Whole genome methylation analysis of non-dysplastic Barretts oesophagus that progresses to invasive cancer

Dilworth MP*,1, Nieto T*,1, Stockton JD1, Whalley C1, Tee L1, James JD1, Hallissey MT2, Hejmadi R1, Trugdill N3, Tucker O*,4, Beggs AD*,1,2

1. Institute of Cancer and Genomic Science, University of Birmingham, U.K.
2. Queen Elizabeth Hospital, Birmingham, U.K.
3. Sandwell and West Birmingham NHS Trust, Birmingham, U.K.
4. Heart of England NHS Trust, Birmingham, U.K.

* - these authors contributed equally to this study.

Corresponding author:

Dr Andrew D Beggs,

Institute of Cancer & Genomic Science

University of Birmingham

Vincent Drive

Birmingham

B15 2TT

Email: a.beggs@bham.ac.uk

Telephone: +44 (0)121 414 7458

Word count: 3,461 words
Keywords: Barrett's oesophagus; Oesophageal cancer; Methylation; Cancer Genetics
ABSTRACT

Objective: To investigate differences in methylation between patients with non-dysplastic Barretts’ oesophagus who progress to invasive adenocarcinoma and those that do not.

Design: A whole genome methylation interrogation using the Illumina HumanMethylation 450 array of patients with non-dysplastic Barrett’s Oesophagus who either develop adenocarcinoma or remain static, with validation of findings by bisulfite pyrosequencing.

Results: In total, 12 patients with “progressive” vs. 12 with “non-progressive” non-dysplastic Barrett’s oesophagus were analysed via methylation array. Forty-four methylation markers were identified that may be able to discriminate between non-dysplastic Barrett’s Oesophagus that either progress to adenocarcinoma or remain static. Hypomethylation of the recently identified tumour supressor OR3A4 (probe cg09890332) validated in a separate cohort of samples (median methylation in progressors = 67.8% vs. 96.7% in non-progressors, p=0.0001, z = 3.85, Wilcoxon rank sum test) and was associated with the progression to adenocarcinoma. There were no differences in copy number between the two groups, but a global trend towards hypomethylation in the progressor group was observed.

Conclusion: Hypomethylation of OR3A4 has the ability to risk stratify the patient with non-dysplastic Barrett’s Oesophagus and may form the basis of a future surveillance program.
INTRODUCTION

Oesophageal adenocarcinoma (OADC) incidence is increasing [1] and currently forms 5% of the digestive tract cancers in the UK [2]. Overall disease survival is poor [3] but correlates with stage of cancer at presentation, demonstrating significant survival advantages with detection of early stage disease [4, 5].

Barrett’s Oesophagus (BO), in which normal squamous mucosa changes to a columnar epithelium, results from prolonged exposure to stomach acids and bile salts which reflux into the oesophagus causing chronic inflammation and tissue damage [6].

The incidence of BO is increasing, largely thought to be a consequence of obesity induced reflux disease [7, 8, 9, 10]. Over time, driven by chronic inflammation, metaplastic change is observed and is associated with an increased risk of OADC [11]. For the majority of patients, BO will never progress beyond this benign metaplastic cell change [12, 13]. However, in a small number of patients, dysplasia will develop with some progressing to OADC [14]. The incidence of OADC in the BO population is up to 150 times greater than unaffected individuals [12].

Although the pathological changes seen in Barrett’s adenocarcinoma are understood as part of a well-established metaplasia-dysplasia-carcinoma sequence, a process driven by chronic inflammation [15], the molecular drivers are less clear. The current dilemma is that for patients with non-dysplastic BO, there are no accurate methods for identifying the small number of patients at high risk of progression to cancer.

Surveillance practice of the Barrett’s patient varies widely, between some who endoscope patients each year in contrast to others who will never repeat the
investigation[16]. The on-going MRC funded BOSS study aims to understanding the optimum surveillance strategy, randomising between prospective monitoring BO patients with frequent endoscopic assessment or a “watch and wait” policy [17].

