Two electrons on a hypersphere: a quasi-exactly solvable model

Pierre-François Loos and Peter M. W. Gill

Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
(Dated: February 17, 2010)

We show that the exact wave function for two electrons, interacting through a Coulomb potential but constrained to remain on the surface of a D-sphere ($D \geq 1$), is a polynomial in the interelectronic distance u for a countably infinite set of values of the radius R. A selection of these radii, and the associated energies, are reported for ground and excited states on the singlet and triplet manifolds. We conclude that the $D = 3$ model bears the greatest similarity to normal physical systems.

PACS numbers: 31.15.ac, 31.15.ve, 31.15.vj
Keywords: Schrödinger equation, exact solution, quasi-exactly solvable model, electron correlation, hypersphere, spherium

Quantum mechanical models for which it is possible to solve explicitly for a finite portion of the energy spectrum are said to be quasi-exactly solvable [1]. They have ongoing value and are useful both for illuminating more complicated systems and for testing and developing theoretical approaches, such as density functional theory (DFT) [2-4] and explicitly correlated methods [5-8]. One of the most famous two-body models is the Hooke’s law atom which consists of a pair of electrons, repelling Coulombically but trapped in a harmonic external potential with force constant k. This system was first considered nearly 50 years ago by Kestner and Sinanoglu [9], solved analytically in 1989 for one particular k value [10], and later for a countably infinite set of k values [11].

A related system consists of two electrons trapped on the surface of a sphere of radius R. This has been used by Berry and collaborators [12-15] to understand both weakly and strongly correlated systems and to suggest an “alternating” version of Hund’s rule [16]. Seidl utilized this system to develop new correlation functionals [17] within the adiabatic connection in DFT [18]. We will use the term “spherium” to describe this system.

In recent work [19], we examined various schemes and described a method for obtaining near-exact estimates of the $1S$ ground state energy of spherium for any given R. Because the corresponding Hartree-Fock (HF) energies are also known exactly [19], this is now one of the most complete theoretical models for understanding electron correlation effects.

In this Letter, we consider D-spherium, the generalization in which the two electrons are trapped on a D-sphere of radius R. We adopt the convention that a D-sphere is the surface of a $(D + 1)$-dimensional ball. (Thus, for example, the Berry system is 2-spherium.) We show that the Schrödinger equation for the $1S$ and the $3P$ states can be solved exactly for a countably infinite set of R values and that the resulting wave functions are polynomials in the interelectronic distance $u = |r_1 - r_2|$. Other spin and angular momentum states can be addressed in the same way using the ansatz derived by Breit [20].

The electronic Hamiltonian, in atomic units, is

$$\hat{H} = -\frac{\nabla^2}{2} - \frac{\nabla^2}{2} + \frac{1}{u}$$

and because each electron moves on a D-sphere, it is natural to adopt hyperspherical coordinates $\{r, \theta, \phi\}$. For $1S$ states, it can be then shown [19] that the wave function $S(u)$ satisfies the Schrödinger equation

$$\left[\frac{u^2}{4R^2} - 1\right] \frac{d^2S}{du^2} + \left[\frac{(2D-1)u}{4R^2} - \frac{D-1}{u}\right] \frac{dS}{du} + \frac{S}{u} = ES$$

By introducing the dimensionless variable $x = u/2R$, this becomes a Heun equation [22] with singular points at $x = -1, 0, +1$. Based on our previous work [19] and the known solutions of the Heun equation [24], we seek wave functions of the form

$$S(u) = \sum_{k=0}^{\infty} s_k u^k$$

and substitution into (2) yields the recurrence relation

$$s_{k+2} = s_{k+1} + \frac{[k(k + 2D - 2) + 1]}{(k + 2)(k + D)} [E - s_k]$$

with the starting values

$$\{s_0, s_1\} = \begin{cases} \{0, 1\} & D = 1 \\ \{1, 1/(D-1)\} & D \geq 2 \end{cases}$$

Thus, the Kato cusp conditions [25] are

$$S(0) = 0 \quad S''(0) = 1$$

for electrons on a circle ($D = 1$) and

$$\frac{S'(0)}{S(0)} = \frac{1}{D-1}$$

in higher dimensions. We note that the “normal” Kato value of 1/2 arises for $D = 3$, suggesting that this may the
most appropriate model for atomic or molecular systems. We will return to this point below.

