On Fence Patrolling by Mobile Agents

Ke Chen† Adrian Dumitrescu‡ Anirban Ghosh‡

Abstract

Suppose that a fence needs to be protected by k mobile agents with maximum speeds v_1, \ldots, v_k so that each point on the fence is visited by some agent within every duration of a predefined time. The problem is to determine if this requirement can be met, and if so, to design a suitable schedule for the agents. Alternatively, one would like to find a schedule that minimizes the idle time, that is, the longest time interval during which some point is not visited by any agent. The problem was introduced by Czyzowicz et al. (2011). We revisit this problem and discuss several strategies for the cases of open and respectively closed fence.

1 Introduction

A set of mobile agents with predefined (possibly distinct) maximum speeds are in charge of guarding or in other words patrolling a given region of interest. Two interesting uni-dimensional variants where the agents move along a curve (e.g., the boundary of the region), have been introduced by Czyzowicz et al. [1]: (i) only part of the boundary, that is, an open curve, or open fence, needs to be guarded; (ii) the entire boundary, that is, a closed curve (cycle), or closed fence, needs to be guarded. For simplicity (and without loss of generality) it can be assumed that the open curve is a segment and the closed curve is a circle.

Given a schedule of the agents over some time interval $[0, t]$, the idle time I is the longest time interval during which a point of the fence remains unvisited, taken over all points. We are interested in guarding over an unlimited time interval, i.e., over the interval $[0, \infty)$. If the schedule of the agents is such that the positions of the agents during the time intervals $[it_0, (i+1)t_0]$, $i = 0, 1, \ldots$, are the same functions of t, we say that the schedule is periodic with period t_0.

Given k agent speeds $v_1, \ldots, v_k > 0$, the goal is to find a schedule for which the idle time is minimum. A straightforward volume argument from [1] yields the lower bound $I \geq 1/\sum_{i=1}^{k} v_i$. This lower bound applies for both the segment and the circle variant of the problem, and for any speed setting.

For the segment variant, Czyzowicz et al. [1] proposed a simple partitioning strategy, algorithm A_1, where each agent moves back and forth in a segment whose length is proportional with its speed. Algorithm A_1 is universal in the sense that is applicable for any speed setting $v_1, \ldots, v_k > 0$ for the agents. A_1 has been proved to be optimal for uniform speeds [1], i.e., when all maximum speeds are equal. It has been conjectured [1] that it is optimal for any speed setting, however this was recently disproved by Kawamura and Kobayashi [2] with two examples (periodic schedules) that only barely invalidate the conjecture. It is worth mentioning that the idle time achieved by A_1 is $2/\sum_{i=1}^{k} v_i$, and thereby A_1 yields a 2-approximation algorithm for the shortest idle time. The current best lower bound examples have an idle time of about $0.98 \left(2/\sum_{i=1}^{k} v_i \right)$.

For the circle variant, no universal algorithm has been proposed to be optimal. However, if the maximum speeds of the agents are the same, i.e., $v_1 = \ldots = v_k = v$, then placing the agents uniformly around the circle and moving in the same direction yields the minimum idle time for this setting. Indeed, the idle time is $1/(kv) = 1/\sum_{i=1}^{k} v_i$, matching the lower bound mentioned earlier.

Under the restriction that all agents must move in the same, say clockwise direction, Czyzowicz et al. [1] conjectured that the following algorithm A_2 is optimal: Let $v_1 \geq v_2 \geq \ldots \geq v_k$. Let r be such that $\max_{1 \leq i \leq k} iv_i = rv_i$. Place the agents a_1, a_2, \ldots, a_r at equal distances of $1/r$ around the unit circle, each moving clockwise at the same speed v_r. Discard the remaining agents, if any. Since all agents move in the same direction, we also refer to A_2 as the “runners” algorithm. Observe that A_2 is also universal. Its idle time is $1/\max_{1 \leq i \leq k} iv_i$ [1, Theorem 2]. The conjectured optimality of A_2 is still open.

