A NEW TABLEAU MODEL FOR IRREDUCIBLE POLYNOMIAL REPRESENTATIONS OF THE ORTHOGONAL GROUP

HIDEYA WATANABE

ABSTRACT. We provide a new tableau model from which one can easily deduce the characters of irreducible polynomial representations of the orthogonal group $O_n(\mathbb{C})$. This model originates from representation theory of the quantum group of type AI, and is equipped with a combinatorial structure, which we call AI-crystal structure. This structure enables us to describe combinatorially the tensor product of an $O_n(\mathbb{C})$-module and a $GL_n(\mathbb{C})$-module, and the branching from $GL_n(\mathbb{C})$ to $O_n(\mathbb{C})$.

1. Introduction

Combinatorial objects such as partitions, Young tableaux, and their variants have been effectively used to understand representation theory of the symmetric group, the general linear group $GL_n = GL_n(\mathbb{C})$, the general linear algebra $\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C})$, and their variants. For example, the set of standard (resp., semistandard) Young tableaux of a fixed shape parametrizes a basis of the corresponding irreducible representation of the symmetric group (resp., GL_n and \mathfrak{gl}_n).

For a better understanding of representation theory, it is quite useful to construct a concrete combinatorial model which uniformly models a certain class of representations. For example, in representation theory of reductive groups and their Lie algebras, one may want a combinatorial model from which one can easily deduce the character of a representation under consideration. The semistandard Young tableau model for GL_n is such a typical example. Let us see this in more detail. Let λ be a partition of length not greater than n, and $\text{SST}_n(\lambda)$ denote the set of semistandard Young tableaux of shape λ with entries in $\{1, \ldots, n\}$. To each semistandard Young tableau $T \in \text{SST}_n(\lambda)$, a weight $\text{wt}(T) \in \mathbb{Z}^n$ is assigned. Then, $\text{SST}_n(\lambda)$ models the irreducible polynomial representation $V_{GL_n}(\lambda)$ of GL_n of highest weight λ in the sense that the character of $V_{GL_n}(\lambda)$ equals the generating function

$$\sum_{T \in \text{SST}_n(\lambda)} x^{\text{wt}(T)} \in \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$$

of weights of $\text{SST}_n(\lambda)$, where

$$x^{(a_1, \ldots, a_n)} := x_1^{a_1} \cdots x_n^{a_n}.$$
denotes the rank of O_n. Let $\rho \in \text{Par}_m$ and $T \in \text{SST}_n(\rho)$. We say that T is an AI-tableau (the origin of the name will be clear later) if
\[
t^c_{i,1} \leq t_{i,2} \quad \text{for all } 1 \leq i \leq d_2,
\]
where $t_{i,j}$ denotes the (i,j)-th entry of T, and
\[
d_j := \max\{k \mid \rho_k \geq j\}, \quad \{t^c_{1,1}, \ldots, t^c_{n-d_1,1}\} := \{1, \ldots, n\} \setminus \{t_{1,1}, \ldots, t_{d_1,1}\}.
\]
For each $\rho \in \text{Par}_m$, set
\[
\text{SST}_n^\text{AI}(\rho) := \{T \in \text{SST}_n(\rho) \mid T \text{ is an AI-tableau}\}.
\]
To each $T \in \text{SST}_n^\text{AI}(\rho)$, a degree $\deg(T) = (\deg_1(T), \deg_3(T), \ldots, \deg_{2m-1}(T)) \in \mathbb{Z}^m$ is assigned. Then, we can say that $\text{SST}_n^\text{AI}(\rho)$ models the irreducible polynomial representation of O_n corresponding to ρ in the following sense.

Theorem A. Let $\rho \in \text{Par}_m$, and $V^{O_n}(\rho)$ denote the corresponding irreducible representation of O_n, and $\text{ch} V^{O_n}(\rho)$ its character. Then, we have
\[
\text{ch} V^{O_n}(\rho) = \frac{1}{2^m} \sum_{T \in \text{SST}_n^\text{AI}(\rho)} \sum_{\sigma_1, \sigma_3, \ldots, \sigma_{2m-1} \in \{+,-\}} y^1_{\sigma_1 \deg_1(T)} y^3_{\sigma_3 \deg_3(T)} \cdots y^3_{\sigma_{2m-1} \deg_{2m-1}(T)}.
\]

Let us compare the existing tableau models, some of which can model spin representations as well, with ours. King and El-Sharkaway [6] introduced the notion of orthogonal tableaux by investigating the branching from SO_n to SO_{n-2}, where $SO_N = SO_N(\mathbb{C})$ denotes the special orthogonal group. A weight is assigned to each orthogonal tableau. Then, they proved that the associated generating functions are irreducible characters of SO_n. Koike and Terada [7] introduced another tableau model for SO_n. Their tableaux need $3m$ (resp., $4m$) kinds of letters when n is odd (resp., even). Sundaram [15] (for SO_{2m+1}), Proctor [13], and Okada [12] (for SO_{2m}) constructed similar, but more or less simple, tableau models. Kashiwara and Nakashima [5] constructed totally different tableau model. Their model is equipped with a crystal structure, which originates from representation theory of the quantum groups. Our new tableau model is, as a set, different from the other models above, and is much simpler than models of King-El-Sharkaway, Koike-Terada, and Kashiwara-Nakashima; the constraints are only the ordinary semistandardness condition and an easily checked condition on the first two columns. Our character formula is a little bit involved compared to the other models, but it is still easy. What is unique to our model is a new combinatorial structure, which we call the AI-crystal structure. This structure is closely related to representation theory of the quantum group of type AI.

An quantum group is a certain right coideal subalgebra of a quantum group appearing in theory of quantum symmetric pairs formulated by G. Letzter [9]. Among them, the quantum group of type AI is the subalgebra U^π of the quantum group $U = U_q(\mathfrak{gl}_n)$ associated to \mathfrak{gl}_n generated by
\[
B_i := F_i + q^{-1} E_i K_i^{-1}, \quad i \in \{1, \ldots, n-1\},
\]
where $E_i, F_i, K_i^{\pm 1}, i \in \{1, \ldots, n-1\}$ denote the Chevalley generators of U. Under the classical limit $q \to 1$, it tends to be the universal enveloping algebra $U(\mathfrak{so}_n)$ of the special orthogonal algebra $\mathfrak{so}_n = \mathfrak{so}_n(\mathbb{C})$. Here, \mathfrak{so}_n is embedded into \mathfrak{gl}_n as the Lie algebra consisting of $n \times n$ symmetric matrices with 0's on the diagonal. In [17], the crystal limit $q \to \infty$ of the action of B_i on certain class of U^π-modules was defined. It is a linear operator \tilde{B}_i. Abstracting properties of \tilde{B}_i's, we introduce the notion of AI-crystals. An AI-crystal is a set \mathcal{B} equipped with structure maps $\tilde{B}_i : \mathcal{B} \to \mathcal{B} \sqcup \{0\}$ and $\deg : \mathcal{B} \to \mathbb{Z}$.
satisfying certain axioms. Then, it is shown that for each \(\rho \in \text{Par}_m \), the set \(\text{SST}_n^{\text{Al}}(\rho) \) admits an AI-crystal structure which can be thought of as the crystal limit of the \(O_n \)-module, or rather \(U^\text{i} \)-module structure \(V^O_n(\rho) \) (to be more precise, the \(U^\text{i} \)-module whose classical limit is \(V^O_n(\rho) \)). This is the second achievement in an attempt to generalize theory of crystal basis to quantum groups; the first example was given by [16] for quasi-split type \(\text{AlIII}_{2r} \) with asymptotic parameters.

Thanks to this \(U^\text{i} \)-representation theoretic interpretation, it turns out that AI-crystals model not only irreducible \(O_n \)-modules but also the tensor product of an \(O_n \)-module and a \(\text{GL}_n \)-module, and the branching from \(\text{GL}_n \) to \(O_n \).

Let \(\lambda \in \text{Par}_n \) and \(\rho \in \text{Par}_m \). Then, \(\text{SST}_n^{\text{Al}}(\rho) \otimes \text{SST}_n(\lambda) := \text{SST}_n^{\text{Al}}(\rho) \times \text{SST}_n(\lambda) \) is equipped with an AI-crystal structure. This structure reflects the \(\mathfrak{so}_n \)-module structure of \(V^O_n(\rho) \otimes V^\text{GL}_n(\lambda) \), which is the classical limit of the \(U^\text{i} \)-module structure of the corresponding tensor product module (recall that \(U^\text{i} \) is a right coideal of \(U \)). Mimicking Schensted’s insertion algorithm, we introduce an algorithm which tells us how \(\text{SST}_n(\lambda) \) decomposes into several copies of \(\text{SST}_n(\sigma) \)'s, \(\sigma \in \text{Par}_m \). Such insertion schemes for other tableau models have been invented in [15, 13, 12, 8].

As a special case of the tensor product modules, one can consider \(V^\text{GL}_n(\lambda) = V^O_n(\emptyset) \otimes V^\text{GL}_n(\lambda) \) because \(V^O_n(\emptyset) \) is the trivial representation. Recall that \(\text{SST}_n(\lambda) \) models \(V^\text{GL}_n(\lambda) \). By the argument above, we see that \(\text{SST}_n(\lambda) = \text{SST}_n^{\text{Al}}(\emptyset) \otimes \text{SST}_n(\lambda) \) is equipped with an AI-crystal structure. This structure reflects the \(\mathfrak{so}_n \)-module structure of \(V^\text{GL}_n(\lambda) \), which is the classical limit of the \(U^\text{i} \)-module structure of \(V^\text{GL}_n(\lambda) \). To each \(T \in \text{SST}_n(\lambda) \), an AI-tableau \(P^{\text{Al}}(T) \), called the \(P^{\text{Al}} \)-symbol of \(T \), is assigned. For each \(\rho \in \text{Par}_m \), the subset

\[
\{ T \in \text{SST}_n(\lambda) \mid \text{the shape of } P^{\text{Al}}(T) \text{ is } \rho \}
\]

forms an AI-crystal isomorphic to the disjoint union of several copies of \(\text{SST}_n^{\text{Al}}(\rho) \). In this way, we obtain an “irreducible decomposition” of \(\text{SST}_n(\lambda) \) as an AI-crystal, which corresponds to an irreducible decomposition of \(V^\text{GL}_n(\lambda) \) as an \(O_n \)-module.

This paper is organized as follows. In Section 2, we prepare notation concerning combinatorial objects, and introduce the notion of AI-crystals and AI-tableaux, which play key roles in the construction of our new tableau model. In Section 3, we give a representation theoretic interpretation to combinatorial objects introduced in the previous section. Also, our main theorem is proved there. In Section 4, we develop an insertion scheme for our model. This enables us to understand the tensor product of an \(O_n \)-module and a \(\text{GL}_n \)-module and the branching from \(\text{GL}_n \) to \(O_n \) from an AI-crystal theoretic point of view.

Acknowledgement. The author is grateful to Il-Seung Jang for many helpful comments on the draft version of this paper. This work was supported by JSPS KAKENHI Grant Numbers JP20K14286 and JP21J00013.

Notation. Throughout this paper, we use the following notation:

- \(\mathbb{Z}_{\geq 0} \): the set of nonnegative integers.
- \(\mathbb{Z}_{\text{ev}} \): the set of even integers.
- \(\mathbb{Z}_{\text{odd}} \): the set of odd integers.
- For \(p \in \{ \text{ev, odd} \} \), \(\mathbb{Z}_{\geq 0,p} := \mathbb{Z}_{\geq 0} \cap \mathbb{Z}_p \).
- For \(a, b \in \mathbb{Z} \), \([a, b] := \{ c \in \mathbb{Z} \mid a \leq c \leq b \} \).
- For \(a, b \in \mathbb{Z} \) and \(p \in \{ \text{ev, odd} \} \), \([a, b]_p := [a, b] \cap \mathbb{Z}_p \).
2. Combinatorics

In this section, we prepare notation concerning combinatorial objects used throughout this paper. After reviewing theory of crystals of type A, we introduce the notion of AI-crystals and AI-tableaux, which play key roles in the construction of our new tableau model for irreducible polynomial representations of O_n.

2.1. Tableaux. A partition is a non-increasing sequence $\lambda = (\lambda_1, \ldots, \lambda_l)$ of positive integers; l is referred to as the length of λ, and is denoted by $\ell(\lambda)$. The empty sequence \emptyset is the unique partition of length 0. The size of a partition $\lambda = (\lambda_1, \ldots, \lambda_l)$ is defined to be $\sum_{i=1}^{l} \lambda_i$, and is denoted by $|\lambda|$. Let \Par_i denote the set of partitions of length not greater than l, and $\Par := \bigcup_{l \geq 0} \Par_l$ the set of partitions.

The Young diagram of shape $\lambda \in \Par$ is the set
\[
D(\lambda) := \{(i, j) \mid i \in [1, \ell(\lambda)], j \in [1, \lambda_i]\}.
\]
For $\lambda, \mu \in \Par$, we write $\lambda \triangleleft \mu$ if $D(\lambda) \subset D(\mu)$ and $|\mu| - |\lambda| = 1$.

Let A be a set. A Young tableau of shape $\lambda \in \Par$ in alphabet A is a map
\[
T : D(\lambda) \to A.
\]
Unless otherwise stated, we always fix $n \geq 2$ and take $A = [1, n]$ as the alphabet. When considering Young tableaux, each element of the alphabet is referred to as a letter. For a Young tableau T of shape $\lambda \in \Par$ and $(i, j) \in D(\lambda)$, the letter $T(i, j)$ is referred to as the (i, j)-th entry of T. The partition λ is referred to as the shape of T, and is denoted by $\sh(T)$. The size of T is defined to be $|\lambda|$, and is denoted by $|T|$. For a subset $A \subset [1, n]$, let $T|_A$ denote the map
\[
T|_A : \{(i, j) \in D(\lambda) \mid T(i, j) \in A\} \to A; \ (i, j) \mapsto T(i, j).
\]
Given $n \geq d_1 \geq d_2 \geq \cdots \geq d_l > 0$ and $C_j = (c_{1,j}, c_{2,j}, \ldots, c_{d_j,j}) \in [1, n]^{d_j}$, let $C_1 C_2 \cdots C_l$ denote the Young tableau given by
\[
(C_1 C_2 \cdots C_l)(i, j) := c_{i,j}.
\]
A sequence of letters is referred to as a word. Let \W denote the set of words, i.e.,
\[
\W := \bigsqcup_{d \geq 0} [1, n]^d.
\]
For two words $w_1, w_2 \in \W$, let $w_1 \ast w_2 \in \W$ denote the concatenation of them. The column reading of a Young tableau T is a word $\CR(T) \in \W$ defined to be
\[
(t_{d_1,1}, t_{d_1-1,1}, \ldots, t_{1,1}) \ast (t_{d_2,2}, t_{d_2-1,2}, \ldots, t_{1,2}) \ast \cdots \ast (t_{d_{\lambda_1}, \lambda_1}, t_{d_{\lambda_1}-1, \lambda_1}, \ldots, t_{1, \lambda_1}),
\]
where
\[
d_j := \max\{i \mid \lambda_i \geq j\}
\]
denotes the length of the j-th column of $D(\lambda)$.

Example 2.1.1. Let $\lambda = (4, 2, 1)$, and
\[
T = \begin{array}{cccc}
1 & 2 & 3 & 3 \\
2 & 3 & 3 & 3 \\
4 & & & \\
\end{array}
\]
Then, its column reading is
\[
\CR(T) = (4, 2, 1) \ast (3, 2) \ast (3) \ast (3) = (4, 2, 1, 3, 2, 3, 3).
\]
A Young tableau is said to be semistandard if its entries weakly increase along the rows from left to right, and strongly increase along the columns from top to bottom. Let \(\text{SST}_n(\lambda) \) denote the set of semistandard Young tableaux of shape \(\lambda \in \text{Par} \). Note that \(\text{SST}_n(\lambda) = \emptyset \) unless \(\ell(\lambda) \leq n \).

A semistandard Young tableau of shape \(\lambda \in \text{Par} \) in alphabet \([1,N]\) for some \(N > 0 \) is said to be standard if the assignment \((i,j) \mapsto T(i,j)\) is injective. Let \(\text{ST}_N(\lambda) \) denote the set of standard Young tableaux of shape \(\lambda \) in alphabet \([1,N]\).

For a semistandard Young tableau \(T \in \text{SST}_n(\lambda) \) and a letter \(l \in [1,n] \), let \((T \leftarrow l)\) denote the semistandard Young tableau obtained by Schensted’s row insertion algorithm (see e.g., [1, Chapter 7.1] for a precise definition).

Example 2.1.2. Let \(T \) be as in Example 2.1.1. Then, we have

\[
(T \leftarrow 1) = \begin{array}{ccc}
1 & 1 & 3 \\
2 & 2 & \\
3 & \\
4 &
\end{array},
\]

\[
(T \leftarrow 2) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 3 \\
4 &
\end{array},
\]

\[
(T \leftarrow 3) = \begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & \\
4 &
\end{array}.
\]

Let us recall the Robinson-Schensted correspondence. Fix a word \(w = (w_1, \ldots, w_d) \in \mathcal{W} \). For each \(k \in [0,d] \), define a semistandard Young tableau \(P^k \) inductively by

\[
P^k := \begin{cases}
\emptyset & \text{if } k = 0, \\
(P^{k-1} \leftarrow w_k) & \text{if } k > 0.
\end{cases}
\]

Let \(\lambda^k \) denote the shape of \(P^k \). Note that we have \(\lambda^{k-1} \prec \lambda^k \). Define a standard Young tableau \(Q^k \in \text{ST}_k(\lambda^k) \) inductively by \(Q^0 := \emptyset \), and

\[
Q^k(i,j) := \begin{cases}
Q^{k-1}(i,j) & \text{if } (i,j) \in D(\lambda^{k-1}), \\
k & \text{if } (i,j) \in D(\lambda^k) \setminus D(\lambda^{k-1})
\end{cases}
\]

for \(k \in [1,d] \). The tableaux \(P^d \) and \(Q^d \), and the partition \(\lambda^d \) are referred to as the P-symbol, the Q-symbol, and the shape of \(w \), and are denoted by \(P(w) \), \(Q(w) \), and \(\text{sh}(w) \), respectively. The assignment

\[
\text{RS} : \mathcal{W} \to \bigsqcup_{\lambda \in \text{Par}_n} \text{SST}_n(\lambda) \times \text{ST}_|\lambda|(\lambda); \ w \mapsto (P(w), Q(w))
\]

is called the Robinson-Schensted correspondence. As is well-known, \(\text{RS} \) is bijective.

