Title
A generator for the production of sulfuric acid-coated diesel soot aerosols

Permalink
https://escholarship.org/uc/item/3rd2d2sd

Journal
Atmospheric Environment (1967), 22(1)

ISSN
0004-6981

Authors
Walters, Robert B
Nordenstam, Brenda J
Phalen, Robert F

Publication Date
1988

DOI
10.1016/0004-6981(88)90295-8

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
A GENERATOR FOR THE PRODUCTION OF SULFURIC ACID-COATED DIESEL SOOT AEROSOLS

ROBERT B. WALTERS, BREND A. NORDENSTAM and ROBERT F. PHALEN
University of California, Irvine, Department of Community and Environmental Medicine, Irvine, CA 92717, U.S.A.

(First received 1 May 1987 and in final form 22 June 1987)

Abstract—Diluted diesel engine exhaust was mixed with sulfur trioxide and the resulting acid-coated aerosol characterized. The generation system, which is suitable for inhalation toxicology studies, was characterized at a soot concentration of approximately 0.5 mg m⁻³ and H₂SO₄ coating levels from 0 to 5 mg m⁻³. Aerosol characterization included measurement of particle size (cascade impactor + electrical aerosol analyzer tandem sampler) and acid-soot association (electron microscopy of BaCl₂-coated sample grids).

The mass distribution of both acid-coated and uncoated diesel soot was unimodal and approximately lognormal. The acid coating increased both the size and monodispersity of the soot aerosol. The mass median Stokes equivalent diameter and geometric standard deviation were 0.12 μm and 2.4 for the uncoated soot, and 0.28 μm and 1.9 at 5.0 mg m⁻³ H₂SO₄. Approximately 95% of the soot particles were coated with H₂SO₄; the remainder appeared uncoated. Some H₂SO₄ droplets without a visible nucleus were also observed.

Key word index: Diesel soot, sulfuric acid, aerosols, air pollution.

INTRODUCTION

The diesel engine meets many needs in the transportation industry and in other areas. However, concern about the effects of emissions from the diesel has led in recent years to an increase in research and regulatory activity. The particulate emissions are of special concern since they play a role in urban area visibility degradation, and may have adverse health effects.

Under certain circumstances, diesel soot aerosols may be expected to be associated with H₂SO₄. In the atmospheric environment, SO₂ may be oxidized on the surface of solid soot particles (Novakov et al., 1974) or in liquid droplets containing suspended soot particles (Benner et al., 1982), with the resultant formation of H₂SO₄. Such particles may exist in urban areas which have both widespread use of diesel engines and significant SO₂ emissions. Acidic soot aerosols are also expected to be present in some underground mining environments. About 60% of U.S. mine diesels are estimated to use exhaust oxidation catalysts to reduce CO and HC emissions. Unfortunately, use of the catalyst promotes oxidation of a significant fraction of the exhaust SO₂, resulting in mine H₂SO₄ levels of several mg m⁻³ (French and Milden, 1984). Some of this H₂SO₄ is likely to be coated on the exhaust soot aerosols.

H₂SO₄-coated diesel soot particles have small aerodynamic sizes and an insoluble core. Therefore, inhalation of these particles may result in sustained contact of H₂SO₄ with deep lung tissues. Since there is the potential for substantial human exposure in the environments above, the inhalation toxicology of this pollutant combination is of concern.

The present work describes an H₂SO₄-coated diesel soot generation system and a limited physical characterization of the aerosol produced. The authors are not aware of any previous publications on the generation of acid-coated diesel aerosols, although other workers appear to have produced an acid-coated propane soot (Britton and Clarke, 1980; Brorström-Lundén and Lindskog, 1985) or acetylene soot (Thomas et al., 1974) in the course of their experiments.

Although the present work is concerned only with the physical characterization of H₂SO₄-coated diesel soot aerosols, we note the increasing evidence for the reactivity of H₂SO₄ with some of the components of diesel exhaust, to produce products of unknown toxicity (Schuetzle, 1983; Wall and Hoekman, 1984).

