

\[f(R) \] Gravity: From the Pioneer Anomaly to the Cosmic Acceleration

Reza Saffari\(^1\), Sohrab Rahvar\(^2\)

\(^1\) Institute for Advanced Studies in Basic Sciences, P.O. Box 45195–1159, Zanjan, Iran
\(^2\) Department of Physics, Sharif University of Technology, P.O.Box 11365-9161, Tehran, Iran

We use metric formalism in \(f(R) \) modified gravity to study the dynamics of various systems from the solar system to the cosmological scale. We assume an ansatz for the derivative of action as a function of distance and describe the Pioneer anomaly and the flat rotation curve of the spiral galaxies. Having the asymptotic behavior of action, we propose the action of \(f(R) = (R + \Lambda)(1 + \ln(R/R_c)/(R/R_0 + 2/\alpha)) \) where in galactic and solar system scales it can recover our desired form. The vacuum solution of this action also results in a positive late time acceleration for the universe. We fix the parameters of this model, comparing with the Pioneer anomaly, rotation curve of spiral galaxies and Supernova Type Ia gold sample data.

I. INTRODUCTION

Recent observations of the Supernova Type Ia (SN Ia) and Cosmic Microwave Background (CMB) radiation indicate that universe is under positive accelerating expansion \([1]\). This accelerating expansion is one of the important puzzles of the contemporary physics. A nonzero vacuum energy can derive universe to accelerate however one can ask why it is non-zero and why it is so small \([2]\).

Adding a simple cosmological constant term to the Einstein equations can also accelerate universe. However, the problem with the cosmological constant is that why the energy density of matter and cosmological constant are in the same order at the present time?

A varying dark energy model can partially solve this problem in which the density of dark energy traces the density of matter from the early universe to the present time. Modified gravity can also provide an effective late time varying equation of state. In these models the Einstein-Hilbert action is replaced with a generic form of \(f(R) \) gravity \([3]\). In addition to the late time cosmic expansion, early inflationary era also can be achieved by an extra term to the action, as adding a cubic term to \(1/R \) gravity model \([4]\). Modifying action not only affects the dynamics of universe, it can also alter the dynamics at the galactic or solar system scales.

There are two main approaches of metric and Palatini formalism to extract the field equations from the action. Considering the non Levi-Civita connection associating to the manifold, we can take the connection and the metric as the independence geometrical quantities. Varying the action with respect to these two parameters (so-called Palatini formalism) results in the field equations \([5,6]\). On the other hand in the metric formalism the connection is the Levi-Civita connection and we do variation of action with respect to the metric to derive modified gravity field equations. The advantage of the Palatini formalism is that the field equations are second order differential equations similar to the other parts of the physics.

One of the interesting issues in \(f(R) \) gravity is studying the spherically symmetry solutions. In the case of Palatini formalism the solution is Schwarzschild–de’sitter metric with an effective cosmological constant. However in the metric formalism the solution of non Einstein-Hilbert action suffers from a low-mass equivalent scalar field that is incompatible with Solar System tests of general relativity, as long as the scalar field propagates over Solar System scales \([7,8]\). One of the solutions to evade the solar system tests is using action in such a way that reduces to the Einstein-Hilbert action in the low curvature regime at the solar system and at the cosmological regime acts as an effective cosmological constant \([9,10]\).

The other problem in this issue is the consistency of the spherically symmetric solutions in \(f(R) \) gravity \([11]\) that will be addressed in this paper.

In this work, we try to extract an appropriate action for the modified gravity through the inverse solution. This method has been applied in the previous works both in the galactic \([12]\) and cosmological scales \([13]\). Here we extend the previous works to the solar system scale, studying anomalous in the Pioneer acceleration and obtain the appropriate action in the solar system scale.

On the other hand following the method proposed by Capozziello et al. \([14]\) we extract an appropriate action to provide a flat rotation curve in the spiral galaxies. Both the solar system and the galactic scale solutions are consistent with the modified gravity field equations in the first order of approximation. Finally we propose a generic function for the action to cover all the mentioned scales and in addition provides a late time acceleration for the universe. At the end we use the observational data of the Pioneer anomalous in solar system, rotation curve of the galaxies and Supernova Type Ia in the cosmological scales to put constrain the parameters of the model.

