A hybrid meson \(\bar{q}q \) is a bound state of constituent quark \(q \), anti-quark \(\bar{q} \) and excited gluon \(g \). The existence of hybrids is one of the most important predictions of quantum chromodynamics (QCD). There has been a lot of experimental activity\[1, 2, 3, 4\] in the search for hybrid mesons, for example: PEP-II (Babar), KEKB(Belle), 12 GeV Jefferson Lab upgraded, upgraded CLEO-c detector, and new BES3 detector.

For a conventional meson in the quark model, which is represented by the fermion bilinear \(\bar{q}q \), it can have the \(J^{PC} \) quantum numbers as \(J = |L - S|, |L - S| + 1, \ldots, L + S, \) \(P = (-1)^{L+1} \), and \(C = (-1)^{L+S} \), with \(L \) the relative angular momentum of the quark and antiquark, and \(S \) the intrinsic spin of the meson. For the gluon, the quantum numbers of the color electric field \(E \) and color magnetic field \(B \) are \(1^{--} \) and \(1^{++} \) respectively. According to QCD, the operator of a hybrid meson is the gauge-invariant direct product of the fermion bilinear \(\bar{q}q \) and the color electric field \(E^{c_1 c_2} = F^{c_1 c_2}_{c_1 c_2} \) or color magnetic field \(B^{c_1 c_2} = \epsilon_{ijk} F^{c_1 c_2}_{jk} \). Therefore, the quantum numbers of a hybrid meson could be either exotic, with \(J^{PC} = 1^{++}, 0^{+-}, 0^{--}, 2^{+-} \ldots \), inaccessible to conventional mesons, or non-exotic, with \(J^{PC} = 0^{++}, 0^{--}, 1^{--}, 1^{+-}, 2^{++}, 2^{--}, 2^{+-} \ldots \), the same as conventional mesons.

Lattice gauge theory is the most reliable technique for computing hadron spectra. It involves discretization of the continuum theory on a space-time grid, and reduces to QCD when the lattice spacing goes to zero. The implementation of the Symanzik program\[5\] with tadpole improvement\[6\] greatly reduces the discretization errors on very coarse and small lattices. Simulations on anisotropic lattices improve the signal in spectrum computations\[7\].

The \(1^{--}, 0^{+-}, \) and \(2^{+-} \) exotic hybrid mesons have been extensively studied on the lattice. Reviews can be found in Refs.\[8, 9\]. Recently, we computed the \(0^{--} \) exotic hybrid charmonium mass\[10\]. However, the non-exotic hybrid mesons are usually ignored in the literature, simply because their ground states are almost degenerate with the conventional mesons\[11\].

In this letter, we investigate the \(J^{PC} = 0^{++}, 1^{--} \) and \(1^{+-} \) non-exotic charmed hybrid mesons \(\bar{c}c \), employing quenched lattice QCD with tadpole improved gluon\[12\] and quark\[13\] actions on the anisotropic lattice. We observe, for the first time, very strong gluonic radial excitations in the first excited states.

Our simulation parameters are listed in Tab.\[1\]. We also did simulations on \(8^3 \times 48 \) and \(12^3 \times 48 \) at \(\beta = 2.6, 12^3 \times 36 \) at \(\beta = 2.8, \) and \(16^3 \times 48 \) at \(\beta = 3.0, \) but there and throughout the paper we just list the results from the largest volume, i.e., \(16^3 \times 48 \) at \(\beta = 2.6 \) and \(2.8 \) and \(20^3 \times 60 \) at \(\beta = 3.0. \) At each \(\beta = 6/g^2, \) three hundred independent configurations were generated with the improved gluonic action\[12\]. It is also important to check whether these lattice volumes are large enough. When the spatial extent is greater than 2.2f\(m \), the finite volume effect on the spectrum is less than 0.1% for the ground state, and 0.4% for the first excited state.

We input the bare quark mass \(m_{q0} \) and then computed quark propagators using the improved quark action\[12\], the conventional quarkonium correlation function using the operators \(0^{++} = \bar{c}c \gamma_5 \bar{c}c, 1^{--} = \bar{c}c \gamma_5 \bar{c}c, \) and \(1^{+-} = \bar{c}c \gamma_5 \gamma_5 \gamma_5 \bar{c}c, \) and the hybrid meson correlation function using the operators \(0^{++} = \bar{c}c \gamma_5 \bar{c}c, 1^{--} = \bar{c}c \gamma_5 \bar{c}c, \) and \(2^{+-} = \bar{c}c \gamma_5 \bar{c}c \) in Ref.\[14\]. Figures\[1\] and\[2\] shows the correlation function \(C(t) \) of the conventional \(1^{--} \) and hybrid mesons.

