Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials

Murat Çağlar 1,* , Lumița-Ioana Cotîrlă 2 and Mucahit Buyankara 3

1 Department of Mathematics, Faculty of Science, Erzurum Technical University, Erzurum 25050, Turkey
2 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania; lumiita.cotirla@math.utcluj.ro
3 Vocational School of Social Sciences, Bingöl University, Bingöl 12000, Turkey; mbuyankara@bingol.edu.tr
* Correspondence: murat.caglar@erzurum.edu.tr

Abstract: We introduce and investigate in this paper a new subclass of bi-univalent functions associated with the Gegenbauer polynomials which satisfy subordination conditions defined in a symmetric domain, which is the open unit disc. For this new subclass, we obtain estimates for the Taylor–Maclaurin coefficients |a2|, |a3| and the Fekete–Szegö inequality |a3 − μa22|.

Keywords: Gegenbauer polynomial; subordination; bi-univalent functions; analytic functions; Fekete–Szegö problem

MSC: 30C45; 30C50

1. Introduction

Let A represent the class of functions whose members are of the form

\[f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in \Delta), \]

which are analytic in \(\Delta = \{ z \in \mathbb{C} : |z| < 1 \} \).

A subclass of A with members that are univalent in \(\Delta \) is indicated by the symbol S. The Koebe one-quarter theorem [1] guarantees that a disk with a radius of 1/4 exists in the image of every univalent function \(f \in A \). As a result, each univalent function \(f \) has a satisfied inverse function \(f^{-1} \)

\[f^{-1}(f(z)) = z, \quad (z \in \Delta) \quad \text{and} \quad f\left(f^{-1}(\omega)\right) = \omega, \quad (|\omega| < r_0(f), r_0(f) \geq \frac{1}{4}). \]

If \(f \) and \(f^{-1} \) are univalent in \(\Delta \), then we say that \(f \in A \) is bi-univalent in \(\Delta \). The class of bi-univalent functions defined on the unit disk \(\Delta \) is denoted by \(\Sigma \). Due to the fact that \(f \in \Sigma \) has the Maclaurin series described by (1), a calculation reveals that \(g = f^{-1} \) has the expansion

\[g(\omega) = f^{-1}(\omega) = \omega - a_2 \omega^2 + \left(2a_2^2 - a_3\right) \omega^3 + \ldots \]

We know that the class \(\Sigma \) is not empty. For example, the functions

\[f_1(z) = \frac{z}{z - 1}, \quad f_2(z) = \frac{1}{2} \log \frac{1 + z}{1 - z}, \quad f_3(z) = - \log (1 - z) \]

with their respective inverses

\[f_1^{-1}(\omega) = \frac{\omega}{1 + \omega}, \quad f_2^{-1}(\omega) = \frac{\omega^2 - 1}{\omega^2 + 1}, \quad f_3^{-1}(\omega) = \frac{\omega - 1}{\omega} \]
belong to Σ.

In addition, the Koebe function does not belong to Σ.

The research of analytical and bi-univalent functions is reintroduced in [2]; previous studies include those of [3–8]. Several authors introduced new subclasses of bi-univalent functions and obtained bounds for the initial coefficients (see [2–4,6,9–11]).

Let f and g be the analytic functions in Δ. We say that f is subordinate to g and denoted by

$$f(z) \prec g(z) \quad (z \in \Delta),$$

if there exists a Schwarz function w, which is analytic in Δ with $w(0)=0$ and $|w(z)|<1$ such that

$$f(z) = g(w(z)) \quad (z \in \Delta).$$

If g is a univalent function in Δ, then

$$f(z) \prec g(z) \iff f(0) = g(0) \quad \text{and} \quad f(\Delta) \subset g(\Delta).$$

In [6], by means of Loewner’s method, the Fekete–Szegö inequality for the coefficients of $f \in S$ is that

$$|a_3 - \mu a_2^2| \leq 1 + 2 \exp \left(\frac{-2\mu}{1-\mu} \right) \quad \text{for } 0 \leq \mu < 1.$$

As $\mu \to 1^-$, the elementary inequality $|a^3 - a_2^2| \leq 1$ is obtained. Moreover, the coefficient functional

$$F_\mu(f) = a_3 - \mu a_2^2$$

on the normalized analytic functions f in the open unit disk Δ plays an important role in geometric function theory. The problem of maximizing the absolute value of the functional $F_\mu(f)$ is called the Fekete–Szegö problem.

