ON CENTERS OF BLOCKS
WITH NON-CYCLIC DEFECT GROUPS

YOSHIHIRO OTOKITA

Abstract. In this short note we study the center \(Z_B \) of a block \(B \) of a finite group over an algebraically closed field of prime characteristic through its Loewy length \(\ll Z_B \). A result of Okuyama in 1981 gave an upper bound for \(\ll Z_B \) in terms of defect group of \(B \). The purpose of this note is to improve this bound for non-cyclic defect groups.

1. Introduction

In this short note we study the center of a block of a finite group over an algebraically closed field of prime characteristic through its Loewy length \(\ll Z_B \). Let \(G \) be a finite group and \(F \) an algebraically closed field of characteristic \(p > 0 \). For a block \(B \) of the group algebra \(F G \) we denote by \(Z_B \) its center. In order to examine the structure of \(Z_B \) we use its Loewy length \(\ll Z_B \), that is, the nilpotency index of the Jacobson radical \(J_ZB \). A result of Okuyama [4] states that \(\ll Z_B \leq p^d \) where \(d \) is the defect of \(B \). In addition Koshitani-Külshammer-Sambale [2] determines \(\ll Z_B \) for cyclic defect groups. By this, we consider the other cases in this note. More precisely, we prove the following theorem:

Theorem 1. Let \(B \) be a block of \(FG \) with non-cyclic defect group of order \(p^d \). Then

\[\ll Z_B \leq p^{d-1} + p - 1. \]

Now let us take a block \(B \) with defect group \(D \) of order \(3^5 \) as an example. Then \(\ll Z_B \leq 243 \) by Okuyama’s formula. Theorem [1] implies that \(D \) is cyclic provided \(84 \leq \ll Z_B \leq 243 \). In this case \(\ll Z_B = 243 \) or 122 by [2]. In all other cases we have \(\ll Z_B \leq 83 \).

We remark that the converse of this theorem is not true in general. For instance a block \(B \) with cyclic defect group \(C_{p^2} \) and inertial quotient group \(C_{p-1} \) satisfies \(\ll Z_B = p + 2 \leq 2p - 1 \) whenever \(p \geq 3 \).

2. Preliminaries

We prepare some notations. For a conjugacy class \(C \in \text{Cl}(G) \) its defect group \(\delta(C) \) is defined as a Sylow \(p \)-subgroup of \(CG(x) \) where \(x \in C \). For a \(p \)-subgroup \(P \) of \(G \) we set

\[I_G(P) = \sum_{C \in \text{Cl}(G), \delta(C) \leq G} FC^+, \quad \tilde{I}_G(P) = \sum_{C \in \text{Cl}(G), \delta(C) \leq gP} FC^+ \]

2010 Mathematics Subject Classification. 20C20.

Key words and phrases. Finite group, block, defect group, center, Loewy length.
where C^+ is the class sum of C. These are ideals of the center ZFG of FG. Furthermore we denote by $t(P)$ the Loewy length of FP following Wallace [9]. Here we refine a lemma in Passman [7].

Lemma 2. Let P be a p-subgroup of G. Then the following hold:

1. $I_G(P) \cdot JZFG^t(Z(P)) \subseteq \bar{I}_G(P)$,
2. $I_G(P) \cdot JZFG^{t-1/p-1} = 0$ where $|P| = p^a$.

Proof. It remains only to prove (1) by [7, Lemma 3 (ii)]. Let $Br_P : ZFG \to ZFC_G(P)$ be the Brauer homomorphism associated to P. Since Br_P maps nilpotent elements to nilpotent elements we have $Br_P(I_G(P)) \subseteq ZFC_G(P)$. On the other hand $Br_P(I_G(P)) \subseteq I_{C_G(P)}(Z(P))$ holds (see the proof of [7, Lemma 3 (i)]). Thus it follows from [7, Lemma 2 (i)] that

$$Br_P(I_G(P) \cdot JZFG^t(Z(P))) \subseteq I_{C_G(P)}(Z(P)) \cdot JZFC_G(P)^t(Z(P))$$

$$= JFZ(P)^t(Z(P)) \cdot I_{C_G(P)}(Z(P)) = 0$$

since $Z(P)$ is central in $C_G(P)$. Therefore we deduce

$$I_G(P) \cdot JZFG^t(Z(P)) \subseteq \text{Ker} Br_P \cap I_G(P) = \bar{I}_G(P)$$

as claimed. \square

3. **Proof of main theorem**

We first improve Külshammer-Sambale [3, Theorem 12 and Proposition 15] by using Lemma [2]

Proposition 3. Let B be a block of FG with non-abelian defect group of order p^d. Then $|ZB| < p^{d-1}$.

