A Carleman estimate for infinite cylindrical quantum domains and the application to inverse problems

Yavar Kian1, Quang Sang Phan2 and Eric Soccorsi1

1 CPT, CNRS UMR 7332, Université d’Aix-Marseille, F-13288 Marseille, France and Université de Toulon, F-83957 La Garde, France
2 Faculty of Mathematics and Computer Science, Institute of Mathematics, Jagiellonian University, 30-348 Kraków, Poland

E-mail: yavar.kian@univ-amu.fr., Quang.Sang.Phan@im.uj.edu.pl. and eric.soccorsi@univ-amu.fr.

Received 24 November 2013, revised 7 March 2014
Accepted for publication 12 March 2014
Published 1 May 2014

Abstract
We consider the inverse problem of determining the time-independent scalar potential \(q \) of the dynamic Schrödinger equation in an infinite cylindrical domain \(\Omega \), from one Neumann boundary observation of the solution. Assuming that \(q \) is known outside some fixed compact subset of \(\Omega \), we prove that \(q \) may be Lipschitz stably retrieved by choosing the Dirichlet boundary condition of the system suitably. Since the proof is by means of a global Carleman estimate designed specifically for the Schrödinger operator acting in an unbounded cylindrical domain, the measurement of the Neumann data is performed on an infinitely extended subboundary of the cylinder.

Keywords: inverse problem, Schrödinger equation, Carleman estimate, scalar potential, infinite cylindrical domain

1. Introduction

1.1. What we are aiming for

In the present paper we consider the infinite cylindrical domain \(\Omega = \omega \times \mathbb{R} \), where \(\omega \) is a connected bounded open subset of \(\mathbb{R}^{n-1} \), \(n \geq 2 \), with \(C^2 \) boundary \(\partial \omega \). Given \(T > 0 \) we examine the following initial-boundary value problem

\[
\begin{align*}
-\text{i}u' - \Delta u + q(x)u &= 0, & \text{in} & & Q := (0, T) \times \Omega, \\
u(0, x) &= u_0(x), & x & \in \Omega, \\
u(t, x) &= g(t, x), & (t, x) & \in \Sigma := (0, T) \times \Gamma,
\end{align*}
\]

(1.1)
where $\Gamma := \partial \Omega \times \mathbb{R}$ and the prime stands for $\frac{\partial}{\partial n}$. Here u_0 (resp., g) is the initial (resp., boundary) condition associated with (1.1) and q is a function of $x \in \Omega$ only.

Since Γ is unbounded, we make the boundary condition in the last line of (1.1) more precise. Writing $x := (x', x_n)$ with $x' := (x_1, \ldots, x_{n-1}) \in \omega$ for every $x \in \Omega$, we extend the mapping

\[C_0^\infty((0, T) \times \mathbb{R}; H^2(\omega)) \rightarrow L^2((0, T) \times \mathbb{R}; H^{3/2}(\partial \omega)) \]

\[v \mapsto [(t, x_n) \in (0, T) \times \mathbb{R} \mapsto v(t, \cdot, x_n)|_{\partial \omega}], \tag{1.2} \]

to a bounded operator from $L^2((0, T) \times \mathbb{R}; H^2(\omega))$ to $L^2((0, T) \times \mathbb{R}; H^{3/2}(\partial \omega))$, denoted by γ_0. Then for every $u \in C^0([0, T]; H^2(\Omega))$ the above mentioned boundary condition reads $\gamma_0 u = g$.

The main purpose of this article is to extend [3, theorem 1], obtained for the dynamic Schrödinger operator in a bounded domain, to the case of the unbounded waveguide Ω—that is to say, to prove Lipschitz stability in the determination of the scalar potential q (assumed to be known outside some fixed compact subset of Ω) from one boundary measurement of the normal derivative of the solution u to (1.1).

The method of derivation of [3, theorem 1] is by means of a Carleman estimate for the Schrödinger equation, which was established in [3, proposition] for a bounded domain. Since the unknown part of q is compactly supported, it seems at first sight quite reasonable to guess that this question (arising from the problem of evaluating the electrostatic quantum disorder in nanotubes; see subsection 1.2 below) could well be answered by adapting the above technique to some suitable truncation (for some bounded domain of \mathbb{R}^n) of u. Nevertheless we shall prove that such a strategy necessarily adds unexpected ‘control’ terms (i.e. ‘volume observations’ of the solution) in the right-hand side of the corresponding stability inequality, and is therefore inaccurate.

It turns out that this inconvenience can be avoided by substituting some specifically designed Carleman estimate for the Schrödinger equation in an unbounded cylindrical domain for that of [3, proposition 3]. This new global Carleman inequality, established in proposition 3.3, is the main novelty of this paper, as it is the main tool for generalizing the Lipschitz stability inequality of [3, theorem 1] to the unbounded domain Ω under consideration.

It is worth noticing that the field of applications of proposition 3.3 goes beyond the study of inverse compactly supported quantum scalar coefficient PDE problems examined in this framework. As a matter of fact, we prove with the aid of proposition 3.3, in a companion article [22], that scalar potentials which are not necessarily known outside some given compact subset of Ω may nevertheless be H"older stably retrieved from one boundary measurement of the normal derivative of u'.

Finally, let us mention that the Lipschitz stability estimate [3, theorem 1] was established under the additional technical assumption that both u and u' are time square-integrable bounded functions of the space variables. As we aim to generalize this result to the case of the unbounded domain Ω, we do the same here by supposing (1.6). Nevertheless we stress that sufficient conditions on q and the initial state u_0 (which are not detailed in this text in order to avoid excessive size of the paper) ensuring assumption (1.6) can be found in [22, theorem 1.1].

1.2. Physical motivation: estimating the electrostatic quantum disorder in nanotubes

The equations in (1.1) describe the evolution of the wavefunction of a charged particle (in a ‘natural’ system of units where the various physical constants such as the mass and the electric charge of the particle are taken equal to 1), under the influence of the ‘electric’ potential q. Moreover, the quantum motion of this particle is constrained by the waveguide Ω.

2
Carbon nanotubes exhibit unusual physical properties, which are valuable for electronics, optics and other fields of materials science and technology. These peculiar nanostructures have a length-to-diameter ratio up to $10^6/1$. This explains why they may be rightfully modeled by infinite cylindrical domains such as Ω. Unfortunately their physical properties are commonly affected by the inevitable presence of electrostatic quantum disorder; see e.g. [11, 20]. This motivates a closer look into the inverse problem of estimating the strength of the ‘electric impurity potential’ q from the (partial) knowledge of the wavefunction u.

1.3. Existing papers

There is a wide mathematical literature dealing with uniqueness and stability in inverse coefficient problems related to partial differential equations; see e.g. [4, 7, 14, 17, 18, 23]. For the stationary (elliptic) Schrödinger equation, Bukhgeim and Uhlmann proved in [9] that the knowledge of the Dirichlet to Neumann (DN) map measured on some part of the boundary determines the potential uniquely. For dimension $n \geq 3$, this result was improved by Kenig, Sjöstrand and Uhlmann in [21] and Tzou proved in [27] that the electric potential (together with the magnetic field) depends stably on the Cauchy data even when the boundary measurement is taken only on a subset that is slightly larger than half of the boundary. Their method is essentially based on the construction of a rich set of ‘geometric optics solutions’ to the Dirichlet problem. In these three papers, the knowledge of the DN map, from taking infinitely many boundary measurements of the solution to the Schrödinger equation, is actually required.

The problem of stability in determining the time-independent electric potential in the dynamic Schrödinger equation from a single boundary measurement was treated by Baudouin and Puel in [3]. This result was improved by Mercado, Osses and Rosier in [26]. In these two papers, the main assumption is that the part of the boundary where the measurement is made satisfies a geometric condition related to a geometric optics condition insuring observability (see Bardos et al [2]). This geometric condition was relaxed in [5] under the assumption that the potential is known near the boundary.

In all of the above mentioned articles the Schrödinger equation is defined in a bounded domain. In the present paper we instead investigate the problem of determining the scalar potential of the Schrödinger equation in an infinite cylindrical domain. There are only a few mathematical papers dealing with inverse boundary value problems in an unbounded domain available in the mathematical literature. In [25], Li and Uhlmann prove uniqueness in the determination of the scalar potential in an infinite slab from a partial DN map. In [10], Cardoulis, Cristofol and Gaitan obtain Lipschitz stability from a single lateral measurement performed on one side of an unbounded strip.

