Biotransformations of HBCDs by Rhodococcus Strain Stu-38 and Identification of Transformation Products

Fei Yu
Shantou University

Wenqi Luo
Shantou University

Yuyang Li
Shantou University

Shanshan Meng
Shantou University

Xianbin Lin
Shantou University

Lele Li
Shantou University

Xueying Ye
Shantou University

Hui Wang
Shantou University

Tao Peng
Shantou University

Tongwang Huang
Shantou University

Zhong Hu (hzh@stu.edu.cn)
Shantou University

Research Article

Keywords: HBCDs, biotransformation, Rhodococcus, GC-MS

Posted Date: August 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-730122/v1
Abstract

1, 2, 5, 6, 9, 10-Hexabromocyclododecanes (HBCDs) are new brominated flame retardants causing serious environmental pollution. Dozens of degradative bacteria have been found with capacity to transform HBCDs. In the present study, an aerobic functional bacterium *Rhodococcus* strain stu-38 was isolated from enriched culture of mangrove sediment using HBCDs as carbon source. This strain could stereoselectively transform HBCDs, the removal rate was $\alpha\-\gamma\-\beta$-HBCD in the mineral salt medium, but was $\beta\-\alpha\- and \gamma$-HBCD in the growth medium, and it selectively transformed γ- HBCD in the seawater. Transformation rate of strain stu-38 was lower than other functional strains, however, seven potential debrominated products of HBCDs were identified by using GC-MS. These debrominated products, included dibromocyclodecadiene, bromocyclodecadienol and bromocyclodecatriene were formed through reductive debromination, hydrolytic debromination and dehydrobromination. Overall, *Rhodococcus* sp. stu-38 diastereoisomer-specifically transformed HBCDs to various debrominated products in the different cultural media, which highlighted the complicated stereoselective biotransformation of HBCDs.

Introduction

Hexabromocyclododecanes (HBCDs) are a new type of additive brominated flame retardants (BFRs) applied in extruded (XPS) and expanded (EPS) polystyrene foams. HBCDs are used to improve the flammability resistance or chemically bound to synthetic matrices such as plastics, textiles, electronic circuitry and other materials (Koch et al. 2015). HBCDs released from industry and waste products can infiltrate various ecosystems, leads to serious contamination (Cao et al. 2018). The first detection of environmental HBCDs was in fish and sediment samples from the river Viskan in Sweden, 1995 (Sellström et al. 1998). Since then, they have been found in various environmental media (Cao et al. 2018), even in the human body (Lu et al. 2018; Roosens et al. 2009). Since HBCDs were recalcitrant to degradation and could lead to neurotoxicity (Mariussen and Fonnum et al. 2003), disruption of the inflammatory response in the immune cells (Yasmin and Whalen et al. 2018) and the bronchial epithelial cells (Koike et al. 2016), they had been listed in Annex A of the Stockholm Convention on Persistent Organic Pollutants (POPs) in May 2013.

Over three tons of HBCDs were released into the environment in Europe each year (Koch et al. 2015). The environmental distribution of HBCDs is mainly in the soil and sediment (Cao et al. 2018; Zhang et al. 2018b), which benefits for biodegradation. Biotransformation of HBCDs has been observed in the sludge, soil and sediment. Half-lives of HBCDs in the environment varying from days to months (Davis et al. 2005, 2006; Gerecke et al. 2006; Stiborova et al. 2015). Both biotic and abiotic transformation contribute to removal of HBCDs while the biological activity can greatly enhance HBCDs transformation in the environment (Davis et al. 2006; Gerecke et al. 2006; Morris et al. 2004; Stiborova et al. 2015).

Numbers of isolated bacterial strains and enzymes have been found to transform HBCDs effectively. *Bacillus* sp. HBCD-sjtu could consume 90% of 321.0 µg/mL HBCDs in 4 days (Shah et al. 2018; Shah et
al. 2019). *Pseudomonas aeruginosa* HS9 could degrade 69% HBCDs in four days and had been used for remediation test in plant soil (Huang et al. 2019). Anaerobic dehalorespiring strain *Dehalobium chlorocoercia* DF-1 was added to the sediment to remove γ-HBCD (Demirtepe and Imamoglu et al. 2019). LinB, an hexachlorocyclohexanes (HCHs) haloalkane dehalogenase, converts HBCDs via hydrolytic debromination; LinA2, a HCHs dehydrochlorinase, converts HBCDs through HBr-elimination (Yu et al. 2021).

