O$_3$ and Drought Effects on Steady State Conductance and Kinetics in Pima Cotton

David A Grantz1 and Nancy E Grulke2

1Department of Botany and Plant Sciences, University of California, Riverside, Parlier, CA, USA.
2Pacific Northwest Research Station, U.S.D.A. Forest Service, Bend, OR, USA.

ABSTRACT: The degree to which ozone (O$_3$) exposure and drought affect stomatal control of water loss and respond to environmental stimuli such as varying light is poorly characterized. To that end, we exposed Pima cotton to chronic O$_3$ exposure (month-long daytime exposures) with and without sufficient water, as well as short term acute O$_3$ exposure and varying light levels to understand stomatal kinetics. Chronic, month-long exposure to moderately high O$_3$ (~114 ppb) reduced daytime steady state stomatal conductance (g_s), as did water deficit. Both stomatal opening and closing displayed dose specific, “sluggish” responses to step-changes in illumination with acute, 1-day, O$_3$ exposures of 0, 50, 100, and 125 ppb. At higher concentration (150 ppb), stomatal control of both opening and closing was degraded. Altered steady state and dynamic stomatal function suggest that elevated ambient O$_3$, expected to increase in the future, may increasingly influence field water management and appropriate crop choices.

KEYWORDS: Ozone effects, drought stress, stomatal kinetics, crop water use

Introduction

Although it has been broadly documented that elevated ozone (O$_3$) exposure and uptake decreases plant productivity, alters within-plant resource allocation, and has economic repercussions in agronomic species (Tai & Val Martin, 2017), its effect on plant water balance is under-investigated. The frequency, severity, and global distribution of elevated ambient O$_3$ water limitation, and their intersection across agro-ecosystems are predicted to increase due to increases in tropospheric air pollutants and ongoing changes in regional climate (Bates et al., 2008; Emberson et al., 2018; ONS, 2014; Sitch et al., 2012; Paoletti & Grulke, 2005). O$_3$-induced, sluggish stomatal response was suspected (Keller & Hasler, 1984; Reich & Lassoie, 1984; Skarby et al., 1987) and later confirmed in other gas exchange studies. Responses of g_s to many environmental stimuli were slowed by O$_3$ exposure including PPFD (Hoshika et al., 2012; Paoletti & Grulke, 2010; Tjoelker et al., 1995), VPD (Grulke et al., 2007a, 2007c; Hoshika, Omasa et al., 2013; Hoshika, Watanabe et al., 2013; Matyssek et al., 1995; Tjoelker et al., 1995; Uddling et al., 2009; Wieser & Havraneck, 1995), soil moisture (Hayes et al., 2012), and CO$_2$ (Onandia et al., 2011).

The reduction of daytime g_s by water limitation has long been known (Hsiao, 1973). As evaluated within a meta-analysis (Wittig et al., 2007), g_s is also reduced by low to moderately high daytime O$_3$ exposure. Species with large midday g_s may limit plant water loss by rapid closing responses, reducing the potential for xylem cavitation (Caird et al., 2007; Drake et al., 2013; Grantz et al., 2019; Vialet-Chabrand et al., 2013; Vico et al., 2011). Both stressors provide proximate protection of the mesophyll from O$_3$ uptake at times of both peak O$_3$ concentration and evaporative demand in cotton (Temple, 1986, 1990) and in a number of other species (Cavender-Bares et al., 2007; Grulke et al., 2003; Massman et al., 2000; Panek, 2004; Paoletti et al., 2007c; Hoshika, Omasa et al., 2013; Kellomäki & Wang, 1997; Kitao et al., 2009; Oksanen, 2003; Paoletti, 2005). All three regulatory processes have the capacity to impact total plant water use (Booker et al., 2004) and regional hydrology (McLaughlin, Nosal et al., 2007; McLaughlin, Wullschleger et al., 2007; Sellers et al., 1996; Sun et al., 2012).

Environmental effects on opening and closing kinetics appear to be closely related to each other (Paoletti & Grulke, 2010). Sluggish and or incomplete stomatal closure uncouples transpiration from carbon assimilation, degrades water use efficiency (WUE; Kirschbaum et al., 1988; Lawson & Blatt, 2014; Lawson et al., 2011), and depletes soil moisture (reviewed in Paoletti & Grulke, 2005). O$_3$-induced, sluggish stomatal response was suspected (Keller & Hasler, 1984; Reich & Lassoie, 1984; Skarby et al., 1987) and later confirmed in other gas exchange studies. Responses of g_s to many environmental stimuli were slowed by O$_3$ exposure including PPFD (Hoshika et al., 2012; Paoletti & Grulke, 2010; Tjoelker et al., 1995), VPD (Grulke et al., 2007a, 2007c; Hoshika, Omasa et al., 2013; Hoshika, Watanabe et al., 2013; Matyssek et al., 1995; Tjoelker et al., 1995; Uddling et al., 2009; Wieser & Havraneck, 1995), soil moisture (Hayes et al., 2012), and CO$_2$ (Onandia et al., 2011).

