X-RAY TRANSIENTS MONITORED BY THE ALL-SKY MONITOR ON RXTE: A TABULATION

Hale Bradt, Alan Levine, Ronald Remillard, and Donald A. Smith

CSR and Physics Dept., MIT

ABSTRACT We present a tabulation of 46 transient x-ray sources monitored with the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE). They fall into four broad categories: short (∼1 d), intermediate, and long (> 500 d) duration of outbursts, and long period binary systems that flare up at periastron (e.g., Be systems). The mixture of outburst/quiescent cycles and low-level persistent emission in a few systems could indicate conditions are near the limit for stable mass flow in the accretion disk. The two short-time-scale systems, CI Cam and V4641 Sgr, are within 1 kpc of the sun, and hence many more such systems may await discovery.

KEYWORDS: X-rays: stars

1. ASM SKY SURVEY

The All-Sky Monitor (ASM; Levine et al. 1996) on RXTE has been monitoring the entire sky for new (uncataloged) transient x-ray sources while also recording the intensities of the known sources. The current catalog contains about 325 source positions of which about 180 have yielded positive detections on some occasion. The monitoring has been reasonably continuous except for times when the sun is relatively close to a source and except for a period of ∼7 weeks shortly after launch when the detectors were turned off due to a temporary breakdown problem. The detected sources include many well known persistent sources as well as a substantial number of transient sources. Some of these are recurrent and others are in their first known outburst. Most of the latter were discovered in the RXTE era, either with other satellites, e.g. CGRO and BSAX, or with RXTE. Some were discovered prior to the launch of RXTE.

Of the 180 positive detections, approximately 150 reached 15 mCrab on at least some occasion and 30 are detected at levels 2 to 15 mCrab in averages over long periods, up to 6 months. For sources with known positions, the detection threshold (3 sigma) away from the galactic center is about 30 mCrab in a single sweep of the ASM cameras across the source. A sweep usually consists of four 90-s integrations or “snapshots” as the cameras step across the source. The one-day threshold (typically 5 – 8 sweeps) can reach down to ∼ 10 mCrab.

The data are routinely searched for new (i.e., not in the ASM catalog) sources with a cross-correlation search of the entire FOV. Confidence in the detection of
a new persistent source arises through multiple detections that yield crossed lines of position. In one day, a 50-mCrab source is solidly established. Fainter sources to about 7 mCrab can be retrieved from cross-correlation maps that integrate one week of data. These thresholds apply to positions reasonably removed from bright sources.

The list of detections include about 50 sources we call “transients”. Another 23 objects are extragalactic (14 Sy1 and QSOs, 4 BL Lacs, and 5 clusters). About 40 objects exhibit periodicities in the ASM data from the spin period of X Per (837 s) to the 164-d precession period of SS 433.

2. TRANSIENT DETECTIONS

We have collected a list of the 46 brighter transients monitored with the ASM (Table 1). We further tabulate comments about the sources in Table 2. The criterion for inclusion on this list is that the source be known to have been below Uhuru/HEAO-1 thresholds (few mCrab) for sustained periods and that the source was found in a bright state of at least 25 mCrab, as measured by the ASM. The fainter objects omitted include, for example, some of those detected in the galactic plane scans with the sensitive PCA instrument on RXTE (Valinia, Kinzer, & Marshall 2000) or from observations with the Wide-Field Camera on BeppoSAX (Jager et al. 1997).

The tabulated sources are divided into several groups that depend on the temporal character of their variability:

1. two sources with very short outbursts (hours to a few days),
2. transients of intermediate durations which have are further divided into
 (a) the thirteen monitored with the ASM in the process of their first known
 outburst (which may have occurred before the launch of RXTE) and
 (b) nineteen that are known to be recurrent,
3. six sources with very long outbursts (> 500 d), and finally
4. six periodic systems that typically flare up when the compact object in an
 elliptical orbit approaches periastron.

The definition of a transient can be rather elusive. For example, the existence of long-duration transients (Table 1C) suggests that there may be no clear boundary between transients and persistent sources. Conversely, the close binary sources X 2129+47 and X 1755–338, long considered to be persistent sources, have disappeared both optically and in X rays (see, e.g., refs in van Paradijs 1995). Neither of these sources have been detected with the ASM to levels of a few mCrab since the Dec. 1995 launch.

3. THE TABULATION

The tabulation describes each transient in terms of the outburst profile shape, the peak flux, the hardness ratio, the first date of outburst, the rise and decay times
and finally the duration. The light curves exhibit much more richness than these few parameters indicate. Sample X-ray light curves for six neutron-star systems are shown in Fig. 1 and for six black hole systems in Fig. 2. Plots on expanded time-scales reveal even more detailed structure than is evident in these figures.

3.1. Description of data in Table 1

Column 1: Source name. Sources are listed in RA order within each category. Satellite prefixes are given for objects discovered in the past two decades, but longer-known objects are designated with the prefix “X”.

Column 2: Type indicates black hole candidate or neutron star system.

Column 3: Outburst profiles are categorized as fast-rise-slow-decay (frsd), symmetric, or irregular.

Column 4: The peak count rate is given in mCrab. Note that 1 Crab is 75 ASM cts/s at 1.5–12 keV.

Column 5: The hardness ratio HR2 is the ratio of counting rate in the 5–12 keV band to that in the 3–5 keV band.

Column 6: The start date (MJD) is the date of the first positive detection at the onset of an outburst, or the onset of the first outburst in Table 1D. “pre-XTE” indicates the source was first detected above threshold when RXTE observations began after launch. MJD conversions are:

- 1996 Jan. 0.0 = MJD 50082.0
- 1997 Jan. 0.0 = MJD 50448.0
- 1998 Jan. 0.0 = MJD 50813.0
- 1999 Jan. 0.0 = MJD 51178.0
- 2000 Jan. 0.0 = MJD 51543.0

Columns 7, 8, 9: The rise and decay times and the durations are approximately the total time for the full rise, the exponential time constant for the decay, and the total duration above threshold, respectively. Some outbursts are still in progress (IP) at this date (2000 Feb. 28).

3.2. Description of Table 2

The notes give descriptive features of the light curves and hardness ratios that complement the tabulated values and also reference recent cogent results. They are not meant to be complete; refereed publications are favored as are later works as they ease entry into the literature. Results from before the RXTE era may be found in the reviews by van Paradijs (1995) and Bradt & McClintock (1983). References to earlier catalogs may also be found in these works. The references to the table are coded based on the author and source names.

4. HIGHLIGHTS OF THE TABULATION

The nature of a given source is well correlated with the ASM hardness ratio, HR2 as follows: neutron-star low-mass binaries have HR2 = 1.0–1.5, pulsars (neutron-
star high-mass binaries) have HR2 = 2–4, and black-hole candidates exhibit large temporal variations of HR2 from extremely soft to higher values (0.3–1.5).

