RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium

de Lima, Lorena Azevedo; Reinmets, Kristina; Nielsen, Lars Keld; Marcellin, Esteban; Harris, Audrey; Köpke, Michael; Valgepea, Kaspar

Published in:
Microbiology Spectrum

Link to article, DOI:
10.1128/spectrum.02303-22

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
de Lima, L. A., Reinmets, K., Nielsen, L. K., Marcellin, E., Harris, A., Köpke, M., & Valgepea, K. (2022). RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.02303-22

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
RNA-seq Sample Preparation Kits Strongly Affect Transcriptome Profiles of a Gas-Fermenting Bacterium

Lorena Azevedo de Lima,a Kristina Reinmets,a Lars Keld Nielsen,b,c,d Esteban Marcellin,b,c Audrey Harris,e Michael Köpke,e Kaspar Valgepea*

aERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Australia
cARC Centre of Excellence in Synthetic Biology, The University of Queensland, St. Lucia, Australia
dNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
eLanzaTech Inc., Skokie, Illinois, USA

Lorena Azevedo de Lima and Kristina Reinmets contributed equally to this work. Author order was determined alphabetically.

ABSTRACT Transcriptome analysis via RNA sequencing (RNA-seq) has become a standard technique employed across various biological fields of study. The rapid adoption of the RNA-seq approach has been mediated, in part, by the development of different commercial RNA-seq library preparation kits compatible with standard next-generation sequencing (NGS) platforms. Generally, the essential steps of library preparation, such as rRNA depletion and first-strand cDNA synthesis, are tailored to a specific group of organisms (e.g., eukaryotes versus prokaryotes) or genomic GC content. Therefore, the selection of appropriate commercial products is of crucial importance to capture the transcriptome of interest as closely to the native state as possible without introduction of technical bias. However, researchers rarely have the resources and time to test various commercial RNA-seq kits for their samples. This work reports a side-by-side comparison of RNA-seq data from Clostridium autoethanogenum obtained using three commercial rRNA removal and strand-specific library construction products of NuGEN Technologies, Qiagen, and Zymo Research and assesses their performance relative to published data. While all three vendors advertise their products as suitable for prokaryotes, we found significant differences in their performance regarding rRNA removal, strand specificity, and most importantly, transcript abundance distribution profiles. Notably, RNA-seq data obtained with Qiagen products were most similar to published data and delivered the best results in terms of library strandedness and transcript abundance distribution range. Our results highlight the importance of finding appropriate organism-specific workflows and library preparation products for RNA-seq studies.

IMPORTANCE RNA-seq is a powerful technique for transcriptome profiling while involving elaborate sample processing before library sequencing. We show that RNA-seq library preparation kits can strongly affect the outcome of an RNA-seq experiment. Although library preparation benefits from the availability of various commercial kits, choosing appropriate products for the specific samples can be challenging for new users or for users working with unconventional organisms. Evaluating the performance of different commercial products requires significant financial and time investments infeasible for most researchers. Therefore, users are often guided in their choice of kits by published data involving similar input samples. We conclude that important consideration should be given to selecting sample processing workflows for any given organism.

KEYWORDS acetogen, RNA sequencing, RNA-seq, transcriptome profiling, transcriptomics
Gene transcription is a fundamental process that mediates a vast number of intracellular and environmental responses in every cell. Therefore, understanding transcriptional states of any organism of choice can shed light on basic biological processes as well as ways to direct and control cellular behavior. Insights into cellular transcriptional profiles or transcriptomes (i.e., a complete set of transcripts in a cell and their quantities) have vastly expanded in the last decade due to rapid development and high accessibility of next-generation sequencing (NGS) platforms (1). Meanwhile, constant improvement of commercial library construction products has greatly contributed to the rapid adaptation and evolution of RNA sequencing applications, for example, RNA sequencing (RNA-seq) (2), nascent RNA sequencing (3), Ribo-seq (4), and differential RNA-seq (5). RNA-seq is the most common application, as it allows both mapping and quantification of transcriptomes.

