Novel Filter of DWT for Image Processing Applications

Jabbar Abed Eleiwy¹, Nagham Jaafar¹

¹Applied Science Department, University of Technology, Baghdad, Iraq, e-mail:
 ¹00310@uotechnology.edu.iq,
 ¹001168@uotechnology.edu.iq

Abstract

In this work, wavelets are used in the analysis of medical images, where the efficiency of mathematics in this field has been proven because the basis of the proposed wavelets in this work is newly constructed mathematical equations and through the MATLAB program, many programs have been designed to be ready for use in the field of image analysis and study. physical samples were selected that were compressed using the proposed wavelets, and good results were obtained that prove the efficiency of the method used.

Keywords: Discrete Laguerre Wavelet Transform (DLWT), Image Compression, Medical application, De-noise medical image, bit per pixel.

1. Introduction

The compression of the color image as described in many works means data compression or bit rate reduction on cryptographic information using bits lower than the original representation. This is an important technique in the field of image processing and transmission of information where the bit rate reduction rate is based on original image information or encryption information. In order to reduce the storage space so that the important benefits of pressure is to minimize the potential loss of data where the identification and elimination of statistical repetition. This technique in information theory is the number of bits used to send a message minus the number of bits of information Effective in the message [1-8].

Where many algorithms are used to explain how to work with this technique to perform data compression without loss and to obtain good results when rebuilding and return to the original data without loss, the error rate is almost equal to zero through the application mean square error and Peak signal-to-noise ratio [9].

The following technique DLWT [10-13] was used to implement the technique mentioned above and apply it to a color image in which the account Bit-per-pixel was reached. In the following sections, the proposed theory was based on a section of a mammalian mammogram that was examined with magnetic resonance imaging.
2. Wavelets transform

In general, wavelets depend on a basic function that is used as the basis for the wavelets to be created. It is the parent function, which in turn depends on two important factors, namely (a,b) responsible for the contraction and contraction of the wavelets [14-16].

The following family function

\[w_{a,b}(t) = |a|^{-1/2}w\left(\frac{t-b}{a}\right) \quad a, b \in \mathbb{R} \quad a \neq 0 \quad (1) \]

\[w(t) = [w_0(t), w_1(t), ..., w_{M-1}(t)]^T \]

The elements \(w_0(t), w_1(t), ..., w_{M-1}(t) \) are the basis functions, orthogonal on the [0,1].

The proposed method in this work is the developed wavelets that are derived from the polynomials and substituted them in the equation (1) by increasing the number of coefficients so that it becomes four parameters that are responsible for expansion and contraction they are \(n, m, k, t, \) and \(t \) is normalized time. If we dilation by parameter \(a = 2^{-(k+1)} \) and translation by parameter \(b = 2^{-(k+1)}(2(n-1)) \) by transform \(x \) and by using (1).

\[x = 2^{-(k+1)}(2^k t) \quad \text{then we will get equation (2)} \]

\[w_{n,m}(t) = \begin{cases} 2^{k+1/2}w_{n}(2^k t - 2n + 1) & \frac{n-1}{2^{k-1}} \leq t < \frac{n}{2^{k-1}} \\ 0 & \text{o.w} \end{cases} \quad (2) \]

Depending on the polynomial used by which atoms are obtained at every point for example

\(w_{1,0}(t), w_{1,1}(t)w_{1,2}(t), ..., w_{1,M-1}(t) \) for \(n=1 \)

\(w_{2,0}(t), w_{2,1}(t)w_{2,2}(t), ..., w_{2,M-1}(t) \) for \(n=2 \)

\vdots

\(w_{2^{k-1},0}(t), w_{2^{k-1},1}(t)w_{2^{k-1},2}(t), ..., w_{2^{k-1},M-1}(t) \) for \(n=2^{k-1} \)

3. Properties wavelets transform.

Waveforms carry the properties that qualify them in image analysis processes. One of these properties is the orthogonality characteristic that helps prove many theories that prove the proximity of functions because the polynomials that are the basis of the wavelets are perpendicular and converging.

The family of functions

\[\{c_{n,m}(t)\}_{n,m \in \mathbb{Z}} = 2^{-n/2}(2^{-n}t - m) \forall n, m \in \mathbb{Z}, \quad (3) \]

DOI: 10.5281/zenodo.5182773
Received: February 10, 2020 Accepted: July 07, 2021
it’s called wavelet function in n=0 scalar function in equation (4)
\[C(t) = \begin{cases} 1 & \text{if } 0 \leq t \leq 1 \\ 0 & \text{otherwise} \end{cases} \] (4)

The wavelets system for each n, m ∈ Z, define
\[\{w_{n,m}(t)\}_{n,m \in Z} = 2^{-n/2}w(2^{-n}t - m) \] (5)

from above equation The function is called the wavelet system denoted by (WS), consider \(f(t) \) is defined on \(L^2[0,1] \) has an expansion in terms of functions as follows.

