Research Article

Jian Zhou and Shiyin Zhao*

On the equivalence of three-dimensional differential systems

https://doi.org/10.1515/math-2020-0073
received October 22, 2019; accepted August 2, 2020

Abstract: In this paper, firstly, we study the structural form of reflective integral for a given system. Then the sufficient conditions are obtained to ensure there exists the reflective integral with these structured form for such system. Secondly, we discuss the necessary conditions for the equivalence of such systems and a general three-dimensional differential system. And then, we apply the obtained results to the study of the behavior of their periodic solutions when such systems are periodic systems in \(t \).

Keywords: three-dimensional polynomial system, reflective integral, equivalent systems, periodic solutions

MSC 2020: 34A12

1 Introduction

Since Mironenko [1] created the theory of the reflective function, many experts and scholars have used this theory to study qualitative behaviors of the solutions of the differential systems and obtained many interesting results [1–13].

In the present section, we shall briefly introduce the related concepts which will be used throughout the rest of this article.

Consider differential system

\[
x'(t, x), \quad t \in R, \quad x \in D \subset R^n,
\]

which has a continuously differentiable right-hand side and a general solution \(\varphi(t; t_0, x_0) \). For such a system, the reflective function is defined as \(F(t, x) = \varphi(-t; t, x) \) [1].

A continuous differentiable vector function \(F(t, x) \) on \(R \times R^n \) is the reflective function of system (1.1) if and only if the following basic relation

\[
E(t, x) + F(t, x)X(t, x) + X(-t, F(t, x)) = 0, \quad F(0, x) = x
\]

holds.

In particular, if \(X(t + 2\omega, x) = X(t, x) \) (\(\omega \) is a positive constant), and we can find the solution of the basic relation (1.2), then we can establish the Poincare mapping, so that the number of periodic solutions and the stability of periodic system (1.1) are solved. If the system

\[
x' = Y(t, x), \quad t \in R, \quad x \in D \subset R^n
\]

has the same reflective function \(F(t, x) \) as system (1.1), then \(X(0, x) = Y(0, x) \) and systems

* Corresponding author: Shiyin Zhao, School of Mathematical Sciences, Suqian College, Suqian, 223800, China, e-mail: zsy2017@sina.com

Jian Zhou: School of Mathematical Sciences, Suqian College, Suqian, 223800, China, e-mail: zym0809@126.com

Open Access. © 2020 Jian Zhou and Shiyin Zhao, published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
are compatible. At this moment, we call system (1.3) is equivalent to system (1.1).

To check whether the above systems compatible, we can use the Frobenius theorem [2]. Doing this in practice, however, is a very hard task.

If we can neither solve the system (1.1) nor the problem (1.2), then it is good enough to construct any system (1.3), which is equivalent to system (1.1). To do this, sometimes we can use:

Lemma 1.1. [3] Let the vector functions \(\Delta_k \) \((k = 1, 2, \ldots, m)\) be solutions of the equation
\[
\Delta + \Delta X(t, x) = X_{\Delta}
\]
and \(a_k(t) \) \((k = 1, 2, \ldots, m)\) be arbitrary continuous odd functions. Then all the perturbed systems of the form
\[
x' = X(t, x) + \sum_{k=1}^{n} a_k(t)\Delta_k(t, x)
\]
are equivalent to each other and to system (1.1) (here \(m \) is any natural number or even \(m = \infty \)).

Thus, if we find some solutions of equation (1.4), we can construct systems (1.5), which are equivalent to system (1.1). It can be seen that the solution of equation (1.4), that is, the reflective integral [3] of system (1.1), is particularly important to determine the equivalence of two differential systems. In addition, if these equivalent systems are \(2\omega \)-periodic with respect to \(t \), then their Poincare mappings coincide, the initial conditions at \(t = -\omega \) of their \(2\omega \)-periodic solutions and their stability characters are the same. Thus to study the equivalence of two differential systems is very important and interesting.