METHODS AND MATERIALS

A diagram of the system used to generate the H₂SO₄-coated diesel soot aerosols is shown in Fig. 1. The engine (an 817 cm³ displacement, single-cylinder, direct injection unit) was operated at constant speed (1800 r.p.m.) and load (78% of maximum). The loading method was a direct-coupled generator with a resistive electrical load. Monitoring instrumentation allowed the continuous measurement of intake and exhaust pressures and temperatures, engine r.p.m. and generator load. The fuel used was Phillips No. 2 Diesel Control Fuel, which was purged with N₂ upon receipt, and kept under positive N₂ pressure in a constant temperature environment.

The exhaust leaving the engine was allowed to age for a residence time typical of automotive exhaust systems (0.2 s),
The SO$_3$ was obtained by bubbling dry, purified air exhaust as required for the experiments. Following the orifice, calculation according to the method given by MacDonald et al. (1980). This ratio was determined by measurement of dry CO$_2$ volume fractions in raw and diluted exhaust using a Perkin-Elmer Model 1100 medical mass spectrometer, and calculation according to the method given by MacDonald et al. (1980).

Prior to entering the aging chamber, the dilute exhaust was contacted with SO$_3$ vapor, injected as a centered, cocurrent jet. The SO$_3$ was obtained by bubbling dry, purified air through 450 cm3 of fuming H$_2$SO$_3$ contained in a glass flask. As the purified air had been dried by a number of steps, including passage at 8 atm pressure through a Type 5A molecular sieve bed, the atmospheric pressure dewpoint was below -73°C. The extremely dry air was necessary to inhibit nucleation of H$_2$SO$_4$ prior to mixing with the diluted exhaust. The mass concentration of H$_2$SO$_4$ in the inhalation chamber was adjusted by varying the flowrate of air bubbling through the fuming H$_2$SO$_3$. A temperature equilibration coil brought the carrier air to bath temperature prior to entering the fuming acid flask. The fuming H$_2$SO$_3$ used was obtained by mixing equal volumes of 20% free SO$_3$, fuming H$_2$SO$_3$, and 96% reagent-grade H$_2$SO$_3$, and was about 3% free SO$_3$. This reduced strength was more convenient for the carrier flow-rates and H$_2$SO$_3$ concentrations in use. Even at the reduced strength, the mass of SO$_3$ contained in the fuming acid was several orders of magnitude larger than the mass of SO$_3$ consumed during a typical 5-h experiment. This design feature enhanced generator stability by minimizing the effects of SO$_3$ depletion. A Teflon filter, mounted in the Teflon line leading to the SO$_3$ injection jet, removed any spray droplets exiting the fuming H$_2$SO$_3$ bubbler.

At the point of SO$_3$ mixing, the dilute exhaust had cooled to 33°C and its relative humidity was 42% (at 33°C). The dilute exhaust flow was still somewhat pulsatile in nature at the SO$_3$ injection point, and the Reynolds number based on the mean flowrate was about 2000. Therefore, SO$_3$ mixing conditions were turbulent.

In the mixing region, injected SO$_3$ reacted rapidly with H$_2$O vapor in the dilute exhaust to produce H$_2$SO$_4$ vapor. Since the hydrophobic diesel soot particles were insoluble and not wetted by the H$_2$SO$_4$, high initial H$_2$SO$_4$ saturation ratios, above the homogeneous nucleation threshold, were required to acid-coat the particles. At the initial H$_2$SO$_4$ mixing ratios used in these experiments (10^{-6} to 10^{-5} moles H$_2$SO$_4$ mole air$^{-1}$), both homogeneous and heterogeneous nucleation are expected (Hoppel, 1975). The relative rate of these processes would depend on the concentration, size and surface characteristics of the diesel particles, the relative humidity, the H$_2$SO$_4$ vapor concentration, the effects of nearby surfaces, and other factors.

The stainless steel aging chamber, with a mean residence time of 1.4 min, allowed time for completion of the H$_2$SO$_4$ nucleation and condensation processes, cooling of the aerosol to room temperature, and particle coagulation to the desired size. The aerosol exiting the aging chamber was brought to Boltzmann charge equilibrium by passage through a 88Kr aerosol neutralizer before mixing with the main airflow leading to the inhalation chamber.

