Livestock-Associated Methicillin-Resistant *Staphylococcus aureus* (MRSA) as Causes of Human Infection and Colonization in Germany

Robin Köck1, Frieder Schaumburg2, Alexander Mellmann1, Mahir Köksal3, Annette Jurke4, Karsten Becker2, Alexander W. Friedrich3

1 Institute of Hygiene, University Hospital Münster, Münster, Germany, 2 Institute of Medical Microbiology, University Hospital Münster, Münster, Germany, 3 Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands, 4 Department for Infectiology and Hygiene, North Rhine-Westphalian Center for Health, Münster, Germany

Abstract

Pigs, cattle and poultry are colonized with MRSA and the zoonotic transmission of such MRSA to humans via direct animal contact, environmental contaminations or meat are a matter of concern. Livestock-associated (LA) MRSA are mostly belonging to clonal complex (CC) 398 as defined by multilocus sequence typing. However, MRSA of other clonal lineages including CC5, CC9 and CC97 have also been detected in livestock animals in Germany. Within the framework of a Dutch-German network project (EUREGIO), 14,036 MRSA isolated from clinical and screening specimens (January 2008 - June 2012) derived from human patients in hospitals as well as general or specialized practices in a German region characterized by a high density of livestock production, were subjected to *S. aureus* protein A (*spa*) sequence typing. The prevalence of putative LA-MRSA among the human MRSA isolates was determined by analyzing the detection of livestock-indicator (*LI*) *spa* types which had already been reported in German livestock. Overall, 578 *spa* types were detected among the MRSA isolates. *LI* *spa* types t011, t034, t108, t1451, t2011, t571, t1456, t1250, t1255, t1580, t2970, t2346, t1344, t2576, t2330 and t2510 (all of which are indicative for LA-MRSA CC398) accounted for 18.6% of all human isolates. The *LI* *spa* types t1430 (CC9), t3992 (CC97), t002 (CC5) and t007 (CC30) were found in 0.14%, 0.01%, 1.01% and 0.04% of all human MRSA isolates, respectively. *LI* *spa* types associated with CC398 represented 23% of all MRSA from screening samples and a varying proportion among isolates from clinical specimens ranging between 0% in cerebrospinal fluid, 8% in blood cultures and 14% in deep respiratory fluids. Our findings indicate that LA-MRSA are a major cause for human infection and stress the need for close surveillance. Although LA-MRSA CC398 predominates, the occurrence of putative LA-MRSA from other clonal lineages should be monitored.

Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) has been found to colonize livestock including pigs, cattle and poultry. Since many of the MRSA clonal lineages identified in livestock were uncommon for MRSA isolates found until then in human hosts, the term “livestock-associated MRSA” (LA-MRSA) has been introduced to distinguish these MRSA from classical human hospital-acquired (HA-MRSA) or community-associated MRSA (CA-MRSA).

Predominantly, LA-MRSA are associated with clonal complex (CC) 398 as defined by multilocus sequence typing (MLST). Regarding its molecular features, MRSA CC398 represents a distinct subgroup of MRSA mostly characterized by sequence types (ST) 398, ST732 or ST733 [1], harboring the staphylococcal cassette chromosome *mec* (*SCC*me*)c*) types V or IV, accessory gene regulator (agr) type I, capsule type 5 and *S. aureus* protein A gene (spa) types t011, t034, t108, t567, t571, t1451, t2011, 2510 and close relatives [2].

In addition to MRSA CC398, other LA-MRSA clonal lineages have also been detected. In a European baseline report, Germany was amongst the countries with the most frequent occurrence of non-CC398 MRSA in pigs. In this report, isolates belonging to the lineages CC9/ST9 (t1430), CC97/ST97 (t3992, t5487) and CC30/ST39 (t007) have been found in 3.9% of all isolates from German pig production [3]. In addition, studies performed in German chicken and turkey identified MRSA associated with the clonal lineages CC9 (t1430) and CC5 (t002) [2,4]. Isolates from Germanveal calf belonged to CC9 [5].

