The potential applications of site-directed mutagenesis for crop improvement: a review

Yilkal Bezie1,2 · Tadesse Tilahun1,3 · Mulugeta Atnaf4 · Mengistie Taye5

Accepted: 16 November 2020 / Published online: 22 December 2020
© Korean Society of Crop Science (KSCS) 2020

Abstract
The search for technologies for crop improvement has been a continuous practice to address the food insecurity to the growing human population with an ever-decreasing arable land and dynamic climate change around the world. Considering the potential technologies for crop improvement could close the rooms of poverty in developing countries in particular and around the globe at large. This review aimed to assess the site-directed mutation creation methods and show the potential tools for future crop improvement programs. Site-directed mutagenesis was found to be an efficient process to create targeted mutation on cereal crops, horticultural crops, oilseed crops, and others. Agronomic traits such as yield, quality, and stress tolerance have been improved using site-directed mutagenesis. Besides, selectable marker elimination was also reported from transgenic crops by targeted mutation. Most of the reports on site-directed mutagenesis is focusing on cereal crops (58.339%) followed by horticultural crops (22.92%). Among the four mutagenic tools that have been reported, the CRISPR/Cas9 technology was found to be frequently used (66.67%) followed by TALENs. This tool is potential, since it is efficient in creating targeted mutagenesis and less likely off-target effect, so it is repeatedly used in different research works. TALENs were used usually to knockout genes with bad traits. Moreover, the mutation created by mutagenic tools was found to be efficient, and the mutated traits proved to be heritable to generations. Hence, site-directed mutagenesis by the CRISPR/Cas9 system is advisable for agricultural development, thereby ensuring food sustainability around the world.

Keywords Cereals · Horticultural crops · Site-directed mutagenesis · Traits

Introduction
Agricultural development has always been on the move towards increasing crop productivity. Sustainable use of natural resources must be wisely managed in combination with the enrichment in the knowledge gained from science and technology (Mohan Jain and Suprasanna 2011). Global food security continues to be the first issue and plant breeders are obliged to sustain food production to meet the demand of the ever-increasing human population of the world (Nestel et al. 2006).

The process of crop improvement has been a fundamental issue for thousands of years ago (Godfray et al. 2010). The ultimate reason to crop improvement is to respond to the huge demand for food for the alarmingly growing human population around the globe (Rashid et al. 2017). Moreover, with the ever-greater demand for a balanced and healthy diet, there must be an on-going effort to develop improved crops using diverse technologies (Caligari and Forster 2001; Rao et al. 2018). Multifaceted and integrated global strategies are required to ensure sustainable food security through crop improvement programs (Godfray et al. 2010; Dobermann and Nelson 2013; Roychowdhury and Tah 2013).

Site-directed mutagenesis is one of the recent tools amongst molecular crop improvement technologies (Sauer...
et al. 2016). The major aim of mutation-assisted breeding is to develop and improve well-adapted plant varieties by modifying one or two major traits (Oladosu et al. 2016). The development of targeted mutation became a source of genetic variation which, in turn, became a resource for plant breeders (Kharkwal and Shu 2009). Therefore, mutation supported plant breeding could play a crucial role in addressing the uncertainties of global climate change and food insecurity challenges (Mohan Jain and Suprasanna 2011). Site-directed mutagenesis aims at a precise change of any coding sequence in vitro or in vivo. Site-directed mutagenesis could be produced using different methods. In vitro targeted mutation could be created by gene vector-based method or PCR-based method (Zheng et al. 2004; Liu and Naismith 2008).

Another method of the site-directed mutation creation method is gene editing using programmable site-directed nucleases (SDN), which are promising for new plant breeding techniques. This method could be achieved by generating a small deletion or insertion at a precisely defined location in the genome (Van de Wiel et al. 2017). These days, programmable nucleases are becoming a method of choice to create a targeted mutation in crops which could, in turn, serve as a platform for molecular breeding (Modrzejewski et al. 2019). Therefore, the purpose of this review is to assess the site-directed mutation creation methods and their potential for crop improvement research.

Site-directed mutagenesis: basics and principles

Site-directed mutagenesis has been used to generate mutation at a single site or multiple sites of the genome (Forloni et al. 2019). So far, three methods of site-directed mutagenesis are known vis. vector-based, PCR-based, and nucleases based site-directed mutagenesis. In the vector-based mutagenesis, either a plasmid or phage vector could be used for the purpose (Saboulard et al. 2006). In this method of mutation, one mutagenic primer and one normal primer could be used (Smith 1982; Zoller and Smith 1984). In PCR-based site-directed mutagenesis, the mutation could occur on double-stranded DNA, and the procedure involves simultaneous annealing of two oligonucleotide primers—one mutagenic and the other normal primer annealed to the denatured double-stranded DNA (Braman et al. 1996). The nucleases based site-directed mutagenesis involves enzymes that cut DNA at a specific sequence.

Site-specific recombinase enzymes catalyze double-stranded DNA exchange between strands with a limited degree of sequence homology. These enzymes attach to the recognition site, which is between 30 and 200 nucleotide length and cleaves the DNA backbone (Coates et al. 2005). The Cre–lox system consists of two components derived from the P1 bacteriophage, the Cre recombinase, and the loxP recognition site. The P1 bacteriophage uses these components as part of the natural viral life cycle and researchers adapted the components for gene manipulation purposes (Araki et al. 2002; Lambert et al. 2007).

Transcription Activator-Like Effector Nuclease (TALEN) is another engineered nuclease, which shows a better specificity and efficiency than ZFN. Similar to ZFNs, TALENs use DNA-binding motifs to direct the same non-specific nuclease to cleave the genome at a specific site, but instead of recognizing DNA triplets, each domain recognizes a single nucleotide (Table 1) (Li et al. 2016a, b. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are the latest exciting development in gene-editing technology. The CRISPR system is an RNA-based bacterial defense mechanism designed to recognize and eliminate foreign DNA from invading bacteriophages and plasmids (Gupta et al. 2020).

Application of site-directed mutagenesis in crop improvement

Feeding the growing human population is an increasingly difficult task. An important part of the solution is the development of improved new crop cultivars with high yield and stress tolerance. As we are facing challenges to increase global agricultural productivity, there is a rapid need to accelerate the development of these traits in crops (Sauer et al. 2016). Among the multitude of approaches that are used in crop improvement, targeted gene mutation technologies using different mutagenic tools are attractive technologies to develop novel traits (Christian et al. 2010; Gaj et al. 2013; Eş et al. 2019).

In recent times, different alternatives are used to bring targeted mutation and producing economic traits in crops or eliminate bad crop traits (Ren et al. 2016; Gupta et al. 2020). The rapid development of the field has allowed the development of highly efficient, precise, and cost-effective means to develop improved crop mutants (Nishizawa-Yokoi et al. 2016). It has been applied and improved the yield, quality, and stress tolerance traits of major food crops including maize, rice, wheat, barley, potato, soybean, carrot, cabbage, and tomato, and became an appeal to molecular breeding.

