Dr. Michael Emerman graduated from the Ohio State University in 1981 with an undergraduate degree in Biochemistry. He began his career in retrovirology when he entered the lab of Howard Temin at the University of Wisconsin-Madison for his Ph.D. studies. Howard Temin won the Nobel Prize in 1975 for his provirus hypothesis and the discovery of reverse transcriptase, along with David Baltimore and Renato Dulbecco [1].

At the time Emerman joined the Temin lab in 1982, the development of retroviruses as vectors for transducing foreign genes into cells was new technology. The lab had made retroviral vectors based on the genome of spleen necrosis virus (SNV), a retrovirus of ducks that decades later was shown to be a likely contaminant of malaria challenge experiments [2]. A previous postdoc in the lab had inserted the mouse alpha-globin gene into one of these vectors to show they could be used to generate fully spliced cDNA from a cellular gene with introns [3]. Emerman was given the project of showing whether or not alpha-globin protein was made. After some initial excitement based on finding “red cells” that ended up being bits of rubber from the disintegrating red pipet bulb, he found, instead, that nearly all of the integrated proviruses contained deletions involving the internal promoter as well as point mutations [4]. In subsequent studies, he designed retroviral vectors to more directly test the effects of integration on promoter activity, and found that often either the promoter in the long terminal repeat (LTR) or the internal promoter was silenced in an epigenetic and reversible fashion [5, 6]. This finding has current implications for the epigenetic control of latent proviruses in HIV Cure research. Another of the major outcomes of his thesis work was the realization that one could use single cycle retrovirus vectors to precisely measure the rates of mutations, recombination, and other genetic events in retroviruses—used with increasing levels of sophistication by following generations of Temin labmates, e.g. [7–9].

During the time of his thesis work, 1981–1986, the first AIDS cases were described in California and New York, and the retrovirus now known as HIV-1 was isolated. Emerman decided to do his postdoc in the lab of Luc Montagnier, who was awarded the Nobel Prize in 2005 along with Francois Barrie-Sinoussi and Harald zur Hausen. When he arrived at the Pasteur Institute in Paris in the summer of 1986, HIV-2 had recently been identified [10], and the group was making full-length molecular clones of HIV-2 and he participated in work to compare their sequence and biology to HIV-1 [11, 12]. In other work from that time, he and his colleagues mapped a site in gp120 necessary for binding to CD4 [13], showed that the Vpx protein had a phenotype in primary cells [14], and showed that the rev gene was involved in nuclear export of viral RNA [15]. This last work was done about the same time that Mike Malim in Bryan Cullen’s lab made a similar observation [16].

Emerman started his own lab at the Fred Hutchinson Cancer Research Center in Seattle, Washington in 1989 where they had recently been awarded a program project grant to build a BL2/3 lab to work with infectious HIV.
slowly dividing cells such as stem cells. Lentiviral vectors for gene transfer into non-dividing or terminally differentiated macrophages [19, 20] because it contrasted with much earlier work from Howard Temin showing that other retroviruses required cell division [21]. Emerman’s lab used their MAGI cell assay to demonstrate that ability of HIV to infect non-cycling cells was not limited to macrophages [22], and that the difference between lentiviruses and most other retroviruses is due to the need for other retroviruses to pass through mitosis while HIV infection is independent of mitosis [23, 24].

Emerman’s lab, as well as several others, put forth evidence for different viral factors that could mediate the ability of HIV to infect non-cycling cells. These included MA, IN, Vpr, and the cPPT, although eventually, none of these factors could be reproduced when more sensitive and quantitative assays came around, e.g. [25, 26]. However, Masahiro Yamashita, a postdoctoral fellow in the Emerman lab, used chimeric HIV/MLV viruses to show that the CA protein of HIV was the dominant viral factor necessary for entry of HIV into the nucleus in the absence of mitosis, and later followed this up by identifying particular CA mutations that affected this phenotype [27–29]. These findings led to others to exciting ongoing work focusing on the role of CA in HIV nuclear import and its targeting by host cell factors, e.g. [29–34].

During the course of mapping phenotypes of HIV that could be attributed to its accessory proteins, Emerman had started some long term cultures of T cells infected with HIV either wt virus or virus mutated in its vpr gene. Nearly all of the cells in wells infected with wt virus died, while those in the wells with a vpr mutant went on to establish chronic infections. Eventually, a few cells grew out of the wt infected cultures (after he had forgotten about them in the incubator for a few weeks), and, by sequence analysis, he found that all of them contained a mutation in vpr. This led to the realization that Vpr caused an arrest in the cell cycle in the G2 phase [35].

