XMM-Newton observations of seven soft X-ray excess QSOs

K.L. Page\(^1\), N. Schartel\(^2\), M.J.L. Turner\(^1\) and P.T. O’Brien\(^1\)

\(^1\) X-Ray and Observational Astronomy Group, Department of Physics & Astronomy, University of Leicester, LE1 7RH, UK
\(^2\) XMM-Newton Science Operations Centre, European Space Agency, Villafranca del Castillo, Apartado 50727, E-28080 Madrid, Spain

ABSTRACT

XMM-Newton observations of seven QSOs are presented and the EPIC spectra analysed. Five of the AGN show evidence for Fe K\(\alpha\) emission, with three being slightly better fitted by lines of finite width; at the 99 per cent level they are consistent with being intrinsically narrow, though. The broad-band spectra can be well modelled by a combination of different temperature blackbodies with a power-law, with temperatures between \(kT \sim 100–300\) eV. On the whole, these temperatures are too high to be direct thermal emission from the accretion disc, so a Comptonization model was used as a more physical parametrization. The Comptonizing electron population forms the soft excess emission, with an electron temperature of \(\sim 120–680\) eV. Power-law, thermal plasma and disc blackbody models were also fitted to the soft X-ray excess. Of the sample, four of the AGN are radio-quiet and three radio-loud. The radio-quiet QSOs may have slightly stronger soft excesses, although the electron temperatures cover the same range for both groups.

Key words: galaxies: active – X-rays: galaxies – quasars: general

1 INTRODUCTION

At energies below \(\sim 2\) keV, the spectra of most AGN show an upturn, away from the extrapolation of the high energy (2–10 keV) power-law. This so-called ‘soft excess’ emission is thought to be common in both Seyfert galaxies and QSOs (Quasi-Stellar Objects). The first such soft excess was identified in Mrk 841 by Arnaud et al. (1985); Turner & Pounds (1989) then found that \(\sim 50\) per cent of their EXOSAT sample showed steeper spectral slopes at low energies. Likewise, Walter & Fink (1993) and Schartel et al. (1996) found that the ROSAT PSPC spectral index tends to be significantly steeper than that measured above 2.4 keV (typically \(\sim 1.9\); e.g., Nandra & Pounds 1994). More recently, Pounds & Reeves (2002) have discussed the frequent presence of soft excesses in XMM-Newton data.

Many papers have been published about the soft excess, covering both observational results – with ROSAT (e.g., Fiore et al. 1994; Piro, Matt & Ricci 1997), Ginga, EXOSAT (e.g., Saxton et al. 1993) and Einstein (e.g., Masnou et al. 1992; Zhou & Yu 1992) – and theoretical work (e.g., Czerny & Elvis 1987; Czerny & Życki 1994; Xia & Zhang 2001). It is generally thought that the soft excess may be linked to the hot tail-end of the Big Blue Bump (BBB), or is an extension of the UV band. The BBB/UV excess is likely to be due to thermal emission from the accretion disc surrounding the black hole (e.g., Shields 1978; Malkan & Sargent 1982). However, this thermal emission is not hot enough to account for the soft X-ray flux as well; hence, Comptonization is often invoked to explain the resultant emission. In this scenario, the direct thermal emission from the accretion disc is observed as the optical and UV spectrum. Some of the disc photons, however, undergo inverse Compton scattering with a population of hot electrons, thus gaining energy and producing a broader spectrum, which appears similar to a power-law over a limited energy range (assuming unsaturated Comptonization).

All seven objects in this paper, listed in Table I, have been previously observed by ROSAT (Schartel et al. 1996) and were each noted to have steep photon indices over the 0.1–2.4 keV ROSAT band. The Galactic absorption in the direction of each low-redshift QSO is small and it has been previously found that there is no significant evidence for additional, intrinsic absorption in any of the objects. These QSOs, therefore, represent a useful sample to investigate the soft excess in both radio-quiet and radio-loud AGN.

2 XMM-NEWTON OBSERVATIONS

The QSOs in this paper were observed by XMM-Newton between revolutions 105 and 315 (Table 2). SAS (Science Analysis Software) v5.4 was used to produce the event lists for the MOS and PN EPIC (European Photon Imaging Camera) in-

Table 1. Redshifts and Galactic absorption for the seven objects. Radio data were obtained from NVSS (Condon et al. 1998). Optical data were taken from the NASA Extragalactic Database (NED), while the UV magnitudes were obtained from the Optical Monitor (OM) onboard XMM-Newton where possible (Mason et al. 2001). The corresponding wavelengths for the different bands are V = 550 nm; UVW1 = 291 nm; UVM2 = 231 nm; UVW2 = 212 nm.