Maize improvement using site-directed mutagenesis

Maize is a major crop used as food in most of the world. Several research activities have been done to achieve targeted mutations on maize using different site-directed mutagenesis tools (Liang et al. 2014; Cai et al. 2018).

Using targeted mutagenesis on a conserved lysine residue, Lys was replaced by Asn, Glu, or Arg to improve phosphoenolpyruvate enzyme catalytic efficiency and regulatory role on maize using plasmid vectors. As a result, the maximum
Feature	ZFNs	TALENs	CRISPR-Cas9	Site-specific recombinase
Sources of enzymes	Found in Bacteria and Eukaryotes zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes DNA Cleavage Domain FokI type II restriction enzyme Naturally found in Flavobacterium	Eukaryotes	Bacteria (Streptococcus sp.)	Example CreloxP; It is found from prokaryotes and lower eukaryotes CreloxP is made by integration of bacteriophage lambda and connected with the bacterial chromosome
Length of recognized DNA target	9–18 bp	30–40 bp	22 bp + PAM sequence	From a few hundred to tens of thousands of nucleotide pairs
Mechanism of target DNA recognition	DNA–protein interaction	DNA–protein interaction	DNA–RNA interaction via Watson–Crick base pairing	Site-specific recombination systems mediate DNA rearrangements by breaking and joining DNA molecules at two specific sites, termed recombination targets
Mechanism of DNA cleavage and repair	Double-strand break induced by FokI	Double-strand break induced by FokI	Single- or double-strand break induced by Cas9	Double-stranded break induced by cre gene enzyme/recombinase
Binding specificity	3 Nucleotides	1 Nucleotide	1:1 Nucleotide pairing	To the spacer of the 13 bp repeats
Mutation rate (%)	10	20	20	From hundreds to thousands of bps
Target site length (bp)	18–36	24–40	22	With an average mutation rate of ~ 11 amino acid substitutions per variant
Double-stranded break pattern	Staggered cut (4–5 nt, 5′ overhang)	Staggered cut (Heterogeneous overhangs)	Sp Cas9 creates blunt ends; Cpf1 creates a staggered cut (5′ overhang)	Cleaves double-stranded between 13 bp repeats of loxP
Challenges of the technology	High off-target effects	Low	Variable	May not be effective if the Cre gene and the loxP are separately introduced
Dimerization required	Yes	Yes	No	No
Best suited for	Gene knockout, transcriptional regulation	Gene knockout, transcriptional regulation	Gene knockout, transcriptional regulation, base editing	Gene knockout
velocity (V_{max}) of the enzyme decreased to 22% when Asn was replaced in place of Lys and 2%, and V_{max} reduction was observed when Lys is replaced by Glu in PEPC enzyme catalytic efficiency thereby enhancing sugar production (Dong et al. 1997). This indicates the potential of site-directed mutagenesis to improve the affinity and catalytic efficiency of PEPC for crop physiology. In a research report when Thr was substituted by Ser using double-stranded plasmid vector site-directed mutagenesis, the regulatory capacity of Pyruvate orthophosphate Dikinase (PPDK) enzyme in maize got improved, while catalytic efficiency remains unchanged (Chastain et al. 1997).

Selectable marker gene elimination from transformed maize was reported using Cre/loxP specific recombination system with the removal of yellow fluorescent protein (yfp), which was used as a selectable marker (Djukanovic et al. 2006). This technology could potentially be used for the efficient removal of other selectable markers from genetically modified crops. In another report, site-directed mutagenesis using engineered endonuclease targeting Lig34-site in the vicinity of the LIGULELESS1 (LG1), induction in the large-scale experiment produced 718 Parental (T_0) plants. The 781 T_0 transgenic plants were evaluated by PCR, and 23 T_0 plants were identified to contain mutations at the LIGULELESS1 locus based on visual screening of the Lig34-site (Gao et al. 2010).

In another work using I-Cel, homing endonuclease enzyme mutation was made at ms26 genomic site of maize that produced small deletion and insertion of EMS26 (fertility gene at chr 5 with 5 exons) 22 bp targeted site. The T_0 maize plants carried mutated alleles of MS26 gene which made the maize male sterile (Djukanovic et al. 2013). Targeted site-directed mutation was performed on five gene regions (EMS26 and MS45 fertility genes, ALS1 and ALS2 acetylactate synthase genes, and Linguless1/LIGI gene) of maize using CRISPR/Cas9 system. The mutation occurred at ALS2 that made the crop chlorsulfuron herbicide-tolerant embryo regeneration. Moreover, targeted mutations on EMS26 and MS45 genes produced sterile male maize even at doubled transformation efficiency than done by engineered endonuclease (Svitashev et al. 2015). Stable knockout of the phytoene synthase PSY1 gene from maize using the CRISPR/Cas9 system was reported. The gene knockout increases sugar synthesis and whitens the powder which in turn increases market value (Zhu et al. 2016). By another recent research work, sterile male maize was developed using the CRISPR/Cas9 system on zmms5 gene (chr 2 with exon number 5) mutation and produced thermo-sensitive (32 °C) maize. This is important for out-crossing and to produce improved hybrid seed (Li et al. 2017).

An increment in maize grain yield under drought-stressed condition was reported by changing the promoter of the ARGOSS8 gene (found at chr 5 with exon number 3).

ARGOS8 gene is a negative regulator of ethylene response and modulates ethylene signal transduction and enhances drought tolerance by reducing leaf size and grain yield development. The deletion of 550 bp at genomic DNA fragment between CTS3 and CTSI removes the part of ARGOSS 5' UTR and the upstream promoter sequence. The native maize GOS2 promoter was used to replace the native promoter of gene ARGOSS using CRISPR/Cas9 system, the protein which suppresses ethylene production was performed (Shi et al. 2017). TALENs and CRISPR/Cas9 systems were evaluated for their targeted mutation creation efficiency at a specific site from the maize protoplast genome. Both of the tools achieved a similar mutation rate (13.1%) (Table 2). These tools could be used alternatively for maize genome editing (Liang et al. 2014). In another research using TALENs, a 10% targeted mutation rate was reported (Table 2), and it was proved that the mutation could pass to the next generations (Char et al. 2015). Targeted mutation of Argonate18 (zmAgo18a and zmAgo 18b) and dihydroflavinol-four reductase maize genes (a1 and a4) using CRISPR/Cas9 technology resulted in a 70% mutation rate and was proved that the targeted mutation could pass to the next generations (Char et al. 2017). From different research reports on maize site-directed mutagenesis using vector method and gene-editing mutagenesis, the TALENs and CRISPR/Cas 9 system are found to be promising and repeatedly used tools to improve maize traits (Liang et al. 2014; Char et al. 2017; Shi et al. 2017).