The Fekete–Szegö inequalities introduced in 1933, see [12], preoccupied researchers regarding different classes of univalent functions [13–16]; hence, it is obvious that such inequalities were obtained regarding bi-univalent functions too and very recently published papers can be cited to support the assertion that the topic still provides interesting results [17–19].

In recent years orthogonal polynomials have been explored from a variety of angles. We know their relevance in mathematical physics, mathematical statistics, probability theory and engineering. The classical orthogonal polynomials are the most typically encountered orthogonal polynomials in applications (Laguerre polynomials, Jacobi polynomials and Hermite polynomials). For more details about the classical orthogonal polynomials we mention the papers: [17,18,20–24].

The Gegenbauer polynomials [25] are defined in terms of the Jacobi polynomials $P^{(u,v)}_n$, with $v = u = \lambda - \frac{1}{2}$, $(\lambda > -\frac{1}{2}, \lambda \neq 0)$, which are described by

$$B^\lambda_n(l) = \frac{\Gamma(n+2)\Gamma\left(\lambda + \frac{1}{2}\right)}{\Gamma(2\lambda)\Gamma\left(n + \lambda + \frac{1}{2}\right)} \frac{P^{\lambda,\frac{1}{2},\lambda - \frac{1}{2}}_n}{P^{n+\lambda,\lambda}_n}(l)$$

$$= \frac{(n-1+2\lambda)}{n} \sum_{k=0}^{n} \frac{(nk)(2\lambda+n)_{k}}{(\lambda+\frac{1}{2})_{k}} \left(\frac{l-1}{2}\right)^k. \quad (3)$$

From (3), it follows that $B^\lambda_n(l)$ is a polynomial of degree n with real coefficients and $B^\lambda_n(1) = \left(\frac{n-1+2\lambda}{n}\right)$, while the leading coefficient of $B^\lambda_n(l)$ is $2^n \left(\frac{n+\lambda-1}{n}\right)$. According to Jacobi polynomial theory, for $\mu = v = \lambda - \frac{1}{2}$, with $\lambda > -\frac{1}{2}$, and $\lambda \neq 0$, we have

$$B^\lambda_n(-1) = (-1)^n B^\lambda_n(l).$$
In [25,26], the Gegenbauer polynomials’ generating function is provided by
\[
\frac{2^{\lambda - \frac{1}{2}}}{(1 - 2lz + z^2)^{\frac{\lambda}{2}}(1 - lz + \sqrt{1 - 2lz + z^2})^{\lambda - \frac{1}{2}}} = \frac{(\lambda - \frac{1}{2})_n B_n^\lambda(l) t^n}{(2\lambda)_n},
\]
and this equivalence may be deduced from the Jacobi polynomial generating function. From (4), we obtain
\[
\phi^\lambda_l(z) = \frac{1}{(1 - 2lz + z^2)^{\lambda}} = \sum_{n=0}^{\infty} B_n^\lambda(l) z^n, z \in \Delta, l \in [-1,1], \lambda \in \left(\frac{-1}{2}, +\infty\right) \setminus \{0\},
\]
and the proof is given in [6,23,25].

When \(\lambda = 1\), the relation 5 yields the ordinary generating function for the Chebyshev polynomials, and when \(\lambda = \frac{1}{2}\), we obtain the ordinary generating function for the Legendre polynomials (see [27]).

