HARDY-LITTLEWOOD MAXIMAL OPERATOR ON THE
ASSOCIATE SPACE OF A BANACH FUNCTION SPACE

ALEXEI YU. KARLOVICH

Abstract. Let $E(X, d, \mu)$ be a Banach function space over a space of homogeneous type (X, d, μ). We show that if the Hardy-Littlewood maximal operator M is bounded on the space $E(X, d, \mu)$, then its boundedness on the associate space $E'(X, d, \mu)$ is equivalent to a certain condition A_{∞}. This result extends a theorem by Andrei Lerner from the Euclidean setting of \mathbb{R}^n to the setting of spaces of homogeneous type.

1. Introduction.

We begin with the definition of a space of homogeneous type (see, e.g., [4]). Given a set X and a function $d : X \times X \to [0, \infty)$, one says that (X, d) is a quasi-metric space if the following axioms hold:

(a) $d(x, y) = 0$ if and only if $x = y$;
(b) $d(x, y) = d(y, x)$ for all $x, y \in X$;
(c) for all $x, y, z \in X$ and some constant $\kappa \geq 1$,
\[
\kappa d(x, y) \leq \kappa d(x, y) + d(y, z). \tag{1.1}
\]

For $x \in X$ and $r > 0$, consider the ball $B(x, r) = \{y \in X : d(x, y) < r\}$ centered at x of radius r. Given a quasi-metric space (X, d) and a positive measure μ that is defined on the σ-algebra generated by quasi-metric balls, one says that (X, d, μ) is a space of homogeneous type if there exists a constant $C_\mu \geq 1$ such that for any $x \in X$ and any $r > 0$,
\[
\mu(B(x, 2r)) \leq C_\mu \mu(B(x, r)). \tag{1.2}
\]

To avoid trivial measures, we will always assume that $0 < \mu(B) < \infty$ for every ball B. Consequently, μ is a σ-finite measure.

Given a complex-valued function $f \in L^1_{\text{loc}}(X, d, \mu)$, we define its Hardy-Littlewood maximal function Mf by
\[
(Mf)(x) := \sup_{B \ni x} \frac{1}{\mu(B)} \int_B |f(x)| \, d\mu(x), \quad x \in X,
\]
where the supremum is taken over all balls $B \subset X$ containing $x \in X$. The Hardy-Littlewood maximal operator M is a sublinear operator acting by the rule $f \mapsto Mf$.

The aim of this paper is the studying the relations between the boundedness of the

2010 Mathematics Subject Classification. Primary 43A85, Secondary 46E30.

Key words and phrases. Hardy-Littlewood maximal operator, Banach function space, associate space, space of homogeneous type, dyadic cubes.

This work was partially supported by the Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
operator M on a so-called Banach function space $E(X, d, \mu)$ and on its associate space $E'(X, d, \mu)$ in the setting of general spaces of homogeneous type (X, d, μ).

Let us recall the definition of a Banach function space (see, e.g., [3, Chap. 1, Definition 1.1]). Let $L^0(X, d, \mu)$ denote the set of all complex-valued measurable functions on X and let $L^0_+(X, d, \mu)$ be the set of all non-negative measurable functions on X. The characteristic function of a set $E \subset X$ is denoted by χ_E. A mapping $\rho : L^0_+(X, d, \mu) \to [0, \infty]$ is called a Banach function norm if, for all functions $f, g, f_n \in L^0_+(X, d, \mu)$ with $n \in \mathbb{N}$, for all constants $a \geq 0$, and for all measurable subsets E of X, the following properties hold:

\begin{align*}
(A1) & \quad \rho(f) = 0 \Leftrightarrow f = 0 \text{ a.e.}, \quad \rho(af) = a\rho(f), \quad \rho(f + g) \leq \rho(f) + \rho(g), \\
(A2) & \quad 0 \leq g \leq f \text{ a.e.} \Rightarrow \rho(g) \leq \rho(f) \text{ (the lattice property)}, \\
(A3) & \quad 0 \leq f_n \uparrow f \text{ a.e.} \Rightarrow \rho(f_n) \uparrow \rho(f) \text{ (the Fatou property)}, \\
(A4) & \quad \mu(E) < \infty \Rightarrow \rho(\chi_E) < \infty, \\
(A5) & \quad \int_E f(x) \, d\mu(x) \leq C_E \rho(f)
\end{align*}

with a constant $C_E \in (0, \infty)$ that may depend on E and ρ, but is independent of f. When functions differing only on a set of measure zero are identified, the set $E(X, d, \mu)$ of all functions $f \in L^0_+(X, d, \mu)$ for which $\rho(|f|) < \infty$ is called a Banach function space. For each $f \in E(X, d, \mu)$, the norm of f is defined by

$$\|f\|_E := \rho(|f|).$$

The set $E(X, d, \mu)$ under the natural linear space operations and under this norm becomes a Banach space (see [3, Chap. 1, Theorems 1.4 and 1.6]). If ρ is a Banach function norm, its associate norm ρ' is defined on $L^0_+(X, d, \mu)$ by

$$\rho'(g) := \sup \left\{ \int_X f(x)g(x) \, d\mu(x) : f \in L^0_+(X, d, \mu), \, \rho(f) \leq 1 \right\}.$$

It is a Banach function norm itself [3, Chap. 1, Theorem 2.2]. The Banach function space $E'(X, d, \mu)$ determined by the Banach function norm ρ' is called the associate space (Köthe dual) of $E(X, d, \mu)$.

Hytönen and Kaaremaa [10], developing further ideas of Christ [4], show that a space of homogeneous type (X, d, μ) can be equipped with a finite system of adjacent dyadic grids $\{D^t : t = 1, \ldots, K\}$, each of which consists of sets Q, called dyadic cubes, that resemble properties of usual dyadic cubes in \mathbb{R}^n. We postpone precise formulations of these results until Section 2.

Given a dyadic grid $D \in \bigcup_{t=1}^K D^t$, a sparse family $S \subset D$ is a collection of dyadic cubes $Q \in D$ for which there exists a collection of sets $\{E(Q)\}_{Q \in S}$ such that the sets $E(Q)$ are pairwise disjoint, $E(Q) \subset Q$, and

$$\mu(Q) \leq 2\mu(E(Q)).$$

Definition 1 (The condition A_∞). Following [11], we say that a Banach function space $E(X, d, \mu)$ over a space of homogeneous type (X, d, μ) satisfies the condition A_∞ if there exist constants $C, \gamma > 0$ such that for every dyadic grid $D \in \bigcup_{t=1}^K D^t$, every finite sparse family $S \subset D$, every collection of non-negative numbers $\{\alpha_Q\}_{Q \in S}$, and every collection of pairwise disjoint measurable sets $\{G_Q\}_{Q \in S}$
such that $G_Q \subset Q$, one has

$$\left\| \sum_{Q \in S} \alpha_Q \chi_{G_Q} \right\|_E \leq C \left(\max_{Q \in S} \frac{\mu(G_Q)}{\mu(Q)} \right)^\gamma \left\| \sum_{Q \in S} \alpha_Q \chi_Q \right\|_E.$$ \hspace{1cm} (1.3)

The main aim of the present paper is to provide a self-contained proof of the following generalization of [11, Theorem 3.1] from the Euclidean setting of \mathbb{R}^n to the setting of spaces of homogeneous type.

