Drug resistant tuberculosis in adults and its treatment

Francis Drobniewski MA MSc MBBS PhD, Director and Consultant Clinical Microbiologist, \[PHLS Mycobacterium Reference Unit, King's College Hospital, London\]

Mycobacterium tuberculosis (MTB), the bacterium that causes tuberculosis (TB), is estimated to have infected almost one-third of the world's population, producing eight million new clinical cases each year and leading to almost three million deaths. Over 95% of the cases occur in the developing world.

Drug resistance

Drug resistance develops spontaneously in bacteria. Combinations of drugs are used to make clinically significant resistance, and thus treatment failure, unlikely. Non-adherence to therapy, inappropriate prescribing, malabsorption of drugs, and deterioration of the clinical and public health infrastructure necessary for adequate supervision of treatment are all associated with the selection of drug resistant strains and treatment failure. Overall trends in drug resistance are also a crude indicator of the effectiveness of a national TB programme. Rates of multiple drug resistant TB (MDRTB) - that is, resistant at least to isoniazid and rifampicin, two of the major first line drugs - are indicative of poorly functioning programmes. Recent outbreaks of MDRTB in the USA and Europe, particularly in HIV-infected patients, have focused attention on the emergence of drug resistance.

The worldwide level of drug resistance in TB is not known, and methodological problems in many studies have prevented the development of a clear global picture. These include:

- the selection bias of many surveys
- the absence of high quality culture facilities.

In 1994, the World Health Organisation (WHO) and the International Union Against Tuberculosis and Lung Disease began the Global Project on Anti-tuberculosis Drug Resistance Surveillance. The recently published results of surveys and surveillance programmes from 35 countries report drug resistance in all countries. MDRTB was found to be widespread, with one-third of the countries surveyed having levels above 2% in new patients (median prevalence 1–4%; range 0–14%). High rates were found in former countries of the USSR, the Baltic Republics, Argentina, India and China. In general, countries with poor NTPs had a higher prevalence of drug resistance, especially MDRTB.

A laboratory-based surveillance programme, MYCOBNET, was created in the UK in 1994 to monitor drug resistance in TB. Preliminary trend analysis published for the period 1993–1996 showed that in initial isolates, resistance to isoniazid over this period rose from 4.6% to 6.1%, monoresistance to rifampicin from 0.6% to 1.8%, and multidrug resistance from 0.6% to 1.6%. During the same period, the combined clinical prevalence of MDRTB (the total level of resistance occurring in a year) rose from 0.6% to 1.7%.

Treatment of tuberculosis

The principles underlying the treatment of TB have not changed since chemotherapy became possible in the 1940s: that is, combination chemotherapy in standardised regimens for the appropriate period of time.
Currently, rifampicin, isoniazid, pyrazinamide and ethambutol or streptomycin are given for the first two months. The fourth drug is either added until drug susceptibility data become available or omitted where drug resistance is unlikely. This is then followed by rifampicin and isoniazid for a further four months. Combination tablets should be used, and therapy can be given daily or two or three times weekly. Steroids may be of value, for example in TB meningitis or pericarditis. Extrapulmonary TB is treated using the same drugs for the same period of time, except that bone/joint TB and meningitis should be treated for 6–9 months and 12 months, respectively. The usual doses and side effects of TB drugs are given in Table 1.

The WHO has emphasised the role of ‘directly observed treatment, short course’ (DOTS) as a key strategy in which each dose taken by the patient is monitored by a health care worker (see p312 for fuller discussion), but the development of new drugs and vaccines must also be a priority. In practice, DOTS is not necessary for all cases, but close, regular supervision involving a physician with access to TB nursing/contact tracing services is critical to success. Patients with fully drug sensitive isolates are usually (but not always) rendered non-infectious after two weeks of adequate combination chemotherapy. Although some groups such as alcoholic/homeless individuals often adhere poorly to therapy, prediction of compliance is difficult (doctors, for example, are arguably some of the least compliant individuals!). Supervising physicians must have a low threshold for placing patients on DOTS. Where a patient does not respond to treatment and MDR-TB is suspected, further advice may be sought from the PHLS Mycobacterium Reference Unit (tel: 0181 693 2830).

Single drug resistance, with the exception of rifampicin, poses only limited problems therapeutically. Isoniazid resistance alone can be treated by either:

Table 1. Front-line anti-tuberculosis drug in adults. In general, daily or thrice weekly regimens are preferred to twice weekly dosing.

