Assessment on bamboo scrimber as a substitute for timber in building envelope in tropical and humid subtropical climate zones - part 1 hygrothermal properties test

Zujian HUANG1,2, Yimin SUN1 and Florian MUSSO2

1 School of architecture, State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
2 Chair of Building Construction and Material Science, Department of Architecture, Technical University of Munich, Munich 80333, Germany
E-mail: arymsun@scut.edu.cn

Abstract. Bamboo scrimber was bamboo fiber based panel developed in 2000s that was potential to be an ideal substitute for timber in bamboo growing areas. For obtaining material parameters and evaluating the performance in building envelope, bamboo scrimber was systematically tested for hygrothermal properties, based on the building envelope heat and moisture process model. Static test items included density calculation and vacuum saturation test for basic properties; sorption test for moisture storage properties; capillary absorption test, water vapour transmission test and drying test for moisture transport properties; thermal analysis for heat storage properties; thermal conductivity test, surface light and thermal properties test for heat transport properties. The test results, by comparison with reference timbers showed that bamboo scrimber had higher heat storage and heat transport properties and lower moisture storage and transport properties. The dynamic test in wind tunnel with outdoor weather condition showed that bamboo scrimber had lower moisture absorption and desorption rate than reference hardwood. The significant magnitude difference between the static and dynamic test results showed the necessity of a comprehensive evaluation approach that could take more practical conditions into consideration.

1. Introduction
Bamboo forests were widely distributed in the tropical and humid subtropical climate zones in the Asia Pacific (ca. 67%), the Americas (ca. 30%) and Africa (ca. 3%) [1]. The application of bamboo in building industry varied with regional differences due to the local forest resources, economic conditions and construction technology. Large-diameter round bamboos, as an easily accessible, affordable and seismic construction material, were widely used in traditional bamboo building in the Southeast Asia and South America [2]. Since 1970s, restricted by the regional wood forest resources, modified bamboos in standard panel or square form were considered to be an ideal substitute for timber [3]. In countries including China, India, Thailand, Vietnam, Costa Rica, Malaysia, etc. timber processing technologies were introduced to the industrial utilization of bamboo, afterwards plybamboo (1980s), bamboo particleboard and bamboo OSB (1990s), bamboo laminated lumber (1990s) were successively developed [4,5,6], and promoted to the concrete formworks, load-bearing components, truck and bus bottom boards, furniture and finishes industries [3]. Microscopically, bamboo was composed of mostly parallel arranged fiber that had higher strength than wood fiber [1,2], which prompted that products based on bamboo fiber were beneficial for exploiting the inherent advantage. However, due to the low added value and complicated manufacturing process,
bamboo fiber boards in form of MDF consisted of fully separated fiber weren’t successfully promoted [7]. Bamboo scrimber simplified the constituent units as loose bamboo fiber bundle [8], could be made from those herbaceous and small dimension bamboos, and improve the raw material utilization rate to 90% [9], therefore rapidly grew as the mainstream of bamboo fiber boards and was widely promoted to the load-bearing components, indoor finishes, outdoor pavement, furniture and wind power blades, etc.[9,10] existing study on bamboo scrimber covered the manufacturing process, including the produce of constituent unit, dipping, assembly, cold and hot pressing method [11,12] and cracking proofing, deformation proofing, anti-corrosion [13] and frame retardant techniques [14]. In practical application, due to the insufficiency of material study, bamboo properties were commonly substituted with timber parameters, which caused inaccuracy to the projects. The paper tested bamboo scrimber for the hygrothermal properties with static and systematic standard methods, and afterwards carried out a wind tunnel test to examine the hygric behavior in outdoor condition. Corresponding timbers in both tests were set as reference for the evaluation of bamboo scrimber.

2. Hygrothermal properties test

2.1. Material
Before the test, based on the investigation of literature, market and material producers in bamboo industry, typical bamboo scrimber samples were chosen as the test objects, as shown in Table 1.

Table 1. Information of the bamboo scrimber sample.

