A Kinematical Study of the Dwarf Irregular Galaxy NGC 1569 and its Supernova Remnants

M. Sánchez-Cruces1,⋆, M.M. Sardaneta2, I. Fuentes-Carrera3, M. Rosado1, N. Cárdenas-Martínez 3, and M. A. Lara-López1,5,6

1 Instituto de Astronomía, Universidad Nacional Autónoma de México, Circuito Exterior, C.U., Apartado Postal 70-264, 04510 Ciudad de México, México
2 Aix Marseille Univ, CNRS, CNES, LAM, Laboratoire d’Astrophysique de Marseille, Marseille, France
3 Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, U.P. Adolfo López Mateos, C.P. 07738, Ciudad de México, México
4 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK
5 Departamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
6 Instituto de Física de Partículas y del Cosmos IPARCOS, Fac. de Ciencias Físicas, Universidad Complutense de Madrid, E-28040, Madrid, Spain

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We present Fabry-Pérot observations in the Hα and [S II] lines to study the kinematics of the Magellanic-type dwarf irregular galaxy NGC 1569, these observations allowed us to compute the Hα velocity field of this galaxy. Doing a detailed analysis of the velocity along the line-of-sight and Hα velocity profiles, we identified the origin of most of the motions in the innermost parts of the galaxy and discarded the possibility of deriving a rotation curve that traces the gravitational well of the galaxy. We analysed the kinematics of the ionised gas around 31 supernova remnants previously detected in NGC 1569 by other authors, in optical and radio emission. We found that the Hα velocity profiles of the supernova remnants are complex indicating the presence of shocks. Fitting these profiles with several Gaussian functions, we computed their expansion velocities which rank from 87 to 188 km s⁻¹ confirming they are supernova remnants. Also, we determined the physical properties such as electron density, mechanical energy, and kinematic age for 30 of the 31 supernova remnants and found they are in the radiative phase with an energy range from 1 to 39 × 10⁵⁰ erg s⁻¹ and an age from 2.3 to 8.9 × 10⁴ yr. Finally, we estimated the Surface Brightness - Diameter (Σ-D) Relation for NGC 1569 and obtained a slope β = 1.26±0.2, comparable with the β value obtained for supernova remnants in galaxies M31 and M33.

Key words: galaxies: kinematics and dynamics - galaxies: individual (NGC 1569)

1 INTRODUCTION

Detection and identification of supernova remnants (SNRs) in nearby galaxies depend on multiple physical properties involving the interstellar medium (ISM) of the host galaxy, as well as the morphology and evolutionary stage determined by the supernova (SN) progenitor (Type Ia or core-collapse SN). By studying extragalactic SNRs we can determine some physical aspects that took place during their evolution and consequently, several key factors in understanding star formation activity, as well as, the formation and evolution of the host galaxy.

The first extragalactic SNRs identifications were made in the Large Magellanic Cloud (LMC) by Mathewson & Healey (1963), who found three non-thermal radio sources. Additionally, Mathewson & Clarke (1972) Mathewson & Clarke (1973a), Mathewson & Clarke (1973b) found 12 SNRs in the LMC and 2 in the Small Magellanic Cloud (SMC) using optical ([S II]/Hα ratios > 0.4) and radio emission imaging observations (using radio spectral indices α ≤ -0.2). Since then, research to identify extragalactic SNRs has been mainly done using radio, optical and X-ray emission (see for example, Long et al. 1981; Seward & Mitchell 1981; Georgelin et al. 1983; Kaastra & Mewe 1995; Ambrocio-Cruz et al. 2006, 2017).

SNR radio emission is generally dominated by a non-thermal continuum. Since these objects are synchrotron sources their identification is usually achieved using their morphology and non-thermal radio spectral indices with values ranging from -0.2 to -0.7. X-ray emission of SNRs is dominated by thermal plasma heated by the SN explosion at temperatures of ~10⁶ K and mainly emitting soft thermal X-rays (0.5 - 2.0 keV). Therefore, the identification in this waveband...

* msanchez@astro.unam.mx;
has been done first considering counterparts in other wavelengths along with their soft X-ray spectra (see, Pannuti et al. 2000; Nishiuchi et al. 2001; Long et al. 2010; Leonidaki et al. 2010; Wang & Wu 1992; Wang & Gotthelf 1998).

The SNR optical emission is dominated by Hα and forbidden lines, for example [O II]λλ4959,5007 Å, [N II]λλ6549,6583 Å, and [S II]λλ6717,6731 Å (Fesen et al. 1985, and references therein). The optical identification of SNRs is typically done using the emission lines ratio [S II]/Hα. In particular, this line ratio has been used to distinguish between SNRs with [S II]/Hα ratios>0.4 and HII regions with [S II]/Hα ratios<0.2 (e.g., Mathewson & Clarke 1972, 1973; Raymond 1979; Dodorico et al. 1980; Long et al. 1990; Levenson et al. 1995; Blair & Long 1997; Matonick & Fesen 1997).

It is important to take into account that the [S II]/Hα>0.4 value is valid for galaxies with low metallicities such as the LMC with Z_{LMC}∼0.3-0.5 Z⊙ (Russell & Dopita 1992) and the SMC with Z_{SMC}∼0.2 Z⊙ (Russell & Dopita 1992); while for galaxies with similar metallicities to the Milky Way, this value is about a unit, due to the [S II] line being comparable with the Hα line (see also Dodorico & Sabbadin 1976).

Being this the most common method of detection, recent observations and surveys have identified a large sample of SNRs in nearby galaxies using the classical definition for optical detection of extragalactic SNRs ([S II]/Hα ratios>0.4) (e.g., Vučetić et al. 2015; Winkler et al. 2017; Long et al. 2018, 2019; Moumen et al. 2019). However, in some cases the SNR’s physical properties such as electronic density, kinetic energy, kinematic age and possible evolutionary stage, remain unknown due to the lack of spatial and spectral resolution.

Another method to identify and study the physical properties of SNRs is the kinematical method proposed and used to detect SNRs in the Magellanic Clouds by Rosado et al. (1993a,b). This method consists on the detection of the suspected nebula in several velocity channels of a scanning high resolution Fabry-Pérot (FP) interferometer data cube based on the fact that the SNRs radial velocity profiles are complex, i.e., presenting velocity splitting, high velocity wings or humps (Rosado et al. 1993b). These features can indicate the presence of more than one velocity component due to the velocity of the SNR expanding shell. The characteristic widths of about 200 km s$^{-1}$ are also due to the presence of shocks. The characteristic expansion velocity of these complex velocity profiles is given as follows: the difference between the largest negative value of the velocity in the profile and the largest positive velocity value.

In general, for HII regions the velocity profiles are fitted with a simple component, while the SNRs complex velocity profiles can be fitted with multiple velocity components (see Le Coarer et al. 1993). Thus, the kinematical method is useful in the identification of SNRs inside bright HII regions and superbubbles1 formed by previous wind driven nebula.

One way to see intrinsic broadening of the emission lines and distinguish between shock-ionised (i.e., SNRs) or photo-ionised (i.e., HII regions) regions is by using high spectroscopic resolution observations (see, Points et al. 2019); another way is by using data from an integral field spectrograph as the FP interferometer, from which we can also get kinematic information of each pixel over all the field of view (FoV).

With high resolution FP interferometry data it is possible to study the kinematics of Galactic and extragalactic SNRs obtaining the SNR expansion velocity, the energy deposited in the ISM by the SN explosion and the age of the SNR considering its evolutionary stage (see, Rosado 1981, 1982; Rosado et al. 1996; Ambroso-Cruz et al. 2014; Sánchez-Cruces et al. 2018). In addition, FP data allows us to study the global kinematics of galaxies (Fuentes-Carrera et al. 2019; Gómez-López et al. 2019; Sardaneta et al. 2020) and their regions with particular physical features such as perturbations induced by interactions (Fuentes-Carrera et al. 2004; Repetto et al. 2010b) or regions with a high star formation rate (SFR, see Cárdenas-Martínez & Fuentes-Carrera 2018). Thus, the kinematical method complements the classic optical method of SNR detection, as well as radio and X-ray observations by helping identify SNRs inside bright HII regions.

The determination of the kinematics of dwarf irregular galaxies is a powerful tool to estimate the total matter distribution at small scales. In particular, HII observations have allowed the determination of rotation curves (RCs) for this type of galaxies, since neutral hydrogen is typically detected well beyond the optical disc and is not affected by dust extinction (Reakes 1980; Stil & Israel 2002; Johnson et al. 2012; Lelli et al. 2014; Iorio et al. 2017). However, the angular resolution of HI observations is not very large. Combining the RCs obtained for central regions of galaxies from ionised gas data with the results from neutral hydrogen data for the more external regions is becoming more frequent (Moiseev 2014; Egorov et al. 2021). On the other hand, it is rather difficult to measure the RC of gas in dwarf galaxies. However, due to the shallow potential well of dwarf irregular galaxies, the interaction of young stellar groups with the ISM in this type of galaxies can be particularly important. The ionising radiation of OB stars, as well as the kinetic energy of stellar winds and supernova explosions can heat the gas, forming bubbles, shells, outflows and chaotic turbulent motions in the gaseous disc. In some cases, these motions dominate the kinematics and dynamics in the inner parts of dwarf galaxies, so a reliable RC that properly describes or traces the potential well of the galaxy cannot be derived from the ionised gas as suggested by Moiseev & Lozinskaya (2012); Moiseev et al. (2015); Egorov et al. (2021).

1.1 SNRs in NGC 1569

The Magellanic-type dwarf irregular galaxy (dIIm) NGC 1569, a well known starburst galaxy, lies at a distance of 3.36 Mpc (Grocholski et al. 2008, measured using the tip of the red giant branch (TRGB) with Hubble Space Telescope (HST) observations) and presents a low metallicity ($Z = 0.25 Z⊙$; Devost et al. 1997; Kobulnicky & Skillman 1997) which lies between the metallicities of the SMC and LMC. Large-scale shells and superbubbles are very well defined in Hα emission (Hunter et al. 1993; Westmoquette et al. 2008) and coincide with extended X-ray emission (Martin et al. 2002; Sánchez-Cruces et al. 2015). Using optical observations in Hα and [S II] carried out with the UNAM Scanning Fabry-Pérot Interfer-

1 Superbubbles are objects blown by fast stellar winds and supernova explosions from groups of massive stars (Tomisaka et al. 1981; Mac Low & McCray 1988; Chu 2008) with a ring shaped nebulae formed inside the disc of the galaxy with sizes of the order of 10 - 100 pc.
ometer PUMA, Sánchez-Cruces et al. (2015) detected several superbubbles as well as filamentary structure and supershells in this galaxy, some of them found previously by Hunter et al. (1993) and Westmoquette et al. (2008).

