Comparison of Serum IgG Antibody Test with Gastric Biopsy for the Detection of Helicobacter Pylori Infection among Egyptian Children

Mones M. Abu Shady1, Hanan A. Fathy2, Alaa Ali1, Essam M. Galal1, Gihan A. Fathy1, Hiba Sibaii*

1Department of Child Health, Medical Research Division, National Research Centre, Dokki, Giza, Egypt; 2Health Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt; 3Department of Medical Physiology, National Research Centre, Cairo, Egypt

Introduction

At least half of the world’s population is estimated to be infected with H. pylori. However, the prevalence of this infection varies widely across both geographic regions and ethnic groups. Overall, rates of H. pylori infection are markedly higher in developing countries compared to developed countries. For example, prevalence rates that approach or even exceed 90% have been reported in multiple studies conducted in Bangladesh, Egypt, Russia, Siberia, and Africa. In contrast, prevalence rates are much lower in developed regions, including the United States (6.8–79%), Europe (7.3–70%), and Australia (15.5–23%) [1-3]. Most infections are probably acquired in childhood, mainly via oral-oral or fecal-oral routes [4].

Helicobacter pylorus (H. pylori) causes gastrointestinal diseases such as gastritis and peptic ulcer in adults and children. In addition, previous reports have linked H. pylori infection with gastric cancer, mucosa-associated lymphoid tissue (MALT) lymphoma, iron deficiency anemia and thrombocytopenic purpura in children [5-7].

Diagnostic methods for H. pylori infection are usually classified as invasive and noninvasive. The invasive tests including histology, urease tests and culture, require upper gastrointestinal endoscopy for obtaining the diagnostic sample. On the other hand,
non-invasive methods include the urea breath test, serology and stool antigen test. Bacterial culture from the gastric biopsy is the gold standard technique, and is recommended for antibiotic susceptibility test. Serology is used for initial screening and the stool antigen test is particularly used when the urea breath test is not available [8]. To define the value or usefulness of a diagnostic test, each test has to be compared to a gold standard [9]. There are few data on serologic tests for children, and thus it remains unclear whether the serology cutoffs used for adults are applicable to children.

The aim of this study was to determine the accuracy of the noninvasive serologic test in comparison with the invasive gold standard (endoscopy with biopsy analyses) for the diagnosis of *H. pylori* in Egyptian children with different upper gastrointestinal disorder.

Material and Methods

One hundred children (age range 4-10 years), referred to the endoscopy unit at Mansoura University Children Hospital for upper gastrointestinal disorder, were recruited in the present study. Informed consent was obtained from the parents of the children. The study was approved by the Ethical Committee of National Research Centre.

Patients were excluded from the study if they had received treatment with antibiotics, proton pump inhibitors, and H2 receptor antagonists within the last four weeks. Patients with previous gastric surgery, long-term use of corticosteroid and immunosuppressant, and history of bleeding or active gastrointestinal bleeding were also excluded from the study.

During upper endoscopy (Olympus GIF P 230; Olympus Optical Co., Tokyo, Japan), three gastric biopsies (two taken within 3 cm from the pylorus and one from the corpus) were taken. One biopsy was used for rapid urease test (RUT) (Dio-Helico, Diomed), and the remaining two biopsies were used for histological examination (Hematoxiline and Eosin staining) for *H. pylori* infection. A rapid urease test result was obtained by adding a biopsy specimen to a urea broth (NaCl, KH2PO4, and NaOH); the result of the test was considered positive if there was a change of urea broth color from yellow-gold to pink-red due to an increase in pH induced by *H. pylori* [10].

Serum samples were stored at −20°C until the laboratory assay was performed. Serum antibodies (IgG) to *H. pylori* were examined using a microplate enzyme immunoassay (EIA) and an antibody determination kit (E-Plate Eiken *H. pylori* antibody, Eiken Chemical Co., Ltd., Tokyo, Japan). All samples were analyzed according to the manufacturer’s instructions, and the cutoff point was set at 10 U/ml. All assays were performed by experimenters blinded to the clinical status of the patients.

The gold standard for the presence of *H. pylori* infection was defined as both the histological examination and rapid urease test being positive. The absence of *H. pylori* infection required both tests to be negative.

Statistical Analysis

Statistical analysis was carried out using the statistical package for social sciences, version 16 for windows (SPSS Inc., USA). Continuous data were expressed as mean± SD, while Categorical data were expressed as frequencies and percentages, and were analyzed with the two-tailed chi-test. The chi-square test, odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the association between serum IgG at a cutoff 10 U/ml and the gold standard (RUT and histological examination) for detection of *H. pylori* infection. To assess the criterion validity of the serologic test, sensitivities, specificities, positive likelihood ratios, and negative likelihood ratios were estimated relative to the gold standard, across all possible cutoff values for the serologic test. Receiver operating characteristics (ROC) analysis was also conducted using the gold standard to assess the performance of serum IgG in detection of *H. pylori* infection. The 95% CI of the area under the ROC curve (AUC) was calculated. P value < 0.05 was considered statistically significant.

