I. INTRODUCTION

Photons are generally considered ideal probes to study the quark gluon plasma (QGP) created in heavy ion collisions [1], since they have a long mean free path and leave the collision volume without final state interactions. Of particular interest are low momentum or thermal photons with energies of up to several times the temperature of the QGP. The measurement of thermal photons has only recently been possible with the advance of the heavy ion programs at RHIC [2–4] and LHC [5].

One of the experimental key challenges for these measurements is to estimate and subtract photons from hadron decays that constitute the bulk of photons measured at RHIC and LHC, less data exists for A+A collisions, the photons from hadron decays are well measured at RHIC and LHC, less data exists for η/π ratio across collision systems, beam energies, and centrality selections in heavy ion collisions. With a good understanding of the η/π ratio as function of transverse momentum p_T and measured π^0 spectra, which are readily available for many collision systems, one can construct a more accurate p_T distribution for η mesons.

In this paper we propose a new empirical approach to model the η spectrum that is based on the universality of the η/π^0 ratio across collision systems, beam energies, and centrality selections in heavy ion collisions. With a good understanding of the η/π^0 ratio as function of transverse momentum p_T and measured π^0 spectra, which are readily available for many collision systems, one can construct a more accurate p_T distribution for η mesons.

In this paper we elaborate more on the failure of m_T scaling. In section III we will discuss two empirical fits and a Gaussian Process Regression (GPR) to describe the η/π^0 ratio for p+p and p+A collisions, and document in section IV the universality of η/π^0 across different collision systems (p+p, p+A, A+A), energies, and collision centrality. In Section V, we estimate possible deviation from the universal trend at low p_T due to radial flow in heavy ion collisions. We provide our result for η/π^0 for RHIC and LHC energies with systematic uncertainties in the final part.

II. THE FAILURE OF TRANSVERSE MASS SCALING

For measurements of direct photons from heavy ion collisions, the photons from η and heavier meson decays are frequently estimated using measured π^0 spectra in conjunction with the m_T scaling hypothesis. A typical implementation of this method [8] starts with a fit to the π^0 spectra with a functional form like a modified Hagedorn function [9]:

$$\frac{1}{2\pi p_T} \frac{d^2N}{dy dp_T} = A(M_X) \left(e^{-ag(p_T,bg(p_T))^2} + \frac{g(p_T,M_X)}{p_0} \right)^{-n}$$

with M_X being the meson mass and g(p_T,M_X) = \sqrt{p_T^2 + m_X^2 - \frac{X}{2}}. In this implementation the spectra of the η and heavier mass mesons follow the same distribution with respect to transverse mass m_T = \sqrt{m^2 + p_T^2} as the π^0. The normalisation constant A(M_X) is the only free parameter, all other parameters are fixed by the fit to the π^0 data. A(M_X) is fitted to experimental data whenever such data exists.

Fig. 1 compiles available data of η/π^0 for p+p [10–14] and p+A [6, 15] collisions. Also shown on the figure is the result of m_T scaling for two different normalisation constants A(M_0) [11, 12, 16] and the expectation from a PYTHIA-6 calculation from [12, 17]. While PYTHIA and the m_T scaling hypothesis agree well, a significant deviation from the data is seen at low p_T. This was originally discovered at the CERN SPS by CERES/TAPS [6].
more than 20 years ago and recently confirmed by ALICE at the LHC [10]. Clearly the m_T scaling hypothesis is not correct and should not be used to extrapolate meson spectra to low p_T for systems where no data exists.

III. DESCRIPTION OF THE η/π^0 RATIO FOR P+P AND P+A COLLISIONS

The quantitative agreement of the η/π^0 data shown in Fig. 1 is striking, consider the data covers more than 2 orders of magnitude in collision energy. In this section we will test different methods to obtain an empirical description of η/π^0. The first two methods (A,B) fit a functional shape of the ratio, while the third method (GPR) is a Gaussian Process Regression that does not assume a specific functional shape. All methods yield similar results below 10 GeV/c, at larger p_T the deviations are sizable and we will include these deviations in our evaluation of systematic uncertainties.

