Ethnozoological use of primates in northeastern India

Deborah Daolagupu 1, Nazimur Rahman Talukdar 2 & Parthankar Choudhury 3

1 Wildlife Conservation Research Laboratory, Department of Ecology and Environmental Sciences, Assam University, Silchar, Assam 788011, India.
2 Centre for Biodiversity and Climate Change Research, Udhayan, Hailakandi, Assam 788155, India.
3 ddaolagupu15@yahoo.com, talukdar.nr89@gmail.com, parthankar@rediffmail.com (corresponding author)

Abstract: Ethnozoological practices to cure various diseases have a long history. Communities that reside near the forest collect wild animals and their derivatives to prepare medicines and get relief from diseases. Northeastern India is home to many tribes with vast traditional ethnobiological knowledge, and there are many reports of zootherapeutic uses in the region. In an attempt to understand primate-based ethnozoologic use in the area a literature survey was carried out using different sources. The findings revealed that Hoolock hoolock was the most used species among the primates (48%), followed by Macaca assamensis (20%) and Macaca mulatta (10%). Among the materials used, the flesh of primates was the most dominant (43%), followed by the blood (20%) and brain (14%). This paper highlights the negative effects of ethno-medicinal uses of primates to draw the attention of conservationists and encourage conservation education to address the damage to primates in the name of health care. Government agencies are also requested to strengthen health care systems to discourage the killing of valuable primate species.

Keywords: Biate tribe, Hoolock Gibbon, Mizoram, traditional medicine.

Dimasa: Manang gda nising ning Dao-Mi jadzi nising giben giben glim-gasa khe ham ri yaba yawaithai phai pha bu lang ba. Hagra ni rojong ha dongyaba jadzi buthu hagra ni dao ni nising muli sandi slamhi glim gasa khe hanridu. North-East India ha giben giben jadzi buthuni muli sandi slamma ni ringma bangbi odehe mitsiba lai tsikhade, Dao-Mi ni bahain bugur khe bo muli sandi ne yawai ba ibu hathan ha bangbi. Magusa khe lahi muli-sandi yawaiyaba khe mitsimane masi survey khaliba. Survey ni yahon ha mitsika je, magusa jadzi ni bising ha ‘hulao’ hoolock khe yawaaothao (48%), buni yahon ha Macaca assamensis (20%) odehe Macaca mulatta (10%). Buha, magusha ni bahain khe yawaaothao (43%), buni yahon ha bitsi (20%) odehe bikhlam (14%). Ibu lai ha magusa ni basao khe muli sandi ne yawaiba hamya ba khe phunu du odehe dao-mi khasaoyarao ode raokhiyara khe ibu sibringmane thiladu. Government khe bo health care hamdelorimane bilahadu nabani tsikhade healthcare hamkha she nolaisarao bo dao-mi ni beher jang muli sandi slamba sai dao ma.
INTRODUCTION

Faunal resources play vital roles in human life and societies (Alves 2012), where the importance of animals is manifested in religion, culture, art, music, dance, literature, food, economy, and magico-religious practices (Alves 2012). Use of animals and animal products to cure ailments is popularly known as ‘zootherapy’ and has been passed down generatons through cultural transmission in several ethnic communities around the globe (Berkes 2009; Solanki & Chutia 2009; Nekaris et al. 2010; Jugli et al. 2019).

Non-human primates are an integral element in ethnozoology (Alves et al. 2010; Lee 2010; Svensson et al. 2015), which has can a range of effects on animals and their habitats (Hocking 2016). In Asia, Africa, and America primates are protected and revered to some extent due to their significant role in a number of agricultural, religious and cultural practices (Hocking 2007). On the other hand, primates are also considered a menace in agricultural and urban areas for stealing crops and food from fields and kitchens, inflicting economic damage (Mittermeier et al. 2005, 2007). This forms the basis of man-animal conflict resulting in retaliation killing, illegal trade, hunting for meat, fur, ornamental and medicinal purposes, and capture to be kept as pets (Mittermeier et al. 2005, 2007; Srivastava 2006; Hocking 2007; Alves et al. 2010; Devi & Radhakrishna 2013). Hunting and trade of primates for their medicinal value is an important factor for the decline of their populations (Nekaris et al. 2010). Alves et al. (2010) recorded a total of 101 species of primates that were used in ethnozoological practices and in magico-religious rituals all over the globe. Out of the 101 recorded primate species, 12 were classified as ‘Critically Endangered’ (CR), 23 as ‘Endangered’ (EN), 22 as ‘Vulnerable’ (VU), seven as ‘Near Threatened’ (NT), 36 as ‘Least Concern’ (LC), and one as ‘Data Deficient’ (DD) (IUCN Red List 2020). The species recorded were also included in Appendices I or II of CITES.

