Expanding the Role of the Pharmacist: Immunoglobulin Therapy and Disease Management in Neuromuscular Disorders

Eric M. Tichy, PharmD, MBA, BCPS, FCCP, FAST1,2,\circledast, Barbara Prosser, PharmBS2, and Drew Doyle, PharmBS2

Abstract
Immunoglobulin G (IgG) is a commonly used treatment for chronic neuromuscular disorders (NMDs), such as chronic inflammatory demyelinating polyneuropathy and multifocal motor neuropathy. IgG therapy has also shown promise in treating other NMDs including myasthenia gravis, polymyositis, and dermatomyositis. IgG is administered as either intravenous immunoglobulin (IVIg) or subcutaneous immunoglobulin (SCIg), with SCIg use becoming more popular due to the treatment burden associated with IVIg. IVIg requires regular venous access; long infusions (typically 4-6 hours); and can result in systemic adverse events (AEs) for some patients. In contrast, SCIg can be self-administered at home with shorter infusions (approximately 1 hour) and fewer systemic AEs. As patient care shifts toward home-based settings, the role of the pharmacist is paramount in providing a continuation of care and acting as the bridge between patient and clinic. Pharmacists with a good understanding of current recommendations, dosing strategies, and administration routes for IgG therapy are best placed to support patients. The aims of this review are to highlight the evidence supporting IgG therapy in the treatment of NMDs and provide practical information on patient management and IVIg/SCIg dosing in order to guide pharmacists on optimizing clinical outcomes and patient care.

Keywords
immunoglobulin therapy, neuromuscular disorders, intravenous immunoglobulin (IVIg), subcutaneous immunoglobulin (SCIg), disease management

Introduction
Chronic autoimmune neuromuscular disorders (NMDs) can be broadly classified as neuropathies, myopathies, and neuromuscular junction disorders.1 Clinical manifestations of NMDs are wide-ranging, but muscular weakness is experienced by most patients. This weakness may be progressive in nature and can have a significant impact on physical function and quality of life (QOL).1,2

Intravenous immunoglobulin (IVIg) is a mainstay of therapy for many patients with chronic autoimmune NMDs, including chronic inflammatory demyelinating polyneuropathy (CIDP); multifocal motor neuropathy (MMN); myasthenia gravis (MG); polymyositis (PM); and dermatomyositis (DM).3-6 Historically, immunoglobulin G (IgG) therapy has been administered via the intravenous route with a range of products available, with different purification, stabilization, and virus inactivation methods.7 However, subcutaneous immunoglobulin (SCIg) has seen an increasing interest in recent years, as it removes the need for regular venous access and can allow patients to self-infuse at a location of their choice, which may be easier for patients with mobility issues, and without assistance from a health care professional (HCP).8,9 Subcutaneous doses are absorbed into the intravascular compartment slowly, which can result in fewer systemic adverse events (AEs) potentially eliminating the need to premedicate.8,9 The Food and Drug Administration (FDA) approved the first IgG formulation designed specifically for subcutaneous injection in 2006 for primary immune deficiency diseases (PIDD) since then further SCIg formulations and indications for use have also been approved.10

SCIg therapy is widely used by patients with PIDD and pharmacists should be familiar with dosing and transitioning patients from IVIg. However, it is important to note that the doses, infusion parameters, and requirements for dose conversion during the transition from IVIg to SCIg differ for PIDD compared with neurological disorders, with higher doses generally used in NMDs (Table 1).8 IgPro20 (Hizentra, a 20%
Table 1. Summary of Current IgG Treatment Guidelines for PIDD and Chronic Autoimmune NMDs.

Guidelines and recommendations for PIDD

- **IVlg**: Recommended at a starting dose of 0.4-0.6 mg/kg every 3-4 weeks; SClg is generally used at a starting dose of 100-200 mg/kg weekly; SClg dosing frequency is flexible and should be individualized to the patient, although less frequent treatment, or use of lower doses, is not substantiated by clinical data.

- **In patients transitioning from IVlg to SClg**: FDA-recommended dose adjustments for SClg; IVlg dose (g) × 1.37/number of weeks between doses.

FDA label, guidelines, and recommendations for NMDs

Condition	FDA label	MMN	MG	PM and DM
CIPD	IVlg: Induction: 2 g/kg bw in divided doses over 2-5 days. Maintenance: 1 g/kg (in a single infusion over 1 day or divided into 2 doses over 2 consecutive days) every 3 weeks. Infusions at an initial infusion rate of 0.5 mg/kg/min (0.005 mL/kg/min), which may be increased to 8 mg/kg/min (0.08 mL/kg/min) as tolerated.	NA—no approved IgG products	NA—no approved SClg products	NA—no approved IgG products
MMN	IVlg should be offered for the long-term treatment of CIDP. Dosing, frequency, and duration of IVlg for CIDP may vary depending on the clinical assessment.	NA—no approved IgG products	NA—no approved SClg products	NA—no approved IgG products
MG	IVlg: 0.5-2.4 g/kg bw per month based on clinical response at an infusion rate of 0.8 mg/kg/min (0.5 mL/kg/h). Infusion rate may be advanced if tolerated to 9 mg/kg/min (5.4 mL/kg/h).	NA—no approved IgG products	NA—no approved SClg products	NA—no approved IgG products
PM and DM	IVlg: 0.2 g/kg bw (1 mL/kg) weekly. A dose of 0.4 g/kg (2 mL/kg) bw per week was also safe and effective to prevent CIDP relapse. Initial infusion rate should not exceed 20 mL/h/site; if well tolerated, it gradually increases to 50 mL/h/site as tolerated.	NA—no approved IgG products	NA—no approved SClg products	NA—no approved IgG products

AAN6

- IVlg should be considered for the treatment of CIDP. Dosing, frequency, and duration of IVlg for CIDP may vary depending on the clinical assessment.

AANEM5

- IVlg efficacy demonstrated in numerous RCTs. Prednisone or PLEX can also be considered. Recommended dose: 2 g/kg, over 2-5 days, and often repeat infusions of either 0.5 g/kg every 2 weeks, 1 g/kg every 3 weeks, or 2 g/kg every month, over a total of 2 or 3 months.

- IVlg is the first-line treatment. Efficacy of oral prednisone and PLEX not established. Recommended dose: 2 g/kg given over 2-5 days. Repeat treatment should be considered if the initial IVlg infusion is effective; frequency of maintenance therapy should be individualized. Maintenance dose: 1 g/kg every 2-4 weeks or 2 g/kg every 4-8 weeks for repeated treatments.

- Insufficient data currently exist to support IVlg in chronic management of patients with MG.

- IVlg efficacy has been reported in an RCT. Additionally, placebo-controlled trials of MG exacerbations treated with IVlg have shown the same benefit as PLEX or methylprednisolone. IVlg dosing from previous studies was: 0.4 g/kg daily for 3 days (1.2 g/kg) or 5 days (2 g/kg). For cases of exacerbation, 2 g/kg infused over 2 days was sufficient.

- IVlg may be considered for treating non-responsive DM in adults. Evidence is insufficient to support/refute use of IVlg in the treatment of PM.

- IVlg recommended as add-on’ therapy in refractory cases.