The effective masses of the ground and first excited states \(a_{1m_1} \) and \(a_{1m_2} \) are extracted by two different methods: (i) new correlation function method\[15\]; (ii) modified multi-exponential fit\[16\]. The multi-exponential fitting method has been widely used in the literature\[11, 12, 16\] for extracting the charmonium masses, and the results for the ground and first excited states are consistent with experiments; The MILC group\[17\] proposed an improved multi-exponential fitting method, which chooses the best fit according to some criteria. The recently proposed method (i) has been successfully applied to the investigation of the Roper reso-
TABLE I: Simulation parameters at largest volume. We employed the method in Ref.[13] to tune these parameters, κ_t and κ_s for the quark action. The last two columns are about the spatial lattice spacing and the lattice extent in physical units, determined from the $1P-1S$ charmonium mass splitting[16], with the effective masses extracted by the method of Ref. [16].

β	$\xi = a_s/a_t$	$L^3 \times T$	u_s	u_t	$a_t m_{Q0}$	c_s	c_t	$a_s (1^1 P_1 - 1S)$ [fm]	$L a_s$ [fm]	
2.6	3	$16^3 \times 48$	0.81921	1	0.229	0.260	1.8189	2.4414	0.1856(84)	2.970
2.8	3	$16^3 \times 48$	0.83099	1	0.150	0.220	1.7427	2.4068	0.1537(101)	2.459
3.0	3	$20^3 \times 60$	0.84098	1	0.020	0.100	1.6813	2.3782	0.1128(110)	2.256

Figure 3 shows effective masses for the conventional 1^{--} quarkonium, where $a_t m_1$ and $a_t m_1 + a_t m_2$ are extracted respectively from the plateaux of the lower and upper curves, using the new method[15]. Figure 4 shows those for the 1^{--} hybrid meson.

The data at two m_{Q0} values were interpolated to the charm quark regime using $M(1S)_{exp} = (m(\eta_c)_{exp} + 3m(J/\psi)_{exp})/4 = 3067.6$ MeV. The results obtained by the method of Ref. [16] are listed in Tabs. II and III respectively for the ground and first excited states.

The first excited state masses for the conventional 0^{++}, 1^{--} and 1^{++} charmonium mesons as a function of a_t^2 are plotted in Fig. 5 and those for the hybrid charmonium mesons are plotted in Fig. 6. They indicate the linear dependence of the mass on a_t^2. By linearly extrapolating the data to $a_t^2 \rightarrow 0$, we obtained the spectrum in the continuum limit, which are listed in Tabs. II and III respectively.

As shown in Tab. III in the continuum limit, the masses of the 0^{-+}, 1^{--} and 1^{++} charmonium ground states are consistent with their experimental values 2.9804, 3.0969, and 3.5106 for $\eta_c(1S)$, J/ψ and $\chi_{c1}(1^3 P_1)$. The results in Tab. III also show that the ground state for the non-exotic hybrid charmonium is degenerate with the

Figure 1: Correlation function for the conventional 1^{--} quarkonium at $\beta = 2.6$ and $a_t m_{Q0} = 0.229$.

Figure 2: Same as Fig. 1 but for the 1^{--} hybrid meson.

FIG. 1: Correlation function for the conventional 1^{--} quarkonium at $\beta = 2.6$ and $a_t m_{Q0} = 0.229$.

FIG. 2: Same as Fig. 1 but for the 1^{--} hybrid meson.

FIG. 3: Effective masses of the conventional 1^{--} quarkonium as a function of t for $\beta = 2.6$ and $a_t m_{Q0} = 0.229$, using the new correlation function method[15]. $a_t m_1 + a_t m_2$ and $a_t m_1$ are extracted respectively from the plateaux of the upper and lower curves, with $[t^*_i, t^*_f] = [1, 10]$ and $[t_i, t_f] = [11, 23]$.

