Microwave synthesis and thermal properties of polyacrylate derivatives containing itaconic anhydride moieties

Sameh M Osman1†, Mohamed H El-Newehy1,2†*, Salem S Al-Deyab1† and Ayman El-Faham1,3†

Abstract

Background: Microwave irradiation as an alternative heat source is now a well-known method in synthetic chemistry. Microwave heating has emerged as a powerful technique to promote a variety of chemical reactions, offering reduced pollution, low cost and offer high yields together with simplicity in processing and handling. On the other hand, copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. Various copolymer compositions can produce a very large number of different arrangements, producing materials of varying chemical and physical properties. Thus, the hydrophilicity of copolymers can be modified by changing the amount of incorporated itaconic anhydride.

Results: A series of methyl methacrylate (MMA) and acrylamide (AA) copolymers containing itaconic anhydride (ITA) were synthesized by microwave irradiation employing a multimode reactor (Synthos 3000 Aton Paar, GmbH, 1400 W maximum magnetron) as well as conventional method. The thermal properties of the copolymers were evaluated by different techniques. Structure-thermal property correlation based on changing the itaconic anhydride ratio was demonstrated. Results revealed that the incorporation of itaconic anhydride into the polymeric backbone of all series affect the thermal stability of copolymers. In addition, the use of the microwave method offers high molecular weight copolymers which lead eventually to an increase in thermal stability.

Conclusions: Microwave irradiation method showed advantages for the produced copolymers compared to that prepared by conventional method, where it can offer a copolymer in short time, high yield, more pure compounds and more thermally stable copolymers, rather than conventional method. Also, microwave irradiation method gives higher molecular weight due to prevention of the chain transfer. Moreover, as the itaconic anhydride content increases the thermal stability and T_g increase due to the decrease in the crystallinity.

Background

Microwave-assisted organic synthesis has been recognized as one of the most interesting areas of current chemical research [1-5]. Microwave heating has emerged as a powerful technique to promote a variety of chemical reactions, offering reduced pollution, low cost and offer high yields together with simplicity in processing and handling [1,6-11]. The application of microwave irradiation to organic synthesis has been the focus of considerable attention in recent years and is becoming an increasingly popular technology [12-19]. Recently, there has been growing interest in applying microwave irradiation to polymer synthesis [20-23] as it can accelerate many syntheses providing selective activation with short start-up phase and can allow fast optimization of reactions.

Itaconic anhydride (ITA) is an unsaturated dicarboxylic organic anhydride with one carbonyl group conjugated to the methylene group. It can be regarded as a substituted acrylic or methacrylic derivatives. In addition, it can be polymerized or copolymerized with various other monomers by free radical reactions [28-33]. Also, it can be polymerized or copolymerized with various other monomers by free radical reactions [28-33].

As a result of increasing studies of acrylate derivatives and itaconic acid polymers or copolymers, various methods
for the synthesis of these polymers and their copolymers with the monomers such as acrylonitrile, styrene and acrylic esters have been reported, in most cases radical polymerizations [34-42]. Various copolymer compositions can produce a very large number of different arrangements, producing materials of varying chemical and physical properties. Thus, the hydrophilicity of copolymers can be modified by changing the amount of incorporated itaconic anhydride [27].

The present work describes copolymerization of acrylic monomers such as methyl methacrylate (MMA) and acrylamide (AA) with different ratios of itaconic anhydride (ITA) through free radical copolymerization in the presence of \(\alpha,\alpha'\)-azobisisobutyronitrile (AIBN). Copolymerizations were carried out in both conventional and microwave conditions. The chemical structure of the prepared copolymers was confirmed by FTIR and size exclusion chromatography (SEC) and the thermal stability was studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

Experimental

Materials & Equipments

Itaconic anhydride (ITA) was purchased from Fluka. Acrylamide (AA) was purchased from LKB. Methyl methacrylate (MMA) was purchased from M & B. \(\alpha,\alpha'\)-Azobisisobutyronitrile (AIBN) was purchased from Aldrich and was recrystallized from absolute ethanol before use. All solvents were dried before use.

