On P vs. NP, Geometric Complexity Theory, Explicit Proofs, and The Complexity Barrier

Ketan D. Mulmuley

The University of Chicago
1. On P vs. NP, Geometric Complexity Theory (GCT), Explicit Proofs and The Complexity Barrier, 2009.

2. GCTlocal: Lower bound in a parallel model without bit operations, SICOMP 99.

3. GCT1-8:
 (a) GCT1-4: Joint with Milind Sohoni
 (b) GCT5: Joint with Hari Narayanan

All papers available on the speakers home page.
The root difficulty
A special case of the $P \neq NC$ conjecture

Theorem [GCTlocal] [$P \neq NC$ result without bit operations]

Max flow cannot be computed in $\text{polylog}(N)$ time using $\text{poly}(N)$ processors in the PRAM model without bit operations.

A: Superpolynomial lower bound that is a special case of a fundamental separation problem in a natural and realistic model of computation.
1. Classical algebraic geometry

2. **Locally explicit**: produces a counterexample for a circuit of polylog depth with a circuit of polylog depth.

In contrast, lower bound proofs for constant depth or monotone circuits or algebraic decision trees are nonconstructive.
Algebraic degree barrier

[GCTlocal]: Low degree techniques will not work.
Algebraic degree barrier

[GCTlocal]: Low degree techniques will not work.

Basic idea for bypassing the algebraic degree barrier

[GCTlocal]: Use geometric invariant theory.

[GCT1,2]: An approach via geometric invariant theory.
Defn: A polynomial $p(X_1, \ldots, X_k)$, $\dim(X_i) = n$, is called a hybrid symmetric function if it has the same symmetries as the determinant on the left and the permanent on the right.
Defn: A polynomial $p(X_1, \ldots, X_k)$, $\dim(X_i) = n$, is called a hybrid symmetric function if it has the same symmetries as the determinant on the left and the permanent on the right.

Thm [GCT1,2,6]: No hybrid symmetric function can be expressed as a polynomial in the traces of monomials in $\bar{X}_i = BX_iC$, for any possibly singular matrices B and C, if $n > 1$. [characteristic zero]
Defn: A polynomial \(p(X_1, \ldots, X_k) \), \(\dim(X_i) = n \), is called a hybrid symmetric function if it has the same symmetries as the determinant on the left and the permanent on the right.

Thm [GCT1,2,6]: No hybrid symmetric function can be expressed as a polynomial in the traces of monomials in \(\bar{X}_i = B X_i C \), for any possibly singular matrices \(B \) and \(C \), if \(n > 1 \). [characteristic zero]

Proof: Geometric invariant theory

B: Bypasses the relativization, natural proof and algebraic degree barriers simultaneously.
Local vs. universal barriers

P vs. NP

Complexity → Barrier (Universal)

GCT6,7,8

GCT1,2

Algebraic degree

Natural proof

Relativization

Local Barriers (Guiding Posts)
Infeasible Obstruction Hypothesis [IOH]: There exists a trivial obstruction (proof certificate of hardness) for any \(NP \)-complete \(f(X) = f(x_1, \ldots, x_n) \).
The complexity barrier

Fundamental Folklore Question: Why should any given proof technique be even **theoretically feasible**?

Complexity barrier [break the circle]: Answer the question formally:

1. Formalize the question.
2. Answer the formalized question.
Incompleteness Theorem [G]: Number theory is undecidable.

Fundamental Folklore Question: What is **decidable**, i.e., **computable**?

Computability barrier: Formalize the question.