Three main diastereoisomers of HBCDs in commercial products and environmental materials are α-, β- and γ-HBCD. Bacterial debromination of HBCDs are generally diastereoisomer-specific (Yu et al. 2021). *Sphingobium chinhatense* IP26 could transform 27, 20, 78, 63, 39 and 41% of (-)α-, (+)α-, (-)β-, (+)β-, (-)γ- and (+)γ-HBCDs at 1.0 μg/mL in 6 days (Heeb et al. 2017). The degradation rates of α-, β-, γ-HBCD by *Pseudomonas* sp. GJY were with small differences (85.38, 82.64 and 75.50% in 8 days, respectively), but this strain could transform three diastereoisomers to different products (Geng et al. 2019). Strain HB01 selectively debrominated 81% γ-HBCD at a high concentration of 642.0 μg/mL in 5 days (Yamada et al. 2009). Anaerobic strain *Dehalococcoides mccartyi* 195 stereoselectively transformed HBCDs, and the transformation rate of three diastereoisomers followed the order of α-HBCD > β-HBCD > γ-HBCD (Zhong et al. 2018). Diastereoisomer selection had been observed in dehalogenases too. (-)α-, (+)β-, and (+)γ-HBCDs were transformed faster by LinB than their enantiomers, and LinA2 selectively catalyzed the transformation of β-HBCDs (Heeb et al. 2012; 2013; 2014; 2015). It may conclude that the diastereoisomer-specific transformation of HBCDs are result from structurally selection of dehalogenase on the substrates (Heeb et al. 2021; Heeb et al. 2012; Heeb et al. 2013; Suar et al. 2005). However, the debromination behavior of bacterial strain can be different from that of their dehalogenases. For example, though *S. chinhatense* IP26 has genes encoding LinA and LinB, this strain transforms HBCDs through hydrolytic pathway (Heeb et al. 2012, 2017, 2021), which may suggest that the transformation pathway is selectable for functional bacteria.

Moreover, the long half-lives of HBCDs (Davis et al. 2005, 2006) along with the absence of known degradative bacteria in the contaminated material (Stiborova et al. 2015) indicated that the efficient degradative bacteria might not contribute to degradation of HBCDs *in situ*. Dozens of lower effective strains were reported but uncharacterized in the literature (Chang et al. 2020; Yamada et al. 2009), leaving the role of strains with lower efficiency were unclear in the remediation.

Present research investigated the HBCDs transformation by *Rhodococcus* sp. stu-38 in the different materials including mineral salt medium, seawater and the nutrient seawater. In three media, different diastereoisomer-specific transformation trends of HBCDs by this strain were found yielding different debrominated products identified by using GC-MS. Therefore, the results obtained here provided the primary knowledge about the diastereoisomer-specific transformation patterns of a functional strain in various environmental materials, and might contribute to the bioremediation of HBCDs contamination.

Materials And Methods
Chemicals and media

The HBCDs used in this study was a composite of a commercial sample supplied by Adamas-beta (Adamas Reagent Co., Ltd. Switzerland). The composition is about 17.7%: 10.6%: 71.7% for α-, β- and γ-HBCD. Mineral salt medium (MSM) contained 1.0 g/L (NH₄)₂SO₄, 0.8 g/L Na₂HPO₄, 0.2 g/L KH₂PO₄, 0.2 g/L MgSO₄, 10.0 g/L NaCl, 0.005 g/L FeCl₃, 0.001 g/L (NH₄)₂MoO₄, and 10-15 g agar for solid media, pH 7.0. For the liquid media containing HBCDs, HBCDs were dissolved in dichloromethane, injected into flasks. Dichloromethane was volatilized before injection of liquid media. Solid MSM was prepared with 1.5 mg HBCDs on the surface.

Seawater was obtained from the offshore area of Shantou, China. Seawater media was filtered through 0.45μm and sterilized. Seawater-LB medium was composed of seawater, 10 g/L peptone, 5 g/L yeast extract powder, pH 7.2-7.5. 100 μg HBCDs were dissolved in dichloromethane, injected into each 50 mL centrifugal tube. Dichloromethane was volatilized before addition of media and bacteria.

Strain isolation and identification

Mangrove sediment was collected from Zhanjiang, China. Sediment was mixed with 100 mL of MSM media using 30.0 mg/L HBCDs as the sole carbon source to enrich functional bacteria. The mixture was cultured at room temperature around 25 °C, 150 r/min. After 30 days, 2 mL of mixture was transferred to a new flask with 100 mL MSM and 30.0 mg/L HBCDs. In the fifth transfer, the culture was used for isolation on solid media contain HBCDs. Six strains were obtained and named 38-43 in order. The 16S rRNA gene of strains was amplified using the universal primers 27F and 1492R, and sequenced by BGI (Guangzhou, China). The 16S rRNA sequence was aligned using Nucleotide Blast on the NCBI web (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The phylogenetic tree was generated using the neighbor-joining method with MEGA 5.0. Strain 38, renamed stu-38 was used for further research.

Batch experiments

Five groups were set up. In the freshwater group (FW), bacteria were cultured in the seawater-LB media for two days. Cells were harvested by centrifuge at 6000 rpm/min, resuspended with 1mL MSM. Then the cells were inoculated to a 50 mL tube containing 100 μg HBCDs and 5mL MSM. The final concentration of HBCDs was 16.7 μg/mL. Controls (FW-C) were without addition of cells. In the other two groups, seawater and seawater-LB were used to replace MSM, designed as SW and SWLB which were containing cells of strain stu-38. SWLB-C and SW-C were controls without cells. All groups were cultured at room temperature (25-30°C), 150 rpm/min. Each group was triplicate. The residual HBCDs in the FW and FW-C were determined after two months. The residual HBCDs in the SWLB, SWLB-C, SW and SW-C were determined at one month.

