Modified carbon-containing electrodes in stripping voltammetry of metals

Part I. Glassy carbon and carbon paste electrodes

Natalya Yu. Stozhko · Natalya A. Malakhova · Mikhail V. Fyodorov · Khiena Z. Brainina

Received: 19 October 2007 /Revised: 21 October 2007 /Accepted: 21 October 2007 /Published online: 16 January 2008
© The Author(s) 2007

Abstract Papers dealing with modified electrodes made of carbon materials and composites for use in stripping voltammetry of metals have been reviewed. The review consists of two parts, of which the first considers applications of modified glassy carbon and carbon paste electrodes, while the second describes diverse modified carbon-containing composite and microscopic electrodes. Information about modifiers, electrode modification methods, conditions, and limits of detection of elements in different materials has been tabulated. The review covers 550 papers published in Russia and abroad between 1990 and the first half of 2007.

Keywords Modified electrodes · Glassy carbon · Carbon paste electrodes · Stripping Voltammetry · Metal ions determination

Introduction

Voltammetry is one of the most universal methods of electroanalytical chemistry, which is widely used as a technique for measurement of concentrations of substances and as a tool for analysis of their properties. The growing number of papers concerned with problems and urgent issues of voltammetry is indicative of the increasing interest among chemists to this method. The general status and future trends of voltammetry and electrochemical sensors are described in the reviews [1–7]. A priority line of its development that follows from the analysis of those papers is the creation, the study and the use of new electrodes, electrochemical sensors [8], transducers, and detectors for automated, flow-through, and “field” analysis. This is because the electrochemical signal is formed by processes taking place on the electrode surface. Therefore, the condition of the electrode surface, which depends on the origin, the defect content, and the mechanical inhomogeneity of the material, determines many significant quantitative characteristics of electrochemical measurement systems. Required electrochemical properties of the electrode can be obtained if its surface is modified purposefully. Therefore, the modification and the “molecular design” of the transducer surface and the formation of grafted layers on solid surfaces constitute an actively developing new area of investigation. Problems of the chemical modification of solid surfaces, specific and regular features of the modifier attachment to various solid matrices, and examples of practical applications of chemical sensors (modified electrodes) are overviewed in the papers [9–21].

Over a period of years, the development of the voltammetric method was connected with metal, primarily mercury, electrodes. But mercury is an extremely toxic material. This element presents the first-rate hazard leading to severe poisoning and heavy diseases. For this reason, some countries (USA, Japan, EC) have declared a moratorium on the use of mercury in storage batteries, lamps, thermometers, pesticides, etc. Electrodes made of nontoxic materials also tend to smoothly force out mercury electrodes in electroanalysis. As an alternative to toxic mercury electrodes, electrodes of a nontoxic “dental” amalgam (Ag2Hg3 with the surplus silver; [22, 23]) have been developed and used for measurements of heavy metals. Carbon materials (CMs) possessing some attractive features [24, 25] are widely used as mercury-free current-conducting...
electrode materials. Firstly, depending on the CM type, the character of the electrical conduction can change from the metal to the semiconductor conduction suggesting broad potentials for a wide range of capacitive, adsorption, catalytic, and kinetic properties. Secondly, the carbon surface can adsorb a variety of compounds by both the nonspecific physical sorption and the specific chemisorption with a functional coating, which can be formed either under the forced action of reagents or due to the presence of native functional groups resulting from a thermomechanical treatment of the material [25, 26]. Thirdly, the complexation capacity of carbon materials is higher than that of metals. Fourthly, CMs can form strong covalent bonds with some surface modifiers favoring the development of modified electrodes. Fifthly, the carbon surface is electrochemically inert over a wide interval of potentials. All these features predetermine the use of diverse carbon materials in electroanalysis. Glassy carbon, pyrolytic graphite, carbon glass-ceramics, impregnated graphite, carbon fibers, filaments, cloths, gauzes, and composite materials serve as the electrode material. The properties of CM electrodes, their specific features and drawbacks, and applications in voltammetric measurements of substances are described in the Russian reviews published in 1988 and 1990 [27, 28]. The present overview covers papers published in Russia and abroad since 1990. To narrow the borders of an extensive literature stream on modified carbon-containing electrodes for the 17-year period, the current review has been restricted on a method of analysis and analyte. So, the electrodes used for metal ion determination with SV have been described only. All the papers published over this period can be divided into six main groups depending on the type of the electrode used: glassy carbon (GCE), carbon paste (CPE), carbon-containing composite (CCE), impregnated graphite (IGE), thick-film graphite-containing (TFGE) electrodes, carbon microelectrodes (CME), and their arrays (ACME). As Fig. 1 suggests, GCE is the first with respect to the number of papers published over the 15 years. The minimum number of papers, most of which have appeared recently, are dedicated to TFGE and CME. This is due to the fact that these two groups of the electrodes represent recently emerging and vigorously developing lines of research into the use of carbon-containing electrodes.

Glassy-carbon electrodes

Glassy carbon is isotropic, is almost gas-tight, has low porosity, is very hard, is a good current conductor, and is stable in many corrosive media [25]. The adsorptivity and the reactivity of glassy carbon are low compared to those of other structured graphite materials having a hexagonal or a rhombohedral lattice. These factors account for the low sensitivity of unmodified glassy-carbon electrodes in analysis [29–34]. The detection limit of elements is reduced by increasing the electrochemical accumulation time (up to 40 min) [35–42], using additional accumulation operations, e.g., the ultrasonic extraction [43] or modifying the GCE surface.

Table 1 shows some applications of modified GCE for voltammetric measurements of inorganic ions [44–190]. Methods of the preliminary modification of the surface (ex situ) and the in-analysis modification (in situ) are widely used for the purposeful transformation of the GCE surface properties. These methods are sometimes combined to enhance the selectivity. For example, a film of a metal or a current-conducting polymer is applied to GCE and a selective organic reagent or mercury, gold, or bismuth ions, which co-precipitate with the element to be determined, are added to the solution. GC is a preferable substrate for mercury film electrodes [191]. In this case, the two-layer modification of the surface is realized by the “ex situ/in situ” scheme. On occasion, up to three modified layers each, having its specific application and certain function, are built up on the surface. For example, the layer-by-layer modification by a clay mineral, a cation-exchange cross-linked polymer and mercury [156] results in that the GCE surface forms a layer, which possesses cation-exchange properties, can form an amalgam, and separates coarse molecules or cations.

The GCE modifiers in common use are metals (mercury [44–68], gold [81–85], cadmium [87], copper [88], lead [89], platinum [90], bismuth [91–96]) and facilitating the precipitation of amalgam-forming and electropositive elements. Organic substances (OS) [107–121], macrocyclic compounds [122–126], polymers [127–131, 157–159, 165–166, 169–175], bioactive compounds [186], and nanotubes [187–190] can also serve as GCE modifiers. Different combinations of the modifiers—a metal and OS [70–80, 97–105, 106], a polymer and a metal [86, 132–147, 160–180]—
Table 1 Modified glassy carbon electrodes

