Freeze Response of *Citrus* and *Citrus*-related Genotypes in a Florida Field Planting

Sharon Inch, Ed Stover1, and Randall Driggers

U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Service, 2001 South Rock Road, Fort Pierce, FL 34945

Richard F. Lee

National Clonal Germplasm Repository for Citrus and Dates, U.S. Department of Agriculture, Agricultural Research Service, 1060 Martin Luther King Boulevard, Riverside, CA 92521

Additional index words. Aurantioidaeae, citrus breeding, cold-sensitive, defoliation, dieback, frost damage, Rutaceae, Toddalioideae

Abstract. A test population consisting of progenies of 92 seed-source genotypes (hereafter called “parent genotypes”) of *Citrus* and *Citrus* relatives in the field in east–central Florida was assessed after natural freeze events in the winters of 2010 and 2011. Eight seedlings per parent genotype were planted in a randomized complete block design; however, as a result of mortality, the number of plants assessed in some genotypes groups was reduced at some or all sampling dates. The citrus diseases huanglongbing and citrus canker were endemic in the planting and may have influenced tree response to cold temperatures. Unusually low temperatures (near −4 °C each winter) for east–central Florida were experienced during the trial period. Defoliation and dieback were significantly greater in the winter of 2011 than in the winter of 2010. The winter in 2011 was preceded by a period of extraordinarily low temperatures in mid-December with no period of cool temperatures to allow trees to acclimate. In 2010 the average defoliation was 53% ± 28% and less than 13% of the trees exhibited any noticeable dieback, whereas in 2011, the average defoliation and dieback were 93% ± 17% and 51% ± 18%, respectively. Within the genus *Citrus*, several progenies were identified that had 16% to 24% dieback in 2011 and these were from parent genotypes *C. reticulata* (CRC 2590) (23%), *C. sinensis* (CRC 3858) (24%), *C. maxima* (CRC 3945) (16%), *C. hassaku* (CRC 3907 and 3942) (16% and 17%), *C. aurantium* (CRC 628 and 2717) (18% and 7%), *C. taitanica* (CRC 2588) (21%), and *C. neo-aurantium* (C. obovoides × C. unshiu graft chimera) (CRC 3816) (23%). Within other genera in the Aurantioidaeae, *Poncirus trifoliata* (CRCs 301, 3957, 3549, and 4007), *Severinia buxifolia* (CRC 1497), *Bergera koenigii* (CRC 3165), and *Glycosmis pentaphylla* (CRC 3285) had the least amount of dieback, all at less than 23%. The two species within the Toddalioideae subfamily of the Rutaceae (*Casimiroa edulis* and *Zanthoxylum ailanthoides*) had among the least amount of dieback (1% and 8%, respectively). When considered by groups, the Citrons and Australian natives had the greatest amount of dieback in 2011, 68% and 65%, respectively. The trifoliates (*Poncirus* and hybrids) had the least dieback, ranging from 4% to 40%. The information from this study may be useful in germplasm enhancement and *Citrus* breeding targeting greater cold tolerance.

Citrus is the most economically important fruit tree crop in Florida with an estimated economic value of $1.35 billion annually (National Agricultural Statistics Services, 2012). Low temperatures are among the greatest risk factors for U.S. citrus production. Most commercial citrus cultivars are cold-sensitive (Soost and Roose, 1996) and damage will often result when exposed to temperatures below −2.2 °C (Yelenosky, 1985). In the 1980s there were multiple severe freeze events in Florida (1981, 1982, 1983, 1985, and 1989) that resulted in crop and yield losses in excess of $1 billion U.S. (Tignor et al., 1998). After these extreme freezes, citrus production shifted to the warmer southern parts of the state (Miller, 1991; Yelenosky, 1996). Citrus growers take preventative measures to minimize crop losses from freezes such as use of trunk wraps and water applied through elevated microsprinklers (Bourgeois et al., 1990; Davies et al., 1984; Jackson et al., 1983). However, the effectiveness of these techniques is dependent on wind conditions, types of freezes (advective vs. radiation), water availability, and tree and grove size (Bourgeois et al., 1990; Ebel et al., 2005). Protection using microsprinklers is compromised by high wind speeds (Nisbett et al., 2000). Developing more cold-tolerant citrus varieties through breeding and selection has long been considered the most effective long-term solution (Grosser et al., 2000; Yelenosky, 1985).

*Citrus* and *Citrus* relatives are members of the family Rutaceae. The subtribe Citrinae is composed of *Citrus* (mandarins, oranges, tangerines, grapefruits, papedas, lemons, limes, lemons, citrons, and sour oranges); *Poncirus* (deciduous trifoliolate oranges); *Fortunella* (kumquats); *Microcitrus* and *Eremocitrus* (both Australian natives); and *Clomencia* (Penjor et al., 2013). There is considerable morphological and ecological variation within this group. With *Citrus*, cold-hardiness ranges from cold-tolerant to cold-sensitive (Soost and Roose, 1996). *Poncirus* and *Fortunella* are considered the most cold-tolerant genera that are cross-compatible with *Citrus*. *Poncirus trifoliata* reportedly can withstand temperatures as low as −30 °C with proper acclimation (Lang et al., 2005) and is used as a cold-tolerant rootstock for some commercial citrus production (Ebel et al., 2008; Tignor et al., 1998). The most cold-tolerant commercial *Citrus* variety is considered *C. unshiu* (Satsuma mandarin), whereas *C. aurantifolia* (Swingle) (Mexican Lime), *C. limon* L. Burm. f. (Lemon), and *C. medica* L. (Citron) are considered the most susceptible to freeze damage (Davies and Albrigo, 1994; Grosser et al., 1998).