Determination of HBCDs residues and identification of debrominated products
To analyze the residues and debrominated products of HBCDs, the cultures were frozen and dried, and extracted by 15 mL of n-hexane, dichloromethane and acetone in the proportion of 1:1:1. The extracts were dried and dissolved in the methanol, determined by Liquid Chromatograph Mass Spectrometer (LC-MS, Thermo TSQ-Endura, USA) equipped with a dual-mode discrete-dynode detector and a Hypersil GOLD 1.9 μ column (50×2.1 mm). Solvent A (methanol: acetonitrile = 80% :20%) and solvent B (10 mmol/L NH₄Ac) were used as mobile phase. The mobile phase composition started with solvent A: B at 50%: 50%, then to 90%: 10% in 9 minutes, ended up with 100% solvent A in 13 minutes (Morris et al. 2004). The transformation of HBCD was followed by monitoring the HBCD molecular precursor ion (m/z = 640.6 amu) and its fragment ions (m/z = 79.1, 81.1 and 560.5 amu). Concentrations of HBCD were quantified based on the HBCD molecular ion (m/z = 81.1 amu) (Davis et al. 2005). The recoveries of HBCDs in the MSM, SW and SWLB were in the range of 111.1-122.5%, 64.0-70.7% and 140-146%, respectively. The transformation efficiency η was defined as

$$\eta = \frac{(C_0 - C_t)}{C_0} \times 100\%,$$

where C_0 was the concentration of control at time t in the FW or initial concentration of substrate in other groups, μg/L; C_t was the concentration of HBCD at time t, μg/L.

After determination, the extracts were dried and dissolved in the mixture of n-hexane, dichloromethane and acetone, analyzed by Gas Chromatography/ Mass Spectrometer (GC-MS, QP-2010ULTRA model, Shimadzu, Japan) equipped with a HP-5ms Ultra Inert Capillary Column (30 m×0.25 mm×0.25 μm film thickness). The procedures were 80 ℃ for 1 min, then increase to 250 ℃ in 13 min by 10 ℃/min, and end up with 250 ℃ for 10 min. Full scan of molecules in the range of 30-700 m/z was performed in select ion monitoring (SIM) mode to detect possible brominated degradation products (Davis et al. 2005; Zhong et al. 2018). HBCDs dissolved in the acetone and placed in the room temperature for 48 hours to harvest debrominated products (Zhong et al. 2010) were used as the positive control for identification.

Table 1 transformation products identified by GC-MS
Results

Isolation and identification of bacteria

Six of bacterial strains grew on MSM containing HBCDs were obtained. The colony of strain 38 turned slight red on solid SWLB medium after several days of culture (Fig. 1a). Its 16S rRNA gene sequence displayed 99% identity with *Rhodococcus* strains through Nucleotide Blast analysis on the NCBI website. The GenBank accession number of its 16S rRNA was MT815909. The isolated strain 38 was renamed *Rhodococcus* sp. stu-38. Strain 39 to 43 were identified as *Marinobacter*, *Nitratireductor*, *Brucella*, *Sinomonas* and *Ochrobactrum* in order, as displayed in the Fig. 1.

Transformation of HBCDs by *Rhodococcus* sp. stu-38
The transformation rates of HBCDs by isolates in the FW were determined. Strain *Rhodococcus* sp. stu-38 showed better removal ability than others. As was shown in Fig. 2. 37% α-HBCD and 24% γ-HBCD were removed in comparison with control in two months. And the lowest removal rate was on β-HBCD. Strain *Marinobacter* slightly transformed HBCDs. *Nitratireductor*, *Brucella*, *Sinomonas*, *Ochrobactrum* did not showed transformation ability. Therefore, strain *Rhodococcus* sp. stu-38 were used for further research.

The residual HBCDs in the SW were determined in one month (Fig. 3). At the end of incubation, 42% and 36% of γ-HBCD were removed in the SW and SW-C, respectively. Only about 6% loss of γ-HBCD was related to strain stu-38. However, the decrease of α- and β-HBCD were hardly observed. 33%, 51% and 34% of α-, β- and γ-HBCD were removed in SWLB in one month (Fig. 4). In the SWLB-C, about 15%, 19%, and 16% of α-, β- and γ-HBCD were removed abiotically in one month. Removal of 18%, 32%, 18% of α-, β- and γ-HBCD were related to strain stu-38. In total, 39% of HBCDs in the SWLB was removed in four weeks, higher than 17% in the SWLB-C.

