BiT: Robustly Binarized Multi-distilled Transformer

Anonymous Author(s)
Affiliation
Address
email

A Appendix

A.1 BiT vs. progressive distillation

Table 1: BiT vs. progressive distillation on selected GLUE tasks. Methods differ in the teacher model used and the model from which the student weights are initialized.

Method	Teacher Initialization	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
BiBERT Distillation	32-32-32	77/0/77.2	83.1	84.1	89.7	60.1	50.5	67.5	69.7	
Progressive	32-32-32	65/1-1-2	78.9/78.9	85.0	85.6	89.5	30.5	75.1	60.6	73.4
BiT	1-1-2	79/5/79.4	85.4	84.6	89.6	32.9	72.0	79.9	62.1	73.5

Previous work has also recognized the importance of good initialization for binary model training, and proposed to perform distillation while progressively quantizing the student model (Zhuang et al., 2018; Yang et al., 2019). Progressive distillation ensures a good initialization for the student model at each step. However, in this approach the teacher model is fixed to the full precision model, which does not address the problem of teacher-student gap. In Table 1 we compare BiT to a comparable implementation of progressive distillation, using the same quantization schedule, W32A32 → W1A2 → W1A1, as ours. We keep the teacher model fixed, while re-initializing the student model from the latest quantized version at each step. We see that using a quantized teacher model is helpful, especially in the high-data regime. However, our method can lag behind progressive distillation for small datasets such as STS-B and MRPC.

A.2 Elastic binarization function vs. ReActNet learnable bias

Table 2: Elastic binarization function vs. ReActNet (Liu et al., 2020) learnable bias on GLUE tasks.

Method	MNLI-mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
Our two-set binarization (Strong Baseline)	57.1/59.1	68.5	64.7	81.0	18.2	24.7	71.8	56.7	55.1
+ learnable scale	76.5/76.8	82.7	85.1	88.1	25.6	62.3	74.3	58.1	60.2
+ learnable scale and bias (BiT ‡)	77.1/77.5	82.9	85.7	87.7	25.1	71.1	79.7	58.8	71.0

Inspired by the learnable bias proposed in ReActNet (Liu et al., 2020), we further propose elastic binarization function to learn both learnable scaling factors and learnable bias. We find this learnable scaling factor critical for the final performance. As shown in table 2, the proposed learnable scaling factor brings 13.9% accuracy improvement, and further adding learnable bias boosts the accuracy by 1.8%.

A.3 Two-set binarization scheme vs. Bi-Attention

In contrast to Bi-Attention proposed in BiBERT (Qin et al., 2021) that removes SoftMax and binarizes the attention to {0, 1} with bool function, our two-set binarization scheme finds that keeping SoftMax in attention computation and also binarizing the positive output of ReLU layer to {0, 1} works better. We conduct meticulous experiments to compare these choices. In Table 3 we show that, compared to removing SoftMax as Bi-Attention suggested, simply binarizing the activations after SoftMax layer

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.
Table 3: Two-set binarization scheme vs. Bi-Attention [Qin et al., 2021] on GLUE tasks. Methods differ in whether using SoftMax in attention and whether binarizing the ReLU output to \{0, 1\}.

Method	Attention ReLU output	MNLI	QQP	QNLI	SST-2	STS-B	MRPC	RTE	Avg.		
Bi-Attention (w/o Softmax)	\{0, 1\}	[-1, 1]	48.1/50.0	60.1	60.6	78.8	14.0	22.3	68.4	58.1	51.3
Binarize attention to \{0, 1\} (w/ Softmax)	\{0, 1\}	[-1, 1]	51.9/52.6	76.2	60.5	79.6	11.6	18.1	70.6	55.6	53.0
Two-set binarization scheme	\{0, 1\}	\{0, 1\}	57.4/59.1	68.3	64.7	81.0	18.2	24.7	71.8	56.7	55.3

Binarizing the ReLU layer output to \{0, 1\} even produces 1.7% better accuracy. Furthermore, binarizing the ReLU layer output to \{0, 1\} instead of \{-1, 1\} helps the binary network match real-valued distributions and further brings 2.3% accuracy improvement.

A.4 Binary convolution implementation for two-set binarization scheme

The binary convolution between the weights and activations that are both binarized to \{-1, 1\} (i.e. \(A_B \in \{-1, 1\}, W_B \in \{-1, 1\}\)) can be implemented by the bitwise \texttt{xnor} operation followed by a \texttt{popcnt} operation [Rastegari et al., 2016; Liu et al., 2018]:

\[
A_B \cdot W_B = \text{popcnt} (\text{xnor}(A_B, W_B))
\]
(1)

For the case where activations are binarized to \{0, 1\} in two-set binarization scheme, the binary activation \(A_B \in \{0, 1\}\) can be represented with \(A'_B \in \{-1, 1\}\) through a simple linear mapping:

\[
A_B = \frac{A'_B + 1}{2}.
\]

Thus the matrix computation between binary weights \(W_B \in \{-1, 1\}\) and binary activations \(A_B \in \{0, 1\}\) can be converted to the operations between \(W_B \in \{-1, 1\}\) and \(A'_B \in \{-1, 1\}\) as:

\[
A_B \cdot W_B = (\frac{A'_B + 1}{2}) \cdot W_B = \frac{1}{2} (\text{popcnt} (\text{xnor}(A'_B, W_B)) + \sum_i W_{Bi})
\]

(2)

Here the \(\sum_i W_{Bi}\) is summing up the values in \(W_B\), which can be pre-computed and stored as bias. Thus in the two-set binarization scheme where activations are binarized to \{0, 1\}, the binary convolution can still be implemented with the general binary convolution in E.q. [1] at no additional complexity cost.