More specifically, for an inverse boundary value problem stated in the waveguide geometry examined in this work, we refer the reader to [12, 13] where stability is claimed for various coefficients of the Schrödinger equation from the knowledge of the DN map. Here we investigate problems of the same type, but in the absence of any information given by the DN map, by a method based on an appropriate Carleman estimate. We refer the reader to [1, 3, 27] for actual examples of inequalities of this type designed for the Schrödinger equation. The original idea of using a Carleman estimate to solve inverse problems goes back to the pioneering article [8] by Bukhgeim and Klibanov. Since then, this technique has been widely and successfully used by numerous authors (see e.g. [3, 4, 6, 7, 12, 15, 16, 19, 23, 26]) in the study of inverse wave propagation, elasticity or parabolic problems. The most recent survey about this method can be found in [24].
1.4. The main results

In this section we state the main results of this article and briefly comment on them.

For \(M > 0 \) and \(p \in W^{2,\infty}(\Omega) \) fixed, we define the set of ‘admissible scalar potentials’ as
\[
Q_M(p) := \{ q \in W^{2,\infty}(\Omega; \mathbb{R}) \mid \|q\|_{W^{2,\infty}(\Omega)} \leq M \text{ and } q(x) = p(x) \text{ for a.e. } x \in \Gamma \}.
\]
Here the identity \(q|_{\Gamma} = p|_{\Gamma} \) is understood in the sense of the usual trace operator from \(L^\infty(\mathbb{R}, H^2(\omega)) \) to \(L^\infty(\mathbb{R}, H^{3/2}(\partial\omega)) \). By selecting \(q \in Q_M(p) \) we thus require a fixed value \(q \) on the boundary, which is the measurement on \(\Gamma \) of the scalar potential that we want to determine. Similar (or stronger) ‘compatibility conditions’ imposed on inverse problem coefficients have already been used in various contexts; see e.g. [5, 6, 14].

We are concerned with the issue of stability around any \(q_1 \in Q_M(p) \), i.e. we want to upper bound the \(L^2 \) norm of \(q_1 - q_2 \) by some increasing function of the difference \(u_1 - u_2 \); that is to say that \(q_2 \in Q_M(p) \) and the solution \(u_j \), for \(j = 1, 2 \), to (1.1), where \(q_j \) is substituted for \(q \), are known, while \(q_1 \) is unknown.

Theorem 1.1. For \(p \in W^{2,\infty}(\Omega) \), \(M > 0 \), \(\ell > 0 \) and \(\alpha > 0 \) fixed, let \(u_0 \in H^4(\Omega; \mathbb{R}) \) obey
\[
\|u_0(x)\| \geq \alpha > 0, \quad x \in \omega \times (\ell, \ell),
\]
let \(q_j \in Q_M(p) \), \(j = 1, 2 \), fulfill
\[
q_j(x) = q_j(x), \quad x \in \omega \times (\mathbb{R} \setminus (\ell, \ell)),
\]
and let \(u_j \) denote the \(C^{1}[0, T]; H^2(\Omega) \cap H^4_0(\Omega)) \cap C^2([0, T]; L^2(\Omega)) \)-solution to (1.1) associated with \(u_0 \), \(g = \gamma_0 G \) and \(q_j \), where
\[
G(t, x) := u_0(x) + it(\Delta - p)u_0(x), \quad (t, x) \in Q.
\]
Assume that
\[
u_2 \in H^1(0, T; L^\infty(\Omega)).
\]
Then for every \(L > \ell \), there exist \(\Gamma_* \subset \partial\omega \times (-L, L) \) and a constant \(C > 0 \) depending only on \(L, T, M, \omega \) and \(\Gamma_* \) such that we have
\[
\|q_1 - q_2\|_{L^2(\Omega)} \leq C\|\partial_x(u_1' - u_2')\|_{L^2((0, T) \times \Gamma_*)} + \|u_1 - u_2\|_{H^1([0, T]; H^1(\omega \times S_L))},
\]
with \(S_L := (-L, -\ell) \cup (\ell, L) \).

Moreover there is a subboundary \(\gamma_* \subset \partial\omega \) such that the estimate
\[
\|q_1 - q_2\|_{L^2(\Omega)} \leq C\|\partial_x u_1' - \partial_x u_2'\|_{L^2((0, T) \times \gamma_* \times \mathbb{R})}
\]
holds for some positive constant \(C \) depending only on \(\ell, T, M, \omega \) and \(\gamma_* \).

Under the prescribed conditions (1.3)–(1.5) and assumption (1.6), the first statement (1.7) of theorem 1.1 claims Lipschitz stability in the determination of the scalar potential appearing in the dynamic Schrödinger equation in \(\Omega \) from two different observations of the solution \(u \) to (1.1).

- The first one is a lateral measurement on some subboundary of \(\partial\omega \times (-L, L) \) of the normal derivative
 \[
 \partial_n u(t, x) := \nabla u(t, x) \cdot v(x), \quad (t, x) \in \Sigma,
 \]
 where \(v \) is the outward unit vector normal to \(\Gamma \). Since
 \[
 v(x) = v(x') = \begin{pmatrix} v'(x') \\ 0 \end{pmatrix}, \quad x = (x', x_n) \in \Gamma,
 \]
 where \(v'(x') \in \mathbb{R}^{n-1} \) denotes the outgoing vector normal to \(\partial\omega \) computed at \(x' \), we notice that
 \[
 \partial_n u(t, x) = \partial_n u(t, x) := \nabla_x u(t, x) \cdot v'(x'), \quad (t, x) = (t, x', x_n) \in \Sigma,
 \]
 where \(\nabla_x \) stands for the gradient operator w.r.t. \(x' \in \omega \).
• The second observation is an internal measurement of u which is performed for each of the two ‘slices’ $S_L^- := \omega \times (-L, -\ell)$ and $S_L^+ := \omega \times (\ell, L)$ of Ω. Although the \mathbb{R}^n-Lebesgue measure of S_L^\pm can be made arbitrarily small by taking L sufficiently close to ℓ, this ‘volume observation’ cannot be removed from the right-hand side of (1.7) by taking L asymptotically close to ℓ since the prefactor (i.e. the constant C) tends to infinity as L goes to ℓ.

The occurrence of this internal measurement of u in (1.7) is due to the unbounded geometry of Ω. More precisely, this is a direct consequence of the technique used for the derivation of the stability inequality (1.7), which is by means of a global Carleman estimate known to be valid in a bounded domain of \mathbb{R}^n—a fact that follows from assumption (1.4), expressing that the scalar potential to be retrieved is known outside some fixed bounded set.

One way to get rid of both volume observations simultaneously is to use a global Carleman estimate specifically designed for the unbounded quantum waveguide Ω, which is stated in proposition 3.3. This yields (1.8), implying that the electrostatic quantum potential is now Lipschitz stably retrieved in Ω from only one lateral measurement of the normal derivative $\partial_\nu u$ on some subboundary of Σ. This result is similar to the one obtained for a bounded domain (under the same assumption as (1.6)) by Baudouin and Puel; see [3, theorem 1]. It should nevertheless be noticed that, in contrast to the case for (1.7), and despite the fact that the scalar potential being identified is assumed to be known outside a compact set, the measurement of Neumann data required in the right-hand side of (1.8) is on an infinitely extended subboundary of Σ.

Finally, it is worth mentioning that theorem 1.1 applies for a wide class of subboundaries Γ_*. Indeed, given a C^2-domain \mathcal{O} in \mathbb{R}^n obeying
\[
\omega \times (-\ell, \ell) \subset \mathcal{O} \subset \omega \times (-L, L),
\] (1.11)
then this is the case for any $\Gamma_* \supset \{x \in \partial \mathcal{O}, \ (x - x_0) \cdot v_\mathcal{O}(x) \geq 0\} \cap \partial \omega \times (-L, L)$, where $v_\mathcal{O}$ is the outward unit vector normal to $\partial \mathcal{O}$ and x_0 is arbitrary in $\mathbb{R}^n \setminus \mathcal{O}$. The same remark holds true for $\gamma_* \supset \{x' \in \partial \omega, \ (x' - x'_0) \cdot v'(x') \geq 0\}$, where x'_0 is arbitrarily fixed in $\mathbb{R}^{n-1} \setminus \overline{\omega}$.