Results

Of the one hundred subjects included in the study 57 were male and 43 were female. Their age ranged from 4-10 years with a mean age 7.23± 1.94 year. Standard test were positive in 57% of all cases and negative in 43%. Serological test (IgG to *H. pylori*) was positive in 60% of all cases and negative in 40%.

Table 1 showed a highly significant association between the standard test and the serological test at a cutoff > 10 U/ml (Chi-square = 80.6, Odds ratio = 5.904, 95% Confidence interval = 4.069-7.739, and p < 0.001).

Serum test (IgG > 10 U/ml)	Positive	Negative	Total	χ²	OR	95% CI	p
Positive	55	3	58	4.069	5.904	4.069-7.739	< 0.001
Negative	2	40	42				
Total	57	43	100				

P < 0.005 is significant; χ² = Chi-square; OR = Odds ratio; CI = Confidence interval.

Table 1: Association between serological test and the standard test

http://www.mjms.mku/
http://www.id-press.eu/mjms/
As shown in Table 2, when the cutoff point of IgG antibody to \(H. \text{pylori} \) recommended by the manufacturer was used, the sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were 96.5%, 93%, 13.83, 0.038, respectively. Sensitivity and specificity at different cutoff values of IgG antibodies to \(H. \text{pylori} \) were shown in the Table 2.

Table 2: Sensitivity and specificity of anti-H. pylori IgG antibody test for Egyptian children, by cutoff point

Cutoff (U/ml)	Sensitivity (95% CI)	Specificity (95% CI)	LR+ (95% CI)	LR- (95% CI)
3	99.1 [0.992-0.999]	98.9 [0.989-0.995]	66.243 [5.481-135.11]	0.009 [0.001-0.159]
4	99.1 [0.992-0.999]	85.3 [0.622-0.710]	60.136 [0.093-1.115]	0.187 [0.066-0.402]
5	99.1 [0.992-0.999]	87.9 [0.722-0.810]	54.345 [1.14-1.659]	0.031 [0.012-0.153]
6	98.2 [0.907-0.997]	86.3 [0.625-0.711]	1.637 [1.387-2.432]	0.038 [0.005-0.27]
7-9	96.5 [0.881-0.99]	93 [0.614-0.976]	13.83 [4.638-41.239]	0.038 [0.000-0.148]
10	96.5 [0.881-0.99]	93 [0.614-0.976]	13.83 [4.638-41.239]	0.038 [0.000-0.148]
11	82.5 [0.706-0.902]	95.3 [0.845-0.987]	17.728 [4.557-68.974]	0.184 [0.104-0.324]

LR = likelihood ratio.

Figure 1 showed receiver operating characteristics (ROC) curve for anti-H. pylori IgG antibody test, with the histological examination and RUT as the gold standard. The area under the curve (AUC) for the anti-H. pylori IgG antibody test was 0.953 and 95% Confidence interval 0.907-0.999.

![ROC Curve](image)

Figure 1: Receiver operating characteristics (ROC) curve for anti-H. pylori IgG antibody test, with the histological examination and RUT as the gold standard.

Figure 1: Receiver operating characteristics (ROC) curve for anti-H. pylori IgG antibody test, with the histological examination and RUT as the gold standard.

Figure 1: Receiver operating characteristics (ROC) curve for anti-H. pylori IgG antibody test, with the histological examination and RUT as the gold standard.

Discussion

\(H. \text{pylori} \) is acquired in childhood and survives in the human stomach. Noninvasive testing for \(H. \text{pylori} \) has been strongly recommended as it is less expensive and more patient-friendly than invasive testing that requires endoscopy [11]. Serology was one of the first methods used for diagnosis of \(H. \text{pylori} \) infection. Detection of antibodies is useful for detecting past or present exposure [12]. In fact, a limitation of serology tests is the failure to distinguish between past and current \(H. \text{pylori} \) infection [13].

Serological tests have several advantages, namely they are non-invasive and they do not produce false negative results in patients receiving treatment (proton pump inhibitors and antibiotics) or presenting acute bleeding [14]. The success of a serology test depends on the use of antigens that are present in \(H. \text{pylori} \) strains from a given population. Moreover, kits developed using \(H. \text{pylori} \) strains from the west are not suitable for detecting \(H. \text{pylori} \) infection in the East [15]. The use of high-molecular-weight cell associated antigens that are conserved in \(H. \text{pylori} \) strains overcomes this limitation [16].

