SUBALGEBRAS THAT COVER OR AVOID CHIEF FACTORS
OF LIE ALGEBRAS

DAVID A. TOWERS

(Communicated by Kailash Misra)

Abstract. We call a subalgebra \(U \) of a Lie algebra \(L \) a \(CAP \)-subalgebra of \(L \) if for any chief factor \(H/K \) of \(L \), we have \(H \cap U = K \cap U \) or \(H + U = K + U \). In this paper we investigate some properties of such subalgebras and obtain some characterizations for a finite-dimensional Lie algebra \(L \) to be solvable under the assumption that some of its maximal subalgebras or 2-maximal subalgebras be \(CAP \)-subalgebras.

1. The covering and avoidance property

Throughout, \(L \) will denote a finite-dimensional Lie algebra over a field \(F \). Let
\[
0 = A_0 \subset A_1 \subset \ldots \subset A_n = L
\]
be a chief series for \(L \). The subalgebra \(U \) avoids the factor algebra \(A_i/A_{i-1} \) if \(U \cap A_i = U \cap A_{i-1} \); likewise, \(U \) covers \(A_i/A_{i-1} \) if \(U + A_i = U + A_{i-1} \). We say that \(U \) has the covering and avoidance property of \(L \) if \(U \) either covers or avoids every chief factor of \(L \). We also say that \(U \) is a \(CAP \)-subalgebra of \(L \). The corresponding concepts in group theory have been studied extensively and have proved useful in characterising finite solvable groups and some of their subgroups (see, for example, [12], [15] and [7]). In Lie algebras, some parallel results have been obtained by a number of authors, and this paper is intended to be a further contribution to that work.

There are a number of ways in which \(CAP \)-subalgebras arise. We say that \(A_i/A_{i-1} \) is a Frattini chief factor if \(A_i/A_{i-1} \subseteq \phi(L/A_{i-1}) \); it is complemented if there is a maximal subalgebra \(M \) of \(L \) such that \(L = A_i + M \) and \(A_i \cap M = A_{i-1} \). When \(L \) is solvable it is easy to see that a chief factor is Frattini if and only if it is not complemented. For a subalgebra \(B \) of \(L \) we denote by \([B:L]\) the set of all subalgebras \(S \) of \(L \) with \(B \subseteq S \subseteq L \), and by \([B:L]_{\max}\) the set of maximal subalgebras in \([B:L]\); that is, the set of maximal subalgebras of \(L \) containing \(B \). We define the set \(I \) by \(i \in I \) if and only if \(A_i/A_{i-1} \) is not a Frattini chief factor of \(L \). For each \(i \in I \) put
\[
\mathcal{M}_i = \{ M \in [A_{i-1},L]_{\max} : A_i \nsubseteq M \}.
\]
Then \(U \) is a prefattini subalgebra of \(L \) if
\[
U = \bigcap_{i \in I} M_i \text{ for some } M_i \in \mathcal{M}_i.
\]
It was shown in [13] that, when L is solvable, this definition does not depend on the choice of chief series, and that the prefrattini subalgebras of L cover the Frattini chief factors and avoid the rest; that is, they are CAP-subalgebras of L.

Further examples were given by Stitzinger in [10], where he proved the following result (see [10] for definitions of the terminology used).

Theorem 1.1 ([10, Theorem 2]). Let F be a saturated formation of solvable Lie algebras, and let U be an F-normaliser of L. Then U covers every F-central chief factor of L and avoids every F-eccentric chief factor of L.

The chief factor A_i/A_{i-1} is called central if $[L, A_i] \subseteq A_{i-1}$ and eccentric otherwise. A particular case of the above result is the following theorem, due to Hallahan and Overbeck.

Theorem 1.2 ([6, Theorem 1]). Let L be a metanilpotent Lie algebra. Then C is a Cartan subalgebra of L if and only if it covers the central chief factors and avoids the eccentric ones.

In group theory an important class of CAP-subgroups is given by the normally embedded (also called strongly pronormal) subgroups (see [5] page 251). In a sense, the natural analogue of this concept in Lie algebras is to call a subalgebra U of L strongly pronormal if every Cartan subalgebra of U is also a Cartan subalgebra of U^L, the ideal closure of U in L. Such subalgebras satisfy a number of the same properties as those of their group-theoretic counterparts. However, they are not necessarily CAP-subalgebras, even when L is metabelian, as the following example shows.

