Decoherence of a spin-valley qubit in a MoS$_2$ quantum dot

Mehdi Arfaoui1,2 and Sihem Jaziri1,2

1 Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire 1060 Tunis, Tunisia
2 Laboratoire de Physique des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jazouna, Tunisia

E-mail: mehdi.arfaoui@fst.utm.tn

Keywords: quantum dots, quantum master equation, decoherence, spin dynamics, quantum information with solid state qubits, noise, open quantum systems

Abstract

Transition metal dichalcogenide (TMD)-based quantum dots (QDs) have proven to be a successful and promising device for physically implementing electron spin-valley based qubits. Although the electron spin in a TMDs monolayer semiconductor QD can be isolated and controlled with high precision, decoherence occurs due to unavoidable coupling with the surrounding environment, such as nuclear spin environments. In this paper, using an exact master equation (ME) of spin qubit dynamics coupled to a nuclear spin bath in terms of hyperfine interaction (HI), we have investigated the controllability of dynamics processes with varying degrees of non-Markovianity. In large magnetic fields, we show that pure spin or valley qubits can be created. We calculate the loss of fidelity due to the Overhauser field of HI in a wide range of nuclear spin N. In this context, we prove that this field restricts the decoherence process of the central electron spin, which can regain its coherence. Finally, we discuss how the coherence of the spin qubit remains robust for large N.

1. Introduction

Modern life is fueled by data, which drives the demand for computational power to the point where new generations of semiconductor technology are constantly being deployed. Several publications since then have focused on improving and developing valleytronic devices [1, 2], and transition metal dichalcogenide (TMD) qubits, including valley qubits, spin qubits, spin-valley qubits, and even impurity-based qubits [3–9]. TMD-based quantum dots (QDs) have attracted significant attention due to their potential applications in optoelectronics [10–13] including light sensors [14], logic circuits [15, 16] and valleytronics [17–20]. Recently, MoS$_2$-QDs have gained attention as a novel qubit pattern with potential for future quantum devices. However, the decoherence on this system is seen as a significant barrier to the deployment of quantum devices. The major obstacles addressed pose a challenge to researchers because noise hinders the transmission of quantum signals. One of the essential tools in the study of spin-valley qubits in QDs is stability, which is sensitive to disturbances of a noisy environment. Indeed, the inevitable coupling with their environment quickly destroys the phase relations (superposition of incompatible states) between the quantum states until they become classical states. The electron spin in a QD has two main decoherence channels: (i) (Markovian) phonon-assisted relaxation channel, due to the presence of spin-orbit interaction, (ii) (non-Markovian) spin bath constituted by the spins of the nuclei in the QD that interact with the electron spin via the hyperfine interaction (HI) [6, 21–26] where the number of nuclear spins varies between $\sim 10^2$ and 10^6. In our case, the calculations are carried out at zero temperature, so that phonon absorption and multi-phonon processes are negligible [6, 27]. Full polarized baths are employed to facilitate qubit operations and extend coherence times [28]. Theoretically, it has been suggested as the storage of an electron spin state in a paper by Kurucz et al [29]. In straightforward experimental setups, a spin bath is polarized by manipulating a single qubit [23, 30–32], whose polarization can be reset repeatedly.

The central spin model, which entails a central spin interacting with many surrounding spins, can be used to describe realistic quantum many-spin systems, including the semiconductor quantum dots [33, 34], the nitrogen-vacancy center in the diamond [35, 36], and others. These solid-state central spin systems have recently
received a lot of attention from researchers working in quantum information, quantum computation [34, 37], quantum metrology, and quantum sensing [38–40]. In this context, a dynamic framework describes how to suppress HI-induced decoherence using the second-order time-convolutionless (TCL) master equation (ME) method [41–50], which is an effective method for dealing with such systems, was proposed [51]. This work inspired us to seek a dynamic scheme of spin qubit system in order to achieve high fidelity. We apply our theory to the prototypical model system for the spin-valley qubit hosted by MoS2-QD proposed by Kormányos et al [3].

In this paper, we use the TCL ME to solve the central spin problem. This equation enables us to study the dynamics of the central spin, and more interestingly to show the fidelity of the spin qubit to investigate the non-Markovian signature in the dynamical decoherence of open quantum systems. In response to this idea, we examine a precisely solvable decoherence phenomenon at a MoS2-QD qubit system in a fluctuating environment with fully polarized nuclear spins.

The paper is organized as follows. In section 2 we derive an effective Hamiltonian describing this single-electron spin and \(N \) spin nuclei in interaction. Our approach is based on deriving an appropriate exact non-Markovian TCL ME describing the evolution of the qubit system. We further apply this result to quantify the fidelity loss that noise induces. In the final section, we discuss and conclude our findings.

2. Master equation of an electron spin in MoS2-QD

Our major aim is to study the HI-induced decoherence in a prototype model system for the spin-valley qubit hosted by MoS2-QD for the states \(|0\rangle = |K^+, \downarrow\rangle, |1\rangle = |K^+, \uparrow\rangle \). In appendix A, the proper choice of the spin-valley qubit is discussed in detail. We assume that the initial energy of this problem is the total energy of the electron spin environment can be understood as a nuclear spin environment with fully polarized nuclear spins.

\[\mathcal{H}_{\text{tot}} = \omega_i S_z + \omega_e I_z + h.S \]

where \(S = (S_x, S_y, S_z) \) is the electron spin operator, \(\omega_i = g_{ep} \mu_B b_z = \frac{\mu_N}{\mu_B} B_z \) is the electron (nuclear) Zeeman splitting in a magnetic field \(b_z \), with an effective g-factor \(g_{ep} (g_i) \) for the electron (nuclei) and Bohr (nuclear) magneton \(\mu_B \sim 2000 \mu_B (\mu_N) \), see table 1.

Table 1. Nuclear g-factor for different isotopes, that allowing non-zero nuclear spin, and nuclear Zeeman splitting in a magnetic field

Isotopes	\(^{95}\text{Mo}\)	\(^{97}\text{Mo}\)	\(33\text{S}\)					
\(g_r \)	-0.3657	-0.3734	0.4292					
\(\omega_i	=	g_{ep}\mu_B b_z	\times 10^{-3} \times \mu eV	\)	0.17	0.18	0.2

In equation (1), we have neglected the anisotropic HI, electron-electron interaction, dipole-dipole interaction between nuclear spins, and nuclear quadrupolar splitting [52, 53]. Appendix C contains detailed calculations of this approximation. The overall activity of a \(N \) nuclear spin environment can be understood as a nuclear magnetic field. This is later called the Overhauser field [33, 54–57] \(h = (h_x, h_y, h_z) = \sum_{k=0}^{N-1} A_k I_k \) where \(I_k = (I_{k}^x, I_{k}^y, I_{k}^z) \) is the nuclear spin operator at the lattice site \(k \) at position \(r_k \), \(I_z = \sum_k I_k^z \) is the total z component of nuclear spin and \(A_k \) is the associated hyperfine coupling constant. We also introduced the raising and lowering operators \(S_+ = S_x \pm i S_y \) and \(I_+ = I_x^z \pm i I_y^z \) respectively, and the nuclear magnetic field operators \(h^\pm = h_x \pm ih_y \).

