Environment Optimization for Multi-Agent Navigation

Zhan Gao and Amanda Prorok

Abstract—Traditional approaches to the design of multi-agent navigation algorithms consider the environment as a fixed constraint, despite the obvious influence of spatial constraints on agents’ performance. Yet hand-designing improved environment layouts and structures is inefficient and potentially expensive. The goal of this paper is to consider the environment as a decision variable in a system-level optimization problem, where both agent performance and environment cost can be accounted for. We begin by proposing a novel environment optimization problem. We show, through formal proofs, under which conditions the environment can change while guaranteeing completeness (i.e., all agents reach their navigation goals). Our solution leverages a model-free reinforcement learning approach. In order to accommodate a broad range of implementation scenarios, we include both online and offline optimization, and both discrete and continuous environment representations. Numerical results corroborate our theoretical findings and validate our approach.

I. INTRODUCTION

Multi-agent systems present an attractive solution to spatially distributed tasks, wherein motion planning among moving agents and obstacles is one of the central problems. To date, the primal focus in multi-agent motion planning has been on developing effective, safe, and near-optimal navigation algorithms [1]–[5]. These algorithms consider the agents’ environment as a fixed constraint, where structures and obstacles must be circumnavigated; in this process, mobile agents engage in negotiations with one another for right-of-way, driven by local incentives to minimize individual delays. However, environmental constraints may result in deadlocks, live-locks and prioritization conflicts, even for state-of-the-art algorithms [6]. These insights highlight the impact of the environment on multi-agent navigation.

Not all environments elicit the same kinds of agent behaviors and individual navigation algorithms are susceptible to environmental artefacts; undesirable environments can lead to irreolution in path planning [7]. To deal with such bottlenecks, spatial structures (e.g., intersections, roundabouts) and markings (e.g., lanes) are developed to facilitate path de-confliction [8] but these concepts are based on legacy mobility paradigms, which ignore inter-agent communication, cooperation, and systems-level optimization. While it is possible to deal with the circumvention of dead-locks and live-locks through hand-designed environment templates, such hand-designing process is inefficient [9].

Reconfigurable, automated environments are emerging as a new trend [10]–[12]. In tandem with that enabling technology, the goal of this paper is to consider the environment as a variable in pursuit of the agents’ incentives. We propose the problem of systematically optimizing an environment to improve the performance of a given multi-agent system, an example of which is given in Fig. 1. More in detail, our contributions are as follows:

(i) We first define the problem of environment optimization. We then develop two solution variants, i.e., the offline environment optimization and the online environment optimization.

(ii) We analyze the completeness of multi-agent navigation with environment optimization, and identify the conditions under which all agents are guaranteed to reach their navigation goals.

(iii) We develop a reinforcement learning-based method to solve the environment optimization problem, and integrate two variant information processing architectures (i.e., CNNs, GNNs) as a function of the problem setting. The proposed method is able to generalize beyond training instances, adapts to various optimization objectives, and allows for decentralized implementation.

Related work. The role of the environment on motion planning has been explored by a handful of works [13]–[17]. The works in [13], [14] emphasize the existence of congestion and deadlocks in undesirable environments and develop trajectory planning methods to escape from potential deadlocks. The authors in [15] define the concept of “well-formed” environments, in which the navigation tasks of all agents can be carried out successfully without collisions nor deadlocks. In [16], Wu et al. show that the shape of the environment leads to distinct path prospects for different agents, and that this information can be shared among the agents to optimize and coordinate their mobility. Gur et al. in [17] generate adversarial environments and account for the latter information to develop resilient navigation algorithms. However, none of these works consider optimizing the environment to improve system-wide navigation performance.

The problem of environment optimization is reminiscent of robot co-design [18]–[20], wherein sensing, computation, and control are jointly optimized. While this domain of
robotics is robot-centric (i.e., does not consider the environment as an optimization criteria), there are a few works that, similar to our approach, use reinforcement learning to co-optimize objectives [21–23]. A more closely related idea is exploited in [7], wherein the environment is adversarially optimized to fail navigation tasks of state-of-the-art multi-agent systems. It conducts worst-case analysis to shed light on directions in which more robust systems can be developed. On the contrary, we optimize the environment to facilitate multi-agent navigation tasks.

II. PROBLEM DEFINITION

Let \(\mathcal{E} \) be a 2-D environment described by a starting region \(S \), a destination region \(D \) and an obstacle region \(\Delta \) without overlap, i.e., \(S \cap D = S \cap \Delta = D \cap \Delta = \emptyset \). Consider a multi-agent system with a set of agents \(A = \{A_1, \ldots, A_n\} \) distributed in \(\mathcal{E} \). The agent bodies are contained within circles of radius \(r_i \). Agents are initialized at positions \(S = \{s_1, \ldots, s_n\} \) in \(S \) and employ a given trajectory planner \(\pi_a \) to move towards destinations \(D = \{d_1, \ldots, d_n\} \) in \(D \).