Theorem 1.1 immediately entails the following uniqueness result.

Corollary 1.2. Under the conditions of theorem 1.1, it holds true for all $q_j \in Q_{M}(p)$, $j = 1, 2$, that either the assumption
\[
\begin{align*}
\partial_\nu u'_j(t, x) &= \partial_\nu u'_j(t, x) \quad &\text{for a.e.} \quad (t, x) \in (0, T) \times \Gamma_* \\
u_1(t, x) &= u_2(t, x) \quad &\text{for a.e.} \quad (t, x) \in (0, T) \times \omega \times S_L,
\end{align*}
\] (1.12)
or the assumption
\[
\partial_\nu u'_1(t, x) = \partial_\nu u'_2(t, x) \quad &\text{for a.e.} \quad (t, x) \in (0, T) \times \gamma_* \times \mathbb{R}.
\] (1.13)
yields $q_1 = q_2$.

It turns out that corollary 1.2 may actually be deduced from known results. Indeed, assuming (1.12), we have $u_1 = u_2$ on $(0, T) \times \partial \mathcal{O}$, where \mathcal{O} is the same as in (1.11), since u_1 coincides with u_2 on Σ, and
\[
\partial_\nu u'_1(t, x) = \partial_\nu u'_2(t, x), \quad (t, x) \in (0, T) \times \Gamma,
\] (1.14)
for any \(\tilde{\Gamma} \) obeying \(\{ x \in \partial O, \ (x - x_0) \cdot \nu_\partial O(x) \geq 0 \} \subset \tilde{\Gamma} \subset \Gamma_\ast \cup (\partial O \cap S_L) \). Hence the restriction of \(u_j, j = 1, 2, \) to \((0, T) \times O \) is the solution to the following boundary value problem:

\[
\begin{aligned}
-iv' - \Delta u_j + q_j(x)u_j &= 0, & & \text{in } (0, T) \times O, \\
u_j(0, x) &= u_0(x), & & x \in O, \\
u_j(t, x) &= \tilde{g}(t, x), & & (t, x) \in (0, T) \times \partial O,
\end{aligned}
\]

where \(\tilde{g} \) is a function that coincides with \(g \) on \((0, T) \times \partial \omega \times (-\ell, \ell) \). Thus, applying [3, theorem 1], we deduce from (1.14) that \(q_1(x) = q_2(x) \) for a.e. \(x \in O \), which entails \(q_1 = q_2 \) in \(\Omega_1 \) by (1.4).

Quite similarly we may derive uniqueness from (1.4) and (1.13) by means of the unique continuation [5, lemma 2.1] of the solution to the Schrödinger equation. Moreover the same remark applies for the unique continuation result [28, theorem 1.2] as well, which was obtained from a Carleman estimate for the Schrödinger equation with quadratic weights, which are used neither in [3, 5] nor in this paper.

Anyway, we stress that the main purpose of this article is addressing the issue of stability in the inverse problem of determining the scalar potential of the Schrödinger equation in an unbounded cylindrical domain, which, as far as we know, cannot be treated by means of existing results.

1.5. Outline

The paper is organized as follows. Section 2 deals with the direct problem associated with (1.1). Namely subsection 2.1 gathers existence and uniqueness results for the solution to the dynamic Schrödinger equation in the infinite domain \(\Omega \) and subsection 2.2 is devoted to the study of the direct problem for the linearized system associated with (1.1). In subsection 2.3 the corresponding solution is suitably extended to a function of \([-T, T] \times \Omega \) which is continuous with respect to the time variable \(t \). This is required by the method used in the proof of the stability inequalities (1.7) and (1.8), the presentation of which is the purpose of section 4—it is by means of the global Carleman estimate for the Schrödinger equation in a bounded domain (resp., in an unbounded waveguide) stated in proposition 3.2 (resp., proposition 3.3) for (1.7) (resp., for (1.8)). Finally section 4 contains the completion of the proof of (1.7)-(1.8).

2. The analysis of the direct problem

In this section we establish some existence, uniqueness and regularity properties of the solution to (1.1) needed for the analysis of the inverse problem in section 3.

2.1. Existence and uniqueness results

This subsection gathers two existence and uniqueness results for (1.1). We start by recalling from [13, proposition 2.1] the following:

Proposition 2.1. Let \(M > 0 \). Then for all \(q \in Q_M, v_0 \in H^1_0(\Omega) \cap H^2(\Omega) \) and \(f \in W^{1,1}((0, T); L^2(\Omega)), \) there exists a unique solution \(v \in Z_0 := C([0, T]; H^1_0(\Omega) \cap H^2(\Omega)) \cap C^1([0, T]; L^2(\Omega)) \) to the boundary value problem

\[
\begin{aligned}
-iv' - \Delta v +qv &= f, & & \text{in } Q, \\
v(0, x) &= v_0, & & x \in \Omega, \\
v(t, x) &= 0, & & (t, x) \in \Sigma.
\end{aligned}
\]
Moreover we have
\[\|v\|_{X_0} \leq C(\|v_0\|_{H^2(\Omega)} + \|f\|_{W^{1,0}(\Omega)}), \]
for some constant \(C > 0 \) depending only on \(\omega, T \) and \(M \).

Let the space
\[\mathcal{E}_0 := \gamma_0(W^{2,2}(0, T; H^2(\Omega))), \]
be equipped with the following quotient norm:
\[\|g\|_{\mathcal{X}_0} = \inf \{\|G\|_{W^{2,2}(0, T; H^2(\Omega))}; \, G \in W^{2,2}(0, T; H^2(\Omega)) \text{ satisfies } \gamma_0 G = g\}. \]

Evidently, each \(g \in \mathcal{E}_0 \) admits an extension \(G_0 \in W^{2,2}(0, T; H^2(\Omega)) \) verifying
\[\|G_0\|_{W^{1,0}(0, T; H^2(\Omega))} \leq 2\|g\|_{\mathcal{X}_0}. \]

Further, put
\[\mathcal{E} := \{(u_0, g) \in H^2(\Omega) \times \mathcal{E}_0; \, u_0 = g(0, \cdot) \text{ on } \Gamma\}. \]

Then, setting \(u = v + G_0 \), where \(v \) is defined by proposition 2.1 for \(f = i\partial G_0 + \Delta G_0 - qG_0 \) and \(v_0 = u_0 - G_0(0, \cdot) \), we obtain the following existence and uniqueness result, which is similar to [13, corollary 2.1].

Theorem 2.2. Let \(M > 0 \). Then for all \(q \in Q_0 \) and all \((u_0, g) \in \mathcal{E} \) there exists a unique solution \(u \in Z := C([0, T]; H^2(\Omega)) \cap C^1([0, T]; L^2(\Omega)) \) to the boundary value problem (1.1). Moreover we have the following estimate:
\[\|u\|_Z \leq C(\|u_0\|_{H^2(\Omega)} + \|g\|_{\mathcal{X}_0}), \]
where \(C \) is some positive constant depending only on \(\omega, T \) and \(M \).

2.2. The linearized problem

In this subsection we establish some useful regularity properties of the solution to the linearized problem associated with (1.1) by applying the existence and uniqueness results stated in subsection 2.1.