In the meantime, epidemiological investigations have shown that LA-MRSA do not only colonize livestock, but are able to overcome the species barrier resulting in zoonotic transmission to persons with direct livestock exposure. Hence, nasal colonization or contamination was found in 23-86% of all pig farmers and...
also spa diagnostic specimens derived from outpatients attending 754 Moreover, MRSA isolates detected from routine microbiological every first MRSA isolate derived from each patient (irrespective of related and bacteraemia isolates only and 34 performed typing of PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e55040 2012. For identification of MRSA isolates with specified origin typed between 1/1/2008 and 30/6/ microbiology laboratories and forwarded to the central typing All typing results were entered in a central database together with lance of MRSA. In the network, common standards ticated in hospitals compared with classical HA-MRSA, the reasons for this difference are unknown [12]. Until now, two healthcare-associated outbreaks of MRSA CC398 have been described in hospitals and nursing homes [13,14]. A German case-control study showed that a significant proportion (>30%) of patients colonized with MRSA CC398 at admission to a university hospital, had no risk factors indicating an acquisition of the MRSA from farm animals [15]. This was confirmed in a retrospective data analysis of a Dutch hospital where only 11 out of 30 patients colonized with MRSA CC398 had direct contact to livestock [11]. These findings might also indicate that LA-MRSA is also spreading from human to human either in the general population or in healthcare facilities. Regarding the occurrence of LA-MRSA associated with clonal lineages other than CC398 among humans (CC9, CC97), only single cases have hitherto been published [16]. Against this background, there is a need to monitor the occurrence of infections caused by LA-MRSA CC398 and non-CC398 in the healthcare setting. For Germany, only limited data is available regarding this issue [17,18]. In particular, the occurrence of LA-MRSA other than CC398, has not been assessed in detail until now. Therefore, we investigated the occurrence of MRSA CC398 and other clonal lineages, which have been associated with livestock, among MRSA isolated from clinical and screening specimens derived from human patients treated in German hospitals, and by general practitioners and specialists in ambulatory care participating in a regional preventive network [EurSafety Health-net; www.eursafety.org].

Methods

The EUREGIO is a part of the Dutch-German border region, which, on the German side of the border, is characterized by a very high density of livestock farming with 530 pigs/km², 71 cattle/km² and 445 chickens/km² [19], respectively. Since 2005, 39 regional hospitals are cooperating in a network for the prevention of MRSA. In the network, common standards for MRSA admission screening of defined risk-patients at admission (including persons with livestock contact) have been established in 2008 and the hospitals have agreed upon using spa typing of selected MRSA isolates for baseline molecular surveillance of MRSA. Five hospitals performed spa typing of outbreak-related and bacteraemia isolates only and 34 performed typing of every first MRSA isolate derived from each patient (irrespective of outbreak settings or the specimen the isolate was obtained from). Moreover, MRSA isolates detected from routine microbiological diagnostic specimens derived from outpatients attending 754 general practitioners as well as specialists in the same region, were also spa typed. For typing, MRSA isolates were detected in routine microbiology laboratories and forwarded to the central typing facility at the Institute of Hygiene, University Hospital Munster. All typing results were entered in a central database together with information about the isolate’s origin.

For this study, we searched the central database for all MRSA isolates with specified origin typed between 1/1/2008 and 30/6/2012. For identification of MRSA spa types in the database, which were indicative for German LA-MRSA clonal lineages, we performed a restriction-free literature search in PubMed (24/7/2012) using the following search terms: Germany AND MRSA AND (livestock or pigs or cattle or poultry or chicken or meat). Moreover, publications of national and European reference institutions were searched for relevant information. Thereby, we found that the following MRSA spa types have been detected in German livestock animals or meat samples until now: t011, t034, t108, t143, t571, t1250, t1255, t1344, t1451, t1456, t1580, t1928, t1905, t2011, t2330, t2346, t2510 t2576 and t2970 (all associated with MLST ST398, or single-locus variants within clonal lineage CC390) [2,3,4,15,20,21,22,23,24,25]; t1430 (associated with MLST ST39 and clonal lineage CC9) [2,3,5,25]; t1434, t3992, t5487 (associated with MLST ST397 or single-locus variants within clonal lineage CC97) [3,5,27]; t002 (associated with MLST ST5 within clonal lineage CC5) [2,4,5,24] and t007 (associated with MLST ST39 within clonal lineage CC5) [3,5]. These spa types were defined as “livestock-indicator” (LI) spa types in this study. All MRSA isolates typed in the central network database characterized by these LI spa types were considered as potential LA-MRSA.

We used the Based Upon repeat pattern (BURP) algorithm of the Ridom StaphType software (Ridom GmbH, Munster, Germany) with default parameters to cluster all spa types found in the database into spa clonal complexes (spa-CC) [28]. The results of the BURP cluster analysis indicate spa types which cluster closely with the above defined LI spa types. These closely related spa types are spa-repeat variants and might represent MRSA belonging to the same clonal lineage.

