Universal Streaming

Vladimir Braverman∗ Rafail Ostrovsky† Alan Roytman‡

Abstract
Given a stream of data, a typical approach in streaming algorithms is to design a sophisticated algorithm with small memory that computes a specific statistic over the streaming data. Usually, if one wants to compute a different statistic after the stream is gone, it is impossible. But what if we want to compute a different statistic after the fact? In this paper, we consider the following fascinating possibility: can we collect some small amount of specific data during the stream that is “universal,” i.e., where we do not know anything about the statistics we will want to later compute, other than the guarantee that had we known the statistic ahead of time, it would have been possible to do so with small memory? In other words, is it possible to collect some data in small space during the stream, such that any other statistic that can be computed with comparable space can be computed after the fact? This is indeed what we introduce (and show) in this paper with matching upper and lower bounds: we show that it is possible to collect universal statistics of polylogarithmic size, and prove that these universal statistics allow us after the fact to compute all other statistics that are computable with similar amounts of memory. We show that this is indeed possible, both for the standard unbounded streaming model and the sliding window streaming model.

1 Introduction
With the vast amount of data being generated today, algorithms for data streams continue to play an important role for many practical applications. As the amount of data being generated continues to grow at a staggering rate, streaming algorithms are increasingly becoming more important as a practical tool to analyze and make sense of all the information. Data streams have received a lot of attention with good reason, as evidenced by the wide array of applications discussed in [4, 53]. Applications for streaming algorithms which operate over input that arrives on the fly and use a small amount of memory are numerous, ranging from monitoring packets flowing across a network to analyzing patterns in DNA sequences. In practice, such applications generate vast amounts of data in a very short period of time, so it is infeasible to store all of this information. This presents a pressing question: when is it possible to avoid storing all the information while still providing approximate solutions with good theoretical guarantees?

∗Department of Computer Science, Johns Hopkins University. Email: vova@cs.jhu.edu. Research supported in part by DARPA grant N66001-1-2-4014. Its contents are solely the responsibility of the author and do not represent the official view of DARPA or the Department of Defense.
†Department of Computer Science and Department of Mathematics, University of California, Los Angeles. Email: rafail@cs.ucla.edu. Research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is also based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
‡Department of Computer Science, University of California, Los Angeles. Email: alanr@cs.ucla.edu.
Typically, algorithms are developed for data streams in the unbounded model, where some statistic is maintained over the entire history of the stream. For certain applications, it is useful to only compute such statistics over recent data. For instance, we may wish to analyze stock market transactions in a particular timeframe [54] or monitor packets transmitted over a network in the last hour to identify suspicious activity [57]. This framework is known as the sliding window model, where we maintain statistics over the current window of size at most N, which slides as time progresses. In the sequence-based model, exactly one element arrives and expires from the window per time step. In the timestamp-based model, any number of elements may arrive or expire. Clearly, the timestamp-based model is more general.

In a landmark paper that influenced the field as a whole, the work of Alon, Matias and Szegedy [5] studied the following fundamental framework. For a universe $U = \{1, \ldots, n\}$ and an input stream (i.e., a sequence of integers drawn from U), let $M = (m_1, \ldots, m_n)$ be the vector where each entry m_i denotes the frequency with which element $i \in U$ appears in the stream. At any point in time, the paper of [5] showed how to approximate various frequency moments in sublinear space. Informally, for the kth frequency moment $F_k = \sum_{i \in U} m_i^k$, it was shown that F_0, F_1, and F_2 can be approximated in polylogarithmic space, while for $k > 2$, an upper bound of $O^*(n^{1-1/k})$ was shown (the notation $O^*(f(n))$ hides polylogarithmic factors). Moreover, a lower bound of $\Omega(n^{1-5/k})$ was shown for every $k \geq 6$. As discussed in [5], such frequency functions are tremendously important in practice and have many applications in databases, as they indicate the degree to which the data is skewed. The fundamental work of Indyk and Woodruff [44] showed how to compute F_k for $k > 2$ in space $O^*(n^{1-2/k})$, which was the first optimal result for such frequency moments. Their technique reduced the problem of computing F_k to computing heavy hitters, and indeed our construction builds on their methods. Their result was later improved up to polylogarithmic factors by Bhuvanagiri, Ganguly, Kesh and Saha [13]. Recently, Li, Nguyễn, and Woodruff [51] showed that any one-pass streaming algorithm that approximates an arbitrary function in the turnstile model can be implemented via linear sketches. Our work is related, since our algorithms are based on linear sketches of [5].

Such works have opened a line of research that is still extremely relevant today. In particular, what other types of frequency-based functions admit efficient solutions in the streaming setting, and which functions are inherently difficult to approximate? In our paper, we strive to answer this question for frequency-based, monotonically increasing functions in the sliding window model. We make progress on two significant, open problems outlined in [2] by Nelson and [1] by Sohler. Specifically, we are the first to formalize the notion of universality for streaming over sliding windows. Our main result is the construction of a universal algorithm in the timestamp-based sliding window model for a broad class of functions. That is, we define a class of functions and design a single streaming algorithm that produces a data structure with the following guarantee. When querying the data structure with a function G taken from the class, our algorithm approximates $\sum_{i=1}^n G(m_i)$ without knowing G in advance (here, m_i denotes the frequency that element i appears in the window). Our data structure only collects statistics based on the input stream itself without knowing G. The algorithm uses polylogarithmic memory in the universe size n and the window size N, and obtains a $(1 \pm \epsilon)$-approximation. This is precisely the notion of universality that we develop in our paper, and it is an important step forward towards resolving the problem in [2].

Along the way, we design a zero-one law for a broader class of monotonically increasing functions G which are zero at the origin that specifies when $\sum_{i=1}^n G(m_i)$ can be approximated with high probability in one pass, using polylogarithmic memory. If G satisfies the conditions specified by the test, then given the function G we construct an explicit, general algorithm that is able to approximate the summation to within a $(1 \pm \epsilon)$-factor using polylogarithmic memory. If the function G does not pass the test, then we provide a lower bound which proves it is impossible to
do so. This result generalizes the work of [16] to the sliding window setting, and makes important progress towards understanding the question posed in [1].

1.1 Contributions and Techniques

Our contributions in this paper make progress on and give insight into two important problems:

1. We are the first to formally define the notion of universality in the streaming setting. We define a large class of functions \(\mathcal{U} \) such that, for the entire class, we design a single, universal algorithm for data streams in the sliding window model which maintains a data structure with the following guarantee. When the data structure is queried with any function \(G \in \mathcal{U} \), it outputs a \((1 \pm \epsilon)\)-approximation of \(\sum_{i=1}^{n} G(m_i) \) without knowing \(G \) in advance (note that the choice of \(G \) can change). Our algorithm uses polylogarithmic memory (in \(n \) and \(N \)), makes one pass over the stream, and succeeds with high probability.

2. We give a complete, algebraic characterization (i.e., a zero-one law) for the class of tractable functions over sliding windows. We define a broader set of functions \(\mathcal{T} \) such that, for any non-decreasing function \(G \) where \(G(0) = 0 \), if \(G \in \mathcal{T} \), then we have an algorithm that gives a \((1 \pm \epsilon)\)-approximation to \(\sum_{i=1}^{n} G(m_i) \), uses polylogarithmic memory, makes one pass over the stream, and succeeds with high probability. Moreover, if \(G \notin \mathcal{T} \), we give a lower bound which shows that super-polylogarithmic memory is necessary in order to approximate \(\sum_{i=1}^{n} G(m_i) \) with high probability. This generalizes the result of [16] to the sliding window setting.

Our algorithms work in the timestamp-based sliding window model and maintain the summation approximately for every window. The value \(\epsilon \) can depend on \(n \) and \(N \), so that the approximation improves as either parameter increases. Our construction is very general, applying to many functions using the same techniques. In particular, streaming algorithms tend to depend specifically on the function to be approximated. For instance, consider the specific algorithms for \(F_2 \) [5, 42], \(F_0 \) [5, 25, 33] and \(L_p, 0 \leq p < 2 \) [42, 46, 50] (where the \(L_p \) norm is the \(p^{th} \) root of \(F_p \)). The problems we study have been open for several years, and our construction and proofs are non-trivial. Surprisingly, despite us using existing techniques, their solutions have remained elusive. The techniques we use allow us to avoid the strong pseudorandom generator machinery developed by Nisan [55]. In fact, our construction only assumes 4-wise independence, which might be useful in practice.

For our main result, item 1, it is useful to understand our techniques for solving item 2. Designing the correct characterization for “tractable” functions is in itself a challenging task. Indeed, one may think that the predicate from [16] is sufficient for designing an algorithm in the sliding window model. Unfortunately, this idea is difficult to carry through, and with good reason: it turns out to be false! Part of the novelty and difficulty of our techniques is the identification of an extra smoothing assumption about the class of tractable functions over sliding windows. If a function does not satisfy our smoothing assumption, we show a super-polylogarithmic lower bound, inspired by the proof of [29]. We draw on the techniques of [16, 17, 44] for our positive result by first finding heavy elements according to the function \(G \), and then reducing the sum problem to the heavy elements problem. Our work sheds light on the question posed in [1], by exhibiting a strict separation result between the unbounded and sliding window models.

