FGF-23 and Hyperphosphatemia in Dialysis Dependent Chronic Kidney Disease Patients

Abstract

Introduction

Kidney disease (CKD). Aim was to evaluate Fibroblast Growth Factor (FGF-23) metabolism, in dialytic CKD patients.

Methods

Results

as compared to their recruitment levels.

Conclusion

Keywords:

Hyperphosphatemia, Mineral bone Disease; Secondary hyperparathyroidism

Abbreviations: CKD: Chronic Kidney Disease; iFGF23: intact Fibroblast Growth Factor-23; eGFR: Estimated Glomerular Filtration Rate; iPTH: Intact Parathyroid Hormone; SHPT: Renal Disease; Ca: Calcium; P: Phosphorus BALP: Bone Alkaline Phosphatase

Introduction

Dialysis dependent chronic kidney disease (CKD) has become a worldwide public health problem. It is known to increase patient morbidity and mortality risks which can cause major economic strain on the health-care systems. A population based study has in India was 160 per million population (p.m.p.) in the year 2008

\[D_2 \text{Calcitriol}/ \text{Active Vitamin } D \], which can enhance intestinal phosphorus absorption. \[1,25 \text{(OH)}_2 \text{D} \], a phosphaturic hormone, hypophosphataemic rickets [6]. FGF-23 induces urinary phosphate

Arun Halankar\(^1\), Sandhya Sivaraman\(^2\) and Kavita Shalia*\(^*\)

\(^1\)Department of Nephrology, Sir H N Reliance Foundation Hospital and Research Centre, India

\(^2\)Ph.D. Student, Sir H N Hospital and Research Centre, India

\(^*\)Sr Scientist, Sir H N Medical Research Society, India

*Corresponding author:

Medical Research Society, Court House, L T Road, Mumbai

Kavita.shalia@fnshospital.org

Received: | Published:
its later amendments or comparable ethical standards. Patient collection.

Dialysis Protocol

Recruitment of Study Population

Materials and methods

Enrollment of Study Population

Study population was selected as per the inclusion and

Also patient who were likely to conduct a kidney transplant biochemical tests.

Ethical Consideration
FGF-23 and Hyperphosphatemia in Dialysis Dependent Chronic Kidney Disease Patients

while Sevelamer hydrochloride is a non-absorbable, synthetic
the two phosphate binders on an equal basis. At six month Total
recruitment and at six month.
Methodology of Research Tests

assay based on coated tube separation. Samples and calibrators
were studied by either Pearson or Spearman Correlation test.

Results and Discussion
Recruitment Data

Methodology of Research Tests

Statistical Analysis

Follow up Data

Citation:
at six month as compared to their recruitment levels. iFGF-23 and C-terminal FGF-23 levels at six month in dialytic CKD patients data (Table 6).

Discussion

In the present study, it was observed that plasma FGF-23 dialytic CKD patients as compared to the controls. A similar line provided in vitro and in vivo evidence that the isolated C-terminal
the diseased condition. In the present study it was observed that

P levels in dialytic CKD patients. The above mentioned increase in

Table 1

	Control	Recruitment CKD Stage 5
M/F	32/34	31/17
Age (years)	41.4±10.5	42.6±12.4
Weight (kg)	65.2±15.4	55.4±14.0
Body Mass Index (BMI) (kg/m²)	25.2±5.2	22.3±4.72
Smoking	-	13(27%)
Alcohol	-	21(44%)
Diabetes	-	27 (56%)
Hypertension	-	26(54%)

Table 2: Biochemistry Data.

Routine Biochemical Tests	Control	Recruitment CKD Stage 5
Blood Urea Nitrogen (BUN) (mg/dl)	9.50 (8/12)	49.5 (38/58.8)
Creatinine (mg/dl)	1.0 (1.0/1.0)	7.0 (6.0/8.0)
Estimated Glomerular Filtration Rate (ml/min/1.73m²)	102±26.2	9.2±3.38
Albumin (mg/dl)	4.53±0.84	3.51±0.37
Globulin (mg/dl)	2.95±0.51	3.12±0.54
Total Protein (mg/dl)	7.51±0.66	6.6±0.54
Calcium (Ca) (mg/dl)	9.46±0.47	9.2±0.84
Corrected Calcium (Cr.Ca) (mg/dl)	9.07±0.63	9.56±0.79
Phosphorous (P) (mg/dl)	4.31±1.74	6.5±2.22
Corrected Ca x P (mg²/dl²)	38.8±14.7	59.0±23.8

NS non-significant
Table 3: Six Month Follow up Biochemistry Data.

