Agnieszka Romańczuk, Sebastian Rojek, Karol Kula, Małgorzata Kłys

Aspekty analityczne i opiniodawcze związane z obecnością syntetycznych kannabinoidów w materiale biologicznym na przykładzie AB-CHMINACA
Aspects related to analysis and medico-legal assessment in the context of the presence of synthetic cannabinoids in biological material based on the example of AB-CHMINACA

Katedra i Zakład Medycyny Sądowej, Collegium Medicum Uniwersytetu Jagiellońskiego, Kraków, Polska
Chair and Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland

Streszczenie

Cel pracy: Przedmiotem pracy było opracowanie i walidacja metody oznaczania syntetycznego kannabinoidu AB-CHMINACA we krwi, a następnie jej weryfikacja w toksykołogicznej praktyce sądowo-lekarskiej.

Materiał i metody: Omówiono przypadek 41-letniego mężczyzny przyjętego do szpitala w związku z planowanym zabiegiem kardiochirurgicznym. Mężczyzna zmarł po 12 godzinach hospitalizacji. Na podstawie zebranego materiału dowodowego podejrzewano zatrucie AB-CHMINACA. Identyfikację i oznaczenie AB-CHMINACA we krwi mężczyzny przeprowadzono przy użyciu metody wysokosprawnej chromatografii cieczowej sprzężonej z tandemową spektrometrią mas z wykorzystaniem jonizacji przez rozpylanie w polu elektrycznym (HPLC-ESI-MS-MS), po wcześniejszej ekstrakcji do fazy stałej.

Wyniki: W próbie krwi mężczyzny oznaczono AB-CHMINACA w stężeniu 0,5 ng/ml.

Wnioski: W interpretacji przypadku przyjęto, że AB-CHMINACA nie miała bezpośredniego wpływu na zgon, za którego przyczynę uznano przewlekłą niewydolność serca z powodu wady zastawkowej aorty zdekompensowanej z paleniem płuc. Nie można jednak wykluczyć pośredniego wpływu efektów ubocznych używania syntetycznych kannabinoidów na pogłębianie procesu chorobowego, co doprowadziło do nagłego zatrzymania krążenia w mechanizmie asystolii.

Słowa kluczowe: przyczyna zgonu, opinioowanie sądowo-lekarskie, syntetyczne kannabinoidy, AB-CHMINACA, HPLC-ESI-MS-MS.

Abstract

Aim of the study: The aim of this study was to develop and validate a method for the determination of the synthetic cannabinoid AB-CHMINACA in blood, followed by its verification in forensic toxicological practice.

Material and methods: The case of a 41-year-old man admitted to hospital because of scheduled cardiac surgery was discussed. The man died after 12 hours of hospitalization. Based on collected evidence, AB-CHMINACA poisoning was suspected. The identification and determination of AB-CHMINACA in the man’s blood was performed by high-performance liquid chromatography coupled with tandem mass spectrometry using electrospray ionization (HPLC-ESI-MS-MS), after prior solid phase extraction.
**Results:** The concentration of AB-CHMINACA determined in the man’s blood sample was 0.5 ng/ml.

**Conclusions:** In the interpretation of the case, it was concluded that AB-CHMINACA had no direct effect on the patient’s death, the cause of which was ascertained as chronic heart failure secondary to aortic valve disease, decompensated by pneumonia. However, an indirect impact of side effects resulting from the use of synthetic cannabinoids cannot be ruled out. They might have exacerbated the man’s disease process leading to sudden cardiac arrest caused by asystole.

**Key words:** cause of death, medico-legal assessment, synthetic cannabinoids, AB-CHMINACA, HPLC-ESI-MS-MS.

---

**Wstęp**

Według danych opublikowanych przez Europejskie Centrum Monitorowania Narkotyków i Narcomanii (The European Monitoring Centre for Drugs and Drug Addiction), zawierających omówienie i podsumowanie sytuacji narkotykowej w Europie, syntetyczne kannabinoidy wciąż pozostają najliczniejszą grupą nowych substancji psychoaktywnych (new psychoactive substances – NPS). Obok syntetycznych katynonów są najczęściej konfiskowanymi NPS. Od 2008 r. wykryto już 179 nowych substancji, z czego 24 zgłoszono w 2015 r., 11 w 2016 r., a 10 w 2017 r. W 2015 r. najczęściej konfiskowanymi syntetycznymi kannabinoidami były: ADB-FUBINACA, AB-CHMINACA, UR-144, 5F-AKB-48 i ADB-CHMINACA, a w 2016 r.: MDMB-CHMICA, AB-CHMINACA, UR-144, 5F-AKB-48 i AMB-FUBINACA.

Pod względem struktury chemicznej stanowią one bardzo zróżnicowaną grupę. Efekty ich działania imitują efekty działania Δ²-tetrahydrokannabinolu (Δ²-THC) – głównej substancji aktywnej konopi, odpowiedzialnej za działanie psychoaktywne. Znaczne rozpowszechnienie syntetycznych kannabinoidów jest bezpośrednio związane z wysokim wskaźnikiem użytkowania konopi indyjskich. Szacuje się, że wśród dorosłych Europejczyków (15–64 lat) w ciągu całego życia wynosi on ok. 26,3% [1, 2].

Celem niniejszej pracy było opracowanie i walidacja metody wysokosprawnej chromatografii cieczowej sprzężonej z tandemową spektrometrią mas z wykorzystaniem jonizacji przez rozpylanie w polu elektrycznym (HPLC-ESI-MS-MS) oznaczania AB-CHMINACA we krwi, a następnie jej weryfikacja w toksykologicznej praktyce sądowo-lekarskiej. Do analizy posłużyła prób-
ka krwi mężczyzny, u którego podejrzewano zatrucie syntetycznymi kannabinoidami.

Opis przypadku

41-letni mężczyzna został przyjęty do szpitala w związku z planowaną operacją kardiologiczną. Wcześniej rozpoznano u niego infekcyjne zapalenie wierdżia na dwułatkowej zastawce aortalnej oraz ciężką niedomykalność zastawki aortalnej. Z dokumentacji medycznej wynikało, że ok. tydzień przed zgonem u mężczyzny wystąpiła afazja (przestał się odzywać), uzdrawiany zespół ratownictwa medycznego nie stwierdził jednak jakichkolwiek cech niedomykalności krążeniowo-oddechowej lub oznak udaru. Ponadto kilka dni przed hospitalizacją mężczyzna zgłosił się na szpitalny oddział ratunkowy z utrzymującymi się od 7 dni objawami w postaci nudności, biegunki i wymiotów.