The outburst profiles exhibit several types of wave forms as indicated in the table. Similarities exist from source to source and from outburst to outburst in one source. However, there are substantial differences also. In general, the profiles should shed light on the disk accretion instabilities that give rise to the episodes of high accretion luminosity.

One notable effect is the presence of long (∼1 year) marginally-on states after a major outburst, e.g. in 1630–47 and 1608–522, and “failed” outbursts in Aql X–1. These states may indicate that the conditions for outburst are marginal. In fact, Aql X–1 lies on the on the thermal-viscous disk-instability boundary (van Paradijs 1996).

The range of detected outburst durations is extremely wide as noted above. The listed intermediate outbursts range from about ∼10 to ∼200 days. The two fast x-ray novae (CI Cam and V4641 Sgr) were only recently discovered. These two objects are both quite close to the sun, at distances inferred from 21 cm absorption profiles of 1.0 and 0.5 kpc respectively. It is thus possible that infrequent such outbursts from other sources could have been missed because of the intermittency of coverage or limited solid angles of past and present x-ray monitoring missions. The long-duration transients are by definition “quasi-persistent”. These too may help reveal the factors that lead to instability.

5. FUTURE WORK

The ASM instrument continues to operate with most of its initial capability, so another 1–3 years or more of useful data are expected. The archival ASM data have recently been reprocessed with improved a posteriori calibrations, increased temporal coverage, and improved analysis algorithms. With these we may retrieve additional transients. The final data base should be useful for the determination of rates of transients, the nature of accretion processes, and possibly may reveal new distinctions between neutron stars and black holes.

ACKNOWLEDGEMENTS

We are grateful to the RXTE teams at MIT, GSFC, and UCSD.

REFERENCES

Bradt, H. & McClintock, J. 1983, ARA&A 21, 63
Jager, R., et al. 1997, A&AS, 125, 557
Levine, A., Bradt, H., Cui, W., Jernigan, J. G., Morgan, E., Remillard, R., Shirey, R., & Smith, D. A. 1996, ApJL, 469, L33
Valinia, A., Kinzer, R., & Marshall, F. E. 2000, ApJ 534, in press.; also ApJ, 505, 13
van Paradijs, J. 1995, in X-ray Binaries, eds. W. H. G. Lewin, J. van Paradijs & E. P. J van den Heuvel (Cambridge: Cambridge Univ. Press), 536
van Paradijs, J. 1996, ApJL, 464, L1
Table 1. RXTE ASM: Transients above 25 mCrab

Source Name	Type	Profile	Peak mCrab	ASM HR2	Start Date	Rise Days	Decay Days	Duration Days
A. Fast X-ray Novae: Decay $\tau < 1$ day								
XTE J0421+560	bhc?	frsd	1885	0.8–2.2	50903	0.3	0.5	7.7
SAX J1819.3-2525	bhc	irr	12200	0.8–2.1	51436	0.2	0.01	0.6
B. Intermediate-Duration X-ray Transients (Nonperiodic)								
Recent Initial Outbursts								
XTE J0111-733	ns	irr?	50	3.2	51119	–	–	53
XTE J1550-564	bhc	frsd	6800	0.3–1.6	51062	4.2	11	246
XTE J1723-376	ns	irr?	100	1.5	51108	–	–	182
GRS 1737–310	bhc?	frsd?	26	1.8	50497	–	–	46
GRS 1739–278	bhc	frsd	805	0.6	pre XTE	12	9	>400
XTE J1739–285	??	frsd?	193	1.4	51471	6	22	~50
XTE J1748–288	bhc	frsd	485	1.4	50966	1.4	15	63
SAX J1750.8-2900	ns	frsd	117	1.3	50515	<1	9	28
XTE J1755–324	bhc	frsd	188	0.3	50653	3	30	104
XTE J1855+034	ns	sym	26	3.2	50842	–	–	28
XTE J1859+226	bhc	frsd	1045	0.4–1.4	51460	10	29	IP
XTE J2012+381	bhc	frsd	209	0.3	50956	3.5	32	182
XTE J2123–058	ns	frsd	84	1.2	50987	<1	31	52
Known Recurrent Transients								
EXO 0748–676	ns	frsd	>50	0.9	pre XTE	–	40	–
X 1246–588	ns?	sym?	35	1.0	51271	–	–	IP
X 1354–644	bhc	sym	52	1.3	50744	70	40	>85
X 1608–522	ns	frsd	??	1.1	pre XTE	–	15	–
X 1630–472	bhc	irr	336	1.1	50153	17	16	150
X 1658–298	bhc	irr	3138	0.6	50198	15	140	484
GRO J1655–40	bh	irr	3138	0.6	50198	15	140	484

Continued Next Page.
Table 1. (continued) RXTE ASM: Transients above 25 mCrab

Source Name	type	profile	peak mCrab	ASM HR2	start date	Rise days	Decay days	Duration days
X 1704+241	ns?	sym	33	1.3	50707	110	35	160
RX J1709.5–266	ns	frsd	210	0.9	50448	<50	50	86
X 1711–339	ns?	sym	50	1.2	51016	10	20	280
X 1730–333	ns	frsd	377	1.5				
GRO J1744–28	ns	frsd	1291	2.5	pre XTE	–	65	>120
X 1803-245	ns?	frsd	740	1.2	50904	20	25	75
SAX J1808.4–3658	ns	frsd	108	0.9	50333	8	8	19
GS 1843+009	ns	frsd	79	1.1	50911	4	12	21
XTE J1856+053	bhc	sym	75	0.4	50189	20	10	27
X 1908+005	ns	sym	515	1.0				
KS 1731–260	ns	frsd	356	1.1	pre XTE	–	–	>1500
X J1946+274	mult		80	2.6	51055	–	–	85
EXO 2030+375	ns	mult	25	1.6		–	–	20

D. Periodic, Hard Transients

Source Name	type	profile	peak mCrab	ASM HR2	start date	Rise days	Decay days	Duration days
X 0115+634	ns	sym	400	3.2		–	–	23
RX J0812.4–3114	ns	sym	25	2.0	50926	–	–	20
X 1145–619	ns	sym	93	1.9	50166	–	–	30
X 1845–024	ns	sym	25	2.5	50345	–	–	30
X J1946+274	mult		80	2.6	51055	–	–	85
EXO 2030+375	ns	mult	25	1.6		–	–	20
Table 2. Notes and References for ASM Transients

A. Fast X-ray Novae: Decay $\tau < 1$ day

Object	Notes/References
XTE J0421+560	(CI Cam, radio jets)
X-ray outburst (Smi99)	Radio jets (Hje99)
Rapid rise (few hours) and decay time scale 0.5 d to 2.3 d (Bel99)	Optical outburst: (Wag99, Bar98)
X-ray properties, unusual spectrum (Ued98, Frc98, Orr98, Rev99)	IR spectrum, dense circumstellar wind (Cla99)
Distance 1.0 kpc (Orl00)	