object	RL/RQ	1.4 GHz flux (mJy)	redshift	Gal. abs. (10^20 cm^-2)	V-band	UVM1	UVM2	UVW2
Q0056–363	RQ	< 2.5	0.162	1.93	16.7	—	—	13.9
PG 0804+761	RQ	3.3 ± 0.4	0.100	2.98	15.2	—	—	—
Mrk 1383	RQ	2.7 ± 0.5	0.086	2.85	17.5	—	12.4	12.4
Mrk 876	RQ	3.9 ± 0.5	0.129	2.87	15.2	13.7	13.7	13.7
B2 1028+31	RL	230.5 ± 8	0.178	1.96	16.7	—	—	—
B2 1128+31	RL	369.7 ± 13	0.289	2.02	16.6	15.3	14.4	14.3
B2 1721+34	RL	518.3 ± 19.7	0.206	3.11	16.5	—	—	—

Note: * Radio fluxes from the NVSS.
and Y directions and give the centre of the circular region used for the power-law slope at higher energies (Γ power-laws gives a very flat (though unconstrained) value of those results. In particular, fitting PG 0804+761 with two power-laws does not always agree with the blackbody fits are preferred at $\Gamma \sim 1.9$. Fixing the slope to a more reasonable value of $\Gamma = 1.9$ gives a worse fit, with χ^2/dof = 246/218, an increase of 13, for one additional degree of freedom.

3.2.2 Blackbody components

Next, the soft excess for each object was parametrized with multiple blackbody (BB) components; the resulting fits are listed in Table 6 and the unfolded plots are shown in Figure 3. Column 6 of the table gives the ratio of the combined BB luminosity to that of the power-law, over the 0.5–10 keV bandpass. This can be thought of as the ‘strength’ of the soft excess, with larger values indicating that the soft excess is relatively luminous compared to the power-law component. This will be investigated further in Section 4. Using the F-test, with the exception of PG 0804+761 and B2 1128+31, the blackbody fits are preferred at > 99 per cent compared to the power-law parametrization of the soft excess. The two anomalous results are those spectra which are modelled with a larger value of Γ.

Table 2. Details of the XMM-Newton observations performed.

object	observation date (rev.)	exposure time (ks)	modea	filter						
	MOS1	MOS2	PN	MOS1	MOS2	PN	MOS1	MOS2	PN	
Q0056−363	2000-07-05 (105)	5.3/5.3	5.3/5.3	14.5	LW	LW	LW	thin/thick	thin/thick	thin
PG 0804+761	2000-11-04 (166)	6.7	6.7	0.6	LW	LW	LW	thin	thin	thin
Mrk 1383	2000-07-28 (116)	5.0	4.9	3.5	LW	LW	LW	thin	thick	thin
Mrk 876	2001-04-13 (246)	4.2	4.4	3.5	LW	LW	LW	thin	thick	thin
	2001-08-29 (315)	7.2	7.2	2.6	LW	LW	FF	thin	thick	thin
B2 1028+31	2000-12-06 (182)	26.2	26.2	21.5	LW	LW	FF	thin	thick	thin
B2 1128+31	2000-11-22 (175)	23.3	23.3	18.9	LW	LW	FF	thin	thick	thin
B2 1721+34	2001-02-13 (216)	6.9	6.9	4.1	LW	LW	FF	thin	thick	thin
	2001-02-26 (223)	6.3	6.5	3.2	LW	LW	FF	thin	thick	thin

Table 3. Details of the source positions and extracted spectra. The extraction regions are shown in terms of physical pixels in the X and Y directions and give the centre of the circular region used.

Object	RA	Dec	Extraction region (physical pixels)	source count-rates (count s$^{-1}$)	net source counts (104)					
	MOS 1	MOS 2	PN	MOS 1	MOS 2	PN	MOS 1	MOS 2	PN	
Q0056−363	00:58:37.4	−36:06:05.0	(24240.5, 24800.5)	(24240.5, 24800.5)	0.660	0.570	3.178	7.1	6.1	46.5
PG 0804+761	08:10:58.5	76:02:43.0	(24600.5, 24600.5)	(24600.5, 24600.5)	1.877	1.962	7.888	12.8	13.3	14.5
Mrk 1383	14:29:06.6	01:17:06.0	(25280.5, 25280.5)	(25280.5, 25280.5)	0.959	0.819	3.029	9.5	8.1	19.7
Mrk 876	16:13:57.2	65:43:09.0	(25720.5, 25720.5)	(25720.5, 25720.5)	1.633	1.520	4.718	10.7	9.3	37.3
B2 1028+31	10:30:59.1	31:02:56.0	(25280.5, 25280.5)	(25280.5, 25280.5)	0.980	0.869	2.978	9.7	8.6	37.6
B2 1128+31	11:31:09.4	31:14:07.0	(25720.5, 25720.5)	(25720.5, 25720.5)	1.633	1.520	4.718	10.7	9.3	37.3
B2 1721+34	17:23:20.8	34:17:59.0	(25860.5, 25860.5)	(25860.5, 25860.5)	1.349	1.195	5.138	18.4	16.1	38.5

