Structure–function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism.

ThirumalaiSelvi Ulaganathan1, William Helbert2, Moran Kopel3, Ehud Banin3 and Miroslaw Cygler1,4,*,

1Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; 2Université Grenoble Alpes and CNRS, CERMAV UPR 5301 601, rue de la chimie, 38000 Grenoble (France) and Institut de Chimie Moléculaire de Grenoble, ICMG, FR-CNRS 2607, Grenoble, France; 3Institute for Nanotechnology and Advanced Materials, and Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel; 4Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada

Running title: Structure and catalytic mechanism of PL24 lyase

*To whom the correspondence should be addressed: Miroslaw Cygler: Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; miroslaw.cygler@usask.ca; Tel (306) 966-4361.

Keywords: polysaccharide lyase, carbohydrate processing, catalysis, substrate binding, mutagenesis, crystallography, ulvan lyase/ His/Tyr mechanism

Ulvan is a major cell wall component of green algae of the genus Ulva and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan degrading lyases have been recently characterized and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases and partially characterized. Two families of ulvan degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed β-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg-320, followed by sliding of the substrate into the canyon toward the active-site residues.

Surprisingly, the LOR_107 structure was very similar to that of PL25 family PLSV_3936, despite only ~14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism.

Ulvan is one of the two major cell wall components of marine green algae (genus Ulva and Enteromorpha). It is a complex sulfated polysaccharide composed mainly of 3-sulfated rhamnose (Rha3S), glucuronic acid (GlcA), iduronic acid (IdoA) and xylose (1). The common disaccharide repetitive units within the ulvan polysaccharides are [→4]-β-D-GlcA-(1→4)-α-L-Rha3S(1→) called type A ulvanobiouronic-3-sulfate (A3S) and [→4]-α-L-IdoA-(1→4)-α-L-Rha3S(1→) called type B ulvanobiouronic-3-sulfate (B3S) (1) (Schema 1). The presence of iduronic acid and sulfated rhamnose differentiates ulvan from other polysaccharides of marine origin and displays similarity with mammalian glycosaminoglycans such as chondroitin sulfate and hyaluronic acid. This distinctive chemical feature makes ulvan an attractive candidate for various biomedical, nanobiotechnological and drug delivery applications (2-6). Polysaccharides containing uronic acid sugars can be degraded by enzymes utilizing a β-
elimination mechanism and are called polysaccharide lyases (PLs). They utilize a β-elimination mechanism to cleave the oxygen-aglycone bond by abstracting the C5 proton, which results in the formation of an unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronic acid (ΔUA) at the non-reducing end of the oligosaccharide product (7). These enzymes are presently classified into 26 sequence related families (PL19 was recently renamed GH91) in the CAZy database (8). The first enzyme reported to utilize ulvan as a substrate was a lyase from the filamentous fungus Trichoderma sp. GL2 (9) although its main substrate seemed to be oligoglucuronan. Marine bacteria producing enzymes able to degrade ulvan polysaccharides were only recently discovered (10) and the first ulvan lyase from Nonlabens (Persicivirga) ulvanivorans strain PLR was biochemically characterized as an endolytic ulvan lyase (11). The genome of N. ulvanivorans was recently sequenced (12), followed by sequencing the genomes of Pseudoalteromonas sp. Strain PLSV (13) and Alteromonas sp. strains LTR and LOR (14). Several of the putative ulvan lyase genes have been recombinantly expressed and partially characterized (15). LOR_107 from Alteromonas sp. strain LOR was confirmed as an ulvan lyase, leading to the establishment of a new polysaccharide lyase family PL24 in the CAZy database (http://www.cazy.org/) (8), which presently contains 29 identified homologs.

We have recently characterized the structure and catalytic mechanism of an ulvan lyase from Pseudoalteromonas sp. strain PLSV, called PLSV_3936. This enzyme belongs to another new polysaccharide lyase family, PL25 (16). PLSV_3936 is folded into a seven bladed β-propeller and utilizes the His/Tyr mediated elimination mechanism for catalysis. Moreover, we have described the polysaccharide utilization locus (PUL) in Alteromonas genome and identified LOR_29 as an ulvan lyase also belonging to the PL25 family (17).

Here we report our investigation of ulvan lyase LOR_107 from Alteromonas (PL24 family). Initial characterization of LOR_107 showed that it preferentially cleaves the bond adjacent to glucuronic acid but has very low or no activity for ulvan segments containing iduronic acid (15). We report the crystal structure of LOR_107 at 1.9 Å resolution. LOR_107 displays a seven-bladed β-propeller fold. The putative active site of LOR_107 was deduced from the structure and confirmed by site-directed mutagenesis of these residues and measurements of their enzymatic activity. The structure of two inactive mutants (R259N and R320N) with a tetrascarhride substrate soaked into the crystals identified the location of the substrate binding site and suggested a two-stage substrate binding mechanism. LOR-107 follows the His/Tyr mechanism with some modifications.

Results and Discussion

LOR_107 is a founding member of the PL24 polysaccharide lyase family. The secondary structure predictions with PsiPred (18) indicate an all β-strand-containing fold, which suggested a possible similarity to lyases from either PL11, PL22 or PL25 families.