BFB (Bamboo scrimber)	Constituent unit	Assembly	Thickness	Main application	Sample sources
Bamboo bundle (width:10-30mm)	Parallel	30.0 mm	Load-bearing component, indoor/outdoor flooring, finishes, furniture	Dasso Industrial Group Co. Ltd. Hangzhou, China	

Main manufacturing processes of bamboo scrimber (Photos were taken in Zhejiang province, China by the author)
2.2. Static test items

There were dozens of hygrothermal properties that constituted different heat and moisture process models for simulation. Before 1990s, the steady vapor permeation model proposed by Glaser was widely used, which took purely the water vapor permeability for the calculation in one-dimensional steady-state moisture process, which couldn’t describe the actual situation that was generally non-steady and multiphase simultaneous. In the nearly 20 years, Mølend, Pedersen, Künzel, Häupl, Janssen, Mendes, Steeman and Tariku successively proposed heat-air-moisture transfer model (HAM model) to describe the coupled storage and transport of heat, moisture and air in building envelope [15,16,17,18,19,20,21,22] The models had been verified under various conditions, including the IEA Annex 41 in 2008 that compared 17 HAM models and their numerical simulation tools and completed 7 joint comparative tasks, which proved that the calculation results among the main HAM models and the measured results were close to each other [23,24]. HAM models normally consisted of highly coupled nonlinear partial differential equations that describe simultaneously the heat and moisture processes in building envelope, which were solved through numerical methods [25] Compared with the Glaser model, HAM models relied on much more detailed material parameters as calculation inputs. Hartwig M. Künzel simplified the necessary material parameters for one and two-dimensional heat and moisture process calculation, and used vapor pressure and relative humidity respectively as the driving potentials for gaseous water and liquid water. Two coupled differential equations were proposed to describe the non-steady heat and moisture transport processes in building components, which formed the basis for the computer program WUFI [17].

The heat and moisture transport mechanism and test items were showed in Figure 1, which were based on the equations from H M. Künzel. The above equation described the moisture process, which successively consisted of moisture storage, liquid water transport and gaseous water transport. The below equation was the heat process, which was successively composed of heat storage, heat transport and heat sink. Both equations consisted of storage terms on left side and transport terms on right side.

![Figure 1. Building envelope heat and moisture transport mechanism and the bamboo scrimber test items (the equations on left side were from H M. Künzel [17]).](image)
The running of the model based on these coupled differential equations required the input of material parameters, climate data, internal conditions, and control parameters such as numerical grid and time step width. The material parameters included basic properties such as bulk density, porosity, and the correlative properties characterized the storage and transport abilities of moisture and heat. Nine test items were carried out according to the corresponding test standards. The tests targeted only for the thickness direction, considering that the thickness of the bamboo panels in practical application was far less than the plane dimensions, which meant the heat and moisture transferred approximately one-dimensionally and vertically through the panels. As some previous studies had shown that the repeatability error was generally far smaller than the unevenness error of the samples [26], multiple copies were carried out simultaneously during the test, rather than repeated the specimens for the same items. (Table 2)