Routine Biochemical Tests	Recruitment	6th Month Follow Up
Blood Urea Nitrogen (BUN) (mg/dl)	49.5 (38.0/58.8)	49.0 (38.0/69.0)
Creatinine (mg/dl)	7.0 (6.0/8.0)	8.0 (6.0/9.0)
Estimated Glomerular Filtration Rate (ml/min/1.73m²)	9.01±3.20	9.17±3.70
Albumin (mg/dl)	3.51±0.37	3.58±0.32
Globulin (mg/dl)	3.12±0.54	3.13±0.86
Total Protein (mg/dl)	6.61±0.54	6.73±0.64
Calcium (Ca) (mg/dl)	8.91 ±0.92	9.22 ±0.88
Corrected Calcium (Cr.Ca) (mg/dl)	9.52±0.81	9.82±0.81
Phosphorous (P) (mg/dl)	6.45±2.20	4.45±1.26
Corrected Ca x P (mg²/dl²)	58.6 ± 24.3	42.4 ± 14.8
NS non-significant		

Table 4: Six Month Follow up Data Continued.

	6th Month Follow Up	
Intact Parathyroid	126 (100/320)	
	↑,	
Total Fibroblast Growth Factor -23 (FGF-23)	0.0 (0.0/2.1)	↑
Intact Fibroblast Growth Factor -23 (iFGF-23)		↓,
C Terminal Fibroblast Growth Factor -23 (FGF-23)		↓
Bone Alkaline Phosphatase		↓
FGF-23 and Hyperphosphatemia in Dialysis Dependent Chronic Kidney Disease Patients

Table 5: Left Ventricle Function Data.

	Recruitment	6th Month Follow Up
Left Ventricular Mass Index (LVMI) (g/m²)	160 (127/214)	157 (127/199) NS
End Diastolic volume (EDV) (ml)		↓
End Systolic Volume (ESV) (ml)		
Stroke Volume (SV) (ml)		

Table 6: Bone Mineral Density Data.

	Median Percentiles 25/75	Median Percentiles 25/75
FOREARM T Score SD	-3.1 (-4.1/-2.3)	-3.2 (-4.7/-2.6) p = 0.02 ↓
Z Score SD	-2.95 (-4.07/-1.9)	-3.2 (-4.7/-2.6) p = 0.02 ↓
FEMORAL NECK T Score SD	-1.15 (-2.2/-0.52)	-2.2 (-2.95/-1.9) NS
Z Score SD	-1.15 (-2.2/-0.52)	-1.4 (-2.2/-0.8) p = 0.01 ↓

Table 6: Bone Mineral Density Data.

	Median Percentiles 25/75	Median Percentiles 25/75
LUMBAR SPINE T Score SD	-2.2 (-3.1/-1.52)	-1.9 (-3.0/-1.5) NS
Z Score SD	-1.4 (-2.2/-0.72)	-1.4 (-2.2/-0.45) NS

NOTE: In the general population T-score ≤ -2.5 SD=OSTEOPOROSIS, T-score -1.0 TO -2.49 SD = OSTEOPENIA, Z Score above – 2.0 is considered normal acc. to International Society for Clinical Densitometry.

SHPT and 1, 25 (OH)₂ D deficiency are common complications among the long-term dialytic CKD patients. [22,23] SHPT is characterized by increased synthesis and secretion of PTH, mainly due to disturbances of calcium, phosphate and vitamin D metabolism. In addition, data suggests that FGF-23, plays a central role in the pathogenesis of SHPT by inhibiting 1 alpha hydroxylase which results in the reduction of calcitriol. [12,13] In agreement with the above findings, a significant reduction in the 1, 25 (OH)₂ D levels and significant increase in the levels of iPTH was observed in the present study. Hyperphosphatemia is considered a potent contributing stimulus for the development of SHPT, metastatic calcifications and renal osteodystrophy [5]. Thus managing phosphate levels in dialysis patients is a multi-interrelated task, involving the indispensable action of FGF-23, serum PTH and vitamin D.

However, optimal phosphate control in dialysis patients is extremely challenging [24]. Despite the significant increase in the levels of iPTH and phosphaturic hormone FGF-23, hyperphosphatemia were observed in CKD stage 5 patients. These dialysis patients were thus prescribed with phosphate binders and followed up for a period of six months. Multiple clinical studies have demonstrated that Sevelamer Hydrochloride lowers serum phosphorus levels among patients with ESRD and is generally well tolerated [25,26]. Apart from Sevelamer, several clinical trials have shown that Lanthanum is another effective and well tolerated phosphate binder among healthy volunteers as well as hemodialysis patients. [27,28] In the present study there was randomisation between the two phosphate binders among the patients. These patients were also provided with calcium carbonate and calcitriol tablets depending on their...
serum calcium and vitamin D levels. Calcium carbonate has been as compared to the baseline levels was observed in these CKD-

Acknowledgement

References

1. Slatopolsky E, Gradowska L, Kashemsant C, Keltner R, Manley C,

phosphorus and bone in renal disease and transplantation. Arch

2. Slatopolsky E, Gradowska L, Kashemsant C, Keltner R, Manley C,

product with mortality risk in chronic hemodialysis patients: A

3. Slatopolsky E, Gradowska L, Kashemsant C, Keltner R, Manley C,

6. ADHR Consortium (2000) Autosomal Dominant Hypophosphataemic Rickets is Associated with Mutations in FGF-

Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, et al. (2003) Human

8. Chem 281(10): 6120-6123.

10.