For this galaxy, Greve et al. (2002) detected five possible radio SNRs as non-thermal radio sources located in the super-star clusters region using the Multi Element Radio Linked Interferometry Network (MERLIN) observations at 1.4 and 5 GHz.

Chomiuk & Wilcots (2009) detected 23 SNRs candidates in NGC 1569 using the Very Large Array (VLA) radio continuum data at 20, 6, and 3.6 cm, as part of a SNRs survey in four nearby irregular galaxies. The radio continuum sample obtained by those authors is conformed by SNRs, HII regions and background radio galaxies; therefore, to differentiate SNRs from HII regions they used the radio spectral indices considering $\alpha \leq -0.2$ for SNRs and $\alpha > -0.2$ for HII regions. Then, to differentiate detected SNRs from background galaxies, they considered that background galaxies did not have Hα emission. Therefore, the SNRs sample obtained by Chomiuk & Wilcots (2009) was done considering radio continuum and optical emission.

Recently, Ercan et al. (2018) showed evidence of 13 possible optical SNRs candidates in this galaxy with CCD imaging using the [SII]/Hα ≥ 0.4 standard criteria. They identified the new SNRs candidates and computed the electron density (ne), of about 121 ± 17 cm$^{-3}$ for only one SNR candidate using the [SII]6716/[SII]6731 average flux ratio. Also, with long-slit spectroscopic observations, they found that the shock wave velocity (Vs) of one of the 13 SNRs ranges from 100 to 150 km s$^{-1}$ using the [OIII]5007/Hβ ratio. Finally, those authors used Chandra data to extract the X-ray spectra of the 13 SNRs candidates; their results indicate that only 10 of the 13 SNRs candidates had a spectrum in the 0.5-2.0 keV band with good statistics, confirming the existence of 10 SNRs candidates in that wavelength.

Taking into account the three SNRs samples in radio and optical emission reported previously, this galaxy harbours a total of 31 SNRs listed in Table 1 and pointed out in a Hα image in the right panel of Figure 1.

In Sánchez-Cruces et al. (2015), hereafter Paper I, we studied the kinematics of superbubbles and supershells in NGC 1569 and focused on the nature and formation of those objects. In this work, we studied the global kinematics of this irregular galaxy and used the kinematic method to verify the optical SNRs hosted in NGC 1569 found by other authors. We used a distance to NGC 1569 of 3.36 Mpc as indicated above. In Section 2 we present the observations and data reduction. In Section 3 the global kinematics of the galaxy is presented. In Section 4 we show the kinematical analysis of the SNRs. Finally, the conclusions are presented in Section 5.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Observations

The observational data used in this work are the same as in Paper I, and were obtained in November 1997 using the 2.1 m telescope of the Observatorio Astronómico Nacional of the Universidad Nacional Autónoma de México (OAN-UNAM), at San Pedro Mártir, B. C., México with the UNAM scanning Fabry-Pérot interferometer PUMA (Rosado et al. 1995). No additional FP observations of NGC 1569 have been obtained recently for this work.

We used a 1024 × 1024 Tektronix CCD detector binned by a factor of 2, resulting in an image size of 512 × 512 px and a plate scale of 1.18 arcsec/pixel (44 pc/pixel). The FoV of PUMA is 10′ and the spectral resolution is 0.41 Å (equivalent to a velocity resolution of 19.0 km s$^{-1}$) at Hα. More details about the instrument’s main characteristics are given in Paper I.

We obtained a set of direct images in Hα and [SII]6717,6731 Å lines using PUMA in its direct-imaging mode (i.e., images taken with the FP etalon out of the telescope’s line-of-sight), using the two-binning format and the interference filters centred at 6570 Å for Hα and 6720 Å for [SII], both with a bandwidth of 20 Å (see Paper I Sánchez-Cruces et al. 2015). Then, with each filter, we scanned the Fabry-Pérot interferometer PUMA through 48 channels getting two object data cubes of dimensions 512 × 512 × 48. For both Hα and [SII] data cubes, the integration time was 60 s per channel. To calibrate both data cubes, we obtained a calibration data cube using a Hydrogen lamp (6562.78 Å wavelength calibration) for the Hα cube and a Neon lamp (6508.95 Å wavelength calibration) for the [SII] cube. These calibration data cubes are the same dimensions as the object data cubes.

2.2 Data Reduction

The reduction and analysis of Fabry-Pérot data were performed using the ADHOCsw2 software. Both softwares, ADHOCw and CIGALE (used in Paper I), allowed us first make standard corrections (removal of cosmic rays and bias subtraction), second, to compute a wavelength-calibrated data cube, and lastly, to obtain monochromatic and continuum images, as well as, velocity and velocity dispersion maps.

To compute the wavelength-calibrated data cube, ADHOCw uses the calibration data cube to obtain the phase map. This is a 2D map that provides the reference wavelength for the line profile observed for each pixel. When we apply the phase map to the observed data cube, the wavelength-calibrated data cube is created, which is also known as the velocity or wavelength data cube. Therefore, we got a wavelength data cube for both [SII]λ6717,6731 Å and Hα emission lines by using their respective calibration cubes.

In order to improve the signal-to-noise ratio in the outer parts of the galaxy, we applied two types of Gaussian smoothing on the wavelength data cube using ADHOCCw software: a spectral smoothing with FWHM of 2 channels ($\sigma=38$ km s$^{-1}$) and a spatial smoothing (x,y) with FWHM of (2,2) pixels.

Spectral smoothing is done over the channels multiplying by a factor that depends on the amplitude of the Gaussian smoothing selected. Once this is done, the final spectral resolution is ~ 0.60 Å (~ 28.0 km s$^{-1}$). Although spatial smoothing increases the signal-to-noise ratio of the image, spatial resolution is lost, going from 1.18′′ per pixel to $\sim 1.8′′$ per pixel.

The monochromatic image was obtained by measuring

\footnote{http://cesam.lam.fr/fabryperot/index/softwares developed by J. Boulesteix.}
pixel by pixel the intensity inside the line above the local continuum (over 0.7 of the intensity peak fraction). The line-of-sight velocity field was obtained by computing the barycenter of the velocity profile for each pixel. From the velocity profiles of each pixel, ADHOCw computes its FWHM creating the observed velocity dispersion map (σ_{obs}). After correcting for instrumental (σ_{inst}^2) and thermal (σ_{th}^2) broadening, we obtained the velocity dispersion (σ_{corr}) according to: σ_{corr} = \sqrt{σ_{obs}^2 - σ_{inst}^2 - σ_{th}^2}. The instrumental broadening σ_{inst} was computed from the deconvolution of the Airy function and in this case corresponds to 38 km s^{-1}. We computed the thermal broadening according to σ_{th} = \sqrt{82.5(T_4/A)} where T_4 = T/10^4 K and A is the atomic weight of the atom, so that σ_{th} = 9.1 km s^{-1} for hydrogen gas at T_e=10^4 K (Spitzer & Arny 1978).

In order to quantify the accuracy of the velocity values determined through the barycenter method, we computed the barycenter position of the calibration data cube emission line for each pixel. We thus created the velocity map of the calibration, providing proof that the velocity accuracy for our data is about ±2 km s^{-1}.

2.3 Profile fitting

To obtain the kinematic information of a specific region or object, we can extract the integrated line-of-sight (LOS) velocity profiles over a window that contains the whole object or region, in order to adjust the minimum number of Gaussian functions necessary to reproduce the observed profile. The velocity profiles were fitted by hand using the QtiPlot - Data Analysis and Scientific Visualisation Program. The number of components fitted to each velocity profile was determined using a combination of visual inspection and the χ^2/df statistic fit output by QtiPlot; this program performs a Gaussian fit with a single or multiple components depending on the velocity profile of the selected region or object to analyse. In order to show the velocity profile fitting process, we present in Figure 2 three examples of representative Hα velocity profiles fitted for different objects or regions within NGC1569. Below each graph we also show a plot of the fit residuals.

The observed velocity profile (black line) fitted with a single velocity component (red dashed line) is given in Figure 2a, this region corresponds to HII region no. 12 (of radius r= 5.6′′, Waller 1991a) integrated over a box of 11 px × 11 px (12.9′′×12.9′′) which is a typical velocity profile of a HII region. In this case, the observed velocity profile is symmetric i.e., does not present wings or humps, therefore the profile was fitted with a single Gaussian. The χ^2/df=0.25.

An example of an observed velocity profile fitted with two components is shown in Figures 2b and 2c, which correspond to the profile of the pixel shown in the bottom-left panel of Figure 5 (see Section 3.1). As a first step, we fitted a first

3 In this work we shall use the expression “line-of-sight velocity” or “velocity along the line-of-sight”, V_{LOS}, instead of the expression “radial velocity” commonly used in the literature, in order to avoid confusion with the radial component of the velocity in the frame of reference of the disc of the galaxy.

4 QtiPlot is a scientific application for data analysis and visualisation that uses least-squares algorithms for linear and nonlinear fitting of experimental data. https://www.qtiplot.com/

5 The reduced chi-square (χ^2/df) is obtained by dividing the χ^2 by the degrees of freedom (df) and it is a method for model assessment and error estimation in astronomy.
Table 1. Supernova remnants of NGC 1569.

