Prognostic value of 18F-FDG-PET/CT parameters in patients with pancreatic carcinoma

A systematic review and meta-analysis

Dongyong Zhu, MD*, Lisha Wang, MD†, Hanfei Zhang, MD*, Jie Chen, MD*, Yanfang Wang, MD*, Sama Byanju, MD*, Meiyan Liao, PhD*

Abstract

Background: The identification of pancreatic carcinoma (PC) patients with poor prognosis is a priority in clinical oncology because of their high 5-year mortality. However, the prognostic value of pretreatment 18F-fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET)/computed tomography (CT) parameters in PC patients is controversial and no consensus exists as to its predictive capability. This meta-analysis was performed to comprehensively explore the prognostic significance of 18F-FDG-PET/CT parameters in patients with pancreatic carcinoma.

Methods: Extensive literature searches of the PubMed, Embase, Web of Science, and Cochrane Library databases were conducted to identify literature published until March 5, 2017. Comparative analyses of the pooled hazard ratios (HRs) for event-free survival (EFS) and overall survival (OS) were performed to assess their correlations with pretreatment maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Either the fixed- or the random-effects model was adopted, depending on the heterogeneity observed across studies. Subgroup and sensitivity analyses were performed to assess the robustness of the results.

Results: Sixteen studies including 1146 patients were identified. The pooled HRs for the probability of EFS were 1.90 (95% CI: 1.48–2.45) for SUVmax, 1.76 (95% CI: 1.20–2.58) for MTV, and 1.81 (95% CI: 1.27–2.58) for TLG. The pooled HRs for the probability of OS were 1.21 (95% CI: 1.12–1.31) for SUVmax, 1.56 (95% CI: 1.13–2.16) for MTV, and 1.70 (95% CI: 1.25–2.30) for TLG. A slight publication bias was detected using Begg test. After adjustment using the trim and fill procedure, the corrected HRs were not significantly different. The results of the subgroup analyses by SUVmax, MTV, and TLG showed that these factors may have similar prognostic significance.

Conclusion: 18F-FDG-PET/CT parameters, such as SUVmax, MTV, and TLG, may be significant prognostic factors in patients with pancreatic carcinoma. 18F-FDG-PET/CT imaging could be a promising tool to provide prognostic information for these patients.

Abbreviations: CI = confidence interval, DFS = disease-free survival, DMFS = disease metastasis-free survival, EFS = event-free survival, HR = hazard ratio, LAPC = locally advanced pancreatic cancer, MTV = metabolic tumor volume, OS = overall survival, PC = pancreatic carcinoma, PFS = progression-free survival, ROC = receiver operating characteristic curve, SUVmax = maximum standardized uptake value, TLG = total lesion glycolysis, VOI = volume of interest.

Keywords: pancreatic carcinoma, PET, SUVmax, volume

Editor: Saad Zakko.

DZ and LW contributed equally.

Dr ML had full access to all the data used in this study and is the guarantor of the paper and responsible for the integrity of the data and the accuracy of the data analysis.

Mr DZ and Miss LW contributed to the conception and design of the study; acquisition, analysis, and interpretation of data; and writing and approval of the manuscript.

Miss SB contributed to the design of the study, data analysis, and revision and approval of the manuscript.

Miss HZ contributed to the design study, provision of guidance for data collection, and revision and approval of the manuscript.

Miss JC contributed to the design of the study, data analysis, and approval of the manuscript.

Miss LW contributed to the design of the study, supervision of the field investigation and data collection, and revision and approval of the manuscript.

The authors have no conflicts of interest to disclose.

* Department of Radiology, † Department of Neurology, ZhongNan Hospital of WuHan University, Wuhan City, People’s Republic of China.

Correspondence: Meiyan Liao, Department of Radiology, ZhongNan Hospital of Wuhan University, No. 169 Donghu Road, Wuchang District, Wuhan City 430071, People’s Republic of China (e-mail: liaomy@whu.edu.cn).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc.

This is an open access article distributed under the Creative Commons Attribution-NoDerivatives License 4.0, which allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Medicine (2017) 96:33(e7813)

Received: 9 June 2017 / Received in final form: 13 July 2017 / Accepted: 31 July 2017

http://dx.doi.org/10.1097/MD.0000000000007813
1. Introduction

Pancreatic carcinoma (PC) is the fourth most common cause of cancer-related mortality in the United States, with a 5-year survival rate of less than 5%; additionally, the incidence of this cancer is steadily increasing in most countries.\(^1\) At initial diagnosis, 30% of patients already have locally advanced pancreatic cancer (LAPC),\(^2\) and less than 20% of cases will be considered for curative surgery;\(^3,4\) furthermore, more than 50% of patients present with metastatic disease and may only be treated with palliative chemotherapy.\(^5\) Among the patients who survive surgical resection, the 5-year survival rate remains low at approximately 15% to 40%.\(^6\) Accurate predictors would be helpful and invaluable in stratifying patients for disease management, including predicting outcomes.

