Sinks in Acyclic Orientations of Graphs

David D. Gebhard
Department of Mathematics
Campus Box 7281
Lenoir-Rhyne College
Hickory, NC 28603
gebhardd@lrc.edu

Bruce E. Sagan
Department of Mathematics
Michigan State University
East Lansing, MI 48824-1027
sagan@math.msu.edu

March 30, 2022

Key Words: acyclic orientation, algorithm, chromatic polynomial, graph, induction, sink

AMS subject classification (1991): Primary 05C20; Secondary 05C15, 05C85, 68R10.
Proposed running head:

Sinks in digraphs

Send proofs to:

David D. Gebhard
Department of Mathematics
101C Minges Hall
Lenoir-Rhyne College
Hickory, NC 28601
gembhard@lrc.edu
Abstract

Greene and Zaslavsky proved that the number of acyclic orientations of a graph with a unique sink at a given vertex is, up to sign, the linear coefficient of the chromatic polynomial. We give three new proofs of this result using pure induction, noncommutative symmetric functions, and an algorithmic bijection.
1 Acyclic Orientations

Our primary focus will be a theorem of Greene and Zaslavsky \cite{GreeneZaslavsky} concerning acyclic orientations of a graph and its chromatic polynomial. To state it we need some definitions. For any undefined terms, we follow the terminology of Harary’s book \cite{Harary}.

Let G be a finite graph with vertices $V = V(G)$ and edges $E = E(G)$. We permit E to contain loops and multiple edges. An orientation of G is a digraph formed by replacing $e \in E$ by one of the two possible directed arcs. The orientation is acyclic if it has no directed cycles. We let $A(G)$ be the set of acyclic orientations of G. So if G has a loop then it has no acyclic orientations and $A(G) = \emptyset$. A sink of a digraph is a vertex v_0 such that all arcs incident with v_0 are directed towards it. Let $A(G, v_0)$ be the set of acyclic orientations of G with a unique sink at v_0.

A proper coloring of G with color set C is a map $\kappa : V \to C$ such that $uv \in E$ implies $\kappa(u) \neq \kappa(v)$. Now consider the chromatic polynomial of G which is

$$\chi_G(n) = \# \text{ of proper } \kappa : V \to \{1, 2, \ldots, n\}.$$

It is well known \cite{ChromaticPolynomials} that $\chi_G(n)$ is a polynomial in n of degree $d = |V|$ so we write

$$\chi_G(n) = a_0 + a_1 n + \cdots + a_d n^d.$$

If we need to be specific about the graph, we will write $a_i(G)$ for the coefficient of n^i in $\chi_G(n)$.

Stanley \cite{Stanley} was the first to connect acyclic orientations of graphs and the characteristic polynomial. In what follows, absolute value signs around a set denote its cardinality.

Theorem 1.1 (Stanley) For any graph G

$$|A(G)| = |\chi_G(-1)|.$$

The result of Greene and Zaslavsky that will interest us can be seen as an analog of Stanley’s Theorem for acyclic orientations with a unique sink \cite[Theorem 7.3]{GreeneZaslavsky}.

Theorem 1.2 (Greene-Zaslavsky) Let v_0 be any vertex of G. Then

$$|A(G, v_0)| = |a_1|.$$

(1)

Originally this theorem was proved using the theory of hyperplane arrangements. The purpose of this paper is to give three other proofs using different techniques.
In the next section we will give a purely inductive proof. Stanley [9] indicated that such a proof exists and we provide the details.

In the paper just cited, Stanley introduced a symmetric function analog of the chromatic polynomial and showed that it counts the number of acyclic orientations of G with j sinks, $1 \leq j \leq d$. Note that this is not quite the same as counting those with a given sink. In Section 3 we will show how using noncommutative variables allows us to generalize the Greene-Zaslavsky Theorem to the level of symmetric functions.