ID	RA (h, m, s)	Dec. (°, ′, ″)	Maj/Min Axis (arcsec)	Maj/Min Axis* (pc)	Previous identification
SNR1	04:30:47.48	64°50′55″.70	2.1/1.7a	34.2/27.7	SNR1c, N1569-16d
SNR2	04:30:47.73	64°51′09″.70	2.3/1.8a	37.5/29.3	SNR2b, N1569-17d
SNR3	04:30:47.91	64°50′30″.70	2.9/1.5a	47.2/24.4	SNR3c, N1569-18d
SNR4	04:30:48.20	64°50′47″.70	1.5/1.3a	24.4/21.2	SNR4d, N1569-20d
SNR5	04:30:48.42	64°50′34″.70	2.7/2.3a	44.0/37.5	SNR5d, N1569-21d
SNR6	04:30:48.48	64°50′45″.70	1.8/1.6a	29.3/26.1	SNR6e, N1569-23d
SNR7	04:30:49.50	64°50′59″.70	3.2/2.8a	52.1/45.6	SNR7d, N1569-27d
SNR8	04:30:51.24	64°50′15″.70	2.1b	34.2	SNR8d
SNR9	04:30:52.19	64°50′43″.80	3.4/2.2a	55.4/35.8	SNR9f, N1569-32d
SNR10	04:30:52.51	64°50′34″.86	2.1b	34.2	SNR10d
SNR11	04:30:53.55	64°50′48″.68	2.1b	34.2	SNR11d
SNR12	04:30:54.80	64°50′43″.50	2.1/1.9a	34.2/31.0	SNR12e, N1569-38d
SNR13	04:30:44.35	64°50′20″.01	1.7/1.5a	27.8/24.4	SNR13f, N1569-4d
SNR14	04:30:48.90	64°50′56″.30	2.1b	34.2	VLA-8f
SNR15	04:30:47.20	64°50′04″.50	2.1b	34.2	VLA-6f
SNR16	04:30:46.51	64°50′34″.50	1.6/1.4a	26.1/22.8	M2f, N1569-11d
SNR17	04:30:47.02	64°50′06″.70	1.5/1.4a	24.4/22.8	M3f, N1569-14d
SNR18	04:30:54.13	64°50′43″.50	2.1/1.9a	34.2/31.0	M6/VLA-1f, N1569-38d
SNR19	04:30:45.32	64°51′14″.90	4.9/2.0a	79.8/32.6	N1569-05d
SNR20	04:30:45.60	64°51′15″.80	1.5/1.4a	24.4/22.8	N1569-06d
SNR21	04:30:45.75	64°51′09″.60	1.6/1.4a	26.1/22.8	N1569-07d
SNR22	04:30:45.79	64°50′58″.20	1.7/1.6a	27.7/26.1	N1569-08d
SNR23	04:30:46.03	64°50′08″.00	1.6/1.5a	26.1/24.4	N1569-09d
SNR24	04:30:46.83	64°50′37″.80	2.3/2.0a	37.5/32.6	N1569-12d
SNR25	04:30:51.55	64°50′51″.00	1.7/1.4a	27.7/22.8	N1569-28d
SNR26	04:30:52.04	64°50′44″.40	1.8/1.4a	29.3/22.8	N1569-30d
SNR27	04:30:52.42	64°50′43″.20	1.7/1.5a	27.7/24.4	N1569-33d
SNR28	04:30:52.46	64°50′51″.60	1.9/1.4a	31.0/22.8	N1569-34d
SNR29	04:30:52.96	64°50′48″.80	2.1/1.5a	34.2/24.4	N1569-35d
SNR30	04:30:53.36	64°50′44″.50	1.7/1.4a	27.7/22.8	N1569-36d
SNR31	04:30:53.53	64°50′47″.70	3.2/1.6a	52.1/26.1	N1569-37d

The columns are as follows:
Column 1 : SNR identification
Column 2-3 : SNR right ascension and declination (epoch 2000).
Column 4 : Major and minor axis size in arcsec. a Taken from Chomiuk & Wilcots (2009) in radio emission. b Average radius of SNRs.
Column 5 : Major and minor axis size in pc. c Calculated in this work using a distance to the galaxy of D=3.36 Mpc.
Column 6 : Previous identifications. cErcan et al. (2018). dChomiuk & Wilcots (2009). fGreve et al. (2002).

component highlighted with the grey dotted line (χ^2/dof = 5.1, panel b). Visually, this fit did not match the observed velocity profile (black line); we then fitted it with two components highlighted in blue and magenta (see Figure 2e). The best (or final) fit is shown in the red dashed line, which presents a better visual fit, statistical parameters (χ^2/dof=0.41) and better residuals than the single component fit. In some cases a third Gaussian component was needed, as shown in Figure 2d, which corresponds to the velocity profile of SNR16 (see Section 4.2). When fitted with a single component (χ^2/dof=8.87) is possible to appreciate small wings in its sides, indicating the presence of more than one velocity component. Then, we fitted two components which are highlighted in blue and magenta (see Figure 2e). The final fit is shown in the red dashed line, with statistical parameters (χ^2/dof=2.06). Finally, this velocity profile was fitted with three velocity components shown in blue for the brighter one, magenta for the blueshifted component and cyan for the redshifted component (see Figure 2f). The red dashed line shows the best fit with χ^2/dof= 0.47, with better residuals than those obtained fitting one- and two-component.

It is noteworthy that given the natures and shell expanding morphology of SNR, the velocity profiles associated with this objects can be fitted with three components (see e.g. Sánchez-Cruces et al. 2018; Rosado et al. 2021): the central and principal component related to the systemic velocity of the galaxy and the secondary components related to the expansion velocity. Therefore, as we showed, the SNR velocity profile was fitted with three Gaussian components as expected. Also, the signal-to-noise ratio (S/N) of the velocity components of SNR16 profile are above the noise level (S/N≥5) (see Table 2).

The different morphological features of the velocity profiles show the nature of the ionised gas morphology throughout the galaxy. We noticed that the velocity profiles of the central parts of the galaxy (see Figure 5) show a similarity, all of them were fitted with two velocity components, a broad and a narrow component. The narrow component is related to the stellar component, while the broad component is related
to winds and stellar formation. Therefore, we were able to spatially study the different morphology of the velocity profiles from the central part of the galaxy (see Section 3.1.1). On the other hand, the morphology of the SNRs velocity profiles, which are fitted with three components, is related to the systemic velocity of the galaxy represented by the main velocity component, and to the shell expansion morphology represented by the secondary components (see Ambrocio-Cruz et al. 2004, Figure 5).

3 KINEMATICAL ANALYSIS OF NGC 1569

3.1 Velocity Fields

Figure 3 displays the velocity field (VF) of NGC 1569 computed from the Hα emission line with the superbubbles of Paper I overplotted.

The VF shows that the Hα emitting gas does not seem to follow circular rotation, and that the gas motions are disordered due to the presence of the superbubbles and SNRs hosted in this galaxy. The VF displays velocity values ranging from -105 km s$^{-1}$ to -47 km s$^{-1}$ implying a difference of about $\Delta V \sim 60$ km s$^{-1}$. This value is within the range of ΔV values in nearby dwarf galaxies presented by Moiseev (2014) using FP observations of ionised gas. On the northeast region of the galaxy, a high blueshifted region is seen with line-of-sight velocity $V_{\text{LOS}} = -46$ km s$^{-1}$ which corresponds to the superbubble sb10 identified in Paper I.

Figure 4 shows the Hα emission line velocity dispersion map of NGC 1569 with the superbubbles classified in Paper I overplotted. In general, the velocity dispersion values of NGC 1569 are around 40-90 km s$^{-1}$ except for five regions: one located on the western side of the galaxy with velocity dispersion values of ~ 165 km s$^{-1}$ and pointed out with a pink circle in Figure 4. This region matches the region where the arm of the galaxy comes out. The second, third and fourth regions correspond to the location of superbubbles 5, 10 and 11, respectively, with velocities of about 118 km s$^{-1}$ for the
Figure 3. Hα velocity field of NGC 1569 obtained with PUMA. Position of superbubbles studied by Sánchez-Cruces et al. (2015) are overplotted.

Figure 4. Hα velocity dispersion map of NGC 1569. The position of the superbubbles of Paper I are overplotted with ellipses. One of the highest velocity dispersion regions non related with any superbubble is highlighted with the pink circle. Inset panel shows a close-up of the central part of the galaxy showing other region with high velocity dispersion values non related with any superbubble. Inset panel size is 12×12 pix (226.7×226.7 pc).

region related to the sb5, 143 km s$^{-1}$ for the region related to sb10 and 150 km s$^{-1}$ for the region related to the sb11. The fifth region is located in the central part of the galaxy (see inset panel in Figure 4) and presents velocity dispersion values ranging between 118 and 127 km s$^{-1}$. A velocity profiles inspection in this last region shows that the velocity profiles in the bottom-right and central parts present humps, while other velocity profiles seem to be single and broadened (see Figure 5). In this same Figure, we highlighted with circles the nearly annular shape outlined by the high velocity dispersion values, which from now on will be call the ‘O’ region.

This region is not related to any superbubble, but seems to be associated to the stellar cluster No. 35 classified by Hunter et al. (2000) located in the middle of the annular shape, and to the Super Stellar Cluster B (SSCB, Arp & Sandage 1985) located in the top part of the outer edge of the ‘O’ region.

3.1.1 Kinematics of the ‘O’ region

In order to analyse the kinematics of the ‘O’ region, we fitted the velocity profiles (as described in Section 2.3) of the pixels within a FoV of 15×15 pix (17.7×17.7′′) encompassing this region.

We found that all velocity profiles could be fitted with two velocity components, a narrow and a broad one, even those profiles that seemed to be single (for example top-left velocity profile in Figure 5), therefore, all of them were fitted using these two components. The average values of the FWHM of the narrow and broad components are \sim72 ±12 km s$^{-1}$ (in pink) and \sim184 ±49 km s$^{-1}$ (in blue), respectively. Using the barycenter method for both the broad and the narrow velocity components, we obtained the respective velocity field of each component shown in the bottom panels of Figure 5. Bottom-left panel shows the velocity map of the narrow component and bottom-right panel shows the velocity map of the broad component.

The velocity map of the narrow component presents velocity values of approximately -60 km s$^{-1}$ to -40 km s$^{-1}$ in the region surrounded by the annulus associated with the ‘O’ region (see Figure 5); velocity values for pixels located on the southwest (SW) side of the ‘O’ region remain constant at about -80 km s$^{-1}$, while for pixels located on the northeast (NE) side of the ‘O’ region velocities remain constant with lower values of about -100 km s$^{-1}$. Interestingly, this VF shows a fan-like distribution of V_{LOS} with values between -65 km s$^{-1}$ and -40 km s$^{-1}$ that seem to be centred near the location of stellar cluster No. 25 and “opens up” towards the SW side of the ‘O’ region. Following its location, this feature could be tracing one component of an expanding shell centred in stellar clusters No. 35.

As for the velocity map of the broad component, it presents five distinctive regions: i) Region R1 located on the NE of the ‘O’ region has pixels with velocity values going from -110 to -100 km s$^{-1}$. R1 seems to follow the external circumference of the ‘O’ region. ii) Region R2 located on the SW side within the ‘O’ region where pixels present velocities between -110 and -100 km s$^{-1}$. iii) Region R3 located SW of the ‘O’ region along R2 presenting velocities between -60 and -50 km s$^{-1}$. iv) Region R4 located in the position of the SSCB with velocity values of -120 km s$^{-1}$. v) Region R5 located NE of the SSCB inside the ‘O’ region with velocities of about -50 km s$^{-1}$. This
fifth region could actually be an extension of R2 with part of R3 superposed between R2 and R5.

