Trends in summer heatwaves in central Asia from 1917 to 2016: Association with largescale atmospheric circulation patterns

Citation for published version:
Yu, S, Yan, Z, Freychet, N & Li, Z 2019, 'Trends in summer heatwaves in central Asia from 1917 to 2016: Association with largescale atmospheric circulation patterns', International Journal of Climatology. https://doi.org/10.1002/joc.6197

Digital Object Identifier (DOI):
10.1002/joc.6197

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International Journal of Climatology

Publisher Rights Statement:
© 2019 The Authors International Journal of Climatology published by John Wiley & Sons Ltd on behalf of Royal Meteorological Society

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Trends in summer heatwaves in central Asia from 1917 to 2016: Association with large-scale atmospheric circulation patterns

Shuang Yu1,2 | Zhongwei Yan1,2 | Nicolas Freychet3 | Zhen Li1

1Key Laboratory of Regional Climate-Environment for East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3School of Geosciences, University of Edinburgh, Edinburgh, UK

Abstract
The changes in the frequency, duration, and intensity of summer heatwaves over central Asia during the period 1917–2016 were studied. On average, the frequency, duration, and intensity of heatwaves showed significant positive trends during the period 1917–2016, with enhanced rates during the last 50 years. During 1967–2016, the heatwave indices increased significantly in most of central Asia, especially in the western part. The number of heatwaves has increased by 1.3 times since the 1960s. Remarkable changes in the frequency and duration of heatwaves occurred during the 1990s in association with the inter-decadal shift in the Silk Road pattern of atmospheric circulation around 1997. The results based on the ERA-Interim reanalysis data set were well-matched with the station observations during the period 1979–2016, whereas those based on the NCEP-NCAR data set were less well matched. Heatwaves in central Asia were closely related to a zonal wave circulation pattern at 500 hPa with a centre of positive geopotential height anomalies over central Asia. This anomalous circulation pattern was rapidly enhanced during the 1990s, suggesting that large-scale patterns of atmospheric circulation had a role in modulating the occurrence of heatwaves in central Asia.

KEYWORDS
atmospheric circulation, central Asia, climate trends, heatwaves

1 | INTRODUCTION

Heatwaves can have widespread effects on human health and mortality (Luber and McGeehin, 2008; McMichael and Lindgren, 2011), the regional economy (Easterling et al., 2000; Zander et al., 2015), and biophysical systems (Welbergen et al., 2008; Karoly, 2009). Recent examples include the record-breaking heatwave in Europe in 2003 and the Russia heatwave in 2010, which caused unprecedented heat-related death rolls (Christoph and Gerd, 2004; Russo et al., 2015), and the 2013 heatwave in eastern China, which caused widespread droughts and the loss of crops (Hou et al., 2014; Xia et al., 2016). Many studies have been carried out on the effects of climate change on global and regional heatwaves (Meehl and Tebaldi, 2004; Ding et al., 2010; Perkins-Kirkpatrick et al., 2016; Zhou and Wang, 2016). However, there is still lack of studies on heatwaves in particular geographical regions. One of the difficulties in studying heatwaves is the lack of high-quality, long-term climate data with an appropriate temporal resolution (Easterling et al., 2000), at least daily maximum temperature data are required for estimation of the characteristics of heatwaves.
Central Asia is a typical arid and semi-arid region in the hinterland of the Eurasian Continent. Water scarcity, land degradation, and a lack of emergency management capacity have increased its vulnerability to a number of natural hazards, including heatwaves (Pollner et al., 2010; Hu et al., 2015; Howard and Howard, 2016). Over the past century, surface warming has been 20–40% higher over global drylands than over more humid lands (Huang et al., 2017). Therefore, drylands such as central Asia are at higher risk from extreme temperatures. During the period 1990–2010, extreme temperature events in this region caused damage costing US$ 1,000 million, the most serious meteorological disasters in terms of economic loss in central Asia (Yang et al., 2016).