- IVlg efficacy has been reported in an RCT for steroid-resistant DM and various studies have confirmed IVlg effectiveness in combination with steroids to treat DM. No IVlg doses specified for DM or PM. However, several studies have administered a dose of 2 g/kg over 5 days, followed by lower monthly “booster” doses over 1-3 days for a period of 3-6 months.
subcutaneous immunoglobulin solution) was approved by the FDA for maintenance treatment of CIDP in 2018 based on the Polyneuropathy and Treatment with Hizentra (PATH) study, a dose-ranging phase III randomized controlled trial (RCT), which showed that SCIg reduced the risk of relapse or study withdrawal for any reason versus placebo in patients with CIDP. While SCIg is less established in chronic NMDs, studies investigating SCIg use have reported positive results. A meta-analysis of studies comparing SCIg with IVIg in CIDP and MMN concluded that SCIg is as effective as IVIg in preventing muscle strength deterioration. Additionally, the risk of moderate–severe AEs was reduced by 28%. There is also rising evidence that SCIg is effective and well tolerated in patients with other neurological disorders, such as MG and myositis.

Patients with chronic NMDs are more commonly opting to receive their care away from the clinic and choosing self-administration. Moreover, insurance providers, accountable care organizations, and pharmacy benefit managers are helping to drive this trend with the site of care initiatives and by encouraging SCIg where appropriate. As a result, there is a growing need for pharmacists to have a good understanding of current recommendations and new approvals. Here, we collate the current guidelines and patient management recommendations, including monitoring and the use of evidence-based disability scales. The aims of this article are to (1) increase awareness of the role of IgG therapy in the treatment of NMDs, (2) provide practical information on dosing with IVIg and SCIg and patient management, and (3) encourage pharmacist involvement and act as a guide on strategies for navigating AEs with IgG therapy.

Disease Management in Chronic NMDS With IGG Therapy

The literature provides a strong evidence base to support the use of IVIg for the treatment of chronic NMDs, and treatment guidelines recommend routine use of this treatment option. More recent studies report investigations of SCIg in NMDs. SCIg is in the FDA label for CIDP, but not mentioned in the published NMD recommendations that are provided in Table 1, likely related to the fact that all relevant guidelines were published more than 6 years ago.

Table 1. (continued)

Guidelines and recommendations for PIDD
FDA label, guidelines, and recommendations for NMDS
CIDP
EFNS/ PNS

Abbreviations: AAN, American Academy of Neurology; AANEM, American Association of Neuromuscular and Electrodiagnostic Medicine; bw, bodyweight; CIDP, chronic inflammatory demyelinating polyneuropathy; DM, dermatomyositis; EFNS, European Federation of Neurological Societies; FDA, food and drug administration; GBS, Guillain-Barré syndrome; IgG, immunoglobulin G; IVIg, intravenous immunoglobulin; MG, myasthenia gravis; MMN, multifocal motor neuropathy; NA, not applicable; PIDD, primary immunodeficiency diseases; PLEX, plasma exchange; PM, polymyositis; PNS, Peripheral Nerve Society; RCT, randomized controlled trials; SCIg, subcutaneous immunoglobulin.

Guidelines issued by EFNS only.
Management of CIDP

Background. CIDP is characterized by inflammation of the peripheral nervous system and nerve injury. Disease subtypes have different patterns of nerve involvement (eg, specific to sensory or motor nerves). The pathophysiological mechanisms have not been fully elucidated, but autoimmune mechanisms are believed to play an important role. CIDP disease course is variable, as patients may show gradual deterioration over time, stepwise deterioration, or experience periods of relapse and remission. The main clinical symptoms of CIDP are typically paresthesia (followed shortly by weakness) and numbness, which worsen over time. Motor deficits are the most common symptom with patients experiencing weakness both distally (eg, hand weakness or foot drop) and proximally (eg, difficulty climbing stairs or lifting objects) and can also experience problems with fine finger control. Patients may also have difficulty walking, often requiring mobility aids, such as wheelchairs. Common features of CIDP also include decreased sensation, ataxia, and less commonly neuropathic pain. Overall, the long-term prognosis for CIDP patients is good. A review of several small-scale studies using a disability grade reported 73% to 87% of patients receiving treatment were still ambulatory with mild symptoms after 5- to 10-year follow-up. Furthermore, 2 studies reported that a quarter of patients achieved remission and no longer required treatment.

Evidence for IgG therapy. The main treatment options for patients with CIDP are IgG therapy, corticosteroids, and plasma exchange. Immunosuppressants, such as azathioprine or methotrexate, can be considered as an add-on therapy for patients not adequately responding to principal options. IVIg is a well-established treatment for CIDP and there is evidence to support the use of SCIg in CIDP, with Hizentra now FDA-approved as maintenance therapy in this setting. The PATH study, performed in 172 patients with CIDP with confirmed dependency on IVIg therapy (dose ≤1.6 g/kg every 4 weeks), was placebo-controlled and investigated 2 weekly doses of SCIg (0.2 g/kg and 0.4 g/kg, administered as 1 or 2 mL/kg, respectively). The PATH primary outcome was the proportion of patients with a CIDP relapse or withdrawal from the study. In the study, 63% (95% CI: 50-74) of patients on placebo, 39% (95% CI: 27-52) on 0.2 g/kg SCIg, and 33% (95% CI: 22-46) on 0.4 g/kg SCIg had CIDP relapse/withdrawal from the study. When looking at CIDP relapse only, these figures were 56% (95% CI: 43.3-68.2) with placebo, 33% (95% CI: 22-46) with SCIg with 0.2 g/kg SCIg, and 19% (95% CI: 11-31) with 0.4 g/kg SCIg. Absolute risk reductions compared with placebo for CIDP relapse or study withdrawal for any other reason were 30% (95% CI: 12-46) with SCIg 0.4 g/kg and 25% (6%-41%) with SCIg 0.2 g/kg (both P < .01). Both doses of SCIg were similarly well tolerated and the study concluded that, in clinical practice, the weekly dose of SCIg could be varied across the range 0.2 to 0.4 g/kg, depending on clinical requirements. Furthermore, 88% of all patients enrolled in the PATH study reported that learning subcutaneous self-administration was easy. In a smaller, single-arm study, 16 drug-naive patients with CIDP were initially treated with IVIg (0.4 g/kg/d for 5 consecutive days) before commencing SCIg treatment (0.4 g/kg/wk) after 4 weeks. Long-term follow-up (at 12 and 24 months) demonstrated that SCIg as a first-line treatment improved nerve conduction and measures of muscle strength and disability in patients with CIDP. A limitation of this study was that an excellent response to the initial IVIg dose could have persisted and affected the SCIg results at 12 or 24 months. Moreover, a retrospective study in various NMDs, including CIDP, observed maintained clinical stabilization in the majority of patients with a mean follow-up of over 3 years. These data support early and long-term treatment with SCIg; however, it should be noted that the initial time to clinical response can be longer with SCIg compared with IVIg. Differences in time to response were observed in a small randomized, single-blind, cross-over study in 20 drug-naive patients with CIDP, where an IVIg infusion (0.4 g/kg/d over 5 days) was compared with SCIg (0.4 g/kg/wk for 5 weeks). Both SCIg and IVIg improved motor performance to a similar degree, but with earlier maximal improvement following IVIg infusion; isokinetismuscle strength peaked 2 weeks after the IVIg infusion compared with a peak after 5 weeks of weekly SCIg infusions.

Management of MMN

Background. MMN is one of a small number of neuropathies that cause motor deficits without any sensory loss. The full pathogenesis of MMN is unknown; however, recent reviews have implicated immunological targeting of the nodes of Ranvier and paranodal regions, leading to persistent conduction block. The most commonly affected nerves are the ulnar, median, radial, and tibial nerves. The principal symptoms of MMN relate to muscle weakness of the distal limbs and are likely to include impaired wrist or hand function. Symptoms are typically asymmetric and slowly progressive. Criteria published by the European Federation of Neurological Societies/Peripheral Nerve Society in 2010 are often used to diagnose MMN. However, with an initial clinical presentation similar to that of amyotrophic lateral sclerosis (ALS), diagnosis is potentially challenging. Conversely, unlike ALS, life expectancy is normal in MMN.

