$, where I_L denotes the identity matrix of order L.

Proof. First of all, note that the mapping $\alpha \in \ell^2(G) \mapsto A \in L^2_1(\hat{N})$ is a unitary operator. Indeed, for each $\alpha, \beta \in \ell^2(G)$, we have the isometry property
$$
\langle \alpha, \beta \rangle_{\ell^2(G)} = \sum_{(m,h) \in G} \alpha(m, h) \overline{\beta(m, h)} = \sum_{h \in H} \langle \alpha_h, \beta_h \rangle_{\ell^2(N)} = \sum_{h \in H} \langle \hat{\alpha}_h, \hat{\beta}_h \rangle_{L^2(\hat{N})} = \langle A, B \rangle_{L^2_1(\hat{N})},
$$

It is also surjective since the N-Fourier transform is a surjective isometry between $\ell^2(N)$ and $L^2(\hat{N})$. Having in mind this property, Equation (7) tells us that the filter bank satisfies the perfect reconstruction property if and only if $G(\gamma) H(\gamma) = I_L$ a.e. $\gamma \in \hat{N}$. \square

Notice that, in the perfect reconstruction setting, the number of channels K must be necessarily bigger or equal that the order L of the group H, i.e., $K \geq L$.

4. Frame Analysis

For $m \in N$, the translation operator $T_m : \ell^2(G) \rightarrow \ell^2(G)$ is defined as
$$
T_m \alpha(n, h) := \alpha((m, 1_H)^{-1} \cdot (n, h)) = \alpha(n - m, h), \ (n, h) \in G.
$$

The involution operator $\alpha \in \ell^2(G) \mapsto \alpha \in \ell^2(G)$ is defined as $\bar{\alpha}(n, h) := \overline{\alpha((n, h)^{-1}]}$, $(n, h) \in G$. As expected, the classical relationship between convolution and translation operators holds. Thus, for the K-channel filter bank (3), we have (see (2)):
$$
c_k(m) = \downarrow_H (\alpha * h_k)(m) = \langle \alpha, T_m \hat{h}_k \rangle_{\ell^2(G)}, \quad m \in N, \ k = 1, 2, \ldots, K.
$$

In addition,
$$
(\uparrow_H c_k * g_k)(m, h) = \sum_{n \in N} c_k(n) g_k(m - n, h) = \sum_{n \in N} \langle \alpha, T_n \hat{h}_k \rangle_{\ell^2(G)} T_n \hat{g}_k(m, h).
$$
In the perfect reconstruction setting, for any $\alpha \in \ell^2(G)$, we have
\begin{equation}
\alpha = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} \langle \alpha, T_n h_k \rangle \hat{\rho}(G) T_n g_k \quad \text{in} \quad \ell^2(G).
\end{equation}

Given K sequences $f_k \in \ell^2(G)$, $k = 1, 2, \ldots, K$, our main tasks now are: (i) to characterize the sequence $\{T_n f_k\}_{n \in \mathbb{N}; k=1, 2, \ldots, K}$ as a frame for $\ell^2(G)$, and (ii) to find its dual frames having the form $\{T_n g_k\}_{n \in \mathbb{N}; k=1, 2, \ldots, K}$.

To the first end, we consider a K-channel analysis filter bank with analysis filters $h_k := \tilde{f}_k$, i.e., the involution of f_k, $k = 1, 2, \ldots, K$; let $H(\gamma)$ be its associated $K \times L$ polyphase matrix (5). First, we check that Equation (5) is:
\begin{equation}
H(\gamma) = \left(\tilde{f}_{k,h_i}(\gamma) \right)_{i=1, 2, \ldots, L},
\end{equation}
where $\tilde{f}_{k,h_i}(\gamma)$ denotes the Fourier transform in $L^2(\hat{N})$ of $f_{k,h_i}(n) = f_k(n, h_i)$ in $\ell^2(N)$. Indeed, for $k = 1, 2, \ldots, K$ and $i = 1, 2, \ldots, L$, having in mind that $h_{k,h_i}(n) = h_k(\{-n, h_i\}^{-1})$ for analysis filters, we have:
\begin{align*}
\tilde{f}_{k,h_i}(\gamma) &= \sum_{n \in \mathbb{N}} h_{k,h_i}(n)(-n, \gamma) = \sum_{n \in \mathbb{N}} h_k([\{-n, h_i\}^{-1}](n, \gamma) = \sum_{n \in \mathbb{N}} \tilde{f}_k([\{-n, h_i\}^{-1}](n, \gamma) \\
&= \sum_{n \in \mathbb{N}} f_k(n, h_i)(-n, \gamma) = \sum_{n \in \mathbb{N}} f_k(n, h_i)(-n, \gamma) = \tilde{f}_{k,h_i}(\gamma), \quad \gamma \in \hat{N}.
\end{align*}

Next, we consider its associated constants
\begin{align*}
A_H := \operatorname{ess inf}_{\gamma \in \hat{N}} \lambda_{\min} \left[H^*(\gamma) H(\gamma) \right] \quad \text{and} \quad B_H := \operatorname{ess sup}_{\gamma \in \hat{N}} \lambda_{\max} \left[H^*(\gamma) H(\gamma) \right].
\end{align*}

