Extensive Viral mimicry of human proteins in AIDS, multiple sclerosis and other autoimmune disorders, late-onset and familial Alzheimer’s disease and other genetic diseases

C.J. Carter
Flat 4, 20 Upper Maze Hill, St Leonard’s on Sea, East Sussex, TN38 OLG
chris.john.carter@gmail.com

Abstract

Peptide stretches within HIV-1 proteins display a striking homology to over 50 important components of the human immune and pathogen defence network. These include HLA-antigens, T-cell, Fc and cytokine receptors, CD molecules, lymphocyte antigens, proteins involved in B-Cell, T-cell, dendritic and natural killer cell, macrophage, mast cell and microglial function, lysosomal proteins, haematopoietic control, and also pathogen recognition pathways. The homologous peptides are in most cases highly immunogenic (B-cell epitope prediction), suggesting that antibodies to HIV-1 proteins could mount an autoimmune attack against multiple components of the immune system itself. HIV-1 proteins are also homologous to autoantigens in Alzheimer’s disease, chronic obstructive pulmonary disorder, multiple sclerosis, Myasthenia Gravis, Pemphigus Vulgaris, Sjogrens syndrome and systemic Lupus Erythmatosus, all of which have been associated with HIV-1 infection. This mimicry suggests that HIV-1/AIDS has a major autoimmune component and that HIV-1 antibodies could selectively target the immune system and autoantigens in other autoimmune disorders. This could radically change our conception of how HIV-1 acts, and perhaps lead to novel therapeutic strategies, which, counter intuitively might even involve the use of immunosuppressants in the early stages of the disease. Autoantigens from the human autoimmune diseases mentioned above also align with peptides from other viruses implicated as risk factors in each disease. Mutant peptides from Huntington’s disease and other polyglutamine disorders, and from cystic fibrosis also align with common viruses. The London APP717 V→I mutant in Familial Alzheimer’s disease converts the surrounding peptide to matches with Rhinoviruses causing the common cold and to the Norovirus responsible for vomiting sickness. Viral mimicry related autoimmunity may thus play a role in many autoimmune and even human genetic disorders. It is possible that this is a near universal phenomenon, reflecting the idea that viruses are responsible for the origin of higher forms of life, leaving behind a deadly legacy of viral-derived human proteins with homology to antigenic proteins in the current virome that may be responsible for most of our ills.

Introduction

The Human Immunodeficiency virus causes acquired immune deficiency syndrome (AIDS) by decreasing the capacity of the immune system to deal with opportunistic pathogens. The virus infects and kills CD4+ T-Lymphocytes which play an important role in regulation of immune defence and also targets B[cells,
natural killer cells, macrophages and microglia. It has already been noted that the HIV-1 envelope protein is homologous to several components of the immune system including HLA antigens, T cell receptors, Fas and immunoglobulins G and A, and also that autoimmune disorders are common in HIV-infected patients (Sjogrens syndrome, rheumatic disease and lupus, for example. HIV-1 has also been associated with myaesthenia gravis, multiple sclerosis and pemphigus, and can worsen symptoms in chronic obstructive pulmonary disease. HIV-1 infection can also cause dementia with Alzheimer’s disease-like pathology. These associations may be related to immune deficiency but could also reflect viral/antigen mimicry in these autoimmune disorders. Homology searches showed that all the autoantigens in these autoimmune diseases are homologous to short peptide stretches of diverse HIV-1 proteins, and that all HIV-1 proteins display this type of homology with important elements of the human immune and pathogen defence networks, suggesting that HIV-1 itself has an autoimmune component where antibodies to HIV-1 proteins may target crucial molecules within the immune system. This type of mimicry between viral and human proteins is observed for large number of other viruses, in most cases matching their reported implication in the relevant disease. It is common in many autoimmune disorders, and even in human genetic disorders where the mutant protein modifies the spectrum of viral matches to very common pathogens.

Methods

Homology searches, of HIV-1 proteins against human proteins and of human autoantigens against HIV-1 proteins were undertaken at the Uniprot BLAST server, using parameters designed to detect short consecutive peptide matches rather than overall homology. B-Cell epitopes were identified using the BepiPred server, which predicts the B-cell antigenicity of peptide sequences. Parameters were set to default (epitope predicted above an index of 0.35). Further homology searches were undertaken against all viral proteins in relation to autoantigens in autoimmune disorders and to mutant proteins in Alzheimer’s disease, Huntington’s disease and other polyglutamine disorders and in cystic fibrosis.

Results

The homology search results for each HIV-1 protein are shown in Tables 1 to 10 and summarised in Fig 1. It should be noted that all homologues (consecutive pentapeptides or more, or greater than 85% similarity) are recorded in these tables and that homology (for known proteins) is restricted to the classes shown in the tables and Fig 1. Homology of autoantigens with HIV-1 proteins from various autoimmune diseases is shown in Table 11 and Fig 1.