Existing literature focuses on developing novel trajectory planners to improve navigation performance. However, the latter depends not only on the implemented planner but also on the surrounding environment \(\mathcal{E} \). A “well-formed” environment with an appropriate obstacle region yields good performance for a simple planner, while a “poorly-formed” environment may result in a poor performance even for an advanced planner. This insight implies an important role played by the environment in multi-agent navigation, and motivates the problem of environment optimization.

Problem 1 (Environment Optimization): Given an environment with an initial obstacle region and a multi-agent system with \(n \) agents that are required to reach \(n \) destinations (in a labeled navigation problem), find a policy that optimizes the obstacle region to improve agents’ path efficiency while guaranteeing that they reach their destinations.

In Section III, we analyze the completeness of multi-agent navigation with environment optimization. In Section IV, we formulate Problem 1 mathematically and leverage reinforcement learning for solutions. Lastly, we present numerical simulations to evaluate the approach in Section IV.

III. COMPLETENESS ANALYSIS

The multi-agent system may fail to find collision-free (and deadlock-free) trajectories in an environment with an unsatisfactory obstacle region. Environment optimization overcomes this issue by optimizing the layout and guaranteeing navigation success under a mild condition. We propose two variants: the offline and the online environment optimization.

A. Offline Environment Optimization

Offline environment optimization optimizes the obstacle region \(\Delta \) based on the starting region \(S \), the destination region \(D \) and completes the optimization before the agents start to move. The optimized environment remains fixed during agent movement. We introduce some necessary notation for theoretical analysis. Let \(\partial S, \partial D, \partial \Delta \) be the boundaries of the regions \(S, D, \Delta \) and \(B(s, r) \) be a closed disk centered at position \(s \) with a radius \(r \). We can represent each agent \(A_i \) as the disk \(B(s_i, r_i) \) where \(s_i \) is the central position of the agent. Define \(d(s_i, s_j) \) as the closest distance between agents \(A_i, A_j \), i.e., \(d(s_i, s_j) = \min |z_i - z_j| \) for any \(z_i \in B(s_i, r_i) \) and \(z_j \in B(s_j, r_j) \), and \(d(s_i, \partial S) \) the closest distance between agent \(A_i \) and the region boundary \(\partial S \), i.e., \(d(s_i, \partial S) = \min |z_i - z_S| \) for any \(z_i \in B(s_i, r_i) \) and \(z_S \in \partial S \). Similar definitions apply for \(\partial D \) and \(\partial \Delta \).

Our analysis assumes the following setup. The initial positions \(\{s_i\}_{i=1}^n \) in \(S \) and the destinations \(\{d_i\}_{i=1}^n \) in \(D \) are distributed in a way such that the distance between either two agents or the agent and the region boundary is larger than the maximal agent size, i.e., \(d(s_i, s_j) \geq 2r, d(s_i, \partial S) \geq 2r \) and \(d(d_i, d_j) \geq 2r, d(d_i, \partial D) \geq 2r \) for \(i, j = 1, \ldots, n \) with \(r = \max_{i=1, \ldots, n} r_i \) the maximal agent radius. The obstacle region \(\Delta \) can be controlled / changed but its area \(|\Delta| \) is constant, i.e., \(|\Delta| = |\Delta| \) where \(\Delta \) is the changed obstacle region. That is, the obstacle region (or any part of it) cannot be removed from the environment. Each agent employs a given trajectory planner \(\pi_a \) and any trajectory generated for an agent will be followed precisely. Denote by \(p(t) : [0, \infty) \to \mathbb{R}^2 \) the trajectory representing the central position movement of an agent. The trajectory \(p_i(t) \) of agent \(A_i \) is collision-free w.r.t. \(\Delta \) if \(d(p_i(t), \partial \Delta) \geq r_i \) for all \(t \geq 0 \). The trajectories \(p_i, p_j \) of two agents \(A_i, A_j \) are collision-free if \(|p_i(t) - p_j(t)| \leq r_i + r_j \) for all \(t \geq 0 \). With these preliminaries, we show the completeness in the following.

