New short-lived isotope 223Np and the absence of the $Z = 92$ subshell closure near $N = 126$

M.D. Suna,b,c, Z. Liua,*, T.H. Huanga, W.Q. Zhanga, J.G. Wanga, X.Y. Liua,b, B. Dinga, Z.G. Gana, L. Maa, H.B. Yanga, Z.Y. Zhanga, L. Yua, J. Jianga,b, K.L. Wanga,b, Y.S. Wanga, M.L. Liua, Z.H. Lid, J. Lid, X. Wangd, H.Y. Liua,b, C.J. Line, L.J. Sune, N.R. Mae, C.X. Yuanf, W. Zuoa, H.S. Xua, X.H. Zhoua, G.Q. Xiaoa, C. Qig, F.S. Zhangh,i

a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
b University of Chinese Academy of Sciences, Beijing 100049, China
c Lanzhou University, Lanzhou 730000, China
d State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
e China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413, China
f Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, Guangdong, China
g KTH Royal Institute of Technology, Albanova University Center, SE-10691, Stockholm, Sweden
h Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
i Beijing Radiation Center, Beijing 100875, China

A R T I C L E I N F O

Article history:
Received 21 November 2016
Received in revised form 28 March 2017
Accepted 31 March 2017
Available online 19 May 2017
Editor: V. Metag

Keywords:
New isotope
Short-lived α radioactivity
Proton separation energy
Subshell closure

A B S T R A C T

The $N = 130$ short-lived isotope 223Np was produced as evaporation residue (ER) in the fusion reaction 40Ar + 187Re at the gas-filled recoil separator Spectrometer for Heavy Atom and Nuclear Structure (SHANS). It was identified through temporal and spatial correlations with α decays of 215Ac and/or 211Fr, the third and fourth members of the α-decay chain starting from 223Np. The pileup signals of ER(223Np)$-\alpha$(223Np)$-\alpha$(219Pa) were resolved by using the digital pulse processing technique. An α decay with half-life of $T_{1/2} = 2.15(52)$ ms and energy of $E_{\alpha} = 9477(44)$ keV was attributed to 223Np. Spin and parity of $9/2^-$ were tentatively proposed for the ground state of 223Np by combining the reduced α-decay width and large-scale shell-model calculations. This assignment together with the proton separation energy disprove the existence of a $Z = 92$ subshell closure.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The evolution of proton shell structure beyond 208Pb is of decisive importance for the shell stabilization of superheavy elements. The existence of a subshell or even shell gap at $Z = 92$ between the proton $h_{9/2}$ and $f_{7/2}$ orbitals has been a topic of intense theoretical debate. A substantial $Z = 92$ shell gap is predicted in many relativistic mean-field calculations like an early work for heavy elements [1], in most of the covariant density functionals (CDFs) [2,3] and also in some non-relativistic models [4]. Macroscopic–microscopic calculations [5] predicted a subshell gap at $Z = 92$. This is at variance with large-scale shell-model calculations [6], which show no sign of a shell gap at $Z = 92$ for $N = 126$ isotones and are in overall agreement with spectroscopic data on these isotones up to U [6–10].

The spurious shell closures of $Z = 92$ and others can be cured in the upgraded CDF model [11] by including ρ-tensor Fock terms, restoring the pseudo-spin symmetry which qualitatively represents the balance of nuclear forces [11–13]. However, the very recent experimentally observed sudden decrease of the reduced α-decay width at $Z = 92$ along the $N = 130$ isotonic chain (see Fig. 5a in [14]) cannot exclude the possibility of a subshell closure at $Z = 92$ for $N > 126$. Further studies of isotopes beyond U in this region may shed light on the proton shell structure around...
$Z = 92$. The proton separation energy, ground-state spin and parity of odd-Z isotopes beyond U, e.g. 223Np isotopes ($Z = 93$), could help clarify the absence/presence of the $Z = 92$ subshell closure. Such experimental verification is necessary and valuable for testing the nuclear structure models and understanding the nature of nuclear forces as well [11–13].

