The ferroelectric nematic phase: an optimum liquid crystal candidate for nonlinear optics

C. L. Folcia, J. Ortega, R. Vidal, T. Sierra and J. Etxebarria

*Department of Physics, Faculty of Science and Technology, UPV/EHU, Bilbao, Spain; ‡Instituto de Nanociencia y Materiales de Aragón (INMA), Química Orgánica, Facultad de Ciencias, CSIC-Universidad de Zaragoza, Zaragoza, Spain

ABSTRACT

Materials that exhibit high nonlinear optical (NLO) susceptibilities are considered as promising candidates for a wide range of photonic and electronic applications. Here, we argue that the ferroelectric nematic (Nf) materials have sufficient potentialities to become materials for the next-generation of NLO devices. We have carried out a study of the efficiency of optical second-harmonic generation in a prototype Nf material, finding a nonlinear susceptibility of 5.6 pm/V in the transparent regime, one of the highest ever reported in ferroelectric liquid crystals. Given the fact that the studied molecule was not specifically designed for NLO applications, we conclude there is still margin to obtain Nf materials with enhanced properties that should allow their practical use.

1. Introduction

Nonlinear optical (NLO) effects can be used for a wide range of applications in electrooptics, photonics or biomedical technologies. Among them, second-order effects present remarkable interest and are currently used, for example, for frequency doubling in lasers or in Pockels cells. In most applications available nowadays, the materials implemented in devices are classical inorganic crystals, such as LiNbO₃, KH₂PO₄ (KDP) or KTiOPO₄ (KTP). However, organic materials have better potentialities for NLO applications since, compared to inorganic crystals, present more versatile synthesis and, therefore, is easier to design ad hoc organic molecules for NLO purposes [1,2]. Among organic materials, liquid crystals (LC) are especially attractive since they present fluidity and are easily integrable in semiconductor devices. LCs would be a compelling alternative to inorganic materials if large NLO strengths were achieved [3,4].

In order to obtain high second order optical effects in LCs, the molecules must incorporate long π-bridged donor-acceptor systems. However, macroscopic second-order NLO effects are only possible in non-centrosymmetric materials, which implies that, in practice, only ferroelectric (FLCs) liquid crystals can present second-order NLO properties. At molecular level,
the optimum response in FLCs is achieved when long π-bridged donor-acceptor groups are set along the polarisation direction. This requirement has been an important drawback in classical FLCs, since long π-bridged donor-acceptor systems incorporated along the molecular long axis are pointless, because the head-to-tail invariance prevents second-order responses. On the other hand, the incorporation of bulky chromophores along other directions can be incompatible with a large aspect ratio required for mesogeneity. Different approaches of molecular design have been proposed to obtain FLCs for NLO. The most outstanding designs are bent-core LCs [5–14] or azo bridged dimers and trimers [15–18]. In both cases relatively long chromophores can be integrated in the molecules with an acceptable component along the polarization direction (Figure 1).

Recently, the ferroelectric nematic (N_f) mesophase has been found out [19–30]. This phase is uniaxial and therefore spontaneous polarization appears along the director, which means that the head-to-tail invariance is no longer present. Therefore, contrary to previous FLCs, N_f LCs offer the possibility of introducing long donor-acceptor groups along the long axis of the molecule (Figure 1), which turns out to be very advantageous. Moreover, the N_f phase presents very high nematic order and it is reasonably easy to align in glass cells [26,27,29]. As mentioned by Chen et al. [27], in a N_f phase, a uniform nearly saturated bulk polarization can be achieved just from surface alignment, even in the absence of an applied electric field. This is an important advantage with respect to other types of materials, such as polymers, which require corona poling with strong electric fields to induce polarization. Another important advantage of N_f LCs is the strong interaction with electric fields, which implies much more efficient responses than the usual quadrupolar coupling of the classical nematic (N) LCs. In fact, switching in N_f LCs can be achieved by applying very low electric fields (~1 V.cm⁻¹) [26,27,29]. All of these properties make the N_f phase an ideal candidate for NLO purposes.

