An extension of a cubic 2-connected plane graph G to a hamiltonian plane graph contained in G^2

Jan Florek

Faculty of Pure and Applied Mathematics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50–370 Wrocław, Poland

Abstract

Let G be a simple cubic 2-connected plane graph. For every 2-factor X of G having n-components there exists a simple hamiltonian plane graph $J \subset G^2$ such that $|E(J)| = |E(G)| + 2n - 2$ and $\Delta(J) \leq 5$.

1. Introduction

We use [1] as a reference for undefined terms. Let F be a simple connected graph. $V(F)$ is the vertex set and $E(F)$ is the edge set of F. A spanning subgraph of F is a subgraph whose vertex set is the entire vertex set of F. A spanning cycle (path) is called Hamilton cycle (Hamilton path) and a spanning k-regular subgraph is called k-factor. A graph is hamiltonian if it admits a Hamilton cycle. A graph is hamiltonian-connected if for every pair u, v of distinct vertices of F, there exists a Hamilton $u - v$ path.

Given a positive integer k, we denote by F^k the graph on $V(F)$ in which two vertices are adjacent if and only if they have distance at most k in F. The graph F^2 and F^3 are also referred to as the square and cube, respectively, of F. Karaganis [4] and Sekanina [7] proved that the cube of a connected graph is hamiltonian-connected, and Fleischner [3] discovered that the square of a 2-connected graph is hamiltonian (see also Rihá [6]). The strengthened result (employing Fleischner’s work) that the square of such a graph is hamiltonian-connected was proved by Chartrand, Kappor, and Nash-Williams [2].
Let G be the family of all simple cubic 2-connected plane graphs. We prove the following theorem.

Theorem 1.1. Let $G \in \mathcal{G}$. For every 2-factor X of G having n-components there exists a simple plane graph J, $G \subseteq J \subset G^2$, having a Hamilton cycle omitting all edges of $E(G) \setminus E(X)$, $|E(J)| = |E(G)| + 2n - 2$ and $\Delta(J) \leq 5$.

Notice that Petersen [5] proved that every simple bridgeless cubic graph has a 1-factor (see Distel [1] Corollary 2.2.2). It follows that that each graph of G has a 2-factor.

2. Main result

Let $G \in \mathcal{G}$. Each face $f \in F(G)$ is bounded by a cycle $\partial(f)$ called a facial cycle of this face. A cyclic sequence $f_1f_2\ldots f_kf_1$ (a sequence $f_1f_2\ldots f_k$) of different faces in G is called a cyclic sequence of faces (a sequence of faces from f_1 to f_k, respectively) if any two successive faces f_i, f_{i+1} are adjacent. We say that an edge belongs to a cyclic sequence of faces (to a sequence of faces) if it is a common edge of two successive faces of this sequence. Then, we also say that this cyclic sequence of faces (sequence of faces) contains this edge. Notice that $B \subseteq E(G)$ is a bond of G if and only if it is the set of all edges belonging to a some cyclic sequence of faces.

Proof of Theorem 1.1 Let X be a 2-factor of G which has n components. Without loss of generality we can assume that $n > 1$. We will define a face 2-colouring $a : F(G) \to \{\alpha, \beta\}$. Fix a face f of $F(G)$. For every $g \in F(G)$, $g \neq f$, there exists a sequence of faces from f to g containing only edges of $E(X)$, because G is cubic and X is a 2-factor of G. We set $a(f) = \alpha$ and we colour faces of this sequence with α and β alternately. The colouring of g is independent on the choice of the sequence of faces. Indeed, if D is a cyclic sequence of faces and $B \subseteq E(X)$ is the set of all edges belonging to D, then $|B|$ is even, because X is a 2-factor of G. It follows that

1. any two adjacent faces in G are incident with the same edge belonging to $E(G) \setminus E(X)$ if and only if they are coloured identically by a.

Further, every facial cycle of G has an orientation assigned by a. Namely, we can assume that a facial cycle of an inner (the outer) face has the clockwise-orientation (counter clockwise-orientation, respectively) if and only if this face is coloured α.

2
We can enumerate, by induction, all components of X as C_1, C_2, \ldots, C_n in such a way that there exists an edge $b_i \in E(G) \setminus E(X)$ connecting a subgraph $C_1 \cup \ldots \cup C_i$ with C_{i+1}, for every $1 \leq i < n$. Certainly any two edges of $M = \{b_1, \ldots, b_n\}$ are different and non-adjacent, because G is cubic and X is a 2-factor. Since each $b_i \in M$ is connecting two different components of X, we obtain:

(2) each facial 3-cycle of G does not contain any edge of M,
(3) each facial 4-cycle of G contains at most one edge of M.

