MATRX ALPS: Accelerated Low Rank and Sparse Matrix Reconstruction
Anastasios Kyrillidis and Volkan Cevher
Laboratory for Information and Inference Systems
Ecole Polytechnique Federale de Lausanne
{anastasios.kyrillidis,volkan.cevher}@epfl.ch

Abstract

We propose MATRX ALPS for recovering a sparse plus low-rank decomposition of a matrix given its corrupted and incomplete linear measurements. Our approach is a first-order projected gradient method over non-convex sets, and it exploits a well-known memory-based acceleration technique. We theoretically characterize the convergence properties of MATRX ALPS using the stable embedding properties of the linear measurement operator. We then numerically illustrate that our algorithm outperforms the existing convex as well as non-convex state-of-the-art algorithms in computational efficiency without sacrificing stability.

I. INTRODUCTION

Finding a low rank plus sparse matrix decomposition from a set of—possibly incomplete and noisy—measurements is critical in many applications. The list has expanded over the last ten years: examples include MRI signal processing, collaborative filtering, hyperspectral image analysis, large-scale data processing, etc. A general statement of the problem under consideration can be described as follows:

PROBLEM. Given a linear operator \(\mathcal{A} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p \) and a set of observations \(y \in \mathbb{R}^p \) (usually \(p \ll m \times n \)):
\[
y = \mathcal{A}L^* + \varepsilon,
\]
where \(L^* := L^1 + M^* \in \mathbb{R}^{m \times n} \) is the superposition of a rank-\(k \) \(L^1 \) and a \(s \)-sparse \(M^* \) component that we desire to recover, identify a matrix \(\hat{L} \in \mathbb{R}^{m \times n} \) of rank (at most) \(k \) and a matrix \(\hat{M} \in \mathbb{R}^{m \times n} \) with sparsity level \(\| \hat{M} \|_0 \leq s \) such that:
\[
\{ \hat{L}, \hat{M} \} = \arg\min_{L, M : \text{rank}(L) \leq k} \| y - \mathcal{A}(L + M) \|_2.
\]

Here, \(\varepsilon \in \mathbb{R}^p \) represents the potential noise term. For different linear operator \(\mathcal{A} \) and signal \(X^* \) configurations, the above problem arises in various research fields. Next, we briefly address some of the frameworks that \([2]\) is involved.

A. Compressed sensing and affine rank minimization

In the standard Compressed Sensing (CS) framework, we desire to reconstruct a \(n \)-dimensional, \(s \)-sparse loading vector through a \(p \)-dimensional set of observations with \(p \ll n \). This problem can be solved by finding the minimizer \(\hat{X} := \hat{M} \) of:
\[
\{ \hat{M} \} = \arg\min_{M \in \mathbb{R}^{n \times n} : \| M \|_0 \leq s} \| y - \mathcal{A}M \|_2,
\]
where we reserve \(\mathbb{D}^n \) to denote the set of \(n \times n \) diagonal matrices. To establish solution uniqueness and reconstruction stability in \([3]\), \(\mathcal{A} \) is usually assumed to satisfy the sparse restricted isometry property (sparse-RIP) \([4]\) where:
\[
(1 - \delta_s(\mathcal{A}))[|X|]_p \leq \| \mathcal{A}X \|_2 \leq (1 + \delta_s(\mathcal{A}))[|X|]_p,
\]
\(\forall X \in \mathbb{D}^n \) with \(\| X \|_0 \leq s \) and \(\delta_s(\mathcal{A}) \in (0, 1) \).

In the general affine rank minimization (ARM) problem, we aim to recover a low-rank matrix \(X^* := L^1 \) from a set of observations \(y \in \mathbb{R}^p \), according to \([5]\). The challenge is to reconstruct the true matrix given \(p \ll m \times n \). A practical means to tackle this problem is by finding the simplest solution \(\hat{X} := \hat{L} \) of minimum rank that minimizes the data error as:
\[
\{ \hat{L} \} = \arg\min_{L : \text{rank}(L) \leq k} \| y - \mathcal{A}L \|_2,
\]
\([2]\) provides guarantees for exact and unique solution using the rank-RIP property for affine transformations where \(\mathcal{A} \) satisfies:
\[
(1 - \delta_k(\mathcal{A}))[|X|]_p \leq \| \mathcal{A}X \|_2 \leq (1 + \delta_k(\mathcal{A}))[|X|]_p,
\]
\(\forall X \in \mathbb{R}^{m \times n} \) with \(\text{rank}(X) \leq k \) and \(\delta_k(\mathcal{A}) \in (0, 1) \).

B. Fusing low-dimensional embedding models

Robust Principal Component Analysis (RPCA) deals with the challenge of recovering a low rank and a sparse matrix component from a complete data matrix. In mathematical terms, we acquire a finite set of observations \(Y \in \mathbb{R}^{m \times n} \) according to \(Y = L^* + M^* \) with \(L^* \in \mathbb{R}^{m \times n} \) and \(M^* \in \mathbb{R}^{m \times n} \), defined above. The “robust” characterization of the RPCA problem refers to \(M^* \) having gross non-zero entries with arbitrary energy. Under mild assumptions concerning the incoherence between \(L^* \) and \(M^* \) \([3]\), we can efficiently reconstruct both the low-rank and sparse components using convex and non-convex optimization approaches \([3]\), \([4]\).
C. Contributions

While solving the RPCA problem itself is a difficult task, here we assume: (i) \(\mathcal{A} \) is an arbitrary linear operator satisfying both sparse- and rank-RIP (this assumption includes the identity linear map of RPCA as a special case) and, (ii) the total number of observations in \(y \) is much less compared to the total number of variables we want to recover, i.e., \(p \ll m \times n \). Our contributions are two-fold:

- For noisy settings and arbitrary operator \(\mathcal{A} \) satisfying sparse- and rank-RIP, we provide better restricted isometry constant guarantees compared to state-of-the-art approaches [5].
- We introduce \textsc{Matrix ALPS}, an accelerated, memory-based algorithm along with preliminary convergence analysis.

The organization of the paper is as follows. In Section II, we describe the algorithms in a nutshell and present the main theorem of the paper in Section III. In Section IV we briefly study acceleration techniques in the recovery process. We provide empirical support for our claims for better data recovery performance and reduced complexity in Section V.

Notation: We reserve lower-case letters for scalar variable representation. Bold upper-case letters denote matrices while bold calligraphic upper-case letters represent linear maps. We reserve plain calligraphic upper-case letters for set representations.

We denote a set of orthonormal, rank-1 matrices that span the subspace induced by \(X \). We reserve calligraphic upper-case letters to represent the current matrix \(\mathcal{A} \). An important ingredient for our matrix analysis is the following lemma—the proof can be found in [5].

