On Fully Degenerate Bell Numbers and Polynomials

Dmitry V. Dolgya, Dae San Kimb, Taekyun Kimc, Jongkyum Kwond

aDepartment of Mathematical Methods in Economy, Far Eastern Federal University, 690950 Vladivostok, Russia/Hanrimwon, Kwangwoon University, Seoul, 139-701, Republic of Korea
bDepartment of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
cDepartment of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
dDepartment of Mathematics Education and ERI, Gyeongsang National University, Jinju 52828, Republic of Korea

Abstract. Recently, the partially degenerate Bell numbers and polynomials were introduced as a degenerate version of Bell numbers and polynomials. In this paper, as a further degeneration of them, we study fully degenerate Bell numbers and polynomials. Among other things, we derive various expressions for the fully degenerate Bell numbers and polynomials.

1. Introduction

For $\lambda \in \mathbb{R}$, the degenerate exponential function is defined by

$$e^{\lambda t}(t) = (1 + \lambda t)^{\lambda}, \quad (\text{see [4, 9, 11 - 14]}) \quad (1)$$

Note that $\lim_{\lambda \to 0} e^{\lambda t}(t) = e^{xt}$. For brevity, we also write

$$e_1(t) = e^{1 \lambda}(t). \quad (2)$$

It is well known that the degenerate Stirling numbers of the second kind are given by

$$\frac{1}{k!} (e^{\lambda t}(t) - 1)^k = \sum_{n=k}^{\infty} S_{2,\lambda}(n, k) \frac{t^n}{n!}, \quad (\text{see [9]}). \quad (3)$$

Note that $\lim_{\lambda \to 0} S_{2,\lambda}(n, k) = S_2(n, k)$, where $S_2(n, k)$ are the ordinary Stirling numbers of the second kind.

The Bell polynomials (also called Tochard or exponential polynomials and denoted by $\phi_n(x)$) are defined by the generating function

$$e^{(x-1)} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}, \quad (\text{see [1 - 3, 5 - 8, 10]}). \quad (4)$$
From (4), we note that
\[B_n(x) = e^{-x} \sum_{k=0}^{\infty} \frac{k^n}{k!} x^k, \quad \text{(see [8, 15])}, \]
which are known as Dobinski’s formula.

It is not difficult to show that
\[B_n(x) = \sum_{k=0}^{n} S_2(n, k) x^k, \quad (n \geq 0), \quad \text{(see [7, 8, 15, 16])}, \]
(5)

In [10], the partially degenerate Bell polynomials are introduced as
\[e^{\lambda(x(e^\lambda - 1))} = \sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!}. \]
(7)

When \(x = 1 \), \(b_{n,\lambda} = b_{n,\lambda}(1) \) are called the partially degenerate Bell numbers.

From (7), we note that
\[b_{n,\lambda}(x) = e^{-x} \sum_{k=0}^{\infty} \frac{(k)_{n,\lambda}}{k!} x^k, \quad \text{(see [12])}, \]
(8)

where \((k)_{0,\lambda} = 1, (k)_{n,\lambda} = (k - \lambda)(k - 2\lambda) \cdots (k - (n - 1)\lambda), (n \geq 1)\).

Recently, the partially degenerate Bell numbers and polynomials were introduced as a degenerate version of Bell numbers and polynomials. In this paper, as a further degeneration of them, we study fully degenerate Bell numbers and polynomials. Among other things, we derive various expressions for the fully degenerate Bell numbers and polynomials.

2. Fully degenerate Bell numbers and polynomials

Motivated by (4), we consider the fully degenerate Bell polynomials, \(B_{n,\lambda}(n \geq 0) \), which are given by
\[e_{\lambda}(x(e^{\lambda} - 1)) = \sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!}, \quad (\lambda \in \mathbb{R}). \]
(9)

When \(x = 1 \), \(B_{n,\lambda} = B_{n,\lambda}(1) \) are called the fully degenerate Bell numbers.