Modifier a	Manner	Analyte	Detection limit (M)	Supporting electrolyte b	Sweep mode c	Purge d	Sample e	Reference
Hg	In situ Ni (II)	2·10⁻⁶	30 gL⁻¹ H₃PO₄ + 70 gL⁻¹ Na₂SO₄ + 10 gL⁻¹ NaCl + Hg (II) (pH 4.5)	LS ASV	–	Nickel electrodeposits [44]		
Hg	In situ Pd (II)	9·10⁻⁶	0.2 M KCl (pH 3) + Hg (II) (Hg:Pd ≤ 1:10)	LS ASV	–	BGD [45]		
Hg	In situ Fe (II, III), Mn (II)	1·10⁻⁶	0.5 M NaCl + Hg (II) (pH 4.0–6.0)	LS ASV	+	Sea, drinking, service waters [46]		
Hg	In situ Pb, Cd (II), Bi (II, III)	4·5·10⁻¹² (Cd); 1·10⁻⁹ (Pb); 1·10⁻⁴ (Bi)	0.01 M amm. buf. (pH 5.6) + 5·10⁻³ M SCN⁻ + 3·10⁻⁵ M Hg (II)	SQW ASV	+	Lake water [47]		
Hg	In situ Cu, Pb (II), Cd (II)	5·10⁻⁴% (Pb); 2·10⁻⁵% (Cd); 7·10⁻⁷% (Bi)	0.35 M KCl + 0.01 M HCl + 5·10⁻⁶ M Hg (II) (pH 2.0)	LS ASV	–	Soils, cement, rocks [49]		
Hg	In situ Cu, Pb (II), Cd (II)	1·10⁻⁸–10⁻¹¹	1 M HClO₄ + 5·10⁻⁴ M Hg (II)	DP ASV	+	Sea waters [50]		
Hg	In situ Cu, Pb (II), Cd (II)	2·10⁻⁵ (Pb); 7·10⁻⁵ (Cd); 1·6·10⁻⁴ (Cu)	2 M NaCl (0.5 M HCl) + 1·10⁻⁴ M Hg (II)	AC ASV	–	Surface, waste water [51]		
Hg	In situ Cu, Pb (II), Cd (II)	1·10⁻⁹ (Pb); 1·10⁻¹⁰ (Cd); 1·10⁻⁸ (Cu); 1·10⁻⁸ (Zn)	1 M LiCl (0.2 M HCl) + 1·10⁻⁴ M Hg(NO₃)₂	SQW ASV	+	Surface, waste water [52–53]		
Hg	In situ Cu, Pb (II), Cd (II), Zn (II)	2·10⁻¹⁰ (Cu); 1·10⁻¹⁰ (Pb); 7·10⁻¹¹ (Cd); 6·10⁻¹⁰ (Zn)	0.1 M NaAc + 5·10⁻⁵ M Hg (II) (Cu, Cd, Pb); 0.1 M NaAc + 5·10⁻⁵ M Hg (II) + Ga (III) (Zn)	LS ASV	–	Extract from river sediment [54]		
Hg	In situ Cu, Pb (II), Cd (II), Zn (II)	6·10⁻¹¹ (Zn); 2·10⁻¹¹ (Cd); 1·10⁻¹¹ (Pb); 5·10⁻¹¹ (Cu)	0.025 M KCl (pH 3.5) + 0.3 gL⁻¹ Hg (II)	DP ASV	+	Sea waters [55]		
Hg	Ex situ Cu (II)	2·10⁻⁸	0.1 M HNO₃	SQW ASV	–	Waters, pharmaceutical preparations [56]		
Hg	Ex situ Pb (II)	5·10⁻⁹	2.5 M NaCl + 0.25 M asc. ac. + 0.24 M NaOH	DP ASV	+	Soil, air [57]		
Hg	Ex situ Tl (I)	1·10⁻⁹	0.13 M EDTA + 0.58 M asc. ac. + 0.7 M NaOH	DP ASV	+	Soils [58]		
Hg	Ex situ Tl (I)	5·10⁻¹⁰	0.17 M EDTA + 2 mM HCl + 0.03 M asc. ac	LS ASV	+	Natural waters [59]		
Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode	Purge	Sample	Reference
----------	--------	---------	---------------------	-----------------------	------------	------	--------	-----------
Hg	Ex situ	Ba (II), Pb (II)	7×10^{-10} (Ba); 5×10^{-10} (Pb);	$0.1 \ M \ HClO_4$ or 80% ethanol $+ 0.1 \ M \ TBAP$	DP ASV	+	BGD	[60]
Hg	Ex situ	Pb (II), Cu (II), Cd (II)	6×10^{-11} (Pb); 2×10^{-10} (Cu)	$0.01 \ M \ NH_4Ac\cdot HCl + 1.2 \times 10^{-4} \ mM \ NaSCN \ (pH \ 3.4)$	DP ASV	–	Sea water	[61]
Hg	Ex situ	Pb (II), Cu (II), Cd (II)	10^{-9}	$0.05 \ M \ HCl + 70\%$ methanol (pH 4–6)	DP ASV	+	Foodstuffs	[62]
Hg	Ex situ	Zn (II), Cu (II), Pb (II), Cd (II)	5×10^{-10}–1×10^{-9}	$0.1 \ M \ KNO_3 + 2 \times 10^{-4} \ M \ HNO_3$	SQW ASV	–	Waste water	[63]
Hg	Ex situ	Zn (II), Cu (II), Pb (II), Cd (II)	4×10^{-7} (Zn); 2.7×10^{-9} (Cd); 6.8×10^{-9} (Pb); 4×10^{-9} (Cu)	$0.2 \ M \ HNO_3$	SQW ASV	–	Sweet water	[64]
Hg	Ex situ	Zn (II), Cu (II), Pb (II), Cd (II)	8×10^{-9} (Zn); 9.7×10^{-9} (Cu); 1.6×10^{-8} (Pb); 8.6×10^{-9} (Cd)	$0.01 \ M \ LiCl \ (pH \ 2.9)$	SQW ASV	+	Fuel	[65]
Hg	Ex situ	Cu (II), Pb (II), Cd (II), Zn (II)	$1 \ ng \ g^{-1}$	$0.075 \ M \ NaNO_3$	LS ASV	+	Sugar, syrup	[66]
Hg	Ex situ	Cu (II), Pb (II), Cd (II), Zn (II)	10^{-8}–10^{-9}	$0.1 \ M \ citric \ acid + 1 \times 10^{-4} \ M \ Fe \ (III)$	LS ASV	–	BGD, extracts from turf	[67]
Hg/Cu	Ex situ/in situ	Se (IV)	1×10^{-9}	$0.1 \ M \ HClO_4 + 1 \ mg\ L^{-1} \ Cu \ (II) + 0.02 \ M \ NaSCN + 5 \times 10^{-3} \ M \ EDTA$	DP CSV	+	BGD	[68]
Hg, 8HXQ	In situ	Mo (VI)	5×10^{-9}	$0.2 \ M \ NaAc \ (pH \ 5.25) + 5 \times 10^{-5}$	DP CSV	+	Biomaterials and background objects	[69]
Hg, DMG	In situ	Ni (II)	1.3×10^{-10}	$0.1 \ M \ KNO_3 + 2 \times 10^{-4} \ M \ Hg(NO_3)_2 \ (pH \ 9)$	SQW CSV	–	Soils	[70]
Hg/RSH	Ex situ	Cd (II)	4×10^{-12}	$0.01 \ M \ NaAc \ (pH \ 3.0)$	SQW CSV	+	Sea water	[71]
Hg, catechol	In situ	Sn (IV), Pb (II)	5×10^{-9} (Pb); 4×10^{-9} (Sn)	$0.1 \ M \ NaAc \ (pH \ 4.5) + 5 \times 10^{-4}$	DP CSV	+	Biomaterials, foodstuffs, background objects	[72]
Element	Form	Condition	Reagent	Dilution	Use	Source		
---------	------	-----------	---------	----------	-----	--------		
Hg/EDA	Ex situ/ in situ	Cu (II)	0.01 M HCl + 3·10^{-3} M EDA	SQW ASV	Sea water	[75]		
Hg/DMG	Ex situ/ in situ	Ni (II)	10^{-6}	LS CSV	BGD	[76]		
Hg/DMG	Ex situ/ in situ	Pb (II)	1·10^{-4}	SQW ASV + BGD		[77]		
Hg/18C6	Ex situ/ in situ	Co (II), Ni (II)	1·10^{-9}	DP CSV + Model mixtures		[78]		
Hg/CHD or DMG	Ex situ/ in situ	Co (II), Ni (II)	5·10^{-9} (Ni); 2·10^{-9} (Co)	SQW CSV	Biological liquids	[79]		
Hg/DMG (1), Hg/8HXQ (2)	Ex situ/ in situ	Ni (II) (1), Cu (II) (2)	9·10^{-10} (Ni), 1·10^{-9} (Cu)	SQW CSV	BGD	[80]		
Au	Ex situ	As (III)	1·6·10^{-8}	HCl + Na₂SO₃	DP ASV +	Natural waters	[81]	
Au nanoparticles	Ex situ	As (III)	1·3·10^{-10} (LS ASV); 2·10^{-10} (SQW ASW)	1 M HCl	LS ASV	River waters	[82]	
Au	Ex situ	CH₃Hg⁺	2·10^{-8}	0.01 M NaN₂₀₃ + 0.14 M HNO₃	DP ASV	Model solution	[83]	
Au	Ex situ	Se (IV), Te (IV)	1·6·10^{-10} (Te)	0.1 M HNO₃	DP ASV	Copper	[84]	
Au/PVP	Ex situ	Hg (II)	5·10^{-10}	0.025 M H₂SO₄ + 0.05 M KCl	SQW ASV	Natural waters	[85]	
Cd	In situ	Hg (II)	4·5·10^{-9}	0.1 M Na₂Br + 1·10^{-8} M Cd (II)	LS ASV	Natural waters	[86]	
Cu (1); Au (2); Se (3)	In situ	Se (IV), Au (III)	3·8·10^{-5} (Se), 1·5·10^{-5} (Au)	0.1 M HClO₄ + 1·1·10^{-4} M Cu(II) (Au(III)) (Se); 0.1 M HClO₄ + 10 mgL⁻¹ Se (IV) (Au)	SQW CSV	Vitamins	[87]	
Pb	In situ	Ni (II), Co (II)	1·6·10^{-9} (Ni); 1·10^{-9} (Co)	0.1 M PIPES + 5·10^{-3} M DMG + 2·5·10^{-5} M Pb(NO₃)₂ (pH 6–9)	SQW CSV	SS of water and tea leaves	[88]	
Pt nanoparticles	In situ	As (III)	2·8·10^{-8}	1 M HClO₄	LS ASV	Drinking water	[89]	
Bi	In situ	In (III)	10^{-8}	0.1 M NaAc (pH 4.5) + 0.1 M KBr + 200 µgL⁻¹ Bi (III)	SQW ASV	Model solutions	[90]	
Bi	In situ	Zn(II), Cd (II), Pb (II)	1·10^{-9} (Pb); 2·10^{-9} (Cd); 1·10^{-9} (Zn)	0.1 M NaAc + 500 µgL⁻¹ Bi (III)	SQW ASV	Tap water, biomaterials	[91]	
Bi	Ex situ	Cu (II)	7·8·10^{-8}	0.1 M acet. buff. (pH 4.75) + 2·5·10^{-4} M Ga (III)	SQW ASV	Model solution	[92]	
Bi	Ex situ	Cd (II), Pb (II)	5·10^{-7}	0.05 M NaAc	SQW ASV	BGD	[93]	
Bi	Ex situ	Zn (II), Cd (II)	4·3·10^{-7} (Zn); 5·9·10^{-9} (Cd)	0.1 M NaAc	SQW ASV	BGD	[94]	
Bi	Ex situ	In(III), Ti(IV), Cu(II), Cd(II)	10^{-7}	0.1 M NaAc (pH 4.5)	SQW ASV	BGD	[95]	
Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode	Purge	Sample	Reference
----------	--------	---------	---------------------	------------------------	------------	------	--------	-----------
Bi/CMA	Ex situ/ in situ	V (V)	2·10⁻⁸	0.1 M acet. buff. (pH 5.5) + 50 μM CAA + 4 mM KBrO₄	SQW CSV	–	Groundwater	[97]
Bi/DMG	Ex situ/ in situ	Co (II)	1.8·10⁻¹¹	0.0125 M PIPES + 0.002 M HEPES + 75 μg L⁻¹ CTAB + 2.4·10⁻⁴ M DMG (pH 6.5)	DP CSV	+	Tea leaves, natural and drinking waters	[98–99]
Bi/CF	Ex situ/ in situ	Cr (VI)	2·10⁻⁹	0.01 M PIPES + 0.2 M KCl + 0.1 mM CF	SQW CSV	–	Tap water, soils	[100]
Bi/TEA	Ex situ/ in situ	Fe (III)	7.7·10⁻⁹	0.1 M NaOH + 0.01 M TEA + 5·10⁻³ M KBrO₄	DP CSV	+	Standard sample of river water	[101]
Bi/DTPA	Ex situ/ in situ	Cr (VI)	3·10⁻¹⁰	0.1 M NaAc (pH 4.5) + 0.25 M KNO₃ + 1·10⁻⁶ M DTPA	SQW CSV	+	River waters	[102]
Bi/CMA	Ex situ/ in situ	Ni (II)	1.2·10⁻⁹ (Co); 1.7·10⁻⁶ (Ni)	2.5·10⁻⁹ M DMG	SQW ASV	–	Ore, river water	[103]
Bi/cupferron	Ex situ/ in situ	Mo (VI)	2·10⁻⁹	0.05 M acet. buff. (pH 5.5) + 5·10⁻⁵ M CAA	SQW CSV	–	Sea water	[104]
Bi/CMA	Ex situ/ in situ	U (VI)	4·10⁻¹⁰	0.01 M PIPES + 0.05 M KCl + 0.1 mM cupferron	SQW CSV	–	Sea water	[105]
Pb-Cu/DMG + NO₂⁻	In situ	Co (II)	1·10⁻¹¹	0.2 M (NH₄)₂SO₄ + NH₄OH + 0.5 M NaNO₂ + 2·10⁻² M DMG + 5·10⁻⁷ M Cu (II) + 1·5·10⁻⁷ M Pb (II) (pH 8.5)	SQW CSV	–	SS, water	[106]
8HXQ	In situ	Sn (II)	2·10⁻⁶	0.1 M NaAc (pH 6) + 8HXQ	SQW	+	Tooth paste, pharmaceutical preparations	[107]
HEPES	In situ	U (VI)	1·10⁻⁹	0.02 M HClO₄ (pH 4) + 2·10⁻⁵ M HEPES	SQW CSV	+	Food stuffs, fertilizers, cement	[108]
TMAC	In situ	Al (III), Mg (II)	5·10⁻¹¹ (Al); 4·10⁻¹⁰ (Mg)	0.01 M KNO₃ (pH 5.0) + 0.02 M TMAC	SQW ASV	+	Food stuffs, fertilizers, cement	[109]
DFO	In situ	Al (III)	2·10⁻⁷	0.05 M amm. buff. (pH 8.3–8.9) + (10⁻⁸–10⁻⁵) M DFO, THMP, DHP	DP ASV	–	Natural waters, biological liquids	[110]
DDTACD	Ex situ	Au (III)	8·3·10⁻⁸	0.1 M NaCl + 0.01 M NaAc (pH 4)	SQW CSV	–	Geological samples	[111]
8MQN	Ex situ	Ag (I)	2·7·10⁻¹¹	0.1 M NaAc (pH 4.3) (accumulation), 0.1 M HNO₃ + 0.05 M KBr (sweep)	LS ASV	–	Sea waters, rice	[112]
PAN	Ex situ	Cd (II)	5·10⁻¹⁰	0.1 M NaH₂PO₄	LS ASV	–	Model solution	[113]
ARS	In situ	Cu (II)	1·10⁻⁶	0.1 M NaH₂PO₄ + 0.1 M ARS	CV	–	BGD	[114]
Alizarin	Ex situ	Cu (II)	1·10⁻⁴	0.5 M Na₂SO₄ (pH 4)	CV	–	BGD	[115]
BPD	In situ	Fe (II)	10⁻⁷	0.025 M KCl + 1 g L⁻¹ BPD	DP AVA	+	Soils	[116]
Dithizone	Ex situ	Hg (II)	5·10⁻¹⁰	0.1 M KJ (pH 2)	LS ASV	–	Sea water	[117]
MAA	Ex situ	Hg (II)	4·10⁻²	0.1 M HNO₃	LS ASV	–	BGD	[118]
BPD	Ex situ	Pb (II)	1·10⁻⁷	0.1 M NaAc (pH 4.5)	LS ASV	+	Model solutions	[119]
Humic acids Ex situ Fe(II), Cu(II), Ni(II) 2.0·10⁻⁶ (Fe); 6.0·10⁻⁷ (Cu); 6.0·10⁻⁶ (Ni) 0.1 M KHPH (Fe, Cu); 0.1 M Na₂SO₄ (Ni) SQW ASV – BGD [120]

