Retrospective Study

Fatal arterial hemorrhage after pancreaticoduodenectomy: How do we simultaneously accomplish complete hemostasis and hepatic arterial flow?

Yasuyuki Kamada, Tomohide Hori, Hidekazu Yamamoto, Hideki Harada, Michihiro Yamamoto, Masahiro Yamada, Takefumi Yazawa, Ben Sasaki, Masaki Tani, Asahi Sato, Hikotaro Katsura, Ryotaro Tani, Ryuhei Aoyama, Yudai Sasaki, Masaharu Okada, Masazumi Zaima

Abstract

BACKGROUND
Although arterial hemorrhage after pancreaticoduodenectomy (PD) is not frequent, it is fatal. Arterial hemorrhage is caused by pseudoaneurysm rupture, and the gastroduodenal artery stump and hepatic artery (HA) are frequent culprit vessels. Diagnostic procedures and imaging modalities are associated with certain difficulties. Simultaneous accomplishment of complete hemostasis and HA flow preservation is difficult after PD. Although complete hemostasis may be obtained by endovascular treatment (EVT) or surgery, liver infarction caused by hepatic ischemia and/or liver abscesses caused by biliary ischemia may occur. We herein discuss therapeutic options for fatal arterial hemorrhage after PD.

AIM
To present our data here along with a discussion of therapeutic strategies for fatal arterial hemorrhage after PD.

METHODS
We retrospectively investigated 16 patients who developed arterial hemorrhage after PD. The patients’ clinical characteristics, diagnostic procedures, actual treatments (transcatheter arterial embolization (TAE), stent-graft placement, or surgery), clinical courses, and outcomes were evaluated.
Review Board of Shiga General Hospital, Moriyama, Japan.

Informed consent statement: The patients involved in this study provided written informed consent authorizing the use and disclosure of their protected health information.

Conflict-of-interest statement: None of the authors have any financial conflicts of interest to declare.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/License/s/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: Japan

Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B, B
Grade C (Good): C, C
Grade D (Fair): 0
Grade E (Poor): 0

Received: February 3, 2021
Peer-review started: February 3, 2021
First decision: March 1, 2021
Revised: March 7, 2021
Accepted: March 19, 2021
Article in press: March 19, 2021
Published online: April 27, 2021
P-Reviewer: Mozzetto L, Suc B
S-Editor: Gao CC

RESULTS
The frequency of arterial hemorrhage after PD was 5.5%. Pancreatic leakage was observed in 12 patients. The onset of hemorrhage occurred at a median of 18 d after PD. Sentinel bleeding was observed in five patients. The initial EVT procedures were stent-graft placement in seven patients, TAE in six patients, and combined therapy in two patients. The rate of technical success of the initial EVT was 75.0%, and additional EVTs were performed in four patients. Surgical approaches including arterioporal shunting were performed in eight patients. Liver infarction was observed in two patients after TAE. Two patients showed a poor outcome even after successful EVT. These four patients with poor clinical courses and outcomes had a poor clinical condition before EVT. Fourteen patients were successfully treated.

CONCLUSION
Transcatheter placement of a covered stent may be useful for simultaneous accomplishment of complete hemostasis and HA flow preservation.

Key Words: Pancreaticoduodenectomy; Endovascular treatment; Stent-graft; Covered stent; Transcatheter arterial embolization; Arterioporal shunting

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Arterial hemorrhage after pancreaticoduodenectomy is fatal. This hemorrhage is caused by pseudoaneurysm rupture, and the gastroduodenal artery stump and hepatic artery are frequent culprit vessels. Simultaneous accomplishment of complete hemostasis and hepatic artery flow preservation is difficult after pancreaticoduodenectomy. Although complete hemostasis may be obtained by transcatheter arterial embolization or surgery, liver infarction and/or abscesses may occur. We here evaluate our experience including actual treatments (transcatheter arterial embolization, stent-graft placement, or surgery), and discuss therapeutic strategies. Transcatheter placement of a covered stent is useful for simultaneous accomplishment of complete hemostasis and hepatic arterial flow preservation.

Citation: Kamada Y, Hori T, Yamamoto H, Harada H, Yamamoto M, Yamada M, Yazawa T, Sasaki B, Tani M, Sato A, Katsura H, Tani R, Aoyama R, Sasaki Y, Okada M, Zaima M. Fatal arterial hemorrhage after pancreaticoduodenectomy: How do we simultaneously accomplish complete hemostasis and hepatic arterial flow? World J Hepatol 2021; 13(4): 483-503
URL: https://www.wjgnet.com/1948-5182/full/v13/i4/483.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i4.483

INTRODUCTION
The mortality rate after pancreaticoduodenectomy (PD) is currently < 5%[4,8-11] because surgical procedures and perioperative management techniques have been well established[1,4,8-11]. However, postoperative complications still remain a matter of concern[4,12,13-18]. Although arterial hemorrhage after PD is not frequent, it is fatal. Its mortality rate reportedly ranges from 10% to 60%[12,14,12,14-23], and it easily results in shock and coagulopathy[11,12,20]. Arterial hemorrhage is mainly caused by pseudoaneurysm rupture of a splanchic artery[18,24], and the gastroduodenal artery (GDA) stump, common hepatic artery (CHA), and proper hepatic artery (PHA) are the most frequent culprit vessels[13,18,20,21]. Diagnostic and treatment strategies should be decided on a case-by-case basis[11,12,20].

Arterial flow, especially in the liver, is modified after PD (Figure 1). Briefly, the hepatopetal flow of the hepatic artery (HA) depends on the blood supply from the celiac artery (e.g., the CHA and PHA), not from the superior mesenteric artery (SMA) [e.g., the inferior pancreaticoduodenal artery (IPDA) and retrograde-flowing GDA] and collateral circulation (e.g., hepatopetal collaterals via the inferior phrenic artery)[16,8,25,26]. This leads to a simple question: How do we simultaneously accomplish complete hemostasis and HA flow preservation? Endovascular treatment (EVT) [e.g.,
TAE was performed as the EVT procedure in this study. We intend to arrest fatal leakage according to the criteria established by the International Study Group of Pancreatic Surgery. Pancreatic leakage was diagnosed using a gradual increase in total serum aspartate aminotransferase concentration or a sudden increase in total bilirubin concentration. Liver infarction was mainly diagnosed by imaging findings. A sudden increase in total bilirubin concentration was used as supporting evidence. Complete hemostasis of fatal hemorrhage and preservation of HA flow should be simultaneously obtained; however, this may be difficult after PD because the hepatopetal arterial supply has been modified. During the 14-year period (from January 2007 to December 2020), 291 PDs were performed in our institution. Fatal arterial hemorrhage occurred in 16 patients who underwent PD, and these patients were enrolled in this study. The patients’ mean age at the time of PD was 73.4 ± 7.7 years, and the patients comprised 11 men and 5 women. The types of PD and postoperative complications are summarized in Table 1. The median follow-up duration after PD was 1.34 years [range, 14 d (death) to 9.55 years]. The clinical features, management strategy, and outcome of arterial hemorrhage were evaluated.

Surgical procedures of PD
The surgical procedures of PD have been described in detail elsewhere. Briefly, the GDA from the celiac artery and IPDA from the SMA were cut after double ligation using a locking loop knot. Lymphadenectomy and nerve dissection were performed in patients with malignancies in accordance with the Japanese guideline. The GDA from the celiac artery and IPDA from the SMA were cut after double ligation using a locking loop knot. Inherent reconstructions during subtotal stomach-preserving PD were performed by the modified Child’s method with Braun’s anastomosis. During pancreaticojunostomy, an intraductal lost stent (pancreatic duct tube, 5 Fr, burled, MD41515; Sumitomo Bakelite Co., Ltd., Tokyo, Japan) was placed, and duct-to-jejunal anastomosis was performed with interrupted polydioxanone sutures (4-0 ASSP504-0IIN, ASFLEX, 75 cm; Kono Seisakusho Co., Ltd., Tokyo, Japan) was placed, and duct-to-jejunal anastomosis was performed with interrupted polydioxanone sutures (4-0 ASSP504-0IIN, ASFLEX, 75 cm; Kono Seisakusho Co., Ltd., Tokyo, Japan). Adequate approximation of the pancreatic stump and jejunal wall was ensured with interrupted polyvinylidene fluoride sutures (4-0 ASSP504-0IIN, ASFLEX, 75 cm; Kono Seisakusho Co., Ltd., Ichikawa, Chiba, Japan). Cholecdochojunostomy was performed with interrupted polydioxanone sutures. A linear stapler was employed for gastrojejunostomy, and the entry hole was closed by hand suturing in a layer-to-layer fashion. Braun’s anastomosis was also performed by hand suturing in a layer-to-layer fashion.

Liver infarction caused by hepatic ischemia
Liver infarction was mainly diagnosed by imaging findings. A sudden increase in the serum aspartate aminotransferase concentration or a gradual increase in the total bilirubin concentration was used as supporting evidence.