A period of acclimation is important for inducing cold tolerance in *Citrus*. Cold tolerance in many plant species is not constitutively expressed; it is induced in response to reduction in daylength and the exposure to non-freezing chilling temperatures. Periods of warm weather before a freeze event will make citrus plants less cold-acclimated and thus more susceptible to the freezing conditions (Davies and Albrigo, 1994). Gene expression differences during acclimation have been associated with freeze tolerance in *Citrus* (He et al., 2012; Lang et al., 2005; Zhang et al., 2005). Genes for cold tolerance have been identified in *P. trifoliata*, *C. grandis* (= *C. maximus*), *C. paradisi*, *C. sinensis*, and *C. jambhiri* (Champ et al., 2007; He et al., 2012; Long et al., 2012; Sahin-Çevik and Moore, 2006; Webber et al., 2003). Use of cold-tolerant rootstocks such as *Poncirus* can increase the expression of cold tolerance associated genes in cold-tolerant scions (Ebel et al., 2005; Huang et al., 2011; Yelenosky and Vu; 1992). Non-cultivated *Citrus* and *Citrus* relatives have economically important traits that could be extremely valuable in the development of new cultivars (Grosser and Gmitter, 1990). Breeding within the *Citrus* genepool is complicated by many factors including prolonged juvenility, self- and cross-incompatibility, polyembryony (apomixis), heterozygosity, and inbreeding depression (Grosser and Gmitter, 1990; Soost and Cameron, 1975; Soost and Roose, 1996). However, genetic transformation techniques such as protoplast...
transformation (Fleming et al., 2000; Grosser and Gmitter, 1990), particle bombardment transformation (Luth and Moore, 1999; Moore et al., 1992) may be used to develop genotypes with cold resistance genes from distant relatives but with desired fruit quality.

The objective of this study was to survey genotypes within the Rutaceae for freeze damage as an indication of cold tolerance. Seedlings from 92 highly diverse seed-source genotypes were exposed to natural freeze events in east-central Florida. Defoliation and dieback were assessed in the winters of 2010 and 2011.

**Materials and Methods**

Seeds from *Citrus* and *Citrus* hybrids were obtained from the USDA-ARS National Clonal Germplasm Repository for Citrus and Dates (NCGRCD) at the University of California at Riverside (UCR), Riverside, CA (<http://www.citrusvariety.ucr.edu>). This collection contains over 1100 accessions, each one identified by a unique Citrus Research Center (CRC) number. The names and species designations reported here are those used by the NCGRCD at the time of publication. In this study, seeds from 124 accessions were initially acquired representing ≥85% of the genetic diversity within the UCR collection (Barkley, 2003) and Bayer et al. (2009). Seeds of *Afraelea paniculata* (Schum.) Engl. and *Aegle marmelos* (L.) Corr (subfamily Aurantioideae), and *Casimiroa edulis* (Llave et Lex, subfamily Toddalioideae) were obtained from the Fruit and Spice Park (Miami/Dade County, FL), *Zanthoxylum ailtanoides* (L.) (subfamily Toddalioideae) was obtained from the University of Georgia. Within the Rutaceae, nucellar embryony varies greatly (Frost and Soost, 1968); therefore, the progeny included in this study were either genetically identical to the maternal parent or half-sib hybrids with a known seed parent and an undetermined pollen parent.

Under greenhouse conditions at the USDA-ARS U.S. Horticultural Research Laboratory in Fort Pierce, FL, seeds of 92 of the 124 seed-source accessions were successfully propagated in individual plastic cells (3.8 × 21 cm) (SC-10 super cell Cone-tainers; Stuewe and Sons, Corvallis, OR) containing sterile potting mix. After 4 to 7 months, the seedlings were transferred to 3.7-L containers, which were watered daily and fertilized on a weekly basis. The maximum and minimum diurnal temperatures of the greenhouse were 35 and 23 °C in the summer and 32 and 20 °C in the winter. In June and July 2009, the 6- to 9-month-old seedlings were planted 0.6 m apart in three rows (3.5 m apart) at the USDA-ARS, Fort Pierce, FL, farm. The planting was established as a randomized complete block design.

Two weeks after freeze events in Jan. 2010, the percentage defoliation (1% to 100%) was visually estimated on each tree and presence or absence of dieback (0 or 1) was recorded. In 2011, plants were rated for percentage defoliation (1% to 100%) in February. Percentage of canopy dieback (1% to 100%) was visually estimated on each plant in May. Weather data for 2010 and 2011 were collected using the Florida Automated Weather Network (FAWN) for the Ft. Pierce site, which was 3.2 km from the test plot. A weather station on the farm site indicated temperatures within 0.5 °C of the FAWN data on each freeze night. Micro-sprinklers were run during the freeze events but were at ground level as used for standard irrigation.