To this end, we let \(p, M, q_j, j = 1, 2, u_0, g \) and \(G \) be the same as in theorem 1.1. Since \(G \in W^{2,2}(0, T; H^2(\Omega)) \) and \(g(0, \cdot) = u_0 \) on \(\Gamma \), we have \((u_0, g) \in \mathcal{E}\). Applying theorem 2.2, there is thus a unique solution \(u_j \in Z, j = 1, 2, \) to the following system:
\[
\begin{align*}
-\Delta u_j + q_j(x)u_j &= 0, & & \text{in } Q, \\
u_j(0, x) &= u_0(x), & & x \in \Omega, \\
u_j(t, x) &= g(t, x), & & (t, x) \in \Sigma.
\end{align*}
\]

(2.4)

Further, differentiating (2.4) with respect to \(t \) for \(j = 2 \), we obtain that \(u'_2 \) is a solution to the boundary value problem
\[
\begin{align*}
-\Delta u'_2 + q_2(x)u'_2 &= 0, & & \text{in } Q, \\
u'_2(0, x) &= \tilde{u}_0(x), & & x \in \Omega, \\
u'_2(t, x) &= g'(t, x), & & (t, x) \in \Sigma,
\end{align*}
\]

(2.5)

where \(\tilde{u}_0 := i(\Delta - q_2)u_0 \). Since \(G'(t, x) = i(\Delta - p)(x) \) for a.e. \((t, x) \in Q\) by (1.5), we then have \(G' \in W^{2,2}(0, T; H^2(\Omega)) \) and we get \(g'(0, x) = \tilde{u}_0(x) \) for a.e. \(x \in \Gamma \) from the identity \(q_2 = p \) on \(\Gamma \). Consequently \((\tilde{u}_0, g') \in \mathcal{E}'\). Therefore \(u'_2 \in Z \) from (2.5) and theorem 2.2. As a consequence we have
\[u_2 \in C([0, T]; H^2(\Omega)) \cap C^2([0, T]; L^2(\Omega)). \]
Moreover, it follows from (2.4) that \(u := u_1 - u_2 \) is a solution to the linearized system

\[
\begin{aligned}
-iu' - \Delta u + q_1 u &= f', & \text{in } Q, \\
u(0, x) = 0, & \quad x \in \Omega, \\
u(t, x) = 0, & \quad (t, x) \in \Sigma,
\end{aligned}
\]

(2.6)

with \(f := (q_2 - q_1)u_2 \). Since \(u_2 \in Z \) and \(q_1 - q_2 \in L^\infty(\Omega) \), then \(f \in W^{1,1}(0, T; L^2(\Omega)) \), so we find that \(u \in Z_0 \) by proposition 2.1.

Last, we deduce from (2.6) that \(v := u' \) satisfies

\[
\begin{aligned}
-iu' - \Delta u + q_1 v &= f', & \text{in } Q, \\
v(0, x) &= i(q_2 - q_1)(x)u_0(x), & \quad x \in \Omega, \\
v(t, x) = 0, & \quad (t, x) \in \Sigma,
\end{aligned}
\]

(2.7)

with \(f' := (q_2 - q_1)u_2' \in W^{1,1}(0, T; L^2(\Omega)) \). Since \(q_1 = q_2 \) on \(\Gamma \) we get that \(i(q_2 - q_1)u_0 \in H_0^1(\Omega) \cap H^2(\Omega) \). Therefore \(v = u_1' - u_2' \in Z_0 \) by proposition 2.1. Bearing in mind that \(u_2' \in Z \), we deduce from this that \(u_1' \in Z \). Summing up, we have obtained that

\[u_j \in C^1([0, T]; H^2(\Omega)) \cap C^2([0, T]; L^2(\Omega)), \quad j = 1, 2. \]

2.3. Time symmetrization

This subsection is devoted to showing that the solution \(v \in Z_0 \) to (2.7) may be extended to a solution of the same system over the time span \([-T, T]\).

To this end we extend \(v \) (resp., \(f' \)) to \((-T, 0) \times \Omega \) by setting \(v(t, x) := -v(-t, x) \) (resp., \(f'(t, x) := -f'(-t, x) \)) for \((t, x) \in (-T, 0) \times \Omega\). Since the initial conditions \(v(0, \cdot) \) and \(f'(0, \cdot) \) are purely complex valued according to (2.7), the mappings \(t \mapsto v(t, x) \) and \(t \mapsto f'(t, x) \) are thus continuous at \(t = 0 \) for a.e. \(x \in \Omega \). Therefore, we have

\[v \in C^0((-T, T); H_0^1(\Omega) \cap H^2(\Omega)) \cap C^1((-T, T); L^2(\Omega)) \text{ and } f' \in W^{1,1}((-T, T; L^2(\Omega)). \]

Moreover \(v \) is a solution to (2.7) over the whole time span \((-T, T):\)

\[
\begin{aligned}
-iu' - \Delta u + q_1 v &= f', & \text{in } Q_e := (-T, T) \times \Omega, \\
v(0, x) &= i(q_2 - q_1)(x)u_0(x), & \quad x \in \Omega, \\
v(t, x) = 0, & \quad (t, x) \in \Sigma_e := (-T, T) \times \Gamma.
\end{aligned}
\]

(2.8)

3. The Carleman estimate for the dynamic Schrödinger operator

The main purpose of this section is to derive a global Carleman estimate for the Schrödinger operator in an unbounded cylindrical domain \(\Omega \times \mathbb{R} \), where \(\Omega \) is a bounded domain of \(\mathbb{R}^m \), \(m \geq 1 \), from the same kinds of results as were obtained for \(\Omega \) by Baudouin and Puel in [3, proposition 3].

3.1. What is known for a bounded domain

Given an arbitrary bounded domain \(\Omega \subset \mathbb{R}^m \) with \(C^1 \) boundary, we consider the Schrödinger operator acting in \((C_0^\infty(\Omega))^\prime((-T, T) \times \Omega) \),

\[L_m := -i\partial_t - \Delta, \]

(3.1)

where \(\Delta \) denotes the Laplacian in \(\Omega \). Here we use the subscript \(m \) to emphasize the fact that the operator \(L_m \) acts in a subdomain of \((-T, T) \times \mathbb{R}^m \).

Next we introduce a function \(\beta \in C^2(\overline{\Omega}; \mathbb{R}_+) \) and an open subset \(\Gamma_\Omega \) of \(\partial\Omega \), satisfying the following conditions:
Assumption 3.1.

(i) \exists C_0 > 0 such that the estimate \(|\nabla \beta(x)| \geq C_0\) holds for all \(x \in \Omega\);
(ii) \(\partial_m \beta(x) := \nabla \beta(x) \cdot v(x) < 0\) for all \(x \in \partial \Omega \setminus \Gamma_{\partial} \), where \(v\) is the outward unit vector normal to \(\partial \Omega\);
(iii) \(\exists \Lambda_1 > 0\) and \(\exists \epsilon > 0\) such that we have \(\lambda |\nabla \beta(x) \cdot \xi|^2 + D^2 \beta(x, \xi) \geq \epsilon |\xi|^2\) for all \(\xi \in \mathbb{R}^m, x \in \Omega\) and \(\lambda > \Lambda_1\), where \(D^2 \beta(x) := (\partial^2 \beta_{i,j}(x))_{i,j=1}^{m+1}\) and \(D^2 \beta(x, \xi)\) denotes the \(\mathbb{R}^m\)-scalar product of \(D^2 \beta(x)\) with \(\xi\).

Notice that there are actual functions \(\beta\) verifying assumption 3.1, such as \(\Omega \ni x \mapsto |x - x_0|^2\), where \(x_0\) is arbitrary in \(\mathbb{R}^m \setminus \overline{\Omega}\) and \(\Gamma_{\partial} \supset \{x \in \partial \Omega, (x - x_0) \cdot v(x) \geq 0\}\).

Further we put \(\beta := \tilde{\beta} + K\), where \(K := r \|\tilde{\beta}\|_\infty\) for some \(r > 1\), (3.2) and define the following two weight functions for \(\lambda > 0\):

\[
\varphi(t, x) := \frac{\omega^{2\beta(t)}}{(T + t)(T - t)} \quad \text{and} \quad \eta(t, x) := \frac{\omega^{2\beta(t)} - \omega^2(t)}{(T + t)(T - t)}, (t, x) \in (-T, T) \times \Omega.
\]

Finally, for all \(s > 0\) we introduce the following two operators acting in \((\mathbb{C}_0^\infty)^\prime((-T, T) \times \Omega)\):

\[
M_{1,m} := i \partial_t + \Delta + s^2 |\nabla \eta|^2 \quad \text{and} \quad M_{2,m} := is \nabla \eta \cdot \nabla + s(\Delta \eta).
\]

It is easily seen that \(M_{1,m}\) (resp., \(M_{2,m}\)) is the adjoint (resp., skew-adjoint) part of the operator \(e^{-s\eta} L_{e^{-\eta}}\), where \(L_{e^{-\eta}}\) is given by (3.1).