The microwave irradiation employing a multimode reactor (Synthos 3000, Aton Paar GmbH, 1400 W maximum magnetron) was used to prepare the copolymers. Fourier transform infrared spectroscopy (FTIR) Spectra was recorded on Nicolet 560 Magna spectrometer. Thermal properties of the copolymers were examined through using thermogravimetric analysis (TGA) under nitrogen, from room temperature to 800°C with heating rate of 10°C/min and differential scanning calorimetry (DSC) which was carried on TA-Q500 in which Specimens of (5–10 mg) were encapsulated in aluminum pans and were heated or cooled between -25°C and 400°C under dry nitrogen atmosphere with heating rate of 10°C/min. Number-average molecular weight (\(M_n\)) and molecular weight distribution (\(M_w/M_n\)) were estimated by size exclusion chromatography (SEC) which was carried on Viscotek, HT-GPC. Polystyrene standards were employed for calibration. The analysis was performed at 35°C using high-performance liquid chromatography-grade THF as the eluent. Polystyrene standards were used to calibrate the molecular weight.

| Table 1 Yield % of MMA/ITA and AA/ITA copolymers using microwave irradiation |
|-----------------|-------------|-------------|-------------|-------------|-------------|
| Method | Copolymer Code | MMA/ITA ratio | MMA (mmol) | ITA (mmol) | Yield (%) |
| Conventional | PMITA 1 | 10: 2 | 50 | 10 | 44.6 |
| Microwave | PMITA 4 | 10: 1 | 100 | 10 | 76.9 |
| | PMITA 5 | 10: 2 | 100 | 20 | 86.0 |
| | PMITA 6 | 10: 4 | 100 | 40 | 63.8 |
| Method | Copolymer Code | AA/ITA ratio | AA (mmol) | ITA (mmol) | Yield (%) |
| Conventional | PAITA 2 | 10: 4 | 50 | 20 | 93.9 |
| Microwave | PAITA 7 | 10: 1 | 50 | 5 | 92.5 |
| | PAITA 8 | 10: 2 | 50 | 10 | 69.8 |
| | PAITA 9 | 10: 4 | 100 | 40 | 57.0 |

![Scheme 1 Copolymerization of itaconic anhydride with acrylic monomers.](image-url)
Synthesis of Copolymers

General Procedure for Conventional Method

In a general procedure, in a three-neck round bottomed flask fitted with a condenser, methyl methacrylate (MMA) (5.00 g, 50.0 mmol) or acrylamide (AA) (3.55 g, 50.0 mmol) was mixed with itaconic anhydride (ITA) (1.12 g, 10.0 mmol) in 2-butanone (20 mL). The reaction mixture was thoroughly purged with nitrogen for 10 min. Copolymerization was initiated by adding AIBN (0.1 g, 0.01% w/w) and then was heated at 60°C, under nitrogen atmosphere for 24 h. The reaction was cooled down to room temperature, and then the copolymer was precipitated in diethyl ether. The precipitated copolymer was filtered, washed by excess of diethyl ether and was dried in oven under vacuum at 40°C for 24 h, Table 1.

General Procedure for Microwave-Assisted Synthesis

Employing a multimode reactor (Synthos 3000, Aton Paar GmbH, 1400 W maximum magnetron); the initial step was conducted with 4-Teflon vessels rotor (MF 100) that allow processing four reactions under the same conditions. Each vessel has itaconic anhydride (ITA) was mixed with methyl methacrylate (MMA) or acrylamide (AA) in specific ratio (10:1, 10:2, and 10:4), in the presence of (0.1 g) AIBN and

Figure 1 FT-IR spectra of PMITAs copolymers.

Figure 2 FT-IR spectra of PAITAs copolymers.
2-butanone as a solvent (Table 1). The individual vessels were purged with nitrogen gas for 10 min and then were placed in the corresponding rotor, fixed by screwing down the upper rotor place, and finally the rotor was closed with a protective hood. After heating the vessels for 5 min. at 140°C and hold at the same temperature for 5 min (~2 bar pressure, 400 W). Cooling was accomplished by a fan (5 min). The final product was washed with diethyl ether, and was dried in oven under vacuum at 40°C for 24 h.

Results and Discussion

The copolymerization reaction of methyl methacrylate and acrylamide with itaconic anhydride was carried out by two different methods: a) conventional method using of 2-

![Figure 3](image3.png)

Figure 3 TGA of copolymers PMITA1 and PMITA5.

![Figure 4](image4.png)

Figure 4 TGA thermogram of copolymers PMITA4-6.
butanone as a solvent and AIBN as initiator for free radical polymerization at 60°C, under nitrogen atmosphere for 24 h and b) Employing a microwave synthesis using a multimode reactor (Synthos 3000, Aton Paar GmbH, 1400 W maximum magnetron), in the presence of AIBN for 5 min. at 140°C and 400 W, Scheme 1. The prepared copolymers were characterized using FT-IR spectra, TGA, DSC, SEC, and elemental microanalysis.

