XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum

Rungtawan Sriburi,1 Suzanne Jackowski,2 Kazutoshi Mori,3 and Joseph W. Brewer1

1Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
2Protein Science Division, Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105
3Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

When the protein folding capacity of the endoplasmic reticulum (ER) is challenged, the unfolded protein response (UPR) maintains ER homeostasis by regulating protein synthesis and enhancing expression of resident ER proteins that facilitate protein maturation and degradation. Here, we report that enforced expression of XBP1(S), the active form of the XBP1 transcription factor generated by UPR-mediated splicing of XBP1 mRNA, is sufficient to induce synthesis of phosphatidylcholine, the primary phospholipid of the ER membrane. Cells overexpressing XBP1(S) exhibit elevated levels of membrane phospholipids, increased surface area and volume of rough ER, and enhanced activity of the cytidine diphosphocholine pathway of phosphatidylcholine biosynthesis. These data suggest that XBP1(S) links the mammalian UPR to phospholipid biosynthesis and ER biogenesis.

Introduction

The ER is a dynamic protein-folding compartment that can be expanded according to the demands placed upon the exocytic pathway. This is exemplified by the highly developed ER network present in specialized secretory cells such as insulin-producing β cells of the pancreas and antibody-secreting plasma cells. Yet, the molecular mechanisms that coordinate the synthesis of protein and lipid components necessary for ER biogenesis remain poorly understood.

Homeostasis of the ER is regulated in large part by the unfolded protein response (UPR), a complex signaling system emanating from the ER membrane that regulates translation and transcription in response to increased demands on the protein folding capacity of the ER (Rutkowski and Kaufman, 2004). One branch of the UPR is directed by the ER membrane-bound activating transcription factor 6α and 6β (ATF6α/β). Regulated intramembrane proteolysis releases the soluble cytosolic domains of ATF6α/β to function as basic leucine zipper transcription factors that up-regulate expression of various ER resident chaperones and folding enzymes (Haze et al., 1999, 2001). A second branch of the UPR involves X-box binding protein 1 (XBP1). The ER transmembrane kinase/endoribonucleases IRE1α (expressed ubiquitously; Tirasophon et al., 1998) and β (expressed in gut epithelium; Wang et al., 1998) initiate a novel UPR-mediated mRNA splicing mechanism that modifies XBP1 transcripts to encode a potent basic leucine zipper transcription factor, XBP1(S). In contrast, unspliced XBP1 mRNA encodes a basic leucine zipper protein, XBP1(U), that lacks transactivation activity and is more labile than XBP1(S) (Yoshida et al., 2001; Calfon et al., 2002). Genes identified as targets of XBP1(S) encode proteins that function in the ER (Lee et al., 2003; Yoshida et al., 2003). Thus, like ATF6α/β, the IRE1-XBP1 pathway appears to enhance the ability of the ER to properly handle an increased load of client proteins.

The differentiation of B-lymphocytes into antibody-secreting cells requires XBP1 and its modulation by UPR-mediated splicing (Iwakoshi et al., 2003), and pancreatic tissue exhibits robust splicing of XBP1 mRNA (Iwawaki et al., 2004). Furthermore, synthesis of phosphatidylcholine (PtdCho), the predominant phospholipid in mammalian ER membranes (Lykidis and Jackowski, 2001), elevates in B-cells differentiating in response to lipopolysaccharide (Rush et al., 1991). PtdCho biosynthesis also increases in macrophages subjected to free cholesterol loading (Shiratori et al., 1994), another example of physiologic UPR activation (Feng et al., 2003). Therefore, UPR activation correlates with the presence of an elaborate ER in specialized secretory cells and with induction of phospho-
lipid biosynthesis, but a molecular mechanism linking the UPR to ER biogenesis has not been elucidated.

Given the roles of the UPR in maintenance of ER homeostasis, we hypothesized that the UPR might regulate overall ER abundance. Here, we report that enforced expression of a single transcription factor, XBP1(S), is sufficient to induce PtdCho biosynthesis, elevate the level of membrane phospholipids, and trigger expansion of the ER in fibroblasts. These data suggest that XBP1(S) regulates ER biogenesis, revealing another means by which cells use the UPR to cope with increased demands on the exocytic pathway.