Note that
\[\sum_{n=0}^{\infty} \lim_{\lambda \to 0} B_{n,\lambda}(x) \frac{t^n}{n!} = \lim_{\lambda \to 0} e_{\lambda}(x(e^{\lambda} - 1)) \\
= \lim_{\lambda \to 0} (1 + \lambda x(1 + \lambda t)^{\frac{1}{\lambda}} - 1)^{\frac{1}{\lambda}} \\
= e^{x(e^{t-1})} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}. \]
(10)

By comparing the coefficients on both sides, we get
\[\lim_{\lambda \to 0} B_{n,\lambda}(x) = B_n(x), \quad (n \geq 0). \]
From (9), we have
\begin{align*}
e_\lambda(x(e_\lambda(t) - 1)) &= (1 + \lambda x(e_\lambda(t) - 1))^k \\
&= \sum_{k=0}^{\infty} (1)_k x^k \frac{1}{k!} (e_\lambda(t) - 1)^k \\
&= \sum_{k=0}^{\infty} (1)_k x^k \sum_{n=k}^{\infty} S_{2,\lambda}(n,k) \frac{t^n}{n!} \\
&= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} (1)_k x^k S_{2,\lambda}(n,k)\right) \frac{t^n}{n!}. \quad (11)
\end{align*}

Therefore, by (9) and (11), we obtain the following theorem.

Theorem 2.1. For \(n \geq 0 \), we have
\[
B_{n,\lambda}(x) = \sum_{k=0}^{n} (1)_k x^k S_{2,\lambda}(n,k).
\]

In particular,
\[
B_{n,\lambda} = \sum_{k=0}^{n} (1)_k S_{2,\lambda}(n,k).
\]

By (9), we get
\begin{align*}
e_\lambda(x(e_\lambda(t) - 1)) &= e^{\frac{1}{2} \log(1 + \lambda x(e_\lambda(t) - 1))} \\
&= \sum_{k=0}^{\infty} \lambda^{-k} \frac{1}{k!} \left(\log(1 + \lambda x(e_\lambda(t) - 1))\right)^k \\
&= \sum_{k=0}^{\infty} \lambda^{-k} \sum_{l=k}^{\infty} S_1(l,k) \lambda^l x^l \frac{1}{l!} (e_\lambda(t) - 1)^l \\
&= \sum_{k=0}^{\infty} \lambda^{-k} \sum_{l=k}^{\infty} S_1(l,k) \lambda^l x^l \sum_{n=l}^{\infty} S_{2,\lambda}(n,l) \frac{t^n}{n!} \\
&= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \sum_{l=k}^{n} \left(\sum_{n=l}^{\infty} S_1(l,k) S_{2,\lambda}(n,l) \lambda^{l-k} x^l\right) \frac{t^n}{n!} \\
&= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \left(\sum_{l=k}^{n} S_1(l,k) S_{2,\lambda}(n,l) \lambda^{l-k} x^l\right) \frac{t^n}{n!}. \quad (12)
\end{align*}

where \(S_1(n,k) \) are the Stirling numbers of the first kind.

Therefore, by (9) and (12), we obtain the following theorem.

Theorem 2.2. For \(n \geq 0 \), we have
\[
B_{n,\lambda}(x) = \sum_{k=0}^{n} \sum_{l=k}^{n} S_1(l,k) S_{2,\lambda}(n,l) \lambda^{l-k} x^l.
\]
From (9), we have

\[
\sum_{n=0}^{\infty} B_{n,\lambda}(x) \frac{t^n}{n!} = e_\lambda(x(e_\lambda(t)) - 1))
\]

\[
= (1 + \lambda x((1 + \lambda t)^{1/2} - 1))^{1/2}
\]

\[
= \sum_{l=0}^{\infty} (1)_{l,\lambda} \frac{x^l}{l!}((1 + \lambda t)^{1/2} - 1)^l
\]

\[
= \sum_{l=0}^{\infty} (1)_{l,\lambda} \frac{x^l}{l!} \sum_{m=0}^{l} \left(\begin{array}{c} l \\ m \end{array} \right) (-1)^{l-m}(1 + \lambda t)^{m/2}
\]

\[
= \sum_{l=0}^{\infty} (1)_{l,\lambda} \frac{x^l}{l!} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} (m)_{n,\lambda} \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\begin{array}{c} l \\ m \end{array} \right) (-1)^{l-m}(1)_{l,\lambda}(m)_{n,\lambda} \frac{x^l}{l!} \right) \frac{t^n}{n!}.
\]

Therefore, by comparing the coefficients on both sides of (13), we obtain the following theorem.

