Possibilities of clinical neuroimaging assessment scales using for patient severity in the onset of cerebral hemorrhagic supratentorial stroke to predict the outcome of the disease acute period

A. A. Kuznietsov
Zaporizhzhia State Medical University, Ukraine

The main purpose of the study was to determine the criteria for the vital and functional prognosis of the cerebral hemorrhagic supratentorial stroke (CHSS) acute period outcome based on the Hemphill Intracerebral Hemorrhage (Hemphill-ICH) Scale and ICH-Grading Scale (ICH-GS) in the onset of the disease.

Materials and methods. A prospective, cohort, complex clinical and paraclinical study was conducted in 124 patients (72 men and 52 women, average age 64.7 ± 1.1 years) with CHSS. This study included clinical assessment using National Institute of Health Stroke Scale and Glasgow Coma Scale, visualization of cerebral structures and integrated assessment of health state severity using the Hemphill-ICH Scale and ICH-GS. The functional outcome of the acute period was determined by the modified Rankin Scale.

Results. The Hemphill-ICH Scale score ≥ 2 and ICH-GS score ≥ 8 are associated with an increased risk of CHSS acute period lethal outcome, at 7.1 [2.8–18.0] (P < 0.01) and 4.4 [2.2–9.3] times (P < 0.01), respectively. The Hemphill-ICH Scale is characterized by a higher informative value for CHSS acute period lethal outcome prediction (AUC = 0.84) in comparison with the ICH-GS (AUC = 0.78, P < 0.05). The ICH-GS is characterized by a higher informative value for the functional prognosis of CHSS acute period outcome (AUC = 0.65) in comparison with the Hemphill-ICH Scale (AUC = 0.61, P < 0.05).

Conclusions. Predictors of CHSS acute period lethal outcome are Hemphill-ICH Scale score ≥ 2 and ICH-GS score ≥ 8. The Hemphill-ICH Scale score = 0 and ICH-GS score = 5 are the criteria for the favourable functional outcome of CHSS acute period (mRS score ≤ 3 on the 21st day). The informative value of the Hemphill-ICH Scale and ICH-GS is higher for the vital prognosis than for the functional prognosis of CHSS acute period outcome verification.
Introduction

Cerebral hemorrhagic stroke (CHS) is at leading positions as for the structure of death and disability causes in young and middle-aged people in most countries of the world [2,6,12]. The most common focus of intracerebral hemorrhages is the supratentorial localization [13,15].

One of the ways to improve the effectiveness of treatment activities in this contingent of patients is a differentiated definition of optimal therapeutic tactics with regard to individual vital and functional prognosis of the disease acute period outcome [4,5,10].

Numerous studies have convincingly proved the connexion between the initial neurological deficiency level, structural changes in brain substance and the outcome of cerebral hemorrhagic supratentorial stroke (CHSS), which justifies the advisability of complex clinical-neuroimaging scales in assessment of patient severity for verifying the prognosis [3,7,8,11,14]. In accordance with the results of the meta-analysis, the Hemphill Intracerebral Hemorrhage (Hemphill-ICH) Scale and ICH-Grading Scale (ICH-GS) are the most informative for the prediction of patient survival during the first half of the year after CHS [9].

However, unified criteria for the CHSS acute period outcome prediction along with the optimal sensitivity (Se) and specificity (Sp) ratio, which would take into account the results of the assessment on the indicated scales, are currently unavailable.

The aforesaid served a thematic justification of this study.

Purpose

The main purpose of the study was to determine the criteria for the vital and functional prognosis of the acute period outcome of cerebral hemorrhagic supratentorial stroke based on the Hemphill-ICH Scale and ICH-GS in the onset of the disease.

Materials and methods

To achieve the goal, a prospective, cohort, complex clinical and paraclinical study was conducted in 124 patients (72 men and 52 women, mean age 64.7 ± 1.1 years) with CHSS. They were treated at Cerebrovascular Accident Department of the Municipal Institution "Zaporizhzhia City Clinical Hospital No. 6".

Inclusion criteria were:
1) spontaneous supratentorial intracerebral hemorrhage confirmed by the clinical computed tomography study;
2) hospitalization within the first 24 hours since the onset of the disease;
3) a signed informed consent form for the participation in the study;

Exclusion criteria were:
1) presence of acute disorders of cerebral circulation in the anamnesis;
2) primary subarachnoid and / or intramuscular hemorrhage;
3) ≥2 lesions;
4) the presence of indications for surgical treatment upon the examination held by a neurosurgeon;
5) the presence of oncologic pathology in the medical history;
6) decompensated stage of somatic pathology;
7) extracerebral death of cause in death according to the autopsy results.