Glucose analogue \(^{18}\)F-fluorodeoxyglucose (\(^{18}\)F-FDG) has become extensively used as a tracer of positron emission tomography/computed tomography (PET/CT) in clinical cancer imaging.\(^7\) The most widely used PET-derived parameter designed to measure tracer accumulation in PET is the maximum standardized uptake value (SUVmax), which quantifies the rate of glucose metabolic uptake in tumor cells.\(^8,9\) Several studies have shown \(^{18}\)F-FDG-PET/CT to play a significant role in the diagnosis, staging and restaging, planning of treatment, evaluation of response to treatment, and prognosis in PC.\(^10–12\) Recent studies have supported the use of volumetric parameters, such as metabolic tumor volume (MTV) and FDG total lesion glycolysis (TLG), which have also proven to be beneficial as prognostic factors in PC.\(^13–15\) While SUVmax, a single pixel value within a region of interest, is subject to considerable noise,\(^16\) other FDG-PET parameters, such as MTV and TLG, lend support to its continued use as a summary of tumor FDG activity in PC that may be used in studies to predict disease progression. Although the impact of \(^{18}\)F-FDG-PET/CT parameters has been evaluated in the previous study,\(^20\) there is little knowledge regarding the consistency of SUV and volumetric PET parameters in the prediction of PC prognosis.

Therefore, we conducted a systematic literature review and meta-analysis to identify, appraise, and synthesize results from all available studies and provide an unprecedented summary to address the prognostic value of pretreatment SUVmax, MTV, and TLG in patients with PC.

2. Materials and methods

2.1. Literature search

We searched the PubMed, EMBASE, Web of Science, and Cochrane Library databases for studies published in English language until March 5, 2017. The search strategy involved using on the following terms: (“pancreatic” or “pancreas” or “pancreatic ductal adenocarcinoma”) AND (“neoplasm” or “tumor” or “cancer” or “carcinoma”) AND (“positron emission tomography” OR “FDG” or “positron emission tomography-computed tomography” OR “positron emission tomography computed tomography” OR “PET” OR “PET–CT” OR “PET CT” OR “PET/CT” OR “fluorodeoxyglucose”) and (“prognostic” or “prognosis” or “predictive” OR “survival” OR “outcome”). Additionally, the reference lists of relevant studies were scrutinized to identify additional eligible studies. We performed all the analyses based on previously published studies, thus no ethical approval was required.

2.2. Selection of studies

The inclusion criteria included the following: patients were pathologically diagnosed with PC; case control or cohort study; at least 1 \(^{18}\)F-FDG-PET/CT scan performed before and/or in treatment; at least 1 relevant prognosis factor was assessed, such as overall survival (OS), disease-free survival (DFS), event-free survival (EFS), progress-free survival (PFS), disease metastasis-free survival (DMFS) or EFS; hazard ratios (HRs) and 95% confidence intervals (CIs) were available or able to be calculated based on data from the original articles; and published in English. Articles meeting the following criteria were excluded: in vitro studies and animal experiments; reviews, comments, letters, case reports, or conference abstracts; insufficient data available to calculate the HRs and 95% CIs; research limited to investigating the role of PET-CT scans in diagnosis and tumor staging, and prognostic parameter data were not provided; and less than 10 patients were included. When eligible studies were published more than once, only data from the most complete or recent studies were included. Two authors (JC and HZ) independently evaluated the studies for eligibility. When data from the same patient population were published more than once, only the most recent or complete report was included in the review. Any discrepancies were resolved by consensus.

2.3. Data extraction and quality assessment

Data were independently extracted from each article by 2 reviewers and recorded on a standardized form. Univariate and multivariate HRs and their 95% CIs, P values for the log-rank test, and necessary statistics such as 95% CIs, the number of events, and the number included in each group assessed using Kaplan–Meier curves were recorded. Then, we used the methods suggested by Parmar et al and Williamson et al to convert these data into logHRs and SEs.\(^17,18\) HR values were calculated by applying a spreadsheet and using the methods suggested by Tierney et al.\(^19\) Relevant files or supplementary files included with the publications were also carefully scrutinized to identify available data.

The following data were also extracted from the publications: first author, year of publication, country of origin, study period, follow-up duration, age of patients, number of patients, and study design. The technical details of the \(^{18}\)F-FDG-PET/CT examinations, such as the PET/CT scanner used, duration of fasting before FDG injection, preinjection blood glucose level, radiation doses of FDG, and interval periods, were also extracted.

We assessed the quality of each included article using the Newcastle–Ottawa Scale (NOS) (www.ohri.ca/programs/clinical_epidemiology/oxford.asp), a comprehensive, systematic reviewing tool that was designed for retrospective and prospective studies. Studies with scores ≥6 points on the NOS were considered high-quality studies and included in this meta-analysis. Discrepancies were resolved by consensus (Table 1).

2.4. Statistical analysis

In this meta-analysis, we followed the same methodology as used in the previous study.\(^20\) The primary endpoint was EFS. DFS, PFS, DMFS in the included studies were obtained as primary outcomes and newly defined as EFS, which was measured from the date of initiation of therapy to the date of recurrence or metastasis.\(^21\) The secondary endpoint was OS, which was measured from the date of initiation of therapy to the date of...
death from any cause. The effects of 18F-FDG-PET-derived parameters on survival outcomes were estimated by pooling the HR effect size and 95% CI data. An HR >1 indicated worse prognosis in patients with high parameter values, and an HR <1 indicated these patients to have better prognosis. The level of heterogeneity across studies was evaluated using the χ^2 test and I^2 statistic, as recommended by the Cochrane Handbook for Systematic Reviews of Interventions (http://handbook.cochrane.org). If the P value was >.1 and/or the I^2 value was <50%, no or moderate heterogeneity was indicated, and the fixed-effects model was used; otherwise, the random-effects model was used when significant heterogeneity was observed. Begg funnel test and Egger test were performed to assess publication bias. The trim and fill method was applied to adjust for asymmetry in the funnel plot. \[22\] The analyses described above were conducted using STATA version 12.0 (STATA Corp, College Station, TX). P values less than .05 were considered statistically significant.

