SRB measures for hyperbolic attractor in low regularity

Houssam BOUKHECHAM
25-05-2022

Abstract
We consider a C^1 hyperbolic attractor, and prove the existence of a physical measure provided that the differential satisfies some summability condition which is weaker than Hölder continuity.

1 Introduction
Let M be a compact Riemannian manifold, $f : M \to M$ be a C^1 diffeomorphism, and Λ a closed f-invariant hyperbolic attractor (see section 2.1). Such map have a lot of invariant measures, however there is an interesting class called physique measures. If f is $C^{1+\alpha}$, it is a classical result that f has a unique physical measure (see [Yen02]). In this paper, we will be interested in the existence of a physical measure in a finer regularity. If $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is a modulus of continuity, we say that f is $C^{1,\omega}$ if f is C^1 and the modulus of continuity of df is a multiple of ω, i.e there is $C > 0$ such that

$$\|df_x - df_y\| \leq C \omega(d(x,y)), \forall x, y \in M.$$

We say that a modulus ω is Dini summable if

$$\int_0^1 \frac{\omega(t)}{t} \, dt < +\infty.$$

Our main results extends the work of Fan and Jiang [FJ01] from expanding maps to hyperbolic diffeomorphisms.

Theorem 1.1. If Λ is a hyperbolic attractor of a $C^{1,\omega}$ diffeomorphism f, and ω is Dini summable, then f has a unique physical measure.
To prove this theorem, first, we study the modulus of continuity of the unstable distribution E^u, and prove that

Theorem 1.2. Let $f : \Lambda \to \Lambda$ be a C^1,ω hyperbolic map, where ω is a Dini summable modulus of continuity, then the unstable distribution has a Dini summable modulus of continuity.

Given this theorem, we deduce that the geometric potential

$$\phi^{(u)} = -\log J^u f = -\log \det df|_{E^u}$$

has a Dini summable modulus of continuity. Finally, using Markov partitions [Bow75a], $f : \Omega(f) \to \Omega(f)$ is semiconjugated to a subshift of finite type. More precisely, there are (Σ_A, σ) and a surjective Hölder map $\pi : \Sigma_A \to \Lambda$ such that $\pi \circ \sigma = f \circ \pi$, so if we take a potential with Dini summable modulus $\phi : \Lambda \to \mathbb{R}$, then $\pi \circ \sigma$ has a Dini summable modulus. To get an equilibrium state for $(\Sigma_A, \sigma, \pi \circ \phi)$ one can after several lemmas consider only the one-sided shift $(\Sigma^+_A, \sigma, \tilde{\phi})$, (where $\tilde{\phi}$ is a potential depending only on the future, and cohomologous to $\pi \circ \phi$ [PP90]) which is an expanding map, then we apply the adapted Ruelle-Perron-Frobenius theorem [FJ01a] to get an equilibrium measure for $(\sigma, \pi \circ \phi)$. We push this measure by π to get an equilibrium measure for $(f_{\Omega(f)}, \phi)$.

Corollary 1.3. Let $f : \Lambda \to \Lambda$ be a C^1,ω hyperbolic map, where ω is a summable modulus of continuity, then the geometric potential $\phi^{(u)}$ has a unique equilibrium state $\mu_{\phi^{(u)}}$, in particular $\mu_{\phi^{(u)}}$ is ergodic. Furthermore, if f is topologically mixing then the measure $\mu_{\phi^{(u)}}$ is Bernoulli.

The article is organized as follows. In section 2, we will recall uniform hyperbolicity and some classical tools: modulus of continuity, and equivalent formulation of the Dini summability condition. In section 3 we will recall some classical and motivational examples. In section 4 we give the proof of the regularity of the potential and proceed in the same way as in [Bow75a] to prove the existence of equilibrium measure. In section 5, we prove theorem 1.1 by adapting some volume lemmas given in [Bow75a].

2 Preliminaries and notations

2.1 Uniform hyperbolicity

Let U be an open subset of M and $f : U \to M$ a C^1 diffeomorphism. An invariant set $\Lambda \subset U$ is called hyperbolic if there are some $C > 0$ and $\lambda \in (0, 1)$
such that for all $x \in \Lambda$ we have a splitting of $T_xM = E^u_x \oplus E^s_x$ which is f invariant, i.e $df_x(E^u_x) = E^u_{fx}$ and $df_x(E^s_x) = E^s_{fx}$ and such that

$$
\|df^n(v)\| \leq C\lambda^n\|v\|, \forall n \in \mathbb{N}, v \in E^s_x,
$$

(1)

$$
\|df^{-n}(v)\| \leq C\lambda^n\|v\|, \forall n \in \mathbb{N}, v \in E^u_x.
$$

(2)

In the definition, we didn’t assume any continuity on E^s and E^u. In fact it is not hard to prove the continuity of E^u and E^s starting from the given definition. One can also assume that $C = 1$ by considering another equivalent Riemannian metric on M, and taking $\lambda' \in (\lambda, 1)$ (see Proposition 5.2.2 of [BS02]).

Some example of uniformly hyperbolic maps are: Arnold cat map, the Horseshoe, toral hyperbolic linear automorphism, the Smale solenoid.

A classical approach to deal with uniform hyperbolic maps, is to consider the space of continuous (resp. bounded) sections $\sigma : \Lambda \to T\Lambda$, which is a Banach space, and once we have the first definition, we can write this Banach space as the direct sum of two closed subspaces, corresponding to sections with value on E^u or E^s. Once we do this, we have a natural linear action of f on that Banach space which preserves the closed subspaces. This approach helps us prove a lot of result like shadowing lemma, local stability, etc.

In general it is hard to check uniform hyperbolicity using this definition (for instance we don’t know E^u and E^s), to deal with this difficulty we study cones instead of linear subspaces.

2.2 Hyperbolicity via cone techniques

Let $x \in M$ and E a linear subspace of T_xM, define the cone centered at E by

$$
K^E_\alpha(x) = \{v \in T_xM : \|v_2\| \leq \alpha\|v_1\| \text{ where } v = v_1 + v_2 \text{ and } v_1 \in E, v_2 \in E^1\}.
$$

For a hyperbolic map f, $K^{E^u}_\alpha$ (resp $K^{E^s}_\alpha$) is called unstable (resp stable) cone field. We say that it has a small angle if α is small.

A cone field K on M is said to be invariant by f if for all $x \in M$

$$
\text{d}f_x(K(x)) \subset \text{int}(K(fx)) \cup \{0\}.
$$

Proposition 2.1. (Proposition 5.4.3 [BS02]) Let Λ be a compact invariant set of $f : U \to M$. Suppose that there is $\alpha > 0$ and for every $x \in \Lambda$ there are continuous subspaces \hat{E}^s and $\hat{E}^u(x)$ such that $\hat{E}^s(x) \oplus \hat{E}^u(x) = T_xM$, and the cone $K^{\hat{E}^u}_\alpha(x)$ and $K^{\hat{E}^s}_\alpha(x)$ are f invariant and $\|\text{d}f_x v\| < \|v\|$ for non-zero $v \in K^{\hat{E}^u}_\alpha(x)$, and $\|\text{d}f_x^{-1} v\| < \|v\|$ for non-zero $v \in K^{\hat{E}^u}_\alpha(x)$. Then Λ is a hyperbolic set of f.

3
2.3 Local stable and unstable manifolds:

Define the local stable and unstable manifolds for \(x \in \Lambda \) by

\[
\begin{align*}
W_s^\epsilon(x) &= \{ y \in M \mid d(f^k x, f^k y) \leq \epsilon, \forall k \geq 0 \}, \\
W_u^\epsilon(x) &= \{ y \in M \mid d(f^{-k} x, f^{-k} y) \leq \epsilon, \forall k \geq 0 \}.
\end{align*}
\]

The definition of stable and unstable manifolds is dynamic, and the theorem of Perron-Hadamard proves that \(W_u^\epsilon \) and \(W_s^\epsilon \) are sub-manifolds for \(\epsilon \) small enough.

Let’s recall some classical definitions:

Pseudo-orbit: Let \(f : X \to X \) a homeomorphism of a metric space, and let \(\epsilon > 0 \). We say that a sequence \((x_n)_{n \in \mathbb{Z}} \) is an \(\epsilon \)-pseudo-orbit if \(d(f x_n, x_{n+1}) < \epsilon \).

Shadowing lemma: We say that a homeomorphism \(f : X \to X \) have the shadowing property if for all \(\epsilon > 0 \) there is \(\delta > 0 \) such that for all \(\epsilon \)-pseudo-orbit \((x_n)_{n \in \mathbb{Z}} \) there is \(y \in X \) such that for all \(n \in \mathbb{Z} \) we have \(d(f^n y, x_n) \leq \delta \).

It is known that Anosov diffeomorphisms and Axiom A diffeomorphisms have the shadowing property, in fact they have a stronger property called specification.

Expansiveness: A homeomorphism \(f : X \to X \) is expansive if there is \(\epsilon_0 > 0 \) such that for all \(x, y \in X \) there is \(n \in \mathbb{Z} \) such that \(d(f^n x, f^n y) \geq \epsilon_0 \). For instance an isometry is not expansive, and hyperbolic maps are expansive.