PCC Ex situ Ce(III) 2.0·10⁻¹⁰ 0.1 M NaOH DP ASV + SS, hair [121]
KF-222 Ex situ Hg(II) 10⁻¹² 0.01 M NaAc (pH 4) + 0.1 M NaClO₄ SQW ASV – Sea and waste waters, saliva [122–123]

CA Ex situ Hg(II) 2.5·10⁻⁸ 0.1 M H₂SO₄ + 0.01 M NaCl SQW ASV + Natural waters [124]

TCA Ex situ Cu(II) 2.10⁻⁹ 0.1 M B₃R (pH 4.5) DP ASV + Natural waters [125]

TCA Ex situ Pb(II), Cd(II) 2.10⁻⁸ (Cd); 8.10⁻⁹ (Pb) 0.1 M acet. buff. DP ASV + Natural waters [126]

Nafion Ex situ Pb(II) 5·10⁻⁹ 0.1 M NaCl+ 0.05 M HCl SQW ASV – Standard sample TMDA-52.2 [127]

Nafion Ex situ Sn(IV) 8·10⁻¹⁰ 0.01 M NaCl + HCl (pH 1.9) LS CSV – Hair [128]

Nafion Ex situ CH₃Hg⁺ 4.5·10⁻⁸ 0.01 M HClO₄ SQW AV + BGD [129]

Nafion Ex situ Fe(III), Fe(II) 10⁻⁹ (0.03–0.3) M HCl SQW DDV + Interstitial waters [130–131]

Nafion /Hg Ex situ Cd(II) 1·10⁻¹⁰ 0.01 M NaAc LS ASV + Blood [132]

Nafion /Hg Ex situ Cu(II) 1.6·10⁻⁶ 0.1 M HNO₃ SQW ASV + Beer [133]

Nafion /Hg Ex situ Cu(II) 1.5·10⁻⁸ 0.1 M acet. buff. (pH 3.5) DP ASV + Estuarial water [134]

Nafion /Hg Ex situ Pb(II) 2.10⁻⁷ 0.1 M TRIS + 0.6 M NaCl SQW ASV + BGD [135]

Nafion /Hg Ex situ Pb(II) 1·10⁻⁷ 0.02 M KNO₃ (pH 5) DP ASV + Model solution [136]

Nafion /Hg Ex situ Pb(II) 1.2·10⁻⁹ 0.1 M NaAc (pH 4.6) + 85.7 mM Hg (II) SQW ASV – Simulated saliva [137]

Nafion /Hg Ex situ/ in situ Pb(II), Cd(II) 2·10⁻⁹ M (Cd); 4·10⁻⁹ M (Pb) 0.1 M KNO₃ + 2 mM HNO₃ + 1·10⁻⁴ M Hg (II) SQW ASV – Waste water [138]

Nafion /Hg Ex situ/ in situ Pb(II), Cd(II) 3·10⁻¹¹ (Pb), 5·10⁻¹¹ (Cd) 0.1 M NaAc (pH 4.6) SQW ASV – BGD [139–140]

Nafion /Hg Ex situ Pb(II), Cd(II) 9·10⁻⁹ (Cd), 1·10⁻⁷ (Pb) 0.12 M NaAc (pH 7.7) SQW ASV + Sweet water [141]

