Dolbeault cohomology
of compact complex manifolds
with an action of a complex Lie group.

Nikita Klemyatin

Abstract: Let \(G \) be a complex Lie group acting on a compact complex Hermitian manifold \(M \) by holomorphic isometries. We prove that the induced action on the Dolbeault cohomology and on the Bott-Chern cohomology is trivial. We also apply this result to compute the Dolbeault cohomology of Vaisman manifolds.

Contents

1 Introduction. 1

2 Preliminaries. 3
 2.1 Basic properties of complex Lie groups. 3
 2.2 Holomorphic vector fields and Lie derivative. 4
 2.3 \(dc^{-} \)-operator and Lie derivative. 5
 2.4 Elliptic operators on compact manifolds. 6
 2.5 Various cohomology groups on compact complex manifolds. 7

3 Proof of the main theorem 9

4 The application to Vaisman manifolds. 11
 4.1 Sasakian and Vaisman manifolds. 11
 4.2 Dolbeault cohomology of Vaisman manifolds. 12

1 Introduction.

One of the main invariants of a compact complex manifold is its Dolbeault cohomology groups \(H^n_{\bar{\partial}}(M) \). They are defined as cohomology groups of the complex \((\Omega^{*,*}(M), \bar{\partial}) \). Whenever \(M \) is compact Kähler, Dolbeault cohomology are isomorphic to de Rham cohomology groups \(H^n_{dR}(M; \mathbb{C}) \). More precisely, there is a Hodge decomposition for de Rham cohomology groups:
N. Klemymatin
\textit{Dolbeaut cohomology of compact complex manifolds}

\[H^k_{dR}(M; \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}_{\overline{\partial}}(M). \]

However, when \(M \) is non-Kähler, this decomposition generally fails.

Now let \(M \) be a manifold which is equipped with a smooth action of a connected Lie group \(G \). A simple computation with Cartan formula \(L_X = d\iota_X + \iota_X d \) shows that \(G \) acts trivially on \(H^*_{dR}(M) \). Hence, in the case of a compact Kähler \(M \) with holomorphic action of \(G \) the induced action of on \(H^{*,*}_{\overline{\partial}}(M) \) is again trivial. In contrary, the non-Kähler case provides examples of non-trivial action (see [Akh1], [Akh2]) on the Dolbeaut cohomology groups. So one could ask when the holomorphic action of a Lie group induces the trivial action on \(H^{*,*}_{\overline{\partial}}(M) \).

This question could be extended on the \textit{Bott-Chern} \(H^{*,*}_{BC}(M) \) and \textit{Aeppli} \(H^{*,*}_{A}(M) \) cohomology groups of a compact complex manifold \(M \) with holomorphic action of a group \(G \). These groups are defined as follows:

\[H^{*,*}_{BC}(M) = \frac{\ker(d) \cap \ker(d^c)}{\text{im}(dd^c)} \]

and

\[H^{*,*}_{A}(M) = \frac{\ker(dd^c)}{\text{im}(d) + \text{im}(d^c)}. \]

The induced action of \(G \) on these cohomology groups could be non-trivial. However, there are conditions on \(M \) and \(G \), which implies the triviality of the induced action on \(H^{*,*}_{\overline{\partial}}(M) \), \(H^{*,*}_{BC}(M) \) and \(H^{*,*}_{A}(M) \).

\textbf{Theorem 1.1:} Let \(G \) be a complex Lie group, which acts on a compact Hermitian manifold \(M = (M, h) \) by holomorphic isometries. Then \(G \) acts trivially on Dolbeaut, Bott-Chern and Aeppli cohomologies of \(M \).

As a corollary, we obtain that the Dolbeaut cohomology may be represented by invariant forms and any \(\Delta_{\overline{\partial}} \) -harmonic form is invariant.

As an application of \textbf{Theorem 1.1} we compute the Dolbeaut cohomology of compact Vaisman manifolds. Indeed, Dolbeaut cohomology groups of \(M \) are isomorphic to the Dolbeaut cohomology groups of invariant forms and they can be easily computed by this observation.

\textbf{Theorem 1.2:} The Dolbeaut cohomology groups of a Vaisman manifold \(M \) are organized as follows:
$H^{p,q}_\partial(M) = \begin{cases} H^{p,q}_\partial(M) \oplus \theta^{0,1} \wedge H^{p,q-1}_\partial(M), & p + q \leq \dim_\mathbb{C}(M) \\ \text{Ker}(L_{\omega_0}) H^{p,q}_\partial(M) \oplus \theta^{0,1} \wedge H^{p,q-1}_\partial(M), & p + q > \dim_\mathbb{C}(M) \end{cases}$

2 Preliminaries.

2.1 Basic properties of complex Lie groups.

We briefly introduce some notions about holomorphic group actions on complex manifolds.