Theorem 2. For f_k in $\ell^2(G)$, $k = 1, 2, \ldots, K$, consider the associated matrix $H(\gamma)$ given in Equation (10). Then,
\begin{enumerate}
\item The sequence $\{T_n f_k\}_{n \in \mathbb{N}; k=1, 2, \ldots, K}$ is a Bessel sequence for $\ell^2(G)$ if and only if $B_H < \infty$.
\item The sequence $\{T_n g_k\}_{n \in \mathbb{N}; k=1, 2, \ldots, K}$ is a frame for $\ell^2(G)$ if and only if the inequalities $0 < A_H \leq B_H < \infty$ hold.
\end{enumerate}

Proof. Using Plancherel theorem ([16], Theorem 4.25), for each $\alpha \in \ell^2(G)$, we get
\begin{align*}
\langle \alpha, T_n f_k \rangle_{\hat{\rho}(G)} &= \sum_{h \in H} \langle \alpha_h, f_{k,h}(\cdot - n) \rangle_{\hat{\rho}(N)} = \sum_{h \in H} \int_{\hat{N}} \hat{a}_h(\gamma) \tilde{f}_{k,h}(\gamma)(-n, \gamma) d\gamma \\
&= \int_{\hat{N}} \sum_{h \in H} \hat{a}_h(\gamma) \tilde{f}_{k,h}(\gamma)(-n, \gamma) d\gamma = \int_{\hat{N}} H_k(\gamma) A(\gamma)(-n, \gamma) d\gamma,
\end{align*}
where $A(\gamma) = (\hat{a}_{h_1}(\gamma), \hat{a}_{h_2}(\gamma), \ldots, \hat{a}_{h_L}(\gamma))^T$ and $H_k(\gamma)$ denotes the k-th row of $H(\gamma)$.
Since $\{\{-n, \gamma\}\}_{n \in \mathbb{N}}$ is an orthonormal basis for $L^2(\hat{N})$, in case that $H(\gamma) A(\gamma) \in L^2_{\hat{N}}$, we have
\begin{align*}
\sum_{k=1}^{K} \sum_{n \in \mathbb{N}} |\langle \alpha, T_n f_k \rangle|^2 &= \sum_{k=1}^{K} \int_{\hat{N}} |H_k(\gamma) A(\gamma)(-n, \gamma)|^2 d\gamma \\
&= \int_{\hat{N}} \|H(\gamma) A(\gamma)\|^2 d\gamma.
\end{align*}

If $B_H < \infty$, having in mind that $\|\alpha\|^2_{\hat{\rho}(G)} = \|A\|^2_{H^2(\hat{N})} = \int_{\hat{N}} \|A(\gamma)\|^2 d\gamma$, the above equality and the Rayleigh–Ritz theorem ([18], Theorem 4.2.2) prove that $\{T_n f_k\}_{n \in \mathbb{N}; k=1, 2, \ldots, K}$ is a Bessel sequence for $\ell^2(G)$ with Bessel bound less or equal than B_H.
On the other hand, if $K < B_H$, then there exists a set $\Omega \subset \hat{N}$ having a strictly positive measure such that $\lambda_{\max}(H^*(\gamma)H(\gamma)) > K$ for $\gamma \in \Omega$. Consider α such that its associated $A(\gamma)$ is 0 if $\gamma \notin \Omega$, and $A(\gamma)$ is a unitary eigenvector corresponding to the largest eigenvalue of $H^*(\gamma)H(\gamma)$ if $\gamma \in \Omega$. Thus, we have that

$$\sum_{k=1}^{K} \sum_{n \in N} |\langle a, T_n f_k \rangle|^2 = \int_{\hat{N}} \|H(\gamma)A(\gamma)\|^2 d\gamma > K \int_{\hat{N}} \|A(\gamma)\|^2 d\gamma = K \|a\|^2_{\ell^2(G)}.$$

As a consequence, if $B_H = \infty$, the sequence is not Bessel, and, if $B_H < \infty$, the optimal bound is precisely B_H.

Similarly, by using inequality $\|H(\gamma)A(\gamma)\|^2 \geq \lambda_{\min}(H^*(\gamma)H(\gamma)) \|A(\gamma)\|^2$, and that equality holds whenever $A(\gamma)$ is a unitary eigenvector corresponding to the smallest eigenvalue of $H^*(\gamma)H(\gamma)$; one proves the other inequality in part 2. \qed

Corollary 1. The sequence $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ is a Bessel sequence for $\ell^2(G)$ if and only if for each $k = 1, 2, \ldots, K$ and $i = 1, 2, \ldots, L$ the function f_{k, h_i} belongs to $L^\infty(\hat{N})$.

