Regulation of R1 Plasmid Transfer by H-NS, ArcA, TraJ, and DNA Sequence Elements

Karin Bischof†, Doris Schiffer†, Sarah Trunk†, Thomas Höfler, Anja Hopfer, Gerald Rechberger and Günther Koraimann*

Institute of Molecular Biosciences, University of Graz, Graz, Austria

In conjugative elements such as integrating conjugative elements (ICEs) or conjugative plasmids (CPs) transcription of DNA transfer genes is a prerequisite for cells to become transfer competent, i.e., capable of delivering plasmid DNA via bacterial conjugation into new host bacteria. In the large family of F-like plasmids belonging to the MobF12A group, transcription of DNA transfer genes is tightly controlled and dependent on the activation of a single promoter, designated \(P_Y \). Plasmid encoded TraJ and chromosomally encoded ArcA proteins are known activators, whereas the nucleoid associated protein heat-stable nucleoid structuring (H-NS) silences the \(P_Y \) promoter. To better understand the role of these proteins in \(P_Y \) promoter activation, we performed \textit{in vitro} DNA binding studies using purified H-NS, ArcA, and TraJ (TraJ encoded by the conjugative resistance plasmid R1). All proteins could bind to \(R1P_Y \) DNA with high affinities; however, only ArcA was found to be highly sequence specific. DNase I footprinting studies revealed three H-NS binding sites, confirmed the binding site for ArcA, and suggested that TraJ contacts a dyad symmetry DNA sequence located between \(-51\) and \(-38\) in the \(R1P_Y \) promoter region. Moreover, \(\text{TraJ}_{R1} \) and ArcA supplied together changed the H-NS specific protection pattern suggesting that these proteins are able to replace H-NS from \(R1P_Y \) regions proximal to the transcription start site. Our findings were corroborated by \(P_Y\)-\textit{lacZ} reporter fusions with a series of site specific \(R1P_Y \) promoter mutations. Sequential changes of some critical DNA bases in the TraJ binding site (\(\text{jbs} \)) from plasmid R1 to plasmid F led to a remarkable specificity switch: The \(P_Y \) promoter became activatable by F encoded TraJ whereas TraJ\(_{R1} \) lost its activation function. The \(R1P_Y \) mutagenesis approach also confirmed the requirement for the host-encoded response-regulator ArcA and indicated that the sequence context, especially in the \(-35\) region is critical for \(P_Y \) regulation and function.

Keywords: F-like plasmids, horizontal gene transfer, bacterial conjugation, type IV secretion, antibiotic resistance, gene silencing

INTRODUCTION

Horizontal gene transfer by conjugation is ubiquitous among microorganisms belonging to the kingdoms of bacteria and archaea. If a transfer competent cell harboring a mobile genetic element contacts a recipient in a suitable environment, subsequent transfer of genetic information can decisively expand the metabolic, resistance, or virulence capabilities of the recipient bacterium.
In canonical conjugation systems, single-stranded DNA is transported unidirectionally by means of a cell envelope-spanning multi-protein transport complex [termed type IV secretion system (T4SS)]. The process of DNA transfer through the T4SS is ATP dependent and coupled to DNA replication. Mechanistic and structural aspects are detailed in excellent recent reviews (Wong et al., 2012; Christie, 2016; Zechner et al., 2017; Waksman, 2019). The transported DNA is usually guided by at least one protein and derived from an autonomously replicating conjugal plasmid (CP) or from an integrating conjugative element (ICE). Importantly, additional cargo genes integrated into the mobile DNA element can rapidly spread throughout bacterial populations.

Within the Enterobacteriaceae, F-like plasmids are highly prevalent and have been found to be frequently associated with a variety of cargo genes such as antibiotic, biocide, and metal resistance genes. In addition, colicin and microcin genes as well as virulence and enterotoxin genes can be present, providing advantageous traits to their hosts (Koraimann, 2018). Due to the presence of a common backbone with DNA transfer, replication, toxin-antitoxin, and partitioning genes, this group of CPs represent highly successful mobile genetic elements that spread and persist in many entero-bacterial species and importantly also in pathogenic strains of Escherichia coli (for a recent review, see Koraimann, 2018). Based on a classification scheme for CPs, F-like plasmids with the classical F plasmid or the antibiotic resistance plasmid R1 belong to the MOB F12 group. They harbor conjugation genes that are phylogenetically related and share a similar arrangement (Fernandez-Lopez et al., 2016; Koraimann, 2018; Figure 1A). Nine subgroups have been defined within the MOB F12 group based on the amino acid sequence variability of the DNA transfer gene activator TraJ (Koraimann, 2018).

The ability to transport DNA from donors into recipient cells requires the expression of DNA transfer genes. A variety of regulatory mechanisms ensure that only a few cells in a genetically homogeneous population undergo this developmental process and become transfer competent. Thus, at the population level, negative consequences of transfer gene expression are reduced without compromising horizontal gene transfer to novel hosts (Koraimann and Wagner, 2014; Stingl and Koraimann, 2017). In F-like plasmids DNA transfer genes are controlled through a network of regulatory elements ensuring that under optimal conditions only a few cells in a population—approximately 0.1 to 1%—proceed to transfer competence (Frost and Koraimann, 2010; Koraimann and Wagner, 2014). The key plasmid encoded activator that has to escape negative control is TraJ, a plasmid encoded protein. As schematically depicted in Figure 1A, TraJ and chromosomally encoded ArcA proteins are absolutely required to overcome heat-stable nucleoid structuring (H-Ns) protein silencing and to activate transcription of DNA transfer genes from the main transfer operon promoter PY (Will and Frost, 2006; Wagner et al., 2013; Lu et al., 2018).

