Introduction

Rab25, a member of the Rab11 small GTPase family, plays a central role in the accomplishment and maintenance of epithelial polarity (Goldenring et al., 1993; Wang et al., 2000; Welz et al., 2014). Along with other Rab small GTPases, it regulates polarized membrane trafficking pathways for recycling of integrins or Claudins, a feature critical for the initiation of cellular polarity and basolateral-to-apical differentiation. It is especially involved in the regulation of apical recycling endosomes (Casanova et al., 1999). The important roles played by Rab25 in the epithelial tissues have been demonstrated in various reports previously, suggesting its deficiency may possibly augment malignancy of epithelial cancers, such as colon cancer (Nam et al., 2010; Goldenring and Nam, 2011), triple negative breast cancer, mammary cancer, head and neck squamous cell carcinoma (Seven et al., 2015), and skin squamous cell carcinoma (Jeong et al., 2019).

Despite its well-established role in cancer development, little is known about its role in epithelial physiology and function. The epidermis, a major epithelial tissue separating the external milieu from the inner body, is composed of 4 layers: stratum corneum, stratum granulosa, stratum spinosum, and stratum basale (Wickett and Visscher, 2006). The epidermal layer is well organized, with connective tissues and supporting connective tissues, which promote hair growth as well as higher collagen density (Kim et al., 2017). The epidermis is composed of keratinocytes, proliferating and differentiating outwards from the basal layer. Corneocytes, at the terminal phase, form a physical and chemical barrier against exoge-

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

Haengdueng Jeong1,‡, Kyung-Min Lim2,‡, James R. Goldenring3 and Ki Taek Nam1,*

1Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722,
2College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
3Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center, Nashville, TN 37232, USA

Abstract

Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Key Words: Rab25, Skin, Epidermis, Epidermal differentiation, Skin proliferation

INTRODUCTION

Rab25, a member of the Rab11 small GTPase family, plays a central role in the accomplishment and maintenance of epithelial polarity (Goldenring et al., 1993; Wang et al., 2000; Welz et al., 2014). Along with other Rab small GTPases, it regulates polarized membrane trafficking pathways for recycling of integrins or Claudins, a feature critical for the initiation of cellular polarity and basolateral-to-apical differentiation. It is especially involved in the regulation of apical recycling endosomes (Casanova et al., 1999). The important roles played by Rab25 in the epithelial tissues have been demonstrated in various reports previously, suggesting its deficiency may possibly augment malignancy of epithelial cancers, such as colon cancer (Nam et al., 2010; Goldenring and Nam, 2011), triple negative breast cancer, mammary cancer, head and neck squamous cell carcinoma (Seven et al., 2015), and skin squamous cell carcinoma (Jeong et al., 2019).

Despite its well-established role in cancer development, little is known about its role in epithelial physiology and function. The epidermis, a major epithelial tissue separating the external milieu from the inner body, is composed of 4 layers: stratum corneum, stratum granulosa, stratum spinosum, and stratum basale (Wickett and Visscher, 2006). The epidermal layer is well organized, with connective tissues and supporting connective tissues, which promote hair growth as well as higher collagen density (Kim et al., 2017). The epidermis is composed of keratinocytes, proliferating and differentiating outwards from the basal layer. Corneocytes, at the terminal phase, form a physical and chemical barrier against exoge-
nous substances (Muroyama and Lechler, 2012). Each layer of the epidermis expresses distinctive markers, such as loricrin, involucrin, keratin family members, filaggrin, and integrins, which are critical for epidermal differentiation and functional maturation of the skin barrier. Meanwhile, integrins α6, β4, and β1 are abundantly expressed in the basolateral side of basal cell layer bordering the dermis, where keratinocyte proliferation is highly active (Rodius et al., 2007), thus reflecting the essential roles of integrins in the differentiation and proliferation of keratinocytes, and their interaction with extracellular matrices on basal membrane.