Results and discussion
Effect of XBP1(S) on phospholipid biosynthesis and ER expansion

To determine whether mammalian UPR transcriptional activators regulate phospholipid biosynthesis, we transduced NIH-3T3 fibroblasts with retroviral vectors encoding either XBP1(U), XBP1(S), or a constitutively active form of ATF6α (ATF6α(H9251); Yoshida et al., 2000). Flow cytometric assessment of GFP, expressed via the bicistronic mRNA encoded by the retroviral vectors, revealed 95% transduction efficiency for all retroviral constructs tested in NIH-3T3 cells (see online supplemental material, available at http://www.jcb.org/cgi/content/full/jcb.200406136/DC1). As expected, ATF6α(H9251) induced expression of immunoglobulin heavy chain binding protein (BiP) and the disulfide-isomerase-like protein ERp72, two ER resident chaperones. In addition, ATF6α(373) up-regulated ERdj3 (also known as HEDJ), an ER chaperone cofactor that has been identified as an XBP1 target (Lee et al., 2003) (Fig. 1 A). The XBP1(U) retroviral vector yielded the 30-kD pXBP1(U) and no detectable pXBP1(S), whereas the XBP1(S) virus exclusively yielded the 54-kD pXBP1(S). Cells transduced with XBP1(S), but not XBP1(U), exhibited increased levels of ERdj3 and BiP (Fig. 1 A). These data demonstrate that
ATF6α(373), XBP1(U), and XBP1(S) all functioned as predicted upon enforced expression in NIH-3T3 cells.

In contrast to ATF6α(373) and XBP1(U), enforced expression of XBP1(S) resulted in a large (approximately fourfold) increase in PtdCho synthesis (Fig. 1 B). Furthermore, the total amount of both PtdCho and phosphatidylethanolamine (PtdEtn), also a major lipid in intracellular membranes (Lykidis and Jackowski, 2001), was increased approximately twofold in XBP1(S)-transduced cells. However, the mass of cholesterol, most prevalent in the plasma membrane, was unchanged (Fig. 1 C). Therefore, XBP1(S) has the capacity to mediate substantial increases in phospholipids that constitute the membranes of intracellular organelles like the ER. It is important to note that the yeast UPR has also been implicated in lipid metabolism (Cox et al., 1997).

Electron microscopy revealed that XBP1(S)-transduced cells contained an increased number of intracellular membrane-bound structures that were frequently studded with ribosomes, indicating their identity as RER (Fig. 2 A). Indeed, the surface area and volume of RER were significantly increased in XBP1(S)-transduced cells, 2.5- and 3.4-fold, respectively (Fig. 2 B). Immunofluorescence microscopy demonstrated that KDEL-containing proteins were distributed throughout the cytoplasm of XBP1(S)-transduced cells (Fig. 2 C), consistent with an overall increase in the amount of ER. In addition, XBP1(S) induced a 44% increase in cell size (empty vector cells, $103.9 \pm 1.8 \mu m^2$; XBP1(S) cells, $149.8 \pm 2.5 \mu m^2$).

Cells overexpressing XBP1(S) exhibited a slower rate of proliferation 24 h after transduction, but their viability was not affected through 48 h. Importantly, while this manuscript was under review, Shaffer et al. (2004) reported that XBP1(S) can mediate increased cell size and expansion of intracellular organelles including the ER, thereby corroborating our findings.

Synthesis of XBP1(S) can also be elicited by ER stress-inducing agents such as the glycosylation inhibitor tunicamycin. In a series of experiments, we observed a trend toward a small increase (~20%) in PtdCho biosynthesis within 3 to 4 h of tunicamycin treatment, but this was not sustained in a statistically significant fashion for longer intervals (unpublished data). Perhaps gross inhibition of protein folding in the ER and/or complete UPR activation in cells subjected to pharmacologic agents that poison the ER is not compatible with increased phospholipid biosynthesis.

Effect of XBP1(S) on the cytidine diphosphocholine pathway of PtdCho biosynthesis

The predominant pathway for PtdCho biosynthesis in mammalian cells is the cytidine diphosphocholine (CDP-choline)
or Kennedy pathway (Lykidis and Jackowski, 2001). First, choline kinase (CK) phosphorylates choline in the presence of ATP to yield phosphocholine. Second, choline cytidylyltransferase (CCT) converts phosphocholine to CDP-choline in the presence of CTP, and this is considered to be the rate-limiting step in the CDP-choline pathway (Lykidis and Jackowski, 2001). Third, cholinephosphotransferase 1 (CPT1) transfers the phosphocholine moiety of CDP-choline to DAG, producing PtdCho. This final step can also be catalyzed by choline/ethanolaminephosphotransferase (CEPT1), a bifunctional enzyme that can synthesize both choline- and ethanolamine-containing phospholipids. Here, we refer to the activities of CPT1 (Henneberry et al., 2000) and CEPT1 (Henneberry and McMaster, 1999) collectively as CPT activity. In XBP1(S)-transduced cells, CK activity was unchanged (Fig. 3 A), CCT activity increased 30% (Fig. 3 B), and CPT activity elevated approximately fivefold (Fig. 3 C). Remarkably similar to these data, increased PtdCho biosynthesis in lipopolysaccharide-stimulated splenic B cells was previously shown to correlate with unchanged CK activity, a small increase in CCT activity, and an approximately sixfold increase in CPT activity (Rush et al., 1991). Therefore, it follows that XBP1(S) might mediate the increased synthesis of phospholipids necessary for ER biogenesis as B cells transition into high-rate antibody secretion.

