Comparative analysis of whole flower transcriptomes in the Zingiberales

Ana Maria R Almeida Correspond., 1 Alma Piñeyro-Nelson 2, Roxana B Yockteng 3, Chelsea D Specht 4, 5

1 Department of Biological Sciences, California State University, Hayward, Hayward, CA, United States
2 Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, DF, Mexico
3 Centro de Investigaciones Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Tibaitatá, Colombia
4 Department of Plant and Microbial Biology & Integrative Biology, University of California at Berkeley, Berkeley, CA, US
5 College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States

Corresponding Author: Ana Maria R Almeida
Email address: ana.almeida@csueastbay.edu

The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species Dichorisandra thyrsiflora J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.
Comparative analysis of whole flower transcriptomes in the Zingiberales

Almeida, AMR.*,5,1; Piñeyro-Nelson, A.*2; Yockteng, R.3; Specht, CD.4

* These authors contributed equally to this work

1 Department of Biological Sciences, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA, US. 94542.
2 Department of Food and Animal Production, Autonomous Metropolitan University, Xochimilco, Mexico City, Mexico, 04960.
3 Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Centro de Investigaciones Tibaitatá, Colombia and Institut de Systématique, Évolution, Biodiversité, UMR7205-CNRS Muséum National d’Histoire Naturelle, Paris, France.
4 Department of Plant and Microbial Biology, Department of Integrative Biology, University of California at Berkeley, Berkeley, CA, and College of Agriculture and Life Sciences. Cornell University, Ithaca, NY, US.

5 corresponding author: ana.almeida@csueastbay.edu

Abstract

The advancement of next generation sequencing technologies (NGS) has revolutionized our ability to generate large quantities of data at a genomic scale. Despite great challenges, these new sequencing technologies have empowered scientists to explore various relevant biological questions on non-model organisms, even in the absence of a complete sequenced reference genome. Here, we analyzed whole flower transcriptome libraries from exemplar species across the monocot order Zingiberales, using a comparative approach in order to gain insight into the evolution of the molecular mechanisms underlying flower development in the group. We identified 4,153 coding genes shared by all floral transcriptomes analyzed, and 1,748 genes that are only retrieved in the Zingiberales. We also identified 666 genes that are unique to the ginger lineage, and 2,001 that are only found in the banana group, while in the outgroup species *Dichorisandra thyrsiflora* J.C. Mikan (Commelinaceae) we retrieved 2,686 unique genes. It is possible that some of these genes underlie lineage-specific molecular mechanisms of floral
diversification. We further discuss the nature of these lineage-specific datasets, emphasizing conserved and unique molecular processes with special emphasis in the Zingiberales. We also briefly discuss the strengths and shortcomings of de novo assembly for the study of developmental processes across divergent taxa from a particular order. Although this comparison is based exclusively on coding genes, with particular emphasis in transcription factors, we believe that the careful study of other regulatory mechanisms, such as non-coding RNAs, might reveal new levels of complexity, which were not explored in this work.

Introduction

Next-generation sequencing technologies have been instrumental in allowing for the rapid generation of large quantities of transcriptomic data, previously unavailable for the majority of non-model organisms. In parallel to refinements of the sequencing technologies, several bioinformatics pipelines have been put forward allowing for the de novo assembly of transcriptomes from organisms for which there is not a fully sequenced and annotated genome (‘reference genome’ e.g., Wit et al. 2012; Chiara et al. 2013; Singhal 2013; Unamba et al. 2015). Although long predicted as a revolutionary tool (Wang et al. 2009), RNA-Seq approaches enabling the comparative quantification of gene expression during organismal development have recently gained wide use across a diversity of organisms representing unique developmental and physiological processes. These advances have enabled the identification of candidate genes involved in a variety of processes ranging from flower color [e.g., pigment biosynthesis in *Camellia reticulata* (Yao et al. 2016); color polymorphism in *Silene littorea* Brot. (Casimiro-Souriguer et al. 2016)] to characterization of biosynthetic pathways [e.g., glucosinolate and phytochelatin pathways in *Sinapsis alba* L. (Zhang at al. 2016); flavonoid and stilbenoids pathways in *Gnetum parvifolium* (Warb.) W.C.Cheng (Deng et al. 2016)]. NGS approaches have also been used to study plant architecture (González-Plaza et al. 2016) as well as specific aspects of reproductive development (Hollender et al. 2014).

Chanderbali and colleagues (2009; 2010) pioneered the use of next-generation sequencing technologies to study the comparative evolution of floral development across angiosperms. Their choice of plant species included representatives of main angiosperm lineages (i.e., water lily, avocado, California poppy, and Arabidopsis), as well as a non-angiosperm seed plant (cycad), which allowed the authors to obtain insights into the molecular mechanisms
underlying the evolution and diversification of the flower (Chanderbali et al. 2010). While there
was deep conservation in the genetic programs specifying floral organ identities, further
confirmed by the careful study of 18 angiosperm genomes (Davila-Velderrain et al. 2013), it was
also possible to identify distinct transcriptional programs characterizing more recently derived
plant lineages (Chanderbali et al. 2010). Thus, one can hypothesize that these distinct
transcriptional programs are likely involved with mechanisms of diversification in floral shape,
especially in closely related species.

In order to gain insight into the genetic basis of floral morphological variation, we
present a comparative transcriptomic analysis of several species within the angiosperm order
Zingiberales. The Zingiberales is a lineage of tropical and subtropical monocots comprising 8
families. The order includes economically important species such as culinary ginger (Zingiber
officinale Roscoe), turmeric (Curcuma longa L.), and banana (Musa acuminata Colla), as well as
popular ornamentals, such as Canna indica L., bird-of-paradise (Strelitzia reginae Banks), spiral
gingers (Costus spp.), and heliconias (Heliconia spp.). A recent phylogenetic analysis (Sass et al.
2016) supports the placement of Musaceae as sister to all other lineages followed by a
monophyletic clade comprising Heliconiaceae, Strelitziaceae and Lowiaceae. Together, these 4
families are referred to as the “banana lineages” and form a basal paraphyly with respect to the
derived monophyletic ginger clade (Cannaceae, Marantaceae, Costaceae, and Zingiberaceae =
“ginger clade”) (Figure 1a). Flower morphology in the Zingiberales varies dramatically, and one
of the main floral transitions in the order is related to the androecial whorl. Throughout the
evolution of the Zingiberales, the number of fertile stamens is drastically reduced from 5-6 fertile
stamens in the banana lineages to 1 or ½ fertile stamen in the ginger clade. This reduction in
fertile stamen number is inversely correlated to an increase in petaloidy, in which the infertile
androecial members laminarize (flatten) and develop into petal-like organs (Almeida et al.
2015a) (Figure 1b).

Several gene and gene networks have been hypothesized as underlying the molecular
mechanisms of Zingiberales floral developmental evolution (Bartlett & Specht 2010; Yockteng
et al. 2013a; Almeida et al. 2014; Almeida et al 2015b). However intriguing, these studies are
limited to candidate-gene or candidate-process approaches. In this study, we present an analysis
of whole flower transcriptomes of several species spanning the Zingiberales order, as well as of a
closely related Commelinaceae species. We focus our comparative analysis on coding regions,
with particular attention to transcription factors. This broad approach aims at avoiding the pitfalls of targeted candidate-based methodologies, and can potentially illuminate lineage-specific mechanisms of floral development linked to evolution and diversification in form and function. We also highlight the advancements and challenges of comparative transcriptome-based approaches for the study of developmental evolution.

Methods

Plant Material and RNA extractions

Whole developing flowers of *Costus spicatus*, *Zingiber officinale*, *Calathea zebrina* (Sims) Lindl., *Canna sp.*, *Orchidantha fimbriata* Holttum, *Musa basjoo* Siebold & Zucc., and *Dichorisandra thyrsiflora* were collected at the UC Berkeley Botanical Garden, Oxford Track Greenhouse, and UC Davis Greenhouse (Table 1). Whole young floral buds were collected and immediately flash frozen in liquid nitrogen. Flower and/or inflorescence size and morphology vary widely within the Zingiberales, and uniform developmental stages have not yet been established for the different lineages. In all cases, young inflorescences were dissected as much as possible and the youngest discernable floral buds were collected.

Frozen floral buds were stored in -80°C for up to two days before RNA extraction. Total RNA was extracted from floral material using Plant RNA Extraction Reagent (Invitrogen, Carlsbad, CA, USA), according to Yockteng et al. (2013b). RNA was stored at -80°C until further use.

