Manuscript Title

Epidemiological investigation of the first 135 COVID-19 cases in Brunei: Implications for surveillance, control, and travel restrictions

Manuscript type: Original Research Article

Abstract word count: 252 words

Manuscript word count: 3,004 words

Author Affiliations:

1. Justin WONG, MPhil*
 Disease Control Division, Ministry of Health, Brunei Darussalam

2. Liling CHAW, PhD*
 PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei

3. Wee Chian KOH, PhD
 Centre for Strategic and Policy Studies, Brunei Darussalam

4. Mohammad Fathi ALIKHAN, MSc
 Disease Control Division, Ministry of Health, Brunei Darussalam

5. Sirajul Adli JAMALUDIN, MSc
 Environmental Health Division, Ministry of Health, Brunei Darussalam

6. Wan Wen Patricia POH, BDS
Department of Dental Services, Ministry of Health, Brunei Darussalam

7. Lin NAING, MD

PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Brunei

*These co-authors contributed equally in this manuscript

Corresponding author

Liling Chaw, PhD

PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam

Jalan Tungku Link Gadong BE1410, Brunei Darussalam

Email: liling.chaw@ubd.edu.bn

Author contributions

Study conceptualisation and design: JW, LC

Data acquisition: JW, SJ, FA, WP

Data analysis: LC, WCK, LN

Data interpretation: LC, WCK, LN, JW

Critical revision of the manuscript for important intellectual content: JW, LC, WCK, LN

All authors contributed to the writing of the first and final draft.

Source of funding

This study does not receive any form of financial support.

Conflict of interest

None to be declared.
Abstract

Background

Studies on the early introduction of SARS-CoV-2 in a naïve population have important epidemic control implications. We report findings from the epidemiological investigation of the initial 135 COVID-19 cases in Brunei and describe the impact of control measures and travel restrictions.

Methods

Epidemiological and clinical information were obtained for all confirmed COVID-19 cases in Brunei, whose symptom onset was from March 9 to April 5, 2020 (covering the initial 5 weeks of the epidemic). Transmission-related measures such as reproduction number (R), incubation period, serial interval were estimated. Time-varying R was calculated to assess the effectiveness of control measures.

Results

A total of 135 cases were detected, of which 53 (39.3%) were imported. The median age was 36 years (range = 0.5 to 72). 41 (30.4%) and 13 (9.6%) were presymptomatic and asymptomatic cases respectively. The median incubation period was 5 days (IQR = 5, range = 1 to 11), and the mean serial interval was 5.39 days (sd = 4.47; 95% CI: 4.25, 6.53). R0 was between 3.88 and 5.96, and the doubling time was 1.3 days. By the 13th day of the epidemic, the Rt was under one (Rt = 0.91; 95% credible interval: 0.62, 1.32) and the epidemic was under control.

Conclusion
Epidemic control was achieved through a combination of public health measures, with emphasis on a test-isolate-trace approach supplemented by travel restrictions and moderate physical distancing measures but no actual lockdown. To maintain suppression, regular and ongoing testing of high-risk groups can supplement the existing surveillance program.
Introduction

The global spread of COVID-19 and the lack of an effective vaccine or therapeutic options pose challenges for disease control and travel health. Importation events in a country with no cases can lead to an exponential increase in case numbers within a short time period. As such, countries have implemented travel restrictions in response to the global rise, however, its effectiveness is debatable. Studies on the early introduction of the virus in a naïve population can provide insight into the natural history of the disease and have implications for control measures.

Brunei Darussalam (pop. 459,500), a well-connected country vulnerable to multiple importation events, detected its first COVID-19 imported case on March 9, linked to an international super spreading event (SSE), the Sri Petaling Mosque Tablighi Jamaat cluster, previously described. Given the absence of widespread community transmission, and slowing trajectory since the 100th confirmed case, Brunei’s response to this first wave of the pandemic has been generally successful. To maintain this, a number of questions need to be addressed. First, what are the epidemiological characteristics of the cases observed so far? Second, what is the role of travel-related cases in driving the disease? Third, how infectious are the cases and how effective are approaches to reducing transmission?