Wandering set: \(x \) is non-wandering, if for all neighborhood \(U \) of \(x \) there is \(n > 0 \) such that \(U \cap f^n U \neq \emptyset \). we denote the wandering set of a diffeomorphism \(\Omega(f) \).

Axiom A diffeomorphism: \(f \) is an Axiom A diffeomorphism if \(\Omega(f) \) is hyperbolic, and periodic orbits are dense in \(\Omega(f) \).

Remark 2.2. Local stable and unstable manifolds are used to construct Markov partitions, then shadowing, expansiveness and density of periodic orbits are used to prove that an Axiom A diffeomorphism is semiconjugated to a subshift of finite type via a Hölder map (see [Bow75a]).

Spectral Decomposition: (Proposition 3.5 [Bow75a]) Let \(f \) be an Axiom A diffeomorphism, then one can write \(\Omega(f) = \Omega_1 \cup \cdots \cup \Omega_s \) where the \(\Omega_i \) are pairwise disjoint closed sets (called basic sets) such that

1. \(f(\Omega_i) = \Omega_i \) and \(f|_{\Omega_i} \) is topologically transitive;
2. $\Omega_i = X_{1,i} \cup \cdots \cup X_{n,i}$ with $X_{j,i}$'s pairwise disjoint closed sets, $f(X_{j,i}) = X_{j+1,i}$ ($X_{n_j+1,i} = X_{1,i}$) and $f^n|_{X_{j,i}}$ is topologically mixing.

Remark 2.3. Using the spectral decomposition theorem, one can assume without loss of generality that an Axiom A diffeomorphism is transitive.

Physical measure: Let $f : M \to M$ be a continuous map, X a closed f-invariant subset of M and μ a f-invariant probability measure with support in X. Define the basin of the measure μ by:

$$B_\mu = \left\{ x \in M \left| \forall g \in C^0(M, \mathbb{R}), \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} g \circ f^k(x) = \int g d\mu \right. \right\}.$$

We say that μ is physical if B_μ has positive measure with respect to the Lebesgue measure of M.

Attractor: A basic set Ω_s is called an attractor if it has a neighborhood U such that $f(U) \subset U$.

2.4 Grassmanian bundle

Let $G^q(M) = \bigsqcup_{x \in M} G(q, T_x M)$ be the fiber bundle over M with fiber $G(q, T_x M)$ (the set of subspaces of $T_x M$ of dimension q). A continuous distribution E is a continuous section of $G^q(M)$, the latter has a Riemannian metric, so one can talk about the modulus of continuity of a distribution or the distance d_{grass} between distributions that comes from the Riemannian structure.

Consider a continuous distribution E. Let $x_0 \in M$, and consider a chart $\psi : U \to \mathbb{R}^m$, where U is a small neighborhood of x_0 such that for all $x \in U$, $E(x)$ is sufficiently close to $E(x_0)$ and $d_{\psi(x_0)}E(x_0) = \mathbb{R}^q \times \{0\}$, where $q = \dim E$. Define the distance $d = d_{x_0,\psi,E(x_0)}$ on a small neighborhood \tilde{U} of (x_0, E_0) in $G^q(M)$ by:

$$d(F_1^x, F_2^y) := d(x, y) + \| L_{F_1^x} - L_{F_2^y} \|,$$

where $L_{F_1^x} : \mathbb{R}^q \to \mathbb{R}^{m-q}$ (resp $L_{F_2^y}$) is the linear map whose graph is $d\psi_x(F_1^x)$ (resp $d\psi_y(F_2^y)$). This distance induces locally the usual topology of $G^q(M)$.

2.5 Pressure and equilibrium measure

In this part, let (X, d) be a compact metric space, $f : X \to X$ a continuous function, and $\phi : X \to \mathbb{R}$ a potential. Define the dynamical distance d_ϕ for
\[n \in \mathbb{N} \text{ and } x, y \in X \text{ by:} \]
\[d_n(x, y) = \sup_{0 \leq k < n} d(f^k x, f^k y). \]

We denote by \(B_n(x, \epsilon) \) the ball of center \(x \) and radius \(\epsilon \) with respect to the distance \(d_n \).

A set \(A \) is called \((n, \epsilon)\)-spanning (resp. \((n, \epsilon)\)-separated) if \(X = \bigcup_{x \in A} B_n(x, \epsilon) \) (resp. for any \(x, y \in A \) we have \(B_n(x, \epsilon) \cap B_n(y, \epsilon) = \emptyset \)).

Consider the two following numbers that depend on \(f, \phi, \epsilon \) and \(n \geq 1 \)

\[Q_n(f, \phi, \epsilon) = \inf \left\{ \sum_{x \in A} e^{(S_n f)(x)} : A \text{ is a } (n, \epsilon) - \text{spanning set for } X \right\}, \]
\[P_n(f, \phi, \epsilon) = \sup \left\{ \sum_{x \in A} e^{(S_n f)(x)} : A \text{ is a } (n, \epsilon) - \text{separated set for } X \right\}, \]

where \((S_n f)(x) = \sum_{k=0}^{n-1} \phi \circ f^k(x) \). If \(\phi \) is continuous, then

\[\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log \left(Q_n(f, \phi, \epsilon) \right) \]

exists, is finite and is equal to

\[\lim_{\epsilon \to 0} \lim_{n \to \infty} \frac{1}{n} \log \left(P_n(f, \phi, \epsilon) \right). \]

The limit is called the topological pressure with respect to the potential \(\phi \), we denote it by \(P(\phi) \).

Denote by \(\mathcal{M}_f(X) \) the space of \(f \)-invariant probability measures on \(X \). Let \(\mu \in \mathcal{M}_f(X) \), then define the pressure with respect to this measure by:

\[P_\mu(\phi) = h_\mu(f) + \int_X \phi \, d\mu, \]

where \(h_\mu(f) \) is the entropy of \(f \) with respect to the measure \(\mu \). The variational principle (see theorem 9.10 in [?]) gives the following formula:

\[P(\phi) = \sup \left\{ h_\mu(f) + \int \phi \, d\mu : \mu \in \mathcal{M}_f(X) \right\}. \]

If \(\mu \in \mathcal{M}_f(X) \) is such that \(P_\mu(\phi) = P(\phi) \), then \(\mu \) is called an equilibrium measure for the potential \(\phi \).
2.6 Modulus of continuity

In this section, we give a formal definition of the summability condition introduced in the abstract. We start by recalling the classical definition of a modulus of continuity.

Definition 2.4. A modulus of continuity is a continuous, increasing and concave map $\omega: \mathbb{R}^+ \to \mathbb{R}^+$, such that $\omega(0) = 0$.

We say that the modulus ω is Dini summable if

$$\int_0^1 \frac{\omega(t)}{t} dt < +\infty.$$

For instance, for any $\alpha \in (0, 1)$, the map $\omega(t) = t^\alpha$ is a modulus of continuity which is Dini summable. We assumed the concavity condition in the definition of a modulus of continuity for technical issues (see next proposition and lemma (4.4)), but note that any uniformly continuous map admits a concave modulus of continuity (See the end of this section).

The following proposition gives an equivalent condition on a modulus ω to be Dini summable.

Proposition 2.5. The following conditions are equivalent:

1. ω is Dini summable.
2. $\forall c \in (0, 1)$ and $t \geq 0$, $\sum_{k=0}^{+\infty} \omega(c^k t) < +\infty$
3. $\exists c \in (0, 1)$ and $t > 0$, $\sum_{k=0}^{+\infty} \omega(c^k t) < +\infty$

Proof. Since ω is concave, the map $t \mapsto \frac{\omega(t)}{t}$ is decreasing, hence we have the following inequalities for all n and small t:

$$\sum_{k=0}^{n-1} (c^k - c^{k+1}) \frac{\omega(c^k t)}{c^k t} \leq \int_{c^k t}^{c^{k+1} t} \frac{\omega(x)}{x} dx \leq \sum_{k=0}^{n-1} (c^k - c^{k+1}) \frac{\omega(c^{k+1} t)}{c^{k+1} t}. \quad (3)$$

We deduce the proposition from these inequalities. \square

Let ω be a Dini summable modulus, and for $c \in (0, 1)$ define

$$\hat{\omega}_c(t) = \sum_{k=0}^{+\infty} \omega(c^k t), \forall t \geq 0. \quad (4)$$

It follows immediately that $\hat{\omega}_c$ is a modulus of continuity.
Definition 2.6. If ω is a Dini summable modulus, we denote $\tilde{\omega}$ the modulus defined by

$$\tilde{\omega}(t) = \int_0^t \omega(s) \frac{ds}{s}.$$

Using the previous proposition, the modulus $\tilde{\omega}$ and ω_c are equivalent for any $c \in (0, 1)$ i.e there is $C > 1$ such that:

$$C^{-1} \omega_c \leq \tilde{\omega} \leq C \omega_c.$$

Remark 2.7. The Dini summability condition might seem artificial, but it becomes more natural once we see in [FJ01a] how it is used to prove Ruelle theorem for transfer operator.

