Broadband Waveguide
Quantum Memory for Entangled Photons

Erhan Saglamyurek¹, Neil Sinclair¹, Jeongwan Jin¹, Joshua A. Slater¹, Daniel Oblak¹, Félix Bussières¹, Mathew George², Raimund Ricken², Wolfgang Sohler² and Wolfgang Tittel¹

¹ Institute for Quantum Information Science
University of Calgary, Canada

² Institut für Angewandte Physik
University of Paderborn, Germany

CQIQC Toronto August 10 2011
Motivation for Quantum Memory

A Synchronization Device for Quantum Data

On-Demand Single Photon Sources from Probabilistic Sources

Essential for Quantum Repeaters

Briegel et al., Phys. Rev. Lett (1998); Hammerer et al., Rev. Mod. Phys (2010); Simon et al., Eur. Phys. J. D (2010); Sangouard et al. Rev. Mod. Phys. (2011)
State-of-the-Art Quantum Memory

Property	Desired	State-of-the-art	Approach
Efficiency	≈ 1	0.87	Photon-echo QM in room-temp gas\(^1\)
Fidelity	≈ 1	0.92 - 0.98	Photon-echo, EIT, Raman…
Multi-mode capacity	high	64 modes	Photon-echo QM in RE crystal\(^2\)
Pulse duration	≤ ns	< 100 ps	Photon-echo QM in RE crystal\(^3\)
Storage time	> sec	> 2 sec	EIT based QM in a RE crystal\(^4\)
Entanglement preservation	Yes	Demonstrated	EIT based QM in trapped atoms\(^5\) Photon-echo QM in RE crystal\(^3,6\)
Complexity	Simple	…	…

- Electromagnetically induced transparency (EIT)
- Off / On resonant Raman
- Photon-echo: Time reversal of absorption in a controlled way

Our approach: Atomic Frequency Comb (AFC) in rare-earth (RE) doped crystals

1. Hosseini et al, Nature Phys. (2011); 2. Usmani et al, Nature Comm. (2010); 3. Saglamyurek, N.S., et al, Nature (2011); 4. Longdell et al, PRL (2005); 5. Choi et al, Nature (2008); 6. Clausen et al, Nature (2011)
Outline

- AFC Memory and Rare-Earth Crystals
- Experimental Setup for Entanglement Storage
- Results & Conclusions
AFC Photon-Echo Quantum Memory Protocol

1. Preparation of Atomic Frequency Comb

2. Absorption of Photon → Fast Dephasing

3. Wait, Repetitive Rephasing → Emission of Photon

\[t = \frac{1}{\Delta_{\text{comb}}} \]

+ Recall on demand through reversibly mapping optical coherence onto spin coherence
+ Emission in backwards direction: \(\phi(z) = -2kz \)

100% efficiency & fidelity, Large Bandwidth potential, High multi-mode capacity

Experiments: Geneva, Lund, Paris, Calgary

Hesselink et al., PRL (1979); Afzelius et al., PRA (2009); De Riedmatten et al., Nature (2008); Afzelius et al., PRL (2010); Usmani et al., Nature Comm. (2010).
Rare-Earth-Ion Doped Crystals (Lanthanides)

Stresses & Strains \rightarrow \text{Inhomogeneous Broadening}

- Large inhomogeneous broadening, 0.5 – 500 GHz
- Long optical coherence, 4 ms at 4 K
- Long spin coherence, up to 30 s at 4 K
- Transitions available in visible and telecom wavelengths

Tittel et al., Laser Phot. Rev. (2010)
Ti:Tm:LiNbO$_3$ Waveguide

Thulium:
- 795 nm zero-phonon line ($\Gamma_{\text{hom}} \sim 200$ kHz, $T = 3K$)
- Off-the-shelf Si single photon detectors available
- Large optical depth (alpha~2.2/cm @ 3K & 795.5 nm)
- Long-lived magnetic sublevels (T_1~sec @ B = 150G, T = 3K)

LiNbO$_3$:
- Standard telecom material waveguide fabrication mastered
- Control atomic phase evolution via DC Stark effect (a possibility for on-demand recall with AFC)

Waveguide:
- Small mode diameter -> large Rabi frequencies
- Fast switching electric fields
- Simplified integration with fibre optic components into networks

N.S. et al, J. Lumin. (2010); Thiel et al, J. Lumin (2010)
Experimental Setup – The Waveguide
Quantum Memory Setup

- 5 GHz wide AFC, Generated via laser sideband chirping
 - stores < 100 ps photons
- 142 MHz tooth separation = 7 ns storage time
- Waveguide coupling efficiency = 10%
- Memory retrieval efficiency = 2%
 (limited by: Finesse = 2, non-uniform AFC)

50-fold efficiency increase “readily” achievable
• Generate “individual” entangled photon pairs in state:

• Photon wavelengths coincide with free-space and telecom transmission windows
 • 1532 nm suitable for long-distance fibre transmission
 • 795 nm on resonance with Tm transition

Measurements with and without memory
• Qubit Analyzers allow projection measurements onto and other superposition bases i.e. σ_x, σ_y

• Measurements allow one to **reconstruct the two-qubit density matrix** (with & without storage)

i.e. $\sigma_x \otimes \sigma_x$, $\sigma_x \otimes \sigma_y$, $\sigma_x \otimes \sigma_z$, …
Density matrices allow for a quantitative comparison of the quantum state with and without storage.

(all imaginary components are < 0.04 and are not shown)
Results

| | Entanglement of formation | With-Without Fidelity | Purity | Fidelity with $|\varphi^+\rangle$ | CHSH-Bell Parameter S (measured) |
|--------------------------|---------------------------|-----------------------|--------------|-----------------------------------|----------------------------------|
| ρ_{without} | 0.644±0.042 | 0.954±0.029 | 0.757±0.024 | 0.862±0.015 | 2.379±0.034 |
| ρ_{with} | 0.65±0.11 | | 0.763±0.059 | 0.866±0.039 | 2.25±0.06 |

- No measurable degradation of (post-selected) entanglement during storage

- State with and without storage has limited purity and fidelity with target

- Independently measured: experimental violation of CHSH Bell inequality ($S_{\text{LHV}} \leq 2$)
Conclusions

First demonstration of a reversible mapping of an entangled photon into and out of a solid-state device (see also work by N. Gisin)

Integrated approach, for ~100 ps photons
Simple interfacing with sources of non-classical light
Limited efficiency and preset, short storage time

Photon-Crystal
CHSH = 2.64 ± 0.23

C. Clausen et al., Nature (2011).

E. Saglamyurek, N.S. et al., Nature (2011).

Next: teleportation and entanglement swapping into memory

Saglamyurek, N.S. et al, Nature (2011); Clausen et al, Nature (2011)
Thank you

And Collaborators

W. Sohler
M. George
R. Ricken
F. Bussières