![Diagram](image.png)

Figure 1. Scheme of the molecular arrangement in different FLC phases for NLO. n is the molecular director, P is the polarization and D-π-A denotes the donor-acceptor unit.
2. Experimental section

2.1 Synthesis

RM734 was synthesized following previously reported procedures [20,26]. Experimental details concerning its preparation and characterisation are included in the supplemental material.

2.2. SHG measurements

The SHG experimental set up was described in detail elsewhere [35]. Briefly, polarised light from a Q-switched pulsed Nd:YAG laser (λ = 1.064μm) illuminates the sample situated on a high-resolution displacement stage. The beam was collimated and its diameter was limited by a pinhole to be less than 1 mm diameter. The intensity of the emitted second harmonic light (λ = 0.532μm) was measured by a photomultiplier after passing an analyser. A wedge cell was prepared with both glasses treated with polyvinyl alcohol and parallel rubbed (SYNPOLAR cell according to the definition of reference [27]), defining the extraordinary axis of the optical medium. ITO strip electrodes spaced 5 mm apart allow for the application of an in-plane electric DC field parallel or antiparallel to the rubbing direction. The thickness of the cell at different points was measured using an interferometric method allowing for a precise knowledge of the wedge angle (3.1 × 10⁻³ rad).

3. Experimental results

The symmetry of the Nf phase is ßcm, i.e., it is an optically uniaxial medium, and the second order dielectric susceptibility tensor under Kleinman condition is

\[
d = \begin{pmatrix}
0 & 0 & 0 & 0 & d_{31} & 0 \\
0 & 0 & 0 & d_{31} & 0 & 0 \\
d_{31} & d_{31} & d_{33} & 0 & 0 & 0
\end{pmatrix}
\]

(1)

where the Z-axis is along the polar direction. Here, the three-index notation of the susceptibility has been contracted to two indices in the usual way. There are only two independent coefficients, \(d_{33} \) and \(d_{31} \), SHG light generated along Z (extraordinary polarization) is driven by the \(d_{33} \) coefficient for extraordinary fundamental light, and by \(d_{31} \) for ordinary fundamental light. Both coefficients can then be determined independently by selecting the polarization of the incident light as extraordinary and ordinary, and measuring in both cases the extraordinary SHG light (Figure 2b).

The SHG power for fundamental light at normal incidence with power \(P^{\omega} \) is given by the expression

\[
P^{2\omega} = C \left(t^{\omega} \right)^2 \left(t^{\omega} \right)^4 \left(P^{\omega} \right)^2 d_{\text{eff}}^2 \sin^2 \left(\frac{2\pi}{\lambda} \Delta n_d L \right) \left(\frac{2\pi}{\lambda} \Delta n_d \right)^2,
\]

(2)

where \(t^{\omega} \) and \(t^{2\omega} \) are standard transmission Fresnel coefficients, \(\lambda \) is the wavelength of the incident light, \(L \) is the sample thickness, \(\Delta n_d = n^{2\omega} - n^{\omega} \) is the dispersion of the material, and \(d_{\text{eff}} \) is \(d_{33} \) or \(d_{31} \) in our experiment. It is evident from the expression of \(P^{2\omega} \) that the determination of \(d_{\text{eff}} \) inevitably requires the knowledge of the dispersion \(\Delta n_d \).

The constant \(C \) depends on the experimental device and is determined from the SHG intensity of a known standard sample. For this purpose, a \(y \)-cut quartz plate of 0.7 mm of thickness was used. The plate was rotated about the (vertical) x-axis while the SHG was measured for x-polarised \(\omega \) and \(2\omega \) lights (ordinary-to-ordinary conversion). The SHG intensity changes as a function of the angle of incidence showing maxima and minima. From the size of the first maximum and using the quartz data (\(d_{11} = 0.4 \text{pm.V}^{-1} \) and \(\Delta n_d = n^{2\omega} - n^{\omega} = 0.013 \)) the constant \(C \) in Equation (2) is easily extracted.