The organization of the paper is as follows: In Sec.
II. SPHERICALLY SYMMETRIC SPACE

Let us take an action for the gravity depends only on the Ricci scalar as \(f(R) \) where in the simple case of \(f(R) = R \), it is so-called the Einstein-Hilbert action. For a generic \(f(R) \), there are two main approaches to extract the field equations. The first one is so-called "metric formalism" in which the variation of action is performed with respect to the metric. In the second approach, "Palatini formalism", the connection and metric are considered independent of each other and we do variation for those two parameters independently. In this work we will follow the metric formalism.

A generic form of the action depending on the Ricci scalar can be written as follows:

\[
S = \frac{1}{2\kappa} \int d^4x \sqrt{-g} f(R) + S_m.
\]

Varying the action with respect to the metric results in the field equations as:

\[
F(R)R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} - (\nabla_\mu \nabla_\nu - g_{\mu\nu} \Box) F(R) = \kappa T_{\mu\nu},
\]

where \(F = df/dR \) and \(\Box \equiv \nabla_\alpha \nabla^\alpha \). From equation (2), we take the trace and obtain the action in terms of \(F \) and Ricci scalar as:

\[
f(R) = \frac{1}{2} (3 \Box F + FR - \kappa T).
\]

By taking derivative from Eq.(3) with respect to \(r \) (radial coordinate of the metric) we rewrite this equation in terms of \(F \) and \(R \) as follows:

\[
RF' - FR' + 3(\Box F)' = \kappa T',
\]

where \(' \equiv d/dr \) and \(f'(R) = F(R)R' \).

Replacing \(f(R) \) in favor of \(F(R) \), we obtain the field equation in terms of \(F(R) \):

\[
R_{\mu\nu} - \frac{1}{4} g_{\mu\nu} R = \frac{\kappa}{F}(T_{\mu\nu} - \frac{1}{4} g_{\mu\nu} T) + \frac{1}{F}(\nabla_\mu \nabla_\nu F - \frac{1}{4} g_{\mu\nu} \Box F).
\]

Following the method introduced in [15], we solve the time-independent spherical symmetric field equation in the vacuum. Let us take a generic spherically symmetric metric as:

\[
d\mathbf{s}^2 = -B(r) dt^2 + A(r) dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2.
\]

Since the metric depends only on \(r \), one can view Eq. (5) as a set of differential equations for \(F(r) \), \(B(r) \) and \(A(r) \). For the spherically symmetric space both sides of Eq. (5) are diagonal and we have two independent equation. We rewrite Eq. (5) as:

\[
K_{[\mu]} = \frac{FR_{\mu\nu} - \nabla_\mu \nabla_\nu F - \kappa T_{\mu\nu}}{g_{\mu\nu}},
\]

where \(K_{[\mu]} \) is an index independent parameter and \(K_{[\mu]} - K_{[\nu]} = 0 \) for all \(\mu \) and \(\nu \). For the vacuum space \(T_{\mu\nu} = 0 \), \(K_{[\mu]} - K_{[\nu]} = 0 \) results in:

\[
2F \frac{X'}{X} + rF' \frac{X'}{X} - 2rF'' = 0,
\]

where \(X(r) = B(r)A(r) \). For \(K_{[\mu]} - K_{[\nu]} = 0 \):

\[
B'' + \left(\frac{F'}{F} - \frac{1}{2} \frac{X'}{X} \right) B' - \frac{2}{r} \frac{F'}{F} \left(\frac{1}{2} \frac{X'}{X} \right) B - \frac{2}{r^2} B + \frac{2}{r^2} X = 0.
\]

In the case of Einstein-Hilbert action (\(F = 1 \)) equation (8) reduces to \(X = 1 \) and equation (9) reduces to the Schwarzschild solution. We note that for this case equation (4) also reduces to \(0 = 0 \) identity. In generic case having a \(F \) as a function of distance or as a function of Ricci scalar, we can obtain the metric elements from equations (8) and (9).

