A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources

Jiangning Che a,*, Xu Yang b

a Apparel Merchandising and Management Department, California State Polytechnic University, Pomona, Pomona, CA, USA
b Nutrition and Food Science Department, California State Polytechnic University, Pomona, Pomona, CA, USA

ARTICLE INFO

Keywords:
- Plant dyes
- Sustainable natural dyeing
- Color gamut of natural dyes

ABSTRACT

Fast fashion uses an excessive amount of synthetic dyes and chemical reagents in textile production, while a large quantity of fast fashion apparel and clothes go to the landfill, posting environmental safety concerns. Natural dyes not only produce delicate and subdued shades but also have the potential of novel features to achieve active textile substrate with performance properties such as deodorizing, antioxidant, antimicrobial, antifeedant, UV protection, etc. Developing colored textile products with natural colorants in today's market may enhance consumer interest to an even greater extent. Therefore, finding alternative natural degradable dyes has become one of the leading trends in this field. So far, multiple plants and agriculture byproducts have shown promising results in textile dyeing with increasing sustainability and environmental friendliness. There is no doubt in the general acceptance of natural colorants to be utilized as promising substitutes to synthetic dyes for certain categories of textile products, minimizing the negative impact on the health and the ecosystem. With the continuous advancement of natural dyeing research and technology, the dyes will be elaborated even more with finesse, color yield, stability, and colorfastness. This review gives the present status of natural colorants, natural dyeing and color presentation, natural dyeing methods, technique, and performance, mordants and mordanting for natural dyeing, and selection of suitable Agriculture products/byproducts for natural colorants. We hope to provide readers with specific angles on current natural dyeing applications in the textile and apparel industry.

1. Introduction

Natural plant dyeing is considered as an ecological dyeing technology on textiles or materials alike using dyes from natural plant resources. These dyes are extracted from natural plant parts including stems, roots, flowers, leaves, fruits, and peels. The earliest record to document the use of natural plant dyes can be traced back to 2600 B.C. in China. As archeological evidence indicated, a small number of plants and animal materials were initially used to extract natural dyes back then (Liu et al., 2021). Since the Middle Ages, the cultivation of dye plants and further processing and dyeing became an important economic factor in Europe. For instance, woad (Isatis tinctoria) in Germany, and madder (Rubia tinctorum) in the Netherlands and southern areas of France were used for fabric dyeing (Meyer, 1997).

More recently, synthetic dyes have replaced natural dyes during the industrial revolution and thousands of these chemical-made colorants are currently prevalent in the market (Hardman and Pinhey, 2009). With more and more advances and well-defined chemical structures, synthetic colorants have more advantages in handling, color performance, and reproducibility than natural dyes. Since then, synthetic dyes have been successfully applied in modern dye houses gradually and globally (Khattab et al., 2020). It is reported that textile industries, all over the globe, produce and use approximately 1.3 million tons of dyes, pigments, and dye precursors that cost around $23 billion (Technique Report 57, 2003). Unfortunately, many of these synthetic dyestuffs, auxiliaries, and dyeing wastes pose a significant threat to human health and the environment in an unsustainable manner. Millions of tons of textile dyeing, printing, and finishing wastes are being discharged into the eco-system annually. Since the millennium, there has been a trend of continued restrictions on synthetic dyeing chemicals, including azo dyes and toxic finishing agents used in textile industries (European Chemicals Agency, 2015; Union et al., 2020). Thus, textile scientists and coloration

* Partial funding for this project has been provided by the California State University Agricultural Research Institute (ARI) and the Cal Poly Pomona Research, Scholarship, and Creative Activity (RSCA) program. We also thank Faith Lusinsky for data collection and summarization.

* Corresponding author.

E-mail address: jche@cpp.edu (J. Che).

https://doi.org/10.1016/j.heliyon.2022.e10979
Received 12 July 2022; Received in revised form 18 September 2022; Accepted 3 October 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
engineers are now in a constant search for greener and healthier dyeing alternatives, even if it is partially. With the trend in mind, natural dyeing is regaining interest and has the potential to be one of the promising technologies to minimize the environmental impact of textile dyeing using tremendous synthetic chemicals (Consumer Awareness for Natural Dyes, n.d.). As endorsed by most of the studies, the advantage of natural dyes lies in their subtle, soft, and elegant colors, together with none-toxic and health benefits, biodegradability, environmental compatibility, and even medical values (Shahid-UI-Islam and Sun, 2017; Sutrinsa et al., 2020; Grifoni et al., 2011; Shahid et al., 2013). Many current perspectives are striving to outline the functional performance of different textiles with natural dyes and functional agents exploited from natural sources (Nambeila et al., 2020). In addition, the amount and properties of the wastewater produced in both natural and synthetic dyeing are critical to the eco system. Therefore, research on the comparison of both dyers would provide more supportive evidence for natural dyeing (Atav et al., 2020; Oktav Bulut and Akar, 2012).

Most of the current research efforts are focused on using different methods and sources of natural dyes to increase color payoff and colorfastness properties, e.g., colorant extraction and laboratory dyeing techniques, as well as to explore other important attributes of certain natural ingredients that can provide added benefits to materials. Staying on the edge of current advancement in this area, it is even more imperative in addressing natural dyeing with joint consideration of environmental, socio-economic, and sustainability. Therefore, the essential mission of this review is to screen and suggest suitable plant species for modern commercial textile applications on a relatively reasonable scale from a sustainable point of view. Considering the new motivation for natural colorant textile dyeing, this review article is intended to provide information and discussions regarding natural dyeing and to highlight some outstanding research studies conducted in this realm for the past decade and beyond. We first summarized current published data on natural textile dyeing and provide analysis mostly from publications during the last decade. Then, we identified agricultural products/by-products which have a high potential for colorant extraction and fabric dyeing. The aim is to give the present status of fibers for natural dyeing, dyeing methods and performance, mordanting, and selection of suitable plants, etc. With these endeavors, we hope to inspire further studies on plant growing, dye extraction, dyeing processing, textile and apparel application, and potential end uses of natural dyeing.

2. Fibers used for natural plant dyeing

A variety of natural dyes have been studied for their affinity to natural cellulosic fiber and natural protein fiber fabrics. In general, natural protein fibers, e.g., wool and silk, have a certain degree of affinity with natural dyes and usually form a dye-fiber combination under the acidic condition, even without the help of mordant, which is usually utilized for better color presentation and colorfastness for protein fibers. In comparison, natural cellulosic fibers, e.g., cotton, usually do not have affirmed affinity to natural dyes, therefore, a mordant and/or pretreatment are needed for a better color presentation. For regenerated fibers like rayon, bamboo, lyocell, and modal fibers, since they share similar chemical composition with natural cellulosic fibers, this category of fibers can also be dyed using the same natural dyeing methods as cotton. Understandably, most studies on natural plant dyeing were applied to natural textile materials. On the other hand, natural dyes are usually considered unsuitable for these synthetic fibers, e.g., polyester (PET) and polypropylene (PP) because they have less affinity and low dyeability due to the high hydrophobicity and crystallinity of the structure.

In recent decades, researchers have started their experiments using natural dyes on synthetic textile materials. Polyamide (PA) fibers were the first being evaluated. Since polyamide fibers contain an amide group (-CONH) to preserve certain moisture regain and comparatively flexible polymer chains, both features are in favor of natural colorant dyeing. In one research article, polyphenolic dyes were extracted from henna leaves, pomegranate rind, and Pterocarya fraxinifolia leaves to study their dyeability on PA and PET fiber fabrics (Rahman Bhuiyan et al., 2018). The Fourier transform infrared spectra confirmed the coordination complexes and p-p bonding between the mordants and the dyes (Ebrahirimi and Parvinzadeh Gashiti, 2016). Madder, aeca nut, faba bean, and eucalyptus woods were also evaluated for the dyeing potential on PA fibers (Sadeghi-Kiaikhani, 2015; Bhuiyan et al., 2017; Pawar et al., 2018; Erdem Ismail and Yildirim, 2020; Rossi et al., 2017). In another article, indigo carmine, cochineal carmine, curcumin, and annatto were encapsulated in silica by a sol-gel method and applied in the dyeing of different synthetic fibers including PA and PET. Color change and color transfer of the encapsulated dyes were better compared to the unencapsulated dyes (dos Santos et al., 2018). Besides, waste parts of Allium cepa skin, annatto seeds, terminalia chebula, and leaves of macaranga peltate were also utilized as a source of natural colorants to dye PET fibers with good color performance (Pawar et al., 2019; Nakpathom et al., 2019; Lee et al., 2020; Manicketh and Francis, 2020). Recently, He et al. have developed an environmentally friendly coloration process on synthetic fiber using natural colorants, with the assistance of polyphenolic polydopamine anchors, which has achieved good color appearances and acceptable fastness on PET fibers (He et al., 2018). In addition to PET and PA, polyacrylonitrile (Acrylic) could be dyed with colorants from Opuntia ficus-indica and cocheinal carmine (Guesmi et al., 2012b; dos Santos et al., 2018). More importantly, the fact that synthetic fibers might be reasonably dyed by natural plant colorants will significantly enlarge the scope of application and market due to the domination of synthetic fibers in the current market.

