Coefficient Inequalities for Uniformly P-Valent Starlike and Convex Functions

Vandna Agnihotria* and Ran Singh

1D-09, The LNM Institute of Information Technology, Jaipur-302031, Rajasthan, India
2Department of Mathematics, DAV College, CSJM University, Kanpur-208016, UP, India

Introduction

Let \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) denote the open unit disk and let \(A_p \) be the class of functions \(f(z) \) of the form \(f(z) = z^p + \sum_{n=p+1} a_n z^n, \) \(p \in \mathbb{N} = \{1, 2, \ldots \} \) which are analytic in the open unit disk \(U \). A function \(f \in A_p \) is said to be \(p \)-valent starlike of order \(\alpha \) \((0 \leq \alpha < 1)\), if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, \quad z \in U.
\]
The class of all such functions is denoted by \(S^*_p(\alpha) \). A function \(f \in A_p \) is said to be \(p \)-valent convex of order \(\alpha \) \((0 \leq \alpha < p)\), if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha, \quad z \in U.
\]
Let \(K_p(\alpha) \) denote the class of all such functions. For \(p=1 \) we write \(A_1 = A \). Note that for \(p=1 \) the classes \(S^*_p(\alpha) \) and \(K_p(\alpha) \) are the usual classes of starlike and convex functions of order \(\alpha \) \((0 \leq \alpha < 1)\), respectively, and will be denoted by \(S^*(\alpha) \) and \(K(\alpha) \) respectively. For \(p=1 \) and \(\alpha=0 \), the classes \(S^*_p(\alpha) \) and \(K_p(\alpha) \) reduce to \(S^* \) and \(K \) respectively, which are the classes of starlike (with respect to the origin) and convex functions.

The Subclasses \(S_{DP}(\beta, \alpha) \) and \(K_{DP}(\beta, \alpha) \)

We begin this Section by remark that this article is motivated by the work of Owa et al. [1]. We now recall the definitions of the subclasses \(S_{DP}(\beta, \alpha) \) and \(K_{DP}(\beta, \alpha) \) of \(p \)-valent functions introduced and studied by Agnihotri and Singh [2].

A function \(f \in Ap \) is said to be in the class \(S_{DP}(\beta, \alpha) \) if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta \alpha + p + \alpha, \quad z \in U,
\]
for some \(\beta \geq 0 \) and \(\alpha \) \((0 \leq \alpha < p)\).

A function \(f \in Ap \) is said to be in the class \(K_{DP}(\beta, \alpha) \) if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta \alpha + p + \alpha, \quad z \in U,
\]
for some \(\beta \geq 0 \) and \(\alpha \) \((0 \leq \alpha < p)\). Note that if \(f(z) \in K_{DP}(\beta, \alpha) \) if and only if \(zf'(z) \in SD_{DP}(\beta, \alpha) \). Agnihotri and Singh [2] have shown some sufficient conditions for \(f \) to be in the classes \(SD_{DP}(\beta, \alpha) \) and \(KD_{DP}(\beta, \alpha) \).

The subclasses \(SD_{DP}(\beta, \alpha) \) and \(KD_{DP}(\beta, \alpha) \) which will also be denoted by \(SD(\beta, \alpha) \) and \(KD(\beta, \alpha) \) respectively were studied by Shams, Kulkarni and Jahangiri in [3]. They have obtained sufficient conditions for \(f \) to be in the classes \(SD(\beta, \alpha) \) and \(KD(\beta, \alpha) \).