As can clearly be seen from the data in the various tables and from Fig 1, HIV-1 proteins are homologous to human proteins from every compartment of the immune system, including HLA-antigens, B- and T-cells, natural killer and dendritic cells, as well as macrophages, microglia and mast cells, and lysosomes which destroy foreign antigens and pathogens. A number of HIV-1 proteins are also homologous with proteins involved in haematopoiesis, which generates both red and white blood cells. Others are homologous to pathogen and pattern recognition pathways as well as to those implicated in responses to DNA damage, oxidative stress and to single stranded...
RNA/DNA (i.e. viral) binding. Homology to a thyroid hormone transporter was also observed. Thyroid hormones play an important role in preventing the decline in T- and B-cell efficiency in ageing.15,30

Autoantigens from all the autoimmune disorders tested, Alzheimer’s disease, chronic obstructive pulmonary disorder, multiple sclerosis, Myasthenia Gravis, Pemphigus Vulgaris, Sjogrens syndrome and systemic Lupus Erythematosus are homologous to HIV-1 proteins (Table 11) and the homology searches detected two more involved in epidermolysis bullosa acquisita and systemic sclerosis.

The antigenicity of these matching peptides, as indexed by the B-Cell Epitope prediction index64 is shown in Figs 2 and 3. Most are above the cut-off level of 0.35 set as default by the BepiPred server, suggesting that cross-reactivity between human and viral homologues is likely.

Other viral infections have been implicated in a number of autoimmune disorders. The autoantigens in these disorders align with the respective viral risk factors (Table 12) and with many others, including phages infecting commensal bacteria, suggesting many potential viral contributors to autoimmune problems in a variety of disorders. The mutant proteins in Huntington’s disease and other polyglutamine repeat disorders as well as in cystic fibrosis also align with common viruses and phages (Table 12). The APP717 London mutation in Alzheimer’s disease39 is within a peptide liberated by beta- and gamma-secretase cleavage of APP as shown in Fig 4.18 The native APP form of this peptide is itself homologous to several viruses and phages, but the mutation converts the peptide to one matching over 30 strains of rhinoviruses that cause the common cold, as well as many strains of the Norovirus that is a frequent cause of vomiting sickness (Table 13).

Glycoprotein B of the Herpes simplex virus (HSV-1), shows homology to beta-amyloid, exactly matching a VGGVV c-terminal sequence93 that has been used as an epitope to label beta-amyloid in the Alzheimer’s disease brain.102 This pentapeptide, \textit{per se}, forms aggregates characterised by twisted ropes and banded fibrils.81 This is a characteristic of both beta-amyloid and of HSV-1 glycoprotein B peptide fragments containing this sequence. The viral glycoprotein B fragments form thioflavine T positive fibrils which accelerate beta-amyloid fibril formation, and are neurotoxic in cell culture.22

Autoantibodies to beta-amyloid are common in the ageing population and in Alzheimer’s disease.90,111 As shown in Table 14, 69 viruses and phages contain this consensus VGGVV sequence, suggesting that Alzheimer’s disease may also be related to viral mimicry. HSV-1 and other Herpes viral infections have been implicated as risk factors in Alzheimer’s disease52,66 and HIV-1 is frequently associated with dementia with Alzheimer’s-related neuropathology32.

Discussion.

All HIV-1 proteins show a high degree of homology to short peptide stretches of important proteins in most compartments of the immune system a phenomenon that is almost exclusively limited to proteins of the immune network. For the most part, these peptides are predicted to be highly immunogenic, suggesting that HIV-1/AIDS is an autoimmune disorder that targets a large and diverse spectrum of proteins in the immune and pathogen defence network. HIV-1 proteins are also homologous to autoantigens in a variety of autoimmune disorders that have been associated with HIV-1 infection. These homologous human proteins have important roles in almost every aspect of immune function (Fig 1) and autoantibodies to almost any would be
expected to disrupt the immune network. Antibodies to T-cell receptors and HLA-antigens have been reported in AIDS patients, along with many others, and a contribution of molecular mimicry and autoimmunity to AIDS pathogenesis has already been proposed 7,8,75,100,112. This survey shows how extensive this process could be and demonstrates a very selective targeting of the immune network. Certain autoantibodies may be beneficial in AIDS 47 and other disorders, for example beta-amyloid catalytic antibodies in Alzheimer’s disease 90. Certain proteins within this mimicry network are immunosuppressive, for example Sirutin (Table 1), the Fc receptor FCGR2B (Table 3) and the homoeobox protein ALX1 (Table 5) while others stimulate immune cell development or function, for example RET (Table 2) CD226 (Table 6) and Plexin B1 (Table 7). There may be ways of exploiting these differences in the design of potential therapies, for example vaccination to raise beneficial autoantibodies against the immunosuppressant proteins, or anti-antibody antibodies targeting the immunostimulant proteins. While totally counter intuitive, immunosuppressive therapies could also be of benefit in the early stages of infection.

Autoantigens in a variety of autoimmune disorders are homologous to proteins from other viruses that have been implicated as risk factors and to others that have not been suspected. Late-onset Alzheimer’s disease may also be added to the list of autoimmune disorders. Amyloid plaques in the brains of Alzheimer’s disease patients contain a variety of immune-related proteins 28,29,119 and Alzheimer’s disease neurones express the complement membrane attack complex, suggesting that complement related lysis as a response to beta-amyloid antigenicity may be responsible for neuronal death as already suggested 50,76.