Based on generic fiber types, natural plant dyeing on different generic fibers was summarized in Figure 1. Studies on natural protein fibers account for half of natural dyeing research studies, while natural cellulosic fibers account for more than one-third. Specifically, cotton and wool are representative fibers for natural dyeing where more dyeing potential has been exploited. Although the natural dyeing of natural fibers dominated the past studies, the potential of dyeing synthetic fibers with natural dyes has been exploited with a few attempts.

3. Natural dyeing from a variety of plant sources and color gamut presentation

The interest in using natural dyes from various types of plant sources in textile dyeing has been revived due to their biodegradability, renewability, and environmental-compatibility features (Deveoglu et al., 2012a,b). Generally, natural dyes can be categorized into two main categories: substantive dyes and adhesive dyes. Substantive dyes become chemically attached to the fiber without the assist of any other chemicals, e.g., indigo or certain lichens. Adjective dyes require a metal salt to prevent the color from washing off or light bleaching. Most natural dyes are substantive dyes and require the utilization of metal salt solution during the dyeing process. In addition to the traditional classification scheme, natural colorants from plant and animal sources can also be categorized based on their chemical structures such as polyphenols (e.g. anthocyanins, flavanol-quercetin, or curcumin from berry, pomegranate, bark, turmeric), isoprenoids (e.g. iridoids, carotenoids and quinones from gardenia, pumpkin, walnut), heterocyclic compounds (e.g. betalains or indigoids from Indigoid, beetroot, dragon fruit), melanin (e.g. from nut shells), and tetrpyrroloes (e.g. from algae; Brudzińska et al., 2021). In addition, based on the shade, the natural colorant can also be roughly classified as yellow colors from flavonoids, red colors from anthraquinone, purple and blue colors from indigoids, brown and black colors from tannins, and colors dyes from chlorophyll (Zhao et al., 2020). Colorants from fungal and algal have also been studied for textile dyeing (Räisänen, 2019; Weber et al., 2014; Vicente et al., 2020; Azem et al., 2019). In addition, unlike color matching for synthetic dyes, there have been very limited attempts on natural dyeing using a combination of dyestuffs to achieve satisfactory color matching results (Ding and Freeman, 2017).
In textile dyeing practices, the K/S (K for Absorption coefficient and S for Scattering coefficient of a dye molecule) value is a critical parameter representing the color depth and color strength of a dye (Burkinshaw, 2015). The higher the K/S value, the deeper colors could be achieved. Literature shows that synthetic dyestuffs in blue or black can easily achieve the K/S values between 20 to 30 on textiles with 2-3% o.w.f., while the K/S value of other hues is comparatively lower (Ahmed et al., 2006). Referring to all reference articles in this review, about 13% of natural dyes were reported to achieve a comparatively light colors. Since the K/S comparison is more sensible for colors of the same hue, a summary table has been designed with data from the most recent articles, which is shown in Table 1. This table includes the top 10 darker shade with a K/S value of more than 20. While 41% of natural dyes can merely achieve a K/S value less than 5.0, which indicates very bright colors. Since the K/S comparison is more sensible for colors of the same hue, a summary table has been designed with data from the most recent articles, which is shown in Table 1. This table includes the top 10

4. Functional properties from the natural dyeing

Consumers around the world are longing for textile products that provide special performance or functions like greater comfort and remain hygienic in use. The functional finish is always an exciting treatment where fabrics could achieve such special performance/functional properties during textile wet processing. Usually, the finishing is an additional application process after dyeing. However, some natural plant dyes can provide desirable finishing properties during the same dyeing process. This is a great drive to investigate innovative methods, for the development of hygienic textile products, in textile finishing processes using natural plant extracts/dyes. Some reports are now available on natural colorants for imparting multifunctional properties to textiles such as antioxidant (Kulezyński et al., 2020), mothproof (Nazari et al., 2014), antimicrobial (Singh et al., 2005), insect repellent (Kato et al., 2004), deodorizing (Hwang et al., 2008), UV-protective (Wang et al., 2009), and anti-creasing properties (Sadeghi-Kiakhani et al., 2018b). Some plant dyes have dual effects of color and antimicrobial functions, and they contain antimicrobial active ingredients such as alkaloids, acids, ketones, phenols, and citric acid (Dev et al., 2009). Ellagic acid and polyphenolic compounds in some plant dyes have a measurable antioxidant effect. More natural plant dyes are found to provide UV protective features, which are influenced by many factors such as the structure and physicochemical nature of fiber, dyes, and finishes, fabric thickness, porosity, and moisture content (Gies, 2007). In addition, some natural dyes have insect-repellent and mildew refrain features, e.g., fungicides derived from maple or eucalyptus tree and indigo for medical applications.
Table 1. Top 10 plant dyes in the research articles and their color gamut with Pantone and Munsell index.

Plant names & parts	Main chemical components of color	Max K/S achieved	Pantone Index	Munsell Index	Ref.	
Part 1: Top 10 Plants studied for natural dyes.						
Pomegranate (Punica granatum) & Peels	Anthocyanin	—	19-0405 TCX 8–1112 TCX	10YR/6/6 10YR/6/8	(Ghaheh et al., 2012; Mahmud-Ali et al., 2012; Davantu et al., 2014; Apnal et al., 2014; Ebrahim and Parvinzadeh Ghashi, 2016; Benli and Bahktiyari, 2016; Cak and Gorcjan, 2017; Rehman et al., 2018; Baseri, 2020; Inprati et al., 2020; Peran et al., 2020)	
		14.7 (Hemp)	19-0724 TCX 18–0510 TCX	10YR/6/6 10YR/6/8		
		13.2 (Wo)	17-1128 TCX 17–1113 TCX	10YR/7/6 10YR/7/6		
		9.4 (Co)	17-0929 TCX 17–0636 TCX	10YR/8/6 7.5YR/5/6		
		6.4 (Lycocell)	17-0517 TCX 16–1133 TCX	7.5YR/6.5 5YR/5/8		
			16-1126 TCX 16–1120 TCX	2.5Y/4/2 2.5Y/5/4		
			16-1118 TCX 16–1108 TCX	2.5Y/5/6 2.5Y/6/6		
			16-0928 TCX 16–0737 TCX	2.5Y/6/4 2.SY/1/4		
			16-0730 TCX 16–0726 TCX	2.5Y/6/4 (H/Y ~ YR;		
			15-1116 TCX 15–1040 TCX	V/3-R; C/2-8		
			15-0719 TCX 15–0533 TCX			
			15-0522 TCX 14–0925 TCX			
			14-0721 TCX 13–0919 TCX			
	Madder (Rubia tinctorum) & Roots	Alizarin	—	19-1234 TCX 19–1540 TCX	10R/3/8 10R/4/4	(Biran and Maleki, 2011; Zarkogianii et al., 2011; Farzardeh et al., 2016; Deveoglu et al., 2012a,b; Sadeghi-Kashkani, 2015; Grifoni et al., 2014; Parvinzadeh Ghashi et al., 2014; Tayade and Adivarekar, 2016; Sadeghi-Kashkani et al., 2018b; Frose et al., 2019; Shahmoradi Ghaheh et al., 2014; Azav et al., 2020)
			19-1103 TCX 18–1440 TCX	10R/4/8 10R/4/8		
			18-1433 TCX 18–1326 TCX	10R/5/8 10R/6/8		
			18-1230 TCX 18–1016 TCX	10R/8/10 7.5YR/4/4		
			17-1424 TCX 15–1333 TCX	5YR/3/4 2.5Y/2/2		
			14-1318 TCX	2.5Y/7/8 (H/R-YR;		
				V/2-R; C/2-10)		
	Cochineal (Dactylopus coccus) & dried body	Carminic Acid	—	19-0402 TCX 19–2118 TCX	10R/5/2 10R/6/4	(Hamz Naieriet al., 2016; Sadeghi-Kashkani et al., 2018a; Zarkogianii et al., 2011; Mehrparvar et al., 2016; Ding and Freeman, 2017; dos Santos et al., 2018; Sadeghi-Kashkani et al., 2018b; Frose et al., 2019; Giacomini et al., 2020)
			19-1725 TCX 18–3912 TCX	10R/5/2 10R/6/4		
			18-3710 TCX 18–2525 TCX	10R/5/7 10R/5/8		
			18-1512 TCX 17–1605 TCX	7.5R/5/4 7.5 R P/2/2		
			17-1511 TCX 15–1906 TCX	7.5 R P/4/8 2.5R/4/2		
			13-1520 TCX 5025 U	(H/R-YP; V/2-R; C/		
				2-8)		
	Henna (Lawsonia inermis) & Leaves	Lawsonone	—	19-0408 TCX 19–3911 TCX	10YR/4/6 10YR/5/6	(Zarkogianii et al., 2011; Yunzu et al., Manzoor, 2012; Wang et al., 2016; Shiyuan et al., 2017; Alebeid et al., 2020a,b; Ebrahim and Parvinzadeh Ghashi, 2016; Shahmoradi Ghaheh et al., 2014)
			19-3909 TCX 19–1432 TCX	10YR/6/6 7.5YR/1/2		
			19-1034 TCX 19–1018 TCX	7.5Y/2/2 7.5Y/5/6		
			19-0822 TCX 19–0814 TCX	7.5Y/6/8 7.5Y/8/8		
			17-1129 TCX 17–1125 TCX	5YR/1/2 SYR/2/2		
			17-1052 TCX 17–1044 TCX	5YR/2/6 SYR/4/8		
			17-0935 TCX 14–0936 TCX	2.5Y/3/2 2.5Y/1/4		
			13-0922 TCX 732 C	(H/Y-R-Y; V/1-8; C/		
				2-8)		
	Weld (Reseda luteola) & Leaves	Luteolin	—	16-1133 TCX 16–0737 TCX	5Y/6/4 2.5Y/8/4	(Deveoglu et al., 2012a,b; Ghomarenevis et al., 2011; Sadeghi-Kashkani et al., 2016b; Frose et al., 2019, 142)
			16-0730 TCX 15–1217 TCX	2.5Y/7/4 2.5Y/7/6		
			13-0608 TCX	2.5Y/6/6 (H/Y; V/6-8;		
				C4-6)		
	Annatto (Bixa orellana) & seeds	Bixin and norbixin	—	18-1235 TCX 18–1244 TCX	5Y/5/6 SYR/3/6	(Savvidis et al., 2015; Chattopadhyay et al., 2014; dos Santos et al., 2018; Kesarmiti et al., 2019; Nakhathom et al., 2019)
			17-1347 TCX 17–1327 TCX	2.5Y/6/5 2.5Y/5/8		
			16-1164 TCX 14–1133 TCX	2.5Y/8/12 2.5Y/6/14		
				(H/Y-R; V/3-8; C6-14)		