The Taylor–Maclaurin series expansion for the function \(\phi^\lambda_l(z)\) is as follows:
\[
\phi^\lambda_l(z) = z + B^\lambda_1(l)z^2 + B^\lambda_2(l)z^3 + B^\lambda_3(l)z^4 + \cdots + B^\lambda_{n-1}(l)z^2(l)z^n + \cdots,
\]
where
\[
B^\lambda_0(l) = 1, \quad B^\lambda_1(l) = 2\lambda l, \quad B^\lambda_2(l) = 2\lambda(\lambda + 1)l^2 - \lambda = 2(\lambda)z^2 - \lambda.
\]
and \((\lambda)_n\) is the Pochhammer symbol defined by
\[
(\lambda)_n = \begin{cases} 1, & n = 0 \\ \lambda(\lambda + 1)\cdots(\lambda + n - 1), & n \in \mathbb{N}. \end{cases}
\]

Many researchers have recently explored bi-univalent functions associated with Gegenbauer polynomials [18,20–22,24].

First, we define a new subclass of bi-univalent functions associated with Gegenbauer polynomials.

Definition 1. We say that \(f\) of the form (1) is in the class \(M_{\Sigma}(\tau, \theta; \phi^\lambda_l)\), for \(\tau \in \mathbb{C}\setminus\{0\}\), \(0 \leq \theta \leq 1\) and \(l \in \left(\frac{1}{2}, 1\right]\), if the following subordinations hold:
\[
1 + \frac{1}{\tau}(f'(z) + \theta zf''(z) - 1) \prec \phi^\lambda_l(z)
\]
and
\[
1 + \frac{1}{\tau}(g'(\omega) + \theta \omega g''(\omega) - 1) \prec \phi^\lambda_l(\omega),
\]
z, \(\omega \in \Delta, \phi^\lambda_l\) is given by (7), and \(g = f^{-1}\) is given by (2).

Upon allocating the parameters \(\tau\) and \(\theta\), one can obtain several new subclasses of \(\Sigma\), as illustrated in the following two examples.

Example 1. We say that \(f\) of the form (1) is in the class \(M_{\Sigma}(\tau, 0; \phi^\lambda_l) = M_{\Sigma}(\tau; \phi^\lambda_l)\), for \(\tau \in \mathbb{C}\setminus\{0\}\), and \(l \in \left(\frac{1}{2}, 1\right]\), if the following subordinations hold:
\[
1 + \frac{1}{\tau}(f'(z) - 1) \prec \phi^\lambda_l(z)
\]
and
\[
1 + \frac{1}{\tau}(g'(\omega) - 1) \prec \phi^\lambda_l(\omega),
\]
z, \(\omega \in \Delta, \phi^\lambda_l\) is given by (7), and \(g = f^{-1}\) is given by (2).
Example 2. We say that f of the form (1) is in the class $M_{\Sigma}(1,0; \phi^1_l) = M_{\Sigma}(\phi^1_l)$, for $l \in \left(\frac{1}{2}, 1\right]$, if the following subordinations hold:

$$f'(z) < \phi^1_l(z)$$

and

$$g'(\omega) < \phi^1_l(\omega),$$

$z, \omega \in \Delta, \phi^1_l$ is given by (7), and $g = f^{-1}$ is given by (2).

2. Initial Taylor Coefficients Estimates for the Class $M_{\Sigma}(\tau, \theta; \phi^1_l)$

Lemma 1 ([28] p. 172). Suppose $w(z) = \sum_{n=1}^{\infty} w_n z^n$, $z \in \Delta$, is an analytic function in Δ such that $|w(z)| < 1$, $z \in \Delta$. Then,

$$|w_1| \leq 1, |w_n| \leq 1 - |w_1|^2, n = 2, 3, \ldots$$

For the functions belonging to a class $M_{\Sigma}(\tau, \theta; \phi^1_l)$, we will obtain upper bounds for the modulus of coefficients a_2 and a_3.

