Synthesis and Structural Dynamics of Five-Coordinate Rh(III) and Ir(III) PNP and PONOP Pincer Complexes

Thomas M. Hood, Baptiste Leforestier, Matthew R. Gyton, and Adrian B. Chaplin*

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.

Supporting Information

ABSTRACT: The synthesis and characterization of a homologous series of five-coordinate rhodium(III) and iridium(III) complexes of PNP (2,6-(tBu2PCH2)2C6H3N) and PONOP (2,6-(tBu2PO)2C6H3N) pincer ligands are described: [M(PNP)(biph)][BArF6] (M = Rh, 1a; Ir, 1b; biph = 2,2′-biphenyl, ArF = 3,5-(CF3)2C6H3) and [M-(PONOP)(biph)][BArF6] (M = Rh, 2a; Ir, 2b). These complexes are structurally dynamic in solution, exhibiting pseudorotation of the biph ligand on the 1H NMR time scale (ΔG‡ ≈ 60 kJ mol⁻¹) and, in the case of the flexible PNP complexes, undergoing interconversion between helical and puckered pincer ligand conformations (ΔG‡ ≈ 10 kJ mol⁻¹). Remarkably, the latter is sufficiently facile that it persists in the solid state, leading to temperature-dependent disorder in the associated X-ray crystal structures. Reaction of 1 and 2 with CO occurs for the iridium congeners 1b and 2b, leading to the formation of sterically congested carbonyl derivatives.

INTRODUCTION

Pincers are a prominent ligand class in organometallic chemistry and catalysis, conferring thermal stability while permitting a wide range of metal-based reactivity.1 As prospective intermediates in stoichiometric and catalytic reactions, the structure and reactivity of five-coordinate rhodium(III) and iridium(III) derivatives are of fundamental mechanistic interest, although the inherent high reactivity of these species can preclude isolation.2,3 Coupled with these difficulties, the capacity of coordinately unsaturated pincer complexes for rapid structural dynamics can encumber accurate structural elucidation in solution and, correspondingly, mechanistic interpretation of any ensuing onward reactivity. In general terms, the associated dynamics can be deconvoluted into (a) pincer ligand-centered processes and (b) pseudorotation of the reactive ligands about the metal (Scheme 1). In the context of the former, atropisomerism of the characteristically C₂ twisted geometries of methylene-bridged DED ligands is particularly noteworthy and has been studied in detail for late transition metal complexes of NHC-based CEC ligands.4,5 Catalytically important iridium(III) dihydride complexes of phosphine-based pincer ligands are prominent fluxional group 9 examples, exhibiting time-averaged C₂v symmetry in solution, both for flexible PEP (i.e., (a) + (b) dynamics) and rigid POEOP (i.e., (b) dynamics) pincer ligands.6,7

As a platform to systematically study the dynamic properties of low-coordinate group 9 pincer complexes, we herein report on the synthesis, characterization, and reactivity of a new homologous series of five-coordinate rhodium(III) and iridium(III) 2,2′-biphenyl (biph) complexes of flexible PNP (2,6-(tBu2PCH2)₂C₆H₃N) and rigid PONOP (2,6-(tBu2PO)₂C₆H₃N) pincer ligands: [M(PNP)(biph)][BArF₆] (M = Rh, 1a; Ir, 1b; ArF = 3,5-(CF₃)₂C₆H₃) and [M-(PONOP)(biph)][BArF₆] (M = Rh, 2a; Ir, 2b; Chart 1). As part of ongoing work in our laboratories exploring the organometallic chemistry of NHC-based pincers,8 we have recently prepared CNG analogues A and B.9 In these complexes, biph pseudorotation is inhibited by the macrocyclic CNC pincer ligand, but slow atropisomerism on the 1H NMR (600 MHz) time scale was established using experiments that detect magnetization transfer. As further precedent, five-coordinate iridium(III) 2,2′-biphenyl complexes of neutral PCP complexes (C, D) have previously been reported by Krogh-Jespersen, Goldman, and co-workers.10,11

Scheme 1. Structural Dynamics of Five-Coordinate DED Pincer Complexes in Solution

M = Rh, Ir; E = N, C²; X = high trans influence, reactive anionic ligand.

Received: April 2, 2019
Published: May 22, 2019
Chart 1. Rhodium and Iridium Pincer Complexes of 2,2’-Biphenyl

![Chart 1](image)

\[\text{[BarF}^4\text{]}^{-} \] counter anions omitted for clarity.

RESULTS AND DISCUSSION

Exploiting precursors first described by Jones and Crabtree\(^{12}\) and procedures developed in our laboratories,\(^{9,13}\) synthesis of the target PNP and PONOP derivatives 1 and 2 was achieved through reactions of [Rh(biph)(dbpm)Cl] (dbpm = bis(di-tert-butylphosphino)methane) or [Ir(biph)(COD)Cl] \(^2\) (COD = 1,5-cyclooctadiene) with the desired pincer ligand in CH\(_2\)Cl\(_2\) solution in the presence of Na[BarF\(^4\)] as a halide abstracting agent (Scheme 2).\(^{14}\) The resulting five-coordinate complexes were all isolated as microcrystalline materials of high purity in good to excellent yield (79–87%) and extensively characterized in solution and the solid state (vide infra). Employment of this procedure notably avoids the need for late-stage C–C bond activation of biphenylene or double C–H bond activation of biphenyl associated with the formation of C and D\(^{10,11}\) and moreover benefits from the use of common and more widely applicable Rh(III)(biph) and Ir(III)(biph) precursors.

Scheme 2. Synthesis of Rh(III) and Ir(III) PNP and PONOP Complexes 1 and 2

![Scheme 2](image)

\[\text{[BarF}^4\text{]}^{-} \] counter anions omitted for clarity.