Pancreatic leakage
Pancreatic leakage was diagnosed according to the criteria established by the International Study Group of Pancreatic Surgery.

TAE
TAE was performed as the EVT procedure in this study. We intend to arrest fatal
Case number	Primary disease	Type of PD	Lymphadenectomy (categorization)	Nerve dissection	Associated pancreatitis	Pancreatic leakage	Postoperative complications	Hemorrhage onset	Sentinel bleeding	Symptoms	Sepsis	Shock	Liver ischemia
1	Insulinoma	SSpPD	No	No	No	Yes	-	7	No	Active bleeding from intraperitoneal drain	Yes	Yes	No
2	Gastric cancer	PD	Yes (D2)	No	No	Yes	-	20	No	Bleeding from wound	Yes	Yes	No
3	Gallbladder cancer	HPD	Yes (regional)	Yes	No	Yes	-	58	No	Hematemesis	No	No	No
4	Neuroendocrine tumor	Laparoscopic PD	No	No	No	Yes	-	18	Yes	Active bleeding from intraperitoneal drain	No	No	No
5	Bile duct cancer	PD	Yes (regional)	No	Yes	No	Digestive anastomotic failure	11	No	Active bleeding from intraperitoneal drain	No	No	No
6	Pancreatic cancer	SSpPD	Yes (D2)	Yes	Yes	Yes	-	22	No	Active bleeding from intraperitoneal drain	No	No	No
7	Bile duct cancer	SSpPD	Yes (regional)	Yes	No	Yes	-	14	No	Active bleeding from intraperitoneal drain	Yes	No	No
8	Gastric cancer	PD	Yes (D2+)	No	No	No	Ruptured suture (staple line)	32	Yes	Active bleeding from intraperitoneal drain	Yes	Yes	No
9	Pancreatic cancer	SSpPD	Yes (D2)	Yes	Yes	No	-	6	Yes	Active bleeding from intraperitoneal drain	Yes	Yes	No
10	Pancreatic cancer	SSpPD	Yes (D2)	Yes	Yes	Yes	-	16	No	Melena	No	No	Yes
11	Pancreatic metastasis from renal cancer	SSpPD	Yes (D2)	No	No	Yes	-	30	Yes	Active bleeding from intraperitoneal drain	No	Yes	No
12	Ampullary cancer	SSpPD	Yes (D1)	No	No	Yes	-	6	Yes	Active bleeding from intraperitoneal drain	No	Yes	No
13	Pancreatic cancer	PD	Yes (D2)	Yes	Yes	Yes	-	14	No	Active bleeding from intraperitoneal drain	Yes	Yes	No
14	Intraductal papillary mucinous neoplasm	PpPD	No	No	No	Yes	-	22	No	Active bleeding from intraperitoneal drain	Yes	Yes	No
15	Pancreatic cancer	SSpPD	Yes (D1)	No	Yes	No	Biliary necrosis	12	No	Active bleeding from intraperitoneal drain	Yes	Yes	No
16	Pancreatic cancer	SSpPD	Yes (D2)	Yes	Yes	Yes	-	28	No	Abdominal pain	Yes	Yes	Yes
hemorrhage by placement of microcoils (Deltaplush; Codman & Shurtleff, Inc., Raynham, MA, United States) in the pseudoaneurysm and/or culprit artery.

Stent-graft placement
The EVT procedures involved transcatheter placement of a stent-graft. In general, procedures of stent-graft placement were performed under local anesthesia. The target artery was dilated by a balloon catheter (Graftmaster; Abbott Laboratories, Chicago, IL, United States). Balloon catheter pressures was increased in manner of 2 atm per 5 s, and the maximum of intracatheter pressure was 15 atm (1520 kPa). A covered stent (Graftmaster; Abbott Laboratories), not a bare stent, was placed at the culprit artery. The size and length of covered stent was carefully decided on a case-by-case basis, based on angiographic findings after balloon dilation. We aimed to simultaneously obtain complete hemostasis of fatal hemorrhage and preservation of HA flow. The second overlapping stent-graft was implanted in an overlapping fashion, if needed. The actual procedure is shown in Figure 2.

Arterioportal shunting
An arterioportal shunt was surgically created (Figure 3). The ileocolic vein and artery were anastomosed in a side-to-side fashion using polypropylene suture. Thereafter, the hepatopetal flow of the portal vein (PV) was well oxygenated.

Ethical approval
This retrospective study was approved by the ethics review committee for clinical studies of our institution. The study was performed in accordance with the ethical guidelines of the Declaration of Helsinki. All patients involved in this study provided written informed consent authorizing the use and disclosure of their protected health information.

Statistical analysis
All results are shown as mean ± SD or median (range). Survival rates were calculated using the Kaplan-Meier method. All calculations were performed using statistical software (SPSS Inc., Chicago, IL, United States).
Figure 1 Arterial flow before and after pancreaticoduodenectomy. During pancreaticoduodenectomy (PD), the gastroduodenal artery (GDA) from the celiac artery and inferior pancreaticoduodenal artery (IPDA) from the superior mesenteric artery are ligated and then cut. Additionally, the pancreaticoduodenal arcade is resected. Hence, arterial flow to the liver is modified after PD. A hepatopetal blood supply from the GDA and IPDA via the pancreaticoduodenal arcade can no longer be expected. The hepatic artery flow depends on the celiac artery. Lymphadenectomy and nerve dissection for treatment of malignancies might render visceral arteries vulnerable to postoperative wall injuries. Arterial arcades still remain in the pancreatic remnant. ASPDA: Anterior superior pancreaticoduodenal artery; CA: Celiac artery; CHA: Common hepatic artery; DPA: Dorsal pancreatic artery; FJA: First jejunal artery; GDA: Gastroduodenal artery; HA: Hepatic artery; IPDA: Inferior pancreaticoduodenal artery; LGA: Left gastric artery; LHA: Left hepatic artery; PHA: Proper hepatic artery; RGA: Right gastric artery; RGEA: Right gastroepiploic artery; RHA: Right hepatic artery; PSPDA: Posterior superior pancreaticoduodenal artery; SA: Splenic artery; SJA: Second jejunal artery; SMA: Superior mesenteric artery.

Figure 2 Actual procedures of transcatheter placement of covered stent. Actual procedures in patient 7 and patient 16 are shown. A: Patient 7, diagnostic angiography clearly detected the bleeding sites; B: Patient 7, the target artery was dilated by a balloon catheter; C: Patient 7, a covered stent was placed at the culprit artery; D: Patient 16, diagnostic angiography clearly detected the bleeding sites; E: Patient 16, the target artery was dilated by a balloon catheter; F: Patient 16, the second overlapping stent-graft was implanted in an overlapping fashion. The hepatopetal arterial flow resumed (C and F). Hence, complete hemostasis and preservation of hepatic artery flow were simultaneously obtained.

RESULTS

Institutional frequency of arterial hemorrhage after PD
The overall frequency of arterial hemorrhage after PD was 5.5% (16 of 291 patients who underwent PD in our institution).
Figure 3 Actual finding of arteriportal shunting. The ileocecal vein and artery were anastomosed in a side-to-side fashion. In a patient in whom the initial endovascular treatment failed (patient 14), hemostasis was completed by additional transcatheter arterial embolization, and liver infarction subsequently occurred. Therefore, an arteriportal shunt was surgically created to oxygenate the portal vein flow. In this case, arteriportal shunting minimized progression to fatal liver infarction due to hepatic ischemia and refractory liver abscess due to biliary ischemia. PV: Portal vein.

Patients’ characteristics and PD procedures

The primary diseases and surgical procedures are summarized in Table 1. Thirteen (81.3%) patients had malignancies. Lymphadenectomy and/or nerve dissection was performed in 12 (75.0%) patients.

Associated pancreatitis and pancreatic leakage

Associated pancreatitis occurred in seven patients, and nine (56.3%) patients had a soft pancreatic remnant (i.e., pancreatic remnant without associated pancreatitis) (Table 1). Pancreatic leakage was observed in 12 (75.0%) patients (Table 1).

Hemorrhage onset, symptoms, and patients’ conditions before EVT

The clinical characteristics at hemorrhage onset are summarized in Table 1. Hemorrhage onset occurred at a median of 18 d (range, 6-58 d) after PD. Sentinel bleeding was observed in 5 (31.3%) patients. Arterial hemorrhage was externalized through the intraperitoneal drain or wound in 13 (81.3%) patients and through the digestive tract in 2 (16.7%) patients. Sepsis, shock (including an unstable hemodynamic state), and liver infarction were observed in 9 (56.3%), 11 (68.8%), and 2 (16.7%) patients, respectively. Notably, four patients with poor clinical courses after EVT (Patients 13-16) had a poor clinical condition before EVT (Table 1).

