Hawkins, VE and Takakura, AC and Trinh, A and Malheiros-Lima, MR and Cleary, CM and Wenker, IC and Dubreuil, T and Rodriguez, EM and Nelson, MT and Moreira, TS and Mulkey, DK (2017) Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe. eLife, 6. e25232-e25232.

Downloaded from: http://e-space.mmu.ac.uk/623823/
Version: Published Version
Publisher: eLife Sciences Publications
DOI: https://doi.org/10.7554/eLife.25232
Usage rights: Creative Commons: Attribution 4.0

Please cite the published version

https://e-space.mmu.ac.uk
Purinergic regulation of vascular tone in the retrotrapezoid nucleus is specialized to support the drive to breathe

Virginia E Hawkins¹, Ana C Takakura², Ashley Trinh¹, Milene R Malheiros-Lima³, Colin M Cleary¹, Ian C Wenker¹, Todd Dubreuil¹, Elliot M Rodriguez¹, Mark T Nelson⁴, Thiago S Moreira³*, Daniel K Mulkey¹†

¹Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States; ²Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; ³Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; ⁴Department of Pharmacology, College of Medicine, University of Vermont, Burlington, United States; ⁵Institute of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom

Abstract Cerebral blood flow is highly sensitive to changes in CO₂/H⁺ where an increase in CO₂/H⁺ causes vasodilation and increased blood flow. Tissue CO₂/H⁺ also functions as the main stimulus for breathing by activating chemosensitive neurons that control respiratory output. Considering that CO₂/H⁺-induced vasodilation would accelerate removal of CO₂/H⁺ and potentially counteract the drive to breathe, we hypothesize that chemosensitive brain regions have adapted a means of preventing vascular CO₂/H⁺-reactivity. Here, we show in rat that purinergic signaling, possibly through P2Y₂/₄ receptors, in the retrotrapezoid nucleus (RTN) maintains arteriole tone during high CO₂/H⁺ and disruption of this mechanism decreases the CO₂-ventilatory response. Our discovery that CO₂/H⁺-dependent regulation of vascular tone in the RTN is the opposite to the rest of the cerebral vascular tree is novel and fundamentally important for understanding how regulation of vascular tone is tailored to support neural function and behavior, in this case the drive to breathe.

DOI: 10.7554/eLife.25232.001

Introduction

Cerebral blood flow is highly sensitive to changes in CO₂/H⁺. An increase in CO₂/H⁺ causes vasodilation and increased blood flow, which in turn facilitates removal of excess CO₂/H⁺. This response, known as vascular CO₂ reactivity, serves to match blood flow with tissue metabolic needs (Ainslie and Duffin, 2009). Maintaining tight control of brain CO₂/H⁺ levels is critical, as there is only a narrow range that is conducive to normal neural function. For example, a modest alkalosis of just 0.2 pH units can trigger seizure activity; conversely, a similar degree of acidification can inhibit cortical activity (Schuchmann et al., 2006). Tissue CO₂/H⁺ levels are also regulated by respiratory activity. This is accomplished by specialized subsets of neurons known as respiratory chemoreceptors that are activated by an increase in CO₂/H⁺ (Guyenet and Bayliss, 2015). This information is then relayed to respiratory centers to enhance breathing, and consequently facilitate removal of arterial CO₂ in the exhaled breath.

The retrotrapezoidal nucleus (RTN) is a region critical for respiratory chemoreception (Guyenet and Bayliss, 2015). This region contains a subset of neurons that are intrinsically sensitive to changes in CO₂/H⁺ (Mulkey et al., 2004: Wang et al., 2013) and relay responses to further
eLife digest We breathe to help us take oxygen into the body and remove carbon dioxide. Our cells use the oxygen to break down food to release energy, and as they do so they produce carbon dioxide as a waste product. Cells release this carbon dioxide back into the bloodstream so that it can be transported to the lungs to be breathed out. Carbon dioxide also makes the blood more acidic; if the blood becomes too acidic, tissues and organs may not work properly.

The brain uses roughly 25% of the oxygen consumed by the body and is particularly sensitive to the levels of gases and acidity in the blood. It has been known for more than a century that increased carbon dioxide causes blood vessels in the brain to widen, allowing the excess carbon dioxide to be carried away quickly. More recent work has shown that increased carbon dioxide also activates neurons called respiratory chemoreceptors. These in turn activate the brain centers that drive breathing, causing us to breathe more rapidly to help us remove surplus carbon dioxide.

But this scenario contains a paradox. If high levels of carbon dioxide cause widening of the blood vessels in the brain regions that contain respiratory chemoreceptors, this should, in theory, wash out that important stimulus, reducing the drive to breathe. So how does the brain prevent this unhelpful response? By studying the brains of adult rats, Hawkins et al. show that different rules apply to the brain centers that control breathing compared to other areas of the brain. In one such region, if the blood becomes too acidic, support cells called astrocytes release chemical signals called purines. This counteracts the tendency of high carbon dioxide levels to widen blood vessels in this region, and instead causes these vessels to become narrower.

This mechanism ensures that local levels of carbon dioxide in respiratory brain centers remain in tune with the demands of local networks, thereby maintaining the drive to breathe. The next challenges are to identify the molecular mechanisms that control the diameter of blood vessels in brain regions containing respiratory chemoreceptors, and to find out whether drugs that modulate these mechanisms have the potential to treat some respiratory conditions.

DOI: 10.7554/eLife.25232.002

respiratory control regions, such as the ventral respiratory complex to control breathing rate, inspiratory amplitude, active expiration and airway patency (Guyenet and Bayliss, 2015; Silva et al., 2016). Disrupting mechanisms by which RTN neurons sense CO₂/H⁺ abolishes ventilatory responses to CO₂ and results in severe apnea (Kumar et al., 2015). Interestingly, RTN astrocytes also support chemoreception by providing a CO₂/H⁺-dependent purinergic drive that enhances activity of chemosensitive neurons (Gourine et al., 2010; Wenker et al., 2012). This function of RTN astrocytes is unique to the RTN since astrocytes elsewhere do not respond similarly to changes in pH (Gourine et al., 2010; Sobrinho et al., 2014).

For more than a century, vascular CO₂ reactivity has been assumed to be a common feature of the entire cerebrovascular tree (Ainslie and Duffin, 2009; Roy and Sherrington, 1890). However, if CO₂/H⁺-induced vasodilation were to occur in chemosensitive regions it would accelerate removal of tissue CO₂/H⁺ and effectively counter-regulate activity of respiratory chemoreceptors (Xie et al., 2006). Therefore, we propose that regulation of vascular tone is specialized to support local neural network function, and specifically that a chemoreceptor region like the RTN has evolved a means of maintaining vascular tone during exposure to high CO₂/H⁺ in a manner that supports the drive to breathe. Consistent with this, early studies showed that fast breath by breath changes in arteriole CO₂ correspond with changes in pH measured at the ventral medullary surface (Millhorn et al., 1984), suggesting tissue pH in this region is not highly buffered, possibly because blood vessels in this region do not dilate in response to CO₂/H⁺. Furthermore, considering that CO₂/H⁺-evoked ATP release appears to be unique feature of RTN chemoreception (Gourine et al., 2010) and since ATP can mediate vasoconstriction in other brain regions (Kur and Newman, 2014; Peppiatt et al., 2006), we hypothesize that CO₂/H⁺-evoked ATP release will antagonize CO₂/H⁺-vasodilation in the RTN, and thus prevent CO₂/H⁺ washout, further enhancing chemoreceptor function.