Examples:

- For $\alpha \in (0, 1]$, $\omega(t) = t^\alpha$ is Dini summable, because $\tilde{\omega}(t) = \frac{1}{\alpha} \omega(t)$.
- The modulus $\omega_{\beta \log}(t) = \frac{1}{(\log(\frac{1}{t}))^\beta}$ is Dini summable if and only if $\beta > 1$.

In this example ω is defined only for small t, then we extend it by an affine map.

Definition 2.8. Let X, Y be two metric spaces, and ω a modulus of continuity, we say that a map $f : X \to Y$ is $C^{0, \omega}$ if there is a $C > 0$ such that:

$$d(f(x), f(y)) \leq C \omega(d(x, y)), \quad \forall x, y \in X.$$

(5)

- If $\omega(t) = t$, then $C^{0, \omega}$ is the set of Lipschitz maps.
- If $\omega(t) = t^\alpha$, where $0 < \alpha < 1$, then $C^{0, \omega}$ is the set of Hölder maps with exponent α.

Given a continuous map $g : M \to M$ of a compact manifold, a natural way to define the modulus of continuity of g would be to take:

$$\tilde{\omega}_g(t) = \sup_{x, y \in M, d(x, y) \leq t} d(gx, gy),$$

(6)

but $\tilde{\omega}_g$ is not concave. To get concavity, we take:

$$\omega_g = \inf \{ h \mid h \text{ continuous, concave and increasing and } h \geq \tilde{\omega}_g \}.$$

(7)

It is clear that ω_g is a modulus of continuity, and it satisfies the inequality (5) with constant $C = 1$.

8
3 Motivating example: A Horseshoe with Positive Measure

In this section we will see the importance of the summability condition by comparing proposition 5.7 and the example given in [Bow75b]. Let $I = [a, b]$ be a closed interval, and (α_n) a sequence of positive numbers such that $\sum_{n=0}^{\infty} \alpha_n < l(I)$. Let $a = a_1a_2 \cdots a_n$ denote a sequence of 0’s and 1’s of length $n = n(a)$. Define $I_0^a = I$, $I_0^{a_n} = \left[a_n, a_n \cdot \frac{a_n b}{a_n a} \right]$ and $I^{a_n}_k \subset I^a_k$ recursively as follows. Let I^a_0 and I^a_1 be the left and right intervals remaining when the interior of I^a_1 is removed from I^a_2. Let $I^a_k(k = 0, 1)$ be the closed interval of length $\frac{\alpha_n(a_n)}{2n(a_n)}$ and having the same center as I^a_k.

The set $K = \bigcap_{m=0}^{\infty} \bigcup_{n(a)=m} I^a_k$ is the standard Cantor set, and by construction the Lebesgue measure of K is $l(I) - \sum_{n=0}^{\infty} \alpha_n$. Let J be another interval, and (β_n) be a sequence of positive numbers. We construct J^a, J^a_k and K_J as above. Let us take $\beta_n = \frac{1}{(n+1)!}$, $\alpha_n = \frac{\beta_n}{\alpha_n}$, $\delta_n = 2\frac{\beta_n}{\beta_{n+1}} - 2$, $I = \left[\frac{\beta_1}{2}, 1 \right]$ and $J = [-1, 1]$. For each a let $g : I^a_k \to J^a_k$ be a C^1 diffeomorphism so that

i. $g'(x) = 2$ for x and endpoint of I^a_k,

ii. $2 - \delta_n \leq g'(x) \leq \frac{\beta_n}{\alpha_n} + \delta_n$ for $x \in I^a_k$.

Then g extends from $\bigcup_a I^a_k$ to a homeomorphism $g : I \to J$; g is in fact a C^1 diffeomorphism with derivative 2 at each point of K_I. One defines a diffeomorphism f of the square $S = J \times J$ into \mathbb{R}^2 by

i. $f(x, y) = (g(x), g^{-1}(y))$ for $(x, y) \in I \times J$,

ii. $f(x, y) = (g(-x), -g^{-1}(y))$ for $(x, y) \in (-I) \times J$ and $f(T) \cap (J \times J) = \emptyset$ where $T = (-\frac{\delta_n}{2}, \frac{\beta_k}{2}) \times J$.

The mapping f can be extended to the sphere. Then $\Lambda = \bigcap_{n=-\infty}^{+\infty} f(S) = K_I \times K_J$ has Lebesgue measure $(2 - \sum_{n=0}^{\infty} \beta_n)^2 > 0$. The modulus of continuity of g' does not satisfy Dini condition, in particular the modulus of continuity of df does not satisfy Dini condition. This hyperbolic horseshoe has a positive measure but it is not an attractor. Proposition 5.7 gives a sufficient
condition on the regularity of the hyperbolic map so that we have an equivalence between \(\Lambda \) being an attractor and \(W^s(\Lambda) \) having a positive Lebesgue measure.

Modulus of continuity of \(g' \): Let \(\omega \) be the modulus of continuity of \(g' \), then we have for all \(x \in I \), and \(x_0 \in K_I \)

\[
|g'(x) - g'(x_0)| \leq \omega(d(x, x_0)).
\]

(8)

Consider some interval \(I_a^* \), where \(\text{length}(a) = n \), since \(g \) send \(I_a^* \) of length \(\frac{a}{2n} \) to some interval of length \(\frac{\beta_n}{2n} \), there is \(x \in I_a^* \) such that \(g(x) \geq 2 \frac{\beta_n}{\beta_{n+1}} \), and if we take \(x_0 \) in the boundary of \(I_a^* \) then \(g(x_0) = 2 \), we deduce that:

\[
\delta_n = 2 \frac{\beta_n}{\beta_{n+1}} - 2 \leq |g(x) - g(x_0) | \leq \omega\left(\frac{1}{2n}\right),
\]

which implies that:

\[
\delta_n \leq \omega\left(\frac{1}{2n}\right), \forall n \in \mathbb{N},
\]

(9)

but it is clear that \(\sum_{k \geq 1} \delta_n = +\infty \), which implies that the modulus does not satisfy Dini condition.

Remark 3.1 (Perturbation of hyperbolic toral automorphisms). We can construct an example of a diffeomorphism \(f \) close to the identity, with derivative Dini summable modulus, but which is not Hölder continuous either by perturbing a toral hyperbolic linear automorphism \(A \), or by considering a diffeomorphism \(g \) close to the identity with derivative having a Dini summable modulus, then considering the map \(A^n \circ g \circ A^n \) which is hyperbolic for large \(n \) (using the cone field criterion one can prove the hyperbolicity of such a map).

4 Proof of theorem 1.2

The strategy to prove theorem 1.2 is to study the regularity of the unstable distribution restricted to a stable leaf, then determining the regularity of unstable leaves, then deducing by lemma 4.6 the desired regularity of the unstable distribution.

Let \(A : \mathbb{R}^n \to \mathbb{R}^n \) be a hyperbolic linear map, and consider the set \(\xi_s \) defined by

\[
\xi_s = \{ E \in G^n \mathbb{R}^n \mid E \oplus E^s = \mathbb{R}^n \},
\]

where \(E^s \) is the stable subspace of \(A \). Consider the distance \(d_{E^s \oplus E^s} \) on \(\xi_s \) given by

\[
d_{E^s \oplus E^s}(E, F) = \| L_E - L_F \|, \quad E, F \in \xi_s.
\]
where \(L_E : E^u \to E^s \) (resp \(L_F \)) is the unique linear map whose graph is \(E \) (resp \(F \)), and \(\| \cdot \| \) is any operator norm on the space of linear maps from \(E^u \) to \(E^s \) (See Chapter 4.3 of [Man12]).

The following lemma states that this distance is contracted under the action of \(A \).

Lemma 4.1. We have \(d_{E^u \oplus E^s}(AE, AF) \leq \lambda^2 d_{E^u \oplus E^s}(E, F), \forall E, F \in \xi \), where \(\lambda \in (0, 1) \) is a hyperbolicity constant of \(A \).

Proof. We have by definition \(L_{AE} = A \circ L_E \circ A^{-1}_{|E^u} \), so

\[
d_{E^u \oplus E^s}(AE, AF) = \| L_{AE} - L_A F \| = \| A(L_E - L_F)A^{-1}_{|E^u} \| \\
\leq \| A_{|E^u} \| \| A^{-1}_{|E^u} \| \| L_E - L_F \| \\
\leq \lambda^2 d_{E^u \oplus E^s}(E, F).
\]

The following two lemmas show that the defined distance depends in a bi-Lipschitz way on the reference spaces \(E^u \) and \(E^s \).

Lemma 4.2. If \(B \) is a linear map such that \(\| A - B \| \leq \epsilon \), for some small \(\epsilon > 0 \), then we have \(d_{E^u \oplus E^s}(BE^u, E^u) \leq \epsilon \).