The reduction of daytime g_s by water limitation has long been known (Hsiao, 1973). As evaluated within a meta-analysis (Wittig et al., 2007), g_s is also reduced by low to moderately high daytime O$_3$ exposure. Species with large midday g_s may limit plant water loss by rapid closing responses, reducing the potential for xylem cavitation (Caird et al., 2007; Drake et al., 2013; Grantz et al., 2019; Vialet-Chabrand et al., 2013; Vico et al., 2011). Both stressors provide proximate protection of the mesophyll from O$_3$ uptake at times of both peak O$_3$ concentration and evaporative demand in cotton (Temple, 1986, 1990) and in a number of other species (Cavender-Bares et al., 2007; Grulke et al., 2003; Massman et al., 2000; Panek, 2004; Paoletti et al., 2007c; Hoshika, Omasa et al., 2013; Kellomäki & Wang, 1997; Kitao et al., 2009; Oksanen, 2003; Paoletti, 2005). All three regulatory processes have the capacity to impact total plant water use (Booker et al., 2004) and regional hydrology (McLaughlin, Nosal et al., 2007; McLaughlin, Wullschleger et al., 2007; Sellers et al., 1996; Sun et al., 2012).

Environmental effects on opening and closing kinetics appear to be closely related to each other (Paoletti & Grulke, 2010). Sluggish and or incomplete stomatal closure uncouples transpiration from carbon assimilation, degrades water use efficiency (WUE; Kirschbaum et al., 1988; Lawson & Blatt, 2014; Lawson et al., 2011), and depletes soil moisture (reviewed in Paoletti & Grulke, 2005). O$_3$-induced, sluggish stomatal response was suspected (Keller & Hasler, 1984; Reich & Lassoie, 1984; Skarby et al., 1987) and later confirmed in other gas exchange studies. Responses of g_s to many environmental stimuli were slowed by O$_3$ exposure including PPFD (Hoshika et al., 2012; Paoletti & Grulke, 2010; Tjoelker et al., 1995), VPD (Grulke et al., 2007a, 2007c; Hoshika, Omasa et al., 2013; Hoshika, Watanabe et al., 2013; Matyssek et al., 1995; Tjoelker et al., 1995; Uddling et al., 2009; Wieser & Havraneck, 1995), soil moisture (Hayes et al., 2012), and CO$_2$ (Onandia et al., 2011).

The reduction of daytime g_s by water limitation has long been known (Hsiao, 1973). As evaluated within a meta-analysis (Wittig et al., 2007), g_s is also reduced by low to moderately high daytime O$_3$ exposure. Species with large midday g_s may limit plant water loss by rapid closing responses, reducing the potential for xylem cavitation (Caird et al., 2007; Drake et al., 2013; Grantz et al., 2019; Vialet-Chabrand et al., 2013; Vico et al., 2011). Both stressors provide proximate protection of the mesophyll from O$_3$ uptake at times of both peak O$_3$ concentration and evaporative demand in cotton (Temple, 1986, 1990) and in a number of other species (Cavender-Bares et al., 2007; Grulke et al., 2003; Massman et al., 2000; Panek, 2004; Paoletti et al., 2007c; Hoshika, Omasa et al., 2013; Kellomäki & Wang, 1997; Kitao et al., 2009; Oksanen, 2003; Paoletti, 2005). All three regulatory processes have the capacity to impact total plant
& Grulke, 2005; Temple et al., 1988). Static and kinetic stomatal responses to O3 and water limitation have been investigated separately, but their interactive effects on stomatal kinetics are not well characterized (Fuhrer & Booker, 2003; Hoshika, Omasa et al., 2013; Matyssek et al., 2006; Nikolova et al., 2010). Both antagonistic (ie, protective: Silim et al., 2009; Temple, 1986; Temple et al., 1988; Temple, 1990) and synergistic (ie, deleterious; Heggestad et al., 1985; Wagg et al., 2012, 2013) interactions of O3 and water deficit have been described in some plant species. The net effect of O3 × water limitation on stomatal response on the three distinct impacts on stomatal regulation (daytime, nighttime, and during changes in other environmental conditions) considered above remains unexplored.

Incomplete stomatal closure increases nighttime transpiration and uptake of O3. Downwind of urban centers, O3 remains elevated at night (Gregg et al., 2003; Matyssek et al., 1995; Miller et al., 1972) and has been shown to inhibit growth of cottonwood, birch, and ponderosa pine (respectively). It was also suspected in the collapse of viticulture downwind of Los Angeles in the late 1950’s (P.R. Miller, personal communication). O3 is also elevated at night downwind from heavily fertilized agricultural fields due to NO emissions and NOx interconversions to O3 in sunlight. These emission plumes are transported into other agricultural areas as well as to natural ecosystems (Almaraz et al., 2018; Matson et al., 2002; Miller et al., 1972) where their effects are often unrecognized. The effects of O3 on nighttime transpiration has been reported in a number of species (Grulke et al., 2004, 2007a; Hoshika et al., 2012; Matyssek et al., 1995; Wieser & Havranek, 1993;). In birch, nighttime gs contributed about 10% of total transpiration in low O3 (Matyssek et al., 1995), and 15% of total transpiration in high O3. In blue oak and black oak, chronic daytime O3 exposure increased nighttime gs to about 16% and 30% (respectively) of daytime maxima (Grulke et al., 2007b).

