Case report: Posterior myocardial infarction in presence of right bundle branch block: an old concept with new findings

José Antonio Cornejo-Guerra1*, Daniel Manzur-Sandoval1, José Fernando Guadalajara-Boo2, and José Luis Briseño-de la Cruz3

1Division of Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badano 1, Belisario Domínguez—Sección XVI, Tlalpan, Mexico City 14080, Mexico; 2Department “A” Medical Area, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badano 1, Belisario Domínguez—Sección XVI, Tlalpan, Mexico City 14080, Mexico; and 3Coronary Care Unit, Instituto Nacional de Cardiología Ignacio Chávez Juan Badano 1, Belisario Domínguez—Sección XVI, Tlalpan, Mexico City 14080, Mexico

Received 19 February 2018; accepted 29 June 2018; online publish-ahead-of-print 23 July 2018

Background
The diagnosis of acute ischaemic coronary syndromes in presence of an intra-ventricular conduction disturbance represents a clinical challenge. In the cardiac segmentation model the posterior wall is replaced by the basal inferior segment. However, in the clinical scenario of acute coronary syndrome the concept of posterior myocardial infarction (PMI) endures. The association of a PMI and right bundle branch block (RBBB) is a rare condition characterised by broad R waves and ventricular repolarization disorders in right precordial leads in both entities, which could lead to misinterpretation and delay in reperfusion therapy.

Case Summary
We describe a case report of a 74-year-old man with acute chest pain and an electrocardiogram with broad R waves, a 4 mm ST-segment downsloping (excessively discordant) in right precordial leads, RBBB, and ST-segment elevation in posterior leads. There was resolution of ST-segment downsloping in right precordial leads after percutaneous coronary intervention and stenting of the circumflex artery, with disturbance of the repolarization process only attributable to RBBB.

Discussion
Patients with acute chest pain with RBBB and a ST segment with an excessive downsloping (out of proportion of what is expected in isolated RBBB) suggest PMI with occlusion of the circumflex coronary artery.

Keywords
Posterior myocardial infarction • Bundle branch block • Right bundle branch block • Case report

Learning points
- In acute myocardial ischaemia with right bundle branch block the excessive discordance of the ST segment in V1–V2 suggests the possibility of an associated posterior myocardial infarction.
- ST-segment elevation in posterior leads and the resolution of ST-segment depression following angioplasty support this theory.

Introduction
Controversy exists regarding the existence of posterior myocardial infarction (PMI). It has been suggested that the electrocardiographic findings described in this entity correspond to infarction of the lateral wall (due to the oblique arrangement of the heart) and in the segmentation model, the posterior wall is replaced by the basal inferior segment.1,2 Other authors describe the posterior wall in the isolated heart.3 However, in the American Heart Association (AHA)/American College of Cardiology Foundation (ACCF)/Heart Rhythm...
Society (HRS) standardization recommendations of acute ischaemia\(\text{4}\) and in the 2017 European Society of Cardiology (ESC) guidelines of acute myocardial infarction with ST-segment elevation (STEMI) the definition of PMI is maintained and recommends immediate reperfusion.\(\text{5}\) There are few reports of the association of PMI and right bundle branch block (RBBB),\(\text{6}\) this represents a challenge in diagnosis due to the finding of broad R waves and ventricular repolarization disorders in right precordial leads in both entities.

