A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programming

Margarita P. Castro · Andre A. Cire · J. Christopher Beck

Received: 13 March 2020 / Accepted: 29 July 2021 / Published online: 11 August 2021
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2021

Abstract
Cut generation and lifting are key components for the performance of state-of-the-art mathematical programming solvers. This work proposes a new general cut-and-lift procedure that exploits the combinatorial structure of 0–1 problems via a binary decision diagram (BDD) encoding of their constraints. We present a general framework that can be applied to a wide range of binary optimization problems and show its applicability for second-order conic inequalities. We identify conditions for which our lifted inequalities are facet-defining and derive a new BDD-based cut generation linear program. Such a model serves as a basis for a max-flow combinatorial algorithm over the BDD that can be applied to derive valid cuts more efficiently. Our numerical results show encouraging performance when incorporated into a state-of-the-art mathematical programming solver, significantly reducing the root node gap, increasing the number of problems solved, and reducing the run-time by a factor of three on average.

Keywords Lifting · Cutting planes · Decision diagrams · Binary optimization · Second-order cones

Mathematics Subject Classification 90C09 · 90C57 · 90B10
1 Introduction

Cutting plane methodologies have played a key role in the theoretical and computational development of mathematical programming [19,44]. Extensive literature has focused on cuts that exploit special problem substructure, leading to an array of techniques that are now integral into state-of-the-art solvers [39]. For general problems, cuts are obtained either by leveraging disjunctive reformulations [9,10] or by lifting, i.e., relaxing an initial inequality so that it is valid for a higher-dimensional polyhedron [26,41,58].

In this paper, we study both a cut generation procedure and a lifting approach for general binary optimization problems of the form

$$\max_{x \in X \subseteq \{0, 1\}^n} c^T x,$$

(1)

where the feasible set X is arbitrary, e.g., possibly represented by a conjunction of linear and/or non-linear constraints. Our methodologies consist of exploiting network structure via a binary decision diagram (BDD) embedding of X. A BDD is a graphical model that represents solutions as paths in a directed acyclic graph, which can be viewed as a network-flow reformulation of X. Such a model is potentially orders of magnitude smaller than an explicit representation of X as it identifies and merges equivalent partial solutions. Several BDD encodings have already been investigated for linear and non-linear problems [12,13,42] and are used to exploit submodularity [14] or more general combinatorial structure [16].

We propose a sequential lifting procedure that can be applied to any initial inequality (e.g., given by another cutting-plane technique). The lifting algorithm uses 0–1 disjunctions derived from a BDD representation of X to rotate inequalities while maintaining their validity. We show that each step of our sequential lifting can be performed efficiently in the size of the BDD and, when applicable, increases the dimension of the face by at least one. We also establish conditions for which the inequality becomes facet-defining and draw connections between our procedure and existing lifting techniques from disjunctive programming [8], showing that our approach generalizes well-known lifting procedures for 0–1 inequalities [7,30,47].

For our cut generation approach, we propose a reformulation of the BDD polytope based on capacitated flows, which leads to an alternative cut generation linear program (CGLP) for separating infeasible points. We show that the set of cuts derived from this model defines the convex hull of the solutions encoded by the BDD, i.e., X, and that this methodology circumvents common issues of existing BDD cut techniques. Finally, we build on this model to develop a weaker but computationally faster alternative that solves a combinatorial max-flow/min-cut problem over the BDD to generate valid inequalities.

For optimization problems where a BDD for X may be exponentially large in n, our lifting and cut procedures remain valid when considering instead a limited-size relaxed BDD for BP, i.e., where the BDD encodes a superset of X. Several efficient methods exist to build relaxed BDDs, such as only considering a subset of the problem constraints [16]. This approach is similar in spirit, e.g., to when a linear relaxation
is used to lift cover inequalities of a single knapsack constraint [7]. We exploit the discrete relaxation given by the BDD as opposed to a continuous relaxation, which captures some of the combinatorial structure of the problem. Both our lifting procedure and combinatorial cuts are also of low complexity in the size of the BDD and, when a relaxed BDD is employed, its size can be controlled through a parameter limiting its maximum width.

To assess our lifting and cut generation procedure, we apply our methodology to a class of second-order conic programming problems (SOCPs) with multiple second-order conic (SOC) inequalities, each reformulated as a BDD. We experiment on the SOC knapsack benchmark [5,34] and 270 randomly generated instances with more general and challenging SOC inequalities, incorporating our cut-and-lift approach into CPLEX. We also compare with existing BDD cutting techniques [25,52] and a SOC cut-and-lift method [5], also noting that CPLEX includes many state-of-the-art SOC techniques [33].

Our numerical results indicated that (a) our lifting procedure reduced the average root gap up to 29% in our benchmark when applied to cuts generated by all procedures; (b) when cuts are added only at the root node, a hybrid technique combining our method with BDD target cuts [52] is the most effective for SOC knapsacks, while for general SOC inequalities our cuts perform similarly to target cuts; and (c) when adding cuts during the tree search, the hybrid is also the best performing across all methods, particularly achieving the best final gaps, solution times, and number of solved instances for our general SOCP benchmark. Furthermore, the hybrid BDD technique improves upon default CPLEX and reduced up to 52.2% of the root node gap, closed at last 17 instances in each benchmark, and decreased solution times by threefold.

The paper is structured as follows. Section 2 introduces notation and background material. Section 3 describes related works in the BDD and lifting literature. Section 4 describes our combinatorial lifting procedure while Sect. 5 details our BDD-based cutting-plane algorithms. Section 6 introduces the case study problem and describes the BDD encoding for SOC inequalities. Lastly, Sects. 7 and 8 present the empirical evaluation and final remarks, respectively.

2 Background

This section introduces the notation used throughout this work and the background material on BDDs. For convenience, we assume \(n \geq 1 \) and let \(I := \{1, \ldots, n\} \) represent the component indices of any \(n \)-dimensional point \(x \).

We denote by \(\dim(P) \) the dimension of a polytope \(P \subseteq [0, 1]^n \). An inequality \(\pi^T x \leq \pi_0 \) with \(\pi \in \mathbb{R}^n \) and \(\pi_0 \in \mathbb{R} \) is valid for \(P \) if \(\pi^T x \leq \pi_0 \) holds for all \(x \in P \). The inequality defines a face of \(P \) if \(F(\pi) := \{x \in P : \pi^T x = \pi_0\} \) is not empty, i.e., the inequality supports \(P \). A face \(F(\pi) \) is a facet if \(\dim(F(\pi)) = \dim(P) - 1 \); in such a case, \(\pi^T x \leq \pi_0 \) is facet-defining. Finally, we denote the convex hull of \(P \) by \(\text{conv}(P) \).

Binary Decision Diagrams. A BDD \(B \) is an extended representation of a set \(X_B \subseteq \{0, 1\}^n \) as a network. Specifically, \(B = (\mathcal{N}, A) \) is a layered directed acyclic graph
with node set \mathcal{N} and arc set \mathcal{A}. The node set \mathcal{N} is partitioned into $n + 1$ layers $\mathcal{N} = (\mathcal{N}_1, \ldots, \mathcal{N}_{n+1})$. The first and last layers are the singletons $\mathcal{N}_1 = \{r\}$ and $\mathcal{N}_{n+1} = \{t\}$, respectively, where r is the root node and t is the terminal node. An arc $a = (u, u') \in \mathcal{A}$ has a source node $s(a) = u$ and a target node $t(a) = u'$ in consecutive layers, i.e., $u' \in \mathcal{N}_{i+1}$ whenever $u \in \mathcal{N}_i$ for $i \in I$.

The points of X_B are mapped to paths in the network, as follows. With each arc $a \in \mathcal{A}$ we associate a value $v_a \in \{0, 1\}$, where a node $u \in \mathcal{N}$ has at most one arc of each value emanating from it. Given an arc-specified $r - t$ path $p = (a_1, \ldots, a_n)$ with $s(a_1) = r$ and $t(a_n) = t$, we let $x^p := (v_{a_1}, v_{a_2}, \ldots, v_{a_n}) \in \{0, 1\}^n$ be the n-dimensional point encoded by path p. Thus, if \mathcal{P} is the set of all $r - t$ paths in \mathcal{B}, the set of points represented by the BDD is $X_B = \bigcup_{p \in \mathcal{P}} \{x^p\}$.

A BDD \mathcal{B} is exact for set $X \subseteq \{0, 1\}^n$ when $X = X_B$, i.e., there is a one-to-one relationship between the points in X and the $r - t$ paths in \mathcal{B}. Alternatively, \mathcal{B} is relaxed when $X \subseteq X_B$, i.e., every point in X maps to a path in \mathcal{B} but the converse is not necessarily true.

Example 1 Consider $X = \{x \in \{0, 1\}^4 : x_0 + x_1 + x_2 + x_3 + x_4 \leq 8\}$. Figure 1 illustrates two exact BDDs for X: B_1 on the left-hand side and B_2 on the right-hand side. Dashed and solid arcs have a value of 0 and 1, respectively. Each point $x \in X$ is represented by a path in B_1 and B_2. For example, $x = (1, 0, 0, 1) \in X$ is encoded by the path $((r, u_2), (u_2, u_4), (u_4, u_5), (u_5, t))$ in B_1, and by the path $((r, u_2'), (u_2', u_5'), (u_5', t))$ in B_2. □

A BDD \mathcal{B} is reduced if it is the smallest network (with respect to number of nodes) that represents the set X_B. There exists a unique reduced BDD for a given ordering of the indices I. Furthermore, given any \mathcal{B} and an ordering, we can obtain its associated reduced BDD in polynomial time in the size of \mathcal{B} [20]. For instance, B_1 in Fig. 1 is reduced and can be obtained by merging nodes u_4' and u_5' from B_2 and adjusting their emanating arcs appropriately.
Several exact and relaxed BDD construction mechanisms are available for general and specialized discrete optimization problems \([14,16,52]\). These techniques either reformulate the problem as a dynamic program, where \(B\) represents an underlying state-transition graph, or separate infeasible paths of a relaxed BDD. It is often the case that BDDs can be exponentially smaller than enumerating \(X_B\) explicitly \([16]\). If exact BDDs are too large, relaxed BDDs can be built for \(X\) by either imposing a limit on the number of nodes or by considering a subset of the constraints. We discuss the construction and relaxation techniques used for our case study in Sect. 6.

3 Related work

Recent research has shown the versatility of BDDs for modeling linear and non-linear inequalities \([2,14,17,31]\) and there is a growing literature on BDD encodings for vehicle routing \([21,37,48]\), scheduling \([23,32,53,54]\), and other combinatorial optimization problems \([13,15,16,22]\). Within the context of this work, Becker et al. \([11]\) presented the first BDD cut generation procedure based on an iterative subgradient algorithm that relies on a longest-path problem over the BDD. Behle \([12]\) formalized this procedure and proposed a branch-and-cut algorithm that employs BDDs to generate exclusion and implication cuts. The author also introduced the network flow model employed by most BDD cutting-plane procedures \([25,42,52]\).

More recently, two BDD-based cutting plane techniques have been proposed with theoretical and computational considerations. Tjandraatmadja and van Hoeve \([52]\) generate target cuts from polar sets using relaxed BDDs to derive a more tractable methodology that in Becker et al. \([11]\). Davarnia and van Hoeve \([25]\) develop an iterative method to generate outer-approximations for non-linear inequalities, relying on a subgradient algorithm to avoid solving linear programs. We compare these two models conceptually to our approach in Sect. 5.4 and evaluate them numerically in Sect. 7.

Our cutting plane methods are related to the method by Lozano and Smith \([42]\) for a class of two-stage stochastic programming problems. The authors propose a Benders decomposition approach using BDDs to encode second-stage decisions, where arcs are can be activated or deactivated based on first-stage decisions. Benders cuts are obtained by solving a network-flow model over the BDD where arcs are bounded by the first-stage variables. Similarly, our CGLP model proposed in Sect. 5 is also based on a capacitated network-flow model. However, our model is more structured in that it incorporates one variable per layer for all arc types, leading to more specialized inequalities and structural results for separation purposes (e.g., Lemma 3 and Theorems 3 and 4). We also leverage this model to develop our combinatorial max-flow cuts that do not depend on linear programming (LP) solutions.

Our numerical case study is focused on SOCPs. Recent work in the field relies on ideas from split cuts \([43]\), disjunctions \([36,40]\), or are more specialized \([35,49]\). Techniques based on mixed-integer rounding \([6]\) and lift-and-project \([51]\) have also shown to be suitable in practice, and are currently implemented in commercial solvers \([33]\). Several recent works also exploit SOCPs with special structure, such as binary SOC knapsack inequalities \([4,5,18,34]\).
While the literature on BDD cutting-plane procedures has grown recently, to the best of our knowledge, this is the first work that leverages BDDs to lift general form linear inequalities. Behle [12] proposes lifting cover inequalities using classic techniques that compute new coefficients one at a time [59] and where each sub-problem is solved using a BDD. Becker et al. [11] also present a mechanism that uses 0–1 disjunctions over a BDD to obtain new inequalities. Their technique differs from ours with respect to both the procedure to obtain the new inequality and its theoretical guarantees. In particular, their lifted inequality might not separate fractional points that the original inequality does nor induce a face with higher dimension.

Our combinatorial lifting relates to sequential lifting algorithms based on 0–1 disjunctions [8], including specialized procedures for the knapsack polytope [7,45,46] and submodular inequalities [5,30]. These procedures successfully address special cases of the general lifting problem we investigate (see Sect. 4), focusing on given problem structures (e.g., monotone sets). In particular, lifting cover inequalities is a well-studied area [27,28], often using the classical knapsack dynamic program to efficiently lift coefficients [60] when such constraints are present. In contrast, our approach is general in that it can be applied to any type of valid linear inequality (i.e., not restricted to cover inequalities) or feasibility set, including those defined by nonlinear constraints. We also note that BDD sizes can be parameterized for large-scale problems.

Lastly, our methodology is closely related to the \(n\)-step lifting procedure by Perregaard and Balas [47], which generalizes the special cases mentioned above (e.g., lifting cover inequalities). We briefly introduce this procedure below and relate it to our combinatorial lifting algorithm in Sect. 4.4.

An Iterative Lifting Procedure based on Disjunctive Programming. Given a mixed-integer linear programming (MILP) problem of the form \(\max_x \{c^\top x : Ax \leq b, x_i \in \mathbb{Z}, \forall i \in I' \subseteq I\}\), the authors [47] propose the relaxation

\[
\max_x \left\{c^\top x : Ax \leq b, \bigvee_{k \in K} D^k x \leq d^k, x_i \in \mathbb{Z} \quad \forall i \in I'' \subseteq I'\right\} \tag{DP}
\]

where fewer variables are constrained to be integral. The set \(K\) that defines the disjunctive constraints is typically derived by considering the 0–1 integrality constraints of individual variables (e.g., \(x_i \leq 0 \lor x_i \geq 1\)).

Let \(P_{DP}\) be the set of solutions of DP. The \(n\)-step procedure considers two inputs: (a) an inequality \(\pi^\top x \leq \pi_0\) that supports \(\text{conv}(P_{DP})\); and (b) an arbitrary target inequality \(\tilde{\pi}^\top x \leq \tilde{\pi}_0\) that is tight for all integer points in \(F(\pi)\). The procedure uses a parameter \(\gamma\) to rotate the supporting inequality towards the target inequality, generating a new lifted inequality \((\pi + \gamma \tilde{\pi})^\top x \leq \pi_0 + \gamma \tilde{\pi}_0\) that is valid for \(\text{conv}(P_{DP})\). In particular, if \(\tilde{\pi}^\top x \leq \tilde{\pi}_0\) is not valid for \(P_{DP}\), it can be shown that there is a finite maximal \(\gamma\) given by the disjunctive program.
\[\gamma^* = \min_{x, x_0} \left\{ \pi_0 x_0 - \pi^\top x : \quad Ax - b x_0 \leq 0, \quad \bigvee_{k \in K} D^k x - d^k x_0 \leq 0, \right. \\
\left. \tilde{\pi}_0 x_0 - \tilde{\pi}^\top x = -1, \quad x_0 \geq 0, \quad x_i \in \mathbb{Z} \quad \forall i \in I'' \subset I' \right\}. \]

Under the same assumptions, the lifted inequality becomes a facet of \(\text{conv}(P_{DP}) \) if the procedure is repeated \(n \) times, using the rotated inequality and an appropriate target inequality.

