Why the first magic-angle is different from others in twisted graphene bilayers: interlayer currents, kinetic and confinement energy and wavefunction localization

Leonardo A. Navarro-Labastida, Abdiel Espinosa-Champo, Enrique Aguilar-Mendez, Gerardo G. Naumis*

Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM)
Apo. Postal 20-364, 01000, CDMX, México. (Dated: November 2021)

The chiral Hamiltonian for twisted graphene bilayers is analyzed in terms of its squared Hamiltonian which removes the particle-hole symmetry and thus one bipartite lattice, allowing to write the Hamiltonian in terms of a 2×2 matrix. This brings to the front the three main physical actors of twisted systems: kinetic energy, confinement potential and an interlayer interaction operator which is divided in two parts: a non-Abelian interlayer operator and an operator which contains an interaction energy between layers. Here, each of these components is analyzed as a function of the angle of rotation, as well as in terms of the wave-function localization properties. In particular, it is proved that the non-Abelian operator represents interlayer currents between each layer triangular sublattices, i.e., a second-neighbor interlayer current between bipartite sublattices. A crossover is seen between such contributions and thus the first magic angle is different from other higher order magic angles. Such angles are determined by a balance between the negative energy contribution from interlayer currents and the positive contributions from the kinetic and confinement energies. A perturbative analysis performed around the first magic angle allows to explore analytically the details of such energy balance.

I. INTRODUCTION

Twisted bilayer graphene (TBG) exhibits unconventional superconducting phases and Mott insulating states [1]. Such discovery was made by working upon previous theoretical efforts which suggested a path to increase many body interactions [2–4]. In particular, MacDonald et. al. [2] found that at certain twisting angles, TBG presents flat-bands where the Fermi-velocity goes to zero. Several works confirmed the existence of such flat bands at certain “magic angles” where the electron-electron interactions are maximized [1, 5].

Yet there are still many open questions concerning this problem [6–11], even in the one-particle operator limit. For example, the wave function of TBG has been found to be reminiscent of a quantum Hall wave function in a torus and this opens new analogies to the physics of Landau levels [12–15], the Hofstadter butterfly [16–19] or the fractional quantum Hall effect [20]. There is also an interesting connection to topological phases, Moiré edge states and Weyl semimetals [21–26].

Also, as the Moiré pattern generates a high electron density localization, interest in making quantum dots with TBG has been steadily increasing [27, 28]. Other interesting applications have been found [13, 29–37], as well as optical/electrical signatures [38, 39]. The mobility/stability of electrons is influenced by the triangular geometry of the TBG [40–43]. Previous papers have studied nematicity [44–46], phonons/plasmons [6, 47], disorder effects [48–50] and other important related properties [4, 51–57]. However, a direct analytic connection with the presence of superconducting phases at magic angles has not yet been achieved completely. As expected, the interacting behavior of electrons in the Hubbard model is important to characterize the electronic correlations and its fermionic behavior [40, 58–61].

An important mechanism in the properties of Moiré systems is the superlattice relaxation [62–64]. This is specially important near AA stacking points, where interlayer hopping tends to be reduced. Theoretically, when the hopping that couples layers in AA regions is tuned off the system becomes exactly chiral symmetric [65]. This model shows a recurrence at magic angles and reduces the problem to a more analytically manipulable Hamiltonian operator. For this reason among others, the chiral Hamiltonian reduces the complexity of the continuum model and captures all the important symmetries and physics of TBG [65]. The mathematical properties and structure of the wavefunction have been rigorously studied in several works [14, 66–69]. As one can imagine the graphene layer as two triangular sublattices each one with an equal magnetic flux but with opposite sign, therefore, TBG graphene consists of coupled magnetic fluxes with opposite sign between layers [70–72]. This produces a strong skyrmion behavior in which electrons form vortexes, reflected in the presence of strong electron-electron correlation on specific locations across the Moiré superlattice [73].

To further understand the physics behind the problem, in a previous work we considered the squared Hamiltonian (SH) of the chiral model [74]. This represents a renormalization of the TBG that removes one of the
bipartites triangular sublattices for each graphene layer [74–77]. In general, the physics of the SH is the same as that of the original Hamiltonian but the renormalized operator allows to see properties that in the original model were hidden or difficult to identify. For example, it reveals three physical driving mechanisms: kinetic energy, an effective confinement potential and a non-Abelian gauge field leading to magnetic fields. It also allows to write the Hamiltonian as a simple 2×2 operator and then use Pauli matrices in which topological properties are more evident. But more importantly, it gives a direct physical interpretation of magic angles in terms of the wave-function geometrical frustration, i.e., we showed that such renormalization folds the spectrum around zero energy and thus zero-mode states correspond to antibonding ground states in a triangular lattice [74]. As is well known, antibonding states in triangular lattices are frustrated as the wave-function can not achieve a phase difference of π between sites. This cost energy and usually push states into highly degenerate spectral regions and thus to a nearby depletion of states seen as gaps or pseudogaps [76–79]. In Ref. ([74]) we showed that magic angles occur whenever the interlayer frustration is exactly zero. Then at magic angles a highly degenerated state is formed and separated by a gap from the rest of the spectrum. Such effect is achieved by a very precise fine tuning of the wave function Fourier coefficients akin to the Hall effect. Notice that although previous works showed some peculiarities about frustration properties [9, 80, 81], it was not clear why such states were at the middle of the band. The same happens with the analytical form of zero-modes, which were identified as reminiscent of a Hall effect ground state without a clear explanation of why the lowest Landau level was found at the middle of the spectrum and not at its bottom end [65, 72].

Yet, several spectral analysis hinted that the first magic angle is differently from others [65, 72, 82]. For example, numerically it was found that the spectrum of the TBG chiral model shows a remarkable $3/2$ recurrence rule for the magic angles [65], however, the first angle does not follow it and the reason is not known. As we will see here, their wave functions charge density and phases are particularly different from others. Thus, it would be very useful to understand the reason of why such behaviors differ from other magic angles. For this reason, here we present such an study. Also, this work allows to discern how the physical mechanisms scale between each other as the twist angle is changed.

The layout of this work is the following. In section II we present the model to be studied and the identification of the main physical contributions to the problem. Then in section III we study the zero modes wave functions and its localization. In section IV, we study the expectation values of each energy contribution and discuss the interlayer current contribution, in section V we show why the first magic angle is different from others. Finally, the conclusions are given in the last section.