Identification of the debrominated products

GC-MS was used to identify the debrominated products of HBCDs since the m/z of fragment ions were clear (Fig. S1). In the acetone, HBCDs can be chemically debrominated to tribromocyclododecadiene (C$_{12}$H$_{15}$Br$_3$) and dibromocyclododecadiene (C$_{12}$H$_{14}$Br$_2$) which were used as positive controls (Fig. S2 and S6). The character ions were C$_{12}$H$_{15}$Br$_3$, m/z=400.0; C$_{12}$H$_{14}$Br$_2$, m/z=319.1; C$_{12}$H$_{13}$Br, m/z=238.2; C$_{12}$H$_{12}$, m/z=157.3; C$_6$H$_7$, m/z=79. Together, seven debrominated products with carbon frame of HBCDs were identified (table 1). There were two lower brominated alkenes, including dibromocyclododecadiene, bromocyclododecatriene; two lower brominated alkenols, including bromocyclododecadienol and bromocyclododecatrienol; the carbon skeleton of HBCDs, cyclododecatriene; two hydroxylated cyclododecatrienies, including cyclododecadienol and cyclododecadieniodiol; one oxidized cyclododecatriene, 1,2-epoxy-5,9-cyclododecadiene. These debrominated products were present at low level (Fig. S6-S9), and were absent in the FW-C, SW-C, SWLB-C and the HBCDs standard solution.

Discussion

Transformation of HBCDs by Rhodococcus strain stu-38

In the present research, six bacterial strains grew on MSM containing HBCDs were isolated. Strain *Rhodococcus* sp. stu-38 showed better transformation ability than the others. Stu-38 could not use HBCDs as the sole carbon source and might survive the oligotrophic HBCDs-containing media by living on CO$_2$ (Feisthauer et al. 2008; Ohhata et al. 2007; Yano et al. 2015). Some *Rhodococcus* strains had been found with dehalogenation capacity, for example, strains 1CP, JT-3 and EK2 could transform various organohalides (Khosrowabadi and Huyop et al. 2014; Roth et al. 2013; Zhang et al. 2018a). This is the first study demonstrated the capacity of *Rhodococcus* strain to convert HBCDs.

The HBCDs removal ability of strain stu-38 was lower than functional strains from other research. For example, *Bacillus* sp. HBCD-sjtu was reported to consume 90% HBCDs at 321.0 μg/mL in four days (Shah...
et al. 2018; Shah et al. 2019). *Sphingobium chinhatense* IP26 could transform 78% and 63% of (-) β- and (+) β-HBCDs from initial concentration of 1.0 μg/mL in six days (Heeb et al. 2017). The low efficient transformation ability of stu-38 could be a heritage of converting natural organohalides *in situ* (Verma et al. 2014; Kaster et al. 2014; Yu et al. 2021). The sediment applied for enrichment culture was rarely contaminated HBCDs (unpublished data), which might not be a selective pressure for indigenous bacteria.

Rhodococcus sp. stu-38 selectively removed α-HBCD and γ-HBCD in the FW. The selective transformation by strain stu-38 was also found in SWLB where 33%, 51% and 34% of α-, β- and γ-HBCD were removed. β-HBCD was rarely transformed by strain stu-38 in the FW and SW (Fig. 2 and 3). But in SWLB, strain stu-38 could removed 32% β-HBCD, and showed better transforming ability on α- and γ-HBCD (Fig. 4). Biotransformation rates of a functional strain in different media were not well studied. *P. aeruginosa* HS9 could degrade 69% HBCDs in the MSM in 14 days, but removed 88% HBCDs in the plant soil (Huang et al. 2019). It indicated that the different factor in growing environment of bacteria could affect their transformation ability, in corresponding to biodehalogenation of other organic halogenated compounds (Wang et al. 2015). Diastereoisomers-specific biotransformation of HBCD was also observed in other functional strains. *S. chinhatense* IP26 could transform 27, 20, 78, 63, 39 and 41% of (-)α-, (+)α-, (-)β-, (+)β-, (-)γ- and (+)γ-HBCDs at 1.0 μg/mL in 6 days (Heeb et al. 2017). *Achromobacter* sp. HBCD-1 (Peng et al. 2015), *D. mccartyi* 195 (Zhong et al. 2018), *Pseudomonas* sp. GJY (Geng et al. 2019) were more effective on debromination of α-HBCD. *Pseudomonas* sp. strain HB01 (Yamada et al. 2009) selectively transformed 81% γ-HBCD in five days. The stereoselection on transforming HBCDs was result from the fitness of substrates to the active site of enzyme as revealed by the investigation of dehalogenases LinB, LinA1, LinATM and LinA2 (Heeb et al. 2021; Heeb et al. 2012; Heeb et al. 2013; Suar et al. 2005). As indicated in this study, bacterial diastereoisomer-specificity could also affect by the cultural media.

R. sp. stu-38 facilitated the abiotic transformation of HBCDs

Biotransformation half-lives of HBCDs are varying from a few days to over 100 days in the sludge, soil and sediment (Yu et al. 2021). Present study shew that abiotic transformation of HBCDs had a major contribution in the seawater media, which was corresponding to previous reports that abiotic loss was a large contribution in transformation of HBCDs in the aquatic sediment and active sludge (Davis et al. 2005, 2006). The removal rates of SW and SWLB were higher than SW-C and SWLB-C, indicated that the presence of strain stu-38 could facilitate the removal of HBCDs, which was corresponding to other research (Huang et al. 2019). Chemical and physical factors can lead to abiotic transformation of HBCDs, for example, FeS, nanoscale zero-valent aluminum, sulfated nanoscale zerovalent iron, and ultraviolet light (Franke et al. 2017; Palau et al. 2017; Yu et al. 2015). Abiotic transformation of HBCDs could have been mediated by chemicals since the cultures were placed in the dark environment.