Table 5. Double power-law fits to the broad-band data. Γ_{se} gives the slope of the power-law modelling the soft excess, while Γ_{he} gives the slope at higher energies.

object	Γ_{se}	Γ_{he}	χ^2/dof
Q 0056−363	2.85 ± 0.07	1.60 ± 0.13	296/266
PG 0804+761	2.41 ± 0.03	0.23 ± 0.46	231/217
Mrk 1383	2.91 ± 0.11	1.66 ± 0.13	297/256
Mrk 876	3.48 ± 0.17	1.71 ± 0.20	417/341
B2 1028+31	2.41 ± 0.08	1.29 ± 0.15	504/460
B2 1128+31	2.42 ± 0.07	1.19 ± 0.16	364/330
B2 1721+34	2.78 ± 0.14	1.59 ± 0.08	441/360

In the following sections, various methods of modelling the soft excess are tested.
Table 4. Fits over 2–10 (MOS) and 2–12 keV (PN) in the observer’s frame, where Γ is the power-law slope. NGA = narrow Gaussian line, with width fixed at 0.01 keV; FGA = free Gaussian line, with width allowed to vary. The penultimate column gives the F-test null probability for that fit compared to the previous one for that object. If χ^2 does not change, then the F-value is undefined.

Table 6. Blackbody fits to the soft excess. The fits also include iron lines, with energies and widths fixed at the values previously found (Table 4). The luminosities of the BB components are calculated over the observed 0.5–10 keV band.
 extremely flat high-energy photon indices; these values for \(\Gamma \) do not agree with the simple power-law fits above 2 keV.

3.2.3 Thermal Plasma

An alternative suggestion for the soft excess is an optically thin thermal plasma model. Since the soft excesses of these QSOs appear to be smooth, it might be expected that the model required would be closer to optically thin emission (Bremsstrahlung) from hydrogen only, which produces a featureless continuum. Table 7 gives the results obtained from fitting the spectra with a power-law together with the *xspec mekal* model (Mewe, Gronenschild & van den Oord 1986; Mewe, Lemen & van den Oord 1986; Liedahl, Osterheld & Goldstein 1995), which produces an emission spectrum from hot, diffuse gas. With the exception of Mrk 876, the spec-

Figure 1. Ratio plots of the power-law fits above 2 keV, extrapolated down to lower energies, to show the soft excesses. The MOS data-sets are shown in black, the PN, in grey.
tral fits with the thermal plasma model are worse than those with two blackbody components (F-test probabilities imply that the blackbody fit is better at > 99 per cent). Mrk 876, however, is slightly better fitted with the thermal model.

3.2.4 Disc blackbody

Another possibility for the soft emission is a disc blackbody (see, e.g., Mitsuda et al. 1984; Makishima et al. 1986), which models the emission from the accretion disc as a series of blackbodies at different temperatures, emitted from different radii. As Table 4 shows, this model was unable to account for the full breadth of the soft excess, with F-test null probabilities of < 5 × 10^{-5} indicating that the multiple blackbodies were preferred at > 99.99 per cent.

3.2.5 Comptonization

The multiple-BB model is a rather naive way to fit the soft excess, since the temperatures required are generally considerably in excess of the hottest thermal emission expected from an accretion disc surrounding a 10^6–10^9 M⊙ black hole (∼ 60 eV for M_{BH} ∼ 10^8 M⊙; see Equation 1, later).

A more physical approach, as mentioned in the introduction, involves the Comptonization of disc photons: through this method, the relatively cool photons from the disc can be up-scattered by hot distributions of electrons, to form the broad soft excess which is observed. The external model thCompfc (Zdziarski, Johnson & Magdziarz 1996) was used to fit the QSO soft excesses, again with an underlying power-law for the higher-energy part of the spectra. As mentioned above, the disc temperatures in these objects are likely to be low, generally ∼ 60 eV. Subsequently, it will not be easy to fit such a value accurately, because a blackbody at that temperature would be too cool to be visible over the XMM-Newton band. To avoid this problem, the temperature was estimated by assuming that the bolometric luminosity of the object was 10^6 × 0.5–10 keV value (given in Table 4 and that this is also the Eddington luminosity; this was then used to estimate the mass of the black hole. Accretion was taken to be at the Eddington limit and this, along with the black hole mass, was then substituted into the following equation to obtain an estimate for the temperature of the accretion disc (Peterson 1997):

\[T(r) \sim 6.3 \times 10^5 \left(\frac{\dot{M}}{\dot{M}_{Edd}} \right)^{1/4} M_{\text{sch}}^{-1/4} \left(\frac{r}{R_{\text{sch}}} \right)^{-3/4} K \] (1)