II. SQUARED TWISTED BILAYER

GRAPHENE CHIRAL HAMILTONIAN

The chiral Hamiltonian of twisted bilayer graphene is a variant of the original Bistritzer-MacDonald Hamiltonian in which the AA tunneling is set to zero [72]. We use as basis the wave vectors $\Phi(r) = (\psi_1(r), \psi_2(r), \chi_1(r), \chi_2(r))^T$ where the index 1, 2 represents each graphene layer and $\psi_3(r)$ and $\chi_3(r)$ are the Wannier orbitals on each inequivalent site of the graphene’s unit cell. The chiral Hamiltonian is given [65, 83, 84],

$$H = \begin{pmatrix} 0 & D^*(r) \\ D(r) & 0 \end{pmatrix}$$

(1)

where the zero-mode operator is defined as,

$$D(r) = \begin{pmatrix} -i\tilde{\theta} & \alpha U(r) \\ \alpha U^*(r) & -i\tilde{\theta} \end{pmatrix}$$

(2)

and,

$$D^*(r) = \begin{pmatrix} -\tilde{\theta} & \alpha U^*(r) \\ \alpha U(r) & -\tilde{\theta} \end{pmatrix}$$

(3)

with $\tilde{\theta} = \theta_x + i\theta_y$, $\theta = \theta_x - i\theta_y$. The potential is,

$$U(r) = e^{-i\phi} r + e^{i\phi} e^{-i\alpha U} r + e^{-i\phi} e^{-i\alpha U} r$$

(4)

where the phase factor $\phi = 2\pi/3$ and the Moiré lattice vectors are given by $q_1 = k_0(0, -1)$, $q_2 = k_0(\frac{\sqrt{3}}{2}, \frac{1}{2})$, $q_3 = k_0(-\frac{\sqrt{3}}{2}, \frac{1}{2})$, the Moiré modulation vector is $k_D = 2k_D \sin \frac{\theta}{2}$ with $k_D = \frac{4\pi}{a_0}$ is the magnitude of the Dirac wave vector and a_0 is the lattice constant of monolayer graphene, see Fig. 1. The physics of this model is captured by the parameter α, defined as $\alpha = \frac{w_1}{2k_D}$ where w_1 is the interlayer coupling of stacking AB/BA with value $w_1 = 110$ meV and v_0 is the Fermi velocity with value $v_0 = 19.81$ eV/Å. Notice that the Hamiltonian Eq. (1) was originally written in Ref. [65] using units where $v_0 = 1$, $k_0 = 1$, thus the operators $\tilde{\theta}$ and θ are dimensionless. This allows to treat the system with a fixed geometry for any twist angle as in this units $q_1 = (0, -1)$, $q_2 = (\frac{\sqrt{3}}{2}, \frac{1}{2})$, $q_3 = (-\frac{\sqrt{3}}{2}, \frac{1}{2})$. The twist angle thus only enters in the dimensionless parameter α.

By a renormalization procedure which consists in taking the square of H, we found that [74],

$$H^2 = \begin{pmatrix} -\nabla^2 + \alpha^2 |U(r)|^2 & \alpha A^*(r) \\ \alpha A(r) & -\nabla^2 + \alpha^2 |U(r)|^2 \end{pmatrix}$$

(5)

The squared norm of the potential is an effective confinement potential,

$$|U(r)|^2 = 3 + 2 \cos(b_1 \cdot r + \phi) + 2 \cos(b_2 \cdot r + \phi) + 2 \cos(b_3 \cdot r + 2\phi)$$

(6)

where $b_{1,2} = q_{2,3} - q_1$ are the Moiré Brillouin zone (mBZ) vectors and $b_3 = q_3 - q_2$. In Fig. 2, we plot $|U(r)|^2$ in
real space, with the Wigner-Seitz indicated. This effective
tive potential has an hexagonal structure where the \(r_0 \)
point in the BA stacking lays in the maximum point of
this potential and the minimums lay in the AA and AB
stacking points. The off-diagonal terms in \(H^2 \) are,

\[
A(r) = -i \sum_{\mu=1}^{3} e^{i\mathbf{q}_\mu \cdot \mathbf{r}} (2\hat{q}_\mu^\dagger \cdot \nabla - 1) \tag{7}
\]

and,

\[
A^\dagger(r) = -i \sum_{\mu=1}^{3} e^{-i\mathbf{q}_\mu \cdot \mathbf{r}} (2\hat{q}_\mu^\dagger \cdot \nabla + 1) \tag{8}
\]

where \(\nabla^\dagger = -\nabla \) with \(\nabla = (\partial_x, \partial_y) \) and \(\mu = 1, 2, 3 \). This
is an essential point as eigenvalues must be reals (notice
that \(-A^\dagger(-\mathbf{r}) = A(\mathbf{r}) \)). We also define the following
operator which contains all the non-diagonal contributions,

\[
\hat{A}(\mathbf{r}) = \begin{pmatrix}
0 & \alpha A^\dagger(\mathbf{r}) \\
\alpha A(\mathbf{r}) & 0
\end{pmatrix} \tag{9}
\]

Also, \(\hat{q}_\mu^\dagger \) is a set of unitary vectors perpendicular to
the set \(\hat{q}_\mu \),

\[
\hat{q}_1^\dagger = (1, 0), \hat{q}_2^\dagger = (-\frac{1}{2}, \frac{\sqrt{3}}{2}), \hat{q}_3^\dagger = (-\frac{1}{2}, -\frac{\sqrt{3}}{2}). \tag{10}
\]

The importance of such renormalization is that now
we can see the three main ingredients of the problem: i)
the kinetic contribution via the \(\nabla^2 \) term (which leads to
frustration), ii) a confinement potential \(|U(\mathbf{r})|^2 \) and, iii)
the interlayer interaction \(A(\mathbf{r}) \).

An important feature that we will further analyze is
that \(A(\mathbf{r}) \) is made from two terms, and therefore is
convenient to define separately the quantities,

\[
A_g(\mathbf{r}) = -2i \sum_{\mu=1}^{3} e^{i\mathbf{q}_\mu \cdot \mathbf{r}} \hat{q}_\mu^\dagger \cdot \nabla = 2 \sum_{\mu=1}^{3} e^{i\mathbf{q}_\mu \cdot \mathbf{r}} \hat{p}_\mu \tag{11}
\]

and

\[
A_f(\mathbf{r}) = -i \sum_{\mu=1}^{3} e^{i\mathbf{q}_\mu \cdot \mathbf{r}} \tag{12}
\]

where the dimensionless projected momentum operators
are \(\hat{p}_\mu = (\hat{q}_\mu^\dagger \cdot \hat{p}) \), as the dimensionless momentum operator
is \(\hat{p} = -i\nabla \). See how Eq. (11) is akin to a Lorentz
force term.

Let us also comment some useful symmetries of \(\mathcal{H} \) as
they play important roles in the presence of flat-bands
[66, 85]. For our purposes, the most important symmetry
is the exact intravalley inversion symmetry \[82\], that
produce flat-bands and the chirality. The exact intraval-
ley inversion symmetry operator is \[82\],

\[
\mathcal{I} = \sigma_x \tau_y \tag{13}
\]

where the \(\sigma \) and \(\tau \) operators are acting on the sublat-
tice and layer degrees of freedom respectively and given
by two different sets of Pauli matrices \[82\]. Using such
definition we have,

\[
\mathcal{I} \mathcal{H}(\mathbf{r}) \mathcal{I}^\dagger = \mathcal{H}(-\mathbf{r}) \tag{14}
\]

Our renormalized Hamiltonian also preserves this sym-
metry as,

\[
\mathcal{I} \mathcal{H}^2(\mathbf{r}) \mathcal{I}^\dagger = \mathcal{H}^2(-\mathbf{r}). \tag{15}
\]

For the chiral TBG, intravalley inversion follows from the
\(C_2 \mathcal{T} \) group symmetry, where \(\mathcal{T} \) represents time reversal
and \(C_2 \) is the cyclic group of order 2. The action of \(C_2 \mathcal{T} \)
is that complex conjugates and exchanges the two sub-lattices. In the following section we will further analyze the interplay between the different terms in H^2 and the role played by the symmetries.

