Production of Superoxide Anions by Keratinocytes Initiates *P. acnes*-Induced Inflammation of the Skin

Philippe A. Grange¹, Christiane Chéreau²,³, Joël Raingeaud⁴, Carole Nicco², Bernard Weill², Nicolas Dupin¹,⁵*, Frédéric Batteux²,³*.

¹ Laboratoire de Recherche en Dermatologie, EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France, ² Laboratoire d’Immunologie EA 1833, Faculté de Médecine, Université Paris Descartes, Paris, France, ³ ERTI «Plateforme d’étude du stress oxydant en oncologie et dans les maladies inflammatoires», Faculté de Médecine, Université Paris Descartes, Paris, France, ⁴ INSERM U749, Université Paris-sud, Faculté de Pharmacie, Chatenay-Malabry, France, ⁵ Service de Dermatologie-Vénéréologie, Hôpital Cochin – Pavillon Tarnier, AP-HP, Paris, France

Abstract

Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. *Propionibacterium acnes* (*P. acnes*), a gram-positive anaerobic bacterium, plays a critical role in the development of these inflammatory lesions. This study aimed at determining whether reactive oxygen species (ROS) are produced by keratinocytes upon *P. acnes* infection, dissecting the mechanism of this production, and investigating how this phenomenon integrates in the general inflammatory response induced by *P. acnes*. In our hands, ROS, and especially superoxide anions (*O*₂⁻), were rapidly produced by keratinocytes upon stimulation by *P. acnes* surface proteins. In *P. acnes*-stimulated keratinocytes, *O*₂⁻ was produced by NAD(P)H oxidase through activation of the scavenger receptor CD36. *O*₂⁻ was dismutated by superoxide dismutase to form hydrogen peroxide which was further detoxified into water by the GSH/GPx system. In addition, *P. acnes*-induced *O*₂⁻ abrogated *P. acnes* growth and was involved in keratinocyte lysis through the combination of *O*₂⁻ with nitric oxide to form peroxynitrites. Finally, retinoic acid derivatives, the most efficient anti-acneic drugs, prevent *O*₂⁻ production, IL-8 release and keratinocyte apoptosis, suggesting the relevance of this pathway in humans.

Introduction

Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. Acne is the most common skin disease, estimated to affect up to 80% of individuals at some point between the ages of 11 and 30 years. Despite its common occurrence, the pathogenesis of acne is not fully understood. Excessive shedding of epithelial cells from the walls of follicles combined with increased amounts of sebum produced by associated sebaceous glands are two important factors that contribute to follicular obstruction. This obstruction leads to the formation of microcomedos, which are believed to precede lesions of acne. These microcomedos may evolve into clinically visible comedos and/or inflammatory lesions.

Propionibacterium acnes (*P. acnes*), a gram-positive anaerobic bacterium part of the normal skin flora, plays a critical role in the development of inflammatory lesions in acne [1]. Various mechanisms can explain the role of *P. acnes* in skin inflammation. First, it is widely accepted that inflammation may be induced by the immune response of the host to *P. acnes*. Chemotactic substances released from the bacteria attract polymorphonuclear leukocytes to the site of inflammation. Those cells are activated locally to produce inflammatory cytokines such as TNF-α, IL-1β, and IL-8 [2]. After phagocytosis of the bacteria, the attracted neutrophils are thought to release lysosomal enzymes and produce reactive oxygen species (ROS) that can damage the follicular epithelium.

Beside the immune response of the host, a direct effect of *P. acnes* on keratinocytes has also been suspected in the initiation of the inflammatory process. Indeed, *P. acnes* interacts with toll-like receptors TLR-2 and TLR-4 on keratinocytes [3]. This interaction induces the release of inflammatory cytokines such as IL-1α, IL-1β, IL-8, GM-CSF, and TNF-α [4,5]. Although nothing is known about the interaction between *P. acnes* or any other bacteria with keratinocytes in terms of reactive oxygen species (ROS) production, purified tuberculine has been shown to activate TLR-2 on keratinocytes, leading to the production of ROS during tuberculosis infection [6]. In addition, *Vitreoscilla filiformis* has been identified to activate MnSOD as an inducible free-radical scavenger in keratinocytes [7]. Furthermore, keratinocytes are known to produce ROS upon exposure to toxic compounds such as inorganic arsenic [8] or to ultraviolet radiations [9,10]. Whatever the mechanism implicated in the induction of skin inflammation by *P. acnes*, ROS are probably involved in that process since the production of hydrogen peroxide (*H*₂*O*₂) is increased in neutrophils from acne patients [11]. Moreover, the decrease in superoxide dismutase (SOD) activity in patients with acne lesions [12] is correlated with the severity of acne [13].

ROS are short-lived small molecular structures that are continuously generated at low levels during the course of normal...
Author Summary

Acne vulgaris is a chronic inflammatory disorder of the sebaceous follicles. It is the most common skin disease, affecting up to 80% of individuals at some point between the ages of 11 and 30 years. Propionibacterium acnes (P. acnes) plays a role in the development of inflammatory acne lesions, but whether it causes inflammation by itself or through indirect mechanisms is not clear yet. Therefore, by exposing epidermal cells to P. acnes in vitro, we tested whether reactive oxygen species (ROS) production (oxidative burst) was involved in the inflammatory process. We found that one particular ROS, superoxide anion, was generated by epidermal cells following P. acnes stimulation. This phenomenon is associated with the production of a soluble pro inflammatory molecule, IL-8, and epidermal cell death. The abrogation of P. acnes-induced oxidative burst by the most commonly used and most efficient treatments of acne suggests that superoxide anions produced by epidermal cells are critical in the development of acne inflammatory lesions.

Results

ROS production by P. acnes-stimulated keratinocytes is dose-and time-dependent

P. acnes increased the production of O$_2^-$, NO and H$_2$O$_2$ by the immortalized keratinocyte cell line HaCaT in a dose-dependent manner (Figure 1A, B and C). At the highest concentration of P. acnes, O$_2^-$, NO and H$_2$O$_2$ levels were increased by 85% (P<0.05), 44.5% (P<0.05) and 41% (P<0.05), respectively. We then evaluated the kinetics of ROS production (Figure 2). The production of O$_2^-$, was significantly increased 15 min after P. acnes stimulation (P<0.05). The production reached its peak one hour after the stimulation, then progressively declined (Figure 2A). In contrast, both NO and H$_2$O$_2$ productions increased slowly and reached their highest levels after 24 h of incubation with P. acnes (Figures 2B and C). Since keratinocytes stimulated by P. acnes can produce IL-8 [3], we next compared the kinetics of ROS production with that of IL-8 production upon P. acnes stimulation (Figure 2D). Significant levels of IL-8 protein appeared 2 h after incubation with P. acnes (P<0.05) and increased along with ROS production. Altogether, these results indicate that the production of ROS, and especially of O$_2^-$, is a very early event occurring almost immediately after the stimulation of keratinocytes with P. acnes. The production of O$_2^-$ by HaCaT keratinocytes was identical whether the cells had been stimulated by an extract of P. acnes surface proteins or by the whole bacteria. O$_2^-$ production was measured using DHE, and cell death estimated using YO-PRO-1 were dose-dependent (Figure 3).