Northeastern India comprises eight states, viz, Assam, Arunachal Pradesh, Mizoram, Manipur, Meghalaya, Nagaland, Sikkim, and Tripura. The entire area falls under the Indo-Burma hotspot that harbors diverse species of plants and animals, most of which are endemic to the region. The region is home to Nycticebus bengalensis (Bengal Slow Loris), Macaca mulatta (Rhesus Macaque), Macaca arctoides (Stump-tailed Macaque), Macaca assamensis (Assamese Macaque), Macaca leonina (Pig-tailed Macaque), Macaca munzala (Arunachal Macaque), Macaca leucogenys (White-cheeked Macaque), Macaca thibetana (Milne-Edwards’ Macaque, Tibetan Macaque), Semnopithecus schistaceus (Central Himalayan Langur, Nepal Grey Langur), Trachypithecus pileatus (Capped Langur), Trachypithecus phayrei (Phyare’s Leaf Monkey), Trachypithecus geei (Golden Langur), Hoolock hoolock (Western Hoolock Gibbon) (Choudhury 2013; Talukdar et al. 2021). Their distribution varies, and some areas have higher diversity than others (Chetry et al. 2003; Choudhury 2013). The damaging scenario of ethno-primatology, i.e., the interactions between human and non-human primates, leading to decline of the latter is more or less same in northeastern India as elsewhere (Nekaris et al. 2010; Riley 2010; Riley & Feuntes 2011; Lee 2010; Alves 2012; Alexander et al. 2014; Svensson et al. 2015; Stafford et al. 2016). Most of the primates of northeastern India are categorized as vulnerable or threatened. The continuation of ethnozoological practices by the tribes is depriving them of modern medical advances and also resulting in rapid declines of primate populations in the region.

The Northeast region of India is the abode of about 145 tribes constituting around 12 % of the Indian ethnic population (Ali & Das 2003). In northeastern India, different workers have reported ethnozoological practices with various animals by different tribes (Solanki 2006; Solanki & Chutia 2009; Nekaris et al. 2010; Alves & Alves 2011; Ferreira et al. 2012; Betlu 2013; Devi & Radhakrishna 2013). Most recently, Jugli et al. (2019) studied the ethnozoological practice among the Tangsa and Wancho of eastern Arunachal Pradesh. However, none of the above studies have specifically focused on the detrimental scenario emanating out of the ethnozoological uses of primates. Therefore, the present study was attempted to identify the uses of primate species in traditional medicines in northeastern India and suggest remedial measures.

MATERIALS AND METHODS

To analyze the diversity of primates in the utilization of traditional medicines in northeastern India, available literature on folk remedies based on primate resources was reviewed. As majority of the works on ethnobiology have the primary focus on ethnobotany, a total of 11 papers were found related to the ethnozoological uses, especially in northeastern India. Scientific papers were downloaded from Google Scholar, PubMed, Research Gate and Academia using relevant keywords such as ethnozoology, ethno-zoology, traditional folk medicine,
Ethnozoological use of primates

Daolagupu et al.

19494

zootherapy, and primate. A database was created containing detailed information on primate species, body part used for medicine, mode of usage and name of the tribes.

RESULTS AND DISCUSSION

The study found that seven out of eleven primates in northeastern India are used in traditional medicine for the treatment of various ailments by different indigenous tribes. The utility of primates in the field of health care by the indigenous tribes of northeastern India is diverse (Table 1). Primates of the northeastern India are reported to be used for 38 different ailments. Large percentages (48%) of these ailments were reported from a single tribe while others had no information (Figure 1). Diseases such as malaria (10%), tuberculosis (9%), small pox (7%), and typhoid (7%) were found to be treated by using primates by multiple tribes. Among the primate used for ethnozoological practices, Hoolock gibbon is mostly used (57%), followed by different Macaca sp. (40%) (Figure 2). Capped Langur was mentioned only in one work from Arunachal Pradesh (Solanki & Chutia 2009).

