Prevalence and burden of chronic kidney disease among the general population and high-risk groups in Africa: a systematic review

Samar Abd ElHafeez,1 Davide Bolignano,2 Graziella D’Arrigo,2 Evangelia Dounousi,3 Giovanni Tripepi,2 Carmine Zoccali3

ABSTRACT

Objectives While increasing attention is paid to the rising prevalence of chronic diseases in Africa, there is little focus on chronic kidney disease (CKD). This systematic review assesses CKD burden among the general population and high-risk groups on the entire African continent.

Design, setting and participants We searched Medline and PubMed databases for articles published between 1 January 1995 and 7 April 2017 by sensitive search strategies focusing on CKD surveys at the community level and high-risk groups. In total, 7918 references were evaluated, of which 7766 articles were excluded because they did not meet the inclusion criteria. Thus, 152 studies were included in the final analysis.

Outcome measurement The prevalence of CKD in each study group was expressed as a range and pooled prevalence rate of CKD was calculated as a point estimate and 95% CI. No meta-analysis was done. Data were presented for different populations.

Results In the community-level studies, based on available medium-quality and high-quality studies, the prevalence of CKD ranged from 2% to 41% (pooled prevalence: 10.1%; 95% CI 9.8% to 10.5%). The prevalence of CKD in the high-risk groups ranged from 1% to 46% (pooled prevalence: 5.6%; 95% CI 5.4% to 5.8%) in patients with HIV (based on available medium-quality and high-quality studies), 11%–90% (pooled prevalence: 24.7%; 95% CI 23.6% to 25.7%) in patients with diabetes (based on all available studies which are of low quality except four of medium quality) and 13%–51% (pooled prevalence: 34.5%; 95% CI 34.04% to 36%) in patients with hypertension (based on all available studies which are of low quality except two of medium quality).

Conclusion In Africa, CKD is a public health problem, mainly attributed to high-risk conditions as hypertension and diabetes. The poor data quality restricts the validity of the findings and draws the attention to the importance of designing future robust studies.

INTRODUCTION

Chronic kidney disease (CKD) is an emerging global public health problem.1 The disease is a component of a new epidemic of chronic conditions that replaced malnutrition and infection as leading causes of mortality during the 20th century.2 Age-standardised death rates due to CKD have increased during the last 23 years. CKD has shifted from the 36th cause of death in 1990 to the 19th cause in 2013.3 The worldwide increase in CKD and kidney failure—necessitating renal replacement therapy—and the high rate of cardiovascular mortality and morbidity attributable to CKD are poised to reach epidemic proportions over the next decade. CKD complications represent a considerable burden on global healthcare resources and only a small

Strengths and limitations of this study

► This systematic review assessed the chronic kidney disease (CKD) burden among the general population and high-risk groups on the entire African continent based on studies that covered all of Africa from 1 January 1995 until 7 April 2017.

► The quality of the included articles was assessed based on standard criteria dealing with clinical trials, diagnostic studies and observational studies. The articles were assessed based on the population sampling and precision, sampling technique, response rate and exclusion rate.

► No meta-analysis was conducted in this review due to the huge discrepancy in the definition used to identify CKD, the methods of creatinine measurement, urine protein assessment and in the quality of the reporting.

► There is paucity of information about CKD prevalence in age and gender groups, which affects the accuracy of the pooled prevalence estimated from each group.

► The prevalence of CKD reported in this review should be interpreted with caution due to the low quality of the majority of studies in Africa, the bias introduced from the heterogeneity between studies, analytical and methodological issues, sample size, and study population selection.
number of countries have sufficiently robust economies to meet the challenge posed by this disease. Socioeconomic differences in health exist and individuals of lower socioeconomic status (SES) have a higher risk for mortality and morbidity compared with those of higher SES. A change in the global approach to CKD from the treatment of end stage renal disease (ESRD) to intensive primary and secondary prevention is therefore considered an absolute public health priority.

Africa is the second largest continent in the world, with a population of over 1 billion; 961.5 million people live in sub-Saharan Africa and 195 million in Northern Africa. Africa now faces the dual challenge of infectious illnesses and chronic diseases. Africa’s chronic disease burden is secondary to various factors, including increased life expectancy, changing lifestyle practices, poverty, urbanisation and globalisation. The World Health Assembly advocated the Global Action Plan for the Prevention and Control of Non-Communicable Diseases 2013–2020. One of its targets is to reduce premature mortality from chronic diseases by 25% in 2025. These actions have the potential to make a significant impact on the burden of CKD. Unfortunately, CKD problem remains underestimated on the entire continent due to lack of epidemiological information from different African countries. There exists only a single systematic review conducted in sub-Saharan Africa, which concluded that CKD is a prevalent and potentially escalating disease across sub-Saharan Africa, with both communicable and non-communicable risk factors. Strategies aimed at managing CKD epidemics in Africa critically depend on a reliable assessment of the burden of the problem and the establishment of affordable early detection programmes. Previous studies reported the prevalence of CKD among the general population or the specific prevalence of this condition in diseases that are recognised as drivers of renal damage (eg, diabetes mellitus). These estimates have varied across studies due to differences in the methods of glomerular filtration rate (GFR) measurement, background risk (general population vs high-risk groups) or demographic characteristics (eg, age, gender).

With this background in mind, this review aimed to increase the systematic information on the burden of CKD in the general population and high-risk groups of the entire African continent and provide an estimate of the prevalence of CKD in different regions of Africa.

MATERIALS AND METHODS

Data source and search strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A systematic literature search was performed in the PubMed and Ovid Medline databases by two authors (DB and SA) to identify articles reporting epidemiology data on CKD in the adult population in any geographical area of the African continent. This employed focused, highly sensitive search strategies (online supplementary table 1). The search covered the time frame from 1 January 1995 to 7 April 2017. Papers without language and study design restrictions were located and screened. References from relevant studies were screened for supplementary articles.

Study selection and data extraction

Titles and abstracts were screened independently by two authors (SA and GD), who discarded studies that were not relevant to the topic. Case reports, reviews, editorials, letters and studies focusing on African–Americans not living on the African continent, conducted entirely among children, or dealing with acute kidney injury or kidney transplantation were excluded. Two authors (SA and ED) independently assessed the retrieved abstracts and the full texts of these studies to determine eligibility according to the inclusion criteria. Disagreements were resolved through discussion and consensus, or through consultation with a third reviewer (DB), who solved these differences based on study judgements. Furthermore, screening of reference lists of all of the retrieved studies was conducted to check for relevant articles, and a supplementary scan of the reference lists of the systematic reviews was performed to identify any additional studies. Data were extracted from full-text articles and registered using a specifically designed form. These data included study design, geographical area, sample size, the definition of CKD used, prevalence of CKD, age, gender, GFR measurement, type of creatinine assay, proteinuria, the method of outcome assessment, and associated comorbidities such as diabetes mellitus and hypertension. Data extraction was performed by one reviewer (SA) and independently verified by another reviewer (DB).

Data extraction and analysis

Studies were categorised according to the reference population as follows: (1) studies dealing with the general population and (2) studies focusing on particular diseases such as diabetes, hypertension, lupus and HIV, or settings, for example, hospital-based surveys and occupational studies.

Information on the assessment of kidney function was collected, including the equation adopted for GFR estimation (Cockroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI)), the type of creatinine assay (Jaffe, standardised or unknown), and the type of proteinuria or albuminuria assay used (semiquantitative assessment by urinary strips or quantitative in urine samples or 24-hour collection). When the study included two or three GFR equations, we defined the CKD prevalence based on the CKD-EPI equation whenever this information was provided. Otherwise, we considered the MDRD equation and lastly the CG equation. In the case of ethnicity correction, we included the equation that corrected for ethnicity. Information on the definition of CKD used in each study was also included (either the internationally accepted definition as Kidney Disease...
Outcome Quality Initiative (KDOQI), or other ways of defining CKD).

Quality assessment
Two independent authors (SA and DB) appraised each article independently and assessed its quality based on standard criteria described in detail in previous methodology reviews dealing with clinical trials, diagnostic studies, and observational studies. The articles were assessed based on the subject sampling and precision, sampling technique, response rate, method of assessment of kidney function and exclusion rate.

Statistical analyses
The principal demographic and clinical data for each study were summarised as the mean and SD or as absolute number and percentage, as appropriate. The age range in each study was also recorded. The range of the CKD prevalence for each study group was reported. The pooled prevalence rate of CKD was expressed as a point estimate and 95% CI. The prevalence from each study was weighed by the sample size, then the pooled prevalence was categorised by the African region. The inter-rater agreement for inclusion and quality assessment was determined using Cohen’s kappa (κ) coefficient. The percentage of the different causes of CKD was weighed by the sample size of each study done among patients with CKD. Then we simply summed the number of patients for each aetiological factor and divided it by the total sample size from the whole included studies. No meta-analysis was conducted in this study. Data were appropriately presented for different populations (general population and patients with CKD). Patients’ data were stratified by the type of underlying condition, that is, hypertension, diabetes mellitus, HIV or systemic lupus erythematosus. All calculations were conducted using SPSS for Windows V.21.

RESULTS

Search results
The flow diagram of the selection process is depicted in figure 1. In total, 7897 potentially relevant references were initially retrieved. Twenty-one additional citations were found through a personal search. By screening titles and abstracts, a total of 7534 citations were excluded because of search overlap, dealing with the wrong population (African–American, acute kidney injury (AKI), cancer or post-transplant patients) or not providing actual data on CKD. Review articles, case reports, editorials or letters were also excluded. Among the 384 studies selected for full-text examination, 232 were excluded because they dealt with a population different from that specifically targeted in this systematic review, such as paediatric populations (122 studies), transplant patients (n=44) or others.

![Flow diagram of the study selection](http://bmjopen.bmj.com/ BMJ Open: first published as 10.1136/bmjopen-2016-015069 on 10 January 2018. Downloaded from http://bmjopen.bmj.com/)

Figure 1 Flow diagram of the study selection.
(n=46) (eg, Africans living in non-African countries), or because only narrative data were provided (n=20). A total of 152 articles were therefore reviewed in detail and included in the analysis. The main characteristics of these studies are summarised in table 1. The inter-rater agreement for inclusion was κ=0.90 and for the quality assessment was κ=0.85.

Study characteristics

Among the 152 studies reviewed, 29 were general population studies (table 2). One hundred and twenty-three studies focused on selected groups, of which 42 included patients with HIV (table 4), 18 studied patients with diabetes (table 4), 9 included hypertensive subjects (table 5) and 12 were conducted in other populations (table 6), including one study in patients with lupus, one study in patients with rheumatoid arthritis, one study among patients with sickle cell anaemia, two in specific occupational settings (silica exposure and exposure to the nephrotoxic hair-dye, paraphenylenediamine) and seven studies in family practice or hospital-based surveys. Forty-two studies were conducted among patients with CKD (online supplementary table 2). Thirty-one studies defined the presence of CKD as an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m^2, whereas 11 studies used dipstick with confirmation by the protein-to-creatinine ratio or albumin-to-creatinine ratio. Quantitative methods for the assessment of proteinuria/albuminuria (24-hour proteinuria or albuminuria, Protein to Creatine Ratio (PCR), immunoassay or Albumin to Creatinine Ratio (ACR) were applied in 29 studies. In one study, the method of proteinuria assessment was not mentioned.

Serum creatinine was measured in 95 studies (86%). The Jaffe assay was used in 30 studies, whereas the isotope dilution mass spectrometry (IDMS)-calibrated method was used in 15 studies. Eight studies, both the Jaffe assay and the calibrated serum creatinine were used. In nine studies, both the Jaffe assay and the calibrated serum creatinine were used. With respect to the formula used for estimating GFR, the MDRD equation was used in 30 studies, and the CG equation was used in 18. The other 14 studies used both the CG and the MDRD equations.

Assessment of kidney function impairment

Urinary markers for kidney disease were assessed in 78 (71%) among 110 studies conducted in the general population, high-risk groups, occupational or hospital-based studies. Proteinuria was assessed by a semi-quantitative method (urinary strips) in 28 studies. Twenty studies used dipstick with confirmation by quantitative methods, nine of which used dipsticks to identify proteinuria/albuminuria with confirmation by 24-hour proteinuria whereas 11 studies used dipstick with confirmation by the protein-to-creatinine ratio or albumin-to-creatinine ratio. Sixteen studies estimated GFR by the CG, MDRD and the CKD-EPI methods whereas 15 studies estimated GFR by the CG, MDRD and the CKD-EPI methods whereas 14 studies used both the CG and the MDRD equations. Six studies used MDRD and CKD-EPI and two studies used CKD-EPI. In other two studies the formula was not mentioned.

Definition of CKD

Thirty-one studies defined the presence of CKD as an estimated glomerular filtration rate (eGFR) below 60 mL/min/1.73 m^2, with chronicity confirmed by repeated testing in four other studies. Moreover, 28 studies reported CKD prevalence based on eGFR below 60 mL/min/1.73 m^2 and/or the presence of proteinuria or albuminuria.
Study ID	Year, country, region	Location	N	Population characteristics	Definition of CKD	Method of outcome assessment	Type of creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Abdelsatir	2013, Sudan, Northeast 1	All village inhabitants	389	Age (years): 41±15 Male gender: 16.2% Hypertension: 39.6%; DM: 17% BMI category (kg/m²) <18: 6.2% 18–24.9: 65.8% 25–29.9: 20.2% ≥30: 7.8%	Not identified, personal history	Personal history	Not mentioned	Not measured	Total prevalence (as reported): 6.40%	Low
Fatiu	2011, Nigeria, West	Market population	286	Age (years): 49.5±5.7 Male gender: 9.8% Hypertension: 37.7% BMI (kg/m²): 26.76±5.28 <20: 7.4% 20–25: 33.4% >25: 59%	Proteinuria = +1	Midstream urine sample was tested by urinary strip	Not measured	29.70%	Total prevalence (based on proteinuria prevalence): 29.7%	Medium
Traore	1998, Mali, West	All household population of the villages	1098	Age (years): 30±12 Male gender: 52%	Proteinuria = +1	Microhaematuria and proteinuria by urinary strip	Not measured	40.80%	Total prevalence (based on proteinuria prevalence): 40.80%	Medium
Matsha	2013, South Africa, South	Bellville town inhabitants	1202	Age (years): 52±14.9 Male gender: 24.7% SBP: 125±20 DBP: 76±13 DM: 26.4% BMI: 29.9±7.2	eGFR <60 mL/min	Four variables: MDRD, CG, CKD-EPI	Standardised creatinine assay	Not measured	Prevalence of stages 3–5: 7.4% (based on CKD-EPI with ethnicity correction)	Medium
Seck	2014, Senegal, West	Two-stage cluster sampling of urban and rural inhabitants of Saint-Louis	1037	Age (years): 48±16.9 Male gender: 40% Hypertension: 39.1% BMI: 26.3±6.8 kg/m²	KDOQI Albuminuria by urinary strips; positive samples were confirmed by 24-hour albuminuria, eGFR by 186 MDRD	Albuminuria by urine strips; four variables confirmed by 24-hour albuminuria; eGFR by 186 MDRD	5.3% albuminuria >1 g/L	Total prevalence: 6.1%	High	
Pruim	2008, Seychelles, East	A random sex-stratified and age-stratified sample inhabitants of Seychelles	1255	Age (years): range, 25–64 Male gender: 46%	KDOQI Quantitative microalbuminuria by ACR, eGFR using MDRD	Quantitative microalbuminuria and 24-hour albuminuria, eGFR using MDRD	Not mentioned	11.4% microalbuminuria, 0.7% macroalbuminuria	Total prevalence: 15.3% Prevalence of stages 3–4 CKD: 3.2%	High
Sumaili	2009, Congo, Central	Multistage sampling of residents of Kinshasa	500	Age (years): 38.6±14.4 Male gender: 41% Hypertension: 27.9% DM: 11.7% BMI category (kg/m²) <18: 20.3% 18–24.9: 20.3% ≥30: 14.9%	KDOQI Proteinuria by urinary strip and 24-hour proteinuria, eGFR by CG and 175 MDRD	Proteinuria by urinary strip and 24-hour proteinuria, eGFR by CG and 175 MDRD	Kinetic Jaffe and IDMS-calibrated	18% proteinuria by dipstick 5% (>300 mg/day)	Total prevalence MDRD: 12.4% CG: 19% Prevalence by stage (MDRD) Stage 1: 2.2% Stage 2: 2.2% Stage 3: 2.2% Stage 4: 0% Stage 5: 0.2%	High