Evidence for IgG therapy. Patients with MMN typically respond well to IgG therapy, while other treatments (eg, corticosteroids, plasma exchange) are ineffective, have insufficient evidence, or do not have a favorable risk–benefit profile. IVIg is the only approved treatment for MMN, but small studies have suggested that SCIg may be a viable alternative. In a short-term, randomized crossover study performed in 9 patients, SCIg given twice or thrice weekly (15.2 g [95 mL] to 24.8 g [155 mL] per week) showed favorable tolerability and similar efficacy as IVIg. More recently, Katzberg et al evaluated SCIg in 15 patients with MMN, with weekly SCIg
Management of MG

Background. MG refers to a group of diseases where defective neuromuscular transmission leads to muscle weakness that is exacerbated by physical exertion. Weakness of the extrinsic ocular muscle is likely to be the first symptom of MG, and the disease often progresses to involve other muscles such as those of the neck and jaw. MG has the potential to be life-threatening as it can cause dysphagia or respiratory failure (ie, myasthenic crisis). Antibodies targeting the nicotinic acetylcholine receptor (AchR), muscle-specific kinase (MuSK), or low-density lipoprotein receptor-related protein 4 (LRP4) are often present. These appear to play important pathophysiological roles, but a subset of MG patients are “triple seronegative.” Single-fiber electromyography and repetitive nerve stimulation tests are the predominant methods of diagnosing MG, while immunological tests for the antibodies mentioned above are supportive of a positive diagnosis.

Evidence for IgG therapy. Most patients with MG are treated with acetylcholinesterase inhibitors, together with corticosteroids or immunosuppressants if required, and specific therapies for patients with refractory disease, myasthenic crisis, or thymomas. A Cochrane review of IVIg in MG, published in 2012, concluded that although the RCTs in MG were small and underpowered, there was evidence suggesting IVIg was similarly effective as other treatment options for progressive MG or exacerbations. A subsequent review highlighted positive evidence for IVIg treatment of patients with worsening MG or myasthenic crisis, although currently only retrospective studies support IVIg for long-term maintenance therapy. However, a small prospective study found IVIg administered as a loading dose of 2 g/kg, followed by booster doses of 0.4 g/kg every 4 to 12 weeks, resulted in a persistent decline of 50% in the quantitative myasthenia gravis score (QMGS, a marker of disease severity) after 24-month follow-up. A retrospective Canadian study initiated or switched 9 patients with MG to weekly SCIg (0.29-0.39 g/kg bodyweight); of these, 3 were IgG naive and 6 were receiving IVIg. The study found statistically significant improvements in QOL, with no reported exacerbations after starting SCIg therapy and no severe SCIg-related complications. SCIg has also been investigated in MG in an open-label, phase III study, performed in patients with mild-moderate MG exacerbation. Patients dosed with 2 g/kg 20% SCIg solution infused subcutaneously over a 4-week treatment period in a dose-escalating manner, reported that SCIg decreased QMGS from 14.9 ± 4.1 to 9.8 ± 5.6 (P < .0001) and was well tolerated. Moreover, an ongoing study of SCIg in MG has reported promising results from an interim analysis.

Management of PM and DM

Background. PM and DM are 2 types of chronic inflammatory disorders characterized by muscle inflammation and weakness mainly affecting proximal skeletal muscles. DM is distinguishable from PM primarily by the occurrence of skin abnormalities and rashes. DM skin rashes can occur over the face (particularly the eyelids), neck, chest, shoulders, and upper back or around the joints, typically elbows, knees, and ankles. This rash tends to be violet-colored, can be itchy and painful, and is often aggravated by sun exposure. PM and DM are autoimmune in nature and are associated with increased morbidity and mortality often as a result of severe muscle weakness or visceral organ involvement. Both inflammatory myopathies can occur in pediatric populations, most commonly as juvenile dermatomyositis (JDM). Most cases of JDM start at ages 5 to 10 years, with girls affected around twice as often as boys.

Evidence for IgG Therapy. Myositis is usually treated with corticosteroids or immunosuppressant drugs. IgG therapy is recommended as add-on therapy by the Myositis Association in refractory myositis or in patients with comorbidities. Case reports have described benefits following IVIg treatment in patients with esophageal involvement and pulmonary complications. A 63-year-old man with interstitial lung disease associated with PM/DM was reported to have 5 months of progressive dyspnea and weakness. After 3 monthly doses of IVIg at 2 g/kg, he sustained clinical remission for more than 2 years, with clinical markers of disease such as creatine kinase levels returning to normal levels and lung function measures significantly improving. In a retrospective analysis of 73 patients with PM or DM, with steroid-resistant esophageal involvement, treatment with IVIg (2 g/kg) resolved esophageal symptoms (dysphagia, coughing while eating, and gastroesophageal reflux into the pharynx and/or mouth) in 82.2% of patients, eliminating the need for enteral feeding tubes. In JDM, a retrospective study of 18 pediatric patients treated with steroids demonstrated that IVIg treatment led to clinical improvement in 12 patients and was associated with a >50% reduction in corticosteroid therapy. A case study reporting on the use of SCIg in a patient with PM concluded that switching from IVIg (2 g/kg per month) to SCIg (1.3 g/kg per month or approx. 0.33 g/kg per week) was associated with increased QOL and significant improvements in treatment satisfaction with only mild local reactions observed. A study has reported on the use of SCIg in 7 patients with active and refractory PM or DM. SCIg was administered weekly (0.5 g/kg bodyweight) and all patients showed favorable clinical responses, no relapse of disease, and improvement of short-form 36 health survey (SF-36) QOL scores (with the highest scores being seen in global mental health), demonstrating the beneficial effects of SCIg, with good tolerability and safety.
Table 2. Management of AEs Associated With IVIg Therapy.

AEs	Suggested method(s) for mitigation
Mild reactions (immediate onset): flu-like symptoms; hemolysis; thrombosis; renal impairment	Reduce infusion rate
Headache; migraine; myalgia; arthralgia; and other related AEs	Ensure patient is well-hydrated before and during the IV administration
Anaphylactoid symptoms and other related AEs	Premedication with analgesics and NSAIDs; additional doses after IgG infusion if needed
Moderate symptoms of bronchospasm or wheezing	Premedication with bronchodilators
Moderate symptoms of vomiting	Premedication with antiemetic agents
AEs not controlled by pre- or post-infusion medications	Change to a different IVIg product or change to SCIg

Abbreviations: AEs, adverse events; IgG, immunoglobulin G; IVIg, intravenous immunoglobulin; NSAIDs, nonsteroidal anti-inflammatory drugs; SCIg, subcutaneous immunoglobulin.

Safety With IGG Therapy

IVIg

IVIg is considered to be one of the first-line treatments for CIDP and MMN. Although this treatment is generally well-tolerated, there are some important safety considerations. Some AEs can occur immediately upon treatment, while others have delayed onset. Most AEs with IVIg are mild and transient; these may include headache, nausea, and flu-like symptoms (eg, fatigue, fever). Headache has been reported to be the most common systemic AE associated with the administration of IVIg, occurring at a frequency of 5% to 20% of IVIg infusions. Mild–moderate AEs can often be controlled by medications administered before or after infusion or by reducing the infusion rate to the maximum tolerated. Additionally, HCPs should ensure adequate hydration before and during the IV administration (Table 2).