However, our knowledge of the effects of climate change on heatwaves in central Asia remains limited. Previous studies of climate change in central Asia were mainly based on variations in the mean temperature. Using multiple data sets, Hu et al. (2014) found a significant increasing trend (0.36–0.42°C-decade\(^{-1}\)) in the mean surface air temperature in central Asia from 1979 to 2011. Heatwaves may become more frequent and intense with an increase in the mean temperature. However, the scarcity or lack of long-term, homogeneous daily observations may lead to large uncertainties in studies of these events in central Asia (Klein Tank et al., 2006; Mamtimin et al., 2011; Hu et al., 2014). It has been well-known that non-climate factors such as changes in station location, environment, instrumentation, etc. can bias statistical characteristics of climatic series (Trewin and Trevitt, 1996; Li and Yan, 2010; Yan et al., 2014). Homogenization of the long-term meteorological observation series in central Asia has not been well studied. It is beneficial to study regional climate changes based on multiple data sets (Hu et al., 2014). Reanalysis data sets have been widely used in regional climate studies (Song and Zhang, 2007; Bao and Zhang, 2012), but their suitability and accuracy for describing the effects of climate change on heatwaves in central Asia need to be evaluated by comparison with station observations.

This study analysed several heatwave indices in central Asia for the periods 1917–2016 and 1967–2016 based on quality-controlled and homogenized station observations. The quality of two widely used reanalysis data sets, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR; Kalnay et al., 1996) and the ERA-Interim (Dee et al., 2011) data sets, was then assessed with regard to their ability to describe the variations in heatwave climate during the overlapping period of 1979–2016. The link between the change in heatwaves and atmospheric circulation was studied in an attempt to understand the underlying mechanisms.

2 | DATA AND METHODS

2.1 | Study region

The term “central Asia” has been used to refer to the five inland countries to the south of Russia and west of China (Mayhew et al., 2004), although it may also cover a wider region including western China and Mongolia (Le Houerou, 2005). In the present study, central Asia was used to refer to five countries—Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan—where there have been relatively few studies of the effects of climate change on heatwaves. Our study area covers about 3.5 × 10\(^6\) km\(^2\) of an arid to semi-arid inland region (35°–55.4°N, 46.5°–88°E) with a total population of more than 57 million people (Population Reference Bureau (PRB), 2002; Lioubimtseva and Cole, 2006).

2.2 | Station observations

Meteorological observations of the daily maximum surface air temperature (\(T_{\text{max}}\)) were collected from 65 stations in central Asia. We selected 20 and 30 stations from the National Climatic Data Center (NCDC) of the US National Oceanic and Atmospheric Administration for the periods 1967–2016 and 1979–2016, respectively, and 34 and 35 stations from the Global Historical Climatology Network-Daily (GHCN-D) for the periods 1967–2016 and 1979–2016, respectively. Among these stations, seven had long-term observations for the period 1917–2016 (Figure 1 and Table 1). The data history of these stations is shown in Table 1. Quality control of the observations involved two steps: (a) a summer with data missing for more than five consecutive days or a ratio of missing data >8% was set as a
missing year; and (b) stations with >10% missing years in the study period were excluded. Then, the Multiple Analysis of Series for Homogenization (MASH) method was applied to the daily maximum temperature data sets. MASH is a well-established method for homogenizing regional climate data (Szentimrey, 1999). It has been well applied in many studies of regional climate changes (e.g., Manton et al., 2001; Li and Yan, 2010; Li et al., 2015).

2.3 | Reanalysis data sets

The NCEP/NCAR reanalysis data were obtained from www.cdc.noaa.gov/ and covered the period from 1948 to the present day with a spatial resolution of 2.5 × 2.5°. The ERA-Interim reanalysis data were obtained from the European Centre for Medium-Range Weather Forecasts website (www.ecmwf.int/) and covered the period from 1979 to the present day with a spatial resolution of 0.75 × 0.75° (Berrisford et al., 2011). The period of overlap from 1979 to 2016 was used to compare the reanalysis data and the station observations in the study area. The \(T_{\text{max}} \) time series of the grid closest to each meteorological station was used in the comparative analysis (Hu et al., 2014).

2.4 | Quantification of heatwaves

The daily threshold for extremely hot days was defined for each calendar day as the 90th percentile of \(T_{\text{max}} \) based on all

TABLE 1	Daily maximum surface air temperature (2 m) used in this study		
Data set description	Data sources	Period	Station number
National Climatic Data Center (NCDC) of the US National Oceanic and Atmospheric Administration	ftp://ftp.ncdc.noaa.gov/pub/data/gsod/	1917–2016	0
		1967–2016	20
		1979–2016	30
Global Historical Climatology Network-Daily (GHCN-D)	www.ncdc.noaa.gov/oa/climate/ghcn-daily/	1917–2016	7
		1967–2016	34
		1979–2016	35