A.5 Evaluation benchmarks

A.5.1 GLUE

The GLUE benchmark [Wang et al., 2019] includes the following datasets:

- **MNLI** Multi-Genre Natural Language Inference is an entailment classification task [Williams et al., 2018]. The goal is to predict whether a given sentence entails, contradicts, or is neutral with respect to another.
- **QQP** Quora Question Pairs is a paraphrase detection task. The goal is to classify whether two given questions have the same meaning. The questions were sourced from the Quora question answering website [Chen et al., 2018].
- **QNLI** Question Natural Language Inference [Wang et al., 2019] is a binary classification task which is derived from the Stanford Question Answering Dataset [Rajpurkar et al., 2016]. The task is to predict whether a sentence contains the answer to a given question.
- **SST-2** The Stanford Sentiment Treebank is a binary sentiment classification task, with content taken from movie reviews [Socher et al., 2013].
- **CoLA** The Corpus of Linguistic Acceptability is a corpus of English sentences, each with a binary label denoting whether the sentence is linguistically acceptable [Warstadt et al., 2019].
- **STS-B** The Semantic Textual Similarity Benchmark is a sentence pair classification task. The goal is to predict how similar the two sentences are in meaning, with scores ranging from 1 to 5 [Cer et al., 2017].
MRPC Microsoft Research Paraphrase Corpus is another sentence pair paraphrase detection task similar to QQP. The sentence pairs are sourced from online news sources [Dolan & Brockett 2005].

RTE Recognizing Textual Entailment is a small natural language inference dataset similar to MNLI in content [Bentivogli et al. 2009].

A.5.2 SQuAD

The SQuAD benchmark (Rajpurkar et al., 2016), i.e., Stanford Question Answering Dataset, is a reading comprehension dataset, consisting of questions on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding passage, or the question might be unanswerable.

A.6 Technical details

For each experiment, we sweep the learning rate in \{1e-4, 2e-4, 5e-4\} and the batch size in \{8, 16\} for QNLI, SST-2, CoLA, STS-B, MRPC, RTE, and \{16, 32\} for MNLI, QQP as well as SQuAD, and choose the settings with the highest accuracy on the validation set. We use the same number of training epochs as BiBERT (Qin et al., 2021), i.e., 50 for CoLA, 20 for MRPC, STS-B and RTE, 10 for SST-2 and QNLI, 5 for MNLI and QQP. We adopt the Adam optimizer with weight decay 0.01 and use 0.1 warmup ratio with linear learning rate decay.

Our full precision checkpoints are taken from https://textattack.readthedocs.io/en/latest/3recipes/models.html#bert-base-uncased.

References

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing textual entailment challenge. In TAC, 2009.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint arXiv:1708.00055, 2017.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi Zhao. Quora question pairs. University of Waterloo, pp. 1–7, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Third International Workshop on Paraphrasing (IWP2005), 2005.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net: Enhancing the performance of 1-bit cnns with improved representational capability and advanced training algorithm. In Proceedings of the European conference on computer vision (ECCV), pp. 722–737, 2018.

Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: Towards precise binary neural network with generalized activation functions. In European Conference on Computer Vision, pp. 143–159. Springer, 2020.

Haotong Qin, Yifu Ding, Mingyuan Zhang, YAN Qinghua, Aishan Liu, Qingqing Dang, Ziwei Liu, and Xianglong Liu. Bibert: Accurate fully binarized bert. In International Conference on Learning Representations, 2021.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for machine comprehension of text. In EMNLP, 2016.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification using binary convolutional neural networks. In European conference on computer vision, pp. 525–542. Springer, 2016.
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp. 1631–1642, 2013.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. In *International Conference on Learning Representations*, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Cola: The corpus of linguistic acceptability (with added annotations). 2019.

Adina Williams, Nikita Nangia, and Samuel R Bowman. The multi-genre nli corpus. 2018.

Yifan Yang, Qijing Huang, Bichen Wu, Tianjun Zhang, Liang Ma, Giulio Gambardella, Michaela Blott, Luciano Lavagno, Kees Vissers, John Wawrzynek, et al. Synetgy: Algorithm-hardware co-design for convnet accelerators on embedded fpgas. In *Proceedings of the 2019 ACM/SIGDA international symposium on field-programmable gate arrays*, pp. 23–32, 2019.

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid. Towards effective low-bitwidth convolutional neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 7920–7928, 2018.