Category	Item	Operation method	Equipment arrangement	Specimens treatment
Basic properties	1. Density test	-	Drying oven: digital stainless steel electric blast oven 101A-2S, accuracy ±1°C	Quantity: 9 copies, Size: 10x20cm
	Target value: dry bulk		Balance: SHIMADZU UX6200H, accuracy 0.01g	
	density			
	2. Vacuum saturation test	Target value: open porosity, vacuum saturation moisture content	Drying oven: same as item 1	Quantity: 3 copies, Size: 10x10cm
	Refer to the American standard ASTM D7370-2009, and the European standard DIN EN 1936-2007 [27, 28]			
	3. Sorption test	Target value: isothermal absorption and desorption curve	Vacuum dryer (9 copies): inner diameters 30cm, Balance: same as item 1, T & RH recorder: TH10R-EX, with external sensor (9 copies), accuracy Ta=0.2°C, RH±2%	Quantity: 3 copies, including 1 large sample and 2 small samples
	Refer to the international standard ISO 12571:2012 and the American standard ASTM C1498-04a [29, 30]			
	4. Water vapor transmission test	Target value: water vapor transfer coefficient	Dry cups (3 copies), wet cups (3 copies), Balance: same as item 1, Constant T&RH curing box: HWS-250B, accuracy Ta±0.5°C, RH±5%	Quantity: 6 copies, Size: 10x10cm
	Refer to the international standard ISO 12572:2001(E) [31]			
	5. Capillary absorption test	Target value: water absorption coefficient; capillary saturation moisture content	Water sink: length×width×height=40x30x10 cm, Stainless steel nuts supports of equal height were fixed on the bottom; Distilled water were injected in the sink and kept the water level 3mm above the supports, Balance: same as item 1	Quantity: 3 copies, sealed on top and side surfaces, while kept 4 5×5mm air vents on top surface and 6mm gaps close to the bottom edges on side surfaces open
	Refer to the international standard ISO 15148:2002(E) [32]			
	6. Drying test	Target value: drying curve; drying rate curve	Balance: same as item 1, Constant T&RH curing box: same as item 5	Quantity: 3 copies, sealed on top and side surfaces Size: 10x10cm
	Refer to the test method of Fraunhofer IBP (accredited according to DIN EN ISO/IEC 17025)			
	7. Thermal analysis	Target value: specific heat capacity	Differential thermal scanning / thermogravimetric analyzer: TA4000/2910MDSC, Reference material: sapphire	Quantity: 3 copies, Mass: 20mg
	Refer to the international standard ISO 11357-4-2005 [34]			
	8. Thermal conductivity test	Target value: thermal conductivity	Guarded hot plate apparatus: CD-DR5030, hot plate T=35°C, cold plate T=15°C, size of central heat transfer area 15x15cm, accuracy ±2%	Quantity: 4 copies, including 3 large samples and 1 small sample Size: large samples 30x30cm, small sample 10x20cm²
	Refer to the international standard ISO 11357-4-2005 [35]			
	9. Surface light and thermal properties test	Target value: hemispherical emissivity; light reflectivity; solar direct reflectivity; solar direct absorptivity	Refer to the European standard DIN EN 16012-2012 [36]	Quantity: 4 copies, including 1 large sample and 3 small samples Size: large sample 10x20cm², small samples 10x10cm²
	Refer to the European standard DIN EN 16012-2012 [36]			

*a. Specimens after being dried in item 1 were put in the vacuum dryers for test item 3;
*b. Specimens after reaching the equilibrium moisture content were carried on in test item 8 and 9;
*c. Use the specimens after vacuum saturation test in test item 2;
*d. Use the specimens after reaching the equilibrium moisture content in test item 3
2.3. Dynamic test in wind tunnel

For examining the behavior of the materials in outdoor conditions, a wind tunnel test was carried out with a typical summer day weather data of Guangzhou, a subtropical city located in south China. The weather data including dynamic solar radiation, air temperature, relative humidity and constant wind speed was repeated for 72 hours, of which the last 48 hours were selected for analysis. The reference timber in this test was Intsia.spp (Caesalpiniaceae), a kind of antiseptic hardwood for outdoor flooring. (Figure 2, Table 3)

![Figure 2. Bamboo scrimber wind tunnel test.](image)

Table 3. Weather condition, operation, equipment and specimens of the wind tunnel test.

