Novel fast pathogen diagnosis method for severe pneumonia patients in the intensive care unit: randomized clinical trial

Yan Wang†, Xiaohui Liang‡, Yuqian Jiang‡, Danjiang Dong†, Cong Zhang‡, Tianqiang Song‡, Ming Chen†, Yong You†, Han Liu‡, Min Ge‡, Haibin Dai‡, Fengchan Xi‡, Wanqing Zhou‡, Jian-Qun Chen‡, Qiang Wang‡*, Qihan Chen‡,8*, Wenkui Yu†,8*

1Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; 2The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China; 3Department of Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; 4Department of Cardiothoracic Surgery Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; 5Department of Neurosurgery Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; 6Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China; 7Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China; 8Medical School of Nanjing University, Nanjing, China

Abstract

Background: Severe pneumonia is one of the common acute diseases caused by pathogenic microorganism infection, especially by pathogenic bacteria, leading to sepsis with a high morbidity and mortality rate. However, the existing bacteria cultivation method cannot satisfy current clinical needs requiring rapid identification of bacteria strain for antibiotic selection. Therefore, developing a sensitive liquid biopsy system demonstrates the enormous value of detecting pathogenic bacterium species in pneumonia patients.

Methods: In this study, we developed a tool named Species-Specific Bacterial Detector (SSBD, pronounce as ‘speed’) for detecting selected bacterium. Newly designed diagnostic tools combining specific DNA-tag screened by our algorithm and CRISPR/Cas12a, which were first tested in the lab to confirm the accuracy, followed by validating its specificity and sensitivity via applying on bronchoalveolar lavage fluid (BALF) from pneumonia patients. In the validation I stage, we compared the SSBD results with traditional cultivation results. In the validation II stage, a randomized and controlled clinical trial was completed at the ICU of Nanjing Drum Tower Hospital to evaluate the benefit SSBD brought to the treatment.

Results: In the validation stage I, 77 BALF samples were tested, and SSBD could identify designated organisms in 4 hr with almost 100% sensitivity and over 87% specific rate. In validation stage II, the SSBD results were obtained in 4 hr, leading to better APACHE II scores (p=0.0035, ANOVA test). Based on the results acquired by SSBD, cultivation results could deviate from the real pathogenic
situation with polymicrobial infections. In addition, nosocomial infections were found widely in ICU, which should deserve more attention.

Conclusions: SSBD was confirmed to be a powerful tool for severe pneumonia diagnosis in ICU with high accuracy.

Funding: National Natural Science Foundation of China. The National Key Scientific Instrument and Equipment Development Project. Project number: 81927808.

Clinical trial number: This study was registered at https://clinicaltrials.gov/ (NCT04178382).

Editor’s evaluation
Current culture-based, gold standard methods used for diagnosing the cause of sepsis provide results in 48–96 hours slowing antibiotic treatment initiation and leading to poor patient recovery. This work provides a new tool for identifying sepsis- and pneumonia-causing pathogens in less than 4 hours with species-specificity with the hope that the fast turnaround time leads to early treatment and improved clinical outcomes. Using an optimized PCR+CRISPR-Cas12a DNA detection method, the assay demonstrates good analytical sensitivity and specificity for 10 common bacterial pathogens that cause pneumonia. The method is validated in a clinical cohort and the clinical benefit is analyzed using a second cohort which is an intervention study used to guide clinicians on treatment choice.

Introduction
Sepsis is associated with high morbidity and mortality (Singer et al., 2016). Adequate antibiotic therapy in time could decrease mortality and reduce the length of stay in ICU for patients with sepsis or septic shock (Ferrer et al., 2018; Kumar et al., 2006; Pulia and Redwood, 2020; Seymour et al., 2017). As reported in the previous study, the mortality rate of patients increased approximately 7.6% for every hour delayed (Kumar et al., 2006). Therefore, rapid diagnosis of pathogenic microorganisms is crucial for shortening the time of empirical antibiotic therapy and improving the prognosis of patients with sepsis.

Conventional culture test (CCT) is the most commonly used and golden standard identification method of pathogenic microorganisms in most countries. However, it showed two critical limitations: long time-consuming (2–5 days) and low sensitivity (30–50%), which limited the application of this method in the ICU (Abd El-Aziz et al., 2021; Zhou et al., 2014). To overcome this bottleneck, several new tools were developed and showed significant improvement in time consumption and accuracy. Recently, next-generation sequencing (NGS) technology was applied to acquire the entire information of microorganisms and demonstrated great ability in diagnosing rare pathogens. However, the whole process still needs at least 2 days for the full diagnostic report with high cost (Chen et al., 2020; Wang et al., 2020). On the other hand, NGS provided too much information about microorganisms but only semi-quantification of pathogens, which was hard for most clinical doctors to extract the most important information to determine antibiotic usage. Other new emerging detection techniques designed by BioFire and Curetis are much superior in detection time than these above. However, its original principle was based on nucleotide diversity of conserved genes among species, which could not satisfy the application in the ICU due to potential false-positive results (Edin et al., 2020; Jamal et al., 2014; Trotter et al., 2019). Therefore, a unique diagnosis tool aimed at faster and more accurate pathogen identification in the ICU was still a great challenge.

In this study, we aimed to design a simple and convenient diagnosis tool for sepsis patients in the ICU, which covered the most common pathogenic bacteria and completed the detection process in the shortest possible time with low cost and minimum instrument requirements. A clinical trial with two stages was applied to evaluate the accuracy of the tool and the clinical benefits.
Materials and methods

Study design

The full study design was shown in Figure 1. In the discovery stage, we screened species-specific DNA tags of 10 epidemic pathogenic bacteria in the ICU. In the training stage, we optimized reaction conditions and sample preparation process, including detection concentration limitation, DNA purification, and incubation time of the CRISPR/Cas12a reaction. The finalized experiment operating procedure of SSBD was used in the subsequent stages (detailed protocol was shown in Appendix 1).

In validation stage I, 77 specimens of bronchoalveolar lavage fluid (BALF) directly acquired from patients in ICU were finally detected by SSBD to confirm the specificity and sensitivity of SSBD compared to CCT results. Based on clinical needs, some of the samples were diagnosed by NGS technology in third party commercial company, which provided additional information for reference.

After the stability and accuracy of SSBD were thoroughly evaluated, the validation stage II, a preliminary clinical intervention experiment, was launched to verify the clinical application of SSBD.

Screening species-specific DNA tags

We designed a process to find the species-specific DNA tags according to the basic principle, intraspecies-conserved and interspecies-specific sequences (illustrated in Figure 2A). A total of 1791 high-quality genomes of 232 microorganism species from the public databases were included in the screening process. To accelerate the screening process, we developed a linear comparison algorithm instead of comparing every two genomes, which could save more than 90% of calculation time cost (Appendix 1—figure 1). According to the epidemiological data by previous retrospective study (Zhou et al., 2014) and 2017 data in ICU of Nanjing Drum Tower Hospital (Appendix 1—figure 2), 10 species of bacteria covered 76% sepsis pathogenic bacteria and therefore were selected as targets for subsequent detecting process, including Acinetobacter baumannii (A. baumannii), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa), Stenotrophomonas maltophilia (S. maltophilia), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), Staphylococcus capitis (S. capitis), Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium). Then we designed different DNA primers targeting selected species-specific DNA tags from each species (Appendix 1—tables 1 and 2).

To evaluate our primers’ specificity in identifying species, we chose S. aureus and S. epidermidis from the same genus as our cross-validated target species. We extracted DNA sequences of the S. aureus and the S. epidermidis amplified by primers used in FilmArray Pneumonia Panel developed by BioFire and in our protocol, which were acquired from NCBI Reference Prokaryotic Representative genomes. We then aligned S. aureus-specific DNA sequences with the representative genome of S. epidermidis using blast to search the most similar DNA sequences. In the FilmArray Pneumonia Panel, DNA amplified sequences from the S. aureus and the S. epidermidis were aligned to each other (two different gene regions, rpoB and gyrB, were used to separate two species).

Patients

Patients admitted to ICUs and diagnosed with severe pneumonia were recruited from Aug 27, 2019. The recruit criteria for patients were: (1) age ≥18 years; (2) had artificial airway and expected to retain for more than 48 hr; (3) clinically diagnosed as pneumonia, and the microbiology of etiology was unclear; (4) signed informed consent; (5) the expected length of staying in ICU was more than 3 days. According to previous mortality acquired from the adequate anti-infective group, the sample size calculation (two-group rate) for patients was done, and a sample size of 73 patients in each group was needed. The enrolled participants formed a consecutive and convenient series, who were randomly assigned to experimental or control groups as described in the appendix 1.

Clinical outcomes

BALFs were obtained from all the patients from 2 groups on day 1, day 3–5, and day 7–10 after recruitment and were sent directly to the hospital diagnostic microbiology laboratory for CCT and susceptibility testing. CCT results were obtained in strict accordance with international ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia, which is currently the guideline for clinical gold standard. BALFs from patients of the experiment group were also sent for SSBD tests immediately after sampling. The time from sample
Discovery Stage
10 bacteria are included as targets to screen species specific DNA-tags

Training Stage
Design 10 types of crRNA based on species specific DNA-tags
2 samples of each kind of bacteria are used to be tested

Validation Stage I
77 samples are detected by both SSBD and cultivation
11 samples are sent for NGS

Validation Stage II
Plan to recruit 146 patients for randomized controlled trail

Experiment group
3 BALF samples collected for each patient
Methods: SSBD and cultivation (12 samples sent for NGS)
Clinical data recorded
Follow-up at the 28th day

Control group
3 BALF samples collected for each patient
Method: only cultivation
Clinical data recorded
Follow-up at the 28th day

2 patients excluded for cultivation results missing

Figure 1. Study design. This study contained four stages: discovery stage, training stage, validation stage I and validation stage II. All patients were from the Department of Critical Care Medicine, Nanjing Drum Tower Hospital. Patients were randomly divided into two groups for the clinical trial.
Figure 2. Screening workflow and statistics of species-specific DNA tags. (A) Schematic diagram of screening species-specific DNA tags. (B) Genomic distribution of species-specific DNA tags in 10 bacteria. (C) Genomic proportion of species-specific DNA tags in 10 bacteria.
acquisition to feedback of results was defined as the turnaround time, as well as being estimated and compared between SSBD and CCT. Other clinical records included blood routine tests, CRP and PCT examinations.