Theorem 2 (Main result). Let $E(X, d, \mu)$ be a Banach function space over a space of homogeneous type (X, d, μ) and let $E'(X, d, \mu)$ be its associate space.

(a) If the Hardy-Littlewood maximal operator M is bounded on the space $E'(X, d, \mu)$, then the space $E(X, d, \mu)$ satisfies the condition A_∞.

(b) If the Hardy-Littlewood maximal operator M is bounded on the space $E(X, d, \mu)$ and the space $E(X, d, \mu)$ satisfies the condition A_∞, then the operator M is bounded on the space $E'(X, d, \mu)$.

The paper is organized as follows. In Section 2, we formulate results of Hytönen and Kairema [10] on a construction of a system of adjacent dyadic grids $\{D'_t : t = 1, \ldots, K\}$ on the underlying space of homogeneous type (X, d, μ). In Section 3, we prove that if a weight w belongs to the dyadic class A_D^1 with $D \in \bigcup_{t=1}^K D'_t$, then it satisfies a reverse Hölder inequality. Section 4 contains a proof of a version of the Calderón-Zygmund decomposition of spaces of homogeneous type. Armed with these auxiliary results, following ideas of Lerner [11, Theorem 3.1], we give a self-contained proof of Theorem 2 in Sections 5 and 6.

We conjecture that reflexive variable Lebesgue spaces (see, e.g., [6, 8, 9, 11] for definitions) over spaces of homogeneous type satisfy the condition A_∞. If this conjecture is true, then in view of Theorem 2, we can affirm that the Hardy-Littlewood maximal operator is bounded on a reflexive variable Lebesgue space over a space of homogeneous type if and only if it is bounded on its associate space. Note that in the Euclidean setting of \mathbb{R}^n, this result was proved by Diening [9, Theorem 8.1] (see also [11, Theorem 1.1]). We are going to embark on the proof of the above conjecture in a forthcoming paper.

2. DYADIC DECOMPOSITION OF SPACES OF HOMOGENEOUS TYPE.

Let (X, d, μ) be a space of homogeneous type. The doubling property of μ implies the following geometric doubling property of the quasi-metric d: any ball $B(x, r)$ can be covered by at most $N := N(C, \rho)$ balls of radius $r/2$. It is not difficult to show that $N \leq C_{\mu}^{6+3 \log_2 N}$. An important tool for our proofs is the concepts of an adjacent system of dyadic grids D_t, $t \in \{1, \ldots, K\}$, on a space of homogeneous type (X, d, μ). Christ [4, Theorem 11] (see also [5, Chap. VI, Theorem 14]) constructed a system of sets on (X, d, μ), which satisfy many of the properties of a system of dyadic cubes on the Euclidean space. His construction was further refined by Hytönen and Kairema [10, Theorem 2.2]. We will use the version from [2, Theorem 4.1].

Theorem 3. Let (X, d, μ) be a space of homogeneous type with the constant $\rho \geq 1$ in inequality (1.1) and the geometric doubling constant N. Suppose the parameter $\delta \in (0, 1)$ satisfies $96\rho^2\delta \leq 1$. Then there exist an integer number $K = K(\rho, N, \delta)$,
a countable set of points \(\{ z_{\alpha}^{k,t} : \alpha \in A_k \} \) with \(k \in \mathbb{Z} \) and \(t \in \{1, \ldots, K \} \), and a finite number of dyadic grids

\[D^t := \{ Q_{\alpha}^{k,t} : k \in \mathbb{Z}, \alpha \in A_k \}, \]

such that the following properties are fulfilled:

(a) for every \(t \in \{1, \ldots, K \} \) and \(k \in \mathbb{Z} \) one has

(i) \(X = \bigcup_{\alpha \in A_k} Q_{\alpha}^{k,t} \) (disjoint union);

(ii) if \(Q, P \in D^t \), then \(Q \cap P \in \{ \emptyset, Q, P \} \);

(iii) if \(Q_{\alpha}^{k,t} \in D^t \), then

\[B(z_{\alpha}^{k,t}, c_1 \delta^k) \subset Q_{\alpha}^{k,t} \subset B(z_{\alpha}^{k,t}, C_1 \delta^k), \]

where \(c_1 = (12 \lambda^2)^{-1} \) and \(C_1 := 4 \lambda^2 \);

(b) for every \(t \in \{1, \ldots, K \} \) and every \(k \in \mathbb{Z} \), if \(Q_{\alpha}^{k,t} \in D^t \), then there exists at least one \(Q_{\beta}^{k+1,t} \in D^t \), which is called a child of \(Q_{\alpha}^{k,t} \), such that \(Q_{\beta}^{k+1,t} \subset Q_{\alpha}^{k,t} \), and there exists exactly one \(Q_{\gamma}^{k-1,t} \in D^t \), which is called the parent of \(Q_{\alpha}^{k,t} \), such that \(Q_{\gamma}^{k-1,t} \subset Q_{\alpha}^{k,t} \);

(c) for every ball \(B = B(x,r) \), there exists

\[Q_B \in \bigcup_{t=1}^{K} D^t \]

such that \(B \subset Q_B \) and \(Q_B = Q_{\alpha}^{k-1,t} \) for some indices \(\alpha \in A_k \) and \(t \in \{1, \ldots, K \} \), where \(k \) is the unique integer such that \(\delta^{k+1} < r \leq \delta^k \).

The collections \(D^t \), \(t \in \{1, \ldots, K \} \), are called dyadic grids on \(X \). The sets \(Q_{\alpha}^{k,t} \in D^t \) are referred to as dyadic cubes with center \(z_{\alpha}^{k,t} \) and sidelength \(\delta^k \), see \((2.1)\). The sidelength of a cube \(Q \in D^t \) will be denoted by \(\ell(Q) \). We should emphasize that these sets are not cubes in the standard sense even if the underlying space is \(\mathbb{R}^n \). Parts (a) and (b) of the above theorem describe dyadic grids \(D^t \), with \(t \in \{1, \ldots, K \} \), individually. In particular, \((2.1)\) permits a comparison between a dyadic cube and quasi-metric balls. Part (c) guarantees the existence of a finite family of dyadic grids such that an arbitrary quasi-metric ball is contained in a dyadic cube in one of these grids. Such a finite family of dyadic grids is referred to as an adjacent system of dyadic grids.

Let \(D = \bigcup_{t=1}^{K} D^t \) be a fixed dyadic grid. One can define the dyadic maximal function \(M^D f \) of a function \(f \in L^1_{\text{loc}}(X,d,\mu) \) by

\[(M^D f)(x) = \sup_{Q \ni x} \frac{1}{\mu(Q)} \int_{Q} |f(x)| \, d\mu(x), \quad x \in X, \]

where the supremum is taken over all dyadic cubes \(Q \in D \) containing \(x \).

The following important result is proved by Hytönen and Kairema [10] Proposition 7.9].

Theorem 4. Let \((X,d,\mu)\) be a space of homogeneous type and let \(D \bigcup_{t=1}^{K} D^t \) be the adjacent system of dyadic grids given by Theorem \[3\]. There exist a constant \(C_{HK}(X) \geq 1 \) depending only \((X,d,\mu)\) such that for every \(f \in L^1_{\text{loc}}(X,d,\mu) \) and
A measurable non-negative locally integrable function w on X is said to be a weight. Given a weight w and a measurable set $E \subset X$, denote
$$w(E) := \int_E w(x) \, d\mu(x).$$

Fix a dyadic grid $\mathcal{D} \in \bigcup_{k=1}^{K} \mathcal{D}^k$. A weight $w : X \to [0, \infty]$ is said to belong to the dyadic class A^D_∞ if there exists a constant $c > 0$ such that for a.e. $x \in X$,
$$(M^D w)(x) \leq cw(x).$$

The smallest constant c in this inequality is denoted by $[w]_{A^D_\infty}$.