Example 1.1. Let L be the four-dimensional real Lie algebra with basis e_1, e_2, e_3, e_4 and multiplication $[e_1, e_3] = e_1$, $[e_2, e_3] = e_2$, $[e_1, e_4] = -e_2$ and $[e_2, e_4] = e_1$, other products being zero. Then $A = \mathbb{R}e_1 + \mathbb{R}e_2$ is a minimal abelian ideal of L and $U = \mathbb{R}e_1 + \mathbb{R}e_3$ is strongly pronormal in L (since the Cartan subalgebras of U are of the form $\mathbb{R}(\alpha e_1 + e_3)$ ($\alpha \in \mathbb{R}$) and these are also Cartan subalgebras of $U^L = \mathbb{R}e_1 + \mathbb{R}e_2 + \mathbb{R}e_3$). However, $U \cap A = \mathbb{R}e_1 \neq U \cap 0$ and $U + A = \mathbb{R}e_1 + \mathbb{R}e_2 + \mathbb{R}e_3 \neq U + 0$, so U is not a CAP-subalgebra of L.

It is worth noting at this point that it is known that if $\dim L < |F|$, then L possesses a Cartan subalgebra (see [1, Corollary 1.2]). However, the existence of Cartan subalgebras has not been shown in general. The best result known to the author is the following, proved by Siciliano.

Proposition 1.3 ([8 Proposition 2.2]). Let L be a minimal example of a finite-dimensional Lie algebra over a field F without Cartan subalgebras. Then

1. F is a finite field and $|F| \leq \dim L$;
2. L is not a restricted Lie algebra; and
3. L is semisimple.

An alternative approach which does yield examples of CAP-subalgebras will be given in the next section.

2. Elementary results

In this section we collect together some properties of CAP-subalgebras and give characterisations of simple and of supersolvable Lie algebras in terms of them. If U
is a subalgebra of L, the core of U, denoted U_L, is the largest ideal of L contained in U.

Lemma 2.1. Let B be a subalgebra of L and H/K a chief factor of L. Then

(i) B covers H/K if and only if $B \cap H + K = H$; and

(ii) B avoids H/K if and only if $(K + B) \cap H = K$.

(iii) If $B \cap H + K$ is an ideal of L, then B covers or avoids H/K. In particular, ideals are CAP-subalgebras.

(iv) The non-trivial Lie algebra L is simple if and only if it has no non-trivial proper CAP-subalgebras.

(v) B covers or avoids H/K if and only if there exists an ideal N with $N \subseteq B \cap K$ and B/N covers or avoids $(H/N)/(K/N)$ respectively. Furthermore, B is a CAP-subalgebra of L if and only if there exists an ideal N of L such that $N \subseteq B$ and B/N is a CAP-subalgebra of L/N.

(vi) Let C be a subalgebra containing B. If H/K is covered (respectively, avoided) by B, then so is $(H \cap C)/(K \cap C)$.

Proof. (i), (ii) These are straightforward.

(iii) Since $B \cap H + K$ is an ideal of L, we have that $B \cap H + K = H$ or $B \cap H + K = K$. The former implies that B covers H/K, by (i); the latter yields that $(K + B) \cap H = (B \cap H) + K = K$, whence B avoids H/K, by (ii).

(iv) This is straightforward.

(v) Let $N = (B \cap K)_L$. Then

$$B + H = B + K \iff \frac{B}{N} + \frac{H}{N} = \frac{B}{N} + \frac{K}{N},$$

and

$$B \cap H = B \cap K \iff \frac{B}{N} \cap \frac{H}{N} = \frac{B}{N} \cap \frac{K}{N}.$$

(vi) This is straightforward. \qed

A subalgebra U of L will be called *ideally embedded* in L if $I_L(U)$ contains a Cartan subalgebra of L, where $I_L(U) = \{x \in L : [x, U] \subseteq U\}$ is the *idealiser* of U in L. Clearly, any subalgebra containing a Cartan subalgebra of L and any ideal of L is ideally embedded in L. Then we have the following extension of Theorem 1.2.

Theorem 2.2. Let L be a metanilpotent Lie algebra and let U be ideally embedded in L. Then U is a CAP-subalgebra of L.

