Multi-Locus Phylogeny and Taxonomy of the Fungal Complex Associated With Rusty Root Rot of Panax ginseng in China

Yi Ming Guan1,2, Ying Ying Ma2, Qiao Jin2, Qiu Xia Wang2, Ning Liu2, Yong Ping Fu1, Ya Yu Zhang2 and Yu Li1*

1 Engineering Research Center, Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China, 2 Institute of Special Wild Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China

Panax ginseng rusty root rot caused by the Ilyonectria species complex is a devastating disease, and it is one of the main factors contributing to the difficulty in continual cropping. Rusty root rot occurs in all ginseng fields, but little is known about the taxonomy of the fungal pathogen complex, especially Ilyonectria and Ilyonectria-like species. Rusty root rot samples were collected from commercial ginseng cultivation areas of China, and the pathogens were isolated and purified as single spores. Based on the combination analysis of multiple loci (rDNA-ITS, TUB, HIS3, TEF, ACT, LSU, RPB1, RPB2, and SSU) and morphological characteristics, the pathogens causing ginseng rusty root rot were determined. Fungal isolates were obtained from infected roots in 56 locations within main cultivation areas in China. A total of 766 strains were identified as Ilyonectria, Ilyonectria-like species, including I. robusta (55.0%), I. communis (21.7%), I. mors-panacis (10.9%), I. pseudodestructans (2.0%), I. changbaiensis (1.3%), I. qitaiheensis (1.3%), Neonectria obtusispora (2.0%), Dactylonectria torresensis (0.5%), D. sp. (0.5%), and R. panacis (1.5%), and four novel species, Thelonectria ginsengicola (1.0%), T. jixiensis (1.0%), T. mulanensis (0.8%) and T. fusongensis (0.3%), with a total of 14 species. As the pathogen present in the highest proportion, I. robusta was the most prevalent and damaging species, unlike the pathogens reported previously. All of the examined strains were proven to cause ginseng rusty root rot. Our results indicate that the taxonomy of the fungal complex associated with ginseng rusty root rot includes Ilyonectria, Ilyonectria-like genera (Dactylonectria, Neonectria, and Thelonectria) and Rheocercosporidium.

Keywords: Dactylonectria, Ilyonectria, Ilyonectria-like, Neonectria, Panax ginseng, Rheocercosporidium, rusty root rot, Thelonectria

INTRODUCTION

Panax ginseng is one of the most cultivated medicinal plants in China, and the quality of ginseng greatly influences the quality of cosmetics, health care products and medicines that use ginseng as a raw material (Baranov, 1966; Hu, 1977). Ginseng rusty root rot is caused by Ilyonectria/Cylindrocarpon or Ilyonectria/Cylindrocarpon-like species, and it is the most
devastating chronic disease and the greatest threat to ginseng (Panax ginseng) cultivation (Guan et al., 2020). Rusty root rot may cause 30% loss of ginseng, and it can be found in all ginseng planting areas. Rusty root rot has always been one of the important factors that interferes with the maintenance of continuous ginseng cropping. The incidence of rusty root rot in 2-year-old ginseng continuous cropping is 95.8% (Cho et al., 1995).

All parts of the ginseng root may be infected, and the infected root exhibits reddish brown dry rot with a gully appearing on most of the root. The infection stops with increased temperature, and some parts of the ginseng root may undergo self-healing, but the gully or dry rot scars remain. The appearance of ginseng root rot and the degree of damage greatly influence the value of ginseng (Zhou et al., 2017). Ilyonectria and Ilyonectria-like species are common soil fungi, opportunistic plant root pathogens, or asymptomatic root endophytes (Seifert et al., 2003). Ginseng seeds also carry Ilyonectria pathogens that may pose a threat to ginseng cultivation (Guan et al., 2019). Ilyonectria fungi play an important role in black foot rot in grapevines (Halleen et al., 2004; Halleen et al., 2006a,b), apple replant disease (Tewoldemedhin et al., 2011), and beech cankers (Castlebury et al., 2006); the affected plants are representative hosts of economic importance, especially the lignified roots of perennials. Thus, Ilyonectria and Ilyonectria-like species are commonly associated with rot and decay of woody and herbaceous plants (Domsch et al., 2007).

The pathogen associated with root rot disease of Panax quinguefalcum was first extracted by Zinnsmeister (1918), and it was designated Ramularia destructans. Similar diseases were found by Chou and Chung on ginseng in China and Korea (Chung, 1979; Wang, 2001). Scholten established the new species C. destructans, and R. destructans was treated as a synonym (Scholten, 1964).

Neonectria/Cylindrocarpon is a paraphyletic based on phylogenetic analysis (Mantiri et al., 2001; Halleen et al., 2004; Hirooka et al., 2005; Castlebury et al., 2006). The Neonectria complex was divided into four genera (Ilyonectria, Neonectria/Cylindrocarpon, Rugenectria and Thelonectria) based on a combination of morphological characteristics. Ilyonectria replaced the N. radicicola group based on the description by Booth (1966); Seifert et al. (2003), and the corresponding Cylindrocarpon also became Ilyonectria (Mantiri et al., 2001).

I. destructans was linked to the teleomorph I. radicicola (Booth, 1966; Samuels and Brayford, 1990; Chaverri et al., 2011). Based on a phylogenetic analysis of nuclear ribosomal internal transcribed spacer (rDNA-ITS) gene sequences, Schroers et al. concluded that the I. radicicola complex included C. destructans, C. destructans var. crassum, I. coprosmae, I. lirioidendri, N. austrotredicola and N. macroconidialis (Schroers et al., 2007). The rDNA-ITS, β-tubulin (TUB), histone H3 (HIS3) and translation elongation factor 1-α (TEF) genes were used to support the I. radicicola species complex, and HIS3 was the most contributing gene (Cabral et al., 2012b). Sixty-eight strains of pathogenic fungi from ginseng and other hosts were once considered C. destructans within four groups: I. mors-panacis, I. robusta, I. panacis, and I. crassa (Cabral et al., 2012a). Lu et al. (2020) obtained 230 isolates and believed that ginseng red-sin root was caused by 12 species, including Fusarium, Dactylonectria, Ilyonectria and others.

Thelonectria was first classified in Cylindrocarpon and first described in 2011 to accommodate grouping in the Cylindrocarpon classification (Chaverri et al., 2011). However, the forms isolated from soil were the asexual states of Thelonectria. Thelonectria and related species with Cylindrocarpon-like morphology were redefined using molecular phylogenetic techniques (Chaverri et al., 2011; Salgado-Salazar et al., 2012, 2013, 2015). The observation that R. panacis causes ginseng rusted root rot was reported for the first time in 2006, after more than 70 years of the disease (Reelered et al., 2006; Reelered, 2007).

In this work, we report the population structure of pathogens associated with ginseng rusty root rot. In the commercial ginseng cultivation areas in China, 90% of rusty root rot is thought to be caused by I. destructans (Wang, 2001), but the experimental data support different conclusions. The present study determined that the pathogens that cause rusty root rot disease of ginseng are consistently associated with a fungal complex species, and management strategies must be developed.

MATERIALS AND METHODS

Sample Collection, Fungal Isolation, and Morphological Observation

Fresh ginseng roots with rusty root rot symptoms (Figure 1) were collected between 2017 and 2019 from 56 sampling locations in northeast China that corresponded to the commercial ginseng-producing areas of China (Figure 2). The junction of the healthy and diseased parts was cut into 25-mm³ pieces, and the surfaces of the pieces were disinfected by immersion in 1% NaOCl for 2 min and washing three times with sterile water. The pieces were evenly placed on water agar (WA) medium cultured in the dark at 22°C. Colonies were collected for 15-21 days, purified and cultured from single spores (Punja, 1997). The cultures were transferred to potato dextrose agar (PDA) medium and synthetic nutrient-poor agar (SNA) and cultured in the dark for 20-60 days, and the characteristics of the resulting cultures were recorded. The isolates were cultivated on PDA supplemented with ginseng roots under continuous near-ultraviolet light (n-UV, 315-400 nm), and the characteristics of conidiophore cells and the shape and size of chlamydospores and conidia were observed. Images and measurements were acquired using a KEYENCE VXH-5000 digital microscope system (Osaka, Japan).