Bleeding site, image findings, and definitive diagnosis

The most common and second most common sites of bleeding were the GDA stump (7 patients, 43.8%) and HA (4 patients, 25.0%), respectively (Table 2). Computed tomography (CT) angiography was the diagnostic modality in 13 (81.3%) patients. The imaging findings of CT angiography and angiography are summarized in Table 2. The median time from hemorrhage onset to definitive diagnosis and the median time from hemorrhage onset to EVT were 0 d (range, 0-1 d) and 0 d (range, 0-14 d), respectively (Table 2).

Actual EVT procedures, technical success of EVT, and long-term results after EVT

The treated arteries and ranges are summarized in Table 3. The initial EVT procedures were stent-graft placement in 7 (43.8%) patients, TAE in 6 (37.5%) patients, and combined therapy involving stent-graft placement and TAE in 2 (16.7%) patients.
Table 2 Definitive diagnosis

Case number	Bleeding site	Diagnostic modality	CT angiographic findings	Angiographic findings	Time from hemorrhage onset to definitive diagnosis (d)	Time from hemorrhage onset to EVT (d)
1	RGA	CT angiography	Extravasation	Extravasation	0	0
2	SA	CT angiography	Extravasation	Extravasation	0	14¹
3	RHA	CT angiography	Enlargement of pseudoaneurysm	Pseudoaneurysm; Extravasation	1	0
4	Cholangiojejunostomy	Clinical findings²	None	None	0	0
5	DPA	CT angiography	Extravasation	Extravasation	0	0
6	GDA stump	CT angiography	Extravasation	Extravasation	0	0
7	RHA	CT angiography	Extravasation	Extravasation	0	0
8	GDA stump	CT angiography	Pseudoaneurysm; Extravasation	Pseudoaneurysm	0	0
9	DPA	CT angiography	Extravasation	Extravasation; Pseudoaneurysm	0	0
10	PHA	CT angiography	Pseudoaneurysm	Obstruction of CHA; Pseudoaneurysm	0	1
11	RHA	CT angiography	Pseudoaneurysm	Pseudoaneurysm	0	0
12	GDA stump	Laparotomy³	None (hematoma only)	None (stenosis of CHA)	0	0
13	GDA stump	Angiography	Extravasation	Extravasation	0	0
14	GDA stump	CT angiography	Extravasation	Extravasation; Pseudoaneurysm	0	0
15	GDA stump	CT angiography	Minor extravasation	Extravasation; Pseudoaneurysm	0	1
16	GDA stump	CT angiography	Pseudoaneurysm; Extravasation	Pseudoaneurysm	0	0

¹Hematemesis and endoscopic findings.

²Two surgical approaches were challenged during 14 d.

³Bleeding from the GDA was detected during laparotomy, even though computed tomography angiography and angiographic findings did not reveal extravasation. The endovascular treatment was done under the laparotomy. CHA: Common hepatic artery; CT: Computed tomography; DPA: Dorsal pancreatic artery; EVT: Endovascular treatment; GDA: Gastroduodenal artery; RGA: Right gastric artery; RHA: Right hepatic artery; PHA: Proper hepatic artery; SA: Splenic artery.

The initial EVT failed and/or was incomplete in 4 (25.0%) patients, and the rate of technical success of the initial EVT was 75.0% (Table 3). The reasons for failed and/or incomplete EVT were stenosis in 2 patients, and subtle bleeding in one patient, and difficulty in packing in 1 patient (Table 3). Additional EVTs were performed in 4 (25.0%) patients (Table 3). Antiplatelet and/or anticoagulation agents were administered to 5 (31.3%) patients (Table 3), and these 5 patients continuously received medications even after discharge from our hospital.

Recanalization did not occur (0.0%) throughout the long-term follow-up after TAE (Table 3). Collateral circulation was observed in 2 (25.0%) of eight patients who underwent TAE (Table 3). Additionally, all implanted stent-grafts (100.0%) maintained their patency throughout the long-term follow-up after stent-graft placement (Table 3).

Surgical approaches including arterioporal shunting

Surgical approaches were utilized in eight patients and are summarized in Table 3. In one patient who underwent failed EVT (patient 10), hemostasis and ligation of the CHA were surgically performed under laparotomy. In one patient in whom the initial EVT failed (patient 14), hemostasis was completed by additional TAE, and liver infarction subsequently occurred. Therefore, an arterioporal shunt was surgically created to oxygenate the PV flow (Figure 3). In this case, arterioporal shunting...
Table 3 Endovascular treatment

Case number	Treated artery (target and range)	TAE	Stent-graft placement	Technical success during EVT	Reasons for failed or incomplete EVT	Additional surgical approaches (day number)	Additional EVT (day number)	Antiplatelet and/or anticoagulation agents (number)	Long-term results of EVT	
1	RGA		Coiling	-	Yes	-	No	No	No (4.39) No (4.39) -	
2	CA; SA		Covered stent (1); -	3.5; - 19; -	No	Stenosis	Hemostasis (-7 and - 6)	Stent regrafting (+ 1); Coiling (+ 1) No	-	
3	PHA-LHA		Covered stent (1)	3.5 19	Yes	-	No	No	Yes (1) No (4.39) -	
4	SMA branch; RHA		Covered stent (1)	3.5 19	Yes	-	Lavage and cholangio-jejunal anastomosis (+ 7)	Stent regrafting (+ 28) No	No (6.14); - No (6.14); - Patent (6.14)	
5	SA branch		Coiling	-	Yes	-	No	No	No (0.46) No (0.46) -	
6	CHA-PHA		Covered stent (1)	3.5 19	Yes	-	Lavage and cholangio-jejunal anastomosis (+ 3)	No	-	
7	RHA		Covered stent (1)	3.5 19	Yes	-	-	Patent (1.27)		
8	GDA		Coiling	-	No	Subtle bleeding*	No	No	No (0.24) No (0.24) -	
9	DPA		Coiling	-	Yes	-	Hemostasis and ligation of CHA (± 0)	No	No	No (0.44) No (0.44) -
10	-		-	-	No	Stenosis	Hemostasis and ligature of CHA (± 0)	No	Yes (2)	-
11	RHA		Covered stent (2)	3.0 19	Yes	-	Removal of hematoma (+ 18)	Stent regrafting (+33) Yes (2)	-	
12	CHA-PHA		Covered stent (1)	3.5 19	Yes	-	Removal of hematoma (+ 0)	No	No	-
13	CHA-PHA		Coiling	-	Yes	-	Difficulty in packing Arterio-portal shunting (+ 4)	CHA coiling (+ 1) Yes (1)	Yes (7.72) No (7.72) -	
14	GDA		Covered stent (1)	3.5 19	Yes	-	No	No	No (0.46) No (0.46) -	
15	GDA		Covered stent (1)	3.5 19	Yes	-	No	No	-	

Note: *Subtle bleeding*
Liver infarction due to hepatic ischemia
Liver infarction after EVT was observed in 2 (12.5%) patients (patients 13 and 14), and these patients underwent TAE (Tables 3 and 4). Complete hemostasis was obtained by TAE, but hepatopetal arterial flow was completely lost (Figure 4). Liver infarction due to hepatic ischemia subsequently occurred (Figure 4). In these patients, the serum aspartate aminotransferase concentration clearly increased after EVT (Figure 5). Fortunately, both patients successfully recovered from arterial hemorrhage after PD and liver infarction after TAE (Table 4).

Clinical course and outcome after EVT
The patients’ clinical courses and outcomes after EVT are summarized in Table 4. Three patients (patients 2, 15, and 16) died during hospitalization, and the actual survival curves after PD and EVT are shown in Figure 6. The mean hospital stay after PD was 66.8 ± 27.7 d among 13 patients who achieved hospital discharge. Fourteen (87.5%) patients were successfully treated because the cause of death in 1 patient (patient 2) was unrelated to arterial hemorrhage (cancer-related death).

Two patients (patients 15 and 16) had a poor outcome even after successful EVT. These 2 patients had a poor clinical condition before EVT (Table 1). One patient (patient 15) had sepsis, shock, and disseminated intravascular coagulation before EVT and died of these conditions even after successful stent-graft placement (Tables 1 and 4). The other patient (patient 16) had sepsis, shock, and liver infarction before EVT (Table 1 and Figure 5) and finally died of liver failure even after successful stent-graft placement (Table 4).