Proof. Since we take a small \(\epsilon \), \(BE^u \) is transverse to \(E^s \). Let us show that \(L_{BE^u} = A L_{A^{-1}BE^u} A^{-1} \). Take \(x \in E^u \), then by definition of \(L_{BE^u} \) we have \(x + L_{BE^u} x \in BE^u \), so \(A^{-1} x + A^{-1} L_{BE^u} x \in A^{-1} BE^u \). We have also \(A^{-1} x + L_{A^{-1}BE^u} A^{-1} x \in A^{-1} BE^u \), so we deduce that

\[
A^{-1} L_{BE^u} = L_{A^{-1}BE^u} A^{-1}_{|E^u}.
\]

We have also \(L_{E^u} = 0 \), hence

\[
d_{E^u \oplus E^s}(BE^u, E^u) = \| A_{|E^u} L_{A^{-1}BE^u} A^{-1}_{|E^u} - 0 \| \leq \lambda^2 \| L_{A^{-1}BE^u} \|,
\]

and since \(A^{-1} B \) is close to the identity we deduce the lemma.

Lemma 4.3. Let \(\epsilon > 0 \) small, and take \(E_0 \) (resp \(F_0 \)) a subspace of dim \(q \) (resp \(m - q \)) such that \(d(E_0, E^u) \leq \epsilon \) (resp \(d(F_0, E^s) \leq \epsilon \)). Then, there is \(\delta = \delta(\epsilon) \), such that \(\delta(\epsilon) \to 1 \) and for all \(E, E' \) transversal to \(E^s \) and \(F_0 \) and close enough to \(E^u \) we have

\[
\frac{1}{\delta} d_{E^u \oplus E^s}(E, E') \leq d_{E_0 \oplus F_0}(E, E') \leq \delta d_{E^u \oplus E^s}(E, E').
\]
Proof. Let M_1 (resp M_2) the linear map from E^u to E^s (resp E^s to E^u) whose graph is E_0 (resp F_0). Since E_0 (resp F_0) is close to E^u (resp E^s) we deduce using the previous lemma that $\|M_i\| < \epsilon$, for $i = 1, 2$. Let B_ϵ the linear map from \mathbb{R}^n to \mathbb{R}^n defined on E^u as $Id_{E^u} + M_1$ and on E^s as $Id_{E^s} + M_2$.

Let E and E' be two subspaces transverse to E^s and F_0, and let L_E (resp L'_E) the linear map from E^u to E^s (resp E_0 to F_0) whose graph is E.

First, assume that $F_0 = E^s$. Let $x \in E^u$, then we have by definition of L_E :

$$B_\epsilon x + (L_E x - M_1 x) = x + M_1 x + (L_E x - M_1 x) \in E,$$

and since $L^0_E(B_\epsilon x)$ is the unique vector in F_0 such that $B_\epsilon x + L^0_E(B_\epsilon x) \in E$, we deduce that

$$L^0_E B_\epsilon x = L_E x - M_1 x,$$

using the last equality we deduce that

$$\|L^0_E - L^0_{E'}\| = \|(L^0_E - L^0_{E'}) B_\epsilon B_\epsilon^{-1}\| \leq \|B_\epsilon^{-1}\| \|L^0_E B_\epsilon - L_{E'} B_\epsilon\| \\ \leq \|B_\epsilon^{-1}\| \|L_E - L_{E'}\|.$$

Since B_ϵ is a perturbation of Id, the norm $\|B_\epsilon^{-1}\|$ is close to 1, and goes to 1 when ϵ goes to 0, which proves the lemma in the special case where $F_0 = E^s$. Now assume that $E_0 = E^u$, and define M_ϵ from E^u to E^u

$$M_\epsilon x = x + L_E x - B_\epsilon L_E x = x - M_2 L_E x \in E^u,$$

notice that M_ϵ does not depend on E. Since $E_0 = E^u$, we have $L^0_E M_\epsilon x = B_\epsilon L_E x$, for all $x \in E^u$. The map M_ϵ is a small perturbation of Id_{E^u}, so it is invertible and we have

$$L^0_E = B_\epsilon L_E M_\epsilon^{-1},$$

we deduce that

$$\|L^0_E - L^0_{E'}\| = \|B_\epsilon(L_E - L^0_E) M_\epsilon^{-1}\| \leq (1 + \epsilon)(1 + \epsilon)\|L_E - L_{E'}\|,$$

which proves the lemma in the special case where $E_0 = E^u$. Combining the two cases we get the proof in general.

We will need a few lemmas to get the regularity of the unstable distribution when restricted to a small piece of stable manifold. The strategy is to use the dynamic of f to give a upper bound for the modulus of continuity of E^u when restricted to a local stable leaf.
Lemma 4.4. Let $f : \Lambda \to \Lambda$ be a $C^{1,\omega}$ hyperbolic map and λ the constant given by equation (1) with respect to an adapted norm. Define for $x_0 \in \Lambda$, $n \in \mathbb{N}$ and $c \in (0, \lambda)$, the map $\Omega_n^c : W^s(x_0) \times W^s(x_0) \to \mathbb{R}^+$

$$\Omega_n^c(x, y) = \sum_{k=0}^{n-1} c^{n-k} \omega(d(f^k x, f^k y)), \quad (12)$$

then we have for all $n \in \mathbb{N}$:

$$\Omega_n^c(x, y) \leq \frac{c}{\lambda - c} \cdot \omega(\lambda^n d(x, y)). \quad (13)$$

Proof. Let $x, y \in W^s(x_0)$. By the concavity of ω:

$$\frac{\omega(\lambda^nt)}{\lambda^nt} \geq \frac{\omega(\lambda^kt)}{\lambda^kt}, \quad \forall n, k, t \in \mathbb{R}^+ \text{ and } k \leq n.$$

Now using the fact that $d(f^k x, f^k y) \leq \lambda^k d(x, y)$ for all $k \in \mathbb{N}$, we get:

$$\Omega_n^c(x, y) \leq \sum_{k=0}^{n-1} c^{n-k} \omega(\lambda^k d(x, y))$$

$$\leq \sum_{k=0}^{n-1} \left(\frac{c}{\lambda} \right)^{n-k} \omega(\lambda^n t) \leq \frac{c}{\lambda - c} \omega(\lambda^n t).$$

\hfill \Box

Lemma 4.5. Let $f : \Lambda \to \Lambda$ be a $C^{1,\omega}$ hyperbolic map, then local unstable manifolds are $C^{1,\omega}$.

Proof. Consider E (resp F) a smooth distribution close to E^u (resp E^s) over Λ, then consider the distribution $E^n := f^n_* E$. By definition E^n converges exponentially to E^u with respect to the distance $d = d_{E \oplus F}$. So in order to prove the lemma, it is sufficient to prove that there is $C > 0$ such that for all $n \geq 0$ the distribution E^n has $C \omega$ as a modulus of continuity when restricted to an unstable leaf.

Fix $x_0 \in \Lambda$, and take $x, y \in W^u(x_0)$. Let $d_k = d_{E_{f^{-k}x_0} \oplus E_{f^{-k}x_0}}$ defined over distribution of dimension q in a neighborhood of $f^{-k}x_0$, we have:

$$d(E^{n+1}(x), E^{n+1}(y)) = d\left(df_{f^{-1}x}(E^n(f^{-1}x)), df_{f^{-1}y}(E^n(f^{-1}y)) \right)$$

$$\leq d\left(df_{f^{-1}x}(E^n(f^{-1}x)), df_{f^{-1}x}(E^n(f^{-1}x)) \right)$$

$$+ d\left(df_{f^{-1}x}(E^n(f^{-1}y)), df_{f^{-1}y}(E^n(f^{-1}y)) \right)$$
Upper bound for $d\left(df_{f^{-1}x}(E^n(f^{-1}y)), df_{f^{-1}y}(E^n(f^{-1}y))\right)$: Since f is C^1-smooth, we have $d\left(df_{f^{-1}x}(E^n(f^{-1}y)), df_{f^{-1}y}(E^n(f^{-1}y))\right) \leq \omega(d(f^{-1}x, f^{-1}y))$.

Upper bound for $d\left(df_{f^{-1}x}(E^n(f^{-1}x)), df_{f^{-1}x}(E^n(f^{-1}y))\right)$: using lemma 4.3 and lemma 4.1, we deduce that

$$\omega(d(f^{-1}x, f^{-1}y))$$

is the desired upper bound.

