Original research article

Delivery routes for probiotics: Effects on broiler performance, intestinal morphology and gut microflora

Chen G. Olnood a, Sleman S.M. Beski a, Paul A. Iji a,b, Mingan Choct a,b

a School of Environmental and Rural Science, Armidale 2351, Australia
b Poultry Cooperative Research Centre, Armidale 2351, Australia

Article info

Article history:
Received 12 April 2015
Accepted 24 July 2015
Available online 24 August 2015

Keywords:
Probiotics
Delivery routes
Broiler
Performance
Intestinal morphology

Abstract

Four delivery routes, via, feed, water, litter and oral gavage, were examined for their efficacy in delivering a novel probiotic of poultry origin, Lactobacillus johnsonii, to broilers. Seven treatments of 6 replicates each were allocated using 336 one-day-old Cobb broiler chicks. The treatments consisted of a basal diet with the probiotic candidate, L. johnsonii, added to the feed, and three treatments with L. johnsonii added to the drinking water, sprayed on the litter, or gavaged orally. In addition, a positive control treatment received the basal diet supplemented with zinc-bacitracin (20 mg/kg). The probiotic strain of L. johnsonii was detected in the ileum of the chicks for all four delivery routes. However, the addition of L. johnsonii as a probiotic candidate did not improve body weight gain, feed intake and feed conversion ratio of broiler chickens raised on litter during the 5-week experimental period regardless of the route of administration. The probiotic treatments, regardless of the routes of delivery, affected (P < 0.05) the pH of the caecal digesta and tended (P = 0.06) to affect the pH of the ileal digesta on d 7, but the effect disappeared as the birds grew older. All probiotic treatments reduced the number of Enterobacteria in the caeca on d 21, and tended (P < 0.054) to reduce it in the ileum and caeca on d 7 and in the ileum on d 21 compared with the controls. The probiotic also tended to increase the number of lactic acid bacteria and lactobacilli in the ileum and caeca on d 7, but this trend was not evident on d 21. The trend appeared most pronounced when the probiotic was delivered orally or via litter. The probiotic also decreased (P < 0.05) the population of Clostridium perfringens rapidly from an early age to d 21 in the caeca, leading to a 3-fold decrease in the number of C. perfringens between d 7 and 21. It also showed that the probiotic treatment presented the lowest number of C. perfringens in the caeca. Delivery of the probiotic through feed, water and litter increased (P < 0.01) the weight of the pancreas on d 21, but the probiotic did not affect other morphometric parameters of the gut. Furthermore, the probiotic did not affect the pH and the concentrations of short chain fatty acids and lactic acid in either the ileum or caeca.

© 2015 Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Probiotics display numerous health benefits beyond providing basic nutritional advantages. Probiotic products consisting of beneficial microflora can help to establish and maintain the balance of the intestinal microflora in commercial broilers. However, selecting a probiotic microorganism that has beneficial effects in broiler chickens requires an extensive search for the optimum candidate, and one which will perform under practical conditions. Inoculating one-day-old chicks with competitive exclusion (CE) cultures or more classical probiotics serves as an effective model for determining the modes of action and efficacy of these microorganisms. Because of the susceptibility of one-day-old chicks to infection, this practice is also of commercial importance. By using this model, a number of probiotics have been shown to reduce colonization and shedding of Salmonella and Campylobacter (Netherwood et al., 1999; Fritts et al., 2000). However, one of the
key factors determining their efficacy in practical use is stability during storage, delivery and feed processing.

There are many different methods for administering probiotic preparations to broiler chickens: through feed, water, gavage (including droplet or inoculations), spray or litter, but adding to feed is the most commonly used method in poultry production.

Introducing probiotics through drinking water, into the crop by tube and syringe, with crumbles, or by spraying on bird environment and litter had no effects on the survival rate of bacteria (Gardiner et al., 2000; Morelli, 2000; Corcoran et al., 2004). The feed-type probiotic products rarely produce optimum results in pelleted diets usually fed to broilers (Nguyen et al., 1988; Scheuerman, 1993). Kozasa (1986) found that two probiotic bacteria incorporated into crumbles, successfully survived the duration of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment.

Introducing probiotics through drinking water, into the crop by tube and syringe, with crumbles, or by spraying on bird environment and litter had no effects on the survival rate of bacteria (Gardiner et al., 2000; Morelli, 2000; Corcoran et al., 2004). The feed-type probiotic products rarely produce optimum results in pelleted diets usually fed to broilers (Nguyen et al., 1988; Scheuerman, 1993). Kozasa (1986) found that two probiotic bacteria incorporated into crumbles, successfully survived the duration of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment. Also, Gould and Hurst (1969) reported that spores of bacillus are well known for being able to survive high temperature of the experiment.

The aim of this study was to determine the efficacy of administering a probiotic strain of *Lactobacillus johnsonii* which chosen by antimicrobial activities showed the best resistant in promoting growth performance, intestinal morphology and gut microflora in broiler chickens.

2. Materials and methods

2.1. Probiotic strains

The bacterial strain used in this experiment was selected using the antagonistic activity assay described by Teo and Tan (2005).

A pure *L. johnsonii* isolate was grown in MRS broth overnight (at 39°C) and harvested by centrifugation at 4,420 × g for 15 min (Induction Drive Centrifugation, Beckman Model J2-21M, Beckman Instruments Inc., Palo Alto, California, USA). It was re-suspended in phosphate-buffered solution (PBS, pH 7.4) and mixed by constant mechanical stirring (Heidolph MR 3001K stirrer, Heidolph Instruments GmbH & Co., Schwabach, Germany) for 10 min. This pre-mixture of PBS probiotic solution was added to feed, drinking water, or was gavaged orally. The quantities of MRS broth and pre-mix phosphate-buffered solution (PBS, solution used were calculated by determining the bacterial concentration needed for the experiment. In this study, the concentration of the probiotic candidate, *L. johnsonii*, supplied via different routes was: feed delivery > 10⁸ cfu/g of feed samples; oral delivery > 10⁸ cfu/mL of PBS solution; litter delivery > 10⁸ cfu/mL of PBS spray solution and water delivery > 10⁸ cfu/mL of water sample.

Representative feed, water, and litter samples of each treatment batch were tested for bacterial concentrations weekly on d 1 and 7. Ten grams (or milliliters) of samples were dissolved in 90 mL of peptone water (Oxoid, CM0009) and 10-fold dilutions were performed in Hungate tubes with 9 mL of peptone water. The numbers of lactic acid bacteria in the samples were determined on MRS agar (Oxoid, CM0361) inoculated with 0.1 mL of diluted sample and after anaerobic incubation at 39°C for 48 h.