Consistent with this hypothesis, we find that arterioles in the RTN and cortex are differentially modulated by purinergic signaling during exposure to high CO₂/H⁺. Specifically, we show in vitro and in vivo that exposure to CO₂/H⁺ caused vasoconstriction of RTN arterioles but vasodilation of cortical...
arterioles. The CO$_2$/H$^+$-response of RTN arterioles was blocked by bath application of a P2 receptor blocker (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid; PPADS) and mimicked by a P2Y$_{2/4}$ receptor agonist (UTP$_7$S) but not a P2X receptor agonist (αβ-mATP), suggesting mechanism(s) underlying this response in the RTN involve purinergic signaling and downstream activation of P2Y$_2$ and/or P2Y$_4$ receptors. To support the possibility that RTN vascular control contributes to respiratory behavior, we show that disruption of purinergic regulation of vascular tone or application of a vasodilator (SNP) to the RTN region decreased the ventilatory response to CO$_2$, whereas application of vasoconstrictors (phenylephrine or U46619) potentiated the central chemoreflex. These results suggest for the first time that regulation of vascular tone in a respiratory chemoreceptor region is specialized to support the drive to breathe.

Results and discussion
We initially tested our hypothesis using the brain slice preparation optimized for detecting increases or decreases in vascular tone (see Materials and methods). For these experiments, we targeted arterioles based on previously described criteria (Mishra et al., 2014; Filosa et al., 2004). Vessel diameter was monitored continuously during exposure to 15% CO$_2$ (pH = 6.9) under baseline conditions and during purinergic receptor blockade with PPADS. Consistent with our hypothesis, we found CO$_2$/H$^+$ differentially regulates arteriole diameter in the RTN depending on the function of purinergic receptors. For example, exposure to CO$_2$/H$^+$ under control conditions resulted in a vasoconstriction of $-4.6 \pm 0.6\%$ (p<0.0001, N = 34 vessels) (Figure 1C) (estimated by Poiseuille’s law to decrease blood flow by $\sim 20\%$). Further, we found that CO$_2$/H$^+$-induced constriction of RTN arterioles was retained in the presence of tetrodotoxin (TTX; 0.5 μM) to block neuronal action potentials ($-6.1 \pm 1.6\%$, p=0.0103, N = 6 vessels), thus suggesting glutamatergic CO$_2$/H$^+$-activated neurons (Mulkey et al., 2004) are not requisite determinants of this response. Conversely, exposure to CO$_2$/H$^+$ did not cause constriction of RTN arterioles during P2 receptor blockade with 5 μM PPADS ($-0.1 \pm 0.9\%$, p=0.4876, N = 8 vessels) (Figure 1A–C). We also tested effects of exogenous ATP to confirm that it functions as vasoconstrictor of RTN arterioles. Indeed, we found that exposure to ATP (100 μM) resulted in a $-5.8 \pm 1.5\%$ constriction (p=0.0018, N = 7 vessels) (Figure 1D–E). These results show that purinergic signaling contributes to CO$_2$/H$^+$-dependent control of RTN arterioles.

Purinergic receptors are expressed by a wide variety of cell types including neurons, astrocytes, smooth muscle and endothelial cells; in the context of vascular control, the P2 receptors most commonly implicated in vasoconstriction are several members of the P2X family of ionotropic receptors and metabotropic P2Y$_2$, P2Y$_4$ and P2Y$_6$ (Burnstock and Ralevic, 2014). Since the concentration of PPADS used above to block purinergic modulation of RTN arterioles has highest affinities for P2X and P2Y$_2$ and P2Y$_4$ (Ralevic and Burnstock, 1998), to identify candidate P2 receptors that help maintain RTN arteriole tone during exposure to CO$_2$/H$^+$, we tested effects of a selective P2Y$_2$ and P2Y$_4$ receptor agonist (UTP$_7$S) (Lazarowski et al., 1996) and an agonist with high affinity for P2X receptors (αβ-mATP) (Burnstock and Kennedy, 1985). We found that bath application of UTP$_7$S (0.5 μM) mimicked effects of CO$_2$/H$^+$ by decreasing diameter of RTN arterioles ($-3.4 \pm 0.6\%$, p=0.0003, N = 8 vessels), whereas exposure to αβ-mATP (100 μM) minimally affected arteriole tone (-0.2113%, N = 9 vessels) (Figure 1D–E). These results suggest that mechanism(s) underlying purinergic-dependent control of RTN arterioles during high CO$_2$/H$^+$ involve activation of Gq-coupled P2Y$_{2/4}$ receptors. To further support this possibility, we performed immunohistochemistry using commercially available P2Y$_2$ and P2Y$_4$ specific antibodies in conjunction with cell-type specific markers for endothelial cells (DyLight 594 Isolectin B4 conjugate; IB4), vascular smooth muscle cells (α-smooth muscle actin; α-SMA), and astrocytes (anti-glial fibrillary acidic protein; GFAP). We detected P2Y$_2$ and P2Y$_4$ immunoreactivity in close proximity to all three cell types associated with RTN arterioles. For example, P2Y$_2$ and P2Y$_4$ labeling appeared as numerous intensely stained puncta near endothelial cells and smooth muscle cells and as smaller more diffuse puncta near astrocytes (Figure 1F–G). The expression of these receptors together with our functional evidence suggest P2Y$_{2/4}$ receptors contribute to purinergic-dependent vasoconstriction in the RTN during exposure to CO$_2$/H$^+$.

Considering that ATP and UTP breakdown products are known to affect vascular tone in other brain regions (Burnstock and Ralevic, 2014), we also pharmacologically manipulated P1 receptors and ectonucleotidase activity before or during exposure to CO$_2$/H$^+$. We found that application of
Figure 1. \(\text{CO}_2/\text{H}^+ \)-induced vasoconstriction of RTN arterioles is mediated by a purinergic dependent mechanism involving P2Y\(_{2/4} \) receptors. (A) trace of an RTN arteriole diameter show that increasing \(\text{CO}_2 \) in the perfusion media from 5% to 15% (balance air, in TTX) caused vasoconstriction under baseline conditions but not in PPADS (5 \(\mu \text{M} \)). (B) example vessel image under baseline conditions and corresponding fluorescent intensity profile plots also show that exposure to high \(\text{CO}_2 \) decreased vessel diameter. Profile plot scale bars: 2000 a.u., 10 \(\mu \text{m} \). (C) summarized results of RTN arteriole responses to \(\text{CO}_2/\text{H}^+ \) under baseline conditions (N = 34 vessels) and when P2-receptors were blocked (5 \(\mu \text{M} \) PPADS; N = 8 vessels), P1-receptors were blocked (10 \(\mu \text{M} \) 8-PT; N = 7 vessels), or ectonucleotidase activity was inhibited (100 \(\mu \text{M} \) POM1; N = 5 vessels). (D) example diameter traces show RTN arterioles constric in response to bath application of ATP (100 \(\mu \text{M} \)) or the selective P2Y\(_{2/4} \) receptor agonist UTP\(_{\gamma}\text{S} \) (0.5 \(\mu \text{M} \)) but dilate when P1 receptors are activated by adenosine (Ado; 1 \(\mu \text{M} \)). (E) summary data plotted as % diameter change in response to ATP (N = 7 vessels), UTP (N = 8 vessels), \(\alpha,\beta\)-mATP (100 \(\mu \text{M} \), preferential P2X agonist; N = 9 vessels) or adenosine (N = 9 vessels). (F–G), immunoreactivity for P2Y\(_2 \) (F) and P2Y\(_4 \) (G) receptors was detected as brightly label puncta near endothelial cells (DyLight 594 Isolectin B4 conjugate; IB4), arteriole smooth muscle (\(\alpha \)-smooth muscle actin; \(\alpha \)SMA), and astrocytes (glial fibrillary acidic protein; GFAP) associated with arterioles in the RTN (N = 3 animals). Arrows identify receptor labeling close to endothelial or smooth muscle cells and arrowhead identifies receptor labeling of astrocyte processes. Scale bar 10 \(\mu \text{m} \). Hash marks designate a difference in \(\mu \text{m} \) from baseline as determined by RM-one-way ANOVA and Fishers LSD test or paired t-test and asterisks identify differences in \(\text{CO}_2/\text{H}^+ \)-induced % change under baseline conditions vs in the presence of PPADS (C) or ATP vs specific agonist-induced % change (E) (one-way ANOVA and Fishers LSD test); one symbol = p<0.05, two symbols = p<0.01, three symbols = p<0.001, four symbols = p<0.0001. DOI: 10.7554/eLife.25232.003
adenosine (1 μM) under control conditions caused vasodilation of RTN arterioles (2.6 ± 0.6%; p=0.0027, N = 9 vessels) (Figure 1D–E); however, blockade of adenosine receptors with 8-phenyltheophylline (8-PT; 10 μM) had negligible effects on CO₂/H⁺-induced vasoconstriction (−3.2 ± 0.4%, p=0.0002, N = 7 vessels) (Figure 1C). Likewise, incubation in sodium metatungstate (POM 1; 100 μM) to inhibit ectonucleotidase activity also minimally affected the CO₂/H⁺-vascular response of RTN arterioles (−3.1 ± 0.6%, p=0.0195, N = 5 vessels) (Figure 1C). These results suggest that nucleoside metabolites are not essential for CO₂/H⁺-dependent regulation of vascular tone in the RTN.