Rice improvement using site-directed mutagenesis

High tryptophan rice was established using a vector method of site-directed mutagenesis. The introduction of $SI26F$, $Y367A$, and $L530D$ mutations into OASA2 was performed using a Quick Change II XL site-directed mutagenesis kit (Strata gene). Interestingly, mature seeds of homozygous GT plants accumulated Tryptophan (Trp) levels 230-fold higher than the non-transformants without any apparent morphological developmental change (Table 2) (Saika et al. 2011). This work proved the potential application of site-directed mutagenesis in improving the nutritional benefit of rice for both humans and livestock that was not achieved by conventional mutation methods.

Fragrance increases the marketability of rice (Ashok-kumar et al. 2020). The development of high fragrant rice by knocking of osBADH2 gene (found at chr 5 with 15 exon number) which produces Betain aldehyde dehydrogenase was reported using TALEN technology. TALENs were engineered to target and disrupt the osBADH2 gene and a total of six T_0 heterozygous mutant BADH2 rice plants (badh2-1 to badh2-6) were recovered from 20 transgenic hygromycin-resistant plants. Plants badh2-2 and
Mutagenized crops	Mutagenic tools used	Purpose of mutation	Rate of mutation	Sources
Maize	CRISPR/Cas9 system	Evaluating the efficiency of the CRISPR/Cas system to create site-specific mutation	70%	Char et al. (2017)
	CRISPR/Cas9 system	Male sterile maize production by mutating gene zmtnm5	Not mentioned	Li et al. (2017)
	CRISPR/Cas9 system	Mutating on ARGO8 gene reduce ethylene hormone synthesis to increase grain yield by	13%	Shi et al. (2017)
	TALEN-mediated	Evaluation of mutation efficiency maize glossy2 (gl2) locus	10%	Char et al. (2015)
	Engineered endonuclease from the I-CreI	Mutation rate evaluation at locus liguleless locus (liguleless1)	3%	Gao et al. (2010)
	Double-stranded plasmid mutagenesis	To improve photosynthesis enzyme efficiency The enzymatic reaction was regulated and activated when Thr residue is substituted by Ser and Val residue	Not mentioned	Chastain et al. (1997)
	I-CreI homing endonucleases	Mutation rate evaluation at EM26-site by agrobacterium delivery made the maize male-sterile for molecular breeding	8.9%	Djukanovic et al. (2013)
	Cre/ loxP	Marker segregation and removal	1–2%	Djukanovic et al. (2006)
	TALEN-mediated/ CRISPR/Cas9	From genes ZmPDS, ZmIPKIA, ZmIPK, and ZmMRP4	13.1%	Liang et al. (2014)
	CRISPR-Cas9 Agrobacterium-mediated transformation	Stable knockout transformants for maize phytoene synthase gene (PSY1) to increase sugar production and the endosperm got white which is color full	The average efficiency of 10.67%	Zhu et al. (2016)
	Plasmid vector mutagenesis	Phosphoenolpyruvate carboxylase improved the catalytic nature of the enzyme by replacing lysine by Asn or, Glu	22% V_{max}Asn replace	Dong et al. (1997)
	CRISPR-Cas9 system particle bombardment gene delivery	Herbicide-resistant maize and male-sterile maize production	90% Ems26,100% MS45	Svitashev et al. (2015)
Mutagenized crops	Mutagenic tools used	Purpose of mutation	Rate of mutation	Sources
-------------------	----------------------	---	------------------	----------------------------------
Rice	CRISPR/Cas9	Grain weight of rice improvement by knocking the GW2, GW5, and TWG6 genes which negatively regulates the grain size	27.13–29.84%	Xu et al. (2016)
	Agrobacterium-mediated			
	CRISPR/Cas9	Enhanced rice blast resistance mutant produced	(42.0%)	Wang et al. (2016)
	Agrobacterium-mediated			
	TALEN-mediated	Mutation efficiency evaluation to the target site	25% increased	Zhang et al. (2016)
	Agrobacterium-mediated			
	CRISPR/Cas9 from	To evaluate whether the CRISPR/Cas9 from Prevotella and Francisella1 (Cpf1) effective for plant genome editing	Successful	Endo et al. (2016)
	Prevotella and Francisella1 (Cpf1)			
	Homologous recombinase	Introduce precise mutations in OASA2—an a-subunit of anthranilate synthase that is a key enzyme of tryptophan (Trp) biosynthesis in rice	230-Fold higher than in non-transformants	Saika et al. (2011)
	TALEN-mediated using particle bombardment gene delivery method	Targeted knockout of the OsBADH2 able to produce a fragrance rice and increases the world market value of rice	30%	Shan et al. (2015)
	CRISPR/Cas9 Agrobacterium-mediated transformation	Evaluation of site-directed mutagenesis efficiency and heritability	Highly efficient in rice	Zhang et al. (2014)
	CRISPR/Cas9 system	To evaluate mutation efficiency and its inheritable nature	High	Xu et al. (2014)
	Agrobacterium-mediated			
	CRISPR/Cas9	Endogenous 5 enolpyrovete shikimate synthase gene mutation makes glyphosate-resistant rice produced	2% replacement and 2.2% gene insertion	Li et al. (2016a; b)
	Agrobacterium-mediated transformation			
	CRISPR/Cas9 system	The mutation on three-grain-related genes (J809, L237, and CNXJ rice varieties) three genes osGS3, osGW2, and osGlna which regulates negatively the grain size, width and weight and number Yield increased from triple mutates of variety J809 and L237 by 68% and 30%	Not mentioned	Zhou et al. (2019)
Muta-genized crops	Mutagenic tools used	Purpose of mutation	Rate of mutation	Sources
-------------------	----------------------	---------------------	------------------	---------
Barley	TALENs mediated Agrobacterium-mediated transformation	Gene knock-out mutations and gfp is mutated through pollen mediated and loss of function was proved	22% gene knockout with 4–36 nucleotides got deleted	Gurushidze et al. (2014)
	TALEN Mediated Particle bombardment	Homology directed repair conversion of gfp into yfp, which is associated with a single amino acid exchange in the gene product brought function exchange	Not mentioned	Budhagatapalli et al. (2015)
	CRISPR/Cas9 Agrobacterium-mediated transformation	Evaluating the effectiveness of RNA-guided Cas9 system to produce homozygous mutants, knockout of Nud gene generates naked grains	Simplex editing hvckx1 locus 88%; multiplex editing HvCKX1 and HvCKX3 it is 21%	Gasparis et al. (2018)
Wheat	CRISPR/Cas9 Agrobacterium-mediated transformation	Evaluating the protocol of gene deletion from TaBCC6, TaNFX1, and TansLTP9.4 genes and deletion from gene TaNFX1 was large and adaptable	Not mentioned	Cui et al. (2019)
	CRISPR/Cas9 system With Agrobacterium delivery method	To increase yield by increasing grain number by editing four grain regulatory genes TaCKX2-1, TaGLW7, TaGW2, and TaGW8	10% without off-target	Zhang et al. (2019a; b)
	CRISPR/Cas9 system	Editing TaGW7 gene and mutation either of the B and D genome or on both genome increased the grain width and weight of wheat	Dosage increases the mutation rate	Wang et al. (2019)
badh2-5 with 1-bp and 10-bp deletions, respectively, caused frameshifts at the fourth exon position, and inactivated the gene and favored the biosynthesis of 2-acetyl-1-pyrroline (2AP) (Shan et al. 2015).