Origin of ROS produced by keratinocytes stimulated with P. acnes

Superoxide anions can originate from the mitochondrial complex I or III of the respiratory chain, or from the cytosolic enzymes NAD[P]H oxidase or xanthine oxidase. Incubation of P. acnes...
acnes-stimulated keratinocytes with rotenone and antimycin that inhibit the mitochondrial respiratory chain complexes I and III, respectively, did not significantly alter the production of O$_2^-$ (Figure 4A). Incubation of _P. acnes_-stimulated keratinocytes with DPI (a NAD(P)H oxidase inhibitor) significantly decreased O$_2^-$ production (P < 0.03), while incubation with allopurinol (a xanthine oxidase inhibitor) had no effect (Figure 4A). To confirm that Nox is the main source of O$_2^-$ in keratinocytes stimulated by _P. acnes_, the level of Nox1 was knocked down using RNA interference. The small interfering RNA (siRNA) Nox1A-siRNA was used as described previously [15]. Nox1A-siRNA dramatically decreased the production of O$_2^-$ upon stimulation by _P. acnes_ in transfected-keratinocytes, with nearly 100% inhibition after 3 h of stimulation (Figure 4C). Keratinocytes treated with scrambled sequence siRNA produced similar levels of O$_2^-$ as non-transfected cells. These results demonstrated that O$_2^-$ is mainly produced by NAD(P)H oxidase in _P. acnes_-stimulated keratinocytes.

ROS detoxification pathways involved in _P. acnes_-stimulated keratinocytes
In order to determine the pathways implicated in the detoxification of ROS produced by _P. acnes_-stimulated keratinocytes, we used specific modulators of the enzymatic systems involved in ROS metabolism. Superoxide anions are converted

Figure 2. Kinetics of ROS versus IL-8 production in _P. acnes_-stimulated keratinocytes. HaCaT cells were incubated with _P. acnes_ (MOI of 50) for a period of time ranging from 0.25 to 24 h. (A) Superoxide anion, (B) nitric oxide, (C) hydrogen peroxide levels were determined by spectrophotometry as described in Materials and Methods. (D) IL-8 production was determined by ELISA as described in Materials and Methods. Data are means ± SD of two separate experiments. doi:10.1371/journal.ppat.1000527.g002

Figure 3. Superoxide anion production by keratinocytes stimulated with _P. acnes_ total surface proteins extract. HaCaT cells were incubated with _P. acnes_ (MOI of 50) for a period of time ranging from 0.25 to 24 h. (A) Superoxide anion, and (B) cell death were performed by spectrophotometry with DHE and YO-PRO-1, respectively as described in Materials and Methods. The amount of cells present in wells after 18 h of incubation was 66, 73, 77, 85, 89, and 98%, respectively. Data are means ± SD of two separate experiments. doi:10.1371/journal.ppat.1000527.g003
into hydrogen peroxide by SOD. Inhibiting SOD by the specific inhibitor DDC significantly increased O_2^- production by $P.\ acnes$-stimulated keratinocytes ($P<0.003$) (Figure 4A). By contrast, incubation of keratinocytes with MnTBAP or CuDIPS, two SOD mimics, significantly decreased O_2^- production by $P.\ acnes$-stimulated keratinocytes ($P<0.05$ and $P<0.04$, respectively) (Figure 4A). Hydrogen peroxide is converted into H_2O by two sets of enzymes, catalase and the GSH/GPx system. The elevation of hydrogen peroxide levels can be caused either by an increase in superoxide dismutation as observed following incubation with MnTBAP ($P<0.004$) or CuDIPS ($P<0.02$) or by a decrease in the detoxification pathways (Figure 4B). Specific inhibition of catalase by aminotriazol (ATZ) or addition of exogenous catalase, had no effect on the levels of hydrogen peroxide (Figure 4B). Thus, the catalase pathway is not involved in the control of hydrogen peroxide detoxification in our system. Depleting GSH with BSO, inhibited GPxs and significantly increased H_2O_2 production ($P<0.05$), while adding exogenous GSH or its precursor NAC, significantly decreased H_2O_2 levels ($P<0.004$ and $P<0.01$, respectively) (Figure 4B). Those results highlight the role of GSH/GPx in keratinocytes to counteract the overproduction of ROS induced by $P.\ acnes$: superoxide anions are dismutated by SOD into hydrogen peroxide, which is further detoxified into H_2O through the GSH/GPx pathway.

Figure 4. ROS detoxification pathways involved in $P.\ acnes$-stimulated keratinocytes. (A) Superoxide anions and (B) hydrogen peroxide productions by HaCaT cells were determined after incubation for 18 h with $P.\ acnes$ (MOI of 50) alone (black bars) or with $P.\ acnes$ in the presence of specific modulators of enzymatic systems involved in ROS metabolism (gray bars). The concentrations used were the following: 40 µM rotenone, 40 µM antimycin, 40 µM allopurinol, 40 µM DPI, 2 mM DDC, 400 µM ATZ, 0.8 mM BSO, 100 µM manganese [II] tetrais (S,10,15,20)-benzoic acid porphyrin (MnTBAP), 400 µM copper(II)diisoproplsalicylate (CuDIPS), 3.2 mM N-acetylcysteine (NAC), 1.6 mM GSH, 20 U catalase. (C) HaCaT cells were pretreated with the Nox1A-siRNA sequence or with a scrambled sequence as described in Materials and Methods. Superoxide anions production was measured after stimulation by $P.\ acnes$ (MOI of 50) in untreated HaCaT (black bar) or in siRNA pretreated HaCaT (gray bars). ROS production was measured by spectrofluorometry as described in Materials and Methods. Data are means ± DS of two separate experiments. doi:10.1371/journal.ppat.1000527.g004

ROS toxicity and production of nitrosyl residues by $P.\ acnes$-stimulated keratinocytes