3. Results

3.1. Study characteristics and qualitative assessment

Sixteen eligible articles remained after applying the inclusion and exclusion criteria (a total of 1146 patients), and these articles were included in the meta-analysis.\[13,14,23–36\] A flowchart of the literature review process is shown in Fig. 1. Six of the 16 studies had been conducted in South Korea,\[13,23,25–32\] 5 studies had been conducted in America,\[14,24,26,33,36\] 2 studies had been conducted in China,\[25,34\] and 3 studies had been conducted in Japan.\[27,29,35\] One study was prospective,\[14\] and the remaining studies were retrospective. Of these included studies, 16 provided the sample size data, and sample sizes ranged from 21 to 165 (median 72). The follow-up duration varied from 8.7 to 48.9 months (median 23.3 months). The principal characteristics of the 16 studies are listed in Table 2.

Table 3 shows the patterns identified in 18F-FDG-PET/CT scanning. SUVmax was measured in all 16 studies, and values standardized by body weight were provided. MTV was measured in 6 studies,\[13,14,23,26,28,34\] and TLG was measured in 8 studies.\[13,14,23,26,28,33,34,36\] Different scanners and various scanning protocols were used in each study. The duration of fasting varied from 4 hours to 8 hours, and this duration was not reported in 1 study. Preinjection serum blood glucose levels ranged from 67 to 340 mg/dL, and these data were not reported in 3 studies. The injected dose varied from 200 to 666 MBq, and the postinjection interval ranged from 45 to 90 minutes.

3.2. Outcome and publication bias

3.2.1. Primary outcome: EFS. Thirteen studies were included in the analysis of the association between SUVmax and EFS, and the pooled data revealed that high SUVmax values predicted poor EFS ($HR = 1.90; 95\% \ CI = 1.48–2.43, P = .000; I^2 = 59.8\%$) (Fig. 2A). Additionally, we conducted a sensitivity analysis to...
The presence of no signifi-

canter possibility of publication bias, as illustrated by the statistically

inge heterogeneity (Fig. 2C). When the study conducted by Chirindel

total 2015 was included in the analysis of the model, the HR was

ted using other methods was 1.96 (95% CI: 1.38–2.77, P = .000). Based on

the median value of SUVmax, cut-off values were divided into the following

two subgroups: high value (≥5.1) and low value (<5.1). The results of the subgroup meta-

alyses indicated that the pooled HRs for SUVmax were 1.83 (95% CI: 1.28–2.64, P = .001) and 2.01 (95% CI: 1.36–2.98, P = .000) for high and low cut-off values, respectively. In the subgroup analysis by the analytic method, the HR for studies using univariate analyses was 2.17 (95% CI: 1.50–3.14, P = .000), and the HR for studies using multivariate analyses was 1.50 (95% CI: 1.18–1.91, P = .001). In the subgroup analysis by TNM staging method, the HR for studies using III/IV staging was 2.03 (95% CI: 1.06–3.91, P = .034), and the HR for studies using III/IV staging was 1.99 (95% CI: 1.52–2.61, P = .000) (Table 4). We performed subgroup analyses stratified by cut-off method, tumor delineation, and disease stage to assess the impact of these factors on the associations between MTV and TLG and the outcomes of interest. One study23 included their populations with stage I to IV tumors, and, thus, this study was not included in the additional subgroup meta-analysis of stage. The results of each subgroup analysis indicated the presence of a significant HR for death (Table 5).

3.2.2. Secondary outcome: OS. Fifteen studies were included in the assessment of the correlation between SUVmax and OS. Significant heterogeneity (I^2 = 71.4%) was observed across these studies; thus, the random-effects model was applied to calculate the pooled HR (1.21, 95% CI: 1.12–1.31; P = .000) (Fig. 2B). When the study conducted by Chirindel et al22 was omitted from the analysis, an HR of 1.82 (1.54–2.14) and a decreased I^2 of 27.7% were calculated using the fixed-

Study	Year of publication	Patient source	Study period	Follow-up duration (range), mo	Median age ± SD (range), y	Number of patients	TNM staging	End points provided	Study design
Im	2016	South Korea	2007–2014	23 (1–78)	63 (29–84)	51	IA IB	OS EFS	Retro
Pimiento	2016	America	2004–2010	12.3 (0–56)	67 (24–83)	105	I I	OS EFS	Retro
Cui	2016	America	2004–2014	8.7 (0.7–64.9)	71 (38–92)	49	III	OS EFS	Retro
Wang	2015	China	2006–2013	36 (3–64)	ND	69	II	III EFS	Retro
Chirindel	2015	America	2007–2012	11 (1–47)	64.3 (40–86)	106	II IV	OS EFS	Retro
Yamamoto	2015	Japan	2002–2011	49 (at least 24 mo)	67 (60–73)	128	ND	ND EFS	Retro
Choi	2014	South Korea	2007–2010	13 (3–67)	64.7 (50.9–87.7)	60	III	OS EFS	Retro
Dholakia	2014	America	2004–2011	13.4 (4.0–35.31)	ND	32	III	OS EFS Pros	
Lee	2014	South Korea	2008–2012	16 (4–60)	63 ± 9	57	I–IV	OS EFS	Retro
Xu	2014	China	2008–2012	ND	62 (35–84)	122	IIA/IB	OS EFS	Retro
Kitasato	2014	Japan	2004–2010	ND	65 (43–81)	41	I–IV	OS EFS	Retro
Choi	2013	South Korea	2004–2009	ND	63.5 (45–80)	64	I–III	OS EFS	Retro
Moon	2013	South Korea	2006–2012	3.6 (1–10)	66 ± 9	21	III IV	EFS Retros	
Shinoto	2013	Japan	2003–2010	48.9 (36.8–79.6)	67 (47–79)	21	IIA IB	OS EFS Retros	
Hwang	2012	South Korea	2004–2009	ND	67 (29–90)	165	I–IV	OS	Retro
Schellenberg	2010	America	2004–2008	12.7 (2.8–37.7)	67 (39–92)	55	III	OS	Retro

ND = not described, SD = standard deviation, Pros = prospective, Retros = retrospective, OS = overall survival, EFS = event-free survival.