Drug	Route*	Daily dose**	Intermittent twice weekly	Thrice weekly	Major side effects†	Monitoring‡
Isoniazid	PO	300 mg	15 mg/kg max: 900 mg	15 mg/kg max: 900 mg	Peripheral neuropathy; hepatitis; CNS effects; increased phenytoin levels; interaction with drugs; hepatic enzyme elevation	LFT; levels of interacting drugs**
	IM	5 mg/kg				
	IV					
Rifampicin	PO	600 mg	10 mg/kg max: 600 mg	10 mg/kg max: 600 mg	GI upset; hepatitis; rash; bleeding problems; contact lens and body fluids coloured orange/pink; decreased serum levels of warfarin, methadone, contraceptive hormone, dapsone, ketocanazole, theophylline; flu-like syndrome	LFT; levels of interacting drugs
	IV	10 mg/kg				
Pyrazinamide	PO	1.5–2.5 g	2.5–3.5 g 50–70 mg/kg	2–3 g 50–70 mg/kg	GI upset; increase in hepatic enzyme levels; rash; joint pain; hyperuricaemia (gout rarely); may complicate control of diabetes mellitus	LFT; uric acid (if needed)
		15–30 mg/kg				
Ethambutol	PO	2.5 g (max)	50 mg/kg	30 mg/kg	Red/green colour blindness; optic neuritis; decreased visual activity; rash	Colour vision; visual acuity
		15–25 mg/kg				
Streptomycin†	IM	15 mg/kg	25–30 mg/kg	25 mg/kg	Nephrotoxicity; ototoxicity; hypokalaemia; hypomagnesaemia	Blood chemistry renal function; audiometry
	IV					

* Possible routes of administration; in practice, all drugs are given orally wherever possible.
** The daily dose is quoted for a man of average weight; all doses are adjusted in accordance with a patient’s weight.
† Isoniazid causes increased elimination of pyridoxine, leading to peripheral neuropathy particularly in alcoholics, the malnourished and in pregnancy. Daily doses of 10 mg of pyridoxine per day are sufficient to compensate for this loss.
‡ Liver function tests (LFT); specific monitoring points are given. At appropriate intervals, the patient should be monitored clinically, radiologically and bacteriologically. A full blood count (including platelets) should be performed if there is any bleeding tendency.
+ Streptomycin in patients over 60 years of age is more likely to lead to side effects; daily doses should be limited to 10 mg/kg, with a maximum dose of 750 mg. Closer observation of hearing loss and renal function may be necessary in this age group.
++ Aluminum-based antacids reduce absorption.

CNS = central nervous system; GI = gastrointestinal; IM = intramuscular; IV = intravenous; PO = per os
• rifampicin, pyrazinamide and ethambutol/streptomycin for 6–9 months, or
• rifampicin and ethambutol for 12 months.

Isolated streptomycin resistance poses no problems and requires no adjustment of regimen. Successful treatment of MDRTB, however, requires individualised therapy for prolonged periods with second- and third-line drugs. MDRTB carries a high mortality, particularly in the immunocompromised, but an improved outcome is associated with treatment using at least three drugs to which the organism is susceptible on in vitro testing (reviewed in Ref 3). Treatment should be planned with regard to the guidelines shown in the key points. The dosages, side effects and therapeutic monitoring requirements for second- and third-line agents are given in Table 2. Surgery (eg lobectomy, pneumonectomy) may also be a useful adjunct to medical treatment of localised pulmonary MDRTB and in the management of complications.

The rapid diagnosis of drug resistance is essential in order to institute correct therapy. Culture-based techniques (phenotypic methods) remain the basis of drug susceptibility testing, but novel automated rapid culture systems can reduce the time considerably. Molecular detection of drug resistance (genotypic methods) has been facilitated by the identification and sequencing of key genes and those regions associated with drug resistance.

New drug therapies

The development of new therapeutic strategies for MDRTB remains slow. There has, however, been some progress in the development of novel agents within established drug groups.

Table 2. Second-line anti-tuberculosis drugs in adults.

In general when commencing drugs at lower doses, the normal daily dose should be established as quickly as possible.