All patients underwent clinical neurological examination along with the initial levels of neurologic deficits assessment in accordance with the National Institute of Health Stroke Scale and cerebral syndrome assessment in accordance with the Glasgow Coma Scale. The functional outcome of the acute period was determined by the modified Rankin Scale. The value of 4–5 points were considered as unfavourable functional outcome of CHSS acute period, and ≤3 points on the 21st day of the disease were considered as favourable.

The visualization of cerebral structures was carried out with the help of Computed Tomography Scanner «Siemens Somatom Spirit» within the first 24 hours since the onset of the disease, taking into consideration the lesion size (LS), the severity of dislocation syndrome due to the median brain structures displacement, the presence of blood breakthrough into the ventricular system of the brain. The LS was calculated in accordance with the ellipsoid formula: LS (ml) = a * b * c/2, where a, b, c are linear dimensions of the lesion (cm).

The Hemphill-ICH Scale and ICH-GS were used for the integrated assessment of health state severity in patients with cerebral hemorrhagic supratentorial stroke. They take
into account different age gradations, the severity of brain
syndrome in accordance with the Glasgow Coma Scale
upon hospitalization LS and localization and the presence of
blood breakthrough into the ventricular system of the brain.

All patients underwent conservative therapy in accordance
with the Unified Clinical Protocol for the provision of
medical care to patients with cerebral hemorrhagic stroke,
approved by the order of the Ministry of Health of Ukraine No.
275, dated April 17, 2014 [1]. The statistical data processing
was carried out with the help of Statistica 6.0 software (Stat-
Soft Inc., USA, series number AXXR712D833214FANS) and
MedCalc software (version 16.4). Descriptive statistics were
presented in the form of the mean value and the standard
error of the mean value (M ± m). Receiver operating charac-
teristic (ROC) analysis and relative risk (RR) calculation were
used for the determination of predictive criteria.

Results and discussion

Clinical and neuroimaging characteristics of examined
patients in the onset of the disease are presented in the
Table 1.

Lethal outcome (12.1 %), relatively unfavourable func-
tional outcome in the form of 4–5 points on the Rankin Scale
(37.9 %) and relatively favourable functional outcome in the
form of ≤3 points on the aforementioned scale (50.0 %)
were registered in the outcome structure in the acute period
of the disease.

In accordance with the ROC analysis, it has been
determined that the predictors of disease acute period
lethal outcome are the Hemphill-ICH Scale score ≥ 2
(Se = 77.3 %, Sp = 77.5 %) and ICH-GS score ≥ 8
(Se = 54.6 %, Sp = 86.3 %).

The frequency distribution of CHSS acute period lethal
outcome in terms of the Hemphill-ICH Scale and ICH-GS
is shown in the Table 2.

As a result, the Hemphill-ICH Scale score ≥ 2 and
ICH-GS score ≥ 8 are associated with an increased risk of
the CHSS acute period lethal outcome, by 7.1 [2.8–18.0]
(P < 0.01) and 4.4 [2.2–9.3] times (P < 0.01), respectively.

It has been determined that the Hemphill-ICH Scale
is characterized by a higher informative value for the vital
prognosis of CHSS acute period (AUC = 0.84) in compari-
son with the ICH-GS (AUC = 0.78, P < 0.05).

The Hemphill-ICH Scale score = 0 (Se = 79.6 %,
Sp = 28.3 %, AUC = 0.61) and ICH-GS score = 5
(Se = 59.2 %, Sp = 71.7 %, AUC = 0.69) are criteria for a
favourable functional outcome of the acute period.

Criteria for prognosis of CHSS acute period outcome,
based on the assessment of patients in the onset of the
disease in accordance with the Hemphill-ICH scale and
ICH-GS, are integrated in the Table 3.

It has been determined that the Hemphill-ICH Scale
is inferior to ICH-GS as for the predictive value related to
functional recovery degree determination upon the 21st day
after CHSS (AUC 0.61 vs. 0.69, P < 0.05).

