Homomorphisms of signed planar graphs

Pascal Ochem, Alexandre Pinlou

LIRMM, Université Montpellier 2, CNRS, France.

Sagnik Sen

LaBRI, Université de Bordeaux, CNRS, France.

Abstract

Signed graphs are studied since the middle of the last century. Recently, the notion of homomorphism of signed graphs has been introduced since this notion captures a number of well known conjectures which can be reformulated using the definitions of signed homomorphism.

In this paper, we introduce and study the properties of some target graphs for signed homomorphism. Using these properties, we obtain upper bounds on the signed chromatic numbers of graphs with bounded acyclic chromatic number and of signed planar graphs with given girth.

Key words: Signed graphs, Homomorphisms, Discharging method.

1 Introduction

The class of signed graphs is a natural graph class where the edges are either positive or negative. They were first introduced to handle problems in social psychology: positive edges link friends whereas negative ones link enemies.

In the area of graph theory, they have been used as a way of extending classical results in graph coloring such as Hadwiger’s conjecture. Guenin [3] introduced...
the notion of signed homomorphism for its relation with a well known conjecture of Seymour. In 2012, this notion has been further developed by Naserasr et al. [7] as this theory captures a number of well known conjectures which can be reformulated using the definitions of signed homomorphism. In this paper, we study signed homomorphisms for themselves.

A signified graph \((G, \Sigma)\) is a graph \(G\) with an assignment of positive (+1) and negative (−1) signs to its edges where \(\Sigma\) is the set of negative edges. In all the figures, negative edges are drawn with dashed edges. Figure 1(a) gives an example of signified graph. Resigning a vertex \(v\) of a signified graph \((G, \Sigma)\) corresponds to give the opposite sign to the edges incident to \(v\). Given a signified graph \((G, \Sigma)\) and a set of vertices \(X \subseteq V(G)\), the graph obtained from \((G, \Sigma)\) by resigning every vertex of \(X\) is denoted by \((G, \Sigma^{(X)})\).

Two signified graphs \((G, \Sigma_1)\) and \((G, \Sigma_2)\) are said to be equivalent if we can obtain \((G, \Sigma_1)\) from \((G, \Sigma_2)\) by resigning some vertices of \((G, \Sigma_2)\), i.e., \(\Sigma_2 = \Sigma_1^{(X)}\) for some \(X \subseteq V(G)\); in such a case, we use the notation \((G, \Sigma_1) \sim (G, \Sigma_2)\) (see Figure 1 for an example of equivalent signified graphs). Each equivalence class defined by the resigning process is called a signed graph and can be denoted by any member of its class. We might simply use \((G)\) for a signified/signed graph when its set of negative edges is clear from the context, while \(G\) refers to its underlying unsigned graph.

An \(m\)-edge-colored graph \(G\) is a graph where the vertices are linked by edges \(E(G)\) of \(m\) types. In other words, there is a partition \(E(G) = E_1(G) \cup \ldots \cup E_m(G)\) of the edges of \(G\), where \(E_j(G)\) contains all edges of type \(j\). Since signified graphs are defined with two types of edges (i.e. positive and negative edges), they correspond to 2-edge-colored graphs. In this paper, known and new results on 2-edge-colored graphs are stated in terms of signified graphs.

Given two graphs \((G, \Sigma)\) and \((H, \Lambda)\), \(\varphi\) is a signed homomorphism of \((G, \Sigma)\) to \((H, \Lambda)\) if \(\varphi : V(G) \rightarrow V(H)\) is a mapping such that every edge of \((G, \Sigma)\) is mapped to an edge of the same sign of \((H, \Lambda)\). Given two graphs \((G, \Sigma_1)\) and \((H, \Lambda_1)\), we say that there is a signed homomorphism \(\varphi\) of \((G, \Sigma_1)\) to \((H, \Lambda_1)\) if there exists \((G, \Sigma_2) \sim (G, \Sigma_1)\) and \((H, \Lambda_2) \sim (H, \Lambda_1)\) such that \(\varphi\) is a signed homomorphism of \((G, \Sigma_2)\) to \((H, \Lambda_2)\).

Lemma 1 If \((G, \Sigma)\) admits a signed homomorphism to \((H, \Lambda)\), then there exists \((G, \Sigma') \sim (G, \Sigma)\) such that \((G, \Sigma')\) admits a signed homomorphism to \((H, \Lambda)\).
Proof. Since \((G, \Sigma)\) admits a signed homomorphism to \((H, \Lambda)\), this implies that there exist \((G, \Sigma') \sim (H, \Sigma)\) and \((H, \Lambda') \sim (H, \Lambda)\) and a signed homomorphism \(\varphi\) of \((G, \Sigma')\) to \((H, \Lambda')\). Let \(X \subseteq V(H)\) be the subset of vertices of \(H\) such that \((H, \Lambda) = (H, N^{V(X)})\). Now let \(Y = \{v \in V(G) \mid \varphi(v) \in X\}\). Let \((G, \Sigma') = (G, \Sigma''(Y))\); it is clear that \(\varphi\) is a signed homomorphism of \((G, \Sigma')\) to \((H, \Lambda)\). □

As a consequence of the above lemma, when dealing with signed homomorphisms, we will not need to resign the target graph.

The \textit{signified chromatic number} \(\chi_2(G, \Sigma)\) of the graph \((G, \Sigma)\) is the minimum order (number of vertices) of a graph \((H, \Lambda)\) such that \((G, \Sigma)\) admits a signed homomorphism to \((H, \Lambda)\). Similarly, the \textit{signed chromatic number} \(\chi_s(G, \Sigma)\) of the graph \((G, \Sigma)\) is the minimum order of a graph \((H, \Lambda)\) such that \((G, \Sigma)\) admits a signed homomorphism to \((H, \Lambda)\); equivalently, \(\chi_s(G, \Sigma) = \min\{\chi_2(G, \Sigma') \mid (G, \Sigma') \sim (G, \Sigma)\}\).

The \textit{signified chromatic number} \(\chi_2(G)\) of a graph \(G\) is defined as \(\chi_2(G) = \max\{\chi_2(G, \Sigma) \mid \Sigma \subseteq E(G)\}\). The \textit{signified chromatic number} \(\chi_2(F)\) of a graph class \(F\) is defined as \(\chi_2(F) = \max\{\chi_2(G) \mid G \in F\}\). The \textit{signed chromatic numbers} of a graph and a graph class are defined similarly.

Another equivalent definition of the signified chromatic numbers can be given by defining the signified coloring. A \textit{signified coloring} of a signified graph \((G)\) is a proper vertex-coloring \(\varphi\) of \(G\) such that if there exist two edges \(uv\) and \(xy\) with \(\varphi(u) = \varphi(x)\) and \(\varphi(v) = \varphi(y)\), then these two edges have the same sign. Hence, the \textit{signified chromatic number} of the signified graph \((G)\) is the minimum number of colors needed for a signified coloring of \((G)\).

In this paper, we studied signified and signed homomorphisms of outerplanar and planar graphs of given girth. The paper is organized as follows. We introduce the notation in Section 2. Section 3 is devoted to introduce and study the properties of several families of target graphs, namely the \textit{Anti-twinned graph} \(AT(G, \Sigma)\), the \textit{signified Zielonka graph} \(ZS_k\), the \textit{signified Paley graph} \(SP_q\), and the \textit{signified Tromp Paley graph} \(Tr(SP_q)\). We study signified homomorphisms of planar graphs (resp. outerplanar graphs) in Section 4 and we provide lower and upper bounds on the signified chromatic number. We get upper bounds on the signed chromatic number of planar graphs (resp. outerplanar graphs) of given girth in Section 5. We finally conclude in Section 6.