Body parts of primates are used for treating various health conditions ranging from common ailments like headache and general body weakness to serious ones such as diabetes, malaria, typhoid, tuberculosis, and hernia (Table 1). Among the body parts of primates used for ethnozoological purposes, flesh was significantly preferred for the ethnozoological purposes ($\chi^2=123$, df= 9, $p <0.001$). It was found that flesh of primates was mostly used (43%), followed by blood (20%), brain (14%), and bone (8%) (Figure 3). Body parts used for the treatment of some diseases are common irrespective of the tribes. For example, blood of Hoolock gibbon is used for the treatment of colic, and flesh of primates is used for the treatment of small pox and typhoid. Such common patterns of uses of body parts by ethnic people are important to understand the hunting pressure on the species. Flesh of Hoolock Gibbon is used by the Biate tribe for remedy of pertussis (Ronghang et al. 2011). Flesh of the same primate is used for cure against fever, typhoid, malaria, pox, asthma, tuberculosis, and liver cirrhosis in Arunachal Pradesh (Solanki & Chutia 2004, 2009; Jugli et al. 2019). Pregnant women of Lushai tribes of Mizoram take gibbon flesh to gain physical strength (Lalramnghinglova 1999; Chinlampieanga et al. 2013). Flesh of Assamese macaque is used against pathogenic diseases like malaria, typhoid, tuberculosis, and
Table 1. List of primates and their body parts traditionally used as medicines for the treatment of various ailments by different ethnic tribes of northeast India.

State	Tribe	Animal	Body part used	Dried / fresh	Ailments	Mode of preparation	Reference	Conservation status
Assam	Biate	Hoolock hoolock	Brain	Fresh	Painless parturition	Brain tissues are cooked and consumed with rice	Betlu 2013	EN Sch I (Part 1)
			Bone	Dried	Rheumatism	Bone pieces are tied to affected body part of man		
			Skull bone	Dried	Dizziness	Gibbon skull bone pieces are tied to the head of human subject.		
			Hand	Dried	Hernia	Sun dried gibbon hands are rubbed onto the affected areas of man.		
Assam	Karbi	Hoolock hoolock	Brain	Fresh	General weakness	Brain tissues are cooked and taken with rice to get body strength during pregnancy.	Ronghang et al. 2011	EN Sch I (Part 1)
			Gall bladder	Dried	Diabetes	Dried up pieces are taken in with rice or sometimes with water.		NT Sch II (Part 1)
			Limb	Dried	Mumps	Dried up pieces are used for massage on the affected area.		
Arunachal	Prades	Hoolock hoolock	Flesh / bones	Dried	Pertussis	The powdered bone of Hoolock gibbon is taken in combination with that of the flesh of Acridotheres tristis (Common myna), salt and water and made into a tablet and thus consumed.	Jugli et al. 2019	EN Sch I (Part 1)
		Nycticebus bengalensis	Blood	Fresh	Hypovolemia	Fresh raw blood is drunk.		VU Sch I (Part 1)
Tangsa		Macaca assamensis	Brain	Fresh	Blood pressure, nausea	Brain is cooked and ingested directly.		NT Sch II (Part 1)

IUCN Red List status	WPA	CITES
EN	Sch I (Part 1)	1
EN	Sch II (Part 1)	-
EN	Sch II (Part 1)	-
EN	Sch I (Part 1)	1
State	Tribe	Animal
------------	--------------------	----------------------
Manipur	Meitei community	Macaca mulatta
Tripura	Tribes in Khowai	Macaca mulatta
Nagaland	Naga	Macaca sp.
Mizoram	Lushai	Hoolock
IUCN—International Union for Conservation of Nature and Natural Resource	WPA—Wildlife Protection Act of India, 1972	CITES—Convention on International Trade in Endangered Species of Wild Flora and Fauna
smallpox in Arunachal Pradesh, while in Mizoram, tribal people believe that consumption of flesh of the same species helps in painless parturition. Flesh of Stump-tailed Macaque is used against pathogenic diseases such as malaria, typhoid, and smallpox in Arunachal Pradesh, while Naga tribe of Nagaland use the flesh of the same species for cure of tuberculosis, stomach disorder and general weakness (Jamir & Lal 2005). Tribal people in Khohai district of Tripura use the flesh of Stump-tailed Macaque as pain killer (Das 2015). Flesh of Capped Langur is used against malaria, typhoid, dysentery, and smallpox by the tribes of Arunachal Pradesh.

