Non-destructive sampling of ancient insect DNA

Thomsen, Philip Francis; Elias, Scott; Gilbert, Tom; Haile, James; Munch, Kasper; Kuzmina, Svetlana; Froese, Duane G; Sher, Andrei; Holdaway, Richard N; Willerslev, Eske

Published in:
PLoS ONE

DOI:
10.1371/journal.pone.0005048

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Thomsen, P. F., Elias, S., Gilbert, T., Haile, J., Munch, K., Kuzmina, S., Froese, D. G., Sher, A., Holdaway, R. N., & Willerslev, E. (2009). Non-destructive sampling of ancient insect DNA. PLoS ONE, 4(4), e5048. https://doi.org/10.1371/journal.pone.0005048
Non-Destructive Sampling of Ancient Insect DNA

Philip Francis Thomsen¹, Scott Elias², M. Thomas P. Gilbert¹, James Haile³, Kasper Munch⁴, Svetlana Kuzmina⁵, Duane G. Froese⁵, Andrei Sher⁶, Richard N. Holdaway⁷, Eske Willerslev¹*

1 Centre for Ancient Genetics and Environments, Natural History Museum and Institute of Biology, University of Copenhagen, Copenhagen, Denmark, 2 Geography Department, Royal Holloway, University of London, Egham, Surrey, United Kingdom, 3 Henry Wellcome Ancient Biomolecules Centre, Department of Zoology, University of Oxford, Oxford, United Kingdom, 4 Department of Integrative Biology, University of California, Berkeley, California, United States of America, 5 Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada, 6 Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia, 7 Palaecol Research Ltd, Christchurch, New Zealand, 8 School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

Abstract

Background: A major challenge for ancient DNA (aDNA) studies on insect remains is that sampling procedures involve at least partial destruction of the specimens. A recent extraction protocol reveals the possibility of obtaining DNA from past insect remains without causing visual morphological damage. We test the applicability of this protocol on historic museum beetle specimens dating back to AD 1820 and on ancient beetle chitin remains from permafrost (permanently frozen soil) dating back more than 47,000 years. Finally, we test the possibility of obtaining ancient insect DNA directly from non-frozen sediments deposited 3280-1800 years ago - an alternative approach that also does not involve destruction of valuable material.

Methodology/Principal Findings: The success of the methodological approaches are tested by PCR and sequencing of COI and 16S mitochondrial DNA (mtDNA) fragments of 77–204 base pairs (bp) in size using species-specific and general insect primers.

Conclusion/Significance: The applied non-destructive DNA extraction method shows promising potential on insect museum specimens of historical age as far back as AD 1820, but less so on the ancient permafrost-preserved insect fossil remains tested, where DNA was obtained from samples up to ca. 26,000 years old. The non-frozen sediment DNA approach appears to have great potential for recording the former presence of insect taxa not normally preserved as macrofossils and opens new frontiers in research on ancient biodiversity.

Introduction

Most ancient genetic studies have focused on vertebrates, plants and to a lesser extent microbes revealing aDNA research as a powerful tool for testing hypotheses in biology [1,2]. Although insects are the most diverse animal group on Earth with more than 1 million described species, aDNA studies on insects have so far been limited and restricted largely to museum specimens of historical age, up to ca. 100 years [3,4,5,6], or to geologically-ancient amber-entombed specimens millions of years old [e.g. 7,8,9]. While the former have produced exciting results relating to events in the near past, the latter have proved a classical example of how a lack of appropriate contamination controls in aDNA research may produce false positive results [10,11].

Only three studies appear to have investigated insect DNA survival between these two extreme time-ranges: [12] studied grasshoppers from glacial deposits in Wyoming deposited ca. 400 years ago; [13] investigated beetle remains from ca. 20,000-year-old packrat middens from Texas; [14] studied 450,000- to 800,000-year-old silty-ice from the base of a Greenland ice core. All three studies gave positive results for the presence of insect DNA, which encourages further research on the possibilities of obtaining insect aDNA in other contexts.

