Universal critical exponents of the magnetic domain wall depinning transition

Sebastian Bustingorry

Instituto de Nanociencia y Nanotecnología

Comisión Nacional de Energía Atómica – CONICET
Centro Atómico Bariloche, Argentina
Universal critical exponents of the magnetic domain wall depinning transition

Sebastian Bustingorry

Aragón Nanoscience and Materials Institute Zaragoza, (Spain)
Magnetic domain walls
Magnetic domain wall motion

depinning transition

- **thermal rounding**: \(v(f_c) \sim T^\gamma \)
- **creep**: \(\ln v \sim f^{-\mu} \)
- **T > 0**: \(v \sim (f - f_c)^\beta \)
- **T = 0**: \(v \sim (f - f_c)^\beta \)

- equilibrium
- depinning
- fast flow \((f \to \infty)\)
Magnetic domain wall motion

depinning transition

Elastic string model

universality
Quenched Edwards-Wilkinson universality class (q-EW)

\[\frac{\partial u(z, t)}{\partial t} = c \frac{\partial^2 u(z, t)}{\partial z^2} + F + \sqrt{T} \eta(z, t) + D \xi(u, z) \]

Quenched Kardar-Parisi-Zhang universality class (q-KPZ)

\[\frac{\partial u(z, t)}{\partial t} = c \frac{\partial^2 u(z, t)}{\partial z^2} + \lambda \left(\frac{\partial u(z, t)}{\partial z} \right)^2 + F + \sqrt{T} \eta(z, t) + D \xi(u, z) \]
Universal exponents

Quenched Edwards-Wilkinson universality class (q-EW)

\[
\frac{\partial u(z, t)}{\partial t} = c \frac{\partial^2 u(z, t)}{\partial z^2} + F + \sqrt{T} \eta(z, t) + D \xi(u, z)
\]

Quenched Kardar-Parisi-Zhang universality class (q-KPZ)

\[
\frac{\partial u(z, t)}{\partial t} = c \frac{\partial^2 u(z, t)}{\partial z^2} + \lambda \left(\frac{\partial u(z, t)}{\partial z} \right)^2 + F + \sqrt{T} \eta(z, t) + D \xi(u, z)
\]

exponent	qEW	qKPZ	
order parameter \(\beta \)	\(v \sim (H - H_d)^\beta \)	0.245 ± 0.006* 0.33 ± 0.02†	~ 0.64‡
correlation length \(\nu \)	\(\xi \sim (H - H_d)^\nu \)	1.333 ± 0.007*	~ 1.73‡
thermal rounding \(\psi \)	\(v \sim T^{\psi} \)	0.15 ± 0.01**	?

* Ferrero, Bustingorry, Kolton, PRE (2013)
† Duemmer, Krauth, PRE (2005)
** Bustingorry, Kolton, Giamarchi, EPL (2008)
‡ Tang, Kardar, Dhar, PRL (1995)
Universal exponents

Pt/Co/Pt

\[\psi = 0.15 \]
Measuring DW motion

GdFeCo
Velocity measurements

Athermal depinning transition below 70 K!
The velocity exponent

\[v(H, T = 0K) = v_H \left(\frac{H - H_d}{H_d} \right)^\beta \]
The velocity exponent

\[\nu(H, T = 0 K) = \nu_H \left(\frac{H - H_d}{H_d} \right)^\beta \]

(c) 14.6 mT

(f) 15.0 mT

\Delta t = 1.5 \mu s

100 \mu m

Albornoz, Ferrero, Kolton, Jeudy, Bustingorry, Curiale, PRB L060404 2021
The velocity exponent

$$v(H, T = 0K) = v_H \left(\frac{H - H_d}{H_d} \right)^\beta$$

(a) $1.1 \chi_{\text{min}}$

(b) $\mu_0 H_d = (14.8 \pm 0.2) \text{ mT}$

(c) $\beta = 0.28 \pm 0.08$

$\ln \left(\frac{v_H}{(\text{m/s})} \right) + 3 \ln \left(\frac{(H - H_d)}{H_d} \right)$