Clearly, there is need for a method of risk stratification in these patients in order to facilitate a streamlined surveillance programme by identifying high risk non-dysplastic BO patients. Attempts at biomarker development for stratification of high risk Barretts oesophagus have focused on mutational change, specifically around the role of TP53 mutation in predicting “high risk” disease [18] given its role as a driver in oesophageal cancer. However Fitzgerald et al [19] have convincingly demonstrated the presence of pathogenic TP53 mutations in apparently normal squamous oesophageal mucosa thus making its role in progression to invasive adenocarcinoma unclear. However, the role of epigenetic change in the pathogenesis of Barretts oesophagus and oesophageal cancer is less well understood, but may well happen much earlier in the cancer developmental pathway and, as a direct result, provide a more appropriate target for both predicting its development and potentially arresting tumourgenesis, should a suitable epigenetic modulator be identified.

Multiple methylation markers have been identified which can discriminate between high risk and low risk BO including APC/ p16 [20], MGMT [21], PKP-1 [22], TIMP3/TERT [23], RUNX3/HPP1 [24] [25] and AKAP12 [26]. Agarwal et al [27] performed an MeCIP array based approach to compare the methylomes of progressor vs. non-progressing patients. In patients that progressed to invasive adenocarcinoma, their original biopsies began either with no dysplasia, indefinite dysplasia or low grade dysplasia, making comparison difficult. However, subsequent analysis of the top 25 differential methylation patterns found three gene
regions with hypermethylation amongst the progression group (*Pro_MMD2*, *Pro_ZNF358* and *Intra_F10*) with a trend otherwise towards global hypomethylation, in keeping with other epithelial pre-malignant conditions [28].

While the studies reviewed do show variation in methylation between progressive vs. non-progressive BO, the methodology has been heterogeneous and few have conducted the study with a group of the same patients tracked over time.

**AIMS**

To determine whether there are differences in methylation in patients between high risk non-dysplastic Barrett’s Oesophagus which will progress to cancer vs low risk Barrett’s
METHODS

Patients and Samples:

Two sample cohorts were identified containing patients who either progressed to OADC from non-dysplastic BO or remained with non-dysplastic BO (NDBO) identified from a prospectively maintain database of patients with BO at Sandwell & West Birmingham NHS Trust. Inclusion criteria for the study were progressing patients with non-dysplastic Barretts oesophagus who, when observed over the study period, developed OADC. Samples were only included where there was a NDBO biopsy and then histology evidence that the patient developed adenocarcinoma. Non-progressing patients were identified from a biopsy of NDBO which when followed over time never progressed beyond NDBO. To be included in this group, the patient must have been in a surveillance programme for a minimum of 15 years and have serial biopsies over that period. They were also required to have still been alive and to have had a NDBO biopsy within 2 years of this study.

Patients were excluded from the study if BO material was only available as part of tumour associated BO or if dysplasia was identified in any BO biopsies.

All tissue used was formalin fixed paraffin embedded (FFPE) samples obtained from pathology libraries and prepared by the University of Birmingham Human Biomaterials Resource Centre (ethical approval 09/H1010/75). H&E stained slides were reviewed by a consultant pathologist to ensure that the samples were BO and had no dysplasia throughout their extent. Cut 5μM paraffin sections were mounted onto frosted slides, and macrodissection for BO carried out. DNA extraction was then performed using Qiagen DNeasy Blood and Tissue kit following the manufacturer’s protocol. Each sample of extracted DNA was then quantified and qualified by
Nanodrop spectrophotometry and Qubit fluorimetry. Bisulphite conversion was performed using a Zymo DNA Methylation bisulphite conversion kit following the modified Illumina Infinium protocol on 500ng of extracted DNA.

**Methylation Arrays**

The Illumina HumanMethylation 450 array, in which the methylation status of more than 485,000 individual CpG sites are examined [29] was used to compare sample groups (progressing NDBO vs non-progressing NDBO). Once bisulphite converted, 1ng of DNA was quality controlled (Illumina FFPE QC kit) with only samples with dCt <5 being taken forward to array analysis. The resulting samples underwent repair suitable for array hybridisation using the Illumina FPPE restore kit. [30] followed by hybridisation to Illumina HumanMethylation450 arrays using manufacturers protocols and scanned on an Illumina iScan. Normalised intensity files (iDAT) were exported using GenomeStudio for downstream analysis.