Intriguingly, a major constraint on the use of historical, and particularly ancient, insect specimens in aDNA research is the destructive nature of the sampling procedure [15]. Obviously, this is a problem related to many aDNA sources, but is of particular concern with small specimens, such as insects, where even limited sampling may destroy important morphological characters. All the above insect ancient genetic studies have suffered from such destructive sampling procedures. One potential solution is the application of an extraction protocol that uses digestion buffers designed to enable the recovery of DNA from insect remains without causing visual external morphological damage to the...
material [16]. This method has been used successfully on museum specimens of beetles collected between 1952 and 2002. Here, we report the results of a study that tested the potential of obtaining authentic ancient insect mtDNA using this non-destructive extraction procedure on historical museum beetle specimens dating back to AD 1820 and on ancient chitin from beetle macrofossils from permafrost dating back more than 47,000 years (DNA obtained from samples up to ca. 26,000 years old). Additionally, encouraged by the findings of insect aDNA in the Greenland silty-ice, we explored non-frozen sediments from New Zealand laid down between 3280 and 1800 years ago as a direct source of ancient insect DNA, even though no visible fossil insect remains were present. This non-frozen sediment DNA approach is interesting in the current context, as it holds the potential of obtaining insect aDNA without the destruction of valuable specimens, as well as providing data on former biodiversity in the absence of macrofossils and unobtainable in any other way.

Results

The non-destructive DNA extraction procedure was tested on two types of samples: i) Twenty museum specimens (representing five different species) of beetles collected between AD 1820 and AD 2006 (the oldest historical museum insect remains from which DNA survival has been investigated), and ii) fourteen beetle macrofossils (chitin) from the late Pleistocene (ca. 47,600–20,100 \(^{14}\)C years BP) and late Pleistocene-early Holocene (ca. 10,595–7,110 \(^{14}\)C years BP). These macrofossils were recovered from permafrost sediments in Chukotka (Siberian Far East) and central Alaska in 2004 and 2005, respectively.

All twenty specimens of museum beetles produced amplifiable and authentic COI mtDNA sequences between 77–204 bp in size. These were from the ground beetle *Harpalus latus* (Linnaeus, 1758), the pill beetle *Byrrhus pilula* (Linnaeus, 1758), the leaf beetle *Chrysolina polita* (Linnaeus, 1758) and two weevils, *Otiorhynchus sulcatus* (Fabricius, 1775) and *Curculio pyrrhoceras* Marsham, 1802 (Table 1). Of the 14 permafrost-preserved beetle chitin macrofossils, only three yielded successful COI or 16S mtDNA amplification products; a weevil *Lepidophorus thulius* (Kissing, 1974) (ca. 10,595 \(^{14}\)C years BP, dated by association with wood from the sample), a ground beetle *Anura alpina* (Paykull, 1790) and a rove beetle *Tachinus brevipennis* Kiesenwetter, 1850, both with radiocarbon ages of ca. 26,000 \(^{14}\)C years BP, estimated from a sedimentation rate based on overlying and underlying radiocarbon dated samples of plant macrofossils (Table 2). The amplification products from the macrofossil remains were between 91–159 bp in size. An inverse relationship between amplification strength and length typical of aDNA supports the authenticity of the findings as does sequence identification in agreement with the morphological based taxonomic affiliation of the specimens (Tables 1 and 2).

Table 1. Historical museum specimens investigated in the study.