Definition 2.1: A group G is called a complex Lie group if G is a complex manifold and the maps $G \times G \to G, (g_1; g_2) \mapsto g_1 g_2$ and $G \to G, g \mapsto g^{-1}$ are holomorphic.

A complex Lie group G is compact if the underlying complex manifold is compact.

The following claim is well-known.

Claim 2.2: Let G be a compact complex Lie group of dimension n. Then G is a torus $\mathbb{C}^n / \mathbb{Z}^n$.

Proof: Consider the adjoint representation $\text{Ad} : G \to \text{End}(\text{Lie}(G)) \cong \mathbb{C}^{n^2}$. This is a holomorphic map, hence it is constant by the maximum principle. Since $\text{Ad}(e) = 1_n$, we have $\text{Ad}(G) = 1_n$ (here 1_n is a $n \times n$ identity matrix). Hence G is a commutative group and the exponential map $\exp : \text{Lie}(G) \to G$ is a homomorphism. Since G is compact, \exp has a nontrivial kernel, which is a finitely generated abelian group without torsion, i.e. $\ker(\exp) \cong \mathbb{Z}^p$. It is easy to see, that $p = 2n$ and $G \cong \mathbb{C}^n / \mathbb{Z}^{2n}$.

When G is non-compact, it might be non-abelian. However, when G acts on M by holomorphic isometries, we can say something about the closure of G. First of all we need the following result about the isometry group of a compact Riemannian manifold.

Theorem 2.3: (see [Kob], Chapter II, Thm.1.2) Let (M, g) be a compact Riemannian manifold. Then the group $\text{Isom}(M)$ isometries of (M, g) is a compact Lie group.

We also need a following statement.
Proposition 2.4: Let G be a complex group which acts by a holomorphic isometries on a compact Hermitian manifold $(M; h)$. Then the closure of G in the group Isom(M) still acts by holomorphic isometries on M.

Proof: Let $\{g_n\}_{n=1}^{\infty}$ be a Cauchy sequence in G. Since each g_n lies in Isom, the family $\{g_n\}_{n=1}^{\infty}$ is bounded. By the Montel’s theorem, the limit g of $\{g_n\}_{n=1}^{\infty}$ is holomorphic. By the theorem of Cartan and von Neumann (see [Kob]), the closure is a Lie group. It will be compact by Theorem 2.3. ■

2.2 Holomorphic vector fields and Lie derivative.

Let G be a Lie group and $M = (M, J)$ be a compact complex manifold. We assume that both G and M are connected.

Definition 2.5: A holomorphic action of complex Lie group G on a complex manifold M is a holomorphic map $\sigma : G \times M \to M$.

Definition 2.6: ([Gau]) A vector field X is called holomorphic vector field if $L_X J = 0$.

Clearly holomorphic vector fields form a Lie subalgebra $\mathfrak{h}(M)$ in the algebra of all holomorphic vector fields on M. If G acts holomorphically on M, then the action induces a homomorphism $d_c \sigma : \text{Lie}(G) \to \mathfrak{h}(M)$ of (real) Lie algebras. This homomorphism gives us the action of $\text{Lie}(G)$ on tensors on M via the Lie derivative. Recall that Lie derivative acts on differential forms via Cartan formula:

$$L_X \alpha = d_L X \alpha + \iota_X d \alpha.$$

It also commutes with de Rham differential:

$$L_X d \alpha = d L_X \alpha.$$

Also the Lie derivative satisfies the Leibniz rule for the tensor product:

$$L_X (P \otimes Q) = (L_X P) \otimes Q + P \otimes (L_X Q).$$

In particular, the following identity holds:

$$L_X Y = [X; Y].$$
As mentioned above, all holomorphic vector fields form a Lie algebra. Moreover, on a complex manifold, the algebra of holomorphic vector fields is a complex Lie algebra and JX is holomorphic whenever X is holomorphic. Indeed, for a holomorphic vector field X and for any vector field Y one has

$$L_{JX}(JY) = [JX; JY] = J[JX; Y] + J[X; JY] + [X; Y] = J[JX; Y] - [X; Y] + [X; Y] = J[JX; Y] = JL_X Y.$$

Here in the second equality we use that Nijenhuis tensor is zero and in the third equality we use the definition of holomorphic vector fields.

Now, in the case of G-action on M that the homomorphism $d_e\sigma : \text{Lie}(T) \to \mathfrak{h}(M)$ is actually a homomorphism of complex Lie algebras.

2.3 d^c-operator and Lie derivative.

We start from the following definition:

Definition 2.7: (see [Gau], sect. 1.11) Consider an operator d^c, defined as following:

$$d^c \alpha = Jd J^{-1} \alpha = (-1)^{|\alpha|} Jd J \alpha.$$

Here α is an arbitrary form of degree $|\alpha|$.