Patient characteristics (range), y

Follow-up duration (range), mo

Median age ± SD (range), y

Number of patients

TNM staging

End points provided

Study design

Further estimate the impact of each study on the pooled HR. When the study conducted by Shinoto et al23 was omitted from the analysis, an HR of 1.73 (1.50–2.00) and a decreased I^2 value (49.3%) were identified using a fixed-model. Begg and Egger tests were performed to assess publication bias. The funnel plots illustrated the correlation between SUVmax and EFS (Fig. 3). Visual inspection of the Begg funnel plot and the results of the quantitative tests (Begg test = 0.077, Egger test = 0.191) indicated the presence of no significant publication bias.

On the one hand, 5 studies were included in the analysis of the prognostic value of MTV for EFS. Since significant heterogeneity (χ^2 = 8.81, P = .066; I^2 = 54.6%) was observed across the included studies, the random-effects model was used. Using this model, the HR was 1.76 (95% CI: 1.20–2.58, P = .004) (Fig. 2C). When the study conducted by Xu et al24 was excluded, the observed heterogeneity decreased from 54.6% to 0% (P = .640), and the pooled HR reached 2.16 (95% CI: 1.49–3.13). The results of the quantitative tests (Begg test, z = 0.73, P = .462; Egger tests, t = 3.42, P = .042) indicated the possibility of publication bias, as illustrated by the statistically insignificant P value derived based on the Begg test. The symmetrical funnel plot was demonstrated after the trim and fill analysis (Fig. 5). When potentially missing studies were added, the results (pooled HR = 1.40; 95% CI: 1.02–1.92, P = .012) of this sensitivity analysis still indicated that the correlation between TLG and EFS was significant.

We conducted subgroup analyses by cut-off method, threshold, and analysis method. Among articles including data for SUVmax, the HR for studies that determined cut-off values using ROCs was 1.87 (95% CI: 1.26–2.77, P = .002), and the HR for studies using other methods was 1.96 (95% CI: 1.38–2.77, P = .000). Based on the median value of SUVmax, cut-off values of the studies were divided into the following 2 subgroups: high value (≥5.1) and low value (<5.1). The results of the subgroup meta-analyses indicated that the pooled HRs for SUVmax were 1.83 (95% CI: 1.28–2.64, P = .001) and 2.01 (95% CI: 1.36–2.98, P = .000) for high and low cut-off values, respectively. In the subgroup analysis by the analytic method, the HR for studies using univariate analyses was 2.17 (95% CI: 1.50–3.14, P = .000), and the HR for studies using multivariate analyses was 1.50 (95% CI: 1.18–1.91, P = .001). In the subgroup analysis by TNM staging method, the HR for studies using III/IV staging was 2.03 (95% CI: 1.06–3.91, P = .034), and the HR for studies using III/IV staging was 1.99 (95% CI: 1.52–2.61, P = .000) (Table 4). We performed subgroup analyses stratified by cut-off method, tumor delineation, and disease stage to assess the impact of these factors on the associations between MTV and TLG and the outcomes of interest. One study23 included their populations with stage I to IV tumors, and, thus, this study was not included in the additional subgroup meta-analysis of stage. The results of each subgroup analysis indicated the presence of a significant HR for death (Table 5).