Continued
Study ID	Year, country, region	Location	N	Population characteristics	Definition of CKD	Method of outcome assessment	Type of creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Matsha	2014, South Africa, South Town	All residents of Cape Town	320	Age (years): mean, 56.4 (95% CI 55.1 to 57.6) Male gender: 22% SBP: 124.7 (95% CI 122.8 to 126.7) mm Hg DBP: 75.5 (95% CI 74.2 to 76.7) mm Hg BMI: 31.9 (95% CI 31.2 to 32.7) kg/m² Mean eGFR at baseline: 68.6±16.7 mL/min/1.73 m²	eGFR<60 mL/min/1.73 m²	eGFR: 186 MDRD (four variables)	Not mentioned	Not measured	Total prevalence: 28.9% Prevalence by categories eGFR >90 mL/min/1.73 m²: 9.4% eGFR 60-90 mL/min/1.73 m²: 58.7% eGFR 30-60 mL/min/1.73 m²: 28.1% eGFR <30 mL/min/1.73 m²: 0.9%	Medium
Sumaili	2008, Congo, Central	All residents of Kinshasa	3018	Age (years): 44.3±15.3 Male gender: 59% Hypertension: 18% DM: 4%	Proteinuria =+1	Proteinuria by urinary strip	Not assessed	17.1%	Total prevalence (based on proteinuria prevalence): 17.1% Prevalence by age 12–21 years: 8.7% 22–31 years: 11.4% 32–41 years: 18.6% 42–51 years: 18.2% 52–61 years: 18.9% 62–71 years: 22.4% >72 years: 19.7%	High
Egb	2014, Nigeria, West	All civil servants in Bayelsa	179	Age (years): 45.5±10.3 Male gender: 53.1% SBP: 128.5±17.5 mm Hg DBP: 81.8±13.2 mm Hg	eGFR <60 mL/min/1.73 m² and/or presence of proteinuria of at least +1 on dipstick urinanalysis	Proteinuria by urinary strip, eGFR by CG equation standardised for body surface area	Kinetic Jaffe	5.6%	Total prevalence: 7.8% Prevalence by stage Stage 1: 3.4% Stage 2: 2.2% Stage 3: 2.2% None in stage 4 or 5	Low
Olayombo	2013, Nigeria, West	Multistage sampling of households of Ilie	454	Age (years): 45.8±19.0 Male gender: 43% Hypertension: 20.4% DM: 0.6%	eGFR <60 mL/min and/or macroalbuminuria (ACR >300 mg/g or dipstick proteinuria)	Proteinuria by urinary strip, eGFR by 186 MDRD	Kinetic Jaffe	Macroalbuminuria in 8.9%	Total prevalence: 18.8% Prevalence by stage Stage 1: 2.4% Stage 2: 4.1% Stage 3: 11.8% Stage 4: 0.5%	High
Eastwood	2010, Ghana, West	Inhabitants of 12 villages	944	Age (years): 54.7±11.2 Male gender: 38% SBP: 125.5±26.0 mm Hg DBP: 74.4±13.6 mm Hg DM: 4% BMI: 21.1±4.2 kg/m²	KDOQI	175 MDRD, CG, CKD-EPI	Kinetic Jaffe and calibrated IDMS	Total prevalence (based on CKD-EPI and ethnicity correction): 1.7% MDRD: 1.6% (7.2% without ethnicity correction) CKD-EPI: 1.7% (4.7% without ethnicity correction) CG: 21.0%	High	

Table 2 Continued
Study ID	Year, country, region	Location	N	Population characteristics	Definition of CKD	Method of outcome assessment	Type of creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Gouda17	2011, Egypt, North	Community based in Al-Buhayrah governorate	417	Age (years): 39.12±14.29 Male gender: 43.2% Hypertension: 25.20% DM: 10.6% BMI: 29.96±6.18 kg/m²	eGFR <60 mL/min/1.73 m²	Quantitative assessment of urinary ACR, eGFR by 175 MDRD	IDMS-calibrated	10.6% microalbuminuria	Total prevalence: 18% Prevalence by age 18–29 years: 0.8% 30–44 years: 6.1% 45–60 years: 19.6% >60 years: 40% Prevalence by gender Female: 9.6% Male: 12%	Medium
Ayodele17	2011, Nigeria, West	People at a major trade centre, the public servant secretariat and the state broadcasting station	586	Age (years): 42.4±11.2 Male gender: 61.4% Hypertension: 16.4% DM: 3.8% BMI: 25.9±5.4 kg/m²	Proteinuria = +1	Proteinuria by urinary strip	Not assessed	2.50%	Total prevalence (based on proteinuria): 2.50% Prevalence by gender Female: 1.7% Male: 3%	Medium
Abu-Aisha78	2009, Sudan, East	Pilot survey of police housing complex	273	Age (years): 34.3±12 Male gender: 49.1% Hypertension: 27% DM: 5.1%	eGFR <60 mL/min/1.73 m² and/or proteinuria	Proteinuria by urinary strip, 175 MDRD, CG	Not mentioned	5.30%	Total prevalence (MDRD): 7.7% (11% by CG) Prevalence by stage Stage 1 or 2: 2.4% Stage 3: 2.6% Stage 4: 0% Stage 5: 0.4%	Medium
Gharbi106	2012, Morocco, North	Stratified random sampling of population in two towns	10 524	Age (years): range, 25–70 Male gender: 50% Hypertension: 16.7%	eGFR <60 mL/min/1.73 m² or microalbuminuria or dipstick abnormalities (proteinuria +++1 or haematuria ++1) or diabetes type 1 associated with microalbuminuria	Proteinuria by urinary strip and ACR	Kinetic Jaffe and IDMS	Microalbuminuria (30–299 mg/L): 5.26%	Total prevalence 2.90%	High
Odenigbo523	2014, Nigeria, West	All attendees to lectures of the Ebereime Foundation for the elderly	170	Age (years): 68.1±7.7 Male gender: 67.1%	eGFR <60 mL/min/1.73 m²	Total prevalence: 43.50% (all cases were at stage 3) Prevalence by age =65 years: 49.1% >65 years: 40.7% Prevalence by gender Female: 64% Male: 33%	175 MDRD, IDMS-calibrated	Not measured	Total prevalence: 6.3%	High
Booysen155	2016, South Africa, South	Participants from families of black African descent	1221	Age (years): 44.1±18.4 Male gender: 34.9% BMI (kg/m²): 29.3±8.0 Hypertension: 45% DM: 25.2%	eGFR <60 mL/min/1.73 m²	eGFR by CG, four variables MDRD, CKD-EPI	IDMS-calibrated	Not measured	Total prevalence: 6.3%	High
Study ID	Year, country, region	Location	N	Population characteristics	Definition of CKD	Method of outcome assessment	Type of creatinine assay	Proteinuria	CKD prevalence	Quality assessment
-------------	-------------------------------	---------------------------------------	------	---	---	--------------------------------------	-----------------------	--------------	-----------------	-------------------
Kalyesubula	2017, Uganda, East	Community-based survey among all households of Wakiso District	955	Age (years): 31 (IQR: 24–42) Male gender: 33% BMI (kg/m²): 27.1±5.3 Overweight: 24.2% Diabetics: 5.9%	KDOQI	Proteinuria by dipstick and eGFR by CG, MDRD and CKD-EPI	Kinetic Jaffe	0.3%	Total prevalence: 15.2% Prevalence by stage Stage 1: 6.2% Stage 2: 12.7% Stage 3: 2.4% Stage 4: 0% Stage 5: 0.1%	High
Kaze	2015, Cameroon, Central-West	Population of the Littoral region	500	Age (years): 45.3±13.2 Male gender: 53.4% BMI (kg/m²): 27.1±5.3 Hypertension: 12.2%	Albuminuria and/or eGFR <60 mL/min/1.73 m²	Albuminuria by dipstick and eGFR by CG, MDRD, CKD-EPI	Kinetic Jaffe and IDMS	7.2%	Total prevalence (CKD-EPI): 10% (14.2% by CG, 11% MDRD) Prevalence by gender Female: 9.8% Male: 10.1%	High
Kaze	2015, Cameroon, Central-West	Population of the Western region	439	Age (years): 47 ± 16.1 Male gender: 42.1% Hypertension: 10.7% DM: 9.9%	Albuminuria and/or eGFR <60 mL/min confirmed 3 months later	Albuminuria by dipstick and eGFR by CG, MDRD, CKD-EPI	Kinetic Jaffe and IDMS	12.1%	Total prevalence (CKD-EPI): 27.6% (38.5% by CG, 27.3% MDRD) Prevalence by gender Female: 15.4% Male: 10.2%	High
Laurencis	2016, South Africa, South	Teachers from public schools in in the urban area of the Metro South Education District	489	Age (years): 46.3±8.5 Male gender: 30% BMI (kg/m²): 29.1±4.8 Female: 32.4±1.7 Hypertension: 48.5% DM: 10.1%	Proteinuria =0.30 mg/mg or eGFR <60 mL/min/1.73 m²	Proteinuria by PCR and eGFR using MDRD	Kinetic Jaffe	Not mentioned	Total prevalence: 10.4% Prevalence by gender Female: 10.9% Male: 9%	Medium
Lunyera	2016, Uganda, East	Urban residents of Kampala	141	Age (years): 64% in age group of 18–39 Male gender: 43% BMI (kg/m²): 25.9 (IQR 22.7–30.7) Hypertension: 38% Impaired fasting blood glucose: 13%	Proteinuria as urine protein of >1+ on dipstick in the absence of haematuria and leucocyturia	Proteinuria by dipstick	Not measured	13%	Total prevalence (based on proteinuria): 13% Prevalence by age 18–39 years: 16% 40–59 years: 4% ≥60 years: 0% Prevalence by gender Female: 11% Male: 15%	Low
Mogueo	2015, South Africa, South	Household residents of Bellville	902	Age (years): 55±15 Male gender: 23% BMI(kg/m²): 29.9±7.2 Hypertension: 49.8% Diabetes mellitus: 27.9%	eGFR <60 mL/min/1.73 m² or any nephropathy	Albuminuria by ACR and eGFR by MDRD and CKD-EPI	Kinetic Jaffe	2.3%	Total prevalence (CKD-EPI): 21.7% (prevalence by MDRD: 29.7%) Prevalence by gender Female: 23.3% Male: 16.8%	Medium
Table 2

Study ID	Year, country, region	Location	N	Population characteristics	Definition of CKD	Method of outcome assessment	Type of creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Peck 148	2016, Tanzania, East	Stratified multistage sampling of adult population in Mwanza City, Geita and Kahama	1043	Age (years): 35.5±15.3 Male: 45.7% BMI (kg/m²) categories: Underweight: 10.5% Normal: 71% Overweight: 11.8% Obese: 6.8% DM: 0.9% Hypertension: 17.3%	eGFR <60 mL/min/1.73 m²	eGFR by MDRD and CKD-EPI	Kinetic Jaffe	Not measured	Total prevalence (CKD-EPI): 7% Prevalence by age: <25 years: 3.4% 25–34 years: 4.9% 35–44 years: 7.2% ≥45 years: 12.1% Prevalence by gender: Female: 6% Male: 7.3%	High
Stanifer 133	2015, Tanzania, East	Randomly selected adults	481	Age (years): 45 (IQR 35–59) Male: 25.6% DM: 12.7% Hypertension: 28% Presence of albuminuria (≥30 mg/dL confirmed by repeat assessment) and/or a reduction in eGFR to <60 mL/min/1.73 m²	Quantitative assessment of albuminuria and eGFR by MDRD	IDMS	Not mentioned	Total prevalence: 7% Prevalence by age: 18–39 years: 7.6% 40–59 years: 5.4% ≥60 years: 7.7% Prevalence by gender: Female: 6.2% Male: 7.9%	High	
Wachukwu 19	2015, Nigeria, West	Adult volunteers in a university	259	Age (years): 28.3±9.7 Male: 52.1% SBP (mm Hg): 117.3±15.5 DBP (mm Hg): 75.7±11.7 Proteinuria by dipstick and eGFR by CG	Proteinuria by dipstick and eGFR by CG	Not mentioned	Total prevalence: 1.9%	Low		

ACR, albumin to creatinine ratio; BMI, body mass index; CG, Cockroft-Gault; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease-Epidemiology Collaboration; DBP, diastolic blood pressure; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; IDMS, isotope dilution mass spectrometry; KDOQI, Kidney Disease Outcome Quality Initiative; MDRD, Modification of Diet in Renal Disease; SBP, systolic blood pressure.
Table 3 Studies on CKD among patients with HIV

Author	Year, country, region	Location	N	Study group	Population characteristics	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment	
Wkba142	2013, Ghana, West	ART clinic at the regional hospital	442	HIV (276 HAART-naive patients 166 on HAART)	Age (years): HAART-naive (33.42±0.88), on HAART (36.91±0.77) Male gender: HAART-naive (28.3%), on HAART (22.3%)	eGFR <60mL/min/1.73m² for >3 months	CG, 186 MDRD, CKD-EPI	Not measured	Total prevalence (CKD-EPI): 10.2% HAART-naive: 8.7% CG, 9.1% MDRD, 8.7% CKD-EPI On HAART: 14.5% CG, 12.6% MDRD, 12.6% CKD-EPI Prevalence by gender Female: HAART-naive (7.5%), HAART (14%) Male: HAART-naive (11.5%), HAART (8.1%)	Low	
Stöhr143	2011, Uganda, Zimbabwe, East and South	Three centres in Uganda and Zimbabwe	3316	HIV-infected patients initiating ART	Age (years): 36.8 (32–42.2) Male gender: 35% SBP: median: 110 (IQR: 100–120) mm Hg DBP: median: 70 (60–80) mm Hg BMI: 21.1 (19.1–23.6)kg/m²	eGFR <60mL/min/1.73m² on ≥2 consecutive visits 80 days apart or confirmed 25% decrease if eGFR <60mL/min/1.73m² at baseline	CG	Kinetic Jaffe	Not measured	Total prevalence: 7.2%	Medium
Stöhr144	2008, Uganda, Zimbabwe, East and South	Three centres in Uganda and Zimbabwe	3316	HIV-infected patients on ART	Age (years): 36.8 (32–42.2) Male gender: 35% SBP: median: 110 (IQR: 100–120) mm Hg DBP: median: 70 (60–80) mm Hg BMI categories: 18.5kg/m²: 18% 18.5 to <25kg/m²: 66% 25 to <30kg/m²: 12% ≥30kg/m²: 4%	eGFR <60mL/min/1.73m² on ≥2 consecutive occasions >80 days apart or confirmed 25% decrease if eGFR <60mL/min/1.73m² at baseline	186 MDRD, CG	Kinetic Jaffe	Not measured	Total prevalence (MDRD): 3.1% CG: 7.4%	Medium
Cailhol79	2011, Burundi, East	Outpatients HIV clinic	300	HIV-infected patients	Age (years): 40.1 (33–46.5) Male gender: 29.7% Hypertension: 2.7% DM: 2% BMI: median: 21.8 (19.3–24.2)kg/m²	KDOQI	Proteinuria by urinary strip, CG, 186 MDRD	Not mentioned	6.1%	Total prevalence (MDRD): 45.7% CG: 46.5% Prevalence by stages (using MDRD) Stage 1: 30.2% Stage 2: 13.5% Stage 3: 2% Stages 4 and 5: no patients	Medium
Masimango107	2014, Congo, Central	Outpatient HIV clinic	235	HIV-infected patients	Age (years): 40.0±10.7 Male gender: 27.8% Hypertension: 46.8% DM: 1.7% BMI: 22.3±3.8kg/m²	Proteinuria ≥1+ by urinary strip or albuminuria ≥30mg/dL	Proteinuria by urinary strip and ACR	Not measured	Proteinuria ≥1+: 41.3%	Total prevalence (based on proteinuria): 41.3%	Low

