RATIONALITY OF CYCLES ON FUNCTION FIELD OF
EXCEPTIONAL PROJECTIVE HOMOGENEOUS VARIETIES

RAPHAEL FINO

Abstract. In this article we prove a result comparing rationality of algebraic cycles over
the function field of a projective homogeneous variety under a linear algebraic group of
type F_4 or E_8 and over the base field, which can be of any characteristic.

Keywords: Chow groups and motives, exceptional algebraic groups, projective homo-
genous varieties.

1. Introduction

Let G be a linear algebraic group of type F_4 or E_8 over a field F and let X be a
projective homogeneous G-variety. We write Ch for the Chow group with coefficient in
$\mathbb{Z}/p\mathbb{Z}$, with $p = 3$ when G is of type F_4 and $p = 5$ when G is of type E_8. The purpose of
this note is to prove the following theorem dealing with rationality of algebraic cycles on
function field of such a projective homogeneous G-variety.

Theorem 1.1. For any equidimensional variety Y, the change of field homomorphism

$$Ch(Y) \rightarrow Ch(Y_{F(X)})$$

is surjective in codimension $< p + 1$. It is also surjective in codimension $p + 1$ for a given
Y provided that $1 \notin \deg Ch_0(X_{F(\zeta)})$ for each generic point $\zeta \in Y$.

The proof is given in section 3.

In previous papers ([2], [3], after the so-called Main Tool Lemma by A. Vishik, cf
[10], [17]), similar issues about rationality of cycles, with quadrics instead of exceptional
projective homogeneous varieties, have been treated. The above statement is to put in
relation with [10] Theorem 4.3, where generic splitting varieties have been considered.
Also, Theorem 1.1 is contained in [10] Theorem 4.3 if char$(F) = 0$.

On the one hand, our method of proof is basically the method used to prove [10] Theo-
rem 4.3. On the other hand, our method mainly relies on a motivic decomposition result
for projective homogeneous varieties due to V. Petrov, N. Semenov and K. Zainoulline (cf
[14] Theorem 5.17). It also relies on a linkage between the γ-filtration and Chow groups,
in the spirit of [5]. Our method works in any characteristic and is particularly suitable
for groups of type F_4 and E_8 mainly because the latter have an opportune J-invariant.

In the aftermath of Theorem 1.1, we get the following statement dealing with integral
Chow groups (see [10] Theorem 4.5]).

Date: 2 June 2013.

2010 Mathematics Subject Classification. 14C25; 20G41.
Corollary 1.2. If \(p \in \deg CH_0(X) \) then for any equidimensional variety \(Y \), the change of field homomorphism \(CH(Y) \to CH(Y_{F(X)}) \) is surjective in codimension \(< p + 1 \). It is also surjective in codimension \(p + 1 \) for a given \(Y \) provided that \(1 \notin \deg CH_0(X_{F(\zeta)}) \) for each generic point \(\zeta \in Y \).

Remark 1.3. Our method of proof for Theorem 1.1 works for groups of type \(G_2 \) as well (with \(p=2 \)). However, the case of \(G_2 \) can be treated in a more elementary way if \(\text{char}(F) = 0 \).

Indeed, it is known that to each group \(G \) of type \(G_2 \) one can associate a 3-fold Pfister quadratic form \(\rho \) such that, by denoting \(X_\rho \) the Pfister quadric associated with \(\rho \), the variety \(X \) has a rational point over \(F(X_\rho) \) and vice-versa. Thus, for any equidimensional variety \(Y \), one has the commutative diagram

\[
\begin{array}{ccc}
Ch(Y) & \to & Ch(Y_{F(X)}) \\
\downarrow & & \downarrow \\
Ch(Y_{F(X_\rho)}) & \to & Ch(Y_{F(X_\rho \times X)})
\end{array}
\]

where the right and the bottom maps are isomorphisms. Furthermore, as suggested in [17, Remark on Page 665] (where the assumption \(\text{char}(F) = 0 \) is required), the change of field homomorphism \(Ch(Y) \to Ch(Y_{F(Q)}) \) is surjective in codimension \(< 3 \).