Given the high toxicity of ROS, we were prompted to investigate if the levels of O_2^- produced by keratinocytes could impact cellular viability. The apoptosis of keratinocytes induced by $P.\ acnes$ alone was estimated by YO-PRO-1 (Figure 5A) and TUNEL staining (Figure 5B). In order to determine the nature of ROS involved in $P.\ acnes$-induced cellular toxicity, we pre-treated keratinocytes with specific modulators of the enzymes involved in the production of O_2^- and H_2O_2 and measured the death of keratinocytes upon stimulation with $P.\ acnes$. Inhibition of superoxide anions by allopurinol, DPI or MnTBAP, significantly decreased $P.\ acnes$-induced keratinocyte apoptosis ($P<0.005$, $P<0.005$, $P<0.001$, respectively), whereas DDC and antimycin, two compounds that increase O_2^- production, increased cell death ($P<0.007$ and $P<0.01$, respectively) (Figure 5A). CuDIPS, a mimic of the cytosolic superoxide dismutase, increased cell death. This is explained by the cytotoxic properties of this molecule on the cells. No major effect was observed on the rate of cell death with molecules modulating H_2O_2 production, such as ATZ, BSO, NAC, GSH or catalase.

Peroxinitrites result from the combination of O_2^- and NO. They are highly reactive metabolites that create nitrosyl residues on proteins and alter their functions. Therefore, the levels of nitrosyl residues not only reflect the intensity of the oxidative attack but are also markers of the cellular damages created by the oxidative burst. As shown by flow cytometry, 3-nitrosotyrosine residues were dose-dependently increased with very low concentrations of $P.\ acnes$ (Figure 6A). This result is in agreement with the observation that the nitric oxide synthase (NOS) is activated in keratinocytes stimulated with $P.\ acnes$. The expression of iNOS was steady in keratinocytes during a period of time of 24 h as determined by RT-qPCR (Figure 6B) and by RT-qPCR (data not shown). This data is consistent with those presented in Figure 1, showing that NO was produced early after $P.\ acnes$ incubation, making its interaction between O_2^- and NO possible. Altogether, those experiments suggested that the toxicity of O_2^- produced by keratinocytes stimulated with $P.\ acnes$ was dependent on the combination with NO and the production of nitrosyl residues.

$P.\ acnes$-induced O_2^- production controls IL-8 levels

In order to evaluate the role of O_2^- in the production of IL-8 by $P.\ acnes$-stimulated keratinocytes, we measured the levels of IL-8 produced in presence of the various ROS modulators (Figure 7). All the molecules that inhibited O_2^- production also decreased...
IL-8 synthesis, but only the decrease induced by DPI reached statistical significance ($P < 0.03$). If all the molecules that increased O_2^{-} levels also increased IL-8 production, only the massive increase caused by DDC reached significance ($P = 0.04$) (Figure 7).

Both ATZ and NAC significantly decreased IL-8 production. Since it has previously been shown that ATZ has no effect on H_2O_2 production while NAC and GSH do (Figure 4), these results suggest that the effects of ATZ and NAC on IL-8 production are independent of the regulation of H_2O_2 and are more likely linked to intrinsic properties of those products. Altogether these results suggest that the toxicity of ROS on $P. \text{acnes}$-stimulated keratinocytes is mainly caused by O_2^{-} which also exerts a positive effect on IL-8 production.

Role of the scavenger receptor CD36 in the production of superoxide anions

Since O_2^{-} elicits IL-8 production by keratinocytes stimulated with $P. \text{acnes}$, we investigated which surface proteins could be implicated in the recognition of $P. \text{acnes}$. $P. \text{acnes}$-stimulated keratinocytes were incubated with antibodies to TLR-2 or CD36. Both ATZ and NAC significantly decreased IL-8 production. Since it has previously been shown that ATZ has no effect on H_2O_2 production while NAC and GSH do (Figure 4), these results suggest that the effects of ATZ and NAC on IL-8 production are independent of the regulation of H_2O_2 and are more likely linked to intrinsic properties of those products. Altogether these results suggest that the toxicity of ROS on $P. \text{acnes}$-stimulated keratinocytes is mainly caused by O_2^{-} which also exerts a positive effect on IL-8 production.

Effect of ROS on $P. \text{acnes}$ growth

We first compared the relative sensitivity of HaCaT cells and $P. \text{acnes}$ to the toxic effect of O_2^{-}. HaCaT cells and $P. \text{acnes}$ were incubated separately with a solution containing O_2^{-}. The growth of $P. \text{acnes}$ was dose dependently inhibited by O_2^{-} while the HaCaT cells appear to be more resistant than $P. \text{acnes}$ at the same O_2^{-}
concentration (Figure 9A). We then tested the hypothesis that the ROS produced by keratinocytes, and particularly O$_2^-$, could be responsible for the inhibition of the growth of P. acnes (Figure 9B). When P. acnes-stimulated keratinocytes were preincubated with MnTBAP, a MnSOD mimic that detoxifies O$_2^-$, or with DPI that inhibits NAD(P)H oxidase, the growth of the bacteria was restored. Reciprocally, when keratinocytes were preincubated with DDC, a SOD inhibitor, the bacterial growth was decreased.

Anti-acne drugs inhibit O$_2^-$ production, IL-8 synthesis and keratinocyte apoptosis

In order to evaluate the effects of the most common drugs used in the treatment of acne, HaCaT cells were stimulated by P. acnes in the presence of ZnSO$_4$, doxycycline, nicotinamide, nitroimidazol, retinol, retinoic acid, or isotretinoin (Figure 10). The production of superoxide anions was reduced by all the drugs tested, at least at the highest concentration (0.05%), except for nicotinamide (Figure 10A). IL-8 production was reduced neither by ZnSO$_4$ at low concentration (0.01%) nor by nicotinamide, but all the others drugs tested were effective. This is particularly the case for retinoic acid derivates that completely abolished IL-8 production (Figure 10B). The percentage of cells present in the wells after incubation ranged from 68 to 91% (Figure S1). All the drugs except ZnSO$_4$ and nicotinamide reduced the apoptosis of keratinocytes stimulated by P. acnes at least at the highest concentration tested (0.05%). This is particularly the case for retinoic acid derivates (P<0.03 in all cases) and for the antibiotics...
doxycycline (P<0.02) and nitroimidazole (P<0.03) (Figure 10C). The rate of cell death in the presence of the various compounds alone ranged from 0 to 26% (Figure S2). Altogether, these results suggest that the anti-acne drugs are active on the production of \(\text{O}_2^- \) and IL-8 as well as on the decrease in the death rate of keratinocytes.