The augmentation of glucose increased bacterial diversity and improved the removal of HBCDs in the suspension of planted soil (Le et al. 2017). Biostimulation of carbon source could improve the removal of γ-HBCD in the sediment (Demirtepe and Imamoglu et al. 2019). Present research shew that the addition
of nutrition enhanced the removal of HBCDs by stu-38 because bacteria might maintain high activity in
the nutrient media. It suggested the augmentation of carbon source as a strategy to improve
bioremediation in the contaminated sites. This was different from previous research using pure bacterial
strain to transform 3-chlorobenzoate (Chobchuenchom et al. 1996).

The formation of the debrominated products

HBCDs could be chemically debrominated to tribromocyclododecadiene and dibromocyclododecadiene
in the acetone (Fig. S2 and S6) (Zhong et al. 2010). At the same retention time, the intensity of
tribromocyclododecadiene (m/z=401, 321, 241 and 159) and dibromocyclododecadiene (m/z=321, 241
and 159) were much smaller in the SW than in the acetone (Fig. S2). It was because of the high levels of
chemicals from seawater and cells, which could result in the difficulties for the identification of penta-
and tetra- brominated products and the detection of α- and β-HBCD (Fig. S1, S7-S9). Moreover, the low
transformation efficiency of strain stu-38 leaded to the debrominated products presented at low
concentration and weak intensity (Fig. S3-S5, S7-S9).

By using GC-MS, seven biodebrominated products were identified relying on mass spectra of GC-MS
(Table 1; Fig. S3-S5, S6-S9). But the accurate identification and further determination were difficult
because the limit of standards. Based on the debrominated products observed, the possible
transformation pathways of HBCDs by strain stu-38 in the FW, SW and SWLB were proposed (Fig. 5).

The debromination pathways of HBCDs include HBr-elimination (dehydrobromination), HBr-
dihaloelimination and hydrolytic debromination (Ang et al. 2018; Yu et al. 2015). HBr-elimination of
HBCDs yields lower brominated compounds with an HBr removed to form a carbon-carbon double
bond (Kunze et al. 2017). Dihaloelimination involves electron transfer in which HBCDs serve as electron
acceptor. Hydrolytic debromination yields lower brominated alkanol or alkenol. These debromination
pathways were all observed in the transformation of HBCDs by *R. sp.* stu-38 (Fig. 5). As the toxicity of
debrominated products were unknown, it was unclear if the toxicity of debrominated products resulted in
the low efficiency of *R. sp.* stu-38 (Heeb et al. 2017; Lal et al. 2010; van Hylckama Vlieg et al. 2000).

Dibromocyclododecadiene, formed through HBr-dihaloelimination, were found in FW, SW and SWLB (Fig.
5). Full debromination via dihaloelimination and the cleavage of cyclododecatriene was not found in this
research. The ring opening intermediate was observed in the study of strain GJY (Geng et al. 2019).
Strain HS9 (Huang et al. 2019) and GJY (Geng et al. 2019) could convert HBCDs through both reductive
and hydrolytic debromination yielding various intermediates. Stu-38 shew similar debromination patterns
in the FW and SW, but the biotransformation of HBCDs in the SWLB was more complicated (Fig. 5, S5).

Anaerobic strains *D. mccartyi* 195 (Zhong et al. 2018) and *A. sp.* HBCD-1 (Peng et al. 2015), aerobic
strains *P. aeruginosa* HS9 (Huang et al. 2019) and *P. sp.* GJY (Geng et al. 2019) could convert HBCDs
through dihaloelimination. The oxygen-tolerant nonrespiratory reductive dehalogenase was also
reported (Payne et al. 2015). However, genes encoding such enzymes were not annotated in the genome
of stu-38 except several genes encoding haloalkane dehalogenase and haloacid dehalogenase (data not
shown). Haloalkane dehalogenase LinB is known for converting HBCDs via hydrolytic debromination (Heeb et al. 2012). Therefore, further research needs to identify the functional dehalogenases in the R. sp. stu-38.

Conclusion

In summary, a new HBCDs-transforming bacteria Rhodococcus sp. stu-38 was identified in the present research. This strain selectively transformed HBCDs diastereoisomers in the mineral salt medium, seawater and nutrient seawater. Seven debrominated products were identified by using GC-MS. The formation of debrominated products were partially depended on the culture media. Together, this study demonstrated a functional Rhodococcus originated from mangrove sediment which could diastereoisomer-specifically transform HBCDs depending on its living environment, which highlight the monitoring of various lower brominated products of contaminants during bioremediation.

Declarations

Authors’ contributions

Wenqi Luo, Xianbin Lin, Shanshan Meng, Lele Li performed the serial diluting culture with HBCDs supplied as the sole carbon source. Fei Yu isolated the bacteria, performed the rest experiment and completed the manuscript. Yuyang Li analyzed the genomic sequence of bacteria. Xueying Ye, Tao Peng, Hui Wang, Tongwang Huang, Zhong Hu provided the directions. All authors read and approved the final manuscript.