Computability Hypothesis [CT]: Formalization of the computability barrier.
The main result of GCT

Theorem [GCT6]:

C: Formalization of the complexity barrier

1. Gives formal meaning to *theoretically* feasibility of GCT.
2. Formalizes the complexity barrier in the same spirit that the Computability Hypothesis formalizes the computability barrier.
(Strongly) Explicit means:

1. **Short**: $\text{poly}(n)$ size.
2. **Easy to verify (and discover)**: $\text{poly}(n)$ time.
1. Come up with a new obstruction that is explicit:

 a Short: For given n and m if there exists an obstruction, there exists a short obstruction with specification of $\text{poly}(n)$ bit length.

 b Easy to verify: For given n and $m < 2^n$, whether a given string x is a specification of an obstruction can be verified in $\text{poly}(n, \langle x \rangle)$ time.
1. Come up with a new obstruction that is explicit:

 a. Short: For given n and m if there exists an obstruction, there exists a short obstruction with specification of $\text{poly}(n)$ bit length.

 b. Easy to verify: For given n and $m < 2^n$, whether a given string x is a specification of an obstruction can be verified in $\text{poly}(n, \langle x \rangle)$ time.

2. [Optional] Strongly explicit: This means easy to discover. That is, for given n and $m < 2^n$ whether there exists an obstruction can be decided in $\text{poly}(n)$ time.
Using the “easy” (theoretically feasible) criterion for verification (and discovery) show that:

ОГ (Obstruction Hypothesis): For any n and $m = \text{poly}(n)$, there exists a new obstruction.

We will say that the complexity barrier is crossed once steps 1 and 2 are carried out.

We will say that OH and the approach is theoretically feasible once the complexity barrier is crossed.
A proof is **explicit** if it is based on the flip. **Locally explicit** if it produces a counter example X for each small C in polynomial time.

Circuit lower bounds	Proof techniques
Constant depth, Monotone cktls	Nonconstructive
A: P vs. NC result without bit ops	Locally explicit
B: Mathematical form of the #P vs. NC problem	Strongly explicit

Towards P vs. NP
The permanent vs. determinant problem

Can $\text{perm}(X)$, $\dim(X) = n$, be linearly represented as $\text{det}(Y)$, $\dim(Y) = m$, if $m = \text{poly}(n)$? [Characteristic zero]
Can \(\text{perm}(X) \), \(\dim(X) = n \), be linearly represented as \(\det(Y) \), \(\dim(Y) = m \), if \(m = \text{poly}(n) \)？ [Characteristic zero]

Observation [GCT1]: The determinant and the permanent are exceptional, i.e., characterized by their symmetries:

(D): The determinant is the only polynomial in \(Y \) of degree \(m \) such that for all \(A, B \) with \(\det(AB) = 1 \), \(\det(AYB) = \det(Y) \).

(P): The permanent is the only polynomial in \(X \) of degree \(n \) such that for all permutation and/or diagonal matrices (with determinant one) \(\text{perm}(AXB) = \text{perm}(X) \).
[GCT1,2]: Associates with the complexity classes $\#P$ and NC exceptional class varieties $X_{\#P}(n, m)$ and $X_{NC}(n, m)$ such that if $\text{perm}(X)$ can be linearly represented as a determinant of an $m \times m$ matrix then:

$$X_{\#P}(n, m) \subseteq X_{NC}(n, m).$$
Geometric obstructions

\(X_{\#P} (n,m) \)

Obstruction:

Weyl module

\(V_\lambda (G) \)

\(G = GL_1 (C) \)

\(1 = m^2 \)

\(? \)

\(X_{NC} (n,m) \)
Defn: [GCT1,2] A geometric obstruction for given n and m is an irreducible representation of $G = GL_l(\mathbb{C})$, $l = m^2$, [Weyl module $V_\lambda(G)$] that lives on $X_{\#P}(n, m)$ but not on $X_{NC}(n, m)$.
Defn: [GCT1,2] A geometric obstruction for given \(n \) and \(m \) is an irreducible representation of \(G = GL_l(\mathbb{C}) \), \(l = m^2 \), [Weyl module \(V_\lambda(G) \)] that lives on \(X_{#P}(n, m) \) but not on \(X_{NC}(n, m) \).

Conj: [GCT6] Geometric obstructions are strongly explicit, i.e., short, easy to verify and discover [theoretically feasible].
Let $F_{\lambda,n,m}(k)$ be the number of copies of $V_{k\lambda}(G)$ on $X_{\#P}(n, m)$, and $G_{\lambda,n,m}(k)$ on $X_{NC}(n, m)$.