Theorem 1. If the class $M_{\Sigma}(\tau, \theta; \phi^1_l)$ contains all the functions f given by (1), then

$$|a_2| \leq \frac{2\lambda |\tau| \sqrt{2\lambda l}}{\sqrt{3|\tau(1+2\theta)(2\lambda l)^2 - 4(1+\theta)^2(2\lambda)^2 - \lambda}|},$$

and

$$|a_3| \leq \frac{2\lambda |\tau|}{3|1+2\theta|} + \frac{|\tau|^2 (\lambda l)^2}{|1+\theta|^2}.$$ (11)

Proof. Let $f \in M_{\Sigma}(\tau, \theta; \phi^1_l)$ and $g = f^{-1}$. We have the following from the definition in Formulas (8) and (9)

$$1 + \frac{1}{\tau} (f'(z) + \theta zf''(z) - 1) = \phi^1_l(v(z))$$

and

$$1 + \frac{1}{\tau} (g'(\omega) + \theta \omega g''(\omega) - 1) = \phi^1_l(v(\omega)),$$

where the analytical functions v and v have the form

$$v(z) = c_1 z + c_2 z^2 + \ldots,$$

$$v(\omega) = d_1 \omega + d_2 \omega^2 + \ldots,$$

and $v(0) = 0 = v(0), |v(z)| < 1, |v(\omega)| < 1, z, \omega \in \Delta$.

From Lemma 1, it follows that

$$|c_j| \leq 1, |d_j| \leq 1, \text{ where } j \in \mathbb{N}.$$ (16)

If we replace (14) and (15) in (12) and (13), respectively, we obtain

$$1 + \frac{1}{\tau} (f'(z) + \theta zf''(z) - 1) = 1 + B^1_1(l) v(z) + B^2_1(l) v^2(z) + \ldots,$$

and

$$1 + \frac{1}{\tau} (g'(\omega) + \theta \omega g''(\omega) - 1) = 1 + B^1_1(l) v(\omega) + B^2_1(l) v^2(\omega) + \ldots.$$ (18)
In view of (1) and (2), from (17) and (18), we obtain
\[
1 + \frac{1}{\tau}(2a_2(1 + \theta)z + 3a_3(1 + 2\theta)z^2) = 1 + B_1^1(l)c_1z + \left[B_1^1(l)c_2 + B_2^1(l)c_1^2\right]z^2
\]
and
\[
1 + \frac{1}{\tau}(-2a_2(1 + \theta)\omega + 3\left(2a_2^2 - a_3\right)(1 + 2\theta)\omega^2) = 1 + B_1^1(l)d_1\omega + \left[B_1^1(l)d_2 + B_2^1(l)d_1^2\right]\omega^2.
\]
It gives rise to the following relationships:
\[
2a_2(1 + \theta) = \tau B_1^1(l)c_1, \quad \text{(19)}
\]
\[
3a_3(1 + 2\theta) = \tau B_1^1(l)c_2 + \tau B_2^1(l)c_1^2, \quad \text{(20)}
\]
and
\[
-2a_2(1 + \theta) = \tau B_1^1(l)d_1, \quad \text{(21)}
\]
\[
3\left(2a_2^2 - a_3\right)(1 + 2\theta) = \tau B_1^1(l)d_2 + \tau B_2^1(l)d_1^2. \quad \text{(22)}
\]
From (19) and (21), it follows that
\[
c_1 = -d_1, \quad \text{(23)}
\]
and
\[
a_2^2 = \frac{\tau^2[B_1^1(l)]^2(c_1^2 + d_1^2)}{8(1 + \theta)^2}. \quad \text{(24)}
\]
Adding (20) and (22), using (24), we obtain
\[
a_3 = \frac{\tau B_1^1(l)(c_2^2 - d_1^2) + \tau B_1^1(l)(c_2 - d_2)}{6(2\theta + 1)} + a_2^2 = \frac{\tau B_1^1(l)(c_2 - d_2) + \tau B_2^1(l)(c_1^2 - d_1^2)}{6(1 + 2\theta)} + \frac{\tau^2[B_1^1(l)]^2(c_1^2 + d_1^2)}{8(1 + \theta)^2}. \quad \text{(26)}
\]
Once again applying (16) and using (7), for the coefficients \(c_1, d_1, c_2, d_2\), we deduce (11). Thus, the proof is completed.