Proof. Let $C \subseteq I_L(U)$ be a Cartan subalgebra of L and let N be the nilradical of L. Then $(C + N)/N$ is a Cartan subalgebra of L/N and L/N is nilpotent, so $L = C + N$. Let H/K be a chief factor of L. Then $[N, H] \subseteq K$ so $U \cap H + K$ is an ideal of L. The result now follows from Lemma 2.1 (iii) \qed

We define the *nilpotent residual*, $\gamma_\infty(L)$, of L to be the smallest ideal of L such that $L/\gamma_\infty(L)$ is nilpotent. Clearly this is the intersection of the terms of the lower central series for L. Then the *lower nilpotent series* for L is the sequence of ideals $N_i(L)$ of L defined by $N_0(L) = L$, $N_{i+1}(L) = \gamma_\infty(N_i(L))$ for $i \geq 0$. Then we have the following extension of Theorem 2.2.

Corollary 2.3. Let L be any solvable Lie algebra and let U be an ideally embedded subalgebra of L with $K = N_2(L) \subseteq U$. Then U is a CAP-subalgebra of L.
Proof. Let \(C \subseteq I_L(U) \) be a Cartan subalgebra of \(L \). Then \((C + K)/K\) is a Cartan subalgebra of \(L/K \), and \(I_L(U/K) \supseteq (I_L(U) + K)/K \supseteq (C + K)/K \), so \(U/K \) is ideally embedded in \(L/K \). Moreover, \(L/K \) is metanilpotent. It follows from Theorem 2.2 that \(U/K \) is a \(\text{CAP}\)-subalgebra of \(L/K \). But now Lemma 2.4 (v) yields that \(U \) is a \(\text{CAP}\)-subalgebra of \(L \). \(\square \)

Let \(U \) be a subalgebra of \(L \) and \(B \) an ideal of \(L \). Then \(U \) is said to be a \textit{supplement} to \(B \) in \(L \) if \(L = U + B \). Another set of examples of \(\text{CAP}\)-subalgebras, which don’t require \(L \) to be solvable, is given by the next result.

Theorem 2.4. Let \(L \) be any Lie algebra, let \(U \) be a supplement to an ideal \(B \) in \(L \), and suppose that \(B^k \subseteq U \) for some \(k \in \mathbb{N} \). Then \(U \) is a \(\text{CAP}\)-subalgebra of \(L \).

Proof. Let \(L = B + U \) and let \(H/K \) be a chief factor of \(L \). Then \(K + [B, H] = H \) or \(K \). Suppose first that \(K + [B, H] = H \). Then \([B, H] \subseteq K + [B, [B, H]]\) and a simple induction argument shows that \(H \subseteq K + B^k \) for all \(k \geq 1 \). Hence \(H \subseteq K + U \), which yields that \(H + U = K + U \).

So suppose now that \(K + [B, H] = K \), whence \([B, H] \subseteq K \). Then \(K + U \cap H \) is an ideal of \(L \), and the result now follows from Lemma 2.4 (iii). \(\square \)

Lemma 2.5. Let \(U \) be a \(\text{CAP}\)-subalgebra of \(L \) and let \(B \) be an ideal of \(L \). Then \(B + U \) is a \(\text{CAP}\)-subalgebra of \(L \).

Proof. Let \(H/K \) be a chief factor of \(L \). If \(U + H = U + K \), then \(B + U + H = B + U + K \), so suppose that \(U \cap H = U \cap K \). Similarly, since \(B \) is a \(\text{CAP}\)-subalgebra, by Lemma 2.1 (iii), we can suppose that \(B \cap H = B \cap K \).

Then \(\frac{B + H}{B + K} \cong \frac{(B + H)/B}{(B + K)/B} \cong \frac{H/B \cap H}{K/B \cap K} \cong \frac{H}{K} \) is a chief factor of \(L \). If \(U + B + H = U + B + K \), the result is clear, so suppose that \(U \cap (B + H) = U \cap (B + K) \).

Let \(x \in (B + U) \cap H \). Then \(x = b + u \) for some \(b \in B \), \(u \in U \), and \(x \in H \). It follows that \(u \in (B + H) \cap U = (B + K) \cap U \), so that \(x \in (B + K) \cap H = K + B \cap H = K \). Thus \((B + U) \cap H \subseteq (B + U) \cap K \). But the reverse inclusion is clear and the result follows. \(\square \)

The next result gives the dimension of \(\text{CAP}\)-subalgebras in terms of the chief factors that they cover.