Note that d^c is a real operator.

One can write down d^c in terms of operators ∂ and $\overline{\partial}$ (see [Gau]):

$$d^c = i(\overline{\partial} - \partial)$$

Here $d = \partial + \overline{\partial}$ is the standard decomposition of the de Rham differential on complex manifolds.

We also have

$$\overline{\partial} = \frac{1}{2}(d + i d^c) \quad \partial = \frac{1}{2}(d - i d^c).$$

There is a simple Cartan-type formula, which connects the operator d^c and the Lie derivative along L_{JX}.

Proposition 2.8: Let X be a holomorphic vector field on compact complex manifold M. Then $L_{JX} \alpha = -\{d^c; \iota_X\} = -(d^c \iota_X + \iota_X d^c) \alpha$ for any form α.

2.4 Elliptic operators on compact manifolds.

In this section we recall some facts about elliptic operators on compact manifolds.

Let M be a compact manifold and E a vector bundle on M. Throughout this section the symbol $\Gamma(E)$ denotes the space of smooth sections on M.

Definition 2.9: Let E, F are complex vector bundles over compact manifold M. A linear differential operator P of degree k from E to F is a C-linear operator $P: \Gamma(E) \to \Gamma(F), \ s \mapsto Ps$ of the form

$$Ps(x) = \sum_{|j|=0}^{k} a_j(x) \frac{\partial^j}{\partial x_1^{j_1} \cdots \partial x_m^{j_m}} s(x). \quad (2.1)$$

The principal symbol of the operator P is the morphism of vector bundles $\sigma_P(x, \xi) = \sum_{|j|=k} a_j(x)\xi^j, \ \sigma_P(x, \xi): E \to F$. Here $\xi \in T_x M$.

The operator P is called elliptic, if the principal symbol $\sigma_P(x, \xi)$ of P is injective for any nonzero ξ.

Fix a volume form $d\mu$ on M. Let E be a Hermitian vector bundle, the operator $P : \Gamma(E) \to \Gamma(E)$ is called self-adjoint, if it is self-adjoint with respect to the L^2 scalar product

$$(s; t) := \int_M h(s, t)d\mu$$

for any two $s, t \in \Gamma(E)$.

Elliptic self-adjoint operators have very nice spectral properties.

Proposition 2.10: (see [Gil]) Let $P : \Gamma(E) \to \Gamma(E)$ be an elliptic self-adjoint operator. Then we can find a complete basis $\{s_j\}_{j=1}^{\infty}$ of $L^2(E)$ of eigensections of P. Each eigensection of P is smooth and each eigenspace
has finite dimension. Moreover the set of eigenvalues is a discrete subset in \mathbb{R}.

This proposition has a very nice application for the case of $E = \Omega^*(M)$ on a compact Hermitian manifold M with the holomorphic and isometric action of compact Lie group G.

Proposition 2.11: Let G and M are as above and $P : \Omega^*(M) \rightarrow \Omega^*(M)$ be a self-adjoint elliptic operator. Suppose that for any $g \in G$ and for any smooth form α we have $g^*P\alpha = Pg^*\alpha$. Then each eigenspace of P is a direct sum of irreducible representations of G. Moreover, for any $g \in G$ there exist a complete orthogonal basis $\{\alpha_j\}_{j=0}^{\infty}$ such that $P\alpha_j = \lambda_j\alpha_j$ and $g^*\alpha_j = e^{ia_j}\alpha_j$, $a_j \in \mathbb{R}$.

Proof: Since $g^*P\alpha = Pg^*\alpha$, g^* and P commute on each eigenspace of P. Hence they have common eigenvectors on each eigenspace. For an arbitrary $g \in G$ the map g^* is L^2-isometry and hence its restriction on each eigenspace is an unitary operator. Hence all eigenvalues of g^* are equal to e^{ia_j} for some real a_j. $lacksquare$

2.5 Various cohomology groups on compact complex manifolds.

Recall that Dolbeault cohomology groups are defined as follows:

$$H^{\omega,\ast}_{\overline{\partial}}(M) = \frac{\ker(\overline{\partial})}{\text{im}(\overline{\partial})}.$$

In the case of Kähler manifolds there is a decomposition of de Rham cohomology groups on a direct sum of Dolbeault cohomology groups:

$$H^k_{dR}(M; \mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}_{\overline{\partial}}(M).$$