Having said that, we may now state the following global Carleman estimate, borrowed from [3, proposition 3], which is the main tool for the proof of theorem 1.1.

Proposition 3.2. Let \(\beta\) be given by (3.2), where \(\tilde{\beta} \in C^1(\overline{\Omega}; \mathbb{R}_+)^\prime\) fulfils assumption 3.1, let \(\varphi\) and \(\eta\) be as in (3.3), and let \(L_m, M_{1,m}\) and \(M_{2,m}\) be defined by (3.1)–(3.4). Then we may find \(s_0 > 0\) and constant \(C > 0\), depending only on \(T, \Omega\) and \(\Gamma_{\partial}\), such that the estimate

\[
s \|e^{-s\eta} \nabla w\|_{L^2((-T, T) \times \Omega)}^2 + s^3 \|e^{-s\eta} w\|_{L^2((-T, T) \times \Omega)}^2 + \sum_{j=1,2} \|M_{j,m} e^{-s\eta} w\|_{L^2((-T, T) \times \Omega)}^2 \leq C \left(s \|e^{-s\eta} \varphi^{1/2} (\partial_t \beta)^{1/2} \partial_t w\|_{L^2((-T, T) \times \Gamma_{\partial})}^2 + \|e^{-s\eta} L_m w\|_{L^2((-T, T) \times \Omega)}^2 \right)
\]

holds for any real number \(s \geq s_0\) and any function \(w \in L^2((-T, T) \times \Omega)\), where \(M_{j,m} w \in L^2((-T, T) \times \Omega)\) and \(\partial_t w \in L^2((-T, T) \times \partial \Omega)\).

The proof of proposition 3.2 can be found in [3, section 2].

3.2. Extension to the case of unbounded cylindrical domains

Let \(\omega \subset \Omega := \omega \times \mathbb{R}\) be the same as in section 1. We use the same notation as in section 1 and section 2, i.e. every point \(x \in \Omega\) is written as \(x = (x', x_m)\) with \(x' = (x_1, \ldots, x_{n-1}) \in \omega\), and we define \(Q := (-T, T) \times \Omega\). We shall now derive from 3.2 a global Carleman estimate for the Schrödinger operator

\[
L_m := -i \partial_t - \Delta,
\]

acting in \((\mathbb{C}^\infty_0)^\prime((-T, T) \times \Omega)\). Here \(\Delta := \Delta_{x'} + \partial_{x_m}^2\) where \(\Delta_{x'} := \Sigma_{i=1}^{n-1} \partial_i^2\) is the Laplacian in \(\omega\), where \(\nabla_{x'}\) (resp., \(\Delta_{x'}\)) stands for the gradient (resp., the Laplacian) operator w.r.t. \(x' \in \omega\).

Proposition 3.3. For \(n \geq 2\) fixed, let \(\tilde{\beta}\) and \(\gamma_x := \Gamma_{\partial}\) obey assumption 3.1 with \(\Omega = \omega\) and \(m = n - 1\), and let \(\beta\) be given by (3.2). Extend \(\beta\) to \(\overline{\Omega} = \omega \times \mathbb{R}\) by setting \(\beta(x) = \beta(x')\) for all \(x = (x', x_m) \in \Omega\). Define \(\varphi\) and \(\eta\) (resp., the operators \(M_{j,m}\) for \(j = 1, 2\)) by (3.3) (resp.,...
We notice from (3), since \(\partial \) holds for all \(s \geq s_0 \) and any function \(v \in L^2(-T, T; H^1_0(\Omega)) \) verifying \(L_m v \in L^2(Q_s) \) and \(\partial_s v \in L^2(-T, T; L^2(\gamma_s \times \mathbb{R})) \).

Proof. Since the function \(\beta \) does not depend on the infinite variable \(x_n \), then the same is true for \(\varphi \) and \(\eta \) according to (3.3). Therefore we have

\[
M_{1,n} = i\delta + \Delta + e^2|\nabla \varphi|^2 \quad \text{and} \quad M_{2,n} = i\eta' + 2s(\nabla \varphi \cdot \nabla \varphi) + s(\Delta \eta).
\]

(3.8)

We denote by \(\mathcal{F}_{x_n} \) the partial Fourier transform with respect to \(x_n \), i.e.,

\[
(\mathcal{F}_{x_n} \psi)(x', k) = \widehat{\psi}(x', k) := \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} e^{-ikx_n} \psi(x', x_n) dx_n, \quad \psi \in L^2(\Omega), \quad x' \in \omega, \quad k \in \mathbb{R},
\]

and consider the unitary group \(U_t = e^{-|\omega|t^2} \) in \(L^2(\Omega) \), defined by

\[
U_t := \mathcal{F}_{x_n}^{-1} e^{i|\omega|t^2} \mathcal{F}_{x_n}, \quad t \in \mathbb{R},
\]

where \(\mathcal{F}_{x_n}^{-1} \) is the transform inverse to \(\mathcal{F}_{x_n} \) and \(e^{ikx_n} \) stands for the multiplier, by the corresponding complex number. Therefore we have

\[
(U_t \psi)(x) = e^{-|\omega|t^2} (\mathcal{F}_{x_n}^{-1} e^{i|\omega|t^2} \mathcal{F}_{x_n})(x), \quad \psi \in L^2(\Omega), \quad x \in \omega, \quad t \in \mathbb{R}.
\]

(3.9)

We notice from (3.9) that

\[
[i\partial_n, U_t] = \partial_n^2 U_t = U_t \partial_n^2, \quad t \in \mathbb{R},
\]

(3.10)

since \(\partial_n^2 \) commutes with \(U_t \), and that

\[
[i\partial_n, U_t] = [e^{-|\omega|}, U_t] = 0, \quad j = 1, \ldots, n - 1 \quad \text{and} \quad s, t \in \mathbb{R},
\]

(3.11)

since \(\eta \) does not depend on \(x_n \). Let us now introduce the function

\[
w(t, x) := U_t v(t, x), \quad (t, x) \in Q_\varepsilon.
\]

(3.12)

Then we have \(w(., x_n) \in L^2(-T, T; H^1_0(\omega)) \) and \(\partial_s w(\cdot, x_n) \in L^2(-T, T; L^2(\gamma_s)) \) for a.e. \(x_n \in \mathbb{R} \). Further, upon differentiating (3.12) w.r.t. \(t \), we deduce from (3.10) that

\[
i\partial_n w = U_t(i\partial_n v + \partial_n^2 v).
\]

(3.13)

This and the first commutator identity in (3.11) yield

\[
(-i\partial_n - \Delta x_n)w(t, x) = U_t L_n v(t, x), \quad (t, x) \in Q_\varepsilon,
\]

(3.14)

which entails

\[
L_{m-1} w(., x_n) = U_t L_n v(., x_n), \quad x_n \in \mathbb{R}.
\]

(3.15)

As a consequence, we have \(L_{m-1} w(., x_n) \in L^2((-T, T) \times \omega) \) for a.e. \(x_n \in \mathbb{R} \), whence

\[
s e^{-sq} \nabla w(., x_n) \|L^2((-T, T) \times \omega) + s^3 e^{-sq} w(., x_n) \|L^2((-T, T) \times \omega)
\]

\[
+ \sum_{j=1}^{12} \|M_{j,n-1} e^{-sq} w(., x_n) \|L^2((-T, T) \times \omega)
\]

\[
\leq C(s) e^{-sq} (\partial_s \beta)^{1/2} \partial_s w(., x_n) \|L^2((-T, T) \times \gamma_s)
\]

\[
+ \|e^{-sq} L_{m-1} w(., x_n) \|L^2((-T, T) \times \omega),
\]

