Small Magnetic Polaron Picture of Colossal Magnetoresistance in Manganites

Sudhakar Yarlagadda
Saha Institute of Nuclear Physics, Calcutta, India
(March 24, 2022)

We present a small-but-sizeable magnetic polaron picture where transport at high temperatures is activated while at low temperatures it is band-like. We show that both double exchange and finite bandwidth effects are important to understand colossal magnetoresistance as well as the coincidence of the metal-insulator and the ferromagnetic transitions in manganites. The magnetic transition is explained using band-like motion of the polarons.

PACS numbers: 71.30.+h, 71.38.+i, 72.20.My, 75.10.-b

Studies on perovskite manganites of the form $A_{1-x}B_{x}MnO_3$ (A=La, Pr, Nd, etc.; B=Sr, Ca, Ba, etc.) have yielded a variety of rich phenomena as a function of doping $\delta \sim 0.2$. We use the polaron model of Eagles [8] to explain colossal magnetoresistance (CMR). Our starting total Hamiltonian is given by

$$H_T = H(t) + H_{sp} + H_{ph}$$

where

$$H(t) = t \sum_{\langle i,j \rangle,\sigma} c_{i,\sigma}^\dagger c_{j,\sigma},$$

$$H_{ph} = \sum_{q} \sum_{\sigma} \omega_q a_q^\dagger a_q + \sum_{j,\sigma} n_j^\sigma e^{i\vec{q}\cdot\vec{R}_j} M_\sigma (a_q + a_q^\dagger),$$

and

$$H_{sp} = \sum_{\langle ij \rangle} J_{ij} \vec{S}_i \cdot \vec{S}_j + K_H \sum_{\sigma} \vec{S}_i \cdot \vec{S}_i + U \sum_{j,\sigma} n_j^\sigma n_j^{-\sigma}.$$
In the above equations $c_{j\sigma}(aq)$ is the hole (phonon) destruction operator, t is the hopping integral, (ij) corresponds to nearest neighbors, ω_q is the optical phonon frequency ($\hbar = 1$), M_q is the hole-phonon coupling, J_{ij} is the strength of the spin coupling between neighboring localized ($S=3/2$) spins, K_H gives the Hund's coupling between localized spins and itinerate hole ($\sigma = 1/2$) spin, U is the strength of the same site repulsion, and $\omega_\sigma = c_{j\sigma}c_{i\sigma}$. Furthermore the H_{ph} part corresponds to assuming a single orbital per site which on account of Jahn-Teller splitting may perhaps be justified.

To study transport we use double exchange modification and take the total Hamiltonian to be

$$H''_T = t_{DE} \sum_{(ij)} c_i^\dagger c_j + \sum_q \omega_q a_q^\dagger a_q + \sum_{j \neq j'} c_j^\dagger c_{j'} e^{iq\vec{R}_j} M_q(a_q + a_{-q}^\dagger),$$

where $t_{DE} = t\sqrt{(1 + M^2/M_S^2)/2}$, and M_S is the saturated magnetization. Now the mobility is given by the Einstein relation $\mu = q_eD\beta$ where q_e is the electronic charge, D the diffusivity, and $\beta = 1/k_BT$. Including finite band width corrections, as done variationally by Gosar [9], to calculate the hopping-regime diffusivity κ gives the finite band width corrections, as done variationally where

$$\theta = \frac{\omega_\sigma}{\omega_0}$$

for band conduction, it is obtained by extending Gosar’s work [9] and calculating the polaronic band energy [12].

The above expression is similar to the result due to Eagles [8]. Then the diffusivity for band conduction is given by

$$D_{band} = (|\vec{\nabla}E_k|^2/\tau) = 6\pi a_0^2 t^2 \left[1 + (M/M_S)^2 \right],$$

where $\tau = t \exp[-\theta \coth(\beta\omega_\sigma/2)]$. Then based on Friedman’s work [8] we take the total mobility (μ_T) to be the sum of the band mobility and the hopping mobility and hence the total resistivity ($1/\rho = c_h q_e \mu_T$) to be given by

$$\frac{4\pi}{c_h q_e^2 a_0^2 \rho} = \beta \omega_0 \left[8\pi^2 t^2 \exp[-2\theta \coth(\beta \omega_\sigma/2)] + \left(1 + \frac{M^2}{M_S^2} \right) \exp[-2\theta \tan(\beta \omega_\sigma/4)] \right],$$

where c_h is the density of holes. Here it should be mentioned that, even if t and K_H are of the same order of magnitude, we can have $\tilde{t} << K_H$ so that double exchange holds.