Fourier Transform Infrared Spectroscopy (FT-IR)
The FTIR spectra of itaconic anhydride copolymers, Figures 1 and 2 showed the absorption peaks for the ITA at
1783 and 1860 cm⁻¹ (C = O symmetric and asymmetric stretching of the 5-member anhydride unit), 1662 cm⁻¹ (C = C stretching), and 1400 cm⁻¹ (=CH₂ in plane deformation), and for methyl methacrylate at 1731 cm⁻¹ (C = O) and for the acrylamide at 1640 cm⁻¹ and at 3349 cm⁻¹ originates from the secondary amines in acrylamide. The anhydride peaks indicate that the anhydride remained intact in the copolymer, and the shift to higher frequency (higher energy) of the ester and amide carbonyl stretch is consistent with the elimination of the conjugation of the vinyl and carbonyl double bonds.

Thermogravimetric Analysis (TGA)

The intensity of the anhydride peaks was increased as the ratio of ITA increased in the copolymer, Figures 1 and 2. Copolymers prepared by both conventional method and microwave irradiation showed the same spectral characterization.

Copolymer Code	Tonset (°C)	T_{max} (°C)	T_{50} (°C)	Residue (%)*
PMITA1	154	363	360	6.5
PMITA4	165	369	358	6.0
PMITA5	158	365	337	7.6
PMITA6	158	367	275	8.0
PAITA2	86	351	381	32.7
PAITA7	94	371	176	16.6
PAITA8	84	366	382	27.0
PAITA9	145	366	391	23.8

* At 500 °C.

Thermogravimetric Analysis of degradation of copolymers PMITA 1, 4-6 and PAITA 2, 7-9

For copolymers PMITA1 & PMITA5, the thermogram, Figure 3, showed that the prepared copolymers were degraded in four similar degradation steps. The first step with weight loss of 2.42% for conventional method at 70-115°C and 21.27% for microwave-assisted method at 130-225°C which is attributed to water evaporation and decarboxylation which is more clear in the prepared copolymers by microwave irradiation, respectively. The last stage exhibited subsequent major degradation process between 331-445°C (87.13%, wt loss) and between 331-445°C (80.71%, wt loss) for PMITA1 and PMITA5, respectively.

For the effect of the percentage of itaconic anhydride, Figure 4, the thermogravimetric data showed that the thermal stability of copolymer PMITA6 is higher than both copolymers PMITA4 and PMITA5 due to the increase in the itaconic anhydride content as a bulk group which leads to an increase in the thermal stability.

For copolymers PAITA2 and PAITA9, the thermograms, Figure 5, showed that they were degraded via two main stage degradation processes; the first step for copolymer PAITA2 is between 100 to 110°C with weight loss of 7.53%, while the last step occurs in a range of 380 to 440°C with weight loss of 62.39%. For copolymer PAITA9, we find the first degradation step is between 115 to 120°C with weight loss of 6.19%, while the last degradation step is between 490 to 445°C with weight loss of 6.19%.

Table 2 Information derived from TGA measurements of degradation of copolymers PMITA 1, 4-6 and PAITA 2, 7-9

Copolymer Code	Tonset (°C)	T_{max} (°C)	T_{50} (°C)	Residue (%)*
PMITA1	154	363	360	6.5
PMITA4	165	369	358	6.0
PMITA5	158	365	337	7.6
PMITA6	158	367	275	8.0
PAITA2	86	351	381	32.7
PAITA7	94	371	176	16.6
PAITA8	84	366	382	27.0
PAITA9	145	366	391	23.8

* At 500 °C.

Figure 7 DSC thermogram of copolymers PMITA1 and PMITA5.
loss of 61.68%. The thermogram showed the major weight loss within the temperature range 331–507°C and the temperature for a maximum decomposition was 559 and 661°C for copolymers PAITA2 and PAITA9, respectively.

For the effect of the percentage of itaconic anhydride, Figure 6, the thermogravimetric data showed that the thermal stability of copolymer PAITA9 is higher than copolymer PAITA7 due to the increase in the itaconic anhydride content as a bulk group which leads to an increase in the thermal stability as described earlier.

Considerable differences in the thermal decomposition of the prepared copolymers are observed in terms of degradation temperature are shown in (Table 2).

The copolymerization using microwave irradiation led to an increased T_{onset} of PMITA1 compared to PMITA5 which prepared by conventional method, however, T_{50} and T_{max} decreased. While on increasing the itaconic anhydride content (PMITA4–6), T_{onset} and T_{50} decreased and T_{max} are too close.

