The toxic effects of Bisphenol A (BPA) have been studied in individual experimental animals under different conditions. However, without a systematic approach, it is difficult to compare and analyse the results because of differences in doses (concentration), dosing periods (exposure), research methods, and the effects of BPA. We systematically compared and analysed recent research (between 2015 and 2021) that examined the effects of BPA on individual experimental vertebrates (fishes, amphibians, birds, and mammals). We divided the experiments into two categories: experiments on fish and amphibians by indirect administration, and experiments on birds and mammals by direct administration. The deleterious effects of exposure to BPA were classified into two types: morphological and anatomical effects, and physiological and neurocognitive effects. Experimental animals that had less weight, were younger, and were farther away from humans in evolutionary relationships, showed toxic effects even if they were exposed to low concentrations of BPA in the short term. Long-term administration of a small amount of BPA and short-term administration of a large amount of BPA also showed severe toxic effects. When the parents absorbed BPA during puberty, just before fertilisation, or during pregnancy, toxic effects were transmitted from dosed parents to offspring. With increasing amounts of BPA production and waste, there is a growing possibility that animals in various ecosystems will be exposed to BPA. Therefore, it is necessary to identify the harmful effects of BPA on various animals and the conditions under which it affects them. We hope that the results reported here will contribute to the development of standardized study designs for BPA research, to ensure that results can be more readily compared.

Key words: bisphenol A, experimental animal, toxic effect, fish, mammals
심혈관 질환, 생식독성, 신경독성, 면역독성, 비만, 당뇨병 등을 유발할 수 있다.10) 또한 신생아의 태반이나 양수, 산모의 모유에서도 검출되는데,11) 태어는 물론 아동의 신경 발달에도 영향을 미칠 수 있는 것으로 확인되고 있다.12) 최근에는 BPA의 인체 독성 효과로 인해 식품 점착 물질에 BPA 사용을 금지하는 규정이 확대로되고 있다. 하지만, 건축, 전기 및 전자, 자동차, 포장 산업 등에서의 수요 증가로 인해 BPA 시장의 연평균 성장률(compound annual growth rate, CAGR)은 2020년에서 2025년까지 대략 8%로 예측된다.4)

BPA는 인간뿐만 아니라 다양한 경로를 통해 수생태계와 토양생태계의 동물에도 유해한 영향을 미칠 수 있다. 2012년 조사 결과에 따르면, 제품 생산 및 처리 과정에서 발생하는 BPA는 전 세계의 상수와 하수에 분포하고 있다.13) 2015년 전 세계를 대상으로 토막, 토양, 공기, 생태계 등에 분포된 BPA의 측정이 조사된 연구에 따르면, 유럽, 북미, 아시아 하폐수의 상수와 아시아 하폐수의 상당수가 캐나다 기준 예측무영향농도(Predicted No Effect Concentration, PNEC)인 750 ng/L의 50% 이상을 초과하고, 영향과 양서류를 포함한 수생생물에도 적절한 것으로 나타났다.14) 또한 2018년 영국 남서부 지역의 하수 처리장과 저수지의 유역을 조사한 연구에 따르면, 도시에서 배출되는 배수와 슬러지에서도 BPA가 검출되고 있으며,15) 미 식품인스티트의 확산으로 인해 대상 유역의 어류들에서 도 BPA의 영향이 확인되고 있다.16) BPA는 인간뿐만 아니라 다양한 생태계의 생물들에게 영향을 미칠 수 있는 만큼, 동물적인 연구를 통해 다양한 실험동물을 대상으로 BPA의 위생성을 평가할 필요가 있다.

BPA에 관한 연구는 개별 실험 동물을 중심으로 진행되고 있고, BPA의 독성이나 연구 방식, 주목하는 부작용의 양상, 시제에서 여러 가지와 다양한 동물을 대상으로 BPA의 영향을 비교분석하는 것은 쉽지 않다.17) 실험 동물 자체가 다양한 뿐 아니라 BPA의 노출 방식 역시 주 시제를 통한 직접 투여를 수조를 이용한 간접 투여 방식까지 다양하게 직접적으로 비교할 수가 어렵다.

그러나 보니 BPA가 단일한 실험동물이나 특정 부작용에 미치는 영향을 조사한 데는 희박한 문헌 검색은 존재하나,18) 2012년 실험동물로 BPA의 독성에 대한 연구를 체계적으로 비교분석하는 연구는 드문데. 2012년에 논문에서 BPA가 다양한 동물 중의 대부분에 미치는 영향 등을 비교한 바 있다. 그러나 해당 연구에서도 다양한 동물 중의 중심으로 알코올 투여이나 투여 방법, 영향이나 성별 등을 고려한 체계적인 비교 문헌은 이루어져 있지 않았으며 다수의 독성 평가 실험이 있었다.19) 최근 BPA의 장기적인 영향에 대한 연구에 있어서 BPA에 노출된 BPA의 영향을 최소한 저농도(저농도)에 미치는 영향을 조사하는 연구가 활발하다. 하지만, 다양한 실험동물 레이로 유래된 BPA의 세대 간 영향(Transgenerational effects)을 비교분석한 연구는 드물다. 또한, 2015년 이전의 연구에 비해 실험 대상이 실내나 야외에서 훨씬 더 다양한 방법, 항생, 항암, 재료, 항인자산 등 다양한 생리학적, 인지기능학적 영향으로 독성 영향의 범위가 확대되고 있다. 또한 이전 연구보다는 조직(조지방)에서 오랜 기간의 노출을 통해 BPA의 영향을 살펴보는 연구가 늘어나고 있어 최근의 영향을 보여준 런던 연구가 요구된다.

본 연구에서는 BPA가 다양한 실험동물에 미치는 영향을 BPA의 투여량 투여 기간, 실험동물의 연령과 종류, 성별 등을 고려하여 비교분석하였다. 이를 통해 BPA에 여러 실험동물에서 서로 다른 결과를 나타내는 이유를 확인하고, 실험 동물체의 새로운 평가 방법을 도출할 수 있는 연구가 필요하다고 한다.

2. 재료 및 방법

2.1. 연구 대상 실험동물 군의 분류

본 연구에서는 여러 실험동물의 BPA 독성 영향을 최근 연구 동향을 반영해 다양한 투여산물도 측면에서 비교하고자 2015년부터 2021년 사이에 출판된 논문 결과를 종합적으로 비교분석하였다. 현재 BPA 유해성 평가의 기준이 되는 인간과의 연관성과 유부등에 두고 다양한 생태계의 동물 군을 비교하기 위해 대가치의 대표적인 척추 동물군에 BPA의 독성 영향을 조사한 연구를 검색하였고 실험동물의 직접·간접적으로 BPA를 투여했거나 임신 기간 중 BPA에 노출된 동물의 영향을 살펴본 연구를 선택하였다. 이에 BPA의 노출이 실제 시 측정을 위한 BPA의 영향을 살펴본 연구는 제외되었다. 최근의 자료는 독성 영향에 대한 연구가 활발한 점을 감안하여, 대가족의 조류의 포유류는 WHO와 유엔식량농업기구(Food and Agriculture Organization of the United Nations)가 발표한 새로운 노출장은상황(No Observed Adverse Effect Level, NOAEL)과 하도의 BPA에서 독성 영향을 고려한 연구를 검색하였다.20)
연구 과정에서 각 척추 동물군에 속하는 대표적인 실험동물들이 선정되었다. 어류의 경우, 대표적인 사용 단수로 독성 및 악영향 연구가 활발한 대두어(Bighead carp), 34) 열대 민물에 주로 서식하면서도 척추동물의 발생 및 유전학 연구에 탁월한 장점을 보이는 제브라피쉬(Zebrafish), 23-25) 수생 생태계의 위상을 평가하는 생물 지표로 연구되는 송어(Minnow), 30-34) 그리고 독성 시험에 활용되고 있는 금붕어(Goldfish) 46) 관련 논문을 분석했다. 35,36) 양서류는 유전 정보 및 생물학적 작용 기작이 인간과 유사하여 비교해부학 및 계통학 연구 등에 오랫동안 사용되어 온 아프리카봅ILoggerri(Xenopus laevis)에 관한 연구를 분석했다. 37,38)

조류는 암의 발달에 대한 조사가 풍부하고, 매우의 발생 과정을 관찰하기 쉬우며 성장모모의 변화에 민감한 동물로, 메추라기에서 곰 동물론적 분석하였다. 39) 카타르 치킨(Kadaknatch chicken)과 하이리안 치킨(Hyline chicken)을 포함한 실험 동물 결과를 비교하였다. 40,41) 메추라기는 일본 메추라기(Japanese quail)에 관한 연구를 비교 분석하였다. 42,43)

ポリューム의 경우, BPA 연구 대상으로 가장 많이 활용되는 실험동물로 우선적으로 비교분석하였다. 실험동물에 대한 흔히 사용하는 표준 경구 경구 투여량 등에 따라, 석회요법인 tóc, 비노˗청, 투여향도 등에 따라 각 실험 동물의 결과를 비교 분석하였다. 44) 본 연구에서는 비율이 적절한 동물이 높은 반응에서 유전자 조작의 유의성으로 인해 유전자 연구 등에 널리 사용되는 마우스(Kunming mice, 45,46) 또는 F1 hybrid mice(47) CD-1 mice, 48) Swiss mice, 49) OF-1 mice, 50) C57BL/6J mice 51)이다. 그리고 생체적, 유전적 특성의 높아 화학물질의 복합성 및 유해성을 평가하기 위함에 있어 상대적으로 크고 향후 연구의 필요성도 틀림없이 있는 실험동물로 주목받고 있다. 52) 본 연구에서는 BPA 투여 실험 동물의 평균 체중(50g)으로 계산하여 비교하였다. 대한 동물의 실험동물의 평균 체중(50g)으로 계산하여 비교하였다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다.