The $\langle C(t) \rangle = \langle C(t+1) \rangle$ in the large time interval $[t_i, t_f]$, and $a_t m_1 + a_t m_2$ from $\langle C(t) \rangle$ in the time interval $[t^*_i, t^*_f] < [t_i, t_f]$, with reasonable $\chi^2/d.o.f.$ and optimal confidence level. Here $C'(t) = C(t+1)C(t-1) - C(t)^2$. Two methods provide a cross-check of the results.
TABLE II: Conventional and hybrid charmonium meson spectrum (GeV) for the ground state from the method of Ref. [16], interpolated to the charm quark sector. The results in the continuum limit ($\beta = \infty$) were obtained by linearly extrapolating the data to $a_s^2 \to 0$. The results in the continuum limit (*), with the effective masses extracted by the method of Ref. [15] are also listed. The last line (**) is the average of the results in the continuum limit from these two methods.

β	a_s^2 (fm^2)	η_c	J/ψ	χ_{c1}	0^{--}	1^{--}	1^{++}
2.6	0.0345	3.013(3)	3.080(3)	3.484(49)	3.012(43)	3.133(44)	3.472(66)
2.8	0.0236	3.033(1)	3.079(1)	3.446(59)	3.009(51)	3.112(53)	3.463(62)
3.0	0.0127	3.031(2)	3.080(2)	3.430(100)	3.031(87)	3.078(90)	3.516(108)
∞	0	3.030(2)	3.080(2)	3.430(100)	3.031(87)	3.078(90)	3.516(108)
∞	3.053(33)	3.107(34)	3.533(39)	3.056(34)	3.120(34)	3.472(150)	
∞	3.042(18)	3.094(18)	3.482(70)	3.044(61)	3.099(62)	3.494(129)	

TABLE III: The same as Tab. II but for the first excited states.

β	a_s^2 (fm^2)	η_c	J/ψ	χ_{c1}	0^{--}	1^{--}	1^{++}
2.6	0.0345	3.515(50)	3.614(51)	4.135(175)	4.492(64)	4.525(64)	7.335(121)
2.8	0.0236	3.520(60)	3.625(62)	4.175(183)	4.379(98)	4.494(77)	7.333(153)
3.0	0.0127	3.532(66)	3.624(68)	4.100(112)	4.408(382)	4.40 0(100)	7.264(150)
∞	0	3.540(102)	3.633(105)	4.081(205)	4.335(302)	4.349(148)	7.237(237)
∞	3.638(58)	3.731(58)	4.089(67)	4.368(147)	4.409(149)	7.392(276)	
∞	3.589(80)	3.682(81)	4.085(136)	4.352(225)	4.379(149)	7.315(257)	

FIG. 4: Same as Fig. 3, but for the 1^{--} hybrid meson. $a_t m_1 + a_t m_2$ and $a_t m_1$ are extracted respectively from the plateaux of the upper and lower curves, with $[t^*_i, t^*_f] = [6, 16]$ and $[t_i, t_f] = [17, 23]$.

FIG. 5: Extrapolation of the excited state masses of the conventional 0^{--}, 1^{--}, and 1^{++} charmonium mesons, with the effective masses extracted by the method of Ref. [15], to the continuum limit.

conventional charmonium with the same quantum numbers. This might mislead people into giving up further study of the non-exotic hybrids.

The last line of Tab. III shows in the continuum limit the first excited state masses of the conventional charmonium and non-exotic hybrid charmonium. The results for the conventional 0^{--} and 1^{--} charmonium are in good agreement with the experimental data 3.638 and 3.686 for $\eta_c(2S)$ and $\psi(2S)$, which supports the reliability of the methods. Although there has not been experimental input for $\chi_{c1}(2S)$, our result is consistent with earlier lattice calculations.[13, 17]

The minor differences between the data and experiments might be due to the quenched approximation used in the paper.

What new is that the first excited states of non-exotic
fundamental properties of a hadron. Sometimes, the excited states show more carefully study not only the ground state, but also the excited states. This is clearly demonstrated in Figs. 1-6.

Hybrids are completely different from the conventional ones. The results in last line of Tab. III show the masses of the 0^+ and 1^− hybrids to be about 0.7 GeV heavier, and the 1^{++} about 3.2 GeV heavier. These are very strong indications of gluonic excitations. This implies that radial excitations of the charmonium hybrids are completely different from the conventional non-hybrid ones, although their ground states overlap. This is clearly demonstrated in Figs. 1-6.

