Analysis of $K\pi$-scattering phase shift and existence of $\kappa(900)$-particle

Shin Ishida, Muneyuki Ishida*, Taku Ishida**, Kunio Takamatsu***, and Tsuneaki Tsuru**

Atomic Energy Research Institute, College of Science and Technology, Nihon University, Tokyo 101
*Department of Physics, University of Tokyo, Tokyo 113
**National Laboratory for High Energy Physics (KEK), Tsukuba 305
***Department of Engineering, Miyazaki University, Miyazaki 988-12

(Received February 1, 1997)

Recently we have shown an evidence for existence of σ-particle in the previous works; where the $\pi\pi$ S-wave phase shift is reanalyzed, by introducing a repulsive background suggested by the chiral symmetry, and by applying a new method of Interfering Breit-Wigner Amplitudes. In this work we also show, reanalyzing the $K\pi$ S-wave phase shift from a similar standpoint, an evidence for existence of $\kappa(900)$, possibly to be a member of σ-nonet.

§1. Introduction

In our previous works[1,2], we have analyzed the iso-singlet S-wave $\pi\pi$ scattering phase shift, and have shown the existence of a resonance with mass of 535-650 MeV and width of about 350 MeV. These values are consistent with those of σ particle, the long-sought chiral partner of Nambu-Goldstone π meson, predicted by the linear σ model[3]. Independent analyses of the phase shift by several authors[4,5,6] have also suggested its existence. On the other hand anticipation for σ existence has been given recently with new interests both[7-17] theoretically and phenomenologically. As a matter of fact a low-mass isoscalar resonance, $f_0(400\sim1200)$ or σ, has revived in the latest issue of Particle Data Group[18] after its missing over twenty years.

In the phase shift analysis[1,2] on one hand, we have developed a new method of S-matrix parametrization in conformity with unitarity, Interfering Breit-Wigner Amplitude method, in which we use only a few parameters with direct physical meaning (i.e. masses and widths of resonances), in contrast with the conventional K-matrix method. On the other hand we have introduced an negative background phase δ_{BG} of hard core type phenomenologically. This type of background phase shifts[19] was observed historically in the α-α scattering, and also in the nucleon-nucleon scattering. In the relevant case of $\pi\pi$ system its origin seems to have some correspondence to the “compensating” contact $\lambda\phi^4$ term required by the chiral symmetry in the linear σ model.

The σ-particle is a chiral partner of π-meson in the linear representation of chiral $SU(2)_L \times SU(2)_R$ group. Taking $SU(3)$ flavor symmetry into account, it is natural to expect existence of scalar σ-meson nonet as a chiral partner of pseudoscalar π-meson nonet. In the following we analyze the I=1/2 $K\pi$ scattering phase shift from
§2. Applied formulas

We analyze the I=1/2 S-wave phase shift of $K\pi$-scattering by Interfering Amplitude method in the case of three-channels ($K\pi, K\eta$ and $K\eta^*$, denoted to 1, 2 and 3, respectively) with two-resonances (κ and $K_0^*(1430)$) from the $K\pi$-threshold to $\sqrt{s} \sim 1.6$ GeV.

The relevant S-matrix element of $K\pi$-scattering, S_{11}, is related to its phase shift (amplitude), δ^{BG}_{01}, by

$$S_{11} = \eta_{11} e^{2i\delta^{BG}_{01}} = 1 + 2ia_0^{1/2},$$

where η_{11} is the elasticity. S_{11} is given by product of “individual” resonance-S-matrices $S_{11}^{(R)} (R = \kappa, K_0^*)$

$$S_{11} = e^{2i\delta^{BG}} \prod_{R=\kappa,K_0^*} S_{11}^{(R)};$$

The unitarity of “total” S-matrix (2) is now easily seen to be satisfied by the unitarity of individual S matrices. In Eq.(2) we have also introduced a negative background phase δ^{BG}, taken as a hard core type phenomenologically,

$$\delta^{BG} = -|p_1| r_{c0}^{1/2}; \quad |p_1| = \frac{\sqrt{(s - m_\pi^2 - m_K^2)^2 - 4m_\pi^2m_K^2}}{2\sqrt{s}},$$

$|p_1|$ being the CM momentum of the πK system.