(continued on next page)
Articles related to the natural dyes' functional performance finishing are carefully reviewed and summarized in Table 2. The top two functions that natural plant dyes can bring to textiles are antimicrobial, and UV protective performance. Specifically, the natural plant dyes can inhibit a broad range of bacteria including Gram-positive bacteria (e.g. *Staphylococcus aureus*) and Gram-negative bacteria (e.g. *Klebsiella pneumonia*; *Escherichia coli*). The table includes a list of natural plants used in finishing with their antimicrobial properties. The review also covers the UV protective performance and additional functions, with a brief description of the material properties of natural dyes. The table includes various plant materials such as *Camellia sinensis* (tea leaves), *Curcuma longa* (turmeric), *Solanum macrocarpon* (potato leaves), *Eucalyptus globulus* (eucalyptus leaves), *Ficus carica* (fig leaves), *Polygonum hydropiper* (water pepper), *Rubia cordifolia* roots, *Mitracarpus scaber* (blackberry), *Morus alba* (mulberry leaf), *Sambucus nigra* (elderberry), *Vigna sesquipedalis* (cowpea), *Hydrangea arborescens* (hydrangea), and *Artemisia absinthium* (wormwood) among others. The table categorizes the natural plant materials into their parts and their antimicrobial and UV protective performance is summarized across different acid dyes. The table also includes the L, a, and b values for various natural dyes across different materials. The figures show the color coordination of these natural plant dyes in the CIELAB color space, with specific examples from Table 2.
There are great potential to explore modern technology for natural dyeing by making the dyeing process more cost, time, and energy effective. In order to enhance the color performance of naturally dyed fabrics, textile scientists and colorists made endeavors to apply a physical or chemical treatment to textile dyeing, which are summarized in Table 3. These special treatments are usually categorized as wet treatment and dry treatment. Examples of wet treatment include surface modification agents containing cationic and anionic groups to treat

| Table 3. Accumulated data of special treatment for natural dyeing |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
Specialty Treatment	Plants	Fibers	Prominent Features	Ref.
Chitosan	Lac, Cochineal, Onion, Tea,	Cotton, Silk, Wool	Metal mordants replacement,	(Mehrparvar et al., 2016;
	Madder, Weld		Biodegradability,	Bonet-Aracil et al., 2016;
			non-toxicity, and antimicrobial	Verma et al., 2017; Shahid-ul-
				Islam et al., 2018a,b; Shahid-
				ul-Islam et al., 2018b; Khan et
				al., 2012; Shahid-ul-Islam et al,
				2016; Lee et al., 2015; Lee et al,
				2017; Sheikh et al., 2019;
				Haji et al., 2012)
Chemical	Areca nut extract;	Cotton, Wool, Polyester, Nylon	Molecular level, Improved	(Bebbick et al., 2018; Rehman et
Modification	*Phellodendron amurense* Rupr;		colorfastness More efficient	al., 2018; Shahid-ul-Islam et al,
			dying process on time, cost,	2016; Hong, 2018; Rather et al,
			and energy	2019; Park and Park, 2020)
Plasma	Almond shell, madder, Rose/	Wool, Cotton, Bamboo	Surface medication, No	(Erdem İğmal et al., 2013;
	Rosemary/Lavender/Mate tea,		industrial waste and shortening	Barani and Maleki, 2011; Dveyoglu
	Rubia (rubia), *Cocos* pods		dying process Reduce the	et al., 2012a, Göjoguc et al.,
	(top), *Arnhena euchroma* (middle),		dyeing temperature Improve	Haji, 2020; Peran et al., 2020;
	Harmal seeds (bottom),		absorbency and dyeability	Haji and Payvandy, 2020; Peran et
	pomegranate peel, grape leaves			al., 2020)
Ultrasonic/	Coconut, turmeric, green tea	Silk, Wool, Tencel	Better dye diffusion	(Abedi et al., 2008; Ma et al., 2020; Sulemni et al., 2019)
microwave			Lower dyeing temperature	
			Improved color strength	
			Faster and high efficiency	
Ozone	Pomegranate peel, onion skin,	Cotton	Alternative for mordants	(Benli and Bahtiyari, 2018a),
	nutshell, orange tree leaves,		Improved dyeability	
	alkanet root		Improved colorfastness	
Gamma/UV	Turmeric, chicken gizzard,	Cotton, Silk	Improved cross linking, grafting,	(Bhatti et al., 2019; Hatol et al.,
Radiation	pomegranate, calico leaves		and dye uptake Improved	2013; Ajmal et al., 2018; Khan et
			resistance to shrinkage and	al., 2014)
			wrinkling	
			Enhanced water repellency and	
			color strength	

Hong et al., 2012). One example of UV protective benefit from *Flos sophorae* dyes is that the dyed silk fabric has a UPF of 60 (Wang et al., 2009). There are many other functions that natural dyes can bring to fabrics, including deodorizing, anti-creasing, and mothproof (Farizadeh et al., 2010; Nazari et al., 2014; Koh and Hong, 2017; Sadeghi-Kiakhani et al., 2018). The flame-retardant property was also reported in the past but there was not much progress in recent decades. In general, there is great potential for antimicrobial and UV protective properties from natural plant dyes, while other functions like antioxidant and deodorizing are some new areas to explore.

5. Special treatment of fabrics for natural dyeing

There are great potential to explore modern technology for natural textile dyeing by making the dyeing process more cost, time, and energy effective. In order to enhance the color performance of naturally dyed fabrics, textile scientists and colorists made endeavors to apply a physical or chemical treatment to textile dyeing, which are summarized in Table 3. These special treatments are usually categorized as wet treatment and dry treatment. Examples of wet treatment include surface modification agents containing cationic and anionic groups to treat
cotton and wool fabrics (Kim and Park, 2007; Ghoranj et al., 2019). The treatment with these agents offered improved color, colorfastness, and functional characteristics of dyed fabrics to a significant extent, along with an eco-compatibility feature of the treatment (Oktav Bulut and Akar, 2012). Some studies exploited the potential applicability of chitosan, a naturally occurring biopolymer with distinct chemical and biological properties, as a surface modification agent to improve dyeing performance on cotton (Verma et al., 2017), silk (Chimprasit et al., 2019), and wool fabrics (Mehrparvar et al., 2016) with increased binding sites and better dye absorption. Other studies also showed the pre-treatment of fabrics with chitosan increased antibacterial and antioxidant activity on both cotton and wool fibers (Shahid-ul-Islam et al., 2018a, b; Sadeghi-Kiaikhani et al., 2018b).

