An ethnobotanical survey of medicinal plants used in the East Sepik province of Papua New Guinea

Michael Koch¹, Dickson Andrew Kehop², Boniface Kinminja², Malcolm Sabak², Graham Wavimbukie², Katherine M. Barrows³, Teatulohi K. Matainaho², Louis R. Barrows³* and Prem P. Rai²

Abstract

Background: Rapid modernization in the East Sepik (ES) Province of Papua New Guinea (PNG) is resulting in a decrease in individuals knowledgeable in medicinal plant use. Here we report a synthesis and comparison of traditional medicinal plant use from four ethnically distinct locations in the ES Province and furthermore compare them to two other previous reports of traditional plant use from different provinces of PNG.

Methods: This manuscript is based on an annotated combination of four Traditional Medicines (TM) survey reports generated by University of Papua New Guinea (UPNG) trainees. The surveys utilized a questionnaire titled “Information sheet on traditional herbal preparations and medicinal plants of PNG”, administered in the context of the TM survey project which is supported by WHO, US NIH and PNG governmental health care initiatives and funding. Regional and transregional comparison of medicinal plant utilization was facilitated by using existing plant databases: the UPNG TM Database and the PNG Plant Database (PNG Plants) using Bayesian statistical analysis.

Results: Medicinal plant use between four distinct dialect study areas in the ES Province of PNG showed that only a small fraction of plants had shared use in each area, however usually utilizing different plant parts, being prepared differently and to treat different medical conditions. Several instances of previously unreported medicinal plants could be located. Medicinally under- and over-utilized plants were found both in the regional reports and in a transregional analysis, thus showing that these medicinal utilization frequencies differ between provinces.

Conclusions: Documentation of consistent plant use argues for efficacy and is particularly important since established and effective herbal medicinal interventions are sorely needed in the rural areas of PNG, and unfortunately clinical validation for the same is often lacking. Despite the existence of a large corpus of medical annotation of plants for PNG, previously unknown medical uses of plants can be uncovered. Furthermore, comparisons of medicinal plant utilization is possible if databases are reformatted for consistencies that allow comparisons. A concerted effort in building easily comparable databases could dramatically facilitate ethnopharmacological analysis of the existing plant diversity.

Keywords: Papua New Guinea, East Sepik, Medicinal plants, Bougainville, Eastern highlands, Quantitative ethnopharmacology

* Correspondence: lbarrows@pharm.utah.edu
Deceased
¹Department of Pharmacology and Toxicology, University of Utah, 30 S. 2000 E., Salt Lake City 84112 UT, USA
Full list of author information is available at the end of the article

© 2015 Koch et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Papua New Guinea (PNG) is a largely rural country characterized by at least 800 ethnic traditions dispersed over 462,840 km² [1, 2]. Most of the population resides in small villages, situated in diverse environs that range from montane rainforest to lowland river deltas and small tropical islands. Settled 49,000–44,000 years ago (Ivane Valley in the PNG Highlands) [3], PNG is blessed with extraordinary biological diversity and a rich but fragmented cultural tapestry of customs, art, spiritual beliefs and medicinal knowledge.

The East Sepik Province is situated in the northwest of the country bordered by the West Sepik Province (West), Madang Province (East), the Bismark Sea (North) and Enga Province (South). East Sepik (43,426 km²) is characterized by mountainous terrain to the south and west and the costal floodplain of the Sepik river, which flows west to east through the province [4]. The approximately 350,000 inhabitants have to rely on 37 health centers for provisioning health care and heavily suplement western medicines with traditional medicines (TM) [4, 5]. The 10 % mortality rate for children under 5 years reflects the difficulty of providing adequate health care in the East Sepik Province. In an effort to supplement health care with effective traditional medicines the University of Papua New Guinea (UPNG), endorsed by the PNG government, struck a collaboration with the WHO to develop reliable traditional medicines (TM) and safe practices (outlined in the 2001–2010 PNG National Health Plan [6]). Part of this project includes traditional medicine surveys performed by UPNG students working in their kinship (“wantok”) communities. The data are then recorded in a proprietary database maintained at UPNG [7]. This database serves as central repository for PNG traditional medicine practices, preserving cultural traditions from many diverse communities.

Methods

The TM surveys are performed by UPNG students who are instructed on plant identification, preservation, herbal medicine use, and trained on how to administer the survey instrument entitled “Information sheet on traditional herbal preparations and medicinal plants of Papua New Guinea.” The survey questionnaire is the basis for semi-structured face-to-face interviews with healers, herbalists, birth attendants, and bone setters. Field vouchers of medicinal plants (twigs with leaves, fruits, flowers, nuts, etc.) are harvested under guidance of the healer and dried and compressed in newspapers. Photographs, descriptions and the pressed plant samples are assigned a voucher number and deposited with the UPNG Herbarium for later identification and reference [8].

The data concerning plant use are written up under supervision into student authored reports and the plant information is entered into the UPNG Traditional Medicines Database, which contains the combined data from reports generated by a decade’s work in this endeavor. It is the student reports that provide the base information for this current report.

Four student reports from the East Sepik Province representing four distinct language dialect communities have been compiled here: “Traditional Medicinal Plants and Practices in the Waskuk Hills Area of Ambunti District in East Sepik (2005)” by Dickson Andrew Kehop; “Traditional Medicine Practices in Niungweko and Kunjingini (MUL) Area of Wosera-Gawi District in East Sepik (2006)” by Boniface Kinminja; “Ethnobotanical Survey of Traditional Medicine in East Yangoru, East Sepik Province, Papua New Guinea” (2004) by Graham Wavimbukie; and “Traditional Medicinal Plants and Practices in Kairiru Island East Sepik Province Papua New Guinea (2004) by Malcolm Sabak The first three reports (DK, BK and GW, respectively) are inland above the Sepik floodplain at elevations ranging from 150 to 300 m. The report from Kairiru Island is referred to as MS. The specific village communities interviewed included: Bangus and Mariawai villages (DK), Niungweko and Mul (Kunjingini 1) villages (BK); Marambanja, Saina, Ambukanja, Parina, Jawia, Mandien, Bukiendoun, Sausenduon, Hangrerak and Kiarivu villages (GW) and Rumlal, Shagur and Bou villages (MS).

A compilation of references for medicinal plants described from Papua New Guinea is currently in progress (50 references) in our lab. These references were used to determine if plants collected in the current East Sepik survey work have been previously reported for medicinal use. Comparison of this East Sepik medicinal plant report to our previous reports from Bougainville [8] and the Eastern Highlands [9] was accomplished after editing the previous two reports to match the current format, including codes for conditions treated.

Overall flora distribution data for PNG was obtained for the provinces of East Sepik, Eastern Highlands, and the autonomous region of Bougainville from the PNG Plants Database [10]. The data was imported into Microsoft Excel®, formatted and edited as necessary, then processed with standard Unix (Linux) utilities to produce a formatted list containing the plant family, genus and species (if known). Duplicated instances of plants in the list were removed. The family names were split off, sorted and processed using a Python script on a Raspberry Pi Model B (http://www.raspberrypi.org) to quantify the number of instances of each plant family cited in the list. In general, when multiple names for the same species were found, we attempted to match plant family names to the PNG Plant Database versions to allow for quantitative comparison. Statistical analysis was carried out exactly as previously described by Weckerle et al. [11] using the
“beta.inv” function provided in Microsoft Excel™ to calculate the 95% inferior and superior credible intervals for the data. Comparison of the currently reported East Sepik medical plants to the Traditional Medicines Plant Database maintained at UPNG was carried out similarly. Discrepancies in plant family names were resolved as described above, the family names were adapted to the family names in the UPNG Traditional Medicines Database; resulting in a slightly different number of plant families for the traditional plant uses reported.

Plant families which are considered overused have an inferior credible interval that lies above the superior credible interval for the regional total data. Plant families that are considered underused have a superior credible interval below the inferior credible interval of the regional total data set distribution.

Results and discussion

East Sepik reports

The combined student reports contained 299 entries (including unidentified plants \(n = 6 \)) from the East Sepik province of PNG. The reports collated 205 plants, of which 139 were identified to species and 66 to genus, from a total of 71 families. Three reports were from areas of estimated 150 m to 300 m elevation (DK, BK and GW voucher numbers), DK from Waskuk Hills in the center of Sepik province, and BK and GW from elevated areas of the province north of the Sepik river plain and southwest of the capital Wewak. One report (MS voucher numbers) came from an island (Kairiru Island) situated close to the coast of East Sepik. The combined dataset is presented in Table 1 for all four areas of the East Sepik province under consideration.

Shared and unique plants

We found a number of plants were reported as used in common amongst these areas. Many plants had many overlaps in use, preparation, and disease (Table 1). However, among the plants identified to species level, only four species were reported in every survey: Alstonia scholaris (L.) R.Br., Cassia alata L., Passiflora foetida L., and Zingiber officianale Roscoe. The number of plants unique to one or another of the four reports was surprisingly large in comparison to the previous reports [8, 9]. A total of 80 genera, of which 29 are identified to genus level and 51 to species level (see Table 2), were not shared between any of the four study areas.

Plant parts utilization, preparation, administration and diseases treated

In general the areas studied were similar in the relative utilization of plant parts (Fig. 1) with leaves predominating followed by bark and sap as next most common (with the exception of GW where roots were more commonly utilized than sap). The MS sample set reported a large number of young shoots/young roots stipulated for use in comparison to the other reports, where “young” was not specifically stipulated. The DK and GW reports only cited use of shoots. Only DK reported the medicinal use of nuts.

The method of preparation (Fig. 2) shows a similar pattern amongst the reports: use of succus (expressed juice) was most commonly reported, followed by decoction and direct application of the raw plant material. Usually direct application meant placing the material on a wound or skin ailment after minimal handling. Similarly all reports contain inhalation of smoke or vapor, heat treatment and cooking prior to utilization. DK reported a much higher frequency of cooking the material than the other areas. Boiling as a method of preparation was only mentioned in the MS and GW reports, while mastication (chewing) was reported in all except MS. Typically heating implies later consumption or preparation of steam for inhalation, however, in the GW report heating is a method to prepare the plant material prior to topical application (labelled HR—Heated-Rubbed). Another mode of preparation was mastication and spitting on the affected area. This was relatively common in the MS report and mentioned in the DK report, but not noted in the the other two areas. Only from the DK report is the reverse utilization of the plants reported, where in one instance Homalium foeti-dum (Roxb.) Benth. was utilized in a reverse-from-expected manner. In this case, the blood of the patient was placed under the bark of the tree with the expected result being a lessening of knee pain and strengthening of bones as the tree grew. This clearly implies a spiritual/magical connection of plant and patient.

The routes of administration for plant based medicines reported by DK, BK and MS were about evenly divided between oral or topical routes (Fig. 3). The exception was the administration practices reported by GW where oral consumption outpaced topical application (3:2 ratio). Inhalation was reported only once for the DK and BK areas, and more frequently in the BW and MS areas. The lone outlier for route of administration was from the DK report in which patient material (blood) was transferred to the plant (as described above).