Theorem 2.3. *(Dobinski-like formula)* For \(n \geq 0\), we have

\[
B_{n,\lambda}(x) = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\begin{array}{c} l \\ m \end{array} \right) (-1)^{l-m}(1)_{l,\lambda}(m)_{n,\lambda} \frac{x^l}{l!}.
\]

In particular,

\[
B_{n,\lambda} = \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(\begin{array}{c} l \\ m \end{array} \right) (-1)^{l-m}(1)_{l,\lambda}(m)_{n,\lambda} \frac{1}{l!}.
\]

Remark. By (5), we get

\[
B_{n}(x) = e^{-x} \sum_{k=0}^{\infty} \frac{k^n}{k!} x^k
\]

\[
= \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} x^l \sum_{k=0}^{\infty} \frac{k^n}{k!} x^k
\]

\[
= \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{k^n}{k! (m-k)!} \frac{x^m}{m!}
\]

\[
= \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{\left(\begin{array}{c} m \\ k \end{array} \right) (-1)^{m-k} k^n \frac{1}{m!} x^m}{m!}.
\]

From Theorem 2.3, we note that

\[
\lim_{\lambda \to 0} B_{n,\lambda}(x) = \sum_{m=0}^{\infty} \sum_{k=0}^{m} \frac{\left(\begin{array}{c} m \\ k \end{array} \right) (-1)^{m-k} k^n \frac{1}{m!} x^m} = B_{n}(x).
\]
Now, we observe that
\[
\sum_{n=1}^{\infty} B_{n,\lambda}(x) \frac{t^{n-1}}{(n-1)!}
= \frac{\partial}{\partial t} e_\lambda(xe_\lambda(t) - 1)
= \frac{\partial}{\partial t} (1 + \lambda x((1 + \lambda t)\frac{1}{2} - 1))^{1/2}
= x(1 + \lambda x((1 + \lambda t)\frac{1}{2} - 1))^{1/2 - 1} (1 + \lambda t)^{1/2 - 1}
= xe_\lambda^{1-\lambda}((xe_\lambda(t) - 1)) e_\lambda^{1-\lambda}(t)
= x \sum_{l=0}^{\infty} (1 - \lambda)_\lambda^l \frac{x^l}{l!} (e_\lambda(t) - 1)^l \sum_{m=0}^{\infty} (1 - \lambda m_\lambda \frac{t^m}{m!})

= x \sum_{l=0}^{\infty} (1 - \lambda)_\lambda^l \frac{x^l}{l!} \sum_{k=1}^{\infty} S_{2,\lambda}(k, l) \frac{k^l}{k!} \sum_{m=0}^{\infty} (1 - \lambda m_\lambda \frac{t^m}{m!})

= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{k} \frac{n!}{k!} (1 - \lambda)_\lambda^l S_{2,\lambda}(k, l)(1 - \lambda n-k_\lambda) \frac{t^n}{n!} \right)

\text{(15)}
\]

By (15), we get
\[
\sum_{n=0}^{\infty} B_{n+1,\lambda}(x) \frac{t^n}{n!}
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \sum_{l=0}^{k} \frac{n!}{k!} (1 - \lambda)_\lambda^l S_{2,\lambda}(k, l)(1 - \lambda n-k_\lambda) \frac{t^n}{n!} \right).
\text{(16)}
\]

Therefore, by comparing the coefficients on both sides of (16), we obtain the following theorem.