In the present study, a highly significant association was detected between the standard test for \(H. \text{pylori} \) (histological examination and RUT) and serological test (IgG antibody for \(H. \text{pylori} \)) for detection of \(H. \text{pylori} \) infection. A sensitivity and specificity of 96.5% and 93% were detected using a cutoff level of IgG of 10 U/ml with AUC of 0.953 with significance of <0.001 at the ROC curve.

Previous studies reported debate regarding the use of serologic tests for detection of \(H. \text{pylori} \) infection in children [18, 19]. Okuda et al., [18] studied 157 children for comparing antibodies to \(H. \text{pylori} \) (IgG and IgA enzyme linked immunosorbent assay (ELISA)) with \(H. \text{pylori} \) stool antigen (HpSA) enzyme immunoassay. They concluded that an immature immune response or tolerance to \(H. \text{pylori} \) exists in childhood and sero diagnosis of \(H. \text{pylori} \) infection is less useful in children aged below 10. Frenck et al., [19] studied children between 2 and 17 years of age, evaluated at the Cairo University School of Medicine Pediatric Gastroenterology Clinic who were already scheduled for upper endoscopy. Rapid urease, histology, and culture were done as invasive tests. Urea breath test performed. Stool and serum samples were tested for the presence of \(H. \text{pylori} \) by using commercially available enzyme-linked immunosorbent assay-based technology. They concluded that urea breath test and stool enzyme-linked immunosorbent assay kit had the highest sensitivity and specificity (sensitivity and specificity: 98 and 89 [urea breath test] and 94 and 81 [HpSA], respectively). In contrast to the present study, the serologic kit in their results had an unacceptably low sensitivity (50%).

In agreement with the results of the current study, a 2008 meta-analysis of 42 studies of children showed a sensitivity of 79.2% (95% CI, 77.3–81.0) and a specificity of 92.4% (95% CI, 91.6–93.3) for a serologic IgG antibody test [19]. In 2014, Ueda et al., [20] studied the performance of the E-plate anti-\(H. \text{pylori} \) IgG antibody test and it was found to be comparable to that of the stool antigen test. In concordance with the result of the present study, they found sensitivity, specificity, AUC of IgG (cutoff value
Clinical Science

10 U/ml) of 91.18%, 97.44%, 0.96% respectively. They concluded that IgG antibody to H. pylori might be useful in epidemiologic studies involving large numbers of participants. In agreement with the present study, Alam El-Din et al., [21] concluded that diagnosis of H. pylori infection by noninvasive methods, including the serum antibody test, revealed a sensitivity and positive predictive value of 88.9% and 94.2%, respectively.

A previous study released by (HO and Marshall,) [22] recommended that, in studies using serologic tests, researchers should reexamine the test results and determine if it is necessary to adopt specialized cutoff points in children. Accordingly, the performance of the serologic test was evaluated in the present study by using various cutoff points and it was found that cutoff points in the range of 7 to 9 U/ml yielded optimal sensitivity, specificity, and positive likelihood ratio.

The present study has several limitations. First, because only a subset of children for whom both blood and endoscopy were available were included in this study. The results need to be replicated in other, larger samples of consecutive patients. Second, IgG antibodies can be detected approximately 3 weeks after H. pylori infection. Therefore, the latent period between H. pylori infection and antibody production may be a source of misclassification. Finally, information, such as number of siblings and birth order, have not been collected that may be related to transmission of H. pylori infection among children.

In conclusion, IgG antibody for the detection of H. pylori infection seems to be a good alternative for invasive diagnostic tests such as urea breath test. IgG antibody to H. pylori has a high diagnostic value and can be considered as a suitable and reliable noninvasive test for detection of H. pylori infection. The choice of test kit depends on the sensitivity and specificity in each region and the circumstances of each patient. Further studies are needed to explore genetic differences among populations and their effects on immune responses.

References

1. Ellant AB. Helicobacter pylori: History, Prevalence, and Association with disease. Gastroenterology & Hepatology. 2012; 8(11) Supplement 7: 9-8.

2. Mansour MMH, Al Hadidi KH M, Omar MA. Helicobacter pylori and recurrent abdominal pain in children: is there any relation? Tropical Gastroenterology. 2012; 33(1): 55–61.

3. Hamed ME. Hussein HM, El Sadany HF, Elgobashy AA, Alta AH. Seroprevalence of Helicobacter pylori infection among family members of infected and non-infected symptomatic children. J Egypt Soc Parasitol. 2013; 43(3): 755-66.

4. Prasanthi CH, Prasanthi NL, Manikiran SS, Rama Rao NN. Focus on current trends in the treatment of Helicobacter pylori infection: An update. Inter J Pharm Sci Rev Res. 2011; 1: 42-51.