Although uncommon, some serious AEs have been reported with IVIg. These include aseptic meningitis, thromboembolic events (TEEs), cardiac events, renal impairment, hemolysis, gastrointestinal problems, and transfusion-related acute lung injury (TRALI). Over prolonged periods of time, patients receive large numbers of infusions, meaning that a significant proportion of patients may at some time experience one of these AEs.

Aseptic meningitis. Up to 1% of IVIg patients can be affected by aseptic meningitis, with symptoms (eg, persistent headache, nausea, vomiting, photophobia, fever) likely to appear within 48 hours of IVIg infusion. Although headache is a common side effect of IVIg therapy, aseptic meningitis is more likely to occur in individuals with a history of migraines, and it should be suspected in all patients with long-lasting headaches following IVIg despite appropriate premedication.

Monitoring should include how long headaches persist post-IV infusion.

Thromboembolic events. In a retrospective analysis performed in patients with CIDP or MMN, a daily IVIg dose of 35 g or higher was shown to increase the risk of TEEs. The authors of this study considered a range of patient characteristics to be risk factors for TEEs, including male gender, age over 60 years, lack of ability to walk unaided, atrial fibrillation, dyslipidemia or family history of thromboembolic disease, or a diagnosed comorbidity such as diabetes, hypertension, or coronary disease. A significantly higher mean number of these risk factors was present in patients who developed TEEs. Pretreatment screening for TEE history and comorbidities can provide early signals that can be useful when monitoring potential problems over time.

Renal dysfunction. The risk of renal dysfunction has been linked with the use of stabilizers (particularly sucrose) in IVIg formulations. Renal failure is most likely to occur in patients with preexisting conditions such as renal insufficiency or diabetes. In these patients, sucrose-stabilized IVIg formulations (Carimune—discontinued in 2018 and Tegeline—available in Europe and Latin America contain sucrose) should be avoided as these products are associated with a higher risk of renal failure than non-sucrose stabilized formulations.

Hemolysis. The risk of hemolysis is increased in patients receiving high doses of IVIg, those receiving IVIg for inflammatory or autoimmune disorders, and in patients with non-O blood groups. Monitoring hemoglobin levels closely in all patients receiving high-dose IVIg therapy is recommended. However, the risk of this complication can depend on the quantity of isohemagglutinins present in the IgG product relative to the patient’s own blood group. It may be possible to reduce the risk by lowering levels of isohemagglutinins during the manufacture of IgG products: To this end, immunoaffinity chromatography is performed during production of Privigen and Hizentra.

SClg

The subcutaneous route of administration delivers IgG gradually into the intravascular compartment, resulting in peak plasma concentrations that are approximately 40% lower than after intravenous administration. Consequently, the lower peak plasma values with SClg may contribute to the tolerability differences between SClg and IVIg. Several studies have reported lower AE incidence or severity in patients with NMDs receiving SClg versus IVIg. In an open-label Danish study involving 86 patients, the severity of headache and nausea was significantly lower with SClg (P < .0001 for both). In a subsequent study of 23 patients, the same research group assessed hemolytic activity and reported that a switch from IVIg to SClg led to statistically significant improvements in relevant laboratory variables. Furthermore, a meta-analysis...
including 138 patients across 8 studies reported that the relative risk of moderate to severe AEs was 28% lower with SCIg versus IVIg (95% CI: 0.11-0.76). Local injection site reactions (eg, swelling, redness, itching) are the most common AEs with SCIg. Such AEs are usually considered to be mild; their severity tends to reduce over time as the number of infusions increases, and they can be mitigated by ensuring that infusion technique is optimal. Considering that SCIg is usually self-administered, it is important that patients are prepared for the possible occurrence of AEs as part of their treatment training and that telephone support is available if needed (particularly during the first few home treatments).

Treatment Burden With IgG Therapy

Long-term IVIg treatment requires regular venous access, which can be uncomfortable and invasive for the patient. Identification of suitable veins for infusing the large volumes that are required in chronic NMDs becomes more challenging the longer the patient remains on regular treatment. Implantation of a central venous line or port is an option for individuals with poor venous access. This approach is effective in simplifying the infusion procedure, but it also increases the risks of certain complications such as vascular injury, infections, and a further increased risk of TEEs. One study reported complications in up to 40% of patients following catheter placement. The associated complications with venous access devices can result in increased health care costs. For example, catheter-related bloodstream infections have a reported incidence between 0.177 and 0.270 infections per 1000 catheter days, estimated to be an additional average cost per infection of US$5000 to US$34,000.

The therapeutic effect of IVIg may begin to reduce toward the end of the typical 3- to 4-week interval between IVIg treatments, which can result in “wear-off” symptoms between doses, such as a return of muscle weakness and fatigue. Compared with IVIg, SCIg involves the administration of smaller doses more frequently, resulting in more stable serum IgG levels with smaller variations between peaks and troughs which may reduce the likelihood of treatment-related fluctuations, including adverse events and improve the maintenance of functional ability.

Opportunities for the Pharmacist

As more patients with chronic autoimmune NMDs become involved in their own disease management, the need for support in the home setting is growing. Provision of guidance for optimal administration of SCIg or IVIg is an important part of this support, particularly during the transition to home-based therapy.

Dose Adjustments With SCIg

The IgG dose and volume of administration required to treat PIDD compared with NMDs differs. IgG therapies are typically available as 10%, 16%, or 20% preparations. Guidelines for IVIg treatment of PIDD recommend a starting dose of 0.4 to 0.6 g/kg every 3 to 4 weeks; SCIg is used at a starting dose of 0.1 to 0.2 g/kg/wk (Table 1). In contrast, guidelines suggest IVIg dosing for most NMDs commence with a 2 g/kg loading dose over 2 to 5 days, followed by a maintenance dose of 1 g/kg every 2 to 4 weeks. Currently, there is no guidance recommending SCIg doses for NMDs; however, recent clinical studies have used loading doses of 0.2 g/kg/d for 5 days, followed by weekly maintenance doses of 0.2 to 0.4 g/kg using infusion volumes of 1 to 2 mL/kg, respectively. Similar to IVIg therapy, SCIg administration should be individualized for each patient. When transitioning patients from IVIg to SCIg therapy in PIDD, the FDA recommends using a dose adjustment coefficient (DAC) of 1.37 to 1.53 depending on the SCIg percentage formulation (eg, SCIg dose = IVIg dose (g) × DAC/number of weeks between doses). There is currently no recommendation for a DAC when transitioning patients with NMDs and most studies to date have used the weekly equivalent of a 1:1 conversion from the previous IVIg dose. However, further dose adjustments may be required following the transition to optimize therapeutic benefit based on individual patient need (see Table 3 for a list of recent SCIg studies with dosing regimen).