2.2. 실험동물에 투여한 BPA의 양 비교 방법

BPA를 실험동물에 투여하는 방식은 다양하게 사용하는 수준에 따라 투여할 수 있는 투여방법에 따라 달라진다. 본 연구에서는 다양한 동물의 BPA 독성 량도를 최대 비교 가능하도록 하기 위해 직접적으로 투여하는 방식은 BPA 농도/실험동물의 평균 체중(mg/kg)으로 계산하여 비교하였다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다. 실험 동물의 평균 체중은 50g에서 60g까지의 범위로 다양하게 사용되었다.
화 등 생물체 내 작용과 관련된 영향은 생리학적인지신
경적 영향으로 분류하였다. 그나 다음 내 개의 그룹에
속하는 개별 실험동물의 성별과 연령, 독성 효과가 나타
난 BPA의 농도 및 무여 기간, 구체적인 독성 영향 등을
정리하였다(Table 1, Table 2, Table 3, Table 4). Figure
1부터 Figure 4까지에는 표의 내용을 기반으로 종의 성별
과 성장단계에 따라 독성 영향이 나타나기 시작한 BPA
의 최소 농도와 투여 기간을 비교분석하였다. 성장단계
는 크게 배아 및 테어, 어린 개체, 성체로 구분했다. 또한
모세포로부터 세포로 전달되는 유전 및 전이 효과에 대한
연구는 BPA를 투여한 모체의 성장단계와 그 영향을 관
찰하는 데다, 세기의 성장단계를 서로 구분한 뒤 세기에 나
타난 독성 영향을 살펴보는 방식으로 진행하였다.

3. 결과 및 고찰

3.1. 어류와 양서류에 대한 형태학적·해부학적 특성
영향의 비교 분석

어류와 양서류의 경우, BPA에 단기간 노출되는 경우
라도 그 농도가 50 mg/L/kg 이상으로 상대적으로 높을 경
우 형태학적, 해부학적 독성 영향은 나타났다. 수영 후 2
시간 동안 제브라피쉬 배아의 125000 mg/L/kg의 BPA에
5일간(118시간) 노출되었을 때 독성이 증가하였고, 성체
뇌부들이 62.9418 mg/L/kg의 BPA에 10일간 노출되었을
때 Cardioisma index(CSI = 100 x 심장 무게계수)가 증가하면서 심장 비대가 관찰되었다. 25

어류와 양서류가 5 mg/L/kg 이하로 비교적 저농도의
BPA에 20일 이상 장기간 노출되었을 경우에도 마찬가지
로 독성 영향이 나타났다. 제브라피쉬는 5 mg/L/kg의 BPA
에 21일간 지속적으로 노출되었을 때 몸 중량 지수
(Hepatosomatic index, 이하 HIS = 100 x 간 무게계수)가
증가하면서 간이 비대화였다. 26

군지어의 경우, 0.1042 mg/L/kg의 BPA에 30일간 노출되었을 때 난세포의 구성
이 변화되어 난소 무게가 감소하는 등 생식 기관에
변화가 나타났다. 27

그러나 연구와 관련된 예계는 성별에 따라 BPA에 대한 민
감도가 달라질 수 있음을 보여준다. 2년 된 수컷 제브라
피쉬의 경우, 15.8730 mg/L/kg의 BPA에 3주간 노출되었을 때 생식소·계수 지수(Gonadosomatic index, 이하 GSI
= 100 x 생식선 무게계수)가 증가하고 과다 내에서 정체
포가 지속되는 면역이 감소하는 등 생식계의 변화가 나타
났다.27 이에 비해 암컷 제브라피쉬는 같은 기간 5 mg/L/
kg의 BPA에서도 간중량지수(HIS)가 증가하는 등 수컷에
비해 BPA에 좀 더 민감하게 반응하였다.28 이러한 경향은
군조어에서도 유사하게 나타났다. 5.2083 mg/L/kg의 BPA
에 3개월 된 수컷 군조어가 30일간 노출되었을 경우 과
관의 무게와 생식소·계수 지수(GSI)가 감소하는 등 과관
조직에 문제가 나타나면서 정구 생성이 감소되었다. 이에
비해 3개월 된 양컷 군조어의 경우에는 같은 기간 동안
0.1042 mg/L/kg의 BPA에 노출되는 것만으로도 난소 무게
가 감소하여 감소한 난모세포의 발달이 악화되었다.29

한편, 세대간 영향을 살펴본 연구는 비슷한 농도의 BPA
에 단기간 노출된 라틴어와 그것이 수명 점진적 모체
일 경우에는 새끼에 치명적인 영향이 나타날 수 있음을
보여준다. 2개월 된 암컷 종사리가 21일간 15 mg/L/kg의
BPA에 노출시킨 후 과다 내의 수요를 때, 유온은 짧은
기간이 정상적으로 이루어지지 않았고, 양의 크기가 감소
하는 등 단기간에 형태학적 변화가 나타났다.30 또한 3개
월 된 종사리는 2주간 배양하고 24.5902 mg/L/kg의 BPA
에 2개월간 노출시킨 후 수요를 때, 양의 개수와 적
경이 유의하게 감소했고, 성체가 되었을 때도 난모세포의
구성이 바뀌는 등 그 영향이 지속되었다.31

3.2. 어류와 양서류에 대한 생리학적, 인지신경학적
특성 영향의 비교·분석

송사리와 봉봉어에 관한 실험은 고령의 개체가 성장
적으로 더 높은 농도의 BPA에 노출될 때 생리학적 영향
이 나타나는 데 비해, 지연령의 개체는 더 높은 농도의 BPA
에서도 독성 영향이 나타날 수 있을음을 보여준다. 5개월 된
상해 종사리의 경우, 15 mg/L/kg의 BPA에 1주일간 노출되
었을 때 유전자 발현의 변화로 중심조절(Triglyceride) 수
치가 증가하면서 간에 지질 축적과 이상양질혈증의 가
능성이 높아졌다.32 6개월 된 성체 봉봉어도 15 mg/L/kg
의 BPA에 1주일간 노출되었을 때 세르otonin 세포의 두
과가 증가하여 정과의 영양과 함께 염증세포의 활동
이 발 생하였다.33 이에 비해 2주 된 종사리는 더 낮은 농도인
9.0909 mg/L/kg의 BPA에 같은 기간 노출된 것만으로도
산화스트레스가 증가하면서 면역 체계가 악화되었다.34

이러한 경향은 봉봉어에서도 유사하게 나타났다. 제층
이 40g가량 나가는 성체 봉봉어의 경우, 62.9418 mg/L/kg
의 BPA에 노출되었을 때 산화스트레스 수치가 크게 증
가하는 모습을 보였다.35 이에 비해 3개월 된 어린 봉
봉어 수컷의 경우에는 더 낮은 농도인 5.2083 mg/L/kg
의 BPA에 노출되었을 때 레이디어 세포가 사멸하면서 수컷
호르몬인 안도로젠 수치가 떨어지고 과다 내 정구 생성
에 문제가 발생했다.36 비슷한 연령의 암컷 봉봉어는
| Species                        | Morphological and anatomical effects of bisphenol A (BPA) in fishes and amphibians                                                                 |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                              | Table 1.                                                                                                                              |

| Species                        | Age (treated), Body weight, Sex | Age (observed), Sex | BPA concentration (µg/L) (duration, method of administration) [minimum toxic concentration/ body weight (mg/L/kg)] | (General/Transgenerational) effects                                                                 |
|-------------------------------|---------------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Minnow (Gobiocypris rarus)    | A (5 months), 1 ± 0.3 g, M      | A (5–6 months), M  | 15 (1, 3, 5 weeks, half of the water renewed daily) [15]                       | (G) Liver became a little whiter and cell arrangement became loose.19                                     |
|                               |                                 |                    |                                                                                 | (T) Size and number of eggs reduced significantly, and malformation was observed, but eggs from parents with more than 2 months of recovery before mating showed no effect.20                                |
|                               |                                 |                    |                                                                                 | (T) Vitellogenic oocytes decreased, and cortical alveolar oocytes increased in ovaries.21                 |
|                               | A (3 months), 0.61 ± 0.05 g, M/F| Em, M/F            | 15 (2 months, half of the water renewed daily, dissolved in DMSO) [24.5902]   | (G) BPA reduced body weight.29                                                                        |
|                               |                                 |                    |                                                                                 | (T) Egg diameter and bone size decreased. Malformation and developmental defects increased.30         |
|                               | A (5 months), F                  |                    |                                                                                 | (T) Vacuolization occurred in the cytoplasm of hepatic cells.30                                        |
|                               |                                 |                    |                                                                                 |                                                                                                       |
| X. laevis Y (Stage 5276), 0.3 ± 0.1 g, M/F | Y (stage 5476), M/F | 22.829 (5 days, renewed every day, dissolved in DMSO) [393.6034] | (G) Epithelial folds emerged in intestine.38                                                          |