Nafion /Hg Ex situ Pb(II), Cu(II) 2·10⁻⁸ (Pb), 6·10⁻⁸ (Cu) 0.1 M KNO₃ + 5 mM HNO₃ DP ASV – Service waters [142]

Nafion /Hg Ex situ Cd(II), Pb(II) 4.5·10⁻⁸(Cd); 4.8·10⁻⁸(Pb) 0.1 M NaAc (pH 4.5) + 9.41·10⁻⁵ M FA DP ASV + Model solutions of fulvic acids [143]

Nafion /Hg Ex situ Cu(II), Pb(II), Cd(II) 1.6·10⁻⁸ (Cu); 4.8·10⁻⁸ (Pb); 8.9·10⁻⁹ (Cd) 0.1 M NaAc (pH 4.5) SQW ASV + Food stuffs [144]

Nafion /Hg – Cu Ex situ Pb(II) 4·10⁻¹⁰ 5 mM HNO₃ + 0.1 M KNO₃ SQW ASV + Natural waters [145]

Nafion /Bi Ex situ/ in situ Pb(II), Cd(II) 4.8·10⁻⁸ 0.1 M NaAc (pH 4.5) + 400 µg L⁻¹ Bi (III) SQW ASV – Model solutions of SAS [146]

Nafion /Bi Ex situ/ in situ Pb(II), Zn(II) 5·10⁻¹⁰ (Pb); 9·10⁻¹⁰ (Cd); 6·10⁻⁹ (Zn) 0.1 M acet. buff. SQW ASV – Tap water, urine, wine [147]
Table 1 (continued)

Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode	Purge	Sample	Reference
Naflon + HgCl₂	Ex situ	Pb (II), Cu (II)	5.8 × 10⁻⁹ (Pb); 5 × 10⁻⁸ (Cu)	0.1 M citric acid + 0.03 M Na₂HPO₄ + 0.1 M KCl	LS ASV	–	Sea water	[148]
Naflon + KF-222 (1); Naflon + terpene (2)	Ex situ	Hg (II); Fe (II)	3.8 × 10⁻⁹ (Hg); 2.5 × 10⁻⁷ Fe (II)	0.025 M H₂SO₄ + 0.1 M NaCl (Hg); 0.1 M sulphate buffer (pH 3) (Fe)	SQW ASV	–	BGD	[149]
Naflon + Na-DDC (1); Naflon + 18C6 (2)	Ex situ	Pb (II), Cu (II), Cd (II), Hg (II)	1 × 10⁻⁸ (Hg) (1); 1 × 10⁻⁹ (Cu, Pb, Cd) (2)	0.1 M KNO₃ (pH 2.0) (1); 0.1 M NaAc (2)	DP ASV	+	BGD	[150]
Naflon + tobramycin	Ex situ	Cu (II)	5 × 10⁻¹⁰	Acet. buff. (pH 4.6)	DP ASV	–	Water samples, analytical salts	[151]
Naflon + BPD/Hg	Ex situ	Pb (II)	5 × 10⁻¹⁰	0.07 M phosphate buffer (pH 4)	SQW ASV	–	Drinking water	[152]
Naflon + DAB /Hg	Ex situ	Se (IV)	6 × 10⁻⁹	0.1 M NaClO₄	SQW CSV	–	Natural waters	[153]
Naflon + 8HXQ /Hg	Ex situ	Te (IV)	1.6 × 10⁻⁹	0.1 M NaClO₄ (pH 2.5) + 0.01 M EDTA NH₄Cl buffer (pH 9)	SQW CSV	+	BGD	[154]
Nontronite /naflon /Hg	Ex situ	Cu (II)	10⁻⁷	0.01 M KNO₃	SQW ASV	+	Natural waters	[156]
Tosflex	Ex situ	Cu (II)	9.4 × 10⁻⁶	0.5 M NaCl + 0.1 M NaAc (pH 5)	LS ASV	+	BGD	[157]
Tosflex	Ex situ	Hg (II)	2 × 10⁻¹⁰	0.5 M NaCl + 0.01 M HCl	DP ASV	+	Natural waters	[158–159]
Tosflex /Hg	Ex situ	Bi (II)	3 × 10⁻⁹	0.5 M KCl (pH 1.4)	SQW ASV	+	Waters	[160]
Tosflex /Hg	Ex situ	Ti (III)	5 × 10⁻¹⁰	0.5 M KCl (pH 5.6)	SQW ASV	–	Model solutions	[161]
Tosflex /Hg	Ex situ	Zn (II)	1.5 × 10⁻⁹	0.02 M H₂SO₄	SQW ASV	+	Model solutions	[162]
Tosflex + DAB /Hg	Ex situ	Se (IV)	1.3 × 10⁻⁹	0.1 M KCl	SQW CSV	+	Sea and sweet natural waters	[163]
Tosflex + 8HXQ /Hg	Ex situ	Te (IV)	1.6 × 10⁻⁹	0.1 M KCl (pH 3)	SQW CSV	+	Model solutions	[164]
PPG	Ex situ	Sb (III)	4.1 × 10⁻¹⁰	0.04 M NaAc (pH 5.5) (accumulation); 1 M HCl (sweep)	DP ASV	+	Sea water, hair	[165]
PPD	Ex situ	Hg (II)	1 × 10⁻¹⁰	0.5 M NaCl + 0.01 M HCl	DP ASV	+	Interstitial waters	[166]
PP + PDDT	Ex situ	Cu (II)	1 × 10⁻⁶	0.1 M NaAc	CV	–	Model solution	[167]
PMR	Ex situ	Hg (II)	4.4 × 10⁻¹¹	B-R buff. (pH 2.56)	LS ASV	–	Like water	[168]
CA	Ex situ	Pb (II), Cd (II)	2 × 10⁻⁷	0.1 M NaAc	DP ASV	+	Model solution	[169–170]
Nontronite/CA	Ex situ	Cu (II)	2.7 × 10⁻⁸	amm. buff. (pH 10)	SQW ASV	–	Natural waters	[171]
OxPPh or Morin hydrate	Ex situ	Sn (II, IV), Sb (III)	5 × 10⁻⁸ (Sn); 5 × 10⁻⁸ (Sb)	0.5 M HCl + 1.5 M NaCl	LS ASV	–	Natural waters	[172–173]
Method	Substrate	pH	Buffer	Supporting Electrolyte	Description	Reference		
--------------	--------------------------	-----------	---------------	------------------------	--------------------	-----------		
PVP + KF222	Ex situ				DP ASV – BGD	[176]		
PVP /Hg	Ex situ				SQW ASV – Subsoil waters	[177]		
PVP /Hg	Ex situ				SQW ASV – Subsoil waters	[178]		
CA/Hg	Ex situ				DP ASV + Model solutions	[179]		
PP /Hg	Ex situ				SQW ASV + BGD	[180]		
PESA /Hg	Ex situ / in situ				SQW ASV – Model solutions of SAS	[181]		
PSSF /Hg	Ex situ				SQW ASV – Natural waters	[182-184]		
PSSF /Hg	Ex situ				SQW ASV + Model solutions	[185]		
CNT	In situ				LS CSV + BGD	[186]		
CNT	Ex situ				DP ASV – Lake water	[187]		
CNT	Ex situ				DP ASV – Lake water	[188]		
CNT + Nafion	Ex situ				DP ASV – Water samples	[189]		
GCM-Au/MWCNT	Ex situ				DP ASV – BGD	[190]		

*CAA Chloramline acid, 8HMQ 8-hydroxyquinoline, DMG dimethylglyoxime, RSH 8-mercapto-carboxylic acid, EDA ethylenediamine, 18C6 18-crown-6-ether, CHD 1,2-cyclohexanedione dioxime, PVP poly(4-vinylpyridine), CAA chloramine acid, CF cupferon, TEA triethanolamine, DTPA diethylene triamine pentacetic acid, TMAC tetramethylammonium chloride, DFO diferrinoxamine, DDTC/DACD 8,9,17,18-dibenzo-1,7-dioxo-10,13,16-triazacyclooctadecane, 8MQN 8-mercaptoquinoline, PAN polyacrylonitrile, ARS alizarin red S, BPD 2,2'-bipyridyl, PCC pyrocatechol, KF-222 Cryptofix-222, MAE 8-mercaptoacetic acid, CA calix[6][arene], TCA p-tert-butylthiophen-4carboxylate, DDC diethyldithiocarbamate (e.g., Na, Zn), DAB 3,3'-diaminobenzidine, PPG polypyrrolol, HEPES N-(2-hydroxyethyl)piperazine-N'-3-propane sulfonic acid, PDDT pyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red, CA cellulose acetate, OxPPh oxidized phenylphthalein, EDTA ethylenediaminedimercaptotetraacetic acid, PDDS poly(3-A'-diami-no-2,2',5',2"-terthiophen), PESA polyester sulfonic acid, PSSF poly(styrene sulfonate), PLL-PSS poly-4,4'-bipyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red, CA cellulose acetate, OxPPh oxidized phenylphthalein, EDTA ethylenediaminedimercaptotetraacetic acid, PDDS poly(3-A'-diami-no-2,2',5',2"-terthiophen), PESA polyester sulfonic acid, PSSF poly(styrene sulfonate), PLL-PSS poly-4,4'-bipyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red.|