Crystal structure of LOR_107

The protein crystallized with two molecules in the asymmetric unit, which are virtually identical and superimpose with a root-mean-squares deviation (rmsd) of 0.29 Å for all Cα atoms. The molecule adopts the fold of a seven-bladed β-propeller (Fig. 1A,B). Each propeller consists of four antiparallel β-strands. Blades 1, 2, 3, 4, 5 and 6 are formed by residues 90 - 133, 148 - 208, 240 - 286, 299 - 369, 382 - 434 and 444 - 478. The 7th blade is formed from three C-terminal β-strands, 483 - 518 and the 4th β-strands is provided by the N-terminal residues 43 - 56. The fourth strand in blade 2 is distorted, forming fewer inter-chain hydrogen bonds. This strand is followed by a long loop that is stabilized by a metal ion (see below). The loops joining β-strands extend on either side of the propeller formed by the blades. The loops on one side of the propeller are rather short (bottom of the propeller) while the loops on the opposite end are of varied length, with some extending high above the ends of the β-sheets (top of the propeller). Especially, loops within blades 1, 2, 4, 5 and 7 are especially long whereas those within blades 3 and 6 are much shorter. These long loops delineate a deep canyon on the top surface of the propeller, with high walls on two sides and a lower ‘neck’ located between blades 2 and 4 over the short loops within blade 3 (Fig. 1C). The opposite end of the canyon also has a lower wall formed by blade 6. This canyon is lined with a cluster of highly conserved surface-exposed residues, indicating that this
surface defines the substrate binding site of LOR-107.

Metal and sulfate binding sites

The presence of metal ions in the structure was indicated by four very strong peaks in the difference electron density map, much larger than what is expected for solvent molecules. Two metal ions are present in each independent molecule at identical positions. We identified these ions as Ca\(^{2+}\) based on their coordination geometry. The Ca\(^{2+}\) ions are located at the periphery of the propeller. Ca\(^{2+}\)(1) in site 1 stabilizes the long and winding loop leading from blade 2 to blade 3 and abutting the long loop between distorted strand β4 of blade 2 and β1 of blade 3 (Fig. 1B). This Ca\(^{2+}\) ion is surrounded by seven ligands in a pentagonal bipyramidal coordination. The equatorial ligands are provided by OD1 and OD2 of Asp222, the carbonyl oxygen of Lys224 and two water molecules, while the axial ligands are OD2 of Asp212 and another water molecule (Fig. 1D). Ca\(^{2+}\)(2) in site 2 is located in blade 4 and stabilizes a long loop between strands β2 and β3. The loop connecting blades 4 and 5 is leaning onto this loop (Fig. 1B). The coordination of this Ca\(^{2+}\) is also pentagonal bipyramidal, with equatorial ligands being OD2 of Asp236 and four water molecules, while the axial ligands are carbonyl oxygens of Asn323 and Phe328 (Fig. 1D). Both sites are distant from the conserved residue cluster in the canyon and appear to play a strictly structural role.

In addition to the metal ions, we have identified several sulfate ions in our structure. In particular, two sulfates occupy similar positions in both molecules at the canyon on the top of the propeller. They are surrounded by polar and basic amino acids.

Site directed mutagenesis of the putative active site and substrate binding residues

We have investigated the evolutionary conservation of residues in the LOR_107 sequence using the program ConSurf (19). This led to the identification of highly conserved residues on the protein surface that are solvent accessible (Fig. 2A). Two clusters of conserved residues are located on the top side of the propeller and on the sides of the canyon, and contain polar and charged residues that could constitute the active site. Residues His146, His167, Thr242, Tyr243 and Arg259 belong to cluster I and are located on one side of the canyon at the inner edges of blades 2 and 3. Asn263, Tyr303, Arg320 and Tyr330 belong to cluster II and are on the opposite side of the canyon on the edge of blade 4 (Fig. 2B). These residues are absolutely or highly conserved among PL24 sequences. The two clusters are separated by ~8-10 Å and define the width of the canyon, which is sufficient to accommodate a linear ulvan polysaccharide. We have investigated the contribution of these amino acids to the enzyme activity of LOR_107 by site-directed mutagenesis. The variants containing single mutations, in which each of the above-mentioned residues were changed to an alanine (except Tyr, which was mutated to Phe), were expressed and purified and their activity on the ulvan substrate was measured. The enzyme activity on the ulvan substrate was monitored as a function of time by following the appearance of unsaturated sugar products with a characteristic absorbance at 232 nm (Fig. 2C). The H146A, H167A, R259A and R320A mutants exhibited a complete loss of activity against the substrate. Conversely, the Y243F mutant showed very low but measurable activity while N263A and Y330F show reduced but readily measurable activity (Fig. 2C). Mutating Thr242 to an alanine led to a very small decrease in activity while the Y303F mutant showed, rather unexpectedly, a small increase in activity relative to the wild type LOR_107. Together, these data suggested that His146, His167, Arg259 and Arg320 play essential roles in catalysis. Tyr243 is also important in catalysis, since the Y243F mutant showed only residual activity. The remaining investigated side chains most likely affect the organization of the active site or binding of the ulvan substrate.

Structure of R259N and R320N mutants with ulvan tetrasaccharide

To capture the substrate within the enzyme we have made several single mutants in which His146, His167, Tyr243, Arg259 and Arg320 were exchanged for other amino acids. Of these, we successfully crystallized R259N and R320N. We introduced the substrate into these crystals through soaking. We have used two tetrasaccharides, (1) the substrate DP4-1, which contains a mixture of ΔUA-Rha3S-GlcA-Rha3Sa/β and ΔUA-Rha3S-IdoA-Rha3Sa/β, and (2) DP4-2 ΔUA-Rha3S-Xyl-Rha3Sa/β, which is a substrate analog that is not
cleaved by the enzyme. Of these two tetrasaccharides only DP4-1 was found specifically bound to the enzyme. Following the nomenclature introduced by Davies et al. (20), the sugars on the reducing side of the bond to be cleaved are in position +1, +2, etc., while those on the non-reducing side are in position -1, -2, etc.

