Case Report

Albendazole-induced liver injury: a case report

Lesión hepática inducida por albendazol: reporte de un caso

Ríos David\(^a\), Restrepo Juan C.\(^b\).

\(^a\)Facultad de Medicina, Universidad de Antioquia; Grupo de Gastrohepatología, Universidad de Antioquia - Hospital Pablo Tobón Uribe. Medellín, Colombia

\(^b\)Grupo de Gastrohepatología, Universidad de Antioquia - Hospital Pablo Tobón Uribe. Medellín, Colombia.

Ríos D, Restrepo GJ. Albendazole-induced liver injury: a case report. Colomb Med. 2013; 44(2): 118-20.

© 2013 Universidad del Valle. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Albendazole is the medication of choice to treat multiple diseases caused by parasites from the nematode and cestode types, among which there are alveolar echinococcosis and neurocysticercosis\(^1,2\). Additionally, it has been successfully implemented as alternative therapy in other parasitosis, without generating clinically relevant adverse effects\(^3,4\). The drug binds to the β-tubulin of the parasitic cell and impedes microtubule polymerization, which interferes with the mitotic spindle formation and the glucose uptake; it also inhibits mitochondrial fumarate reductase, which alters oxidative phosphorylation and the parasite’s energy metabolism, this produces the cell’s immobility, spastic paralysis, and – finally – death\(^5,6\).

The secondary effects of the medication are usually mild; reports have been made of constipation, abdominal pain, nausea, drowsiness, dizziness, pruritus, transient hair loss, anorexia, and mild aminotransferase increase\(^7,8,9\). Significant adverse reactions compromising the liver and bile ducts are rare, in up to 15.6% of the cases elevation of hepatic enzymes has been reported which decreases with the temporary withdrawal of the medication without generating any comorbidity\(^8,9\). To our knowledge, only in two cases have the elevation of transaminases and the accompanying symptomatology obligated the definite suspension of the treatment\(^8,9\).
International specific or absolute parameters have not been established to identify drug-induced toxic hepatitis. Currently, the most accepted diagnostic criteria correspond to the semi-qualitative CIOMS/RUCAM scale to assess the drug/toxic hepatopathy causality developed in 1990. This method has demonstrated reliability and superiority against other methods published afterward and it was implemented in this case.

Hereinafter, we describe the case of a patient from our hepatology services, which was diagnosed with toxic hepatitis induced by albendazole.

Case description: This case included a 47-year-old male patient without antecedents of importance, who consulted due to a two-month clinical condition consisting of fever, generalized jaundice, and pain in the right abdomen associated to paresthesia on the ipsilateral lower limb.

The patient was forwarded to the city of Medellín for evaluation in the clinical hepatology services at Pablo Tobón Uribe Hospital. Upon admission, hepatic profile was taken (results are shown in Table 1) as well as hepatotropic virus serology, which was negative.

Magnetic resonance revealed two cystic lesions; the first was located between the middle hepatic vein and the right hepatic vein, with a diameter of 6 x 6 cm, with sub-capsular enhancement, without septa or nodules; the second lesion occupied the whole right lobe of liver with multiple enhancing septa.

No ischemic liver damage was found and the bile duct was found normal. According to these findings, hepatic hydatidosis was diagnosed and treatment was begun with 600 mg albendazole every 24 hrs.

After five months of uninterrupted treatment, the patient was again admitted and hospitalized because of jaundice syndrome. Physical exam found mild hepatomegaly and tenderness in the right hypochondrium, icterus in mucosa and dysesthesias in lower right limb; the patient also reported coluria with one-

The biochemical profile during the first hospitalization evidenced cholestasis; during the second admission and after five months of anti-parasite treatment the damage pattern shifted to hepatocellular, with marked increase of aminotransferases that lessened progressively with the withdrawal of albendazole until normalizing at four months without need to undertake an additional conduct. Between both hospitalizations there was no therapeutic intervention different from the anti-parasite prescription.

Imaging aids permitted discarding ischemic liver damage; serology for micro-organisms that induce acute and chronic liver lesion was negative, and the differential diagnosis of liver cystadenocarcinoma was discarded with the second magnetic resonance, which showed slight decrease in the size of cysts.

The patient attended the out-patient consultation at Pablo Tobón Uribe Hospital 30 days later; bringing laboratory exams that revealed mild hyperbilirubinemia and decreased transaminases. Three months later, the patient was asymptomatic and his hepatic profile was normal (Table 1).

Discussion

Drug-induced liver injury (DILI) is a disease of variable clinical presentation, with a spectrum that goes from the lack of symptoms to acute liver failure and even chronic liver disease. It is an under-registered condition and whose diagnosis is of exclusion; hence, it is based on the clinical history, antecedents of drug intake, evaluation of para-clinical exams, and exclusion of other possible causes that mask the toxicity.

In this case, no antecedents of importance was present; hydatidosis was the indication for albendazole use, a drug that has been effectively implemented without clinically significant adverse effects on the liver in similar cases, which makes it quite unlikely that the inflammatory reaction caused by the parasite’s death becomes responsible for hepatocellular damage.