Therefore, we can rewrite equation (1) as follows:

\[\mathcal{H}_{\text{tot}} = \omega_i S_z + \sum_k \omega_k I_k^z + \sum_k \frac{A_k}{2} (S_z I_k^z + S^+.I_k^-) + \sum_k A_k S_z I_k^z \]

(2)

The third and the fourth terms in equation (2) are the hyperfine contact interaction between the spin electron and the nuclei in the QD, which describe the flip-flop interaction and (longitudinal) Overhauser's field, giving rise to the inhomogeneous broadening and dephasing, indeed the last term, \(\sum_k A_k S_z I_k^z \), produces an effective magnetic field for the electron \(B_{\text{eff}} = b_z - B_N \), where \(B_N = \sum_k A_k I_k^z / (g_{ep} \mu_B) \). As a result, the well-known Overhauser shift occurs. However, when \(g_{ep} \mu_B B_{\text{eff}} \ll (\sum k A_k / 2 S_z I_k^z + S_. I_k^-) \), the spin exchange becomes the dominant effect [37]. The strength \(A_k = \mathcal{A}_N v_0 |\psi_{N}^{K^+}(r_k)|^2 \) is determined by the electron density at the nuclear site [58], which corresponds to the HI of an electron with nuclear spin at the site \(k \) at position \(r_k \). Here, \(v_0 = 3^1/2 a^2/4 \) is the two-dimensional volume of a unit cell containing one nucleus, and \(a \) is the lattice...
parameter. For MoS$_2$-QD of size $R = 26$ nm with a lattice constant given by $a = 3.19$ Å, there are $N_{\text{tot}} = \pi R^2 / \ell_0 \approx 10^4$ nuclei within the dot. However, only the isotopes that allow nonzero nuclear spin will be part of these nuclei, 95Mo, 97Mo and 33S. Furthermore, the concentration of 33S is negligible compared to that of Mo isotopes, and the decoherence of the electron spin mainly originates from the presence of 95Mo and 97Mo nuclear spins [59]. This leads to the number of nuclear spins within the QD, $N = \langle \sum_i \delta_i \rangle N_{\text{tot}}$, where δ_i is the natural abundance for different nuclear isotopic species i. $V_{0,i}(r_i)$ is the envelope wavefunction of the localized electron, and $A_i^0 = \frac{-\mu_0}{4\pi} \frac{\omega_i}{78 \gamma_i \mu_i} |u_{i,k}|^2$ is the total hyperfine coupling constant to a nuclear spin of species i_k at site k [55]. μ_0 is the vacuum permeability. u_i is the amplitude of the periodic part of the Bloch function at the position of the nucleus of i_k species. γ_i is the gyromagnetic ratio of free electrons, and its value is always negative. However, the nuclear gyromagnetic ratio γ_i can take either sign. As a result, the hyperfine coupling constant A_i^0 might be positive or negative. For convenience, in a material containing several nuclear isotopic species, i_k, we define an average hyperfine coupling constant. Here, we take the root-mean-square (RMS) average [52, 60], $A = \sqrt{\sum_i \delta_i A_i^0}$. For MoS$_2$, the hyperfine constant estimated for 95Mo and 97Mo is $A_{^{95}Mo} = A_{^{97}Mo} = -0.57 \mu$eV [61], by using these coupling constants with the abundances listed in table 2 gives an RMS coupling strength $A = 0.29 \mu$eV. To show the isotopes that contribute the most to HI decoherence in MoS$_2$, we depict in figure 1a the decoherence rate $1/T_2 = \Gamma = \sum_i \Gamma_i$ where it is theoretically demonstrated in the work of Coish et al [52]

$$
\Gamma = \frac{1}{T_2} = \delta^2 \frac{\pi}{3} \left(\frac{J_i (J_i + 1) A_i^0}{3 \omega_i} \right)^2 \frac{2 A_i^0}{N}.
$$

(3)

Γ_i is the contribution of flip-flops between the nuclei of common species i. Figure 1(a) displays the decay rates for a MoS$_2$-QD; the Mo isotopes have the greatest influence, whilst the Si isotopes are negligible. The quadratic dependence on isotopic abundance δ_i shown in equation (3), is particularly an important factor in the decoherence rate. Due to this dependence, electron spins in MoS$_2$ will show decay mainly due to flip-flops between Mo spins, notably 95Mo. Significantly, we can notice relatively high flip-flop rates for the Mo isotopes, as a result of a large nuclear spin 5/2 and isotopic natural abundance, respectively. Here, we considered isotopically purified Mo. It is possible to raise the T_2 of a single layer MoS$_2$ by performing isotopic purification [59]. Reduction of this noise is possible by fabricating devices using isotopically purified silicon [59, 62]. Moreover, the decoherence time T_2 in MoS$_2$-QD is several hundreds of μs, which is serval orders larger than the operation time in the optical quantum control of spin-valley qubits. Indeed, the coherence time increases with the number of nuclear spin N within the dot size R. For instance, in the MoS$_2$ crystal’s conduction electron, $T_2 = 307$ ns for $N = 1000$ and $T_2 = 97$ ns for $N = 100$ [6]. We also notice that T_2 rises with fewer layers, although for MoS$_2$, the enhancement for a single layer is only two times that of the bulk [59]. Alternatively, according to the author J Pawlowski [63], the spin-valley qubit MoS$_2$ SWAP operations have the lowest fidelity, with a maximum time of 2 ns for 99%-fidelity. Compared to coherence time, operations should last substantially shorter. According to the hyperfine interaction decoherence from Mo nuclear spins, the electron spin-valley degrees of freedom in the MoS$_2$ monolayer have an estimated coherence time of 100 ns.

Now, we consider a localized electron in its orbital ground state. For a MoS$_2$-QD with parabolic confinement, the wavefunction for the ground state of a single electron isolated in the CB near the valley K' under a magnetic field reads as follows

$$
\psi_{0,0}^{K'}(r) = \frac{1}{\sqrt{2\pi} \ell_0} \exp\left(-\frac{1}{2} \left(\frac{\ell}{\ell_0} \right)^2 \right) \chi_i(\sigma_t)
$$

(4)

where $\ell_0 = \sqrt{\hbar / (2m_{0,0} K_{\text{eff}} \Omega_{K'} \ell_0)}$ is the effective length scale equal to the magnetic length $\ell_0 = (\hbar / (eB))^{\frac{1}{2}}$ in the absence of the confining potential ($\omega_0 \rightarrow 0$). $\tau = -1$ for K' valley (see discussion of section A), therefore, the ground state wavefunction that will be considered for this work is $\psi_{0,0}^{K'}(r)$.

Table 2. Comparison of the most important parameters of GaAs, Graphene(13C) and MoS$_2$. The main isotopes that allowing non-zero nuclear spin, the total number of nuclei N_{tot} estimated for a QD of typical size $R = 26$ nm, the hyperfine strength A and the timescale $\tau_{\text{HI}} \sim 2 h / n A$ [22, 61] for the decay of the electron spin due to the contact Hi.

Units	GaAs	13C	MoS$_2$	33S			
N_{tot}	71Ga	69Ga	75As	95Mo	97Mo	33S	
δ_i	39.89%	60.10%	100%	1.07%	15.92%	9.53%	0.76%
$A_i^0 [\mu eV]$	96.00 [60]	74.00 [60]	86.00 [60]	0.6 [22]	-0.57 [61]	-0.57 [61]	0.75 [61]
t_0 [ns]	3/2	3/2	3/2	1/2	5/2	5/2	3/2
$\tau_{\text{HI}} \sim 2 \hbar / n A [\mu s]$	0.2	178	219				
$\tau_{\text{SWAP}} \sim 2 \hbar / n A [\mu s]$	5.10^{-2}	7	14				
Adding and subtracting \(\sum_k A_k I_k^z / 2 \) to the total Hamiltonian

\[
\mathcal{H}_{\text{tot}} = \omega_S S_z + \sum_k (\omega_k - \frac{A_k}{2}) I_k^z + \sum_k A_k (S_z I_k^z + S_z I_k^z) + \sum_k A_k (S_z + \frac{1}{2}) I_k^z
\]

Equation (5) can be split into two main parts, an unperturbed part (longitudinal) represented by the first two terms, which consist of all Zeeman terms, and a perturbation part (transverse) containing the virtual flip-flop processes of the HI. In the interaction picture with respect to the unperturbed part, we can write

\[
\mathcal{H}_{\text{tot}}^I = e^{i\mathcal{H}_{\text{tot}} t} \mathcal{H}_I e^{-i\mathcal{H}_{\text{tot}} t}
\]

where \(h^t(t) = \sum_k \frac{A_k}{2} I_k^z e^{i(t \omega_k - A_k/2)} \) and \(h^l(t) = S_z + \frac{1}{2} I_k^z \). Note that the last term in equation (6) is equivalent to \(\sum_k A_k (S_z + \frac{1}{2}) I_k^z \), where \(S_z = \langle 1 \rangle - \langle 0 \rangle / 2 \), with \(|0\rangle = |K'\rangle (|1\rangle = |K'\rangle) \) is the down (upper) state of the central spin. The transversal hyperfine term results in off-resonant transitions between the system and environmental spins, whereas the longitudinal hyperfine term provides additional contributions to the energy splitting.