Library Preparation and sequencing

cDNA libraries for sequencing on the Illumina platform were prepared using the TruSeq RNA sample prep kit v2. cDNA libraries were prepared with 2,0 μg of RNA extracted from flash frozen floral buds. *Costus spicatus* whole flower library was sequenced using the Illumina HiSeq2000 at IIGB HT Sequencing Facility at the University of California, Riverside. All other samples were multiplexed 1:1 using barcode set A. Multiplexed libraries were sequenced using Illumina HiSeq2000 High Output at Vincent J. Coates Genomics Sequencing Lab at University of California at Berkeley. All libraries were sequenced as 100bp pair-end reads.

Data cleanup and transcriptome assembly
Data clean-up was performed using a custom Perl script involving the following steps: (i) removal of identical forward and reverse reads; (ii) removal of duplicated reads in order to decrease the computational burden of subsequent de novo assembly; (iii) trimming of adapters, low complexity, and low quality (Q-score < 20) unique sequences using a combination of cutadapt v1.9.1 (Martin 2011), Blat v348 (Kent 2002), and Trimmomatic v0.35 (Bolger et al. 2014); (iv) screening of reads for contaminants against the human and Escherichia coli genomes using Bowtie v1.1.1 (Langmead et al. 2009). Clean-up quality was assest comparing FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) reports of cleaned and raw reads.

Transcriptomes were assembled de novo using Trinity v2.1.0 (Grabherr et al. 2011) with a variety of parameters. The best assembly results (based on the quality assessments presented below) used default parameters for all other species despite discrepancies in the overall estimated transcriptome coverage and number of reads. Contigs larger than 300bp were retained and further annotated.

Quality assessment of de novo assemblies was performed using DETONATE v1.10 (Li & Fillmore et al. 2014). In particular, RSEM-EVAL was used as a reference-free evaluation method. True transcript length was estimated through comparison to several predicted transcriptomes from the sequenced genomes of Musa acuminata (d’Hont et al. 2012), the palms Phoenix dactylifera (Al-Mssallem et al. 2013) and Elaeis guineensis (Singh et al. 2013), and the core eudicot Arabidopsis thaliana (The Arabidopsis Genome Initiative 2000). The number of coding sequences (CDS) in these species ranged from 28,889 in Phoenix dactylifera to 35,386 in Arabidopsis thaliana and 36,549 in Musa acuminata, to in 44,360 in Elaeis guineensis.

Further quality assessment was performed on the basis of number and length of contigs as well as N50 (Table 02).

Transcriptome annotation and comparison

Statistically supported contigs were annotated with the help of TransDecoder v4.1.0 (https://transdecoder.github.io/). First, coding regions were identified using TransDecoder long ORFs prediction. Predicted long ORFs were subjected to a Blastp search (Gish & States 1993) using Blast+ v2.7.1 against the Uniprot database (The UniProt Consortium 2015), as well as a HMMER3 v3.1b2 (Eddy 1998) search against the Pfam database (Finn et al. 2016). The results
from the Blastp and HMMER3 searches were used by TransDecoder to filter likely coding regions from the predicted long ORFs list. For each species, TransDecoder-predicted coding regions were further filtered, using a Blastp search to the Uniprot database and the following parameters: >= 70% identity; E-value =< 1.0e^-5; alignment length >= 100bp; and coverage of at least 40%. These stringent lists were used as inputs for whole flower transcriptome comparisons, in order to avoid the inclusion in the analyses of chimeras and/or truncated transcripts.

Orthology between transcriptome predicted long-ORFs and CDS of sequenced genomes of *Musa acuminata* (d’Hont et al. 2012), *Phoenix dactylifera* (Al-Mssallem et al. 2013), *Elaeis guineensis* (Singh et al. 2013), and *Arabidopsis thaliana* (The Arabidopsis Genome Initiative 2000) were established using OrthoFinder v2.2.3. Functional annotation of orthogroups were based on gene counterparts of the sequenced genomes of *Arabidopsis thaliana* (TAIR10) and *Elaeis guineensis*. Filtered contigs were also annotated based on nucleotide Blastn searches to predicted coding sequences (CDS) of the sequenced genomes listed above. Venn diagrams were built using Venny (Oliveros 2007, http://bioinfogp.cnb.csic.es/tools/venny/index.html), based on *Elaeis guineensis* Blastn results, especially in cases where no arabidopsis counterpart was identified.

Transcription factor sorting and analysis

Transcripts were further classified into overall functional categories as either metabolic enzymes, mitochondrial, chloroplast, structural or regulatory, based on BLAST results. Unknown transcripts as well as predicted uncharacterized transcripts were grouped as “uncharacterized”. Regulatory transcripts were further analyzed regarding their role as transcription factors, and were subjected to further BLAST searches against the NCBI database, based on their conserved DNA-binding amino-acid domains. Further analysis also entailed a comparison of these transcripts to transcription factor sequences available at the curated plant specific database PlantTFDB v4.0 (http://planttfdb.cbi.pku.edu.cn/index.php; Jin et al., 2013; 2017). A list of all transcription factors retrieved in this analysis is presented on Supplemental Material S1.

All data processing was performed within the QB3 Computational Genomics Resource Laboratory (CGRL) at University of California at Berkeley, except when specified otherwise.
Results

Transcriptome assembly

The number of cleaned reads for each whole flower transcriptome ranged from ~1 million reads for *Costus spicatus* to 142,860,349 reads in *Calathea zebrina* (Table 2). The significant difference in the number of reads is likely due to differences in the sequencing platform, in the case of *Co. spicatus*, and unequal multiplexing of libraries, in the case of *Ca. zebrina*. All other libraries resulted in a comparable number of reads, ranging form ~4.3 million in *Orchidantha fimbriata* to ~9.3 million reads in *Canna sp.* The number of non-filtered contigs ranged from ~52,000 to ~74,000, except in *Co. spicatus* (~19,000) and *Ca. zebrina* (~132,000), likely due to the discrepancy observed in the number of cleaned reads. With the exception of *Co. spicatus*, contig average length and N50 were comparable in all other libraries (Table 2). It is interesting to notice that, when compared to *Zingiber officinale*, a ~35-fold increase in the number of reads in *Ca. zebrina* resulted in only a ~2-fold increase in contig length and N50. With the exception of *Co. spicatus* and *Ca. zebrina*, all other species’ best assemblies resulted in values for number of contigs, N50 and average contig length (Table 2) comparable to those reported in the literature (e.g., 75 medicinal plant transcriptomes in Xiao et al. 2013; *Stevia rebaudiana* transcriptome in Chen et al. 2014; *Musa acuminata* root transcriptome in Zorrilla-Fontanesi et al. 2016).

In order to further assess assembly quality, we calculated RSEM-scores based on estimates of true transcriptome length of *Musa acuminata*, *Phoenix dactylifera*, *Elaeis guineensis*, and *Arabidopsis thaliana* (Table 2). Although we found no significant difference between results, RSEM-EVAL scores tended to favor the largest transcript length (*Elaeis guineensis*), regardless of phylogenetic proximity. Even for *Musa basjoo*, phylogenetically close to *Musa acuminata*, the best RSEM-score was that based on *Elaeis guineensis* transcriptome.

Transcriptome annotation and comparison

Transcriptomes were filtered based not only on long predicted open reading frames (long ORFs) but also on Blastp and HMMER3 results (filtered ORFs) using TransDecoder (Table 3). The average number of filtered ORFs was ~30,000, ranging from 13,122 in *Costus spicatus* to 55,360 in *Calathea zebrina*. The number of filtered coding sequences observed in this study is similar to already described numbers of floral unigenes of other non-model plants, which ranges between ~25,000 (in buckwheat, Logacheva et al. 2011) to ~80,000 (in *Dendrocalamus latiflorus*).
floral buds, Zhang et al. 2012). Whole flower transcriptome filtered ORFs represented on average 47% of reconstructed contigs, and ranged from 40 to 68%, similarly to what has been recently reported in *Arabidopsis* developing flowers (23,961 expressed genes; 67% of predicted CDS; Zhang et al. 2015). After filtering, the high number of contigs observed in *Calathea zebrina* was reduced to 55,360 ORFs, which is within the upper limits of already described non-model plant floral transcriptomes (see above).