2.2. Bird husbandry

A total of 336 one-day-old male Cobb broiler chicks, which were vaccinated against Marek’s disease, infectious bronchitis, and Newcastle disease, were obtained from a local hatchery (Baiada hatchery, Kootingal, NSW, Australia) and randomly allocated to 42 cages in four-tier floor pens (600 × 600 × 300 mm dimension, with a floor space of 0.36 m²/cage) sit on sawdust litter in climate-controlled rooms. Each of the 7 dietary treatments was randomly assigned to 6 cages with 8 birds per cage (except for the water treatment group which needed to be in line in order to be serviced by the same water pipe that supplied the water containing the probiotics). At d 21, birds were transferred to slide-in cages (800 × 740 × 460 mm) in an environmentally controlled room.

The room temperature was gradually decreased from 33°C on d 1 to 24°C on d 21. Eighteen hours of light was provided per day throughout the trial, excluding d 1 to 7 during which 23 h of light was provided. Relative humidity was between 65 and 70%. Each cage was equipped with a feeding trough placed outside and had water pipes providing drinking nipples inside. Feed and water were provided ad libitum.

2.3. Experimental treatments

2.3.1. The diet and treatments

The basal diets (starter and finisher) were based on corn, wheat and soybean meal as shown in (Table 1), and fed as a one-phase mash feed to avoid inactivation of the probiotic. Seven treatments

Item	1 to 3 weeks (Starter)	4 to 6 weeks (Finisher)
Ingredient, g/kg		
Wheat	262.0	214.0
Sorghum	350.25	400.2
Mung beans	100.0	100.0
Tallow in mixer	32.5	34.0
Sunflower meal	25.0	
Canola meal	60.0	60.0
Cottonseed meal	50.0	
Soybean meal	157.0	81.5
Limestone B10	15.5	16.0
Kynofos/biofos MDCP	11.5	11.0
Salt	1.75	1.5
Sodium bicarbonate	2.0	2.0
Choline chloride 75%	0.6	0.6
DL-Methionine	2.1	1.3
L-Lysine scale 3	2.1	0.4
L-Threonine	0.2	
Vitamin and mineral premix	2.5	
ME, MJ/kg		
Crude protein	200.02	190.00
Crude fibre	35.17	43.14
Crude fat	52.16	54.47
Lys	11.49	8.98
Met + Cys	8.32	7.37
Ca	9.73	9.79
Available phosphorus	6.50	6.71
Na	1.62	1.65
Cl	2.19	1.75

1 Vitamin and mineral premix (Ridley Agriproducts Pty Ltd., Tamworth, NSW) contained the following minerals in milligrams per kilogram of diet: vitamin A (as all-trans retinol), 12,000 IU; cholecalciferol, 3,500 IU; vitamin E (as α-tocopherol), 44.7 IU; vitamin B₃, 0.2 mg; biotin, 0.1 mg; niacin, 50 mg; vitamin K₃, 2 mg; pantothenic acid, 12 mg; folic acid, 2 mg; thiamine, 2 mg; riboflavin, 6 mg; pyridoxine hydrochloride, 5 mg; D-calcium panthotenate, 12 mg; Mn, 80 mg; Fe, 60 mg; Cu, 8 mg; I, 1 mg; Co, 0.3 mg; and Mo, 1 mg.
were provided as three diet batches during the first three weeks for starter as follows: 1) the negative control, litter delivery, negative oral gavage and probiotic oral gavage treatment groups were provided with the basal diet; 2) the positive control treatment was provided with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added; and 3) the feed supplementary treatments groups (starter feed) included an overnight culture of \textit{L. johnsonii}. Four strains of \textit{Lactobacillus} (No. 1286 tentatively identified as \textit{L. johnsonii}, No. 709 tentatively identified as \textit{L. crispatus}, No. 697 tentatively identified as \textit{L. salivarius} and No. 461 unidentified \textit{Lactobacillus} sp.) were selected as probiotic candidates and added to the feed to make up the different treatments. The experimental diet with the probiotic candidate was mixed weekly and supplied for the first three weeks.

All treatments received the same basal finisher diet once the birds were transferred to slide-in cages, and growth performance was measured weekly. Feed was provided ad libitum. The delivery routes of experimental treatments are shown in (Table 2).

2.3.2. Delivery via feed

The experimental diets with the probiotic candidates were mixed weekly. The individual strains were grown in MRS broth contained 5 g/L of yeast extract (powder, Oxoid, LP0021) and 20 g/L of glucose, for overnight (at 39°C) and harvested by centrifugation at 4,420 × g for 15 min (Induction Drive Centrifugation, Beckman Model J2-21M, Beckman Instruments Inc., Palo Alto, California, USA), resuspended in PBS (pH 7.4) and mixed into a premix with the basal diet for 10 min using a miniature mixer. This pre-mixture of product with feed (1 kg) was then transferred into a larger mixer (total capacity 300 kg) where the final volume of the weekly feed batch was prepared. The mixer equipment was thoroughly cleaned between the mixing of different treatments by using a vacuum cleaner and a wash diet (basal feed).

2.3.3. Delivery via drinking water

For the first three weeks, drinking water was supplied through pipes (nipples drinker installed) connected to a 20-L drum. A small pump (low power, Aqua One maxi series power head, Kongs International Co., Ltd, China) was installed to constantly agitate the water. The water containing the probiotic was prepared daily and supplied for the first three weeks in probiotic water treatment groups. After three weeks the birds were transferred to slide-in cages and drinking water was supplied in troughs placed outside the cages. Water was provided ad libitum.

2.3.4. Litter application

The sawdust used as litter for this experiment was selected from commercial products produced by Bellsouth Pty. Ltd., Australia. The lactic acid bacterial concentration was determined using an MRS agar plate display. The sawdust contained a low number of lactic acid bacteria before use (<10^2 cfu/g of sawdust). The probiotic solution (PBS, pH 7.4 containing >10^6 cfu/ml of \textit{L. johnsonii}) was sprayed on litter daily for the first three weeks for the litter treatment groups.

2.3.5. Oral gavage

\textit{L. johnsonii} cultures were resuspended into PBS solution (pH 7.4) which contained approximately 10^8 cfu/mL. Each bird received 1 mL of PBS mixed solution on d 1, 2, 4, 6 and 14; the birds in the negative control group received 1 mL of PBS solution (pH 7.4) on the same days.