(3.16)

for every \(s \geq s_0 \), by proposition 3.2.
The next step of the proof involves noticing from (3.11)–(3.13) that
\[
e^{-st}w(\cdot, x_n) = U_te^{-st}v(\cdot, x_n), \ e^{-st}\nabla_x w(\cdot, x_n) = U_t e^{-st}\nabla_x v(\cdot, x_n),
\]
(3.16)
and, with reference to (3.8), that
\[
M_{j,n} e^{-st}w(\cdot, x_n) = U_t M_{j,n} e^{-st}v(\cdot, x_n), \ j = 1, 2,
\]
(3.17)
for each \(t \in (-T, T) \) and a.e. \(x_n \in \mathbb{R} \). Similarly, we get
\[
e^{-st}L_{n-1}w(\cdot, x_n) = U_t e^{-st}L_nv(\cdot, x_n), \ t \in (-T, T), \ x_n \in \mathbb{R},
\]
(3.18)
by combining the second identity of (3.11) with (3.14). Finally, bearing in mind that \(\varphi \) and \(\beta \) are independent of \(x_n \), we deduce from (1.9)–(1.10) and the second part of (3.11) that
\[
e^{-st}\varphi^{1/2} (\partial_t \beta)^{1/2} \partial_x w(\cdot, x_n) = U_t e^{-st} \varphi^{1/2} (\partial_t \beta)^{1/2} \partial_x v(\cdot, x_n), \ t \in (-T, T), \ x_n \in \mathbb{R}.
\]
(3.19)
Therefore, putting (3.15)–(3.19) together, we obtain for \(s \geq s_0 \) and a.e. \(x_n \in \mathbb{R} \) that
\[
s \|U_t e^{-st}\nabla_x v(\cdot, x_n)\|^2_{L^2((-T, T) \times \Omega)} + s^3 \|U_t e^{-st}v(\cdot, x_n)\|^2_{L^2((-T, T) \times \Omega)}
\]
\[
+ \sum_{j=1,2} \|U_t M_{j,n} e^{-st}v(\cdot, x_n)\|^2_{L^2((-T, T) \times \Omega)}
\]
\[
\leq C(s \|U_t e^{-st} \varphi^{1/2} (\partial_t \beta)^{1/2} \partial_x v(\cdot, x_n)\|^2_{L^2((-T, T) \times \gamma_x)}
\]
\[
+ \|U_t e^{-st}L_nv(\cdot, x_n)\|^2_{L^2((-T, T) \times \gamma_x)}).
\]
(3.20)
Integrating the above inequality w.r.t. \(x_n \) over \(\mathbb{R} \) and taking into account that the operator \(U_t \) is isometric in \(L^2(\Omega) \) for each \(t \in (-T, T) \), we find that
\[
s \|e^{-st}\nabla_x v\|^2_{L^2(Q_s)} + s^3 \|e^{-st}v\|^2_{L^2(Q_s)} + \sum_{j=1,2} \|M_{j,n} e^{-st}v\|^2_{L^2(Q_s)}
\]
\[
\leq C \left(s \|U_t e^{-st} \varphi^{1/2} (\partial_t \beta)^{1/2} \partial_x v\|^2_{L^2((-T, T) \times \gamma_x, \mathbb{R})}
\]
\[
+ \|e^{-st}L_nv\|^2_{L^2(Q_s)} \right),
\]
(3.20)
provided \(s \geq s_0 \). Last, setting \(\Phi := e^{-st} \varphi^{1/2} (\partial_t \beta)^{1/2} \partial_x v \) and using the unitarity of the operator \(\mathcal{F}_{x_n} \) in \(L^2(\mathbb{R}) \), we derive from (3.9) that
\[
\|U_t \Phi\|^2_{L^2((-T, T) \times \gamma_x, \mathbb{R})} = \int_{-T}^T \int_{\gamma_x} \|\mathcal{F}_{x_n}^{-1} e^{ik} \mathbf{\hat{\Phi}}(t, x', \cdot)\|^2_{L^2_{x'}(\mathbb{R})} dx' \, dt
\]
\[
= \int_{-T}^T \int_{\gamma_x} \|e^{ik} \mathbf{\hat{\Phi}}(t, x', \cdot)\|^2_{L^2_{x'}(\mathbb{R})} dx' \, dt = \int_{-T}^T \int_{\gamma_x} \|\mathbf{\hat{\Phi}}(t, x', \cdot)\|^2_{L^2_{x'}(\mathbb{R})} dx' \, dt
\]
\[
= \|\Phi\|^2_{L^2((-T, T) \times \gamma_x, \mathbb{R})},
\]
so (3.7) follows immediately from this and (3.20).

4. Proof of theorem 1.1

In view of the results from section 3, we are now in a position to solve the inverse problem under study. More precisely, we apply the Bukhgeim–Klibanov method presented in [8] to prove the stability inequality (1.7) (resp., the estimate (1.8)) with the aid of proposition 3.2 (resp., proposition 3.3).
4.1. Proof of the stability inequality (1.7)

We first introduce the following notation used throughout the entire section: for all \(d > 0 \) we write \(\Omega_d := \omega \times (-d, d) \).

Fix \(L > \ell \), set \(r := (L + \ell)/2 \) and consider a domain \(\Omega \subset \mathbb{R}^d \), with the \(C^2 \) boundary \(\partial \Omega \), obeying

\[
\Omega_\ell \subset \Omega_r \subset \Omega \subset \Omega_L.
\]

We next choose \(\chi \in C^\infty_0(\mathbb{R}^d; [0, 1]) \) such that

\[
\chi(x_o) = \begin{cases} 1 & \text{if } |x_o| \leq \ell \\ 0 & \text{if } |x_o| \geq r. \end{cases}
\]

Put \(w := \chi v \), where \(v \) is the \(C^0([-T, T]; H^1_0(\Omega) \cap H^2(\Omega)) \cap C^1([-T, T]; L^2(\Omega)) \)-solution to (2.8); then the restriction \(w|_\Omega \) of \(w \) to \(\Omega \) satisfies

\[
w|_\Omega \in C^0([-T, T]; H^1_0(\Omega) \cap H^2(\Omega)) \cap C^1([-T, T]; L^2(\Omega))
\]

and is a solution to the following system:

\[
\begin{aligned}
-iv' - \Delta w + q_1 w &= \chi f' - Kv, & \text{in } (T, T) \times \Omega, \\
w(0, x) &= i \chi (q_2 - q_1)(x) u_0(x), & x \in \Omega, \\
w(t, x) &= 0, & (t, x) \in (T, T) \times \partial \Omega,
\end{aligned}
\]

(4.3)

where \(K := [\Delta, \chi] = \dot{\chi} + 2\chi \partial \chi \). Here \(\dot{\chi} \) (resp., \(\ddot{\chi} \)) is shorthand notation for the first (resp., second) derivative of \(\chi \).

As a preamble to the proof of the stability inequality (1.7), we first establish two elementary technical results.

4.1.1. Two auxiliary results.

\textbf{Lemma 4.1.} For \(s > 0 \), let \(\phi := e^{-t\eta}w \), where \(w \) is defined by (4.2)–(4.3). Then we have

\[
J := \| e^{-t\eta(0, \cdot)}w(0, \cdot) \|_{L^2(\Omega)}^2 = 2 \text{Im} \left(\int_{(-T, 0) \times \Omega} M_1 \phi \bar{\phi} \, dt \, dx \right),
\]

where \(M_1 \) stands for \(M_{1, d} \).