For isotopes of elements above lead and far off the β-stability line, α decay prevails as the major radioactive decay mode and α spectroscopy is an indispensable tool to investigate the low-energy structure of heavy neutron-deficient nuclei. In the classical picture, α decay occurs through the preformation of an α particle in the nucleus and its subsequent tunneling through Coulomb and centrifugal barriers [15,16]. Above shell closure, the preformation probability of α particle and the decay energy Q_α increase simultaneously, therefore the most enhanced α decays take place above doubly magic nucleus such as 208Pb and 108Sn [17,18].

All over the chart of nuclides, the region to the “north-east” of 208Pb, with $Z \geq 84$ and $N = 128–130$, hosts the shortest-lived α radioactivities, with half-lives in the range of nanoseconds to microseconds. So far, the shortest-lived α emitter known with directly measured half-life is 219Pa ($T_{1/2} = 53$ ns) [19] with $N = 128$. Synthesis and detection of neutron-deficient isotopes above thorium in this region are challenging due to their low production cross sections and short half-lives. With increasing atomic number Z, the fission probability of the compound nucleus increases rapidly and the evaporation of protons and α particles is by far dominant over neutron evaporation [20]. Progress in this region has been very slow in the last three decades, the frontier in this region was only pushed forwards from Pa to U [14]. For the $N = 130$ isotones experimental data are available up to 222U. Recently the semi-magic 219Np ($N = 126$) was reported in [21] as the daughter of 222Am, but the assignments of these two isotopes are in doubt because the half-life of 222Am is expected much shorter while that of 219Np much longer than claimed in [21]. The most neutron-deficient neptunium isotope 223Np was discovered over 20 years ago [22].

In the present letter, we report on the first observation of the short-lived $N = 130$ neptunium isotope 223Np. As its daughter nucleus 219Pa is extremely short-lived, the α-decay signals of 223Np and 219Pa will pile up in the implantation detector, and even with the 223Np implant signal if the half-life of 223Np is in the range of microseconds. With conventional analog electronics, the shortest half-lives accessible are around tens of μs, it is extremely difficult or impossible to resolve these pileup signals in either energy or time. In recent years, digital pulse processing has been successfully applied to resolve such pileup events in the charged particle spectroscopy of short-lived nuclei [14,18,23].

2. Experiment and results

The isotope 223Np was produced in the 187Re(40Ar, 4n) reaction channel with isotopically enriched (98.6%) 187Re targets. The 40Ar beam was accelerated to 188 MeV by the Sector-Focusing Cyclotron (SFC) of the Heavy Ion Research Facility in Lanzhou (HIRFL). The beam intensity on target, monitored via Faraday Cups upstream and downstream of the target chamber, was around 320 pA in average during the entire experiment of 110 hours, with an uncertainty of up to a factor of 2. The targets were 460 μg/cm2 thick, sputtered on carbon foils of thickness 80 μg/cm2, with carbon foils facing the beam. After the experiment, target thicknesses were measured to be basically the same as before the experiment within a precision of \sim15%. In the center of the target, the excitation energy of the compound nucleus 227Np is estimated to be 44 MeV, close to that expected for the maximum cross-section for 223Np by the HIVAP code [24], with other main reaction channels being 221U(p3n evaporation channel), 220Pa(α3n evaporation channel) and 220Th(α2n evaporation channel).

Evaporation residues were separated from the primary beam by the recoil separator SHANS [25] filled with \sim0.6 mbar helium gas and implanted into a 300- μm double-sided silicon strip detector (DSSSD). The average charge state, q, of the evaporation residues was simulated to be $q = 6.9$ [26]. For optimum transmission, the magnetic rigidity of SHANS was set to $Bp = 1.785$ Tm. The DSSSD had 48 horizontal and 128 vertical strips of 1 mm width, forming a total of 6144 pixels. A multiwire proportional chamber (MWPC) was mounted in front of the DSSSD detector and was used to distinguish between implantation and decay events. To minimize the interference from scattered light ions in the DSSSD, three Si detectors of 50 mm × 50 mm size and 300 μm thick were placed side by side behind the DSSSD detector and used as veto detectors. Typical MWPC and DSSSD implantation detector rates were less than 100/s during beam-on periods, indicating a very good primary beam and transfer background suppression performance of SHANS.

