Antimicrobials resistance patterns and the presence of stx1, stx2 and eae in Escherichia coli

PADRÕES DE RESISTÊNCIA ANTIMICROBIANOS E DA PRESENÇA DE STX1, STX2 E “EAE” EM “ESCHERICHIA COLI”

ASSUMPÇÃO, Gustavo Lacerda Homem1; CARDOZO, Marita Vendovelli1; BERALDO, Lívia Gerbase1; MALUTA, Renato Pariz2; SILVA, Joviany Talita3; AVILA, Fernando Antonio de4; McINTOSH, Douglas5; RIGOBELO, Everlon Cid6*

1Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Programa de Pós-Graduação em Microbiologia Veterinária, Jaboticabal, São Paulo, Brasil.
2Universidade Estadual de Campinas, Departamento de Genética, Campinas, São Paulo, Brasil.
3Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Programa de Pós-Graduação em Microbiologia Agropecuária, Jaboticabal, São Paulo, Brasil.
4Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patologia Veterinária, Jaboticabal, São Paulo, Brasil.
5Universidade Federal do Rio de Janeiro, Instituto de Veterinária, Departamento de Parasitologia Animal, Seropédica, Rio de Janeiro, Brasil.
6Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Produção Vegetal, Jaboticabal, São Paulo, Brasil.
*Endereço para correspondência: everlonsms@fcav.unesp.br

SUMMARY
The objectives of this study were to investigate whether antimicrobial resistance (AMR) or the presence of resistance genes was associated with the occurrence of the virulence genes, stx1, stx2 and eae. Three virulence genes and 11 AMR phenotypes were examined using polymerase chain reaction (PCR) and antimicrobial susceptibility tests. From 800 samples collected in this study, 561 samples were isolates E. coli strains, being: 90 (16.0%) carriers of stx1, 97 (17.3%) of stx2 and 45 (8.0%) of eae genes singly. Thirty seven (6.6%) isolates were carriers of stx1 and stx2, 110 (19.6%) were carriers of stx1 and eae and 67 (11.9%) were carriers of stx2 and eae. The most common virulence gene detected was stx1 followed by stx2. The findings showed no relationship between presence of virulence factors and antimicrobial resistance. Also was not found relationship between serogroup and virulence factors.

Keywords: antimicrobial resistance, dairy cow, Escherichia coli, serogroups, STEC

RESUMO
Objetivou-se com este estudo investigar se a resistência antimicrobiana (RAM) ou a presença de genes de resistência foi associada com a ocorrência dos genes de virulência, stx1, stx2 e eae e os sorogrupos de Escherichia coli isoladas a partir de vacas-vacas leiteiras. Três genes de virulência e 11 fenótipos RAM foram examinados através de PCR e testes de susceptibilidade aos antimicrobianos. Das 800 amostras colhidas neste estudo, 561 amostras foram isoladas cepas de E. coli, sendo: 90 (16,0%) portadoras de stx1, 97 (17,3%) de stx2 e 45 (8,0%) dos genes eae, separadamente. Trinta e sete (6,6%) isolados foram portadores de stx1 e stx2, 110 (19,6%) foram portadores de stx1 e eae e 67 (11,9%) foram portadores de stx2 e eae. O gene de virulência mais comum detectado foi stx1 seguido por stx2. O sorogrupo predominante entre os isolados portadores de stx1 foi O119. Entre as cepas portadoras de stx2, eae e também estirpes com nenhum fator de virulência, o sorogrupo predominante foi O9. O RAM dos isolados, medido fenotipicamente, não foi associado com a presença ou ausência de genes de virulência na população saudável de vaca leiteira-nem a sua
ocorrência a qualquer um dos sorogrupos foi associada com genes stx1 e stx2 e eae.

Palavras-chave: *Escherichia coli*, resistência antimicrobiana, sorogrupos, STEC, vaca leiteira

INTRODUCTION

Currently, Shiga toxigenic *Escherichia coli* (STEC) strains are the most important emerging groups of foodborne pathogens (BEUTIN et al., 2002). These strains are producer of one or two cytotoxins called Shiga toxins (Stx1 and Stx2) (PATON & PATON, 1998). Intimin is another virulence factor responsible for intimate attachment of STEC and it is encoded by the chromosomal gene *eae*, which is part of a large cluster of virulence genes on a pathogenicity island termed the locus for enterocyte effacement (LEE) (KAPER et al., 1998).

