Exponential stability analysis and stabilization for discrete positive switched linear time-delay systems with ADT

Binbin Du¹, Shuyan Hao and Chao Lv
Naval Aviation University, Yantai, Shandong, 264001, China
¹Email: dubinbin2006@sohu.com

Abstract. In this paper, the stability analysis and stabilization problem for discrete positive switched linear time delay system with average dwell time switching are investigated. First, by constructing an appropriate multiple linear co-positive type Lyapunov-Krasovskii functional, sufficient condition for the exponential stability are developed by using ADT approach. Then based on the result obtained a linear feedback law is established for the system to make the state exponentially stable.

1. Introduction
Many dynamical systems in real world are positive systems which variables are confined to the positive orthant [1-3]. And if on the same time, a positive system is also a hybrid dynamic system which is composed of a family of subsystems and a switching signal to determine the switching between subsystems, the positive system is called a positive switched system, [4-7]. For the research of positive switched linear systems, stability analysis is a major concern [3, 8]. Researchers have proved that constructing an appropriate linear co-positive Lyapunov-Krasovskii functional is an efficient approach [9, 10]. For general switched systems, there are many switching strategies such as arbitrary switching, [11], dwell time switching [12] and average dwell time (ADT) switching [13,14]. Arbitrary switching requires the existence of a common Lyapunov-Krasovskii function. Therefore, it holds more conservative than other switching laws. Dwell time switching requires that the time interval between any two consecutive switchings is no smaller than a fixed positive constant. It can be shown that it is always possible to maintain stability when all the subsystems are stable and switching is slow enough. Actually, it is common for a system to have a smaller dwell time. For this kind of systems, the researchers define the concept of ADT. It has been well known that the ADT switching characterizes a larger class of stable switching signals than dwell time switching.

On the other hand, time delay as a source of instability and poor performance often appears in many dynamic systems. For example, biological systems, neural network and electrical networks [15-17]. In recent years, more and more researchers begin to pay attention to the stability analysis and stabilization of time delay forward switching systems [11, 15, 18].

In this paper, the stability problems of discrete positive switched linear time-delay systems with ADT switching will be investigated. We first construct an appropriate co-positive type Lyapunov-Krasovskii functional. Sufficient conditions for the exponential stability are proposed by using the average dwell time approach. Furthermore, the desired controller is proposed under which exponential stability of a closed-loop system is obtained.
Notation: Throughout the paper, $A \leq (\geq) 0$ means that all entries of matrix A is non-positive (non-negative); $A < (>) 0$ means that all entries of matrix A is negative (positive); $R^d (R^{+})$ is the set of all real (positive real) numbers; $R^n (R^{+n})$ is the n-dimensional matrices; Z^+ refers to the set of all non-negative integers. $\Delta x(k) = x(k+1) - x(k)$ and $\|x\| = \sum_{i=1}^{n} |x_i|$, where x_i is the i^{th} element of $x \in R^n$.

2. Problem formulation and preliminaries

Given the following system

$$\begin{align*}
 x(k+1) &= Ax(k) + A_d x(k-d) + Bu(k), k = k_0, k_0 + 1, \ldots \\
 x(s) &= \varphi(s), \\
 s &\in \{-d, -d+1, \ldots, -1, 0\}
\end{align*}$$

(2.1)

where $x(k) \in R^n, u(k) \in R^n (n, p \in N)$ are the state vector and the control input, respectively. $d > 0$ denotes the constant delay. $\varphi(s)$ is the initial condition defined on $\{-d, \ldots, -1, 0\}$ and $\|\varphi\| = \max_{s \in \{-d, -d+1, \ldots, -1, 0\}} \|\varphi(s)\|$.

In system (2.1), let

$$A = \sum_{p=1}^{M} \delta_p (\sigma(k)) A_p, A_d = \sum_{p=1}^{M} \delta_p (\sigma(k)) A_{dp}, B = \sum_{p=1}^{M} \delta_p (\sigma(k)) B_p$$

(2.2)

Then system (2.1) with (2.2) is a discrete positive switched linear system with delays, where $A_p, A_{dp}, B_p, \forall p \in S$ are constant matrices with appropriate dimensions, p denotes the p^{th} subsystem and

$$\delta_p (\sigma(k)) = \begin{cases} 1, \sigma(k) = p \\ 0, \text{otherwise} \end{cases}$$

$\sigma(\cdot)$ is a piecewise constant function of variable, called a switching signal, which takes its values in the finite set $S = \{1, 2, \cdots, M\}$, M is the number of subsystems. Also, for a switching sequence $0 = k_0 < k_1 < \cdots < k_i < k_{i+1} < \cdots, \sigma(k)$ is either autonomous or controlled. When $k_{j} \leq k \leq k_{j+1} - 1$, we say the $\sigma(k)^{th}$ subsystem is active.