Ailments treated (Fig. 4) with plant based medicines were categorized into 28 groups, sorted according to the target site, in order to to minimize possibly uncertain medical judgements or clinical misdiagnoses. Many described symptoms can likely accurately be ascribed to their appropriate causative diseases, but in the absence of independent clinical confirmation the decision was made to present the data in as unbiased a way as possible. Therefore, the category of “SKIN” contains both
Table 1: Plants reported as medicinally used in 4 study areas in East Sepik Province

Voucher	Plant ID/References	Family	Local Name	Ailment	Ailment Code	Part Code	Prep Code	Route Code				
MS 02/04	Abellmoschus manihot (L) Medik [32–39]	Malvaceae	Wasiat	Uterine contraction	REP	L	D	O				
GW 05/04	Acalypha grandis Benth [33, 40]	Euphorbiaceae	Unknown	Antidote to poisoning (Chemical or acid)	POIS	L	S	O				
DK 16/05	Acalypha sp. [7, 33–35, 39–49]	Euphorbiaceae	Mikirme	Malaria	MAL	L	D	O				
GW 88/04	Acalypha sp. [7, 33–35, 39–49]	Euphorbiaceae	Winghongong	Cough, shortness of breath	RESP	Sap	S	O				
BK 05/06	Acalypha wilkesiana Müll. Arg [42, 44, 45, 47–49]	Euphorbiaceae	Polembiere	Cough, shortness of Breath	RESP	L	D	O				
DK 38/05	Ageratum conyzoides (L) L [8]	Asteraceae	Mungrimb	Sore	SKIN	L	R	T				
GW 56/04	Aglaia sp. [33, 50, 51]	Meliaceae	Waniembi	Fevers, malaria	FEV/MAL	L	B	I				
GW 09/04	Albizia procera (Roxb.) Benth [34]	Fabaceae	He`re	Malaria, pneumonia, asthma	MAL/RESP	B	S	I & O				
BK 05/06	Albizia saman (Jacq.) Merr [34, 52]	Mimosaceae	Lundumi	Induce sleep	PSYCH	L	D	T				
DK 08/05	Allioptius cobbe (L) Rauesch [8, 42, 51, 53]	Sapindaceae	Haim	Scabies	SKIN	B	C	O				
GW 50/04	Allioptius cobe (L) Rauesch [8, 42, 51, 53]	Sapindaceae	Wah	Skin pox, cough	SKIN/RESP	L	D	T				
DK 37/05	Alocasia cucullata (Lour.) G. Don	Araceae	Waken	Boil	SKIN	Root	R	T				
MS 07/04	Alocasia sp. [8, 33–35, 43, 50, 51]	Araceae	Waiyat	Abortion	REP	L	S	O				
GW 27/04	Alpinonius incana (Roxb.) Teijsm. & Binn. ex Kurz [33–35, 43, 54]	Rhamnaceae	Hushu	Scabies	SKIN	B	S	T				
GW 24/04	Alpinia sp. [8, 9, 33, 42, 43, 55–57]	Zingiberaceae	Wambeleke	Cancer (mouth), hypertension	CANC/CV	R	D	O				
MS 03/04	Alpinia sp. [8, 9, 33, 42, 43, 55–57]	Zingiberaceae	Kasai	Cough	RESP	yShoot	S	O				
MS 41/04	Alpinia sp. [8, 9, 33, 42, 43, 55–57]	Zingiberaceae	Sinup	Fever, headache, body ache	FEV/HEAD/PAIN/SWELL	yShoot	S	O				
MS 68/04	Alpinia sp. [8, 9, 33, 42, 43, 55–57]	Zingiberaceae	Kasai	Antidepressant	PSYCH	L & yShoot	S	O				
BK 02/06	Alstonia scholaris (L) R.Br [7–9, 34, 39, 40, 42, 43, 46–49, 51–53, 57–64]	Apocynaceae	Kam-bh	Malaria, diarrhoea, asthma, sores	MAL/GAST/RESP/SKIN	L	Sap	Sap	D	D	S	O
DK 25/05	Alstonia scholaris (L) R.Br [7–9, 34, 39, 40, 42, 43, 46–49, 51–53, 57–64]	Apocynaceae	Chimb	Scabies	SKIN	B	C	O				
GW 16/04	Alstonia scholaris (L) R.Br [7–9, 34, 39, 40, 42, 43, 46–49, 51–53, 57–64]	Apocynaceae	Hemba	Fever, malaria, cough, diarhhea	FEV/MAL/RESP/GAST	Sap	S	O				
MS 04/04	Alstonia scholaris (L) R.Br [7–9, 34, 39, 40, 42, 43, 46–49, 51–53, 57–64]	Apocynaceae	Kaisabok	Fever, headache	FEV/HEAD	B	D	O				
BK 03/06	Ammonium aculeatum Roxb [39, 42, 53, 58, 65]	Zingiberaceae	Takkwa hamba	Asthma, scabies	RESP/SKIN	Stem	C	O & T				
DK 19/05	Ammonium aculeatum Roxb [39, 42, 53, 58, 65]	Zingiberaceae	Guinj Nikir	Fever	FEV	Whole	V	I				
DK 53/05	Angiopteris evecta (G. Forst.) Hoffm [8, 56]	Marattiaceae	Yarchapa	Shortness of breath	RESP	Shoot & Root	3	O				
MS 01/04	Archidendron sp. [8, 66]	Fabaceae	Niar	Diarrhoea, asthma, fever, headache	HEAD/FEV/GAST	B	D	O				
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Code	Species	Family	Uses	Parts	Shoot	Root	Nut	R	T	O
DK 02/05	*Areca catechu* L [8, 34, 37, 39, 42, 43, 51, 67, 68]	Arecales	Abdominal ache, whitespots	Nut						
MS 10/04	*Aristolochia sp.* [8, 9, 34, 43, 48, 56, 59, 61, 63]	Aristolochiaceae	Epigastric pain	GAST						
MS 73/04	*Aristolochia sp.* [8, 9, 34, 43, 48, 56, 59, 61, 63]	Aristolochiaceae	Blocked nose, flu, cough	RESP						
MS 23/04	*Artocarpus altilis* (PARKINSON ex F.A. ZORN) Fosberg [8, 34, 43, 50, 61]	Moraceae	Hemorrhage	WOUND						
GW 79/04	*Aristolochia sp.* [8, 9, 34, 43, 48, 56, 59, 61, 63]	Aristolochiaceae	Epigastric pain	GAST						
DK 21/05	*Aristolochia sp.* [8, 9, 34, 43, 48, 56, 59, 61, 63]	Aristolochiaceae	Blocked nose, flu, cough	RESP						
BK 039/06	*Averrhoa carambola* L. Oxalidaceae	Oxalidaceae	Aasthma, sore, fresh cut, wound	Fruit						
BK 010/06	*Averrhoa carambola* L. Oxalidaceae	Oxalidaceae	Cough	Fruit						
MS 27/04	*Barringtonia asiatica* (L.) Kurz [38, 39, 42, 43, 50, 53]	Lecythidaceae	Antipsychotic	PSYCH						
GW 21/04	*Bryophyllum pinnatum* (Lam.) Oken [7, 42, 51, 67]	Crassulaceae	Ulcer	SKIN						
MS 20/04	*Calamus sp.* [8, 33, 35, 43, 53, 57]	Arecaceae	Fever, headache, malaria, cough, malnutrition	FEV/HEAD/MAL/NUT	Sap					
BK 051/06	*Calamus sp.* [8, 33, 35, 43, 53, 70]	Arecaceae	Dehydration	NUT	Sap					
GW 92/04	*Calamus sp.* [8, 33, 35, 43, 53, 64]	Arecaceae	General cleansing	MAINT	Sap					
MS 85/04	*Callicarpa langifolia* Lam. [34, 51]	Verbenaceae	Sore in baby’s mouth	CHILD	B	MS				
BK 40/04	*Bidens pilosa* L. Asteraceae	Asteraceae	Eye infections, bleeding	INF/WOUND	Root					
MS 12/04	*Calotropis gigantea* (L.) (L.) Dryand [34, 51]	Apocynaceae	Fever, headache	FEV/HEAD	L	V	I			
BK 56/05	*Campnosperma brevipetiolatum* Volkens [71]	Anacardiaceae	Ulcer	SKIN	Sap					
BK 10/06	*Campnosperma sp.*	Anacardiaceae	Sore, scabies, fresh cut, wound, hair and skin	WOUND/SKIN	B	S	T			
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

MS 39/04	Canarium sp. [34, 42, 43, 50, 57, 70]	Burseraceae	Klakul	Emetic	GAST	B	S	O		
MS 64/04	Canarium sp. [34, 42, 43, 50, 57, 70]	Burseraceae	Yamuok	Ulcer	SKIN	Sap	S	T		
DK 15/05	Capsicum annuum L.	Solanaceae	Seraimbsik	Malaria	MAL	Fruit & Seed	C	O		
DK 34/05	Carica papaya L [42, 43, 46, 47, 59, 64, 68]	Caricaceae	Pous	Malaria	MAL	Root	D	O		
DK 26/05	Caryota mitis Lour.	Arecaceae	Tosh	Shortness of Breath	RESP	Succus	S	O		
MS 69/04	Caryota rumphiana Mart. [39, 53]	Arecaceae	Yamoun	Toothache	DENT	yShoot	M	O		
BK 028/06	Cassia alata L.	Fabaceae	Yundilipgi	Grille and white spot	SKIN	L & Seed	S	T		
BK 008/06	Christia sp.	Fabaceae	Banjip	Diarrhoea, scabies, sores on the head like scabies	GAST/SKIN	L	D	R	O	T
MS 50/04	Chrysopogon aciculatus (Retz). Trin.	Poaceae	Knarbru	Swollen bodies, legs, arms	SWELL	Whole	D	T		
DK 54/05	Cinnaemonum sp.	Lauraceae	Metamboi	Headache	HEAD	B	MS	T		
GW 59/04	Cissus sp. [33, 34, 43, 53, 59, 62]	Vitaceae	Lenghasa	Stomach ache, diarrhoea	GAST	Sap	S	O		
BK 049/06	Clematis sp. [8, 33, 34, 37, 39, 42, 43, 51, 53, 59, 65–67, 69]	Ranunculaceae	Gwawingga	Nasal congestion, running nose	RESP	L	V	I		
GW 87/04	Clerodendrum sp. [8, 37, 38, 62]	Ochnaceae	Hambaihile	Snake bite	BITE	Sap	S	O		
GW 91/04	Clitoria ternatea L.	Fabaceae	Pohuk	Determine female sex for baby, infertility	REP	Fruit	C	O		
MS 78/04	Cocos nucifera L. [7, 8, 34, 37–39, 43, 56, 59, 61, 67, 68]	Arecaceae	Niumour	Bleeding from cuts	WOUND	Fruit	H	T		
Ref.	Name and Genus	Author	Action	Part Used	Organs	Comment
BK 047/06	Codiaeum variegatum (L.) Rumph. ex A. Juss.	[8, 34, 35, 39, 42, 43, 48, 56, 58, 61, 62, 66, 73]				
MS 37/04	Codiaeum variegatum (L.) Rumph. ex A. Juss.	[8, 34, 35, 39, 42, 43, 48, 56, 58, 61, 62, 66, 73]				
DK 12/05	Cordyline fruticosa (L.) A. Chev.	[37, 38, 45, 56, 59–61]				
GW 86/04	Cordyline fruticosa (L.) A. Chev.	[37, 38, 45, 56, 59–61]				
MS 67/04	Cordyline fruticosa (L.) A. Chev.	[37, 38, 45, 56, 59–61]				
BK 053/06	Crinum asiaticum L.	[7, 8, 34, 42, 49, 51, 56, 61, 62, 67, 74]				
GW 39/04	Crinum asiaticum L.	[7, 8, 34, 42, 49, 51, 56, 61, 62, 67, 74]				
MS 29/04	Crinum asiaticum L.	[7, 8, 34, 42, 49, 51, 56, 61, 62, 67, 74]				
MS 54/04	Crinum asiaticum var. asiaticum	[34, 54, 61]				
GW 75/04	Cryptocarya sp.	[8, 33–35, 43, 50, 53, 55, 65]				
BK 035/06	Cryptocarya sp.	[8, 33–35, 43, 50, 53, 55, 65]				
BK 029/06	Curcuma longa L.	[34, 42, 45]				
GW 35/04	Curcuma sp.	[34, 35, 40, 42–45, 62]				
GW 38/04	Curcuma sp.	[34, 35, 40, 42–45, 62]				
MS 84/04	Cycas circinalis L.	[34, 35, 38, 42, 43, 46, 47, 51, 73]				
BK 002/06	Cynanchus sp.	[8, 34, 39, 42, 43, 46, 51, 63, 72, 73]				
BK 06/05	Cymbopogon citratus (DC) Stapf.	[42, 56, 66]				
GW 53/04	Cymbopogon citratus (DC) Stapf.	[42, 56, 66]				
MS 70/04	Davallia sp.	[8, 34]				
DK 35/05	Dendrocline cordata (Warb. ex H.J.P. Winkl.) Chew	[51]				
MS 33/04	Dendrocline latifolia (Gaudich.) Chew	[64]				
GW 101/04	Desmodium sp.	[7, 9, 33–35, 37, 43, 48, 60, 66, 68, 70, 72, 75, 76]				
MS 81/04	Dillenia sp.	[39, 50, 58, 60, 65, 77]				
DK 59/05	Dioscorea bulbifera L.	[33, 42]				