The mixing of the dilute exhaust and inhalation chamber air supply flows resulted in a final dilution step of 1:15, for an overall exhaust dilution ratio of 1:135. All aerosol characterization was conducted in the animal breathing zone of the inhalation chamber, which had a mean residence time of about 3 min. For all experiments, the purified air entering the inhalation chamber was maintained at room temperature (24°C) and 70% relative humidity (r.h.).

Sulfate levels in the inhalation chamber breathing zone, for uncoated and acid-coated diesel soot aerosols, were determined by collection of aerosols on acid washed Pallflex (Pallflex Products Corp., Putnam, CT) T60A20 Teflon-coated glass fiber filters. Filters were extracted in distilled water by mechanical agitation for 30 min, and analyzed for sulfate by ion chromatography. Selected samples were then re-extracted for 30 min using 60 (vol.) % isopropanol-40% distilled water solution. The isopropanol-water extraction solution increased the recovery of sulfate from uncoated diesel soot samples by about 50%, but did not enhance the recovery of sulfate from H$_2$SO$_4$-coated samples.

The association of H$_2$SO$_4$ with the soot particles was investigated using a BaCl$_2$ coating method (Ayers, 1978). Samples of uncoated and coated soot aerosols were collected...
on carbon-coated electron microscope grids using a point-to-plane electrostatic precipitator (Morrow and Mercer, 1964). An approximately 0.03-µm thick coating of BaCl₂ was then applied to the grid using a vacuum evaporator. Due to the known volatility of H₂SO₄ under vacuum (Gras and Ayers, 1979), this step was carried out as rapidly as possible. The evaporator vacuum was 1.5E-05 mm Hg, and the 0.03-µm coating thickness value was calculated from the known mass of BaCl₂ evaporated and the source-to-grid distance, assuming a point source of BaCl₂. Grids were transferred after coating to a constant-humidity chamber, either 75% r.h. (high humidity development) or 20% r.h. (low humidity development) for 1 h. This 1-h development period provided the moisture and time needed for the Ba⁺ reaction in the BaCl₂ coating to react with available SO₂⁻ on the particles, to form an insoluble BaSO₄ ‘reaction ring.’ Upon removal from the development chamber, grids were examined and photographed in a Zeiss Model EM-10/CR transmission electron microscope.

The coated and uncoated soot aerosols were sized using a Sierra Model 210K 5-stage cascade impactor, sampling in tandem with a Thermo-Systems, Inc. Model 3030 electrical aerosol analyzer (EAA) (Cheng et al., 1986). In the present work, use of an impactor alone would not be satisfactory as the majority of the aerosol would penetrate to the final filter and the sizing data would not be sufficiently detailed in the smaller size range. A low-pressure impactor would provide the necessary small-particle sizing but sample volatility at the low operating pressure becomes a concern. Use of the EAA downstream of the impactor provides the necessary small-particle sizing at a pressure near atmospheric. The upstream impactor allows for the collection (and size separation) of large particles which might artificially influence EAA readings. The use of the EAA can be restricted to particles < 0.4 µm diameter where it can more accurately measure volume distributions (Mulholland et al., 1980).

To prepare the tandem sampler, the backup filter and filter supporting screen were removed from the Sierra impactor, and the unit was loaded with preweighed, high vacuum silicone grease-coated aluminum foil collection substrates. In this impactor, a portion of each collection substrate makes physical contact with the lower surface of the previous impactor stage. Therefore, to prevent weighing errors caused by grease adhering to upstream stages, the coating was applied to jet impingement (non-contact) areas only. The impactor was operated at a reduced flow rate of 7 / min⁻¹ to minimize particle bounce and wall losses. Downstream of the impactor, the aerosol stream was split. Part of the flow went to the aerosol inlet of the EAA through a short line of stainless steel tubing; the balance of the flow was filtered and monitored with a calibrated rotameter. The EAA sheath air was obtained from a matched clean-air inhalation chamber maintained at the same temperature and humidity as the aerosol chamber, and was restricted slightly in order to achieve the necessary flow through the impactor. At the impactor sampling flow of 7 / min⁻¹, the pressure drop across the impactor was 0.05 atm, resulting in an EAA inlet pressure of 0.95 atm. The reduced pressure inside the EAA analyzer tube was monitored with a vacuum gauge and held constant during each sampling run. Aerosol flow and total flow mass flow rates were reduced slightly in order to maintain the volumetric flows through the EAA at their standard sea level values of 4 and 50 / min⁻¹. In a similar manner, the charger sheath air rotameter of the EAA was recalibrated at the lower pressure, and maintained at 1 / min⁻¹. When sizing the coated soot aerosol, dilution of the aerosol was required, so a calibrated capillary diluter with an experimentally-measured dilution ratio of 1:138 was inserted between impactor and EAA. This brought total electrometer currents into the 4–12 picoampere range for all sampling runs.