Optimizing Patient Management

Pharmacists have the opportunity to provide counseling and medication reconciliation as well as navigate adverse effects and patient monitoring; however, pharmacists are currently estimated to be underused in this regard. Pharmacists may also help monitor IgG treatment outcomes while using their patient-counseling skills to encourage treatment adherence, through direct consultation or education-related activities. As shown in Table 4, a number of tools are available to help monitor NMD patients’ progress including mobility/functional tests (eg, grip strength; Medical Research Council muscle strength scale) and patient-reported questionnaires (eg, inflammatory neuropathy cause and treatment disability scale; inflammatory Rasch-built overall disability scale; and SF-36). Disease-specific tools can also be used, for example, MG-DIS and MG-QOL are MG-specific tools to assess disability and QOL. All patients with chronic autoimmune NMDs should be monitored regularly and assessment data tracked over time to monitor patient/disease progression or improvement. Monitoring tools also provide payers and providers clinical information to justify keeping patients on service and treatment. Information collected should be shared with the physician, to provide patient status updates in-between clinic visits. If the patient is self-administering at home, the pharmacist can be best placed to collate this assessment data and collaborate with other care providers and the physician. Establishing a good relationship between providers and pharmacists, irrespective of infusion setting, should be the standard of care. Ultimately, however, the patient’s physician is usually responsible for...
Study and disease	Sample size	SCIg dosing schedule	Study duration	Outcomes
Van Schaik et al.¹¹ CIDP	N = 172	Weekly SCIg (0.2 or 0.4 g/kg) or placebo conducted over 1 or 2 consecutive days in 2 sessions	24-week SCIg treatment. Preceded by:	Efficacy: relapse rates among patients on placebo were significantly higher (63% [95% CI: 50-74%]), than compared with:
		- Placebo (n = 57)	- 12-week IgG dependency test period	- SCIg 0.2 g/kg (39% [27-52%])
		- SCIg 0.2 g/kg (n = 57)	- IVIg restabilization period (up to 13 weeks)	- SCIg 0.4 g/kg (33% [22-46%]) (P = .0007)
		- SCIg 0.4 g/kg (n = 58)		Absolute risk reduction of relapse significantly lower compared with placebo:
				- SCIg 0.2 g/kg (25% [95% CI: 6-41%]) (P = .007)
				- SCIg 0.4 g/kg (30% [95% CI: 12-46%]) (P = .001)
Cirillo et al.³⁶ CIDP	N = 16	SCIg twice per week (0.4 g/kg/wk)	24 months	Efficacy: Long-term SCIg demonstrated a significant improvement of neurophysiological parameters.
				- MRC sum score was increased after SCIg at 12 months (43.9 ± 6.8) and 24 months (56.6 ± 7.2) compared with baseline (P < .001).
				- INCAT sensory sum score reduced superficial, tactile, and vibratory dysfunction with SCIg at 12 months (14.7 ± 4.3) and 24 months (12.9 ± 6.1) compared with baseline (17.5 ± 3.2) (P < .05).
Beecher et al.¹⁸ MG	N = 23	SCIg infusions 2-4 times per week (2 g/kg total SCIg dose over 4 weeks). Dosing determined in dose-escalating manner; starting from 16 to 20 g IgG in week 1 and increasing to 40-80 g by week 4	4 weeks	Efficacy: functional disability measurement (QMG, MMT, MG-ADL, and MGC) baseline scores significantly reduced by week 2.
				- Patient satisfaction scores, by TSQM, were high (mean 79.6 ± 15.6).
				- Highest in the side effects domain.
				- Serum IgG levels increased significantly to 12.6 ± 2 g/L.
				Efficacy: Muscle strength was similar for SCIg and IVlg.
				- Increase of 7.4% ± 14.5% (P = .0003) during SCIg and by 6.9% ± 16.8% (P = .002) during IVlg.
				- Improvement with SCIg peaked after 5 weeks and after 2 weeks with IVlg.
				- MRC sum score improved similarly with both SCIg and IVlg treatment.
				- Disability improved significantly with SCIg (no significant improvements with IVlg).
Markvardsen et al.¹³ CIDP	N = 20, IgG-naive patients	Weekly SCIg (0.4 g/kg) or IVlg equivalent dose (1:1 dose conversion). Crossover design (10 weeks on each treatment)	20 weeks	Efficacy: Muscle strength was similar for SCIg and IVlg.
				- Increase of 7.4% ± 14.5% (P = .0003) during SCIg and by 6.9% ± 16.8% (P = .002) during IVlg.
				- Improvement with SCIg peaked after 5 weeks and after 2 weeks with IVlg.
				- MRC sum score improved similarly with both SCIg and IVlg treatment.
				- Disability improved significantly with SCIg (no significant improvements with IVlg).
Siddiqi et al.⁵⁸ MG	N = 10 (study ongoing)	Flexible SCIg infusions; 2 g/kg over 4 weeks	6 weeks (interim analysis)	Efficacy: Most patients demonstrated improvement from baseline (QMG, MMT, MG-ADL, and QMGC).
				- Peak improvement after 3 weeks of SCIg.
Hadden et al.¹² CIDP/MMN	N = 8	Weekly SCIg (up to every 10 days for 1 patient); a 1:1 dose conversion from previous IVlg dose was used (rounded up to the nearest full vial). SCIg dose could be adjusted by physician throughout study period	Mean follow-up 33 months (SD, 19; range: 16-64 months)	Efficacy: 7 patients remained neurologically stable and reported a good outcome (6 remained on a similar mean weekly IgG dose to their IVlg dose.
				- MRC sum scores did not worsen and a mean improvement of 0.7 (SD 0.8) was observed.
				High overall SCIg satisfaction level with treatment (mean VAS 96 [SD 5]) and very strong preference for SCIg over IVlg (VAS mean 93 [SD 12]).

(continued)
Study and disease	Sample size	SCIg dosing schedule	Study duration	Outcomes
Yoon et al., 37	N = 6	Various weekly SCIg regimens: CIDP: 0.3-0.75 g/kg/4 weeks MMN: 0.4 g/kg/4 weeks MG: 0.75 g/kg/4 weeks IBM: 0.6 g/kg/4 weeks	Long-term follow up; mean duration on SCIg: 3.25 years	Efficacy: Clinical stabilization maintained in the majority of patients (1 required an increase in their SCIg dose after 1 year) Weekly equivalent SCIg dose was equal to previous IVIg for the MMN patient and 2 patients with CIDP; other patients were able to reduce their equivalent weekly dose
Misbah et al., 14	N = 8	Weekly SCIg, a 1:1 dose conversion from previous IVIg was used	24 weeks	Efficacy: no overall change in MRC, motor function, or disability compared with IVIg. Patient satisfaction, by LQI score, improved (6/8 patients) or remained the same compared with baseline. 7/8 patients chose to continue with SCIg after the study
Danielli et al., 21	N = 7	Weekly SCIg, a 1:1 dose conversion from previous IVIg was used (2 g/kg monthly for all)	Median follow-up duration was 14 ± 4 months (range: 6-18 months)	Efficacy: No relapses occurred during treatment phase. Median MRC sum scores improved by 8 points during follow-up. Serum CK levels normalized during follow-up. Three patients were able to discontinue immunosuppressants completely. QOL, assessed by SF-36, improved from baseline with highest scores reported for global mental health; treatment satisfaction with SCIg was also high
Eftimov et al., 23	N = 10	SCIg infusions 1-2 times per week	24 weeks	Efficacy: All patients deteriorated on 50% equivalent SCIg dose. 4/5 patients maintained muscle strength on 1:1 equivalent SCIg dose; 3 of these responders continued with SCIg following study completion and 1 preferred IVIg. Significant improvement in manual dexterity, assessed by grip strength, for SCIg compared with IVIg
Harbo et al., 48	N = 9	SCIg infusions 2-3 times per week (dose in g/kg bodyweight not specified)—crossover design. Patients received 80-155 mL across 4-8 sites weekly 20 mL/hr/site (3.2 g of IgG)	Various (equivalent to 3 IVIg treatment cycles; individualized to each patient [range: approx. 8-24 weeks])	Efficacy: No difference in mean change in muscle strength between SCIg (3.6% [95% CI: 3.6-10.9]) and IVIg (4.3% [95% CI: 1.3-10.0]) (P = .86) No significant differences observed in functional ability (assessed by 9-hole peg test and 10-m walk test) No significant differences observed in HRQOL; 4 preferred SCIg, 2 had no preference, and 2 preferred IVIg