**Results**

**Winter of 2010.** In the winter of 2010, freezing temperatures were recorded between 5 and 12 Jan. with the lowest temperature of −4 °C on 7 Jan. (Fig. 1A). After these freeze events, average defoliation was 53% ± 28% and ranged from 14% to 100% (n = 522 plants). *P. trifoliata* and its hybrids were recorded as having the greatest amount of defoliation (83%), but *P. trifoliata* is fully deciduous and its hybrids are partially deciduous in most winters. All other parent genotypes/groups assessed in this study are fully non-deciduous (evergreen). Even with the *P. trifoliata* and its hybrids removed, there were significant differences in defoliation among parent genotypes (χ² = 298, df = 69, P < 0.0001). As a group, the Citronds had the lowest average level of defoliation (18%) (Fig. 2A). Within *Citrus, C. medica* (CRCs 3546 and 661) had the lowest defoliation at 14%. Seven other *Citrus* genotypes had less than 35% defoliation and included *C. reticulata* (CRC 3260), *C. medica* (CRC 3523), *C. excelsa* (CRC 2317), *C. macrophylla* (CRC 3842), *C. limonia* (CRC 712), *C. volkameriana* × *C. limonia* (CRC 3050), and ×*Citrofortunella* (CRC 3172) (Table 1). Among the genera in the Aurantioideae that are not cross-compatible with *Citrus* (hereinafter named the “other Aurantioideae” group), *Murraya paniculata* (CRC 1637) had the lowest amount of defoliation, 18% (Table 1). Other genera of relatives with less than 35% defoliation
| Botanical name of seed parent^ (CRC)^ | Common name | Primary group | Winter 2010 Defoliation (%)w | No. | Winter 2011 Defoliation (%)w | Dieback (%)w |
|--------------------------------------|-------------|--------------|----------------------------|-----|----------------------------|-------------|
| C. harmandiana (Pierre)              | Clausena   | Other Aurantiodeae | —                         | —   | 100^A                       | 99^A         |
| Guillaumin (4034)                    |             |              |                            |     |                            |             |
| Afraegle paniculata (b)              |             |              |                            |     |                            |             |
| Clausena excavata Burm. f. (3166)    |             |              |                            |     |                            |             |
| C. madergaspatajan Tan. (3225)       |             |              |                            |     |                            |             |
| Microcitrus inodora (F.M. Bail)      |             |              |                            |     |                            |             |
| Swingle (3785)                       |             |              |                            |     |                            |             |
| Aeglopsis chevalieri (2878)          |             |              |                            |     |                            |             |
| C. reticulata Blanco (3022)         |             |              |                            |     |                            |             |
| C. aurantifolia (Christm.) Swing (3822) |         |              |                            |     |                            |             |
| C. nobilis Lour. (3845)              |             |              |                            |     |                            |             |
| Microcitrus hybrid (M. australis × M. australasico) (1485) | | | | | | |
| C. reticulata hybrid ('Clementine' × 'Orlando') (3851) | | | | | | |
| C. davaoensis (Wester) Tan. (2427)   |             |              |                            |     |                            |             |
| C. benkoji hort. ex Tan. (3149)      |             |              |                            |     |                            |             |
| C. medica L. (661)                   |             |              |                            |     |                            |             |
| C. limon (L.) Burm.f. (3593)         |             |              |                            |     |                            |             |
| Citropsis daweana Swingle & Kellerm (3294) | | | | | | |
| Aegle marmelos (L.) Corr. (3140)     |             |              |                            |     |                            |             |
| Balsamocitrus dawei Stapf (3514)     |             |              |                            |     |                            |             |
| Microcitrus australis (Planch.) Swing. (3673) | | | | | | |
| C. halimi B.C. Stone (3780)          |             |              |                            |     |                            |             |
| C. hybrid (53-1-16 'Clem' × 'Hamlin') × Chinotto F1 (3715) | | | | | | |
| C. limon (L.) Osbeck (3919)          |             |              |                            |     |                            |             |
| C. excelsa Wester (2317)             |             |              |                            |     |                            |             |
| C. reticulata Blanco (3363)          |             |              |                            |     |                            |             |
| C. hypopericiformis hort ex Tan. (3564) |         |              |                            |     |                            |             |
| C. maxima (Burm.) Merr. (3599)       |             |              |                            |     |                            |             |
| C. reticulata Blanco (300)           |             |              |                            |     |                            |             |
| C. medica L. (3523)                  |             |              |                            |     |                            |             |
| C. limnetoidees Tan. (1482)          |             |              |                            |     |                            |             |
| C. medica L. (3546)                  |             |              |                            |     |                            |             |
| C. reticulata Blanco (3326)          |             |              |                            |     |                            |             |
| C. reticulata Blanco (3752)          |             |              |                            |     |                            |             |
| C. limon (L.) Burm.f. (3176)         |             |              |                            |     |                            |             |
| C. limon (L.) Burm.f. (3892)         |             |              |                            |     |                            |             |
| Hesperethusa crenulata (Roxb.) Nicolson (2879) | | | | | | |
| C. reticulata Blanco (3558)          |             |              |                            |     |                            |             |
| C. reticulata Blanco (3018)          |             |              |                            |     |                            |             |
| C. sunik hort. ex Tan. (3143)        |             |              |                            |     |                            |             |
| C. reticulata hybrid ('Clementine' × 'Orlando') (3850) | | | | | | |
| C. latipes (Swing.) Tan. (3052)      |             |              |                            |     |                            |             |
| C. maxima (Burm.) Merr. (3859)       |             |              |                            |     |                            |             |
| C. paradisi Macf. (3781)             |             |              |                            |     |                            |             |
| Murraya paniculata (L.) Jack (1637)  |             |              |                            |     |                            |             |
| C. webberi Wester (1455)             |             |              |                            |     |                            |             |
| C. reticulata Blanco (3958)          |             |              |                            |     |                            |             |
| C. longisipina Wester (2320)         |             |              |                            |     |                            |             |
| Microcitrus australasica (F.J. Muell.) |         |              |                            |     |                            |             |
| (Swing. (1484)                       |             |              |                            |     |                            |             |
| × Citrusfortunella sp. (3172)        |             |              |                            |     |                            |             |
| C. volkameriana/C. limonia Osbeck (3050) |         |              |                            |     |                            |             |
| C. aurantium L. (3289)               |             |              |                            |     |                            |             |
| C. jambhiri Lush. (400)              |             |              |                            |     |                            |             |
| Microcitrus sp. (M. australasico × Calamondin) (1466) | | | | | | |
| C. maxima (Burm.) Merr. (2248)       |             |              |                            |     |                            |             |
| Severinia bixifolia (Poirét) Tan. (1491) |         |              |                            |     |                            |             |
| Murraya paniculata L. (3171)         |             |              |                            |     |                            |             |
| C. limon L. Burm.f. (3005)           |             |              |                            |     |                            |             |
| C. limonia (L.) Osbeck (712)         |             |              |                            |     |                            |             |
| C. aurantifolia (Christm.) Swing. (2450) |         |              |                            |     |                            |             |
| C. amblycarpa Och. (2485)            |             |              |                            |     |                            |             |
| C. macrophylla Wester (3842)         |             |              |                            |     |                            |             |