Epidermal marker proteins including keratins, loricrin, involucrin, and filaggrin are richly expressed and tightly regulated in keratinocyte differentiation (Bickenbach et al., 1995). They are synthesized as pro-protein and sequestered in keratohyalin granules. They are eventually processed or cross-linked to form structural support of the cornified envelope. Keratins 5 and 15 are expressed at the early differentiation stages in basal cell layer, where cell proliferation is active. On the other hand, keratin 1, keratin 10, involucrin, and loricrin appear at the late differentiation stage from the upper spinous cell layer to the cornified layer. During keratinocyte differentiation, integrin expression is down-regulated and structural matrix proteins are up-regulated. Deletion of β1 integrin results in severe epidermal inflammation (Brakebusch et al., 2000) and deficiency of α6 integrin leads to abnormal expression of differentiation genes (Rodius et al., 2007), reflecting the crosstalk between integrins and epidermal differentiation marker proteins.

Recently, we have demonstrated that Rab25 behaves as a tumor suppressor for skin squamous cell carcinoma development (Jeong et al., 2019). Deletion of Rab25 is known to impair the trafficking of integrins, suggesting an important role of Rab25 in the regulation of keratinocyte differentiation and proliferation. Here, we investigated the effects of Rab25 KO on epidermal differentiation and skin barrier function.

MATERIALS AND METHODS

Mice

All animal experiments were conducted in accordance with the Public Health Service Policy on Humane Care and Use of Laboratory Animals, and were approved by the IACUC of the Department of Laboratory Animal Resources of Yonsei University College of Medicine, an AAALAC-accredited unit (#001077). Five to nine-week-old 129/J background mice, maintained in specific pathogen-free conditions (SPF), were used for all experiments. We used same age of WT and Rab25 KO mice for all experiment. Rab25 KO mice were genotyped as previously described (Nam et al., 2010).

Establishment of Rab25 knockout cell lines

Recombinant lentiviruses were commercially designed and synthesized using GIPZ lentiviral shRNA vector (Open BioSystems, Huntsville, AL, USA). Lentiviruses were produced by transfection of 293T cells with packaging plasmids PMD2G and psPAX2, using a CalPhos™ Mammalian Transfection Kit (631312, Clontech, Mountain View, CA, USA) according to the manufacturer’s protocol. Knockdown of Rab25 in HaCaT cells was established by infection with recombinant lentivirus using a polybrene mixture. Stable clones expressing shRNA were selected by further incubation with puromycin (1 μg/ml) and fluorescence of GFP.

Immunohistochemistry

For immunostaining, samples were de-paraffinized and sequentially rehydrated using a descending graded series (100%, 95%, and 70%) of ethanol. Antigen retrieval (S1699, DAKO, Carpinteria, CA, USA) was performed using a pressure cooker. After cooling on ice for at least 1 h, sections were incubated in 3% H₂O₂ for 30 min for blocking endogenous peroxidase. Sections were washed twice with PBS and incubated with protein block serum-free (X0909, DAKO) for 1-2 h at room temperature to reduce non-specific signals. Treatment with M.O.M (BMK-2202, Vector Laboratories, Burlingame, CA, USA) reagent for 1 h was performed with mouse primary antibodies. Primary antibodies were incubated overnight at 4°C. After three washes in PBS, sections were incubated in HRP-conjugated secondary antibody (K4003, DAKO) (K4001, DAKO) for 15 min at room temperature. For immunohistochemistry, DAB (K3468, DAKO) was used for the development of antibodies, and Mayer’s hematoxylin (S3309, DAKO) was used for counterstaining. Each experiment was performed using an identical time for DAB development. For immunofluorescence, primary antibodies were detected with Cy3-conjugated anti-mouse IgG and Alexa488-conjugated anti-rabbit IgG. Immunofluorescence images were taken with an EVOS-FL.

For BrdU assay, BrdU (B5002, Sigma, St. Louis, MO, USA) was dissolved in PBS (20 mg/ml) at room temperature and immediately administered to wild-type (WT) and Rab25 knockout (KO) mice by intraperitoneal injection (4 mg/20 g). After 48 h, the mice were sacrificed, and their skin samples were fixed in 4% paraformaldehyde. BrdU staining was performed following the immunohistochemistry protocol detailed above.

