Local spinfoam expansion in loop quantum cosmology

Adam Henderson1, Carlo Rovelli2, Francesca Vidotto2,3 and Edward Wilson-Ewing1

1 Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA 16802-6300, USA
2 Centre de Physique Théorique de Luminy4, Case 907, F-13288 Marseille, France
3 Dipartimento di Fisica Nucleare e Teorica, Università degli Studi di Pavia and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, via A. Bassi 6, I-27100 Pavia, Italy

E-mail: henderson@gravity.psu.edu, rovelli@cpt.univ-mrs.fr, vidotto@cpt.univ-mrs.fr and wilsonewing@gravity.psu.edu

Received 2 October 2010, in final form 19 November 2010
Published 21 December 2010
Online at stacks.iop.org/CQG/28/025003

Abstract

The quantum dynamics of the flat Friedmann–Lemaître–Robertson–Walker and Bianchi I models defined by loop quantum cosmology have recently been translated into a spinfoam-like formalism. The construction is facilitated by the presence of a massless scalar field which is used as an internal clock. The implicit integration over the matter variable leads to a nonlocal spinfoam amplitude. In this paper we consider a vacuum Bianchi I universe and show that by choosing an appropriate regulator a spinfoam expansion can be obtained without selecting a clock variable and that the resulting spinfoam amplitude is local.

PACS numbers: 04.60.Pp, 04.60.Kz, 98.80Qc

1. Introduction

The spinfoam formalism [1–4] is a covariant approach to quantum gravity closely related to canonical loop quantum gravity (LQG) [5–9]. There are numerous results on the relation between the two languages, for example, in the context of the 3D theory [10], of the full Hamiltonian theory [11–14], and in the context of cosmology [15–17], but more clarity is still needed.

The relation between the canonical and the spinfoam languages can be studied in the simplified context of cosmology. The canonical quantum dynamics of cosmology is well under control in the loop quantization [18–21], and a spinfoam expansion has been derived...
from the canonical theory for the flat Friedmann–Lemaître–Robertson–Walker (FLRW) [22, 23] and Bianchi type I [24] cosmologies. In both cases, a massless scalar field was included in the model. This matter field plays two related roles. First, it allows the theory to be straightforwardly deparametrized by treating it as an internal clock variable. Second, it acts as a regulator since the implicit integration over it turns distributional transition amplitudes into regular functions. This procedure, however, leads to spinfoam amplitudes that are nonlocal in time. A nonlocal spinfoam expansion can still be an effective computational tool, but does not match the structure of the spinfoam expression of the general theory [2, 3, 25–27], where locality is a foundational principle and full covariance under the choice of clock-time variables is strictly implemented.

In this paper we study how to obtain a path integral formulation for the loop quantum cosmology (LQC) of the vacuum Bianchi I model maintaining full covariance under the choice of clock-time variables, namely without deparametrizing the theory. We work without a matter field and introduce a regulator \(\delta \) to control the distributional aspect of the transition amplitudes. The physical inner product we define is accurate up to some small error which vanishes as \(\delta \to 0 \). The idea of such a regulator was introduced in [28] for the case where the spectrum of the eigenvalues of the Hamiltonian constraint operator is discrete, but the regulator used there is not appropriate in the continuous case. In this paper we consider two different regulators which we call the Gaussian and the Feynman regulators. The choice of the regulator is non-trivial: we show that only the second leads to local amplitudes.

The paper is organized as follows: in section 2 we briefly review the canonical theory for the LQC of vacuum Bianchi I models [21]. In section 3 we derive two different regulated spinfoam expansions for that model and we conclude with a discussion of our results.

2. The loop quantum cosmology of the vacuum Bianchi type I model

We consider vacuum Bianchi I spacetimes, possibly with a nonzero cosmological constant \(\Lambda \). The metric for a Bianchi I spacetime is

\[
\text{d}s^2 = -N^2 \text{d}t^2 + a_1(t)^2 \text{d}x_1^2 + a_2(t)^2 \text{d}x_2^2 + a_3(t)^2 \text{d}x_3^2,
\]

where \(N \) is the lapse and \(a_i \) are the three directional scale factors. In previous treatments of the Bianchi I model in LQC, the lapse has been chosen to be \(N = |a_1 a_2 a_3| \) and we make the same choice here.

We introduce a fiducial cell in order to deal with trivial divergences in the canonical analysis (the resulting physics is independent of the choice of the cell). We use a cell adapted to the symmetries of the spacetime: a rectangular cell with lengths \(\ell_1, \ell_2, \) and \(\ell_3 \) with respect to the fiducial metric \(\text{d}s_0^2 = \text{d}x_1^2 + \text{d}x_2^2 + \text{d}x_3^2 \).