DNA Extraction and PCR Amplification

Colonies grown for 15 days were collected for DNA extraction. DNA was obtained by following the procedures described in the Qiagen DNeasy Plant Mini Kit (Qiagen 69104, Qiagen, Hilden, Germany). Each 50-µl PCR aliquot contained 25 ml
of premix (Takara R045, Kusatsu, Japan; the error rate of the DNA polymerase is 0.02%), 2 μl of each primer (10 μM), 1 μl of DNA (500 ng/μl), and 20 μl of double-distilled H₂O. The following PCR program was used to obtain the sequences of the actin gene (ACT), rDNA-ITS, the 28S ribosomal RNA gene (LSU), the gene encoding RNA polymerase II largest subunit (RPB1), the gene encoding RNA polymerase II second-largest subunit (RPB2), 18S ribosomal RNA (SSU), TEF, TUB and HIS3: 95°C for 3 min; 30 cycles of 95°C for 15 s, annealing temperature for 15 s, 72°C for 60 s, and 72°C for 10 min; the sample was then held at 4°C. The amplicons were analyzed using 0.8% agarose gel electrophoresis in 0.5 × TAE buffer.
TABLE 1 | Details regarding the PCR primers used in species identification and gene sequencing.

Gene region	Primer	Direction	Annealing temperature (°C)	References
Nuclear ribosomal internal transcribed spacer	V9G	sense	51	de Hoog and van den Ende, 1998
	ITS4	antisense		
Actin	ACT512F	sense	51	Carbone and Kohn, 1999; Groenewald et al., 2013
	ACT1RD	antisense		
28S ribosomal RNA gene	LROR	sense	48	Vilgalys and Hester, 1990; Moncalvo et al., 2000
RNA polymerase II largest subunit	LR5	antisense		
	RPB1a	sense	55	Castlebury et al., 2004
Histone H3 gene	RPB1c	antisense		
RNA polymerase II second-largest subunit	CYLH3F	sense	50	Crous et al., 2004
	CYLH3R	antisense		
	RPB2-7cf	sense	54	Liu et al., 1999
18S ribosomal RNA gene	NS1	sense	55	Gargas and Taylor, 1992
β-tubulin	BT3	sense	52	Lu et al., 2020; O’Donnell and Cigelnik, 1997
	BT4	antisense		
	T1	sense		
	T2	antisense		
Translation elongation factor 1-alpha	CYLEF-1	sense	55	Carbone and Kohn, 1999; Crous et al., 2004
	CYLEF-R2	antisense		
	EF728	sense		
	EF1567	antisense		

Details regarding the PCR primers and annealing temperatures are listed in Table 1.

DNA Sequencing and Phylogenetic Analysis

The purified amplicons were sequenced in both directions by Sangon Biotech (Shanghai, China), and the sequences were assembled using Seqman (v8.1). Phylogenetic trees were constructed using the combined rDNA-ITS, TUB, HIS3 and TEF genes for analyses of Dactylonectria, Ilyonectria and Neonectria, and the analysis of Thelonectria was based on a combination of the ACT, rDNA-ITS, LSU, RPB1, RPB2, SSU, TEF and TUB genes. All sequences were homologously aligned by mega 7.06. A maximum parsimony (MP) method was used to construct a phylogenetic tree in the PAUP 4.0b program. The MP analyses were performed with the heuristic search option, and 100 random sequence additions were used to find the global optimum tree. The gaps were treated as missing data, and the strength of the internal branches of the resulting trees was tested with bootstrap analysis using 1000 replications. The consistency index (CI), retention index (RI), and rescaled consistency index (RC) of the tree were also calculated. Detailed information on the sequences of the genes whose accession numbers were applied for in the NCBI database, including all strains used for phylogeny, is shown in Tables 2, 3.

Pathogenicity Tests

The 26 newly sequenced strains were also subjected to pathogenicity testing (Table 3). The pathogenicity of the isolates was evaluated on 3-year-old detached ginseng roots (cultivar: Damaya) using an improved published method in vitro (Lu et al., 2020). The fresh ginseng roots were washed, wiped with 75% alcohol, and rinsed with sterile water. Healthy ginseng roots were inoculated by placing 50 µl of 1 × 10⁵/ml spore suspension taken from the edges of actively growing colonies on PDA plates into premade holes 4 mm in diameter and 1 mm deep. Two to three holes per root and four replicated roots were inoculated for each isolate, and sterile water was used as the control. The ginseng roots were cultured in a fresh-keeping box at 25°C in the dark and evaluated after 7 days. The same strain and disinfection method were used to inoculate whole plants in the greenhouse (25°C, 78% humidity). After disinfection, 3-year-old ginseng seedlings were dipped into a 1 × 10⁵/ml spore suspension for 20 min and then transferred to pots containing sterile sand, with 6 plants per pot. Each
TABLE 2 | Strains analyzed in this study.

Species	Strain a	Origin	GenBank accession number b								
			rDNA-ITS	TUB	HIS3	TEF1-α	ACT	LSU	RPB1	RPB2	SSU
D. alcacerensis	IAFM Cy20-1	Spain	JF735332	AM419104	JF735629	JF735818					
D. alcacerensis	129087	Portugal	JF735333	AM419111	JF735630	JF735819					
D. anthruriicola	CBS 564.95	Netherlands	JF735302	JF735430	JF735579	JF735768					
D. estremencensis	Cy135	Portugal	AM419069	AM419105	JF735615	JF735804					
D. estremencensis	CBS 129085	Portugal	JF735320	JF735448	JF735617	JF735806					
D. hordeicola	CBS 162.89	Portugal	AM419060	AM419084	JF735610	JF735799					
D. hordeicola	3S07	China	MF350482	MF350428	MF350455	MF350509					
D. macrodidyma	CBS 12615	South Africa	AY677290	AY677233	JF735647	JF735836					
D. macrodidyma	CBS 112601	South Africa	AY677284	AY677229	JF735644	JF735833					
D. novozelandica	CBS 112608	South Africa	AY677288	AY677235	JF735632	JF735821					
D. novozelandica	CBS 113552	New Zealand	JF735334	JF735633	JF735822	JF735822					
D. pinicola	CBS 159.34	UK, England	JF735318	JF735446	JF735613	JF735802					
D. pinicola	CBS 173.37	Germany	JF735319	JF735447	JF735614	JF735803					
D. sp.	Q18-22	China	MT678572*	MT810745*	MT800966*	MT800973*					
D. sp.	Q18-23	China	MT678573*	MT810748*	MT800967*	MT800974*					
D. torresensis	CBS 129086	Portugal	JF735362	JF735492	JF735681	JF735870					
D. torresensis	CBS 113555	New Zealand	JF735350	AY677234	JF735661	JF735850					
D. torresensis	DT2	China	MT678571*	MT810744*	MT800965*	MT800972*					
D. vitis	CBS 129082	Portugal	JF735303	JF735431	JF735580	JF735769					
I. changbaiensis	CGMCC 3.18789	China	MF350464	MF350410	MF350437	MF350491					
I. changbaiensis	72R2	China	MF350465	MF350411	MF350438	MF350492					
I. changbaiensis	CB4-7	China	MT678567*	MT810740*	MT800951*	MT800968*					
I. changbaiensis	Q24-5	China	MT678568*	MT810741*	MT800952*	MT800969*					
I. communis	CGMCC 3.18788	China	MF350402	MF350402	MF350429	MF350483					
I. communis	J410	China	MF350457	MF350403	MF350430	MF350464					
I. communis	CB4-2	China	MT678565*	MT810738*	MT800949*	MT800966*					
I. communis	H1-9	China	MT678566*	MT810739*	MT800960*	MT800967*					
I. coprosmae	CBS 119606	Canada	JF735360	JF735373	JF735505	JF735694					
I. crassa	CBS 129083	Canada	AY295311	JF735395	JF735536	JF735725					
I. crassa	CBS 158.31	Canada	JF735694	JF735376	JF735535	JF735724					
I. cyclaminicola	CBS 302.93	Netherlands	JF735304	JF735432	JF735581	JF735770					
I. cyclaminicola	EFA-444	Spain	MF440369	MF797792	MF471472	MH070096					
I. destructans	CBS 264.65	Sweden	AY677273	AY677256	JF735506	JF735695					
I. europaea	CBS 102892	Germany	JF735295	JF735422	JF735669	JF735758					
I. europaea	CBS 129078	Portugal	JF735294	JF735421	JF735657	JF735756					
I. gamsii	CBS 940.97	Netherlands	AM419065	AM419089	JF735577	JF735766					
I. leucospermi	CBS 13289	South Africa	JX231161	JX231113	JX231145	JX231129					