There are three isoforms of CCT: α, β2, and β3. CCTα is ubiquitously expressed, whereas the β isoforms exhibit tissuespecific expression that is ~10-fold lower compared with CCTα (Jackowski et al., 2004). Quantitative real-time RT-PCR revealed no change in transcript levels for any of the CCT isoforms in NIH-3T3 fibroblasts harvested at 24 and 48 h after transduction with the indicated retroviral vectors. (A) The relative levels of expression of the CCTα, β2, and β3 isoform cDNAs at the 48-h interval were measured by quantitative real-time PCR. The amount of target RNA was normalized to the endogenous GAPDH reference and related to the amount of target CCTα in NIH-3T3, which was set as the calibrator at 1.0 (superscript a). The mean ± SD (superscript b) of triplicate determinations is shown. (B) Northern blot analysis using 32P-labeled cDNA probes specific for CEPT1 and CPT1, the two genes encoding enzymes possessing CPT activity; ERdj3, a known XBP1 target as a positive control; and γ-actin as a loading control.
isoforms in XBP1(S)-transduced cells (Fig. 4 A). Likewise, Northern blotting revealed no change in the steady-state levels of CPT1 and CEPT1 transcripts (Fig. 4 B). These data suggest that enforced expression of XBP1(S) leads to post-transcriptional and/or post-translational regulation of the CCTx and CPT1/CEPT1 enzymes, thereby augmenting their activities and increasing synthesis of PtdCho (Fig. 5).

CCTx is an amphiprotic enzyme as it transitions from a soluble form, largely sequestered in the nucleus, into a more active form associated with ER membranes (Cornell and McMaster, 1999; Henneberry et al., 2000), but very little is known concerning control of their respective activities. Perhaps XBP1(S) regulates expression of an allosteric modulator or a cofactor that enhances the stability of CPT1 and/or CEPT1.

Figure 5. A model for how XBP1 links the UPR to ER biogenesis. In response to increased demand on the protein folding capacity of the ER, UPR-mediated splicing of XBP1 mRNA yields the XBP1(S) transcriptional activator. We propose that XBP1(S) induces expression of unknown gene products that lead to an increase in CCT activity and a large increase in CPT activity, thereby augmenting synthesis of PtdCho. Increased production of PtdCho, the major phospholipid of the ER membrane, is critical for expansion of the ER compartment.

Summary

Our data regarding XBP1(S) provide the first example of a transcription factor being sufficient to induce phospholipid biosynthesis and ER expansion in mammalian cells. Whether the expanded ER in XBP1(S)-transduced cells is properly organized and fully functional is under investigation. We propose that in a physiologic UPR, the IRE1-XBP1 pathway regulates synthesis of phospholipids according to cellular needs for ER membrane components (Fig. 5). Interestingly, inhibition of PtdCho biosynthesis via a thermosensitive mutation in the CCT enzyme has been correlated with UPR activation (van der Sanden et al., 2003), providing further evidence that the UPR might provide a means to rapidly respond to an increased need for phospholipids. Coordinating induction of phospholipid biosynthesis with up-regulated expression of ER resident proteins would allow the mammalian UPR to both build and equip the ER.

Materials and methods

Plasmids

pBMN-I-GFP (Dr. G. Nolan, Stanford University, Palo Alto, CA) encodes a bicistronic mRNA with a GFP cassette 3' of the internal ribosomal entry site (I). pBMN-hATF6(373)-I-GFP encodes aa 1–373 of human ATF6α (Yoshida et al., 2000). pBMN-hXBP1(I)-GFP encodes full-length human XBP1 not modified by UPR-mediated splicing. pBMN-hXBP1(S)-I-GFP encodes full-length human XBP1 generated by UPR-mediated splicing.