Object	Notes/References
SAX J1819.3–2525	(V4641 Sgr, radio jets)
Discovery: Feb 99, (Int99), Sept. 99	Radio jets (Hje99)
(Smi99)	Distance 0.5 kpc (Hje99)
Five brief X-ray outbursts in 6 days in Sept. 99 (Smi99, Wij99, McC99)	Opt counterpart (Gar99, Gre99)
Rapid 1-s variability (Wij99)	Optical outburst (Stu99, Gar99)

B. Intermediate-Duration Transients (Nonperiodic)

Recent Initial Outbursts

Object	Notes/References
XTE J0111–733	(31-s pulsar in SMC)
Pulsations (Cha98)	Optical counterpart (Int99)
Hard X-ray profile and spin-up (Wil98)	

Object	Notes/References
XTE J1550–564	(bright bhc transient)
Acquired early in its rise (Smi98)	Optical counterpart K star at 2.5 kpc (Jai99, San99)
Reached 6.8 Crab brightness in brief flare (Rut98)	Hard lags in X-ray QPO and broad band var. (Cui99)
Detected to 200 keV with BATSE (Wil98)	
Evolution of spectra (Sob99)	Likely radio counterpart (Cam98)
QPO 0.05 — 285 Hz (Cui99, Rem99, Hom99)	

Object	Notes/References
XTE J1723–376	
X-ray outburst w. 816 Hz osc. (Mar99a)	X-ray position and Type I bursts (Mar99b)

Object	Notes/References
GRS 1737–310	
Weak X-ray outburst: (Tru99, Mar97)	BSAX intensity and position (Hei97)
Similarity to Cyg X–1 spectrum (Cui97)	Spectrum and distance of 8500 pc (Ued97)

Object	Notes/References
GRS 1739–278	(radio emitter)
Multiple X-ray sub-peaks (Asm00)	Candidate optical/IR object at radio position (Mar97)
X-ray outburst; black-hole candidate (Var97)	X-ray spectra variations (Bor98)
Radio emission (Hje96)	5-Hz QPO (Bor98)

Object	Notes/References
XTE J1739–285	
X-ray outburst (Mar99)	

Object	Notes/References
XTE J1748–288	(radio jets, shock in ISM)
Single outburst w. 2-d rise (Smi98)	Spectral and QPO evolution (Rev99)
Detected to 100 keV (Har98)	Transient radio with jet that shocked in ISM (Hje98, Fan98)
QPO at 0.5 and 32 Hz (Fox98)	

Object	Notes/References
SAX J1750.8–29	Bursting transient (Nat99)
Table 2. (continued) Notes and References for ASM Transients

XTE J1755–324 (extremely soft spectrum)	XTE J1858+034 (221-s pulsar)	XTE J1859+226 (radio source)
Steep soft spectrum with hard component, Temporal/spectral evol. similar to Nova	X-ray outburst, hard spectrum Oscillations from 0.5 Hz to 5.5 Hz	X-ray outburst, hard spectrum (Rem98) Optical counterpart R = 15.1 (Gar99)
(Rem97)	(Tak98)	(Mar99, Dal99)
Hard X-ray flux (Gol99)	QPO at 0.11 Hz (Pau98)	Celestial position (Mar98)
XTE J1859+226 (radio source)	X-ray outburst (Rem98)	X-ray outburst (Rem98)
Temporal/spectral evol. similar to Nova	X-ray outburst (Rem98)	Hard initial spike and later becomes very soft, bhc (Asm00)
(Rem97)	(Tak98)	(Whi98)
QPO at 0.11 Hz (Pau98)	Optical counterpart (tentative) V = 21.3 (Hyn99)	Optical counterpart (tentative) V = 21.3 (Hyn99)
X-ray outburst (Rem98)	XTE J2012+381 (radio source)	Optical outbursts (Gne99)
X-ray outburst (Rem98)	X-ray outburst (Rem98)	Optical outbursts (Gne99)
Temporal/spectral evol. similar to Nova	X-ray outburst (Rem98)	Optical outbursts (Gne99)
(Rem97)	(Tak98)	(Whi98)
QPO at 0.11 Hz (Pau98)	Optical counterpart (tentative) V = 21.3 (Hyn99)	Optical counterpart (tentative) V = 21.3 (Hyn99)
XTE J2123–058 (high-lat. LMXB)	XTE J2123–058 (high-lat. LMXB)	XTE J2123–058 (high-lat. LMXB)
High galactic latitude –36.2 (Lev98)	High galactic latitude –36.2 (Lev98)	High galactic latitude –36.2 (Lev98)
Atoll LMXB, bursts, twin kHz (Hom99, Tom99)	Atoll LMXB, bursts, twin kHz (Hom99, Tom99)	Atoll LMXB, bursts, twin kHz (Hom99, Tom99)
Optical counterpart w. 6-h orbit (Tom99, Sor99)	Optical counterpart w. 6-h orbit (Tom99, Sor99)	Optical counterpart w. 6-h orbit (Tom99, Sor99)
Known Recurrent Transients	Known Recurrent Transients	Known Recurrent Transients
EXO 0748–676 (eclipsing LMXB)	EXO 0748–676 (eclipsing LMXB)	EXO 0748–676 (eclipsing LMXB)
Soft x-ray excess (Bri97)	Soft x-ray excess (Bri97)	Soft x-ray excess (Bri97)
Eclipse Timings (Her97)	Eclipse Timings (Her97)	Eclipse Timings (Her97)
Progressive covering of disk corona (Chu98)	Progressive covering of disk corona (Chu98)	Progressive covering of disk corona (Chu98)
X 1246–588	X 1354–644 (LMXB, BW Cir)	X 1354–644 (LMXB, BW Cir)
Probable X-ray Burster (Pir97)	Modest outburst (Rem97)	Modest outburst (Rem97)
Probable ROSAT source 1RXS J124938.0–590525 (Bol97)	Detected to 200 keV (Har97)	Detected to 200 keV (Har97)
Quiescent luminosity (Asa96) possibly thermal (Rut99)	KHz QPO peak separation not constant (Men99b)	KHz QPO peak separation not constant (Men99b)
X 1608–522 (bright recurrent LMXB)	X 1608–522 (bright recurrent LMXB)	X 1608–522 (bright recurrent LMXB)
Sustained one-year low states after each outburst (Asm00)	KHz QPO freq. dependence on position in color diagram (Men99a)	KHz QPO freq. dependence on position in color diagram (Men99a)
KH3 QPO (Men98)	Quiescent luminosity (Asa96) possibly thermal (Rut99)	Quiescent luminosity (Asa96) possibly thermal (Rut99)
Island state kHz QPO (Yu97)	Outburst with hard spectrum (Zha96)	Outburst with hard spectrum (Zha96)
Table 2. (continued) Notes and References for ASM Transients