For any integer \(n \geq 0 \),
\[f(t) = \sum_{m=0}^{2^n-1} <f, C_{N,m}> C_{N,m}(t) + \sum_{n=0}^{\infty} \sum_{m=0}^{2^n-1} <f, w_{n,m}> w_{n,m}(t) \] (6)
\[\sum_{m=0}^{2^n-1} a_{n,m} C_{N,m}(t) + \sum_{n=0}^{\infty} \sum_{m=0}^{2^n-1} d_{n,m} w_{n,m}(t) \] (7)

Which is known as series and \(a_{n,m} \) and \(d_{n,m} \) wavelet coefficient for wavelet and Scaling coefficients respectively.

4. Multiresolution Analysis of wavelets (MRA)

Multiresolution analysis of Laguerre wavelets (MRA\(_{\text{Lag}}\)) is a system for calculation of basis coefficients in \(L^2(R) : f = \sum \sum A_{n,m} w_{n,m} \)
\[f \in V_n = \{ f(t) | f(t) = \frac{1}{2^{n/2}} h(2^{-t}t), h(t) \in V_0 \}, \]

Where
\[f(t) = \sum_{n \in Z} <f, C(\cdot - m)> C(t - m) \]

Then a multiresolution analysis of wavelets (MRA) on R is a sequence of subspaces \(\{V_n\} \) \(n \in Z \) of functions \(L^2 \) on R, First and foremost, we should look forward to achieving the following characteristics that allow us to complete our work in the field that
(a) For \(\forall n, m \in Z, V_n \subseteq V_{n+1} \).
(b) If \(f(t) \) is \(C^2 \) on R, then \(f(t) \in \text{span}\{V_n\} \) \(n \in Z \), with \(\epsilon > 0 \), there is an \(n \in Z \) and a function \(C(t) \in V_n \) such that \(||f - g||_2 < \epsilon \).
(c) \(\cap_{n \in Z} V_n = \{0\} \).
(d) A function \(f(t) \in V_0 \) if and only if \(2^{-n/2} f(2^{-n}t) \in V_n \).
(e) There exists a function \(C(t), L^2 \) on R, called the scaling function such that the collection \(C(t - n) \) is an orthonormal system of translates and \(V_0 = \text{span}\{C(t - n)\} \).

4. Application of wavelets in image processing

After designing a suitable program to equip the Matlab program with the newly created wavelets and extracting the appropriate period, the color image is analyzed into the parameters of the image, which are approach and details on a number of levels in the first level, the image is decomposed into four blocks, which are LL, LH, HL, HH

DOI: 10.5281/zenodo.5182773
Received: February 10, 2020 Accepted: July 07, 2021
Figure 1. shows the analysis of the color image

The analysis of the color image is taken advantage of in the implementation of many important applications in image processing, which is compression and noise removal. The efficiency of the wavelets is proven when returning to the original image by passing the inverse of the wave. The image is reconstructed so that the new image does not lose its original characteristics. At level 2, the level 1 detail coefficients are preserved and the level 1 approximation coefficients are decomposed. The following figure shows the analyzes of image by using DLWT level 1 and 2.
5. Discuss the results

The original image of size \((256 \times 256)\) in the Fig18 shows the principles of the processing of image and the analyzes it contains statistics, compressed, de-noise and histogram by using DWT with approximate coefficients and details coefficients moreover with the soft and hard threshold. From the following figures used original image of Lena \((256 \times 256)\), histogram of values (between 1 and 235) and histogram of wavelet coefficients. The original image with global threshold 342, retained is 98.84% and number of zero is 93.75%. The statistics of the image by using DWT level 2 the following figure shows the original statistics and its properties.

![Figure 3: Original Image with Global Threshold](image)

The compressed image by with DWT level 1, global threshold return energy 98.84% and zeroes 93.75%. Compressed image by with DWT level 2, by level threshold return energy 100% and zeros 16.08%.
The above figure the right image is compressed with selected threshold 1.5 and the retained energy 100% with number of zero is 16.08%

![Histograms of horizontal, diagonal, and vertical details with DWT level 2](image)

Figure 4 horizontal diagonal and vertical details with DWT level 2

The problem of de-noising of signal 1D was identified. In this section, the problem of de-noising of image will be identified.