Here we take an ansatz of \(F(r) = (1 + r/d)^{-\alpha} \) for the derivative of action as a function of distance from the center, where \(\alpha \) is a small dimensionless constant (\(\alpha \ll 1 \)) and \(d \) is a characteristic length scale in the order of galactic size. Similar to the case of \(F = 1 \) we use equations (8) and (9) to derive \(X \) and \(A \). We start with the Eq. (8), the solution results in:

\[
X(r) = X_0 \left(1 + \frac{r}{d} \right)^{-2(1+\alpha)} \left(1 + \frac{2 - \alpha}{2} \frac{r}{d} \right)^{\frac{4(1+\alpha)}{2-\alpha}},
\]

where \(X_0 \) is constant of integration and for \(\alpha = 0 \) we recover Schwarzschild metric, implies \(X_0 = 1 \).

In what follows we obtain metric element \(B(r) \) by solving the differential equation of (9) for the solar system scales \(r \ll d \) and galactic scales \(r > d \). Once we derive the metric, the Ricci scalar and the corresponding action can be obtained. Finally we will use equation (4) to check the consistency of the solution.
A. Solar system scale \((r \ll d)\)

In 1998 Anderson et al. [16] reported an unmod-eled constant acceleration towards the Sun of about \(a_P = 8.5 \times 10^{-10} \text{m/s}^2\) for the spacecrafts Pioneer 10 (launched 2 March 1972), Pioneer 11 (launched 4 December 1973), Galileo (launched 18 October 1989) and Ulysses (launched 6 October 1990). In a subsequent re-port [17] they discussed in detail many suggested explanations for the effect and gave the value \(a_P = (8.74 \pm 1.33) \times 10^{-10} \text{m/s}^2\) directed towards the Sun. The data covered many years staring in 1980 when due to the large distance (20 AU) of Pioneer 10 from the Sun the solar radiation pressure became sufficiently small. The data was collected up to 1990 for Pioneer 11 (30 AU) and up to 1998 (70 AU) for Pioneer 10. In this section our aim is to explain this extra acceleration by the modified gravity model.

We assume the range of \(r \ll d\) in our concern and neglect all the higher terms of \(r/d\) and \(\alpha r/d\). \(F(r)\) in this regime reduces to:

\[
F(r) = 1 - \frac{\alpha}{d} r. \tag{11}
\]

This expression is similar to adding the first order of the perturbation of the action around the Einstein-Hilbert action. From equation (10), expanding \(X\) up to the first order results in \(X = X_0 = 1\).

Using (11) in the differential equation (9) we obtain \(B(r)\) as follows:

\[
B(r) = \left[1 + \frac{\alpha}{d} r + \left(\frac{3}{2} + \ln \left(\frac{\alpha}{d} - \frac{1}{r} \right) \right) \frac{\alpha^2}{d^2} r^2 \right] + c_1 r^2
+ c_2 \left[\frac{1}{3} r + \frac{\alpha}{2d} r + \frac{\alpha^2}{d^3} r^2 \ln \left(\frac{\alpha}{d} - \frac{1}{r} \right) \right], \tag{12}
\]

where \(c_1\) and \(c_2\) are the constants of the integration. For the case of \(\alpha = 0\) (Einstein-Hilbert action) we use the Schwarzschild metric as the zero order which implies \(c_1 = 0\) and \(c_2 = -6m\). Using equation (12) we can obtain the Ricci scalar of this metric. We keep up to the first order of perturbation in metric as:

\[
B(r) = 1 - \frac{2m}{r} + \frac{\alpha}{d} r, \tag{13}
\]

The Ricci scalar in the spherically symmetric space for a generic case of \(X\) is:

\[
R = -\frac{1}{X} \left[B'' + \frac{4}{r} B' + \frac{2}{r^2} B - \frac{X'}{X} \left(\frac{1}{2} B' + \frac{2}{r} B \right) \right] + \frac{2}{r^2}. \tag{14}
\]

where substituting the metric elements, the corresponding Ricci scalar up to the first order obtain as:

\[
R(r) = \frac{-6\alpha}{rd}, \tag{15}
\]

Now to check the consistency condition, we apply the metric element as well as the Ricci scalar in equation (4). Here \(\Box F\) up to the first order reduce to:

\[
\Box F = \frac{B'}{X} (F'' + \frac{2}{r} F' - \frac{1}{2} \frac{X'}{X} F' + \frac{B'}{B} F'). \tag{16}
\]

\[
= -\frac{2\alpha}{rd}. \tag{17}
\]

Doing Simple algebra shows the consistency of the equation for the trace equation up to the first order of perturbation.

