A generic dimensional property of the invariant measures for circle diffeomorphisms

Shigenori Matsumoto

Abstract. Given any Liouville number α, it is shown that the nullity of the Hausdorff dimension of the invariant measure is generic in the space of the orientation preserving C^∞ diffeomorphisms of the circle with rotation number α.

1. Introduction

Denote by F the group of the orientation preserving C^∞ diffeomorphisms of the circle. For $\alpha \in \mathbb{R}/\mathbb{Z}$, denote by F_α the subspace of F consisting of all the diffeomorphisms whose rotation numbers are α, and by O_α the subspace of F_α of all the diffeomorphisms that are C^∞ conjugate to R_α, the rotation by α.

In [Y1], J.-C. Yoccoz showed that $O_\alpha = F_\alpha$ if α is a non-Liouville number. Before that, M. R. Herman ([H], Chapt. XI) had obtained the converse by showing that for any Liouville number α the subspace O_α is meager in F_α.

For $f \in F_\alpha$, α irrational, denote by μ_f the unique probability measure on S^1 which is invariant by f. The properties of μ_f reflect the regularity of the conjugacy of f to R_α. In [S], Victoria Sadovskaya improved the above result of M. R. Herman as follows. For $d \in [0, 1]$ define

$$S^d_\alpha = \{ f \in F_\alpha \mid \dim_H(\mu_f) = d \},$$

where $\dim_H(\cdot)$ denotes the Hausdorff dimension of a measure. She showed that for any Liouville number α and any $d \in [0, 1]$, the set S^d_α is nonempty. Notice that the Hausdorff dimension is an invariant of the equivalence classes of measures, and therefore $\dim_H(\mu_f) < 1$ implies that μ_f is singular w. r. t. the Lebesgue measure.

In [Y2], J.-C. Yoccoz showed the following theorem

Theorem 1.1. For any irrational number the space O_α is dense in F_α in the C^∞ topology.

The proof of V. Sadovskaya is based on the method of fast approximation by conjugacy with estimate, developed in [FS], and if it is slightly modified it can be

1991 *Mathematics Subject Classification.* Primary 37E10, secondary 37E45.

Key words and phrases. circle diffeomorphism, rotation number, Liouville number, Hausdorff dimension, invariant measure, fast approximation by conjugation.

The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096.
SHIGENORI MATSUMOTO

combined with the above theorem to show that for any Liouville number \(\alpha \) and for any \(d \in [0, 1] \) the set \(S^d_\alpha \) is \(C^\infty \) dense in \(F_\alpha \).

On the other hand M. R. Herman ([H], Prop I.8, p. 167) showed that the set \(S \) of the diffeomorphism \(f \in F \) such that \(\mu_f \) is singular contains a \(G_\delta \) set in the \(C^1 \) topology in \(F \).

These two results joined together does not immediately imply that \(S \cap F_\alpha \) is a dense \(G_\delta \) set in the \(C^r \) topology, as pointed out to the author by Mostapha Benhenda. The purpose of this paper is to settle down the situation. In fact we get a bit more.

Theorem 1. For any Liouville number \(\alpha \), the set \(S^0_\alpha \) contains a countable intersection of \(C^0 \) open and \(C^\infty \) dense subsets of \(F_\alpha \).

2. Preliminaries

2.1. An irrational number \(\alpha \) is called a Liouville number if for any \(N \in \mathbb{N} \) there is \(p/q \) (\((p, q) = 1 \)) such that \(|\alpha - p/q| < 1/q^N \). We call \(\alpha \) a lower Liouville number if the above \(p/q \) satisfies in addition that \(p/q < \alpha \).

For any lower Louville number \(\alpha \), \(N \in \mathbb{N} \) and \(\delta > 0 \) there is \(p/q \) such that \(|\alpha - p/q| < \delta/q^N \) and \(p/q < \alpha \).