Timeline

Events
Initial presentation at the emergency room
- 3-h chest pain
- Respiratory failure and need of advance airway support
- Electrocardiogram with broad R waves, 4 mm ST-segment downsloping in right precordial leads, right bundle branch block (RBBB), and ST-segment elevation in posterior leads
- Coronary angiography with total thrombotic occlusion in the proximal segment of the circumflex artery
- Bare metal stent was placed
- The patient developed cardiogenic shock and intra-aortic balloon pump was placed; norepinephrine, vasopressin, and dobutamine were administered with clinical improvement
- Electrocardiogram with disturbance of repolarization only attributable to RBBB
- The patient developed acute renal failure and haemodialysis was initiated
- During a haemodialysis session, he developed sustained ventricular tachycardia with degeneration in asystole
- CPR was initiated, there wasn’t return of spontaneous circulation
- Patient decease
48 h post-arrival
- Electrocardiogram with disturbance of repolarization only attributable to RBBB
- The patient developed acute renal failure and haemodialysis was initiated
- During a haemodialysis session, he developed sustained ventricular tachycardia with degeneration in asystole
- CPR was initiated, there wasn’t return of spontaneous circulation
After 5 days.
- Electrocardiogram with disturbance of repolarization only attributable to RBBB
- The patient developed acute renal failure and haemodialysis was initiated
- During a haemodialysis session, he developed sustained ventricular tachycardia with degeneration in asystole
- CPR was initiated, there wasn’t return of spontaneous circulation
- Patient decease

Discussion

Ventricular repolarization in right bundle branch block

Right bundle branch block is an intra-ventricular conduction delay or block at the right bundle branch and thus repolarization takes place through the unspecific muscle generating a ‘jumping wave’ phenomenon through the interventricular septum towards the right ventricle mass (Figure 4A). The repolarization vector (which at this point is predominant at the interventricular septum) moves away from V1 to V2 accordingly to the dipole theory (Figure 4B). Thus, there is a negative T wave in those leads (rule of discordance).\(\text{7}\)

Myocardial infarction in presence of right bundle branch block

The AHA/ACC/HRS establish that the ECG diagnosis of myocardial infarction (MI) does not modify in the presence of RBBB or fascicular blocks,\(\text{8}\) but the diagnosis of MI in this situation is challenging.\(\text{6}\) There are several findings that suggest MI in the presence of RBBB:\(\text{9}\)

- **MI of the mid-interventricular septum**: R wave disappears in V1–V2 (with new onset of QR or qR complex) and there is no Q wave in V5–V6.
- **MI of the inferior intraventricular septum**: the vectors that run through the mid and low septum disappear, with the appearance of QR or QS complex in V3–V4.
- **MI of the left ventricle free wall**: it is manifested by the presence of QR or Qr in v5–v6, with q or Q and S always notched.

MI with QR or qR in V1–V2 with STEMI suggest occlusion of left anterior descending artery proximal to the first septal branch.\(\text{10}\) The 2017 ESC guidelines for the management of STEMI recognise that in the presence of RBBB and ischaemic symptoms immediate reperfusion strategy must be established,\(\text{5}\) based on a study that showed that patients with STEMI, RBBB was present in 6.3% of cases and mortality was higher than in patients with left bundle branch block (LBBB).\(\text{11}\)
The electrocardiogram in posterior myocardial infarction

In the horizontal plane the vector of the ‘electrically inactive area’ is directed towards right precordial leads (V1–V2), the vector of the ‘injured area’ points towards the infarction (V7–V9) and the vector of the ‘ischaemic area’ is also directed forward (V1–V2), this is expressed in the electrocardiogram by the presence of broad R waves, concave depression of ST segment and broad, symmetric T waves in right precordial leads12; the so-called ‘mirror image’ of the registry of the posterior leads (V7, V8, and V9) (Figure 5). When PMI occurs in absence of inferior infarction, the culprit vessel is usually the CX.13 There is lower proportion of STEMI (less than 50%) in this
context compared to the occlusion of the left anterior or right coronary artery; 25% had ST-segment depression and 36% did not present electrocardiographic change.14,15 In clinical practice, this causes an underestimation of the acute artery occlusion and a delay in revascularization therapy.

\textbf{Posterior myocardial infarction in the presence of right bundle branch block}

In the presence of acute chest pain with an ischaemic pattern and a new or pre-existing RBBB, the excessive discordance (depression) of the ST segment in V1 and V2 suggests the possibility of an associated

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3}
\caption{Electrocardiograms performed immediately and at 48 h after successful percutaneous coronary intervention.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{(A) The process of ventricular depolarization in the presence of right bundle branch block. (B) The process of ventricular repolarization in the presence of right bundle branch block. Reproduced from de Micheli et al.7}
\end{figure}
PMI (corresponding to the mirror image of the ‘injured area’). In this patient the ST segment depression of 4 mm in V2 (out of proportion to what would be expected in the isolated RBBB), the STEMI greater than 0.5 mm in posterior leads and the resolution of ST-segment depression following angioplasty in the context of total thrombotic occlusion of the CX, support this theory.

