Building the Evidence Base of Blood-Based Biomarkers for Early Detection of Cancer: A Rapid Systematic Mapping Review

Lesley Uttley a,1, Becky L. Whiteman b,c,1, Helen Buckley Woods a, Susan Harnan a, Sian Taylor Philips c, Ian A. Cree d,e , For the Early Cancer Detection Consortium

a The University of Sheffield, Regent Court, 30 Regent Street, Sheffield S1 4DA, UK
b Centre for Technology Enabled Health Research, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
c Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
d Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry CV2 2DX, UK

1 Joint first authorship.

Article history:
Received 13 January 2016
Received in revised form 24 June 2016
Accepted 5 July 2016
Available online 6 July 2016

Keywords:
Cancer
Early detection
Biomarker
Assay
Diagnosis
Blood
Systematic review

Abstract

Background: The Early Cancer Detection Consortium is developing a blood-test to screen the general population for early identification of cancer, and has therefore conducted a systematic mapping review to identify blood-based biomarkers that could be used for early identification of cancer.

Methods: A mapping review with a systematic approach was performed to identify biomarkers and establish their state of development. Comprehensive searches of electronic databases Medline, Embase, CINAHL, the Cochrane library and Biosis were conducted in May 2014 to obtain relevant literature on blood-based biomarkers for cancer detection in humans. Screening of retrieved titles and abstracts was performed using an iterative sifting process known as “data mining”. All blood based biomarkers, their relevant properties and characteristics, and their corresponding references were entered into an inclusive database for further scrutiny by the Consortium, and subsequent selection of biomarkers for rapid review. This systematic review is registered with PROSPERO (no. CRD42014010827).

Findings: The searches retrieved 19,724 records after duplicate removal. The data mining approach retrieved 3990 records (i.e. 20% of the original 19,724), which were considered for inclusion. A list of 814 potential blood-based biomarkers was generated from included studies. Clinical experts scrutinised the list to identify miss-classified and duplicate markers, also volunteering the names of biomarkers that may have been missed: no new markers were identified as a result. This resulted in a final list of 788 biomarkers.

Interpretation: This study is the first to systematically and comprehensively map blood biomarkers for early detection of cancer. Use of this rapid systematic mapping approach found a broad range of relevant biomarkers allowing an evidence-based approach to identifying promising biomarkers for development of a blood-based cancer screening test in the general population.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 Introduction

Early detection of cancer results in improved survival (Etzioni et al., 2003; Wolf et al., 2010; McPhail et al., 2015). Cancers detected early require less extensive treatment and are less likely to have spread to other organs. Cancer diagnosis requires histological examination of tissue abnormalities detected by radiological, clinical or endoscopic examination of patients. Detection, as opposed to diagnosis, relies on screening a largely asymptomatic population to identify people who may be at higher risk of having cancer than others. Screening tests for cancer, or any other condition need to fulfil strict criteria to prevent the implementation of inappropriate screening, ensuring screening is cost effective and benefits patients. The criteria applied within the UK are listed at http://www.screening.nhs.uk/criteria, based on those developed by Wilson and Jungner (Cochrane & Holland, 1971; Wilson & Jungner, 1968). For early cancer detection, a blood-based screening test would have to be cost effective and demonstrate a meaningful clinical benefit which outweighs the harms associated with false positive, indeterminate results and overtreatment. This is clearly a major undertaking, and needs a multidisciplinary approach.

The Early Cancer Detection Consortium (ECDC) was established in 2012 in the United Kingdom and comprises 23 universities, their associated NHS hospitals, as well as other organisations and industry partners. The consortium was established to investigate whether a cost-effective screening test can be used in the general population to identify people...
2.2. Search Strategy

The terms re

2.1. Eligibility Criteria

To identify all relevant biomarkers, comprehensive searches and innovative methods to perform the mapping review were employed to cope with the sizeable body of relevant literature to be assessed within a short time-frame. The mapping review comprised the following stages: comprehensive literature searches; data mining techniques for rapid screening of the search records and; development of a customised database of evidence to optimise the output from the mapping review. The next stage of the programme will involve analytical and clinical validation of these biomarkers in a case control study, from which a detection algorithm will be produced and validated for possible use as a generic cancer screen. Finally, a randomised controlled trial will be required to determine the clinical and cost-effectiveness of the resulting screening strategy.

Previous reviews in this area have understandably been limited in scope, usually restricted to one biomarker or well-defined group of potential markers, due to the enormous number of publications in the field. The aim of this study was therefore to establish the full range of candidate blood-based biomarkers with potential for the early detection of cancer, and map key characteristics of the tests.

2. Methods

To identify all relevant biomarkers, comprehensive searches and innovative methods to perform the mapping review were employed to cope with the sizeable body of relevant literature to be assessed within a short time-frame. The mapping review comprised the following stages: comprehensive literature searches; data mining techniques for rapid screening of the search records and; development of a customisable database of evidence to optimise the output from the mapping review. It was not considered sufficient simply to list evidence by reference or to name the biomarker once in a spreadsheet and continue searching until another new biomarker was found. Instead it was more useful and time-efficient to maintain the corresponding citations for each biomarker and record the basic characteristics of the study at the time of screening. This enabled a basic informative profile to be built for each biomarker identified in the mapping review.

This systematic review is registered with PROSPERO (no. CRD42014010827) and the methods have been structured around the PRISMA checklist (http://www.prisma-statement.org/).

2.1. Eligibility Criteria

Eligible studies included all English language studies from the past five years that investigated blood based biomarkers in more than 50 patients, see Table 1.