To proceed further one needs to obtain the magnetization as a function of temperature. To this end we consider the following thermally averaged Hamiltonian

$$H_{mag} = H(t) + H_{sp}.$$

Next we note that $|J_{ij}| << K_H$ and that $U >> t (k_BT)$ and hence completely project out double occupation (see Ref. [14] for details). From the above Hamiltonian H_{mag} it follows that, within a mean-field treatment, the magnetization in the presence of a magnetic field H is

$$S \frac{M}{M_S} = \frac{\sum \varepsilon_{\sigma} - \sum \varepsilon_{\sigma} H_S \beta_{\sigma}}{\sum \varepsilon_{\sigma} - \sum \varepsilon_{\sigma} H_S \beta_{\sigma}},$$

where $\Phi \equiv K_H \left(n^\dagger f(n^\dagger) - n^\dagger f(n^\dagger) \right)$, $f(n^\dagger) \equiv 1/(1 - n^\dagger)$, and n^\dagger is the probability of occupation of a site by spin σ hole and is given by

$$n^\dagger = \frac{1}{N} \sum_k n^\dagger_k \left[\epsilon_k \Psi - \Psi \sigma - \mu \right] \approx \frac{1}{\exp[-\beta (\Psi \sigma + \mu)] + 1},$$

where $\Psi \equiv (K_HS/M_S + g\mu_B H)f(n^\dagger), \sigma = 1/2/(-1/2)$ for spin $\alpha = \uparrow/\downarrow$ holes and

$$\epsilon_k^\dagger = 2\hbar \delta f(n^\dagger) \sum l \cos(k^\dagger a) \ll k_BT_C.$$

In the above equation $\hbar(\delta) = 1 - \delta$ and T_C is the ferromagnetic transition temperature whose value, by treating M and $\Delta n \equiv n^\dagger - n^\dagger$ as small parameters in Eq. (2), is obtained to be

$$k_B T_C = \sqrt{2(1-\delta)^2 \frac{(9/2)^2}{K_H S |\sigma|}.}$$

The above expression is similar to the result due to Eagles [8]. Then the diffusivity for band conduction is given by

$$D_{band} = (|\vec{\nabla}E_k|^2/\tau) = 6\pi a_0^2 t^2 \left[1 + (M/M_S)^2 \right],$$

where $\tau = t \exp[-\theta \coth(\beta\omega_\sigma/2)]$. Then based on Friedman’s work [8] we take the total mobility (μ_T) to be the sum of the band mobility and the hopping mobility and hence the total resistivity ($1/\rho = c_h q_e \mu_T$) to be given by

$$\frac{4\pi}{c_h q_e^2 a_0^2 \rho} = \beta \omega_0 \left[8\pi^2 t^2 \exp[-2\theta \coth(\beta \omega_\sigma/2)] + \left(1 + \frac{M^2}{M_S^2} \right) \exp[-2\theta \tan(\beta \omega_\sigma/4)] \right],$$

where c_h is the density of holes. Here it should be mentioned that, even if t and K_H are of the same order of magnitude, we can have $\tilde{t} << K_H$ so that double exchange holds.