Proof. It is a direct consequence of the equivalence between the spectral and Frobenius norms for matrices [18]. \qed

It is worth mentioning that f_k in $\ell^1(G)$, $k = 1, 2, \ldots, K$, implies that the sequence $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ is always a Bessel sequence for $\ell^2(G)$ since each function f_{k, h_i} is continuous and \hat{N} is compact. In this case, the frame condition for $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ reduces to $\|H(\gamma)\| = 1$ for all $\gamma \in \hat{N}$ or, equivalently,

$$\min_{\gamma \in \hat{N}} \left(\det[H^*(\gamma)H(\gamma)] \right) > 0.$$

To the second end, a K-channel filter bank formalism allows, in a similar manner, to obtain properties in $\ell^2(G)$ of the sequences $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ and $\{T_n g_k\}_{n \in N; k = 1, \ldots, K}$. In case they are Bessel sequences for $\ell^2(G)$, the idea is to consider a K-channel filter bank (3) where the analysis filters are $h_k := f_k$ and the synthesis filters are g_k, $k = 1, 2, \ldots, K$. As a consequence, the corresponding polyphase matrices $H(\gamma)$ and $G(\gamma)$, given in Equations (5) and (6), are

$$H(\gamma) = \left(\hat{h}_{i,k}(\gamma)\right)_{k=1,2,\ldots,K \atop i=1,2,\ldots,L}, \quad G(\gamma) = \left(\hat{g}_{i,k}(\gamma)\right)_{k=1,2,\ldots,K \atop i=1,2,\ldots,L}, \quad \gamma \in \hat{N}. \quad (11)$$

Theorem 3. Let $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ and $\{T_n g_k\}_{n \in N; k = 1, \ldots, K}$ be two Bessel sequences for $\ell^2(G)$, and $H(\gamma)$ and $G(\gamma)$ their associated matrices (11). Under the above circumstances, we have:

(a) The sequences $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ and $\{T_n g_k\}_{n \in N; k = 1, \ldots, K}$ are dual frames for $\ell^2(G)$ if and only if condition $G(\gamma)H(\gamma) = I_L$ a.e. $\gamma \in \hat{N}$ holds.

(b) The sequences $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ and $\{T_n g_k\}_{n \in N; k = 1, \ldots, K}$ are biorthogonal sequences in $\ell^2(G)$ if and only if condition $H(\gamma)G(\gamma) = I_K$ a.e. $\gamma \in \hat{N}$ holds.

(c) The sequences $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ and $\{T_n g_k\}_{n \in N; k = 1, \ldots, K}$ are dual Riesz bases for $\ell^2(G)$ if and only if $K = L$ and $G(\gamma) = H(\gamma)^{-1}$ a.e. $\gamma \in \hat{N}$.

(d) The sequence $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ is an A-tight frame for $\ell^2(G)$ if and only if condition $H^*(\gamma)H(\gamma) = AI_L$ a.e. $\gamma \in \hat{N}$ holds.

(e) The sequence $\{T_n f_k\}_{n \in N; k = 1, \ldots, K}$ is an orthonormal basis for $\ell^2(G)$ if and only if $K = L$ and $H^*(\gamma) = H(\gamma)^{-1}$ a.e. $\gamma \in \hat{N}$.

Proof. Having in mind Equation (9) and Corollary 1, part (a) is nothing but Theorem 1.
The output of the analysis filter bank (3) corresponding to the input g_k is a K-vector whose k-entry is

$$c_{k,L}(m) = \downarrow_H (g_k * h_k)(m) = \langle g_k, T_m h_k \rangle_{\ell^2(G)} = \langle g_k, T_m f_k \rangle_{\ell^2(G)},$$

and whose N-Fourier transform is $C_k(\gamma) = H(\gamma) G_k(\gamma)$ a.e. $\gamma \in \hat{N}$, where G_k is the k'-column of the matrix $G(\gamma)$. Note that $\{T_n f_k\}_{n \in N; k=1,2,..,K}$ and $\{T_n g_k\}_{n \in N; k=1,2,..,K}$ are biorthogonal if and only if $\langle g_k, T_m f_k \rangle_{\ell^2(G)} = \delta(k-k')\delta(m)$. Therefore, the sequences $\{T_n f_k\}_{n \in N; k=1,2,..,K}$ and $\{T_n g_k\}_{n \in N; k=1,2,..,K}$ are biorthogonal if and only if $H(\gamma) G(\gamma) = I_K$. Thus, we have proved (b).

Having in mind ([15], Theorem 7.1.1), from (a) and (b), we obtain (c).

We can read the frame operator corresponding to the sequence $\{T_n f_k\}_{n \in N; k=1,2,..,K}$, i.e.,

$$S(a) = \sum_{k=1}^K \sum_{n \in N} \langle a, T_n f_k \rangle_{\ell^2(G)} T_n f_k, \quad a \in \ell^2(G),$$

as the output of the filter bank (3), whenever $h_k = \tilde{f}_k$ and $g_k = f_k$, for the input a. For this filter bank, the (k, h_i)-entry of the analysis polyphase matrix $H(\gamma)$ is $\tilde{f}_{k, h_i}(\gamma)$ and the (h_j, k)-entry of the synthesis polyphase matrix $G(\gamma)$ is $f_{h_j, k}(\gamma)$; in other words, $G(\gamma) = H^*(\gamma)$. Hence, the sequence $\{T_n f_k\}_{n \in N; k=1,2,..,K}$ is an A-tight frame for $\ell^2(G)$, i.e.,

$$a = \frac{1}{A} \sum_{k=1}^K \sum_{n \in N} \langle a, T_n f_k \rangle_{\ell^2(G)} T_n f_k, \quad a \in \ell^2(G),$$

if and only if $H^*(\gamma) H(\gamma) = A I_k$ for all $\gamma \in \hat{N}$. Thus, we have proved (d).

