Membrane fouling of actual extracellular polymeric substances

Qiang Li¹,a, Ge Hu¹,b, Peng Song¹,c, Natsagdorj Khaliunaa¹,d, Rooha Khurram¹,e, Hu Zhang¹,f, Xuguo Liu¹,g, Zhan Wang¹,h, Shujuan Gao¹,i, Chao Liu⁴,j and Xi Wang⁵,k*

¹Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P.R. China
²Beijing Fluid Filtrat & Separat Technol Res Ctr, Beijing, 101312, P.R. China
³Sinopec Beijing research institute of chemical industry Yanshan branch, Beijing, 102500, P.R. China
⁴College of chemistry and environmental engineering, Anyang Institute of Technology, Anyang, 455000, P.R. China
⁵Centre of Sino-Western Cultural Studies, School of Humanities and Social Sciences, Macao Polytechnic Institute, Macao, 999078, P.R. China
²email: 841487393@qq.com, ³email: qeadzc451@163.com,
⁴email: songp@bjut.edu.cn, ⁵email: n.khaliunaa0228gmail.com.
⁶email: rooha.khurram@gmail.com, ⁷email: zhanghu014@163.com,
⁸email: liu-xuguo@163.com, ⁹email: gaosj@emails.bjut.edu.cn, ¹⁰email: ayitlc@163.com
*Corresponding author’s e-mail: ¹¹email: dwangzh@bjut.edu.cn

Abstract. Extracellular polymeric substances (EPSs) in activated sludge suspensions are the key substances leading to the membrane fouling. In order to understand the effect of EPSs on the membrane fouling, the actual EPSs solution extracted from activated sludge suspensions was used as the feed solution to conduct dead-end microfiltration experiment under different pressures by using different membranes. The flux (J), fouling resistances (R_m, R_p, R_c and R_{total}) and the available membrane area (A/A_0) were used to describe the membrane fouling. The results showed that with the increase of pressure, J and R_{total} increased. R_p firstly increased and then kept constant, R_c always increased and became the dominant resistance. A/A_0 decreased from 1 to a constant. R_c plays a key role on R_{total} for different membranes under the same pressure. The sequence of the steady available membrane area (A_{steady}/A_0) for different pressures was: 63.0% (0.05MPa) > 56.5% (0.08MPa) > 53.6% (0.10MPa), and that for different
membranes was: 80.1% (0.2μm PES) > 79.9% (0.1μm PES) > 78.4% (0.1μm PAN) > 53.6% (0.1μm PVDF).

1. Introduction
Membrane bioreactor (MBR) technology is a combination of activated sludge process and membrane filtration technology [1,2], which is widely used in sewage treatment process because of its high separation efficiency and low price [3,4]. However, the membrane fouling is still unavoidable in MBR, and it will decrease production efficiency, increase operation cost and limit the application of MBR in various sewage treatment [5,6]. The membrane fouling is caused by the interaction between activated sludge and the membrane [7]. And the extracellular polymeric substances (EPSs) play a key role in the membrane fouling process [8]. Therefore, it is necessary to explore the influence of EPSs on the membrane fouling. For example, Zhang et al. [9] found that the EPSs were very difficult to degrade and polysaccharide was a key component in the membrane fouling. Wang et al. [10] found that lower pH and in the presence of calcium may induce the formation of an elastic and viscous EPSs layer fouling the membrane. Ou et al. [11] studied the characteristics and fouling mechanisms of extracellular polymeric substances, and found that the main resistance was loose cake layer. Liu et al. [12] studied the effect of different operating conditions on the filtration behavior of actual EPSs. Ding et al. [13] studied the fouling properties of soluble EPSs, loosely bound EPSs and tightly bound EPSs in the mesophilic anaerobic membrane bioreactor. However, the role of actual EPSs in the membrane fouling is still not well understood and has not been uniformly reported. It is therefore necessary to continue to explore the impact of actual EPSs on the membrane fouling.

In this study, the actual EPSs solution was extracted from activated sludge suspensions as the feed solution. The flux (J), fouling resistances (R_m, R_p, R_c and R_{total}) and the available membrane area (A/A_0) were explored under different pressures (0.05MPa, 0.08MPa, 0.1MPa) by using different microfiltration membranes (0.1μm polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/polyether sulfone (PES) and 0.2μm PES) and the combined cake-complete model.

2. Materials and Methods

2.1. Material
The experimental membranes (0.1μm PVDF, 0.1μm PAN, 0.1μm PES and 0.2μm PES membranes) were purchased from ANDE Membrane Separation Technology Engineering Company, Beijing Co., Ltd. Before each experiment, the membrane should be soaked in DI-water at 4℃ for at least 12 h to remove the glycerol from the membrane surface.

2.2. Experiment
The actual EPSs solution was extracted by the formaldehyde-NaOH extraction method [14]. And the compositions of EPSs extracted from activated sludge suspensions were shown in Table 1.

