Science Communication Through STEAM: Professional Development and Flipped Classrooms in the Digital Age

Joseph Roche¹, Laura Bell¹, Ian Martin², Fiona Mc Loone², Amanda Mathieson³, and Frida Sommer⁴

Abstract

STEAM is the term given to a growing field of research and practice that integrates arts into traditional science, technology, engineering, and mathematics subjects. It is also the name of a science communication summer school that has evolved from a conventional in-person professional development opportunity to a blended informal science learning space with a flipped classroom approach. This article charts that development and includes perspectives from several science communicators who participated in in-person and online versions of the STEAM schools. The future of professional development in science communication is considered in light of the changes caused by the COVID-19 global pandemic.

Keywords

STEAM, professional development, flipped classroom, public engagement, science, society

¹Trinity College Dublin, Ireland
²Dublin City University, Ireland
³University College Dublin, Ireland
⁴Leiden University, The Netherlands

Corresponding Author:
Joseph Roche, School of Education, Trinity College Dublin, Dublin 2, Ireland.
Email: Joseph.Roche@tcd.ie
Professional Development and STEAM in Science Communication

STEAM—with its inclusion of the arts alongside the more commonly grouped subjects of science, technology, engineering, and mathematics (STEM)—is not only an emerging field of research and practice but also a contested concept (Colucci-Gray et al., 2019). There are plenty of arguments as to why the economically driven motivations for STEM learning (the precursor to STEAM) are already complicating the fields of education and communication (Herschbach, 2011; Roche et al., 2016; Sanders, 2008). The rich possibilities for transdisciplinary learning, however, have been demonstrated across a range of seminal STEAM programs (Bevan et al., 2020; Costantino, 2018). Since STEAM first emerged as an initiative of the Rhode Island School of Design in 2008 as a reaction to the defunding of the arts caused by a global financial downturn (Allina, 2018), it has steadily evolved to become a field with the potential for transformative learning, especially when the arts is given equal status among the STEM subjects (Mejias et al., 2021). Such equal status boosts the likelihood of STEAM programs succeeding in engaging new audiences in transdisciplinary learning (Guyotte et al., 2015; Liao, 2016; Patton & Knochel, 2017; Sochacka et al., 2016).

The landscape of European science communication is in a state of transition due to the global pandemic (Massarani et al., 2020; Priest & Myrick, 2020). While tools and resources have been created to help science communication professionals cope with the challenges caused by the pandemic (Mannino et al., 2021; Olesk et al., 2021), there remains an enduring divide between research and practice (Davies et al., 2021). Other than the professional learning that occurs at conferences (Roche et al., 2018), professional development opportunities in science communication generally take place at workshops, short courses, or summer schools (Miller et al., 2009) and can sometimes be limited in scope and duration (McCartney et al., 2018; Tran et al., 2019). The STEAM summer school represents a unique professional development opportunity in the field of science communication. It provides a flipped classroom approach (Bergmann & Sams, 2014), underpinning science communication theory and incorporating elements of theater, drama, and comedy (Figure 1), which are themselves understudied topics in science communication (Cacciatore et al., 2020; McGillion & McKinnon, 2014; Roche et al., 2020).

The STEAM Summer School’s Flipped Classroom Approach

The STEAM summer school was established in 2016 by Dr. Edward Duca through funding from an Erasmus+ Strategic Partnerships project. Partners included Rhine-Waal University, Haaga-Helia University, University of
Erasmus+ is the European Commission’s program for supporting researcher
and student mobility to boost personal and professional development, European
integration, and educational opportunities (Dabasi-Halász et al., 2019). The
Strategic Partnerships strand allows organizations across Europe to “cooperate
for innovation and exchange of good practice” (European Commission, 2015,
p. 3). The focus of the initial Erasmus+ STEAM project was to harness the
expertise of science communication academics to develop unique curricula and
a summer school that would cover science communication research and prac-
tice along with opportunities to engage public audiences with science through
the arts. The emphasis on transdisciplinarity allowed the school to bring
together participants of various ages, spanning four continents and all with dif-
ferent research backgrounds and professions to explore new ways to improve
science communication. The project implemented an experimental model, tri-
alizing the summer school in Germany (2016), Greece (2017), and Malta (2018)
to determine a suitable host location for the school beyond the project’s scope.
As the original Erasmus+ project drew to a close, the organizers of the STEAM
summer school ensured the long-term sustainability of the project by establish-
ing it as a social enterprise and moving it to its permanent home in Malta for the
2019 iteration, which saw the enrollment of 12 self-funded participants.

