STUDIES ON CHARACTERIZATION OF MOLECULAR VARIABILITY USING RAPD MARKERS IN RHIZOCTONIA SOLANI ISOLATED FROM DIFFERENT GEOGRAPHICAL REGIONS OF SOUTH INDIA

Krishna Kumari
Dept. of Botany and Microbiology, J.K.C. College, Guntur, Andhra Pradesh, India
Email: sureshvally@gmail.com

Abstract
Molecular techniques have become reliable and are highly suitable tools for identifying pathogen species and for genetic variation. The molecular marker is a useful tool for assessing genetic variations. RAPD (Random Amplified Polymorphic DNA) markers have been used to characterize the numerous filamentous fungi collected from different fields of experimental mycology. Rhizoctonia solani is a plant pathogenic fungus which cause sheath blight in rice. Present work focused on polymorphic identification and characterization of Rhizoctonia solani isolate. Twenty eight samples were collected from different locations of South India and Punjab. Rhizoctonia solani (teleomorph: Thanatephorus cucumeris) were isolated and used polymorphic examination by molecular markers. Molecular analysis was done with OPC-5, OPC-2, OPA-8 and OPA-11 primers and the variability of isolated fungus DNA, allowed the visualization of 265 polymorphic bonds with molecular weight ranging from 0.5kb to 20kb significant differences in RAPD profiles of 28 isolates of R. Solani were found with two primers OPC-5 and OPC-2. To analyze the resolving ability of these primers, cumulative RAPD profiles generated by t

Keywords: Rhizoctonia solani; Rice; Sheath blight; Molecular variability; RAPD

Introduction
Rice (Oryza sativa) is one of the most important crops that provide food for more than half of the world population. It is no longer a luxury food but has become the cereal that constitutes a major source of calories for the urban and the rural (Sasaki and Burr, 2000). India is one of the rice cultivating country and occupies about 23.3% of gross cropped area. Rhizoctonia solani Kuhn (teleomorph – Thanatephorus cucumeris (Frank) Donk), a ubiquitous pathogen, inflames rice sheath blight, is a fungal disease in the world (Lee and Rush, 1983; Forutan and Rahimian, 1991; Suparyono et al., 2003). Still Indian rice cultivars striving to upbringing sheath blight resistant breeds. However lack of adequate information on the genetic variability of the fungal population occurring, resistant donors not up to the mark and search through the appropriate markers to develop the suitable strategies to distinguish the genetic polymorphism (Neeraja et al., 2002).

Diverse Rice sheath blight isolates has been studied by morphological characterization and pathogenicity testing and also by various molecular techniques reliable and are highly suitable tools for identifying pathogen species and analyzing the genetic variations of microorganisms (Sundravadana et al., 2011). RAPD (Random Amplified Polymorphic DNA) markers have been successfully used to determine the numerous filamentous fungi species collected from different fields of experimental mycology (Pollastro et al., 2000). RAPD markers are simple, inexpensive and even not required prior information of genetic sequence (Williams et al., 1990) used for estimating genetic polymorphism. It has been used to analyze the rice genotypes by several groups for (i) estimation of the genetic diversity and relatedness among different accessions (Davierwala et al., 2000; Raghunathachari et al., 2000; Porreca et al., 2001; Neeraja et al., 2002; Saker et al., 2005); (ii) detection of duplicates (Virk et al., 1995; Verma et al., 1999) (iii) identification and clarification of various cultivars (Ko et al., 1994; Mackill, 1995; Choudhury et al., 2001) and (iv) determination of the genetic relationship between several species (Bautista et al., 2001; Ren et al., 2003). Understanding the genetic structure of pathogenic fungi is critical for developing appropriate strategies for disease management, however little is known about the genetic structure of Rhizoctonia ssp. in natural population (Vilgalys and Cubeta, 1994). Thus the present study was undertaken to assess the molecular variability using RAPD
markers to distinguish the isolates collected from four rice growing states of India.

Materials and Methods

Fungal Isolates
Twenty eight isolates of R. solani were collected from four rice growing states of India. (Mostly South India). The isolates were further purified by hyphal tip culture on acidified water agar (AWA) and were transferred to Potato Dextrose Agar (PDA) slants and maintained at 280°C. These isolates were assigned numbers RS-1 to RS-28.

RAPD Analysis of Rhizoctonia solani Isolates Collected from Rice Fields
RS1 to RS28 isolates of R.solani used in this study to distinguish using the PCR protocol described by Williams et al., (1990) with the help of random primers. Molecular variability analyzed by RAPD technique in twenty-eight isolates of R.solani. Total genomic DNA from the fungal isolates was extracted by Cetyl Trimethyl Ammonium Bromide (CTAB) method as follows.

