The channel structure of trithallium pentaantimonate(V), \(Tl_3Sb_5O_{14} \)

Paul Sicher and Berthold Stöger*

X-Ray Center, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria. *Correspondence e-mail: bstoeger@mail.tuwien.ac.at

Single crystals of \(Tl_3Sb_5O_{14} \) were grown by solid-state reaction in a corundum crucible under air (1273 K, 12 h). The structure was determined by single-crystal X-ray diffraction. It is isotypic to the \(K_3Sb_5O_{14} \), \(Rb_3Sb_5O_{14} \) and \(Cs_3Sb_5O_{14} \) analogues with orthorhombic \(Pbam \) symmetry and cell parameters \(a = 24.2899 (9) \) Å, \(b = 7.1931 (3) \) Å, \(c = 7.4182 (3) \) Å. The Sb atoms form irregular \([SbO_6]\) octahedra, which are linked via edges and corners into a triperiodic network. The \(Tl^+ \) ions are located in distinct channels of the network extending along [010] and [001].

1. Chemical context

During an extensive study of \(M[SbF_6] \) compounds (\(M = Li, Na, Tl \)), precursors in the form of \(MSbO_3 \) were synthesized. Whereas the chosen conditions (1273 K, 12 h) yielded the expected product for \(LiSbO_3 \) and \(NaSbO_3 \), the \(Tl \)-poor title compound \(Tl_3Sb_5O_{14} \) was inadvertently obtained in the case of \(Tl \). \(TlSbO_3 \) was later successfully synthesized at 1073 K. In fact, prior syntheses of \(TlSbO_3 \) were performed at even lower temperatures (Bouchama & Tournoux, 1975).

The analogues \(K_3Sb_5O_{14} \) (Hong, 1974), \(Rb_3Sb_5O_{14} \) and \(Cs_3Sb_5O_{14} \) (Hirschle et al., 2001) have been synthesized at 1373 K using more involved routes. The first structural characterization of \(K_3Sb_5O_{14} \) was published by Aurivillius (1966). However, the author gives an incorrect Schoenbeck space-group symmetry of type \(Pba2_1 \), which was later corrected to \(Pbam \) by (Hong, 1974).

Hong (1974) noted unusual enlargement of the atomic displacement parameters (ADP) of \(K \) in \(K_3Sb_5O_{14} \), which are located in distinct channels, suggesting ion conductivity. In fact, the author could partially substitute \(K \) for \(Rb, Ag \) and \(Tl \) in the respective nitrate salt melts. Accordingly, it is expected that the hitherto structurally uncharacterized \(Ag_3Sb_5O_{14} \) likewise exists. In contrast, substitution with the smaller Na’ ion in an \(NaNO_3 \) melt led to a collapse of the structure and formation of the \(Na \)-poor \(Na_2Sb_4O_{11} \). The instability of \(M_3Sb_5O_{14} \) with small ions might explain the successful syntheses of \(MSbO_3 \) (\(M = Li, Na \)) at 1273 K.

2. Structural commentary

\(Tl_3Sb_5O_{14} \) crystallizes in the space group \(Pbam \) and is isotypic to \(M_3Sb_5O_{14} \) (\(M = K, Rb, Cs \)). Two different settings of the \(Pbam \) space group were used to describe the structures: \(a > b \) by Hong (1974) and \(a < b \) by Hirschle et al. (2001). These are equivalent descriptions, because the \((a', b', c') = (b, -a, c)\) operation is an element of the affine normalizer of the \(Pbam \)
space group. Herein we use the original setting and atom labeling of Hong (1974).