In this experiment, very short-lived nuclei with $N = 128–130$ were produced either as ERs or as decay products of ERs. In order to resolve pileup signals, a data acquisition system based on fast digital pulse processing (DPP) was used. Signals from all the preamplifiers of the DSSSD strips, MWPC and veto detectors were digitized directly by using the 14-bit, 100-MS/s fADCs from CAEN S.p.A [27]. The digitizers allow for dead-time free acquisition, and all the channels are able to generate triggers independently. The timing is based on a so-called RC-CR2 filter. In analogy with the constant-fraction discrimination, the RC-CR2 signal is bipolar and its zero crossing corresponds to the trigger time-stamp. The preamplifier signals and RC-CR2 signals were sampled simultaneously at the same frequency of 20 ns a sampling point and waveforms of 15 μs length were recorded for offline analysis.

Energy calibrations were performed with 175Lu, 186W and 187Re targets at the same beam energy, covering a range of 6–19 MeV, specifically 6.3–9.4 MeV for single α energy and up to 19 MeV for double α sum energy. For non-pileup traces of long-lived α radioactivities, a trapezoidal filter with rising time 5 μs and flat top 3 μs was used to extract the full pulse height [28]. The energy resolution (FWHM) obtained with all vertical (horizontal) strips summed up is 22 (30) keV at α-particle energy of \sim7000 keV.

For pileup events, depending on the time difference ΔT between the overlapping signals, the energies of individual signals were extracted using different algorithms. For overlapping signals with $\Delta T = 0.5–15$ μs, a trapezoidal filter with rising time 200 ns and flat top 200 ns was used. For signals with $\Delta T = 200–500$ ns, the pulse-height of individual signal was obtained from the difference between the average of about six data points in the plateau area after the leading edge and that before the leading edge (average difference algorithm). The energy resolution of vertical strips for α decays recorded in double/multiple pulse traces with ΔT down to \sim0.5 μs and \sim0.2 μs are around 55 keV and 70 keV, respectively. In the interval $\Delta T = 100–200$ ns, the average difference algorithm was applied but with smaller number of data points, the energy resolution obtained is around 140 keV. It is worth noting that this is the shortest time difference between two overlapping pulses which have been analyzed in α/p spectroscopy, thanks to the very fast rising times of the signals from the DSSSD preamplifiers which are typically 40–60 ns in the present work. For even shorter time difference, $\Delta T < 100$ ns, the boundary between the two α pulses is difficult/impossible to determine. In some of such cases, the individual α energy may be extracted using the pulse height of each α, but the results will be rather arbitrary and unreliable.

For α pileup signals with $\Delta T < 200$ ns, where the two α signals are difficult/impossible to be separated, the sum am-
amplitude was extracted using the average difference algorithm. The pile-up pulses of $\alpha(221\text{P}a) - \alpha(217\text{Ac})$ ($T_{1/2} = 69$ ns) [29] and $\alpha(220\text{Th}) - \alpha(216\text{Ra})$ ($T_{1/2} = 182$ ns) [29], the sum energies of which are 18725 keV and 18139 keV [29], respectively, were used for the calibration at the high energy end. Though the statistics was low, the energy resolution of vertical strips obtained for these two sum energies is less than 90 keV.

Thus depending on the time difference ΔT, the standard deviation σ of single α-energy is 60, 30, 23 and 9 keV for $\Delta T = 100$–200 ns, 200–500 ns, 0.5–15 μs and $\Delta T > 15$ μs, respectively. For $\Delta T < 100$ ns, only the sum energy can be extracted reliably and the standard deviation is taken as 40 keV. The calibration errors, i.e., the differences between the calibration values and the literature values, are less than 15 keV in the energy range of 6–19 MeV. In the present work, the systematic energy uncertainty was taken as 15 keV and the overall energy uncertainties were calculated as the quadrature of the statistical and systematic errors.