A. Empirical fit A

Method A starts with a ratio of two functions of the form given in Equation 1. The m_T-scaling hypothesis is used to reduce the number of parameters:

$$R^{\eta/\pi^0}(p_T) = R^\infty \left(\frac{e^{-a g(p_T) - b g(p_T)^2} + \frac{g(p_T)}{p_0}}{e^{-a p_T - b p_T^2} + \frac{p_T}{p_0}} \right)^{-n}.$$

The advantage of this method is that it preserves a realistic functional form for the p_T spectra with an exponential decrease at low p_T and power law shape at high p_T. In principle, this ensures that at high p_T the η/π^0 ratio approaches a constant value R^∞. However, unlike starting from the π^0 spectrum, the parameters are fitted to the η/π^0 ratio from p+p and p+A collisions shown in Fig. 1. We achieve a good fit, though the values of the fit parameters are nonphysical and do not describe the individual p_T spectra. The result is depicted in Fig. 2.

The band represents the total uncertainty of the fit function from two sources, the uncertainty of fit parameters, and the systematic uncertainties from data points. The former can be calculated analytically thanks to the explicit fit function while the latter can be obtained via a "data shuffling approach" which uses a Monte Carlo technique to vary individual data sets within their systematic uncertainties. This approach is discussed in Appendix B. The total uncertainty shown on the figure represents the quadratic sum of statistical and systematic uncertainties.

B. Empirical fit B

The second empirical fit function has a very similar form, except that normalization of the exponential and power law component in the numerator are decoupled as a reference throughout this article. We note that the R^∞ remains the asymptotic value at high p_T.

$$R^{\eta/\pi^0}(p_T) = A \left(\frac{e^{-a g(p_T) - b g(p_T)^2} + \frac{g(p_T)}{p_0}}{e^{-a p_T - b p_T^2} + \frac{p_T}{p_0}} \right)^{-n}.$$

The handling of fit and the calculation of the uncertainties is identical to Method A. The result is also shown in Fig. 2. In contrast to Method A, which only gradually approaches the asymptotic value at high p_T, Method B reaches the constant at p_T of about 5 GeV/c and at a lower $R^\infty = 0.487 \pm 0.024$ value, which will be used as a reference throughout this article. We note that the change to the constant value is rather abrupt.

C. Gaussian Process Regression (GPR)

Both previous methods have a built-in assumption that the η/π^0 has a constant asymptotic value at high p_T However, the data suggest that there might be a maximum around 8 GeV followed by a decrease towards higher p_T. In order to avoid any assumptions about the shape we resort to a machine learning technique called Gaussian Process Regression (GPR), which possesses no physical knowledge but gives full trust to the data it is given. Details about the GPR can be found in [18], and comments about the specific implementation we use are summarised in Appendix A. In general the GPR works best in the region where many consistent data points are available. Less data points or inconsistent data sets lead to larger
Since we do not know the correct functional form of η/π^0, in particular at high p_T, we combine the results obtained with the three methods as our best estimate for a universal η/π^0 ratio for $p+p$ and $p+A$ collisions. This is achieved by assigning every p_T value the minimum of the lower uncertainty range of the three methods as the lower bound and the maximum as the upper bound. The average of the lower and upper bound is used as central value. In the following we will use $(\eta/\pi^0)_{mc}$ to refer to this combined result, with the superscript mc referring to maximal coverage of uncertainties. The result is given in Fig. 3 and compared to the m_T-scaling prediction as well as the PYTHIA calculation already shown in Fig. 1. One can see that all of the theoretical predictions overestimate the ratio for p_T below 3-4 GeV/c.

IV. UNIVERSALITY OF η/π^0 RATIO SYSTEMS AT HIGH p_T

In the previous section we established that the η/π^0 ratios measured in $p+p$ and $p+A$ collisions are consistent with being constant at high p_T with a value of $R_\infty = 0.487 \pm 0.024$ (Section III.B). Here we demonstrate that all available data from $p+p$, $p+A$, and $A+B$ collisions listed in Table I are consistent with this R_∞ value independent of the collision energy, collision system, or collisions centrality.

For this demonstration we adopt the functional form from Eq. 3 (empirical Fit B). The parameters are fixed using the simultaneous fit to the $p+p$ and $p+A$ data to the following values: $a = -1.24$, $b = 0.482$, $p_0 = 4.15$, $p_T = 0$.
\[\eta / \pi^0 = 0.487 \pm 0.024, \text{ empirical fit B} \]

FIG. 4. Values of \(R^\infty = \eta / \pi^0 (p_T \to \infty) \) as a function of \(\sqrt{s_{NN}} \) for the minimum bias \(p+p, p+A \) and A+B data sets. Statistical errors are shown as bars, systematic uncertainties as bands. Also shown is a band representing 0.487 ± 0.024, the result of the empirical fit B to the combined \(p+p \) and \(p+A \) data. Note that the A+B data at 200 GeV are offset in \(\sqrt{s_{NN}} \) to avoid overlap of data sets.

\[\eta / \pi^0 = 0.487 \pm 0.024, \text{ empirical fit B} \]

FIG. 5. Values of \(R^\infty = \eta / \pi^0 (p_T \to \infty) \) as a function of \(dN_{ch}/dy \). The presentation is identical to Fig. 4, however, for A+B collisions results from different centrality classes are shown rather than for the minimum bias sample.