In structures of the $M_3Sb_5O_{14}$ type, the monovalent metal atoms M are located in channels of a triperiodic network formed by $[SbO_6]$ octahedra. There are two distinct channels parallel to $[010]$, both with $\overline{p}2_1b2m$ symmetry (Fig. 1). In the second channel, the M_2 atoms are likewise arranged in the form of zigzag lines (Fig. 2). All of the M atoms are located on or very close to the reflection plane of the channels. Additionally, channels with a smaller diameter extend in the $[001]$ direction (Fig. 3). For $K_3Sb_5O_{14}$, Hong (1974) reports excessive enlargement of the ADPs of the K_1 and K_2 atoms in the $[010]$ and $[001]$ directions of the channels, with the ‘thermal motions’ in these directions being ‘eight times bigger’ than in the $[100]$ direction. The Tl_1 and Tl_2 atoms in the title compound show a much milder enlargement of the ADPs. The ratio of the mean-square displacement of the longest and shortest principal axes of the ADP tensor is 3.2 for Tl_1 and 2.9 for Tl_2. Note that the value for Tl_2 is not directly comparable, since it was refined as disordered about the reflection plane. However, even when placing the atom on the reflection plane, the ratio increases to only 3.2. From these values, it appears that $Tl_3Sb_5O_{14}$ is not a prime candidate for ion conductivity, at least at the measurement temperature of 100 K. For $Rb_3Sb_5O_{14}$ and $Cs_3Sb_5O_{14}$, similarly mild enlargement of the ADPs has been reported (Hirschle et al., 2001). In contrast to the $Tl_3Sb_5O_{14}$ title compound, these were derived from data collected at room temperature.

All Sb atoms are coordinated by six O atoms forming highly irregular $[SbO_6]$ octahedra (Table 1) with O—Sb—O cis angles ranging from 73.37 (17) to 103.83 (13)° and trans angles up to 150.66 (16)°. As noted by Hirschle et al. (2001), the framework can be described as being composed of four distinct parts: two infinite octahedra chains and two edge-connected pairs of octahedra. In general, these elements are connected via corners but there is an additional connection between a pair and a chain via an edge.

A quantitative comparison of $Tl_3Sb_5O_{14}$ and the alkali-metal analogues $M_3Sb_5O_{14}$ ($M = K$, Rb, Cs) was performed using the COMPSTRU (de la Flor et al., 2016) module of the Bilbao Crystallographic Server (Aroyo et al., 2006). The Tl_2 atom was moved onto the reflection plane to make the sets of Wyckoff positions compatible. The degree of lattice distortion with respect to the Tl compound is $S = 0.0042$ ($M = K$), $S = 0.0048$ ($M = Rb$) and $S = 0.0262$ ($M = Cs$). This shows that the K, Rb and Tl compounds feature very similar cell parameters, with the volume increasing slightly according to $K > Rb > Tl$ (Table 2). In contrast, the lattice of $Cs_3Sb_5O_{14}$ features a pronounced distortion with a ca 11% larger unit-cell volume. The enlargement affects foremost the a and b lattice parameters, whereas c is smaller than for the Tl compound. We
Table 1	Selected geometric parameters (Å, °).
TII—TII	3.3972 (4) Sb2—O10 1.919 (3)
TII—TII'	3.4507 (7) Sb2—O2v 1.983 (4)
TII—TII''	3.6130 (4) Sb2—O4v 2.140 (4)
TII—TII"	3.3972 (4) Sb2—O4u 2.215 (4)
TII—TII'	3.6129 (4) Sb3—O5vii 1.952 (4)
TII—O3	2.565 (4) Sb3—O5 1.979 (4)
TII—O6	2.775 (4) Sb3—O9v 1.998 (3)
TII—O5	2.495 (4) Sb3—O9 1.998 (3)
Sh1—O6	1.925 (3) Sb3—O7vii 2.002 (3)
Sh1—O8	1.925 (3) Sb3—O7 2.002 (3)
Sh1—O6'vii	1.971 (4) Sb4—O3 1.9233 (15)
Sh1—O1'vii	1.996 (2) Sb4—O7vii 1.936 (3)
Sh1—O1	1.996 (2) Sb4—O9 1.954 (3)
Sh1—O2	2.081 (4) Sb4—O8 1.975 (3)
Sh1—O2'	1.911 (4) Sb4—O4 2.0284 (11)
Sh2—O10vii	1.919 (3) Sb4—O10vii 2.041 (3)