In order to further annotate the contigs, OrthoFinder was used to establish orthology between the transcriptomes and the sequenced genome CDS. A total of 41,557 orthogroups were found (Supplemental Material S2), of which 17,418 had counterparts in at least one of the sequenced genomes included in the analysis. Over 24,000 groups had no CDS components in any of the analyzed genomes, which might suggest the persistence of chimeras and/or truncated ORFs within the filtered transcriptomes, Zingiberales specific genes, or a combination of the two. *Arabidopsis thaliana* CDS were present in 11, 511 orthogroups (Supplemental Material S3), while 5,907 orthogroups had no arabidopsis counterparts but comprised other CDS from at least one of the other sequenced genomes. Orthogroup species overlap is presented on Table 4.

Furthermore, OrthoFinder identified 6,916 orthogroups with all 10 species present. Of those, only 28 comprised single-copy orthogroups, in which one single ortholog was found for each species (Supplemental Material S4).

Within Zingiberales transcriptomes, the largest orthogroup overlap was to the *Musa acuminata* genome, likely a reflection of their phylogenetic proximity. In all cases, Zingiberales transcriptomes largest orthogroup overlap to a non-Zingiberales genome was to *Elaeis guineensis* CDS.

One-hundred and forty-two (142) orthogroups were *Arabidopsis thaliana*-specific (Supplemental Material S5) with no counterparts in any of the other analyzed genomes. Given that all other genomes were from monocot species, this finding might reflect either Arabidopsis-specific or eudicot-specific genes. Further analyses are necessary to determine whether these genes are involved in eudicot- or arabidopsis-specific flower development.

Blastn searches were conducted on the basis of *Arabidopsis, Elaeis, Phoenix* and *Musa* predicted CDS (Table 5). These searches produced variable results, potentially due to phylogenetic proximity and degree of genome sequence completeness. In general, all floral transcriptome Blastn searches resulted in a very small number of hits to *Arabidopsis thaliana*.
CDS, as expected due to its phylogenetic distance, indicating that although *Arabidopsis* is likely the best annotated plant genome to date, its phylogenetic distance to the study group makes fine-tuned statements of homology between *Arabidopsis* coding sequences and the predicted ORFs in the Zingiberales species studied here a challenging task. For instance, while 80.5% of *Musa acuminata* CDS were present amongst *Musa basjoo* contigs, only ~5% of *Arabidopsis thaliana* CDS were represented within the same assembly (Table 5), which is expected due to the nature of Blastn searches. Only a small number of Blastn hits were observed for *Phoenix dactylifera*, likely indicating incompleteness of the current genome sequence: ~29% of *Dichorisandra thyrsiflora* contigs matched *Elaeis guineensis* CDS, while the same contigs matched only ~19% of *Phoenix dactylifera* CDS (Table 5). In order to avoid phylogenetic bias, as well as to maximize transcriptome annotation, further Blastn analyses of filtered ORFs were based on *Elaeis guineensis* predicted CDS.

Based on Blastn searches against *Elaeis guineensis* predicted CDS, floral transcriptomes shared 4,153 genes (Figure 2). We also identified 1,748 hits specific to Zingiberales, 666 to the ginger clade, 1,560 hits unique to the Cannaceae-Marantaceae lineage, 2,001 specific to the banana families, and 1,887 specific to *Zingiber officinale*, from which 221 hits are shared with *Costus spicatus*. The small number of contigs recovered for *Costus spicatus* likely limited the analysis of the Costaceae-Zingiberaceae lineage-specific Blastn hits (Supplemental Material S6).

Conserved genes

Orthogroup analysis containing *Arabidopsis thaliana* counterparts (Supplemental Material S3) revealed the presence of several well-known gene families in our flower transcriptomes. Within these orthogroups, the most noticeable groups were members of the *AGAMOUS*-like (*AGL*) family of transcription factors, including *AGL6, AGL12, AGL20, AGL26, AGL29, AGL44, AGL58, AGL61, AGL65* and *AGL104*. Other MADS-box genes, widely implicated in floral organ identity, were also identified such as *APETALA3 (AP3), PISTALLATA (PI), and SEPALLATA3 (SEP3)*. Other MADS-box gene families involved in flower and fruit development were represented within the orthogroups: *CAULIFLOWER (CAL), SHATTERPROOF2 (SHP2), CRABS CLAW (CRC), SHORT VEGETATIVE PHASE (SVP), TRANSPARENT TESTA16 (TT16), FLOR1 (FLR1), BELL1 (BEL1)*, as well as several members of the TCP/TEOSINTE BRANCHED family (*TCP1, TCP3, TCP12, TCP15, and TCP24*).
Orthogroups lacking Arabidopsis thaliana counterparts further reinforced the presence of AGAMOUS-like genes, such as AGL61, AGL62 (three orthogroups), AGL80, as well as MADS32 (O’Maoileidigh et al. 2014).

Blastn hits to E. guineensis were used to further place genes in functional categories, as described in methods. Figure 3 depicts the main category of genes shared by all floral transcriptomes. Almost half of these genes (47%) are enzymes related to metabolic processes of the cell, while 26% of the genes are structural proteins such as membrane proteins, cytoskeleton-related proteins, ribosomal, histones, heat-shock and ribonucleoproteins. Approximately 10% of these genes are regulatory proteins, of which approximately 508 could be assigned to known transcription factor (TF) families, based on the PlantTFDB v4.0 (Supplemental Material S1).

From the 58 well-characterized plant transcription factor families, our dataset was able to retrieve 36 families, based on the closest homolog in Arabidopsis thaliana (Table 6).

Additionally, 6 putative new categories of TFs that are not described in the database were also recovered, although more experimental evidence is required to further categorize their potential role as transcription factors. Here, we preliminarily named these sequences based on their match to the NCBI Conserved Domain Dataset (https://www.ncbi.nlm.nih.gov/cdd):

- Bromodomain-family (5 unique sequences: GTE4-like, GTE6-like, and GTE9-like homologs in the Canna-Calathea clade; GTE7-like homologs in Zingiber officinale; and GTE9-like homologs in Dichorisandra thyrsiflora);
- PUR-A family (1 unique sequence: PURA1-like homolog in the Canna-Calathea clade);
- YL1 domain family (1 unique sequence: SWRI complex subunit 2-like homolog in Dichorisandra thyrsiflora);
- TFIIS-domain family (1 unique sequence: IWS1-like homolog in Zingiber officinale);
- LIM-domain family (2 unique sequences: SEUSS-like homologs in the banana clade) and SAND-domain family (1 unique sequence: UTLRAPETALA1-like homolog in Zingiber officinale) (see Supplemental Material S1).

Interestingly, the remaining regulatory proteins that were not included in the transcription factor category were nonetheless implicated in regulating plant organ development and/or growth, acting as protein co-factors that physically interact with transcription factors, or as related to the chromatin remodeling machinery.

Among the transcription factors shared by all flower transcriptomes, it is worth noticing a single homolog of APETALA-2 (a member of the A-class ABC model genes (Jofuku et al. 1994)), three homologs of MADS-6 or AGL6, as well as several homologs of HUA2-like proteins.
2 and 3. In *Arabidopsis thaliana*, HUA1 and HUA2 are important components of the *AGAMOUS* gene regulation pathway (Chen & Meyerowitz 1999). It has been suggested that HUA2 facilitates *AGAMOUS* action during flower development (Chen & Meyerowitz 1999), and it is also required for the expression of *FLC* in *Arabidopsis thaliana* (Doyle et al. 2005). Moreover, HUA2 has been implicated in natural variation in *Arabidopsis thaliana* shoot morphology (Wang et al. 2007). Five LEUNIG-like homologs were also recovered in all floral transcriptomes. LEUNIG proteins are also involved in the regulation of *AGAMOUS* expression in *Arabidopsis thaliana* (Liu & Meyerowitz 1995; Sridhar et al. 2004). The number of shared genes involved in the regulation of *AGAMOUS* indicates the shared importance of precise *AGAMOUS* regulation during flower development (Supplemental Material S1). In particular, genes involved in physiological responses to stress and pathogen response, such as the *WRKY* family of transcription factors (Wang et al. 2011) and the NAC domain proteins (Nuruzzaman et al. 2013), were recovered in all transcriptomes. More recently, *WRKY71* has been implicated in the control of shoot branching in *Arabidopsis thaliana*, through the regulation of RAX genes (Guo et al. 2015). All floral transcriptomes also presented several members of the zinc-finger transcription factor family, seven *KNOTTED1*-like homologs, as well as *GATA* transcription factors 2, 4, 12, and 24. Several members of the bHLH family; homologs of *MYB44*, *MYB82*, *TCP*-4, -15, and -7 homologs; four *CONSTANS*-like homologs; several members of the TCP family, as well as *WUSCHEL*-like transcripts were also widely retrieved. (Supplemental Material S1).