Lemma 1. Let \(F \) be a support set with \(|F| \leq s \) and assume \(L \in \mathbb{R}^{m \times n} \) is a rank-k matrix, satisfying the conditions above. Then, given a general linear operator \(\mathcal{A} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p \) satisfying both sparse- and rank-RIP, we have:

\[
\left\| (\mathcal{A}^* \mathcal{A} L)_F \right\|_F \lesssim \delta_{s+k}(\mathcal{A}) \left\| L \right\|_F, \quad \text{for } \min\{m, n\} \gg s \gg k.
\]

Algorithm 1: SpaRCS

II. The SpaRCS Algorithm

Explict description of SpaRCS [5] is provided in Algorithm 1 in pseudocode form. This approach borrows from a series of vector and matrix reconstruction algorithms such as CoSaMP [6] and ADMiRA [7]. In a nutshell, this algorithm simply seeks to improve the current subspace and support set selection by iteratively collecting extended sets \(S^c_k \) and \(S^M_k \) with \(|S^c_k| \leq 2k \) and \(|S^M_k| \leq 2s \), respectively. Then, \(s \)-sparse and rank-\(k \) matrices are estimated to fit the measurements in these restricted subspace/support sets using least squares techniques.

III. Improved Convergence Guarantees

Before we present our analysis, we note the following. The reconstruction of both \(L^* \) and \(M^* \) from \(y \) makes sense under mild conditions on \(L^* \) and \(M^* \). Borrowing from [3], we assume that the low rank component \(L^* \) is not sparse and uniformly bounded with respect to its singular vectors and the sparse component \(M^* \) is not low rank with support set uniformly random over the entries of \(M^* \).

An important ingredient for our matrix analysis is the following lemma—the proof can be found in [5].

Lemma 1. Let \(F \) be a support set with \(|F| \leq s \) and assume \(L \in \mathbb{R}^{m \times n} \) is a rank-k matrix, satisfying the conditions above. Then, given a general linear operator \(\mathcal{A} : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p \) satisfying both sparse- and rank-RIP, we have:

\[
\left\| (\mathcal{A}^* \mathcal{A} L)_F \right\|_F \lesssim \delta_{s+k}(\mathcal{A}) \left\| L \right\|_F, \quad \text{for } \min\{m, n\} \gg s \gg k.
\]
where $\delta_{s+k}(\mathbf{A})$ denotes the RIP constant of \mathbf{A} over (disjoint) sparse index and low-rank subspace sets where the combined cardinality is less than $s+k$.

We provide improved conditions for convergence for Algorithm 1. The details of the proof can be found in the Appendix. The following theorem characterizes Algorithm 1:

Theorem 1. Given the problem configuration described in [7] and [2], assume the linear operator \mathbf{A} satisfies the sparse-RIP and rank-RIP for $\delta_{4s}(\mathbf{A}) \leq 0.075$, $\delta_{4s}(\mathbf{A}) \leq 0.04$ and $\delta_{2s+3k}(\mathbf{A}) \leq 0.07$. Then, the $(i+1)$-th estimate \mathbf{X}_{i+1} of Algorithm 1 can be decomposed into a superposition of low-rank and sparse components as $\mathbf{X}_{i+1} = \mathbf{L}_{i+1} + \mathbf{M}_{i+1}$, satisfying the recursions:

$$
\begin{align*}
\|\mathbf{L}^* - \mathbf{L}_{i+1}\|_F &\leq \rho_1^i \|\mathbf{L}^* - \mathbf{L}_i\|_F + \rho_1^M \|\mathbf{M}^* - \mathbf{M}_i\|_F + \gamma_1 \|\mathbf{F}\|_2 \\
\|\mathbf{M}^* - \mathbf{M}_{i+1}\|_F &\leq \rho_2^i \|\mathbf{L}^* - \mathbf{L}_i\|_F + \rho_2^M \|\mathbf{M}^* - \mathbf{M}_i\|_F + \gamma_2 \|\mathbf{F}\|_2
\end{align*}
$$

where $\rho_1^i = 0.1605$, $\rho_2^i = 0.3431$, $\rho_1^M = 0.3376$, $\rho_2^M = 0.1414$, $\gamma_1 = 4.36$ and $\gamma_2 = 4.45$.

To compare with state-of-the-art approaches, [12] provides the following constants for the same RIP assumptions: $\rho_1^i = 0.479$, $\rho_2^i = 0.474$, $\rho_1^M = 0.472$, $\rho_2^M = 0.324$, $\gamma_1 = 6.08$ and $\gamma_2 = 6.88$. We note here that the above theorem holds if and only if the intermediate estimates \mathbf{L}_i and \mathbf{M}_i, $\forall i$, satisfy Lemma 3. Unfortunately, we cannot guarantee that \mathbf{L}_i and \mathbf{M}_i are uniformly bounded or have random support set patterns, respectively, at each iteration for arbitrary problem configurations. Although the potential optimization problem is non-convex, recent works on non-convex optimization [8], [9] establish mild conditions on the objective function and the regularization terms, that are satisfied in our setting, under which a stationary point to a non-convex problem can be obtained using memory-less or memory-based projected gradient descent methods.

Next, we sketch the proof of Theorem 1 in a modular fashion and use key ingredients to analyze our MATRIX ALPS algorithm.

A. Subspace and support exploration

Lemma 2 (Active subspace expansion). At each iteration, the Active Subspace Expansion step (Step 4) captures information contained in the true matrix \mathbf{L}^* with $\mathbf{L}^* \leftarrow \text{ortho}(\mathbf{L}^*)$, such that:

$$
\|\mathbf{L}^* - \mathbf{L}_i\|_F \leq (2\delta_{2k}(\mathbf{A}) + 2\delta_{3k}(\mathbf{A})) \|\mathbf{L}^* - \mathbf{L}_i\|_F + 2\delta_{2k+2s}(\mathbf{A}) \|\mathbf{M}^* - \mathbf{M}_i\|_F + \sqrt{2(1 + \delta_{2k}(\mathbf{A}))} \|\mathbf{F}\|_2.
$$

Lemma 2 states that, at each iteration, the Active subspace expansion step identifies a $2k$ rank subspace in $\mathbb{R}^{m \times n}$ such that the amount of unrecovered energy of \mathbf{L}^*—i.e., the projection of \mathbf{L}^* onto the orthogonal subspace of $\text{span}(\mathbf{S}_k^c)$—is bounded as shown above. Similarly, the next Corollary holds for the sparse estimation part:

Corollary 1 (Active support expansion). At each iteration, the Active Support Expansion step (Step 5) captures information contained in the true matrix \mathbf{M}^* with $\mathbf{M}^* \leftarrow \text{supp}(\mathbf{M}^*)$, such that:

$$
\|(\mathbf{M}^* - \mathbf{M}_i)\|_{\mathcal{M}^* \setminus \mathbf{S}_k^c} \|_F \leq (\delta_{2s}(\mathbf{A}) + \delta_{4s}(\mathbf{A})) \|\mathbf{M}^* - \mathbf{M}_i\|_F + (\delta_{2k+2s}(\mathbf{A}) + \delta_{2k+s}(\mathbf{A})) \|\mathbf{L}^* - \mathbf{L}_i\|_F + \sqrt{2(1 + \delta_{2s}(\mathbf{A}))} \|\mathbf{F}\|_2.
$$