To proceed further one needs to obtain the magnetization as a function of temperature. To this end we consider the following thermally averaged Hamiltonian

$$H_{mag} = H(t) + H_{sp}.$$

Next we note that $|J_{ij}| << K_H$ and that $U >> t (k_BT)$ and hence completely project out double occupation (see Ref. [14] for details). From the above Hamiltonian H_{mag} it follows that, within a mean-field treatment, the magnetization in the presence of a magnetic field H is

$$S \frac{M}{M_S} = \frac{\sum \varepsilon_{\sigma} - \sum \varepsilon_{\sigma} H_S \beta_{\sigma}}{\sum \varepsilon_{\sigma} - \sum \varepsilon_{\sigma} H_S \beta_{\sigma}},$$

where $\Phi \equiv K_H \left(n^\dagger f(n^\dagger) - n^\dagger f(n^\dagger) \right)$, $f(n^\dagger) \equiv 1/(1 - n^\dagger)$, and n^\dagger is the probability of occupation of a site by spin σ hole and is given by

$$n^\dagger = \frac{1}{N} \sum_k n^\dagger_k \left[\epsilon_k \Psi - \Psi \sigma - \mu \right] \approx \frac{1}{\exp[-\beta (\Psi \sigma + \mu)] + 1},$$

where $\Psi \equiv (K_HS/M_S + g\mu_B H)f(n^\dagger), \sigma = 1/2/(-1/2)$ for spin $\alpha = \uparrow/\downarrow$ holes and

$$\epsilon_k^\dagger = 2\hbar \delta f(n^\dagger) \sum l \cos(k^\dagger a) \ll k_BT_C.$$
We see that T_C increases with increasing δ for $0 < \delta < 2/3$ and that it is independent of both t and J_{ij}. Furthermore because of Eq. (13), the values of M, n^c, and T_C are all independent of dimensions [see Eq. (12)]. Here it must also be mentioned that when double occupancy is allowed $h(\delta) = f(n^{(t)}) = 1$.

Using the constraint that $n \uparrow + n \downarrow = \delta$, we can obtain Δn and M by solving Eq. (13). In Fig. 2 we have plotted the magnetization ratio M/M_S as a function of the reduced temperature T/T_C for $\delta = 0.3$ and 0.4, $g = 2$, and magnetic fields $H = 0T$ and $15T$. We have assumed a smaller value for the Hund’s coupling ($K_H \approx 0.0858\text{eV}$) than what seems to be its value based on experiments ($\sim 1\text{eV}$) because we wanted to set $T_C = 300K$ at $\delta = 0.3$. Alternately one can also get lower T_C by assuming, as suggested in Ref. [15], that only a small fraction of the dopants yield mobile holes. The values of the magnetization for $H = 15T$ at T_C are sizeable because of the tendency of the system towards a ferromagnetic phase. Here it should also be mentioned that Δn attains saturation values much faster than M. We have also calculated the magnetization curves with double occupation of a site being allowed and find that the M/M_S values for with and without double occupation being allowed are close to each other both in zero field and at $15T$ [15]. Although our magnetization curves are qualitatively similar to the experimental curves of Urushibara et al. [10], the experimental M/M_S values rise faster as T lowered.

We will now discuss the resistivity given by Eq. (10). The conduction goes from a hopping type at high temperatures to a band type at low temperatures. In Fig. 2 we have shown the dependence of resistivity ρ on temperature at various magnetic fields. The general trend of the resistivity including the drop at the MI transition at $H = 0T$ is similar to the experimental results [10]. On introducing a magnetic field the system gets magnetized at temperatures higher than T_C and thus the value of θ is smaller (see Eq. (10)). Consequently the resistivity is smaller and $T_{\rho\text{max}}$ (the temperature at which resistivity becomes maximum) increases [14].

For $T \geq T_C$, when $D_{\text{band}}/D_{\text{hop}} >> 1$ the magnetoresistance $\Delta \rho/\rho(0) \equiv (\rho(H) - \rho(0))/\rho(0)$ is given by (see Eq. (10))

$$\Delta \rho/\rho(0) \approx \exp \left[-\frac{(z+1)^2 M^2}{2\gamma^2 \omega_0^2} \text{csch}\left(\frac{\beta \omega_0}{2}\right)\right] - 1,$$

and when $D_{\text{band}}/D_{\text{hop}} << 1$ it is given by

$$\Delta \rho/\rho(0) \approx \exp \left[-\frac{(z+1)^2 M^2}{2\gamma^2 \omega_0^2} \tanh\left(\frac{\beta \omega_0}{2}\right)\right] - 1.$$

For a fixed value of the reduced temperature T/T_C, an increase in the ratio μ_BH/K_H increases M/M_S and consequently the magnetoresistance also increases.