Example 2.1.3. Let \(w = (4, 2, 3, 1, 3, 2) \). Then, \(P^k \) and \(Q^k \), \(k \in [0,6] \) are as follows:

\[
P^0 = \emptyset, \quad \begin{array}{ccc}
2 & 2 & 3 \\
4 & 4 &
\end{array}, \quad \begin{array}{ccc}
1 & 3 \\
2 & 4 &
\end{array}, \quad \begin{array}{ccc}
1 & 3 \\
2 & 4 &
\end{array} = P^6 = P(w),
\]

\[
Q^0 = \emptyset, \quad \begin{array}{ccc}
1 & 1 & 3 \\
2 & 2 &
\end{array}, \quad \begin{array}{ccc}
1 & 3 \\
2 & 4 &
\end{array}, \quad \begin{array}{ccc}
1 & 3 \\
2 & 4 &
\end{array} = Q^6 = Q(w).
\]
2.2. \(\mathfrak{gl} \)-Crystal. Combinatorics which have been introduced so far are closely related to representation theory of the general linear algebra \(\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C}) \) via theory of crystals.

A \(\mathfrak{gl}_n \)-crystal (we omit the subscript “\(n \)” when there is no confusion) is a set \(B \) equipped with structure maps

\[
\tilde{E}_i, \tilde{F}_i : B \to B \sqcup \{0\}, \quad \varepsilon_i, \varphi_i : B \to \mathbb{Z} \sqcup \{-\infty\}, \quad i \in [1, n-1],
\]

where 0 is a formal symbol, and

\[
\text{wt} : B \to \mathbb{Z}^n
\]
satisfying certain conditions. Every \(\mathfrak{gl} \)-crystal appearing in this paper is a Stembridge crystal in the sense of [1, Chapter 4.2]. Among the axioms of (Stembridge) crystals, what are particularly important for us are the following: Let \(b, b' \in B \), \(i, j \in [1, n-1] \). Then, the following hold.

1. \(\tilde{F}_i b = b' \) if and only if \(b = \tilde{E}_i b' \).
2. \(\varepsilon_i(b) := \max\{k \mid \tilde{E}_i^k b \neq 0\} \).
3. \(\varphi_i(b) := \max\{k \mid \tilde{F}_i^k b \neq 0\} \).
4. If \(|i - j| > 2 \) and \(\tilde{E}_i b \neq 0 \), then \(\varepsilon_j(\tilde{E}_i b) = \varepsilon_j(b), \varphi_j(\tilde{E}_i b) = \varphi_j(b) \), and \(\tilde{E}_j \tilde{E}_i b = \tilde{E}_i \tilde{E}_j b \).
5. If \(|i - j| = 1 \) and \(\tilde{E}_i b \neq 0 \), then either \(\varepsilon_j(\tilde{E}_i b) = \varepsilon_j(b) \) and \(\varphi_j(\tilde{E}_i b) = \varphi_j(b) - 1 \), or \(\varepsilon_j(\tilde{E}_i b) = \varepsilon_j(b) + 1 \) and \(\varphi_j(\tilde{E}_i b) = \varphi_j(b) \).

Here, we set \(\tilde{E}_i 0 = 0 \) and \(\tilde{F}_i 0 = 0 \).

Let \(B_1, B_2 \) be \(\mathfrak{gl} \)-crystals. A morphism \(\psi : B_1 \to B_2 \) of \(\mathfrak{gl} \)-crystals is a map \(\psi : B_1 \sqcup \{0\} \to B_2 \sqcup \{0\} \) such that

\[
\psi(0) = 0, \quad \psi(\tilde{E}_i b) = \tilde{E}_i \psi(b), \quad \psi(\tilde{F}_i b) = \tilde{F}_i \psi(b),
\]

\[
\varepsilon_i(\psi(b')) = \varepsilon_i(b'), \quad \varphi_i(\psi(b')) = \varphi_i(b'), \quad \text{wt}(\psi(b')) = \text{wt}(b')
\]

for all \(b, b' \in B \) and \(i \in [1, n-1] \) such that \(\psi(b') \neq 0 \). A morphism of \(\mathfrak{gl} \)-crystals is said to be an isomorphism if the underlying map \(B_1 \sqcup \{0\} \to B_2 \sqcup \{0\} \) is bijective.

The character \(ch_{\mathfrak{gl}} B \) of \(B \) is a Laurent polynomial in \(n \) variables \(x_1, \ldots, x_n \) given by

\[
ch_{\mathfrak{gl}} B := \sum_{b \in B} x^{\text{wt}(b)} \in \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}],
\]

where \(x^{(a_1, \ldots, a_n)} := x_1^{a_1} \cdots x_n^{a_n} \).

The crystal graph of \(B \) is a colored directed graph defined as follows. The vertex set is \(B \). For each \(b, b' \in B \) and \(i \in [1, n-1] \), there is an \(i \)-colored arrow from \(b \) to \(b' \) if and only if \(b' = \tilde{F}_i(b) \).

Example 2.2.1. The set \(\text{SST}_n(1) \) is equipped with a \(\mathfrak{gl} \)-crystal structure as follows:

\[
\text{wt}(\begin{bmatrix} j \end{bmatrix}) := \varepsilon_j, \quad \tilde{E}_i \begin{bmatrix} j \end{bmatrix} := \begin{cases} j-1 \\ 0 \end{cases} \quad \text{if } j = i + 1, \quad \tilde{F}_i \begin{bmatrix} j \end{bmatrix} := \begin{cases} j+1 \\ 0 \end{cases} \quad \text{otherwise},
\]

where

\[
\varepsilon_j := (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{Z}^n.
\]

Then, we have

\[
ch_{\mathfrak{gl}} \text{SST}_n(1) = x_1 + x_2 + \cdots + x_n.
\]
The crystal graph of \(\text{SST}_n(1) \) is

\[
\begin{array}{ccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & \cdots & \rightarrow & n
\end{array}
\]

Let \(B_1, B_2 \) be \(\mathfrak{gl} \)-crystals. Then, \(B_1 \otimes B_2 := B_1 \times B_2 \) is equipped with a \(\mathfrak{gl} \)-crystal structure as follows: It is customary to denote \((b_1, b_2) \in B_1 \otimes B_2\) by \(b_1 \otimes b_2 \). For each \(i \in [1, n-1] \), we set

\[
\text{wt}(b_1 \otimes b_2) := \text{wt}(b_1) + \text{wt}(b_2),
\]

\[
\tilde{F}_i(b_1 \otimes b_2) :=
\begin{cases}
\tilde{F}_i(b_1) \otimes b_2 & \text{if } \varepsilon_i(b_1) \geq \varphi_i(b_2), \\
b_1 \otimes \tilde{F}_i(b_2) & \text{if } \varepsilon_i(b_1) < \varphi_i(b_2),
\end{cases}
\]

\[
\tilde{E}_i(b_1 \otimes b_2) :=
\begin{cases}
\tilde{E}_i(b_1) \otimes b_2 & \text{if } \varepsilon_i(b_1) > \varphi_i(b_2), \\
b_1 \otimes \tilde{E}_i(b_2) & \text{if } \varepsilon_i(b_1) \leq \varphi_i(b_2),
\end{cases}
\]

Here, we set \(0 \otimes b_2 = b_1 \otimes 0 = 0 \). The tensor product of \(\mathfrak{gl} \)-crystals is associative;

\[
(B_1 \otimes B_2) \otimes B_3 = B_1 \otimes (B_2 \otimes B_3).
\]

For each \(d \geq 0 \), we can construct a \(\mathfrak{gl} \)-crystal \(\text{SST}_n(1)^{\otimes d} \) inductively by

\[
\text{SST}_n(1)^{\otimes d} := \text{SST}_n(1)^{\otimes d-1} \otimes \text{SST}_n(1),
\]

where, \(\text{SST}_n(1)^{\otimes 0} = \{ \emptyset \} \) with \(\mathfrak{gl} \)-crystal structure given by

\[
\text{wt}(\emptyset) = (0, \ldots, 0), \quad \tilde{E}_i(\emptyset) = 0 = \tilde{F}_i(\emptyset).
\]

By associativity of the tensor product of \(\mathfrak{gl} \)-crystals, we see that

\[
\text{SST}_n(1)^{\otimes d_1} \otimes \text{SST}_n(1)^{\otimes d_2} = \text{SST}_n(1)^{\otimes d_1 + d_2}.
\]

Recall that \(\mathcal{W} = \bigsqcup_{d \geq 0} [1, n]^d \) denotes the set of words. By identifying each word \((w_1, w_2, \ldots, w_d) \in \mathcal{W} \) with

\[
\begin{array}{ccccccc}
w_1 & \otimes & w_2 & \otimes & \cdots & \otimes & w_d
\end{array} \in \text{SST}_n(1)^{\otimes d},
\]

one can equip \(\mathcal{W} \) with a \(\mathfrak{gl} \)-crystal structure. Then, the concatenation of words is identical to the tensor product of \(\mathfrak{gl} \)-crystals.

Let \(\lambda \in \text{Par}_n \). Then, \(\text{SST}_n(\lambda) \) is equipped with a \(\mathfrak{gl} \)-crystal structure as follows: For each \(T \in \text{SST}_n(\lambda) \) and \(i \in [1, n-1] \), we set

\[
\text{wt}(T) := \text{wt}(\text{CR}(T)), \quad \tilde{E}_i T := P(\tilde{E}_i \text{CR}(T)), \quad \tilde{F}_i T := P(\tilde{F}_i \text{CR}(T)),
\]

\[
\begin{array}{ccccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & \cdots & \rightarrow & n
\end{array}
\]
where we set $P(0) = 0$. For example, the crystal graph of $\text{SST}_3(2,1)$ is as follows.

Then, the Robinson-Schensted correspondence

$$\text{RS} : \mathcal{W} \to \bigsqcup_{\lambda \in \text{Par}_n} \text{SST}_n(\lambda) \times \text{ST}_{|\lambda|}(\lambda); \ w \mapsto (P(w), Q(w))$$

is an isomorphism of \mathfrak{gl}-crystals, where the \mathfrak{gl}-crystal structure of $\text{SST}_n(\lambda) \times \text{ST}_{|\lambda|}(\lambda)$ is given by

$$\text{wt}(P, Q) := \text{wt}(P), \quad \tilde{E}_i(P, Q) := (\tilde{E}_i P, Q), \quad \tilde{F}_i(P, Q) := (\tilde{F}_i P, Q).$$

Given partitions $\lambda, \mu \in \text{Par}_n$ and tableaux $T \in \text{SST}_n(\lambda), \ S \in \text{SST}_n(\mu)$, define the P-symbol $P(T \otimes S)$ of $T \otimes S$ to be the P-symbol of $\text{CR}(T) \ast \text{CR}(S)$. For example, we have

$$P\begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = P((3,1,3) \ast (4,2,1,3,2)) = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 3 & 4 \end{pmatrix}.$$

For a later use, we put here an easy observation.

Lemma 2.2.2. Let $k, l \in [1, n], \ 1 \leq i_1 < \cdots < i_k \leq n$, and $1 \leq j_1 < \cdots < j_l \leq n$, and set

$$C_1 := P(i_k, \ldots, i_1) = \begin{pmatrix} i_1 \\ \vdots \\ i_k \end{pmatrix}, \quad C_2 := P(j_l, \ldots, j_1) = \begin{pmatrix} j_l \\ \vdots \\ j_1 \end{pmatrix}$$

and $\lambda := \text{sh}(P(C_1 \otimes C_2))$. Then, we have $\ell(\lambda) \geq k$. Furthermore, the following are equivalent:

1. $\ell(\lambda) = k$,
2. $k \geq l$ and $i_r \leq j_r$ for all $r \in [1, l]$.
3. $P(C_1 \otimes C_2) = C_1 C_2$.
Let \mathcal{B} be a \mathfrak{gl}-crystal and $b, b_1, b_2 \in \mathcal{B}$. We say that b_1 and b_2 are connected, or b_2 is connected to b_1 if we have

$$b_2 = \tilde{X}_{i_1} \tilde{X}_{i_2} \cdots \tilde{X}_{i_r} b_1$$

for some $\tilde{X}_{i_1}, \ldots, \tilde{X}_{i_r} \in \{ \tilde{E}_i, \tilde{F}_i \mid i \in [1, n-1] \}$. The connected component $C(b)$ of \mathcal{B} containing b is defined by

$$C(b) := \{ b' \in \mathcal{B} \mid b' \text{ is connected to } b \}.$$

We say that \mathcal{B} is connected if we have $\mathcal{B} = C(b)$ for some $b \in \mathcal{B}$.

Let $w, w_1, w_2 \in \mathcal{W}$. As is well-known, w_1 and w_2 are connected if and only if their Q-symbols coincide. Hence, we have

$$C(w) = \{ w' \in \mathcal{W} \mid Q(w') = Q(w) \}.$$

Under the Robinson-Schensted correspondence, this connected component corresponds to $\text{SST}_n(\lambda) \times \{ Q(w) \}$ (with $Q(w)$ being the Q-symbol of w).

2.3. AI-crystal. In this subsection, we introduce the notion of AI_{n-1}-crystals (we omit the subscript “$n-1$” when there is no confusion). From now on, we assume that $n \geq 3$, and set

$$m := \begin{cases} \frac{n}{2} & \text{if } n \in \mathbb{Z}_{ev}, \\ \frac{n-1}{2} & \text{if } n \in \mathbb{Z}_{od}. \end{cases}$$

Definition 2.3.1. An AI-crystal is a set \mathcal{B} equipped with structure maps $\tilde{B}_i : \mathcal{B} \to \mathcal{B} \cup \{0\}$ and $\deg_i : \mathcal{B} \to \mathbb{Z}_{\geq 0}$, $i \in [1, n-1]$ satisfying the following axioms: Let $b \in \mathcal{B}$ and $i, j \in [1, n-1]$.

1. If $\tilde{B}_i b \neq 0$, then $\deg_i(\tilde{B}_i b) = \deg_i(b)$ and $\tilde{B}_i^2 b = b$.
2. If $\tilde{B}_i b \neq 0$ and $|i - j| = 1$, then $\deg_j(\tilde{B}_i b) - \deg_j(b) \in \{1, -1\}$.
3. If $\tilde{B}_i b \neq 0$ and $|i - j| > 1$, then $\deg_j(\tilde{B}_i b) = \deg_j(b)$.

Definition 2.3.2. Let $\mathcal{B}_1, \mathcal{B}_2$ be AI-crystals. A morphism $\psi : \mathcal{B}_1 \to \mathcal{B}_2$ of AI-crystals is a map $\psi : \mathcal{B}_1 \sqcup \{0\} \to \mathcal{B}_2 \sqcup \{0\}$ such that

$$\psi(0) = 0, \quad \psi(\tilde{B}_i b) = \tilde{B}_i \psi(b), \quad \deg_i(\psi(b)) = \deg_i(b)$$

for all $b \in \mathcal{B}_1$ and $i \in [1, n-1]$. A morphism of AI-crystals is said to be an isomorphism if the underlying map is bijective.

Definition 2.3.3. Let \mathcal{B} be an AI-crystal. The AI-crystal graph of \mathcal{B} is a colored (non-directed) graph defined as follows. The vertex set is \mathcal{B}. For each $b, b' \in \mathcal{B}$ and $i \in [1, n-1]$, there is an i-colored edge between b and b' if and only if $b' = \tilde{B}_i(b)$.

Definition 2.3.4. Let \mathcal{B} be an AI-crystal and $b, b_1, b_2 \in \mathcal{B}$. We say that b_1 and b_2 are connected, or b_2 is connected to b_1 if we have

$$b_2 = \tilde{B}_{i_1} \tilde{B}_{i_2} \cdots \tilde{B}_{i_r} b_1$$

for some $i_1, \ldots, i_r \in [1, n-1]$. We call

$$C^{\text{AI}}(b) := \{ b' \in \mathcal{B} \mid b' \text{ is connected to } b \}$$

the connected component $C^{\text{AI}}(b)$ of \mathcal{B} containing b. We say that \mathcal{B} is connected if we have $\mathcal{B} = C^{\text{AI}}(b)$ for some $b \in \mathcal{B}$.
Example 2.3.5. \(\text{SST}_n(1) \) is equipped with an AI-crystal structure such that

\[
\deg_j([j]) = \begin{cases}
1 & \text{if } j \in \{i, i+1\}, \\
0 & \text{otherwise}
\end{cases},
\widetilde{B}_i [j] = \begin{cases}
-j & \text{if } j = i + 1, \\
0 & \text{if } j = i,
\end{cases}
\]

Then, its AI-crystal graph is

\[
\begin{array}{cccccccc}
1 & 1 & 2 & 2 & 3 & 3 & \cdots & n-1 & n \\
\end{array}
\]

Proposition 2.3.6. Let \(\mathcal{B}_1 \) be an AI-crystal and \(\mathcal{B}_2 \) a \(\mathfrak{gl} \)-crystal. Then, \(\mathcal{B}_1 \otimes \mathcal{B}_2 := \mathcal{B}_1 \times \mathcal{B}_2 \) is equipped with an AI-crystal structure as follows:

\[
\deg_i(b_1 \otimes b_2) = \begin{cases}
\deg_i(b_1) - \varphi_i(b_2) + \varepsilon_i(b_2) & \text{if } \deg_i(b_1) > \varphi_i(b_2), \\
\varepsilon_i(b_2) & \text{if } \varphi_i(b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
\deg_i(b_1) & \text{if } \varphi_i(b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}}.
\end{cases}
\]

\[
\widetilde{B}_i(b_1 \otimes b_2) = \begin{cases}
\widetilde{B}_i b_1 \otimes b_2 & \text{if } \deg_i(b_1) > \varphi_i(b_2), \\
b_1 \otimes \widetilde{E}_i b_2 & \text{if } \varphi_i(b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
b_1 \otimes \widetilde{F}_i b_2 & \text{if } \varphi_i(b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}}.
\end{cases}
\]

Proof. Let us verify that \(\mathcal{B}_1 \otimes \mathcal{B}_2 \) satisfies the axioms of AI-crystal. During the proof, we use axioms of \(\mathfrak{gl} \)-crystal and AI-crystal without mentioning one by one.