Each of $S_{11}^{(R)}$ is given by a corresponding amplitude $a_{11}^{(R)}$ taken as a simple relativistic Breit-Wigner form

$$S_{11}^{(R)} = 1 + 2ia_{11}^{(R)}; \quad a_{11}^{(R)} = -\sqrt{\frac{3}{s-M_R^2+i\sqrt{s}\Gamma^0_R(s)}},$$

where $\Gamma^0_R(s)$ is a total width (partial width of channel 1) of the resonance R, given by

$$\Gamma^0_R(s) = \sum_{i=1}^{3} \Gamma_i^{R}(s); \quad \Gamma_i^{R}(s) = \frac{\rho_i}{\sqrt{s}} g_{Ri}^2 = g_{Ri}^2 |p_i|/8\pi s \quad (i = 1, 2, 3).$$

Here g_{Ri}’s are coupling constants to the channel i of resonance R, and the CM momentum $|p_i|$ for $i = 2, 3$ are defined in a similar way as in Eq.(3). Thus parameters to be used for the fit are totally nine, i.e. resonance masses M_R’s (R=\kappa, K_0^*), their coupling constants g_{Ri}’s (i=1,2,3), and repulsive core radius $r_{c0}^{1/2}$.

a Contributions from the other channels such as $K\pi\sigma$ and $K\pi\pi\pi$ are expected to be supressed by a phase space factor.

b The other elements of S_{ij} ($i \neq 1$ and/or $j \neq 1$) are now irrelevant since of present experimental situations in the corresponding processes.
§3. Mass and width of κ and core radius

A high statistics data of the reaction $K^-p \to K^-\pi^+n$ was obtained with 11 GeV/c beam using LASS spectrometer at SLAC. Spherical harmonic moments were used to perform an energy independent Partial Wave Analysis of the $K^-\pi^+$ system from threshold to 2.6 GeV, with t-dependent parametrization of the production amplitudes. The obtained $K^-\pi^+$-scattering amplitudes are the sum of I=1/2 and 3/2 components. The I=1/2 S-wave amplitude $a_0^{1/2}$ was determined by subtracting the I=3/2 ($K^-\pi^+/K^-\pi^-$) component, obtained independently by another experiment at SLAC. Here, the “overall” phase was fixed by imposing elasticity constraint to the amplitude in the $m_{K\pi}$ region below 1.29 GeV. We use this amplitude between $K\pi$ threshold and 1.6 GeV for the analysis.

Figure 1(a) and (b) show the result of the best fit to $\delta_0^{1/2}$ and $|a_0^{1/2}|$, respectively, by solid line. The obtained parameters are collected in Table I. The most remarkable feature is that we identify a low-mass resonance κ with mass of about 900 MeV in the slowly-increasing phases between the threshold and 1300 MeV. This is due to the role of “compensating” repulsive background δ_{BG}, whose existence is necessarily required from Chiral Symmetry (see ii) and iii) of the following supplementary discussions). As a matter of fact, the original LASS analysis of the data, where a positive δ_{BG} with an effective range-formulus was introduced, led to existence of only one state $K_0^*(1430)$ with high mass. Since of the compensation between contributions due to κ and the repulsive core, the mass value of κ (M_κ) and its coupling to the $K\pi$ channel ($g_{\kappa 1}$) are correlated to the core radius r_c. To clarify this situation, various fits are performed with a series of fixed r_c values between 0 to 5.5 GeV$^{-1}$. Fig. 1(c) shows the values of χ^2, M_κ, $g_{\kappa 1}$, $M_{K_0^*}$, and $g_{K_0^* 1}$ as functions of r_c. M_κ and $g_{\kappa 1}$ decrease as r_c becomes larger, while $M_{K_0^*}$ and $g_{K_0^* 1}$ do not show such correlations because these values are constrained mainly by the steep phase increase around 1.4 GeV. In the range of 2\sim5 GeV$^{-1}$, the χ^2 value shows a parabolic shape, and makes its minimum at r_c=3.57 GeV$^{-1}$ where we get the best fit given in Fig. 1(a) and (b) ($\chi^2 = 57.0$ for 42 degrees of freedom; 51 data points with 9 parameters). When r_c becomes smaller than 2 GeV$^{-1}$, the values of M_κ and $g_{\kappa 1}$ increase steeply, and the contribution of “κ-meson resonance” has no more meaning than the positive background. A fit with r_c setting to zero gives large M_κ and $g_{\kappa 1}$ values (6.4 GeV and 39 GeV, respectively), and becomes essentially similar to the LASS analysis. This fit has the χ^2 value of 96, which is larger by 40 than of our best fit.