In general, there is no such decomposition for de Rham cohomology. However, there is the Frölicher inequality which is obtained from the Frölicher spectral sequence (see [Dem]):

$$\dim_{\mathbb{C}} H^k_{dR}(M; \mathbb{C}) \leq \sum_{p+q=k} \dim_{\mathbb{C}} H^{p,q}_{\overline{\partial}}(M).$$
One can define another cohomology groups, namely Bott-Chern cohomology

$$H_{BC}^{p,q}(M) = \frac{\ker(d) \cap \ker(d^c)}{\text{im}(dd^c)}$$

and Aeppli cohomology

$$H_A^{p,q}(M) = \frac{\ker(dd^c)}{\text{im}(d) + \text{im}(d^c)}.$$

There is an analogue of harmonic decomposition for these cohomologies. Indeed, for any Hermitian metric h on M one can construct the following Laplacians for Bott-Chern and Aeppli cohomologies (see [Sch]):

$$\Delta_{BC} := (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + \partial \partial + \partial^* \partial$$

and

$$\Delta_A = \overline{\partial} \overline{\partial} + \partial \partial^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^* + (\partial \overline{\partial})(\partial \overline{\partial})^*.$$

These operators are self-adjoint and elliptic and their kernels are isomorphic to $H_{BC}^{p,q}(M)$ and $H_A^{p,q}(M)$ respectively.

Both Bott-Chern and Aeppli cohomologies are “dual” to each other in the following sense.

Theorem 2.12: (see [A], Theorem 2.5, and [Sch]) Let M be a compact complex manifold of complex dimension m. Then there is an isomorphism between $H_{BC}^{p,q}(M)$ and $(H_A^{m-p,m-q}(M))^*$. The isomorphism is given by the nondegenerate pairing

$$\int_M : H_{BC}^{p,q}(M) \times H_A^{m-p,m-q}(M) \to \mathbb{C}.$$

All these cohomology groups are related in the following way (see [AT]):

```
\begin{align*}
H_{BC}^{p,q}(M) \quad &\quad H_A^{p,q}(M) \\
H_{\partial}^{p,q}(M) \quad &\quad H_{dR}^k(M; \mathbb{C}) \\
H_{\overline{\partial}}^{p,q}(M) \quad &\quad H_{dR}^k(M; \mathbb{C})
\end{align*}
```
Note that in the general case all arrows in this diagram are neither injective nor surjective. For instance, if M is non-Kähler, then the map $H^p_{BC}(M) \to H^q_{dR}(M)$ may have a nontrivial kernel (see [OVV], Theorem 2.3).

3 Proof of the main theorem

Proposition 3.1: Suppose that complex connected Lie group G acts by holomorphic isometries on compact complex non-Kähler Hermitian manifold (M, h). Then G acts trivially on $H^*_{BC}(M)$.

Proof: Consider the natural map $H^*_{BC}(M) \to H^*_{dR}(M; \mathbb{C})$. Since G acts trivially on $H^*_{dR}(M; \mathbb{C})$, it is sufficient to prove that the action on $\text{Ker}(H^*_{BC}(M) \to H^*_{dR}(M; \mathbb{C}))$ is trivial.

Suppose now that $\eta = d\alpha$ for some α. Let $X \in \text{Lie}(G)$. Each α can be written as $\alpha = \sum_{j=0}^\infty c_j \alpha_j$, there $\Delta_{BC}\alpha_j = \lambda_j \alpha_j$. We also have $L_X\alpha = \sum_{j=0}^\infty c_j L_X \alpha_j$. Hence, by Proposition 2.11 we can assume $L_X\alpha = a\alpha$ and $L_{JX}\alpha = b\alpha$ for some $a, b \in i\mathbb{R}$.

Since $d^c\eta = 0$, we have

\[
0 = \iota_X d^c d\alpha = -L_{JX} d\alpha - d^c \iota_X d\alpha = -L_{JX} d\alpha - d^c L_X \alpha + d^c d\iota_X \alpha = -(bd + ad^c)\alpha + d^c d\iota_X \alpha.
\]

Let $\delta := bd + ad^c$, where $a, b \in i\mathbb{R}$ are as above. From the equation above we can see that $0 = -\delta \alpha + d^c d\iota_X \alpha$.

Now we want to write down L_X in the form $\{\delta, \iota_Y\}$ for some $Y = y_1 X + y_2 JX$:

\[
\{\delta, \iota_Y\} = by_1 \{d^c, \iota_X\} + ay_1 \{d; \iota_X\} + ay_2 \{\iota_X ; d\} + by_2 \{\iota_{JX} ; d^c\} = (ay_2 - by_1)L_{JX} + (ay_1 + by_2)L_X = L_X.
\]

Therefore we have the system of linear equations:

\[
\begin{cases}
ay_2 - by_1 = 0 \\
ay_1 + by_2 = 1.
\end{cases}
\]

The determinant of this system is equal to $-b^2 - a^2$ and it is nonzero whenever either a or b is nonzero. Hence this system has a solution, i.e. $L_X\alpha = \{\delta, \iota_Y\} = \delta_{tY}\alpha$.
If $\eta = d\alpha$ then $L_X\eta = L_Xd\alpha = dL_X\alpha = d\delta_Y\alpha = dd^c\iota_Y\alpha = dd^c\beta$ for some β. Thus L_X does not change the class of η in $H^{*\ast}_{BC}(M)$.