2 Notations

For a vertex \(v\) of a signified graph \((G)\), \(d_{(G)}(v)\) denotes the degree of \(v\). The set of positive neighbors of \(v\) is denoted by \(N_{(G)}^+(v)\) and the set of negative neighbors of \(v\) is denoted by \(N_{(G)}^-(v)\). Thus, the set of neighbors of \(v\), denoted by \(N_{(G)}(v)\), is \(N_{(G)}(v) = N_{(G)}^+(v) \cup N_{(G)}^-(v)\). A vertex of degree \(k\) (resp. at least \(k\), at most \(k\)) is called a \(k\)-vertex (resp. \(\geq k\)-vertex, \(\leq k\)-vertex). If a vertex \(u\) is adjacent to a \(k\)-vertex (resp. \(\geq k\)-vertex, \(\leq k\)-vertex) \(v\), then \(v\) is a \(k\)-neighbor (resp. \(\geq k\)-neighbor, \(\leq k\)-neighbor) of \(u\). A path of length \(k\) (i.e. formed by \(k\) edges) is
called a \(k\)-path. Given a planar graph \(G\) with its embedding in the plane and a vertex \(v\) of \(G\), we say that a sequence \((u_1, u_2, \ldots, u_k)\) of neighbors of \(v\) are \textit{consecutive} if \(u_1, u_2, \ldots, u_k\) appear consecutively around \(v\) in \(G\) (clockwise or counterclockwise).

3 Target graphs

In this section, our goal is not only to find target graphs that will give the required upper bounds of our results of Sections 4 and 5. We aim at describing several families of target graphs that may be useful for signified and signed homomorphisms and we determine their properties. To this end, we describe below the \textit{Anti-twinned graph} construction, the \textit{signified Zielonka graph} \(ZS_k\), the \textit{signified Paley graph} and the \textit{Tromp signified Paley graph}.

3.1 The \textit{Anti-twinned graph}

Let \((G, \Sigma)\) be a signified graph and let \((G^0, \Sigma^0)\) and \((G^1, \Sigma^1)\) be two isomorphic copies of \((G, \Sigma)\). In the following, given a vertex \(u \in V(G)\), we denote \(u_i\) the corresponding vertex of \(u\) in the isomorphic copy \((G^i, \Sigma^i)\) of \((G, \Sigma)\). We define the \textit{anti-twinned graph} \(AT(G, \Sigma) = (H, \Lambda)\) on \(2|V(G)|\) vertices as follows:

- \(V(H) = V(G^0) \cup V(G^1)\)
- \(E(H) = E(G^0) \cup E(G^1) \cup \{u_iv_{1-i} : uv \in E(G)\}\)
- \(\Lambda = \Sigma^0 \cup \Sigma^1 \cup \{u_iv_{1-i} : uv \in E(G) \setminus \Sigma\}\)

Figure 2 illustrates the construction of \(AT(G, \Sigma)\). We can observe that for every \(u_i \in V(G^i)\), there is no edge between \(u_i\) and \(u_{1-i}\). By construction we have the following property:

\[
\forall u_i \in AT(G, \Sigma) : N^+(u_i) = N^-(u_{1-i}) \text{ and } N^-(u_i) = N^+(u_{1-i})
\]

Such pairs of vertices are called \textit{anti-twin vertices}, and for any \(u \in AT(G, \Sigma)\) we denote by atw\((u)\) the anti-twin vertex of \(u\). Remark that atw\((\text{atw}(u)) = u\).

This notion can be extended to sets in a standard way: for a given \(W \subseteq V(G^i)\),
\(W = \{v_1, v_2, \ldots, v_k\}\), then atw\((W) = \{\text{atw}(v_1), \text{atw}(v_2), \ldots, \text{atw}(v_k)\}\).

We say that a signified graph is \textit{anti-twinned} if it is the anti-twinned graph of some signified graph.

Observation 2 A signified graph is anti-twinned if and only if each of its vertices has a unique anti-twin.
Lemma 3 A graph (G, Σ) admits a signed homomorphism to (H, Λ) if and only if (G, Σ) admits a signified homomorphism to $AT(H, \Lambda)$.

Proof. Let φ be a signed homomorphism of (G, Σ) to (H, Λ). This implies that φ is a signified homomorphism of (G, Σ_1) to (H, Λ), where $(G, \Sigma_1) \sim (G, \Sigma)$.

Let $X \subseteq V(G)$ be the subset of vertices of G such that $(G, \Sigma) = (G, \Sigma_1^X)$. By definition of the resigning process, only the edges of the edge-cut between $V(G) \setminus X$ and X get their sign changed.

Let $\varphi' : V(G) \to V(AT(H))$ be defined as follows:

$$\varphi'(u) = \begin{cases}
\text{at}(\varphi(u)), & \text{if } u \in X, \\
\varphi(u), & \text{otherwise}.
\end{cases}$$

By construction of $AT(H, \Lambda)$, if u and v induce an edge of sign s, then u and $\text{at}(v)$ induce an edge of sign $-s$. Therefore, it is easy to see that φ' is a signified homomorphism of (G, Σ) to $AT(H, \Lambda)$. This proves the only if part.

For the if part, suppose that (G, Σ) admits a signified homomorphism ψ to $AT(H, \Lambda)$. The signified graph $AT(H, \Lambda)$ is obtained from two isomorphic copies (H^0, Λ^0) and (H^1, Λ^1) of (H, Λ). Let $Y \subseteq V(G)$ be the subset of vertices of G such that, for all $y \in Y$, $\psi(y)$ is a vertex of H^1. Let $(G, \Sigma_1) = (G, \Sigma^Y)$. Let $\psi' : V(G) \to V(AT(H))$ be defined as follows:

$$\psi'(u) = \begin{cases}
\text{at}(\psi(u)), & \text{if } u \in Y, \\
\psi(u), & \text{otherwise}.
\end{cases}$$

It is easy to see that ψ' is a signified homomorphism of (G, Σ_1) to $AT(H, \Lambda)$ such that every vertex maps to a vertex of H^0. Then ψ' is a signified homomorphism from (G, Σ_1) to (H, Λ) and thus (G, Σ) admits a signed homomorphism to (H, Λ). \square

Corollary 4 If (G, Σ) admits a signified homomorphism to an anti-twinned graph T, then we have:

1. $\chi_s(G) \leq \frac{|V(T)|}{2}$.
2. (G, Σ') admits a signified homomorphism to T for every $(G, \Sigma') \sim (G, \Sigma)$.

3.2 The signified Zielonka graph ZS_k

The Zielonka graph Z_k was introduced by Zielonka [12] in the theory of bounded timestamp systems. Alon and Marshall [1] adapted this construction to signified graphs to obtain the signified Zielonka graph ZS_k. They used this graph to get bounds on the signified chromatic number of graphs that admits an acyclic k-coloring.

Let us describe the construction of the signified Zielonka graph ZS_k. Every vertex is of the form $(i; \alpha_1, \alpha_2, \ldots, \alpha_k)$ where $1 \leq i \leq k$, $\alpha_j \in \{+1, -1\}$ for $j \neq i$ and $\alpha_i = 0$. There are clearly $k \cdot 2^{k-1}$ vertices in this graph. For $i \neq j,$
there is an edge between the vertices \((i; \alpha_1, \alpha_2, \ldots, \alpha_k) \) and \((j; \beta_1, \beta_2, \ldots, \beta_k) \) and the sign of this edge is given by the product \(\alpha_j \times \beta_i \).

Proposition 5 The graph \(ZS_k \) is anti-twinned.

Proof. By Observation 2, we have to show that every vertex has an anti-twin. We claim that the anti-twin of the vertex \(v = (i; \alpha_1, \alpha_2, \ldots, \alpha_k) \) is the vertex \(v' = (i; -\alpha_1, -\alpha_2, \ldots, -\alpha_k) \). Indeed, \(v \) and \(v' \) are not adjacent and it is easy to check that for every edge \(uv \), the edge \(uv' \) exists, and that \(uv \) and \(uv' \) have opposite signs.

\[\square\]

3.3 The signified Paley graph \(SP_q \)

In the remaining, \(q \) is any prime power such that \(q \equiv 1 \pmod{4} \). There is a unique (up to isomorphism) finite field \(\mathbb{F}_q \) of order \(q \). Let \(g \) be a generator of the field \(\mathbb{F}_q^* \). For every \(v \in \mathbb{F}_q^* \), let \(sq : \mathbb{F}_q^* \to \{-1, +1\} \) be the function *square* defined as \(sq(v) = +1 \) if \(v \) is a square and \(sq(v) = -1 \) if \(v \) is a non-square. Note that \(sq(g^t) = (-1)^t \) since \(g \) is necessarily a non-square.