Other regulatory proteins include, for example, a homolog of *COBRA*-like 1; two homologs of FY-like proteins; one *FRIGIDA*-like homolog; and five homologs of EMBRYONIC FLOWER2-like. We also retrieved six *TOPLESS*-like homologs, almost 20 members of the TBC1 family, five IWS1 homologs, a *GIGANTEA*-like homolog, as well as four SQUAMOSA PROMOTER BINDING-like homologs.

Interestingly, the most prominent feature of the Blastn searchers was the match to different paralogues and/or variants of the same genes or gene families in different floral transcriptomes (Supplemental Material S1). For example, *LATERAL ORGAN BOUNDARIES (LOB)*-domain homologs were retrieved in all floral transcriptomes analyzed. However, while *LOB40, 41* and 6-like homologs were retrieved in all Zingiberales floral transcriptomes, *LOB36* and a paralog of *LOB6*-like transcripts were retrieved only in the banana transcriptomes. Similarly, *LOB18*-like was only recovered in the Cannaceae-Marantaceae lineage, while *LOB4*-
like transcript was only recovered in *Zingiber officinale*. On the other hand, *LOB15*-like homologs were only recovered in the floral transcriptome of *Dichorisandra thyrsiflora*. *LOB genes have been implicated in defining organ boundaries in Arabidopsis floral organs through negative regulation of brassinosteroid accumulation (Shuai et al. 2002; Bell et al. 2012).

Whether this phenomenon is a result of gene duplication followed by divergence or whether it is due to lineage-specific divergence within a single copy begs further investigations. Whether these homologs have retained the same function is an exciting matter for further studies.

Lineage-specific genes

The great majority of lineage-specific genes, including Zingiberales specific genes, were related to metabolic processes of the cells (Figure 3). The most prevalent unique genes were enzymes such as oxidoreductases, methyltransferases, aminoacyl-tRNA synthetases, kinases, hydrolases, and phosphatases. Carrier proteins, transporters, chaperones and ribonucleoproteins were also abundant in all lineage-specific datasets. Several transcription factors, many of which are known players during plant development, were recovered in a lineage-specific fashion. Fifty percent of Zingiberales specific genes are metabolic enzymes (28%) or structural proteins (22%), while 12%, approximately 210 coding sequences, are regulatory proteins (Figure 3).

Among these regulatory proteins, several families of transcription factors were recovered exclusively in the Zingiberales, such as *ENHANCER OF AG-4*, various *AP2*-like ethylene-response transcription factors, *BRZ1* homologs 1 and 3, *SHOOT GRAVITROPISM 5*-like homolog, the zinc-finger transcription factor *JACKDAW*-like homolog, a *YABBY2*-like homolog, as well as *GT-2* and *GT-3* (*GT-element binding transcription factors*) homologs.

Several *DIVARICATA* lineage-specific homologs, were retrieved in the banana and ginger groups transcriptomes. Similarly, other homologs appeared in a lineage-specific manner. For example, while two homologs of B-ZIP transcription factor family *TGA4*-like were recovered in the banana group, homologs for *TGA2*-like were recovered only in the ginger clade. Likewise, homologs of the trihelix DNA binding family gene *ASIL1*-like (*ARABIDOPSIS 6B-INTERACTING PROTEIN 1-LIKE*) were recovered in the banana group, while *ASIL2*-like homologs were recovered in the ginger clade.

As far as other regulators go, in all Zingiberales floral transcriptomes, but not in the outgroup *Dichorisandra thyrsiflora*, we were able to recover a homologue of the plant
homeodomain (PHD) protein ING2 (Inhibitor of growth). ING tumor suppressors are found in animals, plants and yeast, and have long been implicated in oncogenesis, control of DNA damage repair, cellular senescence and apoptosis (Champagne & Kutateladze 2009). In A. thaliana, ING2 is involved in chromatin regulation by binding to the active histone marker H3K4me3/2 (Lee et al. 2009). Histone modifications, such as those promoted by ING2 and other PHD proteins, modulate the expression of crucial genes involved in flower development (López-González et al. 2014). Similarly, the histone chaperone ANTI-SILENCING FACTOR-1 (ASF1) homologue was recovered in all analyzed Zingiberales transcriptomes, while missing in Dichorisandra thyrsiflora. ASF1 is a family of histone chaperones conserved in all eukaryotes (Tripathi et al. 2015), and in A. thaliana ASF1 is required for cell proliferation during development and is involved in transcriptional regulation of histones and histone modifications (Zhu et al. 2011). However interesting, further analyses are necessary to establish the potential role of histone modifications, and in particular the functions of ING2 and ASF1, in Zingiberales flower development.

In turn, various transcription factors were only recovered in the Dichorisandra thyrsiflora floral transcriptome to the exclusion of the Zingiberales. Among these are a FLORICAULA/LEAFY homolog, a homolog of ODORANTI-like, a homolog of JUNGBRUNNEN-like, homologs of RAX-1, -2, and -3, as well as homologs of the transcription factors DPB, TT2-like, and GAMYB-like. In particular, a SOMBRERO-like homolog was retrieved only in Dichorisandra thyrsiflora. SOMBRERO proteins, members of the NAC domain transcription factors, have been implicated in the control of cell division plane orientation in Arabidopsis thaliana (Willemsen et al. 2008). Other regulators retrieved specifically in the Dichorisandra lineage include two STICHEL-like homologs, a homolog of UPSTREAM OF FLC-like, a TONSOKU-like homolog, two SAGA-like homologs, a TASSELESEED homolog, and a TITAN-like homolog.

Regulatory sequences retrieved exclusively within the banana lineage, represented by Musa basjoo and Orchidantha fimbriata floral transcriptomes, include four CCA1-like homologs, six FLX2-like homologs, a KTI12-like homolog, a YABBY4-like homolog, a CPC homolog, and a SPATULA homolog represent transcription factors that were recovered exclusively in this group. Curiously, few coding sequences were uniquely reconstructed within the ginger clade, potentially due to the low coverage of the Costus spicatus transcriptome.
Particularly interesting is the unique recovery of four AS1-like (*ASYMMETRIC LEAVES*-1) homologs and two DROOPING LEAF-like genes. Regulatory coding sequences uniquely reconstructed in the *Canna-Calathea* (*Cannaceae-Marantaceae*) lineage include a *CUC2* homolog, a homolog of *Arabidopsis* *EXORDIUM*-like protein, two *FAF*-like homologs, and five *SPX*-like homologs.

A complete list of lineage specific transcription factors, sorted by plant transcription factor families characterized in the PlantTFDB, can be found in Supplemental Material S1.

Discussion

Recently, there has been an explosion in the use of RNA-Seq approaches as part of a comparative analysis pipeline to study the evolution of developmental processes, using plant transcriptomes as an indication of differential gene expression among organisms with different phenotypic displays. This approach has become particularly important in non-model organisms that lack a reference genome or other genetic and bioinformatic tools that exist in plant model organisms like *A. thaliana*, rice, poplar or corn. Despite challenges assembling transcriptomic sequence data without a reference genome, researchers can determine the quality of their data based on the number, size and scores of the contigs assembled. The transcriptome data presented here are in agreement in terms of number of contigs, contig size distributions, and quality scores with those presented in the literature.

The study of mechanisms underlying floral diversification in plant lineages will likely point, in most cases, to at least three potentially concurrent scenarios: (i) tinkering of conserved mechanisms specific to flower development; (b) evolution of lineage-specific mechanisms resulting in novelty or change, or (c) co-option of non-flower mechanisms to elaborate specific aspects of flower development. The identification of these mechanisms, however, requires careful examination of exemplar species within a clearly delimited phylogenetic context. Also, careful choice of outgroup species might help the distinction between gain versus loss of molecular processes when analyzing lineage specific phenomena. Our data show that the inclusion of *Dichorisandra thyrsiflora* significantly reduced the overall number of Zingiberales unique genes, as well as the number of lineage specific genes within the Zingiberales, potentially due to shared molecular mechanism during flower development. It is possible that the addition of other outgroups would further limit the lineage-specific datasets. The results presented here
support previous assertions that annotation based on Blastn searches is highly influenced by
phylogenetic proximity as well as genome sequence completeness and annotation quality,
particularly when blasting against predicted CDS (Hornett and Wheat 2012). Meanwhile,
orthogroup analysis provides a wider view of less stringent relationships between transcriptomes.
Furthermore, the orthogroup analysis presented here reinforces the notion that gene duplications
are a widespread phenomenon during plant evolution (Panchy et al 2016). Only 28 of the over
40,000 orthogroups identified comprised single copy genes in the transcriptomes and genomes
analyzed.