The time evolution of the combined system, consisting of the electron spin and \(N \) nuclear spins, and given by the action of the total Hamiltonian \(\mathcal{H}_{\text{tot}}^I \) in equation (6), is described in the following. (i) When \(t < 0 \) we assume that the electron spin and the nuclear system are decoupled, and both of them prepared independently in the states described by the density operators \(\rho_{S}(0) \) and \(\rho_{N}(0) \), respectively. (ii) At \(t = 0 \), the electron and nuclear spin system are brought into contact on a switching timescale \(\tau_{sw} \ll 2\pi \hbar / |\omega_e - \omega_k + A| \) [21], which is sufficiently small, where \(|\omega_e - \omega_k + A| \) is the largest energy scale in this problem. The state of the entire system,
described by the total density operator $\rho(t)$, where it’s given at $t = 0$, $\rho(0) = \rho_S(0) \otimes \rho_E(0)$ with $\rho_S = \text{Tr}_E(\rho)$ and $\rho_E = \text{Tr}_S(\rho)$, this is called the reduced density matrix of the subsystem S and E, respectively. (iii) The evolution of the density operator $\rho(t)$ for $t \geq 0$ is governed by the Hamiltonian $\mathcal{H}^I_E(t)$ for an electron spin coupled to an environment of nuclear spins.

This model is comparable to previous research investigations of an electron spin confined to a QD of Gallium arsenide (GaAs) [21] and graphene QD [22], but there are MoS2 specific properties. Given that the natural abundance δ_i of spin-carrying isotopes is small for molybdenum Mo and sulfur S, hence only N of all atoms N_{tot} within the MoS2 QD carry spin. However, in semiconducting materials such as GaAs, all isotopes possess a spin. To highlight these differences, we compare the most important characteristics of MoS2, graphene, and GaAs, which are given in table 2. Indeed, the HI coupling constant A_{MoS2} is about approximately the same magnitude as A_{Graphene}, and it’s about two orders of magnitude smaller than the constant A_{GaAs} in GaAs, which even further reduces the nuclear magnetic field by the same amount. Furthermore, the relatively small hyperfine energy $E_{\text{HF}} = \hbar / \tau_{\text{HF}}$ (in the case of MoS2, is on average of the order $E_{\text{HF}} \approx 10^{-12}$ eV), in MoS2 increases the timescale τ_{HF}. It also relies on both the hyperfine strength A and the isotopic abundance δ_i of this interaction significantly compared to GaAs and graphene. The switching timescale τ_{sw} for various materials is also listed in table 2 as well.

Here, we drive into the method that used alongside with this work. We suppose that at $t = 0$, that the total system, electron and nuclear, describe by

$$\psi(0) = \psi_S(0) \otimes \psi_E(0) \quad (7)$$

where $|\psi_S(0)\rangle$, is the initial state for the central spin and $|\psi_E(0)\rangle$ is the initial state for the nuclear spin bath where we start with a perfectly polarized nuclear ensemble, as shown in figure 1(b). Equation (7) can be written in the subspace spanned by the bases $(|0\rangle \otimes |0\rangle_E, |1\rangle \otimes |0\rangle_E, |0\rangle \otimes (|I\rangle_{\text{tot}} |0\rangle_E)$ as follows,

$$|\psi(0)\rangle = c_0 |0\rangle \otimes |0\rangle_E + c_1 |1\rangle \otimes |0\rangle_E + \sum_k c_k |0\rangle \otimes (|I_k\rangle_{\text{tot}} |0\rangle_E) \quad (8)$$

where $|0\rangle_E = \bigotimes_{i \in N} |0\rangle \otimes |0\rangle \cdots |0\rangle$ denotes the vacuum state of the bath. Noting that, $c_k |0\rangle = 0 \; \forall \; k$. This means that the environment is initially in the vacuum state. Detailed calculations of the time evolution of the total system and the definition of the correlation function are provided in the appendix B. The correlation function in the continuum limit assumes the form $\int d\omega_k \mathcal{J}(\omega_k) e^{i(\omega_k/2 - \omega_k)\hbar(t-s)}$, with $\mathcal{J}(\omega_k) = \sum_{\alpha}(A_{\alpha}/2)^2 \mathcal{S}(\omega_k - \omega_k)$ is the spectral density of the bath given by the sum of (coupling strength)2 (density of modes), which is therefore simply the Fourier transform of the correlation function $\langle h^- (t) h^+ (s) \rangle_E e^{i(\omega_k)(t-s)}$. The typical representative environments are described by the Lorentzian-type spectral functions, $\mathcal{J}(\omega_k) = \gamma_0 \lambda^2 / 2\pi((\omega_k - \omega_k)^2 + \lambda^2)$. Here, the parameter λ defines the width of the Lorentzian spectral density; in fact, it is the measure of memory capacity or non-Markovianity of the environment [51] and is related to the bath correlation time $\tau_{\lambda} = 1/\lambda$. On the other hand, γ_0 measures the coupling strength between the qubit and its environment, and hence the characteristic time of the system $\tau_{\gamma} = 1/\gamma_0$ denotes the relaxation time. Taking a Lorentzian spectral density in resonance with the qubit’s transition frequency, we obtain an exponential two-point correlation function, denoted as

$$\langle h^- (t) h^+ (s) \rangle_E e^{i(\omega_k)(t-s)} = \frac{1}{2} \gamma_0 \lambda e^{-\lambda |t-s|} \quad (9)$$

We define the function $G(t) = G(t) e^{-\hbar t}$, where $c_i(t) = G(t) c_i(0)$, which defined as the solution of the integro-differential equation,

$$\partial_t \tilde{G}(t) = - \int_0^t ds \langle h^- (s) h^+ (t-s) \rangle_E e^{i(\omega_k)(t-s)} e^{-\hbar(t-s)} \tilde{G}(s) \quad (10)$$

with initial condition $\tilde{G}(0) = G(0) = 1$. Generally, $G(t)$ can be solved to give the exact solution by the Laplace transform. Indeed, substituting equation (9) into equation (10) we obtain the following

$$G(t) = e^{-\lambda t/2 \sqrt{\sinh \left(\frac{\lambda \gamma_0}{2} \right)}} + \cosh \left(\frac{\lambda \gamma_0 t}{2} \right) \quad (11)$$

where $\chi = \sqrt{1 - 2(\gamma_0/\lambda)}$. To get an ME in differential form with a generator local in time, we first provide the precise time evolution mapping [50], which transforms the initial states into the states at time t

$$\Phi(t): \rho(0) \rightarrow \rho(t) = \text{Tr}_E[|\psi(t)\rangle \langle \psi(t)|]$$