Acknowledgements. I gracefully thank Nikita Karpenko for sharing his great knowledge and his valuable advice.

2. Filtrations on projective homogeneous varieties

In this section, we prove two propositions which play a crucial role in the proof of Theorem 1.1.

First of all, we recall that for any smooth projective variety \(X \) over a field \(E \), one can consider two particular filtrations on the Grothendieck ring \(K(X) \) (see [5, §1.A]), i.e the \(\gamma \)-filtration and the topological filtration, whose respective terms of codimension \(i \) are given by

\[
\gamma^i(X) = \langle c_{n_1}(a_1) \cdots c_{n_m}(a_m) \mid n_1 + \cdots + n_m \geq i \text{ and } a_1, \ldots, a_m \in K(X) \rangle
\]

and

\[
\tau^i(X) = \langle [O_Z] \mid Z \hookrightarrow X \text{ and codim}(Z) \geq i \rangle,
\]

where \(c_n \) is the \(n \)-th Chern Class with values in \(K(X) \) and \([O_Z] \) is the class of the structure sheaf of a closed subvariety \(Z \). We write \(\gamma^{i/i+1}(X) \) and \(\tau^{i/i+1}(X) \) for the respective quotients. For any \(i \), one has \(\gamma^i(X) \subset \tau^i(X) \) and one even has \(\gamma^i(X) = \tau^i(X) \) for \(i \leq 2 \). We denote by \(pr \) the canonical surjection

\[
CH^i(X) \twoheadrightarrow \tau^{i/i+1}(X)
\]

\[
[Z] \mapsto [O_Z],
\]

where \(CH \) stands for the integral Chow group.
The method of proof of the following proposition is largely inspired by the proof of [9, Theorem 6.4 (2)].

Proposition 2.1. Let G_0 be a split semisimple linear algebraic group over a field F and let B be a Borel subgroup of G_0. There exist an extension E/F and a cocycle $\xi \in H^1(E, G_0)$ such that the topological filtration and the γ-filtration coincide on $K(\xi(G_0/B))$.

Proof. Let n be an integer such that $G_0 \subset \text{GL}_n$ and let us set $S := \text{GL}_n$ and $E := F(S/G_0)$. We denote by T the E-variety $S \times_{S/G_0} \text{Spec}(E)$ given by the generic fiber of the projection $S \to S/G_0$. Note that since T is clearly a G_0-torsor over E, there exists a cocycle $\xi \in H^1(E, G_0)$ such that the smooth projective variety $X := T/B_E$ is isomorphic to $\xi(G_0/B)$. We claim that the Chow ring $CH(X)$ is generated by Chern classes. Indeed, the morphism $h : X \to S/B$ induced by the canonical G_0-equivariant morphism $T \to S$ being a localisation, the associated pull-back

$$h^* : CH(S/B) \to CH(X)$$

is surjective. Furthermore, the ring $CH(S/B)$ itself is generated by Chern classes: by [9, §6,7] there exist a morphism

$$(2.2) \quad S(T^*) \to CH(S/B),$$

(where $S(T^*)$ is the symmetric algebra of the group of characters T^* of a split maximal torus $T \subset B$) with its image generated by Chern classes. Moreover, the morphism (2.2) is surjective by [9, Proposition 6.2]. Since h^* is surjective and Chern classes commute with pull-backs, the claim is proved.

We show now that the two filtrations coincide on $K(X)$ by induction on dimension. Let $i \geq 0$ and assume that $\tau^{i+1}(X) = \gamma^{i+1}(X)$. Since for any $j \geq 0$, one has $\gamma^j(X) \subset \tau^j(X)$, the induction hypothesis implies that

$$\gamma^{i/i+1}(X) \subset \tau^{i/i+1}(X).$$

Thus, the ring $CH(X)$ being generated by Chern classes, one has $\gamma^{i+i+1}(X) = \tau^{i/i+1}(X)$ by [6, Lemma 2.16]. Therefore one has $\tau^i(X) = \gamma^i(X)$ and the proposition is proved. □

Note that this result remains true when one consider a special parabolique subgroup P instead of B.