Previous evidence (Gourine et al., 2010) suggests CO₂/H⁺-evoked ATP release from RTN astrocytes is mediated by intracellular Ca²⁺. Therefore, in the absence of high CO₂, pharmacological activation of RTN astrocytes should trigger arteriole constriction by a purinergic-dependent mechanism. We test this by bath application of t-ACPD (50 μM), an mGluR agonist used to elicit Ca²⁺ elevations in cortical astrocytes (Filosa et al., 2004; Zonta et al., 2003). Exposure to t-ACPD caused vasoconstriction of RTN arterioles under baseline conditions (−3.5 ± 0.5%, p=0.0007, N = 7) but not in PPADS (−0.6 ± 0.4%, p=0.2163, N = 7 vessels) (Figure 2A–B,E). These results are consistent with our hypothesis that purinergic signaling, possibly from CO₂/H⁺-sensitive RTN astrocytes (Gourine et al., 2010), serves to maintain tone of arteriole in the RTN during hypercapnia.

In marked contrast to the RTN, we found that cortical arterioles dilated in response to astrocyte activation by t-ACPD. For example, bath application of t-ACPD (50 μM) dilated cortical arterioles by 5 min

Figure 2. t-ACPD-mediated astrocyte activation has opposite effects on arteriole diameter in the RTN and cortex. (A) diameter trace of an RTN arteriole show the response of an RTN arteriole to t-ACPD (50 μM) under baseline conditions and during P2-receptor blockade with PPADS (5 μM). (B) example RTN vessel image under baseline conditions and corresponding fluorescent intensity profile plots also show that exposure to tACPD decreased vessel diameter. (C) diameter trace of an cortical arteriole and corresponding vessel image with example profile plots (D) show that exposure to tACPD (50 μM) increase cortical arteriole diameter. Profile plot scale bars: 2000 a. u., 10 μm. (E) summary from the RTN (N = 7 vessels) and cortex (N = 5 vessels) data show that t-ACPD caused vasoconstriction of RTN arterioles under control conditions but not in the presence of PPADS, suggesting purinergic signaling most likely from astrocytes mediate constriction of arterioles in the RTN. Conversely, in the cortex t-ACPD caused vasodilation. ##, difference in μm from baseline (paired t-test, p<0.01). ###, difference in μm from baseline (RM-one-way ANOVA and Fishers LSD test, p<0.001). **, difference in t-ACPD-induced % change under baseline conditions vs in PPADS (paired t-test, p<0.01).

DOI: 10.7554/eLife.25232.004
3.2 ± 0.6% (p=0.0030, N = 5 vessels) (Figure 2C–E). This response is consistent with previous cortical studies (Filosa et al., 2004; Zonta et al., 2003), and suggests that astrocytes in the RTN and cortex have fundamentally different roles in regulation of vascular tone. Also consistent with previous work (Ainslie and Duffin, 2009), we confirmed that cortical arterioles dilate in response to CO₂/H⁺ (5.7 ± 1.1%, p=0.0057, N = 11 vessels) (Figure 3A–C). Interestingly, we also found that the CO₂/H⁺-vascular response of cortical arterioles was reduced to 0.5 ± 0.5% in PPADS (p=0.004, N = 6 vessels) (Figure 3A–C), suggesting involvement of endogenous ATP in cortical arteriole CO₂/H⁺-dilation. As in the RTN, we also found that endothelial cells, smooth muscle and astrocytes associated with cortical arterioles were immunoreactive for P2Y₂ and P2Y₄ (Figure 3D–E), suggesting the differential roles of purinergic signaling in these regions is not due to the presence or absence of P2Y₂ and P2Y₄. However, since the vascular responses to activation of P2Y₂/4 can vary depending on which cells express the receptor (Burnstock and Ralevic, 2014), it remains possible that differential expression of P2Y₂/4 by endothelial and smooth muscle may mediate vasodilation in the cortex and constriction in the RTN, respectively. It is also possible that other purinergic receptors contribute to regulation of arteriole tone in these regions. For example, endothelial P2Y₁ receptors are known to mediate vasodilation in the cortex (Burnstock and Ralevic, 2014). However, we found that in vivo

Figure 3. Cortical arterioles dilate in response to CO₂/H⁺. (A) diameter trace of a cortical arteriole with an example vessel image and fluorescence profile plots (B) show that exposure to CO₂/H⁺ caused vasodilation under baseline conditions and this response was blunted by PPADS (5 μM). Profile plot scale bars: 2000 a.u., 10 μm. (C) summary data show CO₂/H⁺-induced vasodilation of cortical arterioles under baseline conditions (N = 11 vessels) but not in PPADS (N = 6 vessels) (D–E), immunoreactivity for P2Y₂ (D) and P2Y₄ (E) receptors was detected as brightly label puncta near endothelial cells (DiLight S94 Isolectin B4 conjugate; IB4), arteriole smooth muscle (α-smooth muscle actin; αSMA), and astrocytes (glial fibrillary acidic protein; GFAP) associated with cortical arterioles (N = 3 animals). Arrows identify receptor labeling close to endothelial or smooth muscle cells and arrowheads identifies receptor labeling of astrocyte processes. Scale bar 10 μM. #, difference in μm from baseline (paired t test, p<0.01). **, difference in CO₂/H⁺-induced % change under control conditions vs in PPADS (paired t-test, p<0.01).

DOI: 10.7554/eLife.25232.005
application of a selective P2Y₁ receptor blocker (MRS2179, 100 μM) had no measurable effect on the CO₂/H⁺ response of pial vessels in the RTN (−3.7 ± 0.8%, vs. saline plus CO₂: −4.3 ± 0.7%; p=0.068; N = 5 vessels) or cortex (4.8 ± 0.5%, vs. saline plus CO₂: 4.7 ± 0.6%; p=0.24; N = 5 vessels) (data not shown). Alternatively, arachidonic acid metabolites are also potent regulators of vascular tone (MacVicar and Newman, 2015) and recent evidence showed that CO₂/H⁺-mediated vasodilation in the cortex and hippocampus involved activation of cyclooxygenase-1 and prostaglandin E2 release by astrocytes (Howarth et al., 2017). Considering that purinergic signaling can elicit Ca²⁺ responses in astrocytes to facilitate prostaglandin E2 synthesis (Xu et al., 2003), it remains possible that purinergic signaling contributes to cortical CO₂/H⁺ dilation by influencing synthesis and release of prostaglandin E2 by astrocytes. However, currently the cellular and molecular basis of purinergic dilation in the cortex remains unknown.