The wave function (8) reduces to the polynomial

$$S_{n,m}(u) = \sum_{k=0}^{n} s_k u^k$$

(8)

(where m the number of roots between 0 and 2R) if, and only if, $s_{n+1} = s_{n+2} = 0$. Thus, the energy $E_{n,m}$ is a root of the polynomial equation $s_{n+1} = 0$ (where deg $s_{n+1} = [(n+1)/2]$) and the corresponding radius $R_{n,m}$ is found from (11) which yields

$$R_{n,m}^2 E_{n,m} = \frac{n}{2} \left(\frac{n}{2} + D - 1 \right)$$

(9)

$S_{n,m}(u)$ is the exact wave function of the m-th excited state of 1S symmetry for the radius $R_{n,m}$.

If we write the 3P state wave function as

$$^3\Psi = (\cos \theta_1 - \cos \theta_2) T(u)$$

(10)

where θ_1 and θ_2 are the D-th hyperspherical angles of the two electrons [21, 22], the symmetric part satisfies the Schrödinger equation

$$\left[\frac{u^2}{4R^2} - 1 \right] \frac{d^2T}{du^2} + \left[\frac{(2D+1)u}{4R^2} - \frac{D+1}{u} \right] \frac{dT}{du} + T = ET$$

(11)

and the antisymmetric part provides an additional kinetic energy contribution $D/(2R^2)$.

Substituting the power series expansion

$$T(u) = \sum_{k=0}^{\infty} t_k u^k$$

(12)

into (11) yields the recurrence relation

$$t_{k+2} = \frac{t_{k+1} + [k(k+2D) \frac{1}{4R^2} - E] t_k}{(k+2)(k+D+2)}$$

(13)

with the starting values

$$\{t_0, t_1\} = \{1, 1/(D+1)\}$$

(14)

yielding the cusp condition

$$\frac{T'(0)}{T(0)} = \frac{1}{D+1}$$

(15)

The wave function (12) reduces to the polynomial

$$T_{n,m}(u) = \sum_{k=0}^{n} t_k u^k$$

(16)

when the energy $E_{n,m}$ is a root of $t_{n+1} = 0$ and the corresponding radius $R_{n,m}$ is found from (13) which yields

$$R_{n,m}^2 E_{n,m} = \frac{n}{2} \left(\frac{n}{2} + D \right)$$

(17)

$T_{n,m}(u)$ is the exact wave function of the m-th excited state of 3P symmetry for the radius $R_{n,m}$.

It is illuminating to begin by examining the simplest 1S and 3P polynomial solutions. Except in the $D = 1$ case, the first 1S solution has

$$R_{1,0} = \sqrt{(2D-1)(2D-2)} \quad E_{1,0} = \frac{1}{D-1}$$

(18)

and the first 3P solution has

$$R_{1,0} = \sqrt{(2D+1)(2D+2)} \quad E_{1,0} = \frac{1}{D+1}$$

(19)

These are tabulated for $D = 1, 2, 3, 4$ together with the associated wave functions, in Table II.

In the $D = 1$ case (i.e. two electrons on a circle), the first singlet and triplet solutions have $E_{2,0} = 2/3$ and $E_{1,0} = 1/2$, respectively, for the same value of the radius ($\sqrt{6}/2 \approx 1.2247$). The corresponding wave functions are related by $S_{2,0} = u T_{1,0}$. Unlike $T_{1,0}$, the singlet wavefunction $S_{2,0}$ vanishes at $u = 0$, and exhibits a second-order cusp condition, as shown in (19).

For the 2-spherium ($D = 2$ case), we know from our previous work [19] that the HF energy of the lowest 1S state is $E_{HF} = 1/R$. It follows that the exact correlation energy for $R = \sqrt{3}/2$ is $E_{corr} = 1 - 2/\sqrt{3} \approx -0.1547$ which is much larger than the limiting correlation energies of the helium-like ions (-0.0467) or Hooke’s law atoms (-0.0497) [27]. This confirms our view that electron correlation on the surface of a sphere is qualitatively different from that in three-dimensional physical space.

The 3-spherium ($D = 3$ case), in contrast, possesses the same singlet and triplet cusp conditions — Eqs. (7) and (15) — as those for electrons moving in three-dimensional physical space. Indeed, the wave functions in Table II

$$S_{1,0}(u) = 1 + u/2 \quad (R = \sqrt{5}/2)$$

(20)

$$T_{1,0}(u) = 1 + u/4 \quad (R = \sqrt{7})$$

(21)

have precisely the form of the ansatz used in Kutzenhigg’s increasingly popular R12 methods [3, 6]. Moreover, it

