Effect of Zeolite size measures and urea fertilizers to growth and yield endive Plant (Cichorium endivia L.)

D Lestia¹, A Taofik¹*, and H Aiah²

¹ Jurusan Agroteknologi, Fakultas Sains dan Teknologi, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia
² Jurusan Fisika, Fakultas Sains dan Tekbologi, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia

*taofikuin@uinsgd.ac.id

Abstract. This research aimed was to determine the growth and yield of endive plant (Cichorium endivia L.) due to the application of zeolite in various sizes and urea fertilizers in various doses. The treatments are zeolite size <0.25 mm, 0.26-0.50 mm, 0.60-5.00 mm; and urea dose 2%, 4%, 6% of total compost. The parameters of responses in this study are growth plant such as plant height (PH), chlorophyll content of leaf (CH), root length (RL); and yield of plant such as wet (WW) and dry weight (DW) of plant, shoot root ratio (SRR). The data analyzed by Anova, through DMRT in 5 %. The results showed that the application of zeolite and urea fertilizer significantly affected the growth and yield of endive plants in parameters observed were plant height and dry weight of plant, with the best zeolite size is 0.26-0.50 mm and 2% urea dose of total compost. Smaller dose of urea (2 %) from compost combine to medium size of zeolite (0.26 – 0.5 mm), result better effect to growth and yield of endive.

1. Introduction
Endive (Cichorium endivia L.) is a leaf vegetable contain high vitamin and nutritional values [1] and need high Nitrogen. Organic fertilizer like compost, contain highly organic matter that can improve physical, chemical and biological traits of soil, but nutritive value of the compost is poor, so to apply it need much of the compost [2]. Organic fertilizer combine to an-organic fertilizer source of Nitrogen is a solution to improve soil fertility and the plant nutritive requirements [3].

Urea is a source of nitrogen, but it easy to water soluble and vaporize to sunlight exposure [4]. Utilization of zeolites in agriculture is possible because of zeolites special cation exchange properties, molecular sieving and desorption [5], [6]. Zeolite is a material to bond nitrogen before mix to organic fertilizer.

Compost is a product that is made through the process of Composting made from gardeners’ and landscapers’ plant trimmings and prunings, also include small amounts of other source-separated biodegradable materials such as manure [7] The organic compost application rates promoted changes in the concentrations of these nutrients in the soil. Compost application promoted higher N and P concentrations in the soil than mineral fertilization did [8].

Previous study showed that ratio of urea and zeolite, influence to nitrogen release [9]. Zeolite size, also influence to plants absorption and binding nitrogen, smallest size better than the larger.
This research aimed was to determine the growth and yield of endive plant (Cichorium endivia L.) due to the application of zeolite in various sizes and urea fertilizers in various dosages. The benefit of this research is reduce urea using without reducing of growth and yield of plant.

2. Methods
The research treatments in this study are three level of zeolite size such as < 0.25 mm (z1), 0.26 – 0.50 mm (z2) and 0.51 – 5.00 mm (z3); and three levels of the urea dosages are 2 % (d1), 4 % (d2) and 6 % (d3) in total compost. The parameters of responses in this study are growth plant such as plant height (PH), chlorophyll content of leaf (CH), root length (RL); and yield of plant such as wet (WW) and dry weight (DW) of plant, shoot root ratio (SRR). The data analyzed by Anova, through DMRT in 5 %.

3. Results and discussion

3.1. Media characteristics
Soil characteristic of media (Table 1) showed that pH is acid while compost is alkali. C/N ratio of compost not different to soil, it indicate the nutrition in the compost can be absorption to the plant [10], [11]. Soil chemical properties of mixture zeolites, manure and NPK fertilizer, pH 6.67; N total 0.17%, P 330.0 mg kg\(^{-1}\), and K 350.0 mg kg\(^{-1}\) [12].