Single crystalline samples of 1 and 2 suitable for interrogation by X-ray diffraction were obtained in all cases, with the homologous metal pairs 1a,b and 2a,b being isomorphous. The structures of 1b and 2b (determined at 150 K) are shown in Figure 1, with key metrics for the complete set provided in Table 1. The solid-state structures are notable for pseudoguare pyramidal metal geometries about the metal, with near-ideal N20–M–C15 but distinctly obtuse P2–M1–P3 angles (1, ca. 164°; 2, ca. 160°). In each case, one of the tert-butyl substituents is cantled toward the vacant coordination site and characterized by M1⋯H–C29 contacts of 3.001(3)–3.072(3) Å and reduced M1–P2–C28 angles of 104.1(9)–107.0(5)°. These features mark out the formation of weak agostic interactions,\(^{15}\) decreasing in the order 1b > 1a > 2b > 2a, although contrasting those observed for A and B (M⋯H–C contacts of 2.978(5)–3.000(3) Å), meaningful 3c–2e bonding was not substantiated by ATR IR spectroscopy. Consistent with these experimental observations, natural bond orbital (NBO) analysis of optimized geometries of 1 and 2 indicates the associated NBO perturbation energies are considerably less than those in A and B and of very low absolute magnitude (\(\sum \Delta E^N/kJ mol^{-1}\)):

- 1a, 26.8; 1b, 42.3; 2a, 11.0;
- 2b, 22.0; cf. A, 79.3; B, 107.9; see the Supporting Information.\(^{2,16}\)

On the basis of these data, the yawing of the phosphine donors is therefore best reconciled by steric buttressing between the biph ligand and the proximal tert-butyl substituents rather than a consequence of agostic bonding with the metal. Coordination of biph is associated with a disparity between the M1–C4 and M1–C15 bond lengths (ca. 3 pm) expected for the presence of an open coordination site trans to the former.

Close inspection of the solid-state structures of 1 determined at 150 K revealed the presence of minor disordered components that could be satisfactorily modeled as conformational isomers, where the pincer is coordinated in a puckered C\(_5\) symmetric manner (conferring overall C\(_5\) symmetry; 1–C\(_5\)) instead of the helical C\(_2\) symmetry found for the major component (conferring overall C\(_1\) symmetry; 1–C\(_1\)). Binding of this nature is not uncommon for platinum group metal PNP pincer complexes (22% frequency, CSD v5.40), with a number of prominent rhodium and iridium examples.\(^{2,17}\)

Recognizing that this disorder could be the manifestation of structural dynamics in the solid state,\(^{18}\) additional crystallographic data were collected across a wide temperature range (75–250 K), for both the rhodium and iridium congeners, and subsequently refined using a disorder model involving both helical and puckered pincer binding modes (Figure 2). From these data, it can be concluded that dynamic equilibration between these two pincer ligand conformations does indeed occur in the solid state: with the former conformation enthalpically favored and exclusively observed at 75 K (within the error of the experiment) but entropically disfavored over the latter, which commands a significant fraction of the model at 250 K (1a, 29%; 1b, 33%).

A van’t Hoff analysis of the equilibrium temperature dependence enabled the associated thermodynamic parameters to be extracted:

- 1a, \(\Delta H = +2.0 \pm 0.1 \text{ kJ mol}^{-1}\), \(\Delta S = +0.4 \pm 0.9 \text{ J K mol}^{-1}\) (\(\Delta G_{298K} = +1.9 \pm 0.4 \text{ kJ mol}^{-1}\));
- 1b, \(\Delta H = +2.0 \pm 0.1 \text{ kJ mol}^{-1}\), \(\Delta S = +1.7 \pm 0.9 \text{ J K mol}^{-1}\) (\(\Delta G_{298K} = +1.5 \pm 0.4 \text{ kJ mol}^{-1}\)).

No statistically significant differences can be inferred for the congeners, but the trend is for the isomerization to be less endergonic for 1b. This suggestion is supported by a DFT-based computational analysis at the \(\omega B97X-D3\) level of theory,\(^{19}\) although the calculations are unable to reproduce the relative energetics of the isomers in silico:

- 1a, \(\Delta G_{298K} = -0.7 \text{ kJ mol}^{-1}\);
- 1b, \(\Delta G_{298K} = -2.1 \text{ kJ mol}^{-1}\). More importantly, the calculations affirm a very small energy difference between the alternative ligand conformations with low associated activation barriers (1a, \(\Delta G^\ddagger = 8.4 \text{ kJ mol}^{-1}\); 1b, \(\Delta G^\ddagger = 9.8 \text{ kJ mol}^{-1}\)), congruous with fluxionality in the solid state. Combined, the experimental and computational data suggest that C\(_2\) and C\(_1\) symmetric binding of PNP ligands is nearly isoenergetic and rapid interconversion between these
Figure 1. Solid-state structures of 1b (left) and 2b (right) determined at 150 K. Thermal ellipsoids drawn at 50% probability; minor disordered component in 1b, solvent in 2b, and anions omitted.

Table 1. Selected Bond Lengths (Å) and Angles (deg) for 1 and 2 Determined at 150 K

Metric	PNP	PONOP		
M = Rh (1a)	M = Ir (1b)	M = Rh (2a)	M = Ir (2b)	
M1–P2	2.3047(6)	2.3076(6)	2.3201(6)	2.3099(7)
M1–P3	2.3797(6)	2.3612(7)	2.3384(6)	2.3326(6)
M1–N20	2.130(2)	2.123(2)	2.096(2)	2.096(2)
M1–C4	1.988(2)	2.001(2)	1.996(2)	2.013(2)
M1–C15	2.023(2)	2.040(2)	2.021(2)	2.044(2)
M1–C29	3.025(3)	3.001(3)	3.072(3)	3.031(3)
P2–M1–P3	164.49(2)	163.74(2)	160.59(2)	159.75(2)
N20–M1–C15	178.40(8)	178.85(9)	177.97(9)	177.47(9)
M1–P2–C28	104.27(8)	104.11(9)	107.05(10)	106.58(10)

Metrics associated with major disordered component (1-C1) only.

Figure 2. Solid-state dynamics of 1 interrogated by X-ray crystallography.
modes is implicit, to the extent that these processes can even occur in the confined environment of a crystal lattice at cryogenic temperatures!

