The first record of *Pseudanthobothrium hanseni* Baer, 1956 (Cestoda: Echeneibothriidae) in the White Sea

I.I. Gordeev¹², T.A. Polyakova³

¹ Lomonosov Moscow State University, Leninskiye Gory 1/12, 119234, Moscow, Russia.
² Russian Federal Research Institute of Fisheries and Oceanography, Verkhm. Krasnoselskaya Str. 17, 107140, Moscow, Russia. E-mail: gordeev_ilya@bk.ru
³ The A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Av. 2, 299011, Sevastopol, Russia. E-mail: polyakova-acant@yandex.ru

ABSTRACT: Cestodes are fairly common in teleost fishes in the White Sea but have never been previously recorded there in elasmobranchs. We found seven individuals of the cestode *Pseudanthobothrium hanseni* in a single specimen of the starry ray *Amblyraja radiata* caught in the White Sea. Molecular analysis based on partial 28S rDNA sequence confirmed that our specimens belonged to this species. Their morphological and morphometric features were compared with the descriptions of *P. hanseni* available in the literature. Specimens of *P. hanseni* from the White Sea were smaller than those from the other areas, had fewer testes, and the vitelline follicles in their mature terminal proglottids did not reach the proglottid’s posterior end. The reasons of these differences are unclear, but the low salinity of the White Sea may play a certain role. To sum up, in this study we provided the first record of a cestode in an elasmobranch in the White Sea and added a new point to the distribution of *P. hanseni*.

How to cite this article: Gordeev I.I., Polyakova T.A. 2020. The first record of *Pseudanthobothrium hanseni* Baer, 1956 (Cestoda: Echeneibothriidae) in the White Sea // Invert. Zool. Vol.17. No.4. P.361–369. doi: 10.15298/invertzool.17.4.02

KEY WORDS: tapeworm, skate, White Sea, 28S rDNA, helminth, Arctic.

Первая находка *Pseudanthobothrium hanseni* Baer, 1956 (Cestoda: Echeneibothriidae) в Белом море

И.И. Гордеев¹², Т.А. Полякова³

¹ Московский государственный университет им. М.В. Ломоносова, Ленинские горы д. 1/12, Москва, 119234, Россия.
² Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии, ул. Верхняя Красносельская 17, Москва, 107140, Россия. E-mail: gordeev_ilya@bk.ru
³ Институт биологии южных морей РАН им. А.О. Ковалевского, пл. Нахимова, 2, Севастополь, 299011, Россия. E-mail: polyakova-acant@yandex.ru

РЕЗЮМЕ: Цестоды являются одними из наиболее распространенных паразитов костистых рыб в Белом море, однако ранее ни разу не были найдены у хрящевых рыб этой акватории. В данной работе мы приводим сведения о первой находке семи особей *Pseudanthobothrium hanseni* в Белом море у ската *Amblyraja radiata*. Филогенетический анализ по 28S подтвердил видовую принадлежность наших цестод. Проведено сравнение их морфологических и морфометрических признаков с описа-
Cestodes are broadly distributed helminths parasitizing as adults a broad range of hosts including various fishes. The fauna of cestodes parasitizing teleost fishes in the White Sea is studied fairly well. It is rather poor, comprising only a few common species such as Diplocotyle olrikii Krabbe, 1874, Bothriocephalus scorpii (Müller, 1776) Cooper, 1917 species complex, Pyramicocephalus phocarum (Fabricius, 1780) Monticelli, 1890, Schistocephalus solidus (Müller, 1776) Steenstrup, 1857, Eubothrium crassum (Bloch, 1779) Nybelin, 1922 and Proteocephalus longicollis (Zeder, 1800) Nufer, 1905, as well as various cestode larvae of uncertain generic affiliation (Shulman, Shulman-Albova, 1953; Glukhova, 1956; Timofeeva, Marasaeva, 1984; Tchesunov et al., 2008). However, no cestodes from elasmobranchs have ever been reported in the White Sea.

