Phytochemical screening and antioxidant activity of methanolic extract of selected wild edible Nigerian mushrooms

Hamzah Rabiat Unekwu *, Jigam Ali Audu, Makun Hussaini Makun, Egwim Evans Chidi

Department of Biochemistry, School of Natural and Applied Sciences Federal University of Technology, P. M. B. 65, Minna, Niger State, Nigeria

ABSTRACT

Objective: To elucidate the phytochemical content and antioxidant activity of selected wild edible Nigerian mushroom species.

Methods: Phytochemical screening was carried out using standard methods while 1,1-Diphenyl picryl hydrazyl (DPPH) radical and reductive power assays were used to evaluate the in vitro antioxidant properties of the selected edible Nigerian mushroom species.

Results: The result obtained revealed the presence of alkaloids, cardiac glycosides, saponins, flavonoids, terpenes, steroids, tannins and phenols in the selected mushrooms extracts. The extract of Pleutorus ostearus showed a significantly (P<0.05) higher total phenol and flavonoid content of (248.80±7.63) mg/g and (42.63±0.63) mg/g respectively compared to other mushroom extracts. Cantherale cibarus had the most significant (P<0.05) amount of alkaloids [(135.57±0.27) mg/g] and saponins [(150.41±0.50) mg/g] when compared to other extracts while the tannin content [(170.56±0.74)] mg/g was highest in the mushroom Temitomyces robustus. All mushroom extracts scavenged DPPH radical in a dose dependent manner. However, Lactarus deliciousus had the highest DPPH scavenging activity compared to the other mushroom extracts. Pleutorus ostearus and Lactarus deliciousus had better reductive power than other mushroom extracts concentrations used.

Conclusions: The mushroom species analysed have been shown to be good sources of antioxidants and other phytoconstituents, thus it can be used in the management of oxidative stress induced diseases.

KEYWORDS

Phytochemicals, Antioxidants, Mushrooms, 1,1– Diphenyl picryl hydrazyl, Reductive power

1. Introduction

Free radicals are constantly formed in the human body during energy production, in the mitochondrial electron transport chain, phagocytosis, arachidonic acid metabolism, ovulation, fertilization and in xenobiotic metabolism[1] and from external sources such as food, drugs, smoke and other pollutants in the environment[2]. Living organisms are endowed with endogenous and exogenous antioxidant defense systems capable of countering the adverse reactions of free radicals[3]. The generation of free radicals in the body beyond its antioxidant capacity actually leads to oxidative stress and this has been implicated in the etiology of a number of disorders[4]. As a result, of this much attention is being focused on the use of antioxidants to inhibit and protect damage due to free radicals and reactive oxygen species. Synthetic antioxidants such as butylated hydroxyanisole, tert–butylated hydroxyquinone and butylated hydroxytoluene are radical scavengers but are usually associated with adverse side effects[5]. Neutralization of radical damage by naturally occurring antioxidants from several sources either as food supplements or drugs is becoming one of the most acceptable modes of modern therapy[6].

Mushrooms have continued to generate a lot of interest particularly in their consumption as food[7], in the cure...
of diseases, in bioremediation and as important items of commerce all over the world due to their nutritional, antioxidant and therapeutic values. They may then be utilized to be amongst the useful candidates in the search for bioactive compounds with radical scavenging activity. Although there are many studies on nutrients compositions of different mushroom species, only few studies have been carried out on the antioxidant activity in wild edible species. Therefore this study was carried out to elucidate the phytochemical composition and in vitro antioxidant activities of methanolic extract of the selected Nigerian wild edible mushrooms.

2. Materials and methods

2.1. Collection of samples

Eight indigenous wild edible Nigerian mushrooms including Cantharelle cibarius (C. cibarius), Termitomyces robustus (T. robustus), Termitomyces manniformis (T. manniformis), Pleurotus ostreatus (P. ostreatus), Pleurotus pulmonarius (P. pulmonarius), Auricularia cularia (A. cularia), Hericium erinaceus (H. erinaceus), Lactarius deliciousus (L. deliciousus) were collected from logs of wood, palm logs and humus soil from different locations in Nigeria. They were identified by a Taxonomist, Prof. Onyekwere S. C. of Applied Biology Department, Ebonyi State University Abakaliki, Nigeria.