A wedge sample inside a high-temperature stage was situated on the displacement station with the extraordinary axis in the vertical direction (see Experimental section). Thus, the incident light was vertically (horizontally) polarised for the measurement of \(d_{33} \) (\(d_{31} \)), and the SHG light was vertically polarised in both cases. The experiment consisted in measuring \(P^{2\omega} \) at normal incidence, while the sample was displaced perpendicularly to the incident light so that the sample thickness \(L \) was continuously varied (Figure 2b). In this way, we obtain a sinusoidal curve of \(P^{2\omega} \) as a function of the transverse displacement (Maker fringes). The \(\sin^2 \left(\frac{2\pi}{\lambda} \Delta n_d L \right) \) dependence of \(P^{2\omega} \) allows to determine \(\Delta n_d \) from the periodicity, and \(d_{33} \) or \(d_{31} \) are obtained from the maxima of the curve.

The cell was capillary filled at about 15 °C below the clearing point in the N phase. In contrast to previous reports [26,27,29], we were surprised by the fact that a dark texture typical of a homeotropic alignment was observed in our sample. The same texture appeared with non-wedged cells of 12 and 20 µm. A drastic texture change occurred at about 133 °C when the transition to the \(N_i \) phase takes place: A non-defined texture with regions that extinguish in different directions was observed. This texture becomes nearly homogeneous, with extinctions parallel and perpendicular to the rubbing direction, when a field of 0.5 to 1 V.cm\(^{-1}\) is applied, irrespective of the field polarity, and a somewhat less defined texture but with the same extinction directions appears after removing the field (Figure 2c).

Before going into the \(d_{ij} \) results, we analyse qualitatively some general aspects of the SHG light. An intense signal linearly polarised in the extraordinary (vertical) direction was observed for extraordinary incident light. In this case, the SHG field must be proportional to \(d_{33} E_o E_o^* \), where the index e means extraordinary. No difference was noted for opposite field polarities. The signal without field was also similar although in general somewhat weaker depending on the illuminated region of the sample, which means that the applied field favors a better alignment of the material. The SHG signal under field saturated for fields of about 2 V.cm\(^{-1}\). Our study was performed under a field of 2.6 V.cm\(^{-1}\). On the other hand, a much weaker signal with a rather small signal-to-noise ratio was detected when the incident light was polarised in the ordinary (horizontal) direction. In this case, the SHG field is proportional to \(d_{33} E_o E_o^* \), where o means ordinary. Accordingly, as expected from the molecular geometry, \(d_{33} \gg d_{31} \). We will return to this point later.

Figure 3a shows the SHG intensity as a function of the thickness \(L \) for extraordinary fundamental light at 118 °C. The curve was fitted to a \(A \sin^2 \left(\frac{2\pi}{\lambda} \Delta n_d^c L \right) \) dependence from which \(\Delta n_d^c = n^{2\omega} - n^{\omega} = 0.064 \) results. The coefficient \(d_{33} \) was determined from the amplitude \(A \) and resulted to be \(d_{33} = 5.6 \text{pm.V}^{-1} \) at this temperature. Figure 3b shows the temperature dependence of the SHG intensity in the \(N_i \) phase. The measurement was carried out on heating, situating the sample on one of the maxima like those in Figure 3a. The coefficient \(d_{33} \) is proportional to the square root of the SHG intensity under the reasonable assumption that the temperature dependence of \(\Delta n_d^c \) may be neglected.
As mentioned above, the coefficient d_{31} can be measured illuminating the sample with ordinary (horizontally polarised) light. However, the accurate determination of this coefficient was difficult because of the high d_{33}/d_{31} ratio. As a consequence of this, unavoidable misalignments of the sample cause the intrusion of the SHG signal coming from d_{33}. In view of this, we selected a sample area with optimal alignment for the measurements. The detected signal was about 100 times weaker than the one observed at a maximum of Figure 3a, meaning that a maximum limit of about $d_{33}/10 (0.6 \text{ pm.V}^{-1})$ can be established for d_{31}.