While RNA-seq has become widely used across all fields of biological sciences, obtaining high-quality data of the transcriptome under investigation nevertheless requires careful planning, extensive sample processing, and considerable resources. The availability of commercial RNA-seq library preparation kits tailored to a variety of organisms, experimental approaches, and sequencing platforms has made RNA-seq accessible even to nonexpert users. When planning to do an RNA-seq experiment for the first time, researchers often consult existing literature to see which sample preparation protocols and products have been previously used with their organism of interest. However, working with unconventional microorganisms that have not yet been extensively studied via RNA-seq can make it difficult to decide which commercial kits might be most suitable.

We previously achieved high-quality transcriptome profiling using RNA-seq for the gas-fermenting bacterium Clostridium autoethanogenum (6–8), an unconventional microbe that is also used as a cell factory in commercial-scale gas fermentation for the production of low-carbon fuels and chemicals from waste feedstocks (9). In addition to preparation of cDNA libraries before sequencing, removal of rRNA from the extracted total RNA is needed to ensure efficient transcriptome-wide mRNA detection and quantification as >80–90% of total cellular RNA is rRNA (10, 11). In our previous studies (6–8), we used Illumina kits for rRNA removal and library preparation, but when we set out to start a large-scale RNA-seq survey of the same organism in late 2019, the Illumina Ribo-Zero rRNA removal kit was discontinued, and we had to look for alternatives. However, selecting an efficient rRNA removal method for bacterial samples is nontrivial, as enrichment of non-rRNA transcripts based on polyadenylated RNA [poly(A)] selection used in most commercial kits (developed for eukaryotes) is not applicable for bacterial RNA due to the lack of poly(A) tails. One also has to ensure the compatibility of the rRNA removal and cDNA library preparation methods.

To make an informed decision on the best commercial products for RNA-seq library preparation for C. autoethanogenum, we aimed to test kits from three vendors that are advertised to ensure efficient rRNA removal and to be compatible with a variety of bacterial species and Illumina sequencing platforms. This work reports a side-by-side comparison of RNA-seq data obtained from the same C. autoethanogenum input samples using rRNA removal and strand-specific library construction kits from NuGEN Technologies, Qiagen, and Zymo Research and assesses their performance relative to published data. Transcriptome profiles revealed significant differences between the kits regarding rRNA removal efficiency, sequencing read strand specificity, and strikingly, transcript abundance distribution profiles. Our work shows that Qiagen kits yield the most reliable data of the three we tested and highlights the importance of appropriate sample preparation for RNA-seq analysis in bacteria.

RESULTS AND DISCUSSION

Experimental design. We evaluated the performance of three commercial rRNA removal and strand-specific library construction kits by NuGEN, Qiagen, and Zymo (see Materials and Methods for details) for RNA-seq analysis of C. autoethanogenum autotrophic cultures (Fig. 1A). To assess the ability of the selected commercial kits to capture the transcriptomic profile of C. autoethanogenum under various culture conditions, we used four samples, each obtained from one of four bioreactor continuous culture experiments grown on two different
FIG 1 RNA-seq results were strongly affected by rRNA removal and library construction kits. (A) Experimental design of the work. (B) PCA of transcript abundances. (C) Hierarchical clustering of individual transcript abundances. (D) Spearman’s correlation analysis of transcript abundances. (E) Probability density plots of transcript abundances. The reference data set refers to high-BC samples in GEO accession number GSE90792. REF, reference data set. rRNA transcript abundances were removed prior to data analysis to avoid bias from varied efficiencies of rRNA removal between kits.
TABLE 1 General statistics of RNA-seq results of the three tested kits for rRNA removal and library construction