The structure of regions R1 and R2 might indicate the presence of an expanding shell of ionised gas produced by the stellar cluster No. 35 situated in the centre of the ‘O’ region. This cluster is one of the most massive after SSCA, SSCB, and Cl 30. On the other hand, the high velocity values of region R4 might be related to the winds of the massive stars in SSCB.

The behaviour in the ‘O’ region is similar to that reported by Moiseev & Lozinskaya (2012) using FP interferometry to study ionised gas velocity dispersion in dwarf galaxies. These authors identified and analysed supersonic turbulent motions and their relation with chaotic ionised gas motions and processes of current star formation. They also found that high velocity dispersion values belong to the diffuse low surface brightness emission surrounding star-forming regions - see Figures 4, 5 and 6 in that work. In the case of NGC 1569, the ‘O’ region is located where the monochromatic image displays rather low intensity values (right panel of Figure 1) displaying a similar trend of the one mentioned by the authors above. The presence of double components in the Hα profiles in the central parts of dwarf irregular galaxies has also been studied by Egorov et al. (2021). In their work, the analysis of the small-scale kinematics of the ionised gas indicated that the presence of composite profiles seemed to be associated with star-formation (SF) related phenomena (see their Figure 8).

3.2 Rotation Curve

The rotation curve (RC) of NGC 1569 has been computed in Hα by Castles et al. (1991) and in several works from HI observations (see for example Reakes 1980; Stil & Israel 2002; Johnson et al. 2012; Lelli et al. 2014; Iorio et al. 2017).

The Hα RC from Castles et al. (1991) was derived using long-slit spectroscopy along the two brightest Hα knots in the galaxy. Their RC shows almost constant rotation velocity along the galaxy disc displaying a small rotation velocity difference of ~10 km s⁻¹ between positions -35 arcsec and +35 arcsec equivalent to -570 pc and +570 pc considering a distance of 3.36 Mpc (see their Figure 3). They also used this Figure to emphasise the difficulty of measuring any meaningful rotation for this galaxy.

One of the most complete works regarding the determination of the RC of NGC 1569 using HI observations was done by Iorio et al. (2017) who studied the HI kinematics of 17 dwarf irregular galaxies extracted from the ‘Local Irregulars That Trace Luminosity Extremes, The HI Nearby Galaxy Survey’ (LITTLE THINGS), using the 3D BAROLO software (Di Teodoro & Fraternali 2015). Iorio et al. (2017) computed the RCs and the circular velocity (Vc) correcting for the asymmetric drift for all their sample, by fully exploiting the information in the HI data cubes to derive the RC of each galaxy using a modified tilted-ring method⁶.

Using this approach, data cube models were convolved with the instrumental response, so the final results are not affected by the beam smearing. Once the RC is obtained, these authors applied the asymmetric-drift correction in order to derive the Vc of each galaxy. Regarding NGC 1569, Iorio et al. (2017) found the ISM of this galaxy to be highly turbulent with a velocity dispersion of ~20 km s⁻¹ and an asymmetric-drift correction dominating at all observed radii (up to 2.5 kpc). They explained the flattening of their HI RC solely to the asymmetric-drift correction (see their Figures 18 and 24). These authors pointed out that the kinematic data reported for NGC 1569 should be used with caution especially at the inner radii (from 0.0 kpc to 0.75 kpc) since no significant rotation of the gas is observed in this interval. According to these authors, their best-fitting model for NGC 1569 is a good representation of the large-scale structure and kinematics of the HI disc (from 0.75 kpc outwards), though it fails to reproduce small-scale local features.

Lelli et al. (2014) also found a similar result regarding the validity of the RC for the inner parts of NGC 1569.

3.2.1 RC computation

As we show in Figure 3, NGC 1569 does not show a velocity gradient that can be clearly associated with disc rotation which points in the direction of previous works mentioned above regarding the disturbed kinematics of this galaxy, especially in the inner parts.

However, we attempted nonetheless to derive a RC from the Hα line VF of the galaxy following the methodology in Amram et al. (1996); Fuentes-Carrera et al. (2004); Sardaneta et al. (2020) taking into consideration the detection of multiple velocity components in the inner parts of the galaxy; in particular, those found in the ‘O’ region and discussed in Section 3.1.1.

The RC of the galaxy was obtained with the ADHOCw software using the standard tilted-ring method, in which the galaxy is described using a set of concentric elliptical rings. In this case, we considered a width of two-pixels (0.377 kpc), with their main axis, position angle (PA), systemic velocity Vsys, centre position (x0, y0) and inclination (i) matching with those of the galaxy disc. The procedure to compute the RC with ADHOCw is done manually in an iterative manner where the initial parameters are manually modified in order to obtain a RC with low dispersion values and as symmetric as possible when the approaching and receding sides are superposed (e.g. Amram et al. 1992, 1996; Fuentes-Carrera et al. 2004; Repetto et al. 2010b; Sardaneta et al. 2020). Usually in the case of isolated spiral galaxies, one of the requirements to derive the RC is for the inner parts on each side of the RC (receding and approaching velocities) to superpose, since the velocity fields are smooth and symmetrical resulting in symmetric and low-scattered rotation curves (Amram et al. 1996). This requirement can even be valid in the case of disc galaxies in early galaxy encounters (Fuentes-Carrera et al. 2004).

However, following the analysis in Section 3.1.1 and previous results from HI observations (Lelli et al. 2014; Iorio et al. 2017) discussed later in Section 6, we do not expect the assumption of RC symmetry to apply for the inner parts of NGC 1569. In fact, an essential assumption for the previous method to be valid is that the gas moves in purely circular orbits, i.e. the contribution of radial and perpendicular ve-
velocities in the frame of the disc of the galaxy are negligible compared to the tangential velocity\(^7\). With this in mind, one can describe the line-of-sight velocity, \(V_{\text{LOS}}\) for any position \((x, y)\) on a ring with radius \(R\) as:

\[
V_{\text{LOS}}(x, y) = V_{\text{sys}} + V_{\text{rot}}(R) \cos \theta \sin i \tag{1}
\]

where, \(\theta\) is the angle with respect to the receding major axis measured in the plane of the galaxy and \(V_{\text{rot}}\) is the rotation velocity (see Amram et al. 1996; Fuentes-Carrera et al. 2004; Sardaneta et al. 2020).

This is clearly not the case for the inner parts of NGC 1569. However, in order to derive the RC considering the presence of non-circular motions and following the analysis done in Section 3.1.1, we used a radii larger than 250 pc.

As initial parameters, we used the photometric parameters given by Jarrett et al. (2003) from the 2MASS\(^8\) Large Galaxy Atlas (LGA)\(^9\): the position of the photometric centre, \(\alpha_{\text{2MASS}}(J2000) = 04^h30^m49.18^s, \delta_{\text{2MASS}}(J2000) = +64^\circ50'47.78''\); the position angle \(\text{PA}\) in the K-band, \(\text{PA}_{\text{2MASS}} = 117.5^\circ\), and the axis ratio \(b/a=0.46\). We estimated the inclination \((i_{\text{2MASS}}=65.2^\circ)\) of the stellar galaxy disc assuming that the galaxy is an oblate spheroid using \(\cos^2 i = (b/a)^2 - p^2)/(1 - p^2)\), where \(p = 0.1\) is the intrinsic flattening of the galaxy (e.g. Haynes et al. 1984). The systemic velocity considered was \(V_{\text{sys}}=-104\ \text{km s}^{-1}\) (NED).

\(^7\) In this frame of reference, the tangential velocity is usually called "rotation velocity", \(V_{\text{rot}}\)

\(^8\) Two Micron All Sky Survey (2MASS).

\(^9\) https://irsa.ipac.caltech.edu/data/LGA/
We considered pixels inside a radius of 100 pix (1.3 kpc) and within an angular sector of 20° along the galaxy major axis, making sure to only use pixels inside the galaxy disc and not those that could introduce dispersion (e.g., pixels in the galactic wind).

The values for the kinematical parameters were thus chosen to obtain a symmetric curve for regions of the galaxy where tangential velocity values are larger than radial and perpendicular velocities in the frame of the galaxy. The latter velocities can be partially assessed through the dispersion velocity values, i.e. the FWHM of the Hα profile in each pixel -for more detail see Fuentes-Carrera et al. (2004, Section 5.2).

Finally, to obtain the kinematic parameters that minimise the dispersion in the points along the RC beyond 250 pc up to 1.3 kpc, we made variations on the initial parameters.

Following the method described above, we derived a RC with the following kinematical parameters: kinematical centre \(\alpha_K(J2000) = 04^h30^m49.36^s\), \(\delta_K(J2000) = +64^\circ50'50.90''\), systemic velocity \(v_{sys} = -88\) km s\(^{-1}\) (value of the \(V_{LOS}\) on the location of the kinematic centre), inclination \(i_K = 61^\circ\) and position angle \(PA_K = 123^\circ\) (measured counterclockwise). Comparing the values of the \(H\alpha\) kinematic parameters with the near-infrared photometric parameters from 2MASS, we notice they differ. The 2MASS photometric centre differs from the kinematic centre by 2.8" (~2.74 pc); the \(PA_{2MASS}\) differs from \(PA_K\) by \(\sim 5^\circ\) and \(i_{2MASS}\) differs from \(i_K\) by \(\sim 2^\circ\). Finally, we obtained a systemic velocity within the range of the velocity reported in NED and the one reported by Iorio et al. (2017) (\(\gamma\)). The PA and sector used to determine the “corrected RC” is pointed out with a bold dashed line.