In Theorem 1, we obtain the following result for \(\tau = \theta = 1\).

Corollary 1. Let \(f \in M_{\Sigma}(1, 1; \phi_1^1)\). Then, we have
\[
|d_2| \leq \frac{2\lambda l \sqrt{2\lambda l}}{\sqrt{9(2\lambda l)^2 - 16(2(\lambda)l^2 - \lambda)}}.
\]
and

$$|a_3| \leq \frac{2\lambda l}{9} + \frac{(\lambda l)^2}{4}.$$

For $\tau = 1$ and $\theta = 0$ in Theorem 1, we obtain the following corollary.

Corollary 2. Let $f \in M_\Sigma(1, 0; \phi_\lambda^1)$. Then, we have

$$|a_2| \leq \frac{2\lambda l \sqrt{2\lambda l}}{\sqrt{[3(2\lambda l)^2 - 4(2\lambda l)l^2 - \lambda]}}$$

and

$$|a_3| \leq (\lambda l)^2 + \frac{2\lambda l}{3}.$$

For $\lambda = \frac{1}{2}$ and $l = 1$ in Corollary 2, we obtain the following corollary.

Corollary 3. Let $f \in M_\Sigma\left(1, 0; \phi_\lambda^2\right)$. Then, we have

$$|a_2| \leq 1,$$

and

$$|a_3| \leq \frac{7}{12}.$$

3. The Fekete–Szegö Problem for the Function Class $M_\Sigma\left(\tau, \theta; \phi_\lambda^\mu\right)$

Due to the Zaprawa result, which is discussed in [19], we obtain the Fekete–Szegö inequality for the class $M_\Sigma(\tau, \theta; \phi_\mu^1)$.

Theorem 2. If f given by (1) is in the class $M_\Sigma(\tau, \theta; \phi_\mu^1)$ where $\mu \in \mathbb{R}$, then we have

$$|a_3 - \mu a_2^2| \leq \begin{cases}
\frac{2\lambda l|\tau|}{6|1+2\theta|}, & \text{if } |h(\mu)| \leq \frac{1}{6|1+2\theta|}, \\
\frac{(1 - \mu)\tau^2(4\lambda l)^3}{3\tau(1+2\theta)(2\lambda l)^2 - 4(1+\theta)^2(2\lambda l)l^2 - 1}, & \text{if } |h(\mu)| \geq \frac{1}{6|1+2\theta|},
\end{cases}$$

where

$$h(\mu) = \frac{(1 - \mu)\tau^2(4\lambda l)^3}{3\tau(1+2\theta)(2\lambda l)^2 - 4(1+\theta)^2(2\lambda l)l^2 - 1}.$$

Proof. If $f \in M_\Sigma(\tau, \theta; \phi_\mu^1)$ is given by (1), from (25) and (26), we have

$$a_3 - \mu a_2^2 = \frac{\tau B_1^\lambda(l)(c_2 - d_2)}{6(1+2\theta)} + (1 - \mu)a_2^2$$

$$= \frac{\tau B_1^\lambda(l)(c_2 - d_2)}{6(1+2\theta)} + \frac{(1 - \mu)\tau^2[B_1^\lambda(l)]^3(c_2 + d_2)}{6\tau(1+2\theta)[B_1^\lambda(l)]^2 - 8(1+\theta)^2B_2^\lambda(l)}$$

$$= \tau B_1^\lambda(l) \left[\frac{c_2}{6(1+2\theta)} - \frac{d_2}{6(1+2\theta)} + \frac{(1 - \mu)\tau^2[B_1^\lambda(l)]^3 c_2}{6\tau(1+2\theta)[B_1^\lambda(l)]^2 - 8(1+\theta)^2B_2^\lambda(l)} \right]$$