Theorem 1: Consider the multi-agent system with \(n \) agents in the environment \(\mathcal{E} \) with starting, destination and obstacle regions \(S, D, \Delta \). Let \(d_{\text{max}} \) be the maximal distance between \(S \) and \(D \), i.e., \(d_{\text{max}} = \max_{i \in S, j \in D} |z_S - z_D| / 2 \) for any \(z_S \in S, z_D \in D \). Then, if \(\mathcal{E} \) satisfies

\[
|\mathcal{E} \setminus (\Delta \cup S \cup D)| \geq 2n d_{\text{max}} \hat{r}
\]

where \(\hat{r} = \max_{i=1, \ldots, n} r_i \) is the maximal radius of \(n \) agents and \(\cdot \) represents the region area, the environment optimization guarantees that the navigation tasks of all agents can be carried out successfully without collision.

Proof: We prove the theorem as follows. First, we optimize \(\Delta \) such that the environment is “well-formed”, i.e., any initial position in \(S \) and destination in \(D \) can be connected by a collision-free path. Then, we show the optimized environment guarantees the success of all navigation tasks.

Obstacle region optimization. We first optimize \(\Delta \) based on \(S, D \) to make the environment “well-formed”. To do so, we handle \(S, D \) and the remaining space \(\mathcal{E} \setminus (S \cup D) \) separately.

(i) The initial positions \(\{s_i\}_{i=1}^n \) in \(S \) are distributed such that \(d(s_i, s_j) \geq 2\hat{r} \) and \(d(s_i, \partial S) \geq 2\hat{r} \). Thus, for any \(s_i \), there exists a boundary point \(\partial s_i \in \partial S \) and a path \(p_{s_i}^{\text{sa}} \) connecting \(s_i \) and \(\partial s_i \) that is collision-free w.r.t. the other initial positions. A similar result applies to the destinations \(\{d_i\}_{i=1}^n \) in \(D \), i.e., for any \(d_i \), there exists a boundary point \(\partial d_i \in \partial D \) and a path \(p_{d_i}^{\text{sd}} \) connecting \(\partial d_i \) and \(d_i \) that is collision-free w.r.t. the other destinations.

(ii) Consider \(\partial s_i \) and \(\partial d_i \) for agent \(A_i \). The shortest path \(p_{s_i}^{\text{sd}} \) that connects them is the straight path, the area of which is bounded as \(|p_{s_i}^{\text{sd}}| \leq 2d_{\text{max}} \hat{r} \) because \(d_{\text{max}} \) is the maximal distance between \(S \) and \(D \). From \(|\mathcal{E} \setminus (\Delta \cup S \cup D)| \geq 2n d_{\text{max}} \hat{r} \) in (1), the area of the obstacle-free space in \(\mathcal{E} \setminus (S \cup D) \) is larger than \(2n d_{\text{max}} \hat{r} \). Thus, we can always optimize \(\Delta \) to \(\Delta^* \) such that the path \(p_{s_i}^{\text{sd}} \) is obstacle-free. If \(p_{s_i}^{\text{sd}} \) dose
not overlap with \(S \) and \(D \), we can connect \(\partial s_i \) and \(\partial d_i \) with \(p_{\partial d_i} \) directly. If \(p_{\partial d_i} \) passes through \(K \) times, we can connect \(\partial s_i \) and \(\partial d_i \) directly. If \(p_{\partial d_i} \) passes through \(K \) times, we have \(\sum_{i=1}^{n} |p(1)_{k}| \leq 2n \hat{r} \| \hat{v} \| 2 \delta t \). From (3), \(|S(1)| = |S| \), \(|D(1)| = |D| \) and \(|\tilde{\Delta}| = |\Delta| \), we have

\[
\Delta \geq 2n \hat{r} \| \hat{v} \| 2 \delta t.
\]

where \(\| \hat{v} \|_2 = \max_{i \in [0:T]} \max_{i=1,...,n} \| v_i(t) \|_2 \) is the maximal norm of the velocities and \(\hat{r} = \max_{i=1,...,n} r_i \) is the maximal agent radius. The navigation tasks of all agents can be carried out successfully without collision.

Proof: We prove the theorem as follows. First, we slice the navigation procedure into \(H \) time frames. Then, we optimize the obstacle region based on the agent positions in each frame, and show the completeness of individual frames. Lastly, we show the completeness of the entire multi-agent navigation solution by concatenating individual frames, and complete the proof by considering the whole process when the number of frames tends to infinity, i.e., \(H \to \infty \).

Time slicing. Let \(T \) be the maximal operation time of trajectories \(\{p_i\}_{i=1}^{n} \) and \(\{(h-1)T/H, hT/H\}^H_{h=0} \) the time frames. This yields intermediate positions \(\{p_i(hT/H)\}_{i=0}^{H} \) with \(p_i(0) = s_i \) and \(p_i(T) = d_i \), for \(i = 1,...,n \). We can re-formulate the navigation task into \(H \) sub-navigation tasks, where the \(h \)th sub-task of agent \(A_i \) is from \(p_i((h-1)T/H) \) to \(p_i(hT/H) \) and the operation time of the sub-navigation task is \(\delta t = T/H \). In each frame, we first change the obstacle region based on the corresponding sub-navigation task and then navigate the agents until the next frame.