Corollary 3.2: In the assumptions of Proposition 3.1, G acts trivially on $H^{*\ast}_{A}(M)$.

Proof: This is a direct corollary of Proposition 3.1 and Theorem 2.12.

Now we can prove Theorem 1.1.

Theorem 3.3: (also Theorem 1.1) Let G be a compact Lie group which acts on a compact Hermitian manifold $M = (M, h)$ by holomorphic isometries. Then G acts trivially on Dolbeault, Bott-Chern and Aeppli cohomologies of M.

Proof:
Consider the exact sequence:

$$0 \rightarrow A^{p,q} \rightarrow B^{p,q} \rightarrow H^{p,q}_{\partial}(M) \rightarrow H^{p,q}_{A}(M) \rightarrow C^{p,q} \rightarrow 0$$

(see [AT]).

Here we define $A^{p,q}$, $B^{p,q}$ and $C^{p,q}$ as follows:

$$A^{p,q} = \frac{\text{im}(\partial) \cap \text{im}(\overline{\partial})}{\text{im}(\overline{\partial})}, \quad B^{p,q} = \frac{\text{im}(\partial) \cap \ker(\overline{\partial})}{\text{im}(\overline{\partial})}, \quad C^{p,q} = \frac{\ker(\partial\overline{\partial})}{\text{im}(\partial) + \text{im}(\overline{\partial})}.$$

Since $A^{p,q}$ and $B^{p,q}$ are subspaces of $H^{p,q}_{BC}(M)$, the action of G on $A^{p,q}$ and $B^{p,q}$ is trivial. The G-action on groups $H^{p,q}_{A}(M)$ are also trivial by Corollary 3.2. The groups $C^{p,q}$ have trivial G-action because the map $H^{p,q}_{A}(M) \rightarrow C^{p,q}$ is surjective and commutes with action of G. Hence the induced G-action on each group $H^{p,q}_{A}(M)$ is trivial.

Corollary 3.4: Let h be a G-invariant Hermitian metric on M and $\alpha \in H^{p,q}_{\overline{\partial}}(M)$ be a harmonic form (with respect to h) on M. Then α is G-invariant.
Proof: Let \(X \) be a holomorphic vector field from \(\text{Lie}(G) \). Since \(h \) is \(G \)-invariant, \(L_X \) commutes with \(\Delta_{\overline{\omega}} \) and hence \(G \) acts on \(\Delta_{\overline{\omega}} \)-harmonic forms. However, the space of \(\Delta_{\overline{\omega}} \)-harmonic forms is isomorphic to the Dolbeault cohomology (see [Dem]). Since \(g^*\alpha \) is again \(\Delta_{\overline{\omega}} \)-harmonic and has the same Dolbeault cohomology class as \(\alpha \), we have \(g^*\alpha = \alpha \). \(\square \)

Corollary 3.5: Let \(M \) and \(G \) be as above. Then the closure \(\overline{G} \) of \(G \) in \(\text{Isom}(M) \) acts trivially on \(H^{p,q}_{\overline{\omega}}(M) \).

Proof: By Proposition 2.4 the group \(\overline{G} \) acts on the space of \(\Delta_{\overline{\omega}} \)-harmonic forms. The group \(G \) acts trivially on harmonic forms because \(G \) acts trivially on it. \(\square \)

4 The application to Vaisman manifolds.

4.1 Sasakian and Vaisman manifolds.

In this section we recall some facts about Vaisman and Sasakian manifolds.

Definition 4.1: An odd-dimensional Riemann manifold \((S, g)\) is called a Sasakian manifold if it cone \(C(S) := S \times \mathbb{R}_{>0} \) with the metric \(\tilde{g} := t^2 g + dt^2 \) is Kähler and the natural action of \(\mathbb{R}_{>0} \) on \(C(S) \) is holomorphic.

Definition 4.2: A compact complex Hermitian manifold \((M, J, \omega)\) of \(\dim_{\mathbb{C}} > 1 \) is called a locally conformally Kähler (LCK for short), if it admits a Kähler covering \((\tilde{M}, \tilde{J}, \tilde{\omega})\), such that covering group acts by holomorphic homoteties on \(\tilde{M} \).