2.2. Search Strategy

To identify a comprehensive body of literature from which a list of candidate biomarkers could be generated, a broad search using keywords and subject headings was undertaken. The terms reflected the concepts of ‘diagnosis’, ‘markers’, ‘blood’ and ‘screening’ (see supplementary material). The keywords and subject headings were developed using a variety of collaborative methods between Information Specialists and Systematic Reviewers at the University of Sheffield and researchers at the University of Warwick.

A scoping search was performed and assessed for appropriateness. Additionally, key journal articles and abstracts in Medline were retrieved and assessed to obtain relevant subject headings and keywords. Clinical input was sought from members of the ECDC to verify and validate the chosen keywords. For the full search, relevant free-text, keyword and thesaurus terms were combined using Boolean operators and translated into database specific syntax. Full searches were limited to English language, humans and publication dated from 2010 to May 2014. The databases searched were Medline and Medline in Process, Embase, CINAHL, Cochrane Library (including Cochrane Database of Systematic Reviews, DARE, CENTRAL, HTA, NHS EED), Science Citation Index Expanded, Conference Proceedings Citation Index - Science, Book Citation Index – Science, and Biosis Previews.

The initial search strategy was broad and inclusive. As a result, a large number of relevant records were obtained. Preliminary validation by consulting experts in the field indicated that the search was sensitive and no missing relevant literature was identified.

2.3. Sifting and Data Mining

The results of the initial searches were imported into a Reference Manager database. To identify an exhaustive list of biomarkers, retrieved records were searched iteratively within the Reference Manager database, using keywords to select potentially relevant titles. Titles and abstracts of this selection of citations were scrutinised for names and descriptions of biomarkers that met (or potentially met) the selection criteria (see Table 1). The citations were tagged to indicate that they had been viewed, to enable their exclusion from further searches. Relevant citations were exported to a Microsoft Access database which was customised to allow data extraction of relevant key information for each biomarker that was available from the corresponding study abstracts.

The data mining process within the main database included the following restrictions (see Box 1):

- To ensure a comprehensive capture of all relevant biomarkers, a further validation stage was performed. Relevant reviews identified during the search were used to check for additional biomarkers not generated by the data mining process. ECDC members were invited to recommend papers that they believed to be relevant to the mapping review.

2.4. Data Collection

Each biomarker occupied a record with a unique identifier number in a customised Microsoft Access database which stored the number of associated papers, the abstract and reference details; associated synonyms and acronyms; types of cancers and study design; keywords used to retrieve the abstract during data mining; assays used to measure the biomarker, where reported; category to which the biomarker was assigned (e.g. auto-antibodies); and the sample types used, where reported (e.g. serum, plasma or whole blood).

2.5. Results

After duplicates were removed, 19,724 records were yielded from the comprehensive searches. Using data mining, 3990 titles and abstracts were retrieved from the 19,724 records for full scrutiny. Data mining is the process of pulling a subset of records from a large, unwieldy dataset. The subset of 3990 abstracts was reviewed in order to generate a list of biomarkers which are potentially relevant to early identification of cancer using blood. A full breakdown of the keywords used and the number of corresponding records retrieved can be seen in Fig. 1. During the validation process, three relevant reviews were
Box 1

Restriction	Justification
1. Searches limited to last five years.	To ensure that the biomarkers identified and their associated evidence is current and relevant, searches were restricted to records published in the last five years (from 2010 to May 2014). Data mining involved interrogation of search results using relevant keywords (Box 2) to search within the database of total records for batches of references. Keywords were identified through consultation with ECDC members for known technologies, and for other potentially relevant terms. Keywords for similar concepts (e.g., synonyms for a specific biomarker) were grouped and searched together. Keywords expected to retrieve citations of high relevance were prioritised over those with less obvious relevance. Further keywords were identified by the review team by consideration of indexing keywords and content of studies identified as relevant. One reviewer screened the references to generate the list of biomarkers using the data mining technique. A single reviewer screening approach was mitigated for by the examination review papers and consultation with ECDC membership during a later validation phase. An inclusive approach to inclusion was adopted to minimise inappropriate exclusions. Titles without abstracts were not included. Equally abstracts of primary studies or reviews which did not name a biomarker were not included. Titles and abstracts retrieved from each batch of references associated with each keyword were assessed against the eligibility criteria in Table 1.
2. Data mining technique employed, as opposed to screening all references	Data mining utilised in the eligibility criteria in Table 1 to illustrate how these data could be used to define cancer-specific biomarkers. This resulted in a final total of 788 biomarkers, grouped into 13 initial categories (see Supplementary Tables 1–13) as follows: 1. Adhesion and matrix proteins (n = 36). The expression of molecules involved in adhesion or in formation of the connective tissue matrix around cancer cells differ from non-neoplastic cells and appear in blood. Early work included collagen breakdown products, which are produced as a result of increased collagen turnover, but are not specific to particular tumour types (Paterson et al., 1991; Berruti et al., 1995). Collagens are metabolised by matrix metalloproteinase proteins (MMPs), these in turn are antagonised by tissue inhibitors of matrix metalloproteinases (TIMPs) (Roy et al., 2009). Both MMPs and TIMPs are represented in this group. Turnover of other matrix proteins is altered in cancer: vimentin (Ludwig et al., 2009), laminin (Schechter & Lopes, 1990) and tenascin are included in the list. Cancer cells have increased motility compared with non-neoplastic cells, and show altered expression of adhesion molecules. EpCAM, e-cadherin, and e-selectin are represented as blood biomarkers in the list (Beije et al., 2015; Hauselmann & Borsig, 2014; Gires & Stockeck, 2014). Following review, a total of 18 were removed, including one duplicate entry. 2. Auto-antibodies and immunological markers (n = 59). The majority of entries in this category relate to auto-antibodies. These have been described for a wide variety of proteins within cancer, notably nuclear proteins such as PS5 and other nuclear proteins, and occur in many cancers (Middleton et al., 2014). Immunological markers of interest include CRP, usually regarded as a marker of inflammation. 3. Classical Tumour Markers. A total of 23 markers were included in the ‘classical’ tumour marker group. This includes those used widely in practice, including CEA, CA125, CA15-3, CA19-9, AFP, and PSA. Markers of lesser utility, such as LDH and HE4 were also included. It should be noted that several of these (CA15-3 and CA19-9) refer to different epitopes of the same antigen, MUC1, which also came up in our searches. 4. Coagulation & angiogenic proteins. Of the 29 proteins in this category, the majority had relatively little evidence for their utility in early cancer detection. The markers can be sub-categorised into those connected to angiogenesis (e.g. VEGF, PlGF, Angiopoietins) and coagulation (e.g. plasminogen activating proteins and kallikreins). Annexins were included in this group, though they are more often thought of as apoptosis-associated proteins.
5. Cytokines, chemokines and insulin-like growth factors. 52 biomarkers were included in this group. They include a wide range of cytokines and soluble receptors. Evidence for these is limited, but they represent an interesting group of proteins abnormal in cancer, measurement of which is likely to reflect the profound local immune suppression and systemic alteration of immunity present in cancers.