Lemma 2.6. Let \(U \) be a \(\text{CAP}\)-subalgebra of \(L \), let \(0 = A_0 < A_1 < \ldots < A_n = L \) be a chief series for \(L \) and let \(\mathcal{I} = \{ i : 1 \leq i \leq n, U \text{ covers } A_i/A_{i-1} \} \). Then
\[
\dim U = \sum_{i \in \mathcal{I}} (\dim A_i - \dim A_{i-1}).
\]

Proof. We use induction on \(n \). The result is clear if \(n = 1 \). So suppose it holds for all Lie algebras with chief series of length \(< n \), and let \(L \) have a chief series of length \(n \). Then \(U + A_1/A_1 \) is a \(\text{CAP}\)-subalgebra of \(L/A_1 \), by Lemmas 2.5 and 2.4 (v). Moreover,
\[
\dim(U + A_1/A_1) = \sum_{i \in \mathcal{I}, i \neq 1} (\dim A_i - \dim A_{i-1}),
\]
by the inductive hypothesis. If \(U \) covers \(A_1/A_0 \), then
\[
\dim U = \dim(U + A_1) = \dim(U + A_1/A_1) + \dim A_1 = \sum_{i \in \mathcal{I}} (\dim A_i - \dim A_{i-1}).
\]
If U avoids A_1/A_0, then
\[
\dim U = \dim(U/U \cap A_1) = \dim(U + A_1/A_1) = \sum_{i \in I} \dim A_i - \dim A_{i-1}.
\]

Finally in this section we consider supersolvable Lie algebras, that is, Lie algebras all of whose chief factors are one-dimensional.

Proposition 2.7. Let H/K be a chief factor of L. Then every one-dimensional subalgebra of L covers or avoids H/K if and only if $\dim(H/K) = 1$.

Proof. If $x \in K$, then $Fx = Fx \cap H = Fx \cap K$, so Fx avoids H/K. If $x \notin H$, then $0 = Fx \cap H = Fx \cap K$, so again Fx avoids H/K. If $x \in H \setminus K$, then Fx does not avoid H/K, and Fx covers H/K if and only if $H = K + Fx$, whence the result. \hfill \Box

Corollary 2.8. Every one-dimensional subalgebra of L is a CAP-subalgebra of L if and only if L is supersolvable.

Proposition 2.9. If L is supersolvable, then every subalgebra of L is a CAP-subalgebra.

Proof. Let U be a subalgebra of L and let H/K be a chief factor of L. Suppose first that $U \cap H \subseteq K$. Then $U \cap H \subseteq U \cap K \subseteq U \cap H$, whence $U \cap H = U \cap K$. So suppose now that $U \cap H \nsubseteq K$. Then, since $\dim(H/K) = 1$, we have that $H = K + U \cap H$, whence $H + U = K + U$. \hfill \Box

3. **Some characterisations of solvable algebras**

In this section we are seeking characterisations of solvable Lie algebras in terms of CAP-subalgebras. The results are analogues of those for groups as obtained in [15, Section 3], but the proofs are different. A subalgebra U of a Lie algebra L is called a c-ideal of L if there is an ideal C of L such that $L = U + C$ and $U \cap C \leq U$; c-ideals were introduced in [14]. First we need the following result.

Proposition 3.1. Let L be a Lie algebra over a field F which has characteristic zero, or is algebraically closed and of characteristic greater than 5, with minimal ideal A and maximal subalgebra M. If M is solvable and $M \cap A = 0$, then L is solvable.

Proof. Clearly $L = M \oplus A$. But now M is a c-ideal of L and it follows from [14] Theorems 3.2 and 3.3 that L is solvable, a contradiction again. \hfill \Box

Corollary 3.2. Let L be a Lie algebra over a field F which has characteristic zero, or is an algebraically closed field and of characteristic greater than 5. Then L is solvable if and only if there is a maximal subalgebra M of L such that M is a solvable CAP-subalgebra of L.

Proof. If L is solvable it is easy to see that every maximal subalgebra of L is a CAP-subalgebra of L. So suppose now that L is the smallest non-solvable Lie algebra which has a solvable maximal subalgebra M that is a CAP-subalgebra of L. If $M_L \neq 0$, then L/M_L must be solvable, whence L is solvable, a contradiction. Hence $M_L = 0$. Now L cannot be simple, by Lemma 2.1 (iv), so let A be a minimal ideal of L with $A \nsubseteq M$. Since M is a CAP-subalgebra we have $M \cap A = 0$. But then L is solvable, by Proposition 3.1 a contradiction. \hfill \Box
The Lie algebra L is called monolithic with monolith A if A is the unique minimal ideal of L. We denote by $\phi(L)$ the Frattini ideal of L. If all of the maximal subalgebras of L are CAP-subalgebras of L we can deduce solvability without any restrictions on the field F.