Podczas wywiadu lekarskiego przeprowadzonego w dniu przyjęcia do szpitala pacjent na pytanie o użytki odpowiedział, że od ok. 20 lat pali fajkę (do 3 na dzień) i sporadycznie pije alkohol. Od chwili przyjęcia na oddział był stało monitorowany. Doznawał okresowych napadów lęku z towarzyszącą hiperwentylacją (podobnych objawów doświadczal w domu). Mężczyzna podano doustnie hydroxyzynę i relanium. Po ok. 12 godzinach od momentu przyjęcia do szpitala doszło do nagłego zatrzymania krążenia w mechanizmie asystolii i mimo natychmiastowej akcji reanimacyjnej pacjent zmarł.

Obraz sekcyjny uwidocznił wadę lewego ujścia tętniczego z niedomykalnością, drobne blizny pozawalowe w mięśniu sercowym, zaznaczony przerosc serca i powiększenie jego jam, zastawnine przekrwienie śledziony i wątrobę, wolny płyn w jamach opłucznych, obrzęk płuc oraz obrzęk mózgu. W czasie sekcji pobrano materiał biologiczny do badań histopatologicznych i toksykologicznych.

Badania histopatologiczne pobranych wycinków wykazały przekrwienie. W jednym z wycinek mięśnia sercowego widoczny był obszar dokonanej martwicy włókien, zaś w jednej z tętnic w polu włóknienia ujawniono zakrzep. Stwierdzono występowanie rozsianych martwic pojedynczych włókien oraz przerosc części kardiomiocyttów. Badanie wycinek z mięśnia sercowego wykazało ponadto ognisko włóknienie śródmijażowe i pola włóknienia zastępczego, a także obrzęk podścieliska z pomnożeniem komórek jednojadrzastych, miejscami formujących skąpe nacieki.

a man suspected of poisoning with synthetic cannabinoids.

Case report

A 41-year-old man was admitted to hospital for scheduled cardiac surgery after being diagnosed with infective endocarditis on the bicuspid aortic valve and severe aortic valve insufficiency. Based on the patient’s medical records, approximately one week before death, an emergency medical team was called to the man because of aphasia (loss of speaking ability). However, physical examination did not show any symptoms of cardiorespiratory failure or signs of stroke. In addition, a few days before hospital admission the man reported to the emergency department with symptoms of nausea, diarrhoea and vomiting persisting for 7 days.

When the patient’s medical history was taken on the admission day, in reply to the question about stimulants he stated that he had smoked a pipe for the past 20 years or so (up to 3 pipes a day) and occasionally drank alcohol. After hospital admission the patient was monitored on an ongoing basis. He experienced periodic anxiety attacks accompanied by hyperventilation (similar symptoms had occurred in the patient’s home). He was treated with oral hydroxyzine and relanium. Approximately 12 hours after hospital admission the patient had a sudden cardiac arrest caused by asystole. Despite immediate resuscitation, the patient died.

Post-mortem examination revealed a defect of the left arterial ostium with regurgitation, minor post-myocardial infarction scars, marked cardiac hypertrophy and enlargement of cardiac chambers, congestive hyperaemia of the spleen and liver, free fluid in the pleural cavities, pulmonary oedema and marked cerebral oedema. During the post-mortem examination, samples of biological material for histopathological and toxicological tests were also collected.

Histopathological examinations showed congestion. One of the cardiac muscle specimens revealed an area of complete fibre necrosis. A thrombus was seen in one of the arteries within the area of fibrosis. Scattered foci of necrosis affecting individual fibres, and hypertrophy of some cardiomyocytes, were also shown. Furthermore, an examination of cardiac muscle specimens demonstrated focal interstitial
We wszystkich preparatach z płuc w świetle pęcherzyków widoczne było nagromadzenie makrofagów zawierających brunatny barwnik. W podścielisku miejscami występowały niewielkie nacieki zapalne, stwierdzono też skąpy wysięk włóknikowy obecny ogólnikowo w pęcherzykach. Obraz sugerował śródmiąższowe, złuszczające zapalenie. W świetle jednego z dużych naczyń ujawniono zakrzep, zwrócono również uwagę na ogólnikowo pojedynczy zator materiałem szpikowym oraz odczynowe proliferację komórek w naczyniach przegród z obecnością komórek o morfologii megakaryocytów. W zawartości aorty zaobserwowano obraz zapalenia wsierdzia z wysiękiem włóknikowym i ziarniną.

Podczas oględzin miejsca zamieszkania mężczyzny w toku postępowania znaleziono dwa opakowania z napisem: „rzymskie medaliony Diana 1 g” zawierające susz roślinny. Analiza zabezpieczonego materiału dowodowego wykonana w Laboratorium Kryminalistycznym Komendy Wojewódzkiej Policji w Kielcach wykazała obecność syntetycznego cannabinoidu AB-CHMINACA w obu opakowaniach.

Jako ostateczną przyczynę zgonu lekarz medycyny sądowej podał przewlekłą niewydolność serca w konsekwencji wady zastawkowej aorty, zdekompensoowanej zapaleniem płuc. Jego zdaniem brakowało podstaw, aby łączyć przyczynę zgonu z obecnością NSP w postaci AB-CHMINACA we krwi zmarłego.

**Material i metody**

**Materiał biologiczny**

Analizowany materiał stanowiły:
- próbka krwi pobrana z żyły udowej mężczyzny w trakcie sekcji zwłok,
- próbki krwi wolne od ksenobiotyków wykorzystane do opracowania i walidacji metody analitycznej, zakupione w Regionalnym Centrum Krwiodawstwa i Krwiolecznictwa w Krakowie 
  \((n = 2)\) oraz
- próbki krwi sekcjowej pobrane w Katedrze i Zakładzie Medycyny Sądowej Collegium Medicum Uniwersytetu Jagiellońskiego w Krakowie \((n = 3)\).