The comparative analysis of AUC values allows to
state that the Hemphill-ICH Scale and ICH-GS are more
informative for vital, rather than functional, prognosis of
CHSS acute period outcome (AUC = 0.84 vs AUC = 0.61 for
Hemphill-ICH Scale, P < 0.05; AUC = 0.78 vs AUC = 0.69
for ICH-GS, P < 0.05).

Data, units	Value
NIHSS score	12.1 ± 0.6
GCS score	13.0 ± 0.3
Hemphill-ICH Scale score	1.3 ± 0.1
ICH-GS score	6.67 ± 0.16
Lesion size, ml.	22.9 ± 2.3
Septum pellucidum disp.	3.2 ± 0.3
Pineal gland disp.	2.6 ± 0.3

Table 1. Clinical and neuroimaging characteristics of examined patients
in the onset of the disease, (M ± m)

Scale	Value	Number of patients	Lethal outcome of the acute CHSS period (%)
Hemphill-ICH	≥2	40	42.5
	<2	84	6.0
ICH-GS	≥8	26	46.2
	<8	98	10.2

Table 2. Frequency distribution of CHSS acute period lethal outcome
in terms of the Hemphill-ICH score and ICH-GS

CHSS Acute Period Outcome	Predictors (scale, score)	Hemphill-ICH	ICH-GS
Lethal outcome	2–6	8–13	
Unfavourable functional outcome	1	6–7	
Favourable functional outcome	0	5	

Table 3. Criteria for prognosis of CHSS acute period outcome

Table 4. Quality assessment of obtained criteria for vital and functional prognosis
of CHSS acute period outcome in accordance with M. H. Zweig, G. Campbell Scale (1993)

Type of Prognosis	Scale	AUC	Quality grade in accordance with M. H. Zweig, G. Campbell Scale (1993)
Vital	Hemphill-ICH	0.84	Very Good
Vital	ICH-GS	0.78	Good
Functional	Hemphill-ICH	0.61	Average
Functional	ICH-GS	0.69	Average

The results of the obtained criteria quality assessment
for vital and functional prognosis of CHSS acute period
outcome in accordance with M. H. Zweig, G. Campbell Scale (1993) [16], which takes into account the AUC value,
are shown in the Table 4.

Thus, the study made it possible to develop informative
criteria for the short-term vital and functional prognosis
of CHSS acute period outcome with the optimal sensitivity and
specificity ratio in accordance with the Hemphill-ICH scale
and ICH-GS. At the same time, the results of the analysis of
AUC indicators based on these scales justify the advisability
of the more informative criteria elaboration for predicting vital
and, in particular, functional outcome of CHSS acute period.

Conclusions

1. Predictors of the lethal outcome of CHSS acute period
are the Hemphill-ICH Scale score ≥ 2 (Se = 77.3 %,
Sp = 77.5 %, RR = 7.1 [2.8–18.0], P < 0.01) and ICH-GS

Zaporozhye medical journal. Volume 20. No. 1, January–February 2018
ISSN 2306-4145 http://zmj.zsmu.edu.ua
score ≥ 8 (Se = 54.6 %, Sp = 86.3 %, RR = 4.4 [2.2–9.3] times, P < 0.01).

2. The Hemphill-ICH Scale score = 0 (Se = 79.6 %, Sp = 28.3 %) and the ICH-GS score = 5 (Se = 59.2 %, Sp = 71.7 %) are the criteria for the favourable functional outcome of CHSS acute period (mRS score ≤3 on the 21st day).

3. The Hemphill-ICH Scale is characterized by a higher informative value for CHSS acute period lethal outcome prediction (AUC = 0.84) in comparison with the ICH-GS (AUC = 0.78, P < 0.05).

4. The ICH-GS is characterized by a higher informative value for the functional prognosis of CHSS acute period outcome (AUC = 0.69) in comparison with the Hemphill-ICH Scale (AUC = 0.61, P < 0.05).

5. The informative value of the Hemphill-ICH Scale and ICH-GS is higher for the vital prognosis than for the verification of the functional prognosis of CHSS acute period outcome.

The perspective for the further scientific research is the elaboration of mathematical models for the CHSS acute period outcome prediction, which take into account complex results of clinical and neurovisual research at onset of disease.

References

[1] Ministerstvo okhrony zdrav’ia Ukrainy (2014). Upravleni v klinichnii protokol ekstrennoy, pervorny, vtorynny (spetsializovannyh) pamyatei o xirurgakh. [Unified clinical protocol of emergency, primary, secondary (specialized), tertiary (highly specialized) medical care and medical rehabilitation].