The LCK property is equivalent to existence of a closed form \(\theta \) such that \(d\omega = \theta \wedge \omega \). The form \(\theta \) is called the Lee form. It is obviously closed. When \(\theta \) is exact, an LCK manifold can be equipped a Kähler metric. Indeed, if \(\theta = d\varphi \), then \(e^{-\varphi} \omega \) is closed.

A very important example of LCK manifolds are Vaisman manifolds.

Definition 4.3: A Vaisman manifold \((M, J, \omega, \theta)\) is an LCK manifold such that the Lee form \(\theta \) is parallel with respect to the Levi-Civita connection which is associated to the Hermitian metric.
The typical examples of Vaisman manifolds are Hopf varieties $H_A := (\mathbb{C}^n \setminus 0)/\langle A \rangle$, where $A = \text{diag}(\lambda_i)$ with $|\lambda_i| < 1$ (see [OV2]).

The Vaisman manifold has a foliation Σ which is called the canonical (or fundamental) foliation. It is generated by $X = \theta^2 := g^{-1}(\theta, \cdot)$ and $JX = J\theta^2$. It is well-known that X and JX acts holomorphically on M. Moreover, there is a transversely Kähler metric on M. It is given by the following formula:

$$2\omega_0 = d\theta^c = d(J\theta) = \omega - \theta \wedge \theta^c.$$

(see [V1]). The local structure of compact Vaisman manifolds is well-known and it is described by the following theorem.

Theorem 4.4: (The local structure theorem for compact Vaisman manifolds, see [OV1]) Let (M, J, ω, θ) be a Vaisman manifold. Denote by X the vector field dual to θ. Then $L_X J = 0$ and M is locally isomorphic to the Kähler cone of a Sasakian manifold. Moreover, X acts on Kähler covering \tilde{M} by holomorphic homotheties of Kähler metric.

The following proposition is well-known.

Proposition 4.5: The vector field JX is a Killing.

Proof: This is a local statement.

By Theorem 4.4 we can assume that locally $M = S \times \mathbb{R}$ with product metric $g_S + dt^2$. Moreover, we can assume that $\theta = dt$ and $X = \frac{d}{dt}$. Hence the metric $\tilde{g} = e^{-t}(g_S + dt^2)$ is Kähler. Denote by $\tilde{\omega}$ a Kähler form of \tilde{g}.

Since JX is orthogonal to X, it is tangent to S. Since JX is holomorphic, we have $L_{JX}\tilde{g} = L_{JX}\tilde{\omega} = dt_{JX}\tilde{\omega} = d\theta = 0$. ■

Since $\nabla X = \nabla \theta = 0$, X is Killing as well and we have the following statement

Claim 4.6: The group generated by e^{tX} and e^{tJX} acts by holomorphic isometries on M.

4.2 Dolbeault cohomology of Vaisman manifolds.

Let (M, J, ω, θ) be a Vaisman manifold. We start from the corollary of Theorem 1.1.
Corollary 4.7: The Dolbeault cohomology groups of \(M \) are the cohomology groups of complex \((\Lambda^*(M)^{\text{inv}}, \bar{\partial}) \) of invariant forms on \(M \).

Proof: The group, generated by \(e^{tX} \) and \(e^{tJX} \) acts by holomorphic isometries on \(M \) (Claim 4.6). Hence we can apply Theorem 1.1 and Corollary 3.5. Each \(\bar{\partial} \)-closed invariant form lies in \(\Lambda^*(M)^{\Sigma} \) and it is an element of cohomology group of the complex \((\Lambda^*(M)^{\text{inv}}, \bar{\partial}) \). □

Recall the important definition.

Definition 4.8: Let \(M \) be a manifold with foliation \(\Sigma \). A form \(\alpha \) is basic, if \(\iota_X \alpha = \iota_X d\alpha = 0 \) for any vector field \(X \) tangent to \(\Sigma \).

Proposition 4.9: Let \(\eta \) be an invariant form on \(M \). Then \(\Lambda^*(M)^{\text{inv}} = (\pi^*\Lambda_B^*)^{\text{inv}} \otimes \Lambda^* (F) \).

Proof: A form \(\alpha \) on \(M \) is \(G \)-invariant iff it is invariant under the induced action of \(\text{Lie}(G) \). Hence this is a purely local statement. Denote by \(F \) the fiber of foliation \(\Sigma \) on \(M \) and by \(B \) the leaf space.

We know that locally

\[\Lambda^*(M) = \pi^*\Lambda_B^* \otimes \Lambda^*(F). \]

Hence, the following equality holds for invariant forms

\[\Lambda^*(M)^{\text{inv}} = (\pi^*\Lambda_B^*)^{\text{inv}} \otimes \Lambda^* (F)^{\text{inv}}. \]

But the \((\pi^*\Lambda_B^*)^{\text{inv}} \) are just basic forms and \(\Lambda^* (F)^{\text{inv}} \) is the exterior algebra generated by \(\theta \) and \(\theta^c \). □

Recall some important definition from homological algebra.