Similar work was published soon after by other labs [36–38]. While Vpr appears to modestly increase LTR activity due to its cell cycle effects [39, 40] and its ability to cause a DNA damage response is conserved among lentiviral homologs [41], the role of Vpr in the HIV-1 lifecycle is still an area under exploration.

The Fred Hutchinson Cancer Research Center has a tradition of very interactive faculty talks where preliminary work and ideas are discussed. It was at one of these retreats that Emerman talked about the relatively recent discovery by the Malim group of the host factor antagonized by HIV-1 Vif, APOBEC3G [42]. Harmit Malik was a new faculty hire whose research focus was on “genetic conflict”, or the process by which different genetic elements try to gain an advantage over each other. Malik suggested that the Vif-APOBEC3G interaction would be a great system to look for signs of this genetic “arms race” between viruses and host proteins. Malik and Emerman enlisted Malik’s first postdoc, Sara Sawyer, in this project to look for evidence of positive selection (a signature of genetic conflict) in APOBEC3 proteins. The results were very dramatic—there was positive selection in APOBEC3G throughout primate evolution including very ancient signs of this arms race [43]. This work led Emerman and Malik to the development of the concept of “paleovirology” as a means to discover the effects of ancient pathogenic challenges on modern innate immunity [44].

Despite finding much evidence of a genetic arms race in APOBEC3G, the first study did not find any evidence to support the initial assumption that Vif had driven this evolution [43]. It was later discovered this was due to the fact that the initial study did not look in the right species of monkeys when a graduate student in the Emerman lab found evidence for ongoing genetic conflicts between APOBEC3G and Vif in the African Monkeys who are infected with SIVagm [45]. The Emerman lab subsequently found additional instances of positive selection in APOBEC3G that were escape mutations from antagonism from Vif proteins [46]. This approach allowed the Emerman and his colleagues to conclude that primate lentiviruses are much older than the oldest date that had been previously calculated [47] being at least 5–10 million years old [46, 48]. A parallel study by Welkin Johnson’s group came to a similar age using the genetic conflict between SIV CA and the host restriction factor Trim5 [49].

Since their initial study on APOBEC3G, Harmit Malik and Michael Emerman have collaborated on over 20 other papers together where they have used their evolutionary approach to study host antiviral genes. They have used positive selection to identify sites of interaction between restriction factors and viral proteins, identify novel activities of known restriction factors, and find additional evidence for ancient pathogens that drove selection on
restriction factors, in particular using Trim5 and other Trim proteins [50–54], Tetherin [55], Zinc Antiviral Protein [56], Mx proteins [57, 58], APOBEC3 proteins [59–61], and SAMHD1 [62]. They have also used human polymorphism data and comparison between primates to understand “holes” in the human innate immune system where some, most, or sometimes all, humans are ill-adapted to cope with lentiviral infections. These include functionally important human polymorphisms in Trim5 [63], APOBEC3D [59, 64], APOBEC3C [64, 65], and APOBEC3H [60, 66–68]. Finally, the Emerman lab has used this approach to understand forces that underlie the ancient evolutionary history of lentiviral lineages leading to HIV-1 including the adaptation of SIV to hominid APOBEC3 proteins that involved the loss of SAMHD1 antagonism [69], the gain of SAMHD1 antagonism by Vpr and Vpx proteins [62] (as well as changes in specificity of SAMHD1 antagonism in lentiviral evolution [70, 71]) and the adaptation of HIV-1 to human Tetherin [55]. Additional work has focused on restriction factors that protect hominids from other lentiviral infections [72].

Emerman has been an editor for Virology since 2002 and the Editor-in-Chief since 2013. He is also an Associate Editor for PLOS Pathogens. He teaches a graduate course in Virology every other year called “Human Pathogenic Viruses” which focuses on replication, evolution/ecology, and pathogenesis of major human virus families. He was awarded the Ohio State University Center for Retrovirus Research Distinguished Career Award, an NIH Merit Award, and Elected Fellow in the American Academy of Microbiology. He has trained over 30 graduate students and postdocs in retrovirology, and the prize of which he is most proud is the James McDougall Mentoring Award nominated by his former trainees.