Finally, even in human genetic disorders, including Huntington’s disease, and spinocerebellar ataxias or cystic fibrosis, mutant proteins align with common viral proteins. The London mutation in Familial Alzheimer’s disease converts the resultant peptide to one matching proteins from over 30 strains of Rhinovirus that cause the common cold, a potential unexpected cause of familial Alzheimer’s disease. Many of these diseases have symptoms related to the altered function of the mutant protein. Most have a degenerative component that could well be related to autoimmune attack triggered by complementary viral proteins, rather than to the mutant protein itself. Viral mimicry thus appears to be a universal phenomenon, that may be relevant to AIDS, autoimmune disorders, late-onset Alzheimer’s disease and even human genetic disorders.

Phages and viruses are the simplest form of “life”, as defined by the possession of DNA/RNA and a proteinaceous structure, and were long ago proposed as the origin of higher cellular organisms 23,45. While they may well be responsible for our existence, they appear to have left behind a legacy of viral derived human proteins that are homologous to many current viral antigens. There are currently 2463 viral genomes in the NCBI database, likely representing but a small percentage of those existing, and the likelihood of antigenic mimicry must be proportionately extensive. Viral related autoimmunity may thus be relevant to a large number of human ailments, a situation that has therapeutic implications in many diseases of autoimmune, polygenic and genetic origin, where pathogen elimination, vaccination and immunosuppression may be of benefit. Antibody arrays on the same scale as genome-wide association studies may also be envisaged to identify the most common culprits in these disorders.
Acknowledgements: Thanks to the numerous authors for reprints, to Oliver Chao and Nasire Mahmudi for finding others, and to Maria Jesus Martin at Uniprot and Tao Tao at NCBI for help with the mysteries of BLAST and Clustal alignment settings.

Table 1-10: Human proteins aligning with various HIV-1 proteins as indicated in the header of each table. Accession numbers are provided together with the amino acids aligning with the HIV-1 protein. Gaps are represented by – and conserved (similar properties) amino acids by +. The immune-related function for each human protein is also recorded where available. Gene symbols are in brackets after each definition. Proteins in bold show a mean antigenicity index of greater than the default value of 0.35 along their respective peptide matches (e.g. Fig 2).

Table 1: Human proteins aligning with the HIV-1 env protein.

Human protein	Amino acid match env	Immune related function	
NP_001132986 dachshund homolog 2 isoform b (DACH2)	IQE-Q-QQEK-E-R—LEL	?	
EAW91766 Matrilin 2 (MATN2)	EL-K--VQQ---------+DNLLR—Q------KLS	?	
NP_114428 protein ITFG3 (Integrin)	ANVSTHI	?	
EAW52697 lymphocyte antigen 9, isoform (CD229)	LDITKW	Involved in T-Cell proliferation^{41}	
NP_733751.2 histone-lysine N-methyltransferase (MLL3)	QQQDNL	Localised to a chromosomal region implicated in leukaemia^{114}	
EAX09318 collagen, type VI, alpha 2 (COL6A2)	AIQAQQ+	Autoantigen in epidermolysis bullosa acquisita^{122}	
NP_066001 hypothetical protein (LOC57710)	QAQQHL	?	
BAF95000.1 tight junction protein ZO-1 (TJP1)	AIQ QQ L VW And QI N+ST And TVE NE And +QQQ N L	Binds to AMPA and NMDA glutamate receptors which are expressed in microglia^{66}	
CAI15167.1 POU class 2 homeobox 1 OCT-1 protein (POU2F1)	SAAG T A AAT +T And AAT LTV And QQ Q NLL Q Q	Represses interferon alpha expression^{77}	
Accession	Description	Domain	Notes
------------	--	--------	--
EAX08243	zinc finger protein 198 (ZMYM2)	QIANV T	?
EAW75084	cleavage and polyadenylation factor subunit (PCF11).	GIVQ QD	?
EAW87998	senataxin (SETX)	ELMK I+	?
BAC76827	X-linked PEST-containing transporter (SLC16A2)	QEA-QEQQE	Thyroid hormone transporter 117 Thyroxine plays a role in T-cell maintenance in Man and reverses the decline in immune function in ageing mice 15,30
NP_036367	sterol regulatory element-binding protein cleavage-activating protein (SCAP)	ISIWD	?
CAM14433.1	crumbs homolog 2 (Drosophila) (CRB2)	GCRG-PVC	?
Q6ZRI0	Otogelin (OTOG)	QQLLN L	?
BAA86593.1	KIAA1279 protein	TLMQN-QL	?
AAI57862	Roundabout protein (ROBO1)	EAQEQQ	ROBO1 is involved in dendritic cell migration 44
NP_036370	NAD-dependent deacetylase sirtuin-1 (SIRT1)	EKNERT	Suppresses NF kappaBeta driven immune responses 99 and cyclooxygenase activity in macrophages 128 SIRT1 negatively regulates T-cell activation and this effect is blocked by HIV-1 tat binding to SIRT1 62
BAH13573	ets variant 5 (ETV5)	CRGRPV	Regulates immune synapse formation and T-cell activation 51
NP_001103447	hypothetical protein LOC729830	LL--IQAQQ LL	?
AAH28025	integrator complex subunit 5 (INTS5)	LL-LSVWG--LR	?
EAW66757	galactosamine (N-acetyl)-6-sulfate sulfatase	L-L-VLSAAG--MGA	Part of a lysosomal multienzyme complex 89
EAW78736: potassium voltage-gated channel, shaker-related subfamily, beta member 1 (KCNAB1) LS—G—QLRAR-LAL Microglial potassium channel related to brain inflammation 36
AAC39655 T-cell receptor delta chain TCRD WG--I-IWDKL T-Cell receptor

Table 2: Human proteins aligning with the HIV-1 p15 protein (vpr).