Definition 2.1 ([19]) System (2.1) with (2.2) is said to be positive, if for any switching signal $\sigma(k)$ and any initial condition $\varphi(s), s \in \{-d, -d+1, \cdots, -1, 0\}$, the corresponding trajectory $x(k) > 0$ holds for any $k = 0, 1, 2, \cdots$.

Lemma 2.1 ([20]) System (2.1) with (2.2) is positive if and only if $A \geq 0, A_d \geq 0, B \geq 0$.

Definition 2.2 ([6]) The switched system (2.1) with (2.2) is said to be exponentially stable under $\sigma(k)$, if there exist constants $\alpha > 0, 0 < \eta < 1$ such that the solution of system (2.1) with (2.2) satisfies

$$\|x(k)\| \leq \alpha \eta^{k-k_0} \|\varphi\|, \forall k \geq 0, k_0 \geq 0,$$

(2.3)

where $\|\varphi\| = \max_{s \in \{-d, -d+1, \ldots, -1, 0\}} \|\varphi(s)\|$.

2
Definition 2.3 (see [3]) For any switching signal $\sigma(k)$ and any $K_2 \geq K_1 \geq 0$, let $N_{\sigma}(K_1, K_2)$ denote the numbers of the switching of $\sigma(k)$ over the set $\{K_1, K_1 + 1, \ldots, K_2\}$. For any given $K_a \in \mathbb{Z}^+$, $N_0 \geq 0$, if the inequality
\[
N_{\sigma}(K_1, K_2) \leq N_0 + \frac{K_2 - K_1}{K_a}
\] (2.4)
holds, the positive constant K_a is called an average dwell time and N_0 is called chattering bound.

As commonly used in the literature, for convenience, we choose $N_0 = 0$ in this paper.

Firstly, we study the asymptotic stability for the system (2.1) with (2.2) and $u(k) = 0$, which is denoted as:
\[
\begin{cases}
 x(k+1) = Ax(k) + A_p x(k-d), k = k_0, k_0 + 1, \ldots \\
 x(s) = \varphi(s),
\end{cases}
\] (2.5)

3. Stability analysis with ADT

Theorem 3.1 Let $0 < \lambda < 1$, $\mu > 1$ be given constants. If there exist vectors
\[
v_p = (v_{p1}, v_{p2}, \ldots, v_{pn}), v_p = (v_{p1}, v_{p2}, \ldots, v_{pn}), \varphi_p = (\varphi_{p1}, \varphi_{p2}, \ldots, \varphi_{pn}) \in \mathbb{R}^n
\] and $\zeta_p = (\zeta_{p1}, \zeta_{p2}, \ldots, \zeta_{pn}) \in \mathbb{R}^n$, such that for $\forall (p, q) \in S \times S$,
\[
\Pi_p = \text{diag} \{\pi_{p1}, \ldots, \pi_{pn}, \pi_{p1}', \ldots, \pi_{pn}'\} \leq 0
\] (3.1)
\[
\Pi_{pq} = \text{diag} \{\tau_{pq1}, \ldots, \tau_{pqn}, \tau_{pq1}', \ldots, \tau_{pqn}'\} \leq 0
\] (3.2)
\[
\Psi_{pq} = \text{diag} \{\psi_{pq1}, \ldots, \psi_{pqn}, \psi_{pq1}', \ldots, \psi_{pqn}'\} \leq 0
\] (3.3)
where for any $i \in \{1, 2, \ldots, n\}$,
\[
\pi_{pi} = d_{pi}v_p - \lambda v_{pi} + v_{pi} + d_{qi}\varphi_{pi} + \zeta_{pi}, \quad \pi_{pi}' = a_{dpi}v_p - \lambda d_{pi}v_{pi} - \zeta_{pi};
\] (3.4)
\[
\tau_{pq1} = -d_{qi}\zeta_{pi} - \lambda d_{ai}\varphi_{qi}, \quad \tau_{pq1}' = -d_{qi}\zeta_{pi};
\] (3.5)
\[
\psi_{pq1} = v_{pi} + \mu v_{qi} \quad \psi_{pq1}' = \varphi_{pi} - \mu \varphi_{qi}, \quad \varphi_{pi} = \varphi_{pi} - \mu \varphi_{qi};
\] (3.6)
a $a_p(a_{dp})$ represents the i^{th} column vector of matrix $A_p(A_{dp})$. Then system (2.5) is exponentially stable for any switching signal $\sigma(k)$ with average dwell time
\[
K_a \geq K^*_a = -\frac{\ln \mu}{\ln \lambda}.
\] (3.7)