(1) Let \(b_1 \in \mathcal{B}_1, b_2 \in \mathcal{B}_2 \) and \(i \in [1, n-1] \) be such that \(\widetilde{B}_i(b_1 \otimes b_2) \neq 0 \). We show that \(\deg_i(\widetilde{B}_i(b_1 \otimes b_2)) = \deg_i(b_1 \otimes b_2) \) and \(\widetilde{B}_i^2(b_1 \otimes b_2) = b_1 \otimes b_2 \).

First, suppose that \(\deg_i(b_1) > \varphi_i(b_2) \). In this case, we have

\[\widetilde{B}_i(b_1 \otimes b_2) = \widetilde{B}_i b_1 \otimes b_2. \]

Since \(\deg_i(\widetilde{B}_i b_1) = \deg_i(b_1) > \varphi_i(b_2) \), we obtain

\[
\deg_i(\widetilde{B}_i b_1 \otimes b_2) = \deg_i(\widetilde{B}_i b_1) - \varphi_i(b_2) + \varepsilon_i(b_2) = \deg_i(b_1) - \varphi_i(b_2) + \varepsilon_i(b_2) = \deg_i(b_1 \otimes b_2),
\]

and

\[\widetilde{B}_i(\widetilde{B}_i b_1 \otimes b_2) = \widetilde{B}_i^2 b_1 \otimes b_2 = b_1 \otimes b_2, \]

as desired.

Next, suppose that \(\varphi_i(b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}} \). In this case, we have

\[\widetilde{B}_i(b_1 \otimes b_2) = b_1 \otimes \widetilde{E}_i b_2. \]

Since \(\varphi_i(\widetilde{E}_i b_2) = \varphi_i(b_2) + 1 \), we have \(\varphi_i(\widetilde{E}_i b_2) - \deg_i(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}} \). Hence, we obtain

\[
\deg_i(b_1 \otimes \widetilde{E}_i b_2) = \varepsilon_i(\widetilde{E}_i b_2) + 1 = \varepsilon_i(b_2) = \deg_i(b_1 \otimes b_2),
\]

and

\[\widetilde{B}_i(b_1 \otimes \widetilde{E}_i b_2) = b_1 \otimes \widetilde{F}_i \widetilde{E}_i b_2 = b_1 \otimes b_2, \]

as desired.
Let \(b \in B_1, b_2 \in B_2, \) and \(i, j \in [1, n - 1] \) be such that \(|i - j| = 1 \) and \(\widetilde{B}(b_1 \otimes b_2) \neq 0 \).

We show that \(\deg_j(\widetilde{B}(b_1 \otimes b_2)) - \deg_j(b_1 \otimes b_2) \in \{1, -1\} \).

Let us write \(\widetilde{B}(b_1 \otimes b_2) = \widetilde{B}(b_1 \otimes b_2) \) for some \(b_1' \in \{b_1, \widetilde{B}b_1\} \) and \(b_2' \in \{b_2, \widetilde{E}b_2, \widetilde{F}b_2\} \). Then, exactly one of the following holds:

- \(\deg_j(b_1) - \deg_j(b_1) = 1, \varphi_j(b_2') - \varphi_j(b_2) = 0, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = 0. \)
- \(\deg_j(b_1) - \deg_j(b_1) = -1, \varphi_j(b_2') - \varphi_j(b_2) = 0, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = 0. \)
- \(\deg_j(b_1) - \deg_j(b_1) = 0, \varphi_j(b_2') - \varphi_j(b_2) = -1, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = 0. \)
- \(\deg_j(b_1) - \deg_j(b_1) = 0, \varphi_j(b_2') - \varphi_j(b_2) = 0, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = 1. \)
- \(\deg_j(b_1) - \deg_j(b_1) = 0, \varphi_j(b_2') - \varphi_j(b_2) = 0, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = 0. \)
- \(\deg_j(b_1) - \deg_j(b_1) = 0, \varphi_j(b_2') - \varphi_j(b_2) = -1, \) and \(\varepsilon_j(b_2') - \varepsilon_j(b_2) = -1. \)

Therefore, we have either

\[
\deg_j(b_1') - \varphi_j(b_2') \in \{\deg_j(b_1) - \varphi_j(b_2) \pm 1\} \quad \text{and} \quad \varepsilon_j(b_2') = \varepsilon_j(b_2)
\]

or

\[
\deg_j(b_1') - \varphi_j(b_2') = \deg_j(b_1) - \varphi_j(b_2) \quad \text{and} \quad \varepsilon_j(b_2') \in \{\varepsilon_j(b_2) \pm 1\}.
\]

First, suppose that \(\deg_j(b_1') - \varphi_j(b_2') = \deg_j(b_1) - \varphi_j(b_2) + 1. \) Then, we compute as

\[
\deg_j(b_1' \otimes b_2') = \begin{cases}
\deg_j(b_1') - \varphi_j(b_2') + \varepsilon_j(b_2') & \text{if } \deg_j(b_1') > \varphi_j(b_2'), \\
\varepsilon_j(b_2') & \text{if } \varphi_j(b_2') - \deg_j(b_1') \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
\varepsilon_j(b_2') + 1 & \text{if } \varphi_j(b_2') - \deg_j(b_1') \in \mathbb{Z}_{\geq 0, \text{odd}},
\end{cases}
\]

\[
= \begin{cases}
\deg_j(b_1) - \varphi_j(b_2) + 1 + \varepsilon_j(b_2) & \text{if } \deg_j(b_1) \geq \varphi_j(b_2), \\
\varepsilon_j(b_2) + 1 & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}},
\end{cases}
\]

\[
= \begin{cases}
\deg_j(b_1 \otimes b_2) + 1 & \text{if } \deg_j(b_1) \geq \varphi_j(b_2), \\
\deg_j(b_1 \otimes b_2) - 1 & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}}, \\
\deg_j(b_1 \otimes b_2) + 1 & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}} \setminus \{0\}
\end{cases}
\]

\[
\in \{\deg_j(b_1 \otimes b_2) \pm 1\}.
\]
Next, suppose that $\deg_j(b'_1) - \varphi_j(b'_2) = \deg_j(b_1) - \varphi_j(b_2) - 1$. Then, we compute as

$$\deg_j(b'_1 \otimes b'_2)$$

$$= \begin{cases}
\deg_j(b'_1) - \varphi_j(b'_2) + \varepsilon_j(b'_2) & \text{if } \deg_j(b'_1) > \varphi_j(b'_2), \\
\varepsilon_j(b'_2) & \text{if } \varphi_j(b'_2) - \deg_j(b'_1) \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
\varepsilon_j(b'_2) + 1 & \text{if } \varphi_j(b'_2) - \deg_j(b'_1) \in \mathbb{Z}_{\geq 0, \text{odd}}
\end{cases}$$

$$= \begin{cases}
\deg_j(b_1 - \varphi_j(b_2))) + \varepsilon_j(b_2) & \text{if } \deg_j(b_1) > \varphi_j(b_2) + 1, \\
\varepsilon_j(b_2) & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}} \cup \{-1\}, \\
\varepsilon_j(b_2) + 1 & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}}
\end{cases}$$

$$\in \{\deg_j(b_1 \otimes b_2) \pm 1\}.$$

Finally, suppose that $\deg_j(b'_1) - \varphi_j(b'_2) = \deg_j(b_1) - \varphi_j(b_2)$. Setting $a := \varepsilon_j(b'_2) - \varepsilon_j(b_2) \in \{\pm 1\}$, we compute as

$$\deg_j(b'_1 \otimes b'_2)$$

$$= \begin{cases}
\deg_j(b'_1) - \varphi_j(b'_2) + \varepsilon_j(b'_2) & \text{if } \deg_j(b'_1) > \varphi_j(b'_2), \\
\varepsilon_j(b'_2) & \text{if } \varphi_j(b'_2) - \deg_j(b'_1) \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
\varepsilon_j(b'_2) + 1 & \text{if } \varphi_j(b'_2) - \deg_j(b'_1) \in \mathbb{Z}_{\geq 0, \text{odd}}
\end{cases}$$

$$= \begin{cases}
\deg_j(b_1 - \varphi_j(b_2))) + \varepsilon_j(b_2) + a & \text{if } \deg_j(b_1) > \varphi_j(b_2), \\
\varepsilon_j(b_2) + a & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{ev}}, \\
\varepsilon_j(b_2) + a + 1 & \text{if } \varphi_j(b_2) - \deg_j(b_1) \in \mathbb{Z}_{\geq 0, \text{odd}}
\end{cases}$$

$$= \deg_j(b_1 \otimes b_2) + a$$

$$\in \{\deg_j(b_1 \otimes b_2) \pm 1\}.$$

Thus, our claim follows.

(3) Let $b_1 \in \mathcal{B}_1$, $b_2 \in \mathcal{B}_2$, and $i, j \in [1, n-1]$ be such that $|i - j| > 1$ and $\tilde{B}_i(b_1 \otimes b_2) \neq 0$. We show that $\deg_j(\tilde{B}_i(b_1 \otimes b_2)) = \deg_j(b_1 \otimes b_2)$.

Let us write $\tilde{B}_i(b_1 \otimes b_2) = b'_1 \otimes b'_2$ for some $b'_1 \in \{b_1, \tilde{B}_i b_1\} \setminus \{0\}$ and $b'_2 \in \{b_2, \tilde{E}_i b_2, \tilde{F}_i b_2\} \setminus \{0\}$. Then, we have

$$\deg_j(b'_1) = \deg_j(b_1), \ \varepsilon_j(b'_2) = \varepsilon_j(b_2), \ \varphi_j(b'_2) = \varphi_j(b_2).$$

This implies that

$$\deg_j(b'_1 \otimes b'_2) = \deg_j(b_1 \otimes b_2),$$

as desired. \qed
Corollary 2.3.7. Let \mathcal{B} be a \mathfrak{gl}-crystal. Then, \mathcal{B} is equipped with an AI-crystal structure as follows: For each $b \in \mathcal{B}$ and $i \in [1, n-1]$, we set
\[
\deg_i(b) := \begin{cases}
\varepsilon_i(b) & \text{if } \varphi_i(b) \in \mathbb{Z}_{\text{ev}}, \\
\varepsilon_i(b) + 1 & \text{if } \varphi_i(b) \in \mathbb{Z}_{\text{odd}},
\end{cases}
\]
and
\[
\tilde{B}_i b := \begin{cases}
\tilde{E}_i b & \text{if } \varphi_i(b) \in \mathbb{Z}_{\text{ev}}, \\
\tilde{F}_i b & \text{if } \varphi_i(b) \in \mathbb{Z}_{\text{odd}}.
\end{cases}
\]

Proof. Consider a \mathfrak{gl}-crystal $\text{SST}_n(0) = \{\emptyset\}$. Then, we have an isomorphism
\[
\text{SST}_n(0) \otimes \mathcal{B} \to \mathcal{B}; \emptyset \otimes b \mapsto b
\]
of \mathfrak{gl}-crystals. On the other hand, $\text{SST}_n(0)$ admits an AI-crystal structure given by
\[
\tilde{B}_i(\emptyset) = 0, \quad \deg_i(\emptyset) = 0.
\]
Then, under the identification $\text{SST}_n(0) \otimes \mathcal{B} \simeq \mathcal{B}$, the AI-crystal structure on $\text{SST}_n(0) \otimes \mathcal{B}$ given by Proposition 2.3.6 is the same as the one on \mathcal{B} given by this corollary. Thus, the proof completes. \square

Remark 2.3.8. In the sequel, whenever we regard a \mathfrak{gl}-crystal as an AI-crystal, we assume that its AI-crystal structure is given by Corollary 2.3.7.

Proposition 2.3.9. Let \mathcal{B} be a \mathfrak{gl}-crystal, $b \in \mathcal{B}$, and $i, j \in [1, n-1]$.

1. We have $\tilde{B}_i b = 0$ if and only if $\deg_i(b) = 0$.
2. If $|i - j| > 1$ and $\tilde{B}_i b \neq 0$, then we have $\tilde{B}_j \tilde{B}_i b = \tilde{B}_i \tilde{B}_j b$.

Proof. Let us prove the first assertion. Suppose that $\tilde{B}_i b = 0$. We show that $\varphi_i(b) \in \mathbb{Z}_{\text{ev}}$. Otherwise, we have
\[
0 = \tilde{B}_i b = \tilde{F}_i b,
\]
which implies $\varphi_i(b) = 0$. This is a contradiction. Hence, we obtain $\varphi_i(b) \in \mathbb{Z}_{\text{ev}}$, and consequently,
\[
0 = \tilde{B}_i b = \tilde{E}_i b.
\]
This shows that $\varepsilon_i(b) = 0$, and hence, we have
\[
\deg_i(b) = \varepsilon_i(b) = 0.
\]

Conversely, suppose that $\deg_i(b) = 0$. Then, we must have $\varphi_i(b) \in \mathbb{Z}_{\text{ev}}$; otherwise, $\deg_i(b) = \varepsilon_i(b) + 1 > 0$. Hence, we obtain
\[
0 = \deg_i(b) = \varepsilon_i(b),
\]
and consequently,
\[
\tilde{B}_i b = \tilde{E}_i b = 0,
\]
as desired. This completes the proof of the first assertion.

Now, let us prove the second assertion. Note that for each $X, Y \in \{E, F\}$, we have
\[
\varphi_i(X_i b) = \varphi_j(b), \quad \varphi_i(Y_j b) = \varphi_i(b),
\]
and
\[
\tilde{Y}_j \tilde{X}_i b = \tilde{X}_i \tilde{Y}_j b.
\]
Then, if we write $\tilde{B}_j b = \tilde{X}_j b$ for some $X \in \{E, F\}$, we compute as

$$\tilde{B}_j \tilde{B}_j b = \tilde{B}_j \tilde{X}_j b$$

$$= \begin{cases}
\tilde{E}_j \tilde{X}_j b & \text{if } \varphi_j(b) \in \mathbb{Z}_{ev}, \\
\tilde{F}_j \tilde{X}_j b & \text{if } \varphi_j(b) \in \mathbb{Z}_{odd}
\end{cases}$$

$$= \begin{cases}
\tilde{X}_j \tilde{E}_j b & \text{if } \varphi_j(b) \in \mathbb{Z}_{ev}, \\
\tilde{X}_j \tilde{F}_j b & \text{if } \varphi_j(b) \in \mathbb{Z}_{odd}
\end{cases}$$

$$= \tilde{X}_j \tilde{B}_j b$$

$$= \begin{cases}
\tilde{E}_i \tilde{B}_j b & \text{if } \varphi_i(b) \in \mathbb{Z}_{ev}, \\
\tilde{F}_i \tilde{B}_j b & \text{if } \varphi_i(b) \in \mathbb{Z}_{odd}
\end{cases}$$

$$= \tilde{B}_i \tilde{B}_j b.$$

This implies the assertion. \qed

Proposition 2.3.10. Let B_1 be an AI-crystal, and B_2, B_3 be \mathfrak{gl}-crystals. Then, we have

$$(B_1 \otimes B_2) \otimes B_3 = B_1 \otimes (B_2 \otimes B_3).$$

Proof. The proof is straightforward but long. Hence, we omit it. \qed

Remark 2.3.11. Let B_1, B_2 be \mathfrak{gl}-crystals. Then, we can equip $B_1 \otimes B_2$ with two AI-crystal structures; one is obtained by regarding B_1 as an AI-crystal by means of Corollary 2.3.7 and then by taking tensor product, and the other is obtained by regarding the $B_1 \otimes B_2$ as an AI-crystal by means of Corollary 2.3.7. These two structures are identical because the former is $(\text{SST}_n(0) \otimes B_1) \otimes B_2$, while the latter is SST$_n(0) \otimes (B_1 \otimes B_2)$.

Corollary 2.3.12. Let B_1, B_2 be AI-crystals, B_3, B_4 be \mathfrak{gl}-crystals, $\psi_1 : B_1 \rightarrow B_2$ a morphism of AI-crystals, and $\psi_2 : B_3 \rightarrow B_4$ a morphism of \mathfrak{gl}-crystals. Then,

$$\psi_1 \otimes \psi_2 : B_1 \otimes B_3 \rightarrow B_2 \otimes B_4; \ b_1 \otimes b_2 \mapsto \psi_1(b_1) \otimes \psi_2(b_2)$$

is a morphism of AI-crystals. Furthermore, if both ψ_1 and ψ_2 are isomorphisms, then so is $\psi_1 \otimes \psi_2$.

Proof. The assertion follows from Proposition 2.3.6. In fact, $\deg_i(b_1 \otimes b_2)$ (resp., $\deg_i(\psi_1(b_1) \otimes \psi_2(b_2))$) is determined by $\deg_i(b_1), \varepsilon_i(b_2), \varphi_i(b_2)$ (resp., $\deg_i(\psi_1(b_1)), \varepsilon_i(\psi_2(b_2)), \varphi_i(\psi_2(b_2))$, and B_i acts on $b_1 \otimes b_2$ (resp., $\psi_1(b_1) \otimes \psi_2(b_2)$) by either $\tilde{E}_i \otimes 1, 1 \otimes \tilde{E}_i$, or $1 \otimes \tilde{F}_i$ depending on $\deg_i(b_1), \varepsilon_i(b_2), \varphi_i(b_2)$ (resp., $\deg_i(\psi_1(b_1)), \varepsilon_i(\psi_2(b_2)), \varphi_i(\psi_2(b_2)))$. \qed

Definition 2.3.13. Let B be an AI-crystal. Define its character $\text{ch}_{AI} B$ to be a Laurent polynomial in m variables $y_1, y_3, \ldots, y_{2m-1}$ given by

$$\frac{1}{2m} \sum_{b \in B} \sum_{\sigma_1, \sigma_3, \ldots, \sigma_{2m-1} \in \{+,-\}} y_1^{\sigma_1} y_3^{\sigma_3} \cdots y_{2m-1}^{\sigma_{2m-1}} \in \mathbb{Z}[y_1, y_3, \ldots, y_{2m-1}]$$

Example 2.3.14. We have

$$\text{ch}_{AI, 2} \text{SST}_3(1) = y_1 + 1 + y_1^{-1}, \quad \text{ch}_{AI, 2} \text{SST}_4(1) = y_1 + y_1^{-1} + y_3 + y_3^{-1}.$$

Let us explain the meaning of the character of an AI-crystal B. Assume that B has the following property:

1. For each $b \in B$ and $i \in [1, m]$, we have $\tilde{B}_{2i-1} b = 0$ if and only if $\deg_{2i-1}(b) = 0$.

(2) For each \(b \in \mathcal{B} \) and \(i \neq j \in [1, m] \), we have \(\tilde{B}_{2i-1} \tilde{B}_{2j-1}b = \tilde{B}_{2j-1} \tilde{B}_{2i-1}b \).