The *Paley graph* \(P_q \) is the undirected graph with vertex set \(V(P_q) = \mathbb{F}_q \) and edge set \(E(P_q) = \{xy \mid sq(y - x) = +1\} \). Since \(-1\) is a square in \(\mathbb{F}_q \), \(sq(x - y) = sq(y - x) \) and therefore the definition of an edge is consistent. We also know that a Paley graph is self-complementary \([10]\) and edge-transitive.

A \(k \)-regular graph \(G \) with \(n \) vertices is said to be *strongly regular* if (1) every two adjacent vertices have \(\lambda \) common neighbors and (2) every two non-adjacent vertices have \(\mu \) common neighbors. Such a graph is said to be a strongly regular graph with parameters \((n, k, \lambda, \mu)\). Paley graphs \(P_q \) are known to be strongly regular graphs with parameters \((q, q^{1/2}, q^{-5/4}, q^{-1/4})\).

For any prime power \(q \equiv 1 \pmod{4} \), we define the *signified Paley graph* \(SP_q = (K_q, \Sigma) \) as the complete graph on \(q \) vertices with \(V(SP_q) = \mathbb{F}_q \) and \(\Sigma = \{xy \mid sq(y - x) = -1\} \). That is, \(SP_q \) is obtained from the Paley graph \(P_q \) by replacing the non-edges by negative edges. Figure 3 represents the signified Paley graph \(SP_5 \). Since \(P_q \) is edge-transitive and self-complementary, \(SP_q \) is clearly edge-transitive.
3.4 The Tromp signified Paley graph $Tr(SP_q)$

Given an oriented graph \vec{G}, Tromp [11] proposed a construction of an oriented graph $Tr(G)$ called Tromp graph. We adapt this construction to signified graphs as follows.

For a given graph (G, Σ), let us denote (G^+, Σ) the graph obtained from (G, Σ) by adding a universal vertex positively linked to all the vertices of (G, Σ).

Then, the Tromp signified graph $Tr(G, \Sigma)$ of (G, Σ) is defined to be the anti-twinned graph of (G^+, Σ), that is $Tr(G, \Sigma) \sim AT(G^+, \Sigma)$. Figure 4 illustrates the construction of $Tr(G, \Sigma)$.

By construction, $Tr(G, \Sigma)$ is obtained from two isomorphic copies (G^0, Σ^0) and (G^1, Σ^1) of (G, Σ) plus 2 vertices ∞_0 and ∞_1.

In the remainder, we focus on the specific graph family obtained by applying the Tromp’s construction to the signified Paley graph SP_q.

We consider the Tromp signified Paley graph $Tr(SP_q)$ on $2q + 2$ vertices obtained from SP_q. In the remainder of this paper, the vertex set of $Tr(SP_q)$ is $V(Tr(SP_q)) = \{0_0, 1_0, \ldots, q-1_0, \infty_0, 0_1, 1_1, \ldots, q-1_1, \infty_1\}$ where $\{0_i, 1_i, \ldots, q-1_i\}$ is the vertex set of the isomorphic copy SP_q^i of SP_q ($i \in \{0, 1\}$); thus, for every $u_i \in \{0_i, 1_i, \ldots, q-1_i, \infty_i\}$, we have $atw(u_i) = u_{1-i}$. In addition, for every $u \in V(Tr(SP_q))$, we have by construction $|N^+_0(Tr(SP_q))(u)| = |N^-_0(Tr(SP_q))(u)| = q$.

Let $i, j \in \{0, 1\}$ and $u, v \in \mathbb{F}_q$. If $i = j$, then u_i and v_j are in the same isomorphic copy of SP_q in $Tr(SP_q)$; in this case, the sign of the edge u_iv_j is $sq(u-v)$ by definition of SP_q. If $i \neq j$, then u_i and v_j are in distinct isomorphic copies of SP_q in $Tr(SP_q)$; in this case, the sign of the edge u_iv_j is $-sq(u-v)$.

Therefore, in both cases, the sign of the edge u_iv_j is

$$\text{sq}(u-v) \times (-1)^{i+j}. \tag{1}$$

Let $i, j \in \{0, 1\}$ and $v \in \mathbb{F}_q$. If $i = j$, then the sign of the edge ∞_iv_j is $+1$, while it is -1 when $i \neq j$. Therefore, in both case, the sign of the edge ∞_iv_j is
The graph $Tr(SP_q)$ has remarkable symmetry and some useful properties given below.

Lemma 6 The signified graph $Tr(SP_q)$ is vertex-transitive.

Proof. The mapping $\gamma_1 : V(Tr(SP_q)) \to V(Tr(SP_q))$ defined as $\gamma_1(u_i) = u_{1-i}$ is clearly an automorphism of $Tr(SP_q)$.

Recall first that SP_q is edge-transitive and so vertex-transitive. If φ is an automorphism of SP_q, we can define the corresponding automorphism γ_2 of $Tr(SP_q)$ as:

$$\gamma_2 : u_i \to \begin{cases} u_i & \text{if } u = \infty \\ (\varphi(u))_{i} & \text{if } u \neq \infty \end{cases}$$

We eventually define the mapping $\gamma_3 : V(Tr(SP_q)) \to V(Tr(SP_q))$ as:

$$\gamma_3 : u_i \to \begin{cases} \infty_i & \text{if } u = 0 \\ 0_i & \text{if } u = \infty \\ (u^{-1})_i & \text{if } u \text{ is a non-zero square} \\ (u^{-1})_{1-i} & \text{if } u \text{ is a non square} \end{cases}$$

Let S be the sign of the edge u_iv_j. To prove that γ_3 is an automorphism of $Tr(SP_q)$, we will show that γ_3 maps u_iv_j to an edge of sign $S' = S$.

Let g be a generator of the field \mathbb{F}_q. Any vertex v of SP_q is an element of \mathbb{F}_q and therefore $v = g^t$ for some t when $v \neq 0$. Recall that $\text{sq}(g^t) = (-1)^t$.

- When $u, v \in V(Tr(SP_q))$ are neither 0 nor ∞, we have $u_iv_j = (g^t)_i(g^{t'})_j$ for some t and t'. If t is even, that is g^t is a square, then $\gamma_3((g^t)_i) = (g^{-t})_{1-i}$; otherwise, t is odd and thus $\gamma_3((g^t)_i) = (g^{-t})_{1-i}$. Let $i' = i + t \pmod{2}$ and $j' = j + t' \pmod{2}$. Clearly, if t is even (resp. t') is even, then $i' = i$ (resp. $j' = j$); otherwise we have $i' = 1 - i$ (resp. $j' = 1 - j$). Therefore, the function γ_3 maps the edge $(g^t)_i(g^{t'})_j$ to the edge $(g^{-t})_{i'}(g^{t'})_{j'}$. Now, let us check that the sign of these two edges is the same.

By Equation (1), the sign of the edge u_iv_j is $S = \text{sq}(g^t - g^{t'}) \times (-1)^{i+j}$ and the sign of the edge $(g^{-t})_{i'}(g^{t'})_{j'}$ is $S' = \text{sq}(g^{-t} - g^{-t'}) \times (-1)^{i'+j'}$. We then have:

$$(-1)^{i+j}.$$
If $u = 0$ and $v = \infty$, it is clear that the edge u_iv_j maps to an edge of the same sign.

Consider now the case $u = 0$ and $v \notin \{0, \infty\}$. Let $v = g^t$ for some t. The function γ_3 maps the edge $0_i(g^t)_{j'}$ on $\infty_i(g^{-t})_{j'}$, where $j' = j + t \pmod{2}$. By Equations 1 and 2, the sign of the edge $0_i(g^t)_{j'}$ is $S = sq(g^t) \times (-1)^{i+j}$ and the sign of the edge $\infty_i(g^{-t})_{j'}$ is $S' = (-1)^{i+j'}$. We then have:

$$S = sq(g^t) \times (-1)^{i+j} = (-1)^t \times (-1)^{i+j} = (-1)^{i+j+t} = (-1)^{i+j'} = S'$$

The case $u = \infty$ and $v \notin \{0, \infty\}$ is similar to the previous case.