For the dry treatment, various finishing treatments of textile fabrics by modern surface modification techniques are considered to be superior to traditional chemical modification methods and related to a more environmentally friendly textile processing methodology. Examples of dry treatments include plasma, ozone, and radiation treatments. The low-temperature plasma (LPT) treatment of fibers improves the surface characteristics of fibers while the bulk properties of the fibers are not affected (Erdem İzmal et al., 2013; Barani and Maleki, 2011; Deveoglu et al., 2012a, b; Ghoranj et al., 2016; Haji, 2020; Peran et al., 2020; Haji, n.d.; Haji and Payvandy, 2020). Ultrasonic radiation can be used to maximize the extraction and dyeing process via the cavitation effect (Vinod et al., 2010). Ozone is a strong oxidizing agent and can be used in many chemical reactions. It has been generally examined as a bleaching process as well for the modification of fibers before dyeing (Benli and Babiyari, 2018a, b). Gamma radiation treatment of fabric may facilitate shrinking and wrinkling resistances of fibers, improve the rate of dye uptake, fixes more dye on fibers as well as improve the shade of the dyed fabric, which not only improves the extraction of colorant but also deepens the color of the extract (Bhatti et al., 2010; Batoool et al., 2013; Ajmal et al., 2014; Khan et al., 2014). There are much more materials used in addition to chitosan like other biopolymers, alginites, cyclodextrins, gums as well as their derivatives, and they were not included in this review. Overall, there is significant potential to reduce the ecological impact of existing processes with the introduction of these new technologies of textile dyeing and finishing without compromising eco-safety standards. It is no doubt that modern technology will bring more promising possibilities for natural dyeing applications.

6. Mordants and classification for natural dyeing

The term “mordant” comes from the Latin “mordere”, which means “to bite”. A mordant is a chemical substance used to bind dyestuffs on fabrics by forming a coordination complex with the dyestuffs, which then affixes to the fibers (IUPAC, 1997). Over the centuries many interesting substances were used as mordants to ensure dyeing colorfastness, including arsenic and other deadly chemicals (Llewellyn, 2005). In history, most dyers mordanted their yarns and fabrics before dyeing them. Alum and iron were extensively utilized as mordants in Egypt, India, and Assyria, as there are many alum deposits in the Mediterranean region (Manhiota et al., 2011). In addition to generating affinity between dye and fibers, the use of mordants also alters the lightness, hue, and chroma of certain dyes. That is, with the same dye, different mordants may be darker, brighter, or even drastically change the final hue of the dyed materials (Yi and Cho, 2008). Natural protein and cellulose fibers need to be mordanted differently because of their structural and chemical composition.

In rural areas where these metal agents were not widely available, plants extracts were also used as mordants, especially those that have a natural ability to extract such minerals, such as club moss, which could be used for dyeing fabrics, intensifying colors, improving colorfastness, or achieving special properties. Three mordanting techniques - pre-mordanting, simultaneous mordanting, and post-mordanting have been developed over the history to produce beautiful shades with improved dyeing performance. The use of mordants in natural dyeing has provided textiles with durable functional properties and boosted their applications in textiles for various end-uses including sportswear, fashion apparel, medical sector, and carpet industries (Manian et al., 2016).

As discussed, the mordants have dominated the natural textile dyeing and played a critical role in achieving colors with certain permanence. The accumulative results of mordants studied in recent studies are detailed in Table 4. It shows that traditional mordants, alum compound, ferrous compound, and copper compound, are still the most utilized ones which provide the most effective mordanting performance and cost. These three types of mordant account for about the majority (two-thirds) of studies in the time frame of this review. The metallic mordants are used to apply to natural fibers dyeing only. In addition, recent researchers have started to exploit the potential in dyeing synthetic textiles materials like nylon, polyester, acrylic, etc., with the assist of mordants. Besides, regenerated textile materials, e.g., lyocell and Bamboo fibers, were also being evaluated for their natural dyeing potential with mordants. For metallic mordants, progress has been made towards novel metallic salt or fewer metal ions to be used. Some minority mordants are also being evaluated as substitutes to traditional mordants with better performance regarding color and colorfastness. In addition to metallic mordants, chemicals like rare earth chlorides, together with their environmental traits, were employed as a substitute mordant for the natural dyeing which greatly reduced the ionic concentration in natural dyeing. There were a few attempts using a combination of different metallic mordants for dyeing (Kumaresan, 2016; Dehnavi et al., 2016). All in all, though new mordants have experimented for better coloration performance of textiles, traditional alum, ferric, and copper mordants are still dominate in the natural dyeing applications.

On the other side, the application of metallic mordanting in natural dyeing applications has been a major concern in recent years because of the consumer’s awareness of the toxic and carcinogenic consequences associated with metal mordants (Shahid et al., 2013). Therefore, there has been an increasing demand to explore alternative environmentally benign agents for mordanting of textiles. Considering this voice, bio-mordants extracted from medicinal plants have been introduced as an interesting alternative to metallic mordants because of their remarkable properties. As shown in Table 5, the summarization of bio-mordants and their usage in natural textile dyeing is presented based on the mordant sources, chemical composition, and generic fiber types. In the past, Bio-mordant sources are plants with either high tannin content or high metal hyperaccumulating. Bio-mordants can be applied to cellulose fibers such as cotton and linen which usually involve the use of baking soda or tannins to create an alkaline dyebath. Vegetable tannins are water-soluble polyphenolic compounds from oak galls, chestnut, lemon, and turmeric) which were used in dyeing cellulosic fibers as they attach well to the plant fibers. Chlorophyll extracted from different plant sources has also been successfully employed as bio-mordant (Guesmi et al., 2013). In addition to cellulosic fibers, there were several attempts on natural dyeing of protein fibers and synthetic fibers. Mordants for protein fibers are usually applied in acidic dyebaths. Cream of tartar, citric acid, and oxalic acid are bio-mordant which are used to assist the dyes in taking to the protein fibers. Some other novel bio-mordants are extracted from whey, milk powder, mango bark, aloe vera, sodium alginate, and sodium carbonate. Bio-mordanting provides a truly sustainable natural dyeing solution since it eliminates the use of metal mordants relating to their potential health issues. The use of natural bio-mordant would be another area of advancement for future natural dyeing.

7. Natural dyeing market and application

Natural textile dyeing is traditionally done by artisans and craftsmen on a very limited scale. Based on the concept by Hartl and Vogl (Hartl and Vogl, 2003), with a few modifications, a structure of four technological levels of natural textile dyeing was developed and shown in Table 6.
Table 4. Metallic mordants utilized for natural dyeing.

Name	Fibers	Key Features	Ref.
Alum Compound - KAl(SO4)2; Al2(SO4)3; AlCl3; Al(NO3)3	Wool	Brightening mordants; Strong affinity for both cellulose and protein fibers; Form an insoluble complexes; Keep original shade; Improve light and wash colorfastness; Less toxicity than others.	(Zarkogianni et al., 2011; Yi and Yoo, 2010; Mansour, 2010; Farizadeh et al., 2010; Erdem Içmal et al., 2015; Deveoglu et al., 2012a,b; Ghahre et al., 2012; Khan et al., 2012; Shahid et al., 2012; Guesmi et al., 2012a; Yusuf et al., 2012; Deveoglu et al., 2012a,b; Tutak and Benli, 2012; Ghouila et al., 2012; Ebrahim and Parvinzadeh Ghashi, 2016; Sadeghi-Kiakhani, 2015; Nazeri et al., 2014; Zhang et al., 2014; Shabhir et al., 2016; Islam and Mohammad, 2018; Shabhir et al., 2018; Shahid-ul-Islam et al., 2018a,b; Lee et al., 2018; Yan et al., 2018; Fröse et al., 2019; Rather et al., 2020; Adeel et al., 2020; Peran et al., 2020; Haji, 2020; Zhang et al., 2020; dos Silva et al., 2020; Jabar et al., 2020)
	Cotton; Flax; Jute; Ramie; Bamboo; Lyocell; Viscose		(Vankar and Shukla, 2011; Zarkogianni et al., 2011; Arroyo-Figueroa et al., 2011; Yi and Yoo, 2010; Farizadeh et al., 2010; Bhatti et al., 2010; Rehman et al., 2015; Batool et al., 2015; Velmurugan et al., 2013; Savvidis et al., 2013; Tutak and Benli, 2012; Chatterpadhyay et al., 2013; Davulcu et al., 2014; Zhao et al., 2014; Grifoni et al., 2014; Swami et al., 2014; Chatterpadhyay et al., 2014; Dehnavi et al., 2016; Benli and Bahiyari, 2018a; Ding and Freeman, 2017; Nakpathom et al., 2017; Adeel et al., 2017; Rehman et al., 2018; Lee et al., 2018; Sadeghi-Kiakhani et al., 2018a,b; Aseem et al., 2019; Mir et al., 2019; Faisal and Chafida, 2019; Kumbhar et al., 2019; Fröse et al., 2019; Jaffer et al., 2019; Giacomini et al., 2020; Inprasit et al., 2020; Manicketh and Francis, 2020; Khan et al., 2020; dos Silva et al., 2020; Lohlander et al., 2020; Sinha et al., 2016; Benli and Bahtiyari, 2018a)
Ferrous Compound - FeSO4; FeCl3	Wool	Dulling mordants; Highest achievable K/S values; Coordination complex – chelating; increase fastness of any colors; Grey to black shades; Prefer to cellulosic fibers.	(Zarkogianni et al., 2011; Yi and Yoo, 2010; Farizadeh et al., 2010; Erdem Içmal et al., 2015; Chatterpadhyay et al., 2013; Deveoglu et al., 2012a,b; Wang et al., 2013; Balarasingh et al., 2012; Mahmoud Ali et al., 2012; Deveoglu et al., 2012a,b; Torgan et al., 2015; Aimal et al., 2014; Tayade and Advarekar, 2016; Dehnavi et al., 2016; Jia et al., 2017; Vankar et al., 2017; Giacomini et al., 2017; Yin et al., 2017; Khan et al., 2018; Lee et al., 2018; Yan et al., 2015; Adeel et al., 2015; Rungraungkikri et al., 2020)
	Cotton; Flax; Jute; Lyocell		(Yi and Yoo, 2016; Punrattanasin et al., 2013; Wang et al., 2013; Balarasingh et al., 2012; Mahmoud Ali et al., 2012; Tayade and Advarekar, 2016; Patil and Datar, 2016; Patil and Datar, 2016; Jung, 2016; Yaukkawa et al., 2017; Jia et al., 2017; Khan et al., 2018; Rather et al., 2019; Adeel et al., 2019; Rungraungkikri et al., 2020)
	Nylon; Polyester; Acrylic		(Hunger et al., 2005; Guesmi et al., 2012a,b; Sadeghi-Kiakhani, 2015; Shams Nateri et al., 2016; Ebrahim and Parvinzadeh Ghashi, 2016; Erdem Içmal and Yıldırım, 2020; Erdem Içmal and Yıldırım, 2020; Nakpathom et al., 2019)