There have been recent reports suggesting that antimicrobial resistance (AMR) levels in STEC is increasing (GALLAND et al., 2001; MENG et al., 1998). The natural evolution of bacteria has been changed by antibiotics use. In specific situations, there is a great probability of association between the presence of virulence factors and antimicrobial resistance (NAGASHINTA et al., 2008). It occurs because both AMR and virulence genes are carried in a similar fashion, may be linked and then co-selected (MARTINEZ & BAQUEIRO, 2002).

When the association between the presence of virulence factors and antimicrobial resistance happens, the antimicrobial use may potentially enhance the selection of bacteria carrying virulence genes, accelerating the spread of virulence genes within bacterial populations (BOERLIN et al., 2005). Contrary, some studies have reported that the acquisition of antimicrobial resistance by some bacterial strains may have a fitness cost which leads to decreased virulence (CALHAU et al., 2013; CLARK et al., 2012).

Gow & Waldner (2009) demonstrated that antimicrobial resistance is not substantially more likely to be identified in *stx* positive than in *stx*-negative *E. coli* isolates from healthy beef calves. However, there are dearth information in the literature if this association occurs at dairy cow herds and also if there is an association between serogroups of *E. coli* with both *stx* and *eae* genes. Therefore, the aims of this study were to investigate if the antimicrobial resistance phenotype was associated with the occurrence of virulence genes, and also investigate if the presence or absence of virulence genes is associated with the serogroups of *E. coli* isolated from dairy cows.

MATERIAL AND METHODS

Fecal samples were collected in 10 different farms located in São Paulo State, Brazil, from January 2012 to February 2013. From each farm, faeces from the rectum of 80 animals were sampled using sterile swabs. In each farm, the samples were collected in a single day and represented more than 50% of each population at the time of sampling. Isolates were obtained by directly spreading the samples on MacConkey agar and sorbitol MacConkey agar. After incubation, a minimum of three colonies from each plate were analyzed biochemically (KONEMAN et al., 2001).

Up to two *E. coli* isolates from each fecal sample were characterized using PCR. To perform PCR, the DNA template was obtained using a thermal cell lysis procedure (KESKIMAKI et al., 2001) and *stx1, stx2* and *eae* were collected using primers and PCR conditions describe by China et al. (1996).
Antimicrobial disk susceptibility tests were performed using the disk diffusion method recommended by Clinical Laboratory Standard Institute (WATTS et al., 2002). Drug-impregnated disks (CEFAR, São Paulo, Brazil, accessed in 2014) were placed on the surface of Muller-Hinton agar using a disk dispenser. The serogroup was determined by standard agglutination methods (EDWARDS & EWING, 1972). The serogroups were either commercially prepared (Probac, Brazil). The following “O” antigens, which include most of the serogroups reported in cow or associated with severe enteric-disease in humans, were used: O5, O6, O8, O9, O20, O26, O55, O75, O86, O91, O101, O146, O149, O153, O157, O158 and O172. Chi-square and Duncan exact tests were performed for the analysis of associations using software R version 2.12.0 (http://www.r-project.org/) accessed in 2014. A P value of p<0.01 was considered to be statistically significant.

RESULTS AND DISCUSSION

From 800 samples collected of dairy cow herds, it was isolated 561 E. coli strains. From these strains, 90 (16.0%) harbored only stx1, 97 (17.3%) harbored only stx2 and 45 (8.0%) harbored only eae. Thirty seven E. coli strains (6.6%) harbored both stx1 and stx2; 110 (19.6%) harbored stx1 and eae; and 67 (11.9%) harbored stx2 and eae. Interestingly no strain was harbored to three genes, stx1, stx2 and eae together. The number of E. coli strains harboring at least one virulence gene was 446 (79.5%) and the number of strains presenting no gene was 115 (20.5%) (Table1).