Coefficient Inequalities

We now give coefficient inequalities for functions belonging to the subclasses \(SD_{DP}(\beta, \alpha) \) and \(KD_{DP}(\beta, \alpha) \). Our first result is contained in

Theorem 3.1. If \(f \in SD_{DP}(\beta, \alpha) \) with \(0 \leq p\beta \leq \alpha < p \), then
\[
f \in S_{DP}(\alpha - p\beta, 1 - p\beta) \quad \text{and} \quad f \in S_{DP}(\alpha - p\beta, 1 - p\beta).
\]

Proof: We know that \(|f(z)| \leq |z| \) for any complex number \(z \). Therefore \(f \in SD_{DP}(\beta, \alpha) \) gives us
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta \Re \left\{ \frac{zf'(z)}{f(z)} \right\} - p + \alpha.
\]
From this we get
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > \frac{\alpha - p\beta}{1 - p\beta}, \quad z \in U.
\]

Now, if \(0 \leq p\beta \leq \alpha < p \), then it follows that
\[
0 \leq \frac{\alpha - p\beta}{1 - p\beta} < p,
\]
and if \(\beta > \frac{p + \alpha}{2p} \), then we have
\[
-p < \frac{p\beta - \alpha}{\beta - 1} \leq 0.
\]
Thus, \(0 \leq \frac{a - pb}{b - 1} < p \).

For \(p = 1 \), we obtain the following corollary due to Owa, Polatoğlu, and Yuvaz [1].

Corollary 3.1: If \(f \in SD_{\vartheta}(\beta, \alpha) \) with \(0 \leq pb \leq \alpha \) then \(f \in \mathcal{S} \left(\frac{a - \beta}{1 - \beta} \right) \).

Next, we state the corresponding result for functions belonging to the subclass \(KD_{\mathcal{P}}(\beta, \alpha) \).

Theorem 3.2: If \(f \in KD_{\mathcal{P}}(\beta, \alpha) \) with \(0 \leq pb \leq \alpha < p \) then \(f \in K_{\mathcal{P}}(\frac{a - \beta}{1 - \beta}) \) and if \(\beta > \frac{p + a}{2p} \), then \(f \in K_{\mathcal{P}}(\frac{a - \beta}{1 - \beta}) \).

Proof: Proof is similar to the proof of Theorem 3.1.

The following corollary is due to Owa, Polatoğlu, and Yuvaz [1] for \(p = 1 \).

Corollary 3.2: If \(f \in KD_{\mathcal{P}}(\beta, \alpha) \) with \(0 \leq \beta \leq \alpha \) then \(f \in K_{\mathcal{P}}(\frac{a - \beta}{1 - \beta}) \).

We now state the main theorem of this paper.

Theorem 3.3: If \(f \in SD_{\vartheta}(\beta, \alpha) \) then \(|a_{n+1}| \leq \frac{2(p - \alpha)}{n - \beta} \sum_{j=0}^{\infty} q_{2j}z^{2j} \) and \(|a_{p+1}| \leq \frac{2(p - \alpha)}{n - \beta} \sum_{j=0}^{\infty} q_{2j}z^{2j} \) \((n \geq 2) \).

Proof: We know that if \(f \in SD_{\vartheta}(\beta, \alpha) \), then \(f(\frac{sz}{1 - s}) = \frac{a - \beta}{1 - \beta} (z \in U) \).

Define a function \(q(z) \) by
\[
q(z) = (1 - \beta) \frac{zf'(z)}{f(z)} - (\alpha - pb) (z \in U).
\]

Note that \(q \) is analytic in \(U \) with \(q(0) = 1 \) and \(R(q(z)) > 0 \) if \(q(z) = 1 + q_{1}z + q_{2}z^{2} + \ldots \).

then we can write
\[
\frac{zf'(z)}{f(z)} = \frac{a - \beta}{1 - \beta} + \frac{p - a}{1 - 1} \sum_{j=1}^{\infty} q_{2j}z^{2j}.
\]

or
\[
\frac{zf'(z)}{f(z)} = f(z) \left(p + \frac{p - a}{1 - \beta} \sum_{j=1}^{\infty} q_{2j}z^{2j} \right), \quad (q_{0} = 1).
\]

From this, we obtain
\[
a_{n+1} = \left(\frac{p - a}{1 - \beta} \right) \left(q_{a} + a_{j+1} + a_{j+2}q_{2j+1}z^{2j+1} + \cdots + a_{n} + n \cdot q_{n} \right). \quad (3.7)
\]

From the coefficient estimates for Carathéodory functions [4], we know that \(|q_{a}| \leq 2 \) for all \(n \geq 1 \).