The difference electron density map calculated for the R259N mutant showed an elongated blob of positive density located within the canyon on the top of LOR_107 in proximity to the two clusters of conserved residues. We could fit the entire DP4-1 tetrasaccharide into this electron density (Fig. 3A).

The GlcA could be fitted in the +1 position in a chair conformation, while IdoA fitted only in a high energy boat conformation. In addition, since LOR_107 shows specificity for cleavage next to GlcA (15) we have modeled GlcA in the +1 position. The substrate is located close to, and makes contacts with, Arg320, Tyr330 and Asn263 (cluster II). Arg320 is in the center of this cluster and its sidechain makes hydrogen bonds to O3GlcA at the +1 position and to O5Rha3S at the -1 position.

Arg320 is sandwiched between two tyrosine sidechains conserved among PL24 sequences, Tyr303 and Tyr330, with the C6Rha3S methyl group abutting the face of Tyr330 aromatic ring. Asn263, located next to Arg320, forms a H-bonds to NH\textsubscript{1}Arg320. Ans263 extends over the +1 GlcA, contacting the C2 proton through the aliphatic part of the sidechain (Fig. 3A, right panel). In addition, Tyr303 is hydrogen-bonded to the +1 O6GlcA of the acidic group and the carboxylic O6AGlcA is ~5 Å from Tyr243. Finally, His384 hydrogen-bonds to O6ARha3A in the -2 position and Val386 faces the hydrophobic side of Rha3S at the -1 position. The closest distance of the tetrasaccharide to cluster I residues is to His146 and Tyr243 that are ~4-5Å from O6AGlcA at the +1 position. Additionally, Arg177 H-bonds to O2Rha3S at the +2 position (Fig. 3A, right panel). The mutated sidechain, now Asn259 is rather far from the tetrasaccharide but when this structure is superimposed on the native LOR_107, the sidechain of Arg259 extends toward the carboxylic group of GlcA at the +1 position and could form a salt bridge with it.

The tetrasaccharide in the complex described above is somewhat distant from His146, His167 and Tyr243, which are important for catalysis, suggesting that this binding site is not catalytically competent. We therefore investigated the R320N mutant where the key cluster II contact residue has been changed. In this complex, the substrate is positioned close to cluster I residues (Fig. 3B).

Unexpectedly, the Arg259 sidechain assumes two conformations in monomer chain A. The minor conformer (occupancy 0.4) corresponds to that in the wild-type enzyme and forms a salt bridge with the acidic group of GlcA at the +1 position, while the major conformer (occupancy 0.6, present as the only observed conformation in chain B) points away from GlcA and is directed toward the backbone of Gly262-Asn263. His146 points toward H5GlcA of +1 GlcA and the NE2His146 is only ~2 Å away from this proton (~3Å from C5GlcA). In addition, this NE2 nitrogen forms a H-bond with the bridging O4 between +1 and -1 sugars. Tyr243 also points toward C5 of GlcA and the bridging O4 but the distances are ~4 Å, too long for a direct participation in proton transfer. The SO\textsubscript{3} of Rha3S at the -1 position fills a hydrophilic pocket made by Ser145, Tyr243 and His146 side chains. Similarly, the SO\textsubscript{3} of Rha3S at the +2 position fits into a depression formed by Arg137, Arg177, His167 and the Phe137 side chains. Moreover, Ans263 clamps the tetrasaccharide from the opposite side by H-bonding to the oxygen atom that bridges +1 and +2 sugars. The unsaturated sugar in the -2 position is located near the main chain of Phe80 and Gly81 and makes only van der Waals interactions with the protein (Fig. 3B, right panel).

The R259N and R320N mutations had minimal effect on the overall structure of the protein. However, there is a significant difference in the way the tetrasaccharide substrate binds to these mutants. In the R259N complex the tetrasaccharide substrate binds cluster II sidechains, interacting largely with Arg320, and is located at the upper part of the canyon, somewhat distant from the residues affecting catalysis. Nearby Asn263 is H-bonded to Arg320 and directed toward the top of the canyon. In the R320N complex the tetrasaccharide binds deeper in the canyon and approaches the cluster I sidechains. The Asn263 changes conformation and extends toward the other wall of the canyon making it narrower and pinning the substrate to the active site.

Proposed catalytic mechanism of LOR_107

The importance of Arg320 in cluster II for bond cleavage, combined with the structure of the LOR_107 (R259N)-tetrasaccharide complex,
suggests that the initial binding of the substrate in the canyon is coordinated by Arg320. This binding site is near the top of the canyon and somewhat distant from the residues essential for catalysis. We postulate that upon initial binding the Arg259 side chain extends toward the acidic group on GlcA in +1 position and that promotes movement of the substrate deeper into the canyon toward cluster I residues. The associated movement of the Asn263 sidechain narrows the canyon and locks the substrate in the active site. Indeed, Asn263 side chain plays a role in the catalytic mechanism since its mutation to an alanine has a detrimental effect on activity (Fig. 2C).

In the R259N mutant, the Arg259 side chain is absent and thus the substrate remains in the initial binding site. However, when the Arg320 side chain is missing but Arg259 is present (i.e. the R320N mutant), the substrate goes directly to the final destination site near the bottom of the canyon. This binding site is largely preformed when compared with the native LOR_107 structure. In the absence of Arg320 the tetrasaccharide substrate binds in what appears to be a catalytically competent or nearly competent conformation. We postulate that in the wild-type LOR_107 the movement of substrate deeper into the canyon pulls on Arg320 and causes change of the conformation of Asn263, narrowing of the canyon and forcing the substrate into the catalytically competent conformation.