Human protein	Amino acid match vpr	Immune related function
Q5VST9 Isoform 5 of Obscurin	W-LE+LE-LKN-AVR	?
Q9H4Z3 PDX1 C-terminal inhibiting factor 1 (PCIF1)	+QGP-REPH	?
Q9BTX6 RET tyrosine kinase A8K6Z2; FLJ76670, highly similar to RET	LGQH+Y-TY	RET is expressed on B-cells T-cells and monocytes, plays an important role in B-cell development 118,120
Q6Q0C0 Isoform 2 of E3 ubiquitin-protein ligase TRAF7	LFIH-R-GCR	Regulates Toll-receptor signalling (TLR2) 125
Q59F39 IL2-inducible T-cell kinase (ITK)	P-RE----W-L-L-EE +N	Expressed in T-cells Natural Killer cells and Mast cells: Regulates T cell receptor, CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways 98
B3KUT9 Thymus-specific serine protease (EC3.4.-.-) PRSS16	R-F-+I-LH-LGQ	Regulates the presentation of self peptides bound to MHC antigens 40

Table 3: Human proteins aligning with the HIV-1 p27 protein (nef).

Human protein	Amino acid match nef	Immune related function	
Q15149 Isoform 8 of Plectin-1 (PLEC)	+EEEEVGF	Regulates leukocyte recruitment 2	
Q9Y5V3 Isoform 2 of Melanoma-associated antigen D1 (MAGED1)	PDWQ--P-P-+R	Involved in p75 neurotrophin receptor signalling and expressed in	
Protein ID	Description	Peptide Sequence	Notes
-----------	---	------------------	--
D3DRW8	CRA a LOC387647	KWS+SSV+ WP	?
A2RUQ8	Ubiquitin carboxyl-terminal hydrolase (USP37)	KL-P+EPDK-E--N G	No publications but members of this family are involved in ubiquitylation, a process that tags proteins for lysosomal destruction.
P31994	Fc fragment of IgG, low affinity IIb, receptor (CD32) (FCGR2B)	P-E-DK+---N----+ L+HP.+L----DD--R	The only inhibitory Fc Receptor: Prevents antigen presentation and is involved in immunosuppression as well as in macrophage proliferation.
Q9Y6R7	IgGFc-binding protein (FCGBP)	H---Y+P----Q+PGPG	Fc Receptors bind to antibodies bound to pathogens or infected cells. FCGBP is an autoantigen in progressive systemic sclerosis.
Q9Y4I6	Protein tyrosine phosphatase receptor pi (PTPRN2)	++ EEE--G+VT--+PLRP	Regulates B-Cell signalling and proliferation.
Q8TDW7	Protocadherin (FAT3)	PQVP+RPM-Y	No data
Q9UPG8	Zinc finger protein PLAGL2	+A++EEEVG+ + P+	Involved in acute myeloid leukemia (abnormal growth of white blood cells)
Q9P2F6	Rho GTPase activating protein 20 (ARHGAP20)	KS-V+GWPTV	?
Q9H44	Lymphocyte antigen 75 variant (LY75) aka CD205	WI ++--D--Y++--P--R+P+TFG	Found in the spleen and lymph nodes and involved in antigen presentation.
Table 4: Human proteins aligning with the HIV-1 p16 protein (vpu).

Human protein	Amino acid match vpu	Immune related function
Q9Y2T7 Y-box-binding protein 2 (YBX2)	ERAEDSG	Expressed in male and female germ cells⁴³
Q9Y487 V-type proton ATPase 116 kDa subunit a isoform 2 (ATP6V0A2)	ERAEDSG	Found in lysosomes. Important antigen processors¹²¹
Q96SA0 Putative uncharacterized protein	+IDRLIE-AE	?
Q9BQ70 Transcription factor 25 (TCF25)	IDR++ER EDS	Inhibits serum response factor transcription¹²; SRF regulates the expression of an RNAase involved in immune modulation in macrophages⁵⁵
P27449 V-type proton ATPase 16 kDa proteolipid subunit (ATP6VOC)	I+AI LVVA++IA	?
B4DFG8 FLJ57916, highly similar to WD repeat domain phosphoinositide-interacting protein 4	ALVVA+ ++SVW+	?
>SP:PRAF2_HUMAN O60831 PRA1 family protein 2 OS=Homo sapiens GN=PRAF2	ALVVA+ ++SVW+	Interacts with the CCR5 chemokine and HIV-1 receptor¹⁰³
Q2M110 Histidine-rich calcium-binding protein No gene symbol	MGHH-PW	?
Q02388 Isoform 2 of Collagen alpha-1(VII) (COL7A1)	APWD-DD	Autoantigen in epidermolysis bullosa acquisita¹²²
Q5GJ7S Tumor necrosis factor alpha-induced protein 8-like 3 (TNFAIP8L3)	DSG+SEGE	TNF induced
Q96J94 Isoform 3 of Piwi-like protein 1 (PIWIL1)	RQR++-RLID	Expressed in haematopoetic
Human protein	Amino acid match rev	Immune related function
---------------	---------------------	------------------------
P08571 Monocyte differentiation antigen CD14	P-P-+LP-+++ LTLD-N	Involved in dendritic cell apoptosis, an import mechanism regulating immunity to invading pathogens 42
B7Z8R5 FLJ54826, highly similar to Homo sapiens solute carrier family 25 (mitochondrial carrier; Graves disease autoantigen) No gene symbol	Q---H----+RILG+Y-G---E +P	?
B4E2R1 cDNA coiled-coil domain containing 129 CCDC129	+L----EP+PLQ+P L	?
A2A370 Dedicator of cytokinesis 8 (DOCK8)	SAE-VPLQ-PP++	Plays a critical role in B-cell function 96
Q15699 ALX homeobox protein 1 (ALX1) O95076 ALX3 Q9H161 ALX4	+NRR++WR+R+R	ALX inhibits T-cell activation 106
D3DQB0 Paired-like homeodomain transcription factor 1 PITX1	+NRR +WR+R+R	PITX1 negatively regulates interferon alpha expression 77