The solution-phase structure and dynamics of 1 and 2 were investigated in CD$_2$Cl$_2$ solution using multinuclear and variable-temperature NMR spectroscopy (500 MHz, 185–308 K). All complexes are markedly fluxional, with the dynamics notably manifested in 1H NMR spectra measured at 298 K by line broadening of the biph, CH$_2$ (PNP), and tBu signals, with varying degrees of coalescence from overall to full signal coalescence (Figure 3). Although full signal coalescence could not be achieved within the physical limits of the solvent for 1b or 2, simulation of the associated variable-temperature 1H NMR spectra using gNMR enabled the activation parameters associated with the pseudorotation to be determined for all four complexes (Table 2). These data substantiate more facile pseudorotation in 1a compared to the other pincer complexes, which are notable for very similar activation barriers, ΔG^\ddagger ca. 60 kJ mol$^{-1}$.

The measured activation barriers for the pseudorotation are well reproduced computationally at the oB97X-D3 level of theory (Table 2). For both pincer ligands, this rotation was found to proceed via distinctly C_2 symmetric trigonal bipyramidal transition states and relatively flat potential energy surfaces (absolute vibrational modes all <40 cm$^{-1}$). Adoption of the associated twisted pincer ligand geometries is necessary to minimize steric buttressing between tert-butyl substituents and the biph ligand, but these interactions are still significantly destabilizing. Supporting this assertion, the corresponding barriers for computational models featuring methyl instead of tert-butyl substituents are significantly lower (Table 2).

Moreover, from the reported 1H NMR data at ambient temperature (400 MHz), the barrier associated with pseudorotation in 1b (C_s) is considerably less than for less sterically congested C (C_s). Overall, C_s symmetry is retained in the 1H NMR spectra of 1 and 2 in CD$_2$Cl$_2$ on cooling to 185 K and the 31P(1H) NMR spectra of these complexes exhibit single sharp resonances across the full temperature range studied—1a, δ 44.2; 1b, δ 27.0.; 2a, δ 179.8; 2b, δ 157.7 (298 K)—with those of the rhodium congeners notable for coupling to 103Rh (1J$\text{RhP} =$ 114 Hz). In the context of the pincer ligand conformations adopted in 1, these data do not enable us to definitely discriminate between time-averaged or static C_s symmetric pincer binding, although on the basis of the dynamics observed in the solid state, the former is inferred. Cooling to low temperature does, however, impart the presence of restricted rotation in one of the two sets of tert-butyl groups ($1a, \Delta G^\ddagger = 37 \pm 3$ kJ mol$^{-1}$; $1b, \Delta G^\ddagger = 38 \pm 4$ kJ mol$^{-1}$). This hindered rotation could potentially be the manifestation of agostic bonding; however, none of the three decoalesced signals are shifted to appreciably low frequency and we correspondingly assign these terst-butyl to those proton interactions.

The reactions of 1 and 2 with CO (1 atm) were studied in CD$_2$Cl$_2$. Although sluggish, addition of CO occurs to the iridium pincers at ambient temperature, conferring carbonyl derivatives 3 ($t = 6$ h) and 4 ($t = 2$ days) in quantitative yield.

![Figure 3. Variable-temperature 1H NMR spectra of 1a (CD$_2$Cl$_2$, 500 MHz).](image)

Table 2. Activation Barriers for the Pseudorotation Observed in 1 and 2 and Computational Models

Experiment	ΔG^\ddagger (kJ mol$^{-1}$)
1a	56 ± 1
1b	62 ± 1
2a	58 ± 4
2b	60 ± 4

| Full model | 53.7 |
| Truncated model | 21.2 |

Scheme 3. Reactions of 1 and 2 with CO

$^\text{[BArF$_6^-$]}^-$ counter anions omitted for clarity.
spectroscopic yield (3, δ_{31P} 24.7; 4, δ_{31P} 147.3; Scheme 3). Both were subsequently isolated and fully characterized. No reactions resulted in the case of the lighter congeners, and this observation is borne out in the computationally derived thermodynamics, which indicates that the associated rhodium carbonyl derivatives are not formed with sufficiently exothermic enthalpies (cf. periodic trends apparent from Table 3) to offset the considerably unfavorable entropic penalties associated with reactions of this type (calculated ΔS ca. −179 J mol\(^{-1}\) K\(^{-1}\); −298 × ΔS ca. +53 kJ mol\(^{-1}\)). Calculated ΔG\(_{298K}\) values increase in the order 1b (−28.8 kJ mol\(^{-1}\)) < 2b (−10.6 kJ mol\(^{-1}\)) < 1a (+26.1 kJ mol\(^{-1}\)) < 2a (+47.5 kJ mol\(^{-1}\)), with the relative energetics of the iridium complexes confirmed by crossover experiments involving heating mixtures of 3/2b (no reaction observed after 55 days at 50 °C) and 4/1b (affords 3/2b in 99% conversion after 55 days at 50 °C).

The solid-state structure of 4 is notable for a significantly contorted metal coordination geometry compared to 3, as gauged by significant deviation of the N20–Ir1–C15 angle from linearity (163.83(9)° cf. 173.9(2)°) and acute N20–Ir1–C4 angle (83.69(9)° cf. 94.2(2)°; Figure 4). This marked deviation from ideal geometry presumably results from steric congestion around the carbonyl ligand enforced by the rigid nature of the pincer backbone, and this suggestion is supported in solution by restricted rotation of the tert-butyl substituents proximal to the biph ligand on the \(^1\)H NMR time scale (CD\(_2\)Cl\(_2\), 500 MHz; \(ΔG^\ddagger\) = 41 ± 3 kJ mol\(^{-1}\); assignment confirmed by a NOESY experiment). The carbonyl stretching band measured for 4 (2033 cm\(^{-1}\)) is slightly elevated in comparison to that of 3 (2028 cm\(^{-1}\)), but the variance is considerably less than that for the corresponding Ir(I) carbonyl pincers measured under the same conditions (Table 3). Combined, these data highlight the pivotal role of steric buttressing in the differences in thermodynamics and kinetics of carbonyl addition to PNP-ligated 1b compared to PONOP-ligated 2b.