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31870104, 32070114, 31770130 and 32000072).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

Ang TF, Maiangwa J, Salleh AB, Normi YM, Leow TC (2018) Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Molecules
Cao X, Lu Y, Zhang Y, Khan K, Wang C, Baninla Y (2018) An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China. Environ Pollut 236:283-295. https://doi.org/10.1016/j.envpol.2018.01.040

Chang TH, Wang R, Peng YH, Chou TH, Li YJ, Shih YH (2020) Biodegradation of hexabromocyclododecane by *Rhodopseudomonas palustris* YSC3 strain: A free-living nitrogen-fixing bacterium isolated in Taiwan. Chemosphere 246:125621. https://doi.org/10.1016/j.chemosphere.2019.125621

Chobchuenchom W, Mongkolsuk S, Bhumiratana A (1996) Biodegradation of 3-chlorobenzoate by *Pseudomonas putida* 10.2. World J Microbiol Biotechnol 12: 607-14. https://doi.org/10.1007/BF00327723

Davis JW, Gonsior S, Marty G, Ariano J (2005) The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water. Res 39:1075-84. https://doi.org/10.1016/j.watres.2004.11.024

Davis JW, Gonsior SJ, Markham DA, Friederich U, Hunziker RW, Ariano JM (2006) Biodegradation and product identification of *[^14C]hexabromocyclododecane* in wastewater sludge and freshwater aquatic sediment. Environ Sci Technol 40:5395-401. https://doi.org/10.1021/es060009m

Demirtepe H, Imamoglu I (2019) Biostimulation enhanced the biotic degradation of hexabromocyclododecane in sediments. J Soil Sediment 19:2859-2868. https://doi.org/10.1007/s11368-019-02280-z

Feisthauer S, Wick LY, Kästner M, Kaschabek SR, Schlömann M, Richnow HH (2008) Differences of heterotrophic *[^13C]CO₂* assimilation by *Pseudomonas knackmussii* strain B13 and *Rhodococcus opacus* 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol 10:1641-51. https://doi.org/10.1111/j.1462-2920.2008.01573.x

Franke S, Lihl C, Renpenning J, Elsner M, Nijenhuis I (2017) Triple-element compound-specific stable isotope analysis of 1,2-dichloroethane for characterization of the underlying dehalogenation reaction in two *Dehalococcoides mccartyi* strains. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fix137

Geng J, Han M, Yang X, Li Y, Bartlam M, Wang Y (2019) Different biotransformation of three hexabromocyclododecane diastereoisomers by *Pseudomonas* sp. under aerobic conditions. Chem Eng J 374:870-879. https://doi.org/10.1016/j.cej.2019.05.232

Gerecke AC, Giger W, Hartmann PC, Heeb NV, Kohler H-PE, Schmid P, Zennegg M, Kohler M (2006) Anaerobic degradation of brominated flame retardants in sewage sludge. Chemosphere 64:311-317. https://doi.org/10.1016/j.chemosphere.2005.12.016
Heeb NV, Grubelnik A, Geueke B, Kohler HE, Lienemann P (2017) Biotransformation of hexabromocyclododecanes with hexachlorocyclohexane-transforming *Sphingobium chinhatense* strain IP26. Chemosphere 182:491-500. https://doi.org/10.1016/j.chemosphere.2017.05.047

Heeb NV, Hubeli J, Fleischmann T, Lienemann P, Nayyar N, Lal R, Kohler HE (2021) Transformation of ε-HBCD with the *Sphingobium Indicum* enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. Chemosphere 267:129217. https://doi.org/10.1016/j.chemosphere.2020.129217

Heeb NV, Zindel D, Geueke B, Kohler HP, Lienemann P (2012) Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB—an HCH-converting bacterial enzyme. Environ Sci Technol 46:6566-74. https://doi.org/10.1021/es2046487

Heeb NV, Zindel D, Graf H, Azara V, Schweizer WB, Geueke B, Kohler HP, Lienemann P (2013) Stereochemistry of LinB-catalyzed biotransformation of delta-HBCD to 1R,2R,5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere 90:1911-9. https://doi.org/10.1016/j.chemosphere.2012.10.019

Heeb NV, Wyss SA, Geueke B, Fleischmann T, Kohler HE, Bernd Schweizer W, Moor H, Lienemann P (2015). Stereochemistry of enzymatic transformations of (+)-beta- and (-)-beta-HBCD with LinA2—a HCH-degrading bacterial enzyme of *Sphingobium indicum* B90A. Chemosphere 122:70-78. https://doi.org/10.1016/j.chemosphere.2014.11.008

Heeb NV, Wyss SA, Geueke B, Fleischmann T, Kohler HE, Lienemann P (2014) LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere 107:194-202. https://doi.org/10.1016/j.chemosphere.2013.12.035