FIGURE 2 | Regional mean series of (a) \(T_{\text{max}} \), (c) HWN, (e) HWF, (g) HWD, (i) HWM, and (k) HWA (black dashed lines indicate the smoothed long-term variations with the short-term variability filtered out via the ensemble empirical mode decomposition [EEMD] method) and the PDFs of (b) \(T_{\text{max}} \), (d) HWN, (f) HWF, (h) HWD, (j) HWM, and (l) HWA for central Asia for 1967–1997 and 1998–2016. For calculating the regional mean HWF and HWD, the stations for the years without a heatwave are excluded.
the daily records during the reference period 1967–2016 (1979–2016 for the reanalysis data and the 65 stations) within an N-day window centred on the given calendar day (Yan et al., 2002). $N = 31$ was used to analyse the heatwaves, as suggested by Russo et al. (2014; 2015).

A hot day was defined as when T_{max} was above the daily threshold. A heatwave event was defined as three or more consecutive hot days during the summer period (June–August). Two or more such consecutive hot periods with one normal day between were considered as one heatwave event.

Based on the framework of Fischer and Schär (2010) and Perkins et al. (2012), we defined five indices to represent the frequency, duration, and intensity of heatwaves: the heatwave number (HWN), the total number of heatwave events during a summer; the heatwave day frequency (HWF), the total number of days in heatwave events; the heatwave duration (HWD), the duration of the longest heatwave in a summer; the heatwave mean intensity (HWM), the mean heatwave intensity of all the heatwave events, the heatwave intensity being the highest 3-day
running mean T_{max} anomaly (T_{max} minus the threshold of the day) during an event; and the heatwave amplitude (HWA), the largest T_{max} anomaly (T_{max} minus the threshold of the day) during all the heatwave events.

3 | RESULTS

3.1 | Spatial and temporal variations of T_{max} and heatwave indices

3.1.1 | Variations in the period 1967–2016

Figure 2a shows the inter-annual variation of the regional mean T_{max} during the summer months in central Asia. The long-term mean T_{max} was about 31.5°C. There was a significant increasing trend of 0.31°C-decade$^{-1}$ during the period 1967–2016, comparable with the results of Hu et al. (2014). Figure 3a illustrates that the summer T_{max} shows significant increasing trend at 80% of the stations. The stations in the southwest of the region recorded higher temperatures, although greater warming trends occurred in the western part of central Asia.

With increasing values of T_{max}, heatwaves become more frequent. During the same period (1967–2016), the regional mean HWN showed a significant increasing trend of 0.23 events-decade$^{-1}$ ($p < .01$), with a climatological mean of 1.07 events per summer (Figure 2c). In addition, there are strong regional differences in heatwave changes in central Asia. Based on K-means Clustering Algorithm (Wu et al., 2008), observation stations could be divided into two subregions (Figure 1) according to six features, including longitude, latitude, linear trends of summer mean T_{max}, HWN, HWF, and HWD during 1967–2016. Larger significantly increasing trends of HWN mainly occurred in western central Asia (Figure 3b), especially the region close to the Caspian Sea and the Aral Sea, which might be associated with the sea desiccation in this area (Rubinstein et al., 2014). The duration and intensity of heatwaves also increased significantly. The increasing rates of regional mean were 0.97 days-decade$^{-1}$ (HWF), 0.31 days-decade$^{-1}$ (HWD), 0.19°C-decade$^{-1}$ (HWM), and 0.31°C-decade$^{-1}$ (HWA), respectively. The trends in the heatwave indices were generally larger and more significant in the west of central Asia than in the east (Figure 3b–f and Table 2).

However, although all the heatwave indices showed increasing trends from 1967 to 2016, there were different inter-decadal variations, especially around the 1990s. Figure 2c,d,e,g shows that the indices of HWN, HWF, and HWD during 1998–2016 were much larger than those during 1967–1997. Using the Mann–Kendall test, a rapid change was found around 1997. Taking HWF as an example, the average value changed from 5.4 days-year$^{-1}$ before 1997 to 8.6 days-year$^{-1}$ after 1997; the rate of trend changed from 0.01 days-year$^{-1}$ before 1997 to 0.19 days-year$^{-1}$ after 1997 (Figure 2e). For comparison, the indices for the heatwave intensity (HWM and HWA) did not show an obvious change around the same time based on the Mann–Kendall test; the trend during 1998–2016 was weaker ($p > .1$) (Figure 2i,k). For the two subregions, there were remarkable changes of HWN, HWF, and HWD over the western central Asia in 1997, while the east did not find similar change at this time. Comparing the probability distribution functions (PDFs) of the heatwave indices between the two periods over central Asia, we see clear shifts of the PDFs towards larger values (Figure 2). The larger width of the PDF (a measure for the standard deviation of an index series) for the recent period suggests that the heatwave climate has greater inter-annual variability in the recent decades than in the earlier time. Changes of PDFs for the two subregions are similar with that of the entire region.