V. THE EFFECT OF RADIAL FLOW

We have shown that \(\eta / \pi^0 \) can be described by one common function for all \(p+p \) and \(p+A \) collisions over the measured \(p_T \) range from 0.1 to 20 GeV/c. Furthermore, above \(p_T = 5 \) GeV/c the same function describes all data from heavy ion collisions. Whether this universal function also describes heavy ion data at lower \(p_T \) can not be tested due to the absence of accurate experimental data. However, there are reasons to believe that this universality does not hold at low \(p_T \).

Evidence for strong collective motion of the bulk of the produced particles has been observed in all high energy heavy ion collision. This motion is consistent with a Hubble like hydrodynamic expansion of the collision volume, with a linear velocity profile in radial direction. In this velocity profile heavier particles gain more momentum than lighter ones. Radial flow effectively depletes the particle yields at low \(p_T \) and enhances them in an intermediate \(p_T \) range, which is determined by the mass of the particle. For \(p_T \) much larger than the particle’s mass radial flow becomes negligible. Fig. 6 shows the effect schematically by comparing \(\pi, K \), and \(p \) spectra at RHIC energies. The spectra shown are roughly to scale and consistent with experimental data from 200 GeV Au+Au collisions. They are normalized per particle of the corresponding type at mid rapidity.

Since the \(\eta \) meson has about the same mass as the kaon, one would expect that in the momentum range from a few hundred MeV/c to a few GeV/c radial flow increases the yield of \(\eta \) mesons significantly more than that of \(\pi^0 \). This in turn would increase the \(\eta / \pi^0 \) ratio in heavy ion collisions compared to that observed in \(p+p \) and \(p+A \) collisions.

To quantify the size of the modification due to radial

\[n = 5.07, \text{ and the composite parameter } R^\infty / A = 2.28. \]

The final fit parameter \(R^\infty \) is determined individually for each data set using the data shuffling method. For each data set we vary the points many times within their systematic uncertainties, as discussed in Appendix B, and create an ensemble of \(R^\infty \) and \(\sigma_{R^\infty} \) values. The mean of the \(R^\infty \) ensemble is used as the measurement of \(R^\infty \) for \(\eta / \pi^0 \) and the standard deviation is quoted as the systematic uncertainty. The mean of the \(\sigma_{R^\infty} \) ensemble is quoted as the statistical uncertainty.

Fig. 4 shows the results as a function of the nucleon-nucleon center of mass energy \(\sqrt{s_{NN}} \) for the minimum bias data samples of all collision systems. Also shown on the figure is the \(R^\infty \) value obtained from the combined fit to the \(p+p \) and \(p+A \) data sets using method B. Within uncertainties all data sets are consistent with this value and there is no evidence for a \(\sqrt{s_{NN}} \) dependence of \(R^\infty \).

For most publications of \(\eta / \pi^0 \) from heavy ion collisions, the data was also presented for centrality selected event classes. In order to include these in the comparison, we plot \(R^\infty \) as a function of the number of produced particle \(dN_{ch}/dy|_{\eta=0} \). The \(dN_{ch}/dy \) values used are summarized in Tab. II.

The results are given in Fig. 5. Again all values are consistent with a universal value within uncertainties. This analysis strongly suggest that \(R^\infty \) does not depend on the collision systems, \(\sqrt{s_{NN}} \), or the centrality of the collisions and that any apparent differences are likely due to systematic effects specific to individual data sets.
TABLE II. Values for $dN_{ch}/d\eta$ at mid-rapidity for all collision systems and centrality selections used in this work. For $p+p$ collisions, the numbers correspond to the inelastic $p+p$ cross section as given in [25]. For all other cases, whenever a reference is given, the values are taken directly from the publication. For PHENIX data, we use data tabulated in [26]. The symbol * in the reference indicates that the value was extrapolated beyond what was tabulated. All minimum bias values (MB) that are marked by ** were calculated from the centrality selected data sets for the same system. For all data the uncertainties were calculated assuming that the values quoted in the reference are fully correlated. Reference [6] does not give an uncertainty on the multiplicity value.