Kit	Sample name	No. of raw reads	Reads mapped (RPKM)	Coverage (fold)	Feature counts/ mapped counts	Strandedness	rRNA RPKM/ total RPKM
NuGEN	NuGEN_S1	4,268,524	98%	72	59%	64%	36% 7%
	NuGEN_S2	6,004,018	99%	103	47%	50%	50% 2%
	NuGEN_S3	3,615,864	99%	62	52%	56%	44% 4%
	NuGEN_S4	4,248,288	98%	72	63%	61%	39% 15%
Qiagen	Qiagen_S1	4,911,456	98%	81	87%	95%	5% 15%
	Qiagen_S2	3,559,522	95%	57	79%	84%	16% 9%
	Qiagen_S3	3,287,002	93%	50	82%	88%	12% 6%
	Qiagen_S4	4,954,218	88%	74	88%	96%	4% 17%
Zymo	Zymo_S1	4,355,956	99%	71	82%	13%	87% 0.8%
	Zymo_S2	4,840,762	99%	79	70%	26%	74% 6%
	Zymo_S3	5,691,744	99%	93	78%	18%	82% 0.6%
	Zymo_S4	4,651,118	99%	76	87%	7%	93% 0.8%

feed gas mixes (CO or CO + CO$_2$ + H$_2$ [syngas]) and dilution rates (i.e., specific growth rates of 1 or 2 day$^{-1}$). Each sample represented a single biological replicate. Both feed gas composition (12) and specific growth rate (13) of the culture have profound effects on the culture phenotype (e.g., gas uptake, product distribution, metabolic fluxes). We extracted and prepared total RNA from the four samples using a previously established workflow optimized for C. autoethanogenum (6). Next, total RNA for each sample was split between the NuGEN, Qiagen, and Zymo kits for rRNA removal and strand-specific RNA-seq library construction according to the vendors’ instructions. Finally, the 12 samples (four cultures times three kits) were examined by paired-end 75-bp sequencing on an Illumina MiSeq platform, followed by RNA-seq data analysis using established pipelines (6, 13).

General statistics of RNA-seq data. An average of 4.5 million raw reads per sample were obtained from the sequencing runs that were mapped after trimming to the reference genome of C. autoethanogenum NC_022592.1 (14) with an overall high success rate (Table 1). Namely, 98%, 93%, and 99% of reads were mapped on average for NuGEN, Qiagen, and Zymo, respectively, which resulted in a minimum 50-fold coverage of the C. autoethanogenum genome across samples (Table 1). We detected very low read duplication levels (<0.5%), suggesting a low chance of technical bias introduced during sample preparation. Surprisingly, a significant difference in the percentage of mapped reads that were assigned to genomic features (i.e., feature counts) was observed between NuGEN and the other two kits: an average of only 55% for NuGEN with 84% and 79% for Qiagen and Zymo, respectively (Table 1). Notably, this can be explained by the difference between NuGEN and the other two kits in the percentage of reads that mapped to the expected strand, as Qiagen and Zymo showed high correct strandedness at ~91% (sense) and ~84% (antisense), respectively, compared to NuGEN’s very poor strand specificity at ~58% (sense) (Table 1). Significant false strandedness for NuGEN could arise from either a substantial flaw in the respective workflow or, according to NuGEN, from faulty reagents in their kits (personal communication).

Varied efficiency of rRNA removal. We next quantified rRNA removal efficiencies from the RNA-seq data using the percentages of rRNA transcript abundance per total transcript abundance, expressed as reads per kilobase of transcript per million mapped reads (RPKM) (see Table S1 in the supplemental material). Again, stark differences between the kits were observed, confirming that rRNA depletion from bacterial samples is nontrivial (Table 1). The Zymo kit demonstrated superior efficiency for rRNA removal during library preparation, with an abundance of <1% of rRNA transcripts. NuGEN’s higher variability in rRNA removal efficiency across the samples (2 to 15%, average of 7%) suggested that their approach of non-rRNA enrichment or AnyDeplete technology may be sensitive to sample-specific factors. Removal of rRNA for the Qiagen kit was slightly less efficient (~11%) than for NuGEN but still acceptable to ensure high coverage of transcriptome-wide mRNA detection and quantification (Table 1).