Therefore, the function γ_3 maps any edge to an edge of the same sign.

Combining the automorphisms γ_1, γ_2 and γ_3 easily proves that $Tr(SP_q)$ is vertex-transitive.

We define an anti-automorphism of a signified graph (G, Σ) as a permutation ρ of the vertex set $V(G)$ such that uv is a positive (resp. negative) edge if and only if $\rho(u)\rho(v)$ is a negative (resp. positive) edge.

Lemma 7 The graph $Tr(SP_q)$ admits an anti-automorphism.

Proof. Let n be any non-square of \mathbb{F}_q. We define the mapping $\gamma_n : V(Tr(SP_q)) \rightarrow V(Tr(SP_q))$ as:

$$\gamma_n : u_i \rightarrow \begin{cases} u_i & \text{if } u = \infty \\ (n \times u)_{1-i} & \text{if } u \neq \infty \end{cases}$$

Let us check that γ_n maps every edge $u_iv_j \in E(Tr(SP_q))$ to an edge of opposite sign.

Let $u, v \neq \infty$. By definition, γ_n maps u_iv_j to $(n \times u)_{1-i}(n \times v)_{1-j}$. By Equations 1 and 2, the sign of the edge u_iv_j is $S = sq(v-u) \times (-1)^{i+j}$ and the sign
of the edge \((n \times u)_{1-i}(n \times v)_{1-j}\) is \(S' = \text{sq}(n \times (v - u)) \times (-1)^{1-i+1-j}\).

\[
S' = \text{sq}(n \times (v - u)) \times (-1)^{1-i+1-j} \\
= \text{sq}(n) \times \text{sq}(v - u) \times (-1)^{i+j} \\
= -\text{sq}(v - u) \times (-1)^{i+j} = -S
\]

Now, let \(u = \infty\) and \(v \neq \infty\). The mapping \(\gamma_n\) maps \(\infty_i v_j\) to \(\infty_i (n \times v)_{1-j}\). By Equation 2, the sign of the edge \(\infty_i v_j\) is \(S = (-1)^{i+j}\) and the sign of the edge \(\infty_i (n \times v)_{1-j}\) is \(S' = (-1)^{i+1-j} = -S\).

\[\square\]

Lemma 8 If there exists an isomorphism \(\psi\) that maps the triangle \((u_i, v_j, w_k)\) to the triangle \((u'_i, v'_j, w'_k)\), then \(\psi\) can be extended to an automorphism of \(\text{Tr}(SP_q)\).

Proof. There exists four types of triangles depending on the sign of their edges.

- Let us first consider the triangles \((u_i, v_j, w_k)\) and \((u'_i, v'_j, w'_k)\) with 3 positive edges. To prove that \(\psi\) can be extended to an automorphism of \(\text{Tr}(SP_q)\), it suffices to prove that for every triangle \((u_i, v_j, w_k)\), there exists an automorphism \(\psi'\) that maps \((u_i, v_j, w_k)\) to \((0_0, 1_0, \infty_0)\). Using the vertex transitivity of \(\text{Tr}(SP_q)\) (Lemma 6), there exists an automorphism \(\varphi\) that maps \(w_k\) to \(\infty_0\). Then, since all positive edges incident to \(\infty_0\) have their extremities in \(SP_q^0\), \(\varphi\) necessarily maps the edge \(u_i v_j\) to an edge \(u'_i v'_j\) in \(SP_q^0\). Since \(SP_q\) is edge-transitive, we can finally map \(u'_0 v'_0\) to \(0_0 1_0\).

- Consider now the triangles \((u_j, v_j, w_k)\) and \((u'_j, v'_j, w'_k)\) with 3 negative edges. Let \(\overline{\text{Tr}}(SP_q)\) be the signified graph obtained from \(\text{Tr}(SP_q)\) by changing the sign of every edge. By Lemma 7, \(\overline{\text{Tr}}(SP_q)\) is isomorphic to \(\overline{\text{Tr}}(SP_q)\). By the previous item, there exists an automorphism that maps \((u_j, v_j, w_k)\) to \((u'_j, v'_j, w'_k)\) in \(\overline{\text{Tr}}(SP_q)\), and thus in \(\text{Tr}(SP_q)\).

- Finally consider the triangles \((u_i, v_j, w_k)\) and \((u'_i, v'_j, w'_k)\) with one edge of sign \(S\) and 2 edges of sign \(-S\). Let \(u_i\) and \(u'_i\) be the vertex incident to the edges of sign \(-S\). Consider the triangles \((\text{atw}(u_i), v_j, w_k)\) and \((\text{atw}(u'_i), v'_j, w'_k)\); they have 3 edges of sign \(S\). By the two previous cases, there exists an automorphism \(\psi\) that maps \((\text{atw}(u_i), v_j, w_k)\) to \((\text{atw}(u'_i), v'_j, w'_k)\). Since \(\psi\) preserves anti-twinning, \(\psi\) also maps \(u_i\) to \(u'_i\).

\[\square\]

3.5 Coloring properties of target graphs

A *signed vector* of size \(k\) is a \(k\)-tuple \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_k) \in \{+1, -1\}^k\). For a given signed vector \(\alpha\), its *conjugate* is the \(k\)-tuple \(\overline{\alpha} = (-\alpha_1, -\alpha_2, \ldots, -\alpha_k)\).

Given a sequence of \(k\) distinct vertices \(X_k = (v_1, v_2, \ldots, v_k)\) of a signed graph \((G, \Sigma)\) that induces a clique, a vertex \(u \in V(G)\) is an \(\alpha\)-successor of \(X_k\) if, for every \(i \in \{1, 2, \ldots, k\}\), the sign of the edge \(uv_i\) is \(\alpha_i\). The set of \(\alpha\)-successors of \(X_k\) is denoted by \(S^\alpha(X_k)\).
Consider the signified graph SP_q depicted in Figure 3. For example, given $\alpha = (+1, -1)$ and $X = (0, 3)$, the vertex 1 is an α-successor of X, the vertex 2 is an α-successor of X, we have $S^\alpha(X) = \{1\}$ and $S^\alpha(X) = \{2\}$. A signified graph (G) has property $P_{k,l}$ if $|S^\alpha(X_k)| \geq l$ for any sequence X_k of k distinct vertices inducing a clique of G and for any signed-vector α of size k.

Lemma 9 If SP_q has property $P_{n-1,k}$, then $Tr(SP_q)$ has property $P_{n,k}$.

Proof. Suppose that SP_q has property $P_{n-1,k}$ and let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ be a given signed vector. Let $X = (u_1, u_2, \ldots, u_{n-1}, w)$ be n distinct vertices inducing a clique of $Tr(SP_q)$. We have to prove that X admits k α-successors.

By noticing that $S^\alpha(X) = atw(S^\alpha(X))$, we restrict the proof to the case $\alpha_n = +1$. We define $X' = (v_1, v_2, \ldots, v_{n-1}, w)$ such that $v_i = u_i$ if u_iw is a positive edge and $v_i = atw(u_i)$ if u_iw is a negative edge. Hence, X' is a set of n distinct vertices of $Tr(SP_q)$ such that $\cup_i v_i \subseteq N^+(w)$. By Lemma 6, $Tr(SP_q)$ is vertex-transitive and thus $N^+(w) \cong K_q \cong SP_q$. Therefore the $(n-1)$ vertices $X'' = X' \setminus \{w\} = (v_1, v_2, \ldots, v_{n-1})$ form a subset of some $V(SP_q)$. Then by Property $P_{n-1,k}$ of SP_q, there exist k $(\alpha'_1, \alpha'_2, \ldots, \alpha'_{n-1})$-successors x_1, x_2, \ldots, x_k of X'' in SP_q, with $\alpha'_i = \alpha_i$ (resp. $\alpha'_i = -\alpha_i$) if $v_i = u_i$ (resp. if $v_i = atw(u_i)$). The x_i's are clearly positive neighbors of w and hence, they are $(\alpha'_1, \alpha'_2, \ldots, \alpha'_{n-1}, \alpha_n)$-successors of X'. So X has k α-successors.