2.3.6. Sample collection and processing

Feed leftovers and birds were weighed on a weekly basis for calculation of average feed intake (FI) and body weight. Mortality was recorded when it occurred and feed conversion ratio (FCR; feed intake/weight gain) was corrected for mortality. Three birds on d 7 and two birds on d 21, from each cage were randomly selected and killed by cervical dislocation. The abdominal cavity was opened and visceral organs were weighed.

The weights of the empty gizzard, the duodenum, jejunum and ileum were recorded individually. The weights of the pancreas, liver, spleen, and bursa were also measured and recorded individually. The contents of the gizzard, ileum and caeca were collected in plastic containers, and stored at −20°C until volatile fatty acids (VFA) analysis was performed. A 2-cm piece of the proximal ileum was flushed with ice-cold phosphate-buffered saline (PBS saline) at pH 7.4 and fixed in 10% formalin for gut morphological measurements. One gram (approximately) each of ileal and caecal fresh digesta was transferred individually into 15 mL MacCartney bottles containing 10 mL of anaerobic broth for bacterial enumeration using the methods described in Section 2.3.8

2.3.7. Digesta pH, VFA analysis and gut morphology

Intestinal pH was measured immediately after death and excision of viscera. The pH of ileal and caecal contents was determined by the modified procedure of Corrier et al. (1990). After thawing at room temperature, the concentrations of short-chain fatty acids (SCFA) and lactic acid of each digesta sample from the ileum and caeca were measured using gas chromatography (Varian CP-3800. Netherlands) according to the method described by Jensen et al. (1995). Tissue samples were collected from the proximal ileum and flushed with buffered saline and fixed in 10% neutral buffered formalin for histomorphological analysis. Samples were embedded in paraffin wax, sectioned and stained with haematoxylin and eosin. Sample sections were captured at 10 × magnification using a Leica DM LB microscope (Leica Microscope GmbH, Wetzlar, Germany) and morphometric indices were determined as described by Iji et al. (2001). Each sample was measured in 15 vertically, well-oriented, intact villi, muscle depth and crypts photomicrographs of a stage micrometer recorded at 5 × magnification.

2.3.8. Enumeration of intestinal bacteria and isolation of lactobacilli

A 10 mL aliquot of anaerobic broth was homogenized for 2 min in CO2-flushed plastic bags using a bag mixer (Interscience, St. Norm, France) immediately after sample collection. The 10-fold increment serial dilution technique was conducted according to Miller and Wolin (1974). One millilitre of the homogenized suspension was then transferred into 9 mL of anaerobic broth and

![Table 2](image_url)
serially diluted from 10⁻¹ to 10⁻² (for the ileal samples) or 10⁻¹ to 10⁻⁶ (for the caecal samples). From the last three diluted samples, 0.1 mL each was plated on the appropriate medium (10 mL) for enumeration of microbial populations.

Total anaerobic bacteria were determined using anaerobic roll tubes containing 3 mL of Wilkins-Chalgren anaerobe agar (Oxoid, CM0619) incubated at 39°C for 7 d. Lactic acid bacteria were enumerated on MRS agar (Oxoid, CM0361) incubated in anaerobic conditions at 39°C for 48 h. Coliforms and lactose-negative Enterobacteriaceae were counted on MacConkey agar (Oxoid, CM0007) incubated aerobically at 39°C for 24 h as red and colourless colonies, respectively. Lactobacilli were enumerated on Rogosa agar (Oxoid, CM0627) after anaerobic incubation at 39°C for 48 h. Numbers of Clostridium perfringens (Cp) were counted on Tryptose–Sulphite–Cycloserine and Shahidi-Ferguson Perfringens agar base (TSC & SFP) (Oxoid, CM0587 OPSP) mixed with egg yolk emulsion (Oxoid, SR0047) and Perfringens (TSC) selective supplement (Oxoid, SR008BE) according to the pour-plate technique, where plates were overlaid with the same agar after spreading the inoculums and incubated anaerobically at 39°C for 24 h. All plates were incubated in the anaerobic cabinet (Model SJ-3, Kalter Pty. Ltd., Edwardstown, SA, Australia) and bacterial number counted using colony counter (Selby, Model SCC100, Biolab Australia, Sydney, NSW, Australia).

Twenty pure colonies were randomly collected from the highest dilution Rogosa agar plates from the oral gavage treatment groups (negative and probiotic). The bacterial isolates were transferred to MRS broth individually and aerobically incubated at 39°C for 24 h. The amplification of bacterial colonies was collected in Eppendorf tubes (2.5 mL) and stored at −20°C for further DNA analysis.

2.3.9. Extraction of genomic DNA

Forty bacterial colonies, 20 colonies from each treatment were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions) from the oral inoculation treatment and negative control oral inoculation treatment on d 7. Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions) from the oral inoculation treatment and negative control oral inoculation treatment on d 7. Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions). Using a sterile toothpick, cells from a single bacterial row were randomly picked from Rogosa agar plates (ileum, most of colonies from the highest dilution and some from different dilutions).

2.3.10. PCR amplification of 16-23S rDNA

The primers used in this experiment for PCR amplification are listed in Table 3. The method was according to Guan et al. (2003), Mikkelsen et al. (2003), Vidanarachchi (2006) and as reported for lactobacillus 16-23S rDNA (16S rRNA gene and the entire 16S-23S rDNA intergenic region) analysis with modifications. The reaction mixture (50 μL) contained a 0.01 mM deoxynucleoside triphosphate (dNTP), 1.5 mM MgCl₂, 1 Unit Taq (Thermus aquaticus) DNA polymerase supplied with the 10 × PCR buffer (all from Fisher Biotech, West Perth, WA, Australia), 10 pmol both forward and reverse primers (Proligo Australia Pty. Ltd., Lismore, NSW, Australia) and 2.0 μL purified template DNA. The reaction mixtures were amplified in an Eppendorf PCR Thermal Cycler (MasterCycler, Eppendorf AG, Hamburg, Germany) under the following conditions: initial cycle of 1 min denaturation at 95°C, followed by 30 cycles of 30 s denaturation at 95°C, 30 s of annealing at 57°C and 45 s elongation at 72°C with a final extension of 10 min at 72°C. Amplified PCR products were electrophoresed on a 1% agarose gel containing 5 μL of GelStar nucleic acid gel stain (BioWhittaker Molecular Application, Rockland, ME, USA), viewed by UV transillumination and digitized on an Infinity CN – 3000 Gel Documentation System (Vilber Lourmat, Cedex, France). The formulation of the master mixture is listed in Table 4.

