Hypoxia-Inducible Factor and Oxygen Biology in the Kidney

Mai Sugahara, Tetsuhiro Tanaka, and Masaomi Nangaku

Abstract
Kidney tissue hypoxia is detected in various kidney diseases and is considered to play an important role in the pathophysiology of both AKI and CKD. Because of the characteristic vascular architecture and high energy demand to drive tubular solute transport, the renal medulla is especially prone to hypoxia. Injured kidneys often present capillary rarefaction, inflammation, and fibrosis, which contribute to sustained kidney hypoxia, forming a vicious cycle promoting progressive CKD. Hypoxia-inducible factor (HIF), a transcription factor responsible for cellular adaptation to hypoxia, is generally considered to protect against AKI. On the contrary, consequences of sustained HIF activation in CKD may be either protective, neutral, or detrimental. The kidney outcomes seem to be affected by various factors, such as cell types in which HIF is activated/inhibited, disease models, balance between two HIF isoforms, and time and methods of intervention. This suggests multifaceted functions of HIF and highlights the importance of understanding its role within each specific context. Prolyl-hydroxylase domain (PHD) inhibitors, which act as HIF stabilizers, have been developed to treat anemia of CKD. Although many preclinical studies demonstrated renoprotective effects of PHD inhibitors in CKD models, there may be some situations in which they lead to deleterious effects. Further studies are needed to identify patients who would gain additional benefits from PHD inhibitors and those who may need to avoid them.

Introduction
Kidney tissue hypoxia is detected in various kidney diseases and is considered to contribute to the pathophysiology of both AKI and CKD. The pathological role of hypoxia-inducible factor (HIF), a master regulator of oxygen homeostasis, has been extensively studied, but it seems to be largely context dependent. Previous studies revealed that the kidney consequences of HIF activation/inhibition varied, depending on HIF isoforms, cell types, disease models, and time and methods of intervention. Now that HIF stabilizers have been introduced to treat anemia of CKD, there is a growing need to elucidate the specific role of HIF in each form of AKI and CKD. This review presents some key aspects of oxygen biology in the kidney, emphasizing the complex and multifaceted functions of HIF and the importance of understanding its pathological role in each disease condition.

Susceptibility of the Kidney to Hypoxia
In 1960, Aukland and Krog (1) reported heterogeneous oxygen tension within the kidney of healthy dogs, which was much lower in the medullary region compared with the cortex. The subsequent studies also reported that oxygen tension in the medulla was 10–20 mm Hg, whereas that in the cortex was 30–60 mm Hg (2–4). However, it was later recognized that the tissue oxygenation was affected by general anesthesia, which reduces renal blood flow (6 Nephrectomy). The medullary oxygen tension of healthy, nonanesthetized sheep was reported to be 30–40 mm Hg, which was similar to that in the cortex (6). It should be noted, however, that the basal tissue perfusion in the medulla was demonstrated to be significantly less, and the decrease in perfusion and oxygenation was greater in the medullary region during partial renal artery occlusion (6). This finding suggests that its inadequate ability to maintain oxygen homeostasis renders the renal medulla particularly susceptible to hypoxia under pathological conditions. In addition, studies using a hypoxic marker, pimonidazole, demonstrated positive staining in the medulla and corticomedullary regions in kidneys of healthy rats (7,8). These observations led to the concept that the renal medulla is “relatively hypoxic,” even if there is no apparent decrease in tissue oxygen tension.

This susceptibility of the renal medulla to hypoxia is considered to arise from the characteristic vascular architecture of the kidney (9,10). The efferent arterioles of the cortical nephrons give rise to the peritubular capillaries that perfuse proximal and distal tubules in the cortex, whereas those that arise from juxtamedullary nephrons form the vasa recta, which run in parallel with the loops of Henle and collecting ducts (Figure 1). Due to this vascular architecture, the renal medulla receives only 6 Nephrectomy%–10% of the total renal blood flow (11). There is a diffusive oxygen shunt between arterial and venous vessels in the vasa recta, called the arteriovenous oxygen shunt, further limiting the oxygen availability in the renal medulla (12,13). Despite this inefficient oxygen delivery, the
tubular cells have high metabolic demands to drive solute transport, which makes them especially vulnerable to hypoxic stress (14).

Methods To Detect Hypoxia in the Kidney

There are several methods to measure oxygen tension in the kidney (Table 1). Polarographic oxygen microelectrodes have been the gold standard in animal experiments and have provided much of our knowledge regarding kidney oxygenation (1–4). The recent development of implantable microelectrodes in combination with telemetry devices has enabled the continuous monitoring of kidney oxygenation without the influence of anesthesia (16 Nephrectomy). Microelectrodes make use of oxidation-reduction reactions, whereas another method uses oxygen quenching of fluorescence on the basis that the fluorescence lifetime is inversely proportional to oxygen tension (16). The direct comparison of the oxygen tension measured by these two methods revealed the value obtained by the fluorescence optode tended to be lower than that obtained by the microelectrode (17). Nevertheless, both measurements reflected the changes in inspired oxygen concentration and arterial blood oxygen levels (17), indicating that both methods are equally applicable to experiments that evaluate acute changes in kidney tissue oxygenation under pathological conditions.

Phosphorescence lifetime measurement is another method recently developed to assess kidney oxygenation (18). Similar to the fluorescence optode, this method is based on oxygen-dependent quenching of luminescence. The lifetime of phosphorescence is longer, and this gives an advantage in the avoidance of confounding effects of autofluorescence (19). This method requires administration of a phosphorescent dye, and the development of dyes with increased cellular uptake has enabled intracellular oxygen sensing in living cells and animals (20). One of such dyes, BTPDM1, was demonstrated to distribute inside tubular cells of mouse kidney, and phosphorescence lifetime measurement of BTPDM1 detected hypoxia in tubular cells during renal artery clamping (21). When combined with a confocal microscopy, this method is able to provide a high-spatial-resolution image of kidney oxygen tension, and it showed for the first time that the intracellular oxygen tension varied across tubular epithelial cells in the superficial cortex (22).

Apart from these electrochemical and optical methods, pimonidazole immunohistochemistry is frequently used to detect hypoxia in the kidney. Pimonidazole is a 2-nitroimidazole that is reductively activated in hypoxic cells and forms stable adducts with thiol-containing proteins (23). For in vivo assessment of hypoxia, pimonidazole is administered to animals before tissue harvest and the protein adducts are detected using immunohistochemistry, which clearly distinguishes hypoxic areas. Positive staining is often observed in the medulla and corticomedullary regions under physiological conditions (7,8), and hypoxic areas extend to the cortex in CKD and aging kidneys (24,26 Nephrectomy).