2.2. Sample preparation and extraction

Mushrooms were destalked and air dried at room temperature with adequate ventilation and pulverized using a blender. The pulverized samples were extracted with methanol by reflux. Exactly 50 g of the powdered samples were weighed into 400 mL of methanol in a reflux flask and refluxed for 2 h. The extracts were filtered hot using a muslin cloth and subsequently evaporated using a rotary evaporator. The semi-dry extracts were weighed, placed in sterile sample bottles and stored in a refrigerator until required for use.

2.3. Qualitative phytochemical screening

The extracts were screened for phytochemical properties using standard methods.

2.4. Quantitative determination of the phytochemical constituents in samples

Aluminum chloride colorimetric method was used for flavonoid determination while total phenol content of the extracts was determined using the method reported by Singleton et al. The method of Oloyed was used to determine the amount of alkaloids and saponins in the mushroom extracts while tannin content was quantified with the method described by AOAC.

2.5. In vitro antioxidant determinations

Ability of the extracts to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical was evaluated as described by G Yamfi et al. and the reducing power of the extracts was determined by assessing the ability of the extracts to reduce FeCl3 solution as described by Oyaizu.

2.6. Statistical analysis

All values were expressed as mean ± SEM. The SPSS program (version 16.0 SPSS Inc., Chicago, IL, USA) was used for the analysis of variance followed by the new Duncan multiple test.

3. Results

3.1. Qualitative phytochemical screening

Phytochemical screening result revealed the presence of alkaloids, cardiac glycosides, saponins, flavonoids, terpenes, steroids, tannins and phenolics in the selected mushroom extracts in varying proportions (Table 1). Phlobatannins was absent in all mushrooms except T. manniformis and P. ostreatus while anthraquinone was present in all except H. erinaceus, A. cularia and P. ostreatus.

3.2. Quantitative phytochemical analysis

The quantitative phytochemical content determination of the methanolic extract of the selected mushroom result
Table 2

Quantitative phytochemical contents of selected wild edible Nigerian mushroom species.

Phytochemicals	C. cibarius	T. robustus	T. manniformis	P. pulmonarius	P. ostreatus	L. deliciousus	A. auricula	H. erinaceus
Alkaloids (µg/g)	135.57±0.27^b	85.29±0.04^a	112.51±0.04^a	46.90±0.73^e	81.51±0.73^e	52.99±0.07^c	16.32±0.46^d	8.125±0.40^b
Saponins (mg/g)	150.41±0.50^b	87.56±0.01^a	105.30±4.53^d	34.76±1.46^b	84.95±5.03^c	20.35±1.82^d	71.21±0.50^d	10.17±1.09^e
Tannins (mg/g)	76.29±0.74^d	170.56±0.74^c	169.19±0.5^d	88.91±0.16^e	146.30±0.8^c	85.73±0.9^d	66.92±0.33^b	59.27±0.00^b
Flavonoids (mg/g)	11.50±0.50^b	23.88±1.13^d	25.66±0.74^d	22.17±0.88^b	42.63±0.63^c	34.58±0.93^c	6.41±0.53^d	6.75±0.38^d
Phenols (mg/g)	97.16±0.94^c	177.96±1.72^c	211.82±2.42^c	223.11±0.02^c	248.80±7.63^d	115.68±2.1^b	115.99±0.30^b	105.09±3.3^c

Results are presented as mean±SEM. Letters represent the level of significance.

as given in Table 2 showed that alkaloidal contents of the extracts ranged between 8.125–135.57 µg/g, tannin contents of the extract ranged between (59.27±0.00)–(170.56±0.74) mg/g, saponin (10.17±1.09)–(150.41±0.50) mg/g, total phenols (97.16±0.94)–(248.80±7.63) mg/g and total flavonoid contents (6.41±0.53)–(42.63±0.63) mg/g. The extracts of P. ostreatus and L. deliciousus showed a significantly high (P<0.05) total flavonoid content of (42.63±0.63) mg/g and (34.58±0.93) mg/g respectively compared to all other mushroom extracts. Methanolic extract of P. ostreatus also showed the highest total phenol content of (248.80±7.63) mg/g while C. cibarius had the most significant amount of alkaloids [(135.57±0.27) mg/g] and saponins [(150.41±0.50) mg/g] when compared to other extracts.

