Two photon absorption and coherent control with broadband down-converted light

Barak Dayan, Avi Pe’er, Asher A. Friesem, and Yaron Silberberg
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

We experimentally demonstrate two-photon absorption (TPA) with broadband down-converted light (squeezed vacuum). Although incoherent and exhibiting the statistics of a thermal noise, broadband down-converted light can induce TPA with the same sharp temporal behavior as femtosecond pulses, while exhibiting the high spectral resolution of the narrowband pump laser. Using pulse-shaping methods, we coherently control TPA in Rubidium, demonstrating spectral and temporal resolutions that are 3-5 orders of magnitude below the actual bandwidth and temporal duration of the light itself. Such properties can be exploited in various applications such as spread-spectrum optical communications, tomography and nonlinear microscopy.

PACS numbers: 32.80.Qk, 42.50.Ct, 42.50.Dv, 42.65.Ky, 42.65.Lm, 42.65.Re

In two-photon absorption (TPA), two photons whose sum energy equals that of an atomic transition, must arrive at the atom together. The two, seemingly contradicting, demands of a narrow temporal and a narrow spectral behavior of the inducing light are typically maximized by transform-limited pulses, which exhibit the highest peak intensity possible for a given spectral bandwidth. Nonetheless, it was shown that pulses can be shaped in a way that will stretch them temporally yet will not affect the transition probability, and even increase it in certain cases. Other experiments have exploited coherent control to increase the spectral selectivity of nonlinear interactions induced by ultrashort pulses: however, the spectral resolution demonstrated by these methods remains considerably inferior to that obtained by narrowband, continuous lasers. Few experiments have performed TPA with coherent, narrowband down-converted light, demonstrating nonclassical features which appear at very low powers, and result from the time and energy correlations (entanglement) between the down-converted photon-pairs. At high power levels (as those discussed in this work) these correlations vanish, yet similarly nonclassical phase and amplitude correlations appear between the signal and idler beams. Unlike the time and energy correlations at low powers, these phase and amplitude correlations cannot be described in the usual form of second-order coherence. At sufficiently high powers, which greatly exceed the single-photons regime, broadband down-converted light that is pumped by a narrowband laser is inherently incoherent, and exhibits the properties of a broadband thermal noise; consequently, it is not expected to be effective at inducing TPA. Nevertheless, it was shown that at the appropriate conditions, the quantum correlations within the down-converted spectrum can give rise to efficient sum-frequency generation.

In this work we show that down-converted light beams with a spectral bandwidth that exceeds a certain limit can induce TPA just like transform-limited pulses with the same bandwidth. Consequently, the interaction exhibits a sharp, pulse-like temporal behavior, and can be coherently controlled by pulse-shaping techniques, even though the down-converted light is neither coherent nor pulsed. This effect occurs as long as the transition energy lies within the spectrum of the pump laser that generated the light; thus, the spectral selectivity of the interaction is dictated by the narrowband pump laser and not by the orders of magnitude wider bandwidth of down-converted light itself. We demonstrate these principles experimentally by inducing and coherently controlling TPA in atomic Rubidium with down-converted light, and obtaining results that are practically identical to those obtained with coherent ultrashort pulses.

The underlying principle that enables coherent TPA with broadband down-converted light is based on the fact that the quantum interference that governs TPA involves pairs of electromagnetic modes. Since the excitation of an atomic level with frequency Ω may be induced by any two photons with frequencies ω and Ω − ω, regardless of the exact value of ω, the final population p_f is proportional to:

$$p_f \propto \left| \int E(\omega)E(\Omega - \omega) d\omega \right|^2,$$

where $E(\omega)$ is the spectral amplitude of the light. As is obvious from Eq. 1, it does not matter whether $E(\omega)$ has a defined phase for every ω, but rather whether the product $E(\omega)E(\Omega - \omega)$ has a defined phase for every ω. Despite the incoherence of each of the down-converted signal and idler beams, they exhibit exactly this mutually-coherent phase behavior at frequency-pairs, due to the inherent phase and amplitude quantum correlations within the down-converted spectrum.
where \(\omega_p \) is the pump frequency, and \(E_s(\omega) \), \(E_i(\omega) \) denote the spectral amplitudes of the signal and the idler beams, respectively. In the case of TPA induced by the combined signal and idler beams from the same source, these correlations have a drastic effect when the pump frequency is equal to the total transition frequency. Combining Equations 1 and 2, letting \(\omega_p = \Omega \), reveals that the random phase of \(E_s(\omega) \) is always compensated by the opposite phase of \(E_i(\omega_p - \omega) \). Thus, the integrand in Eq. 1 has a constant phase, leading to a full constructive interference of all the spectral combinations, exactly as if the interaction was induced by a pair of transform-limited pulses with the same spectra as the signal and idler beams. Moreover, this TPA process will be sensitive to minute delays between the signal and idler beams, to dispersion and even to pulse shaping, exactly as if it was induced by a pair of ultrashort pulses. Since this constructive interference occurs only when the final state energy falls within the spectrum of the pump laser, the spectral resolution of the TPA process will be equal to the spectral bandwidth of the pump laser, regardless of the actual bandwidth of the down-converted light itself. Note that in the case of a continuous pump laser, this implies a possible spectral resolution of a few MHz or even less, which is phenomenally high for an interaction that is induced by light with a spectral bandwidth that may be 5-7 orders of magnitude broader.