The stringent filtering of the data performed with Blastn likely excluded several genes
that could potentially participate in flower development across the Zingiberales and in the
outgroup (D. thyrsiflora), and may even participate in floral evolution. However, due to this
stringent cutoff, it is likely that the genes recovered are strong candidates for further studies.
Functional analysis of the genes that emerge from these comparative datasets, coupled with
careful phylogenetic assessments of specific gene families, will potentially refine the picture.

Perhaps the most significant results presented here relate to the set of shared floral
transcription factors recovered for all taxa analyzed. Due to the nature of the methodology used,
we believe there is sufficient evidence to support the presence of these genes in all floral
transcriptome studies, making them likely floral development regulators and involved in not only
floral development but, given their presence among and between lineages, suggesting that they
are conserved regulators of floral evolution. Most of these genes and gene families have already
been implicated in floral development in A. thaliana, but knowledge of their roles outside core
eudicots is still poor. Their specific involvement in processes of morphological diversification
has yet to be established.

Our results point to interesting differences between Zingiberales lineages. In particular,
the presence of a YABBY4-like homolog in the banana lineages but not in the ginger clade -
where only a YABBY2-like homolog was reconstructed - might underlie developmental
differences between these Zingiberales flowers. Information regarding the role of YABBY4 in
comparative floral development remains sparse. Even though expression of YABBY4 (INNER NO
OUTER) is restricted to the ovule integument (Villanueva et al. 1999) and seems to be conserved
across angiosperms (Skinner et al. 2016), little is known about the presence of this gene in
monocots other than rice, or pertaining the role it may play in ovule development within the
monocot clade (Toriba et al. 2007; Morioka et al. 2015). Although it requires further evidence, the lineage specific gene set presented here might provide an interesting candidate gene list for further studies into the molecular mechanisms of floral development and diversification in the Zingiberales.

It is widely accepted that the ability to recover low expressed genes is related to transcriptome coverage (Grabherr et al. 2011; Martin & Zhang 2011; Tarazona et al. 2011). The high coverage of Calathea might explain the large number of genes recovered that appear unique to Cannaceae-Marantaceae, especially given the overrepresentation of transcription factors in this lineage. However, the total number of unique transcription factors between Canna and Calathea is similar to that observed in other lineages within the Zingiberales. Particularly interesting was the reconstruction of CUP-SHAPED COTYLEDON2 (CUC2) exclusively in the Cannaceae-Marantaceae lineage. The evolution and functional divergence of CUC genes (1-3) have been well studied in Arabidopsis (Hasson et al. 2011), although much less is known in monocots especially outside of the grasses. During flower development, CUC genes have been implicated in the formation of carpel margin meristems, although their role in plant development does not appear to be restricted to the flower (Kamiuchi et al. 2014). It is conceivable that the CUC gene copies play important roles, together with SPATULA homologs (SPT) (Nahar et al. 2012), in carpel diversification in Zingiberales.

It is interesting to notice that AGAMOUS regulatory proteins were widely recovered in all transcriptomes, suggesting consistent levels of expression throughout the Zingiberales and outgroup developing flowers. This might support the evolution of several regulatory mechanisms of AGAMOUS expression during flower development, bringing redundancy and indicating the critical nature of AGAMOUS regulation. In turn, it may suggest that variations of AGAMOUS expression might lead to floral morphological diversification, a mechanism that has already been proposed to participate in Zingiberales flower evolution (Almeida et al. 2015b).

Because expression levels can interfere with the ability to reconstruct specific genes, it is possible that some of the differences observed in lineage-specific transcriptome reconstructions, particularly the absence of transcripts, are due to low or restricted expression within the developing flower. It is imperative that further studies are carried out, especially comparative spatial-temporal expression studies, to further unravel the role of these transcription factors in floral morphological variation. Comparisons based on expression levels of shared genes, as well
as protein-protein or protein-DNA interactions, can certainly reveal other levels of
developmental divergence. Expression levels were not calculated here, due to the lack of
replicates for each floral transcriptome. Also, despite the interesting findings discussed here
regarding coding sequences and, in particular transcription factors, further analysis is needed to
fully uncover the mechanisms underlying floral developmental evolution. A careful analysis of
non-coding sequences might reveal other layers of gene regulation and function that were not
explored in this work. The complexity of the molecular mechanisms underlying floral
development cannot be underestimated. Thus, we believe that further investigations are needed
to achieve a full understanding of the molecular processes underlying flower developmental
evolution in the Zingiberales.

Despite limitations, we believe the transcriptome analysis presented here sheds light on
interesting phenomena that might underlie molecular mechanisms of flower developmental
evolution. In particular, the consistent recovery of distinct homologs for various genes families
in closely related evolutionary lineages is a pattern that suggests the need for further studies. The
complex patterns of gene duplications in plants, although daunting, provides an exciting
opportunity for the study of the relationship between genes, functions and morphological
diversification.

Acknowledgements

The authors would like to acknowledge H.Forbes from UC Botanical Garden, and
E.Sandoval from UC Davis Greenhouses for support with plant materials; K.Bi from qB3
Computational Genomics Lab (UC Berkeley) for help with data processing and L.Smith from the
Evolutionary Genetics Lab (UCB) for support during library preparations.

References

Almeida AMR, Yockteng R, Schnable J, Alvarez-Buylla ER, Freeling M and Specht CD. 2014.
Co-option of the polarity gene network shapes filament morphology in angiosperms. Nature
Scientific Reports, 4.
Almeida, AMR.; Yockteng, R.; Specht, CD. 2015a. Evolution of petaloidy in the Zingiberales: an assessment of the relationship between ultrastructure and gene expression patterns. *Developmental Dynamics*, 244: 1121-1132.

Almeida AMR, Yockteng R, Otoni WC, Specht CD. 2015b. Positive selection on the K domain of the AGAMOUS protein in the Zingiberales suggests a mechanism for the evolution of androecial morphology. *BMC EvoDevo*, 6(7), DOI: 10.1186/s13227-015-0002-x.

Al-Mssallem, I.; Hu, S.; Zhang, X.; Lin, Q.; Liu, W.; Tan, J.; Yu, X.; Liu, J.; Pan, L.; Zhang, T.; Yin, Y.; Xin, C.; Wu, H.; Zhang, G.; Abdullah, M.M.B.; Huang, D.; Fang, Y.; Alnakhli, Y.O.; Jia, S.; Yin, A.; Alhuzimi, E.M.; Alsaihati, B.A.; Al-Owayyed, S.A.A.; Zhao, D.; Zhang, S.; Al-Otaibi, N.A.; Sun, G.; Majrashi, M.A.; Li, F.; Wang, J.; Yun, Q.; Alnassar, N.A.; Wang, L.; Yang, M.; Al-Jelaify, R.F.; Liu, K.; Gao, S.; Chen, K.; Alkhali, S.R.; Liu, G.; Zhang, M.; Guo, H.; Yu, J. 2013. Genome sequence of the data palm Phoenix dactylifera L. *Nature Communications*, 4(2274), DOI: 10.1038/ncomms3274.

Bartlett, M.; Specht, C.D. Evidence for the involvement of GLOBOSA-like gene duplications and expression divergence in the evolution of floral morphology in the Zingiberales. 2010. New Phytologist, 187:521-541.

Bell, EM.; Lin, WC.; Husbands, AY.; Yu, L.; Jagantha, V.; Jablonska, B.; Mangeon, A.; Neff, MM.; Girke, T.; Springer, PS. 2012. Arabidopsis lateral organ boundaries negatively regulated brassinosteroid acumination to limit growth in organ boundaries. PNAS, 109: 21146-51.

Bolger, A. M.; Lohse, M.; Usadel, B. 2014. Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinformatics*, DOI: 10.1093/bioinformatics/btu170.

Casimiro-Soriguer, I.; Narbona, E.; Buide, ML.; Valle, JCD.; Whitall, JB. 2016. Transcriptome and biochemical analysis of a flower color polymorphism in Silene littorea (Caryophyllaceae). *Frontiers in Plant Science*, 7: 204, DOI: 10.3389/fpls.2016.00204.
Champagne, KS.; Kutateladze, TG. 2009. Structural insight into histone recognition by the ING PHD fingers. *Current Drug Targets*, 10(5): 432-441.