(continued on next page)
reflecting the current marketplace of natural textile dyeing. Handicraft level, lab/studio level, small business level, and industrial level are operated differently for different market levels and end-uses. Presently, more and more eco-conscious companies and brands have put efforts into promoting plant dyeing at different levels. For example, major brands like Patagonia are experimenting with ways to incorporate it into their product line. Patagonia has a “Clean Color” fashion collection, which uses natural dyestuff from mulberry, Carmine, pomegranate, indigo, etc. (Clean Color Collection, 2019). Spoonflower supplies naturally dyed colors for 900+ fabrics, home décor, and wallpapers (Natural Dyes Designs, 2019). Nudie Jeans uses “Dyer’s Woad” to achieve blue colors on denim fabrics. Celebrities like Gisele Bündchen are rocking naturally dyed clothes on the press circuit (Loewe, 2019). Many middle to small clothing and fashion businesses are now starting to embed natural dye-stuffs in the design, series, and collections (In, 2019).

The application of natural dyeing to textile fiber is complex and challenging. To promote the natural dyeing application, there are some fundamental characteristics relating to natural dyeing that the industry ought to put their efforts to educate the general public, minimizing potential biases toward natural dyeing products. These characteristics are dyeing uniformity, color yield, and process selection, and they will be discussed separately. Firstly, macromolecules such as sugar and pectin are difficult to eliminate during colorants extraction from many plants' dyes, which might cause leveling issues of dyeing. Fabrics for natural dyeing should be fully pre-treated before dyeing which is a critical but often overlooked step in archiving dyeing uniformity. Fibers absorb natural dyes at normal temperature, and plant dye liquor should be added to the dye bath slowly at room temperature to achieve a more uniform color surface. Secondly, color yield is another consideration when the color performance of natural dyes is evaluated. In textile coloration, CIELAB colorimetric properties of dyed fabrics are normally reported to represent the color on a piece of dyed fabric. In addition, as mentioned in the previous section, the K/S value is used to determine the depth of color of dyed fabric. Color performance is evaluated mainly by colorfastness to sunlight, laundering, and crocking. As a common practice, the color yield of natural dyeing in protein fibers is comparatively higher than in cellulosic fibers. Fabric structure and yarn count have a significant impact on the color yield of natural dyeing, e.g., the more complex and tighter the fabric, the lower the color yield. As such, dyeing parameters like liquid ratio and pH value affect the color yield drastically. Lastly, the dyeing profile, dyeing equipment, and dyeing method are mostly based on the fiber component of textile material. Thereby, dyeing stage plays a vital role in the natural dyeing application. The dyeing stages include stock/top dyeing (loose fiber dyeing), yarn dyeing, piece dyeing, tie-dyeing, form dyeing, and hang dyeing, etc. It is more challenging to dye fabrics with multiple fiber mixes than only one.

Table 4 (continued)

Name	Fibers	Key Features	Ref.
Copper Compound - CuSO4; CuCl2	Cotton; Flax; Lyocell	Dulling mordants; Normally much stronger than those of iron; Higher dye uptake than others; Eco and toxicity concern.	(Yi and Yoo, 2016; Kobayashi et al., 2015; Batool et al., 2013; Tutuk and Benli, 2012; Davulcu et al., 2014; Wang et al., 2016; Wang et al., 2013; Ghouila, H. et al., 2012; Ebrahimi and Parvinzadeh Gahri, 2014; Amemiya and Nakashita, 2018; Yan et al., 2019; Rather et al., 2020; Azeem et al., 2019)
Wool		Brightening mordants brighter than others; Improve colorfastness; May cause stiff hand; Loss tensile strength of fiber.	(Zarkogianni et al., 2011; Ghorannevis et al., 2013; Yi and Yoo, 2016; Farzadeh et al., 2010; Erdem Ismal et al., 2013; Shabbir et al., 2012; Tutuk and Benli, 2012; Ghouila, H. et al., 2012; Shabbir et al., 2018; Shabbir-ul-islam et al., 2018a,b; Azeem et al., 2019; Barani and Maleki, 2020; Dehnavi et al., 2016)
Silk		Various, overall improve color depth and/or colorfastness	(Shams Nateri et al., 2015; Erdem Ismal and Yildirim, 2020; Erdem Ismal and Yildirim, 2020)

Zinc [ZnSO4; ZnCl2; Zn(BF4)2], Calcium [Ca(OH)2; CaCl2, Ca(CH3COO)2; CaO], Cobalt [CoSO4], Magnesium [MgSO4], Manganese [MnSO4], Lanthanum Oxide [La2O3], Rare earth Chlorides [ReCl3, NdCl3, ZrOCl2], Silver nitrate [AgNO3], Ammonium sulfate [(NH4)2SO4], Sodium acetate [C2H3NaO2], Praseodymium chloride [PrCl3], Kunipia-F Nano clay [NiSO4].

9 J. Che, X. Yang Heliyon 8 (2022) e10979
component. For example, for a mélangé fabric made of silk and flax fiber, since no natural dyes have an affinity with both fibers, to achieve a multicolor effect, two-baths and two-step processes should be employed to dye both fibers properly. Besides, some plant dyes cannot be used simultaneously with other dyes due to compatibility issues. In this case, more complicated dyeing techniques are needed.

8. Selection of the U.S. Plant species suitable for modern natural dyeing

The number of colorants found in nature is enormous, but the majority of them are not suitable for textile dyeing. Usually, natural plant for textile dyeing are selected from non-food products and these plant species can be processed for colorants. Therefore, it is important to screen and choose appropriate plant species, of which are suitable for modern cultivation practices as well as for sustainable textile dyeing. Natural dyeing researchers and practitioners have made progress towards this direction. Some preliminary studies on plant species were conducted for plant dyes. In 1989, according to an investigation by Hofmann, about a thousand plant species might be used for textile dyeing (Hofmann, 1989). While some of them are known well and had a long history of application, still many species are not commercially important despite of notable color performance. Thereby, application trials were piloted on industrial plants to screen and select species. In Germany, more than a hundred plant species are assessed for their suitability for modern cultivation systems, yields, and the dyeing quality of these species. Among these plants, 19 species were concluded as useful for cultivation and dyestuff production (Bechtold and Mussak, 2009). In addition, madder (Rubia tinctorum), weld (Reseda luteola), Canadian goldenrod (Solidago canadensis), dye’s chamomile (Anthemis tinctoria), and dye’s Knotweed (Polygonum tinctorium) are considered to be suitable for future dye plant cultivation and processing (Hartl and Vogl, 2003). In the U.S., India, and China, indigo is widely used as a dye plant and commonly employed for jeans in the natural dyeing industry. Field trials in California showed that indigo could be cultivated successfully in wide areas for one or two years.

Table 5. Bio-mordants for natural plant dyeing.