Weather condition (24h repeated)	Operation method	Main equipment arrangement	Specimens treatment
Solar radiation: sunset - 06:00	Operated the weather condition until deviation of solar radiation, and relative humidity and wind speed ≤5%, and air temperature ≤0.3°C	HHCWT: Hot-Humid Climatic Wind Tunnel, including control systems for: Air temperature: 2 air conditioner (KFRd-60L/W/V-A-ZXF, 6kW, and KFR; 72LW/08EBBPC-a, 7.2kW) and 2 electric heating fans (1.5kW and 5kW), range 20-40°C, accuracy 0.3°C; Relative humidity: 2 electrode humidifiers (BFD-01-04, 0.4kg/h) and 1 dehumidifier (DH-800C, 90L/d), range 40-90%, accuracy 3%; Solar radiation: 8 infrared lights (305 - 3000nm), range 0-1030W/m², accuracy 10W/m²; Wind: axial fan, range 0-5m/s, accuracy 0.2m/s.	Size: A_{FR} - 0.0822 m² (30x27.4cm) A_{FW} - 0.0810m² (30x27cm) Side and bottom surfaces sealed with 1-2mm Vaseline The gaps between specimens and the slots were also sealed with Vaseline
sunset - 18:00			
max. value - 539.0W/m²			
Air temperature: mean value - 28.7°C			
amplitude - 2.6°C			
max. time - 15:00			
Relative humidity: mean value - 80.3%			
amplitude - 12.5%			
max. time - 05:00			
Wind speed: constant as 0.6m/s			

3. Test results analysis

3.1. Reference timber

Since the knowledge on timber was relatively sufficient, the comparison with timber could support the evaluation of bamboo scrimber. However, the timber parameters from different databases varied greatly, which meant that to obtain precise Bamboo-Timber ratio was impractical. Here the 28 timbers from Fraunhofer IBP in WUFI Plus material database were chosen as reference timber (RT). The range of RT defined by the maximum and minimum values, and the relative position of bamboo scrimber were analyzed below. (Table 4, Figure 3)

3.2. Comparison between bamboo scrimber and the reference timber

1) Basic properties. Both the bulk density and open porosity of bamboo scrimber exceeded the range of the reference timber. The high bulk density, as 1108.77 kg/m³, rarely existed in plant materials,
which mainly due to the high density of the raw material and strong pressing during the manufacturing process. The low open porosity resulted from the high pressure and waterproofing agent that compressed and blocked the pore structure, was conductive to the application in outdoor environment.

2) Hygric properties. Compared with the reference timber, the isothermal absorption and desorption curve of bamboo scrimber was in a lower position. The gaseous water transport property was greatly influenced by the moisture content. The vapor transfer resistance factor fell from 921.28 to 47.67 when moisture content rose from \(w_{RH=20.0\%} \) to \(w_{RH=93.0\%} \). The relative position of bamboo scrimber to reference timber also fell with the increasing moisture content. Due to the lower open porosity, the liquid water storage and transport abilities were lower than the reference timber.

3) Thermal properties. Both the heat storage and transport properties of bamboo scrimber were higher than the reference timber, which mainly caused by the high density. The thermal conductivity was in nonlinear relation with the moisture content, and that was normally described by an approximately linear fitted thermal conductivity supplement value, which was 0.0984 [\%/M.-%] in this test.