6. Circulating-free DNA. This is usually abbreviated as cfDNA, though increasingly the term circulating tumour DNA (ctDNA) is used. While DNA is clearly a single biomarker, 39 individual biomarkers representing genes or alterations of most interest were identified in this group, though in essence any mutation of gene methylation marker identified would be part of this group. While the first descriptions of cfDNA used...
| Biomarker categories | ID no | Biomarker | Acronym | Cancer |
|---|-------|---------------------------|--------------------------|------------------|
| Adhesion and matrix proteins | 7 | Clusterin | CLI | Colorectal |
| | 12 | Ep cell adhesion module (GA733-2) | EpCAM (GA733-2) | Colorectal |
| | 22 | Metalloproteinase inhibitor 1 | TIMP1; TIMP-1 | Colorectal |
| Auto-antibodies & immunological markers | 2 | Anti-p53 antibodies p53; serum p53 antibodies; p53-Ads; p-53-AAB; Anti-p53Ab | p53; serum p53 antibodies; p53-Ads; p-53-AAB; Anti-p53Ab | Colorectal |
| | 19 | Anti-heat shock protein 60 | HSP90 | Colorectal |
| | 40 | IL2RB | IL2RB | Colorectal |
| Classical tumour markers | 3 | Carcinoembryonic antigen | CEA | Colorectal |
| | 8 | Carbohydrate antigen 19-9 | CA19-9; CA199 | Colorectal |
| Coagulation and angiogenesis molecules | 2 | Vascular endothelial growth factor | VEGF | Colorectal |
| | 8 | Kininogen-1 | Kininogen-1 | Colorectal |
| | 23 | Endothelial cell-specific molecule-1 | ESM-1 | Colorectal |
| | 27 | Thrombomodulin | THBD-M | Colorectal |
| | 28 | Annexin A3 | ANXA3 | Colorectal |
| Cytokines, chemokines and insulin-like growth factors | 3 | Interleukin 8 | IL-8 | Colorectal |
| | 17 | Insulin-like growth factor-binding protein-2 | IGBP-2 | Colorectal |
| Circulating-free DNA | 3 | Adenomatous polyposis coli | APC | Colorectal |
| | 9 | Septin 9 | Septin 9 | Colorectal |
| | 17 | Methylation of CYCD2 | CYCD2 | Colorectal |
| | 18 | Methylation of HIC1 | HIC1 | Colorectal |
| | 19 | Methylation of PAX 1 | PAX 1 | Colorectal |
| | 20 | Methylation of RB1 | RB1 | Colorectal |
| | 21 | Methylation of SRBC | SRBC | Colorectal |
| | 34 | Line1 79 bp | Line1 79 bp | Colorectal |
| | 35 | Line1 300 bp | Line1 300 bp | Colorectal |
| | 36 | Alu 115 bp | Alu 115 bp | Colorectal |
| | 37 | Alu 247 bp | Alu 247 bp | Colorectal |
| Hormones | 1 | Plasma glucose levels | Plasma glucose levels | Colorectal |
| | 5 | 3-Hydroxypropionic acid and pyruvic acid | 3-Hydroxypropionic acid and pyruvic acid | Colorectal |
| | 6 | Alanine | l-Alanine, glucuronic lactone | Colorectal |
| | 7 | l-Glutamine | Glutamine | Colorectal |
| | 8 | Sarcosine | Sarcosine | Colorectal |
| | 11 | Choline | Phosphatidylcholine; (PC) (34 : 1) | Colorectal |
| | 12 | Phosphatidylinositol | Phosphatidylinositol | Colorectal |
| | 17 | l-Valine | Valine | Colorectal |
| | 18 | l-Threonine | Threonine | Colorectal |
| | 19 | 1-Deoxyglucose | 1-Deoxyglucose | Colorectal |
| | 20 | Glycine | Glycine | Colorectal |
| | 21 | MACF1 | MACF1 | Colorectal |
| | 22 | Apolipoprotein H | APOH; beta-2-glycoprotein | Colorectal |
| | 23 | Alpha-2-macroglobulin | A2M | Colorectal |
| | 24 | Immunoglobulin lambda locus | IGL@ | Colorectal |
| | 25 | Vitamin D-binding protein | VDB | Colorectal |
| | 30 | 2-Hydroxyglutarate | 2-Hydroxyglutarate | Colorectal |
| | 34 | 2-Hydroxybutyrate | 2-Hydroxybutyrate | Colorectal |
| | 35 | Aspartic acid | Aspartic acid | Colorectal |
| | 36 | Kynurenine | Kynurenine | Colorectal |
| | 37 | Cystamine | Cystamine | Colorectal |
| | 50 | Tricarboxylic acid | TCA | Colorectal |
| | 53 | 2-Aminoethanesulfonic acid | Taurine | Colorectal |
| | 54 | Lactate | Lactate | Colorectal |
| | 55 | Phosphocholine | Phosphocholine | Colorectal |
| | 56 | Proline | Proline | Colorectal |
| | 57 | Phenylalanine | Phenylalanine | Colorectal |
| | 102 | Oleamide | Oleamide | Colorectal |
| | 111 | Leukocyte methylated cytosine 5 | 5-mC | Colorectal |
| | 116 | Plasma choline-containing phospholipids | Plasma phospholipids | Colorectal |
| | 120 | Palmitic amide | Palmitic amide | Colorectal |
| | 121 | Hexadecanedic acid | Hexadecanedic acid | Colorectal |
| | 122 | Octadecanoic acid | Octadecanoic acid | Colorectal |
| | 123 | Eicosatrienoic acid | Eicosatrienoic acid | Colorectal |
| | 124 | Lysophosphatidylcholine 18:2| LPC(18:2) | Colorectal |
| | 125 | Lyso phosphatidylcholine 16:0| LPC(16:0) | Colorectal |
| MicroRNA and other RNAs | 5 | let-7g | let-7g | Colorectal |
| | 15 | miR-126 | miR-126 | Colorectal |
| | 32 | miR-135b | miR-135b | Colorectal |
| | 36 | miR-141 | miR-141 | Colorectal |
| | 38 | miR-143 | miR-143 | Colorectal |
| | 39 | miR-145 | miR-145 | Colorectal |
PCR (Lo, 2001a; Lo, 2001b), many recent papers apply multi-analyte methods, including next generation sequencing (Coco et al., 2015; Rothe et al., 2014; Couraud et al., 2014), to the study of cfDNA to detect mutations of potential diagnostic significance. Though as yet few have used this for early detection.