Our final proof is an algorithmic bijection. To explain it, we need to recall Whitney’s Broken Circuit Theorem [10]. A circuit in a graph G will be the same as a cycle, i.e., a closed walk with distinct vertices. If we fix a total order on $E(G)$, a broken circuit is a circuit with its largest edge (with respect to the total order) removed. Let the broken circuit complex B_G of G denote the set of all $S \subseteq E(G)$ which do not contain a broken circuit. The Broken Circuit Theorem asserts:

Theorem 1.3 (Whitney) For any finite graph, G, on d vertices we have

$$X_G(n) = \sum_{S \in B_G} (-1)^{|S|} n^{d-|S|}.$$

It follows immediately from Theorems 1.1 and 1.3 that $|A(G)| = |B_G|$. This result was given a bijective algorithmic proof by Blass and Sagan [1]. It is also clear from the previous theorem that

$$|a_1| = |\{S \in B_G : |S| = d-1\}|.$$

(2)

So to prove the Greene-Zaslavsky Theorem bijectively it suffices to find a bijection between $A(G, v_0)$ and $\{S \in B_G : |S| = d-1\}$. This will be done in the last section by modifying the Blass-Sagan algorithm.

2 Pure Induction

We will show that both sides of equation (1) satisfy the same recurrence relation and boundary conditions. We begin with the well-known Deletion-Contraction Rule for the chromatic polynomial [7]. If $e \in E(G)$ we will let $G \setminus e$ be G with e deleted. We also let G/e be G with e contracted to a point and any resulting multiple edges not identified. So $|E(G \setminus e)| = |E(G/e)| = |E(G)| - 1$. We will also use this notation for directed graphs.

Theorem 2.1 (Deletion-Contraction Rule) For any $e \in E(G)$

$$\chi_G(n) = \chi_{G \setminus e}(n) - \chi_{G/e}(n).$$

2
From this result it is easy to prove inductively that the coefficients of $\chi_G(n)$ alternate in sign with $a_d = +1$. Using Theorem 2.1 again, we see that if e is not a loop then

$$|a_1(G)| = |a_1(G \setminus e)| + |a_1(G/e)|.$$

We now show bijectively that $|A(G, v_0)|$ satisfies the same recursion.

Lemma 2.2 Consider any vertex v_0, and any edge $e = uv_0, u \neq v_0$, with the corresponding arc $a = uv_0$. The map

$$D \mapsto \begin{cases} D \setminus a \in A(G \setminus e, v_0) & \text{if } D \setminus a \in A(G \setminus e, v_0) \\ D/a \in A(G/e, v_0) & \text{if } D \setminus a \notin A(G \setminus e, v_0) \end{cases},$$

is a bijection between $A(G, v_0)$ and $A(G \setminus e, v_0) \uplus A(G/e, v_0)$, where the vertex of G/e formed by contracting e is labeled v_0.

Proof. We first prove that this map is well-defined by showing that in both cases we actually obtain an acyclic orientation with unique sink at v_0. This is clear in the first case by definition. In the second, where $D \setminus a \notin A(G \setminus e, v_0)$, it must be true that $D \setminus a$ has sinks both at u and at v_0 (since deleting a directed edge of D will not introduce a cycle, nor will it cause us to lose the sink at v_0). So the orientation D/a will be in $A(G/e, v_0)$: since u and v_0 were the only sinks in $D \setminus a$ the contraction must have a unique sink at v_0, and no new cycles will be formed. Hence this map is well-defined.

To see that this is actually a bijection, we need only exhibit the inverse. This is obtained by simply orienting all edges of G as in $D \setminus a$ or D/a as appropriate, and then adding in a. It should be clear that this map is also well-defined.

For the boundary conditions, we will need the following well-known result.

Lemma 2.3 If G is connected, then any $D \in A(G)$ has at least one sink. So if G is arbitrary then for any $D \in A(G)$, the number of sinks is greater than or equal to the number of components of G.

We can now complete the first proof of the Greene-Zaslavsky Theorem by inducting on the number of non-loops incident with v_0. We have already verified the recurrence relation, so we need only worry about the boundary conditions. If $d = 1$, then

$$\chi_G(n) = \begin{cases} n & \text{if } G = K_1, \\ 0 & \text{if } G \text{ has loops.} \end{cases}$$

So in this case,

$$|a_1| = \begin{cases} 1 & \text{if } G = K_1, \\ 0 & \text{if } G \text{ has loops.} \end{cases} = |A(G, v_0)|.$$
If \(d > 1 \), then having only loops incident with \(v_0 \) implies there are least two components in \(G \). In this case we can prove inductively from Theorem 2.1 that \(|a_1| = 0\) and from Lemma 2.3 we see that \(|A(G, v_0)| = 0\) as well. Thus the boundary conditions match and we are done.