**Wzorce i odczynniki chemiczne**

W badaniach wykorzystano roztwory wzorcowe AB-CHMINACA i UR-144-COOH-D5 (jako wzo-
Badania przesiewowe

Badania przesiewowe obejmowały analizę próbek krwi metodą immunoenzymosorpcyjną (enzyme linked immunosorbent assay – ELISA) na obecność opiatów, kokainy, amfetaminy i jej pochodnych, kannabinoli, benzodiapin, barbituranów, trójcyklicznych antydepresantów i syntetycznych kannabinoidów (JWH-018, JWH-250, UR-144/XLR-11) przy użyciu testów Neogen (UK). Przebadano też krew pod kątem obecności środków farmakologicznych o odczynie zasadowym, obojętnym i kwasowym metodą HPLC-DAD w systemie MTSS (Merck Tox Screening System) wraz z dedykowanymi zestawami Neogen (UK). Ponadto, próbkę krwi pobraną podczas sekcji wzmocniono dodatkiem metanolowego roztworu IS UR-144-COOH-D₅ do uzyskania końcowego stężenia 5 ng/ml krwi. Następnie dodano do nich 5 ml buforu węglanowo-ammoniowo- – IS), a następnie syntezykowo-kwasowy, metanol (czyścicielsko do LC-MS) oraz węglan amonu (≥ 99.9%) (Sigma-Aldrich, Niemcy).

Ekstrakcja do fazy stałej (SPE) posłużyły kolumny Bond Elut wypełnione niepolarnym złożem żelu krzemionkowego modyfikowanym fazą okta- decyłową C₁₈ o masie 500 mg (Agilent Technologies, USA).

Analizę ilościową wykrytych leków przeprowadzano zgodnie z procedurą stosowaną rutynowo w Pracowni Toksykologii Katedry i Zakładu Medycyny Sądowej Collegium Medicum Uniwersytetu Jagiellońskiego.

Badania przesiewowe

Badania przesiewowe obejmowały analizę próbki krwi metodą immunoenzymosorpcyjną (enzyme linked immunosorbent assay – ELISA) na obecność opiatów, kokainy, amfetaminy i jej pochodnych, kannabinoli, benzodiapin, barbituranów, trójcyklicznych antydepresantów i syntetycznych kannabinoidów (JWH-018, JWH-250, UR-144/XLR-11) przy użyciu testów Neogen (UK). Przebadano też krew pod kątem obecności środków farmakologicznych o odczynie zasadowym, obojętnym i kwasowym metodą HPLC-DAD w systemie MTSS (Merck Tox Screening System, Merck, Niemcy).

Analyzę ilościową wykrytych leków przeprowadzano zgodnie z procedurą stosowaną rutynowo w Pracowni Toksykologii Katedry i Zakładu Medycyny Sądowej Collegium Medicum Uniwersytetu Jagiellońskiego.

Ekstrakcja w kierunku syntetycznych kannabinoidów

Próbki krwi wykorzystane do opracowania i walidacji metody analitycznej oraz próbę o objętości 1 ml pobraną w trakcie sekcji wzbogacano dodatkiem metanolowego roztworu IS UR-144-COOH-D₅ do uzyskania końcowego stężenia 5 ng/ml krwi. Następnie dodano do nich 5 ml buforu węglanowo-ammoniowo- – IS), a następnie syntezykowo-kwasowy, metanol (czyścicielsko do LC-MS) oraz węglan amonu (≥ 99.9%) (Sigma-Aldrich, Niemcy).

Do ekstrakcji do fazy stałej (SPE) posłużyły kolumny Bond Elut wypełnione niepolarnym złożem żelu krzemionkowego modyfikowanym fazą okta-decyłową C₁₈ o masie 500 mg (Agilent Technologies, USA).

Analizę ilościową wykrytych leków przeprowadzano zgodnie z procedurą stosowaną rutynowo w Pracowni Toksykologii Katedry i Zakładu Medycyny Sądowej Collegium Medicum Uniwersytetu Jagiellońskiego.

Extraction to identify synthetic cannabinoids

Blood samples used for the development and validation of the analytical method, as well as a blood sample (1 ml) collected during the man’s post-mortem examination, were spiked with a methanolic solution of the UR-144-COOH-D₅, IS to achieve the final concentration of 5 ng/ml of blood. Next, 5 ml
Rozdzielenie chromatograficzne

W badaniach wykorzystano chromatograf cieczowy (Shimadzu Corporation, Japonia) składający się z następujących modułów: urządzenia do odgazowywania fazy ruchomej (model DGU-20A3R), podwójnej pompy gradientowej (model LC-20ADXR), automatycznego podajnika próbek (model SIL-20ACXR), komory do termostatowania kolumny (model CTO-20AC) i zaworu nastrzykowego (model FCV-20AH2). Rozdzielenie prowadzono w kolumnie chromatograficznej Kinetex 2,6 µm Biphenyl 100 Å (100 mm × 2,1 mm) (Phenomenex, USA), którą termostatowano w 40°C. Przepływ faz ruchomych przez kolumnę chromatograficzną odbywał się przy programowanym gradientie składu faz ruchomych oraz natężenia przepływu (początkowo 95% fazy A i 5% fazy B przy natężeniu przepływu 0,4 ml/min, następnie udział fazy wzrastał liniowo do 100% fazy B przy natężeniu przepływu 0,6 ml/min w 8 minucie, po czym warunki te były utrzymywane przez 2 min). Objętość nastrzyku na kolumnę chromatograficzną wynosiła 5 µl.

Detekcja

W badaniach zastosowano kwadrupolowy tandemowy spektrometr mas LCMS-8040 (Shimadzu) do detekcji.

Chromatographic separation

The tests were carried out using a liquid chromatograph from Shimadzu Corporation (Japan) consisting of several modules including a mobile phase degassing unit (DGU-20A3R model), a dual-gradient pump (model LC 20ADXR), an automatic sample feeding device (model SIL-20ACXR), a column oven (model CTO-20AC), and an injection valve (model FCV-20AH2). Separation was carried out in a Kinetex 2.6 µm Biphenyl 100 Å (100 mm × 2.1 mm) chromatography column (Phenomenex, USA). The column was thermostatted at 40°C. The flow of the mobile phases through the chromatographic column occurred at a programmed gradient of mobile phase composition and flow rate (initially 95% of phase A and 5% of phase B at a flow rate of 0.4 ml/min; next, the proportion of phases increased linearly to 100% of phase B at a flow rate of 0.6 ml/min at 8 min; the conditions were maintained for 2 min). The volume of sample injected into the chromatography column was 5 µl.