Definition 4.10: Suppose \((K^*, d_K) \) and \((L^*, d_L) \) are complexes and \(f : K^* \to L^* \) be a morphism of these complexes. Define a complex \((C(f), d_f) \) as follows: \(C(f)_i = K_{i+1} \oplus L_i \) and \(d_f = (d_K, f - d_L) \). This complex is called the cone of \(f \).

For each cone of a morphism we can construct the long exact sequence of cohomology. Indeed, we have the short exact sequence of complexes:
0 \rightarrow L^* \rightarrow C(f) \rightarrow K^*[1] \rightarrow 0.

There is a well-known way to construct a long sequence in cohomology from a short sequence of complexes:

\[\ldots \rightarrow H^i(L^*) \rightarrow H^i(C(f)) \rightarrow H^{i+1}(K^*) \rightarrow H^{i+1}(K^*) \rightarrow \ldots \]

(see [GM] for the details).

Now we can compute the Dolbeault cohomology groups for a Vaisman manifold \(M \).

Consider the subcomplex \(\Lambda^{*,*}_{B, \theta^0, 1} := (\pi^* \Lambda^*_B)^{\text{inv}} \oplus \theta^{0, 1} \wedge (\pi^* \Lambda^*_B)^{\text{inv}} \) of the complex \(\Lambda^*(M)^{\text{inv}} \). Denote by \(L_{\omega_0} \) the operator of multiplication by \(\omega_0 \). Clearly, \(\Lambda^*(M)^{\text{inv}} = \Lambda^{*,*}_{B, \theta^0, 1} \oplus \theta^{1,0} \wedge \Lambda^{*,*}_{B, \theta^0, 1} \) and \(L_{\omega_0} \) is a morphism \(\Lambda^{*,*}_{B, \theta^0, 1} \rightarrow \Lambda^{*,*}_{B, \theta^0, 1} \).

Proposition 4.11: ([OV3] in the case of de Rham cohomology) The complex \(\Lambda^*(M)^{\text{inv}} \) is isomorphic to the cone \(C(L_{\omega_0}) \) of the morphism \(\Lambda^{*,*}_{B, \theta^0, 1} \xrightarrow{L_{\omega_0}} \Lambda^{*,*}_{B, \theta^0, 1} \).

Proof: We have

\[\Lambda^*(M)^{\text{inv}} = \Lambda^{*,*}_{B, \theta^0, 1} \oplus \theta^{1,0} \wedge \Lambda^{*,*}_{B, \theta^0, 1} = \Lambda^{*,*}_{B, \theta^0, 1} \oplus \Lambda^{*,*}_{B, \theta^0, 1}[-1]. \]

The Dolbeault differential \(\overline{\partial} \) on \(\Lambda^*(M)^{\text{inv}} \) acts in the following way: it is the ordinary \(\overline{\partial} \) on \(\Lambda^{*,*}_{B, \theta^0, 1} \). On the other hand, we have \(\overline{\partial} \theta^{1,0} = \omega_0 \). Hence the Dolbeault differential acts on \(\Lambda^{*,*}_{B, \theta^0, 1}[-1] \) as \(\omega_0 - \overline{\partial} \).

Theorem 4.12: (also Theorem 1.2) The Dolbeault cohomology groups of a Vaisman manifold \(M \) are organized as follows:

\[H^p_q(M) = \begin{cases} H^p_q(M) \oplus \epsilon^{0,1} \wedge H^{p,q-1}(M), & p + q \leq \dim_C(M) \\ \text{Im}(L_{\omega_0}) \big|_{H^p_q(M) \oplus \epsilon^{0,1} \wedge H^{p,q-1}(M)} & p + q > \dim_C(M) \end{cases} \]

This result is similar to Theorem 3.2 from [Ts].
Proof: We have a long exact sequence:

\[
\cdots \rightarrow H_{B,\theta^0}^{p,q}(M) \xrightarrow{L_{\omega_0}} H_{B,\theta^0}^{p+1,q+1}(M) \rightarrow H^p_{B,\theta^0}(M) \rightarrow \cdots
\]

The cohomology groups \(H^*_{B,\theta^0}(M)\) of complex \((\Lambda^*_B,\Lambda^*_\theta)\) are equal to \(H^*_{B}(M) \oplus \theta^0 \wedge H^{*+1}_{B}(M)\). Since \(H^*_{B}(M)\) admits a Lefshetz \(SL(2)\)-action (see [EK] and [EKH]), there is an analog of such action for \(H^*_{B,\theta^0}(M)\). Since \(L_{\omega_0}\) is injective on \(H_{B}^{p,q}(M)\) for \(p+q \leq \dim_{\mathbb{C}}(M)\), it is injective on \(H_{B,\theta^0}^{p,q}(M)\) with the same \(p, q\). Hence we obtain the short exact sequence:

\[
0 \rightarrow H_{B,\theta^0}^{p-1,q-1}(M) \xrightarrow{L_{\omega_0}} H_{B,\theta^0}^{p,q}(M) \rightarrow H_{B}^{p,q}(M) \rightarrow 0
\]