Discussion

This report describes the production of ROS by keratinocytes upon bacterial infection by \(P. \text{acnes} \). The production of superoxide anions takes place at least one hour prior to that of nitric oxide and hydrogen peroxide. The same kinetics is observed following UV radiation or arsenite intoxication [8].

Superoxide anions can originate from the cytosolic enzymes NAD(P)H oxidase, or xanthine oxidase, or from the complexes I or III of the mitochondrial respiratory chain. The use of DPI, an inhibitor of NAD(P)H oxidase and more specifically knocking down Nox1 by small RNA interference clearly shows that, in \(P. \text{acnes} \)-stimulated keratinocytes, \(\text{O}_2^- \) is produced by NAD(P)H oxidase. This data is in line with a recent report showing that NAD(P)H oxidase is the major source of UVA-induced ROS in human keratinocytes where mitochondria are rapidly damaged after UVB exposure [16]. However, to date, no link between a specific damage of the mitochondrial respiratory chain and the production of \(\text{O}_2^- \) has been established [15]. Under our experimental conditions, superoxide anions are dismutated by superoxide dismutase to form \(\text{H}_2\text{O}_2 \), which is further detoxified into water by the GSH/GPx system and not by the catalase pathway. In contrast, \(\text{H}_2\text{O}_2 \) generated by UVB applied to keratinocytes is detoxified through both the catalase and the GPx pathways. Usually, catalase finely tunes down \(\text{H}_2\text{O}_2 \) levels, while the glutathione system (GPx and reduced glutathione) is more specialized in buffering acute oxidative stress. This is probably what happens in the case of \(P. \text{acnes} \) infection.

However, the key-element for \(P. \text{acnes} \)-induced apoptosis of keratinocytes is \(\text{O}_2^- \) and not \(\text{H}_2\text{O}_2 \). \(\text{O}_2^- \) can be toxic \textit{per se} or following its combination with NO to form peroxynitrites (ONOO\(^-\)), a phenomenon that requires the activation of inducible nitric oxide synthase (iNOS). We confirm that \(P. \text{acnes} \) induces the formation of nitrotyrosine residues on proteins.

Figure 7. Relationship between ROS and IL-8 productions in \(P. \text{acnes} \)-stimulated keratinocytes. HaCaT cells were incubated for 18 h with \(P. \text{acnes} \) alone (MOI of 50) (black bar) or with \(P. \text{acnes} \) in the presence of ROS modulators (gray bars). The concentrations used were 40 \(\mu \text{M} \) rotenone, 40 \(\mu \text{M} \) antimycin, 40 \(\mu \text{M} \) allopurinol, 40 \(\mu \text{M} \) DPI, 2 mM DDC, 400 \(\mu \text{M} \) ATZ, 0.8 mM BSO, 100 \(\mu \text{M} \) manganese[III]tetakis(5,10,15,20)-benzoic acid porphyrin (MnTBAP), 400 \(\mu \text{M} \) copper[II]diisopropylsalicylate (CuDIPS), 3.2 mM N-acetylcysteine (NAC), 1.6 mM GSH, 20 U catalase. IL-8 concentration was measured in culture supernatants by ELISA as described in Materials and Methods. Data are means\(\pm \)SD of two separate experiments. doi:10.1371/journal.ppat.1000527.g007

Figure 8. \(P. \text{acnes} \) induces the production of superoxide anions via CD36. HaCaT cells were pretreated 2 h with human anti-TLR-2 or human anti-CD36 monoclonal antibodies (black bars), goat anti-IgG antibody (white bar) and incubated 3 h with \(P. \text{acnes} \) (A600 nm = 1.0). Control experiments were run in parallel with \(P. \text{acnes} \) alone (gray bar). (A) IL-8 concentrations were measured in culture supernatants by ELISA, as described in Materials and Methods and are showed minus the value obtained with the HaCaT cells treated with the mAb alone. (B) \(\text{O}_2^- \) production was measured spectrofluorometrically over a period of 3 h as described in Materials and Methods. Data are presented as means\(\pm \)SD of three separate experiments. doi:10.1371/journal.ppat.1000527.g008
footprint of *in vivo* peroxinitrite production [17]. Similarly, keratinocytes exposed to UVB or arsenite produce both O_2^- and NO, potentially leading to peroxinitrite formation [8,18]. In our model, the production of NO by *P. acnes*-stimulated keratinocytes is correlated with the steady expression of iNOS, as already observed in keratinocytes [18]. Those data suggest that the cytotoxicity mediated by ROS in our model involves the overproduction of O_2^- and also the nitrosylation of amino acid residues on proteins.

Keratinocytes are the first line of defense against external aggressions; they participate in the innate immune response by secreting soluble factors with chemotactic activity for leukocytes and neutrophils. Thus, *P. acnes* triggers the secretion of IL-1α, TNF-α [4], and the chemokine IL-8 [3] which have been implicated in the inflammatory process of acne. Using activators and inhibitors of the O_2^- production, we have been able to modulate the production of IL-8 upon stimulation by *P. acnes*. Particularly, DPI an inhibitor of the NADPH oxidase, significantly

Figure 9. Effect of ROS on *P. acnes* growth. (A) HaCaT cells (dark line) and *P. acnes* suspension (Abs$_{600\text{nm}} = 0.5$) (gray line) were incubated for 2 h under appropriate conditions with various concentrations of chemically generated O_2^- ranging from 0.0191 μM to 10 mM. The viability of HaCaT cells was determined by the MTT assay as described in Materials and Methods. *P. acnes* suspension was then incubated for 5 days at 37°C under anaerobic conditions and the bacterial growth was evaluated by culturing bacteria on RCM solid media and by measuring the Abs at 600 nm. (B) HaCaT cells were preincubated with 40 μM DPI, 2 mM DDC, 50 μM MnTBAP, and stimulated with *P. acnes* (MOI of 50) in DMEM 10% SVF without antibiotics at 37°C, 5% CO$_2$. After 5 h of stimulation, liquid RCM was added to each well and the incubation for 5 days at 37°C under anaerobic conditions was started. *P. acnes* growth was then evaluated by measuring the Abs at 600 nm and by culturing bacteria on RCM solid media. Control experiment was run in parallel with the *P. acnes* in DMEM 10% SVF without antibiotics alone.