Items	Unit	BFB-Bamboo scrimber	Reference Timber	Max. value
Basic properties				
Dry bulk density \(\rho \)	[kg/m³]	1108.77	400	708
Open porosity \(\Phi \)	[%]	17.36	41	90
Hygric properties				
20°C isothermal absorption and desorption curve	[kg/m³]	\(\rho_{RH-11.2\%} \) 6.79	\(\rho_{RH-0\%} \) 0	\(\rho_{RH-9\%} \) 0
		\(\rho_{RH-24.4\%} \) 14.05	\(\rho_{RH-20\%} \) 5.70	\(\rho_{RH-35\%} \) 42.00
		\(\rho_{RH-11.4\%} \) 20.26	\(\rho_{RH-30\%} \) 9.70	\(\rho_{RH-35\%} \) 61.00
		\(\rho_{RH-21.5\%} \) 25.55	\(\rho_{RH-25\%} \) 22.10	\(\rho_{RH-35\%} \) 74.00
		\(\rho_{RH-11.0\%} \) 30.19	\(\rho_{RH-35\%} \) 31.90	\(\rho_{RH-45\%} \) 90.00
		\(\rho_{RH-19.7\%} \) 32.24	\(\rho_{RH-40\%} \) 45.50	\(\rho_{RH-45\%} \) 115.00
		\(\rho_{RH-17.2\%} \) 53.75	\(\rho_{RH-45\%} \) 62.29	\(\rho_{RH-50\%} \) 151.00
		\(\rho_{RH-15.4\%} \) 69.58	\(\rho_{RH-75\%} \) 80.10	\(\rho_{RH-81\%} \) 197.00
		\(\rho_{RH-14.5\%} \) 155.04	\(\rho_{RH-90\%} \) 88.00	\(\rho_{RH-91\%} \) 245.00
		\(\rho_{RH-14.0\%} \) 44.40	\(\rho_{RH-97\%} \) 94.40	\(\rho_{RH-97\%} \) 318.00
Water vapor transfer coefficient \(U_{\Phi} \)	[-]	\(U_{\Phi-0.0\%} \) 921.28	\(U_{\Phi-0.0\%} \) 9	\(U_{\Phi-9\%} \) 845
		\(U_{\Phi-0.2\%} \) 781.24	\(U_{\Phi-10\%} \) 7	\(U_{\Phi-0.2\%} \) 845
Drying rate (T =23°C, RH=50%)	[E-07kg/(m².s)]	\(U_{\rho} \) 600.96	\(U_{\rho} \) 376	\(U_{\rho} \) 376
		\(U_{\rho} \) 489.50	\(U_{\rho} \) 489.50	\(U_{\rho} \) 489.50
		\(U_{\rho} \) 446.94	\(U_{\rho} \) 446.94	\(U_{\rho} \) 446.94
		\(U_{\rho} \) 106.15	\(U_{\rho} \) 106.15	\(U_{\rho} \) 106.15
		\(U_{\rho} \) 73.79	\(U_{\rho} \) 73.79	\(U_{\rho} \) 73.79
		\(U_{\rho} \) 47.67	\(U_{\rho} \) 47.67	\(U_{\rho} \) 47.67
Capillary saturation moisture content \(w_{sat} \)	[kg/m³]	115.93	326.00	864.50
		\(w_{sat} \) 0.000873	\(w_{sat} \) 0.0004	\(w_{sat} \) 0.0004
Thermal properties				
Specific heat capacity \(c \)	[J/kg·K]	1550	1300	2100
Thermal conductivity \(\lambda_{th} \)	[W/m·K]	0.1625	0.09	0.13
24h heat storage coefficient \(S_{24h} \)	[W/m²·K]	8.52	3.62	5.55
Hemisphere emissivity \(\varepsilon \)	[-]	0.66	\(\varepsilon \)	\(\varepsilon \)
Light reflectivity (380-780nm) \(\nu_{l} \)	[%]	19.74	\(\nu_{l} \)	\(\nu_{l} \)
Solar direct reflectivity (200-2600nm) \(\nu_{s} \)	[%]	44.51	\(\nu_{s} \)	\(\nu_{s} \)
Solar direct absorptivity (200-2600nm) \(\alpha_{s} \)	[%]	55.49	\(\alpha_{s} \)	\(\alpha_{s} \)
3.3. Wind tunnel test results

1) The hourly mass change rate comparison between bamboo scrimber and hardwood showed that bamboo scrimber had slower absorption and desorption rate U_{ad} value. Except certain areas, mostly the absorption-desorption transition stage, the hourly U_{ad} values of bamboo scrimber were up to 33.69 E-06 kg/m2s smaller than that of hardwood specimen. (Figure 4)

2) Affected by the strong outdoor solar radiation and temperature, the absorption and desorption rate of bamboo scrimber were respectively up to 50.22 E-06 kg/m2s and 67.41 E-06 kg/m2s, much higher than the values 7.74-12.58 E-07 kg/m2s resulted from the static drying test ($T=23^\circ C$, RH=50%). As a result of the comprehensive impacts of solar radiation, temperature, relative humidity and wind, the wind tunnel test results showed a much more mutative characteristic and contributed to describe the material in a way that was closer to the practical conditions.