For example, an AI-subcrystal of a \(\mathfrak{gl} \)-crystal admits this property (see Proposition 2.3.9). Set \(\overline{\mathcal{L}} := \mathbb{C}\mathcal{B} \), and extend the maps \(\tilde{B}_i \) to linear operators on \(\overline{\mathcal{L}} \). Note that the operators \(\tilde{B}_1, \tilde{B}_3, \ldots, \tilde{B}_{2m-1} \) pairwise commute. We say that a vector \(u \in \overline{\mathcal{L}} \) is a weight vector of weight \(\nu = (\nu_1, \nu_3, \ldots, \nu_{2m-1}) \in \mathbb{Z}^m \) if it satisfies the following:

1. \(u \) is a linear combination of \(b \in \mathcal{B} \) such that \(\deg_{2i-1}(b) = |\nu_{2i-1}| \) for all \(i \in [1, m] \).

2. \((\nu_1, \nu_3, \ldots, \nu_{2m-1}) \) denotes the signature of \(\nu_{2i-1} \), forms a basis of \(\overline{\mathcal{L}}_\nu \).

Let \(\overline{\mathcal{L}}_\nu \) denote the subspace of weight vectors of weight \(\nu \). Then, \(\overline{\mathcal{L}} \) admits the weight space decomposition

\[
\overline{\mathcal{L}} = \bigoplus_{\nu \in \mathbb{Z}^m} \overline{\mathcal{L}}_\nu.
\]

In fact, if we take a complete set \(\mathcal{B}' \) of representatives for \(\mathcal{B}/\sim \) with respect to the equivalence relation given by

\[
b_1 \sim b_2 \text{ if and only if } b_2 \in \{ \tilde{B}_{2i-1} \tilde{B}_{2i-1} \cdots \tilde{B}_{2r-1}b_1 \mid r \in [0, m], \ 1 \leq i_1 < \cdots < i_r \leq m \},
\]

then the set

\[
\{(1+\sigma_1 \tilde{B}_1)(1+\sigma_3 \tilde{B}_3) \cdots (1+\sigma_{2m-1} \tilde{B}_{2m-1})b \mid b \in \mathcal{B}', \ \deg_{2i-1}(b) = |\nu_{2i-1}| \text{ for all } i \in [1, m] \},
\]

where \(\sigma_{2i-1} \in \{+, -\} \) denotes the signature of \(\nu_{2i-1} \), forms a basis of \(\overline{\mathcal{L}}_\nu \). Therefore, we have

\[
\text{ch}_{\text{AI}} \mathcal{B} = \sum_{\nu \in \mathbb{Z}^m} (\dim \overline{\mathcal{L}}_\nu) y^\nu,
\]

where

\[
y^{(\nu_1, \nu_3, \ldots, \nu_{2m-1})} := y_1^{\nu_1} y_3^{\nu_3} \cdots y_{2m-1}^{\nu_{2m-1}}.
\]

2.4. \(\mathbf{K} \)-matrices. In this subsection, we introduce a family of isomorphisms of AI-crystals. They are closely related to \(\mathbf{K} \)-matrices appearing in representation theory of quantum group of type AI.

Let \(k \in [0, n] \) and consider a \(\mathfrak{gl} \)-crystal \(\text{SST}_n(1^k) \), where

\[
1^k := \begin{cases}
\stackrel{k}{\overbrace{(1, \ldots, 1)}} & \text{if } k \neq 0, \\
\emptyset & \text{if } k = 0.
\end{cases}
\]

For each \(1 \leq j_1 < \cdots < j_k \leq n \), set

\[
u_{j_1, \ldots, j_k} := \begin{cases}
j_1 & \text{if } k \neq 0, \\
j_k & \\
\emptyset & \text{if } k = 0.
\end{cases}
\]

Then, we have

\[
\text{SST}_n(1^k) = \begin{cases}
\{u_{j_1, \ldots, j_k} \mid 1 \leq j_1 < \cdots < j_k \leq n\} & \text{if } k \neq 0, \\
\{\emptyset\} & \text{if } k = 0.
\end{cases}
\]
The AI-crystal structure of SST\(_n(1^k)\) can be easily described as follows.

Lemma 2.4.1. Let \(1 \leq j_1 < \cdots < j_k \leq n\) and \(i \in [1, n-1]\). Then, we have

\[
\deg_i(u_{j_1, \ldots, j_k}) = \begin{cases} 1 & \text{if } |\{j_1, \ldots, j_k\} \cap \{i, i+1\}| = 1 \\ 0 & \text{otherwise,} \end{cases}
\]

\[
\tilde{B}_i u_{j_1, \ldots, j_k} = \begin{cases} u_{j_1-1, j_1, j_2, \ldots, j_k} & \text{if } j_{l-1} < i = j_l - 1 \text{ for some } l \in [1, k], \\ u_{j_1, \ldots, j_{l-1}, j_{l+1}, \ldots, j_k} & \text{if } j_l + 1 = i + 1 < j_{l+1} \text{ for some } l \in [1, k], \\ 0 & \text{otherwise.} \end{cases}
\]

Definition 2.4.2. For each \(k \in [0, n]\), define a map \(K : \text{SST}_n(1^k) \to \text{SST}_n(1^{n-k})\) by

\[
K(u_{j_1, \ldots, j_k}) = u_{j_1^{\prime}, \ldots, j_k^{\prime}},
\]

where \(\{j_1^{\prime}, \ldots, j_n^{\prime}\} = [1, n] \setminus \{j_1, \ldots, j_k\}\).

Proposition 2.4.3. Let \(k \in [0, n]\). Then, \(K : \text{SST}_n(1^k) \to \text{SST}_n(1^{n-k})\) is an isomorphism of AI-crystals with inverse \(K : \text{SST}_n(1^{n-k}) \to \text{SST}_n(1^k)\).

Proof. It is clear from the definition that \(K\) is a bijection with inverse \(K\). For each \(1 \leq j_1 < \cdots < j_k \leq n\) and \(i \in [1, n-1]\), by Lemma 2.4.1, we see that

\[
K(\tilde{B}_i u_{j_1, \ldots, j_k}) = \tilde{B}_i K(u_{j_1, \ldots, j_k}),
\]

and

\[
\deg_i(K(u_{j_1, \ldots, j_k})) = \deg_i(u_{j_1, \ldots, j_k}).
\]

Thus, the proof completes. \(\square\)

Corollary 2.4.4. Let \(\mathcal{B}\) be a \(\mathfrak{gl}\)-crystal. Then, for each \(k \in [0, n]\), the map

\[
K \otimes 1 : \text{SST}_n(1^k) \otimes \mathcal{B} \to \text{SST}_n(1^{n-k}) \otimes \mathcal{B}; \ b_1 \otimes b_2 \mapsto K(b_1) \otimes b_2
\]

is an isomorphism of AI-crystals.

Proof. The assertion follows from Proposition 2.4.3 and Corollary 2.3.12. \(\square\)

Let \(\lambda \in \text{Par}_n\). For each \(j \in [1, \lambda]\), let \(d_j\) denote the length of the \(j\)-th column of \(D(\lambda)\). By the definition of the \(\mathfrak{gl}\)-crystal structure of \(\text{SST}_n(\lambda)\), there exists an embedding

\[
\text{SST}_n(\lambda) \hookrightarrow \text{SST}_n(1^{d_1}) \otimes \text{SST}_n(1^{d_2}) \otimes \cdots \otimes \text{SST}_n(1^{d_{\lambda}})
\]

of a \(\mathfrak{gl}\)-crystal which sends \(T = C_1 \cdots C_{\lambda_j}\) to \(C_1 \otimes \cdots \otimes C_{\lambda_j}\), where \(C_j\) denotes the \(j\)-th column of \(T\). Define a new semistandard Young tableau \(K_1(T)\) by

\[
K_1(T) := P(K(C_1) \otimes C_2 \otimes \cdots \otimes C_{\lambda_j}).
\]

Then, the following are immediate from the definition of \(K_1\) and Corollary 2.4.4.

Proposition 2.4.5. Let \(\lambda \in \text{Par}_n\) and \(T \in \text{SST}_n(\lambda)\). Then, we have

\[
|K_1(T)| - |T| = n - 2\ell(\lambda).
\]

Proposition 2.4.6. Let \(\lambda \in \text{Par}_n\) and \(T \in \text{SST}_n(\lambda)\). Then, for each \(i \in [1, n-1]\), we have

\[
\tilde{B}_i(K_1(T)) = K_1(\tilde{B}_i T), \quad \deg_i(K_1(T)) = \deg_i(T).
\]

Here, we set \(K_1(0) := 0\).
2.5. AI-tableaux. In this subsection, we introduce AI-tableaux, which are central objects in this paper. They provide us many concrete examples of AI-crystals which are not \mathfrak{gl}-crystals.

Definition 2.5.1. Let $\lambda \in \text{Par}_n$ and $T \in \text{SST}_n(\lambda)$. We say that T satisfies the AI-condition, or T is an AI-tableau, if it satisfies the following two conditions:

1. $d_1 \leq m$.
2. $t_{i,1}^r \leq t_{i,2}$ for all $i \in [1, d_2]$, where $\{t_{1,1}^r, \ldots, t_{n-d_1+1}^r\} = [1, n] \setminus \{t_{1,1}, \ldots, t_{d_1,1}\}$.

Here, d_j denotes the length of the j-th column of $D(\lambda)$, and $t_{i,j}$ denotes the (i, j)-th entry of T. For each $\lambda \in \text{Par}_n$, let $\text{SST}_n^{\text{AI}}(\lambda)$ denote the set of semistandard Young tableaux of shape λ satisfying the AI-condition.

Remark 2.5.2. By Lemma 2.2.2, the second condition for AI-tableaux is equivalent to saying that if we write $T = C_1 C_2 \cdots C_{\lambda_1}$, where C_j denotes the j-th column of T, then

$$K_1(T) = K(C_1) C_2 \cdots C_{\lambda_1}.$$

Remark 2.5.3. If T satisfies the AI-condition for some n, then so does for all $n' \geq n$. However, AI-condition depends on n, in general. For example, \[\begin{array}{c}
1 \\
2
\end{array} \] is an AI-tableau when $n \geq 4$, but not when $n = 3$.

Remark 2.5.4. It is clear that $\text{SST}_n^{\text{AI}}(\lambda) = \emptyset$ unless $\ell(\lambda) \leq m$.

Example 2.5.5.

1. Let $n \geq 3$, $\lambda = (l)$, $l \geq 0$. Then, $T \in \text{SST}_n(l)$ is an AI-tableau if and only if T does not begin with \[\begin{array}{c}
1 \\
1
\end{array} \]. For example,

$$\text{SST}_3^{\text{AI}}(2) = \{1 2, 1 3, 2 2, 2 3, 3 3\}.$$

2. Let $n \geq 4$, $\lambda = (l_1, l_2)$, $l_1 \geq l_2 > 0$. Then, $T \in \text{SST}_n(l_1, l_2)$ is an AI-tableau if and only if the following conditions are satisfied:

(a) The first row of T does not begin with \[\begin{array}{c}
1 \\
1
\end{array} \].
(b) The second row of T does not begin with \[\begin{array}{c}
1 \\
2
\end{array} \].
(c) The first two rows of T do not begins with \[\begin{array}{c}
1 \\
2
\end{array} \].

For example,

$$\text{SST}_4^{\text{AI}}(2, 1) = \{1 2, 1 3, 2 2, 2 3, 3 2, 3 3, 4 2, 4 3, 4 4, 4 5, 4 6, 5 4, 5 5, 5 6, 6 4, 6 5, 6 6\}.$$

Lemma 2.5.6. Let $\lambda \in \text{Par}_n$ and $T \in \text{SST}_n(\lambda)$. Then, there exists $r \geq 0$ such that $K_1^r(T)$ is an AI-tableau.

Proof. We prove by induction on $|T|$. When T is an AI-tableau, there is nothing to prove. Suppose that T is not an AI-tableau. Set $d_1 := \ell(\lambda)$. Then, we have two possibilities; (1) $d_1 > m$ or (2) $d_1 \leq m$ and the second condition in Definition 2.5.1 fails. If we are in the first case, then by Proposition 2.4.5, we have

$$|K_1(T)| - |T| = n - 2d_1 \leq n - 2(m + 1) < 0.$$

Hence, the assertion follows from our induction hypothesis.

Now, assume that we are in the second case. Then, by Remark 2.5.2 and Lemma 2.2.2, the length of $\text{sh}(K_1(T))$ must be $n - d_1 + \alpha$ for some $\alpha > 0$. Using Proposition 2.4.5, we
compute as
\[
|K_2^3(T)| - |T| = (|K_2^3(T)| - |K_1(T)|) + (|K_1(T)| - |T|)
= (n - 2(n - d_1 + \alpha)) + (n - 2d_1)
= -2\alpha < 0.
\]
Hence, the assertion follows from our induction hypothesis. This completes the proof. □

Lemma 2.5.7. Let \(\rho \in \text{Par}_m, T \in \text{SST}^\text{AI}_n(\rho) \). Then, we have \(K_2^3(T) = T \). Furthermore, \(K_1(T) \) is an AI-tableau if and only if \(\ell(\rho) = \frac{n}{2} \).

Proof. For each \(j \in [1, \lambda_1] \), let \(d_j \) denote the length of the \(j \)-th column of \(D(\lambda) \), and \(C_j \) the \(j \)-th column of \(T \). By Remark 2.5.2, we have
\[
K_1(T) = K_1(C_1)C_2 \cdots C_{\lambda_1}.
\]
(1)

Since \(T \) is a semistandard Young tableau, by Lemma 2.2.2, we see that
\[
K_2^3(T) = K_2^3(C_1)C_2 \cdots C_{\lambda_1} = C_1C_2 \cdots C_{\lambda_1} = T.
\]
(2)
This implies the first assertion. Combining Remark 2.5.2 and equation (2), we see that
\[
K_1(T) \text{ is an AI-tableau if and only if } \ell(\rho) = \frac{n}{2}.
\]
By equation (1), and since \(\ell(\lambda) \leq m \), the second assertion follows. This completes the proof. □

Definition 2.5.8. Let \(\lambda \in \text{Par}_n \) and \(T \in \text{SST}_n(\lambda) \). The \(\text{P}^\text{AI}\)-symbol of \(T \) is an AI-tableau \(\text{P}^\text{AI}(T) \) given by
\[
\text{P}^\text{AI}(T) := K_1^r(T),
\]
where \(r := \min\{ s \mid K_1^s(T) \text{ is an AI-tableau} \} \).

Example 2.5.9. Let \(n = 4 \) and \(T = \begin{array}{ccc} 2 & 2 & 3 \\ 3 & 3 & 4 \end{array} \notin \text{SST}^\text{AI}_4(2, 2) \). Then, we compute as
\[
K_1 \begin{pmatrix} 2 & 2 \\ 3 & 3 \end{pmatrix} = P \begin{pmatrix} 1 & 2 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \notin \text{SST}^\text{AI}_4(2, 1, 1),
\]
\[
K_1 \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = P \begin{pmatrix} 2 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \end{pmatrix} \in \text{SST}^\text{AI}_4(2).
\]
Hence, we obtain \(\text{P}^\text{AI}(T) = \begin{pmatrix} 2 & 2 \end{pmatrix} \).

Remark 2.5.10. \(\text{P}^\text{AI}(T) \) depends on \(n \), in general. For example, we have
\[
\text{P}^\text{AI} \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{if } n = 3,
\]
\[
\text{P}^\text{AI} \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{if } n > 3.
\]

Proposition 2.5.11. Let \(\rho \in \text{Par}_m \). Then, \(\text{SST}^\text{AI}_n(\rho) \) is an AI-subcrystal of \(\text{SST}_n(\rho) \).
Proof. Let $T \in \text{SST}_n^\text{AI}(\rho)$ and $i \in [1, n-1]$ be such that $\tilde{B}_i T \neq 0$. It suffices to show that $\tilde{B}_i T \in \text{SST}_n^\text{AI}(\rho)$. Assume contrary. Then, by the proof of Lemma 2.5.6, we have

$$|P^\text{AI}(\tilde{B}_i T)| < |\tilde{B}_i T| = |T|. $$

On the other hand, if we write $P^\text{AI}(\tilde{B}_i T) = K_i^r(\tilde{B}_i T)$ for some $r > 0$, then we have

$$P^\text{AI}(\tilde{B}_i T) = \tilde{B}_i K_i^r(T) $$

by Proposition 2.4.6. Hence, we compute as

$$|P^\text{AI}(\tilde{B}_i T)| = |\tilde{B}_i K_i^r(T)| = |K_i^r(T)| \geq |T|, $$

where the last inequality follows from Lemma 2.5.7. Thus, we obtain a contradiction. Hence, the proof completes. □

Proposition 2.5.12. The map

$$P^\text{AI} : \bigsqcup_{\lambda \in \text{Par}_n} \text{SST}_n(\lambda) \to \bigsqcup_{\rho \in \text{Par}_m} \text{SST}_n^\text{AI}(\rho); \ T \mapsto P^\text{AI}(T) $$

is a morphism of AI-crystals.

Proof. Let $\lambda \in \text{Par}_n$, $T \in \text{SST}_n(\lambda)$, $i \in [1, n-1]$. Let $r \geq 0$ be the minimum integer such that $P^\text{AI}(T) = K_i^r(T)$. By Proposition 2.4.6, we see that

$$\tilde{B}_i P^\text{AI}(T) = K_i^r(\tilde{B}_i T), \ \deg_i(P^\text{AI}(T)) = \deg_i(T). $$

Hence, it suffices to show that

$$P^\text{AI}(\tilde{B}_i T) = K_i^r(\tilde{B}_i T). $$

First, suppose that $\tilde{B}_i T = 0$. Since K_i^r is a morphism of AI-crystals, our claim follows immediately.