(Continued)
Species	Strain\(^a\)	Origin	GenBank accession number\(^b\)								
			rDNA-ITS	TUB	HIS3	TEF1-\(\alpha\)	ACT	LSU	RPB1	RPB2	SSU
I. leucospermi	CBS 132810	South Africa	JX231162	JX231114	JX231146	JX231130					
I. liliiigena	CBS 732.74	Netherlands	JF735298	JF735426	JF735574	JF735763					
I. liliiigena	CBS 189.49	Netherlands	JF735297	JF735425	JF735573	JF735762					
I. liriodendri	CBS 117526	Portugal	DQ178164	DQ178171	JF735506	JF735697					
I. liriodendri	CBS 110.81	United States	DQ178163	DQ178170	JF735507	JF735696					
I. lusitanica	CBS 129080	Portugal	JF735296	JF735423	JF735570	JF735759					
I. mors-panasis	CBS 306.35	Canada	JF735288	JF735414	JF735557	JF735746					
I. mors-panasis	H-1	China	MT678563*	MT810736*	MT800947*	MT800964*					
I. mors-panasis	XFC1	China	MT678564*	MT810737*	MT800948*	MT800965*					
I. panasis	CBS 129079	Canada	AJ295318	JF735424	JF735572	JF735761					
I. palmarum	CBS 135753	Italy	HF937432	HF922609	HF922621	HF922615					
I. palmarum	CBS 135754	Italy	HF937431	HF922608	HF922620	HF922614					
I. proteanum	CBS 132812	South Africa	JX231165	JX231117	JX231149	JX231133					
I. proteanum	CBS 132811	South Africa	JX231157	JX231109	JX231141	JX231125					
I. pseudodestructans	CBS 129081	Portugal	AJ875330	AM419091	JF735563	JF735752					
I. pseudodestructans	CBS 117824	Austria	JF735292	JF735419	JF735562	JF735751					
I. pseudodestructans	ZP2	China	MT678561*	MT810734*	MT800945*	MT800962*					
I. pseudodestructans	PR20-11	China	MT678562*	MT810735*	MT800946*	MT800963*					
I. qitaheensis	CGMCC 3.18787	China	MF504072	MF350418	MF350445	MF350499					
I. qitaheensis	J919	China	MF504073	MF350419	MF350446	MF350500					
I. qitaheensis	R3-2	China	MT678569*	MT810742*	MT800953*	MT800970*					
I. robusta	CBS 117818	Austria	JF735267	JF735382	JF735523	JF735712					
I. robusta	CBS 129084	Portugal	JF735273	JF735391	JF735532	JF735721					
I. robusta	H-5	China	MT678559*	MT810732*	MT800943*	MT800960*					
I. robusta	CB13-12	China	MT678560*	MT810733*	MT800944*	MT800961*					
I. rufa	CBS 153.37	France	AY677271	AY677251	JF735450	JF735729					
I. rufa	CBS 640.77	France	JF735277	JF735399	JF735542	JF735731					
I. g	CBS 142253	Italy	KY304649	KY304755	KY304621	KY304727					
I. streitziiae	CBS 142254	Italy	KY304651	KY304757	KY304623	KY304729					
I. vredehoekensis	CBS 132807	South Africa	JX231155	JX231107	JX231139	JX231123					
I. vredehoekensis	CBS 132808	South Africa	JX231159	JX231111	JX231143	JX231127					
N. coccinea	CBS 119158	Germany	JF288759	KC660273	JF288734						
N. faginata	CBS 217.67	Canada	HQ840385	JF268730	JF268746						
N. faginata	CBS 119160	United States	HQ840384	DQ789883	DQ789740						
N. lugdunensis	CBS 1254585	China	KM231762	KM232019	KM231482	KM231187					
N. obtusispora	CBS 183.36	Germany	AM419061	AM419085	JF735607	JF735796					
Species	Strain\(^a\)	Origin	GenBank accession number\(^b\)								
-------------------------	--------------	-------------	--------------------------------								
			rDNA-ITS	TUB	HIS3	TEFl-\(\alpha\)	ACT	LSU	RPB1	RPB2	SSU
N. obtusispora	CPC 13544	Canada	AY295306	JF735443	JF735608	JF735797					
N. obtusispora	H7-6	China	MT678754V	MT810747*	MT800958*	MT800975*					
N. obtusispora	Q12-4	China	MT678575*	MT810748*	MT800959V	MT800976*					
N. punicea	CBS 242.29	Germany	KC660522	DQ789673							
N. punicea	119724	Austria	KC660469	DQ789824							
N. ramulariae	CBS 151.29	England	AY677291	JF735438	JF735602	JF735791					
N. ramulariae	182.36	Unknown	HMO54157	JF735439	JF735603	JF735792					
N. shennongjiana	CBS 127475	China	MH864598	KJ022346							
N. shennongjiana	HMAS 183185	China	FJ860440	FJ860057							
Rhexocercosporidium	RP17	China	MT814852*	MT822282*	MT822281*						
T. acrotyla	IMI 345086	Venezuela	KJ021971	KJ022293	KJ022347	KJ022238					
T. acrotyla	CBS 123766	Venezuela	JQ403329	JQ394720	JQ394751	JQ365047					
T. amamiensis	MAFF 239820	Japan	JQ403338	JQ394728	KJ022349	JQ365055					
T. amamiensis	MAFF 239819	Japan	JQ403337	JQ394727	KJ022348	JQ365054					
T. blackeriella	CBS 142200	Italy	KX778111	KX778702	KX77887	KX778690					
T. ciliaria	CBS 132324	Costa Rica	KJ021972	JQ394715	KJ022351	JQ365043					
T. ciliaria	IMI 325844	Jamaica	KJ021973	JQ394707	KJ022439	JQ365037					
T. coronalis	CBS 132337	China	JQ403343	JQ394732	KJ022348	JQ365054					
T. coronalis	CBS 132338	China	JQ403344	JQ394733	KJ022352	JQ365044					
T. coronata	IMI 325241	Indonesia	JQ403326	JQ394717	KJ024736	JQ365040					
T. coronata	CBS 132322	Costa Rica	JQ403230	JQ394711	KJ024736	JQ365040					
T. diademata	CBS 132331	Argentina	JQ403306	JQ394700	KJ022328	JQ365029					
T. diademata	CBS 132332	Argentina	JQ403351	JQ394736	KJ022383	JQ365032					
T. gongylodes	CBS 124611	United States	JQ403318	JQ394710	JQ403401	JQ403395					
T. gongylodes	IMI 343571	United States	JQ403331	JQ394721	JQ403401	JQ403395					
T. nodosa	CBS 124742	United States	JQ403306	JQ394699							
T. nodosa	CBS 123272	United States	JQ403317	JQ394709							
T. olida	CBS 215. 67	Germany	KJ021982	KM232024							
T. stemmata	CBS 112468	Jamaica	JQ403312	JQ394704	JQ403739	JQ403352					
T. stemmata	CBS 123236	Jamaica	JQ403313	JQ394705	KJ022384	JQ403353					
T. torulosa	CBS 136782	Cameroon	KJ02007		KJ023900	JQ365008					
T. torulosa	CBS 132339	Argentina	JQ403309	JQ394701	KJ022389	JQ365030					
T. truncata	MAFF 241521	Japan	JQ403339		KJ022325	JQ365066					
T. veillotiana	CBS 132341	Azores Island	JQ403305	JQ394698	KJ022373	JQ365067					
T. veillotiana	CBS 124114	France	JQ403335	JQ394726	KJ022737	JQ365064					
T. westlandica	ICMP 10387	New Zealand	KF569844	KJ569871	KF569861	KF569834					

Continued
Continued

Species	Strain	GenBank accession number							
T. ginsengicola	IMI 255610	New Zealand	KF569843	KF569870	KF569862	KF569833	KF569853	KF569881	KJ022581
T. mulanensis	CGMCC 3.20154; R9 China	MT742968*	MT742970*	MT792252*	MT792254*	MT792256*	MT792260*	MT792262*	MT792264*
T. mulanensis	CGMCC 3.20155; Q20-8 China	MT742970*	MT742972*	MT792254*	MT792256*	MT792258*	MT792260*	MT792262*	MT792264*
T. fusongensis	CGMCC 3.20153; R1-8 China	MT742972*	MT742974*	MT792256*	MT792258*	MT792260*	MT792262*	MT792264*	MT792266*
T. jixiensis	P4 China	MT742973*	MT742975*	MT792257*	MT792259*	MT792260*	MT792262*	MT792264*	MT792266*
Cinnamomeonectria	CBS 133756 French Guiana	KJ021979	KJ022341	KJ022393	KJ0221286	KJ022072	KJ022451	KJ022584	KJ022206

*Sequences newly generated in this study.

rDNA-ITS, Nuclear ribosomal internal transcribed spacer; HIS3, histone H3 gene; TEF-1α, translation elongation factor 1-alpha gene; TUB, β-tubulin gene; ACT, actin gene; LSU, 28S ribosomal RNA gene; RPB1, RNA polymerase II largest subunit gene; RPB2, RNA polymerase II second-largest subunit gene; SSU, 18S ribosomal RNA gene.