Now we replace \(r\) in favor of \(R(r)\) in equation (11) and obtain \(F(R)\) in terms of Ricci scalar as:

\[
F(R) = 1 + \frac{6\alpha^2}{Rd^2}. \tag{18}
\]

Finally integrating (18) yields action as follows:

\[
f(R) = R + R_0 \ln \frac{R}{R_c}, \tag{19}
\]

where \(R_0 = \frac{6\alpha^2}{d^2}\) and \(R_c\) is the constant of integration.

The equation of motion for a test particle from the metric can be obtained. Using the weak field regime, we define an effective potential as:

\[
\phi_N = -\frac{m}{r} + \frac{\alpha}{2d} r, \tag{20}
\]

where the acceleration of the particles from this potential is

\[
a = -\frac{m}{r^2} - \frac{\alpha}{2d}. \tag{21}
\]

The first term at the right hand side of this equation is the standard Newtonian gravity, however the second term is a constant acceleration, independent of the mass. We may correspond this extra term to the Pioneer anomalous and constrain it with the observed value of \(a_P = (8.74 \pm 1.33) \times 10^{-10} \text{m/s}^2\) which results in \(\alpha/d \simeq 10^{-26} \text{m}^{-1}\).

B. Galactic scale \((r > d)\)

Recently some of the authors have been tried to explain the dynamics of galaxies by the modified gravity instead of assuming a dark matter halo for the galaxy [14]. We follow the same method to extract the action with the ansatz of \(F(r) = (1 + r/d)^{-\alpha}\) proposed in this work. We assume \(r\) to be larger than the characteristic length scale of the model \(d\) and write \(F(r) = (1 + r/d)^{-\alpha}\) for \(\alpha \ll 1\) as follows:

\[
F(r) \simeq (r/d)^{-\alpha} \simeq 1 - \alpha \ln(r/d). \tag{22}
\]

This action can be considered as perturbation around the Einstein-Hilbert action. From Eq.(10),
\[X(r) = \left(\frac{r}{d}\right)^\alpha. \] \tag{23}

We follow the same procedure as we did in the case of solar system to extract the metric. Using equations (22) and (23) in (9) we obtain \(B(r) \) as:

\[
B(r) = \left(\frac{r}{d}\right)^\alpha \left[\frac{1}{1 - \alpha} + c_1 r^{-1-\alpha/2} + c_2 r^{2(1-\alpha/2)} \right],
\]

\[
= \frac{1}{1 - \alpha} \left(\frac{r}{d}\right)^\alpha \left[1 + c_1' r^{-(1-\alpha/2)} + c_2' r^{2(1-\alpha/2)} \right], \tag{24}
\]

where \(c_i \)'s are the constants of integration and \(c_i' = c_i(1-\alpha) \) for \(i = 1, 2 \). For \(\alpha = 0 \) equations (22) and (23) reduce to \(F = 1 \) and \(X = 1 \) and we expect to recover Schwarzschild-de Sitter metric which yields \(c_1' = -2m \) and \(c_2' = \frac{1}{12} \Lambda \), where \(\Lambda \) is the cosmological constant. For generic case when \(\alpha \neq 0 \), from the dimensional analysis, the constants of the integration obtain as \(c_1' = -(2m)^{-1+\alpha/2} \) and \(c_2' = (\Lambda/12)^{-1-\alpha/2} \). We rewrite the metric elements after fixing \(c_i' \)’s:

\[
B(r) = \frac{1}{1 - \alpha} \left[1 - \left(\frac{2m}{r}\right)^{1-\alpha/2} + \frac{\Lambda r^2}{12(1-\alpha/2)} \right] \left(\frac{r}{d}\right)^\alpha,
\]

\[
A(r) = (1 - \alpha) \left[1 - \left(\frac{2m}{r}\right)^{1-\alpha/2} + \frac{\Lambda r^2}{12(1-\alpha/2)} \right]^{-1}. \tag{25}
\]

From the metric elements we get the following Ricci scalar

\[
R(r) = -\frac{1}{(1 - \alpha)r^2} \left[3\alpha + (12 - 3\alpha)\left(\frac{\Lambda r^2}{12}\right)^{1-\alpha/2}
+ \frac{\alpha^2}{2} \left(1 - 3\left(\frac{2m}{r}\right)^{1-\alpha/2} \right) \right]. \tag{26}
\]