Making use of it in (3.7), we see that
\[
|a_{n+1}| \leq \frac{2(p - \alpha)}{n - \beta} \left(1 + |a_{p+1}| + |a_{p+2}| + \cdots + |a_{n+1}| \right). \quad (3.8)
\]

Therefore, for \(n = 1 \), we have
\[
|a_{p+1}| \leq \frac{2(p - \alpha)}{1 - \beta}, \quad (3.9)
\]

which proves (3.3). Now for \(n = 2 \), we obtain
\[
|a_{p+1}| \leq \frac{2(p - \alpha)}{1 - \beta} (1 + |a_{p+1}|).
\]

This shows that (3.4) holds for \(n = 2 \). For \(n = 3 \), we see that
\[
|a_{p+1}| \leq \frac{2(p - \alpha)}{1 - \beta} \left(1 + |a_{p+1}| \right) \leq \frac{2(p - \alpha)}{1 - \beta} \left(1 + \frac{2(p - \alpha)}{1 - \beta} \right)
\]

Thus, (3.4) holds for \(n = 3 \). Next, we assume that (3.4) is true for \(n - k \) and therefore
\[
|a_{p+1}| \leq \frac{2(p - \alpha)}{1 - \beta} \left(1 + \frac{2(p - \alpha)}{1 - \beta} \right) \leq \frac{2(p - \alpha)}{1 - \beta} \left(1 + \frac{2(p - \alpha)}{1 - \beta} \right)
\]

This shows that (3.4) is true for \(n = k + 1 \). Hence, by the principle of mathematical induction, (3.4) holds for all \(n \geq 2 \).

Remark 3.1: Taking \(p = 1 \) in Theorem 3.3, we obtain
\[
|a_{n+1}| \leq \frac{2(1 - a)}{n! - \beta} \sum_{j=0}^{\infty} (1 + 2(p - a)) \beta^{j} \quad (n \geq 2) \quad (3.10)
\]

which was given by Owa, Polatoğlu and Yuvaz [1].

Remark 2.2: Taking \(p = 1 \) and \(\beta = 0 \) in Theorem 3.3, we have
\[
|a_{n+1}| \leq \frac{1}{n!} \sum_{j=0}^{\infty} j! \beta^{j} \quad (n \geq 1), \quad \text{which was proven by Robertson [5].}
\]

We know that \(f \in KD_{\mathcal{P}}(\beta, \alpha) \) if and only if \(zf' \in SD_{\mathcal{P}}(\beta, \alpha) \) [2]. Thus, we have

Theorem 4.1: If \(f(\vartheta) \in KD_{\mathcal{P}}(\beta, \alpha) \) then
\[
|a_{n+1}| \leq \frac{2(p - a)}{(n + 1)! - \beta} \sum_{j=0}^{\infty} (1 + 2(p - a)) \beta^{j} \quad (n \geq 2). \quad (3.13)
\]

Proof: For \(f \in KD_{\mathcal{P}}(\beta, \alpha) \) we know \(zf'(z) = \sum_{n=1}^{\infty} a_{n} z^{n+1} \in SD_{\mathcal{P}}(\beta, \alpha) \).

Therefore
\[
|zf'(z)| \leq \frac{2(p - a)}{(n + 1)! - \beta} \sum_{j=0}^{\infty} (1 + 2(p - a)) \beta^{j} \quad (z \in U).
\]

Define a function \(r(z) \) by
\[
(r(z)) = (1 - \beta) \frac{zf'(z)}{f(z)} - (\alpha - pb) (z \in U).
\]

Note that \(r \) is analytic in \(U \) with \(r(0) = 1 \) and \(R(r(z)) > 0 \) if \(r(z) = 1 + q_{1}z + q_{2}z^{2} + \ldots \).