Figure 3. Relative position of bamboo scrimber parameters in the range of reference timber.

Figure 4. Hourly mass change rate of bamboo scrimber and hardwood specimens of wind tunnel test.
4. Conclusion

1) Nine static test items for hygrothermal properties were carried out for bamboo scrimber. Results showed that, by comparison with reference timbers, bamboo scrimber had higher heat storage and heat transport properties, lower moisture storage and transport properties.

2) A dynamic test in wind tunnel was performed to examine the moisture absorption and desorption rate in practical outdoor climate condition. Results showed that bamboo scrimber had lower moisture absorption and desorption rate than the reference hardwood.

3) The significant magnitude difference between the static and dynamic test results showed the necessity of a comprehensive evaluation approach that could take more practical conditions into consideration. Further works to examine the performance of bamboo scrimber under practical external climate, internal load, construction type, HVAC conditions, etc. were required.

5. Reference

[1] Oscar Hidalgo López 2003 Bamboo: The Gift of the Gods (Bogotá, Colombia: O. Hidalgo-Lopez)

[2] Walter Liese and Michael Köhl 2015 Bamboo: The Plant and Its Use (New York: Springer)

[3] ZHANG Qisheng, JIANG Shenxue and TANG Yongyu 2002 INBAR Technical Report No.26: Industrial Utilization on Bamboo (Beijing: International Network for Bamboo and Rattan)

[4] P.M. Ganapathy, Zhu Huan-Ming, S.S. Zoolagud, D. Turcke and Z.B. Espiloy 1999 INBAR Technical Report No.12: Bamboo Panel Boards: a State-of-the-Art Review (Beijing: International Network for Bamboo and Rattan)

[5] LY/T 1660-2006 Standard terminology for bamboo-based panel (in Chinese)

[6] Yimin Sun, Zuijian Huang and Wang Pan 2015 Manufacturing Classification of Bamboo and Comparative Study on Several Physical Properties, Specially Considering the Application in Building Envelope Proc. of the 31st Int. PLEA Conf. Ass vol 3 (Bologna: Building Green Futures) p 651

[7] Hui LI, Yixin ZHU, Zhibin YANG and Bin HONG 2013 A Review on the Bamboo Microstructure and Bamboo Fiber Application in China China Forest Science and Technology. 27(3) 1-5 (in Chinese)

[8] WU Bingling, YU Yanglun, QI Jinqiu and YU Wenji 2014 Effects of bamboo bundles with fine fluffing and carbonized treatment on the properties of bamboo scrimber Journal of Nanjing Forestry University Natural Science Edition. 38(6) 115-120 (in Chinese)

[9] YU Yanglun, LIU Bo and YU Wenji 2014 Research Progress on New Technology and New Product Development of Bamboo Scrimber International Wood Industry Special Report. (in Chinese)

[10] XIAO Zhongping, ZHANG Sujun and SHU Biqing 2013 Application of Carbonized Glued Laminated Bamboo in Bamboo Structure Construction China Forest Products Industry. 40(6) 44-53 (in Chinese)

[11] WANG Chunxia, CUI Lidong, LIU Haoyang, ZHANG Jing and ZHANG Changwu 2013 Study on Cold Press Technology for Reconsolidated Bamboo Forest Machinery & Woodworking Equipment. 41(12) 17-19 (in Chinese)

[12] TANG Liancheng 2012 Study on Manufacturing and Properties of Strand Woven Bamboo (Wood) Lumber Made of Sympodial Species Dissertation of Nanjing Forestry University (in Chinese)

[13] AN Xin 2012 Study on Control Techniques of Termite for Sympodial Bamboo and Composite Materials Dissertation of Chinese Academy of Forestry (in Chinese)

[14] LI Ren 2014 Preparation and combustion characteristics of frame retardant reconstituted bamboo Dissertation of Zhejiang A&F University (in Chinese)

[15] Molenda C.H.A., Crausse P. and Lemarchand D 1992 The influence of capillary hysteresis effects on the humidity and heat coupled transfer in non-saturated porous medium International Journal of Heat and Mass Transfer. 35(6) 1385-96

[16] Pedersen C.R 1992 Prediction of moisture transfer in building constructions. Building and Environment. 27(3) 387-97
[17] Künnzel H.M 1995 *Simultaneous Heat and Moisture Transport in Building Components* (Stuttgart: Fraunhofer IRB Verlag Stuttgart).