The $N = 129$ isotones 219Th (ER) and 218Ac (daughter of 222Np implant) have half-lives of around 1 μs, while the $N = 128$ isotope 216Ra (daughter of 220Th implant) has a half-life of 0.18 μs, making them suitable benchmarks for ER-α_1 or α_1-α_2 pileup trace analysis. The resolved α energy spectra and the decay curves for 219Th, 218Ac and 216Ra are shown in Fig. 1. The α energies and half-lives measured in the present work are in good agreement with the literature values [29].

In order to identify decay chains belonging to 223Np, all digital traces correlated to the subsequent α decay of 215Ac ($E_{\alpha} = 7600(4)$ keV, $T_{1/2} = 0.17(1)$ s) [29] and/or 211Fr ($E_{\alpha} = 6537(4)$ keV, $T_{1/2} = 3.10(2)$ min) [29], which are the third and fourth members of the α-decay chain originating from 223Np, were checked event by event for the presence of multiple pulses. Ten multiple traces, all of which are triple pulse traces ER-α_1-α_2, were unambiguously attributed to the implantation of 223Np followed by α decays of 221Np and 219Pa. The decay chains corresponding to these traces are listed in Table 1. As examples, the traces corresponding to events 1, 4 and 6 are plotted in Fig. 2.

The α sum energies of 222Np and 219Pa in five (events 1–5) out of the ten decay chains are very close (within 50 keV) and much larger than the values in the rest, implying that only one α line was observed in 223Np. In event 1, the full α energies of both 223Np and 219Pa can be extracted. In event 6, the full α energy of 219Pa could be observed while only part of the 223Np α energy was registered. In decay chains 2–5, only the full sum energy of the α particles from 223Np and 219Pa can be deduced as individual α energies cannot be extracted reliably due to too short time differences. In decay chains 7–10, at least one of the two α particles deposited partial energy or the time differences between the two overlapping α signals are too short.

From events 1–5, the full sum energy of α particles from 223Np and 219Pa is extracted to be 19453(23) keV. The error was calculated using a systematic uncertainty of 15 keV and standard deviation of 40 keV for events 1–5. From events 1 and 6, the full α energy of 219Pa is obtained as 9976(37) keV, in agreement with the previous value of 9900(50) keV [19] within the error bar. In [19] the ERs were stopped in a catcher foil behind the target and α particles emitted from the stopper were detected with an ionization chamber, the energy resolution of which was poor (FWHM \sim 100 keV). The implantation-decay correlation measurement was not possible there, so the decay chain of 219Pa was established for the first time here. The α energy of 223Np, deduced as the difference between the sum energy and the α energy of 219Pa, is 9477(44) keV.

The half-life of 223Np was determined to be $2.15(30)\mu$s by averaging the time differences between 223Np implantations and decays, the errors were calculated following the method in Ref. [30]. The half-life of 223Np is comparable to the time of flight (TOF) in SHANS. The influence of TOF on the half-life measurement in such situation has been analyzed and simulated in detail in [31], and was found negligible. The half-life of 219Th was analyzed this way and was obtained as $1.06(1)\mu$s, in agreement with the result of exponential fitting shown in Fig. 1.

Similarly, the half-life of 219Pa was derived to be $60(28)\mu$s by extracting the time differences between $\alpha(223\text{Np})$ and $\alpha(219\text{Pa})$ signals through the first derivative of the curve obtained from fitting the waveform (see the details in Supplemental Material). It is in agreement with the previous value of 53(10) ms obtained in [19].

The half-life of 215Ac was obtained as 19397(25) ms, consistent with the literature value of 170(10) ms [29] as well.

From the 175Lu target data, a transport efficiency of 11(3)% was extracted for the $175\text{Lu}(\alpha, 4n)211\text{Ac}$ reaction channels,
similar to the value reported in [25] where the same reaction at beam energy of 177 MeV was used. Taking into account the time of flight in the SHANS spectrometer of around 1.3(1) μs and the detection efficiency of ~50% for each generation α decay, the production cross-section of 223Np at the mid-target energy ~185 MeV was estimated to be 0.9(2) nb, comparable with the HIVAP prediction of 1.3 nb. The error of the measured cross-section represents the statistical error only.