**Immunohistochemistry**

In order to understand the effect of methylation on the expression of OR3A4 correlation of OR3A4 expression as determined by immunohistochemistry (IHC) vs. progressor/non-progressor status was carried out. IHC was carried out on a Leica Bond RX system using the a mouse polyclonal anti-OR3A4 antibody (Abcam ab67107) at a dilution of 1:100 with a primary incubation time of 15 minutes.

IHC was scored on epithelial and stromal components and a composite score consisting of the sum of expression within membranous, nuclear and cytoplasmic
compartments on a score of 1-4 was made. Scoring was carried out by two
independent observers blinded to progressor/non-progressor status.

**Bioinformatic Analysis of Array Data**

Bioinformatics analysis of the methylation microarrays was carried using the ChAMP
package [31] via Bioconductor/R. In brief, red/green intensity values were captured
from Illumina iDAT files, background corrected and SWAN normalised to produce M
values.

M values were analysed using a logistical regression model using Empirical
Bayesian shrinkage of moderated t-statistics to correct for small sample size. Small
sample size was controlled for by setting stringent FDR Q-values of <0.05.
Identification of variable methylated sites allowed the CpG site markers to be
highlighted. DNA Copy number analysis was carried out using the DNAcopy module
of ChAMP.

**Pyrosequencing validation of hits**

Methylation insensitive primers were designed and sourced, using Qiagen PyroMark
Primer Design software v2.0. Primers were designed to flank CpG sites of interest.
Illumina CG methylation probe locations were retrieved from the UCSC genome
browser [32] and FASTA sequence retrieved for -200bp to + 200bp of the target CG
dinucleotide. Primer design settings were optimised to design amplicons suitable for
FFPE pyrosequencing, with the optimum amplicon size set to between 80-150bp. All
other settings were as per the standard Qiagen design parameters. Primers were
ordered from Sigma Aldrich, with the biotinylated pyrosequencing primer being
purified by high performance liquid chromatography and the remainder by desalting. Pyrosequencing PCR was performed using Qiagen PyroMark PCR Gold kit, consisting of 2uL of bisulphite converted DNA, 25uL of PCR master mix, 5uL of CoralLoad dye, 3uL MgSO₄, 10uL of Q reagent and 2.5uL each of forward (20mM) and reverse (20mM) primer. Reaction conditions were determined experimentally by use of a gradient PCR for each primer pair. A typical reaction consisted of activation at 95°C for 15 minutes, followed by 45 cycles of denaturation at 94°C for 30s, annealing at 56°C for 30s and extension at 72°C for 30 seconds, followed by a final extension step at 72°C for 10 minutes. In addition to experimental DNA, each PCR was performed with 100% methylated DNA, 100% un-methylated DNA and ddH₂O as controls. Methylated and unmethylated DNA was generated in house by means of M.SSI conversion (methylated DNA) and whole genome amplification using the Qiagen Repli-G kit (unmethylated DNA). Primer sequences for validation pyrosequencing were as follows. For FGFR2 cg17337672 these were Forward = AGGGGAAAGGAATTTAGGTT; Reverse = [Btn]TCAATCTTCCCCCAAAACAACCCT and sequencing = GTTAGAAGTTTTTTTTGGATTAGT. For ORA3A4 cg07863524 these were forward = GTGGTAGAAGTAGGATGAGGTGTTGATAAT; Reverse = [Btn]CTTCAACTCCTCCTCCCTACATTT and sequencing = GGGTAGGGATGGAAGATGGGTGTTGAGTTA, reverse = [Btn]TTTCCCAACCCTAATCACTACTAATAAAAT and sequencing = GGATTATAGGGTGAGTTAT.
RESULTS:

Patient selection:

In total, 67 patients were recruited, 37 from Sandwell and West Birmingham NHS Trust (SWBNT) and 30 from University Hospital Birmingham NHS Trust (UHBFT). Of these, 20/67 progressed from non-dysplastic Barrettts oesophagus and 47 did not. The age range was between 42-60 years with a median age of 56 years of which 60/67 (89.6%) were of male gender. The median time to diagnosis of OADC in “progressive” patients was 114 months, with a range of 4-162 months. Of the patients recruited, in the SWBNT group 6 progressors and 6 non-progressors and in the UHBFT 6 progressors and 4 non-progressors were taken forward to methylation array analysis, giving a total of 12 progressors and 10 non-progressors. All patients recruited had validation pyrosequencing performed.