Antibodies

The following primary antibodies were commercially purchased: Rab25 (3F12, Novus, Rockford, IL, USA, 1:10K for WB and IHC), Keratin1 (ab185628, Abcam, Cambridge, Camb, UK, 1:1K for WB and IHC), Keratin 5 (ab526353, Abcam, 1:500 for WB and IHC). Keratin 10 (ab76318, Abcam, 1:3K for WB and IHC), Keratin 14 (ab1851595, Abcam, 1:4K for WB and IHC), Brdu (033990, Novex, Frederick, MD, USA, 1:2K for IF). Invovcirnin (MA5-11803, Invitrogen, Waltham, MA, USA, 1:100 for WB and IHC), Loricrin (ab24722, Abcam, 1:500 for WB and IHC), Ceramide (ALX-804-196, Enzo, Farmingdale, NY, USA, 1:100 for IHC), and GAPDH (ab181602, Abcam, 1:10K for WB).

Western blotting

For immunoblot using the cell line, cells were harvested and incubated in protein lysis buffer (20 mM Tris (pH 7.4), 0.15 M NaCl, 2.5 mM EDTA, and 1% Triton X-100) for 40 min. For immunoblot using mouse skin, mice were shaved and euthanized in a CO₂ chamber. The skin was carefully cut and collected in 1.5-ml microtubes. Proteins were extracted from the sections using protein lysis buffer (20 mM HEPES (pH 7.0), 0.15 M NaCl, 10% Glycerol, 1% Triton X-100, 1 mM EDTA, 1 mM EGTA, and 10 mM β-phosphoglycerate) along with protease and phosphatase inhibitor cocktails (Thermo, MA, USA). All lysates were collected by centrifugation (13,000 rpm, 15 min) and boiled in 1× SDS-PAGE sample buffer (62.5 mM Tris–HCl (pH 6.8), 2% SDS, 5% β-mercaptoethanol, 10%
glycerol, and 0.01% bromophenol blue) after measurement of protein concentration. Approximately 20 μg protein samples were separated by SDS-PAGE and transferred to a PVDF membrane (Millipore, Billerica, USA). The membranes were incubated with primary antibodies overnight at 4°C. Signal intensities were measured using the image analysis software Image J (National Institutes of Health, MD, USA).

Quantitative real-time PCR

RNA was extracted from tissues using TRIzol (Life Technologies, Carlsbad, CA, USA). cDNAs were synthesized from 1-μg samples after treatment with DNase (Takara, Kusatsu, Shiga, Japan). It used the ImProm-II™ reverse transcription system (Promega, Madison, WI, USA). POWER SYBR Green Master Mix from Applied Biosystems (4367659, Life Technologies) was used to perform real-time PCR. The specific sequences of primers were as follows:

- **Rab25**
 - Fw: CTTAAAAGCTGAGAATGGTT, Rv: TCTGCGGATCAGC
 - Dlx3
 - Fw: GTGCCCTAGGGAATGGCTGAC, Rv: GGGACCT
 - GCTTCTCTTGTTGCTC
 - Eif5
 - Fw: GTGGCATCAAGAGTCAAGACTGTC, Rv: CTCAGCT
 - TCTCGTACGT CATCCCT

Measurement of skin physiology

The dorsal skin of mice was carefully shaved, without any injury, just 1 day before the experiment. TEWL and moisture content were measured by a vapometer (Delfin technologies, Kuopio, Finland) and moisture meter (Delfin technologies, Shiga, Japan). It used the ImProm-II™ reverse transcription system (Promega, Madison, WI, USA). POWER SYBR Green Master Mix from Applied Biosystems (4367659, Life Technologies) was used to perform real-time PCR. The specific sequences of primers were as follows:

- **Rab25**
 - Fw: CTTAAAAGCTGAGAATGGTT, Rv: TCTGCGGATCAGC
 - Dlx3
 - Fw: GTGCCCTAGGGAATGGCTGAC, Rv: GGGACCT
 - GCTTCTCTTGTTGCTC
 - Eif5
 - Fw: GTGGCATCAAGAGTCAAGACTGTC, Rv: CTCAGCT
 - TCTCGTACGT CATCCCT