To obtain our main result, we observe that one can remove the assumption from our initial constructions that \(G \) is given up front (so that all applications of \(G \) happen at the end of the window). However, some technical issues arise, as our construction relies on some parameters of \(G \) that stem from our zero-one law. To address these issues, we parameterize our class of functions \(\mathcal{U} \) by a constant, allowing us to build a single algorithm to handle the entire parameterized class.
1.2 Related Work

The paper of Braverman and Ostrovsky [16] is the most closely related to our paper. We extend their result from the unbounded model to the timestamp-based sliding window model (by formalizing a new characterization of tractable functions) and by designing a universal algorithm for a large class of functions. Our results build on [16, 17, 44].

Approximating frequency moments and L_p norms is well studied in the literature, as it has many applications, and there are indeed a vast number of papers on the subject. Compared to such works, we make minimal assumptions and our results are extremely broad, as we design general algorithms that can not only handle frequency moments, but other functions as well. Flajolet and Martin [33] gave an algorithm to approximate F_0 (i.e., counting distinct elements), and Alon, Matias, and Szegedy [5] showed how to approximate F_k for $0 \leq k \leq 2$ using polylogarithmic memory, while for $k > 2$ they showed how to approximate F_k using $O^*(n^{1-1/k})$ memory. They also showed an $\Omega(n^{1-5/k})$ lower bound for $k \geq 6$. Indyk [42] used stable distributions to approximate L_p norms for $p \in (0, 2]$. Indyk and Woodruff [41] gave the first optimal algorithm for F_k ($k>2$), where an $O^*(n^{1-2/k})$ upper bound was developed. In a followup work, Bhuvanagiri, Ganguly, Kesh, and Saha [13] improved the space by polylogarithmic factors. For lower bounds, Bar-Yossef, Jayram, Kumar, and Sivakumar [10] gave an $\Omega(n^{1-(2+\epsilon)/k})$ lower bound, which was later improved to $\Omega(n^{1-2/k})$ by Chakrabarti, Khot, and Sun [20] for any streaming algorithm that makes one pass over the stream. The literature is vast, and other results for such functions include [11, 24, 25, 31, 34, 35, 46, 47, 50, 58]. There is also literature on finding frequent items, and this is indeed a problem we must solve to achieve our results (although we must do so for a broad class of functions). Examples of works which find frequent items include [22, 26, 27]. Moreover, there has been a line of work in the literature on estimating entropy and entropy norms, including [12, 18, 19, 38, 39, 48].

There is also a vast literature in streaming for sliding windows. In their foundational paper, Datar, Gionis, Indyk, and Motwani [29] gave a general technique called exponential histograms that allows many fundamental statistics to be computed in optimal space, including count, sum of positive integers, average, and the L_p norm for $p \in [1, 2]$. Gibbons and Tirthapura [36] made improvements for the sum and count problem with algorithms that are optimal in space and time. Braverman and Ostrovsky [15] gave a general framework for a large class of smooth functions, which include the L_p norm for $p > 0$. Our work complements their results, as the functions they studied need not be frequency based. Other problems include frequent itemsets [23], frequency counts and quantiles [6, 49], rarity and similarity [30], variance and k-median [8], diameter in multidimensional space and other geometric problems [3, 21, 52], and uniform random sampling [7]. Many works have studied frequency estimation and frequent item identification, including [28, 37, 45], along with L_1-frequent elements, including [9, 40, 41, 54, 59]. The recent work of [14] gave an efficient algorithm for computing L_2-frequent elements over sliding windows. Many of our constructions rely on computing frequent elements, but we must do so under a broad class of functions.

1.3 Roadmap

In Section 2 we describe notation used throughout this paper, give some definitions, and formalize the main problems we study. In Section 3 we give a lower bound for functions that are not tractable (i.e., we show the “zero” part of our zero-one law). In Section 4 we give an algorithm for any tractable function (i.e., we show the “one” part of our zero-one law). Finally, in Section 5 we show the main result of this paper by giving a universal streaming algorithm.
2 Notation and Problem Definition

We have a universe of n elements $[n]$, where $[n] = \{1, \ldots, n\}$, and an integer N. A stream $D(n, N)$ is a (possibly infinite) sequence of integers a_1, a_2, \ldots, each from the universe $[n]$, where N is an upper bound on the size of the sliding window. Specifically, at each time step, there is a current window W that contains active elements, where $|W| \leq N$. The window W contains the most recent elements of the stream, and elements which no longer belong in the window are expired. We use the timestamp-based model for sliding windows (i.e., any number of elements from the stream may enter or leave the window at each time step). We denote the frequency vector by $M(W)$, where $M(W) = (m_1, \ldots, m_n)$ and each m_i is the frequency of element $i \in [n]$ in window W (i.e., $m_i = |\{ j \mid a_j = i \land j \text{ is active} \})$. For the window W, the k^{th} frequency moment $F_k(M(W)) = \sum_{i=1}^{n} m_i^k$. For a vector $V = (v_1, \ldots, v_n)$, we let $|V|$ be the L_1-norm of V, namely $|V| = \sum_i |v_i|$. For a vector $V = (v_1, \ldots, v_n)$ and a function f, we define the f-Vector as $f(V) = (f(v_1), \ldots, f(v_n))$.

We say that x is a $(1 \pm \epsilon)$-approximation of y if $(1 - \epsilon)y \leq x \leq (1 + \epsilon)y$. We define $O^*(f(n, N)) = O(\log^{O(1)}(nN)f(n, N))$. We say a probability p is negligible if $p = O^*(\frac{1}{nN})$.

Consider the following problem:

Problem 1 (G-Sum). Let $G : \mathbb{R} \rightarrow \mathbb{R}$ be an arbitrary function which is non-decreasing such that $G(0) = 0$. For any stream $D(n, N)$, any k, and any $\epsilon = \Omega\left(\frac{1}{\log^{O(1)}(nN)}\right)$, output a $(1 \pm \epsilon)$-approximation of $\sum_{i=1}^{n} G(m_i)$ (where m_i is the multiplicity of element $i \in [n]$) for the current window W.

We first give some definitions which will be useful throughout the paper and help us define our notion of tractability, beginning with the local jump:

Definition 1 (Local Jump). For $\epsilon > 0$ and $x \in \mathbb{N}$, we define the local jump as

$$\pi_\epsilon(x) = \min \{ x, \min \{ z \in \mathbb{N} \mid (G(x + z) > (1 + \epsilon)G(x)) \lor (G(x - z) < (1 - \epsilon)G(x)) \} \}.$$

That is, $\pi_\epsilon(x)$ is essentially the minimum amount needed to cause G to jump by a $(1 \pm \epsilon)$-factor by shifting either to the left or to the right of x.

Definition 2 (Heavy Element). For a vector $M(W) = (m_1, \ldots, m_n)$, a function f, and a parameter $d > 0$, we say that element i is (f, d)-heavy with respect to $M(W)$ if $f(m_i) > d \sum_{j \neq i} f(m_j)$.

Definition 3 (Sampled Substream). Let $D(n, N)$ be a stream and $H : [n] \rightarrow \{0, 1\}$ be a function. We denote by D_H the sampled substream of D consisting of all elements that are mapped to 1 by the function H. More formally, $D_H = D \cap H^{-1}(1)$.

Definition 4 (Residual Second Moment). If there is an $(F_2, 1)$-heavy element m_i with respect to $M(W)$, we define the residual second moment as $F_2^\text{res}(M(W)) = F_2(M(W)) - m_i^2 = \sum_{j \neq i} m_j^2$.

We are now ready to define our zero-one law.

Definition 5 (Tractability). We say a function G is tractable if $G(1) > 0$ and:

$$\forall k \exists N_0, \forall x, y \in \mathbb{N}^+ \forall R \in \mathbb{R}^+ \forall \epsilon : \left(R > N_0, \frac{G(x)}{G(y)} = R, \epsilon \geq \frac{1}{\log^k(Rx)} \right) \Rightarrow \left(\frac{\pi_\epsilon(x)}{y} \right)^2 \geq \frac{R}{\log^k(Rx)} \right) \text{ and (1)}$$

$$\forall k \exists r, N_1 \forall x \geq N_1 \forall \epsilon : \epsilon > \frac{1}{\log^r(x)} \Rightarrow \pi_\epsilon(x) \geq \frac{x}{\log^r(x)}. \text{ (2)}$$

5
We let \textbf{Tractable} be the set of functions which satisfy the above predicate. Based on this definition, we formalize the notion of tractability for our universal setting. It is similar to the definition of tractability, except we need to upper bound some parameters by a constant.