3 Chromatic Symmetric Functions

Using his symmetric function generalization, \(X_G \), of the chromatic polynomial, Stanley [9] proved a result related to, but not quite implying, the one of Greene and Zaslavsky. (See Theorem 3.7 at the end of this section.) In [3] we introduced an analogue of \(X_G \) using noncommutative variables. This allows us to use deletion-contraction techniques on symmetric functions to prove a generalization of Greene-Zaslavsky at this level.

We begin with some background on symmetric functions in noncommuting variables. Much of this follows from the work of Doubilet [2] (although he does not explicitly mention such functions in his paper) but they differ from those considered by Gelfand, et. al. [4]. These noncommutative symmetric functions will be indexed by set partitions (as opposed to integer partitions in the commutative case).

We will write \(\pi = B_1/B_2/\ldots/B_k \) to denote a partition of \([d] := \{1, 2, \ldots, d\}\), i.e., \(\sqcup_{i=1}^k B_i = [d] \). The \(B_i \) are called blocks. The set of all partitions of \([d]\) form a lattice \(\Pi_d \) under the partial order of refinement. We will let \(\land \) denote the meet operation (greatest lower bound) in \(\Pi_d \).

Now let \(x = \{x_1, x_2, x_3, \ldots\} \) be a set of noncommuting variables. We define the noncommutative monomial symmetric function, \(m_\pi \), by:

\[
m_\pi = m_\pi(x) = \sum_{i_1, i_2, \ldots, i_d} x_{i_1}x_{i_2} \cdots x_{i_d},
\]

where the sum is over all sequences \(i_1, i_2, \ldots, i_d \) of positive integers \(P \) such that \(i_j = i_k \) if and only if \(j \) and \(k \) are in the same block of \(\pi \). For example,

\[
m_{124/3} = x_1x_1x_2x_1 + x_2x_2x_1x_2 + x_1x_1x_3x_1 + x_3x_3x_1x_3 + \cdots
\]

is the monomial symmetric function in noncommuting variables corresponding to the partition \(\pi = 124/3 \). The \(m_\pi \) are clearly linearly independent over \(\mathbb{C} \) and we call the span of \(\{m_\pi : \pi \in \Pi_d, d \geq 0\} \) the algebra of noncommutative symmetric functions.

The other basis we will be interested in is given by the noncommutative elementary symmetric functions

\[
e_\pi = e_\pi(x) = \sum_{\sigma : \sigma \land \pi = 0} m_\sigma = \sum_{i_1, i_2, \ldots, i_d} x_{i_1}x_{i_2} \cdots x_{i_d},
\]
where the second sum is over all sequences \(i_1, i_2, \ldots, i_d\) of \(\mathbb{P}\) such that \(i_j \neq i_k\) if \(j\) and \(k\) are both in the same block of \(\pi\). As an example
\[
e_{124/3} = x_1 x_2 x_1 x_3 + x_1 x_2 x_2 x_3 + x_1 x_2 x_3 x_3 + x_1 x_2 x_4 x_3 + \cdots
\]
\[
= m_{13/24} + m_{1/23/4} + m_{1/2/34} + m_{1/2/3/4}.
\]

We now introduce a noncommutative version, \(Y_G\), of Stanley’s chromatic symmetric function, \(X_G\). The latter is obtained from the former merely by letting the variables commute.

Definition 3.1 For any multigraph \(G\) with vertices labeled \(v_1, v_2, \ldots, v_d\) in a fixed order, define
\[
Y_G = Y_G(x) = \sum_\kappa x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_d)},
\]
where the sum is over all proper colorings \(\kappa : V \to \mathbb{P}\) of \(G\).