On P vs. NP, Geometric Complexity Theory, Explicit Proofs, and The Complexity Barrier – p. 2
Let $F_{\lambda,n,m}(k)$ be the number of copies of $V_{k\lambda}(G)$ on $X_{\#P}(n,m)$, and $G_{\lambda,n,m}(k)$ on $X_{NC}(n,m)$.

PH1: For any n and m there exist an explicit (parametrized) polytope

$$P_{\lambda,n,m}(k) : Ax \leq kb + c,$$

and a similar explicit polytope $Q_{\lambda,n,m}(k)$ such that

$$F_{\lambda,n,m}(k) = \#(P_{\lambda,n,m}(k)) \text{ and } G_{\lambda,n,m}(k) = \#(Q_{\lambda,n,m}(k)).$$
Let $F_{\lambda,n,m}(k)$ be the number of copies of $V_{k\lambda}(G)$ on $X_{\#P}(n,m)$, and $G_{\lambda,n,m}(k)$ on $X_{NC}(n,m)$.

PH1: For any n and m there exist an explicit (parametrized) polytope

$$P_{\lambda,n,m}(k) : Ax \leq kb + c,$$

and a similar explicit polytope $Q_{\lambda,n,m}(k)$ such that

$$F_{\lambda,n,m}(k) = \#(P_{\lambda,n,m}(k)) \text{ and } G_{\lambda,n,m}(k) = \#(Q_{\lambda,n,m}(k)).$$

Dimensions of the polytopes guaranteed to be polynomial.
C: Formalization of the complexity barrier

Thm: [GCT6] There exists an explicit family \(\{O_{n,m} = V_{\lambda_{n,m}}(G)\} \) of obstructions assuming

1. PH1, and

2. Obstruction Hypothesis (OH): If \(m = \text{poly}(n) \), there exists \(\lambda_{n,m} \) such that for every large enough \(k \):

\[
[LP]: P_{\lambda,n,m}(k) \neq \emptyset \text{ and } Q_{\lambda,n,m}(k) = \emptyset.
\]

Explicit means the bit specification \(\langle \lambda \rangle \) is short and easy to verify.
Thm: [GCT6] There exists an explicit family \(\{O_{n,m} = V_{\lambda_{n,m}}(G)\} \) of obstructions assuming

1. PH1, and

2. Obstruction Hypothesis (OH): If \(m = \text{poly}(n) \), there exists \(\lambda_{n,m} \) such that for every large enough \(k \):

\[
[LP] : P_{\lambda,n,m}(k) \neq \emptyset \quad \text{and} \quad Q_{\lambda,n,m}(k) = \emptyset.
\]

Explicit means the bit specification \(\langle \lambda \rangle \) is short and easy to verify.

Proof: 1) Geometric invariant theory, 2) Resolution of singularities, and 3) Cohomology.
Why should positivity hold?

\[GCT6, 7, 8 : PH1 \rightarrow PH0. \]

PH0 [GCT8]: Structural parameters of representations of nonstandard quantum groups in GCT4 and 7 are positive.

Supported by good experimental evidence.

PH0 is known to hold for standard quantum groups. The only known proof [KL,L] goes through the Riemann Hypothesis over finite fields [G,D].
GCT meets criteria A, B, and C.

Incompleteness Theorem	P vs. NP
Computability Barrier	Complexity Barrier
Formalization: Computability Hypothesis [CT]	Formalization: GCT6
Proof [G]	Program [GCT6,7,8]

Done: Easy initial step [Formalization]

Remains: Real hard work [Proof]
1. Is there an alternative to GCT that meets the criteria A, B, and C?

2. Can a modest lower bound (e.g. superlinear) in the unrestricted model be proved without crossing the complexity barrier? **Unlikely.**

3. Has there been a progress on the P vs. NP problem?

 This has to be judged by the two fields, mathematics and complexity theory, **together.**