Suppose that K is the family of all faces in G each of which is incident with an edge of M. Let f be any face of K and suppose that $\partial(f) = c_1c_2\ldots c_nc_1$ is the facial cycle of f with the orientation assigned by a. Let $c_i, c_{i+1}, c_{i+2}, c_{i+3}$ (where p depends on the face f) be all successive edges of $\partial(f)$ belonging to M. By condition (2), vertices c_i and c_{i+2} are not adjacent in G, for every $j = 1, \ldots, p$. Since edges of M are not adjacent, we can draw new edges

$$e_1(f) = c_{i_1}c_{i_1+2}, e_2(f) = c_{i_2}c_{i_2+2}, \ldots, e_p(f) = c_{i_p}c_{i_p+2}$$

in such a way that they are not crossing and their interiors are contained in f. By adding to G all edges of $\bigcup_{f \in K}\{e_1(f), \ldots, e_p(f)\}$ we obtain a plane graph J such that $G \subseteq J \subset G^2$ and $|E(J)| = |E(G)| + 2n - 2$. Since G is simple, by conditions (2) -- (3), J is simple too.

Let $e = ab$ be any edge of M and suppose that e is incident with faces $f_1, f_2 \in F(G)$. Since $e \in E(G) \setminus E(X)$, by condition (1), faces f_1 and f_2 are coloured the same by a. Assume that a, b, c and b, a, d are successive vertices of $\partial(f_1)$ and $\partial(f_2)$, respectively. If faces f_1, f_2 are coloured α (or β), then a 4-cycle $D_e = abca$ is called a diamond of type α (diamond of type β, respectively). Let $D^1_{e_1}$ (or $D^2_{e_2}$) denote a set of two edges of D_e belonging to $E(G)$ (to $E(J) \setminus E(G)$, respectively). Then, $D^1_{e_1} = \{ad, bc\}$ and $D^2_{e_1} = \{db, ca\}$ (see Fig 1 and Fig 2). Since edges of M are not adjacent, from condition (3) it follows that

(4) any two different diamonds have no common edge.

Since G is cubic each vertex of G belongs to at most two diamonds. Hence, $\Delta(J) \leq 5$.

Define, by induction, a subgraph of J: $H_1 = C_1$ and

$$H_{i+1} = (C_1 \cup \ldots \cup C_{i+1} - (D^1_{e_1} \cup \ldots \cup D^1_{e_1})) + (D^2_{e_1} \cup \ldots \cup D^2_{e_1}),$$

for $1 \leq i < n$.

3
Figure 1: A subgraph of G (without edges bd, ac, cf, eg) and a subgraph of a 2-factor X of G (in bold). Diamonds $D(ab) = adbca$ and $D(ce) = egefc$ are of type α.

Figure 2: A subgraph of G (without edges bd, ac, cg, ef) and a subgraph of a 2-factor X of G (in bold). Diamonds $D(ab) = adbca$ is of type α and $D(ce) = egefc$ is of type β.
Notice that H_i is omitting all edges of $E(G) \setminus E(X)$, because C_j is contained in X, for $1 \leq j \leq n$, and $D_{b_j}^2$ is contained in $E(J) \setminus E(G)$, for $1 \leq j < n$. Further, H_i is disjoint with C_{i+1} because C_{i+1} is disjoint with C_j, for $j < i$.

Assume that H_i is a cycle of J. We prove that H_{i+1} is also a cycle of J. Since b_i is an edge connecting $C_1 \cup \ldots \cup C_i$ with C_{i+1}, by condition (4), any edge of $D_{b_i}^1$ is not an edge of $D_{b_j}^1$, for $j < i$. Hence, one edge of $D_{b_i}^1$ is an edge of H_{i+1} and another one is an edge of C_{i+1}. Further, by condition (4), any edge of $D_{b_i}^2$ is not an edge of $D_{b_j}^2$, for $j < i$. Hence, any edge of $D_{b_i}^2$ is not an edge of $H_i \cup C_{i+1}$. Therefore, H_{i+1} is a cycle of J. Thus, H_n is a Hamilton cycle of J, because $V(H_n) = V(C_1) \cup \ldots \cup V(C_n) = V(G) = V(J)$. ■

References

[1] R. Diestel, Graph Theory, Springer-Verlag, (2005).

[2] G. Chartrand, A. Kappor and C.St.J.A. Nash-Williams, The square of a block is hamiltonian-connected. J. Combin. Theory 16B (1974) 290-2.

[3] H. Fleischner, The square of every two-connected graph is hamiltonian. J. Combin. Theory 16B (1974) 399-404.

[4] J.J. Karaganis, On the cube of a graph. Canad. Math. Bull. 11 (1968) 295-6.

[5] J. Petersen, Die Theorie der regulären Graphen. Acta Math. 15 (1891) 193–220.

[6] S. Říha, A new proof of the theorem by Fleischner, J. Combin. Theory 52B (1991) 117-123.

[7] M. Sekanina, On an ordering of the set of vertices of a connected graph. Publ. Fac. Sci. Univ. Brno, 412 (1960) 137–42.