In the context of dynamics of the PNP pincer ligand, line broadening of the resonances associated with the phosphine donor groups that signals the onset of decoalescence from overall C\(_2\) to C\(_1\) symmetry (i.e., helical pincer binding) is apparent for 3 on cooling to low temperature (298 to 185 K) by \(^1\)H and \(^{31}\)P NMR spectroscopy in CD\(_2\)Cl\(_2\) solution (500 MHz). This behavior indicates considerably less favorable pincer ligand dynamics in coordinatively saturated 3 in comparison to its unsaturated parent complex 1b. Consistent with this suggestion, the X-ray derived structure of 3 is notable for well-ordered helical coordination of the PNP ligand (within the error of the experiment) at 150 K (cf. 1b, vide supra).

Table 3. Carbonyl Stretching Frequencies of PNP and PONOP Complexes (CH\(_2\)Cl\(_2\))

complex	v(CO) (cm\(^{-1}\))
[Rh(PNP)(CO)][BAr\(_F\)\(_4\)]	1990
[Rh(PONOP)(CO)][BAr\(_F\)\(_4\)]	2016
[Ir(PNP)(CO)][BAr\(_F\)\(_4\)]	1977
[Ir(PONOP)(CO)][BAr\(_F\)\(_4\)]	2003
3	2028
4	2033

Figure 4. Solid-state structures of 3 (left) and 4 (right) determined at 150 K. Thermal ellipsoids drawn at 50% probability; anions omitted. Selected bond lengths (Å) and angles (deg): 3, Ir1–P2, 2.3812(12); Ir1–P3, 2.4144(12); Ir1–C4, 2.110(4); Ir1–C15, 2.066(4); Ir1–C16, 1.927(5); Ir1–N20, 2.143(3); P2–Ir1–P3, 161.20(4); C4–Ir1–C16, 171.8(2); N20–Ir1–C15, 173.9(2); 4, Ir1–P2, 2.3644(6); Ir1–P3, 2.3828(6); Ir1–C4, 2.113(2); Ir1–C15, 2.085(2); Ir1–C16, 1.920(3); Ir1–N20, 2.128(2); P2–Ir1–P3, 157.82(2); C4–Ir1–C16, 166.78(10); N20–Ir1–C15, 163.83(9).

CONCLUSIONS

Exploiting facile substitution reactions of [Rh(biph)(dthpm)-Cl] and [Ir(biph)(COD)Cl]\(_2\), the expedient and high-yielding synthesis of a homologous series of five-coordinate rhodium- (III) and iridium (III) complexes of PNP (2,6-((tBu2PCH2)2C5H3N) and PONOP (2,6-(tBu2PO)2C5H3N) pincer ligands has been described: [M(PNP)(biph)][BAr\(_F\)\(_4\)] (M = Rh, 1a; Ir, 1b) and [M(PONOP)(biph)][BAr\(_F\)\(_4\)] (M = Rh, 2a; Ir, 2b). These complexes display interesting structural dynamics in solution involving pseudorotation of the biph ligand on the \(^1\)H NMR time scale (\(ΔG^\ddagger\) ca. 60 kJ mol\(^{-1}\)) and, in the case of the flexible PNP complexes, interconversion between helical and puckered pincer ligand conformations.
(ΔG° ca. 10 kJ mol⁻¹). Introduction in silico suggests the former process involves overall C₂ symmetric transition states, with twisted PNP and PONOP pincer ligand binding geometries, that are significantly destabilized by steric buttressing between the tert-butyl phosphine substituents and the biph ligand. Remarkably, the latter process is sufficiently facile that it persists in the solid state, leading to temperature-dependent disorder in the associated X-ray crystal structures. Reaction of 1 and 2 with CO occurs for the iridium congeners 1b and 2b, leading to the formation of sterically congested carbonyl derivatives.

EXPERIMENTAL SECTION

General Methods. All manipulations were performed under an atmosphere of argon using Schlenk and glovebox techniques unless otherwise stated. Glassware was oven-dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C in vacuo overnight. CD₂Cl₂ was freeze-pump-thaw degassed and dried over 3 Å molecular sieves. Other anhydrous solvents were purchased from Acros Organics or Sigma-Aldrich, freeze-pump-thaw degassed, and stored over 3 Å molecular sieves. PNP,¹¹ PONOP,¹² Na[BArF₄]¹³,¹⁴ [Rh(biph)-(dbtpm)Cl]¹⁵,¹⁶ and [Ir(biph)(COD)Cl]⁺¹⁷,¹⁸ and [M(pincer)(CO)]⁻¹⁹,²⁰ [BArF₄]⁻²¹ were synthesized according to published procedures, or minor variations thereof. All other reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers under argon at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz.

Preparation of [Rh(PNP)(biph)][BArF₄] (1a). A suspension of PNP (87.9 mg, 222 μmol), [Rh(biph)(dbtpm)Cl] (132 mg, 222 μmol), and Na[BArF₄] (197 mg, 222 μmol) in CD₂Cl₂ (2 mL) was stirred at ambient temperature for 16 h, filtered, and the filtrate reduced to dryness in vacuo. The resulting orange solid was washed with pentane and dried to give a microcrystalline orange solid. Yield: 96.8 mg (85%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH₂Cl₂ solution at ambient temperature.

[H NMR (500 MHz, CD₂Cl₂): δ 8.14 (t, JHH = 8.2, 1H, py), 7.70−7.77 (m, 9H ArF + biph), 7.59 (br, 2H, biph), 7.56 (br, 4H, ArF), 7.20 (d, JHH = 8.2, 2H, py), 7.11 (br, 3H, 3 × biph), 6.54 (vbr, fwhm = 120 Hz, 1H, biph), 5.83 (vbr, fwhm = 95 Hz, 1H, biph), 1.29 (vbr, fwhm = 125 Hz, 18H, Bu)....