Finally, from (c) and (d), the sequence $\{T_n f_k\}_{n \in N; k=1,2,..,K}$ is an orthonormal system if and only if $H^*(\gamma) = H(\gamma)^{-1}$ a.e. $\gamma \in \hat{N}$.

5. Getting on with Sampling

Suppose that $\{U(n,h)\}_{(n,h) \in G}$ is a unitary representation of the group $G = N \times_H H$ on a separable Hilbert space \mathcal{H}, and assume that for a fixed $a \in \mathcal{H}$ the sequence $\{U(n,h) a\}_{(n,h) \in G}$ is a Riesz sequence for \mathcal{H} (see Ref. ([1], Theorem A)). Thus, we consider the U-invariant subspace in \mathcal{H}

$$A_a = \left\{ \sum_{(n,h) \in G} a(n,h) U(n,h) a : \{a(n,h)\}_{(n,h) \in G} \in \ell^2(G) \right\}.$$

For K fixed elements $b_k \in \mathcal{H}$, $k = 1, 2, \ldots, K$, not necessarily in A_a, we consider for each $x \in A_a$ its generalized samples defined as

$$L_k x(m) := \langle x, U(m,1_H) b_k \rangle_{\mathcal{H}}, \quad m \in N \text{ and } k = 1, 2, \ldots, K. \quad (12)$$

The task is the stable recovery of any $x \in A_a$ from the data $\{L_k x(m)\}_{m \in N; k=1,2,..,K}$.

In what follows, we propose a solution involving a perfect reconstruction K-channel filter bank. First, we express the samples in a more suitable manner. Namely, for each $x = \sum_{(n,h) \in G} a(n,h) U(n,h) a$ in A_a, we have

$$L_k x(m) = \sum_{(n,h) \in G} a(n,h) \langle U(n,h) a, U(m,1_H) b_k \rangle$$

$$= \sum_{(n,h) \in G} a(n,h) \langle a, U[(n,h)^{-1} \cdot (m,1_H)] b_k \rangle = \downarrow_H (a \ast h_k)(m), \quad m \in N,$$

where $a = \{a(n,h)\}_{(n,h) \in G} \in \ell^2(G)$, and $h_k(n,h) := \langle a, U(n,h) b_k \rangle_{\mathcal{H}}$ also belongs to $\ell^2(G)$ for each $k = 1, 2, \ldots, K$.

Suppose also that there exists a perfect reconstruction K-channel filter-bank with analysis filters the above h_k and synthesis filters g_k, $k = 1, 2, \ldots, K$, such that the sequences $\{T_n h_k\}_{n \in \mathbb{N}; k = 1, 2, \ldots, K}$ and $\{T_n g_k\}_{n \in \mathbb{N}; k = 1, 2, \ldots, K}$ are Bessel sequences for $\ell^2(G)$. Having in mind Equation (9), for each $\alpha = \{\alpha(n, h)\}_{(n, h) \in G}$ in $\ell^2(G)$, we have

$$\alpha = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} U(\alpha \ast h_{k})(n) T_n g_k = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} L_k x(n) T_n g_k \text{ in } \ell^2(G). \quad (13)$$

In order to derive a sampling formula in A_α, we consider the natural isomorphism $T_{U, \alpha} : \ell^2(G) \rightarrow A_\alpha$ which maps the usual orthonormal basis $\{\delta_{(n, h)}\}_{(n, h) \in G}$ for $\ell^2(G)$ onto the Riesz basis $\{U(n, h) a\}_{(n, h) \in G}$ for A_α, i.e.,

$$T_{U, \alpha} : \delta_{(n, h)} \mapsto U(n, h) a \text{ for each } (n, h) \in G.$$

This isomorphism $T_{U, \alpha}$ possesses the following shifting property:

Lemma 2. For each $m \in \mathbb{N}$, consider the translation operator T_m operator defined in Equation (8). For each $m \in \mathbb{N}$, the following shifting property holds

$$T_{U, \alpha}(T_m f) = U(m, 1_H)(T_{U, \alpha} f), \quad f \in \ell^2(G). \quad (14)$$

Proof. For each $\delta_{(n, h)}$, it is easy to check that $T_m \delta_{(n, h)} = \delta_{(m+n, h)}$. Hence,

$$T_{U, \alpha}(T_m \delta_{(n, h)}) = U(m + n, h) a = U(m, 1_H)U(n, h) a = U(m, 1_H)(T_{U, \alpha} \delta_{(n, h)}).$$

A continuity argument proves the result for all f in $\ell^2(G)$. \Box

Now, for each $x = T_{U, \alpha} \alpha \in A_\alpha$, applying the isomorphism $T_{U, \alpha}$ and the shifting property (14) in Equation (13), we get for each $x \in A_\alpha$ the expansion

$$x = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} L_k x(n) T_{U, \alpha} (T_n g_k) = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} L_k x(n) U(n, 1_H)(T_{U, \alpha} g_k)$$

$$= \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} L_k x(n) U(n, 1_H) c_k \quad \text{in } \mathcal{H}, \quad (15)$$

where $c_k = T_{U, \alpha} g_k$, $k = 1, 2, \ldots, K$. In the following, the sampling theorem in the subspace A_α holds:

Theorem 4. For K fixed $h_k \in H$, let $L_k : A_\alpha \rightarrow \mathbb{C}^N$ be its associated U-system defined in Equation (12) with corresponding $h_k \in \ell^2(G)$, $k = 1, 2, \ldots, K$. Assume that its polyphase matrix $H(\gamma)$ given in Equation (5) has all its entries in $L^\infty(\hat{N})$. The following statements are equivalent:

1. The constant $A_H = \inf \lambda_{\text{min}} [H^*(\gamma)H(\gamma)] > 0$.
2. There exist g_k in $\ell^2(G)$, $k = 1, 2, \ldots, K$, such that the associated polyphase matrix $G(\gamma)$ given in (6) has all its entries in $L^\infty(\hat{N})$, and it satisfies $G(\gamma)H(\gamma) = I_K$ a.e. $\gamma \in \hat{N}$.
3. There exist K elements $c_k \in A_\alpha$ such that the sequence $\{U(n, 1_H) c_k\}_{n \in \mathbb{N}; k = 1, 2, \ldots, K}$ is a frame for A_α and, for each $x \in A_\alpha$, the sampling formula

$$x = \sum_{k=1}^{K} \sum_{n \in \mathbb{N}} L_k x(n) U(n, 1_H) c_k \quad \text{in } \mathcal{H} \quad (16)$$

holds.
4. There exists a frame \(\{ C_{k,n} \}_{n \in N; k = 1, \ldots, K} \) for \(A_a \) such that for each \(x \in A_a \) the expansion

\[
x = \sum_{k=1}^{K} \sum_{n \in N} L_k x(n) C_{k,n} \quad \text{in } \mathcal{H}
\]

holds.

Proof. (1) implies (2). The \(L \times K \) Moore–Penrose pseudo-inverse \(H^*(\gamma) \) of \(H(\gamma) \) is given by \(H^*(\gamma) = \left[H^*(\gamma) H(\gamma) \right]^{-1} H^*(\gamma) \). Its entries are essentially bounded in \(\tilde{N} \) since the entries of \(H(\gamma) \) belong to \(L^\infty(\tilde{N}) \) and \(\det^{-1} \left[H^*(\gamma) H(\gamma) \right] \) is essentially bounded \(\tilde{N} \) since \(0 < A_H \). In addition, \(H^*(\gamma) H(\gamma) = I_L \) a.e. \(\gamma \in \tilde{N} \). The inverse \(N \)-Fourier transform in \(L^2(\tilde{N}) \) of the \(k \)-th column of \(H^*(\gamma) \) gives \(\mathbf{g}_k, k = 1, 2, \ldots, K \).

(2) implies (3). According to Theorems 2 and 3, the sequences \(\{ T_n h_k \}_{n \in N; k = 1, 2, \ldots, K} \) and \(\{ T_n g_k \}_{n \in N; k = 1, 2, \ldots, K} \) form a pair of dual frames for \(\ell^2(G) \). We deduce the sampling expansion as in Formula (15). In addition, the sequence \(\{ U(n, 1_H) c_{k,n} \}_{n \in N; k = 1, 2, \ldots, K} \) is a frame for \(A_a \).

Obviously, (3) implies (4). Finally, (4) implies (1). Applying \(T_{U,a}^{-1} \), we get that the sequences \(\{ T_n h_k \}_{n \in N; k = 1, 2, \ldots, K} \) and \(\{ T_{U,a}^{-1} (c_{k,n}) \}_{n \in N; k = 1, 2, \ldots, K} \) form a pair of dual frames for \(\ell^2(G) \); in particular, by using Theorem 2, we obtain that \(0 < A_H \).

All the possible solutions of \(G(\gamma) H(\gamma) = I_L \) a.e. \(\gamma \in \tilde{N} \) with entries in \(L^\infty(\tilde{N}) \) are given in terms of the Moore–Penrose pseudo inverse by the \(L \times K \) matrices \(G(\gamma) := H^*(\gamma) + U(\gamma) \left[I_K - H(\gamma) H^*(\gamma) \right] \), where \(U(\gamma) \) denotes any \(L \times K \) matrix with entries in \(L^\infty(\tilde{N}) \).

Notice that \(K \geq L \) where \(L \) is the order of the group \(H \). In case \(K = L \), we obtain:

Corollary 2. In the case \(K = L \), assume that its polyphase matrix \(H(\gamma) \) given in Equation (5) has all entries in \(L^\infty(\tilde{N}) \). The following statements are equivalent:

1. The constant \(A_H = \text{ess inf}_{\gamma \in \tilde{N}} \lambda_{\text{min}} \left[H^*(\gamma) H(\gamma) \right] > 0 \).
2. There exist \(L \) unique elements \(c_k, k = 1, 2, \ldots, L \) in \(A_a \) such that the associated sequence \(\{ U(n, 1_H) c_{k,n} \}_{n \in N; k = 1, 2, \ldots, L} \) is a Riesz basis for \(A_a \) and the sampling formula

\[
x = \sum_{k=1}^{L} \sum_{n \in N} L_k x(n) U(n, 1_H) c_k \quad \text{in } \mathcal{H}
\]

holds for each \(x \in A_a \).