Here, we report findings from the first 135 COVID-19 cases, detected within the first 5 epidemiological weeks of the local epidemic, along with their epidemiological, clinical and transmission characteristics. As jurisdictions that have implemented lockdowns begin to bring the epidemic under control, our findings will be important to calibrate detection and response efforts in potential future waves of the pandemic.
Methods

Case identification and contact tracing

The surveillance and contact tracing strategy has previously been described.⁷ Since January 23, clinical and laboratory surveillance has been implemented across the country, and the testing criteria has progressively expanded in scope (Supplementary Table 1). A confirmed case is someone who tested positive for SARS-CoV-2 through real-time reverse transcriptase polymerase chain reaction (RT-PCR) test on nasopharyngeal (NP) swab. All laboratory-confirmed COVID-19 cases with symptom onset from March 9 to April 5, 2020 were included in this study and followed-up until recovery or death.

Epidemiological investigation is conducted for each confirmed case, and information is collected on demographic characteristics, clinical symptoms, travel history, activity mapping two days prior to onset of symptoms (or swab date for asymptomatic cases), and contact history. A close contact is any person living in the same household, or someone within one meter of a confirmed case in an enclosed space for more than 15 minutes. All close contacts undergo RT-PCR testing. Those who tested negative were quarantined at home for 14 days from last exposure, and those who later developed symptoms were re-tested. All confirmed COVID-19 cases are treated and isolated at the National Isolation Centre (NIC). Cases were discharged following two consecutive negative SARS-CoV-2 NP swabs collected at ≥ 24-hour intervals.
We categorised cases into two: imported cases (defined as individuals presumed to have acquired the infection outside Brunei), and locally transmitted cases (defined as those without travel history).

Statistical analysis

An epidemic curve was constructed based on the date of symptom onset (for symptomatic and presymptomatic cases) and the date of NP swab collection (for asymptomatic cases). Duration between symptom onset date to diagnosis date was calculated. Exposure period between imported cases and their close contacts was calculated as the duration between their return date to Brunei and their diagnosis/swab collection date. Incubation period was calculated as the duration between the known exposure date of confirmed cases and their symptom onset dates. Serial interval (SI) was calculated as the duration between the symptom onset date for the primary case and that of secondary case. Only symptomatic or presymptomatic infector-infectee pairs with clear epidemiological links were included in the SI calculation. Group comparison was done between the imported and local contact cases, using Chi-square, Fisher’s Exact or Mann-Whitney’s tests as appropriate.

The estimation of the reproduction number (defined as the expected number of secondary cases infected by a primary case) was done using two methods. The basic reproduction number (R0) was estimated from the mean SI and the exponential growth rate of the cumulative number of cases in the epidemic $\lambda(t) = \frac{\ln N(t)}{t}$, using the formula $R_0 = 1 + S_0 R_0 f (1-f)(S_0)$, where f is the ratio of the infectious period to the SI. This assumes an exponential distribution, allowing for a range of reported values. The exponential growth phase of between March 5 and 10 was chosen for the R0 estimation because it represents...
the initial growth of the curve (see Figure 1), and also because control measures were enhanced after March 9. This 6-day period represents more accurately the true nature of SARS-CoV-2 transmission, in the absence of heightened measures. The epidemic growth rate and doubling time was also calculated, based on established formulae.11

We also estimated the time-varying reproduction number (Rt) to assess the effectiveness of epidemic control measures, based on methods proposed by Thompson et al.12 and using the EpiEstim 2.2 package. This Rt estimation uses case incidence data and SI distribution, and distinguishes between imported and locally transmitted cases. Following studies that use a non-negative SI distribution to approximate the distribution of the generation time,13, 14 we used a Gamma distribution and incorporated uncertainty in the parameters (sd of mean = 1, sd of standard deviation = 0.5). The median Rt and 95% credible intervals for each day were estimated jointly from incidence data and from the posterior SI distribution, using a 6-day sliding window. This 6-day window reduces the bias associated with early estimations of Rt, as at least one average SI has passed.15

All analyses were conducted using Microsoft Excel and R (ver. 3.6.3).16 A p-value < 0.05 was considered as statistically significant. Ethics approval was granted by the University Research Ethics Committee, Universiti Brunei Darussalam (Ref: UBD/OAVCR/UREC/Apr2020-05).