\textbf{Proof.} In the light of (3.2)–(3.3), it holds true that \(\lim_{t \downarrow (-T)} \eta(t, x) = +\infty \) for all \(x \in \Omega \); hence

\[
\lim_{t \downarrow (-T)} \phi(t, x) = 0.
\]

Therefore we have

\[
J = \| \phi(0, \cdot) \|_{L^2(\Omega)}^2 = \int_{(-T, 0) \times \Omega} \partial_t |\phi|^2 \, dt \, dx,
\]

from which we get that

\[
J = 2 \text{Re} \left(\int_{(-T, 0) \times \Omega} \partial_t \phi \bar{\phi} \, dt \, dx \right).
\]

(4.4)

On the other hand, (3.4) and the Green formula yield

\[
\begin{aligned}
\text{Im} & \left(\int_{(-T, 0) \times \Omega} (M_1 \phi) \bar{\phi} \, dt \, dx \right) \\
&= \text{Re} \left(\int_{(-T, 0) \times \Omega} \partial_t \phi \bar{\phi} \, dt \, dx \right) + \text{Im} \left(\int_{(-T, 0) \times \Omega} \Delta \phi \bar{\phi} \, dt \, dx + s^2 \| \nabla \eta \phi \|_{L^2((-T, 0) \times \Omega)}^2 \right) \\
&= \text{Re} \left(\int_{(-T, 0) \times \Omega} \partial_t \phi \bar{\phi} \, dt \, dx \right) + \text{Im} (\| \nabla \phi \|_{L^2((-T, 0) \times \Omega)}^2) = \text{Re} \left(\int_{(-T, 0) \times \Omega} \partial_t \phi \bar{\phi} \, dt \, dx \right),
\end{aligned}
\]

so the result follows readily from this and (4.4). \(\square \)
Lemma 4.2. Let w and J be the same as in lemma 4.1. Then we have

$$J \leq s^{-3/2} I(w), \quad s > 0,$$

where

$$I(w) := s\|e^{-\eta y\nabla} w\|_{L^2((\cdot, T) \times \Omega)}^2 + s^3 \|e^{-s w} w\|_{L^2((\cdot, T) \times \Omega)}^2 + \sum_{j=1,2} \|M_j e^{-s w} w\|_{L^2((\cdot, T) \times \Omega)},$$

(4.5)

the notation M_j, for $j = 1, 2$, being shorthand for $M_{j,n}$.

Proof. In view of lemma 4.1 and the Cauchy–Schwarz inequality, we have

$$J \leq 2\|M_1 \phi\|_{L^2((\cdot, T) \times \Omega)}^2 \|\phi\|_{L^2((\cdot, T) \times \Omega)},$$

$$\leq s^{-3/2} \left(\|M_1 (e^{-\eta y} w)\|_{L^2((\cdot, T) \times \Omega)}^2 + s^3 \|e^{-s w} w\|_{L^2((\cdot, T) \times \Omega)}^2 \right).$$

This and (4.5) yield the desired result. □

4.1.2. Completion of the proof. The next step of the proof involves majorizing $I(w)$ with the aid of the Carleman inequality of proposition 3.2. In view of (4.2)–(4.3) and (4.5), the estimate

$$I(w) \leq C \left(s\|e^{-\eta y} \partial_\beta \partial_\gamma w\|_{L^2((\cdot, T) \times \tilde{\Gamma})}^2 + \|e^{-s w} (\chi f' - Kv) w\|_{L^2((\cdot, T) \times \Omega)}^2 \right)$$

$$\leq C \left(s\|e^{-\eta y} \partial_\beta \partial_\gamma w\|_{L^2((\cdot, T) \times \tilde{\Gamma})}^2 + \sum_{j=0,1} \|e^{-s w} \nabla^j v\|_{L^2((\cdot, T) \times \Omega_j)}^2 \right)$$

(4.6)

holds with $\tilde{\Gamma} := \Gamma_{\Omega}$ for $s \geq s_0$. Here and henceforth C denotes some generic positive constant. Bearing in mind that $\eta(0, x) = \inf_{t \in (\cdot, T)} \eta(t, x)$ for all $x \in \Omega$ and that $f' = (q_2 - q_2) u_2$, we have

$$\|e^{-s w} \chi f'\|_{L^2((\cdot, T) \times \Omega_j)} \leq C \|e^{-s w} (q_2 - q_2)\|_{L^2(\Omega_j)}.$$

(4.7)

Here we used the fact that $\|u_2\|_{L^\infty((\cdot, T) \times \Omega_j)} < \infty$. On the other hand, the function $\phi \partial_\beta \partial_\gamma$ being bounded in $(\cdot, T) \times \tilde{\Gamma}$ as well, we deduce from (4.6)–(4.7) that

$$I(w) \leq C \left(s\|e^{-\eta y} \partial_\beta w\|_{L^2((\cdot, T) \times \tilde{\Gamma})}^2 + \sum_{j=0,1} \|e^{-s w} \nabla^j v\|_{L^2((\cdot, T) \times \Omega_j)}^2 \right)$$

$$\leq C \left(s\|e^{-\eta y} \partial_\beta w\|_{L^2(\Omega_j)}^2 + \sum_{j=0,1} \|e^{-s w} \nabla^j v\|_{L^2(\Omega_j)}^2 \right),$$

where we have set

$$s \left(s\|e^{-\eta y} \partial_\beta w\|_{L^2((\cdot, T) \times \tilde{\Gamma})}^2 + \sum_{j=0,1} \|e^{-s w} \nabla^j v\|_{L^2((\cdot, T) \times \Omega_j)}^2 \right).$$

(4.8)

In the light of lemma 4.2, (4.8)–(4.9) then yields

$$J = \|e^{-\eta y} \chi (q_1 - q_2) u_2\|_{L^2(\Omega_j)}^2 \leq Cs^{-3/2} \left(s\|e^{-\eta y} \partial_\beta w\|_{L^2(\Omega_j)}^2 + \sum_{j=0,1} \|e^{-s w} \nabla^j v\|_{L^2(\Omega_j)}^2 \right),$$

(4.10)

for all $s \geq s_0$. Further since $J \geq \alpha^2 \|e^{-\eta y} \partial_\beta w\|_{L^2(\Omega_j)}^2$, from the assumption (1.3) we get that

$$(\alpha^2 - Cs^{-3/2}) \|e^{-\eta y} \partial_\beta w\|_{L^2(\Omega_j)}^2 \leq Cs^{-3/2} \|e^{-s w} \nabla^j v\|_{L^2(\Omega_j)}^2, \quad s \geq s_0,$$

(4.11)
from (4.10). Thus choosing \(s \geq s_0 \) so large that \(\alpha^2 - C s^{-3/2} \geq \alpha^2/2 \) and taking into account that \(\inf_{x \in \om_l} e^{-s_0(0,x)} > 0 \), we derive from (4.9) and (4.11) that

\[
\|q_1 - q_2\|_{L^2(\Omega)}^2 \leq C \left(\|\partial_s w\|_{L^2((0,T) \times \Gamma)}^2 + \sum_{j=0,1} \|\nabla^j v\|_{L^2((0,T) \times (\Omega_j \setminus \Omega_l))}^2 \right). \tag{4.12}
\]

Now, recalling from subsection 2.3 that \(\|\nabla^j v\|_{L^2((0,T) \times (\Omega_j \setminus \Omega_l))} = 2 \|\nabla^j v\|_{L^2(0,T) \times (\Omega_j \setminus \Omega_l)} \) for \(j = 0, 1 \), and from the identity \(w = \chi v \) that \(\|\partial_s w\|_{L^2((0,T) \times \Gamma)} = 2 \|\partial_s w\|_{L^2(0,T) \times \Gamma} \), we derive from (4.12) that

\[
\|q_1 - q_2\|_{L^2(\Omega)}^2 \leq C \left(\|\partial_s w\|_{L^2((0,T) \times \Gamma)}^2 + \sum_{j=0,1} \|\nabla^j v\|_{L^2((0,T) \times (\Omega_j \setminus \Omega_l))}^2 \right). \tag{4.13}
\]

Here we used the identity \(\|q_1 - q_2\|_{L^2(\Omega)} = \|q_1 - q_2\|_{L^2(\Omega)} \) arising from (1.4).

Last, we set \(\Gamma_\ast := \Gamma \cap (\partial \omega \times [-r, r]) \) and \(\Gamma_\epsilon := \Gamma \setminus (\Omega_l \setminus \Omega_\epsilon) \) in such a way that

\[
\Gamma = \Gamma_\ast \cup \Gamma_\epsilon, \quad \Gamma_\ast \cap \Gamma_\epsilon = \emptyset,
\]

by (4.1). Since \(\chi(x_\ast) = 0 \) for every \(|x_\ast| \geq r \), then the function \(w = \chi v \) is necessarily uniformly zero in \((0, T) \times (\Omega_l \setminus \Omega_\epsilon)\). This entails

\[
\partial_s w(t, \sigma) = 0, \quad (t, \sigma) \in (0, T) \times \Gamma_\epsilon.
\]

As a consequence we have

\[
\|\partial_s w\|_{L^2((0,T) \times \Gamma)} = \|\partial_s w\|_{L^2((0,T) \times \Gamma_\epsilon)} \leq C \|\partial_s w\|_{L^2((0,T) \times \Gamma_\ast)}.
\]

Putting this together with (4.13) and the identity \(v = (u_1 - u_2)' \), we end up getting (1.7).