Chemical Characteristics	Sources	
	Soil	Compost
pH	4.6	8.94
C-organic (%)	1.77	14.99
N total	0.16	1.27
C/N Ratio	11	12

3.2. Growth and yield of endive

3.2.1. Plant height. The effects of treatments on growth responses of endive such as plant height, chlorophyll content and root length showed in Table 2. There are interaction effect of zeolite size and urea dosage to plant height, the treatment d1z2 is better than other treatments. Since zeolite particle size smaller, increase the area of surface [13]. Sunlight exposure increase soil temperature throughout rise the zeolite ability to nitrogen binding; when the nitrogen content in the soil decrease, the nitrogen in zeolite gradually release to the soil.

3.2.2. Chlorophyll content. No different content of chlorophyll between treatments. Plant need Magnesium (Mg\(^{2+}\)) to chlorophyll synthesis [14], laboratory analysis showed that magnesium content in research area is 1.34 me 100 g\(^{-1}\) soil, it is sufficient to complete endive to magnesium. The chlorophyll content in this study higher then reported [1] but less than reported [15]. Chlorophyll are synthesized from glutamate in chloroplasts through the cooperative activity of many enzymes [16] Chlorophyll content affect the photosynthesis rate through the assimilation yield [17].
Table 2. Mean of growth and yield of endive responses.

Treatment	Plant Height	Chlorophyll Content	Root Length
	-- cm --	mg kg⁻¹	- cm -
d₁z₁	14.04b	51.03a	21.00a
d₁z₂	17.07c	53.31a	16.83a
d₁z₃	15.22b	50.93a	23.13a
d₂z₁	14.75b	52.49a	21.3a
d₂z₂	13.30ab	51.99a	17.67a
d₂z₃	12.07a	51.33a	28.93a
d₃z₁	12.95a	51.95a	23.10a
d₃z₂	12.69a	48.27a	19.97a
d₃z₃	12.13a	48.19a	17.53a

Interaction Yes No No

Means followed by different letters between rows differ statistically (P<0.05) by the DMRT

3.2.3. **Root length.** As chlorophyll contents, the root length also no different length between treatments. Growth of root correlated to water and nutrient absorption, generally length of root showed positive correlated to the plant growth (Gould, 1974). In our study, the length of root is not correlated to the plant height, it is evidence that adding zeolite to fertilizer adequate to hold nutrient, finally the root growth near to around the planting area.

According to plant height, chlorophyll content and root length, 2 % urea dosage in total compost and the zeolite size 0.26 – 0.5 mm (d₁z₂) is the best treatment to growth of endive.

3.2.4. **Fresh weight.** The effects of treatments on yield responses of endive such as fresh weight, dry weight and shoot root ratio showed in Table 3. No interaction effect between zeolite size and urea dosage to endive fresh weight. Urea dosage effect to wet weight, while zeolite size no. Endive need 217 kg urea ha⁻¹ or 138 kg N ha⁻¹ [18]. In this study, smallest dosage (d₁) equivalent to 300 kg urea ha⁻¹ or 138 kg N ha⁻¹ is best compare to larger dosages. Fresh weight of endive in this study very light than reported [1,19].

3.2.5. **Dry weight.** Zeolite size and urea dosage have interaction effect to dry weigh, the treatment d₁z₂ is better than other treatments. Dry weight correlated to fresh weight, in our study dry weight measure in gram, while previous study in percent. Since dry weight value in this study convert to percent, there are highest than previous study [1,15,19].

Like on effect of treatment on endive growth, the treatment of d₁z₂ also the best effect on yield of endive.
Table 3. Mean of growth and yield of endive responses

Treatment	Fresh Weight	Dry Weight
$d_1 z_1$	50.26ab	6.34b
$d_1 z_2$	90.51a	9.19a
$d_1 z_3$	64.86a	7.42ab
$d_2 z_1$	56.12a	6.89b
$d_2 z_2$	40.17b	5.06a
$d_2 z_3$	29.65c	4.07c
$d_3 z_1$	29.73c	3.61c
$d_3 z_2$	26.95c	4.22c
$d_3 z_3$	28.26c	3.48c

Interaction | No | Yes

Means followed by different letters between rows differ statistically ($P<0.05$) by the DMRT

4. Conclusion
Smaller dose of urea (2 %) from compost combine to medium size of zeolite (0.26 – 0.5 mm), result better effect to growth and yield of endive.