As an example, if we let \(P_3\) be the path with edge set \(E = \{v_1v_2, v_2v_3\}\) then
\[
Y_{P_3} = x_1 x_2 x_1 + x_2 x_1 x_2 + x_1 x_3 x_1 + \cdots + x_1 x_2 x_3 + x_1 x_3 x_2 + \cdots + x_3 x_2 x_1 + \cdots
\]
\[
= m_{13/2} + m_{1/2/3}.
\]

Note that if we let \(1^n\) denote the substitution \(x_1 = x_2 = \cdots = x_n = 1\) and \(x_i = 0\) for \(i > n\) then
\[
X_G(1^n) = Y_G(1^n) = \chi_G(n)
\]
since the only terms surviving in the sum are those using the first \(n\) colors.

We will need two properties of \(Y_G\); proofs can be found in [3]. For the first one, consider \(\delta \in S_d\), the symmetric group on \([d]\). We let \(\delta\) act on the vertices of \(G\) by \(\delta(v_i) = v_{\delta(i)}\). This induces an action on graphs, denoted \(\delta(G) = H\), where \(H\) is just a relabeling of \(G\). We also have an action on noncommutative symmetric functions given by linearly extending
\[
\delta \circ (x_{i_1} x_{i_2} \cdots x_{i_k}) \overset{\text{def}}{=} x_{i_{\delta^{-1}(1)}} x_{i_{\delta^{-1}(2)}} \cdots x_{i_{\delta^{-1}(k)}}.
\]

These two actions are compatible.

Proposition 3.2 (Relabeling Proposition) For any finite multigraph \(G\), we have
\[
\delta \circ Y_G = Y_{\delta(G)},
\]
where the vertex order \(v_1, v_2, \ldots, v_d\) is used in both \(Y_G\) and \(Y_{\delta(G)}\).
In order to allow us to state the Deletion-Contraction Rule for Y_G, we make the following definition.

Definition 3.3 Define an operation induction, \uparrow, on monomials in noncommuting variables by

$$ (x_{i_1}x_{i_2} \cdots x_{i_d-2}x_{i_d-1}) \uparrow = x_{i_1}x_{i_2} \cdots x_{i_d-2}x_{i_d-1}^2 $$

and extend linearly.

From equation (3) it is easy to see that if $\pi \in \Pi_{d-1}$, then $m_\pi \uparrow = m_{\pi+(d)}$ where $\pi + (d) \in \Pi_d$ is the partition obtained from π by inserting d into the block with $d - 1$.

Proposition 3.4 (Deletion-Contraction Rule) If $e = v_{d-1}v_d$ is in $E(G)$ then

$$ Y_G = Y_G \setminus e - Y_G/e \uparrow, $$

where the contraction of $e = v_{d-1}v_d$ is labeled v_{d-1}.

To illustrate, consider P_3 again. So $e = v_2v_3$ and

$$ Y_{P_3} = Y_{P_2 \setminus \{v_3\}} - Y_{P_2} \uparrow. $$

We then compute

$$ Y_{P_2 \setminus \{v_3\}} = m_{1/2/3} + m_{1/23} + m_{13/2}, $$

$$ Y_{P_2} = m_{1/2}, $$

$$ Y_{P_2} \uparrow = m_{1/2} \uparrow = m_{1/23}. $$

So

$$ Y_{P_3} = m_{1/2/3} + m_{1/23} + m_{13/2} - m_{1/23} $$

$$ = m_{1/2/3} + m_{13/2}, $$

Theorem 3.5 Let $Y_G = \sum_{\pi \in \Pi_d} c_\pi e_\pi$. Then for any fixed vertex, v_0,

$$ |A(G, v_0)| = (d - 1)!c_{[d]}. $$
Proof. We induct on the number of non-loops in E. If all the edges of G are loops, then

$$Y_G = \begin{cases} \frac{e_{1/2}/.../d}{0} & \text{if } G \text{ has no edges} \\ 0 & \text{if } G \text{ has loops.} \end{cases}$$

So

$$c_{[d]} = \begin{cases} 1 & \text{if } G = K_1 \\ 0 & \text{if } d > 1 \text{ or } G \text{ has loops} \end{cases} = |\mathcal{A}(G, v_0)|.$$