3.3. Antioxidative properties

3.3.1. DPPH radical scavenging activities

The DPPH radical scavenging activity of the selected wild edible Nigerian mushroom species is shown in Figure 1. All the mushroom extracts scavenged the DPPH radical in a dose dependent manner. However L. deliciousus had the highest DPPH scavenging activity compared to other mushroom extracts (Figure 1) with values ranging from 14.29% to 71.49%.

3.3.2. Reductive power

Results of the reductive power of the selected wild edible Nigerian mushroom species indicate that activities of the extracts were proportional to concentration (200–1000 mg/ml). P. ostreatus and L. deliciousus had better reductive power than other mushroom extracts irrespective of the concentrations (Figure 2).

4. Discussion

The results obtained from the qualitative phytochemical screening of methanolic extracts of the selected wild edible Nigerian mushroom species showed the presence of tannin, saponins, cardiac glycosides, alkaloids, steroids, terpenes, phenols, and flavonoid in varying concentrations. These results agree with previous work on some selected mushrooms in Nigeria and Sudan[12,21] and conform to some a certain degree with the study on some mushrooms from Kenya[22]. The absence of anthraquinones in H. erinaceus, A. calaria and P. ostreatus correlates with that of previous reports in the literature[12,22]. These phytoconstituents play a significant role in the medicinal properties of many plants.

Saponins for instance comprise a large family of structurally related compounds containing a steroid or triterpenoid aglycone. They are reported to show a wide range of pharmacological benefits that include anti-malarial and anti-diabetic effects[23]. Thus these mushrooms can be used in the management of diabetes and inflammation related diseases.

Terpenoids have also been reported to show a wide range of pharmacological benefits that include anti-malarial, anti-inflammatory and anti-cancer effects among others[24,25].

The valuable pharmacological properties of many mushrooms have also been attributed to the presence of alkaloids on the autonomic nervous system, blood vessels, respiratory system, gastrointestinal tract, uterus, and have been shown to be effective against malignant diseases, infections and malaria[26]. Phenolic compounds are antioxidants, and exhibit a wide range spectrum of medicinal properties such as anti-cancer, anti-inflammatory...
and diabetic effects[27,28].

Flavonoids are one of the most diverse group of natural compounds that have been shown to possess a broad spectrum of chemical and biological activities including radical scavenging properties, antiallergenic, antiviral, antiinflammatory, and vasodilating actions[29,30]. Thus the extracts of the studied mushrooms may be good alternatives for the treatment of diseases associated with excessive free radical generation and damage.

The high flavonoid content in *P. ostreatus* and *L. deliciosus* was found to be higher than that found in an edible mushroom ([2.84±0.12] mg/g) in a recent study[31]. The phenols content also in *P. ostreatus* and *P. pulmonarius* were found to be higher than that of some wild edible mushrooms investigated in recent study[32].

These mushrooms can therefore be harnessed in the management of oxidative stress induced diseases since phenols and flavonoid have been shown to posses various antioxidant functions.

DPPH free radical scavenging activity assay is one of the most common methods for the determination of antioxidant capacity. It relies on the reduction of methanolic DPPH solution in the presence of hydrogen donation compound (antioxidant). The resulting decolourisation upon abstraction of hydrogen from the antioxidant is stoichiometric with respect to the degree of reduction and absorbance measurement after a certain time corresponds inversely to the radical scavenging activity of the antioxidant[33].

Although the mushroom, *P. ostreatus* spiecie had the highest amount of phenol ([248.80±7.63] mg/g) and flavonoids ([42.63±0.63] mg/g) compared to other mushrooms extracts, it did not have the highest scavenging activity, rather the mushroom *L. deliciosus* had the most appreciable DPPH scavenging activity amongst other mushrooms in a dose dependent manner.