2.2. For a metric space \(Z \) and \(d > 0 \), the \(d \)-dimensional Hausdorff measure \(\nu^d(Z) \) is defined by

\[
\nu^d(Z) = \lim_{\varepsilon \to 0} \inf \{ \sum_{i=1}^{\infty} r_i^d \mid \cup_i B(x_i, r_i) = Z, \ r_i \leq \varepsilon \},
\]

where \(B(x, r) \) denotes the open metric ball centered at \(x \) of radius \(r \). The *Hausdorff dimension* of \(Z \), denoted by \(\text{dim}_H(Z) \), is defined by

\[
\text{dim}_H(Z) = \inf \{ d \mid \nu^d(Z) = 0 \} = \sup \{ d \mid \nu^d(Z) = \infty \}.
\]

The *lower box dimension* of \(Z \), denoted by \(\text{dim}_B(Z) \), is defined by

\[
\text{dim}_B(Z) = \lim_{\varepsilon \to 0} \frac{\log N(\varepsilon, Z)}{\log(1/\varepsilon)},
\]

where \(N(\varepsilon, Z) \) denotes the minimal cardinality of \(\varepsilon \)-dense subsets of \(Z \).

Let \(X \) be a compact metric space, and \(\mu \) a probability measure on \(X \). The Hausdorff dimension \(\text{dim}_H(\mu) \) and the lower box dimension \(\text{dim}_B(\mu) \) of \(\mu \) are defined respectively by

\[
\text{dim}_H(\mu) = \inf \{ \text{dim}_H(Z) \mid Z \subset X \text{ is measurable, } \mu(Z) = 1 \},
\]

\[
\text{dim}_B(\mu) = \lim_{\varepsilon \to 0} \inf \{ \text{dim}_B(Z) \mid Z \subset X \text{ is measurable, } \mu(Z) > 1 - \varepsilon \}.
\]

It is well known that

\[
\text{dim}_H(\mu) \leq \text{dim}_B(\mu).
\]

2.3. The proof of Theorem 1 is by the method of fast approximation by conjugacy with estimate. Let us prepare inequalities about the derivatives of circle diffeomorphisms which are necessary for the estimate.

\footnote{There are Liouville numbers which look like non-Liouville, e. g. badly approximable, from one side.}
For a C^∞ function φ on S^1, we define as usual the C^r norm $\|\varphi\|_r$, $(0 \leq r < \infty)$ by
\[\|\varphi\|_r = \max_{0 \leq i \leq r} \sup_{x \in S^1} |\varphi^{(i)}(x)|. \]

For $f, g \in F$, define
\[\|\|f\|\|_r = \max\{\|f - \text{id}\|_r, \|f^{-1} - \text{id}\|_r, 1\}, \]
\[d_r(f, g) = \max\{\|f - g\|_r, \|f^{-1} - g^{-1}\|_r\}. \]

Since we include 1 in the definition of $\|\|f\|\|_r$, we get the following inequality from the Faà di Bruno formula (H, p.42 or S).

Lemma 2.1. For $f, g \in F$ we have
\[\|\|fg\|\|_r \leq C_1(r) \|\|f\|\|_r \|\|g\|\|_r, \]
where $C_1(r)$ is a positive constant depending only on r. \hfill \Box

The following inequality can be found as Lemma 5.6 of FS or as Lemma 3.2 of S.

Lemma 2.2. For $H \in F$ and $\alpha, \beta \in \mathbb{R}/\mathbb{Z}$,
\[d_r(\text{Int} \circ H^\alpha H^{-1}, H \text{Int} H^{-1}) \leq C_2(r) \|\|H\|\|^r_{r+1} \alpha - \beta|, \]
where $C_2(r)$ is a positive constant depending only on r. \hfill \Box

For $q \in \mathbb{N}$, denote by $\pi_q : S^1 \to S^1$ the q-fold covering map. Simple computation shows:

Lemma 2.3. Let h be a lift of $k \in F$ by π_q and assume $\text{Fix}(h) \neq \emptyset$. Then we have
\[\|\|h\|\|_r \leq \|\|k\|\|_r q^{r-1}. \]
\hfill \Box