(Continued on next page)
Table 1. (Continued) Average defoliation (%) and dieback (%) of progenies of 92 Citrus and Citrus relative seed source genotypes exposed to freezing temperatures in the field in Fort Pierce, FL, in the winter of 2010 (1 Nov to 30 Jan 2010) and the Winter 2011 (1 Nov. 2010 to 30 Jan. 2011).*

| Botanical name of seed parent* (CRC)* | Common name | Primary group | No. | Winter 2010 | Winter 2011 |
|---------------------------------------|-------------|---------------|-----|-------------|-------------|
|                                       |             |               |     | Defoliation (%) | Dieback (%) |
|                                       |             |               |     | (%)         | (%)         |
|                                       |             |               |     | No.         | No.         |
| C. limon (L.) Burm. f. (3858)         | Local variety from Iran | Lemon | 8 | 36±3* | 8 | 97ABC | 44D* |
| Eremocitrus glauca (Lindley)           | Australian desert lime hybrid | Australian | 8 | 58A-K | 8 | 83A-E | 43T* |
| *Citrus* sp. (3552)                   | Sun Chu Sha mandarin | Mandarin | — | 89AB | — | 41B-T |
| C. aurantium L. (3929)                | Gou Tou Cheng | Sour orange | 8 | 63A-J | 8 | 98AB | 39T* |
| C. maxima (Burm.) Merr. (4026)        | Pomelit | Pummelo/mandarin | 8 | 64A-J | 8 | 99A | 36T* |
| C. reticulata Blanco (3812)           | Unnamed mandarin | Mandarin | — | 8 | 93ABCD | 35T* |
| *C. leioarpa* hort ex Tan. (3147)     | Koji mandarin | Papeda | — | 91A | — | 24T |
| C. reticulata Blanco (3260)           | Sol niantra mandarin | Mandarin | 8 | 31UL | 8 | 95ABCD | 33T* |
| C. maxima (Burm.) Merr. (2242)        | Kao Pan pummelo | Pummelo | 8 | 56A-K | 8 | 97ABC | 33T* |
| C. aurantium L. (3930)                | Zhuluan sour orange hybrid | Sour orange | 8 | 76A-E | 8 | 91A | 33T* |
| C. intermedia hort ex Tan. (3474)     | Konejime sour orange hybrid | Sour orange | 8 | 59A-K | 8 | 99AB | 32T* |
| C. sinensis (L.) Osbeck (3858)        | Pineapple sweet orange | Mandarin | 8 | 59A-K | 8 | 99A | 24T |
| C. reticulata Blanco (2590)           | Shoushi mandarin | Mandarin | 8 | 59A-K | 8 | 91A-E | 23T* |
| Bergera koenigii L. (3165)            | Curry leaf | Other Aurantiodeae | 8 | 36D-E | 8 | 100A | 23T* |
| C. neo-auranium (CRC 2877)            | Kinkoji Unshiu graft chimera | Sour orange | — | — | 8 | 94ABCD | 23T* |
| C. tiananica Tan. & Shimada (2588)    | Nansho Daidai sour orange | Sour orange | 8 | 74A-X | 8 | 97ABCD | 21T* |
| C. hassaku hort ex Tan. (3907)        | Standard sour orange | Sour orange | — | — | 7 | 98AB | 18T* |
| Glycosmis pentaphylla (Rez.) Corr. (3285) | Orange berry | Other Aurantiodeae | 8 | 31C-L | 8 | 53 | 17T* |
| C. maxima (Burm.) Merr. (3945)        | Mato Buntan pummelo | Pummelo | — | 7 | 85A-E | 16T* |
| C. hassaku hort ex Tan. (3942)        | Hassaku pummelo hybrid | Pummelo/mandarin | 8 | 59A-K | 8 | 100A | 16T* |
| Poncirus trifoliata (4007)            | “Little-leaf” trifoliolate | Trifoliolate | 8 | 94A | 8 | 99A | 14T* |
| Severinia buxifolia (Poiret) Tan. (1497) | Chinese box orange (brachytic form) | Other Aurantiodeae | — | — | 8 | 7 | 11T |
| Poncirus trifoliata (3549)            | Simmons trifoliolate | Trifoliolate | — | — | 8 | 100A | 8ST* |
| C. aurantium L. (2717)                | Olivevelands sour orange | Sour orange | 8 | 39C-L | 8 | 92ABCD | 7ST* |
| Zanthoxylum ailanthoides L. (a)       | Japanese prickly-ash | Toddalioideae | 8 | 100B | 8 | 100B | 7ST* |
| *Citrus* sp. (paradisi ‘Duncan’ × P. trifoliata) (3771) | Swingle citrumelo | Trifoliolate | 8 | 73A-G | 8 | 96ABCD | 5ST* |
| *Citrus* sp. (301)                    | Rusk citrange trifoliolate | Trifoliolate | 8 | 78ABCD | 8 | 96ABCD | 4T* |
| *Citrus* sp. (‘Cleopatra’ mandarin × trifoliolate) (3957) | Trifoliolate | Trifoliolate | 8 | 94A | 8 | 93ABCD | 4ST* |
| Casimiroa edulis Llave & Lex (c)      | White Sapote | Toddalioideae | 8 | 18KL | 8 | 54CD | 1T |