To determine whether regulation of vascular tone in the RTN impacts respiratory behavior, we pharmacologically manipulated RTN vessels in anesthetized rats while simultaneously measuring systemic blood pressure and diaphragm EMG activity (as a measure of respiratory activity) during exposure to high CO₂. We found that localized application of the vasoconstrictors phenylephrine (Phe; 1 μM) or U46619 (1 μM) to the ventral medullary surface (VMS) enhanced the ventilatory response to CO₂ by increasing diaphragm electromyogram (EMG) amplitude 15 ± 2% and 18 ± 1.8%, respectively (Figure 4A–C) (p=0.02; N = 6 animals) but with no change in frequency (Figure 4D) (p>0.05; N = 6 animals). Also consistent with the possibility that increased blood flow will facilitate removal of tissue CO₂/H⁺, and thus decrease the stimulus to chemosensitive neurons, we found that VMS application of the vasodilator sodium nitroprusside (SNP; 1 μM) decreased ventilatory response to CO₂ by decreasing diaphragm amplitude by 24 ± 2.6% (Figure 4A–C) (p=0.02; N = 6 animals) but with

Figure 4. Local constriction and dilation of RTN vessels reciprocally modulates the ventilatory response to CO₂ in vivo. (A) end expiratory CO₂ (EtCO₂), arterial pressure (AP) and diaphragm EMG (DiaEMG) traces show that application of vasoconstrictors (phenylephrine, Phe, 1 μM or U46619, 1 μM) or a vasodilator (sodium nitroprusside, SNP, 1 μM) to the RTN increased and decreased the ventilatory response to 7–8% CO₂, respectively. (B) diaphragm EMG (DiaEMG) traces expanded in time show that application of Phe, U46619 or SNP, to the VMS in the region of the RTN increased and decreased the DiaEMG amplitude response to 7–8% CO₂. (C–E) summary data show effects of saline, SNP, Phe and U46619 applications to the VMS near the RTN on DiaEMG amplitude (N = 6 animals per group) (C), DiaEMG frequency (D) and mean arterial pressure (MAP) (E). * difference in CO₂/H⁺-induced % change under control conditions (saline) vs during vasodilation or vasoconstriction (RM-ANOVA followed by Bonferroni multiple-comparison test, p<0.05). DOI: 10.7554/eLife.25232.006
no change in frequency (Figure 4D) (p>0.05; N = 6 animals). These treatments had negligible effect on systemic mean arterial pressure (MAP) (Phe: 110 ± 2; SNP: 110 ± 2; U4619: 108 ± 3 vs. saline: 109 ± 2 mmHg; p>0.05) (Figure 4E). These results are consistent with the possibility that regulation of vascular tone in the RTN can influence respiratory output. However, we cannot exclude potential direct effects of these drugs on activity of neurons or astrocytes in the region. For example, phenylephrine can directly stimulate activity of chemosensitive RTN neurons (Kuo et al., 2016). Therefore, effects of phenylephrine on chemoreception likely involves both vasoconstriction and direct neural activation. It remains to be determined whether U46619 or SNP also affect activity of neurons or astrocytes in the RTN.

To determine whether purinergic signaling regulates CO₂/H⁺-mediated constriction in vivo, we first measured the diameter of pial vessels on the VMS in the region of the RTN or on the surface of the cortex during exposure to high CO₂ under control conditions and when P2 receptor are blocked with PPADS (10 μM). Consistent with our in vitro data, we found that increasing end-expiratory CO₂ to 9.5–10%, which corresponds with an arterial pH of 7.2 pH units (Guyenet et al., 2005), constricted VMS vessels by −4.5 ± 0.5% (p=0.014, N = 5 animals) (Figure 5A–B). However, when P2-receptors are blocked with PPADS (10 μM), increasing inspired CO₂ resulted in a vasodilation of 4.3 ± 0.4% (Figure 5A–B) (p=0.036; N = 5 animals). This suggests that in the RTN, purinergic-mediated vasoconstriction is working against a background CO₂/H⁺ dilation, possibly mediated by a cyclooxygenase/prostaglandine E2-dependent mechanism as described elsewhere in the brain (Howarth et al., 2017). Therefore, disruption of CO₂/H⁺ dilation would be expected to enhance purinergic-dependent vasoconstriction of RTN arterioles, and thus increase baseline breathing and the ventilatory response to CO₂. Consistent with this, administration of a cyclooxygenase inhibitor (indomethacin) has been shown to increase baseline breathing and the ventilatory response to CO₂ in humans (Xie et al., 2006). However, it is also possible that decreasing cerebral blood flow globally by indomethacin treatment or cerebral ischemia (Chapman et al., 1979) will cause widespread acidification leading to enhanced activation of multiple chemoreceptor regions including those outside the RTN (Nattie and Li, 2012), thus further increasing chemoreceptor drive. It should also be noted that global disruption of cerebrovascular CO₂/H⁺ reactivity as associated with certain pathological states including heart failure and stroke (Yonas et al., 1993; Howard et al., 2001) or by systemic administration of indomethacin can increase chemoreceptor gain to the extent that breathing becomes unstable (Fan et al., 2010; Xie et al., 2009). These results underscore the need to understand how CO₂/H⁺ regulates vascular tone at other levels of the respiratory circuit.

Also consistent with our slice data, we found that exogenous application of ATP (1 mM) or UTPYS (1 mM) constricted VMS vessels by −5.1 ± 0.6% and −5.0 ± 0.5%, respectively (p=0.001; N = 5 animals) (Figure 5A). Conversely, cortical pial vessels dilated in response to an increase in inspired CO₂ under control conditions (5 ± 0.5%) and after application of 10 μM PPADS (3.2 ± 0.3%) (Figure 5C) (p=0.03; N = 5 animals); however, the CO₂/H⁺-induced vasodilation of cortical vessels was blunted in the presence of PPADS (p=0.03; N = 5 animals), suggesting endogenous purinergic signaling may facilitate dilation of cortical vessels in response to CO₂/H⁺. However, we failed to mimic this response by exogenous application of purinergic agonists; exposure to ATP (1 mM) or UTPYS (1 mM) constricted cortical vessels by −4.9 ± 0.7% and −4.1 ± 0.7%, respectively (p=0.024; N = 5 animals). These divergent results are not entirely unexpected since we detected P2Y₂ and P2Y₄ immunoreactivity on endothelial cells and smooth muscle of cortical arterioles (Figure 3D–E), and exogenous application of P2 agonists may activate P2 receptors not necessarily targeted by endogenous purinergic signaling. Future work is required to identify the source of purinergic drive and effect P2 receptors contributing to vascular CO₂/H⁺-reactivity in the cortex.