Brain of Hoolock Gibbon, Rhesus and Assamese macaques was reported to be used against different diseases (Lalramnghinglova 1999; Betlu 2013; Chinlampianga et al. 2013; Devi & Radhakrishna 2013). Fresh brain tissues of Hoolock Gibbon was found to be used by Biate tribes of Dima Hasao district, Assam as they believe that it acts as an invigorating stimulant for pregnant women (Betlu 2013). In Mizoram, brain tissue in paste form is applied for toothache, taken orally to get rid of headache, and sometimes the brain tissues are dried up, and the dry powder is used against tooth decay and as a cure for bee sting (Lalramnghinglova 1999; Chinlampianga et al. 2013). Brain of Assamese macaque is used to gain physical strength during pregnancy by the Biate tribes of Dima Hasao district of Assam (Betlu 2013) while some local tribes of Arunachal Pradesh believe that the consumption of a fresh brain of the macaque controls blood pressure and cures one of nausea (Chinlampianga et al. 2013). Lushai tribes of Mizoram consume it for gaining physical strength (Lalramnghinglova 1999). The Meitei women of Manipur take the brain of Rhesus Macaque during postnatal period (Devi & Radhakrishna 2013). Blood of many primate species is used by various tribes of northeastern India for a variety of purposes. In Arunachal Pradesh, the Tangsa tribe use the fresh blood of Hoolock Gibbon to cure diseases such as asthma, malaria, tuberculosis, liver cirrhosis, and weakness caused by hypovolemia (decreased blood volume). Among the tribes of Mizoram, blood of Hoolock Gibbon was reported to be used for hepatitis, hemicrania, tuberculosis, anemia, bone fracture, and colic problem in children.

Bones of primates are used for different ailments (Table 1). Dried bone of Assamese Macaque is used by the Biate tribe to cure mumps. The bone of Hoolock gibbon is used by the Biate tribe of Dima Hasao district (Assam) against hernia, rheumatism, dizziness, and against pertussis by the Karbi tribe of Karbi Anglong district, Assam (Ronghang et al. 2011). The tribal people of Mizoram use bone of gibbon as they believe it acts as a vaccine and prevents attack of diseases. Gall bladder of non-human primates is used by the tribes of Arunachal Pradesh for getting relief from high fever caused by malaria and typhoid (Solanki & Chutia 2009).

In several cases, ethnic communities prepare the animal-based medicines either singly or in combination, and some are consumed raw or preserved. In some cases, the animal body parts are preserved by drying under the sun or are smoked or fire-dried (Betlu 2013; Jugli et al. 2019). Although Rhesus Macaque is commonly used as ethnozoological medicine among all the tribes of the region, there has been no published literature on this and the other primates except Hoolock gibbon, which is mostly reported for its uses against multiple diseases (Figure 3).

Apart from their uses as ethnomedicines, body parts of primates are also used for a variety of other purposes by the ethnic communities. They are hunted for food, sport or ceremonial and ritualistic purposes (Devi & Radhakrishna 2013). For instance, the fur of primates is used in making the local hat ‘Yangcha’ of the Monpa people of Arunachal Pradesh (Solanki & Chutia 2004). Betlu (2013) reported that Hoolock Gibbons are kept as pets by Biate tribe of Dima Hasao district of Assam. It was also reported that the smoked meat of Capped Langur and Hoolock Gibbon was in high demand and would cost approximately INR 350–400 per kilogram.