Elasmobranchs are rare in the White Sea. Only two species of rays (the starry ray Amblyraja radiata (Donovan, 1808) and the thornback ray Raja clavata Linnaeus, 1758) and two species of sharks (the picked dogfish, Squalus acanthas Linnaeus, 1758 and the Greenland shark Somniosus microcephalus (Bloch et Schneider, 1801) inhabit its cold low-salinity waters (Tchesunov et al., 2008). The salinity in the White Sea has sharp seasonal fluctuations, dropping below 15‰ in some shallow areas (Babkov, 1998).

In this paper we report a finding of the cestode Pseudanthobothrium hanseni Baer, 1956 in the starry ray A. radiata in the White Sea, thus adding a new point to the distribution of this parasite in the Arctic. We also provide morphometric data on our specimens and confirm their species affiliation with the help of molecular analysis based on the partial 28S rDNA sequence.
The first record of *Pseudanthobothrium hanseni* in the White Sea

1294.C.3m.v8 — separate strobila; 1295.C.3m.v9 — separate strobila) were deposited in the collection of marine parasites in the A.O. Kovalevsky Institute of Biology of the Southern Seas (IBSS), Sevastopol; sample data are available at http://marineparasites.org (Dmitrieva et al., 2015). Parasitological indices follow Bush et al. (1997).

DNA extraction, amplification, sequencing, alignment and phylogenetic analysis

The total DNA was extracted from 96% ethanol-fixed adult worm using Wizard SV Genomic DNA Purification System (Promega), as recommended by the manufacturer. The nuclear 28S rRNA gene was amplified using the polymerase chain reaction (PCR) with the primers ZX-1 (5'-ACCCGCTGAATTTAAGCATAT-3'), 1500R (5'-GCTATCCTGAGGGAACTTTCG-3'), LSU_300F (5'-CAAGTCGTCAGGAAAAGTTG-3'), 1090F (5'-TGAAACACGGACCAAGG-3'), LSU_1200F (5'-CCCGAAAGATGGTGAACTATGC-3'), ECD2 (5'-CTTGGTCCGTGTTTCAAGACGGG-3'), which were described earlier (Waeschchenbach, Littlewood, 2017). The initial PCR was performed in a total volume of 20 µl that contained 0.25 mM of each primer pair, 1 µl DNA in water, 1× Taq buffer, 1.25 mM dinucleotide triphosphates (dNTPs), 1.5 mM MgCl2 and 1 unit of Taq polymerase. The amplification was carried out by CJSC Eurogen (Moscow) with a 3-min denaturation hold at 94 °C, 40 cycles of 30 s at 94 °C, 30 s at 55 °C and 2 min at 72 °C, and a 10-min extension hold at 72 °C. Negative and positive controls were amplified using all primers. The PCR products were directly sequenced using the ABI Big Dye Terminator v.3.1 Cycle Sequencing Kit, as recommended by the manufacturer, with the PCR primers. The PCR products were analyzed by CJSC Eurogen (Moscow). The obtained sequence of *P. hanseni* has been submitted to GenBank (NSBI) with accession number MT777179.

Partial sequence of the 28S rRNA gene, used in our study to evaluate the phylogenetic connections of our specimen, were assembled using the Geneious ver. 10.0.5 software and aligned with sequences retrieved from the GenBank database (Table 1) using the ClustalW DNA weight matrix within the MEGA 10.0.5 software alignment explorer (Kumar et al., 2018). Phylogenetic analysis of the nucleotide sequences was undertaken using the maximum likelihood (ML) and Bayesian (BI) methods. Phylogenetic trees using ML and BI methods were reconstructed using the MEGA 10.0.5 (Kumar et al., 2018) and MrBayes v. 3.6.2 software (Ronquist, Huelsenbeck, 2003), respectively. Best nucleotide substitution model for the dataset was estimated using jModelTest version 0.1.1 software (Posada, 2008). In both methods, the general time-reversible model GTR+G+I was used based on the Aikake Information Criteria (AIC). A Bayesian algorithm was performed using the Markov chain Monte Carlo (MCMC) option with ngen = 10,000,000, nruns = 2, nchains = 4 and samplefreq = 100. The burnin values were 2,500,000 for the ‘sump’ and ‘sumt’ options. The robustness of the phylogenetic relationship was estimated using bootstrap analysis with 1000 replications (Felsenstein, 1985) for ML and with posterior probabilities for BI (Ronquist, Huelsenbeck, 2003). Outgroup choice follows Healy et al. (2009).