The catalytic mechanism of polysaccharide lyase family enzyme follows three steps (7): 1) neutralization of the negative charge on carboxylic acid of the uronic acid sugar. This reduces the pKa of the C5 proton; 2) abstraction of the C5 proton by a base; 3) donation of proton to the leaving group by an acid. A comparison of the native and R320N structures indicates that the role of the neutralizer is performed by Arg259 with the help of His167 (Fig. 4A). We suggest that the presence of His167 is essential for correctly orienting the acidic group on GlcA for the interaction with Arg259. The role of proton abstraction is likely performed by His146, which is properly oriented by stacking with His167 and interaction with Tyr243. The ND2^{His146} atom becomes close to both H5^{GlcA} of +1 GlcA and to the bridging O4 (to Rha3S), suggesting that His146 might shuttle the proton directly to the bridging O4 (Fig. 4B). The fact that Y243F mutant displays residual activity indicates that Tyr243 plays a supporting role but is not directly involved in proton transfer. Therefore, LOR_107 possesses an active site consistent with the His/Tyr mechanism, one of the two mechanisms identified so far in polysaccharide lyases (21,22) but applies a modification to this mechanism, in which the tyrosine plays a supporting rather than a direct role in proton shuffling (Fig. 4B).

Why then is the R320N mutant inactive? It must reflect the fact that either the substrate position observed in the R320N mutant or the arrangement of catalytic site residues are not fully compatible with catalysis. In this mutant, the Arg259 side chain is predominantly directed away from the substrate and toward the backbone of Gly262-Asn263, likely due to a small rearrangement of a neighboring segment near Asn263. Therefore, Arg259 cannot neutralize the acidic group of +1 GlcA, which in turn, prevents the C5 proton abstraction.

Comparison of LOR_107 and PLSV_3936

PLSV_3936 belongs to the PL25 family and displays the same seven-bladed β-propeller fold as LOR_107. They can be superimposed with a root-mean-squares deviation (rmsd) of 1.7 Å for 186 Ca atoms (out of ~440 common) (Swiss-PDBViewer, (23)). The strands of the blades superpose well while the loops diverge, particularly the loops at the top of the propeller (Fig. 5A). The canyon on the top of the propeller is somewhat wider in LOR_107 than in PLSV_3936. Both enzymes harbor bound ions, Ca²⁺ in the case of LOR_107 and Zn²⁺ for PLSV_3936. The Ca²⁺ ions in LOR_107 play strictly structural roles and are distant from the active site, while the Zn²⁺ ion in PLSV_3936 is located much closer to the active site and likely contributes not only to the stabilization of one of the loops but also rigidifies the active site area (16).

What is most interesting and unexpected, is that the active site residues of LOR_107 are overlapping in this superposition with the active site residues of PLSV_3936 (Fig. 5B). Thus, cluster I residues His146, Tyr243 and Arg259 of LOR_107 correspond to His123, Tyr188 and Arg204 in PLSV_3936, respectively. Moreover, cluster I His167 and Thr242 of LOR_107 superimpose on His143 and Thr187 of PLSV_3936. In this superposition, blades 1-3 and 7 of both proteins superimpose well while blades 4-5 in LOR_107 are shifted away from the center of the propeller, widening somewhat the substrate-binding canyon. As a result, cluster II residues in LOR_107...
(Asn263, Tyr303, Arg320 and Tyr330) are shifted outside by ~3 Å with respect to cluster I residues. Moreover, only Tyr303 has a conserved counterpart in the Tyr246 of PLSV_3936. The residue that corresponds spatially to Arg320 in LOR_107 is His264 in PLSV_3936. His264 mediates the Zn\(^{2+}\) binding in PLSV_3936 and mutating this residue leads to precipitation of the protein. But Arg320 is not involved in any metal coordination in LOR_107. Another notable difference is the essential role of His167 in catalysis in LOR_107 while mutation of the corresponding His143 in PLSV_3936 does not affect activity.

Structural comparison of substrate binding in PLSV_3936 and R320N shows that the tetrasaccharide binds in a similar region relative to the catalytic residues. The -2 and -1 sugars assume the same conformations. However, there are differences in the +1 and +2 sugars. They assume a different chair pucker, and differ in torsion angles around bonds linking +1 and +2 sugars. This results in the sulfate of the +2 Rha3S sugar pointing in opposite directions in these two binding sites and in somewhat different orientation of +1 GlcA relative to the active site residues (Fig. 5B). It appears that the His/Tyr active site can adjust the function of these two sidechains to some changes in substrate orientation and maintain efficient bond cleavage.

Structural comparison with β-propeller fold polysaccharide lyases

There are two other PL families with a β-propeller fold, namely seven-bladed PL22 containing oligogalacturanase lyase and eight-bladed PL11. The superposition of LOR_107 with the PL22 family lyase, oligogalacturonate lyase (PDB code 3PE7, (24)), is less satisfactory (Supplementary Fig. S1). The best superposition overlaps only 95 Ca atoms with an rmsd of 1.7 Å (Swiss-PDBViewer, (23)) and encompasses only four blades. In addition, the orientation of the β-strands relative to the central axis of the propeller differs somewhat between these two structures leading to difference in the diameters of the propellers. Importantly, these two lyases appear to use different catalytic mechanisms; the PL22 family utilizes most likely a metal ion mediated beta elimination reaction mechanism (24). The putative active site residues in these two lyases are in a different structural context.

A comparison with the eight-bladed propeller from the PL11 family shows that while the radii of the two barrels are similar, there is only overlap of four blades. Only 92 Ca atoms overlap with an rmsd of 1.9 Å.