7. Hormones. While 13 biomarkers were assigned to this category, only Corticosteroid-binding globulin survives more stringent searches (Wu et al., 2012). Hormone levels are not thought to be reliable markers of cancer.

8. Metabolomics. A large number of metabolites are known to be altered in cancer, as the result of changes in energy, lipid, amino acid, and protein metabolism. We identified 126 individual markers, many of which were measured in concert by mass spectrometry within several studies (Cross et al., 2014; Hasim et al., 2013).

9. MicroRNA and other RNAs. There are now over 1000 human miRNA species known, a large number of these have been studied in cancer. While the majority have been looked at in tissue, there is considerable interest in their possible use as a liquid biopsy, our list of 232 biomarkers in this group reflects this. They are rarely measured alone: most use some form of array strategies for measurement, most studies concentrate on single cancer types (Fortunato et al., 2015; Rothe et al., 2014; Couraud et al., 2014), to the detriment of other analysis such as grouping by cancer type may be possible only once the utility of each biomarker has been reviewed independently.

10. Novel Proteins. A large number of protein biomarkers, often identified by mass spectroscopy or 2D gel electrophoresis, were hard to categorise. These were grouped as novel proteins and represent a diverse group of 148 biomarkers. Examples include alpha-2-heremans-schmid-glycoprotein (AHSG) (Dowling et al., 2012) and galectin (Gromov et al., 2010) in breast cancer.

11. Nuclear proteins. A group of 13 nuclear protein biomarkers were assigned to this category, though some markers within the novel protein group are of nuclear origin. Circulating nucleosomes are included in this group as they are usually detected by ELISA (Holdenrieder et al., 2014).

12. Microbial proteins (n = 15). A small number of Epstein-Barr Virus (EBV) and Human Papilloma Virus (HPV) proteins and their antibodies have been studied as early cancer biomarkers in blood, based on the detection of EBV DNA in cancer patients (Lo, 2001b). Helicobacter antibodies also fall into this group.

13. Volatile Organic Compounds (VOC). Only three biomarkers, all Helicobacter antibodies fall into this group.

14. Hormones. While 13 biomarkers were assigned to this category, only Corticosteroid-binding globulin survives more stringent searches (Wu et al., 2012). Hormone levels are not thought to be reliable markers of cancer.

15. Metabolomics. A large number of metabolites are known to be altered in cancer, as the result of changes in energy, lipid, amino acid, and protein metabolism. We identified 126 individual markers, many of which were measured in concert by mass spectrometry within several studies (Cross et al., 2014; Hasim et al., 2013).

16. MicroRNA and other RNAs. There are now over 1000 human miRNA species known, a large number of these have been studied in cancer. While the majority have been looked at in tissue, there is considerable interest in their potential diagnostic significance. Though as yet few have used this for early detection.

17. Novel Proteins. A large number of protein biomarkers, often identified by mass spectroscopy or 2D gel electrophoresis, were hard to categorise. These were grouped as novel proteins and represent a diverse group of 148 biomarkers. Examples include alpha-2-heremans-schmid-glycoprotein (AHSG) (Dowling et al., 2012) and galectin (Gromov et al., 2010) in breast cancer.

18. Nuclear proteins. A group of 13 nuclear protein biomarkers were assigned to this category, though some markers within the novel protein group are of nuclear origin. Circulating nucleosomes are included in this group as they are usually detected by ELISA (Holdenrieder et al., 2014).