Affymetrix microarray

Mouse skin was shaved, and specimens were collected, with a biopsy punch (Kai medical, BP-40F), in a 1.5-ml conical tube. RNAlater (AM7024, Invitrogen, Waltham, MA, USA) was supplemented in the conical tube immediately to stabilize the RNA, followed by 24-h incubation in the cold room. Total RNA was extracted with TRIzol (Life Technologies) as described above. GeneChip® Mouse Gene 2.0 ST Array was used for platform, and microarray was conducted by Macrogen, Inc (Seoul, Korea). The acquired data were processed by Affymetrix® GeneChip Command Console® Software (AGCC, Thermo).

Statistical analysis

Data are presented as mean ± SEM. Statistical significance was determined using unpaired Student’s t-test or one-way ANOVA with Dunnett’s multiple comparison. p<0.05 was considered significant. *p<0.05, **p<0.01, ***p<0.001.

RESULTS

Rab25 KO mice have normal skin morphology, but exhibit skin barrier dysfunction

To investigate the expression of Rab25 on mouse skin, we conducted immunohistochemistry staining of the skin of 5-week old mice. As shown in Fig. 1A, Rab25 expression in WT mice was exclusively detected in the epidermis of skin; however, its expression was absent in the skin dermis or subcutis. As expected, Rab25 expression was absent in the epidermis of Rab25 knock-out (Rab25 KO) mice. In addition, the mRNA level of Rab25 in skin specimen was significantly reduced in Rab25 KO mice compared to that in WT mice (Fig. 1B). Interestingly, deficiency of Rab25 did not induce notable histopathological differences in the skin, and Rab25 KO mice exhibited relatively normal skin structure, with intact hair follicles (HF) and sebaceous glands (SG), compared to that in the skin of WT mice (Fig. 1C). Although abnormal features of epidermis were not apparent in Rab25 KO mice, moisture content and trans-epidermal water loss (TEWL) in the dorsal skin of Rab25 KO mice were altered significantly, revealing that Rab25 KO mice might have a dysfunctional skin barrier (Fig. 1D). Increased TEWL, with accompanying low skin hydration, can be observed in dry skin diseases, like diabetes mellitus (Park et al., 2011; Kim et al., 2019) or atopic dermatitis (Joo et al., 2015), reflecting that Rab25 KO mice might have xerotic skin.

![Fig. 1. Histopathological and physiological features of skin in Rab25 KO mice. (A) Representative immunohistochemistry images for Rab25 in 5-week old WT and Rab25 KO mice. (B) mRNA expression of Rab25 was normalized to that of GAPDH. Graphs represent mean ± SEM (Unpaired student’s t-test, n=4, **p<0.01). (C) Representative hematoxylin and eosin (H&E) staining images of WT and Rab25 KO mouse skin (HF: hair follicle, SG: sebaceous gland). (D) Skin hydration and epidermal water loss were measured by close attachment of Delfin's vapometer and moisturemeter on the dorsal skin of 9-week old mice. Graphs represent mean ± SEM (Unpaired student’s t-test, *p<0.05, **p<0.01).](www.biomother.org)
Rab25 KO mice show increased keratinocyte proliferation

To identify the reason behind skin barrier dysfunction in Rab25 KO mice, we first investigated the proliferation of epidermal cells in Rab25 KO mice. Bromodeoxyuridine (BrdU), an S-phase proliferation marker, was pre-injected into Rab25 KO mice 2 h before sacrifice, and BrdU-positive cells were detected in the epidermis by immunofluorescence staining. BrdU-positive cells in the skin epidermis were significantly increased in Rab25 KO mice compared to that in control (Fig. 2A, 2B). The majority of BrdU-positive proliferating cells were progenitor cells of the basal cell layer, where keratins 5 and 14 were highly positive. As shown in Fig. 2C and 2D, the number of BrdU- and keratin 5 (K5)-double positive cells was remarkably increased in Rab25 KO mice. Taken together, loss of Rab25 promoted proliferation of keratinocyte but did not induce alteration of its distribution on skin epidermis.