Results

Description of cases
A total of 135 cases were detected in the first 5 weeks, comprising 53 (39.3%) imported and 82 (60.7%) locally transmitted cases (Table 1). The median age was 36 years (ranging from 6 months to 72 years). 53 (39.3%) cases were female. When compared to imported cases, locally transmitted cases were significantly younger (p=0.002) and had more females (p=0.008).

81 (60%) of cases developed symptoms, reported either during or prior to NP sample collection. Notably, we observed high proportions of presymptomatic and asymptomatic cases - 41 (30.4%) and 13 (9.6%) respectively. 61.5% of the cases were detected within 2 days of symptom onset or NP swab date. Among them, 32.6% (n=44) were detected on or before the day of symptom onset. No significant differences were observed between imported and locally transmitted cases (Table 1). The most common reported symptoms were fever (62.2%), sore throat (62.2%) and cough (59.3%) (Supplementary Table 2).

Among these 135 cases, 3 subsequently died from COVID-19 complications, giving a case fatality rate of 2.2%. All 3 deaths were in men, aged 64, 56, and 67 years, respectively.
Impact of travel restrictions

Since late-January, travel restrictions have been progressively implemented in response to the emerging regional and later global situation. Initially, travellers from Hubei province, China were restricted, while those from other parts of mainland China underwent 14 days home quarantine. These restrictions were gradually tightened, to first of all restricting travellers from Iran and Italy (the then emerging epicentres) and mandating quarantine for travellers from China and South Korea. These restrictions had a considerable impact on arrivals into Brunei. Immigration data indicate a 20.9% decrease in arrivals from January to March 2020 (872,315 people) compared to the same period in 2019 (1,103,028 people).

Outbound travel was restricted for all Brunei residents on March 15, and a ban on all foreign citizens entering the country was enacted on March 23. All individuals entering Brunei from March 20 underwent 14-day quarantine at a designated facility, and RT-PCR testing on arrival.

The origin country of imported cases changed over time – initially Malaysia (20 cases), and as the epidemic progressed globally, and overseas Brunei citizens were returning, imported cases were identified in travellers and returning residents from Indonesia (n=14), United Kingdom (n=11), Thailand (n=2), USA (n=2), Austria (n=1), Cambodia (n=1), Australia (n=1), and the Philippines (n=1).
Figure 1 shows the epidemic curve, by the date of symptom onset or NP swab date for asymptomatic cases. Detection of positive cases among local close contacts occurred very early in the epidemic. Coupled with the early detection of further generations (Supplementary Figure 1), this suggests a short time interval for transmission within the community.

[Figure 1: Epidemic curve for the first 135 COVID-19 cases in Brunei Darussalam, by imported (red bars) and locally transmitted cases (blue bars)]
Epidemic characteristics over time

The mean duration from onset to diagnosis for local transmitted cases decreased from 9 days in the first week to -1.7 days in the fifth week of the epidemic (Fig 2A). Among imported cases, this reduction occurred between the third and fourth week of the epidemic (from 7.3 to 1.3 days, respectively), coinciding with implementation of quarantine and testing on for all arrivals on March 20 (Fig 2A) demonstrating the impact of increasingly stringent travel restrictions. There were no local infections linked to those imported cases in the last two weeks of the epidemic.