Huang L, Wang W, Shah SB, Hu H, Xu P, Tang H (2019) The HBCDs Biodegradation using a *Pseudomonas* Strain and Its Application in Soil Phytoremediation. J Hazard Mater 380:120833. https://doi.org/10.1016/j.jhazmat.2019.120833

Kaster AK, Mayer-Blackwell K, Pasarelli B, Spormann AM (2014) Single cell genomic study of *Dehalococcoidetes* species from deep-sea sediments of the Peruvian Margin. ISME J 8:1831-42. https://doi.org/10.1038/ismej.2014.24

Khosrowabadi E, Huyop FBJJ (2014) Screening and Characterization of Several 2,2-Dichloroproponic Acid–Degrading Bacteria Isolated from Marine Sediment of Danga Bay and East Coast of Singapore Island. Bioremed J 18:20-27. https://doi.org/10.1080/10889868.2013.834868

Koch C, Schmidt-Kotters T, Rupp R, Sures B (2015) Review of hexabromocyclododecane (HBCD) with a focus on legislation and recent publications concerning toxicokinetics and -dynamics. Environ Pollut 199:26-34. https://doi.org/10.1016/j.envpol.2015.01.011
Koike E, Yanagisawa R, Takano H (2016) Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Toxicol In Vitro 32:212-9. https://doi.org/10.1016/j.tiv.2015.12.013

Kunze C, Diekert G, Schubert T (2017) Subtle changes in the active site architecture untangled overlapping substrate ranges and mechanistic differences of two reductive dehalogenases. FEBS J 284:3520-3535. https://doi.org/10.1111/febs.14258

Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol. Mol Biol Rev 74:58-80. https://doi.org/10.1128/MMBR.00029-09

Le TT, Son MH, Nam IH, Yoon H, Kang YG, Chang YS (2017) Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. J Hazard Mater 325:82-89. https://doi.org/10.1016/j.jhazmat.2016.11.058

Lu S, Tan Z, Jiang Y, Wu D, Zhang J, Zhou J, Lin X (2018) Hexabromocyclododecanes in breast milk from residents in Shenzhen, China: Implications for infant exposure. Sci Total Environ 622-623:1090-1097. https://doi.org/10.1016/j.scitotenv.2017.11.277

Mariussen E, Fonnum F (2003) The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles. Neurochem Int 43:533-542. https://doi.org/10.1016/S0197-0186(03)00044-5

Morris S, Allchin CR, Zegers BN, Haftka JJ, Boon JP, Belpaire C, Leonards PE, Van Leeuwen SP, De Boer J (2004) Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ Sci Technol 38:5497-504. https://doi.org/10.1021/es049640i

Ohhata N, Yoshida N, Egami H, Katsuragi T, Tani Y, Takagi H (2007) An extremely oligotrophic bacterium, *Rhodococcus erythropolis* N9T-4, isolated from crude oil. J Bacteriol 189:6824-31. https://doi.org/10.1128/JB.00872-07

Palau J, Shouakar-Stash O, Hatijah Mortan S, Yu R, Rosell M, Marco-Urrea E, Freedman DL, Aravena R, Soler A, Hunkeler D (2017) Hydrogen Isotope Fractionation during the Biodegradation of 1,2-Dichloroethane: Potential for Pathway Identification Using a Multi-element (C, Cl, and H) Isotope Approach. Environ Sci Technol 51:10526-10535. https://doi.org/10.1021/acs.est.7b02906

Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SE, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517:513-516. https://doi.org/10.1038/nature13901

Peng X, Huang X, Jing F, Zhang Z, Wei D, Jia X (2015) Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. Bioresour Technol 185:218-
24. https://doi.org/10.1016/j.biortech.2015.02.093
Peng X, Wei D, Huang Q, Jia X (2018) Debromination of Hexabromocyclododecane by Anaerobic Consortium and Characterization of Functional Bacteria. Front Microbiol 9:1515. https://doi.org/10.3389/fmicb.2018.01515

Roosens L, Abdallah MA, Harrad S, Neels H, Covaci A (2009) Exposure to hexabromocyclododecanes (HBCDs) via dust ingestion, but not diet, correlates with concentrations in human serum: preliminary results. Environ Health Persp 117:1707-12. https://doi.org/10.1289/ehp.0900869

Roth, C., Gröning, J.A., Kaschabek, S.R., Schlömann, M., Sträter, N., 2013. Crystal structure and catalytic mechanism of chloromuconolactone dehalogenase ClcF from Rhodococcus opacus 1CP. Mol. Microbiol. 88, 254-67. https://doi.org/10.1111/mmi.12182

Sellström U, Kierkegaard A, de Wit C, Jansson B (1998) Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish River. Environ Toxicol Chem 17:1065-1072. https://doi.org/10.1002/etc.5620170612

Shah SB, Ali F, Huang L, Wang W, Xu P, Tang H (2018) Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3 Biotech 8:291. https://doi.org/10.1007/s13205-018-1326-8

Shah SB, Huang L, Hu H, Wang W, Ali F, Xu P, Tang H (2019) Characterization of environmentally friendly degradation of hexabromocyclododecane by a Bacillus strain HBCD-sjtu. Int Biodeter Biodegr 145:104794. https://doi.org/10.1016/j.ibiod.2019.104794

