Poor performance of two rapid immunochromatographic assays for anti-Japanese encephalitis virus immunoglobulin M detection in cerebrospinal fluid and serum from patients with suspected Japanese encephalitis virus infection in Laos

Onanong Sengvilaipaseuth, Josée Castonguay-Vanier, Anisone Chanthongthip, Ooyanong Phonemixaya, Soulignasack Thongpaseuth, Manivanh Vongsouvath, Paul N. Newton, Tehmina Bharucha, and Audrey Dubot-Pérès

Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK; Division of Infection and Immunity, University College London, London, UK; UMR ‘Émergence des Pathologies Virales’ (EPV), Aix-Marseille Université, IRD 190, Inserm 1207, EHESP, IHU Méditerranée Infection, Marseille, France

*Corresponding author: E-mail: t.bharucha@doctors.org.uk

Received 9 July 2017; revised 4 October 2017; editorial decision 24 October 2017; accepted 24 October 2017

Background: Japanese encephalitis virus (JEV) is a leading identified cause of encephalitis in Asia, often occurring in rural areas with poor access to laboratory diagnostics. We evaluated two rapid diagnostic tests (RDTs) for anti-JEV immunoglobulin M (IgM) detection.

Methods: Consecutive cerebrospinal fluid and serum from 388 patients (704 samples) with suspected JEV infections admitted to six hospitals in Laos were tested with one of two SD-Bioline anti-JEV IgM RDTs and the World Health Organization standard anti-JEV IgM enzyme-linked immunosorbent assay (ELISA; Panbio Japanese Encephalitis–Dengue IgM Combo ELISA).

Results and Conclusions: The performance of both RDTs showed strikingly low sensitivity in comparison to anti-JEV IgM antibody capture ELISA (2.1–51.4%), suggesting low sensitivity of the RDTs. We highlight the fundamental prerequisite to validate RDTs prior to use to ensure that they meet standards for testing.

Keywords: Central nervous system infection, Immunoassays, Japanese encephalitis virus, Laos, Rapid diagnostic tests, South-East Asia

Introduction

Japanese encephalitis virus (JEV) is a leading cause of encephalitis in Asia, with an estimated 69,000 cases per year, 30–50% associated neurological sequelae and 30% mortality. It is also an important cause of undifferentiated fever. Patients live predominantly in poor, rural communities, often with limited access to laboratory diagnostics. Our knowledge of the true extent of the burden of JEV is limited by the accuracy and accessibility of currently available diagnostic tests. Evidence for the utility of point-of-care diagnostic tests in resource-constrained settings is steadily accumulating. They are, indeed, rapid, easy to use, do not require specific technical knowledge or equipment and have demonstrable accuracy for some pathogens, such as Plasmodium spp. and Dengue virus (DENV). However, the tests need to be rigorously evaluated, including field testing, before implementation for diagnosis.

Rapid tests for detecting JEV infection have been reported, although none appear to be in routine use. Three of the tests are not convenient for rural diagnostics, requiring overnight incubations and multiple washing steps with various reagents, and one has only been optimized and validated for use in swine. We performed an evaluation of two Standard Diagnostics’ Bioline (SD-Bioline) anti-JEV immunoglobulin M (IgM) rapid diagnostic tests (RDTs) in a study of consecutive cerebrospinal fluid (CSF) and serum of patients with suspected JEV infections in Lao People’s Democratic Republic (Laos).
Materials and methods

Ethical statement

This evaluation was part of studies of the causes of central nervous system (CNS) infections and undifferentiated fever in Laos. Written informed consent was obtained from all recruited patients or responsible guardians. Ethical clearance was granted by the Ethical Review Committee of the Faculty of Medical Sciences, National University of Laos and the Oxford University Tropical Research Ethics Committee, Oxford, UK.

Patients

Patients of any age admitted to four hospitals in Vientiane (Mahosot, Sethatirat, Mother and Child, and Friendship) with suspected CNS infection, without contraindications for lumbar puncture (LP), and who gave informed consent were included. No formal definition for CNS infection was used for recruitment, which was at the discretion of the responsible physician, reflecting local clinical practice. We also included in- and outpatients from two hospitals outside Vientiane (Luang Namtha in north-west Laos and Salavan in southern Laos), ages 5–49 years, with fever of <9 days without obvious causes, admission tympanic temperature of ≥38°C, including suspected CNS infection, who gave written informed consent. Blood and/or CSF were collected at admission and a follow-up blood sample was taken at discharge. Serum and CSF were aliquoted and frozen at −80°C.

