Infant Acute Lymphoblastic Leukemia with Atypical Presentation

Infant leukemia is a very rare disease and consists of 5% of all childhood leukemias. Infant leukemia usually presents with high leukocyte counts and numerous extra-hematological features including central nervous system and skin involvement. Herein, we report a 1-month-old girl presented with high phenylalanine level in national newborn screening program for phenylketonuria; and subsequently diagnosed to have acute lymphoblastic leukemia.

INTRODUCTION

Acute leukemia is the most frequent cancer in childhood (33%) and less than 5% of cases occur in infancy period [1]. Infant leukemia differs from the rest of the childhood leukemias because it usually presents with aggressive features, including high leukocyte counts, hepatosplenomegaly, central nervous system (CNS) involvement, and higher rates of leukemia cutis development [2]. Physical examination is very important because most of the infants are asymptomatic.

Herein, we report a 1-month-old girl presented with high phenylalanine level detected in national newborn screening program for phenylketonuria (PKU); diagnosed as infant acute lymphoblastic leukemia (ALL) after admission to our hospital for PKU evaluation.

CASE PRESENTATION

A 1-month-old girl was admitted to our hospital because of a high phenylalanine level detected in national newborn screening program for phenylketonuria (PKU). The infant was a 1-month-old girl with a birth weight of 2900 g. The newborn screening program detected an abnormal phenylalanine level of 367 µmol/L, which is above the cut-off level of 120 µmol/L for PKU. The infant was referred to our hospital for further evaluation.

On admission, the infant was found to be asymptomatic. Physical examination revealed normal findings except for the high phenylalanine level. The laboratory investigations showed a normal complete blood count, with a white blood cell count of 15,000/µL, hemoglobin of 11.5 g/dL, and platelet count of 200,000/µL. The infant's cerebrospinal fluid (CSF) examination was normal, with no evidence of leukocytosis or pleocytosis.

The infant was diagnosed with acute lymphoblastic leukemia (ALL) based on the bone marrow examination. The bone marrow biopsy showed hypercellular marrow with blast cells comprising 90% of the bone marrow cells. The bone marrow cytogenetic analysis revealed a normal karyotype. The infant underwent chemotherapy as per the standard protocol for ALL.

The infant's phenylalanine level was monitored closely, and she was started on a low-phenylalanine formula. The infant's development and growth were monitored during the chemotherapy. The infant is currently in remission and is receiving maintenance chemotherapy.

The infant's family was counseled on the management of PKU and the importance of dietary intervention to prevent neurodevelopmental sequelae. The infant's growth and development were evaluated regularly, and any potential complications related to PKU were managed promptly.

In conclusion, infant leukemia is a rare disease that requires a high index of suspicion for early diagnosis and appropriate management. Early detection of phenylalanine level and timely intervention can prevent neurodevelopmental sequelae in infants with PKU.

REFERENCES

1. Witzig TE, et al. Acute leukemia in children. In: DeVita VT, Hellman S, Rosenberg SA, editors. Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 991-1010.

2. Raimondi SC, et al. Acute lymphoblastic leukemia in infants: clinical and laboratory features. Blood. 2001;98(3):564-573.

3. Farag SS, et al. Acute lymphoblastic leukemia in infants: a Mayo Clinic report. Pediatric Blood Cancer. 2008;50(2):229-234.

4. Clements CA, et al. Phenylketonuria screening. Pediatrics. 2013;132(6):1053-1060.
Infant Leukemia with Atypical Presentation

National screening program for PKU. The medical history revealed that she was born as the first child of a healthy couple after 38 weeks of gestation. The parents have been called and referred to a hospital for the high phenylalanine level detected in the national screening program. Phenylalanine levels were found to be 2.1 mg/dL and 2.5 mg/dL (upper reference range: 2 mg/dL) in the two heel-prick blood samples, respectively. At presentation, her blood phenylalanine level was measured as 1.2 mg/dL (normal). This was consistent with resolved transient hyperphenylalaninemia of the newborn and PKU was excluded. When she admitted to our hospital since the physical examination revealed hepatosplenomegaly and pallor, complete blood count was ordered. Complete blood count revealed that hemoglobin (Hb) level was 8.8 gr/dL, white blood cell count (WBC) 523900/mm³, and platelet (PLT) count 8000/mm³. Patient was referred to hematology department and peripheral blood smear revealed abundant lymphoblasts. Flow cytometric analysis was compatible with CALLA (-) pre-B cell ALL. Alkaline hydration and rasburicase treatment were started. Leucopheresis has been performed for once. Interfant 2006 chemotherapy protocol was initiated. Cytogenetic studies revealed that t(9;22), t(4;11), t(12;21), and t(1;19) were negative. At the 8th day of prednisolone treatment, the patient was diagnosed as prednisolone poor responder (PPR). At the 15th day of induction chemotherapy; bone marrow aspiration smear showed 17% blasts. At the 33rd day of induction chemotherapy; bone marrow revealed remission morphologically. The patient is currently ongoing Interfant 2006 protocol and in remission.