\begin{definition}[Universal Tractability] Fix a constant \(C\). Let \(\mathcal{U}(C)\) denote the set of non-decreasing functions \(G\) where \(G(0) = 0\), \(G(1) > 0\), and:
\begin{equation}
\forall k \exists N_0, t \leq C \forall x, y \in \mathbb{N}^+ \forall R \in \mathbb{R}^+ \forall \epsilon :
\begin{aligned}
R > N_0, \frac{G(x)}{G(y)} = R, \epsilon > & \log^k(Rx) \Rightarrow \left(\frac{\pi_\epsilon(x)}{y} \right)^2 \geq \frac{R}{\log^k(Rx)}
\end{aligned}
\tag{3}
\end{equation}
\begin{equation}
\forall \epsilon \exists r \leq C, N_1 \forall x \geq N_1 \forall \epsilon : \epsilon > \frac{1}{\log^k(x)} \Rightarrow \pi_\epsilon(x) \geq \frac{x}{\log^k(x)}.
\tag{4}
\end{equation}
\end{definition}

\begin{definition}[Universal Core Structure] For a fixed vector \(V = (v_1, \ldots, v_n)\), we say a data structure \(S\) is a universal core structure with parameters \(\epsilon > 0\), \(\delta > 0\), \(\alpha > 0\), and a class of functions \(\mathcal{G}\), where \(G \in \mathcal{G}\) satisfies \(G : \mathbb{R} \rightarrow \mathbb{R}\), if given any \(G \in \mathcal{G}\), \(S\) outputs a set \(T = \{(x_1, j_1), \ldots, (x_\ell, j_\ell)\}\) such that with probability at least \(1 - \delta\) we have: 1) For each \(1 \leq i \leq \ell\), \((1 - \epsilon)G(v_{j_i}) \leq x_i \leq (1 + \epsilon)G(v_{j_i})\), and 2) If there exists \(i\) such that \(v_i\) is \((G, \alpha)\)-heavy with respect to \(V\), then \(i \in \{j_1, \ldots, j_\ell\}\).
\end{definition}

\begin{definition}[Universal Core Algorithm] We say an algorithm \(A\) is a universal core algorithm with parameters \(\epsilon > 0\), \(\delta > 0\), \(\alpha > 0\), and a class of functions \(\mathcal{G}\), where \(G \in \mathcal{G}\) satisfies \(G : \mathbb{R} \rightarrow \mathbb{R}\), if, given any stream \(D(n, N)\) as input, \(A\) outputs a universal core structure for the vector \(M(W)\) with the same parameters \(\epsilon\), \(\delta\), \(\alpha\), and \(\mathcal{G}\).
\end{definition}

\begin{definition}[Universal Sum Structure] For a fixed vector \(V = (v_1, \ldots, v_n)\), we say a data structure \(S\) is a universal sum structure with parameters \(\epsilon > 0\), \(\delta > 0\), and a class of functions \(\mathcal{G}\), where \(G \in \mathcal{G}\) satisfies \(G : \mathbb{R} \rightarrow \mathbb{R}\), if given any \(G \in \mathcal{G}\), \(S\) outputs a value \(x\) such that with probability at least \(1 - \delta\) we have: \((1 - \epsilon)\sum_{i=1}^{n} G(v_i) \leq x \leq (1 + \epsilon)\sum_{i=1}^{n} G(v_i)\).
\end{definition}

\begin{definition}[Universal Sum Algorithm] We say an algorithm \(A\) is a universal sum algorithm with parameters \(\epsilon > 0\), \(\delta > 0\), and a class of functions \(\mathcal{G}\), where \(G \in \mathcal{G}\) satisfies \(G : \mathbb{R} \rightarrow \mathbb{R}\), if, given any stream \(D(n, N)\) as input, \(A\) outputs a universal sum structure for the vector \(M(W)\) with parameters \(\epsilon\), \(\delta\), and \(\mathcal{G}\).
\end{definition}

In this paper, our main result is the proof of the following theorem:

\begin{theorem}
Fix a constant \(C\) and let \(\mathcal{U}(C)\) be the universally tractable set according to Definition \ref{def:universaltractable}. There is a universal sum algorithm with parameters \(\epsilon = \Omega(1/\log^k(nN))\) (for any \(k \geq 0\)), \(\delta = 0.3\), and \(\mathcal{G} = \mathcal{U}(C)\). The algorithm uses polylogarithmic space in \(n\) and \(N\), and makes a single pass over the input stream \(D(n, N)\).
\end{theorem}

We can reduce the constant failure probability to inverse polynomial via standard methods.

Along the way, we also design a zero-one law (i.e., a test) which, given a function \(G\), determines if it is possible to solve the \(G\)-Sum problem using polylogarithmic space in \(n\) and \(N\) while making one pass over the stream \(D\). If \(G\) passes the test, we give an explicit algorithm which achieves a \((1 \pm \epsilon)\)-approximation except with negligible probability (making only one pass and using polylogarithmic memory). To formalize our other main result, we define the following class \textbf{STREAM-POLYLOG}:

\begin{definition}[\textbf{STREAM-POLYLOG}] We say function \(G \in \text{STREAM-POLYLOG}\) if \(\forall k = O(1)\), \(\exists t = O(1)\) and an algorithm \(A\) such that for any universe size \(n\), window size \(N\), \(\epsilon \geq 1/\log^k(nN)\), and stream \(D(n, N)\): 1) \(A\) makes one pass over \(D\), 2) \(A\) uses \(O(\log^t(nN))\) space, and 3) For any window \(W\), \(A\) maintains a \((1 \pm \epsilon)\)-approximation of \(|G(M(W))|\) except with probability at most 0.3.
\end{definition}
are monotonically increasing, our lower bound will apply for asymptotically large x reasons, we pad the last time step into the stream, and for each time step that is not chosen, we insert zero elements. For technical $G \notin \text{Tractable}$, our lower bound must use memory at least logarithmic in the size of this set.

Theorem 2. Let G be a non-decreasing function such that $G(0) = 0$: $G \in \text{STREAM-POLYLOG} \iff G \in \text{Tractable}$.

3 Lower Bound for Sliding Windows

In this section, we give a space lower bound for any non-tractable function G. We first show a deterministic lower bound for any algorithm that approximates the G-Sum problem. Our technique is inspired by the lower bound proof in [29] for estimating the number of 1’s for sliding windows.

Theorem 3. Let G be a function such that $G \notin \text{Tractable}$. Then, any deterministic algorithm that solves the G-Sum problem with relative error $\epsilon' = 1/\log^b(nN)$ (for some constant b) must use space at least $\Omega(\log^a(nN))$, where a is arbitrarily large.

Proof. We construct a set of input streams such that, for any pair of data streams in the set, the algorithm must distinguish between these two inputs at some point as the window slides. Therefore, the space of the algorithm must be at least logarithmic in the size of this set.

Since $G \notin \text{Tractable}$ in Definition 5, either Predicate (1) or (2) does not hold. If Predicate (1) does not hold, then the lower bound from [16] applies and we are done. Hence, we assume that Predicate (2) does not hold, implying: $\exists k, \forall x, N, \exists \epsilon > 0 : x > \frac{1}{\log^a(x)} \land \pi(x) < \frac{x}{\log^a(x)}$. Let k be given, and let r be arbitrarily large. This negation implies that there are infinitely many increasing points x_1, x_2, x_3, \ldots and corresponding values $\epsilon_1, \epsilon_2, \epsilon_3, \ldots$, where $\epsilon_i > \frac{1}{\log^a(x_i)}$ and $\pi(x_i) < \frac{x_i}{\log^a(x_i)}$.

Surprisingly, we will construct our lower bound with a universe of size $n = 1$, namely $U = \{1\}$. For each x_i, we will construct a set of streams with a fixed, upper bounded window size of $N = x_i$, and argue that the algorithm must use memory at least $\log r(x_i)$ (note that, as the x_i are monotonically increasing, our lower bound will apply for asymptotically large N). We assume without loss of generality that $G(x_i - \pi(x_i)) < (1 - \epsilon)G(x_i)$.

Our constructed streams will be as follows. For each $N = x_i$ note that our window consists of elements which have arrived in the past x_i time steps. For the first x_i time steps, we construct many streams by choosing $\left\lfloor \frac{x}{\pi(x_i)} \right\rfloor$ of these time steps (each choice defining a different stream). For each chosen time step, we insert $\pi(x_i) 1$’s into the stream, and for each time step that is not chosen, we insert zero elements. For technical reasons, we pad the last time step x_i in the first window with $x_i - \pi(x_i) 1$’s. Note that the number of elements in the first window at time x_i is $\pi(x_i) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor + (x_i - \pi(x_i)) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor = x_i$.

We insert nothing at time step $x_i + 1$. For the remaining time steps $x_i + 2, \ldots, 2x_i - 1$, we simply repeat the first $x_i - 2$ time steps of the stream (i.e., if time step t was chosen in the first x_i time steps, $1 \leq t \leq x_i - 2$, then we insert $\pi(x_i) 1$’s at time step $x_i + t + 1$).

Now, we argue that for any such pair of constructed streams A, B which are different, any algorithm with relative error smaller than $\epsilon' = 1/\log^k(nN)$ must distinguish between these two inputs. To see this, consider the earliest time d when the two streams differ (note that $1 \leq d \leq x_i - 1$). Let W_A be the window for stream A (and similarly W_B for stream B). Let c be the number of chosen time steps in the first d time steps of stream A. Without loss of generality, we assume time step d was chosen in stream A but not stream B. Hence, the number of chosen time steps in stream B up to time d is $c - 1$. Consider the windows at time step $x_i + d$. The number of elements in W_A at this time is given by $\pi(x_i) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor - c + (c - 1) + x_i - \pi(x_i) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor = x_i - \pi(x_i)$. Moreover, the number of elements in W_B is given by $\pi(x_i) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor - (c - 1) + (c - 1) + x_i - \pi(x_i) \left\lfloor \frac{x_i}{\pi(x_i)} \right\rfloor = x_i$. Note that the constant error probability can be made to be as small as an inverse polynomial by standard techniques. Our other main result is the following theorem:
Hence, the G-Sum value at time $x_i + d$ for W_A is $G(x - \pi_{\ell_i}(x_i)) < (1 - \epsilon_i)G(x_i)$. As long as the algorithm has relative error $\epsilon' = 1 / \log^k (nN) < \epsilon_i$, streams A and B must be distinguished.

Thus, the algorithm’s memory is lower bounded by the logarithm of the number of constructed streams, of which there are $(\frac{x_i}{\pi_{\ell_i}(x_i)})$ for each x_i. We have $\log((\frac{x_i}{\pi_{\ell_i}(x_i)}) \geq \log(\pi_{\ell_i}(x_i)) \geq \frac{\log(x)}{2} \log(\pi_{\ell_i}(x_i))$. If $\pi_{\ell_i}(x_i) = 1$, we repeat the proof inserting two 1’s at each time step and the proof goes through. Observing that r can be made arbitrarily large gives the proof. \hfill \Box

We now have a randomized lower bound by appealing to Yao’s minimax principle \cite{52} and building on top of our deterministic lower bound, similarly to \cite{29}.