2 Main results

Now, we focus on the equivalence conditions for the general three-dimensional differential system

Concluding, we outline the investigation method. In accordance with Lemma 1.1, we seek systems equivalent to system (2.2) in the set of systems (1.5). Usually, however, we cannot find all solutions of equation (1.4) in the case under consideration. Therefore, we seek only polynomial solutions \(\Delta(t, x, y, z) \) of equation (1.4), namely, solutions of the form

\[
\begin{align*}
F_1(t, x) + F_2(t, x)X(t, x) + X(-t, F(t, x)) &= 0, \\
F_1(t, x) + F_2(t, x)Y(t, x) + Y(-t, F(t, x)) &= 0, \\
F(0, x) &= x
\end{align*}
\]
\[
\Delta(t, x, y, z) = \begin{pmatrix}
\Delta_{x}(t, x, y, z) \\
\Delta_{y}(t, x, y, z) \\
\Delta_{z}(t, x, y, z)
\end{pmatrix}
= \begin{pmatrix}
\sum_{i+j=0}^{2} \mu_{ij}(t)x^iy^jz^k \\
\sum_{i+j=0}^{2} s_{ij}(t)x^iy^jz^k \\
\sum_{i+j=0}^{2} y_{ij}(t)x^iy^jz^k
\end{pmatrix}
\] (2.3)

with differentiable coefficients \(\mu_{ij}(t), s_{ij}(t),\) and \(y_{ij}(t),\) that is, we discuss when function \(\Delta(t, x, y, z)\) of (2.3) is a solution of

\[
\begin{pmatrix}
\Delta_{x} \\
\Delta_{y} \\
\Delta_{z}
\end{pmatrix}
+ \begin{pmatrix}
\Delta_{xx} & \Delta_{xy} & \Delta_{xz} \\
\Delta_{yx} & \Delta_{yy} & \Delta_{yz} \\
\Delta_{zx} & \Delta_{zy} & \Delta_{zz}
\end{pmatrix}
\begin{pmatrix}
p \\
Q \\
R
\end{pmatrix}
= \begin{pmatrix}
P_{x} \\
P_{y} \\
P_{z}
\end{pmatrix}
\] (2.4)

In the following, we denote

\[
\begin{align*}
p &= p(t), q = q(t), r = r(t); \\
\mu_{ij} &= \mu_{ij}(t), s_{ij} = s_{ij}(t), y_{ij} = y_{ij}(t); \\
A_{ij} &= A_{ij}(t), B_{ij} = B_{ij}(t), C_{ij} = C_{ij}(t); \\
\Delta_k &= \Delta_k(t, x, y, z) \ (k = 1, 2, 3, \ldots, \text{etc.).}
\end{align*}
\]

Theorem 2.1. Let \(p_2(t) \neq 0, q_2(t) \neq 0, r_2(t) \neq 0,\) and vector function \(\Delta(t, x, y, z)\) of (2.3) is a reflective integral of system (2.2), then

\[
\Delta_1 = \mu_{000} + \mu_{100}x + \mu_{200}x^2,
\]

where

\[
\begin{align*}
\mu_{000} &= k_0e^{\int p_1dt}, \\
\mu_{100} &= k_1 + 2k_0 \int p_2e^{\int p_1dt}dt, \\
\mu_{200} &= \left\{ k_2 + k_1 \int p_2e^{\int p_1dt}dt + 2k_0 \left[\int p_2e^{\int p_1dt} \left(\int p_2e^{\int p_1dt}dt \right) dt \right] \right\} e^{\int p_1dt},
\end{align*}
\] (2.5, 2.6, 2.7)

\(k_0, k_1\) and \(k_2\) are arbitrary constants.

Proof. Using relation (2.4), we can get

\[
\Delta_{tt} + \Delta_{tx}P + \Delta_{ty}Q + \Delta_{tz}R = P_1\Delta_1,
\]
i.e.,

\[
\begin{align*}
\mu_{000}' + \mu_{100}'x + \mu_{010}'y + \mu_{001}'z + \mu_{200}'x^2 + \mu_{020}'y^2 + \mu_{002}'z^2 + \mu_{101}'xy + \mu_{101}'xz + \mu_{011}'yz \\
+ (\mu_{100} + 2\mu_{200}x + \mu_{110}y + \mu_{101}z)(p_1x + p_2x^2) + (\mu_{010} + \mu_{110}x + 2\mu_{200}y + \mu_{011}z)(q_1y + q_2y^2) \\
+ (\mu_{001} + \mu_{101}x + \mu_{011}y + 2\mu_{002}z)(r_1x + r_2y + r_3z + r_4x^2 + r_5xy + r_6x^2 + r_7yz + r_8z^2 + r_9yz)
\end{align*}
\]

\[= (\mu_{000} + \mu_{100}x + \mu_{010}y + \mu_{001}z + \mu_{200}x^2 + \mu_{020}y^2 + \mu_{002}z^2 + \mu_{101}xy + \mu_{101}xz + \mu_{011}yz)\left(p_1 + 2p_2x \right).\]