Detection

Tests were performed with a LCMS-8040 tandem quadrupole mass spectrometer from Shimadzu.
Agnieszka Romańczuk, Sebastian Rojek, Karol Kula, Małgorzata Kłys
Aspekty analityczne i opiniodawcze związane z obecnością syntetycznych kannabinoidów w materiale biologicznym na przykładzie AB-CHMINACA

Corporation, Japonia), zaopatrzone w komorę do ionizacji przez rozpylanie w polu elektrycznym (ESI). Urządzenie pracowało w trybie monitorowania reakcji rozpadu jonu macierzystego na wybrane jony potomne (multiple reaction monitoring – MRM), które wyznaczono metodą optymalizacji. Określono cze cze cze cze

Walidacja

Aby ocenić selektywność metody, przeprowadzono ekstrakcję i analię próbek krwi wolnych od ksenobiotyków (n = 5), bez dodatku analitów i IS. Analizowano możliwe interferencje w obszarach elucji AB-CHMINACA czy IS pochodzące z matrycy biologicznej. Specyficzność metody zbadano poprzez analizę mieszaniny 33 syntetycznych kannabinoidów i ich metabolitów w stężeniu 10 ng/ml każdy. Krzywa kalibracyjna została przygotowana na podstawie analizy próbek krwi wolnych od ksenobiotyków, z dodatkiem znanej ilości AB-CHMINACA. W tym celu próbki krwi wzbogacano AB-CHMINACA w stężeniach: 0,05 ng/ml, 0,1 ng/ml, 0,2 ng/ml, 0,5 ng/ml, 1 ng/ml, 2 ng/ml, 5 ng/ml i 10 ng/ml oraz IS w stężeniu 5 ng/ml. Każda próbka kalibracyjna została przygotowana trzykrotnie. Próbki kalibracyjne poddano ekstrakcji SPE według opisanej wcześniej procedury.

Tabela I. Parametry fragmentacji AB-CHMINACA i wzorca wewnętrznego

| Syntetyczny kannabinoid | Wzór sumaryczny Molecular formula | Jon macierzysty Parent ion | Q1* (V) | Jon potomny Product ion | Dysocjacyjna energia kolizji Dissociative collision energy (V) | Q2* (V) | Czas retencji Retention time (min) |
|-------------------------|---------------------------------|---------------------------|--------|-------------------------|-------------------------------------------------|--------|-----------------------------|
| AB-CHMINACA             | C20H28N4O2                     | 357                       | −25    | 241                    | −28                                            | −25    | 7.65                        |
| UR-144-COOH-D5          | C21H22D5NO3                   | 347                       | −24    | 125                    | −22                                            | −23    | 7.33                        |

*napięcie na pręcie wstępnym / pre-rod voltage
Granicę wykrywalności metody (limit of detection – LOD) wyznaczono jako najniższe stężenie, dla którego stosunek sygnału do szumu (S/N), liczonego jako wysokość piku dla zdeformowanej pary MRM o niższej intensywności (357→312), był ≥ 10. Jako granicę oznaczalności metody (limit of quantitation – LOQ) przyjęto najniższe stężenie, dla których spełnione były kryteria dla LOD oraz dokładność metody mieściła się w granicach 80–120% rzeczywistego stężenia, a precyzja była ≤ 15–25% RSD.

Precyzję i dokładność wewnątrz- i zewnętrzgrupową badano dla dwóch stężeń AB-CHMINACA: 0,75 ng/ml (QC₁) oraz 7,50 ng/ml (QC₂). Precyzję i dokładność wewnątrzgrupową wyznaczono dla jednej serii, w pięciu powtórzeñach dla QC₁ i QC₂. Precyzję i dokładność zewnętrzgrupową wyznaczono dla trzech odrębnych serii, w pięciu powtórzeñach dla QC₁ i QC₂. Dokładność metody została wyrażona w postaci błędu względnego (%). Precyzję metody wyrażono jako współczynnik zmienności (% RSD).

Odzysk, efekt matrycy i wydajność procesu wyznaczono poprzez analizę trzech serii próbek: 0,75 ng/ml (QC₁) oraz 7,50 ng/ml (QC₂). Intra-day accuracy and precision were determined for one batch, in five replicates, for QC₁ and QC₂. In-ter-day accuracy and precision were determined for three separate batches, in five replicates, for QC₁ and QC₂. The accuracy of the method was presented as relative error (%). The precision of the method was expressed as the coefficient of variation (% RSD).

Recovery, matrix effect and efficiency of the process were determined by analyzing three batches of samples, as described by Matuszewski et al. [3].

Wyniki

W badaniu selektywności i specyficzności metody analitycznej nie wykazano istotnych interferencji w obszarach elucji AB-CHMINACA, podobnie jak IS. Zakres roboczy krzywej kalibracyjnej, o współczynniku determinacji (R²) wynoszącym 0,9895, określono na 0,2–10,0 ng/ml. LOD i LOQ wyniosły odpowiednio 0,05 ng/ml i 0,20 ng/ml. Wyniki precyzji wewnątrz- i zewnętrzgrupowej zamieszczono w tabeli II. Wyznaczono również parametry związane z procesem ekstrakcji analitu i IS, tj. efekt matrycy, odzysk i wydajność procesu (tab. III).

W badaniach przesiewowych próbki krwi mężczyzn uzyskano dodatni wynik testu ELISA na obecność benzodiazepin, co potwierdziło późniejsza analiza w kierunku substancji z tej grupy. W wyniku wielokierunkowej analizy toksykologicznej metodą HPLC-ESI-MS-MS badanego materiału wykazano obecność AB-CHMINACA oraz leków podanych mężczyźnie w trakcie hospitalizacji. Uzyskane wyniki zamieszczono w tabeli IV.

The limit of detection (LOD) of the method was determined as the lowest concentration at which the signal to noise ratio (S/N), calculated as the height of the peak obtained for the defined MRM pair with a lower intensity (357→312) was ≥ 10. The limit of quantification (LOQ) of the method was adopted as the lowest concentrations for which the LOD criteria were fulfilled, the accuracy of the method was in the range of 80–120% of the actual concentration, and the precision of the method was ≤ 15–25% of RSD.