Sample #	Species	Family	Collected (A.D)	Size of amplified COI mtDNA	Locality	p.p.	Level
CFx7.1	*Harpalus latus* (Linnaeus, 1758)	Carabidae	1825	78 bp. x x Jylland 98%	Species		
CFx7.2	*Byrrhus pilula* (Linnaeus, 1758)	Byrrhidae	1899	143 bp. x x Silkeborg 98%	Species		
CFx7.3	*Chrysolina polita* (Linnaeus, 1758)	Chrysomelidae	1939	94 bp. x x Grib skov 97%	Species		
CFx7.4	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	2004	98 bp. x x Ekkodalen, B. 96%	Species		
CFx7.5	*Byrrhus pilula* (Linnaeus, 1758)	Byrrhidae	1820	143 bp. x x Jylland 100%	Species		
CFx7.6	*Chrysolina polita* (Linnaeus, 1758)	Chrysomelidae	1930	94 bp. x x Samso 100%	Species		
CFx7.7	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	1973	94 bp. x x Tipperne 100%	Species		
CFx7.8	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	2005	98 bp. x x Broerfelde 100%	Species		
CFx7.9	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	1899	77 bp. x x Donse 95%	Family		
CFx7.10	*Chrysomelidae*	Chrysomelidae	1942	162 bp. x x Karlslunde strand 98%	Family		
CFx7.11	*Chrysomelidae*	Chrysomelidae	1971	77 bp. x x Snave, Fyn 95%	Family		
CFx7.12	*Chrysomelidae*	Chrysomelidae	2006	77 bp. x x Isenbjerg 95%	Family		
CFx7.13	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	1884	98 bp. x x Ålborg 95%	Species		
CFx7.14	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	1920	98 bp. x x Christianssæde 94%	Species		
CFx7.15	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	1970	98 bp. x x Rørvig, Sjælland 94%	Species		
CFx7.16	*Otiorhynchus sulcatus* (Fabricius, 1775)	Curculionidae	1998	77 bp. x x Hillerød 94%	Species		
CFx7.17	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	1896	77 bp. x x Ålbek 86%	Species		
CFx7.18	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	1911	77 bp. x x Fanstrup 93%	Species		
CFx7.19	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	1958	77 bp. x x Hanning PL 95%	Species		
CFx7.20	*Curculio pyrrhoceras* Marsham, 1802	Curculionidae	2000	77 bp. x x Stenrand, Sj. 93%	Species		

All specimens were collected in Denmark.

x) Authentic DNA sequence obtained; p.p.) posterior probability of assigning the sequence to the given taxonomic level.

doi:10.1371/journal.pone.0005048.t001
Table 2. Ancient macrofossil remains investigated in the study.

Sample #	Species	Order	Family	Locality	Sediment	Age (14C yr. BP)	Collection year	p.p.	Level
CFx3.1	Lepidophorus lineaticollis Kirby, 1837	Coleoptera	Curculionidae	Alaska	AI-4-05-B24/QIII	47,600±1900 (UCAMS 56391)	2005		
CFx3.2	Diptera indet ?!	Diptera	?	Alaska	AI-3-05-B9/QV	9,752±85 (AA52066)	2005		
CFx3.3	Lepturus sp. (a leg)	Coleoptera	Curculionidae	Alaska	AI-3-05-B9/QV	9,752±85 (AA52066)	2005		
CFx3.4	Lepidophorus thulius (Kissing, 1974)	Coleoptera	Curculionidae	Alaska	AI-2-05-B7/QIII	10,595±25 (UCAMS 36670)	2005		100% Order
CFx3.5	Lepidophorus lineaticollis Kirby, 1837	Coleoptera	Curculionidae	Alaska	AI-2-05-B7/QIII	10,595±25 (UCAMS 36670)	2005		
CFx3.6	Camponotus herculeanus (Linnaeus, 1758)	Hymenoptera	Formicidae	Alaska	AI-3-05-B13/QV	7,110±110 (GSC 6675)	2005		
CFx3.7	Morychus sp. nov?	Coleoptera	Byrrhidae	Alaska	AI-4-05-B24/QII	47,600±1900 (UCAMS 56391)	2005		
CFx3.8	Amara alpina (Paykull, 1790)	Coleoptera	Carabidae	Chukotka	ChM-B15	Ca. 26,000	2004		95% Family
CFx3.9	Lepturus nordenskioeldi Faust, 1885	Coleoptera	Curculionidae	Chukotka	ChM-B15	Ca. 26,000	2004		
CFx3.10	Morychus viridis Kuzmina & Korotyaev, 1987	Coleoptera	Byrrhidae	Chukotka	ChM-B15	Ca. 26,000	2004		
CFx3.11	Tachinus brevipennis Kiesenwetter, 1850	Coleoptera	Staphylinidae	Chukotka	ChM-B15	Ca. 26,000	2004		73% Family
CFx3.12	Aphodius sp nov?	Coleoptera	Scarabaeidae	Chukotka	ChM-B34	Ca. 20,900	2004		
CFx3.13	Stona borealis Korotyaev, 1979	Coleoptera	Curculionidae	Chukotka	ChM-B32	Ca. 20,100	2004		
CFx3.14	Notophilus aquaticus (Linnaeus, 1758)	Coleoptera	Carabidae	Chukotka	ChM-B15	Ca. 26,000	2004		

Authentic DNA sequence obtained from: CFx3.4, CFx3.8 and CFx3.11.