Statistical differences in the proportions of MRSA CC398 on all MRSA isolates typed were tested using Chi Square test for linear trend analysis (EpiInfo version 7, CDC Atlanta, USA) with a p-value <0.05 considered as statistically significant.

Results

Overall, the network database contained spa typing results of 14,036 human MRSA isolates (2,472 in 2008, 3,393 in 2009, 3,341 in 2010, 3,191 in 2011 and 1,639 in the first half-year 2012, respectively). In total, 11,336 isolates (81%) were from hospitalized patients and 2,700 from outpatients attending general practitioners and specialists in outpatient care. The isolates were derived from screening samples (swabs from nose, throat, axilla, groin, anus; n = 9,414), swabs from skin or mucosa without indicated infection (n = 691), superficial wounds samples (n = 2,083), swabs from deep-seated wounds or tissue (n = 331), abscesses (n = 56), sputa (n = 99), deep respiratory secretions (tracheal/bronchial fluid or lavage, n = 346), blood cultures (n = 194), cerebrospinal fluids (n = 7), urine samples (n = 482), catheters (n = 271) and other secretions (e.g. pleural secretions, ascites; n = 70).

The MRSA isolates were associated with 578 different spa types, of which t003 (29%), t032 (25%), t011 (10%), t034 (6%), t004, t014, t008 (each 2%) and t022, t020 (each 1%) were the ten most frequently detected. Seventeen isolates (0.1%) were non-typeable using the spa typing approach. Among the 14,036 human MRSA isolates, 2771 (19.7%) belonged to the LI spa types which had been detected in German livestock animals before according to the literature search performed (table 1). These isolates mainly (18.6%) belonged to LI spa types (t011, t034, t108, t571, t1250, t1255, t1451, t1580, t2011, t2330, t2346, t2576 and t2970) known to be associated with MLST CC398 from other studies [2,3,4,15,20,21,22,23,24,25]. LI spa types indicative for the MLST clonal lineages CC5, CC9, CC97 and CC30 were only rarely found (table 1).
The BURP algorithm clustered the isolates into 13 spa-CCs; 32 spa types were singletons and 43 spa types were excluded from clustering, because they comprised less than five spa-repeats. Analysis of the clusters revealed that all except three LI spa types related to MLST CC398 were grouped into spa-CC011. The three remaining LI spa types associated with MLST CC398 were excluded in the BURP analysis, because they comprised a too low number of spa repeats (t1344, t1456, t2510). LI spa types associated with MLST CC5 (t002) were grouped in spa-CC003, CC9 (t1430) in spa-CC1430, CC30 (t007) as a singleton and CC97 (t3992) in spa-CC044, respectively.

The annual distributions of LI spa types associated with the predominant spa-CC011/CC398 in different clinical and screening specimens from hospital inpatients and outpatients attending general practitioners and specialists are shown in table 2. For these isolates, we observed a significant trend towards an increasing proportion of MRSA CC398 among specimens from screenings (X² = 155.5; p < 0.001) and superficial wounds (X² = 4.4; p = 0.04) between 2008 and 2012. For LI spa types belonging to other spa-CCs, spa type t1430 was isolated from screenings (n = 17), urine, deep-seated wound/tissue samples and secretions (each n = 1). LI spa type t3992 was isolated from a screening sample, t007 from a deep wound sample and t002 from different specimens (screenings n = 81; superficial wounds n = 24; uninfected skin n = 11; deep respiratory secretions n = 9; deep-seated wound/tissue n = 4; catheters and abscesses each n = 3; blood cultures and various secretions each n = 2; sputum and cerebrospinal fluid each n = 1).

Further analysis of the population snapshots of spa-CCs 011, 044 and 1430 revealed that several spa types detected among the human MRSA isolates showed a repeat pattern closely related to known LI spa types: within spa-CC011 this includes 40 spa types and 92 (0.7% of all 14,036) MRSA isolates (t567, t588, t898, t1497 (n = 9), t1457 (n = 4), t1606 (n = 2), t1793 (n = 7), t2370 (n = 4), t2741, t2582 (n = 12), t2876 (n = 2), t2971 (n = 2), t3075, t3275, t3425 (n = 2), t3993, t3934, t4030, t4208, t4652 (6), t4677, t4715, t4854, t5095, t5210, t5675, t5883, t6015, t6575, t6606, t6867, t7102, t7336, t7822, t8287, t9013, t9266, t9433, t9796, t10686; all n = 1 except indicated). In both spa-CC044 (t224, t359 (n = 2), t1296 (n = 2), t2770, t964; all n = 1 except indicated) and spa-CC1430 (t899 (n = 4), t10204, t337, t1419, t100; all n = 1 except indicated) there were five spa types clustering closely with LI spa types accounting for 0.5% and 0.6% of all 14,036 MRSA isolates included in this study, respectively. LI spa type t002 was grouped in spa-CC003 and clustered with several closely related spa types (e.g. t003) representing typical MRSA spa types found among humans.