Intra-day and inter-day accuracy and precision were evaluated for two AB-CHMINACA concentrations: 0.75 ng/ml (QC₁) and 7.50 ng/ml (QC₂). Intra-day accuracy and precision were determined for one batch, in five replicates, for QC₁ and QC₂. Inter-day accuracy and precision were determined for three separate batches, in five replicates, for QC₁ and QC₂. The accuracy of the method was presented as relative error (%). The precision of the method was expressed as the coefficient of variation (% RSD).

Recovery, matrix effect and efficiency of the process were determined by analyzing three batches of samples, as described by Matuszewski et al. [3].

Results

The evaluation of selectivity and specificity of the analytical method did not demonstrate significant interferences in the elution areas of AB-CHMINACA and the IS. The working range of the calibration curve, with the coefficient of determination (R²) of 0.9895, was estimated at 0.2–10.0 ng/ml. The LOD and LOQ were 0.05 ng/ml and 0.20 ng/ml, respectively. The values of intra-day and inter-day precision are listed in Table II. In addition, parameters related to the process of analyte and IS extraction were determined, including the matrix effect, recovery and process efficiency (Table III).

In the screening tests, the man's blood samples tested positive for the presence of benzodiazepines by ELISA. The result was confirmed by a subsequent analysis to detect substances from this group. A comprehensive toxicological analysis of the test material by HPLC-ESI-MS-MS demonstrated the presence of AB-CHMINACA and drugs administered to the man during hospitalization. The results are presented in Table IV.
AB-CHMINACA is a derivative of indazole, an amide of indazole-3-carboxylic acid. It was first synthesized by Pfizer as part of research on the potential therapeutic applications of synthetic cannabinoids.

**Discussion**

AB-CHMINACA is a derivative of indazole, an amide of indazole-3-carboxylic acid. It was first synthesized by Pfizer as part of research on the potential therapeutic applications of synthetic cannabinoids.
The ability of AB-CHMINACA to bind to the cannabinoid receptor type 1 (CB1), as described in the 2009 patent, is $K = 0.5 \text{nM} [4]$. Consequently, the affinity for the CB1 receptor exhibited by AB-CHMINACA is approximately 80 times higher compared to $\Delta^9$-THC ($K = 40.7 \text{nM} [5]$). Such high affinity of AB-CHMINACA for the CB1 receptor is associated with an increased risk of adverse reactions. Activation of the CB1 receptor by endocannabinoids or synthetic ligands may induce haemodynamic effects and contribute to cardiovascular diseases. In extreme cases, myocardial infarction, cardiomyopathy, arrhythmia, stroke and cardiac arrest may occur [6]. However, adverse reactions induced by synthetic cannabinoids affect not only the cardiovascular system. The substances may also interact with the nervous system, triggering symptoms such as agitation, hallucinations, mild aphasia, drowsiness, anxiety and panic attacks, and acute psychosis. Gastrointestinal complaints have also been reported, including nausea, vomiting, diarrhoea, dry mouth and excessive thirst [7].

A method of AB-CHMINACA determination in blood samples was developed and validated. Intra-day and inter-day precision expressed by the coefficient of variation (% RSD) met the required criterion ($\leq 15–25\%$ RSD). The accuracy values only slightly exceeded the limit for acceptability criteria, i.e. $\pm 20\%$ (Table II).

Matrix effects were observed mainly in the form of attenuation of the analytical signal. Recovery exceeded 50% for both AB-CHMINACA and the IS in the majority of extracted blood samples.

Comprehensive tests of the man's blood sample revealed the presence of diazepam (26 ng/ml), hydroxyzine (320 ng/ml) and its metabolite cetirizine (160 ng/ml), which were administered during medical procedures (relanium and hydroxyzine), as well as hydrocortisone (660 ng/ml) and lisinopril (28 ng/ml). All the substances were identified at therapeutic or subtherapeutic concentration levels. Hydrocortisone is a drug used for its antiinflammatory and antiallergic properties, and lisinopril is an angiotensin-converting enzyme inhibitor indicated in the treatment of arterial hypertension and heart failure.

Initial screening tests failed to detect AB-CHMINACA in a blood sample taken during the patient's post-mortem examination. Tests targeted at detecting $\Delta^9$-THC in biological material, standardized
Wstępne badania przesiewowe nie pozwoliły na wykrycie AB-CHMINACA w próbie krwi pobranej w trakcie sekcji zwłok. Testy służące wykrywaniu Δ9-THC, standardizowane na jego metabolit 11-nor-9-karboxy-Δ9-tetrahydrokannabinol (THC-COOH), nie pozwalały na detekcję syntetycznych kannabinoidów [8, 9]. Ponadto komercyjnie dostępne testy ELISA, które umożliwiają wykrycie we krwi syntetycznych kannabinoidów, takich jak JWH-018, JWH-250, UR-144/XLR-11, odsłaniają się do substancji, których nie odnotowuje się już jako składników czynnych tzw. dopalaczy. Stosowane obecnie substancje najczęściej nie są wykrywane we krwi, dając wyniki fałszywie negatywne.

Do analizy próbki krwi zastosowano metodę HPLC-ESI-MS-MS. Stężenie AB-CHMINACA we krwi pobranej podczas sekcji wyniosło 0,5 ng/ml. Opisane w literaturze stężenia AB-CHMINACA w przypadkach klinicznych – w tym śmiertelnych – mieszczą się w szerokim zakresie od 0,3–14,3 ng/ml. Często dotyczą one zatruc złożonych, w których stwierdza się też obecność innych substancji o działoaniu psychoaktywnym lub alkoholu etylowego.

W pracy Tyndalla i wsp. przedstawiono wyniki z 2014 r. dotyczące 35 osób hospitalizowanych w University of Florida Health Medical Centre w Gainesville po zażyciu syntetycznego kannabinoidu. Pacjenci w wieku od 14 do 58 lat, głównie mężczyźni, trafili do placówki leczniczej z objawami zaburzeń psychicznych, tachykardii, drgań i halucynacji. Przebadano dostępny materiał biologiczny (osocze, surowicę, krwę, moczu) z 26 pacjentów, a jedynie metabolity. Analiza pozostałości fajki z jednego pacjenta nie wykazała obecność AB-CHMINACA, a jedynie metabolity. Analiza pozostałości fajki woda wykazała obecność AB-CHMINACA oraz FUB-PB-22 [10].