We keep Ricci scalar up to the first order term in \(\alpha \) and \(\Lambda \), then (26) reduces to

\[
R(r) = -\frac{3\alpha}{r^2} - \Lambda. \tag{27}
\]

Again to check the consistency of the solution in this space, we substitute (22) and (27) in equation (4). The solution of this space satisfies the trace equation up to the first order of perturbation in terms of \(\alpha \). We note that in general, for non-perturbed case the solutions might be inconsistent. Here the solution is valid only up to the first order of perturbation.

Eliminating \(r \) in favor of \(R \) from equation (27) and using (22), the derivative of action obtain as:

\[
F(R) = \left(\frac{d^2}{3\alpha}\right)^{1+\alpha/2} R + \Lambda \right)^\alpha/2, \tag{28}
\]

then

\[
f(R) = \frac{1}{1 + \alpha/2} \left(\frac{d^2}{3\alpha}\right)^{1+\alpha/2} R + \Lambda \right)^{1+\alpha/2}. \tag{29}
\]

For simplicity let us write action as:

\[
f(R) = f_0 |R + \Lambda|^{1+\alpha/2}. \tag{30}
\]

The dynamics of a test particle around this metric follows the geodesic equation in weak field regime,

\[
\ddot{r} + \Gamma^r_{tt} = 0, \tag{31}
\]

where substituting the corresponding metric elements we get the following velocity for a particle rotating around the center of galaxy:

\[
v = \frac{c}{\sqrt{2}} \left(\frac{d}{r}\right)^{1+\alpha/2} \left[(\frac{2m}{r})^{1-\alpha/2} + \Lambda \right]^{1/2}, \tag{32}
\]

where we ignored \(\Lambda r^2 \) term as it is five order of magnitude smaller than \(2m/r \). For \(\alpha = 0 \) we recover the standard Newtonian law for the rotation velocity of a test particle, in which \(m = GM/c^2 \) and \(M \) is the mass of galaxy. The extra term in Eq. (32) may provide contribution to the flat rotation curve. Figure (1) compares the rotation curve of a test particle around the center of galaxy with an arbitrary units in the modified and standard Newtonian gravity. Here we model the mass of galaxy spherically distributed up to 3.3 kpc and obtain the rotation curve up to 66 kpc. For a typical spiral galaxy with the mass of \(M = 10^{11} M_\odot \) and at the large distances (e.g. \(r > d \)) from the center, \(v \sim 200 \text{ km s}^{-1} \) which roughly constrain \(\alpha \approx 10^{-6} \). In the previous section we had an estimation for \(\alpha/d \approx 10^{-26} \text{ m}^{-1} \) which provides the characteristic length scale of the model, \(d \approx 10 \text{ kpc} \). We note that while equation (32) provides a flat rotation curve for the galaxy but it doesn’t support the Tully-Fisher relation.

![FIG. 1. Comparing the rotation curve of galaxy in Newtonian gravity, \(v \propto 1/r \) (dashed-line) with the rotation curve from the modified gravity in the weak filed regime (solid-line), see equation (32). The parameters of galaxy is taken as \(M = 10^{11} M_\odot \) (mass of galaxy), \(\alpha \approx 10^{-6} \) and \(d \approx 10 \text{ kpc} \).](image-url)
III. PROPOSING A GENERIC ACTION

In the previous section we obtained the asymptotic behavior of an action in the galactic and solar system scales. Those two actions could describe the observations in the corresponding length scales without need to a dark matter. The action for the small scale vary with a logarithmic function and for the galactic scales with a power-law function. This asymptotic behavior of the actions guides us to guess a generic action which can cover also those two scales. Here we propose the action of

\[f(R) = R + \Lambda + \frac{R + \Lambda}{R/R_0 + 2/\alpha} \ln \frac{R + \Lambda}{R_c}. \]

(33)

For the range of \(R \gg \Lambda \) and \(R/R_0 \gg 2/\alpha \), action reduces to

\[f(R) = R + R_0 \ln \left(\frac{R}{R_c} \right). \]

(34)

Comparing with (19) provides \(R_0 = 6\alpha^2/d^2 \). Using \(|R(r)| = 6\alpha r/d \) and \(R/R_0 \gg 1/\alpha \), satisfies the solar system range of \(r \ll d \).