Conclusions

LOR_107 is the representative of PL24 family. It folds into a seven-bladed β-propeller with an extended and deep substrate binding canyon located on the top of the propeller. The Arg259 and His167 participate in neutralizing the acidic group of the substrate’s uronic acid and His146 plays the role of general base and/or general acid. Unlike in other lyases displaying the His/Tyr mechanism, it appears that LOR_107 binds the substrate in a two-stage process with the initial binding coordinated by Arg320. In the final stage, the substrate binds in an atypical way allowing only His146 to form a productive contact with H5\(^{\text{GlcA}}\) while Tyr243 helps to orient the histidine but is not absolutely essential for activity.

Experimental procedures

Cloning and Purification of LOR_107

The gene encoding the enzyme LOR_107 is annotated as WP_052010193 in GenBank and as A0A109PTH9_9ALTE in UniProt. The latter sequence has six extra residues on the N-terminus. Our numbering follows the NCBI annotation. We have cloned residue 26-522 (without signal peptide) into the expression vector (pET28a) with C terminal 6xHis tag (15). LOR_107 gene includes several codons that are rare in *Escherichia coli* and for that reason we have used BL21-codon plus (DE3)-Ripl cells for transformation with the expression vector. An overnight inoculum of the expression strain was sub-cultured into one liter of Terrific Broth medium (ThermoFisher, Canada) supplemented with 50 µg kanamycin and 50 µg chloramphenicol. Cells were allowed to grow at 37°C until the absorbance at 600 nm reached 1.5, then the temperature was reduced to 18°C and protein expression was induced with 0.5 mM IPTG. After overnight growth at 18 °C cells were harvested by centrifugation at 4500 x g for 20 minutes. Harvested cells were resuspended in a lysis buffer (20 mM Tris pH8, 200 mM NaCl, 5% glycerol and 5 mM Imidazole) and lysed using a cell disruptor (Constant Systems Ltd, UK). The soluble fraction was collected by centrifuging at 6
39,000 x g for 40 minutes and the recombinant LOR_107 was purified using TALON metal affinity resin (Takara Bio USA). The recombinant protein was eluted with 40 mM imidazole, concentrated and loaded on a S200 (GE Life Sciences) size exclusion column. The protein eluted as a single peak with the apparent molecular weight corresponding to a monomer. The protein was concentrated to 17 mg/ml and submitted to crystallization screening.

Selenomethionine labeled protein was produced by inhibiting the methionine biosynthesis pathway (25). Briefly an overnight inoculum in100 ml LB media was grown at 37 °C. The next day cells were centrifuged and the pellet was resuspended in M9 minimal media. The resuspended cells were used to subculture 1 L of minimal media supplemented with 50 μg kanamycin and 50 μg chloramphenicol. Cell growth was continued at 37 °C for 5 to 6 hours until it reached OD ~0.6. Then 100 mg of lysine, phenylalanine, threonine, 50 mg of isoleucine, leucine, valine and 60 mg of L-selenomethionine were added. After 15 min, protein expression was induced by the addition of 0.5 mM IPTG and growth was continued at 20 °C for 16 hours. The cells were centrifuged and the selenomethionine labeled protein was purified in the same way as native protein (except 2 mM DTT was included in the lysis buffer and purification buffer in the selenomethionine labeled protein purification). The purified protein was concentrated to 20 mg/ml and used for crystallization.

Site directed mutagenesis

Several conserved residues potentially involved in catalysis and/or substrate binding were selected for mutagenesis. Single mutants H146A, H167A, T242A, Y243F, R259A, N263A, Y303F, R320A, and Y330F were made by the Quickchange site-directed mutagenesis method (Agilent Technologies Canada Inc., Mississauga) following manufacturer’s instructions and using KOD polymerase. The presence of designed mutations was confirmed by DNA sequencing. The mutants were expressed in BL21-codon plus (DE3)-Ripl. All the mutants were purified in the same way as the wild-type protein.

Enzymatic activity assay

The activity of wild-type LOR_107 and its various mutants was measured by monitoring the absorption at 232 nm, indicative of the formation of an unsaturated double bond in the hexose ring. Ulvan extracted from ulva rotundata was provided by CEVA (Centre d’étude et de valorisation des algues, Pleubian, France). The polysaccharide was incubated with recombinant Nonlabens ulvanivorans ulvan lyase according to Nyvall Collén (11). The oligo-ulvans were purified by size exclusion chromatography using three Superdex 30 columns (2.6 x 60 cm; GE Healthcare) mounted is series eluting at a flow rate of 1.5 ml min⁻¹ with (NH₄)₂CO₃ as the eluent. The collected fractions were lyophilized. The assay solution was composed of 0.5 mg/ml ulvan polysaccharide dissolved in 20 mM HEPES, pH 7.5, 150 mM NaCl. 1 μg of the enzyme was added directly to 150 μl of the assay solution to a final concentration of 0.1 μM. The plate was immediately placed in the temperature controlled SpectraMax plate reader (Molecular Devices) and the measurements were carried at 22 °C. The absorbance of the substrate–containing solution was used as a control.

Crystallization and data collection

Crystallization screening of wild type LOR_107 was carried out using commercial screens in a 96-well sitting drop format at room temperature. The drops contain 0.3 μl of protein solution and 0.3 μl well solution and were setup using the Gryphon crystallization robot (ArtRobbins Instruments, Sunnyvale, CA). Initial crystals appeared in drops within wells containing 170 mM ammonium sulfate, 85 mM sodium cacodylate pH 6.5, 25.5% PEG8K and 15% glycerol. Optimization by the hanging drop vapor diffusion method led to improved conditions containing 170 mM ammonium sulfate, 85 mM 4-Morpholineethanesulfonic acid (MES) pH 6.5, 23% PEG8K, and 15% glycerol at a protein concentration of 20 mg/ml. Since the crystallization solution already contained glycerol, the crystals were briefly immersed in the well solution and flash cooled in liquid nitrogen. Diffraction data were collected at the 08ID beamline at the Canadian Light Source (CLS) synchrotron (26) and processed with the XDS program (27). These crystals diffracted to 1.9 Å resolution and belonged to space group P2₁2₁2₁ with unit cell parameters a=83.6, b=121.3, c=123.9 Å. These crystals contain two molecules in the asymmetric unit.
The best crystals of SeMet-labeled protein were grown from 25.5% PEG 8K, 170 mM ammonium sulfate, 100 mM MES, pH 6.5 and 17% glycerol. These crystals were briefly transferred to mother liquor and flash cooled in liquid nitrogen. Diffraction data to 2.5 Å resolution were collected at the 08ID beamline at the CLS and processed using HKL 3000. The crystals belong to space group $P2_12_12_1$ with unit cell parameters $a=84.2$, $b=121.9$, $c=124.3$ Å.