Similarly, PAITA2, 7-9, T_{onset}, T_{50} and T_{max} increased from PAITA2, which prepared by conventional method, to PAITA9, which prepared by microwave irradiation. The same conclusion was observed with increasing the itaconic anhydride content (PAITA7-9).

This could be explained by that microwave irradiation gave chance for increasing the itaconic anhydride content more than conventional method. As expected from the literature, the molecular weight of the copolymers
decreased with increasing ITA concentration in the feed, which may be a consequence of the allylic hydrogen in ITA that can act as a chain transfer agent in radical polymerization [43,44].

Differential Scanning Calorimetry (DSC)

The effect of itaconic anhydride ratio in the prepared copolymers changes on the glass transition temperature (T_g) and the copolymer crystallinity upon thermal treatment were investigated by DSC at a heating rate of 10 °C/min, and the results are shown in Figures 7-10. The DSC traces, one transition was observed. The glass transition temperature (T_g) was found to be 73 and 110°C, for copolymers PMITA1 and PMITA5, respectively. It was noticed that T_g of copolymer PMITA5 is higher than that of copolymer PMITA1, which gives another evidence for enhancing the thermal properties by using the microwave technique due to increasing in the itaconic anhydride content. On the other hand the glass transition temperature (T_g) was found to be 106, 110, and 117°C, for copolymers PMITA4, PMITA5, and PMITA6, respectively, Figure 8. The T_g increased as the ITA content increase due to the decrease in crystallinity [45].

Figure 9 showed the DSC thermograms of copolymers PAITA2 and PAITA9 copolymers prepared by conventional and microwave method. Both show no glass transition temperature, but copolymer PAITA2 shows a hump from 30 to 100°C, this hump is assigned to the evaporation of water attached to the polar amide groups NH$_2$CO- [46]. While for copolymer PAITA9 this hump starts from 30 to 120°C for the same reason.

Moreover, for the degradation process of the copolymer PAIT2, PAIT7-9 it is clear that the effect of the hydrogen bond so during the first degradation only dehydration followed by deamination process and this stage there is no differences between the prepared polymer by convention method and microwave irradiation while at higher temperature most of the hydrogen bond were broken and the difference in the thermal stabilities and the effect of the ITA was clear [47].

For AA/ITA copolymers series PAITA7-9 prepared by microwave method, the DSC thermograms, Figure 10, showed that copolymers PAITA7-9 has no glass transition
temperature, the absence of T_g may be due to that itaconic anhydride makes a steric hindrance for the segmental motion of the copolymer, which lead to the absence of T_g.

Generally, the increase in the thermal stability for copolymers prepared by microwave irradiation technique compared to those prepared by conventional method is attributed to the increased radical flux under microwave irradiation as well as increasing of the itaconic anhydride content and prevention of the chain transfer in free radical polymerization. This result from the rapid orientation of the radicals that are formed from the decomposition of the α,α'-azobisisobutyronitrile as depicted in, Figure 11 [43,44,48], this orientation reduces the number of direct terminations via recombination of the formed two radical fragments under microwave irradiation and thus cause a higher radical flux. The obtained high radical flux leads to the formation of high molecular weight copolymers, which result in increase in their thermal stability of the copolymers synthesized by microwave irradiation method rather than copolymers synthesized by conventional solution polymerization.

The molecular weight and Elemental microanalysis Determination

The molecular weight of itaconic anhydride copolymers have been studied, again it is obvious that the molecular weight decrease with increasing the ratio of itaconic anhydride in the copolymer with a significant change using microwave irradiation method due to the prevention of chain transfer and increasing of the itaconic anhydride in the copolymer composition (PMITA 5), Figure 12. For SEC measurements, SEC traces showed that for copolymer PMITA5, $M_n = 140,872$, $M_w = 653,924$, $M_w/M_n = 4.64$. For copolymer PMITA6, $M_n = 50,574$, $M_w = 288,871$, $M_w/M_n = 2.14$, which obtained at MMA/ITA ratio 10:2 and 10:4, respectively, in 2-butanol using microwave irradiation.

Moreover Figure 12B not 12A showed a bimodal population in which the first one is related to the formation of itaconic anhydride homopolymer due to the increase in itaconic anhydride ratio.

In addition, the copolymers structures and ratios were confirmed by elemental microanalysis which in a good agreement with the calculated values (Table 3).