By induction, we deduce that for all $n \geq 0$ and $x, y \in W^u_{c}(x_0)$ we have:

$$d(E^n(x), E^n(y)) \leq (\delta \lambda)^2d\left(E(f^{-n}x), E(f^{-n}y)\right) + \sum_{k=1}^{n}(\delta \lambda)^k\omega(\lambda^k d(x, y))$$

$$\leq d(x, y) + \left(\sum_{k=1}^{+\infty}(\delta \lambda)^k\right)\omega(d(x, y))$$

$$\leq C\omega(d(x, y)),$$

where the constant $C = C(\epsilon, \delta)$ does not depend on x, y and n. Finally we deduce that for all $x, y \in W^u_{c}(x_0)$ we have:

$$d(E^u_x, E^u_y) \leq C\omega(d(x, y)).$$

Lemma 4.6. Let X be a metric space, and $g : M \to X$ a continuous map. Assume that there is an ϵ, such that for all $x_0 \in M$

$$d(gx, gy) \leq \omega(d(x, y)), \quad \forall x, y \in W^u_{c}(x_0),$$

$$d(gx, gy) \leq \omega(d(x, y)), \quad \forall x, y \in W^s_{c}(x_0).$$

Then there is $K = K(\epsilon) > 0$ such that for all $x, y \in M$ and $d(x, y) < \epsilon$

$$d(gx, gy) \leq 2\omega(Kd(x, y)).$$

Proof. For $\epsilon > 0$ small, there is $K_1 > 0$ such that for all $x, y \in M$ with $d(x, y) < \epsilon$, we have the following inequality:

$$d(x, [x, y])^2 + d([x, y], y)^2 \leq K_1 d(x, y)^2, \quad (15)$$

where $[x, y] = W^s_{c}(x) \cap W^u_{c}(y)$ is the Bowen bracket of x and y. Since ω is a modulus of continuity,

$$\omega(s) + \omega(t) \leq 2\omega\left(\frac{1}{\sqrt{2}} \sqrt{s^2 + t^2}\right), \forall s, t \geq 0, \quad (16)$$

14
the last two inequalities implies that for all \(x, y \in M \) satisfying \(d(x, y) < \epsilon \),

\[
\begin{align*}
d(gx, gy) & \leq d(gx, g[x, y]) + d(g[x, y], gy) \\
& \leq \omega(d(x, [x, y])) + \omega(d([x, y], y)) \\
& \leq 2\omega\left(\frac{1}{\sqrt{2}}\sqrt{d(x, [x, y])^2 + d([x, y], y)^2}\right) \\
& \leq 2\omega\left(\frac{1}{\sqrt{2}}\sqrt{K_1d(x, y)}\right).
\end{align*}
\]

□

Proof of theorem \[1.3\]: Let \(x_0 \in \Lambda \subset M \), and consider the positive orbit of \(x_0 \). Take a neighborhood of \(f^k(x_0) \) and \(\psi_k : U_k \to \mathbb{R}^n \) a smooth chart. We can assume that for all \(k \in \mathbb{N}, U_k \supset B(f^kx_0, \epsilon_0) \) for some \(\epsilon_0 > 0 \), by taking \(\epsilon_0 \) less than the Lebesgue number. We can assume further that \(d_{f^kx_0}\psi_k(E^u_{f^kx_0}) = \mathbb{R}^q \times \{0\} \) and \(d_{f^kx_0}\psi_k(E^s_{f^kx_0}) = \{0\} \times \mathbb{R}^{n-q} \). Let \(g_k = \psi_{k+1} \circ f \circ \psi_k^{-1} \). We can choose \(\epsilon > 0 \) small such that for all \(k \in \mathbb{N} \), the map

\[
g_k \circ g_{k-1} \circ \cdots \circ g_0 : \psi_0(W^s_\epsilon(x_0)) \to \mathbb{R}^n,
\]

is well defined.

For \(x \in W^s_\epsilon(x_0) := \psi_0(W^s_\epsilon(x_0)) \), let \(E^u_x := d\psi_0(\psi^{-1}_0(x))E^u_{\psi^{-1}_0(x)} \). To prove the theorem it will be enough to prove that:

\[
W^s_\epsilon(x_0) \to G^u(\mathbb{R}^n) \\
x \mapsto E^u_x,
\]

has a summable modulus of continuity. By choosing \(\epsilon > 0 \) smaller, we may assume that \(E^u_x \oplus \mathbb{R}^{n-q} = \mathbb{R}^n, \forall x \in W^s_\epsilon(x_0) \).

Let \(x, y \in W^s_\epsilon(x_0), A_k = dg_k(g_{k-1}x) \) and \(B_k = dg_k(g_{k-1}y) \) \(\forall k \geq 0 \), (where \(g_{-1} := Id \)). Consider \(d = d_{\mathbb{R}^q \oplus \mathbb{R}^{n-q}} \) then we have:

\[
d(A_0E_x^u, B_0E_y^u) \leq d(A_0E_x^u, A_0E_y^u) + d(A_0E_y^u, B_0E_y^u).
\]

Using lemma \[4.3\] we can find \(\delta = \delta(W^s_\epsilon(x_0)) \) close to 1, such that

\[
d(A_0E_x^u, B_0E_y^u) \leq \delta \cdot d_{E^u_x \oplus E^u_y}(A_0E_x^u, B_0E_y^u),
\]

And using lemma \[4.1\] we can find \(\lambda = \lambda(W^s_\epsilon(x_0)) \) in \((0, 1)\) such that

\[
d_{E^u_x \oplus E^u_y}(A_0E_x^u, A_0E_y^u) \leq \lambda^2 d_{E^u_x \oplus E^u_y}(E_x^u, E_y^u),
\]
so we deduce that
\[d(A_0 E^u_x, A_0 E^u_y) \leq (\delta \lambda)^2 \cdot d(E^u_x, E^u_y). \] (17)

Since \(f \in C^1, \omega \) we have \(\| A_0 - B_0 \| \leq \omega(d(x, y)) \), then we apply lemma 4.2 and get
\[d(A_0 E^u_x, B_0 E^u_y) \leq \omega(d(x, y)). \]

We deduce that for all \(n \in \mathbb{N} \)
\[d(A_n \cdots A_0 E^u_x, B_n \cdots B_0 E^u_y) \]
\[\leq (\delta \lambda)^2 d(A_{n-1} \cdots A_0 E^u_x, B_{n-1} \cdots B_0 E^u_y) + \omega\left(d(g_{n-1} \cdots g_0 x, g_{n-1} \cdots g_0 y)\right) \]

Using induction
\[d(A_n \cdots A_0 E^u_x, B_n \cdots B_0 E^u_y) \]
\[\leq (\delta \lambda)^{2n} \cdot d(E^u_x, E^u_y) + \sum_{k=0}^{n-1} (\delta^2 \lambda^2)^{n-k} \omega\left(d(g_k \cdots g_0 x, g_k \cdots g_0 y)\right). \]

Since \(\delta \) is arbitrarily close to 1, we can assume that \((\delta \lambda) \in (0, 1) \). This implies using lemma 4.4 that
\[d(A_n \cdots A_0 E^u_x, B_n \cdots B_0 E^u_y) \leq (\delta \lambda)^{2n} \cdot d(E^u_x, E^u_y) + \frac{\delta^2 \lambda}{1 - \delta^2 \lambda} \omega(\lambda^n d(x, y)). \] (18)

Since these inequalities do not depend on charts up to multiplication by constant, we deduce that there is \(M_1, M_2, M_3 > 0 \) such that for all \(x, y \in W^s(x_0) \) and \(n \in \mathbb{N} \)
\[d(E^u_{f^nx}, E^u_{f^ny}) \leq M_1 (\delta \lambda)^{2n} d(E^u_x, E^u_y) + M_2 \omega\left(M_3 \lambda^n d(x, y)\right). \] (19)

Let \(\omega^u \) be the modulus of continuity of \(E^u \) restricted to \(W^s(x_0) \). Using (19) we deduce that
\[\omega^u(\lambda_0^n t) \leq M_1 (\delta \lambda)^{2n} \omega^u(t) + M_2 M_3 \omega^u(\lambda^n t), \forall n \in \mathbb{N}, t > 0, \] (20)

where \(\lambda_0 \in (0, \lambda) \) only depends on the hyperbolic map \(f \). The latter inequality implies that \(\omega^u \) is Dini summable. Using lemmas 4.5 and 4.6 we deduce that \(E^u \) has a summable modulus of continuity, hence \(\psi^{(u)} \) has a summable modulus of continuity.

The next lemma is proven in Chapter 4, Lemma 4.3 of [Bow75a]. Together with the regularity of the geometric potential, it implies the existence and uniqueness of an equilibrium measure.
Lemma 4.7. Let $\sigma : \Sigma_A \rightarrow \Sigma_A$ a subshift of finite type, and $f : \Lambda \rightarrow \Lambda$ semiconjugated to σ via π, then for any $\mu \in M_f(\Lambda)$ there is a $\nu \in M_\sigma(\Sigma_A)$ with $\pi_*\nu = \mu$.

Proof of corollary 1. Using Markov partition, the map f is semiconjugated to a subshift of finite type \cite{Bow75a}. Let us consider the following commutative diagram:

\[
\begin{array}{ccc}
\Sigma_A & \xrightarrow{\sigma} & \Sigma_A \\
\pi \downarrow & & \phi^u \circ \pi \downarrow \\
\Lambda & \xrightarrow{f} & \pi^u \\
\end{array}
\]

Since ϕ^u is C^{0, ω_0}, where ω_0 is a modulus that satisfies Dini condition (theorem 1.2) and π is Hölder continuous, then $\phi^u \circ \pi$ is C^{0, ω_0}, so Theorem 1 of \cite{FJ01a} give us a unique equilibrium state $\mu_{\phi^u \circ \pi}$ for $(\sigma, \phi^u \circ \pi)$. We push this measure by π to get a measure μ_{ϕ^u}, and using the fact that π is a bijection when restricted to a set of full ν measure, we deduce that $h_{\mu_{\phi^u}}(f) = h_{\phi^u \circ \pi}(\sigma)$, which implies that μ_{ϕ^u}, is an equilibrium measure. If μ_2 is another equilibrium measure, we lift it using the previous lemma to an equilibrium measure of $(\sigma, \phi^u \circ \pi)$, and by uniqueness of the equilibrium measure for the shift, we get $\mu_2 = \mu_{\phi^u}$.