Kit-specific grouping of transcriptome profiles. Upon observing the differences in general RNA-seq metrics (outlined in Table 1), we were curious if different kits could also lead to varied transcriptome profiles. Indeed, principal component analysis (PCA) of
transcript abundances revealed clear sample grouping by kit and not by the origin of the input RNA (Fig. 1B). To assess which of the three tested kits produced the most reliable transcriptome profiles, we also included published data in the PCA that we previously obtained using the same workflows but with Illumina kits for similar C. autoethanogenum culture conditions (6), termed here as the reference data set (high-biomass concentration samples in GEO accession number GSE90792). Notably, Qiagen data were grouped the closest to this reference data set, with NuGEN transcriptome profiles separating most distinctively (Fig. 1B). These observations were confirmed by hierarchical clustering of individual transcript abundances, which showed grouping of samples based on the kits and not based on the origin of the input RNA (Fig. 1C). The NuGEN and Zymo kits had a distinctively different clustering pattern than the Qiagen kit and the reference data set.

Clustering results agreed with Spearman’s correlation analysis of transcript abundances between samples, which showed Qiagen data were most similar to the reference data set ($\rho \approx 0.86$) (Fig. 1D). Within the three kits tested here, Qiagen and Zymo data showed higher similarity ($\rho \approx 0.77$ across the same samples) compared to the lower correlations between NuGEN and Qiagen ($\rho \approx 0.33$) and NuGEN and Zymo ($\rho \approx 0.47$) data.

Differences in transcript abundance distribution profiles. The quality of the kits could also be assessed by their sensitivity to detect transcripts across a range of abundances (i.e., transcriptome coverage, or depth). Transcript levels in bacteria generally span over 4 orders of magnitude (15–17), including in C. autoethanogenum (6) and other gas-fermenting bacteria (18, 19). Again, Qiagen data resembled the reference data set the closest by both the transcript abundance distribution profiles and good sensitivity, with transcript levels spanning over 4 orders of magnitude (from ~ 2 to $\sim 39,000$ RPKM; ~ 1 to 15 log$_2$ RPKM) (Fig. 1E). Strikingly, the NuGEN kit showed very narrow transcript abundance distributions that covered only ~ 2 orders of magnitude (from ~ 22 to $\sim 1,800$ RPKM; ~ 4 to ~ 11 log$_2$ RPKM), while Zymo data were positioned between Qiagen and NuGEN. According to Zymo (personal communication), such condensed distribution profiles could be caused by higher sensitivity of the workflow toward the presence of genomic DNA in the input sample, which can artificially inflate mRNA reads and with a more prominent effect on low-abundance transcripts, thereby pushing the left tail of the distribution to the right. This would also be consistent with the poorer strandedness of the Zymo and NuGEN data (Table 1) that arose from genomic DNA-originating reads. Our sample preparation workflow that was previously optimized for C. autoethanogenum (6) efficiently removed DNA from total RNA samples down to $\sim 13 \pm 2$ ng/μL (average ± standard deviation), making up $\sim 4\%$ of the RNA concentration. Thus, additional steps to deplete DNA to extremely low levels are potentially required for the Zymo and NuGEN workflows. NuGEN data could be additionally explained by biased synthesis and amplification of cDNA using selective primers, compared to the general use of random primers in RNA-seq workflows.