$$+ \frac{(1 - \mu)\tau^2[B_1^\lambda(l)]^3 d_2}{6\tau(1+2\theta)[B_1^\lambda(l)]^2 - 8(1+\theta)^2B_2^\lambda(l)}$$

$$= \tau B_1^\lambda(l) \left[\left(h(\mu) + \frac{1}{6(1+2\theta)} \right)c_2 + \left(h(\mu) - \frac{1}{6(1+2\theta)} \right)d_2 \right],$$
where

\[h(\mu) = \frac{(1 - \mu)\tau^2 [B_1^\lambda(l)]^3}{6\tau(1 + 2\theta)[B_1^\lambda(l)]^2 - 8(1 + \theta)^2 B_2^\lambda(l)} \]

Now, by using (7)

\[a_3 - \mu a_2^2 = \tau 2\lambda [\left(h(\mu) + \frac{1}{6(1 + 2\theta)} \right) c_2 + \left(h(\mu) - \frac{1}{6(1 + 2\theta)} \right) d_2], \]

where

\[h(\mu) = \frac{(1 - \mu)\tau^2 4(\lambda l)^3}{3\tau(1 + 2\theta)(2\lambda l)^2 - 4(1 + \theta)^2 (2(\lambda + 1)l^2 - 1)} \]

Therefore, given (7) and (16), we conclude that the required inequality holds. Thus, the proof is completed. \(\square \)

In Theorem 2, we have the following result for \(\tau = \vartheta = 1 \).

Corollary 4. Let \(f \in M_\Sigma (1, 1; \phi_1^\lambda) \) and \(\mu \in \mathbb{R} \). Then, we have

\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{2\lambda l}{4\lambda l |h(\mu)|}, & \text{if } |h(\mu)| \leq \frac{1}{16l}, \\ \frac{4(1 - \mu)(\lambda l)^3}{9(2\lambda l)^2 - 16(2(\lambda + 1)l^2 - 1)}, & \text{if } |h(\mu)| \geq \frac{1}{16l}, \end{cases} \]

where

\[h(\mu) = \frac{4(1 - \mu)(\lambda l)^3}{9(2\lambda l)^2 - 16(2(\lambda + 1)l^2 - 1)}. \]

In Theorem 2, we have the following result for \(\tau = 1 \) and \(\vartheta = 0 \).

Corollary 5. Let \(f \in M_\Sigma (1, 0; \phi_1^\lambda) \) and \(\mu \in \mathbb{R} \). Then, we have

\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{2\lambda l}{4\lambda l |h(\mu)|}, & \text{if } |h(\mu)| \leq \frac{1}{16l}, \\ \frac{4(1 - \mu)(\lambda l)^3}{3(2\lambda l)^2 - 4(2(\lambda + 1)l^2 - 1)}, & \text{if } |h(\mu)| \geq \frac{1}{16l}, \end{cases} \]

where

\[h(\mu) = \frac{4(1 - \mu)(\lambda l)^3}{3(2\lambda l)^2 - 4(2(\lambda + 1)l^2 - 1)}. \]

In Corollary 5, we obtain the next result for \(\lambda = \frac{1}{2} \) and \(l = 1 \).

Corollary 6. Let \(f \in M_\Sigma \left(1, 0; \phi_1^\frac{1}{2} \right) \) and \(\mu \in \mathbb{R} \). Then, we have

\[|a_3 - \mu a_2^2| \leq \frac{1}{3}. \]

4. Conclusions

In this paper, we introduced and investigated a new subclass of bi-univalent functions in the open unit disk defined by Gegenbauer polynomials which satisfy subordination conditions. Furthermore, we obtain upper bounds for \(|a_2|, |a_3| \) and the Fekete–Szegö inequality \(|a_3 - \mu a_2^2| \) for functions in this subclass.