Here we characterize DNA binding characteristics of these proteins and focus on defining the binding sites in the PY promoter region of plasmid R1 (TraJ_R1), a conjugative resistance plasmid discovered 1963 in London in a clinical Salmonella enterica serovar Paratyphi B isolate (Datta and Kontomichalou, 1965). Originally named R2568, it was subsequently renamed R1 (Meynell and Datta, 1966). Only recently the complete sequence of this plasmid has been determined (Cox and Schildbach, 2017, accession: KY749247). In order to characterize DNA binding, purified H-NS, ArcA, and TraJ_R1 proteins were used in both electrophoretic mobility shift assays (EMSA) and DNase I footprinting experiments. EMSA revealed DNA binding by H-NS and TraJ with low sequence specificity, whereas ArcA binding to R1P_Y was highly sequence specific. In DNase I footprinting experiments, the TraJ_R1 binding site (jbs) in the PY promoter region was found to span the region from –51 to –38, immediately adjacent to the ArcA binding site (abs), located at –76 to –60 (see Figures 1B,C). Furthermore, TraJ and ArcA together were found to be capable of displacing the silencing factor H-Ns from promoter proximal sites of the PY promoter region in vitro. In order to corroborate these findings, we mutated the proposed crucial sequence elements of the PY promoter and tested the mutants in a well-established reporter system. This approach confirmed the binding site for TraJ_R1 in the region –51 to –38 and revealed that specificity for binding by TraJ solely resides in this locus. Second, it confirmed the essential contribution of ArcA in PY promoter activation and finally demonstrated that the non-canonical –35 element is important for control and regulation of PY.

MATERIALS AND METHODS

Media, Growth Conditions, Bacterial Strains, Plasmids, and Oligonucleotides

LB medium (L−1: 10 g tryptone, 5 g yeast extract, 5 g NaCl) or 2xTY medium (per liter: 16 g tryptone, 10 g yeast extract, and 5 g NaCl) was used. For β-galactosidase assays, cells were grown in M9 minimal salt medium (Miller, 1972); L−1: 3 g KH2PO4, 12.8 g Na2HPO4 × 7 H2O, 1 g NH4Cl, 0.5 g NaCl, 3 g casaminoacids; 0.1 mg/mL thiamin; 0.2% glucose; 1 mM MgSO4. If appropriate, antibiotics such as 40 μg mL−1 kanamycin, 20 μg mL−1 chloramphenicol, or 50 μg mL−1 ampicillin were added. Unless otherwise indicated, cultures were grown aerated in a shaker-incubator at 180 r/min and 37°C. Cell densities (OD600) were measured in a Hitachi U5100 spectrophotometer. E. coli strains and plasmids are listed in Supplementary Table S1; oligonucleotides obtained from eurofins Genomics (Ebersberg, Germany) used in this study are listed in Supplementary Table S2.

DNA Manipulations, Cloning, Sequencing, and Sequence Analyses

DNA manipulations were done using standard techniques (Sambrook et al., 1989) or according to the manufacturers’ recommendations. PCR reactions for cloning purposes were performed using Phusion High-Fidelity DNA Polymerase (New England BioLabs). Construction of expression plasmids for TraJ (pSD1002), TraJ187T (pSD1002187T), and H-Ns (pSThns) are detailed in the Supplementary Methods section. ArcA was...
FIGURE 1 | (A) Schematic representation of the DNA transfer region of F-like MOB_{F12}A plasmids. DNA transfer (tra) genes are indicated by capital letters inside the boxes. oriT is the origin of DNA transfer, representing a DNA region where several DNA binding proteins such as TraM, TraY, and TraI (the relaxase-helicase) bind. nic denotes the nick site which is recognized by the relaxase for the initiation of ssDNA transfer into recipients via a T4SS. Arrows indicate known promoters. P_Y is the only known promoter for transcription of the approximately 35 DNA transfer operon genes. It is regulated by the indicated host and plasmid encoded proteins. H-NS acts as a silencing factor whereas both ArcA (a.k.a. SfrA, host encoded) and TraJ (plasmid encoded) are needed for activation. Transcription of the complete operon additionally requires the host encoded anti-termination protein RfaH and its recognition site ops (operon polarity suppressor). Entry/surface exclusion genes traS and traT are constitutively transcribed in plasmid carrying cells. The transcriptional terminator (red hairpin) is functional only for transcripts initiating at promoter P_{ST}. For a more in-depth discussion of DNA transfer genes and their regulation in MOB_{F12}A plasmids, the reader is referred to a recent review (Koraimann, 2018). (B) A schematic overview of the P_Y promoter region of the MOB_{F12}A prototype plasmid R1 from −241 to +156 relative to the transcription start site (+1, red arrow) of the tra operon is shown. This fragment is present in the promoter test plasmid pRSYZ4. Yellow bars with numbers indicating their location represent H-NS binding regions I, II, III as determined in this work. AT percentage of these regions is shown below, abs, binding site for ArcA; jbs, binding site for TraJ. These elements are also present on the 319 bp DNA fragment—termed R1P_Y—used for EMSA and DNase I footprinting experiments (black line above). (C) Sequence representation of the P_Y promoter of MOB_{F12}A prototype plasmid R1 from −241 to +16 relative to the transcription start site (+1, red arrow) of the tra operon is shown. This fragment is present in the promoter test plasmid pRSYZ4. Yellow bars with numbers indicating their location represent H-NS binding regions I, II, III as determined in this work. AT percentage of these regions is shown below. abs, binding site for ArcA; jbs, binding site for TraJ. These elements are also present on the 319 bp DNA fragment—termed R1P_Y—used for EMSA and DNase I footprinting experiments (black line above). Mutations in the R1P_Y-lacZ promoter test plasmid pRSYZ4 (Strohmaier et al., 1998; Wagner et al., 2013) were introduced according to a modified QuikChange protocol (Liu and Naismith, 2008; Laible and Boonrod, 2009). Tra^J expressing plasmids in the R1P_Y promoter activation studies were the same as used overproduced from plasmid pETarcA-1 (Strohmaier et al., 1998).
previously (Wagner et al., 2013) except pSLT2 containing the
\textit{traJ} gene from the \textit{Salmonella enterica} plasmid pSLT. All resulting
plasmids created in this study were verified by DNA sequencing
using the Eurofins Genomics (Ebersberg, Germany) sequencing
service. \textit{In silico} construction of plasmids and sequence analysis
was performed using SnapGene software.

Protein Expression and Purification

ArcA protein containing an N-terminal His\textsubscript{6} tag was purified
using the method described and activated by phosphorylation
before use in EMSA and DNase I footprinting assays (Strohmaier
et al., 1998). TraJ and His\textsubscript{6}–H-NS were produced and purified as
described in the \textit{Supplementary Material}.