In addition, as previously described (Gourine et al., 2005), we found that application of PPADS (10 μM) to the RTN blunted the ventilatory response to CO₂ both in terms of DiâMEG frequency (82 ± 3, vs. saline: 97 ± 4%) (p=0.042, N = 5) and amplitude (83 ± 6, vs. saline: 100 ± 5%) (p=0.035, N = 5) (Figure 5D–E). Considering that RTN manipulations of vascular tone preferentially affect respiratory amplitude (Figure 4A–D), whereas application of PPADS to the same region, which likely disrupts both direct excitatory effects of ATP on RTN chemoreceptors (Wenker et al., 2012) and indirect effects of ATP on vascular tone (Figure 5A), blunts respiratory frequency and amplitude, suggests that purinergic signaling in the RTN might regulate discrete aspects of respiratory output. In the cortex, application of PPADS had no measurable effect on CO₂-induced changes in DiâMEG frequency (p=0.33, N = 5 animals) and amplitude (p=0.42, N = 5) (Figure 5F). Together with
previous evidence, these findings suggest that purinergic signaling contributes to RTN chemoreception by directly activating RTN neurons (Gourine et al., 2010) and indirectly by opposing CO₂/H⁺-vasodilation.

It should be acknowledged that our study is limited to the use of pharmacological tools that potentially have off-target effects. We have minimized this concern by (i) using low concentrations of PPADS that are reported to be specific for P2 receptor's (Lorier et al., 2004); (ii) mimicking CO₂/H⁺-induced vasoconstriction in vitro and in vivo by exogenous application of ATP and a specific P2Y₂/4 receptor agonist (UTPγS), but not by a non-specific P2X receptor agonist (α,β-mATP); (iii) confirming that candidate P2Y₂ and P2Y₄ receptors are expressed in the RTN at the astrocyte-arteriole...
interface; and (iv) for in vitro experiments by confirming that CO₂/H⁺-induced vasoconstriction was retained when neuronal action potentials were blocked with TTX. Therefore, our results suggest that purinergic signaling possibly through P2Y2/4 receptors in the RTN provides specialized control of vascular tone by preventing CO₂/H⁺-induced dilation. Our results also suggest that regulation of vascular tone in the RTN contributes functionally to the ventilatory response to CO₂. This is the first evidence to suggest that regulation of vascular tone in a chemoreceptor region contributes to the drive to breathe. This discovery may be of fundamental importance to understanding how regulation of vascular tone impacts neural network function and ultimately behavior.

Materials and methods

Brainstem slice preparation

All procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines. A total of 93 adult Sprague Dawley rats (60–100 days of age) were used for in vitro experiments. Animals were decapitated under isoflurane anesthesia, and transverse brainstem slices (200 μm) were prepared using a vibratome in ice-cold substituted artificial cerebrospinal fluid (aCSF) solution containing (in mM): 130 NaCl, 3 KCl, 2 MgCl₂, 2 CaCl₂, 1.25 NaH₂PO₄, 26 NaHCO₃, and 10 glucose, with 0.4 mM L-ascorbic acid added (all Sigma-Aldrich). Slices were incubated for ~30 min at 37°C and subsequently at room temperature in aCSF. Prior to imaging slices were incubated for 1 hr with 10 μg/ml TRITC-lectin conjugate (Sigma-Aldrich, St. Louis, MO) or 6 μg/ml DyLight 594 Isolectin B4 conjugate (Vector Laboratories) to label endothelial cells as previously described (Mishra et al., 2014). Slicing solutions were equilibrated with a high oxygen carbogen gas (95% O₂-5% CO₂) (Mulkey et al., 2001).

Imaging of arterioles in brainstem slices

An individual slice containing the RTN was transferred to a recording chamber mounted on a fixed-stage microscope (Zeiss Axioskop FS) and perfused continuously (~2 ml min⁻¹) with aCSF bubbled with 5% CO₂, 21% O₂ (balance N₂; pH0 ~7.35; 37°C) (Gordon et al., 2008). Hypercapnic solution was made by equilibrating aCSF with 15% CO₂, 21% O₂ (balance N₂; pH0 ~6.90; 37°C). Arterioles were identified as previously described (Mishra et al., 2014; Filosa et al., 2004) by the following criteria: clear evidence of vasomotion under IR-DIC, bulky fluorescent labeling and a thick layer of smooth muscle surrounding the vessel lumen. Vessels that appeared collapsed and unhealthy were excluded, as were those with little fluorescence staining and thin walls, indicative of a lack of smooth muscle (Mishra et al., 2014). All arterioles selected for analysis had a resting luminal diameter of between 8–45 μm; RTN vessels were located within 200 μm of the ventral surface and below the caudal end of the facial motor nucleus and cortical vessels were located in layers 1–3.

For an experiment, fluorescent images were acquired at a rate of 1 frame/20 s using a x40 water objective, a Clara CCD Andor camera and NIS Elements software. To induce a partially constricted state we bath applied a thromboxane A2 receptor agonist (U46619; 125 nM; Sigma-Aldrich, St. Louis, MO). At this concentration, U46619 has been shown to decrease vessel diameter by 20–30% under similar experimental conditions, thus allowing assessment of both vasodilation and vasoconstriction (Filosa et al., 2004; Girouard et al., 2010). In the continued presence of U-46619, we then characterized the effects of hypercapnia, ATP (100 μM; Sigma-Aldrich, St. Louis, MO), α,β-methylene-ATP (100 μM), UTPyS (0.5 μM), and adenosine (1 μM), or the mGluR agonist t-ACPD ((−)-1-amino-cyclopentane-trans-1,3-dicarboxylic acid; 50 μM) alone or in the presence of P2-receptor blocker PPADS (5 μM; Tocris Bioscience, Minneapolis, MN), the P1 receptor antagonist 8-Phenyltheophylline (8-PT; 10 μM; Sigma) or the Ecto-NTPDase antagonist sodium metatungstate (POM 1; 100 μM; Alomone Laboratories). As previously described (Girouard et al., 2010), at the end of each experiment we assessed arteriole viability by inducing a constriction with a high K⁺ solution (60 mM) and then maximal dilation with a Ca⁡²⁺ free solution containing EGTA (5 mM), papaverine (200 μM, a phosphodiesterase inhibitor) and diltiazem (50 μM, to block L-type Ca channels). Vessels from both regions of interest (RTN and cortex) show similar responses to these conditions, and vessels that did not respond were excluded from analysis.
Immunohistochemistry

Rat brain slices were prepared from three rats and labelled with DyLight 594 Isolectin B4 conjugate as above followed by immersion fixation overnight in 1% paraformaldehyde in pH 7.4 PBS at 4°C. Excess fixative was removed by three washes in PBS, and prior to antibody incubations, tissue sections were treated to unmask epitopes with 0.2 mg/ml pepsin (Sigma-Aldrich, St. Louis, MO) in 0.2 M HCl for 10 mins at 37°C (Corteen et al., 2011) followed by three washes in PBS for P2Y4 labelling only. A blocking stage was then performed by incubating tissue in 10% normal horse serum in PBS with 10% Triton X-100 (Sigma-Aldrich, St. Louis, MO) for 1 hr at room temperature (RT). Sections were then incubated overnight at RT with primary antibodies diluted in blocking solution as follows: 1:200 rabbit anti-P2Y2 (RRID: AB_2040078) or P2Y4 receptor (RRID: AB_2040080) (Alomone Labs, Alomone Labs, Jerusalem Israel), 1:200 chicken anti-glial fibrillary acidic protein (RRID: AB_177521) (Chemicon) and 1:500 mouse anti-α-smooth muscle actin (RRID: AB_262054) (Sigma-Aldrich, St. Louis, MO). After washes in PBS, tissues were incubated for 1 hr at RT with the appropriate secondary antibodies raised in donkey, conjugated with 488DyLight 1:800 (RRID: AB_2492289), 405DyLight 1:200 (RRID: AB_2340373) or Cy5 1:500 (RRID: AB_2340820) (Jackson Immunoresearch Laboratories). Sections were washed in PBS again before being mounted with Vectashield (Vector-Labs). Images were acquired using a Nikon A1R confocal microscope (Nikon Instruments), with minimal background staining observed in the control reactions where primary antibodies were omitted or P2 receptor antibodies were pre-absorbed with control antigen prior to exposure to tissues. For confocal photomicrographs, two-dimensional flattened images of the projected z-stacks are presented.