Our work is important, as researchers rarely have the resources and time to test various commercial RNA-seq kits, which are advertised as suitable for multiple organisms with different genomic GC content, for their samples. The ability to capture the spectrum of transcript abundances as closely to the true cellular state as possible is crucial to accurately address research questions investigated via RNA-seq. Our work shows that rRNA removal and library construction kits can strongly affect RNA-seq outcomes. This is highly relevant for anyone establishing an RNA-seq pipeline for an organism or for researchers puzzled by unexpected RNA-seq results. We conclude that, at least for C. autoethanogenum RNA-seq studies, the Illumina and Qiagen kits are most suitable, by providing high sensitivity across a wide range of transcript levels, superior strand specificity, and sufficient rRNA removal, ensuring high coverage of transcriptome-wide mRNA detection and quantification.

MATERIALS AND METHODS

Bacterial strain and cultivation conditions. A derivate of Clostridium autoethanogenum DSM 10061 strain, namely DSM 23693, deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ), was used in all experiments and stored as a glycerol stock at $\sim -80^\circ$C. Full details of the cultivation conditions are reported in previous work (13). Shortly, cells were grown autotrophically in bioreactor chemostat continuous cultures under strictly anaerobic conditions at 37°C and pH 5 in chemically defined medium (without yeast extract) either on CO (60% CO and 40% Ar; AS Eesti AGA) or syngas (50% CO, 20% H$_2$, 20% CO$_2$, 10% Ar; AS Eesti AGA).
Four independent experiments were conducted with cultures grown at dilution rates (D) of ~1.0 and ~2.0 day\(^{-1}\) on both feed gas mixes. Chemostat cultures were performed in 1.4-L Multifors bioreactors (Infors AG) at a working volume of 750 mL and connected to a Hiden HPR-20-QIC mass spectrometer (Hiden Analytical) for online high-resolution off-gas analysis. The system was equipped with peristaltic pumps, mass flow controllers, and pH, oxidation-reduction potential, and temperature sensors. Cultures were sampled for RNA extraction and subsequent transcriptome analysis using RNA-seq after the optical density, gas uptake, and production rates had been stable for at least one working volume. Each sample represented a single biological replicate.

Preparation of total RNA extracts. Full details of culture sampling, RNA extraction, and purification are reported in previous work (13). Briefly, culture samples were pelleted by centrifugation (4,000 \(\times \) g for 10 min at 4°C) and treated with RNase-free (catalog number 76106, Qiagen) overnight at 4°C, and pellets were stored at −80°C until RNA extraction. Thawed cell pellets were disrupted with glass beads in 800 \(\mu \)L of RLT buffer (catalog number 74104, Qiagen) containing 10 \(\mu \)L of β-mercaptoethanol by using the Precellys 24 instrument with liquid nitrogen cooling (Bertin Technologies) before extracting total RNA using the RNeasy minikit (catalog number 74104, Qiagen). Next, RNA extracts were depleted of DNA using off-column TURBO DNase (catalog number AM2239, Invitrogen) followed by purification using the RNA Clean and Concentrator kit (catalog number R1018, Zymo). We used the NanoDrop 1000 instrument (Thermo Fisher Scientific) for verifying efficiency of RNA purification. The high quality and integrity of the total RNA extracts were confirmed by RNA integrity numbers (RIN) above 8.2 with TapeStation 2200 equipment (Agilent Technologies). Total RNA and residual DNA concentrations were determined using the Qubit 2.0 instrument (Invitrogen).

Removal of rRNA and RNA-seq library construction. Total RNA extracts for each sample were split between the NuGEN, Qiagen, and Zymo kits for rRNA removal and strand-specific RNA-seq library construction according to vendor instructions. Samples referred to as “NuGEN” were processed with Universal Prokaryotic RNA-seq, prokaryotic AnyDeplete (catalog number 0363, NuGEN); “Qiagen” samples were processed with a QIAseq FastSelect SS/16S 235 kit (catalog number 335925, Qiagen) (for rRNA removal) and a QIAseq stranded RNA Lib kit (catalog number 180743, Qiagen) (for library construction); “Zymo” samples were processed with a Zymo-Seq Ribo-Free total RNA library kit (catalog number R3000, Zymo Research).