Blood oxygen level–dependent magnetic resonance imaging (BOLD-MRI) is increasingly used to assess kidney oxygenation due to its noninvasiveness and applicability to humans. BOLD-MRI measures the R2* value, which is proportional to the blood content of deoxyhemoglobin (26). Experimental evidence demonstrated a linear relationship between the R2* values and the oxygen tension measured by microelectrodes (27). It should be noted, however, that the R2* values are influenced by several factors, such as hydration status and dietary salt intake (28,29). In addition, there are four major methods to analyze BOLD-MRI images, each

Figure 1. The renal medulla is prone to hypoxia due to the characteristic vascular architecture of the kidney. The efferent arterioles of the cortical nephrons give rise to the peritubular capillaries, which perfuse proximal and distal tubules in the cortex, whereas those that arise from juxtamedullary nephrons form the vasa recta, which run in parallel with the loops of Henle and collecting ducts.
with their own strengths and weaknesses (30). International effort is now being made to standardize the BOLD-MRI protocols, including patient preparation, image acquisition, and analysis (30,31).

Urine oximetry is another method that has a potential to be used in clinical settings. The urinary oxygen tension is measured with either polarographic electrodes or fluorescence optodes equipped in bladder catheters (32,33), and it was shown to reflect medullary tissue oxygenation (33). Zhu et al. (34) measured urinary oxygen tension in patients who underwent cardiac surgery that required cardiopulmonary bypass. They found the oxygen tension was lower in patients who later developed AKI, suggesting that urinary hypoxia may be a useful predictor of postoperative AKI.

Hypoxia in AKI and CKD

Kidney tissue hypoxia has been detected in multiple forms of AKI, including postoperative AKI, sepsis, and drug-induced nephropathy (33–36 Nephrectomy). Experimental models of sepsis demonstrated a significant decrease in the proportion of peritubular capillaries that showed normal blood flow (36). The mechanism of this abnormal microcirculation is incompletely understood, but it has been proposed that increased production of inducible nitric oxide synthase and cytokine-induced endothelial damage may have played a role (37). In addition, unbalanced oxygen supply and demand also contributes to the development of hypoxia in AKI. For example, administration of radiocontrast agents increased oxygen consumption for tubular transport, and inhibition of transport activity with furosemide reversed contrast agent-induced medullary hypoxia (38). It must be noted, however, that solely improving medullary oxygenation by furosemide does not necessarily translate into better kidney outcomes (39).

AKI is now recognized as an independent risk factor for CKD, *i.e.*, patients with a history of AKI are more likely to develop CKD, even if they make a complete recovery of kidney function. Incomplete or maladaptive repair of peritubular capillaries and tubular epithelium generates persistent kidney hypoxia, which contributes to the AKI-to-CKD transition (40). Decreased vascular density and increased pimonidazole-stained area were observed 6 Nephrectomy weeks after ischemia-reperfusion injury in rats, although serum creatinine had returned to the basal level (41). Administration of L-arginine increased renal blood flow and improved kidney oxygenation in these rats, preventing progressive decline in creatinine clearance during the 20-week observation period after the injury (41). This result clearly shows that tissue hypoxia due to capillary rarefaction contributes to the AKI-to-CKD transition. The loss of peritubular capillaries may be explained, in part, by a decrease in vascular endothelial growth factor secreted by tubular cells (42,43). It was suggested that reduced expression of vascular endothelial growth factor was a characteristic of tubular cells that failed to completely redifferentiate

Methods	Data Type	Strengths	Limitations
Polarographic microelectrodes	Quantitative	Has been well established and has a substantial amount of data	Difficult to obtain oxygen tension over large areas
		Can measure both cortical and medullary oxygen tension by adjusting the depth of the sensor	Tissue damage due to the insertion of sensors
		Continuous telemetric measurement has been developed	Oxygen consumption during measurement
Fluorescence optodes	Quantitative	Greater accuracy at low oxygen tension compared to microelectrodes	Difficult to obtain oxygen tension over large areas
		No oxygen consumption at the sensor tip	Tissue damage due to the insertion of sensors (the sensor is larger than microelectrodes)
Phosphorescence lifetime	Quantitative	Can assess intracellular oxygenation if appropriate dye is used	Cannot measure oxygen tension in deeper parts of the kidney
measurement			
Pimonidazole immunohistochemistry	Qualitative	Provides spatial resolution of hypoxic areas	Assessment of hypoxia only at a discrete time point
			Possibility of false positive staining/hypoxia may be introduced during tissue harvest
			Moderate spatial resolution
			The R2* values can be influenced by internal and external factors
			Image analysis can be difficult
BOLD-MRI	Semi quantitative	Noninvasive and repeatable	
		Can be used in humans	
		Oxygen mapping of the entire kidney is available	
Urine oximetry	Quantitative	Noninvasive and applicable to clinical settings	Confounding factors could influence the results
		May be used as a biomarker for postoperative AKI	Limited evidence at present

BOLD-MRI, blood oxygen level-dependent magnetic resonance imaging.
after acute injury (43). These malfunctioning tubules secrete profibrotic factors, such as connective tissue growth factor, PDGF-B, and TGF-β, which promote kidney fibrosis (44). Interstitial fibrosis inhibits oxygen diffusion between peritubular capillaries and parenchyma, and the resultant kidney tissue hypoxia further accelerates fibrogenesis, forming a vicious cycle promoting progression from AKI to CKD (9).

In addition to the maladaptive repair of peritubular capillaries and tubular epithelium, AKI episodes, especially hypoxic insults, induce epigenetic changes that promote proinflammatory and profibrotic gene expression. Hypoxia-induced epigenetic changes include DNA methylation, histone modification, chromatin conformational changes, and altered expression of noncoding RNAs (46). Zager et al. (47) detected increased levels of gene-activating histone modifications (H3K4me3 and H2A.Z) after ischemia-reperfusion injury, which corresponded with increases in monocyte chemoattractant protein-1 and TGF-β expressions. These persistent epigenetic changes serve as “hypoxic memory” and contribute to the AKI-to-CKD transition in the long term after recovery from the initial AKI episode. Pharmacological inhibition of a histone methyltransferase suppressed kidney fibrosis 8 weeks after ischemia-reperfusion injury, indicating therapeutic potential of epigenetic interventions (48).

Kidney hypoxia is also detected in various forms of CKD that do not present apparent episodes of AKI, such as those related to diabetes and hypertension (49, 6 Nephrectomy1, 6 Nephrectomy2). As in the AKI-to-CKD transition, capillary rarefaction, interstitial fibrosis, and inflammation are critical contributors to kidney hypoxia. Although it is difficult to firmly establish that hypoxia per se promotes progression of CKD, a study using BOLD-MRI demonstrated that low cortical oxygenation was indeed an independent predictor of kidney function decline (6 Nephrectomy1, 6 Nephrectomy2). The importance of hypoxia in the course of CKD was also highlighted in a study that used dinitrophenol, a mitochondrial uncoupler. Administration of dinitrophenol in rats increased renal oxygen consumption and reduced oxygen tension in both the cortex and medulla. Treatment with dinitrophenol for 30 days increased urinary protein excretion, tubular damage, and infiltration of inflammatory cells. These findings indicated that kidney tissue hypoxia, by itself, was sufficient to trigger kidney injury (6 Nephrectomy3).