B. Least-squares estimates over low rank subspaces

Lemma 3 (Least-squares error reduction over a low-rank subspace). Let \mathbf{S}_k^c be a set of orthonormal, rank-1 matrices such that $\text{span}(\mathbf{S}_k^c) \leq 2k$. Then, the rank-$2k$ solution \mathbf{V}_k^c in Step 7 identifies most of the energy of \mathbf{L}^* over \mathbf{S}_k^c such that:

$$
\|\mathbf{V}_k^c - \mathbf{L}^*\|_F \leq \frac{1}{\sqrt{1 - \delta_{2k}^2(\mathbf{A})}} \|\mathbf{P}_{\mathbf{S}_k^c}^\perp (\mathbf{V}_k^c - \mathbf{L}^*)\|_F + \left(1 + \frac{\delta_{2s}(\mathbf{A})}{1 - \delta_{2k}^2(\mathbf{A})} \right) (\delta_{2k+2s}(\mathbf{A}) \|\mathbf{M}^* - \mathbf{M}_i\|_F + \sqrt{1 + \delta_{2k}(\mathbf{A})} \|\mathbf{F}\|_2).
$$

Assuming \mathbf{A} is well-conditioned over low-rank subspaces, the main complexity of this operation is dominated by the solution of a symmetric linear system of equations. Using Lemma 3 and the following inequality:

$$
\|\mathbf{L}_{i+1} - \mathbf{V}_k^c\|_F \leq \|\mathbf{P}_{\mathbf{S}_k^c}^\perp (\mathbf{V}_k^c - \mathbf{L}^*)\|_F + \left(\sqrt{1 + 3\delta_{2k}^2(\mathbf{A})} \cdot \frac{1 + 2\delta_{2k}(\mathbf{A})}{1 - \delta_{2k}^2(\mathbf{A})} + \sqrt{3}\right) (\delta_{2k+2s}(\mathbf{A}) \|\mathbf{M}^* - \mathbf{M}_i\|_F + \sqrt{1 + \delta_{2k}(\mathbf{A})} \|\mathbf{F}\|_2).
$$

Combining Lemma 2 with the inequality [7], we obtain the first inequality in Theorem 1.
C. Least-squares estimates over sparse support sets

Using similar techniques described above for the sparse matrix estimate, we derive the following.

Corollary 2 (Least-squares error norm reduction over sparse support sets). Let $S_{i+1}^M \subseteq \{(i, j) : i \in \{1, \ldots, m\}, j \in \{1, \ldots, n\}\}$ be a $2s$-sparse index set. Then, the $2s$-sparse matrix V_{i+1}^M (Step 10) identifies energy of M^* over S_{i+1}^M such that:

$$
\|V_{i+1}^M - M^*\|_F \leq \frac{1}{\sqrt{1 - \delta_{3s}(A)}} \| (V_{i+1}^M - M^*) \|_{S_{i+1}^M, F} + \frac{1 + 2\delta_{2s}(A)}{1 - \delta_{3s}(A)} \|M^* - L_i\|_F + \sqrt{1 + \delta_{3s}(A)} \|\epsilon\|_2).
$$

In sequence, we follow the same motions to obtain an inequality analogous to (7) for the sparse matrix estimate part.

IV. THE MATRIX ALPS FRAMEWORK

To accelerate the convergence speed of SpaRCs, we propose MATRIX ALPS algorithm based on acceleration techniques from convex analysis [10], [11]. At each iteration, we leverage both low rank and sparse matrix estimates from previous iterations to form a gradient surrogate with low-computational cost. Then, we update the current estimates using memory to gain momentum in convergence as proposed in Nesterov’s optimal gradient methods. A key ingredient is the selection of the momentum term τ—constant and adaptive momentum selection strategies can be found in [11]. We reserve the analysis for the adaptive case for an extended paper.

To further improve the convergence speed, we replace the least-squares optimization steps with first-order gradient descent updates—the step size μ_i selection follows from [11].

The best projection of an arbitrary matrix onto the set of low rank matrices requires sophisticated matrix decompositions such as Singular Value Decomposition (SVD). Using the Lanczos approach, we require $O(kmn)$ arithmetic operations to compute a rank-k matrix approximation for a given constant accuracy—a prohibitive time-complexity that does not scale well for many practical applications. Alternatives to SVD can be found in [3], [12]. Furthermore, [13] includes ϵ-approximate low rank matrix projections in the recovery process and study their effects on the convergence.

The following theorem characterizes Algorithm 2 for the noiseless case using a constant momentum step size selection strategy.

Theorem 2. Let $A : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p$ be a linear operator satisfying rank-RIP and sparse-RIP with constants $\delta_{4k}(A) \leq 0.09$ and $\delta_{4s}(A) \leq 0.095$, respectively. Furthermore, assume constant momentum step size selection with $\tau_i = 1/4$, $\forall i$. We consider the noiseless case where the set of observations satisfy $y = AX^*$ for $X^* := L^* + M^*$ as defined in Problem. Then, Algorithm 2 satisfies the following second-order linear system:

$$
\Delta \cdot (1 + \tau) \Delta x(i) = \Delta x(i) - \Delta x(i - 1),
$$

where $x(i) := \frac{\|L_i - L^*\|_F}{\|M_i - M^*\|_F}$ and $\Delta := \begin{bmatrix} \Delta_{11} & \Delta_{12} \\ \Delta_{21} & \Delta_{22} \end{bmatrix}$ depends on RIP constants $\delta_{4k}(A)$ and $\delta_{4s}(A)$. Furthermore, the
above inequality can be transformed into the following first-order linear system:

$$w(i + 1) \leq \left[\begin{array}{c} (1 + \tau) \Delta \\ \tau \Delta^T \\ 0 \end{array} \right] w(0),$$ (9)

for $w(i) := [x(i + 1) \ x(i)]^T$. We observe that $\lim_{i \to \infty} w(i) = 0$ since $|\lambda_i(\hat{\Delta})| \leq 1$, $\forall j$.

Due to space constraints, we reserve the proof as well as the noisy analog of Theorem 2 for an extended version of the paper.

V. EXPERIMENTS

Robust matrix completion: The rank-k $X^* \in \mathbb{R}^{n \times n}$ is synthesized as $X^* := U R^T$ where $U \in \mathbb{R}^{n \times k}$ and $R \in \mathbb{R}^{n \times k}$ and $\|X^*\|_F = 1$. We subsample X^* by observing $p = 0.3mn$ entries, drawn uniformly at random. The set of observations satisfies: $y = A_0 X^* + \varepsilon$. Here, Ω denotes the set of ordered pairs that represent the coordinates of the observable entries and A_0 denotes the linear operator (mask) that subsamples a matrix according to Ω.