The study presented here evaluates O3 impacts on the three aspects of stomatal regulation: altered daytime gs, incomplete stomatal closure at night with chronic exposure, and sluggish stomatal response to stepped increase and decrease of illumination during acute exposure of previously un-exposed (“naïve”) plants. We evaluate a perennial species of economic importance, Pima cotton (Gossypium barbadense L.; cv. S-6), that has been characterized with respect to responses to O3 and water limitation separately (Grantz, 2016; Temple & Grantz, 2010).

Materials and Methods

Plant material

Seeds of Pima cotton (Gossypium barbadense L.) from foundation seed stock were germinated in moist commercial potting mix (Earthgro Potting Soil, Scotts Company, Marysville, OH) in plastic pots (870 ml; 110 mm × 110 mm × 125 mm). Plants were grown as described previously (Grantz et al., 2015) in a greenhouse at the University of California, Kearney Agricultural Center (Parlier, CA, USA; 103 masl; 36.598°N, 119.503°W). Pots were thinned to a single plant 10 to 12 days after planting (DAP). Plants remained on the greenhouse bench in filtered air until they developed five to six leaves (May 15 and June 21, 2014, in runs 1 and 2, respectively). Single-plant pots were then available for two types of experiments: stomatal kinetics of cotton with (1) chronic O3 exposure at two water availabilities in exposure chambers; and (2) bench-top experiments with naïve (previously unexposed to O3) plants, using stepped high and stepped low light level to drive kinetics in different background O3 concentrations.

Chronic O3 exposure × water availability: steady state conductance

Eighteen pots were distributed among nine cylindrical, Teflon-walled, O3 exposure chambers (Continuously Stirred Tank Reactors; CSTRs; Grantz et al., 2008; Heck et al., 1978) located in the same greenhouse. The CSTRs were aligned in three blocks parallel to windows with cooling fans to reduce location effects. One CSTR per block was exposed to each of the three O3 concentration profiles delivered as daily half-sine waves with peak concentrations at 1,300 PDT; 12 hours daytime, mean O3 concentrations were 4, 59, and 114 ppb. O3 was generated by corona discharge (Model SGC-11, Pacific Ozone Technology, Brentwood, CA) from purified oxygen (Series ATF-15, Model 1242, SeQual Technologies Inc., San Diego, CA). The flow rate through the CSTRs was one air exchange min⁻¹; air temperature was 20°C to 35°C, relative humidity was 34% to 60%, and midday PPFD from sunlight was 1,275 mmol m⁻²s⁻¹ (Grantz et al., 2008; Paudel et al., 2016; Paudel, 2015).

Plants in the CSTRs were grown under well-watered (WW) or water-deficit (WD) conditions. Field capacity of the soil was 21% by volume (VWC). Plants were irrigated to maintain a VWC of 15% to 18% (WW, ~80% of pot “field” capacity), and 9% to 11% (WD, ~50% of pot field capacity). All pots were fertilized twice a week with a complete fertilizer solution (Miracle Gro, Scotts Miracle-Gro Products Inc., Port Washington, NY, USA). The two runs of the experiment yielded consistent results and were pooled. The data for chronic O3 exposures in CSTRs were analyzed as a split plot, randomized complete block design. O3 was the main treatment, water availability: steady

Stomatal conductance (gs) was measured on the youngest, fully expanded leaf, on 3 to 4 dates per experimental run, between 30 and 45 DAP (n = 125). Diurnal and nighttime gs measurements were made, between 0730 and 1800 at 90 minutes intervals, and at 0200, respectively, within the CSTRs. Based on previous research, nighttime gas exchange minima are achieved ~2 hours after full darkness is achieved (Grulke et al., 2004, 2007b). The intent of the nighttime gs measurements was to capture the impact of daytime O3 exposure on gs, Air, Soil and Water Research
Acute O3 exposure of naïve cotton: Dynamic stomatal responses to illumination

Our experiments were conducted with previously unexposed (ie, “O3-naïve”), WW potted plants in the laboratory, using a custom gas exchange system modified from a system previously described (Grulke & Paolleti, 2005; Grulke et al., 2007b, 2007c). To drive stomatal response kinetics within the context of differing concurrent O3 concentrations (0, 50, 100, 125, or 150 ppb), stepped changes in PPFD were imposed from low to saturating light levels (100–1600 µmol m\(^{-2}\) s\(^{-1}\)) and the reverse, randomizing which light level was applied first. After a 1-hour equilibration at each O3 concentration at the beginning of the day, gs was allowed to come to steady state at the initial PPFD level, and illumination was increased or decreased depending on the initial light level. O3 exposure was maintained as a constant throughout the experiment.