Chanderbali, AS.; Albert, VA.; Leebens-Mack, J.; Altman, NS.; Soltis, DE.; Soltis, PS. 2009. Transcriptional signatures of ancient floral developmental genetics in avocado (Persea Americana; Lauraceae). *PNAS*, 106(22): 8929-8934.

Chanderbali, AS.; Yoo, M-J.; Zahn, LM.; Brockington, SF.; Wall, PK.; Gitzendanner, MA.; Albert, VA.; Leebens-Mack, J.; Altman, NS.; Ma, H.; dePamphilis, CW.; Soltis, DE.; Soltis, PS. 2010. Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. *PNAS*, 107(52): 22570-22575.

Chen, J.; Hou, K.; Qin, P.; Liu, H.; Yi, B.; Yang, W.; Wu, W. 2014. RNA-seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes. *BMC Genomics*, 15(

Chen, X.; Meyerowitz, EM. 1999. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway. *Molecular Cell*, 3(3):349-360.

Chiara, M.; Horner, DS.; Spada, A. 2013. De Novo Assembly of the Transcriptome of the Model Plant Streptocarpus rexii Employing a Novel Heuristic to recover Locus-Specific Transcript CLustes. *PLOS ONE*, 8, 12: e80961.

Davila-Velderrain, J.; Servin-Marquez, A.; Alvarez-Buylla, ER. 2013. Molecular Evolutin Constraints in the Floral Organ Specification Gene Regulatory Network Module across 18 Angiosperm Gneomes. Molecular Biology and Evolution, DOI:10.1093/molbev/ms223.

Deng, N.; Chang, E.; Li, M.; Ji, J.; Yao, X.; Bartish, IV.; Liu, J.; Ma, J.; Chen, L.; Jiang, Z.; Shi, S. 2016. Transcriptome characterization of Gnetum parvifolium reveals candidate genes involved in important secondary metabolic pathways of flavonoids and stilbenoids. *Frontiers in Plant Science*, 7: 174, DOI: 10.3389/fpls.2016.00174.
D’Hont, A.; Denoeud, F.; Aury, J-M.; Baurens, F-C.; Carreel, F.; Garsmeur, O.; Noel, B.; Bocs, S.; Droq, G.; Rouard, M.; Silva, C.d.; Jabbari, K.; Cardin, C.; Poulaing, J.; Souquet, M.; Labadie, K.; Jourda, C.; Lengelle, J.; Rodier-Goud, M.; Alberti, A.; Bernand, M.; Correa, M.; Ayyampalayam, S.; Mckain, MR.; Leebens-Mack, J.; Burguess, D.; Freeling, M.; Mbeguié-A-Mbeguié, D.; Chabannes, M.; Wicker, T.; Panaud, O.; Barbosa, J.; Hribova, E.; Heslop-Harrison, P.; Habas, R.; Rivallan, R.; Franoii, P.; Poiron, C.; Kilian, A.; Burthia, D.; Jenny, C.; Bakry, F.; Brown, S.; Guignion, V.; Kema, G.; Dita, M.; Waalwijk, C.; Joseph, S.; Dievart, A.; Jaillon, O.; Leclercq, J.; Argout, X.; Lyons, E.; Almeida, A.; Jeridi, M.; Dolezel, J.; Roux, N.; Risterucci, A.-M.; Weissenbach, J.; Ruiz, M.; Glaszmann, J-C.; Quétier, F.; Yahiaoui, N.; Wincker, P.; 2012. The banana (*Musa acuminata*) genome and the evolution of monocotyledonous plants. Nature, 488: 213-219, DOI: 10.1038/nature11241.

Doyle, MR.; Bizzell, CM.; Keller, MR.; Michaelis, SD.; Song, J.; Noh, YS.; Amasino, RM. 2005. HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. *Plant Journal*, 41(3): 376-385.

Eddy, SR. 1998. Profile hidden Markov models. *Bioinformatics*, 14(9): 755-763.

Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; Salazar, G.A.; Tate, J.; Bateman, A. 2016. The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Research*, 44:D279-D285.

Gish, W.; States, D.J. 1993. Identification of protein coding regions by database similarity search. *Nature Genetics*, 3:266-272.

González-Plaza, JJ.; Ortiz-Martin, I.; Muñoz-Mérida, A.; Garcia-López, C.; Sánchez-Sevilla, JF.; Luque, F.; Trelles, O.; Bejarano, ER.; Rosa, RDL.; Valpuesta, V.; Beuzón, CR. 2016. Transcriptomic analysis using olive varieties and breeding progenies identifies candidate genes involved in plant architecture. *Frontiers in Plant Science*, 7: 240, DOI: 10.3389/fpls.2016.00240.
Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.;
Fan, L.; Raychowdhury, R.; Zeng, Q.; Chen, Z.; Mauceli, E.; Hacohen, N.; Gnirke, A.; Rhind, N.; di Palma, F.; Birren, B.W.; Nusbaum, C.; Lindblad-Toh, K.; Friedman, N.; Regev, A. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology 2011, 29: 644-652.

Guo, D.; Zhang, J.; Wang, X.; Wei, B.; Wang, J.; Li, B.; Yu, H.; Huang, Q.; Gu, H.; Qu, L-J.; Qin, J. 2015. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis. The Plant Cell, http://www.plantcell.org/content/27/11/3112.

Hasson, A.; Plessis, A.; Blein, T.; Adroher, B.; Grigg, S.; Tsiantis, M.; Boudaoud, A.; Demerval, C.; Laufs, P. 2011. Evolution and Diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. The Plant Cell, 23(1): 54-68.

Hollender, CA.; Kang, C.; Darwish, O.; Geretz, A.; Matthews, BF.; Slovin, J.; Alkharouf, N.; Liu, Z. 2014. Floral Transcriptomes in Woodland Strawberry Uncover Developing Receptacle and Anther Gene Networks. Plant Physiology, 165: 1062-1075.

Hornett, E.A.; Wheat, C.W. 2012. Quantitative RNA-seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species. BMC Genomics, 13: 361, http://www.biomedcentral.com/1471-2164/13/361.

Jofuku, KD.; de Boer, BG.; Montagu, MV.; Okamuro, JK. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6(9): 1211-1225.

Kamiuchi, Y.; Yamamoto, K.; Furutani, M.; Tasaka, M.; Aida, M. 2014. The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Frontiers in Plant Science, 5: 165, doi: 10.3389/fpls.2014.00165.
Kent, W.J. 2002. BLAT-the BLAST-like alignment tool. *Genome Research*, 12:656-664.

Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* 2009, 10:R25.

Lee, WY.; Lee, D.; Chung, W-II.; Kwon, CS. 2009. Arabidopsis ING and Alfin1-like protein families locate to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. *The Plant Journal*, 58: 511-524.

Li, B.*; Fillmore, N.*; Bai, Y; Collins, M.; Thomson, J.A.; Stewart, R.; Dewey, C.N. 2014. Evaluation of *de novo* transcriptome assemblies from RNA-Seq data. *Genome Biology*, 15:553, DOI: 10.1186/s13059-014-0553-5. * These authors contributed equally to this publication.

Liu, Z.; Meyerowitz, EM. 1995. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. *Development*, 121: 975-991.

Logacheca, MD.; Kasianov, AS.; Vinogradov, DV.; Samigullin, TH.; Gelfand, MS.; Makeev, VJ.; Penin, AA. 2011. De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). *BMC Genomics*, 12: 30.

López-González, L.; Mouriz, A.; Narro-Diego, L.; Bustos, R.; Martínez-Zapater, M.; Jarillo, JA.; Piñeiro, M. 2014. Chromatin-dependent Repression of the Arabidopsis Floral Integrator Genes Involves Plant Specific PHD-Containing Proteins. *The Plant Cell*, 26: 3922-3938.

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet Journal*, 17: 10-12.

Martin, JA.; Wang, Z. 2011. Next-generation transcriptome assembly. *Nature Reviews Genetics*, 12:671-682.
Morioka, K.; Yockteng, R.; Almeida, AMR.; Specht, CD. 2015. Loss of YABBY2-like gene expression may underlie the evolution of the laminar style in Canna and contribute to floral morphological diversity in the Zingiberales. *Frontiers in Plant Science*, doi: 10.3389/fpls.2015.01106.