RNA sequencing and data analysis. RNA sequencing of the 12 mRNA libraries (four cultures times three kits) was performed on a MiSeq instrument (Illumina) using the MiSeq v3 150 cycle sequencing kit (catalog number C200100029) is gratefully acknowledged. We thank the following investors in LanzaTech Technology: BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil Company, K1W1, Khosla Ventures, the Malaysian Life Sciences, Capital Fund, LP, Mitsui, the New Zealand Superannuation Fund, Novo Holdings A/S, Petronas Technology Ventures, Primetals, Qiming Venture Partners, Softbank China, and Suncor.

LanzaTech has interest in commercial gas fermentation with *C. autoethanogenum*. This work was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N810755 and the Estonian Research Council’s grant agreement PSG289. Australian Government funding through its investment agency, the Australian Research Council, toward the ARC Centre of Excellence in Synthetic Biology (CE200100029) is gratefully acknowledged. We thank the following investors in LanzaTech’s technology: BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil Company, K1W1, Khosla Ventures, the Malaysian Life Sciences, Capital Fund, LP, Mitsui, the New Zealand Superannuation Fund, Novo Holdings A/S, Petronas Technology Ventures, Primetals, Qiming Venture Partners, Softbank China, and Suncor.

REFERENCES

1. Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.201649.

2. Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63. https://doi.org/10.1038/nrg2484.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

SUPPLEMENTAL FILE 1, XLXSx file, 0.9 MB.

ACKNOWLEDGMENTS

We thank Viktorija Kukuškina for valuable discussions.

This work was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement N810755 and the Estonian Research Council’s grant agreement PSG289. Australian Government funding through its investment agency, the Australian Research Council, toward the ARC Centre of Excellence in Synthetic Biology (CE200100029) is gratefully acknowledged. We thank the following investors in LanzaTech’s technology: BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil Company, K1W1, Khosla Ventures, the Malaysian Life Sciences, Capital Fund, LP, Mitsui, the New Zealand Superannuation Fund, Novo Holdings A/S, Petronas Technology Ventures, Primetals, Qiming Venture Partners, Softbank China, and Suncor.

LanzaTech has interest in commercial gas fermentation with *C. autoethanogenum*. A.H. and M.K. are employees of LanzaTech.
3. Wissink EM, Vihervaara A, Tippens ND, Lis JT. 2019. Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 20:705–723. https://doi.org/10.1038/s41576-019-0159-6.

4. Ingolia NT, Ghaemmaghami S, Newman JS, Weissman JS. 2009. Genomewide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. https://doi.org/10.1126/science.1168978.

5. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Ladslad PF, Vogel J. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255. https://doi.org/10.1038/nature08756.

6. Valgepea K, de Souza Pinto Lemgruber R, Meaghan K, Palfreyman RW, Abdalla T, Heijstra BD, Behrendorff JB, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. 2017. Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens. Cell Syst 4:505–515.e5. https://doi.org/10.1016/j.cels.2017.04.008.

7. Valgepea K, Loi KQ, Behrendorff JB, de Souza Pinto Lemgruber R, Plan M, Hodgson MP, Köpke M, Nielsen LK, Marcellin E. 2019. Arginine deiminase pathway provides ATP and boosts growth of the gas-fermenting acetogen *Clostridium autoethanogenum*. Metab Eng 41:202–211. https://doi.org/10.1016/j.ymben.2017.04.007.

8. de Souza Pinto Lemgruber R, Valgepea K, Tappel R, Behrendorff JB, Palfreyman RW, Plan M, Hodgson MP, Simpson SD, Nielsen LK, Köpke M, Marcellin E. 2019. System-level engineering and characterization of *Clostridium autoethanogenum* through heterologous production of poly-3-hydroxybutyrate (PHB). Metab Eng 53:12–23. https://doi.org/10.1016/j.ymben.2019.01.003.