Theorem 3.3. Let L be a Lie algebra over any field F. Then L is solvable if and only if all of its maximal subalgebras are CAP-subalgebras.

Proof. If L is solvable it is easy to see that every maximal subalgebra of L is a CAP-subalgebra of L. So suppose that L is the smallest non-solvable Lie algebra all of whose maximal subalgebras are CAP-subalgebras. Then L is not simple, by Lemma 2.1 (iv), so let A be a minimal ideal of L. By the minimality of L, L/A is solvable. If L has two different minimal ideals A_1 and A_2, then $L/A_1, L/A_2$ and hence $L \cong L/(A_1 \cap A_2)$ is solvable. It follows that L is monolithic with monolith A.

Let M be any maximal subalgebra of L. Since M is a CAP-subalgebra of L we have that either $M + A = M$, whence $A \subseteq M$, or $M \cap A = 0$. If the former holds for every maximal subalgebra M, then $A \subseteq \phi(L)$, whence A is abelian and L is solvable. Thus, the latter must hold for some maximal subalgebra K. But, for any such maximal subalgebra K, $L = K \oplus A$ and $K \cong L/A$ is a solvable c-ideal of L. Moreover, if M is a maximal subalgebra of L with $A \subseteq M$, then M/A is a maximal subalgebra of L/A and so is a c-ideal of L/A, by [14, Theorem 3.1]. It follows that M is a c-ideal of L, by [14, Lemma 2.1]. Hence L is solvable, by [14, Theorem 3.1]. This contradiction establishes the result. \qed

Let M be a maximal subalgebra of L and let K be a maximal subalgebra of M. Then we call K a 2-maximal subalgebra of L. Next we consider Lie algebras in which every 2-maximal subalgebra is a CAP-subalgebra of L. If $x \in L$ we put $C_L(x) = \{y \in L : [y, x] = 0\}$, the centraliser of x in L. We say that L has the one-and-a-half generation property if, given any $x \in L$, there exists $y \in L$ such that the subalgebra generated by x and y, $\langle x, y \rangle$, is L. First we need the following result concerning simple Lie algebras with a one-dimensional maximal subalgebra.

Theorem 3.4. Let L be a simple Lie algebra over a perfect field F of characteristic zero or $p > 3$. Then L has a one-dimensional maximal subalgebra if and only if L is three-dimensional simple and $\sqrt{F} \subsetneq F$.

Proof. Suppose that L has a one-dimensional maximal subalgebra Fx. Clearly L has rank one and Fx is a Cartan subalgebra of L. Let Γ denote the centroid of L. Since Γx is an abelian subalgebra of L, we have that $\Gamma x < C_L(x) = Fx$. So $\Gamma = F$, and L is central-simple. Suppose that $\dim L > 3$. It follows from [2] that L is a form of an Albert-Zassenhaus algebra. Moreover, L has the one-and-a-half generation property. For, given any $y \in L$, either $y = \alpha x$ for some $\alpha \in F$, in which case $\langle y, z \rangle = L$ for any $z \notin Fx$, or else $y \notin Fx$, and then $\langle y, x \rangle = L$. Thus, L is a form of a Zassenhaus algebra, by [3].

Let K be a splitting field for the minimal polynomial of $ad x$ over F, and let G be the Galois group of K over F. Let $\sigma \in G$. Then $\sigma' = 1 \otimes \sigma$ is a Lie automorphism of $L \otimes_F K = L_K$. As K is a Galois extension of F, an element of L_K lies in L if and only if it is fixed by σ' for every $\sigma \in G$. Now L_K has a unique maximal subalgebra M containing Kx of codimension one in L_K and σ' must fix M. It follows that $(M \cap L)_K = M$ (see [4, p. 54]) and so $M \cap L$ is a subalgebra of L of
codimension one in L. We must have $M \cap L = Fx$, which is impossible. Hence L is three-dimensional simple and, as is well known, has a one-dimensional maximal subalgebra if and only if $\sqrt{F} \not\subseteq F$.