2.4. Here we prepare necessary facts about Moebius transformations on the circle. Let
\[S^1_C = \{z \in \mathbb{C} \mid |z| = 1\}, \]
and $\text{Möb}_+(S^1_C)$ the group of the orientation preserving Moebius transformations of \mathbb{C} which leaves S^1_C invariant. We identify S^1_C with the circle $S^1 = \mathbb{R}/\mathbb{Z}$ in a standard way. For $k \in \text{Möb}_+(S^1_C)$, the diffeomorphism of S^1 corresponding to k is denoted by \hat{k}. Define the *expanding interval* $I(\hat{k})$ of \hat{k} by
\[I(\hat{k}) = \{x \in S^1 \mid \hat{k}'(x) \geq 1\}. \]

Then the inverse formula of the derivatives shows that
\[\hat{k}(I(\hat{k})) = S^1 \setminus \text{Int} I(\hat{k}^{-1}). \]

Denote by $\rho(\hat{k})$ the radius of $I(\hat{k})$. Notice that $\rho(\hat{k}) = \rho(\hat{k}^{-1})$. For $1/2 \leq a < 1$, define $k_a \in \text{Möb}_+(S^1_C)$ by
\[k_a(z) = \frac{az + a}{az + 1}. \]

The transformation k_a is hyperbolic with an attractor $z = 1$ and a repellor $z = -1$. Notice that $|k_a'(1)| \searrow \infty$ as $a \nearrow 1$. The corresponding diffeomorphism \hat{k}_a has an attractor at $x = 0$ and a repellor at $x = 1/2$, and $\rho(\hat{k}_a) \searrow 0$ as $a \nearrow 1$.
Lemma 2.4. There is a constant $C_3(r) > 0$ depending only on r such that for any $1/2 \leq a < 1$,
\[\|\hat{\kappa}_a\|_r \leq C_3(r)\rho(\hat{\kappa}_a)^{-2r}. \]

Proof. First of all $\rho(\hat{\kappa}_a)$ is proportional to the radius of the isometric circle of κ_a, \[\{ z \in \mathbb{C} | |\kappa_a'(z)| = 1 \}, \]
and the latter can easily be computed using the expression
\[\kappa_a'(z) = \frac{1 - a^2}{(az + 1)^2}. \]
It follows that there is a constant $c > 0$ such that
\[\rho(\hat{\kappa}_a) \leq c(1 - a)^{1/2}, \quad 1/2 \leq a < 1. \]

For k_a, looked upon as a map from S_1^1 to S_1^1, the real r-th derivative w. r. t. the angle coordinate is denoted by $D^r k_a$, while φ' denotes the complex derivative of a holomorphic map φ. It suffices to show for any r and $z \in S_1^1$,
\[|D^r k_a(z)| \leq c_3(r)(1 - a)^{-r}. \]
For $r = 1$, this follows immediately from (2.1) since $Dk_a = |k_a'|$.
Now Dk_a extends to a holomorphic function on a neighbourhood of S_1^1. Since $\arg(k_a'(z)) = \arg(k_a(z)/z)$ and $|k_a(z)/z| = 1$ for $z \in S_1^1$, we have
\[Dk_a(z) = k_a'(z)/k_a(z) = \left(\frac{1}{z + a} - \frac{a}{az + 1} \right)z. \]
It follows that
\[D^2 k_a = |(Dk_a)'|, \]
where
\[(Dk_a)'(z) = \frac{P_1}{(z + a)^2} + \frac{Q_1}{(az + 1)^2}, \]
and P_1 and Q_1 are polynomials in z and a, showing (2.2) for $r = 2$.
Now since Dk_a is real valued on S_1^1, its derivative along the direction tangent to S_1^1 is real. Therefore $D^2 k_a$ extends to a holomorphic function as
\[D^2 k_a(z) = (Dk_a)'(z)iz. \]
This shows that
\[D^3 k_a = |(D^2 k_a)'|, \]
where
\[(D^2 k_a)'(z) = \frac{P_2}{(z + a)^3} + \frac{Q_2}{(az + 1)^3}, \]
showing (2.2) for $r = 3$.
The last argument for $r = 3$ can be applied for any $r \geq 4$, completing the proof of the lemma. \qed
3. The G_δ set

In the rest of the paper we choose an arbitrary Liouville number α and fix it once and for all. Let us assume that α is a lower Liouville number (See 2.1.), the other case being dealt with similarly. In this section we define a G_δ set B of F_α in the C^0 topology, and show that any $f \in B$ satisfies that $\dim_H(\mu_f) = 0$. Notice that by the lower Liouville property, for p/q well approximating α, the iterate R^q_{α} has rotation number $q\alpha - p$, a very small positive number.