*Ammonium buffer, ascorbic acid, TRAP tetraphenylammonium perchlorate, SDS sodium dodecyl sulfate, PIPES piperazine-N,N'-bis(2-ethane sulfonic acid), CTAB cetyl trimethylammonium bromide, THIMP 3-hydroxy-2-methyl-4H-pyrane-4-one, DHP 2,3-dihydroxyxypyridine, KHPh potassium hydroxylate, acet. buffer, tetraethylammonium bromide, 8,9,17,18-dibenzo-1,7-dioxo-10,13,16-triazacyclooctadecane, 8MQN 8-mercaptoquinoline, PAN polyacrylonitrile, ARS alizarin red S, BPD 2,2'-bipyridyl, PCC pyrocatechol, KF-222 Cryptofix-222, MAE 8-mercaptoacetic acid, CA calix[6][arene], TCA p-tert-butylthiophen-4carboxylate, DDC diethyldithiocarbamate (e.g., Na, Zn), DAB 3,3'-diaminobenzidine, PPG polypyrrolol, HEPES N-(2-hydroxyethyl)piperazine-N'-3-propane sulfonic acid, PDDT pyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red, CA cellulose acetate, OxPPh oxidized phenylphthalein, EDTA ethylenediaminedimercaptotetraacetic acid, PDDS poly(3-A'-diami-no-2,2',5',2"-terthiophen), PESA polyester sulfonic acid, PSSF poly(styrene sulfonate), PLL-PSS poly-4,4'-bipyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red, CA cellulose acetate, OxPPh oxidized phenylphthalein, EDTA ethylenediaminedimercaptotetraacetic acid, PDDS poly(3-A'-diami-no-2,2',5',2"-terthiophen), PESA polyester sulfonic acid, PSSF poly(styrene sulfonate), PLL-PSS poly-4,4'-bipyridyl-5,6-diphenyl-1,2,4-triazine, PMR polymethyl-red.|

*LS Linear sweep, ASV anodic stripping voltammetry, SQW square wave, DP differential pulse, AC alternating current, CSV cathodic stripping voltammetry, CV cyclic voltammetry, AVA anodic voltammetry, DDV double differential voltammetry, MSWV multiple square wave voltammetry.|

*Supporting electrolyte, SS standard sample, SAS surface active substances.
groups were synthesized on GCE. The response selectivity is efficiently improved by the “guest–host” interaction. Properties of crown ethers acting as host molecules for ions of guest metals were used [77, 112, 108–109, 148–149, 176] for measurements of Au (III), Hg (II), Cu (II), Pb (II), and Cd (II) ions on electrodes modified by crown-ether adsorption and a nafion film with immobilized macrocycles.

One more method for improvement of the voltammetric selectivity is the use of electrodes with monolayers of organic molecules self-organized on the electrode surface [72, 193–194]. For example, ω-carboxylic acids with hydrocarbon chains of different lengths can arrange themselves to the Langmuir palisade on gold or mercury surfaces. While possessing discrimination properties, functionalized layers can change the transport of depolarizer particles to the electrode surface not only due to different charges, but also due to the hydrophobic effect.

The pioneering studies concerned with the use of nanotube-modified GCE include the research performed by a group of Taiwan investigators [187, 188]. Such electrodes provided sufficiently low detection limits for elements. However, the introduction of these electrodes to the analytical practice requires solving the problem of structural ordering in the nanotube layer which influences the reproducibility of measurement results.

A serious problem in the use of GCE is the degradation of the modified surface showing up as the displacement of the current peak potential of the determined element, the distortion of the peak shape, and the emergence of additional peaks [195]. To make the GCE surface reproducible, it is prepared and cleaned by a great variety of methods such as mechanical polishing [108], treatment with reagents [76], electrochemical treatment by polarization at high anode potentials [36, 186], and exposure to microwaves or ultrasound [29, 40, 131]. Mechanical polishing of the surface with abrasive diamond or Al₂O₃ powders or special polish cloths is in most common use. This surface treatment method is not only laborsome and time-consuming, but what is the worst does not guarantee that the surface properties will be reproducible. This problem was attacked by development of automatic devices for cleaning of the solid electrode surface [116], but they have been used on a narrow scale because of their complexity and high cost. The original approach has been used [190] to modify GC with glassy carbon spheres covered by nanoparticles of precious metals and multiwalled nanotubes.

Carbon-paste electrodes

In 1958, Adams described a new type of the carbon-paste electrode (CPE) for voltammetry. This electrode was
Table 2 Modified carbon paste electrodes

Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode^b	Purge	Sample	Reference		
Au_dano	Ex situ	As (III)	3·10⁻⁹	0.1 M HNO₃	SQW ASV –	BGD, mineral water	[202–203]			
Au	Ex situ	As (III, V)	4·10⁻⁸ As (III); 7·10⁻⁹ As (V)	1 M HClO₄ + 0.2 M HCl + 5·10⁻⁹	LS ASV +	River water	[204]			
Au_ductums	In situ	Au (III)	1·10⁻⁶	0.2 M H₂SO₄	CVA –	Model mixtures	[205]			
Au	In situ	Hg (II)	2·5·10⁻¹⁰	0.1 M HNO₃ + 0.02 M KCl + 5·10⁻⁹	DP ASV –	Drinking water	[206]			
Bi	In situ	Zn (II), Pb (II), Cd (II)	1.5·10⁻⁸ (Pb)	0.1 M NaAc (pH 4.5) + 0.5 mg L⁻¹ Bi (III)	SQW ASV –	Model solutions	[207]			
Bi	Ex situ	Cd (II), Pb (II)	9·10⁻⁹ (Cd); 4·10⁻⁹ (Pb)	0.2 M acet. buff. (pH 4.25)	SQW ASV or DP ASV –	Tap, sea waters	[208–209]			
Bi₂O₃ or Bi	Ex situ	Zn (II), Pb (II), Cd (II)	4·4·10⁻⁸ (Cd); 2·4·10⁻⁸ (Pb)	0.1 M NaAc (pH 4.5)	DP ASV –	Waters	[210–211]			
Hg	In situ	Zn (II)	1·3·10⁻⁷	0.1–0.2 M amm. buff. + 2·10⁻⁵ M Hg(NO₃)₂	DP ASV –	Drinking water	[212]			
Hg	Ex situ	Cu (II), Pb (II), Cd (II)	5·10⁻⁹	Ammonium acetate buff. (pH 4.5)	DP ASV –	Fish muscles and water samples	[213]			
Wax + Hg oxalate	Ex situ	Cu (II), Pb (II), Cd (II), Zn (II)	3·10⁻⁹ (Cd)	0.1 M KCl or acet. buff. (pH 3.8)	DP ASV or LS +	Medicinal plants, tablets	[214]			
Pt nanoparticles	Ex situ	Cu (II)	3·9·10⁻⁹	0.1 M acet. buff. (pH 5.9)	LS ASV –	Urine	[215]			
DB18C6 (1), CuO (2)	Ex situ	Pb (II)	2·10⁻⁹ (1); 2·5·10⁻⁹ (2)	0.1 M NaCl + 10⁻³ M 18C6 (1); 0.1 M NaCl (2)	DP ASV –	Soil, snow, air, waters	[216]			
DB18C6	Ex situ	Cu (II), Pb (II)	9·5·10⁻⁹ (Cu); 2·10⁻⁹ (Pb)	1 M NaAc (pH 5–6)	LS ASV –	Waste waters	[217]			
Aza-crown compound	Ex situ	Ni (II), Co (II)	4·10⁻⁸ (Ni); 1·2·10⁻⁷ (Co)	0.1 M NaCl (accumulation); 0.1 M KOH (sweep)	DP ASV –	BGD	[218]			
DB18C6 and its analogs	Ex situ	Au (III), Pt (IV), Pd (II)	8·10⁻⁹ (Au); 3·10⁻⁷ (Pt); 2·10⁻⁹ (Pd)	0.1 M HCl	DP ASV –	SS of ore	[219]			
B15C5	Thiacrown compounds	Cu (II)	8·10⁻⁷	Water-ethanol (40%) solutions	DP ASV –	Strong drinks	[220]			
Thiacrown compounds	Cu (II)	5·10⁻⁷	NaClO₃ (accumulation); 0.1 M NaAc (sweep)	DP ASV –	BGD	[221]				
calix[4]arene	Cu (II)	2·10⁻⁸	Acidified sample (accumulation); 0.1 M HCl (sweep)	DP ASV –	Tap water	[222]				
a-CD & b-CD	Pb (II)	6·3·10⁻⁷ (Pb); 2·0·10⁻⁶ (Cd); 1 M HClO₄	ASV –	BGD	[223–]					
Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode	Purge	Sample	Reference		
----------	--------	---------	---------------------	-----------------------	------------	-------	--------	-----------		
Zeolite	Ex situ	Cu (II)	1.5·10^{-8}	0.05 M NaNO₃	DP ASV	+	Dried tomoay, bakosel capsule	[225]		
Silica	Ex situ	Cu (II)	2·10^{-9}	0.1 M NH₂OH	LS ASV,	–	Subsoil, sea waters	[227]		
Silica	Ex situ	Hg (II)	2·10^{-9}	Solution pH 4–7	SQW ASV	–	Real Samples	[230]		
Silicas	Ex situ	Cu (II)	3·10^{-9}	0.1 M HNO₃	DP ASV	–	Tap water	[231]		
Silicas	AMT	Hg (II)	5·10^{-10}	Sample (pH 2) (accumulation); 0.05 M KNO₃ (sweep)	DP ASV	–	Natural waters	[232]		
AMT (1);	Ex situ/ in situ	Cu (II); Ni (II)	3.1·10^{-8} (Cu); 2·10^{-9} (Ni)	Ethanolic solution (accumulation); 0.1 M NH₄Cl + 2.5·10^{-3} M DMG (pH 9 for Ni)	DP ASV (1)	–	Ethanol fuel samples	[233]		
AMT/	thio-	groups	Ex situ	Cd (II)	1·10^{-7}	0.1 M phosphate buffer (pH 4)	DP ASV	+	Natural waters	[235]
DMG (2)	Ex situ	Hg (II)	(2.5–6.5)·10^{-8}	HNO₃ (pH 3.0) (accumulation); 0.01 M KNO₃ (sweep)	DP ASV	–	BGD, natural water	[236]		
ex situ	Pb (II); Hg (II)	2·4·10^{-9} (Pb); 1.5·10^{-8} (Hg)	0.2 M HNO₃	SQW ASV	–	BGD	[238]			
Mercapto-	ex situ	Hg (II)	1·10^{-6}	pH 1 (accumulation); 0.1 M HCl + 5% thiourea (sweep)	DP ASV	–	BGD	[239]		
groups	CPA	ex situ	U (VI)	1·10^{-7}	0.05 M CH₃COONa (pH 5) (accumulation); 0.2 M HNO₃ (sweep)	DP ASV	–	BGD	[240]	
Monsil	Ex situ	Cd (II); Pb (II); Cu (II)	8.9·10^{-8} (Cd); 4.8·10^{-8} (Pb); 1.6·10^{-7} (Cu)	0.1 M NaClO₄ + 1.5 M HClO₄ (Hg, Ag, Pb); 0.1 M KCl + 1.0 M HCl (Cu)	CVA	+	BGD	[242]		
ZrPH	Ex situ	Cd (II)	2·10^{-9}	0.05 M B-R buff. (pH 3) (accumulation); 0.1 M citrate buff. (pH 3.5) (sweep)	DP ASV	–	Artificial synthetic samples	[243]		
Vemiculite	Ex situ	Cu (II)	5·10^{-9}	0.04 M B-R buff. (accumulation); 0.1 NaNO₃ + 0.02 M B-R buff. (sweep)	SQW ASV DP ASV	–	SRM 1643b (SS)	[244–245]		
Vemiculite	Ex situ	Cu (II); Ag (I)	1.9·10^{-5} (Ag); 3.1·10^{-6} (Cu)	0.01 M NaClO₄	DP ASV	–	BGD	[246]		
Vemiculite	Ex situ	Hg (II); Ag (I)	5.7·10^{-8} (Hg); 6.3·10^{-8} (Ag)	B-R buff. – pH 7 (Hg), pH 6 (Ag) (accumulation); B-R buff. (pH 5) + 0.05 M NaNO₃ (sweep)	SQW ASV	–	Model solutions	[247]		
Montmorillonite	Ex situ	Cu (II)	4·10^{-8}	NaAc (pH 5.5)	DP ASV	–	Model solutions	[248]		
Montmorillonite	Ex situ	Bi (III)	1·10^{-10}	0.1 M HCl	DP ASV	–	Water, nikel metal	[249]		
Sample Type	Ex situ/In situ	Element	Concentration	Precipitation Solution	Assay	Source				
-------------	-----------------	---------	---------------	------------------------	-------	--------				
Montmorillonite	Ex situ	Hg (II)	1·10^{-10}	0.1 M tartaric acid	ASV	BGD [250]				
	Ex situ	Hg (II)	5·10^{-8}	1 M KCl (pH 2)	DP ASV	Natural water [251]				
	Ex situ	Fe (III)	3·6·10^{-6}	0.05 M KCl (pH 3.2)	DP CSV	BGD [252]				
	Ex situ	Hg (II)	5·10^{-10}	Sample (pH 2–5) (accumulation); 0.05 M KNO₃ (sweep)	ASV	Natural water [253]				
TZT-HDTA-clay	Ex situ	Hg (II)	5·10^{-10}	0.1 M CH₃COONa (pH 6.8)	DP CSV	Model solutions [254]				
Dowex CGC241	Ex situ	Cu (II)	6·25·10^{-5}	0.01 M KNO₃ (accumulation); 0.1 M HCl (1 M KNO₃) (sweep)	DP ASV	Waste waters [255]				
Dowex 50W-8X	Ex situ	Cu (II)	1·10^{-7}	0.1 M HCl (1 M KNO₃) (sweep)	LS ASV	River waters [256]				
Amberlite IRS 718	Ex situ	Cd (II)	4·4·10^{-8}	1 mM amm. buff. (accumulation); 0.1 M HCl (sweep)	CV	River waters [257]				
Dyolite GT-73	Ex situ	Hg (II); CH₃Hg⁺ (I)	2·0·10^{-8} (Hg); 9·4·10^{-9} (CH₃Hg⁺)	0.1 M HCl	DP ASV	Drinking water [258]				
Ion-exchange resin	Ex situ	Cu (II); Pb (II); Hg (II)	2·4·10^{-7} (Cu); 1·1·10^{-7} (Pb); 5·0·10^{-8} (Hg)	0.1 M KNO₃ + 5·10^{-3} M CH₃COOH	LS ASV	Catalysts, precious metals [259]				
Humic acids	Ex situ	Pd (II)	9·4·10^{-8}	0.1 M B-R buff. (pH 2.8) (accumulation); 1.0 M HCl (sweep)	DP ASV	SRM 2670 (SS), urine [260]				
Humic acids	Ex situ	Pb (II); Cu (II); Hg (II)	4·8·10^{-9} (Pb); 7·9·10^{-9} (Cu); 8·0·10^{-7} (Hg)	0.1 M KNO₃	DP ASV	Ores [261]				
Humic acids + EDA	Ex situ	Au (III)	5·10^{-8}	0.35 M HNO₃ (accumulation); 0.8 M HCl (sweep)	DP ASV	River waters [262]				
Humic acids/amides	Ex situ	Hg (I; II)	5·10^{-8}	0.1 M H₂SO₄ (accumulation); 0.5 M H₂SO₄ (sweep)	LS ASV	River waters [262]				
Soils	Ex situ	Cu (II)	1·2·10^{-5}	0.04 M B-R buff. + 0.1 M KNO₃	DP ASV	Model solutions [263]				
HSF-Na	In situ	Ag (I)	2·5·10^{-12}	0.02 M NaAc + 8·3·10^{-5} M HSF-Na + 3 mM EDTA	DP ASV	Tap water [264]				
TTCP	In situ	Ag (I)	1·10^{-4}	0.2 TBAP + 1·10^{-3} TTCP	CV	BGD [265]				
BPG	In situ	Bi (III)	5·10^{-10}	0.3 M HCl + 2·0·10^{-5} M BPG	ASV	Waters, hair [266]				
ARS	In situ	Cu (II)	1·6·10^{-10}	0.04 M B-R buff. (pH 4.56) + 3·6·10^{-5} M ARS + 1·6·10^{-3} M K₂S₂O₈	SD CSV	Natural water, soil [267]				
ARS	In situ	Zr (IV)	1·10^{-10}	0.1 M acetic acid + 0.08 M KHP (pH 4.8) + 4·10^{-6} M ARS	SD CSV	Ore samples [268]				
ARS + CTAB	In situ	Ce (IV)	6·10^{-10}	0.1 M HAc-NaAc + 0.2 M KHP (pH 5) + 2·10^{-6} M ARS	SD CSV	Cast iron samples [269]				
CTAB	In situ	Ti (IV); V (V); Mo (VI)	2·0·10^{-9} (Ti); 1·4·10^{-9} (V); 4·2·10^{-10} (Mo)	0.01 M oxalic acid + x mM CTAB; x=0.1 (Ti); 0.25 (V); 0.75 (Mo)	DP ASV	Rock, fuel, steel [270–271]				
CTAB, Septonex	In situ	Os (IV); Pt (IV); Jr (IV)	5·10^{-9} (Os); 1·10^{-6} (Pt, Jr)	0.1 M acet. buff. + 0.15 M NaCl + 1·10^{-5} M CTAB or Septonex (pH 4.5–6)	DP CSV	Industrial waste water [272–273]				
Modifier	Manner	Analyte	Detection limit (M)	Supporting electrolyte	Sweep mode	Purge	Sample	Reference		
----------	--------	---------	-------------------	------------------------	-------------	-------	--------	-----------		
EDTA	In situ	Fe (III)	2×10^{-7}	0.01 M KCl +3$\times 10^{-8}$ M EDTA (pH 3.0)	DP CSV	+	River and tap waters	[274]		
DAN	In situ	Se (IV)	1.3×10^{-7}	0.1 M KCl (pH 2) + 1$\times 10^{-4}$ M DAN (accumulation); 0.1 M HNO3 + 0.1 M KNO3 (sweep)	LS CSV	+	Natural, waste waters	[275]		
Thioridazine	In situ	Pd (II)	4.7×10^{-9}	0.08 M HCl +75 mg L$^{-1}$ Thioridazine	DP ASV	+	Drinking water	[276]		
Mo-GGPA, Mo-SA	In situ	Ge (III); Si (IV)	0.17×10^{-8} (Ge); 0.09×10^{-8} (Si)	0.1 M citrate buff. (pH 2.5) + Mo-GGPA (Mo-SA)	DP CSV	–	Semiconductors, refined waters	[277–279]		
PEI	In situ	Ag (I); Hg (II); Cu (II); Pb (II); Cd (II)	0.9×10^{-6} (Ag); 1.1×10^{-6} (Hg, Cu); 8.0×10^{-7} (Pb); 8.4×10^{-7} (Cd)	0.1 M KCl (0.1 M KNO3) + 2% PEI (pH 3 for Pb, Cd and pH 2 for Cu)	LS ASV	–	Tap water	[280–283]		
IDA	Ex situ	Pb (II)	25.4 μg/kg	(pH 6) (accumulation); acet.-ammonium buff. (pH 3) (sweep)	DP ASV	–	SS of water	[284]		
8HXQ	Ex situ	Tl (I)	4.9×10^{-9}	0.01 M B-R buff. (pH 7.96) (accumulation); 0.2 M amm. buff. (pH 10) (sweep)	DP ASV	–	USEPA SS (WP 386)	[285]		
2-methyl-8HXQ	Ex situ	Cu (II)	3.3×10^{-9}	0.05 M KSCN+0.05 M HNO3 (accumulation); 0.05 M KSCN + B-R buff. (sweep)	DP ASV	+	SS	[286]		
2,3- Dicyano-1,4-naphthoquinone	Ex situ	Ag (I)	5×10^{-8}	0.1 M KNO3	LS CSV	–	BGD	[287]		
N-p-CPCHA	Ex situ	Cd (II)	5.5×10^{-9}	0.3 M NH4Cl (pH 5)	DP ASV	–	Mineral and drinking waters	[288]		
N-p-CPCHA	Ex situ	Pb (II)	$10^{-8} - 10^{-9}$	0.3 M CH3COONa (pH 6)	DP ASV	–	Drinking water	[289]		
N-p-CPCHA	Ex situ	Co (II)	3.3×10^{-7}	0.2 M CH3COONa (pH 6)	DP ASV	–	Vitamin B12	[290]		
Dithizone	Ex situ	Pb (II)	8×10^{-8}	Sample pH 12 (accumulation); 0.1 M HCl (sweep)	DP ASV	–	River water	[291]		
Thiophydrazine	Ex situ	Cu (II)	8×10^{-9}	0.1 M HCl	CV	–	River waters	[292]		
BBTSC	Ex situ	Hg (II)	4×10^{-8}	0.01 M KNO3 (accumulation); 0.1 M HCl (sweep)	SQW ASV	–	River waters	[293]		
FTHD	Ex situ	Cd (II)	5×10^{-10}	B-R buff. (pH 4)	DP ASV	–	Model solutions	[294]		
DPCO	Ex situ	Hg (II)	5×10^{-9}	0.1 M KSCN (pH 2)	DP ASV	–	BGD	[295]		
PTL derivative	Ex situ	Cu (I)	5×10^{-9}	0.5 M CH3COONa (pH 6)	DP ASV	–	CO NBS 1643	[296]		
PTL + nafion	Ex situ	Fe (II)	3×10^{-8}	B-R buff. (pH 4.5)	DP CSV	–	Waters, SS of alloys	[297]		
Diacetyldioxime	Ex situ	Pb (II); Cd (II)	1×10^{-8} (Pb); 4×10^{-8} (Cd)	0.1 M NaH2PO4	DP ASV	–	Natural waters	[298]		
PAN	Ex situ	Mn (II; VII)	6.9×10^{-9}	Phosphate-borate buffer (pH 8.7)	DP CSV	+	SS, sea water	[299]		
Compound	Method	Concentration								
---------------------------	----------------	---------------								
TDPTA	Ex situ	Co (II)								
		5.0 x 10^{-10}								
Thiourea derivative	Ex situ	Ag (I)								
		9.3 x 10^{-8}								
Chelate P	Ex situ	Cu (II)								
		3 x 10^{-8}								
Cupron	Ex situ	Cu (II)								
		4.7 x 10^{-9}								
Glyoxal derivative	Ex situ	Hg (II); Ag (I)								
		1 x 10^{-9} Hg; 1 x 10^{-10} Ag								
Phenylfluorone	Ex situ	Sb (III)								
		8.2 x 10^{-9}								
PPDA	Ex situ	Pb (II)								
		1 x 10^{-9}								
Zn-DDC	Ex situ	Hg (II)								
		8 x 10^{-10}								
DMG + glycerol	Ex situ	Hg (II); Ni (II); Co (II); Pd (II)								
		1 x 10^{-8}								
TBP	Ex situ	Zn (II); Ga (III)								
		2 x 10^{-6}								
Morin	Ex situ	Zr (IV)								
		1 x 10^{-8}								
Lichen	Ex situ	Pb (II); Cu (II)								
		2 x 10^{-6} Pb								
Lichen	Ex situ	Pb (II)								
		1 x 10^{-8}								