Table 2: Characteristics of eligible studies included in the meta-analysis.
Study	PET scanners	Duration of fasting	Preinjection blood glucose test	Post injection interval	Dose of 18F-FDG	PET parameters	Determination of cutoff values	Tumor delineation	Cut-off values
In	Biograph 40 Truepoint, Siemens Healthcare, Knoxville, TN	6 h	<180 mg/dL	60 min	5.18 MBq/kg	SUVmax, MTV, TLG	ROC curve	SUV ≥ 2.5	4.2 7.38 18.6
Pimente Cui	GE Medical Systems, Milwaukee, WI	4 h or 6 h	<200 mg/dL	90 min 45-60 min	10 mCi	SUVmax	Median value	5 6.2 57.45	
Wang	GE Medical Systems, Milwaukee, WI	8 h	4.5–6.5 mmol/L (range, 60–193 mg/dL)	64.1 min	5.55 MBq/kg	SUVmax, MTV, TLG	ROC curve	Gradient segmentation method	5.5 4.9 31.2 92
Yama moto	GE Medical Systems, Milwaukee, WI, USA	6 h	<150 mg/dL	50–60 min	200–250 MBq	SUVmax	ROC curve	SUV ≥ 2.5	6.0 10.0 45.0
Choi	Discovery StE, GE Healthcare, Milwaukee, WI, USA or Biograph TruePoint 40, Siemens Medical Systems, CTI, Knoxville, TN, USA	6 h	72–210 mg/dL	60 min	5.5 MBq/kg	SUVmax, MTV, TLG	ROC curve	Livermean+ [2 × Liverstd]	4.6 26.8 70.9
Dholakia	General Electric Medical Systems, Waukesha, WI	6 h	<180 mg/dL	60 min	8.1 MBq/kg	SUVmax, MTV, TLG	Median value	SUV ≥ 2.5	4.70 3.70 30 20.0 or 15.00
Lee	Discovery StE [GE Healthcare] or Biograph TruePoint 40 [Siemens Healthcare]	6 h	67.0–340.0 mg/dL	60 min	5.5 MBq/kg	SUVmax, MTV, TLG	ROC curve	Isocontour SUV threshold method	6.2 15.7 57.5
Xu	Siemens	6 h	<8 mmol/L	60 min	7.4 MBq/kg	SUVmax, MTV, TLG	Median value	3.4	
Kitasato	Gemini-GXL 16; Philips Medical Systems, Inc, Cleveland, Ohio	6 h	75–127 mg/dL	60 min	4.59–9.56 mCi	SUVmax	Median value	3.5	
Choi	GE Healthcare, Milwaukee, WI, USA or Philips-ADAC medical systems, Cleveland, OH, USA	4 h	<130 mg/dL	60 min	5.18 MBq (0.14 mCi/kg)	SUVmax	Median value	6.8	
Moon	Philips Medical Systems, Cleveland, OH, USA	6 h	<200 mg/dL	60 min	4.8 MBq/kg	SUVmax	Median value	4.3	
Shinoto	Biograph duo and Biograph 16; Siemens CTI, Knoxville, TN and Aquiduo; Toshiba Medical Systems Corporation, Otsu, Shizuoka, Japan	6 h	515–56 MBq	60 min	515 ± 56 MBq	SUVmax	Median value	4.1	
Hwang	Biograph 6, Siemens Healthcare or Discovery LS, GE Healthcare	6 h	370–444 MBq	60 min	SUVmax	Median value	6.2 57.45		
Schellenberg	GE Medical Systems, Milwaukee, WI	8 h	<180 mg/dL	45–60 min 10–18 mCi	SUVmax, MTB	Median value	6.2 57.45		

18F-FDG = 18F-fluorodeoxyglucose, PET = positron emission tomography, SUVmax = maximum standardized uptake value, MTV = metabolic tumor volume, TLG = total lesion glycolysis, ROC = receiver operating characteristic curve.

* A modification of the threshold criteria used in PET PERCIST, version 1.0.
The results of the quantitative tests (Begg test, \(z = 0.00, P = .921 \); Egger tests, \(t = 4.47, P = .001 \)) indicated the possibility of publication bias, as represented by the statistically insignificant \(P \) value derived based on Begg test. A symmetrical funnel plot was generated after the trim and fill analysis performed (Fig. 6). When potentially missing studies were added, the results (pooled HR = 1.68; 95% CI = 1.30–2.17, \(P = .000 \)) of this sensitivity analysis still indicated that the correlation between SUVmax and OS was significant.

At the same time, 6 studies were included in the analysis of the association between MTV and OS. High MTV values were significant predictors of poor OS (HR = 1.56, 95% CI 1.13–2.16; \(P = .007 \)), and significant heterogeneity was observed (\(\chi^2 = 27.78, P = .000; I^2 = 82.0\% \)) (Fig. 2D). When the study conducted by Chirindel et al[26] was excluded from the analysis, the observed heterogeneity decreased from 82.0% to 67.4% (\(P = .015 \)), and the pooled HR reached 2.36 (95% CI = 1.31–4.25) using the random-effects model. The results of the quantitative tests (Begg test, \(z = 0.00, P = 1.000 \); Egger tests, \(t = 21.25, P = .000 \)) indicated the possibility of publication bias, as illustrated by the statistically insignificant \(P \) value derived based on Begg test. A symmetrical funnel plot was observed after the trim and fill analysis was performed (Fig. 7). When the hypothesized literatures were added, the results (pooled HR = 1.006; 95% CI = 1.000–1.014, \(P = .921 \)) suggested no significant heterogeneity.
of this sensitivity analysis still indicated that the correlation between MTV and OS was significant.

Eight studies were included in the evaluation of the association between TLG and OS, and the results indicated that high TLG was a significant predictor of poor OS (HR = 1.70; 95% CI: 1.25–2.30; \(P = .01 \)), and significant heterogeneity (\(\chi^2 = 45.49, P = .000; I^2 = 84.6\% \)) was observed across these studies (Fig. 2F). When the study by Chirindel et al.\(^{[26]} \) was excluded from the analysis, the level of heterogeneity decreased from 82.0% to 70.9% (\(P = .002 \)), and the pooled HR reached 2.14 (95% CI: 1.37–3.35) using the random-effects model. The presence of publication bias was evaluated using 2 statistical tests (Begg test and Egger test). The results of the tests (Begg test, \(z = 1.71, P = .087 \); Egger tests, \(t = 2.61, P = .028 \)) indicated the possibility of publication bias, as illustrated by the statistically insignificant \(P \) value derived based on the Begg test. Therefore, we performed a trim and fill analysis to ensure the reliability of the pooled HR. A symmetrical funnel plot was generated after the trim and fill analysis was performed (Fig. 8). When potentially missing studies were added, the results (pooled HR = 1.42; 95% CI: 1.07–1.88, \(P = .00 \)) of this sensitivity analysis still indicated that the correlation between TLG and OS was significant.