Using the known return dates from imported cases (n=53), the median duration in the exposure period to other contacts was 7 days (IQR = 5), ranging between 1 and 16 days. The reduction in the exposure period between imported cases and their close contacts from their return to diagnosis was apparent between the third (7.7 days) and fourth week (4.2 days; Fig 2B). Summary statistics and distribution remained unchanged when the 15 local contact cases with known exposure dates were included. Among 82 local contact cases, 15 of them (18.3%) had known exposure dates to confirmed imported cases. Using these dates, the median incubation period is 5.0 days (IQR = 5), ranging between 1 and 11 days.

Based on 59 symptomatic and presymptomatic infector-infectee pairs, the mean SI was 5.39 days [sd = 4.47; 95% CI: 4.25, 6.53 (approximated using normal distribution)]. The range for the serial interval was between -4 to 20 days (Fig 2C). Four pairs (6.8%) had
negative SI values. The mean SI was relatively constant throughout the 4 weeks of the epidemic (Fig 2D).

Using the calculated mean SI and the 6-day growth phase of the epidemic, the growth rate was 0.54/day and the R0 in the early phase of the epidemic ranges between 3.88 and 5.96. The doubling time was 1.3 days.

Figure 3 shows the estimated Rt and the timing of the control measures implemented after March 11. The initial median reproduction number was estimated to be 2.19 (95% credible intervals: 0.86, 4.99) on the 7th day of the epidemic (March 11). Rt gradually decreased after several control measures were put in place and was below one on the 13th day (March 17) and reached 0.20 (95% credible intervals: 0.06, 0.49) on the 30th day (April 3).

However, because these control measures were implemented quickly over a short time period, it is difficult to attribute the observed reduction in Rt to a specific intervention.

Discussion

Key findings
A total of 135 cases (53 imported and 82 locally transmitted) were reported from the start of the epidemic on March 5 up till the first week of April. All locally transmitted cases could be traced to an importation event, and there were no cases detected without a clear epidemiological link. Brunei has managed to successfully control the first wave of the COVID-19 pandemic. The R_0 was between 3.88 and 5.96, and the epidemic had a doubling time of 1.3 days during the exponential phase. There was a rapid decline such that by day 13, the R_t was under 1.

Estimating the reproduction number

Assuming the ratio of the infectious period to the serial interval (f) is 0.3, the R_0 is 5.63, higher than those estimated by WHO (1.9 – 2.5) however, it is within those estimated in other studies from China17-19 and Europe.20 Our observations of negative SIs pose challenges for specifying f. Hence we reported R_0 as a range covering all plausible values of f, using the mean SI value from our data and with assumption of exponential growth. Then, R_t was estimated from the 7th to 30th day. The 95% credible intervals of the initial R_t value (0.86 to 4.99) are consistent with the R_0 estimate.

Test, isolate and trace

We observed that the approach of isolation of confirmed cases, as well as tracing and quarantine of their contacts, on its own, resulted in significantly reducing the effective reproduction number. By the time the early physical distancing measures had been implemented, the R_t had reduced from 5.63 (ranging between 3.88 and 5.96) at the start to 2.19 (95% credible bands: 0.86, 4.99) by the 7th day (March 11). Our findings on the
importance of the test, isolate, and trace approach concord with observational studies from Hong Kong21 and Singapore.22

We highlight three characteristics of this approach as implemented in Brunei. First, testing was conducted on a significant scale. Even prior to detection of the first case, testing was already conducted for all inpatient pneumonia cases, in addition to those who met the suspect case definition. 24-hour testing centres were established within 2 days of the detection of the first case (March 11), and all contacts were tested regardless of symptom status.8 The relatively high proportion of asymptomatic (9.6\%) and pre-symptomatic (30.4\%) cases identified demonstrate both the breadth of testing, and the speed at which cases were identified.

Second, all confirmed cases (regardless of disease severity and symptom status) were isolated in a dedicated isolation facility and remained isolated until two negative results were obtained from RT-PCR specimens at 24-hour intervals. This reduced the chance of household transmission which could not be excluded if cases were allowed to isolate at home.23 Finally, contact tracing was conducted for each case, using a variety of tools including case interview, workplace assessment, and mobile phone data. Contacts were placed on 14-day home quarantine and in-person spot checks with penalties for non-compliance were also conducted.