Nahar, MA.; Ishida, T.; Smyth, DR.; Tasaka, M.; Aida, M. 2012. Interactions of CUP-SAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana. *Plant Cell Physiology*, 53(6): 1134-43.

Nuruzzaman, M.; Sharoni, AM.; Kikuchi, S. 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. *Frontiers in Microbiology*, doi: 10.3389/fmicb.2013.00248.

Oliveros, J.C. 2007-2015. Venny. An interactive tool for comparing lists with Venn's diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html

O’Maoileidigh, DS; Graciet, E; Wellmer, F. 2014. Gene Networks controlling Arabidopsis thaliana flower development. *New Phytologist*, doi: 10.1111/nph.12444.

Panchy, N; Lehti-Shiu, M; Shiu, S-H. 2016. Evolution of gene duplication in plants. *Plant Physiology*, doi: 10.1104/pp.16.00523.

Sass, C.; Iles, W.J.D.; Barret, C.F.; Smith, S.Y.; Specht, C.D. 2016. Revisiting the Zingiberales: using multiplexed exon capture to resolve ancient and recent phylogenetic splits in a charismatic plant lineage. Peer J., 4:e1584. DOI 10.7717/peerj.1584.

Singh, R.; Ong-Abdullah, M.; Leslie, E-T.; Low, L.; Arif, M.; MAnaf, A.; Rosli, R.; Nookiah, R.; Ooi, L.C-L.; Ooi, S-E.; Chan, K-L.; Halim, M.A.; Azizi, N.; Nagappan, J.; Bacher, B.; Lakey, N.; Smith, S.W.; He, D.; Hogan, M.; Budiman, M.A.; Lee, E.K.; DeSalle, R.; Kudrna, D.; Goicoechea, J.L.; Wing, R.A.; Wilson, R.K.; Fulton, R.S.; Ordway, J.M.; Martienssen, R.A.;
Sambanthamurthi, R. 2013. Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature, 500: 335-339, DOI: 10.1038/nature12309.

Singhal, S. 2013. De novo transcriptome analyses for non-model organisms: an evaluation of methods across a multi-species dataset. Molecular Ecology Resources, 13: 403-416.

Shuai, B.; Reynaga-Peña, CG.; Springer, PS. 2002. The lateral organ boundaries gene defines a novel, plant specific gene family. Plant Physiology, 129: 747-761.

Skinner, DJ.; Brown, RH.; Kuzoff, RK.; Gasser, CS. 2016. Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function. BMC Plant Biology, 16: 143, doi: 10.1186/s12870-016-0835-z.

Sridhar, VV.; Surendrarao, A.; Gonzalez, D.; Conlan, RS.; Liu, Z. 2004. Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis floral development. PNAS, 101(31): 11494-11499.

Tarazona, S.; García-Alcáde, F.; Dopazo, J.; Ferrer, A.; Conesa, A. 2011. Differential expression in RNA-Seq: a matter of depth. Genome Research, 21(12): 2213-2223.

The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815.

The UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic Acids Research, 43: D204-D212.

Toriba, T.; Harada, K.; Takamura, A.; Nakamura, H.; Ichikawa, H.; Suzaki, T.; Hirano, H-Y. 2007. Molecular characterization of the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Molecular Genetics and Genomics 277: 457-468.
Tripathi, AK.; Singh, K.; Pareek, A.; Singla-Pareek, SL. 2015. Histone chaperones in Arabidopsis and rice: genome-wide identification, phylogeny, architecture, and transcriptional regulation. *BMC Plant Biology*, 15: 42, DOI: 10.1186/s12870-015-0414-8.

Unamba, CIN.; Nag, A.; Sharma, RK. 2015. Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. *Frontiers in Plant Science*, 6. DOI: 10.3389/fpls.2015.01074.

Villanueva, J.; Bradhvest, J.; Hauser, BA.; Meister, RJ.; Schneitz, K.; Gasser, CS. 1999. INNER NO OUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. *Genes & Development*, 13(23): 3160-3169.

Wang, Q.; Sajja, U.; Rosloski, S.; Humphrey, T.; Kim, MC.; Bomblies, K.; Weigel, D.; Grbic, V. 2007. HUA2 caused natural variation in shoot morphology of Arabidopsis thaliana. *Current Biology*, 17(17): 1513-1519.

Wang, Q.; Wang, M.; Zhang, X.; Hao, B.; Kaushik, SK.; Pan, Y. 2011. WRKY gene family evolution in *Arabidopsis thaliana*. *Genetica*, 139:973.

Wang, Z.; Gerstein, M.; Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. *Nature Reviews Genetics*, 10: 57-63.

Wit, PD.; Pespeni, MH.; Ladner, JT.; Barshis, DJ.; Seneca, F.; Jaris, H.; Therkildsen, NO.; Morikawa, M.; Palumbi, SR. 2012. The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. *Molecular Ecology Resources*, 12:1058-1067. DOI: 10.1111/1755-0998.12003.
sequencing of non-model plants producing specialized metabolites of biotechnological interest.

Journal of Biothecnology, 166: 122-134.

Yao, Q-Y.; Huang, H.; Tong, Y.; Xia, E-H.; Gao, L-Z. 2016. Transcriptome analysis indentifies candidate genes related to triacylglycerol and pigment biosynthesis and photoperiodic flowering in the ornamental and oil-producing plant, *Camellia reticulata* (Theaceae). *Frontiers in Plant Science*, 7: 163, DOI: 10.3389/fpls.2016.00163.

Yockteng RB, Almeida AMR, Morioka K, Alvarez-Buylla ER and Specht CD. 2013a. Molecular evolution and patterns of duplications in the *SEP/AGL6*-like lineage of the Zingiberales: a proposed mechanism for floral diversification. *Molecular Biology and Evolution*, DOI: 10.1093/molbev/mst137.

Yockteng, R.; Almeida, A.M.R.; Yee, S.; Andre, T.; Hill, C.; Specht, C.D. 2013b. A method for extracting high-quality RNA from diverse plants for next-generation sequencing and gene expression analyses. *Applications in Plant Science*, 1: 1300070.

Zhang, L.; Wang, L.; Yang, Y.; Cui, J.; Chang, F.; Wang, Y.; Ma, H. 2015. Analysis of Arabidopsis floral transcriptome: detection of newly florally expressed gene and expansion of Brassicaceae-specific gene families. *Frontiers in Plant Science*, 5: 802, DOI: 10.3389/fpls.2014.00802.

Zhang, X-M.; Zhao, L.; Larson-Rabin, Z.; Li, D-Z.; Guo, Z-H. 2012. *De Novo* Sequencing and Characterization of the Floral Transcriptome of *Dendrocalamus latiflorus* (Poaceae: Bambusoideae). PLoS ONE, 7(8): e42082. DOI: 10.1371/journal.pone.0042082.

Zhang, X.; Liu, T.; Duan, M.; Song, J.; Li, X. 2016. De novo transcriptome analysis of *Sinapis alba* in revealing the glucosinate and phytochelatin pathways. 2016. *Frontiers in Plant Science*, 7: 259, DOI: 10.3389/fpls.2016.00259.
Zhu, Y.; Weng, M.; Yang, Y.; Zhang, C.; Li, Z.; Shen, W-H.; Dong, A. 2011. Arabidopsis homologues of the histone chaperone ASF1 are crucial for chromatin replication and cell proliferation in plant development. *The Plant Journal*, 66: 443-455.

Zorrilla-Fontanesi, Y.; Rouard, M.; Cenci, A.; Kissel, E.; Do, H.; Dubois, E.; Nidelet, S.; Roux, N.; Swennen, R.; Carpentier, SC. 2016. Differential root transcriptomics in a polyploidy non-model crop: the importance of respiration during osmotic stress. *Nature Scientific Reports*, 6: 22583, doi:10.1038/srep22583
Figure 1

Evolution of floral morphology in the Zingiberales.