2.3.11. Amplified Ribosomal DNA Restriction Analysis (ARDRA) of 16-23S rDNA

The amplified 16-23S rDNA intergenic spacer regions of lactobacillus isolates were digested with the restriction endonuclease Haell enzymes (restriction enzyme isolated from Haemophilus aegyptius) according to the manufacturer’s instructions (New England BioLabs, Brisbane, QLD, Australia). Haell restriction enzyme recognizes and cleaves directly the centre of the 5′ … GG/CC … 3′, 3′ … CC/GG … 5′ DNA sequence. Restriction digestion was carried out for 2 h at 37°C in 40 μL final volume containing 4 μL. 10 × buffer, 15 μL PCR grade water, 1 μL enzyme (10 U/μL) and 20 μL of amplified PCR product. Restriction digestion products were electrophoresed in a 2% agarose gel containing 5 μL of GelStar nucleic acid gel stain (BioWhittaker Molecular Applications, Rockland, ME, USA) for 4 h at 90 V and band patterns were viewed by UV transillumination and digitized on Infinity CN – 3000 Gel Documentation System (Vilber Lourmat, Cedex, France). Infinity Capture version 12.6 for Windows software was used for image analysis.

2.4. Statistical analysis

Data were subjected to one-way analysis of variance (ANOVA) (StatGraphics Plus version 5.1 – Professional Edition, Manugistics Inc., Rockville, Maryland, USA) with diet as the factor. The differences between mean values were identified by the least significant difference (LSD). Differences among treatments were deemed to be significant only if the P-value < 0.05. Regression analysis was carried out only with control diets and different routes of delivery administration. All results were expressed as means. Bacterial counts were transformed to log₁₀ values before analysis.

2.5. Animal ethics

Health and animal husbandry practices complied with the Australian code of the care of animal for scientific purposes’ (NHMRC, 2004). The Animal Ethics Committee of the University of

Table 3	Primers used for amplification of 16-23S rDNA (from Guan et al, 2003; Mikkelsen et al., 2003; Vidanarachchi et al., 2006).	
Primer	Direction	Nucleotide sequence (’5’ to ’3’)
Lb 16a	Forward	GTG CCT AAT ACA TGC AAG TCG
23-1B	Reverse	GGG TTC CCC CAT TCG GA
New England approved the experiments in this study (authority number: AEC07/016).

3. Results

3.1. Growth performance

Body weight gain (BWG), FI and FCR were not affected by different delivery methods of probiotic supplementation (Table 5). The oral gavage tended ($P = 0.3$) to give higher BWG than the negative control groups.

3.2. Organ weights, intestinal pH and SCFA concentrations

The relative weight of the pancreas was significantly increased ($P < 0.01$) at d 21 with oral gavage giving the heaviest pancreas (Table 6). There were no effects of diet on the relative weights of visceral organs, including the small intestine.

The probiotic treatments, regardless of the routes of delivery, affected ($P < 0.05$) the pH of the caecal digesta and tended ($P = 0.06$) to affect the pH of the ileal digesta on d 7, but the effect disappeared as the birds grew older (Table 6). Although there were numerically higher concentrations of lactic acid in the ileal digesta and succinic acid in the caecal digesta compared with the negative controls, these were not statistically significant. Furthermore, the trend diminished as the birds grew older (Table 7).

3.3. Bacterial populations in intestinal digesta

The probiotic treatment groups had significant effects on the bacterial count in the caecal digesta with the number of Enterobacteria decreasing ($P < 0.05$) on d 7 and 21. The probiotic treatments tended ($P = 0.08$) to reduce the number of Enterobacteria in the ileum on d 7. However, it did not affect the counts of total anaerobic bacteria, LAB, lactobacilli and C. perfringens in the digesta of the ileum and caeca either at d 7 or at d 21. Furthermore, the number of Enterobacteria in the ileal digesta at d 21 was not affected (Table 8).

The number of the LAB was the highest in the ileal digesta in the oral gavage treatment (8.23; 7.52) and litter treatment (8.24; 7.58) on d 7 and 21, respectively. They were also highest in the caecal digesta for the oral gavage treatment (8.91) on d 21. The lactobacillus population was greatest in the caecal digesta for the oral gavage treatment on d 7 (9.30) and d 21 (8.81), and in the ileal digesta for the oral gavage treatment the lactobacillus population reached its peak (7.61) at d 21.

3.4. Intestinal histomorphology

The effects of different treatments on villus height, crypt depth and villus: crypt ratio of ileum on d 7 and 21 are shown in Table 9. Results show that the probiotic candidate *L. johnsonii* did not significantly influence ileal morphology of broiler chickens when administered by different delivery routes, compared with the positive and negative control treatments.

3.5. Amplified Ribosomal DNA Restriction Analysis of 16–23s rDNA

Forty isolates tentatively assigned to different groups of *Lactobacillus* spp. are listed in Table 10. The isolates were tentatively identified as *L. crispatus* and *L. salivarius* by Vidanarachchi (2006) who used the Amplified Ribosomal DNA Restriction Analysis (ARDRA) method for Lactobacillus spp. analysis. The *L. johnsonii* group was tentatively identified by comparing patterns from a pure culture used for oral inoculation. This pure culture was identified by Vidanarachchi (2006) using the sequences of 16S rRNA gene (Gen Bank accession No. AEO17198) (Fig. 1). The result showed that *L. johnsonii* was detected from the oral inoculation

Table 4
Formulation of reaction mixture for PCR amplification of 16–23S rDNA (from Mikelsen et al., 2003).