III. WAVE FUNCTIONS: LOCALIZATION PROPERTIES

In this section we discuss the localization properties of the zero-modes wave functions for different angles to see if there are differences between the first and higher-order magic angles. We start with the Schrödinger equation $\mathcal{H}\Psi(r) = E\Psi(r)$. Considering only the first spinor component of $\Psi(r)$, the explicit form of the zero-modes wave function is [65],

$$
\begin{pmatrix}
\psi_{k,1}(r) \\
\psi_{k,2}(r)
\end{pmatrix} = \sum_{m,n} \begin{pmatrix}
a_{mn} \\
b_{mn}
\end{pmatrix} e^{i(K_{mn}+k) \cdot r}
$$

(16)

where a_{mn} and b_{mn} represents the Fourier coefficients of each spinor component representing layers 1 and 2, respectively, and $K_{mn} = nb_1 + nb_2$ where $b_{1,2} = q_{2,3} - q_1$ are the Moiré Brillouin zone vectors and $b_1 = q_3 - q_2$.

For the flat-bands, it has been proved that [65],

$$
\begin{pmatrix}
f_{k,1}(z) \\
f_{k,2}(z)
\end{pmatrix} = f_k(z) \begin{pmatrix}
\psi_{K,1} \\
\psi_{K,2}
\end{pmatrix}
$$

(17)

where $z = x + iy$. $f_k(z)$ is given in terms of Jacobi theta functions [65], or alternatively as a Weierstrass sigma function [82]. Therefore, the electronic density for layer $j = 1, 2$ is $\rho_{K,j}(r) = |f_k(z)|^2 \rho_{K,j}(r)$ with $\rho_{K,j}(r) = \psi_{K,j}^*(r) \psi_{K,j}(r)$.

As the analytic form of $f_k(z)$ is known, our interest here is focused on the study of $\Psi_K(r)$ which corresponds to the ground state of H^2 at all angles.

In Fig. 3 we present the resulting $\rho_K(r)$ plots in real space at the first magic angles and for each layer component, obtained by plugging Eq. (16) into \mathcal{H} to obtain recurrence relations for the a_{mn}’s and b_{mn}’s. As expected, $\rho_K(r)$ present the rotational C_3 symmetry. Several features are worth noticing, i) the first magic angle is different from the others as the amplitude is centered at the AA stacking points, ii) it tracks the form of the $|U(r)|^2$ confining potential, iii) at other angles the density is confined at somewhat similar locations but never at AA points as in the first one.

At the first magic angle $\alpha_1 = 0.586$ one can use perturbation theory [65] to obtain the density (see the Appendix),

$$
\rho_{K,1}(r) = 1 + \frac{4\alpha^2}{\sqrt{3}} \sum_{\mu=1}^3 \sin \phi + (-1)^{\mu-1} b_{\mu} \cdot r \\
+ \frac{2\alpha^4}{3} \left[3 + 2C(r) - \sum_{\mu=1}^3 \cos (2\phi + \mu-1 b_{\mu} \cdot r) \right]
$$

(18)

where $C(r) = \cos ((b_1 + b_2) \cdot r) + \cos ((b_1 - b_3) \cdot r) + \cos ((b_2 + b_3) \cdot r)$ and the other component,

$$
\rho_{K,2}(r) = \alpha^2 (3 + 2 \sum_{\mu=1}^3 \cos (b_{\mu} \cdot r)),
$$

(19)

This solution allows to understand the coincidence between Fig. 2 and the first angle in Fig. 3 as basically, the $\rho_{K,2}(r)$ is just proportional the confinement potential. In Fig.4 the real and imaginary parts of the wave function for each layer are shown and the Wigner-Seitz cell is indicated as well. The wave functions present vortices but the most important feature to be seen in Fig.4 is the lack of vortices for the component 1 at the first magic angle, as well as for the component 2 in the AA stacking point. Such features are in agreement with the
perturbative solution for such angle. Although at this moment there are not published figures of the phases to compare with, intralayer currents present vortices [82]. However, the vortices of such currents do not coincide with the wavefunction vortices, a feature to be expected since they are made from a sum of different k points wavefunctions. Theoretically it has been suggested that the pairing of the wavefunction vortices are a special signature of the TBG from where superconductivity arises [70]. Here, what is most important for us is the very different behavior of the phases and density associated with the first magic angle when compared with others.

FIG. 4. Phases in real space where the vertical component of the vectors corresponds to $\text{Im}(\psi_{1,2})$ and the horizontal component to $\text{Re}(\psi_{1,2})$, in the Dirac point K wave function on each layer, for the firsts four magic angles $\alpha = 0.586, 2.221, 3.751, 5.276$ in the unit cell of the real space representation. The color code is the corresponding wave function amplitude. The AA (green), AB (red) and BA(yellow) points are indicated. As a reference, the Wigner–Seitz cell of the Moiré lattice is indicated. Notice how the first angle is different from the others as the localization occurs at the AA stacking points.

To further highlight such differences, in Fig. 5 we plot the amplitude of the Fourier coefficients a_{mn} and b_{mn} for each layer. Again we see that the first magic angle is remarkably different from the others, as its main Fourier components contributions are around the origin. However, for the second, third and fourth magic angle there is a hole at $k \approx 0$. This hole appears at $\alpha \approx 1$. Also, when $\alpha \to \infty$, both layers have nearly the same spectral behavior of the Fourier components.

FIG. 5. Fourier coefficients of the two spinor components for the K valley wavefunction. Right and left columns corresponds to the layer 1 coefficients (a_{mn}) and layer 2 coefficients (b_{mn}) respectively. The color represents the amplitude of the coefficient $|a_{mn}|^2$ or $|b_{mn}|^2$ in the hexagonal reciprocal lattice centered at location (k_x, k_y). Here we plot their spectral square magnitude for the first four magic angles $\alpha_1 = 0.586, \alpha_2 = 2.221, \alpha_3 = 3.751, \alpha_4 = 5.276$ and $\alpha_5 = 6.795$.

The Fourier components of $\Psi(r)$ in general form com-
plex patterns. However, as seen in Fig. 5, at the \(K, K' \)
points most of the coefficients \(a_{mn}, b_{mn} \) are negli-
gible and the Fourier spectrum consists of six localized
peaks forming hexagonal patterns for high values of \(\alpha \).
Moreover, we find that at the \(l \)-th magic angle \(\alpha_l \),
the main contributions of the coefficients \(a_{mn} \) are given by
\((m, n) = (\pm l, 0), (0, \pm l), (\pm l, \mp l) \). Notably, \(l \) has been
associated with a Landau-level index [82].

As the wave functions in reciprocal space change but
keep a well localized peak, this means that the localiza-
tion behavior is far from trivial. To test numerically such
observation, here we measure the localization by using a
inverse participation ratio [86–88] (IPR),

\[
IPR_l(\alpha) = \int_m |\psi_l(\mathbf{r})|^4 d^2r
\]

(20)

where \(l = 1, 2 \) is the index of the top and bottom com-
ponent of the spinor.