Definition 3.1. For any $n \in \mathbb{N}$, we define $B_n \subset F_\alpha$ to be the subset consisting of those f which satisfy the following condition. There exist integers $q_n = q_n(f) > n$, $l_n = l_n(f) > 0$ and points $c_i = c_i^n(f)$, $d_i = d_i^n(f)$ of S^1 $(0 \leq i \leq q_n)$ with $c_{q_n} = c_0$ and $d_{q_n} = q_0$, satisfying the following properties.

1. $c_1 < d_1 < c_2 < d_2 < \cdots < c_{q_n} < d_{q_n} < c_1$ in the cyclic order.
2. $\max_i(d_i - c_i) < q_n^{-n}$.
3. $\max_i(d_i - c_i) < n^{-1}\min_i(c_{i+1} - d_i)$.
4. $f^{kq_n}(c_i) \in (c_i, d_i)$ for any $1 \leq k \leq 2^n l_n$.
5. $f^{kn}(d_i) \notin [d_i, c_{i+1}]$.

Clearly B_n is C^0 open in F_α, and therefore their intersection $B = \cap_n B_n$ is a G_δ set.

The following lemma follows from the flexibility of Definition 3.1, e. g. (3.1.c).

Lemma 3.2. For $h \in F$, we have $hBh^{-1} = B$. \hfill \square

Lemma 3.3. If $f \in B$, then $\dim_H(\mu_f) = 0$.

Proof. It suffices to show that $\dim_B(\mu_f) = 0$. (See Paragraph 2.2.) Choose an arbitrary $f \in B$. Below we depress the notations as $q_n = q_n(f)$, $l_n = l_n(f)$, $c_i = c_i^n(f)$, $d_i = d_i^n(f)$.

Define

$$I^{(n)} = \bigcup_{i=1}^{q_n} [c_i, d_i].$$

By (3.1.d) and (3.1.e), we have

$$\#\{i \mid f^{i q_n}(x) \in I^{(n)}, 1 \leq i \leq 2^n l_n\} \geq (2^n - 1)l_n, \forall x \in S^1.$$

This implies

$$\mu_f(I^{(n)}) \geq 1 - 2^{-n}.$$

Define a closed set $C_m = \cap_{n \geq m} I^{(n)}$. Then since

$$\mu_f(C_m) \geq 1 - 2^{-m+1},$$

it suffices to show that $\dim_B(C_m) = 0$. Choose $\varepsilon = \max_i(d_i - c_i)$. Then by (3.1.c) we have for $m \geq 2$,

$$N(\varepsilon, C_m) \leq N(\varepsilon, I^{(n)}) = q_n, \forall n \geq m.$$

We also have $\varepsilon \leq q_n^{-n}$ by (3.1.b), showing that

$$\frac{\log N(\varepsilon, C_m)}{\log(1/\varepsilon)} \leq n^{-1}.$$
Since \(n \) is an arbitrary integer \(\geq m \), we have shown that \(\dim_B(C_m) = 0 \), as is required.

\[\square \]

4. proof

The purpose of this section is to show:

Proposition 4.1. For any \(r \in \mathbb{N} \), there is \(f \in B \) such that \(d_r(f, R_\alpha) < 2^{-r} \).

The proposition asserts that \(R_\alpha \) belongs to the \(C^\infty \) closure of \(B \), which implies that \(B \) is \(C^\infty \) dense in \(F_\alpha \), by virtue of Theorem 4.1 and Lemma 3.2. This, together with the fact that \(B \) is a \(G_\delta \) set of \(F_\alpha \) in the \(C^0 \) topology, completes the proof of Theorem 4.1.