References
[1] Kowalczyk K, Gajc-wolska J and Marcinkowska M 2016 Response of growth , quality parameters and photosynthetic apparatus of endive plant to different culture media Folia Hort. 1 25–30
[2] Hardjowigeno 2010 Ilmu Tanah (CV. Akademika Presindo)
[3] Ishak Juarsah 2016 Pemanfaatan Zeolit Dan Dolomit Sebagai Pembenah Untuk Meningkatkan Efisiensi Pemupukan Pada Lahan Sawah Utilization of Zeolit and Dolomite As Soil Conditioner To Increase Fertilization Efficiency in Rice Field J. Agro III 10–9
[4] GALLOWAY J N, ABER J D, ERISMAN J W, SEITZINGER S P, HOWARTH R W, COWLING E B and COSBY B J 2003 The Nitrogen Cascade Bioscience 53 341
[5] Glisic, I P and Milosevic T M 2008 The effect of natural zeolites and organic fertilizers on the characteristics of degraded soils and yield of crops grown in Western Serbia. L. Degrad. Dev. 20 33–40
[6] Hecl, J and Toth S 2009 Effect of fertilizers and sorbents applied to the soil on heavy metal transfer from the soil. Electron J. Polish Agric. Univ. 12 7–17
[7] WRAP 2006 Using quality compost to benefit crops Agriculture 12
[8] de Souza H A, Melo M D, Primo A A, Vieira L V, Pompeu R C F F, Guedes F L and Natale W 2016 Use of organic compost containing waste from small ruminants in corn production Rev. Bras. Cienc. do Solo 40 1–16
[9] Marfuatun 2011 Manfaat Zeolit dalam Bidang Pertanian dan Peternakan (Yogyakarta: UNY Press)
[10] N, Djuarnani and B Kristian and S S 2005 Cara Cepat Membuat Kompos (Agromedia Pustaka)
[11] Indriani Y H 2007 Membuat Kompos Secara Kilat (Jakarta: Panebar Swadaya)
[12] Milosevic T and Milosevic N 2009 The effect of zeolite , organic and inorganic fertilizers on soil chemical properties , growth and biomass yield of apple trees 528–35
[13] Lestari Y L 2010 Kajian Modifikasi ddan Karkterisasi Zeolit Alam dari Berbagai Negara (Yogyakarta: UNY Press)
[14] Utomo M, Tengku S, Sudarsono and Jamalam L B R 2016 Ilmu Tanah : Dasar-dasar dan Pengelolaan (Jakarta: PT. Aditya Andrebina Agung)
[15] Koudela M and Petříková K 2007 Nutritional composition and yield of endive cultivars - Cichorium endivia L. *Hortic. Sci.* **34** 6–10

[16] Nagata N, Tanaka R and Tanaka A 2007 The major route for chlorophyll synthesis includes [3,8-divinyl]- chlorophyllide a reduction in Arabidopsis thaliana *Plant Cell Physiol.* **48** 1803–8

[17] Nur Edy Suminarti 2016 PENGARUH PEMUPUKAN N DAN FREKUENSI PEMANGKASAN TAJUK PADA ASPEK AGRONOMIS DAN HASIL TANAMAN UBI JALAR (Ipomoea batatas (L.) Lam.) var. KRETEK *J. Agro III* **8** 8–20

[18] Prastowo B, Patola E and dan Sarwono 2013 Pengaruh Cara Penanaman dan Dosis Pupuk Urea Terhadap Pertumbuhan dan Hasil Tanaman Selada Daun *J. Inov. Pertan.* **12** 41–52

[19] Kowalczyk K, Gajc-wolska J, Marcinkowska M and Jabrucka-pióro E 2015 (Cichorium endivia L.) DEPENDING ON A CULTIVAR AND GROWING CONDITIONS **14** 13–26