Coombs Antiglobulin Test Using Brucella abortus 99 as Antigen To Detect Incomplete Antibodies Induced by B. abortus RB51 Vaccine in Cattle

Franco Ciuchini,* Rosanna Adone, and Paolo Pasquali

Laboratorio di Medicina Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy

Received 6 March 2002/Returned for modification 16 April 2002/Accepted 18 June 2002

This study showed that vaccination of cattle with Brucella abortus rough strain RB51 induces incomplete antibodies that can be detectable by a Coombs antiglobulin test using the B. abortus 99 smooth strain.

*Corresponding author. Mailing address: Istituto Superiore di Sanità, Laboratorio di Medicina Veterinaria, Viale Regina Elena 299, 00161 Rome, Italy. Phone: 39-06-49902326. Fax: 39-06-49387077. E-mail: franco.ciuchini@iss.it.

Brucella abortus strain RB51 is a laboratory-derived rough mutant of the standard virulent B. abortus strain 2308 (15). This strain lacks the O side chain of the lipopolysaccharide (LPS) characteristic of smooth Brucella strains. Therefore, vaccination of cattle with RB51 does not produce antibodies that can be detected by routine surveillance tests, such as complement fixation (CF) and Rose Bengal Plate (RBP) tests, which especially identify antibodies to LPS.

To monitor antibody responses following RB51 vaccination in cattle, a CF test has been developed with B. abortus RB51 as a homologous antigen that is able to specifically measure antibodies to B. abortus RB51 (1–3). Presumably, in this B. abortus RB51-based CF test, CF antibodies have been found that are directed to the outer membrane proteins (OMPs), which are accessible for binding in B. abortus RB51 strain, but not in B. abortus strain 99, because of the steric hindrance due to the presence of LPS in smooth brucellae (7, 11).

Studies have shown that both B. abortus S19 and 45/20, widely used as vaccines, produce nonagglutinating antibodies (13), the function of which is probably to delay the bacterial clearance and increase chronic B. abortus infections (4, 5, 12, 13). The agglutinating activity of incomplete antibodies is markedly reduced by the inadequate extension of Fab regions (13, 14). However, B. abortus 99 cells sensitized with the incomplete antibodies can be agglutinated by adding the Coombs’ antiglobulin reagent (8, 9).

The aim of the present trial was to develop a Coombs antiglobulin test to ascertain whether B. abortus RB51-vaccinated cattle produce incomplete antibodies in addition to the CF antibodies detected by a RB51-based CF test. The results of the Coombs test were compared with those obtained by serum agglutination test (SAT), CF, and RBP tests, performed with standard B. abortus 99 antigen, and by the B. abortus RB51-based CF test.

For serological reactions, the following serum samples and antigens were used: three positive sera collected from cattle experimentally vaccinated with RB51 and boosted 30 days later, showing antibody titers of 1:128, 1:32, and 1:4, respectively, as measured by RB51-based CF test; a pool of 10 negative sera from brucellosis-free cattle as a negative control, and the OIE 2nd international standard anti-B. abortus serum (ISaBS) at 1,000 IU/ml, supplied by the Veterinary Laboratories Agency (VLA) of Weybridge, United Kingdom; S-type B. abortus 99 international and national standard antigens produced by the VLA and by the Istituto Zooprofilattico Sperimentale (IZS) of Brescia (Italy), respectively, for use in SAT and CF tests to detect antibodies against B. abortus; thebuffered S-type B. abortus 99 international and national standard antigens produced by the VLA and by the IZS—Teramo (Italy), respectively; the R-type B. abortus RB51 antigen for use on the CF test, produced by the Istituto Zooprofilattico di Sanità di Rome, Italy (ISS—Roma), as previously described for the detection of antibodies to B. abortus strain RB51 (1–3). All serological tests were performed in microtiter 96-well plates.

The CF test with B. abortus RB51 as antigen and the CF and RBP tests with standard smooth antigens were performed as previously described (1–3).

The Coombs test was performed in two steps. In the first step, serum samples diluted twofold in saline (0.15 M NaCl [pH 7.2]) were tested for the presence of antibodies to B. abortus 99 by an SAT, and the agglutination titers were evaluated after incubation at 37°C overnight. In the second step, following three washes with saline, the supernatant of each well was replaced with 25 μl of saline and 25 μl of goat antiovine whole serum (VMRD, Inc., Pullman, Wash.), previously diluted 1:7 in saline.

After incubation at 37°C overnight in a humidified atmosphere with gentle stirring, Coombs results were compared with data obtained from conventional CF and RBP tests and from the RB51-based CF test (Table 1). All reactions were performed twice.

As shown in Table 1, unlike the ISaBS, the serum samples from RB51-vaccinated cattle, as expected, didn’t react when tested with RBP and CF tests against the B. abortus 99 standard antigen. To the contrary, these sera scored positive in the Coombs antiglobulin test by using the same smooth strain B. abortus 99 as an antigen. No reaction was observed with negative sera.