Equating the coefficients of the same powers of \(x, y, \) and \(z,\) we have

\[
\begin{align*}
\mu_{001} &= \mu_{010} = \mu_{101} = \mu_{110} = \mu_{002} = \mu_{020} = 0, \\
\mu_{000}' &= p_1\mu_{000}, \\
\mu_{100}' &= 2p_2\mu_{000}, \\
\mu_{200}' &= p_1\mu_{200} = p_2\mu_{100}.
\end{align*}
\] (2.8, 2.9, 2.10, 2.11)
Solving equations (2.9) and (2.10), we get (2.5) and (2.6). Substituting (2.6) into equation (2.11), we have (2.7).

Summarizing the above, the proof is finished.

Theorem 2.2. Let \(p_2(t) \neq 0, q_3(t) \neq 0, r_6(t) \neq 0 \), and vector function \(\Delta(t, x, y, z) \) of (2.3) is a reflective integral of system (2.2), then

\[
\Delta_2 = s_{000} + s_{010}y + s_{020}y^2,
\]

where

\[
s_{000} = \omega_0 e^\int q_0 \, dt,
\]

\[
s_{010} = \left(\omega_1 + 2\omega_0 \int q_1 x^2 \int q_0 \, dt \right) e^\int q_0 \, dt,
\]

\[
s_{020} = \left(\omega_2 - \omega_1 \int q_2 \, dt + 2\omega_0 \left[\left(\int q_2 \int q_0 \, dt \right) \int q_0 \, dt \right] \right) e^\int q_0 \, dt,
\]

\[\omega_0, \omega_1 \text{ and } \omega_2 \text{ are arbitrary constants.}
\]

Proof. Using relation (2.4), we can get

\[
\Delta_2 + \Delta_2 P + \Delta_2 Q + \Delta_2 R = Q \Delta_2,
\]

i.e.,

\[
s_{000} + s_{100} x + s_{001} y + s_{010} z + s_{200} x^2 + s_{020} y^2 + s_{002} z^2 + s_{101} xy + s_{101} xz + s_{110} yz
\]

\[
+ (s_{000} + 2s_{200} x + s_{101} z)(p_1 x + p_2 x^2) + (s_{010} + s_{110} x + 2s_{020} y + s_{101} z)(q_1 y + q_2 y^2)
\]

\[
+ (s_{001} + s_{101} y + 2s_{010} z)(r_1 y + r_2 y + r_3 y^2 + r_1 xz + r_2 xy + r_3 x^2 + r_4 x^2 + r_5 y^2 + r_6 x^2 + r_7 y^2 + r_8 x^2 + r_9 y^2)
\]

\[
= (s_{000} + s_{100} x + s_{010} y + s_{001} z + s_{200} x^2 + s_{020} y^2 + s_{002} z^2 + s_{101} xy + s_{101} xz + s_{110} yz)(q_1 + 2q_2 y).
\]

Equating the coefficients of the same powers of \(x, y \) and \(z \), we have

\[
s_{001} = s_{100} = s_{011} = s_{110} = s_{002} = s_{020} = 0,
\]

\[
s_{100}' = q_1 s_{000},
\]

\[
s_{010} + q_1 s_{010} = 2q_2 s_{000},
\]

\[
s_{002} + q_2 s_{020} + q_2 s_{010} = 0.
\]

Solving equation (2.15), we get (2.12). Substituting (2.12) into equation (2.16), we get (2.13). Substituting (2.13) into equation (2.17), we have (2.14).

Summarizing the above, the proof is finished.