Table 2	Comparison of unit-cell parameters (Å, Å³) of the M3Sb5O14 structures.			
Compound	K₃Sb₅O₁₄	Rb₃Sb₅O₁₄	Cs₃Sb₅O₁₄	Tl₃Sb₅O₁₄
a	24.247 (4)	24.478 (2)	26.251 (5)	24.2899 (9)
b	7.157 (2)	7.1881 (9)	7.4337 (13)	7.1931 (3)
c	7.334 (2)	7.331 (2)	7.396 (3)	7.4182 (3)
V	1272.7 (3)	1289.8 (4)	1443.3 (7)	1296.11 (9)

3. Synthesis and crystallization

A mixture of 0.682 g TiNO₃ and 0.373 g Sb₂O₃ (which makes for an approximate molar ratio of 1:1 for Ti:Sb) was heated in a corundum crucible at 1273 K for 12 h in air. From the reaction, a dark-orange powder was obtained. The single crystals formed as rectangular-prismatic plates. Crystals were isolated under a polarizing microscope and cut to an appropriate size for single crystal diffraction of a highly absorbing crystal.

4. Refinement

Crystal data, collection and structure refinement are summarized in Table 3. A starting model was generated using the coordinates of K₃Sb₅O₁₄ (Hong, 1974). Owing to distinct peaks in the difference-Fourier map, the Ti2 atom was removed from the reflection plane and refined as disordered. Even though the refined distance of the atom from the reflection plane is minute, the residuals improved significantly

Table 3	Experimental details.
Crystal data	Tl₃Sb₅O₁₄
Chemical formula	Ti₃Sb₅O₁₄
M_r	1445.86
Crystal system, space group	Orthorhombic, Pham
Temperature (K)	293 (274, 296, 300, 308, 320)
V (Å³)	1272.7 (3)
Z	4
Radiation type	Mo Kα
µ (mm⁻¹)	47.48
Crystal size (mm)	0.11 × 0.06 × 0.02

Data collection

Diffractometer | Bruker Kappa APEX2 CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
T_max, T_min | 0.7100, 0.058 |
No. of reflections | 27499, 3084, 2850 |
R(int) | 0.023, 0.055, 1.07 |
S | 2086.6 |
No. of parameters | 121 |
\(\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} \) (e Å⁻³) | 2.55, -1.52 |

Computer programs: APEX2 and SAINT-Plus (Bruker, 2021), SHELXL2014/7 (Sheldrick, 2015), DIAMOND (Putz & Brandenburg, 2021) and pubCIF (Westrip, 2010).
[\(R[I > 2\sigma(I)] \) from 0.028 to 0.023], which might be in part due to the increased number of anisotropic displacement parameters.

Funding information

The authors acknowledge TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). *Z. Kristallogr.* **221**, 15–27.

Aurivillius, B. (1966). *Ark. Kemi.* **25**, 505–514.

Bouchama, M. & Tournoux, M. (1975). *Rev. Chim. Min.* **12**, 80–92.

Bruker (2021). *APEX3, SAINT* and *SADABS*. Bruker-AXS Inc. Madison, Wisconsin, USA.

Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). *J. Appl. Cryst.* **49**, 653–664.

Hirschle, C., Rosstaucher, J., Emmerling, F. & Röhr, C. (2001). *Z. Naturforsch. B.* **56**, 169–178.

Hong, H. Y.-P. (1974). *Acta Cryst.* **B30**, 945–952.

Putz, H. & Brandenburg, K. (2021). *DIAMOND – Crystal and Molecular Structure Visualization*, Crystal Impact, Bonn, Germany. https://www.crystalimpact.de/diamond.

Sheldrick, G. M. (2015). *Acta Cryst.* **C71**, 3–8.

Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.
The channel structure of trithallium pentaantimonate(V), $\text{Tl}_3\text{Sb}_5\text{O}_{14}$

Paul Sicher and Berthold Stöger

Computing details

Data collection: *APEX3* (Bruker, 2021); cell refinement: *APEX3* (Bruker, 2021); data reduction: *SAINT-Plus* (Bruker, 2021); program(s) used to solve structure: undef; program(s) used to refine structure: *SHELXL2014/7* (Sheldrick, 2015); molecular graphics: *DIAMOND* (Putz & Brandenburg, 2021); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Trithallium pentaantimonate(V)

Crystal data

$\text{Tl}_3\text{Sb}_5\text{O}_{14}$
$M_r = 1445.86$
Orthorhombic, $Pbam$
$a = 24.2899$ (9) Å
b = 7.1931 (3) Å
c = 7.4182 (3) Å
$V = 1296.11$ (9) Å3
$Z = 4$
$F(000) = 2440$

$D_x = 7.410$ Mg m$^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 9928 reflections
$\theta = 2.8–35.3^\circ$
$\mu = 47.48$ mm$^{-1}$
$T = 250$ K
Plate, colourless
$0.11 \times 0.06 \times 0.02$ mm

Data collection

Bruker Kappa APEXII CCD
diffractometer
Graphite monochromator
ω- and φ-scans
Absorption correction: multi-scan
(SADABS; Bruker, 2021)
$T_{\text{min}} = 0.010$, $T_{\text{max}} = 0.058$
27499 measured reflections

3084 independent reflections
2850 reflections with $I > 2\sigma(I)$
$R_{\text{int}} = 0.051$
$\theta_{\text{max}} = 35.3^\circ$, $\theta_{\text{min}} = 3.0^\circ$
h = $-39\rightarrow39$
k = $-11\rightarrow11$
l = $-12\rightarrow12$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.023$
$wR(F^2) = 0.055$
$S = 1.07$
3084 reflections
121 parameters
0 restraints

Primary atom site location: isomorphous
structure methods

$w = 1/[\sigma^2(F_c^2) + (0.0199P)^2 + 6.584P]$
where $P = (F_c^2 + 2F_e^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.001$
$\Delta\rho_{\text{max}} = 2.55$ e Å$^{-3}$
$\Delta\rho_{\text{min}} = -1.52$ e Å$^{-3}$
Extinction correction: *SHELXL-2014/7* (Sheldrick 2015),
$Fc^c = kFc[1+0.001xFc^2]/\sin(2\theta)]^{1/4}$
Extinction coefficient: 0.00075 (4)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	Uiso*/Ueq	Occ. (<1)
Tl1	0.01569 (2)	0.23393 (5)	0.5000	0.03732 (8)	0.5
Tl2	0.29264 (2)	0.12150 (6)	−0.0170 (5)	0.0353 (4)	0.5
Tl3	0.38418 (2)	0.10536 (4)	0.5000	0.03177 (7)	0.5
Sb1	0.05715 (2)	0.41738 (4)	0.0000	0.00993 (6)	0.5
Sb2	0.43805 (2)	0.40456 (4)	0.0000	0.01042 (6)	0.5
Sb3	0.25558 (2)	0.32863 (4)	0.5000	0.00998 (6)	0.5
Sb4	0.14535 (2)	0.11009 (3)	0.26233 (3)	0.01011 (5)	0.5
O1	0.0000	0.5000	0.1759 (5)	0.0131 (6)	0.5
O2	0.01735 (15)	0.1611 (5)	0.0000	0.0130 (6)	0.5
O3	0.11974 (15)	0.1728 (6)	0.5000	0.0139 (6)	0.5
O4	0.14514 (15)	0.0305 (5)	0.0000	0.0124 (6)	0.5
O5	0.28203 (16)	0.0685 (5)	0.5000	0.0146 (6)	0.5
O6	0.40613 (16)	0.1618 (5)	0.0000	0.0146 (6)	0.5
O7	0.21049 (11)	0.2637 (4)	0.2830 (4)	0.0144 (5)	0.5
O8	0.10390 (11)	0.3355 (4)	0.1939 (4)	0.0138 (4)	0.5
O9	0.31369 (11)	0.3832 (4)	0.3169 (4)	0.0136 (4)	0.5
O10	0.42520 (10)	0.4563 (4)	0.2502 (3)	0.0132 (4)	0.5

Atomic displacement parameters (Å²)