*The table is sorted based on dieback observed during Winter 2011.
*Botanical and common names specified by Citrus Variety Collection, Riverside, CA (<http://www.citrusvariety.ucr.edu/>).
*Accession number assigned by Citrus Research Center and now maintained by the UC Riverside Citrus Variety Collection.
*Average defoliation and dieback were compared using nonparametric Wilcoxon/Kruskal Wallis test. Values followed by the same letter within a column are not significantly different at P = 0.05.

included Microcitrus australis (CRC 3673), Microcitrus hybrid (M. australis × M. aurantifolia) (CRC 2879), Hesperethusa crenulata (CRC 2879), Murraya paniculata (CRC 3285), and Glycosmis pentaphylla (CRC 3285). Aeglopsis chevalieri (CRC 2878) had the greatest amount of defoliation, 100% (Table 1). In 2010, dieback was also different among parent genotypes ($\chi^2 = 96$, df = 91, P = 0.014). Less than 13% of the total plants exhibit signs of dieback (based on present or absent). The Australian natives had the greatest amount of dieback; 21% of the plants in this group showed some dieback (Fig. 2A). All of the plants in 2010 recovered (data not shown).

Winter of 2011. Preceding the winter of 2011, on 8 Dec. 2010, the temperature rapidly dropped to –2.5 °C followed by two more freeze events below –2.5 °C on 14 and 28 Dec. with the lowest temperature recorded at –3.7 °C (Fig 1B). Average defoliation was significantly higher in 2011 than in 2010 and ranged from 100% to 7% with an average of 93% ± 17% (n = 719). There were significant differences among progenies of parent genotypes in defoliation ($\chi^2 = 374$, df = 91, P < 0.0001) and dieback ($\chi^2 = 383$, df = 91, P < 0.0001). Analyzed as groups, the “true” citrus had the greatest amount of defoliation, ranging from 95% to 98%. The “other Aurantiodeae” showed the least amount of defoliation at 80% (Fig. 2B), but this was largely the result of the low defoliation in Severinia with seedlings of accessions Severinia buxifolia (CRC 1497) showing significantly less defoliation (7%) than all others in the trial. The other Citrus-related genera (including the other Aurantiodeae, Toddalioideae, and Australian natives) with less than 80% defoliation included Microcitrus australis (CRC 8673), Murraya paniculata (CRCs1637 and 3171), Glycosmis pentaphylla (CRC 3285), and Casimiroa edulis (Table 1). In these groups, progeny of the Microcitrus hybrids CRCs 1485 and 1466 had the least amount of defoliation, 76% and 78%, respectively (Table 1).

There was much greater dieback in 2011 than in 2010. In 2010, average dieback was 49% and ranged from 99% to 1% (Table 1). Casimiroa edulis and Zanthoxylum ailanthoides, within the Toddalioideae subfamily, had very low amounts of dieback at 1% and 7%. Within the Aurantiodeae, Poncirus trifoliata and hybrids were lowest ranging from 4% to 40% dieback. Within the groups of the genus Citrus, several parent genotypes had less than 25% dieback and included C. reticulata (CRC 2590), C. sinensis (CRC 3858), C. maxima (CRC 3945), C. hassaku (CRC 3907 and 3942), C. aurantium (CRC 628 and 2717), C. tiananica (CRC 2588), and C. neo-auranium (CRC 3816). Within the “other Aurantiodeae” group, Severinia buxifolia (CRC 1497), Bergera koenigii (CRC 3165), and Glycosmis pentaphylla (CRC 3285) had less than 25% dieback (Table 1). Analyzed as groups, the Citrons and Australian natives had the greatest amount of dieback, 68% and 66%, respectively. Pummelo/mandarin hybrids, trifoliates, and Toddalioideae had the least amount of dieback, 16%, 13%, and 4%, respectively (Fig. 2B). Defoliation and dieback within individual trees were positively correlated in the winter of 2011 (Spearman’s ρ = 0.4591, P < 0.0001). Mortality resulting from freeze events in 2011 resulted in loss of 8.1% of the trees.
In this study, defoliation and dieback were used to determine the response to cold temperatures in Citrus and Citrus relatives when exposed to natural freeze events in Florida. However, one of the problems with using defoliation as a measure of cold tolerance is that some of the varieties/species used in this study, including Poncirus trifoliata and associated hybrids, are deciduous or semi-deciduous. Also, it can be a healthy citrus response to drop leaves when exposed to freezing temperatures that damage leaves but not stems, and failure to drop leaves after such conditions reflects more serious damage (Ketchie, 1969). Stem damage is generally a better measure of cold tolerance (Cooper et al., 1955; Ketchie, 1969). Stems tend to be the more cold-tolerant than leaves or fruit (Hendershott, 1962). A measure of electrolyte leakage is considered the best measure (Yelenosky, 1975). However, this method is not feasible in large-scale field trials.