The results of the subgroup meta-analyses are demonstrated as follows. Among the studies in which SUVmax was assessed, the HR for those identifying cut-off values using the ROC method was 1.38 (95% CI: 0.92–2.09, \(P = .122 \)), and the HR for using other methods was 1.91 (95% CI: 1.56–2.34, \(P = .000 \)). Studies with high cut-off values had an HR of 1.65 (95% CI: 1.34–2.04, \(P = .000 \)), and the HR for studies with low cut-off values was 1.94 (95% CI: 1.28–2.94, \(P = .002 \)). Studies using univariate analyses had an HR of 2.12 (95% CI: 1.69–2.66, \(P = .000 \)), and the HR for studies employing multivariate analyses was 1.42 (95% CI: 1.05–1.93, \(P = .022 \)). For the subgroup analysis by TNM staging method, the HR for studies using I/II staging was 3.10 (95% CI = 1.86–5.15, \(P = .000 \)), and the HR for studies using III/IV staging was 1.67 (95% CI = 1.27–2.18, \(P = .000 \)) (Table 4).
Table 4
Subgroup analyses of the associations between SUVmax and survival outcomes.

Endpoint	Volumetric parameters	Factor	No. of studies	Heterogeneity test (I², P)	Effect model	HR	95% CI of HR	P value	Conclusion
OS	SUV max	Cutoff method	5	68.7	Random	1.38	0.92–2.09	P = .122	Significant
		Others	10	6.3	Fixed	1.91	1.56–2.34	P = .000	Significant
		≥5.1	6	26.9	Fixed	1.65	1.34–2.04	P = .000	Significant
		<5.1	9	75.3	Random	1.94	1.28–2.94	P = .002	Significant
	Analysis method	Univariate analysis	7	0	Fixed	2.12	1.69–2.66	P = .000	Significant
		Multivariate analysis	8	62.6	Random	1.42	1.05–1.93	P = .022	Significant
		TNM stage	3	31.5	Fixed	3.10	1.86–5.15	P = .000	Significant
		IVN	5	10.9	Fixed	1.67	1.27–2.18	P = .000	Significant
EFS	SUV max	Cutoff method	5	51.7	Random	1.87	1.26–2.77	P = .002	Significant
		Others	8	64.9	Random	1.96	1.38–2.77	P = .000	Significant
		≥5.1	5	65.2	Random	1.83	1.28–2.64	P = .001	Significant
		<5.1	8	61.0	Random	2.01	1.36–3.98	P = .000	Significant
	Analysis method	Univariate analysis	6	70.0	Random	2.17	1.50–3.14	P = .000	Significant
		Multivariate analysis	7	40.3	Fixed	1.50	1.18–1.91	P = .001	Significant
		TNM stage	4	79.2	Random	2.03	1.06–3.91	P = .034	Significant
		IVN	4	0	Random	1.99	1.52–2.61	P = .000	Significant

CI = confidence interval, EFS = event-free survival, MTV = metabolic tumor volume, OS = overall survival, ROC = receiver operating characteristic curve, SUVmax = maximum standardized uptake value, TLG = total lesion glycolysis.

Table 5
Subgroup analyses of the associations between MTV/TLG and survival outcomes.

Endpoint	Volumetric parameters	Factor	No. of studies	Heterogeneity test (I², P)	Effect model	HR	95% CI of HR	P value	Conclusion
OS	MTV	Cutoff method	4	81.6	Random	2.06	0.97–4.37	P = .059	Significant
		ROC	2	71.2	Random	2.09	0.56–7.81	P = .272	Significant
		Tumour delineation	3	0	Fixed	2.76	1.66–4.57	P = .000	Significant
		SUV 2.5	3	82.6	Random	1.17	0.89–1.54	P = .252	Significant
		TNM stage	2	75.4	Random	1.88	0.70–5.03	P = .208	Significant
		IVN	3	77.8	Random	1.77	0.79–4.00	P = .173	Significant
EFS	MTV	Cutoff method	4	84.1	Random	2.22	0.99–5.02	P = .055	Significant
		ROC	4	71.8	Random	1.72	1.03–2.88	P = .040	Significant
		Tumour delineation	5	85.0	Random	1.37	1.02–1.84	P = .034	Significant
		SUV 2.5	3	0	Fixed	2.90	1.75–4.80	P = .000	Significant
		TNM stage	2	65.3	Random	1.81	0.65–4.99	P = .254	Significant
		IVN	5	83.6	Random	1.72	0.98–3.04	P = .060	Significant
	TLG	Cutoff method	3	0	Fixed	2.42	1.59–3.69	P = .000	Significant
		ROC	2	0	Fixed	2.15	1.07–1.46	P = .004	Significant
		Tumour delineation	3	0	Fixed	2.42	1.59–3.69	P = .000	Significant
		TNM stage	2	0	Fixed	1.25	1.07–1.46	P = .004	Significant
		IVN	2	40.3	Random	1.83	1.09–3.08	P = .023	Significant
	TLG	Cutoff method	4	0	Fixed	2.09	1.49–2.94	P = .000	Significant
		ROC	2	59.6	Random	1.50	0.62–2.75	P = .193	Significant
		Tumour delineation	3	0	Fixed	2.16	1.43–3.26	P = .000	Significant
		TNM stage	3	55.4	Random	1.56	1.02–2.40	P = .041	Significant
		IVN	2	65.3	Random	1.65	0.71–3.84	P = .246	Significant

EFS = event-free survival, MTV = metabolic tumor volume, OS = overall survival, ROC = receiver operating characteristic curve, TLG = total lesion glycolysis.
Subgroup meta-analyses stratified by cut-off method, tumor delineation, and disease stage were conducted. Each subgroup analysis indicated the presence of a significant HR for death (Table 5).