3. Discussion

The spins and parities of the $N = 128$ and 130 isotones were all determined to be $9/2^-$ for odd-Z between 83 and 91 [29], including 219Pa, the daughter nucleus of 223Np, indicating that the odd-proton is filling the $\pi h9/2$ orbital up to Pa. They decay to the ground states of their daughters and no fine structures were observed. Around $N = 92$, the proton Fermi surface is closest to the $h9/2$ and $f7/2$ orbitals. The spin of 223Np is expected to be different if a subshell closure exists at $Z = 92$, while not vice versa.

Based on the experimental systematics of low-lying levels in the odd-Z $N = 128$ isotones [29] and shell-model calculations presented below, the excitation energy of the first excited state $7/2^-$ in 219Pa is expected to be around 350 keV and decay to the g.s. by γ transition. The internal conversion coefficient for such a transition is smaller than 0.6. Taking into account the detection efficiency of conversion electron within one pixel, the chance for the energy summing of α with conversion electron is negligible. So the measured charged-particle energy comes from α only.

If 223Np has a $9/2^-$ ground state, as predicted by the shell-model calculations presented below, the α decay to the $9/2^-$ g.s. of 219Pa is expected to be dominant, consistent with the fact that only one α line is observed. If 223Np has a $7/2^-$ ($f7/2$) ground state, the $7/2^-$ → $9/2^-$ g.s. to g.s. transition is strongly hindered due to the spin flip between the initial and final states, it will decay to the $7/2^-$ excited state in 219Pa with α energy 9477 keV, followed by γ transition.

Detailed information on nuclear structure can be obtained from the α-particle preformation probability inside the nucleus [32], which microscopically quantifies the stability against α decay. Conventionally, an equivalent variable, the reduced width for α decay δ^2 [33], which takes into account the angular momentum of the emitted α particle, is used. For the two possible α-decay paths above, where spins and parities of initial and final states are identical, the reduced decay width is calculated to be 0.17(2) MeV using the Q_{α} of 9687(45) keV and $T_{1/2}$ obtained for 223Np in this work, comparable to those of neighboring $N = 130$ isotones with $Z = 86–91$ as shown in Fig. 3.

With the newly measured α-decay energy of 223Np, single proton separation energies (S_p) can be extracted beyond $Z = 92$ along the $N = 130$ isotonic chain and are presented in Fig. 4. The S_p and

\[\begin{array}{cccccccc}
\text{Event No.} & E_{\alpha} & E_{\text{g.s.}} & \sigma_1 & E_{2\alpha} & \sigma_2 & (E_{\alpha} + E_{2\alpha}) & \text{energies} \text{ of} \text{two} \text{overlapping} \text{signals} \\
1 & 12891 & 9454 & 30 & 9992 & 30 & 19464 & 40 & 7596 \quad 4.58 \quad 239 \quad 6.8 \\
2 & 13340 & 9404 & 30 & 10033 & 30 & 19437 & 40 & 7593 \quad 862 \quad 1.88 \quad 43 \quad 142.7 \quad 8.2 \\
3 & 9963 & 9568 & 30 & 9879 & 30 & 19447 & 40 & 7593 \quad 6536 \quad 4.28 \quad 80 \quad 141.2 \quad 210.4 \\
4 & 14652 & 9116 & 30 & 10133 & 30 & 19449 & 40 & 7593 \quad 6521 \quad 9.36 \quad 30 \quad 621.3 \\
5 & 10721 & 9235 & 30 & 10714 & 30 & 19449 & 40 & 7593 \quad 6521 \quad 9.36 \quad 30 \quad 621.3 \\
6 & 12935 & 752 & 60 & 9961 & 60 & 10713 & 40 & 7591 \quad 0.72 \quad 140 \quad 1023.0 \\
7 & 16375 & 2455 & 60 & 1016 & 3647 & 40 & 7586 \quad 1.20 \quad 160 \quad 194.0 \\
8 & 12079 & 1093 & 30 & 9793 & 30 & 10886 & 40 & 7584 \quad 0.74 \quad 19 \quad 231.9 \\
9 & 15260 & 1785 & 30 & 10714 & 30 & 12499 & 40 & 7599 \quad 0.30 \quad 44 \quad 1313 \\\n10 & 13181 & 9381 & 30 & 731 & 40 & 7601 \quad 4.42 \quad 81 \quad 19.3 \\
\end{array} \]

\[a) \text{The } \alpha \text{ energies extracted from } \alpha(223\text{Np})−\alpha(219\text{Pa}) \text{ pileup pulses with time differences shorter than 100 ns cannot be reliably quantified.} \]
the computational limit of shell-model calculations, \(\sim 10^{10} \) dimensions.