Thus other non–phenolic and flavonoids compound may be responsible for the antioxidant properties of *L. deliciosus* while *P. ostreatus* may have exhibited its antioxidant activity through a different mechanism.

Fe (II) reduction is often used as an indicator of electron donating activity, which is an important mechanism of antioxidant action of phenolics[34]. *P. ostreatus* showed a higher reductive power than other mushroom extracts in a concentration dependent manner and this commensurate with the high phenol and flavonoid content in this mushroom. This supports earlier reports, correlating the presence of flavonoids and phenolic compounds to antioxidative actions[35,36]. Therefore, the in vitro antioxidant properties exhibited by this mushroom extract may be due to the presence of these antioxidant phytochemicals inherent in it and these mushrooms.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors wish to express their profound gratitude to the University Board of Research of Federal University of Technology Minna, Niger State, Nigeria for the Financial assistance awarded towards this study.

References

[1] Halliwell B, Gutteridge J. Free radicals in biology and medicine. 4th edition, Oxford, UK: Oxford University Press; 2007.
[2] Miller RA, Britigan BE. Role of oxidants in microbial pathophysiology. Clin Microbiol Rev 1997; 10: 1–18.

[3] Sivakrishnan S, Muthu AK. In–vivo free radical scavenging activity of aerial parts of ethanolic extract of Albizia procera (Family: Mimosoideae). Int J Pharm Pharm Sci 2013; 5(2): 352–354.

[4] Hamzah RU, Jigam AA, Makun HA, Egwim EC. Antioxidant properties of selected African vegetables, fruits and mushrooms: a review. Int: Makun HA, editor. Mycotoxin and food safety in developing countries. Rijeka, Croatia: InTech; 2013.

[5] Rahman A, Rahman MM, Sheik MMI, Rahman MM, Shadli SM, Alam MF. Free radical scavenging activity and phenolic content of Cassia sophera L. Afr J Biotechnol 2008; 7(10): 1951–1953.

[6] Pal J, Ganguly S, Tahsin KS, Acharya K. In vitro free radical scavenging activity of wild edible mushroom, Pleurotus squarrosulus (Mont.) Singer. Indian J Exp Biol 2010; 48: 1210–1218.

[7] Chang ST. Cultivation of Volvariella mushrooms in southeast Asia. In: Chang ST, Quimio TH, editors. Tropical mushrooms—biological nature and cultivation methods. Hong Kong, China: Chinese University Press; 1982.

[8] Mattilia P, Kõnkõ K, Eurola M, Pihlava JM, Astola J, Vahteristo L, et al. Content of vitamins, mineral elements and some phenolic compounds in cultivated mushrooms. J Agric Food Chem 2003; 49: 2343–2348.

[9] Aletor VA. Compositional studies on edible tropical specialts of Maryland, USA: Association of Official Analytical Chemists; 1984, p. 234.

[10] Fasidi IO. Studies on Volvariella esculenta (Mass) Singer: cultivation on agricultural wastes and proximate composition of stored mushrooms. Food Chem 1996; 55: 161–163.

[11] Adebayo EA, Oloke JK, Ayandele AA, Adegunlola CO. Phytochemical, antioxidant and antimicrobial assay of mushroom metabolite from Pleurotus pulmonarius–LAU 09 (JF736658). J Microbiol Biotechnol Resour 2012; 2(2): 366–374.

[12] Egwim EC, Ellen RC, Egwuche RU. Proximate composition, phytochemical screening and antioxidant activity of ten selected edible mushrooms. Am J Food Nutr 2011; 1(2): 89–94.

[13] Keles A, Koca I, Gencelep H. Antioxidant properties of wild edible mushrooms. Food Process Technol 2011; doi:10.4172/2157–7110.1000130.

[14] Sofowora A. Medicinal plants and traditional medicines in Africa. 2nd ed. Ibadan, Nigeria: Spectrum Books; 1993, p. 289.

[15] Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 2002; 10: 178–182.

[16] Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Gioicalte reagent. Methods Enzymol 1999; 299: 152–178.