Obstacle region optimization. We consider each sub-navigation task separately and start from the first one. Assume the obstacle region \(\Delta \) satisfies

\[
|\mathcal{E} \setminus (\Delta \cup S \cup D)| > 2n \hat{r} \| \hat{v} \|_2 \delta t.
\]

For the 1st sub-navigation task, the starting region is \(S^{(1)} = \bigcup_{i=1,...,n} B(p_i(0), r_i) \) and the destination region is \(D^{(1)} = \bigcup_{i=1,...,n} B(p_i(T/H), r_i) \). We optimize \(\Delta \) based on \(S^{(1)} \), \(D^{(1)} \) and show the completeness of the 1st sub-navigation task, which consists of two steps. First, we change \(\Delta \) to \(\hat{\Delta} \) such that \(|\Delta| = |\hat{\Delta}| \) and \(\hat{\Delta} \subset \mathcal{E} \setminus (S^{(1)} \cup D^{(1)}) \). This can be completed as follows. From the condition \(\Delta \subset E \setminus (S \cup D) \) and \(S^{(1)} = S, \) there is no overlap between \(\Delta \) and \(S^{(1)} \). For any overlap region \(\Delta \cap D^{(1)} \), we can change it to the obstacle-free region in \(D \) because \(\Delta \subset E \setminus (S \cup D) \) and \(|D^{(1)}| = |D| \), and keep the other region in \(\Delta \) unchanged. The resulting \(\Delta \) satisfies \(|\Delta| = |\hat{\Delta}| \) and \(\hat{\Delta} \subset E \setminus (S^{(1)} \cup D^{(1)}) \). The changed area from \(\Delta \) to \(\hat{\Delta} \) is bounded by \(|\Delta(1)| \leq n \pi \hat{r}^2 \). Second, we change \(\hat{\Delta} \) to \(\Delta^{(1)} \) such that the navigation is “well-formed” w.r.t. the 1st sub-navigation task. The initial position \(p_i(0) \) and the destination \(p_i(H/T) \) can be connected by a path \(p_i^{(1)} \) that follows the trajectory \(p_i \). Since \(\| \hat{v} \|_2 \) is the maximal speed and \(\delta t \) is the operation time, the area of \(p_i^{(1)} \) is bounded by \(2 \hat{r} \| \hat{v} \|_2 \delta t \). Since this holds for all \(i = 1,...,n \), we have

\[
\sum_{i=1}^{n} |p_i^{(1)}| \leq 2n \hat{r} \| \hat{v} \|_2 \delta t.
\]

From (3), \(|S^{(1)}| = |S| \), \(|D^{(1)}| = |D| \) and \(|\Delta| = |\hat{\Delta}| \), we have

formally shows the completeness.

Theorem 2: Consider the multi-agent system with \(n \) agents \(\{A_i\}_{i=1}^{n} \). For the environment \(E \) without obstacles, i.e., \(\Delta = \emptyset \), let \(\{p_i(t)\}_{i=1}^{n} \) be \(n \) collision-free trajectories of \(\{A_i\}_{i=1}^{n} \), generated by the given trajectory planner \(\pi_a \) and \(\{v_i(t)\}_{i=1}^{n} \) be the respective velocities along these trajectories. For the environment \(E \) with an obstacle region \(\Delta \subset E \setminus (S \cup D) \) and \(E \setminus (\Delta \cup S \cup D) \neq \emptyset \), if the capacity of the online environment optimization satisfies

\[
\Delta \geq 2n \hat{r} \| \hat{v} \| 2 \delta t.
\]
This implies the obstacle-free area in E is larger than the area of n paths $\{p_i^{(1)}\}_{i=1}^n$.

\[|E \setminus (\Delta \cup S(1) \cup D(1))| > 2n_\delta \|v\|_2 \delta t. \]
(4)

From (4), $|\Delta(1)| = |\Delta|$ and $\Delta(1) \in E \setminus (S(1) \cup D(1))$, the optimized $\Delta(1)$ satisfies $|E \setminus (\Delta(1) \cup S(1) \cup D(1))| \geq 2n_\delta \|v\|_2 \delta t$, which recovers the assumption in (3). Therefore, we can repeat the above process iteratively and guarantee the success of H sub-navigation tasks. The entire navigation task is guaranteed success by concatenating these sub-tasks.