Now, we prove a result which will be used in section 3 to get the second conclusion of Theorem 1.1.

We recall that for any smooth projective variety X over a field and for any $i < p+1$, the canonical surjection $pr : Ch^i(X) \to \tau^{i+1}(X)$ with $\mathbb{Z}/p\mathbb{Z}$-coefficient is an isomorphism (cf [5, §1.A] for example). The following proposition extends this fact to $i = p + 1$ provided that X is a projective homogeneous variety under a linear algebraic group G of type F_4 or E_8.

Proposition 2.3. Let X be a projective homogeneous variety under a group G of type F_4 or E_8, then the canonical surjection

$$pr : Ch^{p+1}(X) \to \tau^{p+1/p+2}(X)$$

is injective.
The epimorphism \(pr : Ch^{p+1}(X) \to \tau^{p+1/p+2}(X) \) coincides with the edge homomorphism of the spectral Brown-Gersten-Quillen structure \(E_2^{p+1,p-1}(X) \Rightarrow K(X) \), i.e \(E_r^{p+1,p-1}(X) \) stabilizes for \(r > 0 \) with \(E_\infty^{p+1,p-1}(X) = \tau^{p+1/p+2}(X) \), and for any \(r \geq 2 \) the differential \(E_r^{p+1,p-1}(X) \to E_r^{p+1+r,p-r}(X) \) is zero, so that the epimorphism \(pr \) coincides with the composition

\[
Ch^{p+1}(X) \simeq E_2^{p+1,p-1}(X) \to E_3^{p+1,p-1}(X) \to \cdots \to E_\infty^{p+1,p-1}(X) = \tau^{p+1/p+2}(X).
\]

Now, it is equivalent in order to prove the proposition to prove that for any \(r \geq 2 \), the differential \(E_r^{p+1-r,-p-2+r}(X) \to E_r^{p+1,p-1}(X) \) is zero.

First of all, since we work with \(\mathbb{Z}/p\mathbb{Z} \)-coefficient, by [12, Theorem 3.6], the differential \(E_r^{p+1-r,-p-2+r}(X) \to E_r^{p+1,p-1}(X) \) is zero for any \(r \geq 2 \) with \(r \neq p \). Hence, one only has to show that the differential \(E_\infty^{1,-2}(X) \to E_\infty^{p+1,p-1}(X) \) is zero.

Let us consider the following composition given by the BGQ-structure

\[
E_\infty^{1,-2}(X) \hookrightarrow \cdots \hookrightarrow E_3^{1,-2}(X) \hookrightarrow E_2^{1,-2}(X).
\]

Note that one has \(E_\infty^{1,-2}(X) \simeq E_2^{1,-2}(X) \) if and only if for any \(r \geq 2 \) the differential \(E_r^{1,-2}(X) \to E_r^{1+r,-2+r+1}(X) \) is zero. Therefore it is sufficient to prove that \(E_\infty^{1,-2}(X) \simeq E_2^{1,-2}(X) \) to get that the differential \(E_\infty^{1,-2}(X) \to E_\infty^{p+1,p-1}(X) \) is zero.

On the one hand, by the very definition, the group \(E_\infty^{1,-2}(X) \) of the topological filtration on \(K_1(X) \). On the other hand, one has \(E_2^{1,-2}(X) \simeq H^1(X, K_2) \) (for any integers \(p \) and \(q \), one has \(E_2^{p,q}(X) \simeq H^p(X, K_{-q}) \)).