System	$\sqrt{s_{NN}}$	Centrality	$dN_{ch}/d\eta$	Ref.
$p+p$	\sqrt{s}	–	$\alpha(\sqrt{s}/\text{GeV})^{28}$	[25]
$p+Au$	29.1 GeV	–	4.7	[6]
$p+Be$	29.1 GeV	–	3.0	[6]
$p+Pb$	5.02 TeV	–	16.8 \pm 0.7	[27]
d+Au	200 GeV	0% − 20%	17.4 \pm 1.2	[26]
		20% − 40%	12.2 \pm 0.9	[26]
		40% − 60%	8.4 \pm 0.6	[26]
		60% − 88%	1.7 \pm 0.4	*
		MB	9.2 \pm 0.8	**
Cu+Au	200 GeV	0% − 20%	268 \pm 20	[26]
		20% − 40%	131 \pm 10	[26]
		40% − 60%	54 \pm 4	[26]
		60% − 93%	12.2 \pm 1.5	*
		MB	102 \pm 9	**
Au+Au	200 GeV	0% − 20%	519 \pm 26	[26]
		20% − 60%	156 \pm 11	[26]
		60% − 92%	16.5 \pm 2	*
		MB	186 \pm 11	**
U+U	192 GeV	0% − 20%	636 \pm 51	[26]
		20% − 40%	268 \pm 21	*
		40% − 60%	79 \pm 8	*
		60% − 80%	18.6 \pm 3	*
		MB	234 \pm 35	**
Pb+Pb	2.76 TeV	0% − 10%	1448 \pm 55	[28]
		20% − 50%	445.3 \pm 10	[28]

Flow we will use a double ratio R_{flow} defined as follows:

$$R_{flow} \equiv \left(\frac{n}{n^0} \right)_{p+p} \approx \left(\frac{n^{K_{\pm}}}{n^{\pi \pm}} \right)_{p+p} \equiv \left(\frac{R^{K_{\pm}}_{AA}}{R^{\pi \pm}_{AA}} \right)_{C_i}$$

where we take advantage of the fact the momentum boost from radial flow is mostly determined by the particle mass and that $m_{K_{\pm}} \approx m_{\pi}$. Also charged pions are used instead of neutral pions, since π^{\pm} and kaons are typically measured simultaneously with the same detector systems and thus most systematic uncertainties on the measurement cancel in the double ratio. The subscript C_i refers to a specific collision system, energy and centrality selection.

Fig. 7 presents R_{flow} for different centrality classes of Au+Au collisions at 200 GeV. The values were calculated from data published by PHENIX [29]. The data cover the p_T range from 0.5 to 2 GeV/c and GPR is used to extrapolate somewhat beyond the measured range. According to this estimate the n/π^0 ratio is enhanced in central collisions in a p_T region from 0.4 to 3 GeV/c with a maximum of about 25% near 1 GeV/c. The enhancement is reduced for more peripheral collisions and nearly vanishes for the 60-92% selection.

In Fig. 8 we depict the estimate for R_{flow} for Pb+Pb
data at 2.76 TeV calculated from K and π^\pm data measured by ALICE [24, 30]. Shown are results for a 0-10% centrality selections. Only statistical uncertainties are shown. The flow effect is significantly larger at LHC than at RHIC; the p_T range affected is extended to 5-6 GeV/c, it reaches its maximum at higher p_T around 3 GeV/c, and the maximum has increased to about 50%. All indicates that radial flow effects increase with beam energy, which is consistent with a higher initial pressure and a longer lifetime of the system at the LHC compared to RHIC.

ALICE also has published η/π^0 for Pb+Pb collisions at 2.76 TeV [24] down to 1 GeV/c, which can be used to verify the validity of the R_{flow} estimate from K/π. For this we have divided Pb+Pb data by the universal (η/π^0)$_{mc}$ from Fig. 3. The result is also shown in Fig. 8, error bars represent the combine uncertainty of (η/π^0)$_{pp}$ and the statistical uncertainty of (η/π^0)$_{PbPb}$. The ansatz that

$$\frac{R_{AA}(K^\pm)}{R_{AA}(\pi^0)} \approx \frac{(\eta/\pi^0)_{cent}}{(\eta/\pi^0)_{pp}}$$

is consistent with the data.