Completeness. When $H \to \infty$, we have $\delta t \to 0$. Since the environment optimization time is same as the agent operation time at each sub-navigation task, the obstacle region and the agents can be considered taking actions simultaneously when $\delta t \to 0$. The initial environment condition in (3) becomes

\[\lim_{\delta t \to 0} |E \setminus (\Delta \cup S \cup D)| > 2n_\delta \|v\|_2 \delta t \to 0. \]
(6)

which is satisfied from the condition $E \setminus (\Delta \cup S \cup D) \neq \emptyset$. The changed area of the obstacle region in (5) becomes

\[\lim_{\delta t \to 0} \frac{|(\Delta(h) \cup \Delta(h+1)) \setminus (\Delta(h) \cap \Delta(h+1))|}{2\delta t} \leq 2n_\delta \|v\|_2. \]
(7)

That is, if the capacity of the online environment optimization is higher than $2n_\delta \|v\|_2$, i.e., $\Delta \geq 2n_\delta \|v\|_2$, the navigation task can be carried out successfully without collision, which completes the proof.

Theorem 2 states online environment optimization guarantees the success of all navigation tasks as well as its offline counterpart. The result is established under a mild condition on the changing rate of the obstacle region [cf. (2)] rather than the initial obstacle-free area [cf. (1)]. This stems from the fact that online environment optimization changes the obstacle region while the agents are moving, which improves navigation performance only if timely actions can be taken based on instantaneous system states. The completeness analysis in Theorems 1-2 provide theoretical guarantees, demonstrating the applicability of the proposed idea.\(^1\)

IV. METHODOLOGY

In this section, we formulate Problem 1 mathematically and solve the latter by leveraging reinforcement learning. Specifically, consider the obstacle region Δ comprising m obstacles $\mathcal{O} = \{O_1, \ldots, O_m\}$, which can be of any shape and are located at positions $\mathbf{O} = \{\mathbf{o}_1, \ldots, \mathbf{o}_m\}$. These obstacles can change positions to improve system performance (i.e., efficiency of agent navigation and cost of obstacle motion). Denote by $\mathbf{X}_o = [\mathbf{x}_{o1}, \ldots, \mathbf{x}_{om}]$ the obstacle states, $\mathbf{U}_a = [\mathbf{u}_{a1}, \ldots, \mathbf{u}_{am}]$ the obstacle actions, $\mathbf{X}_a = [\mathbf{x}_{a1}, \ldots, \mathbf{x}_{am}]$ the agent states and $\mathbf{U}_a = [\mathbf{u}_{a1}, \ldots, \mathbf{u}_{am}]$ the agent actions. Let $\pi_o(\mathbf{U}_o | \mathbf{X}_o, \mathbf{X}_a)$ be a policy that controls the obstacles, which is a distribution of \mathbf{U}_o conditioned on $\mathbf{X}_o, \mathbf{X}_a$. The objective function $f(S, D, \pi_o(\mathbf{O}, \mathbf{a}))$ measures the multi-agent navigation performance, while the cost function $g_i(\mathbf{O}, \mathbf{a}_i | \mathbf{S}, \mathbf{D}, \pi_o)$ indicates environment restrictions on the obstacles. The goal is to find a policy π_o that maximizes the system performance $f(S, D, \pi_o(\mathbf{O}, \mathbf{a}))$ regularized by the obstacle costs $g_i(\mathbf{O}, \mathbf{a}_i | \mathbf{S}, \mathbf{D}, \pi_o)$. With the obstacle action space U_o, we formulate Problem 1 as

\[\arg\max_{\pi_o} f(S, D, \pi_o(\mathbf{O}, \mathbf{a})) - \sum_{i=1}^m \beta_i g_i(\mathbf{O}, \mathbf{a}_i | \mathbf{S}, \mathbf{D}, \pi_o) \]
(8)

s.t. $\pi_o(\mathbf{U}_o | \mathbf{X}_o, \mathbf{X}_a) \in U_o$.

Solving (8) is difficult and there are mainly three challenges:

(i) The objective function $f(S, D, \pi_o(\mathbf{O}, \mathbf{a}))$ and the cost functions $g_i(\mathbf{O}, \mathbf{a}_i | \mathbf{S}, \mathbf{D}, \pi_o)$ may be complex, inaccurate or unknown, precluding the application of conventional model-based methods and leading to poor performance of heuristic methods.

(ii) The policy $\pi_o(\mathbf{U}_o | \mathbf{X}_o, \mathbf{X}_a)$ is an arbitrary mapping from the state space to the action space, which can take any function form and is infinitely dimensional.

(iii) The obstacle actions can be discrete or continuous and the action space U_o can be non-convex, resulting in complicated constraints on the feasible solution.

Due to the aforementioned challenges, we develop a model-free policy gradient-based reinforcement learning (RL) method to solve this problem.