Continued
Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Abd ElHafeez S, et al. BMJ Open 2018;8:e015069. doi:10.1136/bmjopen-2016-015069	2008, Uganda, Zimbabwe, East and South	Three centres in Uganda and Zimbabwe	3316	HIV-infected, ART-naive adults with CD4+ cell counts of <200 cells/mm³	Age (years): 36.8 (IQR: 32.0–42.2) Male gender: 35% SBP: median: 110 (IQR: 100–120) mm Hg DBP: median: 70 (IQR: 60–80) mm Hg BMI: median: 21.1 (IQR: 19.1–23.6) kg/m²	eGFR <60 mL/min/1.73 m² on ≥2 consecutive occasions >80 days apart or confirmed 25% decrease if eGFR <60 mL/min/1.73 m² at baseline	CG Kinetic Jaffe Not measured	Total prevalence: 7% Medium			
Fabian[10]	2009, South Africa, South	HIV outpatient clinic at Johannesburg Hospital	578	HIV-infected naïve ART patients	Age (years): 37 (range 16–70 years) Male gender: 38% DM: 4.6% among group with microalbuminuria	Proteinuria ≥1+ by urinary strip or albuminuria ≥30 mg/dL	Proteinuria by urinary strip and PCR Not measured	43.7% had proteinuria	Total prevalence (based on proteinuria prevalence): 43.7% Low		
Lucas[14]	2010, Uganda, East	All consenting individuals residing in every household in 50 Rakai District communities	1960	1202 HIV-infected patients and 664 HIV-negative age-matched and sex-matched controls	Age (years): HIV-negative: 28 (IQR: 24–35); HIV-positive: 30 (IQR: 25–36) Male gender: HIV-negative: 38.7%; HIV-positive: 36.4%	eGFR <60 mL/min/1.73 m²	MDRD IDMS-calibrated Not measured	Total prevalence among HIV-positive: 0.7% Medium			
Jao[18]	2011, sub-Saharan	Primary healthcare units	2495	HIV-infected patients before ART	Age (years): 30 (IQR: 27–35) Male gender: 30% BMI: 22.8 (IQR: 20.4–25.6) kg/m²	CrCl <50 mL/min	CG, 186 MDRD, CKD-EPI Not measured	Not measured	Total prevalence (CKD-EPI with coefficient for black race): 2.5% CG: 3.4% (MDRD with coefficient for black race): 2.5% Prevalence by age <30 years: 29.8% 30–39 years: 57.1% ≥40 years: 13.1% Prevalence by gender Female: 66.7% Medium		
Longo[9]	2012, Congo, Central	Consecutive patients with HIV from clinic	300	HIV-infected (ART treated=264) (ART-naive=36)	Age (years): 43±9 Male gender: 23% Hypertension: 13% BMI: 24±5 kg/m²	eGFR <60 mL/min/1.73 m² or proteinuria defined as 1+ or greater	Proteinuria by dipstick and 24-hour proteinuria, eGFR by MDRD, CG Kinetic Jaffe and IDMS	20.50%	Total prevalence: 20.5% 3% of the patients had eGFR <60 mL/min/1.73 m² by MDRD Low		
Sarfo[19]	2013, Ghana, West	HIV clinic	3137	HIV-infected patients starting ART	Age (years): 38 (32–45) Male gender: 33% BMI: 20.3 (IQR: 17.6–22.7) kg/m²	eGFR <60 mL/min/1.73 m² or proteinuria ≥1 (confirmed by uPCR >45 mg/mmol)	Proteinuria by urinary strip, ACR, PCR, eGFR by CG, MDRD, CKD-EPI Not measured	Total prevalence (CKD-EPI): 13.8% Low			
Table 3: Continued

Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment		
Gupta[^1]	2011, Cameroon, Central-West	Electronic medical records of patients from 18 sites throughout Western Kenya	7383	Patients with HIV without ART	Age (years): 35.5 (29.3–44.0) Male gender: 26.9%	eGFR <60mL/min/1.73m²	CG, MDRD	Not mentioned			Medium		
Ekat[^2]	2013, Congo, Central	Ambulatory treatment centre	562	Newly diagnosed patients with HIV	Age (years): 38.84 (IQR: 33.18–46.23) Male gender: 33.9% BM: 20.31 (IQR: 17.97–22.89)kg/m²	eGFR <60mL/min/1.73m²	186 MDRD	Kinetic Jaffe	Not measured	Total prevalence: 8.5%	Low		
Woolf-Kaloustian[^3]	2007, Kenya, East	Academic Model for the Prevention and Treatment of HIV/AIDS clinic	373	HIV-infected patients naïve to ART	Age (years): 35.0 (range, 19–60) Male gender: 32.1% SBP: 104.7 (range, 80–140)mmHg	CrCl <60mL/min/1.73m²	Proteinuria by urinary strip, CG, full and abbreviated MDRD	Kinetic assay	6.2% (proteinuria ≥1+)	Total prevalence: 11.50%	Low		
Emem[^4]	2008, Nigeria, West	HIV/AIDS outpatient clinic	400	HIV-infected patients	Age (years): 34.6±9.4 Male gender: 48.5% Hypertension: 13.2% BMI categories: <19.0kg/m²: 59.2%, 19–25 kg/m²: 37.5%, >25kg/m²: 3.3%	Albuminuria +1 on at least two occasions (4 weeks apart) and/or serum creatinine >1.5mg/dL	Proteinuria or albuminuria by urinary strip and 24-hour proteinuria, CG	Not mentioned	38% proteinuria with dipstick, 21.9% nephrotic range proteinuria	Total prevalence: 38.8%	Medium		
Wyatt[^5]	2011, Rwanda, East	Community-based	891	677 HIV-infected and 214 HIV-uninfected	Age (years): 34 (IQR: 30–39) HIV-positive: 43 (IQR: 34–50), HIV-negative Male gender: 0 Hypertension: 4.8%/HIV-negative: 8.3% BMI (kg/m²): HIV-positive: 20.9 (IQR: 19.0–23.3)/HIV-negative: 20.5 (IQR: 18.5–23.3)	eGFR <60mL/min/1.73m² or proteinuria +1 or greater	Proteinuria by urinary strip, eGFR by MDRD, CKD-EPI, CG	Kinetic Jaffe (9% among HIV-positive and 7.2% among non-infected)	Total prevalence among HIV-positive: 9%	2.7% had eGFR <60mL/min/1.73m²	CKD prevalence among HIV-negative: 7.2%	1.5% had eGFR <60mL/min/1.73m²	Medium
FolefackKaze[^6]	2013, Cameroon, Central-West	HIV clinic of Yaoundé General Hospital	104	All newly diagnosed HIV-infected patients naïve to HAART	Age (years): 35±10.7 Male gender: 32% Presence of proteinuria +1 or more and eGFR <60mL/min based on the average of eGFR by two equations	Proteinuria by urinary strip, eGFR by CG, 175 MDRD	Kinetic Jaffe	36%	Total prevalence: 36%	Among patients, 3% had eGFR<60mL/min/1.73m²	Low		
Table 3 Continued

Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment	
Struijk \(^{14}\)	2011, Malawi, East	ART clinic in a central hospital in Malawi	526	Consecutive newly referred HIV-infected patients on ART	Age (years): 34.3±9.3; Male gender: 43.5%; Hypertension: 11.2%; DM: 0.8%	Any proteinuria (≥+1), heavy proteinuria (≥+2), any proteinuria (≥+3) with renal dysfunction (eGFR <60 mL/min/1.73 m²), and heavy proteinuria (≥+2) with renal dysfunction (CrCl <60 mL/min) and the absence of any alternative cause for renal dysfunction or proteinuria	Proteinuria by urinary strip, eGFR by CG and MDRD	Not mentioned	23.3%	Total prevalence: 23.3%	Low	
Attolou \(^{18}\)	1998, Benin, West	National Central Hospital	92	HIV-infected patients	Age (years): 22±4; Male gender: 68%	Proteinuria >0.5 g/24 hours and Scr >14 mg/L	Serum creatinine measurement and 24-hour proteinuria	Not mentioned	Proteinuria >0.5 g/24 hours in 23.33%	27.16%	Total prevalence: 27.16%	Low
Agaba \(^{12}\)	2003, Nigeria, West	Infections unit of the Jos University Teaching Hospital	126	Consecutive 79 patients with AIDS and 57 controls	Not known	Not known	Not known	25% (AIDS group)	25% (AIDS group)	Total prevalence among AIDS group: 51.80%; CKD prevalence among control group: 12.2%	Low	
Fana \(^{10}\)	2011, Zimbabwe, South	Outpatient clinics	159	HIV-infected patients naïve to ART	Not known	Not known	Not known	45.90%	45.90%	Total prevalence: 45.9%; Among patients, 7.50% had CrCl <60 mL/min	Low	
Han \(^{10}\)	2006, South Africa, South	Medical centre	615	Patients with HIV not on ART	Age (years): 31 (range, 13–63); Male gender: 25%; Proteinuria-negative: 117±14/70±9; Microalbuminuria: 121±15/81±10; Macroalbuminuria: 120±12/74±11	Proteinuria >0.5 g/24 hours and/or PCR >20 mg/mg	Proteinuria by urinary strip and 24-hour proteinuria, eGFR by CG	Not mentioned	6%	Total prevalence (based on proteinuria): 6%	Low	
Peters \(^{14}\)	2008, Uganda, East	Home-based AIDS care	508	Patients with HIV starting HAART	Age (years): 39 (median); Male gender: 41%	Proteinuria >0.5 g/24 hours and/or PCR >20 mg/mg	Proteinuria by urinary strip and 24-hour proteinuria, eGFR by CG	Not measured	6%	Total prevalence: 20%	Low	

Continued
Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Jao & al.	2011, Cameroon, Central-West	Clinics	389	199 HIV-positive and 190 HIV-negative pregnant women	Age (years): HIV-positive (27 (IQR: 24–31)) HIV-negative (27 (IQR: 22–31)) Male gender: 0	Proteinuria (PCR >200 mg/L) Proteinuria by urinary strip and PCR	Not measured	HIV-positive: 39.2% HIV-negative: 20.9%	Total prevalence among HIV-positive (based on proteinuria): 39.2%	Medium	
Msango & al.	2011, Tanzania, East	Outpatient clinics	355	HIV-infected patients naïve to ART	Age (years): 36.1±7.9 Male gender: 35% BMI (kg/m²): 21.3±3.8	KDOQI	Proteinuria by urinary strip and albuminuria by urinary strip eGFR by CG, MDRD	Not mentioned	36% proteinuria ≥+1	Total prevalence: 35.6%	Low
Myer & al.	2013, South Africa, South	Primary healthcare clinic	1861	Consecutive 238 pregnant women, 1014 non-pregnant, 609 men; HIV-infected patients eligible for ART	Age (years): pregnant, 28 (IQR: 25–32), men, 37 (IQR: 32–45), women, 33 (IQR: 28–39) Male gender: 33%	eGFR <60 mL/min eGFR by CG and MDRD	Not measured	Total prevalence: 84.6%	Low		
Mulenga & al.	2008, Zambia, South	Clinic	25249	HIV-infected, ART-naive adults initiating treatment	Age (years): normal CrCl: 33.7±7.9, decreased CrCl: 38.5±9.9 Male gender: 33%	eGFR <60 mL/min	Absolute SCR and eGFR	Not measured	Total prevalence: 5.8%	Low	
Adedeji & al.	2015, Nigeria, West	The University of Ilorin Teaching Hospital	183	Newly diagnosed HIV-infected ART-naive patients	Age (years): 37.9±10.5 Male gender: 42.6% BMI (kg/m²): 20.8±3.56	eGFR <60 mL/min/1.73 m²	Absolute SCR, eGFR by CG and MDRD	Kinetic Jaffe and IDMS	Not measured	Total prevalence: 24%	Low
Anyabolu & al.	2016, Nigeria, West	Federal Medical Centre	529	393 newly diagnosed drug-naïve patients with HIV, 136 age-matched and sex-matched HIV-seronegative controls	Age (years): 38.8±10.65 Male gender: 28% BMI categories <18.50.0 kg/m²: 7% 18.5–24.9 kg/m²: 35% 25–29.9 kg/m²: 32% ≥30 kg/m²: 23%	24-hour urine protein ≥0.300 g and/or GFR <80 mL/min	Absolute assessment of proteinuria, SCR and eGFR	Not mentioned	Not mentioned	Total prevalence among HIV-positive patients: 22.9% Prevalence among HIV-negative: 8.1%	Low

Continued
Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Ayokunle113	2015, Nigeria, West	Medical Out-patient Department of University of Ilorin Teaching Hospital	335	227 newly diagnosed, ART-naïve patients with HIV/AIDS, 108 age-matched and sex-matched control	Age (years): 40.3±10.3 Male gender: 44% BMI (kg/m²): 20.5±4.8 among patients with HIV, 26.7±5.3 among control group SBP (mm Hg): 111.9±1 among patients with HIV, 126.1±12.0 among control group DBP (mm Hg): 72.9±9.5 among patients with HIV, 80.6±6.8 among control group	Albuminuria ≥30mg/g and/or eGFR <60mL/m²/1.73m²	Proteinuria by dipstick, and ACR and eGFR by MDRD	Kinetic Jaffe	Not mentioned	Total prevalence among patients with HIV: 47.6% The prevalence among HIV-negative: 16.7%	Low
Chadwick114	2015, Ghana, West	Komfo Anokye Teaching Hospital	330	Patients with HIV on ART	Age (years): 39 (IQR: 35–46) Male gender: 25% BMI (kg/m²): 22.9 (IQR: 20.5–26.6)	Proteinuria or CrCl <60mL/min	Proteinuria (dipsticks, PCR and ACR) and GFR by CG	Not mentioned	37% by dipstick and 12% by PCR	Total prevalence (proteinuria): 37% CrCl <60mL/min among 7%	Low
Edwards166	2015, Kenya, East	Two primary care clinics	2206	210 HIV-positive patients and 1996 HIV-negative	Age (years): HIV-positive: 43 (IQR: 39–50), HIV-negative: 49 (IQR: 40–56) Male gender: HIV-positive: 31%, HIV-negative: 28.7% Hypertension: HIV-positive: 44%, HIV-negative: 33.2% DM: HIV-positive: 5%; HIV-negative: 15.2%	CrCl <60mL/min	eGFR by CKD-EPI	Not mentioned	Not measured	Total prevalence: 12.1% HIV-positive: 17% HIV-negative: 11%	Medium
Glaser14	2016, Malawi, East	Lighthouse Clinic	363	116 HIV-positive ART-naïve patients and 247 HIV-negative patients	Age (years): 31 (IQR: 26–39) Male gender: 52%	eGFR <60mL/min	eGFR by CG, MDRD and CKD-EPI with and without correction factor	Not measured	IDMS-calibrated creatinine and cystatin-C	Total prevalence among HIV-positive (creatinine-based CKD-EPI): 1.9%	Medium
Glaser115	2016, Malawi, East	Lighthouse Clinic	363	116 HIV-positive patients and 247 HIV-negative patients	Age (years): 34.1±10.9 Male gender: 52% BMI (kg/m²): 23.2±4.8 Hypertension: 13.5%	KDOQI	Proteinuria by dipstick and ACR, eGFR by CG, MDRD and CKD-EPI	IDMS-calibrated creatinine and cystatin-C	12.1% Total prevalence: 13% Prevalence among HIV-positive: 22% Prevalence among HIV-negative: 9%	Medium	