Rab25 KO globally increases the expression of keratinocyte differentiation markers

Intercellular lipids in stratum corneum play a critical role in skin barrier function, for the prevention of epidermal water loss and invasion of pathogen. Patients with defective skin barrier functions, like atopic dermatitis, show altered ceramide composition in the skin (Choi and Maibach, 2005; Park et al., 2012; Joo et al., 2015). To explore the relation between ceramide composition and barrier defects in Rab25 KO mice, we performed immunohistochemistry staining for ceramide in WT and Rab25 KO mice. Surprisingly, the staining intensity of ceramide in the epidermis barely changed in Rab25 KO mice, and its expression and distribution were indistinguishable from that in WT mice (Fig. 3A).

We investigated other components of stratum corneum, such as, epidermal differentiation markers in KO mice. Indeed, aberrant or increased expression of early differentiation markers like keratins 5 and 14 (Fig. 3B), as well as of late differentiation markers like keratin 1, keratin 10, involucrin, and loricrin (Fig. 3C), was found in the epidermis of Rab25 KO mice. Interestingly, although these markers increased significantly in content, their distribution was not different from that in WT mice.

Rab25 KO is associated with remarkable alteration of multiple biological processes in the skin of mice and in human keratinocyte cell line HaCaT

To clarify further the alteration of keratinocyte differentiation in Rab25 KO mice, we conducted western blot analysis for the differentiation markers in skin. As shown in Fig. 4A, early and late differentiation markers were all up-regulated in the skin of Rab25 KO mice at the protein level, which was in line with the immunohistochemistry findings (Fig. 3B, 3C). To identify whether this event can occur in human skin as well, Rab25 was knocked down using single hairpin RNA (shRNA).
in HaCaT cells, a human keratinocyte cell line. Consistent with the findings in Rab25 KO mice, all skin markers, including early differentiation and late differentiation markers, were found to be up-regulated overall (Fig. 4B).

Rab25 appeared to be a key mediator of skin differentiation, as shown above. To clarify this finding, we performed transcriptomic analysis using gene-chip microarray for full dorsal skin specimens of Rab25 KO and WT mice. As presented in Fig. 4C, considerable differences in gene expression patterns and hierarchical clusters were seen. Moreover, significant up-regulation of the genes involved in processes such as skin development, epidermis development, keratinocyte differentiation, and epithelium development was observed (Fig. 4D, Table 1), confirming the key role played by Rab25 in epidermal differentiation. For the validation of expression data from gene-chip microarray, we investigated the mRNA level of representative transcription factors, which were involved in keratinocyte differentiation and epithelium development (Fig. 4D, Table 1). Importantly, we observed a significant up-regulation of Dlx3, Elf5, and Foxn1 expression in Rab25 KO mice compared to skin from WT mice (Fig. 4E).

DISCUSSION

This study demonstrated that Rab25 deficiency may lead
Table 1. Fold change of expression level on Affymetrix gene array