Theorem 4. Let G be a function where $G \not\in$ Tractable. Then, any randomized algorithm that solves G-Sum with relative error smaller than $\epsilon' = 1 / \log^k (nN)$ for some constant b and succeeds with at least constant probability $1 - \delta$ must use memory $\Omega(\log^a (nN))$, where a is arbitrarily large.

4 An Algorithm for Tractable Functions

In this section, we complete the proof of Theorem 2 by first approximating heavy elements:

Problem 2 (G-Core). We have a stream $D(n, N)$ and parameters $\epsilon, \delta > 0$. For each window W, with probability at least $1 - \delta$, maintain a set $S = \{g_1, \ldots, g_{\ell}\}$ such that $\ell = O^*(1)$ and there exists a set of indices $\{j_1, \ldots, j_{\ell}\}$ where $(1 - \epsilon)G(m_{j_i}) \leq g_i \leq (1 + \epsilon)G(m_{j_i})$ for each $1 \leq i \leq \ell$. If there is a $(G, 1)$-heavy element m_i with respect to $M(W)$, then $i \in \{j_1, \ldots, j_{\ell}\}$.

We begin solving the above problem with the following lemma (taken from \cite{16}).

Lemma 1. Let $V = (v_1, \ldots, v_n)$ be a vector with non-negative entries of dimension n and H be a pairwise independent random vector of dimension n with entries $h_i \in \{0, 1\}$ such that $P(h_i = 1) = P(h_i = 0) = \frac{1}{2}$. Denote by H' the vector with entries $1 - h_i$. Let $K > 10^4$ be a constant, and let $X = \langle V, H \rangle$ and $Y = \langle V, H' \rangle$. If there is an (F_1, K)-heavy element v_i with respect to V, then: $P((X > KY) \vee (Y > KX)) = 1$. If there is no $(F_1, \frac{K}{10^4})$-heavy element with respect to V, then: $P((X > KY) \vee (Y > KX)) \leq \frac{1}{2}$.

We now prove some lemmas related to how approximating values can affect the function G.

Lemma 2. Let $0 < \epsilon \leq \frac{1}{2}$, and let $x, u, v, y \geq 0$ satisfy $|x - u| \leq 0.1 \pi_e(x)$ and $v, y < 0.1 \pi_e(x)$, where $\pi_e(x) > 1$. Then $(1 - 4\epsilon)G(u + v + y) \leq G(u) \leq (1 + 4\epsilon)G(u - v - y)$.

Proof. First, we note that $u + v + y \leq x + 0.1 \pi_e(x) + v + y \leq x + 0.3 \pi_e(x) \leq x + \pi_e(x) - 1$ (recalling $\pi_e(x) > 1$). We can similarly get that $u - v - y \geq x - (\pi_e(x) - 1)$. Hence, we get that $(1 - \epsilon)G(x) \leq G(x - (\pi_e(x) - 1)) \leq G(u - v - y) \leq G(u) \leq G(u + v + y) \leq G(x + (\pi_e(x) - 1)) \leq (1 + \epsilon)G(x)$.

We conclude the proof by noting: $(1 + 4\epsilon)G(u + v + y) \geq (1 + 4\epsilon)(1 - \epsilon)G(x) \geq \frac{(1 + 4\epsilon)(1 - \epsilon)}{1 + \epsilon}G(u) \geq G(u)$. Similarly, we get $(1 - 4\epsilon)G(u + v + y) \leq (1 - 4\epsilon)(1 + \epsilon)G(x) \leq \frac{(1 - 4\epsilon)(1 + \epsilon)}{1 - \epsilon}G(u) \leq G(u)$. \hfill \Box

Lemma 3. Let $x, u, v, y \geq 0$ be such that $|x - u| \leq v + y$, and let $0 < \epsilon < 1$. If $(1 - \epsilon)G(u + v + y) \leq G(u)$ and $(1 + 4\epsilon)(1 - \epsilon)G(x) \leq G(u)$, then $(1 - \epsilon)G(x) \leq G(u) \leq (1 + \epsilon)G(x)$.

Proof. We have $(1 - \epsilon)G(x) \leq (1 - \epsilon)G(u + v + y) \leq G(u) \leq (1 + \epsilon)G(u - v - y) \leq (1 + \epsilon)G(x)$. \hfill \Box

We now give a useful subroutine over sliding windows which we will use in our main algorithm for approximating heavy elements and prove its correctness (there is a similar algorithm and proof in \cite{16}, though it must be adapted to the sliding window setting).
\begin{algorithm}
\begin{algorithmic}[1]
\State for $i = 1$ to $O(\log(nN))$ do
\State \quad for $j = 1$ to $C = O(1)$ do
\State \quad \quad Generate a random hash function $H : [n] \rightarrow \{0, 1\}$ with pairwise independent entries.
\State \quad \quad Let $H' = 1 - H$ (i.e., $h'_i = 1 - h_i$, where h_i is the ith entry of H).
\State \quad \quad Consider the smooth histogram method for approximating F_2 on sliding windows \cite{XZ}.
\State \quad \quad Let f_H be a $(1 \pm .1)$-approximation of F_2 on D_H (with negligible error probability).
\State \quad \quad Let $f_{H'}$ be a $(1 \pm .1)$-approximation of F_2 on $D_{H'}$ (with negligible error probability).
\State \quad \quad Let $X_{ij} = 10 \min\{f_H, f_{H'}\}$.
\State \quad \quad Let $Y_i = \frac{X_{ij} + \ldots + X_{ik}}{C}$ (i.e., Y_i is the average of C independent X_{ij}’s).
\State \quad \quad Output $r = \sqrt{\text{median}_i \{Y_i\}}$ for the current window W.
\end{algorithmic}
\caption{Residual-Approximation(D)}
\end{algorithm}

Lemma 4. Let $D(n, N)$ be any stream. Algorithm Residual-Approximation makes a single pass over D and uses polylogarithmic memory in n and N. Moreover, if the current window W contains an $(F_2, 2)$-heavy element m_k with respect to $M(W)$, then the algorithm maintains and outputs a value r such that $2\sqrt{F_2^\text{res}(M(W))} < r < 3\sqrt{F_2^\text{res}(M(W))}$ (except with negligible probability).

Proof. Assume the current window W has an $(F_2, 2)$-heavy element m_k with respect to $M(W)$. Due to the properties of smooth histograms from \cite{XZ}, we know that $.9F_2(M(W)) \leq f_H \leq 1.1F_2(M(W))$, where $M(W)$ is the multiplicity vector of the current window in subset D_H (similarly for $f_{H'}$). Hence, the random variable $X_{ij} = 10 \min\{f_H, f_{H'}\}$ is a $(1 \pm .1)$-approximation of the random variable $Z = 10 \sum_{\ell \neq k} 1_{H(\ell) \neq H(k)} m_{\ell}^2$ (here, $1_{H(\ell) \neq H(k)}$ is the indicator random variable which is 1 if $H(\ell) \neq H(k)$ and 0 otherwise). To see why, suppose that element k is mapped to 1 by H, so that k belongs to the subset D_H. Then observe that
\[
f_H \geq .9F_2(M(W)) \geq .9m_k^2 > 1.8 \sum_{\ell \neq k} m_{\ell}^2 \geq 1.1 \sum_{\ell} 1_{H(\ell) \neq H(k)} m_{\ell}^2 \geq f_{H'}.
\]
Hence, the minimum of f_H and $f_{H'}$ will indeed be a $(1 \pm .1)$-approximation to $\sum_{\ell} 1_{H(\ell) \neq H(k)} m_{\ell}^2$, since this is the second moment of the vector $M(W)$ (the case is symmetric if element k is mapped to 0 by H).

Now, since H is pairwise independent, we have that $E(Z) = 5F_2^\text{res}(M(W))$. In particular, since we always have $0 \leq Z \leq 10F_2^\text{res}(M(W))$, we can bound the variance by $\text{Var}(Z) \leq E(Z^2) \leq 100(F_2^\text{res}(M(W)))^2$. If we denote by A the random variable which is the average of C independent Z’s, then we have $\text{Var}(A) = \frac{1}{C}\text{Var}(Z) \leq \frac{100}{C}(F_2^\text{res}(M(W)))^2$. Hence, if we choose C to be sufficiently large, then by Chebyshev’s inequality we have:
\[
P(|A - 5F_2^\text{res}(M(W)|) \geq 0.1F_2^\text{res}(M(W))) \leq \frac{100\text{Var}(A)}{(F_2^\text{res}(M(W)))^2} \leq \frac{10^4}{C} \leq 0.1
\]
(for instance, $C = 10^5$ is sufficient).

Now, if we take the median T of $O(\log(nN))$ independent A’s, then by Chernoff bound this would make the probability negligible. That is, we have $4.9F_2^\text{res}(M(W)) \leq T \leq 5.1F_2^\text{res}(M(W))$ except with negligible probability. We can repeat these arguments and consider the median of $O(\log(nN))$ averages (i.e., the Y_i’s) of $O(1)$ independent X_{ij}’s. Since there are only $O(\log(nN))$ X_{ij}’s total (with each one being a $(1 \pm .1)$-approximation to its corresponding random variable Z, except with negligible probability), then by the union bound all of the X_{ij}’s will be...
(1 ± 0.1)-approximations except with negligible probability (since the sum of polylogarithmically many negligible probabilities is still negligible). Therefore, the median of averages would give a (1 ± 0.1)-approximation to \(T \). Taking the square root guarantees that \(2\sqrt{F_2^{\text{res}}(M(W))} < r < 3\sqrt{F_2^{\text{res}}(M(W))} \) (except with negligible probability).