The middle and bottom panel of Figure 6 allowed us to compare both RCs derived from the Hα observations from PUMA. Globally both RCs show a similar behaviour, with strong asymmetries in the innermost regions (\(R < 0.25\) kpc). However, for the “corrected RC”, the velocity difference between both sides of this RC (approaching and receding sides) reaches a larger value of \(\sim 65\) km s\(^{-1}\) for radii smaller than 0.09 kpc. In spite of this difference, points between 0.02 kpc and 0.09 kpc for the “corrected RC” do not display the increasing/decreasing velocity towards 0 km s\(^{-1}\) trends for the approaching/receding sides of the RC seen in the “original RC”. Between 0.25 kpc to 0.5 kpc, both sides of the “corrected RC” show a symmetric behaviour displaying a larger slope than the slope of the “original RC”. Nevertheless, values still lie close to the zero rotational velocity axis. From 0.5 kpc to 0.75 kpc, the approaching and receding sides of the “corrected RC” show larger asymmetries than for the “original RC,” though globally (look at the star-like points in the bottom panel indicating the average rotation velocity for both sides of the RC) show a similar behaviour: almost no rotation velocity is detected up to a radius of 0.75 kpc. From 0.75 kpc to 1.1 kpc, the average RC for both Hα RCs shows a similar behaviour displaying mostly negative values around -5 km s\(^{-1}\). From 1.1 kpc up to the last detected point in Hα, the “corrected RC” shows smaller dispersion than the “original RC”. For the last points detected, corresponding to the approaching side of NGC1569 rotation velocity, values lie between -10 km s\(^{-1}\) to 7 km s\(^{-1}\), while the “original RC” displays larger dispersion for the last detected points.

In summary, except for slight differences at different radii intervals, both the “original RC” and the “corrected RC” show a similar behaviour. Neither RC shows rotation velocities smaller than -5 km s\(^{-1}\) or larger than +10 km s\(^{-1}\) for radii between 0.25 kpc and 0.75 kpc, nor do they display a smooth rotation velocity gradient between 0.75 kpc and 1.1 kpc. Both of them reproduce the behaviour mentioned by Castles et al. (1991) regarding the Hα RC derived with long-slit spectroscopy.

On the other hand, the fact that neither the RC could be derived through the matching of the approaching and receding sides in the innermost parts of the galaxy, along with the analysis of the composite profiles in those regions, nor the
velocity dispersion of the ‘O’ region, indicates that indeed, the velocity dispersion of ionised gas in the central parts of NGC 1569 reflect motions related with the gravitational potential of the galaxy. Moreover, the fact that neither RC shows a symmetric behaviour in the innermost parts of the galaxy, nor the rotation velocity exceeds an absolute value above 110 km s\(^{-1}\); indicates that the velocity dispersion of the ionised gas in NGC 1569 does not reflect virial motions in the gravitational potential of this galaxy. Instead, the velocity dispersion is mainly determined by the energy injected into the ionised gas in NGC 1569 does not reflect virial motions in the gravitational potential of this galaxy. Instead, the velocity dispersion is mainly determined by the energy injected into the ISM by ongoing SF as previously mentioned by Moiseev et al. (2015). These motions are also traced by the presence of composite emission line profiles analysed in Section 3.1.1.

In such a way that for NGC 1569, we cannot derive a RC that truly traces the gravitational potential of the galaxy, since not only for R < 0.25 kpc, but for radii up to ~ 1.1 kpc, the velocities plotted on the RCs do not represent rotation velocities inferred shown in equation 1.

3.2.3 Comparison with HI observations

Although the kinematic parameters given by Iorio et al. (2017, centre, i, PA) slightly differ from ours, it is possible to compare the kinematics between the atomic and ionised hydrogen due to the Iorio data resolution (15\(^{\prime}\)).

Top panel of Figure 6 shows the H\(\alpha\) VF of NGC 1569 obtained with PUMA with the HI contours of the galaxy from Iorio et al. (2017) overplotted. We can see the region covered by the H\(\alpha\) observations in comparison to the HI emissions. In the top-left inset panel of Figure 6 we point out the 2MASS photometric centre (\(\Delta\)), the kinematical centre of this work (‘x’), the corrected kinematical centre of this work (‘+’) and the one reported by Iorio et al. (2017) (\(\square\)). The separation between our kinematical centre and the one obtained by Iorio et al. (2017) is about 2.9\(^{\prime}\) (\(\sim\)47.2 pc).

As previously mentioned, ionised gas motions in NGC 1569 do not trace the gravitational well in the central parts of the galaxy. This is confirmed by the comparison between the H\(\alpha\) RCs derived from our PUMA observations with the HI RC derived by Iorio et al. (2017), shown in the bottom panel of Figure 6. Regarding the part of the HI RC that these authors identified as non-representative of circular velocity (R < 0.75 kpc), we can see that the H\(\alpha\) RCs show no definite velocity gradient on either side (approaching or receding), but instead trace the presence of winds associated with star cluster No. 35 and SSC B through our two-dimensional analysis. We can thus say that the absence of circular motions detected by Iorio et al. (2017) and shown by their asymmetric-drift correction of the rotational velocity of this galaxy are traced in detail thanks to the high spectral and spatial resolutions of our PUMA observations.

3.3 Rotation Sense of NGC 1569

Spiral arms can be classified by their orientation relative to the direction of rotation of the galaxy. A trailing arm is one whose outer tip points in the opposite direction to the galactic rotation, while the outer tip of a leading arm points in the direction of the rotation (see, Binney & Tremaine 2008).

Transitory one-armed leading spirals can be produced by plausible dynamical processes, for example, encounters with companion galaxies on retrograde orbits (e.g. Grouchy et al. 2008).

To determine whether the arm of a given galaxy leads or trails, it is necessary to figure out which side of the galaxy is closer to us using both kinematic and photometric data (Pasha 1985; Fuentes-Carrera et al. 2004; Repetto et al. 2010a; Sardaneta et al. 2020).

In the case of NGC 1569, the H\(\alpha\) direct image in the left panel of Figure 1 traces an arm-shaped feature to the west called the “Western arm” by Hodge (1974). It has been suggested that the arm is associated with both outflow (Wallner 1991b; Martin 1998) and inflow (Stil & Israel 2002) episodes. Additionally, Ott et al. (2005) proposed that it is a H\(\alpha\) tail emitting soft X-rays. Finally, Johnson (2013) proposed a scenario in which the Western arm is the product of two dwarfs merging. This last scenario might be possible considering that NGC 1569 is associated with the IC 342 galaxy group.

Considering the merger scenario proposed by Johnson (2013), we verified the rotation sense of the Western arm. First, our kinematic information: the rotation curve in Figure 6 and the H\(\alpha\) LOS velocity maps displayed in Figure 8, shows the receding LOS velocities are at the northwestern side of the galaxy and that the approaching LOS velocities are at the southeast. Second, to determine which side of the galaxy is closer to us we used the gradient criterion of Pasha (1985): because the dust obscures a fraction of the bulge light, the apparent brightness of the nuclear region falls off asymmetrically from the centre outwards along the minor axis, the far side being the one where the surface-brightness profile declines more smoothly. We obtained the surface-brightness profile of the nuclear region along the minor axis of NGC 1569 (see Figure 7) using the K-band image from 2MASS (Jarrett et al. 2003), concluding that the northeastern side is the nearest because the profile falls off more abruptly than along the southern side. Therefore, as a result of the photometric analysis to the K-band image and the kinematics of the galaxy disc, we conclude that the Western arm has leading rotation; i.e., the tip of the Western arm points to the same direction than the galactic rotation.

On the other hand, the isocontours of the HI emission in the top panel of Figure 6 display two arm-like features, called western and eastern butterfly wings by Johnson et al. (2012) and Johnson (2013); both of them pointing to the southwest. Using the rotation curve from Iorio et al. (2017) and our photometric analysis to the infrared image of NGC 1569, it can be determined that the western arm (western butterfly wing) has leading rotation while the eastern arm (eastern butterfly wing) is trailing.

Theoretical studies (Athanassoula 1978) and n-body simulations (Thomasson et al. 1989; Byrd et al. 2008; Lieb et al. 2022) have shown that the encounter of two galaxies with opposite rotational directions (retrograde encounter) can generate spirals with a single long-lived leading arm (m = 1) if the retrograde companion is sufficiently massive (strong perturbation). It has also been proposed that leading material can be the result either from a dwarf dwarf merger (Braun et al. 1992; Jure et al. 1996; Starkenburg et al. 2019) or from the infall of material with counter-rotation onto the galaxy (Jure et al. 1996; Lovalace 1998). The size of NGC 1569 and the morphology of its arms traced by the HI emission supports the hypothesis of two dwarf merger scenario.
Figure 6. Top panel: Hα velocity field of NGC 1569 with the angular sector used to analyse the Hα rotation curve. Contours represent the HI emission from Iorio et al. (2017). Top-left inset panel shows a close-up of the central region. Bottom-right inset panel shows the dispersion velocity of the central part of the galaxy. In both inset panels the angular sector used to compute the corrected Hα rotation curve is shown as well as the 2MASS photometric centre (△), the kinematic centre of this work ('x'), the corrected kinematic centre of this work ('+') and the one reported by Iorio et al. (2017) (□).

Middle panel: The rotation curve of NGC 1569 derived from the Hα velocity field. Bottom panel: The rotation curve of NGC 1569 derived from the corrected Hα velocity field (see text for more information). Pink and blue triangles correspond to the HI circular velocity (Vc) and best-fit rotation velocity (Vr) derived by Iorio et al. (2017) with a resolution of 15′′ pointing out. For middle and bottom panels, the receding side corresponds (red squares) to the southeastern side of the galaxy and the approaching side (blue circles) to the northwestern side of the galaxy. With green stars we show the average of the receding and approaching sides. The vertical grey line represents the 1.3 kpc radius used in this work to determine the optical RCs.
ponents, we took into account the χ^2. In order to estimate the quality of the fit of the velocity components present a high S/N ratio (S/N > 3). Even though the S/N of the Gaussian velocity components increases for the velocity profiles integrated over regions of several pixels (as is the case), it was not possible to obtain secondary velocity components for SNR13 with a good S/N ratio. Then, this velocity profile cannot be considered in the analysis. Regarding the expansion velocities, almost all SNRs present $V_{\text{exp}} > 100 \pm 1$ km s$^{-1}$ except SNRs 3, 7 and 8 with V_{exp} of 95 \pm 1, 90 \pm 1 and 87 \pm 1 km s$^{-1}$, respectively. The V_{exp} value of SNR5 ($V_{\text{exp}} = 114 \pm 1$ km s$^{-1}$) is in agreement with the V_{exp} value reported by Ercan et al. (2018).