Composition	Concentration	Volume, µL
Master mixture		
Deoxynucleoside triphosphate (dNTP)	2.0 nmol/µL	5.0
Taq DNA polymerase	5.5 U/µL	0.2
MgCl2	25 mM	6.0
PCR buffer	10 x	5.0
Forward primer – Lb16a	5 pmol/µL	2.0
Reverse primer – 23-18	5 pmol/µL	2.0
PCR grade water	–	27.8
Total volume of master mixture for each sample	48	
DNA crude extracts		2.0
Total reaction mixture for each sample	50	

Table 5
The effects of delivering *L. johnsonii* via different routes on the performance of broilers.1

Item	Treatments	SE	P-value
Day 1 to 7			
BWG, g/bird	NC	157	1.57
	PC	158	0.87
	Oral – NC	156	
	Feed	155	
	Water	156	
	Litter	157	
	Oral – Pro	158	
FCR	NC	0.995	2.88
	PC	0.998	0.67
	Oral – NC	0.988	
	Feed	1.010	
	Water	0.995	
	Litter	1.017	
	Oral – Pro	1.015	
Day 1 to 21			
BWG, g/bird	NC	854	9.22
	PC	874	0.54
	Oral – NC	854	
	Feed	851	
	Water	856	
	Litter	867	
	Oral – Pro	862	
FCR	NC	1.201	9.27
	PC	1.222	0.48
	Oral – NC	1.198	
	Feed	1.202	
	Water	1.216	
	Litter	1.210	
	Oral – Pro	1.210	
Day 1 to 35			
BWG, g/bird	NC	1,797	11.44
	PC	1,816	0.31
	Oral – NC	1,794	
	Feed	1,800	
	Water	1,792	
	Litter	1,792	
	Oral – Pro	1,824	
FCR	NC	2,899	27.05
	PC	2,935	0.55
	Oral – NC	2,891	
	Feed	2,908	
	Water	2,883	
	Litter	2,899	
	Oral – Pro	2,952	
Mortality, %	NC	6.25	0.02
	PC	4.17	0.99
	Oral – NC	4.17	
	Feed	2.08	
	Water	6.26	
	Litter	4.17	
	Oral – Pro	8.33	

1 Values are means ($n = 6$) and standard error of means (SE).

2 Dietary treatments: NC, negative control, with no additives added to the basal feed, water and litter; PC, positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added in feed; Oral–NC, negative control, with no additives added to the basal feed, water and litter, orally inoculated with PBS solution; Other treatments, with probiotic (Pro) *L. johnsonii* delivery by oral gavage, feed, water and litter, respectively.
treatment and also showed high numbers (8/20) of probiotic candidate colonies in the oral gavage groups in 20 randomly selected isolates. However, no *L. johnsonii* strains were found in the negative control group.

The results showed that two genotypic *L. johnsonii* patterns (300-bp, 500-bp) were present in the ARDRA test (Fig. 1). They are clearly differentiated from other patterns on the test. There are three patterns with *L. crispatus* (250-bp, 500-bp and 700-bp), two patterns with *L.*

Table 6

Item	Treatment	SE	P-value							
	NC	PC	Oral – NC	Feed	Water	Litter	Oral – Pro			
Day 7	Liver	5.33	4.59	5.62	5.09	4.74	5.62	5.37	0.43	0.5071
	Spleen	0.09	0.08	0.10	0.08	0.06	0.08	0.09	0.01	0.3227
	Pancreas	0.35	0.34	0.45	0.40	0.40	0.38	0.37	0.04	0.0937
	Bursa	0.15	0.12	0.13	0.12	0.16	0.17	0.13	0.02	0.2055
	Gizzard	4.76	4.25	4.79	4.49	4.84	4.30	4.19	0.24	0.2467
	Duodenum	2.07	1.69	1.79	2.00	2.09	1.90	2.03	0.16	0.5204
	Jejunum	2.71	2.43	2.77	2.72	2.63	2.68	2.87	0.21	0.8536
	Ileum	2.02	1.72	1.74	1.80	1.84	2.02	2.01	0.17	0.6834
Day 21	Liver	3.23	3.35	3.34	3.28	2.98	3.28	3.43	0.36	0.1328
	Spleen	0.09	0.08	0.07	0.09	0.09	0.07	0.08	0.01	0.4059
	Pancreas	0.30a	0.27b	0.25b	0.24b	0.32c	0.30a	0.37d	0.02	0.0777
	Bursa	0.16	0.16	0.12	0.17	0.19	0.15	0.16	0.02	0.3899
	Gizzard	2.48	2.54	2.81	2.36	2.44	2.53	2.22	0.13	0.1144
	Duodenum	1.17	1.04	1.27	1.27	1.24	1.17	1.22	0.08	0.4325
	Jejunum	1.90	1.62	1.74	1.86	1.78	1.64	1.78	0.08	0.1842
	Ileum	1.23	1.01	1.13	1.07	1.06	1.14	1.15	0.08	0.6000

Table 7

Item	Treatments	SE	P-value							
	NC	PC	Oral – NC	Feed	Water	Litter	Oral – Pro			
Day 7	Gizzard	3.06	3.01	3.08	2.95	3.15	3.09	3.02	0.09	0.7866
	Ileum	6.71	6.64	6.67	6.84	6.97	6.79	6.51	0.10	0.0690
	Formic acid	0.34	0.29	0.31	0.46	0.39	0.36	0.58	0.31	0.9451
	Acetic acid	1.68	1.35	1.54	1.73	1.61	1.59	1.67	0.52	0.7956
	Lactic acid	3.03	3.46	4.37	4.32	5.41	3.49	3.87	2.57	0.8351
	Caecal	6.19b	6.08b	6.13b	6.13b	6.56a	5.71a	6.11a	0.14	0.0158
	Acetic acid	57.51	52.32	58.53	47.97	61.27	55.69	52.27	6.79	0.8769
	Propionic acid	2.83	2.45	2.26	3.11	2.49	3.91	2.89	0.34	0.1021
	Butyric acid	14.11	14.41	13.43	13.02	13.87	14.19	14.54	0.87	0.8801
	Succinic acid	2.12	2.25	2.68	3.41	2.69	2.76	2.91	0.59	0.7708
Day 21	Gizzard	2.75	2.67	2.48	3.04	2.64	2.94	2.69	0.19	0.4784
	Ileum	6.06	7.04	6.72	6.91	6.70	6.82	6.98	0.15	0.5746
	Formic acid	0.48	0.39	0.53	0.53	0.32	0.51	0.45	0.24	0.5671
	Acetic acid	2.41	2.57	2.49	2.76	2.34	2.55	2.70	0.67	0.8317
	Lactic acid	7.24	6.77	9.41	6.91	7.18	8.51	8.76	3.21	0.6270
	Caecal	5.77	5.86	5.62	5.87	5.77	5.89	5.86	0.15	0.8511
	Acetic acid	57.41	69.24	49.71	64.28	61.49	55.06	58.12	12.34	0.3745
	Propionic acid	4.57	4.49	3.89	3.76	4.72	4.28	4.51	0.89	0.6841
	Butyric acid	12.64	11.47	12.38	13.16	11.78	12.68	12.97	3.54	0.7680
	Succinic acid	1.08	1.24	1.29	1.31	1.27	1.09	1.11	0.38	0.8620

Notes

- Means within the same row with no common superscripts differ significantly ($P < 0.05$).
- Values are means ($n = 6$) and standard error of means (SE).
- Dietary treatments: NC, negative control, with no additives added to the basal feed, water and litter; PC, positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added in feed; Oral-NC, negative control, with no additives added to the basal feed, water and litter, orally inoculated with PBS solution; Other treatments, with probiotic (Pro) *L. johnsonii* delivery by oral gavage, feed, water and litter, respectively.
salivarius (200-bp, 500-bp), and one or four patterns with the unidentified strains (350-bp, 300-bp, 400-bp, 500-bp and 700-bp).