Similarly, our approach is a sequential procedure that relies on disjunctions. It differs from the above method in that we exploit the combinatorial structure encoded by a BDD as opposed to a disjunctive program relaxation. Such a BDD may encode, e.g., complex non-linear constraints that are not necessarily convex [14]. Furthermore, we also exploit the network to derive a tractable and efficient way to compute several disjunctions simultaneously, while previous algorithms are typically restricted to a small number of disjunctions [47].

4 Combinatorial lifting

We now present our combinatorial lifting procedure and develop its structural properties. We begin by introducing our basic methodology in Sect. 4.1, which is defined in general terms and does not depend on a BDD \(B \) encoding. Next, in Sect. 4.2 we present a methodology that exploits network structure to perform the proposed lifting in polynomial time in the size of \(B \) (i.e., in the number of nodes and arcs). Next, Sect. 4.3 incorporates the technique in a sequential procedure and investigate the dimension of the resulting face. Finally, we depict the relationship with previous disjunctive methodologies in Sect. 4.4.

Throughout this section, we assume that, for a given \(X \subseteq \{0, 1\}^n \), (a) inequality \(\pi^\top x \leq \pi_0 \) is valid and supports \(\text{conv}(X) \); (b) \(B \) is an exact BDD for \(X \), i.e., \(X_B = X \); and (c) for any \(i \in I \), there exists \(x, x' \in X \) such that \(x_i = 0 \) and \(x'_i = 1 \). Assumption (a) is a common lifting condition that is satisfied by setting \(\pi_0 := \max_{x \in X} \{ \pi^\top x \} \).

This, in turn, can be enforced in linear time in the size of \(B \) (see Sect. 4.2). Assumption (b) is needed for our theoretical results but it can be relaxed in practice (see Sect. 7). For (c), we can soundly remove any \(i \)-th component not satisfying the assumption, adjusting \(n \) accordingly.

Our goal is to lift \(\pi^\top x \leq \pi_0 \) and better represent \(\text{conv}(X) \) by exploiting the network structure of \(B \). The resulting cuts are valid for any subset \(X' \subseteq X \); e.g., when \(B \) (and hence \(X \)) is a relaxation of some feasible set.

4.1 Disjunctive slack lifting

The core element of our lifting procedure is what we denote by \textit{disjunctive slack vector} (or \textit{d-slack} in short). The \(i \)-th component of the d-slack indicates the change in the maximum values of the left-hand side of \(\pi^\top x \leq \pi_0 \) when varying \(x_i \). This is formalized in Definition 1.
Definition 1 The disjunctive slack vector $\lambda(\pi)$ with respect to π is given by

$$\lambda_i(\pi) := \lambda_i^0(\pi) - \lambda_i^1(\pi), \quad \forall i \in I,$$

with $\lambda_i^0(\pi) := \max_{x \in X} \{\pi^\top x : x_i = 0\}$ and $\lambda_i^1(\pi) := \max_{x \in X} \{\pi^\top x : x_i = 1\}$.

For notational convenience, we let $S^- (\pi) := \{i \in I : \lambda_i(\pi) < 0\}$, $S^0 (\pi) := \{i \in I : \lambda_i(\pi) = 0\}$, and $S^+ (\pi) := \{i \in I : \lambda_i(\pi) > 0\}$ be a partition of I with respect to negative, zero, and positive d-slacks, respectively. Lemma 1 presents key properties of d-slacks used for our main results.

Lemma 1 For any $\lambda(\pi)$ and index $i \in I$,

1. $i \in S^- (\pi)$ if and only if $x_{i} = 1$ for all $x \in F(\pi)$.
2. $i \in S^0 (\pi)$ if and only if $x_{i} = 0$ for all $x \in F(\pi)$.
3. $i \in S^+ (\pi)$ if and only if there exists $x, x' \in F(\pi)$ with $x_{i} = 0$ and $x'_{i} = 1$.

Proof For the necessary conditions, consider first $x_{i} = 1$ for all $x \in F(\pi)$. Since the solutions when optimizing over $\pi^\top x$ must belong to the face $F(\pi)$, we must necessarily have $\lambda_i^1(\pi) > \lambda_i^0(\pi)$ and so the d-slack $\lambda_i(\pi)$ is negative. An analogous reasoning holds for the other two cases.

For the sufficient conditions, consider first $i \in S^- (\pi)$. Then $\lambda_i^1(\pi) = \pi_0$ and $\lambda_i^0(\pi) < \pi_0$, i.e., all $x \in F(\pi)$ are such that $x_{i} = 1$. The same argument can be applied to the case $i \in S^+ (\pi)$. Lastly, if $i \in S^0 (\pi)$, $\lambda_i^0(\pi) = \lambda_i^1(\pi) = \pi_0$. Thus, there exists $x \in F(\pi)$ that maximizes $\lambda_i^1(\pi)$ (i.e., $x_{i} = 1$) and $x' \in F(\pi)$ that maximizes $\lambda_i^0(\pi)$ (i.e., $x'_{i} = 0$).

We now show in Theorem 1 how to apply the d-slacks to lift $\pi^\top x \leq \pi_0$. In particular, the resulting inequality is valid for X (and thereby conv(X)), the dimension of the face necessarily increases, and points separated by the original inequality are still separated after lifting. This last characteristic is important, e.g., if the input inequality $\pi^\top x \leq \pi_0$ was derived to separate a fractional point. Note that we require a d-slack with a non-zero component to rotate the inequality, as we later illustrate in Example 2.

Theorem 1 Suppose $\lambda_i(\pi) \neq 0$ for some $i \in I$. Let (π', π'_0) be such that

$$
\pi'_j := \begin{cases}
\pi_j & \text{if } j \neq i, \\
\pi_j + \lambda_j(\pi) & \text{otherwise},
\end{cases} \quad \forall j \in I, \quad \pi'_0 := \begin{cases}
\pi_0 & \text{if } i \in S^+(\pi), \\
\pi_0 + \lambda_i(\pi) & \text{otherwise}.
\end{cases}
$$

The following properties hold:

1. $\pi'^\top x \leq \pi'_0$ is valid for X.
2. $F(\pi) \subset F(\pi')$ and $\dim(F(\pi')) \geq \dim(F(\pi)) + 1$.
3. For any $\bar{x} \in [0, 1]^n$ with $\pi'^\top \bar{x} > \pi_0$, we have that $\pi'^\top \bar{x} > \pi'_0$.

\textcircled{7} Springer
Proof Let \(x \in X \). We begin by showing (1) and (2). Assume first that \(i \in S^+(\pi) \). By construction, \(\pi^\top x \leq \pi_0' \iff \pi^\top x + \lambda_i(\pi)x_i \leq \pi_0 \).

If \(x_i = 0 \), the lifted inequality is equivalent to the original and therefore valid. Otherwise, if \(x_i = 1 \), \(i \in S^+(\pi) \) implies that \(\lambda_i(\pi) = \pi_0 - \lambda_i^1(\pi) \). Thus,

\[
\pi^\top x \leq \pi_0' \iff \pi^\top x + \pi_0 - \lambda_i^1(\pi) \leq \pi_0 \iff \pi^\top x \leq \lambda_i^1(\pi)
\]

The last inequality above holds because we are restricting to the case \(x_i = 1 \) and, by definition, \(\lambda_i^0(\pi) = \max_{x' \in X} \{ \pi^\top x' : x_i' = 1 \} \). Since \(x_i' = 0 \) for all \(x' \in F(\pi) \) (Lemma 1), the lifted inequality is tight for all \(x' \in F(\pi), i.e., F(\pi) \subset F(\pi') \).

Notice also that this inequality is tight for \(x^* = \arg \max_{x' \in X} \{ \pi^\top x' : x_i' = 1 \} \), i.e., \(x^* \in F(\pi') \). Then, \(x^* \) is affinely independent to all points of \(F(\pi) \) and therefore \(\dim(F(\pi')) \geq \dim(F(\pi)) + 1 \).

Assume now that \(i \in S^-(\pi) \). Once again by construction, \(\pi^\top x \leq \pi_0' \) if and only if \(\pi^\top x + \lambda_i(\pi)x_i \leq \pi_0 + \lambda_i(\pi) \). If \(x_i = 1 \), the lifted inequality is equivalent to the original and therefore valid. Otherwise, if \(x_i = 0 \), \(i \in S^-(\pi) \) implies that \(\lambda_i(\pi) = \lambda_i^0(\pi) - \pi_0 \). Thus,

\[
\pi^\top x \leq \pi_0' \iff \pi^\top x \leq \pi_0 + \lambda_i^0(\pi) - \pi_0 \iff \pi^\top x \leq \lambda_i^0(\pi)
\]

The last inequality above holds because \(x_i = 0 \) and, by definition, \(\lambda_i^0(\pi) = \max_{x' \in X} \{ \pi^\top x' : x_i' = 0 \} \). As before, notice that this inequality is tight for \(x^* = \arg \max_{x' \in X} \{ \pi^\top x' : x_i' = 0 \}, i.e., x^* \in F(\pi') \). Since \(x_i' = 1 \) for all \(x' \in F(\pi) \) (Lemma 1), the inequality is tight for all \(x' \in F(\pi), x^* \) is affinely independent to all points of \(F(\pi) \), and therefore \(\dim(F(\pi')) \geq \dim(F(\pi)) + 1 \).

Lastly, we demonstrate (3). We restrict to the case \(i \in S^+(\pi) \); the other case is analogous. Given a fractional point \(\bar{x} \in \{0, 1\}^n \) as defined above, we have \(\pi^\top \bar{x} = \pi^\top \bar{x} + \lambda_i(\pi)\bar{x}_i > \pi_0 + \lambda_i(\pi)\bar{x}_i \geq \pi_0 = \pi' \).

Example 2 Let \(X = \{ x \in \{0, 1\}^4 : 7x_1 + 5x_2 + 4x_3 + x_4 \leq 8 \} \) and consider an inequality \(x_1 + x_2 \leq 1 \) supporting \(\text{conv}(X) \). The d-slack is \(\lambda(\pi) = (0, 0, 1, 0)^\top \) and the lifted inequality with respect to \(\lambda_3(\pi) = 1 \) is \(\pi^\top x = x_1 + x_2 + x_3 \leq 1 \). Note that \(\pi^\top x = 1 \) is facet-defining for \(\text{conv}(X) \) and \(\lambda(\pi') = 0 \).

4.2 Extracting disjunctive slacks from a BDD

Identifying d-slacks \(\lambda(\pi) \) is a non-trivial task since we are required to solve \(2n \) binary optimization problems, i.e., one for each component \(i \in I \) and values 0 and 1. In this section, we leverage the network representation of a BDD \(B = (\mathcal{N}, \mathcal{A}) \) for \(X \) to generate all d-slacks simultaneously, which is key to the computational complexity of the approach. We also show that the procedure complexity is linear in the number of arcs \(|\mathcal{A}| \) of \(B \).

We associate a length of \(\pi_i \cdot v_a \) to each arc \(a \in \mathcal{A} \) with value \(v_a \in \{0, 1\} \) and source \(s(a) \in \mathcal{N}_i \) for some \(i \in I \). The longest \(r - t \) path of \(B \) with respect to such lengths...
maximizes $\pi^\top x$ over X. Given the $r - t$ paths \mathcal{P} of B, let

$$\ell_a := \max \left\{ \sum_{k=1}^{n} \pi_k \cdot v_{ak} : p = (a_1, \ldots, a_n) \in \mathcal{P}, a_i = a \right\}$$

be the longest-path value conditioned on all paths that include arc a. Because each variable is uniquely associated with a layer, it follows that

$$\lambda_i^j(\pi) = \max_{a \in A} \{ \ell_a : s(a) \in N_i, v_{a} = j \}, \ \forall i \in I, \forall j \in \{0, 1\}.$$

and the final d-slacks are obtained by the differences $\lambda_i^0(\pi) - \lambda_i^1(\pi)$ for all i.

The lengths ℓ_a are derived by performing two longest-path computations over B. Specifically, let $A^{\text{in}}(u)$ and $A^{\text{out}}(u)$ be the set of incoming and outgoing arcs of a node $u \in N$, respectively. The solution of the recursion $L^\downarrow(\pi, r) = 0$,

$$L^\downarrow(\pi, u) = \max_{a \in A^{\text{in}}(u)} \{ L^\downarrow(\pi, s(a)) + \pi_{i-1} \cdot v_a \}, \ \forall u \in N_i, \forall i \in \{2, \ldots, n + 1\}$$

provides the longest-path value $L^\downarrow(\pi, u)$ from r to u, while $L^\uparrow(\pi, t) = 0$,

$$L^\uparrow(\pi, u) = \max_{a \in A^{\text{out}}(u)} \{ L^\uparrow(\pi, t(a)) + \pi_i \cdot v_a \}, \ \forall u \in N_i, \forall i \in \{1, \ldots, n\},$$

provides the longest-path value $L^\uparrow(\pi, u)$ from u to t. The values $L^\downarrow(\pi, u)$ can be calculated via a top-down pass on B, i.e., starting from r and considering one layer N_2, \ldots, N_{n+1} at a time. Analogously, the values $L^\uparrow(\pi, u)$ are obtained via a bottom-up pass on B, i.e., starting from t and considering one layer $N_0, N_{n-1}, \ldots, N_1$ at a time. For any arc $a = (s(a), t(a))$ such that $s(a) \in N_i$, its length is given by $\ell_a = L^\downarrow(\pi, s(a)) + L^\uparrow(\pi, t(a)) + \pi_i \cdot v_a$. Since each arc is traversed twice via the top-down and bottom-up passes, the complexity of the procedure is $O(|A|)$.

We remark that the algorithm above is similar in spirit to the lifting procedures for cover inequalities based on dynamic programming [27,59,60], in particular also solving a recursive model to lift coefficients. The existing techniques, however, are applicable only for the knapsack polytope, solve a new dynamic program for each inequality to be lifted, and specialize on cover inequalities. In contrast, our approach is suitable for any set X and valid linear inequality, and utilizes the same BDD to lift any given inequality (i.e., the BDD needs to be constructed only once).

4.3 Sequential lifting and dimension implications

The lifting procedure detailed in Theorem 1 can be applied sequentially to strengthen an inequality. Specifically, we start with (π, π_0) satisfying our main assumptions (a)-(c). Next, we calculate the d-slacks, choose $i \in I$ such that $\lambda_i(\pi) \neq 0$, and apply Theorem 1 to obtain the tuple (π', π'_0) defining the lifted inequality. We re-apply this operation with the new (π', π'_0), and repeat until all d-slacks are equal to zero. The
procedure stops in a finite number of iterations since the face dimension increases after each rotation; see property (2) of Theorem 1. We summarize the procedure in Algorithm 1.

The choice of i in step 4 of Algorithm 1 is critical to the dimension of the resulting face, as illustrated in Example 3.

Example 3 Consider the set $X = \{x \in \{0, 1\}^3 : 5x_1 + 2x_2 + 3x_3 \leq 6\}$ and inequality $\pi^\top x = x_1 + x_2 + x_3 \leq 2$ that supports $\text{conv}(X)$. We have $\lambda(\pi) = (1, -1, -1)^\top$ and the lifted inequality with respect to $\lambda_1(\pi) = 1$ is $\pi^\top x = 2x_1 + x_2 + x_3 \leq 2$ and has $\lambda(\pi') = 0$. The lifted inequality is not facet-defining since $\dim(\text{conv}(X)) = 3$ and $\dim(F(\pi')) = 1$.

If we instead lift $x_1 + x_2 + x_3 \leq 2$ with respect to $\lambda_2(\pi) = -1$ the lifted inequality is $\pi^\top x = x_1 + x_3 \leq 1$ and $\lambda(\pi') = 0$. In this case, the lifted inequality is facet-defining since $\dim(F(\pi')) = 2$. □

In order to understand the impact of the index choice, we first show in Lemma 2 a relationship between d-slacks and the dimension of the face. Specifically, the cardinality of $S^0(\pi)$ bounds $\dim(F(\pi))$. We later use this result to gauge when the sequential procedure leads to a facet-defining inequality.

Lemma 2 The dimension of a face $F(\pi)$ satisfies $\dim(F(\pi)) \leq |S^0(\pi)|$. Moreover, $|S^0(\pi)| = 0$ if $\dim(F(\pi)) = 0$.