Source	Notes and References
X 1630–472 (bright recurrent bhc, 184 Hz, radio source)	Three outbursts w. intervals of 700 d and 450 d (Asm00) Double-peaked and flat-topped profiles (Asm00) Sustained (1 year) low state after 2nd outburst (Asm00) Historical outbursts behavior (Kuu97) Absorption dips (Kuu98) Evolution of spectral components (Oos98) QPOs 0.06 – 14 Hz (Die90) QPO 184 Hz (Rem99) Radio and Hard X-rays (Hje99)
GRO J1655–40 (rel. radio jets; 300 Hz QPO)	Black hole, radio jets, “microquasar” (Tin95) Mass 6 – 7 M_\odot (Oro97a, Sha99) Optical turn-on precedes X-ray by 5 d (Oro97b) Low freq. QPOs; 300 Hz when source hard (Rem99) Spectral evolution (Men98, Tom99, Sch99) Echo mapping (X-ray to optical) (Hyn98)
X 1658–298 (X-ray burster)	Recovery by BSAX and X-ray burst (Hei99)
X 1704+241 (HD 154791)	Peculiarities in M Giant spectrum (Gau99)
RX J17095–26	Hard X-ray outburst (Mar97) Possible radio counterpart (Hje97) X-ray bursts (Coc98)
X 1711–339	Recovered Ariel-5 and SAS-3 source (Rem98)
X 1730–333 (Rapid Burster)	Seven outbursts w. intervals 210 d (Asm90) Outbursts last 5 weeks w. two phases: Type I thermonuclear bursts followed by Type II accretion bursts (Gue99)
GRO J1744–28 (bursting pulsar)	Hard X-ray pulsations 0.47 s (Fin96) Pulsar phase changes associated with bursts (Kos98 and refs therein) QPOs (Zha96, Kom97) Super-Eddington fluxes imply beaming (Gil96) Propeller effect (Cui97) HEXE/Mir-Kvant observations (Bor97) Hard X-ray bursts with Konus and Mir-Kvant (Apt98, Ale98) X-ray properties from BATSE and ASCA (Woo99, Nis99)
X 1803–245 (XTE J1806–246)	X-ray outburst (Mar98) QPOs (Rev99, Wij99) Possible burst source (Mul98)
SAX J1808.4–36 (401-Hz accreting pulsar)	X-ray outburst (Int98) 401-Hz pulsations and 2-h orbit (Wij98a, Cha98) Soft phase lags (Cui98, Vau98) Renewed activity Feb. 00 (vdK00, Wac00) Broad-band power spectrum (Wij98b) Optical counterpart (Roc98) Transient radio emission (Gae99) X-ray spectrum (Gil98, Hei98)
Table 2. (continued) Notes and References for ASM Transients

ASM Transients	Notes and References	
GS 1843+009 (30-s pulsar)	100-d flare followed by weak activity (Asm00) X-ray recovery, 30-s pulse period, and spectrum (Wil97, Tak97)	
XTE J1856-053 (bhc)	X-ray outburst (Mar96) Hard X-ray flux (Bar96) Soft spectrum (Asm00)	
X 1908+005 (Aql X–1; bright recurrent transient)	Five strong and two failed outbursts (Asm00) Low-energy phase lags (For99) Optical counterpart clarified: V = 21.6, late K (Che99) Propeller effect (Cam98) KHz oscillations change freq after burst (Yu99)	
GS 2138+568 (Cep X–4(?), 66-s pulsar)	Be star optical counterpart: (Bon98) X-ray pulse profile changes (Muk00) Spindown rate (Wil99)	
SAX J2103.5+4545 (359-s pulsar)	Faint transient, 359-s pulsar (Hul98) Second outburst (Bay00)	
C. Long Duration Transients (Duration > 500 d)	**X 1210–64 (quasi-persistent)**	On until 50763 (Asm00) Uhuru and OSO–7 source
KS J1716–389 (100-d dipper)	Galactic center source (Ale95) Quasi persistent source with periodic dips (Rem99) On until MJD 50763 (Asm00) Periodicity ~ 100 d (Wen99)	
KS 1731–260 (524 Hz during bursts)	KHz QPO at 524 Hz during burst (Smi97) Two KHz QPO at 898 and 1159 Hz (Wij97) ROSAT observations, celestial position, persistent source? (Bar98)	
GRS 1758–258 (bright hard galactic center source)	Radio jets, x-ray spectral var. and similarity to 1E 1740.7–2942 (Smi97) ASCA spectrum, soft excess (Mer97) Optical candidates (Mar98) Long-term monitoring (Mai99, Kuz99)	
GS 1826–238 (burster)	Bursts at reg. intervals (Ube97) Spectrum and distance from bursts (Int99) Possibly steady accretor since 1988 (Ube97, Int99)	
GRS 1915+105 (microquasar)	Superluminal jets (Mir94, Fen99) Ten distinct accretion states, some oscillatory (Gre97, Mun99) Variable low freq. QPOs and persistent 67 Hz when spectrum hard (Mor97) Coincident X-ray, IR and radio outbursts (Poo97, Elk98, Mir98) Disk emptying episodes (Bel97, Poo97, Fer99) Hard phase lags for 67 Hz QPO (Cui99) Interplay between QPOs and spectral components (Mun99, Mar99, For99)	
Table 2. (continued) Notes and References for ASM Transients

D. Periodic, Hard Transients

X 0115+634 (P = 24-d, 3.61 s)	24-d orbital period (Asm00)
~ 8 maxima detected through 2/00 (Asm00)	Four cyclotron lines, (Hei99, San99)
Major outburst Feb. 99 (Asm00)	Optical counterpart reclassified (Ung99)
Mini outbursts May – July 96 at multiples of	

RX J08124–3114 (P = 81.4 d, 32 s)	Orbital period 80 d (Cor00)
~ 7 maxima detected through 2/00 (Asm00)	X-ray pulsar 31.9 s (Rei99)
Optical counterpart is Be star LS992	
(Mot97)	

X 1145–619 (P = 189 d, 292 s)	Multiwavelength observations, 13-yr review
~ 4 maxima detected through 2/00 (Asm00)	(Ste97)
Outburst (Cor96)	

X 1845–024 (P = 242 d, 95 s)	BATSE outbursts w. 242-d period (Fin99)
(= GRO J1849–03 = GS1843–02)	GRO source identified as
~5 maxima detected through 2/00 (Asm00)	Ariel–5/SAS–3/Ginga source (Sof98, Fin99)

X J1946+274 (= 3A 1942+274; P = 80 d, 16-s)	Pulsar, P = 16 s, (Smi98)
~ 7 maxima detected through 2/00 (Asm00)	Orbital period 80 d, (Cam99)
First detections since 1976 (Asm00)	

EXO 2030+375 (P = 46 d, 42 s)	Thirteen outbursts at 46-d intervals, orbit from pulse phases (Sto99)
~30 maxima detected through 2/00 (Asm00)	Spectra at low luminosities (Rei99)
Pulse period dependence on luminosity (Rey96)	
Timing properties (Rei98a)	
Long-term variability and IR spectroscopy (Rei98b)	