Gene ID	GO ID	Term	Gene count	p-value	Rab25 KO/ WT.fc
Prr9	GO:0043588	Skin development	23	1.354E-19	23.195826
Alox8					3.990096
Col1a1					-2.366208
Col1a2					-2.561034
Foxn1					4.624904
Hoxc13					3.283733
Igfbp5					-5.097948
Krt16					4.779589
Krt36					3.299925
Krt27					14.471341
Krt84					16.987127
Krt6a					9.439672
Krt27					10.671418
Krt25					8.066111
Prr9	GO:0008544	Epidermis development	20	4.825E-15	23.195826
Alox8					3.990096
Foxn1					4.624904
Hoxc13					3.283733
Igfbp5					-5.097948
Krt16					4.779589
Krt36					3.299925
Krt27					14.471341
Krt84					16.987127
Krt6a					9.439672
Krt25					8.066111
Prr9	GO:0030216	Keratinocyte differentiation	14	3.665E-13	23.195826
Alox8					3.990096
Foxn1					4.624904
Krt16					4.779589
Krt36					3.299925
Krt84					16.987127
Krt6a					9.439672
Dsg4					12.462400
Sprr1a					5.974784
Sprr1b					11.170615
Sprr2h					10.017172
Tgm3					5.976207
Sprr4					12.113076
Krt71					10.671418
Krt25					8.066111
Prr9	GO:0030216	Keratinocyte differentiation	14	3.665E-13	23.195826
Alox8					3.990096
Foxn1					4.624904
Krt16					4.779589
Krt36					3.299925
Krt84					16.987127
Krt6a					9.439672
Dsg4					12.462400
Mxs2					3.291838
Sprr1a					5.974784
Sprr1b					11.170615
Sprr2h					10.017172
Tgm3					5.976207
Sprr4					12.113076
Krt71					10.671418
Krt25					8.066111
to skin barrier dysfunction in KO mice, as determined by higher trans-epidermal water loss and lower cutaneous hydration than in wild type mice. While the skin morphology was observed to be relatively normal, aberrantly increased expression of epidermal differentiation markers such as loricin, involucrin, and keratins 5, 14, 1, and 10 was observed in Rab25 KO mice, which might cause perturbation of epidermal physiology. In line with this, depletion of Rab25 with shRNA led to increased expression of differentiation markers in the human keratinocyte cell line, HaCaT, reflecting the critical role played by Rab25 in epidermal differentiation of human skin. Transcriptomic analysis of the skin revealed that Rab25 KO has increased the expression of genes associated with skin development, epidermal development, and keratinocyte differentiation, thus suggesting that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Interestingly, Rab25 is linked with the activation of AKT/PI3K pathway by binding and activating AKT (Cheng et al., 2012; Fan et al., 2015), which promotes the resistance of cancer cells against metabolic stress through enhancing ATP generation and glycogen synthesis. AKT/PI3K pathways are also known to be pivotal in keratinocyte differentiation (Galautti et al., 2005). During keratinocyte differentiation, the activation of PI3K pathway, which depends on the activity of EGFR, Fyn/Src kinases, and E-cadherin-mediated adhesion, actually initiates AKT activation, which in turn, promotes the growth arrest and differentiation of keratinocytes, as evidenced by increased expression of filaggrin, loricin, keratin 1, and keratin 5. Inhibition of PI3K activity with wortmannin or Ly294002 results in the suppression of these differentiation markers and results in cell death. In this regard, our results, showing that Rab25 KO leads to increased expression of differentiation markers, contradict the existing mechanisms underlying epidermal differentiation. It would therefore be worth examining the PI3K/AKT pathway in the skin of Rab25 KO mice to clarify this conflict.

Rab25 facilitates the transport of integrins to the plasma membrane and is critical in membrane recycling along with other Rab11 family proteins (Welz et al., 2014), including integrins or receptor tyrosine kinases like EGFR (Dozynkiewicz et al., 2012; De Franceschi et al., 2015). In line with this, we had previously demonstrated that Rab25 KO leads to the depletion of integrins, β1, β4, and α6 in the skin of mice (Jeong et al., 2019), thereby indicating that Rab25 deficiency leads to dysregulation of integrins in keratinocytes. Rodius et al. (2007)
reported that deletion of α6 integrin in keratinocytes increases the expression of keratins 1, 10, and 14, and loricrin, involucrin, and filaggrin, which is in good agreement with our findings. Rodius et al. (2007) also reported that increased levels of c-Jun, c-Fos, and phospho-Jun, which ultimately activate AP-1 transcription factor, are attributable to the increased differentiation markers in Δα integrin-deficient keratinocytes. Not only AP-1, but also other transcription factors have been reported to play a critical role in regulating skin homeostasis and keratinocyte differentiation (Park and Morasso, 1999; Tummala and Sinha, 2006; Hwang et al., 2011). Previous reports had shown higher expression of ELF5 and DLX3 to occur during Ca2+-induced mouse keratinocyte differentiation in vitro (Park and Morasso, 1999; Tummala and Sinha, 2006). Moreover, Hwang et al. (2011) had discovered that deletion of Dlx3 using K14-Cre (Dlx3K14/f) mice leads to abnormal keratinocyte differentiation. Similarity, activation of FOXN1, a transcription factor expressed in the suprabasal layer, promoted the expression of keratinocyte differentiation markers like involucrin and keratin 10, whereas inhibition of PI3K prevented FOXN1-induced differentiation (Janes et al., 2004). Moreover, Prowse et al. (1999) constructed a transgenic mouse, expressing FOXN1 under the involucrin promoter, and revealed that proliferation of basal keratinocyte was promoted in the transgenic mouse. These findings on FOXN1 were also consistent with our findings in Rab25 KO mice. In our gene microarray, we found significant changes in the mRNA expression profile data by using replicate variance. course gene expression profile data by using replicate variance.