(where \(\dot{M} \) is the mass accretion rate, \(\dot{M}_{Edd} \) is the Eddington accretion rate, \(M_{\text{sch}} \) signifies the mass of the central black hole in units of 10^8 M⊙ and \(R_{\text{sch}} \) is the Schwarzschild radius, 2GM/c^2). The calculated values, rounded to the nearest 5 eV, are listed in the second column of Table 5. It should be noted, though, that the resulting parameters of the Comptonization model do not depend strongly on this input temperature for such low values of kT.

The Compton y-parameter gives an indication of the strength of the interaction between the photons and electrons. It is defined as being the average fractional energy change per scattering multiplied by the mean number of interactions and is given (for non-relativistic, optically thick electrons) by

\[y = \frac{4kT}{m_{e}c^{2}} \text{Max}(\tau, \tau^{2}) \] (2)

where \(\tau \) is the optical depth (\(\tau \) is for the case where the gas is optically thin, \(\tau^{2} \) if optically thick), and kT the temperature, of the electron corona; \(m_{e} \) is the electronic mass (0.511 MeV/c^2). The photon index of the spectrum is then given by (Sunyaev & Titarchuk 1980)

\[\Gamma = \left(\frac{4}{y} + \frac{9}{4} \right)^{1/2} - \frac{1}{2} \] (3)

If \(y << 1 \), a modified BB spectrum is observed, with a temperature close to that of the initial input photons. For \(y >> 1 \), Comptonization becomes saturated, forming a Wien spectrum, \(\propto \nu^{3}e^{-h\nu/kT} \), tending towards the temperature of the Comptonizing population of electrons. When \(y \sim 1 \), the regime is known as unsaturated Comptonization; this is what is observed here (Table 5). In this case, a power-law spectrum is formed over a limited energy range, with an exponential roll-over at \(\sim 4kT \). [See Rybicki & Lightman (1979) for more details.]

As Table 7 shows, the Comptonization model lead to statistically good fits, though generally not quite as good as the simple BB parametrisation; Figure 4 shows the unfolded fits to the spectra. It is possible that the underlying power-law is also formed through Comptonization, at least in the case of the radio-quiet QSOs. The power-law continua of radio-loud quasars, in particular core-dominated AGN, is related to non-thermal emission from the radio jets, and extends up to several hundred keV, although there may also be a Comptonized component similar to the RQQs. However, to derive any precise constraints on such a Comptonization fit would require a bandpass extending to higher energies than XMM-Newton.

Figure 2. 68, 90, 95 and 99 per cent confidence contours for the energy and width of the iron emission lines.
Figure 3. Unfolded plots showing the blackbody fits to the soft excess. PN data only are shown for simplicity in the unfolded plots. Both MOS (black) and PN (grey) residuals are shown below each plot.
Figure 4. Comptonization fits to the soft excess, with an underlying power-law modelling the high-energy spectrum. Only PN data are shown in the unfolded plots, for clarity. In the ratio plots, MOS data are shown in black, PN in grey.
Because of the close coupling between the temperature and optical depth (Equations 2 and 3), it is possible that other combinations of values also lead to adequate fits – for example, a higher electron temperature with a smaller optical depth; such fits have been presented in previous work (e.g., Czerny & Elvis 1987; Fiore et al. 1995).

It was found that four of the spectra (PG 0804+761, Mrk 1383, B2 1128+31 and B2 1721+34) could be modelled just as well statistically with kT ∼ 50 keV (with correspondingly lower optical depths) as with the lower-temperature Comptonised component. This is formally the same as fitting with a second power-law, since the EPIC instruments cannot determine the value of the electron temperature if kT ≥ 2–3 keV: the exponential roll-over for a Comptonized spectrum occurs at ≥ 4 kT, and, below this point, the emission appears as a power-law. Thus, if 4 kT is greater than ∼ 10 keV, the temperature cannot be constrained over the XMM-Newton band, and the fit is indistinguishable from a simple power-law over the same energy range. Because of this, the resultant χ^2 values for the high-temperature Comptonization fits to these four spectra are virtually identical to those for the double power-law fits (Table 8). In Table 9 the 1σ lower limits are given for the temperature of these components (and the corresponding upper limit for the optical depth), based on the low-kT fit.