Table 5: Human proteins aligning with the HIV-1 p19 protein (rev).
O75364 Pituitary homeobox 3 (PITX3)		
B3KY25 GC-rich sequence DNA-binding factor 1 (GCFC1)	R+ARR RRR+ RE+	
Q8NDA2 Hemicentin-2 (HMCN2)	C++DCGT G	
Q68DH5 LMBR1 domain-containing protein 2 (LMBRD2)	NRRR-W+ER	

Table 6: Human proteins aligning with the HIV-1 p14 protein (tat).

Human protein	Amino acid match tat	Immune related function
A8K818_CD3e molecule, epsilon associated protein (CD3EAP)	MEPV+P-++P-+PG	CD3E is involved in T-cell activation 24
Q15762 CD226 antigen	V--IT--- !---RR+RR---S---Q-+-+-+----+----G-P	Expressed in natural killer cells, monocytes and T-cells playing an important role in immune activation 31,124
O14647 Isoform 2 of Chromodomain-helicase-DNA-binding protein 2 (CHD2)	KKCC-HC	Plays a role in DNA damage response and haematopoesis 84
Q9UQ53 Isoform 2 of Alpha-1,3-mannosyl-glucoprotein 4-beta-N-acetylglucosaminyltransferase B (MGAT4B)	DPRL+PW	Adds sugar chains to interferon-gamma 37
Q92766 Isoform 3 of Ras-responsive element-binding protein 1 (RREB1)	FHC-VCF	Suppresses the transcription of HLA-G , a molecule involved in immune tolerance 34
Q02779 Mitogen-activated protein kinase kinase kinase 10 (MAP3K10; aka Mixed lineage kinase 2)	PRL+PWK	Involved in pathogen recognition receptor signalling in Jurkat T-lymphoma cells 27
Q6NSK7 Ras and Rab interactor 3 (RIN3)	RGDPTGP	RIN3 is expressed in bone marrow cells 20
Q6FI81 Isoform 3 of Anamorsin (CIAPIN1)	SQPK+AC-NCY	An antiapoptotic protein that controls haematopoesis 108
Q9C0E4 Isoform 2 of Glutamate receptor-interacting protein 2 (GRIP2)	+RRQRRR-H++S	Interacts with glutamate (AMPA) receptors GRIA2 and GRIA3 which are
Table 7: Human proteins aligning with the HIV-1 p23 protein (vif).

Human protein	Amino acid match vif	Immune related function
Q8NDG7 Putative uncharacterized protein DKFZp434N172	L+ PKKIK-P-+++-L-+W+P	?
Q43157 Isoform 2 of Plexin-B1 (PLXNB1)	W+-K+-GHRGS--N++	Involved in B- and T-cell activation 8
B4DMT9 TBC1 domain family, member 15, (TBC1D15)	W+-K+-GHRGS--N+	Involved in lysosomal regulation 91
Q8N393 Zinc finger protein 786 (ZNF786)	+-++-GLHTGER +H	?
B4E1Y7_HUMAN B4EY7 cDNA FLJ50947, highly similar to Atrial natriuretic peptide converting enzyme (CORIN)	PSVTKL-+--+P-++-H---++NG	Atrial natriuretic peptide controls the secretion of cytokines from macrophages: Dendritic cells and T-cells also express receptors for ANP 57,79
Q9UH90 F-box only protein 40 (FBXO40)	V-++W+KKRYS	?

Table 8: Human proteins aligning with the HIV-1 gag-pol protein.

Human protein	Amino acid match gag-pol: Immune related function	
Q8NFP1 Pol protein (Fragment)	+P+NTPVF-IKKK	
Human protein	Amino acid match gag	Immune related function
---------------	---------------------	------------------------
Q8NFP1 Pol protein	I—DN-S+T-----A------I-----IPYNPQ-Q-VV---+--LK-+I	
O15310 Polymerase	+--AFTIP+INN+-P+R+Q+VLPQG--SP-I-Q+ ++L+P R+++D—I--Y+	
Q8NFP1 Pol protein	+P+NTPVF-iKKK	?
Q14980 Isoform 2 of Nuclear mitotic apparatus protein 1 (NUMA1)	+E-ELELAENR++L-E	Autoantigen in Lupus and Sjogrens syndrome
Q8NSD6 Isoform 2 of Globoside alpha-1,3-N-acetylgalactosaminyltransferase 1 (GBGT1)	WETWW--+-QAT	Synthesises the Forsmann glycolipid that is involved in pathogen adherence to host cells
Q9NS56 E3 ubiquitin-protein ligase (TOPORS)	+PGGK+KYK +H+	Binds to p53 and plays a role in growth suppression related to DNA damage
Q9BWF3 RNA-binding protein 4 (RBM4)	+-GC++CGKEGH–K+C	?