Table 1: Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Code	Species	Family	Part Used	Disease	Species Combinations	
GW 63/04	Dioscorea sp.	Dioscoreaceae	Harehare	Headache, migraine	HEAD L HR T	
BK 013/06	Donax canniformis (G. Forst.) Schum	Marantaceae	Gani	Ear ache	PAIN yL R T	
DK 23/05	Donax canniformis (G. Forst.) Schum	Marantaceae	Guarimb	Ear infection	INF L R T	
GW 78/04	Dracaena angustifolia (Medik.) Roxb	Asparagaceae	Hembesaihe	Fever, headache, stomach complaints	FEVER/HEAD/GAST Root S T	
GW 25/04	Dysoxylum sp.	Meliaceae	Sengiwiama	Sores, ulcers	SKIN B R T	
GW 68/04	Dysoxylum sp.	Meliaceae	Huambuka	Malaria, cough	MAL/RESP L D O	
GW 100/04	Elaeocarpus sphaericus Schum (39, 53)	Elaeocarpaceae	Nangila	Malaria, cough, pneumonia, shortness of breath	MAL/RESP B D O	
MS 25/04	Elaeocarpus sphaericus Schum (39, 53)	Elaeocarpaceae	Kaiboun	Asthma	RESP B S O	
BK 043/06	Elatostema sp	Urticaceae	Kkas-bhirs	Scabies	SKIN Whole D T	
MS 59/04	Elatostema sp	Urticaceae	Moin kukuri	Fever, headache, joint pain, fertility	FEVER/HEAD/PAIN/REP Whole M O	
GW 28/04	Endospermum formicarium Becc	Euphorbiaceae	Bundua	Fever, asthma	FEVER/RESP B S O	
DK 40/05	Endospermum labios Schodde	Euphorbiaceae	Paruang	Scabies	SKIN Seed & Flower C O	
MS 89/04	Endospermum medullosum L.S.Sm.	Euphorbiaceae	Karak	Fever, body pain, unconscious	FEV/PAIN/PSYCH L B I	
GW 47/04	Epipremnum pinnatum (L.) Engl	Araceae	Kumbui-bhi	Fever	FEV B S O	
BK 009/06	Epipremnum sp.	Araceae	Kunga	Dysentery (excreting of blood), vomiting of blood	GAST Root M	C O
MS 12/04	Epipremnum sp.	Araceae	Kkajial	Headache, swollen bodies, fever, cold	HEAD/SWELL/FEV/RESP Sap S O	
GW 18/04	Erythrina memillana Krukooff	Fabaceae	Kwai	Diarrhoea, shortness of breath, cough	GAST/RESP L & B D O	
MS 42/04	Erythrina memillana Krukooff	Fabaceae	Pear	Contraceptive	REP B B O	
MS 52/04	Euodia hortensis J.R. Forst. & G. Forst.	Rutaceae	Ghin	Unconsciousness	PSYCH L V I	
MS 66/04	Euodia sp.	Rutaceae	Muth	Fertility, emetic	REP/GAST B S O	
BK 025/06	Euphorbia heterophylla L. [51]	Euphorbiaceae	Wilai	For treating diarrhoea	GAST Sap S O	
BK 023/06	Euphorbia hirta L [9, 34, 39, 46, 50, 51, 56, 57, 67]	Euphorbiaceae	Unknown	Sore	SKIN L S T	
GW 17/04	Euphorbia hirta L [9, 34, 39, 46, 50, 51, 56, 57, 67]	Euphorbiaceae	Seplein Nai	Shortness of breath, asthma, pneumonia	RESP Whole D O	
DK 03/05	Euphorbia plumerioides Teijsm. ex Hassk. [33, 34, 36, 43, 51, 53, 60, 69]	Euphorbiaceae	Mimi/Pombi	Poisoning	POIS Sap S O	
MS 47/04	Euphorbia sp.	Euphorbiaceae	Sungwia	Emetic	GAST Sap S O	
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Code	Species/Botanical Name	Family	Part Used	Preparation	Part	Treatment	Organism
GW 44/04	Euphorbia sp. [9, 34–36, 41–44, 50, 53, 54, 57–59, 67, 74, 78]	Euphorbiaceae	Wale	Emetic	GAST	Sap	S O
GW 80/04	Euphorbia sp. [9, 34–36, 41–44, 50, 53, 54, 57–59, 67, 74, 78]	Euphorbiaceae	Tuth	Emetic	GAST	Sap	S O
MS 59/04	Euphorbia tithymaloides (L.) [51, 56]	Euphorbiaceae	Mual nias	Epigastric pain	GAST	Sap	S O
BK 046/06	Ficus adersperma Miq [8, 33–35, 53]	Moraceae	Belloki	Cut	WOUND	yL	S T
DK 41/05	Ficus pungens Reinw. ex Blume [9, 33, 34, 42, 43, 53, 59, 60, 63]	Moraceae	Kuar	Shortness of breath	RESP	Succus	S O
MS 40/04	Ficus septica Burm.f. [34, 37–40, 42, 43, 48, 49, 51, 57–59, 61, 62, 66, 67, 78]	Moraceae	Poipuk	Diarrhoea	GAST	Sap & yShoot	S O
DK 58/05	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Tuohoepolehe	Malnutrition	NUT	Sap	C O
GW 58/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Manjemieri	Nutrient supplement for babies	NUT	Sap	S O
GW 74/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Wavihsa/ Horikieng	Broken bones	BONE	Root	M T
GW 89/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Chiplapul	Abortion	REP	B R T	
MS 17/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Bukabok	Fracture	BONE	B R T	
MS 31/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Moul koni	Ulcer	SKIN	Sap	S T
MS 88/04	Ficus sp. [7–9, 33–40, 42–45, 47–49, 51–59, 61–63, 66–69, 74, 75, 77, 78]	Moraceae	Aiyau	Toothache	DENT	yRoot	M O
MS 75/04	Ficus wassa Roxb [33, 34, 39, 40, 42, 47, 68, 75]	Moraceae	Kikquai	Contraceptive	REP	Root	M O
BK 060/06	Gnetum gnemon L [8, 34]	Gnetaceae	Yit	Removal of wood or stick in skin	WOUND	yL	S T
DK 14/05	Gnetum gnemon L [8, 34]	Gnetaceae	Mogsa	Removal of nails/ splints lodged in the body	WOUND	Sap	S T
MS 18/04	Gnetum gnemon L [8, 34]	Gnetaceae	Popoyiri	Eye disease	OCC	Sap	S T
GW 45/04	Gnetum gnemonoides Brongn.	Gnetaceae	Biek	Fever, headache (malaria)	FEV/MAL	B D	O
MS 14/04	Graftophyllum sp. [7–9, 33, 35, 36, 39, 41, 66, 67]	Acanthaceae	Intalhiat	Fever, headache, joint pain, cold	FEV/HEAD/PAIN/RESP	L D	O & I & T
GW 11/04	Gymnostoma papuanum (S. Moore) L.A.S. Johnson [33, 35, 43]	Casuarinaceae	Mania	Shortness of breath, asthma	RESP	B D	O
GW 70/04	Hemigraphis reptans (G. Forst.) T. Anderson ex Hemsl.	Acanthaceae	Mijika	Centipede bite	BITE	Whole	HR T
BK 018/06	Hibiscus rosa-sinensis L [37, 56, 59]	Malvaceae	Mawe	Sore eye	OCC	Flower	R T
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Plant Name	Family	Common Uses	Body Systems	Study Area				
Hibiscus rosa-sinensis	Malvaceae	Kupawaruk	Menstrual cramps	REP L S O				
Homalanthus sp.	Euphorbiaceae	War moap	Scabies	SKIN Stem D T				
Salicaceae	Mes	Knee ache	PAIN B MAG P_to_Plant					
Areceae	Yawah	Shortness of breath	RESP Stem S O					
Homalium foetidum (Roxb.) Benth	Salicaceae	Wun	Boil	SKIN Stem C T				
Viburnum sp.	Euphorbiaceae	War moap	Fractured bones	BONE B HR T				
Intsia bijuga (Colebr.) Kuntze	Fabaceae	Stem	D T					
Ipomoea sp.	Convolvulaceae	Firac	Distended stomach, pigbel	RESP Stem S T				
Ipomoea pes-caprae (L.) R. Br	Convolvulaceae	Waimabhu	Running nose, cough, asthma	Resp Stem S T				
Ipomoea pes-caprae (L.) R. Br	Convolvulaceae	Kairo	Fever, headache, joint pain, swelling	RESP Stem S T				
Kalanchoe pinnata (Lam.) Pers	Crassulaceae	Kupun	Knee pain/ache, back ache/pain, swollen legs, boils	PAIN/ SWELL/SKIN				
Laportea decumana Wedd.	Urticaceae	Salat	Muscle ache, knee pain, ankle sprain	Pain L R T				
Laportea interrupta (L.) Chew	Urticaceae	Salat (red)	Fresh cuts, wounds	WOUND				
Leucosyke capitellata Wedd	Urticaceae	Asamambia	Insect bite	BITE				
Larrea sp.	Euphorbiaceae	Lomi	Anti-venom	POIS				
Larrea sp.	Euphorbiaceae	Lomi	Malaria, fevers, coughs	MAL/FEV/RESP L O B D O				
Larrea sp.	Euphorbiaceae	Lomi	Skin infections, scabies	SKIN B S T				
Macaranga clavata Warb.	Urticaceae	Salat	Muscle ache, knee pain, ankle sprain	Pain L R T				
Manihot esculenta Crantz	Euphorbiaceae	Gumbbow	Fresh cuts, wounds	WOUND				
Marattia sp.	Urticaceae	Asamambia	Insect bite	BITE				
Marattia sp.	Urticaceae	Asamambia	Insect bite	BITE				
Melanolepis multiglandulosa (Reinw. ex Blume) Rchb. & Zoll	Euphorbiaceae	Waru	Snake bite	BITE				
Melastoma sp.	Rutaceae	Mutamuth	Blocked nose, flu, cough	RESP L V I				
Meliosma acuminata (Lour.) Corner	Anacardiaceae	Huarambie/ Wamahang	Snake bite	BITE				
Melicope triphylla (Lam.) Merr	Rutaceae	Kupun	Abortion	REP L D O				
Code	Species (Family)	Part	Action 1	Organ Systems				
--------	-----------------	------	---------------------------	---------------				
BK 001/06	*Merremia peltata* (L.) Merr [8, 34, 42, 43, 56, 59, 67]	Convolvulaceae Aukut	Boil, sore or ulcer, fresh cut	SKIN/WOUND Sap	L	S	H	T
DK 28/05	*Merremia peltata* (L.) Merr [8, 34, 42, 43, 56, 59, 67]	Convolvulaceae Bangpuk	Fresh cuts, wounds	WOUND Sap	S	T		
GW 62/04	*Merremia peltata* (L.) Merr [8, 34, 42, 43, 56, 59, 67]	Convolvulaceae Nangumareng	Determine male sex of baby	REP L D O				
GW 43/04	*Merremia* sp. [8, 34, 42, 43, 56, 59, 67]	Convolvulaceae Wararamang	Fever, malaria	FEV/MAL Stem S O				
DK 30/05	*Metroxylon sagu* Rottb [42]	Arecaceae Nok	Burns	BURN Stem R T				
GW 96/04	*Mikania* sp.	Asteraceae Lihasuanga	Skin infections, scabies, sores	SKIN Sap S T				
BK 059/06	*Mimosa pudica* L [8, 34]	Fabaceae Bambu kiya	Induce sleep	PSYCH Whole D T				
DK 52/05	*Mimosa pudica* L [8, 34]	Fabaceae Halihioka	Infant colic	CHILD Whole D T				
MS 77/04	*Mimosa pudica* L [8, 34]	Fabaceae Mistmiat	Induced sleep	PSYCH Whole D T				
GW 20/04	*Mimosa pudica* L [8, 34]	Rubiaceae Waramang	Eye infections, color defects	OCC Whole B I				
BK 038/06	*Morinda citrifolia* L [7, 8, 34, 37, 38, 42, 43, 48, 49, 56–59, 61, 68, 70, 73, 78]	Rubiaceae Simbiya	Knee ache, cough	PAIN/RESP yL	Fruit D R	H O & T		
MS 71/04	*Morinda citrifolia* L [7, 8, 34, 37, 38, 42, 43, 48, 49, 56–59, 61, 68, 70, 73, 78]	Rubiaceae Knuel	General body pain, boils, inflammation	PAIN/SKIN/SWELL L R T				
GW 64/04	*Mucuna nova-guineensis* Scheff. [8]	Fabaceae Kilemessik	Shortness of breath	RESP Root S O				
MS 37/04	*Mucuna* sp. [8, 9, 34, 43, 47, 50, 52, 56, 63]	Fabaceae Ombo	Anemia	BLOOD Sap S O				
GW 51/04	*Mucuna* sp. [8, 9, 34, 43, 47, 50, 52, 56, 63]	Fabaceae Warnayilhara	Tooth ache, loose tooth	DENT Stem M O				
GW 66/04	*Mucuna* sp. [8, 9, 34, 43, 47, 50, 52, 56, 63]	Fabaceae Ponnambile	Anemia	BLOOD B S O				
GW 84/04	*Mucuna* sp. [8, 9, 34, 43, 47, 50, 52, 56, 63]	Fabaceae Manvil	Arthritis joint pain, back ache	PAIN B S T				
BK 033/06	*Munuya paniculata* (L.) Jack [8, 73]	Rutaceae Sika	Cough	RESP L D O				
DK 24/05	*Musa acuminate* Colla [34, 37, 47, 57]	Musaceae Yup	Sore lip	PAIN Fruit C T				
MS 44/04	*Musa* sp. [8, 9, 32–34, 37, 42, 43, 47, 52, 54, 56, 57, 59, 61, 63, 67, 71, 72]	Musaceae Wur karasau	Wound	WOUND Sap S T				
BK 055/06	*Nauclea orientalis* (L.) L [34, 55, 63]	Rubiaceae Runggool	Asthma, shortness of breath	RESP B S O				
DK 44/05	*Nauclea orientalis* (L.) L [34, 55, 63]	Rubiaceae Kuva	Snake bite	BITE B S O				
GW 10/04	*Neonauclea purpurea* (Roxb.) Merr [39]	Rubiaceae Kripa	Fever, headache (malaria), pneumonia, asthma	FEV/MAL/RESP B B I & O				
BK 061/06	*Neonauclea* sp.	Rubiaceae Gipma	Poisonous snake bite	BITE B M O				
DK 48/05	*Nephrulepis hisutula* (G. Forst.) C. Presl [8]	Lomariopsidaceae Tamanguia	Uncontrollable urine	URINE L C O				
GW 36/04	*Nephrulepis* sp. [7, 8, 33, 34, 43]	Lomariopsidaceae Walendau	Headache, fever (malaria)	HEAD/MAL Shoot & Root S O				
MS 48/04	*Nicotiana* sp. [33–36, 42, 43, 47, 52, 59, 63, 66, 71, 72, 76, 77]	Solanaceae Kennings	Anticoagulant	BLOOD yL H T				
BK 024/06	*Nicotiana tabacum* (L.) [33, 35, 36, 42, 43, 52, 59, 63, 76, 77]	Solanaceae Sauken	Sores	SKIN L S T				
BK 036/06	Not Identified	Not Identified	Ukapuk	Scabies, malaria	SKIN/MAL Sap S T O			
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Code	Plant Name	Family	Common Name	Use	Part Used	Dimension					
DK 47/05	Not identified	Not identified	Kupnenj	Shortness of breath	RESP	Sucus	S	O			
DK 60/05	Not identified	Fabaceae	Wulamian	Malnutrition	NUT	Whole	H	O			
MS 80/04	Not identified	Orchidaceae	Kraufung	Skin disease (grille)	SKIN	L	H	T			
DK 57/05	Not identified	Not identified	Sarimbiya	Cough	RESP	L	-	O			
MS 22/04	Not identified	Not identified	Asakurkunja	Scabies	SKIN	Stem & Root	D	T			
MS 08/04	Ocimum basilicum L	Labiate	Ruk	General body weakness, fever, headache, etc.	FEV/MAL/HEAD	Whole	B	O			
BK 004/06	Octomeles sumatrana Miq [43]	Datiscaeeae	Wani	Asthma, back ache, malnourished/pigbel	RESP/PAIN/NUT/GAST	B	Sap	S	O	O	O
GW 48/04	Octomeles sumatrana Miq [43]	Datiscaeeae	Waine	Fever	FEV	B	S	O			
MS 30/04	Pandanus dubius Spreng.	Pandanaceae	Viak	Asthma	RESP	Shoot & L	S	O			
GW 98/04	Pangium edule Reinw [34, 42, 43, 50, 51, 53]	Achariaceae	Imahek	Enlarged spleen	ORG	Fruit	R	O			
MS 35/04	Pangium edule Reinw [34, 42, 43, 50, 51, 53]	Achariaceae	Sis	Lice killer	INSECTICIDE	L	S	O	T		
GW 65/04	Paepluchites sp. [34, 43]	Apocynaceae	Pari	Enlarged spleen	ORG	Fruit	S	O			
GW 29/04	Parsonia sp. [37, 59]	Apocynaceae	Tielimbika	Fresh cuts, sores	SKIN/WOUND	L	H	T			
BK 032/06	Passiflora foetida L [8, 42, 51, 56]	Passifloraceae	Bombo	Asthma, white spot	RESP/SKIN	Flower & L	D	R	O	T	
DK 46/05	Passiflora foetida L [8, 42, 51, 56]	Passifloraceae	Apsarapuk	Whitespots	SKIN	L	R	T			
GW 19/04	Passiflora foetida L [8, 42, 51, 56]	Passifloraceae	Apduanapuk	Strong cough	RESP	Shoot & L	S	O			
MS 09/04	Passiflora foetida L [8, 42, 51, 56]	Passifloraceae	Maparou	Skin disease	SKIN	R	T				
DK 55/05	Passiflora sp. [8, 42, 51, 56]	Passifloraceae	War yasokk	Scabies	SKIN	Sap	H	T			
BK 017/06	Peperomia pellucida (L.) Kunth [7]	Piperaceae	Koikoivara	Pimple	SKIN	L	R	T			
GW 81/04	Peperomia pellucida (L.) Kunth [7]	Piperaceae	Lerek	Fever, headache, (malaria)	FEV/MAL	Whole	D	O			
MS 58/04	Peperomia pellucida (L.) Kunth [7]	Piperaceae	Kinkanak	Antidepressant	PSYCH	L	D	T			
BK 014/06	Phyllanthus armanus Schumach. & Thonn [34, 43, 49, 52, 63]	Phyllanthaceae	Ripa kwalingu	Scabies	SKIN	Sucus	S	T			
MS 55/04	Phyllanthus armanus Schumach. & Thonn [34, 43, 49, 52, 63]	Phyllanthaceae	Kambaningi	Fever, headache, swollen bodies	FEV/HEAD/SWELL	Root	S	O			
GW 54/04	Phyllanthus niruri L [7, 9, 34, 42, 43, 46, 57, 59, 73]	Phyllanthaceae	Hipanchinchii	Menorrhagia	REP	Whole	D	O			
MS 60/04	Phyllanthus niruri L [7, 9, 34, 42, 43, 46, 57, 59, 73]	Phyllanthaceae	Shuk miau	Fever	FEV	Whole	D	T			
GW 14/04	Phyllanthus sp. [7, 9, 33–35, 39, 42, 43, 46, 49, 52, 57, 59, 63, 67, 73]	Phyllanthaceae	Kai veai	Tooth infections, toothache	DENT	Root	M	T			
GW 61/04	Pimelodendron ambicinicum Hassk [34, 39]	Euphorbiaceae	Sombik	Enlarged spleen	ORG	Sap	S	O			
MS 15/04	Pimelodendron ambicinicum Hassk [34, 39]	Euphorbiaceae	Kunial	Swollen stomach	GAST	B	D	T			
BK 062/06	Piper betle L [37–39, 42, 61, 67, 68]	Piperaceae	Kwasse gungga	Sores,boils	SKIN	L	H	T			
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Plant Name	Family	Part Used	Use
Piper betle L	Piperaceae	Kosh	Abdominal ache
Wikaya L	Lamiaceae	Lai	Skin infections, scabies
Premna sp.	Lamiaceae	Pokware	Scabies, grille
Premna sp.	Lamiaceae	Wunweik	Malaria
Psidium guajava L	Myrtaceae	Yambu	Cough, itchy throat
Psidium guajava L	Myrtaceae	Yambosik	Diarrhoea
Psychotria sp.	Rubiaceae	Sisikupa	Boil
Psychotria sp.	Rubiaceae	Konumbo	Enlarged spleen
Pterocarpus indicus Willd.	Fabaceae	Markulu	Anemia
Pterocarpus indicus Willd.	Fabaceae	Moroho	Diarrhoea, stomach ache, anemia
Riedelia corallina L	Zingiberaceae	Moukuaikai	Menstrual cramps
Scaevola seneca Vahl	Goodeniaceae	Knanas	Cough
Schismatoglottis calyptra L	Araceae	Maghau	Sore
Semecarpus sp.	Anacardiaceae	Huaho	Itchy skin (pruritis)

