The secondary role of UV light in swimmers melanoma genesis

Abstract

Background: Swimmers are known to have a higher incidence of cutaneous melanoma. Experimental studies are unable to explain the role of ultraviolet radiation (UV) as the sole factor in swimmers cutaneous melanomas. Other mechanisms, such as the prevalence of the decomposition of Hydrogen Peroxide (H_2O_2) in the hair follicles has been hypothesized by several authors as another etiological factor. For example, the H_2O_2 generated by keratinocytes diffuses into melanocytes and may play an important role in the etiology and pathogenesis of cutaneous melanoma. Other in vitro experiments document that in water submerged hairs, sites such as the infundibulum and at wounded hair follicles is where exogenous H_2O_2 could penetrate. The energy released during the decomposition of H_2O_2 by catalase in the eukaryotic cell was also hypothesized to be an additional factor for the origin of cancer. Epidemiological studies attribute the low incidence of Melanoma genesis in countries such as Japan to the beneficial effect of the consumption of the seaweed, Sargassum filipendula, which has antiproliferative and antioxidant properties. This manuscript supports H_2O_2 as being the missing attributable risk in swimmers cutaneous melanomas.

Methods: A literature survey was performed, which aimed to identify exogenous H_2O_2 as a key factor in the causation in cutaneous swimmers Melanoma genesis.

Results: In Swimmers, all published theories as well as actual in vitro experiments identify H_2O_2 as essential factors for cutaneous melanoma. In water-submerged hairs, there are two sites where exogenous H_2O_2 can penetrate the human hair follicle: At the hair shaft/skin junction, and sites where injury has damaged the external follicular wall.

Conclusion: Published evidence demonstrates that the incidence of cutaneous melanomas is higher in swimmers. H_2O_2 forms by the conversion of dissolved organic matter by the sun UV light in fresh or salt-water bodies. In Swimmers, spontaneously penetrating into the hair follicles. Melanoma tumor cells are then formed by the decomposition of H_2O_2 by catalase; and the malignant cells then spread into the surrounding tissues. The sun UV light playing a secondary role with H_2O_2 hypothesized as the primary attributable risk.

Keywords: biophysics, cancerogenesis, melanoma hair follicle, H_2O_2 decomposition, Cancer UV

Introduction

Melanoma is known since the ancient times and has long troubled caregivers, primarily due to its heterogeneity.1 Swimming in fresh or salt-water is linked to increased risk for cutaneous melanomas.2 Experimental studies are unable to explain the role of ultraviolet (UV) radiation as the sole factor in Melanoma genesis. It has been hypothesized that one of the factors for melanoma tumors could be the generation of reactive oxygen species (namely Hydrogen Peroxide (H_2O_2)) by melanin “may play an important role in the etiology and pathogenesis of cutaneous melanoma”.3,4

H_2O_2 from keratinocytes penetrates melanocytes

Published reports identify keratinocytes as the main source of H_2O_2 penetrating melanocytes. “Basal hydrogen peroxyde (H_2O_2) levels in normal human epidermal keratinocytes (NHEK) and melanocytes (mel) were compared on a per cell basis and found to be significantly higher in keratinocyte. Because the ratio of keratinocytes to mel in skin is 36:1, keratinocytes may act as a source of reactive oxygen species (ROS) even by passive diffusion and, thus, affect melanocytic functions”.5 Melanin has been described as a photo protective factor in the skin;6 it could also act as double edge sword. How? Melanin besides functioning as a broadband UV absorbent is a reservoir of toxic H_2O. In addition, experiments have documented the infundibulum (Figure 1) (Figure 2) & Video recording and the wounded follicles (Figure 3) & Video recording) as sites where exogenous H_2O_2 penetrates the water immersed hair follicles; and is the region where melanoma tumor cells have been previously reported to form.7

Additional experiments supporting H_2O_2 as “missing attributably risk”

Besides the above-mentioned molecular factors, a biophysical hypothesis was proposed linking energy derived from the decomposition of H_2O_2 by catalase in eukaryotic cells to be an additional factor for the origin of cancer.9
Worldwide epidemiological reports, antioxidant diet and melanoma

Circumstantial evidence attributes the low incidence of Melanoma genesis in Japan to the beneficial effect of the consumption of the brown seaweed, *Sargassum filipendula*. Polysaccharides from *Sargassum filipendula* were found to have antiproliferative and antioxidant properties.10,11

Methods

A literature survey was conducted, which demonstrated that the carcinogenic H$_2$O$_2$ molecules penetrate the hair follicle at the junction of the skin and hair shaft at the infundibulum, and through the injured external wall.

Results

Sites of melanoma genesis in hair follicles

Published literature supports the fact that hair follicles are anatomical sites where the melanoma tumor cells are formed. As shown in Figure 1 & Figure 2, the spontaneous penetration of exogenous H$_2$O$_2$ molecules only occurs through the infundibulum of the hair follicles. Injuries to the outer wall of hair follicles induce the penetration of H$_2$O$_2$ molecules into the follicle (Figure 3). This observation was consistent and was confirmed by a study, which reported “Water H$_2$O$_2$ Levels as factor in swimmers melanoma”.12

Discussion

The decomposition of H$_2$O$_2$ as key factor in melanoma genesis

A novel paradigm was hypothesized by recent experiments that demonstrated the elevation of ROS due to melanin, which served as a redox generator, for which the authors stated that, “this may play an important role in the etiology and pathogenesis of cutaneous melanoma”. In another recent experiment that mimicked the Swimmers’ water environment, H$_2$O$_2$ was also identified as penetrating the infundibulum of the hair follicles. In both cases, H$_2$O$_2$ was identified as a possible cause for the formation of melanoma tumors in the hair follicle. The evidences justify the role of H$_2$O$_2$ molecules as the elusive attributable risk in swimmers melanoma XXX, UV radiation playing a secondary role, since its primary role only concerns the conversion of the dissolved organic matter present in water into H$_2$O$_2$ molecules, as shown in the panel below (Figure 4).13
The secondary role of UV light in swimmers melanoma genesis

Figure 4 The sun UV radiation converts dissolved organic matters into H₂O₂. The process is shown in this figure where: DOM, Dissolved organic matter.