$$= \Phi(t) \rho(0), \quad t \geq 0 \quad (12)$$
then the density matrix $\rho(t)$ is expressed as
\[
\rho(t) = \begin{pmatrix}
\rho_{11}(t) & \rho_{10}(t) \\
\rho_{01}(t) & \rho_{00}(t)
\end{pmatrix}
\]
\[
= \begin{pmatrix}
|G(t)|^2 \rho_{11}(0) & G(t) \rho_{10}(0) \\
G^*(t) \rho_{01}(0) & \rho_{00}(0) + (1 - |G(t)|^2) \rho_{11}(0)
\end{pmatrix}
\]
(13)
where $\rho_{ij}(t) = \langle \psi(t) | \psi(t) \rangle$ for $i, j = 0, 1$. We can construct the exact TCL equation by introducing a time-local generator $K_{\text{TCL}}(t) = \Phi(t) \Phi^{-1}(t)$ [50]. We can obtain an exact TCL ME to second order in the interaction picture [42, 51, 64, 65]
\[
\partial_t \rho(t) = K_{\text{TCL}}(t) \rho(t)
\]
\[
= -\frac{i}{2} \epsilon(t) [S_+, \rho(t)] + \gamma(t) \left[S_- \rho(t) S_+ - \frac{1}{2} \{ S_- S_+, \rho(t) \} \right]
\]
(14)
The dynamics of the exact TCL ME, parameterized by $\epsilon(t) = -2\gamma(t)$, behaves as a time-dependent Lamb shift caused by coupling with noisy surroundings, and $\gamma(t) = -2\gamma(t)$ behaves as a time-dependent decay rate (decoherence rate). Furthermore, the decay rate $\gamma(t)$ might have negative values, indicating a significant non-Markovian tendency in the dynamics of the system [64]. We use the fidelity [51, 66] $\mathcal{F}(t) = \sqrt{\langle \psi(0) | \rho(t) | \psi(0) \rangle}$ to measure the decoherence dynamics of the central spin. Indeed, the coherence of spin qubits is highly affected by the nuclear spins of the host material and their hyperfine coupling to the electron spin. When the system is prepared in the initial state $|\psi(0)\rangle = |1\rangle$, the fidelity reads
\[
\mathcal{F}(t) = \sqrt{|\langle \psi(t) | \psi(0) \rangle|^2} = |G(t)|
\]
(15)
The fidelity depicted in figure 2 may be divided into two main regimes. In the weak-coupling case, which reflects that the decoherence dynamics of the quantum system is Markovian, $\lambda > 2\gamma_0$, one has $\chi \in \mathbb{R}$ ($\chi = \sqrt{1 - 2\gamma_0/\lambda}$) so that $G(t)$ is always positive. When there is no longer any exchange between the qubit and its surroundings, the coupling strength $\gamma_0 \to 0$ the fidelity $\lim_{\gamma_0 \to 0} \mathcal{F}(t) \sim 1$. However, in the case of strong coupling, $\lambda < 2\gamma_0$, one has $\chi \in i\mathbb{R}$, so $G(t)$ oscillates between positive and negative values reaching zero. This means the fidelity $\mathcal{F}(t)$ will then decay with an oscillating. Indeed, for $\lambda/\gamma_0 < 1$, $\mathcal{F}(t)$ decays non-exponentially and displays a clear beating pattern as shown in figure 2, indicating that the quantum information flow bounces back from the spin bath to the qubit system as the fidelity lifetime lowers. This is the signature of non-Markovian behavior.

We analyze the scenario in which the central spin of a MoS$_2$-QD qubit overlaps with around N nuclear spins and interacts through HI. This may lead to entanglement between the qubit and the nuclear bath and to back-action effects from the qubit to the nuclei and vice versa. In this situation, we assume that the HI strength $A_k \approx A/\sqrt{N}$ and the nuclear Zeeman splitting $\omega_N = g_I \mu_B b_k$ satisfy a Gaussian distribution characterized by the mean value $\bar{\omega}$ and the parameter ν is termed variance, where $\bar{\omega}$ and ν can be assumed to be of the same order as $\approx |A|/\sqrt{N}$. Indeed, the electron Zeeman splitting $\omega_k \approx A = N A_k \approx \sqrt{N} \omega_N$ is much larger than nuclear splitting ω_N which can be approximated as a continuous variable centering around the average value $\sim A/\sqrt{N}$ following Gaussian distribution, $P(\omega) = 1/\sqrt{2\pi \nu} e^{-\frac{(\omega-\bar{\omega})^2}{2\nu}}$. The correlation function can be expressed as
follows,

$$\langle h^{-1}(t)h(s)\rangle e^{i\omega_k(t-s)}e^{-i\delta(t-s)} = \sum_{k=0}^{N-1} \left(\frac{A_k^2}{2} \right)^2 e^{i\Omega_k(t-s)}$$

(16)

where effective detuning $\Omega_k = \omega_j - \omega_k + A_k/2 - \hbar$, is usually understood as a measure of memory capacity or non-Markovianity of the environment. Then, the effective correlation function of the spin bath can be evaluated as

$$\langle h^{-1}(t)h(s)\rangle e^{i\omega_k(t-s)}e^{-i\delta(t-s)} \approx \frac{A^2}{4N} e^{i(\omega_k + \frac{A}{2\hbar})(t-s)} \times \int d\omega \mathcal{P}(\omega) e^{-i\omega(t-s)}$$

$$\approx \frac{A^2}{4N} e^{-\frac{A^2}{4N}(t-s)^2 + i(\omega_k + \frac{A}{2\hbar})(t-s)}$$

(17)

The fidelity $\mathcal{F}(t)$ can be obtained numerically by inserting equation (17) into equation (10). To perform the numerical simulation, we selected the following MoS$_2$ parameters: The hyperfine coupling strength has been estimated to be $A = 0.29 \mu$ eV. This estimate is based on an average of the hyperfine coupling constants for the two nuclear isotopes 95Mo and 97Mo, weighted by their relative abundance. The naturally occurring isotopes carry spin with $I_{^{95}\text{Mo}} = I_{^{97}\text{Mo}} = 5/2$. In this model, we have the Overhauser field $\hbar \approx I_0\Delta \approx \frac{4}{3}A$. Here, we study the case of a localized electron spin trapped in MoS$_2$-QD that interacts with N' polarized nuclear spin environments via HI, where we employ the same TCL method as in some previous work [51].

Figures 3(a) and (b) depict the dynamics of $c_1(t)$ as a function of dimensionless time νt for various values of nuclear spins N'. Figure 3, for $N' = 10^2$, shows that the oscillation of the real and imaginary components of the amplitude $c_1(t)$ decays non-exponentially and displays a clear beating pattern. This oscillation eventually decreases with time to an equilibrium value. $|c_1(t)|$ shows nonmonotonic oscillatory decay with zero coherence revivals, which occurs by the electron spin–flip transition. Remarkably, the dynamics describes the initial oscillations of $c_1(t)$ appearing in the non-Markovian description of open quantum systems. However, figure 3(b) depicts the oscillation for $N' = 10^4$, where the decay rate of amplitude $c_1(t)$ increases significantly in comparison to figure 3(a) which depicts the transition from nonmonotonic oscillatory decay to monotonic decay. This indicates that increasing the number of nuclear spins N' can decrease the quantum fluctuations caused by nuclear dynamics and boost the qubit’s coherence.

To better understand how the environment of nuclear spins through HI affects the coherence of the MoS$_2$ qubit system, we analyze the temporal evolution of the density matrix $\rho(t)$. Figure 4 illustrate the evolution of populations (diagonal elements of the density matrix) and coherence (non-diagonal elements of the density matrix) as a function of dimensionless time νt. Figure 4(a) illustrates that the oscillation decays non-exponentially for non-diagonal elements and exhibits a distinct beating. These beating patterns clearly originate from the peaked nature of the environmental spectrum. The $\rho_{11}(t)$ shows nonmonotonic oscillatory decay with zero coherence revivals, which reflects that the decoherence dynamics of the quantum system is non-Markovian. However, by increasing the number of nuclear spins N' and examining the figure 4(b), we can see that the non-diagonal elements exhibit a damped oscillatory behavior with the disappearance of the beat pattern. We can attribute this effect to the fact that when we increase N', we go from a strong coupling regime between the qubit and the noisy environment described by the non-Markovian character to a weak coupling regime described by the Markovian character.