19. Microbial proteins (n = 15). A small number of Epstein-Barr Virus (EBV) and Human Papilloma Virus (HPV) proteins and their antibodies have been studied as early cancer biomarkers in blood, based on the detection of EBV DNA in cancer patients (Lo, 2001b). Helicobacter antibodies also fall into this group.

20. Volatile Organic Compounds (VOC). Only three biomarkers, all small metabolites, were assigned to this category, which it could be argued forms part of the metabolite group. It is however measured differently.

3. Discussion

We systematically searched the literature from the last five years to identify potential blood biomarkers for cancer (Hanahan & Weinberg, 2011; Cree, 2011). The data mining process retrieved 3990 citations from the initial 19, 724 records, screening the abstracts of these citations identified 814 biomarkers that may be relevant. After data-cleaning, 788 biomarkers were fitted into 13 categories as described above as having potential for use as early cancer detection biomarkers present within blood samples. Biomarkers were grouped by molecular function. Further analysis such as grouping by cancer type may be possible only once the utility of each biomarker has been reviewed independently. As this is a mapping review, it is not possible to speculate the definitive clinical utility for each biomarker. Most studies reviewed tended to concentrate on single common cancers, and few papers show evidence of a systematic approach to biomarker discovery but were limited by the clinical samples and techniques of their laboratories.

The conduct of large systematic reviews is challenging, yet not all biomedical questions can be reduced to the size where standard methodologies for systematic review are thought reasonable. We have
Biomarker categories	ID no	Biomarker	Acronym	Cancer
Adhesion and matrix proteins	2	Calreticulin	CRT	Lung
	7	Clusterin	CLI	Lung
	8	Cross-linked telopeptide of type I collagen	ICTP	Lung
	9	E-cadherin	E-cadherin; soluble E-cadherin (sE-cad)	Lung
	10	E-cadherin gene CDH1	CDH1	Lung
	11	E-selectin	E-selectin; sE-selectin	Lung
	19	Matrix metalloproteinase-2	MMP2	Lung
	29	Soluble L-selectin	sL-selectin	Lung
	31	Surfactant protein-D	SP-D	Lung
Auto-antibodies & immunological markers	2	Anti-p53 antibodies	p53; serum p53 antibodies; p53-Abs; p-53-AAB; Anti-p53Ab	Lung
	3	Anti-survivin antibodies	Survivin/anti-survivin antibodies	Lung
	6	Inosine monophosphate dehydrogenase	IMPDH	Lung
	8	Immunoglobulin G	IgG	Lung
	12	Anti-livin	Livin/anti-livin antibodies	Lung
	22	C-reactive protein	CRP	Lung
	28	Anti-Krebs von Lugen-6	KL-6	Lung
	30	Anti-ubiquilin	Ubiquilin	Lung
	32	Alpha-crystallin IgG antibodies	Alpha-crystallin antibodies	Lung
	37	CD30	CD30	Lung
	38	CD63	CD63	Lung
	43	NY-ESO-1	NY-ESO-1	Lung
	44	CAGE	CAGE	Lung
	45	GBM4-5	GBM4-5	Lung
	46	SOX2	SOX2	Lung
	47	HuD	HuD	Lung
	48	IgM autoantibodies	IgM autoantibodies	Lung
	55	Anti-hydroxysteroid-(17-alpha)-dehydrogenase		Lung
	56	Anti-triiodothyronine isomerase		Lung
Classical tumour markers	2	Cancer antigen 15-3	CA15-3; CA 15-3	Lung
	3	Carcinoembryonic antigen	CEA	Lung
	6	Human epididymis protein 4	HE4	Lung
	9	Squamous cell carcinoma antigen	SCCA; SCC-ag	Lung
	11	Cytokeratin fragment 19	CYFRA 21-1	Lung
	12	Neuron Specific Enolase	NSE	Lung
	14	Progastrin-releasing peptide	proGRP	Lung
	22	HER2	HER2; AB_HER2; 36 HER2 negative; erbb-2; soluble human epidermal growth factor receptor 2 (sHER2)	Lung
Coagulation and angiogenesis molecules	1	Urokinase plasminogen activator	uPA/uPAR/suPAR	Lung
	2	Vascular endothelial growth factor	VEGF	Lung
	10	Endothelin-1	ET-1	Lung
	13	Angiopoietin-2	Angiopoietin-2; Apo-2	Lung
	14	Thrombospondin-1	THBS1	Lung
	15	Plasminogen activator inhibitor	Plasminogen activator inhibitor	Lung
	19	Endostatin	Endostatin	Lung
	21	Annexin A1	ANXA1 mNRA	Lung
	24	Cd4	Cd4	Lung
	25	Annexin A2	ANXA2	Lung
Cytokines, chemokines and insulin-like growth factors	7	Tumour necrosis factor [alpha]	TNF[alpha]; DoR3	Lung
	10	Macrophage migration inhibitory factor	MIF	Lung
	18	Hepatocyte growth factor	HGF	Lung
	19	Insulin-like growth factor binding protein	IGFBP-3	Lung
	20	Granulocyte-colony stimulating factor	G-CSF	Lung
	21	Interleukin 3	IL-3	Lung
	22	Stem cell factor	SCF	Lung
	25	C-C motif chemokine 5	C-C motif chemokine 5	Lung
	28	Interleukin-1ra	IL-1ra	Lung
	29	Monocyte chemotactic protein-1	MCP-1	Lung
	31	Midkine	MK; MKD	Lung
	38	IRF1	IRF1	Lung
	51	Macrophage inflammatory protein 4	MIP-4	Lung
	52	Megakaryocyte potentiating factor	MPF	Mesothelioma
Circulating-free DNA	1	Microsatellite alterations at FHIT	FHIT	Lung
	2	Microsatellite alterations at loci on chromosome 3	3p loci	Lung
	3	Adenomatous polyposis coli	APC	Lung
	4	CHD1	CHD1	Lung
	5	G(6)-Methyl-guanine-DNA methyltransferase	MGMT	Lung
	6	DCC	DCC	Lung
	7	RASSF1A	RASSF1A	Lung
	8	absent in melanoma 1	AIM1; beta/gamma crystallin domain-containing protein 1	Lung
Hormones	9	Progesterone receptor B	PRB	Lung
Table 3 (continued)