DNA Fragments for EMSA and DNase I Footprinting Experiments

All DNA fragments were amplified by PCR using 5′-Cy5-labeled
primers as indicated. Primers and their sequences are listed in
\textit{Supplementary Table S2}. R1P\textsubscript{Y} DNA (319 bp) from −253 to
+66 relative to the transcription start site of the \textit{tra} operon
containing the 3′ end of the \textit{tra} gene, the previously established
ArcA-P binding site (Strohmaier et al., 1998), the predicted P\textsubscript{Y}
promoter (Strohmaier et al., 1998), and the 5′ end of the \textit{traY}
gene (\textbf{Figure 1B}) was amplified by PCR from \textit{E. coli} harboring
plasmid R1 using oligonucleotides PYTransfw, and PYTransrev1.
For footprinting studies, only one of the two primers was 5′
prime of \textit{tra} operon. GZ DNA (261 bp) is a fragment generated from
plasmid pGZ119EH DNA using oligonucleotides pTG-NF4-fw and
pgzev508. It roughly encompasses the \textit{tau} promoter, the \textit{lac}
operator and the multiple cloning site of the plasmid. FP\textsubscript{Y} DNA
(422 bp) was generated by PCR from \textit{E. coli} XK1200 (pOX38-Km)
and primers F_Py_fw and F_Py_rev. It contains DNA from −393
to +29 relative to the transcription start site of the F-plasmid
\textit{tra} operon. Atu DNA (395 bp) was generated by PCR from
\textit{Agrobacterium tumefaciens} C58 using primers GroEL_Atum_fw
and GroEL_Atum_rev and covers a part of the \textit{groEL} gene.

EMSA

A Cy-5 labeled DNA fragment (0.5 nM) was mixed by pipetting
on ice with varying concentrations of purified protein in
band shift buffer (12 mM HEPES pH 7.9, 30 mM Tris-Cl pH 7.5,
60 mM KCl, 10% glycerol, 1.7 mM EDTA, 26 mM boric
acid, 5 mM TCEP). Samples were placed in 0.2 mL PCR
tubes; total reaction volume was 15 μL. Tubes were then
transferred to a thermocycler and incubated at 30°C for 15 min.
DNA and protein–DNA complexes were then electrophoretically
separated on non-denaturing 6% polyacrylamide gels (PAGs;
acrylamide:bisacrylamide 80:1, 2.5% glycerol, 0.07% APS,
and 0.07% TEMED). Vertical electrophoresis was performed in
Hoefer Mighty Small II chambers with TBE buffer (100 mM Tris
base, 100 mM boric acid, 2.5 mM EDTA pH 8.3) with 20 mA
at 4°C for 30–45 min. After disassembly of the electrophoresis
unit, the gel was scanned using a Typhoon 9400 scanner (GE
Healthcare). For image analysis and estimation of the dissociation
constant, the Quantity One software (Bio-Rad) was used. Each
band shift experiment was performed at least twice.

DNase I Footprinting

For the DNase I footprint experiment, the same 319 bp R1P\textsubscript{Y}
DNA fragment as described for EMSA experiments was used
with the exception that only one DNA strand was Cy5-labeled.
Binding reaction mixtures (50 μL total volume) contained
50 mM Tris-Cl pH 7.2, 100 mM KCl, 10% glycerol, 30 ng
of P\textsubscript{Y} DNA, and varying concentrations of TraJ, ArcA-P, or
H-NS. To allow protein–DNA complex formation, P\textsubscript{Y} DNA and
proteins were incubated for 20 min at 4°C and 2 min at 25°C.
50 μL of a 10 mM MgCl\textsubscript{2}, 5 mM CaCl\textsubscript{2} solution were added
and incubated for 1 min. To digest the DNA 0.1 U DNase I
(1 U/μL) (Fermentas) were added directly to the protein-DNA
mixes and incubated for 2 min. The reaction was terminated
with 90 μL stop solution (20 mM EDTA, 200 mM NaCl, 1%
SDS, 250 μg/mL herring sperm DNA). DNA was precipitated
by adding 2.5 volumes of ethanol (96%) and incubation for
3 h at −70°C. Precipitates were sedimented by centrifugation
(15,000 × g, 10 min, RT), washed with 70% ethanol, and
centrifuged as before. After removal of the supernatant,
the pellets were air-dried and resuspended in 10 μL formamide
loading dye (Thermo Sequenase Primer Cycle Sequencing Kit,
GE Healthcare), denatured for 10 min at 95°C, and separated
on a 8% polyacrylamide sequencing gel (ReproGelTM, High
resolution, GE Healthcare) in an Alf Express Sequencer (GE
Healthcare). The sequencing reactions of the P\textsubscript{Y} DNA fragment
were done with the Thermo Sequenase fluorescent-labeled
Primer Cycle Sequencing Kit (GE Healthcare) using 200 ng of
DNA and Cy-5 labeled primer PYTransfw or PYTransrev1. Data
were analyzed using the AlfWin Sequence Analyzer software
(Amersham Pharmacia Biotech).

R1P\textsubscript{Y} Promoter Activation Tests

For these tests, \textit{E. coli} MC4100 co-transformed with the P\textsubscript{Y}
promoter test plasmid pRSYZ4 (carrying a R1P\textsubscript{Y}–lacZ fusion)
and \textit{tra} expressing plasmids (pJR1 or pJF or pJSLT2) or a vector
control plasmid (pGZNSO2) were assayed for \textit{β}-galactosidase
activity. Promoter activation tests were similarly performed
with derivatives of pRSYZ4 created by site specific mutagenesis.
\textit{β}-galactosidase assays were performed essentially as described
previously (Wagner et al., 2013) and according to an Open
Wetware protocol1 (last accessed 28/02/2020). Details of the
procedure can be found in \textit{Supplementary Material}.