The gas exchange system consisted of matched, custom-designed, sample and reference cuvettes (i.d. 2 × 3 × 1 cm) constructed of acrylic and lined with teflon film, fitted with low vibration micro-fans to ensure air mixing. The cuvettes were in parallel, receiving the same gas stream through the same length and diameter of Teflon tubing. Air for this open (flow-through) system was drawn from two large buffer volumes placed in series. Part of the gas stream was ozonated using an adjustable ultraviolet lamp, then cooled by passing across electronically controlled Peltier blocks, then humidified to maintain leaf to air VPD at ~2 kPa using a dewpoint generator (LI-610; LiCor Inc., Lincoln, NE, USA). Leaves were illuminated from above with a red and blue LED light array (LI-6400-18; LiCor Inc.; Lincoln, NE, USA); PPFD was measured at leaf level within the cuvette. The rest of the plant was illuminated uniformly using a bank of LEDs with a similar wavelength intensity profile (EcoSmart ECS 38 V2; 300 K, 24 W; 120 W tungsten bulb equivalent). A portion of the youngest fully expanded leaf was exposed to the experimental O3 concentrations in the sample cuvette, one concentration per day. Individual leaves were measured only once and individual plants were not measured on consecutive days.

Water vapor, CO2 and O2 were recorded at 15 seconds intervals, using the sample and reference cells of a steady state gas exchange system (LI-6400) in parallel with two cross-calibrated ultraviolet O3 monitors (Model 41C; Thermo Fisher Scientific Inc.; Waltham, MA, USA). Leaf temperature was determined with a contact thermocouple (Type E, 76 µm dia) appressed to the abaxial surface of the leaf and monitored directly by the LI-6400 cuvette. This temperature, ~30°C, was lagged by 30 seconds in calculations of VPD and gs, to be in sync with flow from cuvettes to analyzers.

Half times (t\(_{1/2}\)) for stomatal response to stepped changes in PPFD were calculated by fitting single exponential equations to gs data obtained at the 15 seconds intervals. For stomatal opening:

\[
gs(t) = a - (b) e^{-\lambda t} \quad \text{(1a)}
\]

and for stomatal closing:

\[
gs(t) = a + (b) e^{-\lambda t} \quad \text{(1b)}
\]

where a and b are fitted parameters related to the initial and final magnitude of gs; \(\lambda\) is the fitted time constant, and t is time after the stepped change.

The half time was calculated from:

\[
t_{1/2} = \ln(2)/\lambda \quad \text{(2)}
\]

Statistical analyses

The data for chronic O3 exposures in CSTRs were analyzed as a split plot, randomized complete block design. O3 was the main treatment, water application rate was the sub-treatment, and CSTR was the unit of replication. Statistical analyses and graph preparation were performed with SAS for Windows, v. 9.2.1, SigmaPlot 11.0, and Systat 14.0. Statistical tests and their significance are as described in Results. Except as noted, significance is reported at \(p < .05\).

Results

Daytime steady state conductance under chronic O3 exposure

In all treatments, low O3 (4 ppb, LO3) and moderately high O3 (114 ppb, HO3), with adequate water (80% of “field” capacity in pots, WW) and limited water (50% of capacity, WD), peak daytime gs values occurred at ~1,030 (Figure 1); end-of-day gs was low. The peak level of gs, differed, with O3 level, water regime, and their interaction significant (\(p = .010; .002; \text{ and } .037\), respectively). In the WW LO3 treatment, diurnal gs was characterized by a midday plateau (1030–1400). For plants in the three other treatments, the midday high was a peak diurnal value and the plateau as observed for WW LO3 was truncated. WD reduced peak midday gs by ~25% relative to WW LO3 plants. High mean O3 exposure (HO3, 114 ppb) reduced the midday peak gs by ~55%, relative to WW LO3, whether plants were WW or WD.

Nighttime steady state conductance under chronic O3 exposure

Nighttime gs was non-zero following daytime exposure to O3 (Table 1). The effect of daytime LO3 on nighttime gs, was minimal in both WW and WD treatments (both 1.9% of peak daytime gs). Daytime moderately high O3 exposure increased the subsequent nighttime gs to 7.7% and 7.3% of peak daytime values in WW and WD treatments, respectively. Assuming that gs at 0600 and 1800 were those as measured at 0200 (nighttime gs, Table 1), mean daytime and nighttime gs, were calculated. In this case, nighttime gs, was 16% to 17% of daytime gs, in high O3.
Air, Soil and Water Research

and only 3.4% to 3.9% in low O$_3$ (WW and WD, respectively). O$_3$ ($p = .025$) and water availability ($p = .057$) individually had a significant effect on nighttime g_s, but the interaction term not significant ($O_3 \times W, p = .535$).

Stomatal response kinetics to acute O$_3$ exposure

The kinetics of stomatal opening (Figure 2a and c) and closing (Figure 2b and d) were evaluated following step increases (100–1600 μmol m$^{-2}$s$^{-1}$) and step decreases (1600–100 μmol m$^{-2}$s$^{-1}$) in PPFD during five levels of concurrent, acute (day of experiment) O$_3$ exposure, with cotton plants not previously exposed to O$_3$. Time courses of both stomatal opening (equation (1a)) and closing (equation (1b)) were well described by exponential relationships over two levels of O$_3$ exposure tested (50 and 100 ppb; Figure 2).