Now suppose that G has non-loops. Then by the Relabeling Proposition, we may choose $e = v_{d-1}v_d$ and $Y_G = Y_{G\setminus e} - Y_{G/e \uparrow}$. We are only interested in the leading coefficient, so let

$$Y_G = ae_{[d]} + \sum_{\sigma < [d]} a_\sigma e_\sigma, \quad Y_{G\setminus e} = be_{[d]} + \sum_{\sigma < [d]} b_\sigma e_\sigma,$$

and

$$Y_{G/e} = ce_{[d-1]} + \sum_{\sigma < [d-1]} c_\sigma e_\sigma$$

where \leq is the partial order on set partitions. Using induction and Lemma 2.2, it suffices to prove that $(d-1)!a = (d-1)!b + (d-2)!c$.

From the change of basis formulae found in [2] one gets

$$e_{\pi \uparrow} = \sum_{\sigma \leq \pi} \frac{\mu(\hat{0}, \sigma)}{\mu(0, \sigma + (d))} \sum_{\tau \leq \sigma + (d)} \mu(\tau, \sigma + (d))e_\tau. \quad (5)$$

This permits us to compute the coefficient of $e_{[d]}$ in $Y_{G/e \uparrow}$. The only term which contributes comes from $ce_{[d-1]} \uparrow$, and

$$ce_{[d-1]} \uparrow = c \sum_{\sigma \in \Pi_{d-1}} \frac{\mu(\hat{0}, \sigma)}{\mu(0, \sigma + (d))} \sum_{\tau \leq \sigma + (d)} \mu(\tau, \sigma + (d))e_\tau$$

$$= c \frac{\mu(\hat{0}, [d-1])}{\mu(\hat{0}, [d])} e_{[d]} + \sum_{\tau < [d]} d_\tau e_\tau$$

$$= \frac{c}{d-1} e_{[d]} + \sum_{\tau < [d]} d_\tau e_\tau$$

Now $Y_G = Y_{G\setminus e} - Y_{G/e \uparrow}$ yields

$$(d-1)!a = (d-1)!b + (d-1)! \frac{c}{d-1} \quad = (d-1)!b + (d-2)!c,$$

7
completing the proof. ■

To see why this implies Greene-Zaslavsky, recall that \(Y_G(1^n) = X_G(1^n) = \mathcal{X}_G(n) \). Now, if \(\pi = B_1/B_2/\ldots/B_k \) then under this substitution

\[
e_\pi(1^n) = \prod_{i=1}^{k} n(n-1)(n-2) \cdots (n - |B_i| + 1).
\]

For \(k \geq 2 \), this polynomial is divisible by \(n^2 \). So the only contribution to the linear term of \(\chi_G(n) \) is when \(\pi = [d] \) which yields a coefficient with absolute value \((d - 1)!c_{[d]} \).

Immediately from the previous theorem we get

Corollary 3.6 If \(Y_G = \sum_{\pi \in \Pi_d} c_\pi e_\pi \), then the number of acyclic orientations of \(G \) with one sink is \(d!c_{[d]} \).

Before ending this section, we should state Stanley’s theorem \([9]\) relating \(X_G \) and sinks. In it, \(e_\lambda \) is the commutative elementary symmetric function corresponding to the integer partition \(\lambda \), and \(l(\lambda) \) is the number of parts of \(\lambda \).

Theorem 3.7 (Stanley) If \(X_G = \sum_\lambda c_\lambda e_\lambda \), then the number of acyclic orientations of \(G \) with \(j \) sinks is \(\sum_{l(\lambda)=j} c_\lambda \). ■

We can prove an analogue of this theorem in the noncommutative setting by using his technique involving \(P \)-partitions. However, this only implies Corollary 3.6 (and Theorem 1.1) but not Theorem 3.5.

4 The Modified Blass-Sagan Algorithm

We will now prove Theorem 1.2 a third time, using (2) to interpret the linear coefficient of \(\chi_G(n) \). This demonstration will use a variant of an algorithmic bijection of Blass and Sagan to show that \(A(G,v_0) \) and \(\{ S \in B_G : |S| = d - 1 \} \) have the same cardinality.