To construct an η/π^0 ratio for a specific collision system and centrality selection we modify the universal shape (η/π^0)$_{mc}$ determined from $p+p$ and $p+A$ data (see Fig. 3 from section III) with R_{flow} for the selected heavy ion sample:

$$(\frac{\eta}{\pi^0})_{ci} = (\frac{\eta}{\pi^0})_{pp} \times R_{flow} \approx (\frac{\eta}{\pi^0})_{pp} \times \frac{(K^\pm/\pi^\pm)_{cent}}{(K^\pm/\pi^\pm)_{pp}}.$$

(5)

Since R_{flow} may be available only in a limited p_T region, for example from 0.4 to 2 GeV/c in Fig. 7, we propose the following procedure that can be applied to any A+B collisions system if p^\pm and K data are available for the p_T range affected by radial flow. In the first step we create pseudo data for η/π^0 by multiplying R_{flow} point-by-point with the (η/π^0)$_{pp}$ up to p_T^{cut} where $R_{flow}(p_T) \approx 1$. This range extends to 1.4 or 4.5 GeV/c for Au+Au at 200 GeV at 60-92% centrality and Pb+Pb at 2.76 TeV, respectively. To ensure that our flow estimate has the correct asymptotic behavior we add a second set of pseudo data with constant values of $\eta/\pi^0 = 0.487 \pm 0.024$. These are added either above 4 GeV/c where all data sets can be described by a constant (see section IV) or above $1.6 \times p_T^{cut}$, which ever is larger. The combine pseudo data are processed through a GPR to obtain a smooth curve. Finally, in order to account appropriately for the systematic uncertainties at high p_T we merge the GPR describing the flow effect with (η/π^0)$_{mc}$ above p_T^{cut}. The uncertainty band at low p_T is also taken to be whichever is larger.

In Fig. 10 the construction η/π^0 is presented step by step for three examples: 0-20%, 60-92% Au+Au at 200 GeV and 0-10% Pb+Pb at 2.76 TeV, in panels (a) to (c) respectively. The pseudo data generated are represented by points, which are then processed through a GPR resulting in the hashed green bands. They are contrasted with (η/π^0)$_{mc}$, the blue band, and merged with it above p_T^{cut} to create the final green envelope representing our η/π^0 estimates. As discussed above the largest flow effect is observed for central Pb+Pb collisions at the LHC (panel (c)). For central Au+Au collision at RHIC (panel (a)) a much smaller effect is observed, and finally peripheral collisions of the same system are consistent with no flow effect (panel (b)).

These best estimates are compared to data in Fig. 9. For the comparison we selected data sets with similar charged particle densities, so that despite the difference in collision system, centrality or $\sqrt{s_{NN}}$ matter was created under similar conditions and evolved the same way with time. In all three cases our best estimates are consistent with the η/π^0 data.

VI. SUMMARY DISCUSSION

We find a universal p_T dependence of η/π^0 for all $p+p$ and $p+A$ collisions independent of the center of mass energy from $\sqrt{s_{NN}} = 23$ GeV to 8 TeV. We note that like originally discovered in [6], below 3 GeV/c the universal ratio is significantly below m_T scaling extrapolations from higher p_T.

That there is no $\sqrt{s_{NN}}$ dependence is surprising as the p_T spectra of all particles vary strongly with $\sqrt{s_{NN}}$ and particle production from jet fragmentation becomes increasingly prevalent at higher energies. None-the-less there seems to be no impact on the relative yield at which η and π^0 are produced. This may hint at a largely universal hadronisation process in which hadrons are always created under the same conditions, even if the underlying mechanism is considered different, for example bulk particle production or jet fragmentation.
For heavy ion collisions, η/π^0 has the same universal behavior at high p_T, independent of collision species, collision energy, or collision centrality. For lower p_T we find evidence for modifications of the relative particle yields due to radial flow. One might speculate that the same universal harmonization process is at work but that hadrons are produced in a moving reference frame.

We have quantified the modification of the η/π^0 ratio due to radial flow using the double ratio $R_{AA}(K)/R_{AA}(\pi)$. This assumes that the change of the p_T spectra depends entirely on the particle mass, but it does not make any assumptions about the similarity of η and kaon spectra themselves. We note that our approach may overestimate the modification due to flow, since kaon production or generally strange quark production is enhanced in heavy ion collisions. In our estimate the modification increases with $\sqrt{s_{NN}}$. At 200 GeV at RHIC the maximum increase of η/π^0 is estimated to be 25% around 1 GeV/c, in contrast at 2.76 TeV at the LHC the maximum increase is nearly 50% and occurs at higher p_T between 2 and 3 GeV/c.