Throughout the 3-year Erasmus+ STEAM project, the summer school
was continually evaluated and amended based on feedback from the partici-
pants and organizers. This consisted of daily evaluation with participants and
end-of-program focus groups with all involved. These evaluations high-
lighted that the most significant benefits of the intensive school were receiv-
ing individually tailored support from experts based on practical assignments
as well as the opportunity to collaborate with other students to deliver

Figure 1. Participants work in groups in a theatrical setting to develop creative
science communication skills (STEAM Summer School 2017, 2019, and STEAM
Digital School 2021).
hands-on science communication events. To maximize the benefits of this opportunity, a multimedia online course was developed by Amanda Mathieson for participants to complete prior to attending the summer school. This flipped classroom approach meant that participants could prepare for the school by working through the online course at their own pace in advance, learning about the science communication concepts and theories underpinning the practical components of the summer school, before putting that knowledge into action over the 10 days spent in an immersive peer-learning environment in Malta. The online course covers general theories of science communication, writing and presentation skills, traditional and social media, marketing and branding, along with evaluation and planning. After testing the flipped classroom approach at the 2019 iteration of the summer school—which culminated in the participants creating and staging a science communication event in a local theater (Figure 2)—the COVID-19 global pandemic resulted in the need for the summer school to once again evolve, this time becoming an online event. To replicate the intensity of the in-person experience, a 5-day practice-oriented online school was hosted on Zoom for 14 participants. This was followed by a 2-week window where participants were encouraged—with intentionally limited support from the organizers—to develop, market, and deliver an online science communication event.

Participant Perspectives

Despite the obvious differences between the in-person and the online versions of the STEAM schools, the reflections of four participants (two who took part in the STEAM digital school in 2021 and two who took part in the most recent in-person version of the school in 2019 in Malta) show how similar peer
learning and professional development opportunities in science communication can be fostered regardless of the environment or modality of engagement.

Fiona (attended the STEAM digital school in 2021):

I attended the STEAM digital school because I thought it would be a fantastic way to complement the Masters in science and health communication which I am currently doing. I was excited to learn more about how to merge theory with practice as we developed our very own Sci-com event. Given the current travel restrictions the digital school was an incredible opportunity to connect with people from around the world; learning new skills from both the experts and the other attendees. The most rewarding aspect of the school for me was being introduced to the innovation which can be achieved with digital tools; there being no one size fits all approach to science communication was a huge take-home message for me. The most challenging aspect of the school was putting presentation skills into practice; however, knowing I was in good company made embracing the spotlight that bit easier!

Ian (attended the STEAM digital school in 2021):

The STEAM digital school presented me with an opportunity to refine my science communication skills, especially as we were given the creative freedom to develop, market, and deliver a unique science communication event tailored to an online audience. Although we had to wrestle with the common issues that arise when science communication events go virtual, like overcoming screen fatigue, we found that those challenges can be overcome when the focus of the group is on collaborating and learning together. One of the most impactful elements for me was seeing how improvisation and comedy can be used to frame science communication in new ways. Being able to experiment, mess-up, and laugh about our comedic delivery, not only made the content we were communicating more accessible and engaging for our audience, but it made the event more enjoyable and memorable for us too.

Frida (attended the STEAM summer school in Malta in 2019):

I attended the STEAM summer school because I realized that the tasks I enjoyed the most were communication-related and decided to learn more about science communication. The summer school was a fantastic experience for a newbie like me because the organizers were great at guiding us through the tasks and the attendees were mostly experienced science communicators. The most rewarding aspect was getting to know people, spending time together, and learning from each other. The most challenging part was having to improvise because I like to prepare and organize things in advance. I believe the experience helped me to deal better with unexpected situations and let the creativity flow.
Joseph (attended the STEAM summer school in Malta in 2019):

I signed up for the STEAM summer school because I was intrigued by the flipped classroom approach. The online course provided us with solid foundations and having the material covered in advance meant that during the 10-day summer school we could focus on working together as a motley crew of science communication practitioners. The dovetailing of research and practice really helped me to feel more confident about how I communicate. I think the location of the summer school in Malta provided a perfect creative and supportive space for us to challenge ourselves and to learn from each other.