Hypoxia-Inducible Transcription Factors

Kidney cells, as well as other cell types in the body, have evolved mechanisms of hypoxic adaptation. The most important player in this system is HIF, a transcription factor responsible for induction of genes essential for survival under hypoxic conditions. HIF is a heterodimer composed of a constitutively expressed β subunit and an oxygen-regulated α subunit. The α subunits are synthesized continuously, irrespective of the oxygen status of the cells. Under normoxic conditions, prolyl-hydroxylase domain (PHD)–containing proteins hydroxylate specific proline residues of HIF-α. Proline-hydroxylated HIF-α is recognized by the von Hippel–Lindau (VHL)–E3 ubiquitin ligase complex, resulting in HIF-α ubiquitination and subsequent proteasomal degradation. Under hypoxic conditions, hydroxylation of HIF-α is inhibited, allowing translocation to the nucleus where it dimerizes with HIF-β and binds to the hypoxia-response element, inducing transcription of target genes (Figure 2) (54–56).

Mammals have three principal isoforms of HIF-α, HIF-1α, HIF-2α, and HIF-3α, which dimerize with HIF-β to form HIF-1, HIF-2, and HIF-3, respectively. HIF-1α and HIF-2α have a similar domain architecture and undergo similar

Figure 2. Prolyl-hydroxylase domain–containing protein regulates the stability of hypoxia-inducible factor according to the oxygen availability. Under normoxic conditions, hypoxia-inducible factor-α (HIF-α) is hydroxylated by prolyl-hydroxylase domain (PHD) proteins. Hydroxylated HIF-α is recognized by the von Hippel–Lindau E3 ubiquitin ligase complex, resulting in HIF-α ubiquitination and subsequent proteasomal degradation. Under hypoxic conditions, hydroxylation of HIF-α is inhibited, allowing translocation to the nucleus where it dimerizes with HIF-β and binds to the hypoxia-response element, inducing transcription of target genes. O₂, oxygen; Pro-OH, hydroxylated proline residue; pVHL, von Hippel-Lindau protein; Ub, ubiquitin.
proteolytic regulation, but have different expression patterns and partly overlapping, but largely nonredundant, functions. In ischemic kidney, HIF-1α is expressed predominantly in tubular cells, whereas HIF-2α is expressed mainly in endothelial and interstitial cells (57). The role of HIF-3α is not yet fully understood. There are also three isoforms of PHD enzymes, PHD1, PHD2, and PHD3, among which PHD2 is the major regulator of HIF activity (54,58).

HIF was first discovered in 1992 in the effort to unveil the regulatory mechanism of erythropoietin (EPO) production (59), which had been demonstrated to increase in rodent kidney in response to hypoxia or anemia (60,61). Arterial oxygen content, determined by hemoglobin concentration, arterial oxygen saturation, and arterial oxygen tension, is the major determinant of the amount of EPO produced (62). Both reduced arterial oxygen content and reduced renal blood flow decrease kidney tissue oxygenation, which subsequently activates HIF-2 and induces transcription of EPO in peritubular interstitial fibroblast-like cells (63). The discovery of this regulatory mechanism led to the development of small-molecule PHD inhibitors to treat anemia of CKD, which promote endogenous EPO production by activating HIF (63,64). Furthermore, this oxygen-sensing system turned out to be universal, regulating a broad spectrum of genes essential for oxygen homeostasis in virtually all mammalian cells. The PHD-HIF system is also involved in the pathophysiology of various diseases, including cancer, inflammation, cardiovascular diseases, and kidney diseases (65). Because of the important implications of their work, the Nobel Prize in Physiology or Medicine 2019 was awarded to three scientists, Gregg L. Semenza, Peter J. Ratcliffe, and William G. Kaelin Jr., who discovered HIF and unveiled its oxygen-dependent regulatory mechanism (66).

The Effects of HIF Activation in AKI

It is generally accepted that HIF activation protects against AKI. We demonstrated first in 2003 that administration of cobalt chloride, which inhibits PHD activity and stabilizes HIF, reduced tubulointerstitial injury after ischemia-reperfusion (67). Other HIF stabilizers, such as carbon monoxide, xenon, and small-molecule PHD inhibitors had similar effects (68,69). Systemic deletion of Vhl, which resulted in activation of HIF-1 and HIF-2, also ameliorated tubular injury and kidney dysfunction in the same AKI model (70). Conversely, both heterozygous Hif1α and Hif2α knockdown mice presented more profound ischemia-reperfusion injury compared with their wild-type littermates (71). We also demonstrated that systemic knockdown of Hif2α alone was sufficient to aggravate tubulointerstitial injury, and restoration of Hif2α in endothelial cells ameliorated kidney damage after ischemia-reperfusion injury (72).

Similar protective effects of HIF were observed in AKI of other etiologies, including cisplatin-induced nephropathy and graft injury during transplantation (73,74). Although it is difficult to elucidate the exact mechanism of renoprotection, HIF activation is often associated with a reduction in tubular cell apoptosis, infiltration of inflammatory cells, and peritubular capillary loss (67–74). A recent study demonstrated that HIF-induced glycogen synthesis contributed to cell survival under oxygen-glucose deprivation (75). It should be emphasized, however, that all of the above studies took preventive strategies, i.e., HIF was activated before the insults (67–75). In fact, administration of PHD inhibitors after ischemia-reperfusion injury failed to ameliorate tubulointerstitial damage (76,77), suggesting a time-related therapeutic window for optimal effects of HIF activation in the course of AKI.

The Effects of HIF Activation in CKD

HIF accumulation has been observed in multiple forms of CKD (78–80), and there is much debate about its pathophysiological role. Although HIF is generally considered to promote cell survival under hypoxic conditions, some studies suggest that long-term HIF activation may bring about its harmful effects, such as fibrogenesis and inflammation. For example, HIF was demonstrated to induce profibrotic factors (81), and stabilization of HIF in kidney proximal tubules, by genetic deletion of Vhl, promoted tubulointerstitial fibrosis in a subtotal nephrectomy model (82). An opposing view is that HIF activation in CKD is in fact insufficient to achieve optimal cytoprotection. This notion is supported by studies that demonstrated the effects of indoxyl sulfate, a representative uremic toxin, on HIF activity. Administration of indoxyl sulfate suppressed nuclear accumulation of HIF-2α and subsequent production of EPO (83). Indoxyl sulfate also inhibited HIF-1 activity by inducing the expression of transcriptional repressors of HIF-1 (84). Additionally, oxidative stress and the diabetic milieu impair HIF functions (78,85,86). These findings led to the idea that therapeutic strategy to activate HIF may facilitate adaptive response to hypoxia and prevent CKD progression.

