Total dominator chromatic number of $P_m \times C_n$

A. Vijayalekshmi1* and S. Anusha 2

Abstract
A total dominator coloring of a graph G with $\delta(G) \geq 1$ is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number of G is the minimum number of colors needed in a total dominator coloring of G, denoted by $\chi_{td}(G)$. In this paper, we obtain total dominator chromatic number of $P_m \times C_n$.

Keywords
Total dominator chromatic number, ladder graph, grid graph and $P_m \times C_n$.

AMS Subject Classification
05C15, 05C69.

1Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.
2Research Scholar [Reg. No:11506], Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.
1Corresponding author: vijitmath.a@gmail.com

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in [1]. Let $G=(V,E)$ be a graph of order n with $\delta(G) \geq 1$. The open neighborhood $N(v) = \{u \in V(G) : uv \in E(G)\}$. The closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The path and cycle of order n are denoted by P_n and C_n respectively. For any two graphs G and H, we define the cartesian product, denoted by $G \times H$, to be the graph with vertex set $V(G) \times V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1 = v_2$. $P_m \times C_n$ is defined as the cartesian product of path and cycle. A grid graphs can be defined as $P_m \times P_n$ where $m, n \geq 2$.

A subset S of V is called a total dominating set if every vertex in V is adjacent to some vertex in S. The total dominating set is minimal total dominating set if no proper subset of S is a total dominating set of G. The total domination number γ_t is the minimum cardinality taken over all minimal total dominating set of G. A γ_t-set is any minimal total dominating set with cardinality γ_t.

A proper coloring of G is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The chromatic number, $\chi(G)$, is the minimum number of colors in a proper coloring of G. A total dominator coloring of a graph G is a proper coloring of G with the extra property that every vertex in G properly dominates a color class. The total dominator chromatic number of G is the minimum number of colors needed in a total dominator coloring of G denoted by $\chi_{td}(G)$. This concept was introduced by A. Vijayalekshmi in [2]. This notion is also referred as a Smarandachely k-dominator coloring of $G(k \geq 1)$ and was introduced by A. Vijayalekshmi in [4]. For an integer $k \geq 1$, a Smarandachely k-dominator coloring of G is a proper coloring of G such that every vertex in G properly dominates a k color class. The smallest number of colors for which there exist a Smarandachely k-dominator coloring of G is called the Smarandachely k-dominator chromatic number of G, and is denoted by $\chi_{td}^k(G)$. For further details on this theory and on its applications, we advice the reader to refer [6–9].

In a proper coloring \mathcal{C} of G, a color class of \mathcal{C} is a set consisting of all those vertices assigned the same color. Let \mathcal{C}^1 be a minimal td-coloring of G. We say that a color class $c_1 \in \mathcal{C}^1$ is called a non-dominated color class ($n-d$ color class) if it is not dominated by any vertex of G. These color classes are also called repeated color classes.
2. Preliminaries

In this segment, we remember the critical [3] theorem which is quite helpful in our research. For the subsequent observation the total dominator chromatic number of a ladder graphs has been identified.

Theorem 2.1. [3] Let G be p_n or C_n. Then

$$\chi_{td}(G) = \begin{cases}
\left\lfloor \frac{n}{2} \right\rfloor + 2, & \text{if } n \equiv 0 \pmod{4} \\
\left\lfloor \frac{n}{2} \right\rfloor + 3, & \text{if } n \equiv 1 \pmod{4} \\
\left\lfloor \frac{n}{2} + \frac{1}{2} \right\rfloor + 2, & \text{otherwise.}
\end{cases}$$

Theorem 2.2. [3] For every $n \geq 2$, the total dominator chromatic number of a ladder graph L_n is

$$\chi_{td}(L_n) = \begin{cases}
2\left\lfloor \frac{n}{2} \right\rfloor + 2, & \text{if } n \equiv 0 \pmod{6} \\
2\left\lfloor \frac{n}{2} - \frac{1}{2} \right\rfloor + 4, & \text{if } n \equiv 1 \pmod{6} \\
2\left\lfloor \frac{n}{2} - \frac{1}{2} \right\rfloor + 4, & \text{otherwise.}
\end{cases}$$

In this paper, we obtain the least value for total dominator chromatic number for $P_m \times C_n$.

3. Main Result

In this section, we present and establish the main results.

For our convenience, we denote $G_{m,n} = P_m \times C_n$ and let $D = \{v_{ij} | 1 \leq i \leq m \text{ and } 1 \leq j \leq n\}$.

Lemma 3.1. For every n, $\chi_{td}(G_{2,n}) = 2\left\lfloor \frac{n}{2} \right\rfloor + 2$.

Proof. Since the td-colouring of $G_{2,n}$ is same as td-colouring of L_n, $\chi_{td}(G_{2,n}) = \chi_{td}(L_n)$. From Theorem 2.2, we get

$$\chi_{td}(G_{2,n}) = 2\left\lfloor \frac{m}{3} \right\rfloor + 2.$$

Illustration: Consider $G_{2,11}$

![Figure 1](image1)

Therefore

$$\chi_{td}(G_{2,11}) = 10.$$

Theorem 3.2. If $m,n \equiv 0 \pmod{3}$, then $\chi_{td}(G_{m,n}) = \frac{mn}{3} + 2$.

Proof. Let $D = \{v_{ij} | 1 \leq i \leq m \text{ and } j = 2,5,8,\ldots,(n-1)\}$ be a unique γ-set of $G_{m,n}$. We assign $\frac{mn}{3}$ distinct colors say $4,5,6,\ldots,\frac{mn}{3} + 1,\frac{mn}{3} + 2,\frac{mn}{3} + 3$ to vertices of D. Set $S = V(G_{m,n}) - D$, we assign two repeated colors say 1,2 to the vertices v_{ij} and $v_{kl} \in S$ such that $|i-k| + |j-l| = 1$ and adjacent vertices in S received different colors, we get a td-coloring of $G_{m,n}$.