For other abbreviations see Table 1.

* HSF-Na Sodium heptyl sulfonate, TTCP 2.5.8-trithio[9]-m-cyclophane, BPG brompyrogallol, DAN diaminonaphthalene, Mo-GGPA molybdenum-germanium heteropolyacid, Mo-SA molybdosilicic acid, PEI polyethylenimine, IDA iminodiacetate, DB18C6 dibenzo-18-crown-6, B15C5 benzo-15-crown-5, α-CD and β-CD α- and β-cyclodextrins, CPA carbamoyl phosphonic acid, AMT 2-aminothiazole, ZrPH zirconium phosphate, KHP potassium biphthalate, TZT-HDTA-clay 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay, N-p-CPCHA chlorophenyl cinnamohydroxamic acid, BBTSC benzylbisthiosemicarbazone, FTHD 1-furoylthioureas, DPCO diphenylcarbazone, PTL 1,10-phenanthroline, TDPTA 2.4.6-tri(3.5-dimethylpyrazolyl)-1.3.5-triazine, PPDA poly-n-phenylenediamine, TBP tri-n-butylphosphate

CVA Cathodic voltammetry, SD second derivative of voltammogram
conceived because despite good performance capabilities of mercury electrodes with respect to the adsorptive concentration of inorganic ions [196–198], they have some limitations at positive potential range, while many solid electrodes, which are operable over a wide interval of potentials, cannot selectively sorb the required component of the system. Adams’ idea was not overlooked by other investigators, and in 1964, Kuwana et al. performed research making the first contribution to the advancement of chemically modified carbon-paste electrodes, which are described in the reviews [199–201].

CPE is made of a homogenized paste of fine-dispersated coal and a water-immiscible binding liquid. Paraffin, petrolatum, or polychlorotrifluoroethylene oils, silicon fluid, dioctylphthalate, α-bromnaphthalene, tricresyl phosphate, and other materials can be used as the binding liquid. Two types of CPE pastes are available: dry (0.3–0.5 ml of the binding liquid per 1 g of the carbon powder) and wet (0.5–0.9 ml of the binding liquid per 1 g of the carbon powder) pastes. CPE can bear a high residual current caused by oxygen admixed to the paste with carbon powder particles. The residual current can be eliminated if the preheated carbon powder is mixed with wax, paraffin, or petrolatum oil in the nitrogen atmosphere or a lipophilic paste fluid (tricresyl phosphate) is added. The detection limit (LOD) of many inorganic and organic substances on CPE generally is 1·10−9 M. LOD is frequently decreased by activation of the electrode at high negative or positive potentials. The anode activation of the electrode is most efficient because interfering organic substances can be removed from the surface in this case. Sometimes the electrode is “shaken up” through the cyclic polarization between large negative and positive potentials.

When compared to other carbon-containing electrodes, CPE has a well-developed surface with a high adsorptivity of various substances. This property of CPE is used successfully in voltammetry for the modification and the adsorptive accumulation of substances to be measured. A modifier can be immobilized on CPE by several means including sorption, covalent binding, dissolution of a lipophilic modifier in the paste fluid, and direct mixing with the carbon paste. Direct mixing of a modifier with the paste is used most frequently. This modification procedure is very simple: a modifier is added to the paste in the dry form or diluted in a small amount of an organic solvent making the paste more homogeneous. Other methods of the modifier immobilization are used least often. The depolarizer is concentrated on the modified CPE surface through adsorption, chemical, or electrostatic interaction of the element to be measured and the modifier. CPE is modified by various organic substances such as aromatic oxycarboxylic acids, aromatic amine and diimine compounds, azocompounds, dyes, thiocompounds, triazines, and quinoline. In addition to the main hydrocarbon chain, molecules of these organic compounds include nitrogen, sulfur, and oxygen atoms, aromatic and aliphatic cycles containing unbound π-electrons, which can interact, on one hand, with the electrode surface and, on the other hand, with the analyte ensuring a high surface adsorption and strong binding to the substance to be determined.