Notation and terminology. Write $H_n = \sum_{i=1}^{n} 1/i$. A unit circle (resp., segment) is one of unit length. For a given patrolling algorithm A, using maximum speeds $v_1, \ldots, v_k > 0$, let $idle(A, v_1, \ldots, v_k)$, or just $idle(A)$ if there is no danger of confusion, denote its idle time.

Given k agents with maximum speeds $v_1, \ldots, v_k > 0$, and a patrolling algorithm A, let $L(A, v_1, \ldots, v_k)$ denote the maximum length of a segment patrolled

†Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA. Email: kechen@uwm.edu.
‡Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA. Email: dumitres@uwm.edu. Supported in part by NSF grant DMS-1001667.
‡Dept. of Comp. Sci., Univ. of Wisconsin–Milwaukee, USA. Email: anirban@uwm.edu. Supported by NSF grant DMS-1001667.
by these agents using algorithm A. Since the partition-based algorithm was conjectured to be optimal for a segment, it is natural to define the ratio of performance for any other algorithm A' over the existing partition-based algorithm A_1 as $\rho = \rho(A', A_1) = L(A', v_1, \ldots, v_k)/L(A_1, v_1, \ldots, v_k)$, where $L(A_1, v_1, \ldots, v_k) = (\sum_{i=1}^{k} v_i)/2$. This ratio can be used to evaluate strategies for patrolling—higher ratio implies better strategy. More generally one can compare two arbitrary strategies A', A'' via their lengths $L(A', v_1, \ldots, v_k)$ and $L(A'', v_1, \ldots, v_k)$. It is worth to keep in mind the equivalence between comparing different strategies via either their ratio or their idle time: if two algorithms compare with each other with ratio ρ in the length measure, the ratio of their idle times is $1/\rho$.

We use distance-time diagrams to plot the agent trajectories with respect to time. The x-coordinate represents distance along the fence and the y-coordinate represents time. For a constant-speed trajectory connecting (x_1, y_1) and (x_2, y_2) in the diagram, construct a shaded parallelogram with vertices, $(x_1, y_1), (x_1, y_1 + I), (x_2, y_2), (x_2, y_2 + I)$, where I denotes the idle time (in most of our cases, $I = 1$) and the shaded region represents the covered (guarded) region. A schedule for the agents ensures idle time I if and only if all area of the diagram in the time interval $[I, \infty)$ is covered.

General observations. 1. **Strategy scalability.** Suppose we have a patrolling strategy with k agents for a fence (open or closed) of length l with ratio ρ (relative to the partition strategy). Then, we can *scale* this strategy for every $l' \neq l$ using k agents as follows. Let $l'/l = \epsilon$, then $v_i' = \epsilon v_i$, $1 \leq i \leq k$, where v_i' is the scaled speed of a_i. The waiting times used in the strategy at specific positions for agents need not to be scaled. One can check that the ratio ρ remains unchanged.

2. **Strategy extension.** Suppose we have a patrolling strategy with k agents for a fence (open or closed) of length l with ratio $\rho > 1$ (relative to the partition strategy). Then, for any $k' > k$, there exists a patrolling strategy with k' agents for a fence of length $l' > l$ with ratio $\rho' > 1$: use $m = k' - k$ additional agents with $\sum_{i=k+1}^{k'} v_i = 2(l' - l)$ to patrol $l' - l$ using the partition strategy. Now if $\rho = \frac{n}{k} > 1$, then one can check that $\rho' = \frac{n+2(l' - l)}{k + 2(l' - l)} > 1$. It follows from the results of Kawamura and Kobayashi [2] and the above observation that the partition based algorithm is not optimal for a segment for any $k \geq 6$, and k suitable speeds.

Our results.