Table 1. Frequency of Escherichia coli isolates harbored at least one virulence factor for Shiga like toxin (STEC) followed by total of strains harbored of genes for STEC, total of strains without genes for STEC, total of E. coli isolates, total of samples without E. coli and total of samples collected

Virulence gene	Escherichia coli	Number of isolates	Frequency isolates (%)
stx1		90	16.0
stx2		97	17.3
eae		45	8.0
stx1+stx2		37	6.6
stx1+eae		110	19.6
stx2+eae		67	11.9
Number of isolates with genes		446	79.5
Number of isolates without genes		115	20.5
Total of isolates		561	100.0
Total of samples without gene		239	29.9
Total of samples isolates of the total collected		800	70.13

The frequencies of resistance to antimicrobial agents were verified with all E. coli strains carrying a single virulence factor and also with all strains carrying no virulence factor. The 90 E. coli isolates that carried stx1 only showed highest antimicrobial resistance to streptomycin (85.6%), followed by kanamycin (72.2%) and nalidixic acid (70.0%). For this same group, the lowest antimicrobial resistances levels were for
cephalotin (20.0%), ampicillin (30.0%) and cefoxitin (35.6%) (Table 2). For *E. coli* strains carrying *stx*2 only, highest antimicrobial resistance levels were related to streptomycin (73.2%), followed by kanamycin and nalidixic acid (70.1%) and the lowest antimicrobial resistance levels were due to cephalotin (14.4%), ampicillin (29.9%) and amoxicillin – clavulanic acid (33.0%) (Table 3).

Table 2. Frequency of resistance to antimicrobial agents among *E. coli* Shiga like toxin (STEC) isolates harboring *stx*1 from dairy-cow herds (n=90)

Antimicrobial agent	Percentage of resistance - % (number of resistant/total number of isolates)
Ampicillin	30.0 (27/90)
Amoxicillin–clavulanic acid	40.0 (36/90)
Cefoxitin	35.6 (32/90)
Ceftriaxone	45.6 (41/90)
Cephalothin	20.0 (18/90)
Streptomycin	85.6 (77/90)
Kanamycin	72.2 (65/90)
Gentamicin	55.6 (50/90)
Amikacin	67.8 (61/90)
Tetracycline	38.9 (35/90)
Nalidixic acid	70.0 (63/90)

Table 3. Frequency of resistance to antimicrobial agents among *E. coli* Shiga like toxin (STEC) isolates harboring *stx*2 from dairy-cow herds (n=97)

Antimicrobial agent	Percentage of resistance (nº of resistant/total nº of isolates)
Ampicillin	29.9 (29/97)
Amoxicillin–clavulanic acid	33.0 (32/97)
Cefoxitin	40.2 (39/97)
Ceftriaxone	46.2 (45/97)
Cephalothin	14.4 (14/97)
Streptomycin	73.2 (71/97)
Kanamycin	70.1 (68/97)
Gentamicin	60.8 (59/97)
Amikacin	67.0 (65/97)
Tetracycline	32.0 (31/97)
Nalidixic acid	70.1 (68/97)

For *E. coli* strains harboring only eae, amikacin (77.8%), nalidixic acid (75.6%) and streptomycin (73.3%) were the antimicrobials with the highest resistance levels. For this group, the lowest antimicrobial resistance levels were due to cephalotin (15.6%), tetracycline (24.4%) and ampicillin (26.7%) (Table 4).

For the *E. coli* strains with no virulence factor, the highest antimicrobial resistance levels were to streptomycin (78.2%), followed by kanamycin and nalidixic acid (74.1%), amikacin (64%). For the same group, the lowest antimicrobial resistance levels were to cephalotin (17.4%),
ampicillin (32.9%) and amoxicillin – clavulanic acid (36.0%) (Table 5). Among the groups presenting only one virulence factor and the group presenting no virulence factor, there was no statistical difference (p>0.01) when comparing their antimicrobial resistance patterns.

Table 4. Frequency of resistance to antimicrobial agents among E. coli Shiga like toxin (STEC isolates harboring eae from dairy-cow herds (n=45).