State	D	$2R$	E	$S(u)$ or $T(u)$
1S	1	$\sqrt{6}$	$2/3$	$u(1 + u/2)$
	2	$\sqrt{3}$	1	$1 + u$
	3	$\sqrt{10}$	$1/2$	$1 + u/2$
	4	$\sqrt{21}$	$1/3$	$1 + u/3$
3P	1	$\sqrt{6}$	$1/2$	$1 + u/2$
	2	$\sqrt{15}$	1	$1 + u/3$
	3	$\sqrt{28}$	$1/4$	$1 + u/4$
	4	$\sqrt{45}$	$1/5$	$1 + u/5$
TABLE II: Radii $R_{n,m}$ and energies $E_{n,m}$ for 1S states of two electrons on a D-sphere ($D=1,2,3$)

n/m	$D=1$	$D=2$	$D=3$									
	0	1	2	3	0	1	2	3	0	1	2	3
1	0.8660				1.5811							
2	1.2247	2.6458			4.0620							
3	3.3912	5.4312	1.4150		7.5154	2.2404						
4	6.5439	1.9178	9.2211	3.7379	11.961	5.3320						
5	10.693	4.7071	14.012	7.0848	17.404	9.3775	3.4415					
6	15.841	8.4583	2.5522	2.6738	31.287	11.585	11.158					
7	21.989	13.199	5.9404	2.6738	39.728	16.768	7.6003					
8	29.136	18.936	10.277	3.1515	48.054	21.654	10.411					

Radial

Radius	$D=1$	$D=2$	$D=3$		
1	1.0000		0.5000		
2	0.2857		0.1818		
3	0.1957	1.8729	0.0930	1.0459	
4	0.0934	0.4294	0.0559	0.2814	
5	0.0547	0.1279	0.0371	0.1279	1.3798
6	0.0359	0.3417	0.0197	0.1546	1.6253
7	0.0188	0.1515	0.0152	0.0854	0.4058

Energy

Energy	$D=1$	$D=2$	$D=3$		
1	0.5000		0.2500		
2	0.1304		0.1039		
3	0.0706	0.7343	0.0588	0.5801	
4	0.0443	0.2078	0.0381	0.1698	
5	0.0304	0.9972	0.0267	0.8067	
6	0.0221	0.2643	0.0198	0.2188	
7	0.0168	0.1974	0.0153	0.1025	0.9821
8	0.0132	0.0903	0.0121	0.0597	0.2583

TABLE III: Radii $R_{n,m}$ and energies $E_{n,m}$ for 3P states of two electrons on a D-sphere ($D=1,2,3$)

n/m	$D=1$	$D=2$	$D=3$									
	0	1	2	3	0	1	2	3	0	1	2	3
1	1.2247				2.6458							
2	3.3912	4.7958			6.2048							
3	6.5439	1.9178	9.2211	3.7379	10.718	3.4111						
4	10.693	4.7071	13.435	6.2041	16.205	7.6748						
5	15.841	8.4583	25.222	3.3588	22.678	12.852	4.1285					
6	21.989	13.199	5.9404	3.3588	30.142	18.979	9.0701					
7	29.136	18.936	10.277	3.1515	39.728	26.077	14.897	5.1303				
8	37.283	25.671	15.599	7.1177	48.054	34.155	21.654	10.411				

Radial

Radius	$D=1$	$D=2$	$D=3$		
1	0.5000		0.2500		
2	0.1304		0.1039		
3	0.0706	0.7343	0.0588	0.5801	
4	0.0443	0.2078	0.0381	0.1698	
5	0.0304	0.9972	0.0267	0.8067	
6	0.0221	0.2643	0.0198	0.2188	
7	0.0168	0.1974	0.0153	0.1025	0.9821
8	0.0132	0.0903	0.0121	0.0597	0.2583

Energy

Energy	$D=1$	$D=2$	$D=3$		
1	0.5000		0.2500		
2	0.1304		0.1039		
3	0.0706	0.7343	0.0588	0.5801	
4	0.0443	0.2078	0.0381	0.1698	
5	0.0304	0.9972	0.0267	0.8067	
6	0.0221	0.2643	0.0198	0.2188	
7	0.0168	0.1974	0.0153	0.1025	0.9821
8	0.0132	0.0903	0.0121	0.0597	0.2583

can be shown that, as $R \to 0$, the correlation energy E_{corr} approaches -0.0476, which nestles between the corresponding values for the helium-like ions (-0.0467) and the Hooke’s law atom (-0.0497). Again, this suggests that the $D=3$ model (“electrons on a hypersphere”) bears more similarity to common physical systems than the $D=2$ model (“electrons on a sphere”).

Numerical values of the energies and radii, for polynomial wave functions in $D=1,2,3$, are reported in Table II (for 1S states) and Table III (for 3P states).

For fixed D, the radii increase with n but decrease with m, and the energies behave in exactly the opposite way. As R (or equivalently n) increases, the electrons tend to localize on opposite sides of the sphere, a phenomenon known as Wigner crystallization which has also been observed in other systems. As a result, for large R, the ground state energies of both the singlet and triplet state approach $1/(2R)$. Analogous behavior
is observed when $\mathcal{D} \to \infty$ [31, 32].