Numerous preclinical studies have been conducted to investigate the consequences of HIF activation/inhibition in CKD, but they present controversial results (Tables 2 and 3). These controversies may arise from differences in the methods of intervention, including specificity of the compounds used, disease models, manipulated HIF isoforms, and cell types involved, reflecting the multifaceted functions of HIF and its complex regulatory system. By and large, systemic administration of PHD inhibitors demonstrated renoprotection in CKD: pharmacological HIF activation alleviated tubulointerstitial injury in 5/6 nephrectomy (87), Thy-1 nephritis (88), streptozotocin-induced diabetes (89), and adenine-induced nephropathy (90). Global activation of HIF by genetic deletion of Vhl also ameliorated kidney fibrosis and macrophage infiltration in a unilateral ureteral obstruction (UUO) model (91). In contrast, local deletion of Vhl by the γ-glutamyl transpeptidase promoter-driven Cre recombinase, which resulted in HIF-1 activation in proximal tubular epithelial cells, exacerbated fibrosis after 5/6 nephrectomy (82). Along the same lines, proximal tubule-specific deletion of Hif1α by phosphonolipryvurate carboxykinase-driven Cre recombinase ameliorated fibrosis in the UUO kidney (92).

These seemingly contradicting results may be explained, in part, by the cell type-specific functions of HIF, because systemic administration of PHD inhibitors not only activates HIF in tubular epithelium, but also in other intra- and extrarenal cells. For example, a study demonstrated that myeloid-specific inactivation of Hif1α and Hif2α increased...
4 weeks after the surgery. They found that the rats treated
with clodronate largely abolished the protective
role of HIF in myeloid cells in regulating kidney in-
mflammation (91). Similarly, depletion of mononuclear phago-
cytes with clodronate largely abolished the protective
effect of a PHD inhibitor, although this study also demon-
strated that neither HIF-1α nor HIF-2α in myeloid cells was
required for kidney protection, suggesting some other HIF-
dependent mechanisms (90).

However, it would be premature to conclude that HIF
activation in proximal tubules is deleterious in CKD. Pax8-
reverse tetracycline–dependent transactivator–mediated in-
activation of Vhl induced nuclear accumulation of HIF-1α
and HIF-2α in tubular epithelial cells, and it ameliorated
both glomerular and tubulointerstitial injury in an antiglo-
merular basement membrane GN model (93). Likewise,
mice with proximal tubule–specific knockout of Phd2 by
N-myc downstream regulated gene 1 promoter-driven Cre
recombinase were protected against kidney injury induced
by a high-fat diet (94). The results of the studies using
genetically modified animals seem to be affected by the
following factors: the cell type–specific promoter used in
gene manipulation, the gene (Vhl, Hif1α, Hif2α, or Phd)
targeted, and the disease model used. HIF is likely to have
a highly context-dependent function, and the effects ob-
served in one study may not be evident in other situations.

In addition to cell types and disease models, the timing of
HIF activation/inhibition also affects the experimental out-
comes. Yu et al. (95) performed 5/6 nephrectomy in rats and
treated them with a PHD inhibitor, l-mimosine, from 2 or
4 weeks after the surgery. They found that the rats treated
early had more profound glomerular and tubulointerstitial
injury, whereas those treated from 4 weeks presented milder
injury compared with the control animals (95). The final
nuclear expression levels of HIF-1α and HIF-2α were
different between these two groups, suggesting the balance
between HIF-1 and HIF-2 may have influenced the pro-
gression of CKD (95). In the case of lung epithelial cells, HIF-
1α was demonstrated to decrease under prolonged hypoxia,
whereas HIF-2α remained upregulated (96). Similar tempo-
ral specificity of HIF isoforms might exist during the course
of CKD.

Table 2. Preclinical studies to investigate the effects of PHD inhibitors on the progression of various models of CKD

CKD Model	Approach for HIF Activation/Inhibition	Which HIF Was Activated/Inhibited	Outcomes	HIF Protective or Deleterious	Reference
5/6 Nephrectomy	Cobalt for 4 wk, starting 5 wk after the surgery	HIF-1 and HIF-2 activated	Tubulointerstitial injury ↓, serum creatinine ↓	Protective	(87)
	Cobalt for 3 wk, starting a wk after Thy-1 injection	HIF-1 and HIF-2 activated	Tubulointerstitial injury ↓	Protective	(88)
			Glomerular injury was not affected		
STZ-induced diabetes	Cobalt for 4 wk, starting right after the induction of diabetes	HIF-1 and HIF-2 activated	Tubulointerstitial injury ↓, proteinuria ↓	Protective	(89)
Adenine-induced nephropathy	PHD inhibitors (ICA or roxadustat) for 3 wk, coadministered with adenine	HIF-1 and HIF-2 activated	Proteinuria ↓, plasma creatinine ↓, tubulointerstitial damage ↓, fibrosis →	Protective	(90)
5/6 Nephrectomy	(1) l-Mimosine from 2 to 12 wk after the surgery	HIF-1 and HIF-2 activated	(1) Exacerbated glomerular and tubulointerstitial injury	Depends on timing	(95)
	(2) l-Mimosine from 4 to 12 wk after the surgery		(2) Ameliorated glomerular and tubulointerstitial injury		
	(3) l-Mimosine from 8 to 12 wk after the surgery		(3) No effects		

PHD, prolyl-hydroxylase domain; HIF, hypoxia-inducible factor; STZ, streptozotocin; ICA, 2-(1-chloro-4-hydroxy isoquinoline-3-carboxamido) acetate.

macrophage infiltration in a UUO model, suggesting a
critical role of HIF in myeloid cells in regulating kidney in-
fammation (91). Similarly, depletion of mononuclear phago-
cytes with clodronate largely abolished the protective
effect of a PHD inhibitor, although this study also demon-
strated that neither HIF-1α nor HIF-2α in myeloid cells was
required for kidney protection, suggesting some other HIF-
deleted, and the disease model used. HIF is likely to have
a highly context-dependent function, and the effects ob-
served in one study may not be evident in other situations.

In addition to cell types and disease models, the timing of
HIF activation/inhibition also affects the experimental out-
comes. Yu et al. (95) performed 5/6 nephrectomy in rats and
treated them with a PHD inhibitor, l-mimosine, from 2 or
4 weeks after the surgery. They found that the rats treated
early had more profound glomerular and tubulointerstitial
injury, whereas those treated from 4 weeks presented milder
injury compared with the control animals (95). The final
nuclear expression levels of HIF-1α and HIF-2α were
different between these two groups, suggesting the balance
between HIF-1 and HIF-2 may have influenced the pro-
gression of CKD (95). In the case of lung epithelial cells, HIF-
1α was demonstrated to decrease under prolonged hypoxia,
whereas HIF-2α remained upregulated (96). Similar tempo-
ral specificity of HIF isoforms might exist during the course
of CKD.