The mean $t_{1/2}$ of stomatal opening and closing in O$_3$-free air did not significantly differ between replicate runs. The $t_{1/2}$ for both stomatal opening and closing increased linearly with O$_3$ between 0 and 125 ppb (Figure 3). On average, the $t_{1/2}$ of stomatal opening was slower (eg, greater $t_{1/2}$ times), and thus more sensitive to O$_3$ exposure, than that for closing (Figure 3; significant differences in slope, $p = .005$). At 125 ppb the $t_{1/2}$ of stomatal opening increased 3-fold and of closing by 1.7-fold, relative to no O$_3$. The $t_{1/2}$ for both stomatal opening and closing was lower at 150 ppb than that at 125 ppb (Figure 3), reversing the increasingly sluggish g_s response and suggesting loss of stomatal control (Figure 3). Relative to the $t_{1/2}$ for stomatal opening at 125 ppb O$_3$, $t_{1/2}$ decreased by ~35%, and for stomatal closure, decreased by 40% (Figure 3).

The greater variability in g_s observed at 125 ppb (Figure 3) may reflect variability in individual plant response, with some having reached their threshold O$_3$ concentration and some not. Closing remained faster than opening at all non-zero O$_3$, even above 125 ppb.

The amplitude of stomatal opening (Δg_s from g_{st} to g_{stf}) increased linearly from 0 to 125 ppb O$_3$ ($p < .001$; Figure 4, solid circles). An abrupt decrease in the amplitude of stomatal opening was observed when [O$_3$] increased from 125 to 150 ppb O$_3$ (Figure 4). The amplitude for stomatal closure with a stepped decrease in light was greater at each O$_3$ exposure than that for opening, but was less responsive to O$_3$, differing

Table 1. Effect of Ozone Exposure Level (LO3, HO3) and Water Availability (WW; WD as Described in Figure 1) on Daytime Peak and Nighttime Steady State Stomatal Conductance (g_s).

MEAN O$_3$	% “FIELD CAPACITY”	DAYTIME	NIGHTTIME	DAYTIME WATER USE	NIGHTTIME WATER USE	TOTAL WATER USE
PPB		G$_s$ MOL M$^{-2}$S$^{-1}$	G$_s$ MOL M$^{-2}$S$^{-1}$	L/YEAR	L/YEAR	L/YEAR
4	80	0.590 ± 0.100	0.011 ± 0.001	59,494	1,130	60,624
4	50	0.430 ± 0.040	0.008 ± 0.001	38,074	990	39,064
114	80	0.260 ± 0.035	0.020 ± 0.004	21,001	924	21,925
114	50	0.260 ± 0.015	0.019 ± 0.004	19,277	578	19,855

Note. DAYTIME: $O_3, p = .010; W, p = .002; O_3 \times W, p = .037$. NIGHTTIME: $O_3, p = .26; W, p = .057; O_3 \times W, p = .037$. Acronyms as in Figure 1. Means ± 1 SD.
significantly from Δg_s for opening only at 50 ppb (Student’s t test; Figure 4, open triangles). The amplitude of closing did not change significantly from 50 to 150 ppb. Greater $t_{1/2}$ was correlated with a greater response amplitude, both for stomatal opening ($p = .003$; Student’s t-test) and closing ($p = .029$; Mann-Whitney U test).

Figure 2. Representative stomatal responses to a stepped increase in PPFD (100–1,600 µmol m$^{-2}$ s$^{-1}$; (a and c)), or a step decrease in PPFD (1600–100 µmol m$^{-2}$ s$^{-1}$; (b and d)) in Pima cotton during acute exposure (same day exposure of naïve plants) to 50 ppb O$_3$ (a and b) or 100 ppb O$_3$ (c and d). Values of $t_{1/2}$ and solid lines were determined by fitting single exponential functions for opening (equation (1a)) and closing (equation (1b)). Curves were fitted to the open circles, beginning immediately after the stepped change in PPFD and ending when the new steady state was attained. Filled circles represent g_s before and after the response.

Figure 3. Effect of acute ozone (O$_3$) exposure in Pima cotton on the kinetics ($t_{1/2}$; half time response to PPFD stimulus or reduction) of stomatal opening (filled circles; solid line) and stomatal closing (open triangles; dashed line) (means ± 1 S.E.). Linear regressions were fitted for opening and closing separately for data between 0 and 125 ppb and was assumed to linearly decrease from 125 to 150 ppb O$_3$ (dotted lines).

