On Nonlinear Evolution Equation of Second Order in Banach Spaces

Kamal N. Soltanov
Igdir University, Igdir, Turkey

In this work the existence of a solution and the behavior of the existing solution of the nonlinear differential equation of second order in Banach space are studied.

More exactly we study the following nonlinear evolution equation

\[x_{tt} + A \circ F(x) = g \left(x, A^{-\frac{1}{2}} x_t \right), \quad t \in (0, T), \quad 0 < T < \infty \]

under the initial conditions

\[x(0) = x_0, \quad x_t(0) = x_1 \]

here \(A \) is a linear operator in a real Hilbert space \(H \), \(F : X \rightarrow X^* \) and \(g : D(g) \subseteq H \times H \rightarrow H \) are a nonlinear operators, \(X \) is a real Banach space. In particular, if the operator \(A \) is the differential operator, satisfying some condition, then the considered problem become a nonlinear hyperbolic equation with nonlinear main part. Moreover, in the special case, this equation describe of the traffic flow (see, \[1\]). For example, operator \(A \) denotes \(-\Delta\) with Dirichlet boundary condition and \(F(u) = |u|^\rho u \), then we have the nonlinear hyperbolic equation, that one can formulate in the form

\[u_{tt} - \nabla \cdot (f(u) \nabla u) = g(u), \quad (t, x) \in (0, T) \times \Omega, \quad T \in (0, \infty) \]

\[u(0, x) = u_0(x), \quad u_t(0, x) = u_1(x), \quad u \big|_{(0,T) \times \partial \Omega} = 0, \]

where \(\Omega \subset \mathbb{R}^n, n \geq 1 \) is a bounded domain with sufficiently smooth boundary \(\partial \Omega \), \(T > 0 \) is arbitrary fixed number.

As it is well known \(-\Delta\) is a self-adjoint, positive operator densely defined in a Hilbert space \(H \equiv L^2(\Omega) \) (and on \(H^1_0(\Omega) \equiv H^1_0 \) with the norm \(\|v\|_{H^1_0} \equiv \|\nabla v\|_{L^2} \equiv \|\nabla v\|_{H^0} \), see, e. g. [2], [3], [4]) and \(f, g : \mathbb{R} \rightarrow \mathbb{R} \) are a continuous functions.

For study we use some different approach (see, [2], [3], [5]) unlike known approach employed for equations with linear main parts (e. g. [2]).

References

[1] M. Herty, M. Rascle, Coupling conditions for a class of second-order models for traffic flow. SIAM J. Math. Anal., 2006, 38, 595–616.
[2] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form \(P_{tt} = -Au + F(u) \), Trans. Amer. Math. Soc., 1974, 192, 1–21.
[3] K. N. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems. Nonlinear Analysis: T.M.&A., 2006, 65, 11.
[4] K. N. Soltanov, Some applications of nonlinear analysis to differential equations, ELM, Baku, 2002, 292 p., (in russian).
[5] K. N. Soltanov, On Nonlinear Evolution Equation of Second Order in Banach Spaces, Open Math. 2018; 16: 268–275

e-mail: sultan_kamal@hotmail.com, kamal.soltanov@igdir.edu.tr