We generate various problem configurations, both for noisy and noiseless settings. All the algorithms are tested for the same signal-matrix-noise realizations and use the same tolerance parameter $\eta = 10^{-3}$. For fairness, we modified all the algorithms so that they exploit the true rank. For low-rank projections, we use PROPACK package [17], except [15] which is SVD-less. We changed the maximum number of cycles in [15] from 150 to 30 to improve its speed. A summary of the results can be found in Fig. 1. We observe that MATRIX ALPS has better phase transition performance. A complete comparison using randomized, low-rank projection schemes in MATRIX ALPS is provided in the extended paper.

RPCA: We consider the problem of background subtraction in video sequences: static background scenes are considered low-rank while moving foreground objects are sparse data. Using the complete set of measurements, this problem falls under the RPCA framework. We apply the GoDec algorithm [4] and the MATRIX ALPS scheme on a 144 x 176 x 200 video sequence. Both solvers use the same low-rank projection operators based on randomized QR factorization ideas [4], [12]. Representative results are depicted in Fig. 2.

VI. CONCLUSIONS

We study the general problem of sparse plus low rank matrix recovery from incomplete and noisy data. In essence, the problem under consideration includes various low-dimensional models as special cases such as sparse signal reconstruction, affine rank minimization and robust PCA. Based on this algorithm, we derive improved conditions on the restricted isometry constants that guarantee the success of reconstruction. Furthermore, we show that the memory-based scheme provides great computational advantage over both the convex and the non-convex approaches.

VII. APPENDIX

A. Proof of Lemma 2

Given $L^* := \text{ortho}(L^*)$, we define the following quantities: $S_L^c := L_i \cup D_L^c$, $S_L^c := L_j \cup L^*$. Then:

$$\mathcal{P}_{S_L^c \setminus S_L^c} = \mathcal{P}_{D_L^c \setminus (L^* \cup L_j)}, \quad \text{and} \quad \mathcal{P}_{S_L^c \setminus S_L^c} = \mathcal{P}_{L^* \setminus (D_L^c \cup L_j)}. \quad (10)$$

Since the subspace defined in D_L^c is the best rank-k subspace, orthogonal to the subspace spanned by L_i, the following holds true:

$$\|\mathcal{P}_{D_L^c \setminus L_i} \nabla f(X_i)\|_F^2 \geq \|\mathcal{P}_{L^* \setminus L_i} \nabla f(X_i)\|_F^2 \Rightarrow \|\mathcal{P}_{S_L^c \setminus L_i} \nabla f(X_i)\|_F^2 \geq \|\mathcal{P}_{S_L^c \setminus L_i} \nabla f(X_i)\|_F^2 \quad (11)$$

1Codes are available for MATLAB at http://lions.epfl.ch/MatrixALPS
Removing the common subspaces in S^i_L and \hat{S}^i_L, we get

$$\|P_{S^i_L \setminus \hat{S}^i_L} A^* A(L^* - L_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* A(M^* - M_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* \varepsilon\|_F \geq$$

$$\|P_{S^i_L \setminus \hat{S}^i_L} A^* A(L^* - L_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* A(M^* - M_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* \varepsilon\|_F$$

(12)

On the left hand side, we have:

$$\|P_{S^i_L \setminus \hat{S}^i_L} A^* A(L^* - L_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* A(M^* - M_i) + P_{S^i_L \setminus \hat{S}^i_L} A^* \varepsilon\|_F$$

(13)

$$\leq (i) \|P_{S^i_L \setminus \hat{S}^i_L} A^* A(L^* - L_i)\|_F + \|P_{S^i_L \setminus \hat{S}^i_L} A^* \varepsilon\|_F + \|P_{S^i_L \setminus \hat{S}^i_L} A^* A(M^* - M_i)\|_F$$

(14)

where (i) due to triangle inequality over Frobenius metric norm. The first two terms in the above expression can be bounded using tools in [13]. For the third term, we use Lemma 3.2 in [5] where we conclude that $\|P_{S^i_L \setminus \hat{S}^i_L} A^* A(M^* - M_i)\|_F \leq$
\[\delta_{2k+2s}(A) \| M^* - M_i \|_F \]. Thus:
\[
\| P_{S^c_i} (V_i^c - L_i^c) + P_{S^c_i} (S^c_i A (M^* - M_i) + P_{S^c_i} (S^c_i A^* e) \|_F
\leq 2 \delta_{2k}(A) \| L^* - L_i \|_F + \delta_{2k+2s}(A) \| M^* - M_i \|_F + \| P_{S^c_i} (S^c_i A^* e) \|_F
\]
(15)

Similarly, using ideas from \([13]\) for the right hand side, we calculate:
\[
\| P_{S^c_i} (S^c_i A^* (L^* - L_i^c) + P_{S^c_i} (S^c_i A (M^* - M_i) + P_{S^c_i} (S^c_i A^* e) \|_F
\geq \| P_{S^c_i} (S^c_i (L^* - L_i^c) - 2 \delta_{2k}(A) \| L^* - L_i \|_F - \delta_{2k+2s}(A) \| M^* - M_i \|_F - \| P_{S^c_i} (S^c_i A^* e) \|_F
\]
(16)

Combining the above inequalities, we get:
\[
\| P_{S^c_i \setminus (S^c_i \cup L^c_i)} (L^* - L_i) \|_F
\leq (2 \delta_{2k}(A) + 2 \delta_{3k}(A)) \| L^* - L_i \|_F + 2 \delta_{2k+2s}(A) \| M^* - M_i \|_F + \| P_{S^c_i \setminus (S^c_i \cup L^c_i)} e \|_F
\]
(19)
\[
\leq (2 \delta_{2k}(A) + 2 \delta_{3k}(A)) \| L^* - L_i \|_F + 2 \delta_{2k+2s}(A) \| M^* - M_i \|_F + \sqrt{2(1 + \delta_{2k}(A))} \| e \|_2.
\]
(20)

To prove Corollary 1 we follow the same ideas based on \([9], [13], [18]\).