Next, suppose that $\tilde{B}_i T \neq 0$. Let $r' \geq 0$ be the minimum integer such that

$$P^\text{AI}(\tilde{B}_i T) = K_i^{r'}(\tilde{B}_i T). $$

By Proposition 2.5.11, we see that $\tilde{B}_i P^\text{AI}(T)$, which equals $K_i^{r'}(\tilde{B}_i T)$, is an AI-tableau. By the minimality of r', we have $r' \leq r$. Let us show that $r' = r$. If $r' < r$, then

$$K_i^{r'}(T) = \tilde{B}_i^2 K_i^{r'}(T) = \tilde{B}_i K_i^{r'}(\tilde{B}_i T) = \tilde{B}_i P^\text{AI}(\tilde{B}_i T). $$

Here, the first equality holds because $\tilde{B}_i T \neq 0$, and hence,

$$\tilde{B}_i K_i^{r'}(T) = K_i^{r'}(\tilde{B}_i T) \neq 0. $$

Since $P^\text{AI}(\tilde{B}_i T)$ is an AI-tableau, so is $\tilde{B}_i P^\text{AI}(\tilde{B}_i T)$, which equals $K_i^{r'}(T)$. This contradicts the minimality of r. Thus, we obtain $r' = r$, and hence,

$$P^\text{AI}(\tilde{B}_i T) = K_i^r(\tilde{B}_i T), $$

as desired. □
2.6. Low rank examples. In this subsection, we investigate the AI-crystal structures of $\text{SST}^\text{Al}_n(\rho)$, $\rho \in \text{Par}_m$ in the case when $n = 3, 4$.

First, assume that $n = 3$ and consider $\text{SST}^\text{Al}_3(l)$, $l \geq 0$. For each $a \in \{1, 2\}$ and $b \in [0, l - 1]$, set

$$T_{a,b} := [\begin{array}{cccccc}
1 & 2 & 2 & \cdots & 2 & 3 \\
\end{array} \cdots \begin{array}{c}
3 \\
\end{array}] \in \text{SST}^\text{Al}_3(l),$$

where b is the number of 3’s. Also, set

$$T_l := [\begin{array}{cccc}
3 & 3 & \cdots & 3 \\
\end{array}] \in \text{SST}^\text{Al}_3(l).$$

Then, we have

$$\text{SST}^\text{Al}_3(l) = \{T_{a,b} \mid a \in \{1, 2\}, b \in [0, l - 1]\} \sqcup \{T_l\},$$

and hence,

$$(3) \quad |\text{SST}^\text{Al}_3(l)| = 2l + 1.$$

Lemma 2.6.1. Let $n = 3$ and $l \geq 0$. Then, the AI$_2$-crystal $\text{SST}^\text{Al}_3(l)$ is connected.

Proof. From definitions, we obtain

$$\tilde{B}_1 T_{a,b} = T_{a',b},$$

$$\tilde{B}_2 T_{a,b} = \begin{cases}
0 & \text{if } l - \delta_{a,1} - b \in \mathbb{Z}_{\text{ev}} \text{ and } b = 0, \\
T_{a,b-1} & \text{if } l - \delta_{a,1} - b \in \mathbb{Z}_{\text{ev}} \text{ and } b > 0, \\
T_{a,b+1} & \text{if } l - \delta_{a,1} - b \in \mathbb{Z}_{\text{odd}} \text{ and } b < l - 1, \\
T_l & \text{if } l - \delta_{a,1} - b \in \mathbb{Z}_{\text{odd}} \text{ and } b = l - 1,
\end{cases}$$

$$\tilde{B}_1 T_l = 0,$$

$$\tilde{B}_2 T_l = T_{2,l-1},$$

where $a' \in \{1, 2\} \setminus \{a\}$. Then, we see that

$$\tilde{B}_2 \tilde{B}_1 T_{1,l-1} = \tilde{B}_2 T_{2,l-1} = T_l,$$

and

$$\tilde{B}_2 \tilde{B}_1 T_{a',b} = \tilde{B}_2 T_{a,b} = T_{a,b+1}$$

for all $b \in [0, l - 2]$, where $a = 1$ if $l - b \in \mathbb{Z}_{\text{ev}}$ and $a = 2$ otherwise, and $a' \in \{1, 2\} \setminus \{a\}$. These show that each $T \in \text{SST}^\text{Al}_3(\rho)$ is connected to T_l. Therefore, $\text{SST}^\text{Al}_3(\rho)$ is connected.

Next, assume that $n = 4$ and consider $\text{SST}^\text{Al}_4(l)$, $l \geq 0$. For each $a \in \{1, 2\}$, $c \in [0, l - 1]$, and $b \in [0, l - c - 1]$, set

$$T_{a,b,c} := [\begin{array}{cccccc}
1 & 2 & 2 & \cdots & 2 & 3 \\
\end{array} \cdots \begin{array}{c}
3 \\
\end{array} \cdots \begin{array}{c}
4 \\
\end{array} \cdots \begin{array}{c}
4 \\
\end{array}] \in \text{SST}^\text{Al}_4(l),$$

where b and c are the numbers of 3’s and 4’s, respectively. Also, for each $c \in [0, l]$, set

$$T_c := [\begin{array}{cccc}
3 & 3 & \cdots & 3 \\
\end{array} \cdots \begin{array}{c}
4 \\
\end{array} \cdots \begin{array}{c}
4 \\
\end{array}] \in \text{SST}^\text{Al}_4(l),$$

where c is the number of 4’s. Then, we have

$$\text{SST}^\text{Al}_4(l) = \{T_{a,b,c} \mid a \in \{1, 2\}, c \in [0, l - 1], b \in [0, l - c - 1]\} \sqcup \{T_c \mid c \in [0, l]\},$$
and hence,

\begin{equation}
|\text{SST}^\text{AI}_4(l)| = \sum_{c=0}^{l-1} 2(l - c) + (l + 1) = (l + 1)^2.
\end{equation}

Lemma 2.6.2. Let \(n = 4 \) and \(l \geq 0 \). Then, the \(\text{AI}_3 \)-crystal \(\text{SST}^\text{AI}_4(l) \) is connected.

Proof. From definitions, we obtain

\[
\tilde{B}_1T_{a,b,c} = T'_{a',b,c},
\]

\[
\tilde{B}_2T_{a,b,c} = \begin{cases}
0 & \text{if } l - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{ev}} \text{ and } b = 0, \\
T_{a,b-1,c} & \text{if } l - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{ev}} \text{ and } b > 0, \\
T_{a,b+1,c} & \text{if } l - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{odd}} \text{ and } b < l - c - 1, \\
T_c & \text{if } l - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{odd}} \text{ and } b = l - c - 1,
\end{cases}
\]

\[
\tilde{B}_3T_{a,b,c} = \begin{cases}
0 & \text{if } b \in \mathbb{Z}_{\text{ev}} \text{ and } c = 0, \\
T_{a,b+1,c-1} & \text{if } b \in \mathbb{Z}_{\text{ev}} \text{ and } c > 0, \\
T_{a,b-1,c+1} & \text{if } b \in \mathbb{Z}_{\text{odd}},
\end{cases}
\]

\[
\tilde{B}_1T_c = 0,
\]

\[
\tilde{B}_2T_c = \begin{cases}
0 & \text{if } l - c = 0, \\
T_{2,l-c-1,c} & \text{if } l - c > 0,
\end{cases}
\]

\[
\tilde{B}_3T_c = \begin{cases}
0 & \text{if } l - c \in \mathbb{Z}_{\text{ev}} \text{ and } c = 0, \\
T_{c-1} & \text{if } l - c \in \mathbb{Z}_{\text{ev}} \text{ and } c > 0, \\
T_{c+1} & \text{if } l - c \in \mathbb{Z}_{\text{odd}},
\end{cases}
\]

where \(a' \in \{1, 2\} \setminus \{a\} \). We show that each \(T_{a,b,c} \) and \(T_c \) are connected to \(T_{1,0,0} \) by induction on \(c \). When \(c = 0 \), our claim follows from Lemma 2.6.1. Assume that \(c > 0 \). Then, by Lemma 2.6.1, we see that \(T_{a,b,c} \) is connected to \(T_c \). Then, we have \(\tilde{B}_3(T_c) = T_{c-1} \) (resp., \(\tilde{B}_3T_c = T_{2,l-c-1,c-1} \)) if \(l - c \) is even (resp., \(l - c \) is odd). Hence, our induction hypothesis implies that \(T_c \) is connected to \(T_{1,0,0} \). Thus, the proof completes.

Finally, assume that \(n = 4 \) and consider \(\text{SST}^\text{AI}_4(l_1, l_2), l_1 \geq l_2 > 0 \). For each \(a \in \{1, 2\}, c \in [0, l_1 - l_2] \), and \(b \in [0, l_1 - c - 1] \), set

\[
T_{a,b,c} := \begin{array}{cccccccc}
a & 2 & 2 & \cdots & 2 & 3 & 3 & \cdots & 4 & 4 & \cdots & 4 \\
b & 4 & 4 & \cdots & 4
\end{array} \in \text{SST}_4(l_1, l_2),
\]

where \(b \) and \(c \) are the numbers of 3’s and 4’s in the first row, respectively. Also, for each \(c \in [0, l_1 - l_2] \), set

\[
T_c := \begin{array}{cccccc}
3 & 3 & \cdots & 3 & 4 & 4 & \cdots & 4 \\
4 & 4 & \cdots & 4
\end{array} \in \text{SST}_4(l),
\]

where \(c \) is the number of 4’s in the first row. Then, we have

\[
\text{SST}^\text{AI}_4(l_1, l_2) = \{ T_{a,b,c}, K_1(T_{a,b,c}) \mid a \in \{1, 2\}, c \in [0, l_1 - l_2], b \in [0, l_1 - c - 1] \} \\
\cup \{ T_c, K_1(T_c) \mid c \in [0, l_1 - l_2] \},
\]
and hence,

\[
(5) \quad |\text{SST}_4^{\text{AI}}(l_1, l_2)| = 2\left(\sum_{c=0}^{l_1-l_2} 2(l_1 - c) + (l_1 - l_2 + 1)\right) = 2(l_1 - l_2 + 1)(l_1 + l_2 + 1).
\]

Note that we have

\[
K_1(T_{a,b,c}), K_1(T_c) \notin \{T_{a',b',c'} | a' \in \{1, 2\}, c' \in [0, l_1 - l_2], b' \in [0, l_1 - c' - 1]\} \cup \{T_{c'} | c' \in [0, l_1 - l_2]\}
\]

because the $(2, 1)$-th entries of $K_1(T_{a,b,c})$ and $K_1(T_c)$ are not 4, while those of $T_{a',b',c'}$ and $T_{c'}$ are 4.

Lemma 2.6.3. Let $n = 4$ and $l_1 \geq l_2 > 0$. Then, the AI3-crystal $\text{SST}_4^{\text{AI}}(l_1, l_2)$ is connected.

Proof. By definitions, we obtain

\[
\begin{align*}
\tilde{B}_1 T_{a,b,c} &= T_{a',b',c}, \\
\tilde{B}_2 T_{a,b,c} &= \begin{cases}
0 & \text{if } l_1 - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{ev}} \text{ and } b = 0, \\
T_{a,b-1,c} & \text{if } l_1 - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{ev}} \text{ and } b > 0, \\
T_{a,b+1,c} & \text{if } l_1 - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{odd}} \text{ and } b < l_1 - c - 1, \\
T_c & \text{if } l_1 - \delta_{a,1} - b - c \in \mathbb{Z}_{\text{odd}} \text{ and } b = l_1 - c - 1,
\end{cases} \\
\tilde{B}_3 T_{a,b,c} &= \begin{cases}
K_1(T_{a',b',c}) & \text{if } b < l_2, \\
0 & \text{if } b - l_2 \in \mathbb{Z}_{\geq 0,\text{ev}} \text{ and } c = 0, \\
T_{a,b+1,c-1} & \text{if } b - l_2 \in \mathbb{Z}_{\geq 0,\text{ev}} \text{ and } c > 0, \\
T_{a,b-1,c+1} & \text{if } b - l_2 \in \mathbb{Z}_{\geq 0,\text{odd}},
\end{cases} \\
\tilde{B}_1 T_c &= 0, \\
\tilde{B}_2 T_c &= T_{2,l_1-c-1,c}, \\
\tilde{B}_3 T_c &= \begin{cases}
0 & \text{if } l_1 - l_2 - c \in \mathbb{Z}_{\text{ev}} \text{ and } c = 0, \\
T_{c-1} & \text{if } l_1 - l_2 - c \in \mathbb{Z}_{\text{ev}} \text{ and } c > 0, \\
T_{c+1} & \text{if } l_1 - l_2 - c \in \mathbb{Z}_{\text{odd}}.
\end{cases}
\end{align*}
\]

where $a' \in \{1, 2\} \setminus \{a\}$. We show that each $T_{a,b,c}$ and T_c are connected to $T_{1,0,0}$ by induction on c. If this is the case, then the assertion follows from the fact that K_1 commutes with \tilde{B}_i’s and that $K_1(T_{1,0,0}) = \tilde{B}_1 \tilde{B}_3 T_{1,0,0}$ as verified from computation above. When $c = 0$, our claim follows from Lemma 2.6.1. Assume that $c > 0$. By Lemma 2.6.1, we see that $T_{a,b,c}$ is connected to T_c. Then, we have $\tilde{B}_3 T_c = T_{c-1}$ (resp., $\tilde{B}_3 \tilde{B}_2 T_c = T_{2,l_1-c-1,c-1}$) if $l_1 - l_2 - c$ is even (resp., if $l_1 - l_2 - c$ is odd). Hence, our induction hypothesis implies that T_c is connected to $T_{1,0,0}$. Thus, the proof completes. \hfill \Box

3. Representation theoretic interpretation

In this section, we show that the characters of $\text{SST}_n^{\text{AI}}(\rho)$’s coincide with the characters of irreducible polynomial representations of the orthogonal group O_n. To do so, we need results from representation theory of the quantum group of type AI obtained in [17].
3.1. **Representation theoretic interpretation of \(\mathfrak{gl} \)-crystals.** Let us briefly review finite-dimensional representation theory of the general linear algebra \(\mathfrak{gl}_n = \mathfrak{gl}_n(\mathbb{C}) \). Let \(M \) be a finite-dimensional \(\mathfrak{gl}_n \)-module. Then, it admits a weight space decomposition

\[
M = \bigoplus_{\lambda \in X_{\mathfrak{gl}_n}} M_{\lambda},
\]

where \(X_{\mathfrak{gl}_n} := \mathbb{Z}^n \) denotes the weight lattice for \(\mathfrak{gl}_n \). The character \(\text{ch}_{\mathfrak{gl}_n} M \) of \(M \) is a Laurent polynomial defined by

\[
\text{ch}_{\mathfrak{gl}_n} M := \sum_{\lambda \in X_{\mathfrak{gl}_n}} (\dim M_{\lambda}) x^\lambda \in \mathbb{Z}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}],
\]

where

\[
x^{(\lambda_1, \ldots, \lambda_n)} := x_1^{\lambda_1} \cdots x_n^{\lambda_n}.
\]

The finite-dimensional \(\mathfrak{gl}_n \)-modules are completely reducible, and the isomorphism classes of irreducible finite-dimensional \(\mathfrak{gl}_n \)-modules are parametrized by the set

\[
X^+_{\mathfrak{gl}_n} := \{ \lambda = (\lambda_1, \ldots, \lambda_n) \in X_{\mathfrak{gl}_n} \mid \lambda_1 \geq \cdots \geq \lambda_n \}
\]

of dominant integral weights. For \(\lambda \in X^+_{\mathfrak{gl}_n} \), let \(V^{\mathfrak{gl}_n}(\lambda) \) denote the corresponding \(\mathfrak{gl}_n \)-module, that is, the irreducible module of highest weight \(\lambda \).

The assignment

\[
\text{Par}_n \to X^+_{\mathfrak{gl}_n, \geq 0} := \{ \lambda = (\lambda_1, \ldots, \lambda_n) \in X^+_{\mathfrak{gl}_n} \mid \lambda_n \geq 0 \}; \ \lambda \mapsto (\lambda_1, \ldots, \lambda_{\ell(\lambda)}, 0, \ldots, 0)
\]

is bijective. In this way, we often identify these two sets. In particular, for a partition \(\lambda \in \text{Par}_n \), we understand \(\lambda_i = 0 \) for \(i > \ell(\lambda) \). For \(\lambda \in \text{Par}_n \), set

\[
V^{\text{GL}_n}(\lambda) := V^{\mathfrak{gl}_n}(\lambda).
\]

Then, \(V^{\text{GL}_n}(\lambda) \)'s are the irreducible polynomial representations of the general linear group \(\text{GL}_n = \text{GL}_n(\mathbb{C}) \). As is well-known, the \(\mathfrak{gl} \)-crystal \(\text{SST}_n(\lambda) \) models \(V^{\text{GL}_n}(\lambda) \) in the following sense:

\[
\text{ch}_{\mathfrak{gl}_n} V^{\text{GL}_n}(\lambda) = \text{ch}_{\mathfrak{gl} \text{-crystal}} \text{SST}_n(\lambda).
\]

3.2. **Results from representation theory of the quantum group of type AI.** Let \(\mathfrak{so}_n = \mathfrak{so}_n(\mathbb{C}) \) denote the special orthogonal algebra. It is realized as the Lie subalgebra of \(\mathfrak{gl}_n \) consisting of symmetric matrices with 0’s on the diagonal.