doi:10.1371/journal.ppat.1000527.g009
decreases IL-8 production, whereas DDC, a SOD inhibitor that increases O$_2^\cdot$ levels, dramatically increases IL-8 production by keratinocytes. The question was then to determine the pathway through which P. acnes stimulates keratinocytes. Several previous observations suggested the implication of the Toll-like receptor (TLR) pathway. TLRs can recognize conserved molecular structures at the surface of bacteria. TLR-2, present at the surface of keratinocytes [19,20], is upregulated in acne lesions [21] and is potentially involved in the recognition of P. acnes during the inflammatory process [22]. Moreover, P. acnes-stimulated TLR-2 induces IL-8 release by keratinocytes [3,23]. We have observed a time-lag between the early production of O$_2^\cdot$ and the secretion of IL-8 that occurs 2 h later, that probably corresponds to the activation of the TLR-signaling mediated pathway. Therefore, we hypothesized that the molecular mechanism responsible for O$_2^\cdot$ production is TLR-independent. Indeed, whereas blocking TLR-2 with a monoclonal antibody decreases the production of IL-8 as described previously [3], it has no effect on O$_2^\cdot$ production. We also tested the role of CD36, a scavenger molecule expressed on keratinocytes [24]. The generation of ROS by the NAD(P)H oxidase-NOX system has already been observed following the activation of scavenger receptors in vitro [25] and in vivo in a murine model of cerebral ischemia [26]. This receptor is a sensor of microbial diacylglycerides that signals via the TLR-2/6 heterodimer. In response to bacterial lipoteichoic acid (LTA) and diacylated lipoproteins, CD36 associates with TLR-2/6 [24,27]. Although it does not express LTA, P. acnes expresses a closely related amphiphilic antigen, a lipoglycan containing mannosyl, glucosyl, galactosyl residues, and an amino sugar, diaminohexuronic acid [28,29]. We observed that, blocking CD36 with a monoclonal anti-CD36 antibody in P. acnes-stimulated keratinocytes, significantly decreases both the level of O$_2^\cdot$ and that of IL-

Figure 10. Effect of anti-acne treatments on O$_2^\cdot$ and IL-8 production in P. acnes-stimulated keratinocytes. HaCaT cells were untreated (black bar) or incubated for 18 h with P. acnes (MOI of 50) alone (white bar) or with P. acnes in the presence of nicotinamide, zinc sulfate, doxycycline, nitroimidazole, retinol, retinoic acid, and isotretinoin at 0.01% (gray bars) or 0.05% (white bars). (A) O$_2^\cdot$ production was determined spectrofluorometrically with DHE, (B) IL-8 concentration was measured by ELISA, (C) and cell death was assessed spectrofluorometrically using YO-PRO-1 as described in Materials and Methods. Data are means±SD of two separate experiments. doi:10.1371/journal.ppat.1000527.g010
In our model, IL-8 secretion is triggered by the binding of \textit{P. acnes} to TLR-2 and modulated by the generation of superoxide anions resulting from the binding of \textit{P. acnes} to CD36. In phagocytic cells, Nox1 oxidizes NADPH on the cytosolic side of the cellular membrane and reduces oxygen across the membrane to generate O_2^- which contributes to the killing of \textit{P. acnes} [30]. On the other hand, in keratinocytes, Nox1 is localized in the nucleus [31] and could release O_2^- into the cytoplasm. Therefore, we hypothesized that nuclear Nox1 could generate O_2^- which combine with steadily NO to form peroxinitrites. Peroxinitrites activate p38 and ERK in the MAPK pathways, contributing to the tight regulation of IL-8 production by O_2^- [32,33] (Figure 11). In addition, O_2^- produced by keratinocytes upon stimulation with \textit{P. acnes}, counteract the growth of the bacteria. Those results highlight a new mechanisms by which keratinocytes participate in the innate immune response to pathogens.

Finally, the inhibition of O_2^- production, IL-8 release and keratinocyte apoptosis by retinoic acid derivatives, the most efficient anti-acneic drugs, demonstrates the relevance of these pathways in vivo. In addition, our data are in agreement with the observations that, retinoic acid can induce MnSOD mRNA in a human neuroblastoma cell line and decrease TPA-induced O_2^- production in mouse keratinocytes [34]. In conclusion, keratinocytes are not mere targets of the innate immune response but are directly involved in the defence mechanisms aiming at eliminating pathogens. In response to \textit{P. acnes}, keratinocytes can produce massive amounts of ROS that, in return, inhibit bacterial growth. Those ROS do not only eliminate the bacteria but also generate inflammation. Thus, we hypothesize that the severity of acne depends on the balance between the ability of the \textit{P. acnes} strain to induce a potent immune response [3] and the capability of the host to generate and to detoxify the ROS produced [11,13]. Therefore, inhibiting this inflammatory reaction using appropriate antioxidant molecules could be considered as a potential treatment of acne.

Materials and Methods

Bacterial culture

\textit{P. acnes} strain 6919 was obtained from the American Type Culture Collection (Manassas, VA) and grown under anaerobic conditions in reinforced clostridial liquid and solid medium (RCM) (Difco Laboratories, Detroit, MI) at 37°C during 5 days in order to
reach stationary phase. Typically, 100 ml of RCM were used and bacteria were harvested after centrifugation at 7,000 g for 10 min at 4°C. Pellets were pooled and washed in about 30 ml of cold PBS and centrifuged again as described above. Finally, the bacterial pellet was suspended in PBS or DMEM. From this suspension, dilutions of \(10^5\) to \(10^8\) CFU/ml were prepared, resulting in a multiplicity of infection (MOI) of 0.05 to 50 bacteria per cell in 0.1 ml of inoculum. To obtain total surface protein extract, the bacteria were scraped in the presence of 2 ml of PBS \([1.5 \text{ mM KH}_2\text{PO}_4, 2.7 \text{ mM Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}, 0.15 \text{ M NaCl (pH 7.4)}\] from the solid RCM. The bacterial suspension was heated at 60°C for 20 min and the bacteria removed by centrifugation at 16,000 g for 20 min at 4°C. The supernatant containing total surface proteins was subjected to ammonium sulfate precipitation at 60% of saturation for 1 h under stirring. The precipitated proteins were recovered after centrifugation at 22,000 g for 30 min at 4°C, then resuspended in PBS, and extensively dialyzed against PBS. Protein concentration was determined by the method of Lowry using BSA as standard described by Peterson [35].

Cell culture and stimulation

The human keratinocyte cell line HaCaT was grown in Dulbecco’s modified Eagle’s medium-Glutamax-I (DMEM) (Invitrogen, Cergy Pontoise, France) supplemented with 10% heat-inactivated fetal calf serum (Invitrogen), 20 mM L-glutamine, 1 mM sodium pyruvate, and antibiotic/antimycotic solution (10 U/ml Penicillin, 10 μg/ml Streptomycin, 0.25 μg/ml Amphoterin) (Invitrogen) at 37°C in humidified atmosphere containing 5% CO\(_2\) as described [36]. The cell line was routinely tested to assess the absence of Mycoplasma infection. For stimulation experiments, HaCaT cells were incubated with the \textit{P. acnes} suspension adjusted at the appropriate concentration in buffer solution for the desired period of time at 37°C in 5% CO\(_2\).