Preparation of [Ir(PNP)(biph)]Cl [Ir(PONOP)(biph)][BArF₄] (2a). A suspension of PONOP (30.0 mg, 75.1 μmol), [Rh(biph)(dbtpm)Cl] (44.6 mg, 75.0 μmol), and Na[BArF₄] (66.6 mg, 75.2 μmol) in CH₂Cl₂ (2 mL) was stirred at ambient temperature for 16 h, filtered, and the filtrate reduced to dryness in vacuo. The resulting orange solid was washed with pentane and dried to give a microcrystalline orange solid. Yield: 96.8 mg (85%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH₂Cl₂ solution at ambient temperature.

[H NMR (500 MHz, CD₂Cl₂): δ 8.14 (t, JHH = 8.2, 1H, py), 7.70−7.77 (m, 9H ArF + biph), 7.59 (br, 2H, biph), 7.56 (br, 4H, ArF), 7.20 (d, JHH = 8.2, 2H, py), 7.11 (br, 3H, 3 × biph), 6.54 (vbr, fwhm = 120 Hz, 1H, biph), 5.83 (vbr, fwhm = 95 Hz, 1H, biph), 1.29 (vbr, fwhm = 125 Hz, 18H, Bu)....

HR ESI-MS (positive ion, 4 kV): 744.2128, [M]⁺ (calcd 744.2132) m/z.

Preparation of [Ir(PNP)(biph)][BArF₄] (2b). A suspension of PNP (30.0 mg, 75.1 μmol), [Rh(biph)(COD)Cl] (36.7 mg, 37.6 μmol), and Na[BArF₄] (66.6 mg, 75.2 μmol) in CH₂Cl₂ (2 mL) was stirred at ambient temperature for 16 h, filtered, and the filtrate reduced to dryness in vacuo. The resulting red solid was washed with pentane and dried to give a microcrystalline red solid. Yield: 48.1 mg (79%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH₂Cl₂ solution at ambient temperature.

[H NMR (500 MHz, CD₂Cl₂): δ 8.14 (t, JHH = 8.2, 1H, py), 7.70−7.76 (m, 8H ArF), 7.65 (br, 2H, 2 × biph), 7.56 (br, 4H, ArF), 7.42 (br, 1H, biph), 7.28 (d, JHH = 8.2, 2H, py), 7.10 (br, 2H, 2 × biph), 6.97 (br, 1H, biph), 6.33 (br, 1H, biph), 5.55 (br, 1H, biph), 1.28 (br, 18H, Bu), 0.76 (br, 18H, Bu)....

[H NMR (500 MHz, CD₂Cl₂): δ 162.9 (br, py), 146.5 (s, py), 105.6 (v, JFC = 2, py), 28.8 (br, biph), 27.6 (br, biph),...

HR ESI-MS (positive ion, 4 kV): 744.2705, [M]⁺ (calcd 744.2707) m/z.

Preparation of [Ir(PNP)(biph)]Cl [Ir(PONOP)(biph)][BArF₄] (3). A solution of 1b (16.0 mg, 9.98 μmol) in CD₂Cl₂ (0.5 mL) was placed under an atmosphere of carbon monoxide (1 atm) and gently shaken at ambient temperature, and monitored periodically using ¹³C NMR and ³¹P NMR spectroscopy. Quantitative conversion of 1b to 3 (t = 6 h) and 2b to 4 (t = 2 days) resulted. No reaction was observed in the case of 2b (2a, 2b) and 4 (2b, 4) after 24 h (even after heating at 50 °C for an additional 24 h).

Preparation of [Ir(PNP)(biph)]Cl [Ir(PONOP)(biph)][BArF₄] (3). A solution of 1b (16.0 mg, 9.98 μmol) in CD₂Cl₂ (0.5 mL) was placed under an atmosphere of carbon monoxide (1 atm) and gently shaken for 6 h at ambient temperature (as above). The solvent was removed in vacuo to afford a white solid. Yield: 16.0 mg (99%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a CH₂Cl₂ solution at ambient temperature.
Table 4. Variable-Temperature 1H NMR Data

complex	exchange	rate of exchange (s^{-1})						
		308 K	298 K	273 K	250 K	225 K	200 K	185 K
1a	biph	2310	661	90	11	4728	1008	266
1a	tBu	224	101	10	1	2554	297	205
1b	biph	759	342	38	16			
1b	tBu	259	179	24	5	1094	44	16
2a	biph							
2b	biph							
4	tBu							

1H NMR (500 MHz, CD$_2$Cl$_2$): δ 8.00 (t, 1J$_{HH}$ = 7.9, 1H, py), 7.96 (d, 1J$_{HH}$ = 8.2, 1H, biph), 7.70–7.75 (m, 8H, Ar2), 7.68 (d, 1J$_{HH}$ = 7.9, 2H, py), 7.62 (d, 1J$_{HH}$ = 7.6, 1H, biph), 7.58 (d, 1J$_{HH}$ = 7.9, 1H, biph), 7.56 (br, 4H, Ar1), 7.12 (t, 1J$_{HH}$ = 7.8, 1H, biph), 7.10 (t, 1J$_{HH}$ = 7.9, 1H, biph), 7.00 (t, 1J$_{HH}$ = 7.4, 1H, biph), 6.91 (t, 1J$_{HH}$ = 7.4, 1H, biph), 6.81 (d, 1J$_{HH}$ = 7.5, 1H, biph), 4.30 (dvt, 1J$_{HH}$ = 17.0, 2J$_{HH}$ = 4.1, 2H, CH$_2$), 3.72 (dvt, 1J$_{HH}$ = 17.0, 2J$_{HH}$ = 3.5, 2H, CH$_2$), 1.27 (vt, 1J$_{HH}$ = 7.2, 18H, tBu), 0.62 (vt, 1J$_{HH}$ = 7.4, 18H, tBu).