4.2 Physical Parameters of SNRs

By using Fabry-Pérot data in the Hα and [S ii] $\lambda\lambda$6717,6731 lines, we can derive the physical parameters of SNRs such as the electron density (n_e), kinetic energy (E_k), and kinematic age (t) considering that the SNRs are in a determined evolutionary stage. According to Wolter (1972), the theoretical SNRs evolution is described by four phases: I) the free expansion. II) the adiabatic or Sedov-Taylor. III) the radiative or the “snow-plough”. IV) the merging phase. Then, to determine the evolutionary stage where the SNRs are, we considered the SNR evolution diagram which shows the relation between the blast-wave velocity, age and radius for the four evolutionary stages (see Cioffi 1990; Padmanabhan 2001; Micelotta et al. 2018).

In summary, the diagram shows that when the explosion occurs, the SNR expands at approximately constant velocity and its radius, r, is proportional to t (rxt). When the remnant enters the adiabatic phase, its radius is generally described by the expression $r \propto t^{7/3}$, velocities reach thousands of km s$^{-1}$ and the diameters are between \sim5 and \sim30 pc. When the remnant enters in radiative phase its radius is generally described by the expression $r \propto t^{1/4}$, the velocity decreases considerably down to about 200 km s$^{-1}$ and radius between \sim20 and \sim40 pc (see Berkhuysen 1987; Reid et al. 2015; Bozzetto et al. 2017).

Then, considering the SNRs expansion velocity found in this work (from 87 to 188 km s$^{-1}$) and their sizes reported in the literature (between 21 to 37 pc), we concluded that the SNRs are in the radiative phase. Therefore, we were able to compute the physical parameters for the SNRs in NGC 1569 considering that the SNRs are in the radiative phase.

4.2.1 Electron density

From the [S ii] wavelength data cube, where both λ6717 Å and λ6731 Å lines were detected, we were able to compute pixel per pixel the [S ii] λ6717/[S ii] λ6731 line-ratio. In both cases we did not correct for differential extinction because those lines are too close in wavelength and any correction would be cancelled out when estimating ratio.

To determine n_e, we used the [S ii] λ6717/[S ii] λ6731 ratio of the SNRs sample; these line-ratio values span from 1.08 \pm 0.02 to 1.33 \pm 0.03. Under the assumption that S$^+$ emission is formed in a region between 5000 K and 10^4 K and that the S/N ratio of the secondary velocity components generally show an acceptable S/N ratio (S/N > 3), except those related to SNR13 which have a S/N < 3. Even though the S/N of the Gaussian velocity components increases for the velocity profiles integrated over regions of several pixels (as is the case), it was not possible to obtain secondary velocity components for SNR13 with a good S/N ratio. Then, this velocity profile cannot be considered in the analysis. Regarding the expansion velocities, almost all SNRs present $V_{\text{exp}} > 100 \pm 1$ km s$^{-1}$ except SNRs 3, 7 and 8 with V_{exp} of 95 \pm 1, 90 \pm 1 and 87 \pm 1 km s$^{-1}$, respectively. The V_{exp} value of SNR5 ($V_{\text{exp}} = 114 \pm 1$ km s$^{-1}$) is in agreement with the V_{exp} value reported by Ercan et al. (2018).

4.1 Expansion Velocity of SNRs

In order to determine the expansion velocity of the SNRs, we extract the Hα velocity profiles of the ionised gas around their positions, integrated in windows of 3 pix \times 3 pix (56.6 pc \times 56.6 pc) due to the radius of the SNRs being \lesssim40 pc (see Table 1). The velocity profiles are complex; i.e., they present evident wings or humps and were fitted with three Gaussian functions as described in Section 2.3 (see Figure 9). The main component (in blue) is associated with the rotation velocity of the gas around the centre of the galaxy. The secondary components (in magenta and cyan) are related to the expansion velocity, the best fit is shown in a red dotted line. The expansion velocities were obtained considering the expansive motion of a shell and assuming that the optical emission is not located at the centre of the supernova remnant, therefore the expansion velocity is $V_{\exp} = (V_{\text{max}} - V_{\text{min}})$ where V_{max} and V_{min} are the blueshift and redshift components, respectively. In order to estimate the quality of the fit of the velocity components, we took into account the χ^2/doF value (pointed out in each velocity profile) and the S/N ratio of the different velocity components.

Table 2 shows the velocity values for each Gaussian component as well as their respective S/N ratio and the SNRs expansion velocity. As we see in Table 2 and Figure 9, all main components present a high S/N ratio (S/N > 3). We can see
using the `temden` routine of STSDAS/IRAF10, we calculated n_e assuming an electron temperature $T_e = 10^4$ K (as an order of magnitude estimated for any nebula with near-solar abundances, Osterbrock (1989)). Thus, we obtained a range of electron density between 90 ± 29 and 432 ± 32 cm$^{-3}$ (see Table 3).

If we consider that the shock is radiative, where the compressed gas is cooled by collisions, the pre-shock electron density n_0 is given by:

$$n_0 = n_e \left(\frac{c_s}{V_s} \right)^2$$

where $c_s = 10$ km s$^{-1}$ is the sound speed of the environment at $T_e = 10^4$ K and $V_s = V_{\text{exp}}$ is the shock velocity in km s$^{-1}$. The pre-shock densities of SNRs rank from 0.5 ±32 to 3.9 ±32 cm$^{-3}$. The errors of n_0 were computed applying the error propagation to equation 2.11

4.2.2 The Energy and Age of the SNRs

We can determine the age and energy of the SNRs considering that they are in the radiative phase with the numerical model of Chevalier (1974):

$$t(4) = 30.7 R/V_s$$

$$E_{50} = 5.3 \times 10^{-7} n_0^{1.12} V_s^{1.4} R^{3.12}$$

where $V_s = V_{\text{exp}}$ is the shock velocity in km s$^{-1}$, R is the linear radius in pc, $t(4)$ is the age of the remnant in units of 10^4 yr and E_{50} is in units of 10^{50} erg. The linear radii were taken from the literature from Chomiuk & Wilcots (2009); for SNRs without radius information (SNRs 8, 10 and 11)

10 `Image Reduction and Analysis Facility’ http://iraf.noao.edu/ IRAF is distributed by National Optical Astronomy Observatory, operated by the Association of Universities for Research in Astronomic, Inc., under cooperative agreement with the National Science Foundation.

11 The error of n_0 is: $\delta n_0 = n_0 \sqrt{\left(\frac{\delta n_e}{n_e} \right)^2 + \left(\frac{2 \delta V}{V_s} \right)^2}$ where δn_e and δV are the error of the electron density and velocity, respectively.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure8.png}
\caption{Characteristic channels maps of NGC 1569 with continuum subtracted. The velocity of each channel is given with respect to the galaxy systemic velocity (-88±1 km s$^{-1}$). The ‘x’ represents the kinematical centre.}
\end{figure}
The columns are as follows:
Column 1: SNR identification.
Column 2: Main velocity component obtained from the fitted profiles.
Column 3-4: Blueshift and redshift components, \((V_{\text{min}}\) and \(V_{\text{max}}\)), respectively, from the fitted profiles.
Column 5: Expansion velocity measured as \(V_{\text{exp}} = (V_{\text{max}}-V_{\text{min}})\).
Column 6: Intensity value of the main velocity component (\(C_1\)).
Column 7-8: Intensity value of blueshift and redshift components (\(C_2\) and \(C_3\), respectively).
Column 9: \(S/N\) ratios of the main velocity component (\(S/N_1\)).
Column 10-12: \(S/N\) ratios of the different blueshift and redshift components (\(S/N_2\) and \(S/N_3\), respectively).

The average value was used (see Table 1). The errors of \(t(4)\) and \(E_{50}\) were computed applying the error propagation to equations 3 and 4, respectively.

The values of the energy deposited in the ISM by the SN explosion obtained in this work are in the order of \(10^{50}\) erg, typical values of SNRs (see Table 3). The age of the SNRs found in this work considering that they are in the radiative phase is about \(\sim 10^4\) yr (see Table 3). We were not able to obtain the age of SNR 13 due to the poor detection of the [S\(\text{II}\)] \(\lambda 6717/\lambda 6731\) ratio in this location. Also, as we presented in the previous section, the \(S/N\) ratio of the secondary velocity components is too low to be considered. Therefore, we consider that it is not possible to study the physical properties of this SNR.

4.3 Surface Brightness - Diameter (\(\Sigma\)-D) Relationship

Given that we are studying the full sample of SNRs in NGC 1569, and that those SNRs are at the same distance, it is worth to search for a radio \(\Sigma\)-D relation between them. This relation was first proposed by Shklovskii (1960) who derived it from theoretical grounds concerning the evolution of the SNRs radio-emission. The possible existence of such relation has important implications mainly for the Galactic SNRs because it implies a method of distance determination in a similar way as the method, also proposed by Shklovsii, to estimate the distance to optically thin planetary nebulae. Also, it is an important relation not only statistically but because it

\[\delta t(4) = t(4) \sqrt{\left(\frac{\delta V}{V} \right)^2 + \left(\frac{\delta R}{R} \right)^2} \]
\[\delta E_{50} = E_{50} \sqrt{1.12 \left(\frac{\delta E_{50}}{E_{50}} \right)^2 + \left(1.4 \left(\frac{\delta V}{V_{50}} \right) \right)^2 + \left(3.12 \delta R \right)^2} \]
Table 3. Physical Parameters of Supernova remnants of NGC 1569.