Source of Mordants	Chemical Composition	Fibers	References
Memecylon scutellatum; Gallnut; Chicken gizzard leaves; Algal; Lemon	Tannic Acid ((C₆H₅O₄)₉)	Cotton/Flax/Hemp/Jute	Chattopadhyay et al., 2015; Grifoni et al., 2014; Khan et al., 2014; Chattopadhyay et al., 2014; Lee et al., 2017; Adeel et al., 2017; Phan et al., 2020; Sinha et al., 2016; Mansour and Heffernan, 2011; Ratoosi et al., 2013; Azem et al., 2019; Mir et al., 2015; Jaffer et al., 2019; Manicke and Francis, 2020
Acacia nilotica; Henna; Pomegranate; Turmeric; Rosemary; Thujas; Vales; Myrobalan	Leather	Berhanu and Ratnapandian, 2017	
Citric acid	(C₆H₈O₇)	Wool	Lee et al., 2017; Hong, 2018; Adeel et al., 2020; Erdem Ismal et al., 2014
Tartaric acid/Oxalic acid	C₄H₆O₆; H₂C₂O₄	Nylon/Elastane	Erdem Ismal and Yıldırım, 2020
Cream of tartar	(C₄H₆O₇)	Cotton/Viscose/Ramie/Wool/Bamboo	Erdem Ismal and Yıldırım, 2020
Whey protein	bovine serum albumin & lactalbumin	Cotton	Baseri, 2020
Sodium alginate	C₆H₈NaO₇	Cotton	Phan et al., 2020
Skimmed milk powder	Protein, Lactose; Fat; Ash	Rayon	Park and Park, 2020
Sodium carbonate	Na₂CO₃	Wool/cotton	Deveoglu et al., 2012b
Mango bark and Aloe vera	N/A	Leather	Berhanu and Ratnapandian, 2017

Table 6. Natural textile dyeing levels and features.

Feature/Level	Handcraft level	Lab/Studio level	Small business level	Industrial Level
How	Simple equipment and consumer chemicals (e.g., pots, gas cookers, home washer and dryer, vinegar, backing soda)	Lab size equipment and some chemicals (e.g., dyeing kier, lab dyeing machinery, water bath, pH meter, acetic acid, mordants)	Small to mid-size specialized equipment and chemicals (e.g., Kettles, Boiling Can, Centrifugal Drier, Heat Pump, ventilation)	Mid to Large Scale industrial Equipment/Machinery with automatic control/digital communication; bulk industrial chemicals
Where	Home (kitchen or garage)	Studio or laboratory	conventional dyeing mill with workshops	Modern dyeing mill
What	Mainly natural protein fibers (e.g., wool and silk, as they are easy to dye)	Limited dying possibility. Can dye natural protein and cellulose fibers, (e.g., silk, wool, cotton, flax). The quantity and color quality could not be guaranteed fully.	Various materials of natural or synthetic fibers/material (e.g., wool, silk, cotton, linen, hemp, leather, accessories made of horn, nutsheils, mother-of-pearl)	Full spectrum of regular apparel or textiles, and other natural colorants applications
Typical Products	Personal usage: T-shirt, scarves, pullovers, socks, etc.	Small batches of a commercial product of woven or knits etc. scarf, kids’ wear, bedding, towels, napkins, socks, disposable wipes, carpets, Hair Dye, cosmetic, stationary.		
industry (Bechtold and Mussak, 2009).

Even there were much progress in the past two decades, it must bear in mind that the annual yields of the majority of plants in these study works are much limited. Then, considerations should be made not only on the color process and color quality of natural plant dyes, but also on the sustainability and cost with desirable color quality. While most of the articles provided very vague replies with weak support, the economic and sustainability aspects of the natural dyeing technology should have been evaluated thoroughly. Understandably, the economic and sustainability dimensions of natural dyeing are complex issues. However, there has been a trend to explore the potential of full utilization of plant waste from an agricultural perspective recently. There are increased interests in discovering innovative, close-loop solutions for reducing agricultural byproducts, which would bring negative impacts on our environments otherwise. Based on a report by the Environmental Protection Agency, agriculture/food by-products consist of approximately 22% of total municipal solid waste generated in the United States, and 95% of this type of waste is ultimately landfilled (Environmental Protection Agency, 2018). The idea of finding new sustainable solutions to reduce agricultural waste is on the rise so that existing resources can be repurposed in an innovative approach to an even greater extent. The under-utilized byproducts, e.g., berry, grape, pumpkin, pomegranate, and orange pomace waste, etc., contain natural colorants that might be used as a potential supplementary or substitute to synthetic ones. Research into the agricultural byproducts as natural colorants could provide benefits for both agricultural industries and the fashion industry with a creative sustainable solution.

The U.S. has the largest agricultural economy in the world. The plantation of natural plants and economic crops not only promotes the rapid development of the rural economy but also generates a large amount of agriculture, botanic, and forest wastes, which has a negative impact on the ecological environment and affects the local environment (Rossi et al., 2017). Waste disposal techniques have been developed in recent years, which are usually limited to simple utilization of heat energy and solvent (e.g., water; Rather et al., 2019). Therefore, efforts have been put in maximizing the utilization of biodegradable natural dyes from agriculture products or byproducts and forest wastes with rich colors. Recent technology has been employed to extract and separate natural colorants quickly and uniformly with expected purity. The successful implementation of innovative technology provides a novel approach to the utilization of agricultural wastes (Baseri, 2020; Kumar et al., 2019; Erdem İsmal et al., 2013; Sukemi et al., 2019; Rossi et al., 2017).

To seek potential U.S. plants candidates for natural colorants, we utilized the most current statistical data from the USDA Census of Agriculture in 2017 (USDA-NASS, 2017) and the 2019 US Economic Research Service by USDA (USDA-Cash receipts by states, 2020) as major considerations that are summarized in Table 7.

Byproducts and wastes from agriculture products in this table provide a strong pool for plant dye sources and reflect the potential candidates that could be utilized for sustainable natural textile dyeing. To make a

Table 7. Corps yield and value ranking of top potential plants for textile dyes in the U.S.
Corps and Yield of Top Potential Plants (2017 Census)
Commodity group
Vegetables, Melons, and Potatoes
Specified fruits and nuts
Berries
Others
sensible selection from the current pool of natural colorants, the major factors to be addressed are availability and abundance, extraction/coloration techniques, color performance and specification, production feasibility and efficiency, and potential market/end-use products. Bear these criteria in mind, we can learn from Table 7 that there are several plant species highlighted for the sorting process. They are pomegranates(pearl), oranges/tangerines(pearl), almonds(shell), pumpkins (pear and meats), coffees(fruit), walnuts(shell), hazelnuts(shell), and safflower(flower). The promising results obtained by using these plant species in textile industries create an opportunity for farmers to produce such crops with current scale but more benefits. The byproducts of these plants could be repurposed or reused as a source of natural plant dyes to minimize waste disposal and environmental issues. These byproducts can simply be obtained from a local farm, its production is green, and residual products are biodegradable and environmentally friendly. An additional consideration for natural dyeing is the eco-friendly characteristics of natural dyeing as conventional farming uses much energy, water, and agrochemicals. For natural plants for dyeing, it is ideal that farming processes comply with organic certifications such as Oeko-Tex, Organic Trade Association, or California Certified Organic Farmers (Dawson, 2012), though the cost will be a challenge indeed. Besides, organic fibers and dyes have become an attraction for many brands and eco-conscious consumers. The combination of organic fiber with natural plant dyestuffs will be a sparkling drive for the choice of green and sustainable textiles. In addition, the progress of natural plant dyeing is based on efforts from many parties involved - more research on technology aspects such as extraction, purification, dyeing, and mordanting methods; more studies on plants cultivation and product processing with added value; more support from the end-use market for environment-conscious textile brands and retail company.

9. Conclusion and perspectives

There is no denying that there is much argument related to natural dyes and their applications, while no natural dye is absolutely sustainable. Color performance and quality, economy, eco, and health considerations are several fundamental criteria for a suitable natural plant dye. However, colorants from natural sources could be utilized more broadly in the textile industries as a potential alternative to some synthetic dyes, even starting with a small scale for specific categories. Almost all naturally derived colorants related to their practice for social and aesthetic applications provide unique knowledge about society's ever-changing needs. Based on this appeal, creativity can be designed from naturally dyed textiles and innovations of industrial applications can be implemented with precious natural resources. Nowadays, as so many textiles need to be dyed and printed, natural-derived colorants would offer a simple and safe alternative to synthetic ones in some types of textile products, where natural dyeing offers a decent quality product with added value and higher eco-compatibility in the marketplace. Thereby, from this review article, specific conclusions are summarized below:

- Though new mordants experimented for better coloration performance of textiles, traditional alum, ferric, and copper mordants are still the major players in this field.
- Bio-mordanting provides a truly sustainable natural dyeing solution since it eliminates the use of metallic mordants relating to potential health concerns. It will be a main stream of research for natural textile dyeing in time to come.
- A structure of technological levels of natural textile dyeing application was introduced based on the current natural textile dyeing market.
- For the U.S. plants/crops, agriculture byproducts from pomegranates (pearl), oranges/tangerines (pearl), almonds (shell), pumpkins (pear and meats), coffees (fruit), walnuts (shell), hazelnuts (shell), and safflower (flower) are highlighted for natural textile coloration.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.