References For Table 2

- Ale95, 1716: Aleksandrovich, N. L., Aref’ev, V. A., Borozdin, K. N., Sunyaev, R. A., & Skinner, G. K. 1998, Astron. Letters, 21, 431
- Ale98, 1744: Aleksandrovich, N. L., Borozdin, K. N., Aref’ev, V. A., Sunyaev, R. A., & Skinner, G. K. 1998, Astron. Letters, 24, 7
- Apt98, 1744: Aptekar’, R. L., et al. 1998, ApJ, 493, 404
- Bar96, 1246: Boller, T., Haberl, F., Voges, W., Piro, L., & Heise, J. 1997, ApJL, 488, L109
- Bar98, 0421: Barret, D., Motch, C., & Predehl, P. 1998, A&A, 329, 965
- Bar98, 0421: Barsukova, E.A., et al. 1998, Bull. Spec. Astrophys. Obs., 45, 14 (astro-ph/9905338)
- Bay97, 2103: Baykal, A., Stark, M., Swank, J. H 2000, IAUC 7355
- Bel97, 1915: Belloni, T., Mendez, M., King, A. R., van der Klis, M., & van Paradijs, J. 1997, ApJL, 488, L109
- Bel99, 0421: Belloni, T., et al. 1999, ApJ, 527, 345
- Bol97, 1246: Boehler, T., Haberl, F., Voges, W., Firo, L., & Heise, J. 1997, IAUC 6546
- Bon98, 2138: Bonnet-Bidaud, J. M., & Mouchet, M. 1998, A&A, 332, L9
Table 2. (continued) Notes and References for ASM Transients

Reference	Notes	Year	Journal
Bor97-1744	Borkus, V. V., et al. 1997, Astron. Letters, 23, 421		
Bor98-1739-278	Borozdin, K. N., Revnivtsev, M. G., Trudolyubov, S. P., Aleksandrovich, N. L., Sunyaev, R. A., & Skinner, G. K. 1998, Astron. Letters, 24, 435		
Bor98-1739-278	Borozdin, K. N. & Trudolyubov, S. P. 2000, ApJL (submitted), astro-ph/991291		
Bri97-0748	Brian, T, Corbet, R., Smale, A., Asai, K., & Dotani, T. 1997, ApJL, 480, L21		
Cam98-1550	Campbell-Wilson, D., et al. 1998, IAUC 7010		
Cam98-1908	Campana, S., et al. 1998, ApJL, 499, L65		
Cam99-1946	Campana, S. Israel, G., & Stella, L. 1999, A&A, 352, L91		
Cha98-0111	Chakrabarty, D., Levine, A. M., Clark, G. W., & Takeshima, T. 1998, IAUC 7048		
Cha98-1808	Chakrabarty, D., & Morgan, E. H. 1998, Nature 394, 346		
Cla99-0421	Clark, J. S., Steele, I. A., Fender, R. P., Coe, M. J. 1999, A&A, 348, 888		
Che99-1908	Chevalier, C., Ilovaisky, S. Leisy, P., & Patat, F. 1999, A&A, 347, L51		
Chu98-0748	Church, M. J., Balucinska-Church, M., Dotani, T., & Asai, K. 1998, ApJ, 504, 516		
Coc98-1709	Cocchi, M., et al., ApJL, 508, L163		
Cor98-1145-619	Corbet, R., & Remillard, R. 1996, IAUC 6486		
Cor00-9961	Corbet, R., & Peele, A. G. 2000, ApJL, 530, L33		
Cui97-1737	Cui, Wei., Heindl, W. A., Swank, J. H., Smith, D. M., Morgan, E. H., Remillard, R., & Marshall, F. E. 1997, ApJL, 487, L73		
Cui97-1744	Cui, W. 1997, ApJL, 482, L163		
Cui98-1808	Cui, W., Morgan, E. H., & Tiatarchuk, L. G. 1998, ApJL, 504, L27		
Cui99-1550	Cui, E., Zhang, S. N., Chen, W., & Morgan, E. H. 1999, ApJL, 512, L43		
Cui99-1915	Cui, W. 1999, ApJL, 524, L59		
Cui00-1550	Cui, W., Zhang, & S. N., Chen, W. 2000, ApJL, 531, L45		
Das99-1859+226	Dal Fiume, D., et al. 1999, IAUC 7291		
Die00-1630	Dieters et al. 2000, ApJ, in press (astro-ph 991202)		
Dow97-0421	Downes, R. 1984, PASP, 96, 80		
Elk98-1915	Eikhenberry, S.S., Matthews, K., Morgan, E. H., Remillard, R. A., & Nelson, R. W. 1998, ApJL, 494, L61		
Fen98-1748	Fender, R. P., & Stappers, B. W. 1998, IAUC 6937		
Fen99-1915	Fender, R. P., et al. 1999, MNRAS, 304, 865		
Fer99-1915	Feroci, M., Matt, G., Pooley, G., Costa, E., Tavani, M., & Belloni, T. 1999, A&A, 351, 985		
Fin96-1744	Finger, M. H., Koh, d. T., Nelson, R. W., Prince, T. A., Vaughan, B. A., & Wilson, R. B. 1996, Nature, 381, 291		
Fin99-1845	Finger, M. H., et al. 1999, ApJ, 517, 449		
Fox99-1859+226	Focke, W. B., Markwardt, C. B., Swank, J. H., & Taam, R. E. 1999, BAAS, 31, 1555		
For99-1908	Ford, E. C. 1999, ApJL, 519, L73		
Fox98-1748	Fox, D., & Lewin, W. 1998, IAUC 6964		
Fro98-0421	Frontera, F., et al. 1998 A&A, 339, L69		
Gae99-1808	Gaensler, B. M., Stappers, B. W., & Getts, T. J. 1999, ApJL, 522, L117		
Gar99-0748	Garcia, M. R., & Callanan, P. J. 1999, AJ, 118, 1390		
Gar99-1819	Garcia, M.R., & McClintock, J.E. 1999, IAUC 7271		
Gar99-1859+226	Garnavich, P, M., Stanek, K. Z., & Berlind, P. 1999, IAUC 7276		
Gau99-1704	Gaudenzi, S., & Polcarri, V. F. 1999, A&A, 347, 4		
Ge99-1755	Goldoni, P., et al. 1999, ApJ, 511, 847		
Ger99-1819	Goranskij 1990, IBVS 346		
Gil96-1744	Giles, A. B., Swank, J. H., Jahoda, K., Zhang, W., Strohmayer, T., Stark, M. J., & Morgan, E. H 1996, ApJL, 469, L25		
Gil98-1808	Gilfanov, M., Revnivtsev, M., Sunyaev, R., & Churazov, E. 1998, A&A, 338, L83		
Gne99-2123	Gneiding, C. D., Steiner, J. E., & Cieslinski, D. 1999, A&A, 352, 543		
Table 2. (continued) Notes and References for ASM Transients