\textit{Travel restrictions and other non-pharmaceutical interventions}

We report several characteristics of SARS-CoV-2 that make effective isolation and contact tracing challenging, including high transmissibility, a relatively short SI (mean SI = 5.39
days), and a high proportion of asymptomatic and presymptomatic cases suggesting the potential for silent transmission. As such, the test, isolate, trace approach was supplemented with physical distancing measures to increase the likelihood of achieving sustained control.24

Restricting travel is one measure by which countries have responded to the COVID-19 pandemic.25 By the time Brunei implemented an exit travel ban and restricted the entry of foreign citizens in the country, the Rt was already decreasing and had neared 1. Nonetheless, we suggest that reducing ongoing vulnerabilities to importation events, through restrictions on incoming travelers, and requirements for testing and quarantine for all arrivals in the country limited additional spread as observed in the reduction in mean time from symptom onset to diagnosis observed for imported cases following implementation of mandatory quarantine and testing for all arrivals. Modelling studies suggest a role for travel restrictions in containing the epidemic, with one model estimating that travel restrictions in Wuhan reduced case importations elsewhere by nearly 80% until mid-February.26

While various other physical distancing measures were implemented, including school closures, prohibition on mass gatherings, cinemas, and religious services, and dine-in restrictions, importantly no lockdown was implemented and there were no generalised stay-at-home orders. Most businesses and government agencies were able to operate. These suggest that effective test, isolate, and trace approaches were able to control the epidemic with moderate levels of physical distancing.27 This finding corroborates the experience of other countries. In Hong Kong, case isolation and contact tracing were combined with other physical distancing measures (but no lockdown), which resulted in an estimated effective
reproduction number near 1 for 8 weeks.28 In South Korea, testing and tracing has been combined with school closures and remote working.29

Even with the best efforts at testing, case identification, and quarantine, the potential for widespread community transmission is clear. Once established, suppression may necessitate the implementation of severely disruptive social distancing measures.30, 31

\textit{Limitations}

Our study has several limitations. First, while we can be reasonably confident of having identified most cases since March, given more restrictive testing criteria in January and February, we are unable to account for potential importation events that may have occurred prior to detection of the first case. Second, the generalizability of our results are limited due to a lack of cases in settings such as residential care facilities and dormitories, no community transmission, and small number of cases. Third, due to the potential for pre-symptomatic infection of SARS-CoV-2, using the SI distribution to approximate the generation time distribution is problematic. We had not accounted for negative SIs with the use of the Gamma distribution and could have overestimated Rt to fit incidence data. One way to account for negative SI is to use a deconvolution approach using the incubation period distribution to recover the generation time distribution.32 However, this assumes that the generation time and incubation period distributions are independent, which may not be appropriate. Finally, given the limited data available and the analytic methods employed, we could not directly estimate the effectiveness of other NPIs, such as face-mask wearing, personal hygiene practices, and voluntary reductions in mobility.
Conclusion

Swift control of COVID-19 in Brunei was achieved through a combination of public health measures, focusing on a test-isolate-trace approach supplemented by travel restrictions and general physical distancing measures but no actual lockdown. Looking forward, to ensure suppression is maintained, regular and ongoing testing of high-risk groups such as those working in residential institutions, health care workers, and those at greater the risk of severe complications can supplement the existing surveillance program. Additionally, leveraging technological tools that speed up the process of contact tracing, and timely re-imposition of physical distancing measures if necessary, can reduce the likelihood of seeding a second wave in Brunei.
References

1. DL Heymann, N Shindo. Covid-19: What is next for public health? The Lancet 2020; 395(10224):542-545.

2. A Wilder-Smith, CJ Chiew, VJ Lee. Can we contain the covid-19 outbreak with the same measures as for sars? The Lancet Infectious Diseases 2020.