Measurement of ROS production by spectrofluorimetric analysis

HaCaT cells \((2.10^4/\text{well})\) were seeded in 96-well plates (Corning Costar, Brumath, France). After 18 h, cells were washed three times in PBS and incubated with 100 μl per wells of 5 μM DHE (for determination of O\(_2^-\)) or 5 μM H\(_2\)DCFDA (for determination of H\(_2\)O\(_2\)) or 5 μM DAF-DA (for determination of NO) for 30 min as described previously [37,38,39]. Fluorescent probes were purchased from Molecular Probes (Eugene, OR, USA). After three washes, cells were incubated with 100 μl of a suspension of \textit{P. acnes} in PBS (Abs at 600 nm = 0.5) and fluorescence intensity was recorded every hour over a period of 5 h as previously described. At the end of the experiment, the number of adherent cells was evaluated by the crystal violet assay. The levels of O\(_2^-\) were calculated as described above.

Origin and modulation of \textit{P. acnes}-induced hydrogen peroxide in HaCaT cells

HaCaT cells \((2.10^4/\text{well})\) were seeded in 96-well plates and incubated for 18 hours in complete medium alone or with the following molecules: 2 mM diethyldithiocarbamate (SOD inhibitor), or 400 μM CuDIPS (Cu/Zn SOD mimic), or 100 μM MnTBAP (MnSOD mimic), or 40 μM rotenone (inhibitor of mitochondrial complex I) or 40 μM antimyine (inhibitor of mitochondrial complex III), 40 μM diphenylidodium (inhibitor of NADPH oxidase), or with 40 μM allopurinol (inhibitor of xanthine oxidase). Cells were then washed three times in PBS and incubated with 100 μl per well of 5 μM DHE for 30 min. After three washes, cells were incubated with 100 μl of a suspension of \textit{P. acnes} (Abs at 600 nm = 0.5) and fluorescence intensity was recorded every hour over a period of 5 h as previously described. At the end of the experiment, the number of adherent cells was evaluated by the crystal violet assay. The levels of H\(_2\)O\(_2\) were calculated in each sample as described above.

Silencing Nox1 by RNA interference

Nox1 silencing was performed as previously described [15]. We used the Nox1-A siRNA primer with the sequence sense 5'-AGAAUAGGCCUUGAUUCUAUGGUA-3', anti-sense 5'-UU-AGCCAUGAAUAUAGGCUUUUG-3', located at 750 bp. A scrambled siRNA duplex as negative control was used with the sequence sense 5' - ACACCGAAGUUUCUUGUACGUA -3', anti-sense 5' - UUUAUGCAAGAAUACUUUGGU -3' (MWG Biotech, Les Ulis, France). At 24 h before transfection, HaCaT cells were transferred onto 96-well plates at the density of 1.10\(^4\) cells/well and transfected with 10 nM of each siRNA duplex using INTERFERinTM transfection reagent (Polyplus transfection, Illkirch, France) for 4 h in serum free DMEM without antibiotics. Then, complete DMEM medium was added and the cells were incubated for 48 h. Western blot using specific antibody against Nox1 (Santa Cruz Biotechnology Inc., Santa Cruz, CA) was used to assess the reduction of Nox1 protein production as previously described [15]. The level of Nox1 using Nox1-A siRNA was decreased by 86%, whereas scrambled siRNA did not affect the Nox1 level (Figure S3).

Measurement of cell death by spectrofluorimetric analysis

Cell death was estimated spectrofluorimetrically using the fluorescent probe YO-PRO-1 (Molecular Probes) on a Fusion spectrofluorimeter (Packard Bell). HaCaT cells \((2.10^4/\text{well})\) were seeded in 96-well plates and incubated for 18 h in complete medium alone or with the following molecules: 2 mM diethyldithiocarbamate, or 40 μM rotenone, or 40 μM antimyine,
40 μM diphenyliodonium, or with 40 μM allopurinol, or 1600 μM reduced glutathione, 3200 μM N-acetylcysteine or 400 μM CuDIPS, or 100 μM MnTBAP, or 800 μM D,L-Buthionine-[S,R]-sulfoximine, or 400 μM aminotriazol, or 20 μM PEG-catalase. Cells were then washed three times in PBS and incubated with 100 μM per well of a suspension of *P. acnes* (Abs at 600 nm = 0.5) for 24 h in complete medium. After three washes in PBS, cells were incubated with 10 μM YO-PRO-1 for 30 min. Cell death was measured by reading at an excitation wavelength of 480 nm and an emission wavelength of 525 nm. The level of cell death was estimated in each sample by the fluorescence intensity [arbitrary units] reflecting the disruption of the cell membranes.

Measurement of cell death by TUNEL staining

HaCaT cells incubated or not with *P. acnes* were fixed in 3.7% buffered formaldehyde directly onto the 96-well plate. Cells were then subjected to TUNEL assay using the TACS™ TdT-Fluorescein In situ apoptosis detection kit (R&D Systems Inc., Minneapolis, MN) following the manufacturer’s instructions. Briefly, after fixation, cells were permeabilized by Proteinase K and incubated with the reaction mixture containing Terminal deoxynucleotidyl Transferase (TdT) and biotinylated-conjugated dNTPs for 1 h at 37°C. After washing, biotinylated nucleotides were detected by incubating cells with a streptavidin-fluorescein conjugate for 20 min at room temperature in the dark. After removing the excess of fluorescein conjugate by washing in 0.1% Tween 20 in PBS, labeled DNA was examined under a fluorescence microscope.

Cell viability assays

Crystal violet staining was used to determine the number of adherent cells in 96-well plates. Briefly, after incubation with the test compound, the culture medium was discarded and the cells were incubated with a 0.05% crystal violet solution (Sigma) for 30 min at room temperature. After washing with PBS, 100% methanol was added, and the absorbance was measured spectrophotometrically at 540 nm on an ELISA multwell reader. The MTT (1-(4,5-dimethylthiazol-2-yl)-3-(3-hydroxy-1H,2H-indol-2yl)-2,5-diphenylformazan) assay was performed to test cell viability in 96-well plates. The cells were incubated with a 0.2% MTT solution in cell culture medium for 4 h at 37°C. The MTT solution was then discarded and DMSO added to solubilize the MTT-formazan crystals produced in living cells. After thorough mixing, the absorbance was measured at 540 nm.