Lemma 10 If (G, Σ) is a signified graph and $Tr(G, \Sigma)$ has property $P_{n,k}$, then $AT(G, \Sigma)$ has property $P_{n,k-1}$.

Proof. Recall that $Tr(G, \Sigma)$ is built from two isomorphic copies of (G, Σ) plus two vertices ∞_0 and ∞_1. The graph $AT(G, \Sigma)$ is obtained from $Tr(G, \Sigma)$ by removing both ∞_0 and ∞_1. Now suppose $Tr(G, \Sigma)$ has property $P_{n,k}$. This means that any n distinct vertices inducing a clique in $Tr(G, \Sigma)$ has k α-successors for any signed n-vector α. Let $X \subseteq V(Tr(G, \Sigma))$ be any sequence of n distinct vertices inducing a clique in $Tr(SP_q)$ such that both ∞_0 and ∞_1 do not belong to X. Then, for any signed n-vector α, the set of α-successors $S^\alpha(X)$ cannot contains both ∞_0 and ∞_1. Then, it is clear that X has at least $k-1$ α-successors in $AT(G, \Sigma)$.

Lemma 11

1. SP_q has properties $P_{1,\frac{q-1}{2}}$ and $P_{2,\frac{q-5}{4}}$.
2. $Tr(SP_q)$ has properties $P_{1,q}$, $P_{2,\frac{q-1}{2}}$, and $P_{3,\frac{q-5}{4}}$.
3. $AT(SP_q)$ has properties $P_{1,q-1}$, $P_{2,\frac{q-3}{2}}$, and $P_{3,\max\left\{0,\frac{q-9}{4}\right\}}$.

Proof.

(1) These properties follow from the fact that the signified Paley graph SP_q is built from the Paley graph P_q which is self-complementary, edge transitive and strongly regular with parameters $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$.

(2) $Tr(SP_q)$ has property $P_{1,q}$ since it is vertex transitive by Lemma 6 and the vertex ∞ has q positive and q negative neighbors. The other properties follow from (1) and Lemma 9.
4 Results on signified homomorphisms

This section is devoted to study signified homomorphisms of planar graphs and outerplanar graphs.

An acyclic k-coloring is a proper vertex-coloring such that each cycle has at least three colors. In other words, the graph induced by any two color classes is a forest.

In 1998, Alon and Marshall [1] proved the following (the signified graph ZS_k has $k \cdot 2^{k-1}$ vertices and has been considered in Section 3.2):

Theorem 12 ([1]) Let (G, Σ) be such that G admits an acyclic k-coloring. Then (G, Σ) admits a signified homomorphism to ZS_k and thus $\chi_2(G) \leq k \cdot 2^{k-1}$.

Note that Theorem 12 is actually tight as shown by Huemer et al. [4] in 2008.

The girth of a graph is the length of a shortest cycle. We denote by \mathcal{P}_g (resp. \mathcal{O}_g) the class of planar graphs (resp. outerplanar graphs) with girth at least g (note that \mathcal{P}_3 is simply the class of planar graphs).

Borodin [2] proved that every planar graph admits an acyclic 5-coloring. We thus get the following from Theorem 12:

Corollary 13 Every planar graph admits a signified homomorphism to ZS_5. We thus have $\chi_2(\mathcal{P}_3) \leq 80$.

In this same context, Montejano et al. [6] obtained in 2010 the following results:

Theorem 14 ([6])

1. Every planar graph of girth at least 5 admits a signified homomorphism to $Tr(SP_5)$. We thus have $\chi_2(\mathcal{P}_5) \leq 20$.
2. Every planar graph of girth at least 6 admits a signified homomorphism to $Tr(SP_5)$. We thus have $\chi_2(\mathcal{P}_6) \leq 12$.

In this section, we get the following new results. We obtain a first result on outerplanar graph with girth at least 4 (see Theorem 15) and a second one on planar graph with girth at least 4 (see Theorem 16). The latter result gives a new upper bound on the signified chromatic number. We then construct a planar graph with signified chromatic number 20 (see Theorem 18). We finally give properties that must verify the target graphs for outerplanar and planar graphs.

Theorem 15 Every outerplanar graph with girth at least 4 admits a signified homomorphism to $AT(K^*_4)$, where K^*_4 denotes the complete graph on 4 vertices with exactly one negative edge.

Proof. Assume by contradiction that there exists a counterexample to the result and let (H, Λ) be a minimal counterexample in term of number of ver-

(3) These properties follow from (2) and Lemma 10.
Suppose \((H) \) contains a vertex \(u \) of degree at most 1. By minimality of \((H) \), the graph \((H') = (H \setminus \{u\}) \) admits a signified homomorphism to \(AT(K^*_4) \). Since every vertex of \(AT(K^*_4) \) is incident to a positive and a negative edge, we can extend the signified homomorphism to \((H) \), a contradiction.

Suppose that \((H) \) contains two adjacent vertices \(u \) and \(v \) of degree 2. By minimality of \((H) \), the graph \((H') = (H \setminus \{u, v\}) \) admits a signified homomorphism to \(AT(K^*_4) \). One can check that for every pair of (non necessarily distinct) vertices \(x \) and \(y \) of \(AT(K^*_4) \), there exist the 8 possible signified 3-paths. We can therefore extend the signified homomorphism to \((H) \), a contradiction.

Pinlou and Sopena [9] showed that every outerplanar graph with girth at least \(k \) and minimum degree at least 2 contains a face of length \(l \geq k \) with at least \((l - 2) \) consecutive vertices of degree 2. Therefore, the counterexample \((H) \) is not an outerplanar graph of girth 4, a contradiction, that completes the proof.

\[\square \]

Theorem 16 Every planar graph with girth at least 4 admits a signified homomorphism to \(AT(SP_{25}) \). We thus have \(\chi_2(P_4) \leq 50 \).

Let \(n_3(G) \) be the number of \(\geq 3 \)-vertices in the graph \(G \). Let us define the partial order \(\preceq \). Given two graphs \(G_1 \) and \(G_2 \), we have \(G_1 \prec G_2 \) if and only if one of the following conditions holds:

- \(n_3(G_1) < n_3(G_2) \).
- \(n_3(G_1) = n_3(G_2) \) and \(|V(G_1)| + |E(G_1)| < |V(G_2)| + |E(G_2)| \).

Note that the partial order \(\preceq \) is well-defined and is a partial linear extension of the minor poset.

Let \((H) \) be a signified graph that does not admit a homomorphism to the signified graph \(AT(SP_{25}) \) and such that its underlying graph \(H \) is a triangle-free planar graph which is minimal with respect to \(\preceq \). In the following, \(H \) is given with its embedding in the plane. A weak 7-vertex \(u \) in \(H \) is a 7-vertex adjacent to four 2-vertices \(v_1, \ldots, v_4 \) and three \(\geq 3 \)-vertices \(w_1, w_2, w_3 \) such that \(v_1, w_1, v_2, w_2, v_3, w_3, \) and \(v_4 \) are consecutive.

Lemma 17 The graph \(H \) does not contain the following configurations:

- \((C1) \) a \(\leq 1 \)-vertex;
- \((C2) \) a \(k \)-vertex adjacent to \(k \) 2-vertices for \(2 \leq k \leq 49 \);
- \((C3) \) a \(k \)-vertex adjacent to \((k - 1) \) 2-vertices for \(2 \leq k \leq 24 \);
- \((C4) \) a \(k \)-vertex adjacent to \((k - 2) \) 2-vertices for \(3 \leq k \leq 12 \);
- \((C5) \) a 3-vertex;
- \((C6) \) a \(k \)-vertex adjacent to \((k - 3) \) 2-vertices for \(4 \leq k \leq 6 \);
- \((C7) \) two vertices \(u \) and \(v \) linked by two distinct 2-paths, both paths having a 2-vertex as internal vertex;
- \((C8) \) a 4-face \(wxyz \) such that \(x \) is 2-vertex, \(w \) and \(y \) are weak 7-vertices, and \(z \) is a \(k \)-vertex adjacent to \((k - 4) \) 2-vertices for \(4 \leq k \leq 9 \);
Proof. The drawing conventions for a configuration C_k contained in a signed graph (H) are the following. First note that, in Figures 5 and 6, we only draw the underlying graph H of (H), i.e. we do not distinguish positive and negative edges. The neighbors of a white vertex in H are exactly its neighbors in C_k, whereas a black vertex may have other neighbors in H. Two or more black vertices in C_k may coincide in a single vertex in H, provided they do not share a common white neighbor. Configurations C2 - C8 are depicted in Figures 5 and 6.