3. K Leung, JT Wu, D Liu, GM Leung. First-wave covid-19 transmissibility and severity in china outside hubei after control measures, and second-wave scenario planning: A modelling impact assessment. The Lancet 2020; 395(10233):1382-1393.

4. MUG Kraemer, C-H Yang, B Gutierrez, et al. The effect of human mobility and control measures on the covid-19 epidemic in china. Science 2020; 368(6490):493.

5. O Iken, U Abakporo, O Ayobami, T Attoye. Covid-19: Travel health and the implications for sub-saharan africa. Travel Medicine and Infectious Disease 2020:101645-101645.

6. NFC Mat, HA Edinur, MKAA Razab, S Safuan. A single mass gathering resulted in massive transmission of covid-19 infections in malaysia with further international spread. Journal of Travel Medicine 2020.

7. L Chaw, WC Koh, SA Jamaludin, et al. Sars-cov-2 transmission in different settings: Analysis of cases and close contacts from the tablighi cluster in brunei darussalam. medRxiv 2020:2020.05.04.20090043.

8. J Wong, W Koh, M Alikhan, et al. Responding to covid-19 in brunei darussalam: Lessons for small countries. ed.^,eds. Journal of global health. Vol 2020, 2020.

9. E Lavezzo, E Franchin, C Ciavarella, et al. Suppression of covid-19 outbreak in the municipality of vo, italy. medRxiv 2020:2020.04.17.20053157.
10. M Lipsitch, T Cohen, B Cooper, et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 2003; 300(5627):1966.

11. E Vynnycky, RG White. An introduction to infectious disease modelling United Kingdom: Oxford University Press, 2010.

12. RN Thompson, JE Stockwin, RD van Gaalen, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019; 29(100356.

13. C You, Y Deng, W Hu, et al. Estimation of the time-varying reproduction number of covid-19 outbreak in china. International Journal of Hygiene and Environmental Health 2020; 228(113555.

14. J Zhang, M Litvinova, W Wang, et al. Evolving epidemiology and transmission dynamics of coronavirus disease 2019 outside hubei province, china: A descriptive and modelling study. The Lancet Infectious Diseases 2020.

15. A Cori, NM Ferguson, C Fraser, S Cauchemez. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol 2013; 178(9):1505-1512.

16. R Core Team. R: A language and environment for statistical computing. ed.^,eds. R Foundation for Statistical Computing, Vienna, Austria, 2020.

17. B Tang, X Wang, Q Li, et al. Estimation of the transmission risk of the 2019-ncov and its implication for public health interventions. Journal of Clinical Medicine 2020; 9(2).

18. W Zhou, A Wang, F Xia, et al. Effects of media reporting on mitigating spread of covid-19 in the early phase of the outbreak. Mathematical biosciences and engineering: MBE 2020; 17(3):2693-2707.

19. M Shen, Z Peng, Y Xiao, L Zhang. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in china. bioRxiv 2020:2020.01.23.916726.
20 J Yuan, M Li, G Lv, ZK Lu. Monitoring transmissibility and mortality of covid-19 in Europe. International Journal of Infectious Diseases 2020; 95(3):311-315.

21 P Wu, T Tsang, J Wong, et al. Suppressing covid-19 transmission in Hong Kong: An observational study of the first four months. ed.®eds. Research Square (Preprint version 1), 2020.

22 Y Ng, Z Li, Y Chua, et al. Evaluation of the effectiveness of surveillance and containment measures for the first 100 patients with covid-19 in Singapore — January 2–February 29, 2020. MMWR Morb Mortal Wkly Rep 2020;69):307-11.

23 J Hellewell, S Abbott, A Gimma, et al. Feasibility of controlling covid-19 outbreaks by isolation of cases and contacts. The Lancet Global Health 2020.