Drug	Route*	Daily dose	Major side effects	Notes
Ciprofloxacin	PO	500–1,000 mg (max: 1,500 mg) (2 doses)	GI upset; abdominal cramps; photosensitivity; headache; insomnia; interacts with warfarin and theophylline; hypersensitivity	Antacids; iron supplements and sucralfate reduce gastrointestinal absorption.
Ofloxacin	PO	600–800 mg	As above	Monitor auditory and renal function; blood chemistry.
Amikacin†	IM IV	15 mg/kg (max: 1 g)	Otootisity; renal toxicity; occasional vestibular toxicity; hypokalaemia; hypomagnesaemia	Monitor LFT. Start with 250 mg daily dose and increase as tolerated. Increase to bd quickly.
Prothionamide	PO	0.5–1 g PO (in 1–2 doses)	GI upset; raised hepatic enzymes; metallic taste; hypothyroidism (more likely if PAS given concurrently). (Antacids/emetics may help but watch other drug interactions)	Start with 250 mg daily and increase. Pyridoxine (50 mg) with each 250 mg may reduce CNS effect.
Cycloserine	PO	0.5–1 g PO (in 1–2 doses)	Rash; psychosis; depression; seizures; headache; increases phenytoin levels. Avoid if underlying CNS problems or depression	Monitor auditory and renal function; blood chemistry.
Capreomycin	IM	15 mg/kg (max: 1 g)	Otootisity; renal toxicity; vestibular toxicity; hypokalaemia; hypomagnesaemia; eosinophilia	Commence 1–2 g tds and increase as tolerated by patient. Tablets create a high sodium load – monitor volume and electrolytes in cardiac and renal patients.
PAS	PO	8–12 g (divided doses)	GI upset; increased hepatic enzymes; decreased digoxin levels; increased phenytoin levels; haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency	Only modest activity against TB; used principally to prevent emergence of drug resistance.
Clarithromycin	PO IV	500 mg PO (2 doses)	GI upset; jaundice; hepatitis; interaction with many drugs including anticoagulants, antiepileptics, digoxin, rifabutin, usually by reducing liver enzyme activity	Avoid sunlight; dosing at mealtime may be helpful.
Clofazimine	PO	100–300 mg	GI upset; causes skin darkening; abdominal pain; rare organ damage if drug crystal deposits occur	

* Drugs are given daily; orally wherever possible. Treatment of drug resistant TB should be performed by those experienced in its management.
† After bacteriological conversion, aminoglycosides can be given three times weekly.

CNS = central nervous system; GI = gastrointestinal; IM = intramuscular; IV = intravenous; PAS = para-aminosalicylic acid; PO = per os
for example, rifamycins (eg rifabutin, rifapentine), macrolides and fluoroquinolones (FQ), and also of immunomodulators and improved methods of delivering established agents.

Rifabutin

Rifabutin, a member of the rifamycin drug group, is as effective against MTB as rifampicin. It is also effective both against a small proportion of isolates that are resistant to rifampicin and as prophylaxis against *Mycobacterium avium intracellulare* (MAC). It is usually contraindicated with most protease inhibitors used in anti-retroviral therapy for HIV-positive patients. When used for MAC prophylaxis, it has been associated with acquired rifampicin monoresistance in subsequent TB and uveitis.

Rifapentine

A long half-life formulation, rifapentine, which permits weekly or twice-weekly dosing is being evaluated, but there were high relapse rates in a recent Hong Kong study using a Chinese manufactured drug due to the low bioavailability of the preparation. An improved formulation is undergoing trials in the USA and South Africa, but preliminary results in the former have also indicated a high rate of relapse with acquired rifampicin monoresistance.

Benzoxazinorifamycin

Benzoxazinorifamycin has a lower minimal inhibitory concentration in vitro than either rifampicin or rifabutin, but it exhibits cross resistance with rifampicin.

Macrolides

Novel macrolides such as azithromycin and clarithromycin show only modest activity against TB (approximately equivalent to thiacetazone). Their main use is to prevent the emergence of resistance to other drugs when used in combination with them.

Fluoroquinolones

Ciprofloxacin is a useful bactericidal second line agent for TB. Other FQs such as ofloxacin, levofloxacin and sparfloxacin which achieve higher serum levels have been developed, but there is no clear evidence that they are clinically more effective than ciprofloxacin.

Delivery systems

Novel delivery systems have a limited role at present, principally due to cost. For example, liposomally encapsulated amikacin in vitro and in experimental animals has better delivery and activity against MTB than the free agent because of increased macrophage uptake. Depot preparations may also circumvent compliance problems, and isoniazid preparations in rodents and rabbits have produced therapeutic levels for 60 days.

Immunotherapies

The use of *Mycobacterium vaccae* as an immunotherapeutic adjunct to chemotherapy is under evaluation in several locations in Europe, Asia and Africa. There are some recent encouraging results from Romania, but a randomised controlled trial in South Africa has recently reported disappointing results.