Substance	Polysaccharide	Protein	Humus substance	DNA	EPS
Concentration (mg/L)	93.6±8.7	103.4±1	9.2±3.8	0	206.3±13.5

The experiments were carried out in constant pressure dead-end filtration cell [12] and the actual EPSs solution as the feed solution. The operating conditions of different pressures included 0.05MPa, 0.08MPa and 0.1MPa. All the experiments were operated at 25℃.

2.3. Analysis method
To analyze the fouling behaviors (J, R_m, R_p, R_{total} and A/A_0), the published equation (1), (2), (3) and (4) were used as follows [15]:
\[\frac{R_0}{R} = (1 + 2KcJ_0^2t)^{-1/2} \]
\[\frac{A}{A_0} = (1 - K)\exp\left(\frac{-Kb}{KcJ_0^2}\left((1 + 2KcJ_0^2t)^{1/2} - 1\right)\right) + K \]
\[J = \frac{J_0(1-K)\exp\left(\frac{-Kb}{KcJ_0^2}\left((1 + 2KcJ_0^2t)^{1/2} - 1\right)\right) + K}{(1 + 2KcJ_0^2t)^{1/2}} \]
\[R_{\text{total}} = R_p + R = R_p + R_m + R_c \]

where R_0 is the initial resistance to filtration (m$^{-1}$), R is the sum of the membrane resistance and cake resistance (m$^{-1}$), R_m is the membrane resistance (m$^{-1}$), R_c is the cake resistance (m$^{-1}$), R_p is the complete blocking resistance (m$^{-1}$), R_{total} is the total resistance (m$^{-1}$), J_0 is the initial flux (m/s), A is available membrane frontal area (m2), A_0 is initial membrane frontal area (m2), K_b, K_c and K are constants.

3. Results & Discussion
3.1. Different pressure
The fouling behaviors \((J, R_c, R_m, R_p, R_{total} and A/A_0)\) under different pressures (0.05, 0.08 and 0.1MPa) using 0.1μm PVDF membrane were shown in Fig. 1. The model predictions were in good agreement with the experimental data, and \(J\) increased with the increasing of the pressure (Fig. 1(a)). Then, \(R_{total}\) increased with the increasing of the pressure (Fig. 1(b)), and \(R_c\) was the dominant resistance. It could be explained that higher \(J\) makes more particles accumulate on the membrane surface, and the cake forms at a faster rate [16]. Meanwhile, due to the cake is compressible, it became denser under higher pressure [17]. \(A/A_0\) did not decrease continuously, but tended to be stable value after a certain period of time (Fig. 1(c)), and the sequence of the steady available membrane area \((A_{steady}/A_0)\) for different pressures was: 63.0% (0.05MPa) > 56.5% (0.08MPa) > 53.6% (0.10MPa). The increased of pressure reduced \(A_{steady}/A_0\), this is because the increased pressure provides a higher driving force for the particles to pass through the cake layer and reach the membrane surface, thus blocking more pores [14].

3.2. Different membrane
The fouling behaviors \((J, R_c, R_m, R_p, R_{total} and A/A_0)\) under 0.1MPa using different membranes (0.1 μm PES, 0.1 μm PVDF, 0.1 μm PAN and 0.2 μm PES) were shown in Fig. 2. \(J\) of 0.1μm PVDF membrane was higher than that of the others, and 0.1μm PES membrane had the smallest \(J\) (Fig. 2(a)). Compared with the resistance of different membranes, 0.1μm PVDF membrane had the least \(R_m\) while its \(R_p\) is the greatest (Fig. 2(b)). \(R_c\) of 0.1μm PES and 0.2μm PES membrane was significantly higher than other membranes. This is because the PES membrane has relatively high roughness and hydrophobicity [18]. It could be seen that both \(R_c\) and \(R_p\) exist at the same time, and \(R_c\) was always obviously greater than \(R_p\). Consequently, cake filtration was the main fouling mechanism in different membranes. The sequence of the steady available membrane area \((A_{steady}/A_0)\) for these membranes in Fig. 2(c) was: 80.1% (PES 0.2μm) > 79.9% (PES 0.1μm) > 78.4% (PAN 0.1μm) > 53.6% (PVDF 0.1μm). However, \(A_{steady}/A_0\) of 0.1μm PVDF membrane was the least, but \(J\) is the highest. Therefore, \(R_c\) plays a key role on \(R_{total}\) for different membranes by using actual EPS solution under the same pressure as reported by other researcher [11].
4. Conclusions
In this study, the flux \((J)\), fouling resistance \((R_m, R_p, R_c, \text{ and } R_{total})\) and available membrane area \((A/A_0)\) were discussed in the dead-end microfiltration of actual EPSs solution. The results showed that the model predictions had good consistency with the experimental data. With the increase of pressure, \(J\) and \(R_{total}\) increased while \(A/A_0\) decreased. However, \(A/A_0\) decreased from 1 to a constant with the filtration time. For different membranes under the same pressure, \(R_c\) was a key role and the main fouling mechanism was the cake filtration.