To characterize the coated soot aerosols, the system was first conditioned by passing SO₃ through it for several hours. The SO₃ was then cleared from the system and the diesel engine was started. Approximately 30 min after a steady-state exhaust temperature had been achieved, and the chamber soot concentration had stabilized as indicated by an infrared light-scattering mass monitor (GCA Corp. Model RAM-1), a filter gravimetric sample was taken. The SO₃ flow was then resumed and allowed to stabilize. Parallel filter and impactor/EAA samples, or parallel filter and electrostatic precipitator samples were then drawn from the inhalation chamber. In order to obtain enough sample on the impactor stages for reliable gravimetric analysis, the impactor/EAA tandem sampler was allowed to operate for 3–5 h. The EAA sizing procedure was performed at approximately 40-min intervals during the sampling period; the size distributions reported herein represent the mean of the EAA data. Following the completion of the characterization period, the SO₃ was again allowed to clear from the system, and a final filter gravimetric sample was taken. In general, the engine soot output was quite stable over the course of a run, and the initial and final gravimetric samples agreed within 20%.

RESULTS

When samples of uncoated diesel soot aerosol were collected on electron microscope grids, coated with BaCl₂, and developed at 75% r.h., no evidence of barium sulfate reaction rings around the particles was seen. Ion chromatograph analysis of uncoated diesel soot samples extracted in 60% isopropanol/40% H₂O gave an apparent particulate sulfate content of 1–2%. The actual particle sulfate content may have been less due to possible SO₂ oxidation on the filter media; the SO₃ level in the inhalation chamber (as measured with a pulsed fluorescent instrument) averaged about 0.1 ppm.

Addition of SO₃ to the dilute exhaust led to acid-coated particles and produced observable reaction rings. Electron micrographs of the coated diesel soot aerosol, at H₂SO₄ levels of 0.13 and 3.0 mg m⁻³, are shown in Figs 2 and 3. A barium sulfate reaction ring was observed around 95% of the soot particles at both levels of acid; the remainder of the particles appeared to be uncoated. The grid samples of the soot + 0.13 mg m⁻³ H₂SO₄ atmosphere were developed at high (75%) r.h., and the various simple-shaped particles visible in the background of Fig. 2 are recrystallized BaCl₂. No such recrystallization occurred during the low (20%) r.h. development process, applied to the soot + 3.0 mg m⁻³ H₂SO₄ samples (Fig. 3). The mass of sulfate per particle increased with both H₂SO₄ concentration and the size of the soot particle. Sulfate particles without a visible nucleus were also visible in some micrographs.

The mass distribution of Stokes equivalent diameter, for the uncoated and coated diesel soot particles, is shown in Fig. 4. The impactor cutpoints (the Stokes equivalent diameter that is collected with 50% efficiency) were calculated from:

\[d_{50} = \frac{9\eta W S_{50}}{C P_{tn} \rho_o} \]

where \(d_{50} = 50\% \) Stokes cutpoint (μm)
\(\eta = \) air viscosity at the local jet temperature of stage (g cm⁻¹ s⁻¹)
Fig. 2. Electron micrograph of 0.4 mg m\(^{-3}\) soot + 0.13 mg m\(^{-3}\) \(\text{H}_2\text{SO}_4\) aerosol sample, coated with \(\text{BaCl}_2\) and developed at 75\% r.h.