Antimicrobial agent	Percentage of resistance (nº of resistant/total nº of isolates)
Ampicillin	26.7 (12/45)
Amoxicillin – clavulanic acid	28.9 (13/45)
Cefoxitin	44.4 (20/45)
Ceftriaxone	46.7 (21/45)
Cephalothin	15.6 (7/45)
Streptomycin	73.3 (33/45)
Kanamycin	64.4 (29/45)
Gentamicin	48.9 (22/45)
Amikacin	77.8 (35/45)
Tetracycline	24.4 (11/45)
Nalidixic acid	75.6 (34/45)

Table 5. Frequency of resistance to antimicrobial agents among ordinary E. coli isolates without stx1, stx2 or eae from dairy-cow herds (n=115)

Antimicrobial agent	Percentage of resistance (nº of resistant/total nº of isolates)
Ampicillin	32.9 (38/115)
Amoxicillin – clavulanic acid	36.0 (41/115)
Cefoxitin	45.5 (52/115)
Ceftriaxone	41.2 (47/115)
Cephalothin	17.4 (20/115)
Streptomycin	78.0 (90/115)
Kanamycin	74.1 (85/115)
Gentamicin	68.9 (79/115)
Amikacin	64.0 (74/115)
Tetracycline	38.0 (44/115)
Nalidixic acid	74.1 (85/115)

Table 6 shows the frequency of serogroups of E. coli strains that harbour stx1. The serogroups detected were O119 (58.0%), O114 (17%), O111 (9.0%), O26, O126, O127, O55 (4.0%). For E. coli strains that carry stx2, the serogroups and frequencies were O9 (57.0%), O8 (32.0%), O101 (9.0%), O20 (2.0%). For eae+ E. coli strains, the serogroups and frequencies were O9 (34.0%), O8, O127 (22.0%), O119, O20 (11.0%) and for E. coli strains negative for the virulence genes, the serogroups and frequencies presented were O9 (19.0%), O119 (16.0%), O114 (17.0%), O86 (6.0%), O125 (5.0%), O126 (3.0%), O101, O26, O127, O128 (2.0%) and O20 (1.0%). The comparison between the presence of serogroups with the presence or absence of virulence genes did not show correlation.
Table 6. Frequency of serogroups of *E. coli* strains carrying *stx1*, *stx2*, *eae* genes or none of these genes

Serogroup	E. coli strains carriers of *stx1* gene (n=90) Frequency (%)
O119	58.0
O114	17.0
O111	9.0
O26, O126, O127, O55	4.0

Serogroup	E. coli strains carriers of *stx2* gene (n=97) Frequency (%)
O9	57.0
O8	32.0
O101	9.0
O20	2.0

Serogroup	E. coli strains carriers of *eae* gene (n=45) Frequency (%)
O9	34.0
O8, O127	22.0
O119, O20	11.0

Serogroup	E. coli strains with none of the virulence genes (n=115) Frequency (%)
O9	19.0
O119	16.0
O114	17.0
O86	6.0
O125	5.0
O126	3.0
O101, O26, O127, O128	2.0
O20	1.0

No statistically significant association was detected between any AMR phenotype and virulence genes and neither between virulence genes and serogroups in this *E. coli* population isolated of dairy-cow herds. The antimicrobial resistance patterns between the isolates carriers of at least one virulence gene or lacking any virulence gene were not different. The results showed that, the presence or absence, and the type of virulence gene did not interfere with the antimicrobial resistance level and also did not favor the selection of resistance genes (Tables1-6). Gow & Waldner (2009) verified no association between antimicrobial resistance measured phenotypically or the presence of AMR genes and virulence genes (*stx1*, *stx2* and *eae*) in STEC.

The lack of association between AMR and *stx* virulence genes may be explained, at least in part, by the requirement for a specific receptor for phage attachment and also the limited amount of DNA incorporated into a phage head and by specific mechanism adopted by bacteriophages to incorporate the bacterial DNA in its genome (SCHWARTS et al., 2006). The mechanisms by which these virulence and resistance genes are transmitted from bacteria to bacteria are determinants for occurrence of these associations (ACHESON et al., 1998; MUNIESA, et al., 2004; NEELY et al., 1998).

Gow & Waldner (2006) analyzed 106 fecal generic *E. coli* isolates from calves in cow-calf herds and the most common virulence gene detected was *stx2* followed by *eae*. In our study the most common virulence gene detected was *stx1* followed by *stx2* (Table 1). Also, in our study, all antimicrobial resistance levels were measured via phenotype rather than genotype. This measurement can lead to some differences. On this account, the presence of unexpressed
genes would not be measured. However, Gow & Waldner (2009) measured the antimicrobial resistance level of their isolates phenotypically and also genotypically and did not find difference between both methods.