DK 22/05 Piper betle L [37–39, 42, 61, 67, 68] Piperaceae Kosh Abdominal ache GAST Seed MS T
GW 49/04 Piper betle L [37–39, 42, 61, 67, 68] Piperaceae Guspui Tuberculosis, centipede bite BITE/INF L Fruit H O T
DK 27/05 Piper mestoni F.M. Bailey. Piperaceae Hrunga Fresh cuts, wounds WOUND L S T
GW 97/04 Scaevola sericea Piperaceae Walehrui Memory enhancing, clear thinking PSYCH Root M O
MS 56/04 Pouteria granifolia (Donn. Sm.) I.M. Johnst. Fabaceae Yinaupuk Strong headache HEAD Stem R T
GW 32/04 Pisonia longirostris (Teijjm. & Bin.) Nyctaginaceae Kumieie/Weworo Tropical ulcers, peptic ulcers SKIN/GAST B S T O
DK 45/05 Planchoninia papuana R. Knuth Lecythidaceae Ningia Scabies SKIN B C O
MS 57/04 Plectranthus amboinicus (Lour.) Spreng [60, 74] Labiatae Wasirika Skin disease (grille) SKIN L S T
GW 13/04 Plectranthus hereroensis Engl. Labiatae Sumoun Stomach ulcers, placenta sores GAST/REP L D O
GW 15/04 Plectranthus hereroensis Engl. Labiatae Krau sumin Scabies, itchy skin SKIN L S T
BK 031/06 Plectranthus vanilliflorus Willd. Labiatae Humbiang Sores SKIN L S T
MS 49/04 Plectranthus scutellarioides (L.) R.Br [8, 9, 33, 42, 43, 56, 74] Labiatae Humbiang Ulcer, fresh cut SKIN/WOUND L S T
MS 87/04 Plectranthus scutellarioides(L.) R.Br [8, 9, 33, 42, 43, 56, 74] Labiatae Trakain Skin disease (grille) SKIN L R T
GW 30/04 Pongamia pinnata (L.) Pierre [40, 42, 43, 52, 56, 59, 63] Fabaceae Lai Skin infections, scabies SKIN Root S T
GW 41/04 Pouteria sp. Sapotaceae Pokware Scabies, grille SKIN Sap S T
BK 052/06 Premna serratifolia L. [39, 42, 61] Lamiaceae Kunggwia Emetic GAST Seed R O
GW 42/04 Premna sp.[8, 34, 39, 42, 43, 53, 56, 63] Lamiaceae Nering Ear ache PAIN B S T
MS 06/04 Premna sp.[8, 34, 39, 42, 43, 53, 56, 63] Lamiaceae Wurweik Malaria MAL L & B D O
BK 050/06 Psidium guajava L [39, 40, 56, 61] Myrtaceae Yambu Cough, itchy throat RESP Fruit R O
DK 17/05 Psidium guajava L [39, 40, 56, 61] Myrtaceae Yambosik Diarrhoea GAST L D O
DK 49/05 Psychotria sp. [7, 9, 33–35, 37, 38, 43, 59] Rubiaceae Sisikupa Boil SKIN L S T
GW 07/04 Psychotria sp. [7, 9, 33–35, 37, 38, 43, 59] Rubiaceae Konumbo Enlarged spleen ORG Sap S O
BK 040/06 Pterocarpus indicus Willd. [7, 8, 34, 37, 38, 40, 42, 43, 47, 48, 56, 57, 59, 61, 67, 68] Fabaceae Markulu Anemia BLOOD Sap S O
GW 03/04 Pterocarpus indicus Willd. [7, 8, 34, 37, 38, 40, 42, 43, 47, 48, 56, 57, 59, 61, 67, 68] Fabaceae Moroho Diarrhoea, stomach ache, anemia GAST/BLOOD L & B D O
DK 18/05 Riedelia corallina L (K. Schum.) Valeton Zingiberaceae Moukuaikai Menstrual cramps REP Root D O
MS 63/04 Scavaela seneca Vahl [39] Goodeniaceae Knanas Cough RESP yL S O
MS 83/04 Schismatoglottis calyptra L (Roxb.) Zoll. & Moritz Araceae Maghau Sore SKIN L H T
GW 55/04 Semecarpus sp. [8, 50, 51] Anacardiaceae Huaho Itchy skin (pruritis) SKIN B D T
Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued)