In addition, the approach presented here has been extended to establish new subfamilies of bi-univalent functions with other special functions. The related outcomes may be left to researchers for practice.
Author Contributions: Conceptualization, M.Ç., L.-I.C. and M.B.; methodology, M.Ç., L.-I.C. and M.B.; software, M.Ç., L.-I.C. and M.B.; validation, M.Ç.; formal analysis, M.Ç., L.-I.C. and M.B.; investigation, M.Ç., L.-I.C. and M.B.; resources, M.Ç., L.-I.C. and M.B.; data curation, M.Ç., L.-I.C. and M.B.; writing—original draft preparation, M.Ç., L.-I.C. and M.B.; writing—review and editing, M.Ç., L.-I.C. and M.B.; visualization, M.Ç., L.-I.C. and M.B.; supervision, M.Ç.; project administration, M.Ç., L.-I.C. and M.B.; funding acquisition, M.Ç., L.-I.C. and M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften Series, 259; Springer: New York, NY, USA, 1983.
2. Srivastava, H.M.; Mishra, A.K.; Goelhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [CrossRef]
3. Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babeş-Bolyai Math. 1986, 31, 70–77.
4. Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of star-like functions. Canad. J. Math. 1970, 22, 476–485. [CrossRef]
5. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [CrossRef]
6. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [CrossRef]
7. Li, X.F.; Wang, A.P. Two new subclasses of bi-univalent functions. Int. Math. Forum 2012, 7, 1495–1504.
8. Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$. Arch. Ration. Mech. Anal. 1969, 32, 100–112.
9. Cotirlă, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [CrossRef]
10. Páll-Szabó, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [CrossRef]
11. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [CrossRef]
12. Fekete, M.; Szegő, G. Eine Bemerkung über ungerade schlichte Functionen. J. Lond. Math. Soc. 1933, 8, 85–89. [CrossRef]
13. Dziok, J. A general solution of the Fekete-Szegő problem. Bound. Value Probl. 2013, 98, 13. [CrossRef]
14. Kanas, S. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453–8461. [CrossRef]
15. Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient inequalities of functions associated with Petal type domains. Mathematics 2018, 6, 298. [CrossRef]
16. Wanas, A.K.; Cotirlă, L.I. Initial coefficient estimates and Fekete-Szegő inequalities for new families of bi-univalent functions governed by $(p - q)$—Wanas operator. Symmetry 2021, 13, 2118. [CrossRef]
17. Al-Hawary, T.; Amoureh, A.; Frasin, B.A. Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials. Bol. Soc. Mat. Mex. 2021, 27, 79. [CrossRef]
18. Amoureh, A.; Frasin, B.A.; Abdeljaward, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673.
19. Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21, 169–178. [CrossRef]
20. Amoureh, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Pales. J. Math. 2021, 10, 625–632.
21. Amoureh, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the pascal distribution series and Gegenbauer polynomials to construct and study a new subclass of analytic bi-univalent functions. Symmetry 2022, 14, 147. [CrossRef]
22. İlşaf, M.; Amoureh, A.; Haji Mohd, M. Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 2022, 11, 147. [CrossRef]
23. Kiepiel, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comp. Appl. Math. 2003, 153, 273–282. [CrossRef]
24. Wanas, A.K.; Cotirlă, L.I. New applications of Gegenbauer polynomials on a new family of bi-Bazilevic functions governed by the q-Srivastava-Attiya operator. Mathematics 2022, 10, 1309. [CrossRef]
25. Kim, D.S.; Kim, T.; Rim, S.H. Some identities involving Gegenbauer polynomials. Adv. Differ. Equ. 2012, 2012, 219. [CrossRef]
26. Stein, E.M.; Weiss, G. *Introduction to Fourier Analysis in Euclidean Space*; Princeton University Press: Princeton, NJ, USA, 1971.
27. Arfken, G.B.; Weber, H.J. *Mathematical Methods for Physicists*, 6th ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005.
28. Nehari, Z. *Conformal Mapping*; McGraw-Hill: New York, NY, USA, 1952.