4. Discussion
Of late, 18F-FDG-PET/CT has been the imaging modality most commonly used for diagnosis, staging, evaluating response to treatment, and detecting postoperative recurrence and metastasis in PC.\(^{[37-41]}\) Since the late 1980s, PET-derived quantitative SUV has been widely used, as this parameter is a robust indicator that can easily be calculated for the evaluation of PET data.\(^{[42]}\) The potential role of FDG uptake values in the prediction of prognosis has been recently reported in several meta-analyses, high SUV values at diagnosis were more highly associated with poor survival than were low SUV values in a variety of cancers, such as head and neck cancer, hepatocellular carcinoma, and bone and soft tissue sarcoma.\(^{[43-45]}\) MTV and TLG have been considered parameters for that are more reliable for predicting survival than SUVmax, as they reflect whole tumor burden.\(^{[46]}\) Recent meta-analyses have also revealed that volumetric parameters, such as MTV and TLG, may serve as prognostic factors in non-small cell lung cancer and head and neck cancer.\(^{[20,47]}\)

However, conflicting results have been published regarding the superiority or prognostic value of other quantitative methods derived from PET to SUVmax.\(^{[13,14,23,28,34]}\) Although a previous meta-analysis reported that the identification of high SUVmax values based on PET imaging in PC was associated with increased risk of poor survival.\(^{[10]}\) One of the main problems is that these studies only assessed a relatively small number of patients, resulting in limited statistical power. Therefore, we conducted a comprehensive meta-analysis to derive more robust estimates regarding the predictive performance of SUVmax. The results of our meta-analysis, which was conducted using the data from the largest number of patients with PC yet, indicated that SUVmax was a prognostic factor for the outcomes of interesting, suggesting that at diagnosis, 18F-FDG-PET/CT imaging may serve as an important imaging tool that plays a predictive role for patients with PC.

After pooling data from the available studies, we found that high SUVmax values were significantly correlated with poor prognosis, including poor EFS and OS. However, the association between SUVmax and survival outcomes may be affected by several confounding factors; therefore, a subgroup analysis was conducted by statistical analysis method to validate the parameters as independent prognostic factors. Multivariate analysis may also serve as an effective method when evaluating potential prognostic factors, and the Cox proportional hazards model or logistic regression model may be used to reduce biases resulting from major confounders.\(^{[48]}\) In our study, SUVmax proved to be significantly associated with survival in both the univariate and multivariate analyses; therefore, one could presume that SUVmax might be an independent prognostic factor for survival outcomes.

To evaluate the effects of the methods utilized by each study (Table 1), we performed subgroup analyses by cut-off method, threshold, analysis method, and analysis method. For example, in
the cut-off values analysis, we evaluate the methods used to determine cut-off values in the included studies, and specifically assessed the ROC curve and median value methods. In our meta-analysis, 5 articles used receiver operating characteristic curves to determine the optimal cut-off point, which has been reported to be a more reasonable method for cut-off calculation. Therefore, subgroups stratified by the methods were created to evaluate the effect of using different cut-off values. The results of the subgroup analyses showed small and acceptable variations in the HRs for EFS associated with SUVmax (1.50–2.50) despite the wide range of SUVmax values observed (3–6.8). In the current meta-analysis, the cut-off value used for SUVmax varied in each study because SUV can be significantly influenced by measurement errors that are associated with both true biological changes and technological factors that cannot be entirely controlled, such as weight composition, diet, fasting state, scanner method, and reconstruction parameters.

The question of whether traditional imaging technique can predict PC patient survival remains controversial because previous studies have focused on tumor size. While MTV and TLG, which are a combination of volumetric and metabolic parameters, may be utilized in metabolic analyses of radiotracer activity, reflecting both properties of the tumor tissues. Our findings confirm previous findings suggesting that high volumetric parameter values indicated poor EFS and OS, suggesting that 18F-FDG-PET/CT has vast prospects for predicting survival outcomes in PC patients. Although an SUVmax threshold of 2.5 was used tumor delineation in 3 of the 6 studies included in this meta-analysis, Abelson et al. found that an SUVmax threshold of 7 may be a better standard for volume of interest delineation in their patient population. Therefore, the identification of the cut-off values for MTV and TLG values most highly associated with worse OS and PFS should be the subject of further research, the methods used for SUV measurement and tumor delineation should be normalized and standardized, and controversies regarding the most appropriate segmentation method should be resolved. Currently, various commercially available tools for the measurement of volumetric parameters are being developed and disseminated, which may enable faster and easier tumor analysis. Although the methods used for determining optimal cut-off MTV and TLG values or tumor delineation may have affected the MTV or TLG values reported in each study, high MTV and TLG values were associated with increased probability of disease progression and/or death. To assess the effects of the methods used in each included study, we also performed additional subgroup analyses by cut-off method, tumor delineation, and disease stage, the results of which showed there to be acceptable variations of the HRs for EFS and OS. Further prospective studies are in need to validate the findings.