When the association between antimicrobial resistance and virulence factor occurs, as demonstrated with other genes in previous works (BOERLIN et al., 2005, NAGACHINTA et al., 2008), it becomes more beneficial for the spread of pathogenic bacteria. The association between these factors depends on four main determinants: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host (BECEIRO et al., 2013).

Pereira et al. (2011) analyzed 117 fecal samples from dairy calves divided into two groups, one group received growth promoting antimicrobials (GPA) through milk and another group (NGPA) did not. The results of this study showed that NGPA group had statistically significantly lower levels of antimicrobial resistance for most of the antimicrobials tested than GPA group. Also, there was no association between virulence factors and NGPA or NGA and neither between antimicrobial resistance and virulence factors. Likely, the use of antimicrobials selects some resistance genes, but not virulence genes. Even though, in this and previous studies, there was no association between virulence factors and antimicrobial resistance. This association could take place when the virulence factors and antimicrobial resistance genes are carried in a similar fashion. In this case, it is possible that they could be linked and then co-selected (MARTINEZ & BAQUEIRO, 2002). Calhau et al. (2013) found a profile of virulence and resistance more prevalent in E. coli. They suggest that these features may be responsible for making them concomitantly virulent and extremely resistant. Nagachinta et al. (2008) found an association between virulence factors and antimicrobial resistance in E. coli strains isolated from dairy cows. However, it is important to point out that these studies have analyzed other genes different than stx1, stx2 and eae.

Concerning the presence of serogroups, even though there had been the prevalence of O9 between E. coli strains carriers of stx2 and eae, there was also the prevalence of the same serogroup between the strains with no virulence factor, suggesting that there was no association between serogroups and virulence factors in this study.

The results did not show relationship between virulence factor and antimicrobial resistance when this association occurs the antimicrobial resistance might be selected through the antimicrobial use and thereby the virulence factor would be selected as well. Probably the mechanism of transfer from one bacterium to another does not permit the association with antimicrobial resistance genes.

REFERENCES

ACHESON, D.W.; REIDL, J.; ZHANG, X.; KEUSCH, G.T.; MEKALANOS, J.J.; WALDOR, M.K. In vivo transduction with Shiga toxin 1-encoding phage. Infection and Immunity, v.66, p.4496-4498, 1998.

BECEIRO, A.; TOMÁS, M.; GERMAN, B.O.U. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world. Clinical Microbiology Reviews, v.26, p.185-230, 2013.

BEUTIN, L.; KAULFUSS, S.; CHEASTY, T.; BRANDENBURG, B.; ZIMMERMAN, S.; GLEIER, K.; WILLSHAW, G.A.; SMITH, H.R. Characteristics and associations with
disease of two major subclones of Shiga
toxin (verotoxin) producing strains of
Escherichia coli (STEC) O157 that are
present among isolates from patients in
Germany. Diagnostic Microbiology and
Infectious Disease, v.44, p.337-346,
2002.

BOERLIN, P.; TRAVIS, R.; GYLES,
C.L.; REID-SMITH, R.; JANECKO, N.;
LIM, H.; NICHOLSON, V.; MCEWEN,
S.A.; FRIENDSHIP, R.;
ARCHAMBAULT, M. Antimicrobial
Resistance and Virulence Genes of
Escherichia coli Isolates from Swine in
Ontario. Applied and Environmental
Microbiology, v.71, p.6753-6761, 2005.

CALHAU, V.; RIBEIRO, G.;
MENDONÇA, N.; SILVA, G.J.
Prevalent combination of virulence and
plasmidic encoded resistance in ST131.
Escherichia coli strain. Virul, v.4,
p.726-729, 2013.

CHINA, B.; PERSON, V.; MAINIL, J.
Typing of bovine attaching and effacing
Escherichia coli by multiplex in vitro
amplification of virulence association
genes. Applied and Environmental
Microbiology, v.62, p.3462-3465, 1996.

