Distribution law for twin primes amongst naturals

Boris B. Benyaminov
6 Moa St, Belmont, North Shore,
Auckland, Postal Code: 0622, New Zealand
boris.b.b@hotmail.com

Abstract
A hypothesis is put forward regarding the function $\pi_2(x)$ which describes the distribution of twin primes in the set of natural numbers. The function $\pi_2(x)$ is tested by evaluation and an empirical $\pi^*_2(x)$ is arrived at, which is shown to be highly accurate. Several other questions are also addressed.

Keywords: twin prime, distribution, natural numbers.
Mathematics Subject Classification 2010: 11A41, 11M26.

1 Introduction

In 1923, Hardy and Littlewood proposed a hypothesis for the distribution of twin primes on the interval $(1, x)$ [1]:

\[\pi_2(x) \sim 2 \prod_{p=3}^{\infty} \left(1 - \frac{1}{(p-1)^2}\right) \frac{x}{\ln x}. \] (1.1)

Later on, the following expression was put forward [2]:

\[\pi_2(x) \sim 2 \prod_{p=3}^{\infty} \left(1 - \frac{1}{(p-1)^2}\right) \frac{x}{(\ln x)^2} \prod_{p=3}^{\infty} \frac{p-1}{p-2}. \] (1.2)

The asymptotic representations (1.1) and (1.2) of the very important function $\pi_2(x)$ are too complicated to be used in practice. In this article I propose a new law for the distribution of twin primes among the naturals in the form of a much simpler $\pi_2(x)$, based on composition with the function $\pi(x)$.

2 Results

Recall that $\pi(x)$ [or $\pi_2(x)$] is the number of primes (twin primes) not larger than x. The following hypothesis is proposed for the distribution of twin primes in the set of all naturals:
Hypothesis 2.1. Twin primes are distributed among prime numbers in the same way that primes are distributed among naturals. In other words,
\[\pi_2(x) = \pi(\pi(x)). \] (2.3)

Table 1 gives some values of the functions \(\pi_2(x)\) and \(\pi(\pi(x))\) for \(x \leq 10^6\). The values of \(\pi_2(x)\) were computed according to Lehmer’s tables [3]. From the results in Table 1 it is safe to say that the ratio of \(\pi_2(x)\) to \(\pi(\pi(x))\) is either exactly one or differs from unity by some negligibly small amount.

\(x\)	\(\pi(x)\)	\(\pi_2(x)\)	\(\pi(\pi(x))\)	\(\frac{\pi_2(x)}{\pi(\pi(x)))}\)
25	9	4	4	1
50	15	6	6	1
75	21	8	8	1
125	30	10	10	1
150	35	12	11	1.091
200	46	15	14	1.071
300	62	19	18	1.056
400	78	21	21	1
500	95	24	24	1
700	125	30	30	1
900	154	35	36	0.972
1350	217	46	47	0.979
1500	239	49	52	0.942
2000	303	60	62	0.968
3000	430	81	82	0.988
4000	550	102	101	1.010
5000	669	123	121	1.016
10,000	1,226	201	201	1
15,000	1,754	268	273	0.982
20,000	2,262	338	335	1.009
25,000	2,762	403	402	1.002
30,000	3,245	462	457	1.011
40,000	4,203	585	575	1.017
50,000	5,133	697	685	1.018
100,000	9,592	1,224	1,184	1.034
200,000	17,984	2,159	2,062	1.047
500,000	41,538	4,343	4,343	1.035
1,000,000	78,498	7,902	7,902	1.033

Table 1: Testing hypothesis \((2.3)\) for a few selected values of \(x \leq 10^6\).
Next, we will require the upper and lower bounds for \(\pi(x) \) given in [4]:

\[
\frac{2x}{3 \ln x} < \pi(x) < \frac{8x}{5 \ln x}.
\] (2.4)

Theorem 2.1. For all \(x \geq 5 \) for which (2.4) holds, we have

\[
A < \pi_2(x) = \pi(\pi(x)) < B,
\] (2.5)

where

\[
A = \frac{4x}{9 \ln x [\ln x - \ln(\ln x) - \ln 1.5]},
\]

\[
B = \frac{64x}{25 \ln x [\ln x - \ln(\ln x) + \ln 1.6]}.
\]

Proof. The function \(f(x) = x/\ln x \) is monotonically increasing for \(x \geq 3 \). From (2.4) we have

\[
\frac{2\pi(x)}{3 \ln [\pi(x)]} < \pi_2(x) = \pi(\pi(x)) < \frac{8\pi(x)}{5 \ln [\pi(x)]}.
\] (2.6)

If we now consider the expression \(\frac{\pi(x)}{\ln[\pi(x)]} \) as a function of \(\pi(x) \), we can see it is also monotonically increasing. In our case, \(\pi(x) \geq 3 \) as \(x \geq 5 \) (by theorem requirements). Taking this into consideration and using the right-hand side of inequality (2.4)

\[
\pi_2(x) = \pi(\pi(x)) < \frac{8\pi(x)}{5 \ln [\pi(x)]} < \frac{8 \cdot \frac{8x}{5 \ln x}}{5 \ln \left(\frac{8x}{5 \ln x} \right)} = \frac{64x}{25 \ln x [\ln x - \ln(\ln x) + \ln 1.6]} = B.
\]