A. Reinforcement Learning

We re-formulate problem (8) within an RL setting, and begin by defining a Markov decision process. At each time t, the obstacles \mathcal{O} and agents A observe the states $\mathbf{X}_o^{(t)}$, $\mathbf{X}_a^{(t)}$ and take the actions $\mathbf{U}_o^{(t)}$, $\mathbf{U}_a^{(t)}$ with the policy π_o and trajectory planner π_o. The actions $\mathbf{U}_o^{(t)}$, $\mathbf{U}_a^{(t)}$ amend the states $\mathbf{X}_o^{(t)}$, $\mathbf{X}_a^{(t)}$ based on the transition probability function $P(\mathbf{X}_o^{(t+1)} | \mathbf{X}_o^{(t)}, \mathbf{X}_a^{(t)}, \mathbf{U}_o^{(t)}, \mathbf{U}_a^{(t)})$, which is a distribution of the states conditioned on the previous states and actions. Let $r_o(\mathbf{X}_o^{(t)}, \mathbf{X}_a^{(t)})$ be the reward function of agent A_o, which represents instantaneous navigation performance at time t. The reward function of obstacle O_j comprises two components: (i) the multi-agent system reward and (ii) the obstacle individual reward, i.e.,

\[r_{oj} = \frac{1}{n} \sum_{i=1}^n r_{ai} + \beta_j r_{j,local}, \]
(9)

where r_{ai}, $r_{j,local}$ are concise notations of $r_{ai}(\mathbf{X}_o, \mathbf{X}_a)$, $r_{j,local}(\mathbf{X}_o, \mathbf{X}_a)$ and β_j is the regularization parameter. The first term is the team reward that represents the multi-agent system performance and is shared across all obstacles. The second term is the individual reward that corresponds to environment restrictions on obstacle O_j and may be different among obstacles, such as limitations of moving velocity and distance. This reward definition is novel that differs from common RL scenarios. In particular, the obstacle reward is a combination of a global reward with a local reward. The
former is the main goal of all obstacles, while the latter is the imposed penalty of a single obstacle. The regularization parameters \(\{ \beta_j \}_{j=1}^m \in [0,1]^m \) weigh the environment restriction on the navigation performance. The total reward of the obstacles is defined as \(r_o = \sum_{j=1}^m \beta_j r_{j,o} \). Let \(\gamma \in [0,1] \) be the discount factor accounting for the future rewards and the expected discounted reward can be represented as

\[
R(O, S, D|\pi_o, \pi_a) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_{t,o}(t) \right]
\]

where \(O, S \) and \(D \) are initial positions and destinations that determine initial states \(X_0^{(0)} \) and \(X_0^{(0)} \), and the expectation \(\mathbb{E}[\cdot] \) is w.r.t. the action policy and state transition probability. By comparing (10) with (8), we see equivalent representations of the objective and cost functions in the RL domain.

The policy \(\pi_o \) is modeled by an information processing architecture \(\Phi(X_o, X_o, \theta) \) with parameters \(\theta \), which are updated through gradient ascent using policy gradients [24]. The policy distribution is chosen w.r.t. the action space \(\mathcal{A} \).

B. Information Processing Architecture

The above framework covers a variety of environment optimization scenarios and different information processing architectures can be integrated to solve different variants. We illustrate this fact by analyzing two representative scenarios: (i) offline optimization in discrete environments and (ii) online optimization in continuous environments, for which we use convolutional neural networks (CNNs) and graph neural networks (GNNs), respectively.

CNNs for offline discrete settings. In this setting, we first optimize the obstacles’ positions and then navigate the agents. Since computations are performed offline, we collect the states of all obstacles \(X_n \) and agents \(X_a \) a priori, which allows for centralized information processing solutions (e.g., CNNs). CNNs leverage convolutional filters to extract features from image signals and have found wide applications in computer vision [25]–[27]. In the discrete environment, the system states can be represented by matrices and the latter are equivalent to image signals. This motivates us to consider CNNs for policy parameterization.

GNNs for online continuous settings. For online optimization in continuous environments, obstacle positions change while agents move, i.e., the obstacles take actions instantaneously. In large-scale systems with real-time communication and computation constraints, obstacles may not be able to collect the states of all other obstacles / agents and centralized solutions may not be applicable. This requires a decentralized architecture that can be implemented with local neighborhood information. GNNs are inherently decentralizable and are, thus, a suitable candidate.