Theorem 2.3. Suppose that vector function \(\Delta(t, x, y, z) \) of (2.3) is a reflective integral of system (2.2) and \(p_2(t) \neq 0, q_3(t) \neq 0, r_6(t) \neq 0 \), then \(r_2^2 - p_2 r_2 - 4r_3 r_6 \equiv \beta_1 \neq 0, r_2^2 - q_2 r_2 - 4r_3 r_6 \equiv \beta_2 \neq 0, (r_7 - p_2) \left(\frac{r_5}{r_6} \right) - 2r_3 \left(\frac{r_5}{r_6} \right) \equiv \delta_1, (r_7 - q_2) \left(\frac{r_5}{r_6} \right) - 2r_3 \left(\frac{r_5}{r_6} \right) \equiv \delta_2 \), then

\[
\Delta(t, x, y, z) = \left(\begin{array}{c} \Delta_1 \\ \Delta_2 \\ \Delta_3 \end{array} \right) = \left(\begin{array}{c} \sum_{i+j+k=0}^2 \mu_{ijk}(t) x^i y^j z^k \\ \sum_{i+j+k=0}^2 s_{ijk}(t) x^i y^j z^k \\ \sum_{i+j+k=0}^2 y_{ijk}(t) x^i y^j z^k \end{array} \right)
\]

\[
= \begin{pmatrix} \mu_{000} + \mu_{001} x + \mu_{200} x^2 \\ s_{000} + s_{001} y + s_{020} y^2 \end{pmatrix} + \begin{pmatrix} \gamma_{000} + \gamma_{001} x + \gamma_{020} y^2 \\ \frac{\gamma_{000} x^2 + r_3 \gamma_{001} y + r_6 y^2 + r_3 x^2 + r_6 z^2 + r_9 y^2} \end{pmatrix}
\]

\[
\sum_{i+j+k=0}^2 \frac{\gamma_{000} x^2 + r_3 \gamma_{001} y + r_6 y^2 + r_3 x^2 + r_6 z^2 + r_9 y^2}.
\]

where

\[
\mu_{100} = \frac{y'_{002}}{r_8} + \left(\frac{p_1}{\lambda_1} + \frac{p_2}{r_8} \right) y_{002},
\]

(2.18)

\[
s_{010} = \frac{y'_{002}}{r_8} + \left(\frac{p_2}{\lambda_2} + \frac{q_1}{r_8} \right) y_{002},
\]

(2.19)

\[
\mu_{000} = \frac{p_2}{r_8} y_{002},
\]

(2.20)

\[
s_{020} = \frac{q_2}{r_8} y_{002},
\]

(2.21)

\[
y'_{000} = r_1 y_{000} + r_2 s_{000} + r_1 y_{000},
\]

(2.22)

\[
y'_{001} = r_2 y_{000} + r_3 s_{000} + 2r_1 y_{000},
\]

(2.23)

\[
y_{001} = \frac{1}{r_8} (y'_{002} + r_1 y_{002}),
\]

(2.24)

\[
y_{00} = \left(\frac{\delta_1}{\lambda_1} + \frac{r_1}{r_8} \right) y_{002},
\]

(2.25)

\[
y_{010} = \left(\frac{\delta_2}{\lambda_2} + \frac{r_2}{r_8} \right) y_{002},
\]

(2.26)

\[
2r_3 \mu_{000} + r_3 s_{000} + r_1 y_{000} = \left[\left(\frac{\delta_1}{\lambda_1} + \frac{r_1}{r_8} \right) y_{002} \right] + \frac{(p_1 - r_3) \delta_1 - r_1 \beta_1}{\lambda_1} y_{002},
\]

(2.27)

\[
r_3 \mu_{000} + 2r_5 s_{000} + r_3 y_{000} = \left[\left(\frac{\delta_2}{\lambda_2} + \frac{r_2}{r_8} \right) y_{002} \right] + \frac{(q_2 - r_3) \delta_2 - r_2 \beta_2}{\lambda_2} y_{002},
\]

(2.28)

Proof. Using relation (2.4), we can get

\[
\Delta_3 + \Delta_3 P + \Delta_3 Q + \Delta_3 R = R_4 \Delta_1 + R_5 \Delta_2 + R_2 \Delta_3,
\]

i.e.