Methylation microarray analysis

Twenty four samples in total were hybridised successfully to Illumina HumanMethylation450 microarrays. All arrays passed manufacturers QC as specified by metrics in Illumina GenomeStudio. Differential methylation analysis at the probe level (Table 1) revealed significant differences in methylation between progressor and non-progressors in non-dysplastic BO (Figure 1). In total, 44 significantly (defined as Bayes Factor, BF>5) differentially methylated targets were identified, the bulk being hypomethylated, with a trend towards global hypomethylation in progressor samples.

Table 1: Top20 array identified CpG sites with methylation variation between non-dysplastic samples which progress to OADC vs those which remain static
Key: Probe ID – the Illumina cg probe ID from the Illumina manifest, T = the t value – the size of the difference relative to the variation in the sample, p-value = the raw p-value, not corrected for multiple testing, Adjusted p-value = the p-value corrected for multiple testing

| Probe ID     | t     | P.Value   | Adj.P.Value | Gene Name   |
|--------------|-------|-----------|-------------|-------------|
| cg07863524   | -12.26| 2.02E-08  | 0.0031      | OR3A4       |
| cg24007926   | -11.05| 6.84E-08  | 0.0032      | NA          |
| cg17337672   | -10.95| 7.54E-08  | 0.0032      | FGFR2       |
| cg02226469   | -10.88| 8.17E-08  | 0.0032      | NA          |
| cg17433294   | -10.51| 1.22E-07  | 0.0038      | NMUR2       |
| cg18479711   | -10.31| 1.52E-07  | 0.0039      | HDAC4       |
| cg09011162   | -10.15| 1.82E-07  | 0.0040      | LMF1        |
| cg19733463   | -9.83 | 2.61E-07  | 0.0045      | NMUR1       |
| cg16150571   | -9.64 | 3.26E-07  | 0.0045      | SNORD116-22 |
| cg24424217   | -9.62 | 3.35E-07  | 0.0045      | ZNF511      |
| cg13164993   | -9.57 | 3.52E-07  | 0.0045      | RBP3        |
| cg14019464   | -9.53 | 3.70E-07  | 0.0045      | TRIB3       |
| cg24581378   | -9.53 | 3.71E-07  | 0.0045      | ZAP70       |
| cg05230642   | -9.36 | 4.54E-07  | 0.0051      | SNORD115-14 |
| cg12297814   | -9.26 | 5.08E-07  | 0.0052      | IGFN1       |
| cg11231240   | -9.23 | 5.33E-07  | 0.0052      | NA          |
| cg11864327   | -8.96 | 7.40E-07  | 0.0063      | ZFP2        |
| cg16771467   | -8.92 | 7.78E-07  | 0.0063      | ATP8B1      |
| cg17304276   | -8.88 | 8.14E-07  | 0.0063      | CUX2        |
| cg11443888   | -8.86 | 8.36E-07  | 0.0063      | TMEM151B    |
**Differential methylation at the probe level**

The top ranked differentially methylated probe was cg09890332 (chr17:3212495-3212495, hg19 coordinates) which tags a CpG dinucleotide -1044bp upstream of the TSS of the long non-coding RNA, **OR3A4** (NRR_024128.1). The second highest ranked differentially methylated probe was cg24007926 (chr2:206842761-206842761, hg19 coordinates. This CpG dinucleotide is with a large, intragenic region, with the nearest gene being **INO80D** (INO80 complex subunit D, NM_017759.4), 15,684bp downstream of this CpG. The third highest ranked differentially methylated probe was cg17337672 (chr10:123354172-123354172) which tags a CpG dinucleotide within intron 2 of **FGFR2** (Fibroblast growth factor receptor 2, NM_000141.4).