Following [2, Definition 4.4], a generalized dyadic parent (gdp) of a cube Q is any cube Q^* such that $\ell(Q^*) = \frac{1}{2}\ell(Q)$ and for every $Q' \in \mathcal{D}$ such that $Q' \cap Q \neq \emptyset$ and $\ell(Q') = \ell(Q)$, one has $Q' \subset Q^*$. According to [2, Lemma 4.5], every cube $Q \in \mathcal{D}$ possesses at least one gdp.

For every $x \in X$ and $Q \in \mathcal{D}$, put
$$Q_Q := \{Q' \in \mathcal{D} : Q' \cap Q \neq \emptyset, \ell(Q') \leq \ell(Q)\}, \quad Q^*_Q := \{Q' \in Q_Q : x \in Q'\}.$$

It follows immediately that if $Q' \in Q_Q$, then $Q' \subset Q^*$. For every $Q \in \mathcal{D}$, the localized dyadic maximal operator M_Q is defined by
$$(M_Qf)(x) = \begin{cases} \sup_{Q' \in Q_Q^*} \frac{1}{\mu(Q')} \int_{Q'} |f(y)| \, d\mu(y) & \text{if } Q^*_Q \neq \emptyset, \\ 0 & \text{if } Q^*_Q = \emptyset. \end{cases}$$

Following [2, Definition 4.7], one says that a weight $w : X \to [0, \infty]$ belongs to the dyadic class A^D_∞ if
$$[w]_{A^D_\infty} := \sup_{Q \in \mathcal{D}} \inf_{Q^* \in Q_Q^*} \frac{1}{w(Q^*)} \int_X (M_Qw)(x) \, d\mu(x) < \infty.$$

Let $C_D \geq 1$ be a constant such that for all cubes $Q \in \mathcal{D}$ and $Q' \in Q_Q$ satisfying $\ell(Q) = \ell(Q')$, one has
$$\mu(Q^*) \leq C_D \mu(Q'). \quad (3.1)$$

Lemma 5. If $w \in A^D_{\infty}$, then $w \in A^D_{\infty}$ and $[w]_{A^D_{\infty}} \leq [w]_{A^D_{\infty}}$.

Proof. Fix a cube $Q \in \mathcal{D}$ and one of its gdp’s Q^*. It follows immediately from the definition of Q_Q that if $Q' \in Q_Q$, then $Q' \subset Q^*$. Take any $x \in X$. If $Q^*_Q \neq \emptyset$, then there exists $Q' \in Q^*_Q$ such that $x \in Q' \subset Q^*$. Therefore, if $x \notin Q^*$, then
$$(M_Qw)(x) = (M_Qw)(x) \chi_{Q^*}(x) \leq (M^D w)(x) \chi_{Q^*}(x) \leq [w]_{A^D} w(x) \chi_{Q^*}(x),$$

and if $x \in Q^*$, then
$$(M_Qw)(x) \chi_{Q^*}(x) = (M^D w)(x) \chi_{Q^*}(x) \leq \frac{1}{w(Q^*)} \int_{Q^*} (M^D w)(x) \, d\mu(x) \leq [w]_{A^D} w(x) \chi_{Q^*}(x).$$

Hence, $[w]_{A^D_{\infty}} \leq [w]_{A^D_{\infty}}$.

Moreover, if $w \in A^D_{\infty}$, then $w \in A^D_{\infty}$ and $[w]_{A^D_{\infty}} \leq [w]_{A^D_{\infty}}$. Thus,
$$(M_Qw)(x) \leq [w]_{A^D} w(x) \chi_{Q^*}(x),$$

and if $x \in Q^*$, then
$$(M_Qw)(x) = (M_Qw)(x) \chi_{Q^*}(x) \leq (M^D w)(x) \chi_{Q^*}(x) \leq [w]_{A^D} w(x) \chi_{Q^*}(x).$$

Hence, $[w]_{A^D_{\infty}} \leq [w]_{A^D_{\infty}}$.

Thus, for a.e. $x \in Q$,
whence

\[
[w]_{A^\infty_D} = \sup_{Q \in D} \inf_{Q^*} \frac{1}{w(Q^*)} \int_X (M_Q w)(x) \, d\mu(x)
\leq [w]_{A^\infty} \sup_{Q \in D} \inf_{Q^*} \frac{1}{w(Q^*)} \int_{Q^*} w(x) \, d\mu(x) = [w]_{A^\infty},
\]

which completes the proof. \(\square\)

The following result is an easy consequence of the weak reverse Hölder inequality for weights in \(A^\infty_D\) obtained recently by Anderson, Hytönen, and Tapiola [2, Theorem 5.4].

Lemma 6. Let \(K\) be the constant from Theorem 3 and \(C_D\) be the constant defined in (3.1). If \(w \in A^1_D\), then for every \(\eta\) satisfying

\[
0 < \eta \leq \frac{1}{2C^2_D K [w]_{A^1_D}} \tag{3.2}
\]

and every \(Q \in D\), one has

\[
\left(\frac{1}{2\mu(Q)} \int_Q w^{1+\eta}(x) \, d\mu(x) \right)^{\frac{1+\eta}{\eta}} \leq C_D [w]_{A^1_D} \frac{1}{\mu(Q)} \int_Q w(x) \, d\mu(x). \tag{3.3}
\]

Proof. We know from Lemma 5 that \(w \in A^\infty_D\) and \([w]_{A^\infty_D} \leq [w]_{A^\infty}.\) Then, by [2, Theorem 5.4], for every \(\eta\) satisfying (3.2), one has

\[
\left(\frac{1}{2\mu(Q)} \int_Q w^{1+\eta}(x) \, d\mu(x) \right)^{\frac{1+\eta}{\eta}} \leq C_D \frac{1}{\mu(Q^*)} \int_{Q^*} w(x) \, d\mu(x). \tag{3.4}
\]

Since \(w \in A^1_D\), for a.e. \(x \in Q \subset Q^*\), one has

\[
\frac{1}{\mu(Q^*)} \int_{Q^*} w(y) \, d\mu(y) \leq (M^D w)(x) \leq [w]_{A^1_D} w(x).
\]

Integrating this inequality over \(Q\), we obtain

\[
\frac{\mu(Q)}{\mu(Q^*)} \int_{Q^*} w(y) \, d\mu(y) \leq [w]_{A^1_D} \int_Q w(x) \, d\mu(x). \tag{3.5}
\]

Combining inequalities (3.4) and (3.5), we immediately arrive at inequality (3.3). \(\square\)

The main result of this section is the following reverse Hölder inequality.