Every so often, the analyte is concentrated on modified CPE with the circuit open using extraction, sorption, ion exchange, and formation of ion pairs. The measurement stage can be accomplished in another electrolyte. As the electrolyte is replaced, it is possible to optimize the measurement parameters (pH, the ionic force, and the potential) and eliminate the interference of other components of the test solution. Dependences of the current peak of the element to be determined on the concentration and the accumulation time on CPE are flattened-out curves because all functional groups of the modifier are saturated.

Table 2 gives examples of specific applications of modified CPE for the voltammetric determination of metal ions [202–312]. Sometimes CPE is modified by films of metals and their oxides [202–213, 215–216]. The electrode is modified most frequently by crown compounds [216–220], calixarenes [222], cyclodextrins [223–225], nonfunctionalized and functionalized silica [226–243], clay minerals (vermiculite and montmorillonite) [244–253], ion exchangers in the form of artificial resins [254–258, 258–262], natural humic acids and soils [259–263], organic [264–310], and bioactivecompounds [311–312].

Electrodes based on silica with self-organizing monolayers, for example, mesoporous silica modified by acetyl-amide of the phosphonic acid provide accumulation and measurement of Cu, Pb, Cd, and U [240–241]. CPE modified by biocatalysts, which are constituents of α- and β-cyclodextrins [223–225] or natural lichens [311–312] are used for measurement of ions of heavy metals.

Solid depolarizers can be studied after their direct infusion to CPE, which has been called the carbon-paste electroactive electrode (CPEE). The CPEE methodology was recognized to be also suitable for insoluble electroactive compounds. The first studies of metals, metal oxides, chalcogenides, salts, and other compounds by CPEE methodology were reviewed by Brainina et al. [313]. Electrochemical transformations taking place on CPEE provide information about the electrochemical activity of solid compounds, their stoichiometry, the oxidized state of elements, the morphology (the size and the shape of particles, crystal defects), the catalytic activity, etc. The CPEE methodology significantly increased the scope of electrochemistry to poorly conducting and insoluble solids. CPEE is used to analyze lead sulfides, magnetite, oxides of silver, tin, copper, and iron, bromides of rare-earth elements, nickel-containing compounds and other solids,
e.g., ceramics and classes [314–318]. A comprehensive review [319] is dedicated to the electrochemical analysis of solids.

Conclusion

Considering the above numerous examples of the electrochemical study and determination of various elements and compounds, it can be concluded that the modification of the surface of solid electrodes by a variety of methods and substances considerably extends the capabilities of voltammetry and ensures a highly sensitive and selective determination of a wide range of elements traces.

Acknowledgements Financial support of Russian Foundation for Basic Research (project No. 07-03-96070-ural a) and International Science and Technology Center (projects nos. 342, 2132 and 2897) is gratefully acknowledged.

References

1. Maystrenko VN, Gusakov VN, Sangalov EYU (1995) J Anal Chem 50:582
2. Vjaselev MR (1995) J Anal Chem 50:723
3. Budnikov GK (1996) J Anal Chem 51:374
4. Wang J, Tian B (1999) Anal Chim Acta 385:429
5. Brainina KHZ (2001) J Anal Chem 56:344
6. Bakker E (2004) Anal Chem 76:3285
7. Bakker E, Qin Y (2006) Anal Chem 78:3965
8. Vlasov YUG (1992) J Anal Chem 47:448
9. Zolotov YUA (1990) J Anal Chem 45:1255
10. Mjasoyedov BF, Davydov AV (1990) J Anal Chem 45:1259
11. Brainina KHZ (1995) Anal Chim Acta 305:146
12. Tarasevich MR, Bogdanovskaja VA, Geshidzidze LV (1999) J Anal Chem 54:966
13. Budnikov G, Murinov Yu, Maystrenko V (1994) Voltammetry with modified and ultramicroelectrodes. Nauka, Moscow
14. Bakker E (2004) Anal Chem 76:3285
15. Bakker E, Telting-Diaz M (2002) Anal Chem 74:2781
16. Dong S, Wang Y (1989) Electroanalysis 1:99
17. Wang J (1991) Electroanalysis 3:255
18. Downard AJ (2000) Electroanalysis 12:1085
19. Walcarius A (2001) Electroanalysis 13:701
20. Navratilova Z, Kula P (2003) Electroanalysis 15:837
21. Zen JM, Kumar AS, Tsai DM (2003) Electroanalysis 15:1073
22. Yosypchuk B, Novohly L (2002) Electroanalysis 14:1733
23. Mikkelsen Ø, Schroder KH (2003) Electroanalysis 15:679
24. McCreey RL (1999) Electrochemical properties of carbon surfaces. In: Wieckowski A (ed) Interface electrochemistry. Theory, experiment and applications. Dekker, New York, pp 631–647
25. Tarasевич MR (1984) Electrochemistry of carbon materials. Nauka, Moscow
26. Lisichkin GV (2003) Chemistry of graft surface compounds. Phismatlit, Moscow
27. Kharina RM, Tataurov VP, Brainina KHZ (1988) Zavodsk Lab 54:2:1
28. Kaplin AA, Pikula NP, Neumay E (1990) J Anal Chem 45:2086
29. Hardcastle JL, Muczartt CG, Compton RG (2000) Electroanalysis 12:559
30. Kilimnik AB, Abakumova EA, Churikov AV (1998) Zavodsk Lab 64:4:12
31. Lowinsoln D, Bertotti M (2002) Electroanalysis 14:619
32. Viter IP, Kamenev AI (1997) J Anal Chem 52:1180
33. Fofonova TM, Bultauszha VN, Karbainov Y (1995) J Anal Chem 50:283
34. Tornic P, Banks CE, Compton RG (2003) Electroanalysis 15:1661
35. Staden JF, Matoetoe M (1997) Fresenius J Anal Chem 357:624
36. Shiu K, Shi K (1998) Electroanalysis 10:959
37. Scholz F, Meyer S (1994) Naturwissenschaften 81:450F
38. Meyer S, Scholz F, Trittel R (1996) Fresenius J Anal Chem 356:247
39. Roitz JS, Truland KW (1997) Anal Chim Acta 344:175
40. Zhang J, Di F (2003) Talanta 60:31
41. El-Maali NA, El-Hady DA (1998) Anal Chim Acta 370:239
42. Staden JF, Matoetoe MC (1998) Anal Chim Acta 376:325
43. Compton RG, Eclund JC, Marken F (1997) Electroanalysis 9:509
44. Nadezhina LS, Konstantinova SA, Filanovsky BK (1991) J Anal Chem 46:2442
45. Nadezhina LS, Lobanova OA, Pankina IA (1998) J Anal Chem 53:171
46. Zgadaova VA, Nemova VV, Nemov VA (1987) J Anal Chem 62:1644
47. Fischer E, Berg CMG (1999) Anal Chim Acta 385:273
48. Wu HP (1996) Anal Chem 68:1639
49. Nesterina EM, Bebeschko GI (2002) Zavodsk Lab 68:13
50. Sun YC, Tu YL, Mierzwa J (1998) Fresenius J Anal Chem 360:550
51. Petrov SI, Ivanova ZHV (2000) J Anal Chem 55:1224
52. Petrov SI, Kukhnikova LV, Ivanova ZHV (1998) Zavodsk Lab 64:9:13
53. Petrov SI, Kukhnikova LV, Ivanova ZHV (1998) Zavodsk Lab 64:6:13
54. Silva CL, Musini JC (2000) Fresenius J Anal Chem 367:284
55. Lee JD, Lo JM (1994) Anal Chim Acta 287:259
56. Economou A, Fielden PR (1996) Analyst 121:1903
57. Ashley K (1995) Electroanalysis 7:119
58. Laar C, Reinke L, Simon J (1994) Fresenius J Anal Chem 349:692
59. Kozina SA (2003) J Anal Chem 58:1067
60. Woolever CA, Dewald HD (2001) Electroanalysis 13:309
61. Monterroso SCC, Carapuca HM, Simão JEJ et al (2004) Anal Chim Acta 503:203
62. Wadat F, Hinkel S, Neeb R (1995) Fresenius J Anal Chem 352:393
63. Hoyer B, Jensen N (2004) Analyst 129:751
64. Brett CMA, Brett AMO, Tugulea L (1996) Anal Chim Acta 322:151
65. Martinotti W, Queirazza G, Guarinoni A, Mori G (1995) Anal Chim Acta 322:151
66. Oliveira MF, Saczk AA, Okumura LL, Fernandes AP, Moraes M, Stradiotto NR (2004) Anal Bioanal Chem 380:135
67. Oliveira MF, Khouiliz Z, Jambon C, Chatelut M (1993) Electroanalysis 5:339
68. Daniel L, Zakharova EA, Goloskova NB, Schelkovnikova VV (1992) J Anal Chem 47:448
69. Langel B, Scholz F (1997) Fresenius J Anal Chem 358:736
70. Bortotti M (2002) Electroanalysis 14:619