Differentially methylated regions (DMR) were called between progressors and non-progressors via the *dmrLasso* function of the CHAMP software package (Table 2). Significant DMRs were found from chr2:503065-503193 (which tags an intragenic region, DMR p=7.69x10^-4), chr5:8217236-8217322 (which also tags an intragenic region, DMR p=1.27x10^-3) and chr10: 123353418- 123355576 which spans a region from the 5’ UTR of **FGFR2** to the 1st exon within **FGFR2** (DMR p=4.79x10^-3).
Table 2: Table of differentially methylated regions (DMR)

| DMR ID | Probe ID   | Probe level adjusted p-value | Chromosome | Gene  | Start of DMR (bp) | End of DMR (bp) | Size in bp | Change in methylation | P-value for DMR |
|--------|------------|-----------------------------|------------|-------|------------------|----------------|------------|-----------------------|----------------|
| 1      | cg21273584 | 0.014                       | 2          | NA    | 502999           | 503195         | 197        | -34%                  | 7.69E-04       |
| 1      | cg00854591 | 0.045                       | 2          | NA    | 502999           | 503195         | 197        | -16%                  | 7.69E-04       |
| 1      | cg11573608 | 0.014                       | 2          | NA    | 502999           | 503195         | 197        | -27%                  | 7.69E-04       |
| 2      | cg25568703 | 0.047                       | 5          | NA    | 8216903          | 8217655        | 753        | -25%                  | 1.27E-03       |
| 2      | cg25016964 | 0.039                       | 5          | NA    | 8216903          | 8217655        | 753        | -22%                  | 1.27E-03       |
| 2      | cg17642708 | 0.021                       | 5          | NA    | 8216903          | 8217655        | 753        | -33%                  | 1.27E-03       |
| 3      | cg10788901 | 0.172                       | 10         | FGFR2 | 123352704        | 123355661      | 2958       | -27%                  | 4.79E-03       |
| 3      | cg14856220 | 0.044                       | 10         | FGFR2 | 123352704        | 123355661      | 2958       | -24%                  | 4.79E-03       |
| 3      | cg17337672 | 0.003                       | 10         | FGFR2 | 123352704        | 123355661      | 2958       | -47%                  | 4.79E-03       |
| 3      | cg02412684 | 0.031                       | 10         | FGFR2 | 123352704        | 123355661      | 2958       | -38%                  | 4.79E-03       |
| 3      | cg06791446 | 0.058                       | 10         | FGFR2 | 123352704        | 123355661      | 2958       | -13%                  | 4.79E-03       |
3

cg2633036
0.581
10

FGFR2
123352704
123355661
2958
-4%
4.79E-03

4.79E-03
We took advantage of the information provided by the two colour Illumina Infinium chemistry to call copy number aberrations (CAN) within the regions targeted by the methylation probes using the CNA calling function of CHAMP. This did not demonstrate any recurrent copy number alterations between progressors and non-progressors. There were no significant differences in the numbers of CNA between the two groups, with a median of 43 CNA (range 24-92) in the progressors vs. 44 CAN (range 30-52) in the non-progressors (p=1.0, Wilcoxon rank sum).

Pathway methylation analysis was carried out using DAVID. Initially KEGG pathway analysis showed that genes associated with MAPK signalling were enriched in the dataset (p=0.012). Gene ontology analysis using the UP_KEYWORDS feature showed significant enrichment for the disease mutation (p=9.6x10-6), polymorphism (p=1.7x10-5), glycoprotein (p=3.4x10-5), and alternate splicing (p=1.1x10-4) terms.

Validation pyrosequencing

Because of the likely biological relevance of \textit{FGFR2}, and the data demonstrating that \textit{OR3A4} was the top differentially methylated CpG, validation pyrosequencing was carried out on all 67 patients. Normality of distribution of methylation values was ascertained by histogram plots, in which it was found that methylation was non-normally distributed, therefore non-parametric testing was carried out.

For OR3A4 cg09890332, median methylation was 67.8% in progressors vs. 96.7% in non-progressors (p=0.0001, z = 5.158, Wilcoxon rank sum test) (Figure 2). The pyrosequencing assay design used covered two additional CpG +4bp and +10bp downstream of cg09890332. Median methylation in these were was 66.8% and 59.7% in progressors vs. 75.0% and 68.1% in non-progressors (p=0.0280 and
0.0368, z=2.197 and 2.088, Wilcoxon rank sum test). In order to investigate whether this phenomenon was localised to this region or was a gene-wide phenomenon, an additional pyrosequencing assay was designed based on probe ID cg07863524 (chr17:3213471-3213471) which is +976bp downstream from cg09890332 and -68bp from the TSS of OR4A4. This demonstrated that median methylation was 62.2% in progressors and 56.7% in non-progressors (p=0.600, z=-0.524, Wilcoxon rank sum test).