ID	n_e (cm⁻³)	t(4) (10⁴ yr)	E(50) (10⁵⁰ erg s⁻¹)
SNR1	142.2 ±22	4.0 ±0.06	2.8 ±0.6
SNR2	311.9 ±46	5.5 ±0.10	10.8 ±0.7
SNR3	153.4 ±11	7.6 ±0.16	10.8 ±0.7
SNR4	200.9 ±24	3.1 ±0.05	1.5 ±0.2
SNR5	213.5 ±64	5.9 ±0.10	10.8 ±2.3
SNR6	226.5 ±13	3.7 ±0.06	3.1 ±0.2
SNR7	213.5 ±64	8.9 ±0.20	22.3 ±3.0
SNR8	296.7 ±30	6.0 ±0.14	8.9 ±0.4
SNR9	281.9 ±103	6.0 ±0.08	25.2 ±7.4
SNR10	131.3 ±43	3.5 ±0.05	2.3 ±1.4
SNR11	239.8 ±81	3.5 ±0.05	4.5 ±1.6
SNR12	213.5 ±103	4.0 ±0.06	4.4 ±1.8
SNR13	—	—	—
SNR14	176.5 ±83	2.8 ±0.03	2.6 ±1.6
SNR15	432.1 ±38	3.8 ±0.05	9.1 ±0.5
SNR16	311.9 ±77	2.1 ±0.02	2.1 ±0.7
SNR17	267.5 ±14	2.3 ±0.03	1.7 ±0.1
SNR18	90.2 ±29	5.0 ±0.09	2.0 ±0.9
SNR19	142.2 ±77	9.1 ±14	38.4 ±29.4
SNR20	142.2 ±33	3.4 ±0.06	1.1 ±0.2
SNR21	153.4 ±33	3.1 ±0.05	1.3 ±0.4
SNR22	131.3 ±32	2.9 ±0.04	1.2 ±0.6
SNR23	110.3 ±51	3.2 ±0.05	0.9 ±0.7
SNR24	345.8 ±32	5.0 ±0.09	11.2 ±0.6
SNR25	239.8 ±26	3.8 ±0.07	3 ±0.2
SNR26	90.2 ±29	3.9 ±0.07	1.2 ±0.6
SNR27	131.3 ±64	2.6 ±0.03	1.1 ±1.2
SNR28	413.3 ±92	3.4 ±0.05	6.4 ±0.8
SNR29	267.5 ±57	4.4 ±0.07	6.1 ±0.8
SNR30	110.3 ±41	3.2 ±0.05	1.1 ±0.7
SNR31	153.4 ±56	5.9 ±0.09	10.9 ±5.7

The columns are as follows:
Column 1 : SNR identification
Column 2 : Electron density calculated from the [Sii]λ6717/[Sii]λ6731 ratio.
Column 3 : Dynamical age computed using the numerical model of Chevalier (1974).
Column 4 : Energy deposited in the ISM by the SN explosion computed using the numerical model of Chevalier (1974).

The relationship between the radio surface brightness (Σ) and diameter (D) of SNRs can be described by the parameter A and slope β, which are obtained by fitting the observational data for a sample of SNRs. In particular, parameter A depends on the properties of both the SN explosion and the ISM while β is thought to be independent of these properties (Arbutina & Urošević 2005).

This relation is also used for determining distances to Galactic and extragalactic SNRs (i.e., Arbutina et al. 2004; Arbutina & Urošević 2005; Urošević et al. 2005, 2010; Pavlović et al. 2013; Pavlović et al. 2014; Bozzetto et al. 2017; Vukotić et al. 2019).

For a better understanding of the density distribution of the local ISM in NGC 1569 we plotted in Figure 10 the radio surface brightness of the 29 SNRs in function of their size by using the flux densities definition:

$$\Sigma = 1.505 \times 10^{-19} \frac{S}{\theta^2} [W m^{-2} Hz^{-1} sr^{-1}]$$

where S is the integrated flux density in Jansky (Jy) and θ is the diameter in arcmin. The diameters and S values were taken from Greve et al. (2002) and Chomiuk & Wilcots (2009). In this case, those authors presented only the uncertainties for the S parameter which are very low (on average ~0.09 mJy) to be taken into account.

By using QTiplot, we use a linear fit slope to compute the dependency between this parameters, and obtained the relation:

$$\Sigma(D) = 3.36 \times 10^{-15} \times D^{-1.26\pm0.2} W m^{-2} Hz^{-1} sr^{-1}.$$
5 CONCLUSIONS

In this paper, we studied the global kinematics of the dwarf irregular galaxy NGC 1569 in the Hα line and analysed the kinematics of the gas surrounding its hosted SNRs. The main results are summarised as follows.

The Hα emitting gas of NGC 1569 does not show regular rotation in its velocity field and presents similar behaviour to other dwarf galaxies (see Moiseev 2014). The velocity dispersion map shows very interesting kinematical information of the central part of the galaxy. In particular, we found a region with high velocity dispersion we named the ‘O’ region, which presents an annulus shape morphology and is related to stellar cluster No. 35 of Hunter et al. (2000), the fourth most massive stellar cluster after stellar cluster No. 30, SSCA and SSCB.

The velocity analysis of this region might indicate on one hand, the presence of an expanding shell of ionised gas produced by the stellar cluster No. 35, and on the other hand, might be related to winds of massive stars coming from SSCB. In conclusion, the ionised gas in this region seems to be associated with SF related phenomena, as pointed out by Egorov et al. (2021). Also, this analysis of the ‘O’ region confirms that the velocity dispersion of ionised gas in central parts of NGC 1569 does not reflect the motions related with its gravitational potential.

The RCs we computed show the same behaviour than the RC obtained by Castles et al. (1991) with long-slit spectroscopy. Therefore, considering this result and the velocity dispersion analysis of the ‘O’ region, we were not able to derive a RC that truly traces the gravitational potential of the galaxy. However, given the high spectral and spatial resolutions of our PUMA observations, it was possible to trace the ionised gas in the central parts of NGC 1569, as well as the absence of circular motions detected previously by Iorio et al. (2017) using HI observations. The disturbed kinematics of this galaxy could be related to the fact that this galaxy has a lower angular momentum, \(j^* \) (given its stellar mass, \(M_\star \)) than the average angular momentum of the galaxies with comparable stellar mass (see Mancera Piña et al. 2021).

From the kinematic and photometric analysis of this galaxy, we confirm that the Western arm points on the same direction of the galactic rotation, while the Eastern arm...
points on the opposite direction. This means that NGC 1569 is an extraordinary case of a galaxy, with an arm leading rotation probably as a result of a two dwarf merging scenario.

Using our high spectral resolution observations, we determined the expansion velocities of 31 SNRs hosted in this galaxy. The velocity profiles of the SNRs are complex, indicating the presence of non circular motions. Almost all SNRs have a \(V_{\exp} > 100 \) km s\(^{-1}\) indicating the presence of shocks. We also calculated the energy deposited in the ISM by the SN explosion and the age of 30 SNRs considering they are in the radiative phase. The age interval is \(2.3 \) to \(8.9 \times 10^4 \) yr and the energy ranges from \(1 \) to \(39 \times 10^{50} \) erg s\(^{-1}\), assuming all of them are in the radiative phase.

Finally, we calculated the \(\Sigma-D \) relation for SNRs in NGC 1569 and obtained \(\beta = 1.26 \pm 0.2 \) comparable to the value determined for SNRs in M31 (\(\beta = 1.67 \)) and M33 (\(\beta = 1.77 \)), but not with other galaxies that have higher \(\beta \) values, such as LMC (\(\beta = 3.78 \)), SMC (\(\beta = 5.16 \)) and M82 (\(\beta = 3.9 \)). Nevertheless, our result must be taken with caution, since \(\beta \sim 2 \) due to a statistical effect which produces the canonical \(\Sigma \propto D^{-2} \) relation (since the definition of surface brightness is implied in that relation). Even though the slope we obtained does not have a physical meaning, we presented this relation to complement this work.

ACKNOWLEDGEMENTS

We thank Dr. Iorio G. for providing us with the HI contours. The authors acknowledge the financial support from DGAPA-PAPIIT (UNAM) IN109919, CONACYT CY-253085 and CONACYT CF-86367 grants. I.F.C. acknowledges the financial support of SAPPI-20222041 grant. Based upon observations carried out at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir (OAN-SPM), Baja California, México. We thank the daytime and night support staff at the OAN-SPM for facilitating and helping obtain our observations. Facilities: OAN-SPM, México

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.
The Σ-D relation for NGC 1569 SNRs. Line represents Figure 10.