[17] Oloyede OL. Chemical profile of unripe pulp of Carica papaya. Pak J Nutr 2005; 4: 379–381.

[18] Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists. 14th ed. Maryland, USA: Association of Official Analytical Chemists; 1984, p. 188.

[19] Gyanmi MA, Yonamine M, Aniya Y. Free–radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally–induced liver injuries. Gen Pharmacol 1999; 32: 661–667.

[20] Oyaizu M. Studies on product of browning reaction prepared from glucose. Jpn J Nutr 1986; 44: 307–315.

[21] Ehssan HO, Saadahi AM. Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiol J 2012; 2: 64–69.

[22] Wandati TW, Kenji GM, Onguso JM. Phytochemicals in edible wild mushrooms from selected areas in Kenya. J Food Res 2013; doi:10.5539/jfr.v2n3p137.

[23] Lee J, Lim S, Kang SM, Min S, Son K, Lee HS, et al. Saponin inhibits hepatitis C virus propagation by up–regulating suppressor of cytokine signaling 2. PloS One 2012; doi: 10.1371/journal.pone.0039366.

[24] Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer cancer. World J Hepatol 2011; 3(9): 228–249.

[25] Wang GY, Tang WP, Bidigare RR. Terpenoids as therapeutic drugs and pharmaceutical agents. In: Zhang LX, Demain AL, editors. Natural products. New Jersey, USA: Humana Press; 2005, p. 197–227.

[26] Trease GE, Evans WC. Pharmcognosy: a physicians guide to herbal medicine. 13th ed. London, UK: Bailliere Tindall; 1989, p. 176–180.

[27] Hamzah RU, Egwim EC, Kabiru AY, Muazu MB. Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vetilalaria paradoxo and Vitex domiana. Oxid Antioxid Med Sci 2013; 2(3): 215–221.

[28] Nagavani V, Madhavi Y, Bhaskar RD, Koteswara RP, Raghava RT. Free radical scavenging activity and qualitative analysis of polyphenols by RP–HPLC in the flowers of Couroupita guianensis Abul. Electron J Environ Agric Food Chem 2010; 9(9): 1471–1484.

[29] Parajuli S, Pun NT, Parajuli S, Jamakattel–Pandit N. Antioxidant activity, total phenol and flavonoid contents in some selected medicinal plants of Nepal. JHAS 2012; 2(1): 27–31.

[30] Pereira DM, Valenti P, Pereira JA, Andrade PB. Phenolic: from chemistry to biology. Molecules 2009; 14: 2202–2211.

[31] Jose GS, Radhamany PM. In vitro antioxidant activities, total phenolics and flavonoaid of wild edible mushroom Macrolepiota mastoidea (Fr.) Singer. Int J Pharm Pharm Sci 2013; 5(2): 161–166.

[32] Albugr DA, McElhenney WH. Extraction of total phenolic and flavonoids from edible wild and cultivated mushrooms as affected by different solvents. J Nutr Plant Resour 2013; 3(3): 37–42.

[33] Abdullah N, Ismail SM, Aminudin N, Shuib AS, Lau BF. Evaluation of selected culinary–medicinal mushrooms for antioxidant and ACE inhibitory activities. Evid Based Complement Alternat Med 2012; doi: 10.1155/2012/642328.

[34] Nahavi SM, Ebrahimzadeh MA, Nahavi SF, Fazelian M, Eslami B. In vitro antioxidant and free radical scavenging activity of Diospyros lotus and Pyrus boissierianana growing in Iran. Pharmacogn Mag 2009; 4(18): 123–127.

[35] Gulcin I, Sat GI, Beydemir S, Elmasast M, Kufrevioglu OI. Comparison of antioxidant activity of clove (Eugenia caryophyllata Thunb.) buds and lavender (Lavandula stoechas L). Food Chem 2003; 87: 393–400.

[36] Dastmalchi K, Dorman HJ, Laakso I, Hiltunen R. Chemical composition and antioxidant activity of Moldavian balm (Dracocephalum moldavica L.) extracts. LWT–Food Sci Technol 2007; 40(9): 1655–1663.