Conclusions

Itaconic anhydride based copolymers with both methyl methacrylate and acrylamide with different ratios were successfully prepared using microwave irradiation technique. For comparison study, similar copolymers were prepared by conventional method. The obtained results showed the advantages of microwave irradiation method over conventional method. Microwave irradiation method offers the possibility of the preparation of copolymer in short time with high yield, high molecular weight and

Table 3 Elemental microanalysis of the prepared copolymers using microwave irradiation

Copolymer code	Calculated (%)	Found (%)				
	C	H	N	C	H	N
PMITA4	59.3	7.6	-	58.6	7.8	-
PMITA5	58.8	7.2	-	58.3	7.6	-
PMITA6	58.0	6.6	-	55.2	5.5	-
PAITA7	51.1	6.6	17.0	48.4	7.0	15.9
PAITA8	51.4	6.5	14.4	49.3	6.6	14.1
PAITA9	51.8	6.0	11.7	49.8	6.4	9.8
high thermal stability. Moreover, as the itaconic anhydride content increases the thermal stability and T_g increase due to the decrease in the crystallinity.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SMO carried out all the experimental work. MHE, SSE and AEF designed the proposed methods and analyzed the data statistically together. All authors read and approved the final manuscript.

Acknowledgment
This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author details
1 Petrochemical Research Chair, Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia. 2 Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt. 3 Alexandria University, Faculty of Science, Chemistry Department, P. O. Box 426 Ibrahimia, Alexandria 12321, Egypt.

Received: 10 April 2012 Accepted: 30 July 2012
Published: 8 August 2012

References
1. Libicomp TP, Tierney J, Wathey S, Westman J. Microwave-assisted organic synthesis a review. Tetrahedron 2001, 57:9225–9283.
2. Perrux L, Loupy AA. Tentative realization of microwave effects in organic synthesis according to the reaction medium and mechanistic consideration. Tetrahedron 2001, 57:9199–9223.
3. Caddick S. Microwave-assisted organic reactions. Tetraken 1999, 51:10403–10432.
4. Matloobi M, Kappe CO. Microwave-assisted and conventional synthesis of novel azetidin-2-one derivatives as potent antimicrobial agents. Asian J. Res. Chem. 2009, 2:171–177.
5. Al-Hazimi HM, El-Faham A, Ghazzali M, Al-Faham K. Microwave irradiation: A facile, scalable and convenient method for synthesis of N-phthaloylarnimic acids. Arab. J. Chem. 2012, 5:285–289.
6. Ghazzali M, El-Faham A, Abid-Meeed A, Al-Faham K. Microwave-assisted synthesis, structural elucidation and biological assessment of 2-(2-acetamidophenyl)-2-oxo-N-phenyl acetamide and N-(2-(2-oxo-2-phenylamino)acetetyl)-phenylpropionamide derivatives. J. Mol. Str. 2012, 1013:163–167.
7. Julien H, Valot H. Polyurethane curing by a pulsed microwave field. Polymer 1985, 26:506–510.
8. Zsilinski B, Kuzmcyz C, Gounderne A. Synthesis under microwaves (2.45 GHz) of polyurethane polymers-I. Model study from disocyanate and polythethylre prepolymers. Eur. Polym. J 1987, 23:273–277.
9. Imal Y, Nemoto H, Watanabe S, Kakimoto MA: A new facile and rapid synthesis of aliphatic polamides by microwave assisted polycondensation of ω-amino acids and nylon salts. Polym. J. 1996, 28:155–260.
10. Liu Y, Sun XD, Xie XQ, Scoba DA. Kinetics of the crosslinking reaction of a bisanidine model compound in thermal and microwave cure processes. J. Polym. Sci., Part A: Polym. Chem. 1998, 36:2653–2665.
11. Wallach JA. Biodegradable polyamides derived from renewable resources: highly branched copolymers of itaconic anhydride. In Polym. Sci. Edited by Storrs CT: University of Connecticut, 2000.
12. Meier MAR, Metzger JD, Schubert US. Plant renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007, 36:1788–17802.
13. Papandopulo VH. Amide-imide derivatives of homopolymers of itaconic anhydride having antitumor activity. application EP: USA: Monsanto Co; 1983.18.
14. Milovanovic MB, Trifunovic SS, Kostasik L, Popovic IG. Preparation and modification of itaconic anhydride-methyl methacrylate copolymers. J. Serb. Chem. Soc. 2007, 72(12):1507–1514.
15. Cisnau L, Hamade T, Popa M. Itaconic anhydride based amphiphilic copolymers: synthesis, characterization and stabilization of carboxyl functionalized PEGylated nanoparticles. Eur. Polym. J. 2007, 43:4843–4851.
16. Wang S, Huang SJ, Weiss RA. Synthesis and characterization of itaconic anhydride and stearyl methacrylate copolymers. Polymer 2009, 50:1–9.
17. Erbil C, Tefan B, Akdemir O, Gokceoren AT. Monomer reactivity ratios of N-isopropylacrylamide-itaconic acid copolymers at low and high conversions. Eur. Polym. J. 2000, 36:1728–1737.
18. Mormann W, Ferbitz J. Copolymers from tert-butylic methacrylate and itaconic anhydride-reactivity ratios and polymer analogous reactions. Eur. Polym. J. 2003, 39:489–496.
19. Kun RC, Soykan C, Delibas A. A study of free-radical polymerization of itaconic acid/2-acrylamido-2-methyl-1-propanesulfonic acid and their metal chelates. Eur. Polym. J. 2006, 42:625–637.
20. Bajaj P, Paliwal DK, Gupta AK. Acrylonitrile-acrylic acids copolymers I synthesis and characterization. J. Appl. Polym. Sci. 1993, 49:823–833.
21. Xue W, Champa S, Hugin ME. Observations on some copolymerizations involving N-isopropylacrylamide. Polymer 2000, 41:7575–7581.
22. Cowie JMG, McEwan JJ, Yule DJ. The influence of solvent on the apparent reactivity ratios in free radical copolymerisation reactions between itaconic acid and 2-hydroxyethyl acrylate. Eur. Polym. J. 2000, 36:1795–1803.
23. Uyank N, Erbil C. Monomer reactivity ratios of itaconic acid and acrylamide copolymers determined by using potentiometric titration method. Eur. Polym. J. 2000, 36:2651–2654.
24. Erbil C, Ozdemir S, Uyank N. Determination of the monomer reactivity ratios for copolymerization of itaconic acid and acrylamide by conductometric titration method. Polymer 2000, 41:1391–1394.
25. Virtanen J, Tenhu H. Studies on copolymerization of N-isopropylacrylamide and glycidyl methacrylate. J. Polym. Sci. Pol. Chem. 2001, 39:3716–3728.
26. Devasia R, Nair CPR, Niran KN. Copolymerization of acrylonitrile with itaconic acid in dimethylformamide: effect of triethylamine. Eur. Polym. J. 2003, 39:537–544.
27. Patel MV, Dolia MB, Patel JN, Patel RM. Synthesis and characterization of novel acrylic copolymers: determination of monomer reactivity ratios and biological activity. React. Funct. Polym. 2005, 65:195–204.
41. Pekel N, Sahiner N, Guven O, Rezaev ZMO: Synthesis and characterization of N-vinylimidazole–ethyl methacrylate copolymers and determination of monomer reactivity ratios. Eur. Polym. J. 2001, 37:2443–2451.