With our original motivation in mind, which was to
reduce systematic uncertainties on the measurement of direct photons, we proposed a new methodology to create \(\eta/\pi^0 \) ratios. This method is more accurate than frequently used extrapolations to lower \(p_T \) based on \(m_T \) scaling, and does not suffer from the frequent lack of statistics for \(\eta \) measurements. Our approach can be applied to all systems for which \(K/\pi^\pm \) is measured in the \(p_T \) range affected by radial flow. The method does not require actual measurements of \(\eta \) production for a given system.

We have tested this method for two specific collision systems. For \(\text{Au+Au} \) collisions at 200 GeV the deviations due to flow are found to be within \(\pm 15\% \) of the minimum bias values. Even for central collisions the \(\eta/\pi^0 \) underlying the estimate of photon from hadron decays used in direct photon measurements [2–4] is above what we propose. As a consequence direct photon yields have been slightly underestimated, though the differentiations are within quoted systematic uncertainties. For central \(\text{Pb+Pb} \) collisions at 2.76 TeV the flow modifications are larger and coincidentally bring \(\eta/\pi^0 \) much closer to the \(m_T \) scaling assumption used in the measurement of direct photons published by ALICE [5].

ACKNOWLEDGMENTS

We acknowledge the support from the Office of Nuclear Physics in the Office of Science of the Department of Energy.

Appendix A: Gaussian Process Regression

In this section we discuss the implementation of the Gaussian Process Regression (GPR) used in our analysis. Full details about the GPR can be found in [18]. We start with a selection of \(N \) data points \(x_i, y_i \), and \(\sigma_i^2 \). In our case this is typically, \(N \) values of \(\log(10(p_T)) \), \(\eta/\pi^0(p_T) \) and its variance. We use a Square-Exponential (SE) kernel to describe the correlation between points, which is given by:

\[
 k_{SE}(x_i, x_j) = \sigma_p^2 \exp \left(-\frac{(x_i - x_j)^2}{2\ell^2}\right). \tag{A1}
\]

Here \(\sigma_p \) gives the strength of the correlation between \(y \) values and \(\ell \) is a length scale that determines the range in \(x \) over which \(y \) values are correlated.

We introduce the vectors \(X \) and \(Y \), which have dimension \(N \) and elements \(x_i \) and \(y_i \), i.e. the data. The correlations between \(y \) values is then defined by a covariance matrix \(K_{xx} \) which has the elements

\[
 (K_{xx})_{ij} = k_{SE}(x_i, x_j) + \delta_{ij}\sigma_i^2, \tag{A2}
\]

with \(\delta_{ii} = 1 \) and \(\delta_{ij} = 0 \) for \(i \neq j \). The term \(\delta_{ij}\sigma_i^2 \) adds noise to the diagonal elements to account for the uncertainty on the measured \(y \) values. In order to determine \(\sigma_p \) and \(\ell \), we maximize the log likelihood function:

\[
 \log p(Y|\sigma_p, \ell) = -\frac{n}{2} \log 2\pi - \frac{1}{2} Y^T[K_{xx}]^{-1}Y - \frac{1}{2} \log \det(K_{xx}). \tag{A3}
\]

Once the parameters \(\sigma_p \) and \(\ell \) are set, we can predict \(y \) values for any given \(x \) value. For this we introduce a vectors \(X^* \) and \(Y^* \) of dimension \(R \) and elements \(x_i^* \) for which we want to predict \(y_i^* \), with \(R \) typically much larger than \(N \). We introduce two more matrices, one of dimension \(R \times N \) with elements \((K_{x^*x})_{ij} \equiv k_{SE}(x_i^*, x_j) \), and one of dimension \(R \times R \) with elements \((K_{x^*x})_{ij} \equiv k_{SE}(x_i^*, x_j^*) \). The predicted values \(Y^* \) and their covariance matrix \(\text{Cov}(Y^*) \) are then calculated as follows:

\[
 Y^* = K_{x^*x}[K_{xx}]^{-1}Y, \tag{A4}
\]

\[
 \text{Cov}(Y^*) = K_{x^*x^*} - K_{x^*x}[K_{xx}]^{-1}K_{xx}^T. \tag{A5}
\]