Proof For any $i \in S^-(\pi) \cup S^+(\pi)$, the value of x_i is fixed at either 0 or 1 for all $x \in F(\pi)$ according to Lemma 1. Thus, the dimension of $\dim(F(\pi))$ is bounded by $|S^0(\pi)|$, since at most $|S^0(\pi)| + 1$ affinely independent points can be obtained from $F(\pi)$. Now, assume $S^0(\pi) \neq \emptyset$ and $\dim(F(\pi)) \geq 0$. There exist $x, x' \in F(\pi)$ such that $x_i \neq x'_i$ for $i \in S^0(\pi)$. These two points are affinely independent and therefore $\dim(F(\pi)) \geq 1$. Thus, $S^0(\pi) = \emptyset$ if $\dim(F(\pi)) = 0$. □

Example 3 depicts a case where $|S^0(\pi)|$ increases faster than the number of affinely independent points in $F(\pi)$. In view of Lemma 2, we would like to choose i so that $|S^0(\pi)|$ increases at a slower rate, since each lifting operation increases $\dim(F(\pi))$ by at least one according to Theorem 1-(2). We show in Theorem 2 that the slow increase of $|S^0(\pi)|$ occurs when there exists a unique slack with minimum non-zero absolute value.
Theorem 2 Suppose there exists \(i \neq S^0(\pi) \) such that \(|\lambda_i(\pi)| < |\lambda_{i'}(\pi)|\) for all \(i' \neq S^0(\pi) \) \((i' \neq i) \). Then, for \((\pi', \pi_0')\) obtained when lifting \((\pi, \pi_0) \) with respect to \(\lambda_i(\pi) \), \(\dim(F(\pi')) = \dim(F(\pi)) + 1 \) and \(|S^0(\pi')| = |S^0(\pi)| + 1\).

Proof From Lemma 1, it suffices to show that, for any \(x \in F(\pi') \) and \(i' \neq S^0(\pi) \) such that \(i' \neq i \), we have: 1) \(i' \in S^+(\pi) \) implies that \(x_{i'} = 0 \); and 2) \(i' \in S^-(\pi) \) implies that \(x_{i'} = 1 \). In such cases, an index \(i' \) that was originally in \(S^-(\pi) \) or \(S^+(\pi) \) will remain in its original partition \(S^-(\pi') \) or \(S^+(\pi') \) for the lifted \(\pi' \). The statement then follows due to Theorem 1-(2) and Lemma 2.

We will focus our attention to the case \(\lambda_i(\pi) > 0 \) (the others are analogous). For any \(x \in F(\pi') \), we have by construction that \(\pi^\top x = \pi_0' - \lambda_i(\pi)x_i \geq \pi_0 - \lambda_i(\pi) \).

Assume, for the purpose of a contradiction, that \(x_{i'} = 1 \) and that \(\lambda_{i'}(\pi) > 0 \). Thus, \(\lambda_i^1(\pi) \geq \pi^\top x \geq \pi_0 - \lambda_i(\pi) \). Moreover, \(\lambda_i^0(\pi) = \pi_0 \). This implies that \(\lambda_{i'}(\pi) = \lambda_i_0(\pi) - \lambda_i^1(\pi) \leq \pi_0 + \lambda_i(\pi) \) and hence \(0 < \lambda_{i'}(\pi) \leq \lambda_i(\pi) \). This cannot hold since \(|\lambda_i(\pi)| < |\lambda_{i'}(\pi)|\).

Similarly, assume that \(\lambda_{i'}(\pi) < 0 \) and \(x_{i'} = 0 \). Then, \(\lambda_i^0(\pi) \geq \pi_0 - \lambda_i(\pi) \) and \(\lambda_i^1(\pi) = \pi_0 \). This implies that \(\lambda_{i'}(\pi) = \lambda_i^0(\pi) - \lambda_i^1(\pi) \geq \pi_0 - \lambda_i(\pi) - \pi_0 = -\lambda_i(\pi) \). Thus, \(0 > \lambda_{i'}(\pi) \geq -\lambda_i(\pi) \). This contradicts \(|\lambda_i(\pi)| < |\lambda_{i'}(\pi)|\).

Theorem 2 provides a simple choice rule based on picking \(i \) with the minimum absolute d-slack. It also indicates when this rule will converge to a facet-defining inequality. We formalize it in Corollary 1 below, which can be derived as a direct consequence of Theorem 2.

Corollary 1 If \(\dim(F(\pi)) = |S^0(\pi)| \), the sequential lifting procedure (Algorithm 1) with the minimum slack absolute rule produces a facet-defining inequality if, at each lifting iteration except the last, the chosen \(i \in I \) is such that \(|\lambda_i(\pi)| < |\lambda_{i'}(\pi)|\) for all \(i' \notin S^0(\pi) \) \((i' \neq i) \).

Finally, we note that, in general, it may not be possible to achieve a facet-defining inequality. For example, all non-zero d-slacks can have the same absolute value and the cardinality of \(|S^0(\pi)|\) might increase by more than one while the dimension of \(F(\pi) \) does not (see Example 3).

4.4 Relationship with lifting based on disjunctive programming

We now formalize the connection between our lifting methodology and the \(n \)-step lifting procedure by Perregaard and Balas [47] mentioned in Sect. 3. Assume that \(X = \{ Ax \leq b, \ x \in [0, 1]^n \} \) for a matrix \(A \) and vector \(b \) of appropriate dimensions.

We consider a relaxation of the form \(\text{DP-L} \) that includes one disjunctive term for each index \(i \in I \) and removes all integrality constraints:

\[
\max_x \left\{ c^\top x : Ax \leq b, \ \bigvee_{i' \in I} (x_{i'} \leq 0) \lor (x_{i'} \geq 1), \ x \in [0, 1]^n \right\}. \quad (\text{DP-L})
\]
Proposition 1 below shows that, for DP-L, the optimal rotation parameter in the n-step lifting is such that $\gamma^* = |\lambda_i(\pi)|$ when using the individual binary disjunctions as target inequalities.

Proposition 1 Suppose $\lambda_i(\pi) \neq 0$ for some $i \in I$. Then, $\gamma^* = |\lambda_i(\pi)|$ if we employ either $x_i \leq 0$ or $x_i \geq 1$ as a target inequality in the n-step procedure.

Proof Consider the case when $i \in S^+(\pi)$ and let e_i be the i-th column of an $n \times n$ identity matrix. Since all $x \in F(\pi)$ have $x_i = 0$, $\widetilde{\pi}^T x = e_i^T x = x_i \leq 0$ is an invalid target inequality for $\text{conv}(X)$ and satisfies $\widetilde{\pi}^T x = x_i = 0$ for all $x \in F(\pi)$. The system that defines γ^* is therefore

$$\gamma^* = \min_{x \in [0,1]^n, x_0 \geq 0} \{ \pi_0 x_0 - \pi^T x : Ax \leq b, -x_i = -1, \bigwedge_{i' \in I} (x_{i'} \leq 0) \lor (-x_{i'} + x_0 \leq 0) \}. \quad (1)$$

It follows from (1) and $x_i = 1$ that $x_0 \leq 1$. Without loss of generality, we consider $x_0 = 1$. The system reduces to:

$$\gamma^* = \min_{x, x_0} \{ \pi_0 x_0 - \pi^T x : Ax \leq b, x_i = 1, x \in \{0,1\}^n, x_0 = 1 \}$$

$$= \pi_0 - \max_{x} \{ \pi^T x : x \in X, x_i = 1 \} = \lambda_i^0(\pi) - \lambda_i^1(\pi) = \lambda_i(\pi).$$

The second to last equality comes from $i \in S^+(\pi)$ and $\lambda_i^0(\pi) = \pi_0$. The proof for $i \in S^-(\pi)$ and target inequality $\widetilde{\pi}^T x = x_i \geq 1$ is analogous. \qed

Proposition 1 indicates when these techniques are equivalent. By taking $\widetilde{\pi}^T x = x_i \leq 0$ as the target inequality, we obtain $\gamma^* = \lambda_i(\pi) > 0$. The rotated inequality $(\pi + \gamma^* \pi) \pi x = (\pi + \lambda_i(\pi) e_i) \pi x \leq \pi_0$ is equivalent to the lifted inequality in Theorem 1. Similarly, using target inequality $\widetilde{\pi}^T x = -x_i \leq -1$ would result in $\gamma^* = -\lambda_i(\pi) > 0$. Then, the rotated and lifted inequalities are equivalent, i.e., $\pi + \gamma^* \pi = \pi + \lambda_i(\pi) e_i$ and $\pi_0 + \gamma^* e_i = \pi_0 + \lambda_i(\pi)$.

While the techniques are equivalent in this restricted case, our approach is valid for any binary set X and, thus, can handle models where a BDD (or BDD relaxation) is a more advantageous representation in comparison to a linear description of X [14]. We also note that the BDD network structure allows us to efficiently compute the disjunctive terms in a combinatorial fashion.

5 Combinatorial cutting-plane algorithm

While the BDD-based lifting procedure developed in Sect. 4 can enhance inequalities from any cutting-plane methodology, we now exploit similar concepts to derive new valid inequalities for X based on the network structure of B. In particular, we design inequalities that separate points from X by only relying on the combinatorial structure
encoded by B. Thus, no other specific structure (e.g., linearity, submodularity, or gradient information) is required.

We assume, as before, that we are given an exact BDD B for X. Our cutting-plane method is based on an alternative linear description of B as an extended capacitated flow problem. We present this formulation in Sect. 5.1 and our BDD-based cut generation linear program in Sect. 5.2. For cases where solving such model is not computationally practical, in Sect. 5.3 we develop a weaker but more efficient combinatorial cutting-plane method based on a max-flow/min-cut problem over B. Finally, we show in Sect. 5.4 the relationship between our approach and existing BDD cutting-plane techniques [25,52].

5.1 BDD polytope

Existing BDD-based cut generation procedures [25,42,52] rely on the network-flow formulation $NF(B)$ introduced by Behle [12], described as follows:

$$NF(B) := \{(x; y) \in [0, 1]^n \times \mathbb{R}_+^{\vert A \vert} :$$

$$\sum_{a \in A^{\text{out}}(u)} y_a - \sum_{a \in A^{\text{in}}(u)} y_a = 0, \quad \forall u \in \mathcal{N} \setminus \{r, t\}, \quad (2a)$$

$$\sum_{a \in A^{\text{out}}(r)} y_a = \sum_{a \in A^{\text{in}}(t)} y_a = 1, \quad (2b)$$

$$\sum_{a : s(a) \in \mathcal{N}_i, v_a = 1} y_a = x_i, \quad \forall i \in I \}, \quad (2c)$$

Equalities (2a) and (2b) are balance-of-flow constraints over B. Constraint (2c) links the arcs of B with solutions x. In particular, the polytope $NF(B)$ projected over the x variables is equivalent to the convex hull of all solutions represented by B, i.e., $\text{Proj}_x(NF(B)) = \text{conv}(X)$.

One drawback of $NF(B)$ is that constraints (2c) only consider flow variables associated with arc labels equal to one (i.e., $v_a = 1$). Thus, there is no constraint explicitly limiting the flow passing through zero-value arcs. CGLPs based on $NF(B)$ are potentially unbounded, which has been a fundamental challenge in existing works [25,52].

We propose an alternative formulation of $NF(B)$ that addresses its main limitations and use the reformulation to define our cutting-plane algorithms. The new formulation, here denoted by $JNF(B)$, corresponds to a joint capacitated network-flow polytope. The new model maintains the flow conservation constraints, (2a) and (2b), and replaces (2c) with (3a) and (3b) below. Both inequalities enforce a common capacity for arcs in a layer with the same value. Proposition 2 shows that the two formulations are equivalent and, thus, $\text{Proj}_x(JNF(B)) = \text{conv}(X)$.

$$JNF(B) := \{(x; y) \in [0, 1]^n \times \mathbb{R}_+^{\vert A \vert} : (2a) - (2b),$$

$$\sum_{a : s(a) \in \mathcal{N}_i, v_a = 1} y_a \leq x_i, \quad \forall i \in I \}, \quad (3a)$$
\[
\sum_{a \in A : s(a) \in N_i, v_a = 0} y_a \leq 1 - x_i, \quad \forall i \in I \Bigg\}. \tag{3b}
\]

Cut generation methods based on capacitated network flows over BDDs have been previously studied in the context of two-stage stochastic programs [42]. In our model, the proposed polytope \(JNF(B) \) is specially structured given, e.g., the use a single variable \(x_i \) per layer \(i \) to limit the capacity of the zero and one-value arcs. This structural property gives us desired properties for separation in Sect. 5.2, and is key to when developing combinatorial cuts that do not depend on linear programs in Sect. 5.3.

Proposition 2 \(JNF(B) = NF(B) \).

Proof Consider \((x'; y') \in NF(B)\), so \((x'; y')\) satisfies \((2a)\) and \((2b)\). Since \((2c)\) holds, \((x'; y')\) also satisfies \((3a)\). From the flow conservation constraints, \((2a)\) and \((2b)\), the flow traversing each layer \(i \in I \) in \(B \) is exactly one, i.e.,

\[
\sum_{a \in A : s(a) \in N_i} y'_a = 1 \quad \Rightarrow \quad \sum_{a \in A : s(a) \in N_i : v_a = 1} y'_a + \sum_{a \in A : s(a) \in N_i : v_a = 0} y'_a = 1 \\
\Rightarrow \quad \sum_{a \in A : s(a) \in N_i : v_a = 0} y'_a = 1 - x'_i.
\]

Then, \((x'; y')\) satisfies \((3b)\) and \((x'; y') \in JNF(B)\). Consider now \((x'; y') \in JNF(B)\). Since flows traversing a layer sum to one, constraints \((3a)\) and \((3b)\) are satisfied as equalities and therefore \((2c)\) holds for \((x'; y')\). \(\square \)

5.2 General BDD flow cuts

Our cutting-plane procedure formulates a max-flow optimization problem over \(JNF(B) \) to identify and separate points \(x' \notin \text{conv}(X) \), given by \((4)\) below:

\[
z(B; x') := \max_{y \in \mathbb{R}_{+}^{\lvert A \rvert}} \left\{ \sum_{a \in A_{\text{out}}(x)} y_a : (2a), (3a) - (3b), x = x' \right\}. \tag{4}
\]

This model omits constraint \((2b)\) which enforces the flow to be equal to one. We argue in Lemma 3 that \(z(B; x') = 1 \) is a necessary and sufficient condition to check if \(x' \) belongs to \(\text{conv}(X) \).

Lemma 3 \(x' \in \text{conv}(X) \) if and only if \(z(B; x') = 1 \).

Proof Constraints \((3a)\) and \((3b)\) enforce that the flow in each layer \(i \) is at most \(x'_i + 1 - x'_i = 1 \). Thus, \(z(B; x') \leq 1 \). Consider \(x' \in \text{conv}(X) \). From Proposition 2, there exists \(y' \in \mathbb{R}_{+}^{\lvert A \rvert} \) such that \(\sum_{a \in A_{\text{out}}(x')} y'_a = 1 \) and therefore \(z(B; x') = 1 \). For the converse, suppose \(z(B; x') = 1 \). It follows that there exists \(y' \in \mathbb{R}_{+}^{\lvert A \rvert} \) such that \((x'; y') \in JNF(B) = NF(B)\), so \(x' \in \text{conv}(X) \). \(\square \)
Our BDD-based CGLP uses the dual of (4) to separate \(x' \notin \text{conv}(X) \). Consider \(\omega \in \mathbb{R}^{|\mathcal{N}|} \) and \(v, \eta \in \mathbb{R}^n_+ \) as the dual variables associated with constraints (2a), (3a), and (3b), respectively. The resulting model is

\[
\begin{align*}
\min_{\omega, v, \eta} & \quad \sum_{i \in I} x_i' v_i + \sum_{i \in I} (1 - x_i') \eta_i \\
\text{s.t.} & \quad \omega_{i(a)} - \omega_{x(a)} + v_a v_i + (1 - v_a) \eta_i \geq 0, \quad \forall i \in I, a \in \mathcal{A}, s(a) \in \mathcal{N}_i, \\
& \quad \omega_{i(a)} + v_a v_i + (1 - v_a) \eta_i \geq 1, \quad \forall a \in \mathcal{A}\text{out}(r), \\
& \quad -\omega_{s(a)} + v_a v_n + (1 - v_a) \eta_n \geq 0, \quad \forall a \in \mathcal{A}\text{in}(t), \\
& \quad \omega \in \mathbb{R}^{|\mathcal{N}|}, \quad v, \eta \in \mathbb{R}^n_+.
\end{align*}
\]

(BDD-CGLP)

Let \(w(B; x') \) be the optimal solution value of BDD-CGLP. Strong duality and Lemma 3 imply that we can identify if a point \(x' \) belongs to \(\text{conv}(X) \) if \(w(B; x') = 1 \). Furthermore, we can use the optimal solution \((v^*; \eta^*)\) to create a valid cut when \(w(B; x') < 1 \). Specifically, the cut is given by

\[
\sum_{i \in I} x_i v_i^* + \sum_{i \in I} (1 - x_i) \eta_i^* \geq 1.
\]

Theorem 3 shows that the set of all cuts of the form (6) describes \(\text{conv}(X) \).