W 33 przypadkach podejrzanych o niezgodność zażycia i reakcji, zdarzało się, że pacjenci stwierdzali objawy takie jak wina, nieco zazębienie, usłyszenie dźwięków, drgania, drętwienie, słuchanie głośnych wiedych, bóle głowy, kordofania, obniżenie nasilenia bólu, niedokrwistość i niewydolność serca [11].
AB-CHMINACA was reported to the European Early Warning System (EWS) in 2014. Since then, a total of 31 deaths associated with the ingestion of the substance have been recorded [2]. The first reported fatal case involving AB-CHMINACA detected in biological material was described by Hasegawa et al. in 2014. The case concerned a 30-year-old man who was found dead in a car. An open package with a dried herbal blend called "Herbal Incense. The Super Lemon" was identified next to the body. Samples of multiple tissues were collected during the post-mortem examination for toxicological tests. All of them, except for blood and urine, were found to contain AB-CHMINACA. In addition, the synthetic cannabinoid 5F-AMB was detected in adipose tissue, and diphenidine was found in all biological material samples collected for testing. The main cause of death was ascertained as diphenidine poisoning, based on the high concentration of the substance determined in the examined material. The authors highlighted the possibility of synthetic cannabinoid distribution into adipose tissue, where they can be dissolved in fatty acids because of their high lipophilicity. Enzymes responsible for the metabolism of synthetic cannabinoids are not found in adipose tissue at all, or occur there at low concentrations. Consequently, synthetic cannabinoids are stored in adipose tissue mainly in unchanged form [12].

Gieroń and Adamowicz reported a case of a 30-year-old man who died after smoking a dried herbal blend from a package of NSP called "Mocarz". Samples of blood, urine and organ fluids were examined, with the detected AB-CHMINACA content in blood and urine amounting to: 1.5 ng/ml and 0.1 ng/ml, respectively. In addition, blood, urine and vitreous humour were tested for ethanol. The ethanol content was found to be 1.80‰, 2.78‰, and 2.26‰, respectively [13].

Angerer et al. described the case of a 28-year-old man who was found dead in his apartment. The man held a lighter and a "bong" in his hands, and three packs (one empty, two unopened) of a dried herbal blend called "Desert Premium Potpourri 2 g" were identified near the body. Blood analysis revealed AB-CHMINACA at a concentration of 4.1 ng/ml. Dried herbs identified at the scene were also shown to contain AB-CHMINACA. Furthermore, the ethyl alcohol concentration determined in the patient's blood and urine samples was 1.45‰. 

pląs, niewyraźną mowę, dezorientację, brak koordynacji/rzeczności i letarg [11].

AB-CHMINACA została zgłoszona do Europejskiego Systemu Wczesnego Ostrzegania (Early Warning System – EWS) w 2014 r. Od tego czasu odnotowano 31 przypadek zgonów powiązanych z zażyciem tej substancji [2]. Pierwszy przypadek śmiertelny, w którym wykryto AB-CHMINACA w materiale biologicznym, został opisany w 2014 r. przez Hasegawę i wsp. Dotyczył on 30-letniego mężczyzny, który został znaleziony martwy w samochoǳie. Znaleziono przy nim otwarte opakowanie z suszem roślinnym o nazwie „Herbal Incense. The Super Lemon". Podczas sekcji zwłok pobrano do badań toksykologicznych próbki licznych tkanek, w których z wyjątkiem krwi i moczu wykazano obecność AB-CHMINACA. W tkance tłuszczywej wykryto ponadto syntetyczny kannabinoid 5F-AMB, a we wszystkich pobranych do badań próbki materiału biologicznego oznaczono difenidynę. Za główną przyczynę śmierci uznano zatrucie difenidine. Za główną przyczynę śmierci uznano zatrucie difenidyną z uwagi na jej duże stężenie w badanym materiale. Autorzy zwrócili uwagę na możliwą dystrybucję do tkanki tłuszczowej syntetycznych kannabinoidów, które mogą być rozpuszczane w kwasach tłuszczowych ze względu na ich dużą lipoofilność. Enzymy odpowiedzialne za metabolizm syntetycznych kannabonoidów nie występują w tkance tłuszczowej bądź występują w małych stężeniach, dlatego syntetyczne kannabinoidy są w niej magazynowane głównie w niezmienionej formie [12].

W pracy Gieroń i Adamowicz opisano przypadek 30-letniego mężczyzny, który zmarł po wypaleniu suszu z opakowania NSP o nazwie „Mocarz". Zbadano zabezpieczoną krwę, mocz oraz ościeliny z narzędzi; stężenie AB-CHMINACA we krwi i moczu wynosiło odpowiednio: 1,5 ng/ml i 0,1 ng/ml. Zbadano też krew, mocz i płyn z gałki ocznej pod kątem zawartości alkoholu etylowego, uzyskane wyniki wynosiły odpowiednio: 1,80‰, 2,78‰, 2,26‰ [13].

Angerer i wsp. opisali przypadek 28-letniego mężczyzny, który został znaleziony martwy w swoim mieszkaniu. Mężczyzna w rękach trzymał zapalniczkę oraz „bongo”; w pobliżu zwłok znaleziono również trzy opakowania (jedno puste, dwa nieotwarte) suszu roślinnego o nazwie „Desert Premium Potpourri 2 g". Analiza krwi wykazała obecność AB-CHMINACA w stężeniu 4,1 ng/ml. W znalezionym na miejscu zdarzenia suszu roślinnym potwierdzono obecność AB-CHMINACA was reported to the European Early Warning System (EWS) in 2014. Since then, a total of 31 deaths associated with the ingestion of the substance have been recorded [2]. The first reported fatal case involving AB-CHMINACA detected in biological material was described by Hasegawa et al. in 2014. The case concerned a 30-year-old man who was found dead in a car. An open package with a dried herbal blend called "Herbal Incense. The Super Lemon" was identified next to the body. Samples of multiple tissues were collected during the post-mortem examination for toxicological tests. All of them, except for blood and urine, were found to contain AB-CHMINACA. In addition, the synthetic cannabinoid 5F-AMB was detected in adipose tissue, and diphenidine was found in all biological material samples collected for testing. The main cause of death was ascertained as diphenidine poisoning, based on the high concentration of the substance determined in the examined material. The authors highlighted the possibility of synthetic cannabinoid distribution into adipose tissue, where they can be dissolved in fatty acids because of their high lipophilicity. Enzymes responsible for the metabolism of synthetic cannabinoids are not found in adipose tissue at all, or occur there at low concentrations. Consequently, synthetic cannabinoids are stored in adipose tissue mainly in unchanged form [12].