Data Analysis
DNA fingerprints were scored for the presence ‘1’ or absence ‘0’ of bands of various molecular weight sizes in the form of binary matrix. Data were analyzed to obtain Jaccard’s coefficients among the isolates by using NTSYS-pc (version 2.0; Exeter Biological Software, Setauket, NY). Jaccard’s coefficients were clustered to generate dendrograms by using the SAHN clustering programme, selecting the UPGMA algorithm in NTSYS-pc (Rohlf, 1993). The similarity values were subjected to Principal Coordinate Analysis.

Results and Discussion

DNA Profile Analysis
All the twenty-eight isolates of R. solani from rice were studied for molecular variability. In the preliminary study, R. solani was amplified with 30 primers, out of 30 primers four primers (OPC-5, OPC 2, OPA-8, and OPA-11) were selected based on polymorphic nature of the amplified R. solani. Subjected 28 R. solani produces polymorphism in the form of bands that reflected by the number of countable bands produced by these primers (Table: 1). Significant differences in RAPD profiles of 28 isolates of R. solani were found with two primers OPC 5 and OPC 2. The primers OPC-5, OPC-2, OPA-8, and OPA-11 produced 265 PCR products of molecular weight ranging from 0.5 kb to 2.0 kb in different isolates with diverse finger printing patterns (Fig. 1- 4).

Table: 1: Number of loci amplified by RAPD primers in the isolates of Rhizoctonia solani.

Primers	Number loci amplified
OPC 5	82
OPC2	55
OPA8	71
OPA11	57
Total loci amplified	265

Fig: 1: Banding pattern of Random amplified polymorphic DNA (RAPD) obtained from 28 isolates of R. solani (Lane 1 to 28) M=100 bp ladder with primer OPC 5.

Fig: 2: Banding pattern of Random amplified polymorphic DNA (RAPD) obtained from 28 isolates of R. solani (Lane 1 to 28) M=100 bp ladder with primer OPC 2.
Fig: 3: Banding pattern of Random amplified polymorphic DNA (RAPD) obtained from 28 isolates of *R. solani* (Lane 1 to 28) M = 100 bp ladder with primer OPA 8.

Fig: 4: Banding pattern of Random amplified polymorphic DNA (RAPD) obtained from 28 isolates of *R. solani* (Lane 1 to 28) M=100 bp ladder with primer OPA 11.

Fig: 5: Dendrogram constructed with UPGMA clustering method with 28 isolates of *R. solani* based on polymorphism obtained with RAPD primers. The scale below the dendrogram represents genetic similarity coefficients calculated according to Jaccard (1908). The branches are labeled by isolates number.
Cluster Analysis

UPGMA, were used to analyze to produce the cumulative RAPD profiles to quantify the resolving ability of these primers. The dendrogram constructed using 265 polymorphic bands obtained from 28 isolates with 4 primers was divided into 7 clusters (Fig: 5). RAPD analysis of R. solani isolates revealed that, all the isolates shared 78 percent and above similarity. Cluster I consisted of 8 isolates (RS-1, RS-2, RS-8, RS-9, RS-23, RS-26, RS-27, RS-28) have similarity values ranged from 78 to 94.4%. All these isolates except RS-1, RS-27 and RS-28 were collected from North coastal zone of Andhra Pradesh. Cluster II is formed from 9 isolates (RS-3, RS-6, RS-13, RS-7, RS-5, RS-25, RS-21, RS-22, RS-24) and they shared highest genetic similarity values ranged from 86-97%. Among 3 isolates (RS-21, RS-22, RS-24) from Tamilnadu and the remaining were collected from coastal Andhra Pradesh. Cluster III consisted of 2 isolates Rs-4 and Rs-10 shared genetic similarity of 80.4 %. Cluster IV only one isolate Rs-19 have genetic similarity of 76.9%. Cluster V is formed from 5 isolates (RS-11, RS-12, RS-16, RS-18, RS-17) of Karnataka state. They shared the genetic similarity between 74.7 and 89.4%. Cluster VI consisted of two Karnataka isolates (Rs-14 and Rs-15) shared genetic similarity of 80.6%. Cluster VII consisted of only one isolate Rs-20 collected from Punjab did not share any of the groups and shared a genetic similarity of 72.8 %.

Discussion

In the present study, RAPD markers were employed to assess the genetic diversity among 28 isolates of Rhizoctonia solani from different rice growing states of India. Although the use of molecular markers to study the genetic diversity and relationships among the R. solani isolates has been reported (Duncun et al., 1993; Davierwala et al., 2000; Porreca et al., 2001; Neeraja et al., 2002; Runhua et al., 2002; Saker et al., 2005; Banerjee et al., 2012).

The use of molecular marker to study the genetic diversity relationships among populations from different as well as the same geographical regions (Sundravadana et al., 2011). The results of our present study indicate significant level of variation among the 28 isolates of R. solani. The range of variation estimated is from 72.8 to 97% among the 28 isolates. Most of the isolates collected from similar agro ecological location clustered together in the present study. This lends support to the findings of Toda et al. (1999); Sharma et al. (2005) and Banerjee et al. (2012).