Discussion

In November 2006, an MRSA screening of all patients (n = 25,540) admitted to hospitals in the Dutch-German border region EUREGIO revealed, that a significant proportion of MRSA isolates (17% on the German and 89% on the Dutch side of the border) were associated with LA-MRSA CC398 spa types [29]. In this study, we have shown that this proportion has further increased to 29% in 2012 in the same hospitals. The high regional admission prevalence of LA-MRSA CC398 can be explained, because the German part of the EUREGIO located in Northwestern Germany is amongst those areas characterized by the highest densities of pig production in Germany and a close association between density of farming and the occurrence of LA-MRSA has been described elsewhere [1]. The increase observed could either be explained by increasing awareness of this risk factor when performing admission screenings (although all participating hospitals have implemented a common strategy for screening including persons with livestock contact already in 2008) or could be due to increasing introduction of such isolates in the hospitals.

However, our finding that, apart from the detection in screening samples, MRSA CC398 also accounted for a significant proportion of MRSA isolated from clinical specimens including blood cultures (8%) and deep respiratory tract secretions (14%), clearly documents that MRSA CC398 is able to cause severe human infections in hospitals [30]. Since most healthcare-associated *S. aureus* infections are caused by MRSA strains colonizing the host prior to the infection [31], this finding was expected against the background of the high prevalence of this clonal lineage at admission. However, when compared with German national data showing that MRSA CC398 accounts for only 2% of all MRSA from inpatients [18], our findings confirm that MRSA CC398 still has a higher significance in livestock-dense areas [17].

Important questions related to the epidemiology of MRSA CC398 are 1.) whether they lead to an increase of the overall incidence of MRSA colonization or infection among humans and 2.) whether MRSA CC398 are strictly involving persons with direct livestock contact or how often MRSA CC398 is spreading from these persons onwards in the general population. It is a clear limitation of this study that we can neither provide epidemiological

Table 1. Putative livestock-associated MRSA among hospital inpatients and ambulatory patients attending general practitioners and specialists in outpatient care.

spa-CC/putative MLST CC	Livestock-indicator LI spa types (no. of isolates)	% on all human isolates (inpatients/ambulatory patients)
spa-CC011/CC398	t011 (1430), t034 (899), t108 (119), t1451 (63), t2011 (26), t171 (13), t1456 (12), t1250 (10), t1255 (10), t1580 (6), t2570 (3), t2346 (5), t1344 (3), t2576 (3), t2330 (2), t2510 (1)	18.57% (19.3%/15.4%)
Singleton/CC30	t007 (1)	0.01% (0.01%/0%)
spa-CC003/CC5	t002 (142)	1.01% (0.99%/1.11%)
spa-CC044/CC97	t3992 (1)	0.01% (0.01%/0%)
spa-CC1430/CC9	t1430 (20)	0.14% (0.18%/0%)
Non-LA-MRSA	all other spa types	80.26% (78.73%/82.70%)

1spa associated MLST clonal complex (CC) for the LI spa types as described in literature. 2types detected in LA-MRSA from German livestock in other studies (number of isolates detected in this study).

doi:10.1371/journal.pone.0055040.t001

Human Infection and Colonization with LA-MRSA
MRSA CC398 among humans are due to the zoonotic trans-
mission from livestock rather than due to livestock-independent sources. Phylogenetic analyses support that most cases of MRSA colonization, the proportion of patients carrying MRSA are linked to livestock. Direct livestock contact is strongly associated with LA-MRSA (CC9 and CC97) are very rarely found in humans [18,39]. Changes in the occurrence of these MRSA lineages could therefore indicate changes in the distribution pathways (e.g. food-related transmission). Our data show that a total of 21 isolates characterized by LI spa types associated with CC9 and CC97 were found among 14,036 regional isolates typed (0.15%) within a 54-month period. Outpatients were not affected more often than inpatients. It might be argued, that if meat was an important source for acquisition of LA-MRSA in the community, one should not only detect a rising occurrence of MRSA CC398 isolates as described in this study, but also an emergence of non-CC398 clones, such as CC9 or CC97.