Pleiotropic Effects of PHD Inhibitors

Small-molecule PHD inhibitors have been developed to
treat anemia of CKD and roxadustat has been already
launched in China and Japan (63,64). They promote endo-
gogenous EPO production by activating HIF. However,
considering the broad spectrum of genes regulated by
PHD-HIF system, it would not be surprising if PHD inhib-
itors have additional effects other than erythropoiesis. One
possible benefit of PHD inhibitors is their potential to protect
against obesity and metabolic disorders. A preclinical study
demonstrated that systemic Phd2-hypomorphic mice were
resistant to high-fat-diet-induced obesity and glucose in-
tolerance (97). Likewise, administration of a PHD inhibitor,
enarodustat, ameliorated insulin resistance and decreased
albuminuria in obese type 2 diabetic mice, which was as-
associated with reduced glomerular monocyte chemoattract-
tant protein-1 expression and less macrophage infiltration.
thus increasing the glutathione/glutathione disulfide ratio and ameliorating glomerular hypertrophy (99). On the other hand, PHD inhibitors may have deleterious effects. For example, FG-4592/roxadustat was shown to promote epithelial-to-mesenchymal transition (102), suggesting that some parts of the HIF-activated pathways may bring about deleterious effects under certain circumstances.

Several caveats exist in translating findings obtained using transgenic/knockout mice into pharmacological PHD inhibition. First, small-molecule PHD inhibitors distribute preferentially in organs such as the liver and kidney, and the local effects are not likely to be as uniform as that accomplished in genetic studies. Second, the levels of achieved HIF-α accumulation are not likely to be similar among methods for intervention. For example, Vhl knockout, which is in many cases used as genetic manipulation to activate HIF, results in by far the most robust accumulation of HIF-1α and HIF-2α, as compared with Phd2

Table 3. Preclinical studies to investigate the effects of HIF-related gene manipulation on the progression of various models of CKD

CKD Model	Approach for HIF Activation/Inhibition	Which HIF Was Activated/Inhibited	Outcomes	HIF Protective or Deleterious	Reference
5/6 Nephrectomy	γ-GT-Cre Phd2−/−	Theoretically, both HIF-1 and HIF-2 were activated in proximal tubular cells (Only HIF-1α accumulation was shown)	Fibrosis↑	Deleterious (82)	
		Vhl−/− mice exhibited more profound fibrosis at the age of 60 wk.			
UOO	PEPCK-Cre Hif1α−/−	HIF-1 was inhibited in proximal tubular cells	Epithelial-to-mesenchymal transition↓, fibrosis↑	Deleterious (92)	
UOO	(1) Ubc-Cre Vhl−/−	(1) Global activation of HIF-1 and HIF-2	(1) Fibrosis↓, macrophage infiltration↑	Protective (91)	
	(2) Ubc-Cre Hif−/−	(2) Global inhibition of HIF-1 and HIF-2	(2) Fibrosis→, macrophage infiltration↑		
	(3) LysM-Cre Vhl−/−	(3) Myeloid cell-specific activation of HIF-1 and HIF-2	(3) Fibrosis→, macrophage infiltration↑		
	(4) LysM-Cre Hif−/−	(4) Myeloid cell-specific inhibition of HIF-1 and HIF-2	(4) Fibrosis→, macrophage infiltration↑		
Anti-GBM GN	Pax8-rTA Vhl−/−	HIF-1 and HIF-2 were activated in tubular cells	Glomerular and tubular injury↓, plasma uroa↓, proteinuria↑	Protective (93)	
ADPKD (Ksp-Cre Pdk1−/−)	(1) Ksp-Cre Hif-1α−/−	(1) HIF-1 inhibition in tubular cells	(1) Cyst growth↓	Deleterious (101)	
	(2) PHD inhibitor	(2) Global activation of HIF-1 and HIF-2	(2) Cyst growth↑ and earlier death		
High-fat diet	Ndrg1-Cre-Phd2−/−	Proximal tubule-specific HIF activation	Tubular damage↓, albuminuria↓, glomerulomegaly↓	Protective (94)	

HIF, hypoxia-inducible factor; γ-GT, γ-glutamyl transpeptidase; UOO, unilateral ureteral obstruction; PEPCK, phosphoenolpyruvate carboxykinase; Ubc, ubiquitin C; LysM, lysin motif; GBM, glomerular basement membrane; Pax8-rTA, Pax8-reverse tetracycline-dependent transactivator; ADPKD, autosomal dominant polycystic kidney disease; Ksp, kidney-specific cadherin; PHD, prolyl-hydroxylase domain; Ndrg1, N-myc downstream regulated gene 1.

Enarodustat also maintained plasma adiponectin levels, which may have contributed to kidney protection (98). Furthermore, transomics approaches using transcriptome and metabolome analyses revealed that, in the early stage of experimental type 1 diabetes, a PHD inhibitor counteracted diabetic renal metabolisms of fatty acids and amino acids, which were upregulated in the diabetic kidney and downregulated by a PHD inhibitor. These changes were associated with less accumulation of glutathione disulfide, thus increasing the glutathione/glutathione disulfide ratio and ameliorating glomerular hypertrophy (99). On the other hand, PHD inhibitors may have deleterious effects. For example, FG-4592/roxadustat was shown to promote phosphate-induced vascular smooth muscle cell calcification in vitro (100), which may lead to atherosclerosis. Other concerns include theoretical risks for tumor growth, pulmonary hypertension, and angiogenesis which may facilitate the progression of diabetic retinopathy and age-related macular degeneration (64). Although many preclinical studies demonstrated renoprotective effects in various CKD models, caution may be needed in autosomal dominant polycystic kidney disease. HIF-1α was shown to accelerate cyst growth, and administration of a PHD inhibitor promoted cyst expansion and kidney dysfunction in the mouse model of autosomal dominant polycystic kidney disease (101). This effect was mediated by increased calcium-dependent chloride secretion (102), suggesting that some parts of the HIF-activated pathways may bring about deleterious effects under certain circumstances.
knockout, in many organs including the kidney (103). In the case of PHD inhibitors, the levels of HIF-α are most likely to fluctuate within dosing intervals, as envisaged by plasma EPO levels peaking at 8–9 hours after single administration of roxadustat (104). Overall, findings obtained from genetic studies may not be the same as those expected in PHD inhibitors. Further studies are needed to address potential applicability in human clinical settings.

Conclusions

Although it is generally accepted that HIF activation protects against AKI, controversial results have been reported for CKD. The final outcomes are affected by various factors, such as balance between two HIF isoforms, cell types, disease models, and time and methods of intervention. This suggests that HIF has multifaceted functions, and it is important to understand its pathological role within each specific context. PHD inhibitors may promote or delay the progression of CKD, depending on its etiology, CKD stages, and comorbidities. Further studies are needed to identify patients who would gain additional benefits from PHD inhibitors and those who may need to avoid them.