Actually $T_{\rho\text{max}}$ (the temperature at which the resistivity given by Eq. (10), after taking $M = 0$, attains a maximum) need not be equal to the ferromagnetic transition temperature T_C. If $T_{\rho\text{max}} < T_C$, by decreasing γ^2 or increasing $\frac{\omega}{\omega_0}$ activation energy $(\theta \omega_0)/2$ decreases and $T_{\rho\text{max}}$ can be increased [11] to be made equal to T_C and this also increases the magnetoresistance (see Eqs. (11), (13), and (14)). For $T_{\rho\text{max}} < T_C$, the MI transition can still occur at T_C if $(\frac{z+1)^2}{2\gamma^2 \omega_0^2}$ is sufficiently large [14] while if $(\frac{z+1)^2}{2\gamma^2 \omega_0^2}$ is very small the MI transition occurs below $T_{\rho\text{max}}$ as can be seen from Eq. (10). The other case, where $T_{\rho\text{max}} > T_C$, corresponds to MI transition occurring at a higher temperature than T_C and is in any case not experimentally observed [17].

In Table 1 we report the calculated values of magnetoresistance $-\Delta \rho/\rho(0)$ at T_C and the optimum values of γ^2 (obtained when $T_{\rho\text{max}} = T_C$) for doping δ equal to 0.3 and 0.4, Debye temperature $T_D = 500K$, and for various values of the dimensionless hopping integral t/ω_0. We find that the magnetoresistance increases with increasing values of t/ω_0 thus showing the importance of bandwidth. Also γ_{opt}^2 values increase with increasing t/ω_0 because $T_{\rho\text{max}} = T_C$. Furthermore, it is mainly due to the larger values of $(M/M_S)^2$ for $\delta = 0.4$ compared to those of $\delta = 0.3$ that the values of $-\Delta \rho/\rho(0)$ are larger for $\delta = 0.4$. It appears that our model can give magnetoresistance values comparable to the experimental ones [10]. In fact one can get a larger magnetoresistance by taking a smaller T_C value but keeping $\omega_0/(K_BT_C)$ fixed [14].

From Eq. (10) (or Eqs. (13) and (16)) we see that for small values of M/M_S the magnetoresistance (for $T \geq T_C$) is of the form $-\Delta \rho/\rho(0) = C(M/M_S)^2$ where C is a constant of proportionality. We found, for the cases considered in Table 1, that the optimum values of γ^2 that make $T_{\rho\text{max}} = T_C$ are such that $D_{\text{band}}/D_{\text{hop}} < 1$ so that the magnetoresistance can be qualitatively given by Eq. (11). In Eq. (11), close to T_C, $\tanh(\beta \omega_0/4) \approx \omega_0/4$. From Eq. (14) we see that T_C increases with the doping δ and hence the constant of proportionality $C \propto \sqrt{(1-\delta)}$ decreases with increasing δ which agrees with the findings of Ref. [17]. Furthermore the coefficient also increases with increasing values of $(\frac{z+1)^2}{2\gamma^2 \omega_0^2}$. We have calculated values of C by treating M/M_S as a small parameter in the exact expression for $-\Delta \rho/\rho(0)$ at $T = T_C$. When $t/\omega_0 = 4(8)$ and $\gamma^2 = 9.5(15.0)$, for $\delta = 0.3$ we get $C \approx 3.8(8.5)$ while for $\delta = 0.4$ we obtain $C \approx 3.1(6.4)$. Our calculated values of C are larger than those reported in Ref. [14]. Past attention [17,18] has focused at dependence of C on the ratio K_H/t in Kondo lattice type models that ignored electron-phonon coupling. While Inoue and Maekawa [17] for $K_H \rightarrow \infty$ obtained $C = 7/4$, Furukawa [18] found that the value of C increased with
increasing values of K_H/t and that at larger values of K_H/t the value of C decreases with increasing doping.