\(W\) = slot width of impactor stage (cm)

\(St_{50}\) = Stokes number at 50\% collection efficiency

\(C_s\) = slip correction factor, evaluated at \(d_{50}\) and the local jet pressure of stage

\(\rho_p\) = particle density (g cm\(^{-3}\))

\(V_o\) = jet velocity of stage (cm s\(^{-1}\)).

The impactor stage Stokes numbers at 50\% collection efficiency were obtained from the theory of Kader and Marple (1985). Comparison between aerosol mass concentration at the EAA inlet, and calculated EAA aerosol volume, gave an apparent particle density of 1.24 g cm\(^{-3}\) for the uncoated soot particles; this value was used in the calculation of \(d_{50}\). Since the theoretical density of \(\text{H}_2\text{SO}_4\) droplets in equilibrium with 70\% r.h. is close to 1.24 g cm\(^{-3}\), this density was also assumed for the acid-coated soot particles. The calculated 50\% Stokes cutpoint for the last impactor stage was 0.3 \(\mu\)m at the sampling conditions employed; particles smaller than this passed through the cascade impactor and were sized by the EAA.

Since the EAA was operated below normal atmospheric pressure, the channel size boundaries and conversion constants were shifted from the atmospheric pressure values. The problem has been examined theoretically by Ogren (1980). The EAA channel boundaries and conversion constants were recalcul-
A generator for the production of sulfuric acid-coated diesel soot aerosols

Fig. 3. Electron micrograph of 0.4 mg m\(^{-3}\) soot + 3.0 mg m\(^{-3}\) H\(_2\)SO\(_4\) aerosol sample, coated with BaCl\(_2\) and developed at 20\% r.h.

lated for an EAA inlet pressure of 0.95 atm using Ogren's results for constant volumetric flowrates through the EAA. The theoretical corrections to the atmospheric pressure parameters were small. The recalculated channel boundary mobility diameters were about 2-5\% larger than the corresponding atmospheric values, while the recalculated conversion constants were about 2-8\% smaller.

Several simplifying assumptions were made in the preparation of the normalized mass distribution of Stokes equivalent diameter shown in Fig. 4. The particle property measured by the EAA is the electrical mobility equivalent diameter. This may be defined as the diameter of a sphere with the same electrical mobility as the particle in question, when subjected to the same charging conditions. The equivalent Stokes diameter of a particle is the diameter of the sphere which has the same density and terminal settling velocity as the particle in question. For the acid-coated soot aerosols, the electrical mobility diameter was assumed equal to the Stokes diameter, since the acid coating should be sufficient to render the particles spherical.

For the uncoated soot particles, the Stokes equi-
valent diameter was estimated from the measured electrical mobility equivalent diameter using the following relation:

$$d_s = \frac{d_{em} C(d_{se})^{1/2}}{C(d_{em}) C(d_s)^{1/2} x^{1/2}}$$

where $d_s =$ Stokes equivalent diameter (μm)
$d_{em} =$ electrical mobility equivalent diameter (μm)
$C(d_{se}) =$ slip correction factor, evaluated at the volume equivalent diameter of the particle
$C(d_{em}) =$ slip correction factor, evaluated at the electrical mobility equivalent diameter
$C(d_s) =$ slip correction factor, evaluated at the Stokes equivalent diameter
$x =$ dynamic shape factor of the particle.

Based on microscopic examination of a 'typical' diesel soot particle, Yu and Xu (1986) estimated a dynamic shape factor of about 1.5. However, when placed in the electric field of the EAA analyzer, most diesel soot particles are expected to orient in such a manner as to reduce their shape factor (Hansson and Ahlberg, 1985). In this work, a dynamic shape factor of 1.3 was assumed for the irregular soot particles.

The volume equivalent diameter, defined as the diameter of a sphere with the same density and volume as the particle, was calculated from:

$$d_{ve} = \frac{d_{em} C(d_{ve})}{x C(d_{em})}.$$

The mass concentration of aerosol at the EAA inlet was taken to be the difference between the total gravimetric mass concentration found in the inhalation chamber and the mass deposited in the impactor. Aerosol wall losses in the impactor and the short stainless steel connecting lines were estimated at less than 5% and were neglected. Aerosol density was assumed constant with particle size; the aerosol mass concentration in any given EAA size range was presumed equal to the product of EAA volume fraction in that size range and EAA inlet mass concentration.