We first need some notation and definitions. For any arc \(a = \overrightarrow{wu} \), the oppositely oriented arc is denoted \(a' = \overleftarrow{wu} \). We also say that to unorient an arc, \(a \), in a digraph we will just add the oppositely oriented arc \(a' \). By the same token, an edge will also be considered as a pair of oppositely oriented arcs so that any graph is also a digraph. Since we are interested in acyclic digraphs, it is necessary to adopt the convention that a digraph is acyclic if it has no cycles of length \(\geq 3 \). With this
convention, unorienting an arc will not necessarily produce a cycle. Also for any acyclic digraph D, we will let $c(D)$ be the contraction of D, which is the graph where all unoriented arcs of D have been contracted. We note that $c(D)$ is still acyclic and has no unoriented arcs.

Theorem 4.1 For any fixed vertex $v_0 \in V(G)$, the number of acyclic orientations of G with a unique sink at v_0 is the same as the number of sets, $S \in B_G$ with $|S| = d - 1$.

Proof. We will construct a bijection using an algorithm that sequentially examines each arc of an element of $A(G, v_0)$ and either deletes the arc or unorients it.

Fix an orientation of G (not necessarily acyclic) which we will refer to as the normal orientation, and also choose a fixed vertex v_0 of G. The algorithm will accept any acyclic orientation D of G which has a unique sink at v_0, and consider each arc in turn, using the total order on the edges which defines the broken circuits. At the stage when an arc $a = \overrightarrow{wu}$ is being considered, the algorithm will delete a if either

1) $D \cup a'$ has a cycle, or
2) $c(D) \setminus a$ has only one sink, and a is not normally oriented.

Otherwise, the algorithm will unorient a. For an example of how this algorithm works, see Figure 1. The steps of the algorithm are labeled either I, II, or u, indicating if the algorithm deleted the arc for reason I or II, or unoriented it.

To show that this algorithm actually does produce a bijection, we shall first introduce a sequence of sets, D_0, D_1, \ldots, D_q such that D_0 is the set of all acyclic orientations of G with a unique sink at v_0, and D_q (where $q = |E(G)|$) is the set of all $S \in B_G$ with $|S| = d - 1$. Equivalently, D_q is the set of all spanning trees, T, of G such that $E(T)$ contains no broken circuits.

We will show that the kth step of the algorithm gives a bijection, $f_k : D_{k-1} \rightarrow D_k$, where D_k is defined as the set of all spanning subdigraphs D of G satisfying the following conditions:

(a) Each of the first k edges of G is either present in D (as an unoriented edge) or absent from D, but each of the remaining $q - k$ edges is present in D in exactly one orientation.

(b) D is acyclic.

(c) D has a $x \rightarrow v_0$ path for every $x \in V(D)$.

(d) The unoriented part of D contains no broken circuit.

From these conditions, it should be clear that D_0 is indeed the set of acyclic orientations of G with a unique sink at v_0 by Lemma 2.3. It is also clear that any element of D_q will be an acyclic, connected graph, which implies that the...
Normal Orientation:

\[\begin{array}{c}
D \quad v_0 \\
\overset{a_1}{\quad \rightarrow \quad} \\
\quad \rightarrow \\
\overset{a_2}{\quad \rightarrow \quad} \\
\quad \rightarrow \\
\overset{a_3}{\quad \rightarrow \quad} \\
\overset{c(D) \setminus a}{v_0} \\
\end{array} \]

Figure 1: An example of the Algorithm
elements of D_q must be trees with exactly $d - 1$ edges. So provided the algorithm
gives a bijection at each step, we will have the desired bijection between acyclic
orientations of G with a unique sink at v_0, and edge sets of size $d - 1$ which contain
no broken circuits.

We should also note here that conditions (b) and (c) together imply that $c(D)$
may have a unique sink which occurs at the vertex identified with v_0. That this
is the only possible sink of $c(D)$ is clear from condition (c). We also know that v_0
must be a sink of $c(D)$, since if it is not, then there is a vertex u and arc $a = \bar{v}_0\bar{u}$
in $c(D)$. But from condition (c) there would have to be a $u \rightarrow v_0$ path in D. This
contradicts the acyclicity of D.