From the χ^2 behavior in Fig. 1(c), we can obtain the upper and lower bounds of error of M_κ, $g_{\kappa 1}$ and r_c which are given in Table I as five standard deviations from the best fit ($+25$ χ-squares). Corresponding curves with upper and lower values of relevant parameters are also shown in Fig. 1(a) and (b), respectively, by dotted (r_c=3.1 GeV$^{-1}$) and dashed (r_c=3.975 GeV$^{-1}$) lines.

* In Ref. 20) almost all data points are given with no accurate errors. We will regard the original errors of $K^-\pi^+$ amplitude data[22] equivalent to our relevant errors of I=1/2 scattering amplitude, which might be smaller than those of [21]. This may be a reason why we get a χ-square value larger than that in the LASS analysis.
Fig. 1. Fits to $I=1/2$ $K\pi$ S-wave scattering amplitude; (a) phase shift $\delta_{0}^{1/2}$, and (b) magnitude of amplitude $|a_{1/2}^{0}|$. The solid lines are the best fit with $r_c=3.57\text{GeV}^{-1}$, while the dotted and dashed lines are fits with $r_c=3.1$ and 3.975GeV^{-1}, respectively. (c) χ^2, M_κ, g_κ, M_{K^*}, and g_{K^*} behaviors as functions of core radius r_c. Vertical lines represent $r_c=3.57$, 3.1, and 3.975 GeV$^{-1}$, corresponding to the best fit and the fit with ± 5 sigma deviations.

Table I. Resonance parameters of $\kappa(900)$, $K^*_0(1430)$ and core radius. The errors correspond to five standard deviations from the best fit. Two kinds of width, $\Gamma^{(p)}$ and $\Gamma^{(d)}$ defined as $\Gamma^{(b)}=\Gamma_b(s=M^2)(\text{Eq.(5)})$, $\Gamma^{(d)}=N^{-1}\int ds\Gamma(s)/[(s-M^2)^2+s\Gamma(s)^2]$; $N=\int 1/[(s-M^2)^2+s\Gamma(s)^2]$, considering broadness of relevant widths.

	M_κ	$g_{K\pi}$	$\Gamma^{(p)}_{K\pi}$	$\Gamma^{(d)}_{K\pi}$
$\kappa(900)$	905^{+65}_{-30} MeV	6150^{+1200}_{-650} MeV	545^{+110}_{-110} MeV	470^{+70}_{-90} MeV
$K^*_0(1430)$	1410^{+10}_{-15} MeV	4250^{+10}_{-70} MeV	220^{+5}_{-5} MeV	220^{+5}_{-5} MeV

$r_c^{1/2}$

$3.57^{+0.45}_{-0.39}\text{GeV}^{-1}$ (0.706$^{+0.03}_{-0.02}$ fm)
Analysis of Kπ-Scattering Phase Shift

Fig. 2. I=3/2 Kπ scattering phase shift. Fitting by hard core formula is also shown.

Table II. Phenomenological core radii r_c in ππ and Kπ systems

System	r_c
$\pi\pi$	0.60±0.07fm
$K\pi$	0.70±0.09fm
$\pi\pi$	0.17fm
$K\pi$	0.16fm

The respective coupling constants to the 2nd channel $K\eta$ are obtained to be much smaller than those to the $K\pi$ channel, i.e., $g_{K2}\lesssim 1.0$ GeV and $g_{K*2}\lesssim 0.9$ GeV, which are consistent to the elasticity constraint mentioned above. The g_{K3} and g_{K*3} couplings to $K\eta'$ channel, are obtained with much larger uncertainties, and their values are omitted here.