Thus, all that can be said for PG 0804+761, Mrk 1383, B2 1128+31 and B2 1721+34, is that the soft excess can be modelled either as low temperature (few 100 eV) Comptonized emission, or as a power-law (which could be formed through high temperature, ∼ few keV, Comptonization). Q 0056−363, Mrk 876 and B2 1028+31 are noticeably better fitted with a lower-temperature component, though.

3.3 Ionized disc models

Some of the objects in this sample show iron lines with finite widths; this indicates that the lines may be formed towards the inner accretion disc. In order to investigate this possibility, the observed frame 2–12 keV spectra were fitted with the ionized disc reflection model described by Ballantyne et al. (2001). It was found that all seven spectra, even those which were better fitted by a narrow Gaussian component, could be well described by this reflection model. The results of the fits are given in Table 9. It is not surprising that the ionization parameters found are low, since, when fitting Gaussian lines, the energies were close to 6.4 keV, signifying neutral iron. The line in the spectrum of PG 0804+761, however, was found to be slightly ionized (E ∼ 6.7 keV) and is modelled here by the highest ionization parameter.

Ionized reflection may also contribute to the soft emission observed in broad-band X-ray spectra. Sometimes the reflection can account for the entire soft excess (e.g., Mrk 205, Reeves et al. 2001), while, in other spectra, the strength of the excess is simply decreased, shown by either the requirement for fewer blackbodies (e.g., Mrk 359, O’Brien et al. 2001), or by a lower normalisation of the components (e.g., Mrk 896, Page et al. 2003). For each of the QSOs in this sample, it is this last case – the decreased normalisation – which is observed.

Table 7. Thermal plasma and disc blackbody fits to the QSO spectra. When using the mekal thermal model, the abundance is given as > 0 if the value is < 1 × 10^{-3}. The plasma density was fixed at 10^{12} cm^{-3}, although the spectra were insensitive to the value.

object	model	Γ	kT (keV)	abundance	χ^2/ν
Q 0056−363	PL+THERM	2.08±0.03	0.321±0.018	~0	283/265
	PL+DISCBB	2.16±0.02	0.140±0.003		294/266
PG 0804+761	PL+THERM	2.08±0.04	0.423±0.042	~0	249/216
	PL+DISCBB	2.17±0.03	0.168±0.011		258/217
Mrk 1383	PL+THERM	2.12±0.02	0.227±0.010	(9 ± 2) × 10^{-3}	282/255
	PL+DISCBB	2.11±0.02	0.136±0.004		292/256
Mrk 876	PL+THERM	1.89±0.02	0.192±0.006	0.017±0.004	357/340
	PL+DISCBB	1.87±0.02	0.117±0.003		384/341
B2 1028+31	PL+DISCBB	1.72±0.03	0.460±0.028	~0	496/459
	PL+DISCBB	1.81±0.02	0.167±0.005		505/460
B2 1128+31	PL+THERM	1.80±0.03	0.414±0.030	~0	376/329
	PL+DISCBB	1.84±0.02	0.157±0.005		390/330
B2 1721+34	PL+THERM	1.81±0.02	0.335±0.029	~0	429/358
	PL+DISCBB	1.84±0.01	0.143±0.004		435/359
lished by Porquet & Reeves (2003). They identified a strong evidence for an iron line. In the XMM-Newton observations find the lines to be unresolved by the instrument (σ < 10 eV), with relatively few broad lines. Examples of resolved line widths include MCG −6−30−15 (Fabian et al. 2002), Mrk 205 (Reeves et al. 2001) and Mrk 509 (Pounds et al. 2001).

No iron lines have been reported in any of these objects from previous X-ray observations, although the XMM-Newton spectrum of Q 0056−363 has been recently published by Porquet & Reeves (2003). They identified a strong broad Fe Kα line and the results presented in this paper are in complete agreement with their findings. Lawson & Turner (1997) analysed Ginga spectra of PG 0804+761, Mrk 1383, Mrk 876 and B2 1721+34, but found that iron emission lines were not significant. PG 0804+761 was also observed with ASCA (George et al. 2000) where, again, there was no evidence for an iron line. In the XMM-Newton spectra presented here, statistically significant narrow lines were, however, found in Mrk 1383 and B2 1721+34, as well as resolved lines in Q 0056−363, B2 1028+31 and B2 1128+31.

If the emission lines in Q 0056−363, B2 1028+31 and B2 1128+31 presented here are believed to be broadened, then the velocity widths are found to be around (1−1.5) × 10^4 km s^{-1}. This indicates that the emission originates in the inner accretion disc, close to the black hole, rather than in distant matter, such as the molecular torus. However, it must be noted that the lines are consistent with being intrinsically narrow at the 99 per cent level.