Figure 4. Effect of 1-day ozone (O$_3$) exposure of naïve Pima cotton on the amplitude (Δg_{sto} to g_{stf}) of stomatal opening (circles; solid line) and stomatal closing (triangles; dashed line) to a stepped change in PPFD from 100 to 1600 µmol m$^{-2}$ s$^{-1}$ (opening) or 1600 to 100 µmol m$^{-2}$ s$^{-1}$ (closing) (means ± 1 S.E.). A linear regression was fitted for stomatal opening for exposure between 0 and 125 ppb; a linear trend in stomatal amplitude was assumed between 125 and 150 ppb.
Effect of sluggish stomatal response on transpiration

Mean values of initial g_s, $t_{1/2}$, and final g_s across O_3 exposures of 0 to 125 ppb O_3 were used to define responses of stomatal opening and closing to stepped increased and decreased light, respectively (Figure 5). The responses were integrated to calculate the effect of changes in light with no and moderately high O_3 exposure on cumulative transpiration over an hour. The cumulative values, and sign of the difference between opening and closing g_s measured in 125 versus 0 ppb, were similar to the differences in nighttime g_s in the two O_3 exposures: ~22 mmol m$^{-2}$s$^{-1}$ and 20 ± 0.4 mmol m$^{-2}$s$^{-1}$, respectively (Table 2). Up to 10 minutes following step change in PPFD, sluggish opening reduced cumulative g_s more than sluggish closure increased it. By 60 minutes, sluggish closure slightly increased cumulative g_s slightly more than did sluggish opening. As noted above, $t_{1/2}$ was correlated with the amplitude of stomatal response. Disregarding this influence underestimated the effect of O_3 on cumulative g_s and expected transpirational losses.

Discussion

Well-watered pima cotton grown with negligible O_3 exposure had a bell-shaped, diurnal g_s curve with a midday plateau,
consistent with the pattern described in the analysis of the diel sensitivity in the same variety of cotton (Grantz et al., 2015). Grown in elevated O3 and or droughted, the maximum gs occurred at 1030, and gs then declined with incomplete stomatal closure by 1800. Moderately high O3 exposure reduced gs and expected transpirational water loss to a greater extent than did drought stress, and in combination, the two did not act synergistically. Similar effects of O3 and WD were observed in the congeneric upland cotton, G. hirsutum (Temple, 1986, 1990; Temple et al., 1988). Although antagonistic (ie, protective) interactions (Silim et al., 2009; Temple, 1986, 1990; Temple et al., 1988) and synergistic (ie, deleterious) interactions (Heggestad et al., 1985; Wagg et al., 2012, 2013) have been described in this and other species (Populus spp.; Glycine max L. Merr., Dactylis glomerata L., Ranunculus acris L.).

Stomata did not completely close in any of the growth treatments tested (O3 level × water availability) by the end of the day (1,800) or following several hours of darkness during the night (0200). Grown in LO3, instantaneous nighttime gs was <4% of daytime mean gs; in HO3, instantaneous gs was <18% of daytime values and slightly lower with concurrent water deficit. Nighttime gs has rarely been measured in crop species exposed to elevated O3.

Pima cotton has much higher gs than is observed in many forest species (Lu et al., 1994) which could alter the relative impact of daytime and nighttime stomatal responses. In trees, nighttime gs was ~15% of daytime maximum gs values (beech (Fagus sylvatica), Hoshika, Watanabe et al. (2013); spruce (Picea abies), Wieser and Havranek (1993); larch (Larix decidua), Wieser and Havranek (1993, 1995) birch (Betula pendula), Matyssek et al. (1995); ponderosa pine (Pinus ponderosa), Grulke et al. (2004); blue oak (Quercus douglasii), Grulke et al., 2007b). After daytime high O3 exposure, nighttime gs increased to 30% of daytime maxima in black oak (Q. kelloggi), Grulke et al., 2007b). Significant nighttime gs has also been observed in the absence of O3 (Dawson et al., 2007) with drought or in areas of low soil nutrient availability (Caird et al., 2007). Other pollutants such as NO3 (Grulke et al., 2004) may also result in nighttime transpirational losses. Similar to responses of daytime gs, nighttime gs also responds to VPD, CO2, and WD (Cavender-Bares et al., 2007; Daley & Phillips, 2006; Dawson et al., 2007; Donovan et al., 2003; Zeppel et al., 2011), potentially enhancing nutrient and oxygen availability (Caird et al., 2007) but reducing hydraulic lift and water redistribution between soil horizons (Dawson, 1996).

In comparison to those grown in WW LO3, plants exposed to high O3 with either adequate water or a water deficit would lose less water despite the small increases due to sluggish closure and increased nocturnal gs, following O3 exposure. Although this suggests that exposure to HO3 would offer field water savings, both above- and below-ground biomass was significantly decreased in exposure levels comparable to the HO3 treatment described here (Paudel et al., 2016), suggesting that O3 toxicity is a greater determinant of growth than effects of water budgets. Decreased root biomass as reported would exacerbate the impact of soil water deficits (in cotton, Grantz et al., 2006; in ponderosa pine, Grulke & Balduman, 1999).

The lack of complete stomatal closure at the end of the day and in the absence of O3 (Dawson et al., 2007) with drought or in combination, the two did not act synergistically. Although antagonistic (ie, protective) interactions (Silim et al., 2009; Temple, 1986, 1990; Temple et al., 1988) and synergistic (ie, deleterious) interactions (Heggestad et al., 1985; Wagg et al., 2012, 2013) have been described in this and other species (Populus spp.; Glycine max L. Merr., Dactylis glomerata L., Ranunculus acris L.).