Note that the subroutine for computing an approximation to \(F_2 \) on sliding windows using smooth histograms can be done in one pass and in polylogarithmic space (even if we demand a (1 ± 0.1)-approximation and a negligible probability of failure).

Now, we claim that Algorithm Compute-Hybrid-Major solves the following problem:

Problem 3 (Hybrid-Major\((D, \epsilon)\)). Given a stream \(D \) and \(\epsilon > 0 \), maintain a value \(r \geq 0 \) for each window \(W \) such that: 1) If \(r \neq 0 \), then \(r \) is a \((1 + 4\epsilon)\)-approximation of \(G(m) \) for some \(m \), and 2) If the current window \(W \) has an element \(m_i \) such that \(\pi_\epsilon(m_i) \geq 20^5\sqrt{F_2^{\text{res}}(M(W))} \), then \(r \) is a \((1 + 4\epsilon)\)-approximation of \(G(m) \).

Algorithm 2: Compute-Hybrid-Major\((D, \epsilon)\)

1. Let \(a \) be a \((1 + \epsilon')\)-approximation of \(L_2 \) for window \(W \) using the smooth histogram method [15] (with negligible probability of error), where \(\epsilon' = \frac{1}{\log(nN)} \).
2. Repeat \(O(\log(nN)) \) times, independently and in parallel:
 1. Generate a uniform pairwise independent vector \(H \in \{0, 1\}^n \).
 2. Maintain and denote by \(X' \) a \((1 - 0.2)\)-approximation of the second moment for the window \(W_H \) using a smooth histogram [15] (with negligible probability of error).
 3. Similarly define \(Y' \) for the window \(W_{1-H} \).
 4. If \(X' < (20)^4Y' \) and \(Y' < (20)^4X' \), then output 0 and terminate the algorithm.
 5. In parallel, apply Residual-Approximation\((D)\) to maintain the residual second moment approximation, let \(b \) denote the output of the algorithm.
 6. If \((1 - 4\epsilon)G(a + b + 2\epsilon'a) > G(a)\) or \(G(a) > (1 + 4\epsilon)G(a - b - 2\epsilon'a)\), then output 0.
 7. Otherwise, output \(G(a) \).

Before delving into the proof, we first give the following useful lemma.

Lemma 5. Suppose the current window \(W \) contains an \((F_2, 1)\)-heavy element \(m_i \). Moreover, let \(a \) be a \((1 + \epsilon')\)-approximation of the \(L_2 \) norm of the current window \(W \), where \(\epsilon' < 1 \). Then \(-\epsilon'm_i \leq a - m_i \leq (1 + \epsilon')\sqrt{F_2^{\text{res}}(M(W))} + \epsilon'm_i \leq 2\sqrt{F_2^{\text{res}}(M(W))} + \epsilon'm_i \).

Proof. Since \(a \) is a \((1 + \epsilon')\)-approximation of the \(L_2 \) norm of \(M(W) \), we have \((1 - \epsilon')\sqrt{\sum_{k=1}^{n} m_k^2} \leq a \leq (1 + \epsilon')\sqrt{\sum_{k=1}^{n} m_k^2} \). Hence, we have that

\[
 a - m_i \leq (1 + \epsilon')\sqrt{\sum_{k=1}^{n} m_k^2} - m_i \leq (1 + \epsilon')m_i + (1 + \epsilon')\sqrt{\sum_{j \neq i} m_j^2} - m_i \leq \epsilon'm_i + (1 + \epsilon')\sqrt{F_2^{\text{res}}(M(W))}.
\]

Moreover, we have \(m_i - a \leq m_i - (1 - \epsilon')\sqrt{\sum_{k=1}^{n} m_k^2} \leq m_i - (1 - \epsilon')m_i \), which gives the lemma.

Lemma 6. Compute-Hybrid-Major solves Hybrid-Major\((D, \epsilon)\) with negligible probability of error.
Theorem 5. Let \(M' \) be the vector with entries \(m_i^2 \) and denote \(X = \langle M', H \rangle, Y = |M'| - \langle M', H \rangle \). Since we have an \(F_2 \) approximation over sliding windows, except with negligible probability, \(X' \) and \(Y' \) are \((1 \pm 2\epsilon)\)-approximations of \(X \) and \(Y \), respectively. Hence, \(\frac{4}{9}X \leq X' \leq \frac{5}{9}X \) and \(\frac{4}{9}Y \leq Y' \leq \frac{5}{9}Y \).

By Lemma 1 except with probability at most \(0.5 + o(1) \): \(X' \leq \frac{4}{9}X \leq \frac{4}{9}(10)^{4Y} < (20)^4 Y' \) and \(Y' < (20)^4 X' \). Thus, the algorithm outputs 0 except with negligible probability.

Assume that there is an \((F_2, 2)\)-heavy entry \(m_i \). Then, applying Lemma 5 with some \(0 < \epsilon' < 1 \) to be set later, we know \(|m_i - a| \leq 2 \sqrt{\frac{F_2^*}{2}(M(W))} + \epsilon' m_i \) and \(a \geq (1 - \epsilon')m_i \) (except with negligible probability). By Lemma 4 it follows that \(2 \sqrt{\frac{F_2^*}{2}(M(W))} < b < 3 \sqrt{\frac{F_2^*}{2}(M(W))} \) except with negligible probability. Hence, we have \(|m_i - a| \leq b + \epsilon'm_i \leq b + 2\epsilon'a \), since \(2\epsilon'a \geq 2\epsilon'(1 - \epsilon')m_i \geq \epsilon'm_i \) (assuming \(\epsilon' \leq \frac{1}{2} \)). Now, observe that if the algorithm outputs \(G(a) \), then it must be that \((1 - 4\epsilon)G(a + b + 2\epsilon'a) \leq G(a) \leq (1 + 4\epsilon)G(a - b - 2\epsilon'a) \). Thus, by applying Lemma 3 with parameters \(x = m_i, u = a, v = b, \) and \(y = 2\epsilon'a \), it follows that if the algorithm outputs \(G(a) \), then \(G(a) \) is a \((1 \pm 4\epsilon)\)-approximation of \(G(m_i) \). Thus, the first condition of Hybrid-Major follows.

Finally, assume \(\pi_e(m_i) \geq (20)^3 \sqrt{\frac{F_2^*}{2}(M(W))} \). By definition, \(m_i \geq \pi_e(m_i) \) and so \(m_i \) is \((F_2, 20^{10})\)-heavy with respect to \(M(W) \). By Lemma 4 we have \(\text{except with negligible probability} \): \(X' > 20^4 Y' \) or \(Y' > 20^4 X' \). Hence, except with negligible probability, the algorithm will not terminate before the last line. Let \(N_1 \) be the constant given by the definition of tractability in Definition 5. We assume \(m_i \geq N_1 \) (otherwise the number of elements in the window is constant). Also, let \(r \) be given by Definition 5. By applying Lemma 5 with \(\epsilon' = \frac{1}{\log^{-1}(N)} \), we have \(|m_i - a| \leq 2 \sqrt{\frac{F_2^*}{2}(M(W))} + \epsilon'm_i \leq 0.01\pi_e(m_i) + \frac{m_i}{\log N \log (m_i)} \leq 0.01\pi_e(m_i) + \frac{\pi_e(m_i)}{\log N} \leq 0.02\pi_e(m_i) \) for sufficiently large \(N \) (since \(G \) is tractable) and \(b \leq 3 \sqrt{\frac{F_2^*}{2}(M(W))} < 0.01\pi_e(m_i) \). Since \(b \leq 0.1\pi_e(m_i) \) and \(2\epsilon'a \leq 2\epsilon'(m_i + b + \epsilon'm_i) \leq 2 \cdot (0.03\pi_e(m_i)) \leq .1\pi_e(m_i) \), then by Lemmas 2 and 3 (which we apply with the same parameters, \(x = m_i, u = a, v = b, \) and \(y = 2\epsilon'a \), the algorithm outputs \(G(a) \) which is a \((1 \pm 4\epsilon)\)-approximation of \(G(m_i) \). Thus, the second condition of Hybrid-Major follows.

The next two lemmas are from [16] (the proof of Lemma 5 uses Predicate [1] from Definition 5).

Lemma 7. If \(G \) is tractable, then \(\exists N \forall N > N_1 \in \mathbb{N}^+ : G(N) \leq N^3 \).

Lemma 8. Let \(G \) be a non-decreasing tractable function. Then for any \(k = O(1) \), there exists \(t = O(1) \) such that for any \(n, N \) and for any \(\epsilon > \log^{-1}(nN) \) the following holds. Let \(D(n, N) \) be a stream and \(W \) be the current window. If there is a \((G, 1)\)-heavy element \(m_i \) with respect to \(M(W) \), then there is a set \(S \subseteq [n] \) such that \(|S| = O(\log(N)) \) and: \(\pi_e^2(m_i) = \Omega \left(\log^{-t}(nN) \sum_{j \in S \cup [i]} m_j^2 \right) \).

We now give the algorithm Compute-G-Core, which solves the G-Core problem (i.e., Problem 2), and prove its correctness. A similar algorithm appears in [16], we repeat it here for completeness, and to help design and understand our main result on universality.