Study area	Plant species	Family	Use	Part(s)	Gender(s)				
MS 76/04	*Sida rhombifolia* L.	Malvaceae	Contraceptive	REP	Root	M	O		
GW 99/04	*Smilax* sp.	Smilaceae	General cleansing	MAINT	Root & Stem	S	O		
GW 26/04	*Solanum torvum* Sw	Solanaceae	Joint pains, arthritis	PAIN	Root	D	O		
GW 33/04	*Spathiphyllum* sp.	Araceae	Strong cough, fever	RESP/FEV	Root	S	O		
GW 95/04	*Sphaerostephanos* sp.	Thelypteridaceae	Sores, ulcers	SKIN	L	S	T		
MS 24/04	*Sperostephanos unitus* (L.) Holttum	Thelypteridaceae	Sores, scabies	SKIN	B	C	O		
GW 37/04	*Stephania japonica* var. discolor (Blume) Forman	Menispermaceae	Fever, headache (malaria), asthma, cough	FEV/MAL/RESP	Sap	S	O		
GW 31/04	*Stephania* sp.	Menispermaceae	Enlarged spleen, pigbel	ORG/GAST	L	Sap	D	S	O
DK 09/05	*Syzygium malaccense* (L.) Merr. & L.M. Perry	Myrtaceae	Cough with itchy throat	RESP	yL	D	O		
BK 054/06	*Tabernaemontana pandacaqui* Lam	Apocynaceae	Grille	SKIN	Fruit	S	T		
MS 65/04	*Tinospora* sp.	Menispermaceae	Cough, grille	RESP/SKIN	L	D	S	T	
GW 76/04	*Tinospora* sp.	Menispermaceae	Asthma, cough	RESP	L	S	O		
BK 005/06	*Uncaria lanosa* var. appendiculata (Benth.) Ridsdale	Rubiaceae	Fever, headache, malaria, cough, malnutrition	MAL/FEV/NUT/HEAD/RESP	Sap	S	O		
MS 82/04	*Uncaria lanosa* var. appendiculata (Benth.) Ridsdale	Rubiaceae	Severe fever, chronic diarrhoea with blood, loss of weight	FEV/GAST	Sap	S	O		
DK 29/05	*Uncaria orientalis* Guillaumin	Rubiaceae	Shortness of breath	RESP	Sap	S	O		
GW 85/04	*Ursi* sp.	Fabaceae	Headache, migraine	HEAD	Sap	S	O		
GW 72/04	*Ursi* sp.	Fabaceae	Determine baby boy	REP	Root	S	O		
Ailment treated (Ailmentcode) as follows:	Route of Administration codes (RouteCode) as follows:	Mode of preparation codes (PrepCode) as follows:	Ailment treated (Ailmentcode) as follows:	Route of Administration codes (RouteCode) as follows:	Mode of preparation codes (PrepCode) as follows:				
--	--	---------------------------------	--	--	---------------------------------				
BITE = insect or snake bite; BLOOD = hematological issues including coagulation; BONE = bone related injury or disease; BURN = burns; CANC = cancer; CHILD = childhood disease; CV = Cardiovascular; DENT = dental disease; FEV = fever; GAST = gastroenterological disease; HEAD = headache; INF = infection; INSECTICIDE = delousing; MAGIC = disease of unidentified etiology (‘magical poisoning’); MAINT = health promotion, including failure to thrive; MAL = Malaria; NUT = nutritional supplement; OCC = ocular diseases; ORG = diseases thought to affect one particular organ; OTHER = unclear disease syndrome; PAIN = physical pain; POIS = envenomation or poisoning; sometimes this includes transnatural causation; PSYCH = psychiatric diseases or syndromes; REP = reproductive diseases including childbirth related issues; RESP = respiratory diseases; SKIN = dermal related diseases; often includes infectious disease; SWELL = swelling of whole body or part of the body; URINE = urinary conditions; WOUND = wound related diseases or syndromes	O = oral; T = topical; I = inhalation; P_to_Patient = patient to plant transfer of blood	B = burned (smoke generation), C = cooked; D=decoction, H = heated, HR = heated then rubbed, M = masticated, MAG = magical, MS = masticated then spit on affected area(s), R = raw, S = succus (crushed), V = vapor							
Prevent miscarriage	O	R							
Prevent miscarriage	O	R							
Prevent miscarriage	O	R							

| Table 1 Plants reported as medicinally used in 4 study areas in East Sepik Province (Continued) |
|--|--|---------------------------------|
| GW 77/04 | Urticaceae | Purkumb |
| MS 62/04 | Urticaceae | Chipia |
| BK 012/06 | Orchidaceae | Dunauaru banguwi |
| MS 13/04 | Urticaceae | Wurarian |
| MS 86/04 | Myristicaceae | Sukuai |
| GW 73/04 | Asteraceae | Bambanghoo |
| BK 019/06 | Asteraceae | Pava |
| MS 72/04 | Asteraceae | Kiskiash |
| BK 030/06 | Zingiberaceae | Kambbei laki |
| DK 07/05 | Zingiberaceae | Nikirkusa |
| DK 39/05 | Zingiberaceae | Huaukuusa |
| MS 45/04 | Zingiberaceae | Leai |

Mode of preparation codes (PrepCode) as follows:	Ailment treated (Ailmentcode) as follows:
B = burned (smoke generation), C = cooked; D=decoction, H = heated, HR = heated then rubbed, M = masticated, MAG = magical, MS = masticated then spit on affected area(s), R = raw, S = succus (crushed), V = vapor	BITE = insect or snake bite; BLOOD = hematological issues including coagulation; BONE = bone related injury or disease; BURN = burns; CANC = cancer; CHILD = childhood disease; CV = Cardiovascular; DENT = dental disease; FEV = fever; GAST = gastroenterological disease; HEAD = headache; INF = infection; INSECTICIDE = delousing; MAGIC = disease of unidentified etiology (‘magical poisoning’); MAINT = health promotion, including failure to thrive; MAL = Malaria; NUT = nutritional supplement; OCC = ocular diseases; ORG = diseases thought to affect one particular organ; OTHER = unclear disease syndrome; PAIN = physical pain; POIS = envenomation or poisoning; sometimes this includes transnatural causation; PSYCH = psychiatric diseases or syndromes; REP = reproductive diseases including childbirth related issues; RESP = respiratory diseases; SKIN = dermal related diseases; often includes infectious disease; SWELL = swelling of whole body or part of the body; URINE = urinary conditions; WOUND = wound related diseases or syndromes
Table 2 Plants not shared between the four study areas in East Sepik Province

BK	DK	GW	MS
Albizia saman (Jacq.) Merr. (BK 058/06)	Ageratum conyzoides (L.) L. (DK 38/05)	Albizia procera (Roxb.) Benth. (GW 09/04)	Abelmoschus manihot (L.) Medik. (MS 02/04)
Cascabela thevetia (L.) Lippold (BK 028/06)	Angiopteris evecta (G. Forst.) Hoffm. (DK 53/05)	Bidens pilosa L. (GW 40/04)	Artocarpus altis (Parkinson ex F.A. Zorn) Fosberg (MS 23/04)
Murraya paniculata (BK 003/06)	Areca catechu L. (DK 02/05)	Cerbera floribunda K. Schum. (GW 12/04)	Barringtonia asiatica (L.) Kurz (MS 27/04)
Premna serratifolia (BK 052/06)	Asplenium nidus L. (DK 21/05)	Clitoria ternatea L. (GW 91/04)	Callicarpa longifolia Lam. (MS 85/04)
Tabernaemontana pandacaqui Lam. (BK 054/06)	Bixa orellana L. (DK 11/05)	Gymnostoma papuana (S. Moore) L.A.S. Johnson (GW 11/04)	Calophyllum inophyllum L. (MS 20/04)
	Capsicum annuum L. (DK 15/05)	Hemigraphis reptans (G. Forst.) T. Anders. ex Hemsl. (GW 70/04)	Calotropis gigantea (L.) Dryand (MS 32/04)
	Carica papaya L. (DK 34/05)	Hydratele costata F.M. Bailey (GW 83/04)	Carya rumphiana Mart. (MS 69/04)
	Caryota mitis Lour. (DK 26/05)	Maclura cochinchinensis (Lour.) Corner (GW 46/04)	Casuanina equisetifolia L. (MS 28/04)
	Cheilocostus speciosus (J. König) C. Specht (DK 20/05)	Mangifera indica L. (GW 93/04)	Chrysopogon aciculatus (Retz). Trin (MS 50/04)
	Dendrocnide cordata (Warb. ex H.J.P. Winkl) Chew (DK 35/05)	Neonauclea purpurea (Roxb.) Merr. (GW 10/04)	Cocos nucifera L. (MS 78/04)
	Homalium foetidum (Roxb.) Benth. (DK 42/05)	Pisonia longirostris Teijsm. & Binn. (GW 32/04)	Dendrocnide latifolia (Gaudich.) Chew (MS 33/04)
	Manihot esculenta Crantz (DK 51/05)	Solanum torvum Sw. (GW 26/04)	Euphorbia tithymaloides (L.) (MS 79/04)
	Metroxylon sagu Rottb. (DK 30/05)	Sterculia shillinglawii F. Mull. (GW 04/04)	Ocimum basilicum L. (MS 08/04)
	Piscidia grandifolia (Donn. Sm.) I.M. Johnst. (DK 31/05)		Pandanus dubius Spreng. (MS 30/04)
	Planchonia papuana R. Knuth (DK 45/05)		Scaevola sericea Vahl (MS 63/04)
	Riedelia carallina (K. Schum.) Valeton (DK 18/05)		Schismatoglottis calyptrata (Roxb.) Zoll. & Moritz (MS 83/04)
			Sida rhombifolia L. (MS 76/04)

Identified to Genus only (Voucher)