For each configuration, we suppose that H contains the configuration and we consider a signified triangle-free graph (H') such that $H' \prec H$. We only argue that $H' \prec H$ for configuration C5. For every other configuration, we have that H' is a minor of H and thus $H' \prec H$. Therefore, by minimality of (H), (H') admits a signified homomorphism f to $AT(SP_{25})$. Then we modify and extend f to obtain a signified homomorphism of (H) to $AT(SP_{25})$, contradicting the fact that (H) is a counterexample.

By Lemma 11, $AT(SP_{25})$ satisfies properties $P_{1,24}$, $P_{2,11}$, and $P_{3,4}$.

Proof of configuration C1: Trivial.

Proof of configuration C2: Suppose that (H) contains the configuration depicted in Figure 5(a) and f is a signified homomorphism of $(H') = (H) \setminus \{v, v_1, \ldots, v_k\}$ to $AT(SP_{25})$. For every i, if the edges vv_i and $v_iv'_i$ have the same sign (resp. different signs), then v must get a color distinct from $atw(f(v'_i))$ (resp. $f(v'_i)$). So, each v'_i forbids at most one color for v. Thus there remains an available color for v. Then we extend f to the vertices v_i using property $P_{2,11}$.

Proof of configuration C3: Suppose that (H) contains the configuration depicted in Figure 5(b) and f is a signified homomorphism of $(H') = (H) \setminus \{v, v_2, \ldots, v_k\}$ to $AT(SP_{25})$. As shown in the proof of Configuration C2, each v'_i forbids at most one color for v. So, we have at most 23 forbidden colors for v and by property $P_{1,24}$, there remains at least one available color for v. Then we extend f to the vertices v_i ($2 \leq i \leq k$) using property $P_{2,11}$.

Proof of configuration C4: Suppose that (H) contains the configuration depicted in Figure 5(c) and f is a signified homomorphism of $(H') = (H) \setminus \{v_3, \ldots, v_k\}$ to $AT(SP_{25})$. As shown in the proof of Configuration C2, each v'_i forbids at most one color for v. So, we have at most 10 forbidden colors for v and by property $P_{2,11}$, there remains at least one available color in order to recolor v. Then we extend f to the vertices v_i ($3 \leq i \leq k$) using property...
If depicted in Figure 6(c).

The graph \(v \in \{ 1 \} \) extend \(f \) and by property \(f \) H whose both edges have the same sign and one whose edges have different sign.

Proof of configuration C7: Suppose that \((H) \) contains the configuration depicted in Figure 6(a). Let \((H') \) be the graph obtained from \((H) \) by deleting the vertex \(v \) and by adding, for every \(1 \leq i < j \leq 3 \), a new vertex \(v_{ij} \) and the edges \(v_i v_j \) and \(v_j v_i \). Each of the 6 edges \(v_i v_j \) gets the sign \(\alpha_i \) of the edge \(v_i v \) in \((H) \). As configuration C4 is forbidden in \(H \), we have \(d_{H_i}(v) \geq 3 \) for \(i \in \{ 1, 2, 3 \} \). We have \(H' \prec H \) since \(n_3(H') < n_3(H) \). Clearly, \(H' \) is triangle free. Hence, there exists a signified homomorphism \(f \) of \((H') \) to \(AT(SP_{25}) \).

By \(P_{3,4} \), we can find an \(\alpha \)-successor \(u \) of \((f(v_1), f(v_2), f(v_3)) \) in \(AT(SP_{25}) \) with \(\alpha = (\alpha_1, \alpha_2, \alpha_3) \). Now fix \(f(v) = u \). Note that \(f \) restricted to \(V(H) \) is a homomorphism of \((H) \) to \(AT(SP_{25}) \).

Proof of configuration C6: Suppose that \((H) \) contains the configuration depicted in Figure 6(b) and \(f \) is a signified homomorphism of \((H') = (H) \setminus \{ v_4, \ldots , v_k \} \) to \(AT(SP_{25}) \). As shown in the proof of Configuration C2, each \(v_i' \) forbids at most one color for \(v \). So, we have at most 3 forbidden colors for \(v \) and by property \(P_{3,4} \), there remains at least one available color for \(v \). Then we extend \(f \) to the vertices \(v_i \ (4 \leq i \leq k) \) using property \(P_{2,11} \).

Proof of configuration C7: Suppose that \((H) \) contains the configuration depicted in Figure 6(c).

If \(u \) and \(w \) have no common neighbor other than \(v_1 \) and \(v_2 \), then we consider the graph \((H') \) obtained from \((H) \setminus \{ v_1, v_2 \} \) by adding the edge \(uv \).

If \(u \) and \(w \) have at least one other common neighbor \(v_3 \), then consider the graph \((H') \) obtained from \((H) \setminus \{ v_1, v_2 \} \) by adding a vertex \(v \) adjacent to \(u \) and \(w \) such that \(uv \) is negative and the sign of \(vw \) is the product of the signs of \(uv_3 \) and \(v_3w \). Therefore, we have at least two 2-paths linking \(u \) and \(w \), one whose both edges have the same sign and one whose edges have different sign.

In both cases, \(H' \) is triangle free and is a minor of \(H \), so that \((H') \) admits a signified homomorphism \(f \) to \(AT(SP_{25}) \). Also, in both cases, \(f(u) \) and \(f(w) \) form an edge in \(AT(SP_{25}) \) since \(f(u) \neq f(v) \) and \(f(u) \neq f(atw(v)) \). Thus, the coloring of \((H) \setminus \{ v_1, v_2 \} \) induced by \(f \) can be extended to \((H) \) using property \(P_{2,11} \).
we could color a vector proof that we can modify f has at least 4 α-successors

For 1 ≤ i ≤ 3, let k_i denote the color that is forbidden for c by w_i, that is, $k_i = f(w_i)$ if the edges of the 2-path linking c and w_i have distinct signs and $k_i = \text{atw}(f(w_i))$ otherwise. By property $P_{3,4}$, the sequence $X = (f(c_1), f(c_2), f(b))$ has at least 4 α-successors. Assume that X has at least 5 α-successors. Then we can give to c a color distinct from $k_1, k_2, k_3,$ and $f(a)$ that leads to $f(c) \neq f(a)$. Assume now that X has exactly 4 α-successors. The graph $AT(SP_{25})$ contains two copies of SP_{25}, namely SP_{25}^0 and SP_{25}^1. Suppose that X is not contained in one copy of SP_{25}. We consider the graph $Tr(SP_{25})$ obtained by adding the anti-twin vertices ∞_0 and ∞_1 to $AT(SP_{25})$. By Lemma 11, $Tr(SP_{25})$ satisfies $P_{3,5}$, so X admits at least 5 α-successors in $Tr(SP_{25})$. Since X is not contained in one copy of SP_{25} of the subgraph $AT(SP_{25})$, the extra vertices ∞_0 and ∞_1 are not α-successors of X. This means that X has at least 5 α-successors in $AT(SP_{25})$, contradicting the hypothesis. So, without loss of generality, X is necessarily contained in SP_{25}^0.

We represent the field F_{25} by the numbers $a + b\sqrt{2}$, where a and b are integers modulo 5. Without loss of generality, we can assume that $f(c_1) = 0$ and $f(c_2) = 1$ since SP_{25} is edge-transitive. Table 7 gives the sequences X having exactly 4 α-successors together with their 4 α-successors.