Continued
Author	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Kamkuemah	2015, South Africa, South	Gugulethu Community Health Centre	1092	HIV-infected patients initiated ART therapy	Age (years): 34 (IQR: 29–41) Male gender: 38%	eGFR <60 mL/min	eGFR by CG	Not mentioned	Not measured	Total prevalence: 2%	Low
Nsagha	2015, Cameroon, Central-West	Government hospitals	200	Patients with HIV on HAART, DOTS or on the combined therapy (HAART/ DOTS)	Age (years): 38.04±10.52 Male gender: 50.5%	eGFR <60 mL/min/1.73 m²	eGFR by MDRD	Kinetic Jaffe	Not measured	Total prevalence: 8%	Low
Odongo	2015, Uganda, East	Infectious Diseases Clinic of Gulu Regional Referral Hospital	361	Newly diagnosed patients with HIV not receiving ART	Age (years): 31.4±9.5 Male gender: 36.3% BMI (kg/m²)<18: 33%	eGFR <60 mL/min/1.73 m²	Proteinuria by dipstick and eGFR by MDRD	Not mentioned	Proteinuria ≥+1: 52%	Total prevalence: 14.4%	Low
Okafor	2016, Nigeria, West	University of Benin Teaching Hospital	383	HIV-infected naive patients	Age (years): 36.03±9.08 Male gender: 41%	eGFR <60 mL/min/1.73 m² and/or evidence of kidney injury as detected when the PCR (mg/g) was ≥200	Quantitative assessment of proteinuria by POR and eGFR by MDRD	Kinetic Jaffe	Not mentioned	Total prevalence: 53.5%	Low
Seape	2016, South Africa, South	Medical inpatients at the Chris Hani Baragwanath Hospital	100	HIV-infected naive patients	Age (years): 37.0±9.6 Male gender: 60% BMI (kg/m²): 20.9±5.1	eGFR <60 mL/min/1.73 m²	eGFR by CG, MDRD, CKD-EPI	IDMS	Not measured	Total prevalence: 16%	Low
Wensink	2015, South Africa, South	Rural Medical Centre	903	HIV-infected adult patients	Age (years): 40 (IQR: 34–48) Male gender: 31% DM: 4% Hypertension: 23%	Albuminuria or eGFR<60 mL/min/1.73 m²	Albuminuria by ACR and eGFR by MDRD and CKD-EPI	Not mentioned	21%	Total prevalence (albuminuria): 21%	Medium
Zachor	2016, South Africa, South	Outpatient infectious clinic at an academic hospital	650	HIV-infected patients initiating ART	Age (years): 37.9±9.4 Male gender: 35.5% DM: 2.2% Hypertension: 7.8%	eGFR <60 mL/min/1.73 m²	eGFR by MDRD and CKD-EPI	IDMS	Not measured	Total prevalence: 2%	Medium
Proteinuria/albuminuria was used alone to identify CKD in 14 studies. KDOQI staging of CKD was used in 13 studies. The serum creatinine level (either doubling, or an increase above a certain threshold) was considered to be a marker of the presence of CKD in four studies. In 16 studies, the definition of CKD was either not mentioned or was defined in various ways, including personal history, creatinine clearance (CrCl) ≤50 mL/min, clinical manifestations, the presence of albuminuria, elevated serum creatinine and the average of two measurements of eGFR <90 mL/min/1.73 m².

Paper quality

Paper quality was high in 16 studies. Thirty-five studies were of medium quality. The rest of the studies were of low quality.

Prevalence of CKD

The included medium-quality/high-quality studies in the general population in Africa provided estimates of CKD prevalence by disparate criteria (table 2). The prevalence of CKD ranged from 2% to 41% (pooled prevalence: 10.1%; 95% CI 9.8% to 10.5%). The prevalence was reported to range from 2% to 41% (pooled estimate: 16.5%) in the West/Central-West, followed by the Central region where the prevalence ranged from 12% to 17% (pooled estimate: 16%), in the Southern where the CKD prevalence range was 6%–29% (pooled estimate: 12.2%), in Eastern where the prevalence ranged from 7% to 15% (pooled estimate: 11.0%), and in the North where the prevalence ranged from 3% to 13% (pooled estimate: 4%) (figure 2). In sub-Saharan Africa, the prevalence ranged from 2% to 14% (pooled prevalence: 14.02%; 95% CI 13.5% to 14.5%). In studies defining CKD as eGFR <60 mL/min, the prevalence of CKD ranged from 7% to 29% (pooled estimate: 13.2%), while in those who adopted the combined criterion GFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the prevalence ranged from 3% to 22% (pooled estimate: 5.6%). When defined according to KDOQI, the prevalence ranged from 2% to 28% (pooled estimate: 10.8%). Finally, in studies reporting on proteinuria/albuminuria only, the prevalence ranged from 3% to 41% (pooled estimate: 18.9%). The CKD prevalence for each age or gender group was not reported in the majority of the studies. In online supplementary figure 1 we show graphically the relationship between gender and age and CKD prevalence in the medium-high-quality studies of this systematic review.

Among patients with HIV (table 3), the prevalence of CKD in the 18 medium-quality studies ranged from 1% to 46% (pooled prevalence: 5.6%; 95% CI 5.4% to 5.8%). The prevalence of CKD in the West/Central-West

82-84 86 91 99 100 105 106 109 112-114 121 130-137 141 Proteinuria/albu-
mminuria was used alone to identify CKD in 14 studies. KDOQI staging of CKD was used in 13 studies. The serum creatinine level (either doubling, or an increase above a certain threshold) was considered to be a marker of the presence of CKD in four studies. In 16 studies, the definition of CKD was either not mentioned or was defined in various ways, including personal history, creatinine clearance (CrCl) ≤50 mL/min, clinical manifestations, the presence of albuminuria, elevated serum creatinine and the average of two measurements of eGFR <90 mL/min/1.73 m².

Paper quality

Paper quality was high in 16 studies. Thirty-five studies were of medium quality. The rest of the studies were of low quality.

Prevalence of CKD

The included medium-quality/high-quality studies in the general population in Africa provided estimates of CKD prevalence by disparate criteria (table 2). The prevalence of CKD ranged from 2% to 41% (pooled prevalence: 10.1%; 95% CI 9.8% to 10.5%). The prevalence was reported to range from 2% to 41% (pooled estimate: 16.5%) in the West/Central-West, followed by the Central region where the prevalence ranged from 12% to 17% (pooled estimate: 16%), in the Southern where the CKD prevalence range was 6%–29% (pooled estimate: 12.2%), in Eastern where the prevalence ranged from 7% to 15% (pooled estimate: 11.0%), and in the North where the prevalence ranged from 3% to 13% (pooled estimate: 4%) (figure 2). In sub-Saharan Africa, the prevalence ranged from 2% to 14% (pooled prevalence: 14.02%; 95% CI 13.5% to 14.5%). In studies defining CKD as eGFR <60 mL/min, the prevalence of CKD ranged from 7% to 29% (pooled estimate: 13.2%), while in those who adopted the combined criterion GFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the prevalence ranged from 3% to 22% (pooled estimate: 5.6%). When defined according to KDOQI, the prevalence ranged from 2% to 28% (pooled estimate: 10.8%). Finally, in studies reporting on proteinuria/albuminuria only, the prevalence ranged from 3% to 41% (pooled estimate: 18.9%). The CKD prevalence for each age or gender group was not reported in the majority of the studies. In online supplementary figure 1 we show graphically the relationship between gender and age and CKD prevalence in the medium-high-quality studies of this systematic review.

Among patients with HIV (table 3), the prevalence of CKD in the 18 medium-quality studies ranged from 1% to 46% (pooled prevalence: 5.6%; 95% CI 5.4% to 5.8%). The prevalence of CKD in the West/Central-West

82-84 86 91 99 100 105 106 109 112-114 121 130-137 141 Proteinuria/albu-
mminuria was used alone to identify CKD in 14 studies. KDOQI staging of CKD was used in 13 studies. The serum creatinine level (either doubling, or an increase above a certain threshold) was considered to be a marker of the presence of CKD in four studies. In 16 studies, the definition of CKD was either not mentioned or was defined in various ways, including personal history, creatinine clearance (CrCl) ≤50 mL/min, clinical manifestations, the presence of albuminuria, elevated serum creatinine and the average of two measurements of eGFR <90 mL/min/1.73 m².

Paper quality

Paper quality was high in 16 studies. Thirty-five studies were of medium quality. The rest of the studies were of low quality.

Prevalence of CKD

The included medium-quality/high-quality studies in the general population in Africa provided estimates of CKD prevalence by disparate criteria (table 2). The prevalence of CKD ranged from 2% to 41% (pooled prevalence: 10.1%; 95% CI 9.8% to 10.5%). The prevalence was reported to range from 2% to 41% (pooled estimate: 16.5%) in the West/Central-West, followed by the Central region where the prevalence ranged from 12% to 17% (pooled estimate: 16%), in the Southern where the CKD prevalence range was 6%–29% (pooled estimate: 12.2%), in Eastern where the prevalence ranged from 7% to 15% (pooled estimate: 11.0%), and in the North where the prevalence ranged from 3% to 13% (pooled estimate: 4%) (figure 2). In sub-Saharan Africa, the prevalence ranged from 2% to 14% (pooled prevalence: 14.02%; 95% CI 13.5% to 14.5%). In studies defining CKD as eGFR <60 mL/min, the prevalence of CKD ranged from 7% to 29% (pooled estimate: 13.2%), while in those who adopted the combined criterion GFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the prevalence ranged from 3% to 22% (pooled estimate: 5.6%). When defined according to KDOQI, the prevalence ranged from 2% to 28% (pooled estimate: 10.8%). Finally, in studies reporting on proteinuria/albuminuria only, the prevalence ranged from 3% to 41% (pooled estimate: 18.9%). The CKD prevalence for each age or gender group was not reported in the majority of the studies. In online supplementary figure 1 we show graphically the relationship between gender and age and CKD prevalence in the medium-high-quality studies of this systematic review.

Among patients with HIV (table 3), the prevalence of CKD in the 18 medium-quality studies ranged from 1% to 46% (pooled prevalence: 5.6%; 95% CI 5.4% to 5.8%). The prevalence of CKD in the West/Central-West
Table 4: Studies on CKD among patients with diabetes

Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Janmohamed	2013, Tanzania, East	Diabetes mellitus clinic of Bugando Medical Centre in Mwanza	389	Consecutive patients with diabetes	Age (years): 54 (IQR: 49-62) Male gender: 46.6% Hypertension: 57.5% BMI (kg/m²): 25.6 (IQR: 22.6-29.6) Duration of DM (years): 6 (3-11) 93.8% type 2 DM 6.2% type 1 DM	eGFR ≤60 mL/min/1.73 m² or evidence of kidney damage (microalbuminuria or overt proteinuria)	Microalbuminuria, proteinuria by urinary strips, eGFR by CG	Kinetic Jaffé	Overt proteinuria (34.1%), microalbuminuria (40.8%)	Total prevalence: 83.7%	Low
Wanjohi	2002, Kenya, East	Outpatient diabetic clinic at Kenyatta National Hospital	100	Patients with type 2 diabetes	Age (years): 53.7±9.3 Male gender: 37% Hypertension: 56.0% BMI (kg/m²): 27.8±6.0 Duration of DM: 10.3±4.5	Albuminuria >20 mg/L	Albuminuria by urinary strip, CG	Not mentioned	26% had albuminuria	Total prevalence (based on albuminuria): 26%	Low
Bouzid	2011, Tunis, North	Endocrinology centre at the National Institute of Nutrition	689	Patients with type 2 diabetes from computerised hospital database	Age (years): 60±11 Male gender: 39% Hypertension: 84.6% (renal insufficiency), 57.2% (no renal disease) Duration of DM (years): 11±8 BMI (kg/m²): 28.8±5.5	eGFR <60 mL/min	CG, 24-hour proteinuria	Not mentioned	10.1% macroalbuminuria, 13% microalbuminuria	Total prevalence: 19.8%	Low
Chouken	2012, Cameroon, Central-West	Two main referral centres	420	Consecutive patients with type 2 diabetes	Age (years): 56.7±9.9 Male gender: 49% Hypertension: 50.1% BMI (kg/m²): 28.5±5.2 Duration of DM: 4 (IQR: 1-9)	Presence of positive proteinuria with or without low CrCl <90 mL/min/1.73 m²	Proteinuria by urinary strip, eGFR by CG	Not mentioned	Total prevalence: 31%	Low	
Keeton	2004, South Africa, South	Groote Schuur Hospital Outpatients Diabetic Clinic or the Somerset Hospital Outpatients	59	Patients with type 2 diabetes	Age (years): 62±9.4 Male gender: 36% BMI (kg/m²): 31±6 Duration of DM: 17 (range: 14-33)	Double SCr level	Proteinuria by PCR and serum creatinine	Not mentioned	Total prevalence: 66.1%	Low	
Bouaziz	2012, Tunisia, North	Basic Health Group of Sousse	115	73 patients with type 2 diabetes and 42 healthy volunteers	Age (mean±SE in years): 59.3±1.1 Male gender: 35% SBP (mean±SE mm Hg): 136.3±3.1 DBP (mean±SE): 76.8±1.9 BMI (mean±SE in kg/m²): 30.5±0.7 Duration of DM (years): 10.6±1	Microalbuminuria defined as <2.8 g/gm Cr for women and <2.3 for men) and eGFR ≤60 mL/min/1.73 m²	Measurement of microalbuminuria, eGFR by MDRD	Not mentioned	Total prevalence: 11%	Low	
Katchunga	2010, Congo, Central	Referral general hospital	98	Medical records of patients with type 2 diabetes	Age (years): 58±10.4 Male gender: 35.7% Hypertension: 59.2% BMI (kg/m²): 25.2±4.7 Duration of DM: 17.3±8.5	KDOQI	Microalbuminuria (>20 mg/L and <200 mg/L) eGFR by MDRD	Not mentioned	Total prevalence: 66%	Low	