Disclosures

M. Nangaku has received honoraria and research grants from Akelis, Astellas, Bayer, GSK, JT, Kyowa-Kirin, and Mitsubishi Tanabe. T. Tanaka has received honoraria from Kyowa-Kirin and a research grant from JT, outside of the submitted work. The remaining author has nothing to disclose.

Funding

None.

Author Contributions

M. Sugahara wrote the original draft; M. Nangaku and T. Tanaka reviewed and edited the manuscript.

References

1. Aukland K, Krogh J: Renal oxygen tension. Nature 188: 671, 1960
2. Brezis M, Heyman SN, Dinour D, Epstein FH, Rosen S: Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. J Clin Invest 88: 390–395, 1991
3. Brezis M, Heyman SN, Epstein FH: Determinants of intrarenal oxygenation. II. Hemodynamic effects. Am J Physiol 267: F1063–F1068, 1994
4. Brezis M, Agmon Y, Epstein FH: Determinants of intrarenal oxygenation. I. Effects of diuretics. Am J Physiol 267: F1059–F1062, 1994
5. Groves ND, Leach KG, Rosen M: Effects of halothane, enflurane and isoflurane anaesthesia on renal plasma flow. Br J Anaesth 65: 796–800, 1990
6. Calzavacca F, Evans RG, Bailey M, Lankadeva YR, Bellomo R, May CN: Long-term measurement of renal cortical and medullary tissue oxygenation and perfusion in unanesthetized sheep. Am J Physiol Regul Integr Comp Physiol 308: R832–R839, 2015
7. Rosenberger C, Rosen S, Paliege A, Heyman SN: Pimonidazole adduct immunohistochemistry in the rat kidney: Detection of tissue hypoxia. Methods Mol Biol 466: 161–174, 2009
8. Manoorthy, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M: Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15: 1277–1288, 2004
9. Nangaku M: Chronic hypoxia and tubulointerstitial injury: A final common pathway to end-stage renal failure. J Am Soc Nephrol 17: 17–25, 2006
10. Mimura I, Nangaku M: The suffocating kidney: Tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6: 667–678, 2010
11. Cowley AW Jr.: Role of the renal medulla in volume and arterial pressure regulation. Am J Physiol 273: R1–R15, 1997
12. Levy MN, Saucedo G: Diffusion of oxygen from arterial to venous segments of renal capillaries. Am J Physiol 196: 1336–1339, 1959
13. Welch WJ, Baumgartl H, Lübbers D, Wilcox CS: Nephron pO2 and renal oxygen usage in the hypertensive rat kidney. Kidney Int 59: 230–237, 2001
14. Evans RG, Harrop GK, Ngo JP, Ow CPC, O’Connor PM: Basal renal O2 consumption and the efficiency of O2 utilization for Na+ reabsorption. Am J Physiol Renal Physiol 306: F551–F560, 2014
15. Koeners MP, Ow CPC, Russell DM, Abdelkader A, Eppel GA, Ludbrook, Malpas SC, Evans RG: Telemetry-based oxygen sensor for continuous monitoring of kidney oxygenation in conscious rats. Am J Physiol Renal Physiol 304: F1471–F1480, 2013
16. Evans RG, Gardiner BS, Smith DW, O’Connor PM: Methods for studying the physiology of kidney oxygenation. Clin Exp Pharmacol Physiol 35: 1405–1412, 2008
17. Leong CL, O’Connor PM, Eppel GA, Anderson WP, Evans RG: Measurement of renal tissue oxygen tension: Systematic differences between fluorescence optode and microelectrode recordings in anaesthetized rabbits. Nephron Physiol 108: p11–7, 2008
18. Hirakawa Y, Tanaka T, Nangaku M: Renal hypoxia in CKD; Pathophysiology and detecting methods. Front Physiol 8: 99, 2017
19. You Y, Lee S, Kim T, Ohkubo K, Chae WS, Fukuzumi S, Jhon GJ, Nam W, Leonard SJ: Phosphorescent sensor for biological mobile zinc. J Am Chem Soc 133: 18328–18342, 2011
20. Tobita S, Yoshishara T: Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Curr Opin Chem Biol 33: 39–45, 2016
21. Hirakawa Y, Yoshishara T, Kamiya M, Mimura I, Fujikura D, Masuda T, Kikuchi R, Takahashi I, Urano Y, Tobita S, Nangaku M: Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement. Sci Rep 5: 17838, 2015
22. Hirakawa Y, Mizukami K, Yoshishara T, Takahashi I, Khulan P, Honda T, Mimura I, Tanaka T, Tobita S, Nangaku M: Intravesical phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia. Kidney Int 93: 1483–1489, 2018
23. Arteel GE, Thurman RG, Raleigh JA: Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. Eur J Biochem 253: 743–750, 1998
24. Matsumoto M, Tanaka T, Yamanoto T, Noiri E, Miyata T, Inagi R, Fujita T, Nangaku M: Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15: 1574–1581, 2004
25. Tanaka T, Kato H, Kojima I, Ohse T, Tawakami T, Fujiwara T, Nangaku M: Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61: 795–805, 2006
26. Prasad PV: Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103: c58–c65, 2006
27. Pedersen M, Dissing TH, Mørkenborg J, Stødkilde-Jørgensen H, Hansen LH, Pedersen LB, Grenier N, Frøkiaer J: Validation of quantitative BOLD MRI measurements in kidney: Application to unilateral ureteral obstruction. Kidney Int 67: 2305–2312, 2005
28. Prasad PV, Epstein FH: Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: Effects of aging and cyclooxygenase inhibition. Kidney Int 55: 294–298, 1999
29. Pruijm M, Hofmann L, Maillard M, Tremblay S, Glatz N, Wuerzner G, Burnier M, Vogt B: Effect of sodium loading/
depletion on renal oxygenation in young normotensive and hypertensive men. Hypertension 55: 1116–1122, 2010

30. Prijm M, Mendichovsky IA, Liss P, Van der Niepen P, Textor SC, Lerman LO, Kredit CTP, Caroli A, Burnier M, Prasad PV: Renal blood oxygenation level-dependent magnetic resonance imaging to measure transient kidney function: A statement paper and systematic review. Nephrol Dial Transplant 33(Suppl 2): i22-i28, 2018.