Results

Seven cestode specimens were found in the spiral valve of the dissected starry ray. As evidenced by 28S gene-based phylogenetic analysis, all of them belonged to *P. hanseni* (intensity of infection, 7) (Fig. 1). Many morphological characteristics of our specimens (Fig. 2) corresponded to the redescription of *P. hanseni* from *A. radiata* collected in the Western Passage (Bay of Fundy, Canada) (Randhawa et al., 2008). However, after an analysis of morphological and morphometric features of the White Sea specimens some differences were also revealed (Table 2). It is important to note that the cestodes at our disposal were mature, being represented by proglottids with a formed uterus but without eggs, while the descriptions of *P. hanseni* in the literature are based on gravid speci-
Table 1. Data on the 28S rDNA sequences used in the phylogenetic analysis.
Таблица 1. Данные о последовательностях 28S рДНК, использованных в филогенетическом анализе.

GenBank ID	Parasite	Host	Locality	Reference
MT525320	Pseudanthobothrium hanseni	Amblyraja radiata	White Sea	this study
MH688744	Pseudanthobothrium hanseni	Malacoraja senta	Canada: Passamaquoddy Bay	Beer et al., 2019
MH688743	Pseudanthobothrium hanseni	Amblyraja doellojurado	Atlantic Ocean: Falkland Islands	Beer et al., 2019
MH688745	Pseudanthobothrium hanseni	Amblyraja radiata	North Sea	Beer et al., 2019
MH688741	Pseudanthobothrium purtoni	Leucoraja erinacea	Canada: Passamaquoddy Bay	Beer et al., 2019
MH688740	Pseudanthobothrium purtoni	Leucoraja ocellata	Canada: Passamaquoddy Bay	Beer et al., 2019
KF685750	Pseudanthobothrium sp.	Leucoraja erinacea	Canada: St. Andrews, New Brunswick	Caira et al., 2014
MH913263	Phormobothrium affine	Zearaja nasuta	New Zealand	Bennett et al., 2019
MH688748	Echeneibothrium multiloculatum	Zearaja chilensis	Atlantic Ocean: Falkland Islands	Beer et al., 2019
MH688750	Echeneibothrium vernetae	Leucoraja erinacea	Canada: Passamaquoddy Bay	Beer et al., 2019
MH688751	Echeneibothrium canadensis	Amblyraja radiata	Canada: Passamaquoddy Bay	Beer et al., 2019
KF685901	Scyphophyllidium cf. giganteum	Galeorhinus galeus	New Zealand: Chatham Rise	Caira et al., 2014
AF286930	Litobothrium janovyi	Alopias superciliosus	Mexico	Waeschenebach et al., 2007

mens (Williams, 1966; Randhawa et al., 2008). Therefore, only the morphology of mature proglottids was taken into account in our further analysis.