Theorem 3 Let \(\Lambda(\mathcal{B}) \) be the set of extreme points of the BDD-CGLP polyhedron defined by (5a)–(5d). Furthermore, let \(P_B \) be the set of points \(x \in [0, 1]^n \) that satisfy (6) for all \((v; \eta) \in \text{Proj}_{v, \eta}(\Lambda(\mathcal{B})) \). Then, \(\text{conv}(X) = P_B \).

Proof Consider a point \(x' \in \text{conv}(X) \). Lemma 3 guarantees that \(z(\mathcal{B}; x') = w(\mathcal{B}; x') = 1 \), so constraint (6) holds for any extreme point of BDD-CGLP. Now consider a point \(x' \in P_B \). Since \(x' \) satisfies (6) for all extreme points in \(\Lambda(\mathcal{B}) \), we have that \(w(\mathcal{B}; x') \geq 1 \) and, thus, \(w(\mathcal{B}; x') = z(\mathcal{B}; x') = 1 \). Finally, using Lemma 3, we have that \(x' \in \text{conv}(X) \).

Thus, we solve BDD-CGLP to separate points \(x' \notin \text{conv}(X) \). The procedure returns a cut (6) where \((v^*; \eta^*)\) is the optimal solution of BDD-CGLP.

5.3 Combinatorial BDD flow cuts

The above cutting-plane procedure requires solving a linear program with \(|\mathcal{A}|\) constraints and \(|\mathcal{N}| + 2n\) variables. Obtaining \(w(\mathcal{B}; x') \), thus, could be computationally expensive for instances where \(\mathcal{B} \) is large (see Sect. 7). We propose an alternative cut-generation procedure based on BDD-CGLP that involves a combinatorial and more efficient max-flow solution over \(\mathcal{B} \).

First, we consider a reformulation of JNF(\(\mathcal{B} \)) where the joint capacity constraints are replaced by individual constraints for each arc, i.e., a standard capacitated network...
there exists an arc a follow:

B

A combinatorial cut-and-lift procedure with an application… 131

Consider (3a) and (3b), it follows that (2a), (7a)–(7b). Notice that such a x.

P

no path $p \in P$ associated with x'. From constraints (7a)–(7b), in any path $p \in P$ there exists an arc $a \in p$ with capacity zero (i.e., $y_a \leq 0$). We can then deduce that $y' = 0$, therefore $(x'; y')$ violates (2b). Finally, for any $x' \in \{0, 1\}^n \setminus \text{conv}(X)$ there is no $y' \in \mathbb{R}_{+}^{\vert A \vert}$ such that $(x'; y') \in \text{CNF}(B)$.

Proposition 3. JNF(B) \subseteq CNF(B). Moreover, for any integer $x \notin \text{conv}(X)$, we have that $x \notin \text{Proj}_x(\text{CNF}(B))$.

Proof Consider $x' \in \text{JNF}(B)$. By construction, x' satisfies (2a)–(2b). Since x' satisfies (3a) and (3b), it follows that x' holds for (7a) and (7b).

Now take an integer point $x' \notin \text{conv}(X)$ and $y' \in \mathbb{R}_{+}^{\vert A \vert}$ such that $(x'; y')$ satisfies (2a), (7a)–(7b). Notice that such a y' exists (e.g., $y' = 0$). By construction, there is no path $p \in P$ associated with x'. From constraints (7a)–(7b), in any path $p \in P$ there exists an arc $a \in p$ with capacity zero (i.e., $y_a \leq 0$). We can then deduce that $y' = 0$, therefore $(x'; y')$ violates (2b). Finally, for any $x' \in \{0, 1\}^n \setminus \text{conv}(X)$ there is no $y' \in \mathbb{R}_{+}^{\vert A \vert}$ such that $(x'; y') \in \text{CNF}(B)$.

Proposition 3 shows that for any integer point x', $x' \notin X$ implies $x' \notin \text{Proj}_x(\text{CNF}(B))$. Example 4 illustrates that, conversely, there might exist fractional points $x' \notin \text{conv}(X)$ such that $x' \in \text{Proj}_x(\text{CNF}(B))$, and hence CNF($B$) is a weaker representation.

Example 4 Consider our example $X = \{x \in \{0, 1\}^4 : 7x_1 + 5x_2 + 4x_3 + x_4 \leq 8\}$, a fractional point $x' = (0.4, 0.6, 0.4, 1)$, and the exact BDD B_1 in Fig. 1. It is easy to see that $x' \notin \text{conv}(X)$ since $7x_1' + 5x_2' + 4x_3' + x_4' = 8.4 \geq 8$. However, there exists a $y' \in \mathbb{R}_{+}^{\vert A \vert}$ such that $(x', y') \in \text{CNF}(B)$ with value $y_{(r, u_1)} = 0.6$, $y_{(r, u_2)} = 0.4$, $y_{(u_1, u_4)} = 0.2$, $y_{(u_1, u_3)} = 0.4$, $y_{(u_2, u_4)} = 0.4$, $y_{(u_3, u_4)} = 0.4$, $y_{(u_4, u_5)} = 0.6$, $y_{(u_5, t)} = 1$, and all other arcs with flow equal to zero.

Similar to the general BDD flow cuts, we use the dual of the max-flow version of CNF(B) to identify points that do not belong to $\text{conv}(X)$. Consider $\omega \in \mathbb{R}^{\vert N \vert}$ as the dual variables associated with constraints (2a) and α the dual variables associated with constraints (7a)-(7b). Then, the separation problem for the alternative BDD cuts is as follow:

$$\min_{\omega, \alpha} \sum_{i \in I} \left(\sum_{a \in \text{in}(a) \in N_i, v_a = 1} x_i' \alpha_a + \sum_{a \in \text{out}(a) \in N_i, v_a = 0} (1 - x_i') \alpha_a \right) \quad \text{(CN-CGLP)}$$

s.t. $\omega_{t(a)} - \omega_{s(a)} + \alpha_a \geq 0$, $\forall i \in I, a \in A, s(a) \in N_i$,

$\omega_{t(a)} + \alpha_a \geq 1$, $\forall a \in A_{\text{out}}(r)$,

$- \omega_{s(a)} + \alpha_a \geq 0$, $\forall a \in A_{\text{in}}(t)$,

$\omega, \alpha \in \mathbb{R}^{\vert N \vert}, \alpha \in \mathbb{R}_{+}^{\vert A \vert}$.
Let $w^r(B; x')$ be the optimal solution value of CN-CGLP. Proposition 3 implies that for any $x' \in \text{conv}(X_B)$, $w^r(B; x') = 1$. It follows that inequality (9) holds for any $x \in \text{conv}(X_B)$, where α^* is optimal to CN-CGLP:

$$\sum_{i \in I} \left(\sum_{a \in A_i: s(a) \in N_i, v_a = 1} x_i \alpha^*_a + \sum_{a \in A_i: s(a) \in N_i, v_a = 0} (1 - x_i) \alpha^*_a \right) \geq 1. \quad (9)$$

Of important note is that CN-CGLP is a classical min-cut problem, i.e., we are searching for a maximum-capacity arc cut in the network that certifies that a point does not belong to the convex hull of X. While the resulting inequalities are not as strong as the general BDD cuts from BDD-CGLP, we can leverage max-flow/min-cut combinatorial algorithms to solve it more efficiently in the size of the BDD. Several algorithms are readily available to that end [1] and provide both primal and dual solutions to CN-CGLP.

Furthermore, another consequence of the design of such cuts is that their strength depends on the BDD size. That is, two BDDs B and B' encoding the same set might generate different combinatorial flow cuts because of distinct min-cut solutions. We show in Theorem 4 that the reduced BDD, which is unique, generates the tightest $\text{CNF}(B)$ formulation and is hence critical in such a formulation. We note that a reduced BDD can be generated in polynomial time in B' for any B' representing the desired solution set [20].

Theorem 4 Let $B' = (N', A')$ be the reduced version of B, i.e., $X_{B'} = X_B$, and for each layer $i \in I$, $|N_i'| \leq |N_i|$. Then, $\text{CNF}(B') \subseteq \text{CNF}(B)$.

Proof Consider P' to be the set of $r - t$ paths in B'. First, $X_{B'} = X_B$ implies that, for any $r - t$ path $p \in P$, there exists a unique $r - t$ path $p' \in P'$ such that $x^p = x^{p'}$. Thus, we will consider that the set of paths in both BDDs are equivalent, i.e., $P' = P$.

Let $A_i = \{a \in A : s(a) \in N_i\}$ and $A_i' = \{a \in A' : s(a) \in N_i'\}$. Since B' is unique, there exists a unique surjective function $f_i : A_i \rightarrow A_i'$ that maps arcs from B to B' for each layer $i \in I$. Thus, for every arc $a \in A_i^r$, let us define the pre-image of f_i as $f_i^{-1}(a) := \{a' \in A_i : f(a') = a\}$, i.e., the subset of arcs in A_i that map to arc $a \in A_i'$. Next, denote by $\Gamma(B; a) := \{p \in B : a \in p\}$ the set of paths in a BDD that traverse an arc $a \in A$. From the construction procedure of B' given B [20], $\Gamma(B'; a) = \bigcup_{a' \in f_i^{-1}(a)} \Gamma(B; a')$ for all $a \in A_i'$, i.e., the set of $r - t$ paths passing through a is equivalent to the set of $r - t$ paths passing through all the arcs in $f_i^{-1}(a)$.

Now consider the path formulation of $\text{CNF}(B)$, $\text{CNF}^P(B)$. It suffices to show that $\text{CNF}^P(B') \subseteq \text{CNF}^P(B)$. Since the paths in B and B' are equivalent, we will consider equivalent variables w for $\text{CNF}^P(B')$ and $\text{CNF}^P(B)$.

$$\text{CNF}^P(B) := \{(x; w) \in [0, 1]^n \times \mathbb{R}_+^{X(B)} : \sum_{p \in P, a \in p} w_p \leq x_i, \quad \forall a \in A_i, v_a = 1, i \in I, \quad (10a)$$
$$\sum_{p \in P, a \in p} w_p \leq 1 - x_i, \quad \forall a \in A_i, v_a = 0, i \in I\}. \quad (10b)$$
Using the path equivalence $\Gamma(B^r; a) = \bigcup_{a' \in f_i^{-1}(a)} \Gamma(B; a')$ for any $a \in A_i^r$ and $i \in I$, we have that
\[
\sum_{p \in P^i: a \in p} w_p = \sum_{a' \in f_i^{-1}(a)} \sum_{p \in P: a' \in p} w_p, \quad \forall a \in A_i^r, i \in I.
\]

Thus, constraints (10a) and (10b) of CNF$^P(B^r)$ are tighter since they restrict more paths than for the case of CNF$^P(B)$. This implies that, for any $(x'; w') \in$ CNF$^P(B^r)$, $(x'; w') \in$ CNF$^P(B)$. \hfill \Box

Theorem 4 indicates that the reduced BDD can separate more points than any other BDD representing the same solution set. We also note in passing that the variable ordering plays a role on the size of the BDD and, hence, on the effectiveness of the combinatorial BDD flow cuts. Investigating variable orderings for specific problem classes and how they impact the cuts (theoretically and computationally) may lead to new research avenues.

5.4 Relationship with existing BDD cut generation procedures

The two existing BDD-based CGLPs rely on dual reformulations of NF(B), and, thus, also describe conv(X) \cite{Tjandraatmadja2000, Davarnia2002}. These techniques rely on additional information: Tjandraatmadja et al. \cite{Tjandraatmadja2000} CGLP requires an interior point of X and Davarnia et al. \cite{Davarnia2002} must incorporate possibly non-linear normalization constraints. In contrast, BDD-CGLP exploits the structure of B directly to describe conv(X). We now detail these two BDD-based CGLPs and highlight the main theoretical differences to BDD-CGLP.

Consider $\omega \in \mathbb{R}^{\lvert N \rvert}$ as the dual variables associated with constraints (2a) and (2b), and $\theta \in \mathbb{R}^n$ as the dual variables associated with (2c). The two BDD-based CGLP models employ flow inequalities of the form
\[
\omega_t(a) - \omega_s(a) + \theta_i v_a \geq 0, \quad \forall i \in I, a \in A, s(a) \in N_i.
\]
Notice that (11) resembles the flow inequalities (5a)-(5c) of BDD-CGLP. However, our flow constraints use two sets of positive dual variables for each BDD layer (i.e., $\nu, \eta \in \mathbb{R}^n_+$) instead of the single unbounded set of variables $\theta \in \mathbb{R}^n$. This difference emerges because (2c) only bounds the arc flow variables $y \in \mathbb{R}^{\lvert A \rvert}$ with value $v_a = 1$, while our joint-capacity constraints (3a)-(3b) bound all variables y. This is one reason, e.g., why BDD-CGLP does not require any normalization as in previous techniques.

Tjandraatmadja et al. \cite{Tjandraatmadja2000} propose a BDD-based CGLP (12) to generate target cuts that are facet-defining. Their CGLP yields a valid inequality that intersects the ray passing through an interior point $u \in$ conv(X) and the fractional point $x' \in [0, 1]^n$ to be cut-off. The procedure returns a cut $\theta^T x' \leq 1 + \theta^T u$ whenever the optimal value of (12) is greater than one.

$$
\max_{\omega, \theta} \left\{ \theta^T(x' - u) : (11), \ \omega_t = 0, \ \omega_r = 1 + \theta^T u \right\}.
$$

\hfill \Box
Davarnia et al. [25] circumvent the need of an interior point by proposing a simpler but possibly non-linear BDD-based CGLP presented in (13). The model checks if x' can be represented as a linear combination of points in X, i.e., whether there exists θ, ω such that $\theta^T x' = \omega t$. Otherwise, their procedure returns a valid inequality $\theta^* T x \leq \omega^* t$, which is not necessarily facet-defining. Since the model may be unbounded, the optimization problem (13) includes normalization constraints $C(\omega, \theta) \leq 0$ which are potentially non-linear. The CGLP (13) is addressed by an iterative subgradient algorithm.

$$\max_{\omega, \theta} \left\{ \theta^T x' - \omega t : (11), \omega = 0, C(\omega, \theta) \leq 0 \right\}. \quad (13)$$

Note that, in our approach, we either solve BDD-CGLP (a linear program) or a single max-flow/min-cut problem, both relying only on B. We compare our cutting-plane approaches with these procedures in Sect. 7.

6 Case study: second-order cone programming

For our numerical evaluation, we apply our combinatorial cut-and-lift procedure to binary problems with SOC inequalities with the following form

$$\max_{x \in \{0,1\}^n} \left\{ c^T x : A^j x + ||D^j x - h||_2 \leq b_j, \forall j \in \{1, \ldots, m\} \right\}, \quad (SP)$$

where $|| \cdot ||_2$ is the Euclidean norm and, for each j, a_j, h_j, and D_j are real vectors and matrices of appropriate dimension. SOC inequalities arise in many applications, including network design [3], assortment [50], overcommitment [24], and chance-constrained stochastic problems [38,55]. Moreover, SOCPs are supported by commercial solvers such as CPLEX [33] and Gurobi [29] which facilitate the evaluation with state-of-the-art techniques. Our methodology, thus, also aims at contributing to the active research in linearization/lifting methods [56,57] as well as cutting methods [4–6,18,40] in this area.

The general SOC inequalities can be rewritten as:

$$a^T x + ||D^T x - h||_2 \leq b \iff a^T x + \sqrt{\sum_{k \in \{1, \ldots, l\}^2} (a_k^T x - h_k)^2} \leq b. \quad (14)$$

We propose a novel BDD encoding for (14) using a recursive reformulation based on the methodology by Bergman and Cire [14]. Specifically, our formulation considers each linear component of (14) independently and applies a variant of the convex composition operator [14] to create relaxed BDDs, which is extended to handle multiple linear terms within a convex function and is tailored to SOCs. We present our recursive model below and refer to “Appendix A” for details of the BDD relaxation.