Structure determination and refinement
The structure of LOR_107d was solved with the automated structure solving pipeline CRANK2 (28) using data from the SeMet crystal. A total of 20 selenium sites were identified and the initial model contained 839 residues out of 1000. This model was refined with the 1.9 Å resolution data from the native crystal. The structure was refined with the Phenix software (29) and manual rebuilding and solvent placement was conducted with the COOT program (30). Two large peaks in a difference electron density map were observed within each molecule, in identical relative positions. Based on the coordination and distances to the liganding atoms these peaks were assigned as Ca$^{2+}$ ions. The final model contains residues 40 to 520 in both chains, four Ca$^{2+}$ ions, fourteen SO$_4$ ions, five glycerol molecules, one PEG (Polyethylene glycol) molecule and 753 water molecules. The final model was missing residues 26-39 at N terminus and last two residues at the C terminus. The refinement converged at $R_{\text{work}}=0.175$ and $R_{\text{free}}=0.200$. The stereochemistry of the model was validated with MolProbity (31). The data collection and refinement statistics are shown in Table 1.

Crystallization of LOR_107 mutants (R259N, R320N and Y243F) and their complexes with a tetrasaccharide substrate.

The mutant proteins of LOR_107 (R259N, R320N, Y243F) were purified in the same way as the native protein and concentrated to approximately 23 mg/ml. Crystallization of these proteins required some optimization with the final condition being close to that for the native protein (25.5% PEG8000, 170 mM ammonium sulfate, 15% glycerol, 0.1M MES, pH 6.5).

Crystals of LOR_107 single mutants, R259N, Y243F and R320N, were soaked for ~5 h in a solution containing two different tetrasaccharide substrates. The soaking solution containing 3 µl of ~50 mM tetrasaccharide solution in water mixed with 3 µl of crystallization well solution was placed on a cover slip and equilibrated against 500 µl of well solution. The tetrasaccharides were obtained by enzymatic digestion of ulvan polysaccharide with LOR_107 ulvan lyase (PL24) from Alteromonas LOR sp. (15) and separated by HPLC chromatography. Tetrasaccharide I (DP4-1) contained a mixture of ΔUA-Rha3S-GlcA-Rha3Sa/β and ΔUA-Rha3S-IdoA-Rha3Sa/β with some traces of hexasaccharides. Tetrasaccharide II (DP4-2) was ΔUA-Rha3S-Xyl-Rha3Sa/β. After soaking in tetrasaccharide solution, the crystals were flash frozen in liquid nitrogen. Diffraction data of R259N, Y243F were collected at the 08B1 beamline and R320N were collected at the 08ID beamline at the CLS. Data were processed with the XDS program. These crystals diffracted to 2.2 Å resolution, they belong to space group $P2_12_12_1$ and were isomorphous to the native crystals. A strong positive difference electron density corresponding to the bound substrate was observed in R259N and R320N mutant crystals but not in Y243F mutant soaked in DP4-1. No binding was detected for the crystal soaked in DP-2. Data collection and refinement statistics are in Table 1.

Acknowledgements: We would like to thank Drs. Jeremy Lee and David R. Palmer for helpful discussions. This research was supported by grant 155375-2012-RGPIN from the Natural Science and Engineering Council (NSERC) to MC. We acknowledge the Protein Characterization and Crystallization Facility, College of Medicine, University of Saskatchewan for access to the crystallization robot. Research described in this paper was performed using beamline 08ID-1 at the Canadian Light Source, which is supported by the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research.
Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: T.U. expressed and purified the protein, performed crystallographic studies, contributed to writing the manuscript. W.H. prepared and purified tetrasaccharides, contributed biochemical characterization, data analysis and manuscript writing, M.K. cloned the gene and performed initial biochemical characterization. E. B. contributed to the experimental design and data analysis and interpretation, M.C. contributed to the experimental design, data analysis and interpretation, and manuscript writing.

References

1. Lahaye, M., and Robic, A. (2007) Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 8, 1765-1774
2. Morelli, A., Betti, M., Puppi, D., and Chiellini, F. (2016) Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydrate Polymers 136, 1108-1117
3. Cunha, L., and Grenha, A. (2016) Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Marine Drugs 14, 42
4. Manivasagan, P., and Oh, J. (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol. 82, 315-327
5. Popa, E. G., Reis, R. L., and Gomes, M. E. (2015) Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit. Rev. Biotechnol. 35, 410-424
6. Alves, A., Sousa, R. A., and Reis, R. L. (2013) Processing of degradable ulvan 3D porous structures for biomedical applications. Journal of Biomedical Materials Research Part A 101A, 998-1006
7. Gacesa, P. (1987) Alginate-modifying enzymes. A proposed unified mechanism of action for the lyases and epimerases. FEBS Lett. 212, 199-202
8. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490-D495
9. Delattre, C., Michaud, P., Keller, C., Elboutachfaite, R., Beven, L., Courtois, B., and Courtois, J. (2006) Purification and characterization of a novel glucuronan lyase from Trichoderma sp. GL2. Appl. Microbiol. Biotechnol. 70, 437-443
10. Barbeyron, T., Lerat, Y., Sassi, J. F., Le Panse, S., Helbert, W., and Collen, P. N. (2011) Persicivirga ulvanivorans sp. nov., a marine member of the family Flavobacteriaceae that degrades ulvan from green algae. International journal of systematic and evolutionary microbiology 61, 1899-1905
11. Nyvall Collen, P., Sassi, J. F., Rogniaux, H., Marfaing, H., and Helbert, W. (2011) Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. J. Biol. Chem. 286, 42063-42071
12. Kopel, M., Helbert, W., Henrissat, B., Doniger, T., and Banin, E. (2014) Draft Genome Sequence of Nonlabens ulvanivorans, an Ulvan-Degrading Bacterium. Genome announcements 2(4)