13C{$_{^1}$H} NMR (126 MHz, CD$_2$Cl$_2$): δ 180.3 (t, 1J$_{FC}$ = 7, CO), 163.0 (br, py), 162.3 (t, 1J$_{CB}$ = 50, Ar2), 159.5 (s, biph), 153.4 (s, biph), 141.8 (t, 1J$_{FC}$ = 10, biph), 141.7 (s, py), 139.1 (s, biph), 137.5 (s, biph), 135.4 (br, Ar2), 131.3 (t, 1J$_{FC}$ = 6, biph), 129.4 (qq, 1J$_{FC}$ = 32, 3J$_{FC}$ = 3, Ar2), 128.2 (s, biph), 126.7 (s, biph), 126.2 (s, biph), 125.2 (q, 1J$_{FC}$ = 272, CF$_3$), 124.7 (s, biph), 123.5 (vt, 1J$_{FC}$ = 4, py), 122.5 (s, biph), 118.0 (sept, 1J$_{FC}$ = 4, Ar2), 40.8 (vt, 1J$_{FC}$ = 10, tBu{CH$_3$}), 40.1 (vt, 1J$_{FC}$ = 9, tBu{CH$_3$}), 30.8 (br, tBu{CH$_3$}), 30.2 (br, tBu{CH$_3$}).

31P{$_{^1}$H} NMR (162 MHz, CD$_2$Cl$_2$): δ 247.47.

HR ESI-MS (positive ion, 4 kV): 768.3064, [M]$^{+}$ (calc 768.3072) m/z.

Preparation of [Ir(PONOP)(biph)(CO)][4BF$_4$] (4). A solution of 2b (161 mg, 10.0 μmol) in CD$_2$Cl$_2$ (0.5 mL) was placed under an atmosphere of carbon monoxide (1 atm) and gently shaken for 2 days at ambient temperature of carbon monoxide (1 atm) and gently shaken for 2 days. The solvent was removed in vacuo to afford a white solid. Yield: 16.0 mg (98%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of hexane into a CH$_2$Cl$_2$ solution at ambient temperature.

HR ESI-MS (positive ion, 4 kV): 772.2659, [M]$^{+}$ (calc 772.2657) m/z.

Crossover Experiments. A solution of 1b (16.0 mg, 9.98 μmol) and 4 (16.4 mg, 10.0 μmol) in CD$_2$Cl$_2$ (0.5 mL) prepared in J. Young's valve NMR tube was heated at 50 °C and periodically monitored by 1H and 31P NMR spectroscopy. No reaction was apparent after 55 days.

Variable-Temperature NMR Experiments. Analysis was performed using 20 mM solutions of the pincer complexes in CD$_2$Cl$_2$ (0.5 mL) prepared in J. Young's valve NMR tubes. Samples were equilibrated at the required temperature for a period of 10 min before spectra were acquired (1H, 500 MHz; 31P, 202 MHz).

Crystallography. Data were collected on a Rigaku Oxford Diffraction SuperNova AtlasS2 CCD diffractometer using graphite monochromated Mo Kα or Cu Kα radiation and an Oxford Cryosystems N-HeliX cryostat. Data were collected and reduced using CrystAlisPro. The structures were solved using SHELXT and refined using SHELXL, through the Olex2 interface. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed in calculated positions and refined using the riding model. Variable-temperature data for 1a and 1b were collected for unique crystals at 75, 100, 150, 200, and 250 K but in a nonsequential order. Sample conditions were conditioned for at least 30 min, with longer times for the lowest temperature measurements (1 h at 5 min at 75 K). No significant disorder was apparent from the refined data collected at 75 K, with no Fourier peaks around the pincer methylene bridges >0.7 eÅ$^{-3}$. Disorder of the pincer ligand at the other temperatures, evident from inspection of the thermal parameters and presence of Fourier peaks around the pincer methylene bridges ≥1.0 eÅ$^{-3}$, was systematically treated by modeling part of the ligand over two sites and restraining its geometry (Figure 2). Rigid body constraints were applied for the pyridine moiety. In this way, the R$_{fi}$ indices were significantly lowered (Supporting Information, Table S1) and sensible thermal parameters obtained in all cases.

Full details for all structures reported are documented in the CIF, which have been deposited with the Cambridge Crystallographic Data Centre under CCDC 1901989–1902010.

Computational. Starting from geometries of the cations observed in the solid state, optimizations were carried out using Grimme's dispersion corrected oB97X-D3 functional as implemented in ORCA 4.0.1.2, with the def2-TZVPP basis set and associated def2-ECP on Rh/Ir, and the def2-TZVPP(-f) basis set on all other atoms. Minima and saddle points were verified by analytical vibrational mode analysis at the same level of theory, which also provided thermochemical corrections. A scalar relativistic all-electron single point energy calculation was subsequently carried out using the oB97X-D3 functional within the ZORA approximation and using the corresponding basis sets (Rh, old-ZORA-TZVPP; Ir, SARC-ZORA-TZVPP; all other atoms, ZORA-def2-TZVPP(-f)). NBO analyses were carried out using NBO 6.0.16

DOI: 10.1021/acs.inorgchem.9b00957
Inorg. Chem. 2019, 58, 7933–7961
ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.9b00957.

NMR, IR, and ESI-MS spectra of new compounds, NMR spectra of selected reactions, selected crystallographic parameters for 1a and 1b (Table S1), calculated thermodynamic values, and NBO analysis of 1 and 2 (PDF)

Optimized geometries (XYZ)
Primary NMR data (ZIP)

Accession Codes
CCDC 1901989–1902010 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author
E-mail: a.b.chaplin@warwick.ac.uk.

ORCID
Adrian B. Chaplin: 0000-0003-4286-8791

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the European Research Council (ERC, grant agreement 637313) and Royal Society (UF100592, UF150675, A.B.C.) for financial support. High-resolution mass-spectrometry data were collected using instruments purchased through support from Advantage West Midlands and the European Regional Development Fund. Crystallographic data were collected using an instrument that received funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 637313). We thank Dr. C. André Ohlin for access to specialist computational resources.