All enrolled patients received primary empirical antibiotic therapy. Once the SSBD results of the patients in the experiment group were obtained, the decisions about whether antibiotics were adjusted or not were made by two senior doctors according to the SSBD results and other clinical information. While in the control group, adjustment depended on conventional culture results and clinical data. Patient demographics and other vital clinical parameters were recorded. Acute Physiology and Chronic Health Evaluation II (APACHE II) scores and Sequential Organ Failure Assessment (SOFA) scores were calculated and recorded for patients on days 1, 3, 7, 10, and 14 to assess their disease severity and organ function.

Statistical analysis
The number of improved patients on different clinical indicators of different days was calculated and tested by Fisher’s exact test. APACHE II scores and SOFA scores were tested as a series by two-way ANOVA. Different clinical outcomes were tested by the Mann-Whitney test.

Funding support
This study was funded by National Natural Science Foundation of China. The National Key Scientific Instrument and Equipment Development Project. Project number: 81927808. The funders were not involved in the initiation or design of this study, collection of samples, analysis and interpretation of data, writing of the paper, or the submission for publication. The study and researchers are independent of the funders.

Results
The identification of species-specific DNA fragments
The first step to identify pathogenic bacteria was to figure out the specific genome information of each species. Bacteria were quite similar between close-related species but sometimes quite different among different strains of one species due to fast evolution and horizontal gene transfer (Dombrowski et al., 2020; Brito, 2021; Groussin et al., 2021), which makes it hard to figure out great species-specific DNA fragments. For example, two typical strains PAO1 and PAO7 of P. aeruginosa (NCBI representative genome database) demonstrate less than 94% nucleotide identity, while E. coli and Shigella sonnei both belong to Enterobacteriaceae and their representative genomes share more than 98% nucleotide identity. Therefore, the widely used method to identify bacteria with conserved genes may not be a good choice (Maslunka et al., 2015; Liu et al., 2021). We developed an innovative algorithm and designed a workflow to figure out the best DNA tag for each species for diagnostic application based on 1791 microbe genomes from 232 species (Figure 2A). The details could be found in Appendix 1.

We started from 10 common bacteria contributing to sepsis infection as the initial panel according to local epidemic data from ICU of Drum Tower hospital and previous studies about pathogens in ICU (Appendix 1—figure 2; De Pascale et al., 2012; Sakr et al., 2018). To our surprise, bacteria-specific DNA sequences showed a random distribution and turned out to be only 0.3–4.1% in the whole genomes of 10 bacteria (Figure 2B and C). Considering the application scenario of ICU with only basic instruments, PCR + CRISPR/Cas12a system was chosen for the following detection. Based on the identified species-specific DNA fragments, related primers and crRNAs (CRISPR RNA) were designed according to each species (Appendix 1—tables 1 and 2).

The establishment of species-specific bacteria detection tool
Briefly, CRISPR/Cas12a with designed crRNA could be activated by its target, which could be told by whether the reporter probe was cleaved and demonstrated signal as previously reported (Chen et al., 2018).

To optimize the working conditions of the detection tool in ICU, multiple experiments were applied to optimize the sample preparation and detection process. With the gradient concentration of DNA templates, we confirmed that the lowest detection limit was 10^{-15} M with PCR amplification and 10^{-8} M
without amplification step (Figure 3B), which was consistent with previous studies (Gootenber et al., 2018). In addition, 30 min’ incubation of CRISPR/Cas12a with PCR products was enough to demonstrate signals (Figure 3B). An additional purification step right after PCR amplification appeared unnecessary to acquire the positive result but helpful for weaker signal (Appendix 1—figure 3A). In addition, the comparison of CRISPR/Cas incubation duration confirmed that fluorescence value showed a significant difference from 5 min and reached its maximum after 30 min compared to the negative control (Appendix 1—figure 3B).

To confirm the primary behavior of SSBD, two clinical strains separated from different patients for each of 10 selected bacteria species were collected and tested by SSBD as the positive control, which showed clear positive results (Appendix 1—figure 3C). To further confirm the specificity of SSBD, each bacteria strain was tested by 10 SSBD test panels targeting different bacteria. Compared to negative control, only SSBD targeting the tested bacteria showed a positive result, which confirmed its high specificity (Figure 3C).

Putting these results together, a standard operating procedure was finally established for the following validation stages (Figure 3A), which was capable of providing the information about the ten most common pathogenic bacteria in ICU. Since this method was a quite fast and species-specific bacteria detection tool, we named it SSBD.

The accuracy and clinical benefits of SSBD

We started our study with validation stage I, which was a non-intervention study with 77 samples of BALF extracted from patients. Samples were detected both by SSBD and CCT, and the results were compared (raw detection results were shown in Appendix 1—table 3).

Generally, 5 of 10 selected bacteria were detected by both tests, including A. baumannii, K. pneumoniae, P. aeruginosa, S. aureus, and S. maltophilia. SSBD could detect those five bacteria separately with 100% sensitivity and over 87% specificity, which were calculated by the results of CCT as golden standard (Figure 4A). The other five bacteria were detected by SSBD but not CCT, including E. coli, S. epidermidis, S. capitis, E. faecalis, and E. faecium. Among all samples, 11 of them were determined by patients to acquire results with NGS, which provided extra information to evaluate the results (Appendix 1—table 4). Based on the results, SSBD was highly consistent with NGS, which implied that SSBD might provide more accurate and complete pathogenic information than CCT in the selected panel.

Based on these accurate results, we started the validation stage II, which was an intervention study aiming to evaluate the clinical benefits of SSBD compared to the current diagnosis and treatment strategy in ICU. Although the study was paused due to the outbreak of SARS-CoV2, 22 patients were recruited into the experiment group and 24 patients into the control group. The baseline characteristics had no significant difference except ages (Table 1).

We finally got 57 BALF results tested by SSBD, which included 43 results that also had CCT results among them in the experiment group. While in the control group, we got 63 samples tested only by CCT. In the experiment group, 47 samples were positive among 57 samples tested by SSBD, while 28 samples were positive among 43 samples tested by CCT (raw detection results were shown in Appendix 1—table 5). In the control group, 41 samples showed positive among 63 samples. It was shown that SSBD could detect each bacterium with similar high sensitivity and specificity in validation stage II (Figure 4B). Consistent with the local epidemic data, the most frequent occurrence was A. baumannii (Figure 4B). Similar to stage I, 12 samples were determined by patients to test with NGS, which help us to draw the same conclusion that SSBD seemed to be better than CCT (Appendix 1—table 6).

To explore clinical benefits with the help of SSBD, effective antibiotic coverage rate, APACHE II scores were calculated and compared to evaluate the rationalization of antibiotic therapy and patients’ disease severity and organ function status in the two groups (Figure 4C-E). Effective antibiotic coverage rates for each test were significantly higher in the experimental group than those in the control group in three tests (Figure 4C). The definition of antibiotic coverage and the original calculation results were shown in Appendix 1—figure 4A and B. APACHE II scores were significantly lower in the experimental group than those in the control group after day 1 (p=0.0035, two-way ANOVA); the separation between two groups of patients increased progressively until day 14 (Figure 4D). SOFA scores showed no difference between the groups (p=0.8918, two-way ANOVA) (Figure 4E).
Figure 3. SSBD development and effectiveness validation. (A) SSBD workflow for clinical validation stages. (B) Cas12a and Cas12a-after-PCR detection of different concentrations and reaction times including 30 min (left) and 60 min (right). Blue bars indicated the Cas12a-after-PCR test. Brown bars indicated Cas12a test only. The concentration gradient of pGL3 plasmid from 10^{-17} M to 10^{-7} M was established as the test group. NC stood for the fluorescence values of PCR products of using DEPC-H2O as input. Each group had three repeats. Error bars indicated mean ± SEM of fluorescence values.

Figure 3 continued on next page
Polymicrobial infection and nosocomial events observed by SSBD

Based on the previous studies, CCT had defects in the evaluation of polymicrobial infection events due to the limitations of its technology (Azevedo et al., 2017). Therefore, we tried to evaluate whether SSBD demonstrated better performance with polymicrobial infection. Here, we defined situations of infection with more than one pathogenic microorganism as polymicrobial infection events to assess the performance based on the results of both methods. From the results, the detection rate of polymicrobial infection events by SSBD was 41.8% (55/134) in two validation stages, which was significantly higher than 11.7% (14/120) of CCT (Figure 5A). Polymicrobial infection events were compared among SSBD, CCT and NGS, which demonstrated high consistency of SSBD and NGS (Figure 5B).

Since both SSBD and NGS were based on target DNA, we wanted to confirm if some polymicrobial infection events were ‘false positive’ and caused by dead bacteria. Here, we showed patient B19 as an example, who received three times tests at days 1, 3, and 7 by both CCT and SSBD. Based on the results, S. maltophilia was detected as level II in test1 with SSBD but not CCT. Later on, S. maltophilia was detected by CCT in test2 as well with few days’ development from level II to level III based on result of SSBD, which means SSBD discovered the true polymicrobial infection event earlier than CCT (Figure 5C). From the aspect of pathogen species participated in polymicrobial infection events, both methods demonstrated similar results with A. baumannii, S. maltophilia, P. aeruginosa, K. pneumoniae and S. aureus in top 5 (Figure 5D), which were consistent with the frequency of pathogens in ICU (De Pascale et al., 2012).