1 When the age of exposed parents was not specified in the journal article, we marked it as ‘adult’ in the age column.
2 When the exact age or body weight of the experimental animals were not specified, we inferred it from cited academic articles.
3 BPA concentrations were rounded to four decimal places and numbers of experimental animals’ body weight were rounded to two decimal places.
4 BPA was administered daily except where some other period is stated. When BPA was administered periodically, instead of daily, the duration of administration was recorded.
5 Both the actual BPA concentration used in each experiment and the calculated figures (BPA concentration/average body weight of the experimental animal) were written together in the BPA concentration column.
6 Molar concentration (mol/L) was converted into mass concentration (µg/L).
7 General administration; T: transgenerational administration; Em: embryo; Y: young; A: adult; dpf: days post fertilisation; hpf: hours post fertilisation; DMSO: dimethyl sulfoxide.
| Species                  | Age (treated), Body weight, Sex | Age (observed), Sex | BPA concentration (mg/L) (duration, method of administration) [minimum toxic concentration/body weight (mg/L/kg)] | (General/Transgenerational) Effects                                                                 |
|-------------------------|---------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| **Minnow (Gobiocypris rarus)** |                                 |                     |                                                                                                              |                                                                                                     |
| Minnow                 | Y (2 weeks), 0.105 g, M/F Y (3 weeks), M/F | 1, 225, 1000 (7 days, half of the water daily replaced) [9.0909] | (G) Oxidative stress suppressed the immune system of fish larvae.                                             |
|                        | A (5 months), 1 ± 0.3 g, M A (5~6 months), M | 15 (1, 3, 5 weeks, half of the water daily replaced) [15] | (G) Upregulated levels of triglyceride induced lipid accumulation in the liver.                                |
|                        | A (6 months), 1 g^{27}, M A (6~7 months), M | 15 (1, 3, 5 weeks, half of the water daily replaced) [15] | (G) Congestion of blood vessels and infiltration of inflammatory cells occurred, but not until after 35 days. The permeability of the Sertoli cell (SC) barrier increased. BPA disturbed the expression of SC junction proteins. |
| Zebrafish (Danio rerio) |                                 |                     |                                                                                                              |                                                                                                     |
| Em (2 hpf)             | Y (larvae, 120 hpf), M/F        | 1, 100 (118 hours, renewed every 12 hours, dissolved in DMSO) [12500] | (G) BPA affected the reproductive neuroendocrine system by regulating gene expression.                         |
|                        | A (1 year), 0.63 ± 0.07 g^{27}, M | 10, 20 (3 weeks, dissolved in 100% ethanol) [15.8730] | (G) Changes in endocannabinoid system (ECS) related genes’ transcript levels were observed.                   |
|                        | A (1 year), 1 ± 0.16 g^{27}, F  | 10, 20 (3 weeks, dissolved in 100% ethanol) [10] | (G) Changes in ECS’s lipid mediators affected the reproductive function of the ovary.                       |
|                        | A, 1 ± 0.16 g^{27}, F           | 5, 10, 20 (3 weeks, renewed 4 days) [5] | (G) BPA interrupted lipid metabolism which increased the total lipid concentration in the liver. BPA increased the ratio of oocytes in the vitellogenic stage at low concentrations. |
| Goldfish (Carassius auratus) |                                 |                     |                                                                                                              |                                                                                                     |
| Y (3 months), 9.6 ± 0.78 g, M | A (4 months), M                 | 50, 500 (30 days) [5.2083] | (G) Apoptosis of Leydig cells led to a decrease in androgen levels and disruption of testicular spermatogenesis. |
| Y (3 months), 9.6 ± 0.78 g, F | A (4 months), F                 | 1, 50, 500 (30 days) [0.1042] | (G) Changes in hypothalamic-pituitary-gonad (HPG) axis-related genes led to immaturity of reproductive organs. |
| A, 36.27 ± 7.69 g, M/F  | A, M/F                          | 228.29, 5707.25 (10 days, renewed every day, dissolved in dechlorinated and carbon filtered tap water) [62.9418] | (G) Oxidative damage increased significantly.                                                               |
|                        |                                 |                     |                                                                                                              |                                                                                                     |
Table 2. Continued.

| Species                        | Age(treated), bodyweight, Sex | Age(observed), Sex | BPA concentration (mg/L) (duration, method of administration) [minimum toxic concentration/bbody weight(mg/L/kg)] | (General/Transgenerational) Effects |
|--------------------------------|------------------------------|-------------------|-----------------------------------------------------------------|-------------------------------------|
| Bighead Carp (Hypophthalmichthys nobilis) | Y, 162.5 ± 12.5 g, M/F Y, M/F | 1000, 1500 (30, 45, 60 days, mixed in ethanol; 6.1538) | (G) Severe changes in behavioural signs were observed, and oxidative stress increased. Lower rate of antioxidant enzymes was observed. DNA damage occurred in blood lymphocytes, hepatocytes, brain, gill, and kidney tissues.20 | |
| Xenopus laevis                  | Y (stage 5274), 0.3 ± 0.1 g75 | 2.2829, 22.829, 228.29 (1 day, dissolved in DMSO; 7.6097) | (G) BPA induced agonistic activity of glucocorticoid signalling by upregulating gene expression.39 | (G) BPA disrupted Notch signalling which disturbed the intestinal development of individuals.38 |

1 When the age of exposed parents was not specified in the journal article, we marked it as ‘adult’ in the age column.
2 When the exact age or body weight of the experimental animals were not specified, we inferred it from the cited academic articles.
3 BPA concentrations were rounded to four decimal places and numbers of experimental animals’ body weight were rounded to two decimal places.
4 BPA was administered daily except where some other period is stated. When BPA was administered periodically with a specific period, instead of daily administration, the duration of administration was recorded.
5 Both the actual BPA concentration used in each experiment and the calculated figures (BPA concentration/average body weight of the experimental animal) were written together in the BPA concentration column.
6 Molar concentration (mol/L) was converted into mass concentration (μg/L).
7 The 1st young minnow’s body weight is the control’s weight after seven days.
8 G: general administration; T: transgenerational administration; Em: embryo; Y: young; A: adult; hpf: hours post fertilisation; DMSO: dimethyl sulfoxide

Table 3. Morphological and anatomical effect of bisphenol A (BPA) in birds and mammals

| Species                        | Age (treated), Sex | Age (observed), Sex | BPA dose (mg/kg) (duration, method of administration) | (General/Transgenerational) Effects |
|--------------------------------|-------------------|-------------------|-------------------------------------------------------|-------------------------------------|
| Japanese quail                 | Y (3 weeks), M A (12 weeks), M | 1, 5, 10 (once a week for three weeks, dissolved in corn oil and intraperitoneally injected) | (G) Malformation of testicles was found. BPA interrupted the histological development of the testis.32 | |
| Y (3 weeks), F A (8, 10, 12, 14 weeks), F | 0.9560, 9.5602 (every other day for ED 10.5~18.5, injected) | (G) Body weight and weight of reproductive organs increased.33 | (T) Quality (such as shell thickness and shape index) decreased.30 |
| Hyline chicken                 | Em (ED 10.5), 52.3 g egg Em (ED 15.5, 15.7, 18.5), F | 0.9560, 9.5602 (every other day for ED 10.5~18.5, injected) | (G) The ovarian cortex became thicker, and the size of the germ cell cyst in the ovary increased.43 | |
| Kadaknath chicken             | A (25 weeks), M A (32 weeks), M | 5 (7 weeks, dissolved in DMSO, orally administered) | (G) A significant difference in the total body weight was not observed, but the maximum increase of body weight was higher.40 | |
| CD-1 mice                     | Y (new-born), F Y (2 weeks parturition), F | 0.05, 10 (every 3 days for 60 days, dissolved in 100% ethanol and diluted in corn oil, subcutaneously injected) | (G) Females’ body weight remained high after parturition.48 | |
| Species          | Age (treated), Sex | Age (observed), Sex | BPA dose (mg/kg) (duration, method of administration) | (General/Transgenerational) Effects |
|------------------|--------------------|--------------------|-------------------------------------------------------|-----------------------------------|
| Pzh:Sfis mice   | Y (4.5 weeks), M   | A (8~9 weeks), M   | 10, 20 (8 weeks, dissolved in 70% ethyl alcohol, administered in drinking water) | (T) Skeletal anomaly increased dose-dependently.  
                                                                          |                                                 | 40)                                             |
| Kunming mice    | A (10 weeks), F    | Y (PND 21), F      | 2.5, 5, 10, 20, 40 (GD 0.5~17.5, dissolved in corn oil and intragastrically administrated) | (T) The ratio of weight of uterus or ovary to body weight increased at low doses.  
                                                                          |                                                 | 47)                                             |
|                  |                    | Y (PND 56), F      | 0.1 (60 days, gavaged)                                | (G) More weight gain, darker fur colour, DNA fragmentation in aorta cells, and irregular thoracic aorta formation were observed.  
                                                                          |                                                 | 48)                                             |
| Wistar rat      | A (10 weeks), F    | Y (PND 1), M/F     | 0.05, 5 (GD 3~18, dissolved in corn oil and orally administered) | (T) Brain and liver weight decreased, and body weight increased in both sexes.  
                                                                          |                                                 | 59)                                             |
|                  |                    | Y (PND 21), M/F    |                                                     | (T) Female individual's body weight increased, but the weight of the heart and kidney decreased.  
                                                                          |                                                 | 59)                                             |
|                  |                    | Y (PND 60), M/F    |                                                     |                                                 | 59)                                             |
| Wistar albino rat| A (3 months), M    | A (about 6 months), 50, 500, 1000 (90 days, diluted in olive oil and orally administered) | (G) Dose-dependent degeneration in germinal layer of seminiferous tubule was observed. Leydig cells degenerated and intertubular space increased  
                                                                          |                                                   | 60)                                             |
| NCTR CD-SD rat  | A (10~14 weeks), F | Y (PND 1), M       | 0.0025, 0.025, 0.25, 2.5, 25 (GD 6~21(parturition), gavaged) | (T) Body weight increased. Urethra length and urothelium thickness decreased. Angle of colliculus changed, and the shape and size of urethra varied.  
                                                                          |                                                   | 66)                                             |
| Sprague Dawley rat| A (4~7 months), F | Fe                 | 0.5, 5, 50 (GD 1~20, dissolved in corn oil and intraoperitoneally injected) | (T) Bone length and ossification area decreased in extremity bones as BPA dose increased. BPA negatively affected bone metabolism and development  
                                                                          |                                                   | 59)                                             |
| Suffolk sheep   | A (2~3 years), F   | A (2~3 years), F   | 0.5 (GD 30~65, dissolved in corn oil and subcutaneously injected) | (G) The number of placentomes in first stage increased and body weights of fetus (embryo) decreased but not in gestation day 90.  
                                                                          |                                                   | 65)                                             |
|                  | A (2~3 years), F   | A (22 month), F    | 0.5 (GD 30~90, dissolved in corn oil and subcutaneously injected) | (T) Lower lung weight was observed. The ratio of kidney to body weight decreased  
                                                                          |                                                   | 66)                                             |
| Landrace x Yorkshire pig | A (pregnant, 211.63±2.65 kg), F | A, F | 0.5623 (GD 1~115, orally administered (average 119 mg per day)) | (G) Placental tissue integrity decreased, and trophoblastic cells of the placenta showed slight cavitation. Placental and litter weights increased.  
                                                                          |                                                   | 66)                                             |
|                  |                    | Y (S), M/F         |                                                     | (T) Birth weight increased.  
                                                                          |                                                   | 66)                                             |
|                  | A (pregnant, 221.14±2.57 kg), F | Y (S), M/F | 0.5381 (GD 1~115, orally administered (average 119 mg per day)) | (T) Dressing percentage and weight of fat around kidneys increased. Colour of muscle changed.  
                                                                          |                                                   | 65)                                             |