Theorem 7. Let \(K\) be the constant from Theorem 3 and \(C_D\) be the constant defined in (3.1). If \(w \in A^1_D\), then for every \(\eta\) satisfying (3.2), every cube \(Q \in D\), and every measurable subset \(E \subset Q\), one has

\[
\frac{w(E)}{w(Q)} \leq 2^{1+\eta} C_D [w]_{A^1_D} \left(\frac{\mu(E)}{\mu(Q)} \right)^{\frac{\eta}{1+\eta}}. \tag{3.6}
\]
Proof. By Hölder’s inequality and reverse Hölder’s inequality \[\|w(E)\|_{L^{p+\eta}(\mu)} \leq \left(\int_{Q} w^{1+\eta}(x) \, d\mu(x) \right)^{1\over 1+\eta} \left(\mu(E) \right)^{\eta\over 1+\eta} \]

\begin{align*}
\leq & \left(\int_{Q} w^{1+\eta}(x) \, d\mu(x) \right)^{1\over 1+\eta} \left(\mu(E) \right)^{\eta\over 1+\eta} \\
& \leq 2^{1\over 1+\eta} C_{\mathcal{D}}[w]_{A_{\mathcal{F}}} \left(\frac{\mu(Q)}{\mu(Q)} \right)^{1\over 1+\eta} w(Q) \left(\frac{\mu(E)}{\mu(Q)} \right)^{1\over 1+\eta},
\end{align*}

which immediately implies (3.6). \(\square\)

4. Calderón-Zygmund decomposition.

We start this section with the following important observation.

Lemma 8. Suppose \((X,d,\mu)\) is a space of homogeneous type with the constants \(\kappa \geq 1\) in inequality (1.1) and \(C_{\mu} \geq 1\) in inequality (1.2). Let \((X,d,\mu)\) be equipped with an adjacent system of dyadic grids \(\{\mathcal{D}^t, t = 1, \ldots, K\}\) and let \(\delta \in (0,1)\) be chosen as in Theorem 3. Then there is an \(\epsilon = \epsilon(\kappa, C_{\mu}, \delta) \in (0,1)\) such that for every \(t \in \{1, \ldots, K\}\) and all \(Q, P \in \mathcal{D}^t\), if \(Q\) is a child of \(P\), then

\[\mu(Q) \geq \epsilon \mu(P). \]

This result is certainly known. For the construction of Christ, we refer to [5] Chap. VI, Theorem 14, where it is stated without proof (see also [4] Theorem 11, where it is implicit). In [11] Theorem 2.1 and [8] Theorem 2.5 it is stated without proof and attributed to Hytönen and Kairema [10], although it is only implicit in the latter paper. For the convenience of the readers, we provide its proof.

Proof. Let \(Q = Q_{\alpha}^{k,t}\) be a child of \(P = Q_{\beta}^{k,t}\) for some \(t \in \{1, \ldots, K\}\), \(k \in \mathbb{Z}\), and \(\alpha \in A_{k}, \beta \in A_{k+1}\). It follows from Theorem 3(a), part (iii), that \(P \subset B(z_{\alpha}^{k,t}, 4\kappa^{2}\delta^{k})\) and \(B(z_{\beta}^{k+1,t}, (12\kappa^{4})^{-1}\delta^{k+1}) \subset Q\), whence

\[\mu(P) \leq \mu(B(z_{\alpha}^{k,t}, 4\kappa^{2}\delta^{k})) \quad \mu(B(z_{\beta}^{k+1,t}, (12\kappa^{4})^{-1}\delta^{k+1})) \leq \mu(Q). \]

(4.2)

It follows from [10] Lemma 2.10 with \(C_{0} = 2\kappa\) (cf. [10] Lemma 4.10) that if \(Q_{\beta}^{k+1,t}\) is a child of \(Q_{\alpha}^{k,t}\), then

\[d(z_{\alpha}^{k,t}, z_{\beta}^{k+1,t}) < 2\kappa \delta^{k}. \]

(4.3)

If \(x \in B(z_{\alpha}^{k,t}, 4\kappa^{2}\delta^{k})\), then

\[d(x, z_{\alpha}^{k,t}) < 4\kappa^{2}\delta^{k}. \]

(4.4)

Combining (4.1) with (4.3)–(4.4), we get

\[d(x, z_{\beta}^{k+1,t}) \leq \kappa (d(x, z_{\alpha}^{k,t}) + d(z_{\beta}^{k+1,t}, z_{\alpha}^{k,t})) < \kappa (4\kappa^{2}\delta^{k} + 2\kappa \delta^{k}) = \kappa^{2}(4\kappa + 2)\delta^{k}, \]

whence \(x \in B(z_{\beta}^{k+1,t}, \kappa^{2}(4\kappa + 2)\delta^{k})\). Therefore

\[B(z_{\alpha}^{k,t}, 4\kappa^{2}\delta^{k}) \subset B(z_{\beta}^{k+1,t}, \kappa^{2}(4\kappa + 2)\delta^{k}). \]
This inclusion immediately implies that
\[\mu(B(z^k, t, \kappa^2 \delta^k)) \leq \mu(B(z^{k+1}, t, 2^k(4\kappa^2 + 2)^k)). \] (4.5)

Let \(s \) be the smallest natural number satisfying
\[\log_2(12\kappa^6(4\kappa^2 + 2)\delta^{-1}) \leq s. \]

Then \(\kappa^2(4\kappa^2 + 2)\delta^k \leq 2^s(12\kappa^4)^{-1}\delta^{k+1} \) and, therefore,
\[\mu(B(z^{k+1, t}, 2^s(4\kappa^2 + 2)^k)) \leq \mu(B(z^{k+1, t}, 2^s(12\kappa^4)^{-1}\delta^{k+1})). \] (4.6)

Applying inequality (1.2) \(s \) times, one gets
\[\mu(B(z^{k+1, t}, 2^s(12\kappa^4)^{-1}\delta^{k+1})) \leq C_s^\mu \mu(B(z^{k+1, t}, (12\kappa^4)^{-1}\delta^{k+1})). \] (4.7)

Combining inequalities (4.2) with (4.5)–(4.7), we arrive at
\[\mu(P) \leq \mu(B(z^{k+1, t}, \kappa^2(4\kappa^2 + 2)\delta^k)) \leq C_s^\mu \mu(B(z^{k+1, t}, (12\kappa^4)^{-1}\delta^{k+1})) \leq C_s^\mu \mu(Q), \]
which implies inequality (4.1) with \(\varepsilon = C_s^\mu \). \(\square \)

Once Lemma 8 is available, one can prove the following version of the Calderón-Zygmund decomposition for spaces of homogeneous type.

Theorem 9. Let \((X, d, \mu)\) be a space of homogeneous type and \(D \in \bigcup_{t=1}^K D_t\) be a dyadic grid. Suppose that \(\varepsilon \in (0, 1) \) is the same as in Lemma 8 and \(f \in L^1(X, d, \mu) \).