In vivo preparation

Animal use was in accordance with guidelines approved by the University of São Paulo Animal Care and Use Committee. A total of 21 adult male Wistar rats (60–90 days of age; 270–310 g) were used for in vivo experiments. General anesthesia was induced with 5% halothane in 100% O2. A tracheotomy was made and the halothane concentration was reduced to 1.4–1.5% until the end of surgery. The femoral artery was cannulated (polyethylene tubing, 0.6 mm o.d., 0.3 mm i.d., Scientific Commodities) for measurement of arterial pressure (AP). The femoral vein was cannulated for administration of fluids and drugs. Rats were placed supine onto a stereotaxic apparatus (Type 1760; Harvard Apparatus) on a heating pad and core body temperature was maintained at a minimum of 36.5°C via a thermocouple. The trachea was cannulated. Respiratory flow was monitored via a flow head connected to a transducer (GM Instruments) and CO2 via a capnograph (CWE, Inc.) connected to the tracheal tube. Paired EMG wire electrodes (AM-System) were inserted into the diaphragm muscle to record respiratory-related activity. After the anterior neck muscles were removed, a basio-occipital craniotomy exposed the ventral medullary surface, and the dura was resected. After bilateral vagotomy, the exposed tissue around the neck and the mylohyoid muscle was covered with mineral oil to prevent drying. Baseline parameters were allowed to stabilize for 30 min prior to recording.

In vivo recordings of physiological variables

Mean arterial pressure (MAP), diaphragm muscle activity (DiaEMG) and end-expiratory CO2 (etCO2) were digitized with a micro1401 (Cambridge Electronic Design), stored on a computer, and processed off-line with version 6 of Spike 2 software (Cambridge Electronic Design). Integrated diaphragm activity (∫DiaEMG) was collected after rectifying and smoothing (τ = 0.03) the original signal, which was acquired with a 300–3000 Hz bandpass filter. Noise was subtracted from the recordings prior to performing any calculations of evoked changes in DiaEMG. A direct physiological comparison of the absolute level of DiaEMG activity across nerves is not possible because of non-physiological factors (e.g., muscle electrode contact, size of muscle bundle) and the ambiguity in interpreting how a given increase in voltage in one EMG relates to an increase in voltage in another EMG. Thus, muscle activity was defined according to its baseline physiological state, just prior to their activation. The baseline activity was normalized to 100%, and the percent change was used to compare the magnitude of increases or decreases across muscle from those physiological baselines.
In vivo experimental protocol

Each in vivo experiment began by testing responses to hypercapnia by adding pure CO\(_2\) to the breathing air supplied by artificial ventilation. In each rat, the addition of CO\(_2\) was monitored to reach a maximum end-expiratory CO\(_2\) between 9.5% and 10%, which corresponds with an estimated arterial pH of 7.2 based on the following equation: pH\(_a\) = 7.955−0.7215 \times \log_{10} (ETCO\(_2\)) (Guyenet et al., 2005). This maximum end-expiratory CO\(_2\) was maintained for 5 min and then replaced by 100% O\(_2\).

To determine whether local regulation of vascular tone in the region of the RTN contributes to the CO\(_2\)/H\(^+\)-dependent drive to breathe, we made bilateral injections of saline, phenylephrine (Phe, 1 \textmu M), U46619 (1 \textmu M) or sodium nitroprusside (SNP, 1 \textmu M) while monitoring Di\(_{\text{aEMG}}\) amplitude and frequency. These drugs were diluted to 1 \textmu M with sterile saline (pH 7.4) and applied using single-barrel glass pipettes (tip diameter of 25 \textmu m) connected to a pressure injector (Picospritzer III, Parker Hannifin Corp, Cleveland, OH). For each injection, we delivered a volume of 100 nl over a period of 5 s.

Injections in the VMS region were placed 1.9 mm lateral from the basilar artery, 0.9 mm rostral from the most rostral hypoglossal nerve rootlet, and at the VMS. The second injection was made 1–2 min later at the same level on the contralateral side. In separate series of experiments saline, ATP (1 mM), UTP (1 mM), U46619 (1 \textmu M), or sodium nitroprusside (1 \textmu M) were applied similarly to the VMS to test the effect of P2-blockade on vascular CO\(_2\)/H\(^+\) reactivity and the ventilatory response to CO\(_2\). A cranial optical window was prepared using standard protocols previously described (Kim et al., 2015). Briefly, a dental drill (Midwest Stylus Mini 540S, Dentsply International) was used to thin a circumference of a 4–5 mm-diameter circular region of the skull over somatosensory cortex (stereotaxic coordinates: AP: −1.8 mm from bregma and ML: 2.8 mm lateral to the midline). For the VMS, the anterior neck muscles were removed, a basio-occipital craniotomy exposed the ventral medullary surface, and the dura was resected. Pial vessels in the VMS had an average diameter and were located 1.9 mm lateral from the basilar artery and 0.9 mm rostral to the most rostral portion of the hypoglossal nerve rootlet.

Both thinned bone were lifted with forceps. The surface of the cortex or the VMS were cleaned with buffer containing (in mmol/L) the following: 135 NaCl, 5.4 KCl, 1 MgCl\(_2\), 1.8 CaCl\(_2\), and 5 HEPES, pH 7.3., and a chamber (home-made 1.1-cm-diameter plastic ring was glued with dental acrylic cement attached to a baseplate). The chamber was sealed with a circular glass coverslip (#1943–00005, Bellco). The baseplate was affixed to the Digital Camera (Sony, DCR-DVD3-5) and a light microscope was used for vessel imaging (x40 magnification).

Image analysis

Vessel diameter was determined offline using ImageJ. For in vitro experiments, stack registration and selection of linear regions of interest (ROIs) (three regions per arteriole) was carried out. Linear ROI’s were used to create a fluorescent intensity profile plot as described previously (Mishra et al., 2014) and a macro (available at https://github.com/omsai/blood-vessel-diameter [Nanda, 2017]; copy archived at https://github.com/elifesciences-publications/blood-vessel-diameter) was used to determine the peak-peak distance as a measure of vessel diameter for each frame. In most cases, we also confirmed vessel diameter by manually measuring at least one point per frame. In vivo data was also analyzed using three linear ROI’s drawn perpendicular to the vessel in each image and the Diameter plug-in function in ImageJ was used to calculate changes in diameter (Kim et al., 2015; Fischer et al., 2010).

Data analysis and statistics

All in vitro images were calibrated and pixel distances converted to diameter (\textmu m) and these values were used for analysis of CO\(_2\)/H\(^+\) or agonist-induced changes in vessel diameter from baseline by RM-one-way ANOVA and Fishers LSD test or paired t-test. Hash marks were used to identity differences from baseline (vasoconstriction or vasodilation). Mean percent changes in vessel diameter was used to compare between agonist responses or CO\(_2\)/H\(^+\) responses under control conditions vs during purinergic receptor blockade or in the presence of an ectonucleotidase inhibitor by one-way ANOVA and Fishers LSD test or t-test. Asterisks were used to identify differences in % change in vessel diameter. For in vivo experiments, respiratory muscle activity was calculated as the mean amplitude of the integrated Di\(_{\text{aEMG}}\) over 20 respiratory cycles. To obtain control values, the 20 cycles preceding each experimental manipulation for all parameters were averaged. Under hypercapnic
conditions, measurements from the 20 cycles preceding stimulus cessation were averaged. Respira-
tory frequency (fR) was \((1/(\text{inspiratory time} + \text{expiratory time}))\). Differences in the ventilatory response
to \(\text{CO}_2\) were determined using either paired t-test or one-way analysis of variance (ANOVA) fol-
lowed by the Bonferroni multiple-comparisons as appropriate. Power analysis was used to determine
sample size, all data sets were tested for normality using Shapiro-Wilk test. All data values are
expressed as means ± SEM and specific statistical test and relevant p values are reported in the text
and figure legends.