RESULTS

Population Structure of Fungal Complex Associated With Ginseng Rusty Root Rot

A total of 766 isolates were obtained from ginseng roots that showed typical signs of rusty root rot disease. All of these strains were determined by sequencing and morphological characteristics, and 26 strains from each genus were randomly selected for phylogenetic analysis. A total of 14 species (Figures 3, 4) were identified as Ilyonectria, Ilyonectria-like and Rhexocercosporidium species.

The Ilyonectria species complex included I. robusta, I. communis, I. mors-panacis, I. pseudodestructans, I. changhaiensis and I. qitaheensis, and the isolate proportions were 55.0%, 21.7%, 10.9%, 2.0%, 1.3% and 1.3%, respectively. Ilyonectria-like contained three genera that were also members of the Nectriaceae family: Dactylonectria, Neonectria and Thelonectria. N. obtusispora, D. torresensis and D. sp. accounted for 2.0%, 0.5% and 0.5% of the population, respectively. Four novel species are named in this article: T. ginsengicola (1.0%), the type strain is R9; T. jixiensis (1.0%), the type strain is Q21-5; T. mulanensis (0.8%), the type strain is Q20-8 and T. fusongensis (0.5%), the type strain is R1-8. R. panacis was the only pathogen except Ilyonectria-like that was present at an abundance of 1.5%. I. communis, I. pseudodestructans, I. changhaiensis, I. qitaheensis, N. obtusispora, D. torresensis, T. jixiensis, T. mulanensis and T. fusongensis were first reported to cause ginseng rusty root rot. Thelonectria is also the first Ilyonectria-like genus reported to cause ginseng rusty root rot. I. robusta was the dominant pathogen and appeared in the largest proportion; this is the greatest difference between our results and previous conclusions. The number of fungal isolates recovered from each sampling location in China is shown in Table 4.

Molecular Phylogenetic Analysis

The sequences of rDNA-ITS, TEF, TUB and HIS3 were obtained using polymerase chain reaction amplicons and were analyzed in Dactylonectria, Ilyonectria, and Neonectria. Low-quality sequences were removed after base alignment to obtain the sequences of rDNA-ITS (491 bp), HIS3 (472 bp), TEF (507 bp), and TUB (467 bp). The sequences were combined, and a sequence with a total length of 2231 bp, including alignment gaps, was used to build a phylogenetic tree (Figure 3). Similarly, ACT (575 bp), rDNA-ITS (533 bp), LSU (700 bp), RPB1 (630 bp), RPB2 (856 bp), SSU (521 bp), TEF (858 bp), and TUB (479 bp) were combined, resulting in a total length of 4422 bp including alignment gaps, and analyzed for Thelonectria (Figure 4). All of the sequences were topologically congruent, and the results indicated that Dactylonectria, Ilyonectria, Neonectria and Thelonectria formed a single clade. The isolated strains were divided into 14 highly supported clades; the group was grown in triplicate. The inoculum was treated with sterile water as a control. After 2 months, plant infection was evaluated.
FIGURE 3 | Phylogenetic tree based on the combined rDNA-ITS, TUB, HIS3 and TEF gene sequences constructed using the maximum parsimony method of the PAUP 4.0b program. *Rhizocerocordylophora panacias* R59 was used as an outgroup. Bold font indicates the strains isolated in this study.
FIGURE 4 | Phylogenetic tree based on the combined ACT, rDNA-ITS, LSU, RPB1, RPB2, SSU, TEF and TUB gene sequences constructed using the maximum parsimony method of the PAUP 4.0b program. Cinnmomeonectria cinammomea CBS 133756 was used as an outgroup. Bold font indicates the strains isolated in this study.
Brackets contain I. rubosta, I. mors-panacis and other known species were highly consistent with species type or verified species.

Four novel species were divided into independent clades, and they were supported with 90-100% bootstrap support for T. mulanensis, T. jixiensis, T. fusongensis and T. ginsengcola (Figure 4). For D. sp., we observed only a few macroconidia, and the specific sporulation structure and other morphological characteristics were not clear. Therefore, the species is not named here. Similarly, a separate gene phylogenetic tree was constructed for Thelonectria, with the least information obtained from the SSU and TUB genes, and the lowest contribution. ACT and RP2 were the most informative and were key to distinguishing the phylogenetic tree of all of the known candidate strains and four novel species. The combined use of rDNA-ITS, TUB, TEF, and LSU genes will aid in the classification and analysis of all candidate species. The four novel species of Thelonectria belong to the T. coronata complex classification reported in 2016 (Salgado-Salazar et al., 2016). The three closely related species T. mulanensis, T. jixiensis, and T. fusongensis have nucleotide sequence differences in their ACT, rDNA-ITS, LSU, RP2, RP2, SSU, TEF, and TUB genes (Table 5). There is no nucleotide difference in the SSU gene, 1 bp difference in the rDNA-ITS and LSU genes, and 2 bp differences in the RP2 gene, thus, these three genes are ineffective for distinguishing the three species. These three species have 5 bp differences in ACT, 14 bp differences in RP2, 19 bp differences in TEF and 4 bp differences in TUB. T. mulanensis and T. fusongensis have 3 bp differences in RP2, 5 bp differences in TEF and 4 bp differences in TUB. Phylogenetic analysis combining the RP2, TEF and TUB genes is most effective at distinguishing T. mulanensis and T. fusongensis. T. mulanensis and T. fusongensis were clustered on a branch with a close genetic relationship and may form a complex group. However, due to their distinct morphological characteristics of conidia size and number of septa, they were considered two novel species.

Brief Introduction to the Morphological Characteristics of Ilyonectria Species

Morphological characteristics also support the classification of phylogenetic trees. The morphological characteristics of I. robusta, I. communis, I. mors-panacis, I. pseudodestructans, I. changbaiensis, I. qitaiheensis, N. obtusispora, D. torresensis and R. panacis were consistent with previously reported strains. Four novel species were confirmed by phylogeny and are described as follows.

Thelonectria ginsengcola Y. M. Guan & Y. Li, sp. nov. MycoBank MB836525 (Figure 5).

Etymology: Named after the host Panax ginseng. “Ginsengcola” means “born on ginseng.”

TABLE 3 | Detailed information on the collection of isolates used in sequencing and pathogenicity testing.