In conclusion, we have shown that the system of two electrons, interacting via a Coulomb potential but constrained to remain on a \mathcal{D}-sphere, can be solved exactly for an infinite set of values of the radius R. We find that the 3-spherium ($\mathcal{D} = 3$ model), wherein the electrons are confined to a three-dimensional surface of a four-dimensional ball, has greater similarity to normal physical systems than the more familiar $\mathcal{D} = 2$ case.

We believe that our results will be useful in the future development of correlation functionals within density-functional theory [33], intracule functional theory [34–39], and explicitly correlated methods [5–8]. They also shed new light on dimension-dependent correlation effects, and may be used as an alternative system for studying quantum dots [40].

PMWG thanks the APAC Merit Allocation Scheme for a grant of supercomputer time and the Australian Research Council (Grant DP0664466) for funding.

* Corresponding author; Electronic address: peter.gill@anu.edu.au

[1] A. G. Ushveridze, *Quasi-Exactly Solvable Models in Quantum Mechanics* (Institute of Physics Publishing, 1994).
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[3] L. Sham, Phys. Rev. A 1133 (1965).
[4] R. G. Parr and W. Yang, *Density Functional Theory for Atoms and Molecules* (Oxford University Press, 1989).
[5] W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
[6] W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
[7] T. M. Henderson and R. J. Bartlett, Phys. Rev. A 70, 022512 (2004).
[8] D. Bokhan, S. Ten-no, and J. Noga, Phys. Chem. Chem. Phys. 10, 3320 (2008).
[9] N. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).
[10] S. Kais, D. R. Herschbach, and R. D. Levine, J. Chem. Phys. 91, 7791 (1989).
[11] M. Taut, Phys. Rev. A 48, 3561 (1993).
[12] G. S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513 (1982).
[13] G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1989 (1983).
[14] P. C. Ojha and R. S. Berry, Phys. Rev. A 36, 1575 (1987).
[15] R. J. Hinde and R. S. Berry, Phys. Rev. A 42, 2259 (1990).
[16] J. W. Warner and R. S. Berry, Nature 313, 160 (1985).
[17] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070 (2000).
[18] M. Seidl, Phys. Rev. A 75, 062506 (2007).
[19] P.-F. Loos and P. M. W. Gill, Phys. Rev. A 79, 062517 (2009).
[20] G. Breit, Phys. Rev. 35, 569 (1930).
[21] J. D. Louck, J. Mol. Spectrosc. 4, 298 (1960).
[22] D. L. Knirk, Phys. Rev. Lett. 32, 651 (1974).
[23] A. Ronveaux, ed., *Heun’s Differential Equations* (Oxford University Press, Oxford, 1995).
[24] A. D. Polyanin and V. F. Zaitsev, *Handbook of Exact solutions for Differential Equations* (Chapman & Hall/CRC, 2003).
[25] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
[26] J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan III, Phys. Rev. A 41, 1241 (1990).
[27] P. M. W. Gill and D. P. O’Neill, J. Chem. Phys. 122, 094110 (2005).
[28] P. F. Loos, A. T. B. Gilbert, and P. M. W. Gill (in preparation).
[29] E. Wigner, Phys. Rev. 46, 1002 (1934).
[30] D. C. Thompson and A. Alavi, Phys. Rev. B 69, 201302 (2004).
[31] L. G. Yaffe, Rev. Mod. Phys. 54, 407 (1982).
[32] D. Z. Goodson and D. R. Herschbach, J. Chem. Phys. 86, 4997 (1987).
[33] P. Gori-Giorgi, G. Vignale, and M. Seidl, J. Chem. Theor. Comput. 5, 743 (2009).
[34] P. M. W. Gill, D. L. Crittenden, D. P. O’Neill, and N. A. Besley, Phys. Chem. Chem. Phys. 8, 15 (2006).
[35] E. Dumont, D. L. Crittenden, and P. M. W. Gill, Phys. Chem. Chem. Phys. 9, 5340 (2007).
[36] D. L. Crittenden and P. M. W. Gill, J. Chem. Phys. 127, 014101 (2007).
[37] D. L. Crittenden, E. E. Dumont, and P. M. W. Gill, J. Chem. Phys. 127, 141103 (2007).
[38] Y. A. Bernard, D. L. Crittenden, and P. M. W. Gill, Phys. Chem. Chem. Phys. 10, 3447 (2008).
[39] J. K. Pearson, D. L. Crittenden, and P. M. W. Gill, J. Chem. Phys. 130, 164110 (2009).
[40] T. M. Henderson, K. Runge, and R. J. Bartlett, Chem. Phys. Lett. 337, 138 (2001).