The diagonal elements of \(\text{Cov}(Y) \) give the variance of \(Y^* \) due to the statistical uncertainty on the data \(Y \). We refer to this as vector \(S_{stat}^* \). We also consider the fit uncertainty on \(\sigma_p \) and \(\ell \). The variance can be calculated by the covariance matrix \(M \) the fitting procedure provides through error propagation of Eq. A4.:

\[
 S_{fit} = (\partial y^*)^2 M_{ll} + 2\partial y^*\partial y^* M_{lp} \sigma_p + (\partial y^*)^2 M_{pp} \sigma_p, \quad \forall y^* \in Y^* \tag{A6}
\]

with \(\partial_l \) and \(\partial_{\sigma_p} \) being the partial derivatives of \(Y^* \) with respect to \(\ell \) and \(\sigma_p \).

In addition, we incorporate the systematic uncertainties using the data shuffling method discussed in Appendix B. We create a large ensemble of different \(\{Y^*_n\} \) for the same \(X^* \) by varying each data set by a Gaussian random number \(\epsilon \sim N(0,1) \) multiplying systematic uncertainties. The pointwise variance of ensembles \(\{Y^*_n\} \), which we call \(S_{sys}^* \), is used as measure of the systematic uncertainty.

In all figures that show results from the GPR the center line represents \(Y^* \) and the vertical width of the band is \(\sqrt{S_{stat} + S_{fit} + S_{sys}^*} \), pointwise.

Appendix B: Data-shuffling method

The data-shuffling method is a Monte Carlo simulation approach that allows to estimate the effect of systematic uncertainties on the result of a fit of a function to data. To illustrate how the method works we first consider the case of one data set and assume that the systematic uncertainties are fully correlated. Here fully correlated means that the correlation matrix is
Suppose each data point is described by a 4-tuple $(x_i, y_i, \sigma^{stat}_i, \sigma^{sys}_i)$. One first defines a Gaussian random variable $\epsilon \sim N(0,1)$. In each simulation, one shifts each y_i by a small quantity to $y'_i = y_i + \sigma^{sys}_i \epsilon$ accordingly. Then in each simulation, one fits with these shifted data, and gets one fit result. This is repeated L times, which generates L sets of fit parameters. For each set of fit parameters one can divide the x values into R bins. Both L and R are usually large numbers. This results in a L-by-R matrix of $y_{i\lambda}$ values. For a fixed r, the mean and standard deviation of $\{y_{\lambda r} : 1 \leq \lambda \leq L\}$ are calculated. The standard deviation is assigned as systematic uncertainty of the fit for the given r.

The method is expanded to multiple data sets by generating independent Gaussian random variables for each data set. In principle, more complex correlations of uncertainties for an individual data set can be decoded in ρ_{ij}, however, for the data at hand these correlations are not known and thus can not be implemented.

One can choose as the final y value for a given r either the mean from data-shuffling, or the fit result of the original data (i.e., the fit result when the Gaussian variables are zero). The difference between them is usually negligible.

[1] E. V. Shuryak, Quark-Gluon Plasma and Hadronic Production of Leptons, Photons and Pions, Sov. J. Nucl. Phys. 28, 408 (1978).

[2] A. Adare et al. (PHENIX), Enhanced production of direct photons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for the initial temperature, Phys. Rev. Lett. 104, 132301 (2010), arXiv:0804.4168 [nucl-ex].

[3] A. Adare et al. (PHENIX), Centrality dependence of low-momentum direct-photon production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 91, 064904 (2015), arXiv:1405.3940 [nucl-ex].

[4] A. Adare et al. (PHENIX), Beam Energy and Centrality Dependence of Direct-Photon Emission from Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 123, 022301 (2019), arXiv:1805.04084 [hep-ex].

[5] J. Adam et al. (ALICE), Direct photon production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Lett. B 754, 235 (2016), arXiv:1509.07324 [nucl-ex].

[6] G. Agakichiev et al., Neutral meson production in p Be and p Au collisions at 450-GeV beam energy, Eur. Phys. J. C 4, 249 (1998).

[7] L. Altenkämper, F. Bock, C. Loizides, and N. Schmidt, Applicability of transverse mass scaling in hadronic collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 96, 064907 (2017), arXiv:1710.01933 [hep-ph].

[8] A. Adare et al. (PHENIX), Detailed measurement of the e^+e^- pair continuum in p+p and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and implications for direct photon production, Phys. Rev. C 81, 034911 (2010), arXiv:0912.0244 [nucl-ex].

[9] R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies, Nuovo Cim. Suppl. 3, 147 (1965).

