Supplementary Information

An Expedient Synthesis of Tacrine-Squaric Hybrids as Potent, Selective and Dual-Binding Cholinesterase Inhibitors

Marco A. Ceschi, Renan M. Pilotti, João P. B. Lopes, Henrique Dapont, João B. T. da Rocha, Blessing A. Afolabi, Isabella A. Guedes and Laurent E. Dardenne

\(^{a}\)Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre-RS, Brazil

\(^{b}\)Laboratório de Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900 Santa Maria-RS, Brazil

\(^{c}\)Laboratório Nacional de Computação Científica, Av. Getulio Vargas, 333, 25651-075 Petrópolis-RJ, Brazil

Table S1. Ensemble docking of the reference ligands and the squarico-tacrine derivatives for the four AChE conformations and single docking against the BuChE

Compound	Conformation \(^{a}\)	AChE GlideScore / (kcal mol\(^{-1}\))	BuChE GlideScore\(^{b}\) / (kcal mol\(^{-1}\))
3a	1ZGC	−13.6	−9.1
3b	2CKM	−13.7	−7.7
3c	2CKM	−13.6	−8.0
4a	2CKM	−13.4	−7.6
4b	2CKM	−13.7	−7.7
4c	1ZGC	−13.1	−7.9

\(^{a}\)Docking result against the AChE conformation with the lowest Glide Score in the ensemble docking experiment; \(^{b}\) docking result for the BuChE enzyme (PDB code 5K5E). AChE: acetylcholinesterase; BuChE: butyrylcholinesterase.

\(^{e}\)e-mail: mceschi@iq.ufrgs.br; jbtrocha@yahoo.com.br; dardenne@lncc.br
Figure S1. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3a.

Figure S2. 13C NMR (APT) spectrum (101 MHz, CDCl$_3$) of compound 3a.
Figure S3. 2D COSY NMR of compound 3a.

Figure S4. 2D HSQC NMR of compound 3a.
Figure S5. Expansion (about 1.0 to 4.0 ppm of 1H and 10.0 to 50.0 ppm of 13C) of 2D HSQC NMR of compound 3a.

Figure S6. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3b.
Figure S7. 13C NMR (APT) spectrum (101 MHz, CDCl$_3$) of compound 3b.

Figure S8. 1H NMR spectrum (400 MHz, CDCl$_3$) of compound 3c.
Figure S9. 13C NMR (APT) spectrum (101 MHz, CDCl$_3$) of compound 3c.

Figure S10. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 4a.
Figure S11. 13C NMR (APT) spectrum (101 MHz, DMSO-d_6) of compound 4a.

Figure S12. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 4b.
Figure S13. 13C NMR (APT) spectrum (101 MHz, DMSO-d_6) of compound 4b.

Figure S14. 1H NMR spectrum (400 MHz, DMSO-d_6) of compound 4c.
Figure S15. 13C NMR (APT) spectrum (101 MHz, DMSO-d_6) of compound 4c.