Continued
Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Djrolo123	2001, Benin, West	National University Hospital Centre	152	Patients with type 1 and 2 diabetes	Age (years): 53.3 (range, 21–90) Male gender: 65.8% Duration of DM (years): <1–16 or more	Presence of proteinuria	24-hour proteinuria	Not measured	28%	Total prevalence (based on proteinuria level): 28%	Low
Balogun122	2011, Nigeria, West	Tertiary hospital	40	Randomly selected patients with type 2 diabetes	Age (years): 59.4±11.25 Male gender: 37.5% Hypertension: 45%	Not mentioned	Proteinuria by urinary strip and 24-hours, eGFR by CG	Jaffe method	82.5% macroalbuminuria	Total prevalence: 90%	Low
Mafundikwa123	2007, Zimbabwe, South	Diabetic clinic	75	Consecutive insulin-independent patients with diabetes	No available data	No available data	Proteinuria by urinary strips and 24-hour proteinuria	Overt proteinuria 21%, microalbuminuria 12%	Total prevalence: 33%	Low	
Lutale124	2007, Tanzania, East	Outpatient diabetic clinic	204	91 patients with type 1 and 153 type 2 diabetes	Age (years): 53.3 (range, 21–90) Male gender: 37.5% Hypertension: 45% Duration of DM (years): <1–16 or more	Presence of proteinuria	24-hour proteinuria	Not measured	28%	Total prevalence (based on proteinuria level): 28%	Low
Gill125	2008, Ethiopia, East	Diabetic clinic at Mekelle Hospital	105	All patients with diabetes	Age (years): 41±16 Male gender: 70% Hypertension: 5%	Nephropathy was considered present if the urinary ACR was >25.0 mg/mmol and retinopathy was present. Microalbuminuria was diagnosed if the ACR was >2.5 and <25.0 mg/mmol in men and >3.5 and <25.0 mg/mmol in women.	ACR, SCR	Not mentioned	51% microalbuminuria	Total prevalence: 51%	Low
Makulo111	2010, Congo, Central	Community-based	229	81 patients with diabetes and 148 with impaired fasting glucose	Age (years): 53.1±16.3 Male gender: 33% SBP (mm Hg): 128.0±5.7 DBP (mm Hg): 78.5±3.14 BMI (kg/m²): 22.6±5.2 Hypertension: 5%	Urinary albumin by urinary strip and ACR, eGFR by 186 MDRD and CKD-EPI	KDOQI Quantitative assessment of albuminuria, Q/Cl by CG	Kinetic Jaffe	Type 1: microalbuminuria was 12.1% and macroalbuminuria 1.1%. Type 2: microalbuminuria 9.8% Macroalbuminuria 7.2%	Total prevalence: 18.5%	Low
Adebanowo151	2016, Nigeria, Ghana, Kenya (sub-Saharan)	University medical centres and surrounding communities	4815	2208 cases of type 2DM and 2607 controls free from DM	Age (years): 48±15 Male gender: 41% Hypertension: 68.3% of type 2DM and 35.3% of diabetic-free BMI (kg/m²): 26.9±5.4 (patients with diabetes), 25.5±6.7 (non-diabetics)	Proteinuria by dipsticks and eGFR by 186 MDRD	eGFR by MDRD and CKD-EPI	Not measured	6.6% among patients with anaemia, 57.6% non-anaemic	Total prevalence: 6.6%	Low
Feteh95	2016, Cameroon, Central-West	Outpatient section of the endocrine unit of the Douala General Hospital	636	Cases of type 2DM	Age (years): 56.5±10.6 Male gender: 53.1% BMI (kg/m²): 29.3±4.7 Hypertension: 62.2%	Proteinuria by dipsticks and eGFR by 186 MDRD	Kinetic Jaffe	68.4% among patients with anaemia, 57.6% non-anaemic	Total prevalence: 18.5%	Low	
Among patients with diabetes (table 4, all studies are of low quality except for four with medium quality), the prevalence of CKD ranged from 11% to 90% (pooled prevalence: 24.7%; 95% CI 23.6% to 25.7%). The highest prevalence was in the Eastern, which ranged from 18% to 84% (pooled estimate: 46.9%), followed by the Central, where the CKD prevalence ranged from 30% to 66% (pooled estimate: 40.8%). In the West/Central-West, CKD prevalence ranged from 18% to 90% (pooled estimate: 27.7%), while in the South the CKD prevalence ranged from 18% to 66% (pooled estimate: 23.0%), and in the North CKD prevalence ranged from 11% to 20% (pooled estimate: 18.9%). One study done in sub-Saharan reported that the prevalence was 13%. Among patients with diabetes, CKD prevalence ranged from 11% to 83% (pooled estimate: 51.8%) when CKD was defined as eGFR <60 mL/min. In studies that defined CKD as eGFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the CKD prevalence ranged from 9% to 21% (pooled estimate: 5.6%). There are other four studies that defined CKD based on either the presence of proteinuria, KDOQI, CrCl <50 mL/min/1.73 m², CrCl <50 mL/min. In studies that defined CKD based on either the presence of proteinuria, KDOQI, CrCl <50 mL/min/1.73 m², CrCl <50 mL/min, or albuminuria and serum creatinine. In these four studies, the prevalence of CKD ranged from 3% to 46% (pooled estimate: 12.6%). The CKD prevalence for each age or gender group was not reported in the majority of the studies. In online supplementary figure 1 we show graphically the relationship between gender and age and CKD prevalence among patients with HIV in the medium-high-quality studies.											
Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
----------	-----------------------	----------	---	-------------	-----------------------------	-----------------	------------------------------	-----------------	-------------	----------------	---------------------
Osafo	2011, Ghana, West	Four polyclinics	712	Patients with hypertension	Age (years): 59 (range, 19–90) Male gender: 21.3% DM: 14.1% SBP (mm Hg): 150 (range, 100–280) DBP (mm Hg): 90 (range, 60–160) BMI (kg/m²): 29.7 (range, 12.3–67.4)	KDOQI Proteinuria by PCR (men >0.3, women >0.2 mg/mg) eGFR by MDRD Kinetic Jaffe	Total prevalence: 46.90% Prevalence by stage Stages 1–2: 19.1% Stages 3–5: 27.8% Prevalence by gender Female: 46.6% Male: 48%				
Ajayi	2014, Nigeria, West	Tertiary health centre	628	Records of patients with hypertension and diabetes	Age (years): 49.7±13.22 Male gender: 49% DM: 8.6% SBP (mm Hg): 135.9±27.4 DBP (mm Hg): 87.0±16.3 BMI (kg/m²): 27.8±8.7	eGFR <60 mL/min/1.73 m² eGFR by MDRD	Not mentioned	Not measured	Total prevalence: 38.5% Prevalence by age <20 years: 0.1% 21–40 years: 31.5% 41–60 years: 34.7% 61–75 years: 40% >75 years: 62.9% Prevalence by gender Female: 57% Male: 18.9%		
Lengani	2000, Burkina Faso, West	Department of Cardiology or Internal Medicine	342	Patients with hypertension	Age (years): 50.6±13.8 Male gender: 58%	Serum creatinine ≥60 µmol/L and or blood urea ≥35 mL/L plus long history with clinical manifestations	Measurement of SCr, 24-hour proteinuria	Not mentioned	Total prevalence: 50.8%		
Nwankwo	2006, Nigeria, West	University of Maiduguri Teaching Hospital	185	All hospitalised patients with hypertension	Age (years): 44.6±14.9 Male gender: 49%	SCr >135 µmol/L	Measurement of SCr	Not mentioned	Total prevalence: 45.0%		
Rayner	2006, South Africa, South	100 general practice centres	1091	Random patients with hypertension	Age (years): ≥35 years Male gender: 48.5% BMI: 23.6% of the patients had a normal BMI, 41.9% were overweight and 34.2% were frankly obese.	Albuminuria defined as (mg/mmol) microalbuminuria 3–30, macroalbuminuria >30 Quantitative assessment of albuminuria by ACR Proteinuria and eGFR by MDRD Proteinuria and eGFR by MDRD Enzymatic assessment	Not measured	21.3% microalbuminuria, 4.1% macroalbuminuria Total prevalence (based on albuminuria): 25.4%			
Plange-Rhule	1999, Ghana, West	Komfo Anokye Teaching Hospital	448	Patients with hypertension	Age (years): 50.5±13.0 Male gender: 36% SBP (mm Hg): 165.0±27.6 DBP (mm Hg): 101.9±17.9	Plasma creatinine ≥140 µmol/L	Proteinuria by urinary strips and serum creatinine	Not mentioned	25.50%	Total prevalence: 30.2%	
Addo	2009, Ghana, West	Seven central government ministries in Accra	219	Patients with hypertension	Age (years): 50.4±6.6 Male gender: 64% SBP (mm Hg): 156.0±21.5 DBP (mm Hg): 95±13 BMI (kg/m²): 27.5±5.4	Persistent proteinuria on urinalysis in the absence of urinary tract infection and/or impaired GFR <60 mL/min/1.73 m²	Proteinuria and eGFR by MDRD Enzymatic assessment	13.4%	Total prevalence: 13.4% 4.1% had eGFR <60 mL/min/1.73 m²		

Continued
Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment
Aryee1**	2016, Ghana, West	Komfo Anokye Teaching Hospital and the surrounding community	242	180 non-diabetic patients with hypertension and 61 age-matched controls	Age (years): 22–87 Male gender: 37% SBP (mm Hg): patients with hypertension (on antihypertensive therapy: 155.46±1.82, no antihypertensive therapy: 152±3.27), control (117.38±0.96) DBP (mm Hg): patients with hypertension (on antihypertensive therapy: 101.46±0.94, no antihypertensive therapy: 100.50±1.34), control (73.28±0.77) BMI (kg/m²): patients with hypertension (on antihypertensive therapy: 29.52±0.39, no antihypertensive therapy: 29.8±0.71), control (29.36±0.65)	eGFR <60mL/min/1.73m² Urine albumin excretion, and eGFR by CG, 186 MDRD and CKD-EPI	Not mentioned	30%	Total prevalence (CKD-EPI): 14.5% Prevalence by MDRD: 13.3% Prevalence by CG: 16.6%	Low	
Nabbaale40	2015, Uganda, East	Outpatient hypertension clinic	256	Newly diagnosed eligible black adult patients with hypertension	Age (years): 54.3±6.2 Male gender: 36.7%	Microalbuminuria as a random urine albumin level between 30 and 299mg/dL	Quantitative assessment of albumin in urine	Not measured	39.5%	Total prevalence (based on microalbuminuria): 39.5%	Low

BMI, body mass index; CG, Cockcroft-Gault; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease-Epidemiology Collaboration; CrCl, creatinine clearance; DBP, diastolic blood pressure; DM, diabetes mellitus; GFR, glomerular filtration rate; IDMS, isotope dilution mass spectrometry; KDOQI, Kidney Disease Outcome Quality Initiative; MDRD, Modification of Diet in Renal Disease; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate; ACR, albumin to creatinine ratio.
Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment	
Ka23	2013, Senegal, West	Nephrology Department of the Aristide Le Dantec University Hospital Centre	43	Patients with lupus	Age (years): 32.9 Male gender: 7% Hypertension: 30%	Proteinuria >0.5 g/24 hours with or without haematuria/ renal insufficiency/ abnormal renal biopsy	24-hour proteinuria and eGFR by CG	Not mentioned	51%	Total prevalence: 72%	Low	
Abd ElHafeez29	2009, Egypt, North	Nephrology Department at the Main Alexandria University Hospital	400	Relatives of ESRD patients	Age (years): 35.2±11.6 Male gender: 50.8% Hypertension: 60%	Proteinuria >0.5 g/24 hours with or without haematuria	KDOQI	Proteinuria by urinary strips, 186 MDRD	Kinetic Jaffe	21.3%	Total prevalence: 57%	Medium
Raj28	2015, Nigeria, West	Nephrology outpatient clinic at Lagos University Teaching Hospital	469	230 first-degree relatives of patients with CKD and 230 age-matched and gender-matched controls with no personal or family history of CKD	Age (years): 33.49±12.0 BMI (kg/m²): 28.5±5.89	Reduced eGFR	Albuminuria by ACR and eGFR by MDRD	Not mentioned	46%	Total prevalence: 4%	Low	
Elsharif24	2013, Sudan, East	Primary healthcare	252	Patients attending the primary healthcare facilities	Age (years): 43.35±12.9 Male gender: 16% Hypertension: 10%	eGFR of <60 mL/min/1.73 m² with or without proteinuria	Proteinuria by urinary strip and eGFR by MDRD	Not mentioned	24.21%	Total prevalence: 10.32%	Low	
Abalab26	2009, Nigeria, West	Family practice clinic	250	Newly registered patients who attended the Family Practice Clinic	Age (years): 50.52±13.03 Male gender: 27.2%	Persistently abnormal ACR irrespective of GFR level or persistent eGFR <60 mL/min/1.73 m² irrespective of the presence or absence of kidney damage after 3 months	Proteinuria by urinary strip, eGFR by MDRD	Standardised IDMS	14.4%	Total prevalence: 14.4%	Medium	
Sumail25	2009, Congo, Central	Primary and secondary healthcare	527	At-risk population randomly selected	Age (years): 53.9±15.5 Male gender: 43%	Persistent abnormal ACR irrespective of GFR level or persistent eGFR <60 mL/min/1.73 m² irrespective of the presence or absence of kidney disease after 3 months	Proteinuria by urinary strip, 24-hour proteinuria, 175 MDRD	Kinetic Jaffe	19%	Total prevalence: 36%	High	
Anyabolu30	2016, Nigeria, West	Federal Medical Centre	136	Subjects from medical outpatient department of the hospital	Age (years): 36.58±11.79 Male gender: 27.9%	Proteinuria as 24-hour urine dip ≥0.300 g and impaired renal filtration function as CrCl <90 mL/min	Proteinuria by quantitative assessment and SCr	Kinetic Jaffe	14.1% had proteinuria	Total prevalence: 14.1%	Low	
Study ID	Year, country, region	Location	N	Study group	Population characteristics	Definition of CKD	Methods of outcome assessment	Creatinine assay	Proteinuria	CKD prevalence	Quality assessment	
----------	-----------------------	----------	---	-------------	-----------------------------	-------------------	-------------------------------	----------------	-------------	----------------	------------------	
Dessein10	2015, South Africa, South Charlotte Maxeke Johannesburg and Milpark Hospitals	233	African patients with rheumatoid arthritis	Age (years): 57.1±10.8 Male gender: 17.2% BMI (kg/m²): 27.4±6.0 Hypertension: 57.5% DM: 12.5%	eGFR <60 mL/min/1.73m²	eGFR by CG, MDRD, CKD-EPI	Kinetic Jaffe and IDMS-calibrated	Not measured	Total prevalence: 39%	Low		
Ephraim10	2015, Ghana, West Tema General Hospital	194	Patients with sickle cell anemia	Age (years): 23.2±12.04 Male gender: 43.3% SBP (mm Hg): 110.06±8.27 DBP (mm Hg): 67.16±8.23 BMI (kg/m²): 27.4±6.0	eGFR<60mL/min/1.73m² or evidence of kidney damage as albuminuria or overt proteinuria	Proteinuria by dipstick and eGFR by CKD-EPI	IDMS	13.4%	39.2%	Low		
van Rensburg27	2010, South Africa, South Tertiary hospital	1216	New patients referred to the renal unit	Age (years): 39.6±15.9 Male gender: 51.1% Hypertension: 13.2% DM: 10.8%	Elevated SCr (>130 μmol/L) and small kidneys on imaging without evidence of reversible causes	Proteinuria by quantitative assessment and SCr measurement	Not mentioned	16.7% proteinuria ≥3.5g/dL	Total prevalence: 37.9%	Low		
Hamdouk104	2011, Sudan, East Hairdressing saloons	72	Hairdressers	Age (years): 40±8 Male gender: 0% Hypertension: 19.4%	SCr level ≥2mg/dL	Proteinuria by urinary strip and 24-hour SCr measurement and renal biopsy	Not mentioned	26.4% had albuminuria Total prevalence: 14% had SCr ≥2mg/dL	Total prevalence: 26.4%	Low		
EL-Safty129	2003, Egypt, North Male workers attending the outpatient clinic of the Health Insurance Organisation	81	Male workers attending the outpatient clinic of the Health Insurance Organisation (29 non-silicotics, 24 silicotics and 28 referent)	Age (years): 39.8±7.27 Male gender: 100% Hypertension: 19.4%	Elevated proteinuria	Assessment of proteinuria quantitatively	Not measured 93% among non-silica-exposed 100% silica-exposed	Total prevalence (among those with silica exposure): 100%	Low			

BMI, body mass index; CG, Cockroft-Gault; CKD, chronic kidney disease; CKD-EPI, Chronic Kidney Disease-Epidemiology Collaboration; CRG, creatinine clearance; DBP, diastolic blood pressure; DM, diabetes mellitus; GFR, glomerular filtration rate; IDMS, isotope-dilution mass spectrometry; KDOQI, Kidney Disease Outcome Quality Initiative; MDRD, Modification of Diet in Renal Disease; SBP, systolic blood pressure; eGFR, estimated glomerular filtration rate; ESRD, end stage renal disease; ACR, albumin to creatinine ratio.
Hospital-based surveys revealed that (Abd ElHafeez S, et al. BMJ Open 2018;8:e015069. doi:10.1136/bmjopen-2016-015069)

... et al BMJ Open defined CKD as eGFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the prevalence ranged from 10% to 14% (pooled estimate: 12.4%), while the prevalence ranged from 49% to 57% (pooled estimate: 51.5%) when CKD was defined according to KDOQI. CKD was prevalent among almost 39% of patients with rheumatoid arthritis²⁰ or sickle cell.²¹ The study (low quality) conducted among hairdressers exposed to paraphenylenediamine later reported that 26.4% of these subjects had renal impairment. Of note, 100% of silica-exposed workers experienced proteinuria (reported from low-quality study).²¹²

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

DISCUSSION

This systematic review focuses on the burden of CKD on the entire African continent. We assessed 152 papers published between 1 January 1995 and 7 April 2017 reporting the epidemiology of CKD in the general population and in specific chronic conditions in Africa. The CKD prevalence reported in our review should be interpreted with caution. Our estimates may be affected by the analytical heterogeneity used to measure creatinine and albuminuria. Serum creatinine concentrations are affected by intraindividual variability with over 20% changes within a 2-week period²¹⁷ and most Jaffe assays overestimate serum creatinine.²¹⁸ The resulting bias could vary according to the creatinine concentration, specific assay, manufacturer and calibration material used. Although the IDMS calibration standardisation has reduced the bias and improved the inter-laboratory comparability,²¹¹ the number of studies reported using IDMS was low in Africa. Moreover, CKD prevalence may additionally be influenced by albuminuria assays, which are affected by inter-laboratory differences.²¹⁴ The different equations used to estimate GFR could be a source of bias. The systematic underestimation of measured GFR at higher estimated GFR by the MDRD equation is well known, and may reflect higher creatinine generation in healthy and CKD prevalence among patients with diabetes in the included studies.