Since it has been shown that MRSA spa types are rapidly evolving by gaining and losing of spa repeats [40] resulting in “new” spa types, the assessment of closely related spa repeat variants using the BURP algorithm is a feasible tool for detecting types belonging to the same clonal lineage [41]. Indeed, many of the additional spa types assigned to spa-CC011 in this study (e.g. t1197, t567, t2570, t1457, t1793, t4854) have been identified in livestock animals in other European countries and have been confirmed to belong to the CC398 lineage [3]. This has also been found for isolates within the spa-CC044 (CC97) [42,43,44] and spa-CC1430 (CC9) [45,46]. In consequence, further investigations into the molecular epidemiology of MRSA in German livestock are warranted to confirm whether isolates associated with these spa types identified in this study are also linked to livestock.

Overall, we have shown that MRSA CC398 associated with a great variety of different spa types accounts for a significant fraction of MRSA CC398 among humans. This highlights the importance of monitoring and controlling the spread of MRSA CC398 in livestock and retail settings to prevent its transmission to humans.
proportion of all cases of MRSA colonization and infection in 39 German hospitals located in a rural area as well as in general and specialized practices in the same region. Moreover, we confirmed that other putative LA-MRSA including t1430/ST398 versus other ST398 in a Dutch livestock. MBio. 21;3(1). doi:pii: e00305-11. 10.1128/mBio.00305-11. 26. Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Kaisbohrer A, et al. (2011) Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol 77: 3052–3060. 27. Meemken D, Blaha T, Tegeler R, Tenhagen BA, Guerra B, et al. (2010) Livestock Associated Methicillin-Resistant Staphylococcus aureus (LaMRSA) isolated from Lesions of Pigs at Necropsy in Northwest Germany Between 2004 and 2007. Zoonoses Public Health 57: e143–148. 28. Mellmann A, Senig R, Bensinger M, Rothganger J, Sammeth M, et al. (2007) Based Upon Repeat Pattern (BUP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on single nucleotide polymorphisms. BMC Microbiol 7: 9. 29. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderikx M, et al. (2009) Cross-contamination of methicillin-resistant Staphylococcus aureus in pig farmers after holidays from pig production. Appl Environ Microbiol 75: 4046–4051. 30. Witte W, Strommenger B, Stanek C, Cuny C (2007) Methicillin-resistant Staphylococcus aureus (MRSA) in holdings with cattle. Vet Microbiol 125: 128–140. 31. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344: 11–16. 32. Lecker-Riker VS, van de Sande-Bruinisma N, van de Sande MA, Tjon-A-Ten A, Greuning A, et al. (2012) Emergence of MRSA of unknown origin in the Netherlands. Clin Microbiol Infect 18: 656–661. 33. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, et al. (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio. 21(3). doi: e00305-11. 10.1128/mBio.00305-11. 34. Schulz J, Fries J, Klies S, Tenhagen BA, Fetsch A, et al. (2012) LA-MRSA contamination of air and soil surfaces in the vicinity of pig barns: A longitudinal study. Appl Environ Microbiol 78: 5666–5671. 35. Feingold BJ, Sillbergeld EK, Curriero FC, Van Cleeve B, Heck ME, et al. (2012) Livestock Density as risk factor for livestock-associated Methicillin-resistant Staphylococcus aureus, the Netherlands. Emerg Infect Dis 18: 1841–1849. 36. European Centre for Disease Prevention and Control, European Food Safety Agency, European Medicines Agency (2009) Joint scientific report of ECDC, EFSA and EMEA on methicillin-resistant Staphylococcus aureus (MRSA) in livestock, companion animals and foods. EFSA Scientific Report (2009) 301, 1–100 and EMEA/CVMP/SAGAM/62464/2009. 37. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderix M, et al. (2009) Cross-border comparison of the admission prevalence and clonal structure of meticillin-resistant Staphylococcus aureus. J Hosp Infect 71: 320–329. 