Since μ_{ϕ^u} is the unique equilibrium state, it is ergodic. Indeed if

$$\mu_{\phi} = t\mu_1 + (1 - t)\mu_2,$$

then we have:

\[
P(\phi^u) = h_{\mu_{\phi^u}}(f) + \int \phi^u \ d\mu \\
= th_{\mu_1}(f) + (1 - t)h_{\mu_2}(f) + t \int \phi^u \ d\mu_1 + (1 - t) \int \phi^u \ d\mu_2 \\
\leq P(\phi^u),
\]

which implies that $P_{\mu_1}(\phi^u) = P_{\mu_2}(\phi^u) = P(\phi^u)$, so μ_1 and μ_2 are equilibrium states, this implies that $\mu = \mu_1 = \mu_2$.

\[\square\]

5 Proof of theorem 1.1

Given Theorem 1.2 the proof of Theorem 1.1 is in the same way as in \cite{Bow75a}, but we need to adapt a few lemmas in low regularity. The fol-
Remark 5.2. If \(n \) We have also for all \(n \in \mathbb{N} \):

\[
\frac{1}{C} \leq \frac{\det df^n(x)|_{E(x)}}{\det df^n(y)|_{E(y)}} \leq C,
\]

(21)

We have also for all \(n \in \mathbb{N} \):

\[
\frac{1}{C} \leq \frac{\det df^n(x)|_{E(x)}}{J^n f^n(x)} \leq C.
\]

(22)

Lemma 5.1 (Distortion lemma). Let \(f : \Lambda \to \Lambda \) a \(C^{1+\omega} \) hyperbolic map, where \(\omega \) is a Dini summable modulus. Fix \(\epsilon > 0 \) and an unstable invariant cone family \((C^u_x)_{x \in \mathcal{U}} \) of sufficiently small angle, and \(\mathcal{F}_{x,n} \) a foliation of \(B_n(x, \epsilon) \) tangent to \(C^u_n \), whose leafs are \(C^{1+\omega} \) and \(E = T_{\mathcal{F}_{x,n}} \) is \(C^0,\omega \) distribution. Then there is \(C = C(\epsilon) \) such that for all \(n \in \mathbb{N}, x \in \Lambda \) and \(y \in B_n(x, \epsilon) \)

\[
\frac{1}{C} \leq \frac{\det df^n(x)|_{E(x)}}{\det df^n(y)|_{E(y)}} \leq C,
\]

(21)

Using lemma 4.1, we have

\[
\frac{1}{C} \leq \frac{\det df^n(x)|_{E(x)}}{J^n f^n(x)} \leq C.
\]

(22)

Remark 5.2. If \(f \) is an Anosov diffeomorphism the foliation \(\left((W^u_e(y))_{y \in W^s(x)}\right) \) satisfies the previous lemma.

Proof. Let \(x \in \Lambda, z \in W^s(x) \) and \(y \in P(z, \epsilon) \), where \(P(z, \epsilon) \) is a leaf of \(\mathcal{F}_{x,n} \) passing through \(z \). By the regularity of \(E \) and of \(f \), there is \(C_0 = C_0(\epsilon) \) such that for all \(n \in \mathbb{N} \)

\[
\left| \frac{\det df^n(x)|_{df^n E(x)}}{\det df^n(z)|_{df^n E(z)}} - 1 \right| \leq C_0 \left(\alpha(df^n E(x)) + \alpha(df^n E(z)) + \omega(d(f^n x, f^n z)) \right),
\]

where \(\alpha(E(*)) = d_{E^u(*)}(E^u(*), E(*)) \).

Using lemma 4.1, we have \(\alpha(df^n E(*)) \leq \lambda^{2n} \alpha(E(*)) \), so we deduce that

\[
\left| \frac{\det df^n(x)|_{df^n E(x)}}{\det df^n(z)|_{df^n E(z)}} - 1 \right| \leq C_0 \left(\lambda^{2n} \alpha(E(x)) + \lambda^{2n} \alpha(E(z)) + \omega(\lambda^n d(x, z)) \right),
\]

in particular we have

\[
\frac{\det df^n(x)|_{E(x)}}{\det df^n(z)|_{E(z)}} = \prod_{k=0}^{n-1} \frac{\det df^k(x)|_{df^k E(x)}}{\det df^k(z)|_{df^k E(z)}} \leq \prod_{k=0}^{n-1} \left(1 + \lambda^{2k} + \omega(\lambda^k \epsilon) \right) \leq C_1 = C_1(\epsilon).
\]

Now, \(f^k(P(z, \epsilon)) \) has diameter of order \(\lambda^{n-k} \), so

\[
\frac{\det df^n(z)|_{E(z)}}{\det df^n(y)|_{E(y)}} = \prod_{k=0}^{n-1} \frac{\det df^k(z)|_{df^k E(z)}}{\det df^k(y)|_{df^k E(x)}} \leq \prod_{k=0}^{n-1} \left(1 + \omega(\lambda^{n-k} \epsilon) \right) \leq C_2 = C_2(\epsilon).
\]
This proves the first part of the lemma. To prove the second part we use the
fact that the action of Df_x on G^u_x is contracting (lemma 4.1). Indeed, we
have for all $k \in \mathbb{N}$:

$$\det \frac{d^k f(x)_{|E(x)}}{J^u f^k x} = \prod_{i=0}^{k-1} \frac{\det df(f^i x)_{|df^i E(x)}}{J^u f(f^i x)} \leq \prod_{i=0}^{+\infty} (1+\lambda^{2i} d(E^u_x,E_x)) \leq C_3 = C_3(\epsilon, E_x),$$

which finishes the proof of the second claim.

\[\square\]

Lemma 5.3 (Bowen-Ruelle [BR75]). Let Λ be an attractor of class $C^{1,\omega}$, where ω is a Dini summable modulus. Let $\epsilon > 0$, then there exist $C = C(\epsilon)$ such that for all $x \in \Lambda$ and $n \in \mathbb{N}$

$$C^{-1} \cdot \frac{1}{J^u f^n(x)} \leq \text{vol}^n \left(B_n(x, \epsilon) \right) \leq C \cdot \frac{1}{J^u f^n(x)}, \quad (23)$$

Proof. As in [BR75], consider for each $z \in \Lambda$ a local chart $\phi_z : T_z M(\epsilon) \to M$ such that $\phi_z(E^u_z) \subset W^u(z)$ and $\phi_z(E^s_z) \subset W^s(z)$ (E^s_z is the open ball whose center is the origin of E^s_z and radius ϵ) and such that the maps $F_z = \phi_f^{-1} \circ f \circ \phi_z$ is tangent to $D_z f$ at the origin of $T_z M$.

For $x \in \Lambda$, and $n \in \mathbb{N}$ consider the set:

$$D_n(x, \epsilon) = \{ u \in T_x M : \| F^k u \|_{f^k x} \leq \epsilon, \text{ for } k = 0, \ldots, n-1 \},$$

then by definition of $D_n(x, \epsilon)$, there are $C_1, C_2 > 0$ independent of n and such that

$$\phi_x(D_n(x, C_1 \epsilon)) \subset B_n(x, \epsilon) \subset \phi_x(D_n(x, C_2 \epsilon)).$$

So to estimate the volume of $B_n(x, \epsilon)$, it will be enough to estimate the volume of $D_n(x, \epsilon)$.

For $u \in T_x M$, let (u_1, u_2) be the decomposition of u with respect to the splitting $T_x M = E^u_x \oplus E^s_x$, then consider $v \in E^s_x$ and define the set

$$P_n(v, \epsilon) = \{ u \in T_x M = E^u_x \oplus E^s_x : u_2 = v, (F^k u)_1 \in E^u_x(f^k x) \text{ for } 0 \leq k \leq n-1 \}.$$

Let $K = K(\epsilon) > 0$ such that for all $k \geq 0$ we have $\| F^k v \| \leq (K+1)\epsilon$.

Fact 5.4. For $\epsilon > 0$ sufficiently small, there is $\gamma > 0$ such that for all $x \in \Lambda, n \in \mathbb{N}$ and $k \in \{0, \ldots, n-1\}$, the set $F^k(P_n(\epsilon, n))$ is a graph of a C^1 function $\psi_k : E^u_x(f^k x) \to E^s_x(f^k x)$ such that $\| D\psi_k \| \leq \gamma$.