The variables used in LQC are the Ashtekar connection \(A^i_a \) and the densitized triad \(E^a_i \); in Bianchi I spacetimes they can be parametrized as follows [21]:

\[
A^i_a = \frac{c^i}{\ell^i} (\text{d}x^i)_a \quad \text{and} \quad E^a_i = \frac{p_i \ell_i}{V_0} \left(\frac{\partial}{\partial x_i} \right)^a,
\]

where there is no sum over the \(i \) and \(V_0 = \ell_1 \ell_2 \ell_3 \). The Poisson brackets are given by

\[
\{ c_i, p_j \} = 8\pi G\gamma \delta_{ij},
\]

and the \((c, p)\) variables are related to the ones in the metric by

\[
p_1 = \text{sgn}(a_1) a_2 a_3 \ell_2 \ell_3 \quad \text{and} \quad c_1 = \frac{\gamma \ell_1}{NV_0} \frac{a_1}{\text{d}t},
\]

where \(\gamma \) is the Barbero–Immirzi parameter. The other relations can be obtained via permutations.
Following the ideas of LQG, the fundamental variables of the kinematical Hilbert space are holonomies of the connection and area fluxes of the densitized triads rather than the connection and densitized triads themselves. Accordingly, only operators corresponding to complex exponentials of c_i are defined in the quantum theory, no \hat{c}_i operator exists. Since the p_i correspond to the physical areas of the fiducial cell, they can be directly promoted to be operators. See [21] for the details of the construction of the kinematical Hilbert space. In the p_i-representation the resulting Hilbert space is composed of functions $\psi(p_1, p_2, p_3)$ with a finite inner product

$$|\psi|^2 = \sum_{p \in \mathbb{R}^3} \bar{\psi}(p_1, p_2, p_3)\psi(p_1, p_2, p_3).$$

On these states p_i act via multiplication and the holonomies e^{ic_i} act as translations. Finally, the kinematical inner product of basis states is

$$\langle p_1, p_2, p_3 | p'_1, p'_2, p'_3 \rangle = \delta_{p_1, p'_1} \delta_{p_2, p'_2} \delta_{p_3, p'_3},$$

note that the δ’s are Kronecker delta functions, not Dirac delta distributions.

The Hamiltonian constraint operator has been derived in [21]. Before writing the explicit form of the operator itself, we make a change of coordinates which simplifies its form. We introduce the λ_i variables defined as

$$p_i = \text{sgn}(\lambda_i) (4\pi \gamma \sqrt{\Delta \ell^2_{Pl}})^{2/3} \lambda_i^2,$$

where $\Delta \ell^2_{Pl} = 4\sqrt{3\pi\gamma} \ell^2_{Pl}$ is the area gap in LQC, the minimum eigenvalue of the area operator. Next, let

$$v = 2\lambda_1 \lambda_2 \lambda_3,$$

which is proportional to the physical volume of the fiducial cell.

Any state5 can now be described by a ket $\langle \lambda_1, \lambda_2, v \rangle$. The kinematical inner product is

$$\langle \lambda_1, \lambda_2, v | \lambda'_1, \lambda'_2, v' \rangle = \delta_{\lambda_1, \lambda'_1} \delta_{\lambda_2, \lambda'_2} \delta_{v, v'}.$$

As shown in [21], the Hamiltonian constraint operator for the vacuum Bianchi I model (with a minor modification in order to include the cosmological constant Λ) is6

$$\hat{\mathcal{H}}_{\Lambda} \Psi(\lambda_1, \lambda_2, v) = \frac{\pi \hbar \ell^2_{Pl}}{16} \left[(v + 2)\sqrt{v(v + 4)} \Psi^*_4(\lambda_1, \lambda_2, v) - v(v - 2) \Psi^*_0(\lambda_1, \lambda_2, v)
- v(v - 2) \Psi^*_0(\lambda_1, \lambda_2, v) + (v - 2)\sqrt{v^2 - 4} \Psi^*_4(\lambda_1, \lambda_2, v)
+ 4\gamma^2 \Delta \ell^2_{Pl} v^2 \Psi(\lambda_1, \lambda_2, v) \right],$$

where the Ψ^*_n are defined as follows:

$$\Psi^*_n(\lambda_1, \lambda_2, v) = \Psi \left(\frac{v \pm n}{v \pm n}, \frac{v \pm 2}{v} \cdot \lambda_1, \lambda_2, v \pm n \right) + \Psi \left(\frac{v \pm n}{v \pm n}, \frac{v \pm 2}{v} \cdot \lambda_2, \lambda_1, v \pm n \right) + \Psi \left(\frac{v \pm n}{v \pm n}, \frac{v \pm 2}{v} \cdot \lambda_1, \lambda_2, v \pm n \right) + \Psi \left(\frac{v \pm n}{v \pm n}, \frac{v \pm 2}{v} \cdot \lambda_2, \lambda_1, v \pm n \right).$$