4 DISCUSSION

4.1 Iron lines

Observations with Ginga found that many AGN spectra showed evidence for an emission line around 6.4 keV, corresponding to the Fe Kα line (Pounds et al. 1989, 1990; Nandra et al. 1991; Nandra & Pounds 1994). In general, XMM-Newton observations find the lines to be unresolved by the instrument (σ < 10 eV), with relatively few broad lines. Examples of resolved line widths include MCG −6−30−15 (Fabian et al. 2002), Mrk 205 (Reeves et al. 2001) and Mrk 509 (Pounds et al. 2001).

No iron lines have been reported in any of these objects from previous X-ray observations, although the XMM-Newton spectrum of Q 0056−363 has been recently published by Porquet & Reeves (2003). They identified a strong broad Fe Kα line and the results presented in this paper are in complete agreement with their findings. Lawson & Turner (1997) analysed Ginga spectra of PG 0804+761, Mrk 1383, Mrk 876 and B2 1721+34, but found that iron emission lines were not significant. PG 0804+761 was also observed with ASCA (George et al. 2000) where, again, there was no evidence for an iron line. In the XMM-Newton spectra presented here, statistically significant narrow lines were, however, found in Mrk 1383 and B2 1721+34, as well as resolved lines in Q 0056−363, B2 1028+31 and B2 1128+31.

4.2 Soft excess

Each of the seven QSOs in this sample have been found to show soft excess emission, as is commonly the case for AGN. Although Q 0056−363 has only been previously observed with ROSAT, ASCA (George et al. 2000) and EXOSAT (Saxton et al. 1993) observations of PG 0804+761 have also occurred, both of which found excess soft emission.

Likewise, EXOSAT (Comastri et al. 1992) identified a soft excess in Mrk 1383 (which they found to be better modelled as a blackbody, rather than a second power-law, agreeing with the data in this paper), while Wilkes & Elvis (1987) found that their Einstein spectrum required less than Galactic absorption – often an indication of soft excess emission. Einstein spectra of Mrk 876 (Masnou et al. 1992; Wilkes & Elvis 1987) did not reveal a soft excess, though.

B2 1028+31 has been previously found to possess a soft excess by Einstein (Wilkes & Elvis 1987; Masnou et al. 1992), ROSAT and ASCA (Sarazin et al. 1999), with the excess being fitted by either a blackbody, or with a broken power-law (over the whole energy band). Sarazin et al. (1999) found the soft excess to contribute ∼ 15 per cent of the total X-ray luminosity of the quasar, in complete agreement with the XMM-Newton data presented here. B2 1128+31 and B2 1721+34 do not appear to have had soft excess reported prior to this paper. B2 1721+34 is, however, the largest radio source associated with a quasar (Barthel et al. 1989) and shows superluminal motion.

Although modelling the soft excess in individual objects provides some useful information, comparing a number of objects may lead to a more detailed understanding of the processes involved. Of the different methods for modelling the soft excess covered in this paper (blackbodies, thermal plasma, disc blackbodies and Comptonization), the multiple
XMM-Newton observations of seven soft X-ray excess QSOs

Figure 5. The strength of the soft excess does not seem to depend on the luminosity of the object.

Figure 6. Plotting the strength of the soft excess against the 2–10 keV power-law slope reveals a possible weak correlation. Symbols as in Figure 5.

Figure 7. There is no apparent relationship between the temperature of the soft excess and the 0.5–10 keV broad-band luminosity. Symbols as in Figure 5.

blackbody fit is statistically the best for all but Mrk 876 (which is better fitted by the thermal mekal model). The disc blackbody results in the worst \(\chi^2 \) values. Although the soft excess has been thoroughly investigated since it was first discovered in 1985, the actual form of the emission is still uncertain. The multiple blackbody model generally gives the best results, but it is difficult to see how such emission could physically come about; Comptonization can easily explain the high temperatures observed, though. However, it is still not possible to state with any certainty what the origin of the soft excess truly is.

In order to try and identify any existing trends, various figures were plotted and are discussed below. The relative strengths of the blackbody components compared to the power-laws were given in Table 6. In Figure 5, this ratio is plotted against the broad-band 0.5–10 keV luminosity for each object. There is no correlation between the values (probability of only 68 per cent for a negative correlation, using Spearman Rank analysis). Figure 6 shows that there may be a weak relationship between the 2–10 keV photon index and the relative strength of the soft excess for these QSOs (\(\sim 96 \) per cent for a positive correlation between the values). It has been previously found that Narrow Line Seyfert 1 galaxies show both steep 2–10 keV power-law slopes (Brandt, Mathur & Elvis 1997) and strong soft excesses (corresponding to steep spectra over the ROSAT band; Boller, Brandt & Fink 1996); this could be due to a Compton cooling effect, whereby the excess soft flux cools the power-law electrons. The slight correlation between slope and soft excess found here could also be related to this effect.