Theorem 2.4. For \(n \geq 0 \), we have
\[
B_{n+1,\lambda}(x) = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{k} (1 - \lambda)_\lambda^l S_{2,\lambda}(k, l)(1 - \lambda n-k_\lambda).
\]

In particular,
\[
B_{n+1,\lambda} = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{k} (1 - \lambda)_\lambda^l S_{2,\lambda}(k, l)(1 - \lambda n-k_\lambda).
\]

Note that
\[
\lim_{\lambda \to 0} B_{n+1,\lambda}(x) = \sum_{k=0}^{n} \sum_{l=0}^{k} \binom{n}{k} x^{l+1} S_2(k, l)
= x \sum_{k=0}^{n} \binom{n}{k} B_k(x)
= B_{n+1}(x).
\]
For \(n \in \mathbb{N} \), by Theorem 2.3, we get

\[
B_{n, \lambda}(x) = \sum_{j=1}^{\infty} \sum_{m=0}^{j} \binom{j}{m} (-1)^{j-m}(1)_{j, \lambda}(m)_{n, \lambda} \frac{1}{R} x^j
\]

\[
= \sum_{j=0}^{\infty} \sum_{m=0}^{j} \binom{j}{m} (-1)^{j-m-1}(1)_{j, \lambda}(m+1)_{n, \lambda} \frac{1}{R} x^j
\]

\[
= \sum_{j=0}^{\infty} \sum_{m=0}^{j} \frac{1}{(j-m)!} \binom{j}{m} (-1)^{j-m-1}(1)_{j, \lambda}(m+1)_{n, \lambda} \frac{1}{R} x^j
\]

\[
= x \sum_{j=0}^{\infty} \sum_{m=0}^{j} \frac{1}{(j-m)!} \binom{j}{m} (-1)^{j-m}(1)_{j+1, \lambda} \left(\sum_{k=0}^{n} S_1(n, k) \lambda^{n-k}(m+1)^k \right) x^j
\]

\[
= x \sum_{k=0}^{\infty} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-m}(1)_{k+1, \lambda} S_1(n, k) x^j \lambda^{n-k} (m+1)^{k-1}
\]

\[
= x \sum_{k=0}^{\infty} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-m}(1)_{k+1, \lambda} S_1(n, k) x^j \lambda^{n-k} \sum_{j=0}^{k} \binom{k}{j} \lambda^j (m+1)^{k-j-1}
\]

\[
= x \sum_{k=1}^{\infty} \lambda^{n-k} S_1(n, k) \sum_{j=1}^{k} \binom{k}{j-1} (-1)^{j-m}(1)_{k+1, \lambda} \lambda^j m^{j-1} x^j
\]

By comparing the coefficients on both sides of (17), we obtain the following theorem.

Theorem 2.5. For \(n \in \mathbb{N} \), we have

\[
B_{n, \lambda}(x) = x \sum_{k=1}^{n} \sum_{j=1}^{k} \lambda^{n-k} S_1(n, k) \binom{k-1}{j-1} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \binom{l}{m} (-1)^{l-m}(1)_{l, \lambda} m^{l-1} x^j.
\]

In particular,

\[
B_{n, \lambda} = \sum_{k=1}^{n} \sum_{j=1}^{k} \lambda^{n-k} S_1(n, k) \binom{k-1}{j-1} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \binom{l}{m} (-1)^{l-m}(1)_{l, \lambda} m^{l-1} \frac{1}{R}.
\]
From (9), we can derive the following equation.

\[
\sum_{n=1}^{\infty} \frac{d}{dx} B_{n,\lambda}(x) \frac{t^n}{n!}
= \sum_{n=0}^{\infty} \frac{d}{dx} B_{n,\lambda}(x) \frac{t^n}{n!}
= \partial_{x} \epsilon_{\lambda}(x(e_{\lambda}(t) - 1))
= (e_{\lambda}(t) - 1) \frac{\epsilon_{\lambda}(x(e_{\lambda}(t) - 1))}{1 + \lambda x((1 + \lambda t)^{1/2} - 1)}
= \frac{\epsilon_{\lambda}(t) - 1}{1 + \lambda x((1 + \lambda t)^{1/2} - 1)} \epsilon_{\lambda}(x(e_{\lambda}(t) - 1))
= \frac{1}{\lambda} \frac{d}{dx} \log(1 + \lambda x(e_{\lambda}(t) - 1)) \epsilon_{\lambda}(x(e_{\lambda}(t) - 1))
= \frac{1}{\lambda} \frac{d}{dx} \sum_{l=1}^{\infty} \frac{(-1)^{l-1} \lambda^{l-1} x^{l-1}}{l} \sum_{m=0}^{\infty} B_{m,\lambda}(x) \frac{t^m}{m!}
= \sum_{l=1}^{\infty} \frac{(-1)^{l-1} \lambda^{l-1} x^{l-1}}{l} \sum_{k=1}^{\infty} S_{2,\lambda}(k, l) \frac{k^l}{k!} \frac{t^m}{m!}
= \sum_{l=1}^{\infty} \left(\sum_{k=1}^{l} \frac{n^k}{k!} \frac{(-1)^{l-1} \lambda^{l-1} x^{l-1}}{l} \sum_{m=0}^{\infty} B_{m,\lambda}(x) \frac{t^m}{m!} \right)
= \sum_{k=1}^{n} \left(\sum_{l=1}^{\infty} \frac{n^k}{k!} \frac{(-1)^{l-1} \lambda^{l-1} x^{l-1}}{l} \sum_{m=0}^{\infty} B_{m,\lambda}(x) \frac{t^m}{m!} \right)