\[
y'_{00} + y'_{00,0} x + y'_{00,1} y + y'_{00,2} z + y'_{200,0} x^2 + y'_{200,1} x y + y'_{200,2} x^2 + y'_{101,0} x y + y'_{101,1} x z + y'_{101,2} y z
\]

+ \((y_{000} + 2y_{200,0} x + y_{101,0} y + y_{001,0} z)(p_1 x + p_2 x^2) + (y_{000} + y_{101,0} x + 2y_{002,0} y + y_{001,0} z)(q_1 y + q_2 y^2) \)

+ \((y_{000} + y_{001,0} x + y_{200,2} y)(r_1 x + r_2 y + r_3 z + r_4 x^2 + r_5 x y + r_6 y^2 + r_7 x z + r_8 z^2 + r_9 y z) \)

\(= (r_1 + 2r_4 x + r_5 y + r_6 z)(\mu_{000} + \mu_{000} x^2 + \mu_{000} y^2) + (r_2 + r_3 x + 2r_6 y + r_7 z)(s_{000} + s_{000} x + s_{000} y^2) \)

+ \((r_3 + r_4 x + r_7 y + 2r_6 z)(y_{000} + y_{000} x + y_{001,0} y + y_{000} z + y_{200,0} x^2 + y_{200,1} x y + y_{200,2} x^2 + y_{002,0} y^2 + y_{002,1} y z + y_{002,2} y z) \)

+ \(y_{001,0} z) \).

Equating the coefficients of \(x^0 \), \(z \) and \(z^2 \) in (2.29), we have (2.22), (2.23), and (2.24). Equating the coefficients of \(xz^2 \) and \(yz^2 \) in (2.29), we get

\[
y_{01} = \frac{r_7}{r_8} y_{002},
\]

(2.30)

\[
y_{011} = \frac{r_9}{r_8} y_{002}.
\]

(2.31)

Equating the coefficients of remaining items in (2.29), we obtain

\[
y'_{000} + p_1 y_{000} + r_1 y_{001} = r_1 y_{000} + 2r_3 \mu_{000} + r_5 s_{000} + r_1 y_{000} + r_1 y_{000},
\]

(2.32)

\[
y'_{001} + q_1 y_{001} + r_3 y_{001} = r_3 y_{000} + 2r_5 s_{000} + r_3 s_{000} + r_3 y_{000} + r_3 y_{000},
\]

(2.33)
\[y'_{200} + (p_2 - r_7)y_{200} + (2p_1 - r_3)y_{200} + r_6y_{201} + r_7y_{101} = r_5\mu_{200} + 2r_6\mu_{100}, \quad (2.34) \]
\[y'_{020} + (q_2 - r_6)y_{100} + (2q_1 - r_7)y_{200} + r_6y_{201} + r_7y_{011} = r_5s_{020} + 2r_6s_{010}, \quad (2.35) \]
\[y'_{110} + (p_1 + q_1 - r_5)y_{110} + r_5y_{111} + r_7(y_{001} - \mu_{100} - s_{010}) + r_7y_{011} = r_5y_{000} + r_7y_{100}, \quad (2.36) \]
\[y'_{101} + p_1y_{101} + 2r_1y_{002} = r_7\mu_{100} + 2r_6y_{100}, \quad (2.37) \]
\[y'_{011} + q_1y_{011} + 2r_2y_{002} = r_7s_{010} + 2r_6y_{010}, \quad (2.38) \]
\[(q_2 - r_5)y_{110} + r_5y_{011} + r_7y_{101} = r_5s_{020} + r_7y_{020}, \quad (2.39) \]
\[(2p_2 - r_7)y_{200} + r_7y_{011} = 2r_6\mu_{200}, \quad (2.40) \]
\[p_2y_{101} + 2r_6y_{202} - 2r_5y_{200} = r_7\mu_{200}, \quad (2.41) \]
\[(2q_2 - r_6)y_{020} + r_7y_{011} = 2r_6s_{020}, \quad (2.42) \]
\[2r_6y_{020} - q_2y_{011} - r_6y_{002} = -r_5s_{020}, \quad (2.43) \]
\[(p_2 - r_7)y_{110} = r_5\mu_{200} + r_5y_{200} - r_5y_{101} - r_5y_{011}. \quad (2.44) \]