Our recursive formulation considers $l+1$ sets of state variables, Q_0, Q_1, \ldots, Q_l, where each set of variables has $n+1$ stages, i.e., $Q_k \in \mathbb{R}^{n+1}$ for each $k \in \{0, 1, \ldots, l\}$. State variables Q_0 represent the value of the linear term (i.e., $a^T x$), while Q_k encodes
the k-th linear expression in the quadratic term (i.e., $d_k^T x - h_k$). The recursive model for (14) is given by

$$\text{RSOC} := \{(x; Q) \in \{0, 1\}^n \times \mathbb{R}^{(l+1) \times (n+1)} :$$

$$Q_{0,0} = 0, \quad Q_{k,0} = h_k, \quad \forall k \in \{1, \ldots, l\},$$

$$(15a)$$

$$Q_{0,i} = Q_{0,i-1} + a_i x_i, \quad \forall i \in I,$$

$$(15b)$$

$$Q_{k,i} = Q_{k,i-1} + d_{ki} x_i, \quad \forall i \in I, \ k \in \{1, \ldots, l\},$$

$$(15c)$$

$$Q_{0,n} + \sqrt{\sum_{k \in \{1, \ldots, l\}} (Q_{k,n})^2} \leq b$$

$$(15d)$$

The first set of equalities (15a) initialize the state variables at stage 0. Equalities (15b) and (15c) correspond to the recursive formulas for each linear expression, and constraint (15d) enforces the SOC inequality. Notice that $\text{Proj}_x(\text{RSOC})$ is equivalent to the feasible set of the SOC inequality (14).

An exact BDD $B = (N, A)$ is the reduced state-transition graph of a dynamic program, where each BDD node maps to a state variable and each arc represents a state transition. If we consider, for example, the RSOC model, the root node r stores the stage-0 values, and each node u in layer $i \in I$ corresponds to a reachable state from the $(i-1)$-th stage. The recursions (15b) and (15c) are used to compute the transitions between nodes.

The proposed recursive model (and thereby the BDD) can be used for any type of SOC inequality. For our numerical evaluation, we consider two classes of SOC inequalities commonly found in the literature. The first is defined by SOC knapsack inequalities $[5, 34]$, i.e., where $D \in \mathbb{R}^{n \times n}$ is a diagonal matrix and the SOC constraint is given by

$$a^T x + \sqrt{\sum_{i \in I} d_{ii}^2 x_i} \leq b.$$

(16)

We develop a simpler recursive model for (16) with only two sets of state variables, Q_0 and Q_1. As before, Q_0 represents the linear term and Q_1 encodes the linear term inside the square root. Thus, the recursive model is given by

$$\text{RSOC-K} := \{(x; Q) \in \{0, 1\}^n \times \mathbb{R}^{2 \times (n+1)} :$$

$$Q_{1,i} = Q_{1,i-1} + d_{ii}^2 x_i, \quad \forall i \in I, \quad Q_{0,n} + \sqrt{\sum_{i \in I} Q_{1,n}} \leq b \}.$$

(15d)

For our second class, we consider SOC inequalities derived from chance constraints of the form $\mathbb{P}(\xi^T x \leq b) \geq \epsilon$ where ξ is a random variable with normal distribution $N(a, D)$ and $\epsilon \in [0.5, 1] [38, 55]$. Specifically, the constraint can be reformulated as

$$a^T x + \Phi^{-1}(\epsilon) ||Dx||_2 \leq b \iff a^T x + \Omega \sqrt{\sum_{k \in \{1, \ldots, n\}} (d_k^T x)^2} \leq b,$$

(17)
where we use $\Omega = \Phi^{-1}(\epsilon)$ for simplicity. Notice that (17) is a special case of (14) where D is square matrix and $h = 0$.

An exact BDD for both problem classes can grow exponentially large. Therefore, we construct relaxed BDDs using a standard incremental refinement procedure [16]. For completeness, we provide a detailed explanation of our BDD construction procedure in “Appendix A”.

7 Empirical evaluation and discussion

This section presents an empirical evaluation of our combinatorial cut-and-lift procedure for SP (see Sect. 6). We create a BDD for each of the m SOC inequalities and apply our procedure for each such constraint at the root node of the branch-and-bound tree. For any fractional point $x \in [0, 1]^n$, we iterate over each BDD until one of them generates a cut, as we describe in detail below. We then lift the inequality using Algorithm 1. The procedure ends when x cannot be cut-off by any BDD.

Datasets. We test our approach on the SOC knapsack (SOC-K) benchmark [5,34] composed of 90 instances with $n \in \{100, 125, 150\}$ variables and $m \in \{10, 20\}$ constraints. We also generate a random set of instances (SOC-CC) for the more general SOC inequalities derived from chance constraints (i.e., inequality (17)) following a similar procedure to the one used for SOC-K. We consider $n \in \{75, 100, 125\}$, $m \in \{10, 20\}$, $\Omega \in \{1, 3, 5\}$, and a density of $2/\sqrt{n}$ over all the constraints. Parameters a_j, D_j, and c are sampled from a discrete uniform distribution with $a_j \in [-50, 50]^n$, $D_j \in [-20, 20]^{n \times n}$, and $c \in [0, 100]^n$. Parameters b_j are given by

$$b_j = t \left(\sum_{i \in I} a_{ji}^+ + \Omega \sqrt{\sum_{i \in I} \max \left\{ \sum_{k \in I} d_{jik}^+, \sum_{k \in I} d_{jik}^+ \right\}^2} \right), \quad \forall j \in \{1, \ldots, m\},$$

where $t \in \{0.1, 0.2, 0.3\}$ is the constraint tightness, $f^+ := \max\{0, f\}$, and $f^- := \max\{0, -f\}$ for any $f \in \mathbb{R}$. Note that b_j with $t = 0.3$ will remove approximately 50% of the possible assignments for $x \in [0, 1]^n$. Then, we generate 5 random instances for each parameter combination, i.e., 270 instances.

Benchmarks. We implement four basic variants of our approach to assess the BDD cuts and the lifting procedure. B-Flow computes the low-complexity combinatorial flow cuts in Sect. 5.3, while B-Gen also compute these cuts and, if the approach fails to produce any cut, it applies BDD flow cuts derived from our proposed CGPL in Sect. 5.2. The two other variants, B-Gen+L and B-Flow+L are the respective versions of these cutting algorithms augmented with the proposed BDD lifting from Sect. 4 for every new constraint generated.

Moreover, we implement the two most recent BDD-based cuts, namely target cuts (B-Target) [52] and projected cuts (B-Proj) [25]. As before, we use the suffix +L to denote if we apply lifting. Lastly, we implement the cover cuts and lifting procedure by Atamtürk and Narayanan [5] for the SOC-K dataset, here denoted by Cover and CoverLift for the version without lifting and with their lifting. We also test their cover cuts in conjunction with our BDD lifting, Cover+L. Finally, we
evaluate combinations of different cut classes, which we will define in each relevant section.

The procedures are implemented in C++ in the IBM ILOG CPLEX 12.9 solver [33] using the UserCuts callback at the root node of the search.1 All experiments consider a single thread, a one-hour time limit, and the linearization strategy (i.e., MIQCPStrat = 2) to solve the SOC problems.2 We deactivate all solver cuts when running the BDD techniques (i.e., B-Flow, B-Gen, B-Target, B-Proj) and the cover-cut variants (i.e., Cover, CoverLift, and Cover+L) to evaluate their effectiveness on their own. Notice that, given the UserCuts callback, our techniques omit the Presolve option and use TraditionalSearch. For a fair comparison, when running unaugmented CPLEX, we use the same configuration except with the solver cuts activated.3

We experimented with three BDD widths $W \in \{2000, 3000, 4000\}$, i.e., the maximum number of nodes per layer allowed in a relaxed BDD. We present results for the width with the best overall performance, $W = 4000$ (we include aggregated results for other widths in “Appendix B”). Notice that most of the created BDDs are relaxed due to width limit, especially when $n \geq 100$.

7.1 Effectiveness of BDD-based lifting procedure

We first evaluate our lifting algorithm over the BDD-based cuts and other cutting-plane procedures. Table 1 shows the average root node information for our two datasets, i.e., optimality gap, time, number of cuts, percentage of inequalities lifted at least once, and time to solve the separation problem. The first three columns are divided into two sub-columns, the first showing results without lifting ($+nL$) and the second with lifting ($+L$). Column $+L$ refers to our BDD-based lifting, except in row Cover that shows the continuous lifting [5]. “Appendices C and D” present detailed results for each dataset.

Our lifting procedure significantly reduces the root gap and time for B-Flow. We observe a similar behavior for B-Proj but with a smaller impact due to fewer added cuts. B-Gen also benefits from our lifting, reducing the number of cuts added and, as a consequence, the root node time. However, there is no root gap improvement for B-Gen+L since the general BDD cuts separate all infeasible fractional points from each BDD. Lastly, our lifting has no impact on B-Target since these cuts are facet-defining and, thus, we omit this variant.

Our BDD lifting also has a positive impact when applied to cuts obtained from other techniques. For the cover cut Cover, our lifting achieves a smaller root gap than the continuous lifting (i.e., 2.67% vs. 2.81%) and adds fewer valid inequalities. Lastly, our BDD lifting is faster than the continuous lifting (0.001 seconds vs. 0.006 seconds per individual cut). This is as expected given that the continuous cuts require solving a linear program.

1 The code is available at https://github.com/MargaritaCastro/dd-cut-and-lift.
2 Numerical testing suggested that this was the best strategy across all techniques.
3 Numerical testing suggested that CPLEX performs better on the problem sets when Presolve is de-activated.
Table 1 Aggregated root information for the SOC-K and SOC-CC datasets

	Root Gap	Root Time (s)	# Cuts	% Lift	Sep.(s)			
	+nL	+L	+nL	+L				
SOC-K								
CPLEX	2.8%	–	2.4	–	123.5	–	–	
Cover	3.3%	2.8%	1.3	1.8	96.4	95.7	98.6%	**0.001**
Cover+L	–	2.7%	–	11.6	–	81.0	70.0%	**0.001**
B-Flow	3.6%	2.8%	20.0	12.8	240.7	54.9	99.2%	**0.001**
B-Gen	**1.3%**	**1.3%**	400.4	109.4	1087.2	191.1	80.7%	0.442
B-Proj	3.9%	3.76%	16.6	16.5	8.0	6.5	72.2%	0.020
B-Target	**1.3%**	–	118.0	–	108.1	–	–	0.329
SOC-CC								
CPLEX	20.4%	–	9.1	–	127.6	–	–	–
B-Flow	19.5%	15.4%	17.1	16.1	31.1	23.3	90.7%	**0.001**
B-Gen	**13.0%**	**13.0%**	144.7	85.0	305.7	124.5	72.6%	0.096
B-Proj	17.6%	16.3%	25.3	18.0	61.3	20.5	71.4%	0.017
B-Target	13.3%	–	71.4	–	98.1	–	–	0.102

Bold numbers correspond to the largest values in column “#Solve” and the smallest values in the other columns.

7.2 BDD-based cutting planes comparison

Table 1 also highlights the root performance differences between the BDD cuts. As expected, the complete methods based on a CGLP (i.e., B-Gen, B-Gen+L, and B-Target) achieve the lowest root gap. However, these techniques are computationally expensive since they solve LPs with as many variables as arcs in the BDD. In total time, B-Target is more efficient than B-Gen because it adds fewer cuts, possibly due to the fact that its inequalities are facet-defining. This difference is partially mitigated by our BDD lifting since B-Gen+L has similar average performance to B-Target.

The low-complexity BDD cuts (i.e., B-Flow and B-Proj) are orders of magnitude faster but have a larger root gap than the CGLP-based alternatives. As discussed in Sect. 5.3, B-Flow and B-Flow+L solve a min-cut problem over the BDD, which explains the fast separation time, but might not remove all infeasible fractional points. B-Proj is a complete algorithm but its subgradient routine struggles to separate points close to the convex hull [25], which explains its poor root gaps. Also, B-Proj is 15 to 20 times slower than B-Flow on average because it requires several subgradient iterations to derive an inequality.

Lastly, we evaluate the impact of combining the low-complexity BDD cuts with the CGLP variants; i.e., the CGLP is invoked after no more fast cuts can be added. Figure 2 depicts two plots where each (x, y) point represents the root time for an instance given by the x-axis and the y-axis techniques. B-Ta+Fl+L employs target and combinatorial flow cuts together, while B-Gen+NoFlow+L represents a pure
general BDD cut approach. In both cases, all methods have approximately the same root gap. We observe that adding the low-complexity cuts improves the root time performance of the methods, as they decrease the number of calls to the corresponding CGLP.

7.3 Solution performance—cuts at the root node

We now present in Table 2 the average solution performance of the tested techniques when cuts are added only at the root node. The first two columns present the number of instances solved to optimality and the average final gap. The next columns show the average solution time and nodes explored for only the instances that all techniques solved.

We observe that B-Gen+L, B-Target, and B-Ta+Fl+L are the best performing techniques, the latter two solving all instances in SOC-K. These algorithms have small performance differences that are explained by the root information in Table 1, where B-Target is slightly more efficient than B-Gen+L. In terms of time, B-Ta+Fl+L is the fastest approach and explores the fewest number of nodes. We note, however, that B-Target is effective for SOC-CC and solves more instances in that benchmark, albeit more slowly than B-Ta+Fl+L. This behavior may be explained by the fact that B-Target only adds facet-defining cuts while B-Ta+Fl+L generates our combinatorial BDD cuts first, which significantly increases the total number of cuts added at the root node.

Figure 3 depicts the performance of each algorithm for the SOC-CC instances (similar results can be found for SOC-K in “Appendix C”). The graph illustrates the number of instances solved over time (left-hand side) and the accumulated number of instances over a final gap range (right-hand side). Once again, we see the positive impact of our lifting procedure and the dominance of B-Gen+L, B-Target, and B-Ta+Fl+L.
Table 2 Aggregated results showing the overall performance of each technique

	SOC-K Dataset		SOC-CC Dataset					
	# Solve	Gap	Time	# Nodes	# Solve	Gap	Time	# Nodes
CPLEX	70	0.39%	167.8	155,856.4	137	7.46%	530.2	169,802.5
Cover	71	0.41%	209.9	446,171.5	–	–	–	–
CoverLift	70	0.34%	149.3	303,020.2	–	–	–	–
Cover+L	70	0.27%	109.6	191,505.4	–	–	–	–
B-Flow	64	0.52%	458.2	867,798.4	135	7.01%	367.4	214,629.4
B-Flow+L	73	0.27%	139.6	270,937.6	149	5.55%	240.3	121,800.3
B-Gen	76	0.16%	441.1	38,879.7	162	4.31%	172.4	56,490.3
B-Gen+L	88	0.01%	126.9	32,289.6	167	4.18%	142.0	54,563.6
B-Proj	68	0.47%	422.7	1,019,999.4	136	6.63%	380.0	208,567.2
B-Proj+L	66	0.50%	335.1	846,437.0	139	6.34%	366.5	202,853.6
B-Target	90	0.01%	131.2	28,031.5	172	4.04%	132.9	51,319.9
B-Ta+Fl+L	90	0.01%	**83.5**	**24,685.9**	168	4.19%	**110.0**	**45,979.1**

Bold numbers correspond to the largest values in column “#Solve” and the smallest values in the other columns.
Lastly, we evaluate the effectiveness of the BDD cuts when added in each node of the branch-and-bound tree search. We compare the best CGLP-based approach (i.e., B-Target) with our best low-budget alternative (i.e., B-Flow+L). We also propose a hybrid B-Hybrid that adds BDD target cuts at the root and combinatorial BDD flow cuts during search. Table 3 presents the average results for our two datasets. The table shows the number of instances solved, final gap, average solution time, and nodes explored for instances solved by all techniques, in addition to the total number of cuts added. For ease of comparison, we include again the results when adding cuts only at the root node in row Root, while the new version is included in row Search. B-Flow+L has a stronger performance when we add these cuts during search than just at the root node. In fact, B-Flow+L outperform B-Target over the SOC-CC dataset when we add the latter cuts during search (i.e., 177 vs. 172 instances solved). In contrast, B-Target performs best when the cuts are only added at the root node due to their long separation time (see Table 1).