14C yr. BP radiocarbon years before present (1950); p.p.) posterior probability of assigning the sequence to the given taxonomic level. The species Amara alpina is also known as Curtonotus alpinus (Paykull, 1790) in some literature. Lepidophorus thulius was until recently known as Vitavitus thulius Kissing, 1974.

Alaska sample ages estimated from radiocarbon dates of associated plant macrofossil ages from sampling horizon. Chukotka sample ages estimated from sedimentation rate based on overlying and underlying radiocarbon dated samples of plant macrofossils (See Materials and Methods section).

doi:10.1371/journal.pone.0005048.t002
Importantly, none of the insect specimens subjected to DNA extraction seemed to have undergone any visible physical alterations after the extraction procedure (Figure 1).

In addition to the above, we examined the potential for long-term survival of insect DNA in temperate sediments. Two insect COI mtDNA sequences of 96-bp in length were obtained from one of the two non-frozen sediment samples from New Zealand. The sediments were laid down between 3280 and 1800 years BP [17]. The sequences were identified as being from a beetle and a moth/butterfly, respectively (Table 3).

Discussion

The 100% success rate on the beetle specimens from museum collections dating back 188 years suggests that the non-destructive extraction procedure tested has considerable potential for sampling historical insect material, even when more than 100 years older than the specimens originally tested with the method [16]. It may be worth exploring if similar success can be obtained on insect groups other than beetles, such as Lepidoptera, Diptera and Hymenoptera, whose chitinous exoskeleton is not as thick and resilient as that of beetles. However, we see no obvious reason why the procedure should not work on a variety of taxa. The result is significant in that museum insect specimens have already proved to be an important resource for e.g. identifying recent bottlenecks [4] or the development of traits such as insecticide resistance [5] etc. In particular, the non-destructive extraction procedure appears to have removed the need for destructive sampling.

The limited success of 3/14 (ca. 21%) on the truly ancient beetle chitin remains may result from either the remains no longer containing amplifiable endogenous DNA despite preservation in ideal frozen conditions for most of the preservation period (e.g. see [18]), or the extraction procedure not being efficient enough to retrieve DNA from truly ancient remains even where destructive sampling could have been successful. The possibility of a lower extraction efficiency is supported by the results of a similar non-destructive DNA extraction protocol for mammalian teeth [19]: only specimens that had been in museum collections for relatively short times yielded DNA using the non-destructive sampling method and remains that had been in collections for much longer periods gave products only with destructive sampling strategies. It appears that only limited success can be expected using the method of [16] on truly ancient insect specimens.

Interestingly, DNA from a beetle and a moth/butterfly was obtained from one of the two New Zealand temperate sediment samples, even in the absence of visible macrofossil material. The failure to obtain insect DNA from one of the two samples could result from spatial differences in the distribution of DNA source material. The success of the New Zealand non-frozen sediment DNA compared to the permafrost preserved macrofossils is surprising in that, although the sediment samples were several thousands of years younger than the macrofossils examined, it is generally believed that it is the temperature of preservation rather than the age itself that determines the level of DNA degradation [1]. The source of insect DNA preserved in the sediments may include material other than macrofossil remains of adults, such as eggs or larvae, additional to that of harder, chitinous materials. The results from the sediments are important because this is the first time insect DNA has been retrieved directly from non-frozen sediments. The approach may have wide applications. Ancient sediment-preserved DNA studies could reveal the former presence of taxa not normally preserved in the fossil record such as soft-bodied insects. Although the non-frozen sediment DNA approach involves destructive sampling, it has the advantage that the material is the sediment itself, which is usually abundant, and normally not too valuable to process.

Table 3. Non-frozen sediment samples investigated in the study.