Grulke et al. (2004); blue oak (Quercus douglasii), Grulke et al., 2007b). Significant nighttime gs has also been observed in the absence of O3 (Dawson et al., 2007) with drought or in areas of low soil nutrient availability (Caird et al., 2007). Other pollutants such as NO3 (Grulke et al., 2004) may also result in nighttime transpirational losses. Similar to responses of daytime gs, nighttime gs also responds to VPD, CO2, and WD (Cavender-Bares et al., 2007; Daley & Phillips, 2006; Dawson et al., 2007; Donovan et al., 2003; Zeppel et al., 2011), potentially enhancing nutrient and oxygen availability (Caird et al., 2007) but reducing hydraulic lift and water redistribution between soil horizons (Dawson, 1996).

In comparison to those grown in WW LO3, plants exposed to high O3 with either adequate water or a water deficit would lose less water despite the small increases due to sluggish closure and increased nocturnal gs, following O3 exposure. Although this suggests that exposure to HO3 would offer field water savings, both above- and below-ground biomass was significantly decreased in exposure levels comparable to the HO3 treatment described here (Paudel et al., 2016), suggesting that O3 toxicity is a greater determinant of growth than effects of water budgets. Decreased root biomass as reported would exacerbate the impact of soil water deficits (in cotton, Grantz et al., 2006; in ponderosa pine, Grulke & Balduman, 1999).

The lack of complete stomatal closure at the end of the day and in the absence of O3 (Dawson et al., 2007) with drought or in combination, the two did not act synergistically. Although antagonistic (ie, protective) interactions (Silim et al., 2009; Temple, 1986, 1990; Temple et al., 1988) and synergistic (ie, deleterious) interactions (Heggestad et al., 1985; Wagg et al., 2012, 2013) have been described in this and other species (Populus spp.; Glycine max L. Merr., Dactylis glomerata L., Ranunculus acris L.).
The decline in gs after a mid-morning peak to high O3 and drought dominated the daytime integrated response so that effects of O3 or WD on steady state stomatal responses do not provide a mechanism for increased stand water loss of Pima cotton. This contrasts with previous results in a deciduous forest (eg, McLaughlin, Nosal et al., 2007; McLaughlin, Wullschleger et al., 2007). Our calculations were based on a well-characterized daytime course of gs and representative nighttime gs, both obtained under controlled conditions. Extrapolation to canopy-scale water loss or O3 uptake requires more complete characterization of the diel course of gs, environmental conditions, and plant species composition. Steady state conditions are not common outside of greenhouses or the laboratory, so that the impacts on steady state conductance do not reflect stomatal kinetics in variable environmental conditions (eg, Kaiser & Paoletti, 2014). Our estimates of cotton water use were estimated with “full sun” leaves which dominate gas exchange. Similarly, shade leaves of poplar also had altered stomatal kinetics but the steady state and kinetic gs of full sun leaves dominated whole tree water balance (Paoletti et al., 2020). Response rate has been shown to be negatively related to stomatal size (Drake et al., 2013), and the stomata of Pima cotton are larger than those of many tree species.

Conclusions
The effects of O3 exposure on fundamental processes of plant water balance were investigated in Pima cotton, an economically important species grown in the Central Valley of California, U.S.A. We report here that low to moderately elevated O3 exposure (up to 125 ppb): (1) reduced daytime and nighttime steady state gs responses; (2) increased sluggish stomatal opening with increasing light; (3) increased sluggish stomatal closure with decreased light; and (3) incomplete nighttime closure. As the magnitude of stomatal conductance is much larger in the daytime, and daytime stomatal closure was faster than that of opening, the net result of O3 exposure was reduction of transpirational losses in Pima cotton up to 125 ppb. The current results suggest that neither nighttime stomatal opening nor sluggish stomatal closure are likely to increase whole plant, or agricultural field water use. Our results are consistent with those obtained with soybean under open-air O3 exposure in field conditions, in which a consistent decrease in canopy water loss was observed with increasing O3. However, acute O3 exposures in the range of 125 to 150 ppb affected two aspects of stomatal kinetics: a decrease in half times for both stomatal opening and closing, and a decrease in amplitude of stomatal opening, suggesting a loss of stomatal control. If ambient or hourly spikes in O3 concentrations were to increase, the water balance of agricultural fields would need to be further considered.

Author Note
This manuscript evaluates the effect of realistic tropospheric ozone exposure and drought stress on stomatal control of an important crop, Pima cotton, and how it may influence field water management.

Acknowledgements
The authors are grateful for the skilled technical assistance of H.-B. Vu during the performance of the gas exchange experiments. The authors declare no competing financial interests.