1 When the age of dosed parents was not specified in the journal article, we marked it as ‘adult’ in the age column. Egg weight of Hyline chicken was inferred from the cited academic article.
2 BPA doses were rounded to four decimal places and numbers of experimental animals’ body weight were rounded to two decimal places.  
3 BPA was administered daily except where some other period is stated. When BPA was administered periodically, instead of daily, the duration of the administration was recorded.  
4 Both the actual BPA dose used in each experiment and the calculated figures (BPA dose/average body weight of the experimental animal) were written together in the BPA dose column.  
5 M: male; F: female; Fe: fetus; Em: embryo; S: before suckling; Y: young; A: adult; G: general effect; T: transgenerational effect; PND: postnatal day; ED: embryonic day; GD: gestation day; DMSO: dimethyl sulfoxide
Table 4. Physiological and neurocognitive effects of bisphenol A (BPA) in birds and mammals

| Species                | Age (treated), Sex | Age (observed), Sex | BPA dose (mg/kg) (duration, method of administration) | (General/Transgenerational) Effects                                                                 |
|------------------------|-------------------|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Japanese quail         | Y (3 weeks), M    | A (12 weeks), M    | 1, 5, 10 (once a week for three weeks, dissolved in corn oil and intraperitoneally injected) | (G) Male reproductive capacity was decreased by effects on sperm mobility, foam formation, sperm formation, and the amount of semen.52 |
|                        | Y (3 weeks), F    | A (8, 10, 12, 14 weeks), F |                                                      | (G) Puberty and the initiation of egg production were delayed. Higher estradiol concentrations were observed.50 |
| Hylâline chicken       | Em (ED 10.5, 52.3 g) egg weight76, F | Em (ED 12.5, 15.5, injected) | 0.9560, 9.5602 (every other day for ED 10.5–18.5, injected) | (G) BPA changed the hypomethylation of estrogen receptor β (ERβ) signalling pathways, which encouraged meiosis and ovarian germ cell development of oocytes.49 |
| Kadaknath chicken      | A (25 weeks), M   | A (32 weeks), M    | 1, 5 (7 weeks, dissolved in DMSO and orally administered) | (G) In the low dose group alone BPA affected semen testosterone level and sperm characteristics (semen quantity, sperm concentration) without altering its fertilizing ability.49 |
| CD-1 mice             | Y (new-born), M/ F | Y (PND 60, 90), M/F | 0.05, 10 (every 3 days for 60 days, dissolved in 100% ethanol and diluted in corn oil, subcutaneously injected) | (G) Sperm count decreased. The content of estrogen (E2) in plasma increased. In males E2 level increased only in the high dose group.49 |
| Swiss mice            | Y (3 weeks), M/F  | Y (PND 60), M/F    | 5 (40 days, dissolved in canola oil and intragastrically administrated) | (G) Defects in object recognition memory were observed. Female individuals had defects in spatial memory and male individuals had defects in passive avoidance. Glutamate uptake and levels of N-Methyl-D-aspartate (NMDA) receptor subunits in the cortex and hippocampus decreased, sex-dependently.49 |
|                       | Y (4 weeks), M    | Y (12 weeks), M    | 0.0005, 0.05, 5 (8 weeks, dissolved in tea oil and orally injected) | (G) The rate of DNA-damaged brain cells increased dose-dependently.40 |
|                       | A (10 weeks), F   | A (10–13 weeks), F | 5, 10, 20, 40 (GD 0.5–17.5, dissolved in corn oil and intragastrically administrated) | (G) The abortion rate increased.47 |
| Kunming mice          | A (10 weeks), F   | Y (PND 21), F      | 2.5, 5, 10, 20, 40 (GD 0.5–17.5, dissolved in corn oil and intragastrically administrated) | (T) BPA altered the expression of apoptosis-related proteins. The plasma and ovarian content of sex hormone and its receptors changed. The number of follicles increased dose-dependently.47 |
|                       | Y (PND 56), F     |                                                                | (T) The expression and transcript levels of apoptosis-related proteins changed. The content and transcript levels of sex hormone receptors changed.47 |
| C57BL/6J mice         | A (8 weeks), M    | A (16–17 weeks), M | 0.04, 0.4 (60 days, dissolved in corn oil and orally administered) | (G) Motor skills, coordination and balance declined. Myelin and axonal degeneration occurred in the oligodendrocyte.52 |
| Pzh:Sf1s mice         | Y (4.5 weeks), M  | A (8–9 weeks), M   | 5, 10, 20 (8 weeks, dissolved in 70% ethyl alcohol and intragastrically administrated) | (T) Sperm mortality decreased and average male to female ratio changed.48 |
| OF-1 mice             | A (pregnant), F   | Y (PND 30), M      | 0.01, 0.1 (GD 9–16, dissolved in corn oil and subcutaneously injected) | (T) BPA changed pancreatic function related to all-trans-retinoic acid (ATRA) metabolism. Also, BPA altered the progress of glucose metabolism.51 |
Table 4. Continued.

| Species                        | Age (treated), Sex | Age (observed), Sex | BPA dose (mg/kg) (duration, method of administration) | (General/Transgenerational) Effects |
|-------------------------------|-------------------|--------------------|---------------------------------------------------|-----------------------------------|
| Wistar rat                    | Y (PND 25), M     | A (PND 85), M     | 0.1 (60 days, gavaged)                             | (G) Experimental animals became more aggressive, irritated, and showed piloerction. More reactive oxygen species (ROS) induced higher blood pressure and lower vascular reactivity. Reactivity towards acetylcholine declined.56 |
|                               | A (7 weeks), M    | A (11–12 weeks), M| 0.5, 5, 50 (30 days, dissolved in ethyl alcohol and diluted in sesame oil, orally administered) | (G) Levels or folding of protein and phosphoprotein, related to hepatotoxicity, fatty liver, and carcinoma, changed in low dose. BPA induced liver’s oxidative stress.57 |
|                               | Y (PND 1), M/F   | 0.05, 5           | (GD 3–18, dissolved in corn oil and orally administered) | (T) Transcript factors and hepatic proteome changed. BPA inhibited male’s androgen receptor (AR). Transcriptome pathway was enriched and hepatic transcriptome changed.59 |
|                               |                   |                   |                                                   | (T) Masculinization of hepatic transcriptome was observed. Hepatic proteome changed and the transcriptome pathway was enriched.59 |
|                               |                   |                   |                                                   | (T) Plasma cholesterol levels changed.60 |
| Albino rat                    | A (8 weeks), M    | A (14 weeks), M   | 50 (3 days a week for 42 days, dissolved in corn oil and orally gavaged) | (G) Decreases in acetylcholine esterase (AChE) activity and cognitive performance ability were observed. Hippocampus showed oxidative stress and neuronal apoptosis.55 |
| NCTR-SD rat                   | A (pregnant), F   | Y (PND1), M/F     | 0.0025, 0.025, 0.25, 2.5, 25 (GD 6–21(parturition), orally administered) | (T) Sex-specific estrogen receptor expression, transcription, and oxytocin expression were observed at the hypothalamus and hippocampus.50 |
|                               |                   |                   |                                                   | (T) BPA altered the transcriptome of neonate amygdala; more so in female individuals. Also, BPA interfered with the signalling pathways of vasopressin, oxytocin, synaptic organization, and transmission in the developing brain.54 |
| Suffolk sheep                 | A (2–3 years), F  | A (2–3 years GD 65), F | 0.5 (GD 30–65, dissolved in corn oil and subcutaneously injected) | (G) Placental efficiency was reduced but not in gestation day 90. Increased inflammation, oxidative stress and decreased insulin-like growth factor (IGF) bioavailability were observed.70 |
|                               |                   | A (2–3 years GD 90), F | 0.5 (GD 30–90, dissolved in corn oil and subcutaneously injected) | (G) BPA delayed the response to antioxidants which negatively affected placental function. Triglyceride and collagen accumulation occurred at the placenta but not in gestation day 65.70 |
|                               |                   | A (22 months), F  |                                                   | (T) Atrial natriuretic peptide (ANP) increased in the left and right ventricles.68 |
|                               | A (2–5 years), F  | A (21 months), F  | 0.05, 0.5, 5 (GD 30–90, dissolved in corn oil and subcutaneously injected) | (T) Increased oxidative stress was observed. The expression of estrogen receptors increased in visceral adipose tissues.67 |
| Piétrain x Duroc pig          | Y (8 weeks), F    | Y (12weeks), F    | 0.05, 0.5 (28 days, orally administered in capsule form) | (G) The number of neurons, and immunoreaction changed in the duodenum.62 The neurochemical characteristics of uterine sympathetic nerves changed.63 |
Table 4. Continued.

| Species                  | Age (treated), Sex | Age (observed), Sex | BPA dose (mg/kg) (duration, method of administration) | (General/Transgenerational) Effects |
|-------------------------|-------------------|---------------------|------------------------------------------------------|------------------------------------|
| Landrace x Yorkshire pig | A (pregnant, 211.63±2.65 kg), F | A, F | 0.5387 [GD 1–35, orally at diet (average 114 mg BPA every day)] | (G) Catalase activity declined which increased oxidative stress in sows.56 |
|                         |                   |                     | 0.5623 [GD 1–115\textsuperscript{30} orally administered (average 119 mg per day)] | (T) Increased oxidative stress was observed.56 |
|                         |                   | Y (S), M/F          | 0.5381 [GD 1–115\textsuperscript{30} orally administered (average 119 mg per day)] | (T) The muscle content of glycogen and lactate increased, as did lactate dehydrogenase (LDH) activity.55 |

\textsuperscript{1} When the age of exposed parents was not specified in the journal article, we marked it as ‘adult’ in the age column. Egg weight of Hyline chicken was inferred from the cited academic article.