13. Kopel, M., Helbert, W., Henrissat, B., Doniger, T., and Banin, E. (2014) Draft Genome Sequence of Pseudoalteromonas sp. Strain PLSV, an Ulvan-Degrading Bacterium. Genome announcements 2(6)

14. Kopel, M., Helbert, W., Henrissat, B., Doniger, T., and Banin, E. (2014) Draft Genome Sequences of Two Ulvan-Degrading Isolates, Strains LTR and LOR, That Belong to the Alteromonas Genus. Genome announcements 2(5)

15. Kopel, M., Helbert, W., Belnik, Y., Buravenkov, V., Herman, A., and Banin, E. (2016) New Family of Ulvan Lyases Identified in Three Isolates from the Alteromonadales Order. J. Biol. Chem. 291, 5871-5878

16. Ulaganathan, T., Boniecki, M. T., Foran, E., Buravenkov, V., Mizrachi, N., Banin, E., Helbert, W., and Cygler, M. (2017) New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture. ACS chemical biology 12, 1269-1280

17. Foran, E., Buravenkov, V., Kopel, M., Mizrahi, N., Shoshani, S., Helbert, W., and Banin, E. (2017) Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. Algal Research 25, 39-46

18. Buchan, D. W., Minneci, F., Nugent, T. C., Bryson, K., and Jones, D. T. (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41, W349-357

19. Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., and Ben-Tal, N. (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33, W299-302

20. Davies, G. J., Wilson, K. S., and Henrissat, B. (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 321, 557-559

21. Garron, M. L., and Cygler, M. (2014) Uronic polysaccharide degrading enzymes. Curr. Opin. Struct. Biol. 28C, 87-95

22. Garron, M. L., and Cygler, M. (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20, 1547-1573

23. Guex, N., and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723

24. Abbott, D. W., Gilbert, H. J., and Boraston, A. B. (2010) The Active Site of Oligogalacturonate Lyase Provides Unique Insights into Cytoplasmic Oligogalacturonate β-Elimination. J. Biol. Chem. 285, 39029-39038

25. Walden, H. (2010) Selenium incorporation using recombinant techniques. Acta crystalloogr. D 66, 352-357
26. Grochulski, P., Fodje, M. N., Gorin, J., Labiuk, S. L., and Berg, R. (2011) Beamline 08ID-1, the prime beamline of the Canadian Macromolecular Crystallography Facility. *Journal of Synchrotron Radiation* **18**, 681-684

27. Kabsch, W. (2010) Xds. *Acta crystallogr. D* **66**, 125-132

28. Skubak, P., and Pannu, N. S. (2013) Automatic protein structure solution from weak X-ray data. *Nature communications* **4**, 2777

29. Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Echols, N., Headd, J. J., Hung, L. W., Jain, S., Kapral, G. J., Grosse Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R. D., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2011) The Phenix software for automated determination of macromolecular structures. *Methods* **55**, 94-106

30. Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. (2010) Features and development of Coot. *Acta crystallogr. D* **66**, 486-501

31. Chen, V. B., Arendall Iii, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr.D* **66**, 12-21
Table 1. Data collection and structure refinement statistics.

Crystal form	Native LOR 107	SeMet LOR 107	Complex (R259)	Complex (R320)
Space group	P 2₁ 2₁ 2₁	P 2₁ 2₁ 2₁	P 2₁ 2₁ 2₁	P 2₁ 2₁ 2₁
a, b, c (Å)	83.6, 121.3, 123.8	84.2, 121.9, 124.3	83.05, 121.0, 127.2	84.2, 120.7, 127.1
Wavelength (Å)	0.9795	0.9794	0.9787	0.9796
Resolution (Å)	49.07-1.90 (1.95-1.90)	46.26-2.5 (2.57-2.50)	48.89-2.21 (2.26-2.21)	49.05-2.20 (2.26-2.20)
Observed hkl	1497238	661588	954175	344075
# Unique hkl	99600	85354	64618	66028
Completeness (%)	99.9 (99.2)	99.8 (98.1)	99.0 (87.3)	99.9 (99.8)
Redundancy	15 (14.9)	7.8	14.8 (13.5)	5.2 (5.2)
Rsym	0.107 (1.94)	0.135 (1.35)	0.105 (1.32)	0.101 (1.25)
CC1/2	99.9 (65.2)	99.8 (64.7)	100.0 (91.0)	99.9 (53.6)
I/(σI)	16.56 (1.72)	13.27 (2.12)	23.8 (2.63)	12.93 (1.58)
Rwork	0.175	0.20	0.20	
Rfree	0.20	0.25	0.25	
Wilson B (Å²)	33.7	36.05	39.3	
Ramachandran plot				
Favored (%)	96.66	94.87	95.41	
Allowed (%)	3.34	4.81	4.49	
R.m.s. deviation				
Bonds (Å)	0.006	0.007	0.008	
Angles (°)	0.802	0.981	1.02	
PDB code	6BYP	6BYX	6BYT	

Figure legends

Schema 1. The major repeating units of ulvan, $[\alpha 4]-\beta$-d-GlcA-(1$\rightarrow 4$)-α-l-Rha3S-(1\rightarrow] called type A ulvanobiouronic-3-sulfate (A$_{3S}$) and $[\rightarrow 4]$-α-l-IdoA-(1$\rightarrow 4$)-α-l-Rha3S(1\rightarrow] called type B ulvanobiouronic-3-sulfate (B$_{3S}$).