The study found multiple ethnozoological uses of same organs of primates by the tribes while some organs are commonly used by the different tribes for the same disease. This needs to be prevented and deserves sincere attention of conservationists. Among a few tribes there exist myths or folktales about the demerits of consumption of animal species. Though most of the communities think that body parts of slow loris are useful, the tribal communities of Manipur believe that consuming their flesh causes severe illness. There also exist other beliefs among the tribal communities that are helpful in upholding the ethos of conservation. According to some communities of Manipur, Hoolock Gibbons reproduce at full moon and also die at full moon, thus a circle is maintained. For the sake of conservation, such belief systems need to be promoted on a large scale as they can contribute to reducing the hunting pressure for ethno medicines. As the primates in the area are also facing innumerable threats like scarcity of food, habitat fragmentation and shrinkage, the tribal people should be prevented from hunting them. The tribes should be made aware of the penal provisions as contained in the Wildlife (Protection) Act,
The study documents the negative uses of primate resources in traditional healthcare systems by the indigenous people of northeastern India. Many endangered and vulnerable primates that are used for zoo-therapeutical purposes are collected from the wild and killed to obtain the desired organs or body parts. This sets pressure on the survival of the species in particular and on the biodiversity of the region in general. All the primates of northeastern India are facing multiple threats, and hence the tribes should not be allowed to hunt them. Unlike plants, there is no scientific basis/evidence for the medicinal values of primates, and since cheaper and easier medicines are available almost everywhere, communities should be barred from killing such precious animals. Governments should also take up initiatives to open adequate health care centers and hospitals in the interior villages, so that the tribal people are exposed to scientific health care systems. In order to strengthen their conservation, community awareness needs to be undertaken to reduce dependency on primates for traditional healthcare.

REFERENCES

Alexander, J.S., J. McNamara, J.M. Rowcliffe, J. Oppong & E.J. Milner-Gulland (2014). The role of bushmeat in a West African agricultural landscape. Oryx 49: 643–651. https://doi.org/10.1017/S0030605314001294

Ali, A.N.M.I & I. Das (2003). Tribal situation in north-east India. Studies of Tribes and Tribals 1(2): 141–148. https://doi.org/10.1080/0972639X.2003.11886492

Alves, R.R.N. & H.N. Alves (2011). The faunal drugstore: Animal-based remedies used in traditional medicines in Latin America. Journal of Ethnobiology and ethnomedicine 7: 9. https://doi.org/10.1186/1746-4269-7-9

Alves, R.R.N. (2012). Relationships between fauna and people and the role of ethnozoology in animal conservation. Ethnobiology and Conservation 1: 1–69. https://doi.org/10.15451/ec2012-8.1.2.1-69

Alves, R.R.N., W.M.S. Souto & R.R.D. Barboza (2010). Primates in traditional folk medicine: a world overview. Mammal Review 40(2): 155–180. https://doi.org/10.1111/j.1365-2907.2010.00158.x

Berkes, F. (2009). Evolution of co-management: role of knowledge generation, bridging organizations and social learning. Journal of Environmental Management 90: 1692–1702. https://doi.org/10.1016/j.jenvman.2008.12.001

Betlu, A.L.S. (2013). Indigenous knowledge of zootherapeutic use among the Biate tribe of Dimahasa District, Assam, Northeastern India. Journal of Ethnobiology and Ethnomedicine 9: 56. https://doi.org/10.1186/1746-4269-9-56

Chetry, D., R. Medhi, J. Biswas, D. Das & P.C. Bhattacharjee (2003). Nonhuman primates in the Namdapha National Park, Arunachal Pradesh. India. International Journal of Primatology 24: 383–388. https://doi.org/10.1023/A:1023057401967

Chinlampainga, M., R.K. Singh & A.C. Shukla (2013). Ethnozoological diversity of northeast India: Empirical learning with traditional knowledge holders of Mizoram and Arunachal Pradesh. Indian Journal of Traditional Knowledge 12(1): 18–30. http://nopr.niscair.res.in/handle/123456789/15342

Choudhury, A. (2013). The Mammals of North-East India, first ed. Gibbon Books and the Rhino Foundation for nature in NE India, Guwahati, India. https://www.nhbs.com/the-mammals-of-north-east-india-book

Das, D. (2015). Ethno-ecological practices among tribal inhabitants in Khowai district of Tripura, north-east India. Journal of Global Biodiversity 4(9): 3364–3372.