REFERENCES

1. (a) Pincer Compounds: Chemistry and Applications; Morales-Morales, D., Ed.; Elsevier: 2018; Vol. I. (b) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Dehydrogenation of Alkanes and Aliphatic Groups by Pincer-Ligated Metal Complexes. *Chem. Rev.* 2017, 117, 12357–12384.

2. (a) Andrew, R. E.; González-Sebastián, L.; Chaplin, A. B. NHC-Based Pincer Ligands: Carbene with a Bite. *Dalton Trans.* 2016, 45, 1299–1305. (d) Organometallic Pincer Chemistry; van Koten, G., Milstien, D., Eds.: Topics in Organometallic Chemistry; Springer: 2013; Vol. 40. (e) van der Boom, M. E.; Milstein, D. Cycloametallated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation. *Chem. Rev.* 2003, 103, 1759–1792. (f) Albrecht, M.; van Koten, G. Platinum Group Organometallics Based on “Pincer” Complexes: Sensors, Switches, and Catalysts. *Angew. Chem., Int. Ed.* 2001, 40, 3750–3781.

3. (a) Feller, M.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Milstien, D. Direct Observation of Energetic Elimination of Me2X (X = Cl, Br, I) From Rh(III) Complexes: Mechanistic Insight and the Importance of Sterics. *J. Am. Chem. Soc.* 2013, 135, 11040–11047. (b) Feller, M.; Iron, M. A.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Milstien, D. Competitive C-I Versus C-CN Reductive Elimination From a Rh(III) Complex. Selectivity Is Controlled by the Solvent. *J. Am. Chem. Soc.* 2008, 130, 14374–14375.

(3) (a) Adams, G. M.; Chadwick, F. M.; Pike, S. D.; Weller, A. S. A CH,Cl Complex of a [Rh(Pincer)]+ Cation. *Dalton Trans.* 2015, 44, 6340–6342. (b) Bernskoetter, W. H.; White, P. S.; Goldberg, K. I.; Brookhart, M. Investigations of Iridium-Mediated Reversible C-H Bond Cleavage: Characterization of a 16-Electron Iridium(III) Methyl Hydride Complex. *J. Am. Chem. Soc.* 2009, 131, 8603–8613.

(4) (a) Andrew, R. E.; Ferdani, D. W.; Ohlin, C. A.; Chaplin, A. B. Coordination Induced Atropisomerism in a NHC-Based Rhodium Macrocycle. *Organometalics* 2015, 34, 913–917. (b) Schultz, K. M.; Goldberg, K. I.; Gusev, D. G.; Heinekey, D. M. Synthesis, Structure, and Reactivity of Iridium NHC Pincer Complexes. *Organometalics* 2011, 30, 1429–1437. (c) Saito, S.; Azumaya, I.; Watarai, N.; Kawasaki, H.; Yamasaki, R. Synthesis, Structure and Catalytic Activity of Macrocyclic NHC Pd Pincer Complexes. *Heterocycles* 2009, 79, 531. (d) Hahn, F. E.; Jahne, M. C.; Pape, T. Synthesis of Pincer-Type Bis(Benzimidazol-2-ylidene) Palladium Complexes and Their Application in C–C Coupling Reactions. *Organometallics* 2007, 26, 150–154. (e) Hahn, F. E.; Jahne, M. C.; Gomez-Benitez, V.; Morales-Morales, D.; Pape, T. Synthesis and Catalytic Activity of Pincer-Type Bis(Benzimidazol-2-ylidene) Palladium Complexes. *Organometalics* 2005, 24, 6458–6463. (f) Miezczkowski, P. R.; Gründemann, S.; Albrecht, M.; Miegret, C.; Clot, E.; Fuller, J. W.; Eisenstein, O.; Crabtree, R. H. Outer Sphere Anion Participation Can Modify the Mechanism for Conformer Interconversion in Pd Pincer Complexes. *Dalton Trans.* 2003, No. 5, 831–838.

(5) For a notable example of PCP-ligand-based atropisomerism, see: Ma, L.; Woloszynek, R. A.; Chen, W.; Ren, T.; Protasiewicz, J. D. A New Twist on Pincer Ligands and Complexes. *Organometalics* 2006, 25, 3301–3304.

(6) (a) Findlater, M.; Schultz, K. M.; Bernskoetter, W. H.; Cartwright-Sykes, A.; Heinekey, D. M.; Brookhart, M. Dihydrogen Complexes of Iridium and Rhodium. *Inorg. Chem.* 2012, 51, 4672–4678. (b) Kloek, S. M.; Heinekey, D. M.; Goldberg, K. I. Stereoselective Decarbonylation of Methanol to Form a Stable Iridium(III) Trans-Dihydride Complex. *Organometallics* 2006, 25, 3007–3011.

(7) (a) Göttker-Schnetmann, I.; White, P. S.; Brookhart, M. Synthesis and Properties of Iridium Bis(phosphinite) Pincer Complexes (p-XCP)IrH2, (p-XCP)Ir(CO), (p-XCP)Ir(H)(Arly), and (p-XCP)Ir3(μ-N3) and Their Relevance in Alkane Transfer Dehydrogenation. *Organometallics* 2004, 23, 1766–1776. (b) Gupta, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.; Jensen, C. M. A Highly Active Alkane Dehydrogenation Catalyst: Stabilization of Dihydrido Rhodium, and Iridium Complexes by a P–C–P Pincer Ligand. *Chem. Commun.* 1996, 2083–2084.

(8) (a) Storey, C. M.; Gyton, M. R.; Andrew, R. E.; Chaplin, A. B. Terminal Alkyne Coupling Reactions Through a Ring: Mechanistic Insights and Regiochemical Switching. *Angew. Chem., Int. Ed.** 2018, 57, 12003–12006. (b) Apps, S. L.; Alfatt, R. E.; Leforestier, B.; Storey, C. M.; Chaplin, A. B. Divergent Stereoisomers of Molybdenum Carbonyl Complexes of NHC-Based Pincer Ligands. *Polyhedron* 2018, 143, 57–61. (c) González-Sebastián, L.; Chaplin, A. B. Synthesis and Complexes of Imidazolylidene-Based CCC Pincer Ligands. *Inorg. Chem. Acta* 2017, 460, 22–28. (d) Andrew, R. E.; Storey, C. M.; Chaplin, A. B. Well-Defined Coinage Metal Transfer Agents for the Synthesis of NHC-Based Nickel, Rhodium and Palladium Macrocycles. *Dalton Trans.* 2016, 45, 8937–8944.