So

$$\chi_{td}(G_{m,n}) = \frac{mn}{3} + 2.$$

Illustration: Consider $G_{6,10}$

![Figure 3](image3)

Therefore

$$\chi_{td}(G_{6,10}) = 22.$$

Illustration: Consider $G_{6,9}$

![Figure 2](image2)
Theorem 3.4. If \(m \equiv 1 \pmod{3} \) then

\[
\chi_{td}(G_{m,n}) = \begin{cases}
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 2 & \text{if } n \equiv 0 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 4 & \text{if } n \equiv 1 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n+1}{4} \right\rceil + 2 & \text{if } n \equiv 2 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n+2}{4} \right\rceil + 3 & \text{otherwise.}
\end{cases}
\]

Proof. Since \(m-1 \equiv 0 \pmod{3} \), \(G_{m,n} \) is obtained by \(G_{m-1,n} \) followed by \(G_1 \). In a \(td \)-coloring of \(G_{m,n} \), \(\chi_{td}(G_{m,n}) = \chi_{td}(G_{m-1,n}) + \chi_{td}(G_1) \). Also the used repeated colors are the same the \(td \)-coloring of \(G_1 \). So \(\chi_{td}(G_{m,n}) = \chi_{td}(G_{m-1,n}) + \chi_{td}(G_1) - 2 \). By Theorem 2.1, we get

\[
\chi_{td}(G_{m,n}) = \begin{cases}
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 2 & \text{if } n \equiv 0 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 4 & \text{if } n \equiv 1 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n+1}{4} \right\rceil + 2 & \text{if } n \equiv 2 \pmod{4} \\
\left(\frac{m-1}{3}\right)n + 2\left\lceil \frac{n+2}{4} \right\rceil + 3 & \text{otherwise.}
\end{cases}
\]

Illustration: Consider \(G_{6,7} \)

Therefore

\[\chi_{td}(G_{6,7}) = 17. \]

Illustration: Consider \(G_{6,7} \)

Therefore

\[\chi_{td}(G_{6,7}) = 17. \]

Theorem 3.5. If \(m \equiv 2 \pmod{3} \), then

\[
\chi_{td}(G_{m,n}) = \begin{cases}
\left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 2 & \text{if } n \text{ is even} \\
\left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{3} \right\rceil + 3 & \text{if } n \text{ is odd.}
\end{cases}
\]

Proof. Given \(m-2 \equiv 0 \pmod{3} \). We consider two cases.

Case (i): When \(n \) is even. We have \(G_{m,n} \) is obtained by \(G_{m-2,n} \) followed by \(G_2 \). From Theorem 3.4, \(\chi_{td}(G_{m,n}) = \chi_{td}(G_{m-2,n}) + \chi_{td}(G_2) - 2 \). By Theorem 3.3 and Lemma 3.1, we get

\[
\chi_{td}(G_{m,n}) = \left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{3} \right\rceil + 2.
\]

Case (ii): When \(n \) is odd. We have \(G_{m,n} \) is obtained by \(G_{m-2,n} \) followed by \(G_2 \). From Theorem 3.4, \(\chi_{td}(G_{m,n}) = \chi_{td}(G_{m-2,n}) + \chi_{td}(G_2) - 2 \).

By Theorem 3.3 and Lemma 3.1, we get

\[
\chi_{td}(G_{m,n}) = \left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{3} \right\rceil + 3.
\]

Thus

\[
\chi_{td}(G_{m,n}) = \begin{cases}
\left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{4} \right\rceil + 2 & \text{if } n \text{ is even} \\
\left(\frac{m-2}{3}\right)n + 2\left\lceil \frac{n}{3} \right\rceil + 3 & \text{if } n \text{ is odd.}
\end{cases}
\]

Illustration: Consider \(G_{4,10} \)

Therefore

\[\chi_{td}(G_{4,10}) = 18. \]

Illustration: Consider \(G_{4,10} \)

Therefore

\[\chi_{td}(G_{4,10}) = 18. \]

Illustration: Consider \(G_{4,11} \)

Therefore

\[\chi_{td}(G_{5,8}) = 16. \]
Illustration: Consider $G_{5,7}$

![Figure 8](image)

Therefore

$$\chi_d(G_{5,7}) = 16.$$

4. Conclusion

In this paper, we obtain total dominator chromatic number of $P_m \times C_n$.

References

[1] F. Harary, *Graph Theory*, Addition-Wesley, Reading Mass, 1969.

[2] M.I. Jinnah and A. Vijayalekshmi, *Total Dominator Colorings in Graphs*, Ph.D Thesis, University of Kerala, 2010.

[3] A. Vijayalekshmi and J. Virgin Alangara Sheeba, Total dominator chromatic number of Paths, Cycles and Ladder graphs, *International Journal of Contemporary Mathematical Sciences*, 13(5)(2018), 199–204.

[4] A. Vijayalekshmi, Total dominator colorings in Paths, *International Journal of Mathematical Combinatorics*, 2(2012), 89–95.

[5] S. Gravier and M. Mollard, on domination numbers of Cartesian product of paths, *Discrete Appl. Math.*, 80(1997), 247–250.

[6] S. Gravier, Total domination number of grid graphs, *Discrete Applied Mathematics*, 2(2002), 119–128.

[7] S. Klavzar and N. Seifter, Dominating Cartesian products of cycles, *Discrete Appl. Math.*, 59(1995), 129–136.

[8] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, *Domination in Graphs*, Marcel Dekker, New York, 1998.

[9] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.