Our meta-analysis had some limitations. Although all included studies were evaluated by NOS scores and considered high quality, we only included 1 prospective study, and most of the studies were retrospective in nature, which may have caused them to be more prone to potential biases. More prospective studies are needed to support and validate our meta-analysis results. Second, significant heterogeneity was observed across the included studies for both OS and EFS. Many possible factors could have caused the observed heterogeneity, such as differences in histology type, TNM stage, study region, treatment method, cut-off value, and HR estimation method. After the sensitivity analyses, the prognostic values of the parameters were not decreased. Second, we only included the English articles, and reviews, conference papers, and editorial materials were excluded; this may have resulted in a language bias and publication bias. However, the results of the Beggs tests did not suggest clear evidence of bias. The results of the trim and fill sensitivity analysis further supported the prognostic role of 18F-FDG-PET/CT parameters in PC patients after potentially missing studies were included, which demonstrated that our analysis was reliable.

5. Conclusion

The results of this meta-analysis demonstrated that 18F-FDG-PET/CT parameters, such as SUVmax, MTV, or TLG, may serve as significant prognostic factors for predicting outcomes in PC patients. Despite the clinical and methodological heterogeneity observed across studies, the 18F-FDG-PET/CT parameters may be used to stratify patient risk in terms of disease control and survival and aid in the selection of appropriate treatment strategies for individual patients. Additional large multicenter studies are in need to validate our findings and explore the applicability of other prognostic variables associated with 18F-FDG-PET/CT in efforts to prolong survival of PC patients.

References

[1] Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Can J Clin 2014;64:9–29.
[2] Yeo TP, Hruban RH, Leach SD, et al. Pancreatic cancer. Curr Prob Cancer 2002;26:176–275.
[3] Bilimoria KY, Bentrem DJ, Ko CY, et al. National failure to operate on early stage pancreatic cancer. Ann Surg 2007;246:173–80.
[4] Shrikhande SV, Kleeff J, Reiser C, et al. Pancreatic resection for M1 pancreatic ductal adenocarcinoma. Ann Surg Oncol 2007;14:118–27.
[8] Westerterp M, Pruin J, Oyen W, et al. Quantification of FDG PET studies using standardized uptake values in multi-centre trials: effects of image reconstruction, resolution and ROI definition parameters. Eur J Nucl Mol Imaging 2007;34:402–4.

[9] Vriens D, Visser EF, de Geus-Oei LF, et al. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Mol Imaging 2010;37:1408–25.

[10] Wang Z, Chen JQ, Liu JL, et al. FDG-PET in diagnosis, staging and prognosis of pancreatic carcinoma: a meta-analysis. World J Gastroenterol 2013;19:4808–17.

[11] Grassetto G, Rubello D. Role of FDG-PET/CT in diagnosis, staging, response to treatment, and prognosis of pancreatic cancer. Am J Clin Oncol 2011;34:111–4.

[12] De Gaetano AM, Rufini V, Castaldì P, et al. Clinical applications of (18)F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdom Imaging 2012;37:983–1003.

[13] Go SI, Song HK, Kang JH, et al. The clinical impact of the sum of the maximum standardized uptake value on the pretreatment with F-FDG-PET/CT in small cell lung cancer. Oncology 2014;86;1–9.

[14] Dholakia AS, Chaudhry M, Leal JP, et al. Baseline metabolic tumor volume and total lesion glycolysis are associated with survival outcomes in patients with locally advanced pancreatic cancer receiving stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 2014;89:539–46.

[15] Schock SC, Edrisi H, Burger D, et al. Microparticles generated during chronic cerebral ischemia deliver proapoptotic signals to cultured endothelial cells. Biochem Biophys Res COMM 2014;450:912–7.

[16] Wahl RL, Jacene H, Kasamon Y, et al. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009;50(suppl 1):122a–30s.

[17] Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Statist Med 1998;17:2815–34.

[18] Williamson PR, Smith CT, Hutton JL, et al. Aggregate data meta-analysis with time-to-event outcomes. Statist Med 2002;21:3337–51.

[19] Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:16.

[20] Pak K, Cheon GJ, Nam HY, et al. Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis. J Nucl Med 2014;55:884–90.

[21] Zhao Q, Feng Y, Mao X, et al. Prognostic value of fluoro-18-fluorodeoxyglucose positron emission tomography or PET-computed tomography in cervical cancer: a meta-analysis. Int J Gynecol Cancer 2013;23:1184–90.

[22] Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455–61.

[23] Im HJ, Oh S, Jung W, et al. Prognostic value of metabolic and volumetric parameters of preoperative FDG-PET/CT in patients with resectable pancreatic cancer. Medicine 2016;95:3686.

[24] Pimentel JM, Davis-Yadley AH, Kim RD, et al. Metabolic activity by 18F-FDG-PET/CT is prognostic for stage I and II pancreatic cancer. Clin Nucl Med 2016;41:777–81.

[25] Wang SL, Cao S, Sun YN, et al. Standardized uptake value on positron emission tomography/computed tomography predicts prognosis in patients with locally advanced pancreatic cancer. Abdom Imaging 2015;40:3117–21.

[26] Chirindel A, Alluri KC, Chaudhry MA, et al. Prognostic Value of FDG PET/CT-derived parameters in pancreatic adenocarcinoma at initial PET/CT staging. AJR A J Roentgenol 2015;204:1093–9.

[27] Yamamoto T, Sugura T, Mizuno T, et al. Prognostic value of FDG-PET/CT. Acta Oncol 2014;53:5579–84.

[28] Shiromoto K, Takei T, Ushio Y, et al. Usefulness of 18F-fluorodeoxyglucose positron emission tomography as predictor of distant metastasis in preoperative carbon-ion radiotherapy for pancreatic cancer. Anticancer Res 2013;33:5579–84.

[29] Zhou et al. Medicine (2017) 96:33 www.md-journal.com