Funding statement

This work was supported by Agricultural Research Institute, California State University (21-04-102) and the Cal Poly Pomona Research, Scholarship, and Creative Activity (RSCA) program.

Data availability statement

Data will be made available on request.

Declaration of interest’s statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Adeel, S., Ghalz, T., Azem, M., Faizal-ur-Rehman, Saeed, M., Hanif, I., Iqbal, N., 2017. Appraisal of marigold flower based lutein as natural colourant for textile dyeing under the influence of gamma radiations. Radiat. Phys. Chem. 130, 35–39.
Adeel, S., Rehman, F. ur, Iqbal, M.U., Habib, N., Kiran, S., Zuber, M., Zia, K.M., Hameed, A., 2019. Ultrasonic assisted sustainable dyeing of mordanted silk fabric using arujan (Terminalia arjuna) bark extracts. Environ. Prog. Sustain. Energy 38 (s1), S331–S339.
Adeel, S., Kiran, S., Habib, N., Hassan, A., Kamal, S., Qnyum, M.A., Tariq, K., 2020. Sustainable ultrasonic dyeing of wool using coconut coir extract. Textil. Res. J. 90 (7–8), 744–756.
Ahmed, N., Oulton, D.P., Taylor, J.A., 2006. The use of reflectance measurements in the determination of fixation of reactive dyes to cotton. Color Res. Appl. 31 (2), 117–121.
Ajamul, M., Adeel, S., Azem, M., Zuber, M., Akhtar, N., Iqbal, N., 2014. Modulation of pomegranate peel colourant characteristics for textile dyeing using high energy radiations. Ind. Crop. Prod. 58, 188–193.
Alebeid, O.K., Pei, L., Elhassan, A., Zhou, W., Wang, J., 2020a. Cleaner dyeing and antibacterial activity of wool fabric using Henna dye modified with Acacia nilotica pods. Clean Technol. Environ. Policy 22 (10), 2223–2230.
Alebeid, O.K., Pei, L., Zhou, W., Wang, J., 2020b. Sustainable wool fibres dyeing using henna extract in non-aqueous medium. Environ. Chem. Lett. 18 (2), 489–494.
Ametiyiya, T., Nakanishi, T., 2018. Deodorization for ethanol by cotton and wool fabrics mordant dried with Congo red and copper (II) sulfate. Textil. Res. J. 88 (9), 1056–1064.
Arroyo-Figueroa, G., Ruiz-Aguilar, G.M.L., Cuerva-Rodriguez, G., Sanchez, G.G., 2011. Cotton fabric dyeing with coehlinal extract: influence of mordant concentration. Color. Technol. 127 (1), 39–46.
Ataz, R., Güneş, E., Çifçi, D.I., Güneş, Y., 2020. Comparison of wool fabric dyeing with natural and synthetic dyes in view of ecology and treatability. AATCC Journal of Research 7 (6), 15–22.
Azeem, M., Iqbal, N., Mir, R.A., Adee, S., Batooli, F., Khan, A.A., Gul, S., 2019. Harnessing natural colorants from algal species for fabric dyeing: a sustainable eco-friendly approach for textiles. J. Appl. Phycology 31 (4), 934-946.

Ballarsingh, A., Pankaj, A.K., Jena, D., Das, T., Das, N.B., 2012. Exploring sustainable technique on natural dye extraction from native plants for textile: identification of colorants, colourimetric analysis of dyed yarn and their antimicrobial evaluation. J. Clean. Prod. 27, 55–62.

Barni, H., Maleki, H., 2011. Plasma and ultrasonic process in dyeing of wool fibers with madder in presence of lecithin. J. Dispersion Sci. Technol. 32 (8), 1191–1199.

Barni, H., Maleki, H., 2020. Red cabbage anthocyanins content as a natural colorant for obtaining different color on wool fibers. Pigment Resin Technol. 49 (3), 229–238.

Baseri, S., 2020. Eco-friendly production of anti-UV and antibacterial cotton fabrics via waste products. Cellulose 27 (17), 10407–10423.

Bhati, A., Adee, S., Azeem, M., Zahid Mian Khan, A., Manzoor Bhatti, I., Ghaflar, A., Iqbal, N., 2013. Gamma ray treatment induced improvement in dyeing properties and colorfastness of cotton fabrics dyed with dried giraffe leaves extract. Radiat. Phys. Chem. 89, 33–37.

Beni, H., Babi, J., Medredji, M., 2018a. Combination of dyeing method and ozone after-treatment to apply natural dyes on to cotton fabrics. Ozone: Sci. Eng. 40 (1), 44–53.

Beni, H., Bahitiyari, M.I., 2018b. Dyeing of casein fibers with onion skin-based natural dyes source due ozonation. Ozone: Sci. Eng. 40 (2), 141–147.

Berhanu, T., Ratnapanidjan, S., 2017. Extraction and optimization of natural dye from bhambo hambo (Cassia singuana) plant for use in colored tannin leather materials. Adv. Mater. Sci. Eng. 2017.

Bhatti, I.A., Adeel, S., Jamal, M.A., Safdar, M., Abbas, M., 2010. In vitro antibacterial properties of some native plants in Pakistan. J. Appl. Phycol. 22 (1), 133–136.

Burkinshaw, S.M., 2015. Theoretical Aspects of Textile Coloration. Wiley-Blackwell.

Dehnavi, E., Shams-Nateri, A., Khalili, H., 2016. Wool dyeing with binary mixture of baaan and kaolin. Textile Res. J. 86 (9), 847-855.

Fitz-binder, C., Bechtold, T., 2019. Extraction of polyphenolic substances from bark as natural colorants for wool dyeing. Color. Technol. 135 (1), 32–39.

Frise, A., Schmidke, K., Sukmann, T., Juhász Junger, I., Ehrmann, A., 2019. Application of natural dyes on diverse textile materials. Optik 181, 215–219.

Ghalah, F.S., Nateri, A.S., Mortazavi, S.M., Abdi, D., Mohitkar, J., 2012. The effect of mordant salts on antibacterial activity of wool fabric dyed with pomegranate and walnut shell extracts. Color. Technol. 128 (6), 473–478.

Ghoranneviss, M., Shahidi, S., Anvari, A., Moghiz, Z., Wiener, J., Stambolov, L., 2011. Influence of plasma spattering treatment on natural dyeing and antibacterial activity of wool fabrics. Prog. Org. Coating 70 (4), 388–393.

Ghouda, H., Mesli, N., Haddar, M., Bhenni, M., Jannet, H., 2012. Extraction, identification and dyeing properties of a local lycoperdulapeoria species. J. Clean. Prod. 19 (14-22).

Bonet-Aracil, M.A., Díaz-García, P., Bou-Belda, E., Sebastià, N., Montoro, A., Rodrigo, R., 2016. UV protection from cotton fabrics dyed with different tea extracts. Dyes Pigments 134, 448–452.

Bradyvánská, P., Slívovská, A., Češkovská, M., 2021. Plant derived colorants for food, cosmetic and textile industries: a review. Materials 14 (13), 1–18.

Burkhinshaw, S.M., 2015. Theoretical Aspects of Textile Coloration. Wiley-Blackwell.

Gorjanc, M., Kert, M., Mujad, B., Tomvihar, P., Tom, M., Zaplotnik, R., Vesel, A., Glicic, M., 2021. Plant-derived colorants for food, cosmetic and textile industries: a review. Materials 14 (13), 1–18.

Czirr, A., Tancik, J., Brekle, I., Sutovic, A., Tkalec, M., 2020. Optimisation of process parameters of Alpaca wool printing with Juglaris regilae regilae. Textil. Res. J. 90 (15-16), 1805–1822.

Girs, P., 2007. Photoprotective effect of Clothing. 26 pp. 244–245.

Glogar, M., Tancik, J., Brekle, I., Sutovic, A., Tkalec, M., 2020. Optimisation of process parameters of Alpaca wool printing with Juglaris regilae regilae. Textil. Res. J. 90 (15-16), 1805–1822.

Grifoni, D., Bacci, I., Zanoli, G., Albanese, L., Sabatini, F., 2011. The role of natural dyes in the UV protection of fabrics made of vegetable fibres. Dyes Pigments 91 (3), 279–285.

Gros, D., Bacci, I., Di Lorenzo, S., Pinelli, P., Scardigli, A., Camilli, F., Sabatini, F., Zanoli, G., Romani, A., 2014. UV protective properties of cotton and flax fabrics dyed with Aloe vera and mulfunctional Pigments. Color. Technol. 136 (3), 184–201.