Hospital infections, also known as nosocomial infections, are an important factor in the incidence rate and mortality of ICU patients with severe pneumonia (Zaragoza et al., 2020). Since CCT has a long delay in clinical feedback of pathogenic results, there is no effective monitoring method in clinical practice. Here, we tried to evaluate nosocomial infections based on the test results. We defined a case as a nosocomial infection event if a pathogenic bacterium was newly detected in the current time point but not before. For example, B17 (K. pneumoniae at test 2, E. faecalis at test 3) and B19 (S. maltophilia at test 2, K. pneumoniae at test 3) patients were discovered as nosocomial infection cases for SSBD and CCT (Figure 5E and F). Based on the results of SSBD, 47.6% (10/21) of patients had nosocomial infections at the test 2, and 28.6% (4/14) of patients had nosocomial infections at the test 3. Similarly, 40% (4/10) of patients were identified as nosocomial infections by CCT at test 2, and 27.3% (3/11) of patients were identified as nosocomial infections at test 3 (Figure 5G).

Discussion

In this study, we developed a rapid bacteria detection technique based on CRISPR/Cas12a using species-specific DNA tags and detected common bacteria taken from pneumonia in 4 hr with 100% sensitivity and over 87% specificity in the validation stage I. Currently, there are already some market-oriented detection technologies for pneumonia patients, such as FilmArray Pneumonia Panel by BioFire and Curetis Unyvero system, which also could detect microorganisms in several hours (Trotter et al., 2019). However, based on the information in their product instruction, false positive results were widely seen in close relative species. Such problem may due to the marker selection strategy. For example, sequences used by FilmArray Pneumonia Panel from two gene regions had highly similar DNA sequences in the S. epidermidis representative genome (E-value=5e-40, rpoB; E-value=8e-39, gyrB), which could interfere with pathogen identification between species from the same genus. It was ideal for early and rapid screening of infectious diseases but was not applicable in the ICU, considering the complexity and urgency of infection events within the ICU. We have adopted a completely
Figure 4. Statistical analysis of test results and clinical outcomes in the two validation stages. (A) Cross-tables for 5 of 10 bacteria by both SSBD and CCT in the validation stage I. (B) Cross-tables for 5 of 10 bacteria by both SSBD and CCT in the validation stage II. (C) Antibiotics coverage rate of each test in the two groups. Exp meant the experimental group, and Con meant the control group. Test 1: Day 1. Test 2: Day 3–5. Test 3: Day 7+. Raw antibiotics coverage results of each patient were available in Appendix 1—figure 4B. Detailed judging guidelines were shown in Appendix 1. (D) Figure 4 continued on next page
different strategy from the existing methods, getting specific gene regions from species for further test using our developed bioinformatics workflow and algorithm. It was shown that our sequences used for *S. aureus* diagnosis had no similar fragments in *S. epidermidis*, which avoided distinguishing different species by gene diversity. It was likely to get the species-specific DNA tags from such amount genomes when aligned bacterial genomes with each other but consuming computational cost. We optimized calculation processes by rescheduling steps and then made it possible for us to acquire species-specific DNA regions after shortening time to a range bearable.

NGS technology is useful in species identification and also shows its advantages in clinical diagnosis. It is valuable to detect uncommon pathogens because of its unique capability in detecting multiple agents across the full microbial spectrum contributing to disease and has already been developed as a new detection platform (Wang et al., 2020). However, in the majority of cases of common pathogens, redundant microorganism results were probably unhelpful to the anti-infection regimen. In addition, the high cost and relatively long turnaround time prevent its widespread application, especially in the ICU circumstance. Therefore, our SSBD method seemed more advantageous in time-consuming and information effectiveness than other mentioned methods, especially when we could quantify bacterial load based on fluorescence intensity for better antibiotic therapy strategy. CRISPR/Cas12a and qPCR are both quantitative methods, but CRISPR/Cas12a shows its robustness and lower equipment requirement, which satisfied our needs for most of the ICU. There are still several challenges in implementing POCT in developing countries, especially the qPCR/POCT system, which will be an alternative. Here, we listed a table to demonstrated the comparison among SSBD, CCT and NGS from main aspects (Appendix 1—table 10).

The results of SSBD demonstrated high sensitivity and specificity. However, we discovered several ‘false positive’ results compared to CCT, which might be caused by two reasons: (1) The low bacterial load of the patient sample was probably not enough or needed much longer time than expected to be cultivated. SSBD provided a lower threshold of detection (10⁻¹⁵ M) than CCT, which could detect pathogens that even existed in trace amounts which unable to be cultivated. In our study, the fluorescence intensity obtained from SSBD was divided into three intervals (level I: 10⁻¹⁵⁻¹⁰⁻¹⁴ M, level II: 10⁻¹⁴ M⁻¹⁰⁻¹³ M, level III: over 10⁻¹³ M), representing the different strengths of bacteria (roughly equivalent to bacteria amounts according to our lowest detection thresholds, dividing details in SSBD diagnostic report of Appendix 1). All false-positive results were calculated on the count of species and strengths, mostly belonging to the level I or II (Appendix 1—figure 5). Considering most of those false positive samples were also validated by NGS technology, it suggested that some pathogens might be missed in the CCT results. (2) Cultivation could fail in detecting pathogens that failed in competitive growth environments. It was interesting to see that many patients were infected by more than one pathogen, which might cause potential competition between different pathogens in CCT process (Appendix 1—table 9). For example, *A. baumannii* was found to be the most competitive bacteria in cultivation, which may be due to its fastest growth rate. On the other hand, *P. aeruginosa* seemed to be relatively the weakest one among them, which was usually concealed in the cultivation with other species existing (sample A16, B19-3, B21-1, B21-2 after we excluded all samples with *A. baumannii* existing).

When evaluating the clinical benefit from SSBD, the quicker directed therapy adjustment for patients in the experiment group (Exp: 10.2±8.8 hours vs. Con: 96.0±35.1 hr, p<0.0001, Mann-Whitney test) could shorten the empirical anti-infection time and seemed to alleviate illness severity (APACHE II score) during the validation stage II with the help of the SSBD. As showed in Appendix 1—table 8, patients in experiment groups for example demonstrated significant better measures of temperature improvement at day 3, WBC improvement at day 7. It implied that appropriate antibiotic treatment guided by in-time pathogenic information would alleviate acute physiological illness. Nevertheless, at the endpoint, clinical outcomes showed no differences between the two groups, which may due to the insufficient patient numbers.

Despite the size in our intervention stage, there were still some aspects that have not been considered. (1) Resistance genes were not included in the study. Multi-drug resistant organisms (MDROs) prevailed in ICU (Liu et al., 2020; Yang et al., 2020), which might not improve the situation of patients
even with accurate pathogenic information. There were a few cases (e.g. B07, B25, and B35 patients) showing no signs of clearing the bacterial infection. (2) The 10 designed pathogens were originated from sepsis, which might not completely overlap with pathogens of severe pneumonia, though pneumonia is one of the most common causes of sepsis. The panel pathogens could be optimized flexibly

Table 1. Demographic and baseline characteristics of the patients in the validation stage II.
Experimental group (n=22)
Women
Men
Age, years (SD)
Patients’ numbers of chronic comorbidities
Hypertension
Coronary artery disease
Chronic pulmonary disease
Chronic kidney disease
Diabetes
Malignancy
Stroke
Immunodeficiency/immune suppressive therapy
Recent surgery
Hemodynamic support (using vasoactive drugs)
Norepinephrine ≤0.1 μg/(kg•min)
Norepinephrine >0.1 μg/(kg•min)
Dopamine ≤5 μg/(kg•min)
Dopamine >5 μg/(kg•min)
Dobutamine ≤5 μg/(kg•min)
Dobutamine >5 μg/(kg•min)
Status at randomization (D1)
Temperature, °C
Coma
Systolic blood pressure, mmHg
Invasive mechanical ventilation
Renal replacement therapy
SOFA score
APACHE II score
Albumin, g/L
Globulin, g/L
Absolute lymphocyte count, 10⁹ /L
White blood cells, 10⁹ /L
CRP, mg/L

SOFA score and APACHE II score are mean (SEM), other data are mean (SD), n (%). Mean (SEM/SD) is compared using Mann-Whitney test, and n (%) is compared using Fisher’s exact test. * indicated p-value <0.05.
Figure 5. Statistical analysis of polymicrobial infection and nosocomial infection in the two validation stages. (A) Statistics of pathogenic infection status of BALF samples in the two validation stages. (B) Verification from NGS results for 6 samples identified as polymicrobial infection by SSBD but not CCT or missed pathogens by CCT. (C) Case study of polymicrobial infection detected by SSBD and CCT. (D) Statistics of pathogens involved in polymicrobial infections in the two stages. (E) Case study of nosocomial infection identified by SSBD. (F) Case study of nosocomial infection identified by CCT. (G) Percentage of nosocomial infection identified by SSBD and CCT.
for meeting diverse clinical needs in the ICU. (3) Other potential pathogenic microbes, such as viruses and fungus, might affect the clinical outcomes considering the complexity of ICU patients.

Previous studies showed that polymicrobial pneumonia is related to an increased risk of inappropriate antimicrobial treatment (Karner et al., 2020). In both phases, a total of 55 samples were identified as polymicrobial infections by SSBD, while only 14 samples were identified as polymicrobial infections by CCT, which suggested that SSBD could provide more precise pathogenic bacteria information than CCT, especially for those patients with polymicrobial infections. On the other hand, nosocomial infections contribute to a considerable proportion of deaths in ICU patients with severe pneumonia (Zaragoza et al., 2020). Although SSBD identified similar ratio of nosocomial infection events with CCT (Figure 5G), SSBD provided more timely information for clinical control and response, which might improve the clinical medication decision in ICU.

As anticipated, SSBD performed well with high sensitivity and specificity in rapid pathogens identification, and it possessed shorter turnover time, which was associated with more rapid administration of appropriate antimicrobial therapy in the experiment cases. SSBD also has enormous potential in expanding pathogens from different diseases with much more pathogen genomes included. We believe that SSBD is an accurate tool with great potential but need to be applied in more clinical research.