Gre97_1915: Greiner, J., Morgan, E. H., & Remillard, R. A. 1997, ApJL, 473, L79
Gre99_1819: Green, D.W.E. 1999, IAUC 7277
Gue99_1730: Guerriero, R., et al. 1999, MNRAS, 307, 179
Har97_1354: Harmon, B. A., & Robinson, C. R. 1997, IAUC 6774
Har98_1819: Harmon, B. A., McCollough, M. L., Wilson, C. A., Zhang, S. N., & Paciesas, W. S. 1998, IAUC 6933
Hei97_1737: Heise, J. IAUC 6606
Hei98_1808: Heindl, W. A., & Smith, D. M. 1998, ApJL, 506, L35
Hei99_2123: Heindl, W. A., et al. 1999, ApJL, 521, L49
Hei99_1658: Heise, J., et al. 1999, IAUC 7263
Her97_0748: Hertz, P., Wood, K., & Cominsky, L. 1997, ApJ, 486, 1000
Hje96_1739–278: Hjellming, R. M., Rupen, M. P., Marti, J., Mirabel, F., & Rodriguez, L. F. IAUC 6383
Hje97_1709: Hjellming, R. M., & Rupen, M. P. 1997, IAUC 6547
Hje98_1748: Hjellming, R. M., et al. 1998, Paper in preparation; see Abstract #103.08, AAS Mtg #193
Hje98_2012: Hjellming, R. M., & Rupen, M. P. 1998, IAUC 6924; see also IAUC. 6932
Hje99_1819 In’t Zand, J. J. M., Heise, J., Kuulkers, E., Bazzano, A., Cocchi, M., Natalucci, L., & van Paradijs, J. 1999, ApJL, 517, L131
Kit90_1354: Kitamoto, S., & Mereghetti, S. 1999, IAUC 7101
Kos99_1758: Kuznetsov, S. I. et al. 1999, Astron. Letters, 25, 351
Lev98_2123 Levine, A., Swank, J., & Smith, D.A. 1998, IAUC 6955
Mar96_1856: Marshall, F. E., Ebisawa, K., Remillard, R., & Valinia, A. 1996, IAUC 6504
Mar97_1709 Marshall, F. E., Swank, J. H., Thomas, B., Angelini, L., & Ebisawa, K. 1997, IAUC 6543
Mar97_1737: Marshall, F. E., & Smith, D. M. 1997, IAUC 6603
Mart98_1465: Marti, J., Mirabel, I. F., Duc, P.-A, Rodriguez, L. F. 1999, ApJL, 513, L119
Mai99_1500: Main, D. S., Smith, D. M., Heindl, W. A., Swank, J., Leventhal, M., Mirabel, I. F., & Rodriguez, L. F. 1999, ApJL, 525, L91
Mar99_1550: Marin, J., Monnier, P. G., Wijnands, R., & van der Klis, M. 1999, ApJ, 514, 383
Hom99_0748: Homann, J., Jonker, P. G., Wijnands, R., & van der Klis, M., & van Paradijs, J. 1999, ApJL, 516, L91
Hom99_1550: Homann, J., Wijnands, R., & van der Klis 1999, IAUC 7121
Hom99_2123: Homann, J., Mendez, M., Wijnands, R., & van der Klis, M., & van Paradijs, J. 1999, ApJL, 513, L119
Hul98_2012: Hulleman, F., In’t Zand, J. J. M., & Heise, J. 1998, A&A, 331, L25
Kos99_1748: Koshut et al. 1998, ApJL, 496, L101
Kuu97_1630: Kuulkers, E., Parmar, A. N., Kitamoto, S., & Cominsky, L. R., & Sood, R. K. 1997, MNRAS, 291, 81
Kuu98_1630: Kuulkers, E., Wijnands, R., Beloni, T., Mendez, M., van der Klis, M., & van Paradijs, J. 1998, ApJ, 494, 733
Kuz99_1758: Kuznetsov, S. I. et al. 1999, Astron. Letters, 25, 351
Lev98_2123 Levine, A., Swank, J., & Smith, D.A. 1998, IAUC 6955
Mar99_1550: Main, D. S., Smith, D. M., Heindl, W. A., Swank, J., Leventhal, M., Mirabel, I. F., & Rodriguez, L. F. 1999, ApJL, 525, L91
Mar99_1856: Marshall, F. E., Ebisawa, K., Remillard, R., & Valinia, A. 1996, IAUC 6504
Mar97_1709 Marshall, F. E., Swank, J. H., Thomas, B., Angelini, L., Valinia, A., & Ebisawa, K. 1997, IAUC 6543
Mar99_1737: Marshall, F. E., & Smith, D. M. 1997, IAUC 6603
Nar98_1655: Nanes, R. I., O’Brien, K., Horne, K., Chen, W., & Haswell, C. A. 1998, MNRAS, 299, L37
Hyn99_1859: Hynes, R. I., Haswell, A. J., & Chaty, S. 1999, IAUC 7294
Hyn99_2012: Hynes, R. I., Roche, P., Charles, P. A., & Coe, M. J. 1999, MNRAS, 305, L49
Int98_1808: In’t Zand, J. J. M., Heise, J., Muller, J. M., Bazzano, A., Cocchi, M., Natalucci, L., Ubertini, P. 1998, A&A, 331, L25
Int99_1819 In’t Zand, J., et al. 1999, IAUC 7119
Int99_1826: In’t Zand, J. J. M., Heise, J., Kuulkers, E., Bazzano, A., Cocchi, M., Ubertini, P. 1999, A&A, 347, 891
Kos98_1819: Koshut et al. 1998, ApJL, 496, L101
Kuu97_1630: Kuulkers, E., Parmar, A. N., Kitamoto, S., Cominsky, L. R., & Sood, R. K. 1997, MNRAS, 291, 81
Kuu98_1630: Kuulkers, E., Wijnands, R., Beloni, T., Mendez, M., van der Klis, M., & van Paradijs, J. 1998, ApJ, 494, 733
Kuz99_1758: Kuznetsov, S. I. et al. 1999, Astron. Letters, 25, 351
Lev98_2123 Levine, A., Swank, J., & Smith, D.A. 1998, IAUC 6955
Mar99_1550: Main, D. S., Smith, D. M., Heindl, W. A., Swank, J., Leventhal, M., Mirabel, I. F., & Rodriguez, L. F. 1999, ApJL, 525, L91
Mar99_1856: Marshall, F. E., Ebisawa, K., Remillard, R., & Valinia, A. 1996, IAUC 6504
Mar97_1709 Marshall, F. E., Swank, J. H., Thomas, B., Angelini, L., Valinia, A., & Ebisawa, K. 1997, IAUC 6543
Mar97_1737: Marshall, F. E., & Smith, D. M. 1997, IAUC 6603
Mar99_1737: Marti, J., Mirabel, I. F., Duc, P.-A, Rodriguez, L. F. 1997 A&A, 323, 158
Table 2. (continued) Notes and References for ASM Transients