Gieroń and Adamowicz reported a case of a 30-year-old man who died after smoking a dried herbal blend from a package of NSP called "Mocarz". Samples of blood, urine and organ fluids were examined, with the detected AB-CHMINACA content in blood and urine amounting to: 1.5 ng/ml and 0.1 ng/ml, respectively. In addition, blood, urine and vitreous humour were tested for ethanol. The ethanol content was found to be 1.80‰, 2.78‰, and 2.26‰, respectively [13].

Angerer et al. described the case of a 28-year-old man who was found dead in his apartment. The man held a lighter and a "bong" in his hands, and three packs (one empty, two unopened) of a dried herbal blend called "Desert Premium Potpourri 2 g" were identified near the body. Blood analysis revealed AB-CHMINACA at a concentration of 4.1 ng/ml. Dried herbs identified at the scene were also shown to contain AB-CHMINACA. Furthermore, the ethyl alcohol concentration determined in the patient's blood and urine samples was 1.45‰.
AB-CHMINACA. Ponadto we krwi mężczyzny oznaczono 1,45‰ alkoholu etylowego, a w moczu 2,57‰. Jako ostateczną przyczynę zgonu medyk sądowy przyjął zatrucie AB-CHMINACA w połączeniu z alkoholem etylowym [14].

W odniesieniu do zaraportowanych w piśmiennictwie przypadków stężenie AB-CHMINACA na poziomie 0,5 ng/ml należy uznać za stosunkowo niskie. Nie jest jednak znany moment zażycia przez mężczyznę AB-CHMINACA. Zgon nastąpił po ok. 12 godzinach od chwili przyjścia do szpitala. W szpitalu nie zabezpieczono zażywczego materiału biologicznego do badań toksykologicznych, sekcja zwłok została przeprowadzona 4 dni po zgonie, zaś materiał do badań dostarczono do pracowni toksykologii 3 miesiące po przeprowadzonej sekcji zwłok. Nie można zatem wykluczyć, że zaobserwowane u mężczyzny objawy, w tym okresowe napady łęku z towarzyszącą biperwentylacją, które występowały już wcześniej, w domu, spotykane w przypadkach zatrucia syntetycznymi cannabinoidami, były skorelowane ze znacznie wyższym stężeniem AB-CHMINACA we krwi mężczyzny podczas jego hospitalizacji, niż wykazano we krwi sekcyjnej [7, 15].

Hermanns-Clausen i wsp. przedstawili obserwacje dotyczące wydłużonego występowania objawów klinicznych u 34% pacjentów znajdujących się pod wpływem AB-CHMINACA lub MDMB-CHMICA. U większości badanych działania niepożądane ustępowały jednak w ciągu 2–16 godzin [15]. Autorzy cytowanej publikacji odnotowali również większą liczbę ostrych zatruć AB-CHMINACA i MDMB-CHMICA w porównaniu z przypadkami klinicznymi zatruciem syntetycznymi cannabinoidami z grupy aminoalkylindoloidów, takich jak JWH-018 [7, 15].

W opisywanym przypadku mężczyzna najprawdopodobniej przyjął AB-CHMINACA jeszcze przed zgłoszeniem się do szpitala na planowany zabieg. Zaobserwowane objawy, takie jak afazja, nudności, biegunka i wymioty, mogły być związane z regularnym przyjmowaniem syntetycznych kannabinoidów [7]. Pacjent potwierdził to w wywiadzie lekarskim, przyznając, że palił do trzech fajek dziennie. W odniesieniu do znalezionych u niego dowodów rzeczowych w postaci suszu roślinnego, w którym wykazano obecność AB-CHMINACA, można domniemywać, że palone fajki mogły zawierać substancje psychoaktywne.

AB-CHMINACA jest wykrywana u osób żywych w bardzo dużym przedziale stężeń, co może and 2.57‰, respectively. The final cause of death ascertained by the forensic physician was poisoning with AB CHMINACA in combination with ethyl alcohol [14].

Compared to the cases reported in the literature, the AB-CHMINACA concentration of 0.5 ng/ml in the presented case should be considered as relatively low. However, the time when the man took AB-CHMINACA remains unknown. Death occurred approximately 12 hours after hospital admission. No ante-mortem biological material was sampled from the patient for toxicological tests in the hospital. The post-mortem examination was performed 4 days after the man’s death. The test material was delivered to the Toxicology Laboratory 3 months after the post-mortem examination. Therefore, it cannot be ruled out that the symptoms observed in the patient, including periodic anxiety attacks accompanied by hyperventilation, which had occurred previously in the patient’s home, and are noted in cases of synthetic cannabinoid poisoning, were correlated with a significantly higher concentration of AB-CHMINACA in the man’s blood during hospitalization than detected in post-mortem blood [7, 15].

Hermanns-Clausen et al. presented observations regarding the prolonged occurrence of clinical symptoms in 34% of patients after the intake of AB-CHMINACA or MDMB-CHMICA. However, in the majority of patients adverse reactions subsided within 2–16 hours [15]. The authors of the cited publication also observed a greater number of cases of acute poisoning with AB-CHMINACA/MDMB-CHMICA, compared to clinical cases of poisoning with synthetic aminoalkylindole cannabinoids such as JWH-018 [7, 15].

In the case under consideration, the man most likely took AB-CHMINACA before reporting to hospital for scheduled surgery. Symptoms observed in the patient – including aphasia, nausea, diarrhoea and vomiting – may be correlated with his regular use of synthetic cannabinoids [7]. The man confirmed his habit during medical history-taking, admitting that he smoked up to three pipes a day. With regard to the evidence found in the man’s apartment, i.e. the dried herbal blend in which AB-CHMINACA was detected, it can be presumed that the pipes smoked by the patient might have contained psychoactive substances.
być spowodowane faktem, że użytkownicy otrzymują produkt o różnej zawartości substancji czynnej. Może to być również bezpośrednią przyczyną zatrucia dopalaczami. Duży przedział stężeń odnotowany dla AB-CHMINACA może także wynikać ze zjawiska tolerancji u osób często zażywających NSP, a więc przyjmujących większe dawki AB-CHMINACA. Wyższe stężenia AB-CHMINACA we krwi odnotowywane w przypadkach klinicznych w porównaniu z przypadkami zatrucia ze skutkiem śmiertelnym mogą być spowodowane redystrybucją pośmiertną AB-CHMINACA [12].