A complete quantum-mechanical analytic calculation [29], which takes into account the spectral bandwidths of the pump laser and of the atomic level, shows that the TPA signal is composed of two parts, which may be referred to as the 'coherent TPA' and the 'incoherent TPA'. The coherent TPA results from the summation of conjugated spectral components, and indeed can be coherently controlled. The incoherent TPA, however, results from the summation of all other random spectral combinations and is a direct result of the incoherence of the down-converted light; therefore it is unaffected by spectral-phase manipulations and may be regarded as a background noise, which limits the equivalence of the down-converted light to a coherent pulse. The ratio between the coherent term \(I^c \) and the incoherent term \(I^i \) can be approximated by:

\[
\frac{I^c}{I^i} \approx \frac{B}{(\gamma_p + \gamma_f) n^2 + \frac{1}{2\pi} n},
\]

where \(n \) is the spectral average of the mean photon flux, and \(B, \gamma_p, \gamma_f \) are the bandwidths of the down-converted light, the pump laser and the final state, respectively. This expression reveals the importance of using spectrally broad down-converted light. The coherent term becomes dominant only when the down-converted bandwidth exceeds both the pump bandwidth and the final level width: \(B > (\gamma_p + \gamma_f)(\frac{2\pi n}{n^2 + \frac{1}{2\pi} n}) \).
shows that the coherent term exhibits a linear intensity dependence at low powers, as was previously shown [14,17] and experimentally observed [12].

Our experimental layout is described in Fig. 1. The pump laser (Spectra-Physics MOPO-SL laser) was tuned to emit 3 ns pulses with a bandwidth of 0.04 nm around 516.65 nm, which corresponds to the 5S − 4D transition in Rb (Fig. 1a). These pulses pumped a BBO crystal that was located inside a low-finesse resonator, with the phase-matching conditions chosen to obtain broadband (∼ 100 nm each), non-collinear signal and idler beams. The signal beam was directed through a computer-controlled pulse-shaper, which is normally used to temporally shape femtosecond pulses and performs as a spectral-phase filter [26]. From the pulse-shaper the signal beam continued to a computer-and performs as a spectral-phase filter [26]. From the pulse-shaper the signal beam continued to a computer-controlled delay line, and then was combined with the idler beam by a dichroic mirror. The combined beams entered the Rb cell, and the induced TPA was measured through the resulting fluorescence at 780 nm. Our analysis predicts that the down-converted beams, each 3 ns long with a peak power of about 1 MW and a spectral bandwidth of about 100 nm, should induce TPA with the same efficiency and temporal resolution as 23 fs pulses with a peak power of about 150 GW, while exhibiting a spectral resolution of 0.04 nm.

To verify these predictions experimentally, we scanned both the pump wavelength and the relative delay between the signal and idler beams. Fig. 2 shows the TPA signal versus the signal-idler relative delay and the pump-wavelength. As is evident, for off-resonance pump or for large signal-idler delays, only low efficiency TPA signal is observed, which is insensitive to either pump wavelength or signal-idler delay. This signal corresponds to the classical, incoherent TPA background signal. However, when the pump wavelength was set to the 5S − 4D transition resonance, an additional, high efficiency, TPA signal appeared. The sharp response of this coherent TPA signal to a few femtoseconds delay between the beams is practically identical to the case of TPA induced by two coherent, 23 fs pulses. This temporal resolution is 5 orders of magnitude better than the actual 3 ns temporal duration of the down-converted light.

Since the peak power of the equivalent transform-limited pulses is extremely high (150 GW), the signal and idler beams had to be expanded and attenuated in order to avoid complete saturation of the transition. Unfortunately, we could not attenuate the beams enough to avoid saturation completely, due to high levels of noise in our system. As a result, our measurements had to be performed in a partially saturated regime, where the measured intensity dependence of the TPA process was less than quadratic, and the 4D level was power-broadened. Thus, the observed 0.12 nm spectral width of the coherent TPA is dictated by the bandwidth of the pump laser (0.04 nm) and the width of the (power-broadened) 4D level (∼ 0.08 nm). This spectral resolution is 2000 times narrower than the total bandwidth of the down-converted light.

Finally, we demonstrated coherent quantum control over the coherent TPA process, in a similar way to coherent control of TPA with ultrashort pulses [1]. For that we used the pulse shaper to apply a square-wave phase filter on the signal spectrum (Fig. 3a). With ultrashort pulses this has the effect of splitting the pulse temporally to a train of several smaller pulses. Fig. 3b shows precisely this behavior of the coherent TPA signal as a function of the signal-idler delay. Fig. 3c depicts the experimental and theoretical TPA signal at zero delay as a function of the magnitude of the square wave phase filter. The results, which are identical to those obtained in coherent control experiments with femtosecond pulses, show the cyclic transition between complete constructive and destructive quantum interference of the different spectral sections, and demonstrate the ability to fully control the coherent TPA process.