![FIG. 6. IPR as function of \(\alpha \) for the top (blue) and bottom (brown) components of the TBG wavefunction at \(k = K \). The red vertical lines indicate the firsts fourth magic angles. Notice how the first-magic angle is different from others as in fact, the IPR of both layers is nearly the same.](image)

In Fig 6 we present the IPR for each layer. Analyzing
the behavior of the IPR for the top and bottom compo-
ent. In the limit \(\alpha \to 0 \), the IPR reproduces the
expected solution \((1, 0) \). In the interval \(\alpha \in [0, \alpha_1] \)
the wavefunction \(\psi_1 \) becomes less delocalized while \(\psi_2 \)
becomes more localized. When \(\alpha \) increases, there is an
oscillation in the \(IPR_1 \) and \(IPR_2 \). Magic angles occur
at inflexion points or at minima and there is a tendency
to increase the overall localization in both layers when
\(\alpha \to \infty \).

Suprisingly, the IPR for magic angles is the same for
all states in the flat band as, except at the poles,

\[
|f_k(z)|^2 = 1. \tag{21}
\]

even though \(f_k(z) \) is a complex meromorphic function.
The reason of such relation comes from the normalization
of any state corresponding to the flat-band as we must
have,

\[
\int_m \rho_k(\mathbf{r})d^2r = \int_m |f_k(z)|^2 \rho_K(\mathbf{r})d^2r = 1 \tag{22}
\]

where \(m \) denotes integration over the mBZ. Then we ob-
serve that the wavefunction for \(k = K \) is also normalized
as well, from where it follows that in order to be consis-
tent we must have \(|f_k(z)|^2 = 1 \) notice that the poles of
\(f_k(z) \) are cancelled out by the zeros of \(\psi_K(\mathbf{r}) \). We have
verified numerically that such condition is true.

To summarize the results of this section, again there are clear signatures in the wave functions that the first
magic angle is different from others.

IV. EXPECTATION VALUES AND INTERLAYER CURRENTS

To understand the contribution of each physical driv-
ting term in the squared Hamiltonian and why the first
magic angle is different, we next calculate the expected
value of each corresponding operator in \(H^2 \). From the
eigenvalue equation \(H^2 \Psi_k(\mathbf{r}) = E_2(\mathbf{k}) \Psi_k(\mathbf{r}) \), where \(\Psi =
(\psi_{k,1}(\mathbf{r}), \psi_{k,2}(\mathbf{r})) \), and using Eq. (5),

\[
\sum_{j=1}^2 \langle (T_j) + \langle V_j) \rangle + \langle \hat{A} \rangle = E^2(\mathbf{k}) \tag{23}
\]

where the expected values for a given layer \(j = 1, 2 \) are,

\[
\langle T_j \rangle \equiv -\int_m \psi^\dagger_{k,j}(\mathbf{r}) \nabla^2 \psi_{k,j}(\mathbf{r}) d^2r \tag{24}
\]

\[
\langle V_j \rangle \equiv \alpha^2 \int_m |U(\mp \mathbf{r})|^2 \rho_{k,j}(\mathbf{r}) d^2r \tag{25}
\]

and \(\langle \hat{A} \rangle = \langle A^\dagger \rangle + \langle A \rangle \), with,

\[
\langle A^\dagger \rangle \equiv \alpha \int_m \psi^\dagger_{k,1}(\mathbf{r}) A^\dagger(\mathbf{r}) \psi_{k,2}(\mathbf{r}) d^2r \tag{26}
\]

and

\[
\langle A \rangle \equiv \alpha \int_m \psi^\dagger_{k,2}(\mathbf{r}) A(\mathbf{r}) \psi_{k,1}(\mathbf{r}) d^2r \tag{27}
\]

Notice that \(\langle A^\dagger \rangle \) and \(\langle A \rangle \) are not exactly properly de-
defined expected values as involve the bracket of two differ-
tent wave function components and thus they can be or
not complex values. However, the total contribution ex-
pected value of the whole off-diagonal terms is real. The
total kinetic energy is \(\langle T \rangle = \langle T_1 \rangle + \langle T_2 \rangle \) while the total
confinement energy is,

\[
\langle V \rangle = \langle V_1 \rangle + \langle V_2 \rangle \leq \frac{8\pi^2}{\sqrt{3}} \alpha^2. \tag{28}
\]
where the last bound is obtained using the wave function normalization.

To understand how $\langle \hat{A} \rangle$ depends on the two contributions coming from the off-diagonal terms in H^2, we will define the space-dependent expected value of the gradient terms in Eq. (5) as,

$$\mathcal{A}_g(r) = \begin{pmatrix} 0 & \alpha A^g_1(r) \\ \alpha A^g_1(r) & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

(29)

which come from the non-diagonal, gradient part, of H^2,

$$\hat{A}_g = \begin{pmatrix} 0 & \alpha A^g_1(r) \\ \alpha A^g_1(r) & 0 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

(30)

Therefore,

$$\mathcal{A}_g(r) = -2i\alpha \sum_{\mu} \hat{q}_{\mu}^\dagger \cdot (e^{i\mathbf{q}_{\mu} \cdot \mathbf{r}} \psi_1^* \nabla \psi_2^* + e^{-i\mathbf{q}_{\mu} \cdot \mathbf{r}} \psi_2^* \nabla \psi_1)$$

(31)

By adding its complex conjugate we obtain that,

$$\mathcal{A}_g(r) + \mathcal{A}^*_g(r) = 2a \sum_{\mu} \hat{q}_{\mu}^\dagger \cdot (e^{-i\mathbf{q}_{\mu} \cdot \mathbf{r}} \mathcal{J}_{12} + e^{i\mathbf{q}_{\mu} \cdot \mathbf{r}} \mathcal{J}_{21})$$

(32)

where we defined the interlayer currents as,

$$\mathcal{J}_{12} = \frac{ie\hbar}{2m} (\psi_1 \nabla \psi_2^* - \psi_2^* \nabla \psi_1)$$

(33)

and

$$\mathcal{J}_{21} = \frac{ie\hbar}{2m} (\psi_2 \nabla \psi_1^* - \psi_1^* \nabla \psi_2)$$

(34)

Such definitions are unusual as involve two different wavefunctions from each layer and only one sublattice. Thus, this requires some comments and thoughts. In recent papers, J. Wang et al. [82, 89, 90] proposed a somewhat analogous definition for a second-neighbor intralayer current, i.e., these authors defined,

$$\mathcal{J}_{ss} = \frac{ie\hbar}{2m} (\psi_s \nabla \psi_s^* - \psi_s^* \nabla \psi_s)$$

(35)

where $s = 1, 2$. Such definition is required as the usual current is obtained from the Hamiltonian which turns out to be zero in the ground state. Therefore, they defined a current in one of the bipartite lattice as can be seen by performing a tight-binding calculation of the intralayer orbital current. Here we do not need to appeal to such recourse as already the square Hamiltonian initially renormalized the hexagonal lattice in a triangular lattice and therefore the second neighborhood interaction is implicit in the renormalization procedure. In Ref. [82] it was argued that if \mathcal{J}_{ss} is discretized in a tight-binding Hamiltonian, we have that $\mathcal{J}_{ss} = i(a_j^\dagger a_{s,j} - a_{s,j}^\dagger a_j)$ where a_j^\dagger and a_j creates and annihilates respectively electrons in site j. In a similar way, if in Eq. (31) we discretize the spinor components gradient we have that $i(\psi_1^* \nabla \psi_2^* - \psi_2^* \nabla \psi_1) \rightarrow i(a_j^\dagger a_{s,j} - a_{s,j}^\dagger a_j)$ and the other current component as $i(\psi_2^* \nabla \psi_1^* - \psi_1^* \nabla \psi_2) \rightarrow i(a_{s,j}^\dagger a_{s,j} - a_j^\dagger a_j)$. Therefore, this leads to the interpretation of an interlayer current.