On the other hand for \(\alpha \ll 1 \) and \(R \approx R_0 \approx \Lambda \) action (33) can be written as:

\[f(R) = (R + \Lambda) \left[1 + \alpha \frac{1}{2} \ln \left(\frac{R + \Lambda}{R_c} \right) \right], \]

(35)

where for small \(\alpha \), we write action as:

\[f(R) = \left(\frac{R + \Lambda}{R_c} \right)^{1+\alpha/2}. \]

(36)

For \(\alpha \ll 1 \), the action reduces to \(f(R) = R + \Lambda \). We expect the best parameters of the model from SNIa and CMB experiments should be around the ΛCDM model. To see the consistency of this action with the matter dominant epoch, we let \(R \gg \Lambda \) and \(R \gg R_0 \). In this case the action reduces to \(f(R) \to R \) (i.e. Einstein Hilbert action) and the scale factor changes as \(a \propto t^{2/3} \) with time.

In what follows we put constrain on the parameters of the model in (35). The generic FRW equation in modified gravity is

\[3H \dot{F} + 3H^2 F = \frac{1}{2} (f - RF) = \kappa \rho_m. \]

(37)

We use SNIa gold sample with the prior of flat universe to constrain \(\Omega_m, \Omega_\Lambda \) and \(\alpha \). Using action of (35), equation (37) is written as follows:

\[H^2 - \frac{\Lambda}{6} + \frac{\alpha}{2} \left\{ H^2 \left[\frac{R}{R + \Lambda} + \ln \frac{R + \Lambda}{R_c} \right] + \frac{R^2}{R + \Lambda} \right\} + \frac{R + 2\Lambda}{(R + \Lambda)^2} H \dot{R} = H_0^2 \Omega_m a^{-3}, \]

(38)

where \(3H_0^2 \Omega_m = \kappa \rho_m \). For \(\alpha = 0 \) we recover standard FRW equation.

\[H = H_0 (\Omega_m a^{-3} + \Omega_\Lambda)^{1/2}, \]

(39)

On the other hand variation of action we respect to the metric guarantee the conservation of energy momentum and for the matter we can write \(\rho = \rho_0 a^{-3} \).

From the constrain of rotation curve of the spiral galaxies in the previous section, \(\alpha \approx 10^{-6} \), we assume \(\alpha \ll 1 \) and this term is considered as a perturbation parameter in equation (38). We solve equation (38) by perturbing the Hubble parameter around ΛCDM solution, \(H = H^{(0)} + \alpha H^{(1)} \), in which \(H^{(0)} \) obtain from equation (39) and \(H^{(1)} \) is calculated from

\[H^{(1)} = - \frac{1}{4} \frac{H^{(0)}}{R^{(0)}} + \frac{2 \Lambda}{R^{(0)}} \frac{R^{(0)2}}{6 H^{(0)}} + H^{(0)} \{ \frac{R^{(0)}}{R_c} + \Lambda \}^3 \ln \frac{R^{(0)} + \Lambda}{R_c}, \]

(40)

where \(R^{(0)} \) and \(\dot{R}^{(0)} \) are the zero order terms obtain from \(H^{(0)} \) and \(\dot{H}^{(0)} \). The relevant parameter for comparing the theoretical model with SNIa data is the luminosity distance \(D_L = D_L(z; \Omega_m, \alpha, R_c, \Lambda, h) \) and is related to the distance modulus of the supernovas as follows:

\[\mu = m - M = 5 \log_{10} \left[\frac{D_L}{10 \text{ pc}} \right], \]

\[D_L = c (1 + z) \int_0^z \frac{dz}{H(z; \Omega_m, \alpha, R_c, \Lambda, h)}. \]

(41)
where the K-correction is included in the distance modulus of the supernovas.