B. Proof of Lemma 13

We observe that \(\| V_i^c - L_i^c \|_F^2 \) is decomposed as follows:
\[
\| V_i^c - L_i^c \|_F^2 = \| P_{S^c_i} (V_i^c - L_i^c) \|_F^2 + \| P_{S^c_i} (V_i^c - L_i^c) \|_F^2.
\]
(21)

\(V_i^c \) is the minimizer over the low-rank subspace spanned by \(S_i^c \) with rank(span(\(S_i^c \))) \leq 2k. Using the optimality condition over the convex set \(\Theta = \{ X : \text{span}(X) \in S_i^c \} \), we have:
\[
\langle \nabla f(V_i^c), P_{S^c_i} (L_i^c - V_i^c) \rangle = 0 \Rightarrow \langle AV_i^c - (y - AM_i), AP_{S^c_i} (V_i^c - L_i^c) \rangle = 0.
\]
(22)

for \(P_{S^c_i} L_i^* \in \text{span}(S_i^c) \). Given condition (22), the first term on the right hand side of (21) becomes:
\[
\| P_{S^c_i} (V_i^c - L_i^c) \|_F^2 = \langle V_i^c - L_i^c, P_{S^c_i} (V_i^c - L_i^c) \rangle
\]
(23)
\[
= \langle V_i^c - L_i^c, P_{S^c_i} (V_i^c - L_i^c) \rangle = \langle AV_i^c - (y - AM_i), AP_{S^c_i} (V_i^c - L_i^c) \rangle
\]
(24)
\[
= \langle V_i^c - L_i^c, P_{S^c_i} (V_i^c - L_i^c) \rangle = \langle AV_i^c - (A(L_i^* + M_i) + e - AM_i), AP_{S^c_i} (V_i^c - L_i^c) \rangle
\]
(25)
\[
= \langle V_i^c - L_i^c, P_{S^c_i} (V_i^c - L_i^c) \rangle = \langle V_i^c - L_i^c, (M^* - M_i), A^* AP_{S^c_i} (V_i^c - L_i^c) \rangle
\]
(26)
\[
\leq \| V_i^c - L_i^c, (I - A^* A) \| P_{S^c_i} (V_i^c - L_i^c) \| \| (M^* - M_i, A^* AP_{S^c_i} (V_i^c - L_i^c) \|)
\]
(27)

According to Lemma 10 in \([11]\), we know that:
\[
\| (V_i^c - L_i^c, (I - A^* A) P_{S^c_i} (V_i^c - L_i^c) \| = \| (V_i^c - L_i^c, (I - P_{S^c_i \cup L_i^c}, A^* AP_{S^c_i \cup L_i^c}) P_{S^c_i} (V_i^c - L_i^c) \|
\leq \| V_i^c - L_i^c \|_F \| (I - P_{S^c_i \cup L_i^c}, A^* AP_{S^c_i \cup L_i^c}) P_{S^c_i} (V_i^c - L_i^c) \|_F
\]
(29)
\[
\| V_i^c - L_i^c \|_F \| (I - P_{S^c_i \cup L_i^c}, A^* AP_{S^c_i \cup L_i^c}) P_{S^c_i} (V_i^c - L_i^c) \|_F
\leq \delta_{3k}(A) \| V_i^c - L_i^c \|_F \| P_{S^c_i} (V_i^c - L_i^c) \|_F
\]
(30)

given the facts that \(V_i^c - L_i^* \in \text{span}(S_i^c \cup L_i^*) \) and thus \(P_{S^c_i \cup L_i^*} (V_i^c - L_i^*) = V_i^c - L_i^* \) and \(P_{S^c_i \cup L_i^*} P_{S^c_i} = P_{S^c_i} \) since \(\text{span}(S_i^c) \subseteq \text{span}(S_i^c \cup L_i^*) \). The last inequality is due to Lemma 3 in \([13]\). Focusing on the term \| (M^* - M_i, A^* AP_{S^c_i} (V_i^c - L_i^*) \|, we derive the following:
\[
\| (M^* - M_i, A^* AP_{S^c_i} (V_i^c - L_i^*) \| = \| P_{S^c_i} (V_i^c - L_i^*), P_{S^c_i} AA (M^* - M_i) \|
\]
(31)
\[
\leq \| P_{S^c_i} (V_i^c - L_i^*) \|_F \| P_{S^c_i} AA (M^* - M_i) \|_F
\leq \| P_{S^c_i} (V_i^c - L_i^*) \|_F \delta_{2k+2s}(A) \| M^* - M_i \|_F
\]
(32)
using Lemma 3.2 in [5]. Then, (33) becomes:

\[
\|P_{S_\xi}(V_i^c - L^*)\|^2_p \leq \delta_{3k}(A)\|V_i^c - L^*\|^p_p + \delta_{2k+2s}(A)\|P_{S_\xi}(V_i^c - L^*)\|^p_p \|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2.
\]

where the last term becomes using Lemma 1 in [13]. Simplifying the above quadratic expression, we obtain:

\[
\|P_{S_\xi}(V_i^c - L^*)\|^p_p \leq \delta_{3k}(A)\|V_i^c - L^*\|^p_p + \delta_{2k+2s}(A)\|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2.
\]

As a consequence, (34) can be upper bounded by:

\[
\|V_i^c - L^*\|^p_p \leq (\delta_{3k}(A)\|V_i^c - L^*\|^p_p + \delta_{2k+2s}(A)\|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2)^2 + \|P_{S_\xi}(V_i^c - L^*)\|^p_p.
\]

We form the quadratic polynomial for this inequality assuming as unknown variable the quantity \(\|V_i^c - L^*\|^p_p\). Bounding by the largest root of the resulting polynomial, we get:

\[
\|V_i^c - L^*\|^p_p \leq \frac{1}{\sqrt{1 - \delta_{3k}(A)}}\|P_{S_\xi}(V_i^c - L^*)\|^p_p + \frac{1 + 2\delta_{2k}(A)}{1 - \delta_{3k}(A)}\left(\delta_{2k+2s}(A)\|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2\right)^2.
\]

C. Proof of Inequality (7)

Proof: We observe the following

\[
\|L_{i+1} - L^*\|^p_p = \|L_{i+1} - V_i^c + V_i^c - L^*\|^p_p
\]

\[
= \|V_i^c - L^*\|^p_p - \|V_i^c - L_{i+1}\|^p_p
\]

\[
\leq \|V_i^c - L^*\|^p_p + \|V_i^c - L_{i+1}\|^p_p - 2\|V_i^c - L^* - V_i^c + L_{i+1}\|^p_p.
\]

Focusing on the right hand side of expression (35), \(\langle V_i^c - L^*, P_{S_\xi}(V_i^c - L_{i+1}) \rangle = \langle V_i^c - L^*, P_{S_\xi}(V_i^c - L_{i+1}) \rangle\) can be similarly analysed as in [30]. Using the optimality condition as in [22], we obtain the following expression:

\[
\langle V_i^c - L^*, P_{S_\xi}(V_i^c - L_{i+1}) \rangle = \langle V_i^c - L^*, P_{S_\xi}(V_i^c - L_{i+1}) \rangle - \langle V_i^c - L^* - (M^* - M_i), A^* A P_{S_\xi}(V_i^c - L_{i+1}) \rangle + \langle \epsilon, A P_{S_\xi}(V_i^c - L_{i+1}) \rangle
\]

\[
= \langle V_i^c - L^*, (I - A^* A)P_{S_\xi}(V_i^c - L_{i+1}) \rangle + \langle M^* - M_i, A^* A P_{S_\xi}(V_i^c - L_{i+1}) \rangle + \langle \epsilon, A P_{S_\xi}(V_i^c - L_{i+1}) \rangle
\]

\[
\leq \delta_{3k}(A)\|V_i^c - L^*\|^p_p \|V_i^c - L_{i+1}\|^p_p + \|P_{S_\xi}(A^* A(M^* - M_i))\|_p \|V_i^c - L_{i+1}\|^p_p
\]

\[
+ \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2 \|V_i^c - L_{i+1}\|^p_p.
\]