Christia sp. (BK 008/06)	Cinnamomum sp. (DK 54/05)	Aglaia sp. (GW 56/04)	Archidendron sp. (MS 01/04)
Clematis sp. (BK 049/06)		Asclepias sp. (GW 79/04)	Davallia sp. (MS 70/04)
Neonauclea sp. (BK 061/06)		Cissus sp. (GW 59/04)	Dillenia sp. (MS 81/04)
Phrynium sp. (BK 014/06)		Clerodendrum sp. (GW 87/04)	Graptophyllum sp. (MS 14/04)
Vanilla sp. (BK 012/06)		Desmodium sp. (GW 101/04)	Homalanthus sp. (MS 05/04)
		Mitracarpus sp. (GW 20/04)	Marattia sp. (MS 16/04)
		Papuechites sp. (GW 65/04)	Melastoma sp. (MS 36/04)
		Parsonia sp. (GW 29/04)	Villebrunea sp. (MS 13/04)
infections (e.g., “Grille”) and ectoparasitism (e.g., scabies); the category “REP” contains all sort of reproductive conditions, e.g., impotence, abortion, menstrual syndromes, contraception and fertility, etc. The exception to this method of categorization is malaria, which is generally well recognized throughout the Sepik. Overall, skin conditions were most frequently treated (73 instances), with respiratory conditions (60 instances), fever (39 instances), gastrointestinal conditions (36 instances) and malaria (29 instances) rounding out the top five conditions. The top five conditions in the respective reports were: for MS (fever—19, skin—18, headache—16, respiratory and gastrointestinal—12 reports each); BK (skin—22, respiratory—15, gastrointestinal

Fig. 1 Traditional plant usage pattern by plant part utilized across four study areas in East Sepik province in percentile of total for each study area; y = young

Fig. 2 Method of preparation of plants for traditional medicines across four study areas in East Sepik province in percentile of total for each study area; MS = masticated then spit on affected area(s), R = raw; S = succus (crushed)
conditions—7 wounds—6, and pain—5 instances): DK (skin—16, respiratory—8, malaria and wounds—5 instances each, and fever—4 instances); GW (respiratory—25, skin and malaria—17 each, gastrointestinal conditions and fever—14 instances each). The relative frequencies of ailments/conditions are presented in Fig. 4. Outlier conditions, those reported once and not reported in the other areas were urinary conditions (incontinence, URINE; and delousing, INSECTICIDE) from the MS report; use for burn conditions (BURN), magical poisoning

Fig. 3 Mode of administration of plant based traditional medicines across four study areas in East Sepik province in percentile of of total for each study area; P_to_Plant = patient to plant transfer of blood

Fig. 4 Coded ailments treated with plant based traditional medicines across four study areas in East Sepik province in percentile of of total for each study area; BITE = insect or snake bite; BLOOD = hematological issues including coagulation; BONE = bone related injury or disease; CANC = cancer; CV = Cardiovascular; CHILD = childhood disease; DENT = dental disease; FEV = fever; GAST = gastrointestinal disease; HEAD = headache; INF = infection; MAGIC = disease of unidentified etiology; MAINT = health promotion, including failure to thrive; MAL = Malaria; NUT = nutritional supplement; OCC = ocular diseases; ORG = diseases thought to affect one particular organ; POS = envenomation or poisoning; sometimes this includes transnatural causation; PSYCH = psychiatric diseases or syndromes; REP = reproductive diseases including childbirth related issues; RESP = respiratory diseases; SKIN = dermal related diseases; often includes infectious disease; SWELL = swelling of whole body or part of the body; WOUND = wound related diseases or syndromes
(MAGIC) and child health improvement (CHILD) from the DK area; and cancer (CANC) and cardiovascular condition (CV) from the GW area.

Most common families of plants used by healers interviewed
By far the most common genus was *Ficus* (11), followed by *Euphorbia* (7), *Piper* (6), *Plectranthus* (6), *Cassia* (5), *Passiflora* (5), and 4 instances each of: *Acalypha*, *Alpinia*, *Alstonia*, *Calamus*, *Crinum*, *Gnetum*, *Laportea*, *Merremia*, *Mucuna*, *Phyllanthus*, *Syzygium*, *Uncaria*, and *Zingiber*.

Lesser known medicinal plant species of East Sepik
Those plants identified to the species level and not found in the Bougainville and Eastern Highlands reports were matched against our medicinal plants of PNG reference database, consisting of historical reports largely by Holdsworth and associates. The following plants were not described in the literature which the database encompasses: *Averrhoa carambola* L. (BK 039/06 & DK 01/05), *Camposperma brevipetiolatum* Volkens Volkens. (DK 56/05), *Capsicum annuum* L. (DK 15/05), *Caryota mitis* Lour. (DK 26/05), *Cascabela thevetia* (L.) Lippold (BK 028/06), *Chrysopogon aciculatus* (Retz). Trin (MS 50/04), *Clitoria ternatea* L. (GW 91/04), *Curcuma longa* L. (BK 029/06), *Cycas rumphii* Miq. (BK 002/06), *Endospermum labios* Schodde (DK 40/05), *Endospermum formicarium* Becc. (GW 28/04), *Endospermum medullosum* L.S.Sm. (MS 89/04), *Erythrina serrulata* Krukoff (GW 18/04 & MS 42/04), *Hydrastele costata* F.M. Bailey (GW 83/04), *Intsia bijuga* (Colebr.) Kuntze (DK 33/05 & GW 08/04 & MS 46/04), *Milletia pinnata* (L.) Panigrahi (GW 30/04), *Planchonia papuana* R. Knuth (DK 45/05), *Riedelia corallina* (K. Schum.) (DK 18/05), *Schismatoglottis calyptra* (Roxb.) Zoll. & Moritz (MS 83/04), *Sterculia shillin-glawii* F. Muell. (GW 04/04), and *Tinospora arfakiana* Becc. (GW 82/04).

Capsicum annuum L. and *Curcuma longa* L. are commonly grown in many gardens across PNG, yet it was surprising to note the paucity of medicinal uses previously reported for PNG. *Ipomoea pes-caprae* (L.) R. Br. (BK 020/06 & MS 26/04) also did not appear to be part of the older literature, however, it was recently found to be used in the New Britain Province where the leaves are rubbed onto the skin affected by jelly fish stings [12]. The sap is used in the BK area for respiratory ailments, and the succus from the leaves is reported by MS to be used in Kairiru for fever/pain via oral consumption.

Comparing East Sepik with Eastern highlands and Bougainville provinces
The combined dataset of the East Sepik, Eastern Highlands and Bougainville reports encompasses 276 plant genera, of which only 22 were reported in common from our other published data sets; Bougainville 112 genera, Eastern highlands 121, and East Sepik 154 genera (see Fig. 5). The frequency of shared genera is given in Table 3. The plant genera with the highest common use citations (> = 10) are *Ficus* sp. 29, *Alpinia* sp. 16, *Piper* sp. 15, *Syzygium* sp. 12 and *Alstonia* sp.11. The predominance of *Ficus* sp. is not surprising since *Ficus* represents a very large genus in PNG [13].

Regional utilization of plants
Comparison of plants used medicinally in our published data sets to a general list of plants from the same regions allowed for an analysis of utilization preferences. Medicinally over- and under-represented plant families are given in Table 4, while medical plant utilization is given in Table 5. Comparison shows that the number of plant families significantly underutilized, when compared against the regional flora, breaks down as follows: in East Sepik (ES) province Poaceae are underutilized, while in the Eastern Highlands (EH) and Bougainville (BV) Orchidaceae are underutilized.

The number of plants overutilized varies (ES: n = 15; EH: n = 25 and BV: n = 12) but is relatively stable as percentage of plants found in the regional database at 0.66, 0.7 and 0.78 % for ES, EH and BV, respectively. East
Sepik shares overutilization of Fabaceae, Gnetaceae and Zingiberaceae with Bougainville and overutilization of Asteraceae and Lamiaceae with Eastern Highlands, while Eastern Highlands and Bougainville share no overutilized plant families.

When the UPNG Traditional Medicines Database was used to assess utilization, the underrepresented plant families were the Verbenaceae in East Sepik and the Euphorbiaceae in the Eastern Highlands. No plant family met the \(p = 0.05 \) criterion in Bougainville, however, Euphorbiaceae was the top ranked underutilized plant family (data not shown). The number of overutilized plants is varied (ES: \(n = 4 \); EH: \(n = 17 \); BV: \(n = 12 \)). Among the overused plant families East Sepik shared the Arecaceae with Bougainville. Several plant families reappear in this analysis, e.g., the Asteraceae and Winteraceae from the Eastern Highlands province and the Gnetaceae and Zingiberaceae in Bougainville. The statistical requirements of the comparison method resulted in some plant families appearing in the overutilization category represent a single report from the region for that plant family. This could not be avoided since the East Sepik reports are included in the UPNG Traditional Medicines Database total. As the PNG Medicinal Plant Database database grows in the future the stringency of the analysis will improve.

Traditional inspection of the information gathered yielded information about plants not widely used, poorly annotated or used for different ailments than those in locales where use of the plant is more common. Plants without annotation in the recent PNG Medicinal Plant Literature include:

- **Alocasia cucullata** (Lour.) G. Don surprisingly did not yield any crossreferences in the PNG database, even when using synonyms. It is used in Chinese medicine for snakebite, abscesses, rheumatism, and arthritis [14] and has recently been identified as containing anticancer compounds [15, 16].

- **Averrhoa carambola** L. (starfruit) fruit is used for cuts and asthma in PNG, and also widely used throughout the world for a variety of ailments, seemingly only in India as antihemorrhagic [17].

- **Caryota mitis** Lour. has no further medicinal annotation for use in PNG, but is used several Asian countries for a variety of ailments, e.g., against hemorrhoids, male sexual dysfunction, and rheumatoid arthritis in Bangladesh [17].

- **Chrysopogon aciculatus** (Retz). Trin is used in the East Sepik for swelling. The plant is used in Ayurveda as a diuretic [17, 18].

- **Clitoria ternatea** L. is used for infertility in PNG and similarly in Ayurveda, where fresh root juice in fresh goat milk is used for pregnancy [18], however, the plant is used for a dizzying array of conditions and ascribed activities [17].

- **Endospermum medullosum** L.S.Sm. has been described previously as used against rheumatism [18], perhaps similar to the use against general body pain in the East Sepik.

- **Erythrina merrilliana** Krukoff reveals a dearth of information regarding medicinal uses. The plant is however known to produce toxic alkaloids [19].

- **Gnetum gnemonoides** Brongn. yielded very little information as to medicinal use, but has been described to contain a variety of stilbenes [20].

- **Hemigraphis reptans** (G. Forst.) T. Anderson ex Hemsl. is used in the East Sepik as the whole plant to treat centipede bite. The root is expressed into water to facilitate birth (speeding up delivery) on Vanuatu [21].

- **Intsia bijuga** (Colebr.) Kuntze has annotations as a detoxicant and against diarrhea, toothache, adenopathy and swelling [22].