JEV RDT

SD-Bioline JE IgG/IgM RDT (catalogue number 48FK20; Standard Diagnostics, Kyonggi-do, South Korea) and SD-Bioline JEV IgM (catalogue number 48FK10; Standard Diagnostics) are immunochromatographic assays for the qualitative detection of anti-JEV IgM antibody from serum, plasma and whole blood. The first group of patients, with undifferentiated fever or suspected CNS infections, were tested using the IgG/IgM RDT. After this test was discontinued, a second group of patients with suspected CNS infection were tested using the IgM RDT. Serum and CSF were tested in this study as per the manufacturer's instructions. A 5 μl sample was applied to the small 'S' well on the cassette, then four drops of diluent (provided with the kit) were applied on the larger round well. The IgG/IgM RDT was tested on one set of samples read by four readers. The IgM RDT was then tested on a second set of samples from different patients by two readers. A valid test showed a pink line ‘C’ in the result window and a positive result (detection of anti-JEV IgM) with a pink line ‘M’ for the IgG/IgM test or line ‘T’ for the IgM test. Results were reported as positive or negative. We did not analyse the anti-JEV IgG RDT results or perform anti-JEV IgG enzyme-linked immunosorbent assays (ELISAs). The RDTs were tested on acute and convalescent serum and CSF, although CSF testing is not included as part of the instructions from the manufacturer.

Panbio ELISA

Detection of anti-JEV IgM using anti-JEV IgM antibody capture (MAC)-ELISA is the World Health Organization recommended test for diagnosing JEV infection. The Japanese Encephalitis-Dengue IgM Combo ELISA kit (catalogue number E-JED01C; Panbio ELISA; Inverness Medical Innovations, Brisbane, QLD, Australia, formerly Panbio Ltd) is a commercial anti-JEV MAC-ELISA kit that is combined with an anti-DENV IgM test to differentiate IgM against DENV and JEV. The test was performed according to the manufacturer's instructions, and reported as anti-JEV or anti-DENV IgM positive, equivocal or negative. Anti-DENV IgM positive or equivocal and anti-JEV IgM equivocal were interpreted as anti-JEV IgM negative.

Statistical analysis

Anti-JEV MAC-ELISA (Panbio ELISA) was used as a reference standard ('the best available method for establishing the presence or absence of the target condition') for the calculation of RDT sensitivity and specificity. ELISA and RDT results were analysed in a 2×2 table, with sensitivity and specificity (95% confidence intervals (CIs)) calculated using STATA 13.1 (StataCorp, College Station, TX, USA).

Results and discussion

Two hundred patients (337 samples), 54 with undifferentiated fever and 146 with CNS presentations, were tested by SD-Bioline JE IgG/IgM RDT and 188 CNS presentations (367 samples) were

Table 1. Summary of patients included in the study

Admitting hospital	Study group 1 (SD-Bioline JE IgG/IgM RDT)	Study group 2 (SD-Bioline JE IgM RDT)	
Number of patients	Mahosot 140	Luang Namtha 39	Salavan 21
Age (median, interquartile range)	Mahosot 26 (17–40)	Sethatirat 18 (10–26)	Mother and Child 18 (13–28)
Sex, n (% female)	Mahosot 19 (13.6)	Sethatirat 19 (48.8)	Mother and Child 7 (33.3)
Clinical presentation, n (% suspected CNS infection)	Mahosot 140 (100)	Sethatirat 5 (12.8)	Mother and Child 1 (4.8)
Friendship	Mahosot 143	Sethatirat 7	Mother and Child 18
Friendship	Mahosot 28 (16–40)	Sethatirat 35 (26–48)	Mother and Child 6 (3–8)
Friendship	Mahosot 60 (42.0)	Sethatirat 3 (43.0)	Mother and Child 5 (28.0)
Friendship	Mahosot 143 (100)	Sethatirat 7 (100)	Mother and Child 18 (100)
Friendship	Mahosot 20 (100)	Sethatirat 30 (20–39)	Mother and Child 3 (15.0)

*The clinical inclusion criterion for study group 1 was either suspected central nervous system (CNS) infection or undifferentiated fever and for study group 2 was only suspected CNS infection.
tested by SD-Bioline JEV IgM RDT. A summary of the patient characteristics is presented in Table 1.