3.1.2 | Variations in the period 1917–2016

There are seven stations with long-term observations which could be used to analyse the variations in the period 1917–2016 (Figure 1). Figure 4a shows that there has been a

Table 2: Climatological means and trends of regional means of T_{max} and the heatwave indices in two subregions for the period 1967–2016

	Units	Part 1 (east)	Part 2 (west)	All	Climatological mean
T_{max}	°C	0.017***	0.037***	0.031***	27.12 33.67 31.48
HWN	times	0.006	0.031***	0.023***	1.06 1.08 1.07
HWF	days	0.024	0.129***	0.097***	6.67 6.80 6.77
HWD	days	0.012	0.039***	0.031***	4.44 4.64 4.60
HWM	°C	0.009	0.023***	0.019***	1.54 1.34 1.40
HWA	°C	0.015	0.040***	0.031***	2.43 2.09 2.20

*The liner trend was significant at $p < .1$ levels.
**The liner trend was significant at $p < .05$.
***The liner trend was significant at $p < .01$.
significantly increasing trend in the summer T_{max} in central Asia during the last 100 years of 0.16°C-decade$^{-1}$. In the last 50 years, this trend has increased to 0.26°C-decade$^{-1}$ (Table 3). Correspondingly, during 1917–2016, all the heatwave indices showed a significantly increasing trend ($p < .01$) of 0.11 times-decade$^{-1}$ for HWN, 0.39 days-decade$^{-1}$ for HWF, 0.15 days-decade$^{-1}$ for HWD, 0.10°C-decade$^{-1}$ for HWM, and 0.16°C-decade$^{-1}$ for HWA
The Mann–Kendall test showed large increases in HWN and HWF around the late 1990s, consistent with the sharp increase in T_{max} at the same time.

3.2 Comparison of the results for the reanalysis data sets and the station data

Figure 5a shows the regional mean summer T_{max} series based on the 65 station observations during 1979–2016 and those based on the two reanalysis data sets. The reanalysis data sets generally underestimated the temperature by about 0.7 and 1.8°C for the NCEP/NCAR and ERA-Interim data sets, respectively. This is partly because the extreme records are smoothed out in the reanalysis data sets (Freychet et al., 2017) and partly because most of the stations are located on the plains which have lower average altitude, but the reanalysis data sets cover a greater range of topography in the region.

The correlation coefficients between the stations and the reanalysis data sets for the heatwave indices presented in Figure 5b–f were all significant ($p < .01$). However, those between the stations and the NCEP/NCAR data set were smaller than those between the stations and the ERA-Interim data. Figure 5b–f shows that the trends in the heatwave indices based on the ERA-Interim data were close to the station observations, whereas those based on the NCEP/NCAR data were much smaller (Table 4).

The geographical distribution of the trends of T_{max} based on the ERA-Interim data was fairly consistent with that based on the station observations ($p < .01$). By contrast, the spatial correlation between the station observations and the NCEP/NCAR data was not significant ($p > .1$) (Figure 6a–c). For the geographical patterns of the trends in the heatwave indices during 1979–2016 (Figure 6d–r), the results based on the ERA-Interim data also matched the station observations well, whereas those based on NCEP/NCAR data did not.

3.3 Relationship with atmospheric circulation

The composite analysis is performed for the following atmospheric variables in ERA-Interim data set: 500-hPa geopotential height, surface pressure, and horizontal wind at 850 hPa. Figure 7a,c,e shows the composite anomalies pattern of the 500-hPa geopotential height, surface pressure, and horizontal wind at 850 hPa for July for the 10 years of the highest frequencies of heatwaves in central Asia. Positive 500-hPa height anomalies (Figure 7a) and anticyclone circulation (Figure 7e) favour the anomalous descent of air in the lower troposphere, leading to more clear days and greater downwards solar radiation, and hence a greater potential for heatwaves during the summer period (Loikith and Broccoli, 2012). There appears to be a zonal wave train across mid-latitudes (Figure 7a), roughly consistent with the Silk Road pattern (Lu et al., 2002), with an anomalous barotropic anticyclone near the Caspian Sea. The Silk Road pattern is a zonally oriented teleconnection pattern in the