RESULTS

Binding of H-NS ArcA, and TraJ to R1P\textsubscript{Y} DNA

In a previous study, we could show that H-NS is involved in
silencing \textit{tra} gene expression of plasmid R1 \textit{in vivo} (Wagner et al.,
2013). We therefore set up experiments to investigate direct H-NS
binding to a fluorescently labeled DNA fragment containing the
R1 P\textsubscript{Y} promoter (R1P\textsubscript{Y} DNA, 319 bp, 62% AT) as shown in
\textbf{Figure 1B}. This DNA fragment was incubated with increasing

1https://openwetware.org/wiki/?title=Knight:Beta-galactosidase_assay/96_well_
format&oldid=194997
concentrations of purified H-NS protein and the resulting DNA–protein complexes were separated electrophoretically on a non-denaturing PAG. As can be seen in Figure 2A, H-NS bound to R1P_Y with high affinity producing a distinct complex visible at protein concentrations between 30 and 250 nM H-NS. Higher H-NS concentrations shifted the DNA to the top of the gel. We estimated an apparent dissociation constant \(K_d \) of 15 nM. However, as is clearly obvious from Figure 2C, H-NS also bound to a control DNA fragment (GZ DNA, 261 bp, 49% AT). For a direct comparison in the DNA binding behavior, we performed binding studies using the same DNA fragments with phosphorylated ArcA protein (ArcA-P). The results are shown in Figures 2B,D. Binding of ArcA-P to R1P_Y with apparent \(K_d \) of 60 nM is highly specific. ArcA-P only bound to R1P_Y containing the abs site shown in Figure 1C but not to the GZ fragment which does not contain a binding motif for ArcA.

In a second series of band shift experiments (Figure 3), we wished to investigate the DNA binding properties of TraJ_R1 which has been identified as an essential activator of the P_Y promoter and tra operon transcription of plasmid R1 (Wagner et al., 2013). As can be seen in Figure 3A, purified TraJ_R1 bound to R1P_Y DNA; however, no distinct DNA–protein complexes appeared except that at concentrations > 500 nM TraJ_R1 R1P_Y DNA is shifted to the top of the gel. The apparent \(K_d \) was estimated to be 250 nM for binding of TraJ_R1 to R1P_Y DNA. Importantly, the only protein found by mass spectroscopy in the top shifted band was TraJ_R1 (data not shown). Thus, we exclude the presence of contaminating DNA binding proteins in our TraJ protein preparations. We previously identified a loss-of-function mutant of TraJ_R1 (I187T); furthermore, ChIP experiments suggested that this mutant had severely disturbed the DNA binding capability (Wagner et al., 2013). Consistent with these findings, purified TraJ_R1 (I187T) displayed a considerably weaker DNA binding activity with an apparent \(K_d \) of 750 nM (Figure 3B). To investigate the specificity of TraJ_R1 DNA binding, we performed several DNA binding experiments. As can be seen in Figure 3C, TraJ_R1 also bound to FP_Y and Atu DNA fragments which do not contain the jbs recognition sequence (Figure 1C). However, quantitation of the remaining free DNA in relation to total DNA at 500 nM TraJ_R1 revealed only 17% in case of R1P_Y, whereas there were 34 or 28% in case of FP_Y or Atu fragments, respectively. This result suggested that TraJ_R1 bound with a higher affinity to R1P_Y (319 bp) when compared to FP_Y (422 bp) or a DNA fragment from A. tumefaciens (Atu, 395 bp). In another approach, TraJ_R1 binding was investigated using two different DNA fragments (R1P_Y and GZ) simultaneously. Although not a strikingly clear difference (compare ArcA-P binding to the same fragments, Figure 2D), there is a slight preference for the R1P_Y fragment (Figures 3D,E). We finally found that pre-incubation of the DNA

![FIGURE 2](image_url) Binding of H-NS and ArcA-P (phosphorylated ArcA) to R1P_Y (319 bp, 62% AT, see Figure 1B) and control (GZ, 261 bp, 49% AT) DNA fragments. Electrophoretic mobility shift assays (EMSA) were performed with the indicated fluorescently Cy5-labeled ds DNA fragments (0.5 nM) and purified proteins using the indicated protein concentrations (np: no protein present). Formed DNA–protein complexes were electrophoretically separated using non-denaturing polyacrylamide gels (PAGs) from free DNA and visualized by fluorescence imaging. Free DNA fragments are indicated at the bottom of the gels. Complexes appear as distinct bands, smear, or are retained in the gel slots. To increase perceptual contrast, images were inverted (gray fluorescence signal on a white background). (A) EMSA with purified H-NS protein and R1P_Y DNA. High affinity binding in with an apparent dissociation constant \(K_d \) of about 15 nM can be observed. (B) EMSA with ArcA-P protein demonstrates binding of ArcA-P to R1P_Y with \(K_d \) of 60 nM. (C) H-NS binds to both R1P_Y and GZ DNA. (D) ArcA-P is highly specific and only binds to R1P_Y which contains the abs tandem repeat sequence as depicted in Figure 1C.
Bischof et al. Conjugation Gene Silencing and Counter-Silencing

FIGURE 3 | EMSAs with various proteins and DNA fragments to characterize TraJ_{R1} binding to DNA. Binding studies were analyzed as described in Figure 2. np, no protein added. (A) TraJ_{R1} binds to R1P_Y DNA. No distinct DNA–protein complexes can be seen. The K_d is estimated from this EMSA is 250 nM. At concentrations > 500 nM R1P_Y DNA is shifted to the gel slot. (B) An activation deficient TraJ_{R1} mutant (I187T) displays a considerably weaker DNA binding activity with an apparent K_d of 750 nM. (C) Comparison of TraJ_{R1} binding to different DNA fragments. TraJ_{R1} binds with higher affinity to R1P_Y (319 bp) when compared to FP_Y (422 bp) or a DNA fragment from Agrobacterium tumefaciens (Atu, 395 bp). (D) Simultaneous binding of TraJ_{R1} to R1P_Y and a control fragment (GZ). TraJ_{R1} binds with higher affinity to R1P_Y when compared to a control DNA. (E) The percentage of free R1P_Y DNA and GZ DNA from D was calculated and graphically represented relative to the DNA fluorescence of the respective fragment without protein. (F) Pre-incubation of the DNA fragments (R1P_Y and GZ) with 250 nM ArcA-P increased TraJ_{R1} preference for R1P_Y DNA (Figures 3F,G). Taken together, these results suggest that TraJ_{R1} has a DNA binding activity which is stronger when the cognate jbs site is present and that ArcA-P binding could direct TraJ_{R1} toward the DNA containing jbs next to abs.
H-NS and TraJR1 Binding Sites in the Pγ Promoter Region of Plasmid R1