- **Macaranga clavata** Warb. is used in East Sepik for skin infections, but has no recent mention in the literature for

Table 3 Plant Genera in common utilized in Bougainville, Eastern Highlands and East Sepik Provinces

Genus	Bougainville	Eastern Highlands	East Sepik	Total
Ageratum	2	1	1	4
Alpinia	7	5	4	16
Alstonia	4	3	4	11
Aristolochia	1	1	2	4
Barringtonia	2	1	1	4
Ficus	11	7	11	29
Graptophyllum	1	1	1	3
Hemigraphis	1	2	1	4
Leucosyke	1	1	1	3
Litsea	1	1	2	4
Melastoma	1	2	1	4
Mucuna	3	1	5	9
Musa	2	1	2	5
Piper	4	5	6	15
Plectranthus	2	1	6	9
Psidium	2	1	2	5
Sida	1	1	1	3
Smilax	1	3	1	5
Syzygium	4	4	4	12
Uncaria	2	1	2	5
Zingiber	1	2	4	7

Database database grows in the future the stringency of the analysis will improve.
Table 4 Overrepresented and underrepresented plants for each province when compared to the regional plant diversity as recorded in the PNG Plant Database

Province	# in PNG PlantDB	# in ES Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
East Sepik	2258	207	0.080	0.104	-
Overrepresented Families					
Araceae	13	7	0.289	0.770	0.184
Zingiberaceae	14	6	0.213	0.677	0.108
Marantaceae	3	2	0.194	0.932	0.090
Solanaceae	9	4	0.187	0.738	0.083
Euphorbiaceae	83	22	0.182	0.369	0.078
Convolvulaceae	13	5	0.177	0.649	0.072
Datiscaeae	1	1	0.158	0.987	0.054
Fabaceae	82	19	0.154	0.334	0.050
Gnetaceae	4	2	0.147	0.853	0.042
Davalliaee	8	3	0.137	0.701	0.033
Lamiaceae	42	10	0.135	0.386	0.031
Anacardiaceae	18	5	0.126	0.512	0.021
Asteraceae	19	5	0.119	0.491	0.015
Menispermeaceae	15	4	0.110	0.524	0.006
Poaceae	156	156	0.010	0.080	0.028
Underrepresented Families					
Eastern Highlands	3549	156	0.038	0.051	-
Overrepresented Families					
Ebenaceae	2	2	0.292	0.992	0.241
Winteraceae	2	2	0.292	0.992	0.241
Acanthaceae	12	5	0.192	0.684	0.141
Hyloxidaceae	1	1	0.158	0.987	0.107
Smilacaceae	7	3	0.157	0.755	0.106
Plantaginaceae	5	2	0.118	0.777	0.067
Lamiaceae	21	5	0.107	0.454	0.056
Arallaceae	17	4	0.097	0.476	0.046
Commelinaceae	2	1	0.094	0.906	0.043
Elaeagnaceae	2	1	0.094	0.906	0.043
Actinidiaceae	14	3	0.078	0.481	0.027
Asteraceae	103	13	0.076	0.204	0.024
Bignoniaceae	3	1	0.068	0.806	0.016
Casuarinaceae	3	1	0.068	0.806	0.016
Lecythidaceae	3	1	0.068	0.806	0.016
Symplacaceae	3	1	0.068	0.806	0.016
Onagraceae	9	2	0.067	0.556	0.016
medicinal use. No scientific background information was located, hence this particular plant may be understudied. The same is also true for Macaranga darbyshirei Airy Shaw, used in the East Sepik as an antivenom, but not elsewhere mentioned for medicinal purposes. Pandanus dubius Spreng. was not found to have any properly referenced medicinal annotations, but appears to have a fairly recent research record including discovery of two novel alkaloids, dubiusamines-A and dubiusamines-B [23].

Piper mestonii F.M. Bailey leaves used for fresh cuts and wounds do not seem to be described elsewhere. No biochemical investigation could be located in the Dictionary of Natural Products [24].

Planchonia papuana R. Knuth appears to be not used medicinally elsewhere. It is a timber tree and perhaps as such has not attracted attention; however, in an antiviral screen in our lab fractions from P. papuana exhibited anti-HIV activity [25].

Plectranthus parviflorus Willd., along with Plectranthus blumei (Benth). Launert, and Plectranthus myrianthus Briq. belong to a genus prominent for production of essentials oils [26] and with multiple annotations for antimicrobial activity, but do not seem to be described elsewhere in the PNG plant literature. The utilization of these plants for sores, ulcers and fresh cuts appear to be in line with the activities of chemicals found in Plectranthus species [27].

Table 4 Overrepresented and underrepresented plants for each province when compared to the regional plant diversity as recorded in the PNG Plant Database (Continued)

Family	# in PNG PlantDB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Theaceae	9	2	0.067	0.556	0.016
Begoniaceae	10	2	0.060	0.518	0.009
Balsaminaceae	4	1	0.053	0.716	0.002
Caprifoliaceae	4	1	0.053	0.716	0.002
Icacinaceae	4	1	0.053	0.716	0.002
Oxalidaceae	4	1	0.053	0.716	0.002
Selaginellaceae	4	1	0.053	0.716	0.002
Usneaceae	4	1	0.053	0.716	0.002

Underrepresented Families

Family	# in PNG PlantDB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Orchidaceae	191	1	0.001	0.029	−0.009

Bougainville (BV) Reports vs PNG PlantDB (BV Total Flora)

Family	# in PNG PlantDB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Overrepresented Families					

Family	# in PNG PlantDB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Verbenaceae	3	3	0.398	0.994	0.280
Musaceae	2	2	0.292	0.992	0.175
Zingiberaceae	19	9	0.272	0.685	0.155
Gnetaceae	3	2	0.194	0.932	0.077
Areaceae	19	7	0.191	0.592	0.074
Marattiaceae	6	3	0.184	0.816	0.067
Caricaceae	1	1	0.158	0.987	0.041
Xanthorrhoeaceae	1	1	0.158	0.987	0.041
Leaceae	4	2	0.147	0.853	0.029
Fabaceae	53	12	0.135	0.356	0.018
9	3	0.122	0.652	0.004	
Thelypteridaceae	30	7	0.119	0.411	0.001

Underrepresented Families

Family	# in PNG PlantDB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Orchidaceae	74	1	0.003	0.072	−0.015

85 Bougainville, EH Eastern Highlands, ES East Sepik, PNG PlantDB Papaua New Guinea Plant Database [10]
Table 5 Overrepresented and underrepresented plants for each province when compared to the regional plant diversity as recorded in the UPNG Traditional Medicines Database

Eastern Highlands (EH) vs UPNG TradMed DB	# in UPNG TradMed DB	# in EH Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)
Total	1176	147	0.107	0.145	-
Overrepresented Families					
Monimiaceae	2	2	0.292	0.992	0.147
Plantaginaceae	2	2	0.292	0.992	0.147
Winteraceae	2	2	0.292	0.992	0.147
Melastomataceae	7	4	0.245	0.843	0.100
Asparagaceae	5	3	0.223	0.882	0.078
Smilacaceae	5	3	0.223	0.882	0.078
Onagraceae	3	2	0.194	0.932	0.049
Pittosporaceae	3	2	0.194	0.932	0.049
Asteraceae	47	13	0.170	0.418	0.024
Phyllanthaceae	1	1	0.158	0.987	0.013
Caryophyllaceae	1	1	0.158	0.987	0.013
Chloranthaceae	1	1	0.158	0.987	0.013
Elaegnaceae	1	1	0.158	0.987	0.013
Oleaceae	1	1	0.158	0.987	0.013
Polygalaceae	1	1	0.158	0.987	0.013
Tiliaceae	1	1	0.158	0.987	0.013
Proteaceae	4	2	0.147	0.853	0.001
Underrepresented Families					
Euphorbiaceae	88	3	0.012	0.095	-0.012

Bougainville (BV) Reports vs UPNG TradMedDB

# in UPNG TradMed DB	# in BV Medical Plants Reports	Inferior Credible Interval	Superior Credible Interval	Difference to interval (margin)	
Total	1177	146	0.106	0.144	-
Overrepresented Families					
Areaceae	10	7	0.390	0.891	0.246
Leeaceae	2	2	0.292	0.992	0.148
Riedelia corallina (K. Schum.) Valeton, in the Zingiber family, is used for menstrual cramps, but seems to be otherwise undescribed for medicinal uses elsewhere.

The leaves of Schismatoglottis calyptrata (Roxb.) Zoll. & Moritzi are used in East Sepik to treat skin sores. No other mention was found in the PNG literature. The stems of Schismatoglottis calyptrata (Roxb.) Zoll. & Moritzi are however used in Chinese medicine for treatment of lumbago and arthralgia [18].

Sterculia shillinglawii F. Muell. has no previous annotation for PNG, but is known to be used in the Solomon island as a tonic and to reduce fever [18].

Tinospora arfakiana Becc. likewise lacks further medicinal descriptions from PNG and does not seem to have been studied from any other area, making it a potentially understudied plant.

Uncaria lanosa var. appendiculata (Benth.) Ridsdale was mentioned twice in the reports and in both instances to treat fever, but also gastrointestinal diseases, malaria, and malnutrition. No other mention for ethnomedical use could be located from PNG or other locales. However, a recent publication hints at a potential anti-depressant effect of ethanolic extracts of Uncaria lanosa var. appendiculata (Benth.) Ridsdale [28].

Uncaria orientalis Guillaumin, used to treat shortness of breath in the East Sepik, lacks pharmacological annotation, but has been investigated extensively biochemically [29, 30].

Conclusions
This report shows that in the East Sepik province of PNG the patterns of plant usage for medicinal indications is highly varied. This is true even though many of the same plants are used in ethnologically distinct regions. There is a tendency for widely used plants to be used for multiple diseases, often with differing preparation of the parts utilized and differing modes of administration. One such example is Alstonia scholaris (L.) R.Br. which shares only the route of administration between all areas. Regardless, plants not previously documented as being used medicinally can still be uncovered, e.g., Cascabela thevetia (L.) Lippold, a plant known to contain highly toxic cardiac glycosides [31] and Dendrocnide cordata (Warb. ex H.J.P. Winkl.) Chew cannot be found as being used medicinally, however, toxicity from leaves, which are used in East Sepik, has been documented [18].

Comparison of plant utilization across study areas can likewise uncover plants which share use. A good example is the genus Alpinia, for which gastroenterological, respiratory and reproductive use are cited for Bougainville. In the Eastern Highlands it is used for gastroenterological and respiratory conditions. In the East Sepik it is also used for respiratory conditions. Alpinia is in the ginger family, widely used culinarily and medicinally around the world, with traditional medicinal uses for several of the described symptoms.

Likewise, dissemination of knowledge of useful phytomedicinal practices amongst areas that share key flora may aid health practices in those areas. In any case, further studies and phytochemical analyses need to be completed before addition of plants to the pharmacopeia for PNG (a goal of the National Policy for Traditional Medicine in PNG). The UPNG Traditional Medicines Database, while still being populated with data, can already be utilized to show correlations and extract lead information for targeting certain plants for further study. Further enhancements and perhaps adaptation of other data sources (e.g., the PNG Plant Database with up-to-date plant nomenclature) would drive statistical discovery of
medicinally neglected plant genera. It is shown here that transregional comparisons are possible, but require careful recoding of previous reports and standardization of database entries and terminology.

Analysis of frequency of use of plant families in the medical tradition points to certain biases. This can ultimately be useful in targeting plants for biochemical investigation. However, if the desired outcome of the ethnobotany endeavor is to highlight useful plants for the pharmacopeia, then finer grained data is needed in order to dissect the wealth of information gathered, (e.g. precise geographic location including environmental conditions, etc.). Annotation with biochemical information, conservation status, toxicity data would yield utility for a more diverse set of scientists. To this end the diverse efforts of PNG botany, ethnobotany, ethnopharmacology and plant conservation need to collaborate more rigorously to define useful interfaces for each other’s data needs. Nevertheless, we have been able to successfully show that medicinal plant use in terms of families utilized in the East Sepik resembles Bougainville provinces more than it does the Eastern Highlands. Future work with larger data sets will address whether such similarities are due to similarities of available flora or other causes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MK wrote and edited the manuscript. MKB prepared ethnobotanical data sets for use in the manuscript. DAK, GW, BK and MS performed interviews and wrote reports under guidance of PPR and TM who also reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The reports compiled in this manuscript were “The Traditional Medicinal Plants and Practices in the Waskuk Hills Area of Ambunti District in the East Sepik Province” by Dickson Andrew Kehop (2005), "Ethnobotanical Survey of Traditional Medicine in the East Yangoru, East Sepik Province, Papua New Guinea" by Graham Wavimubuki (2004), "Traditional Medicine Practices in Niuangweko: I and Kunjingini (Mul) Areas of the Wosera-Gawi District in East Sepik" by Boniface Kinminja (2006) and “Traditional Medicinal Plants and Practices in Kairiru Island East Sepik Province Papua New Guinea” by Malcom Sabak (2004) Many locally recognized healears contributed to this work: Isaac Hames, Lamech Mesung, Joshua Matambopi, Lillian Nenipa, Evelyn John, Rebecca Waikola, Zippora Gamba and John Wekua (DK), Ms. Yakupa, Stanley Wingewi, Chris Tapukata, Doughlas Yandu, Adam Knokrakundi, Bill Saun, Ambrose Gajula, Mr. Yakop and Mr. Pialiak (BK), Simon Parimie, Lawrence Parimie, Arnold Sauseha, Freddy Kavi, Nancy Kavi, Camillus Waranaka, Columba Waranaka, Wally Nangusimbie, Andrew Hipanare, Alphonsa Dasmarinas, Cavite, Philippines.