Additional information

Funding

Funder	Grant reference number	Author
National Natural Science Foundation of China	The National Key Scientific Instrument and Equipment Development Project.	Wenkui Yu
National Natural Science Foundation of China	81927808	Wenkui Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Yan Wang, Resources, Project administration; Xiaohui Liang, Validation, Writing – original draft; Yuqian Jiang, Tianqiang Song, Software; Danjiang Dong, Ming Chen, Han Liu, Haibin Dai, Wanqing Zhou, Supervision; Cong Zhang, Fengchan Xi, Methodology; Yong You, Investigation; Min Ge, Jian-Qun Chen, Writing – review and editing; Qiang Wang, Data curation, Methodology, Writing – original draft; Qihan Chen, Supervision, Writing – review and editing; Wenkui Yu, Methodology, Writing – review and editing

Author ORCIDs

Xiaohui Liang http://orcid.org/0000-0001-8065-8168
Qiang Wang http://orcid.org/0000-0003-2907-9851
Qihan Chen http://orcid.org/0000-0002-0062-8434
Wenkui Yu http://orcid.org/0000-0003-4218-0321

Ethics

Clinical trial registration NCT04178382.
We acquired the ethics approval (2019-197-01) from the ethics committee of Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School in July 2019, registered and posted the complete research protocol, informed consent, subject materials, case report form, researcher manual, the introduction of main researchers and other information in Chinese. Later on, this study was registered in English at https://clinicaltrials.gov/ (NCT04178382) in November 2019.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.79014.sa1
Author response https://doi.org/10.7554/eLife.79014.sa2
Additional files

Supplementary files
- Appendix 1—figure 2—source data 1. Epidemic data of pathogens in the ICU of Nanjing Drum Tower Hospital in 2017.
- Appendix 1—figure 3—source data 1. The test of SSBD with or without DNA purification.
- Appendix 1—figure 3—source data 2. The test of SSBD with different incubation times.
- Appendix 1—figure 3—source data 3. The validation of SSBD with clinical strains.
- Appendix 1—figure 4—source data 1. Classification of antibiotic coverage for each test in two groups.
- MDR checklist

Data availability
All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 3-5, Appendix figures 2-5, and Appendix tables 3-9.

References

Abd El-Aziz NK, Gharib AA, Mohamed EAA, Hussein AH. 2021. Real-Time PCR versus MALDI-TOF MS and culture-based techniques for diagnosis of bloodstream and pyogenic infections in humans and animals. *Journal of Applied Microbiology* 130:1630–1644. DOI: https://doi.org/10.1111/jam.14862, PMID: 33073430

Azevedo AS, Almeida C, Melo LF, Azevedo NF. 2017. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. *Critical Reviews in Microbiology* 43:423–439. DOI: https://doi.org/10.1080/1040841X.2016.1240656, PMID: 2803847

Brito IL. 2021. Examining horizontal gene transfer in microbial communities. *Nature Reviews. Microbiology* 19:442–453. DOI: https://doi.org/10.1038/s41579-021-00534-7, PMID: 33846600

Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. 2018. CRISPR-cas12a target binding unleashes indiscriminate single-stranded DNase activity. *Science* 360:436–439. DOI: https://doi.org/10.1126/science.aar6245, PMID: 29449511

Chen H, Yin Y, Gao H, Guo Y, Dong Z, Wang X, Zhang Y, Yang S, Peng Q, Liu Y, Wang H. 2020. Clinical utility of in-house metagenomic next-generation sequencing for the diagnosis of lower respiratory tract infections and analysis of the host immune response. *Clinical Infectious Diseases* 71:S416–S426. DOI: https://doi.org/10.1093/cid/ciaa1516, PMID: 33367583

De Pascale G, Bello G, Tumbarello M, Antonelli M. 2012. Severe pneumonia in intensive care: cause, diagnosis, treatment and management: a review of the literature. *Current Opinion in Pulmonary Medicine* 18:213–221. DOI: https://doi.org/10.1097/MCP.0b013e328351f9bd, PMID: 22388582

Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee J-H, Minh BQ, Rinke C, Spang A. 2020. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. *Nature Communications* 11:3939. DOI: https://doi.org/10.1038/s41467-020-17408-w, PMID: 32770105

Edin A, Eilers H, Allard A. 2020. Evaluation of the biofire filmarray pneumonia panel plus for lower respiratory tract infections. *Infectious Diseases* 52:479–488. DOI: https://doi.org/10.1080/23744235.2020.1755053, PMID: 32319831

Ferrer R, Martínez ML, Gomá G, Suárez D, Álvarez-Rocha L, de la Torre MV, González G, Zaragoza R, Borges M, Blanco J, Herrejón EP, Artigas A, ABISS-Edusepsis Study group. 2018. Improved empirical antibiotic treatment of sepsis after an educational intervention: the ABISS-Edusepsis study. *Critical Care* 22:167. DOI: https://doi.org/10.1186/s13054-018-2091-0, PMID: 29933756

Gooteenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. 2018. Multiplexed and portable nucleic acid detection platform with cas13, cas12a, and csm6. *Science* 360:439–444. DOI: https://doi.org/10.1126/science.aaq0179, PMID: 29449508

Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J, Gibbons SM, Segurel L, Froment A, Groussin M. 2020. Inhibition of SARS-CoV-2 replication by a CRISPR-Cas12a-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia. *Journal of Clinical Microbiology* 52:2487–2492. DOI: https://doi.org/10.1128/JCM.00325-14, PMID: 24789196

Karner L, Drechsler S, Metzger M, Hacopian A, Schädl B, Slezk P, Grillari J, Dungel P. 2020. Antimicrobial photodynamic therapy fighting polymicrobial infections-a journey from in vitro to in vivo. *Photochemical & Photobiological Sciences* 19:1332–1343. DOI: https://doi.org/10.1039/d0pp00108b, PMID: 32996547

Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. 2006. Duration of hypotension before initiation of effective antimicrobial therapy and outcome of patients with severe sepsis and septic shock. *Critical Care* 10:R106. DOI: https://doi.org/10.1186/cc4695, PMID: 17003163

Mohamed RS, Fezeu A, Juimo VA, Lafosse S, Tabe FE, Girard C, Iqaluk D, Nguyen LTT, Shapiro BJ, Lehtimäki J, Jamal W, Al Roomi E, AbdelAziz LR, Rotimi VO. 2021. Elevated rates of horizontal gene transfer in the industrialized human microbiome. *Cell* 184:1630–1644. DOI: https://doi.org/10.1016/j.cell.2021.02.052, PMID: 33794144
therapy is the critical determinant of survival in human septic shock. Critical Care Medicine 34:1589–1596. DOI: https://doi.org/10.1097/01.CCM.0000217961.75225.E9, PMID: 16625125

Liu J, Zhang L, Pan J, Huang M, Li Y, Zhang H, Wang R, Zhao M, Li B, Liu L, Gong Y, Bian J, Li X, Tang Y, Lei M, Chen D. 2020. Risk factors and molecular epidemiology of complicated intra-abdominal infections with carbapenem-resistant Enterobacteriaceae: a multicenter study in China. The Journal of Infectious Diseases 221:S156–S163. DOI: https://doi.org/10.1093/infdis/jiz574, PMID: 32176797

Liu Y, Pei T, Yi S, Du J, Zhang X, Deng X, Yao Q, Deng M-R, Zhu H. 2021. Phylogenomic analysis substantiates the gyrB gene as a powerful molecular marker to efficiently differentiate the most closely related genera Myxococcus, Corallococcus, and pyxidicoccus. Frontiers in Microbiology 12:12. DOI: https://doi.org/10.3389/fmicb.2021.763359

Maslunka C, Gürtler V, Seviour RJ. 2015. The impact of horizontal gene transfer on targeting the internal transcribed spacer region (its) to identify Acinetobacter junii strains. Clinical Microbiology and Infection 21:1589–1596. DOI: https://doi.org/10.1097/01.CCM.0000217961.75225.E9, PMID: 16625125

Liu J, Zhang L, Pan J, Huang M, Li Y, Zhang H, Wang R, Zhao M, Li B, Liu L, Gong Y, Bian J, Li X, Tang Y, Lei M, Chen D. 2020. Risk factors and molecular epidemiology of complicated intra-abdominal infections with carbapenem-resistant Enterobacteriaceae: a multicenter study in China. The Journal of Infectious Diseases 221:S156–S163. DOI: https://doi.org/10.1093/infdis/jiz574, PMID: 32176797

Liu Y, Pei T, Yi S, Du J, Zhang X, Deng X, Yao Q, Deng M-R, Zhu H. 2021. Phylogenomic analysis substantiates the gyrB gene as a powerful molecular marker to efficiently differentiate the most closely related genera Myxococcus, Corallococcus, and pyxidicoccus. Frontiers in Microbiology 12:12. DOI: https://doi.org/10.3389/fmicb.2021.763359

Sakr Y, Jaschinski U, Wittebole X, Szakmany T, Lipman J, Namendys-Silva SA, Martin-Loeches I, Leone M, Lupu MN, Vincent JL, ICON Investigators. 2018. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infectious Diseases 5:fy313. DOI: https://doi.org/10.1093/ofid/ofy313, PMID: 30555852

Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM. 2017. Time to treatment and mortality during mandated emergency care for sepsis. The New England Journal of Medicine 376:2235–2244. DOI: https://doi.org/10.1056/NEJMoa1703058, PMID: 28528569

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). The Journal of the American Medical Association 315:801–810. DOI: https://doi.org/10.1001/jama.2016.0287, PMID: 26903338

Maslunka C, Gürtler V, Seviour RJ. 2015. The impact of horizontal gene transfer on targeting the internal transcribed spacer region (its) to identify Acinetobacter junii strains. Critical Care Medicine 34:1589–1596. DOI: https://doi.org/10.1097/01.CCM.0000217961.75225.E9, PMID: 16625125

Liu J, Zhang L, Pan J, Huang M, Li Y, Zhang H, Wang R, Zhao M, Li B, Liu L, Gong Y, Bian J, Li X, Tang Y, Lei M, Chen D. 2020. Risk factors and molecular epidemiology of complicated intra-abdominal infections with carbapenem-resistant Enterobacteriaceae: a multicenter study in China. The Journal of Infectious Diseases 221:S156–S163. DOI: https://doi.org/10.1093/infdis/jiz574, PMID: 32176797

Liu Y, Pei T, Yi S, Du J, Zhang X, Deng X, Yao Q, Deng M-R, Zhu H. 2021. Phylogenomic analysis substantiates the gyrB gene as a powerful molecular marker to efficiently differentiate the most closely related genera Myxococcus, Corallococcus, and pyxidicoccus. Frontiers in Microbiology 12:12. DOI: https://doi.org/10.3389/fmicb.2021.763359

Sakr Y, Jaschinski U, Wittebole X, Szakmany T, Lipman J, Namendys-Silva SA, Martin-Loeches I, Leone M, Lupu MN, Vincent JL, ICON Investigators. 2018. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infectious Diseases 5:fy313. DOI: https://doi.org/10.1093/ofid/ofy313, PMID: 30555852

Seymour CW, Gesten F, Prescott HC, Friedrich ME, Iwashyna TJ, Phillips GS, Lemeshow S, Osborn T, Terry KM, Levy MM. 2017. Time to treatment and mortality during mandated emergency care for sepsis. The New England Journal of Medicine 376:2235–2244. DOI: https://doi.org/10.1056/NEJMoa1703058, PMID: 28528569

Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC. 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). The Journal of the American Medical Association 315:801–810. DOI: https://doi.org/10.1001/jama.2016.0287, PMID: 26903338

Trotter AJ, Aydin A, Strinden MJ, O’Grady J. 2019. Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Current Opinion in Microbiology 51:39–45. DOI: https://doi.org/10.1016/j.mib.2019.03.001, PMID: 31055852

Wang S, Ai J, Cui P, Zhu Y, Wu H, Zhang W. 2020. Diagnostic value and clinical application of next-generation sequencing for infections in immunosuppressed patients with corticosteroid therapy. Annals of Translational Medicine 8:227. DOI: https://doi.org/10.21037/atm.2020.01.30, PMID: 32309374

Wang Y. 2022. SYNOPSIS. swh:1:rev:58b19aa6a5d540030ff43796c141e810cced07ce. Software Heritage. https://archive.softwareheritage.org/swh:1:dir:8c72c0f81bdc6b32df52dd91b43037a73207a15a185;origin=https://github.com/wang-q/App-Egaz;visit=swh:1:rev:58b19aa6a5d540030ff43796c141e810cced07ce

Yang Q, Zhang H, Yu Y, Kong H, Duan Q, Wang Y, Zhang S, Sun Z, Liao K, Gu L, Jiang X, Wu A, Huang W, Shan B, Kang M, Hu F, Yu H, Zhang W, Xu Y. 2020. In vitro activity of imipenem/relebactam against Enterobacteriaceae isolates obtained from intra-abdominal, respiratory tract, and urinary tract infections in China: study for monitoring antimicrobial resistance trends (smart), 2015-2018. Clinical Infectious Diseases 71:S427–S435. DOI: https://doi.org/10.1093/cid/ciaa1519, PMID: 33367580

Zaragoza R, Vidal-Cortés P, Aguilar G, Borges M, Diaz E, Ferrer R, Maseda E, Nieto M, Nuñials FX, Ramirez P, Rodríguez A, Soriano C, Veganzones J, Martin-Loeches I. 2020. Update of the treatment of nosocomial pneumonia in the ICU. Critical Care 24:383. DOI: https://doi.org/10.1186/s13054-020-03091-2, PMID: 32600375

Zhou J, Qian C, Zhao M, Yu X, Kang Y, Ma X, Ai Y, Xu Y, Liu D, An Y, Wu D, Sun R, Li S, Hu Z, Cao X, Zhou F, Jiang L, Lin J, Mao E, Qin T, et al. 2014. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLOS ONE 9:e107181. DOI: https://doi.org/10.1371/journal.pone.0107181, PMID: 25226033
Appendix 1

Principles of screening species-specific DNA-tags

Our core principles for screening species-specific DNA fragments were as follows: (1) Multiple isolated strains from the same bacterial species were included to ensure the intra-species conservation of selected DNA fragments; (2) Those similar DNA fragments of intra-species conserved fragments in genomes from other bacteria were excluded to ensure inter-species specificity. We developed an original workflow and optimized the algorithm to more efficiently achieve our purposes compared with conventional pairwise alignment (Appendix 1—figure 1A). Firstly, conserved DNA regions were obtained by aligning the genomes of two strains within a given species, downsizing the genome to the regional scale. Those conserved DNA regions were performed alignments with the genomes of other strains from the same species, only shared DNA regions in all the strains are retained, downsizing conserved genomic regions to intra-species conserved DNA fragments (Appendix 1—figure 1B). Secondly, to achieve inter-species specificity of DNA tags, intra-species conserved DNA fragments were performed alignments with the genomes of other bacterial species. Those similar fragments of intra-species conserved DNA fragments in genomes from other bacteria species were excluded. After two-step screening, we finally obtained species-specific DNA tags (Appendix 1—figure 1C). The software for screening species-specific DNA fragments could be obtained from the following URL: https://github.com/wang-q/App-Egaz; (Wang, 2022 copy archived at swht:1:rev:58b19aa6a5d540030ff43796c141e810cced07ce).

Sample size and randomized double-blind trial

Based on the local epidemiology, the mortality rate of the early stage of sepsis in the adequate anti-infective treatment group was 48%, and was 65% in the inadequate anti-infective treatment group. The sample size was estimated through the formula: \(\alpha = 0.05, 1 - \beta = 0.80, P_t: 0.65, P_c: 0.42, N_t/N_c = 1, \) Power = 0.802, H0: \(P_t - P_c = 0; \) H1: \(P_t - P_c \neq 0. \) Nt = 73, Nc = 73. The sample size for the clinical study was finally determined to be 73 patients for each group. The randomized process was conducted by SAS 9.4 software to determine whether patients were selected for the experiment group or the control group. The random numbers were generated using the PLAN process. Then all numbers are concealed in random envelopes. Patients were assigned by opening the random number in random envelopes. For CCT and SSBD detection, the two processes were carried out independently in the hospital microbiology laboratory and research lab, which were blinded to each other. The detection results were finally unblinded by the clinician of ICU with non-testing procedures.

Extracting samples

Extracting bronchoalveolar lavage fluid (BALF) for the enrolled patients were under mild anesthesia via tracheal intubation or tracheotomy entering the infected bronchus. 30 mL saline was injected into batches quickly and recollected by using negative pressure lower than 13.3 kPa. In the validation stage I, 5 mL collected samples were cultivated as usual, and another 5 mL samples were sent for SSBD testing. As a liquid biopsy technique, SSBD was not involved any additional operations that could harm the patients’ health compared to CCT.

Reaction process

Briefly, DNA of BALF samples was extracted using Quick–DNA/RNA Pathogen Miniprep Kit (Zymo Research) according to the manual and diluted to 100 ng/μL. The DNA samples were then amplified using designed specific primers for 10 bacteria. Then, PCR products, Cas12a-crRNA complexes and the reporter DNA probe were added to the reaction system. Finally, the fluorescence signals were detected after incubation for 30 mins at 37 °C. Some samples were sent for next-generation sequencing (IngeniGen XunMinKang Biotechnology Inc Hangzhou, Zhejiang, China).

Clinical operation process

In the validation stage II, BALFs were collected from each patient on the first day, day 3–5, and day 7+ unless the airway was removed. All samples were sent for microbial cultivation, and simultaneously the samples taken from the experiment group were tested by SSBD. Once BALF results were available, at least two clinical experts (antimicrobial stewardship) discussed and decided on antibiotics adjustment according to the results and other clinical data. Additionally, the experts would assess each patient's receiving antibiotics coverage rate at different times and other clinical outcomes retrospectively.
Treatment and outcomes data, such as evaluation of therapeutic effectiveness at day 3, 7, 10 and 14, time of mechanical ventilation and vasopressor support from enrollment to day 28, occurrence of antibiotic-associated diarrhea, and mortality on day 28 were also recorded and analyzed. Evaluation of therapeutic effectiveness was conducted by two senior clinicians according to these parameters: (1) whether fever and purulent secretion were improved or not; (2) whether leukocytosis or leukopenia got better or not; (3) whether radiological pulmonary infiltrate absorbed partly or not; (4) whether oxygenation index was improved or not; (5) whether hemodynamic instability was rectified gradually or not.

SSBD diagnostic report

For every single experiment, we test the fluorescence value of clinical separated positive bacteria strains as positive control (PC) and DEPC-H2O as negative control (NC). For each experiment, we test the fluorescence value of BALF (shown as F) with a microplate reader. When F/NC >2, it is the signal that bacteria detected by our method. We use I (interval) as our point of distinction. I = (PC - 2NC) / 3. When 2NC <F < 2 NC+I, the bacteria strength level is defined as level I. When 2NC + I < F<2 NC+2 I, the bacteria strength level is defined as level II. When F>2 NC+2 I, the bacteria strength level is defined as level III. Different levels of bacterial strength can roughly represent different bacterial copies according to our method lowest detection rate (Level I: 10^{-15} M–10^{-14} M, Level II: 10^{-14} M–10^{-13} M, Level III: over 10^{-13} M, Figure 3B). We separated different testing values as different levels, suggesting that our method could test pathogen strength to some extent and give pathogens strength for drug usage. If the sample was discovered to be affected by any unexpected condition (e.g. contamination during the test, etc.), the detection results of the sample would be excluded from comparative analysis of diagnostic accuracy. If any missing data was critical for result judgment, such result would be excluded from subsequent analysis and statistics.

Evaluation of antibiotics coverage

For three individually designated BALF tests, the rate of antibiotics coverage was calculated in all groups. We calculated coverage rate from two aspects. For each test, we calculated rate of covered samples among all samples tested. For each patient, we calculated their coverage rate by counting covered test numbers within all tests that had been taken. Evaluation of antibiotics coverage was made by two experts retrospectively, according to microbial, antimicrobial susceptibility tests (AST) and clinical treatment effect. The details were as follow:

1. Our test result is negative (from the experiment group), or microbial cultivation is negative (from the control group). If it is deemed effective on the clinical signs (1), it is judged as antibiotics covering. If it is deemed clinically invalid, it is judged as antibiotics uncovering.

2. Our test result is positive (from the experiment group), or microbial cultivation is positive (from the control group). If AST (from experiment group or control group) is shown sensitive to the antibiotics, no matter the clinical signs are effective or not, it is judged as antibiotics covering. If AST is shown resistant to using antibiotics, whether antibiotics covering or not is judged by clinical effectiveness. It is identified as covered when clinically effective and uncovered when clinically invasive.

When BALF is not collected for a test or microbial cultivation from the day on, whether with covering antibiotics or not on the day is judged on clinical effectiveness.
Appendix 1—figure 1. Diagram of core principles for screening species-specific DNA-tags. (A) Optimizing the algorithm of sequence alignment. Abbreviations: SA, sequence alignment; N, number of double sequence alignment; n, number of sequences. (B) Schematic map of screening intra-species conserved DNA fragments. (C) Schematic map of screening species-specific DNA tags.
Pathogenic bacteria in ICU of Nanjing Drum Tower Hospital (2017)

Appendix 1—figure 2. Epidemic data of pathogens in the Nanjing Drum Tower Hospital ICU in 2017. 10 targeted bacteria were indicated with the box.

The online version of this article includes the following source data for appendix 1—figure 2:

Appendix 1—figure 2—source data 1. Epidemic data of pathogens in the ICU of Nanjing Drum Tower Hospital in 2017.
Appendix 1—figure 3. SSBD development and effectiveness validation. (A) SSBD results of purified and unpurified DNA. NC, namely the fluorescence values of PCR products of using DEPC-H2O as input. Each group had three repeats. Error bars indicated mean ± SEM of fluorescence value. *** indicated p-value <0.001 of unpaired t-test. (B) SSBD results of reaction time gradient with Cas12a. Fluorescence values of K. pneumoniae and E. faecium by Cas12a through different incubation times after PCR. Gray represented NC, namely the fluorescence values of PCR products of using DEPC-H2O as input. Green and blue represented the fluorescence values of bacteria strains from different patients. Each group had three repeats. Error bars indicated mean ± SEM of fluorescence value. ** indicated p-value <0.01 and *** indicated p-value <0.001 of unpaired t-test. (C) SSBD results of 10 pathogenic bacteria with Cas12a. Gray represented NC, namely the fluorescence values of PCR products of using DEPC-H2O as input. Green and blue represented the fluorescence values of bacteria strains from different patients. Each group had three repeats. Error bars indicated mean ± SEM of fluorescence value. *** indicated p-value <0.001 of unpaired t-test.

The online version of this article includes the following source data for appendix 1—figure 3:

Appendix 1—figure 3—source data 1. The test of SSBD with or without DNA purification.
Appendix 1—figure 3—source data 2. The test of SSBD with different incubation times.
Appendix 1—figure 3—source data 3. The validation of SSBD with clinical strains.
Appendix 1—figure 4. Judgment process and results of antibiotics coverage. (A) Judgment process of antibiotics coverage. (B) The raw results of antibiotics coverage in two groups. Exp meant the experimental group, and Con meant the control group.

The online version of this article includes the following source data for appendix 1—figure 4:

Appendix 1—figure 4—source data 1. Classification of antibiotic coverage for each test in two groups.
Appendix 1—figure 5. Analysis of false-positive samples. Numbers and fractions of different strength levels among all false-positive samples of each bacteria species in the validation stage I (A) and II (B). Strength could be seen roughly as bacterial amounts (level I- level III, the definition could be seen in the Appendix 1). False-positive situations meant pathogenic bacteria detected by SSBD but not by CCT in a given BALF sample.

Appendix 1—table 1. Primers used in experiments.

Name	Sequence (5’ -> 3’)	Target	Product length (bp)
pGL3-amplify-F	GAAGATGGAACCGCTGGAGA	pGL3	597
pGL3-amplify-R	GCAGGCAGTTCTATGAGGCA		
Aba-amplify-F	CACAGCGTTTACACCATGCC	A. baumannii	564
Aba-amplify-R	TATCGCCACCTGACAGAAC		
Eco-amplify-F	GTTCCTGACTATCTGGCGGG	E. coli	371
Eco-amplify-R	GCCTCCTGACTCCAGACACC		

Appendix 1—table 1 Continued on next page
Appendix 1—table 2. Oligonucleotide templates for synthesis of crRNAs.

Name	Sequence (5’ → 3’)	Target	Product length (bp)
Kpn-amplify-F	CATGGGCATATCGACGCTCA	K. pneumoniae	740
Kpn-amplify-R	CCTGCAACATAGGCCAAGTA		
Sau-amplify-F	AGGTGCAATGACGACGCTAGAG	S. aureus	563
Sau-amplify-R	CATTGCCATGACGACGCTAGAG		
Pae-amplify-F	TCTCTCTATACGCGAGCTCA	P. aeruginosa	467
Pae-amplify-R	TGCACTCGAGGTATCTCGACG		
Sep-amplify-F	CACGCATGCGACTAGGTAGA	S. epidermidis	383
Sep-amplify-R	CGAATAAAGTTGCTCTGCTGTTGA		
Sca-amplify-F	GGTACGTATCCACATCTACGTT	S. capitis	591
Sca-amplify-R	CAGCTCGACGCAACTGCTTAC		
Efa-amplify-F	CGGCCAGTGGGGAGACGAGAGA	E. faecalis	627
Efa-amplify-R	CAGCGCCATGACGACGCTAGAG		
Efm-amplify-F	ATCCGAAACTCGGTGTTGCGTT	E. faecium	507
Efm-amplify-R	TCAATGCGACCCGGTTGCTGTGGCGT		
Sma-amplify-F	CGGCCCTCGTTTACAGATT	S. maltophilia	356
Sma-amplify-R	TCGGCTCCACCACACATACAC		

Appendix 1—table 3. SSBD and CCT results of BALF samples in the validation stage I.

Sample ID	SSBD Results	CCT Results	NGS Results
A01	S. aureus (I)	N	S. aureus
A02	A. baumannii (III)	A. baumannii	

Appendix 1—table 3 Continued on next page
Sample ID	SSBD Results	CCT Results	NGS Results
A03	A. baumannii (III)	A. baumannii	A. baumannii
	S. aureus (I)	S. aureus	S. aureus
A04	A. baumannii (III)	K. pneumoniae (II)	K. pneumoniae (II)
	K. pneumoniae (II)	P. aeruginosa (II)	P. aeruginosa (II)
A05	A. baumannii (III)	K. pneumoniae (II)	K. pneumoniae (II)
	K. pneumoniae (II)	P. aeruginosa (II)	P. aeruginosa (II)
A06	A. baumannii (III)	A. baumannii	A. baumannii
A07	A. baumannii (II)	S. maltophilia (II)	S. maltophilia (II)
A08	A. baumannii (III)	A. baumannii	A. baumannii
A09	A. baumannii (II)	S. aureus (I)	A. baumannii
A10	A. baumannii (III)	A. baumannii	A. baumannii
	K. pneumoniae (II)	K. pneumoniae (II)	K. pneumoniae (II)
A11	A. baumannii (III)	A. baumannii	A. baumannii
A12	N	N	N
A13	A. baumannii (II)	A. baumannii	A. baumannii
A14	N	N	N
A15	K. pneumoniae (III)	K. pneumoniae (III)	K. pneumoniae (III)
A16	K. pneumoniae (III)	P. aeruginosa (III)	K. pneumoniae (III)
A17	N	N	N
A18	K. pneumoniae (I)	K. pneumoniae (I)	K. pneumoniae (I)
	P. aeruginosa (II)	P. aeruginosa (II)	P. aeruginosa (II)
A19	P. aeruginosa (I)	P. aeruginosa (I)	P. aeruginosa (I)
A20	E. faecium (III)	N	E. faecium (III)
	S. capitis (II)	S. capitis (II)	S. capitis (II)
A21	A. baumannii (III)	A. baumannii	A. baumannii
	K. pneumoniae (III)	S. aureus (I)	S. aureus (I)
A22	A. baumannii (III)	A. baumannii	A. baumannii
	S. epidermidis (III)	S. epidermidis (III)	S. epidermidis (III)
A23	N	N	N
A24	A. baumannii (III)	A. baumannii	A. baumannii
A25	N	N	N
A26	P. aeruginosa (III)	P. aeruginosa (III)	P. aeruginosa (III)
A27	A. baumannii (III)	A. baumannii	A. baumannii
	S. epidermidis (III)	S. epidermidis (III)	S. epidermidis (III)
A28	A. baumannii (II)	A. baumannii	A. baumannii
	P. aeruginosa (III)	P. aeruginosa (III)	P. aeruginosa (III)
A29	S. epidermidis (I)	S. maltophilia (I)	S. maltophilia (I)

Appendix 1—table 3 Continued on next page
Sample ID	SSBD Results	CCT Results	NGS Results
A30	A. baumannii (III)		A. baumannii
	S. aureus (III)		
	S. epidermidis (I)		
A31	K. pneumoniae (I)	N	K. pneumoniae
	P. aeruginosa (I)		
	S. epidermidis (I)		
A32	P. aeruginosa (I)	N	
	S. epidermidis (I)		
A33	S. aureus (I)	S. aureus	
	S. maltophilia (II)		
A34	N	N	A. baumannii
A35	A. baumannii (III)		
	A. baumannii		
A36	A. baumannii (III)		A. baumannii
	S. maltophilia (I)		
A37	A. baumannii (III)		A. baumannii
	S. epidermidis (III)		
A38	A. baumannii (III)		A. baumannii
A39	A. baumannii (III)		A. baumannii
A40	N	N	
A41	N	N	
A42	A. baumannii (I)	N	
A43	A. baumannii (III)		
A44	A. baumannii (III)		A. baumannii
A45	A. baumannii (III)		A. baumannii
	K. pneumoniae (II)		
A46	A. baumannii (III)		A. baumannii
A47	A. baumannii (I)		A. baumannii
A48	A. baumannii (III)		A. baumannii
A49	A. baumannii (III)		A. baumannii
	S. aureus (III)		S. aureus
	S. maltophilia (III)		S. maltophilia
A50	S. epidermidis (III)	N	
A51	N	N	
A52	N	N	
A53	K. pneumoniae (III)		K. pneumoniae
A54	N	N	
A55	A. baumannii (III)		
	E. coli (I)		
	K. pneumoniae (III)		
	S. maltophilia (III)		
A56	S. epidermidis (III)	N	
A57	N	N	
A58	P. aeruginosa (III)	N	
Appendix 1—table 4. Comparative analysis of test results by SSBD, CCT and NGS in the validation stage I.

Sample ID	SSBD Results	CCT Results	NGS Results
A59	S. maltophilia (I)	S. maltophilia	S. aureus
			S. maltophilia
A60	A. baumannii (I)	A. baumannii	P. aeruginosa
	P. aeruginosa (III)		
A61	A. baumannii (II)	A. baumannii	
A62	K. pneumoniae (II)	K. pneumoniae	S. maltophilia
	S. maltophilia (III)		
A63	A. baumannii (III)	A. baumannii	
A64	A. baumannii (III)	A. baumannii	
A65	A. baumannii (III)	A. baumannii	P. aeruginosa
	P. aeruginosa (I)		
	S. maltophilia (II)		
A66	K. pneumoniae (II)	K. pneumoniae	
A67	S. aureus (III)	S. aureus	
A68	A. baumannii (III)	A. baumannii	P. aeruginosa
	P. aeruginosa (III)		
A69	A. baumannii (I)	A. baumannii	P. aeruginosa
	P. aeruginosa (III)		
A70	A. baumannii (I)	A. baumannii	
A71	N	N	
A72	A. baumannii (III)	A. baumannii	
	S. maltophilia (I)		
A73	A. baumannii (III)	A. baumannii	P. aeruginosa
	K. pneumoniae (II)		
	P. aeruginosa (III)		
A74	A. baumannii (III)	A. baumannii	
A75	A. baumannii (III)	A. baumannii	
	P. aeruginosa (III)		
A76	A. baumannii (I)	A. baumannii	P. aeruginosa
	P. aeruginosa (III)		
	S. maltophilia (I)		
A77	S. epidermidis (I)	N	

Appendix 1—table 4 Continued on next page
Appendix 1—table 4

Sample ID	SSBD Results	CCT Results	NGS Results
A34	N	N	A. baumannii
A44	A. baumannii (III)	A. baumannii	A. baumannii
A49	A. baumannii (III) S. aureus (III) S. maltophilia (III)	A. baumannii S. aureus	A. baumannii S. aureus S. maltophilia
A59	S. maltophilia (I)	S. maltophilia	S. maltophilia S. aureus
A69	A. baumannii (I) P. aeruginosa (III)	A. baumannii	P. aeruginosa

Appendix 1—table 5

SSBD and CCT results of BALF samples from experiment group (n=22) and control group (n=24) during the validation stage II.

Patient ID	Sample ID	Test No.	SSBD Results	CCT Results	NGS Results
Exp					
B01	B01-1	Test 1	N	N	
	B01-2	Test 2	N	N	N
	B01-3	Test 3	N	A. baumannii (III)	A. baumannii
B03	B03-1	Test 1	N	N	N
	B03-2	Test 2	N	A. baumannii (III)	A. baumannii
B05	B05-1	Test 1	N	A. baumannii (III) S. maltophilia (II)	A. baumannii S. maltophilia
	B05-2	Test 2	N	A. baumannii (III) S. maltophilia (I)	A. baumannii
	B05-3	Test 3	N	A. baumannii (III) S. maltophilia (I)	
B07	B07-1	Test 1	N	P. aeruginosa (III)	P. aeruginosa P. aeruginosa
	B07-2	Test 2	N	P. aeruginosa (III)	P. aeruginosa
	B07-3	Test 3	N	P. aeruginosa (III)	P. aeruginosa
B09	B09-1	Test 1	N	A. baumannii (I) S. aureus (III) S. capitis (III) S. maltophilia (III)	A. baumannii
B11	B11-1	Test 1	N	A. baumannii (III) P. aeruginosa (III) S. maltophilia (II)	A. baumannii A. baumannii P. aeruginosa S. maltophilia
	B11-2	Test 2	N	A. baumannii (III) S. aureus (I) S. maltophilia (III)	
	B11-3	Test 3	N	P. aeruginosa (III)	N
B13	B13-1	Test 1	N	S. epidermidis (I)	N
	B13-2	Test 2	N	K. pneumoniae (I)	K. pneumoniae
B15	B15-1	Test 1	N	A. baumannii (I) E. coli (I) K. pneumoniae (II)	
	B15-2	Test 2	N	K. pneumoniae (I) E. faecium (I)	
	B15-3	Test 3	N	E. faecium (III)	

Appendix 1—table 5 Continued on next page
Patient ID	Sample ID	Test No.	SSBD Results	CCT Results	NGS Results		
B17	B17-1	Test 1	A. baumannii (III)				
B17-2	Test 2	A. baumannii (III)	K. pneumoniae (III)				
B17-3	Test 3	A. baumannii (I)	K. pneumoniae (I)	E. faecalis (I)	A. baumannii		
B19	B19-1	Test 1	A. baumannii (III)	P. aeruginosa (I)	S. maltophilia (II)	A. baumannii	
B19-2	Test 2	A. baumannii (III)	P. aeruginosa (III)	S. maltophilia (III)	A. baumannii	S. maltophilia	
B19-3	Test 3	K. pneumoniae (III)	P. aeruginosa (III)	S. maltophilia (III)	K. pneumoniae	S. maltophilia	
B21	B21-1	Test 1	P. aeruginosa (III)	S. aureus (III)	S. maltophilia (III)	S. aureus	S. maltophilia
B21-2	Test 2	P. aeruginosa (III)	S. aureus (III)	S. maltophilia (III)	S. maltophilia		
B21-3	Test 3	S. aureus (I)	S. maltophilia (II)		N		
B23	B23-1	Test 1	S. capitis (I)	S. maltophilia (II)		S. maltophilia	
B23-2	Test 2	S. maltophilia (II)			S. maltophilia		
B25	B25-1	Test 1	A. baumannii (II)		A. baumannii		
B25-2	Test 2	A. baumannii (III)					
B25-3	Test 3	A. baumannii (III)	A. baumannii				
B27	B27-1	Test 1	S. maltophilia (I)		N	N	
B27-2	Test 2	A. baumannii (III)					
B29	B29-1	Test 1	K. pneumoniae (III)	K. pneumoniae	K. pneumoniae		
B29-2	Test 2	K. pneumoniae (III)					
B31	B31-1	Test 1	A. baumannii (III)	S. capitis (III)	A. baumannii	A. baumannii	
B31-2	Test 2	A. baumannii (III)			S. capitis		
B31-3	Test 3	A. baumannii (I)	A. baumannii				
B33	B33-1	Test 1	N		N		
B33-2	Test 2	A. baumannii (I)	S. epidermidis (II)		N		
B33-3	Test 3	N			N		
B35	B35-1	Test 1	A. baumannii (III)		A. baumannii	A. baumannii	
B35-2	Test 2	A. baumannii (III)		A. baumannii			
B35-3	Test 3	A. baumannii (III)	A. baumannii				
B37	B37-1	Test 1	N		N	A. baumannii	
B37-2	Test 2	P. aeruginosa (I)					

Appendix 1—table 5 Continued on next page
Appendix 1—table 5 Continued

Patient ID	Sample ID	Test No.	SSBD Results	CCT Results	NGS Results
B39	B39-1	Test 1	N	P. aeruginosa	
	B39-2	Test 2	A. baumannii (I) E. coli (I) K. pneumoniae (III) P. aeruginosa (III)	K. pneumoniae	P. aeruginosa
	B39-3	Test 3	K. pneumoniae (I) P. aeruginosa (III)		
B41	B41-1	Test 1	N	N	N
	B41-2	Test 2	N		
B43	B43-1	Test 1	N	N	
	B43-2	Test 2	A. baumannii (I) S. epidermidis (I)		
	B43-3	Test 3	A. baumannii (II)	A. baumannii	
Con.		Test 1	A. baumannii		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C02		Test 1	N		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C04		Test 1	N		
		Test 2	N		
		Test 3	N		
C06		Test 1	N		
		Test 2	A. baumannii		
C08		Test 1	E. coli		
		Test 2	E. coli		
		Test 3	K. pneumoniae		
C10		Test 1	N		
		Test 2	N		
		Test 3	A. baumannii		
C12		Test 1	N		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C14		Test 1	A. baumannii		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C16		Test 1	N		
		Test 2	N		
C18		Test 1	A. baumannii		
		Test 2	A. baumannii		
		Test 3	A. baumannii		

Appendix 1—table 5 Continued on next page
Patient ID	Sample ID	Test No.	SSBD Results	CCT Results	NGS Results
C20		Test 1	N		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C22		Test 1	N		
		Test 2	N		
		Test 3	A. baumannii		
C24		Test 1	N		
		Test 2	N		
C26		Test 1	A. baumannii		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C28		Test 1	S. aureus		
		Test 2	N		
		Test 3	A. baumannii		
C30		Test 1	N		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C32		Test 1	N		
		Test 2	K. pneumoniae		
		Test 3	A. baumannii	K. pneumoniae	
C34		Test 1	N		
C36		Test 1	S. aureus		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C38		Test 1	A. baumannii		
		Test 2	A. baumannii		
		Test 3	A. baumannii		
C40		Test 1	P. aeruginosa		
		Test 2	P. aeruginosa		
C42		Test 1	N		
		Test 2	N		
C44		Test 1	S. aureus		
		Test 2	A. baumannii		
C46		Test 1	N		
		Test 2	N		
		Test 3	A. baumannii		
C48		Test 1	A. baumannii		
		Test 2	A. baumannii		
Appendix 1—table 6. Comparative analysis of test results by SSBD, CCT and NGS in the validation stage II.