Table 3

Climatological means and trends of regional means of T_{max} and the heatwave indices for the periods 1917–2016 and 1967–2016 in seven stations with long-term observations

	1967–2016 (seven stations)	1917–2016 (seven stations)			
	Trend (units/year)	Climatological mean	Trend (units/year)	Climatological mean	
T_{max}	$^\circ C$	0.026***	33.08	0.016***	32.69
HWN	times	0.021***	1.07	0.011***	0.81
HWF	days	0.083***	6.57	0.039***	5.77
HWD	days	0.028**	5.03	0.015***	4.73
HWM	$^\circ C$	0.012*	1.23	0.010***	0.98
HWA	$^\circ C$	0.021**	1.90	0.016***	1.52

*The linear trend was significant at $p < .1$ levels.

**The linear trend was significant at $p < .05$.

***The linear trend was significant at $p < .01$.
Northern Hemisphere summer that takes the form of a stationary Rossby wave trapped in the jet stream (Enomoto et al., 2003). It has been suggested that the inter-decadal variation of the Silk Road pattern has a crucial role in modulating inter-decadal warming over Eurasia (Wang et al., 2017). The Silk Road pattern showed an inter-decadal shift around 1997, which explains >40% of warming in eastern Europe and west and northeastern Asia (Wang et al., 1997–2004.)

FIGURE 5 Comparisons of the regional mean time series during the period 1979–2016 between the station observations and the reanalysis results: (a) T_{max}, (b) HMN, (c) HWF, (d) HWD, (e) HWM, and (f) HWA.
The rapid increase in the frequency of heatwaves in central Asia also occurred around the late 1990s. To investigate the inter-decadal change in the number of heatwaves during the 1990s, we compared the composite anomaly patterns of the 500-hPa geopotential height (Figure 7b), surface pressure (Figure 7d), and horizontal wind at 850 hPa (Figure 7f) between the periods 1988–1997 and 1998–2007. Figure 7b shows that there were positive anomalies in the 500-hPa height centred over central Asia during the period 1998–2007, but negative anomalies over central Asia during the earlier period. The wave train pattern during the period 1998–2007 was opposite to that in 1988–1997. The roughly opposite distribution of the 500-hPa geopotential height anomalies (Figure 7b) and the anomalous anticyclonic circulation (Figure 7f) in the later period suggests that there should have been a systematic change in the large-scale patterns of atmospheric circulation during the 1990s, which favoured the increase in the frequency of heatwaves in central Asia, consistent with the inter-decadal variation in the Silk Road pattern in the same period (Wang et al., 2017). Therefore, the rapid change in the frequency of heatwaves in central Asia around 1997 was not an isolated phenomenon, but was associated with inter-decadal warming over a large area from eastern Europe and North Africa to the Tibetan Plateau and eastern Siberia (Wang et al., 2017). These results highlight the importance of the changing Silk Road pattern to recent inter-decadal climate variations over Eurasia.

4 | DISCUSSION AND CONCLUSIONS

This work provides an overview of the changes in summer heatwaves in central Asia based on homogenized observations from the last 100 years. Significant increasing trends in the frequency, intensity, and duration of heatwaves were observed in most of central Asia, especially during the last 50 years in western central Asia. The geographical patterns of the trends in the heatwave indices were consistent with that of climatic warming trends (T_{max}) in the region, suggesting a direct role of large-scale climate warming in the increase in heatwaves. However, strong inter-decadal changes were evident in central Asia. In particular, there were rapid increases in the frequency and duration of heatwaves around the 1990s. The ERA-Interim reanalysis

TABLE 4 Climatological means and trends of regional mean T_{max} and heatwave indices in central Asia during 1979–2016 based on station observations and the NCEP/NCAR and ERA-Interim reanalysis data sets