In conclusion we say that both double exchange and finite band-width corrections are important to understand CMR. In our picture, adiabatic small-but-sizeable magnetic polarons are involved in activated transport at high temperatures and metal-like conduction at low temperatures. At the MI transition, the band-like motion of the carriers also produces a paramagnetic-ferromagnetic transition due to strong Hund’s coupling between itinerant and localized spins. Studying the transport behavior at low temperatures, including a Fermi liquid analysis, is left for future. The effect of including both d_{xz}, d_{yz} and $d_{x^2−y^2}$ orbitals also needs to be investigated for our model. Lastly we note that as the system’s temperature is lowered below T_C the magnetization increases and consequently the activation energy $(θω_0/2)$ decreases and the polarons tend towards large polaronic behavior.

FIG. 1. Plot of the magnetization ratio M/M_S versus the reduced temperature T/T_C when no double occupation is allowed, doping $δ = 0.3$ (and 0.4), Hund’s coupling $K_H ≈ 0.0858eV$, and magnetic fields $H = 0T$ and $H = 15T$.

FIG. 2. Plot of the resistivity $ρ$ in units of $4π/(c_0q_0^2a^2)$ versus temperature T in 3 dimensions when no double occupation is allowed, $δ = 0.3$, $K_H ≈ 0.0858eV$, dimensionless hopping integral $t/ω_0 = 6$, optimum $γ^2 = 12.2$, Debye temperature $T_D = 500K$, and for the following magnetic fields: (i) $H = 0T$; (ii) $H = 15T$; (iii) $H = 30T$; and (iv) $H = 45T$.

TABLE I. Calculated values of the magnetoresistance $−Δρ/ρ(0)$ at T_C and the optimum $γ^2$ for various values of $t/ω_0$, $T_D = 500K$, $δ = 0.3$ and 0.4, magnetic field $H = 15T$, $K_H ≈ 0.0858eV$, and $T_{ρ_{max}}/T_C = 0.8$.

$t/ω_0$	$γ^2_{opt}$	$ρ/ρ(0)$	$γ^2_{opt}$	$ρ/ρ(0)$
4	9.5	35%	8.4	42%
5	10.8	44%	9.8	50%
6	12.2	51%	11.2	58%
7	13.6	58%	12.5	68%
8	15.0	64%	13.9	74%

[1] A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997); A. R. Bishop and H. Röder, Current Opinion Solid State Mater. Sci. 2, 244 (1997).
[2] P.-G. de Gennes, Phys. Rev. B 118, 141 (1960).
[3] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
[4] A. J. Millis, B. I. Shraiman, and R. Mueller, Phys. Rev. Lett. 77, 175 (1996).
[5] H. Röder, Jun Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).
[6] J. M. De Teresa et al., Nature 386, 256 (1997).
[7] D. C. Worledge, L. Miéville, and T. H. Geballe, Phys. Rev. B 57, 15267 (1998).
[8] D. M. Eagles, Phys. Rev. 145, 645 (1966).
[9] P. Gosar, J. Phys. C: Solid State Phys. 8, 3584 (1975).
[10] A. Urushibara et al., Phys. Rev. B 51, 14103 (1995).
[11] T. Holstein, Annals of Physics 8, 343 (1959).
[12] We get the polaronic band energy by replacing $γ/\sqrt{N}$ with α in the second term in Eq. (36) of Ref. [1].
[13] L. Friedman, Phys. Rev. 135, A233 (1964).
[14] F. C. Zhang et al., Supercond. Sci. Technol. 1, 36 (1988).
[15] Details will be reported elsewhere.
[16] For $βω_0/2 < 1$, on taking $\cosh(βω_0/2) ≈ 2/(βω_0)$ and $\tanh(βω_0/4) ≈ βω_0/4$, if $θβω_0/2 > 1$ the following can be shown: (i) $T_{M_{max}}$ increases as $γ^2$ decreases (or $t^2/ω_0^2$ increases); and (ii) for fixed $γ^2$ and $t^2/ω_0^2$ and for large enough $(4π/\sqrt{2})^{1/2}$, $T_{M_{max}}$ increases as M increases.
[17] J. Inoue and S. Maekawa, Phys. Rev. Lett. 74, 3407 (1995).
[18] N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).