1. For every integer $x \geq 2$ there exist $k = 4x + 1$ agents with $\sum_{i=1}^{k} v_i = 48x + 3$ and a guarding schedule for a segment of length $25x/3$. Alternatively, for every integer $x \geq 2$ there exist $k = 4x + 1$ agents with suitable speeds v_1, \ldots, v_k, and a guarding schedule for a unit segment that achieves idle time at most $\frac{48x + 3}{50x} \sum_{i=1}^{2} v_i$. In particular, for every $\epsilon > 0$, there exist k agents with suitable speeds v_1, \ldots, v_k, and a guarding schedule for a unit segment that achieves idle time at most $(\frac{2}{25} + \epsilon) \sum_{i=1}^{2} v_i$. See Theorem 3, Section 2.

2. For every $k \geq 4$, there exist maximum speeds $v_1 \geq v_2 \geq \ldots \geq v_k$ and a new patrolling algorithm A_2 that yields an idle time better than that achieved by both A_1 and A_2. In particular, for large k, the idle time of A_2 with these speeds is about $2/3$ of that achieved by A_1 and A_2. See Proposition 1, Section 3.

3. Consider the unit circle, where all agents are required to move in the same direction. For every $t > 0$, there exists $k = k(t) = O(\epsilon^t)$ and a schedule for the system of agents with maximum speeds $v_i = 1/i$, $i = 1, \ldots, k$, that ensures an idle time < 1 during the time interval $[0, t)$. See Proposition 2, Section 4.

4. For every $k \geq 2$, there exist maximum speeds $v_1 \geq v_2 \geq \ldots \geq v_k$ so that there exists an optimal schedule (patrolling algorithm) for the circle that does not use up to $k - 1$ of the agents a_2, \ldots, a_k. In contrast, for a segment, any optimal schedule must use all agents. See Proposition 3, Section 4.

5. There exist settings in which if all k agents are used by a patrolling algorithm, then some agent(s) need overtake (pass) other agent(s). This follows from Proposition 3 and partially answers a question left open by Czyzowicz et al. [1, Section 3].

6. When agents have some radius of visibility, there exists instances in which a zero “speed budget” suffices for guarding. E.g., k stationary agents with radii of visibility r_1, \ldots, r_k, can guard a segment of length $2\sum_{i=1}^{k} r_i$. This partially answers another question left open by Czyzowicz et al. [1, Section 3].

2 **An improved idle time for open fence patrolling**

In the paper by Kawamura and Kobayashi [2], the first example with 6 agents has $\rho = 42/41$ and the second example with 9 agents has $\rho = 100/99$. By repeating the strategy from the second example (with 9 agents) with a larger number of agents we improve the ratio to $25/24 - \epsilon$ for any $\epsilon > 0$. We need two technical lemmas.

Lemma 1 Consider a segment of length $L = \frac{25}{24}$ such that three agents a_1, a_2, a_3 are patrolling perpetually each with speed of 5 and generating an alternating sequence of uncovered triangles $T_2, T_1, T_2, T_1, \ldots$, as shown in the distance-time diagram in Fig. 1. Denote the vertical distances between consecutive occurrences of T_1 and T_2 by δ_{12} and between consecutive occurrences of
Denote the bases of T_1 and T_2 by b_1 and b_2 respectively, and the heights of T_1 and T_2 by h_1 and h_2 respectively. Then

(i) $\frac{10}{3}$ is a period of the schedule.
(ii) T_1 and T_2 are congruent; further, $b_1 = b_2 = \frac{1}{3}$, $\delta_{12} = \delta_{21} = \frac{1}{3}$, and $h_1 = h_2 = \frac{5}{6}$.

Figure 1: Three agents each with a speed of 5 patrolling a fence of length 25/3; their start positions are 0, 5, and 20/3, respectively. Figure is not to scale.

Proof. (i) Observe that a_1, a_2, and a_3 reach the left endpoint of the segment at times $2(25/3)/5 = 10/3$, $5/3 = 1$, and $(25/3 + 5/3)/5 = 2$, respectively. During the time interval $[0, 10/3]$, each agent traverses the distance $2L$ and the positions and directions of the agents at time $t = 10/3$ are the same as those at time $t = 0$. Hence $10/3$ is a period for their schedule.