Recently, site-directed mutagenesis using the CRISPR/Cas9 system was reported on important rice traits including improved grain weight, glyphosate resistance, and blast resistance (Li et al. 2016a, b; Wang et al. 2016; Xu et al. 2016). Rice grain weight improvement by gene knockout using the CRISPR/Cas9 system was reported. Among the eight-grain weight controlling genes, a mutation on GW2, GW5, and TGW6 genes brought weight gain for rice (Xu et al. 2016). In another report, glyphosate-resistant rice was developed by intron mediated site-specific gene replacement and/or insertion using the CRISPR/Cas9 system. Gene replacement in the rice endogenous gene 5-enolpyruvate shikimate synthase (EPSPS) at a frequency of 2% and gene insertion at a frequency of 2.2% rice harboring the osEPSPS gene with intended substitutions was found to be glyphosate-resistant (Li et al. 2016a; b). Blast-resistant rice was developed by targeted mutation using CRISPR/Cas9 SSN (C-ERF922) targeted mutation on the osERF922 gene (Wang et al. 2016). During the targeted mutagenesis among 50 T₀ rice plants, 21 plants were with targeted mutation (42%) which was blast-resistant.

Moreover, site-directed mutagenesis efficiency and heritability were also assessed by different scholars using TALENs and CRISPR/Cas9 systems (Xu et al. 2014; Zhang et al. 2014, 2016). In a research work using the CRISPR/Cas9 system, 11 rice genes were mutated to which the mutation rate was found to be high and heritable, and to which the mutation result was not important for the agricultural development of rice (Xu et al. 2014). In another report, rice gene mutation using the CRISPR/Cas9 system ranging from 2 to 16% was proved to pass to the next generations (Zhang et al. 2014). Development of sterile male rice enhanced grain yield, and drought-tolerant rice has been achieved by targeted mutation using TALENs. Besides, the mutation rate on targeted genes and the passage of mutant traits to subsequent generations were studied. The target genes were osCSA, osPMS3, osDERF1, osGN1a, osJAD1, osMST7, and osMST8. The mutations on osCSA and osPMS3 genes resulted in photoperiod sensitive male sterility which was used after hybrid seed production and mutation on osGN1A and osDERF1 genes enhanced grain yield (Table 2) and drought resistance, respectively (Zhang et al. 2016).

Barely improvement using site-directed mutagenesis

Research works on barley using site-directed mutagenesis—TALEN and CRISPR/Cas9 systems—reported that site-directed mutagenesis was efficient and was transmitted to the next T1 generations (Gurushidze et al. 2014; Budhagatapalli et al. 2015; Gasparis et al. 2018). The first transformation was made using TALEN and gene knockout through pollen regenerable cells to establish the generation of true breeding of barley. A gfp-specific TALENs via Agrobacterium-mediated gene delivery and 22% homologous primary mutants proved to be knockout of gfp gene, loss of function, and the deletion of nucleotides between 4 and 36pb length (Gurushidze et al. 2014). The work of Budhagatapalli et al. (2015) using TALENs targeted to gfp gene with the single amino acid change, produced yfp using site-specific mutation.

Barely has been modified and the highest mutation rate was reported in simplex editing of the cytokinin oxidase/dehydrogenase HvCKX1 gene with a mutation rate of 88% of the screened T₀ plants (Table 2) using CRISPR/Cas9 system. Multiplex editing of two genes HvCKX1 and HvCKX3 obtained nine plants (21%) of all edited plants. The knockout of the Nud gene produced phenotypically detectable naked barley grains reducing the effort for farm processing. It was proven that the mutation was transmitted to the next generation T1 (Gasparis et al. 2018).

Wheat improvement using site-directed mutagenesis

A couple of independent research works were reported on wheat grain yield-related trait improvement by targeted mutation using CRISPR/Cas9 systems for gene editing (Wang et al. 2019; Zhang et al. 2019a, b). A targeted mutation on four grain negatively regulating genes (TaCKX2-D1, TaGLW7, TaGW2, and TaGW8) and homozygous for 1160 bp deletion in TaCKX2-D1 wheat gene significantly increased grain number spikelet⁻¹ (Zhang et al. 2019a, b). Edition on gene TaGW7 to silent its expression and mutation on either B or D genome or both genomes increased both grain width and grain weight of wheat. The wheat traits that double-copy mutants showed larger yield improvement than single copy mutants (Wang et al. 2019). Using CRISPR/Cas9 system for targeted mutation produced site-specific deletion and the protocol was targeting three genes, TaABCC6, TaNFX1, and TansLTP9.4 in a wheat protoplast assay. The deletion has occurred on two genes amongst the three genes and the edit on gene TaNFX1 with larger deletion found to be successful (Table 2) and adaptable (Cui et al. 2019).

Potato improvement using site-directed mutagenesis

Cold storage of potato tubers is mostly used to reduce sprouting and extending post-harvest shelf life (Alamar et al. 2017). However, cold temperature stimulates the reduction of sugar accumulation in potato tubers (Krause et al. 1998).
In this regard, research work has been reported on potato post-harvest processing improvement using TALENs to knockout VInv gene within the commercial potato variety. From the 600 regenerated plants, 18 plants showed mutation of at least one VInv gene and five of these plants had mutations in all VInv genes. Tubers with full VInv gene knockout (Table 3) plants showed a noticeable level of reducing sugars, and processed chips contained reduced levels of acrylamide and were light-colored. Moreover, seven of the transformed, out of 18 modified, plant lines appeared to contain no TALEN DNA insertion in the potato genome (Clasen et al. 2016). This research output could potentially be used to reduce the post-harvest loss of potato and plays a role in food sustainability programs.

Research works were reported on the evaluation of mutation efficiency and the heritability of the mutation created by CRISPR/Cas9 system and TALEN to the subsequent generations (Wang et al. 2015a, b; Butler et al. 2016; Forsyth et al. 2016). The research work using the CRISPR/Cas9 system for targeted mutation on the stALS1 gene reported mutation ranging from 3 to 60%, and the mutation was proved its heritability to the next generation (Butler et al. 2015). A site-directed mutation on the stIAA2 gene using CRISPR/Cas9 system resulted in a high and efficient mutation, and the change proved was heritable to the next potato generation (Wang et al. 2015a; b).