§4. Repulsive background in $K\pi$- and $\pi\pi$-systems

In the present analysis, leading to the existence of κ-meson, introduction of a negative background phase δ_{BG} of hard core type plays an essential role. This is a similar situation as for σ-existence in $\pi\pi$-scattering. In the I=2 $\pi\pi$ system, there are no known and/or expected resonances, and this repulsive type phase shift itself is, if it exists, expected to be observed directly. Actually a good fit to the experimental data was obtained3 by a similar formula of hard core type as Eq.(3) with the core radius $r_{c0}^2 = 0.17$ fm. The same situation is expected in the I=3/2 Kπ scattering, and we have made a similar analysis on the relevant Kπ-scattering phase shift.21 The result is given in Fig. 2. The best fit is obtained with the core radius $r_{c0}^{3/2} = 0.16$ fm, although the fit is somewhat worse than in the case of I=2 ππ system.

The values of phenomenological core radii in the $\pi\pi$ and $K\pi$ systems are collected in Table II. It is quite interesting that they are almost same within the non-exotic channels (that is, $r^0=r^{1/2}$) and within the exotic channels ($r^2=r^{3/2}$), respectively. It seems to be reasonable from the viewpoint of $SU(3)$ flavor symmetry.
§5. Supplementary discussions

Here we give some additional comments on the results of our analysis:

i) It may be interesting and important to compare the properties of κ-meson obtained above with predictions of the various theoretical models. The SU(3) Linear σ Model with the $U_A(1)$ breaking term ($\Sigma\sigma M_1$), the SU(3) Linear σ Model without it ($\Sigma\sigma M_2$), and the extended Nambu Jona-Lasinio type model (ENJLM) (including also the $U_A(1)$ breaking term) give the κ-masses, respectively, as $m_\kappa = 1.2 \pm 0.4$ and $0.4\sim0.9 \pm 0.2$ in GeV, which have a large uncertainty. The values of κ decay width are given to be $1.2(0.1)$ GeV in $\Sigma\sigma M_1$ ($\Sigma\sigma M_2$). The properties of κ meson in Table I seem not inconsistent with those predicted by the SU(3)-theoretical models with the $U_A(1)$ breaking term ($\Sigma\sigma M_1$ and ENJLM). Accordingly our κ meson can be regarded as the member of σ-nonet, although further investigations are necessary.

ii) Concerning a possible origin of the repulsive background phase δ_{BG} introduced phenomenologically in this analysis, we should like to note its similarity to the $\lambda\phi^4$ term in $\Sigma\sigma M$. The $\lambda\phi^4$ term represents a strong repulsive and contact (zero-range) interaction between pions and seems to have a plausible property as an origin of δ_{BG}, at least, in the low energy region, where the structures of composite pions may be neglected.

In $K\pi(\pi\pi)$-scattering in $\Sigma\sigma M$ a contribution due to intermediate $\kappa(\sigma)$-production in all s,t,u-channels almost cancels23,24 in the low energy region with a repulsive force from the $\lambda\phi^4$ interaction. This leads effectively to the derivative (thus small) coupling25 of Nambu-Goldstone boson. This cancellation mechanism is guaranteed by chiral symmetry and PCAC. It is notable that in the usual Breit-Wigner formula of S-wave resonance, a non-derivative coupling of κ and σ resonance is supposed, without taking the “compensating” repulsive interaction into account. This seems to be a reason why σ and κ resonances have been overlooked in the many phase shift analyses thus far made.