The spins and parities of the first few states obtained for the \(N = 126 \) isotones using such truncated model spaces are found to be the same with those obtained using the full model space in [6], giving us confidence in the present calculations in the truncated model space. The spins and parities of \(^{223}\text{Np} \) and \(^{219}\text{Pa} \) are calculated to be both \(9/2^- \). In the previous shell-model calculations [6], the ground state of the semi-magic \(^{219}\text{Np}\) was predicted to be \(9/2^- \) as well.

Based on the large-scale shell-model calculations above, spin and parity of \(9/2^- \) are tentatively proposed for the ground state of \(^{223}\text{Np}\), supporting the absence of a subshell closure at \(Z = 92 \) and \(N = 130 \). However, an \(\alpha\gamma \) coincidence experiment with much higher statistics than in the present work is needed to exclude/confirm the alternative \(7/2^- \) spin and parity.

It should be noted however that the reduced decay width of \(^{222}\text{U}\) is anomalously small compared with those of other \(N = 130 \) isotones, even smaller than those of the neighboring odd-\(Z \) \(^{221}\text{U} \) and \(^{223}\text{Np}\). As the present results for \(^{223}\text{Np}\) and the previous data for \(N = 126 \) isotones do not support the existence of a \(Z = 92 \) subshell closure around \(N = 126 \), the reason remains unclear and this anomaly calls for further study.

4. Summary

In summary, we report on the discovery of the new short-lived isotope \(^{223}\text{Np}\), which was synthesized in the fusion reaction \(^{40}\text{Ar} + ^{187}\text{Re}\) and identified through temporal and spatial correlations with subsequent \(\alpha \) decays in the decay chain starting from \(^{223}\text{Np}\). The half-life and energy were extracted to be \(T_{1/2} = 2.15_{-0.15}^{+0.25} \) ns and \(E_\alpha = 9477(44) \) keV from pileup traces by using modern digital pulse processing techniques. The energy of individual \(\alpha \) in pileup trace with time difference between overlapping signals down to \(\sim 100 \) ns was extracted, the shortest analyzed so far using this method. The trend in proton separation energy shows no sign of a \(Z = 92 \) subshell closure. The spin and parity of \(^{223}\text{Np}\) are proposed to be \(9/2^- \) by combining the reduced \(\alpha \)-decay width and large-scale shell-model calculations in truncated model space, negating the presence of a \(\alpha_{9/2} \) subshell closure at \(Z = 92 \) near \(N = 126 \). The decay chain of \(^{219}\text{Pa}\), the shortest-lived \(\alpha \) emitter known with directly measured half-life, was established for the first time.

Acknowledgements

We are grateful to the accelerator staff of HIRFL for providing a stable \(^{40}\text{Ar} \) beam. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11675225, 11635003, U1632144, 11505035, 11435014 and 11375017), the ‘Hundred Talented Project’ of the Chinese Academy of Sciences and the National Key Basic Research Development Program of China under Grant Nos. 2013CB834403 and 2013CB834404. CYX has been supported by the National Natural Science Foundation of China under Grant No. 11305272, the Special Program for Applied Research on Super Computation of the NSF-CG-Guangdong Joint Fund. We thank N.T. Zhang for the help in the GEANT4 simulations. Helpful discussions with Z.Z. Ren, F.R. Xu, M. Wang, W.H. Long, X.D. Tang and WX. Huang are appreciated.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.physletb.2017.03.074.