$\mu_0 H_d = 14.8 \text{ mT}$

$\beta = 0.28$

$v_H = 270 \text{ m/s}$
The velocity exponent

(Alternatively: fitting β as a single global parameter, independent of T, gives a consistent result $\beta = 0.33 \pm 0.04$)
The correlation length exponent

\[C_v(x) = \frac{1}{\Delta t^2} \sum [\Delta(x + x) - \bar{\Delta}] [\Delta(x') - \bar{\Delta}] \]

\[\Delta = \frac{1}{N} \sum \Delta(x) \]

\[C_v(x = \xi) = \frac{1}{2} C_v(x = 0) \]
The correlation length exponent

\[C_v(x) = \frac{1}{\Delta t^2} \sum \left[\Delta(x' + x) - \Delta \right] \left[\Delta(x') - \Delta \right] \]

\[\Delta = \frac{1}{N} \sum \Delta(x) \]

\[C_v(x = \xi) = \frac{1}{2} C_v(x = 0) \]
The correlation length exponent

$GdFeCo$

$C_v(x = \xi) = \frac{1}{2}C_v(x = 0)$

\[
\xi(H, T = 0K) = \xi_0 \left(\frac{H - H_d}{H_d} \right)^{-\nu}
\]

\[
v(H, T = 0K) = v_H \left(\frac{H - H_d}{H_d} \right)^\beta
\]

$\nu \sim \xi^{-\beta/\nu}$
The correlation length exponent

\[\nu = \nu_H \left(\frac{\xi}{\xi_0} \right)^{-\beta/\nu} \]
Universal exponents

exponent	qEW	qKPZ	Measured
β	$0.245 \pm 0.006^*$	$\sim 0.64^§\dagger$	0.30 ± 0.03
	$0.33 \pm 0.02^†$		
ν	$1.333 \pm 0.007^*$	$\sim 1.73^‡$	1.3 ± 0.3
ψ	$0.15 \pm 0.01^{**}$	$?$	$0.15 \pm 0.03^{***}$
ζ	$1.250 \pm 0.005^*$	$\sim 0.63^§$	1.2 ± 0.2
z	$1.433 \pm 0.007^*$	$\sim 1^‡$	1.5 ± 0.2
τ	$1.11 \pm 0.04^◊$	$\sim 1.26^§\dagger$	1.11 ± 0.07

* Ferrero, Bustingorry, Kolton, PRE (2013)
† Duemmer, Krauth, PRE (2005)
** Bustingorry, Kolton, Giamarchi, EPL (2008)
*** Gorchon, Bustingorry, Ferré, Jeudy, Kolton, Giamarchi, PRL (2014)
§ Rosso, Hartmann, Krauth, PRE (2003)
‡ Tang, Kardar, Dhar, PRL (1995)
◊ Ferrero, Foini, Giamarchi, Kolton, Rosso, PRL (2017)
Universal exponents

exponent	qEW	qKPZ	Measured
β	$0.245 \pm 0.006^*$		
$0.33 \pm 0.02^\dagger$	$\sim 0.64^\S\ddagger$	0.30 ± 0.03	
ν	$1.333 \pm 0.007^*$	$\sim 1.73^\ddagger$	1.3 ± 0.3
ψ	$0.15 \pm 0.01^{**}$	$?^\ddagger$	$0.15 \pm 0.03^{***}$
ζ	$1.250 \pm 0.005^*$	$\sim 0.63^\S$	1.2 ± 0.2
ζ	$1.433 \pm 0.007^*$	$\sim 1^\ddagger$	1.5 ± 0.2
τ	$1.11 \pm 0.04^\Diamond$	$\sim 1.26^\S\ddagger$	1.11 ± 0.07

$$B(r) = \langle [u(x + r) - u(x)]^2 \rangle = B_0 \left(\frac{r}{r_0} \right)^{2\zeta}$$

$$\ell(t) \sim t^{-1/\zeta}$$

$$P(S) \sim S^{-\tau}$$

$$\nu = \frac{1}{2 - \zeta}$$

$$\beta = \nu(z - \zeta)$$

$$\tau = 2 - \frac{2}{1 + \zeta}$$
Universal exponents

exponent	qEW	qKPZ	Measured
β	$0.245 \pm 0.006^*$	~ $0.64^§\dagger$	0.30 ± 0.03
	$0.33 \pm 0.02^\dagger$		
ν	$1.333 \pm 0.007^*$	~ 1.73^\dagger	1.3 ± 0.3
ψ	$0.15 \pm 0.01^{**}$?	$0.15 \pm 0.03^{***}$
ζ	$1.250 \pm 0.005^*$	~ $0.63^§$	1.2 ± 0.2
ζ	$1.433 \pm 0.007^*$	~ 1^\dagger	1.5 ± 0.2
τ	$1.11 \pm 0.04^\diamond$	~ $1.26^§\dagger$	1.11 ± 0.07
What we know…			

DW motion is compatible with the EW universality class (… mostly)			

What we partially know…
Relationship with micromagetics, temperature dependent parameters.
Roughness exponents at different scales (multiple exponents, negative KPZ?).

What we don’t…
Plasticity effects
Scaling relations with the thermal rounding exponent
Sebastian Bustingorry

Instituto de Nanociencia y Nanotecnología

Comisión Nacional de Energía Atómica – CONICET
Centro Atómico Bariloche, Argentina