Mar98,1803: Marshall, F. E., Strohmayer, T., & Remillard, R. 1998, IAUC 6891
Mar98,1858: Marshall, F. E. & Chakrabarty, D., A&A, 337, 815
Mar98,1758: Marti, J., Mereghetti, S., Chaty, S., Mirabel, I. F., Goldoni, P., & Rodriguez, L. F. 1998, A&A, 338, L95
Mar99a,1723: Marshall, F. E., & Markwardt, C. B. 1999, IAU Circ., 7103
Mar99b,1723: Marshall, F.E., Ueda, Y. & Markwardt, C. B. 1999, IAUC 7133
Mar99,1739–285: Markwardt, C. B., Marshall, F. E., Swank, J. H., & Cui, W. 1999, IAUC 7300
Mar99,1859+226: Markwardt, C. B., Focke, W. B., Swank, J. H., & Taam, R. E. 1999, ApJL, 513, L37
McC99,1819: McCollough, M. L., Finger, M. H., & Woods, P. M. 1999, ApJ, 513, L37
Men98,1608: Mendez, M., et al. 1998, ApJ, 494, L65
Men99a,1608: Mendez, M., & van der Klis, M. 1999, ApJ, 511, L49
Men99b,1608: Mendez, M., van der Klis, M., & van den Heuvel, E. P. J. 1999, ApJL, 521, L147
Muk00,1859+226: Mukerjee, K., Agrawal, P. C., Paul, B., Rao, A. R., Seetha, S., Kasturirangan, K. 2000, A&A, 333, L9
Mul98,1803: Muller, J. M., et al. 1998, IAUC 6867
Mun99,1859+226: Muno, M., Morgan, R. A., & Remillard, R. 1999, ApJ, 527, 321
Nat99a,1755: Natalucci, L., Cornelisse, R., Bazzano, A., Cocchi, M., Ubertini, P., & Heise, J., In’t Zand, J. J. M., & Kuulkers, E. 1999, ApJL, 523, L45
Nis99,1744: Nishiumi, M., et al. 1999, ApJ, 517, 436
Oor99,2012: Oosterbroek et al. 1999, A&A, 340, 431
Oro97a,1655: Orosz, J. A., & Bailyn, C. D. 1997, ApJ, 477, 876
Oro97b,1655: Orosz, J. A., Remillard, R. A., Bailyn, C. D., & McClintock, J. E. 1997, ApJL, 478, L83
Orr98,2012: Orr, A., et al. 1998, A&A, 340, L190
Pau98,1858: Paul, B., & Rao, A. R. 1998, A&A, 337, 815
Poo97,1246: Piro, L., et al. 1997, IAUC 6538
Poo98,2012: Pooley, G. G. 1998, IAUC 6926
Poo99,2012: Pooley, G. G. 1998, IAUC 6926
Poo99,1859+226: Pooley, G. G., & Fender, R. P. 1997, MNRAS, 292, 925
Poo99,2012: Pooley, G. G. 1998, IAUC 6926
Rei98a,2030: Reig, P., & Coe, M. J. 1998, MNRAS, 294, 118
Rei98b,2030: Reig, P., Stevens, J. B., & Fabregat, J. 1998, MNRAS, 301, 42
Rei99,2030: Reig, P., & Roche, P. 1999, MNRAS, 306, 95
Rem97,1354: Remillard, R., Marshall, F., & Takeshima, T. 1997, IAUC 6772
Rem97,1755: Remillard, R., Levine, A., & Strohmayer, T. 1997, IAUC 6710
Rem98,1711: Remillard, R. 1998, ApJL, 527, 321
Rem98,1711: Remillard, R., Levine, A., & Strohmayer, T. 1997, IAUC 6710
Rem98,1858: Remillard, R., & Levine, A. 1998 IAUC 6826
Rem98,2012: Remillard, R., Levine, A., & Wood, A. 1998, IAUC 6920

Rem99	1550: Remillard, R. A., McClintock, J. E., Sobczak, G. J., Bailyn, C. D., Orosz, J. A., Morgan, E. H., & Levine, A. M. 1999, ApJL, 517, L127
Rem99	1630: Remillard, R., & Morgan, E. 1999, BAAS, 31, 1421
Rem99	1655: Remillard, R. A., Morgan, E. M., McClintock, J. E., Bailyn, C. D., & Orosz, J. A. 1999, ApJ, 522, 397
Rem99	1716: Remillard, R. A. 1999, Mem. Soc. Astron. Ital., 70, 881 (astro-ph 9805224)
Rev98	1755: Revnivtsev, M., Gilfanov M., & Churazov, E. 1998, A&A, 339, 483. See also Astron. Letters 25, 493 and ApJ, 511, 847
Rev99	0421: Revnivtsev, M. G., Emel’yanov, A. N., & Borozdin, K. N. 1999, Astron. Letters, 25, 294
Rev99	1748: Revnivtsev, M. G., Trudolyubov, S. P., & Borozdin, K. N., 2000, MNRAS, 312, 151
Rev99	1803: Revnivtsev, M., Borozdin, K., Emelyanov, A. 1999, A&A, 344 L25
Rev99	1808: Revnivtsev, M. G., Trudolyubov, S. P., & Borozdin, K., Prizhoks, W. & Vikhlinin, A. 2000, ApJ, 530, 955
Rey96	2030: Reynolds, A. P., Parmar, A. N., Stollberg, M. T., Verbunt, F., Roche, P., Wilson, R. B., Finger, M. H. 1996, A&A, 312, 872
Roc98	1808: Roche, P., Chakrabarty, D., Morales-Rueda, L., Hynes, R., Slivan, S. M., Simpson, C., & Hewett, P. 1998, IAU 6885
Rut98	1655: Rutledge, R., Fox, D., & Smith, D. A. 1998, Astr. Tel. 36
Rut98	1608: Rutledge, R. E., Bildsten, L., Brown, E. F., Pavlov, G. G., & Zavlin, V. E. 1999, ApJ, 514, 945
San99	0115: Santangelo, A., et al. 1999, ApJL, 523, L85
San99	1550: Sanchez-Fernandez, C., et al. 1999, A& A, 348, L9
Sha99	1908: Shahbaz, T., Bandyopadhayay, R. M., Charles, P. A., Wagner, R. M., Muhli, P., Hakala, P., Casares, J., & Greenhill, J. 1999, MNRAS, 300, 1035
Sha99	1655: Shabaz, T., van der Hooft, F., Casares, J., Charles, P. A., & van Paradijs, J. 1999 MNRAS, 306, 89
Smi97	1731: Smith, D. A., Morgan, E. H., & Bradt, H. 1997, ApJL, 479, L137
Smi97	1758: Smith, D. M., Heindl, W. A., Swank, J., Leventhal, M., Mirabel, I. F., & Rodriguez, L. F. 1997, ApJL, 489, L51
Smi98	1550: Smith, D. A., Levine, A. M., & Wood, A. 1998 IAU 6932
Smi98	1608: Smith, D. A., Levine, A. M., & Morgan, E. H. 1999, IAU 7253
Smi98	0421: Smith, D., Remillard, R., Swank, J., Takeshima, T., & Smith, E. 1999, IAU 6855
Sob99	1550: Sobczak, G. J., McClintock, J. E., Remillard, R. A., Levine, A. M., Morgan, E. H., Bailyn, C. D., & Orosz, J. E. 1999, ApJL, 517, L121
Sob99	1655: Sobczak, G. J., McClintock, J. E., Remillard, R. A., Bailyn, C. D., & Orosz, J. A. 1999, ApJ, 520, 776
Soo99	1655: Sobczak, G. J., McClintock, J. E., Remillard, R. A., Bailyn, C. D., & Orosz, J. A. 1999, ApJ, 517, L121
Soff98	1845: Soffitta, P., et al. 1998, ApJL, 494, L203
Sore99	2123: Soria, R., Wu, K., & Galloway, D. 1999, MNRAS, 309, 528
Stud97	1145–619: Stevens, J. B., Reig, P., Coe, M. J., Buckley, D. A. H., Fabregat, J., & Steele, I. A. 1997, MNRAS, 288, 988
Stud99	2030: Stollberg, Mark T., Finger, Mark H., Wilson, R. B., Scott, D. M., Crary, D. J., & Paciesas, W. S. 1999, ApJ, 512, 313
Stud99	1819: Stubbings, R., & Pearce, A. 1999, IAUC 7253
Tah97	1843: Takeshima, T., & Fabregat, J., & Steele, I. A. 1997. MNRAS, 288, 998
Tah98	1858: Takeshima, T. Corbet, R., Marshall, F., Swank, J., & Chakrabarty, D. 1998. IAU 68
Tin95	1655: Tingay, S. J., et al. 1995, Nature, 374, 141
Tom99	1655: Tomsov, J. A., Kaaret, P., Kroeger R. A., & Remillard, R. A. 1999, ApJ, 512, 892
Tom99	2123: Tomsov, J. A., Halpern, J., Kemp, J., & Kaaret, P. 1999, ApJ, 521, 341
Tru99	1737: Trudolyubov, S., et al. 1999, A&A, 342, 496; see also IAU 6595
Table 2. (continued) Notes and References for ASM Transients