Devi, S.N. & S. Radhakrishna (2013). Attitude towards primates and primate conservation in Manipur, north-east India. Asian Primates Journal 3(1): 29–35. http://eprints.nias.res.in/id/eprint/708

Ferreira, F.S., U.P. Albuquerque, H.D.M. Coutinho, W.O. Almeida & R.R.N. Alves (2012). The trade in medicinal animals in northeastern Brazil. Evidence-Based Complementary and Alternative Medicine 2012: 20. https://doi.org/10.1155/2012/126938

Hocking, K.J. (2007). Human-chimpanzee coexistence at Bossou, the Republic of Guinea: A chimpanzee perspective. Unpublished Ph.D thesis, Department of Psychology, University of Stirling, Stirling, Scotland, UK. http://hdl.handle.net/1893/1893

Hocking, K.I. (2016). Mitigating Human–Nonhuman Primate Conflict. In: The International Encyclopedia of Primatology. John Wiley & Sons, Inc. https://doi.org/10.1002/9781119179313.wbprim0053

IUCN Red List (2020). https://www.iucnredlist.org/search?query=primate&searchType=species

Jamir, N.S. & P. Lal (2005). Etnoscientific practices among Naga tribes. Indian Journal of Traditional Knowledge 4(1): 100–104. http://nopr.niscair.res.in/bitstream/123456789/8501/1/IJTK%204(1)%2020100-104.pdf?sequence=1

Jugli, S., J. Chakravorty & V.B. Meyer-Rochow (2019). Zoo-therapeutic uses of animals and their parts: an important element of the traditional knowledge of the Tangio and Wancho of eastern Arunachal Pradesh, north-east India. Environment, Development and Sustainability 22: 469–4734. https://doi.org/10.1007/s10668-019-00404-6

Lalamqngilova, H. (1999). Ethnobiology in Mizoram state: folklore medico-zoology. Bulletin of the Indian Institute of History and Sociology 192: 123–148.

Lee, P.C. (2010). Sharing space: can etoprimatology contribute to the survival of non-human primates in human–dominated globalized landscapes? American Journal of Primatology 72(10): 1–7. https://doi.org/10.1002/ajp.20789

Mittermeier, R.A., C.Valladares-Padua, A.B. Rylands, A.A. Eudey, T.M. Butynski, J.U. Ganzhorn, R. Kormos, J.M. Aguilar & S. Walker (2005). The world’s 25 most endangered primates 2004–2006. IUCN/SSC Primate Specialist Group, International Primatological Society and Conservation International, Washington, District of Columbia, USA.

Mittermeier, R.A., J. Ratimbazafy, A.B. Rylands, L. Williamson, J.F. Oates, D. Mbora, J.U. Ganzhorn, E. Rodriguez-Luna, E. Palacios, E.W. Heymann, M.C.M. Kierulff, L. Yongcheng, J. Supriatna & C. Neelis, K.A.I., C.R. Shepherd, C.R. Starr & V. Nijman (2010). Primates in peril: the world’s 25 most endangered primates, 2006–2008. Primate Conservation 22: 1–40. https://doi.org/10.1896/052.024.0101

Nekaris, K.A.I., C.R. Shepherd, C.R. Starr & V. Nijman (2010). Exploring cultural drivers for wildlife trade via an ethno-primateological approach: a case study of slender and slow Lorises (Loris and Nycticebus) in South and Southeast Asia. American Journal of Primatology 72: 877–886. https://doi.org/10.1002/ajp.20842

Riley, E.P. & A. Fuentes (2011). Conserving social-ecological systems in Indonesia: human-nonhuman primate interconnections in Bali.
Ethnozoological use of primates

Submitted to G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, India.

Riley, E.P. (2010). The importance of human-macaque folklore for conservation in Lore Lindu National Park, Sulawesi, Indonesia. *Oryx* 44: 235–240. https://doi.org/10.1017/S0030605309990925

Ronghang, R., R. Teron, K.A. Tamuli & C.R. Rajkhowa (2011). Traditional zootherapy practiced among the Karbis of Assam (India). *The Ecoscan* 1: 161–166.

Solanki, G.S. & P. Chutia (2009). Studies on ethno-medicinal aspects and zoo-therapy in tribal communities in Arunachal Pradesh, India. *International Journal of Ecology and Environmental Sciences* 35(1): 67–76.