\textsuperscript{2} BPA doses were rounded to four decimal places and numbers of experimental animals’ body weight were rounded to two decimal places.

\textsuperscript{3} BPA was administered daily except where some other period is stated. When BPA was administered periodically with a specific period, instead of daily administration, the duration of administration was recorded.

\textsuperscript{4} Both the actual BPA dose used in each experiment and the calculated figures (BPA dose/average body weight of the experimental animal) were written together in the BPA dose column.

\textsuperscript{5} M: male; F: female; Fe: fetus; ED: embryonic day; Em: embryo; S: before suckling; Y: young; A: adult; G: general effect; T: transgenerational effect; PND: postnatal day; GD: gestation day; DMSO: dimethyl sulfoxide
0.1042 mg/L/kg의 BPA에 노출되는 것만으로도 시상하부-뇌하수체-생식호르몬축의 (Hypothalamus-pituitary-gonad, HPG) 활성과 관련된 유전자에 변화가 나타나면서 생식기관의 발달이 저해되었다.36) 한편, 어류는 비교적 고농도의 BPA에 단기간 노출되거나 비교적 저농도의 BPA에 더 오랜 기간 노출되었을 때 생리학적 독성 영향이 나타났다. 수정 후 2시간 된 제브라피쉬 배아는 태아 5일간 (118시간) 12500 mg/L/kg의 BPA 노출되었을 때 유전자 발현의 변화로 생식신경 내 분비체계에 문제가 생겼다.29) 성체 금붕어는 비교적 고농도인 62.9418 mg/L/kg의 BPA에서 10일간 노출되었을 때 산화적 손상 (Oxidative damage)이 증가하였다.35) 반면, 성체 제브라피쉬는 비교적 저농도인 5 mg/L/kg의 BPA에 3주간 꾸준히 노출되었을 때 지방산의 합성과 중성지방의 저장이 증가하면서 지질 대사에 문제가 일어났다.30) 그 리고 금붕어가 비교적 저농도인 0.1042 mg/L/kg의 BPA에 30일간 노출되었을 때도 생식학적 변화가 나타났다.36) 한편, 제브라피쉬와 금붕어에 관한 연구는 어류의 성별에 따라 BPA에 대한 저항이 달라질 수 있음을 보여 준다. 1년 된 수컷 제브라피쉬는 15.8730 mg/L/kg의 BPA에 3주간 노출되었을 때 심리적, 생리적 기능을 조절하는 데 영향을 미치는 체내 카나비노이드체계 (Endocannabinoi d system, 이하 ECS) 관련 유전자의 전사 수준에 변화가 관찰되었다.36) 이에 비해 암컷 제브라피쉬는 더 낮은 농도인 10 mg/L/kg의 BPA에 노출되었을 때 ECS의 지질 매개체에 변화가 나타나면서 난소의 생식 기능에 이상이 생겼고, 난모세포의 유전자 페어비가 증가했다.37) 금붕어의 경우에도 암컷과 수컷의 BPA에 대한 민감도가 달랐다. 수컷 금붕어는 5.2083 mg/L/kg의 BPA에 30일간 노출되었을 때 레이디히 세포 사멸과 함께 고환 내 정자 생성에 문제가 생겼다.38) 하지만, 암컷 금붕어는 동일한 기간 더 낮은 농도인 0.1042 mg/L/kg의 BPA에 노출되는 것만으로도 생식 기관의 발달에 문제가 나타났다.36) 3.3. 조류와 포유류에 대한 형태학적, 해부학적 독성 영향의 비교·분석 조류와 포유류의 경우 대체적으로 저연령동물 수컷은 얇은 양의 BPA에 단기간 노출되는 경우에도 다양한 형 태학적, 해부학적 영향이 나타났다. 닭의 경우, 성체 Kadaknath chicken 수컷에 49일 동안 5 mg/kg의 BPA를 투여했을 때 동체 크기에 비해 즙체량 (Weight gain)이 제한  

Fig. 1. Minimum bisphenol A (BPA) concentration and exposure period that evoked morphological and anatomical effects in fishes and amphibians. The x-axis is listed in order of fishes (minnow, zebrafish, goldfish, bighead carp) and amphibians (Xenopus laevis). Individual species are arranged according to their weight, size, and evolutionary relationships among vertebrates. The age of the exposed parent is expressed by the colour of the bar graph, and the age of the offspring is written beside the name of the species (Em: embryo, Y: young, A: adult). The left y-axis represents the log scale of the minimum BPA concentration that evoked the effect, and the right y-axis represents the lowest exposure period that induced toxic effects. The sex of each experimental animal is in brackets next to the name (M: male, F: female). The third zebrafish was randomly arranged at the end because no age and size was specified in the journal article.
척추동물군별 Bisphenol A의 독성 영향 비교 분석: 2015-2021년 연구를 중심으로

우 높았지만 전체 제중의 변화는 유의하지 않았다. 반면, Hyline chicken의 배아에 0.9560 mg/kg의 BPA를 2일 이상 투여했을 때는 난소의 피질이 두꺼워지고 난소 내 생식세포 난종이 커지는 등 곤마로 형태학적 변화가 나타났다. 

이러한 경향도 어린 Wistar rat과 성체인 Wistar albino rat을 비교한 연구에서도 유사한 방식으로 나타났다. 성체 Wistar albino rat에 90일동안 50 mg/kg의 BPA를 투여한 결과, 세정관 생식세포층이 퇴화되는 등 조직해부학적인 변화가 관찰되었다. 반면, 25일 된 어린 수컷 Wistar rat에 0.1 mg/kg의 BPA를 60일 동안 투여했을 때는 제중이 증가하고 털 색깔이 어두워지는 등 신체 특징에 변화가 나타났다. 이는 신체에 많은 양의 BPA에 오랜 기간 노출되어야 형태해부학적 영향이 나타나는 데 비해, 어린 개체의 경우 그보다 작은 양에 충분한 기간 동안 노출되어도 형태해부학적 영향이 나타나기 보다 걸리다. 또한 어린 개체의 경우 외과적 유연관계가 가깝거나 제중이 높아서 많은 양의 BPA에 오랜 기간 노출되어야 조직·해부학적 독성이 나타나기 시작한다. 설처류의 경우, 독성 효과가 나타나는 데는 60일 동안 3일에 한 번 0.05 mg/kg를 투여한 CD-1 mice보다 제중이 더 많이 나타나는 Wistar rat과 Wistar albino rat의 투여 기간 및 투여량이 더 높았다. 또한, 닭보다 제중이 적게 나타나는 Japanese quail은 1 mg/kg를 21일간 투여했을 때 제중 증가가 관찰되었다. 습성량이 적게 나타나는 Suffolk sheep과 Landrace × Yorkshire pig를 비교할 때도 마찬가지로 나타났다. 임신한 Landrace × Yorkshire pig에 115일간 0.5623 mg/kg의 BPA를 투여했을 때, 태반 조직의 완전성(Integrity)이 감소하고 태반의 영양막세포가 미세하게 공동화(Cavitation)되는 등 모체의 자궁 내 변화가 관찰되었다. 이에 비해 제중이 더욱 높아지는 Suffolk sheep의 경우에는 임신한 35일간 0.5 mg/kg의 BPA를 투여한 것만으로도 첫 번째 단계의 태반 수가 감소하고 태아의 무게가 감소하는 등 모체와 자궁 내 태아에 변화가 관찰되었다.

Fig. 2. Minimum bisphenol A (BPA) concentration and exposure period that evoked physiological and neurocognitive effects in fishes and amphibians. The x-axis is listed in order of fishes (minnow, zebrafish, goldfish, bighead carp) and amphibians (Xenopus laevis). Individual species are arranged according to their weight, size, and evolutionary relationships among vertebrates. The age of the exposed parent is expressed by the colour of the bar graph, and the age of the offspring is written beside the name of the species (Em: embryo, Y: young, A: adult). The left y-axis represents the log scale of the minimum BPA concentration that evoked the effect, and the right y-axis represents the lowest exposure period that induced toxic effects. The sex of each experimental animal is in brackets next to the name (M: male, F: female). The fourth zebrafish was randomly arranged at the end because no age and size was specified in the journal article.
실험동물의 체중에 따라 BPA에 대한 저항성이 달라지는 경향은 모체로부터 새끼에게 전달되는 세대간 영향을 살펴본 연구에서도 마찬가지로 나타났다. 200 kg이 넘는 Landrace × Yorkshire pig의 경우에는 임신 중반부터 60일간 0.5 mg/kg의 BPA를 투여할 때도 지방 함량, 근육 색깔, 출생 시 체중 등에 변화가 나타나지 않았다.65,66) 이에 비해 80 kg이 넘는 암컷 Suffolk sheep의 경우에는 임신 중반부터 60일간 0.5 mg/kg의 BPA를 투여하는 것만으로도 다음 세대의 폐와 체중 대비 신장의 무게가 감소하였다.68) 이는 체중이 적게 나가는 개체의 경우, 상대적으로 빡은 기간동안 비교적 적은 양의 BPA에 노출되어도 조직학적, 해부학적 영향이 쉽게 나타날 수 있음을 보여준다.