Eliminating \(s_{020} \) from (2.42) and (2.43), and using identity (2.31), we get

\[(2q_2r_7 - r_7^2 + 4r_6r_8)y_{002} = [4r_6^2r_8 + (2q_2r_7 - r_6r_9)r_7]y_{002}. \]

Since \((2q_2r_7 - r_7^2 + 4r_6r_8)y_{002} \neq 0 \), then

\[y_{002} = \frac{r_9}{r_8}y_{002}. \quad (2.45) \]

Substituting (2.31) and (2.45) into relation (2.42), and using \(r_6 \neq 0 \), we get

\[s_{020} = \frac{q_2}{r_8}y_{002}. \quad (2.46) \]

Eliminating \(\mu_{200} \) from (2.40) and (2.41), and using identity (2.30), we get

\[(2p_2r_7 - r_7^2 + 4r_6r_8)y_{200} = r_8(4r_6r_8 + 2p_2r_7 - r_7^2)y_{002}. \]

Since \((2p_2r_7 - r_7^2 + 4r_6r_8)y_{200} \neq 0 \), then

\[y_{200} = \frac{r_9}{r_8}y_{002}. \quad (2.47) \]

Since \(r_7 \neq 0 \), from (2.30), (2.47), and (2.41), we can get

\[\mu_{200} = \frac{p_2}{r_8}y_{002}. \quad (2.48) \]

Since \(p_2 - r_7 \neq 0 \), substituting (2.30), (2.31), (2.47), and (2.48) into relation (2.44), we have

\[y_{110} = \frac{r_9}{r_8}y_{002}. \quad (2.49) \]

(2.25) can be obtained by using identities (2.24), (2.34), (2.48), (2.30), (2.37), and \(\lambda_i \neq 0 \). Similarly, using identities (2.35), (2.38), (2.31), (2.45), (2.24), and \(\lambda_i \neq 0 \), we get (2.26). Substituting (2.25) and (2.30) into (2.37), we get (2.18). Similarly, substituting (2.26) and (2.31) into (2.38), we obtain (2.19). Substituting (2.18), (2.24), and (2.25) into (2.32), we get (2.27). (2.28) can be obtained by using identities (2.18), (2.24), (2.25), and (2.33). The calculation shows that identities (2.36) and (2.39) are identical.

Summarizing the above, Theorem 2.1 and Theorem 2.2, the proof is finished. \(\square \)

From Lemma 1.1, we have thereby constructed the set of three-dimensional differential systems

\[
\begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} = \begin{pmatrix}
 P \\
 Q \\
 R
\end{pmatrix} + \sum_{k=1}^{m} a_k(t) \Delta_k(t, x, y, z)
\]

(2.50)
equivalent to system (2.2) in the sense of the reflective integral. Here \(a_k(t) \) are arbitrary scalar continuous odd functions, and \(\Delta_k(t, x, y, z) \) are vector functions described in Theorem 2.3.

Therefore, if some system can be represented in the form (2.50), then it is equivalent to the original system (2.2).

Theorem 2.4. Suppose that the general three-dimensional differential system (2.1) can be represented in the form (2.50), i.e.

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix} A & P \\ B & Q \\ C & R \end{bmatrix} + \sum_{k=1}^{m} a_k(t) \Delta_k(t, x, y, z),
\]

(2.51)

where \(a_k(t) \) are arbitrary continuous scalar odd functions, continuously differentiable vector functions \(\Delta_k(t, x, y, z) \) \((k = 1, 2, \ldots, m)\) are reflective integrals of system (2.2). Then system (2.1) is equivalent to the system (2.2), and

\[
A_{000}(0) = B_{000}(0) = C_{000}(0) = 0,
\]

(2.52)

\[
A_{010} = A_{001} = A_{020} = A_{002} = A_{100} = A_{101} = A_{011} = 0,
\]

\[
A_{100} = p_1 + \sum_{k=1}^{m} a_k \mu_{00k}, \quad A_{200} = p_2 + \sum_{k=1}^{m} a_k \mu_{00k},
\]

\[
B_{100} = B_{001} = B_{200} = B_{002} = B_{101} = B_{011} = 0,
\]

\[
B_{010} = q_1 + \sum_{k=1}^{m} a_k s_{00k}, \quad B_{020} = q_2 + \sum_{k=1}^{m} a_k s_{00k},
\]

\[
C_{100} = r_1 + \sum_{k=1}^{m} a_k y_{00k}, \quad C_{101} = r_2 + \sum_{k=1}^{m} a_k y_{00k},
\]