Using TALENs, site-directed mutagenesis on the stALS gene resulted in a higher mutation rate (Table 3) that was proven to be transferred to the next generations (Forsyth et al. 2016). Starch quality was altered using site-directed mutagenesis on the GBSS gene function using CRISPR/Cas9 technology. In this work, the GBSS gene has been fully knocked out in the protoplast of tetraploid potato, and mutation was produced in all four alleles. At three regions of the gene granule bound starch synthase was targeted and resulted in the mutation of at least one allele in 2–12% regenerated shoots and multiplex mutation was up to 67%. The removal of GBSS enzyme activity leads to starch with altered amylose synthesis concomitant increase in the amylopectin/amyllose ratio (Andersson et al. 2017).

Soybean improvement using site-directed mutagenesis

Soybean oil quality improvement has been reported by targeted mutagenesis of the fatty acid desaturase two gene families (FAD2-1A and FAD2-1B) using TALENs. The desaturase removes hydrogen from fatty acids and makes the poly unsaturation which could be a threat to heart and brain health (Schattenberg and Bergheim 2019). The trans-fatty acids produced through hydrogenation pose a health threat (Park and Koehler 2019). Four of the 19 transgenic soybean line mutations in both FAD2-1A and FAD2-1B were observed in DNA taken from leaf samples. The fatty acid from homozygous mutant seeds of FAD2-1A and FAD2-1B oleic acid which is a monounsaturated fatty acid (18:1 cis-9) was omega fatty acid increased from 20 to 80% and linoleic acid polyunsaturated fatty acid (omega 6 fatty acids) decreased from 50 to 4% (Table 3), and the mutation has proven as heritable (Haun et al. 2014). Another research on soybean oil improvement using CRISPR/Cas 9 system for editing FAD2-2 soybean gene reported a 21% mutation rate with improved oil quality. A considerable oleic acid content (up to 65.58%) and the least production of linolic acid (16.08%) were recorded (Al Amin et al. 2019). These findings showed the potential of site-directed mutagenesis through gene editing for nutritional improvement in food crops.

Recent research work on adaptable soybean to climate change was reported by altering the flowering time of soybean by targeted mutagenesis using the CRISPR/Cas9 system. Cultivar Jack was mutated at a specific site and T1-generation soy bean plants homozygous for null alleles of GmFT2a (chr.16 with four exon number) frameshift mutated by a 1-bp insertion or short deletion resulted in knocking off the gene. The result has produced a trait late flowering period to escape the natural condition to adapt the stress, and the mutation was proved as it is heritable (Cai et al. 2018). Soybean nutritional improvement and viral disease tolerance have been reported using gene-editing targeted mutagenesis. Multiplex gene editing using the CRISPR/Cas9 system on three genes (GmF3H1, GmF3H2, and GmFNSII-1) in soybean which had negative regulation of isoflavone production has been knocked out. The triple gene mutation efficiency was 44.44%. The T3 homologous triple gene mutants increased Isoflavone content in the leaf twice and the crop becomes resistant to soybean mosaic virus due to the increased isoflavone metabolite (Zhang et al. 2020).

The mutation rate and heritability of directed mutagenesis using the CRISPR/Cas9 system with Agrobacterium-mediated transformation of soybean were reported (Li et al. 2015; Kanazashi et al. 2018). Two genomic sites of soybean, DD20 and DD43 mutagenized using the CRISPR/Cas9 system, was reported with a mutation frequency of 59% and 76%, respectively, and the mutation was proven to be heritable to the next T1 generations (Li et al. 2015). By simultaneous site-directed mutagenesis of GmPPD loci using CRISPR/Cas9 system, soybean mutagen in GmPPD confirmed 33% of the T2 seeds that were proven to be heritable (Kanazashi et al. 2018). Among the six research works reviewed on soybean site-directed mutagenesis, five of the works were done using CRISPR/Cas9 technology which was efficient to generate targeted mutation (Fig. 1).
Table 3 Horticultural crops, oilseed crops, and drug crops which have been mutagenized using different technologies

Mutagenized crops	Mutagenic tools used	Purpose of mutation	Rate of mutation	Sources
Potato	CRISPR/Cas9	Evaluation mutation of *StALSI* gene and proven the mutation could be heritable	3–60%	Butler et al. (2015)
	Agrobacterium-mediated transformation			
	CRISPR/Cas9 system	Evaluation mutation of gene Stria2 and proven the change was heritable	High and efficient	Wang et al. (2015a; b)
	Agrobacterium-mediated transformation			
	TALEN-Mediated	Vascular invertase (*VInv*) gene knockout avoids browning on tubers	18 Plants mutated of 5 contained all alleles mutated	Clasen et al. (2016)
	TALEN-Mediated	To evaluate gene expression level using target mutation	Not mentioned	Forsyth et al. (2016)
	CRISPR/Cas9 system	Altered starch quality with the full knockout of *GBSS* gene improving amylopectin/amylose ratio in potato	Mutations in one allele in 2–12% multiple alleles mutations 67%	Andersson et al. (2017)
	Agrobacterium-mediated transformation			
Soybean	CRISPR/Cas9 system multiplex gene-editing technology	Enhancing Isoflavone content by editing the three genes GmF3H1, GmF3H2, and GmFNSH1 in soybean Increased isoflavone content enhanced the leaf resistant to Soybean Mosaic Virus (SMV)	44.44% triple gene mutation rate	Zhang et al. (2020)
	CRISPR/Cas9 system Agrobacterium delivery method	Integration/mutation of FAD2-2 gene in soybean to improve oil quality and Considerable oleic acid content up to (65.58%), whereas the least production of linolic acid is (16.08%) were recorded	21% Mutation rate	Al Amin et al. (2019)
	CRISPR/Cas9-mediated Agrobacterium-mediated transformation	1 bp deletions gene GmFT2a (Glyma16g26660) and GmFT5a (Glyma16g04830) produce late-flowering to escape natural conditions	15.6% GmFT2a and 15.8% GmFT5a	Cai et al. (2018)
	CRISPR/Cas9-Mediated Agrobacterium-mediated transformation	Evaluation of mutation rate on the two loci GmPPD1 and GmPPD2 and proven it can pass to generations	33% of T2	Kanazashi et al. (2018)
	TALEN- Mediated	Improved soybean oil quality By mutating both FAD2-1A and FAD2-1B and produce monounsaturated oil	Not mentioned	Haun et al. (2014)
	CRISPR/Cas9-Mediated Agrobacterium-mediated transformation	Evaluation of mutation on DD20 and DD43 genes from chromosome forgot mutated and proven it can pass to generations	59% and 76%	Li et al. (2015)
Tomato	CRISPR/Cas9	The mutation on *RIP* gene and prolonging the shelf life of tomato	0–100%	Ito et al. (2015)
	Agrobacterium transformaion			
	CRISPR/Cas9 system	To evaluate single and multiple site mutation possibility		Hu et al. (2019)
Mutagenized crops	Mutagenic tools used	Purpose of mutation	Rate of mutation	Sources
-------------------	---------------------	---------------------	------------------	---------
Tobacco	Cre/Lox Precombinase Agrobacterium transformation	Evaluation excision of coda from the cell expression of codA in plastids made tobacco cells sensitive to 5-fluorocytosine	Highly efficient Marker elimination was observed	Corneille et al. (2001)
	CRISPR/Cas9 from *Prevotella* and *Francisella* (Cpf1)	To evaluate whether the CRISPR/Cas9 from *Prevotella* and *Francisella* (Cpf1) effective for targeted mutation on *NtPDS* gene and *NtSTF1* gene of tobacco	Successful	Endo et al. (2016)
Carrot	CRISPR/Cas9 system	To knock out anthocyanin pigment synthesizing gene (F3H) and to produce white carrot	Not mentioned	Klimek-Chodacka et al. (2019)
	CRISPR/Cas9 system	Knock out of the gene *DcPDS* orange carrot generated albino carrot and edition of *DcMYB113*-like gene of purple carrot produce depigmented carrot	35.3% and 36.4%, respectively	Xu et al. (2019)
Cabbage	TALENs	Deletion on *FRIGIDA* gene in brassica	Not mentioned	Sun and Zhao (2013)
	CRISPR/Cas9 system	*BoPDS* gene knock out to produce albino shoot	1.14% mutation rate	Ma et al. (2019)
	CRISPR/Cas9 system	*Bnlpat2 and Bnlpat5* genes to improve oil	17–68% mutation rate	Zhang et al. (2019a; b)
Tomato improvement using site-directed mutagenesis