In vivo, different cytokines have been shown to inhibit or promote mycobacterial growth. Arguably the most studied has been gamma interferon (IFNγ), whose properties are indicated in Table 3. In mice, administration of IFNγ potentiates macrophage killing of MTB, and sublethal bacterial doses kill IFNγ gene knock out mice. Published data on the clinical use of immunomodulating cytokines in refractory TB are limited, but one recent open label study in which five MDRTB smear and culture positive patients were given chemotherapy and...
aerosolised IFNγ indicated that there was some clinical benefit, in that:
- body weight increased in all patients
- smears became negative
- the time taken to produce a positive culture decreased, reflecting a reduction in bacterial viability on treatment
- computed tomography showed a reduction in cavity size.

Thalidomide treatment, which antagonises the production of tumour necrosis factor, has been shown to produce weight gain and general well being. Animal studies with interleukin 12 have also shown some benefit (Table 3).

Conclusion

Effective supervised combination treatment is the key to successful therapy in drug sensitive or resistant TB. Nevertheless, if we are to address MDRTB seriously in cities like London with their significant social deprivation, higher numbers of homeless individuals and immigration from countries with considerable drug resistance problems, the development of model centres for treatment may need to be considered, together with the greater use of DOTS.

References

1 Drobniewski F, Pablos Mendez A, Raviglione MC. Epidemiology of tuberculosis in the world. Semin Respir Crit Care Med 1997;18:419–29.
2 Raviglione MC, Dye C, Schmidt S, Kochi A. The WHO Global Surveillance and Monitoring Project. Assessment of worldwide tuberculosis control. Lancet 1997;350:624–9.
3 Drobniewski FA. Is death inevitable with multiresistant TB plus HIV infection? Lancet 1997;349:71–2.
4 World Health Organisation/ International Union Against Tuberculosis and Lung Disease. Anti-tuberculosis drug resistance in the world. Geneva, Switzerland: WHO, 1997.
5 Bennett DE, Brady AR, Herbert J, Drobniewski F, et al. Drug resistant TB in England and Wales 1993–1995. Thorax 1996;51(suppl 3):S32.
6 O’Brien RJ. Clinical studies of new rifamycins for the treatment and prevention of tuberculosis. Int J Tuberc Lung Dis 1997;1:511.
7 Hirata T, Salto H, Tomioka H, Sato K, et al. In vitro and in vivo activities of the benzoxazinorifamycin KRM 1648 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995;39;2295–303.
8 Luna Herrera J, Reddy VM, Daneluzzi D, Gangadharam PR. Antituberculosis activity of clarithromycin. Antimicrob Agents Chemother 1995;39:2692–5.
9 Gangadharam PR, Ashetkar DR, Farthi DC. Wise DL. Sustained release of isoniazid from a single implant of biodegradable polymer. Tubercle 1991;72:115–22.
10 Corlan E, Marcia C, Macaveli C, Stanford JL, Stanford CA. Immunotherapy with Mycobacterium vaccae in the treatment of tuberculosis in Romania. Respir Med 1997;91:913–9.
11 Durman P, Stanford Rook’s ‘miracle cure’ for TB fails. The Times (London), 1 October 1997.
12 Flynn J, Chan J, Triebold KJ, Dalton DK, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993;178:2249–54.
13 Newport MJ, Huxley CM, Husson S, Hawrylowicz CM, et al. A mutation in the interferon gamma receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996;335:1941–9.
14 Holland SM, Eisenstein EM, Kuhns DB, Turner ML, et al. Treatment of refractory disseminated non tuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 1994;330:1348–55.
15 Condos R, Rom WN, Schluger NW. Treatment of multidrug resistant pulmonary TB with interferon gamma via aerosol. Lancet 1997;349:1513–5.
16 Tramontana JM, Utaipat U, Molloy A, Akresawi P, et al. Thalidomide treatment reduces tumor factor alpha production and enhances weight gain in patients with pulmonary tuberculosis. Mol Med 1995;1:384–97.
17 Flynn JL, Goldstein MM, Triebold KJ, Syrek J, et al. IL-12 increases resistance of BALB/c to Mycobacterium tuberculosis infection. J Immunol 1995;155:2515–24.
18 Cooper AM, Roberts AD, Rhodes ER, Callahan JE, et al. The role of interleukin 12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 1995;84:423–32.