Discussion

Both molecular and morphological analyses confirmed that our specimens belonged to *P. hanseni*. However, some differences from the descriptions of *P. hanseni* available in the literature were also found. To note, in this study we used only some of the numerous sequences of *P. hanseni* and other representatives of the family Echeneibothriidae available in GenBank (Fig. 1). Therefore, our tree cannot be used for discussing the systematics of the genus *Pseudanthobothrium*.
Pseudanthobothrium hanseni is recorded in the North Atlantic from the starry ray *Amblyraja radiata* and *Malacoraja senta* in the Atlantic waters of Canada (Randhawa et al., 2007; Randhawa et al., 2008; Randhawa, Burt, 2008), and the spiny-tail skate *Bathyraja spinicauda* (Jensen, 1914) in the north-eastern Norwegian Sea (Rokicki et al., 2001). *Pseudanthobothrium purtoni* Randhawa, Saunders, Scott & Burt, 2008 was primarily described from the same area in the North Atlantic, but according to our own data on helminths of *Bathyraja sp.* (‘*Bathyraja sexoculata*’) in the Simushir Island area (Gordeev, Polyakova, 2020), it also inhabits the North Pacific. Thus, the distribution area of the genus *Pseudanthobothrium* seems to be underestimated. It may be broadly present in the bottom ecosystems in the Arctic seas and elsewhere.
Table 2. Morphological characteristics of *Pseudanthobothrium hansenii* Baer, 1956 ex *Amblyraja radiata* (Donovan, 1808) from different areas.

Source: Present study	Baer, 1956	Williams, 1966	Randhawa *et al.*, 2008		
Locality:	White Sea	Disko Bay, West Greenland	North Sea	Bay of Fundy, Canada	
Total length (mm)¹	8.2–9.1	4	Up to 20	5.1–25.8	
Maximum W²	340	250	400	195–600	
No. of proglottids	135–148	40	200	39–131	
Bothridia		L 108–167	–	1000	140–380
		W 56–103	–	800	135–306
Myzorhynchus		L 58–110	–	1000	45–440
		d 50–63	55	150	60–175
Stalk		L 55–85	–	60–210	60–210
		W 50–85	–	–	65–160
Neck		L 32–35	–	–	60–335
		W 53–71	–	–	40–150
Mature proglottids		L 508–642	–	–	–
		W 231–323	–	–	–
Gravid proglottids		L –	–	1500	475–1645
		W –	–	400	205–600
No. of testes	13–16	Few	16–20	19–32	
Size of testes		L 86–105	Large	–	50–150
		W 17–28	–	–	38–90
Cirrus-sac		L 94–114	–	280	140–255
		W 52–59	–	140	60–105
Vitelline follicles		L 16–29	Large	–	16–55
		W 10–24	–	–	15–35

¹ All measurements in micrometres unless otherwise indicated.

² Abbreviations: No. — number; L — length; W — width, d — diameter.

Beer *et al.* (2019) recorded two species of *Pseudanthobothrium* in *Amblyraja doellojordoi* (Pozzi, 1935) caught in the Falkland Islands area. Apparently, this genus tends to be associated with the polar and sub-polar waters.

Amblyraja radiata is a very common ray in the North Atlantic and the seas adjacent to the Arctic Ocean (Last *et al.*, 2016). Throughout this extensive area, it serves as a host of at least 19 species of onchoproteocephalidean, phyllobothriidean, rhinebothriidean, diphyllidean, and trypanorhynchian cestodes (Pollerspöck, Straube, 2019). The freshened environment of the White Sea makes possible the presence of the euryhaline species in marine communities (Tchesunov *et al.*, 2008), while truly marine fish come from the Barents Sea mostly through poorly studied bottom recesses, in which normal oceanic salinity is preserved. This may be the reason why a parasite of an elasmobranch in the White Sea was recorded in our study for the first time.

Ecological and biological features of the elasmobranchs such as feeding behavior, age, size, depth and geographical distribution, play an important role in their co-evolution with
The first record of *Pseudanthobothrium hanseni* in the White Sea

Cestodes (Caira, Bardos, 1996; Klimpel et al., 2003; Palm, 2004; Beer et al., 2019). In this study, we cannot explain with certainty the morphometric differences between *P. hanseni* from the White Sea and other areas (Table 2). Some role may be played by salinity, which in the White Sea (Babkov, 1998) could be twice or more lower than in habitats of the previously studied hosts of *P. hanseni* (Baer, 1956; Williams, 1966; Randhawa et al., 2008). The White Sea is not isolated from the ocean, but the capture of rays there is quite rare. This might mean that the environmental conditions there are on the verge of tolerance of marine rays. This, in turn, is likely to affect their parasites.