Data sets	Climatological mean	Trend (year$^{-1}$)	CC1	CC2
T_{max} (°C)				
Observations	30.96	0.027**	1	1
NCEP/NCAR	30.22	0.013	0.84***	−0.02
ERA-Interim	29.12	0.026**	0.95***	0.75***
HWN Observations	1.06	0.024***	1	1
NCEP/NCAR	1.10	0.010	0.87***	0.19
ERA-Interim	1.17	0.020**	0.92***	0.62***
HWF Observations	6.62	0.120***	1	1
NCEP/NCAR	6.96	0.072**	0.81***	0.16
ERA-Interim	7.07	0.099***	0.92***	0.64***
HWD Observations	4.51	0.041***	1	1
NCEP/NCAR	4.70	0.025**	0.89***	0.42***
ERA-Interim	4.68	0.036***	0.91***	0.69***
HWM (°C)				
Observations	1.44	0.015	1	1
NCEP/NCAR	1.55	0.002	0.94***	0.08
ERA-Interim	1.42	0.011	0.95***	0.50***
HWA (°C)				
Observations	2.25	0.026	1	1
NCEP/NCAR	2.43	0.002	0.92***	0.12
ERA-Interim	2.24	0.021	0.94***	0.38***

*Correlation between the observations and reanalysis data sets was significant at $p < .1$.

**Correlation between the observations and reanalysis data sets was significant at $p < .05$.

***Correlation between the observations and reanalysis data sets was significant at $p < .01$.

Note. CC1 is the temporal correlation coefficient of the regional mean indices. CC2 is the spatial correlation coefficient of the linear trends.
FIGURE 6 Geographical distribution of the linear trends in (a–c) T_{max}, (d–f) HWN, (g–i) HWF, (j–l) HWD, (m–o) HWM, and (p–r) HWA during the 1979–2016, based on the (a, d, g, j, m, p) station observations, (b, e, h, k, n, q) NCEP/NCAR, and (c, f, i, l, o, r) ERA-Interim reanalysis data. The open circles indicate non-significant trends.
data set reproduces well the features of the heatwaves trends and the spatial variability in station observations, whereas the NCEP/NCAR data set shows marginal correlations with the observations in this region.

Our results indicate a centre of positive 500-hPa height anomalies and an anomalous anticyclonic circulation over the northwest of the region corresponding to the increasing occurrence of heatwave in central Asia. There were systematic changes in the large-scale atmospheric circulation around the 1990s favourable for the rapid increase in heatwaves in central Asia. This rapid change was associated with the inter-decadal shift in the Silk Road pattern, highlighting the importance of the changing Silk Road pattern to the recent inter-decadal climate warming and variations in climate extremes across the Eurasian continent. Detailed analyses of more atmospheric variables are beneficial for understanding the mechanisms underlying the effect of climate change on heatwaves in this region.

ACKNOWLEDGEMENTS

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20020201), the Ministry of SciTech of China (Grant No. 2016YFA0600404), and the Chinese Academy of Sciences project (Grant No. 134111KYSB20160010).

ORCID

Shuang Yu https://orcid.org/0000-0001-7883-5882
Zhongwei Yan https://orcid.org/0000-0003-0638-137X

REFERENCES

Bao, X. and Zhang, F. (2012) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. Journal of Climate, 26, 206–214.

Berrisford, P., Dee, D., Poli, P., Brugge, R., Fielding, K., Fuentes, M., Källberg, P., Kobayashi, S., Uppala, S., and Simmons, A. (2011) The ERA-Interim archive. Reading: ECMWF. ERA report: 1.

Christoph, S. and Gerd, J. (2004) Hot news from summer 2003. Nature, 432, 559–560.

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hölm, E.V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.N. and Vitart, F. (2011) The
Era-Interim reanalysis: configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137(656), 553–597.

Ding, T., Qian, W.-H. and Yan, Z.-W. (2010) Changes in hot days and heat waves in China during 1961–2007. *International Journal of Climatology*, 30, 1452–1462.

Easterling, D.R., Evana, J.L., Grosman, P.Y., Karl, T.R., Kunkel, K.E. and Ambenje, P. (2000) Observed variability and trends in extreme climate events: a brief review. *Bulletin of the American Meteorological Society*, 81, 417–425.

Enomoto, T., Hoskins, B.J. and Matsuda, Y. (2003) The formation mechanism of the Bonin high in August. *Quarterly Journal of the Royal Meteorological Society*, 129 (587), 157–178.

Fischer, E.M. and Schär, C. (2010) Consistent geographical patterns of changes in high-impact European heatwaves. *Nature Geoscience*, 3(6), 398–403.

Freychet, N., Tett, S., Wang, J. and Hegerl, G. (2017) Summer heat waves over eastern China: dynamical processes and trend attribution. *Environmental Research Letters*, 12, 024015.

Hou, W., Chen, Y., Ying, L.I., Wang, Z. and Zhu, X. (2014) Climatic Characteristics over China in 2013. *Meteorological Monthly*, 40(4), 482–493.