(a) If
\[\lambda > \begin{cases} \frac{1}{\mu(X)} \int_X |f(x)| \, d\mu(x) & \text{if } \mu(X) < \infty, \\ 0 & \text{if } \mu(X) = \infty, \end{cases} \]
and the set
\[\Omega_\lambda := \{ x \in X : (M^D f)(x) > \lambda \} \]
is nonempty, then there exists a collection \(\{Q_j\} \subset D \) that is pairwise disjoint, maximal with respect to inclusion, and such that
\[\Omega_\lambda = \bigcup_j Q_j. \] (4.8)

Moreover, for every \(j \),
\[\lambda < \frac{1}{\mu(Q_j)} \int_{Q_j} |f(x)| \, d\mu(x) \leq \frac{\lambda}{\varepsilon}. \] (4.9)

(b) Let \(a > 2/\varepsilon \) and, for \(k \in \mathbb{Z} \) satisfying
\[a^k > \begin{cases} 0 & \text{if } \mu(X) = \infty, \\ \frac{1}{\mu(X)} \int_X |f(x)| \, d\mu(x) & \text{if } \mu(X) < \infty, \end{cases} \] (4.10)
let
\[\Omega_k := \{ x \in X : (M^D f)(x) > a^k \}. \] (4.11)
If $\Omega_k \neq \emptyset$, then there exists a collection $\{Q^k_j\}_{j \in J_k}$ (as in part (a)) such that it is pairwise disjoint, maximal with respect to inclusion, and

$$\Omega_k = \bigcup_{j \in J_k} Q^k_j. \quad (4.12)$$

The collection of cubes

$$S = \{Q^k_j : \Omega_k \neq \emptyset, j \in J_k\}$$

is sparse, and for all j and k, the sets

$$E(Q^k_j) := Q^k_j \setminus \Omega_{k+1}$$

satisfy

$$\mu(Q^k_j) \leq 2\mu(E(Q^k_j)). \quad (4.13)$$

Proof. The proof is analogous to the proof of [7, Proposition A.1]. For the convenience of the reader, we provide the proof in the case of $\mu(X) = \infty$. For $\mu(X) < \infty$, the proof is similar.

(a) Let Λ_λ be the family of dyadic cubes $Q \in D$ such that

$$\lambda < \frac{1}{\mu(Q)} \int_Q |f(x)| \, d\mu(x). \quad (4.14)$$

Notice that Λ_λ is nonempty because $\Omega_\lambda \neq \emptyset$. For each $Q \in \Lambda_\lambda$ there exists a maximal cube $Q' \in \Lambda_\lambda$ with $Q \subset Q'$, since

$$0 \leq \frac{1}{\mu(Q)} \int_Q |f(x)| \, d\mu(x) \leq \frac{1}{\mu(Q)} \int_X |f(x)| \, d\mu(x) \to 0 \quad \text{as} \quad \mu(Q) \to \infty.$$

Let $\{Q_j\}_k \subset \Lambda_\lambda$ denote the family of such maximal cubes. By the maximality, the cubes in $\{Q_j\}_k$ are pairwise disjoint. If \tilde{Q}_j is the dyadic parent of Q_j, then $Q_j \subset \tilde{Q}_j$ and \tilde{Q}_j does not belong to $\{Q_j\}_k$ in view of the maximality of the cubes in $\{Q_j\}_k$. Hence, taking into account Lemma 8, we see that

$$\lambda < \frac{1}{\mu(Q_j)} \int_{Q_j} |f(x)| \, d\mu(x) \leq \frac{1}{\varepsilon \mu(Q_j)} \int_{\tilde{Q}_j} |f(x)| \, d\mu(x) \leq \frac{\lambda}{\varepsilon},$$

which completes the proof of (4.9).

If $x \in \Omega_\lambda$, then it follows from the definition of $M^D f$ that there exists a cube $Q \in D$ such that $x \in Q$ and (4.14) is fulfilled. Hence $Q \subset Q_j$ for some j. Therefore, $\Omega_\lambda \subset \bigcup_j Q_j$.

Conversely, since

$$\lambda < \frac{1}{\mu(Q_j)} \int_{Q_j} |f(x)| \, d\mu(x),$$

if $x \in Q_j$, then $(M^D f)(x) > \lambda$. This means that $x \in \Omega_\lambda$. Therefore, $\bigcup_j Q_j \subset \Omega_\lambda$. Thus (4.8) holds. Part (a) is proved.

(b) Equality (4.12) follows from part (a). Since $\Omega_{k+1} \subset \Omega_k$ and for each fixed k, the cubes Q^k_j are pairwise disjoint, it is clear that the sets $E(Q^k_j)$ are pairwise disjoint for all j and k. If $Q^k_j \cap Q^{k+1}_i \neq \emptyset$, then by the maximality of the cubes in
and the hypothesis \(a > 2/\varepsilon \), we have \(Q_{i}^{k+1} \subseteq Q_{j}^{k} \). In view of part (a),

\[
\mu(Q_{j}^{k} \cap \Omega_{k+1}) = \sum_{\{i: Q_{i}^{k+1} \subseteq Q_{j}^{k}\}} \mu(Q_{i}^{k+1}) \leq \sum_{\{i: Q_{i}^{k+1} \subseteq Q_{j}^{k}\}} \frac{1}{a^{k+1}} \int_{Q_{i}^{k+1}} |f(x)| \, d\mu(x) \leq \frac{1}{a^{k+1}} \int_{Q_{j}^{k}} |f(x)| \, d\mu(x) \leq \frac{1}{a^{k+1}} \cdot \frac{a^{k} \mu(Q_{j}^{k})}{\varepsilon} = \frac{\mu(Q_{j}^{k})}{a \varepsilon}.
\]

Then

\[
\mu(E(Q_{j}^{k})) = \mu(Q_{j}^{k} \setminus \Omega_{k+1}) = \mu(Q_{j}^{k}) - \mu(Q_{j}^{k} \cap \Omega_{k+1}) \geq \left(1 - \frac{1}{a \varepsilon} \right) \mu(Q_{j}^{k}) \geq \left(1 - \frac{1}{2} \right) \mu(Q_{j}^{k}),
\]

whence \(\mu(Q_{j}^{k}) \leq 2 \mu(E(Q_{j}^{k})) \) for all \(j \) and \(k \), which completes the proof of (4.15). \(\square \)

Corollary 10. Let \((X, d, \mu)\) be a space of homogeneous type and \(D \in \bigcup_{t=1}^{K} \mathcal{D}_t\) be a dyadic grid on \(X\). Suppose \(\varepsilon \in (0, 1) \) is the same as in Lemma 8 and \(a > 2/\varepsilon \). For a non-negative function \(f \in L^{1}(X, d, \mu) \) and \(k \in \mathbb{Z} \) satisfying (4.10), let the sets \(\Omega_{k} \) be given by (4.11). For all \(\ell \in \mathbb{Z}_{+} \) and all \(j \) such that \(Q_{j}^{k} \subset \Omega_{k} \),

\[
\mu(Q_{j}^{k} \cap \Omega_{k+\ell}) \leq \frac{\mu(Q_{j}^{k})}{a^{\ell} \varepsilon}.
\]
(depending on \(f \)) such that for all \(x \in X \),
\[
(M^D f)(x) \leq a \sum_{Q \in S} \left(\frac{1}{\mu(Q)} \int_Q f(y) \, d\mu(y) \right) \chi_{E(Q)}(x).
\]

Proof. The proof is, actually, contained in the proof of [1, Theorem 3.1, p. 30]. We reproduce it here for completeness.