Let \(M \) be a finite-dimensional \(\mathfrak{so}_n \)-module. Then, it admits a weight space decomposition

\[
M = \bigoplus_{\nu \in X_{\mathfrak{so}_n}} M_{\nu},
\]

where \(X_{\mathfrak{so}_n} := \mathbb{Z}^m \sqcup (\frac{1}{2} + \mathbb{Z})^m \) denotes the weight lattice for \(\mathfrak{so}_n \). A weight \(\nu \in X_{\mathfrak{so}_n} \) is said to be an integer weight if \(\nu \in \mathbb{Z}^m \). Let \(X_{\mathfrak{so}_n, \text{int}} \) denote the set of integer weights. The character \(\text{ch}_{\mathfrak{so}_n} M \) of \(M \) is a Laurent polynomial defined by

\[
\text{ch}_{\mathfrak{so}_n} M := \sum_{\nu \in X_{\mathfrak{so}_n}} (\dim M_{\lambda}) y^\nu \in \mathbb{Z}[y_1^{\pm \frac{1}{2}}, y_3^{\pm \frac{1}{2}}, \ldots, y_{2m-1}^{\pm \frac{1}{2}}],
\]

where

\[
y^{(r_1, r_3, \ldots, r_{2m-1})} := y_1^{r_1} y_3^{r_3} \cdots y_{2m-1}^{r_{2m-1}}.
\]
The finite-dimensional so_n-modules are completely reducible, and the isomorphism classes of irreducible finite-dimensional so_n-modules are parametrized by the set

$$X^+_n := \begin{cases}
\{(\nu_1, \nu_2, \ldots, \nu_{2m-1}) \in X_{so_n} \mid \nu_1 \geq \cdots \geq \nu_{2m-3} \geq |\nu_{2m-1}| \} & \text{if } n \in \mathbb{Z}_{\text{ev}}, \\
\{(\nu_1, \nu_2, \ldots, \nu_{2m-1}) \in X_{so_n} \mid \nu_1 \geq \cdots \geq \nu_{2m-1} \geq 0 \} & \text{if } n \in \mathbb{Z}_{\text{odd}}
\end{cases}$$

of dominant integral weights. For $\nu \in X^+_n$, let $V^{so_n}(\nu)$ denote the corresponding so_n-module, that is, the irreducible module of highest weight ν. Also, for each partition $\rho \in \text{Par}_m$, set

$$V^O(\rho) := \begin{cases}
V^{so_n}(\rho_1, \ldots, \rho_{\ell(\rho)}, 0, \ldots, 0) & \text{if } \ell(\rho) < \frac{n}{2}, \\
V^{so_n}(\rho_1, \ldots, \rho_{m-1}, \rho_m) \oplus V^{so_n}(\rho_1, \ldots, \rho_{m-1}, -\rho_m) & \text{if } \ell(\rho) = \frac{n}{2}.
\end{cases}$$

Then, $V^{O}(\rho)$'s are the irreducible polynomial representations of the orthogonal group $O_n = O_n(\mathbb{C})$.

Let $\lambda \in \text{Par}_n$ and consider SST$_n(\lambda)$. Set

$$\mathcal{I}(\lambda) := \mathcal{CSST}_n(\lambda),$$

and extend the operators $\tilde{E}_i, \tilde{F}_i, \tilde{B}_i$ on SST$_n(\lambda)$ to linear operators on $\mathcal{I}(\lambda)$. As we have seen in the end of Subsection 2.3, the space $\mathcal{I}(\lambda)$ admits an so_n-weight space decomposition

$$\mathcal{I}(\lambda) = \bigoplus_{\nu \in X_{so_n,\text{int}}} \mathcal{I}(\lambda)_\nu.$$

This decomposition corresponds to the weight space decomposition of $V^{GL_n}(\lambda)$ regarded as an so_n-module: For each $\nu \in X_{so_n,\text{int}}$, it holds that

$$\dim V^{GL_n}(\lambda)_\nu = \dim \mathcal{I}(\lambda)_\nu.$$

Hence, we have

$$\text{ch}_{so_n} V^{GL_n}(\lambda) = \text{ch}_{A1} \text{SST}_n(\lambda).$$

From this, we can say that the A1-crystal SST$_n(\lambda)$ models the so_n-module $V^{GL_n}(\lambda)$.

In [17], certain linear operators on $\mathcal{I}(\lambda)$ are defined via representation theory of the quantum group of type A1. They are denoted by \tilde{X}_j, \tilde{Y}_j with $j \in \tilde{I}$ (in [17], \tilde{I} is denoted by \check{I}), where

$$\tilde{I} := \{(i, +), (i, -) \mid i \in [1, n - 2]_{\text{ev}} \cup [1, n - 1]_{\text{ev}} \}.$$

These operators are defined locally in the following sense: \tilde{X}_2, \tilde{Y}_2 (resp., \tilde{X}_2, \tilde{Y}_2) are defined in terms of $\tilde{E}_i, \tilde{F}_i, i \in \{1, 2\}$ (resp., $i \in \{1, 2, 3\}$). And $\tilde{X}_i, \tilde{Y}_i, i \in [1, n - 1]_{\text{ev}}$ (resp., $\tilde{X}_i, \tilde{Y}_i, i \in [1, n - 2]_{\text{ev}}$) are defined in the same way as \tilde{X}_2, \tilde{Y}_2 (resp., \tilde{X}_2, \tilde{Y}_2) with the role of $\{1, 2\}$ (resp., $\{1, 2, 3\}$) replaced by $\{i - 1, i\}$ (resp., $\{i - 1, i, i + 1\}$).

Set

$$X^+_{so_n,\text{int}} := X^+_{so_n} \cap X_{so_n,\text{int}}.$$

A nonzero weight vector $v \in \mathcal{I}(\lambda)_\nu$ is said to be a highest weight vector of weight $\nu \in X^+_{so_n,\text{int}}$ if $\tilde{X}_j v = 0$ for all $j \in \tilde{I}$. For a highest weight vector v of weight ν, set

$$\tilde{Y} v := \mathbb{C} \langle \tilde{Y}_{j_1} \cdots \tilde{Y}_{j_r} v \mid r \geq 0, j_1, \ldots, j_r \in \tilde{I} \rangle.$$

This space corresponds to an irreducible so_n-submodule of $V^{GL_n}(\lambda)$ isomorphic to $V^{so_n}(\nu)$. Similarly, for a vector $u \in \mathcal{I}(\lambda)$, set

$$\tilde{B} u := \mathbb{C} \langle \tilde{B}_{i_1} \cdots \tilde{B}_{i_r} u \mid r \geq 0, i_1, \ldots, i_r \in [1, n - 1] \rangle.$$
By definitions of \tilde{Y}_j’s and \tilde{B}_i’s, for each highest weight vector v, we see that $\tilde{B}v \subset \tilde{Y}v$.

Also, $\tilde{Y}v$ admits an \mathfrak{so}_n-weight space decomposition

$$\tilde{Y}v = \bigoplus_{\xi \in X_{\mathfrak{so}_n, \text{int}}} (\tilde{Y}v \cap \overline{Z}(\lambda)_{\xi}),$$

and it holds that

$$\dim(\tilde{Y}v \cap \overline{Z}(\lambda)_{\xi}) = \dim V^{\mathfrak{so}_n}(\nu)_{\xi}.$$

For each $\nu \in X_{\mathfrak{so}_n, \text{int}}^+$, choose a basis \{v_{\nu}^1, \ldots, v_{\nu}^{m_\nu}\} of the subspace $H(\nu) \subset \overline{Z}(\lambda)$ consisting of highest weight vectors of weight ν. Then, we have

$$\overline{Z}(\lambda) = \bigoplus_{\nu \in X_{\mathfrak{so}_n, \text{int}}^+} \bigoplus_{k=1}^{m_\nu} \tilde{Y}v_{\nu}^k.$$

By observation above, this corresponds to an irreducible decomposition of $V^{\mathrm{GL}_n}(\lambda)$ as an \mathfrak{so}_n-module.

A basis of the subspace $H(\nu)$ can be found as follows (see [17] for detail).

Definition 3.2.1. Let \mathcal{B} be an \mathfrak{sl}_2-crystal. An element $b \in \mathcal{B}$ is said to be a singular element of degree $\rho \in \text{Par}_m$ if it satisfies the following:

1. $\deg_{2i-1}(b) = \rho_i$ for all $i \in [1, m]$.
2. $\deg_{2i}(b) = 0$ for all $i \in [1, m]$ such that $2i < n$.
3. $\deg_{2i+1}((\tilde{B}_{2i-1}\tilde{B}_{2i})^{m+1}b) = 0$ for all $i \in [1, m]$ such that $2i + 1 < n$.

Let $\text{Sing}(\mathcal{B}, \rho)$ denote the set of singular elements of degree ρ.

Let $\rho \in \text{Par}_m$, and set

$$\text{Sing}(\lambda, \rho) := \text{Sing}((\text{SST}_n(\lambda), \rho)).$$

For each $S \in \text{Sing}(\lambda, \rho)$, set

$$h(S) := (1 + \tilde{B}_1)(1 + \tilde{B}_3) \cdots (1 + \tilde{B}_{2m-3})S.$$

Then, when $\ell(\rho) < \frac{n}{2}$ (resp., $\ell(\rho) = \frac{n}{2}$), the vector $h(S)$ (resp., $h(S)_\pm := (1 + \tilde{B}_{2m-1})h(S)$) is a highest weight vector of weight

$$\nu := (\rho_1, \rho_2, \ldots, \rho_{\ell(\rho)}, 0, \ldots, 0)$$

(resp., $\nu_\pm := (\rho_1, \rho_2, \ldots, \rho_{m-1}, \pm \rho_m)$).

Furthermore, $\{h(S) \mid S \in \text{Sing}(\lambda, \rho)\}$ (resp., $\{h(S)_+ \mid S \in \text{Sing}(\lambda, \rho)\}$) forms a basis of $H(\nu)$ (resp., $H(\nu_+)$). For each $S, S' \in \text{Sing}(\lambda, \rho)$, we have $h(S) = h(S')$ if and only if $S = S'$ (resp., $h(S)_+ = h(S')_+$ if and only if $S' = \tilde{B}_1\tilde{B}_3 \cdots \tilde{B}_{2m-1}S$). When $\ell(\rho) = \frac{n}{2}$, we have $h(S)_- = -h(S')_-$ if and only if $S' = \tilde{B}_1\tilde{B}_3 \cdots \tilde{B}_{2m-1}S$.

Now, it is convenient to set $\text{Sing}'(\lambda, \rho)$ to be $\text{Sing}(\lambda, \rho)$ if $\ell(\rho) < \frac{n}{2}$, and to be a complete set of representatives for $\text{Sing}(\lambda, \rho)/\sim$ with respect to the equivalence relation given by

$$S \sim S'$$

if $\ell(\rho) = \frac{n}{2}$. Then, from discussion above, we obtain

$$\overline{Z}(\lambda) = \bigoplus_{\rho \in \text{Par}_m} \bigoplus_{S \in \text{Sing}'(\lambda, \rho)} \tilde{Y}h(S).$$
Furthermore, for each \(S \in \text{Sing}'(\lambda, \rho) \), the subspace \(\tilde{Y} h(S) \) corresponds to an \(\mathfrak{so}_n \)-submodule of \(V^{\text{GL}_m}(\lambda) \) isomorphic to \(V^{\text{O}_n}(\rho) \).

Lemma 3.2.2. Let \(S \in \text{Sing}(\lambda, \rho) \). Let \(m' \) denote the maximal integer such that \(2m' < n \) and \(\rho_{m'} \neq 0 \). Then, we have
\[
\tilde{B}_1 \tilde{B}_2 \tilde{B}_3 \tilde{B}_4 \cdots \tilde{B}_{2m'-1} \tilde{B}_{2m'} h(S) = S.
\]
Consequently, we have
\[
\tilde{B} S = \tilde{B} h(S).
\]

Proof. By the definition of \(m' \), we have
\[
h(S) = (1 + \tilde{B}_1)(1 + \tilde{B}_3) \cdots (1 + \tilde{B}_{2m'-1}) S,
\]
and hence,
\[
\tilde{B}_1 \tilde{B}_2 \tilde{B}_3 \tilde{B}_4 \cdots \tilde{B}_{2m'-1} \tilde{B}_{2m'} h(S) = \tilde{B}_1 \tilde{B}_2 (1 + \tilde{B}_1) \tilde{B}_3 \tilde{B}_4 (1 + \tilde{B}_3) \cdots \tilde{B}_{2m'-1} \tilde{B}_{2m'} (1 + \tilde{B}_{2m'-1}) S.
\]
Here, we used Proposition 2.3.9 (2). Therefore, it suffices to show that
\[
\tilde{B}_{2i-1} \tilde{B}_{2i} (1 + \tilde{B}_{2i-1}) S = S
\]
for all \(i \in [1, m'] \).

Let \(i \in [1, m'] \). Then, we have \(\deg_{2i}(S) = 0 \) and \(\deg_{2i-1}(S) \neq 0 \). By Proposition 2.3.9 (1), we have \(\tilde{B}_{2i} S = 0 \) and \(\tilde{B}_{2i-1} S \neq 0 \), and hence,
\[
\tilde{B}_{2i-1} \tilde{B}_{2i} (1 + \tilde{B}_{2i-1}) S = \tilde{B}_{2i-1} \tilde{B}_{2i} \tilde{B}_{2i-1} S.
\]
By Definition 2.3.1 (2), we must have
\[
\deg_{2i}(\tilde{B}_{2i-1} S) = 1,
\]
and hence,
\[
\tilde{B}_{2i} \tilde{B}_{2i-1} S = \tilde{B}_{2i-1} S.
\]
Therefore, we have
\[
\tilde{B}_{2i-1} \tilde{B}_{2i} \tilde{B}_{2i-1} S = \tilde{B}_{2i-1} S = S,
\]
as desired. This completes the proof. \(\square \)

3.3. **Connectedness of** \(\text{SST}^A_n(\rho) \). Let \(\rho \in \text{Par}_m \). Define \(T_\rho \in \text{SST}^A_n(\rho) \) by
\[
T_\rho(i, j) = \begin{cases} a_{2i-1} & \text{if } j = 1, \\ 2i & \text{if } j > 1, \end{cases}
\]
where \(a_{2i-1} \in \{2i - 1, 2i\} \) is such that
\[
\rho_i - \delta_{a_{2i-1}, 2i-1} - \delta_{a_{2i+1}, 2i+1} \in \mathbb{Z}_{ev}.
\]
Here, we set \(a_{2\ell(\rho)+1} = 2\ell(\rho) + 2 \). Note that such \(a_{2i-1} \)'s are uniquely determined.

Example 3.3.1. Let \(\rho \in \text{Par}_m \).

(1) If \(\ell(\rho) = 1 \), then
\[
T_\rho = \begin{bmatrix} a & 2 & 2 & \cdots & 2 \end{bmatrix}, \quad a := \begin{cases} 2 & \text{if } \rho_1 \in \mathbb{Z}_{ev}, \\ 1 & \text{if } \rho_1 \in \mathbb{Z}_{odd}. \end{cases}
\]
(2) If $\ell(\rho) = 2$, then

$$
T_\rho = \begin{bmatrix}
 a & 2 & 2 & \cdots & 2 & 2 & \cdots & 2 \\
 b & 4 & 4 & \cdots & 4 \\
\end{bmatrix}
$$

$$
b := \begin{cases}
 4 & \text{if } \rho_2 \in \mathbb{Z}_{ev}, \\
 3 & \text{if } \rho_2 \in \mathbb{Z}_{odd},
\end{cases} \quad a := \begin{cases}
 2 & \text{if } \rho_1 - \delta_{b,3} \in \mathbb{Z}_{odd}, \\
 1 & \text{if } \rho_1 - \delta_{b,3} \in \mathbb{Z}_{ev}.
\end{cases}
$$

Lemma 3.3.2. Let $\rho \in \text{Par}_m$ be such that $\ell(\rho) = \frac{m}{2}$. Then, we have

$$
K_1(T_\rho) = \tilde{B}_1 \tilde{B}_3 \cdots \tilde{B}_{2m-1} T_\rho.
$$

Proof. By Remark 2.5.2, $K_1(T_\rho)$ is obtained from T_ρ by applying K to the first column. Since the $(i, 1)$-th entry of T_ρ is either $2i - 1$ or $2i$ for each $i \in [1, m]$, we have

$$
K_1(T_\rho)(i, j) = \begin{cases}
 a'_{2i-1} & \text{if } j = 1, \\
 2i & \text{if } j > 1,
\end{cases}
$$

where $a'_{2i-1} \in \{2i - 1, 2i\} \setminus \{a_{2i-1}\}$. Now, the assertion is easily verified. \hfill \square

Lemma 3.3.3. Let $\rho, \sigma \in \text{Par}_m$ and $S \in \text{SST}_n^{\text{AI}}(\sigma) \cap \text{Sing}(\sigma, \rho)$. Then, we have $\sigma = \rho$, and either $S = T_\rho$ or $S = K_1(T_\rho)$.

Proof. Let us show by induction on $l \in [1, m]$ that in S, the letters $2l - 1$ and $2l$ can appear only in the l-th row. Let $l \in [1, m]$. By our induction hypothesis, it holds that $\text{sh}(S|_{[1, (l-1)]}) = (\sigma_1, \sigma_2, \ldots, \sigma_{l-1})$. In particular, the l-th row or below consists of letters in $[2l - 1, n]$.

First, we show that the l-th row consists of only $2l - 1$ and $2l$. Assume contrary that $k > 2l$ appears in the l-th row. If k is odd, then it must hold that $\varepsilon_{k-1}(S) > 0$, and hence $\deg_{k-1}(S) > 0$, which contradicts Definition 3.2.1 (2). On the other hand, if k is even, then it must hold that $\varepsilon_{k-1}(B_{k-2}B_{k-3})^{\deg_{k-1}(S)} > 0$ (note that B_{k-2} and B_{k-3} do not change the entries other than $k - 3, k - 2, k - 1$, and hence, $\deg_{k-1}(B_{k-2}B_{k-3})^{\deg_{k-1}(S)} > 0$, which contradicts Definition 3.2.1 (3). Thus, we see that the l-th row of S consists of only $2l - 1$ and $2l$.

Next, we show that $S|_{\{2l-1, 2l\}} = s_l \begin{bmatrix} 2l & 2l & \cdots & 2l \end{bmatrix}$. By the argument above, we have

$$
S|_{\{2l-1, 2l\}} = \begin{bmatrix}
 2l - 1 & \cdots & 2l - 1 & 2l & 2l & \cdots & 2l \\
 2l & 2l & \cdots & 2l \\
\end{bmatrix}
$$

where the first row consists of σ_l boxes. By our induction hypothesis, for each $l < l$, we have $s'_l := S(l', 1) \in \{2l' - 1, 2l'\}$. Hence, the $(l', 1)$-th entry of $K_1(S)$ is the unique letter s'_l in $\{2l' - 1, 2l'\} \setminus \{s'_l\}$. Now, suppose that $s_{l+1} := S(l+1, 1) \neq 2l$. Then, by observation above, the $(l, 1)$-th entry s'_l of $K_1(S)$ is the unique letter in $\{2l - 1, 2l\} \setminus \{s_l\}$. Since S is an AI-tableau, we have

$$
s'_l \leq S(l, 2) \leq \cdots \leq S(l, \rho_l).
$$

This, together with the semistandardness condition on the l-th row

$$
s_l \leq S(l, 2) \leq \cdots \leq S(l, \rho_l),
$$

...
implies that $S(l, 2) \geq 2l$. Therefore, we must have
\[
S\big|_{(2l-1,2l]} = \begin{array}{cccc}
 s_l & 2l & 2l & \cdots & 2l \\
\end{array}
\]
as desired.