Acknowledgements
We thank David Attwell and Anusha Mishra (University College London), Catherine Hall (University
of Sussex) and Pariksheet Nanda (University of Connecticut) for assistance with vessel image analysis.
This work was supported by funds from the National Institutes of Health Grants HL104101 (DKM),
HL126381 (VEH), and P01-HL-095488, R01-HL-121706, R37-DK-053832 and R01-HL-131181 (MTN).
Additional support comes from the Totman Medical Research Trust (MTN), Fondation Leducq
(MTN), EC Horizon 2020 (MTN), Connecticut Department of Public Health Grant 150263 (DKM), and
public funding from the São Paulo Research Foundation (FAPESP) Grants 2014/22406-1 (ACT),
2016/22069–0 (TSM), 2015/23376–1 (TSM) and FAPESP fellowship 2014/07698-6 (MRML); Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq); grant: 471263/2013–3 (ACT) and
471283/2012–6 (TSM). CNPq fellowship 301651/2013–2 (ACT) and 301904/2015–4 (TSM).

Additional information

Funding	Grant reference number	Author
National Institutes of Health	HL104101	Daniel K Mulkey
Totman Medical Research Trust		Mark T Nelson
Fondation Leducq		Mark T Nelson
European Commission	Horizon 2020	Mark T Nelson
Connecticut department of public health	150263	Daniel K Mulkey
Fundação de Amparo à Pesquisa do Estado de São Paulo	2014/22406-1	Ana C Takakura
Conselho Nacional de Desenvolvimento Científico e Tecnológico	471263/2013-3	Ana C Takakura
National Institutes of Health	HL126381	Virginia E Hawkins
National Institutes of Health	HL095488	Mark T Nelson
National Institutes of Health	DK053832	Mark T Nelson
National Institutes of Health	HL131181	Mark T Nelson
Fundação de Amparo à Pesquisa do Estado de São Paulo	2016/22069-0	Thiago S Moreira
Fundação de Amparo à Pesquisa do Estado de São Paulo	2015/23376-1	Thiago S Moreira
Fundação de Amparo à Pesquisa do Estado de São Paulo	2014/07698-6	Milene R Malheiros-Lima
Conselho Nacional de Desenvolvimento Científico e Tecnológico	471283/2012-6	Thiago S Moreira
Conselho Nacional de Desenvolvimento Científico e Tecnológico	301651/013-2	Ana C Takakura
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions
VEH, Data curation, Formal analysis, Supervision, Project administration, Writing—review and editing; ACT, Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Project administration, Writing—review and editing; AT, TD, Data curation, Formal analysis, Methodology, Writing—review and editing; MRM-L, CMC, EMR, Data curation, Formal analysis, Investigation, Writing—review and editing; ICW, Conceptualization, Data curation, Formal analysis, Investigation, Writing—review and editing; MTN, Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Writing—review and editing; TSM, Conceptualization, Data curation, Formal analysis, Supervision, Funding acquisition, Investigation, Project administration, Writing—review and editing; DKM, Conceptualization, Supervision, Funding acquisition, Writing—original draft, Project administration, Writing—review and editing

Author ORCIDs
Virginia E Hawkins, http://orcid.org/0000-0001-9505-6776
Daniel K Mulkey, http://orcid.org/0000-0002-7040-3927

Ethics
Animal experimentation: All in vitro procedures were performed in accordance with National Institutes of Health and University of Connecticut Animal Care and Use Guidelines (protocol # A16-034). All in vivo procedures were performed in accordance with guidelines approved by the University of São Paulo Animal Care and Use Committee (protocol # 112/2015).

References
Ainslie PN, Duffin J. 2009. Integration of cerebrovascular CO\textsubscript{2} reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 296:R1473–R1495. doi: 10.1152/ajpregu.91008.2008, PMID: 19211719
Burnstock G, Kennedy C. 1985. Is there a basis for distinguishing two types of P2-purinoceptor? General Pharmacology: The Vascular System 16:433–440. doi: 10.1016/0306-3623(85)90001-1, PMID: 2996968
Burnstock G, Ralevic V. 2014. Purinergic signaling and blood vessels in health and disease. Pharmacological Reviews 66:102–192. doi: 10.1124/pr.113.008029, PMID: 24335194
Chapman RW, Santiago TV, Edelman NH. 1979. Effects of graded reduction of brain blood flow on ventilation in unanesthetized goats. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 47:104–115. PMID: 468649
Corteen NL, Cole TM, Sarna A, Sieghart W, Swinny JD. 2011. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. The European Journal of Neuroscience 34:250–262. doi: 10.1111/j.1460-9568.2011.07740.x, PMID: 21692880
Fan JL, Burgess KR, Thomas KN, Peebles KC, Lucas SJE, Lucas RAI, Cotter JD, Ainslie PN. 2010. Influence of Indomethacin on ventilatory and cerebrovascular responsiveness to CO\textsubscript{2} and breathing stability: the influence of PCO\textsubscript{2} gradients. AJP: Regulatory, Integrative and Comparative Physiology 298:R1648–R1658. doi: 10.1152/ajpregu.00721.2009
Filosa JA, Bonev AD, Nelson MT. 2004. Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circulation Research 95:e73–e81. doi: 10.1161/01.RES.0000148636.60732.2e, PMID: 15499024
Fischer MJ, Uchida S, Messlinger K. 2010. Measurement of meningeal blood vessel diameter in vivo with a plugin for ImageJ. Microvascular Research 80:258–266. doi: 10.1016/j.mvr.2010.04.004, PMID: 20406650
Girouard H, Bonev AD, Hannah RM, Meredith A, Aldrich RW, Nelson MT. 2010. Astrocytic endfoot \textsuperscript{Ca2+} and BK channels determine both arteriolar dilation and constriction. PNAS 107:3811–3816. doi: 10.1073/pnas.0914722107, PMID: 20133576
Gordon GR, Choi HB, Rungra RL, Ellis-Davies GC, MacVicar BA. 2008. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749. doi: 10.1038/nature07525, PMID: 18971930
Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S. 2010. Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575. doi: 10.1126/science.1190721, PMID: 20647426
Gourine AV, Lauter E, Dale N, Spyer KM. 2005. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436:108–111. doi: 10.1038/nature03690, PMID: 16001070

Guyenet PG, Bayliss DA. 2015. Neural Control of Breathing and CO₂ Homeostasis. Neuron 87:946–961. doi: 10.1016/j.neuron.2015.08.001, PMID: 26335642

Guyenet PG, Mulkey DK, Stornetta RL, Bayliss DA. 2005. Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. Journal of Neuroscience 25:8938–8947. doi: 10.1523/JNEUROSCI.2415-05.2005, PMID: 16192384

Howard RS, Rudd AG, Wolfe CD, Williams AJ. 2001. Pathophysiological and clinical aspects of breathing after stroke. Postgraduate Medical Journal 77:700–702. doi: 10.1136/pmj.77.913.700, PMID: 11677278