(ii) Since $AL \parallel BM$ and $AB \parallel LM$, we have $b_1 = b_2$. Since L is the midpoint of IP, we have $\delta_{12} + b_2 = \delta_{21} + b_1$, thus $\delta_{12} = \delta_{21}$. Since all the agents have same speed, 5, all the trajectory line segments in the distance-time diagram have the same slope, 1/5. Hence $\angle BAC = \angle ABC = \angle MLN = \angle LMN$. Thus, T_1 is similar to T_2.

Put $b = b_1$, $h = h_1$, and $\delta = \delta_{12}$. Recall from (i) that $|AH| = 10/3$. By construction, we have $|BD| = 1$, thus $|BH| = |BD| + |DG| + |GH| = 1 + 1 + 1 = 3$. We also have $|AH| = b + |BH|$, thus $b = 10/3 - 3 = 1/3$. Since L is the midpoint of IP, we have $\delta + b = 5/3$, thus $\delta = 5/3 - b = 4/3$.

Let $x(N)$ denote the x-coordinate of point N; then $x(N) + h = 25/3$. To compute $x(N)$ we compute the intersection of the two segments HL and BM. We have $H = (0, 0)$, $L = (25/3, 5/3)$, $B = (0, 3)$, and $M = (25/3, 4/3)$. The equations of HL and BM are $HL : x = 5y$ and $BM : x + 5y = 15$, and solving for x yields $x = 15/2$, and consequently $h = 25/3 - 15/2 = 5/6$. \[\square\]

Lemma 2 (i) Let s_1 be the speed of an agent needed to cover an uncovered isosceles triangle T_1; refer to Fig. 2(left). Then $s_1 = \frac{h}{1 - b/2}$, where $b < 1$ and h are the base and height of T_1, respectively.

(ii) Let s_2 be the speed of an agent needed to cover an alternate sequence of congruent isosceles triangles T_1, T_2 with bases on same vertical line; refer to Fig. 2(right). Then $s_2 = \frac{h}{3b^2/2 + b - 1}$, where y is the vertical distance between the triangles, $b < 1$ is the base and h is the height of the congruent triangles.

Proof. (i) In Fig. 2(left), $\tan \alpha = 1/s_1$, $|UZ| = b/2$, hence $|VZ| = 1 - b/2$. Also, $|VZ|/|ZW| = \tan \alpha = \frac{1 - b/2}{h} = \frac{1}{s_1}$, which yields $s_1 = \frac{h}{1 - b/2}$.

(ii) In Fig. 2(right), $|AB| = 1 + \frac{2h}{s_2}$. Also, $|CD| = \frac{b}{2} + y + b + \frac{h}{s_2}$. Equating $1 + \frac{2h}{s_2} = \frac{3b}{2} + y + \frac{h}{s_2}$ and solving for s_2, we get $s_2 = \frac{h}{3b^2/2 + b - 1}$. \[\square\]

Theorem 3 For every integer $x \geq 2$, there exist $k = 4x + 1$ agents with $\sum_{i=1}^{k} v_i = 48x + 3$ and a guarding schedule for a segment of length $25x/3$. Alternatively, for every integer $x \geq 2$ there exist $k = 4x + 1$ agents with suitable speeds v_1, \ldots, v_k, and a guarding schedule for a unit segment that achieves idle time at most $\frac{48x + 3}{50x \sum_{i=1}^{2} v_i}$. In particular, for every $\epsilon > 0$, there exist k agents with suitable speeds v_1, \ldots, v_k, and a guarding schedule for a unit segment that achieves idle time at most $\left(\frac{48}{25} + \epsilon\right) \frac{1}{\sum_{i=1}^{2} v_i}$.

Proof. Refer to Fig. 3. We use a long fence divided into x blocks; each block is of length $25/3$. Each block has 3 agents each of speed 5 running in zig-zag fashion.
Figure 3: Top: iterative construction with 5 blocks; each block has three agents with speed 5. Middle: six agents with speed 1. Bottom: patrolling strategy for 5 blocks using 21 agents for two time periods (starting at $t = 1/3$ relative to Fig. 1); the block length is $25/3$ and the time period is $10/3$.
Consecutive blocks share one agent of speed 1 which covers the uncovered triangles from the trajectories of the zig-zag agents in the distance-time diagram. The first and the last block use two agents of speed 1 not shared by any other block. The setting of these speeds is explained below.