For the case \(p + q > \dim_{\mathbb{C}}(M)\) we have another short exact sequence:

\[
0 \rightarrow H_{B}^{p,q}(M) \rightarrow H_{B,\theta^0}^{p,q}(M) \xrightarrow{L_{\omega_0}} H_{B}^{p+1,q+1}(M) \rightarrow 0
\]

The statement of the theorem directly follows from these two sequences.

Acknowledgements: Many thanks to Misha Verbitsky for fruitful discussions and help. I also want to thank Instituto Nacional de Matemática Pura e Aplicada for hospitality.

References

[Akh1] D. Akhiezer, Group actions on the Dolbeault cohomology of homogeneous manifolds, Mathematische Zeitschrift 226(4):607-621, 1997. (Cited on page 2.)

[Akh2] D. Akhiezer, Sur les représentations de groupes de Lie dans les espaces de cohomologie de Dolbeault, C R Acad. Sci. Paris 321, (1995), 1583-1586. (Cited on page 2.)

[AT] D. Angella, A. Tomassini, On the \(\partial \bar{\partial}\)-Lemma and Bott-Chern cohomology, arxiv:1402.1954v1 (Cited on pages 8 and 10.)

[A] D. Angella, Cohomological Aspects in Complex Non-Kähler Geometry, Lecture Notes in Mathematics 2095, Springer, 2014. (Cited on page 8.)

[Dem] Jean-Pierre Demailly, Complex Analytic and Differential Geometry, https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf (Cited on pages 7 and 11.)
[EK] El Kacimi-Alaoui, Aziz, *Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications*, Compositio Math. 73 (1990), no. 1, 571-06. (Cited on page 15.)

[EKH] El Kacimi-Alaoui, Aziz; Hector, Gilbert, *Décomposition de Hodge basique pour un feuilletage riemannien*, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207-227. (Cited on page 15.)

[Gau] P. Gauduchon, *Calabi’s extremal Kähler metrics: an elementary introduction*, http://germanio.math.unifi.it/wp-content/uploads/2015/03/dercalabi.pdf (Cited on pages 4 and 5.)

[GM] Sergei I. Gelfand, Yuri I. Manin, *Methods of Homological Algebra*, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2003. (Cited on page 14.)

[Gil] Peter B. Gilkey, *Invariance theory, the heat equation, and the Atiyah-Singer index theorem*, Mathematics lecture series 11, Publish or Perish Inc., 1996. (Cited on page 6.)

[Kob] S. Kobayashi, *Transformation Groups in Differential Geometry*, Springer, 1995. (Cited on pages 3 and 4.)

[OV1] L. Ornea, M. Verbitsky, *Structure theorem for compact Vaisman manifolds*, Math. Res. Lett. 10 (2003), pp.799-805. (Cited on page 12.)

[OV2] L. Ornea, M. Verbitsky, *Locally conformally Kähler metrics obtained from pseudoconvex shells*, https://arxiv.org/abs/1210.2080 (Cited on page 12.)

[OV3] L. Ornea, M. Verbitsky, *Supersymmetry and Hodge theory of Sasakian and Vaisman manifolds*, in preparation (Cited on page 14.)

[OVV] Liviu Ornea, Victor Vuletescu, Misha Verbitsky, *Classification of non-Kähler surfaces and locally conformally Kähler geometry*, https://arxiv.org/abs/1810.05768 (Cited on page 9.)

[Sch] M. Schweitzer, Autour de la cohomologie de Bott-Chern, arXiv:0709.3528 (Cited on page 8.)

[Ts] K. Tsukada, *Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds*, Compositio Mathematica, Volume 93 (1994) no. 1, p. 1-22. (Cited on page 14.)

[V1] M. Verbitsky, *Vanishing theorems for locally conformal Hyperkähler manifolds*, https://arxiv.org/abs/math/0302219v4 (Cited on page 12.)
NIKITA KLEMYATIN
NATIONAL RESEARCH UNIVERSITY HSE,
DEPARTMENT OF MATHEMATICS, 6 USACHEVA STR. MOSCOW, RUSSIA
ALSO:
SKOLKOVO INSTITUTE OF SCIENCE AND TECHNOLOGY
BOLSHOY BOULEVARD 30, BLD. 1. MOSCOW, RUSSIA
nklemyat@yandex.ru