31. Bane O, Mendichovsky IA, Milani B, Dekkers IA, Deux JF, Kainuma M, Y amada M, Miyake T: Continuous urine oxygen measurement and systematic review. Am J Physiol Renal Physiol 294: F928–F936, 2008

32. Kainuma M, Y amada M, Miyake T: Hypoxia and secondary damage. Kidney Int 93: 932–940, 2016

33. Lankadeva YR, Kosaka J, Evans RG, Bailey SR, Bellomo R, May C: Interstitial fibrosis in type 1 diabetic mouse kidney. J Nephron Clin Imaging 13: 744–747, 2001

34. Zhu MZL, Martin A, Cochrane AD, Smith JA, Thrift AG, Harrop GN, NGO JP, Evans RG: Urinary hypoxia: An intraoperative marker of risk of cardiac surgery-associated acute kidney injury. Nephrol Dial Transplant 33: 2191–2201, 2018

35. Prasad PV, Priatna A, Spokes K, Epstein FH: Changes in intrarenal oxygen tension during model for radiocontrast nephropathy. J Magn Reson Imaging 33: 199–215, 2020

36. Wu L, Tiwari MM, Messer KJ, Holthoff JH, Golden N, Brock RW, Mayeur PR: Peritubular capillary dysfunction and renal tubular epithelial cell stress following lipopolysaccharide administration in mice. Am J Physiol Renal Physiol 292: F261–F268, 2007

37. Post EH, Kellum JA, Bellomo R, Vincent JL: Renal perfusion in sepsis: From macro- to microcirculation. Kidney Int 91: 45–60, 2017

38. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S: Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 13: 744–747, 2001

39. Pruijm M, Mendichovszky IA, Liss P, Van der Niepen P, Textor C, Lerman LO, Kredit CTP, Caroli A, Burnier M, Prasad PV: Renal blood oxygenation level-dependent magnetic resonance imaging to measure transient kidney function: A statement paper and systematic review. Nephrol Dial Transplant 33(Suppl 2): i22-i28, 2018.

40. Bane O, Mendichovsky IA, Milani B, Dekkers IA, Deux JF, Kainuma M, Y amada M, Miyake T: Continuous urine oxygen measurement and systematic review. Am J Physiol Renal Physiol 294: F928–F936, 2008

41. Basile DP, Donohoe DL, Roethe K, Mattson DL: Chronic renal ischemia-reperfusion injury via reversible epigenetic regulation mechanisms in progressive tubulointerstitial fibrosis. Semin Nephrol 31: 375–382, 2011

42. Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR: Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes. Am J Physiol Renal Physiol 294: F928–F936, 2008

43. Polichnowski AJ, Lan R, Geng H, Griffin KA, Venkatachalam MA, Bidani AK: Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 13: 1721–1732, 2002

44. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK: Severe renal mass reduction impairs recovery and promotes fibrosis after AKI. J Am Soc Nephrol 25: 1496–1507, 2014

45. Koury ST, Koury MJ, Bondurant MC, Caro J, Graber SE, C, Wiesener MS, Eckardt KU: Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Clin Invest 117: 862–865, 2007

46. Ivan M, Kondo K, Yang H, Kim W, Vailando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr.: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464–468, 2001

47. Nangaku M, Hirakawa Y, Mimura I, Nakaki R, Suzuki Y, Tanaka T: Hypoxia-inducible factor (HIF) regulates cell fate decisions in the kidney. Semin Nephrol 31: F807–F809, 2016

48. Pruijm M, Milani B, Podhajska A, Vogt B, Stuber M, Kanki Y, Nakaki R, Suzuki Y, Tanaka T: Induction of renoprotective gene expression at proinflammatory/profibrotic genes. Kidney Int 93: 932–940, 2016

49. Fournié S, Pihl L, Khan N, Gustafsson L, Palm F: Pronounced kidney hypoxia precedes albuminuria in type 1 diabetic mice. Am J Physiol Renal Physiol 310: F807–F809, 2016

50. Welch WJ, Baumgärtl H, Lübbers D, Wilcox CS: Renal oxygenation defects in the spontaneously hypertensive rat: Role of AT1 receptors. Kidney Int 63: 202–208, 2003

51. Priel M, Milani B, Pivin E, Podhajska A, Vogt B, Stuber M, Burnier M: Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93: 932–940, 2016

52. Sugiyama K, Inoue T, Kozawa E, Ishikawa M, Shimada A, Kobayashi N, Tanaka J, Okada H: Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease. Kidney Int 93: 932–940, 2016

53. Friederich-Persson M, Thörn E, Hansell T, Nangaku M, Levin M, Palm F: Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62: 914–942, 2013

54. Rosenberger C, Mandriota S, Jürgensen JS, Wiesener MS, Hörstrup H, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU: Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Clin Invest 117: 862–865, 2007

55. Schuster SJ, Badiavas EV, Costa-Giomi P, Weinmann R, Erslev A, Palm F: Kidney hypoxia, attributable to increased oxygen consumption, induces nephropathy independently of hyperglycemia and oxidative stress. Hypertension 62: 914–942, 2013

56. Koury ST, Koury MJ, Bondurant MC, Caro J, Graber SE: Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: Correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74: 645–651, 1989

57. Monteiro D, Lundby C: Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension: A blinded crossover study. Kidney Int 95: 173–177, 2019

58. Sugahara M, Tanaka T, Nangaku M: Prolyl hydroxylase domain inhibitors as a novel therapeutic approach against anemia in chronic kidney disease. Kidney Int 92: 306–312, 2017

59. Sanghani NS, Haase VH: Hypoxia-inducible factor activators in renal anemia: Current clinical experience. Adv Chronic Kidney Dis 26: 253–266, 2019

60. Matsumoto M, Makino Y, Tanaka T, Tanaka H, Ishizaka N, Noiri M, Kobayashi N, Tanaka J, Okada H: Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease. Kidney Int 93: 932–940, 2016

61. Koury ST, Koury MJ, Bondurant MC, Caro J, Graber SE: Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: Correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74: 645–651, 1989

62. Pruijm M, Milani B, Pivin E, Podhajska A, Vogt B, Stuber M, Burnier M: Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int 93: 932–940, 2016

63. Sugiyama K, Inoue T, Kozawa E, Ishikawa M, Shimada A, Kobayashi N, Tanaka J, Okada H: Reduced oxygenation but not fibrosis defined by functional magnetic resonance imaging predicts the long-term progression of chronic kidney disease. Kidney Int 93: 932–940, 2016

64. Rosenberger C, Mandriota S, Jürgensen JS, Wiesener MS, Hörstrup H, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU: Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Clin Invest 117: 862–865, 2007

65. Schuster SJ, Badiavas EV, Costa-Giomi P, Weinmann R, Erslev AJ, Caro J: Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73: 13–16, 1989
hypoxia-inducible factors ameliorates ischemic acute renal failure. J Am Soc Nephrol 17: 1970–1978, 2006

70. Iguchi M, Kakinuma Y, Kurabayashi A, Sato T, Shuin T, Hong SB, Schmidt LS, Furihata M: Active inactivation of the VHL gene contributes to protective effects of ischemic preconditioning in the mouse kidney. Nephron, Exp Nephrol 110: e82–e90, 2008

71. Hill P, Shukla D, Tran MG, Aragones J, Cook HT, Carmelep F, Maxwell PH: Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 19: 39–46, 2008

72. Kojima I, Tanaka T, Inagi R, Kato H, Yamauchi T, Sakiyama A, Kojima I, Tanaka T, Ohse T, Fujita T, Nangaku M: Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol 18: 1218–1226, 2007