Proof. For any $K > 0$, let $k_0 = 0$ and denote $k_1, \ldots, k_i, k_{i+1}, \ldots, k_{K_a(0,K)}$ the switching times on the interval $[0, K]$. Define the co-positive type Lyapunov-Krasovskii function for system (2.5) as follows:
\[
V_{\sigma(k)}(k, x(k)) = x^T(k) v_{\sigma(k)} + \sum_{\ell = k-1}^{k} \lambda^{-(k-\ell+1)} x^T(\ell) v_{\sigma(k)} + \sum_{\ell = -d}^{k-1} \lambda^{-(k-\ell+1)} x^T(\ell) \varphi_{\sigma(k)}
\]
where $v_p = (v_{p1}, \ldots, v_{pn}), v_p = (v_{p1}, \ldots, v_{pn}), \varphi_p = (\varphi_{p1}, \ldots, \varphi_{pn}) \in \mathbb{R}^n, \forall p \in S$.

Because of (3.3) and (3.6), for $\forall (p, q) \in S \times S$, we have $V_p(k, x(k)) \leq \mu V_q(k, x(k))$.

When $k \in \{k_i, k_i + 1, \ldots, k_{i+1} - 1\}$, assume that the p^{th} subsystem is activated, then
\[V_p(k+1) = x^T(k+1)v_p + \sum_{\ell=k+1-d}^k \lambda^{-\ell-1} x^T(\ell)u_p + \sum_{\ell=0}^{k} \sum_{\theta=\ell+1-d}^\theta \lambda^{-\ell}(\theta) x^T(\ell) \theta_p \]
\[= x^T(k)(A^T_{p}v_p - \lambda v_p + \nu_p + d \theta_p) + x^T(k-d)(A^T_{d}v_p - \lambda^d \nu_p) \]
\[- \sum_{\ell=k-d}^{k-1} \lambda^{-\ell}(k) x^T(\ell) \theta_p + \lambda V_p(k) \quad (3.8) \]

On the other hand, the following two formulas are obvious:
\[\sum_{\ell=k-d}^{k-1} \Delta x(\ell) = x(k) - x(k-d) \quad (3.9) \]
\[\sum_{\ell=k-d}^{k-1} \Delta x(\ell) = \sum_{\ell=k-d}^{k-1} ((A-I)x(\ell) + A_d x(\ell-d)) \quad (3.10) \]

From (3.9) and (3.10), the following is obtained for any \(n \)-dimension vector:
\[\left(x(k) - x(k-d) - \left(\sum_{\ell=k-d}^{k-1} ((A-I)x(\ell) + A_d x(\ell-d)) \right) \right)^T \zeta_p = 0 \quad (3.11) \]

Combining (3.8) and (3.11), we have
\[V_p(k+1) \leq \lambda V_p(k) + x^T(k)(A^T_{p}v_p - \lambda v_p + \nu_p + d \theta_p + \zeta_p) \]
\[+ x^T(k-d)(A^T_{d}v_p - \lambda^d \nu_p - \zeta_p) \]
\[- \sum_{\ell=k-d}^{k-1} \left(x(\ell) \right)^T \left(\left(A_q - I \right)^T \zeta_p + \lambda^d \theta_p \right) \]
\[A^T_{d} \zeta_p \quad (3.12) \]

According to (3.4)-(3.6), it is obtained that, for \(\forall (p, q) \in S \times S \), \(A^T_{p}v_p - \lambda v_p + \nu_p + d \theta_p + \zeta_p \leq 0 \), \(A^T_{d}v_p - \lambda^d \nu_p - \zeta_p \leq 0 \).

Then for \(\forall k \in \{ k, k_i+1, \ldots, k_{i+1} - 1 \} \),
\[V_p(k+1) \leq \lambda V_p(k) \leq \cdots \leq \lambda^{k-k_i} V_p(k_i) \quad (3.13) \]
\[V_{\sigma(k)}(K, x(K)) \leq \mu^{N_k} \lambda^{k-k_i} V_{\sigma(0)}(k_0, x(k_0)) \]
\[\leq \mu \lambda^{k-k_n} V_{\sigma(k_n+1)}(k_{n+1}, x(k_{n+1})) \]
\[\leq \cdots \]
\[\leq \mu^{N_n} \lambda^{k-k_0} V_{\sigma(0)}(k_0, x(k_0)) \]
\[\leq \exp \{ N_0 \ln \mu \} \exp \left(\frac{1}{K_n} \ln \mu + \ln \lambda \right) K \left(V_{\sigma(0)}(0, x(0)) \right) \quad (3.14) \]