4. Discussion of the results

The value of the d_{33} coefficient (5.6 pm.V$^{-1}$) of RM734 is similar to those of the most efficient LC reported up to know. This fact is quite remarkable since RM734 LC has not been designed for NLO purposes and, therefore, does not include efficient donor-acceptor groups. In fact, the most efficient LC reported up to now is only slightly higher and it presents a maximum value for the d_{ij} coefficients of 6.8 pm.V$^{-1}$ in transparent regime [18]. A compilation of the most outstanding LCs for NLO applications reported so far can be found in the table 3 of the same reference.

We now try to connect the macroscopic NLO coefficients d_{ij} with the molecular and structural parameters. We use the oriented-gas model and assume that the hyperpolarizability of the molecule comes essentially from the NO$_2$-π-O molecular segment, since the rest of the molecule does not possess any group with relevant donor or acceptor character. Besides, the ester groups connecting the benzene rings interrupt the possibility of charge transfer along the molecular long axis, restricting the donor-acceptor conjugation length to only one ring (the leftmost ring in Figure 1a). Thus, it seems reasonable to assume that the hyperpolarizability has simply one component directed along the molecular long axis z ($\beta = \beta_{zzz}$), with a magnitude similar to that of the fragment that contains the donor-π-acceptor group, that is, the p-nitrophenol molecule.

For p-nitrophenol, experimental data using the EFISH technique are available. At a fundamental wavelength of 1.907 μm, reference [36] gives $\beta = 3.0 \times 10^{-30} \text{ esu}$ along the donor-acceptor direction. For our excitation wavelength, $\lambda = 1.064 \mu\text{m}$ this value is slightly resonance enhanced. Using the two-level dispersion model we obtain $\beta = 4.2 \times 10^{-30} \text{ esu}$, taking a resonance wavelength $\lambda_{\text{max}} = 0.304 \mu\text{m}$ [36].

We will write the susceptibility tensor in a laboratory reference system (Figure 4a where the Z axis is along the macroscopic polar axis of the N$_{F}$ phase. Within the oriented-gas model, the d_{ijk} components of the susceptibility tensor in this frame are given by

$$d_{ijk} = N f^2 \langle \beta_{ijk} \rangle,$$

where $\langle \beta_{ijk} \rangle$ are the thermally averaged hyperpolarizability tensor components in the laboratory system, N is the number of molecules per unit volume, and f the Lorentz factor (we assume the same factors for the second-harmonic and fundamental radiation frequencies, and take $f = (n^2 + 2)/3$ with an average refractive index $n = 1.6$). N can be obtained from the mass density $\rho = 1.3 \text{ g.cm}^{-3}$ (see reference [26]) as $N = \rho N_{A}/M = 1.85 \times 10^{21} \text{ molecules.cm}^{-3}$, where M is the molar mass and N_{A} the Avogadro number.
The $\langle \beta_{\|C} \rangle$ components are easily obtained by a simple transformation of axes and subsequent thermal averaging. A straightforward calculation gives rise to a final tensor, which has the shape given by Equation (1) in the two-index Voigt notation. The two independent components are

$$
\begin{align*}
 d_{33} &= Nf^3 \langle \cos^3 \theta \rangle \beta \\
 d_{31} &= Nf^3 \langle \cos \theta \sin^2 \theta \rangle \beta / 2
\end{align*}
$$