Table 9: Human proteins aligning with the HIV-1 gag protein.

Human protein	Amino acid match gp120	Immune related function
A0T064 Staphylococcal-alpha-toxin-specific lambda light chain	GATPQDLNTML	Unpublished
P63128 HERV-K_6q14 provirus ancestral Gag-Pol polyprotein	+RQG-KEP+ D+V R---++++A+++---E+ +NANP+C+++K L	
P62633 Isoform 3 of Cellular nucleic acid-binding protein (CNBP)	C+NCGK-GH-AR+C---+++C+CG+-GH--KDCT+	Binds to single-stranded DNA and RNA and to JC virus DNA
P63125 HERV-K_11q22 provirus ancestral Pro protein	RP+++I-G++-E- L+DTGAD+++++++P--W	
Q99575 Ribonucleases P/MRP protein subunit POP1	RKKG-WK-G-EG	Autoantigen in connective tissue diseases

Table 10: Human proteins aligning with the HIV-1 gp120 protein.
Disease and Autoantigen	**HIV-1 Protein**	**Amino acid overlap**
Pemphigus vulgaris	ACR55549 vif protein	LRGSHTM
Desmoglein-3	AAU89527 protease	PVTKTKTR
Systemic lupus erythematosus	ACD10671 envelope glycoprotein	AIVEKLR
X-ray repair complementing defective repair in Chinese hamster cells 6 XRCC6 (Ku70 antigen)		
Multiple sclerosis	CAC86080 pol protein	GR-L---RF-WG--------
Myelin basic protein MBP 94	ABJ99530 pol protein	QGK-R-LS-------S-----RF-W-- -GAEGQ
94	ACO50234 pol protein (HIV-2)	GDDRGG--AP--RGS
94	ACU55298 pol protein	GAEGQ-R-G
Multiple sclerosis	AAC56235 envelope glycoprotein	+ LPCRIP--N---M----EVG---
MOG 94	AAC56235 envelope glycoprotein	Y-PP+++---------L-R+G
Multiple Sclerosis	BAA76250 reverse transcriptase	FYTTG---QI-GD-K
PLP1 94	AAB07222 envelope glycoprotein	FYTTGA----VRQ
Multiple sclerosis	ABO64827 envelope glycoprotein	LSTVIY-S
Myelin associated glycoprotein	ABO64827 envelope glycoprotein	LSTVIY-S
Chronic obstructive pulmonary disorder	AAL31352 vif protein (HIV-2)	IFP--GGACL
Elastin 38	ACJ37145 rev protein	TGTGVG--PQ
38	ABA08289 envelope glycoprotein	FGLSP-F

Table 11 Autoantigens from human autoimmune disorders showing significant homology to HIV-1 proteins

Interleukin-31 receptor subunit alpha (IL31RA)
progenitor cell proliferation

D3DWB6 Ubiquitin carboxyl-terminal hydrolase (USP9X)
Regulates TGFbeta and bone morphogenic protein signalling

Q9NX61 Transmembrane protein 161A (TMEM161A)
Increases resistance to oxidative stress, DNA damage and apoptosis
Autoantigen	Viral Homolog	Sequence	Involvement
Myasthenia Gravis	Nicotinic Acetylcholine receptor gamma subunit CHRNG	FDWQNC	?
		IVVNA	?
Sjogrens syndrome	Lupus La protein SSB	R-R--RDY-G-VLRV	Anti nicotinic receptor antibodies isolated from myasthenia patients cross react with HSV-1 glycoprotein
Sjogrens syndrome	Lupus La protein SSB	EALTT	?
Sjogrens syndrome	Lupus La protein SSB	DIVLEN	?
Sjogrens syndrome	Lupus La protein SSB	NQEEERL	?
Sjogrens syndrome	Lupus La protein SSB	TLFSALLI	?

Table 12

Viral proteins lining up with autoantigens from Chronic obstructive pulmonary disease, myasthenia gravis, multiple sclerosis, pemphigus vulgaris and lupus and to mutant proteins from polyglutamine repeat disorders (Huntington’s disease, Dentatorubropallidolysusian atrophy, Kennedy disease and Spinocerebellar ataxias) and from cystic fibrosis. APOE4 is included as an example of a risk factor in a number of polygenic diseases. Accession numbers and the aligning sequences are shown with references where the virus has been implicated in the relevant disease. The polyglutamine expansions also increase the antigenicity of the resultant peptide with each triplet QQQ addition.
NP_044050 Molluscum contagiosum virus subtype1
BAH15164 Serratia phage
CAM12729 Zucchini yellow mosaiccovirus
ADF28539 Human TMEV-like cardiovirus:
ACO92355 Saffold virus
ABD73306 Gremmeniella abietina type B RNA virus
NP_612874 Clostridium phage
BAA03030 Orgyia pseudotsugata single capsid nuclopolyhedrovirus
EBNA3 Epstein-Barr virus
D2XR26 Bacillus phage
9PARAQ84747 Human parainfluenza virus 1
C9WSX19 Norovirus dog

YP_164320 Pseudomonas phage
YP_003406894 Marseille virus
CAA24862.1 Human herpesvirus 4 (Epstein Barr)
P25939 Human herpesvirus 4 (Epstein Barr)
C9WSX19 Norovirus dog

Implicated 72

NP_00102025 2 myelin basic protein isoform 1

Implicated 61

AAB58805.1 Human herpesvirus 4 (Epstein Barr)

Implicated 72

AAR31274 Human herpesvirus 5 (Cytomegalovirus)

Implicated:
Seropositivity predicts a better outcome in Multiple Sclerosis (Beneficial virus?)