[2] Behrouz, R., Mira, V., Godoy, D. A., Topel, C. H., Masotti, L., Klijn, C. J. M., et al. (2017). Clinical Course and Outcomes of Small Supratentorial Intracerebral Hematomas. J Stroke Cerebrovasc Dis. 26(6), 1216–1221. doi: 10.1016/j.jstrokecerebrovasdis.2017.01.010.

[3] Cai, X., & Rosand, J. (2015). The Evaluation and Management of Adult Intracerebral Hemorrhage. Semin Neurosurg, 35(6), 638–645. doi: 10.1055/s-0035-1564687.

[4] Chan, S., & Hemphill, J. C. 3rd. (2014). Critical care management of intracerebral hemorrhage. Crit Care Clin, 30(4), 699–717. doi: 10.1016/j.ccc.2014.06.003.

[5] Krishnamurthi, R. V., Moran, A. E., Foroozanthar, M. H., Bennett, D. A., Mensah, G. A., Lawes, C. M., et al. (2014). The global burden of hemorrhagic stroke: a summary of findings from the GBD 2010 study. Glob Health, 9(1), 101–106. doi: 10.1016/g.heart.2014.01.003.

[6] Lee, S. H., Park, K. J., Kang, S. H., Jung, Y. G., Park, J. Y., & Park, D. H. (2015). Prognostic Factors of Clinical Outcomes in Patients with Spontaneous Thalamic Hemorrhage. Med Sci Monit, 21(5), 2638–2646. doi: 10.12659/MSM.894132.

[7] LoPresti, M. A., Bruce, S. S., Camacho, E., Kunchala, S., Dubois, B. G., Bruce, E., et al. (2014). Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci, 345(1–2), 3–7. doi: 10.1016/j.jns.2014.06.057.

[8] Mattthessen, K., Kwok, C. S., Ashlir, L., Pelpola, K., Myint, P. K., & Loke, Y. K. (2015). Prognostic Tools for Early Mortality in Hemorrhagic Stroke: Systematic Review and Meta-Analysis. J Neurol Clin, 11(4), 339–348. doi: 10.3988/jnc.2015.11.4.339.

[9] Montillo, A., & Goldstein, J. N. (2016). Diagnosis and Management of Acute Intracerebral Hemorrhage. Emerg Med Clin North Am, 34(4), 883–899. doi: 10.1016/j.emc.2016.06.010.

[10] Murphy, S. B., Moradiya, Y. Dawson, J., Lees, K. R., Hanley, D. F., Zai, W. C. (2015). Perihematomal Edema and Functional Outcomes in Intracerebral Hemorrhage: Influence of Hematoma Volume and Location. Stroke, 46(11), 3088–3092. doi: 10.1161/STROKEA HA.115.010354.

[11] Richy, C., Bozza, M. T., Oliveira, M. F., & Bozza, F. A. (2016). Molecular, Cellular and Clinical Aspects of Intracerebral Hemorrhage: Are the Enemies Within? Curr Neuropharmacol, 14(4), 392–402. doi: 10.2174/1570159X14666151201010058.

[12] Romero, J. M., & Rosand, J. (2016). Hemorrhagic cerebrovascular disease. Handb Clin Neurol, 135, 351–364. doi: 10.1016/B978-0-444-53485-9.00016-0.

[13] Weimar, C., & Klein-Borgmann, J. (2017). Epidemiology, Prognosis and Prevention of Non- traumatic Intracerebral Hemorrhage. Curr Pharm Des, 23(15), 2193–2196. doi: 10.2174/1381612822666161027152214.

[14] Zweig, M. H., & Campbell, G. (1993). Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem, 39(4), 651–577.

Information about author: Kuznietsov A. A., MD, PhD, Associate Professor, Department of Nervous Diseases, Zaporizhzhia State Medical University, Ukraine.

Відомості про автора: Кузнєцов А. А., канд. мед. наук, доцент каф. нервових хвороб, Запорізький державний медицинський університет, Україна.

Сведения об авторе: Кузнёцов А. А., канд. мед. наук, доцент каф. нервных болезней, Запорожский государственный медицинский университет, Украина.

Conflicts of Interest: author has no conflict of interest to declare.

Конфлікт інтересів: відсутній.

Надійшла до рецензії / Received: 14.11.2017
Після доопрацювання / Revised: 20.11.2017
Прийнято до друку / Accepted: 24.11.2017