Let us now integrate over the primitive cell in order to get the expected value of the current. By noting that $\langle \hat{A}_g \rangle = \langle \hat{A} \rangle^g$ it follows that,

$$\langle \hat{A}_g \rangle = 2a \sum_{\mu} \mathcal{J}_{12}(\mathbf{q}_\mu) + \mathcal{J}_{21}(\mathbf{q}_\mu)$$

(36)

where $\mathcal{J}_{12}(\mathbf{q}_\mu) = \int e^{-i\mathbf{q}_{\mu} \cdot \mathbf{r}} \mathcal{J}_{12}(\mathbf{r}) d^2 r$ and $\mathcal{J}_{21}(\mathbf{q}_\mu) = \int e^{i\mathbf{q}_{\mu} \cdot \mathbf{r}} \mathcal{J}_{21}(\mathbf{r}) d^2 r$. Therefore, $\langle \hat{A}_g \rangle$ is just the sum of the Fourier components of the current at the points $\mathbf{q}_1, \mathbf{q}_2$ and \mathbf{q}_3. In a similar way, the space-dependent expected value of the second ingredient of $\langle \hat{A}(\mathbf{r}) \rangle$ is,

$$\langle \hat{A}_f \rangle = i\alpha \sum_{\mu} \psi_1^* \psi_2 e^{i\mathbf{q}_{\mu} \cdot \mathbf{r}} - \psi_2^* \psi_1 e^{-i\mathbf{q}_{\mu} \cdot \mathbf{r}}$$

(37)

where $\mathcal{A}_f(r) = \mathcal{A}^*_f(r)$, and we define the operator,

$$\hat{A}_f = \begin{pmatrix} 0 & \alpha A^f_1(r) \\ \alpha A^f_1(r) & 0 \end{pmatrix}$$

(38)

V. EXPECTATION VALUES AND CURRENTS AT DIFFERENT k POINTS

In this section we study all contributions defined in the previous section as a function of the twist at representative points in k space. One is the Γ point which reveals how magic angles arise and the other is the K point, which is the ground state for all α. Fig. 7 shows such behavior as obtained from the numerical simulation, i.e., the top of the band $E^2(\Gamma)$ goes to zero at the magic angles while $E^2(K)$ is the ground state. The $k = \zeta$ point, chosen at random in the mBZ, lies inside such interval.

A. Revealing the magic angles: Γ point expected values

From Fig. 7 we see that $E^2(\Gamma)$ can be used to reveal the magic angles as always gives the highest energy of the first H^2 band. For a flat band to exist, the energy $E^2(\Gamma)$ must be zero.

For the Γ point it is very illustrative to use perturbation theory in the limit $\alpha \rightarrow 0$. As shown in the Appendix, up to linear order in α we have that,

$$\langle T \rangle = 1, \quad \langle V \rangle = 0$$

(39)

$$\langle \hat{A}_g \rangle = -3\alpha, \quad \langle \hat{A}_f \rangle = -\alpha$$

(40)
FIG. 7. $E^2(k)$ obtained from the squared Hamiltonian Eq. (5) at the Dirac K (black), Γ (red) and a generic ζ (purple) point where the red vertical lines indicate the first four magic angles.

It follows that,

$$\langle T + V \rangle + \langle \hat{A}_f \rangle + \langle \hat{A}_g \rangle = 1 - 4\alpha \approx E^2(\Gamma)$$

(41)

In Fig. 8 we present a comparison between these expected values and the numerical results showing a good agreement for $\langle T \rangle$, $\langle \hat{A}_f \rangle$, $\langle \hat{A}_g \rangle$ as $\alpha \to 0$. For $\langle V \rangle$, the agreement is not so good as this requires higher order perturbation terms. The previous approximation allows to make a crude estimate of the first magic angle as,

$$E(\Gamma) \approx \pm \sqrt{1 - 4\alpha}$$

(42)

Therefore, $\alpha_1 \approx 1/4$, a value below $\alpha_1 = 0.586$. Higher order terms in the expansion are needed to increase the accuracy, but yet the main principle behind a magic angle is already present in this simple approach. Further confirmation is provided in Fig. 9 where we show numerically how magic angles arise whenever the curve $\langle T + V \rangle$ intersects $|\langle \hat{A} \rangle|$. Then we conclude that in going from $\alpha = 0$ to α_1, the confinement potential starts to contribute and reaches the kinetic energy at the magic angle. The off-diagonal operators always diminish the energy. As expected, the first magic angle is thus produced when the sum of the kinetic plus confinement energies are equal in magnitude to the expected values of the off-diagonal operators. The particularity here is that for α_1 we have $\langle A_g \rangle / \langle A_f \rangle \approx 3$.

The numerical results in Fig. 9 show how the same principle applies for other magic angles as $(T + V) - |\langle \hat{A} \rangle|$ goes to zero. However, as seen in Fig. 10, for $\alpha \gg \alpha_1$ the current term $\langle \hat{A}_g \rangle$ dominates over $\langle \hat{A}_f \rangle$, and in fact, $\langle \hat{A}_f \rangle$ can be neglected as we will discuss in the following subsection. Notice also the jumps associated to each α_n, possibly related with Landau levels. The other particularity is that $\langle T \rangle \approx \langle V \rangle$ as $\alpha \to \infty$, thus in Fig. 9 one can not distinguish one from the other in such scale.

B. Ground state: K point

The point $k = K$ is a ground state for any α. Let us do some general considerations about it. As $\langle T_j \rangle \geq 0$ and $\langle V_j \rangle > 0$, it follows that for $E^2 = 0$, we have that $\langle A^\dagger \rangle \leq 0$ and $\langle A \rangle \leq 0$. Fig. 11 numerically confirms these results. Other interesting features are seen. The first is already clear from Eq. (23); for the ground state $E^2 = 0$ and due to symmetry we obtain,

$$\langle T_1 \rangle + \langle V_1 \rangle = -\langle A^\dagger \rangle$$

(43)

and,

$$\langle T_2 \rangle + \langle V_2 \rangle = -\langle A \rangle$$

(44)

The derivation that follows is made by considering a symmetrized basis [74]. In this case, there is no way to distinguish the up and low layers except for a relative phase, it
follows that we must have \(\langle T_1 \rangle = \langle T_2 \rangle \) and \(\langle V_1 \rangle = \langle V_2 \rangle \). As the general flat-band solutions are given by [82],

\[
\Psi(\mathbf{r}) = \left(\psi_1(\mathbf{r}), \psi_2(\mathbf{r}) \right) = \left(\frac{g(\mathbf{r})}{i g(-\mathbf{r})} \right) \times \Phi_k(\mathbf{r}) \quad (45)
\]

where \(g(\mathbf{r}) \) is a Bloch wave function and \(\Phi_k(\mathbf{r}) \) is the quantum Hall wavefunction of the lowest Landau level, we replace such wave function into the expressions for \(\langle A \rangle \) and \(\langle A^\dagger \rangle \) to show that,

\[
\langle A^\dagger \rangle = \langle A \rangle. \quad (46)
\]