AAR31274 Human herpesvirus 5 (Cytomegalovirus)

Implicated:
Seropositivity predicts a better outcome in Multiple Sclerosis (Beneficial virus?)

APV71654.1 Human herpesvirus 5 (Cytomegalovirus)

Detected in MS tissue 88
NP_042301 Southern cowpea mosaic virus PGRSPLP
YP_143172 Acanthamoeba polyphaga mimivirus IGRFFGG
ABB22292 Ovine Herpesvirus 2 NP_065571 Alcelaphineherpes virus 1 FFKNIV
JC polyomavirus PRTPPP Seropositivity in some Multiple sclerosis patients

BAA00490 Ornithogalum mosaicvirus TQDENP
YP_003280846 Helicobasidium mompa endornavirus 1 DSIGRF
CAA32420 Simian rotavirus ARTAHY

YP_002117760 Pseudomonas phage IVTPRT
YP_164431 Bacillus phage GRASDY

NP_570206 Swinepoxvirus TLSKIF
ACV04605 Nakiwogovirus GRSPLP
YP_214645 Prochlorococcus phage LDSIGR

ACZ8140 Moussavirus TAHYGS

BAA77241 Broadbean wilt virus 2 RASDYK
NP_944019 Aeromonasphage AMELK
ADA81168 Staphylococcus phage VLGPLV
NP_690686 Bacillus phage LVALII
ABO87130 Hepatitis delta virus KDQDG

ADE60693 Rice stripe virus SRVVLH
ACA24946 Swine parainfluenzavirus 3 RDHSY
AAL89267 Shrimp whitespot syndrome virus NLHRTF
NP_569759 Mycobacterium phage ELLKDA+G

BAB83467 Chlorellavirus SATVTGGQ
CAG70345 Bovine viral diarrhea virus 1 VPPYYI

YP_001111042 Burkholderia phage And GITYA
FNTWT
Accession	Description	Query	Notes
AF310938	Powassanvirus		
NP_620108	Langatvirus		
AAW33310	Human adenovirus 4		
ABO42303	Avian metapneumovirus		
ABU82778	Human metapneumovirus		
YP_002214563	Mycobacterium phage Butterscotch		
YP_002214480	Mycobacterium phage Troll4		
YP_655259	Mycobacterium phage PBI1		
YP_717772	Synechococcus phage		
YP_001129421	Human herpes virus 8 (Kaposi’s sarcoma virus)		
ABI35813	Human metapneumovirus		
YP_002241961	Mycobacterium phage Gumball		
YP_001936156	Mycobacterium phage Adjutor		
AAK69175	Bovine viral diarrhea virus 1		
YP_717777	Synechococcus phage syn9		
ABB89216	Human herpes virus 4 (Epstein Barr)		
AAS86764	Zantedeschia mild mosaic virus		
AAQ96572	Vibrio phage VP16C		
YP_001468520	Listeria phage A511		
YP_398993	Enterobacteria phage		
AAC5158	Human herpesvirus 8 type M		
AAR14310	Lactococcus phage ul363		

Associated with relapse in multiple sclerosis

Query = Hinton’s disease, spinocerebellar ataxia, Dentatorubral-pallidoluysian atrophy, Kennedy disease

Implicated 72
Accession	Organism	Species	Accession	Organism	Species
YP_001456769	Corynebacterium phage		NP_116331	T2 Tupaiid herpesvirus 1	
			ACO25273	Epizootic haematopoietic necrosis virus	
			AAL89066	Shrimp white spot syndrome virus	
			YP_001218813	Pseudomonas phage	
			embCAA52472	Human papillomavirus type 3	
			CAA75466	Human papillomavirus type 77	
			AAA79432	Human papillomavirus type 29	
			CAA75466	Human papillomavirus type 77	
			AAL50729	Human herpesvirus 6B	
			AAA750183	Human herpesvirus 6	
			ADB84736	Human herpesvirus 5	
			ABQ51392	Human rhinovirus sp.	
			AAB59808	Vaccinia virus	
			CAA53834	Variola virus	
			YP_003090182	Burkholderia phage KS9	
			YP_001504144	Enterococcus phage	
			YP_098809	Staphylococcus phage	
			YP_002003602	Escherichia phage rv5	
			NP_046572	Bacillus phage	
			YP_052931	Palyam virus	
			BAA34933	Chuzan virus	
			ABD63811	Lactococcus phage	
			YP_717768	Synechococcus phage	
			AAM4760	Dendrolimus	

Burkholderia infection has been related to Cystic fibrosis

21,88
Native	I	A	T	V	I	V	I	T	L	V
Bacillus Phage NP 046589	*	*	*	*	*					
Rabies virus ACN38519										
Salmonella Phage YP 001742070										
Sendai Virus BAC79139										