한편, 다양한 실험 연구는 암수에 상관없이 임신 중이거나 사춘기 무렵에 무영향관용량(5 mg/kg) 이하의 작은 양이라도 BPA에 지속적으로 노출되었을 때 자궁 속 태아나 태어난 새끼에게 조직해부학적 영향이 나타날 수 있음을 보여준다. 임신 초기부터 17일간 매일 2.5 mg/kg의 BPA에 노출되었던 Kunming mice 암컷의 새끼는 태어난 지 21일자에 이미 체중 대비 자궁의 난소의 무게가 증가했고 56일자에는 난소가 위축되었다.47) Sprague Dawley rat의 경우, 암컷이 임신 초기에 20일간 0.5 mg/kg의 BPA에 노출되었을 때, 그 새끼는 태어난 단계에서부터 뼈의 길이와 골화 부위가 줄었고, 뼈의 대사 및 발달에 좋지 않은 영향을 미쳤다.55) 특히, 임신한 NCTR CD-SD rat을 이용한 실험에서는 매우 적은 양인 0.0025 mg/kg의 BPA를 투여했을 때에도 임신 기간 중 지속적으로 노출시켰을 때 곤바로 갖 태어난 어린 새끼의 체중이 증가하고 무게가 길이 및 요로, 상피의 두께가 감소하는 등 해부학적 영향이 나타났다.56)

3.4. 조류와 포유류에 대한 생리학적, 인지신경학적 특성 영향의 비교 분석
조류와 포유류의 경우, 대체적으로 자연환경수록 더 적은 양의 BPA를 비교적 단기간 투여하면 생리학적, 인지신경학적 영향이 나타나기 시작한다. Hylie chicken의 배아에 0.9560 mg/kg의 BPA를 2일에서 8일간 단기 투입한 경우 곤바로 난모세포의 감수분열에 영향이 나타났다.41) 하지만, 25주된 Kadaknath chicken의 경우, 비슷한 농도(1 mg/kg)의 BPA를 7주간 투여한 결과 장기와 뇌의 공명영상 영향을 미칠 뿐 생식 능력 자체에는 변화가 없었다.42) 이러한 경향은 랜턴에서도 마찬가지로 나
Fig. 4. Minimum bisphenol A (BPA) dose and dosing period that evoked physiological and neurocognitive effects in birds and mammals.

The x-axis is listed in order of birds (quail, chicken) and mammals (mouse, rat, sheep, pig). Individual species are arranged according to their weight, size, and evolutionary relationships among vertebrates. The age of the dosed parent is expressed by the colour of the bar graph, and the age of the offspring is written beside the name of the species (Y: young, A: adult). The left y-axis represents the log scale of the minimum BPA dose that evoked the effect, and the right y-axis represents the least dosing period induced toxic effects. The sex of each experimental animal is in brackets next to the name (M: male, F: female). OF-1 mice and NCTR CD-SD rat were randomly arranged at the end because no age and size were specified in the journal article.

| Species | Dosing period (days) | Minimum BPA dose (mg/kg) |
|---------|----------------------|--------------------------|
| Quail   | 3                    | 0.05                     |
| Chicken | 5                    | 0.1                      |
| Mouse   | 7                    | 0.2                      |
| Rat     | 14                   | 0.4                      |
| Sheep   | 30                   | 0.5                      |
| Pig     | 60                   | 1.0                      |

*Note: The x-axis is listed in order of birds (quail, chicken) and mammals (mouse, rat, sheep, pig). Individual species are arranged according to their weight, size, and evolutionary relationships among vertebrates. The age of the dosed parent is expressed by the colour of the bar graph, and the age of the offspring is written beside the name of the species (Y: young, A: adult). The left y-axis represents the log scale of the minimum BPA dose that evoked the effect, and the right y-axis represents the least dosing period induced toxic effects. The sex of each experimental animal is in brackets next to the name (M: male, F: female). OF-1 mice and NCTR CD-SD rat were randomly arranged at the end because no age and size were specified in the journal article.*
따른 BPA의 영향을 확인하기 어려웠다.

3.5. 연구의 한계

본 연구는 분석된 논문들이 다루고 있는 실험 대상이 나 실험 방법, 실험 결과 등에서 나타나는 분명한 차이들로 인해 다양한 실험동물에 대한 BPA의 영향을 동일한 상에서 종합적으로 비교하는 데 한계를 지닌다. 현재 BPA가 생물체에 미치는 영향에 관한 연구는 대부분 특정 조건 하에서 한 종류의 개체에 국한해서 조사하고 있다. 따라서 다양한 생물체에 안전한 BPA의 농도 및 노출 기간 등은 명확하게 파악하고 특정 생물체에 특이적인 독성 효과 등을 파악하는 데 한계가 있다. 연구마다 다양한 실험동물이 사용되고 있으며, 동일한 종류의 개체인 경우에도 연구, 생명, 성별, 노동 및 방법, 부여 후 독성 효과 관찰 시기 등이 서로 다르다. 특히, 직접 투여 방법과는 달리 수중어에 간접 투여한 BPA의 농도를 비교하는 방식은 실험동물에 투여된 BPA의 농도를 일정하게 비교하는 데 한계가 있다. 또한 실험동물의 평균 체중은 평균하게 적정하지 않은 경우 다른 논문에 참조해 평균 체중을 추정하였는데, 개체의 체중이 매우 작은 경우에는 추정치의 미세한 변화에 따라 BPA의 농도에 상당한 차이가 발생할 수 있다. 실험동물의 체중을 명확하게 밝히지 않은 논문들이 많아 양서류의 경우 희박한 데이터를 확보하지 못한 것 역시 본 연구의 한계다.

이외에도 논문마다 확인하고자 하는 BPA의 독성 영향이 서로 달랐던 것이 비교 분석을 어렵게 했다. 본 연구에서 비교분석한 연구들은 생식학적 변화를 관찰한 연구부터 신체 내 내분비계의 변화나 신경학적, 생물학적 변화를 살펴보는 연구까지 연구의 조건이 다양하다. 또한, 모두로 부터 세로로 이어지는 체 있으나 일부 표본을 분석한 연구의 경우에도 실험 동물이 물론, 연구 방법 역시 다양하다. 사춘기 수컷에서 BPA를 투여한 후 수컷이 성체가 되었을 때 정상 암컷과 비교해 세포의 변화를 관찰하는 경우도 있지만, 암컷에게 수컷 전이 수컷 이하 특정 기간 동안 BPA를 투여해 독성 영향을 관찰한 경우도 있다. 서로 다른 조건 속에서 이루어진 연구를 동일조건에서 비교하는 데는 분명한 한계가 존재한다.

4. 결 론

본 연구는 다양한 한계에도 불구하고 여러 실험 동물에 대한 BPA 독성 효과를 최근 연구를 중심으로 동일적으로 비교-분석하고자 시도했다는 점에서 의미를 지닌다. 본 연구에서는 내 종류의 척추 동물군(어류, 양서류, 조류, 포유류)에 속하는 다양한 실험동물을 중심으로 BPA의 노출 및 투여 기간의 차이 등이 어떤 영향을 미치는지를 살펴보았으며, 실험동물의 생물체, 성별, 체중 등이 BPA의 독성 효과에 미치는 영향에 관해도 재문하였다. 독성 영향 역시 형태학적, 해부학적, 생물학적, 신경신경학적 영향을 모두 고려해 살펴보고자 했을 뿐만 아니라, 포유체, 노출된 BPA가 세기에 어떤 영향을 미치는지에 관한적으로 비교하고자 했다.

생물체가 안전한 BPA의 노출이나 노출 기간, BPA의 독성 효과로부터 안전한 실험체의 형질(연령, 성별, 생물체 내외) 특성을 나타낼 수 있는 독성 효과의 범위 등은 단순하게 파악될 수 있는 것이 아니다. 개별 생물체에 독성 효과가 나타나기 시작하는 BPA의 농도는 서로 달랐으며, 동일한 환경 내에서도 개체의 연령과 체중, 성별에 따라 독성 효과가 나타나는 BPA의 농도나 노출 기간은 각각 다르다. BPA로 인해 나타나는 독성 효과 역시 생물체의 조건과 BPA의 농도 등에 따라 다르게 나타난다. 어류와 양서류의 경우, 생물체가 고농도의 BPA에 단기간 노출되거나 노출되더라도 장기간 지속적으로 노출될 경우 다양한 형태 해부학적 영향이 나타났으며, 생식에 따라 BPA에 대한 만감도 차이를 보였다. 또한 어류의 경우, 개체의 연령이 어_slices 더 낮은 노출의 BPA에서도 생리학적, 신경신경학적 영향이 나타났다. 조류와 포유류의 경우에는 연령이 낮을수록 저농도의 BPA에 단기간 노출되더라도 다양한 형태학적, 해부학적, 생물학적, 신경신경학적 영향이 나타났다. 또한 체중이 적게 나머지 유물과의 반복적인 유연관계가 복잡해지는 경우, 저농도의 BPA에 단기간 노출되더라도 조직, 해부학적 영향이 크다. 조류와 포유류의 경우에는 BPA에 장기간 노출된 경우 인지신경학적 변화를 나타냈다. 이외에도 어류, 양서류, 조류, 포유류는 노출량이나 투여기간 수컷으로 수컷 및 성별의 변화를 나타냈다. BPA가 다양한 생물체에 미치는 영향과 조건 등을 명확하게 파악하기 위해서는 각각의 연구 결과가 서로 비교 가능할 수 있도록 연구자들이 실험 연구의 세부 조건들을 명확하게 밝히고 기존의 연구들과 서로 비교 가능할 수 있도록 일부 조건을 동일하게 맞춰 나가는 노력이 필요하다. 동일한 조건에서 두 가지 이상의 실험동물들을 대상으로 연구를 설계하는 것 역시 하나의 대체가 될 수 있을 것이다. 본 연구가 서로 비교 가능한 BPA 독성 연구를 설명하는 데 기여할 기기를 기대한다.
참고문헌