Tomato shelf life has been improved by site-directed mutagenesis using the CRISPR/Cas9 system by the agrobacterium gene delivery method. Gene deletion/insertion on the \textit{RIN} gene which encodes an MAD1-box transcription factor regulated fruit ripening. The \textit{RIN} protein defective mutants were found to be effective to make the tomato stay fresh for several months by changing the ripening physiology and ethylene production (Ito et al. 2015). The mutation rate was ranged from 0 to 100%. Targeted mutation employed by CRISPR/Cas9 system as using the Agrobacterium-mediated gene delivery method and single- and multi-site mutagenesis has been reported. In summary, this technology could be employed to produce site-directed mutagenesis on important traits from the same or other crops (Hu et al. 2019).

Tobacco crop site-directed mutagenesis

Incorporation of the selectable marker gene during plant transformation is crucial to know the whereabouts of the gene of interest (Hare and Chua 2002). However, the selectable marker gene especially the old markers remain a public concern (Schaart et al. 2004). Using \textit{CRE–lox} recombinase CoDA selectable marker flanked with two directly oriented lox sites, the highly efficient elimination of the marker gene (Table 3) introduced through pollination was reported (Corneille et al. 2001). In another research report using the CRISPR/Cas9 system as using the Agrobacterium-mediated gene delivery method and single- and multi-site mutagenesis has been reported. In summary, this technology could be employed to produce site-directed mutagenesis on important traits from the same or other crops (Hu et al. 2019).

Cabbage (\textit{Brassica oleracea}) improvement through site-directed mutagenesis

Cabbage is a vegetable and oilseed crop. A research work on Cabbage (\textit{Brassica oleracea L. var}) using customized TALEN-based nuclease constructed using a method “unit assembly” specially targeted the endogenous FRIGIDA gene in \textit{Brassica oleracea L. var} modified the targeted site with deletion. This protocol was proven to bring genetic modification by site-directed mutagenesis (Sun and Zhao 2013). Two other research works were reported on a targeted mutation of the cabbage genome using the CRISPR/Cas9 system (Ma et al. 2019; Zhang et al. 2019). Ma et al. (2019) reported a gene knockout on \textit{BoPDS} gene that resulted in albino cabbage (\textit{Brassica oleracea}) shoot with a mutation rate of 1.14%. The other work by Zhang et al. (2019a; b) reported knockout of \textit{Bnlpat2} and \textit{Bnlpat5} genes with mutation rate ranging from 17 to 68% improved the seed starch content and increased oil bodies of the matured seed of cabbage. These two reports had no off-target edition, which proved the efficiency and potential application of the CRISPR/Cas9 system mutagenesis for crop improvement.

Carrot improvement through site-directed mutagenesis

Two independent research works reported carrot improvement by site-directed mutagenesis using the CRISPR/Cas9 system (Klimek-Chodacka et al. 2019; Xu et al. 2019). In the report by Klimek-Chodacka et al. (2019), a knockout of anthocyanin pigment synthesizing gene (F3H) produced white carrot. The mutation on the F3H gene depigmented the purple color into a white through deletion and removal
of anthocyanin expression. The research by Xu et al. (2019) resulted in knockout CRISPR/Cas9 technology of the gene, DcPDS orange carrot generated albino carrot with a mutation rate of 35.3%. The edition of DcMYB113-like gene of purple carrot produced a depigmented carrot with a mutation rate of 36.4%.

These days, new insights for crop improvement have been added and used as a means to improve crops of interest. New tools and their potency to produce site-specific genetic alteration and the extent of the heritability of the alteration to the proceeding generation have been discussed in several different research findings. In this review paper, 48 original research works on crop targeted mutation have been assessed. In the research works, four mutagenic tools have been investigated with different frequency, in which CRISPR/Cas9 system was found to be repeatedly used to transform different crops—reported as it is an efficient technology to produce the intended specific mutation (Fig. 1) (Chen and Gao 2015; Char et al. 2017). TALENs were found to be the second frequently used tool to transform crops to bring efficiently targeted mutation and it was affirmed by most scholars as it is potent technology for crop transformation (Tables 2, 3).

Furthermore, according to the research reports, these technologies were highly employed in cereal crops (Fig. 2). As monocots are the major staple food crops to humans around the globe (Chen and Gao 2015), improvement efforts targeting cereals in particular and all crops at large could ensure food sustainability.

Challenges of site-directed mutagenesis

Site-directed mutagenesis is crucial in crop production as it is important to bring the required change on the target DNA sequence, thereby changing the gene output and the trait of the crop (Oladosu et al. 2016). Site-specific mutagenesis is more powerful than genetic transformation through recombinant DNA technology of crops, since the latter introduce foreign genes to plants at a random place while the former alter the gene at the programmed site. The random integration of the introduction of the foreign gene may silent other important genes or may bring uncommon gene expressions (Belhaj et al. 2013; Agapito-Tenfen et al. 2018). All technologies developed so far might not be equally efficient in bringing the ultimate change in crop improvement using site-directed mutagenesis (Chen and Gao 2015).