We do likelihood analysis letting the Hubble parameter h, the cosmological parameters Ω_m and Ω_Λ, and α as the free parameters to find the best values. The comparison between the observed and theoretical distance modulus is done by χ^2 fitting as follows:

$$
\chi^2 = \sum \frac{[\mu_{obs}(z_i) - \mu_{th}(z_i; \Omega_m, \alpha, R_c, \Lambda, h)]^2}{\sigma_i^2}, \tag{42}
$$

The best value for χ^2, normalized to the number of degree of freedom is $\chi^2/N_{d.o.f} = 1.14$. The corresponding best values for the parameters of the model is: $\Omega_m = 0.31$, $\Omega_\Lambda = 0.69$, $h = 0.64$ and $\alpha \ll 10^{-3}$. The constraint on α is consistent with the results from the rotational velocity of spiral galaxies, $\alpha \simeq 10^{-6}$. Finally we should point out that R_c is not sensitive to the SNIa data.

IV. SUMMARY AND DISCUSSION

In this work we tried to explain the anomalous in the acceleration of the Pioneer spacecraft and flat rotation curve of spiral galaxies in the framework of the modification of the gravity. We started by assuming an ansatz for the derivative of action in terms of distance from the center and did the inverse procedure to derive the metric and action of the space. In the solar system scale we extract a logarithmic extra term to the Einstein-Hilbert action and in the galactic scale we follow the same procedure and found a power law action. The solution in both two regimes obtained as perturbation around the Einstein-Hilbert action and we showed that within this approximation the solutions are consistent with the modified gravity equations. We note that in generic case we may not find a consistent solution in the spherically space [11]. Finally we proposed a generic action where in the asymptotic regimes reduce to our desired metric and actions in the solar system and galactic scales. For the cosmological scales this action provides a late time acceleration for the universe. Finally we used the pioneer data, flat rotation curve of galaxies and the CMB and Supernova Type Ia gold sample to put constrain on the parameters of the model.

Acknowledgements We would like to thank anonymous referee for useful comments.

[1] G. Hinshaw et al., Astrophys. J. Suppl. 170, 288 (2007); D. N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007); C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003);
[2] V. Sahni and A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000).
[3] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528; S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003); S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 36, 1765 (2004); S. Nojiri and S. D. Odintsov, Mod. Phys. Lett. A 19, 627 (2004); G. J. Olmo, Phys. Rev. D 72, 083505 (2005); S. Baghram, M. Farhang, and S. Rahvar, Phys. Rev. D 75, 044024 (2007); M. S. Movahed, S. Baghram, and S. Rahvar Phys. Rev. D 76, 044008 (2007).
[4] T. P. Sotiriou Phys. Rev. D 73 063515 (2006).
[5] D. N. Vollick, Phys. Rev. D 68, 063510 (2003); G. Allemandi, A. Borowiec and M. Francaviglia, Phys. Rev. D 70, 043524 (2004); G. J. Olmo and W. Komp, X. H. Meng and P. Wang, Class. Quant. Grav. 20, 4949 (2003); X. H. Meng and P. Wang, Class. Quant. Grav. 21, 951 (2004); G. M. Kremer and D. S. M. Alves, Phys. Rev. D 70, 023503 (2004); G. Allemandi, A. Borowiec, M. Francaviglia and S. D. Odintsov, Phys. Rev. D 72, 063505 (2005).
[6] G. J. Olmo, Phys. Rev. Lett. 95 261102 (2005).
[7] A. L. Erickcek, T. L. Smith, and M. Kamionkowski, Phys. Rev. D 74, 121501 (2006).
[8] T. Chiba, T. L. Smith, and A. L. Erickcek, Phys. Rev. D 75, 124014 (2007).
[9] A. A. Starobinsky, JETPL 86, 157 (2007).
[10] W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).
[11] R. Saffari and S. Rahvar, arXiv:0710.5635
[12] Y. Sobouti, A&A 464, 921 (2007); R. Saffari and Y. Sobouti, A&A 472, 833 (2007).
[13] S. Rahvar and Y. Sobouti, Mod. Phys. Lett. A (in press), astro-ph/0704.0680.
[14] S. Capozziello, V.F. Cardone and A. Troisi Mon. Not. Roy. Astron. Soc. 375, 1423 (2007).
[15] T. Multamaki and I. Vilja, Phys. Rev. D 74, 064022 (2006).
[16] J. D. Anderson et al., Phys. Rev. Lett. 81, 2858 (1998).
[17] J. D. Anderson et al., Phys. Rev. D 65 082004 (2002).