This is a reminiscent condition of the intravalley symmetry of Eq. (1). Therefore, for the total kinetic energy and total confinement energy we have that,

\[
\langle \hat{A} \rangle = 2 \langle A^\dagger \rangle = 2 \langle A \rangle = -\langle T \rangle - \langle V \rangle \quad (47)
\]

Using the bound for the confinement energy, we find that \(\langle \hat{A} \rangle \) is bounded by,

\[
|\langle \hat{A} \rangle| \leq \langle T \rangle + \frac{8\pi^2}{\sqrt{3}} \alpha^2 \quad (48)
\]

Fig. 11 further confirms Eq. (47) and Eq. (48). Also, in Fig. 12 we compare the numerical results with the perturbative approach up to second order in \(\alpha \) as detailed in the Appendix. The agreement is excellent and allows to: i) further confirm analytically Eq. (47) in the limit \(\alpha \to 0 \) and, ii) test the validity of the numerical approach.

From the previous results is clear that \(\langle A \rangle \) will always diminish with \(\alpha \) to compensate the increased value of the confinement and kinetic terms. However, such interlayer interaction depends on two terms as in the \(\Gamma \) point. This requires a further analysis.
the AA/AB stacking points there is a vortex behavior as those seen in Fig. 4.

Using the spinor symmetry (45) and integrating over the primitive cell, it follows that,

\[
\langle \hat{A}_f \rangle = -2\alpha \text{Im} \left\{ \sum_\mu \int \psi_2^* \psi_1 e^{iq_\mu \cdot r} d^2 r \right\} = -\alpha \sum_\mu \text{Im} \left[\tilde{\psi}_2(q_\mu) \ast \tilde{\psi}_1(q_\mu) \right] \tag{49}
\]

where \(\ast\) means a convolution, \(\tilde{\psi}_s\) is the Fourier transform of \(\psi_s\).

In Fig. 14, we show the evolution of Eq. (36) and (49). Clearly, for the first magic angle, \(\langle \hat{A}_g \rangle\) and \(\langle \hat{A}_f \rangle\) have similar magnitudes but become radically separated after the first magic angle, i.e., \(\langle \hat{A}_g \rangle \gg \langle \hat{A}_f \rangle\). Therefore, the terms \(\langle \hat{A}_f \rangle\) is only relevant for \(\alpha < 1\) making the first magic angle different from others as in the \(\Gamma\) point. The reason for such change is easy to see as \(\langle \hat{A}_f \rangle\) is bounded by the norm of the wavefunctions and thus,

\[
|\langle \hat{A}_f \rangle| \leq 6\alpha \tag{50}
\]

a fact further corroborated by using Eq. (45) to find its explicit form,

\[
\langle \hat{A}_f \rangle = -\alpha \sum_\mu \int g^*(r)g(-r)|\Psi_k(r)|^2 \cos(q_\mu \cdot r) d^2 r \tag{51}
\]

Meanwhile, \(\langle \hat{A}_g \rangle\) is proportional to the gradient \(\nabla \psi_j\) which is not bounded by \(\rho(r)\).

Further confirmation is obtained by looking at the perturbative solution (see Appendix). In particular \((T) = \langle V \rangle \approx 3\alpha^2(1 - \alpha^2)\) while \(\langle \hat{A}_g \rangle = -6\alpha^4(1 + 2\alpha^2)\) and \(\langle \hat{A}_f \rangle = -6\alpha^2(1 + 2\alpha^2)\). Then \(\langle \hat{A}_g \rangle / \langle \hat{A}_f \rangle \approx \alpha^2\). This ratio goes from zero at \(\alpha = 0\) to 1 at \(\alpha = 1\).

C. Comparison between different \(k\) points

The previous analysis was made for \(k = K\). In Fig. 15 and Fig. 16 we extend the analysis for other flat-band states at magic angles. Fig. 15 presents \(\langle \hat{A}_g \rangle\) and \(\langle \hat{A}_f \rangle\) in reciprocal space. For the first magic angle \(\alpha = 0.586\), the term \(\langle \hat{A}_g \rangle\) is maximal where \(\langle \hat{A}_f \rangle\) is minimal, both have similar magnitude range. On the other hand, for higher magic angles, the reciprocal space structure of \(\langle \hat{A}_g \rangle\) and \(\langle \hat{A}_f \rangle\) preserve the same behavior, however, \(\langle \hat{A}_g \rangle\) has a substantially increased magnitude than \(\langle \hat{A}_f \rangle\). If \(\alpha \rightarrow \infty\), \(\langle \hat{A}_g \rangle \gg \langle \hat{A}_f \rangle\). As a consequence, the analysis made for \(k = K\) can be safely extended for all flat-band states.
Therefore, $\langle \hat{A}_f \rangle$ is only relevant for $\alpha < 1$ making the first magic angle different from others. As said before, $\langle \hat{A}_f \rangle$ is limited by $\rho(r)$ while $\langle \hat{A}_g \rangle$ is proportional to the wave function gradient. Moreover, as the IPR baseline increases as seen in Fig. 6, gradients grow. However, in principle the overlap between the gradient in one layer and the other layer wave function can diminish. As $\langle \hat{A}_g \rangle$ is proportional to α, to test the gradient effects, in Fig. 16 we plot $\langle \hat{A}_g \rangle/\alpha$. This indicates that currents j_{ss} due to gradients are the responsible of the effect. This behavior is also reflected in Fig. 5, as in the crossover $\alpha \approx 1$ the Fourier coefficients develop a "hole" around $k = 0$. Notice in Fig. 16 that the magic angles fall inside "basins". Such effect is specially prominent for non high symmetry points as the ζ point, a fact that will be discussed in a forth coming publication.

![Graph](image)

FIG. 16. Scaled interlayer current mean values $\langle \hat{A}_g \rangle/\alpha$ versus α for different representative points in k space: Γ, K and ζ. This last point is chosen at the rim of the black spots of Fig. 15. Notice that $\langle \hat{A}_g \rangle$ is made from two elements: an overall decreasing behavior and at the same time, basins separated by local maxima. Each magic angle is associated with a basin.

Summarizing, the term $\langle \hat{A}_g \rangle$ is an energy associated with interlayer current leakage between bipartite sublattices, i.e., at second neighbors. Meanwhile, $\langle \hat{A}_f \rangle$ is a weighted average energy associated with overlaps between layers. The interlayer current magnitude grows as the rotation angle goes to zero, a fact due to the ever increasing spatial gradients of the electron wave function.

VI. CONCLUSIONS

In this work we presented a theoretical and numerical analysis of the chiral TBG Hamiltonian using a renormalized Hamiltonian that removes the particle-hole symmetry allowing to identify the main physical elements of the problem and leading to a simple 2×2 matrix operator. Then we studied the electron localization in the TBG. We found numerically that the first magic angle is different from others as the ground state wave function basically tracks the shape of the confinement potential. We calculated the localization using the inverse participation ratio where magic angles are revealed. Interestingly, we proved that all states in the flat band for magic angles have the same participation ratio. We also evaluated the contributions from the kinetic energy, confinement energy and inter-layer interaction for the Γ and K points. These contributions were found using perturbation theory and numerically. A good agreement between both was found. Our analysis shows that the Γ point reveals how magic angle arises.