From Lemma 1(ii), we conclude that all the uncovered triangles generated by the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).

In our strategy, we have 3 types of agents: agents running with speed 5 as in Fig. 3(top), unit speed agents shared by two consecutive blocks as in Fig. 3(middle), and agents with speed 1 which cover the uncovered triangles from the trajectories of the agents of speed 5 are congruent and their base is \(b = 1/3 \) and their height is \(h = 5/6 \). By Lemma 2(i), we can set the speeds of the agents not shared by consecutive blocks to \(s_1 = \frac{5/6}{1-1/6} = 1 \). Also, in our strategy, Lemma 1(ii) yields \(y = \delta = 4/3 \). Hence, by Lemma 2(ii), we can set the speeds of the agents shared by consecutive blocks to \(s_2 = \frac{5/6}{12+4/3-1} = 1 \).
Proposition 2 Consider the unit circle, where all agents are required to move in the same direction. For every \(t > 0 \), there exists \(k = k(t) = O(e^t) \) and a schedule for the system of agents with maximum speeds \(v_i = 1/i, \) \(i = 1, \ldots, k, \) that ensures an idle time \(< 1 \) during the time interval \([0, t]\).

Proof. We construct a schedule with an idle time smaller than 1. Let \(a_1(t) = t \mod 1 \) denote the position of agent \(a_1 \) at time \(t \); in particular \(a_1(0) = 0 \) with \(a_1 \) moving clockwise at maximum (unit) speed. We ensure that for each \(t \geq 1 \) there exists an agent that covers the interval \([t - \delta_1, t + \delta_2]\), for suitable \(\delta_1, \delta_2 > 0 \) before \(a_1 \) reaches this interval at time \(t - \delta_1 \). (We ignore any other contribution of this agent to the overall coverage.) We use many different agents to cover all time instances \(t' \in [1, t] \). To this end we use the well-known fact that the harmonic series \(\sum_{i=1}^{\infty} 1/i \) is divergent, more precisely that \(H_k \geq \ln(k + 1) \).

To start with, put \(u_1 = 1 \) as the first uncovered time instant \(t' \), and \(i = 2 \) as the index of the next unused agent. Having defined \(u_{i-1} \), initiate the movement of the next agent \(a_i \) at time \(u_{i-1} - 1/2 \) from the position \(u_{i-1} - 1/(8i) \). Its speed is \(1/i \) and during a time interval of \(1/2 \), the agent will traverse a distance equal to \(1/(2i) \). Hence the agent’s position at time \(u_{i-1} + 1/(8i) + 1/(2i) = u_{i-1} + 3/(8i) \). Now set \(u_i = u_{i-1} + 3/(8i) \). In particular, \(u_2 = 1 + 3/(8 \cdot 2) \) is the second uncovered time (to be covered by another agent), and \(u_3 = 1 + 3/(8 \cdot 2) + 3/(8 \cdot 3) \) is the next such term. The solution of the recurrence is \(u_k = \frac{5}{8} + \frac{3}{8} H_k \), and we need \(u_k \geq t \). Since \(H_k \geq \ln(k + 1) \), it follows that \(k = O(e^t) \) agents suffice to cover the time interval \([0, t]\) and ensure an idle time smaller than 1 in this way.

Useless agents for circle patrolling. Czyzowicz et al. [1] showed that for \(k = 2 \) there exist speed settings when an optimal schedule does not use one of the agents. Here we extend this result for all \(k \geq 2 \).

Proposition 3 (i) For every \(k \geq 2 \), there exist maximum speeds \(v_1 \geq v_2 \geq \ldots \geq v_k > 0 \) and an optimal schedule (patrolling algorithm) for the circle with these speeds that does not use up to \(k - 1 \) of the agents \(a_2, \ldots, a_k \). (ii) In contrast, for a segment, any optimal schedule must use all agents.