Our overall strategy of the proof of Proposition 4.1 is as follows. Since \(\alpha \) is lower Liouville, we can choose a sequence of rationals \(\alpha_n = p_n/q_n \) well approximating \(\alpha \) so that \(\alpha_n \nearrow \alpha \). We shall construct a diffeomorphism \(h_n \in F \) commuting with \(R_{\alpha_n} \), and set \(H_n = h_1 h_2 \cdots h_n \). We are going to show that \(f_n \)'s converge to \(f \in B \). The commutativity condition above is quite useful when we estimates the norm of the functions \(f_n \pm 1 \), by virtue of Lemma 2.2.

Now a concrete construction gets started. Choose \(\alpha_1 = p_1/q_1 \) so that

(A) \(0 < \alpha - \alpha_1 < 2^{-(r+1)} \),

and let \(f_0 = R_{\alpha_1} \).

Set \(h_1 \) to be the lift of \(\hat{k}_{a_1} \) by the cyclic \(q_1 \)-covering such that \(\text{Fix}(\hat{k}_{a_1}) \neq \emptyset \), where \(a_1 \in [1/2, 1) \) satisfies

(B) \(\rho(\hat{k}_{a_1}) = q_1^{-2} \).

See Paragraph 2.4 for these definitions. Notice that \(h_1 R_{\alpha_1} h_1^{-1} = R_{\alpha_1} \).

Assume we already defined \(\alpha_i \) and \(h_i \) for \(1 \leq i \leq n - 1 \). Define

\[L_{n-1} = \max\{\|H_{n-1}\|_0, \|(H_{n-1}^{-1})'\|_0\} \]

Choose \(\alpha_n = p_n/q_n \) which satisfies (C), (D) and (E) below. Such \(\alpha_n \) exits since \(\alpha \) is a lower Liouville number. The constants \(C_i(\cdot) \), \(i = 1, 2, 3 \), are from the lemmata in Sect. 2.

(C) \(0 < \alpha - \alpha_n < \delta/q_n^N \), where

\[\delta = 2^{-(n+r+1)} C_2(n+r)^{-1} C_1(n+r+1)^{-1} C_3(n+r+1)^{-2(n+r+1)} \|H_{n-1}\|_{n+r+1}^{-(n+r+1)^2}, \]

\[N = (2n + 3)(n + r + 1)^3. \]

(D) \(q_n > 2^n L_{n-1} \).

(E) \(q_n > 2^{n+5} q_{n-1} \).

Finally set \(h_n \) to be the lift of \(\hat{k}_{a_n} \) by the \(q_n \) covering with \(\text{Fix}(h_n) \neq \emptyset \), where \(1/2 \leq a_n < 1 \) is chosen such that

(B) \(\rho(\hat{k}_{a_n}) = q_n^{-(n+1)} \).

Notice that \(h_n R_{\alpha_n} h_n^{-1} = R_{\alpha_n} \) and that \(\|h_n \pm 1 - \text{id}\|_0 \leq 2^{-1} q_n^{-1} \).

Lemma 4.2. We have \(d_{n+r}(f_{n-1}, f_n) < 2^{-(n+r+1)} \) for \(n \geq 1 \).
A GENERIC PROPERTY OF CIRCLE Diffeomorphisms

PROOF. The proof is a routine calculation using the lemmata in Sect. 2 and condition (C). Just notice that \(f_{n-1} = H_n R_{\alpha_n} H_{n}^{-1} \), while \(f_{n} = H_n R_{\alpha_{n+1}} H_{n}^{-1} \), and that \(0 < \alpha_{n+1} - \alpha_{n} < \alpha - \alpha_{n} \).

Corollary 4.3. The limit \(f = \lim_{n \to \infty} f_n \) is a \(C^\infty \) diffeomorphism and \(d_r(f, R_{\alpha}) \leq 2^{-r} \).

PROOF. The latter assertion is obtained from (A) and the following estimate.

\[
d_r(f, R_{\alpha_1}) \leq \sum_{n=1}^{\infty} d_r(f_{n-1}, f_n) \leq \sum_{n=1}^{\infty} 2^{-(n+r+1)} \leq 2^{-(r+1)).
\]

\(\Box \)

Lemma 4.4. There exists a homeomorphism \(H \) of \(S^1 \) such that \(d_0(H_n, H) \to 0 \).