Howard, K.W.F. and Howard, K.K. (2016) The new “Silk Road economic belt” as a threat to the sustainable management of CA’s transboundary water resources. *Environmental Earth Sciences*, 75 (11), 1–12.

Hu, Z., Li, Q., Chen, X., Teng, Z., Chen, C. and Yin, G. (2015) Climate changes in temperature and precipitation extremes in an alpine grassland of CA. *Theoretical and Applied Climatology*, 56 (4), 1–13.

Hu, Z., Zhang, C., Hu, Q. and Tian, H. (2014) Temperature changes in CA from 1979 to 2011 based on multiple datasets. *Journal of Climate*, 27(3), 1143–1167.

Huang, J., Yu, H., Dai, A., Wei, Y. and Kang, L. (2017) Drylands face potential threat under 2°C global warming target. *Nature Climate Change*, 7(6), 417–422.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., and Jenne, R. and Joseph, D. (1996) The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–472.

Karlovy, D.J. (2009) The recent bushfires and extreme heatwave in southeast Australia. *Bulletin of the Australian Meteorological and Oceanographic Society*, 22(1), 10–13.

Klein Tank, A.M.G., Peterson, T.C., Quadir, D.A., Dorji, S., Zou, X. and Tang, H. (2006) Changes in daily temperature and precipitation extremes in central and South Asia. *Journal of Geophysical Research: Atmospheres*, 111(11), 709–720.

Le Houerou, H.N. (2005) Book review: botanical geography of Kazakhstan and middle Asia (desert region). *Arid Land Research and Management*, 19, 89–90.

Li, P., Qian, H., Howard, K.W.F. and Wu, J. (2015) Building a new and sustainable “Silk Road economic belt”. *Environmental Earth Sciences*, 74(10), 7267–7270.

Li, Z. and Yan, Z.-W. (2010) Application of multiple analysis of series for homogenization to Beijing daily temperature series (1960–2006). *Advances in Atmospheric Sciences*, 27(4), 777–787.

Lioubimtseva, E. and Cole, R. (2006) Uncertainties of climate change in arid environments of central Asia. *Reviews in Fisheries Science*, 14(1–2), 29–49.

Loikith, P.C. and Broccoli, A.J. (2012) Characteristics of observed atmospheric circulation patterns associated with temperature extremes over North America. *Journal of Climate*, 25(20), 7266–7281.

Lu, R.Y., Oh, J.H. and Kim, B.J. (2002) A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. *Tellus A*, 54, 44–55.

Luber, G. and McGeehin, M. (2008) Climate change and extreme heat events. *American Journal of Preventive Medicine*, 35, 429–435.

McMichael, A.J. and Lindgren, E. (2011) Climate change: present and future risks to health, and necessary responses. *Journal of Internal Medicine*, 270(5), 401–413.

Mamtanim, B., Et-Tantawi, A.M.M., Schaefer, D., Meixner, F.X. and Domroes, M. (2011) Recent trends of temperature change under hot and cold desert climates: comparing the Sahara (Libya) and CA (Xinjiang, China). *Journal of Arid Environments*, 75, 1105–1113.

Manton, M.J., Della-Marta, P.M., Haylock, M.R., Hennessy, K.J., Nicholls, N., Chambers, L.E., Collins, D.A., Daw, G., Finet, A., Gunawan, D., Inape, K., Isobe, H., Kestin, T.S., Lefale, P., Leyu, C.H., Lwin, T., Maatpierre, L., Ouuprasitwong, N., Page, C.M., Pahalad, J., Plummer, N., Salinger, M.J., Supphiah, R., Tran, V.L., Trewin, B., Tibig, I. and Yee, D (2001) Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. *International Journal of Climatology*, 21, 269–284.

Mayhew, B., Clammer, P. and Kohn, M. (2004) *Lonely Planet Central Asia*. Lonely Planet, 512 pp.

Meehl, G.A. and Tebaldi, C. (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. *Science*, 305(5686), 994–997.

Perkins-Kirkpatrick, S.E., White, C.J., Alexander, L.V., Argüeso, D., Boschat, G. and Cowan, T. (2016) Natural hazards in Australia: heatwaves. *Climatic Change*, 139, 1–14.

Perkins, S.E., Alexander, L.V. and Nairn, J.R. (2012) Increasing frequency, intensity and duration of observed global heatwaves and warm spells. *Geophysical Research Letters*, 39(20), 20714.