DISCUSSION
In general, visceral artery pseudoaneurysms are rare but fatal[1-13,16-21]. The HA (
Case number	Complication after EVT	Liver infarction after EVT	Hospital death (day number and POD)	Clinical success	Follow-up term (yr)	Cause of death	Prognosis (dead or alive)
1	-	No	No	Yes	5.57	Cancer-related death	Dead
2	-	No	Yes (+ 61 and 94)	Yes	0.26	Cancer-related death	Dead
3	-	No	No	Yes	0.72	Cancer-related death	Dead
4	-	No	No	Yes	8.36	-	Alive
5	-	No	No	Yes	0.56	Cancer-related death	Dead
6	Bleeding	No	No	Yes	1.04	Cancer-related death	Dead
7	-	No	No	Yes	1.34	Cancer-related death	Dead
8	-	No	No	Yes	0.52	Cancer-related death	Dead
9	-	No	No	Yes	0.47	Cancer-related death	Dead
10	-	No	No	Yes	1.95	-	Alive
11	-	No	No	Yes	1.69	-	Alive
12	-	No	No	Yes	1.46	-	Alive
13	-	Yes	No	Yes	1.74	Cancer-related death	Dead
14	Bleeding; Liver abscess	Yes	No	Yes	9.55	-	Alive
15	-	No	Yes (+ 1 and 14)	No	0.04	Bleeding, sepsis and DIC	Dead
16	-	No	Yes (+ 3 and 31)	No	0.08	Liver failure	Dead

1. The day number from the initial EVT.
2. Short-term clinical outcome. EVT: Endovascular treatment; DIC: Disseminated intravascular coagulation; POD: Postoperative day after pancreaticoduodenectomy.

The table above illustrates the clinical course and outcome after endovascular treatment, detailing complications such as liver infarction, hospital death, and clinical success. The causes of death vary, with a primary focus on cancer-related complications.

Pancreatic leakage compromises the arterial wall and may indicate a trend toward higher prevalence of soft pancreatic remnant in patients with arterial hemorrhage. Leaving approximately 1 cm of the GDA stump, spreading an omental flap, and wounding the HA by the round ligament of the liver have been suggested to minimize direct contact of pancreatic juice with adjacent vessels.

Pancreatic juice or localized infection gradually causes arterial wall erosions, resulting in pseudoaneurysms. Pseudoaneurysm rupture causes sudden-onset, massive, and active hemorrhage. Studies have shown a trend toward a higher prevalence of a soft pancreatic remnant in patients with arterial hemorrhage. Leaving approximately 1 cm of the GDA stump, spreading an omental flap, and wounding the HA by the round ligament of the liver have been suggested to minimize direct contact of pancreatic juice with adjacent vessels.
Figure 4 Liver infarction and abscess after transcatheter arterial embolization. Actual findings in patient 13 and patient 14 are shown. A: Patient 13, the bleeding sites were detected; B: Patient 13, complete hemostasis was obtained by transcatheter arterial embolization, but the hepatopetal arterial flow was completely lost (dotted orange arrows); C: Patient 13, the patient subsequently developed liver infarction due to hepatic ischemia (dotted yellow circles); D: Patient 14, the bleeding sites were detected; E: Patient 14, complete hemostasis was obtained by TAE, but the hepatopetal arterial flow was completely lost (dotted orange arrows); F: Patient 14, the patient subsequently developed liver infarction due to hepatic ischemia (dotted yellow circles) and a liver abscess due to biliary ischemia (dotted orange circle).

Figure 5 Serum aspartate aminotransferase concentration before and after endovascular treatment. Actual changes before and after endovascular treatment (EVT) are shown. In two patients who developed liver infarction after transcatheter arterial embolization (patients 13 and 14), the serum aspartate aminotransferase concentration was clearly elevated after EVT (orange lines). A high serum aspartate aminotransferase concentration was observed in a patient who had liver infarction before EVT (patient 16), and this patient finally died of liver failure even after successful stent-graft placement. EVT: Endovascular treatment.

Diagnostic procedures and imaging modalities are associated with certain difficulties\cite{1,6,7,12,17,18,20,26,28,54}. Even based on laparotomy findings, definitive diagnosis may be difficult\cite{54}. Bleeding from the digestive tract or intraperitoneal drain should be considered a warning because it is an important prelude to massive and active hemorrhage. The term “sentinel bleeding” was first coined in 1989 by Shankar and
Figure 6 Short-term survival after pancreaticoduodenectomy and endovascular treatment. Three patients (patients 2, 15, and 16) died during hospitalization, and the actual survival curves after pancreaticoduodenectomy (PD) and endovascular treatment (EVT) are shown. Fourteen (87.5%) patients were successfully treated because the cause of death in one patient (patient 2) was unrelated to arterial hemorrhage (cancer-related death). A: PD; B: EVT. EVT: Endovascular treatment; PD: Pancreaticoduodenectomy; POD: Postoperative day.

Russell and was further discussed by Brodsky and Turnbull in 1991. The incidence of sentinel bleeding is approximately 30% to 80%. Pseudoaneurysms can be detected by CT in patients with sentinel bleeding. Sentinel bleeding should be regarded very seriously, even in asymptomatic patients with conservatively treated pancreatic leakage. An accurate definitive diagnosis should be made immediately, before the patient’s unstable hemodynamic state deteriorates. Diagnostic digestive endoscopy delays adequate treatment in hemodynamically unstable patients because of pseudoaneurysm rupture. The diagnostic potential of CT angiography and diagnostic angiography have been established. Diagnostic angiographic findings include extravasation of contrast medium, pseudoaneurysm formation, non-smooth arterial intima, local vascular spasm, stenosis, and distal arterial branch expansion. Diagnostic angiography should be considered even in patients with suspected hemorrhage, and subsequent EVT should be adequately performed if necessary.

EVT represents the first-line treatment for arterial hemorrhage after PD. Arterial hemorrhage easily results in unstable hemodynamic state, sepsis, and hepatic ischemia. Prolonged hemorrhage leads to shock and coagulopathy, and further hemorrhage results in disseminated intravascular coagulation. Complicated homeostasis is associated with a poor prognosis even after successful EVT, and the patient’s condition before EVT is strongly associated with complications after EVT. In fact, our two patients who had a poor clinical condition before EVT (e.g., sepsis, shock, and liver infarction) finally died even after successful EVT (Tables 1 and 4). If a patient shows any signs of a suspected hemorrhage, EVT should be performed as soon as possible before the development of complicated homeostasis. Concern exists regarding the placement of foreign bodies (i.e., coils and stent-grafts) in the setting of infection or inflammation. Intravascular stent infection can be a devastating complication, but it is very rare. In fact, stent-grafts have been used to repair infected pseudoaneurysms. Though pancreatic juice-related localized infection may associate with pseudoaneurysm and arterial wall erosion, we consider that stent-grafts can be placed even in suspicious infectious site.

Arterial hemorrhage after PD usually occurs after at least 1 wk, and delayed hemorrhage generally occurs after 1 wk. In one study, one-third of arterial
hemorrhages occurred 1 mo after PD. Hence, delayed hemorrhage is common after PD, and the median or mean time point of hemorrhage onset ranges from 18 d to 21 d after PD. Pancreatic leakage is a possible cause of delayed arterial hemorrhage, and delayed hemorrhage after PD carries a significantly higher mortality rate.

Because the GDA and IPDA were ligated and the pancreaticoduodenal arcade was resected during PD in the present study, hepatopetal blood supply via these arteries could no longer be expected (Figure 1). EVT may lead to severe complications (e.g., hepatic ischemia, liver abscess formation, and PV stenosis). The EVT technique should be decided on a case-by-case basis. Notably, the EVT procedure is strongly associated with complications after EVT. Although TAE is technically easier than stent-graft placement, liver infarction secondary to hepatic ischemia frequently occurs. Even a subtle ischemic change in the biliary tree results in intractable liver abscesses. We also experienced a case of a refractory liver abscess due to biliary ischemia (patient 14) (Figure 4F). PV stenosis easily disturbs the hepatic parenchymal perfusion, resulting in liver infarction with a poor prognosis. The rates of mortality and serious hepatic complications after EVT are approximately 20% to 50% and 20% to 80%, respectively.

TAE is advantageous for ensuring complete hemostasis, and the hemostatic rate is reportedly > 90%. TAE is technically user-friendly at the most frequent site (i.e., the GDA stump), although both the proximal and distal sides of the GDA should be completely embolized. To prevent recanalization and rebleeding, all arterial flows to the pseudoaneurysm should be completely interrupted. Although the pancreaticoduodenal arcade is removed during PD, arterial arcades remain in the pancreatic remnant (Figure 1). Revascularization using the collateral circulation has been reported after TAE; however, transcatheter techniques (e.g., isolation, packing, and embolization) are available for various forms of pseudoaneurysms. Notably, TAE is occasionally associated with serious hepatic complications caused by hepatic ischemia. The liver has many potential collateral pathways that communicate with the adjacent arterial system, and a sudden complete block of HA flow immediately after surgery may induce an ischemic insult to the liver parenchyma. Whether extrahepatic arteries (e.g., the inferior phrenic artery and left gastric artery) provide sufficient hepatopetal collateral circulation to avoid fatal hepatic ischemia after TAE remains unclear. Additionally, the liver can tolerate significant TAE without significant liver infarction because it has a dual blood supply from the HA and PV. TAE may cause liver infarction in patients with poor collateral circulation because of their postoperative status. Approximately 30% to 80% of patients develop hepatic ischemia after TAE, and approximately 20% to 40% of patients progress to liver infarction. The reported mortality rate ranges from 30% to 50%.