Solanki, G.S. & P. Chutia (2004). Ethno-zoological and socio-cultural aspects of Monpas of Arunachal Pradesh. *Journal of Human Ecology* 15(4): 251–254. https://doi.org/10.1080/09709274.2004.11905701

Solanki, G.S. (2006). Diversity in use pattern of faunal resources in tribal communities in Arunachal Pradesh. Final technical report. Submitted to G.B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, India.

Srivastava, A. (2006). Conservation of threatened primate species of northeast India. *Primate Conservation* 20: 107–113. https://doi.org/10.1896/0898-6207.20.1.107

Stafford, C.A., J. Allarcon-Valenzuela, J. Patino, R.F. Preziosi & W.I. Sellers (2016). Know your monkey: Identifying primate conservation challenges in an indigenous Kichwa community using an ethnprimatological approach. *Folia Primatologica* 87: 31–47. https://doi.org/10.1159/000444414

Svensson, M.S., D.J. Ingram, K.A.I. Nekaris & V. Nijman (2015). Trade and ethno-zoological use of African lorisiformes in the last 20 years. *Hystrix* 26(2): 153–161. https://doi.org/10.4404/hystrix-26.2-11492

Talukdar, N.R., P. Choudhury, R.A. Barbhuiya, B. Singh & D. Talukdar (2021). Mammals of northeastern India: an updated checklist. *Journal of Threatened Taxa* 13(4): 18059–18098. https://doi.org/10.11609/jott.6010.13.4.18059-18098
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows uses unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2021 | Vol. 13 | No. 11 | Pages: 19431-19674
Date of Publication: 26 September 2021 (Online & Print)
DOI: 10.11609/jott.2021.13.11.19431-19674

Articles

Understanding human-flying fox interactions in the Agus Marsh Wildlife Sanctuary as basis for conservation policy interventions
– Sherry L. Paz & Juan Carlos T. Gonzalez, Pp. 19431–19447

Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation
– A. Nava-Bolaños, D.E. Vrech, A.V. Peretti & A. Córdoba-Aguilar, Pp. 19448–19465

Communications

The diel activity pattern of small carnivores of Western Ghats, India: a case study at Nelliamputties in Kerala, India
– Devika Sangamithra & P.O. Nameer, Pp. 19466–19474

Distribution and threats to Smooth-Coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae) in Shuklaphanta National Park, Nepal
– Gopi Krishna Joshi, Rajeev Joshi & Bishow Poudel, Pp. 19475–19483

Wildlife hunting practices of the Santal and Oraon communities in Rajshahi, Bangladesh
– Asizul Islam Barkat, Fahimda Tasnim Liza, Sumaiya Akter, Ashikur Rahman Shome & M. Fazle Rabbo, Pp. 19484–19491

Ethnzoological use of primates in northeastern India
– Deborah Daolagupu, Nazimur Rahman Talukdar & Parthankar Choudhury, Pp. 19492–19499

Factors influencing the flush response and flight initiation distance of three owl species in the Andaman Islands
– Shanmugavel Sureshmarimuthu, Santhanakrishnan Babu, Honnavalli Nagaraj Kulatra & Nagharaj Rajeshkumar, Pp. 19500–19508

Birds of Barandabhar Corridor Forest, Chitwan, Nepal
– Sameer Lamichhane, Babu Ram Lamichhane, Kapil Pokharel, Pramod Raj Regmi, Tulsai Prasad Dahal, Santosh Bhattarai, Chiranjibi Prasad Pokharel, Pabitra Gotame, Trishina Rayamajhi, Ram Chandra Kandel & Anil Shrestha, Pp. 19509–19526

On some additions to the amphibians of Gunung Inas Forest Reserve, Kedah, Peninsular Malaysia
– Shahriza Shahrudin, Pp. 19527–19539

Notes

First record of Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) with photographic evidence in Meghalaya, India
– Papiro Khatanier & Adrian Wasansdor Lyngdoh, Pp. 19649–19651

First record of the Eastern Cat Snake Boiga gocool (Gray, 1833) (Squamata: Colubridae) from Tripura, India
– Sumit Nath, Biswajit Singh, Chiranjibi Deb Nath & Joydeb Majumder, Pp. 19652–19656

First record of the genus Tibetania (Lepidoptera: Eupterotidae: Janinae) from India
– Alka Vaidya & H. Sankararaman, Pp. 19657–19659