The Hamiltonian constraint defines the physical inner product. There are two ways that have been used to construct the physical inner product in cosmology. The first is to

5 This is not true for states corresponding to singular geometries, but since these states decouple under the dynamics their behavior is trivial and not important for this work.

6 Although in general the variables λ_i and v can be negative as well as positive, it is possible to only consider the positive case due to the parity properties of the wavefunction, see [21] for details. This is what is done here.
'deparametrize' the theory by choosing one of the variables as a time variable, and expressing the dynamics of the other variables with respect to it. This is commonly done in loop quantum cosmology by coupling a massless scalar field to the metric and using it as a clock.

The second possibility, which is the one we use here, is to maintain explicit covariance under the choice of the independent variable and define the physical inner product by 'group averaging'. Heuristically, given a suitable state in the kinematical Hilbert space $|\phi\rangle$, a physical state is obtained by acting on the states with a delta function of the constraint, $|\Phi\rangle_{phy} = \delta(\hat{C}_H)|\phi\rangle$. More precisely, the physical inner product can be defined by the expression

$$\langle \Psi | \Phi \rangle_{phy} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha \langle \psi | e^{i\alpha \hat{C}_H} | \phi \rangle_{kin}. \quad (2.12)$$

Denoting $(\lambda_1, \lambda_2, \nu)$ by $\vec{\lambda}$, the physical inner product between the physical states generated from the kinematic basis states for the vacuum Bianchi I model in LQC is given by

$$\langle \vec{\lambda}_F | \vec{\lambda}_0 \rangle_{phy} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha \langle \vec{\lambda}_F | e^{i\alpha \hat{C}_H} | \vec{\lambda}_0 \rangle_{kin}. \quad (2.13)$$

This expression may contain divergences. In the next section we reformulate it so that it can be computed explicitly.

3. The vertex expansion

In this section we express the physical inner product via a Feynman path integral construction with the form of a vertex expansion, much like spinfoam models. In the first part, we review the procedure presented in [22–24] for the FLRW and Bianchi I models and show how, when it is naively followed, the final result fails to be well defined for vacuum spacetimes. In the following subsections, we present two examples of how one can introduce an external regulator as proposed in [28] in order to obtain a well-defined result.

3.1. The standard procedure

As usual in a Feynman path integral construction, we break up the action of \hat{C}_H into N equal parts (i.e. $\exp(ia \hat{C}_H) = [\exp(ia \hat{C}_H/N)]^N$) and insert a completeness relation between each term:

$$\langle \vec{\lambda}_F | \vec{\lambda}_0 \rangle_{phy} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha \sum_{\lambda_1} \sum_{\lambda_2} \ldots \sum_{\lambda_{N-1}} \langle \vec{\lambda}_F | e^{i\alpha \hat{C}_H} | \vec{\lambda}_{N-1} \rangle \ldots \langle \vec{\lambda}_2 | e^{i\alpha \hat{C}_H} | \vec{\lambda}_1 \rangle \langle \vec{\lambda}_1 | e^{i\alpha \hat{C}_H} | \vec{\lambda}_0 \rangle,$$

(3.1)

where we have introduced $\epsilon = \alpha/N$. Since this relation holds for any N, it is straightforward to take the limit of $N \to \infty$. However, an important point here is that the $N \to \infty$ limit is inside the integral over α.

Now, in the limit of small ϵ (or large N) one immediately sees that (up to higher order terms in ϵ which can safely be neglected)

$$\langle \vec{\lambda} | e^{i\epsilon \hat{C}_H} | \vec{\lambda} \rangle \approx e^{i\epsilon \Theta_{\lambda \lambda}} \quad \text{and} \quad \langle \vec{\lambda} | e^{i\epsilon \hat{C}_H} | \vec{\lambda} \rangle \approx i\epsilon \Theta_{\lambda \lambda},$$