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
This research was supported by The Myung-Sun Kim Memorial Foundation (to KT).

REFERENCES
Bickenbach, J. R., Greer, J. M., Bundman, D. S., Rothnagel, J. A. and Roop, D. R. (1995) Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J. Invest. Dermatol. 104, 405-410.

Brakebusch, C., Grosse, R., Quondamatteo, F., Ramirez, A., Jorciano, J. L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., Wemer, S. and Fassler, R. (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J. 19, 3990-4003.

Calautti, E., Ji, J., Saoncella, S., Brissette, J. L. and Goetinck, P. F. (2005) Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem. 280, 32856-32865.

Casanova, J. E., Wang, X., Kumar, R., Bhartur, S. G., Navarre, J., Woodrum, J. E., Altschuler, Y., Ray, G. S. and Grindlay, J. J. (1999) Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47-61.

Cheng, K. W., Agarwal, R., Mitra, S., Lee, J. S., Carey, M., Gray, J. W. and Mills, G. B. (2012) Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol. Med. 4, 125-141.

Choi, M. J. and Maibach, H. I. (2005) Role of ceramides in barrier function of healthy and diseased skin. Am. J. Clin. Dermatol. 6, 215-223.

De Franceschi, N., Hamidi, H., Alanjok, A., Sahalg, P. and Ivaska, J. (2015) Integrin traffic - the update. J. Cell Sci. 128, 839-862.

Dozynkiewicz, M. A., Jamieson, N. B., Macpherson, I., Grindlay, J., van den Bergh, P. V., von Thun, A., Morton, J. P., Gourley, C., Timpson, P., Nixon, C., McKay, C. J., Carter, R., Strachan, D., Anderson, K., Sansom, O. J., Caswell, P. T. and Norman, J. C. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131-145.

Fan, Y., Wang, L., Han, X., Liu, X. and Ma, H. (2015) Rab25 is responsible for phosphoinositide 3-kinase/AKTmediated cisplatin resistance in human epithelial ovarian cancer cells. Mol. Med. Rep. 11, 2173-2178.

Goldring, J. R., Shen, K. R., Vaughan, H. D. and Modlin, I. M. (1993) Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J. Biol. Chem. 268, 18419-18422.

Goldring, J. R. and Nam, K. T. (2011) Rab25 as a tumour suppressor in colon carcinogenesis. Br. J. Cancer 104, 33-36.

Hwang, J., Kita, R., Kwon, H. S., Choi, E. H., Lee, S. H., Udey, M. C. and Morasso, M. I. (2011) Epidermal ablation of Δα is linked to IL-17-associated skin inflammation. Proc. Natl. Acad. Sci. U.S.A. 108, 11566-11571.

Janes, S. M., Ofstad, T. A., Campbell, D. H., Watt, F. M. and Prowse, D. M. (2004) Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and p21 in reducing epidermal thickness. J. Cell Sci. 117, 4157-4168.

Jeong, H., Lim, K. M., Kim, K. H., Cho, Y., Lee, B., Knowles, B. C., Ro, J. T., Zwerner, J. P., Goldenring, J. R. and Nam, K. T. (2019) Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J. Pathol. doi: 10.1002/path.5311 [Epub ahead of print].

Joo, K. M., Hwang, J. H., Bae, S., Nahm, D. H., Park, H. S., Ye, Y. M. and Lim, K. M. (2015) Relationship of ceramides-, and free fatty acid-cholesterol ratios in the stratum corneum with skin barrier function of normal, atopic dermatitis lesional and non-lesional skins. J. Dermatol. Sci. 77, 71-74.