Proof. We may assume $p \neq 2$ by [3, Proposition 15]. Let D be a defect group of B. If $Z(D)$ is cyclic of order p^{d-2} then D is one of the following types:

$$M'_d := \langle x, y \mid x^{p^{d-1}} = y^p = 1, y^{-1}xy = x^{p^{d-2}+1} \rangle,$$

$$W'_d := \langle x, y, z \mid x^{p^{d-2}} = y^p = z^p = [x, y] = [x, z] = 1, [y, z] = x^{p^{d-3}} \rangle$$

where $d \geq 3$. In both cases $|ZB| < p^{d-1}$ (see [3, Proposition 10 and Lemma 11]). If D has a cyclic subgroup of index p then $D \cong M'_d$ (e.g. see [1, Chapter 5, Theorem 4.4]). Thereby we need only consider the other cases. Since $Z(D)$ is non-cyclic or has order at most p^{d-3}, we have $\lambda_0 := p^{d-3} + p - 1 \geq t(Z(D))$. Thus we first obtain from Lemma [2] (1) that

$$I_G(D) \cdot JZFG^{\lambda_0} \subseteq I_G(D) \cdot JZFG^{t(Z(D))} \subseteq \bar{I}_G(D) = \sum_{D_1 < D} I_G(D_1).$$

By our assumptions above, D_1 is non-cyclic or has order at most p^{d-2}. In both cases we have $\lambda_1 := p^{d-2} + p - 1 \geq t(Z(D_1))$. Thus

$$I_G(D) \cdot JZFG^{\lambda_0+\lambda_1} \subseteq \sum_{D_1 < D} I_G(D_1) \cdot JZFG^{\lambda_1} \subseteq \sum_{D_1 < D} I_G(D_1) \cdot JZFG^{t(Z(D_1))}$$

$$\subseteq \sum_{D_1 < D} \bar{I}_G(D_1) = \sum_{D_2 < D_1 < D} I_G(D_2).$$
Finally, it follows from Lemma 2 (2) that
\[I_G(D) \cdot JZF G_{\lambda_0 + \lambda_1 + \lambda_2} \subseteq \sum_{D_2 < D_1 < D} I_G(D_2) \cdot JZF G_{\lambda_2} = 0 \]
where \(\lambda_2 := p^d - 1/p - 1 \) since \(|D_2| \leq p^{d-2} \). Now let \(e \) be the block idempotent of \(B \). Then
\[JZF B_{\lambda_0 + \lambda_1 + \lambda_2} = eJZF G_{\lambda_0 + \lambda_1 + \lambda_2} \subseteq I_G(D) \cdot JZF G_{\lambda_0 + \lambda_1 + \lambda_2} = 0 \]
and this means \(\ll ZB \leq \lambda_0 + \lambda_1 + \lambda_2 \). Accordingly, \(\ll ZB < p^{-1} \) except for one case that \(p = 3 \) and \(d = 4 \). Hence we consider this case in the following. From [3] (see [5] proof of Theorem 1.3), there exists a non-trivial \(B \)-subsection \((u, b) \) such that
\[\ll ZB \leq (|u| - 1)\ll Zb + 1 \]
where \(b \) is the unique block of \(F[C_G(u)/\langle u \rangle] \) dominated by \(b \). We may assume that \(b \) has defect group \(C_D(u)/\langle u \rangle \) by Sambale [8] Lemma 1.34. We put \(|u| = 3^r \) and \(|C_D(u)| = 3^s \). If \(r \leq d - 2 \) then
\[\ll ZB \leq (3^r - 1)3^{-r} + 1 \leq (3^s - 1)3^{d-s-2} + 1 < 3^{d-1}. \]
In case of \(r = d - 1 \), we may \(r > s \) by our assumptions and thus
\[\ll ZB \leq (3^s - 1)3^{-r} + 1 = 3^r - 3^{-r} + 1 < 3^r = 3^{d-1} \]
as required. Therefore we may assume \(d = r \), so that \(u \in Z(D) \). Hence \(|u| = 3 \) and \(D/\langle u \rangle \) is isomorphic to \(C_3 \times C_3 \times C_3, C_9 \times C_3, M_{27} \) or \(W_{27} \) by our assumptions. In all cases \(\ll Zb \leq 11 \) by [3] Theorem 1, Proposition 10 and Lemma 11. Consequently, \(\ll ZB \leq 23 < 27 = p^{d-1} \). Our claim is completely proved.

Theorem 1 is an immediate corollary to Proposition 3.

Proof of Theorem 4. We may assume \(p^{d-1} < \ll ZB \) and thus \(D \) is abelian by Proposition 3. In this case Külshammer-Sambale [5] has proved that \(\ll ZB \leq t(D) \). Hence our claim follows.

References

[1] D. Gorenstein, Finite groups, Harper & Row Publishers, New York (1968).
[2] S. Koshitani, B. Külshammer, B. Sambale, On Loewy lengths of blocks, Math. Proc. Cambridge Philos. Soc. 156 (2014), 555-570.
[3] B. Külshammer, B. Sambale, Loewy lengths of centers of blocks, arXiv:1607.06241v1.
[4] T. Okuyama, On the radical of the center of a group algebra, Hokkaido Math. J. 10 (1981), 406-408.
[5] Y. Otokita, Some studies on Loewy lengths of centers of \(p \)-blocks, arXiv:1605.07949v2.
[6] Y. Otokita, Characterizations of blocks by Loewy lengths of their centers, Proc. Amer. Math. Soc., in press.
[7] D. S. Passman, The radical of the center of a group algebra, Proc. Amer. Math. Soc. 78 (1980), 323–326.
[8] B. Sambale, Blocks of finite groups and their invariants, Springer Lecture Notes in Math., Vol. 2127, Springer-Verlag, Cham, 2014.
[9] D. A. R. Wallace, Lower bounds for the radical of the group algebra of a finite \(p \)-soluble group, Proc. Edinburgh Math. Soc. (2) 16 (1968/69), 127-134.

YOSHIHIO OTOKITA:
DEPARTMENT OF MATHEMATICS AND INFORMATICS
GRADUATE SCHOOL OF SCIENCE
CHIBA UNIVERSITY
E-mail address: otokita@chiba-u.jp