Received: 2 June 2015 Accepted: 24 October 2015
Published online: 14 November 2015

Author details
1 Center for Biopharmaceutical Research, De La Salle Health Sciences Institute, Dasmarinas, Cavite, Philippines. 2 School of Medicine and Health Sciences, University of Papua New Guinea, PO Box 5623, Boroko, NCD, Papua New Guinea. Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA.

References
1. Asher RE. The encyclopedia of language and linguistics. Oxford: Pergamon Press; 1994.
2. Ethnologue. Grimes B. SIL International; Dallas: 2000. https://www.ethnologue.com/. Accessed May 2014.
3. Summerhayes GR, Leaveresley M, Fairbaim A, Mandui H, Field J, Anne Ford A, et al. Human adaptation and plant use in highland New Guinea 49,000 to 44,000 years ago. Science. 2010;330:78-81.
4. PNG district and provincial profiles. Available from: http://docslide.us/documents/png-profiles-report-140410.html. Accessed October 2015.
5. National Department of Health. National policy on traditional medicine. Waigani: National Department of Health; 2007.
6. Ministry of Health. National health plan 2001–2010 volume I. Port Moresby: Ministry of Health; 2000.
7. Rai PP. Traditional medicine in Papua New Guinea. National Capital District: University of Papua New Guinea Printing; 2004.
8. Warurui J, Sipana B, Koch M, Barrows LR, Matainaho TK, Rai PP. An ethnobotanical survey of medicinal plants used in the Siawai and Buin Districts of the Autonomous Region of Bougainville. J Ethnopharm. 2011;138:564–77.
9. Joram R, Karape S, Legu W, Koch M, Barrows LR, Matainaho TK, et al. An ethnobotanical survey of medicinal plants used in the Eastern Highlands of Papua New Guinea. J Ethnobiol Ethnomed. 2012;8:47.
10. Conn BJ, Lee LL, Kiparisis, R. PNGPlants database. [http://www.pngplants.org/] Accessed May 2014.
11. Weckerle CS, Cabras S, Castellanos ME, Leonti M. Quantitative methods in ethnobotany and ethnopharmacology: considering the overall flora - Hypothesis testing for over- and underused plant families with the Bayesian approach. J Ethnopharm. 2011;137:837–43.
12. Percott TA, Kiparisis R, Maciver SK. Comparative ethnobotany and in-the-field antibacterial testing of medicinal plants used by the Bulu and inland Kaulong of Papua New Guinea. J Ethnopharmacol. 2012;139:497–503.
13. Lansky EP, Pau1lainen HM. Figs: the genus Ficus (Traditional Herbal Medicines for Modern Times). Boca Raton: CRC Press; 2012.
14. Boyle PC. A review of Alocasia (Araceae: Colocasiae) for Thailand including a novel species and new species records from West-South West Thailand. Thai For Bull. 2006;36:1–7.
15. Peng Q, Cai H, Sun X, Li X, Mo Z, Shi J. Alocasia cucullata exhibits strong antitumor effect in vivo by activating antitumor immunity. PLoS One. 2013;8:e75328.
16. Kaur A, Rambow SS, Singh J, Savaena AK, Dhuna V. Isolation of a novel N-acetyl-D-lactosamine specific lectin from Alocasia cucullata (Schott). Biotechn Lett. 2005;27:1815–20.
17. STUARTXCHANGE. http://www.stuartxchange.com/ Accessed Jan 2015 trough March 2015.
18. Johnson T. CRC ethnobotany desk reference. Boca Raton: CRC Press LLC; 1998.
19. Follers K, Unna K, Erythrina alkaloids. V. Comparative curare-like potencies of species of the genus Erythrina. J Am Pharm Assoc. 1939;28:1019–28.
20. Bourdy G, Walter A. Maternity and medicinal plants in Vanuatu I. The cycle of reproduction. J Ethnopharm. 1992;37:179–96.
21. Bourdy G, Walter A. Maternity and medicinal plants in Vanuatu I. The cycle of reproduction. J Ethnopharm. 1992;37:179–96.
22. Dr. Duke's phytochemical and ethnobotanical databases. Available from: http://www.ars-grin.gov/cgi-bin/duke/ethnobot.pl. Accessed September 2014.
23. Tana MA, Kitajima M, Kogure N, Nonatob MG, Takayama H. Isolation and total syntheses of two new alkaloids, dubiusamines-A, and -B, from Pandanus dubius. Tetrahedron. 2010;66:3353–5.
24. Dictionary of natural products. Available at http://dnp.chemnetbase.com). Accessed September 2014.
25. Barrows LR, Matanaiho TK, Ireland CM, Miller S, Carter GT, Bugni T, et al. Making the most of Papua New Guinea’s biodiversity: establishment of an integrated set of programs that link botanical survey with pharmaceutical assessment in “The Land of the Unexpected.” Pharmaceutical Biol. 2009;47:795–808.

26. Williams C. Medicinal plants in Australia volume 4: an Antipodean apopthecary. Kenthurst: Rosenberg Publishing; 2013.

27. Lukhoba CW, Simmonds MSJ, Paton A, Plectranthus: a review of ethnomedical uses. J Ethnopharmacol. 2006;103:1–24.

28. Hsu LC, Ko YJ, Cheng CH, Lin YC, Cheng YH, et al. Antidepressant-like activity of the ethanol extract from Uncaria lanosa Wallich var. appendiculata Rádl in the forced swimming test and in the tail suspension test in mice. Evid Based Complement Alternat Med. 2012;2012:497302. doi:10.1155/2012/497302. Epub 2012 Apr 9.

29. Croquellos G, Miet C, Poisson J, Severn T. Oxyindole alkaloids of Uncaria orientalis Guill. (Rubiaceae). Ann Pharm Fr. 1977;35:417–8.

30. Phillipson JD, Henningway SR. Alkaloids of Uncaria attenuata, U. orientalis and U. Canescens. Phytochemistry. 1975;14:1855–65.

31. Langford SD, Boor PJ. Oleander toxicity: an examination of human and animal toxic exposures. Toxicology. 1996;109:1–13.

32. Holdsworth D. Medicinal plants of the Morobe Province, Papua New Guinea. Part V. The Upper Watum. Int J Crude Drug Res. 1987;25:225–30.

33. Haberle S. Ethnobotany of the Tari Basin, Southern Highlands Province, Papua New Guinea. Canberra: Biogeography & Geomorphology Department; 2003.

34. Holdsworth DK. Medicinal plants of Papua New Guinea. Noumea: South Pacific Commission; 1977. Technical Paper No. 175.

35. Hide R, Kimin M, Kora A, Kua G, Kua K. A checklist of some plants in the territory of the Sinasas Nami (Simbu Province, Papua New Guinea), with notes on their uses. Working papers in anthropology, archaeology, linguistics and Maori Studies No. 54. Auckland: Dept. Anthropology, U. Auckland Private Bag. 1979.

36. Holdsworth D, Rall T. A survey of medicinal plants of the Southern Highlands, Papua New Guinea. Int J Crude Drug Res. 1989;27:1–8.

37. Holdsworth D, Lacanieta E. Traditional medicinal plants of the Central Province of Papua New Guinea. Part II. Int J Crude Drug Res. 1981;19:155–67.

38. Holdsworth DK, Fanworth ER. A phytocultural survey of medicinal and poisonous plants of the Central District of Papua. Sci New Guinea. 1974;2:155–63.

39. Goeltenboth F, Holdsworth DK, Sakulas H, Thiedgold H, Woodley E. Medicinal plants in Papua New Guinea Part I. Morobe Province. E. Woodley (Ed). Weikersheim, Germany: Verlag Josef Margraf publisher; 1991.

40. Holdsworth D. Traditional medicinal plants used in the treatment of gastric ailments. PNG Med J. 1978;21:75–83.

41. Johannes A. Medicinal plants of the Nekematgi of the Eastern Highlands of New Guinea. Econ Bot. 1975;29:268–77.

42. Rai PP, Matanaiho T, Saulei S, Ambihaipahar U. Medicinal plants of Papua New Guinea Part 1. The mountains around Kainabae and Kainirva. Int J Crude Drug Res. 1988;265–71.

43. Blackwood B. Use of plants among the Kukukuku of Southeast-Central New Guinea. Proc Sixth Pac Sci Congress Pac Sci Assoc. 1939;4:111–26.

44. Holdsworth DK, Damas K. Medicinal plants of Morobe Province, Papua New Guinea. III. The Finschhafen coast. Int J Crude Drug Res. 1986;24:217–25.

45. Holdsworth DK. Phytochemistry of the Gazelle Peninsula, New Britain. Sci New Guinea. 1975;3:32–40.

46. Holdsworth D, Kerenga K. Medicinal plants of the Western Highlands, Papua New Guinea. Int J Crude Drug Res. 1987;25:171–6.

47. Blackwood B. Treatment of the sick in the Solomon Islands. Fölklore. 1935;46:148–61.

48. Stopp K. Medicinal plants of the Mt. Hagen People (Mbowamb) in New Guinea. Econ Bot. 1963;17:16–22.

49. Skingle DC. Some medicinal herbs used by the natives of New Guinea. Mankind. 1970;7:223–5.

50. Rai P. Traditional uses of plants for health and healing in Bougainville Part I. Madang, Papua New Guinea Traditional Health. HORIZONT3000; 2012.

51. Holdsworth DK. Traditional medicinal plants of the North Solomons Province Papua New Guinea. Int J Crude Drug Res. 1980;18:33–44.

52. Nick A, Rall T, Sticher O. Biological screening of traditional medicinal plants from Papua New Guinea. J Ethnopharm. 1995;49:147–56.

53. Holdsworth DK, Tamanabae R, Small OR, Famworth E. A phytosurvey of medicinal and poisonous plants from the Northern District of Papua. Papua New Guin Sci Soc Proc. 1974;25:85–98.

54. Holdsworth D. Traditional medicinal plants of Central Province PNG. Part IV. The Goliela mountain people. Int J Crude Drug Res. 1987;25:231–5.

55. Holdsworth DK. A phytochemical survey of medicinal plants of the D. Entrecasteaux Islands, Papua. Sci New Guinea. 1974;1:164–71.

56. Holdsworth DK, Hurley C, Rayner SE. Traditional medicinal plants of New Ireland Papua New Guinea. Pharm Biol. 1980;18:131–9.

57. Holdsworth DK, Balan L. Medicinal plants of the East and West Sepik provinces, Papua New Guinea. Int J Pharmacog. 1992;30:18–22.

58. Holdsworth D, Warno B. Medicinal plants of the Admiralty Islands, Papua, New Guinea. Part I. Int J Crude Drug Res. 1982;20:169–81.

59. Holdsworth DK, Balan L. Ethnomedicine of the guf province of Papua New Guinea Part I. The mountains around Kainabae and Kainirva. Int J Crude Drug Res. 1988;265–71.

60. Billote P. An ethnobotanical account of the plant resources of the Wola region, Southern Highlands Province. Papua New Guinea J Ethnobiol. 1995;15:201–35.

61. Holdsworth D, Gheno J. A preliminary survey of highland medicinal plants. Sci New Guinea. 1975;3:191–8.

62. Holdsworth D. Traditional medicinal plants of Central Province PNG. Part III. Int J Crude Drug Res. 1987;25:103–12.

63. Holdsworth D, Kerenga KA. A survey of medicinal plants in the Simbu Province, Papua New Guinea. Int J Crude Drug Res. 1987;25:183–7.

64. Holdsworth D, Sakulas H. High altitude medicinal plants of Papua New Guinea. Part II, Mount Wilhelm, Simbu Province. Int J Pharmacog. 1992;30:1–4.

65. Holdsworth DK, Longley RP. Some medicinal and poisonous plants from the Southen Highlands District of Papua. Proc Papua New Guinea Sci Soc. 1972;24:21–4.

66. Holdsworth D, Sakulas H. Medicinal plants of the Morobe Province Part II. The Asiki Valley. Int J Crude Drug Res. 1986;24:31–40.

67. Holdsworth DK, Heers G. Some medicinal and poisonous plants from the Trobriand Islands. Rec Papua New Guinea Mus. 1971;1:37–40.