CLARK, G.; PASZKIEWICZ, K.;
HALE, J.; WESTON, V.;
CONSTANTINIDOU, C.; PENN, C.;
ACHTMAN, M.; MCNALLY, A.
Genomic analysis uncovers a
phenotypically diverse but genetically
homogeneous Escherichia coli ST131
clone circulating in unrelated urinary
tract infections. Journal of
Antimicrobial Chemotherapy, v.67,
p.868-77, 2012.

EDWARDS, P.R.; EWING, W.H.
Identification of enterobacteriacea.
Minneapolis: Burgess Publishing
Company, 1972

GALLAND, J.C.; HYATT, D.R.;
CRUPPER, S.S.; ACHESON, D.W.
Prevalence of antibiotic susceptibility and
diversity of Escherichia coli O157:H7
isolates from longitudinal study of beef
cattle feedlots. Applied and
Environmental Microbiology, v.67,
p.1619-1627, 2001.

GOW, S.P.; WALDNER, C.L.
Antimicrobial Resistance and Virulence Factors stx1, stx2, and eae in Generic
Escherichia coli isolates from Calves in
Western Canadian Cow-Calf Herds.
Microbial Drug Resistance, v.15, p.61-
67, 2009.

KAPER, J.B.; ELLIOT, S.;
SPERANDIO, V.; PERNA, N.T.;
MAYHEW, G.F.; BLATTNER, F.R.
Attaching and effacing intestinal
histopathology and the locus of
enterocyte effacement. In: KAPER, J.B.;
O’BRIEN, A.D. (Eds.). Escherichia coli
O157:H7 and Other Shiga-Toxin
Producing E. coli Strain. Washington:
American Society for Microbiology,
1998.

KESKIMAKI, M.; MATTILA, L.;
PELTOLA, H.; SIITONEN, A. EPEC,
EAEC and STEC in stool specimens:
Prevalence and molecular epidemiology
of isolates. Diagnostic Microbiology
and Infectious Disease, v.40, p.151-156,
2001.

KONEMAN, E.W.; ALLENS, S.D.;
JANDA, W.M.; SCHRECKENBERGER,
P.C.; WENN JUNIOR, W.C.
Diagnóstico microbiológico: texto e
atlas colorido. Rio de Janeiro: MEDI,2001.1465p.

MARTINEZ, J.; BAQUEIRO, F.
Interactions among strategies associated
with bacterial infections: pathogenicity,
epidemicity and antibiotic resistance.
Clinical Microbiology Reviews, v.15,
p.647-679, 2002.
MENG, J.; ZHAO, S.; DOYLE, M.; JOSEPH, S.W. Antibiotic resistance of *Escherichia coli* O157:H7 and non-O157 strains isolated from humans, cattle, sheep, and food in Spain. *Research in Microbiology*, v.156, p.793-806, 1988.

MUNIESA, M.; BLANCO, J.E.; SIMON, M. de; SERRA-MORENO, R.; BLANCH, A.R.; JOFRE, J. Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing *Escherichia coli* strains isolated from cattle. *Microbiology*, v.150, p.2959-2971, 2004.

NAGACHINTA, S.; CHEN, J. Transfer of class1 integron-mediated antibiotic resistance genes from Shiga toxin-producing *Escherichia coli* to a susceptible *E. coli* K-12 strain in storm water and bovine feces. *Applied and Environmental Microbiology*, v.74, p.5063-5067, 2008.

NEELLY, M.; FRIEDMAN, N. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-toxin and lysis genes suggest a role of phage functions in toxin release. *Molecular Microbiology*, v.28, p.1255-1267, 1998.

PATON, J.C.; PATON, A.W. Pathogenesis and diagnosis of Shiga toxin producing *Escherichia coli* infections. *Clinical Microbiology Reviews*, v.11, p.450-479, 1998.

PEREIRA, R.V.V.; SANTOS, T.M.A.; BICALHO, M.L.; CAIXETA, L.S.; MACHADO, V.S.; BICALHO, R.C. Antimicrobial resistance and prevalence of virulence factor genes in fecal *Escherichia coli* of Holstein calves fed milk with and without antimicrobials. *Journal of Dairy Science*, v.94, p.4556-4565, 2011.