In particular we found that the first magic angle in the Γ point occurs when: 1) the confinement and kinetic energies are the same, 2) the off-diagonal operator is the sum of kinetic and confinement energy, 3) the intra-layer current is bigger that the off-diagonal interaction energy term although not negligible. At other magic angles, the balance is dictated only by the kinetic, confinement and interlayer current. Therefore, interlayer currents are the main responsible for bands to shrink.

In other works, the magic angle effects have been associated with the effects of a space dependent magnetic field [82, 84]. Our results are in agreement with this idea as the interlayer current can also be interpreted as a Lorentz force too. However, H^2 allowed us to identify the source of this field: the current between the graphene’s underlying triangular sublattices.

It is tempting to try to identify our results with some geometrical feature of the twist angle. However, α contains both the geometry and the scale of the energy interaction. Here we found that both are needed in order to make the confinement reach the kinetic energy and produce a strong interlayer current. For very big angles, confinement is just too weak. This is confirmed by the IPR which at the first magic angle has the same value on each layer. We can also argue that the remarkable $3/2$ rule in the recurrence of α happens in the limit when $\langle \hat{A}_g \rangle \gg \langle \hat{A}_f \rangle$, as for higher magic angles the nodal structure of the lowest Landau level does not depend significantly on the Moiré unit cell flux.

VII. ACKNOWLEDGMENT

We thank UNAM-DGAPA project IN102620 and CONACyT project 1564464. Thanks CONACyT scholarship for providing critical support during the COVID emergency.

VIII. APPENDIX: PERTURBATIVE ANALYSIS OF EXPECTED VALUES
A. \(H^2 \) at the \(\Gamma \) point

Consider the limit \(\alpha \to 0 \) for the \(\Gamma \) point. The corresponding wave function was found in Ref. [65],

\[
\psi_{\Gamma,1}(r) = U(-r) + \frac{\alpha}{3} U(2r) + \frac{\alpha^2}{18} \left((2 - e^{i\phi}) U(-\sqrt{7}R, r) + (2 - e^{-i\phi}) U(-\sqrt{7}R, -r) - 4U(2r) \right) + \ldots
\]

and \(\psi_{\Gamma,2}(r) = i\mu_\alpha \psi_{\Gamma,1}(-r) \), where \(R \) is a counter-clockwise rotation on angle \(\gamma \) with \(\tan(\gamma) = \sqrt{3}/5 \) and \(\mu_\alpha = \pm 1 \), the minus sign is used for odd magic angles. The normalization factor is,

\[
N = \sum_{j=1}^{2} \int \psi_{\Gamma,j}^*(r) \psi_{\Gamma,j}(r) d^2r
\]

In this case, it is instructive to analyze first how \(H^2 \) operates on the wave function. Consider for example one of the differential equations resulting from Eq. (5),

\[
(-\nabla^2 + \alpha^2 U(-r))^2 \psi_{\Gamma,1}(r) + \alpha A^1(r) \psi_{\Gamma,2}(r) = E^2 \psi_{\Gamma,1}(r) \tag{54}
\]

where the square of energy \(E^2 \) is also expanded in powers of \(\alpha \), i.e., \(E^2 = E_0^2 + \alpha E_1^2 + \alpha^2 E_2^2 + \ldots \). Next we use the relationship between wave functions on different layers,

\[
(-\nabla^2 + \alpha^2 U(-r))^2 \psi_{\Gamma,1}(r) + i\mu_\alpha A^1(r) \psi_{\Gamma,1}(-r) = E^2 \psi_{\Gamma,1}(r)
\]

If we collect terms up to order \(\alpha \) using Eq. (52), two equations are obtained. The zero order equation is,

\[
-\nabla^2 U(-r) = E_0^2 U(-r)
\]

and at order \(\alpha \),

\[
-\frac{1}{3} \nabla^2 U(2r) + i\mu_\alpha A^1(r) U(2r) = E_0^2 \frac{1}{3} U(2r) + E_1^2 U(-r)
\]

From Eq. (56) we recover \(E_0 \) as,

\[
-\nabla^2 U(-r) = -\nabla^2 \sum_{l=1}^{3} e^{i\phi} q_l e^{i(l-1)\phi} = \sum_{l=1}^{3} |q_l|^2 e^{i\phi} q_l e^{i(l-1)\phi}
\]

and using \(|q_l|^2 = 1 \) we prove that Eq. (56) is indeed true whenever \(E_0 = 1 \), in agreement with Ref. [65].

Now consider Eq. (57). As we did for the order zero component, it easy to show that,

\[
-\nabla^2 U(2r) = 4U(2r)
\]

Next we compute \(A^1(r) U(r) \) using the two operators \(A_g^1(r) \) and \(\alpha A_f^1(r) \). Using the definition for \(A_f^1(r) \) and \(U(r) \) we have,

\[
A_f^1(r) U(r) = -i \sum_{l,s} e^{-i(q_l+q_s)\phi} e^{i(s-1)\phi}
\]

and the sum term is then divided in terms with \(l = s \) and \(l \neq s \),

\[
\sum_{l,s\neq l} e^{-i(q_l+q_s)\phi} e^{i(s-1)\phi} + \sum_{l} e^{-i2q_l r e^{i(l-1)\phi}}
\]

Using that \(q_1 + q_2 + q_3 = 0 \) and defining a new index \(n = 6 - (l + s) \),

\[
\sum_{l,s\neq l} e^{-i(q_l+q_s)\phi} e^{i(s-1)\phi} = -\sum_{n} e^{i(q_l+q_s)\phi} e^{i(n-1)\phi}
\]

From the definition of \(U(r) \) we finally obtain,

\[
A_g^1(r) U(r) = -i(U(2r) - U(-r)).
\]

Next we use that \(q_1^2 \cdot q_s = (-1)^l \zeta l(s) \sqrt{3}/2 \) where \(\zeta l(s) \) is the sign of the permutation of the indices \(l \) and \(s \), +1 for even and −1 for odd. Each pair permutation is obtained from the usual cyclic order \(\{1, 2, 3\} \), so for example, \(q_1^2 \cdot q_2 = \sqrt{3}/2 \) while \(q_2^2 \cdot q_1 = -\sqrt{3}/2 \). Again we use \(q_1 + q_2 + q_3 = 0 \),

\[
A_g^1(r) U(r) = \sqrt{3} \sum_{l,s\neq l} e^{i(q_l+q_s)\phi} e^{i(s-1)\phi} (2q_l^2 \cdot q_s)
\]

where \(n = 6 - (l + s) \).

Finally,

\[
A_g^1(r) U(r) = 3iU(-r)
\]

Then we collect all the previous results inside Eq. (57) using \(\mu_\alpha = -1 \) to confirm that the wave vector is an eigenvector of \(H^2 \),

\[
\frac{1}{3} U(2r) - U(2r) - U(-r) - 3U(-r) = E_1^2 U(-r) + \frac{1}{3} U(2r)
\]

i.e., comparing terms, we get \(E_1^2 = 4 \).