where it has been taken into account that the azimuthal angle ϕ distribution of the molecular long axes is isotropic. On the other hand, the distribution function for the polar angle θ is $F(\theta) = A \exp[-U(\theta)/k_BT]$ where A is a normalization constant, k_B the Boltzmann constant, and $U(\theta)$ the nematic potential, which in its simplest form can be expressed in terms of two functions of the temperature T, $a(T)$ and $b(T)$, as

$$
U(\theta) = a(T) \sin^2 \theta + b(T) \sin^2(\theta/2).
$$

Here $a(T)$ accounts for the intensity of the usual nematic potential (which is taken as proportional to the nematic order parameter in the Maier-Saupe theory [37]), whereas $b(T)$ gives the strength of a new contribution to the nematic potential due to the existence of ferroelectricity.

Now we will obtain the numerical values of $a(T)/k_BT$ and $b(T)/k_BT$ at 118 °C (where the SHG measurements were performed) from two experimental data:

(i) The polarization value at that temperature, $P(118) = 5.1 \mu C \cdot cm^{-2}$ [26]. This gives $\langle \cos \theta \rangle = P(118) / N\mu = 0.723$, where $\mu = 11.4D$ is the molecular dipole moment [26].

(ii) The ratio between the actual birefringence at 118 °C (\Delta n) and the extrapolated birefringence at the same temperature in the absence of polar order (Δn_{NP}), $\Delta n/\Delta n_{NP} = 0.244/0.228$ (see Figure S17 in [26]). Since the birefringence is expected to be proportional to the nematic order parameter $S = (3\langle \cos^2 \theta \rangle - 1)/2$, this birefringence ratio can be connected with S/S_{NP}, where S_{NP} is the order parameter deduced from the distribution function with $b(T) = 0$.

Figure 4. (a) Scheme of the molecular and laboratory reference frames. (b) Nematic potential $U(\theta)/k_BT$ and normalized angular distribution function $F(\theta) = A \exp[-U(\theta)/k_BT]$.

- θ: polar angle
- ϕ: azimuthal angle
- Z: molecular long axis
- X, Y, Z: laboratory reference frame

- $F(\theta)$: distribution function
- $U(\theta)$: nematic potential
- Nf: normalization constant
- k_B: Boltzmann constant
- A: normalization constant

Figure S17 (see [26]): The birefringence ratio between the actual and extrapolated values at 118 °C. $\Delta n/\Delta n_{NP} = 0.244/0.228$.

Figure S17 (see [26]): The birefringence ratio between the actual and extrapolated values at 118 °C. $\Delta n/\Delta n_{NP} = 0.244/0.228$.
5. Conclusions

SHG measurements of RM734 give a d_{33} coefficient of 5.6 pm$^{}$.V$^{-1}$ in the N_F phase, one of the largest NLO coefficients reported to date for FLCs. This value is in the verge to enable viable applications in NLO and electrooptics. We have also seen that the size of the NLO susceptibility is proportional to the molecular hyperpolarizability β along the donor-acceptor direction. This means that it is still possible to substantially increase the susceptibility values if molecules are used where the charge-transfer channel along the long molecular axis is not interrupted, as is the case in the current molecule. As an example, a N_F liquid crystal made of molecules with a β value equal to that of the standard chromophore DR-1, would present a d_{33} coefficient higher than 100 pm$^{}$.V$^{-1}$. In this sense, it is interesting to note that β has a quadratic or greater than quadratic dependence with the distance between the donor and the acceptor. Obviously, the molecular design that allows for the electronic conjugation should be compatible with the possibility of keeping the N_F phase. Another attractive possibility seems to dissolve NLO chromophores in N_F materials [38]. If the admitted chromophore concentration is high enough without causing N_F phase disruption, we believe that these structures can lead to novel applications that may revolutionise the technology based on nematic materials.

Acknowledgements

The authors would like to thank the “Servicios Científico Técnicos” of CEQMA, CSIC-Universidad de Zaragoza.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by Euskal Herriko Unibertsitatea Unibertsitatea [Project GIU18/146], the MICIU/AEI/FEDER, EU funds [Project PGC2018-093761-B-C31] and the Gobierno de Aragón-FSE [Project E47_20R].