Now, expression (35) can be further transformed as:

\[
\|L_{i+1} - L^*\|^p_p = \|V_i^c - L^*\|^p_p + \|V_i^c - L_{i+1}\|^p_p - 2\|V_i^c - L^* - V_i^c + L_{i+1}\|^p_p
\]

\[
\leq \|V_i^c - L^*\|^p_p + \|V_i^c - L_{i+1}\|^p_p + 2\|V_i^c - L^* - V_i^c + L_{i+1}\|^p_p.
\]

\[
\leq \delta_{2k+2s}(A)\|M^* - M_i\|^p_p \|V_i^c - L_{i+1}\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2 \|V_i^c - L_{i+1}\|^p_p.
\]

where (i) is due to (39). Using the inequality \(\|L_{i+1} - V_i^c\|^p_p \leq \|P_{S_\xi}(V_i^c - L^*)\|^p_p\), we get:

\[
\|L_{i+1} - L^*\|^p_p \leq \|V_i^c - L^*\|^p_p + \|P_{S_\xi}(V_i^c - L^*)\|^p_p + 2\|\delta_{2k}(A)\|V_i^c - L^*\|^p_p + \|P_{S_\xi}(V_i^c - L^*)\|^p_p \|\epsilon\|_2^2 \|P_{S_\xi}(V_i^c - L^*)\|^p_p.
\]

Furthermore, replacing \(\|P_{S_\xi}(V_i^c - L^*)\|^p_p\) with its upper bound defined in (34), we compute:

\[
\|L_{i+1} - L^*\|^p_p = \left(1 + 3\delta_{3k}(A)^2\right)\|V_i^c - L^*\|^p_p + \frac{4\delta_{3k}(A)}{\sqrt{1 + \delta_{2k}(A)}}\|V_i^c - L^*\|^p_p \|\epsilon\|_2^2 + \frac{3(1 + \delta_{2k+2s}(A)\|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2)^2}{1 + 3\delta_{3k}(A)^2}\|\epsilon\|_2^2.
\]

\[
\leq \left(1 + 3\delta_{3k}(A)^2\right)\|V_i^c - L^*\|^p_p + \frac{3\delta_{2k+2s}(A)\|M^* - M_i\|^p_p + \sqrt{1 + \delta_{2k}(A)}\|\epsilon\|_2^2}{1 + 3\delta_{3k}(A)^2} \epsilon^2.
\]
where \((i)\) is obtained by completing the squares and eliminating negative terms. Thus:

\[
\|L_{i+1} - L^*\|_F \leq \sqrt{1 + \frac{3\delta_{i+2}(A)}{1 + \delta_{i+2}(A)}} \left(\|V_i^\varepsilon - L^*\|_F + \sqrt{\frac{3}{1 + \delta_{i+2}(A)}}(\delta_{i+2}2A(A, L^* - M, L^* + \sqrt{1 + \delta_{i+2}(A)}\|\|)\right)
\]

Furthermore, we exploit Lemma 5 in [13] to obtain inequality [7].

\[\]

\[\]

D. Proof of Theorem 2

Here, we prove the convergence of Algorithm 2, both for the low rank and the sparse matrix estimate part, and then combine the corresponding theoretical results. Let \(L^* \leftarrow \text{ortho}(L^*)\) be a set of orthonormal, rank-1 matrices that span the range of \(L^*\) and \(M^*\) be the set of indices of the non-zero elements in \(M^*\). For the low rank matrix estimate, we observe the following:

\[
\|L_{i+1} - V_i^\varepsilon\|_F^2 \leq \|L^* - V_i^\varepsilon\|_F^2 \Rightarrow (44)
\]

\[
\|L_{i+1} - L^*\|_F^2 + \|V_i^\varepsilon - L^*\|_F^2 + 2(L_{i+1} - L^*, L^* - V_i^\varepsilon) \leq \|L^* - V_i^\varepsilon\|_F^2 \Rightarrow (45)
\]

\[
\|L_{i+1} - L^*\|_F^2 \leq 2(L_{i+1} - L^*, V_i^\varepsilon - L^*) \Rightarrow (46)
\]

From Algorithm 2, it is obvious that (i) \(V_i^\varepsilon \in \text{span}(S_i^\varepsilon)\), (ii) \(Q_i^\varepsilon \in \text{span}(S_i^\varepsilon)\) and (iii) \(L_{i+1} \in \text{span}(S_i^\varepsilon)\). We define \(\mathcal{E} : = S_i^\varepsilon ω L^*\) where rank(span(\(\mathcal{E}\))) \leq 4k and let \(P_\mathcal{E}\) be the orthogonal projection onto the subspace defined by \(\mathcal{E}\). We highlight that \(P_\mathcal{E}P_{S_i^\varepsilon} = P_{S_i^\varepsilon}\).

Since \(L_{i+1} - L^* \in \text{span}(\mathcal{E})\) and \(V_i^\varepsilon - L^* \in \text{span}(\mathcal{E})\), the following hold true:

\[
L_{i+1} - L^* = P_\mathcal{E}(L_{i+1} - L^*) \quad \text{and} \quad V_i^\varepsilon - L^* = P_\mathcal{E}(V_i^\varepsilon - L^*). \quad (48)
\]