Howarth C, Sutherland B, Choi HB, Martin C, Lind BL, Khennouf L, LeDue JM, Pakan JM, Ko RW, Ellis-Davies G, Lauritzen M, Sibson NR, Buchan AM, MacVicar BA. 2017. A critical role for astrocytes in hypercapnic vasodilation in brain. Journal of Neuroscience 37:2403–2414. doi: 10.1523/JNEUROSCI.0005-16.2016, PMID: 28137973

Kim KJ, Iddings JA, Stern JE, Blanco VM, Croom D, Kirov SA, Filosa JA. 2015. Astrocyte contributions to flow-pressure-evoked parenchymal arteriolar vasoconstriction. Journal of Neuroscience 35:8245–8257. doi: 10.1523/JNEUROSCI.4486-14.2015, PMID: 26019339

Kumar NN, Velic A, Soliz J, Shi Y, Li K, Wang S, Weaver JL, Sen J, Abbott SB, Lazarenko RM, Ludwig MG, Perez-Reyes E, Mohebbi N, Bettoni C, Gassmann M, Suply T, Seuwen K, Guyenet PG, Wagner CA, Bayliss DA. 2015. PHYSIOLOGY. regulation of breathing by CO₂ requires the proton-activated receptor GPR4 in retrotrapezoid nucleus neurons. Science 348:1255–1260. doi: 10.1126/science.aab0922, PMID: 26068853

Kos FS, Falquetto B, Chen D, Oliveira LM, Takakura AC, Mulkey DK. 2016. In vitro characterization of noradrenergic modulation of chemosensitive neurons in the retrotrapezoid nucleus. Journal of Neurophysiology 116:1024–1035. doi: 10.1152/jn.00222.2016, PMID: 27306669

Kur J, Newman EA. 2014. Purinergic control of vascular tone in the retina. The Journal of Physiology 592:491–504. doi: 10.1113/jphysiol.2013.267294, PMID: 24277867

Lazarowski ER, Watt WC, Stutts MJ, Brown HA, Boucher RC, Harden TK. 1996. Enzymatic synthesis of UTP gamma S, a potent hydrolysis resistant agonist of P2U-purinoceptors. British Journal of Pharmacology 117:203–209. doi: 10.1111/j.1476-5381.1996.tb15175.x, PMID: 8825364

Lorier AR, Peebles K, Brooksenisch T, Robinson DM, Housley GD, Funk GD. 2004. P2Y receptors modulate respiratory rhythm but do not contribute to central CO₂ sensitivity in vitro. Respiratory Physiology & Neurobiology 142:27–42. doi: 10.1016/j.resp.2004.04.007

MacVicar BA, Newman EA. 2015. Astrocyte regulation of blood flow in the brain. Cold Spring Harbor Perspectives in Biology 7:a020388. doi: 10.1101/cshperspect.a020388, PMID: 25818565

Millhorn DE, Eldridge FL, Kiley JP. 1984. Oscillations of medullary extracellular fluid pH caused by breathing. Respiratory Physiology 55:193–203. doi: 10.1016/0034-5687(84)90022-7, PMID: 6427871

Mishra A, O’Farrell FM, Reynell C, Hamilton NB, Hall CN, Attwell D. 2014. Imaging pericytes and capillary diameter in brain slices and isolated retinas. Nature Protocols 9:323–336. doi: 10.1038/nprot.2014.019, PMID: 24434801

Mulkey DK, Henderson RA, Olson JE, Putnam RW, Dean JB. 2001. Oxygen measurements in brain stem slices exposed to normobaric hyperoxia and hyperbaric oxygen. Journal of Applied Physiology 90:1887–1899. PMID: 11299283

Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG. 2004. Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neuroscience 7:1360–1369. doi: 10.1038/nn1357, PMID: 15558061

Nanda P. 2017. ImageJ / Fiji measurement of blood vessel line profiles. Github. 701a4c4f10fd8725db33491ac0f6c3af9fcf38f. https://github.com/omsai/blood-vessel-diameter/commits/master

Nattie E, Li A. 2012. Central chemoreceptors: locations and functions. Comprehensive Physiology 2:221–254. doi: 10.1002/cphy.c100083, PMID: 23728974

Peppiatt CM, Howarth C, Mobbs P, Attwell D. 2006. Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–704. doi: 10.1038/nature05193, PMID: 17036005

Ralevic V, Burnstock G. 1998. Receptors for purines and pyrimidines. Pharmacological Reviews 50:413–492. PMID: 9755289

Roy CS, Sherrington CS. 1890. On the regulation of the Blood-supply of the brain. The Journal of Physiology 11:85–158. doi: 10.1113/jphysiol.1890.sp000321, PMID: 16991945

Schuchmann S, Schmitz D, Rivera C, Vanhatalo S, Salmen B, Mackie K, Sipilä ST, Voipio J, Kaila K. 2006. Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis. Nature Medicine 12:817–823. doi: 10.1038/nrm1422, PMID: 16819552

Silva JN, Lucena EV, Silva TM, Damasceno RS, Takakura AC, Moreira TS. 2016. Inhibition of the pontine K⁺/Cl⁺-Fusion channel reduces chemosensory activity elicited by stimulation of the retrotrapezoid chemoreceptor neurons. Neuroscience 328:9–21. doi: 10.1016/j.neuroscience.2016.04.028, PMID: 27126558

Soabrinho CR, Wener IK, Poss EM, Takakura AC, Moreira TS, Mulkey DK. 2014. Purinergic signalling contributes to chemoexcitation in the retrotrapezoid nucleus but not the nucleus of the solitary tract or medullary raphe. The Journal of Physiology 592:1309–1323. doi: 10.1113/jphysiol.2013.268490, PMID: 24445316

Wang S, Shi Y, Shu S, Guyenet PG, Bayliss DA. 2013. Phox2b-expressing retrotrapezoid neurons are intrinsically responsive to H⁺ and CO₂. Journal of Neuroscience 33:7756–7761. doi: 10.1523/JNEUROSCI.5550-12.2013, PMID: 23637167
Wenker IC, Sobrinho CR, Takakura AC, Moreira TS, Mulkey DK. 2012. Regulation of ventral surface CO₂/H⁺-sensitive neurons by purinergic signalling. The Journal of Physiology 590:2137–2150. doi: 10.1113/jphysiol.2012.229666, PMID: 22411009

Xie A, Skatrud JB, Barczi SR, Reichmuth K, Morgan BJ, Mont S, Dempsey JA. 2009. Influence of cerebral blood flow on breathing stability. Journal of Applied Physiology 106:850–856. doi: 10.1152/japplphysiol.90914.2008, PMID: 19118158

Xie A, Skatrud JB, Morgan B, Chenuel B, Khayat R, Reichmuth K, Lin J, Dempsey JA. 2006. Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans. The Journal of Physiology 577:319–329. doi: 10.1113/jphysiol.2006.110627, PMID: 16931556

Xu J, Chalimoniuk M, Shu Y, Simonyi A, Sun AY, Gonzalez FA, Weisman GA, Wood WG, Sun GY. 2003. Prostaglandin E2 production in astrocytes: regulation by cytokines, extracellular ATP, and oxidative agents. Prostaglandins, Leukotrienes and Essential Fatty Acids 69:437–448. doi: 10.1016/j.plefa.2003.08.016, PMID: 14623498

Yonas H, Smith HA, Durham SR, Pentheny SL, Johnson DW. 1993. Increased stroke risk predicted by compromised cerebral blood flow reactivity. Journal of Neurosurgery 79:483–489. doi: 10.3171/jns.1993.79.4.0483, PMID: 8410214

Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G. 2003. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neuroscience 6:43–50. doi: 10.1038/nn980, PMID: 12469126