73. Tanaka T, Kojima I, Ohse T, Inagi R, Miyata T, Ingelring JR, Fujita T, Nangaku M: Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am J Physiol Renal Physiol 289: F1123–F1133, 2005

74. Bernhardt WM, Gottmann U, Doyon F, Buchholz B, Campean V, Kojima I, Tanaka T, Inagi R, Kato H, Yamauchi T, Sakiyama A, Bernhardt WM: The protective effect of prolyl hydroxylase inhibition against renal ischaemia-reperfusion injury. Proc Natl Acad Sci USA 106: 21276–21281, 2009

75. Ito M, Tanaka T, Ishii T, Wakashima T, Fukui K, Nangaku M: Prolyl hydroxylase inhibition protects the kidneys from ischemia via upregulation of glycosylation storage. Kidney Int 97: 687–701, 2020

76. Kapinosiu PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, Haase VH: Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am J Physiol Renal Physiol 302: F1172–F1179, 2012

77. Wang Z, Schley G, Türkoglu G, Burzlaff N, Amann KU, Willam MS, Yard B, Warnecke C, Eckardt KU: Donor treatment with a PHD-inhibitor activating HIFs prevents graft injury and prolongs survival in an allogeneic kidney transplant model. Proc Natl Acad Sci USA 106: 21276–21281, 2009

78. Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Wexler-Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN: Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73: 34–42, 2008

79. Singh P, Blantz RC, Rosenberger C, Gabhbi FB, Schoeb TR, Thomson SC: Aberrant tubuloglomerular feedback and HIF-1α confer resistance to ischemia after subtotal nephrectomy. J Am Soc Nephrol 23: 483–493, 2012

80. Tanaka T, Nangaku M: Angiogenesis and hypoxia in the kidney. Nat Rev Nephrol 9: 211–222, 2013

81. Haase VH: Pathophysiological consequences of HIF activation: HIF as a modulator of fibrosis. Ann N Y Acad Sci 1177: 57–65, 2009

82. Kimura K, Iwano M, Higgins DF, Yamauchi Y, Nakatani K, Tanaka T, Nangaku M: Protective role of hypoxia-inducible factor-2α against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol 19: 39–46, 2008

83. Chiang CK, Tanaka T, Inagi R, Fujita T, Nangaku M: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitial disease in the remnant kidney model. Lab Invest 85: 1292–1307, 2005

84. Tanaka T, Matsumoto M, Inagi R, Miyata T, Kojima I, Ohse T, Fujita T, Nangaku M: Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int 68: 2741–2735, 2005

85. Nordquist L, Friederich-Person M, Fasching A, Liss P, Shoji K, Nangaku M, Hansell P, Palm F: Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol 26: 328–332, 2015

86. Schley G, Klaunke B, Kalucka J, Schatz V, Daniel C, Mayer M, Goppelt-Stuwe B, Herrmann M, Thorsteinsdottir M, Palsson R, Beneke A, Katschinski DM, Burzlaff N, Eckardt KU, Weidemann A, Jantsch J, Willam C: Mononuclear phagocytes orchestrate prolyl hydroxylase inhibition-mediated tubulointerstitium regeneration in chronic tubulointerstitial nephritis. Kidney Int 96: 378–396, 2019

87. Kobayashi H, Gilbert V, Liu Q, Kapinosiu PP, Unger TL, Rha J, Rivella S, Schröndorff D, Haase VH: Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. J Immunol 188: 5106–5115, 2012

88. Higgin DF, Kimura K, Bernhardt WM, Shrimanker N, Akay V, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Ivan M, Haase VH: Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. Clin Invest 117: 3810–3820, 2007

89. Theilig F, Enke AK, Scoliari B, Polzin D, Bachmann S, Koesters R: Tubular defects in the rabbit. J Am Soc Nephrol 91: 19: 39–46, 2008

90. Schley G, Klanke B, Kalucka J, Eckardt KU, Bernhardt WM: The protective effect of prolyl hydroxylase inhibition against renal ischaemia requires application prior to ischaemia but is superior to EPO treatment. Nephrol Dial Transplant 27: 929–936, 2012

91. Uchida T, Rossignon F, Matthau MA, Mounier R, Couette S, Clottes E, Clerici C: Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1α and HIF-2α expression in lung epithelial cells: Implication of natural antiseNSE HIF-1α. J Biol Chem 279: 14871–14878, 2004

92. Rahtu-Korpela L, Karisik S, Horikko S, Blanco Sequeiros R, Lamentausta E, Mäkelä KA, Herzog KH, Walkinshaw G, Kivirikko KI, Myllyharju J, Semp S, Vanunu E: HIF 4α hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63: 3324–3334, 2014

93. Sugahara M, Tanaka S, Tanaka T, Saito H, Ishimoto Y, Wakahama T, Ueda M, Fukui K, Shimizu A, Inagi R, Yamauchi T, Kawadoki T, Nangaku M: Prolyl hydroxylase domain inhibitor protects against metabolic disorders and associated kidney disease in obese type 2 diabetic mice. J Am Soc Nephrol 31: 560–577, 2020

94. Hasegawa S, Tanaka S, Saito T, Fukui K, Wakahama T, Susaki EA, Ueda HK, Nangaku M: The oral hypoxia-inducible factor prolyl hydroxylase inhibitor eronodast counteracts alterations in renal energy metabolism in the early stages of diabetic kidney disease. Kidney Int 97: 934–950, 2020

95. Mokas S, Lariivière R, Malamolce L, Godbeil S, Cornfield DN, Agharazi M, Richard DE: Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification. Kidney Int 90: 598–609, 2016

96. Kraus A, Peters DJ, Klanke B, Weidemann A, Willam C, Schley G, Kunzelmann K, Fleischer BJ, Eckardt KU, Buchholz B: HIF-1α promotes cyst progression in a mouse model of autosomal dominant polycystic kidney disease. Kidney Int 94: 887–899, 2018

97. Kraus A, Grampp S, Goppelt-Stuwe M, Schreiber R, Kunzelmann K, Peters DJ, Leipziger J, Schley G, Schiedel J, Eckardt KU, Buchholz B: P2Y2R is a direct target of HIF-1α and mediates secretion-dependent cyst growth in renal cyst-forming epithelial cells. PNAS Signal 12: 687–695, 2016
103. Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr.: A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. *Mol Cell Biol* 29: 5729–5741, 2009

104. Besarab A, Provenzano R, Hertel J, Zabaneh R, Klaus SJ, Lee T, Leong R, Hemmerich S, Yu KH, Neff TB: Randomized placebo-controlled dose-ranging and pharmacodynamics study of roxadustat (FG-4592) to treat anemia in nondialysis-dependent chronic kidney disease (NDD-CKD) patients. *Nephrol Dial Transplant* 30: 1665–1673, 2015

Received: March 16, 2020 Accepted: July 21, 2020