Geometric symmetries in light nuclei

R Bijker
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, 04510 México, D.F., México
E-mail: bijker@nucleares.unam.mx

Abstract. The algebraic cluster model is applied to study cluster states in the nuclei ^{12}C and ^{16}O. The observed level sequences can be understood in terms of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle for ^{12}C, and a regular tetrahedron for ^{16}O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.

1. Introduction

Ever since the early days of nuclear physics the structure of ^{12}C has been extensively investigated both experimentally and theoretically [1, 2, 3, 4]. In recent years, the measurement of new rotational excitations of both the ground state [5, 6, 7] and the Hoyle state [8, 9, 10, 11] has generated a lot of renewed interest to understand the structure of ^{12}C and that of α-cluster nuclei in general. Especially the (collective) nature of the 0^+ Hoyle state at 7.65 MeV which is of crucial importance in stellar nucleosynthesis to explain the observed abundance of ^{12}C, has presented a challenge to nuclear structure calculations, such as α-cluster models [12], antisymmetrized molecular dynamics [13], fermionic molecular dynamics [14], BEC-like cluster model [15], (no-core) shell models [16, 17], ab initio calculations based on lattice effective field theory [18, 19], and the algebraic cluster model [7, 20, 21].

In this contribution, I discuss some properties of the α-cluster nuclei ^{12}C and ^{16}O in the framework of the algebraic cluster model.

2. Algebraic Cluster Model

The Algebraic Cluster Model (ACM) describes the relative motion of the n-body clusters in terms of a spectrum generating algebra of $U(\nu + 1)$ where $\nu = 3(n - 1)$ represents the number of relative spatial degrees of freedom. For the two-body problem the ACM reduces to the $U(4)$ vibron model [22], for three-body clusters to the $U(7)$ model [20, 23] and for four-body clusters to the $U(10)$ model [21, 24]. In the application to α-cluster nuclei the Hamiltonian has to be invariant under the permutation group S_n for the n identical α particles. Since one does not consider the excitations of the α particles themselves, the allowed cluster states have to be symmetric under the permutation group.

The potential energy surface corresponding to the S_n invariant ACM Hamiltonian gives rise to several possible equilibrium shapes. In addition to the harmonic oscillator (or $U(3n - 3)$ limit) and the deformed oscillator (or $SO(3n - 2)$ limit), there are other solutions which are of special interest for the applications to α-cluster nuclei. These cases correspond to a geometrical...
Table 1. Algebraic Cluster Model for two-, three- and four-body clusters

	2α	3α	4α
ACM	U(4)	U(7)	U(10)
Point group	C_2	D_{3h}	T_d
Geometry	Linear	Triangle	Tetrahedron
G.s. band	0^+	0^+	0^+
	2^+	2^+	
	3^-	3^-	
	4^+	4^±	4^+
	5^-		
	6^+	6^±±	6^±

configuration of α particles located at the vertices of an equilateral triangle for 12C and of a regular tetrahedron for 16O. Even though they do not correspond to dynamical symmetries of the ACM Hamiltonian, one can still obtain approximate solutions for the rotation-vibration spectrum

$$E = \begin{cases} \omega_1(v_1 + \frac{1}{2}) + \omega_2(v_2 + 1) + \kappa L(L + 1) & \text{for } n = 3 \\ \omega_1(v_1 + \frac{1}{2}) + \omega_2(v_2 + 1) + \omega_3(v_3 + \frac{3}{2}) + \kappa L(L + 1) & \text{for } n = 4 \end{cases}$$

The rotational structure of the ground-state band depends on the point group symmetry of the geometrical configuration of the α particles and is summarized in Table 1.

The triangular configuration with three α particles has point group symmetry D_{3h} [20]. Since $D_{3h} \sim D_3 \times P$, the transformation properties under D_{3h} are labeled by parity P and the representations of D_3 which is isomorphic to the permutation group S_3. The corresponding rotation-vibration spectrum is that of an oblate top: v_1 represents the vibrational quantum number for a symmetric stretching A vibration, v_2 denotes a doubly degenerate E vibration. The rotational band structure of 12C is shown in the left panel of Fig. 1.