The CIOMS/RUCAM scale was used to objectively evaluate the toxic effect on the liver in similar cases, which makes it quite unlikely that the inflammatory reaction caused by the parasite’s death becomes responsible for hepatocellular damage.

Table 1. Behavior of the hepatic profile over time, from the first hospitalization to four months after discontinuing albendazole

Laboratory test	Reference values	Admission, hospitalization	After discontinuing albendazole			
		First	Second	4 days	30 days	120 days
Total bilirubin (TB) (mg/dL)	0.2 - 1.2	1.85	17.11	6.8	1.71	0.81
Direct bilirubin (DB) (mg/dL)	0.1 - 1.5	0.95	11.65	4.89	0.87	0.27
Aspartate aminotransferase (AST)	5 - 34 U/L	22 U/L	743 U/L	332 U/L	81.2 U/L	22 U/L
Alanine aminotransferase (ALT)	5 - 35 U/L	30 U/L	1270 U/L	169.5 U/L	49 U/L	
Gammaglutamyl transpeptidase (GGT)	12 - 64 U/L	393 U/L	254 U/L	345 U/L	49 U/L	
Prothrombin time (PT) (seconds)	9 - 13.0	13	13	----	16.2	14.4
Alkaline phosphatase (AP)	40 - 150 U/L	197 U/L	127 U/L	----	69.38 U/L	69 U/L
probability of toxic hepatitis; it showed a “likely” correlation with a 5-point score, which confirmed the diagnosis of albendazole-induced toxic hepatitis with a pattern of hepatocellular damage.

Until now, worldwide, two other cases have been reported of toxic hepatitis due to albendazole8,9; this is the first case documenting sub-acute toxicity and which describes progressive improvement of the hepatic profile over time, after discontinuing the medication as the unique intervention.

Conclusion

Given that diagnosis of DILI is of exclusion and sub-reporting is common. It is important for medical personnel to suspect it in every patient with hepatic dysfunction and conduct precise characterization of medication intake and risk factors. Additionally, it must be considered that any drug has hepatotoxic potential and that cases of hepatitis due to medications occur in our environment without being diagnosed.

Conflict of interest:
The authors declare that there is no real or potential conflict of interest regarding the possible publication of this work.

References

1. Vuitton DA. The WHO Informal Working Group on Echinococcosis. Coordinating Board of the WHO-IWGE. Parassitol. 1997; 39(4): 349-53.

2. Garcia HH, Evans CA, Nash TE, Takayanagui OM, White AC Jr, Botero D, et al. Current consensus guidelines for treatment of neurocysticercosis. Clin Microbiol Rev. 2002; 15(4): 747-56.

3. Horton J. Albendazole: a review of anthelminthic efficacy and safety in humans. Parasitol. 2000; 121(Suppl 1): 13-32.

4. Singthong S, Intapan PM, Wongsaroji T, Maleewong W. Randomized comparative trial of two high-dose Albendazole regimens for uncomplicated human strongyloidiasis. Southeast Asian J Trop Med Public Health. 2006; 37(Suppl 3): 32-4.

5. Brunton L, Lazo JS, Parker KL. Goodman Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

6. Maartens G, Sinxadi P. Pharmacology of anthelmintics: Albendazole, Mebendazole and praziquantel. CME. 2009; 27: 274-6.

7. Horton J. Albendazole: a broad spectrum anthelminthnic for treatment of individuals and populations. Curr Opin Infect Dis. 2002; 15: 599-608.

8. Choi GY, Yang HW, Cho SH, Kang DW, Go H, Lee WC, et al. Acute drug-induced hepatitis caused by albendazole. J Korean Med Sci Korea South. 2008; 23(5): 903-5.

9. Amoruso C, Fuoti M, Miceli V, Zito E, Celano MR, De Giorgi A, et al. Acute hepatitis as a side effect of albendazole: a pediatric case. Pediatr Med Chir. 2009; 31(6): 262-4.

10. Benichou C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol. 1990; 11(2): 272-6.

11. Lucena MI, Camargo R, Andrade RJ, Perez-Sanchez CJ, Sanches C F. Comparison of two clinical scales for causality assessment in hepatotoxicity. Hepatol. 2001; 33: 123-30.

12. Ghabril M, Chalasani N, Bjornsson E. Drug-induced liver injury: a clinical update. Curr Opin Gastroenterol. 2010; 26(3): 222-6.

13. Gil GL, Rodriguez CF, Prieto J, Sánchez RJ, Brasa C, Aguilar L, et al. Randomized controlled trial of efficacy of albendazole in intra-abdominal hydatid disease. Lancet. 1993; 342: 1269-72.

14. Hussain S, Malik A, Khaja AR, Dass T. Naikoo Z. Role of Albendazole in the management of hydatid cyst liver. Saudi J Gastroenterol. 2011; 17(5): 343-7.

15 Bildik N, Cevik A, Altintaş M, Ekinçi H, Canberk M, Gülmen M. Efficacy of preoperative Albendazole use according to months in hydatid cyst of the liver. J Clin Gastroenterol. 2007; 41(3):312-6.