To show that the algorithm does indeed produce a bijection at each s tep, we use
the following three lemmas. We also use the notational convention that a digraph
in D_k will be denoted by D_k.

Lemma 4.2 f_k maps D_{k-1} into D_k.

Proof. We need only prove that properties (a)-(d) listed previously are still satisfied after the algorithm is applied at the kth stage. We proceed to verify each one in turn.

(a) Since at the kth step the algorithm will either delete or unorient the kth arc, this is clear.

(b) Since any arc which would form a cycle if unoriented will be deleted by the algorithm, this also is clear.

(c) Since unorienting an arc can never destroy an $x \rightarrow v_0$ path, we need only consider the case where the algorithm deletes an arc. In fact, if the arc $a = \bar{w}\bar{u}$ in
D_{k-1} was deleted, we need only show that there is still a $w \rightarrow v_0$ path.

Now, if the arc $a = \bar{w}\bar{u}$ in D_{k-1} was deleted for the first reason, then we must have had another (different) $w \rightarrow u$ path in D_{k-1}. Since there was a $u \rightarrow v_0$ path in D_{k-1}, (in fact, one which didn’t use the arc a) we can then extend our other $w \rightarrow u$ path into a walk containing a $w \rightarrow v_0$ path in D_k.

If the arc $a = \bar{w}\bar{u}$ in D_{k-1} was deleted for the second reason, again we need only consider the possibility that for the vertex w, there is no $w \rightarrow v_0$ path in D_k.
But then there is no oriented arc $\bar{w}\bar{u}$ with $u \neq v$, since otherwise all $v \rightarrow v_0$ paths must also use the arc a, as there are no $w \rightarrow v_0$ paths in D_k. Thus D_{k-1} would have a cycle containing w. Contracting all unoriented arcs from w and repeating this argument as necessary, we see that w would then be a sink of $c(D_{k-1}) \setminus a$, which contradicts our reason for deleting a.

(d) Suppose for the sake of contradiction that the unoriented part of D_k contains a broken circuit, $C \setminus x$, where x is the greatest element of the cycle C. Since the unoriented part of D_{k-1} didn’t contain any broken circuits, and since the
only difference between D_{k-1} and D_k is at the kth arc a, we see that a must be unoriented in D_k and that $a \in C \setminus x$. But then x is greater than a, and so x is present in D_k in one of its orientations. But all the other edges in C are also present and unoriented. Hence, C forms a cycle in D_k, contradicting the previously verified fact that D_k is acyclic. ■

Lemma 4.3 f_k is one-to-one.

Proof. Suppose D_{k-1} and D'_{k-1} are two distinct elements of \mathcal{D}_{k-1} which are both mapped to D_k by the algorithm. Since the algorithm only affects the kth arc, we note that D_{k-1} and D'_{k-1} (and consequently $c(D_{k-1})$ and $c(D'_{k-1})$) must only differ in that arc. Without loss of generality, we may assume that this arc is a with normal orientation in D_{k-1} and a' with abnormal orientation in D'_{k-1}.

We note that D_k was not obtained from D_{k-1} and D'_{k-1} by deletion. For if a was deleted from D_{k-1} for the first reason then D'_{k-1} has a cycle and vice-versa. And the second reason does not apply to a which has normal orientation.

If the kth arc was unoriented then, by reason II, $c(D'_{k-1}) \setminus a'$ must have an additional sink. So if $a' = \overline{wx}$ then u must be the extra sink. But this means that u is also an additional sink in $c(D_{k-1})$, contradicting $D_{k-1} \in \mathcal{D}_{k-1}$. ■

Lemma 4.4 f_k maps \mathcal{D}_{k-1} onto \mathcal{D}_k.

Proof. Given $D_k \in \mathcal{D}_k$ we must construct $D_{k-1} \in \mathcal{D}_{k-1}$ which maps onto it. Hence for any digraph, $D_k \in \mathcal{D}_k$, we must construct a digraph D_{k-1} and verify that the algorithm does indeed map D_{k-1} onto D_k, and that D_{k-1} satisfies properties (a)-(d). For all of the following cases, it will be immediate that the D_{k-1} we construct will satisfy properties (a), (b), and (d), so we will only do the verification of property (c). Let e be the kth edge of G. There are two cases.