Algorithm 3: Compute-G-Core(D, \epsilon, p)

1. Generate a pairwise independent hash function \(H : [n] \rightarrow \tau \), where \(\tau = O^* \left(\frac{1}{p} \right) \).
2. \(\forall k \in [\tau] \), compute in parallel \(c_k = \text{Compute-Hybrid-Major}(D_{H_k}, \frac{\tau}{4}) \), where \(H_k(i) = 1_{H(i) = k} \).
3. Output \(S = \{ c_k : c_k > 0 \} \).

Theorem 5. Algorithm Compute-G-Core solves \(G-Core(D, \epsilon, p) \), except with probability asymptotically equal to \(p \). Compute-G-Core uses \(O^* (1) \) memory bits if \(p = \Omega(1/\log^a(nN)) \) and \(\epsilon = \Omega(1/\log^k(nN)) \) for some \(a, k \geq 0 \).
Proof. Let W denote the current window. First, except with negligible probability, every positive c_i is a $(1 + 4 \cdot \frac{1}{	au})$-approximation of some distinct entry $G(m_j)$, which implies that c_i is a $(1 + \epsilon)$-approximation of $G(m_j)$. Second, assume that there exists a $(G, 1)$-heavy entry m_i with respect to $M(W)$. Denote $X = \sum_{j \neq i} m_j^2 1_{H(j) = H(i)}$. By pairwise independence of H, we have $E(X) = \frac{1}{\tau}(F_2(M) - m_i^2)$. By Lemma 8 there exists a set S and $t \geq 0$ such that $|S| = O(\log N)$ and:

$$\pi_i^2(m_i) = \Omega \left(\frac{\sum_{j \notin S \cup \{i\}} m_j^2}{\log^t(nN)} \right).$$

(5)

Let \mathcal{L} be the event that $\pi_i^2(m_i) > 2^{10} X$, and let \mathcal{B} be the event that $\forall j \in S : H(j) \neq H(i)$. By Markov’s inequality, by pairwise independence of H, and by (5), there exists $\tau = O^* \left(\frac{1}{p} \right)$ such that:

$$P(-\mathcal{L} = P(-\mathcal{L} | \mathcal{B}) \cdot P(\mathcal{B}) + P(-\mathcal{L} | -\mathcal{B}) \cdot P(-\mathcal{B}) \leq \frac{E(X | \mathcal{B}) 2^{10}}{\pi_i^2(m_i)} \cdot 1 + 1 \cdot \frac{O(\log N)}{\tau} \leq O^* \left(\frac{1}{\tau} \right) = p.$$

If \mathcal{L} occurs (which happens with probability at least $1 - p$), then $c_{H(i)}$ is a $(1 + \epsilon)$-approximation of $G(m_i)$ except with negligible probability (by Lemma 6). Thus, the final probability of error is approximately equal to p.

It is not too hard to see that Algorithm Compute-G-Core uses polylogarithmic memory. The subroutine depth is constant, and there are only polylogarithmically many subroutine calls at each level. At the lowest level, we only do direct computations on the stream that require polylogarithmic space or a smooth histogram computation for F_2 or L_2, which also requires polylogarithmic space. We get that for any constant k, there exists a constant t such that we can solve $G-Core(D, \epsilon, p)$ (except with probability p) using $O(\log^t(nN))$ space, where $\epsilon \geq \log^{-k}(nN)$.

In Appendix A we show how to reduce the G-Sum problem to the G-Core problem. In particular, we prove the following theorem. The algorithm and proof of correctness follow from [17]. We restate the algorithm and results using our notation for completeness.

Theorem 6. If there is an algorithm that solves G-Core using memory $O^*(1)$ and makes one pass over D except with probability $O(\log^{-u}(nN))$ for some $u > 0$, then there is an algorithm that solves G-Sum using memory $O^*(1)$ and makes one pass over D except with probability at most 0.3.

Note that we can reduce the failure probability from constant to inverse polynomial using standard techniques. Combining this with Theorem 5 and Theorem 4 we have Theorem 2.

5 Universality

In this section, we show the main result of this paper, Theorem 1, by designing a universal sum algorithm. We first construct a universal core algorithm, which we call UCA. That is, given a data stream, the algorithm produces a universal core structure with respect to the frequency vector (m_1, \ldots, m_n) defined by the current window W without knowing the function G to be approximated in advance. Let C be a constant and let $U(C)$ be the set according to Definition 6. The structure will have the guarantee that, when queried with any function G taken from $U(C)$ (after processing the stream), it outputs the set T according to Definition 7.
Universal Core Algorithm (UCA): The algorithm will construct a universal core structure \(S \) and our techniques will build on the results from Section 4 Algorithm Residual-Approximation from Section 4 does not depend on the function \(G \), so it clearly carries over to our universal setting.

Algorithm Compute-Hybrid-Major does depend on \(G \), so we have to modify it accordingly. We do not rewrite the whole algorithm, as there are only a few modifications. In Step 1, we set \(\epsilon' = \frac{1}{\log^{c+1}(N)} \). We get rid of Steps 8 and 9, and instead create a new Step 8 where we find the index \(j \) of an \((F_2, 2)\)-heavy element \(m_j \), if it exists (finding such an index can be done using standard methods, the details of which we omit for brevity). We also create a new Step 9 where we output the triple \((a, b, j)\) (assuming none of the parallel copies from Step 2 outputs 0).

We also need to modify Algorithm Compute-G-Core. In particular, the value of \(\tau \) in Step 1 should depend on \(C \), and we set it to \(\log^{c+2}(nN) \). Moreover, we remove Step 3 from the algorithm and store \(c_k \) for each \(k \in [\tau] \) as part of our data structure \(S \) (recall that \(c_k \) is either 0 or a triple \((a_k, b_k, j_k)\), where \(a_k, b_k \) are the values computed in the \(k^{th} \) parallel instance of the subroutine Compute-Hybrid-Major and \(j_k \) is the index of the corresponding \((F_2, 2)\)-heavy element).

Querying the Structure: Given a function \(G \in U(C) \) as a query to our universal core structure, we now explain how to produce the set \(T \) according to Definition 4.

For each stored \(c_k \) in the data structure \(S \) \((k \in [\tau])\), if \(c_k = 0 \), then we do not include it in our output set \(T \). Otherwise, if \(c_k \) is a triple \((a_k, b_k, j_k)\), then we include the pair \((G(a_k), j_k)\) in our set \(T \) as long as \((1 - 4\epsilon)\) \(G(a_k + b_k + 2\epsilon' a_k) \leq G(a_k) \leq (1 + 4\epsilon)\) \(G(a_k - b_k - 2\epsilon' a_k) \) (recall \(\epsilon' = \frac{1}{\log^{c+1}(N)} \)).

Theorem 7. Fix a parameter \(C \) and let \(U(C) \) be the set of tractable functions corresponding to the definition of universal tractability. Then \(U(C) \) is a universal core algorithm with parameters \(\epsilon = \Omega(1/\log^k(nN)) \) (for any \(k \geq 0 \), \(\delta = \Omega(1/\log^u(nN)) \) (for any \(u \geq 0 \), \(\alpha = 1 \), and \(\mathcal{G} = U(C) \).

Proof. The correctness of \(U(C) \) essentially follows from the proofs of the results in Section 4. In particular, Lemma 5 still holds since Algorithm Residual-Approximation is unchanged.

Lemma 6 still mostly holds without much modification. Using the same notation as in the original proof, if there is no \((F_2, 2)\)-heavy element, then the proof of Lemma 6 can still be applied and the modified version of Compute-Hybrid-Major will output 0 (except with negligible probability). In such a case, the universal core structure will store the value 0. If there is an \((F_2, 2)\)-heavy element \(m_{i_k} \) and the structure stores \((a_k, b_k, i_k)\), then again the proof applies.

The reason is that, when querying the universal core structure with a function \(G \), we check if \((1 - 4\epsilon)\) \(G(a_k + b_k + 2\epsilon' a_k) \leq G(a_k) \leq (1 + 4\epsilon)\) \(G(a_k - b_k - 2\epsilon' a_k) \), in which case the proof argues that \(G(a_k) \) is a \((1 \pm 4\epsilon)\)-approximation of \(G(m_{i_k}) \). In the case that \(\pi_\epsilon(m_{i_k}) \geq (20)^5 \sqrt{F_{2 \epsilon}^{\text{es}}(M(W))} \), the proof still goes through since we apply Lemma 5 with \(\epsilon' = \frac{1}{\log^{c+1}(N)} \), and we have \(|m_{i_k} - a_k| \leq 2\sqrt{F_2^{\text{es}}(M(W))} + \epsilon'm_{i_k} \leq 0.01\pi_\epsilon(m_{i_k}) + \frac{1}{\log N}\log^{c+1}(m_{i_k}) \leq 0.01\pi_\epsilon(m_{i_k}) + \frac{1}{\log N}\log^{c+1}(m_{i_k}) \leq 0.01\pi_\epsilon(m_{i_k}) + \frac{\pi_\epsilon(m_{i_k})}{\log N} \leq 0.02\pi_\epsilon(m_{i_k}) \) (here, similarly to Lemma 6 \(r \) is the constant given by the definition of universal tractability for \(U(C) \), and hence \(r \leq C \)).