As shown in Fig. 4, the sizing results indicated a mass distribution which was probably unimodal for both coated and uncoated soot aerosols. The mass median Stokes diameter was 0.12 μm for the uncoated soot aerosol at a chamber mass concentration of 0.5 mg m${}^{-3}$. When this soot aerosol was coated with 5.0 mg m${}^{-3}$ of H$_2$SO$_4$, the mass median diameter increased to 0.28 μm.

DISCUSSION AND CONCLUSIONS

The coating of electron microscope samples with BaCl$_2$ has been shown to be a useful aid in the characterization of sulfate-coated aerosols. The 'pure' sulfate droplets seen in some of the electron micrographs could have several possible sources. They could be sulfate droplets formed in the combustion process (Khatti et al., 1978), H$_2$SO$_4$ aerosols formed from the reaction between SO$_2$ and O$_3$ in the point-to-plane precipitator corona (Kim et al., 1984), or H$_2$SO$_4$ aerosols formed by homogeneous nucleation in the acid-coating section of the generator. As the 'pure' sulfate particles were not observed in BaCl$_2$ coated samples of the diesel soot-alone atmosphere, the latter source is considered most likely.

The apparently uncoated soot particles comprised about 5% of the total number of diesel particles, at both the 0.13 and 3.0 mg m${}^{-3}$ H$_2$SO$_4$ levels. Such particles either had no acid coating, or had reaction rings that were too thin to be visible. These particles
may be due to resuspension of uncoated diesel particles (from previous runs) from surfaces downstream of the \(\text{H}_2\text{SO}_4\) condensation zone. Another possibility is that the \(\text{H}_2\text{SO}_4\) nucleation and condensation processes were completed before full soot-\(\text{H}_2\text{SO}_4\) vapor mixing could be accomplished.

Barium sulfate reaction rings were observed around the particles even when the \(\text{BaCl}_2\)-coated grids were developed at 20\% r.h. (Fig. 3). Since water is required for the development of the reaction rings, and the development humidity is below the deliquescence points of ammonium bisulfate, ammonium sulfate and letovicite, this would suggest that the sulfate coating was predominantly unneutralized \(\text{H}_2\text{SO}_4\) (Ono, 1978).

The mass distribution of both coated and uncoated diesel soot aerosols was unimodal and was found to be well approximated by a lognormal distribution function. The uncoated diesel soot aerosol had a mass median Stokes equivalent diameter of 0.12 \(\mu\)m and geometric standard deviation of 2.4 at a concentration of 0.5 mg m\(^{-3}\) in the inhalation chamber. When this aerosol was coated with 5.0 mg m\(^{-3}\) \(\text{H}_2\text{SO}_4\), the size increased to 0.28 \(\mu\)M.M.S.D., and the G.S.D. decreased to 1.9.

Due to the non-ideal size classification characteristics of the impactor and EAA, estimates of the geometric standard deviation must be considered as approximate only. However, it appeared that the acid coating increased the monodispersity. Such an improvement in monodispersity is expected as the smaller soot particles should grow more rapidly than larger particles during the \(\text{H}_2\text{SO}_4\) condensation process. Assuming the \(\text{H}_2\text{SO}_4\) and soot densities to be similar, the size of the coated soot particle increased by close to this amount (2.3-fold), while the calculated increase in the mobility equivalent diameter of average mass was larger, approximately 2.9-fold.

The described generation system has proven to be a useful tool for investigating the inhalation toxicity of air pollutant mixtures containing acid-coated diesel soot, as well as the study of aerosol coating processes. Further work in this area, including a more detailed physical and chemical characterization, would allow for optimization of generation techniques for this type of aerosol, as well as permitting a better understanding of its role in atmospheric pollution reactions.

Acknowledgements—Appreciation is expressed to Mary Azizan for performing the electron microscopy analysis, and to Sonia Usdansky for preparing the final manuscript. Tuan Nguyen is thanked for figure preparation. This research was supported by the California Air Resources Board (Contracts A5-129-33 and A6-126-33) and by the Electric Power Research Institute (Contract RP1962-1).