We are now ready to modify f. We decolor the vertices a, b, and c. By property

$(0, 1, 2)$	3_0, 4_0, $(1 + 2\sqrt{2})_1$, $(1 + 3\sqrt{2})_1$
$(0, 1, 3)$	2_0, 4_0, $(3 + \sqrt{2})_1$, $(3 + 4\sqrt{2})_1$
$(0, 1, 4)$	2_0, 3_0, $(2\sqrt{2})_1$, $(3\sqrt{2})_1$
$(0, 1, (3 + 2\sqrt{2})_0)$	$(3 + \sqrt{2})_1$, $(3\sqrt{2})_1$, $(1 + 3\sqrt{2})_1$, $(3 + 4\sqrt{2})_1$
$(0, 1, (3 + 3\sqrt{2})_0)$	$(3 + \sqrt{2})_1$, $(2\sqrt{2})_1$, $(1 + 2\sqrt{2})_1$, $(3 + 4\sqrt{2})_1$

Tab. 7. Sets of the form $(0, 1, x_0)$ having exactly 4 $(+1, +1, +1)$-successors in $AT(SP_{25})$.

Proof of configuration C8: Suppose that (H) contains the configuration depicted in Figure 6(d). By Corollary 4(2), (H) admits a signed homomorphism to $AT(SP_{25})$ if and only if every equivalent signature of (H) admits a signed homomorphism to $AT(SP_{25})$. So, by resigning a subset of vertices in $\{a, b, c, c_1, c_2\}$, we can assume that the edges da, ab, bc, cc_1, and cc_2 are positive. Consider a signed homomorphism f of $(H') = (H \setminus \{d\})$ to $AT(SP_{25})$. The edge dc in (H) has to be negative, since otherwise f would be extendable to (H) by setting $f(d) = f(b)$. Also, we must have $f(c) = f(a)$, since otherwise we could color d using property $P_{2,11}$. Now, we show in the remaining of the proof that we can modify f such that $f(c) \neq f(a)$. Let us define the signed vector $\alpha = (+1, +1, +1)$. We assume that $f(b)$, $f(c_1)$ and $f(c_2)$ are distinct, since the case when they are not distinct is easier to handle.

For 1 ≤ i ≤ 3, let k_i denote the color that is forbidden for c by w_i, that is, $k_i = f(w_i)$ if the edges of the 2-path linking c and w_i have distinct signs and $k_i = \text{atw}(f(w_i))$ otherwise. By property $P_{3,4}$, the sequence $X = (f(c_1), f(c_2), f(b))$ has at least 4 α-successors. Assume that X has at least 5 α-successors. Then we can give to c a color distinct from $k_1, k_2, k_3,$ and $f(a)$ that leads to $f(c) \neq f(a)$.
\[P_{2,11}, \text{ there exist at least two colors } \beta \text{ and } \beta' \text{ for } b \text{ that are distinct from the colors forbidden by the } k \text{ vertices } v_1, \ldots, v_{k-4}, a_1, a_2, c_1, c_2. \text{ By previous discussions, the sequences } (0, 1, \beta) \text{ and } (0, 1, \beta') \text{ must have exactly 4 } \alpha\text{-successors, so we can assume that } \{\beta, \beta'\} \subset \{2, 3, 4, 3 + 2\sqrt{2}, 3 + 3\sqrt{2}\}. \text{ Let us set } f(b) = \beta. \text{ By property } P_{3,4}, \text{ we can color } a \text{ such that } f(a) \text{ is distinct from the colors forbidden by } u_1, u_2, u_3. \text{ Now, } f \text{ is not extendable to } c \text{ and } d \text{ only if the 4 } \alpha\text{-successors of } (0, 1, \beta) \text{ are } k_1, k_2, k_3, \text{ and } f(a). \text{ In particular, } k_1, k_2, \text{ and } k_3 \text{ have to be } \alpha\text{-successors of } (0, 1, \beta). \text{ Similarly, we can set } f(b) = \beta' \text{ and obtain that } k_1, k_2, \text{ and } k_3 \text{ have to be } \alpha\text{-successors of } (0, 1, \beta') \text{ as well. This is a contradiction, since we can observe that no two distinct sequences in Table 7 have three common } \alpha\text{-successors.} \]

Proof of Theorem 16. Let \((H)\) be a minimal counterexample which is minimal with respect to \(\leq\). By Lemma 17, \((H)\) does not contain Configurations \(C1\) to \(C8\). There remains to show that every triangle-free planar graph contains at least one these 8 configurations. This has been already done using a discharging procedure in the proof of Theorem 2 in [8], where slightly weaker configurations were used.

We now exhibit the following lower bound for the signified chromatic number of planar graphs:

Theorem 18 \(\text{There exist planar graphs with signified chromatic number } 20.\)

Proof. Let \((G_1, \Sigma_1)\) be the 6-path \(abcdef\) with \(\Sigma = \{bc, de\}\) and let \((G_2, \Sigma_2)\) be the 6-path \(abcdef\) with \(\Sigma = \{ab, cd, ef\}\). Note that \(\chi_2(G_1, \Sigma_1) = \chi_2(G_2, \Sigma_2) = 4.\)

Let \((G_3)\) be the outerplanar graph obtained from \((G_1, \Sigma_1), (G_2, \Sigma_2)\) and a vertex \(u\) such that \(u\) is positively (resp. negatively) linked to the six vertices of \((G_1)\) (resp. \((G_2)\)). For any signified coloring of \((G_3)\), we need 4 colors for the vertices of \((G_1)\), 4 other colors for the vertices of \((G_2)\), and a ninth color for \(u\). We therefore have \(\chi_2(G_3) = 9.\)

Let \((G_4)\) be the graph obtained from two copies of \((G_3)\) plus a vertex \(v\) such that \(v\) is positively linked to 13 vertices of the first copy of \((G_3)\) and negatively linked to the 13 vertices of the second one. This graph is depicted in Figure 8. Once again, it is easy to check that \(\chi_2(G_4) = 19.\)

Finally, let \((G_5)\) be the graph obtained from 28 copies \((G_4)_0, (G_4)_1, \ldots, (G_4)_{27}\) of \((G_4)\) as follows: we glue on each of the 27 vertices of \((G_4)_0\) the vertex \(v\) of a copy \((G_4)_i). \text{ Since } \chi_2(G_4) = 19, \text{ we have } \chi_2(G_5) \geq 19. \text{ Suppose, } \chi_2(G_5) = 19. \text{ Therefore, there exists a graph } (H) \text{ on 19 vertices such that } (G_5) \text{ admits a signified homomorphism to } (H). \text{ Moreover, since we glued a copy of } (G_4) \text{ on each vertices of } (G_4)_0, \text{ then each color } (\text{i.e. each vertex of } (H)) \text{ must have 9 distinct positive neighbors and 9 distinct negative neighbors. The subgraph of } (H) \text{ induced by the positive edges is a 9-regular graph on 19 vertices. Such a graph does not exist since, in every graph, the number of vertices of odd degree must be even.} \]
Montejano et al. [6] proved that any outerplanar graph admits a signified homomorphism to SP_9, that gives $\chi_2(G) \leq 9$ whenever G is an outerplanar graph. They also proved that this bound is tight. We prove here that SP_9 is the only suitable target graph on 9 vertices.

Theorem 19 The only graph of order 9 to which every outerplanar graph admits a signified homomorphism is SP_9.

Proof. Let $(G_1), (G_2)$ and (G_3) be the graphs constructed in the proof of Theorem 18.

Note that since $\chi_2(G_1, \Sigma_1) = 4$, then for any signified 4-coloring of (G_1, Σ_1), among the three positive edges ab, cd and ef, two of them will use 4 distinct colors. We will later refer to this property in the remainder of this proof as Property 1. Using the same arguments as the previous paragraph, we have that, for any signified 4-coloring of (G_2, Σ_2), among the three negative edges ab, cd and ef, two of them will use 4 distinct colors. We will later refer to this property in the remainder of this proof as Property 2.

Let (G'_4) be the outerplanar graph obtained from 14 copies $(G_3)_0, (G_3)_1, \ldots, (G_3)_14$ of (G_3) as follows: we glue on each of the 13 vertices of $(G_3)_0$ the vertex u of a copy $(G_3)_i$. Since $\chi_2(G) \leq 9$ whenever G is outerplanar, we have $\chi_2(G'_4) = 9$. Therefore, there exists a graph (H_9) on 9 vertices such that (G'_4) admits a signified homomorphism to (H_9). Each of the nine colors appears on the vertices of the copy $(G_3)_0$. Since we glued a copy of (G_3) on each vertex of $(G_3)_0$, then each color c (i.e. each vertex c of (H_9)) must have 4 positive neighbors $c^+_1, c^+_2, c^+_3, c^+_4$ and 4 negative neighbors $c^-_1, c^-_2, c^-_3, c^-_4$. Moreover, by Property 1 (resp. Property 2), we must have a positive (resp. negative) matching in the subgraph induced by $c^+_1, c^+_2, c^+_3, c^+_4$ (resp. $c^-_1, c^-_2, c^-_3, c^-_4$).