Both RDTs demonstrated very low sensitivity with the Panbio ELISA: 51.4% (95% CI 34.0–68.6) for suspected CNS infections and 16.0% (95% CI 4.5–36.1) for undifferentiated fever with the SD-Bioline JE IgG/IgM RDT and 2.1% (95% CI 0.1–11.1) for suspected CNS infections with the SD-Bioline JEV IgM RDT, suggesting low sensitivity of the assay. See Table 2 for individual analyses of CSF, acute and convalescent serum for the two RDTs for patients with suspected CNS infections and undifferentiated fever. The Panbio ELISA detected anti-JEV IgM in 28% of patients, consistent with published data.1

Table 2. 2x2 Tables comparing anti-JEV IgM detection by Panbio ELISA kit and SD-Bioline JEV RDT results for serum, CSF, all samples and all patients

	SD-Bioline JE IgG/IgM RDT^a	SD-Bioline JE IgM RDT^b	
	Suspected CNS infection	Undifferentiated fever	Suspected CNS infection
	CSF Panbio ELISA^c	CSF Panbio ELISA^c	CSF Panbio ELISA^c
	POS NEG Total	POS NEG Total	POS NEG Total
	RDT POS 12 1 13	RDT POS 0 0 0	RDT POS 0 0 0
	NEG 17 29 46	NEG 0 0 0	NEG 40 140 180
	Total 29 30 59	Total 0 0 0	Total 40 140 180
	Sensitivity (95% CI): 41.4% (23.5–61.0)	Sensitivity (95% CI): —	Sensitivity (95% CI): 0.0% (0.0–8.8)
	Specificity (95% CI): 96.7% (82.8–99.9)	Specificity (95% CI): —	Specificity (95% CI): 100% (97.1–100)
	Acute serum Panbio ELISA	Acute serum Panbio ELISA	Acute serum Panbio ELISA
	POS NEG Total	POS NEG Total	POS NEG Total
	RDT POS 4 0 4	RDT POS 3 0 3	RDT POS 0 0 0
	NEG 4 83 87	NEG 15 31 46	NEG 40 123 163
	Total 8 83 91	Total 18 31 49	Total 40 123 163
	Sensitivity (95% CI): 17.7% (15.7–84.3)	Sensitivity (95% CI): 16.7% (3.6–41.4)	Sensitivity (95% CI): 0.0% (0.0–8.8)
	Specificity (95% CI): 100% (95.7–100)	Specificity (95% CI): 100% (88.8–100)	Specificity (95% CI): 100% (97.1–100)
	Convalescent serum Panbio ELISA	Convalescent serum Panbio ELISA	Convalescent serum Panbio ELISA
	POS NEG Total	POS NEG Total	POS NEG Total
	RDT POS 9 0 9	RDT POS 4 0 4	RDT POS 1 0 1
	NEG 3 77 80	NEG 19 26 45	NEG 6 17 23
	Total 12 77 89	Total 23 26 49	Total 7 17 24
	Sensitivity (95% CI): 75.0% (42.8–94.5)	Sensitivity (95% CI): 17.4% (5.0–38.8)	Sensitivity (95% CI): 14.3% (0.4–57.9)
	Specificity (95% CI): 100% (95.3–100)	Specificity (95% CI): 100% (88.6–100)	Specificity (95% CI): 100% (80.5–100)
	All patients Panbio ELISA	All patients Panbio ELISA	All patients Panbio ELISA
	POS NEG Total	POS NEG Total	POS NEG Total
	RDT POS 18 1 19	RDT POS 4 0 4	RDT POS 1 0 1
	NEG 17 110 127	NEG 21 29 50	NEG 47 140 187
	Total 35 111 146	Total 25 29 54	Total 48 140 188
	Sensitivity (95% CI): 51.4% (34.0–68.6)	Sensitivity (95% CI): 16.0% (4.5–36.1)	Sensitivity (95% CI): 2.1% (0.1–11.1)
	Specificity (95% CI): 99.1% (95.1–100)	Specificity (95% CI): 100% (88.1–100)	Specificity (95% CI): 100% (97.4–100)

^aSD-Bioline JE IgG/IgM test and ^bSD-Bioline JEV IgM test (RDT), both produced by Standard Diagnostics, Kyonggi-do, South Korea. Positive (POS)=‘M’ (IgM) for the IgG/IgM assay and ‘T’ (test) for the IgM assay, and ‘C’ (control) lines visible; negative (NEG)=only ‘C’ line visible. IgG results are not presented. The study was performed in two phases: (1) SD-Bioline JEV IgG/IgM RDT tested on 200 patients with assays read by four independent investigators (interreader agreement 99.4% [95% CI 97.9–99.9]) and (2) SD-Bioline JEV IgM RDT tested on 188 patients with assays read by two independent investigators (interreader agreement 100% [95% CI 99.0–100]).