Moreover, the interpolation property \(L_k c_{k,n} (n) = \delta_{kk'} \delta_{n,0_N}, \) where \(n \in N \) and \(k, k' = 1, 2, \ldots, L \), holds.

Proof. In this case, the square matrix \(H(\gamma) \) is invertible and the result comes out from Theorem 3. From the uniqueness of the coefficients in a Riesz basis expansion, we get the interpolation property.

Denote \(H = \{ h_1, h_2, \ldots, h_L \} \); for a fixed \(b \in \mathcal{H} \), we consider the samples

\[
L_k x(m) := \langle x, U(m, h_k) b \rangle, \quad m \in N \text{ and } k = 1, 2, \ldots, L,
\]

of any \(x \in A_a \). Since \(U(m, h_k) b = U(m, 1_H) U(0_N, h_k) b = U(m, 1_H) b_k \), where \(b_k := U(0_N, h_k) b \), \(k = 1, 2, \ldots, L \), we are in a particular case of Equation (12) with \(K = L \).

Notice also that the subspace \(A_a \) can be viewed as the multiple generated \(U \)-invariant subspace of \(\mathcal{H} \)

\[
\text{span} \{ U(n, 1_H) a_h : n \in N, h \in H \}
\]

with \(L \) generators \(a_h := U(0_N, h) a \in \mathcal{H}, h \in H \), obtained from \(a \in \mathcal{H} \) by the action of the group \(H \).
5.1. An Example Involving Crystallographic Groups

The Euclidean motion group $E(d)$ is the semi-direct product $\mathbb{R}^d \times O(d)$ corresponding to the homomorphism $\phi : O(d) \to Aut(\mathbb{R}^d)$ given by $\phi_A(x) = Ax$, where $A \in O(d)$ and $x \in \mathbb{R}^d$. The composition law on $E(d) = \mathbb{R}^d \times O(d)$ reads $(x, A) \cdot (x', A') = (x + Ax', AA')$.

Let M be a non-singular $d \times d$ matrix and Γ a finite subgroup of $O(d)$ of order L such that $A(MZ^d) = MZ^d$ for each $A \in \Gamma$. We consider the crystallographic group $C_{M, \Gamma} := MZ^d \rtimes \phi \Gamma$ and its quasi regular representation (see Ref. [1]) on $L^2(\mathbb{R}^d)$

$$U(n, A)f(t) = f[A^\top (t-n)], \quad n \in M\mathbb{Z}^d, A \in \Gamma, f \in L^2(\mathbb{R}^d).$$

For a fixed $\varphi \in L^2(\mathbb{R}^d)$ such that the sequence $\{U(n,A)\varphi\}_{(n,A) \in C_{M,\Gamma}}$ is a Riesz sequence for $L^2(\mathbb{R}^d)$ (see, for instance, Refs. [19,20]) we consider the U-invariant subspace in $L^2(\mathbb{R}^d)$

$$A_\varphi = \left\{ \sum_{(n,A) \in C_{M,\Gamma}} a(n,A) \varphi[A^\top (t-n)] : \{a(n,A)\} \in l^2(C_{M,\Gamma}) \right\}$$

$$= \left\{ \sum_{(n,A) \in C_{M,\Gamma}} a(n,A) \varphi(At-n) : \{a(n,A)\} \in l^2(C_{M,\Gamma}) \right\}.$$

Choosing K functions $b_k \in L^2(\mathbb{R}^d), k = 1,2,\ldots,K$, we consider the average samples of $f \in A_\varphi$

$$E_k f(n) = \langle f, U(n,1)b_k \rangle = \langle f, b_k(\cdot-n) \rangle, \quad n \in M\mathbb{Z}^d.$$

Under the hypotheses in Theorem 4, there exist $K \geq L$ sampling functions $\psi_k \in A_\varphi$ for $k = 1,2,\ldots,K$, such that the sequence $\{\psi_k(\cdot-n)\}_{n \in M\mathbb{Z}^d, k = 1,2,\ldots,K}$ is a frame for A_φ, and the sampling expansion

$$f(t) = \sum_{k=1}^{K} \sum_{n \in M\mathbb{Z}^d} \langle f, b_k(\cdot-n) \rangle_{L^2(\mathbb{R}^d)} \psi_k(t-n) \quad \text{in } L^2(\mathbb{R}^d) \quad (17)$$

holds.

If the generator $\varphi \in C(\mathbb{R}^d)$ and the function $t \mapsto \sum_{n} |\varphi(t-n)|^2$ is bounded on \mathbb{R}^d, a standard argument shows that A_φ is a reproducing kernel Hilbert space (RKHS) of bounded continuous functions in $L^2(\mathbb{R}^d)$. As a consequence, convergence in $L^2(\mathbb{R}^d)$-norm implies pointwise convergence which is absolute and uniform on \mathbb{R}^d.

Notice that the infinite dihedral group $D_\infty = \mathbb{Z} \rtimes \varphi \mathbb{Z}_2$ is a particular crystallographic group with lattice \mathbb{Z} and $\Gamma = \mathbb{Z}_2$. Its quasi regular representation on $L^2(\mathbb{R})$ reads

$$U(n,0)f(t) = f(t-n) \quad \text{and} \quad U(n,1)f(t) = f(-t+n), \quad n \in \mathbb{Z} \text{ and } f \in L^2(\mathbb{R}).$$

Thus, we could obtain sampling formulas as (17) for $K \geq 2$ average functions b_k.