(3.2)

where $\Theta_{\lambda \lambda} = \langle \vec{\lambda} | \hat{C}_H | \vec{\lambda} \rangle$ are the matrix elements of \hat{C}_H and in the second relation we have assumed that $\vec{\lambda} \neq \vec{\lambda}'$.
We now reformulate the inner product in terms of a vertex expansion. This is done by rewriting the sum in terms of the number M of transitions in $\tilde{\lambda}$ that is to say the number of times $\tilde{\lambda}_{i+1} \neq \tilde{\lambda}_i$. Denoting the ‘time’ step of the ith transition by N_i, one finds that (see [22, 23] for a derivation of this result)

\[
\langle \tilde{\lambda}, F | \tilde{\lambda}_0 \rangle_{\text{phy}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{N=0}^{\infty} \sum_{\tilde{\lambda}_{N-1}} \ldots \sum_{\tilde{\lambda}_1} (ie \, \Theta_{\tilde{\lambda}_{N-1}}) \ldots (ie \, \Theta_{\tilde{\lambda}_1})
\]

\[
\times (e^{ie\theta_{\tilde{\lambda}_{N-1}}})_{N-N_M-1} (e^{ie\theta_{\tilde{\lambda}_{N-2}}})_{N_M-N_M-1} \ldots
\]

\[
\times (e^{ie\theta_{\tilde{\lambda}_{i+1}}})_{N_2-N_1-1} (e^{ie\theta_{\tilde{\lambda}_i}})_{N_1-1},
\]

where we have introduced the shorthand

\[
\sum_{\tilde{\lambda}_1} = \sum_{N=0}^{\infty} \sum_{\tilde{\lambda}_{N-1}} \ldots \sum_{\tilde{\lambda}_0} = \sum_{N=0}^{\infty} \sum_{N_M-N_M-1} \ldots \sum_{N_2-N_1-1} = \sum_{N=0}^{\infty} \sum_{N_M-N_M-1} \ldots \sum_{N_2-N_1-1}.
\]

In the $N \to \infty$ limit, the sums become integrals and the vertex expansion for the physical inner product is given by

\[
\langle \tilde{\lambda}, F | \tilde{\lambda}_0 \rangle_{\text{phy}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \sum_{\tilde{\lambda}_1} \ldots \sum_{\tilde{\lambda}_{N-1}} \Theta_{\tilde{\lambda}_{N-1}} \ldots \Theta_{\tilde{\lambda}_{i+1}} A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{N-1}; \alpha),
\]

where

\[
A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{N-1}; \alpha) = i^M \int_0^{\alpha} d\alpha' \int_0^{\alpha'} d\alpha'' \ldots \int_0^{\alpha_{i-1}} d\alpha_i (e^{ie\theta_{\tilde{\lambda}_{i-1}}})^{\alpha_{i-1}-\alpha_i}
\]

\[
\times (e^{ie\theta_{\tilde{\lambda}_{i-1}}})^{\alpha_{i-1}-\alpha_i} \ldots (e^{ie\theta_{\tilde{\lambda}_i}}),
\]

The integrals in this expression can be evaluated; the general solution is (see [23] for details)

\[
A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{N-1}; \alpha) = \left[\prod_{k=1}^{\beta} \frac{1}{(n_k - 1)!} \left(\frac{\partial}{\partial \Theta_k} \right)^{n_k-1} \sum_{\prod_{j \neq i} \Theta_j = \Theta_i} \prod_{i=1}^{\beta} e^{ie\theta_{\tilde{\lambda}_i}} \right].
\]

where Θ_i are the p distinct values of $\Theta_{\tilde{\lambda}_i}$ taken along the history and n_i is the number of times the value Θ_i is repeated. In the simplest case of all the n_i being 1, this gives

\[
A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{N-1}; \alpha) = \sum_{i=0}^{M} e^{ie\theta_{\tilde{\lambda}_i}} \prod_{j \neq i} (\Theta_j - \Theta_i). \tag{3.8}
\]

The last step is to perform the integral over α and express $\langle \tilde{\lambda}, F | \tilde{\lambda}_0 \rangle_{\text{phy}}$ as a sum over M of some function of the intermediate steps $\tilde{\lambda}_i$. However, this requires pulling the infinite sum over M outside of the integral and this causes major difficulties: in the simplest case where all $\tilde{\lambda}_i$ are different, one obtains a sum of Dirac delta distributions, not a function. In the more general cases, the situation is even worse as one obtains derivatives of Dirac delta distributions as well. While this provides a formal perturbative solution to the constraint, it is distributional term by term. This would give a sum over distributions outside of any integral and the vertex expansion presented here would fail to be well defined. This procedure is carried out in the appendix for the sake of completeness.