GNNs are layered architectures that leverage a message passing mechanism to extract features from graph signals [28]–[30]. At each layer \(\ell \), let \(X_{\ell-1} \) be the input signal. The output signal is generated with the message aggregation function \(F_{\ell m} \) and feature update function \(F_{\ell u} \) as

\[
[X_{\ell}]_i = F_{\ell u}(X_{\ell-1}]_i, \sum_{j \in \mathcal{N}_i} F_{\ell m}(X_{\ell-1}]_i, [X_{\ell-1}]_j, [E]_{ij})
\]

where \([X_{\ell}]_i\) is the signal value at node \(i \), \(\mathcal{N}_i \) are the neighboring nodes within the communication radius, \(E \) is the adjacency matrix, and \(F_{\ell m}, F_{\ell u} \) have learnable parameters \(\theta_{F_{\ell m}}, \theta_{F_{\ell u}} \). The output signal is computed with local neighborhood information only, and each node can make decisions based on its own output value; hence, allowing for decentralized implementation [31]–[34].

V. EXPERIMENTS

We consider two navigation scenarios, one in which we perform offline optimization with discrete obstacle motion, and another in which we consider online optimization with continuous obstacle motion. The obstacles have rectangular bodies and the agents have circular bodies. The given agent trajectory planner \(\pi_a \) is Reciprocal Velocity Obstacles (RVO) [2], which is a decentralized method that can be executed with access to local information only. Two metrics are used: Success weighted by Path Length (SPL) [35] and the percentage of the maximal speed (PCTSpeed). The former is a stringent measure combining the success rate and the path length, while the latter is the ratio of the average speed to the maximal one. All results are averaged over 20 trials with random initial configurations.

A. Offline Optimization with Discrete Environment

We consider a grid environment of size \(8 \times 8 \) with obstacles and 4 agents, which are distributed randomly without overlap. The maximal agent / obstacle velocity is 0.1 per time step and the maximal time step is 500.

Setup. The environment is modeled as an occupancy grid map. An agent’s location is modeled by a one-hot in a matrix of the same dimension. At each step, the policy considers one of the obstacles and moves it to one of the adjacent grid cells. This repeats for \(m \) obstacles, referred to as a round, and an episode ends if the maximal round has been reached.

Training. The objective is to make agents reach destinations quickly while avoiding collision. The team reward is the sum of the PCTSpeed and the ratio of the shortest distance to the traveled distance, while the local reward is the collision penalty of individual obstacle [cf. (9)]. We parameterize the

\[
\text{RL-based environment optimization}\quad \text{Heuristic method}\quad \text{Original scenario}
\]

\[
\text{RL-based environment optimization}\quad \text{Heuristic method}\quad \text{Original scenario}
\]

Fig. 2. Performance of offline environment optimization compared to the baselines. Results are averaged over 20 trials and the shaded area shows the std. dev. The RL system is trained on 10 obstacles and tested on 10 to 18 obstacles. (a) SPL (1 is best), (b) PCTSpeed.
In this paper, we formulated the problem of environment optimization for multi-agent navigation and developed the offline and online solutions. We conducted the completeness analysis for both variants and provided conditions under which all navigation tasks are guaranteed success. We developed a reinforcement learning-based method to solve the problem in a model-free manner, and integrated two different information processing architectures (i.e., CNNs and GNNs) for policy parameterization w.r.t. specific implementation requirements. The developed method is able to generalize to unseen test instances, captures multiple optimization criteria, and allows for a decentralized implementation. Numerical results show superior performance corroborating theoretical findings, i.e., that environment optimization improves the navigation efficiency by optimizing over obstacle regions.
REFERENCES

[1] D. Silver, “Cooperative pathfinding,” in AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2005, pp. 17–122.

[2] J. P. Van Den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in IEEE International Conference on Robotics and Automation, 2008, pp. 1928–1935.

[3] J. P. Van Den Berg and M. H. Overmars, “Prioritized motion planning for multiple robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 430–435.

[4] V. R. Desai, J. P. How, “Decentralized path planning for multi-agent teams with complex constraints,” Autonomous Robots, vol. 32, no. 4, pp. 385–403, 2012.

[5] T. S. Standlee and R. Korf, “Complete algorithms for cooperative pathfinding problems,” in International Joint Conference on Artificial Intelligence, 2011, pp. 1–6.

[6] N. Mani, V. Garousi, and B. H. Far, “Search-based testing of multi-agent manufacturing systems for deadlocks based on models,” International Journal on Artificial Intelligence Tools, vol. 19, no. 04, pp. 417–437, 2010.

[7] A. Rudenko, R. Everett, B. Sikder, H. Soyer, J. Usato, A. Kumar, C. Beattie, and P. Kohli, “Uncovering Surprising Behaviors in Reinforcement Learning via Worst-case Analysis,” SafeML ICLR 2019 Workshop, Sep. 2018. [Online]. Available: https://openreview.net/forum?id=SkgZNIkR5X

[8] J. Boudet, J. Lintuvuori, C. Lacouture, T. Barois, A. Deblais, K. Xie, S. Cassagnere, B. Tregon, D. Brückner, J. Baret et al., “From collections of independent, mindless robots to flexible, mobile, and directional superstructures,” Science Robotics, vol. 6, no. 56, p. eabd0272, 2021.