Simultaneous accomplishment of complete hemostasis and HA flow preservation is difficult. Transcatheter placement of a covered stent may be of value in maintaining the patency of adjacent arteries, and stent-graft placement is an ideal technique to preserve HA flow. If necessary, a second overlapping stent-graft can be implanted. Actually, we placed a second stent in two patients (Table 3). Some researchers have described patients who underwent this EVT technique, and others have documented such cases in published case series. The success rate of stent-graft placement reportedly ranges from 75% to 80% because the target arteries require a specialized stent size and/or exhibit narrowed and tortuousity. The overall mortality and clinical outcomes are affected by the patients’ conditions before stent-graft placement. The use of antiplatelet agents or heparinization after stent-graft placement in the HA is still controversial. Some clinicians do not use such agents in patients with an unstable hemodynamic state after arterial hemorrhage. However, stent-graft placement in a patient with arterial hemorrhage after surgery carries a high risk of thrombosis because the damaged wall of the HA is surrounded by localized infection and/or massive hematoma, and the HA diameter is very small. Hence, some clinicians use these agents after stent-graft placement.

Stent grafting is a technically difficult procedure and requires adaptation to vessels of various sizes. However, this EVT technique is considered the most appropriate treatment method in patients with a favorable vascular anatomy. Stent-graft placement may fail for anatomical reasons (e.g., tortuosity or variation) or because of catheter-induced vasospasm or spontaneous thrombosis within the aneurysmal wall. Actual reasons for failed or incomplete EVT in our institution were summarized in Table 3. Since stent-graft placement may technically failed due to tortuosity, variation, stenosis, vasospasm or thrombosis at the culprit
artery\cite{13,17,40,46-49}, preliminary dilatation by balloon catheter is indispensable even for self-expandable covered stent. The interventional radiologist who performs the procedure must have adequate experience and skill\cite{59,62}.

If EVT fails or is incomplete, the next management option for arterial hemorrhage is still a surgical approach\cite{2,7,62}. Surgical exploration and complete hemostasis are difficult and hazardous because of postoperative adhesions and the patient’s critical condition\cite{59,62,46-49}. Surgical treatment is usually associated with a high mortality rate (29%-58%)\cite{2,17,19,48}. Hepatopetal flow of the PV can be well oxygenated by creation of an arteriopetal shunt, and some reports have described such cases\cite{41,42}. The impact of a surgical approach involving arteriopetal shunting on the prevention of liver infarction has been documented\cite{90,91}. Although the clinical decision and optimal timing for the surgical approach of arteriopetal shunting are still controversial, we consider that the presence of subtle clinical signs of progressive liver infarction after EVT is a clear indication for arteriopetal shunting.

To our knowledge, most reports to date are limited to case reports or small series\cite{13,30,31,36,38,63,80-82,84,85}. We acknowledge that this study has several limitations. The main limitation is that this was a retrospective study with a small number of patients from a single center. Of course, we have demonstrated our individual-tailored approach. Potential limitations due to bias and a small sample size are inherent to this type of study. This represents our experience in a single institution and our views may be affected by various biases. Hence, we understand that our conclusions must be drawn with extreme caution. However, we believe that transcatheter placement of a covered stent has therapeutic advantages for arterial hemorrhage after PD, with simultaneous accomplishment of complete hemostasis and HA flow preservation.

Actual therapeutic strategies for our patients who caused arterial hemorrhage after PD were summarized in Figure 7. We currently have an institutional therapeutic strategy for arterial hemorrhage after PD based on our own experiences: (1) CT angiography is performed if general condition is stable; (2) Diagnostic angiography is immediately performed even in a suspicious patient; and (3) Covered stent is subsequently placed at the culprit artery as the first line treatment.

CONCLUSION

In conclusion, transcatheter placement of a covered stent may be a powerful tool for simultaneous accomplishment of complete hemostasis and HA flow preservation, although arterial hemorrhage after PD is generally fatal.
Kamada Y et al. Therapeutic strategy for arterial hemorrhage after PD

Figure 7 Flowchart of endovascular treatments and arteriportal shunting. Actual flowchart of our patients who caused arterial hemorrhage after pancreaticoduodenectomy was shown. ¹Image findings of computed tomography angiography and/or diagnostic angiography. ²Patients with liver infarction after transcatheter arterial embolization. ³Patients with poor outcome even after successful stent-graft placement. PD: Pancreaticoduodenectomy; HA: Hepatic artery; TAE: Transcatheter arterial embolization; EVT: Endovascular treatment; GDA: Gastroduodenal artery; RHA: Right hepatic artery; SA: Splenic artery; DPA: Dorsal pancreatic artery.

ARTICLE HIGHLIGHTS

Research background
Arterial hemorrhage after pancreaticoduodenectomy (PD) is fatal.

Research motivation
This hemorrhage is caused by pseudoaneurysm rupture, and the gastroduodenal artery stump and hepatic artery are frequent culprit vessels.

Research objectives
Simultaneous accomplishment of complete hemostasis and hepatic artery flow preservation is difficult after PD. Although complete hemostasis may be obtained by transcatheter arterial embolization or surgery, liver infarction and/or abscesses may occur.

Research methods
Arterial hemorrhage after PD is fatal. This hemorrhage is caused by pseudoaneurysm.

Research results
We here evaluate our experience including actual treatments (transcatheter arterial embolization, stent-graft placement, or surgery), and discuss therapeutic strategies.

Research conclusions
Transcatheter placement of a covered stent is useful for simultaneous accomplishment of complete hemostasis and hepatic arterial flow preservation.

Research perspectives
Therapeutic options for fatal arterial hemorrhage after PD is shown.
REFERENCES

1. Hasegawa T, Ota H, Matsuura T, Seiji K, Mugikura S, Motoi F, Unno M, Takase K. Endovascular Treatment of Hepatic Artery Pseudoaneurysm after Pancreatoduodenectomy: Risk Factors Associated with Mortality and Complications. *J Vasc Interv Radiol* 2018; 28: 50-59. e9 [PMID: 27322188] DOI: 10.1016/j.jvir.2016.04.004

2. Tien YW, Lee PH, Yang CY, Ho MC, Chiu YF. Risk factors of massive bleeding related to pancreatic leak after pancreatoduodenectomy. *J Am Coll Surg* 2005; 201: 554-559. [PMID: 16183492] DOI: 10.1016/j.jamcollsurg.2005.05.007

3. Schäfer M, Heinrich S, Pfannmutter T, Clavien PA. Management of delayed major visceral arterial bleeding after pancreatic surgery. *HPB (Oxford)* 2011; 13: 132-138 [PMID: 21241431] DOI: 10.1111/j.1477-2574.2010.00260.x

4. Yekabas EF, Wolfram L, Catuldegerim G, Habermann CR, Bogoevski D, Koenig AM, Kaif J, Schurr PG, Bubenheim M, Nolte-Enste C, Adam G, Izbicki JR. Postpancreactectomy hemorrhage: diagnosis and treatment: an analysis in 1669 consecutive pancreatic resections. *Ann Surg* 2007; 246: 269-280 [PMID: 17667506] DOI: 10.1097/01.sla.0000262953.77735.db

5. Hackert T, Büchler MW, Werner J. Surgical options in the management of pancreatic cancer. *Minerva Chir* 2009; 64: 465-476 [PMID: 19859037]

6. Blanc T, Cortes A, Goere D, Sibert A, Pessaux P, Belghiti J, Sauvanet A. Hemorrhage after pancreatoduodenectomy: when is surgery still indicated? *Am J Surg* 2007; 194: 3-9 [PMID: 17560900] DOI: 10.1016/j.amjsurg.2006.08.088

7. de Castro SM, Kuhlmann KF, Busch OR, van Delden OM, Lamérès JS, van Gulik TM, Obertop H, Gouma DJ. Delayed massive hemorrhage after pancreatic and biliary surgery: embolization or surgery? *Ann Surg* 2005; 241: 85-91 [PMID: 15621995] DOI: 10.1097/01.sla.0000150169.22834.13

8. Kapoor VK. Complications of pancreato-duodenectomy. *Rozhl Chir* 2016; 95: 53-59 [PMID: 27008166]

9. Hori T, Yamamoto H, Harada H, Yamamoto M, Yamada M, Yazawa T, Tani M, Kamada Y, Tani R, Aoyama R, Sasaki Y, Zaima M. Inferior Pancreatoduodenal Artery Aneurysm Related with Groove Pancreatitis Persistently Repeated Hemosuccus Pancreaticus Even After Coil Embolization. *Am J Case Rep* 2019; 20: 567-574 [PMID: 31006768] DOI: 10.12659/AJC.914832

10. Kimura Y, Yasukawa D, Aisu Y, Hori T. Inmanaga’s First Method for Reconstruction with Preservation of Mesojejunal Autonomic Nerves During Pylorus-Preserving Pancreatoduodenectomy. *Am J Case Rep* 2018; 19: 608-613 [PMID: 29805155] DOI: 10.12659/AJC.908817