Stosowanie syntetycznych kannabinoidów, takich jak AB-CHMINACA, ma nieprzewidywalne skutki dla zdrowia, kończące się często zgonem zdrowych osób. Liczne publikacje łączą używanie marihuany i/lub syntetycznych kannabinoidów z wieloma poważnymi działaniami niepożądanymi na układ sercowo-naczyniowy, w tym z udarem, zawałem mięśnia sercowego, kardiomiopatią, arytmia czy zatrzymaniem akcji serca [6]. Odnotowane objawy ze strony układu sercowo-naczyniowego spowodowane zażywaniem AB-CHMINACA obejmują tachykardię, bradykardię i hipotensię. Co więcej, nie wykazano korelacji między stężeniem AB-CHMINACA a ciężkością zatrucia [15]. Nawet niewielka dawka AB-CHMINACA może zatem prowadzić do nasilenia działań niepożądanych.

Nie można wykluczyć, że w opisanym przypadku mężczyzny z dysfunkcją mięśnia sercowego zażycie AB-CHMINACA o potencjalnym działaniu kardiotoxycznym mogło pogłębić proces infekcyjnego zapalenia wsierdzia na niedomykalnej dwupłatkowej zastawce aortalnej, prowadząc do nagłego zatrzymania krążenia w mechanizmie asystolii.

AB-CHMINACA is detected in living individuals across a very wide range of concentrations, which may be attributed to the fact that users buy products with varying content of the active ingredient. This fact can also be a direct cause of poisoning with “legal highs”. The wide range of concentrations noted for AB-CHMINACA may also be due to the development of tolerance in people who use NSP regularly and, therefore, tend to take higher doses of AB-CHMINACA. Higher blood concentrations of AB-CHMINACA noted in clinical situations, compared to cases of fatal poisoning, may be caused by post-mortem redistribution of AB-CHMINACA in the body [12].

The use of synthetic cannabinoids, such as AB-CHMINACA, can result in unpredictable health effects, often leading to death in healthy individuals. A number of publications have indicated a link between the use of marijuana and/or synthetic cannabinoids and multiple severe adverse reactions affecting the cardiovascular system including stroke, myocardial infarction, cardiomyopathy, arrhythmia or cardiac arrest [6]. Also, AB-CHMINACA has been reported to cause a range of cardiovascular symptoms including tachycardia, bradycardia, and hypotension. Furthermore, no correlation has been found between the serum concentration of AB-CHMINACA and the severity of poisoning [15]. Consequently, even a small dose of AB-CHMINACA may trigger severe adverse reactions.

It cannot be ruled out that in the discussed case of a man with myocardial dysfunction, the ingestion of AB-CHMINACA, which has potentially cardiotoxic effects, might have aggravated the process of infective endocarditis on the insufficient bicuspid aortic valve, ultimately leading to sudden cardiac arrest due to asystole.

The authors declare no conflict of interest.
5. Showalter VM, Compton DR, Martin BR, Abood ME. Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands. J Pharmacol Exp Ther 1996; 278: 989-999.
6. Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2018; 15: 151-166.
7. Hermanns-Clausen M, Kneisel S, Szabo B, Auwärter V. Acute toxicity due to the confirmed consumption of synthetic cannabinoids: clinical and laboratory findings. Addiction 2013; 108: 534-544.
8. Namera A, Kawamura M, Nakamoto A, Saito T, Naga M. Comprehensive review of the detection methods for synthetic cannabinoids and cathinones. Forensic Toxicol 2015; 33: 175-194.
9. Spinelli E, Barnes AJ, Young S, Castaneto MS, Martin TM, Klette KL, Huestis MA. Performance characteristics of an ELISA screening assay for urinary synthetic cannabinoids. Drug Test Anal 2015; 7: 467-474.
10. Tyndall JA, Gerona R, De Portu G, et al. An outbreak of acute delirium from exposure to the synthetic cannabinoid AB-CHMINACA. Clin Toxicol (Phila) 2015; 53: 950-956.
11. Peterson BL, Couper FJ. Concentrations of AB-CHMINACA and AB-PINACA and Driving Behavior in Suspected Impaired Driving Cases. J Anal Toxicol 2015; 39: 642-647.
12. Hasegawa K, Wurita A, Minakata K, Gonmori K, Nozawa H, Yamagishi I, Watanabe K, Suzuki O. Postmortem distribution of AB-CHMINACA, 5-fluoro-AMB, and diphenidine in body fluids and solid tissues in a fatal poisoning case: usefulness of adipose tissue for detection of the drugs in unchanged forms. Forensic Toxicol 2015; 33: 45-53.
13. Gieroń J, Adamowicz P. Fatal poisoning with the synthetic cannabinoid AB-CHMINACA and ethyl alcohol – a case study and literature review. Probl Forensic Sci 2016; 106: 482-495.
14. Angerer V, Jacobi S, Franz F, Auwärter V, Pietsch J. Three fatalities associated with the synthetic cannabinoids 5F-ADB, 5F-PB-22, and AB-CHMINACA. Forensic Sci Int 2017; 281: 9-15.
15. Hermanns-Clausen M, Müller D, Kithinji J, et al. Acute side effects after consumption of the new synthetic cannabinoids AB-CHMINACA and MDMB-CHMICA. Clin Toxicol 2018; 56: 404-411.

Adres do korespondencji
Agnieszka Romaniuczek
Katedra i Zakład Medycyny Sądowej
Collegium Medicum Uniwersytetu Jagiellońskiego
ul. Grzegórzecka 16
31-531 Kraków, Poland
e-mail: agnieszka.romanczuk@uj.edu.pl

Address for correspondence
Agnieszka Romaniuczek
Chair and Department of Forensic Medicine
Jagiellonian University Medical College
16 Grzegórzecka St.
31-531 Kraków, Poland
e-mail: agnieszka.romanczuk@uj.edu.pl

Nadesłano: 21.12.2018
Zaakceptowano: 1.02.2019