Author Contributions
Conceived and designed the experiments: DAG, NEG. Analyzed the data: DAG, RP Wrote the first draft of the manuscript: DAG and RP. Contributed to the writing of the manuscript: DAG, RP and NEG. Agree with the manuscript results and conclusions: DAG, RP and NEG. Jointly developed the structure and arguments for the paper: DAG, NEG. Made critical revisions and approved final version: DAG, NEG. All authors reviewed and approved of the final manuscript.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by the University of California at Riverside Research Allocation Process, the U.S. Department of Agriculture, Forest Service through Cooperative Agreement Order AG-04T0-P-13-0052.

Disclosures and Ethics
Author(s) have provided to the publisher signed confirmation of compliance with legal and ethical obligations including but not limited to the following: authorship and contributorship, conflicts of interest, privacy and confidentiality. The authors have read and confirmed their agreement with the ICMJE authorship and conflict of interest criteria. This article is unique and not under consideration or published in any other publication.

ORCID iD
Nancy E. Grulke https://orcid.org/0000-0002-6317-5073

NOTE
1. Mention of commercial names are for convenience only and do not constitute promotion of product.

REFERENCES
Almaraz, M., Bai, E., Wang, C., Trousdell, J., Corley, S., Faloona, I., & Houlton, B. Z. (2018). Agriculture is a major source of NOx pollution in California. Science Advances, 4(1), eaao3477.
Assmann, S. M., & Grantz, D. A. (1990). Stomatal response to humidity in sugarcane and soybean; effect of vapour pressure difference on the kinetics of the blue light response. Plant Cell & Environment, 13, 163–169.
Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutik, J. P. (2008). Climate Change and water. Technical Paper, Intergovernmental Panel on Climate Change (pp. 13–33). IPCC Secretariat.
Grantz, D. A., & Vu, H. B. (2012). Root and shoot gas exchange respond additively to

Grantz, D. A., Linscheid, B. S., & Grulke, N. E. (2019). Differential responses of sto-

Grantz, D. A., Shrestha, A., & Vu, H.-B. (2008). Ozone enhances adaptive benefit of

Donovan, L. A., Richards, J. H., & Linton, M. J. (2003). Magnitude and mechanisms

Drake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: Scaling of

Grulke, N. E., & Paoletti, E. (2005). New system to deliver desired O3 concentrations

Grulke, N. E., & Balduman, L. (1999). Deciduous conifers: High nitrogen deposition and

Booker, F. L., Fiscus, E. L., & Miller, J. E. (2004). Combined effects of elevated atmo-

Caird, M. A., Richards, J. H., & Donovan, L. A. (2007). Nighttime stomatal conduc-

Emberson, L. D., Pleijel, H., Ainsworth, E. A., van Den Berg, M., Ren, W., Osborne,

Grams, T. E. E., Anegg, S., Häberle, K.-H., Langebartels, C., & Matyssek, R. (1999).

Lawson, T., von Caemmerer, S., & Baroli, I. (2011). Photosynthesis and stomatal

Heggestad, H. E., Gish, T. J., Lee, E. H., Bennett, J. H., & Douglass, L. W. (1985).

Hertel, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and
driving environmental change. Nature, 424, 901–908.

Hoshiya, Y., Omasa, K., & Paolatti, E. (2013). Both ozone exposure and soil water stress are able to induce stomatal sluggishness. Environmental and Experimental Botany, 88, 19–23.

Hoshiya, Y., Watanabe, M., Inada, N., & Koike, T. (2012). Ozone-induced stomatal sluggishness develops differently in Siebold’s beech (Fagus crenata). Environmental Pollution, 166, 152–156.

Hoshiya, Y., Watanabe, M., Inada, N., & Koike, T. (2013). Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Advances of Botany, 112, 1149–1158.

Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24, 519–570.

IPCC. (2014). Intergovernmental Panel on Climate Change, summary for policymak-

in stomatal response to ozone and water deficit: A unique relationship of midday

Kirschbaum, M. U. F., Gross, L. J., & Pearcy, R. W. (1988). Observed and modelled

Kissrud, M. U. F., Gross, L. J., & Pearcy, R. W. (1989). Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell & Environment, 11, 1027–1045.

Kuang, L., Li, W., Hu, C., Li, X., Liu, L., & Xiong, Y. (2013). Sluggish stomatal response to ozone and water stress at different growth stages of two maize cultivars. Photosynthetica, 51, 242–253.

Kuznetsova, S. E., Karpinsky, V. A., & Dokuchaev, Y. A. (1999). Leaf area reduction as an indicator of ozone stress in Pinus silvestris L. Trees, 11, 281–289.

Kuznetsova, S. E., Karpinsky, V. A., & Dokuchaev, Y. A. (2001). Leaf area reduction as an indicator of ozone stress in Pinus silvestris L. Trees, 11, 281–289.

Kuznetsova, S. E., Karpinsky, V. A., & Dokuchaev, Y. A. (2001). Leaf area reduction as an indicator of ozone stress in Pinus silvestris L. Trees, 11, 281–289.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.

Lee, K. H., Cho, S. W., & Choi, S. (2010). Combined effects of elevated CO2 and ozone on photosynthesis and water use efficiency of wheat and soybean. Environmental Pollution, 158, 1235–1242.