In the Florida citrus community, there is a widely accepted view that “no two freezes are ever the same.” Tree responses are affected by differences in factors such as acclimation conditions (Yelenosky and Vu, 1992), rate of temperature change before and after the hard freeze, wind conditions, and time of occurrence within the seasonal span of tree quiescence. Damage in commercial Florida citrus trees is typically expected after 4 or more hours below –2.2 °C (Yelenosky, 1996). It is noteworthy that citrus in California is much more regularly exposed to freezing temperatures than citrus in Florida, and usually there is little tree damage, likely as a result of sustained cool temperatures in the fall and winter that maintain tree quiescence. The Lindsay, CA, weather station (typical of Central Valley, CA, citrus production) indicates 15 of 16 years and 309 total days with sub-freezing temperatures in 1998–2013 (UC IPM Online, 2014), and in the same period, there were 9 of 16 years and 96 d with temperatures below the –2.2 °C Florida citrus damage threshold. In the Lindsay, CA, 1998–2013 weather data set, the December median low is 1.7 °C and average low is 1.8 °C; January median low is 2.8 °C and average low is 2.5 °C (Table 2).

In contrast, for the Ft. Pierce, FL, 1998–2013 FAWN weather data set, the December median low is 13.5 °C and average low is 12.5 °C; January median low is 10.7 °C and average low is 10.0 °C. In Fort Pierce data for this 16-year period, freezing temperatures have been recorded in seven of the 16 winters, for a total of 35 d. Temperatures below the –2.2 °C thresholds have been observed in only three of 16 winters, and two coincided with the years of this study, in Jan. 2010 and Dec. 2010 (Table 2). The 2010 freeze events were the only December freezes recorded at the Fort Pierce FAWN station in 16 years of operation. The low temperature averaged 8.5 °C for the week before the first freeze and averaged 16.4 °C for the last week of November, making it highly likely that the freeze events occurred before the plants were acclimated. This might have contributed to the marked defoliation and dieback in 2011. The age and size of trees will affect the degree to which the plants are acclimated, and younger trees are generally less cold-tolerant than older trees (Yelenosky, 1996). The seedlings in this study were only 1 to 2 years old when exposed to natural freeze events. Therefore, they were likely more susceptible to cold damage than they would have been if they were more mature at the times of exposure.

As temperatures approach a critical threshold, even slight differences in temperature may have a large effect on resulting tree damage. Therefore, effects such as trapping of warmer air within the canopy, differences in stem diameter that affect temperature change, and microclimate differences may influence damage. These differences likely contributed to the variability leading to modest statistical mean separation within this experiment so that approximately half of the parental genotypes were not statistically different (α = 0.05) from the one with lowest dieback and approximately half were not statistically different from the one with highest dieback.

There have been a number of studies on cold-hardiness of citrus. Although there were some notable differences, in many cases, their reports were consistent with our observations. Trifoliate are generally reported to

![Fig. 2. Average defoliation (%) and dieback (%) of citrus taxonomic groups for progenies of 94 Citrus and Citrus relatives when exposed to freezing temperatures in the field in Fort Pierce, FL, in (A) Winter 2010 and (B) Winter 2011. Means within years were compared using the Wilcoxon/Kruskal-Wallis non-parametric means separation test.](image-url)
be the most cold-tolerant followed by kumquats and Satsuma mandarins. Sour oranges, tangerines, tangolos, sweet oranges, and grapefruit are generally intermediate in cold-hardiness. Lemons, limes, and citrons are generally the least cold-tolerant (Rieger et al., 2003). In our study, *P. trifoliata* and its hybrids were some of the most cold-tolerant seed parents as assessed by dieback in 2011. By all measures in this study, within the *Citrus* gene pool, the kumquat group was always in the least cold-damaged statistical grouping. Within the groups of genus *Citrus*, the pummelo/mandarin hybrids and sour oranges (which are also pummelo/mandarin hybrids) were in the statistical group with the least dieback. Contrary to the low cold tolerance typically reported, the citron group in 2010 had the least amount of defoliation; however, in 2011, the citrons had the greatest amount of dieback and defoliation. The freeze events in 2010 were less severe than in 2011, which may account for the differences in the response to cold temperatures.

One of the limitations of broad-scale screening for cold-tolerant genes among *Citrus* relatives is the small number of accessions in genera related to *Citrus* (Barkley, 2003; Bayer et al., 2009). Many of the distant *Citrus* relatives used in this study, including *Severinia, Glycosmis*, and *Casimiroa*, were among the most cold-tolerant. These species do not readily cross with *Citrus*. Cross-compatibility tends to decrease as distance increases among taxa as a result of pre-zygotic and post-zygotic barriers to hybridization (Ladzinska, 1992). There has been very little successful intergeneric sexual hybridization between the Aurantiadae and Toddfoliodaea. However, use of biotechnology has generated intergeneric somatic hybrids of some sexual-incompatible taxa such as *C. senensis* ‘Hamlin’ combined with *Severinia dictischa* and *Citropsis gilletiana*, *Citrus × Citropsis*, and *Citrus × Severinia* (Grosser et al., 1990, 1998; Grosser and Gmitter, 1990; Medina-Filho et al., 1998). These approaches may permit integration of genes for cold-hardiness.