Gros, D., Bacci, I., Di Lorenzo, S., Pinelli, P., Scardigli, A., Camilli, F., Sabatini, F., Zanoli, G., Romani, A., 2014. UV protective properties of cotton and flax fabrics dyed with Aloe vera and mulfunctional Pigments. Color. Technol. 136 (3), 184–201.

Gros, D., Bacci, I., Di Lorenzo, S., Pinelli, P., Scardigli, A., Camilli, F., Sabatini, F., Zanoli, G., Romani, A., 2014. UV protective properties of cotton and flax fabrics dyed with Aloe vera and mulfunctional Pigments. Color. Technol. 136 (3), 184–201.

Hajj, A., 2012. Antibacterial dyeing of wool with natural cationic dye using metal mordants. Medicago108 (3), 267–270.

Hajj, A., 2020. Application of D-optimal design in the analysis and modelling of dyeing of plasma-treated wool with three natural dyes. Color. Technol. 136 (2), 137–146.

Hajj, A., Payazvand, P., 2020. Application of ANN and ANFIS in prediction of color strength of plasma-treated wool yarns dyed with a natural colorant. Pigment Resin Technol. 49 (3), 171–180.

Hardman, J., Pinhey, S., 2009. Natural Dyes. Crowood.

Hara, A., Vogl, C.R., 2003. Green dyeing in the organic textile industry: experiences and results on cultivation and yields of dyes’ chaconium (Anthemis tinctoria L), dye’s kneedow. J. Sustain. Agric. 23 (2).

He, L., So, V.L.L., Fan, S., Xin, J.H., 2018. Polyphenol-Annised natural coloration on various synthetic textile fibers. Fibers Polym. 19 (7), 1411–1419.

Hofmann, R., 1989. Färbenplanzen. University of Vienna, Austria.

Hong, K.H., 2018. Effects of tannin mordanting on coloration and functionalities of wool fabrics dyed with spent coffee grounds. Fashion Textiles 9 (13).

Hong, K.H., Bae, J.H., Jin, S.R., Yang, J.S., 2012. Preparation and properties of multi-functionalized cotton fabrics treated by extracts of wormgall and gallnut. Cellulose 19 (2), 507-515.

Hunger, C., Mischke, Peter, Rieper, Wolfgang, Rau, Roderich, Klaus Kunde, A.E., 2005. “Azo Dyes” in Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA.
Sheikh, J., Agrawal, A., Garg, H., Agarwal, A., Mathur, P., 2019. Functionalization of wool

Shahmoradi Ghaheh, F., Mortazavi, S.M., Alihosseini, F., Fassihi, A., Shams Nateri, A., Shahid-ul-Islam, Butola, B.S., Roy, A., 2018a. Chitosan polysaccharide as a renewable

J. Che, X. Yang Heliyon 8 (2022) e10979

Shahid-Ul-Islam, Sun, G., 2017. Thermodynamics, kinetics, and multifunctional

Tayade, P.B., Adivarekar, R.V., 2016. Colour gamut with easy sources of natural dyes. Int.

Torgan, E., Ozer, L.M., Karadag, R., 2015. Colorimetric and fastness studies and analysis

Shabbir, M., Rather, L.L., Shahid-ul-Islam, Bukhari, M.N., Shahid, M., Ali Khan, M., Mohammad, F., 2016. An eco-friendly dyeing of wool yarn by Terminalia chebula extract with evaluations of kinetic and adsorption characteristics. J. Adv. Res. 7 (3), 473–482.

Shabbir, M., Rather, L.L., Mohammad, F., 2018. Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: valorization of marigold. Ind. Crop. Prod. 119, 277–282.

Shahid, M., Ahmad, A., Yusuf, M., Khan, M.I., Khan, S.A., Manzoor, N., Mohammad, F., 2012. Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus inferfolia Oliv.) extract. Dyes Pigments 95 (1), 53–61.

Shahid, M., Shahid-Ul-Islam, Mohammad, F., 2013. Recent advancements in natural dye applications: a review. J. Clean. Prod. 53, 310–331.

Shahid-Ul-Islam, Sim, G., 2017. Thermodynamics, kinetics, and multifunctional finishing of textile materials with colorants extracted from natural renewable sources. ACS Sustain. Chem. Eng. 5 (9), 7451–7466. American Chemical Society.

Shahid-Ul-Islam, Butola, R.S., Roy, A., 2018a. Chitosan polysaccharide as a renewable food grade agent to increase antibacterial, antioxidant activity and colour shades on wool dyed with tea extract polyphenols. Int. J. Biol. Macromol. 120, 1999–2006.

Shahid-Ul-Islam, Wani, S.A., Mohammad, F., 2018b. Imparting functionality viz color, antioxidant and antibacterial properties to develop multifunctional wool with Tectona grandis leaves extract using reflectance spectroscopy. Int. J. Biol. Macromol. 109, 907–913.

Shahmoradi Ghabe, F., Mortazavi, S.M., Alihosseini, F., Fasahi, A., Shams Nateri, A., Abedi, D., 2014. Assessment of antibacterial activity of wool fabrics dyed with natural dyes. J. Clean. Prod. 72, 139–145.

Shams Nateri, A., Dehnavi, E., Hajipour, A., Ekrami, E., 2016. Dyeing of polyamide fibre with cochinelle natural dye. Pigment Resin Technol. 45 (4), 252–258.

Sheikki, J., Agrayal, A., Garg, H., Agrayal, A., Mathur, P., 2019. Functionalization of wool fabric using pineapple peel extract (PPE) as a new dye. AATCC J. Res. 6 (5), 16–20.

Siddique, R.H., Vignoloni, S., Bartels, C., Wacker, I., Holscher, H., 2016. Colour formation on the wings of the butterfly Hypolimnas balmorals by scale stacking. Science Rep. 6, 1–10.

Singh, R., Jain, A., Panwar, S., Gupta, D., Khare, S.K., 2005. Antimicrobial activity of some natural dyes. Dyes Pigments 66, 99–102.

Singh, R., Jain, A., Panwar, S., Gupta, D., Khare, S.K., 2005. Antimicrobial activity of some natural dyes. Dyes Pigments 66, 99–102.

Srikanth, V., Murali, R., 2012. Antimicrobial activity of wool yarn dyed with leaves of henna (Lawsonia inermis). J. Clean. Prod. 20 (7), 2245–2251.

Yadav, R., Abuah, Mathur, P., Sheikh, J., 2019. Antibacterial UV protective and antioxidant linen obtained by natural dyeing with Henna. Cellul. Chem. Technol. 53 (3–4), 357–362.

Yan, B., Yang, M., Zhou, Q., Xing, T., Chen, G., Sheng, J., 2019. Yellow pigment of Metarhizium anisopliae and its application to the dyeing of fabrics. Color. Technol. 135 (4), 267–274.

Yazakawa, A., Chida, A., Kato, Y., Kasai, M., 2017. Dyeing silk and cotton fabrics using natural blackcurrants. Textil. Res. J. 87 (2), 148–157.

Yi, F., Yao, E.S., 2010. A novel bioactive fabric dye with unripe citrus grandis Obeek extract part 1: dyeing properties and antimicrobial activity on cotton knit fabrics. Textil. Res. J. 80 (20), 2117–2123.

Yin, Y., Jia, J., Wang, T., Wang, C., 2017. Optimization of natural anthocyanin efficient extracting from purple sweet potato for silk fabric dying. J. Clean. Prod. 149, 673–679.

Yusuf, M., Ahmad, A., Shahid, M., Khan, M.I., Khan, S.A., Manzoor, N., Mohammad, F., 2012. Assessment of colorimetric, antibacterial and antifungal properties of woolen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). J. Clean. Prod. 27, 42–50.

Zarkogianni, M., Mikropoulou, E., Varella, E., Tsatsaroni, E., 2011. Colour and fastness of natural dyes: revival of traditional dyeing techniques. Color. Technol. 127 (1), 18–27.

Zhang, B., Wang, L., Luo, L., King, M.W., 2014. Natural dye extracted from Chinese gall: the application of color and antibacterial activity to wool fabric. J. Clean. Prod. 80, 204–210.

Zhang, W., Yao, J., Huang, P., Xing, S., 2020. Aqueous extraction of buckwheat hull and its functional application in eco-friendly dyeing for wool fabric. Textil. Res. J. 90 (5–6), 641–654.

Zhao, Q., Feng, H., Wang, L., 2014. Dyeing properties and color fastness of cellulose-treated flax fabric with extractives from chestnut shell. J. Clean. Prod. 80,205–209.

Zhao, Z., Zhang, M., Hurren, C., Zhou, L., Wu, J., Sun, L., 2020. Effects of UV absorbers and reducing agents on light fastness of cotton fabrics pre-dyed with sodium copper chlorophyllin and gardenia yellow. Textil. Res. J. 90 (19–20), 2245–2257.