	U11	U22	U33	U12	U13	U23
Tl1	0.01779 (11)	0.04162 (17)	0.05255 (18)	0.00612 (10)	0.0000	0.0000
Tl2	0.01922 (12)	0.04252 (19)	0.0442 (12)	−0.00204 (11)	−0.0027 (2)	0.0106 (5)
Tl3	0.01232 (10)	0.02797 (13)	0.05504 (18)	0.00031 (8)	0.0000	0.0000
Sb1	0.00754 (12)	0.01037 (13)	0.01187 (12)	0.00045 (9)	0.0000	0.0000
Sb2	0.00826 (12)	0.01106 (13)	0.01193 (12)	0.00000 (9)	0.0000	0.0000
Sb3	0.00756 (11)	0.01032 (13)	0.01205 (12)	−0.00028 (9)	0.0000	0.0000
Sb4	0.00803 (9)	0.01136 (10)	0.01094 (9)	0.00039 (6)	−0.00072 (6)	−0.00010 (7)
O1	0.0106 (14)	0.0163 (16)	0.0123 (13)	0.0028 (12)	0.0000	0.0000
O2	0.0080 (14)	0.0098 (15)	0.0214 (16)	−0.0005 (11)	0.0000	0.0000
O3	0.0107 (15)	0.0223 (18)	0.0086 (13)	0.0045 (13)	0.0000	0.0000
O4	0.0119 (14)	0.0150 (16)	0.0101 (13)	−0.0016 (12)	0.0000	0.0000
O5	0.0114 (15)	0.0106 (15)	0.0217 (16)	−0.0008 (12)	0.0000	0.0000
O6	0.0113 (15)	0.0087 (15)	0.0238 (17)	−0.0011 (12)	0.0000	0.0000
O7	0.0123 (11)	0.0159 (12)	0.0150 (10)	−0.0035 (9)	−0.0031 (9)	0.0011 (9)
O8	0.0142 (11)	0.0128 (11)	0.0144 (10)	0.0034 (9)	−0.0038 (9)	−0.0013 (9)
O9	0.0119 (10)	0.0125 (11)	0.0165 (10)	−0.0029 (8)	0.0023 (9)	−0.0003 (9)
O10	0.0093 (10)	0.0161 (11)	0.0141 (10)	0.0003 (8)	0.0005 (8)	0.0001 (9)
Geometric parameters (Å, °)