11. Sinha S, Karthikesalingam A, Holt PJ. Importance of outcomes research in surgery. *Ann J Surg* 2012; 82: 861-862 [PMID: 23186048] DOI: 10.1111/j.1445-2197.2012.06318.x

12. Sanjay P, Fawzi A, Kuli C, Tait IS, Zealley IA, Polignano FM. Late post pancreatectomy haemorrhage. Risk factors and modern management. *JOP* 2010; 11: 220-225 [PMID: 20442515]

13. Wang MQ, Liu FY, Duan F, Wang ZJ, Song P, Fan QS. Stent-grafts placement for treatment of massive hemorrhage from ruptured hepatic artery after pancreatoduodenectomy. *World J Gastroenterol* 2010; 16: 3716-3722 [PMID: 20677346] DOI: 10.3748/wjg.v16.i29.3716

14. Ellison EC. Evidence-based management of hemorrhage after pancreatoduodenectomy. *Am J Surg* 2007; 194: 10-12 [PMID: 17560901] DOI: 10.1016/j.amjsurg.2006.12.034

15. Santoro R, Carlini M, Carboni F, Nicolas C, Santoro E. Delayed massive arterial hemorrhage after pancreatoduodenectomy for cancer. Management of a life-threatening complication. *Hepatogastroenterology* 2003; 50: 2199-2204 [PMID: 14606493]

16. Lim SJ, Park KB, Hyun DH, Do YS, Park HS, Shin SW, Cho SK, Choi DW. Stent graft placement for postsurgical hemorrhage from the hepatic artery: clinical outcome and CT findings. *J Vasc Interv Radiol* 2014; 25: 1539-1548 [PMID: 25149115] DOI: 10.1016/j.jvir.2014.06.023

17. Ding X, Zhu J, Zhu M, Li C, Jian W, Jiang X, Therapeutic management of hemorrhage from visceral artery pseudoaneurysms after pancreatic surgery. *J Gastrointest Surg* 2011; 15: 1417-1425 [PMID: 21584822] DOI: 10.1007/s11605-011-1561-3

18. Lee HG, Heo JS, Choi SH, Choi DW. Management of bleeding from pseudoaneurysms following pancreatoduodenectomy. *World J Gastroenterol* 2010; 16: 1239-1244 [PMID: 20222168] DOI: 10.3748/wjg.v16.i10.1239

19. Hur S, Yoon CJ, Kang SG, Dixon R, Han HS, Yoon YS, Cho YJ. Transcatheter arterial embolization of gastroduodenal artery stump pseudoaneurysms after pancreatic surgery: safety and efficacy of two embolization techniques. *J Vasc Interv Radiol* 2011; 22: 294-301 [PMID: 21353982] DOI: 10.1016/j.jvir.2010.11.020

20. Xu HF, Zha X, Chen H, Wang XD, Cao G, Liu P, Gao S, Guo JH. [Angiographic findings and interventional therapy for post-pancreatoduodenectomy hemorrhage]. *Zhonghua Yi Xue Za Zhi* 2013; 93: 55-57 [PMID: 23578457]

21. Lee JH, Hwang DW, Lee SY, Hwang JW, Song DK, Gwon DI, Shin JH, Ko GY, Park KM, Lee YJ. Clinical features and management of pseudoaneurysmal bleeding after pancreatoduodenectomy. *Am Surg* 2012; 78: 309-317 [PMID: 22524769] DOI: 10.1177/000313481207800339

22. Neri G, Moro E, Zampregno R, Sandri R. [Anomalous chordae tendineae of the left ventricle. Echocardiographic study]. *G Ital Cardiol* 1984; 14: 939-940 [PMID: 6526210]

23. Mine T, Murata S, Ueda T, Takeda M, Onozawa S, Yamaguchi H, Kawano Y, Kumita S. Contribution of extrahepatic collateral vessels to liver parenchymal circulation after proper hepatic artery embolization. *J Gastroenterol Hepatol* 2014; 29: 1515-1521 [PMID: 24628501] DOI:
Kamada Y et al. Therapeutic strategy for arterial hemorrhage after PD

10.1111/jgh.12571

24 Rumstad B, Schwab M, Korth P, Samman M, Trede M. Hemorrhage after pancreateoduodenectomy. *Ann Surg* 1998; 227: 236-241 [PMID: 9488522 DOI: 10.1097/00000658-199802000-00013]

25 Sato N, Yamaguchi K, Shimizu M, Morisaki T, Yokohata K, Chijiwa K, Tanaka M. Coil embolization of bleeding visceral pseudoaneurysms following pancreatectomy: the importance of early angiography. *Arch Surg* 1998; 133: 1099-1102 [PMID: 9790208 DOI: 10.1001/archsurg.133.10.1099]

26 Okuno A, Miyazaki M, Ito H, Ambrus S, Yoshidome H, Shimizu H, Nakagawa K, Shimizu Y, Nukui Y, Nakajima N. Nonsurgical management of ruptured pseudoaneurysm in patients with hepatobiliary pancreatic diseases. *Am J Gastroenterol* 2001; 96: 1067-1071 [PMID: 11316418 DOI: 10.1111/j.1572-0241.2001.03691.x]

27 Desai GS, Pande PM. Gastrointestinal artery: single key for many locks. *J Hepatobiliary Pancreat Sci* 2019; 26: 281-291 [PMID: 31099488 DOI: 10.1002/jhp.636]

28 Adam G, Tas S, Cinar C, Bozkaya H, Adam F, Uysal F, Resorlu M, Unalp OV, Parıldar M, Koçak E, Özdemir H. Endovascular treatment of delayed hemorrhage developing after the pancreaticoduodenectomy procedure. *Wien Klin Wochenschr* 2014; 126: 416-421 [PMID: 24865770 DOI: 10.1007/s00081-014-0557-x]

29 Chatani S, Inoue A, Ohta S, Takaki K, Sato S, Iwai T, Murakami Y, Watanabe S, Sonoda A, Niita N, Maehira H, Tani M, Murata K. Transcatheter Arterial Embolization for Postoperative Bleeding Following Abdominal Surgery. *Cardiovasc Intervent Radiol* 2018; 41: 1346-1355 [PMID: 29955913 DOI: 10.1007/s00270-018-1021-9]

30 Harvey J, Dardik H, Impeduglia T, Woo D, DeBernardis F. Endovascular management of hepatic artery pseudoaneurysm hemorrhage complicating pancreaticoduodenectomy. *J Vasc Surg* 2006; 43: 613-617 [PMID: 16520182 DOI: 10.1016/j.jvs.2005.11.031]

31 Kaw LL Jr, Saeed M, Brunson M, Delaria GA, Dilley RB. Use of a stent graft for bleeding hepatic artery pseudoaneurysm following pancreaticoduodenectomy. *Asian J Surg* 2006; 29: 283-286 [PMID: 17098663 DOI: 10.1016/S1015-9584(09)60103-2]

32 Sato A, Yamada T, Takase K, Matsuhashi T, Higano S, Kameda T, Egawa S, Takeda K, Ishibashi T, Takahashi S. The fatal risk in hepatic artery embolization for hemostasis after pancreatic and hepatic surgery: importance of collateral arterial pathways. *J Vasc Interv Radiol* 2011; 22: 287-293 [PMID: 21353981 DOI: 10.1016/j.jvir.2010.11.023]

33 Fuji Y, Shimada H, Endo I, Yoshida K, Matsuo K, Takeda K, Ueda M, Morioka D, Tanaka K, Togo S. Management of massive arterial hemorrhage after pancreaticoduodenectomy: does embolotherapy contribute to successful outcome? *J Gastrointest Surg* 2007; 11: 432-438 [PMID: 17436126 DOI: 10.1007/s11605-006-0076-9]

34 Brodsky JT, Turnbull AD. Arterial hemorrhage after pancreateoduodenectomy. The ’sentinel bleed’. *Arch Surg* 1991; 126: 1037-1040 [PMID: 1863209 DOI: 10.1001/archsurg.1991.0143020127019]

35 Otah E, Cushin BJ, Rozenblit GN, Neff R, Otah KE, Cooperman AM. Visceral artery pseudoaneurysms following pancreaticoduodenectomy. *Arch Surg* 2002; 137: 55-59 [PMID: 11772216 DOI: 10.1001/archsurg.137.1.55]

36 Stoupis C, Ludwig K, Inderbitzin D, Do DD, Triller J. Stent grafting of acute hepatic artery bleeding following pancreatic head resection. *Eur Radiol* 2007; 17: 401-408 [PMID: 16932877 DOI: 10.1007/s00330-006-0539-2]

37 Boufi M, Belmir H, Hartung O, Ramis O, Beyer L, Alimi YS. Emergency stent graft implantation for ruptured visceral artery pseudoaneurysms. *J Vasc Surg* 2011; 53: 1625-1631 [PMID: 21530142 DOI: 10.1016/j.jvs.2011.02.003]