ORCID

C. L. Folcia http://orcid.org/0000-0003-2607-2937
J. Ortega http://orcid.org/0000-0002-6855-9156
J. Etxebarria http://orcid.org/0000-0002-3948-6779

References

[1] Prasad PN, Williams DJ. Introduction to nonlinear optical effects in molecules and polymers. New York: Wiley; 1991. pp. 132–174.
[2] Bosshard CH, Sutter K, Pretre PH, et al. Organic nonlinear optical materials. Switzerland: Gordon and Breach publishers; 1995.
[3] Walba DM, Dyer DJ, Cobben PL, et al. Ferroelectric liquid crystals for nonlinear optics: can we really do it? Mat Res Soc Symp Proc. 1995;392:157–162.
[4] Zhang Y, Etxebarria J. Ferroelectric liquid crystals for nonlinear optical applications. In: Li Q, Zhang Y, Etxebarria J. editor. Liquid crystals beyond displays. Hoboken, NJ: Wiley; 2012. pp. 111–156.
[5] Choi SW, Kinoshita Y, Park B, et al. Second-Harmonic generation in achiral bent-shaped liquid crystals. Jpn J Appl Phys. 1998;37:3408–3411.
[6] Kentischer F, Macdonald R, Warnick P, et al. Second harmonic generation (SHG) investigations of different phases of banana shaped molecules. Liq Cryst. 1998;25:341–347.
[7] Ortega J, Pereda N, Folcia CL, et al. Second-Harmonic generation studies in the B-2 and B-4 phases of a banana-shaped liquid crystal. Phys Rev E. 2001;63:011702.
[8] Gallastegui JA, Folcia CL, Etxebarria J, et al. Determination of the second order susceptibility tensor in banana-shaped liquid crystals. Liq Cryst. 2002;29:1329–1333.
[9] Araoka F, Hoshi H, Takezoe H. Splayed polarization in the ferroelectric phase of a bent-core liquid crystal as studied by optical second-harmonic generation. Phys Rev E. 2004;69:051704.
[10] Ortega J, Gallastegui JA, Folcia CL, et al. Second harmonic generation measurements in aligned samples of liquid crystals composed of bent-core molecules. Liq Cryst. 2004;31:579–584.
[11] Takezoe H, Takahashi Y. Bent-Core liquid crystals: their mysterious and attractive world. Jpn J Appl Phys. 2006;45:597–625.
[12] Martínez-Perdiguero J, Alonso J, Folcia CL, et al. Local structure of the B$_2$ phase studied by second harmonic generation and X-ray diffraction measurements. J Mater Chem. 2009;19:5161–5166.
[13] Pintre IC, Serrano JL, Ros MB, et al. Bent-Core liquid crystals in a route to efficient organic nonlinear optical materials. J Mater Chem. 2010;20:2965–2971.
[14] Champagne B, Guthmuller J, Perreault F, et al. Theoretical design of the molecular structure of Bent-Core mesogens with large second-order nonlinear optical properties. J Phys Chem C. 2012;116:7552–7560.

[15] Walba DM, Dyer DJ, Sierra T, et al. Ferroelectric liquid crystals for nonlinear optics: orientation of the disperse Red 1 chromophore along the ferroelectric liquid crystal polar axis. J Am Chem Soc. 1996;118:1211–1212.

[16] Walba DM, Xiao L, Keller P, et al. Ferroelectric liquid crystals for second order nonlinear optics. Pure Appl Chem. 1999;71:2117–2123.

[17] Zhang Y, Martinez-Perdiguer J, Baumeister U, et al. Laterally Azo-bridged H-shaped ferroelectric dimers for second-order nonlinear optics: ferroelectricity and second harmonic generation. J Am Chem Soc. 2009;131:18386–18392.