PROOF. First we have by (E)

\[
\|H_n^{1} - H_{n-1}^{-1}\|_0 \leq \|h_n^{1} - \text{id}\|_0 \leq 2^{-1}q_n^{-1} \leq 2^{-n}.
\]

On the other hand by (D)

\[
\|H_n - H_n^{-1}\|_0 \leq L_{n-1}\|h_n - \text{id}\|_0 \leq L_{n-1}2^{-1}q_n^{-1} \leq 2^{-(n+1)},
\]

showing the lemma.

It follows from Lemma 4.4 that \(f = HR_{\alpha} H^{-1} \) and in particular \(f \in F_{\alpha} \).

In what follows, we fix \(n \in \mathbb{N} \) once and for all and will show that \(f \in B_n \). First of all let us study the dynamics of \(h_n \) in details. Recall that \(h_n \) is a lift of \(\hat{k}_{a_n} \) by the \(q_n \)-fold covering. So \(h_n \) has \(q_n \) repelling fixed points and \(q_n \) attracting fixed points.

The expanding interval \(\mathcal{I}(\hat{k}_n) \) of \(\hat{k}_n \) (See 2.4.) is centered at 1/2 and has length \(2q_n^{-(n+1)} \) by (B), and \(\mathcal{I}(\hat{k}_n^{-1}) \) is the interval centered at 0 of the same length. Recall the dynamics of \(\hat{k}_{a_n}^{-1} \):

\[
\hat{k}_{a_n}^{-1}(\mathcal{I}(\hat{k}_{a_n})) = S^1 \setminus \text{Int} \mathcal{I}(\hat{k}_{a_n}).
\]

Let \([c'_i, d'_i], 1 \leq i \leq q_n \) be the lift of \(\mathcal{I}(\hat{k}_{a_n}^{-1}) \), located in this order in \(S^1 \). Their lengths \(d'_i - c'_i \) are very small compared with \(c'_{i+1} - c'_i = q_n^{-1} \). In fact by (B)

\[
d'_i - c'_i = 2q_n^{-(n+2)}.
\]

The intervals \([h_n^{-1} d'_i, h_n^{-1} c'_{i+1}] \) are lifts of \(\mathcal{I}(\hat{k}_{a_n}) \), and has the same length \(2q_n^{-(n+2)} \). Since by (E)

\[2q_n^{-(n+2)} < 2^{-(n+3)}q_n^{-1},\]

we have

\[
0 < h_n^{-1} c'_{i+1} - h_n^{-1} d'_i < 2^{-(n+3)}q_n^{-1}.
\]

Put

\[
H_{(n)} = \lim_{k \to \infty} h_n h_{n+1} \cdots h_{n+k}, \quad f_{(n)} = H_{(n)} R_{\alpha} H_{(n)}^{-1},
\]

\[
c''_i = H_{(n)}^{-1} c'_i, \quad d''_i = H_{(n)}^{-1} d'_i.
\]

Then we have

\[
|c''_i - h_n^{-1} c'_i| \leq 2^{-(n+5)}q_n^{-1},
\]

\[
|d''_i - h_n^{-1} d'_i| \leq 2^{-(n+5)}q_n^{-1}.
\]
In fact, (4.2) can be shown by
\[|c''_i - h^{-1}_n c'_i| \leq \|H_{n+1}^{-1} - \text{id}\|_0 \leq \sum_{i=1}^{\infty} \|h^{-1}_n - \text{id}\|_0 \]
\[\leq \sum_{i=1}^{\infty} 2^{-1} q_{n+i}^{-1} \leq \sum_{i=1}^{\infty} 2^{-(n+i+5)} q_n^{-1} = 2^{-(n+5)} q_n^{-1}, \]
where we have used (E) in the last inequality.