Let \(K \) denote the set of all \(k \in \mathbb{Z} \) satisfying (4.10). Then
\[
X = \bigcup_{k \in K} \Omega_k \setminus \Omega_{k+1}.
\]

Let \(S \) be the sparse family given by Theorem 9(b). For \(k \in K \) and a given \(x \in \Omega_k \setminus \Omega_{k+1} \), there exists a cube \(Q^k_j \in S \) such that \(x \in Q^k_j \setminus \Omega_{k+1} \) and
\[
(M^D f)(x) \leq a^{k+1} \mu(Q^k_j) \int_{Q^k_j} f(y) \, d\mu(y).
\]

Taking into account that by Theorem 9(b),
\[
\Omega_k \setminus \Omega_{k+1} = \bigcup_{j \in J_k} Q^k_j \setminus \Omega_{k+1} = \bigcup_{j \in J_k} E(Q^k_j),
\]
we obtain from (4.16)–(4.18) for all \(x \in X \),
\[
(M^D f)(x) = \sum_{k \in K} (M^D f)(x) \chi_{\Omega_k \setminus \Omega_{k+1}}(x)
\]
\[
\leq \sum_{k \in K} \sum_{j \in J_k} \left(\frac{a}{\mu(Q^k_j)} \int_{Q^k_j} f(y) \, d\mu(y) \right) \chi_{E(Q^k_j)}(x)
\]
\[
= a \sum_{Q \in S} \left(\frac{1}{\mu(Q)} \int_Q f(y) \, d\mu(y) \right) \chi_{E(Q)}(x),
\]
which completes the proof. \(\square \)

5. **Proof of part (a) of Theorem 2**

The scheme of the proof is borrowed from the proof of the necessity portion of [11, Theorem 3.1].

For a bounded sublinear operator on a Banach function space \(\mathcal{E}'(X, d, \mu) \), let \(\|T\|_{\mathcal{B}(\mathcal{E}')} \) denote its norm.

Fix \(\mathcal{D} \in \bigcup_{t=1}^K \mathcal{D}' \). It follows from the boundedness of the Hardy-Littlewood maximal operator \(M \) on \(\mathcal{E}'(X, d, \mu) \) in view of Theorem 4 and the lattice property (axiom (A2) in the definition of a Banach function space) that the dyadic maximal operator \(M^D \) is bounded on the space \(\mathcal{E}'(X, d, \mu) \) and
\[
\|M^D\|_{\mathcal{B}(\mathcal{E}')} \leq C_{HK}(X) \|M\|_{\mathcal{B}(\mathcal{E}')}. \tag{5.1}
\]

Let \(g \in L^0(X, d, \mu) \) with \(\|g\|_{\mathcal{E}'} \leq 1 \). Using an idea of Rubio de Francia [12] (see also [11, Section 2.1]), put
\[
(Rg)(x) := \sum_{k=0}^{\infty} \left(\frac{(M^D)^k g(x)}{2^k \|M^D\|_{\mathcal{B}(\mathcal{E}')}} \right)^k, \quad x \in X.
\]
where \((M^k)\) denotes the \(k\)-th iteration of \(M\) and \((M^0)g := g\). Then
\[
\|Rg\|_{E'} \leq 2\quad (5.2)
\]
and
\[g(x) \leq (Rg)(x) \text{ for a.e. } x \in X.\quad (5.3)
\]
Since \(M\) is sublinear, we have
\[
(M^kRg)(x) \leq \sum_{k=0}^{\infty} \frac{((M^k)^{g+1}g)(x)}{(2\|M\|_{B(E')}\)^{k+1}}
\]
\[
= 2\|M\|_{B(E')} \sum_{k=0}^{\infty} \frac{((M^k)^{g}g)(x)}{(2\|M\|_{B(E')}\)^{k}}
\]
\[
\leq 2\|M\|_{B(E')} \sum_{k=0}^{\infty} \frac{((M^k)^{g}g)(x)}{(2\|M\|_{B(E')}\)^{k}}
\]
\[
= 2\|M\|_{B(E')} (Rg)(x),
\]
whence \(Rg \in A^P\) with
\[
[Rg]_{A^P} \leq 2\|M\|_{B(E')}.
\]
Let the constants \(C_{D'} \geq 1\) be defined for each \(t \in \{1, \ldots, K\}\) by (5.1). Take \(\eta\) and \(\gamma\) such that
\[0 < \eta \leq \left(\frac{\max_{1 \leq t \leq K} C_{D'}^2}{K C_{H_K}(X)\|M\|_{B(E')}}\right)^{-1}, \quad \gamma = \frac{\eta}{1 + \eta}.
\]
Inequalities (5.4) and (5.1) imply that
\[
[Rg]_{A^P} \leq 2C_{H_K}(X)\|M\|_{B(E')}.
\]
whence \(\eta\) satisfies (5.2). Since \(Rg \in A^P\), it follows from Theorem 7 and inequality (5.5) that, for every finite sparse family \(S \subset D\), every collection of non-negative numbers \(\{\alpha_Q\}_{Q \in S}\), every collection of pairwise disjoint measurable subsets \(G_Q \subset Q\), and
\[
\int_{G_Q} (Rg)(x) d\mu(x) \leq 2^{1-\gamma}C_{D'} [Rg]_{A^P} \left(\frac{\mu(G_Q)}{\mu(Q)}\right)^{\gamma} \int_{Q} (Rg)(x) d\mu(x)
\]
\[
\leq \frac{C}{2} \left(\frac{\mu(G_Q)}{\mu(Q)}\right)^{\gamma} \int_{Q} (Rg)(x) d\mu(x), \quad (5.6)
\]
where
\[C := 2^{3-\gamma} \left(\frac{\max_{1 \leq t \leq K} C_{D'}}{K C_{H_K}(X)\|M\|_{B(E')}}\right).
\]
Taking into account inequalities (5.3), (5.6), Hölder’s inequality for Banach function spaces (see [3, Chap. 1, Theorem 2.4]), and inequality (5.2), we deduce that, for every finite sparse family \(S \subset D\), every collection of non-negative numbers \(\{\alpha_Q\}_{Q \in S}\), every collection of pairwise disjoint measurable subsets \(G_Q \subset Q\), and
every $g \in L^0_+ (X, d, \mu)$ satisfying $\|g\|_{\mathcal{E}} \leq 1$, one has
\[
\int_X \left(\sum_{Q \in S} \alpha_Q \chi_{G_Q}(x) \right) g(x) \, d\mu(x) \\
\leq \sum_{Q \in S} \alpha_Q \int_{G_Q} g(x) \, d\mu(x) \\
\leq \sum_{Q \in S} \alpha_Q \int_{G_Q} (Rg)(x) \, d\mu(x) \\
\leq \frac{C}{2} \sum_{Q \in S} \alpha_Q \left(\frac{\mu(Q)}{\mu(G_Q)} \right)^{\gamma} \int_Q (Rg)(x) \, d\mu(x) \\
\leq \frac{C}{2} \left(\max_{Q \in S} \frac{\mu(Q)}{\mu(G_Q)} \right)^{\gamma} \int_X \left(\sum_{Q \in S} \alpha_Q \chi_{G_Q}(x) \right) (Rg)(x) \, d\mu(x) \\
\leq \frac{C}{2} \left(\max_{Q \in S} \frac{\mu(Q)}{\mu(G_Q)} \right)^{\gamma} \left\| \sum_{Q \in S} \alpha_Q \chi_{G_Q} \right\|_{\mathcal{E}} \|Rg\|_{\mathcal{E}},
\]