Abbreviations: CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; CK, creatine kinase; IBM, inclusion body myositis; IgG, immunoglobulin G; INCAT, inflammatory neuropathy care and treatment; IVIg, intravenous immunoglobulin; LQI, life quality index; MG, myasthenia gravis; MG-ADL, myasthenia gravis activities of daily living; MGC, myasthenia gravis composite; MMN, multifocal motor neuropathy; MMT, manual muscle testing; MRC, Medical Research Council; PM/DM, polymyositis/dermatomyositis; QMG, quantitative myasthenia gravis; QMGC, quantitative myasthenia gravis composite; QOL, quality of life; SCIg, subcutaneous immunoglobulin; SF-26, Short Form 26; TSQM, Treatment Satisfaction Questionnaire for Medication; VAS, visual analog scale.
confirming IgG dependence during follow-up visits, often to satisfy insurance providers.

On-Going Patient Support

The dependency of patients with chronic autoimmune NMDs on IgG can fluctuate, with factors such as changes in weight, comorbidities, or lifestyle impacting the effectiveness and/or need for IgG treatment. Adjustments may be required to the IgG dose or infusion regimen. Pharmacists with the credentials and experience to provide direct patient care are well placed to assist patients with site selection, rotation, and potential issues/adverse reactions that could diminish tolerability and adherence.93 Site rotation and condition is an essential check as patient adherence can lessen as discomfort increases. Table 5 provides some approaches for managing potential AEs with SCIg therapy. Additionally, in Table 6, there are several interventions that pharmacists can make to provide positive contributions to medication management, patient education, and counselling.94

Table 4. Principal Tools for Assessing Status and Treatment Response in Patients With Chronic Autoimmune Neuromuscular Disorders.

Disorder(s)	Assessment tools	References
CIDP	Grip strength	Katzberg et al99
	MRC muscle strength scale	
	INCAT disability scale	
	I-RODS	
	MMT score	
MMN	INCAT disability scale	Dimackhie et al104
	INCAT sensory sum scale	
	INCAT leg disability scale	Kuwabara et al104
	MRC muscle strength scale	
	SF36 health survey	Stangel et al105
MG	Quantitative MG score	Abraham et al106
	MG activities of daily living score	
	MG impairment index	Boldingh et al106
	MG disability assessment	Burns et al107
	IS-5 item MG quality of life scale	Howard et al108
	MGC scale	Raggi et al109
	MG MMT	Zhou et al109
	SF-36	
PM, DM, and JDM	MMT	Rider et al110
JDM	Childhood HAQ	

Abbreviations: CFDAS, Childhood Myositis Assessment Scale; CIDP, chronic inflammatory demyelinating polyneuropathy; DM, dermatomyositis; HAQ, health assessment questionnaire; INCAT, Inflammatory neuropathy cause and treatment; I-RODS, inflammatory Rasch-built overall disability scale; JDM, juvenile dermatomyositis; MG, myasthenia gravis; MGC, myasthenia gravis composite; MMN, multifocal motor neuropathy; MMT, manual muscle testing; MRC, medical research council; PM, polymyositis; SF-36, Short Form 36.

Table 5. Management of AEs Associated With SCIg Therapy.

AEs	Suggested method(s) for mitigation
Local site reactions (erythema, pruritus, etc)	A different gauge needle and infusion set may be required. Assessment of patient technique may help ensure patient is rotating infusion sites. A cold compress may also help
Long-lasting swelling	Swelling is normal if it decreases and dissipates totally over 24-72 hours. For swelling that persists longer, consider reducing volume per site or changing infusion site location
Bruising	Ensure subsequent infusions are at least 2 inches away from site until resolved. Assessment of patient technique may help
Hypersensitivity (diffuse rash or hives)	Terminate the SCIg infusion and report event to treating physician
Headache, myalgia; arthralgia; and other related AEs	Ensure patient is well hydrated before and during their SC infusion Consider medicating with analgesics and/or NSAIDs
Local-site reactions not improved over time or by attempting above measures	Consider reverting patient back to IVIg and discontinue SCIg

Abbreviations: AEs, adverse events; IVIg, intravenous immunoglobulin; NSAID, nonsteroidal anti-inflammatory drugs; SC, subcutaneous; SCIg, subcutaneous immunoglobulin.

Table 6. Pharmacist Interventions and Their Possible Benefits. Nursing Staff May Contribute to (or lead) Some of the Interventions That Are Listed.

Intervention	Possible benefit(s)
Patient education Use of training aids (eg, in relation to IgG administration technique)	Increased patient empowerment; more effective partnerships between HCP and their patients; higher treatment adherence rates; improved likelihood that home-based treatment will be administered correctly
Telephone liaison	Regular contact with the patient improves the likelihood that adverse events or suboptimal treatment efficacy will be managed correctly and in a timely fashion; use of the telephone reduces the number of pharmacy (and potentially health care facility) visits the patient needs to make
Patient monitoring using standard assessment tools and questionnaires	Increased likelihood of treatment regimens being adjusted as needed for optimal efficacy; reassures the patient that they are receiving high-quality care; potentially reduces the number of hospital visits that the patient needs to make
Recommendation for dose adjustment to physician	Facilitation of timely adjustments to the patient’s treatment, to ensure optimal disease management

Abbreviations: IgG, immunoglobulin G; HCP, health care professional.
Cost Aspects of IGG Therapy

The cost of treating NMDs can be high, and the chronic nature of these diseases means therapy is often required long term. In a US review of health care usage in patients with CIDP, pharmacy cost was found to be the major cost driver accounting for 57% of total costs, of which IVIg accounted for 90%.55 Several North American studies in patients with PIDD concluded that home-based SCIg resulted in reduced costs for the health care system compared with hospital-based IVIg.56-58 Moreover, increased productivity and reduced hospital-related absenteeism have been reported in patients with PIDD following a transition to SCIg.59100 It anticipated that similar cost benefits will be seen in chronic NMDs.51,102

Conclusions

The use of IVIg therapy is the mainstay in effectively treating NMDs, but some patients have intolerable side effects and complications, and treatment can require inconvenient infusion durations and/or travel time when performed in a health care facility. SCIg is an alternative method of administration that can significantly reduce side effects and the need for premedication, giving patients more flexibility and control over their treatment planning. Currently, many pharmacists may be familiar with treatment protocols for PIDD but not NMDs.87 By understanding the difference in doses, infusion parameters, and transition protocols involved in NMDs, pharmacists can play an important role in optimizing patients’ treatment. Furthermore, having access to the self-reporting and monitoring tools used by patients will help pharmacists support patients during their transition phase from hospital-based therapy to home-based SCIg, a transition which may ultimately lead to lower care costs.

In conclusion, pharmacists with knowledge of dosing strategies, potential side effects, and administration routes for IgG therapy can support NMD patients and act as a bridge between patient and clinic ensuring optimum patient care.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article. E.M.T. reports non-financial support from CSL Behring during the preparation of this review manuscript; personal fees from Shire Pharmaceuticals; personal fees from Grifols Pharmaceuticals; non-financial support from CSL Behring outside of the submitted work. B.P. and D.D. have nothing to disclose.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Editorial support was provided by Meridian HealthComms Ltd funded by CSL Behring.