The converse is easy. □

Theorem 3.5. Let L be a Lie algebra over any field F, in which every 2-maximal subalgebra of L is a CAP-subalgebra. Then either

(i) L is solvable, or

(ii) L is simple and every maximal subalgebra of L is one-dimensional; in particular, if F is perfect and of characteristic zero or $p > 3$, L is three-dimensional simple and $\sqrt{F} \not\subseteq F$.

Proof. Suppose first that L is simple. Then every 2-maximal is 0 and so every maximal subalgebra of L is one-dimensional, which is case (ii). So let A be a minimal ideal of L. Suppose first that A is a maximal subalgebra of L. Then every maximal subalgebra of A is a 2-maximal subalgebra of L and so is a CAP-subalgebra of L. It follows that every maximal subalgebra of A is 0 and hence that $\dim A = 1$. Also, by the maximality of A, $\dim(L/A) = 1$ and L is solvable.

So now assume that A is not a maximal subalgebra of L and that L is a minimal counter-example. Suppose first that L/A is as in (ii). Let $Fx + A$ be a maximal subalgebra of L and let K be a 2-maximal subalgebra of L with $Fx \subseteq K \subset Fx + A$. Clearly $A \not\subseteq K$, so $K \cap A = 0$, since K is a CAP-subalgebra of L. Now L/A is a chief factor of L and $K \not= 0$, so $L = K \oplus A = Fx + A$, a contradiction.

Thus L/A is solvable and L is monolithic, as in Theorem [3.3] If $A \subseteq \phi(L)$, then A is solvable and hence so is L. Thus, $\phi(L) = 0$ and $L = M + A$ for some maximal subalgebra M of L. Suppose that $M \cap A \neq 0$. Let K be a maximal subalgebra of M with $M \cap A \subseteq K$. Then K is a 2-maximal subalgebra of L and so either $K + A = A$, yielding $A \subseteq K \subseteq M$, or $M \cap A \subseteq K \cap A = 0$, both of which are contradictions. It follows that $M \cong L/A$ is a solvable c-ideal, as is any maximal subalgebra of L not containing A. But every maximal subalgebra containing A is a c-ideal, as in Theorem [3.3] and the result follows similarly. □

Example 3.1. Note that there are solvable Lie algebras with 2-maximal subalgebras which are not CAP-subalgebras. For example, let $L = \mathbb{R}e_1 + \mathbb{R}e_2 + \mathbb{R}e_3$ with $[e_1, e_3] = -[e_3, e_1] = e_2$, $[e_2, e_3] = -[e_3, e_2] = -e_1$ and all other products zero. Then $A = \mathbb{R}e_1 + \mathbb{R}e_2$ is a minimal ideal of L and $U = \mathbb{R}e_1$ is a 2-maximal subalgebra of L. However, $A + U = A \neq U = 0 + U$ and $A \cap U = U \neq 0 = 0 \cap U$, so U is not a CAP-subalgebra of L.

Lemma 3.6. Let L be a solvable Lie algebra. Then there is a 2-maximal subalgebra K of L which is an ideal of L, and hence a CAP-subalgebra of L.

Proof. If $\dim(L/L^2) > 1$ there is clearly a 2-maximal subalgebra of L containing L^2, so suppose that $\dim(L/L^2) = 1$. Let $L = L^2 + Fx$, and let L^2/K be a chief factor of L. Suppose that $K + Fx \subset U$, where U is a subalgebra of L. Then $[U \cap L^2, L] = [U \cap L^2, L^2] + [U \cap L^2, Fx] \subseteq U \cap L^2$, since $L^{(2)} = [L^2, L^2] \subseteq K$. It follows that $L^2 \subseteq U \cap L^2$, whence $K + Fx$ is a maximal subalgebra and K a 2-maximal subalgebra of L. □

Finally we seek to characterise Lie algebras having a solvable 2-maximal subalgebra which is a CAP-subalgebra of L.

Theorem 3.7. Let L be a Lie algebra over a field F which has characteristic zero. Then L has a solvable 2-maximal subalgebra K of L that is a CAP-subalgebra of L if and only if either

(i) L is solvable, or
(ii) $L = R \oplus S$, where R is the (solvable) radical of L (possibly 0), S is three-dimensional simple and $\sqrt{F} \not\subseteq F$.