REFERENCES

Ambrocio-Cruz P., Laval A., Rosado M., Georgelin Y. P., Marcellin M., Comeron F., Delmotte N., Viale A., 2004, AJ, 127, 214
Ambrocio-Cruz P., Rosado M., Le Coarer E., Bernal A., Gutiérrez L., 2014, Rev. Mex. Astron. Astrofís., 50, 323
Ambrocio-Cruz P., Rosado M., Le de la Fuente E., Silva R., Blanco-Piñon A., 2017, MNRAS, 472, 51
Amram P., Le Coarer E., Marcelin M., Balkowski C., Boulesteix J., Cayatte V., Marcelin M., Sullivan W. T. I., 1992, A&A, 294, 175
Amram P., Balkowski C., Boulesteix J., Cayatte V., Marcelin M., Sullivan W. T. I., 1996, A&A, 310, 737
Arbutina B., Urošević D., 2005, MNRAS, 360, 76
Arbutina B., Urošević D., 2005, MNRAS, 360, 76
Arbutina B., Urošević D., Stanković M., Tešić L., 2004, MNRAS, 350, 446
Arp H., Sandage A., 1985, AJ, 90, 1163
Athansassoula E., 1978, A&A, 69, 395
Berezhko E. G., Völk H. J., 2004, A&A, 427, 525
Berkhuijsen E. M., 1986, A&A, 181, 398
Berkhuijsen E. M., 1987, A&A, 181, 398
Binney J., Tremaine S., 2008, Galactic Dynamics: Second Edition
Birkin J., Tremaine S., 2008, Galactic Dynamics: Second Edition
Blair W. P., Long K. S., 1997, ApJS, 108, 261
Bozzetto L. M., et al., 2017, ApJS, 230, 2
Braun R., Walterbos R. A. M., Kennicutt Robert C. J., 1992, Nature, 360, 442
Byrd G. G., Freeman T., Howard S., Buta R. J., 2008, AJ, 135, 408
Cárdenas-Martínez N., Fuentes-Carrera I., 2018, ApJ, 868, 141
Castles J., McKeith C. D., Greve A., 1991, Vistas in Astronomy, 34, 187
Chevalier R. A., 1974, ApJ, 188, 501
Chomiuk L., Willcocks E. M., 2009, AJ, 137, 3869
Chu Y.-H., 2008, in Bresolin F., Crowther P. A., eds, Massive Stars as Cosmic Engines. , doi:10.1017/S1743921308020681, https://ui.adsabs.harvard.edu/abs/2008IAUS..250..341C
Cioffi D. F., 1990, in Baryonic Dark Matter. pp 1–16, https://ui.adsabs.harvard.edu/abs/1990ASPC...65..293C
Devost D., Roy J.-R., Drissen L., 1997, ApJ, 482, 765
Di Teodoro E. M., Fraternali F., 2015, MNRAS, 451, 3021
Dodorico S., Dwek F., 1976, A&A, 53, 443
Dodorico S., Dwek F., 1976, A&A, 53, 443
Egorov O. V., Lozinskaya T. A., Vasiliev K. I., Yaroslav A. D., Gerasimov I. S., Kreckel K., Moiseev A. V., 2021, MNRAS, 508, 2650
Erkan E. N., Aktekin E., Cesur N., Tümer A., 2018, MNRAS, 481, 2804
Fenech D. M., Muxlow T. W. B., Beswick R. J., Pedlar A., Argo M. K., 2008, MNRAS, 391, 1384
Fesen R. A., Blair W. P., Kirshner R. P., 1985, ApJ, 292, 29
Filipović M. D., Payne J. L., Reid W., Danforth C. W., Staveley-Smith L., Jones P. A., White G. L., 2005, MNRAS, 364, 217
Fuentes-Carrera I., et al., 2004, A&A, 415, 451
Fuentes-Carrera I., et al., 2019, A&A, 621, A25
Georgelin Y. M., Georgelin Y. P., Laval A., Monnet G., Rosado M., 1983, A&A, 54, 459
Gómez-López J. A., et al., 2019, A&A, 631, A71
Greve A., Tarchi A., Hüttemeister S., de Grijs R., van der Hulst J. M., Garrington S. T., Neininger N., 2002, A&A, 381, 825
Grocholski A. J., et al., 2008, ApJ, 686, L79
Grouchy R. D., Buta R., Salo H., Laurikainen E., Speltincx T., 2008, AJ, 136, 980
Haynes M. P., Giovanelli R., Chincarini G. L., 1984, ARA&A, 22, 445
Hodge P. W., 1974, ApJ, 191, L21
Hunter D. A., Hawley W. N., Gallagher John S. I. I., 1993, AJ, 106, 1797
Hunter D. A., O’Connell R. W., Gallagher J. S., Smecker-Hane T. A., 2000, AJ, 120, 2383
Iorio G., Fraternali F., Nipoti C., Di Teodoro E., Read J. I., Battaglia G., 2017, MNRAS, 466, 4159
Jarrett T. H., Chester T., Cutri R., Schneider S. E., Huchra J. P., 2003, AJ, 125, 525
Johnson M., 2013, AJ, 145, 146
Johnson M., Hunter D. A., Oh S.-H., Zhang H.-X., Elmegreen B., Brinks E., Tollerud E., Herrmann K., 2012, AJ, 144, 152
Jore K. P., Broeils A. H., Haynes M. P., 1996, AJ, 112, 438
Kaastra J. S., Mewe R., 1995, A&A, 302, L13
Kobulnicky H. A., Skillman E. D., 1997, ApJ, 489, 636
Kościelna B., Vukotić B., Urošević D., Arbutina B., Prodanović T., 2016, MNRAS, 461, 1421
Le Coarer E., Rosado M., Georgelin Y., Viale A., Coldens G., 1993, A&A, 280, 365
Lelli F., Verheijen M., Fraternali F., 2014, A&A, 566, A71
Leonidaki I., Zervas A., Boumis P., 2010, ApJ, 725, 842
Levenson N. A., Kirshner R. P., Blair W. P., Winkler P. F., 1995, AJ, 110, 739
Liev E., Collier A., Madigan A.-M., 2022, MNRAS, 509, 685
Long K. S., 2017, Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us. p. 2005, doi:10.1007/978-3-319-21846-5_90, https://ui.adsabs.harvard.edu/abs/2017hsn..book.2005L
Long K. S., Helfand D. J., Grabelsky D. A., 1981, ApJ, 248, 925
Long K. S., Blair W. P., Kirshner R. P., Winkler P. F., 1990, ApJ, 72, 61
Long K. S., et al., 2010, ApJS, 187, 495
Long K. S., Blair W. P., Milisavljevic D., Raymond J. C., Winkler P. F., 2018, ApJ, 855, 140
Long K. S., Winkler P. F., Blair W. P., 2019, ApJ, 875, 85
Lovelace R. V. E., 1998, Annals of the New York Academy of Sciences, 867, 217
Mac Low M.-M., McCray R., 1988, ApJ, 324, 776
Mancera P. E., Posti L., Fraternali F., Adams E. A. K., Oosterloo T., 2021, A&A, 647, A76
Martin C. L., 1998, ApJ, 506, 222

Figure 10. The Σ-D relation for NGC 1569 SNRs. Line represents the best fit given by: Σ(D)_{Hα} = 3.36 \times 10^{-15} \times D^{-1.26} \pm 0.2 \text{ W m}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1}. Solid line is the least-squares fit.
Martin C. L., Kobulnicky H. A., Heckman T. M., 2002, ApJ, 574, 663
Mathewson D. S., Clarke J. N., 1972, ApJ, 178, L105
Mathewson D. S., Clarke J. N., 1973a, ApJ, 180, 725
Mathewson D. S., Clarke J. N., 1973b, ApJ, 182, 697
Mathewson D. S., Healey J. R., 1963, Nature, 199, 681
Matonick D. M., Fesen R. A., 1997, ApJS, 112, 49
Micelotta E. R., Matsunura M., Sarangi A., 2018, Space Sci. Rev., 214, 53
Moiseev A. V., 2014, Astrophysical Bulletin, 69, 1
Moiseev A. V., Lozinskaya T. A., 2012, MNRAS, 423, 1831
Moiseev A. V., Tikhonov A. V., Klypin A., 2015, MNRAS, 449, 3568
Moumen I., Robert C., Devost D., Martin R. P., Rousseau-Nepton L., Drissen L., Martin T., 2019, MNRAS, 488, 803
Nishiuchi M., Yokogawa J., Koyama K., Hughes J. P., 2001, PASJ, 53, 99
Osterbrock D. E., 1989, Astrophysics of gaseous nebulae and active galactic nuclei. https://ui.adsabs.harvard.edu/abs/1989agna.book.....O
Ott J., Walter F., Brinks E., 2005, MNRAS, 358, 1423
Padmanabhan T., 2001, Theoretical Astrophysics - Volume 2, Stars and Stellar Systems, doi:10.12777/0521562414, https://ui.adsabs.harvard.edu/abs/2001thas.book.....P
Pannuti T. G., Duric N., Lacey C. K., Goss W. M., Hoopes C. G., Walterbos R. A. M., Magnor M. A., 2000, ApJ, 544, 780
Pasha I. I., 1985, Soviet Astronomy Letters, 11, 1
Pavlovic M. Z., Urošević D., Vukotić B., Arbutina B., Gökeroğlu Ü., D., 2013, ApJS, 204, 4
Pavlović M. Z., Dobardžić A., Vukotić B., Urošević D., 2014, Serbian Astronomical Journal, 189, 25
Poinsot S. D., Long K. S., Blair W. P., 2019, ApJ, 878, 866
Raymond J. C., 1979, ApJS, 39, 1
Reakes M., 1980, MNRAS, 192, 297
Reid W. A., Stupar M., Bozetto L. M., Parker Q. A., Filipović M. D., 2015, MNRAS, 454, 991
Repetto P., Rosado M., Gabbasov R., Fuentes-Carrera I., 2010a, AJ, 139, 1600
Repetto P., Rosado M., Gabbasov R., Fuentes-Carrera I., 2010b, in Verdes-Montenegro L., Del Olmo A., Sulejentić J., eds, Astronomical Society of the Pacific Conference Series Vol. 421, Galaxies in Isolation: Exploring Nature Versus Nurture, p. 287, https://ui.adsabs.harvard.edu/abs/2010ASPC..421..287R
Rosado M., 1981, ApJ, 250, 222
Rosado M., 1982, Rev. Mex. Astron. Astrofis., 5, 127
Rosado M., Laval A., Le Coarer E., Boulesteix J., Georgelin Y. P., Marcelin M., 1996a, A&A, 272, 541
Rosado M., Le Coarer E., Georgelin Y., Viale A., 1993b, Supernova Remnants in the Magellanic Clouds. p. 226, doi:10.1007/3-540-56432-2_201, https://ui.adsabs.harvard.edu/abs/1993LNP...416..226R
Rosado M., et al., 1995, in Pena M., Kurtz S., eds, Revista Mexicana de Astronomía y Astrofísica Conference Series Vol. 3, Revista Mexicana de Astronomia y Astrofisica Conference Series. p. 263, https://ui.adsabs.harvard.edu/abs/1995RMMxAC..3..263R
Rosado M., Ambrocio-Cruz P., Le Coarer E., Marcelin M., 1996, A&A, 315, 243
Rosado M., Sánchez-Cruces M., Ambrocio-Cruz P., Trejo D., 2021, MNRAS, 506, 4263
Russell S. C., Dopita M. A., 1992, ApJ, 384, 508
Sánchez-Cruces M., Rosado M., Rodríguez-González A., Reyes-Iturbide J., 2015, ApJ, 799, 231
Sánchez-Cruces M., Rosado M., Fuentes-Carrera I., Ambrocio-Cruz P., 2018, MNRAS, 473, 1705
Sardaneta M. M., Rosado M., Sánchez-Cruces M., 2020, Rev. Mex. Astron. Astrofis., 56, 71

Seward F. D., Mitchell M., 1981, ApJ, 243, 736
Shklovskii A. I. S., 1960, Azh, 37, 591
Spitzer L., Arny T. T., 1978, American Journal of Physics, 46, 1201
Starkenburg T. K., Sales L. V., Genel S., Manzano-King C., Canalizo G., Hernquist L., 2019, ApJ, 878, 143
Stil J. M., Israel F. P., 2002, A&A, 392, 473
Thomasson M., Donner K. J., Sundelius B., Byrd G. G., Huang T. Y., Valtonen M. J., 1989, A&A, 211, 25
Tomisaka K., Abe H., Ikuchi S., 1981, ApSS, 78, 273
Urošević D., 2020, Nature Astronomy, 4, 910
Urošević D., Pannuti T. G., Duric N., Theodorou A., 2005, A&A, 435, 437
Urošević D., Vukotić B., Arbutina B., Sarevska M., 2010, ApJ, 719, 950
Vučetić M. M., Arbutina B., Urošević D., 2015, MNRAS, 446, 943
Vučetić B., Ciprijanović A., Vučetić M. M., Onić D., Urošević D., 2019, Serbian Astronomical Journal, 199, 23
Waller W. H., 1991a, ApJ, 370, 144
Waller W. H., 1991b, ApJ, 370, 144
Wang Q. D., Gotthelf E. V., 1998, ApJ, 494, 623
Wang Q., Wu X., 1992, ApJS, 78, 391
Westmoquette M. S., Smith L. J., Gallagher J. S., 2008, MNRAS, 383, 864
Winkler P. F., Blair W. P., Long K. S., 2017, ApJ, 839, 83
Woltjer L., 1972, ARA&A, 10, 129