It is noteworthy that the lowest dieback in the *Citrus* gene pool in 2011 was observed for seedlings with parental genotypes including *Poncirus trifoliata* or hybrids of pummelo × mandarin (including sour orange types). Only one parental genotype with *Poncirus* in its pedigree (CRC3552) showed more than 14% dieback, and two parental genotypes that were *Poncirus* × cultivated *Citrus* displayed only 4% dieback. *Poncirus* and *Citrus* are sexually and graft-compatible (Gmitter, 1994; Grosser and Gmitter, 1990; Sanghera et al., 2011). *Poncirus* has been used in many intergeneric crosses to increase cold tolerance, although the fruit of *Poncirus* itself is inedible (Barrett, 1990; Gmitter, 1994; Tignon et al., 1998). The USDA citrus breeding program has been using *Poncirus* in some hybridizations for many years, specifically to enhance cold-hardiness (Barrett and Young, 1982; Tignon et al., 1998) and many advanced selections now include *Poncirus* in their pedigree, although so far none has been released as cultivars.

Six parental genotypes that were in the pummelo × mandarin hybrid or sour orange group had less than 25% dieback, but four pummelo × mandarin hybrids and sour orange parental types and many pummelos and mandarins showed substantial dieback. Somewhat surprising in this study was the minimal cold damage to seedlings of Mato Buntan pummelo, because pummelos are generally considered more “tropical” than mandarins and sweet oranges. However, Mato Buntan is the seed parent of Tanikawa Butan, which is relatively more cold-tolerant than most pummelos (Hodgson, 1967), and pummelos are completely monoembryonic; therefore, each of the seedings in our test were unique hybrids. These results suggest that judicious breeding through selection of appropriate parents may confer greater cold-hardiness even through conventional citrus breeding, because pummelo and mandarin provide the primary genetic contribution to most commercial citrus scions.

### Literature Cited

Barkley, N.L.A. 2003. Genetic diversity in a citrus germplasm collection characterized with simple sequence repeat markers. PhD diss., Univ. Calif., Riverside, CA.

Barrett, H.C. 1990. US 119, an intergeneric hybrid citrus scion breeding line. HortScience 25:1670–1671.

Barrett, H.C. and R. Young. 1982. New sources of cold hardiness for citrus breeding. HortScience 17:889–892.

Bayer, R.J., J.D. Mabberley, C. Morton, C.H. Miller, I.K. Sharma, P. Pfeil, S. Rich, R. Hitchcock, and S. Sykes. 2009. A molecular phylogeny of the orange subfamily (Rutaceae: Aurantiadae) using nine cpDNA sequences. Am. J. Bot 96:665–685.

Bourgeois, W.J., A.J. Adams, and D.R. Snipe. 1982. Effectiveness of scaffold branch irrigation for freeze protection of Louisiana citrus during 1989 freeze. Proc. Fla. State Hort. Soc. 103:62–64.

Champ, K.L., V.J. Febres, and G.A. Moore. 2007. The role of CBF transcriptional activators in two *Citrus* species (*Poncirus* and *Citrus*) with contrasting levels of freezing tolerance. Physiol. Plant. 129:529–541.

Cooper, W.C., S. Taylor, and N. Maxwell. 1955. Preliminary studies on cold hardiness in citrus as related to cambial activity and bud growth. Proc. Rio Grande Valley Hort. Soc. 9:2–16.

Davies, F.S. and L.G. Albrigo. 1994. Citrus, p. 134–155. In: Davies, F.S. and L.G. Albrigo (eds.). Crop production science in horticulture series. CAB International, Wallingford, UK.

Davies, F.S., L.K. Jackson, and L.W. Rippeteo. 1984. Low volume irrigation and tree wraps for cold protection of young Hamlin orange trees. Proc. Fla. State Hort. Soc. 97:25–27.

Ebel, R.C., M.L. Nesbitt, W.A. Dozier, and F. Dane. 2008. Freeze risk and protection measures of Satsuma mandarins grown in the southeastern United States. HorticScience 43:287–289.

Ebel, R.C., M.L. Nesbitt, W.A. Dozier, J.K. Lindsey, and B.S. Wilkins. 2005. A temperature index model to estimate long-term freeze-risk of Satsuma mandarins grown on the Northern coast of the Gulf of Mexico. J. Amer. Soc. Hort. Sci. 130:500–507.

Fleming, G.H., O. Olivarres-Fuster, S.F. Del-Bosco, and J.W. Grosse. 2000. An alternative method for the genetic transformation of sweet orange. In Vitro Cellular Dev. Biol. Plant 36:450–455.

Florida Automated Weather Network (FAWN). 2014. Archived Weather Data. Mar. 2014. <http://fawn.ifas.ufl.edu>.

Frost, H.B. and R.K. Soost. 1968. Seed reproduction: Development of gametes and embryos, p. 290–324. In: Reuther, W., L.D. Batchelor, and H.J. Webber (eds.). The citrus industry. Vol. 2. Anatomy, physiology, genetics, and reproduction. Univ. California, Berkeley, CA.

Gmitter, F.G. Jr. 1994. Contemporary approaches to improving citrus cultivars. HortTechnology 4:206–210.