We then validated cg17337672 within FGFR2, finding that median methylation was 83.4% in progressors vs. 82.2 in non-progressors (p=0.51,z=0.653, Wilcoxon rank sum test).

**Expression of OR3A4 in progressors vs. non-progressors**

For the stromal compartment, a median expression of 6 (IQR 4-7) was seen in progressors and 2 (IQR 1-3) in non-progressors (Wilcoxon rank sum p=0.0308, z=-2.160). For the epithelial compartment, a median expression of 8 (IQR 8-10) was seen in progressors and 5.5 (IQR 3-10) in non-progressors (Wilcoxon rank sum p=0.4587, z=-0.741). Percentage methylation at OR3A4 and stromal expression was strongly negatively correlated (Pearson correlation coefficient = -0.85, p=0.014) but with epithelial expression correlated negatively but non-significantly with methylation at OR3A4 (Pearson correlation coeffiecient = -0.40, p=0.373).

**Ability of OR3A4 methylation to act as a discriminator in BO**

In order to understand the accuracy of using methylation within cg09890332 of OR3A4 as a biomarker for high risk Barretts oesophagus we further carried out a multivariate reverse stepwise logistic regression analysis of methylation at the three
tagged CpG dinucleotides within the pyrosequencing assay as the independent variables and progressor vs. non-progressor status status as the dependent variable. In this model, CpGs two and three became non-significant (p=0.3325 and p=0.4764) and were removed from the model, leaving the first CpG in cg09890332 as being significant (coef =-0.0563, SE=0.016, z=-3.40,p=0.001,95% CI -0.089- -0.024). Using ROC modelling the AUC of this model was 0.82 (95% CI 0.80-0.83).

We then further used the `diagt` function of Stata 11.2 to model a set methylation threshold effect on sensitivity and specificity of the test, aiming for maximum negative predictive value and correcting for a incidence rate within the cohort of 0.7%.

Modelling at a threshold of below 89% being significant showed that hypomethylation at OR3A4 can predict progression to invasive carcinoma with a sensitivity of 70.8%, specificity of 86%, positive predictive value of 85% and negative predictive value of 72.5%.

**CONCLUSIONS**

We have identified that hypomethylation at cg09890332 corresponding to the CG nucleotide at position (CHR) of OR3A4 can discriminate patients who progress from non-dysplastic Barrett’s oesophagus to those who did not. This association is maintained across independent cohorts, and seems to be related temporally as well as by case status. We observed hypomethylation within these samples up to 13 years before the development of invasive adenocarcinoma suggesting this is an early event in the development of malignant change.

The effect of hypomethylation on the OR3A4 gene seems to be functional, in that immunohistochemistry reveals a change in increased OR3A4 expression in samples
with hypomethylation. The finding that the stromal expression in particular is increased is of interest given the known effect of “pathological” stroma in the pathogenesis of oesophageal cancer. Our observed region co-incides within 225bp of a CTCF and RAD21 transcription factor binding site, further suggesting that methylation there has a function effect to prevent transcription factor binding and alter gene expression. Guo et al [33] performed a genomewide screen of long non-coding RNAs in gastric adenocarcinoma, finding that OR3A4 was significantly (55.9 fold,) over-expressed in these patients. They also observed that levels of OR3A4 were correlated with metastatic potential and prognosis. Furthermore, they utilised OR3A4 over-expression vectors and performed siRNA knockdown to demonstrate that OR3A4 seems to regulate cellular proliferation in gastric cancer cell lines. Finally, they utilised their over-expressing cell line models and implanted them into nude mice, finding that OR3A4 over-expressing gastric cancer cell lines grew significantly faster and more aggressively than with knockdown of OR3A4. Downstream analysis of target genes demonstrated that OR3A4 targets PDLIM2, a putative tumour suppressor than regulates cell cycle and adhesion; PIWIL1, a transcriptional silencer and DLX4 which induces epithelial-mesenchymal transition via TWIST1. Clearly, our observation that OR3A4 is over-expressed via hypomethylation is clearly relevant in the pathogenesis of Barrett’s oesophagus that progresses to invasive adenocarcinoma.