Meringer [5] provided an efficient algorithm to generate regular graphs with a given number of vertices and vertex degree. In particular, there exist 16
connected 4-regular graphs on 9 vertices (see Figure 9). Replacing edges by positive edges and non-edges by negative edges, these are the 16 signified graphs such that each vertices have 4 positive and 4 negative neighbors. It is then easy to check that, among these 16 graphs, there is only one graph with a positive (resp. negative) matching in the subgraph induced by the positive (resp. negative) neighbors of each vertex (see Figure 9(n)); this is SP_9. □

We finally give the same kind of result as Theorem 19 for planar graphs:

Theorem 20 If every planar graphs admits a signified homomorphism to an anti-twinned graph H_{20} of order 20, then H_{20} is isomorphic to $Tr(SP_9)$.

Proof. Consider the outerplanar graph (G'_4) of the proof of Theorem 19. Let
be the planar graph obtained from \((G'_4)\) plus a universal vertex positively linked to all the vertices of \((G'_4)\).

The subgraph of \((G'_5)\) induced by the vertices of \((G'_4)\) necessarily maps to the positive neighborhood of some vertex \(v\) of \((H_{20})\). Since \((H_{20})\) is anti-twinned, every vertex has exactly 9 positive neighbors. Therefore, by Theorem 19, the positive neighborhood of \(v\) is isomorphic to \(SP_9\). Then the subgraph of \((H_{20})\) induced by \(v\) and its positive neighborhood is \(SP_9^+\). Since \(SP_9^+\) is a clique of order 10, it does not contain a pair of anti-twin vertices and thus \((H_{20})\) is isomorphic to \(AT(SP_9^+)\). Then, by definition of Tromp signified Paley graphs, \((H_{20})\) is isomorphic to \(Tr(SP_9)\).

\[\blacksquare\]

5 Results on signed homomorphisms

The upper bounds on signified chromatic number given in Theorems 12, 14, 15 and 16 are obtained by showing that the considered graph class admits a signified homomorphism to some target graph. As mentioned in Corollary 4(1), when the target graph of a signified homomorphism is an anti-twinned graph, this gives a bound on the signed chromatic number. The upper bounds on signed chromatic number given in this section are a direct consequence of these above-mentioned results.

Naserasr et al. [7] proved the following:

Theorem 21 ([7]) Let \(G\) be a graph that admits an acyclic \(k\)-coloring. We have \(\chi_s(G) \leq \left\lceil \frac{k}{2} \right\rceil \cdot 2^{k-1}\).

By Theorem 12, \((G, \Sigma)\) admits a signified homomorphism to \(ZS_k\) whenever \(G\) admits an acyclic \(k\)-coloring. By Proposition 5 and Corollary 4(1), we get the following new upper bound that improves Theorem 21.

Theorem 22 Let \(G\) be a graph that admits an acyclic \(k\)-coloring. We have \(\chi_s(G) \leq k \cdot 2^{k-2}\).

Recall that Huemer et al. [4] proved that Theorem 12 is tight, i.e. there exists a planar graph \((G)\) such that \(\chi_2(G) = k \cdot 2^{k-1}\). By Lemma 3, we can deduce that \(\chi_s(G) \geq k \cdot 2^{k-2}\), showing that Theorem 22 is actually tight.

We also get the following upper bounds:

Theorem 23

(1) \(\chi_s(O_4) \leq 4\).
(2) \(\chi_s(P_3) \leq 40\).
(3) \(\chi_s(P_4) \leq 25\).
(4) \(\chi_s(P_5) \leq 10\).
(5) \(\chi_s(P_6) \leq 6\).

Proof.

(1) The result follows from Theorem 15 and Corollary 4(1).
(2) By Theorem 12 and Borodin’s result [2], every planar graph admits a signified homomorphism to \(ZS_5\), a graph on 80 vertices, which is anti-
twinned by Proposition 5. The result then follows from Corollary 4(1).

(3) The result follows from Theorem 16 and Corollary 4(1).

(4) The result follows from Theorem 14(1) and Corollary 4(1).

(5) The result follows from Theorem 14(2) and Corollary 4(1).

Concerning lower bounds, Naserasr et al. [7] constructed a planar graph with signed chromatic number 10. Note that this result also follows from Theorem 18 and Corollary 4(1). If 10 is the tight bound for signed chromatic number of planar graphs, we then get the following from Theorem 20 and Lemma 3:

Theorem 24 If every planar graphs admits a signed homomorphism to a graph H_{10} of order 10, then H_{10} is isomorphic to SP_9^+. We can easily construct a planar graph of girth 4 with signed chromatic number 6 (see Figure 10). Finally, for higher girths, note that every even cycle with exactly one negative edge needs 4 colors for any signed coloring.

6 Conclusion

One of our aims was to introduce and study some relevant target graphs for signified homomorphisms. We studied the anti-twinned graph $AT(G, \Sigma)$, the signified Zielonka graph ZS_k, the signified Paley graph SP_q, and the signified Tromp Paley graph $Tr(SP_q)$. Theorems 19, 20 and 24 suggest that such target graphs are indeed significant.

We proved that there exist planar graphs with signified chromatic number 20 and ask whether this bound is tight:

Open Problem 25 Does every planar graph admit a signified homomorphism to $Tr(SP_9)$?

We have checked by computer that every 4-connected planar triangulation with at most 15 vertices admits a homomorphism to $Tr(SP_9)$. The restriction to 4-connected triangulations (i.e. triangulations without separating triangles) is justified by Lemma 8. For the 2^{25} non-equivalent signatures of each of the 6244 4-connected planar triangulations with 15 vertices, our computer check took 150 CPU-days. Checking 4-connected triangulations with more vertices would require too much computing power.

Finally, it would be nice to drop the condition “anti-twinned” in Theorem 20.

References

[1] N. Alon and T. H Marshall. Homomorphisms of edge-colored graphs and coxeter groups. *Journal of Algebraic Combinatorics*, 8(1):5–13, 1998.

[2] O. V Borodin. On acyclic colorings of planar graphs. *Discrete Mathematics*, 25:211–236, 1979.

[3] B. Guenin. Packing odd circuit covers: a conjecture, 2005. Manuscript.
Fig. 10. A planar graph of girth 4 with signed chromatic number 6.

[4] C. Huemer, D. Flores, A. Montejano, and R. Fabila Monroy. Lower bounds for the colored mixed chromatic number of some classes of graphs. *Commentationes Mathematicae Universitatis Carolinae*, 49(4):637–645, 2008.

[5] Markus Meringer. Fast generation of regular graphs and construction of cages. *Journal of Graph Theory*, 30(2):137–146, 1999.

[6] Amanda Montejano, Pascal Ochem, Alexandre Pinlou, André Raspaud, and Éric Sopena. Homomorphisms of 2-edge-colored graphs. *Discrete Applied Mathematics*, 158(12):1365–1379, 2010.

[7] Reza Naserasr, Edita Rollová, and Éric Sopena. Homomorphisms of signed graphs. Submitted, 2013.

[8] Pascal Ochem and Alexandre Pinlou. Oriented coloring of triangle-free planar graphs and 2-outerplanar graphs. *Graphs and Combinatorics*, to appear, 2013.

[9] A. Pinlou and É Sopena. Oriented vertex and arc colorings of outerplanar graphs. *Inform. Process. Lett.*, 100(3):97–104, 2006.

[10] Horst Sachs. Über selfkomplementäre graphen. *Publicationes Mathematicae Debrecen*, 9:270–288, 1962.

[11] J. Tromp. *Unpublished manuscript*.

[12] W. Zielonka. Time-stamp systems for a fixed set of agents. Technical report, Bordeaux 1 university, 1990.