References

[1] K.N. Rutz, M. Bender, P.-G. Reinhard, J.A. Maruhn, W. Greiner, Nucl. Phys. A 634 (1998) 67.
[2] L.S. Geng, H. Toki, J. Meng, Prog. Theor. Phys. 113 (2005) 785.
[3] L.S. Geng, J. Meng, H. Toki, W.-H. Long, G. Shen, Chin. Phys. Lett. 23 (2006) 1139.
[4] H. Sagawa, G. Colo, Prog. Part. Nucl. Phys. 76 (2016) 76.
[5] P. Müller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66 (1997) 131.
[6] E. Caurier, M. Rejmund, H. Grawe, Phys. Rev. C 67 (2003) 054310.
[7] K. Hauschild, et al., Phys. Rev. Lett. 87 (2001) 072501.
[8] P. Leppänen, et al., Phys. Rev. C 75 (2007) 054307.
[9] A. Astier, M.-G. Porquet, Phys. Rev. C 87 (2013) 014309.
[10] J. Rissinan, et al., Phys. Rev. C 90 (2014) 044324.
[11] W.H. Long, H. Sagawa, N. Van Giai, J. Meng, Phys. Rev. C 76 (2007) 034314.
[12] W.H. Long, T. Nakatsukasa, H. Sagawa, J. Meng, H. Nakada, V. Zhang, Phys. Lett. B 680 (2009) 428.
[13] W.H. Long, P. Ring, J. Meng, N. Van Giai, C.A. Bertulani, Phys. Rev. C 81 (2010) 031302(R).
[14] J. Khuyagbaatar, et al., Phys. Lett. 115 (2015) 242502.
[15] G. Gamow, Z. Phys. 51 (1928) 204.
[16] R.G. Thomas, Proc. Theor. Phys. 12 (1954) 253.
[17] A.P. Andreyev, et al., Phys. Rev. Lett. 110 (2013) 242502.
[18] S.N. Liddick, et al., Phys. Rev. Lett. 97 (2006) 082501.
[19] T. Faestermann, A. Gillitzer, K. Hartel, W. Henning, P. Kienle, in: Proc. 5th Int. Conf. Nucl. Far from Stability, Rosseau Lake, Canada, K12, 1987.
[20] K. Nishio, H. Ikeoze, S. Mitsuoka, J. Lu, Phys. Rev. C 62 (2000) 014602.
[21] H.M. Devaraja, et al., Phys. Lett. B 748 (2015) 199.
[22] A.V. Veremik, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 350 (1994) 608.
[23] R. Greynvall, Nucl. Instrum. Methods Phys. Res., Sect. B 204 (2003) 649.
[24] W. Reidorf, Z. Phys. A 300 (1981) 227.
[25] Z.Y. Zhang, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 317 (2013) 315.
[26] D. Kaji, K. Morita, K. Morimoto, H. Habla, H. Kudo, Prog. Radiochim. Acta 1 (2011) 105.
[27] http://www.caem.it/csir, 2016 (accessed 15 September 2016).
[28] V.T. Jordanov, G.F. Knoll, Nucl. Instrum. Methods Phys. Res., Sect. A 345 (1994) 337.
[29] http://www.nndc.bnl.gov/ensdf/, 2016 (accessed 09 October 2016).
[30] K.H. Schmidt, et al., Z. Phys. A 316 (1984) 19.
[31] X.Y. Liu, et al., to be published.
[32] H.J. Mang, Ann. Rev. Nucl. Sci. 14 (1964) 1.
[33] J.O. Rasmussen, Phys. Rev. 113 (1959) 1593.
[34] A. Lopez-Martens, et al., Eur. Phys. J. A 50 (2014) 132.
[35] G. Audi, et al., Chin. Phys. C 36 (2012) 1157.
[36] M. Wang, et al., Chin. Phys. C 36 (2012) 1603.
[37] E.K. Warburton, B.A. Brown, Phys. Rev. C 43 (1991) 602.
[38] N. Shimizu, arXiv:1310.5431, 2013.
[39] T.T.S. Kuo, G. Herling, U.S. Naval Research Laboratory Report No. 2258, 1971; G. Herling, T.T.S. Kuo, Nucl. Phys. A 181 (1972) 113.
[40] A.I. Morales, et al., Phys. Rev. C 89 (2014) 014324.
[41] N. Cieplicka-Oryńczak, et al., Phys. Rev. C 93 (2016) 054302.