Similarly, by using the left-hand side of inequality (2.4) we obtain the lower bound:

\[
\pi_2(x) = \pi(\pi(x)) > \frac{2\pi(x)}{3 \ln [\pi(x)]} > \frac{2 \cdot \frac{2x}{3 \ln x}}{3 \ln \left(\frac{2x}{3 \ln x} \right)} = \frac{4x}{9 \ln x [\ln x - \ln(\ln x) - \ln 1.5]} = A.
\]

Thus, from (2.6) we have

\[
A < \frac{2\pi(x)}{3 \ln [\pi(x)]} < \pi_2(x) = \pi(\pi(x)) < \frac{8\pi(x)}{5 \ln [\pi(x)]} < B,
\]

precisely inequality (2.5), as required. \(\square \)

In Table 2 we check inequality (2.5) for several values of \(x \).

Next let us look at the density of twin primes among the primes.

Theorem 2.2. Almost all primes are not twins, so

\[
\pi_2(x) = o(\pi(x)).
\] (2.7)
x	A	$\pi_2(x)$	B
50	3	6	11
125	4	10	18
200	5	15	23
300	7	19	31
400	8	21	36
500	9	24	42
700	11	30	53
1,000	14	35	67
5,000	44	123	219
10,000	73	201	372
25,000	148	403	762
50,000	256	697	1,328
100,000	445	1,224	2,331
500,000	1,700	4,494	8,853
1,000,000	2,983	8,164	15,887

Table 2: Testing inequality (2.5) for a few selected values of $x \leq 10^6$.

Proof. Assume that hypothesis (2.3) is true. Then, denoting $y = \pi(x)$, we have

$$0 \leq \frac{\pi_2(x)}{\pi(x)} = \frac{\pi(\pi(x))}{\pi(x)} = \frac{\pi(y)}{y}.$$

We can find an upper bound for $\pi(y)/y$ by the sieve method, taking the set $\{y\}$ to contain no repeated values.

Let $\varphi(y, r)$ be the number of naturals no larger than y and not divisible by any of the first r primes P_1, P_2, \ldots, P_r. Then

$$\varphi(y, r) = \sum_{d \mid P_1P_2\ldots P_{\pi(\sqrt{y})}} \mu(d) \left\lfloor \frac{y}{d} \right\rfloor, \quad (2.8)$$

where $\mu(d)$ is the Mobius function and $d \mid P_1 \ldots P_r$ means all d not divisible by P_1 to P_r. It is clear that

$$\pi(y) \leq \varphi(y, r) + r. \quad (2.9)$$

We next drop the floor operator in (2.8), and note that there are 2^r terms being summed. This means that the resulting expression has an error no larger than 2^r, and by (2.9) we subsequently get

$$\pi(y) \leq \sum_{d \mid P_1P_2\ldots P_{\pi(\sqrt{y})}} \mu(d) \left\lfloor \frac{y}{d} \right\rfloor + r \leq y \times \sum_{d \mid P_1P_2\ldots P_{\pi(\sqrt{y})}} \frac{\mu(d)}{d} + r + 2^r = y \prod_{P \leq P_r} \left(1 - \frac{1}{P-1}\right) + r + 2^r < y \prod_{P \leq P_r} \left(1 - \frac{1}{P-1}\right) + 2^{r+1},$$
because $r < P_r < 2^r$. Furthermore, from the inequality
\[
\prod_{P \leq x} (1 - P^{-1})^{-1} > \ln x,
\]
we find
\[
\pi(y) < \frac{y}{\ln P_r} + 2^{r+1} < \frac{y}{\ln r} + 2^{r+1}.
\]
Choose $r = c \ln y$, $c < 1/\ln 2$. Then $2^r < y$ and
\[
\pi(y) < \frac{y}{\ln (c \ln y)} + 2y^{\ln 2} = \frac{y}{\ln c + \ln \ln y} + 2y^{\ln 2},
\]
where $c \ln 2 < 1$. Dividing through by y, we get
\[
0 \leq \frac{\pi(y)}{y} < \frac{1}{\ln c + \ln (\ln y)} + \frac{2}{y^{1-c \ln 2}}.
\]
As $y \to \infty$, the right-hand side of the above goes to zero, which implies the validity of equation (2.7). \hfill \square

Corollary 2.1. Since we know that $\pi(x) = o(x)$, from Theorem 2.2 it follows that $\pi_2(x) = o(x)$. In fact,
\[
\lim_{x \to \infty} \frac{\pi_2(x)}{x} = \lim_{x \to \infty} \frac{\pi_2(x)}{\pi(x)} \cdot \lim_{x \to \infty} \frac{\pi(x)}{x} = 0.
\]

Next, we move on to construct an empirical function for the law of distribution of twin primes.