The prevalence of CKD among patients with hypertension (table 5, 9 studies; all of low quality except for two with medium quality) ranged from 13% to 51% (pooled prevalence: 34.5%; 95% CI 34.04% to 36%). The highest prevalence was reported from one study in the East macro-area (39.5%), followed by the West/Central-West, where the prevalence ranged from 13% to 51% (pooled estimate: 37.7%). In South Africa, the CKD prevalence reported from one study was 25.4%. No data were found for other African macro-areas. In studies that defined CKD as eGFR <60 mL/min/1.73 m², the prevalence of CKD ranged from 38.5% to 40% (pooled estimate: 38.9%). When serum creatinine was used to define CKD, the prevalence ranged from 30% to 51% (pooled estimate: 40.9%). When CKD was defined according to albuminuria/proteinuria, the prevalence of CKD ranged from 15% to 25% (pooled estimate: 23.6%). In one study, CKD was defined according to KDOQI criteria and it was prevalent among 47% of patients with hypertension. The CKD prevalence for each age or gender group was not reported in the majority of the studies. In online supplementary figure 1 we show graphically the relationship between gender and age and CKD prevalence among patients with diabetes in the included studies.

Among other patient populations (studies reported in table 6), almost three-quarters of patients with lupus had CKD (prevalence=72.0%) based on low-quality study.²⁰ Two with medium quality) ranged from 13% to 51% (pooled prevalence: 37.7%). In South Africa, the CKD prevalence ranged from 13% to 51% (pooled estimate: 37.7%). In hospital-based studies, when CKD was defined as eGFR <60 mL/min/1.73 m² and/or the presence of proteinuria or albuminuria, the prevalence ranged from 10% to 14% (pooled estimate: 12.4%), while the prevalence ranged from 49% to 57% (pooled estimate: 51.5%) when CKD was defined according to KDOQI. CKD was prevalent among almost 39% of patients with rheumatoid arthritis²⁰ or sickle cell.²¹ The study (low quality) conducted among hairdressers exposed to paraphenylenediamine later reported that 26.4% of these subjects had renal impairment. Of note, 100% of silica-exposed workers experienced proteinuria (reported from low-quality study).²¹²

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).

Causes of CKD

Forty-two studies were conducted specifically to clarify the underlying cause of CKD²¹³–²²² (online supplementary table 2). The diagnosis was biopsy-proven in 17 studies.²²² Vascular/hypertensive sclerosis was the main cause of CKD (16%), followed by diabetic nephropathy (15%), chronic glomerulonephritis (13%), tubulointerstitial/obstructive (8%), primary glomerular diseases (6%), systemic lupus erythematosus (3%) and polycystic kidney disease (3%). The causes of CKD were undetermined/miscellaneous causes in one-fifth of the patients (20%) (figure 3).
individuals compared with individuals with CKD in whom the MDRD equation was derived. This bias is reduced substantially, but not completely, by the CKD-EPI equation, which was derived from studies including people without CKD.175 In addition, differences in sample size, demographics and clinical characteristics are all significant limitations in this systematic review for making accurate estimates of the prevalence of CKD in African countries. Age and gender are well-known determinants of the risk of CKD development, progression and complication. While the prevalence of CKD tends to be higher in women, the disease is more severe in men, who also have a higher risk of all-cause and cardiovascular disease (CVD) mortality across different levels of renal function. However, the risk relationships of reduced eGFR and higher albuminuria with mortality were steeper in women than in men. Moreover, the risk of progression to ESRD at a given eGFR rate and urinary albumin-to-creatinine ratio seemed equivalent in men and women.176,177 The lack of information on the prevalence of CKD by age and gender in studies included in this systematic review—only 11\% of the included studies reported CKD prevalence by either age or gender groups—limits the value and the reliability of pooled estimates of CKD prevalence in Africa and in its macro-areas. To circumvent this limitation, we showed the prevalence of CKD in the various studies in relationship to the proportion of men and age in the same studies. However the number of studies is too small for reliably capturing the effect of age and gender on CKD prevalence in Africa. Furthermore, only five studies79,142-145 assessed the KDOQI chronicity criterion, which is a fundamental element of the current definition of CKD by this organisation. A single elevated serum creatinine, reduced eGFR or an abnormal urinalysis should initially be viewed as a screening test, and the diagnosis of CKD should be confirmed with repeated tests, additional work-up and clinical judgement.178 Thus, estimates in this review should be seen as a pragmatic attempt to evaluate the dimension of CKD as a public health issue on the African continent.

CKD is now considered to be an important component of the epidemic of non-communicable diseases in economically developed and low–income/middle-income countries alike. In a seminal meta-analysis published in 2014, Stanifer \textit{et al}9 for the first time drew attention to the public health relevance of CKD in the sub-Saharan Africa, a vast area comprising 85\% (947.4 million) of the whole African population.9 In the present systematic review, the lowest prevalence of CKD (4\%) was reported in the Northern Africa macro-area, including Egypt, Libya, Tunisia, Algeria, Morocco, the Western Sahara and Mauritania, and the highest (16.5\%) was observed in West/Central West Africa, which includes Benin, Burkina Faso, the island nation of Cape Verde, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Liberia, Mali, Mauritania, Niger, Nigeria, Cameroon, the island of Saint Helena, Senegal, Sierra Leone, São Tomé and Príncipe and Togo. The average prevalence in the entire African continent was 10.1\%. The global CKD prevalence was reported to be 13.4\%.179 In sub-Saharan Africa in Stanifer \textit{et al}9’s meta-analysis, the prevalence of CKD was 13.2\%,9 which is close to that reported in the same area in our review (14.02\%). Among the general population of economically developed countries, CKD has 13.6\% prevalence in the USA.180 In Europe, the reported prevalence is lower and more homogeneous, being 8.9\% in the Netherlands, 6.8\% in Italy, 5.2\% in Portugal, 4.7\% in Spain and 3.3\% in Norway.181 CKD prevalence in some Asian countries was higher than the estimates in the USA and in Europe, being 17.5\% in Thailand,182 15\% in India,183 13\% in Japan,184 11.9\% in Taiwan185 and 9.9\% in China.186 Overall, the estimated prevalence of CKD at

![Figure 3](http://bmjopen.bmj.com/)

Figure 3 Main causes of chronic kidney disease.
the general population level in African countries appears to be comparable and possibly even higher than that reported in other continents. This may be at least in part due to the low-quality data for the prevalence of CKD in Africa related to poor sampling techniques, unreliable kidney function measurements and the different definitions used.

In our review, the prevalence of CKD in surveys based on hospitals or primary care centres (36%) is close to that in Swiss primary care centres (36%).

Poverty-related factors such as infectious diseases secondary to poor sanitation, inadequate supply of safe water, environmental pollutants and high concentrations of disease-transmitting vectors continue to play an important role in the development of CKD in low-income countries. Although rates of diabetic nephropathy are rising, chronic glomerulonephritis and interstitial nephritis are among the principal causes of CKD in many countries.

In Africa, infectious diseases such as HIV, bilharziasis, malaria, hepatitis B and C represent an almost unique cluster of risk factors responsible for CKD. HIV/AIDS is pandemic in Africa, with a prevalence ranging from 0.5% in Senegal to 27.4% in Swaziland. The global success in bringing effective antiretroviral treatment (highly active antiretroviral therapy (HAART)) to HIV-infected patients in Africa has determined the emergence of chronic medical illnesses such as HIV-related CKD.

Up to 50% of kidney diseases in HIV-infected persons result from a wide array of non-HIV-associated nephropathies, ranging from glomerulonephritis to diabetic nephropathy. We found that 5.6% of patients with HIV complained of renal dysfunction. This figure is lower than that reported in economically developed countries such as France, USA, China, Spain and Brazil. CKD was higher among patients with HIV not receiving HAART compared with those on HAART. Variation in the proportion of patients with HIV affected by CKD depends on the heterogeneity in the definition used to determine renal dysfunction, the proportion of the study population on HAART, diverse ethnicities, the associated comorbidities and the nutritional status of the study population. Patients with HIV are more prone to nutritional deficiencies due to malabsorption, impaired oral intake and the wasting syndrome. Increased availability of HAART has led to some improvement of the nutritional status of patients. However, for certain individuals, undernutrition and weight loss persist despite therapy. Malnutrition exacerbates side effects, alters drug pharmacokinetics and impinges on adherence, thereby limiting the beneficial effects of the therapy. Furthermore, differences in HIV clades or strains in African patients and genetic factor may influence the replication capacities within the isolated renal reservoir and thus lead to a diversity in clinical presentations.

Regarding systemic autoimmune diseases such as lupus, a study conducted among patients with lupus from Senegal showed that almost three-quarters (71.0%) of the patients with this disease had evidence of renal involvement. This isolated figure is higher than that reported in other countries. More than one-third (39%) of patients with rheumatoid arthritis had CKD, which is higher than that reported from Taiwan.

Even though there are no sufficient data to precisely reconstruct historical trends, the profile of CKD causes has changed during the last decades. Interstitial nephritis and glomerulonephritis were the main causes of CKD in North Africa, and CKD was principally caused by chronic glomerulonephritis and hypertension in East and Tropical Africa. Today, the spectrum of causes of CKD in Africa is dominated by diabetes mellitus and hypertension. We found that the prevalence of vascular/hypertensive and diabetic nephropathies as a cause of CKD (16% and 15%, respectively) exceeded that caused by chronic glomerulonephritis (13%).

Our review has both strengths and limitations. The major strengths include a thorough systematic search of electronic databases and the inclusion of all comprehensive studies with a transparent assessment of CKD prevalence by two independent reviewers. The fact that our literature search was limited to PubMed and Ovid Medline but did not include the African Index Medicus, like it was done by Stanifer et al in the meta-analysis of CKD in sub-Saharan Africa, is a limitation of our study. Because there was a huge discrepancy in the definitions used to identify CKD, the methods of creatinine measurement, urine protein assessment and in the quality of the reporting, we decided to adopt an inclusive strategy. Our primary interest was to identify all studies conducted among different population groups in Africa providing information on CKD and to reconstruct a tentative scenario of the epidemiological dimension concerning disease in the entire African continent. Methodological limitations notwithstanding this review compiled estimates suggesting that the CKD burden in Africa is at least as concerning as that in economically developed countries. The lack of a consistent definition of CKD makes it difficult to compare the burden of CKD across studies in various countries. Moreover, the failure to demonstrate chronicity when defining CKD is a common limitation of studies investigating CKD prevalence in Africa. It was reported that a single test in time has an extremely poor positive predictive value for confirmation of CKD compared with repeated testing 3 months later. Failure to repeat testing may lead to a significant overestimation of CKD prevalence and underestimation of the burden of CVD in CKD. In addition, observational studies are subject to bias and residual confounding, which are difficult to account for and there are limitations due to the heterogeneity that arises from differences in age and sex distributions. This poor data quality reported in different studies is considered as a cumbersome problem limiting the accuracy in assessing the burden of CKD in Africa.

In conclusion, CKD in Africa appears to be at least as common as in other continents, and as such it constitutes a true public health priority with major cost burden...
to healthcare systems worldwide. Targeted screening of high-risk groups (including those patients with hypertension, diabetes mellitus and HIV, and persons with occupational exposures) should likely be instituted as the first step in kidney disease prevention whenever and wherever affordable and feasible. Education to increase awareness of CKD among healthcare workers and patients, and the promotion of healthy lifestyles, should be engrained in preventive programmes. The treatment of hypertension and diabetes mellitus is of obvious relevance. Nurses and other health workers should be trained to manage these conditions at the local level if we are to curb the incidence of CKD and to avert the added burden of CKD complications to diabetes, hypertension and infectious diseases, the deadly trio of risk factors underlying the CKD epidemic in Africa.

Acknowledgements We would like to thank the following professors and physicians for their help in providing the articles we evaluated in our review: Professor Olutayo Adebirosu, Professor Ahmed Donia, Professor Rashad Barsoum, Professor Carel Isselmuiden, Professor Laurent Forcard, Professor Anatole Lalaye, Professor Nestor Pakasa, Professor Imaobong Etuk, Professor Ifeoma Ulasi, Professor Abubakar Abele Sanusi, Professor Gbenga Ayodele, Professor Raïda S Yaya, Professor Mohammed Benghanem Gharbi, Professor Fatma Ben Mousa, Dr Ikeeji Okorie, Dr Alaya Akrum, Dr Adedobale Ademola, Dr Oluyombo Rotimi, Dr KS Nayak, Dr Guy Neild, Dr Rashad Gbadegesin, Dr Sidi Mohamed Seck, Dr Amr El-Husseini Mohamed, Dr Fasika M Tedia, Professor Adedewale Akinola, Professor Olannrewaju Adebodin, Dr Halee Marie Patrice, Dr Emmanuel Agaba, Professor Miriam Adhikari, Dr BT Bello and Dr Zidane Djelloul.