Bond	Distance (Å)	Bond	Distance (Å)
Tl1—Tl3i	3.3972 (4)	Sb2—Sb2x	3.079 (6)
Tl1—Tl1ii	3.4507 (7)	Sb3—O5iii	1.952 (4)
Tl1—Tl3iii	3.6130 (4)	Sb3—O5	1.979 (4)
Tl2—Tl2iv	0.252 (7)	Sb3—O9ii	1.998 (3)
Tl3—Tl1v	3.3972 (4)	Sb3—O9	1.998 (3)
Tl3—Tl2vi	3.6129 (4)	Sb3—O7vii	2.002 (3)
Tl1—O3	2.565 (4)	Sb3—O7	2.002 (3)
Tl2—O6	2.775 (4)	Sb4—O3	1.9233 (15)
Tl3—O5	2.495 (4)	Sb4—O7	1.936 (3)
Tl3—Sb3	3.5123 (4)	Sb4—O9vii	1.954 (3)
Sb1—O8iv	1.925 (3)	Sb4—O8	1.975 (3)
Sb1—O8	1.925 (3)	Sb4—O4	2.0284 (11)
Sb1—O6vii	1.971 (4)	Sb4—O10vii	2.041 (3)
Sb1—O1viii	1.996 (2)	Sb4—Sb2xiii	3.1743 (3)
Sb1—O1	1.996 (2)	O1—Sb1viii	1.996 (2)
Sb1—O2	2.081 (4)	O2—Sb2	1.983 (4)
Sb1—Sb1viii	3.0199 (6)	O2—Sb2vii	2.140 (4)
Sb2—O6	1.911 (4)	O3—Sb4v	1.9233 (15)
Sb2—O10v	1.919 (3)	O4—Sb4v	2.0283 (11)
Sb2—O10	1.919 (3)	O4—Sb2vii	2.215 (4)
Sb2—O2v	1.983 (4)	O5—Sb3v	1.952 (4)
Sb2—O2vii	2.140 (4)	O6—Sb1viii	1.971 (4)
Sb2—O4vii	2.215 (4)	O6—Tl2v	2.775 (4)
Sb2—Sb4viii	3.1742 (3)	O9—Sb4v	1.954 (3)
Sb2—Sb4vii	3.1742 (3)	O10—Sb4v	2.042 (3)
O3—Tl1—Tl3i	169.98 (10)	Sb4vii—Sb2—Sb2x	112.786 (12)
O3—Tl1—Tl1ii	92.89 (10)	Sb4vii—Sb2—Sb2x	112.786 (12)
Tl3—Tl1—Tl1ii	97.130 (13)	O5vii—Sb3—O5	171.04 (9)
O3—Tl1—Tl1—Tl3iii	57.56 (10)	O5vii—Sb3—O9vii	99.04 (11)
Tl3—Tl1—Tl3iii	112.419 (11)	O5—Sb3—O9vii	87.50 (11)
Tl1v—Tl1—Tl3iii	150.451 (14)	O5viii—Sb3—O9	99.03 (11)
Tl2—O6—Tl2—O6	87.40 (7)	O5—Sb3—O9	87.50 (11)
O5—Tl3—Tl1v	166.21 (9)	O9v—Sb3—O9	85.66 (16)
O5—Tl3—Sb3	33.32 (9)	O5vii—Sb3—O7vii	87.14 (11)
Tl1v—Tl3—Sb3	132.96 (12)	O5—Sb3—O7vii	87.54 (11)
O5—Tl3—Tl1vi	126.21 (9)	O9v—Sb3—O7vii	83.44 (11)
Tl1v—Tl3—Tl1vi	67.581 (11)	O9v—Sb3—O7vii	168.21 (11)
Sb3—Tl3—Tl1v	159.523 (11)	O5vii—Sb3—O7	87.14 (11)
O8v—Sb1—O8	96.70 (16)	O5—Sb3—O7	87.54 (11)
O8v—Sb1—O6vii	90.34 (11)	O9vii—Sb3—O7	168.21 (11)
O8—Sb1—O6vii	90.34 (11)	O9—Sb3—O7	83.44 (11)
O8v—Sb1—O1viii	90.74 (11)	O7vii—Sb3—O7	107.02 (16)
O8—Sb1—O1viii	171.91 (11)	O5viii—Sb3—Tl3	145.11 (12)
O6vii—Sb1—O1viii	92.82 (8)	O5—Sb3—Tl3	43.84 (11)
O8v—Sb1—O1	171.91 (11)	O9vii—Sb3—Tl3	57.42 (8)
Bond	Value 1	Value 2	Value 3
---	---	---	---
O8—Sb1—O1	90.74 (11)	O9—Sb3—Tl3	57.42 (8)
O6vii—Sb1—O1	92.82 (8)	O7vi—Sb3—Tl3	112.32 (8)
O1viii—Sb1—O1	81.67 (15)	O3—Sb4—O7	93.31 (15)
O8vii—Sb1—O2	90.17 (11)	O3—Sb4—O9vi	99.82 (14)
O6—Sb1—O2	90.17 (11)	O7—Sb4—O9vi	92.53 (12)
O1viii—Sb1—O2	179.23 (15)	O3—Sb4—O8	83.01 (13)