Sample #	Locality	Age	p.p.	Level
ABC10652	Hukanui Pool, layer C, New Zealand	3280–1800 yr. BP	81%	Order: Lepidoptera
ABC10652	Hukanui Pool, layer C, New Zealand	3280–1800 yr. BP	85%	Order: Coleoptera
ABC10653	Hukanui Pool, layer F*, New Zealand	AD 1870-present		

Authentic DNA sequence obtained only from sample #ABC10652.

yr. BP) calendar years before present (1950); p.p.) posterior probability of assigning the sequence to the given taxonomic level.

1) This layer is mostly sheep faeces, see [21].

doi:10.1371/journal.pone.0005048.t003
Materials and Methods

Historical Museum Specimens

Four individuals each of five beetle species (a total of 20 specimens) were selected, to cover a historic period spanning from AD 1820 until today (Table 1). All specimens were collected in Denmark, and are held in the collection of the Natural History Museum, Copenhagen, Denmark. Sequences of the COI gene for all the five species were available on GenBank, which allowed the construction of species-specific primers (Table S1).

Macrofossils

Fourteen macrofossils were recovered from permafrost sediments: 7 macrofossils from central Alaska and 7 from Main River, Ice Bluff (ledovy Obryv), Chukotka, northeastern Siberia (Table 2).

Supporting Information

Table S1 Primer and amplification details. All PCRs: 50°C annealing temp. except insCOI/F/R: 52°C. All primers were HPLC purified.

Acknowledgments

We dedicate this paper to our co-author Dr. Andrei Sher, who recently passed away. We thank Dr. Alexey Solodovnikov (Zoological Museum, Copenhagen) for kindly providing museum material for analyses.

Author Contributions

Conceived and designed the experiments: PFT SE MTPG JW SK DF RNH EW. Performed the experiments: PFT JW SK DF RNH. Analyzed the data: PFT JW KM DF. Contributed reagents/materials/analysis tools: PFT SE MTPG JW KM DF AS RNH. Wrote the paper: PFT.
References

1. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. TRENDS Ecol Evol 19: 141–147.
2. Willerslev E, Cooper A (2005) Ancient DNA. Proc R Soc B 272: 3–16.
3. Goldstein PZ, Desalle R (2003) Calibrating phylogenetic species formation in a threatened insect using DNA from historical specimens. Mol Ecol 12: 1993–1998.
4. Harper GL, Maclean N, Goulton D (2006) Analysis of museum specimens suggests extreme genetic drift in the adonis blue butterfly (Polyommatus bellargus). Biol J Linn Soc 88: 447–452.
5. Watts PC, Thompson DJ, Allen KA, Kemp SJ (2006) How useful is DNA extracted from the legs of archived-insects for micro-satellite based population genetic analysis? J Insect Cons 11: 195–199.
6. Cano RJ, Poinar H, Poinar Jr GO (1992a) Isolation and partial characterisation of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25–40 million year old amber. Med Sci Res 20: 249–251.
7. DeSalle R, Gatesy J, Wheeler W, Grimshah D (1992) DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257: 1933–1936.
8. Austin JJ, Ross AJ, Smith AB, Fortey RA, Thomas RH (1997) Problems of reproducibility - does geologically ancient DNA survive in amber-preserved insects? Proc Biol Sci 264: 467–474.
9. Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, et al. (2007) Ancient DNA Chronology within Sediment Deposits: Are Paleobiological Reconstructions Possible and Is DNA Leaching a Factor? Mol Biol Evol 24: 792–795.
10. Binladen J, Wiuf C, Mourier T, Arctander P (2006) Diverse plant and animal DNA from Holocene and Pleistocene sedimentary records. Science 300: 792–795.
11. Munch K, Bommelaer JP, Willerslev E, Nielsen R (2008) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 25: 262–265.
12. Hebsgaard MB, Phillips MJ, Willerslev E (2003) Ancient Biomolecules from Deep Ice Cores: A Review. Quat Sci Rev 25: 1877–1893.
13. Reiss RA (2006) Ancient DNA from ice age insects: proceed with caution. Quat Sci Rev 25: 1877–1893.
14. Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, et al. (2007) Ancient Biostatistics for Bayesian Phylogenetics. System Biol 56: 750–757.