^cJEV-Dengue IgM Combo ELISA kit (Panbio ELISA), Inverness Medical Innovations, Brisbane, Australia (formerly Panbio Ltd). Positive (POS)=JEV IgM positive, negative (NEG)=JEV IgM negative or equivocal, with cut-offs calculated according to the manufacturer’s instructions. For the patient data, positive (POS) refers to CSF and/or serum positive for anti-JEV IgM and negative (NEG) is all available samples negative.
RDTs are currently being used for the diagnosis of a wide range of infectious diseases. SD-Bioline RDT assays for dengue, trypanosomiasis and HIV have been shown to have good diagnostic accuracy.16–19 We found that these two JEV RDTs had low sensitivity with reference to ELISA. Similar results for some malaria RDTs have been reported.20 The JEV RDTs were supplied directly from the manufacturer and used within the expiry date. Sensitivity was higher for convalescent as compared with acute serum, and this is likely due to higher JEV IgM titres rising over time.21 The manufacturer’s in-house assessment reported in the product leaflet for the IgM RDT involved 375 samples with a reported sensitivity and specificity >90% compared with the SD-Bioline anti-JEV MAC-ELISA (catalogue number 48EK10; Standard Diagnostics). In our study, the specificity was consistently high (>90%). Interreader agreement between the two readers was 99.4% (95% CI 97.9–99.9) for the IgG/IgM RDT and 100% (95% CI 99.0–100) for the IgM RDT. Discrepant results were excluded from the analysis. The positive control strip was valid in 700/704 tests (99.4%) and the four invalid tests were repeated successfully.

Limitations of the study include that the evaluation was only in one country and that the sera from the undifferentiated fever study11 were not consecutive. We have reported sensitivity and specificity in comparison with ELISA, therefore interpretation of these results should be considered with caution. Indeed, the field is further complicated by very little evidence on the comparability between the many different anti-JEV and anti-DENV antibody ELISAs.13 We used a different ELISA system than that used by the manufacturer as stated in their product leaflet. Additionally, cross-reactivity with other antigenically similar flaviviruses were not evaluated, such as confirming ELISA results by the plaque reduction neutralization test (PRNT)—the gold standard—and testing RDT against anti-DENV IgM/IgG-positive serum.22

The potential use of RDTs in the diagnosis and surveillance of neglected tropical diseases such as JEV is still emerging. Our results highlight the fundamental prerequisite to validate RDTs prior to use to ensure that they meet standards for testing.16–19 There is the potential for cross-reactivity with other flaviviruses circulating in a region, and results must be interpreted with this in mind. Simple, reliable and cost-effective rapid tests are still urgently needed for the diagnosis of JEV infection.

Authors’ contributions: OS and JCV designed the study under the supervision of MV, PNN and ADP. OS, JCV, AC, OP and SP performed the laboratory work. TB performed the data analysis and interpretation, and drafted the manuscript under the supervision of ADP and PNN. All authors read and approved the final version.

Acknowledgements: We are very grateful to the patients and to Bouvannya Bounxouei, the Director of Mahosot Hospital, the late Dr Rattanaphone Phetsouvann, Director of the Microbiology Laboratory, the late Thaksinapol Tajakjoun, Phouthasane Yongvongsih and the staff of the wards and Microbiology Laboratory of Mahosot Hospital for their technical help and support, Channhomma Vongsamphan, the Director of the Department of Health Care, Ministry of Health, and Bounkong Syhavong, Minister of Health, Lao People’s Democratic Republic for their very kind help and support. We are very grateful to the people who organized sample collection for the undifferentiated fever, Mayfong Mayxay, Microbiology Laboratory of Mahosot Hospital, Dr Phouveng Douangdala and Dr Saythong Inthalath, Luang Namtha Provincial Hospital and Dr Phouthalphavanh Souvannasing, Salavan Provincial Hospital.

Funding: None.

Competing interests: None.

Ethical approval: None.