Figure 7 plots the Comptonized temperature of the soft excess against the broad-band object luminosity. There is, again, no trend between the values (probability of only 42 per cent from Spearman Rank).

From the three previous plots it is noticeable that there is little difference in the soft excess properties of the RQQs and RLQs, with the temperatures covering a very similar range. The radio-quiet objects show slightly stronger soft excess luminosity ratios, but the values are not widely spread; there is only a factor of three between the weakest and strongest component. The mean luminosity ratio is 0.24 for the RQQs and 0.13 for the RLQs. Using Student’s T-test, there is a probability of 0.046 that the difference is due to chance and that the two samples come from the same group. In other words, there is a \(\sim 95 \) per cent probability that the RQQs and RLQs are separate populations when considering the strength of the soft excess. This indicates that there may be a real difference between the groups, but is, by no means, conclusive. This (possible) difference in populations could explain the weak correlation between the soft excess luminosity ratio and the power-law indices above 2 keV: RLQs have flatter slopes and (possibly) weaker soft excesses, with RQQs showing steeper photon indices and more luminous soft excesses. One reason for RLQs having weaker soft excesses could be the dilution of the luminosity ratio by the non-thermal X-ray emission from the radio-jets.

Although this sample is not large, these results indicate that the soft excesses found in radio-quiet and radio-loud AGN are similar, although radio-loud quasars do possess flatter high-energy photon indices. This flatter slope is likely to be due to emission from the relativistic radio jet, implying...
that the soft excess and radio emission may be unrelated. Also the properties of the soft excess (i.e., ‘strength’ and temperature) do not appear to be dependent on the X-ray luminosity of the source. This is in agreement with Page et al. (2004), who investigated a sample of high luminosity radio-quiet QSOs, finding that the X-ray continuum shape (including the soft excess) remains essentially constant over a wide range of black hole mass and luminosity. Thus, the implication is that the soft excess may be independent of luminosity, black hole mass and radio-loudness. Clearly these results should be investigated for a much larger group of active galaxies, covering a good range of both RQQs and RLQs.

5 CONCLUSIONS

The soft excesses of four radio-quiet and three radio-loud QSOs are analysed. As a simple parametrization, two blackbody components fit the soft excess very well. More physically, Comptonization of the disc photons is invoked to explain the soft X-ray emission; this model also provides good fits. There is little obvious intrinsic difference between the soft excess in the radio-quiet and radio-loud objects, with the electron temperatures covering the same range. Five of the objects also showed evidence for iron emission, with three of them being better fitted with a somewhat broadened emission line. These widths are not very large, however, and are significant only at the 95 per cent level.