Binding of ArcA-P to the R1 Pγ promoter region has been determined earlier by DNase I footprinting (Strohmaier et al., 1998) and clearly demonstrated that ArcA-P can bind to the abs site indicated in Figure 1C. To determine the binding sites for H-NS and TraJR1, we again performed DNase I protection assays using the 319 bp R1Pγ DNA fragment either fluorescently labeled on the top (non-coding) or bottom (coding) strand. The result of such an experiment is shown in Figure 4 where the binding regions for H-NS appear as three distinct regions with reduced band intensities when compared to the control DNase I digest without protein. These regions are labeled H-NS I (−184 to −157, 81% AT), H-NS II (−126 to −78, 77% AT), and H-NS III (−69 to +4, 66% AT). The banding pattern changes when proteins ArcA-P and TraJR1 are additionally present (lane A + J + H in Figure 4), suggesting a replacement of H-NS by ArcA-P and TraJR1. The binding sites for ArcA-P and TraJR1 are indicated in Figure 4 and correspond to abs and jbs sequence motifs shown in Figure 1C.

To better define the binding site for TraJR1 further DNase I footprinting experiments were performed with increasing TraJR1 concentrations, ArcA-P alone and TraJR1 together with ArcA-P. As shown in Figures 5A,D (top strand labeled) TraJR1 protected from DNase I cleavage at positions A-57 and C-90. Protection of C-90 by TraJR1 indicates a secondary binding site in R1Pγ which is located outside the proposed jbs recognition site. This can be attributed to the sequence independent DNA binding activity of TraJR1 which was also evident in the band shift experiments. ArcA-P protected T-74. Positions A-57 and T-74 are consistent with the proposed jbs and abs recognition sites, respectively. Addition of both proteins produced a protection pattern indicating simultaneous DNA binding of TraJR1 and ArcA-P. On the bottom strand TraJR1 protected from DNase I cleavage at position A-42. ArcA-P protected at T-72 and A-76 (Figures 5B,C). Again, these positions are consistent with the proposed jbs and abs motifs. From these results, we deduce that the recognition site for TraJR1 (jbs) in the R1Pγ promoter extends from −51 to −38 and includes the imperfect inverted repeat sequence CGCCAAATTTTGGCG with two non-palindromic bases (TT) in the center. Incubation of R1Pγ DNA with ArcA-P alone resulted in the expected protection of the direct repeats TGTAAAGTAAATGTTAA from −76 to −60. Binding of ArcA-P to this site has been shown by our group previously (Strohmaier et al., 1998). This sequence closely resembles the proposed recognition matrix for ArcA-P in E. coli (Liu and De Wulf, 2004; Park et al., 2013). In addition, the sequence motif is highly conserved in Pγ promoter sequences of F-like plasmids.

Pγ Promoter Sequence Requirements for TraJ Activation

The in vitro results demonstrated that TraJR1 can bind to DNA. Based on the above described preference for jbs containing DNA and the DNase I footprinting data, we concluded that TraJR1 specifically recognizes an inverted repeat sequence in the Pγ promoter including bases from −51 to −38 in the R1Pγ promoter region. This is consistent with previous results of ChIP experiments where we could demonstrate specific in vivo binding of TraJR1 to the R1Pγ DNA (Wagner et al., 2013). We also noted that sequences in the Pγ promoter region between different subclasses of F-like plasmids differ as do the cognate
FIGURE 5 | DNase I protection pattern by TraJ and ArcA-P obtained on R1Py DNA. R1Py DNA fluorescently 5'-labeled on the non-template (A) or the template (B) strand was incubated with proteins as indicated and subsequently digested with DNase I. The resulting DNA fragments were separated on a denaturing PAG. A gel-like image of the detected fluorescence signals is shown in A,B. Lanes A, C, G, and T are products of sequencing reactions. For orientation, some bases are indicated on the left side of lane A, respectively. Proteins were added before DNase I digestion as follows: J: TraJ 0.5, 2, or 5 µM; A: ArcA-P 0.27 or 0.55 µM. J + A: TraJ + ArcA-P, 2 and 0.27 µM, respectively. np, no protein added before DNase I digestion. A: TraJ protects from DNase I cleavage at positions A-57 and C-90. ArcA-P protects T-74. Positions A-57 and T-74 are consistent with the proposed jbs and abs recognition sites as shown in C, respectively. Addition of both proteins produces a protection pattern indicating simultaneous DNA binding of TraJ (indicated by a green bar) and ArcA-P (magenta bar). (B) TraJ protects from DNase I cleavage at position A-42. ArcA-P protects T-72 and A-76. These positions are consistent with the proposed jbs and abs regions as shown in C, respectively. Addition of both proteins produces a protection pattern indicating simultaneous DNA binding. (C) DNA sequences of non-template (top) and template (bottom) DNA strands from the R1Py promoter region (−76 to −1). The proposed abs (−76 to −60) and jbs (−51 to −38) sites are indicated above the sequence. Open triangles indicate bases protected by ArcA-P and filled triangles represent ArcA-P induced DNase I cleavage sites. Open circles indicate bases protected by TraJ and filled circles represent TraJ induced DNase I cleavage sites. + 1: transcription start site as determined by reverse transcription of tra mRNA, −10: −10 region of the Py promoter, TG: extended −10 motif. (D) Curve view of DNase I footprinting experiment shown in A. Proteins were added as indicated. np, no protein added before DNase I treatment.
TraJ proteins (Wagner et al., 2013; Koraimann, 2018). To verify the jbs recognition sequence and to demonstrate subclass-specific activation of the P_Y promoter of F-like plasmids, we systematically mutagenized the jbs site in the R1P_Y promoter and tested its activation by TraJ proteins from plasmid R1, pSLT, or F. The mutations shown in Figure 6A were introduced in the promoter test plasmid pRSYZ4 in which the R1P_Y promoter is fused to the lacZ reporter gene. β-Galactosidase assays were performed to evaluate basal promoter activity (with a vector control plasmid) and its activation by the above mentioned TraJ proteins. As can be seen in Figure 6B, there was a very low basal expression level from the R1P_Y promoter which could be induced by both TraJ_{R1} and TraJ_{pSLT} but not by TraJ_F. In the fully stimulated promoter expression was about 6.5-fold to 8-fold higher than the basal expression. The mutation of three bases (m1) in jbs did not change the basal expression level but completely abolished activation by TraJ_{R1}, showing that these bases in jbs are absolutely essential for recognition by TraJ_{R1}. There was no activation by TraJ_F. Further sequential mutations toward the F jbs did not change this phenotype dramatically (m4, m41). However, finally, mutants with an almost completely changed jbs sequence (m42, m43) displayed a specificity switch. The P_Y promoter in these mutants was activated by TraJ_F and not by TraJ_{R1}. We also observed an approximately twofold increase in the basal P_Y promoter activity in mutant m43 which could be activated by TraJ_F fourfold (Figure 6).