Pollner, J., Kryspin-Watson, J. and Nieuwejaar, S. (2010) *Disaster risk management and climate change adaptation in Europe and CA*. Watson.

Population Reference Bureau (PRB). (2002) *World population data sheet*. Washington, DC: Population Reference Bureau.

Rubinshtein, K.G., Smirnova, M.M., Bychkova, V.I., Emelina, S.V., Ignatov, R.Y., Khan, V.M., Tishchenko, V.A. and Roget, E. (2014) Studying the impact of large lake desiccation on the accuracy of numerical description of meteorological fields (a case study for the Aral Sea). *Russian Meteorology and Hydrology*, 39(11), 727–735.

Russo, S., Dosio, A. and Graversen, R.G. (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. *Journal of Geophysical Research: Atmospheres*, 119(22), 12500–12512.

Russo, S., Stillmann, J. and Fischer, E.M. (2015) Top ten European heatwaves since 1950 and their occurrence in the coming decades. *Environmental Research Letters*, 10(12), 124003.

Simmons, A. J., Jones, P. D., da Costa Bechtold, V., Beljaars, A. C. M., Källberg, P. W., Tavolato, C., Uppala, S. M., Viterbo, P. and Wedi, B. (2002) ERA-Interim reanalysis: configuration and performance of the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137(656), 553–597.
Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W. and Dee, D.P. (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. *Journal of Geophysical Research: Atmospheres*, 115, D01110.

Song, H. and Zhang, M.H. (2007) Changes of the boreal winter Hadley circulation in the NCEP-NCAR and ECMWF reanalyses: a comparative study. *Journal of Climate*, 15, 5191–5200.

Szentimrey, T. (1999) Multiple analysis of series for homogenization (MASH). In: *Proceedings of the Second Seminar for Homogenization of Surface Climatological Data, Budapest, Hungary*. Geneva: WMO. WCDMP-No. 41, pp. 27–46.

Trewin, B.C. and Trevitt, A.C.F. (1996) The development of composite temperature records. *International Journal of Climatology*, 16, 1227–1242.

Wang, L., Xu, P., Chen, W. and Liu, Y. (2017) Interdecadal variations of the Silk Road pattern. *Journal of Climate*, 30, 9915–9932.

Welbergen, J.A., Klose, S.M., Markus, N. and Eby, P. (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. *Proceedings of the Royal Society of London B: Biological Sciences*, 275(1633), 419–425.

Wu, X. D., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., Ng, Aa., Liu, B., Yu, P. S., Zhou, Z. H., Steinbach, M., Hand, D. J. and Steinberg, D. (2008) Top 10 algorithms in data mining. *Knowledge and Information Systems*, 14(1), 1–37.

Xia, J., Tu, K., Yan, Z.-W. and Qi, Y. (2016) The super-heat wave in eastern China during July–August 2013. A perspective of climate change. *International Journal of Climatology*, 36(3), 1291–1298.

Yan, Z.-W., Jones, P.D., Davies, T.D., Moberg, A., Bergstrom, H., Camuffo, D., Cocheo, C., Mauger, M., Demaree, G., Verhoeve, T., Thoen, E., Barriendos, M., Rodriguez, R., Martin-Vide, J. and Yang, C. (2002) Trends of extreme temperatures in Europe and China based on daily observations. *Climatic Change*, 53(1–3), 355–392.

Yan, Z.W., Li, Z. and Xia, J.J. (2014) Homogenization of climate series: the basis for assessing climate changes. *Science in China*, 57, 2891–2900. https://doi.org/10.1007/s11430-014-4945-x.

Yang, T., Guo, Q. and Xiao, T.-G. (2016) Research on distribution characteristics of natural disaster along “the Belt and Road”. *Journal of Safety Science and Technology*, 12(10), 165–171.

Zander, K.K., Botzen, W.J.W., Oppermann, E., Kjellstrom, T. and Garnett, S.T. (2015) Heat stress causes substantial labour productivity loss in Australia. *Nature Climate Change*, 5(7), 647–651.

Zhou, C.-L. and Wang, K.-C. (2016) Coldest temperature extreme monotonically increased and hottest extreme oscillated over Northern Hemisphere land during last 114 years. *Scientific Reports*, 6, 24721.

How to cite this article: Yu S, Yan Z, Freychet N, Li Z. Trends in summer heatwaves in central Asia from 1917 to 2016: Association with large-scale atmospheric circulation patterns. *Int J Climatol*. 2019; 1–13. https://doi.org/10.1002/joc.6197