(a) Most recent Zingiberales phylogeny (modified from Sass et al. (2016)). Zingiberales families are divided into the banana group, a paraphyletic assembly of early branching lineages, and the ginger clade. The asterix (*) marks the evolution of increased petaloidy and reduced number of fertile stamens as shared characteristics of the ginger clade. (b) *Musa basjoo* flower and floral organs. Calix and corolla members are mostly fused into what is called the floral tube, with the exception of a single corolla member, the free petal. As a representative of the androecial constitution of the banana group, *Musa basjoo* has 5 filamentous fertile stamens. *Musa basjoo* gynoecium is also representative of most species in the banana group. (c) *Canna sp.* flower and floral organs. Species in the ginger clade usually exhibit inconspicuous and sepal-like calix and corolla, while infertile androecial members (staminodes) become laminar and petaloid. Species in the Zingiberaceae and Costaceae families bear a single fertile stamen, while species in the Cannaceae and Marantaceae families only develop ½ a fertile stamen. Furthermore, in *Canna sp.* the gynoecium is also laminarized to some extent. ft: floral tube; fp: free petal; se: sepals; pe: petals; st: stamen; th: theca; std: staminodes; gy: gynoecium (Photo: Ana Almeida)
(a)
- Musaceae
- Heliconiaceae
- Lowiaceae
- Strelitziaceae

(b) banana group

(c) ginger clade

* indicates a clade
Figure 2

Venn diagram of Blastn results of all floral transcriptomes filtered ORFs against *Elaeis guineensis* predicted CDS.

Values represent number of unigenes.
Figure 3

Distribution of main ‘functional’ categories of coding genes shared by all floral transcriptomes, and shared by all Zingiberales floral transcriptomes based on Blastn results to *Elaeis guineensis* transcriptome.
Table 1 (on next page)

Species used in this study, collection location and accession numbers.
Species	Location	Accession
Dichorisandra thyrsiflora	UC Davis Greenhouse	B81.521
Musa basjoo	UC Botanical Garden	89.0873
Orchidantha fimbriata	Oxford Track Greenhouse (UC Berkeley)	194.656
Canna sp.	Oxford Track Greenhouse (UC Berkeley)	KT795161
Calathea zebrina	UC Botanical Garden	90.1656
Zingiber officinale	Oxford Track Greenhouse (UC Berkeley)	KT795282
Costus spicatus	Oxford Track Greenhouse (UC Berkeley)	KT795282
Table 2 (on next page)

Number of cleaned reads and contigs, average contig length in base pairs, and assembly quality metrics (N50 and RSEM-EVAL scores).

RSEM-scores for each transcriptome were calculated using *Arabidopsis, Musa acuminata, Elaeis guineesis* and *Phoenix dactylifera* predicted CDS as references.
Whole flower transcriptomes	Number of cleaned reads	Number of contigs	Average contig length	N50	RSEM-EVAL to Arabidopsis CDS	RSEM-EVAL to Musa CDS	RSEM-EVAL to Elaeis CDS	RSEM-EVAL to Phoenix CDS
Musa bajsoo	6,103,473	59,607	1,177	1,635	-554.921.347	-554.925.496	-554.909.485	-554.930.293
Orchidantha fimbriata	4,365,085	67,283	1,032	1,408	-396.133.340	-396.137.949	-396.118.692	-396.143.069
Calathea zebrina	142,860,349	132,411	1,724	2,440	-994.730.221	-994.728.623	-994.727.315	-994.729.011
Canna sp.	9,357,365	74,190	1,113	1,503	-860.726.519	-860.732.496	-860.711.867	-860.736.385
Zingiber officinale	4,643,266	52,798	825	1,602	-357.355.187	-357.358.211	-357.346.889	-357.360.742
Costus spicatus	1,292,595	19,377	632	674	-95.168.818	-95.169.800	-95.166.156	-95.170.392
Dichorisandra thyrsiflora	6,252,788	64,723	891	1,166	-603.219.814	-603.224.077	-603.211.474	-603.225.657
Table 3 (on next page)

Number of predicted long open reading frames (ORFs) from TransDecoder.

Long ORFs were first predicted from the universe of de novo assembled contigs. Blastp and HMMER3 searchers were used to further filter long ORFs.
Whole flower transcriptomes	TransDecoder ORF predictions	Long ORFs	% contigs	Filtered ORFs	% contigs
Musa basjoo	48,051	81	29,182	49	
Orchidantha fimbriata	39,003	58	26,790	40	
Calathea zerbina	85,437	65	55,360	42	
Canna sp.	43,932	59	29,366	40	
Zingiber officinale	39,214	74	24,463	46	
Costus spicatus	17,112	88	13,122	68	
Dichorisandra thyrsiflora	37,449	58	27,772	43	
Orthogroup species overlap as predicted by OrthoFinder.

Largest number of orthogroup overlap per species is highlighted in bold. *Calathea zebrina* transcriptome shows the largest number of overlaps to all species, with the exception of *Arabidopsis thaliana*, potentially resulting from increased transcriptome coverage in that species.

Species	Number of Overlaps									
Calathea zebrina	Max									
Arabidopsis thaliana	Min									
SPECIES	A. thaliana	C. zebrina	Canna sp.	D. thyrsiflora	E. guineensis	M. basjoo	M. acuminata	O. fimbriata	P. dactylifera	Z. officinale
--------------	-------------	------------	-----------	----------------	---------------	------------	--------------	--------------	----------------	--------------
A. thaliana	11,511	10,403	10,298	10,049	10,814	10,089	10,543	9,161	9,627	9,448
C. zebrina	10,403	29,032	20,338	15,927	11,405	19,778	12,072	16,904	11,212	16,879
Canna sp.	10,298	20,338	25,460	14,822	11,225	18,149	11,726	15,503	10,830	15,524
D. thyrsiflora	10,049	15,927	14,822	20,139	10,875	14,985	11,073	13,757	10,494	13,985
E. guineensis	10,814	11,405	11,225	10,875	13,065	10,992	11,428	9,820	11,109	10,101
M. basjoo	10,089	19,778	18,149	14,985	10,992	26,331	12,034	15,989	10,591	15,923
M. acuminata	10,543	12,072	11,726	11,073	11,428	12,034	13,910	10,392	10,539	10,547
O. fimbriata	9,161	16,904	15,503	13,757	9,820	15,989	10,392	22,244	9,644	14,164
P. dactylifera	9,627	11,212	10,830	10,494	11,109	10,591	10,539	9,644	13,156	9,805
Z. officinale	9,448	16,879	15,524	13,985	10,101	10,547	14,164	9,805	21,568	
Table 5 (on next page)

Blastn results between floral transcriptomes and predicted coding sequences (CDS) from the genomes of Arabidopsis thaliana, Musa acuminata, Phoenix dactylifera, and Elaeis guineensis.
Transcriptomes	**Musa acuminata**	**Elaeis guineensis**				
transcriptomes	Blastn all contigs to CDS	% CDS represented in transcriptome	Blastn all contigs to CDS	% CDS represented in transcriptome		
Musa bajsoo	49,127	29,433	80.5	19,509	19,945	44.96
Orchidantha fimbriata	38,170	20,289	55.5	21,317	18,238	41.11
Calathea zebrina	75,885	20,671	56.5	42,638	17,229	38.84
Canna sp.	35,597	20,522	56.1	19,353	17,723	39.95
Zingiber officinale	16,901	14,322	87.25	11,886	26.79	
Costus spicatus	9,319	9,223	56.1	17,223	39.95	
Dichorisandra thyrsiflora	12,384	8,596	23.5	11,394	12,780	28.81

Transcriptomes	**Phoenix dactylifera**	**Arabidopsis thaliana**				
transcriptomes	Blastn all contigs to CDS	% CDS represented in transcriptome	Blastn all contigs to CDS	% CDS represented in transcriptome		
Musa bajsoo	15,586	9,015	31.21	2,136	1,571	4.44
Orchidantha fimbriata	17,473	8,185	28.33	2,268	1,410	3.98
Calathea zebrina	35,226	7,685	26.6	5,108	1,591	4.5
Canna sp.	14,940	7,072	26.6	2,055	1,624	4.59
Zingiber officinale	6,544	5,077	17.57	1,436	1,295	3.66
Costus spicatus	3,354	2,816	9.75	706	743	2.10
Dichorisandra thyrsiflora	8,856	5,403	18.7	1,827	1,507	4.26
Table 6 (on next page)

Distribution of transcription factor families amongst the floral transcriptomes studied.

A total of 508 transcription factors were ascribed to 36 of the 58 plant transcription factor families characterized in the PlantTFDB v4.0. Outgroup species is *Dichorisandra thyrsiflora*.
Transcription Factor Families (PlantTFDB v4.0)	Shared by all	Zingiberales	Banana clade	Ginger clade	Canna-Calathea	Zingiber	Outgroup (Dichorisandra thyrsiflora)
25	22	19	18	20	30	21	
Putative Transcription Factors (not in PlantTFDB v4.0)	0	0	1	0	2	3	2