Developed technologies for targeted mutation creation showed advances with time. The vector and the PCR methods of site-directed mutagenesis recently are less likely to be used for plant transformation because of their low efficiency and inadequacy in crop agronomic traits improvement (Bryksin and Matsumura 2010). Hence, other new promising and highly applicable technologies have been developed and used for crop transformation through site-directed mutation (Mahfouz et al. 2014; Wang et al. 2015a, b; Eş et al. 2019; Gupta et al. 2020). Recently developed mutagenic tools also have limitations to bring efficient programmed genetic changes to a crop genome (Table 1). Zinc Finger Nucleases (ZFNs) used for site-directed mutagenesis could produce the off-target effect, large size effect to delivery, dimerization, comparatively high cost, and laborious nature.

TALENs is one of highly effective, easy to construct, and less costly tool compared to Zinc Finger Nucleases (ZFNs) to create site-specific deletion or insertion (Shan et al. 2015; Zhang et al. 2016). However, still, it has a dimerization and off-target effect to a lesser extent compared to the CRISPR/Cas9 system (Sun and Zhao 2013; Mahfouz et al. 2014). The CRISPR/Cas9 system possesses several potential advantages over ZFNs and TALENs. The short size of the sgRNA sequence makes it easier to deliver, cheap to construct, not laborious, efficient compared to others. However, these novel nucleases have still little limitations such as it experiences off-target effects (Chen and Gao 2015).
Conclusion

Crop improvement using site-directed mutagenesis employing plasmid vector-based and site-specific nucleases transformation has been summarized. From the reviewed works, CRISPR/Cas9 system was found repeatedly (66.67%) used to improve crop traits by targeted mutagenesis. TALENs were used for knockout of bad trait coding genes. Hence, the CRISPR/Cas9 technology is widely used to improve the crop of their interest and to ensure food sustainability for its efficiency and less off-target effects. A lot of agronomic traits, physiological traits, and stress-tolerant traits of crops have been improved by site-directed mutation.

The site-directed mutagenesis technology is found to be highly applied for cereal crops that were less effective to be transformed using recombinant DNA technology. Cereals were the dominant crops to be transformed by site-directed mutagenesis of which maize and rice are on the front. Finally, the trend of technology usage shows that CRISPR/Cas9 technology has been highly used by researchers around the globe to bring efficient transformation and crop improvement. In addition, for knocking out genes with bad traits, TALENs were found to be ideal. Hence, targeting and doing improvement on the major stable food crops could ensure the world’s food security.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of interest.

References

Agapito-Tenfen SZ, Okoli AS, Bernstein MJ, Wikmark OG, Myhr AI (2018) Revisiting risk governance of GM plants: the need to consider new and emerging gene-editing techniques. Front Plant Sci 9
Al Amin N, Ahmad N, Wu N, Pu X, Ma T, Bo Y, Wang N, Sharif R, Wang P (2019) CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max. L.). BMC Biotechnol 19(1):9
Alam MC, Tosetti R, Landahl S, Bermejo A, Terry LA (2017) Assuring potato tuber quality during storage: a future perspective. Front Plant Sci 8:2034
Anderson M, Turesson H, Nicolai A, Fält A-S, Samuelsson M, Hofvander M (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36(1):117–128
Araki K, Araki M, Yamamura KI (2002) Site-directed integration of the cre gene mediated by Cre recombinase using a combination of mutant lox sites. Nucleic Acids Res 30(19):e103–e103
Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R (2020) Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE 15(8):e0237018
Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39
Braman J, Papworth C, Greener A (1996) Site-directed mutagenesis using double-stranded plasmid DNA templates. (eds) In vitro mutagenesis protocols, Springer, Berlin, pp. 31–44
Bryksin AV, Matsumura I (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 48(6):463–465
Budhagatapalli N, Ruten T, Rushushidze M, Kumleh J, Hensel G (2015) Targeted modification of gene function exploiting homology-directed repair of TALEN-mediated double-strand breaks in barley. G (Bethesda) 5(9):1857–1863
Butler NM, Atkins PA, Voytas DF, Douches DS (2015) Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas9 system. PLoS ONE 10(12):e0144591
Butler NM, Baltes NJ, Voytas DF, Douches DS (2016) Gemini-virus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front Plant Sci 7:1045
Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16(1):176–185
Caligari PD, Forster BP (2001) Plant breeding and crop improvement. eLS 1–11
Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K (2017) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15(2):257–268
Char SN, Unger-Wallace E, Frame B, Briggs SA, Main M, Spalding MH, Vollbrecht E, Wang K, Yang B (2015) Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnol J 13(7):1002–1010
Chastain CJ, Lee ME, Moorman MA, Shameekumar P, Chollet R (1997) Site-directed mutagenesis of maize recombinant C4-pyrurate, orthophosphate dikinase at the phosphorylatable target threonine residue. FEBS Lett 413(1):169–173
Chen K, Gao C (2015) Developing CRISPR technology in major crop plants. In: Zhang F, Puchta H, Thomson J (eds) Advances in new technology for targeted modification of plant genomes. Springer, New York, pp. 145–159
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761
Clasen BM, Stoddard TJ, Luo S, Demorest L, Li J, Cedrone F, Tibebe R, Davison S, Ray EE, Daulhac A (2016) Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14(1):169–176
Coates CJ, Kaminski JM, Summers JB, Segal DJ, Miller AD, Kolb AF (2005) Site-directed genome modification: derivatives of DNA-modifying enzymes as targeting tools. Trends Biotechnol 23(8):407–419
Corneille S, Lutz K, Svab Z, Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J 27(2):171–178
Cui X, Balcerzak M, Schernthaner J, Babic V, Datla R, Brauer EK, Labbé N, Subramaniam R, Ouellet T (2019) An optimised CRISPR/Cas9 protocol to create targeted mutations in homologous genes and an efficient genotyping protocol to identify edited events in wheat. Plant Methods 15(1):1–12
Djurankovic V, Orczyk W, Gao H, Sun X, Garrett N, Zhen S, Gordon-Kamm W, Barton J, Lyznik LA (2006) Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. Plant Biotechnol J 4(3):345–357
Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Birdy D (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P 450-like gene (MS 26) using a re-designed I-C reI homing endonuclease. Plant J 76(5):888–899

Doerbermann A, Nelson R (2013) Opportunities and solutions for sustainable food production. Sustainable Development Solutions Network. Paris, France

Dong L-Y, Ueno Y, Hata S, Izui K (1997) Effects of site-directed mutagenesis of conserved Lys606 residue on catalytic and regulatory functions of maize C4-form phosphoenolpyruvate carboxylase. Plant Cell Physiol 38(2):1340–1345

Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpfl from Francisella novicida. Sci Rep 6:38169