ORCID iD

Eric M. Tichy, PharmD, MBA, BCPS, FCCP, FAST https://orcid.org/0000-0003-1431-0416

References

1. Kraker J, Zivkovic SA. Autoimmune neuromuscular disorders. Curr Neuropsychopharmacol. 2011;9(3):400-408.
2. Bos I, Wyna K, Almansa J, et al. The prevalence and severity of disease-related disabilities and their impact on quality of life in neuromuscular diseases. Disabil Rehabil. 2019;41(14): 1676-1681.
3. Ruzhansky K, Brannagan TH, 3rd. Intravenous immunoglobulin for treatment of neuromuscular disease. Neurol Clin Pract. 2013; 3(5):440-445.
4. Tobon A. The role of immunoglobulin in the treatment of immune-mediated peripheral neuropathies. J Infus Nurs. 2017; 40(6):375-379.
5. Donofrio PD, Berger A, Brannagan TH, 3rd, et al. Consensus statement: the use of intravenous immunoglobulin in the treatment of neuromuscular conditions report of the AANEM ad hoc committee. Muscle Nerve. 2009;40(5):890-900.
6. Patwa HS, Chaudhry V, Katzberg H, et al. Evidence-based guideline: intravenous immunoglobulin in the treatment of neuromuscular disorders: report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology. 2012;78(13):1009-1015.
7. Saedian M, Randhawa I. Immunoglobulin replacement therapy: a twenty-year review and current update. Int Arch Allergy Immun. 2014;164(2):151-166.
8. Berger M. Subcutaneous IgG in neurologic diseases. Immunotherapy. 2014;6(1):71-83.
9. Misbah S, Sturzenegger MH, Borte M, et al. Subcutaneous immunoglobulin: opportunities and outlook. Clin Exp Immunol. 2009; 158(Suppl 1):51-59.
10. FDA. Vivaglobin approval. 2006. Accessed August 15, 2019. https://www.fda.gov/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/licensedproductsbls/fractionatedplasmaproducts/ucm089394.htm
11. van Schaik IN, Bril V, van Geloven N, et al. Subcutaneous immunoglobulin for maintenance treatment in chronic inflammatory demyelinating polyneuropathy (PATH): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2018; 17(1):35-46.
12. Hadden RD, Marreno F. Switch from intravenous to subcutaneous immunoglobulin in CIDP and MMN: improved tolerability and patient satisfaction. Ther Adv Neurol Disord. 2015;8(1):14-19.
13. Markvardsen LH, Harbo T, Sindrup SH, et al. Subcutaneous immunoglobulin preserves muscle strength in chronic inflammatory demyelinating polyneuropathy. Eur J Neurol. 2014;21(12): 1465-1470.
14. Misbah SA, Baumann A, Fazio R, et al. A smooth transition protocol for patients with multifocal motor neuropathy going from intravenous to subcutaneous immunoglobulin therapy: an open-label proof-of-concept study. J Peripher Nerv Syst. 2011; 16(2):92-97.
15. Cocito D, Merola A, Peci E, et al. Subcutaneous immunoglobulin in CIDP and MMN: a short-term nationwide study. J Neurol. 2014;261(11):2159-2164.
16. Markvardsen LH, Debost JC, Harbo T, et al. Subcutaneous immunoglobulin in responders to intravenous therapy with chronic inflammatory demyelinating polyradiculoneuropathy. * Eur J Neurol.* 2013;20(5):836-842.

17. Racosta JM, Sposato LA, Kimpinski K. Subcutaneous versus intravenous immunoglobulin for chronic autoimmune neuropathies: a meta-analysis. *Muscle Nerve.* 2017;55(6):802-809.

18. Beecher G, Anderson D, Siddiqi ZA. Subcutaneous immunoglobulin in myasthenia gravis exacerbation: a prospective, open-label trial. *Neurology.* 2017;89(11):1135-1141.

19. Patrick C, Jean-Christophe D, Jean-Charles C, Odile C. High-dose subcutaneous immunoglobulins for the treatment of severe treatment-resistant polymyositis. *Case Rep Rheumatol.* 2014; 2014:458231.

20. Wang DX, Shu XM, Tian XL, et al. Intravenous immunoglobulin therapy in adult patients with polymyositis/dermatomyositis: a systematic literature review. *Clin Rheumatol.* 2012;31(5): 801-806.

21. Danieli MG, Pettinari L, Moretti R, Logullo F, Gabrielli A. Subcutaneous immunoglobulin in polymyositis and dermatomyositis: a novel application. *Autoimmun Rev.* 2011;10(3):144-149.

22. Sala TP, Crave JC, Duracinsky M, et al. Efficacy and patient satisfaction in the use of subcutaneous immunoglobulin immunotherapy for the treatment of auto-immune neuromuscular diseases. *Autoimmun Rev.* 2018;17(9):873-881.

23. Efthimov F, Vermeulen M, De Haan RJ, et al. Subcutaneous immunoglobulin therapy for multifocal motor neuropathy. *J Peripher Nerv Syst.* 2009;14(2):93-100.

24. Vaughan LJ. Managing cost of care and healthcare utilization in patients using immunoglobulin agents. *Am J Manag Care.* 2019; 25(6 Suppl):S105-S111.

25. Gurcan HM, Ahmed AR. Efficacy of various intravenous immunoglobulin therapy protocols in autoimmune and chronic inflammatory disorders. *Ann Pharmacother.* 2007;41(5):812-823.

26. Lünenmann JD, Quast I, Dalakas MC. Efficacy of intravenous immunoglobulin in neurological diseases. *Neurotherapeutics.* 2016;13(1):34-46.

27. Oaklander AL, Lunn MP, Hughes RA, et al. Treatments for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP): an overview of systematic reviews. *Cochrane Database Syst Rev.* 2017;1(1):CD010369.

28. Dyck PJ, Tracy JA. History, diagnosis, and management of chronic inflammatory demyelinating polyradiculoneuropathy. *Mayo Clin Proc.* 2018;93(6):777-793.

29. Gorson KC. An update on the management of chronic inflammatory demyelinating polyneuropathy. *Ther Adv Neurol Disord.* 2012;5(6):359-373.

30. Kuwabara S, Misawa S, Mori M, et al. Long term prognosis of chronic inflammatory demyelinating polyneuropathy: a five year follow up of 38 cases. *J Neurol Neurosurg Psychiatry.* 2006; 77(1):66-70.

31. McCombe PA, Pollard JD, McLeod JG. Chronic inflammatory demyelinating polyradiculoneuropathy. A clinical and electrophysiological study of 92 cases. *Brain.* 1987;110 (Pt 6): 1617-1630.

32. Boru UT, Erdogan H, Alp R, et al. Treatment of chronic inflammatory demyelinating polyneuropathy with high dose intravenous methylprednisolone monthly for five years: 10-year follow up. *Clin Neurol Neurosci.* 2014;118:89-93.

33. Efthimov F, Vermeulen M, van Doorn PA, et al. Long-term remission of CIDP after pulsed dexamethasone or short-term prednisolone treatment. *Neurology.* 2012;78(14):1079-1084.

34. Ripellino P, Fleetwood T, Cantello R, et al. Treatment of chronic inflammatory demyelinating polyneuropathy: from molecular bases to practical considerations. *Autoimmune Dis.* 2014;2014: 201657.

35. Behring C. Hizentra US prescribing information revised. March 2018. Accessed August 15, 2019. http://labeling.cslbehring.com/PI/US/Hizentra/EN/Hizentra-Prescribing-Information.pdf

36. Cirillo G, Todisco V, Tedeschi G. Long-term neurophysiological and clinical response in patients with chronic inflammatory demyelinating polyradiculoneuropathy treated with subcutaneous immunoglobulin. *Clin Neurophysiol.* 2018;129(5):967-973.