Let us now consider the commutative diagram (cf [7, §4])

\[
\begin{array}{ccc}
K_1^{1/2}(X) & \longrightarrow & H^1(X, K_2) \\
\downarrow & & \downarrow \\
H^0(X, K_1) \otimes Ch^1(X) & \longrightarrow & H^1(X, K_2)
\end{array}
\]

We claim that the natural map \(H^0(X, K_1) \otimes Ch^1(X) \to H^1(X, K_2) \) is an isomorphism. Indeed since \(G \) is of type \(F_4 \) or \(E_8 \), it has only trivial Tits algebras, and therefore, by [11, Theorem], one has

\[
H^1(X, K_2) \simeq H^1(X_{\text{sep}}, K_2)^F,
\]

where \(\Gamma \) is the absolute Galois group of \(F \). Moreover, since the variety \(X_{\text{sep}} \) is cellular, by [11, Proposition 1], one has

\[
H^1(X_{\text{sep}}, K_2) \simeq K_1 F \otimes Ch^1(X_{\text{sep}}).
\]

Thus, since the Picard group of any homogeneous projective variety under a group of type \(F_4 \) or \(E_8 \) is rational (cf [15, Example 4.1.1]) and since \((K_1 F) = K_1 F = H^0(X, K_1) \), one has

\[
H^1(X, K_2) \simeq K_1 F \otimes Ch^1(X) \simeq H^0(X, K_1) \otimes Ch^1(X),
\]

and the claim is proved. Therefore, one has \(E_\infty^{1,-2}(X) \simeq E_2^{1,-2}(X) \) and the proposition is proved. \(\square \)
Remark 2.4. Assume that G_0 of strongly inner type (e.g F_4 and E_8) and consider an extension E/F and a cocycle $\xi \in H^1(E, G_0)$. By [13 Theorem 2.2.(2)], the change of field homomorphism

$$K(\xi(G_0/B)_E) \to K(\xi(G_0/B)_{\overline{E}}) \simeq K(G_0/B)$$

is an isomorphism, where \overline{E} denotes an algebraic closure of E. Therefore, since the γ-filtration is defined in terms of Chern classes and the latter commute with pull-backs, the quotients of the γ-filtration on $K(\xi(G_0/B)_E)$ do not depend on the extension E/F neither on the choice of $\xi \in H^1(E, G_0)$.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

First of all, note that the F-variety X is A-trivial in the sense of [10 Definition 2.3] (see [10 Example 2.5]), i.e for any extension L/F with $X(L) \neq \emptyset$, the degree homomorphism $\deg: Ch_0(X_L) \to \mathbb{Z}/p\mathbb{Z}$ is an isomorphism. Therefore, by [10 Lemma 2.9], the change of field homomorphism $Ch(Y) \to Ch(Y_{F(X)})$ is an isomorphism (in any codimension) if $1 \in \deg Ch_0(X)$. Hence, one can assume that $1 \notin \deg Ch_0(X)$.

Now, we know from [14 Table 4.13] that the J-invariant $J_p(G)$ of G is equal to (1) or (0). However, the assumption $J_p(G) = (0)$ implies that there exists a splitting field K/F of degree coprime to p (see [14 Corollary 6.7]), and in that case one has $Ch_0(X) \simeq Ch_0(X_K)$ and $1 \in \deg Ch_0(X_K)$ by A-triviality of X. Thus, under the assumption $1 \notin \deg Ch_0(X)$, one necessarily has $J_p(G) = (1)$ and that is why we can assume $J_p(G) = (1)$ in the sequel.

Since X is A-trivial, one can use the following proposition (cf [10 Proposition 2.8]).

Proposition 3.1 (Karpenko, Merkurjev). Given an equidimensional F-variety Y and an integer m such that for any i and any point $y \in Y$ of codimension i the change of field homomorphism

$$Ch^m(X) \to Ch^m(X_{F(y)})$$

is surjective, the change of field homomorphism

$$Ch^m(Y) \to Ch^m(Y_{F(X)})$$

is also surjective.

Consequently, it is sufficient in order to prove the first conclusion of Theorem 1.1 to show that for any extension L/F, the change of field homomorphism

$$(3.2) \quad Ch(X) \to Ch(X_L)$$

is surjective in codimension $< p + 1$.

Moreover, the F-variety being generically split (see [14 Example 3.6]), one can apply the motivic decomposition result [14 Theorem 5.17] to X and get that the motive $\mathcal{M}(X, \mathbb{Z}/p\mathbb{Z})$ decomposes as a sum of twists of an indecomposable motive $\mathcal{R}_p(G)$ (in the same way as (3.5)). Note that the quantity and the value of those twists do not depend on the base field. In particular, we get that for any extension L/F and any integer k, the group $Ch^k(X_L)$ is isomorphic to a direct sum of groups $Ch^{k-i}(\mathcal{R}_p(G)_L)$ with $0 \leq i \leq k$.