24 AJ Kucharski, TW Russell, C Diamond, et al. Early dynamics of transmission and control of covid-19: A mathematical modelling study. The Lancet Infectious Diseases 2020.

25 Y Daon, RN Thompson, U Obolski. Estimating covid-19 outbreak risk through air travel. Journal of Travel Medicine 2020.

26 M Chinazzi, JT Davis, M Ajelli, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 2020; 368(6489):395.

27 C Wilasang, C Sararat, NC Jitsuk, et al. Reduction in effective reproduction number of covid-19 is higher in countries employing active case detection with prompt isolation. Journal of Travel Medicine 2020.

28 BJ Cowling, ST Ali, TWY Ng, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: An observational study. The Lancet Public Health 2020.

29 Government of the Republic of Korea. Flattening the curve on covid-19 - how Korea responded to a pandemic using ICT. ed.®eds. Notice: Government of the Republic of Korea, 2020.
30. H Sjödin, A Wilder-Smith, S Osman, et al. Only strict quarantine measures can curb the coronavirus disease (covid-19) outbreak in Italy, 2020. Eurosurveillance 2020; 25(13):2000280.

31. H Lau, V Khosrawipour, P Kocbach, et al. The positive impact of lockdown in Wuhan on containing the covid-19 outbreak in China. Journal of Travel Medicine 2020.

32. J Knight, S Mishra. Estimating effective reproduction number using generation time versus serial interval, with application to covid-19 in the greater Toronto area, Canada. medRxiv 2020:2020.05.24.20109215.
Table and figure captions:

Table 1: Demographic and clinical characteristics of the first 135 COVID-19 cases in Brunei

Cases were classified as: (i) symptomatic, if symptoms were reported on or prior to NP swab collection day, (ii) presymptomatic, if symptoms were reported after NP swab sample was taken but during admission, and (iii) asymptomatic, if no symptoms were reported since NP swab collection day until date of hospital discharge.

^This includes the asymptomatic cases, from whom the symptom onset date was replaced by date of swab collection.

^Severity was classified as (i) asymptomatic, for those with no symptom throughout their disease; (ii) mild, for patients who had uncomplicated upper respiratory tract infection symptoms and no radiological changes; (iii) moderate, for patients with radiological changes but did not require supplemental oxygen; (iv) severe, for patients who showed signs of severe pneumonia including tachypnoea > 30/minute, SpO2 of ≤ 93% on room air or abnormal arterial blood gases, as well as patients showing signs of sepsis with evidence of organ dysfunction; and (v) critical, for patients who developed septic shock, i.e. persistent hypotension requiring vasopressors support to maintain mean arterial pressure ≥ 65 and those who developed acute respiratory distress syndrome requiring ventilatory support.

Figure 1. Epidemic curve for the first 135 COVID-19 cases in Brunei Darussalam, by imported (red bars) and locally transmitted cases (blue bars).

Figure 2.
A (top left) Boxplot of the duration between symptom onset to diagnosis among symptomatic and presymptomatic cases only, by week of symptom onset and by type of case: imported (in blue) and local case contact (in red). Black dots above and below each boxplot indicate outliers;
B (top right) Boxplot of the exposure period of the 53 imported cases to their local contact cases (using their return dates to Brunei as start point), by week of symptom onset. Black dots represent each case, jittered for visual clarity;
C (bottom left) Histogram showing the serial interval (SI) distribution for the 59 symptomatic infector-infectee pairs;
D (bottom right) Boxplot showing variations in the SI distribution.
by the symptom onset week of the infector. Black dots represent each case, jittered for visual clarity.