Once we prove this fact, we deduce that:

$$D_n(x, \epsilon) \subset \bigcup_{v \in E^s_x(x)} P(v, n) \subset D_n(x, (K+3)\epsilon), \quad (24)$$

19
so estimating the size of \(P_n(v, n) \) together with the distortion lemma (lemma 5.1) finishes the proof. Indeed, using (24) we get:

\[
\text{vol}(D_n(x, \epsilon)) \leq \text{vol}\left(\bigcup_{v \in E_n(x)} P_n(v, n) \right) \leq \text{vol}\left(D_n(x, (K + 3)\epsilon) \right),
\]

and by Fubini we get:

\[
\text{vol}\left(\bigcup_{v \in E_n(x)} P_n(v, n) \right) = \int_{E_n(x)} \text{vol}^q(P_n(v, \epsilon)) \, d\text{vol}^q(v),
\]

then the distortion lemma implies that:

\[
\frac{C^{-2}}{\text{J}_u f^n(x)} \leq \text{vol}^q(P_n(v, \epsilon)) \leq \frac{C^2}{\text{J}_u f^n(x)}.
\]

Proof of Fact 1. Fix \(k \in \{0, \ldots, n - 1\} \), and let \(W \) be a graph of a \(C^1 \) map \(\varphi : E_n(f^k x) \rightarrow E_n(K + 2)^n(f^k x) \) with a Lipschitz constant \(\gamma \leq 1 \).

It is clear that for \(\epsilon > 0 \) small enough, \(F_*(\text{Graph } \varphi) \) is a graph of \(C^1 \) function \(\tilde{\varphi} \).

If \(u = (u_1, u_2) \in D_{n-k}(f^k x, \epsilon) \), write \(F \) as:

\[
F(u_1, u_2) = (\tilde{F}u_1 + \alpha(u_1, u_2), \tilde{F}u_2 + \beta(u_1, u_2)),
\]

where \(\tilde{F} \) is \(DF \) at the origin of \(T_{f^n x} M \), and \(\|\alpha\|_{C^1}, \|\beta\|_{C^1} < \delta(\epsilon) \), and \(\delta(\epsilon) \to 0 \) when \(\epsilon \to 0 \).

Let \((u_1', w_1'), (u_2', w_2') \in \text{Graph } (\tilde{\varphi}) \), then there is a point \((u_i, w_i) \in \text{Graph } (\varphi) \) such that \(F(u_i, w_i) = (u_i', w_i') \). So we deduce the following:

\[
\|w_2' - w_1'\| = \|\tilde{F}(w_2 - w_1) + \beta(u_2, w_2) - \beta(u_1, w_1)\|
\leq \lambda\|w_2 - w_1\| + \delta(\gamma + 1)\|u_2 - u_1\|
\leq \lambda\gamma\|w_2 - w_1\| + \delta(\gamma + 1)\|u_2 - u_1\|
= (\lambda\gamma + \delta(\gamma + 1))\|u_2 - u_1\|,
\]

we have also:

\[
\|u_2' - u_1'\| = \|\tilde{F}(u_2 - u_1) + \alpha(u_2, w_2) - \alpha(u_1, w_1)\|
\geq \frac{1}{\lambda}\|u_2 - u_1\| - \delta(\gamma + 1)\|u_2 - u_1\|
= (\frac{1}{\lambda} - \delta(\gamma + 1))\|u_2 - u_1\|,
\]

so by choosing \(\epsilon \) small enough we can take any \(\gamma \leq 1 \), which finish the proof of the fact.

\(\square \)
The following lemma is a variation of the previous lemma. It provides a lower bound of the volume of a dynamical ball centered near the hyperbolic attractor, this is crucial to find a link between being an attractor and having zero pressure with respect to the geometric potential. [BR75]

Lemma 5.5 (Bowen-Ruelle [BR75]). For all small $\epsilon, \delta > 0$ there is $d = d(\epsilon, \delta) > 0$ such that for all $n \in \mathbb{N}, x \in \Lambda$ and $y \in B_n(x, \epsilon)$ we have:

$$\text{vol}^m (B_n(y, \delta)) \geq d \cdot \text{vol}^m (B_n(x, \epsilon)).$$

Proof. If $y \in \Lambda$, then the inequality of the lemma is obvious by the previous lemma. Assume that $y \notin \Lambda$. Since $W^s_\epsilon(\Lambda)$ is a neighborhood of Λ (because Λ is an attractor) there is $z \in \Lambda$ such that $y \in W^s_\epsilon(z)$, and since $y \in B_n(x, \epsilon)$ we have $z \in B_n(x, 2\epsilon)$. Let $A = [x, z] = W^u_\epsilon(x) \cap W^s_\epsilon(z)$. By the shadowing lemma and the expansiveness of f in Λ the point A belongs to Λ.

By construction, $A \in W^u_\epsilon(x) \cap B_n(x, 3\epsilon)$, so by the previous lemma the volume of $B_n(x, \epsilon)$ and $B_n(A, \delta)$ are proportional independently of n, so in order to prove this lemma, it will be enough to compare the volume of $B_n(y, \delta)$ and the volume of $B_n(A, \epsilon)$.

By this remark, we may assume in that $y \in W^s_\epsilon(x)$. Using the same argument as in the previous lemma, we prove similarly that $\bigcup_{v \in W^u_\epsilon(y)} P_n(y, \delta) \subset D_n(y, \delta)$, then using distortion lemma, we get the desired inequality. \qed

The following lemma is proven in Chapter 4 Lemma 4.9 of [Bow75a].

Lemma 5.6. Let Λ be a hyperbolic set of a C^1 diffeomorphism. If $W^u_\epsilon(x) \subset \Lambda$ for some x, then Λ is an attractor. If Λ is not an attractor, then there exists $\gamma > 0$ such that for every $x \in \Lambda$, there is $y \in W^u_\epsilon(x)$ with $d(y, \Lambda) \geq \gamma$.

The proof of the following proposition and corollary 2 is the same as Theorems 4.11 and 4.12 of [Bow75a]. For convenience, we sketch the proofs.

Proposition 5.7. Let $f : \Lambda \rightarrow \Lambda$ be a transitive hyperbolic map of class $C^{1, \omega}$, where ω is Dini summable modulus, then the following are equivalent:

(i) Λ is an attractor.

(ii) $\text{vol}^m (W^s(\Lambda)) > 0$.

(iii) $P_{f|\Lambda} (\phi^{(w)}) = 0$.

21
Proof. \((i) \Rightarrow (ii)\) This implication is in fact true if \(f\) is only \(C^1\). Indeed we have \(W^s(\Lambda) = \bigcup_{x \in \Lambda} W^s(x)\), which implies that \(W^s(\Lambda)\) is a neighborhood of \(\Lambda\).

\((ii) \Rightarrow (iii)\) Define \(s(\epsilon, n)\) by:

\[
s(\epsilon, n) = \sup_{S \in S_{\epsilon, n}} \sum_{x \in S} e^{S_n \phi(u)(x)} = \frac{1}{\sum_{x \in S} J^u f(x)},
\]

where \(S_{\epsilon, n}\) is the set of \((\epsilon, n)\)–separated sets of \(\Lambda\). Using lemma \([5,3]\) we have for all \(S \in S_{\epsilon, n}\):

\[
s(\epsilon, n) \geq C^{-1} \sum_{x \in S} \text{vol}^m(B_n(x, \epsilon))
\]

\[
\geq C^{-1} \text{vol}^m\left(\bigcup_{x \in S} B_n(x, \epsilon)\right)
\]

\[
\geq C^{-1} \text{vol}^m\left(W^s_{\epsilon/2}(\Lambda)\right),
\]

which implies that:

\[
P_{f|\Lambda}(\phi^{(n)}) = \lim_{\epsilon \to 0} \lim_{n \to +\infty} \frac{1}{n} \log s(\epsilon, n) \geq 0.
\]

Similarly we have:

\[
s(\epsilon, n) \leq C \sum_{x \in S} \text{vol}^m\left(B_n(x, \epsilon)\right)
\]

\[
\leq C C_{\epsilon/2} \sum_{x \in S} \text{vol}^m\left(B_n(x, \epsilon/2)\right)
\]

\[
\leq C C_{\epsilon/2} \text{vol}^m\left(\bigcup_{x \in S} B_n(x, \epsilon/2)\right)
\]

\[
\leq C C_{\epsilon/2} \text{vol}^m\left(W^s_{\epsilon}(\Lambda)\right)
\]

where \(S\) is \((\epsilon, n)\)–separated set, and the third inequality follows from the fact that \(B_n(x, \epsilon/2)\) where \(x\) varies in \(S\) are disjoint. Hence we deduce that

\[
P_{f|\Lambda}(\phi^{(n)}) \leq 0.
\]

\((iii) \Rightarrow (i)\) Assume that \(\Lambda\) is not an attractor. We will prove that the pressure is negative. Let \(\epsilon > 0\) small, and choose \(\gamma > 0\) as in lemma \([5,9]\). Let \(N \in \mathbb{N}\) such that

\[
W^u_{\epsilon}(f^N x) \subset f^N(W^u_{\gamma/4}), \forall x \in \Lambda.
\]

Let \(S \subset \Lambda\) be \((\gamma, n)\)–separated. Using lemma \([5,8]\) there is a point \(y(x, n) \in B_n(x, \gamma/4)\) such that

\[
d(f^{n+N}y(x, n), \Lambda) > \gamma.
\]
Choose $\delta \in (0, \gamma/4)$ so that $d(f^N z, f^N y) < \gamma/2$ whenever $d(z, y) < \delta$. Then $B_n(y(x, n), \delta) \subset B_n(x, \gamma/2)$, and $f^{n+N} B_n(y(x, n), \delta) \cap B(\Lambda, \gamma/2) = \emptyset$.