(2.53)

\[
C_{001} = r_3 + \sum_{k=1}^{m} a_k y_{00k}, \quad C_{110} = \frac{r_5}{r_8} C_{002}, \quad C_{200} = \frac{r_6}{r_8} C_{002},
\]

\[
C_{020} = \frac{r_6}{r_8} C_{002}, \quad C_{101} = \frac{r_5}{r_8} C_{002}, \quad C_{011} = \frac{r_5}{r_8} C_{002}.
\]

Proof. Using relation (2.51), we can get

\[
A = P + \sum_{k=1}^{m} a_k \Delta_{1k},
\]

i.e.

\[
A_{000} + A_{100} x + A_{010} y + A_{001} z + A_{200} x^2 + A_{020} y^2 + A_{002} z^2 + A_{101} x y + A_{101} x z + A_{011} y z = (p_1 x + p_2 x^2) + \sum_{k=1}^{m} a_k (\mu_{00k} + \mu_{00k} x + \mu_{00k} x^2).
\]

Equating the coefficients of the same powers of \(x, y, \text{ and } z \), we have (2.52) and (2.53). Since \(a_k(t) + a_k(-t) = 0 \) \((k = 1, 2, \ldots, m)\), then \(A_{000}(0) = 0 \).

Similarly, the rest of conclusions in this theory can be obtained from \(B = Q + \sum_{k=1}^{m} a_k \Delta_{2k} \) and \(C = R + \sum_{k=1}^{m} a_k \Delta_{3k} \).

Summarizing the above, the proof is finished. \(\square \)

Remark 2.5. We have thereby shown that a general three-dimensional differential system (2.1) that can be represented in the form (2.50) necessarily has the form

\[
\begin{bmatrix}
x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix} A_{000} + A_{100} x + A_{200} x^2, \\
A_{010} + B_{000} y + B_{020} y^2, \\
C_{000} + C_{100} y + C_{010} z + \frac{c_{000}}{r_5} (r_5 x^2 + r_5 x y + r_5 y^2 + r_5 x z + r_5 y z).
\end{bmatrix}
\]

where \(A_{000}(0) = B_{000}(0) = C_{000}(0) = 0 \).
Theorem 2.6. If system (2.1) is equivalent to system (2.2), \(p_1, q_i \) and \(r_i \) are arbitrary constants and \(p_1 \neq 0 \), then system (2.1) has no periodic solutions.

Proof. When \(p_1 \neq 0 \), the general solution of
\[
x' = p_1(t)x + p_2(t)x^2
\]
is
\[
\begin{align*}
p_1 t &= \ln |x| - \ln |p_1 + p_2 x| + \varpi_3,
\end{align*}
\]
where \(\varpi_3 \) is arbitrary constant. Obviously, it is not a periodic solution. Therefore, system (2.2) has no periodic solutions. Considering equivalence between systems (2.1) and (2.2), system (2.1) has no periodic solutions too. \(\Box \)

Example 1. Consider the three-dimensional differential system
\[
\begin{align*}
x' &= 1 - x \sin 2t + z \sin 2t + x^2 \cos 2t + 2xz \sin^2 t, \\
y' &= 1 - y \sin 2t + z \sin 2t + y^2 \cos 2t + 2yz \sin^2 t, \\
z' &= 1 + 3t \cos t + x \sin 3t \sin t + xz \cos 2t + 2z^2 \sin^2 t.
\end{align*}
\]

Set \(t = 0 \), we have the corresponding stationary system
\[
\begin{align*}
x' &= 1 + x^2, \\
y' &= 1 + y^2, \\
z' &= 1 + xz.
\end{align*}
\]