Table 3 indicates that, for our datasets, B-Target has the best overall performance when adding cuts only at the root node, but performs poorly when the cuts are added at all nodes during search. In contrast, B-Flow+L performs best when cuts are added during search. Based on our analysis, this behavior is due to the fast computational time of combinatorial flow cuts, which can be derived in a significant shorter time than B-Target (Table 1). B-Hybrid, in turn, solves fewer instances than B-Target in the SOC-K dataset possibly due to the large number of combinatorial flow cuts added during search. However, the inverse is true for the SOC-CC dataset, where B-Hybrid solves 179 instances and B-Flow+L (Search) 177, while B-Target (Root) only solves 172. Overall, we highlight that B-Target has the best performance when applied at the root node, while B-Hybrid performs well when cuts are added during

Fig. 3 Profile plot comparing the cumulative number of instances solved over time (left), and the cumulative number of instances over a final gap range (right) for SOC-CC dataset

7.4 Solution performance—branch-and-cut
8 Conclusions

We introduce a novel lifting and cutting-plane procedure for binary programs that leverage their combinatorial structure via a binary decision diagram (BDD) encoding of their constraints. Our lifting procedure relies on 0–1 disjunctions to rotate valid inequalities and uses a BDD to efficiently compute the disjunctive sub-problems. While our combinatorial lifting can enhance any cutting-plane approach, we also propose two novel BDD-based cut generation algorithms based on an alternative network-flow representation of the BDD.

BDDs give us the flexibility to apply our cut-and-lift approach to a wide range of non-linear problems. As a case study, we tested our procedure over second-order conic inequalities and compare its performance against a state-of-the-art solver (CPLEX) and existing BDD cuts in the literature. Overall, our lifting procedure reduced the average root gap up to 29% in our benchmark when applied to cuts generated by all tested methods. Also, a hybrid technique combining our approach with existing BDD cuts proved to be the most efficient over the tested benchmarks.

Acknowledgements We thank the editors and reviewers whose valuable feedback helped improve the paper. Funding was provided by Agencia Nacional de Investigación y Desarrollo de Chile (Becas Chile)
A Relaxed BDD construction procedure for second-order cones

We now present the relaxed BDD construction procedure for SOC inequalities based on the RSOC model. The construction algorithm is analogous for the case of SOC knapsack constraints and the RSOC-K model.

The state information at the core of our BDD construction algorithm is based on recursive model RSOC. This information is stored in each node of the BDD and used to identify infeasible assignments and decide how to widen the BDD (i.e., split nodes). Our state information keeps track of each of the $l + 1$ linear components in inequality (14), i.e., $a^T x$ and $d_k^T x - h_k$ for each $k \in \{1, \ldots, l\}$. Thus, each node $u \in N_i$ has two $l + 1$ dimensional vectors for top-down information, $Q^\downarrow_{\min}(u)$ and $Q^\downarrow_{\max}(u)$, that approximate the linear components considering the partial assignments from r to u. We set the top-down state information at the root node as $Q^\downarrow_{\min}(r) := Q^\downarrow_{\max}(r) := 0$ and $Q^\downarrow_{\min}(r) := Q^\downarrow_{\max}(r) := -h_k$ for all $k \in \{1, \ldots, l\}$. Then, for any $u \in N_i$, $i \in \{2, \ldots, n\}$, and $k \in \{1, \ldots, l\}$ we update the states as:

$$Q^\downarrow_{0\min}(u) := \min_{a \in A_{\min}(u)} \{Q^\downarrow_{0\min}(s(a)) + a_{i-1} \cdot v_a\},$$

$$Q^\downarrow_{0\max}(u) := \max_{a \in A_{\min}(u)} \{Q^\downarrow_{0\max}(s(a)) + a_{i-1} \cdot v_a\},$$

$$Q^\downarrow_{k\min}(u) := \min_{a \in A_{\min}(u)} \{Q^\downarrow_{k\min}(s(a)) + d_{ki-1} \cdot v_a\},$$

$$Q^\downarrow_{k\max}(u) := \max_{a \in A_{\min}(u)} \{Q^\downarrow_{k\max}(s(a)) + d_{ki-1} \cdot v_a\}.$$

Similarly, we use two $l + 1$ dimensional vectors, $Q^\uparrow_{\min}(u)$ and $Q^\uparrow_{\max}(u)$, for our bottom-up state information for each node $u \in \mathcal{N}$. The information is initialized at the terminal node as $Q^\uparrow_{0\min}(t) := Q^\uparrow_{0\max}(t) := 0$ and $Q^\uparrow_{k\min}(t) := Q^\uparrow_{k\max}(t) := 0$ for all $k \in \{1, \ldots, l\}$. Then, for any $u \in N_i$, $i \in \{1, \ldots, n-1\}$, and $k \in \{1, \ldots, l\}$, we have:

$$Q^\uparrow_{0\min}(u) := \min_{a \in A_{\min}(u)} \{Q^\uparrow_{0\min}(t(a)) + a_k \cdot v_a\},$$

$$Q^\uparrow_{0\max}(u) := \max_{a \in A_{\min}(u)} \{Q^\uparrow_{0\max}(t(a)) + a_k \cdot v_a\},$$

$$Q^\uparrow_{k\min}(u) := \min_{a \in A_{\min}(u)} \{Q^\uparrow_{k\min}(t(a)) + d_{ki} \cdot v_a\},$$

$$Q^\uparrow_{k\max}(u) := \max_{a \in A_{\min}(u)} \{Q^\uparrow_{k\max}(t(a)) + d_{ki} \cdot v_a\}.$$

For each node $u \in \mathcal{N}$, the state information under and over approximates the value of the linear components of (14) for all $r - u$ paths (i.e., top-down information) and for
all $u - t$ paths (i.e., bottom-up information). We use the state information to identify if an arc corresponds to an infeasible assignment, i.e., all paths traversing it correspond to infeasible solutions of (14). In particular, we can remove an arc $a = (u, u') \in A_i$ if the following condition holds:

$$Q_0^{\min}(u) + a_i \cdot v_a + Q_0^{\min}(u') + \sum_{k=1}^{l} g_k(a) > b,$$

where $g_k(a)$ for $k \in \{1, \ldots, l\}$ is given by:

$$g_k(a) := \begin{cases} (Q_k^{\min}(u) + d_{ki} \cdot v_a + Q_k^{\min}(u'))^2, & \text{if } Q_k^{\min}(u) + d_{ki} \cdot v_a + Q_k^{\min}(u') > 0, \\ (Q_k^{\max}(u) + d_{ki} \cdot v_a + Q_k^{\max}(u'))^2, & \text{if } Q_k^{\max}(u) + d_{ki} \cdot v_a + Q_k^{\max}(u') < 0, \\ 0, & \text{otherwise.} \end{cases}$$

Notice that $g_k(a)$ under approximates $(d_k^T x - d_k)^2$ for all paths traversing arc $a \in A$, and so the left-hand side (LHS) of (18) under approximates the LHS of (14) for all paths traversing arc $a \in A_i$. Then, all paths traversing an arc a that satisfy (18) correspond to invalid assignments for (14).

If $Q_k^{\max}(u) = Q_k^{\min}(u)$ for all nodes $u \in N$, we recover the exact BDD based on the recursive model RSOC and condition (18) is equivalent to (15d). Thus, our splitting procedure tries to achieve this property by selecting nodes u with $Q_k^{\max}(u) - Q_k^{\min}(u) \geq \delta (\delta > 0)$ for some $k \in \{0, \ldots, l\}$ and then split it into two new nodes, u' and u'', so $Q_k^{\max}(u') - Q_k^{\min}(u') < \delta$ and $Q_k^{\max}(u'') - Q_k^{\min}(u'') < \delta$. The splitting procedure then duplicates the outgoing arcs of u and assigns them to both u' and u'' to keep the same set of paths in B.

Algorithm 2 Relaxed (Exact) BDD Construction Procedure

1: procedure ConstructBDD(SOC Constraint $\{a, D, h, \Omega, b, n\}, \mathcal{W}$)
2: $B := \text{WidthOneBDD}(n)$
3: while B has been modified do
4: UpdateBDDNodesBottom(N)
5: for $i \in \{1, \ldots, n\}$ do
6: UpdateBDDNodesTop(N_i)
7: SplitBDDNodes(N_i, \mathcal{W})
8: FilterBDDOutgoingEdges(N_i)
9: UpdateBDDNodesTop(N_{i+1})
10: $B := \text{ReduceBDD}(B)$
11: return B

Our construction procedure creates a relaxed BDD $B = (N, A)$ by limiting its width $w(B)$ by a positive value \mathcal{W}, where $w(B) := \max_{i \in [1, \lvert N_i \rvert]}$ represents the maximum number of nodes in each layer. The complete BDD construction procedure is shown in Algorithm 2. The algorithm starts creating a width-one BDD for the SOC.
constraint (line 2) and then updates the bottom-up information for all the nodes (line 4). During the top-down pass through the BDD (lines 5–9), the procedure updates the top-down information of layer N_i, splits the nodes until we reach the width limit W, and filters the emanating arcs of N_i. The algorithm then checks if the BDD has been updated (line 3) and repeats the bottom-up and top-down iterations until the BDD cannot be updated any more. Lastly, we reduce the BDD (line 10) following the standard procedure in the literature [20].

The resulting BDD starts with all possible variable assignments (i.e., a width-one BDD) and removes arcs using condition (18). Thus, the procedure is guaranteed to construct a relaxed BDD for a SOC constraint. Notice that for a big enough W, the procedure will return an exact BDD.

Example 5 Consider the following binary set defined by an SOC inequality $X = \{x \in \{0, 1\}^3 : 3x_1 + x_2 + x_3 + \sqrt{(x_1 + x_2 + 2x_3)^2 + (x_1 + 3x_2 - x_3 + 3)^2} \leq 8\}$. Figure 4 depicts some of the steps to construct an exact BDD for X. The left most diagram corresponds to a width-one BDD for this problem. The top-down state information in the root node is $((Q_0^{\text{min}}(r), Q_0^{\text{max}}(r)), (Q_1^{\text{min}}(r), Q_1^{\text{max}}(r)), (Q_2^{\text{min}}(r), Q_2^{\text{max}}(r))) = ((0, 0), (0, 0), (3, 3))$, while for node u_1 is $((0, 3), (0, 1), (3, 4))$.

The middle BDD illustrates the resulting BDD after splitting node u_1. The resulting nodes, u_1' and u_1'', have top-down state information $((0, 0), (0, 0), (3, 3))$ and $((3, 3), (1, 1), (4, 4))$, respectively. In addition, the gray arc from u_1'' to u_2 corresponds to an invalid assignment: the bottom-up information of u_2 is $((0, 1), (0, 2), (-1, 0))$, thus, (18) evaluates to $10.3 > 8$.

B Experiments comparing different BDD widths

Table 4 presents the average performance for CPLEX and our four alternatives (i.e., B-Flow, B-Flow+L, B-Gen, and B-Gen+L) with three different maximum width values, $W \in \{2000, 3000, 4000\}$, over the SOC-CC instances. The table shows the number of instances solved, average root gap, and average final gap for all techniques. Our four alternatives with $W \in \{2000, 3000, 4000\}$ each outperform CPLEX. $W = 4000$ achieves the best overall performance across the four combinatorial cut-and-
Width	# Solve	Root Gap	Final Gap	
CPLEX	137	20.82%	7.75%	
B-Flow	2000	137	20.31%	7.35%
	3000	140	20.11%	7.25%
	4000	139	20.01%	7.25%
B-Flow+L	2000	149	16.61%	6.09%
	3000	150	16.03%	6.04%
	4000	150	15.68%	5.89%
B-Gen	2000	160	14.93%	5.21%
	3000	159	14.05%	4.87%
	4000	166	13.47%	4.59%
B-Gen+L	2000	160	14.91%	5.00%
	3000	168	14.03%	4.66%
	4000	168	13.44%	4.43%

Width	# Solve	Root Gap	Final Gap	
CPLEX	70	2.84%	0.39%	
B-Flow	2000	66	3.64%	0.52%
	3000	67	3.63%	0.52%
	4000	64	3.63%	0.53%
B-Flow+L	2000	74	2.84%	0.27%
	3000	72	2.80%	0.28%
	4000	74	2.80%	0.26%
B-Gen	2000	75	1.62%	0.16%
	3000	78	1.45%	0.15%
	4000	76	1.34%	0.16%
B-Gen+L	2000	83	1.61%	0.04%
	3000	87	1.44%	0.02%
	4000	88	1.33%	0.01%

Similarly, Table 5 presents the average performance over the SOC-K instances for CPLEX, our four alternatives (i.e., B-Flow, B-Flow+L, B-Gen, and B-Gen+L) with three different maximum width values, \(W \in \{2000, 3000, 4000\} \). Overall, \(W = 4000 \) achieves the best or comparable performance across the five BDD approaches. Bold numbers in Tables 4 and 5 correspond to the largest values in column “#Solve” and the smallest values in the other columns.

We note that these three BDD widths achieve competitive results with respect to CPLEX in our dataset. However, problems with more variables (i.e., \(n > 125 \)) would probably required a larger width to create a tight BDD relaxation and, thus, strong cuts.
C Average performance comparison for Knapsack chance constraints

We now present additional results for the SOC-K dataset. As in Figs. 3, 5 illustrate the performance of each algorithm for the SOC-K dataset. We see a clear dominance of B-Gen+L, B-Target, and B-Ta+Fl+L and also the positive impact of our combinatorial lifting in instances solved and gap reduction.

The following tables show average results for each parameter configuration over the SOC-CC benchmark. We present results for our four variants (i.e., B-Flow, B-Flow+L, B-Gen, and B-Gen+L), cover cut variants (i.e., Cover, CoverLift, and Cover+L), CPLEX, and best performing BDD-based cuts (i.e., B-Target and B-Ta+Fl+L). All techniques add cuts only at the root node of the tree search. Tables 6, 7, and 8 show the number of instances solved, average root gap, and average final gap for each n, m, and Ω combination with $W = 4000$, respectively. Similarly, Tables 9 and 10 show the average number of nodes in the branch-and-bound search and the average run time for the instances that all techniques solved to optimality. Bold numbers in Tables 6, 7, 8, 9, and 10 correspond to the largest values in column “#Solve” and the smallest values in the other columns.

D Average performance comparison for general chance constraints

We now present additional results for the SOC-CC dataset. Figure 6 shows two plots comparing the root gap of B-Gen+L and CPLEX for the SOC-CC instances and different values of Ω and t. In each plot, an (x, y) point represents the root gap for an instance given by the x-axis and the y-axis technique, respectively. Overall, we can see that B-Gen+L achieves a smaller or equal root gap to CPLEX, however, the difference is considerably larger when $\Omega \geq 3$ and $t = 0.1$.
n	m	Ω	# Instances Solved																																					
			CPLEX	Cover	CoverLift	Cover+L	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L																												
100	10	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5							
125	10	1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5								
150	10	1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5							
Total			70	71	70	70	64	73	76	88	90	90																												
Table 7 Root Gap comparison across all techniques for SOC-K benchmark

n	m	Root Gap (%)										
		CPLEX	Cover	CoverLift	Cover+L	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
-----	-----	-------	-------	-----------	---------	--------	----------	-------	---------	----------	-----------	-----
100	10	0.9%	1.8%	1.4%	2.0%	1.4%	0.5%	0.5%	0.5%	0.5%	0.5%	
		2.4%	2.9%	2.2%	1.9%	3.2%	2.0%	0.5%	0.4%	0.5%	0.4%	
		3.7%	3.9%	2.8%	2.2%	4.4%	2.6%	0.3%	0.3%	0.3%	0.3%	
20	1	1.9%	2.8%	2.4%	2.3%	3.2%	2.5%	1.1%	1.1%	1.1%	1.1%	
		4.5%	5.0%	4.5%	4.4%	5.4%	4.3%	1.5%	1.5%	1.5%	1.5%	
		6.1%	6.3%	5.9%	5.5%	7.1%	5.4%	1.5%	1.5%	1.5%	1.5%	
125	10	0.7%	1.4%	0.9%	1.0%	1.8%	1.2%	0.7%	0.7%	0.7%	0.7%	
		1.8%	2.2%	1.6%	1.5%	2.5%	1.6%	0.8%	0.8%	0.8%	0.8%	
		2.7%	2.8%	2.0%	1.7%	3.3%	1.8%	0.9%	0.9%	0.9%	0.9%	
20	1	2.1%	2.9%	2.6%	2.5%	3.1%	2.7%	1.9%	1.9%	1.9%	1.9%	
		4.0%	4.3%	4.1%	4.1%	4.7%	4.1%	2.4%	2.4%	2.4%	2.4%	
		5.8%	6.0%	5.6%	5.5%	6.5%	5.6%	2.7%	2.7%	2.7%	2.7%	
150	10	0.5%	1.1%	0.9%	0.9%	1.3%	1.1%	0.7%	0.7%	0.7%	0.7%	
		1.6%	1.9%	1.5%	1.4%	2.1%	1.5%	0.9%	0.9%	0.9%	0.9%	
		2.7%	2.8%	2.4%	2.3%	3.2%	2.6%	1.3%	1.3%	1.3%	1.3%	
20	1	1.6%	2.3%	1.9%	1.9%	2.5%	2.2%	1.6%	1.6%	1.6%	1.6%	
		3.3%	3.7%	3.3%	3.1%	3.9%	3.3%	2.1%	2.1%	2.1%	2.1%	
		4.7%	5.1%	4.5%	4.3%	5.3%	4.4%	2.6%	2.5%	2.5%	2.5%	
		Average	2.8%	3.3%	2.8%	2.7%	3.6%	2.8%	1.3%	1.3%	1.3%	
Table 8 Final Gap comparison across all techniques for SOC-K benchmark