It remains to show that $s_{l+1} \neq 2l$. If $s_{l+1} = 2l$, then it must hold that $s_l = 2l - 1$, and consequently,
\[
s'_l > 2l.
\]
Since S is an AI-tableau and the l-th row consists of $2l - 1$ and $2l$, this implies that $\sigma_l = 1$. Therefore, the l-th row and below of S is of the form
\[
\begin{array}{c}
 2l-1 \\
 2l \\
 s_{l+2} \\
 \vdots \\
 s_{l(\sigma)} \\
\end{array}
\]
This shows that $\deg_{2l-1}(S) = 0$. Since $\rho_l = \deg_{2l-1}(S)$ and ρ is a partition, we obtain $\rho = (\rho_1, \rho_2, \ldots, \rho_{l-1})$. This implies that $\deg_{s_i}(S) = 0$ for all $i \in [2l - 1, n - 1]$. From (7), we see that $\deg_{2l}(S) = 0$ if and only if $s_{l+2} = 2l + 1$. Proceeding in this way, we must have $s_{l+k} = 2l - 1 + k$ for all $k \in [1, n - 2l + 1]$, which is impossible because $l + (n - 2l + 1) = n - l + 1 > m \geq \ell(\sigma)$. Thus, our claim follows.

So far, we have obtained that
\[
S(i,j) = \begin{cases}
s_i & \text{if } j = 1, \\
2i & \text{if } j > 1
\end{cases}
\]
for some $s_i \in \{2i - 1, 2i\}$. From this, one can easily see that
\[
\deg_{2l-1}(S) = \sigma_i
\]
for all $i \in [1, m]$. On the other hand, since $\deg_{2l-1}(S) = \rho_i$, we obtain
\[
\sigma = \rho.
\]

In order to complete the proof, we need to determine s_l for all $l \in [1, \ell(\rho)]$. First, suppose that $\ell(\rho) < \frac{n}{2}$. In this case, $2\ell(\rho) \in [1, n - 1]$, and hence, we must have
\[
\deg_{2\ell(\rho)}(S) = 0.
\]
This is equivalent to that
\[
\rho_{\ell(\rho)} - \delta_{s_0, 2\ell(\rho)-1} \in \mathbb{Z}_{ev}.
\]
Similarly, the constraint that $\deg_{2\ell(\rho)-1}(S) = 0$ is equivalent to that
\[
\rho_{\ell(\rho)-1} - \delta_{s_0, 2\ell(\rho)-3} - \delta_{s_1, 2\ell(\rho)-1} \in \mathbb{Z}_{ev}.
\]
Proceeding in this way, we see that
\[
\rho_l - \delta_{s_l, 2l-1} - \delta_{s_{l+1}, 2l+1} \in \mathbb{Z}_{ev},
\]
for all $l \in [1, \ell(\rho)]$, where we set $s_{\ell(\rho)+1} := 2\ell(\rho) + 2$. This implies that
\[
S = T_\rho,
\]
as desired.
Next, suppose that $\ell(\rho) = \frac{n}{2}$. In a similar way to above, we see that
\[\rho_l - \delta_{l,2l-1} - \delta_{l+1,2l+1} \in \mathbb{Z}_{ev}, \]
for all $l \in [1, \ell(\rho) - 1]$. This implies that we have $S = T_\rho$ if $\rho_m - \delta_{m,n-1} \in \mathbb{Z}_{ev}$, or $S = K_1(T_\rho)$ otherwise. Thus, the proof completes. \hfill \Box

Proposition 3.3.4. Let $\lambda \in \text{Par}_n$, $\rho \in \text{Par}_m$, and $S \in \text{Sing}(\lambda, \rho)$. Then, we have either $P^{AI}(S) = T_\rho$ or $P^{AI}(S) = K_1(T_\rho)$.

Proof. Let $\sigma \in \text{Par}_m$ denote the shape of $P^{AI}(S)$. Then, we have $P^{AI}(S) \in \text{SST}_{\text{n}}(\sigma) \cap \text{Sing}(\sigma, \rho)$. Then, the assertion follows from Lemma 3.3.3. \hfill \Box

Lemma 3.3.5. Let $\lambda \in \text{Par}_n$, $\rho \in \text{Par}_m$, and $S \in \text{Sing}(\lambda, \rho)$. Then, we have $\tilde{B}S = \tilde{Y}h(S)$.

Proof. Since we know $\tilde{B}S = \tilde{B}h(S) \subset \tilde{Y}h(S)$ (by Lemma 3.2.2) and $h(S) \in \tilde{B}S$, it suffices to show that $\tilde{Y}_j(\tilde{B}S) \subset \tilde{B}S$ for all $j \in I$. Furthermore, since \tilde{Y}_j’s are defined locally (see Subsection 3.2), it suffices to prove for the case when $n = 3$ and $j = 2$, and when $n = 4$ and $j = (2, \pm)$.

Let $(n, j) \in \{(3, 2), (4, (2, \pm))\}$. By Proposition 3.3.4 and Lemmas 2.6.1–2.6.3, we see that
\[C^{AI}(S) \rightarrow \text{SST}_{\text{n}}(\rho); \ T \mapsto P^{AI}(T) \]
is a surjective morphism of AI-crystals. This implies that
\[\dim \tilde{B}S \geq |\text{SST}_{\text{n}}(\rho)| \]
since we have $\tilde{B}S = \mathbb{C}C^{AI}(S)$. On the other hand, since $\tilde{B}S \subset \tilde{Y}h(S)$, we have
\[\dim \tilde{B}S \leq \dim \tilde{Y}h(S) = \dim V^{O_n}(\rho) = |\text{SST}_{\text{n}}(\rho)|. \]
The last equality follows from equations (3)–(5). Therefore, we obtain $\dim \tilde{B}S = \dim \tilde{Y}h(S)$, and hence,
\[\tilde{B}S = \tilde{Y}h(S). \]
Since the right-hand side is closed under \tilde{Y}_j, so is the left-hand side. Thus, the proof completes. \hfill \Box

Theorem 3.3.6. Let $\rho \in \text{Par}_m$, and set $\nu := (\rho_1, \ldots, \rho_{\ell(\rho)}, 0, \ldots, 0) \in X^{+}_{\text{ssn}, \text{int}}$. Then, the following hold.

1. $\text{SST}_{\text{n}}(\rho)$ is connected.
2. $\text{ch}_{AI} \text{SST}_{\text{n}}(\rho) = \text{ch}_{\text{ssn}} V^{O_n}(\rho)$.
3. Suppose that $\ell(\rho) \neq \frac{n}{2}$. Then, we have $\text{ch}_{AI} \text{SST}_{\text{n}}(\rho) = \text{ch}_{\text{ssn}} V^{\rho}(\nu)$.
4. Suppose that $\ell(\rho) = \frac{n}{2}$. Then, $\{T + K_1(T) \mid T \in \text{SST}_{\text{n}}(\rho)\}$ is a connected AI-crystal, and $\text{ch}_{AI} \text{SST}_{\text{n}}(\rho) = \text{ch}_{\text{ssn}} V^{\rho}(\nu)$.

Proof. Let us prove the first assertion. By equation (6) and Lemma 3.3.5, we see that
\[\mathcal{L}(\rho) = \bigoplus_{\sigma \in \text{Par}_m} \bigoplus_{S \in \text{Sing}'(\rho, \sigma)} \mathbb{C}C^{AI}(S). \]
This implies that for each $T \in \text{SST}_{\text{n}}(\rho)$, there exists a unique $\sigma \in \text{Par}_m$ and $S \in \text{Sing}'(\rho, \sigma)$ such that $T \in C^{AI}(S)$. In particular, since $\text{SST}_{\text{n}}(\rho)$ is closed under \tilde{B}_i’s, each $T \in
SST^\text{AI}_n(\rho) is connected to an element of SST^\text{AI}_n(\rho) \cap \text{Sing}'(\rho, \sigma)$ for some $\sigma \in \text{Par}_m$. By Lemma 3.3.3, we see that
\[|\text{SST}^\text{AI}_n(\rho) \cap \text{Sing}'(\rho, \sigma)| \leq \delta_{\rho, \sigma}. \]
Therefore, each $T \in \text{SST}^\text{AI}_n(\rho)$ is connected to the element of $\text{SST}^\text{AI}_n(\rho) \cap \text{Sing}'(\rho, \rho)$. This implies that $\text{SST}^\text{AI}_n(\rho)$ is connected.

Next, let $S \in \text{SST}^\text{AI}_n(\rho) \cap \text{Sing}'(\rho, \rho)$. From Lemma 3.3.5 and the first assertion, we have
\[\tilde{Y} h(S) = \tilde{B} S = \text{CSST}^\text{AI}_n(\rho). \]
Then, the second and third assertion is clear from discussion after equation (6).

Finally, assume that $\ell(\rho) = \frac{n}{2}$. Then, that $\{T + K_1(T) \mid T \in \text{SST}^\text{AI}_n(\rho)\}$ is a connected AI-crystal follows from the facts that K_1 is an automorphism of AI-crystal on $\text{SST}^\text{AI}_n(\rho)$, and that $\text{SST}^\text{AI}_n(\rho)$ is connected. The assertion concerning characters follows from the fact that
\[h(S) + h(K_1(S)) = h(T_\rho) + h(\tilde{B}_1 \tilde{B}_3 \cdots \tilde{B}_{2m-1} T_\rho) = 2h(T_\rho), \]
is a highest weight vector of weight ν, where $S \in \text{SST}^\text{AI}_n(\rho) \cap \text{Sing}'(\rho, \rho)$ (see also Lemma 3.3.2). Thus, the proof completes.

\textbf{Remark 3.3.7.} During the proof of Theorem 3.3.6, we obtained
\[\text{SST}^\text{AI}_n(\rho) \cap \text{Sing}(\rho, \sigma) = \begin{cases} \emptyset & \text{if } \sigma \neq \rho, \\ \{T_\rho\} & \text{if } \sigma = \rho \text{ and } \ell(\rho) < \frac{n}{2}, \\ \{T_\rho, K_1(T_\rho)\} & \text{if } \sigma = \rho \text{ and } \ell(\rho) = \frac{n}{2}. \end{cases} \]

\section{Robinson-Schensted Type Correspondence}

In this section, we generalize the Robinson-Schensted correspondence to the setting of AI-crystals. This tells us how various AI-crystals decompose into their connected components.

\subsection{Insertion scheme}

Let $\lambda \in \text{Par}_n$. Then, the map
\[\text{SST}_n(\lambda) \otimes \text{SST}_n(1) \rightarrow \bigsqcup_{\mu \in \text{Par}_n} \text{SST}_n(\mu); \ T \otimes \square \mapsto (T \leftarrow l) \]
is an isomorphism of \mathfrak{gl}-crystals. The aim of this subsection is to provide an AI-crystal analog of this isomorphism, which will play a central role when generalizing the Robinson-Schensted correspondence.

Let $\rho \in \text{Par}_m$ and consider the AI-crystal $\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1)$. In order to analyze its structure, let us recall the following fact, which is the special case of [4, Lemma 7].

\textbf{Lemma 4.1.1.} Let $\nu \in X^+_{so_n, \text{int}}$. For each $k \in [1, m]$, set
\[\epsilon_{2k-1} := (0, \ldots, 0, 1, 0, \ldots, 0) \in X_{so_n, \text{int}}. \]
Then, we have
\[V^{so_n}(\nu) \otimes V^{so_n}(\epsilon_1) \simeq \bigoplus_\xi V^{so_n}(\nu + \xi), \]
where ξ runs through $X_{so_n, \text{int}}$ satisfying the following:

1. $V^{so_n}(\epsilon_1)_{\xi} \neq 0$.
2. $V^{so_n}(\epsilon_1)_{\xi+1} \otimes V^{so_n}(\epsilon_1)_{\xi-1} = 0$ for all $i \in [1, m - 1]$.

Let \(\rho \in \text{Par}_m \).

(1) Suppose that \(n \in \mathbb{Z}_{\text{ev}} \) and \(\rho_m \neq 1 \). Then, we have
\[
\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \simeq \bigsqcup_{\sigma \in \text{Par}_m \setminus \text{Par}_{m-1}} \text{SST}^\text{AI}_m(\sigma).
\]

(2) Suppose that \(n \in \mathbb{Z}_{\text{ev}} \) and \(\rho_m = 1 \). Then, we have
\[
\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \simeq \bigsqcup_{\sigma \in \text{Par}_m \setminus \text{Par}_{m-1}} \text{SST}^\text{AI}_m(\sigma) \sqcup \text{SST}^\text{AI}_m(\rho')^2,
\]
where \(\rho' := (\rho_1, \rho_2, \ldots, \rho_{m-1}) \).

(3) Suppose that \(n \in \mathbb{Z}_{\text{odd}} \) and \(\rho_m = 0 \). Then, we have
\[
\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \simeq \bigsqcup_{\sigma \in \text{Par}_m \setminus \text{Par}_{m-1}} \text{SST}^\text{AI}_m(\sigma).
\]

(4) Suppose that \(n \in \mathbb{Z}_{\text{odd}} \) and \(\rho_m \neq 0 \). Then, we have
\[
\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \simeq \bigsqcup_{\sigma \in \text{Par}_m \setminus \text{Par}_{m-1}} \text{SST}^\text{AI}_m(\sigma).
\]

Now, let us investigate the connected components of \(\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \). Let \(T \in \text{SST}^\text{AI}_n(\rho) \) and \(l \in [1, n] \). Let \(\sigma \in \text{Par}_m \) denote the shape of \(P^\text{AI}(T \leftarrow l) \). Then, by Proposition 2.5.12 and Theorem 3.3.6 (1), the connected component containing \(T \otimes \square \) is isomorphic to \(\text{SST}^\text{AI}_n(\sigma) \). This observation, together with Lemma 4.1.2 implies the following: Unless \(n \in \mathbb{Z}_{\text{ev}} \) and \(\sigma = \rho' \), we have
\[
C^\text{AI}(T \otimes \square) = \{ T' \otimes \square \mid \text{sh}(P^\text{AI}(T' \leftarrow l')) = \sigma \}.
\]
Hence, let us consider the case when \(n \in \mathbb{Z}_{\text{ev}} \) and \(\sigma = \rho' \) (this can happen only when \(\rho_m = 1 \)). In this case, the set
\[
\{ T' \otimes \square \mid \text{sh}(P^\text{AI}(T' \leftarrow l')) = \rho' \}
\]
consists of exactly two connected components, and both of them are isomorphic to \(\text{SST}^\text{AI}_n(\rho') \). The following lemma describes one of these connected components.

Lemma 4.1.3. Let \(n \in \mathbb{Z}_{\text{ev}} \) and \(\rho \in \text{Par}_m \) be such that \(\rho_m = 1 \). Let \(\rho' := (\rho_1, \ldots, \rho_{m-1}) \), and \(\rho'' := (\rho_1, \ldots, \rho_m, 1) \). Then, the set
\[
\{ T \otimes \square \in \text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \mid \text{sh}(P^\text{AI}(T \leftarrow l)) = \rho' \text{ and } \text{sh}(T \leftarrow l) = \rho'' \}
\]
is a connected component of \(\text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \) isomorphic to \(\text{SST}^\text{AI}_n(\rho') \).

Proof. By Lemma 4.1.2 (2), there are exactly two elements \(T_1 \otimes \square, T_2 \otimes \square \in \text{SST}^\text{AI}_n(\rho) \otimes \text{SST}_n(1) \) such that \(P^\text{AI}(T_i \leftarrow l_i) = T_{\rho'}, i = 1, 2 \). Set \(\sigma_i := \text{sh}(T_i \leftarrow l_i) \). Since the operators \(B_j, j \in [1, n-1] \) preserves semistandard tableaux, we have
\[
\text{sh}(T' \leftarrow l') = \sigma_i
\]
for all \(T' \otimes \square \in C^\text{AI}(T_i \otimes \square) \).
Now, we show that exactly one of σ_1, σ_2 is equal to ρ''. To do so, it suffices to prove that there is a unique tableau $T'' \in \text{SST}_n(\rho'')$ such that $P^{\text{AI}}(T'') = T_\rho$. One can easily verify that $K(T_\rho)$ is such a tableau. To prove the uniqueness, let T'' be such a tableau. Let $C_j, j \in [1, \rho_1]$ denote the j-th column of T''. Since $|C_1| = m + 1 > m$, we have $|K_1(T'')| \leq |T''| - 2 = |\rho| - 1 = |\rho'| = |P^{\text{AI}}(T'')|$. Hence, by Lemma 2.2.2, we have
\[
P^{\text{AI}}(T'') = K_1(T'') = P(K(C_1) \otimes C_2 \otimes \cdots \otimes C_{\rho_1}).
\]
Since $P^{\text{AI}}(T'') = T_\rho$, the length of the first column of $P^{\text{AI}}(T'')$ is $m - 1$. On the other hand, we have $|K(C_1)| = m - 1$. Hence, it must hold that
\[
P(K(C_1) \otimes C_2 \otimes \cdots \otimes C_{\rho_1}) = K(C_1)C_2 \cdots C_{\rho_1}.
\]
Therefore, we obtain
\[
K(C_1)C_2 \cdots C_{\rho_1} = T_\rho.
\]
This implies that $T'' = C_1C_2 \cdots C_{\rho_1}$ is obtained from T_ρ by applying K to the first column. In particular, T'' is uniquely determined. Thus, the proof completes. \qed

Combining Lemmas 4.1.2 and 4.1.3, we obtain the following.

Proposition 4.1.4. Let $\rho \in \text{Par}_m$.