5. Mc Coll KE. Clinical practice. Helicobacter pylori infection. N Engl J Med. 2010; 362: 1597–604.

6. Tan HJ, Goh KL. Extra gastrointestinal manifestations of Helicobacter pylori infection: Facts or myth? A critical review. J Dig Dis. 2012; 13: 342–9.

7. Zhao Y, Wang J, Tanaka T, Hosono A, Ando R, Soeripto S, Errath Triningsih FX, Triono T, Sumoharjo S, Astuti EY, Gunawan S, Tokudome S. Association between HLA-DQ genotypes and haplotypes vs. Helicobacter pylori infection in an Indonesian population. Asian Pac J Cancer Prev. 2012; 13: 1247-51.

8. Lopes Al, Vale FF, Oleastro M. Helicobacter pylori infection - recent developments in diagnosis. World J Gastroenterol. 2014; 20(28): 9351–9353.

9. Guamer J, Kalach N, Elltusy Y, Koletzko S. Helicobacter pylori diagnostic tests in children: Review of the literature from 1999 to 2009. Eur J Pediatr. 2010; 169: 15-25.

10. Sabbi T, De Angelis P, Colistro F, Dall’Oglio L, di Abriola GF, Castro M. Efficacy of noninvasive tests in the diagnosis of Helicobacter pylori infection in pediatric patients. Arch Pediatr Adolesc Med. 2005; 159: 238.

11. Valliani A, Khan F, Chagani B,Khurwa AK, Majd S, Hashmi S, Nanji K, Valliani S. Factors associated with Helicobacter pylori infection, results from a developing country - Pakistan. Asian Pac J Cancer Prev. 2013; 14: 53-6.

12. Burucoa C, Delchier JC, Courilien-Mallet A, de Korvin JD, Mégraud F, Zerbib F, Raymond J, Fauchère JL. Comparative evaluation of 29 commercial Helicobacter pylori serological kits. Helicobacter. 2013; 18: 169-179.

13. Choi J, Kim CH, Kim D, Chung SJ, Song JH, Kang JM, Yang JI, Park MJ, Kim YS, Yim JY, Lim SH, Kim JS, Jung HC, Song IS. Prospective evaluation of a new stool antigen test for the detection of Helicobacter pylori, in comparison with histology, rapid urease test, (13)C-urea breath test, and serology. J Gastroenterol Hepatol. 2011; 26: 1053-1059.

14. Braden B. Diagnosis of Helicobacter pylori infection. BMJ 2012; 344: e828.

15. McNulty CA, Lehours P, Mégraud F. Diagnosis of Helicobacter pylori infection. Helicobacter. 2011; 16(Suppl 1): 10-18.

16. Marchildon PA, Sugiyama T, Fukuda Y, Peacock JS, Asaka M, Shimoyama T, Graham DY. Evaluation of the effects of strain-specific antigen variation on the accuracy of serologic diagnosis of Helicobacter pylori infection. J Clin Microbiol. 2003; 41: 1480-1485.

17. Okuda M, Miyashiro E, Koike M, Tanaka T, Bououka M, Okuda S, Yoshikawa N. Serodiagnosis of Helicobacter pylori infection is not accurate for children aged below 10. Pediatr Int. 2002; 44: 387–90.

18. French RW Jr, Fathy HM, Sherif M, Mohran Z, El Mohammedy H, Francis W, Rockabrand D, Mounir BI, Rozmajzl P, Frierston HF. Sensitivity and specificity of various tests for the diagnosis of Helicobacter pylori infection in Egyptian children. Pediatrics. 2006; 118; e1195–202.

19. Leal YA, Flores LL, Garcia-Cortés LB, Cedillo-Rivera R, Torres J. Antibody-based detection tests for the diagnosis of Helicobacter pylori infection in children: A meta-analysis. PLoS One. 2008; 3: e3751.

20. Ueda J, Okuda M, Nishiyama T, Lin Y, Fukuda Y, Kikuchi S. Diagnostic accuracy of the E-test Helicobacter pylori infection in pediatric patients. Arch Pediatr Adolesc Med. 2000; 253(3): 105-109.

21. Alam El-Din HM, Hashem AG, Ragab YM, Hussein IL, Mohamed DB, Mohamed el-CB. Evaluation of noninvasive versus invasive techniques for the diagnosis of Helicobacter pylori infection. Appl Immunohistochom Mol Morphol. 2013; 21(4): 326-33.

22. Ho B, Marshall BJ. Accurate diagnosis of Helicobacter Pylori. Serologic testing. Gastroenterol Clin North Am. 2000; 29: 853–62.