This also teaches a very important lesson. One should carefully study not only the ground state, but also the excited states. Sometimes, the excited states show more fundamental properties of a hadron.

Finally, we discuss the new state Y(4260), recently observed by the BaBar experiment in the J/ψπ^+π^- channel. It has the quantum numbers J^PC = 1^{−−}.

There have been several phenomenological descriptions of this state: as tetra-quarks, a molecule of two mesons, ψ(4S), or as a hybrid meson. However, most these assumptions were not based on QCD spectrum computations.

If Y(4260) is a hybrid meson, from the last line of Tab. III, it could certainly not be identified as the ground state of the 1^{−−} hybrid meson. However, from our lattice QCD spectrum calculations (the last line of Tab. III), it is most probably the first excited state of the 1^{−−} hybrid charmonium. Further experimental study of the decay modes will clarify this issue.

From the last line of Tab. III, one sees that the first excited state mass of the 0^+ hybrid charmonium is about the same as that of the 1^{−−} hybrid charmonium, but much lighter than the first excited state of the 1^{++} hybrid charmonium. It should not be very difficult to find it in future experiment.

Acknowledgments

We thank K.T. Chao, C. DeTar, E.B. Gregory, F.J. Llanes-Estrada, E. Swanson, D. Toussaint, C.Z. Yuan and S.L. Zhu for useful discussions. This work is supported by the Key Project of National Science Foundation (10235040), Project of the Chinese Academy of Sciences (KJCX2-SW-N10) and Key Project of National Ministry of Education (105135) and Guangdong Natural Science Foundation (05101821). We modified the MILC code for simulations on the anisotropic lattice. The simulations had taken in total one year and a half on our AMD-Opteron cluster and Beijing LSSC2 XEON cluster.

[1] C. A. Meyer, AIP Conf. Proc. 698, 554 (2004).
[2] K. Peters, Int. J. Mod. Phys. A 20, 570 (2005).
[3] S. L. Olsen, J. Phys. Conf. Ser. 9, 22 (2005).
[4] D. S. Carman, arXiv:hep-ex/0511030.
[5] K. Symanzik, Nucl. Phys. B 226, 187 (1983); Nucl. Phys. B 226, 205 (1983).
[6] G. Lepage and P. Mackenzie, Phys. Rev. D 48, 2250 (1993).
[7] Z. H. Mei and X. Q. Luo, Int. J. Mod. Phys. A 18, 5713 (2003).
[8] C. McNeile, Nucl. Phys. A 711 (2002) 303, and refs. therein.
[9] C. Michael, hep-ph/0308293 and refs. therein.
[10] Y. Liu and X. Q. Luo, arXiv:hep-lat/0511015.
[11] X. Liao and T. Manke, arXiv:hep-lat/0210030.
[12] C. Morningstar and M. Peardon, Phys. Rev. D 56, 4043 (1997); Phys. Rev. D 60, 034509 (1999).
[13] M. Okamoto et al. [CP-PACS Collaboration], Phys. Rev. D 65, 094508 (2002).
[14] C. Bernard et al. [MILC Collaboration], Phys. Rev. D 56, 7039 (1997).
[15] D. Guadagnoli, M. Papinutto and S. Simula, Phys. Lett. B 604, 74 (2004).
[16] C. Bernard et al., [MILC Collaboration], Phys. Rev. D 68, 074505 (2003).
[17] P. Chen, Phys. Rev. D 64, 034509 (2001).
[18] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 95, 142001 (2005).
[19] S. L. Zhu, Phys. Lett. B 625, 212 (2005).
[20] F. J. Llanes-Estrada, Phys. Rev. D 72, 031503 (2005).
[21] E. Kou and O. Pene, Phys. Lett. B 631, 164 (2005).
[22] L. Maiani, V. Riquer, F. Piccinini and A. D. Polosa, Phys. Rev. D 72, 031502 (2005).
[23] X. Liu, X. Q. Zeng and X. Q. Li, Phys. Rev. D 72, 054023 (2005).
[24] F. Close and P. Page, Phys. Lett. B 628, 215 (2005).
[25] C. F. Qiao, arXiv:hep-ph/0510228.
[26] http://physics.utah.edu/~detar/milc/