We found both at the individual probe level and as part of a differentially methylated region that there is hypomethylation in the CpG island associated with FGFR2, however this did not validate at the single probe level when examined with bisulphite pyrosequencing. FGFR2 has been observed to undergo recurrent alteration in both
oesophageal adenocarcinoma [34] and squamous cell carcinoma [35] with the latter demonstrating recurrent amplification. The disparity between our microarray results and validation by pyrosequencing may be due to probe inflation caused by small sample size, however given its biological associations with oesophageal adenocarcinoma further work is needed.

In common with pre-malignant lesions in cancer, such as colorectal adenomatous polyps [28], we observed a trend towards genome wide hypomethylation suggesting a widespread over-expression of genes as part of the development towards malignancy. We also found no difference in chromosomal instability between progressors and non-progressors, although there was widespread instability within both sets of samples, in common with what has previously been observed [36] in Barretts oesophagus.

This methylation marker, although seemingly highly accurate for the detection of progression of Barrett’s to invasive adenocarcinoma, is likely to be of more utility as a multi-modal stratifier in Barrett’s oesophagus, taking account of previous findings at the mutational and copy number level, as well as epigenetic change. However, for the purpose of designing a surveillance programme with the ability to risk stratify the non-dysplastic Barretts oesophagus patient, this marker has significant potential utility.

Development of a streamlined surveillance programme could lead to cost savings through the avoidance of un-necessary upper gastro-intestinal endoscopy in a low risk cohort identified by molecular marker panel. More frequent endoscopy in the high risk cohort could lead to earlier diagnosis of OADC or initiate management of
BO to arrest further progression. In conclusion, development of a stratified marker panel in the context of a clinical trial is now needed to improve diagnosis of high risk BO.

**Competing interests:** None

**Funding:** AB acknowledges funding from the Wellcome Trust (102732/Z/13/Z), Cancer Research UK (C31641/A23923) and the Medical Research Council (MR/M016587/1). MPD and TN acknowledge funding from the QE Hospital Charities

**Contributorship statement:**

Cohort identification and follow-up: NT, MTH, OT

Molecular analysis: MPD, TN, JDS, CW, LT, JDJ, ADB

Histological processing and analysis: TN, MPD, RH

Manuscript: ADB, TN, MD.

Guarantor: ADB.
REFERENCES

1 Lepage C, Rachet B, Jooste V, Faivre J, Coleman MP. Continuing rapid increase in esophageal adenocarcinoma in England and Wales. The American journal of gastroenterology 2008;103:2694-9.

2 Lepage C, Bouvier AM, Manfredi S, Coatmeur O, Cheynel N, Faivre J. Trends in incidence and management of esophageal adenocarcinoma in a well-defined population. Gastroenterologie clinique et biologique 2005;29:1258-63.

3 Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013;381:400-12.

4 Enzinger PC, Mayer RJ. Esophageal cancer. The New England journal of medicine 2003;349:2241-52.

5 Pennathur A, Farkas A, Krasinskas AM, Ferson PF, Gooding WE, Gibson MK, et al. Esophagectomy for T1 esophageal cancer: outcomes in 100 patients and implications for endoscopic therapy. The Annals of thoracic surgery 2009;87:1048-54; discussion 54-5.

6 Sun D, Wang X, Gai Z, Song X, Jia X, Tian H. Bile acids but not acidic acids induce Barrett's esophagus. International journal of clinical and experimental pathology 2015;8:1384-92.

7 Spechler SJ, Goyal RK. The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology 1996;110:614-21.
8 McDougall NI, Johnston BT, Collins JS, McFarland RJ, Love AH. Three- to 4.5-year prospective study of prognostic indicators in gastro-oesophageal reflux disease. Scandinavian journal of gastroenterology 1998;33:1016-22.

9 Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. The New England journal of medicine 1999;340:825-31.

10 Cook MB, Corley DA, Murray LJ, Liao LM, Kamangar F, Ye W, et al. Gastroesophageal reflux in relation to adenocarcinomas of the esophagus: a pooled analysis from the Barrett's and Esophageal Adenocarcinoma Consortium (BEACON). PLoS one 2014;9:e103508.

11 Phillips WA, Lord RV, Nancarrow DJ, Watson DI, Whiteman DC. Barrett's esophagus. Journal of gastroenterology and hepatology 2011;26:639-48.