Species	Strain	Origin	Collection date	Host	Years
D. sp.	Q18-22	Yongqiang Town, Antu City, Jilin Province, China	08, 2019	P. ginseng	3
D. sp.	Q18-23	Xinhe Town, Antu City, Jilin Province, China	09, 2018	P. ginseng	4
D. torresensis	DT2	Duling Town, Tonghua City, Jilin Province, China	06, 2017	P. ginseng	4
I. changbaiensis	CB4-7	Beigang Town, Baishan City, Jilin Province, China	07, 2019	P. ginseng	4
I. changbaiensis	Q24-5	Datougu Town, Wangqiang City, Jilin Province, China	08, 2018	P. ginseng	3
I. communis	CB4-2	Dongbeicha Town, Baishan City, Jilin Province, China	08, 2018	P. ginseng	3
I. communis	H1-9	Hulin Town, Jixi City, Heilongjiang Province, China	09, 2017	P. ginseng	4
I. mors-panasis	H6-1	Hallun Town, Hallun City, Heilongjiang Province, China	09, 2019	P. ginseng	5
I. mors-panasis	XFC1	Xigang Town, Baishan City, Jilin Province, China	06, 2018	P. ginseng	3
I. pseudodestructans	ZP2	Zuoja Town, Jil City, Jilin Province, China	06, 2018	P. ginseng	4
I. pseudodestructans	PR20-11	Datougu Town, Wangqiang City, Jilin Province, China	06, 2018	P. ginseng	5
I. qitaheensis	R3-2	Longquan Town, Baishan City, Jilin Province, China	06, 2018	P. ginseng	3
I. qitaheensis	PR14 25	Fusong County, Baishan City, Jilin Province, China	06, 2018	P. ginseng	3
I. robusta	H8-5	Hallin Town, Mudanjiang City, Heilongjiang Province, China	08, 2019	P. ginseng	4
I. robusta	CB13-12	Wanliang Town, Fusong County, Baishan City, Jilin Province, China	08, 2019	P. ginseng	2
N. obtusispora	H7-6	Zhanhe Town, Heihe City, Heilongjiang	08, 2019	P. ginseng	3
N. obtusispora	Q12-4	Longquan Town, Baishan City, Jilin Province, China	08, 2019	P. ginseng	4
Rhexocercosporidium panacis	RP17	Yulin Town, Jia City, Jilin Province, China	08, 2019	P. ginseng	3
T. ginsengcola	CGMCC 3.20154; R9	Dongbeicha Town, Baishan City, Jilin Province, China	07, 2018	P. ginseng	4
T. ginsengcola	R4	Quanyang Town, Baishan City, Jilin Province, China	07, 2018	P. ginseng	3
T. mulanensis	CGMCC 3.20155; Q20-8	Bayan Town, Mulan County, Heilongjiang, China	06, 2017	P. ginseng	4
T. mulanensis	Q20-5	Mulan Town, Mulan County, Heilongjiang, China	06, 2017	P. ginseng	4
T. fusongensis	CGMCC 3.20153; R1-8	Fusong Town, Fusong County, Baishan City, Jilin Province, China	06, 2017	P. ginseng	3
T. fusongensis	P4	Wanliang Town, Fusong County, Baishan City, Jilin Province, China	06, 2017	P. ginseng	3
T. jixiens	CGMCC 3.20156; Q21-5	Hulin Town, Jixi City, Heilongjiang Province, China	07, 2018	P. ginseng	4
T. jixiens	Q21-1	Hulin Town, Jixi City, Heilongjiang Province, China	07, 2018	P. ginseng	3
TABLE 4 | Fungal isolates recovered from *Panax ginseng* with rusty root rot symptoms in China.

Location	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Jindou Town, Tonghua City, Jilin Province, China	12	2												
Chaoyang Forestry Centre, Tonghua City, Jilin Province, China	7	2												
Sanyuanpu Town, Jian City, Jilin Province, China	9	6												
Duling Town, Tonghua City, Jilin Province, China	5	2												
Fujian Town, Tonghua City, Jilin Province, China	4	4												
Jianglianzhu Town, Tonghua City, Jilin Province, China	6	2												
Qinghe Town, Jian City, Jilin Province, China	10													
Yulin Town, Jian City, Jilin Province, China	7	3												
Shuangchua Town, Jian City, Jilin Province, China	8													
Maxian Town, Jian City, Jilin Province, China	6													
Linghou Town, Jian City, Jilin Province, China	7	5												
Taishang Town, Jian City, Jilin Province, China	11													
Sankeyushu Town, Jian City, Jilin Province, China	6													
Zuojia Town, Jili City, Jilin Province, China	3													
Longfeng Forestry Centre, Jiaohe City, Jilin Province, China	3													
Wulin Town, Jiaohe City, Jilin Province, China	4													
Qianjin Town, Jiaohe City, Jilin Province, China	6													
Dongbeichua Town, Baishan City, Jilin Province, China	17	12	3											
Longquan Town, Baishan City, Jilin Province, China	8	11	4	2	2	4								
Xingshen Town, Baishan City, Jilin Province, China	19	3	1											
Beigang Town, Baishan City, Jilin Province, China	11	9	4	1	1	1								
Quanyang Town, Baishan City, Jilin Province, China	10	6	5	1										
Erdaogang Town, Baishan City, Jilin Province, China	17	8	3	2										
Donggang Town, Baishan City, Jilin Province, China	13	5	5	2										
Xigang Town, Baishan City, Jilin Province, China	7	5	6	2										
Fusong County, Baishan City, Jilin Province, China	6	12	2	3	2									
Wanliang Town, Fusong County, Baishan City, Jilin Province, China	2	6	4											
Touduo Town, Helong City, Jilin Province, China	3	5												
Datougu Town, Wanggeng City, Jilin Province, China	7	2	2	1										
Fuxing Town, Wanggeng City, Jilin Province, China	8													
Luezigou Town, Wanggeng City, Jilin Province, China	6													
Manzu Town, Hunchun City, Jilin Province, China	5	3	5	2										
Yangpao Town, Hunchun City, Jilin Province, China	4	3												
Yingtian Town, Dunhau City, Jilin Province, China	8	6												
Quilgou Town, Dunhau City, Jilin Province, China	4	5	3											
Dashitou Town, Dunhau City, Jilin Province, China	9													
Yongqing Town, Antu City, Jilin Province, China	11		2											
Yongqing Town, Antu City, Jilin Province, China	2	2	2											
Xinhe Town, Antu City, Jilin Province, China	9													
Fuxing Town, Fuxin City, Liaoning Province, China	10													
Huanren Town, Huanren City, Liaoning Province, China	3													
Xinbin Town, Xinbin City, Liaoning Province, China	2													
Hulun Town, Jixi City, Heilongjiang Province, China	5	5	3	1	3									
Hulun Town, Jixi City, Heilongjiang Province, China	5	2	6	2										
Halin Town, Mudanjia City, Heilongjiang Province, China	8	4	2											
Ningan Town, Mudanjia City, Heilongjiang Province, China	6	2	1											
Dongjing Town, Mudanjia City, Heilongjiang Province, China	3	1	1	3										
Yongshun Town, Qitaite City, Heilongjiang Province, China	6	5	3											
Hailun Town, Hailun City, Heilongjiang Province, China	11	4	6											
Binzhou Town, Haerbin City, Heilongjiang Province, China	2	2	2	1										
Bayan Town, Muhan County, Heilongjiang, China	9	3	3	1	3									
Mulan Town, Mulan County, Heilongjiang, China	9	5	4											
(Continued)
TABLE 4 | Continued

Location	A	B	C	D	E	F	G	H	I	J	K	L	M	N
Shangzhi Town, Shangzhi City, Heilongjiang, China	8	6	2											
Zhanhe Town, Heihe City, Heilongjiang, China	11	8	1	2										
Qingan Town, Suihua City, Heilongjiang, China	12													
Tieli Town, Yichun City, Heilongjiang, China	11	5	1											
Total	421	166	84	15	10	10	15	4	4	11	8	8	6	4

A, I. robusta; B, I. communis; C, I. mors-panacis; D, I. pseudodestructans; E, I. changbaiensis; F, I. qitaiheensis; G, N. obtusispora; H, D. torresensis; I, D. sp.; J, R. panacis; K, T. ginsengicola; L, T. jixiensis; M, T. mulanensis; N, T. fusongensis.

TABLE 5 | Nucleotide differences in the partial gene sequences of rDNA-ITS, ACT, LSU, RPB1, RPB2, TEF, and TUB for T. mulanensis, T. fusongensis and T. jixiensis.

Species	Position (bp)																							
rDNA-ITS	ACT	LSU	RPB1	RPB2																				
141	1	223	226	334	343	36	370	400	9	12	13	20	21	26	27	28	29	30	31	57	687	699		
T. mulanensis	C	T	T	C	C	–	G	G	A	C	A	G	C	C	–	C	A	T	C	G	T	G		
T. fusongensis	C	T	T	C	T	–	G	G	G	C	A	G	C	C	–	C	A	T	A	G	C	G		
T. jixiensis	T	C	C	T	C	A	A	C	A	C	A	T	C	C	A	G	A	T	C	C	A	T	C	T

Species	Position (bp)																							
TEF	TUB																							
23	52	72	134	164	167	175	195	372	403	411	416	419	423	424	448	558	788	833	59	60	300	318		
T. mulanensis	C	A	C	–	G	–	G	–	C	A	C	T	A	C	A	T	C	T	C	G	T	G		
T. fusongensis	T	A	G	A	G	–	G	–	C	A	T	C	A	T	C	C	C	A	C	C	C	A	C	C
T. jixiensis	T	T	C	–	A	A	A	T	T	G	T	C	C	–	–	C	T	T	T	G	T	G		

Position refers to the nucleotide position in each sequence of rDNA-ITS, ACT, LSU, RPB1, RPB2, TEF and TUB of type isolates.

Type: China, Jilin Province, Changbai City, county of Fusong, on roots of Panax ginseng, Oct 2018, Y. Guan. (CGMCC3.20154 = R9 - holotype).