![De-noise images](image)

De-noise with DWT level 2 soft threshold
De-noise with DWT level 2 hard threshold
Figure 5: De-noise image by DWT soft threshold

Figure 26: De-noise image by DWT hard threshold
Figure 6: the statistic of details coefficients horizontal with DLWT level 2

Figure 7: the statistic of details reconstruct horizontal with DLWT level 2

Figure 8: the statistic of details coefficients diagonal with DLWT level 2
Figure 9: the statistic of details reconstruct diagonal with DLWT level 2

Figure 10: statistic of details coefficients vertical with DLWT level 2

Figure 11: the statistic of details reconstruct horizontal with DLWT level 2
6. Conclusion

This work aims to analyze different color images by analyzing the color image. Based on the analysis of different image compression techniques, this paper provides a presentation on the analysis of discontinuous waves of images, where approximate factors and details are exposed and its role in image analysis using waves with basic theories, which illustrates the smooth and effective theory proposed in terms of accuracy in our site results. Some medical applications have used a separate wave transformation (DWT) where satisfactory results have been obtained, and our proposed theory has proven its effectiveness, and the example applied has demonstrated strength and the role of wavelets in image processing.

References

1. Andreas Savakis and Richard Carbone, 'Discrete Wavelet Transform Core for Image Processing Application' SPIE, Vol 5671, 142-151, (2005).
2. B.R. Ambedkar & Sangeeta Arora 'Numerical Solution of Wave Equation Using Haar Wavelet', International Journal of Pure and Applied Mathematics (IJPAM), VOL (98), NO (4), PP 457-469, (2015).
3. B. Satyanarayana, Y. Pragathi Kumar, Asma Abdulelah, 'Laguerre Wavelet and its Programming', International Journal of Mathematics Trends and Technology (IJMTT), VOL(49), NO(2), 129-137, (2017).
4. B. Satyanarayana, Asma Abdulelah 'Mathematical Aspects of Laguerre Wavelets Transformation', Annals of Pure and Applied Mathematics, (APAM), VOL(16), NO(1), PP(53-61), (2018).
5. Debayan Goswami, 'A Discrete Wavelet Transform based Cryptographic algorithm', International Journal of Computer Science and Network Security (IJCNSN), Vol,11,No4,(2011)
6. Dipalee Gupta, Siddhartha Choubey 'Discrete Wavelet Transform for Image Processing', International Journal of Emerging Technology and Advanced Engineering, (IJETAE), VOL(4), PP(598-602), (2015).
7. Juanli HU, Jiabin Deng, 'Image Compression Based on Improved FFT Algorithm'Journal of Networks, VOL(6), NO(7), PP(1041-1048), (2011).
8. Kamrul Hasan, Koichi Harada, 'Haar Wavelet Based Approach for Image Compression and Quality Assessment of Compressed Image', International Journal of Applied Mathematics (IJAM), VOL(36), NO(1), PP(1-8), (2007).
9. Lenka Kormanikora, 'Shape Design and Analysis of Adaptive Structures', Structural and Physical Aspects of Construction Engineering (ELSEVIER), VOL(190), PP(7-14), (2017).
10. Michael Berry, 'An Introduction to Wavelet Analysis', AMERICAN MATHEMATICAL SOCIETY, VOL(40), NO(3), PP(421-427), (2003).
11. Mridul Kumar, Gunjan Mathur, 'Image Compression Using DFT Through Fast Fourier Transform Technique', International Journal of Emerging Trends And Technology In Computer Science (IJETTCS), VOL(1), PP(129-133), (2012).
12. Michel Misiti, Y.Ves Misiti, 'Wavelets and Their Applications', Published by Hermes Science/ LAVOISIER, (2003).
13. Muhammad Asad Iqbal & Umer Saeed, 'Modified Laguerre Wavelets Method for Delay Differentail Equations of Fractional- Order', (Science Direct), VOL(2), PP(50-54), (2015).
14. Prabhjotot kour, 'Image Processing Using Discrete Wavelet Transform', International Journal of Electronics and Communication (IJECON), VOL(3), NO(1), (2015).
15. Sanjeev Kumar, Varun Sood, 'Quality Assessment of Colour Image Compression Using Haar Wavelet Transform', International Journal of Engineering Trends and Technology (IJETT), VOL(3), NO(3), (2012).
16. Trevor.C. Bailey, 'Signal Detection in Underwater Sound Using Wavelets', Journal of the Amerirican Statisticalan Statistical Association, Vol. 93, No. 441. 73-83. (1998).