Measurement of nitrosyl residues by flow cytometry

HaCaT cells were incubated in presence of two *P. acnes* concentrations (Abs at 600 nm = 0.2 and 1.0) for 18 h at 37°C. Cells were washed twice with cold PBS, harvested after trypsinization and fixed with 3.5% paraformaldehyde in PBS for 15 min at 4°C. After washing in PBS, cells were permeabilized in 1% NP-40 and incubated with FITC-labelled anti 3-nitrotyrosine monoclonal antibody (Clone 1A6, Upstate Cell Signalling Solutions, Lake Placid, NY, USA) at 6.4 μg/ml for 1 h at 4°C. After three washes, cells were pelleted and suspended in 1 ml of PBS, then analyzed by flow cytometry (FACScalibur, Becton Dickinson, Mountain View, CA). Control experiments were performed by incubating the cells with a FITC-labelled irrelevant IgG of the same isotype under the same conditions as described above.

ELISA

Human IL-8 protein concentration was measured in the supernatants of HaCaT cells using the Quantikine™ human IL-8 immunoassay kit (R&D Systems Inc., Minneapolis, MN) according to the manufacturer’s instructions. We used serial dilutions of recombinant human IL-8 for standard curve. The optical density was determined at 450 nm at a wavelength correction of 540 nm.

RNA isolation and RT-PCR

Total RNA was isolated with Trizol® reagent (Invitrogen) according to the manufacturer’s instructions and treated with DNase I (Roche Molecular Biochemical). RNA concentration was determined by reading the absorbance at 260 nm. Complementary DNA (cDNA) was generated from 2 μg total RNA using the oligo(dT) primer (MWG Biotechnol, Les Ulis, France) and 1.6 unit of AMV reverse transcriptase (Promega, Madison, WI, USA) and then used as template for standard PCR. Standard amplification was carried out using Taq DNA polymerase (Invitrogen) in 25 μl final volume with the cycling conditions set at 94°C for 3 min followed by 35 cycles of 94°C for 1 min, 62°C for 1 min and 72°C for 1 min and ending by an elongation at 72°C for 7 min. Primers amplified a 259 and 113 bp fragment of iNOS and GAPDH cDNA, respectively. Primers used were: iNOS sense 5'-CGGTGCTGTTATCTCTTACGGAGG-3', iNOS reverse 5'-GTGAA-GGTCGCCAGTCACG-3', GAPDH sense 5'-TGAGGTCAATTGAAGGGGTC-3'.

Blocking experiments

HaCaT cells were grown on two separate 96-well plates and pre-incubated with neutralizing anti-human TLR-2 mAb (eBioscience, San Diego, California) and anti-human CD36 monoclonal antibody FA6-152 (Hycult biotechnologies b.v.) or isotype-matched control-purified mouse IgG antibodies (10 μg/ml) (Caltag) (10 μg/ml) diluted in supplemented DMEM media for IL-8 measurement, and in sterile PBS pH 7.4 for O2− quantitation at 37°C in 5% CO2 atmosphere. After 2 h, cells were incubated for 30 min with 100 μM DHE at 5 μM final concentration. After three washes, cells were incubated with 100 μM of a suspension of *P. acnes* (Abs at 600 nm = 1.0) in PBS and fluorescence intensity was recorded every 30 min over the 3 h time-frame stimulation. After 3 h of incubation, supernatants were collected and used for IL-8 quantitation as described below.

Generation of O2− solution

A 10 mM O2− solution was obtained by mixing 16 mM dicyclohexano-18-crown-6 with 9.8 mM KO2 in DMSO. The solution was allowed to stabilize for 1 h at room temperature with stirring and protected from light before use. The relative sensitivity of HaCaT and of *P. acnes* was then tested against serial dilution of the O2− solution.

Statistical analysis

The statistical significance of differences between data from experimental groups was analyzed by paired Student’s-test. A level of P≤0.05 was accepted as significant. Statistical significance is indicated by * (P≤0.05), ** (P≤0.01), and *** (P≤0.001), respectively.

Accession numbers of genes and proteins

Accession	Gene/Protein	Description
P01375	IL-8	(a)
Q9Y2C9	TNF-α	(b)
P101584	IL-1β	(c)
P101451	IL-8	(d)
P16671	ERK	(e)
P28482	GpX	(f)
P01583	IL-1a	(g)
P35228	MnSOD	(h)
P04040	CD-36	(i)
P32927	IL-1α	(j)
P01603	TLR2	(k)
P15835	IL-1β	(l)
P32928	IL-8	(m)
Q9Y358	Gox1	(n)
Q16539	TLR4	(o)
Q9Y2C9	TNF-α	(p)
P01375	IL-8	(q)
Supporting Information

Figure S1 Effect of anti-acne treatments on the cell viability. HaCaT cells were untreated (black bar) or incubated for 18 h with *P. acnes* alone (MOI of 50) (gray bar) or with *P. acnes* in the presence of nicotinamide, zinc sulfate, doxycycline, nitroimidazole, retinol, retinoic acid, and isoretinoin at 0.01% (dark gray bar) or 0.05% (white bar). Cell viability was estimated by the crystal violet assay as described in Materials and Methods. Data are means ± SD of two separate experiments.

Found at: doi:10.1371/journal.ppat.1000527.s001 (1.13 MB TIF)

Figure S2 Toxicity of anti-acne treatments on the keratinocytes. HaCaT cells were untreated (black bar) or incubated for 18 h with *P. acnes* alone (MOI of 50) (gray bar) or in the presence of nicotinamide, zinc sulfate, doxycycline, nitroimidazole, retinol, retinoic acid, or isoretinoin alone at 0.01% (dark gray bar) or 0.05% (white bar). Cell death was estimated spectrophotometrically using YO-PRO-1 as described in Materials and Methods. Data are means ± SD of two separate experiments.