[18] Häupl P., Grunewald J., Fechner H., et al 1997 Coupled heat air and moisture transfer in building structures *International Journal of Heat and Mass Transfer*. 40(7) 1633-42

[19] Janssen H., Blocken B. and Carmeliet J 2007 Conservative modelling of the moisture and heat transfer in building components under atmospheric excitation *International Journal of Heat and Mass Transfer*. 50(5-6) 1128-40

[20] Mendes N. and Philippi P. C 2005 A method for predicting heat and moisture transfer through multilayered walls based on temperature and moisture content gradients. *International Journal of Heat and Mass Transfer*. 48(1) 37-51

[21] Steeman H.J., Van Belleghem M., Janssens A., et al 2009 Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage *Building and Environment*. 44(10) 2176-84

[22] Tariku F., Kumaran K. and Fazio P 2010 Transient model for coupled heat, air and moisture transfer through multilayered porous media *International Journal of Heat and Mass Transfer*. 53(15-16) 3035-44

[23] Kumaran M.K 1996 IEA Annex 24: Heat, Air and Moisture Transfer in Insulated Envelope Parts. Final Report, Volume 3, Task 3: Material Properties

[24] Woloszyn M. and Rode C 2008 IEA Annex 41: Whole Building Heat, Air, Moisture Response. Subtask 1: Modeling Principles and Common Exercises (International Energy Agency, Executive committee on Energy Conservation in Buildings and Community Systems)

[25] Van Belleghem M., Steeman H. J., Steeman M., et al 2010 Sensitivity analysis of CFD coupled non-isothermal heat and moisture modelling *Building and Environment*. 45(11) 2485-96

[26] FENG Chi 2014 Study on the Test Methods for the Hygric Properties of Porous Building Materials *Dissertation of South China University of Technology* (in Chinese)

[27] ASTM D7370-2009: Standard Test Method for Determination of Relative Density and Absorption of Fine, Coarse and Blended Aggregate Using Combined Vacuum Saturation and Rapid Submersion

[28] DIN EN 1936-2007: Natural stone test method - Determination of real density and apparent density, and of total and open porosity

[29] ISO 12571:2012: Hygrothermal performance of building materials and products - Determination of hygroscopic sorption properties

[30] ASTM C1498 - 04a(2016): Standard Test Method for Hygroscopic Sorption Isotherms of Building Materials

[31] ISO 12572:2001(E): Hygrothermal performance of building materials and products - Determination of water vapour transmission properties

[32] ISO 15148:2002(E): Hygrothermal performance of building materials and products - Determination of water absorption coefficient by partial immersion

[33] Scheffler G.A. and Plagge R 2010 A whole range hygric material model: Modelling liquid and vapour transport properties in porous media *International Journal of Heat and Mass Transfer*. 53(1-3) 286-296

[34] ISO 11357-4-2005: Plastics - Differential scanning calorimetry (DSC) - Part 4: Determination of specific heat capacity

[35] ISO 8302-1991: Thermal insulation; determination of steady-state thermal resistance and related properties; guarded hot plate apparatus

[36] DIN EN 16012-2012: Thermal insulation for buildings - Reflective insulation products - Determination of the declared thermal performance

Acknowledgments

The research is funded by: the (Chinese) State Key Laboratory of Subtropical Building Science Project: 2017KC22; the State Scholarship Fund by the Chinese Scholarship Council: 201506150017.