So we deduce that $B_n(y(x, n), \delta) \cap B_{n+N}(\mathcal{S}, \gamma/2) = \emptyset$. Using lemma 5.5 we get

$$\text{vol}^m(B_n(\mathcal{S}, \gamma/2)) - \text{vol}^m(B_{n+N}(\mathcal{S}, \gamma/2)) \geq \sum_{x \in \mathcal{S}} \text{vol}^m(B_n(y(x, n), \delta))$$

$$\geq d(3\gamma/2, \delta) \sum_{x \in \mathcal{S}} \text{vol}^m(B_n(x, 3\gamma/2))$$

$$\geq d(3\gamma/2, \delta) \text{vol}^m(B_n(\mathcal{S}, \gamma/2)),$$

so we get for all $n > N$:

$$\text{vol}^m(B_{n+N}(\mathcal{S}, \gamma/2)) \leq (1 - d) \text{vol}^m(B_n(\mathcal{S}, \gamma/2)),$$

finally, using the upper bound of $s(n, \epsilon)$, we deduce that:

$$P_{f|\Lambda}(\phi^x) \leq \frac{1}{N} \log(1 - d) < 0.$$

The following lemma is proven in [Bow75a].

Lemma 5.8. Let $\phi : \Lambda \to \mathbb{R}$ be a $C^{0,\omega}$ potential, where ω is Dini summable, and $P = P_{f|\Lambda}(\phi)$ the pressure of f restricted to Λ. Then for small $\epsilon > 0$ there is $b_\epsilon > 0$ such that for any $x \in \Lambda$ and $n \in \mathbb{N}$ we have:

$$\mu_\phi(B_n(x, \epsilon)) \geq b_\epsilon \exp(-Pn + S_n\phi(x)). \quad (26)$$

Proof of theorem Let $g : U \to \mathbb{R}$ be a continuous function. Put $\bar{g}(n, x) = \frac{1}{n} \sum_{k=0}^{n-1} g(f^k x)$ and $\bar{g} = \int g \, d\mu_\phi(\cdot)$. Fix a small $\delta > 0$, and consider the sets

$$C_n(g, \delta) = \{ x \in M \mid |\bar{g}(n, x) - \bar{g}| > \delta \}, \quad B(g, \delta) = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} C_n(g, \delta).$$

We want to prove that for all $\delta > 0$ the volume of $B(g, \delta)$ is zero, which proves the physicality. Take $\epsilon > 0$, such that we have $d(gx, gy) < \delta$ whenever $d(x, y) < \epsilon$, then fix N and choose $\mathcal{R}_N, \mathcal{R}_{N+1}, \cdots$ as follow: \mathcal{R}_n is a maximal subset of $\Lambda \cap C_n(g, 2\delta)$, satisfying:

- $B_n(x, \epsilon) \cap B_k(y, \epsilon) = \emptyset$ for $x \in \mathcal{R}_n, y \in \mathcal{R}_k$, and $N \leq k < n$,

• $B_n(x, \epsilon) \cap B_n(x', \epsilon) = \emptyset$ for $x, x' \in \mathcal{R}_n$ and $x \neq x'$.

Let $V_N = \bigcup_{k=N}^{\infty} \bigcup_{x \in \mathcal{R}_k} B_k(x, \epsilon)$, which is a disjoint union by definition of $(\mathcal{R}_n)_n$. We have $B_k(x, \epsilon) \subset C_k(g, \delta)$ so $V_N \subset \bigcup_{k=N}^{\infty} C_k(g, \delta)$.

Since $\mu_{\phi(u)}$ is ergodic, we have

$$0 = \mu_{\phi(u)}(B(g, \delta)) = \lim_{n \to \infty} \mu_{\phi(u)}\left(\bigcup_{n=N}^{\infty} C_n(g, \delta) \right),$$

which implies that

$$\lim_{N \to \infty} \mu_{\phi(u)}(V_N) = 0. \quad (27)$$

So using the fact that $P_{f|\Lambda}(\phi(u)) = 0$ and lemma 5.8 we get

$$\mu_{\phi(u)}(V_N) \geq b_{\epsilon} \sum_{k=N}^{\infty} \sum_{x \in \mathcal{R}_k} \exp(S_k \phi(u)(x)). \quad (28)$$

Now for $x \in \Lambda$ and $y \in W^s_\epsilon(x) \cap C_n(g, 3\delta)$ we have $x \in C_n(g, 2\delta)$, so in particular:

$$W^s_\epsilon(\Lambda) \cap \bigcup_{k=N}^{\infty} C_k(g, 3\delta) \subset \bigcup_{k=N}^{\infty} \bigcup_{x \in \mathcal{R}_k} B_k(x, 2\epsilon),$$

so using lemma 5.3 we deduce that:

$$vol^m(W^s_\epsilon(\Lambda) \cap \bigcup_{k=N}^{\infty} C_n(g, 3\delta)) \leq C_{2\epsilon} \sum_{k=N}^{\infty} \sum_{x \in \mathcal{R}_k} \exp(S_k \phi(u)(x)). \quad (29)$$

Finally, using (27), (28) and (29) we deduce that $vol(B(g, \delta) \cap W^s_\epsilon) = 0$ which ends the proof.

\[\square \]

References

[AB06] A. Avila and J. Bochi. A generic C^1 map has no absolutely continuous invariant probability measure. *Nonlinearity*, 19(11):2717–2725, 2006.

[Ano67a] D. V. Anosov. Geodesic flows on closed riemannian manifolds of negative curvature. *Trudy Matematicheskogo Instituta Imeni VA Steklova*, 90:3–210, 1967.
[Ano67b] D. V. Anosov. Tangent fields of transversal foliations in 'U-systems'. *Math. Notes*, 2:818–823, 1967.

[Bal00] V. Baladi. *Positive transfer operators and decay of correlations*, volume 16. World scientific, 2000.

[Bow75a] R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. *Springer Lecture Notes in Math.*, 470:78–104, 1975.

[Bow75b] R. Bowen. A horseshoe with positive measure. *Inventiones mathematicae*, 29:203–204, 1975.

[BR75] R. Bowen and D. Ruelle. The ergodic theory of Axiom A flows. In *The theory of chaotic attractors*, pages 55–76. Springer, 1975.

[BS02] M. Brin and G. Stuck. *Introduction to dynamical systems*. Cambridge university press, 2002.

[FH19] T. Fisher and B. Hasselblatt. *Hyperbolic flows*. 2019.

[FJ01a] A. Fan and Y. Jiang. On Ruelle–Perron–Frobenius operators. i. Ruelle theorem. *Communications in Mathematical Physics*, 223(1):125–141, 2001.

[FJ01b] A. Fan and Y. Jiang. On ruelle–perron–frobenius operators. ii. convergence speeds. *Communications in Mathematical Physics*, 223(1):143–159, 2001.

[Gór94] P. Góra. Properties of invariant measures for piecewise expanding one-dimensional transformations with summable oscillations of derivative. *Ergodic Theory Dyn. Syst.*, 14(3):475–492, 1994.

[GS89] P. Góra and B. Schmitt. Un exemple de transformation dilatante et C^1 par morceaux de l'intervalle, sans probabilité absolument continue invariante. (an example of a piecewise C^1-dilation transformation without an absolutely continuous invariant measure of probability). *Ergodic Theory Dyn. Syst.*, 9(1):101–113, 1989.

[HY95] Huyi Hu and Lai-Sang Young. Nonexistence of SBR measures for some diffeomorphisms that are 'almost Anosov'. *Ergodic Theory Dyn. Syst.*, 15(1):67–76, 1995.

[KH97] A. Katok and B. Hasselblatt. *Introduction to the modern theory of dynamical systems*. Number 54. Cambridge university press, 1997.
[LZ00] Weigu Li and Meirong Zhang. Existence of SRB measures for expanding maps with weak regularity. *Far East J. Dyn. Syst.*, 2:75–97, 2000.

[Man12] R. Mané. *Ergodic theory and differentiable dynamics*, volume 8. Springer Science & Business Media, 2012.

[PP90] W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. *Astérisque*, 187(188):1–268, 1990.

[Qiu11] Hao Qiu. Existence and uniqueness of srb measure on c 1 generic hyperbolic attractors. *Communications in mathematical physics*, 302(2):345–357, 2011.

[Qua99] A. N. Quas. Most expanding maps have no absolutely continuous invariant measure. *Stud. Math.*, 134(1):69–78, 1999.

[Wal75] P. Walters. Ruelle’s operator theorem and g-measures. *Trans. Am. Math. Soc.*, 214:375–387, 1975.

[You02] L-S Young. What are SRB measures, and which dynamical systems have them? *Journal of Statistical Physics*, 108(5):733–754, 2002.