Finally, we must argue the correctness of Theorem 5. Using some notation taken from the proof, consider an output \(c_k = (a_k, b_k, i_k) \) (if \(c_k = 0 \), the data structure does not output it to the set \(T \) and observe that \(G(a_k) \) for any \(a_k \) satisfying \((1 - 4\epsilon)\) \(G(a_k + b_k + 2\epsilon' a_k) \leq G(a_k) \leq (1 + 4\epsilon)\) \(G(a_k - b_k - 2\epsilon' a_k) \) is a \((1 \pm 4\cdot \frac{1}{\log^{c+1}(N)} \)\)-approximation of a distinct entry \(G(m_{i_k}) \). Moreover, if there is a \((G, 1)\)-heavy element \(m_{i_k} \), then we again have \(\pi_\epsilon^2(m_{i_k}) = \Omega \left(\log^{-(t+1)}(nN) \sum_{j \notin S_{\epsilon}(i_k)} m_j^2 \right) \). In fact, delving into the proof of Lemma 8 (found in [16]), we see that the specific value of \(t \) depends on \(G \), and is given by the definition of universal tractability for \(U(C) \). Since \(t \leq C \) and we choose \(\tau = \frac{\log^{c+2}(nN)}{p} \), we get the
The probability of the bad event $\neg L$ (using the same notation from Theorem 5) is bounded by:

$$\frac{E(X | B)2^{10}}{\pi^2(m_{ik})} + O(\log N) = \frac{2^{10} \log^{t+1}(nN) \sum_{j \notin S \cup \{ik\}} m_j^2}{\tau} + O(\log N) \leq p.$$

The rest of the proof goes through in the same way, and hence this gives the theorem.

We now argue how to use our universal core algorithm UCA as a subroutine to give the main result of the paper. The proof of the theorem below can be found in Appendix B, and the argument follows a similar one found in [17] (we reproduce it in the appendix for completeness).

Theorem 8. Fix a parameter C and let $U(C)$ be the set of tractable functions corresponding to the definition of universal tractability. Suppose there is a universal core algorithm that makes a single pass over D, uses polylogarithmic memory in n and N, and has parameters $\epsilon = \Omega(1/\log^k(nN))$ (for any $k \geq 0$), $\delta = \Omega(1/\log^u(nN))$ (for any $u \geq 0$), $\alpha = 1$, and $G = U(C)$. Then there is a universal sum algorithm with parameters $\epsilon = \Omega(1/\log^k(nN))$ (for $k \geq 0$), $\delta = 0.3$, and $G = U(C)$. The algorithm uses polylogarithmic space in n and N and makes a single pass over D.

We can reduce the failure probability of the universal sum algorithm to inverse polynomial via standard methods. Our main result, Theorem 1, follows from Theorem 7 and Theorem 8.

References

[1] List of open problems in sublinear algorithms: Problem 20. http://sublinear.info/20

[2] List of open problems in sublinear algorithms: Problem 30. http://sublinear.info/30

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In *Combinatorial and Computational Geometry*, MSRI, pages 1–30. University Press, 2005.

[4] C. C. Aggarwal. *Data streams: models and algorithms*, volume 31. Springer, 2007.

[5] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments. In *Proceedings of the 28th annual ACM Symposium on Theory of Computing*, 1996.

[6] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In *Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, 2004.

[7] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data. In *Proceedings of the 13th annual ACM-SIAM Symposium on Discrete Algorithms*, 2002.

[8] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan. Maintaining variance and k-medians over data stream windows. In *Proceedings of the 22nd annual ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, 2003.

[9] N. Bandi, D. Agrawal, and A. El Abbadi. Fast algorithms for heavy distinct hitters using associative memories. In *Proceedings of the 33rd annual IEEE International Conference on Distributed Computing Systems*, 2007.

[10] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics approach to data stream and communication complexity. In *Proceedings of the 43rd annual IEEE Symposium on Foundations of Computer Science*, 2002.
[11] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data stream. In *International Workshop on Approximation Algorithms for Combinatorial Optimization Problems*. Springer, 2002.

[12] L. Bhuvanagiri and S. Ganguly. Estimating entropy over data streams. In *Proceedings of the 14th annual European Symposium on Algorithms*, 2006.

[13] L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Simpler algorithm for estimating frequency moments of data streams. In *Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms*, 2006.

[14] V. Braverman, R. Gelles, and R. Ostrovsky. How to catch l_2-heavy-hitters on sliding windows. In *Proceedings of the 19th International Conference on Computing and Combinatorics*, pages 638–650. Springer, 2013.

[15] V. Braverman and R. Ostrovsky. Smooth histograms for sliding windows. In *Proceedings of the 48th annual IEEE Symposium on Foundations of Computer Science*, 2007.

[16] V. Braverman and R. Ostrovsky. Zero-one frequency laws. In *Proceedings of the 42nd annual ACM Symposium on Theory of Computing*, 2010.

[17] V. Braverman and R. Ostrovsky. Generalizing the layering method of Indyk and Woodruff: Recursive sketches for frequency-based vectors on streams. In *International Workshop on Approximation Algorithms for Combinatorial Optimization Problems*. Springer, 2013.

[18] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing the entropy of a stream. In *Proceedings of the 18th annual ACM-SIAM Symposium on Discrete Algorithms*, 2007.

[19] A. Chakrabarti, K. Do Ba, and S. Muthukrishnan. Estimating entropy and entropy norm on data streams. In *Proceedings of the 23rd annual Symposium on Theoretical Aspects of Computer Science*, 2006.

[20] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on the multi-party communication complexity of set disjointness. In *Proceedings of the 18th annual IEEE Conference on Computational Complexity*, 2003.

[21] T. M. Chan and B. S. Sadjad. Geometric optimization problems over sliding windows. In *Proceedings of the 15th annual International Conference on Algorithms and Computation*, 2004.

[22] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In *Proceedings of the 29th International Colloquium on Automata, Languages and Programming*. Springer, 2002.

[23] Y. Chi, H. Wang, P. S. Yu, and R. R. Muntz. Moment: Maintaining closed frequent itemsets over a stream sliding window. In *Proceedings of the 4th IEEE International Conference on Data Mining*, 2004.

[24] D. Coppersmith and R. Kumar. An improved data stream algorithm for frequency moments. In *Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms*, 2004.
[25] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams using hamming norms (how to zero in). *IEEE Transactions on Knowledge and Data Engineering*, 15(3):529–540, 2003.

[26] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. In *Proceedings of the 34th annual International Conference on Very Large Data Bases*, 2008.

[27] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its applications. *Journal of Algorithms*, 55(1):58–75, 2005.

[28] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items dynamically. *ACM Transactions on Database Systems*, 30(1):249–278, 2005.

[29] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding windows. In *Proceedings of the 13th annual ACM-SIAM Symposium on Discrete Algorithms*, 2002.

[30] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream windows. In *Proceedings of the 10th annual European Symposium on Algorithms*, 2002.

[31] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate l_1-difference algorithm for massive data streams. In *Proceedings of the 40th annual IEEE Symposium on Foundations of Computer Science*, 1999.

[32] J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming and sliding-window models. *Algorithmica*, 41(1):25–41, 2005.

[33] P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. *Journal of Computer and System Sciences*, 31(2):182–209, 1985.

[34] S. Ganguly. Estimating frequency moments of data streams using random linear combinations. In *International Workshop on Approximation Algorithms for Combinatorial Optimization Problems*. Springer, 2004.

[35] S. Ganguly and G. Cormode. On estimating frequency moments of data streams. In *International Workshop on Approximation Algorithms for Combinatorial Optimization Problems*. Springer, 2007.

[36] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In *Proceedings of the 14th annual ACM Symposium on Parallel Algorithms and Architectures*, 2002.

[37] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Identifying frequent items in sliding windows over on-line packet streams. In *Proceedings of the 3rd annual ACM SIGCOMM Conference on Internet Measurement*, 2003.

[38] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear approximation of entropy and information distances. In *Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms*, 2006.

[39] N. J. A. Harvey, J. Nelson, and K. Onak. Sketching and streaming entropy via approximation theory. In *Proceedings of the 49th annual IEEE Symposium on Foundations of Computer Science*, 2008.
[40] R. Hung, L. K. Lee, and H. F. Ting. Finding frequent items over sliding windows with constant update time. *Information Processing Letters*, 110(7):257–260, 2010.

[41] R. Hung and H. F. Ting. Finding heavy hitters over the sliding window of a weighted data stream. In *Proceedings of the 8th Latin American Conference on Theoretical Informatics*. Springer-Verlag, 2008.

[42] P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream computation. *Journal of the ACM (JACM)*, 53(3):307–323, 2006.

[43] P. Indyk and D. Woodruff. Tight lower bounds for the distinct elements problem. In *Proceedings of the 44th annual IEEE Symposium on Foundations of Computer Science*, 2003.

[44] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of data streams. In *Proceedings of the 37th annual ACM Symposium on Theory of Computing*, 2005.

[45] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically maintaining frequent items over a data stream. In *Proceedings of the 12th annual International Conference on Information and Knowledge Management*, pages 287–294. ACM, 2003.

[46] D. M. Kane, J. Nelson, and D. Woodruff. On the exact space complexity of sketching and streaming small norms. In *Proceedings of the 21st annual ACM-SIAM Symposium on Discrete Algorithms*, 2010.

[47] D. M. Kane, J. Nelson, and D. Woodruff. An optimal algorithm for the distinct elements problem. In *Proceedings of the 29th annual ACM Symposium on Principles of Database Systems*, 2010.

[48] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming algorithms for estimating entropy of network traffic. In *Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems*, 2006.

[49] L. K. Lee and H. F. Ting. Frequency counting and aggregation: A simpler and more efficient deterministic scheme for finding frequent items over sliding windows. In *Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems*, 2006.