Found at: doi:10.1371/journal.ppat.1000527.s002 (1.36 MB DOC)

Figure S3 Detection of Nox1 expression level in HaCaT treated with Nox1A-siRNA. HaCaT cells were pretreated with Nox1A-

References

1. Ingham E (1999) The immunology of *Propionibacterium acnes* and acne. Curr Opin Infect Dis 12: 191–197.
2. Vossels BR, Yang S, Leyden JJ (1995) Induction of proinflammatory cytokines by a soluble factor of *Propionibacterium acnes*: implications for chronic inflammatory acne. Infect Immun 63: 3158–3165.
3. Nagi I, Pivarcis A, Kowec A, Scrull M, Urban E, et al. (2003) Distinct strains of *Propionibacterium acnes* induce selective human beta-defensin-2 and interleukin-8 expression in human keratinocytes through toll-like receptors. J Invest Dermatol 124: 931–938.
4. Graham GM, Farrar MD, Cruse-Sawyer JE, Holland KT, Ingham E (2004) Proinflammatory cytokine production by human keratinocytes stimulated with *Propionibacterium acnes* and *P. acnes* GroEL. Br J Dermatol 153: 421–429.
5. Schaller M, Loewenstein M, Borelli C, Jacob K, Vogeser M, et al. (2003) Induction of a chemotactic proinflammatory cytokine response after stimulation of keratinocytes with *Propionibacterium acnes* and cocroporphyrin III. Br J Dermatol 153: 66–71.
6. Yang CS, Shin DM, Lee HM, Son JW, Lee SJ, et al. (2008) ASK1 and p38 MAPK via p17phox activation is essential for inflammatory responses during tuberculosis via TLR2-ROS signalling. Cell Microbiol 10: 741–754.
7. Malo YE, Martin R, Aubert L, Billoni N, Collin C, et al. (2006) Induction of the skin endogenous protective mitochondrial MnSOD by *Vitexillosa filiformis* extract. Int J Cosmet Sci 28: 277–277.
8. Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279: 105–112.
9. Chang H, Oehrl W, Elsner P, Thiele JJ (2003) The role of H2O2 as a mediator of the histological changes of papules and pustules in acne vulgaris. Br J Dermatol 153: 1105–1113.
10. Kiricha S, Ntagali A, Knol AG, Jarrousse V, Quereshi G, et al. (2000) Inhibition of toll-like receptors by *Propionibacterium acnes*. Br J Dermatol 153: 1105–1115.
11. Kim J, Olooa MT, Krutzik SR, Takeshita D, Umemoto S, et al. (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169: 1355–1341.
12. Trivedi NR, Gilliland KL, Zhao W, Liu W, Thiboutot DM (2006) Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol 126: 1071–1079.
13. Schmitt M, Ortegon AM, Mao-Gan M, Elias PM, Feingold KR, et al. (2005) Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol 125: 1174–1181.
14. Nishimura S, Akaji M, Yoshioka M, Hayakawa S, Sawamura T, et al. (2004) Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-κappaB. Atherosclerosis Cartilage 12: 568–576.
15. Cho S, Park EM, Febrario M, Anzaher J, Park L, et al. (2008) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 25: 2504–2512.
16. Triantafilloiu M, Gamper FG, Haston RM, Mourati MA, Morath S, et al. (2006) Membrane binding of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD96 and intracellular targeting. J Biol Chem 281: 31002–31011.
17. Nagoska M, Kamiyango K, Fuji H, Uchikawa K, Sekikawa I, et al. (1985) Structure of acidic polysaccharide from cell wall of *Propionibacterium acnes* strain c7. J Biochem 97: 1609–1617.
18. Aitken GR, Henderson JR, Chang SC, McNeil CJ, Birch-Machin MA (2007) Detection and quantitation of nitrotyrosine residues in proteins: in vivo marker of peroxynitrite. Methods Enzymol 415: 185–194.
19. Delconstantino G, Villiotou V, Stavridis J (1996) Increase of particulate nitric oxide synthase activity and peroxynitrite synthesis in UVB-irradiated keratinocyte membranes. Biochem J 320 (Pt 3): 997–1003.
20. Pivarcis A, Bedai L, Rebi H, Kenderian-Stein A, Kowek A, et al. (2003) Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol 15: 721–730.
21. Kollisch G, Kalali BN, Voecker V, Wallrich B, Behrenh H, et al. (2005) Various members of the Toll-like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology 114: 531–541.
22. Jugeau S, Tenaud I, Knol AG, Jarrousse V, Quereshi G, et al. (2000) Induction of toll-like receptors by *Propionibacterium acnes*. Br J Dermatol 153: 1105–1115.
23. Kim J, Olooa MT, Krutzik SR, Takeshita D, Umemoto S, et al. (2002) Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol 169: 1355–1341.
24. Tripathi NR, Gilliland KL, Zhao W, Liu W, Thiboutot DM (2006) Gene array expression profiling in acne lesions reveals marked upregulation of genes involved in inflammation and matrix remodeling. J Invest Dermatol 126: 1071–1079.
25. Schmitt M, Ortegon AM, Mao-Gan M, Elias PM, Feingold KR, et al. (2005) Differential expression of fatty acid transport proteins in epidermis and skin appendages. J Invest Dermatol 125: 1174–1181.
26. Nishimura S, Akaji M, Yoshioka M, Hayakawa S, Sawamura T, et al. (2004) Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-κappaB. Atherosclerosis Cartilage 12: 568–576.
27. Cho S, Park EM, Febrario M, Anzaher J, Park L, et al. (2008) The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J Neurosci 25: 2504–2512.
28. Triantafilloiu M, Gamper FG, Haston RM, Mourati MA, Morath S, et al. (2006) Membrane binding of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD96 and intracellular targeting. J Biol Chem 281: 31002–31011.
29. Nagoska M, Kamiyango K, Fuji H, Uchikawa K, Sekikawa I, et al. (1985) Structure of acidic polysaccharide from cell wall of *Propionibacterium acnes* strain c7. J Biochem 97: 1609–1617.
30. Whale GA, Suntiflé IC, Morrison AR, Pretswell EL, Emmison N (2004) Purification and characterisation of lipoygenase macrophamphiles from *Propioni-

Author Contributions

Conceived and designed the experiments: PAG FB. Performed the experiments: PAG CC JR CN. Analyzed the data: PAG ND FB. Contributed reagents/materials/analysis tools: PAG CC JR BW ND FB. Wrote the paper: PAG BW ND FB.
34. Kinningham KK, Cardozo ZA, Cook C, Cole MP, Stewart JC, et al. (2008) Alltrans-retinoic acid induces manganese superoxide dismutase in human neuroblastoma through NF-kappaB. Free Radic Biol Med 44: 1610–1616.

35. Peterson GL (1983) Determination of total protein. Methods Enzymol 91: 93–119.

36. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, et al. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.

37. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, et al. (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65: 948–956.

38. Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, et al. (2006) Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 98: 236–244.

39. Servettaz A, Guilpain P, Goulvestre C, Chereau C, Hercend C, et al. (2007) Radical oxygen species production induced by advanced oxidation protein products predicts clinical evolution and response to treatment in systemic sclerosis. Ann Rheum Dis 66: 1202–1209.