Figure 5 show the fidelity $\mathcal{F}(t)$ as a function of dimensionless time νt induced by the non-Markovian HI for different values of the number of nuclear spins N' within the bath. The value of $\mathcal{F}(t)$ exactly reflects the decoherence of the central spin. The closer the value of $\mathcal{F}(t)$ to 1, the smaller the difference between the current state and the initial state of the central spin. As shown in figure 5 we can clearly see that when $N' = 10^2$, the fidelity shows nonmonotonic oscillatory decay with zero coherence revivals, meaning that the exchange of the
quantum information and energy between the system and bath spins having a noticeable or major effect, the quantum information flow bounces from the spin bath back to the system. On the contrary, when N increases, the decay rate of the central spin gradually decreases, as shown by the transition from nonmonotonic oscillatory decay to monotonic decay. In addition, the coherence of the central spin remains robust for large N. These results indicate that the fidelity improves as the effect of environmental memory increases. The spin bath with N up to 10^6 ($R = 230$ nm) works as it provides natural protection for central spin coherence. For our qubit

Figure 4. Time evolution of density matrix elements ρ_{ij} as a function of dimensionless time νt. We give results from the numerical equation (13). The initial state $|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$, $\zeta_0 = \zeta(0) = 1/\sqrt{2}$. (a) Here, we have $N = 10^2$. (b) Here, we have $N = 10^6$.

Figure 5. Time evolution of fidelity, $\mathcal{F}(t) = |\tilde{G}(t)|$ as a function of dimensionless time, νt, for different values of the number of nuclear spins within the bath N. For a system is prepared in the initial state $|\psi(0)\rangle = |1\rangle$.

J. Phys. Commun. 6 (2022) 115004 M Arfaoui and S Jaziri
scenario, the fidelity is represented in figure 5 with a solid purple line for \(N = 10^4 \) \((R = 26 \text{ nm})\). The varying of the nuclear spins \(N \) value depends on QD radius \(R \) as shown in appendix A, which mean by increasing \(R \) we increase \(N \). It is also important to know that selecting \(R \) is necessary for implementing the MoS\(_2\) spin-valley qubit.

3. Conclusion and outlook

In this paper, we have proposed an exact ME for a central spin coupled to a spin bath via HI. We focus on the TCL ME for the full polarized environment bath. By studying an ML-MoS\(_2\) spin valley QD with a perpendicular external magnetic field that can be used to tune the energy splitting between these two states. We analyze the decoherence dynamics of the induced noise determined by the correlation function corresponding to this spin-bath model, the uniform HI strength, and the Gaussian distribution in terms of the bath-spin frequency, respectively. Described by this noise, the effect of the spin bath on the central spin gives rise to a reduced dynamics. Furthermore, we have found that the Overhauser field in a QD system helps to restrict the decoherence process of the central electron spin, which can regain its coherence and retain its initial state in an environment with a larger number of bath spins. An obvious extension of this work is to use the decoherence process of the central electron spin, which can regain its coherence and retain its initial state in an environment with a larger number of bath spins. An obvious extension of this work is to use the non-Markovian feature can increase the coherence in the single-qubit dynamics. This model is qualitatively valid for other systems that satisfy the requirements of this later, where the most important demands are a Gaussian-like envelope function, slow dynamics of the nuclear bath, and sufficiently large Zeeman splitting with respect to the HI energy scale. The study of this qubit system in an unpolarized spin bath will be very interesting for future research, as it will allow us to see how the inhomogeneity of the hyperfine interaction affects the spin coherence and relaxation time.

Acknowledgments

This research has not received external funding.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Competing interests

The authors declare no conflicts of interest.

Appendix A. Choice of single electron QDs as spin qubits

Several methods and architectural designs have been proposed and tested experimentally to isolate a QD from TMD [67]. These include electrostatic gating [3, 9, 68–70], strain bubbles [71–73], nanoflakes [8, 63], lattice defects [74–78] or by forming potential wells with TMD lateral heterostructures [79]. Following the selection of a QD type, the next option for implementing a quantum processor in a TMD is a qubit space. The development of semiconductor nanostructures as low-noise hosts for qubits is a major undertaking. Understanding the band structure and external field replies is required for TMD monolayer (ML) to achieve qubits with carriers [3, 80]. However, the strong intrinsic spin-orbit coupling (SOG) [81, 82] within this TMD material has the opposite effect, making this a difficult task. Indeed, TMD is characterized by a significant splitting of the spin states \(\sim 150 \text{ meV} \) in the valence band (VB) [83, 84] and up to a few tens of meV in the conduction band (CB) [85–87] within the same valley \(K (K') \), meaning that a single electron within a QD in TMD will not explain the required degeneracies wanted for a spin qubit. Favorably, the band crossing seen in the spin-resolved CB structures in ML-MoS\(_2\) submit that is reasonable to accomplish spin degeneracy localized within a given valley \(K (K') \), see figure 6(a). Consequently, such spin-degenerate regimes allow the possibility of realizing the desired qubits in the MoS\(_2\)-QD [3].

In particular, the band structure shown in figure 6(a) is calculated based on a self-consistent scheme, the present first principle study consists in solving the Kohn–Sham (KS) equations by using the all electron Full-Potential Linearized Augmented Plane Wave as embedded in a WIEN2k [88, 89] simulation package. The
generalized gradient approximation framework with a Perdew–Burke–Ernzerhof functional is used for the exchange correlation potential \([90]\).

The eigenenergies of a single electron confined in a MoS$_2$-QD by the parabolic potential in a perpendicular magnetic field \(B = (0, 0, B_z)\), \(B_z > 0\), about the valley \(K\) and \(K'\) can be obtained by solving the effective low-energy Hamiltonian \([3]\)

\[
\mathcal{H} = \frac{\hbar^2 P_z^2}{2 m_{\text{eff}}^s} + \frac{\hbar^2 P_z^2}{2 m_{\text{eff}}^s} + \frac{1}{2} m_{\text{eff}}^s \Omega_{\tau,s} \tau^2 - \frac{1}{2} \omega_{\tau,s} \Omega_{\tau,s} \epsilon_z + \frac{\Delta_{\text{db}}}{2} + \frac{1}{2} \tau g_{\text{vl}} \mu_B B_z + \frac{1}{2} \tau g_{\text{sp}} \mu_B B_z
\]

(A1)

where \(m_{\text{eff}}^s\) is the effective mass of the CB, see table 3.

\(\tau\) and \(s\) denote the index, which takes the value 1 (−1) indicated by the valley \(K'(\tau\rangle\) and the spin \(|\uparrow\rangle\) (\(|\downarrow\rangle\)), respectively. \(P_z = -i \partial_z\) is the wave number operator, \(g_{\text{vl}}\) and \(g_{\text{sp}}\) is the valley and spin g-factor, \(\epsilon_z\) is the \(z\) component of the orbital moment, \(\mu_B\) is Bohr’s magneton, and \(\Omega_{\tau,s} = \sqrt{(\omega_{\tau,s}^2)^2 + (\omega_{\tau,s}^2/2)^2}\) is the effective frequency, where \(\omega_{\tau,s} = \hbar/(m_{\text{eff}}^s R^2)\) and \(\omega_{\tau,s}^2 = (eB_z)/(m_{\text{eff}}^s)\) denote respectively the parabolic confinement and the cyclotron frequency. Here, \(R\) is the QD radius. Thus, the QD eigenvalues as a function of the out-of-plane magnetic field \(B_z\) and the QD radius \(R\) are given as

![Figure 6](image_url)
The wavefunction is given by
\[\psi_{n, \ell}^{\sigma} = C_n \psi_{n, \ell} \left(\frac{m_{\text{ eff}} \Omega r_{\text{ eff}}}{2m} r^2 \right)^{\ell/2} \exp \left(- \frac{m_{\text{ eff}} \Omega r_{\text{ eff}}}{4m} r^2 \right) \times \]