Figure 3. Time-varying reproduction number (Rt) estimates of the COVID-19 epidemic in Brunei. A 6-day sliding window was used. The black solid line is the estimated median R_t and the grey areas are the 95% credible intervals.
	All cases (n=135)	Imported cases (n=53)	Local contact cases (n=82)	p-value
Median age in years	36.0 (27; 0.5 to 72)	39.0 (27; 17 to 68)	31.5 (26; 0.5 to 72)	0.002
Age group				
0-9	7 (5.2)	0 (0.0)	7 (8.5)	< 0.001
10-19	16 (11.9)	3 (5.7)	13 (15.9)	
20-29	26 (19.3)	7 (13.2)	19 (23.2)	
30-39	28 (20.7)	17 (32.1)	11 (13.4)	
40-49	18 (13.3)	4 (7.5)	14 (17.1)	
50-59	23 (17.0)	10 (18.9)	13 (15.9)	
60-69	17 (12.6)	12 (22.6)	5 (6.1)	
Gender				
Female	53 (39.3)	13 (24.5)	40 (48.8)	0.008
Male	82 (60.7)	40 (75.5)	42 (51.2)	
Comorbidity				
Obesity	6 (4.4)	3 (5.7)	3 (3.7)	0.679
Heart disease	6 (4.4)	3 (5.7)	3 (3.7)	0.679
Respiratory disease	7 (5.2)	2 (3.8)	5 (6.1)	0.704
Diabetes mellitus	7 (5.2)	5 (9.4)	2 (2.4)	0.111
Hypertension	18 (13.3)	11 (20.8)	7 (8.5)	0.067
Hyperlipidaemia	18 (13.3)	12 (22.6)	6 (7.3)	0.018
Symptom status				
Symptomatic	81 (60.0)	29 (54.7)	52 (63.4)	0.596
Presymptomatic	41 (30.4)	18 (34.0)	23 (28.0)	
Asymptomatic	13 (9.6)	6 (11.3)	7 (8.5)	
Duration between symptom onset (or swab taken) and diagnosis^				
-8 to 0 days	44 (32.6)	17 (32.1)	27 (32.9)	0.665
1 to 2 days	39 (28.9)	18 (34.0)	21 (25.6)	
3 to 5 days	26 (19.3)	8 (15.1)	18 (22.0)	
> 5 days	26 (19.3)	10 (18.9)	16 (19.5)	
Severity*				
Asymptomatic	13 (9.6)	7 (13.2)	6 (7.3)	0.352
Mild	101 (74.8)	36 (67.9)	65 (79.3)	
Moderate	14 (10.4)	7 (13.2)	7 (8.5)	
Severe	2 (1.5)	0 (0.0)	2 (2.4)	
Critical	5 (3.7)	3 (5.7)	2 (2.4)	

Table 1: Demographic and clinical characteristics of the first 135 COVID-19 cases in Brunei

*Cases were classified as: (i) symptomatic, if symptoms were reported on or prior to NP swab collection day, (ii) presymptomatic, if symptoms were reported after NP swab sample was taken but during admission, and (iii) asymptomatic, if no symptoms were reported since NP swab collection day until date of hospital discharge.

*This includes the asymptomatic cases, from whom the symptom onset date was replaced by date of swab collection.

*Severity was classified as (i) asymptomatic, for those with no symptom throughout their disease; (ii) mild, for patients who had uncomplicated upper respiratory tract infection symptoms and no radiological changes; (iii) moderate, for patients with radiological changes but did not require supplemental oxygen; (iv) severe, for patients who showed signs of severe pneumonia including tachypnoea > 30/minute, SpO2 of ≤ 93% on room air or abnormal arterial blood gases, as well as patients showing signs of sepsis with evidence of organ dysfunction; and (v) critical, for patients who developed...
septic shock, i.e. persistent hypotension requiring vasopressors support to maintain mean arterial pressure ≥ 65 and those who developed acute respiratory distress syndrome requiring ventilatory support.
Figure A: Box plots showing the onset to diagnosis (days) from symptom onset for imported and local close contact cases, with data grouped by week of symptom onset.

Figure B: Box plots showing the return date to diagnosis (days) with data grouped by week of symptom onset.

Figure C: Histogram showing the number of cases (No. of cases) over days from symptom onset.

Figure D: Box plots showing the serial interval (days) with data grouped by symptom onset week of infector.