9. Köpke M, Simpson SD. 2020. Pollution to products: recycling of ‘above ground’ carbon by gas fermentation. Curr Opin Biotechnol 65:180–189. https://doi.org/10.1016/j.copbio.2020.02.017.

10. Rosset R, Julien J, Monier R. 1966. Ribonucleic acid composition of bacteria as a function of growth rate. J Mol Biol 18:308–320. https://doi.org/10.1016/0022-2836(66)80248-6.

11. Dennis PP. 1972. Regulation of ribosomal and transfer ribonucleic acid synthesis in *Escherichia coli*. B. J Biol Chem 247:2842–2845. https://doi.org/10.1016/0022-2836(72)90689-7.

12. Valgepea K, de Souza Pinto Lemgruber R, Abdalla T, Binos S, Takemori A, Tanaka Y, Tappel R, Köpke M, Simpson SD, Nielsen LK, Marcellin E. 2018. H2 drives metabolic rearrangements in gas-fermenting *Clostridium autoethanogenum*. Biotechnol Biofuels 11:55. https://doi.org/10.1186/s13068-018-1052-9.

13. de Lima LA, Ingelman H, Brahimbhatt K, Reimmetz K, Barry C, Harris A, Marcellin E, Köpke M, Valgepea K. 2022. Faster growth enhances low carbon fuel and chemical production through gas fermentation. Front Bioeng Biotechnol 10:879578. https://doi.org/10.3389/fbioe.2022.879578.

14. Brown SD, Nagaraju S, Utturkar SM, De Tissera S, Segovia S, Mitchell W, Land ML, Dassanayake A, Köpke M. 2014. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of *Clostridium autoethanogenum* and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7:40. https://doi.org/10.1186/1754-6834-7-40.

15. Valgepea K, Adamberg K, Seimann A, Vilu R. 2013. Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol Biosyst 9:2344–2358. https://doi.org/10.1039/c3mb70119k.

16. Maier T, Schmidt A, Guel M, Kühner S, Gavin A-C, Aebesold R, Serrano L. 2011. Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol 7:511. https://doi.org/10.1038/msb.2011.38.

17. Esquerré T, Laguerre S, Turfan C, Carpousis AJ, Girbal L, Cocaing-Bousquet M. 2014. Dual role of transcription and transcript stability in the regulation of gene expression in *Escherichia coli* cells cultured on glucose at different growth rates. Nucleic Acids Res 42:2460–2472. https://doi.org/10.1093/nar/gkt1150.

18. Al-Bassam M, Kim J, Zaramela LS, Kellman BP, Wozniak JM, Gonzalez DJ, Zengler K, Zuniga C. 2018. Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 9:4474. https://doi.org/10.1038/s41467-018-06993-6.

19. Shin J, Song Y, Kang S, Jin S, Lee J-K, Kim DR, Cho S, Müller V, Cho B-K. 2021. Genome-scale analysis of *Acetobacterium woodii* identifies translational regulation of acetogengenesis. mSystems 6:e00696-21. https://doi.org/10.1128/mSystems.00696-21.

20. Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354.

21. Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. 2016. The impact of single-molecule sequencing and hybrid approaches for finishing the genome of *Clostridium autoethanogenum*. mSystems 1:e00155-16. https://doi.org/10.1128/mSystems.00155-16.

22. Al-Bassam M, Kim J, Zaramela LS, Kellman BP, Wozniak JM, Gonzalez DJ, Zengler K, Zuniga C. 2018. Optimization of carbon and energy utilization through differential translational efficiency. Nat Commun 9:4474. https://doi.org/10.1038/s41467-018-06993-6.

23. Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41:e108. https://doi.org/10.1093/nar/gkt214.

24. Wang L, Wang S, Li W. 2012. RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:184–185. https://doi.org/10.1093/bioinformatics/bts356.

25. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:364–370. https://doi.org/10.1093/bioinformatics/btp361.

26. Su Z, Els R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313.