Future Challenges and Opportunities

Professional development opportunities in the field of science communication are needed now more than ever with the COVID-19 global pandemic raising new challenges for the community to consider, such as, how science is communicated in times of crisis (Goldstein et al., 2020; Kim et al., 2020) and the implication of the digital divide for public engagement (Roche et al., 2021). The STEAM summer school remains unique in its offering of a flipped classroom approach encompassing an online multimedia course and an immersive and collaborative practice-focused school in either virtual or in-person formats. Feedback from participants has highlighted impacts, such as gaining new knowledge and skills, professional experience, career opportunities, and building a community of practice. While uncertainty hangs over all international travel, the STEAM summer school has demonstrated that even the most practical and hands-on science communication initiatives can survive and even thrive in digital environments, creating a welcome dilemma for supporting virtual, in-person, or hybrid events for future iterations of the school. The STEAM summer school will be open for future applications via its website: steamsummerschool.eu.

Acknowledgments

The authors are immensely grateful to Dr. Edward Duca and his team at the University of Malta for their enduring commitment to providing a unique professional development opportunity for the science communication community. The authors would also like to extend their thanks to their fellow participants in the STEAM summer schools. The summer school was founded with the support of the Erasmus+ program of the European Union.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This review was made possible with funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 824634.

ORCID iDs

Joseph Roche https://orcid.org/0000-0002-9981-1502
Frida Sommer https://orcid.org/0000-0002-3985-4180

References

Allina, B. (2018). The development of STEAM educational policy to promote student creativity and social empowerment. *Arts Education Policy Review, 119*(2), 77–87.

Bergmann, J., & Sams, A. (2014). *Flipped learning: Gateway to student engagement.* International Society for Technology in Education.

Bevan, B., Mejias, S., Rosin, M., & Wong, J. (2020). The main course was mealworms: The epistemics of art and science in public engagement. *Leonardo, 1*(1), 1–14.

Cacciatori, M. A., Becker, A. B., Anderson, A. A., & Yeo, S. K. (2020). Laughing with science: The influence of audience approval on engagement. *Science Communication, 42*(2), 195–217.

Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019). A critical review of STEAM (science, technology, engineering, arts, and mathematics). In P. Thomson (Ed.), *Oxford research encyclopedia of education* (pp. 1–26). Oxford University Press.

Costantino, T. (2018). STEAM by another name: Transdisciplinary practice in art and design education. *Arts Education Policy Review, 119*(2), 100–106.

Dabasi-Halász, Z., Kiss, J., Manafi, I., Marinescu, D. E., Lipták, K., Roman, M., & Lorenzo-Rodriguez, J. (2019). International youth mobility in Eastern and Western Europe—The case of the Erasmus+ programme. *Migration Letters, 16*(1), 61–72.

Davies, S. R., Franks, S., Wells, R., Zollo, F., Roche, J., & Schmidt, L. (2021). The landscape of European science communication. *Journal of Science Communication, 20*(03), A01, 1–19.

European Commission. (2015). *ERASMUS+ strategic partnerships: Compendium 2015.* Directorate-General for Education, Youth, Sport and Culture: Luxembourg Publications Office of the European Union.

Goldstein, C. M., Murray, E. J., Beard, J., Schnoes, A. M., & Wang, M. L. (2020). Science communication in the age of misinformation. *Annals of Behavioral Medicine, 54*(12), 985–990.

Guyotte, K. W., Sochacka, N. W., Costantino, T. E., Kellam, N. N., & Walther, J. (2015). Collaborative creativity in STEAM: Narratives of art education students’
experiences in transdisciplinary spaces. *International Journal of Education & the Arts, 16*(15), 1–39.

Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. *Journal of STEM Teacher Education, 48*(1), 96–122.

Kim, H. K., Ahn, J., Atkinson, L., & Kahlor, L. A. (2020). Effects of COVID-19 misinformation on information seeking, avoidance, and processing: A multicountry comparative study. *Science Communication, 42*(5), 586–615.

Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to STEAM education. *Art Education, 69*(6), 44–49.

Mannino, I., Bell, L., Costa, E., Di Rosa, M., Fornetti, A., Franks, S., Iasillo, C., Maiden, N., Olesk, A., Pasotti, J., Renser, B., Roche, J., Schofield, B., Villa, R., & Zollo, F. (2021). Supporting quality in science communication: Insights from the QUEST project. *Journal of Science Communication, 20*(03), A07, 1–22.