37. Yoon MS, Gold R, Kerasnoudis A. Subcutaneous immunoglobulin in treating inflammatory neuromuscular disorders. *Ther Adv Neurol Disord.* 2015;8(4):153-159.

38. Markvardsen LH, Sindrup SH, Christiansen I, et al. Subcutaneous immunoglobulin as first-line therapy in treatment-naive patients with chronic inflammatory demyelinating polyneuropathy: randomized controlled trial study. *Eur J Neurol.* 2017;24(2):412-418.

39. Harschitz O, Jorgbroed BA, Franssen H, et al. MMN: from immunological cross-talk to conduction block. *J Clin Immunol.* 2014;34(Suppl 1):112-119.

40. Lawson VH, Arnold WD. Multifocal motor neuropathy: a review of pathogenesis, diagnosis, and treatment. *Neuropsychiatr Dis Treat.* 2014;10:567-576.

41. Beadon K, Guimaraes-Costa R, Leger JM. Multifocal motor neuropathy. *Curr Opin Neurol.* 2018;31(5):559-564.

42. Franssen H. The node of Ranvier in multifocal motor neuropathy. *J Clin Immunol.* 2014;34(Suppl 1):105-111.

43. Uncini A, Kuwabara S. Nodopathies of the peripheral nerve: an emerging concept. *J Neurol Neurosurg Psychiatry.* 2015;86(11):1186-1195.

44. European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European federation of neurological societies and the peripheral nerve society—first revision. *J Peripher Nerv Syst.* 2010;15(4):295-301.

45. van der Pol WL, Cats EA, van den Berg LH. Intravenous immunoglobulin treatment in multifocal motor neuropathy. *J Clin Immunol.* 2010;30(Suppl 1):79-83.

46. Kumar A, Patwa HS, Nowak RJ. Immunoglobulin therapy in the treatment of multifocal motor neuropathy. *J Neurol Sci.* 2017; 375:190-197.

47. Markvardsen LH, Harbo T. Subcutaneous immunoglobulin treatment in CIDP and MMN. Efficacy, treatment satisfaction and costs. *J Neurol Sci.* 2017;378:19-25.

48. Harbo T, Andersen H, Hess A, et al. Subcutaneous versus intravenous immunoglobulin in multifocal motor neuropathy: a randomized, single-blinded cross-over trial. *Eur J Neurol.* 2009; 16(5):631-638.
84. Berger M, Allen JA. Optimizing IgG therapy in chronic autoimmune neuropathies: a hypothesis driven approach. Muscle Nerve. 2015;51(3):315-326.

85. Misbah SA. Effective dosing strategies for therapeutic immunoglobulin: managing wear-off effects in antibody replacement to immunomodulation. Clin Exp Immunol. 2014;178(Suppl 1):70-71.

86. Rojavin MA, Hubsch A, Lawo JP. Quantitative evidence of wear-off effect at the end of the intravenous IgG (IVIG) dosing cycle in primary immunodeficiency. J Clin Immunol. 2016;36(3):210-219.

87. Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: a review of evidence. J Allergy Clin Immunol. 2017;139(3):S1-S46.

88. Bush PW, Daniels R. Health care systems and transitions of care: implication on interdisciplinary pharmacy services. N C Med J. 2017;78(3):177-180.

89. Katzberg HD, Latov N, Walker FO. Measuring disease activity and clinical response during maintenance therapy in CIDP: from ICE trial outcome measures to future clinical biomarkers. Neurodegener Dis Manag. 2017;7(2):147-156.

90. Stangel M, Gold R, Pittrow D, et al. Treatment of patients with multifocal motor neuropathy with immunoglobulins in clinical practice: the SIGNS registry. Ther Adv Neurol Disord. 2016;9(3):165-179.

91. van Nes SI, Vanhoutte EK, van Doorn PA, et al. Rasch-built overall disability scale (R-ODS) for immune-mediated peripheral neuropathies. Neurology. 2011;76(4):337-345.

92. Raggi A, Leonard M, Schiavolin S, et al. Validation of the MG-DIS: a disability assessment for myasthenia gravis. J Neurol. 2016;263(5):871-882.

93. Carter BL. Evolution of clinical pharmacy in the USA and future directions for patient care. Drugs Aging. 2016;33(3):169-177.

94. Di Palo KE, Kish T. The role of the pharmacist in hypertension management. Curr Opin Cardiol. 2018;33(4):382-387.

95. Gupta JT, Bromberg MB, Zhu L, et al. Patient demographics and health plan paid costs in chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2014;50(1):47-51.

96. Martin A, Lavoie L, Goetghebeur M, et al. Economic benefits of subcutaneous rapid push versus intravenous immunoglobulin infusion therapy in adult patients with primary immune deficiency. Transfus Med. 2013;23(1):55-60.

97. Gerth WC, Betschel SD, Zbrozek AS. Implications to payers of switch from hospital-based intravenous immunoglobulin to home-based subcutaneous immunoglobulin therapy in patients with primary and secondary immunodeficiencies in Canada. Allergy Asthma Clin Immunol. 2014;10(1):23.

98. Ho CS, Cimon K, Roifman C, et al. Overview of Subcutaneous Versus Intravenous Immunoglobulin for Primary Immunodeficiencies: Systematic Review and Economic Analysis. (Technology overview number 36). Canadian Agency for Drugs and Technologies in Health. 2008;36.

99. Igarashi A, Kanegane H, Kobayashi M, et al. Cost-minimization analysis of IgPro20, a subcutaneous immunoglobulin, in Japanese patients with primary immunodeficiency. Clin Ther. 2014;36(11):1616-1624.

100. Lingman-Framme J, Fasth A. Subcutaneous immunoglobulin for primary and secondary immunodeficiencies: an evidence-based review. Drugs. 2013;73(12):1307-1319.

101. Skeie GO, Apostolski S, Evoli A, et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol. 2010;17(7):893-902.

102. Van den Bergh PY, Hadden RD, Bouche P, et al. European federation of neurological societies/peripheral nerve society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: report of a joint task force of the European federation of neurological societies and the peripheral nerve society – first revision. Eur J Neurol. 2010;17(3):356-363.

103. Dimachkie MM, Barohn RJ, Katz J. Multifocal motor neuropathy, multifocal acquired demyelinating sensory and motor neuropathy, and other chronic acquired demyelinating polyneuropathy variants. Neurol Clin. 2013;31(2):533-555.

104. Kuwabara S, Mori M, Misawa S, et al. Intravenous immunoglobulin for maintenance treatment of chronic inflammatory demyelinating polyneuropathy: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry. 2017;88(10):832-838.

105. Abraham A, Breiner A, Barnett C, et al. The utility of a simple single question in the evaluation of patients with myasthenia gravis. Muscle Nerve. 2018;57(2):240-244.

106. Boldingh MI, Dekker L, Maniaol AH, et al. An up-date on health-related quality of life in myasthenia gravis -results from population based cohorts. Health Qual Life Outcomes. 2015;13(1):115.

107. Burns TM, Conaway M, Sanders DB, et al. The MG Composite: a valid and reliable outcome measure for myasthenia gravis. J Neurol Neurosurg Psychiatry. 2010;17(3):356-363.

108. Rider LG, Aggarwal R, Machado PM, et al. Update on outcome assessment in myositis. Nat Rev Rheumatol. 2018;14(5):303-318.