The first case is when e is not an edge of D_k. If there exists a unique orientation a of e in which D_k would remain acyclic, we give e that orientation in D_{k-1}. If both orientations of e would preserve the acyclicity of D_k, then we choose a to be the abnormal orientation for e in D_{k-1}. We note that at least one of the orientations of e must preserve acyclicity, since otherwise e completes two different cycles in D_{k-1}. These two cycles together would contain a cycle in D_k, which is a contradiction.

That the algorithm maps the digraph D_{k-1} obtained in the previous paragraph to D_k is obvious when only one orientation of a produces an acyclic orientation of D_{k-1}. However, if both produce acyclic orientations, we need to check that $c(D_{k-1}) \setminus a$ has a unique sink at v_0. This is true, since it is easy to see that $c(D_{k-1}) \setminus a = c(D_{k-1} \setminus a) = c(D_k)$. To verify that $c(D_{k-1})$ constructed above
still satisfies property (c), we note that adding an arc cannot destroy any existing paths. So the first case is done.

In the second case we have e present in D_k and so neither orientation can produce a cycle in D_{k-1}. We note that there must be at least one orientation of $e = wu$ such that there remains an $x \to v_0$ path for every $x \in D_{k-1}$. If all $x \to v_0$ paths P use the arc $a = \overrightarrow{wv}$ for some x, and if all $y \to v_0$ paths Q use $a' = \overrightarrow{uv}$ for some y, then the $x \to w$ portion of P together with the $w \to v_0$ portion of Q contains an $x \to v_0$ path avoiding a, which contradicts our assumption about x.

If there is a unique orientation of $e = wu$ so that there remains an $x \to v_0$ path for every $x \in D_{k-1}$ we choose that one to maintain property (c) for D_{k-1}, say $a = \overrightarrow{wv}$. Using the same argument we used to prove the second case of (c) in Lemma 4.2 it is easy to verify that the algorithm will take the D_{k-1} so constructed and map it to D_k by unorienting a since $c(D_{k-1}) \setminus a$ has an additional sink at w.

In the subcase where e is present in D_k as an unoriented edge and we would still retain property (c) with either orientation of e, we will consider the digraph D_{k-1} obtained from D by giving e the normal orientation, say $a = \overrightarrow{wv}$. It is clear that the algorithm maps D_{k-1} to D_k, since $D_{k-1} \cup a' = D_k$ is acyclic and a has the normal orientation.

References

[1] A. Blass and B. Sagan, Bijective proofs of two broken circuit theorems, *J. Graph Theory* **10** (1986), 15-21.

[2] P. Doubilet, On the Foundations of Combinatorial Theory. VII: Symmetric Functions through the Theory of Distribution and Occupancy, *Studies in Applied Math.* **51** (1972), 377-396.

[3] D. Gebhard and B. Sagan, A Noncommutative Chromatic Symmetric Function, preprint.

[4] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. Retakh, J.-I. Thibon, Noncommutative symmetric functions, *Adv. in Math.* **112** (1995), 218–348.

[5] C. Greene and T. Zaslavsky, On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-radon partitions, and orientations of graphs, *Trans. Amer. Math. Soc.* **280** (1983), 97-126.

[6] F. Harary, “Graph Theory,” Addison-Wesley, Reading, MA, 1971.
[7] F. S. Roberts, From garbage to rainbows: Generalizations of graph coloring and their applications, in “Graph Theory, Combinatorics, and Applications: Proceedings of the Sixth Quadrennial International Conference on the Theory and Application of Graphs,” vol. 2, Y. Alavi, B. Chartrand, O. R. Oellermann, A. J. Schwenk eds., pp. 1031-1052, John Wiley & Sons, Inc., New York, 1991.

[8] R. P. Stanley, Acyclic orientations of graphs, *Discrete Math.* 5 (1973), 171-178.

[9] R. P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, *Advances in Math.* 111 (1995), 166-194.

[10] H. Whitney, A logical expansion in mathematics, *Bull. Amer. Mth. Soc.* 38 (1932), 572–579.