Description: Sexual morph: Undetermined. Asexual morph: Conidiophores were simple or complex with 2-3 branches, monophaillides. Mycelial cells were thick-walled and septate. Hyphae hyaline to yellow. Chlamydospores were borne apically or intermittently in hyphae and were more commonly single or in pairs. Macroconidia were the majority, with 1-5 septa; most had 3-4 septa. The shape was a sickle-shaped curve; the base foot was blunt and became gradually thicker toward the top, and the top was also blunt. The size was (38.4) 44.3 (57.7) µm × (4.8) 5.7 (6.9) µm, and the length/width ratio was (5.9) 8.1 (10.3). Microconidia were elliptical, stick or sickle-shaped curves with an irregular shape and 0-1 septa. The size of microconidia was (12.5) 9.69 (12.5) µm × (4.8) 4.1 (6.9) µm, and the length/width ratio was (1.4) 2.7 (3.7). The size of one septate microconidium was (19.5) 24.3 (29.3) µm × (4.1) 4.8 (6.5) µm, and its length/width ratio was (3.9) 5.5 (6.4).

Culture characteristics: On PDA, the color was initially white, later becoming dark yellow with a wavy margin; the reverse side was reddish brown. The colony grows outward in a wave shape. The mycelium grew vigorously, and it was difficult to produce conidia on PDA and SNA. After the addition of ginseng roots and continuous n-UV irradiation, pionnotes were produced on the mycelium or on the vertical wall of the petri dish. The growth of the colony formed concentric rings, and the growth was very slow. The size of the colony reached 22 mm in 10 days. On SNA, the colonies were sparse and white to transparent with regular margins and chlamydosporae; macroconidia and microconidia were not observed.

Note: T. ginsengicola and T. truncata were grouped together on a branch. The greatest difference was the presence of microconidia and chlamydospores. Macroconidia were smaller than those of T. truncate (Salgado-Salazar et al., 2012).

Thelonectria jixiensis Y. M. Guan & Y. Li, sp. nov.

MycoBank MB 836520 (Figure 6).

Etymology: Named after the city of Jixi, Heilongjiang Province, China, where the strain type was collected.

Type: China, Heilongjiang Province, Jixi City, on roots of Panax ginseng, Oct 2018, Y. Guan. (CGMCC3.20156 = Q21-5 - holotype).

Description: Sexual morph: Undetermined. Asexual morph: Conidiophores simple or complex, spiral branches, monophaillides and straight macroconidia or slightly curved head. The body is widest at one-quarter of the head; the basal cells with tips are thinner and narrower, with 0-4 septa. Most had 2-3 septa, and very few had 0 or 4 septa; sizes were in the range of (27.3) 35.8 (41.7) µm × (5.5) 6.9 (8.9) µm, with a length/width ratio of (4.3) 5.1 (7.9). Microconidia were not
observed. Chlamydospores were mostly borne apically on the mycelium, and solitary was more common.

Culture characteristics: On PDA, the colonies produced were white at the beginning with a sparsely floccose to fluffy aerial mycelium and vigorous growth. The hyphae at the margins of the colony were thin, and the center hyphae were denser. Light yellow color appeared occasionally on the reverse side over time. The colony grew slowly to a size of 38 mm in 10 days. On SNA, the colonies were sparse, with regular margins, and the mycelium obviously degenerated and gradually disappeared as the number of breeding generations increased. Chlamydospores and macroconidia were not observed on SNA.

Note: The phylogenetic tree shows that *T. jixiensis* is closely related to *T. blackeriella*. *T. jixiensis* produced simple or complex conidiophores with spiral branches, and its macroconidia were slightly larger. The simple conidiophores of *T. blackeriella* and the macroconidia were relatively small. The shapes of the macroconidia of the two are very easily distinguished, and neither species produces microconidia (Carlucci et al., 2017).

Thelonectria mulanensis Y. M. Guan & Y. Li, sp. nov.

MycoBank MB 836521 (Figure 7).

Etymology: Named after the County of Mulan, Heilongjiang Province, China, where the strain type was collected.

Type: China, Heilongjiang Province, Mulan County, on roots of *Panax ginseng*, Oct 2018, Y. Guan. (CGMCC3.20155 = Q20-8 - holotype).

Description:

- **Sexual morph:** Undetermined.
- **Asexual morph:** Conidiophores simple or complex, with 2-3 branches, monophialides. The mycelial cells were thick-walled, transparent and septate. The chlamydospores were produced from the mycelium, and spores were intercalary or terminal and single, in pairs or multiple bunches. Macroconidia were the majority, with 3-7 septa, but most were 5 septa, and lengths ranged from (39.1) 76.5 (96.6) µm × (2.7) 8.3 (5.6) µm. Fungi were a sickle-shaped curve. The base foot was blunt and became gradually thicker toward the top, and the top was also blunt. The microconidia were elliptical, stick or sickle-shaped curved of an irregular shape with 0-1 septum, and lengths ranged from (4.6) 9.5 (18.3) µm × (2.7) 3.9 (5.6) µm. Microsclerotia were produced after more than 8 weeks.

Culture characteristics: On PDA, the colonies produced a white, cottony dense floccose to fluffy aerial mycelium. The margins of the colony were irregular, and the hyphae were sparse and radial. The reverse color was white to yellow. In PDA culture, colonies grew slowly and reached 25 mm in 10 days. On SNA, the colonies were sparse, white to transparent, with regular margins and chlamydospores; macroconidia and microconidia were not observed.

Note: This species is closely related to *T. jixiensis*, but it produces macroconidia and microconidia, and *T. jixiensis* has no microconidia. The macroconidia of *T. mulanensis* were twice the size of those of *T. jixiensis*, had more septa and were thinner. The conidiophores and chlamydospores of the two species are similar.

Thelonectria fusongensis Y. M. Guan & Y. Li, sp. nov.

MycoBank MB 836524 (Figure 8).

Etymology: Named after the county of Fusong, Changbai City, Jilin Province, China, where the strain type was collected.
Type: China, Jilin Province, Changbai City, county of Fusong, on roots of *Panax ginseng*, Oct 2018, Y. Guan. (CGMCC3.20153 = R1-8 - holotype).

Description: Sexual morph: Undetermined. Asexual morph: Conidiophores were simple or complex, with 2-3 branches, monophialides. The mycelial cells were thick-walled, transparent, and septate. Chlamydospores were borne apically or intercalary in hyphae and were solitary or in pairs. Macroconidia were in the majority, with 1-5 septa, but most had 2-3 septa. The body was a sickle-shaped curve, and the base was blunt and thickened gradually toward the top. The top was also blunt, not sharp, with sizes in the range of (40.2) 52.3 (62.2) µm × (4.2) 5.9 (7.9) µm. Microconidia were in the minority and exhibited irregular elliptical, stick or curved sickle shapes and 0-1 septa, with sizes in the range of (7.4) 13.5 (23.3) µm × (2.9) 4.1 (6.1) µm.

Culture characteristics: On PDA, the colonies grew in a concentric wavy pattern and presented a velvety surface; they were initially white, then brownish yellow, and brownish red on the reverse side. The mycelium became increasingly sparse from the center to the edge. It was difficult to produce conidia on PDA and SNA. The addition of ginseng roots and continuous n-UV light cultivation caused the surface of the mycelium to produce yellow pionnotes at more than 8 weeks. The colonies reached 30 mm in diameter in 10 days. On SNA, the colonies were sparse, white to transparent, with regular margins and chlamydospores; macroconidia and microconidia were not observed.

Note: Phylogenetic inference revealed that *T. fusongensis* is closely related to *T. mulanensis*, but the microconidia of the former were larger than those of the latter, there were fewer septa, the microconidia were straighter, and the bending arc was smaller.

Pathogenicity Tests

For *in vitro* inoculation using spore suspension, evaluation after 7 days showed that all of the strains infected ginseng roots. The mycelium grew on the ginseng root, and the longitudinal portion of the ginseng root also showed infection. Reddish-brown areas formed on the shallow ginseng roots near the inoculation point. The control showed no symptoms (Figure 9).
For whole plant inoculation in the greenhouse, all of the strains used in the test caused rusty root rot. 2 months after inoculation with the spore suspension, the inoculated 3-year-old ginseng roots showed symptoms similar to rusty root rot and to natural disease in the field. Some ginseng roots were rust-colored, but no gully like symptoms formed (Figure 10). Ginseng roots inoculated with sterile water were asymptomatic. Recovery of the diseased samples and sequencing of all of the genes described above yielded results that were the same as those obtained for the isolates used in the inoculations, satisfying Koch’s postulates, and the identity of the species was determined. Ginseng roots inoculated with *R. panacis* showed a darker color with grayish-black symptoms.