Proof. (i) Let \(v_1 = 1 \) and \(v_2 = \ldots = v_k = \varepsilon/k \), for a small positive \(\varepsilon \leq 1/300 \), and \(C \) be a unit length circle. Obviously by using agent \(a_1 \) alone (moving perpetually clockwise) we can achieve unit idle time. Assume for contradiction that there exists a schedule achieving an idle time less than 1. Let \(a_1(t) = t \mod 1 \) denote the position of agent \(a_1 \) at time \(t \). Assume without loss of generality that \(a_1(0) = 0 \) and consider the time interval \([0, 2] \). For \(2 \leq i \leq k \), let \(J_i \) be the interval of points visited by agent \(a_i \) during the time interval \([0, 2] \), and put \(J = \bigcup_{i=2}^{k} J_i \). We have \(|J_i| \leq 2\varepsilon/k \), thus \(|J| \leq 2\varepsilon \). We make the following observations:

1. \(a_1(1) \in [-2\varepsilon, 2\varepsilon] \). Indeed, if \(a_1(1) \notin [-2\varepsilon, 2\varepsilon] \), then either some point in \([-2\varepsilon, 2\varepsilon] \) is not visited by any agent during the time interval \([0, 1] \), or some point in \(C \setminus [-2\varepsilon, 2\varepsilon] \) is not visited by any agent during the time interval \([0, 1] \).
2. \(a_1 \) has done almost a complete (say, clockwise) rotation along \(C \) during the time interval \([0, 1] \), i.e., it starts at \(0 \in [-2\varepsilon, 2\varepsilon] \) and ends in \([-2\varepsilon, 2\varepsilon] \), otherwise some point in \(C \setminus [-2\varepsilon, 2\varepsilon] \) is not visited during the time interval \([0, 1] \).
3. \(a_1(2) \in [-4\varepsilon, 4\varepsilon] \), by a similar argument.
4. \(a_1 \) has done almost a complete rotation along \(C \) during the time interval \([1, 2] \), i.e., it starts in \([-2\varepsilon, 2\varepsilon] \) and ends in \([-4\varepsilon, 4\varepsilon] \). Moreover this rotation must be in the same clockwise sense as the previous one, since otherwise there would exist points not visited for at least one unit of time.

Pick three points \(x_1, x_2, x_3 \in C \setminus J \) close to \(1/4, 2/4, 3/4 \), respectively, i.e., \(|x_i - i/4| \leq 1/100 \), for \(i = 1, 2, 3 \). By Observations 2 and 4, these three points must be visited by \(a_1 \) in the first two rotations during the time interval \([0, 2] \) in the order \(x_1, x_2, x_3, x_1, x_2, x_3 \). Since \(a_1 \) has unit speed, successive visits to \(x_1 \) are at least one time unit apart, contradicting the assumption that the idle time of the schedule is less than 1.

(ii) Given \(v_1 \geq v_2 \geq \ldots \geq v_k > 0 \), assume for contradiction that there is an optimal guarding schedule with unit idle time for a segment \(s \) of maximum length that does not use agent \(a_j \) (with maximum speed \(v_j \)), for some \(1 \leq j \leq k \). Extend \(s \) at one end by a subsegment of length \(v_j/2 \) and assign \(a_j \) to this subsegment to move back and forth from one end to the other, perpetually. We now have a guarding schedule with unit idle time for a segment longer than \(s \), which is a contradiction.

Acknowledgements. We sincerely thank Akitoshi Kawamura for generously sharing some technical details concerning their algorithms. We also express our satisfaction with the JavaScript library JSXGraph.

References
[1] J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis, Boundary patrolling by mobile agents with distinct maximal speeds, Proc. 19th European Sympos. on Algor. (ESA 2011), LNCS 6942, 2011, pp. 701–712.
[2] A. Kawamura and Y. Kobayashi, Fence patrolling by mobile agents with distinct speeds, Proc. 23rd International Sympos. on Algor. and Computation (ISAAC 2012), LNCS 7676, 2012, pp. 598–608.