Contributors SA, DB and CZ: conceptualised and designed the study. SA, GD and ED: participated in revising the articles included in the review and retrieved the necessary information. DB and GT: supervised the data capture and analysis. SAE, ED: participated in revising the articles included in the review and retrieved the properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All data are published in the manuscript.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Levey AS, Atkins R, Coresh J, et al. Chronic kidney disease as a global public health problem: approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int 2007;72:247–59.
2. Zoccali C, Kramer A, Kager KJ. Epidemiology of CKD in Europe: an uncertain scenario. Nephrol Dial Transplant 2010;25:1731–3.
3. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015;385:117–71.
4. Bello AK, Peters J, Rigby J, et al. Socioeconomic status and chronic kidney disease at presentation to a renal service in the United Kingdom. Clin J Am Soc Nephrol 2008;3:1516–23.
5. El Nahas AM, Bello AK. Chronic kidney disease: the global challenge. Lancet 2005;365:331–40.
6. UN World Population Prospects: The 2015 Revision, Key Findings and Advance Tables: United Nations. 2015 http://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf (accessed 8 Nov 2015).
7. Ad-G A, Unwin N, Agyemang C, et al. Commentary Tackling Africa’s chronic disease burden: from the local to the global. 2010.
8. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. 2013.
9. Stanifer JW, Jing B, Tolan S, et al. The epidemiology of chronic kidney disease in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health 2014;2:e174–81.
10. Anothaisintawee T, Rattanasisin S, Ingsathit A, et al. Prevalence of chronic kidney disease: a systematic review and meta-analysis. Clin Nephrol 2009;71:244–54.
11. Liberi A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Italian Journal of Public Health 2012;6.
12. Matsha TE, Yako YY, Rensburg MA, et al. Chronic kidney diseases in mixed ancestry south African populations: prevalence, determinants and concordance between kidney function estimators. BMC Nephrol 2013;14:75.
13. Eastwood JB, Perry SM, Plange-Rhule J, et al. Assessment of GFR by four methods in adults in Ashanti, Ghana: the need for an eGFR equation for lean African populations. [Erratum appears in Nephrol Dial Transplant. 2011 Dec;26(12):4153 Note: Emmett, Lynsey [added]; Miller, Michelle A [added]. Nephrol Dial Transplant 2010;25:2179–87.
14. Glaser N, Deckert A, Phiri S, et al. Comparison of Various Equations for Estimating GFR in Malawi: How to Determine Renal Function in Resource Limited Settings? PLoS One 2015;10:e0130453.
15. Jüni P, Altman DG, Egger M. Systematic reviews in health care: Assessing the quality of controlled clinical trials. BMJ 2001;323:42–6.
16. Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003;3:25.
17. Shamiyian T, Kane RL, Dickinson S. A systematic review of tools used to assess the quality of observational studies that examine incidence or prevalence and risk factors for diseases. J Clin Epidemiol 2009;62:1061–70.
18. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 1960;20:37–46.
19. Ka EF, Cisse MM, Lemrabott AT, et al. [Lupus nephropathy in black patients with systemic lupus erythematosus in Senegal: 43 cases]. Med Sante Trop 2013;23:329–31.
20. Dessein PH, Hsu HC, Tsang L, et al. Kidney function, endothelial activation and atherosclerosis in black and white Africans with rheumatoid arthritis. PLoS One 2015;10:e0121693.
21. Ephraim RK, Osakunor DN, Cudjoe O, et al. Chronic kidney disease is common in sickle cell disease: a cross-sectional study in the Tema Metropolis, Ghana. BMC Nephrol 2015;16:75.
22. Ghaframani N, Silica nephropathy. Int J Occup Environ Med 2010;1:108–115.
23. Sampathkumar K, Yesudas S. Hair dye poisoning and the developing world. J Emerg Trauma Shock 2009;2:129.
24. Elsharief ME, Abdullha SM, Abdalla SM, et al. The magnitude of chronic kidney diseases among primary health care attendees in Gezira state, Sudan. Saudi J Kidney Dis Transplant 2013;24:807–9.
25. Sumaili EK, Cohen EP, Zinga CV, et al. High prevalence of undiagnosed chronic kidney disease among at-risk population in Kinshasa, the Democratic Republic of Congo. BMC Nephrol 2009;10:18.
26. Afolabi MO, Abiyere-Kuteyi EA, Arongundade FA, et al. Prevalence of chronic kidney disease in a Nigerian family practice population. S Afr Fam Pract 2009;51:110–7.
27. van Rensburg BW, van Staden AM, Rossouw GJ, et al. The profile of adult nephrology patients admitted to the Renal Unit of the Universitas Tertiary Hospital in Bloemfontein, South Africa from 1997 to 2006. Nephrol Dial Transplant 2010;25:320–4.
28. Raji Y, Abayasekere O, Bello T. Familial clustering of risk factors for cardiovascular disease among first-degree relatives of patients.
with chronic kidney disease in a sub-Saharan African population. *Cardiovasc J Afr* 2015;26(2 Suppl 1):S11–14.

29. The unrecognized prevalence of chronic kidney disease among family members of end stage renal disease patients [IEA-EEF abstract 284]. *Eur J Epidemiol* 2009.

30. Anyabolu EN, Chukwuonye IJ, Anyabolu AE, et al. A look at risk factors of proteinuria in subjects without impaired renal filtration function in a general population in Owerri, Nigeria. *Pan Afr Med J* 2016;23:257.

31. El Khayat SS, Hallal K, Gharbi MB, et al. Adherence to therapy in sub-Saharan non-dialysed patients with chronic kidney diseases. *Nephrol Ther* 2008;4:325–9.

32. Bourquía A. Société marocaine des maladies rénales. [Autosomal dominant polycystic kidney disease (ADPKD), in Morocco. Multicenter study about 308 families]. *Nephrologie* 2002:23:93–6.

33. Ouattara B, Kra O, Yodele OO, Abbas A, McIntyre CW, Taal MW. Epidemiology and aetiology of diabetic nephropathy as a cause of end-stage renal disease in Egypt: a six-year study. *Saudi J Kidney Dis Transplant* 2012;23:866–70.

34. Abd El Hafeez S, et al. *et al*. 2009.

35. Med Trop 2011;21:1172–8.

36. Elsharif ME, Elsharif EG. Causes of end-stage renal disease in Sudan: a single-center experience. *Saudi J Kidney Dis Transplant* 2011;22:373–6.

37. Alashea WA, Alagrie CH, Idris SA, et al. Prevalence and correlates of the Cockcroft-Gault and MDRD equations in adult Nigerians with chronic kidney disease. *Int Urol Nephrol* 2009;41:635–42.

38. Alashea WA, McIntyre CW, Talal EW. Epidemiology and aetiology of dialysis-treated end-stage kidney disease in Libya. *BMJ Nephrol* 2012;19:32.

39. Alashea WA, Emem-Chioma P, Wokoma FS. A single-center 7-year experience with end-stage renal disease care in Nigeria—a surrogate for the poor state of ESRD care in Nigeria and other sub-Saharan african countries: advocacy for a global fund for ESRD care program in sub-Saharan African countries. *Int J Nephrol* 2012;2012:1–7.

40. Alebiosu CO, Ayodele OO, Abbas A, et al. Chronic renal failure at the Olabisi Onabanjo University Teaching Hospital, Sagamu, Nigeria. *Afr Health Sci* 2006;6:132–8.

41. Amira CO, Brahim RW, Bello BT. Pattern of intradialytic complications at the Lagos University Teaching Hospital. *Afr J Med Sci* 2012;41:411–6.

42. Arogunnda FA, Sanusi AA, Hassan MO, et al. The pattern clinical characteristics and outcome of ESRD in ile-Ife, Nigeria: is there a change in trend? *Afr Health Sci* 2011;11:594–601.

43. Soumani E, Chiou A, Khairat M, et al. Trends of incident dialysis patients in Tunisia between 1992 and 2001. *Am J Kidney Dis* 2008;51:463–70.

44. Chijioke A, Makusidi AM, Kolo PM. Electrocardiographic abnormalities among dialysis naive chronic kidney disease patients in Ilorin Nigeria. *Ann Afr Med* 2012;11:21–6.

45. Madala ND, Thusi GP, Assounga AG, et al. Characteristics of South African patients presenting with kidney disease in rural KwaZulu-Natal: a cross-sectional study. *BMC Nephrol* 2014;15:61.

46. Okpechi IG, Ayodele OE, Rayner BL, et al. End-stage kidney disease in elderly South Africans. *Clin Nephrol* 2013;79:269–76.

47. Lailey A, Awede B, Agboton B, et al. Autosomal dominant polycystic kidney disease in University Clinic of Nephrology and Haemodialysis of Cotonou: clinical and genetic findings. *Genet Couns* 2012;23:435–45.

48. Okunola Y, Ayodele O, Akinwusi P, et al. Haemodialysis practice in a resource-limited setting in the tropics. *Ghana Med J* 2013;47:4–9.

49. Bello BT, Raji YR, Sanusi I, et al. Challenges of maintaining haemodialysis service at a resource poor country: Experience from a single teaching hospital in Lagos, Southwest Nigeria. *Hemodial Int* 2013:17:427–33.

50. El Minshawy O. End-stage renal disease in the El-Minia Governorate, upper Egypt: an epidemiological study. *Saudi J Kidney Dis Transplant* 2011;22:1048–54.

51. Okpechi IG, Rayner BL, Swanepoel CR. Nephrotic syndrome in adult black South Africans: HIV-associated nephropathy as the main culprit. *J Natl Med Assoc* 2010;102:1193–7.

52. Madala ND, Nkwanyana N, Dubula T, et al. Predictive performance of eGFR equations in South Africans of African and Indian ancestry compared with the mGFR-DTPA imaging. *Int J Urol* 2012;20:447–55.

53. El Farouki MR, Bahadi A, Hamzi MA, et al. [Profile of chronic renal failure in diabetes at initiation of hemodialysis in the nephrology and dialysis service of the military hospital in Rabat, Morocco]. *Pan Afr Med J* 2013;15:12.

54. Okpechi I, Swanepoel C, Duffield M, et al. Patterns of renal disease in Cape Town South Africa: a 10-year review of a single-centre renal biopsy database. *Nephrol Dial Transplant* 2011;26:1953–61.

55. N'Gour S, Cisse MM, Mahmoud SM, et al. Pilot experience in senegal with peritoneal dialysis for end-stage renal disease. *Perit Dial Int* 2014;34:539–43.

56. Buargoub MA. 5-year mortality in haemodialysis patients: a single center study in Tripoli. *Saudi J Kidney Dis Transplant* 2008;19:268–73.

57. Chijioke A, Aderibigbe A, Olarenwaju TO, et al. Prevalence and pattern of cysctic kidney diseases in Ilorin, Nigeria. *Saudi J Kidney Dis Transplant* 2010;21:1172–8.

58. Elsharif ME, Elsharif EG. Causes of end-stage renal disease in Sudan: a single-center experience. *Saudi J Kidney Dis Transplant* 2011;22:373–6.

59. Elkhatab M, Elnahed MS, Fadda S, et al. The change in the spectrum of glomerulonephritis in Egypt over the past decade. *Saudi J Kidney Dis Transplant* 2012;23:1065–7.

60. Ibrahim S, Fayed A, Fadda S, et al. A five-year analysis of the incidence of glomerulonephritis at Cairo University Hospital-Egypt. *Saudi J Kidney Dis Transplant* 2012;23:866–70.

61. Ayach G, El-Filali H, Saidi S, et al. Histopathological study of pure primary nephroptic syndrome in adolescents and young Moroccan adults. *Arab J Nephrol Transplant* 2011;4:137–40.

62. Ramilittiana B, Ranivoharisoa EM, Dodo M, et al. [A retrospective study on the incidence of chronic renal failure in the Department of Internal Medicine and Nephrology at University Hospital of Antananarivo (the capital city of Madagascar)]. *Pan Afr Med J* 2016;23:141.

63. Zajari Y, Baghiania A, Ibrahim DM, et al. La néphropathie non diabétique chez les patients diabétiques de type 2 à l’hôpital militaire Mohammed V de Rabat (Maroc). *EMJH* 2012;18.

64. Fatou A, Abubakr S, Muzamil H, et al. Undiagnosed hypertension and proteinuria in a market population in Ile-Ife, Nigeria. *Arab J Nephrol Transplant* 2011;4:141–6.

65. Taptot M, Trace K, Coups E, et al. The public health significance of urinary schistosomiasis as a cause of morbidity in two districts in Mali. *Am J Trop Med Hyg* 1998;59:407–13.

66. Sumaili EK, Naeeko NM, Lepira FB, et al. Screening for proteinuria and chronic kidney disease risk factors in Kinshasa: a World Kidney Day 2007 study. *Ann Afr Med* 2008:11:220–8.

67. Egbi OG, Okato UH, Miebodei KE, et al. Prevalence and correlates of chronic kidney disease among civil servants in Bayelsa state, Nigeria. *Niger J Clin Pract* 2014;17:602–7.

68. Ayodele OE, Okonkwo AA, Afolabi MO, et al. Prevalence of hypertension, diabetes and chronic kidney disease in participants of the 2009 World Kidney Day screening exercise in southwest Nigeria. *HKJN* 2011:13:55–63.
84. Abu-Aisha H, Elhassan A, Khamis A, et al. Chronic kidney disease in police forces households in Khartoum, Sudan: pilot report. Arab J Nephrol Transplant 2009;2:21–6.

85. Calhodj B, Nkurunziza B, Zijhde H, et al. Prevalence of chronic kidney disease among people diagnosed with AIDS in Burundi: a cross-sectional study. BMC Nephrol 2011;12:40.

86. Wools-Kaloustian K, Gupta SK, Moluma E, et al. Renal disease in an antiretroviral-naive HIV-infected outpatient population in Western Kenya. Nephrol Dial Transplant 2007;22:2208–12.

87. Emam CP, Arogudan F, Sartawi A, et al. Renal disease in HIV-seropositive patients in Nigeria: an assessment of prevalence, clinical features and risk factors. Nephrol Dial Transplant 2008;23:741–6.

88. Wiyatt CM, Shi Q, Novak JE, et al. Prevalence of kidney disease among people living with HIV/AIDS in Burundi: a cross-sectional study. Kidney Int 2007;22:2208–12.

89. Cailhol J, Nkurunziza B, Izzedine H, et al. Renal features and risk factors. Nephrol Dial Transplant 2011;26:3051–3.

90. Msango L, Downs JA, Kalluvya SE, et al. Prevalence of chronic kidney disease in newly diagnosed patients with Human immunodeficiency virus in Ilorin, Nigeria. J Bras Nefrol 2015;37:177–84.

91. Chadwick DR, Sarfo FS, Kirk ES, et al. Tenofovir is associated with increased tubular proteinuria and asymptomatic renal tubular dysfunction in Ghana. BMC Nephrol 2015;16:195.

92. reviewers of patients with CKD in Egypt. J Infect 2014;66:146–7.

93. Attolou V, Fana GT, et al. [Renal complications associated epidemiological study based on proteinuria in a population of black diabetics in Cotonou, Benin]. Afr J Med Med Sci 2011;40:286–91.

94. Bouaziz A, Zidi I, Zidi N, et al. [Diabetic nephropathy: an epidemiological study based on proteinuria in a population of black African diabetics in Cotonou, Benin]. Cent Afr J Med 2011;58:129–33.

95. Toure O, Sow A, Mbaye H, et al. Prevalence of chronic kidney disease in Kinshasa: results of a pilot study from the Democratic Republic of Congo. BMC Nephrol 2014;15:146.

96. Fabian J, Makulo R, Nseka MN, Jadoul M, et al. Albinism pathologique lors du diapage du diabète en milieu semi-rural (cité de Kisantu et RD Congo). Nephrol Ther 2010;6:513–9.

97. Kaze FF, Kangene AP, Magatsing CT, et al. Prevalence and Determinants of Chronic Kidney Disease Among Hypertensive Cameroonians According to Three Common Estimators of the Glomerular Filtration Rate. J Clin Hypertens 2016;18:408–14.

98. Alhajj J, Al-Fawwaz M, et al. Prevalence and risk factors for chronic kidney disease among adults in a university community in southern Nigeria. Int J STD AIDS 2011;22:457–62.

99. Wumi AO, Egbegbe EO, et al. Prevalence and risk factors of chronic kidney disease in a sub-Saharan African population with type 2 diabetes. Pan Afr Med J 2011;12:67.

100. Kuzuk S, Basar D, et al. Comparison of different blood pressure indices for the prediction of prevalent diabetic nephropathy in a sub-Saharan African population. Nephrol Dial Transplant 2011;26:3051–3.

101. Alhajj J, Al-Fawwaz M, et al. Prevalence and risk factors of chronic kidney disease in a sub-Saharan African population with type 2 diabetes. BMC Nephrol 2011;12:67.

102. Egbegbe EO, Wumi AO, et al. Prevalence and risk factors of chronic kidney disease in a sub-Saharan African population with type 2 diabetes. Pan Afr Med J 2011;12:67.

103. Alhajj J, Al-Fawwaz M, et al. Prevalence and risk factors of chronic kidney disease in a sub-Saharan African population with type 2 diabetes. BMC Nephrol 2011;12:67.
127. Lengani A, Samadoulougaou A, Cissé S. [Characteristics of renal disease in hypertensive morbidity in adults in Burkina Faso]. Arch Mal Coeur Vaiss 2000:93:1053–7.

128. Rayner B, Becker P. The prevalence of microalbuminuria and ECG left ventricular hypertrophy in hypertensive patients in private practices in South Africa. Cardiovasc J S Afr 2006;17:245–9.

129. EL-Safy IA, Gadallah M, Shouman AE, et al. Subclinical nephropathy caused by smoking and occupational silica exposure among Egyptian industrial workers. Arch Med Res 2003;34:415–21.

130. Laurence EC, Volmink J, Esterhuizen TM, et al. Risk of cardiovascular disease among teachers in Cape Town: Findings of the South African PaCT pilot study. S Afr Med J 2016;106:996–1001.