Considering the definition of \(V_{\sigma(t)}(t) \), there exist \(\epsilon_1, \epsilon_2, \epsilon_3 \) and \(\epsilon_4 \) such that
The Second International Conference on Physics, Mathematics and Statistics

IOP Conf. Series: Journal of Physics: Conf. Series 1324 (2019) 012029

IOP Publishing

doi:10.1088/1742-6596/1324/1/012029

\[
\varepsilon_1 \|x(k)\| \leq \exp \left\{ N_0 \ln \mu + \left(\frac{1}{K_u} \ln \mu + \ln \lambda \right) k \right\} \left(\varepsilon_2 \|x(0)\| + (\varepsilon_3 + \varepsilon_4) \sum_{s=d}^{k-1} \|x(s)\| \right) \]

(3.15)

Denote \(\alpha = \left(\frac{\varepsilon_2}{\varepsilon_1} \right)^2 + \left(\frac{\varepsilon_3 + \varepsilon_4}{\varepsilon_1} \right)^2 \) exp \{ N_0 \ln \mu \}, \(\eta = \exp \left\{ \frac{1}{K_u} \ln \mu + \ln \lambda \right\} \). According to (3.15), the system state satisfies \(\|x(k)\| \leq \alpha \eta^{(k-k_0)} \|\varphi\|, \forall k \geq k_0, \) that is, the underlying system is exponentially stable with switching signal satisfying average dwell time satisfying (3.7).

This completes the proof.

4. Design of feedback controller

In this section, a memory-less state feedback controller is designed to make the corresponding closed-loop system of (2.1) with (2.2) exponentially stable.

Theorem 4.1 Let \(0 < \lambda < 1 \) and \(\mu > 1 \) be given constants. If there exist vectors \(\nu_p, \nu_q, \chi_p, \chi_q \) defined in Theorem 3.1, such that for \(\forall (p, q) \in S \times S, \forall i \in N = \{1, 2, \ldots, n\} \)

\[
E_p = \text{diag} \{ \bar{E}_p, \ldots, \bar{E}_p, \bar{E}_p \} \leq 0, \\
G_{pq} = \text{diag} \{ \bar{G}_{pq}, \ldots, \bar{G}_{pq}, \bar{G}_{pq} \} \leq 0, \\
F_{pq} = \text{diag} \{ \bar{F}_{pq}, \ldots, \bar{F}_{pq}, \bar{F}_{pq} \} \leq 0,
\]

(4.1) (4.2) (4.3)

where \(\bar{E}_p = \alpha^T v_p + g_{pq} v_p - \lambda v_p + v_p + d \chi_p + \chi_p, \bar{G}_{pq} = -a^T q \chi_p - h_{pq} - \chi_p + \lambda^d \chi_q \) and others are defined in Theorem 3.1, \(g_p = K_p^T B_p^T v_p, h_q = K_q^T B_q^T v_q \). Then system (2.1) with (2.2) is exponentially stable for any switching signal \(\sigma(k) \) with average dwell time \(K_d \geq K_u^* = -\frac{\ln \mu}{\ln \lambda} \). Moreover, the controller is \(u(k) = Kx(k), K = \sum_{p=1}^{M} \delta_p \left(\sigma(k) \right) K_p \).

Proof. Substitute \(u(k) = Kx(k), K = \sum_{p=1}^{M} \delta_p \left(\sigma(k) \right) K_p \) into the system (2.1). Then the corresponding closed-loop system is of the form

\[
x(k+1) = (A + BK)x(k) + A_g x(k-d), k = k_0, k_0 + 1, \ldots \\
x(s) = \varphi(s), s \in \{-d, -d+1, \ldots, -1, 0\}
\]

(4.4)

Replace \(A_p, A_q \) with \(A_p + B_p K_p, A_q + B_q K_q \) in the matrix inequality (3.12) which has occurred in Theorem 3.1. According to Theorem 3.1 the closed-loop system (4.4) is exponentially stable.

This completes the proof.