4. Discussion
4.1. Delivery routes and growth performance

A well-accepted method to quickly introduce a commensal microflora in chicks is through the administration of probiotics. Probiotic strains have been administrated in feed (Jin et al., 2000; Kalavethy et al., 2003) and water (Timmerman et al., 2006). Many reports have demonstrated that probiotics improve the growth performance and feed efficiency, and are potentially able to enhance nutrient absorption in broiler chickens. However, spraying of litter with probiotics is a method that has not been widely reported in poultry management. On the other hand, administering probiotics in drinking water is generally reported to result in a smaller increase in average daily gain compared with administering them via feed (Jin et al., 2000; Kalavethy et al., 2003). Compared to probiotics delivered via drinking water or compared with a negative control treatment, L. johnsonii, delivered as a feed supplement, did not significantly affect growth performance of feed conversion between d 1 and 21 in broiler chickens (Pelicano et al., 2004). They also observed that FI was slightly

Table 8
Bacterial counts (lg cfu/g) in the digesta of birds on d 7 and 21.1

Item	Treatments	SE	P-value						
	NC	PC	Oral – NC	Feed	Water	Litter	Oral – Pro		
Day 7									
Ileum Total anaerobes	8.28	8.08	8.49	7.69	8.16	8.26	8.10	0.23	0.383
LAB	8.07	8.18	8.71	8.16	8.27	8.24	8.23	0.29	0.801
Lactobacilli	7.72	8.03	8.05	8.00	7.80	7.85	7.97	0.28	0.967
Enterobacteria	6.27	6.14	6.17	5.69	5.45	6.72	5.94	0.28	0.084
C. perfringens	3.87	3.71	3.85	3.73	3.96	3.96	3.50	0.25	0.856
Caeca Total anaerobes	10.26	10.14	10.02	10.33	10.43	10.00	10.32	0.16	0.385
LAB	9.69	9.50	9.54	9.54	9.61	9.41	9.58	0.17	0.947
Lactobacilli	8.82	8.52	9.22	8.96	9.22	8.96	9.30	0.28	0.457
Enterobacteria	9.33	9.25	9.51	9.13	9.31	9.36	8.76	0.15	0.054
C. perfringens	8.14	7.41	8.11	7.68	7.75	7.76	7.76	0.22	0.250
Day 21									
Ileum Total anaerobes	6.78	6.93	6.52	7.39	7.52	7.24	7.55	0.35	0.291
LAB	7.47	7.01	7.36	7.37	7.21	7.58	7.52	0.17	0.232
Lactobacilli	7.30	6.86	7.16	7.41	7.36	6.96	7.61	0.23	0.106
Enterobacteria	6.19	5.68	5.97	5.58	5.83	5.78	5.33	0.26	0.380
C. perfringens	4.42	4.55	4.35	4.19	4.15	4.82	4.63	0.34	0.791
Caeca Total anaerobes	8.92	8.70	8.80	8.80	9.01	8.78	9.15	0.17	0.548
LAB	8.45	8.29	8.61	8.75	8.63	8.50	8.91	0.19	0.370
Lactobacilli	8.31	8.17	7.79	8.35	8.31	8.21	8.81	0.26	0.223
Enterobacteria	8.16	8.02	8.08	7.60	7.82	7.93	5.97	0.14	0.040
C. perfringens	5.36	4.83	5.26	4.66	4.44	4.83	4.83	0.41	0.708

*a,b,c Means within the same row with no common superscripts differ significantly (P < 0.05).

1 Values are means (n = 6) and standard error of means (SE).

2 Treatments: NC, negative control, with no additives added to the basal feed, water and litter; PC, positive control, with the antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added in feed; Oral-NC, negative control, with no additives added to the basal feed, water and litter, orally inoculated with PBS solution; Other treatments, with probiotic (Pro) L. johnsonii delivery by oral gavage, feed, water and litter, respectively.

3 Enterobacteria are coliform and lactose negative enterobacteria.

Table 9
Ileal morphometry of broilers on d 21 and 35.1

Item	Treatments	SE	P-value						
	NC	PC	Oral – NC	Feed	Water	Litter	Oral – Pro		
Day 7									
Villus height, µm	603	593	589	574	583	605	579	37.29	0.532
Crypt depth, µm	110	98	103	117	106	107	103	6.25	0.741
Villi:crypt ratio	5.48	6.05	5.72	4.91	5.50	5.65	5.62	0.57	0.312
Muscle depth, µm	278	256	268	267	255	259	283	14.24	0.231
Day 21									
Villus height, µm	795	803	827	793	759	782	798	47.38	0.178
Crypt depth, µm	122	135	132	127	130	129	136	8.92	0.615
Villi:crypt ratio	6.52	5.95	6.27	6.24	5.84	6.06	5.87	0.74	0.236
Muscle depth, µm	311	302	291	285	272	298	307	16.36	0.347

1 Values are means (n = 6) and standard error of means (SE).

2 Dietary treatments: NC, negative control, with no additives added to the basal feed, water and litter; PC, positive control, with antibiotic, zinc-bacitracin (ZnB, 50 mg/kg) added in feed; Oral-NC, negative control, with no additives added to the basal feed, water and litter, orally inoculated with PBS solution; Other treatments, with probiotic (Pro) L. johnsonii delivery by oral gavage, feed, water and litter, respectively.
higher when a probiotic containing *L. reuteri* and *L. johnsonii* had been administered, but giving via feed or drinking water did not present different effects on growth performance and gut microbial composition in broilers.

The results of this study showed that different routes for administering *L. johnsonii* did not significantly influence the parameters of growth performance. The probiotic, when given via oral inoculation, achieved the highest weight gain (1,824 g) and FI (2,952 g) during the 35 d of the experiment, but these were not statistically significant. It is not uncommon that the use of *L. johnsonii* as a probiotic does not markedly improve bird performance (Maiorka et al., 2001; Murry et al., 2006). It is evident that probiotics such as *L. johnsonii* are effective in controlling pathogens (Cho et al., 2000; La Ragione et al., 2004) although growth enhancement by probiotics has also been reported (Schneitz, 2005).