Biomarker categories	ID no	Biomarker	Acronym	Cancer
Metabolic markers	13	Prolactin	Prolactin	Lung
	6	Alanine	l-Alanine, glucuronic lactone	Lung
	26	Leucine	Leucine; isoleucine	Lung
	27	Histidine	Histidine	Lung
	28	Tryptophan	Tryptophan	Lung
	29	Ornithine	Ornithine	Lung
	38	Lactic acid	Lactic acid	Lung
	39	Glycecolic acid	Glycecolic acid	Lung
	40	Glycolic acid	Glycolic acid	Lung
	87	NG1A2F	NG1A2F	Lung
	89	N-glycopeptides	Glycopeptides	Mesothelioma
	102	Oleamide	Oleamide	Lung
	103	Long chain acyl carnitines	Long chain acyl carnitines	Lung
	104	Lysophosphatidylcholine 18:1	LPC(18:1)	Lung
	105	Lysophosphatidylcholine 20:4	LPC(20:4)	Lung
	106	Lysophosphatidylcholine 20:3	LPC(20:3)	Lung
	107	Lysophosphatidylcholine 22:6	LPC(22:6)	Lung
	108	Serum metabolite 16:0/1	SM(16:0/1)	Lung
	115	Ferritin	FTL	Lung
MicroRNA and other RNAs	7	miR-103	miR-103	Mesothelioma
	14	miR-1254	miR-1254	Lung
	15	miR-126	miR-126	Mesothelioma
	20	miR-128b	miR-128b	Lung
	29	miR-133a	miR-133a	Lung
	35	miR-140	miR-140	Lung
	38	miR-143	miR-143	Lung
	41	miR-146b	miR-146b	Lung
	43	miR-146b-3p	miR-146b-3p	Lung
	50	miR-155	miR-155	Lung
	53	miR-15b	miR-15b	Lung
	60	miR-181c	miR-181c	Lung
	61	miR-182	miR-182	Lung
	68	miR-18a	miR-18a	Lung
	80	miR-197	miR-197	Lung
	95	miR-21	miR-21	Lung
	98	miR-212	miR-212	Lung
	106	miR-220	miR-220	Lung
	108	miR-221	miR-221	Lung
	111	miR-23a	miR-23a	Lung
	122	miR-27b	miR-27b	Lung
	135	miR-30c-1*	miR-30c-1*	Lung
	145	miR-330	miR-330	Lung
	147	miR-331	miR-331	Lung
	152	miR-339-5p	miR-339-5p	Lung
	157	miR-345	miR-345	Lung
	158	miR-346	miR-346	Lung
	172	miR-377	miR-377	Lung
	180	miR-484	miR-484	Lung
	188	miR-548b	miR-548b	Lung
	189	miR-550	miR-550	Lung
	190	miR-566	miR-566	Lung
	192	miR-574-5p	miR-574-5p	Lung
	197	miR-616*	miR-616*	Lung
	198	miR-625*	miR-625*	Mesothelioma
	203	miR-656	miR-656	Lung
	204	miR-660	miR-660	Lung
	213	miR-876-3p	miR-876-3p	Lung
	218	miR-92	miR-92	Lung
	221	miR-939	miR-939	Lung
	224	miR-let-7	let-7	Lung
Novel proteins	3	Haptoglobin	HP	Lung
	21	CD9	CD9	Lung
	22	CD81	CD81	Lung
	39	HMGA1	HMGA1	Lung
	40	TFDP1	TFDP1	Lung
	41	SUV39H1	SUV39H1	Lung
	42	RBL1	RBL1	Lung
	43	HNRPD	HNRPD	Lung
	58	Anterior gradient 2	AGR2	Lung
	63	Pentraxin-3	PTX3	Lung
	67	Lysyl oxidase	LOX	Lung
	75	Death receptor 3	DR3	Lung
	76	Membrane-spanning 4 domain subfamily A from the multigene family	MS4A	Lung

(continued on next page)
therefore taken a data mining approach to map blood biomarkers that may be suitable for the early detection of cancer using the search tools available within the reference management software. As with any approach to reviewing literature that falls short of a full systematic review, there is a balance between rigour and expenditure of time and resources. In this case, the aim was not to identify all relevant literature (as would be the case in a systematic review of eligible sources. In this case, the aim was not to identify all relevant literature (as would be the case in a systematic review of eligible sources. In this case, the aim was not to identify all relevant literature (as would be the case in a systematic review of eligible sources. In this case, the aim was not to identify all relevant literature of this re-