Kim, J. H., Cho, E. Y., Kwon, E., Kim, W. H., Park, J. S., Lee, Y. S., Yun, J. W. and Kang, B. C. (2017) Gold thread implantation promotes hair growth in human and mice. Lab. Anim. Res. 33, 291-297.

Kim, M., Jeong, H., Lee, B., Cho, Y., Yoon, W. K., Cho, A., Kwon, G., Nam, K. T., Ha, H. and Lim, K. M. (2019) Enrichment of short-chain ceramides and free fatty acids in the skin epidermis, liver, and kidneys of db/db mice, a type 2 diabetes mellitus model. Biomol. Ther. Seoul) doi: 10.4062/biomolther.2018.214 [Epub ahead of print].

Lin, K. K., Chudova, D., Hatfield, G. W., Smyth, P. and Andersen, B. (2004) Identification of hair cycle-associated genes from time-course gene expression profile data by using replicate variance.

https://doi.org/10.4062/biomolther.2019.125
Proc. Natl. Acad. Sci. U.S.A. **101**, 15955-15960.
Muroyama, A. and Lechler, T. (2012) Polarity and stratification of the epidermis. *Semin. Cell Dev. Biol.* **23**, 890-896.
Nam, K. T., Lee, H. J., Smith, J. J., Lapierre, L. A., Kamath, V. P., Chen, X., Aronow, B. J., Yeatman, T. J., Bhartur, S. G., Calhoun, B. C., Condie, B., Manley, N. R., Beauchamp, R. D., Coffey, R. J. and Goldenring, J. R. (2010) Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. *J. Clin. Invest.* **120**, 840-849.
Park, G. T. and Morasso, M. I. (1999) Regulation of the Dlx3 homeobox gene upon differentiation of mouse keratinocytes. *J. Biol. Chem.* **274**, 26599-26608.
Park, H. Y., Kim, J. H., Jung, M., Chung, C. H., Hasham, R., Park, C. S. and Choi, E. H. (2011) A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. *Exp. Dermatol.* **20**, 969-974.
Park, Y. H., Jang, W. H., Seo, J. A., Park, M., Lee, T. R., Park, Y. H., Kim, D. K. and Lim, K. M. (2012) Decrease of ceramides with very long-chain fatty acids and downregulation of elongases in a murine atopic dermatitis model. *J. Invest. Dermatol.* **132**, 476-479.
Prowse, D. M., Lee, D., Weiner, L., Jiang, N., Magro, C. M., Baden, H. P. and Brissette, J. L. (1999) Ectopic expression of the nude gene induces hyperproliferation and defects in differentiation: implications for the self-renewal of cutaneous epithelia. *Dev. Biol.* **212**, 54-67.
Rodius, S., Indra, G., Thibault, C., Pfister, V. and Georges-Labouesse, E. (2007) Loss of alpha6 integrins in keratinocytes leads to an increase in TGFbeta and AP1 signalling and in expression of differentiation genes. *J. Cell. Physiol.* **212**, 439-449.
Seven, D., Dogan, S., Kılıç, E., Karaman, E., Koseoglu, H. and Buyru, N. (2015) Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. *Oncol. Lett.* **10**, 1927-1931.
Tummala, R. and Sinha, S. (2006) Differentiation-specific transcriptional regulation of the ESE-2 gene by a novel keratinocyte-restricted factor. *J. Cell. Biochem.* **97**, 766-781.
Wang, X., Kumar, R., Navarre, J., Casanova, J. E. and Goldenring, J. R. (2000) Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. *J. Biol. Chem.* **275**, 29138-29146.
Welz, T., Wellbourne-Wood, J. and Kerkhoff, E. (2014) Orchestration of cell surface proteins by Rab11. *Trends Cell Biol.* **24**, 407-415.
Wickett, R. R. and Visscher, M. O. (2006) Structure and function of the epidermal barrier. *Am. J. Infect. Control* **34**, S98-S110.