11.

12. Komaba H, M (2010) FGF-23-parathyroid interaction:

13.

Conclusion

Thus in the present study in the dialytic CKD patients as compared to controls, serum P, C-terminal and iFGF-23 levels were

Citation:
FGF-23 and Hyperphosphatemia in Dialysis Dependent Chronic Kidney Disease Patients

16. Hutchison AJ, Smith CP, Brenchley PE (2011) Pharmacology, efficacy and safety of oral phosphate binders. Nat Rev Nephrol 7(10): 578-589.

17. Chathoth S, Al-Mueilo S, Cyrus C, Vatte C, Al-Nafaie A, et al. (2015) Elevated Fibroblast Growth Factor 23 Concentration: Prediction of Mortality among Chronic Kidney Disease Patients. Cardiorenal Med 6(1): 73-82.

18. Hamano T, Nakano C, Obi Y, Fujii N, Matsui I, et al. (2011) Fibroblast growth factor 23 and 25-hydroxyvitamin D levels are associated with estimated glomerular filtration rate decline. Kidney Int Suppl 3(5): 469-475.

19. Shimada T, Urakawa I, Isakova T, Yamazaki Y, Epstein M, et al. (2010) Circulating Fibroblast Growth Factor 23 in Patients with End-Stage Renal Disease Treated by Peritoneal Dialysis Is Intact and Biologically Active. J Clin Endocrinol Metab 95(2): 578-585.

20. Berndt TJ, Craig TA, McCormick DJ, Lanske B, Sitara D, et al. (2007) Biological activity of FGF-23 fragments. Pflugers Archiv 454(4): 615-623.

21. Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, et al. (2010) Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci U S A 107(1): 407-412.

22. Drüeke TB (2000) Cell biology of parathyroid gland hyperplasia in chronic renal failure. J Am Soc Nephrol 11(6): 1141-1152.

23. Fukagawa M, Komaba H, Onishi Y, Fukuhara S, Akizawa T, et al. (2011) Mineral metabolism management in hemodialysis patients with secondary hyperparathyroidism in Japan: baseline data from the MBD-5D. Am J Nephrol 33(5): 427-437.

24. Ketteler M, Biggar PH (2013) Use of phosphate binders in chronic kidney disease. Curr Opin Nephrol Hypertens 22(4): 413-420.

25. Chertow GM, Burke SK, Raggi P, Treat to Goal Working Group (2002) Treat to Goal Working Group: Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62(1): 245-252.

26. Slatopolsky EA, Burke SK, Dillon MA (1999) RenaGel, a nonabsorbed calcium- and aluminum free phosphate binder, lowers serum phosphorus and parathyroid hormone. Kidney Int 55(1): 299-307.

27. Soriano S, Ojeda R, Rodríguez M, Almudí Y, Rodríguez M, et al. (2013) The effect of phosphate binders, calcium and lanthanum carbonate on FGF23 levels in chronic kidney disease patients. Clin Nephrol 80(1): 17-22.

28. Sac M, Fosrenol (2002) (lanthanum carbonate) is well tolerated in patients requiring hemodialysis: Results of a phase I clinical trial (Abstract). J Am Soc Nephrol 13: 386.

29. Meyrier A, Marsac J, Richet G (1973) The influence of a high calcium carbonate intake on bone disease in patients undergoing hemodialysis. Kidney Int 4(2): 146-153.

30. Slatopolsky E, Weerts C, Lopez-Hilker S, Norwood K, Zink M, et al. (1986) Calcium carbonate as a phosphate binder in patients with chronic renal failure undergoing dialysis. N Engl J Med 315(30): 157-161.

31. Myong JP, Kim HR, Koo JW, Park CY (2013) Relationship between bone mineral density and moderate to severe chronic kidney disease among general population in Korea. J Korean Med Sci 28(4): 569-574.

32. Diniz H, Frazão JM (2013) The role of fibroblast growth factor 23 in chronic kidney disease-mineral and bone disorder. Nefrologia 33(6): 835-844.

33. Touissant ND, Lau KK, Strauss BJ, Kevan R, Polkinghorne KR (2008) Associations between vascular calcification, arterial stiffness and bone mineral density in chronic kidney disease. Nephrol Dial Transplant 23(2): 586-593.

34. Sarmento-Dias M, Santos-Araújo C, Poínhos R, Oliveira B, Silva IS, et al. (2016) Fibroblast growth factor 23 is associated with left ventricular hypertrophy, not with uremic vasculopathy in peritoneal dialysis patients. Clin Nephrol 85(3): 135-141.

35. Nitta K, Iimuro S, Imai E, Matsuo S, Makino H, et al. (2013) Risk factors for increased left ventricular hypertrophy in patients with chronic kidney disease. Clin Exp Nephrol 17(5): 730-742.

36. Tanaka S, Fujita S-i, Kizawa S, Morita H, Ishizaka N (2016) Association between FGF23, α-Klotho, and Cardiac Abnormalities among Patients with Various Chronic Kidney Disease Stages. PLoS ONE 11(7): e0156860.