Let a continuously differentiable vector function
\[
F(t, x, y, z) = (F_1(t, x, y, z), F_2(t, x, y, z), F_3(t, x, y, z))^T
\]
be reflective function of system (2.5). Since \(F_1(t, x, y, z) = F(t, x) = \varphi(-t; t, x) \), where \(x = \varphi(t; t_0, x_0) \) is the general solution of equation \(x' = 1 + x^2 \) in Cauchy form, we have
\[
F_1(t, x, y, z) = \frac{x \cos 2t - \sin 2t}{\cos 2t + x \sin 2t}.
\]

Similarly, we obtained
\[
F_2(t, x, y, z) = \frac{y \cos 2t - \sin 2t}{\cos 2t + y \sin 2t}.
\]

Let \(F = (F_1, F_2, F_3)^T \) be the reflective function of system (2.54), by relation (1.2), we have
\[
\begin{align*}
\begin{pmatrix}
F_1 \\
F_2 \\
F_3
\end{pmatrix}
&= \begin{pmatrix}
F_{1x} & 0 & 0 \\
0 & F_{2y} & 0 \\
F_{3x} & F_{3y} & F_{3z}
\end{pmatrix}
\begin{pmatrix}
1 - x \sin 2t + z \sin 2t + x^2 \cos 2t + 2xz \sin^2 t \\
1 - y \sin 2t + z \sin 2t + y^2 \cos 2t + 2yz \sin^2 t \\
1 + 3t \cos t + x \sin 3t \sin t + xz \cos 2t + 2z^2 \sin^2 t
\end{pmatrix} \\
&= 0.
\end{align*}
\]

From the first equation in system (2.56), we obtain
\[
F_1(t, x, y, z) = \frac{x \cos 2t - 1 + z - \sin 2t}{\cos 2t + x \sin 2t}.
\]

Substitute \(F_1 \) and \(F_3 \) into the third equation in system (2.56), we obtain an identity. Since
then function $F = (F_1, F_2, F_3)^T$ is also the reflective function of system (2.55), i.e. systems (2.54) and (2.55) are equivalent. Obviously, system (2.54) has no periodic solutions. Considering equivalence between systems (2.54) and (2.55), system (2.54) has no periodic solutions too.

Acknowledgments: The authors appreciate the valuable comments and suggestions from the anonymous reviewer, which improve the accuracy and completeness of this paper. This research is supported by SuQian Sci&Tech Program (Grant No. Z2019096).

References

[1] V. I. Mironenko, *Reflective Function and Periodic Solution of the Differential System*, University Press, Minsk, 1986.
[2] Ph. Hartman, *Ordinary Differential Equations*, Johns Hopkins University, New York, London, Sydney, 1964.
[3] V. V. Mironenko, *Time symmetry preserving perturbations of differential systems*, Differ. Equ. 40 (2004), 1395–1403.
[4] V. I. Mironenko, *Reflecting Function and Discussion of Many-Dimensional Differential System*, Gomel University, Belarus, 2004.
[5] E. V. Musafov, *Differential systems, the mapping over period for which is represented by a product of three exponential matrices*, J. Math. Anal. Appl. 329 (2007), 647–654.
[6] S. V. Maiorovskaya, *Quadratic system with linear reflecting function*, Differ. Equ. 45 (2009), no. 2, 271–273.
[7] P. P. Veresovich, *Nonautonomous second order quadric system equivalent to linear system*, Differ. Equ. 34 (1998), no. 12, 2257–2259.
[8] Z. X. Zhou, *On the Poincare mapping and periodic solutions of nonautonomous differential systems*, Commun. Pure Appl. Anal. 2 (2007), no. 6, 541–547.
[9] Z. X. Zhou, *On the first integral and equivalence of nonlinear differential equations*, Appl. Math. Comput. 268 (2015), 295–302.
[10] Z. X. Zhou, *On the structure of the equivalent differential systems and their reflecting integrals*, Bull. Braz. Math. Soc. (N.S.) 48 (2017), 439–447.
[11] V. A. Bel’skii, *On quadratic differential systems with equal reflecting functions*, Differ. Equ. 49 (2013), 1639–1644.
[12] J. Zhou, *Differential systems with the same reflecting functions*, Appl. Math. Comput. 218 (2011), 3144–3148.
[13] J. Zhou and S. Y. Zhao, *On the generalized reflective function of the three-degree polynomial differential system*, J. Funct. Spaces 2019 (2019), 1078103, DOI: 10.1155/2019/1078103.