Then, in view of the Lorentz-Luxemburg theorem (see [3, Chap. 1, Theorem 2.7]),
\[
\left\| \sum_{Q \in S} \alpha_Q \chi_{G_Q} \right\|_{\mathcal{E}} = \left\| \sum_{Q \in S} \alpha_Q \chi_{G_Q} \right\|_{\mathcal{E}'} \\
= \sup \left\{ \int_X \left(\sum_{Q \in S} \alpha_Q \chi_{G_Q}(x) \right) g(x) \, d\mu(x) : g \in L^0_+ (X, d, \mu), \|g\|_{\mathcal{E}'} \leq 1 \right\} \\
\leq C \left(\max_{Q \in S} \frac{\mu(G_Q)}{\mu(Q)} \right)^{\gamma} \left\| \sum_{Q \in S} \alpha_Q \chi_{Q} \right\|_{\mathcal{E}},
\]

that is, the space $\mathcal{E}(X, d, \mu)$ satisfies the condition \mathcal{A}_∞, which completes the proof of part (a) of Theorem [2]. \hfill \Box

6. PROOF OF PART (B) OF THEOREM [2]

We follow the proof of the sufficiency portion of the proof of [11, Theorem 3.1]. Let $\varepsilon \in (0, 1)$ be the same as in Lemma [8]. Take $a > 2/\varepsilon$. Assume that $f \in L^1_+ (X, d, \mu) \cap \mathcal{E}'(X, d, \mu)$ is a nonnegative function and fix any dyadic grid $\mathcal{D} = \bigcup_{k=1}^K \mathcal{D}'$. By Lemma [11] there exists a sparse family $S \subset \mathcal{D}$ (not necessarily finite) such that for all $x \in X$,
\[
(M^p f)(x) \leq a \sum_{Q \in S} \left(\frac{1}{\mu(Q)} \int_Q f(y) \, d\mu(y) \right) \chi_{E(Q)}(x). \quad (6.1)
\]

For every subfamily $S' \subset S$, put
\[
(A_{S'} f)(x) = \sum_{Q \in S'} \left(\frac{1}{\mu(Q)} \int_Q f(y) \, d\mu(y) \right) \chi_{E(Q)}(x).
\]
Let \(\{S_t\}_{t \in \mathbb{N}} \) be a sequence of subfamilies of \(S \) such that each subfamily \(S_t \) is finite, \(S_t \subset S_n \) if \(t < n \), and \(A_S f \uparrow A_S f \) a.e. on \(X \) as \(t \to \infty \). By the Fatou property (axiom (A3) in the definition of a Banach function space),

\[
\lim_{t \to \infty} \|A_S f\|_{E'} = \|A_S f\|_{E'}. \tag{6.2}
\]

By the Fubini theorem, for every \(g \in \mathcal{E}(X, d, \mu) \) and every \(t \in \mathbb{N} \), one has

\[
\int_X (A_S f)(x)g(x) \, d\mu(x)
= \int_X \int_X \sum_{Q \in S_t} \frac{1}{\mu(Q)} f(y) \chi_Q(y) \chi_{\mathcal{E}(Q)}(x) g(x) \, d\mu(y) \, d\mu(x)
= \int_X \int_X \sum_{Q \in S_t} \frac{1}{\mu(Q)} f(x) \chi_Q(x) \chi_{\mathcal{E}(Q)}(y) g(y) \, d\mu(y) \, d\mu(x)
= \int_X \sum_{Q \in S_t} \left(\frac{1}{\mu(Q)} \int_{\mathcal{E}(Q)} g(y) \, d\mu(y) \right) \chi_Q(x) f(x) \, d\mu(x)
= \int_X f(x)(A_{S_t}^* g)(x) \, d\mu(x), \tag{6.3}
\]

where

\[
(A_{S_t}^* g)(x) := \sum_{Q \in S_t} \left(\frac{1}{\mu(Q)} \int_{\mathcal{E}(Q)} g(y) \, d\mu(y) \right) \chi_Q(x), \quad x \in X.
\]

It follows from [6, §2.1] and Hölder’s inequality for Banach function spaces (see [3, Chap. 1, Theorem 2.4]) that

\[
\left| \int_X (A_S f)(x)g(x) \, d\mu(x) \right| \leq \|A_{S_t}^* g\|_{E} \|f\|_{E'}. \tag{6.4}
\]

Let \(C, \gamma > 0 \) be as in Definition [4]. Since \(a > 2/\varepsilon > 2 \), there exists \(\nu \in \mathbb{N} \) such that

\[
C \varepsilon^{-\gamma} \sum_{\ell=\nu}^{\infty} a^{-\ell\gamma} \leq \frac{1}{2}. \tag{6.5}
\]

For \(Q \in S_t \), let

\[
\alpha_Q := \frac{1}{\mu(Q)} \int_{\mathcal{E}(Q)} |g(x)| \, d\mu(x).
\]

Then for all \(x \in X \),

\[
|(A_{S_t}^* g)(x)| \leq \sum_{Q \in S_t} \alpha_Q \chi_Q(x)
= \sum_{\{j,k: Q_j^k \in S_t\}} \alpha_{Q_j^k} \chi_{Q_j^k}(x)
= \sum_{\{j,k: Q_j^k \in S_t\}} \alpha_{Q_j^k} \chi_{Q_j^k \setminus \Omega_{k,\nu}}(x) + \sum_{\{j,k: Q_j^k \in S_t\}} \alpha_{Q_j^k} \chi_{Q_j^k \cap \Omega_{k,\nu}}(x)
=: \Sigma_1(x) + \Sigma_2(x), \tag{6.6}
\]

where the sets \(\Omega_k \) are defined by [4, (11)] for all \(k \in \mathbb{Z} \) satisfying [4, (10)].
Let \(K \) be the set of all those \(k \in \mathbb{Z} \) that satisfy (4.10). It is easy to see that for \(k \in K \) and \(\nu \in \mathbb{N} \),
\[
\Omega_k \setminus \Omega_{k+\nu} \subset \bigcup_{i=0}^{\nu-1} \Omega_{k+i} \setminus \Omega_{k+i+1}.
\]
(6.7)

It is also easy to see that if \(k \in K \) and \(x \in Q_j^k \), then
\[
\alpha_{Q_j^k} \leq \frac{1}{\mu(Q_j^k)} \int_{Q_j^k} |g(x)| \, d\mu(x) \leq (M^P g)(x).
\]
(6.8)

Combining (6.7) and (6.8), we get for \(x \in X \),
\[
\Sigma_1(x) = \sum_{\{j,k:Q_j^k \in S_i\}} \alpha_{Q_j^k} \chi_{Q_j^k \setminus \Omega_{k+\nu}}(x)
\leq (M^P g)(x) \sum_{k \in K} \sum_{\nu=0}^{\nu-1} \chi_{\Omega_k \setminus \Omega_{k+i+1}}(x)
\leq (M^P g)(x) \sum_{i=0}^{\nu-1} \sum_{k \in K} \chi_{\Omega_k \setminus \Omega_{k+i+1}}(x)
= \nu (M^P g)(x).
\]
(6.9)

On the other hand, for \(x \in X \), we have
\[
\Sigma_2(x) = \sum_{\{j,k:Q_j^k \in S_i\}} \alpha_{Q_j^k} \chi_{Q_j^k \cap \Omega_{k+\nu}}(x)
\leq \sum_{\{j,k:Q_j^k \in S_i\}} \alpha_{Q_j^k} \chi_{Q_j^k \cap (\Omega_{k+i} \setminus \Omega_{k+i+1})}(x)
= \sum_{\ell=\nu}^{\infty} \sum_{\{j,k:Q_j^k \in S_i\}} \alpha_{Q_j^k} \chi_{Q_j^k \cap (\Omega_{k+i} \setminus \Omega_{k+i+1})}(x).
\]
(6.10)