5. Numerical example

As an illustration, we consider a system in the form (2.1) without less of generality, assume that there two subsystems described by
Choose the discrete time delay \(d = 2 \) and \(\lambda = 0.9 \). Solving the matrix inequalities (4.1) and (4.2) under MATLAB Toolbox, we obtain

\[
\begin{align*}
\mathbf{v}_1 &= \begin{pmatrix} 0.9535 \\ 0.9535 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 0.4693 \\ 0.4589 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 0.7099 \\ 0.7214 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 0.1709 \\ 0.0611 \end{pmatrix}, \\
\mathbf{v}_5 &= \begin{pmatrix} 0.9063 \\ 0.9063 \end{pmatrix}, \quad \mathbf{v}_6 = \begin{pmatrix} 0.5336 \\ 0.5147 \end{pmatrix}, \quad \mathbf{v}_7 = \begin{pmatrix} 0.7863 \\ 0.7948 \end{pmatrix}, \quad \mathbf{v}_8 = \begin{pmatrix} 0.1891 \\ 0.0673 \end{pmatrix}.
\end{align*}
\]

The state feedback gain matrices are given by

\[
K_1 = (-21.1858, -4.1209), \quad K_2 = (-3.2880, -22.9654).
\]

and according to (4.3), we can get \(\mu = 1.137, K^*_a = 1.218 \).

6. Conclusions
In this paper, the exponential stability and stabilization problem have been investigated for a class of discrete positive switched linear system with time-delay. Firstly, an exponential stability criterion has been obtained by choosing proper co-positive Lyapunov-Krasovskii function. Furthermore, some appropriate feedback controllers have been constructed to ensure the stability of the closed loop systems. Finally, an example is provided to show that the results obtained above are effective, that is, the closed loop system is exponential stable if the average dwell time is no less than a certain constant.

References
[1] Sun Z and Ge S S 2005 *Switched Linear System Control and Design* (New York Springer-Verlag)
[2] Kim S, Campbell S and Liu X 2006 Stability of a class of linear switching systems with time delay *IEEE Trans. CAS* vol 153 P 384
[3] Zhao X D, Zhang L X and Shi P 2012 Stability of switched positive linear systems with average dwell time *switching Automatica* vol 48 p 1132
[4] Zhang D, Yu L and Zhang W 2011 Delay-dependent fault detection for switched linear systems with time-varying delays-the average dwell time approach *Signal Processing* vol 91 p 832
[5] De la S M 2007 Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays *Appl. Math. Comput.* vol 185 p 508
[6] Liberzon D 2003 *Switching in Systems and Control* (Boston: Birkhauser)
[7] Ding X Y, Shu L and Lin X 2011 On the copositive Lyapunov functions for switched positive systems *Journal of The Franklin Institute* vol 348 p 2099
[8] Sun Z and Ge S S 2011 *Stability Theory of Switched Dynamical Systems* [M] (London Springer-Verlag)
[9] Sun Y G and Wu Z R 2013 On the existence of linear copositive Lyapunov functions for 3-dimensional switched positive linear systems *Journal of the Franklin Institute* vol 350 p 1379
[10] Liu X 2009 Stability analysis of switched positive systems a switched linear copositive Lyapunov function method *IEEE Transactions on Automatic Control* vol 56 p 414
[11] Xue H B and Zhang J Y 2018 Robust exponential stability of switched delay interconnected systems under arbitrary switching *Acta Mathematica Scientia (English Series)* vol 06 p 1921
[12] Allerhand L I and Shaked U 2011 Robust stability and stabilization of linear switched systems
with dwell time *IEEE Transactions on Automatic Control* vol 56 p 381

[13] Jin Y, Fu J and Zhang Y 2013 Reliable stabilization of switched system with average dwell time approach *Journal of the Franklin Institute* vol 350 p 452

[14] Fu X Z and Zhu Q X 2018 Stability of nonlinear impulsive stochastic systems with Markovian switching under generalized average dwell time condition *Science China (Information Sciences)* vol 11 p 208

[15] Xue H B and Zhang J Y 2018 Exponential stability of uncertain neural network switching system with time delay *Journal of Dynamics and Control* vol 01 p 65

[16] Zhou Q W and Zhang G M 2018 Simulation of time-delay stability control for observer-based near industrial processes *Computer Simulation* vol 11 p 228

[17] Zhang Z Z and Chu Y G 2019 A class of periodic solutions of a delayed ecological epidemic model with stage structure *Journal of Nanjing University of Science and Technology* vol 06 p 756

[18] Zong G D and Zhao H J 2018 Input-to-state stability of switched nonlinear delay systems based on a novel Lyapunov-Krasovskii functional method *Journal of Systems Science and Complexity* vol 04 p 875

[19] Kaczorek T 2002 *Positive 1D and 2D systems* (London Springer)

[20] Farina L and Rinaldi S 2000 *Positive Linear Systems theory and Applications* (New York Wiley)