Therefore, the surjectivity of (3.2) in codimension \(< p + 1 \) is a consequence of the following proposition.

Proposition 3.3. For any extension \(L/F \), the change of field
\[
(3.4) \quad Ch(\mathcal{R}_p(G)) \twoheadrightarrow Ch(\mathcal{R}_p(G)_L)
\]
is surjective in codimension \(< p + 1 \).

Proof. Let \(G_0 \) be a split linear algebraic group of the same type of the type of \(G \) and let \(\xi \in H^1(F, G_0) \) be a cocycle such that \(G \) is isogenic to the twisted form \(\xi G_0 \). We write \(\mathfrak{B} \) for the Borel variety of \(G \) (i.e \(\mathfrak{B} = \xi(G_0/B) \), where \(B \) is a Borel subgroup of \(G_0 \)).

By [14, Theorem 5.17], one has the motivic decomposition
\[
(3.5) \quad \mathcal{M}(\mathfrak{B}, \mathbb{Z}/p\mathbb{Z}) \simeq \bigoplus_{i \geq 0} \mathcal{R}_p(G)(i)^{\Sigma a_i},
\]
where \(\Sigma_{i \geq 0} a_i t^i = P(CH(\mathfrak{B}), t)/P(CH(\mathcal{R}_p(G)), t) \), with \(P(\cdot, t) \) the Poincaré polynomial. Thus, for any integer \(k \), we get the following decomposition concerning Chow groups
\[
(3.6) \quad Ch^k(\mathfrak{B}_L) \simeq \bigoplus_{i \geq 0} Ch^{k-i}(\mathcal{R}_p(G)_L)^{\Sigma a_i}.
\]

First of all, the homomorphism (3.4) is clearly surjective in codimension 0 since one has \(Ch^0(\mathcal{R}_p(G)_L) = \mathbb{Z}/p\mathbb{Z} \) for any extension \(L/F \). Then, \(Ch^1(\mathfrak{B}) \) is identified with the Picard group \(Pic(\mathfrak{B}) \) and is rational (see [15, Example 4.1.1]). Furthermore, thanks to the Solomon Theorem for example (see [15, §2.5]), one can compute the coefficients \(a_i \)’s: we get \(a_0 = 1 \) and \(a_1 = \text{rank}(G) = \text{rank}(Ch^1(\mathfrak{B})) \). Thus, the isomorphism (3.6) implies that \(Ch^1(\mathcal{R}_p(G)_L) = 0 \) for any extension \(L/F \).

We have already shown that the homomorphism (3.4) is surjective in codimension 0 and 1. The following lemma implies the surjectivity in codimension 2 and 3 (and therefore proves the first conclusion of Theorem 1.1 if \(G \) is of type \(F_4 \)).

Lemma 3.7. Under the assumption \(J_p(G) = (1) \), one has
\[
Ch^2(\mathcal{R}_p(G)) = \mathbb{Z}/p\mathbb{Z} \quad \text{and} \quad Ch^3(\mathcal{R}_p(G)) = 0
\]

Proof. Since \(J_p(G) = (1) \), by [6 Example 5.3], the cocycle \(\xi \in H^1(F, G_0) \) match with a generic \(G_0 \)-torsor in the sense of [6]. Thus, by [5] Proposition 3.2 and [4] pp. 31, 133], one has \(\text{Tor}_p CH^2(\mathfrak{B}) \neq 0 \) (note that since an algebraic group of type \(F_4 \) or \(E_8 \) is simply connected, it is of strictly inner type, and we can use material from [5] §3]). The conclusion is given by [5] Proposition 5.4.

Let us fix an extension \(L/F \). We now prove the surjectivity of (3.4) in codimension 2 and 3. By [14] Example 4.7], one has \(J_p(G_L) = (0) \) or \(J_p(G_L) = (1) \).