Then, (47) can be written as:

\[
\|L_{i+1} - L^*\|_F^2 \leq 2(P_\mathcal{E}\{L_{i+1} - L^*\}, P_\mathcal{E}\{V_i^\varepsilon - L^*\}) \quad (49)
\]

\[
= 2(P_\mathcal{E}\{L_{i+1} - L^*\}, P_\mathcal{E}\{Q_i^\varepsilon + \mu_i^\varepsilon P_{S_i^\varepsilon} A^* (y - A Q_{i+1}) - L^*\}) \quad (50)
\]

\[
= 2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} + \mu_i^\varepsilon P_{S_i^\varepsilon} P_{\mathcal{E}}(A^* (L^* + M^*) - A Q_{i+1})) \quad (51)
\]

\[
= 2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} + \mu_i^\varepsilon P_{S_i^\varepsilon} P_{\mathcal{E}}(A^* A^* (L^* + M^*) - A^* A (Q_i^\varepsilon + Q_i^{M^*})) \quad (52)
\]

\[
= 2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} + \mu_i^\varepsilon P_{S_i^\varepsilon} P_{\mathcal{E}} A^*(Q_i^\varepsilon - L^*)) - \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*)) \quad (53)
\]

\[
= 2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} + \mu_i^\varepsilon P_{S_i^\varepsilon} P_{\mathcal{E}} A^* A (Q_i^\varepsilon - L^*) - \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*)) \quad (54)
\]

\[
= 2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} + \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*) - \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*)) \quad (55)
\]

\[
= 2L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} - \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*) - \mu_i^\varepsilon P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*) \quad (56)
\]

due to \(P_\mathcal{E}\{Q_i^\varepsilon - L^*\} := P_{S_i^\varepsilon} P_{\mathcal{E}}(Q_i^\varepsilon - L^*) + \mu_i^\varepsilon P_{\mathcal{E}}(Q_i^\varepsilon - L^*)\). The first term in [56] satisfies:

\[
2(L_{i+1} - L^*, P_\mathcal{E}\{Q_i^\varepsilon - L^*\} - \mu_i^\varepsilon P_{S_i^\varepsilon} P_{\mathcal{E}} A^* A (Q_i^\varepsilon - L^*)) \leq 2\|L_{i+1} - L^*\|_F \|P_\mathcal{E}(Q_i^\varepsilon - L^*)\|_F \|P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*)\|_F \quad (57)
\]

where [57] holds, since \(\frac{\lambda_i}{1 + \delta_{i+2}(A)} \leq \mu_i^\varepsilon \leq \frac{1}{1 + \delta_{i+2}(A)}\), using Lemma 3 in [13].

Moreover, (58) holds, since

\[
\lambda_i \leq \frac{1}{1 + \delta_{i+2}(A)} \quad (58)
\]

and thus:

\[
\|P_\mathcal{E}(Q_i^\varepsilon - L^*)\|_F \leq \frac{2\delta_{i+2}(A)}{1 - \delta_{i+2}(A)} \|P_\mathcal{E}(Q_i^\varepsilon - L^*)\|_F. \quad (59)
\]

Furthermore, according to Lemma 4 in [13]:

\[
\|P_{S_i^\varepsilon} A^* A (Q_i^\varepsilon - L^*)\|_F \leq \delta_{i+2}(A) \|P_{S_i^\varepsilon} P_{\mathcal{E}}(Q_i^\varepsilon - L^*)\|_F \quad (60)
\]

This completes the proof of Theorem 2.
since \(\text{rank}(P_{x_1}^{\perp}Q) \leq 4k, \quad \forall Q \in \mathbb{R}^{m \times n}\). Moreover:

\[
\|P_{x_1}^{\perp}P_{x_2}^{\perp}(Q_{M}^{M} - L^*)\|_F \leq (2\delta_{3k}(A) + 2\delta_{4k}(A))\|Q_{t}^{C} - L^*\|_F,
\]

(61)

using ideas from Lemma 2. The second term in (59) satisfies:

\[
2\mu_{F}(L_{i+1} - L^*, P_{x_2}^{\perp}A^{*}A(Q_{t}^{M} - M^*)) \leq \frac{2}{1 - \delta_{3k}(A)}\|L_{i+1} - L^*\|_F\|P_{x_2}^{\perp}A^{*}A(Q_{t}^{M} - M^*)\|_F
\]

\[
\leq \frac{2}{1 - \delta_{3k}(A)}\|L_{i+1} - L^*\|_F\delta_{3k+3k}(A)\|Q_{t}^{M} - M^*\|_F,
\]

using Lemma 3.2 in [5]. Replacing the above results in (56), we compute:

\[
\|L_{i+1} - L^*\|_F \leq \alpha\|Q_{t}^{C} - L^*\|_F + \beta\|Q_{t}^{M} - M^*\|_F,
\]

(62)

where \(\alpha := \left(\frac{4\delta_{3k}(A)}{1 - \delta_{3k}(A)} + \frac{2\delta_{4k}(A)}{1 - \delta_{3k}(A)}(2\delta_{3k}(A) + 2\delta_{4k}(A))\right)\) and \(\beta := \frac{2\delta_{3k+3k}(A)}{1 - \delta_{3k}(A)}\). Following similar steps for the sparse matrix estimate part, we end up with the following inequality bound for \(M_{i+1}\):

\[
\|M_{i+1} - M^*\|_F \leq \gamma\|Q_{t}^{M} - M^*\|_F + \zeta\|Q_{t}^{C} - L^*\|_F,
\]

(63)

where \(\gamma := \frac{2\delta_{3k+3k}(A)}{1 - \delta_{3k}(A)}\) and \(\zeta := \frac{2\delta_{3k+3k}(A)}{1 - \delta_{3k}(A)}\).

Furthermore:

\[
\|Q_{t}^{C} - L^*\|_F = \|L_{i} + \tau_{i}(L_{i} - L_{i-1}) - L^*\|_F
\]

\[
= \|(1 + \tau_{i})(L_{i} - L^*) + \tau_{i}(L^* - L_{i-1})\|_F
\]

\[
\leq (1 + \tau_{i})\|L_{i} - L^*\|_F + \tau_{i}\|L_{i-1} - L^*\|_F,
\]

(64)

and

\[
\|Q_{t}^{M} - M^*\|_F = \|M_{i} + \tau_{i}(M_{i} - M_{i-1}) - M^*\|_F
\]

\[
= \|(1 + \tau_{i})(M_{i} - M^*) + \tau_{i}(M^* - M_{i-1})\|_F
\]

\[
\leq (1 + \tau_{i})\|M_{i} - M^*\|_F + \tau_{i}\|M_{i-1} - M^*\|_F
\]

(65)

Combining (64), (65) into (62) and (63), we get:

\[
\|L_{i+1} - L^*\|_F \leq \alpha(1 + \tau_{i})\|L_{i} - L^*\|_F + \alpha\tau_{i}\|L_{i-1} - L^*\|_F
\]

\[
+ \beta(1 + \tau_{i})\|M_{i} - M^*\|_F + \beta\tau_{i}\|M_{i-1} - M^*\|_F
\]

(66)

and

\[
\|M_{i+1} - M^*\|_F \leq \gamma(1 + \tau_{i})\|M_{i} - M^*\|_F + \gamma\tau_{i}\|M_{i-1} - M^*\|_F
\]

\[
+ \zeta(1 + \tau_{i})\|L_{i} - L^*\|_F + \zeta\tau_{i}\|L_{i-1} - L^*\|_F
\]

(67)

The inequalities (66) and (67) define the following coupled set of inequalities:

\[
\left[\frac{\|L_{i+1} - L^*\|_F}{\|M_{i+1} - M^*\|_F}\right] \leq (1 + \tau_{i})\Delta \left[\frac{\|L_{i} - L^*\|_F}{\|M_{i} - M^*\|_F}\right] + \tau_{i}\Delta \left[\frac{\|L_{i-1} - L^*\|_F}{\|M_{i-1} - M^*\|_F}\right]
\]