Another series of mutations was introduced into the R1P_Y promoter to investigate the effects of exchanges in abs and the −35 region (Figure 7). In the m6 mutation in which the second TTGTTAA ArcA recognition motif in abs is changed to TCATAA, we observed a reduced basal expression level (approximately 50% of the wt promoter) and a complete loss of its activation by TraJ_{R1}. This is consistent with earlier R1P_Y promoter activity determinations using arcA mutant strains (Wagner et al., 2013). Interestingly, there is some promoter activation by TraJ_{pSLT} which is probably due to a somewhat higher expression of this protein variant (data not shown). The −35-region mutant (TTTTTTTT to TTGATT) unexpectedly led to a complete different of the R1P_Y promoter behavior. First, the basal expression level was higher than from the wt promoter in the fully induced state, second, there was no observable induction by TraJ, and third, there was no more dependence on ArcA since the abs site mutation had no effect on the high expression level. Thus, by introducing just two bases making the −35 sequence more similar to the canonical −35 recognition sequence (TTGACA) which is contacted by region 4 of the σ^{70} subunit of the RNA polymerase converted the R1P_Y promoter into a constitutive and completely deregulated promoter.

DISCUSSION

Expression of the tra operon is an absolute requirement for bacteria carrying CPs to develop transfer competence. Only transfer competent cells which usually only represent a minor subpopulation of plasmid harboring cells can actively transfer DNA into recipients and thereby spread genes horizontally in bacterial populations. Intricate genetic regulatory networks ensure that transfer genes are expressed only under optimal conditions (Frost and Koraimann, 2010; Koraimann and Wagner, 2014; Stingl and Koraimann, 2017). Here, we investigated the molecular basis of tra gene activation of the classical antibiotic resistance plasmid R1 which belongs to a large family of F-like plasmids, also categorized as MOB_{F12}A (Fernandez-Lopez et al., 2017). The performed experiments are based on a previous study where we genetically characterized the contribution of hns, arcA, and traJ on silencing and activating DNA transfer and type IV secretion genes of plasmid R1 (Wagner et al., 2013). H-NS binding to the R1P_Y promoter DNA could be directly shown by EMSA and DNase I footprinting experiments. As expected, DNA binding by H-NS was not specific for the R1P_Y promoter but also bound to a control DNA fragment in the EMSA with a lower AT content. However, the observed apparent K_d with the R1P_Y fragment was very low (15 nM) and comparable to DNA fragments containing nucleation sites for H-NS such as csgD or proU promoters (Bouffartigues et al., 2007; Gulvady et al., 2018). In the DNase I protection experiment, we identified three AT binding regions in the R1P_Y promoter region (H-NS I, H-NS II, and H-NS III). Due to their high AT content of 81 and 77%, the first two could serve as nucleation sites since this high AT content represents the documented preferred composition of H-NS targets in vivo (Navarre et al., 2006). Our results are fully consistent with the proposed silencing role of hns in tra gene expression of plasmid R1 (Wagner et al., 2013).

Counter-silencing functions of the known activators of tra gene expression ArcA (the response regulator of the ArcAB two component system) and TraJ, requires displacement of H-NS from at least the H-NS III binding region which could facilitate RNA polymerase access to −35 and −10 regions of the P_Y promoter. In vitro binding of ArcA-P and in vivo activation functions have been established earlier suggesting that these proteins could help clearing the promoter from H-NS and recruiting RNA polymerase (Strohmaier et al., 1998; Wagner et al., 2013). The EMSA results confirmed specific ArcA-P binding the R1P_Y promoter in addition TraJ_{R1} bound to DNA but only with a slight preference for R1P_Y DNA. DNase I footprinting analysis nevertheless revealed a protection pattern for TraJ_{R1} that is consistent with the proposed jbs site with the inverted repeat sequence located between −51 and −38 and confirmed ArcA-P binding immediately next to TraJ_{R1} to two direct repeats from −76 to −60. The TTGTTAA hexamer represents the core of the ArcA sequence motif with the highest conservation. In most E. coli ArcA regulated promoters, two or three direct repeats of these ArcA boxes are found (Park et al., 2013). Since the simultaneous addition of both proteins can change the protection pattern of H-NS in a way that suggests replacement of H-NS by ArcA and TraJ, Phosphorylated ArcA may be responsible for a first counter-silencing activity and opening the P_Y promoter for TraJ activator.
Determination of important sequence elements in the R1P\textsubscript{Y} promoter for activation by TraJ\textsubscript{R1}. Successively introduced mutations switch recognition specificity to TraJ\textsubscript{F}. (A) Sequences showing sequentially created site specific mutations in R1P\textsubscript{Y}. Top line shows the R1P\textsubscript{Y} wt sequence with the abs and jbs sites indicated above. Bottom line shows FP\textsubscript{Y} wt sequence with bases that differ from R1P\textsubscript{Y} in bold letters. (B) β-Galactosidase assays with bacterial cells harboring a R1P\textsubscript{Y}-lacZ promoter-test plasmid and a second compatible plasmid IPTG-inducible for expression of traJ from plasmids R1 (JR1), F (JF), or pSLT (JSlt2); vc, vector control (no traJ). IPTG (inductor): + (added), − (not added). Mean values and standard deviations were calculated from at least three independently carried out experiments with two technical replicates for each experiment. *P*-values (paired t-test): **P* < 0.01; ***P* < 0.001.
FIGURE 7 | Determination of the role of \(\text{abs} \) and the non-canonical \(-35 \) region in the \(\text{R1P_Y} \) promoter. (A) Top line shows the \(\text{R1P_Y} \) wt sequence with the \(\text{abs} \) and \(\text{jbs} \) sites indicated above. Mutations tested in \(\beta \)-galactosidase assays are shown in the \(\text{R1P_Y} \) sequence context and highlighted in red. (B) \(\beta \)-Galactosidase assays with bacterial cells harboring a \(\text{R1P_Y-lacZ} \) promoter-test plasmid and a second compatible plasmid IPTG-inducible for expression of \(\text{traJ} \) from plasmids R1 (JR1), F (JF), or pSLT (JSlt2). vc: vector control (no \(\text{traJ} \)). IPTG (inductor): + (added), - (not added). Mean values and standard deviations were calculated from at least three independently carried out experiments with two technical replicates for each experiment. \(P \)-values (paired \(t \)-test): *** \(P < 0.001 \).
binding in a second step. It has similarly been shown that the SsrB response regulator of S. enterica can replace H-NS from type III effector gene promoters in SPI-2 required for intracellular growth and maintenance of this pathogen (Walthers et al., 2011). A cooperative activity of TraJ and ArcA has also recently been proposed to mediate activation of the FPY promoter which is also silenced by H-NS (Will and Frost, 2006; Rodriguez-Maillard et al., 2010; Lu et al., 2018). The results of our promoter mutagenesis studies fully supported the idea that counter-silencing in the R1PY promoter requires ArcA since when only two bases in the second ArcA box hexamer were exchanged (from TGTTAA to TCATAA), together with a lower basal activity, induction of the R1PY promoter was virtually abolished. On the other hand, silencing required a non-canonical −35 hexamer (TTTTTTT) which when mutated to TTGTATT completely disrupted silencing an converted the mutant promoter into a constitutive promoter independent of both ArcA and TraJ. We envision that this mutation disrupts binding of H-NS in H-NS III of the R1PY promoter and at the same time allows binding of the RNA polymerase holoenzyme (with σ70) to productively initiate transcription from R1 PY.