If \(J_p(G_L) = (0) \) then one has \(\mathcal{R}_p(G_L) = \mathbb{Z}/p\mathbb{Z} \) by [14] Corollary 6.7], and on the other hand the motivic decomposition given in [14] Proposition 5.18 (i)] implies the following
decomposition on Chow groups for any integer k

\[(3.8)\quad Ch^k(\mathcal{R}_p(G)_L) \simeq \bigoplus_{i=0}^{p-1} Ch^{k-i(p+1)}(\mathcal{R}_p(G)_L)).\]

In particular, one has $Ch^k(\mathcal{R}_p(G)_L) = 0$ for $k = 2$ or 3 and the conclusion follows.

If $J_p(G_L) = (1)$ then by Lemma 3.7 one has $Ch^2(\mathcal{R}_p(G)_L) = \mathbb{Z}/p\mathbb{Z}$ and $Ch^3(\mathcal{R}_p(G)_L) = 0$. Moreover, since $J_p(G_L) = J_p(G)$, one has $\mathcal{R}_p(G_L) \simeq \mathcal{R}_p(G)_L$ (see [14, Proposition 5.18 (i)]). Therefore, the homomorphism (3.4) is clearly surjective in codimension 3.

We claim that it is also surjective in codimension 2. By (3.6) it suffices to show that the change of field $Ch^2(\mathcal{B}) \to Ch^2(\mathcal{B}_L)$ is an isomorphism. We use material and notation introduced in section 2. Since $J_p(G) = J_p(G_L) = (1)$, the cocycles ξ and ξ_L match with generic G_0-torsors and one consequently has $\gamma^3(\mathcal{B}) = \tau^3(\mathcal{B})$ and $\gamma^3(\mathcal{B}_L) = \tau^3(\mathcal{B}_L)$ (see [5, Theorem 3.1(ii)]). It follows that

\[\gamma^{2/3}(\mathcal{B}) = \tau^{2/3}(\mathcal{B}) \quad \text{and} \quad \gamma^{2/3}(\mathcal{B}_L) = \tau^{2/3}(\mathcal{B}_L).\]

Therefore, since $2 < p + 1$, the homomorphism $Ch^2(\mathcal{B}) \to Ch^2(\mathcal{B}_L)$ coincides with.

\[Ch^2(\mathcal{B}) \simeq \gamma^{2/3}(\mathcal{B}) \to \gamma^{2/3}(\mathcal{B}_L) \simeq Ch^2(\mathcal{B}_L)\]

and the center arrow is an isomorphism by Remark 2.4.

The surjectivity of (3.4) in codimension 4 and 5 is a direct consequence of the following statement, where G is of type E_8 and $p = 5$. Consequently, Lemma 3.9 completes the proof of the first conclusion of Theorem 1.1 for G of type E_8.

Lemma 3.9. For any extension L/F, one has

\[Ch^4(\mathcal{R}_5(G)_L) = 0 \quad \text{and} \quad Ch^5(\mathcal{R}_5(G)_L) = 0\]

Proof. Since $J_5(G) = (1)$, we know that $J_5(G_L) = (1)$ or (0). If $J_5(G_L) = (0)$ then one has $R_5(G_L) = \mathbb{Z}/5\mathbb{Z}$ and the isomorphism (3.8) implies that $Ch^4(\mathcal{R}_5(G)_L) = Ch^5(\mathcal{R}_5(G)_L) = 0$. Thus, one can assume $L = F$ and we have to prove that $Ch^4(\mathcal{R}_5(G)) = Ch^5(\mathcal{R}_5(G)) = 0$.

By Proposition 2.1 there exist an extension E/F and a cocycle $\xi' \in H^1(E, G_0)$ such that the topological filtration and the γ-filtration coincide on $K(\mathcal{B}')$, with $\mathcal{B}' = \xi'(G_0/B)$. Let us denote G' the variety $\xi'G_0$.