42. Save NS, Jassal M, Agrawal AK: Stimuli sensitive copolymer poly (N-tert-butylacrylamide-random-acylamide): synthesis and characterization. J. Appl. Polym. Sci. 2005, 95:672–680.

43. Oishi T: Polymerizations and copolymerizations of N-(4-substituted phenyl)itaconimides. Polym. J. 1980, 12:719–727.

44. Urzua M, Opazo A, Gargallo L, Radić D: Poly(N-1-alkylitaconamic acid)/poly(N-vinyl-2-pyrrolidone) blends. Polym. Bull. 1998, 40:63–67.

45. Shang S, Huang SJ, Weiss RA: Synthesis and characterization of itaconic anhydride and stearyl methacrylate copolymers. Polymer 2009, 50:3119–3127.

46. Ehrenstein GW, Riedel G, Trawiel P: Thermal analysis of plastics: Theory and practice. Hanser Gardner Publications 2004, ISBN-13: 9781569903629.

47. Krušić KM, Đurunuzović E, Trifunović S, Filipović J: Polyacrylamide and poly (itaconic acid) complexes. Eur. Polym. J. 2004, 40:793–798.

48. Fellows CM: Preliminary observations on the copolymerisation of acceptor monomer:donor monomer systems under microwave irradiation. Central Eur. J Chem 2005, 3:40–52.

doi:10.1186/1752-153X-6-85

Cite this article as: Osman et al.: Microwave synthesis and thermal properties of polyacrylate derivatives containing itaconic anhydride moieties. Chemistry Central Journal 2012 6:85.