Although the role of the plasmid encoded activator protein TraJ is well established, the exact mechanism how TraJ acts at the molecular level is still unclear. Whereas the EMSA experiments showed DNA binding with an apparent dissociation constant Kd of about 250 nM only revealed a weak preference for R1PY fragment which was somewhat enhanced by ArcA. Clearly, as shown in the DNaase I footprints, TraJ was able to bind next to ArcA in the R1PY promoter. However, there was also a prominent protected band outside the TraJ recognition motif jbs suggesting binding to DNA outside of jbs (C-90 in Figure 5). Unspecific DNA binding was also observed in the band shift experiments and is possibly due to our in vitro conditions which do not reflect the true in vivo situation. Weak DNA binding and low specificity have also been observed for TraJ binding to the FPY promoter; in addition, the authors of that study suggested a cooperative binding mode without a direct protein-protein interaction (Lu et al., 2018). Our findings that ArcA-P binding to R1PY DNA somehow enhanced TraJ binding to jbs containing DNA is consistent with this notion. Although we observed no direct protein-protein interaction between TraJR1 and ArcA (data not shown), cooperativity between ArcA and TraJR1 could also be an important aspect of R1PY activation. Furthermore, results of several experiments suggest a direct interaction of TraJ with RNA polymerase (G. Koraimann, unpublished observations). Such a complex may strongly enhance affinity and sequence specificity. Investigations to better understand the interaction and complex formation between TraJ and the RNA polymerase of E. coli are currently ongoing in our laboratory.

In stark contrast to the in vitro observations are the results of R1PY promoter mutations in jbs and the effects of these mutations on the activation potential by TraJR1 or TraJF. The sequence identity between these two TraJ variants is only 18%—explaining the observed specificity of these activators, which means that TraJR1 activates only the R1PY promoter whereas TraJF only functions to activate the FPY promoter containing the cognate jbs site (Wagner et al., 2013; Lu et al., 2014). Based on TraJ sequence variations within the MOBa family of F-like plasmids, nine subgroups have been recently proposed, presumably resulting in a subgroup-specific activation of the Py promoter (Koraimann, 2018). Two groups that share a rather high identity in the TraJ protein sequence (73%) are the R1 subgroup and the pSLT subgroup. As we demonstrate here, TraJR1 and TraJpSLT are exchangeable. Furthermore, there are only a few bases that differ in the respective promoter sequences (Figure 1). Exchanges of these bases, mostly outside of jbs did not affect silencing nor activation by TraJR1 or TraJpSLT (Supplementary Figure S1). However, when jbs in R1PY was mutated in only three positions of the inverted repeat sequence, we immediately observed a loss of activation by TraJR1 indicating that recognition by TraJ in vivo is extremely specific. After a series of mutations toward the jbs sequence in FPY, we finally observed a specificity switch, as the promoter was activated by TraJF and not by TraJR1. This result shows that the sole determinant for recognition by TraJ resides in the identified jbs sequence.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.

AUTHOR CONTRIBUTIONS

KB, DS, ST, TH, AH, and GR performed and analyzed the experiments. GK designed, evaluated, and analyzed the data and wrote the manuscript.