4.2. Effects of delivery routes on organ weights and gut development

The probiotic did not affect the relative weights of intestinal tracts of broilers after 21 d of feeding. Jin et al. (1998) demonstrated that the probiotic supplement lactobacillus does not have an effect on organ weights and intestinal weight. Similar results were observed by Huang et al. (2004) who supplemented either *L. casei* or *L. acidophilus* with or without cobalt in the diets of broiler chickens.

The relative (to body weight) weights of the liver, spleen, and bursa of broilers were not affected by the probiotic *L. johnsonii* administrated by different delivery routes. However, delivery of the probiotic through feed, water and litter increased the pancreas weight on d 21. The reason(s) for this increase is not known.

The relative weights of the key organs can often be used as an indicator of changes in the morphology of the gut. The results of ileal morphology from the current study show that probiotic supplementation did not influence villus height, crypt depth and villus:crypt ratio compared with control treatments on d 7 and 21. Additives such as probiotics are regarded as modifying agents of the intestinal wall thickness due to the elimination of prejudicial bacteria (Rosen, 1995), thus germ-free birds have lighter intestinal tracts than birds originating from commercial farms (Coates et al., 1981). In an investigation on the impact of antibiotics on the organs of broilers Jong et al. (1985) reported physical alterations in the structure of the intestine, leading to a reduction in the intestinal weight. Henry et al. (1987) speculated that a decrease in the intestinal mass may result in less utilization of nutrients by the mucosa, sparing nutrients for the birds. However, neither antimicrobials (Loddi et al., 2004) nor probiotics (Pedroso, 2005) were able to achieve the same results in the current study.

Table 10

Distribution of major genotypic groups of lactobacilli isolates from ileum of broiler on d 7.1

Isolates ID	Treatment	DT	ARDRA patterns	Tentative distribution
L. johnsonii	Origin		150-bp, 300-bp, 500-bp	*L. johnsonii*
7-Ileum-5	Oral – NC	5	250-bp, 500 bp, 700 bp	Unidentified Lactobacillus sp.
7-Ileum-5	Oral – NC	5	300-bp, 400-bp, 500-bp, 700-bp	Unidentified Lactobacillus sp.
7-Ileum-5	Oral – NC	5	150-bp, 200 bp, 300 bp	Possibly *L. crispatus*
8-Ileum-5	Oral – NC	5	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
8-Ileum-5	Oral – NC	5	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
9-Ileum-6	Oral – NC	6	35-bp	Unidentified Lactobacillus sp.
9-Ileum-6	Oral – NC	6	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
10-Ileum-5	Oral – NC	5	150-bp, 200 bp, 500 bp	Possibly *L. crispatus*
10-Ileum-5	Oral – NC	5	250-bp, 350-bp, 500-bp, 600-bp	Unidentified Lactobacillus sp.
10-Ileum-5	Oral – NC	5	200 bp, 500 bp, 600 bp	Possibly *L. crispatus*
11-Ileum-6	Oral – NC	6	150-bp, 200 bp, 500 bp	Possibly *L. crispatus*
11-Ileum-6	Oral – NC	5	35-bp	Unidentified Lactobacillus sp.
11-Ileum-6	Oral – NC	5	150-bp, 200 bp, 500 bp	Possibly *L. crispatus*
12-Ileum-6	Oral – NC	6	300-bp, 400-bp, 500-bp, 700-bp	Unidentified Lactobacillus sp.
12-Ileum-6	Oral – NC	6	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
12-Ileum-5	Oral – NC	5	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
12-Ileum-5	Oral – NC	5	150-bp, 200 bp, 500 bp	Possibly *L. crispatus*
31-Ileum-5	Oral – Pro	5	300-bp, 400-bp, 500-bp, 700-bp	Unidentified Lactobacillus sp.
31-Ileum-5	Oral – Pro	5	150-bp, 350-bp, 500-bp	Possibly *L. johnsonii*
31-Ileum-5	Oral – Pro	5	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
31-Ileum-4	Oral – Pro	4	250-bp, 350-bp, 500-bp, 600-bp	Possibly *L. salivarius*
31-Ileum-4	Oral – Pro	4	300 bp, 400 bp, 500 bp, 700 bp	Unidentified Lactobacillus sp.
32-Ileum-6	Oral – Pro	6	250 bp, 350 bp, 500 bp, 600 bp	Possibly *L. salivarius*
32-Ileum-5	Oral – Pro	5	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
33-Ileum-6	Oral – Pro	5	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
33-Ileum-6	Oral – Pro	6	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
33-Ileum-6	Oral – Pro	6	250 bp, 350 bp, 500 bp, 600 bp	Possibly *L. salivarius*
33-Ileum-6	Oral – Pro	6	150 bp, 200 bp, 500 bp	Possibly *L. crispatus*
34-Ileum-5	Oral – Pro	5	350 bp	Unidentified Lactobacillus sp.
34-Ileum-5	Oral – Pro	5	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
34-Ileum-5	Oral – Pro	5	150 bp, 200 bp, 500 bp	Possibly *L. crispatus*
35-Ileum-5	Oral – Pro	5	200 bp, 500 bp, 600 bp	Unidentified Lactobacillus sp.
35-Ileum-5	Oral – Pro	5	250 bp, 350 bp, 500 bp, 600 bp	Possibly *L. salivarius*
36-Ileum-5	Oral – Pro	6	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
36-Ileum-6	Oral – Pro	5	150 bp, 300 bp, 500 bp	Possibly *L. johnsonii*
36-Ileum-5	Oral – Pro	5	350 bp	Unidentified Lactobacillus sp.
36-Ileum-5	Oral – Pro	5	350 bp	Unidentified Lactobacillus sp.

DT = dietary treatment; ARDRA = amplified ribosomal DNA restriction analysis.

1 Pure isolates were randomly selected from the ileum.

2 Oral-NC, negative control, with no additives added to the basal feed, water and litter, orally inoculated with PBS solution; Oral - Pro, with probiotic (Pro) *L. johnsonii* delivery by oral gavage.
produced significant changes in the micro-structure of the intestine of birds.

4.3. Bacterial populations, intestinal pH and SCFA concentrations

The present results show that *Enterobacteria* and *Lactobacilli* are the most important groups of bacteria in the ileum and caeca during the early life of the chicks. The number of *Enterobacteria* starts to decrease from d 7 to 21 whereas that of lactobacilli decreases progressively from d 7 to 21. This result is supported by Van der Wielen et al. (2000) who reported that, after a decline in the early life of broilers, the number of *Enterobacteria* and *Lactobacilli* stabilized after 3 weeks of age.