We claim that $J_5(G') = (1)$. Indeed, assume that $J_5(G') = (0)$. In that case, one has $R_5(G') = \mathbb{Z}/5\mathbb{Z}$ and the isomorphism (3.6) gives that $Ch^2(\mathcal{B}') = \mathbb{Z}/5\mathbb{Z}[a_2]$. Since $2 < p + 1$, it implies that $\gamma^{2/3}(\mathcal{B}') = \mathbb{Z}/5\mathbb{Z}[a_2]$, and consequently $\gamma^{2/3}(\mathcal{B}) = \mathbb{Z}/5\mathbb{Z}[a_2]$ by Remark 2.4. However, we have $\gamma^{2/3}(\mathcal{B}) \simeq \tau^{2/3}(\mathcal{B})$ (because $\gamma^3(\mathcal{B}) \simeq \tau^3(\mathcal{B})$ since $\xi \in H^1(F, G_0)$ is generic). Thus, we have $Ch^2(\mathcal{B}) = \mathbb{Z}/5\mathbb{Z}[a_2]$, which contradicts $Ch^2(\mathcal{R}_5(G)) = \mathbb{Z}/5\mathbb{Z}$ and the claim is proved (we recall that for any $i < 6 = p + 1$, one has $\tau^{i/2+1}(X) \simeq Ch^i(X)$).

We now compute the groups $\gamma^{i/2+1}(\mathcal{B}')$ for $i = 3, 4, 5$. Note that since $K(\mathcal{B}') \simeq K(G_0/B)$ and since the description of the free group $K(G_0/B)$ in terms of generators does not depend on the characteristic char(E) of E (see [14, Lemma 13.3(4)]), we can assume that char(E) = 0 in order to compute those groups.
In that case, since $J_5(G') \neq (0)$, the isomorphism (3.6) combined with the following theorem (adapted from [10, Theorem RM.10] to our situation)

Theorem 3.10 (Karpenko, Merkurjev). Let H be a semisimple linear algebraic group of inner type over a field of characteristic 0 and let p be a torsion prime of H. If $J_p(H) \neq (0)$ then

$$Ch^j(\mathcal{R}_p(H)) = \begin{cases} \mathbb{Z}/p\mathbb{Z} & \text{if } j = 0 \text{ or } j = k(p+1) - p + 1, 1 \leq k \leq p - 1 \\ 0 & \text{otherwise} \end{cases}$$

gives that

$$\gamma^{i+1}(\mathcal{B}') \simeq Ch^i(\mathcal{B}') = \mathbb{Z}/5\mathbb{Z}^{\oplus(a_{i-2} + a_i)} \quad \text{for } i = 3, 4, 5$$

(where the first isomorphism is due to $i < p + 1$). Therefore, we get

$$\gamma^{i+1}(\mathcal{B}) = \mathbb{Z}/5\mathbb{Z}^{\oplus(a_{i-2} + a_i)} \quad \text{for } i = 3, 4, 5$$

(with no particular assumption on $\text{char}(F)$). Thus, since $\tau^{3/4}(\mathcal{B}) \simeq Ch^3(\mathcal{B})$, the isomorphism (3.6) for $k = 3$ gives that $\tau^{3/4}(\mathcal{B}) \simeq \gamma^{3/4}(\mathcal{B})$. Since the γ-filtration is contained in the topological one, we get

$$\tau^4(\mathcal{B}) = \gamma^4(\mathcal{B}),$$

which implies the existence of an exact sequence

$$0 \to (\tau_5(\mathcal{B})/\gamma_5(\mathcal{B})) \to \gamma^{4/5}(\mathcal{B}) \to \tau^{4/5}(\mathcal{B}) \to 0.$$

Thus, since $\tau^{4/5}(\mathcal{B}) \simeq Ch^4(\mathcal{B})$, by applying the isomorphism (3.6) for $k = 4$, we get a surjection

$$\mathbb{Z}/5\mathbb{Z}^{\oplus(a_2 + a_4)} \to Ch^4(\mathcal{R}_p(G)) \oplus \mathbb{Z}/5\mathbb{Z}^{\oplus(a_2 + a_4)},$$

which implies that $Ch^4(\mathcal{R}_5(G)) = 0$.