131. Mogueno A, Echevin-Tochegui JB, Matha TE, et al. Validation of two prediction models of undiagnosed chronic kidney disease in mixed-ancestry South Africans. BMC Nephrol 2015;16:94.

132. Stanifer JW, Egger JR, Turner EL, et al. Neighborhood clustering of non-communicable diseases: results from a community-based study in Northern Tanzania. BMC Public Health 2016;16:226.

133. Stanifer JW, Maro V, Egger J, et al. The epidemiology of chronic kidney disease in Northern Tanzania: a population-based survey. PLoS One 2015;10:e0124506.

134. Stanifer JW, Turner EL, Egger JR, et al. Knowledge, Attitudes, and Practices Associated with Chronic Kidney Disease in Northern Tanzania: A Community-Based Study. PLoS One 2016;11:e0156336.

135. Anyabolu EN, Chukuwunye II, Aroiwee E, et al. Prevalence and predictors of chronic kidney disease in newly diagnosed human immunodeficiency virus patients in Owerri, Nigeria. Indian J Nephrol 2016;26:10–15.

136. Okafor UH, Unuigbe EI, Chukuwunye E. Prevalence and clinical and laboratory characteristics of kidney disease in anti-retroviral-naïve human immunodeficiency virus-infected patients in South-South Nigeria. Saudi J Kidney Dis Transpl 2016;27:129–34.

137. Wensink GE, Schoffelen AF, Tempelman HA, et al. Albuminuria is Associated with Traditional Cardiovascular Risk Factors and Viral Load in HIV-Infected Patients in Rural South Africa. PLoS One 2015;10:e0136529.

138. Egban BA, Frepmont MT, Adjei-Poku M. Prevalence and predictors of microalbuminuria in patients with diabetes mellitus: a cross-sectional observational study in Kumasi, Ghana. Ethn Dis 2007;17:726–30.

139. Ayee C, Owiredu WK, Osei-Yeboah J, et al. An Analysis of Anthropometric Indicators and Modifiable Lifestyle Parameters Associated with Hypertensive Nephropathy. Int J Hypertens 2016;2016:1–14.

140. Nabbaale J, Kibingire D, Ssekasavanwu E, et al. Microalbuminuria and left ventricular hypertrophy among newly diagnosed black African hypertensive and normotensive adults: a cross sectional study from a tertiary hospital in Uganda. BMC Res Notes 2015;8:198.

141. Addo J, Smeeth L, Leon DA. Hypertensive target organ damage in Ghanaian civil servants with hypertension. PLoS One 2009;4:e6672.

142. Owiredu WK, Guaye L, Amidu N, et al. Renal insufficiency in Ghanaian HIV-infected patients: need for dose adjustment. Afr Health Sci 2013;13:101–11.

143. Stöhr W, Reid A, Walker AS, et al. Glomerular dysfunction and associated risk factors over 4-5 years following antiretroviral therapy initiation in South Africa. Trop Med Int Health 2016;11:1011–14.

144. Stöhr W, Walker AS, Mundie P, et al. Estimating glomerular filtration rate in HIV-infected adults in Africa: comparison of Cockcroft-Gault and Modification of Diet in Renal Disease formulae. Antivir Ther 2008;13:761–70.

145. Reid A, Stöhr W, Walker AS, et al. Severe renal dysfunction and risk factors associated with renal impairment in HIV-infected adults in Africa initiating antiretroviral therapy. Clin Infect Dis 2008;46:1271–81.

146. Ekat MH, Courpoin C, Diatouka M, et al. [Prevalence and factors associated with renal disease among patients with newly diagnosed of HIV in Brazzaville, Republic of Congo]. Med Sanit Trop 2013;23:176–80.

147. Peters PJ, Moore DM, Merimji J, et al. Antiretroviral therapy improves renal function among HIV-infected Ugandans. Kidney Int 2008;74:925–9.

148. Peck R, Baisley K, Kavish B, et al. Decreased renal function and associated factors in cities, towns and rural areas of Tanzania: a community-based population survey. Trop Med Int Health 2016;21:393–404.

149. Nsagha DS, Pokorn BT, Assoe JC, et al. HAART, DOTS and renal disease of patients co-infected with HIV/AIDS and TB in the South West Region of Cameroon. BMC Public Health 2015;15:1040.

150. Mekuria Y, Yilma D, Mekonnen Z, et al. Renal Function Impairment and Associated Factors among HAART Naïve and Experienced Adult HIV Positive Individuals in Southwest Ethiopia: A Comparative Cross Sectional Study. PLoS One 2016;11:e0161180.

151. Fiseha T, Kassim M, Yeman T. Chronic kidney disease and underdiagnosis of renal insufficiency among diabetic patients attending a hospital in Southern Ethiopia. BMC Nephrol 2014;15:198.

152. Odengbo C, Oguejiofor O, Owumwuba E, et al. The prevalence of chronic kidney disease in apparently healthy retired subjects in asaba, Nigeria. Ann Med Health Sci Res 2014;4(Suppl 2):S128–32.

153. Lucas GM, Clarke W, Kagaayi J, et al. Decreased-kidney function in a Community-based Cohort of HIV-Infected and HIV-Negative Individuals in Rakai, Uganda. J Acquir Immune Defy Syndr 2010;55:491–4.

154. Boosyen HL, Woodiwiss AJ, Raymond A, et al. Chronic kidney disease epidemiology collaboration-derived glomerular filtration rate performs better at detecting preclinical end-organ changes than alternative equations in blacks. J Hypertens 2016;34:1178–85.

155. Seape T, Gounden V, van Deventer HE, et al. Cystatin C- and creatinine-based equations in the assessment of renal function in HIV-positive patients prior to commencing Highly Active Antiretroviral Therapy. Ann Clin Biochem 2016;53:58–66.

156. Zachor H, MacMechano R, Estrella MM, et al. Incidence of stage 3 chronic kidney disease and progression on tenofovir-based antiretrovirals. AIDS 2016;30:221–2.

157. Adedeji TA, Adebojo NO, Adebesin SA, et al. Prevalence and Pattern of Chronic Kidney Disease in Antiretroviral-Naïve Patients with HIV/AIDS. J Int Assoc Provid AIDS Care 2015;14:434–40.

158. Matha TE, Sota DJ, Hassan SM, et al. Deterioration, improvement of kidney function and undiagnosed HIV-infected individuals in the Cape Town Bellville South cohort. Nephron 2014;19:638–47.

159. Jao J, Lo W, Toro PL, et al. Factors associated with decreased kidney function in HIV-infected adults enrolled in the MTC2-Plus Initiative in sub-Saharan Africa. J Acquir Immune Defy Syndr 2011;57:40–5.

160. Gupta SK, Ong’o WO, Shen C, et al. Reduced renal function is associated with progression to AIDS but not with overall mortality in HIV-infected Kenyan adults not initially requiring combination antiretroviral therapy. J Int AIDS Soc 2011;14:31.

161. Myer L, Kamkuemah M, Kaplan R, et al. Low prevalence of renal dysfunction in HIV-infected pregnant women: implications for guidelines for the prevention of mother-to-child transmission of HIV. Trop Med Int Health 2013;18:1400–5.

162. Mulenga LB, Kruse G, Lakh S, et al. Baseline renal insufficiency and risk of death among HIV-infected adults on antiretroviral therapy in Lusaka, Zambia. AIDS 2008;22:1821–7.

163. Ajayi S, Mamven M, Oji D. eGFR and chronic kidney disease stages among newly diagnosed asymptomatic hypertensives and diabetics seen in a tertiary health center in Nigeria. Ethn Dis 2014;24:220–5.

164. Nwankwo EA, Nwankwo B, Mubi B. Prevalence of impaired kidney function in hospitalized hypertensive patients in Maiduguri, Nigeria. Intern J Intern Med 2006;6.

165. Edwards JY, Bygrave H, Van den Bergh R, et al. HIV with non-communicable diseases in primary care in Kibera, Nairobi, Kenya: characteristics and outcomes 2010–2013. Trans R Soc Trop Med Hyg 2015;109:440–6.

166. Kamkuemah M, Kaplan R, Bekker LG, et al. Renal impairment in HIV-infected patients initiating tenofovir-containing antiretroviral therapy regimens in a Primary Healthcare Setting in South Africa. Trop Med Int Health 2015;20:518–26.

167. Levey AS, Coresh J, Balk E, et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003;139:137–47.

168. Abdelkareem S, Al-Sofi A, Eltzar B, et al. The potential role of nursing students in the implementation of community-based hypertension screening programs in Sudan. Arab J Nephrol Transplant 2013;6:51–4.

169. Agaba EI, Agaba PA, Sirsena ND, et al. Renal disease in the acquired immunodeficiency syndrome in north central Nigeria. Niger J Med 2003;12:120–5.

170. Coresh J, Astor BC, McQuillan G, et al. Calibration and random variation of the urine creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002;39:290–9.

171. Liu WS, Chung YT, Yang CY, et al. Serum creatinine determined by Jaffe, enzymatic method, and isotope dilution-light.
chromatography-mass spectrometry in patients under hemodialysis. J Clin Lab Anal 2012;26:206–14.

173. Drion I, Cobbaret C, Groener KH, et al. Clinical evaluation of analytical variations in serum creatinine measurements: why laboratories should abandon Jaffe techniques. BMC Nephrol 2012;13:133.

174. Bachmann LM, Nilsson G, Bruns DE, et al. State of the art for measurement of urine albumin: comparison of routine measurement procedures to isotope dilution tandem mass spectrometry. Clin Chem 2014;60:245–52.

175. Levey AS, Stevens LA. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: more accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am J Kidney Dis 2010;55:622–7.

176. Cobo G, Henry M, Port FK, et al. Sex and gender differences in chronic kidney disease: progression to end-stage renal disease and haemodialysis. Clin Sci 2016;130:1147–63.

177. Nitsch D, Grams M, Sang Y, et al. Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis. BMJ 2013;346:f324.

178. Poggio ED, Rule AD. A critical evaluation of chronic kidney disease—should isolated reduced estimated glomerular filtration rate be considered a “disease”? Nephrol Dial Transplant 2009;24:698–700.

179. Hill NR, Fatoba ST, Oke JL, et al. Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One 2016;11:e0158765.

180. Saran R, Li Y, Robinson B, et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2015;66(1 Suppl 1):S1–305.

181. Brück K, Stel VS, Gambaro G, et al. CKD Prevalence Varies across the European General Population. J Am Soc Nephrol 2016;27:2135–47.

182. Ingassaht A, Thakkinisthian A, Chaiprasert A, et al. Prevalence and risk factors of chronic kidney disease in the Thai adult population: Thai SEEK study. Nephrol Dial Transplant 2010;25:1567–75.

183. Singh AK, Farag YM, Mittal BW, et al. Epidemiology and risk factors of chronic kidney disease in India - results from the SEEK (Screening and Early Evaluation of Kidney Disease) study. BMC Nephrol 2013;14:114.

184. Imai E, Horio M, Watanabe T, et al. Prevalence of chronic kidney disease in the Japanese general population. Clin Exp Nephrol 2009;13:621–30.

185. Hwang SJ, Tsai JC, Chen HC. Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology 2010;15(Suppl 2):3–9.

186. Lin B, Shao L, Luo Q, et al. Prevalence of chronic kidney disease and its association with metabolic diseases: a cross-sectional survey in Zhejiang province, Eastern China. BMC Nephrol 2014;15:36.

187. Tomonaga Y, Risch L, Szucs TD, et al. The prevalence of chronic kidney disease in a primary care setting: a Swiss cross-sectional study. PLoS One 2013;8:e67848.

188. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet 2013;382:260–72.

189. Barsoum RS. Chronic kidney disease in the developing world. N Engl J Med 2006;354:997–9.

190. UNAIDS. HIV and AIDS estimates. UNAIDS, 2015. http://www.unaids.org/en/regionscountries/countries/senegal (accessed 15 Jul 2015).

191. UNAIDS. HIV and AIDS estimates. UNAIDS, 2015. http://www.unaids.org/en/regionscountries/countries/swaziland (accessed 1 Aug 2015).

192. Matic S, Lazarus JV, Donoghoe MC. HIV/AIDS in Europe: moving from death sentence to chronic disease management. World Health Organization, 2006.

193. Estrella M, Fine DM, Gallant JE, et al. HIV type 1 RNA level as a clinical indicator of renal pathology in HIV-infected patients. Clin Infect Dis 2006;43:377–80.

194. Dell IK, Thureen PJ, Fotiadis F, et al. Prevalence and factors associated with renal impairment in HIV-infected patients, ANRS C03 Aquitaine Cohort, France. HIV Med 2010;11:308–17.

195. Fernando SK, Finkelstein FO, Moore BA, et al. Prevalence of chronic kidney disease in an urban HIV infected population. Am J Med Sci 2008;335:89–94.

196. Cao Y, Gong M, Han Y, et al. Prevalence and risk factors for chronic kidney disease among HIV-infected antiretroviral therapy-naïve patients in mainland China: a multicenter cross-sectional study. Nephrology 2013;18:207–12.

197. Rustrarazo SB, Fuente SR, de Miguel SC, et al. Prevalence and spectrum of chronic kidney disease in HIV-positive patients: GRP031 Table 1. Eur J Hosp Pharm 2012;19:96.3–7.

198. Menezes AM, Torely J, Real L, et al. Prevalence and risk factors associated to chronic kidney disease in HIV-infected patients on HAART and undetectable viral load in Brazil. PLoS One 2011;6:e26042.

199. Sicotte M, Langlois EV, Aho J, et al. Association between nutritional status and the immune response in HIV+ patients under HAART: a systematic review and protocol for a systematic review. Syst Rev 2014;3:9.

200. Taylor BS, Sobieszczcyk ME, McCutchan FE, et al. The challenge of HIV-1 subtype diversity. N Engl J Med 2008;358:1590–602.

201. Wools-Kaloustian KK, Gupta SK. Will there be an epidemic of HIV-related chronic kidney disease in sub-Saharan Africa? Too soon to tell? Kidney Int 2008;74:845–7.

202. Pokroy-Shapira E, Gelernter I, Molad Y. Evolution of chronic kidney disease in patients with systemic lupus erythematosus over a long-period follow-up: a single-center inception cohort study. Clin Rheumatol 2014;33:649–57.

203. Mak A, Mok CC, Chu WP, et al. Renal damage in systemic lupus erythematosus: a comparative analysis of different age groups. Lupus 2007;16:28–34.

204. Rabbani MA, Tahir MH, Siddiqui BK, et al. Renal involvement in systemic lupus erythematosus in Pakistan. J Pak Med Assoc 2005;55:328–32.

205. Chiu HY, Huang HL, Li CH, et al. Increased Risk of Chronic Kidney Disease in Rheumatoid Arthritis Associated with Cardiovascular Complications - A National Population-Based Cohort Study. PLoS One 2015;10:e0136508.

206. Barsoum RS. End-stage renal disease in North Africa. Kidney Int Suppl 2003;83:S111–4.

207. Naicker S. End-stage renal disease in Sub-Saharan Africa. Kidney Int Suppl 2013;3:161–3.

208. Naicker S. Challenges for nephrology practice in Sub-Saharan Africa. Nephrol Dial Transplant 2010;25:649–50.

209. Noubiap JJ, Naidoo J, Kengne AP, et al. Prevalence of chronic kidney disease–spectrum of chronic kidney disease in HIV-infected patients in mainland China: a multicenter cross-sectional study. Kidney Int 2013;83:1611–12.

210. Estrada J, Jirillo E, Lazzari EM, et al. HAART protocol for a systematic review.BMJ Open 2018;8:e015069. doi:10.1136/bmjopen-2016-015069

32

Abd ElHafeez S, et al. BMJ Open 2018;8:e015069. doi:10.1136/bmjopen-2016-015069

BMJ Open. First published as 10.1136/bmjopen-2016-015069 on 10 January 2018. Downloaded from bmj.com on January 30, 2024 by guest. Protected by copyright.