Direct-fed microbials are known to benefit the host animal by improving its intestinal microflora balance (Fuller, 1998). The current study showed that the number of *Enterobacteria* decreased in the caeca and ileum significantly in probiotic treatment groups compared with control treatments. This is may indicate that the *Enterobacteria* group was inhibited by the dominant probiotic group. Thus, with the establishment of *L. johnsonii* in the gastrointestinal tract (GIT) of the birds, the enterobacterial population was outcompeted and the equilibrium of the gut microflora in the ileum and caeca was restored. This result, supported by those of Salminen and Wright (1993), demonstrates that *Lactobacillus* spp. exert a direct influence on enterobacterial colonization and it is tempting to describe the observed effects in such a manner.

Vahjen et al. (1998) also indicated that a high lactobacillus population competitively excluded other members of the intestinal microflora of broilers, which displayed a slow rise in numbers in the ileum on d 21 followed by a rather sharp decline (up to tenfold) on d 28. The number of enterobacteria in the ileum followed the same declining trend.

One of the mechanisms by which CE occurs is through the production of SCFA by the dominating microflora. This study shows the presence of high concentration of acetic and lactic acids in the ileum, and butyric and succinic acids in the caeca in the probiotic treatment groups compared with control groups on d 7 and 21. This may mean that *Enterobacteria* are more susceptible to SCFA than lactobacilli. Indeed, Van der Wielen et al. (2000) demonstrated that an increasing concentration of SCFA caused a gradual decrease in the proliferation rate of *Enterobacteria*, but not that of the lactobacilli.

C. perfringens is a ubiquitous bacterium present in the chicken gut that causes necrotic enteritis when the conditions are right for the organism (Kocher, 2003). Necrotic enteritis is estimated to cost the global broiler industry US$2 billion per annum (Keyburn et al., 2006). The current study examined the effect of supplemental *L. johnsonii* on the number of *C. perfringens* in the ileum and the caeca. The population of *C. perfringens* decreased rapidly from an early age to d 21 in the caeca, leading to a 3-fold decrease in the number of *C. perfringens* between d 7 and 21. It also showed that the probiotic treatment presented the lowest number of *C. perfringens* in the ileum and the caeca. The population of *C. perfringens* decreased rapidly from an early age to d 21 in the caeca, leading to a 3-fold decrease in the number of *C. perfringens* between d 7 and 21. It also showed that the probiotic treatment presented the lowest number of *C. perfringens* in the ileum and the caeca.

4.4. Probiotic candidates dominant in the gut

The microbial community of the GIT ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host (Drasar and Barrow, 1985). In chickens, the diet and the environment affect the microbial status of the GIT. Dirty litter and other management parameters affect the microbial composition of the chickens both directly by providing a continuous source of bacteria and indirectly by influencing the physical condition and
defence of the birds (Apajalahti et al., 2003). Changes in the composition of the animal’s microflora can have beneficial or detrimental effects on the health, growth, and maturation of the host animal (Hill, 1982). Lu et al. (2003) analysed the composition of the bacterial flora in the ileum and caeca of broilers by the percent G + C profiling sequencing of 1,230 clones from a 16S rDNA community DNA library. Their results showed that Lactobacillus species were most abundant at 68.5% of the total sequences and L. acidophilus, L. salivarius, L. crispatus, L. delbrueckii, L. reuteri and L. aviaris were the dominant strains of lactobacilli in the ileum and caeca of chickens. Their results also indicated that L. johnsonii was not a dominant bacterial species in the intestinal tract of a normal chicken. Also (Dumonceaux et al., 2006) analysed the microbiota in the caeca of broilers on d 47. Their results demonstrated that the most commonly recovered sequences were lactobacilli that accounted for more than 65% of the total isolates. L. salivarius, and L. crispatus were the predominant lactobacilli in the caecal microflora and only three sequences (L. salivarius, L. buchneri and L. crispatus) were found in both the small intestine and the caeca.

A single dose of bacteria inoculated to newly hatched chicks can change digestive communities (Apajalahti et al., 1998). The results of this study show that L. johnsonii colonies were not detected in 20 of the ileal isolates in the negative control groups. This may indicate that L. johnsonii isolates (8/20), which were found in the oral inoculation treatment, had become dominant strains in the composition of lactobacilli in the ileum of broilers.

5. Conclusions

The novel probiotic candidate L. johnsonii was dominant in the intestinal tract of broiler chickens in the treatment groups. This was detected by 16-23S rDNA ARDRA patterns which also confirmed the influence of L. johnsonii on the gastrointestinal micro-floral composition and notably the associated decrease in enterobacterial colonization in the ileum of broiler chicken between 1 and 21 d of age.

The delivery of the probiotic via drinking water, in feed, by litter application or oral gavage did not improve bird performance during the experimental period. Furthermore, there were no statistically significant differences between the various methods of delivery on the gut microflora, but individual oral application showed best regarding the reduction of Enterobacteria numbers in trial. The probiotic decreased the number of Enterobacteriaceae and C. perfringens, a finding which may be regarded as a key attribute of probiotic application in poultry diets.

References

Apajalahti JH, Patti AK, Nurminen H, Hanna Jatila I, Holben WE. Selective plating undetectable species and shows differential recovery of Bifidobacterial species from human faces. J Appl Environ Microbiol 2003;69:5731–5.
Apajalahti JH, Sarkialahti UK, Maki BR, Heikkinen JP, Nurminen PH, Holben WE. Effective recovery of bacterial DNA and percent-guanine-plus-cytosine-based analysis of community structure in the gastrointestinal tract of broiler chickens. J Appl Environ Microbiol 1998;64:4084–8.
Blankenship LC. Report at international poultry exhibition in Atlanta, 22–4 January. Cho JS, Choi YJ, Chung DK. Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus genkai and Lactobacillus johnsonii and characterization of the genetically modified probiotic. Curr Microbiol 2000;40:257–63.
Coates ME, Cole CB, Fuller R, Houghton SB, Yorota H. The gut microflora and the uptake of glucose from the small intestine of the chick. Br Poult Sci 1981;22:289–94.
Corcoran BM, Ross RP, Fitzgerald GF, Stanton C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 2004;96:1024–30.
Corrier DE, Hinton AJ, Zigrin RL, Biser RC, DeLoach JR. Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids and Salmonella typhimurium colonization of broiler chicks. Avian Dis 1990;34:617–25.