FUNDING

This work was supported by the Austrian Science Foundation (FWF), grant number 17857-B12. We acknowledge the support of the field of excellence BioHealth, NAWI Graz, and the University of Graz.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01254/full#supplementary-material

REFERENCES

Bouffartigues, E., Buckle, M., Badaut, C., Travers, A., and Rimsky, S. (2007). H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat. Struct. Mol. Biol. 14, 441–448. doi: 10.1038/nsmb1233

Christie, P. J. (2016). The mosaic type IV secretion systems. EcoSal Plus 7. doi: 10.1128/ecosalplus.ESP-0020-2015
Cox, K. E. L., and Schildbach, J. F. (2017). Sequence of the R1 plasmid and comparison to F and R100. *Plasmid* 91, 53–60. doi: 10.1016/j.plasmid.2017.03.007

Datta, N., and Kontomichalou, P. (1965). Penicillinase synthesis controlled by infectious R factors in *Enterobacteriaceae*. *Nature* 208, 239–241. doi: 10.1038/208239a0

Fernandez-Lopez, R., de Toro, M., Moncalian, G., Garcia-Beltrán, M. P., and de la Cruz, F. (2016). Comparative genomics of the conjugation region of F-like plasmids: five shades of F. *Front. Mol. Biol.* 3:71. doi: 10.3389/fmolb.2016.00071

Fernandez-Lopez, R., Redondo, S., Garcia-Beltrán, M. P., and de la Cruz, F. (2017). Towards a taxonomy of conjugative plasmids. *Curr. Opin. Microbiol.* 38, 106–113. doi: 10.1016/j.mib.2017.05.005

Frost, L. S., and Koraimann, G. (2010). Regulation of bacterial conjugation: balancing opportunity with adversity. *Future Microbiol.* 5, 1057–1071. doi: 10.2217/fmb.10.70

Gulvady, R., Gao, Y., Kenney, L. J., and Yan, J. (2018). A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. *Nucleic Acids Res.* 46, 10216–10224. doi: 10.1093/nar/gky826

Koraimann, G. (2018). Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. *EcoSal Plus* 8. doi: 10.1128/ecosalplus.ESP-0003-2018

Koraimann, G., and Wagner, M. A. (2014). Social behavior and decision making in bacterial conjugation. *Front. Cell. Infect. Microbiol.* 4:54. doi: 10.3389/fcimb.2014.00054

Laible, M., and Boonrod, K. (2009). Homemade site directed mutagenesis of whole plasmids. *J. Vis. Exp.* 27, 1–4. doi: 10.3791/1135

Liu, H., and Naismith, J. H. (2008). An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. *BMC Biotechnol.* 8:91. doi: 10.1186/1472-6750-8-91

Liu, X., and De Wulf, P. (2004). Probing the ArcA-P modulon of *Escherichia Coli* by whole genome transcriptional analysis and sequence recognition profiling. *J. Biol. Chem.* 279, 12588–12597. doi: 10.1074/jbc.m313454200

Lu, J., Peng, Y., Wan, S., Frost, L. S., Raškio, T., and Glover, J. N. M. (2018). Cooperative function of TraJ and ArcA in regulating the F plasmid Tra operon. *J. Bacteriol.* 201:e00448-18. doi: 10.1128/JB.00448-18

Lu, J., Wu, R., Adkins, J. N., Joachimiak, A., and Glover, J. N. (2014). Crystal structures of the F and PSLT plasmid TraJ N-terminal regions reveal similar homodimeric PAS folds with functional interchangeability. *Biochemistry* 53, 5810–5819. doi: 10.1021/bi500244m

Meynell, E., and Datta, N. (1966). The relation of resistance transfer factors to the F-Factor (Sex-Factor) of *Escherichia Coli* K12. *Genet. Res.* 7, 134–140. doi: 10.1017/S0016672300009538

Miller, J. H. (1972). *Experiments in Molecular Genetics*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Navarre, W. W., Porwollik, S., Wang, Y., McClelland, M., Rosen, H., Libby, S. I., et al. (2006). Selective silencing of foreign DNA with Low GC content by the H-NS protein in *Salmonella*. *Science* 313, 236–238. doi: 10.1126/science.1128794

Park, D. M., Akhtar, M. S., Ansari, A. Z., Landick, R., and Kiley, P. J. (2013). The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. *PLoS Genet.* 9:e1003839. doi: 10.1371/journal.pgen.1003839

Rodriguez-Maillard, J. M., Arutyunov, D., and Frost, L. S. (2010). The F plasmid transfer activator TraJ is a dimeric Helix-Turn-Helix DNA-binding protein. *FEBS Microbiol. Lett.* 310, 112–119. doi: 10.1111/j.1574-9698.2010.02064.x

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). *Molecular Cloning: A Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Stingl, K., and Koraimann, G. (2017). “Prokaryotic information games: how and when to take up and secrete DNA” in *Type IV Secretion in Gram-Negative and Gram-Positive Bacteria*, eds S. Backert and E. Grohmann (Cham: Springer), 61–92. doi: 10.1007/978-3-319-75241-9_3

Strohmaier, H., Noiges, R., Kotschan, S., Sawers, G., Högenauer, G., Zechner, E. L. L., et al. (1998). Signal transduction and bacterial conjugation: characterisation of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. *J. Mol. Biol.* 277, 309–316. doi: 10.1006/jmbi.1997.1598

Wagner, M. A., Bischof, K., Kati, D., and Koraimann, G. (2013). Silencing and activating type IV secretion genes of the F-like conjugative resistance plasmid R1. *Microbiology* 159(Pt 12), 2481–2491. doi: 10.1099/mic.0.071738-0

Waksman, G. (2019). From conjugation to T4S systems in gram-negative bacteria: a mechanistic biology perspective. *EMBO Rep.* 20:e47012. doi: 10.15252/embr.201847012

Walters, D., Li, Y., Liu, Y., Anand, G., Yan, J., and Kenney, L. J. (2011). *Salmonella Enterica* response regulator SsrB relieves H-NS silencing by displacing H-NS bound in polymerization mode and directly activates transcription. *J. Biol. Chem.* 286, 1895–1902. doi: 10.1074/jbc.M110.164962

Will, W. R., and Frost, L. S. (2006). Characterization of the opposing roles of H-NS and TraI in transcriptional regulation of the F-plasmid Tra operon. *J. Bacteriol.* 188, 507–514. doi: 10.1128/JB.188.2.507–514.2006

Wong, J. J., Lu, J., and Glover, J. N. (2012). Relaxosome function and conjugation regulation in F-like plasmids – a structural biology perspective. *Mol. Microbiol.* 85, 602–617. doi: 10.1111/j.1365-2958.2012.08131.x

Zechner, E. L., Moncalián, G., and de la Cruz, F. (2017). Relaxases and plasmid transfer in gram-negative bacteria. *Curr. Top. Microbiol. Immunol.* 413, 93–113. doi: 10.1007/978-3-319-75241-9_4

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bischof, Schiffer, Trunk, Höfler, Hopfer, Rechberger and Koraimann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.