Eş I, Gavahian M, Marti-Quijal FJ, Lorenzo JM, Khaneghah AM, Gasparis S, Kała M, Przyborowski M, Łyżnik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR/Cas9 protocol for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14(1):111

Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Birdy D, Falco SC, Jantz D (2010) Heritable targeted mutagenesis in maize in a designed endonuclease. Plant J 61(1):176–187

Gasparis S, Kala M, Przyborowski M, Lyznik LA, Orczyk W, Nadolska-Orczyk A (2018) A simple and efficient CRISPR/Cas9 platform for induction of single and multiple, heritable mutations in barley (Hordeum vulgare L.). Plant Methods 14(1):111

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Lehn J (2014) True-breeding targeted gene knock-out in barley (Hordeum vulgare L.). Plant Methods 14(1):111

Gupta M, Gerard M, Padmaja SS, Sastry RK (2020) Trends of CRISPR technology development and deployment into agricultural production-consumption systems. World Pat Inf 60:101944

Gurushidze M, Hensel G, Hiekel S, Schedel S, Valkov V, Kumelj L (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS ONE 9(3):e92046

Hare PD, Chua N-H (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20(6):575

Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cederone F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940

Hu N, Xian Z, Li N, Liu Y, Huang W, Yan F, Su D, Chen J, Li Z (2019) Rapid and user-friendly open-source CRISPR/Cas9 system for single-or multi-site editing of tomato genome. Hortic Res 6(1):7

Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Toki S (2015) CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem Biophys Res Commun 467(1):76–82

Kanazashi Y, Hirose A, Takahashii I, Mikami M, Endo M, Hirose S, Toki S, Kaga A, Naito K, Ishimoto M (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37(3):553–563

Khankwal M. and Shu, Q. 2009. The role of induced mutations in world food security. Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp. 33–38

Klimek-Chodacka M, Oleszkiewicz T, Barsanski R (2019) Visual Assay for Gene Editing Using a CRISPR/Cas9 System in Carrot Cells. (eds) Plant Genome Editing with CRISPR Systems, Springer, Belin pp. 203–215

Krause KP, Hill L, Reimholz R, Hamborg Nielsen T, Sonnewald U, Stitt M (1998) Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant Cell Environ 21(3):285–299

Lambert JM, Bongers RS, Kleerebezem M (2007) Cre-loc-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73(4):1126–1135

Li T, Liu B, Chen CY, Yang B (2016b) TALEN-mediated homologous recombination produces site-directed DNA base change and herbicide-resistant rice. J Genet Genomics 43(5):297–305

Li Z, Liu Z-B, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016a) Gene replacements and insertions in rice by intron targeting using CRISPR/Cas9. Nat Plants 2(10):16139

Li J, Zhang H, Si X, Tian Y, Chen K, Liu J, Chen H, Gao C (2017) Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene. J Genet Genomics 44(9):465

Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41(2):63–68

Liu H, Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8(1):91

Ma C, Liu M, Li Q, Si J, Ren X, Song H (2019) Efficient BoPDS gene editing in cabbage by the CRISPR/Cas9 system. Hortic Plant J 5(4):164–169

Mahfouz MM, Piatek A, Stewart CN Jr (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12(8):1006–1014

Modrzejewski D, Hartung F, Sprink T, Krause D, Kohl C, Wilhelm R (2019) What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environ Evid 8(1):27

Mohan Jain S, Suprasanna P (2011) Induced mutations for enhancing nutrition and food production. Gene Conserv 10(41)

Nestel P, Bouis HE, Meenakshi J, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

Nishizawa-Yokoi A, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Okabe K, Hamada M, Katayose Y, Starker C (2016) A defect in DNA Ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiol 170(2):653–666

Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Nasiru RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

Rao M, Rao VR, Angadi S (2018) Crop improvement in the world—past, present and future. Asian Agrihist 22(4)

Rome, pp. 33–38

Shams F, Ali Q, Ashraf F, Ghaffar I, Khan MI, Rehman R, Husnain T (2017) Crop improvement: new approaches and modern techniques. Plant Gene Trait 8(3)
Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Char- donnay (Vitis vinifera L.). Sci Rep 6:32289

Roychowdhury R, Tah J (2013) Mutagenesis—a potential approach for crop improvement. (eds) Crop Improvement, Springer, Berlin pp. 149–187

Saboulard D, Dugas V, Jaber M, Brouin J, Souteyrand E, Sylvestre J, Delcourt M (2006) High-throughput site-directed mutagenesis using oligonucleotides synthesized on DNA chips. Biotechniques 39(3):363–368

Saika H, Oikawa A, Matsuda F, Onodera H, Saito K, Toki S (2011) Application of gene targeting to designed mutation breeding of high-tryptophan rice. Plant Physiol 156:1269–1277

Sauer NJ, Mozeruk J, Miller RB, Warburg ZI, Walker KA, Beetham PR, Schöpke CR, Gocal GF (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol J 14(2):496–502

Schäfer JG, Krens FA, Pelgrom KT, Mendes O, Rouwendal GJ (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2(3):233–240

Schattenberg JM, Bergheim I (2019) Nutritional intake and the risk and weight in wheat. Plant J 100(2):251–264

Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15(2):207–216

Smith M (1982) Site-directed mutagenesis. Trends Biochem Sci 7(12):440–442

Sun N, Zhao H (2013) Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 110(7):1811–1821

Svitasev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945

Van de Wiel C, Schaar J, Lotz L, Smulders M (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep 11(1):1–8

Wang M, Liu Y, Zhang C, Liu J, Liu X, Wang L, Wang W, Chen H, Wei C, Ye X (2015a) Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. PLoS ONE 10(4):e0122755

Wang W, Pan Q, Tian B, He F, Chen Y, Bai G, Akhunova A, Trick HN, Akhunov E (2019) Gene editing of the wheat homologs of TONNEAU 1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J 100(2):251–264

Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y-G, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11(4):e0154027

Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015b) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34(9):1473–1476

Xu Z-S, Feng K, Xiong A-S (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Mol Biotechnol 61(3):191–199

Xu R, Li H, Qin R, Wang L, Li W, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7(1):5

Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J (2016) Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics 43(8):529

Zhang P, Du H, Wang J, Pu Y, Yang C, Yan R, Yang H, Cheng H, Yu D (2020) Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnol J 18:1384–1395

Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14(1):186–194

Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W (2019b) Development of an Agrobacterium-delivered CRISPR/ Cas9 system for wheat genome editing. Plant Biotechnol J 17(8):1623–1635

Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Zou D, Liu H, Zhao W, Wang B (2019a) Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels 12(1):1–18

Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12(6):797–807

Zheng L, Baumann U, Reymond J-L (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32(14):e115–e115

Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA (2019) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38(4):475–485

Zhu J, Song N, Sun S, Yang W, Zhao H, Song W, Lai J (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR/Cas9. J Genet Genomics 43(1):25–36

Zoller MJ, Smith M (1984) Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3(6):479–488