n	m	Ω	CPLEX	Cover	CoverLift	Cover+L	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
100	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
125	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		3	1.0%	0.9%	0.8%	0.8%	1.2%	0.4%	0.1%	0.0%	0.0%	0.0%
		5	2.5%	2.5%	2.0%	1.6%	2.8%	1.6%	0.5%	0.0%	0.0%	0.0%
150	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
		5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1	1	0.1%	0.1%	0.2%	0.1%	0.3%	0.1%	0.2%	0.0%	0.0%	0.0%
		3	1.3%	1.3%	1.0%	0.7%	1.6%	0.9%	0.6%	0.1%	0.0%	0.0%
		5	2.1%	2.3%	1.8%	1.6%	2.7%	1.6%	1.5%	0.0%	0.0%	0.0%
Average			0.4%	0.4%	0.3%	0.3%	0.5%	0.3%	0.2%	0.0%	0.0%	0.0%
Table 9 Nodes explored comparison across all techniques for SOC-K benchmark

n	m	Ω	# Nodes Explored									
			CPLEX	Cover	CoverLift	Cover+L	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
100	10	1	2187	9493	3407	3808	13,279	5055	191	170	173	159
	3	15,911	38,018	18,616	13,374	77,135	11,973	127	100	92	167	165
	5	56,024	73,318	34,888	11,065	197,240	24,390	182	171	214	1088	1015
20	1	12,093	84,852	36,813	37,479	152,371	56,573	1929	1128	1088	1015	1015
	3	275,046	498,671	367,255	326,495	1,061,138	271,931	3062	1465	1591	1181	1181
	5	796,298	1,030,628	1,073,455	431,804	1,648,577	655,462	1461	607	578	559	559
125	10	1	2557	26,109	5254	6707	59,136	22,296	3,864	4,875	2747	3476
	3	16,810	89,336	35,721	28,278	190,740	39,481	8114	4436	4720	4751	4751
	5	157,561	301,041	253,128	87,198	1,290,400	89,930	6137	4415	3665	3521	3521
20	1	243,540	1,134,038	628,234	584,492	2,016,914	568,773	120,849	90,177	83,596	68,425	68,425
	3	445,816	902,386	476,674	513,874	2,206,133	1,047,598	86,749	30,173	24,841	26,485	26,485
	5	–	–	–	–	–	–	–	–	–	–	–
150	10	1	1835	39,165	14,878	18,218	61,289	33,738	17,673	8190	16,377	16,377
	3	267,752	1,156,661	1,084,202	400,829	1,900,415	399,942	56,718	36,842	29,805	31,726	31,726
	5	394,755	877,686	423,235	337,258	2,718,140	658,492	88,738	111,968	63,792	64,269	64,269
20	1	453,059	2,707,252	1,202,011	1,186,773	3,237,491	2,514,477	541,442	482,927	442,424	377,666	377,666
	3	–	–	–	–	–	–	–	–	–	–	–
	5	–	–	–	–	–	–	–	–	–	–	–
Average	209,416	597,910	377,185	265,843	1,122,027	426,674	62,482	51,843	45,047	39,583	39,583	39,583
Table 10 Solving time comparison across all techniques for SOC-K benchmark

n	m	Ω	CPLEX	Cover	CoverLift	Cover+L	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	Average
100	10	1	3.3	2.7	**1.4**	7.2	13.5	7.6	138.5	31.5	37.2	24.4	
			3	12.0	**6.5**	9.8	46.2	9.6	170.2	48.8	61.1	36.4	
			5	32.3	24.6	13.0	**9.0**	97.2	13.1	391.8	55.2	72.5	33.0
3	19.1	38.5	18.8			30.0	121.3	39.7	457.6	149.4	135.5	84.2	
20			317.8	273.7	217.1	190.3	762.6	**162.8**	753.6	260.4	235.7	179.6	
			970.4	718.5	744.6	331.2	1330.4	473.2	1232.0	374.7	373.7	**220.1**	
125	10	1	3.3	6.8	**2.4**	12.1	36.2	16.1	100.3	29.1	44.2	27.0	
			11.8	23.7	**12.7**	18.4	80.6	20.9	415.5	67.2	88.9	46.6	
			105.5	101.0	83.4	41.9	400.6	**39.6**	826.3	80.9	113.5	55.3	
20			357.6	567.0	322.3	323.5	1031.0	279.5	409.6	227.1	220.0	**146.7**	
			645.0	668.3	338.0	425.5	1716.2	652.4	946.3	518.6	523.2	**275.1**	
			–	–	–	–	–	–	–	–	–	–	
150	10	1	2.9	10.0	**5.2**	18.6	36.1	22.8	85.2	32.1	41.7	29.1	
			183.1	387.3	345.0	140.5	759.0	129.2	323.6	94.8	98.9	**61.2**	
			252.5	260.5	156.5	127.5	1080.5	213.2	559.7	182.4	148.7	**100.9**	
20			766.9	1506.0	808.8	750.1	2167.0	1341.7	914.8	391.4	375.5	**324.3**	
			–	–	–	–	–	–	–	–	–	–	
			–	–	–	–	–	–	–	–	–	–	
			252.5	260.5	156.5	127.5	1080.5	213.2	559.7	182.4	148.7	**100.9**	
			–	–	–	–	–	–	–	–	–	–	
			–	–	–	–	–	–	–	–	–	–	
Average			245.4	306.7	205.0	162.4	645.2	228.1	515.0	169.6	171.4	**109.6**	
The problems become more challenging with a larger Ω (i.e., a predominant quadratic term) due to a weak SOC relaxation and linearization. Thus, our procedure can potentially generate stronger cuts than CPLEX. In fact, the left plot in Fig. 6 shows all instances with $\Omega = 1$ close to the diagonal, while problems with $\Omega \in \{3, 5\}$ have larger gap reductions. Lastly, the right plot of Fig. 6 shows that B-Gen+L has significantly smaller gaps than CPLEX over instances with a small t (i.e., small solution sets). Our relaxed BDDs are close to exact BDDs in these cases, thus, making our cuts more effective.

The following tables show average results for each parameter configuration over the SOC-CC benchmark. We present results for our four variants (i.e., B-Flow, B-Flow+L, B-Gen, and B-Gen+L), CPLEX, and best performing BDD-based cuts (i.e., B-Target and B-Ta+Fl+L). All techniques add cuts only at the root node of the tree search. Tables 11, 12, and 13 show the number of instances solved, average root gap, and average final gap for each $n, m, \Omega, \text{and } t$ combination, with $W = 4000$. Similarly, Tables 14 and 15 show the average number of nodes in the branch-and-bound search and the average run time for the instances that all techniques solved to optimality. Bold numbers in Tables 11, 12, 13, 14, and 15 correspond to the largest values in column “#Solve” and the smallest values in the other columns.

We note that in most instances the BDD cut algorithms have better performance than CPLEX. However, CPLEX is competitive when $t = 0.3$ and $\Omega = 1$, as expected from the behavior observed in Fig. 6. We also note that CPLEX has similar performance to the BDD techniques when $n = 125$, which suggest that a tighter BDD relaxation (i.e., bigger BDD width) might be needed for larger problem instances.
t	n	m	Ω	# Instances Solved						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.1	75	10	1	5	5	5	5	5	5	5
			3	5	5	5	5	5	5	5
			5	5	5	5	5	5	5	5
			20	5	5	5	5	5	5	5
100	10	1	5	5	5	5	5	5	5	5
		3	5	5	5	5	5	5	5	5
		5	5	5	5	5	5	5	5	5
		20	5	5	5	5	5	5	5	5
125	10	1	0	0	0	1	1	2	2	2
		3	5	5	5	5	5	5	5	5
		5	5	5	5	5	5	5	5	5
		20	5	5	5	5	5	5	5	5
20	1	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0
	5	0	0	0	2	1	1	1	1	1
	20	1	0	0	0	0	0	0	0	0
	3	0	0	1	1	1	2	1	2	1
	5	0	0	1	2	2	3	2	2	2
t	m	Ω	# Instances Solved							
------	-----	----------	-------------------							
0.2	10	1	3							
	20	3	3							
	100	3	3							
	125	3	5							

Table 11 continued
t	n	m	Ω	# Instances Solved							
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
0.3	75	10	1	5	5	5	5	5	5	5	
			3	5	5	5	5	5	5	5	
			5	4	4	5	5	5	5	5	
20	1	5	5	5	5	5	5	5	5	5	
	3	0	0	1	4	4	4	4	4		
	5	0	0	0	2	3	4	4			
100	10	1	5	5	5	5	5	5	5		
			3	5	5	5	5	5	5		
			5	5	5	5	5	5	5		
20	1	4	3	4	5	5	5	5	5		
	3	0	0	0	1	1	1	1			
	5	0	0	0	0	0	0				
125	10	1	5	5	5	5	5	5	5		
			3	5	5	5	5	5	5		
			5	5	5	5	5	5	5		
20	1	5	4	5	5	5	4	5			
	3	0	0	0	0	0	0				
	5	0	0	0	0	0	0				
Total				137	135	149	162	167	172	168	
t	n	m	Ω	Root Gap (%)							
-----	-----	-----	--------	--------------							
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
0.1	75	10	1	7.6%	10.0%	6.9%	3.8%	3.8%	3.5%	3.7%	
			3	47.6%	45.4%	20.9%	16.4%	16.0%	15.6%	16.0%	
			5	56.1%	47.3%	22.0%	17.8%	17.4%	17.9%	17.3%	
20	1		1	54.7%	56.5%	54.9%	47.0%	47.1%	47.1%	47.1%	
			3	83.0%	75.7%	31.1%	25.3%	23.2%	30.0%	23.1%	
			5	81.3%	26.0%	8.2%	5.9%	8.2%	16.6%	8.2%	
100	10	1	6.1%	7.5%	6.5%	5.4%	5.3%	5.3%	5.3%	5.3%	
			3	34.3%	34.0%	27.3%	23.3%	23.2%	23.3%	23.2%	
			5	40.8%	39.7%	27.1%	22.4%	22.6%	22.4%	22.4%	
20	1		26.9%	28.8%	26.7%	23.2%	23.2%	23.2%	23.2%	23.2%	
			3	65.3%	62.9%	48.6%	46.0%	46.0%	46.0%	46.0%	
			5	67.5%	59.6%	42.5%	39.7%	40.0%	39.7%	39.9%	
125	10	1	4.4%	5.5%	4.7%	4.1%	4.1%	4.1%	4.1%	4.1%	
			3	33.5%	33.3%	30.2%	29.2%	29.2%	29.2%	29.2%	
			5	38.0%	36.4%	32.1%	31.2%	31.2%	31.1%	31.2%	
20	1		18.9%	19.8%	19.3%	18.0%	18.0%	18.0%	18.0%	18.0%	
			3	56.4%	56.4%	53.0%	47.8%	47.7%	47.8%	47.7%	
			5	56.2%	55.0%	43.0%	40.4%	40.4%	40.4%	40.4%	
\(t \)	\(n \)	\(m \)	\(\Omega \)	Root Gap (%)	CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
---	---	---	---	---	---	---	---	---	---	---	---
0.2	75	10	1	2.9%	2.9%	4.5%	3.6%	2.0%	2.0%	2.0%	2.0%
			3	10.1%	10.1%	10.7%	9.0%	5.4%	5.4%	5.4%	5.4%
			5	13.1%	13.1%	13.8%	11.1%	7.0%	7.0%	7.0%	7.0%
	20	1	1	11.6%	11.6%	13.9%	11.4%	7.8%	7.8%	7.8%	7.8%
			3	30.6%	30.6%	31.4%	30.2%	21.0%	21.0%	21.0%	21.0%
			5	32.5%	32.5%	32.9%	29.2%	20.5%	20.5%	20.5%	20.5%
100	10	1	1	2.6%	2.6%	3.8%	3.1%	2.4%	2.4%	2.4%	2.4%
			3	8.3%	8.3%	8.8%	8.0%	6.2%	6.2%	6.2%	6.2%
			5	11.8%	11.8%	12.1%	11.5%	9.8%	9.8%	9.8%	9.8%
	20	1	1	7.7%	7.7%	9.2%	8.6%	6.5%	6.5%	6.5%	6.5%
			3	24.6%	24.6%	24.9%	24.1%	20.7%	20.7%	20.7%	20.7%
			5	30.1%	30.1%	30.2%	29.1%	25.6%	25.6%	25.6%	25.6%
125	10	1	1	1.6%	1.6%	2.8%	2.6%	2.4%	2.4%	2.4%	2.4%
			3	7.7%	7.7%	7.9%	7.7%	7.4%	7.4%	7.3%	7.4%
			5	9.4%	9.4%	9.5%	9.2%	8.6%	8.6%	8.6%	8.6%
	20	1	1	5.4%	5.4%	6.3%	6.2%	5.5%	5.5%	5.5%	5.5%
			3	20.6%	20.6%	20.7%	20.5%	19.0%	19.0%	19.0%	19.0%
			5	25.1%	25.1%	25.2%	24.9%	22.9%	22.9%	22.9%	22.9%
Table 12 continued

t	n	m	Ω	CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.3	75	10	1	1.2%	2.7%	1.9%	0.9%	0.9%	0.9%	0.9%
			3	3.6%	4.4%	3.4%	1.8%	1.8%	1.8%	1.8%
			5	4.3%	5.0%	4.0%	2.1%	2.1%	2.1%	2.1%
3	75	10	1	3.7%	5.5%	4.4%	2.4%	2.4%	2.3%	2.4%
			3	7.7%	9.0%	7.5%	4.3%	4.3%	4.3%	4.3%
			5	8.8%	9.8%	8.0%	4.8%	4.8%	4.8%	4.8%
20	75	10	1	1.0%	2.1%	1.7%	1.2%	1.2%	1.2%	1.2%
			3	2.3%	3.1%	2.8%	2.1%	2.1%	2.1%	2.1%
			5	2.9%	3.6%	3.5%	2.6%	2.6%	2.6%	2.6%
100	75	10	1	3.3%	4.6%	3.8%	3.1%	3.1%	3.1%	3.1%
			3	6.0%	6.7%	6.0%	4.6%	4.6%	4.6%	4.6%
			5	7.9%	8.6%	7.9%	6.1%	6.1%	6.1%	6.1%
125	75	10	1	1.6%	1.1%	1.0%	0.9%	0.9%	0.9%	0.9%
			3	1.6%	2.2%	2.1%	1.9%	1.9%	1.9%	1.9%
			5	1.8%	2.3%	2.0%	2.0%	2.0%	2.0%	2.0%
20	75	10	1	1.7%	2.8%	2.6%	2.4%	2.4%	2.4%	2.4%
			3	4.8%	5.4%	5.2%	4.5%	4.5%	4.5%	4.5%
			5	6.7%	7.2%	7.0%	6.0%	6.1%	6.0%	6.1%
Average				20.4%	19.5%	15.4%	13.0%	13.0%	13.3%	13.0%
t	n	m	Ω	Final Gap (%)						
-----	-----	-----	--------	----------------						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.1	75	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
100	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1		17.4%	18.4%	12.4%	7.5%	7.5%	5.1%	5.5%	
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
125	10	1	0.3%	0.6%	0.7%	0.3%	0.4%	0.0%	0.2%	
			3	25.1%	22.8%	17.6%	15.0%	16.1%	14.5%	16.0%
			5	28.0%	23.7%	13.0%	11.3%	11.3%	11.5%	11.3%
20	1		16.0%	16.9%	16.5%	14.6%	14.4%	14.4%	14.2%	
			3	52.0%	50.5%	32.3%	22.5%	21.8%	19.8%	22.1%
			5	49.4%	28.3%	10.4%	6.7%	4.1%	2.5%	6.9%
Table 13 continued