1. National Toxicology Program, https://www.niehs.nih.gov/research/supported/assets/docs/a_c/bpa_fact_sheet_508.pdf, April 2021.
2. 윤정원, “환경 호르몬과 여성 건강”, 의료와 사회, 2016, 5, 34-48.
3. 식품의약품안전청, “식품용 기구 및 용기 포장 중 비스페놀A 조사 연구”, 2017, 18-19.
4. Research and Markets, https://www.researchandmarkets.com/reports/4520075/bisphenol-a-bpa-market-growth-trends-and, April 2021.
5. I. T. Cousins, C. A. Staples, G. M. Klečka, and D. Mackay, “A multimedia assessment of the environmental fate of bisphenol A”, Human and Ecological Risk Assessment, 2002, 8, 1107-1135.
6. 국립환경과학원, “제조용기와 자료를 활용한 위생평가 기법 연구(1)”, 2018, 37-41.
7. B. S. Rubin, “Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects”, The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 27-34.
8. F. S. Vom Saal, S. C. Nagel, B. L. Cox, B. M. Angle, and J. A. Taylor, “The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity”, Molecular and Cellular Endocrinology, 2012, 354, 74-84.
9. K. Y. Kim, E. Lee, and Y. Kim, “The association between bisphenol A exposure and obesity in children: a systematic review with meta-analysis”, International Journal of Environmental Research and Public Health, 2019, 16, 2521.
10. X. Ren, X. Zhang, X. Chen, T. Zhang, G Li, X. Zhou, S. Su, W. Zhang, C. Qin, and S. Wang, “Evaluation of post-adolescence exposure to bisphenol A on reproductive outcomes of male rodent models”, Reproductive Toxicology, 2021, 101, 124-136.
11. L. N. Vandenberg, R. Hauser, M. Marcus, N. Olea, and W. V. Welshons, “Human exposure to bisphenol A (BPA)”, Reproductive Toxicology, 2007, 24, 139-177.
12. M. N. Grohs, J. E. Reynolds, J. Liu, J. W. Martin, T. Pollock, C. Lebel, and D. Dewey, “Prenatal maternal and childhood Bisphenol A exposure and brain structure and behavior of young children”, Environmental Health, 2019, 18, 1-12.
13. S. Flint, T. Markle, S. Thompson, and E. Wallace, “Bisphenol A exposure, effects, and policy: a wildlife perspective”, Journal of Environmental Management, 2012, 104, 19-34.
14. J. Corrales, L. A. Kristofco, W. B. Steele, B. S. Yates, C. S. Breed, E. S. Williams, and B. W. Brooks, “Global assessment of bisphenol A in the environment: review and analysis of its occurrence and bioaccumulation”, Dose-Response, 2015, 13, 1-29.
15. B. Petrie, L. Lopardo, K. Proctor, J. Youndan, R. Barden, and B. Kasprzyk-Hordern, “Assessment of bisphenol-A in the urban water cycle”, Science of the Total Environment, 2019, 650, 900-907.
16. L. G. A. Barboza, S. C. Cunha, C. Monteiro, J. O. Fernandes, and L. Guilhermino, “Bisphenol A and its analogs in muscle and liver of fish from the North East Atlantic Ocean in relation to microplastic contamination: exposure and risk to human consumers”, Journal of Hazardous Materials, 2020, 393, 122419.
17. X. Ren, T. Zhang, X. Chen, X. Wei, Y. Tian, G. Li, X. Zhang, W. Zhang, Z. You, S. Wang, and C. Qin, “Early-life exposure to bisphenol A and reproductive-related outcomes in rodent models: a systematic review and meta-analysis”, Aging (Albany NY), 2020, 12, 18099-18126.
18. J. F. Dou, M. Puttahyatappa, V. Padmanabhan, and K. M. Bakulski, “Developmental programming: transcriptional regulation of visceral and subcutaneous adipose by prenatal bisphenol-A in female sheep”, Chemosphere, 2020, 255, 127000.
19. S. Hwang, J. E. Lim, Y. Choi, and S. H. Jee, “Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis”, BMC Endocrine Disorders, 2018, 18, 1-10.
20. P. N. H. Wassenaar, L. Trasande, and J. Legler, “Systematic review and meta-analysis of early-Life exposure to bisphenol A and obesity-related outcomes in rodents”, Environmental Health Perspectives, 2017, 125, 10601.
21. N. C. Wu and F. Seebacher, “Effect of the plastic pollutant Bisphenol A on the biology of aquatic organisms: a meta-analysis”, Global Change Biology, 2020, 26, 3821-3833.
22. I. Bahelka, R. Stopka, J. Čítek, and M. Šprysl, “The impact of bisphenols on reproductive system and on off-spring in pigs - A review 2011-2020”, Chemosphere, 2020, 263, 128203.
23. International Food Safety Authorities Network, “Bisphenol A(BPA)-current state of knowledge and future actions by WHO and FAO”, INFOSAN Information Note, 2009, 5.
24. R. Akram, R. Iqbal, R. Hussain, F. Jabeen, and M. Ali, “Evaluation of oxidative stress, antioxidant enzymes and genotoxic potential of bisphenol A in fresh water bighead carp (Aristichthys nobilis) fish at low concentrations”, Environmental Pollution, 2021, 268, 115896.
25. 맥매찰, “Zebrafish (Danio rerio)”, KSMCB Webzine, 2010, 1-11.
27. I. Forner-Piquer, S. Beato, F. Piscitelli, S. Santangeli, V. D. Marzo, H. R. Habibi, F. Maradonna, and O. Carnevali, “Effects of BPA on zebrafish gonads: focus on the endocannabinoid system”, *Environmental Pollution*, 2020, 264, 114710.

28. W. Huang, S. Zheng, X. Wang, Z. Cai, J. Xiao, C. Liu, and K. Wu, “A transcriptomics-based analysis of toxicity mechanisms of zebrafish embryos and larvae following parental bisphenol A exposure”, *Ecotoxicology and Environmental Safety*, 2020, 205, 111165.

29. W. Qiu, S. Liu, H. Chen, S. Luo, Y. Xiong, X. Wang, B. Xu, C. Zheng, and K. J. Wang, “The comparative toxicities of BPA, BPB, BPS, BPF, and BPAF on the reproductive neuroendocrine system of zebrafish embryos and its mechanisms”, *Journal of Hazardous Materials*, 2021, 406, 124303.

30. S. Tao, Y. Zhang, C. Yuan, J. Gao, F. Wu, and Z. Wang, “Oxidative stress and immunotoxic effects of bisphenol A on the larvae of rare minnow Gobiocypris rarus”, *Ecotoxicology and Environmental Safety*, 2016, 124, 377-385.

31. X. Fan, L. Wu, T. Hou, J. He, C. Wang, Y. Liu, and Z. Wang, “Maternal bisphenol A exposure impaired endochondral ossification in craniofacial cartilage of rare minnow (Gobiocypris rarus) offspring”, *Ecotoxicology and Environmental Safety*, 2018, 163, 514-520.

32. S. Tao, L. Wang, Z. Zhu, Y. Liu, L. Wu, C. Yuan, G. Zhang, and Z. Wang, “Adverse effects of bisphenol A on Sertoli cell blood-tests barrier in rare minnow Gobiocypris rarus”, *Ecotoxicology and Environmental Safety*, 2019, 197, 475-483.

33. L. Zhu, Y. Liu, X. Xue, C. Yuan, and Z. Wang, “BPA's transgenerational disturbance to transcription of ovarian steroidogenic genes in rare minnow Gobiocypris rarus via DNA and histone methylation”, *Science of The Total Environment*, 2021, 762, 143055.

34. K. Mi, X. Chen, K. Lu, Y. Zhu, M. Zhang, H. Yang, W. Wei, and Y. Zhang, “Bisphenol A induces hepatic triglyceride level in adult male rare minnow Gobiocypris rarus”, *Ecotoxicology and Environmental Safety*, 2021, 213, 112050.

35. M. Filice, S. Leo, R. Mazza, D. Amelio, F. Garofalo, S. Imbrogno, M. C. Cerra, and A. Gattuso, “The heart of the adult goldfish Carassius auratus as a target of bisphenol A: a multifaceted analysis”, *Environmental Pollution*, 2021, 269, 116177.

36. Q. Wang, H. Yang, M. Yang, Y. Yu, M. Yan, L. Zhou, X. Liu, S. Xiao, Y. Yang, Y. Wang, L. Zheng, H. Zhao, and Y. Li, “Toxic effects of bisphenol A on goldfish gonad development and the possible pathway of BPA disturbance in female and male fish reproduction”, *Chemosphere*, 2019, 221, 235-245.

37. 박태주, “Xenopus laevis”, *KSMCB Website*, 2012, 6, 1-7.

38. M. Zhu, Y. Li, Y. Niu, J. Li, and Z. Qin, “Effects of bisphenol A and its alternative bisphenol F on Notch signaling and intestinal development: a novel signaling by which bisphenols disrupt vertebrate development”, *Environmental Pollution*, 2020, 263, 114443.

39. X. Chen, Y. Li, M. Zhu, and Z. Qin, “An ex vivo assay for screening glucocorticoid signaling disruption based on glucocorticoid-response gene transcription in Xenopus tails”, *Journal of Environmental Sciences*, 2018, 66, 104-112.

40. R. P. Singh, C. M. Shafeequa, S. K. Sharma, R. Singh, M. Kannan, K. V. Saxty, S. Raghunandan, J. Mohan, and P. A. Azeez, “Effects of bisphenol-A on male reproductive success in adult Kadaknath chicken”, *Ecotoxicology and Environmental Safety*, 2016, 128, 61-66.

41. M. Yu, Y. Xu, M. Li, D. Li, Y. Lu, D. Yu, and W. Du, “Bisphenol A accelerates meiotic progression in embryonic chickens via the estrogen receptor β signaling pathway”, *General and Comparative Endocrinology*, 2018, 259, 66-75.

42. A. M. Hanafy, H. A. Khalil, W. M. Abdel-Rahim, and A. M. Abdel-Ghany, “Testicular functions and sexual behavior in male Japanese quail after exposure to bisphenol A”, *Asian Journal of Poultry Science*, 2016, 10, 40-51.

43. W. M. Abdel-Rahim, A. M. Hanafy, A. M. Abdel-Ghany, and H. A. Khalil, “Effect of intraperitoneal injection of bisphenol-A on egg production and quality traits in Japanese quail”, *Journal of Animal, Poultry & Fish Production*, 2017, 6, 13-20.

44. 정성태, 유정민, 유성진, 김주란, 정철희, 김한찬, 강성구, “대비배경에 저변물질이 충적 된 생물배양 기관의 발생 및 apoptosis 조절 유전자 발현에 미치는 영향”, *발생생물학*, 2002, 6, 25-30.

45. 식품의약품안전처, “비스페놀류 3종(BPA, BPF, BPS) 동합취해성평가보고서”, 2020, 1-118.