Proof. Suppose that K is a solvable 2-maximal subalgebra of L that is a CAP-subalgebra of L. Consider $R + K = L$ and that R is the radical of L. Then $R + K$ is a solvable subalgebra of L. If $R + K = L$, we case (i). So suppose that $R + K \neq L$. Let $L = R \oplus S$ where $S = S_1 \oplus \ldots \oplus S_n$, S_i is a simple ideal of S and put $J_i = R + S_1 \oplus \ldots \oplus S_i$ for $i = 0, \ldots, n$ (where $J_0 = R$). Suppose that $K \subseteq J_i$. Since J_i / J_{i-1} is a chief factor of L we have that $J_i = K + J_i = K + J_{i-1}$ or $K = K \cap J_i = K \cap J_{i-1}$. The former implies that $J_i / J_{i-1} \cong K/K \cap J_{i-1}$, which is impossible as J_i / J_{i-1} is simple and $K/K \cap J_{i-1}$ is solvable. It follows that $K \subseteq J_{i-1}$, from which $K \subseteq R$, since $K \subseteq J_n$.

Let M be a maximal subalgebra of L containing K as a maximal subalgebra. Suppose that $R \not\subseteq M$, so that $L = R + M$. Then $K \subseteq M \cap R \subseteq M$, so either $M \cap R = M$ or $M \cap R = K$. The former implies that $M \subseteq R$, which is impossible; the latter is also impossible, since $S \cong L/R \cong M/M \cap R$ and $M \cap R$ is not maximal in M. Hence $K \subseteq R \subseteq M$. It follows that $K = R$, from which (ii) easily follows.

It is easy to see that algebras as in (i) and (ii) have a solvable 2-maximal subalgebra which is a CAP-subalgebra.

\[\square \]

References

[1] Donald W. Barnes, On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350–355. MR0220785 (36 #3837)
[2] Georgia M. Benkart and J. Marshall Osborn, Rank one Lie algebras, Ann. of Math. (2) 119 (1984), no. 3, 437–463, DOI 10.2307/2007082. MR744860 (86g:17006)
[3] Jean-Marie Bois, Generators of simple Lie algebras in arbitrary characteristics, Math. Z. 262 (2009), no. 4, 715–741, DOI 10.1007/s00209-008-0397-3. MR2511748 (2010c:17011)
[4] Armand Borel, Linear algebraic groups, Notes taken by Hyman Bass, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR0251042 (40 #4273)
[5] Klaus Doerk and Trevor Hawkes, Finite soluble groups, de Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR1169099 (93k:20033)
[6] Charles B. Hallahan and Julius Overbeck, Cartan subalgebras of meta-nilpotent Lie algebras, Math. Z. 116 (1970), 215–217. MR0277580 (43 #3313)
[7] Xiaolei Liu and Nanqing Ding, On chief factors of finite groups, J. Pure Appl. Algebra 210 (2007), no. 3, 789–796, DOI 10.1016/j.jpaa.2006.11.008. MR2324697 (2008c:20034)
[8] Salvatore Siciliano, On the Cartan subalgebras of Lie algebras over small fields, J. Lie Theory 13 (2003), no. 2, 511–518. MR2003157 (2004h:17021)
[9] Ernest L. Stitzinger, Theorems on Cartan subalgebras like some on Carter subgroups, Trans. Amer. Math. Soc. 159 (1971), 307–315. MR0280556 (43 #6276)
[10] Ernest L. Stitzinger, Covering-avoidance for saturated formations of solvable Lie algebras, Math. Z. 124 (1972), 237–249. MR0297829 (45 #6881)
[11] Ernest L. Stitzinger, On saturated formations of solvable Lie algebras, Pacific J. Math. 47 (1973), 531–538. MR0355855 (49 #366)
[12] M. J. Tomkinson, Cover-avoidance properties in finite soluble groups, Canad. Math. Bull. 19 (1976), no. 2, 213–216. MR0432754 (55 #5737)
[13] David A. Towers, Complements of intervals and prefrattini subalgebras of solvable Lie algebras, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1893–1901, DOI 10.1090/S0002-9939-2012-11521-7. MR3034116
[14] David A. Towers, *c-ideals of Lie algebras*, Comm. Algebra 37 (2009), no. 12, 4366–4373, DOI 10.1080/00927870902829023. MR2588856 (2010k:17017)

[15] Guo Xiuyun and K. P. Shum, *Cover-avoidance properties and the structure of finite groups*, J. Pure Appl. Algebra 181 (2003), no. 2-3, 297–308, DOI 10.1016/S0022-4049(02)00327-4. MR1975303 (2004g:20027)

Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, England

E-mail address: d.towers@lancaster.ac.uk