The result given in Table II, that the repulsive core radii in non-exotic channels are much larger than those in exotic channels, may be given29 some reason in $\Sigma\sigma M$ as follows: In exotic channels a large amount of strong repulsive force due to $\lambda\phi^4$ interaction is canceled by the attractive force due to crossed-channel exchange of relevant scalar-mesons, while in non-exotic channels there remains some amount of the repulsive force (going to compensate the attractive force due to s-channel intermediate production of the scalar mesons in the threshold).

iii) In analysis of the $\pi \pi (K\pi)$-scattering, the importance of $\rho \ (K^*)$ meson effects is often pointed out.30 In the S-wave scattering these vector mesons contribute only through the crossed channel exchange diagrams, which are necessarily accompanied by the “compensating” derivative ϕ^4 interaction,23 similarly in the case of the $\lambda\phi^4$ interaction to the κ (or σ) exchange. They exactly cancel with each other at the

* This value is quoted in their analysis of case A, where $m_\sigma = 0.604\text{GeV}$, close to our value3,23.

threshold and give only small effects in the low energy region, which may be regarded as included in the background phase.

iv) Finally we give a comment on the behavior of the background phase. In I=2 (I=3/2) channel of S-wave ππ(Kπ)-scattering the fit of phase shifts by hard core formula is satisfactory below \(\sqrt{s} \sim 1.4 \) GeV, as was shown in Fig. 1 in Ref. [2] (Fig. 2). However, the experimental phase shifts in the higher energy region seem to be decreasing [32]. This is a very interesting phenomenon, which reminds us of the soft core in nucleon-nucleon scattering. In this work we applied the hard core type background, implicitly supposing “local” π and K mesons. The above mentioned “soft core” type behavior of phase shifts in the comparatively high energy region seems to suggest the composite structure of π and K as \(q\bar{q} \)-bound states.

§6. Concluding remarks

We have shown a strong evidence for existence of \(\sigma \)-meson in the previous work [1, 2] and of \(\kappa \)-meson in the present work. The existence of these particles has a significant importance in hadron spectroscopy. Since of their light masses (and, for \(\sigma \), of its vacuum quantum number), they will appear in various processes such as \(K \to 2\pi \) decay [10], \(K_{14} \) decay [13], etc.

We have argued that \(\kappa \) meson observed in the present analysis is a member of \(\sigma \)-meson nonet, chiral partner of \(\pi \)-meson nonet. As was discussed in Ref. [1], these particles (we call them “Chiralons”) should be regarded as being different from the ordinary P-wave excited states of \(q\bar{q} \) system since of their light masses. This discrimination may have also some theoretical reasons: In the extended Nambu Jona-Lasinio model as a low energy effective theory of QCD (, in which the existence of \(\sigma \)-meson is predicted), only local composite quark and anti-quark operators are treated, thus missing \(L \)-excited states in principle. The present status of “Chiralons,” [1] is summarized in Table III.

Classification of low mass scalar mesons is still in confusion. One of its main reasons seems to come from mis-identification of the chiral \(\sigma \)-nonet with the \(qq \) \(3P_0 \) nonet. The properties of this extra-nonet should be further investigated also through the many other production processes, such as \(pp \)-central collision [14], \(\Upsilon \) and \(\Psi \) decays. In this connection especially the properties of observed resonances, \(f_0(980) \) and \(a_0(980) \), are to be clarified in relation [14, 20] to the other members of chiralons, \(\sigma' \) with I=0 and \(\delta \) with I=1.
Acknowledgements

The authors should like to express their deep gratitude to S. Suzuki (Nagoya university) who has kindly informed us of Ref. [22].