Author details
1. London, UK.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 15 June 2017 Accepted: 15 June 2017 Published online: 21 June 2017

References
1. Temin HM. The DNA provirus hypothesis. Science. 1976;192(4244):1075–80.
2. Niewiadomska AM, Gifford RJ. The extraordinary evolutionary history of the retrovirus-oncornavirus. PLoS Biol. 2013;11(18):e1001642.
3. Shimotohno K, Temin HM. Loss of intervening sequences in genomic mouse alpha-globin DNA inserted in an infectious retrovirus vector. Nature. 1982;299(5880):265–8.
4. Emerman M, Temin HM. High-frequency deletion in recovered retrovirus vectors containing exogenous DNA with promoters. J Virol. 1984;50(1):42–9.
5. Emerman M, Temin HM. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell. 1984;39(3 Pt 2):449–67.
6. Emerman M, Temin HM. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol. 1986;6(3):792–800.
7. Dougherty JP, Temin HM. Determination of the rate of base-pair substitution and insertion mutations in retrovirus replication. J Virol. 1988;62(8):2817–22.
8. Hu WS, Temin HM. Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. Proc Natl Acad Sci USA. 1990;87(4):1556–60.
9. Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol. 1995;69(8):5087–94.
10. Clavel F, Guyader M, Guertard D, Salle M, Montagnier L, Alizon M. Molecular cloning and polymorphism of the human immunodeficiency virus type 2. Nature. 1986;326(6098):691–5.
11. Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M. Genome organization and transactivation of the human immunodeficiency virus type 2. Nature. 1987;326(6114):662–9.
12. Emerman M, Guyader M, Montagnier L, Baltimore D, Muesing MA. The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. EMBO J. 1987;6(12):3755–60.
13. Cordonnier A, Montagnier L, Emerman M. Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature. 1989;340(6234):571–4.
14. Guyader M, Emerman M, Montagnier L, Peden K. Vpx mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J. 1989(4):1169–75.
15. Emerman M, Vazeux R, Peden K. The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell. 1989;57(7):1155–65.
16. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338(6212):254–7.
17. Kimpton J, Emerman M. Detection of replication-competent and pseudo- topyted human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J Virol. 1992;66(4):2232–9.
18. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu K, Shaw GM, Kappes JC. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002;46(6):1896–905.
19. Vazeux R, Brousse N, Jarry A, Henin D, Marche C, Vedrenne C, Mikol J, Wolff M, Michon C, Rozenbaum W, et al. AIDS acauseencephalitis. Identification of HIV-infected cells. Am J Pathol. 1987;126(3):403–10.
20. Narayan O, Wolinsky JS, Clements JE, Strandberg JD, Griffin DE, Cork LC. Slow virus replication: the role of macrophages in the persistence and expression of visna viruses of sheep and goats. J Gen Virol. 1982;59(2):345–56.
21. Rubin H, Temin HM. A radiological study of cell-virus interaction in the Rous sarcoma. Virology. 1959;7(1):75–91.
22. Lewis P, Hensel M, Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 1992;11(8):3053–8.
23. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994;68(1):510–6.
24. Roe T, Reynolds TC, Yu G, Brown PO. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 1993;12(5):2099–108.
25. Dvorin JD, Bell P, Mauel GG, Yamashita M, Emerman M, Malim MH. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J Virol. 2002;76(8):2107–16.
26. Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. J Gen Virol. 1982;59(2):345–56.
27. Robinson H, Temin HM. A radiological study of cell-virus interaction in the Rous sarcoma. Virology. 1959;7(1):75–91.
28. Lewis P, Hensel M, Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J. 1992;11(8):3053–8.
29. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol. 1994;68(1):510–6.
30. Roe T, Reynolds TC, Yu G, Brown PO. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 1993;12(5):2099–108.
31. Dvorin JD, Bell P, Mauel GG, Yamashita M, Emerman M, Malim MH. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J Virol. 2002;76(8):2107–16.
32. Yamashita M, Emerman M. The cell cycle independence of HIV infections is not determined by known karyophilic viral elements. PLoS Pathog. 2005;1(3):e18.
33. Yamashita M, Emerman M. Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol. 2004;78(11):5670–8.
34. Yamashita M, Perez O, Hope TJ, Emerman M. Evidence for direct involvement of the capsid protein in HIV infection of nondividing cells. PLoS Pathog. 2007;3(10):1502–10.