Cell culture and retroviral transduction

NIH-3T3 fibroblasts and Phoenix-Eco cells (Dr. G. Nolan) were maintained in DME (Gass et al., 2002). Ecotropic retroviruses were produced using Phoenix-Eco packaging cells (Gunn et al., 2004) and pBMN plasmids. Cells were transduced with retroviruses (Brewer and Diehl, 2000) with 95% efficiency, as measured by GFP fluorescence using a FACScalibur flow cytometer (BD Biosciences). Tunicamycin (Sigma-Aldrich) was used at 0.5 μg/ml.

Immunoblotting and Northern blotting

Chemiluminescent immunoblotting of BiP, XBP1, and calnexin was performed as described previously (Gass et al., 2002). The ERdjl3 antisera was provided by Dr. Linda Hendershot (St. Jude Children’s Research Hospital, Memphis, TN). Rabbit anti-mouse Erp72 antibody (SPA-720; Stressgen Biotechnologies) and mouse anti-β actin mAb (clone AC-15; Sigma-Aldrich) were purchased. Northern blotting was performed as described previously [Gass et al., 2002]. Probes used in this work are described in the online supplemental material.

Detection of CCT isoform mRNAs by real-time PCR

Quantitative real-time PCR of the CCTx, β2, and β3 isoform cDNAs was performed as described previously [Karim et al., 2003]. For details, see online supplemental material.

Analysis of PtdCho biosynthesis

Cells were cultured for 2 h at 37°C in DME containing 2 μCi/ml methyl[3H]choline chloride (81 Ci/mmol; Amersham Biosciences). In tunicamycin experiments, labeling was performed during the final 2 h of treatment. After labeling, cells were washed with cold PBS and scraped in methanol/water (2:0:8, vol/vol). Lipids were extracted as described previously (Bligh and Dyer, 1959). Radiolabel incorporated into chloroform-soluble metabolites was determined by scintillation spectrophotometry. The organic phase was subjected to TLC in chloroform/methanol/water (65:35:4, vol/vol/vol) to verify that detectable radioactivity was present exclusively in PtdCho.

Phospholipid mass determinations

Frozen cell pellets (2 × 10⁶ cells) were thawed on ice and resuspended in 1 ml of water. The total volume was measured and a 100-μl aliquot was removed for protein determination. The remainder of the lysate was extracted as described previously (Bligh and Dyer, 1959). Lipids were detected by flame ionization using an Iatroscan instrument (Iatron Laborato-
and 20,000 were analyzed. RER volume was measured by determining the face area was calculated by determining the surface density (Sv). Sv is equal to the number of test points falling on RER divided by the number of test points falling on the containing space. RER surface area was calculated by determining the chloroform:methanol mixture (Weibel and Bolender, 1973). Average cell size was determined from light microscopy analysis of thick sections using the Scion image program. The mean cell area (μm²) was determined in a minimum of 38 fields, and SEM was calculated.

Statistical analysis
Both one-tailed and two-tailed independent t tests were used to compare test samples to controls. In all cases, both tests were in agreement. P values in figure legends correspond to results of one-tailed t tests.

Online supplemental material
Fig. S1 shows flow cytometric analysis of GFP expression in NIH-3T3 cells transduced with pBMN-I-GFP retroviral vectors encoding either ATF6(L9251)/H9262 or ATF6(L9341)/H11003. Details are provided: for detection of CCT isoform mRNAs by real-time PCR; northern hybridization probes; as says for enzymatic activities of CK, CCT, and CPT; mass spectrophotometric analysis of phospholipids; and the biosynthesis of membrane protein and phospholipid. For details, see online supplemental material.

References
Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37:911–917.

Brewer, J.W., and J.A. Diehl. 2000. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl. Acad. Sci. USA. 97: 12625–12630.

Calfon, M., H. Zeng, F. Urano, J.H. Till, S.R. Hubbard, H.P. Harding, S.G. Clark, and D. Ron. 2002.IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature. 415:92–96.

Cornell, R.B., and L.C. Northwood. 2000. Regulation of CTP:phosphocholine cytidylyltransferase by amphitrophin and relocalization. Trends Biochem. Sci. 25:441–447.

Cox, J.S., R.E. Chapman, and P. Walter. 1997. The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Mol. Biol. Cell. 8:1805–1814.

Feng, B., P.M. Yao, Y. Li, C.M. Devlin, D. Zhang, H.P. Harding, M. Sweeney, J.X. Kong, G. Kurihara, E.A. Fisher, et al. 2003. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 5:781–792.

Gass, J.N., N.M. Gifford, and J.W. Brewer. 2002. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277:49047–49054.

Gunn, K.E., N.M. Gifford, K. Mori, and J.W. Brewer. 2004. A role for the unfolded protein response in optimizing antibody secretion. Mol. Immunol. 41:919–927.