Since \(S_i \) is a finite sparse family, applying inequality (1.3) of Definition 1 we obtain for all \(\ell \geq \nu \),
\[
\left\| \sum_{\{j,k:Q_j^k \in S_i\}} \alpha_{Q_j^k} \chi_{Q_j^k \cap (\Omega_{k+i} \setminus \Omega_{k+i+1})} \right\|_{\infty} \leq C \left(\max_{\{j,k:Q_j^k \in S_i\}} \frac{\mu(Q_j^k \cap (\Omega_{k+i} \setminus \Omega_{k+i+1}))}{\mu(Q_j^k)} \right)^\gamma \|A_i g\|_{\mathcal{E}}.
\]
(6.11)

By Corollary 10 we get for all \(\ell \geq \nu \),
\[
\max_{\{j,k:Q_j^k \in S_i\}} \frac{\mu(Q_j^k \cap (\Omega_{k+i+1} \setminus \Omega_{k+i+1}))}{\mu(Q_j^k)} \leq \max_{\{j,k:Q_j^k \in S_i\}} \frac{\mu(Q_j^k \cap \Omega_{k+i})}{\mu(Q_j^k)} \leq \max_{\{j,k:Q_j^k \in S_i\}} \frac{\mu(Q_j^k)}{a_i^\ell \epsilon \mu(Q_j^k)} = \frac{1}{a_i^\ell \epsilon}.
\]
(6.12)
It follows from (6.10)–(6.12) and (6.5) that
\[
\|\Sigma_2\| \leq \sum_{\ell=0}^{\infty} \left(\sum_{j,k:Q_j^* \in S_{\ell}} 2^{\alpha j} |Q_j^* \cap (\Omega_{k+\ell} \setminus \Omega_{k+\ell+1})| \right) \leq C \sum_{\ell=0}^{\infty} \left(\frac{1}{2^{d\ell}} \right)^\gamma \|A_{S_{\ell}}^* g\| \leq \frac{1}{2} \|A_{S_{\ell}}^* g\| \varepsilon. \tag{6.13}
\]

Combining inequalities (6.10), (6.11), and (6.13), we arrive at
\[
\|A_{S_{\ell}}^* g\| \leq \nu \|M^D g\| \varepsilon + \frac{1}{2} \|A_{S_{\ell}}^* g\| \varepsilon.
\]
It follows from this inequality, Theorem 4 and the boundedness of the Hardy-Littlewood maximal operator on \(E(X,d,\mu)\) that for all finite sparse families \(S_i \subset S\) and all \(g \in E(X,d,\mu)\), one has
\[
\|A_{S_i}^* g\| \leq 2\nu \|M^D g\| \varepsilon \leq 2\nu C_{HK}(X) \|Mg\| \varepsilon \leq 2\nu C_{HK}(X) \|M\|_{B(E)} \|g\| \varepsilon. \tag{6.14}
\]
Combining (6.4) and (6.14) with [3, Chap. 1, Lemma 2.8], we see that
\[
\|A_{S_i} f\|_{E'} = \sup \left\{ \left| \int_X (A_{S_i} f)(x) g(x) \, d\mu(x) \right| : g \in E(X,d,\mu), \|g\| \varepsilon \leq 1 \right\}
\leq 2\nu C_{HK}(X) \|M\|_{B(E)} \|f\|_{E'}
\]
for all \(t \in \mathbb{N}\). Passing in this inequality to the limit as \(t \to \infty\) and taking into account (6.2), we get
\[
\|A_{S_i} f\|_{E'} \leq 2\nu C_{HK}(X) \|M\|_{B(E)} \|f\|_{E'}.
\]
It follows from this inequality and inequality (6.1) that
\[
\|M^D f\|_{E'} \leq 2\nu C_{HK}(X) \|M\|_{B(E)} \|f\|_{E'} \tag{6.15}
\]
for every dyadic grid \(D \in \bigcup_{i=1}^K D^i\). In turn, inequality (6.15) and Theorem 4 imply that
\[
\|M f\|_{E'} \leq 2\nu K C_{HK}^2(X) \|M\|_{B(E)} \|f\|_{E'} \tag{6.16}
\]
for every nonnegative function \(f \in L^1(X,d,\mu) \cap E'(X,d,\mu)\).

Now let \(f \in E'(X,d,\mu)\) be an arbitrary complex-valued function. Since \(X\) is \(\sigma\)-finite, there are measurable sets \(\{A_n\}_{n \in \mathbb{N}}\) such that \(\mu(A_n) < \infty\) for all \(n \in \mathbb{N}\), \(A_i \subset A_j\) for \(i < j\), and \(\bigcup_{n \in \mathbb{N}} A_n = X\). Let \(f_n = |f| \chi_{A_n}\) for \(n \in \mathbb{N}\). Then \(f_n \in L^1(X,d,\mu) \cap E'(X,d,\mu)\) for all \(n \in \mathbb{N}\) in view of axiom (A5) in the definition of a Banach function space. By (6.16), for all \(n \in \mathbb{N}\),
\[
\|M f_n\|_{E'} \leq 2\nu K C_{HK}^2(X) \|M\|_{B(E)} \|f_n\|_{E'}. \tag{6.17}
\]
Since \(f_n \uparrow |f|\) a.e., we have \(M f_n \uparrow Mf\) a.e. (cf. [6, Lemma 2.2]). Passing to the limit in inequality (6.17), we conclude from the Fatou property that inequality (6.16) holds for all \(f \in E'(X,d,\mu)\). Thus, the Hardy-Littlewood maximal operator \(M\) is bounded on the space \(E'(X,d,\mu)\) whenever it is bounded on the space \(E(X,d,\mu)\) and the latter space satisfies the condition \(A_{\infty}\). \(\square\)
References

[1] T. C. Anderson, D. Cruz-Uribe, and K. Moen, Logarithmic bump conditions for Calderón-Zygmund operators on spaces of homogeneous type, Publ. Mat., Barc., 59 (2015), 17–43.

[2] T. C. Anderson, T. Hytönen, and T. Tapiola, Weak A_{∞} weights and weak reverse Hölder property in a space of homogeneous type, J. Geom. Anal. 27 (2017), 95–119.

[3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston (1988).

[4] M. Christ, $A(T(b))$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601–628.

[5] M. Christ, Lectures on Singular Integral Operators, Expository lectures from the CBMS regional conference held at the University of Montana, Missoula, MT (USA) from August 28-September 1, 1989. Regional Conference Series in Mathematics, 77. American Mathematical Society, Providence, RI (1990).

[6] D. Cruz-Uribe, L. Diening, and A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital. (9), 2 (2009), 151–173.

[7] D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications 215. Birkhäuser, Basel (2011).

[8] D. Cruz-Uribe and P. Shukla, The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type, Studia Math, 242 (2018), 109–139.

[9] L. Diening, Maximal functions on Musielak–Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657–700.

[10] T. Hytönen and A. Kairema, Systems of dyadic cubes in a doubling metric space, Colloq. Math., 126 (2012), 1–33.

[11] A. K. Lerner, On a dual property of the maximal operator on weighted variable L^p spaces, Contemp. Math., 693 (2017), 288–300.

[12] J. L. Rubio de Francia, Factorization theory and A_p weights, Amer. J. Math., 106 (1984), 533–547.

Centro de Matemática e Aplicações (CMA) and Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

E-mail address: oyk@fct.unl.pt