This study shows that the Coombs antiglobulin test can be performed with a buffered antigen routinely used in the RBP test and that international and national antigens give comparable results. Our results indicate that the vaccination with B.
Abortus RB51 induces the production of antibodies, directed against epitopes of the RB51 rough strain, which are able to fix the complement when an RB51 homologous strain is used as an antigen (1–3). In addition, after a booster vaccination with the same strain, incomplete antibodies are evident, directed against epitopes of smooth Brucella strains, which are not able to fix the complement as already observed when another rough strain, B. abortus 45/20, has been used for vaccination of cattle (12). In addition, according to previous data (6), these incomplete antibodies can be demonstrated only after a booster vaccination (R. Adone, unpublished results). To verify that different antibodies are involved in the different tests used, a serum sample from RB51-vaccinated cattle was previously tested against RB51 and then incubated overnight with a suspension of B. abortus 99. After centrifugation at 4,000 rpm for 10 min, the pellet was discarded to eliminate the antibodies directed against the B. abortus 99 strain, and the supernatant was tested with the CF test against RB51. No reduction of the reactivity against RB51 was evident following incubation with B. abortus 99, thus confirming that different antibodies are involved in the CF and Coombs tests (data not shown).

In conclusion, our results indicate that Coombs antiglobulin test with smooth strain B. abortus 99 as an antigen can be successfully used to identify incomplete antibodies following RB51 vaccination in cattle. Studies are in progress in our laboratory to evaluate the specificity of these antibodies and their role in the course of RB51 infection.

REFERENCES
1. Adone, R., and F. Ciuchini. 1999. Complement fixation test to assess humoral immunity in cattle and sheep vaccinated with Brucella abortus RB51. Clin. Diagn. Lab. Immunol. 6:787–790.
2. Adone, R., and F. Ciuchini. 2001. Brucella abortus RB51 and hot saline extract from Brucella ovis as antigen in a complement fixation test used to detect sheep vaccinated with Brucella abortus RB51. Clin. Diagn. Lab. Immunol. 8:119–122.
3. Adone, R., F. Ciuchini, and S. C. Olsen. 2001. Field validation of the use of RB51 as antigen in a complement fixation test to identify calves vaccinated with Brucella abortus RB51. Clin. Diagn. Lab. Immunol. 8:385–387.
4. Beh, K. J., and A. K. Lascelles. 1973. The use of the antiglobulin test in the diagnosis of bovine brucellosis. Rev. Vet. Sci. 14:239–242.
5. Beh, K. J. 1975. Immunoglobulin class specificity of non-agglutinating antibody produced in cattle following Brucella abortus 45/20 vaccination. Aust. Vet. J. 51:481–485.
6. Chukwa, C. C. 1985. Serological investigation on cattle vaccinated with a killed Brucella abortus strain 45/20 adjuvant vaccine. Int. J. Zoonoses 12:14–21.
7. Cloockaert, A., P. de Wergifosse, G. Dubray, and J. N. Limet. 1990. Identification of seven surface-exposed Brucella outer membrane proteins by use of monoclonal antibodies: immunogold labeling for electron microscopy and enzyme-linked immunosorbent assay. Infect. Immun. 58:3980–3987.
8. Coombs, R. R., A. E. Mourant, and R. R. Race. 1945. A new test for the detection of weak and incomplete Rh agglutinins. Br. J. Exp. Pathol. 26:255–266.
9. Cunningham, B. 1968. The control and eradication of brucellosis. I. Serological reactions in cattle following vaccination with S19 and killed Brucella abortus 45/20 adjuvant vaccine. Vet. Res. 8:7–11.
10. Karbel, S. C. 1998. Brucella abortus strain RB51: its advantages and risks. Am. J. Vet. Res. 59:1591–1597.
11. Olsen, S. C., M. G. Stevens, N. F. Cheville, and G. G. Schurig. 1997. Experimental use of a dot-blot assay to measure serologic responses of cattle vaccinated with Brucella abortus strain RB51. J. Vet. Diagn. Invest. 9:363–367.
12. Parma, A. E., C. G. Santisteban, and R. A. Bowden. 1985. Detection in cattle of serum non-agglutinating antibodies directed to occult antigens of Brucella abortus 99. Rev. Argent. Microbiol. 17:51–54.
13. Parma, A. E., R. A. Bowden, C. G. Santisteban, S. I. Cerane, and A. S. Fernandez. 1987. Effect of bovine non-agglutinating antibodies on the blood clearance of 131I-labelled Brucella abortus strain 45/20. Vet. Microbiol. 15:121–128.
14. Poli, G., and A. Colocilovo. 1996. Microbiologia ed immunologia veterinaria. UTET, Turin, Italy.
15. Schurig, G. G., R. M. Roop II, T. Bagchi, S. Boyle, D. Buhrman, and N. Sriprasanathan. 1991. Biological properties of RB51: a stable rough strain of Brucella abortus. Vet. Microbiol. 28:171–188.