The previous analysis confirms that the solutions of \(H \) are also eigenfunctions of \(H^2 \). Now we find the expected values of each operator and for the corresponding differential equation. We start with the kinetic energy in the first layer,

\[
\langle T_1 \rangle = -\frac{1}{N_1} \int d^2r U^* U \cdot (U^* + \frac{\alpha}{3} U^* (2r)) \nabla^2 (U - \frac{\alpha}{3} U (2r))
\]

Using that Eq. (56), (59) and that \(U^* (2r) \) and \(U(-r) \) are ortogonal due to symmetry, the contribution of order \(\alpha \) is zero, from where \(\langle T_1 \rangle = 1/2 \). Now taking into
account the contribution from the equation that results from the second row of Eq. (5), we have \(\langle T_1 \rangle = \langle T_2 \rangle \). Then, up to order \(\alpha \),

\[
\langle T \rangle = \langle T_1 \rangle + \langle T_2 \rangle = 1 \quad (70)
\]

In a similar way, as \(U^* (2r) \) and \(U(-r) \) are ortgogonal,

\[
\langle V \rangle = \langle V_1 \rangle + \langle V_2 \rangle = 0 \quad (71)
\]

Finally, the other operators are,

\[
\langle \hat{A}_j^\dagger \rangle = -\alpha \quad (72)
\]

while,

\[
\langle \hat{A}_j^\dagger \rangle = -3\alpha \quad (73)
\]

It follows that,

\[
\langle T \rangle + \langle V \rangle + \langle \hat{A}_j^\dagger \rangle + \langle \hat{A}_j^\dagger \rangle = 1 - 4\alpha \approx E^2 \quad (74)
\]

In Fig. 8 we compare the previous results with the numerical simulation obtaining a good agreement as \(\alpha \to 0 \).

B. \(H^2 \) at the \(K \) point

Here we consider a perturbative solution of Eq. (75) for \(\alpha \to 0 \) in the \(K \) point as was found in Ref. [65],

\[
\Psi_K(r) = \begin{pmatrix} \psi_{K,1}(r) \\ \psi_{K,2}(r) \end{pmatrix} = \begin{pmatrix} 1 + \alpha^2 u_2(r) + \alpha^4 u_4(r) + \cdots \\ \alpha u_1(r) + \alpha^3 u_3(r) + \cdots \end{pmatrix} \quad (75)
\]

Considering only terms up to order \(\alpha^2 \) we get:

\[
u_1(r) = -ie^{iq_1 \cdot r} + e^{iq_2 \cdot r} + e^{iq_3 \cdot r}
\]

\[
u_2(r) = -ie^{-iq_1 \cdot r} + e^{iq_2 \cdot r} + e^{iq_3 \cdot r} + \text{c.c.} \quad (76)
\]

These functions must be normalized before calculating the expected values. The normalization factor is,

\[
N = \frac{8\pi^2}{3\sqrt{3}} \left(1 + 3\alpha^2 + 2\alpha^4 + \frac{6}{7} \alpha^6 + \frac{107}{98} \alpha^8 + \ldots \right) \quad (77)
\]

With these expressions for \(\psi_1 \) and \(\psi_2 \) we obtain

\[
\int \psi_2^*(r) e^{iq_\mu \cdot r} \psi_1(r) d^2r = \frac{8i\pi^2(\alpha + \alpha^3)}{3\sqrt{3}N}, \quad (78)
\]

and

\[
\int \psi_1^*(r) e^{-iq_\mu \cdot r} \psi_2(r) d^2r = \frac{-8i\pi^2(\alpha + \alpha^3)}{3\sqrt{3}N} \quad (79)
\]

for \(\mu = 1, 2, 3 \). Therefore, taking into account an extra \(\alpha \) and \(i \) factor from the operator definition, we have,

\[
\langle \hat{A}_j \rangle \approx \frac{-6(\alpha^2 + \alpha^4)}{1 + 3\alpha^2 + 2\alpha^4 + \frac{6}{7} \alpha^6 + \frac{107}{98} \alpha^8} \quad (80)
\]

This result is in agreement with the predicted bound found in Eq. (50). Consider in the same limit the other operator. We have that,

\[
-2i \int \psi_2^*(r) \psi_1(r) \frac{\partial}{\partial r} \cdot \nabla \psi_1(r) d^2r = \frac{-8\pi^2 \alpha^3}{3\sqrt{3}N} \quad (81)
\]

and the terms containing \(e^{iq_\mu \cdot r} \psi_1^*(r) \psi_2 \) give the same result. This confirms Eq. (46), i.e., \(\langle A \rangle = \langle A^\dagger \rangle \). By collecting terms we finally obtain that,

\[
\langle \hat{A}_j \rangle \approx \frac{-6\alpha^4}{(1 + 3\alpha^2 + 2\alpha^4 + \frac{6}{7} \alpha^6 + \frac{107}{98} \alpha^8)} \quad (82)
\]

Next we find the expected values of the kinetic and confining potential operators to confirm the theoretical and numerical analysis. Using that,

\[
\int \psi_1^*(r) \nabla^2 \psi_1(r) d^2r = -\frac{16\pi^2\alpha^4}{\sqrt{3}N} \quad (83)
\]

\[
\int \psi_2^*(r) \nabla^2 \psi_2(r) d^2r = -\frac{8\pi^2\alpha^2}{\sqrt{3}N} \quad (84)
\]

and,

\[
\int \psi_1^*(r) U(-r) \psi_1(r) d^2r = \frac{8\pi^2(3 + 2\alpha^2)}{3\sqrt{3}N} \quad (85)
\]

\[
\int \psi_2^*(r) U(r) \psi_2(r) d^2r = \frac{16\pi^2\alpha^2}{\sqrt{3}N} \quad (86)
\]

It follows that,

\[
\langle V \rangle \approx \frac{3\alpha^2 + 6\alpha^4 + 2\alpha^6}{1 + 3\alpha^2 + 2\alpha^4 + \frac{6}{7} \alpha^6 + \frac{107}{98} \alpha^8} \quad (87)
\]

and for the kinetic energy term,

\[
\langle T \rangle \approx \frac{3(\alpha^2 + 2\alpha^4)}{1 + 3\alpha^2 + 2\alpha^4 + \frac{6}{7} \alpha^6 + \frac{107}{98} \alpha^8} \quad (88)
\]

By expanding the denominators we arrive to the final perturbative expectation values,

\[
\langle T \rangle \approx 3\alpha^2 - 3\alpha^4 \quad (89)
\]

\[
\langle V \rangle \approx 3\alpha^2 - 3\alpha^4 \quad (90)
\]

and,

\[
\langle \hat{A}_j \rangle \approx -6\alpha^2 + 12\alpha^4 \quad (91)
\]

\[
\langle \hat{A}_j \rangle \approx -6\alpha^4 + 18\alpha^6 \quad (92)
\]

in agreement with \(\langle V \rangle = \langle T \rangle > 0 \). Also, \(\langle V \rangle + \langle T \rangle + \langle A \rangle \approx 0 \) up to order \(\alpha^4 \). In Fig. 12 we plot Eqs. (90), (91), (92) and compare them with the numerical results obtained from finding numerically the eigenstates of the Hamiltonian.