Acknowledgements
This paper is one of the phased achievements for the research of evolution regularity of effective area of membrane pore in MBR for actual membrane process (pollution + cleaning) and model establishment (No. 22078003), a general project of the National Social Science Fund.

References
[1] Meng, F. , Chae, S. R. , Shin, H. S. , Yang, F. , & Zhou, Z. (2011). Recent advances in membrane bioreactors: configuration development, pollutant elimination, and sludge reduction. Environmental Engineering science, 29: 139-160.
[2] Meng, F. , Zhang, S. , Oh, Y. , Zhou, Z. , Shin, H. S. , & Chae, S. R. (2017). Fouling in membrane bioreactors: an updated review. Water Research, 114: 151-180.
[3] Xiao, K. , Ying, X. U. , Liang, S. , Lei, T. , Sun, J. , & Wen, X. , et al. (2014). Engineering application of membrane bioreactor for wastewater treatment in china: current state and future prospect. Frontiers of Environmental science & Engineering, 8: 805-819.
[4] Teng, J. , Shen, L. , Yu, G. , Wang, F. , Li, F. , & Zhou, X. , et al. (2018). Mechanism analyses of high specific filtration resistance of gel and roles of gel elasticity related with membrane fouling in a membrane bioreactor. Bioresource Technology, 257: 39-46.
[5] Cai, X. , Zhang, M. , Yang, L. , Lin, H. , Wu, X. , & He, Y. , et al. (2017). Quantification of interfacial interactions between a rough sludge floc and membrane surface in a membrane bioreactor. Journal of Colloid & Interface science, 490: 70-718.
[6] Lin, H. , Zhang, M. , Wang, F. , Meng, F. , Liao, B. Q. , & Hong, H. , et al. (2014). A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. Journal of Membrane science, 460: 110-125.
[7] Meng, F. , Chae, S. R. , Drews, A. , Kraume, M. , Shin, H. S. , & Yang, F. (2009). Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Research, 43: 1489-1512.
[8] Le-Clech, P. , Chen, V. , & Fane, T. A. G. (2006). Fouling in membrane bioreactors used in wastewater treatment. Journal of Membrane science, 284: 17-53.
[9] Bin, Z. , Baosheng, S. , Min, J. , Taishi, G. , & Zhenghong, G. (2007). Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR. Acta entiae Circumstantiae, 227: 286-294.
[10] Ying, W. , Yang, F. , Bick, A. , Oron, G. , & Herzberg, M. (2010). Extracellular polymeric substances (EPS) in a hybrid growth membrane bioreactor (HG-MBR): viscoelastic and adherence characteristics. Environmental science & Technology, 44: 8636-8643.
[11] Ou, S. H. , You, S. J. , & Lee, Y. C. (2010). Extracellular polymeric substance characteristics and fouling formation mechanisms in submerged membrane bioreactors. Desalination & Water Treatment, 18: 175-181.
[12] Liu, M. , Wang, Z. , Shi, L. , Song, Y. , Dong, W. , & Zhou, Y. , et al. (2012). The influence of operating conditions on the filtration behavior of actual extracellular polymeric substances (EPS) using dead-end membrane filtration cell. Desalination & Water Treatment, 44: 52-59.
[13] Ding, Y. , Tian, Y. , Li, Z. , Zuo, W. , & Zhang, J. (2015). A comprehensive study into fouling properties of extracellular polymeric substance (EPS) extracted from bulk sludge and cake sludge in a mesophilic anaerobic membrane bioreactor. Bioresource Technology, 192:
[14] Liu, H., & Fang, H. (2002). Extraction of extracellular polymeric substances (eps) of sludges. Journal of Biotechnology, 95:249-256.

[15] Hou, L., Wang, Z., & Song, P. (2017). A precise combined complete blocking and cake filtration model for describing the flux variation in membrane filtration process with BSA solution. Journal of Membrane science, 542: 186-194.

[16] Nataraj, S., Schomäcker, R., Kraume, M., Mishra, I. M., & Drews, A. (2008). Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration. Journal of Membrane science, 308:152-161.

[17] Cornehl, B., Overbeck, A., Schwab, A., Büser, J., Kwade, A., & Nirschl, H. (2014). Breakage of lysozyme crystals due to compressive stresses during cake filtration. Chemical Engineering science, 111:324-334.

[18] Zhang, G., Ji, S., Gao, X., & Liu, Z. (2008). Adsorptive fouling of extracellular polymeric substances with polymeric ultrafiltration membranes. Journal of Membrane science, 309:28-35.