DISCUSSION

Infant ALL is a rare type of leukemia. Despite improved survival rates are achieved in the treatment of childhood ALL, infants with ALL still have poor prognosis. The 4-year event-free survival (EFS) rate has been reported as 47% in Interfant-99 protocol [3]; while long-term EFS rates have been reported to be 85% in recent trials for childhood ALL [4,5]. Phenylketonuria is an inborn error of metabolism usually caused by deficiency of phenylalanine hydroxylase enzyme, which results in increased levels of phenylalanine. The occurrence of increased levels of blood phenylalanine after therapeutic administration of folate analogues has been occasionally reported and attributed to the inhibition of dihydropteridine reductase, an enzyme maintaining the cofactor of phenylalanine hydroxylase in its active tetrahydrogenated form (tetrahydrobiopterin) [6]. Wang et al. reported unexpectedly elevated phenylalanine levels in a PKU patient when he was diagnosed as ALL and Patiroglu et al. reported elevated phenylalanine levels in a PKU patient when he was diagnosed to have AML [7,8]. In the English literature; these are the only two cases with the diagnosis of PKU who have high phenylalanine levels when they diagnosed as acute leukemia. However, these two patients had been followed up with the diagnosis of PKU while they were diagnosed as acute leukemia. Transient hyperphenylalaninemia of the newborn is a common cause of abnormal newborn screening results. Low birth weight or premature infants or infants who received parenteral feedings are at increased risk for developing transient hyperphenylalaninemia. Transient hyperphenylalaninemia may also be the presenting feature of other significant disorders, such as classical galactosemia, tyrosinemia type I or citrin deficiency, among others [9]. The transient increase in phenylalanine in our patient may be attributed to increased protein turnover due to ALL.

In referral centers, individuals with normal post-screening confirmatory test results are usually sent home with no history taking or physical examination, since the abnormal screening results were either transient or false positive. However, it was her lucky for our patient to have a transiently elevated phenylalanine level that brought her to doctors’ attention. When the physical examination revealed hepatosplenomegaly further evaluation made and she was diagnosed as infant ALL. This case illustrates the importance of physical examination in asymptomatic ALL patients and in all infants with abnormal newborn phenylketonuria screening results, even if confirmatory testing reveals no abnormalities.

CONFLICT of INTEREST STATEMENT

There are no conflicts of interest.
REFERENCES

[1] Daisuke Tomizawa. Recent progress in the treatment of acute infant leukemia. Pediatrics International 2015; 57: 811–819.
[2] Patrick Brown. Treatment of infant leukemias: challenge and promise. Hematology Am Soc Hematol Educ Program. 2013: 596–600.
[3] Pieters R, Schrappe M, De Lorenzo P, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007; 370(9583): 240-250.
[4] Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol 2012; 30(14): 1663-1669.
[5] Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009; 360(26): 2730-2741.
[6] Blau N, Curtius AC, Kierat L, Leupold D, Kohne E. Hyperphenylalaninemia caused by dihydropteridine reductase deficiency in children receiving chemotherapy for acute lymphoblastic leukemia. J Pediatr 1989; 115(4): 661-3.
[7] Turkan Patiroglu, Ekrem Unal, Fatih Kardas et al. Phenylketonuria with Acute Myeloblastic Leukemia in a 9-year-old Boy: Reporting a Rare Case. J Pediatr Hematol Oncol 2011; 33:e256–e257
[8] Cheng Wang, Carol S. Camfield, Conrad V. Fernandez, Terry Hurley, Karen Campbell Clinical Report Successful Neurological Outcome of a Child with Classical Phenylketonuria and Acute Lymphoblastic Leukemia: A 7-Year Follow-Up.
[9] Shakespeare L, Downing M, Allen J, Casbolt AM, Ellin S, Maloney M, Race G, Bonham J. Elevated phenylalanine on newborn screening: follow-up testing may reveal undiagnosed galactosaemia. Ann Clin Biochem 2010; 47(Pt 6): 567-9.