The tetrahedral group T_d is isomorphic to the permutation group S_4. In this case, there are three fundamental vibrations: v_1 represents the vibrational quantum number for a symmetric stretching A vibration, v_2 denotes a doubly degenerate E vibration, and v_3 a three-fold degenerate F vibration. The right panel of Fig. 1 shows the rotational band structure of 16O.

3. Electromagnetic transitions

For transitions along the ground state band the transition form factors are given in terms of a product of a spherical Bessel function and an exponential factor arising from a Gaussian distribution of the electric charges, $F(0^+ \to L^P; q) = c_LJ_L(q\beta)e^{-q^2/4\alpha}$ [20]. The charge radius can be obtained from the slope of the elastic form factor in the origin $\langle r^2 \rangle^{1/2} = \sqrt{\beta^2 + 3/2\alpha}$. The transition form factors depend on the parameters α and β which can be determined from the first minimum in the elastic form factor and the charge radius.

The transition probabilities $B(EL)$ along the ground state band can be extracted from the form factors in the long wavelength limit

$$B(EL; 0^+ \to L^P) = \frac{(Ze)^2}{4\pi} c_L^2 \beta^{2L}$$
Figure 1. (Color online) Rotational band structure of the ground-state band, the Hoyle band (or A vibration) and the bending vibration (or E vibration) in ^{12}C (left) [7], and the ground-state band (closed circles), the A vibration (closed squares), the E vibration (open circles) and the F vibration (open triangles) in ^{16}O (right) [21].

Table 2. $B(EL)$ values in ^{12}C (top) and ^{16}O (bottom).

	^{12}C	^{16}O
$B(E2; 2^+_1 \rightarrow 0^+_1)$	$8.4 \pm 0.4\text{ e}^2\text{fm}^4$	$215 \pm 10\text{ e}^2\text{fm}^6$
$B(E3; 3^-_1 \rightarrow 0^+_1)$	$44 \pm 17\text{ e}^2\text{fm}^6$	$425 \pm 133\text{ e}^2\text{fm}^8$
$B(E4; 4^+_1 \rightarrow 0^+_1)$	$73\text{ e}^2\text{fm}^8$	$9626\text{ e}^2\text{fm}^{12}$
$M(E0; 0^+_2 \rightarrow 0^+_1)$	0.4 fm^2	0.54 fm^2

with

$$c_L^2 = \begin{cases} \frac{2L+1}{3} \left[1 + 2P_L(-\frac{1}{2}) \right] & \text{for } n = 3 \\ \frac{2L+1}{4} \left[1 + 3P_L(-\frac{3}{2}) \right] & \text{for } n = 4 \end{cases}$$

The good agreement for the $B(EL)$ values for the ground band in Table 2 shows that both in ^{12}C and in ^{16}O the positive and negative parity states merge into a single rotational band. Moreover, the large values of $B(EL; L^P \rightarrow 0^+_1)$ indicate a collectivity which is not predicted for simple shell model states. The large deviation for the $E0$ between the first excited 0^+_1 (Hoyle) state and the ground state indicates that the 0^+_2 state cannot be interpreted as a simple vibrational excitation of a rigid triangular (^{12}C) or tetrahedral (^{16}O) configuration, but rather corresponds to a more floppy configuration with large rotation-vibration couplings. A more
detailed study of the electromagnetic properties of α-cluster nuclei in the ACM for non-rigid configurations is in progress.

4. Summary and conclusions

In this contribution, the cluster states in 12C and 16O were interpreted in the framework of the ACM as arising from the rotations and vibrations of a triangular and tetrahedral configuration of α particles, respectively. In both cases, the ground state band consist of positive and negative parity states which coalesce to form a single rotational band. This interpretation is validated by the observance of strong $B(EL)$ values. The rotational sequences can be considered as the fingerprints of the underlying geometric configuration (or point-group symmetry) of α particles.