7 Even though expression (3.7) is well defined in the limit that some of the diagonal matrix elements of the constraint are zero, the integral over α in equation (3.5) is divergent instead of distributional in this limit. For this reason, we have added a cosmological constant to the model since the constraint has no diagonal terms if $\Lambda = 0$. Alternatively, we could have instead considered a different basis in the kinematical Hilbert space or worked with the master constraint.
If a massless scalar field is added then the distributions appear under an integral over the scalar field momentum. Similarly, any degree of freedom with a continuous spectrum introduces integrals which give meaning to the distributions which arise. It is the totally discrete nature of the kinematic Hilbert space in the vacuum case that gives rise to the ill-defined expansion above. As there is no matter in this case, we introduce an external regulator δ in order to obtain functions rather than distributions in the expression of the physical inner product. There are two natural regularizations which we present here: a Gaussian suppression of the integral at infinity and an exponential suppression in the manner of Feynman.

3.2. Gaussian regulator

Recall that the group-averaging procedure can be thought of as putting a Dirac delta distribution in the kinematical inner product. A natural way to regulate the vertex expansion is to approximate the Dirac delta distribution by a Gaussian with a small spread δ. The approximated physical inner product given by this regulated group averaging is

$$\langle \tilde{\lambda}_F | \tilde{\lambda}_0 \rangle_{G,\delta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha \langle \tilde{\lambda}_F | e^{i\alpha \tilde{\lambda}_0 - \delta^2 \alpha^2} | \tilde{\lambda}_0 \rangle_{\text{kin}}.$$ \hspace{1cm} (3.9)

While the projector given by group averaging kills all of the parts of the given wavefunction that do not satisfy the constraint, this regulated ‘projector’ exponentially damps all of the parts of the wavefunction that do not satisfy the constraint. Clearly, the correct projector is recovered in the limit $\delta \to 0$.

Following the same procedure outlined above in order to obtain a vertex expansion for this regulated inner product, we obtain

$$\langle \tilde{\lambda}_F | \tilde{\lambda}_0 \rangle_{G,\delta} = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha \sum_{M=0}^{\infty} \sum_{\lambda_i} \Theta_{\tilde{\lambda}_F \tilde{\lambda}_{M-1}} \cdots \Theta_{\tilde{\lambda}_{1,\delta}} e^{-\delta^2 \alpha^2} \bar{A}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1}; \alpha),$$ \hspace{1cm} (3.10)

where $A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1}; \alpha)$ is again given by equation (3.7). Pulling the sum over M outside of the integral and evaluating the integral over α, we have

$$\langle \tilde{\lambda}_F | \tilde{\lambda}_0 \rangle_{G,\delta} = \frac{1}{2\pi} \sum_{M=0}^{\infty} \sum_{\lambda_i} \Theta_{\tilde{\lambda}_F \tilde{\lambda}_{M-1}} \cdots \Theta_{\tilde{\lambda}_{1,\delta}} \bar{A}_{G,\delta}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1});$$ \hspace{1cm} (3.11)

note that $\bar{A}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1})$ represents the ‘group-averaged’ $A(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1}; \alpha)$. For the Gaussian regulator presented here, one can see that

$$\bar{A}_{G,\delta}(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_{M-1}; \alpha) = \prod_{k=1}^{p} \frac{1}{(n_k - 1)!} \left(\frac{\partial}{\partial \Theta_k} \right)^{n_k - 1} \sum_{\delta} \sqrt{\pi} \prod_{j=1}^{p} e^{-\Theta_j^2/(4\delta^2)}.$$ \hspace{1cm} (3.12)

Again the Θ_i label the p distinct values of $\Theta_{\tilde{\lambda}_j}$ taken along the history $(\tilde{\lambda}_0, \ldots, \tilde{\lambda}_M)$ and n_i the number of times that value is repeated. Note that one cannot take the limit of $\delta \to 0$ at this point; the fact that δ is nonzero is absolutely necessary in order to pull the sum over M outside of the integral.

The integral here gives Gaussians and derivatives thereof instead of Dirac delta distributions and derivatives thereof. The regulated physical inner product is then well defined and is a good approximation:

$$\langle \tilde{\lambda}_F | \tilde{\lambda}_0 \rangle_{\text{phy}} \approx \langle \tilde{\lambda}_F | \tilde{\lambda}_0 \rangle_{G,\delta}. \hspace{1cm} (3.13)$$

This expression can be used as a computational tool but since it is nonlocal, it cannot be viewed as a building block for the local spinfoam expansion of full quantum gravity.
Another possible approach is to split the integral given in equation (2.13) into integrals over positive and negative α and regulate each integral separately, much as is done for the Feynman propagator, with an exponential suppression as follows:

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{F,}F} = \frac{1}{2\pi} \int_0^\infty d\alpha \langle \lambda_f | e^{ia\bar{C}_H - \delta a} | \lambda_0 \rangle_{\text{kin}} + \frac{1}{2\pi} \int_{-\infty}^0 d\alpha \langle \lambda_f | e^{iapH + \delta a} | \lambda_0 \rangle_{\text{kin}}
$$

(3.14)

which approximates $\langle \lambda_f | \lambda_0 \rangle_{\text{phys}}$ up to some small error which vanishes as $\delta \to 0$.