38 Stampfl U, Sommer CM, Bellemann N, Weitz J, Böckler D, Richter GM, Kauczor HU, Radeleff B. The use of balloon-expandable stent grafts for the management of acute arterial bleeding. *J Vasc Interv Radiol* 2012; 23: 331-337 [PMID: 22289473 DOI: 10.1016/j.jvir.2011.12.010]

39 Zhou CG, Shi HB, Liu S, Yang ZQ, Zhao LB, Xia JG, Zhou WZ, Li LS. Transarterial embolization for massive gastrointestinal hemorrhage following abdominal surgery. *World J Gastroenterol* 2013; 19: 6869-6875 [PMID: 24187463 DOI: 10.3748/wjg.v19.i40.6869]

40 Pedersen F, Isfort P, Keil S, Goerg F, Zimmermann M, Liebl M, Schulze-Hagen M, Schmeding M, Kuhl CK, Bruners P. Stentgraft Implantation for the Treatment of Postoperative Hepatic Artery Pseudoaneurysm. *Cardiovasc Intervent Radiol* 2016; 39: 575-581 [PMID: 26797022 DOI: 10.1007/s00270-015-1274-1]

41 Reese T, von Rüttberg Y, Oldhafer KJ. Portal vein arterIALIZATION for iatrogenic embolization of the hepatic artery. An old but still useful technique? *Int J Surg Case Rep* 2020; 71: 91-94 [PMID: 32446229 DOI: 10.1016/j.jscr.2020.04.022]

42 Shi Y, Su Y, Li C, Shi H, Liang Y. Revascularization of iatrogenic intraoperative injury to a major artery during hepatobiliary-pancreatic surgery: a single-center experience in China. *Minerva Chir* 2020 [PMID: 33161698 DOI: 10.23736/S0026-4733.18.07546-6]

43 Robinson K, Rajebi MR, Zimmerman N, Zanini C. Post-pancreateoduodenectomy hemorrhage of unusual origin: treatment with endovascular embolization and the value of preoperative CT angiography. *J Radiol Case Rep* 2013; 7: 29-36 [PMID: 23705050 DOI: 10.3941/jrcr.v7i4.1254]

44 Hori T, Ogawa K, Yamamoto H, Harada H, Matsumura K, Yamamoto M, Yamada M, Yazawa T, Kuriyama K, Tani M, Yasukawa D, Kamada Y, Aisui Y, Tani R, Ayama R, Nakayama S, Sasaki Y, Nishimoto K, Zaima M. Impact of continuous local lavage on pancreatic juice-related postoperative complications: Three case reports. *World J Clin Cases* 2019; 7: 2526-2535 [PMID: 31559288 DOI: 10.4253/wjcc.v7.i4.2526]
April 27, 2021
Volume 13

10.1177/152660280000700304

Kinney EV. Interventional Radiology treatment of a giant superior mesenteric artery pseudoaneurysm using a nitinol stent-graft. *Cardiovasc Intervent Radiol* 2016; 20: 510-520 [PMID: 26665657 DOI: 10.1007/s11605-015-3049-z]

Davtian OA, Saakian AB, Akopian AA, Simonian SL, Agavelian AM. [The content of middle molecules in the blood plasma of patients with proctologic diseases]. *Vrach Delo*1989: 69-71 [PMID: 26061983]

Mizuno S, Imai H, Takaki H, Tanemura A, Kuriyama N, Sakurai H, Yamakado K, Sakuma H, Isaji S. Spontaneous Rupture of an Intrasplenic Aneurysm After Pancreaticoduodenectomy for Pancreatic Ductal Adenocarcinoma. *J Emerg Med* 2015; 48: 729-730 [PMID: 25869140 DOI: 10.1016/j.EmergMed.2014.11.023]

Nakatsuka H, Sawatubashi T, Morioka N, Shimizu T, Kanda T. [Use of the round ligament of the liver to prevent post-pancrectomy hemorrhage]. *Gan To Kagaku Ryoho* 2013; 40: 1903-1905 [PMID: 24393960]

Turrini O, Moutardier V, Guiramand J, Lelong B, Bories E, Sannini A, Magnin V, Viret F, Blache JL, Giovannini M, Delpero JR. Hemorrhage after duodenopancreatectomy: impact of neoadjuvant radiochemotherapy and experience with sentinel bleeding. *World J Surg* 2005; 29: 212-216 [PMID: 15654661 DOI: 10.1007/s00268-004-7557-3]

Koukoutsis I, Bellagamba R, Morris-Stiff G, Wickremesekera S, Coldham C, Wigmere SJ, Mayer AD, Mizra DF, Buckels JA, Bramhall SR. Haemorrhage following pancreaticoduodenectomy: risk factors and the importance of sentinel bleed. *Dig Surg* 2006; 23: 224-228 [PMID: 16874003 DOI: 10.1159/000094754]

Zhao T, Sun J, Zhang Y, Nie C, Zhou G, Zhu T, Wang W, Zheng S. [Diagnosis and treatment of hemorrhage after pancreaticoduodenectomy via digital subtraction angiography and transcatheter arterial embolization]. *Zhonghua Yi Xue Za Zhi* 2015; 95: 368-370 [PMID: 26188673]

Shankar S, Russell RC. Haemorrhage in pancreatic disease. *Br J Surg* 1989; 76: 863-866 [PMID: 2765846 DOI: 10.1022/bjs.1800760833]

Munoz-Bongrand N, Sauvanet A, Denys A, Silbert A, Vilgrain V, Belghiti J. Conservative management of pancreatic fistula after pancreaticoduodenectomy with pancreaticojejunostomy. *J Am Coll Surg* 2004; 199: 198-203 [PMID: 15275873 DOI: 10.1016/j.jamcollsurg.2004.03.015]

Yeo CJ. Management of complications following pancreaticoduodenectomy. *Surg Clin North Am* 1995; 75: 913-924 [PMID: 7660254 DOI: 10.1016/0039-6010(94)07670-8]

Choi SH, Moon HJ, Heo JS, Joh JW, Kim YI. Delayed hemorrhage after pancreaticoduodenectomy. *J Am Coll Surg* 2004; 199: 186-191 [PMID: 15275871 DOI: 10.1016/j.jamcollsurg.2004.04.005]

Belli AM, Markose G, Morgan R. The role of interventional radiology in the management of abdominal visceral artery aneurysms. *Cardiovasc Intervent Radiol* 2012; 35: 234-243 [PMID: 21674280 DOI: 10.1007/s00270-011-0201-3]

Sachdev-Ost U. Visceral artery aneurysms: review of current management options. *Mt Sinai J Med* 2010; 77: 296-303 [PMID: 20506455 DOI: 10.1002/mjq.20181]

Eyheremendy EP, Mendez P, McCormack L, Primor JC, Montaño Y, Sierre S. [Endovascular treatment of an hepatic artery pseudoaneurysm following pancreaticoduodenectomy]. *Acta Gastroenterol Latinoam* 2015; 45: 80-84 [PMID: 26076520]

Tasu JP, Veselle G, Herpe G, Ferrie JC, Chan P, Boucebi S, Velasco S. Postoperative abdominal bleeding. *Diagn Interv Imaging* 2015; 96: 823-831 [PMID: 26078019 DOI: 10.1016/j.diii.2015.03.013]

Miyazawa R, Kamo M, Nishiyama T, Ohigashi S, Yagihashi K. Covered Stent Placement Using “Pull-Through” Technique for a Gastroduodenal Artery Stump Pseudoaneurysm after Pancreaticoduodenectomy. *J Vasc Interv Radiol* 2016; 27: 1743-1745 [PMID: 27926407 DOI: 10.1016/j.jvir.2016.06.033]

Clarke MG, Thomas HG, Chester JF. MRSA-infected external iliac artery pseudoaneurysm treated with endovascular stenting. *Cardiovasc Intervent Radiol* 2005; 28: 364-366 [PMID: 15886935 DOI: 10.1007/s00270-004-0254-7]

Gandin R, Pipitone V, Konda D, Pendenza G, Spinelli A, Stefanini M, Simonetti G. Endovascular treatment of a giant superior mesenteric artery pseudoaneurysm using a nitinol stent-graft. *Cardiovasc Intervent Radiol* 2005; 28: 102-106 [PMID: 15772272 DOI: 10.1007/s00270-004-0007-7]

Kinney EV, Kaebnick HW, Mitchell RA, Jung MT. Repair of mycotic paravisceral aneurysm with a fenestrated stent-graft. *J Endovasc Ther* 2000; 7: 192-197 [PMID: 10883955 DOI: 10.1177/15266280000700304]

Qu L, Jing Z, Feng R. Endoarteric stent grafting of a giant infected hepatic-celiac pseudoaneurysm. *J Vasc Intervent Radiol* 2000; 11: 1013-1019 [PMID: 11069999 DOI: 10.1016/S1050-1992(00)00272-0]
Kamada Y et al. Therapeutic strategy for arterial hemorrhage after PD