References

[1] S. Ishida, M.Y. Ishida, H. Takahashi, T. Ishida, K. Takamatsu and T. Tsuru, Prog. Theor. Phys. 95 (1996), 745.
[2] S. Ishida, T. Ishida, M.Y. Ishida, K. Takamatsu, T. Tsuru and H. Takahashi, Nihon Univ. preprint NUP-A-96-11, KEK preprint 96-131 [hep-ph/9610353].
[3] M.Y. Ishida, Prog. Theor. Phys. 96 (1996), 853.
[4] R. Kamiński, L. Lesniak and J.-P. Maillet, Phys. Rev. D50 (1994), 3145, private communication.
[5] N.A. Törnqvist and M. Roos, Phys. Rev. Lett. 76 (1996), 1575; N.A. Törnqvist, Z. Phys. C68 (1995), 647.
[6] M. Harada, F. Sannino and J. Schechter, Phys. Rev. D54 (1996), 1991.
[7] R. Delbourgo and M.D. Scadron, Phys. Rev. D50 (1994), 3145, private communication.
[8] T. Hatsuda and T. Kunihiro, Prog. Theor. Phys. 76 (1996), 765; Phys. Rep. 247 (1994), 221.
[9] T. Kunihiro, Prog. Theor. Phys. Suppl. 120 (1995), 75.
[10] E.P. Shabalin, Yad.Fiz.48 (1988), 272 (Sov.J.Nucl.Phys.48 (1988), 172). T. Morozumi, C.S. Lim and A.I. Sanda, Phys. Rev. Lett. 65 (1990), 404. M. Takizawa, T. Inoue and M. Oka, Prog.Theor.Phys.Suppl. 120 (1995), 335.
[11] G. Mennessier, Z. Phys. C16 (1983), 241; S. Minami, Prog. Theor. Phys. 81 (1989), 1064.
[12] E. Beveren, T.A. Rijken, K. Metzger, C. Dullemond, G. Ru pp and J.E. Ribeiro, Z. Phys. C30 (1986), 615.
[13] E.P. Shabalin, Yad.Fiz. 49 (1989), 588 (Sov.J.Nucl.Phys. 49 (1989), 365).
[14] H. Yoshino et al., Prog. Theor. Phys. 95 (1996), 353.
[15] M. Svec, Phys. Rev. D53 (1996), 2343.
[16] H. Shimizu, contributed paper on Particle and Nuclei XIII International Conference - PANIC XIII, Perugia, Italy, June 1993.
[17] T. Ishida et al., in: Proc. sixth International Conference on HADRON Spectroscopy (Manchester, July’95), ed. M.C.Birse, G.D.Lafferty and J.A.McGovern (World Scientific) p.451 (KEK-Preprint 95-159 (1995)). T. Ishida, Doctor Thesis of Tokyo University(1996).
[18] Review of Particle Properties, Phys. Rev. D54 Part I (1996) p.329 and also p.355.
[19] M. Taketani et al., Prog. Theor. Phys. Suppl. No.39(1967); No.42(1968). In particular see Chapter 7 (S. Otsuki, No.42, p.39) and also Chapter 6 (N. Hoshizaki, No.42, p.1).
[20] D. Aston et al., Nucl. Phys. B296 (1988), 493.
[21] P. Estabrooks et al., Nucl. Phys. B133 (1978), 490.
[22] N. Awaji, Doctor thesis of Nagoya university (1986).
[23] G. Gasiorowicz and D.A. Geffen, Rev.Mod.Phys.3 (1969), 531.
[24] E.P. Shabalin, Yad.Fiz. 41 (1985), 264 (Sov.J.Nucl.Phys. 42 (1985), 164).
[25] T. Morozumi, A.I. Sanda and A. Soni, Phys. Rev. D46 (1992), 2240.
[26] M.D. Scadron, Phys. Rev. D26 (1982), 239.
[27] M. Takizawa, K. Tsushima, Y. Kohyama and K. Kubodera, Nucl. Phys. A507 (1990), 611.
[28] S. Klimt, M. Lutz, U. Vogl and W. Weise, Nucl. Phys. A516 (1990), 429.
[29] M.Y. Ishida, Proc. of YITP conference, 1996, kyoto, Yukawa Hall, to be published in Soryuusiron-kenkyuu; Proc. of the Workshop on Particle Physics at K arena with 50-GeV PS, KEK, Tsukuba, Japan Dec 19-20,1996, edited by N.Sasao, S.Sugimoto, Y.Kuno and T.Komatsubara, Inst. for Nuclear Study, Univ. of Tokyo.
[30] B.S. Zou and D.V. Bugg, Phys. Rev. D50 (1994), 591. N. Isgur and J. Speth, Phys. Rev. Lett. 77 (1996), 2332 and the references therein.
[31] S. Weinberg, Phys.Rev. 166 (1968), 1568. T. Shiozaki, Prog. Theor. Phys. Suppl. Extra Number (1968) 44. M. Bando, T. Kugo and K. Yamawaki, Phys.Rep. 164 (1988), 217.
[32] N.B. Durusoy et al., Phys. Lett. 45B (1973), 517.