As an aside, it is interesting to note that if we construct a phase space path integral for this model as done for FLRW in [29] we find that each half is related to fixing one sign for the arguments λ.

Putting all of the pieces together, the expansion for the positive half is

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{pos}} = \langle \lambda_f | \lambda_0 \rangle_{\text{kin}} + \alpha C(\lambda_f) + \alpha H(\lambda_f; \alpha) + \ldots
$$

(3.15)

where the amplitude is given by

$$
\tilde{A}_{\alpha,\beta}(\lambda_1, \ldots, \lambda_{M-1}) = \int_0^\infty d\alpha e^{-\delta \alpha} A(\lambda_1, \ldots, \lambda_{M-1}; \alpha)
$$

(3.16)

and $A(\lambda_1, \ldots, \lambda_{M-1}; \alpha)$ is given by equation (3.7).

Surprisingly, the integral over alpha reduces the very nonlocal expression given in equation (3.7) with a simple local one being just a product of matrix elements:

$$
\tilde{A}_{\alpha,\beta}(\lambda_1, \ldots, \lambda_{M-1}) = \prod_{M=0}^M \Theta_{\lambda, \lambda_\alpha + i\delta}.
$$

(3.17)

Putting all of the pieces together, the expansion for the positive half is

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{pos}} = \frac{1}{2\pi} \sum_{M=0}^{\infty} \sum_{\lambda_{M-1}} \ldots \sum_{\lambda_1} i(-1)^M \prod_{M=0}^M \Theta_{\lambda, \lambda_\alpha + i\delta}.
$$

(3.18)

The δ remains non-zero in the resulting expansion, since in the limit that δ goes to zero it reduces to a sum of distributions. The physical inner product, regulated by the parameter δ, is given by the sum of this expansion with its complex conjugate. Equivalently,

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{phys}} = 2\delta \langle \lambda_f | \lambda_0 | \alpha \rangle + \text{err}(\delta),
$$

(3.19)

where err(\delta) is a small error term which vanishes in the limit of $\delta \to 0$. Note that (3.20) can be rewritten in the form

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{pos}} = \frac{i}{2\pi} \sum_{M=0}^{\infty} \sum_{\lambda_{M-1}} \prod_f A_f(\lambda_f) \prod_v A_v(\lambda_f),
$$

(3.20)

where $A_f(\lambda_f)$ is a small error term which vanishes in the limit of $\delta \to 0$. Note that (3.20) can be rewritten in the form

$$
\langle \lambda_f | \tilde{\lambda}_0 \rangle_{\text{phys}} = \frac{i}{2\pi} \sum_{M=0}^{\infty} \sum_{\lambda_{M-1}} \prod_f A_f(\lambda_f) \prod_v A_v(\lambda_f),
$$

(3.21)
where \(f = 0, \ldots, M; \) \(v = 1, \ldots, M; \) the ‘face’ amplitude is \(A_f = (\Theta_{\lambda_f} + \text{id})^{-1}; \) the ‘vertex’ amplitude is \(A_v = -\Theta_{\lambda_v} \) and we write \(\lambda_M =: \lambda_f. \) Expression (3.22) is precisely the general expression for (local) spinfoams, if we identify the sum over spinfoam two-complexes with the sum over \(M, \) the sum over colorings with the sum over the \(\lambda_f, \) the spinfoam vertices with the transitions and the spinfoam faces with the sequences of steps without transitions.

The fact that the Feynman regularization gives an amplitude which is local is a remarkable result. In the previous works [22–24, 28], the reconstruction of the spinfoam-like expansion obtained from LQC lacks locality in the resulting expression; here locality means that the amplitude of one history is the product of amplitudes of the elements forming the history. Note that in quantum mechanics locality is always present in sums over histories. For instance, in quantum electrodynamics Feynman graphs, the amplitude of a graph is the product of the amplitudes of the vertices and of the propagators. In the functional integral formulation of quantum mechanics, the amplitude is the exponent of an integral, which is to say (morally) the product of exponents: again a product of local terms. At least in the Feynman graph integral, and possibly in other contexts, a nonlocal measure might indicate that something is wrong. Thus, this type of locality is a desired feature of a sum over histories formulation of quantum gravity.