where \(n = 0, 1, \ldots \) is the quantum number of the angular momentum. The magnetic field raises the degeneracy of levels taking into account the degeneration of spin and valley, such that the eigenbasis is described by the Kramers pairs \([K', \uparrow]\), \([K', \downarrow]\) and \([K', \uparrow]\). The spin-valley Kramers space offers a range of qubit types that can be implemented in a QD: (i) Kramers qubit [4, 5, 63], in which the lowest lying Kramers pair is assumed to be the qubit space, i.e. \(|0\rangle = |K, \uparrow\rangle \) and \(|1\rangle = |K', \uparrow\rangle \). To isolate, such a qubit space requires only a minor influence from external magnetic fields. Gates with a Kramers qubit [5], on the other hand, are inherently slow because of the need for a spin and a valley flip to rotate between the two poles of the Kramers-Bloch sphere. (ii) Valley qubit [8, 63] that encodes the qubit in two states with different valleys but the same spin, i.e., \(|0\rangle = |K, \uparrow\rangle \) and \(|1\rangle = |K', \uparrow\rangle \). It takes the influence of an external B to raise the Kramers degeneracy in favor of a valley degeneracy, bringing these states energetically near enough together for efficient utilization as a qubit. However, these qubits need a slow valley mixing mechanism to perform gates using some defect-mediated process of nanoflake-type QDs [8]. (iii) Spin qubits [9] in various forms are a common type of qubit in conventional semiconductors [34, 91–95]. Within the same valley, it encodes the qubit in spin degree of freedom, i.e., \(|0\rangle = |K', \uparrow\rangle \) and \(|1\rangle = |K', \uparrow\rangle \). Because of their optically active direct BG, optically addressable spin states, and naturally low nuclear spin prevalence, TMD MLs should be an ideal spin-qubit platform. This article discusses our interest in spin qubits in TMD MLs. Indeed, figure 7(c) shows the regime where \(\varepsilon_{K', \uparrow}^{K'} = \varepsilon_{K', \uparrow}^{K'} = 4.63 \text{ meV} \) for the critical magnetic field strength \(B_z = 22.82 \text{ T} \), which demonstrates spin-degenerate crossings for a given radius in the K' valley. This critical magnetic field \(B_z \) may be determined for a range of different QD radii to give the spin-degenerate regime \(\varepsilon_{K', \uparrow}^{K', \uparrow} = \varepsilon_{K', \uparrow}^{K', \uparrow} \), shown in figure 7. Interestingly, for the QD radius \(R \geq 26 \text{ nm} \) the value of \(B_z \) stabilizes to some equilibrium value for the ground state \(n = 0, \ell = 0 \). Therefore, we assume \(R = 26 \text{ nm} \) for the next step in this work. These spectra also show separate plateaus in the critical field strength at relatively high QD radii \(R \geq 26 \text{ nm} \) between the ground state \(n = 0, \ell = 0 \) and the first excited states \(n = 0, \ell = \geq 0 \), differing by up to \(\sim 5 \text{ T} \).

By analyzing the ground state of a two-dimensional quantum system of electrons confined in a parabolic potential, we get the same results as the earlier work [3]. In this operating regime \(\varepsilon_{K', \uparrow}^{K', \uparrow} = \varepsilon_{K', \uparrow}^{K', \uparrow} \), the spin-valley qubit’s \(|0\rangle = |K', \uparrow\rangle \) and \(|1\rangle = |K', \uparrow\rangle \), states are degenerated. To achieve the Zeeman splitting for this qubit

Figure 7. Spin-degeneracy curves of critical out-of-plane magnetic field \(B_z \) as function of MoS$_2$-QD radius \(R \) for the low-lying excited states; \(n = 0, \ell = 0 \), \(n = 1, \ell = -1 \), \(n = 1, \ell = 0 \) and \(n = 1, \ell = 1 \).

\[
\varepsilon_{K', \uparrow}^{K', \uparrow} = \hbar \Omega (2n + 1 + |\ell|) - \frac{1}{2} g_s \mu_B \ell + \frac{72}{2} |\ell| + \frac{1}{2} \gamma g_s \mu_B B_z + \frac{1}{2} \gamma g_s \mu_B B_z
\]
space, we adjust the critical magnetic field with a value of $B_c \sim 1.5 \times 10^{-2}$ T. Theoretically, a TMD spin qubit has been demonstrated using an appropriate operational regime.

Appendix B. Time evolution of the total system

The time evolution of the total system, $t > 0$, can be written as the following expression,

$$|\psi(t)\rangle = c_0|0\rangle \otimes |0\rangle_E + c_1(t)|1\rangle \otimes |0\rangle_E + \sum_k c_k(t)|k\rangle \otimes (I_k^k|0\rangle_E) \quad \text{(B1)}$$

where we have used the normalization condition $|c_0|^2 + |c_1(t)|^2 + \sum_k |c_k(t)|^2 = 1$. Let us introduce the states:

$$|\psi_0\rangle = |0\rangle \otimes |0\rangle_E, \quad |\psi_1\rangle = |1\rangle \otimes |0\rangle_E \quad \text{and} \quad |\psi_k\rangle = |k\rangle \otimes |0\rangle_E \quad \text{where} \quad |k\rangle_E = I_k^k|0\rangle_E = |0\rangle_0 \cdots |0\rangle_{k-1}, \quad |1_k, 0_{k+1}\rangle$$

denotes the state with only one nuclear spin at site k. We can now express the time evolved state (B1) as

$$|\psi(t)\rangle = c_0|\psi_0\rangle + c_1(t)|\psi_1\rangle + \sum_k c_k(t)|\psi_k\rangle.$$

The amplitude c_0 is constant since $H_{00}(t)|\psi_0\rangle = 0$, while the amplitudes $c_1(t)$ and $c_k(t)$ are time-dependent. The time development of these amplitudes is governed by a system of differential equations which is obtained by the Hamiltonian H_{00}^k in equation (6) and the Schrödinger equation, $i\hbar \partial_t |\psi(t)\rangle = \hat{H} |\psi(t)\rangle + \sum_k c_k(t)|\psi_k\rangle$. Multiplying the Schrödinger equation by ψ^\dagger_k and ψ^\dagger_0, gives us two coupled differential equations for the amplitudes $c_0(t)$ and $c_1(t)$

$$\frac{d}{dt} c_0(t) = i\hbar c_0(t) - i\sum_k \frac{A_k}{2} e^{i(\omega_{s} - \omega_{k} + \Delta t)} c_k(t)$$

$$\frac{d}{dt} c_1(t) = -i\frac{A_k}{2} e^{-i(\omega_{s} + \omega_{k} + \Delta t)} c_0(t) \quad \text{(B2)}$$

where $h = \langle \hat{h}^2(t) \rangle = \langle \psi(t)|\hat{h}|\psi(t)\rangle$. By integrating equation (B2), the coefficient $c_0(t)$ can be formally written as

$$c_0(t) = -i\frac{A_k}{2} \int_0^t ds e^{-i(\omega_{s} + \omega_{k} + \Delta t)} c_0(s) \quad \text{(B3)}$$

Substituting it into equation (B2), we obtain an exact time-convolution dynamical equation for the central spin,

$$\frac{d}{dt} c_1(t) = i\hbar c_1(t) - \int_0^t ds \langle \hat{h}^2(t)|\hat{h}^2(s)\rangle e^{i(\omega_{s} + \omega_{k} + \Delta t)} c_0(s) \quad \text{(B4)}$$

where $\langle \hat{h}^2(t)|\hat{h}^2(s)\rangle e^{i(\omega_{s} + \omega_{k} + \Delta t)} = \sum_{ij}(A_{ij}/2) e^{i(\omega_{s} + \omega_{k} + \Delta t)}$ is the associated memory kernel given by a two-point correlation function of the bath. $\langle \cdots \rangle_{E}$ is the expectation value on the environment state ρ_E, where $\rho_k(t) = (|0\rangle \langle 0|)^k$ is the vacuum state of the bath.