Grosse, J.W. and F.G. Gmitter, Jr. 1990. Protoplasm fusion and citrus improvement. Plant Breed. Rev. 8:339–374.

Grosse, J.W., F.G. Gmitter, Jr., and J.L. Chandler. 1998. Intergeneric somatic hybrid plants of *Citrus sinensis* cv. Hamlin and *Poncirus trifoliata* cv. Flying dragon. Plant Cell Rpt. 7:5–8.

Grosse, J.W., F.G. Gmitter, Jr., N. Tusa, and J.L. Chandler. 1990. Somatic hybrid plants from sexually incompatible woody species: *Citrus reticulata* and *Citrus gillettiana*. Plant Cell Rpt 8:656–659.

Grosse, J.W., P. Ollitrault, and O. Olivarres-Fuster. 2000. Invited review: Somatic hybridization in *Citrus*: An effective tool to facilitate variety improvement. In Vitro Cell Dev. Biol. Plant 36:434–449.

He, L.G., H.L. Wang, D.C. Liu, Y.J. Zhao, M. Xu, M. Zhu, and Z.H. Sunday. 2012. Isolation and expression of a cold-responsive gene PtCBF in *Poncirus trifoliata* and isolation of citrus CBF promoters. Biol. Plant. 56:484–492.

Hendershott, C.H. 1962. The response of orange trees and fruits to freezing temperatures. Proc. Amer. Soc. Hort. Sci. 80:247–254.

Hodgson, R.W. 1967. Horticultural varieties of *Citrus*, p. 431–587. In: Reuther, W., H.J. Webber, and L.D. Batchelor (eds.). The citrus industry volume 1. Univ. Calif. Press, Berkeley, CA, and Los Angeles, CA.

Huang, Y., Y. Si, and F. Dane. 2011. Impact of grafting on cold responsive gene expression in

### Table 2. Freezing temperature-related data for 1998–2013 for the location of this study in Ft. Pierce, FL, and a typical California citrus area in Lindsay, CA.

| Ft. Pierce, FL* | Lindsay, CA* |
|----------------|---------------|
| December average low temp. (°C) | 12.5 |
| December median low temp. (°C) | 13.5 |
| Jan. median low temp. (°C) | 10 |
| Jan. average low temp. (°C) | 10.7 |
| Years below –2 °C (no.) | 7 |
| Days below –2.2 °C (no.) | 13 |
| Years below –2 °C (no.) | 3 |
| Days below –2 °C (no.) | 9 |

*Data are from the Florida Automated Weather Network (FAWN), 2014.

*Data are from UC IPM Online (2014).
Satsuma mandarin (Citrus unshiu). Euphytica 177:25–32.

Jackson, L.W., D.W. Buchanan, and L.W. Rippetoe. 1983. Comparison of wraps and soil banks for Citrus cold protection. Proc. Fla. State Hort. Soc. 96:29–31.

Ketchie, D.O. 1969. Methods of determining cold hardiness and cold injury in citrus. Proc. First Intl. Citrus Symp. 2:559–563.

Ladizinsky, G. 1992. Crossability relations, p. 15–31. In: Kallo, G. and J.B. Chowdhury (eds.). Distant hybridization in crop plants. Springer-Verlag, Berlin, Germany.

Lang, P., C. Zhang, R.C. Ebel, F. Dane, and W.A. Dozier. 2005. Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118.

Long, G., J. Song, Z. Deng, J. Liu, and L. Rao. 2012. Ptcorp gene induced by cold stress was identified by proteomic analysis in leaves of Poncirus trifoliata. Mol. Biol. Rpt. 39:5859–5866.

Luth, D. and G.A. Moore. 1999. Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell Tissue Organ Cult. 57:219–222.

Medina-Filho, H., P. Bordignon, and R.M.L. Ballve. 1998. Sunkifolias and Buxisunkis: Sexually obtained reciprocal hybrids of Citrus sunki × Serverinia buxifolia. Genet. Mol. Biol. 21:129–133.

Miller, K.A. 1991. Response of Florida citrus growers to the freezes of the 1980s. Clim. Res. 1:133–144.

Moore, G. A., C.C. Jacono, J.L. Neidigh, S.D. Lawrence, and K. Cline. 1992. Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Rpt. 11:238–242.

National Agricultural Statistics Services. 2012. State Agriculture Overview. Mar. 2014. <http://www.nass.usda.gov>.

Nisbet, M.L., R.C. Ebel, W.A. Dozier, N.R. McDaniel, and D.G. Himelrick. 2000. Performance of Satsuma mandarin protected from freezing temperatures by microsprinkler irrigation. HortScience 37:871–877.

Penjor, T., M. Yamanoto, M. Uehara, M. Ide, N. Matsumoto, R. Matsumoto, and Y. Magano. 2013. Phylogenetic relationships of Citrus and its relatives based on matK gene sequences. PLoS One 8:1–13.

Rieger, M., G. Krewer, P. Lewis, M. Linton, and T. McClendon. 2003. Field evaluation of cold hardy citrus in coastal Georgia. HortTechnology 13:540–544.

Sahin-Cevik, M. and G.A. Moore. 2006. Identification and expression analysis of cold-regulated genes from the cold-hardy Citrus relative Poncirus trifoliata (L.). Raf. Plant Mol. Biol. 62:83–97.

Soost, R.K. and J.W. Cameron. 1975. Citrus, p. 507–540. In: Janick, J. and J.N. Moore (eds.). Fruit breeding: Tree and tropical fruits. John Wiley, New York, NY.