[10] S. Acharya et al. (ALICE), π^0 and η meson production in proton-proton collisions at $\sqrt{s} = 8$ TeV, Eur. Phys. J. C 78, 263 (2018), arXiv:1708.08745 [hep-ex].

[11] B. Abelev et al. (ALICE), Neutral pion and η meson production in proton-proton collisions at $\sqrt{s} = 0.9$ TeV and $\sqrt{s} = 7$ TeV, Phys. Lett. B 717, 162 (2012), arXiv:1205.5724 [hep-ex].

[12] S. Adler et al. (PHENIX), High transverse momentum η meson production in p^+p, d^+Au and Au+Au collisions at $\sqrt{s_{NN}} = 200$-GeV, Phys. Rev. C 75, 024909 (2007), arXiv:nucl-ex/0611006.

[13] S. Acharya et al. (ALICE), Production of π^0 and η mesons up to high transverse momentum in pp collisions at 2.76 TeV, Eur. Phys. J. C 77, 339 (2017), arXiv:1702.00917 [hep-ex].

[14] A. Adare et al. (PHENIX), Cross section and double helicity asymmetry for η mesons and their comparison to neutral pion production in $p+p$ collisions at $\sqrt{s}=200$ GeV, Phys. Rev. D 83, 032001 (2011), arXiv:1009.6224 [hep-ex].

[15] S. Acharya et al. (ALICE), Neutral pion and η meson production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Eur. Phys. J. C 78, 624 (2018), arXiv:1801.07051 [nucl-ex].

[16] S. Adler et al. (PHENIX), Mid-rapidity neutral pion production in proton-proton collisions at $\sqrt{s} = 200$-GeV, Phys. Rev. Lett. 91, 241803 (2003), arXiv:hep-ex/0304038.

[17] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna, and E. Norrbom, High-energy physics event generation with PYTHIA 6.1, Comput. Phys. Commun. 135, 288 (2001), arXiv:hep-ph/0010017.

[18] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning (The MIT Press, 2005).

[19] M. Bonesini et al. (WA70 Collaboration), High transverse momentum η production in π^+p, π^-p, and pp interactions at 280 gev/c, Z. Phys. C 42, 527 (1989).

[20] L. Apanasevich et al. (Fermilab E706), Production of π^0 and η mesons at large transverse momenta in pp and pBe Interactions at 530 and 800 GeV/c, Phys. Rev. D 68, 052001 (2003), arXiv:hep-ex/0204031.

[21] C. Aidala et al. (PHENIX), Production of η and π mesons in Cu+Au collisions at $\sqrt{s_{NN}}=200$ GeV, Phys. Rev. C 98, 054903 (2018), arXiv:1805.04389 [hep-ex].

[22] U. Acharya et al. (PHENIX), Production of π^0, η, and K_S mesons in U+U collisions at $\sqrt{s_{NN}} = 192$ GeV, Phys. Rev. C 102, 064905 (2020), arXiv:2005.14686 [hep-ex].

[23] A. Adare et al. (PHENIX), Neutral pion production with respect to centrality and reaction plane in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV, Phys. Rev. C 87, 034911 (2013), arXiv:1208.2254 [nucl-ex].

[24] S. Acharya et al. (ALICE), Neutral pion and η meson production at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 98, 044901 (2018), arXiv:1803.05490 [nucl-ex].

[25] J. Adam et al. (ALICE), Charged-particle multiplicities in proton-proton collisions at $\sqrt{s} = 0.9$ to 8 TeV, Eur. Phys. J. C 77, 33 (2017), arXiv:1509.07541 [nucl-ex].

[26] A. Adare et al. (PHENIX), Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}} = 7.7$ to 200 GeV, Phys. Rev. C 93, 024901 (2016), arXiv:1509.06727 [nucl-ex].

[27] B. Abelev et al. (ALICE), Pseudorapidity density of
charged particles in $p + $Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 110, 032301 (2013), arXiv:1210.3615 [nucl-ex].

[28] K. Aamodt et al. (ALICE), Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 106, 032301 (2011), arXiv:1012.1657 [nucl-ex].

[29] A. Adare et al. (PHENIX), Spectra and ratios of identified particles in Au+Au and d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. C 88, 024906 (2013), arXiv:1304.3410 [nucl-ex].

[30] J. Adam et al. (ALICE), Centrality dependence of the nuclear modification factor of charged pions, kaons, and protons in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 93, 034913 (2016), arXiv:1506.07287 [nucl-ex].