Appendix C. Hyperfine interaction Hamiltonian

The Hamiltonian describe an electron spin S immersed in a nuclear spin bath reads [59]

$$H = H_S + H_B + H_{S-B} \quad \text{(C1)}$$

where H_S and H_B are Hamiltonian for electron spin and nuclear spins, respectively, and H_{S-B} describes the qubit-bath interaction

$$H_S = -g_{\mu_B} B_z S_z + S \cdot D \cdot S \quad \text{(C2)}$$

$$H_B = -\sum_j g_{\mu_B} \mu_N b_z I_{z,j} + H_{n-n} + H_D \quad \text{(C3)}$$

$$H_{n-n} = \frac{\mu_B}{4\pi} \sum_k \gamma_j \gamma_j I_{j,j} - 3(I_j \cdot r_j)(I_j \cdot r_j) \quad \text{(C4)}$$

$$H_{S-B} = S_z \sum_k A_k \cdot I_k + H_{shf} = h \cdot S + H_{shf} \quad \text{(C5)}$$

where γ_j is the gyromagnetic ratio of the jth nucleus (see table 4 for numerical values of γ_j for Mo isotopes) and r_j is the distance between the nuclear spins I_j and I_{n}. The first term in H_B represents the Zeeman interaction and the

Molybdenum Isotopes	Q(mb)	$\Delta E_{Q}(\mu eV)$	ϵQV_{Q}(MHz)	η	$\gamma \times 10^7$ rad. T$^{-1}$, s$^{-1}$
93Mo	−20.2	0.01	5.59	0	−1.75
97Mo	250.3	0.14	69.36	0	−1.78
second term represents the zero-field splitting. The first term in H_B is the Zeeman term for the nuclei, the second term is the nuclear spin dipole-dipole interaction, while the last is the nuclear quadrupolar splitting. The first term in $H_{\text{a-b}}$ Hamiltonian describing the interaction of a single electron S with the nuclei in the QD, while the second term describe the anisotropic hyperfine interaction.

C.1. Anisotropic hyperfine
The importance of nuclear-spin interactions strongly depends on the system under consideration. Indeed, the anisotropic hyperfine interaction can be neglected. For instance, considering fi interaction can be neglected. For instance, considering fi for axial asymmetry along the quantization axis z which is our case in MoS$_2$.

$$H_{\text{a-b}} = \frac{\mu_B^2 \mu_B}{4\pi} \frac{3(r \cdot I)}{r^3}$$

where r is the vector pointing from the nucleus to the electron, $S(I)$ is the electron (nuclear) spin operator. This term is irrelevant for conduction-band electrons, where the hosted spin-valley qubit, because of the spherical symmetry of the orbital wavefunction [60, 96]. The anisotropic interaction become important when the electronic wavefunction have low symmetry.

C.2. Nuclear dipolar interaction
The dipole-dipole interaction between nuclear spins (e.g., 95Mo and 97Mo) is characterized by two factors: η and δ. η indicates the dipole-dipole interactions between nucleus i and j, which is given by equation (C4) ($H_{\text{a-b}}$). δ indicates the energy splitting between two levels interacting with $I_x I_x + I_y I_y$, due to the different Zeeman splitting with different nuclear spin g-factors between nuclei in addition to the dipole-dipole interaction between them. When $\delta \gg \eta$, the nuclear spins (95Mo and 97Mo) baths are decoupled, and the dipole-dipole interaction can be neglected. For instance, considering $I_x I_x + I_y I_y$ is the source of the decoherence induced by the dipole-dipole interaction, where we estimated the decoupling field.

$$B_{\text{dec}} = \frac{\mu_B H_N}{4\pi} \frac{1}{d^2} \frac{g_i g_j}{g_i + g_j}$$

In MoS$_2$, the distance between molybdenum atom equal to $d = 3.16$ Å [98], the nuclear g-factor for 95Mo $= -0.3657$, and the nuclear g-factor for 97Mo $= -0.3734$, this gives $B_{\text{dec}} = 0.28mT$. Since $B_{\text{dec}} = 0.28mT$ much less than the Zeeman splitting $B_z = 15mT$, thus the decoupling field suppresses the nuclear dipolar interactions. In this work, we consider the case where nuclear spins are perfectly polarized. In this case, the dipole-dipole interaction between nuclear spins becomes greatly suppressed [40, 96], so we can neglect the nuclear dipole-dipole term.

C.3. Nuclear quadrupolar splitting
The electric quadrupole interaction is associated with the non-spherical charge distribution around the nucleus. For a level of nuclear spin, I, the interaction between the quadrupole moment of the nucleus, Q, and the electric field gradient tensor V_{ij} with $i = x, y$ and z is given by the Hamiltonian

$$H_Q = \frac{e Q V_{zz}}{4I(I-1)} [3I_x^2 - I(I-1) + \eta (I_x^2 - I_y^2)]$$

with $\eta = \frac{1}{2} \frac{V_{xx} - V_{yy}}{V_{zz}}$ is the asymmetry parameter. In this equation, V_{xx}, V_{yy}, and V_{zz} are the non-zero electric field gradient tensor elements expressed with respect to the principal x, y and z axes and η is the electric field gradient tensor asymmetry parameter ($\eta = 0$ for axial symmetry along the quantization axis z which is our case in MoS$_2$, since it belongs to the C$_{3v}$ symmetry group, thus $V_{xx} = V_{yy}$. We employ the quantum espresso code [99] and the GIPAW formalism [100] to numerically estimate the values of the electric field gradient. To quantitatively estimate the effect of the quadrupole interaction, we calculate the induced energy splitting by this effect

$$\Delta E_Q = \frac{1}{2} e Q V_{zz} \left(1 + \frac{1}{3} \eta^2\right)^{1/2}$$

Values of the quadrupole moment Q and the quadrupolar splitting for the Mo isotopes are given in the table 4.