38. Wulf MW, Verduin CM, van Nes A, Huijsdens X, Voss A (2012) Infection and food products of poultry origin in Germany. Appl Environ Microbiol 77: 9538–9546. 39. Bundesinstitut für Risikobewertung (2009) Zoonosen und Lebensmittelsicherheit – BfR-Symposium am 2. und 3. November 2009. Available: http://www.bfr.bund.de/cm/350/deutsche-antibiotika-resistenzsituation-der- Lebensmittelkette–darlink-2009.pdf. Accessed 2012 July 24. 40. Landwirtschaftskammer Nordrhein-Westfalen (2008) Zahlen zur Landwirtschaft in Nordrhein-Westfalen 2008. Available: http://www.landwirtschaftskammer. nrw/logisches_bulletin_26_233–244.pdf. 41. Argudín MA, Tenhagen BA, Fetsch A, Sachsenröder J, Kaisbohrer A, et al. (2011) Virulence and resistance determinants of German Staphylococcus aureus ST398 isolates from nonhuman sources. Appl Environ Microbiol 77: 3052–3060. 42. Meemken D, Blaha T, Tegeler R, Tenhagen BA, Guerra B, et al. (2010) Livestock Associated Methicillin-Resistant Staphylococcus aureus (LaMRSA) isolated from Lesions of Pigs at Necropsy in Northwest Germany Between 2004 and 2007. Zoonoses Public Health 57: e143–148. 43. Mellmann A, Senig R, Bensinger M, Rothganger J, Sammeth M, et al. (2007) Based Upon Repeat Pattern (BUP): an algorithm to characterize the long-term evolution of Staphylococcus aureus populations based on single nucleotide polymorphisms. BMC Microbiol 7: 9. 44. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderix M, et al. (2009) Cross-border comparison of the admission prevalence and clonal structure of meticillin-resistant Staphylococcus aureus. J Hosp Infect 71: 320–329. 45. Wulf MW, Verduin CM, van Nes A, Huijsdens X, Voss A (2012) Infection and food products of poultry origin in Germany. Appl Environ Microbiol 77: 9538–9546. 46. Bundesinstitut für Risikobewertung (2009) Zoonosen und Lebensmittelsicherheit – BfR-Symposium am 2. und 3. November 2009. Available: http://www.bfr.bund.de/cm/350/deutsche-antibiotika-resistenzsituation-der- Lebensmittelkette–darlink-2009.pdf. Accessed 2012 July 24. 47. Kock R, Brakensiek L, Mellmann A, Kipp F, Henderix M, et al. (2009) Cross-border comparison of the admission prevalence and clonal structure of meticillin-resistant Staphylococcus aureus. J Hosp Infect 71: 320–329. 48. Wulf MW, Verduin CM, van Nes A, Huijsdens X, Voss A (2012) Infection and food products of poultry origin in Germany. Appl Environ Microbiol 77: 9538–9546. 49. Bundesinstitut für Risikobewertung (2009) Zoonosen und Lebensmittelsicherheit – BfR-Symposium am 2. und 3. November 2009. Available: http://www.bfr. bund.de/cm/350/deutsche-antibiotika-resistenzsituation-der- Lebensmittelkette–darlink-2009.pdf. Accessed 2012 July 24. 49. Bundesinstitut für Risikobewertung (2009) Zoonosen und Lebensmittelsicherheit – BfR-Symposium am 2. und 3. November 2009. Available: http://www.bfr.bund.de/cm/350/deutsche-antibiotika-resistenzsituation-der- Lebensmittelkette–darlink-2009.pdf. Accessed 2012 July 24.
41. Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, et al. (2006) Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol 44: 2533–2540.

42. Graveland H, Wagenaar JA, Heesterbeek H, Mevius D, van Duijkeren E, et al. (2010) Methicillin resistant Staphylococcus aureus ST398 in veal calf farming: human MRSA carriage related with animal antimicrobial usage and farm hygiene. PloS one 5: e10990.

43. van de Giessen AW, van Santen-Verheuvel MG, Hengeveld PD, Bosch T, Broens EM, et al. (2009) Occurrence of methicillin-resistant Staphylococcus aureus in rats living on pig farms. Prev Vet Med 91: 270–273.

44. Hata E, Katsuda K, Kobayashi H, Uchida I, Tanaka K, et al. (2010) Genetic variation among Staphylococcus aureus strains from bovine milk and their relevance to methicillin-resistant isolates from humans. J Clin Microbiol 48: 2130–2139.

45. Hasman H, Moodley A, Guardabassi L, Stegger M, Skov RL, et al. (2010) Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet Microbiol 141: 326–331.

46. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, et al. (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS one 6: e17936.