Biomarker categories	ID no	Biomarker	Acronym	Cancer
of proteins involved in signal transduction of which CD20 is one member	93	Heat shock protein 90 alpha	HSP90alpha	Lung
	94	Leucine-rich repeats and immunoglobulin-like domains 3	LRIG3	Lung
	95	Pleiotrophin	Pleiotrophin	Lung
	96	Protein kinase C iota type	PRKCI	Lung
	97	Regulative Guidance Molecule C	RGM-C	Lung
	98	Stem Cell Factor soluble Receptor	SCF-sR	Lung
	99	YES	YES	Lung
Nuclear proteins				
116	HMGB1	HMGB1	Lung	
119	Carbohydrate antigen 50	CA50	Lung	
125	Cytokeratin fragment 21.1	Cytokeratin fragment 21.1	Lung	
126	Serum amyloid A	SAA	Lung	
128	Carbohydrate antigen 211	CA211	Lung	
146	Endoplasmic reticulum protein-29	ERP29	Lung	
Microbial proteins	3	Isocitrate dehydrogenase 1	IDH1	Lung
	4	p53 messenger RNA	p53 mRNA	Lung
	10	E2F6	E2F6	Lung
	13	Variant Ciz1	Ciz1	Lung
Volatile organic compounds	6	Epstein-Barr virus-induced gene 3	EBV3	Lung
		Nil	Nil	

Table 3 (continued)

and this is a major concern for those interested in early detection: there is no guarantee that biomarkers identified in patients with advanced disease are relevant to those with early disease. There is certainly a need to improve the quality of papers on early detection using tools such as those available from the EQUATOR network (http://www.equator-network.org).

Our intention is to use the list of biomarkers identified by this review to generate a set of biomarkers that can be subjected to analytical validation within pathology blood science laboratories, then clinically validated within a large, prospective, multicentre clinical study to develop a generic cancer testing strategy for subsequent clinical trial. The primary aim is to produce a screening test strategy for cancer that does more good than harm at reasonable cost. Good includes decreased morbidity and mortality from early detection, diagnosis and treatment of cancers, while harm is usually regarded as significant risk of overdiagnosis, and consequent overtreatment. The entire strategy needs to be cost effective to achieve eventual approval from the UK National Screening Committee (NSC), which defines 22 criteria according to the condition, the test, the treatment and the screening programme (http://www.screening.nhs.uk/criteria) based on those developed by Wilson & Jungner (1968).

Within the list, there are some interesting results. Firstly, it is clear that current tumour markers, which considered in isolation, few would regard as sensible diagnostic tests in patients with a possible diagnosis of cancer, are collectively quite good at detection if used concurrently. The bulk of the work on this comes from one group in Barcelona (Molina et al., 2012), with other important contributions from others (Barak et al., 2010). The validation of biomarkers needs a point of reference, for direct comparison and it is clear that tumour marker lists used by Molina et al. (2012) represent such a standard. We would encourage those active in the field to use this list as their comparator for future work to allow comparison between studies.

The biomarkers can be grouped by the technology used for their detection. Taken to its logical conclusion, this results in a reduction of the thirteen groups above to seven groups as outlined in Box 3.

The ability of protein measurement to be multiplexed by immunoasay arrays or mass spectroscopy means that all proteins, including auto-antibodies, can be measured simultaneously. Simple panels with few analyses tend to be less expensive and have greater potential for high throughput. DNA and RNA can be detected rapidly and inexpensively by polymerase chain reaction (PCR) technologies, and there is evidence from multiple studies that the level of cDNA has potential as a generic cancer marker. However, PCR is limited in the number of targets that
can be detected at one time, and by the small amount of material present in patients with small tumours, which does not permit large numbers of tests to be performed without recourse to sequencing or large panels. Sequencing has the potential to detect large numbers of mutations, adding specificity, and could have utility in reflex testing. It is currently an expensive option, but costs of sequencing are decreasing rapidly, while technologies available are improving their capability at almost the same pace.

Metabolomics is of considerable interest, with a large literature to support it. While larger molecules require mass spectroscopy to measure their presence, smaller molecules can be detected in gas phase in the head space of blood samples using inexpensive sensor technologies. We believe that this relatively new option may have considerable potential to act as a generic test. There are a number of other tests that do not fit immediately into one of these seven categories: nucleosome assays are one such example, and are being used as potential screening tests.

The concept of combining high sensitivity/low specificity tests with reflex low sensitivity/high specificity tests to detect cancers early (Cree, 2011), seems feasible from the results we have obtained. We need to combine biomarkers with high sensitivity for screening the general population with biomarkers of high specificity to determine the relevance of the screening results. The next task is clearly to try this in practice to determine its real potential for early cancer detection, and to determine the best analytical methods to process the data for individual patients. Our preferred strategy is to examine the biomarkers in each category in greater detail, and undertake direct comparison of these biomarkers in a large cohort of samples following independent analytical validation. In our view, the same caveats around retrospective studies apply to biomarker validation as they do to drug trials: the potential for bias from sample collections is high and large prospective studies are necessary. This review is therefore the first step in an ambitious programme of work which will inevitably require careful evaluation of clinical, cost and ethical implications at each stage. However, there is no doubt that if such an approach to early cancer detection proved successful, it could be invaluable.

4. Conclusion

This ground-breaking study is the first to systematically and comprehensively map blood biomarkers for early detection of cancer and will inform an innovative research project to identify, validate and implement new generic blood screening tests for early cancer detection in the general population.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jbiomedi.2016.07.004.

Authors Contributions

IC, SH, BW, and STP designed the study. Searches were performed HBW. LU performed the mapping review with input from the ECDC. The draft manuscript was prepared by LU, IC and BW. All authors agreed the final version.

Declaration of Competing Interests

The authors LU, IC, SH, STP, BW, HBW have no conflicts of interest to declare. The ECDC has grant funding for early cancer biomarker research from Cancer Research UK and involves the following companies: GE Healthcare, Life Technologies, Abcodia, Nalia, and Perkin-Elmer. Individual ECDC members have declared their interests to the ECDC secretariat.