For the Hoyle band in 12C there are several interpretations for the geometrical configuration of the three α particles. In order to determine whether the geometrical configuration of the α-particles for the Hoyle band is linear, bent or triangular, the measurement of a possible 3− Hoyle state is crucial, since its presence would indicate a triangular configuration, just as for the ground state band.

Finally, the results presented here for 12C and 16O emphasize the occurrence of α-cluster states in light nuclei with D_{3h} and T_d point group symmetries, respectively.

Acknowledgments

This work was supported in part by research grant IN107314 from PAPIIT-DGAPA.

References

[1] Wheeler J A 1937 Phys. Rev. 52 1083
[2] Hafstad L R and Teller E 1938 Phys. Rev. 54 681
[3] Von Oertzen W, Freer M and Kanada-En’yo Y 2006 Phys. Rep. 432 43
[4] Freer M and Fynbo H O U 2014 Prog. Part. Nucl. Phys. 78 1
[5] Freer M et al 2007 Phys. Rev. C 76 034320
[6] Kirsebom O S et al 2010 Phys. Rev. C 81 064313
[7] Marín-Lámarbarri D J, Bijker R, Freer M, Gai M, Kokalova T, Parker D J and Wheldon C 2014 Phys. Rev. Lett. 113 012502
[8] Itoh M et al 2011 Phys. Rev. C 84 054308
[9] Freer M et al 2012 Phys. Rev. C 83 034314
[10] Zimmerman W R et al 2013 Phys. Rev. Lett. 110 152502
[11] Freer M et al 2007 Phys. Rev. C 76 034320
[12] Robson D 1978 Nucl. Phys. A 308 381
[13] Kanada-En’yo Y 2007 Prog. Theor. Phys. 117 655
[14] Chernykh M, Feldmeier H, Neff H, Von Neumann-Cosel P and Richter A 2007 Phys. Rev. Lett. 98 032501
[15] Funaki Y, Horiuchi H, Von Oertzen W, Ropke G, Schuck P, Tohsaki A and Yamada T 2009 Phys. Rev. C 80 044326
[16] Roth R, Langhammer J, Calci A, Binder S and Navrtil J Phys. Rev. Lett. 107 072501
[17] Dreyfuss A C, Launey K D, Dytrych T, Draayer J P and Bahri C 2013 Phys. Lett. B 727 511
[18] Epelbaum E, Krebs H, Lee D and Meissner U G 2011 Phys. Rev. Lett. 106 192501
[19] Epelbaum E, Krebs H, Lähde T, Lee D and Meissner U G 2012 Phys. Rev. Lett. 109 252501
[20] Bijker R and Iachello F 2000 Phys. Rev. C 61 067305
[21] Bijker R and Iachello F 2002 Ann. Phys. (N.Y.) 298 334
[22] Bijker R and Iachello F 2014 Phys. Rev. Lett. 112 152501
[23] Iachello F 1981 Chem. Phys. Lett. 78 581
[24] Bijker R, Iachello F and Leviatan A 1994 Ann. Phys. (N.Y.) 236 69
[25] Bijker R, Iachello F and Leviatan A 2000 Ann. Phys. (N.Y.) 284 89
[26] Bijker R 2010 AIP Conference Proceedings 1323 28
[27] Bijker R 2012 J. Phys.: Conf. Series 380 012003
[28] Ajzenberg-Selove F 1990 Nucl. Phys. A 506 1
[29] Reuter W, Fricke G, Merle K and Miska H 1982 Phys. Rev. C 26 806
[30] Streih P and Schucan Th H 1968 Phys. Lett. B 27 641
[31] Tilley D R, Weller H R and Cheves C M 1993 Nucl. Phys. A 564 1