ORCID iDs

Mehdi Arfaoui @ https://orcid.org/0000-0001-7628-4159
References

[1] Lee J, Wang Z, Xie H, Mak K F and Shan J 2017 Nat. Mater. 16 887
[2] Schablitzki F J, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nature Reviews Materials 1
[3] Kormanyos A, Zolyomi V, Drummond N D and Burkard G 2014 Phys. Rev. X 4 011034
[4] David A, Burkard G and Kormanyos A 2018 2D Materials 5
[5] Steichen G, Chirolli L and Pályi A 2018 2D Materials 5 035004
[6] Wu Y, Tong Q, Liu G-B, Yu H and Yao W 2016 Phys. Rev. B 93 045313
[7] Pape I and Burkard G 2017 2D Materials 4 025314
[8] Pavlovski I, Zebrowski D and Bednarek S 2018 Phys. Rev. B 97 155412
[9] Brooks M and Burkard G 2017 Phys. Rev. B 95 245411
[10] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang H 2012 ACS Nano 6 74
[11] Lee H S, Min S-W, Chang Y-G, Park M K, Nam T, Kim H, Kim J H, Ryu S and Im S K 2012 Nano Lett. 12 3695
[12] Wang G, Cheremovik A, Glazov M M, Heinz T F, Marie X, Amad T and Urbaszek B 2018 Rev. Mod. Phys. 90 021001
[13] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899
[14] Perkins F K, Friedeman A L, Cohus E, Campbell P M, Jernigan G G and Jonker B T 2013 Nano Lett. 13 668
[15] Radisavljevic B, Whitwick M B and Kis A 2011 ACS Nano 5 9934
[16] Wang H, Yu A, Lee Y-H, Shi Y, Hsu A, Chin M L, Li J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674
[17] Feierabend M, Berghäuser P, Knorr A and Malic E 2017 Nat. Commun. 8 1
[18] Ma Q, Ren G, Xu K and Ou J Z 2021 Adv. Opt. Mater. 9 2001313
[19] Mueller T and Malic E 2018 npj 2D Materials and Applications 2 1
[20] Mak K F, Xiao D and Shan J 2018 Nat. Photonics 12 451
[21] Coish W A and Loss D 2004 Phys. Rev. B 70 195340
[22] Fuchs M, Rychkov V and Trauzettel B 2012 Phys. Rev. B 86 085301
[23] Urbaszek B, Marie X, Amad T, Krebs O, Voisin P, Maleints P, Högele A and Imamoglu A 2013 Rev. Mod. Phys. 85 79
[24] Ding W, Liu Y, Zheng Z and Chen S 2022 Phys. Rev. A 106 012604
[25] Warburton R J 2013 Nat. Mater. 12 483
[26] Chekhovich E, Makhonin M, Tartakovskii A, Yacoby A, Bluhm H, Nowack K and Vanderesypen I 2013 Nat. Mater. 12 494
[27] Xu J, Habib A, Kumar S, Wu F, Sundararaman R and Ping Y 2020 Nat. Commun. 11 1
[28] Villazon T, Claeys P W, Polkovnikov A and Chandran A 2021 Phys. Rev. B 103 075118
[29] Kuruca Z, Sorensen M W, Taylor J M, Lukin M D and Fleischhauer M 2009 Phys. Rev. Lett. 103 010502
[30] Fernandez-Acebal P et al 2018 Nano Lett. 18 1882
[31] Gullans M, Krich J J, Taylor J M, Halperin B I and Lukin M D 2013 Phys. Rev. B 88 035309
[32] Lai C W, Maleints P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[33] Merkulov I A, Efros A L and Rosen M 2002 Phys. Rev. B 65 205309
[34] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vanderesypen I M K 2007 Rev. Mod. Phys. 79 1217
[35] Childress L, Dutt M V G, Taylor J M, Zibrov A S, Jelezko F, Wrachtrup J, Hemmer P R and Lukin M D 2006 Science 314 281
[36] Hanson R, Dobrovitsits V V, Feiguin A E, Gywat O and Awschalom D D 2008 Science 320 352
[37] Taylor J M, Marcus C M and Lukin M D 2004 Phys. Rev. Lett. 93 206803
[38] Goldstein G, Cappellaro P, Maze J R, Hedges I S, Jiang L, Sorensen A S and Lukin M D 2011 Phys. Rev. Lett. 106 140502
[39] Cappellaro P, Goldstein G, Hedges J S, Jiang L, Maze I R, Sorensen A S and Lukin M D 2012 Phys. Rev. A 85 032336
[40] Ding W, Zhang W and Wang X 2020 Phys. Rev. A 102 032612
[41] Shirai Y, Hashimoto K, Tezuka R, Uchiyama C and Hatano N 2021 Phys. Rev. Research 3 023078
[42] Klat J, Kopf C M and Buhmann S Y 2021 Phys. Rev. Lett. 126 210401
[43] Shibata F, Takahashi Y and Hashitsume N 1977 J. Stat. Phys. 17 171
[44] Wenderoth S, Breuer H-P and Thoss M 2021 Phys. Rev. A 104 012123
[45] Treviàn A, Smirne A, Megier N and Vacchini B 2021 Phys. Rev. A 104 052215
[46] Colla A and Breuer H-P 2022 Phys. Rev. A 105 052216
[47] Alipour S, Rezakhani A T, Babu A P, Mølmer K, Möttönen M and Ala-宁issa T 2020 Phys. Rev. X 10 041024
[48] Vacchini B and Breuer H-P 2010 Phys. Rev. A 81 042103
[49] Shen H Z, Qin M, Xiu X-M and Yi X X 2014 Phys. Rev. A 89 062113
[50] Smirne A and Vacchini B 2010 Phys. Rev. A 82 022110
[51] Jing J and Wu L-A 2018 Sci. Rep. 8 1471
[52] Coish W A, Fischer J and Loss D 2008 Phys. Rev. B 77 125329
[53] Chirolli L and Burkard G 2008 Adv. Phys. 57 225
[54] Goldstein E T and Bułatya C 2022 Phys. Rev. B 105 075202
[55] Cywiński L, Witte M W and Sarma S D 2009 Phys. Rev. B 79 245314
[56] Tsyplyatyev A and Loss D 2011 Phys. Rev. B 83 104503
[57] Sinitsyn N A, Li Y, Crooker S A, Saxena A and Smith D L 2012 Phys. Rev. Lett. 109 166605
[58] Schlemminger J, Khaetskii A and Loss D 2003 J. Phys. Condens. Matter 15 R1809
[59] Ye M, Seo H and Galli G 2019 NPJ Comput. Mater. 5 44
[60] Coish W and Bough J 2009 Phys. Status Solidi A 246 2203
[61] Avdeen I D and Smirnov D S 2019 Nanoscale Adv. 1 1624
[62] Eng K et al 2015 Science Advances 1 e1500214
[63] Pawlowski J 2019 New J. Phys. 21 123029
[64] Vacchini B and Breuer H-P 2010 Phys. Rev. A 81 042103
[65] Tong Q-I, An H-H, Luo H-G and Oh C H 2010 Phys. Rev. A 81 052330
[66] Jing J, Wu L-A, Sarandy M S and Muga J G 2013 Phys. Rev. A 88 053422
[67] Davari S, Stacy J, Mercado A, Tulj I, Basnet R, Pandey K, Watanabe K, Taniguchi T, Hu J and Churchill H 2020 Phys. Rev. Applied 13 054058
[68] Zhang Z-Z et al 2017 Science Advances 3 e1701699
[69] Piosson R, Lezi Z, Back P, Eich M, Overweg H, Lee Y, Watanabe K, Taniguchi T, Ihn T and Ensslin K 2018 Appl. Phys. Lett. 112 123101
[70] Song X-X et al 2015 Nanoscale 7 16867

14
[71] Palacios-Berraquero C, Kara D M, Montblanch A R-P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C and Atatüre M 2017 Nat. Commun. 8 1
[72] Branny A, Kumar S, Proux R and Gerardot B D 2017 Nat. Commun. 8 1
[73] Brooks M and Burkard G 2018 Phys. Rev. B 97 195454
[74] Koperski M, Nagajewski K, Arora A, Cherkez V, Mallet P, Veuillen J-Y, Marcus J, Kossacki P and Potemski M 2015 Nat. Nanotechnol. 10503
[75] Tommdorf P, Schmidt R, Schneider R, Kern J, Bascema M, Steele G A, Castellanos-Gomez A, van der Zant H S J, de Vasconcellos S M and Bratschitsch R 2015 Optica 2 347
[76] Srivastava A, Sidler M, Lembke D S, Kis A and Imamoğlu A 2015 Nat. Nanotechnol. 10 111
[77] He Y-M et al 2015 Nat. Nanotechnol. 10 1497
[78] Chakraborty C, Kinnsichtke L, Goodfellow K M, Beams R and Vamivakas A N 2015 Nat. Nanotechnol. 10 507
[79] Huang C, Wu S, Sanchez A M, Peters J, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H and Xu X 2014 Nat. Mater. 13 1096
[80] Dias A C, Fu J, Villegas-Lelovsky L and Qu F 2016 J. Phys. Condens. Matter 28 375803
[81] Zhu Z Y, Cheng Y C and Schwingenschlögl U 2011 Phys. Rev. B 84 153402
[82] Wang G et al 2015 Nat. Commun. 6 10110
[83] Zhang Y et al 2014 Nat. Nanotechnol. 9 111
[84] Riley J M et al 2014 Nat. Phys. 10 835
[85] Kormányos A, Burkard G, Gmitra M, Fabian J, Zólyomi V, Drummond N D and Fal’ko V 2015 2D Materials 2 022001
[86] Liu G-B, Shan W-Y, Yao Y, Yao W and Xiao D 2013 Phys. Rev. B 88 085433
[87] Kosmider K, González J W and Fernández-Rossier J 2013 Phys. Rev. B 88 245436
[88] Blaha P, Schwarz K, Sorentin P and Trickey S 1999 Comput. Phys. Commun. 59 399
[89] Blaha P et al 2001 An augmented plane wave + local orbitals program for calculating crystal properties 60
[90] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[91] Loss D and D’Vincenzo D P 1998 Phys. Rev. A 57 120
[92] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[93] Russ M and Burkard G 2017 J. Phys. Condens. Matter 29 393001
[94] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[95] Awschalom D D, Bassett L C, Dzurak A S, Hu E L and Petta J R 2013 Science 339 1174
[96] Fischer J, Trif M, Coish W and Loss D 2009 Solid State Communications fundamental Phenomena and Applications of Quantum Dots 149 1443
[97] Stone N 2005 At. Data Nucl. Data Tables 90 75
[98] Kanai S, Heremans F J, Seo H, Wolowiec G, Anderson C P, Sullivan S E, Onizhuk M, Galli G, Awschalom D D and Ohno H 2022 Proceedings of the National Academy of Sciences 119 e2121808119
[99] Giannozzi P et al 2009 J. Phys. Condens. Matter 21 395502
[100] Pickard C J and Mauri F 2002 Phys. Rev. Lett. 88 086403