Reference	Notes
Ube97	1826: Ubertini, P., Bazzano, A., Cocchi, M., Natalucci, L., Heise, J., Muller, J. M., & In ’t Zand, J. J. M. 1999, ApJL, 514, L27
Ued97	1737: Ueda et al. 1997, IAUC 6627
Ued98	0421: Ueda, Y., Ishida, M., Inoue, H., Dotani, T., Greiner, J., & Lewin, W. H. G. 1998, ApJ, 508, L167
Uem99	1859+226: Uemura, Kato, T., Pavlenko, E., Shugarov, S., & Mitskevich, M. 1999 IAUC 7303
Ung99	0115: Unger, S. J. Roche, P., Negueruela, I., Ringwald, F. A, Lloyd, C., & Cole, M. J., et al. 1998, A&A, 336, 960
Var97	1739–278: Vargas, M., et al. 1997, ApJL, 476, L23
VdK00	1808: van der Klis, M., Chakrabarty, D., Lee, J. C., Morgan, E. H., Wijnands, R., Markwardt, C. B., & Swank, J. H. 2000, IAUC 7358
VaP96	1908: vanParadijs, J. 1996, ApJL, 464, L1
Vau98	1808: Vaughan, B. A., et al. 1998, ApJL, 509, L145; also ApJL, 483, L115
Wac80	1808: Wachtler, S., & Hoard, D. W. 1998, IAUC 7363
Wag94	0421: Wagner, R. M., & Starrfield, S. G. 1999, IAUC 6857
Wen99	1716: Wen, L., Levine, A., & Bradt, H. 1999, BAAS 31, 1427
Whi98	2012: White, N. E., Ueda, Y., Dotani, T., & Nagase, F. 1998, IAUC 6927
Wij97	1731: Wijnands, R. A. D., & van der Klis, M. 1997, ApJL, 482, L65
Wij98a	1808: Wijnands, R., & van der Klis, M. 1998, Nature 294, 344
Wij98b	1808: Wijnands, R., & van der Klis, M. 1998, ApJL, 507, L63
Wij99_1803	1803: Wijnands, R., van der Klis, M. 1999, ApJ, 522, 965
Wij99_1819	1819: Wijnands, R., & van der Klis, M. 2000. ApJL, 528, L93
Wij97_1843	Wilson, R., Harmon, B., Scott, D., Finger, M., Robinson, C., Chakrabarty, D., & Prince, T. A. 1997, IAUC 6586
Wij98_0111	Wilson, C. A., & Finger, M. H. 1998, IAUC 7048
Wij98_1550	Wilson, C. A., Harmon, B. A., Paciesas, W. S., & McCollough, M. L. 1998, IAUC 7010
Wij99_2138	Wilson, C. A., Finger, M. H., & Scott, D. M. 1999, ApJ, 511, 367
Woo99_1859	1859+226: Wood, A., Smith, D. A., Marshall, F. E., & Swank, J. 1999, IAUC 7274
Woo99_1744	1744: Woods, P. M., et al. 1999, ApJ, 517, 431
Yu97	1608: Yu, W., et al. 1997, ApJL, 490, L153
Yu99_1908	1908: Yu, W., Li, P., Zhang, W., & Zhang. S. N. 1999, ApJL, 512, L35
Zha96	1744: Zhang, W., Morgan, E. H., Jahoda, K., Swank, J. H., Strehl, T. E., Jernigan, J. G., & Klein, R. I. 1996 ApJL, 469, L2
Zha99	1859: Zhang, S. N., et al. 1996 A&A Suppl. Ser., 120, 279
Zha96_1744	Zhang, W., Morgan, E. H., Jahoda, K., Swank, J. H., Strehl, T. E., Jernigan, J. G., & Klein, R. I. 1996 ApJL, 469, L2
FIGURE 1. RXTE/ASM light curves for six neutron-star binary-system transients for the period early January 1996 through mid August 1999. The data points represent 1-day averages of the 10 – 20 (typical) daily measurements in the 1.5–12 keV band. 75 ct/s corresponds to 1.0 Crab. MJD 50082 = 1996 Jan. 0.0.
FIGURE 2. RXTE/ASM light curves for six black-hole binary-system transients. GX 339–4 shows a transient bright soft state; it is not listed as a transient in Table 1. See also caption to Fig. 1.