Funding

This work was conducted on behalf of the Early Cancer Detection Consortium, within the programme of work for work packages 1 & 2.

The Early Cancer Detection Consortium is funded by Cancer Research UK under grant number: C50028/A18554.

References

Barak, V., Holdenrieder, S., Nisman, B., Stieber, P., 2010. Relevance of circulating biomarkers for the therapy monitoring and follow-up investigations in patients with non-small cell lung cancer. Cancer Biomark. 6 (3–4), 191–196.

Beije, N., Jager, A., Sleijfer, S., 2015. Circulating tumor cell enumeration by the CellSearch system: the clinician’s guide to breast cancer treatment? Cancer Treat. Rev. 41 (2), 148–156.

Berruti, A., Torta, M., Piovesan, A., et al., 1995. Biochemical picture of bone metabolism in breast cancer patients with bone metastases. Anticancer Res. 15 (6B), 2871–2875.

Clancy, C., Joyce, M.R., Kerin, M.J., 2014. The use of circulating microRNAs as diagnostic biomarkers in colorectal cancer. Cancer Biomark.

Cochrane, A.L., Holland, W.W., 1971. Validation of screening procedures. Br. Med. Bull. 27 (1), 3–8.

Coco, S., Truin, A., Vanni, I., et al., 2015. Next generation sequencing in non-small cell lung cancer: new avenues toward the personalized medicine. Curr. Drug Targets 16 (1), 47–59.

Couraud, S., Vaca-Paniagua, F., Villar, S., et al., 2014. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/ICT-1002. Clin. Cancer Res. 20 (17), 4613–4624.

Cree, I.A., 2011. Improved blood tests for cancer screening: general or specific? BMC Cancer 11, 499.

Cross, A.J., Moore, S.C., Boca, S., et al., 2014. A prospective study of serum metabolites and colorectal cancer risk. Cancer 120 (19), 3049–3057.

Dowling, P., Clarke, C., Hennessy, K., et al., 2012. Analysis of acute-phase proteins, AHSG, C3, CL1, HP and SAA, reveals distinctive expression patterns associated with breast, colorectal and lung cancer. Int. J. Cancer 131 (4), 911–923.

Etzioni, R., Urban, N., Ramsey, S., et al., 2003. The case for early detection. Nat. Rev. Cancer 3 (4), 243–252.

Fortunato, O., Boeri, M., Verri, C., et al., 2014. Assessment of circulating microRNAs in plasma of lung cancer patients. Molecules 19 (3), 3038–3054.

Gires, O., Stoecklein, N.H., 2014. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell. Mol. Life Sci. 71 (22), 4393–4402.

Gromov, P., Gromova, I., Bunkenborg, J., et al., 2010. Up-regulated proteins in the fluid bathing the tumour cell microenvironment as potential serological markers for early detection of cancer of the breast. Mol. Oncol. 4 (1), 65–89.

Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144 (5), 646–674.

Hasim, A., Ali, H., Maimaiti, A., Abdurahman, A., Uhpur, H., 2013. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep. 40 (10), 5853–5859.

Hauselmann, I., Borsig, L., 2014. Altered tumor-cell glycosylation promotes metastasis. Front Oncol. 4, 28.

Holdenrieder, S., Dharmar, Y., Standop, J., et al., 2014. Novel serum nucleosomics biomarkers for the detection of colorectal cancer. Anticancer Res. 34 (5), 2357–2362.

Lo, Y.M., 2000a. Circulating nucleic acids in plasma and serum: an overview. Ann. N.Y. Acad. Sci. 945, 1–7.

Lo, Y.M., 2000b. Quantitative analysis of Epstein-Barr virus DNA in plasma and serum: applications to tumor detection and monitoring. Ann. N. Y. Acad. Sci. 945, 68–72.

Ludwig, N., Keller, A., Heisel, S., et al., 2009. Improving seroreactivity-based detection of glioma. Neoplasia 11 (12), 1383–1389.

McPhail, S., Johnson, S., Greenberg, D., Peake, M., Rous, B., 2015. Stage at diagnosis and early mortality from cancer in England. Br. J. Cancer 112 (Suppl. 1), S308–S315.

Middelton, C.H., Irving, W., Robertson, J.F., et al., 2014. Serum autoantibody measurement for the detection of hepatocellular carcinoma. PLoS One 9 (8), e103867.

Molina, R., Bosch, X., Auge, J.M., et al., 2012. Utility of serum tumor markers as an aid in the differential diagnosis of patients with clinical suspicion of cancer and in patients with cancer of unknown primary site. Tumour Biol. 33 (2), 463–474.

Paterson, C.R., Roberts, B., Rutland, J.M., 1998. Principles and practice of mass screening for disease. Br. Med. J. 317 (7161), 1491–1497.

Rothe, F., Aulbach, J., Römbke, H., et al., 2014. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann. Oncol. 25 (10), 1959–1965.

Roy, R., Yang, J., Moses, M.A., 2009. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 27 (31), 5287–5297.

Schechter, G.B., Lopes, J.D., 1990. Two-site immunoassays for the measurement of serum laminin: correlation with breast cancer staging and presence of auto-antibodies. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Med. Biol. Soc. Bras. de Biofisica 23 (2), 1–44.

Wilson, J.M., Jungner, Y.G., 1968. Principles and practice of mass screening for disease. Bol. Of Sanit. Panam. Pan Am. Sanit. Bul. 65 (4), 831–393.

Wolf, A.M., Wender, R.C., Etzioni, R.R., et al., 2010. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin. 60 (2), 70–98.

Wu, J., Xie, X., Liu, Y., et al., 2012. Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J. Proteome Res. 11 (9), 4541–4552.