REFERENCES

Ayers G. P. (1978) Quantitative determination of sulfate in individual aerosol particles. *Atmospheric Environment* 12, 1613–1621.

Benner W. H., Brodzinski R. and Novakov T. (1982) Oxidation of \(\text{SO}_2\) in droplets which contain soot particles. *Atmospheric Environment* 16, 1333–1339.

Britton L. G. and Clarke A. (1980) Heterogeneous reactions of sulphur dioxide and \(\text{SO}_2\)/\(\text{NO}_2\) mixtures with a carbon soot aerosol. *Atmospheric Environment* 14, 829–839.

Brorström-Lundén E. and Lindskog A. (1985) Degradation of polycyclic aromatic hydrocarbons during simulated stack gas sampling. *Envi. Sci. Technol.* 19, 313–316.

Cheng Y. S., Yeh H. and Newton G. (1986) Sampling in tandem with other instruments. In *Cascade Impactor: Sampling and Data Analysis* (edited by Lodge J. P., Jr and Chan T. L.), Chap. 6. American Industrial Hygiene Association, Akron, OH.

French I. W. and Mildon C. A. (1984) Health implications of exposure of underground mine workers to diesel exhaust emissions—an update. Canada Centre for Mineral and Energy Technology Report No. OSQ82-00121, p. 273.

Grae J. I. and Ayers G. P. (1979) On sizing impacted sulfuric acid aerosol particles. *J. appl. Met.* 18, 634–638.

Hansson H. C. and Ahlberg M. (1985) Dynamic shape factors of sphere aggregates in an electric field and their dependence on the Knudsen number. *J. Aerosol Sci.* 16, 69–79.

Hoppel W. A. (1975) Growth of condensation nuclei by heteromolecular condensation. *J. Rech. Atmos.* IX, 167–180.

Khatri N. J., Johnson J. and Ledyd D. (1978) The characterization of the hydrocarbon and sulfate fractions of diesel particulate matter. SAE paper No. 780111.

Kim C. S., Eldridge M. and Lewars G. (1984) Gaseous interference to performance of a quartz crystal aerosol mass monitor. *J. Aerosol Sci.* 15, 473–482.

MacDonald J. S., Plee S., D’Arcy J. and Schreck R. (1980) Experimental measurements of the independent effects of dilution ratio and filter temperature on diesel exhaust particulate samples. SAE paper No. 800185.

Morrow P. E. and Mercer T. (1964) A point-to-plane electrostatic precipitator for particle size sampling. *Am. Ind. Hyg. Ass. J.* 25, 8–14.

Mulholland G. W., Pui D., Kapadia A. and Liu B. (1980) Aerosol number and mass concentration measurements: a comparison of the electrical aerosol analyzer with other measurement techniques. *Colloid Interface Sci.* 77, 57–67.

Novakov T., Chang S. G. and Harker A. B. (1974) Sulphates as pollution particulates: catalytic formation on carbon (soot) particles. *Science, N.Y.* 186, 259–261.

Ogren J. A. (1980) On the operation of the electrical aerosol analyzer at reduced pressures. *J. Aerosol Sci.* 11, 42–43.

Ono A. (1978) Sulfuric acid particles in subsiding air over Japan. *Atmospheric Environment* 12, 753–757.

Rader D. J. and Marple V. (1985) Effect of ultra Stokesian drag and particle interception on impaction characteristics. *Aerosol Sci. Technol.* 4, 141–156.

Schuetzle D. (1983) Sampling of vehicle emissions for chemical analysis and biological testing. *Envi. Hlth Persp.* 47, 65–80.

Thomas R. L., Dharmarajan V. and West P. (1974) Convenient method for generation of sulfuric acid aerosol. *Envi. Sci. Technol.* 8, 930–935.

Wall J. C. and Hoekman S. K. (1984) Fuel composition effects on heavy A fuel diesel particulate emissions. SAE Tech. paper No. 841364.

Yu C. P. and Xu G. (1986) Predictive models for deposition of diesel exhaust particulates in human and rat lungs. *Aerosol Sci. Technol.* 5, 337–347.