4.2. Proof of the stability estimate (1.8)

The proof of (1.8) is very similar to that of (1.7). Therefore, in order to avoid excessive size of this article, we shall skip some technical details.

The function \(v \) still denoting the solution to (2.8), we put

\[
I(v) := s|e^{-s\eta} \nabla_x v|_{L^2(\Omega)}^2 + s^2|e^{-s\eta} v|_{L^2(\Omega)}^2 + \sum_{j=1,2} \|M_j e^{-s\eta} v\|_{L^2(\Omega_j)}^2, \quad s > 0,
\]

where we write \(M_j \) for \(j = 1, 2 \), instead of \(M_{j,n} \). Then arguing in the exact same way as in the derivation of lemmas 4.1–4.2, we get that

\[
|e^{-s\eta} v(0, \cdot)|_{L^2(\Omega)}^2 = |e^{-s\eta} v|_{L^2(\Omega)}^2 \leq s^{-3/2} I(v), \tag{4.14}
\]

for all \(s > 0 \).

On the other hand, applying proposition 3.3 to (2.8) we obtain

\[
I(v) \leq C \left(\|e^{-s\eta} \rho^{1/2} (\partial_s \beta) \rho^{1/2} \partial_s v\|_{L^2((0,T) \times \gamma_s \times \mathbb{R})} + \|e^{-s\eta} f'\|_{L^2(Q_s)}^2 \right), \tag{4.15}
\]

for every \(s \geq s_0 \). Further, taking into account that \(q(0, x') = \inf_{\eta \in (-T, T)} \eta(t, x') \) for all \(x' \in \omega \) and \(f' = (q_2 - q_1) u_2', \) we derive from (1.6) that

\[
|e^{-s\eta} f'|_{L^2(\Omega)} \leq C |e^{-s\eta} (q_1 - q_2)|_{L^2(\Omega)}, \tag{4.16}
\]

for some generic positive constant \(C \). Since \(\psi \partial_s \beta \) is bounded in \((-T, T) \times \gamma_s \times \mathbb{R}, (4.15)-(4.16)\) then yield

\[
I(v) \leq C \left(\|e^{-s\eta} \partial_s v\|_{L^2((0,T) \times \gamma_s \times \mathbb{R})} + \|e^{-s\eta} (q_1 - q_2)|_{L^2(\Omega)} \right) \leq s \geq s_0. \tag{4.17}
\]

Putting (4.14) and (4.17) together we find that

\[
|e^{-s\eta} (q_1 - q_2)|_{L^2(\Omega)} \leq C s^{-3/2} \left(\|e^{-s\eta} \partial_s v\|_{L^2((0,T) \times \gamma_s \times \mathbb{R})} + \|e^{-s\eta} (q_1 - q_2)|_{L^2(\Omega)} \right), \quad s \geq s_0.
\]
From this and (1.3) it then follows for any $s \geq s_0$ that
\[
(a^2 - C s^{-3/2}) ||e^{-\alpha y(0, \cdot)} (q_1 - q_2) ||_{L^2(\Omega)}^2 \leq C s^{-1/2} ||e^{-\alpha y(0, \cdot)} \partial_t v ||_{L^2((-T,T) \times Y, \times R)}^2.
\]
Choosing $s \geq s_0$ so large that $a^2 - C s^{-3/2} \geq \alpha^2/2$ and using that $\inf_{x \in \omega} e^{-\alpha y(0, x)} > 0$, we deduce from (4.18) that
\[
||q_1 - q_2||_{L^2(\Omega)}^2 \leq C' ||\partial_t v||_{L^2((-T,T) \times Y, \times R)}^2.
\]
Now (1.8) follows readily from this upon recalling from subsection 2.2 that $v = (u_1 - u_2)'$ and from subsection 2.3 that $||\partial_t v||_{L^2((-T,T) \times Y, \times R)} = 2 ||\partial_t v||_{L^2((0,T) \times Y, \times R)}$.

Acknowledgments

The authors are grateful to the unknown reviewers of this text for their useful suggestions and comments.

References

[1] Albann P 2000 Carleman estimates for the Euler–Bernoulli plate operator Electron. J. Differ. Eqns 53 1–13
[2] Bardos C, Lebeau G and Rauch J 1992 Sharp sufficient conditions for the observation, control and stabilization from the boundary SIAM J. Control Optim. 30 1024–65
[3] Baudouin L and Puel J-P 2002 Uniqueness and stability in an inverse problem for the Schrödinger equation Inverse Problems 18 1537–54
[4] Bellassoued M 2004 Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients Appl. Anal. 83 983–1014
[5] Bellassoued M and Choulli M 2009 Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation J. Math. Pures Appl. 91 233–55
[6] Bellassoued M, Cristofol M and Soccorsi E 2012 Inverse boundary value problem for the dynamical heterogeneous Maxwell system Inverse Problems 28 095009
[7] Bellassoued M and Yamamoto M 2007 Lipschitz stability in determining density and two Lamé coefficients J. Math. Anal. Appl. 329 1240–59
[8] Bukhgeim A L and Klibanov M V 1981 Uniqueness in the large of a class of multidimensional inverse problems Sov. Math. Dokl. 24 244–7
[9] Bukhgeim A L and Uhlmann G 2002 Recovering a potential from partial Cauchy data Commun. Partial Differ. Eqns 27 653–68
[10] Cardoulis L, Cristofol M and Gaitan P 2008 Inverse problems for the Schrödinger operator in a strip with partial boundary data J. Inverse Ill-Posed Problems 16 127–46
[11] Chang P-Y and Lin H-H 2009 Conductance through a single impurity in the metallic zigzag carbon nanotube Appl. Phys. Lett. 95 082104
[12] Choulli M and Soccorsi E 2012 Recovering the twisting function in a twisted waveguide from the DN map arXiv:1209.5662
[13] Choulli M, Kian Y and Soccorsi E 2013 Stable determination of time dependent scalar potential from boundary measurements in a periodic quantum waveguide arXiv:1306.6601
[14] Cristofol M and Soccorsi E 2011 Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations Appl. Anal. 90 1499–520
[15] Imanuvilov O Yu 2002 On Carleman estimates for hyperbolic equations Asymptotic Anal. 32 185–220
[16] Imanuvilov O Yu and Yamamoto M 1998 Lipschitz stability in inverse parabolic problems by Carleman estimates Inverse Problems 14 1229–49
[17] Imanuvilov O Yu and Yamamoto M 2001 Global uniqueness and stability in determining coefficients of wave equations Commun. Partial Differ. Eqns 26 1409–25
[18] Isakov V 1993 Uniqueness and stability in multi-dimensional inverse problems Inverse Problems 9 579
[19] Isakov V and Yamamoto M 2000 Carleman estimates with the Neumann boundary condition and its application to the observability inequality and inverse problems Contemp. Math. 268 191–225
[20] Kane C, Balents L and Fisher M P A 1997 Coulomb interactions and mesoscopic effects in carbon nanotubes Phys. Rev. Lett. 79 5086–9
[21] Kenig C E, Sjöstrand J and Uhlmann G 2007 The Calderon problem with partial data Ann. Math. 165 567–91
[22] Kian Y, Phan Q S and Soccorsi E 2013 Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains arXiv:1311.5323
[23] Klibanov M V and Yamamoto M 2006 Lipschitz stability of an inverse problem for an acoustic equation Appl. Anal. 85 515–38
[24] Klibanov M V 2013 Carleman estimates for global uniqueness, stability and numerical methods for inverse problems J. Inverse Ill-Posed Problems 21 477–560
[25] Li X and Uhlmann G 2010 Inverse problems with partial data in a slab Inverse Problems Imaging 4 449–62
[26] Mercado A, Osses A and Rosier L 2008 Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights Inverse Problems 24 015017
[27] Tataru D 1997 Carleman estimates, unique continuation and controllability for anisotropic PDEs Contemp. Math. 209 267–79
[28] Yuan G and Yamamoto M 2010 Carleman estimates for the Schrödinger equation and applications to an inverse problem and an observability inequality Chin. Ann. Math. B 31 555–78