The length of the strobila of cestodes in the present study could not be used as a diagnostic sign, since the specimens were at different stages of development. However, the mature cestodes from the White Sea in our study had a greater number of proglottids (135–148) than gravid *P. hanseni* (39-131) (Randhawa et al., 2008). Our specimens also had fewer testes, 13–16 vs. 19–32 in Randhawa et al. (2008) vs. 16–20 in Williams (1966). In the mature proglottids of worms under study, the yolk follicles were located in two lateral bands extending from the anterior end of the proglottid to the anterior end of the ovary, without reaching the posterior end of the proglottid (Fig. 2). Moreover, in the figures of mature proglottids in the description of *P. hanseni* in the work of Williams (1966: fig. 95), as well as in mature and gravid proglottids in the work of Randhawa et al. (2008: figs 2, 3), yolk follicles extend from the anterior to posterior end of the proglottid, without interruption at the level of the ovary. However, according to the redescription of *P. hanseni* in Randhawa et al. (2008) “Vitelline follicles ... , arranged in 2 paired lateral bands anterior to ovary, extending as 2 single lateral bands posterior to anterior margin of the ovary along length of proglottis (Fig. 2A).” Thus, the location of yolk follicles in the text of the description of *P. hanseni* are somewhat inconsistent with the details shown in Figure 2 (see Randhawa et al., 2008). In our specimens the yolk vitelline follicles reached the posterior margin of proglottids only in immature proglottids. A relatively low intensity of infection (7 worms/host) must be associated with the small size and, accordingly, age of the examined host specimen. As elasmobranchs grow, their diet changes, and their infection with cestodes increases as a result (Randhawa et al., 2008; Gordeev, Polyakova, 2020). All other cestode species recorded in the White Sea (Tchesunov et al., 2008; see above) parasitize at the adult stage teleosts, birds, and mammals which, unlike rays, are common in the White Sea. It is therefore unsurprising that the starry ray examined in our study harbored only a few individuals of a single parasite species.

Acknowledgements

The authors are grateful to Drs Alexander Tzetlin, Polina Belova, Elena Vortsepevna, Andrey Prudkovsky, and Ekaterina Bogomolova (Lomonosov Moscow State University) for their help in sampling, as well as Natalia Lentsman (St. Petersburg State University, MSc in Biology, MA in English Language and Literature) for proofreading.

Funding

The work was supported by Russian Academy of Sciences # AAAA-A18-118020890074-2

Compliance with ethical standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical approval: This article does not contain any studies with animals performed by any of the authors.

Sampling and field studies: All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable.

References

Babkov A.I. 1998. [Hydrology of the White Sea.] St. Petersburg: ZIN RAN. 94 p. [In Russian]

Baer J.G. 1956. Parasitic helminths collected in West Greenland // Meddelelser om Grønland Udgivne af
icheskie issledovaniya severnykh morey. Apatity: Kol’skij filial AN SSSR. P.62–76 [in Russian].

Waeschenbach A., Littlewood D.T.J. 2017. A molecular framework for the Cestoda // J.N. Caira, K. Jensen (eds.). Planetary Biodiversity Inventory (2008–2017): Tapeworms from the vertebrate bowels of the Earth. Lawrence, KS USA. University of Kansas, Natural History Museum, Special Publication. No.25. P.431–451.

Waeschenbach A., Webster B.L., Bray R.A., Littlewood D.T.J. 2007. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cesto-
da) with complete small and large subunit nuclear ribosomal RNA genes // Molecular Phylogenetics and Evolution. Vol.45. No.1. P.311–325. doi: 10.1016/j.ympev.2007.03.019

Williams H.H. 1966. The ecology, functional morphology and taxonomy of Echeneibothrium Beneden, 1849 (Cestoda: Tetraphyllidea), a revision of the genus and comments on Discobothrium Beneden, 1870, Pseudanthobothrium Baer, 1956, and Phormobothrium Alexander, 1963 // Parasitology. Vol.56. P.227–285. doi: 10.1017/S0031182000070864

Responsible editor A.S. Petrunina