O1—Sb1—O2	86.60 (8)	O7—Sb4—O8	88.19 (12)
O8vii—Sb1—Sb1viii	131.51 (8)	O9vi—Sb4—O8	177.03 (11)
O8—Sb1—Sb1viii	131.51 (8)	O3—Sb4—O4	160.89 (15)
O6—Sb1—Sb1viii	93.72 (11)	O7—Sb4—O4	103.83 (13)
O1viii—Sb1—Sb1viii	40.84 (8)	O9vi—Sb4—O4	87.96 (13)
O1—Sb1—Sb1viii	40.84 (8)	O8—Sb4—O4	89.07 (13)
O2—Sb1—Sb1viii	85.51 (10)	O3—Sb4—O10vii	84.03 (14)
O6—Sb2—O10v	96.40 (9)	O7—Sb4—O10vii	177.09 (11)
O6—Sb2—O10	96.40 (9)	O9vi—Sb4—O10vii	89.09 (11)
O10v—Sb2—O10	150.66 (16)	O8—Sb4—O10vii	90.31 (11)
O6—Sb2—O2v	100.16 (16)	O4—Sb4—O10vii	78.63 (13)
O10v—Sb2—O2v	101.78 (8)	O3—Sb4—Sb2viii	117.70 (12)
O10—Sb2—O2v	101.78 (8)	O7—Sb4—Sb2viii	146.72 (8)
O6—Sb2—O2vii	173.53 (15)	O9v—Sb4—Sb2viii	93.61 (8)
O10v—Sb2—O2vii	85.12 (9)	O8—Sb4—Sb2viii	93.52 (8)
O10—Sb2—O2vii	85.12 (9)	O4—Sb4—Sb2viii	43.86 (10)
O2v—Sb2—O2vii	73.37 (17)	O10v—Sb4—Sb2viii	35.42 (7)
O6—Sb2—O4vii	90.22 (16)	Sb1v—O1—Sb1	98.33 (15)
O10v—Sb2—O4vii	76.83 (8)	Sb2i—O2—Sb1	131.46 (19)
O10—Sb2—O4vii	76.83 (8)	Sb2i—O2—Sb2viii	106.63 (17)
O2v—Sb2—O4vii	169.63 (15)	Sb1—O2—Sb2viii	121.92 (17)
O2vii—Sb2—O4vii	96.25 (14)	Sb4—O3—Sb4v	132.9 (2)
O6—Sb2—Sb4vii	99.60 (9)	Sb4—O3—Tl1	111.03 (11)
O10v—Sb2—Sb4vii	38.07 (8)	Sb4v—O3—Tl1	111.03 (11)
O10—Sb2—Sb4vii	113.51 (8)	Sb4v—O4—Sb4	147.2 (2)
O2v—Sb2—Sb4vii	136.95 (5)	Sb4v—O4—Sb2viii	96.76 (11)
O2vii—Sb2—Sb4vii	85.49 (8)	Sb4—O4—Sb2viii	96.76 (11)
O4viii—Sb2—Sb4vii	39.39 (3)	Sb3v—O5—Sb3	133.2 (2)
O6—Sb2—Sb4v	99.60 (9)	Sb3v—O5—Tl3	124.01 (18)
O10v—Sb2—Sb4v	113.51 (8)	Sb3—O5—Tl3	102.84 (16)
O10—Sb2—Sb4v	38.07 (8)	Sb2—O6—Sb1v	129.2 (2)
O2v—Sb2—Sb4v	136.95 (5)	Sb2—O6—Tl2	119.90 (17)
O2v—Sb2—Sb4v	85.49 (8)	Sb1v—O6—Tl2	110.88 (16)
O4viii—Sb2—Sb4v	39.39 (3)	Sb2—O6—Tl2v	119.90 (17)
Sb4v—Sb2—Sb4v	75.620 (11)	Sb1—O6—Tl2v	110.88 (16)
O6—Sb2—Sb2v	138.46 (12)	Tl2—O6—Tl2v	5.21 (15)
O10v—Sb2—Sb2v	93.86 (8)	Sb4—O7—Sb3	130.09 (14)
O10—Sb2—Sb2v	93.86 (8)	Sb1—O8—Sb4	138.08 (15)
O2v—Sb2—Sb2v	38.31 (11)	Sb4iv—O9—Sb3	131.67 (14)
O2vii—Sb2—Sb2x 35.07 (10)
O4vii—Sb2—Sb2x 131.32 (10)
Sb2—O10—Sb4x 106.51 (12)

Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x, −y, −z+1; (iii) −x+1/2, y+1/2, −z+1; (iv) x, y, −z; (v) x+1/2, −y+1/2, z; (vi) −x+1/2, y−1/2, −z+1; (vii) −x+1/2, y+1/2, −z; (viii) −x−1, −y+1, −z; (ix) −x+1/2, y+1/2, z; (x) −x+1, −y+1, −z; (xi) x, y, −z+1; (xii) −x+1/2, y−1/2, z; (xiii) −x+1/2, y−1/2, −z.