[18] Zhang Y, Ortega J, Baumeister U, et al. An Azo-bridged ferroelectric Liquid crystal with highly enhanced second and third harmonic generation. J Am Chem Soc. 2012;134:16298–16306.

[19] Mandle RJ, Cowling SJ, Goodby JW. A nematic to nematic transformation exhibited by a rod-like liquid crystal. Phys Chem Chem Phys. 2017;19:11429–11435.

[20] Mandle RJ, Cowling SJ, Goodby JW. Rational design of rod-like liquid crystals exhibiting two nematic phases. Chem: Eur J. 2017:23:14554–14562.

[21] Nishikawa H, Shiroshita K, Higuchi H, et al. A fluid liquid-crystal material with highly polar order. Adv Mater. 2017;29:1702354.

[22] Mertelj A, Cmok L, Sebastián N, et al. Splay nematic phase. Phys Rev X. 2018;8:041025.

[23] Mandle RJ, Mertelj A. Orientational order in the splay nematic ground state. Phys Chem Chem Phys. 2019;21:18769–18772.

[24] Sebastián N, Cmok L, Mandle RJ, et al. Ferroelectric-Ferroelastic phase transition in a nematic liquid crystal. Phys Rev Lett. 2020;124:37801.

[25] Connor PLM, Mandle RJ. Chemically induced splay nematic phase with micron scale periodicity. Soft Matter. 2020;16:324–329.

[26] Chen X, Korblova E, Dong D, et al. First-Principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: spontaneous polar domains and striking electro-optics. PNAS. 2020;117:14021–14031.

[27] Chen X, Korblova E, Glaser MA, et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: polar monodomains and twisted state electro-optics. Pnas. 2021;118:e2104092118.

[28] Lavrentovich OD. Ferroelectric nematic liquid crystal, a century in waiting. Pnas. Proc Natl Acad Sci U S A. 2020;117:14629–14631.

[29] Caimi F, Nava G, Barboza R, et al. Surface alignment of ferroelectric nematic liquid crystals. Soft Matter. 2021;17:8130–8139.

[30] Brown S, Cruickshank E, Storey JMD, et al. Multiple polar and non-polar nematic phases. Chemphyschem. 2021;22:2506–2510.

[31] Li J, Nishikawa H, Kougo J, et al. Development of ferroelectric nematic fluids with giant-ε dielectricity and nonlinear optical properties. Sci Adv. 2021;7:eabf5047.

[32] Sebastián N, Mandle RJ, Petelin A, et al. Electrooptics of mm-scale polar domains in the ferroelectric nematic phase. Liq Cryst. 2021:48:2055–2071. DOI:10.1080/02678292.2021.1955417.

[33] Zhao X, Zhou J, Nishikawa H, et al. Observation of spontaneous helielectric nematic fluids: electric analogy to helimagnets. Pnas. 2021;118:e2111101118.

[34] Pociecha D, Walker R, Cruickshank E, et al. Intrinsically chiral ferroelectric liquid crystals. 2021. arXiv:2112.11887.

[35] Pereda N, Foltica CL, Etzbearria J, et al. Temperature dependence of the second-order susceptibility in calamitic ferroelectric liquid crystals. Liq Cryst. 1998;24:451–456.

[36] Cheng LT, Tam W, Stevenson SH, et al. Experimental investigations of organic molecular nonlinear optical polarizabilities. I. Methods and results on benzene and stilbene derivatives. J Phys Chem. 1991;95:10631–10643.

[37] Etzbearria J, Foltica CL, Ortega J. Generalization of the Maier-Saupe theory to the ferroelectric nematic phase. Liq Crystals. 2022 arXiv:2112.11120v2. doi:10.1080/02678292.2022.2055181.

[38] Chen X, Zhu Z, Magrini MJ, et al. Ideal mixing of paraelectric and ferroelectric nematic phases in liquid crystals of distinct molecular species. 2021. arXiv:2110.10826.