DISCUSSION

Ginseng rusty root rot is the root disease with the highest incidence in China’s main ginseng cultivation areas. The identities of the varieties of diseased ginseng samples collected in the experiments were not clear. Most of the currently grown Chinese cultivars are domesticated varieties, and Damaya ginseng is commercially cultivated. Therefore, the correlation between the presence of fungi on ginseng roots and ginseng variety was not analyzed. The identification and pathogenicity analysis of 766 isolates revealed that ginseng rusty root rot was caused by a complex of *Ilyonectria*, *Ilyonectria*-like, and *Rhexocercosporidium* fungi. The *Ilyonectria*-like fungi included three genera of *Ilyonectria*, *Dactylonectria* and *Thelonectria*, all of which belonged to Nectriaceae, except *Rhexocercosporidium*. *I. robusta* and *I. communis* were the dominant pathogens with the highest proportion of ginseng rusty root rot pathogens that were recovered from ginseng rusty rot roots.

Ginseng rusty root rot has been attributed to the *Ilyonectria* fungus in China and South Korea (Wang, 2001; Farh et al., 2018). The 766 isolates we isolated were divided into 14 species, of which *R. panacis* was the only pathogen other than *Ilyonectria* and *Ilyonectria*-like species previously reported to cause rusty root rot.
rot symptoms. *I. robusta* was the most widely isolated dominant pathogen; this is inconsistent with a previous report that 90% of Chinese ginseng rusty root rot is caused by *I. radicicola/C. destructans* (Wang, 2001). *I. radicicola/C. destructans* may be a huge complex group in terms of morphological similarity (Cabral et al., 2012a). The species found later in various plants were not closely related to the original strain type CBS 264.5 (*I. destructans*), and *I/C. destructans* has generally not been found to be as common as when it was first proposed and discovered.

Most of the *Ilyonectria* strains infecting ginseng were obtained from *P. quinquefolius*, and *P. ginseng* and *P. quinquefolius* differ significantly with respect to the proportions of pathogens present. *I. crassa* and *I. panacis* were isolated from *P. quinquefolius* in Canada (Cabral et al., 2012a). The sampling collections of the present study covered the main cultivated areas of Chinese ginseng, and *I. panacis*, *I. rufa* and *I. crassa* strains were not isolated. In contrast, the dominant pathogen *I. robusta* was once considered to exhibit low pathogenicity. The pathogenicity was not directly proportional to the separation ratio. *I. robusta* isolated from *P. quinquefolium* was first described by Hildebrand as *Ramularia robusta* (Hildebrand, 1935). *I. robusta* was first reported in 2014 to cause ginseng root disease in China (Lu et al., 2014). Sixty-eight strains were derived from many hosts. Twenty-one of the isolates obtained from ginseng plants were segregated phylogenetically into four different groups, each of which was considered a different species of *Ilyonectria*: *I. mors-panacis*, *I. robusta*, *I. panacis*, and *I. crassa* (Seifert et al., 2003; Cabral et al., 2012a). These strains were grouped according to the strength of their pathogenicity; the weakly aggressive strains also originated from other hosts, but the highly aggressive strains were derived from a specific host ginseng (Cabral et al., 2012a). *I. mors-panacis* is not limited to infecting ginseng (Mi et al., 2017). *I. robusta* is considered a weakly aggressive strain based on the phylogenetic analysis and on *I. robusta*'s and *I. crassa*'s host and other factors. It is speculated that American and Korean ginseng are not susceptible to *I. robusta* or *I. crassa* (Cabral et al., 2012a), and the present article confirmed that *I. robusta* was the dominant pathogen with the highest isolation ratio. The prevention and control of rusty root rot in cultivation should be dominated by attention to *I. rubosta*.

Ginseng red-skin root is a non-infectious disease that differs from ginseng rusty root rot in China. Lu et al. reported that ginseng red-skin root is caused by a complex group of *Fusarium*, *Ilyonectria* and *Dactylonectria* and that *Ilyonectria* fungi were the dominant pathogens. *I. communis*, *I. changbaiensis* and *I. qitaiheensis* were newly reported species, but the same species were obtained in the present study. The types of pathogenic populations obtained in the present research are similar to the previously identified pathogens. Red-skin root and rusty root rot may not be separated. These conditions are primarily caused by *Ilyonectria* and *Ilyonectria*-like fungi, and they may represent different infection stages or may be caused by different species of *Ilyonectria* and *Ilyonectria*-like fungi (Lu et al., 2020). However, this hypothesis must be clarified. The uniform name “rusty root rot” is more acceptable because most of the infected ginseng roots have dry rot that is similar to the symptoms of decayed wood, not merely red skin; it is possible that the pathogens that cause rusty root rot also cause red-skin root and that red-skin roots are
only in the early stages of the disease. *I. communis* and *I. robusta* were also the two pathogens present in the highest proportions in red-skin root isolates. Differences in pathogenicity may be the most widely accepted cause of the different symptoms, but if the disease is inferred based only on the apparent form of the agents infecting the ginseng root, the diagnosis will not be acceptable. The lifestyle of each microorganism is different, and different effects may not result from differences in pathogenicity. *Fusarium* was not reported as a pathogen that causes dry rot symptoms alone. *Fusarium* may infect the roots of ginseng via multi-infection in tissues infected by primary intruders that are not the direct cause of rusty root rot or red-skin root (Guan et al., 2014; Gao et al., 2014; Wang et al., 2016).

I. mors-panacis was discovered on *P. quinquefolium* by Hildebrand (1935), who described it as “*R. mors-panacis*” (Hypocreales, 1935). This species was also found in Japan on *P. ginseng*, and it was collected as “*C. destructans*” f. sp. *Panacis* (ex-type CBS 124662) is treated as a synonym. This species is considered a strong, aggressive species in *Ilyonectria*, but the isolation ratio was only 10.9%. Sufficient time to complete the infection is necessary for the chronic pathogenic *Ilyonectria* population to cause damage to the roots of perennials (Guan et al., 2020). Of course, the relationship between the degree of epidemic disease and pathogenicity was not studied in depth, and this relationship is determined by many factors. Although *I. communis* is a new species that was only recently reported (Lu et al., 2020), it is one of the dominant pathogens that cause ginseng rusty root rot. *I. robusta* and *I. communis* should be the main targets for controlling ginseng rusty root rot in cultivation.

The four novel species of *Thelonecrtia* were identified based on the conclusion that closely related species were being compared. Multi-locus studies are feasible and effective for the identification of novel species. None of the individual genes studied completely matched the same gene in another species, and the combined phylogenetic analysis of multiple gene sequences may result in a suitable classification. Among the studied genes, SSU contributed very little to the strains listed in the present article, but its role cannot be ignored in *Thelonecrtia* (Salgado-Salazar et al., 2016). *ACT* and *RPB2* provided the most information, and analysis
of these genes could fully resolve all of the strains described in this article. Comparison of the RPB2, TEF and TUB genes is the most effective way to distinguish *T. mulanensis* from *T. fusongensis*. The use of all of the gene sequences studied in this work makes the phylogenetic tree more credible. For *Ilyonectria*, rDNA-ITS was not a good marker for distinguishing strains such as *I. rufa* and *I. robusta*, and the HIS3 gene may be used alone to initially distinguish species of *Ilyonectria* (Cabral et al., 2012b).

Many novel *Ilyonectria* and *Ilyonectria*-like species have been discovered recently (Carlucci et al., 2017; Lawrence et al., 2019). Due to the slow growth of some fungi, it is not easy to obtain species using separation techniques. Novel species of *Ilyonectria* and *Ilyonectria*-like fungi that infect the roots of ginseng will continue to be discovered in soil. *Thelonectria* fungi have saprophytic properties or weak pathogenicity, and their host specificity has not been determined. Evaluation after inoculation also showed that *Thelonectria* fungi had weak pathogenicity, and these fungi may also be opportunistically pathogenic, similar to *Ilyonectria*-like fungi.

The present research revealed pathogens that cause ginseng rusty root rot but have remained unknown for many years. These results, which were obtained using a multi-locus combined approach, update previous conclusions and identify the species that should be targeted for the prevention and control of rusty root rot in ginseng cultivation. However, due to the continuous cropping properties of ginseng and continuous land use changes, *Ilyonectria* and *Ilyonectria*-like pathogens are soil-borne diseases, and the population structure may also change.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, MT678559 etc.