46. Y. Zhou, Z. Wang, M. Xia, S. Zhuang, X. Gong, J. Pan, C. Li, R. Fan, Q. Pang, and S. Lu, “Neurotoxicity of low bisphenol A(BPA) exposure for young male mice: implications for children exposed to environmental levels of BPA”, *Environmental Pollution*, 2017, 229, 40-48.

47. Y. Wei, C. Han, S. Li, Y. Cui, Y. Bao, and W. Shi, “Maternal
exposure to bisphenol A during pregnancy interfaces ovary development of F1 female mice”, *Theriogenology*, **2020**, 142, 138-148.

48. M. M. Dobrzyńska, A. Gajowik, E. A. Jankowska-Steifer, J. Radzikowska, and E. J. Tyrlkel, “Reproductive and developmental F1 toxicity following exposure of pubescent F0 male mice to bisphenol A alone and in combination with X-rays irradiation”, *Toxicology*, **2018**, 410, 142-151.

49. M. Shi, N. Sekulovski, J. A. MacLean II, and K. Hayashi, “Effects of bisphenol A analogues on reproductive functions in mice”, *Reproductive Toxicology*, **2017**, 73, 280-291.

50. N. S. Jardim, G. Sartori, M. H. Sari, S. G. Müller, and C. W. Nogueira, “Bisphenol A impairs the memory function and glutamatergic homeostasis in a sex-dependent manner in mice: beneficial effects of diphenyl diselenide”, *Toxicology and Applied Pharmacology*, **2017**, 329, 75-84.

51. J. Esteban, M. Serrano-Macía, I. Sánchez-Pérez, P. Alonso-Maggalena, M. de la Cruz Pellin, M. Garcia-Arévalo, Á. Nadal, and J. Barril, “In utero exposure to bisphenol-A disrupts key elements of retinoid system in male mice offspring”, *Food and Chemical Toxicology*, **2019**, 126, 142-151.

52. J. Khan, S. Salhotra, P. Goswami, J. Akhter, S. Jahan, S. Gupta, S. Sharma, B. D. Banerjee, S. Parvez, S. Gupta, and S. Raisuddin, “Bisphenol A triggers axonal injury and myelin degeneration with concomitant neurobehavioral toxicity in C57BL/6J male mice”, *Toxicology*, **2019**, 428, 152299.

53. S. E. Arambula, S. M. Belcher, A. Planchart, S. D. Turner, and H. B. Patisaul, “Impact of low dose oral exposure to bisphenol A (BPA) on the neonatal rat hypothalamic and hippocampal transcriptome: a CLARITY-BPA consortium study”, *Endocrinology*, **2016**, 157, 3856-3872.

54. S. E. Arambula, D. Jima, and H. B. Patisaul, “Prenatal bisphenol A (BPA) exposure alters the transcriptome of the neonate rat amygdala in a sex-specific manner: a CLARITY-BPA consortium study”, *Neurotoxicology*, **2018**, 65, 207-220.

55. E. Atay, T. Ertekin, H. Yılmaz, H. S. Güler, Ö. Al, M. Nisari, A. Yay, E. Unur, S. Özdamar, and B. Yalçın, “Impact of prenatal exposure to bisphenol A on pregnant rats: fetal bone development and immunohistochemistry implications”, *Toxicology and Industrial Health*, **2019**, 35, 119-135.

56. K. S. Uchtmann, J. A. Taylor, B. G. Timms, R. W. Stahlhut, E. A. Ricke, M. R. Ellersieck, F. S. Saal, and W. A. Ricke, “Fetal bisphenol A and ethynylestradiol exposure alters male rat urogenital tract morphology at birth: confirmation of prior low-dose findings in CLARITY-BPA”, *Reproductive Toxicology*, **2020**, 91, 131-141.

57. F. V. Hassani, K. Abnous, S. Mehri, A. Jafarian, R. Birner-Gruenberger, R. Y. Robati, and H. Hosseinzadeh, “Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: mechanism of hepatotoxicity and biomarker discovery”, *Food and Chemical Toxicology*, **2018**, 112, 26-38.

58. A. G. Friques, F. D. Santos, D. B. Angeli, F. A. C. Silva, A. T. Dias, R. Aires, M. A. S. Leal, B. V. Nogueira, F. G. Amorim, B. P. Campagnaro, T. M. C. Pereira, M. Campos-Toimil, S. S. Meyrelles, and E. C. Vasquez, “Bisphenol A contamination in infant rats: molecular, structural and physiological cardiovascular changes and the protective role of kefir”, *The Journal of Nutritional Biochemistry*, **2020**, 75, 108254.

59. H. T. Nguyen, K. Yamamoto, M. Iida, T. Agusa, M. Ochiai, J. Guo, R. Karthikraj, K. Kannan, E. Y. Kim, and H. Ivata, “Effects of prenatal bisphenol A exposure on the hepatic transcriptome and proteome in rat offspring”, *Science of The Total Environment*, **2020**, 720, 137568.

60. S. Srivastava and P. Gupta, “Alteration in apoptotic rate of testicular cells and spermus following administration of bisphenol A (BPA) in Wistar albino rats”, *Environmental Science and Pollution Research*, **2018**, 25, 21635-21643.

61. E. M. El Morsy and M. A. E. Ahmed, “Protective effects of lycopene on hippocampal neurotoxicity and memory impairment induced by bisphenol A in rats”, *Human & Experimental Toxicology*, **2020**, 39, 1066-1078.

62. K. Szymanska and S. Gonkowski, “Bisphenol A-induced changes in the enteric nervous system of the porcine duodenum”, *Neurotoxicology*, **2018**, 66, 78-86.

63. R. Liliana, G. Slawomir, J. Tomasz, W. Joanna, and P. Andrzej, “The effects of bisphenol A (BPA) on sympathetic nerve fibers in the uterine wall of the domestic pig”, *Reproductive Toxicology*, **2019**, 84, 39-48.

64. P. A. McAnulty, A. D. Dayan, N. C. Ganderup, and K. L. Hastings, “The minipig in biomedical research”, *2012*, 323-342, CRC Press, US.

65. Y. Zhuo, J. Wang, H. Liu, D. Mou, T. Adebowale, L. Che, Z. Fang, S. Xu, G. Liu, Y. Lin, B. Feng, N. Abdulrah Al-Dhabi, J. Li, V. Duraipandiyan, and D. Wu, “Effects of maternal methyl donor on the pork characteristics of offspring pigs with prenatal exposure to bisphenol A”, *Animal*, **2018**, 12, 1306-1316.
Xu, Y. Lin, B. Feng, J. Li, and D. Wu, “Maternal methyl donor supplementation during gestation counteracts bisphenol A-inductive oxidative stress in sows and offspring”, *Nutrition*, 2018, 45, 76-84.

67. M. Puttabyatappa, J. D. Martin, V. Andriessen, M. Stevenson, L. Zeng, S. Pennathur, and V. Padmanabhan, “Developmental programming: changes in mediators of insulin sensitivity in prenatal Bisphenol A-treated female sheep”, *Reproductive Toxicology*, 2019, 85, 110-122.

68. S. M. MohanKumar, T. D. Rajendran, A. K. Vyas, V. Hoang, N. Asirvatham-Jeyaraj, A. Veiga-Lopez, N. B. Olivier, V. Padmanabhan, and P. S. MohanKumar, “Effects of prenatal bisphenol-A exposure and postnatal overfeeding on cardiovascular function in female sheep”, *Journal of Developmental Origins of Health and Disease*, 2017, 8, 65-74.

69. J. S. Barry and R. V. Anthony, “The pregnant sheep as a model for human pregnancy”, *Theriogenology*, 2008, 69, 55-67.

70. W. Song, M. Puttabyatappa, L. Zeng, D. Vazquez, S. Pennathur, and V. Padmanabhan, “Developmental programming: prenatal Bisphenol A treatment disrupts mediators of placental function in sheep”, *Chemosphere*, 2020, 243, 125301.

71. T. Takroni, L. Laouar, A. Adesida, J. A. Elliot, and N. M. Jomha, “Anatomical study: comparing the human, sheep and pig knee meniscus”, *Journal of Experimental Orthopaedics*, 2016, 3, 1-13.

72. N. Hachicho, S. Reithel, A. Miltner, H. J. Heipieper, E. Küster, and T. Luckenbach, “Body mass parameters, lipid profiles and protein contents of zebrafish embryos and effects of 2, 4-dinitrophenol exposure”, *Plos One*, 2015, 10, e0134755.

73. C. Hohn and L. Petrie-Hanson, “Evaluation of visible implant elastomer tags in zebrafish (Danio rerio)”, *Biology Open*, 2013, 2, 1397-1401.

74. P. D. Nieuwkoop and J. Faber, “Normal table of Xenopus laevis (Daudin) garland publishing”, 1994, 1st edition, 252, Garland Science, New York.

75. A. Ziková, C. Lorenz, I. Lutz, S. Pfugmacher, and W. Kloas, “Physiological responses of Xenopus laevis tadpoles exposed to cyanobacterial biomass containing microcystin-LR”, *Aquatic Toxicology*, 2013, 128, 25-33.

76. S. S. Sohail, M. M. Bryant, and D. A. Roland Sr., “Influence of supplemental lysine, isoleucine, threonine, tryptophan and total sulfur amino acids on egg weight of Hy-Line W-36 hens”, *Poultry Science*, 2002, 81, 1038-1044.

77. M. E. Rebulí, L. Camacho, M. E. Adonay, D. M. Reif, D. L. Aylor, and H.B. Patisaul, "Impact of low-dose oral exposure to bisphenol A (BPA) on juvenile and adult rat exploratory and anxiety behavior: a CLARITY-BPA consortium study", *Toxicological Sciences*, 2015, 148, 341-354.

78. B. Nowak, A. Mucha, M. Moska, and W. Kruzyński, “Reproduction indicators related to litter size and reproduction cycle length among sows of breeds considered maternal and paternal components kept on medium-size farms”, *Animals*, 2020, 10, 1164.