(68)

where \(\Delta := \left[\begin{array}{cc}
\alpha & \beta \\
\zeta & \gamma
\end{array}\right]\). Furthermore, we define \(x(i) := \left[\begin{array}{c}
L_{i} - L^* \\
M_{i} - M^*
\end{array}\right]\) to obtain inequality (68). We can convert this second-order linear system into a two-dimensional first-order system where the variables of the linear system are multi-dimensional. To achieve this, we define a new state variable \(y(i)\) where:

\[
y(i) := x(i + 1).
\]

(69)

and thus, \(y(i + 1) := x(i + 2)\). Using the new variable above, we define the following two-dimensional first-order system:

\[
\left\{\begin{array}{c}
y(i + 1) - (1 + \tau_{i})\Delta y(i) - \tau_{i}\Delta x(i) \leq 0,
\end{array}\right.
\]

\[x(i + 1) \leq y(i).
\]

(70)

which, moreover, defines the following linear system that characterizes the evolution of two state variables, \(\{y(i), x(i)\}\):

\[
\begin{bmatrix}
y(i + 1) \\
x(i + 1)
\end{bmatrix} \leq \begin{bmatrix}
(1 + \tau_{i})\Delta & \tau_{i}\Delta \\
e & 0
\end{bmatrix} \begin{bmatrix}
y(i) \\
x(i)
\end{bmatrix} \Rightarrow \begin{bmatrix}
y(i + 2) \\
x(i + 1)
\end{bmatrix} \leq \begin{bmatrix}
(1 + \tau_{i})\Delta & \tau_{i}\Delta \\
e & 0
\end{bmatrix} \begin{bmatrix}
x(i + 1) \\
x(i)
\end{bmatrix}.
\]

(71)
with well-defined initial conditions \(x(0) := \left[\|L^{*}\|_{F} \right] \) and \(y(0) := x(1) = (1 + \tau_1)\Delta x(0) \). For \(w(i) := \left[\begin{array}{c} x(i + 1) \\ x(i) \end{array} \right] \), we obtain the linear system:

\[
w(i + 1) \leq \left[\begin{array}{cc} (1 + \tau_1)\Delta & \tau_1\Delta \\ \Delta & 0 \end{array} \right] w(i).
\]

Unfolding the recursion, we get the inequality (73):

\[
w(i + 1) \leq \Delta^i w(0).
\]

Assuming \(\Delta : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^p \) is a linear operator satisfying rank-RIP and sparse-RIP with constants \(\delta_{4k}(\Delta) \leq 0.09 \) and \(\delta_{4k}(\Delta) \leq 0.095 \), respectively, and satisfies jointly the low rank- and sparse-RIP with constant \(\delta_{4k+2\delta}(\Delta) \leq 0.095 \), we observe that the eigenvalues of \(\Delta \) are distinct and real and satisfy \(|\lambda_j(\Delta)| \leq 1 \), \(\forall j \). Furthermore, \(\|I - \Delta| \neq 0 \). To complete the proof, we use the following Theorem from [19] — the proof is omitted:

Theorem 3 (Necessary and Sufficient Conditions for Global Stability: Distinct Real Eigenvalues). Consider the system \(w(i+1) = (I - \Delta)^{-1} w(i) + B \) where \(w(0) \) is given. We assume that \(\|I - \Delta| \neq 0 \) and \(\Delta \) has distinct real eigenvalues. Then:

- The steady-state equilibrium \(\bar{w} = (I - \Delta)^{-1} B \) is globally stable if and only if \(|\lambda_j(\Delta)| < 1 \), \(\forall j \).
- \(\lim_{i \rightarrow \infty} w(i) = \bar{w} \) if and only if \(|\lambda_j(\Delta)| < 1 \), \(\forall j \).

In our simple case, we consider \(B := 0 \). Thus, the steady-state equilibrium in (73) satisfies \(\bar{w} = 0 \). Then, we conclude \(\lim_{i \rightarrow \infty} w(i) = 0 \) and, thus:

\[
\|L_i - L^{*}\|_{F} \rightarrow 0 \quad \text{and} \quad \|M_j - M^{*}\|_{F} \rightarrow 0,
\]

as \(i \rightarrow \infty \).

References

[1] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete information. *IEEE Trans. Inf. Theory*, 2006.

[2] B. Recht M. Fazel and P. A. Parrilo. Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. *SIAM Review*, 52(3):471–501, 2010.

[3] E.J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? *Arxiv preprint ArXiv:0912.3599*, 2009.

[4] T. Zhou and D. Tao. Godec: Randomized low-rank & sparse matrix decomposition in noisy case. *In ICML*, 2011.

[5] A.E. Waters, A.C. Sankaranarayanan, and R.G. Baraniuk. Sparcs: Recovering low-rank and sparse matrices from compressive measurements. *IEEE Trans. Inf. Theory*, 2011.

[6] B. Recht M. Fazel and P. A. Parrilo. Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization. *SIAM Review*, 52(3):471–501, 2010.

[7] K. Lee and Y. Bresler. Admira: Atomic decomposition for minimum rank approximation. *IEEE Trans. Inf. Theory*, 2010.

[8] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality. *Mathematics of Operations Research*, 35(2):438–457, 2010.

[9] E. Chouzenoux, A. Jezierska, J.C. Pesquet, and H. Talbot. A majorize-minimize subspace approach for l2-l0 image regularization. *Arxiv preprint arXiv:1112.6272*, 2011.

[10] Y. Nesterov. *Introductory lectures on convex optimization*. Kluwer Academic Publishers, 1996.

[11] A. Kyrillidis and V. Cevher. Recipes on hard thresholding methods. *CAMSAP*, 2011.

[12] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *Arxiv preprint arXiv:0909.4061*, 2009.

[13] A. Kyrillidis and V. Cevher. Matrix recipes for hard thresholding methods. *Technical Report*, 2012.

[14] L. Wu Z. Lin, M. Chen and Y. Ma. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. *UIUC Technical Report UILU-ENG-09-2215*, 2010.

[15] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from highly incomplete information. In *Annual Allerton Conference*, IEEE, 2010.

[16] R. Meza, P. Jain, and I. S. Dhillon. Guaranteed rank minimization via singular value projection. In *NIPS*, 2010.

[17] R. M. Larsen. Propack: Software for large and sparse svd calculations. http://soi.stanford.edu/rmunk/PROPACK.

[18] S. Foucart. Sparse recovery algorithms: sufficient conditions in terms of restricted isometry constants. In *Proceedings of the 13th International Conference on Approximation Theory*, 2010.

[19] Oded Galor. Discrete dynamical systems. *Springer*, 2007.