References

1. Wang H, Liang G. Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag. 2015;11:435–48.
2. Mayxay M, Castonguay-Vanier J, Chansoumth V, et al. Causes of non-malarial fever in Laos: a prospective study. Lancet Glob Health. 2013;1(1):e46–54.
3. Bharucha T, Chanthongthip A, Phuangpanorm S, et al. Pre-cut filter paper for detecting anti-Japanese encephalitis virus IgM from dried cerebrospinal fluid spots. PLoS Negl Trop Dis. 2016;10(3):e0004516.
4. Dubot-Peres A, Sengvilaiapaseuth O, Chanthongthip A, et al. How many patients with anti-JEV IgM in cerebrospinal fluid really have Japanese encephalitis? Lancet Infect Dis. 2015;15(12):1376–7.
5. Drancourt M, Michel-Lepage A, Boyer S, et al. The point-of-care laboratory in clinical microbiology. Clin Microbiol Rev. 2016;29(3):429–47.
6. Choi JR, Hu J, Wang S, et al. Paper-based point-of-care testing for diagnosis of dengue infections. Crit Rev Biotechnol. 2017;37(1):100–11.
7. Salomon T, Thao LT, Dung NM, et al. Rapid diagnosis of Japanese encephalitis by using an immunoglobulin M dot enzyme immunoassay. J Clin Microbiol. 1998;36(7):2030–4.
8. Li Y, Hou L, Ye J, et al. Development of a convenient immunochromatographic strip for the diagnosis of infection with Japanese encephalitis virus in swine. J Virol Methods. 2010;168(1–2):51–6.
9. Shrivastva A, Tripathi NK, Porida M, et al. Comparison of a dipstick enzyme-linked immunosorbent assay with commercial assays for detection of Japanese encephalitis virus-specific IgM antibodies. J Postgrad Med. 2008;54(3):181–5.
10. Zhang YH, Yu WF, Cai J, et al. A rapid method for detection of flavivirus antigens: staphylococcal co-agglutination test using monoclonal antibodies to Japanese encephalitis virus. Acta Virol. 1989;33(1):24–31.
11. Dittrich S, Rattanavong S, Lee SJ, et al. Orientia, rickettsia, and leptospira pathogens as causes of CNS infections in Laos: a prospective study. Lancet Glob Health. 2015;3(2):e104–12.
12. Mayxay M, Castonguay-Vanier J, Chansamouth V, et al. Causes of non-malarial fever in Laos: a prospective study. Lancet Glob Health. 2013;1(1):e46–54.
13. Moore CE, Blacksell SD, Taojaikong T, et al. A prospective assessment of the accuracy of commercial IgM ELISAs in diagnosis of Japanese encephalitis virus infections in patients with suspected central nervous system infections in Laos. Am J Trop Med Hyg. 2012;87:171–8.
14. US Food and Drug Administration. Statistical guidance on reporting results from studies evaluating diagnostic tests. Rockville, MD: US FDA; 2007.
15. StatoCorp. Stata statistical software: release 13. College Station, TX: StatoCorp; 2013.
16. Kim YJ, Park S, Premaratna R, et al. Clinical evaluation of rapid diagnostic test kit for scrub typhus with improved performance. J Korean Med Sci. 2016;31(8):1190–6.
17 Kosack CS, Page AL, Beelaert G, et al. Towards more accurate HIV testing in sub-Saharan Africa: a multi-site evaluation of HIV RDTs and risk factors for false positives. J Int AIDS Soc. 2017;19(1):1–12.

18 Bisser S, Lumbala C, Ngertourn E, et al. Sensitivity and specificity of a prototype rapid diagnostic test for the detection of Trypanosoma brucei gambiense infection: a multi-centric prospective study. PLoS Negl Trop Dis. 2016;10(4):e0004608.

19 Blacksell SD, Doust JA, Newton PN, et al. A systematic review and meta-analysis of the diagnostic accuracy of rapid immunochromatographic assays for the detection of dengue virus IgM antibodies during acute infection. Trans R Soc Trop Med Hyg. 2006;100(8):775–84.

20 Berhane A, Russom M, Bahta I, et al. Rapid diagnostic tests failing to detect Plasmodium falciparum infections in Eritrea: an investigation of reported false negative RDT results. Malar J. 2017;16(1):105.

21 Burke DS, Nisalak A, Ussery MA, et al. Kinetics of IgM and IgG responses to Japanese encephalitis virus in human serum and cerebrospinal fluid. J Infect Dis. 1985;151:1093–9.

22 Kuno G. Serodiagnosis of flaviviral infections and vaccinations in humans. Adv Virus Res. 2003;61:3–65.