The quasi regular unitary representation of a crystallographic group $C_{M,\Gamma}$ on $L^2(\mathbb{R}^d)$ motivates the next section:

5.2. The Case of Pointwise Samples

Let $\{U(n,h)\}_{(n,h) \in G}$ be a unitary representation of the group $G = N \rtimes \varphi H$ on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^d)$. If the generator $\varphi \in L^2(\mathbb{R}^d)$ satisfies that, for each $(n,h) \in G$, the function $U(n,h)\varphi$ is continuous on \mathbb{R}^d, and the condition

$$\sup_{t \in \mathbb{R}^d} \sum_{(n,h) \in G} |U(n,h)\varphi|(t)^2 < \infty,$$
then the subspace A_φ is an RKHS of bounded continuous functions in $L^2(\mathbb{R}^d)$; proceeding as in [21], one can prove that the above conditions are also necessary.

For K fixed points $t_k \in \mathbb{R}^d$, $k = 1, 2, \ldots, K$, we consider for each $f \in A_\varphi$ the new samples given by

$$L_k f(n) := \left[U(-n, 1_H) f \right](t_k), \quad n \in \mathbb{N} \text{ and } k = 1, 2, \ldots, K. \quad (18)$$

For each $f = \sum_{(m,h) \in G} a(m,h) U(m,h) \varphi$ in A_φ and $k = 1, 2, \ldots, K$, we have

$$L_k f(n) = \sum_{(m,h) \in G} a(m,h) U((-n, 1_H) \cdot (m,h)) \varphi(t_k) = \sum_{(m,h) \in G} a(m,h) \left[U(m - n, h) \varphi \right](t_k) = \langle a, T_n f_k \rangle_{\ell^2(G)}, \quad n \in \mathbb{N},$$

where $a = \{a(m,h)\}_{(m,h) \in G}$ and $f_k(m,h) := \left[U(m,h) \varphi \right](t_k), (m,h) \in G$. Notice that f_k belongs to $\ell^2(G)$, $k = 1, 2, \ldots, K$. As a consequence, under the hypotheses in Theorem 4 (on these new $f_k := f_k$, $k = 1, 2, \ldots, K$), a sampling formula such as (16) holds for the data sequence $\{L_k f(n)\}_{n \in \mathbb{N}, k = 1, 2, \ldots, K}$ defined in Equation (18).

In the particular case of the quasi regular representation of a crystallographic group $C_{M \Gamma} = \mathbb{M} \mathbb{Z}^d \rtimes_{\varphi} \Gamma$, for each $f \in A_\varphi$, the samples (18) read

$$L_k f(n) = \left[U(-n, 1) f \right](t_k) = f(t_k + n), \quad n \in \mathbb{M} \mathbb{Z}^d \text{ and } k = 1, 2, \ldots, K.$$

Thus (under hypotheses in Theorem 4), there exist K functions $\psi_k \in A_\varphi$, $k = 1, 2, \ldots, K$, such that for each $f \in A_\varphi$ the sampling formula

$$f(t) = \sum_{k = 1}^K \sum_{n \in \mathbb{M} \mathbb{Z}^d} f(t_k + n) \psi_k(t - n), \quad t \in \mathbb{R}^d$$

holds. The convergence of the series in the $L^2(\mathbb{R}^d)$-norm sense implies pointwise convergence which is absolute and uniform on \mathbb{R}^d.

6. Conclusions

In this paper, we have derived an abstract regular sampling theory associated with a unitary representation $(n,h) \mapsto U(n,h)$ of a group G which is a semi-direct product of two groups, N countable discrete abelian group and H finite, on a separable Hilbert space \mathcal{H}; here, regular sampling means that we are taken the samples at the group N. Concretely, the sampling theory is obtained in the U-invariant subspace of \mathcal{H} generated by $a \in \mathcal{H}$ that is

$$A_a = \left\{ \sum_{(n,h) \in G} a(n,h) U(n,h) a : \{a(n,h)\}_{(n,h) \in G} \in \ell^2(G) \right\},$$

and the samples of $x \in A_a$ are given by $L_k x(n) := \langle x, U(n, 1_H) b_k \rangle_{\mathcal{H}'}$, $n \in \mathbb{N}$, where $b_k, k = 1, 2, \ldots, K$, denote K fixed elements in \mathcal{H} which do not belong necessarily to A_a. We look for K elements $c_k \in A_a$ such that the sequence $\{U(n, 1_H) c_k\}_{n \in \mathbb{N}, k = 1, 2, \ldots, K}$ is a frame for A_a and, for each $x \in A_a$, the sampling formula $x = \sum_{k=1}^K \sum_{n \in \mathbb{N}} L_k x(n) U(n, 1_H) c_k$ holds.