\]

Therefore, by comparing the coefficients on both sides of (18), we obtain the following theorem.

Theorem 2.6. For \(n \geq 1 \), we have

\[
\frac{d}{dx} B_{n,\lambda}(x) = \sum_{k=1}^{n} \sum_{l=1}^{k} \binom{n}{k} (-1)^{l-1} \lambda^{l-1} x^{l-1} S_{2,\lambda}(k, l) B_{n-k,\lambda}(x).
\]

Note that

\[
\lim_{\lambda \to 0} \frac{d}{dx} B_{n,\lambda}(x) = \sum_{k=1}^{n} \binom{n}{k} B_{n-k}(x)
= \sum_{k=0}^{n-1} \binom{n}{k} B_{k}(x)
= \frac{d}{dx} B_{n}(x), \text{ (} n \in \mathbb{N} \).
\]

Acknowledgements. This paper is dedicated to 70th birthday of Professor Gradimir V. Milovanovic. Also, we would like to express our sincere condolences on the death of Professor Simsek’s mother.
References

[1] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
[2] J. A. Goguen, L-fuzzy sets, Journal of Mathematical Analysis and Applications 18 (1967) 145–174.
[3] P. Erdős, S. Shelah, Separability properties of almost-disjoint families of sets, Israel Journal of Mathematics 12 (1972) 207–214.
[4] E. T. Bell, Exponential polynomials, Ann. of Math. (2) 35 (1934), no. 2, 258–277.
[5] J. Brillhart, Mathematical Notes: Note on the Single Variable Bell Polynomials, Amer. Math. Monthly 74 (1967), no. 6, 695–696.
[6] F. Brafman, On Touchard polynomials, Canad. J. Math. 9 (1957), 191–193.
[7] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51–88.
[8] L. Carlitz, Some arithmetic properties of the Bell polynomials, Bull. Amer. Math. Soc. 71 (1965), 143–144.
[9] L. Carlitz, Arithmetic properties of the Bell polynomials, J. Math. Anal. Appl. 15 (1966), 33–52.
[10] L. Comtet, Advanced combinatorics: the art of finite and infinite expansions (translated from the French by J.W. Nienhuys), Reidel, Dordrecht and Boston, 1974.
[11] D. S. Kim, T. Kim, Some identities of Bell polynomials, Sci. China Math. 58 (2015), no. 10, 2095–2104.
[12] T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys. 24 (2017), no. 2, 241–248.
[13] T. Kim, D. S. Kim, D. V. Dolgy, On partially degenerate Bell numbers and polynomials, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 337–345.
[14] T. Kim, D. S. Kim, L. -C. Jang, H. -I. Kwon, Extended degenerate Stirling numbers of the second kind and extended degenerate Bell polynomials, Util. Math. 106 (2018), 11–21.
[15] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc. 20 (2017), no. 3, 319–331.
[16] T. Kim, G. -W. Jang, A note on degenerate gamma function and degenerate Stirling number of the second kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 2, 207–214.
[17] S. S. Pyo, Degenerate Cauchy numbers and polynomials of the fourth kind, Adv. Stud. Contemp. Math. (Kyungshang) 28 (2018), no. 1, 127–138.
[18] S. Roman, The umbral calculus, Pure and Applied Mathematics 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.
[19] Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 27 (2017), no. 2, 199-212.