(e) Reference 4a. (f) Andrew, R. E.; Chaplin, A. B. Synthesis and Reactivity of NHC-Based Rhodium Macrocycles. *Inorg. Chem.* 2015, 54, 312–322. (g) Andrew, R. E.; Chaplin, A. B. Synthesis, Structure
and Dynamics of NHC-Based Palladium Macrocycles. *Dalton Trans.* 2014, 43, 1413–1423.

(9) Gyton, M. R.; Leforesteri, B.; Chaplin, A. B. Rhodium(III) and Iridium(III) Complexes of a NH-Based Macrocycle: Persistent Weak Agostic Interactions and Reactions with Dihydrogen. *Organometallics* 2018, 37, 3963–3971.

(10) Laviska, D. A.; Zhou, T.; Kumar, A.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. Single and Double C–H Activation of Biphenyl or Phenanthrene. An Example of C–H Addition to Ir(III) More Facile Than Addition to Ir(I). *Organometallics* 2016, 35, 1613–1623.

(11) Laviska, D. A.; Guan, C.; Emge, T. J.; Wilklow-Marnell, M.; Brennessel, W. W.; Jones, W.; Jones, W. D.; Krogh-Jespersen, K.; Goldman, A. S. Addition of C–C Bond by Pincer-Iridium Complexes: A Combined Experimental and Computational Study. *Dalton Trans.* 2014, 43, 16354–16365.

(12) (a) Iverson, C. N.; Jones, W. D. Rhodium-Catalyzed Activation and Functionalization of the C–C Bond of Biphenylene. *Organometallics* 2001, 20, 5745–5750. (b) Lu, Z.; Jun, C.-H.; de Gala, S. R.; Sigulas, M. P.; Eisenstein, O.; Crabtree, R. H. Geometrically Distorted and Redox-Active Organometallic Iridium Complexes Containing Biphenvyl. *Organo. Chem.* 1995, 14, 1168–1175.

(13) (a) Emerson-King, J.; Prokes, I.; Chaplin, A. B. Rhodium(III) Complexes Featuring Coordinated CF3 Appendages. *Chem. - Eur. J.* 2019, 25, 6317–6319. (b) Knighton, R. C.; Emerson-King, J.; Rourke, J. P.; Ohlin, C. A.; Chaplin, A. B. Solution, Solid-State, and Computational Analysis of Agostic Interactions in a Coherent Set of Low-Coordinate Rhodium(III) and Iridium(III) Complexes. *Chem. - Eur. J.* 2018, 24, 4927–4938.

(14) (a) Martinez-Martinez, A. J.; Weller, A. S. Solvent-Free Anhydrous Li+, Na+ and K+ Salts of [B(3,5-(CF3)2C6H3)4]−. [BARF]−. Improved Synthesis and Solid-State Structures. *Dalton Trans.* 2019, 48, 3551–3554. (b) Yakelis, N. A.; Bergman, R. G. Safe Preparation and Purification of Sodium Tetrasilyl(3,5-Trifluoromethyl)Pheny]borate (NaBArF4): Reliable and Sensitive Analysis of Water in Solutions of Fluorinated Tetraarylborates. *Organometallics* 2005, 24, 3579–3581. (c) Buschmann, W. E.; Miller, J. S.; Bowman-James, K.; Miller, C. N. Synthesis of M[6-N(CMe)3]4+ (M = V, Cr, Mn, Fe, Co, Ni) Salts of Tetra[3,bis(trifluoromethyl)-phenyl]borate. *Inorg. Synth.* 2002, 33, 83–91.

(15) Brookhart, M.; Green, M. L. H.; Parkin, G. Agostic Interactions in Transition Metal Compounds. *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104, 6908–6914.

(16) Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohm, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. NBO, v. 6.0; http://nbo6.chem.wisc.edu.

(17) (a) Gyton, M. R.; Hood, T. M.; Chaplin, A. B. A Convenient Method for the Generation of [Rh(PNP)]+ and [Rh(POPNOP)]+. Fragments: Reversible Formation of Vinylidene Derivatives. *Dalton Trans.* 2019, 48, 2877–2880. (b) Koller, M.; Ben-Ari, E.; Gupta, T.; Shimon, L. J. W.; Leitus, G.; Diskin-Pinzer, Y.; Weiner, L.; Milstein, D. Mononuclear Rh(II) PNP-Type Complexes. Structure and Reactivity. *Inorg. Chem.* 2007, 46, 10479–10490. (c) Feller, M.; Chen, X.-Y.; Leitus, G.; Martin, J. M. L.; Milstein, D. Selective sp3 C–H Activation of Ketones at the Beta Position by Ir(I). Origin of Regioselectivity and Water Effect. *J. Am. Chem. Soc.* 2006, 128, 12400–12401.

(18) (a) Chaplin, A. B.; Green, J. C.; Weller, A. S. C–C Activation in the Solid State in an Organometallic σ-Complex. *J. Am. Chem. Soc.* 2011, 133, 13162–13168. (b) Silverman, N. J.; Barabashchikov, A.; Sage, J. T.; Noll, B. C.; Scheidt, W. R. Mapping NO Movements in Crystalline [Fe(Porph)[NO][1-Melm]]. *J. Am. Chem. Soc.* 2009, 131, 2131–2140. (c) Braga, D. D.; Dymal Process in Crystalline Organometallic Complexes. *Chem. Rev.* 1992, 92, 633–665.

(19) Lin, Y.-S.; Li, G.-D.; Mao, S.-P.; Chai, J.-D. Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. *J. Chem. Theory Comput.* 2013, 9 (1), 263–272.

(20) gNMR, v. 4.1.2; Adept Scientific: Herts, U.K.