Massarani, L., Murphy, P., & Lamberts, R. (2020). COVID-19 and science communication: A JCOM special issue. *Journal of Science Communication, 19*(7), E1–E3. https://doi.org/10.22323/2.19070501

McCartney, M., Childers, C., Baiduc, R. R., & Barnicle, K. (2018). Annotated primary literature: A professional development opportunity in science communication for graduate students and postdocs. *Journal of Microbiology & Biology Education, 19*(1), 1–11.

McGillion, C., & McKinnon, M. (2014). Participatory theater as a science communication tool in Timor Leste. *Science Communication, 36*(4), 502–510.

Mejias, S., Thompson, N., Sedas, R. M., Rosin, M., Soep, E., Peppler, K., Roche, J., Wong, J., Hurley, M., Bell, P., & Bevan, B. (2021). The trouble with STEAM and why we use it anyway. *Science Education, 105*(2), 209–231. https://doi.org/10.1002/sce.21605

Miller, S., & Fahy, D., & ESConet Team. (2009). Can science communication workshops train scientists for reflexive public engagement? The ESConet experience. *Science Communication, 31*(1), 116–126.

Olesk, A., Renser, B., Bell, L., Costa, E., Di Rosa, M., Fornetti, A., Franks, S., Mannino, I., Roche, J., Schmidt, L., Schofield, B., Villa, R., & Zollo, F. (2021). Quality indicators for science communication: Results from a collaborative concept mapping exercise. *Journal of Science Communication, 20*(03), A06, 1–17.

Patton, R. M., & Knochel, A. D. (2017). Meaningful makers: Stuff, sharing, and connection in STEAM curriculum. *Art Education, 70*(1), 36–43.

Priest, S., & Myrick, J. G. (2020). Communicating risk and uncertainty in the face of COVID-19. *Science Communication, 42*(5), 559–561.

Roche, J., Bell, L., Hurley, M., D’Arcy, G., Owens, B., Jensen, A. M., Jensen, E. A., & Russo, P. (2021). A place for space: Online space education during a global pandemic. *Frontiers in Environmental Science, 9*(662947), 1–6

Roche, J., Davis, N., Stanley, J., & Hurley, M. (2018). The annual Ecsite conference: An engagement and education forum for science museums. *Journal of Museum Education, 43*(1), 78–82.
Roche, J., Fairfield, J. A., Gallagher, Á., & Bell, L. (2020). Bright club: Establishing a science comedy variety night in Ireland. *Science Communication, 42*(1), 130–140.

Roche, J., O’Neill, A., & Prendergast, M. (2016). An inquiry-based learning intervention to support post-primary engagement with science, technology, engineering and mathematics. *European Journal of Science and Mathematics Education, 4*(4), 431–439.

Sanders, M. (2008). STEM, STEM Education, STEMmania. *The Technology Teacher, 68*(4), 20–27.

Sochacka, N. W., Guyotte, K. W., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM + the Arts) education. *Journal of Engineering Education, 105*(1), 15–42.

Tran, L. U., Gupta, P., & Bader, D. (2019). Redefining professional learning for museum education. *Journal of Museum Education, 44*(2), 135–146.

Author Biographies

Joseph Roche is an assistant professor in science education at Trinity College Dublin. He leads the Science & Society research group and teaches science education and communication at undergraduate, master’s, and doctoral levels.

Laura Bell is a research coordinator at the School of Education, Trinity College Dublin. She has experience working as an editor and project manager. She is a member of the Science & Society research group at Trinity College where she manages a number of European research projects and coordinates the group’s research output and publishing strategy.

Ian Martin is a master’s student in science and health communication at Dublin City University. He has a background in genetics and cell biology and has worked in the field of pharmaceuticals as well as in science communication.

Fiona McLoone is a master’s student in science and health communication at Dublin City University. She is an intern for Science Gallery International and has an undergraduate degree in human genetics.

Amanda Mathieson is the public engagement, education, and communications manager at BiOrbic research center situated in University College Dublin. She also coordinates the STEAM Summer School in science communication.

Frida Sommer is a scientific editor and a freelance science writer. She obtained her PhD in immunology from Leiden University.