Patient ID	Sample ID	Test No.	SSBD Results	CCT Results	NGS Results
B01	B01-2	Test 2	N	N	N
B03	B03-1	Test 1	N	N	N
B05	B05-1	Test 1	A. baumannii (III) S. maltophilia (II)	A. baumannii	A. baumannii S. maltophilia
B07	B07-1	Test 1	P. aeruginosa (III)	P. aeruginosa	P. aeruginosa
B11	B11-1	Test 1	A. baumannii (III) P. aeruginosa (III) S. maltophilia (II)	A. baumannii	A. baumannii P. aeruginosa S. maltophilia

Appendix 1—table 7. Antibiotic use of the patients prior to clinical trial in the experimental group and control group.

Empirical antibiotic therapy

Experimental group	Antibiotic Therapy
B01	Piperacillin - tazobactam
B03	Biapenem
B05	Biapenem, Teicoplanin and Tigecycline
B07	Biapenem
B09	Biapenem and vancomycin
B11	Cefoperazone-sulbactam and Tigecycline
B13	Piperacillin-Tazobactam, trimethoprim-sulfamethoxazole and Teicoplanin
B15	Imipenem-cilastatin and Linezolid
B17	Biapenem
B19	Biapenem
B21	Ceftazidine-avibatam
B23	Imipenem-Cilastatin
B25	Imipenem-Cilastatin and Linezolid
B27	Piperacillin-Tazobactam and trimethoprim-sulfamethoxazole
B29	Imipenem-Cilastatin
B31	Imipenem-Cilastatin and Teicoplanin

Appendix 1—table 7 Continued on next page
Appendix 1—table 8 Continued

Empirical antibiotic therapy
B33 Piperacillin-tazobactam
B35 Moxifloxacin and Piperacillin-tazobactam
B37 Biapenem, trimethoprim-sulfamethoxazole and Linezolid
B39 Piperacillin-tazobactam
B41 Piperacillin-tazobactam
B43 Meropenem and Linezolid

Control group

Control group
C02 Meropenem and vancomycin
C04 Biapenem and vancomycin
C06 Piperacillin-tazobactam
C08 Imipenem-Cilastatin
C10 Cefoperazone-sulbactam
C12 Moxifloxacin
C14 Biapenem and Linezolid
C16 Cefoperazone-sulbactam
C18 Moxifloxacin
C20 Piperacillin-tazobactam
C22 Piperacillin-tazobactam and vancomycin
C24 Cefoperazone-sulbactam, Linezolid and trimethoprim-sulfamethoxazole
C26 Cefoperazone-sulbactam and Moxifloxacin
C28 Piperacillin-tazobactam
C30 Piperacillin-tazobactam
C32 Piperacillin-tazobactam and Moxifloxacin
C34 Meropenem
C36 Cefoperazone-sulbactam
C38 Piperacillin-tazobactam
C40 Imipenem-Cilastatin
C42 Cefoperazone-sulbactam
C44 Piperacillin-tazobactam
C46 Cefoperazone-sulbactam
C48 Piperacillin-tazobactam and Linezolid

Appendix 1—table 8. Patients’ clinical outcomes.

Appendix 1—table 8 Continued on next page	Experimental group (n=22)	Control group (n=24)	p

Number of patients who have clinical indexes improved

Appendix 1—table 8 Continued on next page
Experimental group (n=22)	Control group (n=24)	p
Day 3 vs. Day 1
Temperature, °C | 15 (68.2%) | 9 (37.5%) | 0.045*
WBC, 10^9/L | 15 (68.2%) | 12 (50.0%) | 0.211
PCT, ng/mL | 18 (81.8%) | 19 (82.6%) | 0.945
Day 7 vs. Day 1
Temperature, °C | 13 (72.2%) | 12 (54.5%) | 0.332
WBC, 10^9/L | 16 (84.2%) | 11 (50.0%) | 0.021*
PCT, ng/mL | 13 (68.4%) | 19 (86.4%) | 0.166
Day 10 vs. Day 1
Temperature, °C | 13 (82.6%) | 12 (70.6%) | 0.688
WBC, 10^9/L | 9 (56.3%) | 8 (47.1%) | 0.598
PCT, ng/mL | 12 (75.0%) | 15 (88.2%) | 0.325

Number of patients undergoing effective treatment

Day 3	Day 7	Day 10
13 (59.1%)	11 (45.8%)	0.395
16 (84.2%)	11 (50.0%)	0.046*
13 (81.3%)	10 (58.8%)	0.259

Clinical endpoint outcomes

Hospital stay duration, days	21 (13.7)	23.5 (17.2)	0.987
28 days mortality	8 (36.4%)	8 (33.3%)	1.000
Mechanical ventilation from randomization to 28th day, days	11.3 (7.7)	11.5 (7.7)	0.970
Shock from randomization to 28th day, days	3.1 (4.3)	2.3 (3.6)	0.456
Numbers of antibiotic-associated diarrhea	0 (0.0%)	2 (8.3%)	0.490

For those data are n (%), all p values are calculated using Fisher’s exact tests. For those data are mean (SD), all p values are calculated using Mann-Whitney tests. * indicated P-value <0.05.

Appendix 1—table 9. Potential competitive analysis among bacteria.

Sample ID	Bacteria detected by SSBD grow in CCT tests	Bacteria detected by SSBD could not grow in CCT tests	Probable relations among bacteria
A05	K. pneumoniae (III)	P. aeruginosa (III)	A. baumannii (III)
A09	A. baumannii (II)	S. aureus (I)	K. pneumoniae + P. aeruginosa > A. baumannii
A10	A. baumannii (III)	K. pneumoniae (III)	P. aeruginosa (I)
A11	A. baumannii (III)	K. pneumoniae (I)	Strength: III + I > I
A16	K. pneumoniae (III)	P. aeruginosa (III)	K. pneumoniae > P. aeruginosa
A21	A. baumannii (III)	S. aureus (I)	K. pneumoniae (III)

Appendix 1—table 9 Continued on next page
Appendix 1—table 9 Continued

Sample ID	Bacteria detected by SSBD grow in CCT tests	Bacteria detected by SSBD could not grow in CCT tests	Probable relations among bacteria
A22	A. baumannii (III)	S. epidermidis (III)	A. baumannii > S. epidermidis
A27	A. baumannii (III)	S. epidermidis (III)	A. baumannii > S. epidermidis
A28	A. baumannii (II)	P. aeruginosa (III)	A. baumannii > P. aeruginosa
A30	A. baumannii (III)	S. aureus (III)	A. baumannii > S. aureus + S. epidermidis
A33	S. aureus (I)	S. maltophilia (II)	S. aureus > S. maltophilia
A36	A. baumannii (III)	S. maltophilia (I)	A. baumannii > S. maltophilia
A37	A. baumannii (III)	S. epidermidis (III)	A. baumannii > S. epidermidis
A45	A. baumannii (III)	K. pneumoniae (I)	A. baumannii > K. pneumoniae
A49	A. baumannii (III)	S. maltophilia (I)	A. baumannii + S. aureus > S. maltophilia
A55	A. baumannii (III)	E. coli (I)	A. baumannii > E. coli, K. pneumoniae + S. maltophilia
A65	A. baumannii (III)	S. maltophilia (I)	Strength: III > I + II
A68	A. baumannii (III)	P. aeruginosa (I)	A. baumannii > P. aeruginosa
A69	A. baumannii (I)	P. aeruginosa (III)	A. baumannii > P. aeruginosa
A72	A. baumannii (III)	S. maltophilia (I)	A. baumannii > S. maltophilia
A73	A. baumannii (III)	P. aeruginosa (III)	A. baumannii + P. aeruginosa > K. pneumoniae
A75	A. baumannii (III)	P. aeruginosa (I)	A. baumannii > P. aeruginosa
A76	P. aeruginosa (III)	A. baumannii (I)	Strength: III > I + I
B05-1	A. baumannii (III)	S. maltophilia (I)	A. baumannii > S. maltophilia
B05-2	A. baumannii (III)	S. maltophilia (I)	A. baumannii > S. maltophilia
B09-1	A. baumannii (III)	S. aureus (III)	A. baumannii > S. aureus + S. capitis + S. maltophilia
B11-1	A. baumannii (III)	P. aeruginosa (III)	A. baumannii > P. aeruginosa + S. maltophilia
B17-3	A. baumannii (I)	K. pneumoniae (I)	A. baumannii > K. pneumoniae + E. faecalis
B19-1	A. baumannii (III)	P. aeruginosa (II)	Strength: III > I + II
B19-2	A. baumannii (III), S. maltophilia (II)	P. aeruginosa (I)	A. baumannii + S. maltophilia > P. aeruginosa
B19-3	K. pneumoniae (III), S. maltophilia (II)	P. aeruginosa (III)	K. pneumoniae + S. maltophilia > P. aeruginosa
B21-1	S. aureus (II), S. maltophilia (III)	P. aeruginosa (III)	S. maltophilia + S. aureus > P. aeruginosa

Appendix 1—table 9 Continued on next page
Bacteria detected by SSBD grow in CCT tests
Bacteria detected by SSBD could not grow in CCT tests
Probable relations among bacteria

Sample ID	Bacteria detected by SSBD grow in CCT tests	Bacteria detected by SSBD could not grow in CCT tests	Probable relations among bacteria
B21-2	S. maltophilia (III)	S. aureus (III), P. aeruginosa (III)	S. maltophilia > S. aureus + P. aeruginosa
B23-1	S. maltophilia (III)	S. capitis (I)	Strength: III > I
B31-1	A. baumannii (III)	S. capitis (III)	A. baumannii > S. capitis
B39-2	K. pneumoniae (III), P. aeruginosa (III)	A. baumannii (I), E. coli (I)	Strength: III + III > I+I

Appendix 1—table 10. Comparison of CCT, SSBD and NGS.

	CCT	SSBD	NGS
Turnover time	2–5 days	Less than 4 hours	2–3 days
Cost	Low	Low	High
Detection target	Culturable bacteria	Selected targets	All microorganisms in the sample
Quantification	Semi	Relative	Semi
Instrument requirement	Low	Low	High