Stiborova H, Vrkoslavova J, Pulkrabova J, Poustka J, Hajslova J, Demnerova K (2015) Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Sci Total Environ 533:439-45. https://doi.org/10.1016/j.scitotenv.2015.06.131

Suar M, Hauser A, Poiger T, Buser HR, Muller MD, Dogra C, Raina V, Holliger C, van der Meer JR, Lal R, Kohler HP (2005) Enantioselective transformation of alpha-hexachlorocyclohexane by the dehydrochlorinases LinA1 and LinA2 from the soil bacterium Sphingomonas paucimobilis B90A. Appl Environ Microbiol 71:8514-8. https://doi.org/10.1128/AEM.71.12.8514-8518.2005

van Hylckama Vlieg JE, Poelarends GJ, Mars AE, Janssen DB (2000) Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. Curr Opin Microbiol 3:257-62. https://doi.org/10.1016/S1369-5274(00)00086-2

Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R (2014) Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics 15:1014. https://doi.org/10.1186/1471-2164-15-1014
Wang Y, Xin Y, Cao X, Xue S (2015) Enhancement of L-2-haloacid dehalogenase expression in *Pseudomonas stutzeri* DEH138 based on the different substrate specificity between dehalogenase-producing bacteria and their dehalogenases. World J Microbiol Biotechnol 31: 669-73. https://doi.org/10.1007/s11274-015-1817-2

Yamada T, Takahama Y, Yamada Y (2009) Isolation of *Pseudomonas* sp. strain HB01 which degrades the persistent brominated flame retardant gamma-hexabromocyclododecane. Biosci Biotechnol Biochem 73:1674-8. https://doi.org/10.1271/bbb.90104

Yano T, Yoshida N, Yu F, Wakamatsu M, Takagi H (2015) The glyoxylate shunt is essential for CO\(_2\)-requiring oligotrophic growth of *Rhodococcus erythropolis* N9T-4. Appl Microbiol Biot 99:5627-37. https://doi.org/10.1007/s00253-015-6500-x

Yasmin S, Whalen M (2018) Flame retardants, hexabromocyclododecane (HCBD) and tetrabromobisphenol a (TBBPA), alter secretion of tumor necrosis factor alpha (TNFalpha) from human immune cells. Arch Toxicol 92:1483-1494. https://doi.org/10.1007/s00204-018-2156-5

Yu F, Li YY, Wang H, Peng T, Wu YR, Hu Z (2021) Microbial debromination of hexabromocyclododecane. Appl Microbiol Biotechnol 105:4535-4550. https://doi.org/10.1007/s00253-021-11095-3

Yu Y, Zhou D, Wu F (2015) Mechanism and products of the photolysis of hexabromocyclododecane in acetonitrile–water solutions under a UV-C lamp. Chem Eng J 281:892-899. https://doi.org/10.1016/j.cej.2015.07.031

Zhang H, Yu T, Li J, Wang YR, Wang GL, Li F, Liu Y, Xiong MH, Ma YQ (2018a) Two dcm Gene Clusters Essential for the Degradation of Diclofop-methyl in a Microbial Consortium of *Rhodococcus* sp. JT-3 and *Brevundimonas* sp. JT-9. J Agric Food Chem 66:2217-12226. https://doi.org/10.1021/acs.jafc.8b05382

Zhang Y, Lu Y, Wang P, Li Q, Zhang M, Johnson AC (2018b) Transport of Hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China. Sci Total Environ 610-611:94-100. https://doi.org/10.1016/j.scitotenv.2017.08.039

Zhong Y, Peng P, Yu Z, Deng H (2010) Effects of metals on the transformation of hexabromocyclododecane (HBCD) in solvents: implications for solvent-based recycling of brominated flame retardants. Chemosphere 81:72-8. https://doi.org/10.1016/j.chemosphere.2010.06.061

Zhong Y, Wang H, Yu Z, Geng X, Chen C, Li D, Zhu X, Zhen H, Huang W, Fennell DE, Young LY, Peng P (2018) Diastereoisomer-Specific Biotransformation of Hexabromocyclododecanes by a Mixed Culture Containing *Dehalococcoides mccartyi* Strain 195. Front Microbiol 9:1713. https://doi.org/10.3389/fmicb.2018.01713

Figures
Figure 1

(a) The morphology of colony of strain stu-38. (b) The neighbor-joining tree of six isolated bacteria
Figure 2

The HBCDs transforming rates of six isolated strains

Figure 3

Residues of HBCDs in the SW and SW-C
Figure 4

Residues of HBCDs in the SWLB and SWLB-C
Figure 5

The putative transformation pathway of HBCDs by stu-38 in the (a) FW, (b) SW and (c) SWLB. Black arrow indicates the reductive debromination, blue arrow indicates hydrolytic debromination, the purple arrow shows the HBr-elimination, red arrows represents oxidative reaction

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Graphicabstract.docx
- supplementarymaterialHBCDsR.spstu38.docx