[50] P. Li. Compressed counting. In *Proceedings of the 20th annual ACM-SIAM Symposium on Discrete Algorithms*, 2009.

[51] Y. Li, H. Nguyén, and D. Woodruff. Turnstile streaming algorithms might as well be linear sketches. In *Proceedings of the 46th annual ACM Symposium on Theory of Computing*, 2014.

[52] R. Motwani and P. Raghavan. *Randomized Algorithms*. Cambridge University Press, 1995.

[53] S. Muthukrishnan. *Data streams: algorithms and applications*, volume 1. Now Publishers Inc., 2005.

[54] G. Nie and Z. Lu. Approximate frequency counts in sliding window over data stream. In *Proceedings of the Canadian Conference on Electrical and Computer Engineering*, 2005.

[55] N. Nisan. Pseudorandom generators for space-bounded computations. In *Proceedings of the 22nd annual ACM Symposium on Theory of Computing*, 1990.
[56] L. O’callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. Streaming-data algorithms for high-quality clustering. In Proceedings of the 18th annual IEEE International Conference on Data Engineering, 2002.

[57] S. Venkataraman, D. Song, P. B. Gibbons, and A. Blum. New streaming algorithms for fast detection of superspreaders. In Proceedings of the 12th annual Network and Distributed System Security Symposium, 2005.

[58] D. Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms, 2004.

[59] L. Zhang and Y. Guan. Frequency estimation over sliding windows. In Proceedings of the 29th IEEE International Conference on Data Engineering, 2008.

A G-Sum from G-Core

In this section, we prove Theorem 6. As mentioned, the algorithm and correctness follow from [17]. We include the algorithm here for completeness, and rephrase it and the results using notation from our paper.

Let G be a tractable function according to Definition 5 and let D(n, N) be a stream given as input. We show how to construct an algorithm that solves the G-Sum problem by using our algorithm for G-Core as a subroutine. In particular, let Compute-G-Core be our algorithm from Section 4 that solves the G-Core problem. Note that for the output set S = \{g'_1, \ldots, g'_i\} maintained by Compute-G-Core, using standard techniques one can easily obtain the explicit set of indices \{j_1, \ldots, j_\ell\} such that \((1 - \epsilon)G(m_{j_i}) \leq g'_i \leq (1 + \epsilon)G(m_{j_i})\) for each \(1 \leq i \leq \ell\). Hence, we assume that Compute-G-Core outputs a set of pairs of the form \{(g'_1, j_1), \ldots, (g'_\ell, j_\ell)\}.

In the language of [17], Compute-G-Core produces a \((1, \epsilon)\)-cover with respect to the vector \(G(M(W)) = (G(m_1), \ldots, G(m_n))\) with probability at least \(1 - \delta\), where \(\epsilon = \Omega(1/\log^k(nN))\) (for any \(k \geq 0\)) and \(\delta = \Omega(1/\log^u(nN))\) (for any \(u \geq 0\)). Given the tractable function \(G\), our algorithm for G-Sum is as follows:

1. Generate \(\phi = O(\log(n))\) pairwise independent, uniform zero-one vectors \(H_1, \ldots, H_\phi : [n] \rightarrow \{0, 1\}\), and let \(h^k = H_k(i)\). Let \(D_k\) be the substream defined by \(D_{H_1H_2\ldots H_k}\), and let \(G(M(W_k)) = (G(m_1), \ldots, G(m_n))\) for the substream \(D_k\) and window \(W\) (where \(k \in [\phi]\)).
2. Maintain, in parallel, the cores \(Q_k = \text{Compute-G-Core}(D_k, \phi^3, \epsilon, \frac{1}{\phi})\) for each \(k \in [\phi]\).
3. If \(F_0(G(M(W_\phi))) > 10^{10}\), then output 0.
4. Otherwise, precisely compute \(Y_\phi = |G(M(W_\phi))|\).
5. For each \(k = \phi - 1, \ldots, 0\), compute \(Y_k = 2Y_{k+1} - \sum_{(g'_i, j_i) \in Q_k} (1 - 2h^k_{j_i})g'_i\).
6. Output \(Y_0\).

Algorithm 4: G-Sum(D, \epsilon)

Note that, in our paper, Compute-G-Core(D, \epsilon, \delta) only takes three parameters (the stream \(D\), the error bound \(\epsilon\), and the failure probability \(\delta\)), while the algorithm from [17] assumes four parameters of the form Compute-G-Core(D, \alpha, \epsilon, \delta). Here, \(D\), \(\epsilon\), and \(\delta\) have the same meaning as in our paper. The parameter \(\alpha\) controls how heavy an element needs to be (according to the function \(G\)) in order to necessarily be in the output set of Compute-G-Core. That is, in the set \(T = \{(x_1, j_1), \ldots, (x_\ell, j_\ell)\}\) output by Compute-G-Core, if there is an \(i\) such that \(m_i\) is \((G, \alpha)\)-heavy
with respect to $M(W)$, then $i \in \{j_1, \ldots, j_\ell\}$. In Section \[A\], we solve the problem for $\alpha = 1$, but Algorithm G-Sum needs the problem solved for $\alpha = \frac{\phi^3}{\epsilon^2 r}$. However, using standard techniques, we can reduce the problem of solving G-Core for $\alpha = \frac{\phi^3}{\epsilon^2 r}$ to the same problem for $\alpha = 1$.

Theorem 9. For any tractable function G, Algorithm G-Sum computes a $(1 \pm \epsilon)$-approximation of $|G(M(W))|$ except with probability at most 0.3, where $\epsilon = \Omega(1/\log^k(nN))$ for any $k \geq 0$. The algorithm uses memory that is polylogarithmic in n and N.

Proof. The proof of this theorem follows directly from Theorem 1 in [17].

Note that we can turn the constant failure probability into an inverse polynomial failure probability using standard techniques.

B Universal Sum from Universal Core

In this section, we prove Theorem \[B\] The algorithm and proof are similar to that of Appendix \[A\] except that we need to carry out the argument within our universal framework. As mentioned, the algorithm and correctness follow from [17]. We do not rewrite the whole algorithm, but instead describe the necessary modifications that need to be made from Appendix \[A\].

Let $D(n, N)$ be a stream given as input to our universal sum algorithm. Let UCA be our universal core algorithm from Theorem \[7\] Section \[5\] the parameters of which are specified in our universal sum algorithm description.

Universal Sum Algorithm: We describe the modifications that need to be made to Algorithm G-Sum from Appendix \[A\].

In Step 2, instead we need to maintain and store the output $Q_k = UCA$ with parameters $\alpha = \frac{\phi^3}{\epsilon r}, \epsilon$ (i.e., the one given as input to our universal sum algorithm), $\delta = \frac{1}{\phi}$, and $G = U(C)$ for each $k \in [\phi]$ (in the k^{th} parallel iteration, UCA is given the stream D_k as input). As in Appendix \[A\] we construct a universal core structure for $\alpha = 1$, but we can reduce the problem of $\alpha = \frac{\phi^3}{\epsilon^2 r}$ to $\alpha = 1$. Note that Q_k is of the form $\{(a_1, b_1, j_1), \ldots, (a_\ell, b_\ell, j_\ell)\}$ (Q_k may have 0’s as well, which we simply ignore). For each such triple (a_i, b_i, j_i), we also store the value of $h^k_{j_i} = H_k(j_i)$.

In Step 3, instead we check if $F_0(M(W_\phi)) \leq 10^{10}$, and if so we store $M(W_\phi)$ (recall $M(W_\phi)$ denotes the frequency vector (m_1, \ldots, m_n) for the substream D_ϕ induced by W). We remove Steps 4, 5, and 6.

Querying the Structure: Now, given a function $G \in U(C)$, we explain how to query the universal sum structure output by our universal sum algorithm to approximate $|G(M(W))|$. In particular, for each k we first query the universal core structure output by UCA to get a set $Q'_k = \{(x_1, j_1), \ldots, (x_\ell, j_\ell)\}$. Then, we compute $Y_\phi = |G(M(W_\phi))|$ and, for each $k = \phi - 1, \ldots, 0$, we recursively compute Y_k according to:

$$Y_k = 2Y_{k+1} - \sum_{(x_i, j_i) \in Q_k} (1 - 2h^k_{j_i})x_i.$$

Once each Y_k has been computed for $0 \leq k \leq \phi$, we output Y_0.

Theorem 10. Fix a parameter C and let $U(C)$ be the set of tractable functions corresponding to the definition of universal tractability. There is a universal sum algorithm with parameters

$$\alpha = \frac{\phi^3}{\epsilon^2 r}, \epsilon = \Omega(1/\log^k(nN))$$

for any $k \geq 0$. The algorithm uses memory that is polylogarithmic in n and N. The proof of this theorem follows directly from Theorem 1 in [17].

Note that we can turn the constant failure probability into an inverse polynomial failure probability using standard techniques.
\(\epsilon = \Omega(1/\log^k(nN)) \) (for \(k \geq 0 \)), \(\delta = 0.3 \), and \(G = \mathcal{U}(C) \). The algorithm uses polylogarithmic space in \(n \) and \(N \) and makes a single pass over \(D \). When querying the universal sum structure (output by the universal sum algorithm) with a function \(G \in \mathcal{U}(C) \), it outputs a \((1 \pm \epsilon)\)-approximation of \(|G(M(W))|\) except with probability at most 0.3.

\begin{proof}

The proof of this theorem follows directly from Theorem 1 in [17].

\end{proof}