Acknowledgements
None.

Conflict of interest
None.

References
1. Rebecca VW, Sondak VK, Smalley KS. A brief history of melanoma: from mummies to mutations. Melanoma Res. 2012; 22(2):114–122.
2. Nelmans PJ, Rampen FH, Groenendal H, et al. Swimming and the risk of cutaneous melanoma. Melanoma Res. 1994;4(5):281–286.
3. Meyskens FL, Farmer PJ, Yang S, et al. New perspectives on melanoma pathogenesis and chemoprevention. Recent Results Cancer Res. 2007;174:191–195.
4. Meyskens FL, Farmer PJ, Anton Culver H. Etiologic pathogenesis of melanoma: a unifying hypothesis for the missing attributable risk. Clin Cancer Res. 2004;10(8):2581–2583.
5. Pelle E, Mamone T, Maes D, et al. Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J Invest Dermatol. 2005;124(4):793–797.
6. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–549.
7. Pozdnyakova O, Grossman J, Barbagallo B, et al. The hair follicle barrier to involvement by malignant melanoma. Cancer. 2009;115(6):1267–1275.
8. Machan, Salma MD, El Shabrawi-Caelen, et al. Follicular malignant melanoma: primary follicular or folliculotropic? The American Journal of Dermatopathology. 2015;37(1):15–19.
9. Embi AA. Endogenous electromagnetic forces emissions during cell respiration as additional factor in cancer origin. Cancer Cell Int. 2016;28(16):60.
10. Teas J, Irhimeh MR. Melanoma and brown seaweed: an integrative hypothesis. J Appl Physiol. 2017;29(2):941–948.
11. Costa LS, Fidelis GP, Telles CB, et al. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar Drugs. 2011;9(6):952–966.
12. Embi AA. Water H₂O Levels as Factor in Swimmers Melanoma. Lett Health Biol Sci. 2018;3(1):1–4.
13. William J Cooper, Chihwen Shao, David RS Lean, et al. Factors Affecting the Distribution of H₂O₂ in Surface Waters. Advances in Chemistry. 1994;257(12):391–422.
14. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in vitro percutaneous absorption. Int J Pharm. 2001;215(2):51–56.
15. Bundza A, FeltmateTE. Melanocytic cutaneous lesions and melanotic regional lymph node in slaughter swine. Cancer J Vet Res. 1990;54(2):301–304.
16. Addor FAS. Antioxidants in dermatology. An Bras Dermatol. 2017;92(3):356–362.
17. Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA. 2011;108(10):4093–4098.

Acknowledgements
None.

Conflict of interest
None.

References
1. Rebecca VW, Sondak VK, Smalley KS. A brief history of melanoma: from mummies to mutations. Melanoma Res. 2012; 22(2):114–122.
2. Nelmans PJ, Rampen FH, Groenendal H, et al. Swimming and the risk of cutaneous melanoma. Melanoma Res. 1994;4(5):281–286.
3. Meyskens FL, Farmer PJ, Yang S, et al. New perspectives on melanoma pathogenesis and chemoprevention. Recent Results Cancer Res. 2007;174:191–195.
4. Meyskens FL, Farmer PJ, Anton Culver H. Etiologic pathogenesis of melanoma: a unifying hypothesis for the missing attributable risk. Clin Cancer Res. 2004;10(8):2581–2583.
5. Pelle E, Mamone T, Maes D, et al. Keratinocytes act as a source of reactive oxygen species by transferring hydrogen peroxide to melanocytes. J Invest Dermatol. 2005;124(4):793–797.
6. Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–549.
7. Pozdnyakova O, Grossman J, Barbagallo B, et al. The hair follicle barrier to involvement by malignant melanoma. Cancer. 2009;115(6):1267–1275.
8. Machan, Salma MD, El Shabrawi-Caelen, et al. Follicular malignant melanoma: primary follicular or folliculotropic? The American Journal of Dermatopathology. 2015;37(1):15–19.
9. Embi AA. Endogenous electromagnetic forces emissions during cell respiration as additional factor in cancer origin. Cancer Cell Int. 2016;28(16):60.
10. Teas J, Irhimeh MR. Melanoma and brown seaweed: an integrative hypothesis. J Appl Physiol. 2017;29(2):941–948.
11. Costa LS, Fidelis GP, Telles CB, et al. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar Drugs. 2011;9(6):952–966.
12. Embi AA. Water H₂O Levels as Factor in Swimmers Melanoma. Lett Health Biol Sci. 2018;3(1):1–4.
13. William J Cooper, Chihwen Shao, David RS Lean, et al. Factors Affecting the Distribution of H₂O₂ in Surface Waters. Advances in Chemistry. 1994;257(12):391–422.
14. Schmook FP, Meingassner JG, Billich A. Comparison of human skin or epidermis models with human and animal skin in in vitro percutaneous absorption. Int J Pharm. 2001;215(2):51–56.
15. Bundza A, FeltmateTE. Melanocytic cutaneous lesions and melanotic regional lymph node in slaughter swine. Cancer J Vet Res. 1990;54(2):301–304.
16. Addor FAS. Antioxidants in dermatology. An Bras Dermatol. 2017;92(3):356–362.
17. Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci USA. 2011;108(10):4093–4098.