12 Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett's esophagus. The New England journal of medicine 2011;365:1375-83.

13 Bhat S, Coleman HG, Yousef F, Johnston BT, McManus DT, Gavin AT, et al. Risk of malignant progression in Barrett's esophagus patients: results from a large population-based study. Journal of the National Cancer Institute 2011;103:1049-57.

14 Wani S, Falk G, Hall M, Gaddam S, Wang A, Gupta N, et al. Patients with nondysplastic Barrett's esophagus have low risks for developing dysplasia or esophageal adenocarcinoma. Clin Gastroenterol Hepatol 2011;9:220-7; quiz e26.
15 Brown CS, Ujiki MB. Risk factors affecting the Barrett's metaplasia-dysplasia-neoplasia sequence. World journal of gastrointestinal endoscopy 2015;7:438-45.

16 Fitzgerald RC, di Pietro M, Ragunath K, Ang Y, Kang JY, Watson P, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett's oesophagus. Gut 2014;63:7-42.

17 Jankowski J, Barr H. Improving surveillance for Barrett's oesophagus: AspECT and BOSS trials provide an evidence base. Bmj 2006;332:1512.

18 Dolan K, Walker SJ, Gosney J, Field JK, Sutton R. TP53 mutations in malignant and premalignant Barrett's esophagus. Dis Esophagus 2003;16:83-9.

19 Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H, O'Donovan M, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. Nat Genet 2015;47:1038-46.

20 Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, et al. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett's esophagus. The American journal of gastroenterology 2009;104:2153-60.

21 Kuester D, El-Rifai W, Peng D, Ruemmele P, Kroeckel I, Peters B, et al. Silencing of MGMT expression by promoter hypermethylation in the metaplasia-dysplasia-carcinoma sequence of Barrett's esophagus. Cancer letters 2009;275:117-26.

22 Kaz AM, Luo Y, Dzieciatkowski S, Chak A, Willis JE, Upton MP, et al. Aberrantly methylated PKP1 in the progression of Barrett's esophagus to esophageal adenocarcinoma. Genes, chromosomes & cancer 2012;51:384-93.
23 Clement G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett's oesophagus patients at risk for malignant transformation. The Journal of pathology 2006;208:100-7.

24 Schulmann K, Sterian A, Berki A, Yin J, Sato F, Xu Y, et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett's-associated neoplastic progression and predicts progression risk. Oncogene 2005;24:4138-48.

25 Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer research 2009;69:4112-5.

26 Jin Z, Hamilton JP, Yang J, Mori Y, Olaru A, Sato F, et al. Hypermethylation of the AKAP12 promoter is a biomarker of Barrett's-associated esophageal neoplastic progression. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 2008;17:111-7.

27 Agarwal R, Jin Z, Yang J, Mori Y, Song JH, Kumar S, et al. Epigenomic program of Barrett's-associated neoplastic progression reveals possible involvement of insulin signaling pathways. Endocrine-related cancer 2012;19:L5-9.

28 Beggs AD, Jones A, El-Bahrawy M, Abulafi M, Hodgson SV, Tomlinson IP. Whole-genome methylation analysis of benign and malignant colorectal tumours. The Journal of pathology 2013;229:697-704.
29 Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics 2011;98:288-95.

30 Illumina FFPE restore manual. 2015.

31 ChAMP package. 2015.

32 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res 2002;12:996-1006.

33 Guo X, Yang Z, Zhi Q, Wang D, Guo L, Li G, et al. Long noncoding RNA OR3A4 promotes metastasis and tumorigenicity in gastric cancer. Oncotarget 2016;7:30276-94.

34 Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine & growth factor reviews 2015;26:425-49.

35 Kato H, Arao T, Matsumoto K, Fujita Y, Kimura H, Hayashi H, et al. Gene amplification of EGFR, HER2, FGFR2 and MET in esophageal squamous cell carcinoma. International journal of oncology 2013;42:1151-8.

36 Paulson TG, Maley CC, Li X, Li H, Sanchez CA, Chao DL, et al. Chromosomal instability and copy number alterations in Barrett's esophagus and esophageal adenocarcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research 2009;15:3305-14.
ROC curve of OR3A4 methylation against case/control status

Area under ROC curve = 0.82