Figure 1. The structure of LOR_107. A) Topology diagram of LOR-107; B) Cartoon representation of LOR_10-7 structure. The molecule is painted in rainbow colors, from blue at the N-terminus to red at the C-terminus. Two Ca$^2+$ ions are shown as cyan spheres. C) The surface representation showing a long canyon along its top surface with lower rims of the propeller at the ends of the canyon. The view is rotated by 70 degrees along horizontal axis relative to panel B. Color scheme as in panel B; D) The Ca$^{2+}$ ions in sites 1 (left) and 2 (right). This and other figures were prepared with PyMol (pymol.org)

Figure 2. Sequence conservation and enzyme activity analysis. A) The surface representation of the enzyme looking at the top of the propeller. The surface is colored by the level of sequence conservation among homologs. The burgundy color marks highly conserved and surface exposed residues. A cluster of highly conserved residues is visible near one end of the canyon; B) The enlarged view of the conserved surface cluster. The surface is shown as semi-transparent and the conserved residues are shown in stick representation; C) Activity of wild type LOR_107 and its mutants. Appearance of unsaturated sugars resulted from the lytic cleavage followed by absorbance at 232nm for 45 minutes.

Figure 3. Structures of R259N and R320N mutants with tetrasaccharide substrate. A) Location of the tetrasaccharide within the canyon on the top of the propeller in R259N (left panel). The omit electron density map of the tetrasaccharide in R259N mutant contoured at 2.8σ with the model of the tetrasaccharide. The contacts with the protein are marked with dashed lines. Right panel - a closeup of the tetrasaccharide with the surrounding residues shown in stick representation. A stereo view of the tetrasaccharide fit to the density is shown in Supplementary Figure S2; B) Location of the tetrasaccharide within the canyon on the top of the propeller in R320N (left panel). The omit electron density map of the tetrasaccharide in the R259N mutant contoured at 2.8σ. The contacts with the protein are marked with dashed lines: Asn263 changes the conformation clamping the substrate. Right panel - a closeup of the tetrasaccharide with the surrounding residues shown in stick representation. A stereo view of the tetrasaccharide fit to the density is shown in Supplementary Figure S3; C) Superposition of the tetrasaccharides from R259N and R320N complexes and their location in the substrate binding canyon. Tetrasaccharide from R259N complex is colored green and R320N complex is colored gray.

Figure 4. Proposed catalytic mechanism. A) A stereo view of the close-up of the central disaccharide showing the surrounding sidechains. The hydrogen bonds are shown as green dashed lines. The red dashed line indicates the 2.0 \AA distance from NE2$^{\text{His146}}$ to H5 proton of GlcA. The yellow dashed line indicates a short distance of \sim3 \AA between His146 and Tyr243. Tyr243 could form a H-bond to ND2 when His146 flips the sidechain by 180$^\circ$; B) The proposed mechanism. Arg259 acts as a neutralizer of the charge of GlcA acidic group. His146 is the most likely candidate to play the role of acid and base by abstracting the proton from C5 of GlcA and donating it to the bridging O4 (if so then multi-step). Tyr243 plays a supporting role in properly orienting the imidazole ring of His146. His167 contributes by stacking with His146 and also H-bonding to the acidic group of GlcA for its proper alignment in the active site.

Figure 5. Comparison of LOR_107 and PLSV_3936. A) Stereo view of a global superposition of LOR_107(R320N) (rainbow) and PLSV_3936(H123N) (magenta) in cartoon representation; B) Close-up of the active site residues, Arg, Tyr and two His. LOR_107 has carbons painted green, PLSV_3936 has carbons painted cyan. The superposition is based on best overlap of the backbone atoms of the four residues (active site) shown in the figure and is only slightly different from that shown in panel A. The -1 and -2 sugars adopt similar conformations in both complexes, however, +1 and +2 sugars bind in different conformations, in particular the +2 Rha3S is rotated \sim90$^\circ$ between the two complexes. The different mode of binding is the likely cause of somewhat different roles of the His/Tyr pair in both enzymes.
Schema 1

\[(\rightarrow 4)\beta-D\text{-GlcA}-(1\rightarrow 4)\alpha-L\text{-Rha3S}-(1\rightarrow)\]

\[\begin{align*} &-2 \text{ GlcA} \quad \text{-1 Rha3S} \\
&\quad \quad \quad +1 \text{ GlcA} \quad +2 \text{ Rha3S} \\
\end{align*}\]

\[(\rightarrow 4)\alpha-L\text{-IdoA}-(1\rightarrow 4)\alpha-L\text{-Rha3S}-(1\rightarrow)\]

\[\begin{align*} &-2 \text{ IdoA} \quad \text{-1 Rha3S} \\
&\quad \quad +1 \text{ IdoA} \quad +2 \text{ Rha3S} \\
\end{align*}\]
Figure 2
Structure–function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism
ThirumalaiSelvi Ulaganathan, William Helbert, Moran Kopel, Ehud Banin and Miroslaw Cygler

J. Biol. Chem. published online January 30, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001642

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts