Cancer progression is associated with many gene mutations and abnormal gene expressions. As a result, tumor-specific and tumor-associated antigens, which can stimulate T cell immune responses against malignant cells, are produced. Immune responses to tumors consist of three stages, namely, elimination, equilibrium, and escape. In the elimination stage, cancer cells are recognized and eradicated by the immune system. If the immune system fails to eradicate tumor cells, the equilibrium stage is reached. In the equilibrium stage, tumor cells and immune cells coexist. In the escape stage, tumors grow by developing immune suppressive mechanisms to escape immune attack mediated primarily by type 1 immune cells. Hence, new approaches should be developed to fight cancer by investigating the exact mechanism by which microRNAs regulate the functions of T cells.

MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post-transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells have important functions in acquired immune response; miRNAs regulate this immune response by targeting the mRNAs of genes involved in T cell development, proliferation, differentiation, and function. For instance, miR-181 family members function in progression by targeting Bcl2 and CD69, among others. MiR-17 to miR-92 clusters function by binding to CREB1, PTEN, and Bim. Considering that the suppression of T cell-mediated immune responses against tumor cells is involved in cancer progression, we should investigate the mechanism by which miRNA regulates T cells to develop new approaches for cancer treatment.
transcripts10,11. The functional significance of miRNAs is initially demonstrated in the developmental process of Caenorhabditis elegans12. Further studies have provided a strong link between miRNA and immune system function.

T cells are derived from lymphoid stem cells in the bone marrow and mature in the thymus. Based on the expression of surface molecules, such as CD3, CD4, and CD8, the development of T cells in thymus is divided into three stages: initial stage, in which T cells are formed as double negative cells (CD4−CD8−); intermediate stage, in which T cells are developed as double positive cells (CD4+CD8+); and final stage, in which T cells are formed as single positive cells (CD4+CD8− or CD4−CD8+)13. Based on maturation status, mature T cells are divided into naive cells, effector cells, memory T cells, and exhausted/anergic cells; each subset expresses specific surface molecules, including CCR7, CD45RA, CD70, and CD2714,15. Based on cytokine profiles, T helper cells (Th) can be divided into Th1, Th2, Th17, and Th9 cells, which enhance the activity of other immune cells by producing various cytokines16,17. T cells function in several processes, mainly in recognizing allergens and secreting cytokines that eradicate foreign molecules and cancer cells. For example, CD8+T cell secretes granzyme and perforin that directly kill cancer cells. CD4+T helps other T cells function properly and memory T cells participate in secondary immune response.

T lymphocytes (T cells) are mainly involved in adaptive immune response; miRNA is involved in the regulation of T cell development, maturation, differentiation, and function18,19. In this review, recent findings and current understanding of the function of miRNAs in T cells are presented. Further studies should be conducted to elucidate the mechanism by which miRNAs regulate T cells in the context of immune therapy for malignant tumors and cancer immunosuppressive environments.

MiRNAs and T cell development

miRNAs exhibit dynamic changes during the development of hematopoietic stem cells. The expression level of miRNAs is highly related to the degree of T cell differentiation and development20. For example, miR-125b is expressed at a higher extent in lymphoid stem cells than in myeloid stem cells and hematopoietic stem cells. This high expression stimulates the development of lymphocyte lineage. MiR-125b is also involved in hematopoietic stem cell survival and functions in the maintenance of lymphoid balance21. In hematopoietic progenitor cells, high miR-181a expressions facilitates T and B cell development22.

Evidence has shown that miRNA is involved in T cell development in the thymus. Dicer, an RNaseIII-like enzyme necessary to generate short interfering RNAs and miRNAs, is required for CD8 T cell development23,24. MiRNA expression is dynamically regulated in distinct stages of thymic T cell development25; this result suggests that miRNAs participate in the regulation of T cell differentiation in the thymus. MiR-181a, which is specifically enriched at the CD4+CD8+ DP stage of thymocyte development, suppresses the expression of Bcl-2, CD69, and T cell receptor (TCR); all of these molecules are important in positive selection. MiR-181a has also been shown to increase sensitivity to peptide antigens by downregulating multiple phosphatases26. These findings have indicated that miR-181a functions as an intrinsic “rheostat” in TCR signaling, which is very important in T cell development27. In addition to miR-181a, miR-150 is important in T cell development; the upregulation of miR-150 inhibits the expression of the target gene NOTCH328.

MiRNA is required for T cell activation, proliferation, and apoptosis

The activation of T cells depends on TCR and co-stimulatory molecules, such as CD28. T cells proliferate vigorously upon productive activation, leading to clonal expansion. Many miRNAs are involved in the regulation of T cell proliferation. After an external stimulation is detected, T cells greatly increase the expression of miR-214 and inhibit the expression of the target gene phosphatase and tensin homolog, which is deleted in chromosome ten (PTEN); as a result, T cell proliferation is enhanced29. In CD8+T cell activation, miR-130 and miR-301 are upregulated, resulting in a decreased CD69 expression through two miRNAs binding to the 3′-UTR of mRNA of CD6929. Grigorev et al.29 demonstrated that high miR-155 and miR-221 expressions inhibit the expression of PIK3R1 as a co-target gene and further inhibits cell proliferation and cytokine production in CD4+ T cells. A highly expressed miR-182 binds to Foxo1 of the 3′-UTR of mRNA and inhibits protein synthesis; this process results in an enhanced proliferation of T helper cells30. The function of miR-21 depends on the status of T cells. For instance, miR-21 regulates the survival of activated memory T cells and induces CCR-7 expression in activated naive T cells31.

The transcription factor c-Myc regulates cell proliferation, growth, and apoptosis. c-Myc also activates the expression of the miR17–92 gene cluster. c-Myc is directly bound to this locus as observed in the results of chromatin immunoprecipitation assay. Two members of the miR-17–92 gene cluster, specifically miR-17-5p and miR-20a, negatively regulate the expression of E2F1, a known downstream gene of c-Myc. These findings have revealed a new mechanism by which c-Myc promotes E2F1 transcription
and simultaneously limits translation; thus, cell proliferation is accurately controlled. In Th1 cells, miR-19 and miR-17, as members of miR-17–92 gene cluster, target PTEN and cAMP-response element binding protein (CREB1), respectively; these miRNAs also participate in the immune response of Th1 cells by enhancing T cell proliferation, promoting cytokine production, and inhibiting apoptosis. As CD8+ T cells are stimulated by viral infection, miRNA profiling is instantaneously changed. Among these miRNAs, miR-17–92 cluster fails to regulate the expression levels of proteins with controlled effector and memory CD8+ T cell differentiation. In mice, high miR-17 to 92 expression in lymphocytes causes lymphoproliferative disease and autoimmunity; as a result, the mice died prematurely. Lymphocytes from these mice are also hyperproliferative and resistant to apoptosis possibly because miR-17–92 suppresses the expression of the tumor suppressor PTEN and the proapoptotic protein Bim. Another study has shown that miR-150 and miR-139 regulate perforin, eomesodermin, and IL-2Ra expression in the progression of CTL cell differentiation, which is involved in inflammation and antigen stimulation.

Many miRNAs are involved in the regulation of T cell apoptosis. In CD4+ T cells from patients with relapsing forms of multiple sclerosis, miR-15a and miR-16-1 are downregulated and the target-gene B-cell lymphoma 2 (Bcl-2) was upregulated; this result affects the progression of apoptosis. Bim is a member of Bcl-2 family and participates in the mediation of lymphocyte apoptosis. In patients with malignant lymphoma, glucocorticoid inhibits the expression of miR-17–92 gene cluster and this result is consistent with a high Bim expression. miR-17–92 overexpression reduces Bim expression levels and inhibits glucocorticoid-mediated apoptosis. By contrast, the knockdown of miR-17–92 increases Bim protein expression, thereby enhancing apoptosis. However, the function of these miRNAs in T cells remains unclear. In another study, miR-122 is expressed in cutaneous T cell lymphoma (CTCL). In apoptotic CTCL cells triggered by various chemotherapeutic drugs, miR-122 is further upregulated. MiR-122 overexpression induces Akt activation and p53 inhibition, resulting in the resistance to chemotherapy-induced apoptosis. These data indicated that miR-122 amplifies the Akt/p53 anti-apoptosis pathway.

MiRNA functions in the development of functional peripheral T cell subsets

Mature peripheral T cells consist mainly of regulatory T cells (Tregs), CD4, and CD8 T cells. These cells further differentiate into various functional subsets. The function of miRNAs in the development of divergent T cell subsets has been elucidated in several studies.

The miRNA expression in naive, effector, and memory CD8+ T cells has been studied and dynamic changes in the miRNA profile during peripheral T cell differentiation have been revealed. The downregulation of miRNAs has been observed in effector T cells compared with naive cells and memory T cells. In effector T cells, six miRNAs (let-7f, miR-15b, miR-142-5p, miR-150, miR-142-3p, and miR-16) are expressed at a low extent. By contrast, a few miRNAs, such as miR-21, are highly expressed in effector T cells compared with memory and naive T cells. In antigen-stimulated CD8+ T cells, miR-155, miR-21, and miR-146a are upregulated. Using an in vitro system in which activated CD8 T cells are driven by IL-2 or IL-15 function as either effector memory cells or central memory cells, we observed that numerous miRNAs, such as miR-150, miR-155, and the let-7 family, are associated with the development of these memory T cell subsets. In particular, miR-150 regulates the protein expression of Kv channel interacting protein 1 (KChIP1) in mouse central memory T cells. These findings demonstrated the possible functions of these miRNAs in the further development of peripheral T cells.

T helper cells can be divided into Th1, Th2, Th17, and Th9 cells based on cytokine profiles; miRNAs are important in the differentiation and function of these T cell subsets. For instance, miR-142-5p is associated with CD4+CD25+ T cell proliferation by binding to the 3’-UTR of the mRNA of GARP. MiR-21 regulates Th1 and Th2 polarization and inflammatory response via the IL-2 and IFN-γ signaling pathways. The targeted ablation of miR-21 in mice results in reduced lung eosinophilia after allergen challenge, thereby significantly increasing Th1 cytokine IFN-γ levels and IL-12 production by dendritic cells. Mice infected with *Listeria monocytogenes* exhibit a downregulated miR-29 expression in IFN-γ-producing natural killer cells, CD4+T cells, and CD8+ T cells. MiR-29 suppresses IFN-γ production by directly targeting IFN-γ, T-bet, and Eomes mRNA. IL-23 also participates in Th17 responses. One study showed that miRNA let-7f inhibits the expression of IL-23 reporter in CD4+ T cells; this result indicated the function of these miRNAs in Th17 responses. MiR-125p is transfected into naive T cells, which terminate differentiation from naive T cells to effector cells.

Treg cells are responsible for the induction of immune tolerance and immune homeostasis. In the expression profile of miRNA from Treg cells, miR-24, miR-210, miR-95, and miR-145 are upregulated; by comparison, miR-24 and miR-210 negatively regulate FOXP3; miR-95 positively regulates FOXP3 via an indirect mechanism. In addition, miR-145 negatively regulates CTLA-4 expression. Takahashi et al. reported that miR-10a is
highly expressed in T reg cells. MiR-10a is induced by retinoic acid and transforming growth factor-β (TGF-β), which target the transcriptional suppressor Bcl-6 and the co-suppressor Ncor2; as a result, the phenotypic conversion of T reg into follicular Th cells is decreased. Moreover, miR-10a limits the generation of Th17 cells from the differentiation of T reg cells50. In stimulated T reg cells, miR-155 is upregulated; FOXO3a, the target of miR-155, negatively affects the Akt signaling pathway51. MiR-146 also inhibits the signal transducer and activator of transcription 1 (STAT1) expression by controlling Th1 responses via T reg cell-mediated regulation52.

MiRNA in cancer immunity

Type-1 T cells are important for the effective inhibition of tumor immune responses. In immune microenvironments, immune cells interact with cancer cells; with the passage of time, immune cells are stimulated by cancer cells and act against cancer cells by secreting small molecules. MiRNAs are a large family of small regulatory RNAs that function at a post-transcriptional level regulated by different processes of cell functions, including immune system regulation. miR-17–92 are downregulated in tumor microenvironments with specific T cells compared with normal T cells53. MiRNAs also regulate the co-stimulation of expressed molecules, such as intercellular adhesion molecule-1 (ICAM-1)54, B7-H155, B7-H356, and cytokine57, which co-exist in tumor microenvironments. MiRNAs affect anti-tumor immunity by balancing the development, differentiation, and function of immune cells as well as the secretion of cytokines in local tumor microenvironments (Table 1).

Table 1	Mechanism of miRNA-regulated T cells		
Stage	MiRNAs	Cell expression and mechanism	Reference
Development	MiR-125b	MiR-125b is involved in hematopoietic stem cell survival in lymphoid balance	Ooi et al.21
	MiR-181a	MiR-181a enhances DP cell antigen sensitivity, and inhibits Bcl-2, CD69 expression, and TCR effects the positive clone selection of T cells	Wu et al.8
	MiR-150	During T cell maturation process, upregulation miR-150 inhibits the expression of the target gene NOTCH3	Liu et al.22
			Li et al.25
Activation	MiR-214	After stimulation, highly expressed miR-214 inhibited target gene PTEN expression in the proliferation of T cells	Ghisi et al.27
Proliferation	MiR-130/301	During CD8+T cell activation, miR-130 and MiR-301 are upregulated, inhibit of CD69 expression	Zhang et al.28
	MiR-155	High expressions of miR-155 and miR-221 inhibited the expression of PIK3R1 in CD4+T cells	Grigoryev et al.29
	MiR-221		Stittrich et al.20
	MiR-182	MiR-182 binds to 3′-UTR of mRNA of Foxo1 in T helper cells	Smigielska-Czepiel et al.31
	MiR-21	MiR-21 regulates the survival of activated memory T cell and induces CCR-7 expression in activated naive T cells	Jiang et al.23
	MiR-17–92	In Th1 cells, miR-19 and MiR17 target PTEN and CREB1, respectively, are involved in Th1 cell immune response. MiR-17–92 gene cluster exhibits reduced expression and inhibits Bim and PTEN expressions, which affect apoptosis	Xiao et al.26
	MiR-150	MiR-150 and miR-139 regulate perforin, eomesodermin, and IL-2Rα expressions in	Trifari et al.17
	MiR-139	differentiation CTL cell, involved in inflammation and antigen stimulation	
	MiR-15a/16-1	MiR-15a/16-1 is downregulated, the upregulated target gene Bcl-2 affects the progression of apoptosis in CD4+T cells	Lorenzi et al.14
	MiR-17–92	MiR-17–92 gene cluster inhibits Bim expression, which facilitates glucocorticoid-induced apoptosis in CD4+T cells	Molitoris et al.40
	MiR-122	In apoptosis CTL cells, miR-122 is upregulated, which activates Akt-related pathway; indicated that MiR-122 amplifies the Akt/p53 anti-apoptosis pathway	Manfè et al.41

Table 1 (continued)
Conclusion

Increasing evidence suggests that miRNAs are important in the progression, development, and formation of immune systems. Therefore, miRNA regulatory networks should be further investigated in the context of disease settings to help elucidate the function of miRNAs in tumor microenvironments and inflammatory environments. Studies have focused on the mechanism of miRNA regulation. MiRNA should be engineered and applied in tumor microenvironments to inhibit oncogenes or suppress gene expression. In this way, miRNAs can function more effectively and accurately. Understanding the mechanism of T cell regulation by miRNAs, we may develop new therapies. Studies on engineering miRNAs have provided valuable information regarding the methods by which we could improve anti-tumor activity against solid tumors, as well as immune, autoimmune, and lymphatic diseases.

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 81171653 and 30972703), Natural Science Foundation of Jiangsu Province (Grant Nos. BK2011246 and BK2011247), and Jiangsu Provincial Innovation Award BC2012093 by the Bureau of Science and Technology of Jiangsu Province.

Conflict of interest statement

No potential conflicts of interest are disclosed.

References

1. Lopez-Camarillo C, Marchat LA, Arechaga-Ocampo E, Perez-Plasencia C, Del Moral-Hernandez O, Castaneda-Ortiz EJ, et al. MetastamiRs: Non-Coding MicroRNAs Driving Cancer Invasion and Metastasis. Int J Mol Sci 2012;13:1347-1379.
2. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
3. Zhang HG, Zhuang X, Sun D, Liu Y, Xiang X, Grizzle WE. Exosomes and immune surveillance of neoplastic lesions: a review. Biotech Histochem 2012;87:161-168.
4. Okada H, Kohanbash G, Lotze MT. MicroRNAs in immune regulation—opportunities for cancer immunotherapy. Int J Biochem Cell Biol 2010;42:1256-1261.
5. Holmstrøm K, Pedersen AW, Claesson MH, Zocca MB, Jensen SS. Identification of a microRNA signature in dendritic cell vaccines...
for cancer immunotherapy. Hum Immunol 2010;71:67-73.

6. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-770.

7. Berezikov E, Gurvsey V, de Vel J, Wienenholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005;120:21-24.

8. Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA, et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS One 2007;2:e1020.

9. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol 2007;23:175-205.

10. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell 2009;136:26-36.

11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-297.

12. Banerjee D, Kwok A, Lin SY, Slack FJ. Developmental timing in C. elegans is regulated by kin-20 and tim-1, homologs of core circadian clock genes. Dev Cell 2005;8:287-295.

13. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol 2003;21:139-176.

14. Salaun B, Yamamoto T, Badran B, Tsunetsugu-Yokota Y, Roux A, Baitesch L, et al. Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. J Transl Med 2011;9:44.

15. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-770.

16. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T lymphocytes. J Immunol 2005;174:4112-4119.

17. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005;6:1123-1132.

18. Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013;13:666-678.

19. Romanro P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol 2007;178:139-176.

20. Bentwich I, Avnuel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766-770.

21. Liu G, Min H, Yue S, Chen CZ. Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS One 2008;3:e3592.

22. Liu G, Min H, Yue S, Chen CZ. Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS One 2008;3:e3592.

23. Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K. Aberrant T cell differentiation in the absence of Dicer. J Exp Med 2005;202:261-269.

24. Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, et al. A role for Dicer in immune regulation. J Exp Med 2006;203:2519-2527.

25. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 2007;129:147-161.

26. Fragoso R, Mao T, Wang S, Schaffert S, Gong X, Yue S, et al. Modulating the strength and threshold of NOTCH oncogenic signals by mir-181a-1/b-1. PLoS Genet 2012;8:e1002855.

27. Ghisi M, Corradin A, Basso K, Frasson C, Serafin V, Mukherjee S, et al. Modulation of microRNA expression in human T-cell development: targeting of NOTCH3 by miR-150. Blood 2011;117:7053-7062.

28. Zhang N, Bevan MJ. Dicer controls CD8+ T-cell activation, migration, and survival. Proc Natl Acad Sci U S A 2010;107:21629-21634.

29. Grigoryeva YA, Kurian SM, Hart T, Nakorchovsky AA, Chen C, Campbell D, et al. MicroRNA regulation of molecular networks mapped by global microRNA, mRNA, and protein expression in activated T lymphocytes. J Immunol 2011;187:2233-2243.

30. Stittrich AB, Haftmann C, Skouroudis E, Kuhl AA, Hegazy AN, Panse I, et al. The microRNA mir-182 is induced by IL-2 and promotes clonal expansion of activated helper T lymphocytes. Nat Immunol 2010;11:1057-1062.

31. Smigielska-Czepiel K, van den Berg A, Jellema P, Sleczak-Prochazka I, Maat H, van den Bos H, et al. Dual Role of miR-21 in CD4+ T-Cells: Activation-Induced miR-21 Supports Survival of Memory T-Cells and Regulates CCR7 Expression in Naive T-Cells. PLoS One 2013;8:e76217.

32. O’Donnell KA, Wentzal EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005;435:839-843.

33. Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J, et al. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 2011;118:5487-5497.

34. Lykken EA, Li QJ. microRNAs at the regulatory frontier: an investigation into how microRNAs impact the development and effector functions of CD4 T cells. Immunol Res 2011;49:87-96.

35. Wu T, Wieland A, Araki K, Davis CW, Ye L, Hale JS, et al. Temporal expression of microRNA cluster mir-17-92 regulates effector and memory CD8+ T-cell differentiation. Proc Natl Acad
36. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008;9:405-414.

37. Trifari S, Pipkin ME, Bandukwala HS, Aijö T, Bassein J, Chen R, et al. MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 2012;109:9965-9970.

38. Lorenzi JC, Brum DG, Zanetti DL, de Paula Alves Souza A, Barbuzano FG, Dos Santos AC, et al. miR-15a and 16-1 Are Downregulated in CD4(+) T Cells of Multiple Sclerosis Relapsing Patients. Int J Neurosci 2012;122:466-71.

39. Marrack P, Kappler J. Control of T cell viability. Annu Rev Immunol 2004;22:765-787.

40. Molitoris JK, McColl KS, Distelhorst CW. Glucocorticoid-mediated repression of the oncogenic microRNA cluster miR-17~92 contributes to the induction of Bim and initiation of apoptosis. Mol Endocrinol 2011;25:409-420.

41. Manfè V, Biskup E, Rosbjerg A, Kamstrup M, Skov AG, Lerche CM, et al. miR-122 regulates p53/Akt signalling and the chemotherapy-induced apoptosis in cutaneous T-cell lymphoma. PLoS One 2012;7:e29541.

42. Almanza G, Fernandez A, Volinia S, Cortez-Gonzalez X, Croce CM, Zanetti M. Selected microRNAs define cell fate determination of murine central memory CD8 T cells. PLoS One 2010;5:e11243.

43. Zhou Q, Haupt S, Prots I, Thümmler K, Kremmer E, Lipsky PE, et al. miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant. J Immunol 2013;190:6579-6588.

44. Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, et al. Function of miR-146a in controlling T cell-mediated regulation of Th1 responses. Cell 2010;142:914-929.

45. Sasaki K, Kohanbash G, Hoji A, Ueda R, McDonald HA, Reinhart TA, et al. miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy. J Transl Med 2010;8:17.

46. Li Z, Wu F, Brant SR, Kwon JH. IL-23 receptor regulation by Let-7f in human CD4+ memory T cells. J Immunol 2011;186:6182-6190.

47. Gao Y, He Y, Ding J, Wu K, Hu B, Liu Y, et al. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3' untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis 2009;30:2064-2069.

Cite this article as: Liu J, Wu CP, Lu BF, Jiang JT. Mechanism of T cell regulation by microRNAs. Cancer Biol Med 2013;10:131-137. doi: 10.7497/jissn.2095-3941.2013.03.002