Vasc Surg 2005; 42: 159-162 [PMID: 16012466 DOI: 10.1016/j.vas.2005.03.057]

Sanada J, Matsui O, Arakawa F, Kawara M, Endo T, Ito H, Ushijima S, Endo M, Ikeda M, Miyazu K. Endovascular stent-grafting for infected iliac artery pseudoaneurysms. Cardiovasc Intervent Radiol 2005; 28: 83-86 [PMID: 16026235 DOI: 10.1007/s00270-004-0005-9]

Cho SK, Kim SS, Do YS, Park KB, Shin SW, Park HS, Choo SW, Choo IW. Ischemic liver injuries after hepatic artery embolization in patients with delayed postoperative hemorrhage following hepatobiliary pancreatic surgery. Acta Radiol 2011; 52: 393-400 [PMID: 21498292 DOI: 10.1259/ar.2011.100414]

Miura F, Asano T, Amano H, Yoshida M, Toyota N, Wada K, Kato K, Yamazaki E, Kadowaki S, Shibuya M, Maeno S, Furiu S, Takeshita K, Kotsuke Y, Takada T. Management of postoperative arterial hemorrhage after pancreato-biliary surgery according to the site of bleeding: re-laparotomy or interventional radiology. J Hepatobiliary Pancreat Surg 2009; 16: 56-63 [PMID: 19110653 DOI: 10.1007/s00534-008-0012-3]

Gwon DJ, Ko GY, Sung KB, Shin JH, Kim JH, Yoon HK. Endovascular management of extrahepatic artery hemorrhage after pancreatobiliary surgery: clinical features and outcomes of transcatheter arterial embolization and stent-graft placement. AJR Am J Roentgenol 2011; 196: W627-W634 [PMID: 21512055 DOI: 10.2214/AJR.10.5148]

Yoon YS, Kim SW, Her KH, Park YC, Ahn YJ, Jang JY, Park SJ, Suh KS, Han JK, Lee KU, Park YH. Management of postoperative hemorrhage after pancreatoduodenectomy. Hepatogastroenterology 2003; 50: 2208-2212 [PMID: 14695600]

Tessier DJ, Fowl RJ, Stone WM, Kussick MA, Abbas MA, Sarr MG, Nagerney DM, Cherry KJ, Gloviczki P. Iatrogenic hepatic artery pseudoaneurysms: an uncommon complication after hepatic, biliary, and pancreatic procedures. Ann Vasc Surg 2003; 17: 663-669 [PMID: 14564553 DOI: 10.1016/S1051-3815(03)00075-1]

Bassi C, Falconi M, Salvia R, Mascetta G, Molinari E, Pederzoli P. Management of complications after pancreaticoduodenectomy in a high volume centre: results on 150 consecutive patients. Dig Surg 2001; 18: 453-7; discussion 458 [PMID: 11799295 DOI: 10.1159/000050193]

Tsirlik T, Vasiladiades G, Koliopanous A, Kopanakis N, Katseli A, Tsipras H, Margaris H. Pancreatic leak related hemorrhage following pancreaticoduodenectomy. A case series. JOP 2009; 10: 492-495 [PMID: 19734623]

Khorsandi SE, Limongelli P, Jackson JE, Tait P, Williamson RC, Habib NA, Jiao LR. Management of delayed arterial hemorrhage after pancreatoduodenectomy. A case series. JOP 2008; 9: 172-178 [PMID: 18326925]

Tipaldi MA, Orgera G, Krokidis M, Rebonato A, Maiettini D, Vagnarelli S, Ambrogi C, Rossi M. Trans Arterial Embolization of Non-variceal Upper Gastrointestinal Bleeding: Is the Use of Ethylene-Vinyl Alcohol Copolymer as Safe as Coils? Cardiovasc Intervent Radiol 2018; 41: 1340-1345 [PMID: 29748820 DOI: 10.1007/s00270-018-1981-5]

Charnsangavej C, Chuang VP, Wallace S, Soo CS, Bowers T. Angiographic classification of hepatic arterial collaterals. Radiology 1982; 144: 485-494 [PMID: 6285413 DOI: 10.1148/radiology.144.3.6285413]

Tajima Y, Kuroki T, Tsutsui R, Sakamoto I, Uetani M, Kanematsu T. Extrahepatic collaterals and liver damage in embolotherapy for ruptured hepatic artery pseudoaneurysm following hepatobiliary pancreatic surgery. World J Gastroenterol 2007; 13: 408-413 [PMID: 17230610 DOI: 10.3748/wjg.v13.i3.408]

Onizawa S, Hamano M, Tsuichiya A, Araida T, Toda J, Yamamoto M. Successful treatment of pseudoaneurysm rupture after pylorus preserving pancreaticoduodenectomy by covered stent placement. Surg Technol Int 2012; 22: 77-82 [PMID: 23065804]

Nakai M, Sato H, Sato M, Ikoma A, Sanda H, Nakata K, Minamiguchi H, Kawai N, Sonomura T, Nishimura Y, Okamura Y. Endovascular stenting and stent-graft repair of a hemorrhagic superior mesenteric artery pseudoaneurysm and dissection associated with pancreaticoduodenectomy. J Vasc Interv Radiol 2012; 23: 1381-1384 [PMID: 22999759 DOI: 10.1016/j.jvir.2012.06.034]

Asai K, Watanabe M, Kusachi S, Matsuhiyo H, Saito T, Kodama H, Enomoto T, Nakamura Y, Okamoto Y, Saida Y, Iijima R, Nagao J. Successful treatment of a common hepatic artery pseudoaneurysm using a coronary covered stent following pancreaticoduodenectomy: report of a case. J Vasc Surg Today 2014; 44: 160-165 [PMID: 22932840 DOI: 10.1016/j.vjts.2013.09.016]

Singh CS, Giri K, Gupta R, Alhadlin M, Sawhney H. Successful management of hepatic artery pseudoaneurysm complicating chronic pancreatitis by stenting. World J Gastroenterol 2006; 12: 5733-5734 [PMID: 17070032 DOI: 10.3748/wjg.v12.i35.5733]

Suzuki K, Morii Y, Komada T, Matsushima M, Ota T, Nagawara S. Stent-graft treatment for bleeding superior mesenteric artery pseudoaneurysm after pancreaticoduodenectomy. Cardiovasc Intervent Radiol 2009; 32: 762-766 [PMID: 19184196 DOI: 10.1007/s00270-009-9502-1]

Lü PH, Zhang XC, Wang LF, Chen ZL, Shi HB. Stent graft in the treatment of pseudoaneurysms of the hepatic arteries. Vasc Endovascular Surg 2013; 47: 551-554 [PMID: 24052448 DOI: 10.1177/1538574413488846]

Herzog T, Suelberg D, Belyaev O, Uhl W, Seemann M, Seelig MH. Treatment of acute delayed visceral hemorrhage after pancreatic surgery from hepatic arteries with covered stents. J Gastrointest Surg 2011; 15: 496-502 [PMID: 21240640 DOI: 10.1007/s11605-010-1260-5]

Cynamon J, Apar E, Steiner A, Hopfenfeld BM, Jagust MB, Rosado M, Sprayregen S. Catheter-induced vasospasm in the treatment of acute lower gastrointestinal bleeding. J Vasc Interv Radiol
Kamada Y et al. Therapeutic strategy for arterial hemorrhage after PD

2003; 14: 211-216 [PMID: 12582189 DOI: 10.1097/01.rvi.0000058323.82956.e4]

88 Inoue Y, Ikegawa H, Ukai I, Yoshiya K, Sumi Y, Ogura H, Kuwagata Y, Tanaka H, Shimazu T, Sugimoto H. Spontaneous occlusion of splenic and renal pseudoaneurysm after blunt abdominal trauma: a case report and literature review. J Emerg Med 2010; 38: e17-e22 [PMID: 18180131 DOI: 10.1016/j.jemermed.2007.07.023]

89 Dror S, Dani BZ, Yoram K. Spontaneous thrombosis of a splenic pseudoaneurysm after blunt abdominal trauma. J Trauma 2002; 53: 383-385 [PMID: 12169954 DOI: 10.1097/00005373-200208000-00035]

90 Bhangui P, Salloum C, Lim C, Andrea P, Ariche A, Adam R, Castaing D, Kerba T, Azoulay D. Portal vein arterIALIZATION: a salvage procedure for a totally de-arterIALIZED liver. The Paul Brousse Hospital experience. HPB (Oxford) 2014; 16: 723-738 [PMID: 24329988 DOI: 10.1111/hpb.12200]

91 Noji T, Tsachikawa T, Okamura K, Nakamura T, Tamoto E, Shichinohe T, Hirano S. Resection and restruction of the hepatic artery for advanced perihilar cholangiocarcinoma: result of arterioporal shunting. J Gastrointest Surg 2015; 19: 675-681 [PMID: 25650165 DOI: 10.1007/s11605-015-2754-y]