References

Bautista NS, Solis R, Kamijima O and Ishii T (2001) RAPD, RFLP and SSLP analysis of phylogenetic relationships between cultivated and wild species of rice. Genes and Genetic Systems 76(2): 71-79. DOI: 10.1266/ggs.76.71

Choudhury PR, Kohli S, Srinivasan K, Mohapatra T and Sharma RP (2001) Identification and classification of aromatic rice based on DNA fingerprinting. Euphytica 118(3): 243-251. DOI: 10.1023/A:1017554600145

Davierwala AP, Chowdari KV, Kumar S, Reddy APK, Ranjekar PK and Gupta VS (2000) Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties. Genetica. 108(3): 269-284. DOI: 10.1023/A:1004160232679

Forutan A and Rahimian H (1991) Distribution and characterization of isolates of Rhizoctonia solani and R. oryzae sativa in rice fields of Mazandaran. Iran J Plant Pathol 27: 45-51.

Gupta M, Chyi YSI, Romero-Severson J and Owen JL (1994) Amplification of DNA markers from evolutionary diverse genomes using single primers of simple sequence repeats. Theor Appl Genet 89: 998-1006.

Jaccard P (1908) Nouvelles researches sue la distribution florale. Bull Soc Vaudoise Sci Nat 44: 223-270.

Kang HW, Park DS, Go SJ and Eun MY (2002) Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequences of Korean weedy rice. Mol Cell 13: 281-287.

Ko HI, Cowan DC, Henry RJ, Graham GC, Blakeney AB and Lewin LG (1994) Random Amplified polymorphic DNA analysis of Australian rice (Oryza sativa L.) varieties. Euphytica 80(3): 179-189. DOI: 10.1007/BF00039649

Lee FN and Rush MC (1983) Rice sheath blight: a major rice disease. Plant Dis 67: 829-832. DOI: 10.1094/PD-67-829

Mackill DJ (1995) Classifying japonica rice cultivars with RAPD markers. Crop Science 35(3): 889-894. DOI: 10.2135/cropsci1995.0011183X003500030043x

Neeraja CN, Sarla N and Siddiq EA (2002) RAPD analysis of genetic diversity in Indian landraces of rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology 11: 93-97. DOI: 10.1007/BF03263142

Pollastro S, Abbalecola A, Dongiovani C and Faretra F (2000) Usage of molecular markers (PCR- RAPD) for studying genetic variability in Rhellinus (Fomitiporia) Sp. Phytopathol. Mediterr. 39: 107-111.

Porreca P, Sabin MR, Martelli G, Sanseri F, Greco I, Prunedu G and Spanu A (2001) Genetic variability among Italian rice (Oryza sativa L.) cultivars investigated by RAPDs anlysis. Journal of Genetics and Breeding 55: 349-355.

Raghunathachari P, Khanna VK, Singh US and Singh NK (2000) RAPD analysis of genetic variability in Indian scented rice germplasm (Oryza sativa L.) Current Science 79(7): 994-998.

Ren F, Lu B, Li S, Huang J and Zhu Y (2003) A comparative study of genetic relationships among the AA-genome Oryza species using RAPD and SSR markers. Theoretical and Applied Genetics 108(1):113-120. DOI: 10.1007/s00122-003-1414-x
Saker MM, Youssef SS, Abdallah NA, Bashandy HS and EL-Sharkawy AM (2005) Genetic analysis of some Egyptian rice genotypes using RAPD, SSR and AFLP. African Journal of Biotechnology 4(9): 882-890.

Sasaki T and Burr B (2000) International rice genome sequence project: the effort to complete the sequence of rice genome. Current Opinion in Plant Biology 3(2): 138-141. DOI: 10.1016/S1369-5266(99)00047-3

Sundravadana S, Thirumurugan S and Alice D (2011) Exploration of molecular variability in Rhizoctonia batatieola, the incitant of root rot disease of pulse crops. J. plant prof. es 51(2): 184-189.

Suparyono Catindig JLA, Castilla NP and Elazequi FA (2003) Sheath Blight of Rice. International Rice Research Instustute.

Vilgalys R and Gonzalez D (1990) Ribosomal DNA restriction fragment length polymorphism in Rhizoctonia solani. Phytopathology 80:151-158. DOI: 10.1094/Phyto-80-151

Virk PS, Newbury HJ, Jackson MT and Ford-Lloyd BV (1995) The identification of duplicate accessions within a rice germplasm collection using RAPD analysis. Theoretical and Applied Genetics 90(7-8): 1049-1055. DOI: 10.1007/bf00222920

Williams JGK, Livak ARKJ, Rafalski JA and Tingeys SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-16535. DOI: 10.1093/nar/18.22.6531