1. Suppose that $n \in \mathbb{Z}_{\text{ev}}$ and $\rho_m \neq 1$. Then, the map
\[
\text{SST}_n^{\text{AI}}(\rho) \otimes \text{SST}_n(1) \to \bigsqcup_{\sigma \in \text{Par}_m \setminus \rho \sigma \text{ or } \rho \sigma} \text{SST}_n^{\text{AI}}(\sigma); \quad T \otimes \mathbf{\Box} \mapsto P^{\text{AI}}(T \leftarrow l)
\]
is an isomorphism of AI-crystals.

2. Suppose that $n \in \mathbb{Z}_{\text{ev}}$ and $\rho_m = 1$. Then, the map
\[
\text{SST}_n^{\text{AI}}(\rho) \otimes \text{SST}_n(1) \to \bigsqcup_{\sigma \in \text{Par}_m \setminus \rho \sigma \text{ or } \rho \sigma} \text{SST}_n^{\text{AI}}(\sigma) \sqcup (\text{SST}_n^{\text{AI}}(\rho') \times \{+, -, \})
\]
\[
T \otimes \mathbf{\Box} \mapsto \begin{cases}
P^{\text{AI}}(T \leftarrow l) & \text{if } \ell(\text{sh}(P^{\text{AI}}(T \leftarrow l))) = m, \\
(P^{\text{AI}}(T \leftarrow l), +) & \text{if } \ell(\text{sh}(P^{\text{AI}}(T \leftarrow l))) < m \text{ and } \ell(\text{sh}(T \leftarrow l)) > m, \\
(P^{\text{AI}}(T \leftarrow l), -) & \text{if } \ell(\text{sh}(P^{\text{AI}}(T \leftarrow l))) < m \text{ and } \ell(\text{sh}(T \leftarrow l)) = m
\end{cases}
\]
is an isomorphism of AI-crystals, where $\rho' := (\rho_1, \rho_2, \ldots, \rho_{m-1})$.

3. Suppose that $n \in \mathbb{Z}_{\text{odd}}$ and $\rho_m = 0$. Then, the map
\[
\text{SST}_n^{\text{AI}}(\rho) \otimes \text{SST}_n(1) \to \bigsqcup_{\sigma \in \text{Par}_m \setminus \rho \sigma \text{ or } \rho \sigma} \text{SST}_n^{\text{AI}}(\sigma); \quad T \otimes \mathbf{\Box} \mapsto P^{\text{AI}}(T \leftarrow l)
\]
is an isomorphism of AI-crystals.

4. Suppose that $n \in \mathbb{Z}_{\text{odd}}$ and $\rho_m \neq 0$. Then, the map
\[
\text{SST}_n^{\text{AI}}(\rho) \otimes \text{SST}_n(1) \to \bigsqcup_{\sigma \in \text{Par}_n \setminus \rho = \sigma, \rho \sigma \text{ or } \rho \sigma} \text{SST}_n^{\text{AI}}(\sigma); \quad T \otimes \mathbf{\Box} \mapsto P^{\text{AI}}(T \leftarrow l)
\]
is an isomorphism of AI-crystals.
4.2. Robinson-Schensted type correspondence. Given a word \(w = (w_1, \ldots, w_d) \in \mathcal{W} \), define its \(P^{AI} \)-symbol \(P^{AI}(w) \) by

\[
P^{AI}(w) := P^{AI}(P(w)).
\]

For each \(k \in [0, d] \), set

\[
P^{AI,k} := P^{AI}(w_1, \ldots, w_k)
\]

and

\[
\rho^k := \text{sh}(P^{AI,k}).
\]

Also, define \(Q^{AI,k} \) to be the pair \((Q_1^{AI,k}, Q_2^{AI,k}) \) of a standard tableau \(Q_1^{AI,k} \in ST_k(\rho^k) \) and a set \(Q_2^{AI,k} \) of subsets of \(([1, k] \setminus \{Q_1^{AI,k}(i, j) \mid (i, j) \in D(\rho^k)\}) \cup \{+, -\} \) inductively as follows (cf. [14, Section 8]). First, set \(Q^{AI,0} := (\emptyset, \emptyset) \). Next, note that we have either \(\rho^k = \rho^{k-1}, \rho^{k-1} \triangleleft \rho^k \), or \(\rho^k \triangleleft \rho^{k-1} \). Suppose that \(\rho^k = \rho^{k-1} \). Then, we set

\[
Q_1^{AI,k} := Q_1^{AI,k-1}, \quad Q_2^{AI,k} := Q_2^{AI,k-1} \cup \{\{k\}\}.
\]

Next, suppose that \(\rho^k \triangleleft \rho^{k-1} \). Then, we set

\[
Q_1^{AI,k}(i, j) := \begin{cases} Q_1^{AI,k-1}(i, j) & \text{if } (i, j) \in D(\rho^{k-1}), \\ k & \text{if } (i, j) \in D(\rho^k) \setminus D(\rho^{k-1}) \end{cases}, \quad Q_2^{AI,k} := Q_2^{AI,k-1}.
\]

Finally, suppose that \(\rho^k \triangleleft \rho^{k-1} \). Then, we define \(Q_1^{AI,k} \) to be the unique tableau of shape \(\rho^k \) such that \((Q_1^{AI,k} \leftarrow l) = Q_1^{AI,k-1} \) for some \(l \in [1, k-1] \), and

\[
Q_2^{AI,k} := \begin{cases} Q_2^{AI,k-1} \cup \{\{l, k, +\}\} & \text{if } \ell(\rho^{k-1}) = \frac{n}{2} > \ell(\rho^k) \text{ and } \ell(\text{sh}(P^{AI,k-1} \leftarrow w_k)) > m, \\ Q_2^{AI,k-1} \cup \{\{l, k, -\}\} & \text{if } \ell(\rho^{k-1}) = \frac{n}{2} > \ell(\rho^k) \text{ and } \ell(\text{sh}(P^{AI,k-1} \leftarrow w_k)) = m, \\ Q_2^{AI,k-1} \cup \{\{l, k\}\} & \text{otherwise.} \end{cases}
\]

Now, define the \(Q^{AI} \)-symbol \(Q^{AI}(w) = (Q^{AI}(w)_1, Q^{AI}(w)_2) \) and the \(AI \)-shape \(\text{sh}^{AI}(w) \) of \(w \) to be \((Q_1^{AI,d}, Q_2^{AI,d}) \) and \(\rho^d \), respectively.

Example 4.2.1.

1. Let \(n = 4 \) and \(w = (1, 1, 4, 2, 1, 1, 1) \). Then, \((P^{AI}(w), Q^{AI}(w)) \) is calculated as follows: The right-most tableaux of the first and second row are \(P^{AI}(w) \) and \(Q^{AI}(w)_1 \), respectively, and the sets in the third row are the elements of \(Q^{AI}(w)_2 \).

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\{1, 2\} \quad \{3, 5, +\} \quad \{4, 7, -\}
\]

2. Let \(n = 5 \) and \(w = (1, 1, 4, 2, 1) \). Then, \((P^{AI}(w), Q^{AI}(w)) \) is calculated as follows:

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\{1, 2\} \quad \{5\}
\]
Definition 4.2.2. Let $\rho \in \text{Par}_m$ and $d \geq 0$. An O_n-oscillating tableau of shape ρ and length d is a sequence $\rho = ((\rho^0, s^0), (\rho^1, s^1), \ldots, (\rho^d, s^d))$ of pairs $(\rho^k, s^k) \in \text{Par}_m \times \{0, +, -\}$ satisfying the following:

1. $\rho^0 = \emptyset$, $\rho^d = \rho$, and either $\rho^k = \rho^{k-1}$, $\rho^{k-1} \triangleleft \rho^k$, or $\rho^k \triangleleft \rho^{k-1}$.
2. If $\rho^k = \rho^{k-1}$ for some k, then $n \in \mathbb{Z}_{\text{odd}}$ and $\ell(\rho^k) = m$.
3. If $s^k \in \{+, -\}$ for some k, then $n \in \mathbb{Z}_{\text{even}}$.
4. $s^k \in \{+, -\}$ if and only if $\ell(\rho^{k-1}) = m$, and $\ell(\rho^k) = m - 1$.

Let $\text{OT}_n(\rho)$ denote the set of O_n-oscillating tableaux of shape ρ, and set $\text{OT}_n := \bigsqcup_{\rho \in \text{Par}_m} \text{OT}_n(\rho)$.

Given an O_n-oscillating tableau $\rho = ((\rho^0, s^0), (\rho^1, s^1), \ldots, (\rho^d, s^d))$ of shape ρ and length d, we associate a pair $Q(\rho) = (Q_1, Q_2)$ of a standard tableau $Q_1 \in \text{ST}_d(\rho)$ and a set Q_2 of subsets of $([1, d] \setminus \{Q_1(i, j) | (i, j) \in D(\rho)\}) \cup \{+, -\}$ as follows. When $d = 0$, define $Q(\rho) = (\emptyset, \emptyset)$. Now, assume that $d > 0$ and set $\rho' := ((\rho^0, s^0), (\rho^1, s^1), \ldots, (\rho^{d-1}, s^{d-1}))$ and $Q(\rho') = (Q_1', Q_2')$. Then, $Q(\rho)$ is defined as follows:

1. If $\rho^d = \rho^{d-1}$, then $Q_1 = Q_1'$ and $Q_2 = Q_2' \cup \{\{d\}\}$.
2. If $\rho^{d-1} \triangleleft \rho^d$, then
 \[Q_1(i, j) = \begin{cases} Q_1'(i, j) & \text{if } (i, j) \in D(\rho^{d-1}), \\ d & \text{if } (i, j) \in D(\rho^d) \setminus D(\rho^{d-1}), \end{cases} \]
 and $Q_2 = Q_2'$.
3. If $\rho^d \triangleleft \rho^{d-1}$ and $s^d = 0$, then $Q_1' = (Q_1 \leftarrow l)$ for some uniquely determined $l \in [1, d-1]$, and $Q_2 = Q_2' \cup \{\{l, d\}\}$.
4. If $\rho^d \triangleleft \rho^{d-1}$ and $s^d \in \{+, -\}$, then $Q_1' = (Q_1 \leftarrow l)$ for some uniquely determined $l \in [1, d-1]$, and $Q_2 = Q_2' \cup \{\{l, d, s^d\}\}$.

Lemma 4.2.3. The assignment $\rho \mapsto Q(\rho)$ is injective.

Proof. Let $\rho, \sigma \in \text{OT}_n$ be such that $Q(\rho) = Q(\sigma)$. Set

$$(Q_1, Q_2) := Q(\rho), \quad \rho := \text{sh}(Q_1).$$

First of all, we see that the shapes of ρ and σ coincide; both are ρ.

From the definition of $Q(\rho)$, we see that the length of ρ is the maximal integer appearing in $Q(\rho)$. In other words, the length of ρ is determined by $Q(\rho)$. Therefore, ρ and σ have the same length, say d.

We prove that $\rho = \sigma$ by induction on d; the case when $d = 0$ is clear. Assume that $d > 0$, and set $\rho' = ((\rho^0, s^0), (\rho^1, s^1), \ldots, (\rho^{d-1}, s^{d-1}))$. Then, we have

$$(Q(\rho'), s^d) = \begin{cases} ((Q_1, Q_2 \setminus \{\{d\}\}, 0) & \text{if } \{d\} \in Q_2, \\ ((Q_1|_{1, d-1}, Q_2), 0) & \text{if } d \in Q_1, \\ (((Q_1 \leftarrow l), Q_2 \setminus \{\{l, d\}\}, 0) & \text{if } \{l, d\} \in Q_2 \text{ for some } l < d, \\ (((Q_1 \leftarrow l), Q_2 \setminus \{\{l, d, \pm\}\}), \pm) & \text{if } \{l, d, \pm\} \in Q_2 \text{ for some } l < d. \end{cases}$$

This implies that $Q(\rho')$ and s^d are determined by $Q(\rho)$. By our induction hypothesis, ρ' is determined by $Q(\rho')$. Hence, ρ is determined by $Q(\rho)$, which implies $\rho = \sigma$, as desired. This completes the proof.

In this way, we often identify ρ with $Q(\rho)$. Now, the following is immediate from the results obtained so far.
Theorem 4.2.4. Let $n \geq 3$. Then, the assignment
\[RS^{\text{AI}} : W \to \bigsqcup_{\rho \in \text{Par}_m} \text{SST}^{\text{AI}}_n(\rho) \times \text{OT}_n(\rho); \ w \mapsto (P^{\text{AI}}(w), Q^{\text{AI}}(w)) \]
is an isomorphism of AI-crystals.

4.3. Branching rule. We have obtained two isomorphisms of AI-crystals:
\[RS : W \to \bigsqcup_{\lambda \in \text{Par}_n} \text{SST}_n(\lambda) \times \text{ST}_{|\lambda|}(\lambda), \]
and
\[RS^{\text{AI}} : W \to \bigsqcup_{\rho \in \text{Par}_m} \text{SST}^{\text{AI}}_n(\rho) \times \text{OT}_n(\rho). \]

Let $\lambda \in \text{Par}_n$, $\rho \in \text{Par}_m$, $(P, Q) \in \text{SST}_n(\lambda) \times \text{ST}_{|\lambda|}(\lambda)$, $(P', Q') \in \text{SST}^{\text{AI}}_n(\rho) \times \text{OT}_n(\rho)$ be such that
\[(P', Q') = RS^{\text{AI}} \circ RS^{-1}(P, Q). \]

Since $\text{SST}^{\text{AI}}_n(\rho)$ is connected, for each $P'' \in \text{SST}^{\text{AI}}_n(\rho)$, there exist $i_1, \ldots, i_r \in [1, n - 1]$ such that
\[P'' = \tilde{B}_{i_1} \cdots \tilde{B}_{i_r} P'. \]

Therefore, we obtain
\[(P'', Q') = \tilde{B}_{i_1} \cdots \tilde{B}_{i_r} (P', Q') = RS^{\text{AI}} \circ RS^{-1}(\tilde{B}_{i_1} \cdots \tilde{B}_{i_r} P, Q). \]

This implies that Q is independent of P' and uniquely determined by Q'. Let us say Q is the Q-symbol of Q', and write it as $Q(Q')$. Hence, there exists a map
\[Q : \bigsqcup_{\rho \in \text{Par}_m} \text{OT}_n(\rho) \to \bigsqcup_{\lambda \in \text{Par}_n} \text{ST}_{|\lambda|}(\lambda); \ Q' \mapsto Q(Q'). \]

Theorem 4.3.1. Let $\lambda \in \text{Par}_n$. Then, the map
\[\text{SST}_n(\lambda) \to \bigsqcup_{\rho \in \text{Par}_m} \text{SST}^{\text{AI}}_n(\rho) \times \{ Q' \in \text{OT}_n(\rho) \mid Q(Q') = T(\lambda) \}; \]
\[T \mapsto (P^{\text{AI}}(T), Q^{\text{AI}}(\text{CR}(T))) \]
is an isomorphism of AI-crystals, where $T(\lambda) \in \text{ST}_{|\lambda|}(\lambda)$ is given by
\[T(\lambda)(i, j) := \sum_{k=1}^{j-1} d_k + i, \]
and d_k denotes the length of the k-th column of $D(\lambda)$.

Proof. The assignment $T \mapsto (P^{\text{AI}}(T), Q^{\text{AI}}(\text{CR}(T)))$ factors
\[\text{SST}_n(\lambda) \xrightarrow{\text{CR}} W \xrightarrow{RS^{\text{AI}}} \bigsqcup_{\rho \in \text{Par}_m} \text{SST}^{\text{AI}}_n(\rho) \times \text{OT}_n(\rho). \]

Hence, it suffices to show that
\[\{ Q^{\text{AI}}(\text{CR}(T)) \mid T \in \text{SST}_n(\lambda) \} = \bigsqcup_{\rho \in \text{Par}_m} \{ Q' \in \text{OT}_n(\rho) \mid Q(Q') = T(\lambda) \}. \]

Let $T \in \text{SST}_n(\lambda)$. Since $Q(\text{CR}(T)) = T(\lambda)$, we see that
\[Q(Q^{\text{AI}}(\text{CR}(T))) = T(\lambda) \]
for all $T \in \text{SST}_n(\lambda)$. On the other hand, if $Q' \in \text{OT}_n(\rho)$ is such that $Q(Q') = T(\lambda)$, then there exist $w \in W$ and $P \in \text{SST}_n^A(\rho)$ such that

$$P^A(w) = P, \ Q^A(w) = Q', \ \text{and} \ Q(w) = T(\lambda).$$

This shows that if we set $T := P(w)$, then we have $\text{CR}(T) = w$, and hence,

$$Q^A(\text{CR}(T)) = Q^A(w) = Q'.$$

This completes the proof. □

Corollary 4.3.2. Let $\lambda \in X^+_{\mathfrak{gl}_n, \geq 0}$ and $\nu \in X^+_{\mathfrak{so}_n, \text{int}}$. Then, we have

$$V^{\mathfrak{gl}_n}(\lambda) \cong \bigoplus_{\nu \in X^+_{\mathfrak{so}_n, \text{int}}} V^{\mathfrak{so}_n}(\nu)^{\oplus[\lambda : \nu]},$$

where

$$[\lambda : \nu] := \sharp\{ Q' \in \text{OT}_n(\nu_1, \nu_3, \ldots, \nu_{2m-3}, |\nu_{2m-1}|) \mid Q(Q') = T(\lambda) \}.$$
[12] S. Okada, A Robinson-Schensted-type algorithm for $SO(2n, C)$, J. Algebra 143 (1991), no. 2, 334–372.
[13] R. A. Proctor, A Schensted algorithm which models tensor representations of the orthogonal group, Canad. J. Math. 42 (1990), no. 1, 28–49.
[14] S. Sundaram, On The Combinatorics of Representations of The Symplectic Group, Thesis (Ph.D.)-Massachusetts Institute of Technology. 1986.
[15] S. Sundaram, Orthogonal tableaux and an insertion algorithm for $SO(2n + 1)$, J. Combin. Theory Ser. A 53 (1990), no. 2, 239–256.
[16] H. Watanabe, Crystal basis theory for a quantum symmetric pair (U, U'), Int. Math. Res. Not. IMRN 2020, no. 22, 8292–8352.
[17] H. Watanabe, Based modules over the quantum group of type AI, arXiv:2103.12932v2.

(H. Watanabe) Department of Mathematics, Osaka City University, Osaka, 558-8585, Japan
Email address: hideya@kurims.kyoto-u.ac.jp