[9] M. Čap, P. Nváš, A. Kleiner, and M. Selecký, “Prioritized Planning Algorithms for Trajectory Coordination of Multiple Mobile Robots,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 835–849, July 2015.

[10] Q. Wang, R. McIntosh, and M. Brain, “A new-generation automated warehousing capability,” International Journal of Computer Integrated Manufacturing, vol. 23, no. 6, pp. 568–573, 2010.

[11] H. Bier, “Robotic building (s),” Next Generation Building, vol. 1, no. 1, 2014.

[12] L. Custodio and R. Machado, “Flexible automated warehouse: a literature review and an innovative framework,” International Journal of Advanced Manufacturing Technology, vol. 106, no. 1, pp. 533–558, 2020.

[13] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing solvable priority schemes for decoupled path planning techniques for teams of mobile robots,” Robotics and Autonomous Systems, vol. 41, no. 2-3, pp. 89–99, 2002.

[14] M. Jager and B. Nebel, “Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001, pp. 1213–1219.

[15] M. Čap, J. Vokíňek, and A. Kleiner, “Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures,” in International Conference on Automated Planning and Scheduling, 2015, pp. 324–332.

[16] W. Wu, S. Bhattacharya, and A. Prorok, “Multi-Robot Path Deconfliction through Prioritization by Path Prospects,” arXiv:1908.02361 [cs], Aug. 2019, arXiv: 1908.02361. [Online]. Available: http://arxiv.org/abs/1908.02361

[17] I. Gur, N. Jaques, K. Malta, M. Tiwari, H. Lee, and A. Faust, “Adversarial environment generation for learning to navigate the web,” arXiv:2103.01991 [cs], March 2021. [Online]: Available: http://arxiv.org/abs/2103.01991

[18] T. Tanaka and H. Sandberg, “Spd-based joint sensor and controller design for information-regularized optimal lqg control,” in IEEE Conference on Decision and Control, 2015, pp. 4486–4491.

[19] S. Tatikonda and S. Mitter, “Control under communication constraints,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1060–1068, 2004.

[20] V. Tzoumas, L. Carlone, G. J. Pappas, and A. Jadbabaie, “Sensing-constrained lqg control,” in IEEE American Control Conference, 2018, pp. 197–202.

[21] H. Lipson and J. B. Pollack, “Automatic design and manufacture of robots with lifeforms,” Nature, vol. 406, no. 6799, pp. 974–978, 2000.

[22] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative representations for the automated design of modular physical robots,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 703–719, 2003.

[23] N. Cheney, J. Bongard, V. SunSpiral, and H. Lipson, “Scalable co-optimization of morphology and control in embodied machines,” Journal of The Royal Society Interface, vol. 15, no. 143, p. 20170937, 2018.

[24] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function approximation,” Advances in Neural Information Processing Systems, vol. 12, 1999.

[25] M. Browne and S. S. Ghidary, “Convolutional neural networks for image processing: an application in robot vision,” in Australasian Joint Conference on Artificial Intelligence, 2003, pp. 641–652.

[26] S. Kumra and C. Kanan, “Robotic grasp detection using deep convolutional neural networks,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 769–776.

[27] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354–377, 2018.

[28] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[29] P. Velicković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in International Conference on Learning Representations, 2018.

[30] Z. Gao, E. Isufi, and A. Ribeiro, “Stochastic graph neural networks,” IEEE Transactions on Signal Processing, 69, pp. 4428–4443, 2021.

[31] E. Tostaya, F. Gama, J. Paulos, G. Pappas, V. Kumar, and A. Ribeiro, “Learning decentralized controllers for robot swarms with graph neural networks,” in Conference on Robot Learning, 2020, pp. 671–682.

[32] R. Kortvelesy and A. Prorok, “Modgm: Expert policy approximation in multi-agent systems with a modular graph neural network architecture,” in IEEE International Conference on Robotics and Automation, 2021, pp. 9161–9167.

[33] Z. Gao, F. Gama, and A. Ribeiro, “Wide and deep graph neural network with distributed online learning,” IEEE Transactions on Signal Processing, 70, pp. 3862–3877, 2022.

[34] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for decentralized multi-robot path planning,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 11 785–11 792.

[35] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta, V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva et al., “On evaluation of embodied navigation agents,” arXiv:1807.06757 [cs], June 2018. [Online]. Available: http://arxiv.org/abs/1807.06757

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv:1707.06347 [cs], Aug. 2017. [Online]. Available: http://arxiv.org/abs/1707.06347