Border rank of powers of ternary quadratic forms

Cosimo Flavi

Alma Mater Studiorum – Università di Bologna
Dipartimento di Matematica

AGATES kickoff workshop

September 22nd, 2022
Polynomial spaces

- V vector space over \mathbb{C}, $\dim V = n < \infty$;
Polynomial spaces

- V vector space over \mathbb{C}, $\dim V = n < \infty$;
- $\mathcal{D} = S(V^*) \simeq \mathbb{C}[y_1, \ldots, y_n]$, $\mathcal{R} = S(V) \simeq \mathbb{C}[x_1, \ldots, x_n]$.

Definition (Waring rank of a polynomial h)

$$\text{rk} \, h : = \min \{ r \in \mathbb{N} : h = \sum_{j=1}^{r} a_j x_1 \ldots x_n \} : a_i \in \mathbb{C}$$

Definition (Border rank of a polynomial h)

$$\text{brk} \, h : = \min \{ r \in \mathbb{N} : \lim_{t \to 0} \sum_{j=1}^{r} a_j (x_1 + t \ldots x_n)^j \} : a_i \in \mathbb{C}$$
Polynomial spaces

- V vector space over \mathbb{C}, $\dim V = n < \infty$;
- $\mathcal{D} = S(V^*) \simeq \mathbb{C}[y_1, \ldots, y_n]$, $\mathcal{R} = S(V) \simeq \mathbb{C}[x_1, \ldots, x_n]$.

Definition (Waring rank of a polynomial $h \in \mathcal{R}_d$)

$$\text{rk}(h) = \min \left\{ r \in \mathbb{N} \mid h = \sum_{j=1}^{r} (a_{1,j}x_1 + \cdots + a_{n,j}x_n)^d : a_{i,j} \in \mathbb{C} \right\}$$
Polynomial spaces

- V vector space over \mathbb{C}, $\dim V = n < \infty$;
- $\mathcal{D} = S(V^*) \simeq \mathbb{C}[y_1, \ldots, y_n]$, $\mathcal{R} = S(V) \simeq \mathbb{C}[x_1, \ldots, x_n]$.

Definition (Waring rank of a polynomial $h \in \mathcal{R}_d$)

$$\text{rk}(h) = \min \left\{ r \in \mathbb{N} \left| h = \sum_{j=1}^{r} (a_{1,j}x_1 + \cdots + a_{n,j}x_n)^d : a_{i,j} \in \mathbb{C} \right. \right\}$$

Definition (Border rank of a polynomial $h \in \mathcal{R}_d$)

$$\text{brk}(h) = \min \left\{ r \in \mathbb{N} \left| h = \lim_{t \to 0} \sum_{j=1}^{r} (a_{1,j}(t)x_1 + \cdots + a_{n,j}(t)x_n)^d : a_{i,j}(t) \in \mathbb{C} \right. \right\}$$
Quadratic forms

\[q_n = x_1^2 + \cdots + x_n^2 \]
Quadratic forms

\[q_n = x_1^2 + \cdots + x_n^2 \]

Problem

\[s \in \mathbb{N} : \quad \text{rk}(q_n^s) = ? \quad \text{brk}(q_n^s) = ? \]
Quadratic forms

\[q_n = x_1^2 + \cdots + x_n^2 \]

Problem

\[s \in \mathbb{N}: \quad \text{rk}(q_n^s) = ? \quad \text{brk}(q_n^s) = ? \]

Classical decompositions

\[[q_3^2]_7 = \frac{2}{3} \sum_j^3 x_j^4 + \frac{1}{12} \sum_j^4 (x_1 \pm x_2 \pm x_3)^4 \quad \text{(E. Lucas, 1877)} \]

\[[q_4^2]_{12} = \frac{2}{3} \sum_j^4 x_j^4 + \frac{1}{24} \sum_j^8 (x_1 \pm x_2 \pm x_3 \pm x_4)^4 \quad \text{(J. Liouville, 1859)} \]

\[[q_n^2]_{n^2} = \frac{1}{6} \sum_{j_1 < j_2}^\binom{n}{2} (x_{j_1} + x_{j_2})^4 + \frac{1}{6} \sum_{j_1 < j_2}^\binom{n}{2} (x_{j_1} - x_{j_2})^4 + \frac{4 - n}{3} \sum_j^n x_j^4 \quad \text{(B. Reznick, 1992)} \]
Theorem (B. Reznick)

\[\text{rk}(q^s_2) = s + 1. \]
Theorem (B. Reznick)

\[\text{rk}(q_2^s) = s + 1. \]

Decompositions of \(q_2^s\)

\[q_2^s = \sum_{j=1}^{s+1} \left(r(s) \cos(\tau_j)x_1 + r(s) \sin(\tau_j)x_2 \right)^{2s}, \quad \tau_j = \frac{(j - 1)\pi}{s + 1} \]
Theorem (B. Reznick)

$$\text{rk}(q_2^s) = s + 1.$$

Decompositions of q_2^s

$$q_2^s = \sum_{j=1}^{s+1} \left(r(s) \cos(\tau_j)x_1 + r(s) \sin(\tau_j)x_2 \right)^{2s}, \quad \tau_j = \frac{(j - 1)\pi}{s + 1}$$

Examples

- Decomposition of q_2^3 (4 points)
- Decomposition of q_2^4 (5 points)
Three variables

Decomposition of q_3^2 (6 points)

$$[q_3^2]_6 = \frac{1}{6} \sum_{j}^6 (x_j \pm \varphi x_{j-1})^4, \quad \varphi = \frac{1 + \sqrt{5}}{2}$$
Apolarity action

- Apolarity action of \mathcal{D}_k on \mathcal{R}_j

 $\circ : \mathcal{D}_k \times \mathcal{R}_j \rightarrow \mathcal{R}_{j-k}$

 $(y^\alpha, x^\beta) \mapsto \frac{\partial}{\partial x^\alpha} (x^\beta)$
Apolarity action

- Apolarity action of \mathcal{D}_k on \mathcal{R}_j

 $\circ: \mathcal{D}_k \times \mathcal{R}_j \rightarrow \mathcal{R}_{j-k}$

 $(y^\alpha, x^\beta) \mapsto \frac{\partial}{\partial x^\alpha} (x^\beta)$

- Apolarity action of \mathcal{D} on \mathcal{R}

 $\circ: \mathcal{D} \times \mathcal{R} \rightarrow \mathcal{R}$

 $(g, f) \mapsto g \circ f$
Apolarity action

- Apolarity action of \mathcal{D}_k on \mathcal{R}_j

 $\circ : \mathcal{D}_k \times \mathcal{R}_j \longrightarrow \mathcal{R}_{j-k}$

 $\left(y^\alpha, x^\beta \right) \longmapsto \frac{\partial}{\partial x^\alpha} (x^\beta)$

- Apolarity action of \mathcal{D} on \mathcal{R}

 $\circ : \mathcal{D} \times \mathcal{R} \longrightarrow \mathcal{R}$

 $\left(g, f \right) \longmapsto g \circ f$

Definition (Apolar ideal of a homogeneous polynomial $h \in \mathcal{R}_d$)

$h^\perp = \{ g \in S(V^*) \mid g \circ h = 0 \}$.
Catalecticant map of $h \in S^d V$

\[\text{Cat}_h : \mathcal{D} \longrightarrow \mathcal{R} \]

\[g \mapsto g \circ h \]
Catalecticant map of $h \in S^d V$

$\text{Cat}_h : \mathcal{D} \longrightarrow \mathcal{R}$

$g \mapsto g \circ h$

$\text{Ker}(\text{Cat}_h) = h^\perp$;
Catalecticant map of $h \in S^d V$

$$\text{Cat}_h : \mathcal{D} \longrightarrow \mathcal{R}$$

$$g \mapsto g \circ h$$

- $\text{Ker}(\text{Cat}_h) = h^\perp$;
- Cat_h graded $\implies \text{Cat}_h^j : \mathcal{D}_j \rightarrow \mathcal{R}_{d-j}$ well defined for $j \in \mathbb{N}$.
Catalecticant map of $h \in S^d V$

$$
\text{Cat}_h : \mathcal{D} \longrightarrow \mathcal{R} \\
g \mapsto g \circ h
$$

- $\ker(\text{Cat}_h) = h^\perp$;
- Cat_h graded $\Rightarrow \text{Cat}_h^j : \mathcal{D}_j \rightarrow \mathcal{R}_{d-j}$ well defined for $j \in \mathbb{N}$.

Proposition (J. J. Sylvester, 1851)

For every $f \in \mathcal{R}_d$ and $0 \leq k \leq d$

$$
\text{rk } f \geq \text{brk } f \geq \text{rk}(\text{Cat}_f^k).
$$
Definition (Laplace operator)

Differential operator $\Delta: \mathcal{D}_d \to \mathcal{D}_{d-2}$

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial y_i^2}$$
Definition (Laplace operator)

Differential operator $\Delta: \mathcal{D}_d \rightarrow \mathcal{D}_{d-2}$

$$\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial y_i^2}$$

Space of the d-harmonic polynomials

$$\mathcal{H}_n^d = \text{Ker}(\Delta) \subseteq \mathcal{D}_d$$
Definition (Laplace operator)

Differential operator $\Delta : \mathcal{D}_d \rightarrow \mathcal{D}_{d-2}$

$$
\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial y_i^2}
$$

Space of the d-harmonic polynomials

$$
\mathcal{H}_n^d = \text{Ker}(\Delta) \subseteq \mathcal{D}_d
$$

Theorem

$$
(q_n^s)^\perp = (\mathcal{H}_n^{s+1})
$$
Lower bound

\[\text{brk}(q_3^s) \geq \text{rk}(\text{Cat}^s_{q_3^2}) = \binom{s + 2}{2} \]
Lower bound
\[\text{brk}(q_3^s) \geq \text{rk}\left(\text{Cat}^s_{q_3^2}\right) = \binom{s+2}{2} \]

Border rank of \(q_3^s\)
\[\text{brk}(q_3^s) = \binom{s+2}{2} \]
Lower bound

\[
\text{brk}(q_3^s) \geq \text{rk}\left(\text{Cat}^{s}_{q_3^2}\right) = \binom{s + 2}{2}
\]

Border rank of \(q_3^s\)

\[
\text{brk}(q_3^s) = \binom{s + 2}{2}
\]

Lemma (Apolarity lemma)

Let \(f \in R_d \) and \(Z \subset \mathbb{P}^n \) a 0-dimensional scheme. Let \(\nu_d : \mathbb{P}(\mathbb{C}^n) \rightarrow \mathbb{P}(S^d \mathbb{C}^n) \) be the \(d \)-Veronese map. The following conditions are equivalent:
Lower bound

\[\text{brk}(q_3^s) \geq \text{rk}(\text{Cat}_{q_3^s}^s) = \binom{s + 2}{2} \]

Border rank of \(q_3^s \)

\[\text{brk}(q_3^s) = \binom{s + 2}{2} \]

Lemma (Apolarity lemma)

Let \(f \in \mathcal{R}_d \) and \(Z \subset \mathbb{P}^n \) a 0-dimensional scheme. Let \(\nu_d : \mathbb{P}(\mathbb{C}^n) \to \mathbb{P}(S^d \mathbb{C}^n) \) be the \(d \)-Veronese map. The following conditions are equivalent:

- \(f \in \langle \nu_d(Z) \rangle; \)
Lower bound

$$\text{brk}(q_3^s) \geq \text{rk}\left(Cat^s_{q_3^3}\right) = \binom{s + 2}{2}$$

Border rank of q_3^s

$$\text{brk}(q_3^s) = \binom{s + 2}{2}$$

Lemma (Apolarity lemma)

Let $f \in R_d$ and $Z \subset \mathbb{P}^n$ a 0-dimensional scheme. Let $\nu_d: \mathbb{P}(\mathbb{C}^n) \to \mathbb{P}(S_d \mathbb{C}^n)$ be the d-Veronese map. The following conditions are equivalent:

- $f \in \langle \nu_d(Z) \rangle$;
- $I(Z) \subseteq f^\perp$.
Lie algebra of $\text{SL}_2\mathbb{C}$

\[\mathfrak{sl}_2\mathbb{C} = \{ A \in \text{Mat}_2(\mathbb{C}) \mid \text{tr} A = 0 \}, \quad \text{dim}(\mathfrak{sl}_2\mathbb{C}) = 3. \]
Lie algebra of $\text{SL}_2\mathbb{C}$

\[\mathfrak{sl}_2\mathbb{C} = \{ A \in \text{Mat}_2(\mathbb{C}) \mid \text{tr} A = 0 \}, \quad \dim(\mathfrak{sl}_2\mathbb{C}) = 3. \]

Basis of $\mathfrak{sl}_2\mathbb{C}$

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.
\]

\[
\left[H, E \right] = 2E, \quad \left[H, F \right] = -2F, \quad \left[E, F \right] = H.
\]
Lie algebra of $\mathfrak{sl}_2\mathbb{C}$

\[\mathfrak{sl}_2\mathbb{C} = \{ A \in \text{Mat}_2(\mathbb{C}) \mid \text{tr} \, A = 0 \} , \quad \text{dim}(\mathfrak{sl}_2\mathbb{C}) = 3. \]

Basis of $\mathfrak{sl}_2\mathbb{C}$

\[H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \]

\[[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H. \]

Representations of $\mathfrak{sl}_2\mathbb{C}$

- $S^n(\mathbb{C}^2)$ essentially unique irreducible representation;
Lie algebra of $\mathfrak{sl}_2 \mathbb{C}$

$$\mathfrak{sl}_2 \mathbb{C} = \{ \ A \in \text{Mat}_2(\mathbb{C}) \ | \ \text{tr} \ A = 0 \ \} , \quad \dim(\mathfrak{sl}_2 \mathbb{C}) = 3.$$

Basis of $\mathfrak{sl}_2 \mathbb{C}$

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} , \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} .$$

$$[H, E] = 2E , \quad [H, F] = -2F , \quad [E, F] = H.$$

Representations of $\mathfrak{sl}_2 \mathbb{C}$

- $S^n(\mathbb{C}^2)$ essentially unique irreducible representation;
- $\{x^{n-k}y^k\}_{k=0,...,n}$ set of weights;
Lie algebra of $\text{SL}_2(\mathbb{C})$

\[
\mathfrak{sl}_2(\mathbb{C}) = \{ A \in \text{Mat}_2(\mathbb{C}) \mid \text{tr } A = 0 \}, \quad \text{dim}(\mathfrak{sl}_2(\mathbb{C})) = 3.
\]

Basis of $\mathfrak{sl}_2(\mathbb{C})$

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.
\]

\[
[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H.
\]

Representations of $\mathfrak{sl}_2(\mathbb{C})$

- $S^n(\mathbb{C}^2)$ essentially unique irreducible representation;
- $\{x^{n-k}y^k\}_{k=0,...,n}$ set of weights;
- $V_k = \langle x^{n-k}y^k \rangle$ for every $k = 0, \ldots, n$

\[
E : V_k \rightarrow V_{k+1}, \quad H : V_k \rightarrow V_k, \quad F : V_k \rightarrow V_{k-1}
\]
Proposition (R. Goodman and N. R. Wallach)

The space \mathcal{H}_n^d is an irreducible $\text{SO}_n(\mathbb{C})$-module.
Proposition (R. Goodman and N. R. Wallach)

The space \mathcal{H}_n^d is an irreducible $SO_n(\mathbb{C})$-module.

Lie algebra of $SO_3(\mathbb{C})$

$$\mathfrak{so}_3 \mathbb{C} = \left\{ A \in \text{Mat}_3(\mathbb{C}) \left| A = -^tA \right. \right\} \cong \mathfrak{sl}_2 \mathbb{C}.$$
Proposition (R. Goodman and N. R. Wallach)

The space \mathcal{H}_n^d is an irreducible $\text{SO}_n(\mathbb{C})$-module.

Lie algebra of $\text{SO}_3(\mathbb{C})$

$$\mathfrak{so}_3\mathbb{C} = \{ A \in \text{Mat}_3(\mathbb{C}) \mid A = -^tA \} \cong \mathfrak{sl}_2\mathbb{C}.$$

Change of variables

$$u = \frac{y_1 + iy_2}{2}, \quad v = \frac{y_1 - iy_2}{2}, \quad z = y_3.$$
Proposition (R. Goodman and N. R. Wallach)

The space \mathcal{H}_n^d is an irreducible $\text{SO}_n(\mathbb{C})$-module.

Lie algebra of $\text{SO}_3(\mathbb{C})$

$$\mathfrak{so}_3\mathbb{C} = \{ A \in \text{Mat}_3(\mathbb{C}) \mid A = -^tA \} \cong \mathfrak{sl}_2\mathbb{C}.$$

Change of variables

$$u = \frac{y_1 + iy_2}{2}, \quad v = \frac{y_1 - iy_2}{2}, \quad z = y_3.$$

Basis of $\mathfrak{so}_3\mathbb{C}$ (with respect to $\{u, v, z\}$)

$$H = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \\ -1 & 0 & 0 \end{pmatrix}.$$
Laplace operator

\[\Delta = \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial y_3^2} = \frac{\partial^2}{\partial u \partial v} + \frac{\partial^2}{\partial z^2}. \]
Laplace operator

\[\Delta = \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial y_3^2} = \frac{\partial^2}{\partial u \partial v} + \frac{\partial^2}{\partial z^2}. \]

Notation (divided powers)

\[u^{[k_1]} v^{[k_2]} z^{[k_3]} = \frac{1}{k_1! k_2! k_3!} u^{k_1} v^{k_2} z^{k_3}, \quad k_1, k_2, k_3 \in \mathbb{N}. \]
Laplace operator

\[
\Delta = \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2} + \frac{\partial^2}{\partial y_3^2} = \frac{\partial^2}{\partial u \partial v} + \frac{\partial^2}{\partial z^2}.
\]

Notation (divided powers)

\[
u^{[k_1]} v^{[k_2]} z^{[k_3]} = \frac{1}{k_1! k_2! k_3!} u^{k_1} v^{k_2} z^{k_3}, \quad k_1, k_2, k_3 \in \mathbb{N}.
\]

Basis \(B_d = \{ h_{d,k} \}_{-d \leq k \leq d} \) of \(\mathcal{H}_3^d \)

\[
h_{d,k} = \sum_{j=0}^{\left\lfloor \frac{d-k}{2} \right\rfloor} (-1)^j u^{[k+j]} z^{[d-k-2j]} v^{[j]}, \quad h_{d,-k} = \sum_{j=0}^{\left\lfloor \frac{d-k}{2} \right\rfloor} (-1)^j u^{[j]} z^{[d-k-2j]} v^{[k+j]}
\]
Harmonic generators of the basis $\mathcal{B}_d = \{h_{d,k}\}_{-d \leq k \leq d}$

\[
\begin{align*}
\langle \frac{1}{2} u^2 \rangle_{h_2,2} & \xrightarrow{F} \langle \frac{1}{4} uz \rangle_{h_2,1} & \xrightarrow{F} \langle \frac{1}{12} (z^2 - 2uv) \rangle_{h_2,0} & \xrightarrow{F} \langle \frac{1}{4} vz \rangle_{h_2,-1} & \xrightarrow{F} \langle \frac{1}{2} v^2 \rangle_{h_2,-2} \\
\langle \frac{1}{6} u^3 \rangle_{h_3,3} & \xrightarrow{F} \langle \frac{1}{12} u^2 z \rangle_{h_3,2} & \xrightarrow{F} \langle \frac{1}{30} u(z^2 - uv) \rangle_{h_3,1} & \xrightarrow{F} \langle \frac{1}{120} z(z^2 - 6uv) \rangle_{h_3,0} & \xrightarrow{F} \langle \frac{1}{30} v(z^2 - uv) \rangle_{h_3,-1} & \xrightarrow{F} \langle \frac{1}{12} v^2 z \rangle_{h_3,-2} & \xrightarrow{F} \langle \frac{1}{6} v^3 \rangle_{h_3,-3} \\
\vdots & & & & & & \\
\langle \frac{1}{d!} u^d \rangle_{h_{d,d}} & \xrightarrow{F} \langle \frac{1}{2d(d-1)!} u^{d-1} z \rangle_{h_{d,d-1}} & \xrightarrow{F} \langle \frac{1}{2d(d-1)!} u^{d-1} z \rangle_{h_{d,d-1}} & \cdots & \xrightarrow{F} \langle \frac{1}{2d(d-1)!} u^{d-1} z \rangle_{h_{d,-(d-1)}} & \xrightarrow{F} \langle \frac{1}{d!} v^d \rangle_{h_{d,-d}} \\
\vdots & & & & & &
\end{align*}
\]
Candidate ideal

\[I_{s+1} = (h_{s+1,s+1}, \ldots, h_{s+1,0}) \subset (q_3^s)^\perp \quad \sqrt{I_{s+1}} = (u, z) \quad \deg(I_{s+1}) = \binom{s + 2}{2} \]
Candidate ideal

\[I_{s+1} = (h_{s+1,s+1}, \ldots, h_{s+1,0}) \subset (q_3^s)^\perp \ \ \ \sqrt{I_{s+1}} = (u, z) \ \ \ \deg(I_{s+1}) = \binom{s + 2}{2} \]

Proposition

The ideal \(I_{s+1} \) is saturated.
Candidate ideal

\[I_{s+1} = (h_{s+1,s+1}, \ldots, h_{s+1,0}) \subset (q_3^s)^\perp \quad \sqrt{I_{s+1}} = (u, z) \quad \deg(I_{s+1}) = \binom{s+2}{2} \]

Proposition

The ideal \(I_{s+1} \) is saturated.

Smoothable rank of \(f \in \mathcal{R}_d \)

\[\text{smrk} \ f = \min \{ \ r \in \mathbb{N} \mid \exists \ 0\text{-dim sm. scheme } Z: \deg Z = r, \ f \in \langle v_d(Z) \rangle \} \]
Candidate ideal

\[I_{s+1} = (h_{s+1,s+1}, \ldots, h_{s+1,0}) \subset (q_3^s)^\perp \quad \sqrt{I_{s+1}} = (u, z) \quad \deg(I_{s+1}) = \binom{s + 2}{2} \]

Proposition

The ideal \(I_{s+1} \) is saturated.

Smoothable rank of \(f \in \mathcal{R}_d \)

\[\text{smrk } f = \min \{ r \in \mathbb{N} \mid \exists \text{ 0-dim sm. scheme } Z: \deg Z = r, f \in \langle \nu_d(Z) \rangle \} \]

Use of apolarity lemma

Every scheme \(Z \subseteq \mathbb{P}^2 \mathbb{C} \) is smoothable \(\implies \text{smrk}(q_3^s) \leq \binom{s + 2}{2} \)
Border rank

$$\left(\frac{s + 2}{2}\right) \leq \text{brk}(q_3^s) \leq \text{smrk}(q_3^s) \leq \left(\frac{s + 2}{2}\right)$$
Border rank

\[
\left(\frac{s + 2}{2}\right) \leq \text{brk}(q_3^s) \leq \text{smrk}(q_3^s) \leq \left(\frac{s + 2}{2}\right)
\]

Conclusion

Let \(f \in \mathbb{C}[x_1, x_2, x_3]_2 \). Then:
Border rank

\[
\left(\frac{s + 2}{2}\right) \leq \text{brk}(q_3^s) \leq \text{smrk}(q_3^s) \leq \left(\frac{s + 2}{2}\right)
\]

Conclusion

Let \(f \in \mathbb{C}[x_1, x_2, x_3]_2 \). Then:

- \(\text{rk} f = 1 \Rightarrow \text{brk}(f^s) = 1 \)
Border rank

\[
\binom{s+2}{2} \leq \text{brk}(q_3^s) \leq \text{smrk}(q_3^s) \leq \binom{s+2}{2}
\]

Conclusion

Let \(f \in \mathbb{C}[x_1, x_2, x_3]_2 \). Then:

- \(\text{rk} f = 1 \implies \text{brk}(f^s) = 1 \)
- \(\text{rk} f = 2 \implies \text{brk}(f^s) = s + 1 \)
Border rank

\[
\left(\frac{s + 2}{2}\right) \leq \text{brk}(q_3^s) \leq \text{smrk}(q_3^s) \leq \left(\frac{s + 2}{2}\right)
\]

Conclusion

Let \(f \in \mathbb{C}[x_1, x_2, x_3]_2 \). Then:

- \(\text{rk} f = 1 \implies \text{brk}(f^s) = 1 \)
- \(\text{rk} f = 2 \implies \text{brk}(f^s) = s + 1 \)
- \(\text{rk} f = 3 \implies \text{brk}(f^s) = \left(\frac{s + 2}{2}\right) \)
[1] A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto, *The hitchhiker guide to: secant varieties and tensor decomposition*, Mathematics 314 (2018).

[2] W. Fulton and J. Harris, *Representation theory: A first course*, Graduate Texts in Mathematics, vol. 129, Readings in Mathematics, Springer-Verlag, New York, 1991.

[3] R. Goodman and N. R. Wallach, *Representations and invariants of the classical groups*, Encyclopedia of Mathematics and its Applications, vol. 68, Cambridge University Press, Cambridge, 1998.

[4] A. Iarrobino and V. Kanev, *Power sums, Gorenstein algebras, and determinantal loci*, with an appendix by A. Iarrobino and S. L. Kleiman, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999.

[5] J. M. Landsberg, *Tensors: geometry and applications*, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012.

[6] B. Reznick, *Sums of even powers of real linear forms*, Mem. Amer. Math. Soc. 96 (1992), no. 463.