Acknowledgements

To the Mexican School of Electrocardiography and Instituto Nacional de Cardiología Ignacio Chávez.

Consent: The author/s confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: none declared.

References

1. de Luna A. New heart wall terminology and new electrocardiographic classification of Q-wave myocardial infarction based on correlations with magnetic resonance imaging. Rev Espa Cardiol 2007;60:683–689.
2. Cerqueira MD, Weissman NJ, Dilisizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539–542.
3. Medrano G, Aranda A, Melendez G, de Micheli A. On the actual nomenclature of myocardial infarcts. Arch Cardiol Mex 2010;80:126–132.
4. Mason J, Hancock E, Gettes L, Bailey J, Childers R, Deal B, et al. Recommendations for the standardization and interpretation of the electrocardiogram: part II: electrocardiography diagnostic statement list: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. J Am Coll Cardiol 2007;49:1128–1135.
5. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 2017;39:119–177.
6. Madias JE, Bravidis D, Attari M. Posterior myocardial infarction and complete right bundle-branch block. Chest 2002;122:1860–1864.
7. de Micheli A, Aranda A, Medrano G, Iturralde P. Ventricular conduction disorder in presence of dead myocardium. Arch Cardiol Mex 2011;81:304–312.
8. Wagner GS, Macfarlane P, Wells L, Josephson M, Gorges A, Mirvis DM, Pahlm O, Surawicz B, Kligfield P, Childers R, Gettes LS; American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; American College of Cardiology Foundation; Heart Rhythm Society. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part VI. J Am Coll Cardiol 2009;53:1003–1011.
9. Bisten A. Myocardial infarction and intraventricular conduction disorders. Arch Cardiol Mex 2004;74:532–537.
10. Engelen DJ, Gorgels AP, Cheriex EC, De Muinck ED, Oude Ophuis AJ, Dassen WR, Vainer J, van Ommen VG, Wells LH. Value of the electrocardiogram in localizing the occlusion site in the left anterior descending coronary artery in acute anterior myocardial infarction. J Am Coll Cardiol 1999;34:389–395.
11. Widimsky P, Rohac F, Stasek J, Kala P, Robyta R, Kuzmanov B, Jaki M, Polacek M, Kanovsky J, Bernat I, Hlinomaz O, Belohlavek J, Kral A, Mrazek V, Grigorov V, Djambazov S, Petr R, Knot J, Bilkova D, Fischerova M, Vondrak K, Maly M, Lorencova A. Primary angioplasty in acute myocardial infarction with right bundle branch block: should new onset right bundle branch block be added to future guidelines as an indication for reperfusion therapy? Eur Heart J 2012;33:86–95.
12. Cárdenas M. Posterior (dorsal) infarction and right ventricle infarction. Arch Cardiol Mex 2004;74(Suppl 1):538–543.
13. Dunn RF, Newman HN, Bernstein L, Harris PJ, Roubin GS, Morris J, Kelly DT. The clinical features of isolated left circumflex coronary artery disease. Circulation 1984;69:477–484.
14. Berry C, Zaleswski A, Kovach R, Savage M, Goldberg S. Surface electrocardiogram in the detection of transmural myocardial ischemia during coronary artery occlusion. Am J Cardiol 1989;63:21–26.
15. Stribling WK, Kontos MC, Abbate A, Cooke R, Vetrovec GW, Dai D, Honeycutt E, Wang TY, Lotun K. Left circumflex occlusion in acute myocardial infarction (from the National Cardiovascular Data Registry). Am J Cardiol 2011;108:959–963.
16. Castellano Reyes C, Pérez de Juan M, Attie F. Clinical Electrocardiography. 2nd ed. Madrid: Elsevier; 2010.