A naïve regularization is not enough to obtain locality, as we have seen in the case of the Gaussian regulator where one again obtains a nonlocal amplitude. With the Feynman regularization, the amplitude is local.

4. Discussion

We have shown that in loop quantum cosmology it is possible to introduce a regulator in order to approximate the vertex expansion of the physical inner product and that one such regulator gives a local expression. The strategy to calculate the physical inner product is to choose a small, nonzero \(\delta \) and to perform one of the regulated expansions presented here to some number of transitions \(m \) and this approximates the true physical inner product to some order determined by the regulator \(\delta \) and the number of transitions \(m. \) A priori, the convergence properties of the series is unknown.

The idea of introducing an external regulator was proposed in [28] in the context where the Hamiltonian constraint operator has a discrete spectrum. In that case, the regulator removes actual divergences in the expansion. In the case of a continuous spectrum, the terms in the expansion are simply distributional. The regularizations introduced here are natural from the point of view of handling distributions.

The Feynman regularization adds an additional similarity to spinfoams. The spinfoam amplitude for a single triangulation and set of labels, for a single history of spin networks, is given by a product of amplitudes associated with each vertex, face and edge. In contrast, for the Gaussian regulator presented here and for the vertex expansion of FLRW with a massless scalar field given in [22, 23] the amplitude for a single discrete history is not a simple product of amplitudes, rather it is a nonlocal expression depending on the properties of the entire history. By not integrating away the matter degrees of freedom from the bulk, and using the Feynman regulator introduced here, the amplitude is reduced to a simple local product.

The local form of the amplitude makes the relation between the expansion of the LQC scalar products and the spinfoam formalism transparent: the sum over the number \(M \) of transitions is recognized as the analog of the sum over two-complexes, the sum over the \(\lambda_f \) as the sum over spinfoam colorings, the transitions as the spinfoam vertices and the sequences of steps without transitions as the spinfoam faces.
In addition, we observe that by using the Feynman regulator in the models studied in [22–24] before integrating over the momentum of the scalar field, one obtains an integrand which is well defined on its own (rather than distributional) and which gives a local expression for the amplitude, thus providing a local extension to the results of these previous works.

Acknowledgments

This work was supported by the NSF grant PHY0854743, the George A and Margaret M Downsbrorough Endowment, the Eberly research funds of Penn State, Le Fonds Québécois de la Recherche sur la Nature et les Technologies, and the Edward A and Rosemary A Mebus funds. E W-E. thanks the CPT for their hospitality during his visit there.

Appendix. Distributional expansion

If we ignore the problems mentioned in section 3.1 and evaluate the integral over α without introducing any sort of regulator, the resulting expansion is

$$\langle \vec{\alpha}_F | \vec{\alpha}_0 \rangle_{\text{phys}} = \sum_{M=0}^{\infty} \sum_{\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1} \Theta_{\vec{\lambda}_1} \cdots \Theta_{\vec{\lambda}_M} \tilde{A}(\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1),$$ \hspace{1cm} (A.1)

where

$$\tilde{A}(\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\alpha A(\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1; \alpha).$$ \hspace{1cm} (A.2)

This integral can be easily evaluated giving

$$\tilde{A}(\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1) = \left[\prod_{k=1}^{p} \frac{1}{(n_k - 1)!} \left(\frac{\partial}{\partial \Theta_k} \right)^{n_k - 1} \right] \sum_{i=1}^{p} \frac{\delta(\Theta_i)}{\prod_{j \neq i} (\Theta_i - \Theta_j)},$$ \hspace{1cm} (A.3)

where, as before, Θ_i are the p distinct values of $\vec{\Theta}$ taken along the history and n_i is the number of times the value Θ_i is repeated. One can verify that this distribution is equivalent to the following simpler one:

$$\tilde{A}(\vec{\lambda}_1, \ldots, \vec{\lambda}_M-1) = (-1)^{M+1} \sum_{i=1}^{p} \frac{(-1)^n}{(n_i - 1)!} \left(\frac{\partial}{\partial \Theta_i} \right)^{n_i - 1} \frac{\delta(\Theta_i)}{\prod_{j \neq i} (\Theta_i - \Theta_j)}.\hspace{1cm} (A.4)$$

At a formal level, this sum of distributions provides a perturbative solution to the constraint.