Denote by η_P the density of primes in the reals, and by η_{PP} the density of twin primes in the primes, i.e. $\eta_P = \pi(x)/x$ and $\eta_{PP} = \pi_2(x)/\pi(x)$. Based on $\pi(x) = o(x)$ and (2.7), the densities η_P and η_{PP} go to zero as $x \to \infty$, but the ratio
\[
h = \frac{\eta_{PP}}{\eta_P}
\]
remains bounded in a well-defined, constant interval (see Table 3). We can obtain a rough estimate of an upper bound for $h > 0$; for this we need the inequality $\pi(x) > x/\ln x$ and the right-hand side of (2.5). We get
\[
h = \frac{x \pi_2(x)}{[\pi(x)]^2} < \frac{64x^2}{(\ln x)^2 \cdot 25 \ln x (\ln x - \ln(\ln x) + \ln 1.6)} \cdot \frac{2.56 \ln x}{\ln x - \ln(\ln x) + \ln 1.6} < \frac{2.56 \ln x}{\ln x - \ln(\ln x)} < 5.12.
\]
Thus, $0 < h < 5.12$. This fact allows one to construct an empirical function $\pi_2^*(x)$ for the number of twin primes on $(2, x)$. As is evident from Table 3, $\pi_2^*(x)$ defined below is rather accurate.
We obtain \(\pi^*_2(x)/\pi(x) = h_c \cdot \pi(x)/x \), leading to

\[
\pi^*_2(x) = \left[\frac{h_c \pi^2(x)}{x} \right],
\]

(2.11)

where \(h_c = 1.325067 \ldots \) – the mean value of \(h \) for \(x \leq 10^6 \) and we round the right-hand side of (2.11) to the nearest integer.

In Table 3 I test the accuracy of \(\pi^*_2(x) \) for \(50 \leq x \leq 10^6 \). Nevertheless, (2.11) is applicable for \(x \geq 10^6 \), too. For example, there are 183,728 twin primes less than or equal to \(x = 37 \cdot 10^6 \), while \(\pi^*_2(x) = 183,463 \) which gives a relative error of \(\delta = 0.0014 \) (see Table 3).

| \(x \) | \(h \) | \(\pi_2(x) \) | \(\pi^*_2(x) \) | \(|\Delta| \) | \(\frac{|\Delta|}{\pi_2(x)} \) |
|---------|-----------|----------------|-----------------|--------|----------------|
| 50 | 1.333336 | 6 | 6 | 0 | 0 |
| 150 | 1.346938 | 11 | 11 | 0 | 0 |
| 500 | 1.329639 | 24 | 24 | 0 | 0 |
| 1,500 | 1.286742 | 49 | 50 | 1 | 0.0204 |
| 2,000 | 1.307061 | 60 | 61 | 1 | 0.0167 |
| 3,000 | 1.314223 | 81 | 82 | 1 | 0.0123 |
| 4,000 | 1.348760 | 102 | 100 | 2 | 0.0196 |
| 5,000 | 1.374114 | 123 | 119 | 4 | 0.0325 |
| 10,000 | 1.330737 | 201 | 200 | 1 | 0.0050 |
| 15,000 | 1.306672 | 268 | 274 | 6 | 0.0224 |
| 20,000 | 1.321178 | 338 | 339 | 1 | 0.0030 |
| 25,000 | 1.320680 | 403 | 404 | 1 | 0.0025 |
| 30,000 | 1.316236 | 462 | 465 | 3 | 0.0065 |
| 40,000 | 1.324637 | 585 | 585 | 0 | 0 |
| 50,000 | 1.322696 | 697 | 698 | 1 | 0.0014 |
| 100,000 | 1.330341 | 1,224 | 1,219 | 5 | 0.0041 |
| 200,000 | 1.335088 | 2,159 | 2,143 | 16 | 0.0074 |
| 500,000 | 1.302302 | 4,494 | 4,573 | 79 | 0.0176 |
| 1,000,000 | 1.342908 | 8,164 | 8,165 | 1 | 0.0001 |

Table 3: Testing expression (2.11) for a few selected values of \(x \leq 10^6 \).

Acknowledgements

The author would like to thank Sophie S. Shamailov for translating and typing the article.
References

[1] G.H. Hardy and J.E. Littlewood, *Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Mathematica, 44, 1, pp. 1-70 (1923).

[2] A.F. Lavrik, *On the theory of distribution of primes based on the method of trigonometric sums of I.M. Vinogradov*, Proceedings of the Mathematical Institute, USSR Academy of Sciences, 64, pp. 90-125 (1961).

[3] D.N. Lehmer, *List of primes numbers from 1 to 10,006,721*, Carnegie Institution Washington, D.C., 1914.

[4] E. Trost, *Primzahlen*, Verlag Birkhäuser, Basel-Stuttgart (1953).