Broadband down-conversion of a narrowband pump
FIG. 3: Experimental coherent quantum control of TPA with down-converted light. (a) The square-wave spectral phase filter applied on the signal beam by the pulse-shaper, together with a typical power spectrum of the signal. (b) Experimental (circles) and calculated (line) TPA signal as a function of the signal-idler delay, with a spectral square-wave phase filter with magnitude π applied to the signal beam. The splitting of the central peak confirms that the coherent TPA behaves exactly as if it was induced by a pair of transform-limited pulses, with one of them temporally shaped by the applied phase filter. (c) Experimental (circles) and calculated (line) TPA signal as a function of the magnitude of the square wave spectral phase filter. The graph shows the periodic annihilation of the coherent TPA at magnitudes of $\pi, 3\pi, 5\pi$, where a complete destructive quantum interference occurs ("dark pulse"), and the complete reconstruction of the TPA signal at amplitudes of $2\pi, 4\pi, 6\pi$ etc, demonstrating complete quantum control over the coherent TPA process.

can be considered as an optical spread-spectrum source [27], which generates both a broadband white noise key and its conjugate key simultaneously. A spread-spectrum communication channel can therefore be established by modulating the phase of one of the keys at the transmitter and using TPA or sum-frequency generation to reveal the resulting modulations of the coherent signal at the receiver. Note that any phase modulations performed on the incoherent signal beam (or even the mere presence of the signal beam, in the existence of background noise) cannot be detected without the idler beam. Furthermore, many such communication channels can share the same signal and idler beams by assigning a unique signal-idler delay for each channel, thus creating an optical code division multiple access (OCDMA) network [28]. Other applications may include nonlinear microscopy and tomography, where the high efficiency and spatial resolution of ultrashort pulses can be obtained with continuous, non-damaging intensities.

We wish to thank professor Daniel Zajfman for the loan of the laser system, Adi Diner for advise and assistance, and professor Nir Davidson for many helpful discussions.

* Barak.Dayan@Weizmann.ac.il
† Avi.Peer@Weizmann.ac.il
‡ www.weizmann.ac.il/home/feyaron/

[1] D. Meshulach and Y. Silberberg, Nature 396, 239 (1998).
[2] D. Meshulach and Y. Silberberg, Phys. Rev. A 60, 1287 (1999).
[3] Z. Zheng and A. M. Weiner, Chem. Phys. 267, 161 (2001).
[4] N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, Phys. Rev. Lett. 86, 47 (2001).
[5] D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013 (1985).
[6] M. Shapiro and P. Brumer, J. Chem. Phys. 84, 4103 (1986).
[7] W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
[8] S. A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).
[9] T. Lang, M. Mützkuhn, H. M. Frey, and P. Beaud, J. Chem. Phys. 115, 5418 (2001).
[10] N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[11] E. Gershgoren et al., Opt. Lett. 28, 361 (2003).
[12] N. Ph. Georgiades et al., Phys. Rev. Lett. 75, 3426 (1995).
[13] N. Ph. Georgiades, E. S. Polzik, and H. J. Kimble, Phys. Rev. A. 55, R1605 (1997).
[14] I. Gea-Banacloche, Phys. Rev. Lett. 62, 1603 (1989).
[15] J. Javanainen and P. L. Gould, Phys. Rev. A. 41, 5088 (1990).
[16] H. B. Fei, B. M. Jost, S. Popescu, B. E. A. Saleh and M. C. Teich, Phys. Rev. Lett. 78, 1679 (1997).
[17] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge Univ. Press, Cambridge, 1995).
[18] D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).
[19] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987).
[20] B. R. Mollow and R. J. Glauber, Phys. Rev. 160, 1097 (1967).
[21] K. J. McNeil and C. W. Gardiner, Phys. Rev. A 28, 1560 (1983).
[22] M. O. Scully and S. Zubairy, Quantum Optics, (Cambridge Univ. Press, Cambridge, 1997).
[23] I. Abram, R. K. Raj, J. L. Oudar, and G. Dolique, Phys. Rev. Lett. 57, 2516 (1986).
[24] B. Dayan, A. Pe'er, A. A. Friesem, and Y. Silberberg, quant-ph/0302038
[25] B. Dayan and Y. Silberberg (to be published).
[26] A. M. Weiner, Rev. Sci. Inst. 71, 1929 (2000).
[27] A. J. Viterbi, CDMA: Principles of spread spectrum communication, (Addison-Wesley Wireless Communications, 1995).
[28] A. Pe'er, B. Dayan, Y. Silberberg, and A. A. Friesem, J. Lightwave. Technol., (to be published).