References

[1] Perez A 2003 Spin foam models for quantum gravity Class. Quantum Grav. 20 R43 (arXiv:gr-qc/0301113)
[2] Freidel L and Krasnov K 2008 A new spin foam model for 4d gravity Class. Quantum Grav. 25 123018 (arXiv:0708.1595)
[3] Engle J, Livine E, Pereira R and Rovelli C 2008 LQG vertex with finite Immirzi parameter Nucl. Phys. B 799 136–49 (arXiv:0711.0146)
[4] Rovelli C 2010 A new look at loop quantum gravity arXiv:1004.1780
[5] Rovelli C 2004 Quantum Gravity (Cambridge, UK: Cambridge University Press)
[6] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge, UK: Cambridge University Press)
[7] Ashtekar A, Rovelli C and Smolin L 1992 Weaving a classical geometry with quantum threads Phys. Rev. Lett. 69 237–40 (arXiv:hep-th/9203079)
[8] Rovelli C and Smolin L 1988 Knot theory and quantum gravity Phys. Rev. Lett. 61 1155
[9] Rovelli C and Smolin L 1990 Loop space representation of quantum general relativity Nucl. Phys. B 331 80
[10] Noui K and Perez A 2005 Three dimensional loop quantum gravity: physical scalar product and spin foam models Class. Quantum Grav. 22 1739–62 (arXiv:gr-qc/0402110)

[11] Engle J, Han M and Thiemann T 2009 Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation arXiv:0911.3433

[12] Han M and Thiemann T 2009 On the relation between rigging inner product and master constraint direct integral decomposition arXiv:0911.3431

[13] Han M and Thiemann T 2009 On the relation between operator constraint, master constraint, reduced phase space, and path integral quantisation arXiv:0911.3428

[14] Dittrich B and Hohn P A 2010 From covariant to canonical formulations of discrete gravity Class. Quantum Grav. 27 115501 (arXiv:0912.1817)

[15] Rovelli C and Vidotto F 2008 Stepping out of homogeneity in loop quantum cosmology Class. Quantum Grav. 25 225024 (arXiv:0805.4585)

[16] Battisti M V, Marciano A and Rovelli C 2010 Triangulated loop quantum cosmology: Bianchi IX and inhomogeneous perturbations Phys. Rev. D 81 064019 (arXiv:0911.2653)

[17] Bianchi E, Rovelli C and Vidotto F 2010 Towards spinfoam cosmology Phys. Rev. D 82 084035 (arXiv:1003.3483)

[18] Ashtekar A, Bojowald M and Lewandowski J 2003 Mathematical structure of loop quantum cosmology Adv. Theor. Math. Phys. 7 233–68 (arXiv:gr-qc/0304074)

[19] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: improved dynamics Phys. Rev. D 74 084003 (arXiv:gr-qc/0607039)

[20] Ashtekar A, Corichi A and Singh P 2008 Robustness of key features of loop quantum cosmology Phys. Rev. D 77 024046 (arXiv:0710.3565)

[21] Ashtekar A and Wilson-Ewing E 2009 Loop quantum cosmology of Bianchi I models Phys. Rev. D 79 083535 (arXiv:0903.3397)

[22] Ashtekar A, Campiglia M and Henderson A 2009 Loop quantum cosmology and spin foams Phys. Lett. B 681 347–52 (arXiv:0909.4221)

[23] Ashtekar A, Campiglia M and Henderson A 2010 Casting loop quantum cosmology in the spin foam paradigm Class. Quantum Grav. 27 135020 (arXiv:1001.5147)

[24] Campiglia M, Henderson A and Nelson W 2010 Vertex expansion for the Bianchi I model Phys. Rev. D 82 064036 (arXiv:1007.3723)

[25] Engle J, Pereira R and Rovelli C 2007 The loop-quantum-gravity vertex-amplitude Phys. Rev. Lett. 99 161301 (arXiv:0705.2388)

[26] Livine E R and Speziale S 2007 A new spinfoam vertex for quantum gravity Phys. Rev. D 76 084028 (arXiv:0705.0674)

[27] Engle J, Pereira R and Rovelli C 2008 Flipped spinfoam vertex and loop gravity Nucl. Phys. B 798 251–90 (arXiv:0708.1236)

[28] Rovelli C and Vidotto F 2010 On the spinfoam expansion in cosmology Class. Quantum Grav. 27 145005 (arXiv:0911.3097)

[29] Ashtekar A, Campiglia M and Henderson A 2010 Path integrals and the WKB approximation in loop quantum cosmology arXiv:1011.1024