Haze, K., H. Yoshida, H. Yanagi, T. Yura, and K. Mori. 1999. Mammalian transcription factor ATF4 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell. 10:3787–3799.

Haze, K., T. Okada, H. Yoshida, H. Yanagi, T. Yura, M. Negishi, and K. Mori. 2001. Identification of the G13 (CAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem. J. 355:19–28.

Hennebry, A.L., and C.R. McMaster. 1999. Cloning and expression of a human choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem. J. 339:291–298.

Hennebry, A.L., G. Wistow, and C.R. McMaster. 2000. Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J. Biol. Chem. 275:29808–29815.

Iwakoshi, N.N., A.H. Lee, P. Vallabhajosyula, K.L. Otpoby, K. Rajewsky, and L.H. Glimcher. 2003. Plasma cell differentiation and the unfolded protein response interact at the transcription factor XBP-1. Nat. Immunol. 4:321–329.

Iwawaki, T., R. Akai, K. Kohno, and M. Miura. 2004. A transgenic mouse model for monitoring endoplasmic reticulum stress. Nat. Med. 10:98–102.

Jackowski, S., J.E. Rehg, Y.-M. Zhang, J. Wang, K. Miller, P. Jackson, and M.A. Karim. 2004. Disruption of CCTβ2 expression leads to gonadal dysfunction. Mol. Cell. Biol. 24:4720–4733.

Karim, M., P. Jackson, and S. Jackowski. 2003. Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase β iso form. Biochem. Biophys. Acta. 1633:1–12.

Lee, A.H., N.N. Iwakoshi, and L.H. Glimcher. 2003. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23:7448–7459.

Lykidas, A., and S. Jackowski. 2001. Regulation of mammalian cell membrane biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 65:361–393.

Lykidas, A., I. Baburina, and S. Jackowski. 1999. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. Identification of a new CCTβ splice variant. J. Biol. Chem. 274:26992–27001.

Lykidas, A., J. Wang, M.A. Karim, and S. Jackowski. 2001. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine \(\rightarrow \) CTP pathway. J. Biol. Chem. 276:2174–2179.

Rush, J.S., T. Sweeney, C. Kent, G.L. Deckcr, and C.J. Waechter. 1991. Biogenesis of the endoplasmic reticulum in activated B lymphocytes: temporal relationships between the induction of protein N-glycosylation activity and the biosynthesis of membrane protein and phospholipid. Arch. Bio-

S. Jackowski is supported by National Institutes of Health (NIH) grant GM45737, Cancer Center (CORE) support grant CA21765, and the American Lebanese Syrian Associated Charities. J. W. Brewer is funded by NIH grant GM61970.

Submitted: 22 June 2004
Accepted: 11 August 2004
Rutkowski, D.T., and R.J. Kaufman. 2004. A trip to the ER: coping with stress. Trends Cell Biol. 14:20–28.

Shaffer, A.L., M. Shapiro-Shelef, N.N. Iwakoshi, A.H. Lee, S.B. Quian, H. Zhao, X. Yu, L. Yang, B.K. Tan, A. Rosenwald, et al. 2004. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 21:81–93.

Shiratori, Y., A.K. Okwu, and I. Tabas. 1994. Free cholesterol loading of macrophages stimulates phosphatidicholine biosynthesis and up-regulation of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 269:1337–1348.

Tirasophon, W., A.A. Welihinda, and R.J. Kaufman. 1998. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12:1812–1824.

van der Sanden, M.H., M. Houseling, L.M. van Golde, and A.B. Vaandrager. 2003. Inhibition of phosphatidylcholine synthesis induces expression of the endoplasmic reticulum stress and apoptosis-related protein CCAAT/enhancer-binding protein-homologous protein (CHOP/GADD153). Biochem. J. 369:643–650.

Wang, X.Z., H.P. Harding, Y. Zhang, E.M. Jolicoeur, M. Kuroda, and D. Ron. 1998. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17:5708–5717.

Weibel, E.R., and R.P. Bolender. 1973. Stereological techniques for electron microscopic morphometry. In Principles and Techniques of Electron Microscopy, Vol. 3. M.A. Hayat, editor. Van Nostrand-Reinhold Company, New York. 237–296.

Yoshida, H., T. Okada, K. Haze, H. Yanagi, T. Yura, M. Negishi, and K. Mori. 2000. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20:6755–6767.

Yoshida, H., T. Matsui, A. Yamamoto, T. Okada, and K. Mori. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 107:881–891.

Yoshida, H., T. Matsui, N. Hosokawa, R.J. Kaufman, K. Nagata, and K. Mori. 2003. A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell. 4:265–271.