From (4.1), (4.2) and (4.3), we obtain that
\[0 < c''_{i+1} - d''_i < 2^{-(n+2)} q_n^{-1}. \]

On the other hand we have
\[d''_i - c''_i > 2^{-1} q_n^{-1}. \]

In fact
\[d''_i - c''_i = (c''_{i+1} - c''_i) - (c''_{i+1} - d''_i) > q_n^{-1} - 2 \cdot 2^{-(n+5)} q_n^{-1} - 2^{-(n+2)} q_n^{-1} > 2^{-1} q_n^{-1}. \]

Now the rotation number of \(R_{q_n}^{\alpha} \) is \(q_n \alpha - p_n \), a very small positive number. Let us estimate how long the orbit by \(R_{q_n}^{\alpha} \) of \(c''_i \) stays in the interval \((c''_i, d''_i] \). Let \(m_n \) be the largest integer such that
\[R_{q_n}^{\alpha} c''_i \in (c''_i, d''_i], \text{ if } 1 \leq k \leq m_n. \]

Then we have by (4.5)
\[m_n = \lfloor (d''_i - c''_i)(q_n \alpha - p_n)^{-1} \rfloor \geq 2^{-1} q_n^{-1} (q_n \alpha - p_n)^{-1} - 1. \]

Next estimate how quickly the orbit of \(d''_i \) exits \([d''_i, c''_{i+1}] \). Let \(l_n \) be the smallest positive integer such that
\[R_{q_n}^{\alpha} d''_i \notin [d''_i, c''_{i+1}]. \]

Then it follows from (4.4) that
\[l_n = \lfloor (c''_{i+1} - d''_i)(q_n \alpha - p_n)^{-1} \rfloor + 1 \leq 2^{-(n+2)} q_n^{-1} (q_n \alpha - p_n)^{-1} + 1. \]

By (C) the number \(q_n^{-1} (q_n \alpha - p_n)^{-1} \) is sufficiently big, and we have
\[m_n \geq 2^n l_n. \]

Now consider \(f = H R_{\alpha} H^{-1} \). Let \(c_i = H c''_i \) and \(d_i = H d''_i \). Then \(m_n \) is the largest integer such that \(f^{l_n} c_i \in (c_i, d_i) \) if \(1 \leq k \leq m_n \) and \(l_n \) the smallest positive integer such that \(f^{l_n} d_i \notin [d_i, c_{i+1}] \). Thus (4.6) implies (3.1.d) and (3.1.e).

Finally recall that
\[f = H R_{\alpha} H^{-1} = H_{n-1} f(n) H_{n-1}^{-1}, \quad c_i = H_{n-1} c'_i, \quad d_i = H_{n-1} d'_i. \]

As for (3.1.b) we have
\[d_i - c_i \leq L_{n-1}(d'_i - c'_i) = L_{n-1} 2 q_n^{-(n+2)}. \]

Now (D) implies that
\[L_{n-1} 2 q_n^{-(n+2)} \leq q_n^{-n}. \]

This shows (3.1.b).

For (3.1.c), we have
\[c_{i+1} - d_i \geq L_{n-1}(c'_{i+1} - d'_i) \geq L_{n-1} 2 q_n^{-n}. \]
Also (D) implies
\[4nL^2 L_{n-1} \leq q_n^{n+1}. \]
Simple computation shows that (4.7), (4.8) and (4.9) implies the condition (4.11c).
Now we are done with the proof that \(f \in B_n \). Since \(n \) is arbitrary, this shows that \(f \in B \), completing the proof of Proposition 4.1.

References

[FS] B. Fayad and M. Saprykina, *Weak mixing disc and annulus diffeomorphisms with arbitrary Liouvillean rotation number on the boundary*, Ann. Sci. Ecole Norm. Sup. 38 (2005), no. 3, 339-364.

[H] M. R. Herman, *Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations*, Publ. I. H. E. S. 49 (1979), 5-233.

[S] V. Sadovskaya, *Dimensional characteristics of invariant measures for circle diffeomorphisms*, Erg. Th. Dyn. Sys. 29 (2009), no.6, 1979-1992.

[Y1] J.-C. Yoccoz, *Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne*, Ann. Sci. Ecole Norm. Sup. 17 (1984), no. 3, 333-359.

[Y2] J.-C. Yoccoz, *Centralisateurs et conjugaison différentiable des difféomorphismes du cercle*, Astérisque 231 (1995), 89-242.