We prove that $Ch^5(\mathcal{R}_5(G)) = 0$ by proceeding in exactly the same way.

Consequently, Proposition 3.3 is proved.

Finally, we want to prove the second conclusion of Theorem 1.1 ($p = 3$ if G is of type F_4 and $p = 5$ if G is of type E_8). First of all, since for any generic point ζ of Y, one has

$$1 \notin \deg Ch_0(X_{F(\zeta)}) \iff J_p(G_{F(\zeta)}) = (1),$$

by Proposition 3.1 and in view of what has already been done, it is sufficient to prove the following lemma to get the second conclusion.

Lemma 3.11. Under the assumption $J_p(G) = (1)$, one has $Ch^{p+1}(\mathcal{R}_p(G)) = 0$.

Proof. Thanks to Proposition 2.3, one can prove the lemma by proceeding in exactly the same way Lemma 3.9 has been proved.

This concludes the proof of Theorem 1.1.
References

[1] Calmes, B., Petrov, V., and Zainoulline, K. Invariants, torsion indices and cohomology of complete flags. *Ann. Sci. Ecole Norm. Sup.* (4) 46, 3 (2013), 36pp.

[2] Fino, R. Around rationality of cycles. *Cent.Eur.J.Math.* 11, 6 (2013), 1068–1077.

[3] Fino, R. Around rationality of integral cycles. *J.Pure.Appl.Algebra* 217, 9 (2013), 1702–1710.

[4] Garibaldi, S., Merkurjev, A., and Serre, J.-P. Cohomological invariants in Galois cohomology, vol. 28 of *University Lecture Series*. Amer. Math. Soc., 2003.

[5] Garibaldi, S., and Zainoulline, K. The γ-filtration and the rost invariant. *to appear in J. Reine und Angew. Math.* (2013), 19 pages.

[6] Gille, S., and Zainoulline, K. Equivariant pretheories and invariants of torsors. *Transf. Groups* 17, 2 (2012), 471–498.

[7] Karpenko, N. Algebro-geometric invariants of quadratic forms. *Leningrad (St. Petersburg) Math.J.* 2, 1 (1991), 655–671.

[8] Karpenko, N. Codimension 2 cycles on Severi-Brauer varieties. *K-Theory* 13, 4 (1998), 305–330.

[9] Karpenko, N., and Merkurjev, A. Canonical p-dimension of algebraic groups. *Adv.Math* 205 (2006), 410–433.

[10] Karpenko, N., and Merkurjev, A. On standard norm varieties. *Ann. Sci. Ec. Norm. Sup. (4)* 46, fascicule 1 (2013), 175–214.

[11] Merkurjev, A. The group $H^1(X,K_2)$ for projective homogeneous varieties. *Algebra i Analiz* 7, 3 (1995), 136–164. translation in St. Petersburg Math. J. 7 (1996), n°3, 421-444.

[12] Merkurjev, A. Adams operations and the Brown-Gersten-Quillen spectral sequence. In *Quadratic forms, linear algebraic groups, and cohomology*, vol. 18 of *Dev.Math.* Springer, New York, 2010, pp. 305–313.

[13] Panin, I. On the algebraic K-theory of twisted flag varieties. *K-Theory* 8, 6 (1994), 541–585.

[14] Petrov, V., Semenov, N., and Zainoulline, K. J-invariant of linear algebraic groups. *Ann. Sci. Ec. Norm. Sup. (4)* 41, 6 (2008), 1023–1053.

[15] Semenov, N., and Petrov, V. Generically split projective homogeneous varieties. *Duke Math. J.* 152 (2010), 155–173.

[16] Vishik, A. Generic points of quadrics and Chow groups. *Manuscripta Math* 122, 3 (2007), 365–374.

[17] Vishik, A. Rationality of integral cycles. *Documenta Matematica Extra Volume Suslin* (2010), 661–670.

UPMC Sorbonne Universités, Institut de Mathématiques de Jussieu, Paris, FRANCE

Web page: www.math.jussieu.fr/~fino
E-mail address: fino at math.jussieu.fr