t	n	m	Ω	Final Gap (%)						
			CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
0.2	75	10		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
				1.4%	0.6%	0.1%	0.0%	0.0%	0.0%	0.0%
				4.5%	3.6%	1.2%	0.0%	0.0%	0.0%	0.0%
20				3.2%	3.8%	2.5%	1.4%	0.5%	0.6%	0.7%
				24.5%	23.7%	22.7%	13.6%	12.9%	13.6%	12.5%
				25.1%	25.8%	21.9%	12.5%	12.3%	12.1%	12.0%
100	10			0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
				4.4%	4.5%	3.1%	1.8%	1.3%	1.3%	1.5%
				8.4%	8.9%	8.0%	6.2%	6.1%	6.0%	6.0%
20				3.6%	4.6%	3.8%	2.1%	2.0%	1.7%	1.9%
				21.3%	22.3%	21.6%	17.6%	17.4%	17.2%	17.3%
				27.3%	28.0%	26.5%	22.7%	22.5%	22.5%	22.4%
125	10			0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
				5.4%	5.7%	5.4%	5.1%	5.0%	5.1%	5.1%
				7.2%	7.7%	7.7%	7.2%	7.1%	7.0%	7.1%
20				3.6%	4.3%	4.1%	3.5%	3.2%	3.3%	3.5%
				19.2%	19.9%	19.7%	17.8%	17.8%	17.7%	17.8%
				23.7%	24.5%	24.2%	21.8%	21.7%	21.7%	21.7%
t	n	m	Ω	Final Gap (%)						
------	------	-----	-----------	---------------						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.3	75	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.3%	0.4%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1		1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	3.1%	3.5%	2.1%	0.6%	0.4%	0.2%	0.2%
			5	4.8%	5.4%	3.5%	1.0%	0.5%	0.5%	0.4%
100	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1		0.2%	0.4%	0.3%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	3.4%	3.8%	3.3%	1.9%	1.8%	1.8%	1.9%
			5	5.9%	6.2%	5.7%	4.0%	3.9%	3.9%	3.9%
125	10	1	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			3	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
			5	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
20	1		0.0%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%	0.0%
			3	3.3%	3.9%	3.4%	3.0%	2.9%	2.8%	2.8%
			5	5.5%	5.9%	5.6%	4.8%	4.8%	4.7%	4.7%
Average				7.4%	7.0%	5.5%	4.2%	4.1%	3.9%	4.1%
Table 14: Nodes explored comparison across all techniques for SOC-CC benchmark

t	n	m	Ω	CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
0.1	75	10	1	12,185	17,956	4756	676	426	422	**399**	
			3	56,780	11,892	674	363	338	327	**292**	
			5	48,045	3821	356	243	208	178	**178**	
20			1	202,904	215,447	142,030	26,079	16,928	24,498	18,745	
			3	13,220	1,767	13	6	7	8	**8**	
			5	11,944	24	4	5	4	4	**4**	
100	10		1	225,098	419,363	276,059	96,340	105,972	112,095	**89,448**	
			3	887,680	783,566	109,802	58,768	53,628	46,936	53,654	
			5	645,651	199,487	20,966	15,700	18,833	11,710	12,749	
20			1	–	–	–	–	–	–	–	
			3	351,411	45,407	7779	5275	5923	5054	5124	
			5	270,319	14,754	5028	2206	2372	2212	**2192**	
125	10		1	247,942	448,522	193,963	92,868	78,944	71,829	**53,197**	
			3	–	–	–	–	–	–	–	
			5	–	–	–	–	–	–	–	
20			1	–	–	–	–	–	–	–	
			3	–	–	–	–	–	–	–	
			5	–	–	–	–	–	–	–	
t	n	m	Ω	CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L	
-----	-----	-----	---------	--------	--------	----------	-------	---------	----------	----------	
0.2	75	10	1	12,121	20,715	7,593	1,244	1,094	1,128	1,264	
	1			3	467,593	1,009,053	318,850	65,594	26,086	36,381	26,449
	5			465,102	501,715	260,340	141,485	105,020	58,315	117,946	
20				1	188,806	276,917	131,661	14,144	12,410	14,528	9,460
3	5			1	2	14,144	12,410	14,528	9,460	9,460	
100	10			1	95,393	248,309	151,732	52,426	33,054	51,027	29,836
3				1	2	14,144	12,410	14,528	9,460	9,460	
5				1	2	14,144	12,410	14,528	9,460	9,460	
20	1			5	2	14,144	12,410	14,528	9,460	9,460	
3				5	2	14,144	12,410	14,528	9,460	9,460	
125	10			1	49,518	312,285	255,539	312,597	204,109	213,868	230,317
3				5	2	14,144	12,410	14,528	9,460	9,460	
5				20	1	2	14,144	12,410	14,528	9,460	9,460
3				5	2	14,144	12,410	14,528	9,460	9,460	
5				20	1	2	14,144	12,410	14,528	9,460	9,460
Table 14 continued

t	n	m	Ω	# Nodes Explored						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.3	75	10	1	1749	4503	1480	617	628	471	693
			3	105,042	289,610	88,043	4729	3330	3172	2798
			5	106,290	166,623	40,851	2344	2990	3066	3140
20	1		1	46,165	92,516	64,630	7094	3820	3340	3,928
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
100	10		1	4,668	13,241	12,104	2445	4007	2414	3902
	3			98,320	232,323	215,941	41,555	54,620	41,508	48,554
	5			325,561	779,990	647,941	130,800	160,442	160,147	136,534
20	1			73,317	104,970	110,269	37,389	39,225	37,523	40,692
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
125	10		1	621	7117	5397	6667	3226	7361	4736
	3			115,889	289,327	310,125	140,877	117,999	105,835	108,763
	5			225,090	447,631	374,133	292,988	495,361	332,646	334,653
20	1			130,174	374,273	324,563	304,234	188,323	319,374	155,635
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
Average				182,820	244,438	133,087	61,925	57,977	55,579	49,844
t	n	m	Ω	Solving Time (s)						
-----	-----	-----	--------	-----------------						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.1	75	10	1	22.8	18.5	9.5	50.1	17.9	18.1	12.1
			3	54.2	14.4	4.3	17.8	5.1	10.4	5.1
			5	52.5	8.2	3.4	10.5	3.5	6.7	3.7
20	1			1,184.5	641.2	531.6	438.8	244.4	178.2	165.2
	3			58.3	24.9	10.3	32.3	11.1	29.5	11.7
	5			59.8	15.2	8.5	15.7	8.9	13.8	9.0
100	10	1		557.1	494.3	368.6	218.8	176.5	173.3	141.8
		3		1648.1	948.1	216.3	194.8	122.0	135.2	132.3
		5		1039.0	327.3	46.1	87.1	55.3	54.9	41.7
20	1			–	–	–	–	–	–	–
	3			1733.5	234.3	49.2	99.3	50.1	108.3	52.4
	5			1177.4	87.7	36.9	53.1	31.2	81.6	31.2
125	10	1		547.3	469.8	366.5	154.1	140.2	95.1	83.3
		3		–	–	–	–	–	–	–
		5		–	–	–	–	–	–	–
20	1			–	–	–	–	–	–	–
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
Table 15 continued

t	n	m	Ω	Solving Time (s)						
				CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
0.2	75	10	1	20.8	21.4	13.6	39.6	29.8	25.7	18.6
	3			1851.3	1889.4	892.7	192.2	99.6	74.5	84.4
	5			1418.2	854.6	490.0	356.2	337.9	164.8	199.9
20	1			1361.3	1216.9	776.6	307.7	192.4	176.1	114.0
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
100	10		1	209.1	257.1	169.8	93.5	63.5	83.8	47.5
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
20	1			–	–	–	–	–	–	–
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
125	10		1	112.0	239.0	228.6	255.0	190.2	210.2	205.3
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
20	1			–	–	–	–	–	–	–
	3			–	–	–	–	–	–	–
	5			–	–	–	–	–	–	–
t	n	m	Ω	CPLEX	B-Flow	B-Flow+L	B-Gen	B-Gen+L	B-Target	B-Ta+Fl+L
-----	-----	-----	---------	--------	--------	---------	-------	---------	----------	-----------
0.3	75	10	1	4.7	11.3	9.3	33.3	19.1	25.7	20.6
			3	249.8	392.1	109.6	137.0	93.4	63.0	**53.4**
			5	214.8	233.3	78.6	130.3	66.1	63.5	**40.3**
20	1		1	236.1	270.0	200.0	161.2	84.8	78.1	**64.7**
			3	–	–	–	–	–	–	–
			5	–	–	–	–	–	–	–
100	10	1	11.0	21.2	21.8	31.6	25.4	27.0	24.3	
			3	245.3	374.1	319.2	118.7	144.6	**105.6**	122.1
			5	1081.2	1282.5	1448.4	348.5	438.7	446.1	390.4
20	1		1	550.6	315.5	317.7	166.8	144.2	**137.7**	176.7
			3	–	–	–	–	–	–	–
			5	–	–	–	–	–	–	–
125	10	1	2.5	19.2	18.5	24.2	19.2	25.0	22.9	
			3	301.2	468.9	445.3	238.9	**146.6**	196.7	152.8
			5	655.2	703.1	566.7	439.0	817.1	**418.0**	466.0
20	1		1	1255.8	1490.4	**639.7**	1251.0	962.6	1211.9	752.7
			3	–	–	–	–	–	–	–
			5	–	–	–	–	–	–	–
Average				597.18	444.80	279.91	189.90	158.05	147.95	**121.54**
References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc, Hoboken (1993)
2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: International Conference on Principles and Practice of Constraint Programming–CP 2007, pp. 118–132. Springer (2007)
3. Atamtürk, A., Bhardwaj, A.: Network design with probabilistic capacities. Networks 71(1), 16–30 (2018)
4. Atamtürk, A., Muller, L.F., Pisinger, D.: Separation and extension of cover inequalities for conic quadratic knapsack constraints with generalized upper bounds. INFORMS J. Comput. 25(3), 420–431 (2013)
5. Atamtürk, A., Narayanan, V.: The submodular knapsack polytope. Discret. Optim. 6(4), 333–344 (2009)
6. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. 122(1), 1–20 (2010)
7. Balas, E.: Facets of the knapsack polytope. Math. Program. 8(1), 146–164 (1975)
8. Balas, E.: Disjunctive Programming. Springer, Berlin (2018)
9. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed 0–1 programs. Math. Program. 58(1–3), 295–324 (1993)
10. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0–1 programming by lift-and-project in a branch-and-cut framework. Manag. Sci. 42(9), 1229–1246 (1996)
11. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: International Workshop on Experimental and Efficient Algorithms, pp. 452–463. Springer, Berlin (2005)
12. Behle, M.: Binary decision diagrams and integer programming. Ph.D. Thesis (2007)
13. Bergman, D., Cardonha, C., Mehrani, S.: Binary decision diagrams for bin packing with minimum color fragmentation. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research–CPAIOR 2019, pp. 57–66. Springer, Berlin (2019)
14. Bergman, D., Cire, A.A.: Discrete nonlinear optimization by state-space decompositions. Manag. Sci. 64(10), 4700–4720 (2018)
15. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research–CPAIOR 2012, pp. 34–49. Springer, Berlin (2012)
16. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)
17. Bergman, D., Lozano, L.: Decision diagram decomposition for quadratically constrained binary optimization. Optimization Online e-prints (2018)
18. Bhardwaj, A.: Binary conic quadratic knapsacks. Ph.D. thesis, UC Berkeley (2015)
19. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer programming: a progress report. In: The Sharpest Cut: The Impact of Manfred Padberg and His Work, pp. 309–325. SIAM (2004)
20. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 100(8), 677–691 (1986)
21. Castro, M.P., Cire, A.A., Beck, J.C.: An MDD-based Lagrangian approach to the multicommodity pickup-and-delivery tsp. INFORMS J. Comput. 32(2), 263–278 (2019)
22. Castro, M.P., Piacentini, C., Cire, A.A., Beck, J.C.: Relaxed BDDs: an admissible heuristic for delete-free planning based on a discrete relaxation. In: Proceedings of the International Conference on Automated Planning and Scheduling, pp. 77–85 (2019)
23. Cire, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)
24. Cohen, M.C., Keller, P.W., Mirrkeni, V., Zadimoghaddam, M.: Overcommitment in cloud services: bin packing with chance constraints. Manag. Sci. 65(7), 3255–3271 (2019)
25. Duvartin, D., van Hoeve, W.J.: Outer approximation for integer nonlinear programs via decision diagrams. Math. Program. 187, 111–150 (2020)
26. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2(4), 451–558 (1969)
27. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1 integer programs: Computation. INFORMS J. Comput. 10(4), 427–437 (1998)
28. Gu, Z., Nemhauser, G.L., Savelsbergh, M.W.: Lifted cover inequalities for 0–1 integer programs: Complexity. INFORMS J. Comput. 11(1), 117–123 (1999)
29. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020)
30. Hammer, P.L., Johnson, E.L., Peled, U.N.: Facet of regular 0–1 polytopes. Math. Program. 8(1), 179–206 (1975)
31. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: International Conference on Principles and Practice of Constraint Programming–CP 2010, pp. 266–280. Springer, Berlin (2010)
32. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: International Conference on Principles and Practice of Constraint Programming–CP 2017, pp. 565–578. Springer, Berlin (2017)
33. IBM: ILOG CPLEX Studio 12.9 Manual (2019)
34. Joung, S., Park, S.: Lifting of probabilistic cover inequalities. Oper. Res. Lett. 45(5), 513–518 (2017)
35. Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic programs. Math. Oper. Res. 41(2), 477–510 (2016)
36. Kılınç-Karzan, F., Yildiz, S.: Two-term disjunctions on the second-order cone. Math. Program. 154(1–2), 463–491 (2015)
37. Kinable, J., Cire, A.A., van Hoeve, W.J.: Hybrid optimization methods for time-dependent sequencing problems. Eur. J. Oper. Res. 259(3), 887–897 (2017)
38. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1–3), 193–228 (1998)
39. Lodi, A.: Mixed integer programming computation. In: 50 Years of Integer Programming 1958–2008, pp. 619–645. Springer, Berlin (2010)
40. Lodi, A., Tanneau, M., Vielma, J.P.: Disjunctive cuts for mixed-integer conic optimization. arXiv preprint arXiv:1912.03166 (2019)
41. Louveaux, Q., Wolsey, L.A.: Lifting, superadditivity, mixed integer rounding and single node flow sets revisited. Q. J. Belg. Fr. Ital. Oper. Res. Soc. 1(3), 173–207 (2003)
42. Lozano, L., Smith, J.C.: A binary decision diagram based algorithm for solving a class of binary two-stage stochastic programs. Math. Program. 1–24 (2018)
43. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)
44. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience, New York (1988)
45. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program. 5(1), 199–215 (1973)
46. Padberg, M.W.: A note on zero-one programming. Oper. Res. 23(4), 833–837 (1975)
47. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 348–360. Springer, Berlin (2001)
48. Raghunathan, A.U., Bergman, D., Hooker, J.N., Serra, T., Kobori, S.: Seamless multimodal transportation scheduling. arXiv preprint arXiv:1807.09676 (2018)
49. Santana, A., Dey, S.S.: Some cut-generating functions for second-order conic sets. Discret. Optim. 24, 51–67 (2017)
50. Şen, A., Atamtürk, A., Kaminsky, P.: A conic integer optimization approach to the constrained assortment problem under the mixed multinomial logit model. Oper. Res. 66(4), 994–1003 (2018)
51. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86(3), 515–532 (1999)
52. Tjandraatmadja, C., van Hoeve, W.J.: Target cuts from relaxed decision diagrams. INFORMS J. Comput. 31(2), 285–301 (2019)
53. van den Bogaerdt, P., de Weerdt, M.: Multi-machine scheduling lower bounds using decision diagrams. Oper. Res. Lett. 46(6), 616–621 (2018)
54. van den Bogaerdt, P., de Weerdt, M.: Lower bounds for uniform machine scheduling using decision diagrams. In: International Conference on Integration of Constraint Programming, Artificial Intelligence, and Operations Research–CPAIOR 2019, pp. 565–580. Springer, Berlin (2019)
55. Van de Panne, C., Popp, W.: Minimum-cost cattle feed under probabilistic protein constraints. Manag. Sci. 9(3), 405–430 (1963)
56. Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)
57. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed integer conic quadratic programming. Math. Program. Comput. 9(3), 369–418 (2017)
58. Wolsey, L.A.: Technical note—facets and strong valid inequalities for integer programs. Oper. Res. 24(2), 367–372 (1976). https://doi.org/10.1287/opre.24.2.367
59. Wolsey, L.A., Nemhauser, G.L.: Integer and Combinatorial Optimization, vol. 55. Wiley, New York (1999)
60. Zemel, E.: Easily computable facets of the knapsack polytope. Math. Oper. Res. 14(4), 760–764 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.