A similar problem was solved when the group G is a discrete LCA group and the samples are taken at a uniform lattice of G (see Ref. [10]). In the case of an abelian group, we have the Fourier transform, a basic tool in this previous work. In the present work, a classical Fourier analysis on G is not available, but if G is a semi-direct product of the form $G = N \rtimes_{\varphi} H$, where N is a countable discrete abelian group and H is a finite group, the Fourier transform on the abelian group N allows us to solve the problem by means of a filter bank formalism. Recalling the filter bank formalism in discrete LCA
groups, the defined samples are expressed as the output of a suitable \(K \)-channel analysis filter bank corresponding to the input \(x \in \mathbb{A}_n \). The frame analysis of this filter bank along with the synthesis one giving perfect reconstruction allows us to obtain a pair of suitable dual frames for obtaining the desired sampling result, which is written as a list of equivalent statements (see Theorem 4).

Although the semi-direct product of groups represents, so to speak, the simplest case of non-abelian groups, this paper can be a good starting point for finding sampling theorems associated with unitary representations of non-abelian groups that are not isomorphic to a semi-direct product of groups.

Author Contributions: The authors contributed equally in the aspects concerning this work: conceptualization, methodology, writing—original draft preparation, writing—review and editing and funding acquisition.

Funding: This research was funded by the grant MTM2017-84098-P from the Spanish Ministerio de Economía y Competitividad (MINECO).

Acknowledgments: The authors wish to thank the referees for their valuable and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Barbieri, D.; Hernández, E.; Parcet, J. Riesz and frame systems generated by unitary actions of discrete groups. *Appl. Comput. Harmon. Anal.* 2015, 39, 369–399. [CrossRef]
2. Aldroubi, A.; Sun, Q.; Tang, W.S. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. *J. Fourier Anal. Appl.* 2005, 11, 215–244. [CrossRef]
3. Fernández-Morales, H.R.; García, A.G.; Hernández-Medina, M.A.; Muñoz-Bouzo, M.J. Generalized sampling: From shift-invariant to \(U \)-invariant spaces. *Anal. Appl.* 2015, 13, 303–329. [CrossRef]
4. García, A.G.; Pérez-Villalón, G. Dual frames in \(L^2(0,1) \) connected with generalized sampling in shift-invariant spaces. *Appl. Comput. Harmon. Anal.* 2006, 20, 422–433. [CrossRef]
5. García, A.G.; Pérez-Villalón, G. Multivariate generalized sampling in shift-invariant spaces and its approximation properties. *J. Math. Anal. Appl.* 2009, 355, 397–413. [CrossRef]
6. Kang, S.; Kwon, K.H. Generalized average sampling in shift-invariant spaces. *J. Math. Anal. Appl.* 2011, 377, 70–78. [CrossRef]
7. Michaeli, T.; Pohl, V.; Eldar Y.C. \(U \)-invariant sampling: Extrapolation and causal interpolation from generalized samples. *IEEE Trans. Signal Process.* 2011, 59, 2085–2100. [CrossRef]
8. Pohl, V.; Boche, H. \(U \)-invariant sampling and reconstruction in atomic spaces with multiple generators. *IEEE Trans. Signal Process.* 2012, 60, 3506–3519. [CrossRef]
9. Sun, W.; Zhou, X. Average sampling in shift-invariant subspaces with symmetric averaging functions. *J. Math. Anal. Appl.* 2003, 287, 279–295. [CrossRef]
10. García, A.G.; Hernández-Medina, M.A.; Pérez-Villalón, G. Sampling in unitary invariant subspaces associated with LCA groups. *Results Math.* 2017, 72, 1725–1745. [CrossRef]
11. Faridani, A. A generalized sampling theorem for locally compact abelian groups. *Math. Comp.* 1994, 63, 307–327. [CrossRef]
12. Bölscke, H.; Hlawatsch, F.; Feichtinger, H.G. Frame-theoretic analysis of oversampled filter banks. *IEEE Trans. Signal Process.* 1998, 46, 3256–3268. [CrossRef]
13. Cvetković, Z.; Vetterli, M. Oversampled filter banks. *IEEE Trans. Signal Process.* 1998, 46, 1245–1255. [CrossRef]
14. García, A.G.; Hernández-Medina, M.A.; Pérez-Villalón, G. Filter Banks on Discrete Abelian Groups. *Internat. J. Wavelets Multiresolut. Inf. Process.* 2018, 16, 1850029. [CrossRef]
15. Christensen, O. *An Introduction to Frames and Riesz Bases*, 2nd ed.; Birkhäuser: Boston, MA, USA, 2016.
16. Folland, G.B. *A Course in Abstract Harmonic Analysis*; CRC Press: Boca Raton, FL, USA, 1995.
17. Führ, H. *Abstract Harmonic Analysis of Continuous Wavelet Transforms*; Springer: Berlin, Germany, 2005.
18. Horn, R.A.; Johnson, C.R. *Matrix Analysis*; Cambridge University Press: Cambridge, UK, 1999.
19. De Boor, C.; DeVore, R.A.; Ron A. On the construction of multivariate pre-wavelets. *Constr. Approx.* 1993, 9, 123–166. [CrossRef]
20. Jia, R.Q.; Micchelli, C.A. Using the refinement equations for the construction of pre-wavelets II: Powers of two. In Curves and Surfaces; Laurent, P.J., Le Méhauté, L., Schumaker, L., Eds.; Academic Press: Boston, MA, USA, 1991; pp. 209–246.

21. Zhou, X.; Sun, W. On the sampling theorem for wavelet subspaces. J. Fourier Anal. Appl. 1999, 5, 347–354. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).