AUTHOR CONTRIBUTIONS

YG conceived and designed the study and wrote the manuscript. YG, YM, and QJ performed the experiments. QW, NL, and YF analyzed the sequences. YZ and YL reviewed and edited the manuscript. All authors read and approved the manuscript.

FUNDING

This work was supported by the Key project at the central government level: The Establishment of Sustainable Use for Valuable Chinese Medicine Resources (2060302), the Agricultural Science and Technology Innovation Program (CAAS-XTCX20190025-6), the China Agriculture Research System (CARS-21), Central the Public-interest Scientific Institution Basal Research Fund (Nos. 1610342016010 and 1610342020004), the Science and Technology Development Plan Project of Jilin Province (20191001021XH), and the National Natural Science Foundation of China (81903755 and 31501828).
REFERENCES

Baranov, A. (1966). Recent advances in our knowledge of the morphology, cultivation and uses of ginseng (Panax ginseng C. A. Meyer). Econ. Bot. 20, 407–417. doi: 10.1007/BF02904062

Booth, C. (1966). The genus Cylindrocarpon. Mycol. Papers 104, 1–56. doi: 10.1007/978-3-319-23534-9_1

Cabral, A., Groenewald, J. Z., Rego, C., Oliveira, H., and Crous, P. W. (2018). Multigene phylogenetic analyses of the fungus Taxonomy of fungal complex causing red-skin root of Panax ginseng in China. Planta 2014;104, 330–339. doi: 10.1007/PHYSIO-96-1243

Guan, Y. M., Lu, B. H., Wang, Y., Gao, J., and Wu, L. J. (2014). First report of root rot caused by Fusarium redolens on ginseng (Panax ginseng) in Jilin province of China. Plant Dis. 98:844. doi: 10.1094/PDIS-09-13-0922-PDN

Halleen, F., Fournier, P. H., and Crous, P. W. (2006a). A review of black-foot disease of grapevines. Phytopathol. Mediterr. 45, 555–567. doi: 10.1520/STP37480S

Halleen, F., Schroers, H. J., Groenewald, J. Z., Rego, C., Oliveira, H., and Crous, P. W. (2006b). Neoectria liorindieri sp. nov., the main causal agent of black foot disease of grapevines. Stud. Mycol. 55, 227–234. doi: 10.3114/smy.55.1.227

Halleen, F., Schroers, H. J., Groenewald, J. Z., and Crous, P. W. (2004). Novel species of Cylindrocarpon (Neoclysmata) and Campylocarpogen. gen. nov. associated with black foot disease. Stud. Mycol. 50, 431–445. doi: 10.1023/B:MYCO.0000012225.7966.29

Hildebrand, A. (1935). Root rot of ginseng in Ontario caused by members of the genus Ramularia. Can. J. Res. 12, 82–114. doi: 10.1139/cj3-350-007

Hirooka, Y., Kobayashi, T., and Natsukari, K. T. (2005). Neoectria castaneicola and Neo. rugulosa in Japan. Mycologia 97, 1058–1066. doi: 10.2307/115557-011-0777-7

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot disease and rusty symptoms. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.

Crous, P. W., Groenewald, J. Z., Risse, J., and Hyweljones, N. (2004). Caloectoria species and their Cylindrocladium anamorph: species with sphearopeculdate vesicles. Stud. Mycol. 50, 415–429. doi: 10.1016/S0378-8797(03)80017-1

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot development of 2-year old ginseng (Panax ginseng CA Meyer) caused by Cylindrocarpon destructans (Zimm.) Schollen in the continuous cultivation field. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.

Crous, P. W., Groenewald, J. Z., Risse, J., and Hyweljones, N. (2004). Caloectoria species and their Cylindrocladium anamorph: species with sphearopeculdate vesicles. Stud. Mycol. 50, 415–429. doi: 10.1016/S0378-8797(03)80017-1

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot development of 2-year old ginseng (Panax ginseng CA Meyer) caused by Cylindrocarpon destructans (Zimm.) Schollen in the continuous cultivation field. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.

Crous, P. W., Groenewald, J. Z., Risse, J., and Hyweljones, N. (2004). Caloectoria species and their Cylindrocladium anamorph: species with sphearopeculdate vesicles. Stud. Mycol. 50, 415–429. doi: 10.1016/S0378-8797(03)80017-1

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot development of 2-year old ginseng (Panax ginseng CA Meyer) caused by Cylindrocarpon destructans (Zimm.) Schollen in the continuous cultivation field. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.

Crous, P. W., Groenewald, J. Z., Risse, J., and Hyweljones, N. (2004). Caloectoria species and their Cylindrocladium anamorph: species with sphearopeculdate vesicles. Stud. Mycol. 50, 415–429. doi: 10.1016/S0378-8797(03)80017-1

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot development of 2-year old ginseng (Panax ginseng CA Meyer) caused by Cylindrocarpon destructans (Zimm.) Schollen in the continuous cultivation field. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.

Crous, P. W., Groenewald, J. Z., Risse, J., and Hyweljones, N. (2004). Caloectoria species and their Cylindrocladium anamorph: species with sphearopeculdate vesicles. Stud. Mycol. 50, 415–429. doi: 10.1016/S0378-8797(03)80017-1

Cho, D. H., Park, K. J., Yu, Y. H., Ohh, S. H., and Lee, H. S. (1995). Root-rot development of 2-year old ginseng (Panax ginseng CA Meyer) caused by Cylindrocarpon destructans (Zimm.) Schollen in the continuous cultivation field. J. Ginseng Res. 19, 175–180.

Chung, H. S. (1979). Ginseng Disease. Research Reports of the Korean Society of Plant Protection. Seoul: Korean Society of Plant Protection.
Guan et al. Taxonomy of Rusty Root Rot Pathogens

Salgado-Salazar, C., Rossman, A. Y., Samuels, G. J., Hirooka, Y., Sanchez, R. M., and Chaverri, P. (2015). Phylogeny and taxonomic revision of *Thelonectria discophora* (Ascomycota, Hypocreales, Nectriaceae) species complex. *Fungal Divers.* 70, 1–29. doi: 10.1007/s13225-014-0280-y

Samuels, G. J., and Brayford, D. (1990). Variation in *Nectria radicicola* and its anamorph, *Cylindrocarpon destructans*. *Mycol. Res.* 94, 433–442. doi: 10.1016/S0953-7562(10)80001-2

Scholten, G. (1964). *Nectria radicicola* en *Thielaviopsis basicola* als parasieten van *Cyclamen persicum*. *Neth. J. Plant Pathol.* 70, 1–68. doi: 10.1007/BF02001771

Schroers, H. J., Žerjav, M., Munda, A., Halleen, F., and Crous, P. W. (2007). *Cylindrocarpon pauciseptatum* sp. nov. with notes on *Cylindrocarpon* species with wide, predominantly 3-septate macroconidia. *Mycol. Res.* 112, 82–92. doi: 10.1016/j.mycres.2007.10.004

Seifert, K. A., McMullen, C. R., Yee, D., Reeleder, R. D., and Dobinson, K. F. (2003). Molecular differentiation and detection of ginseng-adapted isolates of the root rot fungus *Cylindrocarpon destructans*. *Phytopathology* 93, 1533–1542. doi: 10.1094/PHYTO.2003.93.12.1533

Tewoldemedhin, Y. T., Mazzola, M., Mostert, L., and McLeod, A. (2011). *Cylindrocarpon* species associated with apple tree roots in South Africa and their quantification using real-time PCR. *Eur. J. Plant Pathol.* 129, 637–651. doi: 10.1007/s10658-010-9728-4

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification, and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J. Bacteriol.* 172, 4238–4246. doi: 10.1128/JB.172.8.4238-4246

Wang, T. S. (2001). *China Ginseng*. Liaoning: Science and Technology Press.

Wang, Y., Guan, Y. M., Lu, B. H., and Gao, J. (2016). First report of ginseng (*Panax ginseng*) root rot caused by *Fusarium acuminatum* in China. *Plant Dis.* 100:525. doi: 10.1094/PDIS-03-15-0273-PDN

Zhou, Y., Yang, Z., Gao, L., Liu, W., Liu, R., Zhao, J., et al. (2017). Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of *Panax ginseng*. *J. Ginseng Res.* 41, 307–315. doi: 10.1016/j.jgr.2016.06.001

Zinnsmeister, C. L. (1918). Ramularia root-rots of ginseng. *Phytopathology* 8, 557–571.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Guan, Ma, Jin, Wang, Liu, Fu, Zhang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.