6 ACKNOWLEDGMENTS

The work in this paper is based on observations with XMM-Newton, an ESA science mission, with instruments and contributions directly funded by ESA and NASA. The authors would like to thank the EPIC Consortium for all their work during the calibration phase, and the SOC and SSC teams for making the observation and analysis possible; also the anonymous referee, whose careful reading and detailed comments improved the paper. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Arnaud K.A. et al., 1985, MNRAS, 217, 105
Ballantyne D., Ross R.R., Fabian A.C., 2001, MNRAS, 327, 10
Barthel P.D., Hooimeyer J.R., Schilizzi R.T., Milely G.K., Preuss E., 1989, ApJ, 336, 601
Boller Th., Brandt W.N., Fink H., 1996, A&A, 305, 53
Brandt W.N., Mathur S., Elvis M., 1997, MNRAS, 285, L25
Brinkmann W., Yuan W., Siebert J., 1997, A&A, 319, 413
Chartas G. et al., 2000, ApJ, 542, 655
Comastri A., Brunetti G., Dallacasa D., Bondi M., Setti G., 2003, MNRAS, 340, L52
Comastri A., Setti G., Zamorani G., Elvis M., Wilkes B.J., McDowell J.C., Giommi P., 1992, ApJ, 384, 62
Condon J.J., Cotton W.D., Greisen E.W., Yin Q.F., Perley R.A., Taylor G.B., Broderick J.J., 1998, AJ, 115, 1693
Czerny B., Elvis M., 1987, ApJ, 321, 305
Czerny B., Życki P.T., 1994, ApJ, 431, L5
Fabian A.C., Celotti A., Johnstone R.M., 2003, MNRAS, 338, L7
Fabian A.C. et al., 2002, MNRAS, 335, L1
Fiore F., Elvis M., McDowell J.C., Siemiginowska A., Wilkes B.J., 1994, ApJ, 431, 515
Fiore F., Elvis M., Siemiginowska A., Wilkes B.J., McDowell J.C., Mathur S., 1995, ApJ, 449, 74
George I.M., Turner T.J., Yaqoob T., Netzer H., Laor A., Mushotzky R.F., Nandra K., Takahashi, T., 2000, ApJ, 531, 52
Lawson A.J., Turner M.J.L., Williams O.R., Stewart G.C., Saxton R.D., 1992, MNRAS, 259, 743
Lawson A.J., Turner M.J.L., 1997, MNRAS, 288, 920
Liedahl D.A., Osterheld A.L., Goldstein W.H., 1995, ApJL, 438, 115
Makishima K., Maejima Y., Mitsuda K., Bradt H.V., Remillard R.A., Tuohy I.R., Hoshi R., Nakagawa M., 1986, ApJ, 308, 635
Malkan M.A., Sargent W.L.W., 1982, ApJ, 254, 22
Masnou J.L., Wilkes B.J., Elvis M., McDowell J.C., Arnaud K.A., 1992, A&A, 253, 35
Mason K.O. et al., 2001, A&A, 365, L36
Mewe R., Gronenschild E.H.B.M., van den Oord G.H.J., 1985, A&AS, 62, 197
Mewe R., Lemen J.R., van den Oord G.H.J., 1986, A&AS, 65, 511
Mitsuda K. et al., 1984, PASJ, 36, 74
Nandra K., Pounds K.A., 1994, MNRAS, 268, 405
Nandra K., Pounds K.A., Stewart G.C., George I.M., Hayashida K., Makino F., Ohashi T., 1991, MNRAS, 248, 760
O’Brien P.T., Page K., Reeves J.N., Pounds K.A., Turner M.J.L., Pucharewicz E.M., 2001, MNRAS, 327, 37
Page K.L., Reeves J.N., O’Brien P.T., Turner M.J.L., Worrall D.M., 2004, MNRAS, submitted
Page K.L., O’Brien P.T., Reeves J.N., Breeveld A.A., 2003, MNRAS, 340, 1052
Peterson B.M., 1997, An Introduction to Active Galactic Nuclei, CUP, Cambridge, UK, ISBN 0521479118
Piro L., Matt G., Ricci R., 1997, A&AS, 126, 525
Porquet D., Reeves J.N., 2003, A&A, 408, 119
Pounds K.A., Reeves J.N., 2002, in New Visions of the X-ray Universe in the XMM-Newton and Chandra era (astro-ph/0201436)
Pounds K.A., Reeves J.N., O’Brien P., Page K., Turner M., Nayakshin S., 2001, ApJ, 559, 181
Pounds K.A., Nandra K., Stewart G.C., George I.M., Fabian A.C., 1990, Nature, 344, 132
Pounds K.A., Nandra K., Stewart G.C., Leighly K., 1989, MNRAS, 240, 769
Reeves J.N., Turner M.J.L., Pounds K.A., O’Brien P.T., Boller Th., Ferrando P., Kendziorek E., Vercellone S., 2001, A&A, 365, L134
Reeves J.N., Turner M.J.L., Ohashi T., Kii T., 1997, MNRAS, 292, 468
Rybicki G.P., Lightman A.P., 1979, Radiative Processes in Astrophysics, Wiley New York, ISBN 0471048151
Saxton R.D., Turner M.J.L., Williams O.R., Stewart G.C., Ohashi T., Kii T., 1993, MNRAS, 262, 63
Scharf C., Smail I., Ivison R., Bower R., van Breugel W., Reuland M., 2003, ApJ, 596, 105
Schartel N., Walter R., Fink H.H., Trümper J., 1996, A&A, 307, 33
Shields G.A., 1978, Nature, 272, 706
Siemiginowska A. et al., 2003, ApJ, 595, 643
Sunyaev R.A., Titarchuk L.G., 1980, A&A, 86, 121
Turner T.J., Pounds K.A., 1989, MNRAS, 240, 833
Walter R., Fink H.H., 1993, A&A, 274, 105
Wilkes B.J., Elvis M., 1987, ApJ, 323, 243
Williams O.R. et al., 1992, ApJ, 389, 157
Xia T.-S., Zhang J.-L., 2001, A&A, 371, 93
Zdziarski A.A., Johnson W.N., Magdziarz P., 1996, MNRAS, 283, 193
Zhou Y.Y., Yu K.N., 1992, ApJ, 400, 430