A review of research on the distribution, ecology, behaviour, and conservation of the slender loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mwea Singh, Mrubula Singh, Honnavalli N. Kumar, Shanthala Kumar, Smitha D. Gnanadivu & Ramamoorthy Sasi, Pp. 19540–19552

Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats
– Abdulla-Al-Asif, Hadi Hamli, Abu Hena Mustafa Kamal, Mohd Hanafi Idris, Geoffrey James Gerusu, Johan Ismail & Muyassar H. Abualreesh, Pp. 19553–19565

Intestinal coccidiosis (Apicomplexa: Eimeriidae) in a Himalayan Griffon Vulture Gyps himalayensis
– Vishal Pratap Singh, Vimalraj Padayatchiar Govindan, Parag Madhukar Dhakate & Ayush Uniyal, Pp. 19636–19639

A cytomorphological investigation of three species of the genus Sonchus L. (Asteraceae) in the cold arid region of Ladakh, India
– M. Ali, M. Kamil Usmani, Hira Naz, Tajamul Hassan Baba & Mohsin Ali, Pp. 19616–19625

Rediscovery of Aponogeton laxonensis A. Camus (Aponogetonaceae): a long-lost aquatic plant of India
– Debolina Dey, Shrirang Ramchandra Yadav & Nilakshak Devi, Pp. 19632–19635

New distribution records of two Begonia species to the flora of Bhutan
– Phub Gyeltshen & Sherab Jamthpo, Pp. 19626–19631

Dryopteris lunonanensis (Dryopteridaceae) - an addition to the pteridophytic diversity of India
– Chhandam Chanda, Christopher Roy Fraser-Jenkins & Vineet Kumar Rawat, Pp. 19645–19648

A preliminary assessment of odonate diversity along the river Tirthan, Great Himalayan National Park Conservation Area, India with reference to the impact of climate change
– Amar Paul Singh, Kritish De, Virendra Prasad Uniyal & Sambandam Sathyakumar, Pp. 19611–19615

A checklist of orthopteran fauna (Insecta: Orthoptera) with some new records in the cold arid region of Ladakh, India
– M. Ali, M. Kamil Usmani, Hira Naz, Tajamul Hassan Baba & Mohsin Ali, Pp. 19616–19625

Notes

First record of Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) with photographic evidence in Meghalaya, India
– Papiro Khatanier & Adrian Wasansdor Lyngdoh, Pp. 19649–19651

First record of the Eastern Cat Snake Boiga gocool (Gray, 1833) (Squamata: Colubridae) from Tripura, India
– Sumit Nath, Biswajit Singh, Chiranjibi Deb Nath & Joydeb Majumder, Pp. 19652–19656

First record of the genus Tibetania (Lepidoptera: Eupterotidae: Janinae) from India
– Alka Vaidya & H. Sankararaman, Pp. 19657–19659

A review of research on the distribution, ecology, behaviour, and conservation of the slender loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mwea Singh, Mrubula Singh, Honnavalli N. Kumar, Shanthala Kumar, Smitha D. Gnanadivu & Ramamoorthy Sasi, Pp. 19540–19552

Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats
– Abdulla-Al-Asif, Hadi Hamli, Abu Hena Mustafa Kamal, Mohd Hanafi Idris, Geoffrey James Gerusu, Johan Ismail & Muyassar H. Abualreesh, Pp. 19553–19565

Disentangling earthworm taxonomic stumbling blocks using molecular markers
– Azhar Rashid Lone, Samrendra Singh Thakur, Nalini Tiwari, Olusola B. Okoefun & Shweta Yadav, Pp. 19566–19579

A reference of identification keys to plant-parasitic nematodes (Nematoda: Tylenchida, Tylenchomorpha)
– Reza Ghaderi, Manouchehr Hosseinivand & Ali Eksandari, Pp. 19580–19602

Short Communications

Catalogue of herpetological specimens from Meghalaya, India at the Salim Ali Centre for Ornithology and Natural History
– S.R. Chandramouli, R.S. Naveen, S. Sureshmarimuthu, S. Babu, P.V. Karunakaran & Honnavalli N. Kumar, Pp. 19603–19610

Publisher & Host

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows uses unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.