Then we can write
\[
\frac{zf'(z)}{f(z)} = \frac{a - \beta}{1 - \beta} + \frac{p - a}{1 - 1} \sum_{j=1}^{\infty} q_{2j}z^{2j}.
\]

or
\[
\frac{zf'(z)}{f(z)} = f(z) \left(p + \frac{p - a}{1 - \beta} \sum_{j=1}^{\infty} q_{2j}z^{2j} \right), \quad (q_{0} = 1).
\]

From this, we obtain
\[
r_{n+1} \left(\frac{2(p - a)}{n - \beta} \sum_{j=0}^{\infty} q_{2j}z^{2j} \right). \quad (3.7)
\]

Making use of it in (3.7), we see that
\[
|a_{n+1}| \leq \frac{2(p - a)}{n - \beta} \left(1 + |a_{p+1}| + |a_{p+2}| + \cdots + |a_{n+1}| \right). \quad (3.8)
\]

Therefore, for \(n = 1 \), we have
\[
|a_{p+1}| \leq \frac{2(p - a)}{1 - \beta}, \quad (3.9)
\]

which proves (3.3). Now for \(n = 2 \), we obtain
\[
|a_{p+1}| \leq \frac{2(p - a)}{1 - \beta} (1 + |a_{p+1}|) \leq \frac{2(p - a)}{1 - \beta} \left(1 + \frac{2(p - a)}{1 - \beta} \right)
\]

This shows that (3.4) is true for \(n = 2 \). For \(n = 3 \), we see that
\[|a_p| \leq \frac{2(p - a)}{(n + 1)} \prod_{j=0}^{n-2} (j - 2) \quad (n \geq 1), \]

which was proven by Owa et al. [1].

Remark 3.4: Taking \(p = 1 \) and \(\beta = 0 \) in Theorem 3.4, we get

\[|a_p| \leq \frac{2(1 - a)}{(n + 1)} \prod_{j=0}^{n-2} (j - 2) \quad (n \geq 2) \]

which was proven by Robertson [5].

Theorem 3.5: If \(f \in SD_p(\beta, \alpha) \)

\[
\max \left\{ 0, \left| f'(z) \right| - \frac{2(p - a)}{|p + 1|} \prod_{j=0}^{n-2} (j + 1) \right\} \leq |f'(z)|
\]

and

\[
\left| f'(z) \right| \leq \frac{2(p + 1)(p - a)}{|p|} |f|
\]

Proof: Proof follows from the fact that

\[
f(z) = z^p + \sum_{k=1}^{\infty} a_k z^k, \quad p = 1, 2, \ldots \]

and using Theorem 3.3.

Corollary 3.3: If \(f \in KD_p(\beta, \alpha) \) then

\[
\max \left\{ 0, \left| f'(z) \right| - \sum_{k=0}^{n} \frac{2(p - a)}{(n + 1) |p + 1|} \prod_{j=0}^{n-2} (j + 1) \left| f^{(k)}(z) \right| \right\} \leq |f(z)|
\]

and

\[
\left| f'(z) \right| \leq \frac{2(p + 1)(p - a)}{|p|} |f|
\]

Proof: Proof follows from the fact that

\[
f(z) = z^p + \sum_{k=1}^{\infty} a_k z^k, \quad p = 1, 2, \ldots
\]

References

1. Owa S, Polat”ğlu Y, Yavuz E (2006) Coefficient inequalities for classes of uniformly starlike and convex functions. J Ineq Pure Appl Math 7.
2. Agnihotri V, Singh R New subclasses of uniformly p-valent starlike and convex functions. Internat J Math Sci 55: 2959-2961.
3. Shams S, Kulkarni SR, Jahangiri JM (2004) Classes of uniformly starlike and convex functions. Internat J Math Sci 55: 2959-2961.
4. Robertson MS (1936) On the theory of univalent functions. Ann Math 37: 374-408.