Table 13 The effects of the London APP717 mutation on homology to viral proteins. Protein accession numbers are provided and amino acid matches are indicated by the asterisks or by the red letter of the mutant amino acid. Phages infecting commensal bacteria and common viruses (e.g., Rhinoviruses and Norovirus) are highlighted in bold.
Virus/Phage/Strain	I	A	T	V	I	I	T	L	V
Aeromonas Phage YP_238915							*		
Enterobacteria phage AC14704							*	*	*
Human Coronavirus 229E CAA49377							*	*	*
Mossman Virus NP_958055							*		
Pseudomonas phage YP_418190							*		
SARS Coronavirus ACZ71766							*		
Staphylococcus phage	*	*	*	*					
YP_024500									
Aeromonas phage NP_932517,							*		
Acanthamoeba polyphaga mimivirus							*		
Flavobacterium Phage YP_112527							*		
Mycobacterium Phage YP_002242149							*		
Salmonella phages: Pseudocowpox ADC53802							*		
Uncultured Phage							*		
ADF97555 Paris Polyvirus X ABF74755									
Lactococcus Phage P_002875673							*		
Pseudomonas Phage YP_003422512							*		
Ralstonia Phage YP_001165297							*	*	
Newcastle Disease virus ACZ72939							*		
Human herpesvirus 5 (Cytomegalovirus)							*	*	
AAS48926									
SARS coronavirus AAY60778								*	*
Burkholderia phage YP_001111213								*	*
Enterobacteria phage YP_001837048								*	*
Human rotavirus A BAF95721								*	*
Human parainfluenza virus ACZ95446								*	*
Human adenovirus 1 AP_000521								*	*
Lactate dehydrogenase-elevating virus NP_042576								*	*

Mutant

Viruses/Phages	I	A	T	V	I	I	T	L	V
Rhinovirus 50 ACK37391 and >30 other Rhinovirus strains							*	*	*
Rhinovirus 38 ABF51189							*	*	*
Virus PK224 ADF80719							*	*	*
Aeromonas phage NP_943894							*	*	*
Enterobacteria phage SP ACY07251							*	*	*
Enterobacteria phage F1 NP_695026 (and others)							*	*	*
Listeria phage YP_002261439							*	*	*
Acanthamoeba polyphagamimivirus							*	*	*
YP_001427182							*	*	*
Human herpesvirus 4 YP_401711							*	*	*
Human herpesvirus 5 AC891947							*	*	*
Aeromonas phage NP_943894							*	*	*
Lymphocystis disease virus NP_078753							*	*	*
SARS coronavirus AAU93319							*	*	*
Vaccinia Virus NP_048189							*	*	*
Staphylococcus phage YP_238539							*	*	*
Vibrio Phage NP_899546							*	*	*
Emiliania huxleyivirus CAZ69528							*	*	*
Enterobacteria Phage ACT66763							*	*	*
Human parainfluenza virus 1 CAA26576							*	*	*
Salmonella phage YP_003090232							*	*	*
Virus	Protein VVGGV	Disease	Seroprevalence						
---------------------------	-------------------------------	----------------------------------	---						
Human Viruses									
Dengue virus 1	ACQ44424 Polyprotein	Febrile tropical disease	Endemic in some countries (eg 100% seroprevalence in Jamaica) 10						
Hepatitis C	ACY65348 envelope protein 2: ADG28960 NS4A ABC58527 NS4B: ADC54771 Polyprotein	Hepatitis	An estimated 270-300 million people worldwide are infected with hepatitis C 1.8% (USA) 129						
Human adenovirus 8	BAH18864 17.7kDa protein	Keratoconjunctivitis							
Human herpesvirus 1	P08665 Envelope glycoprotein B: ABI63489 UL27	Cold sores, mouth, throat, face, eye and CNS infection	68% (USA) 101						
Human herpesvirus 2	NP_04471 uracil-DNA glycosylase: BAG49514 Glycoprotein B AAA43846 Envelope glycoprotein B	Anogenital infections	16% in USA adults aged from 14-49: Higher in women (20.9%) and Afro-Americans (39%) 1						
Human herpesvirus 6	AAA43846 Envelope glycoprotein B	Causes Roseola, a near-universal childhood disease	Approaching 100% 14						
Human herpesvirus 6B	BAA78260 Envelope glycoprotein B	Acquired immune deficiency syndrome	Rare 0.02% (USA) 46						
Human immunodeficiency virus	ACQ42512 vif Protein								
Lactate dehydrogenase-elevating virus	Polyprotein 1ab	Not well characterised	?						
---	---	---	---						
Polyomavirus HPyv6 and 7	ADE45477 VP2	Human infection	No data on these strains but for other polyoma viruses can range from 9 to 69% \(^{56}\)						
Yellow fever virus	NP_776003 Polyprotein : NS2A	Yellow Fever	75% Nigeria \(^{87}\)						

Phages infecting human bacteria and diseases associated with the bacteria

Aeromonas phage	YP_238875 WAC	Gastroenteritis and wound infections
Enterobacteria phage	NP_037676 Tail length tape measure protein	Normal gut flora, many of which can cause gastrointestinal problems
Escherichia phage	Chain A, Ibv: YP_002003548 hypothetical protein ACU41726 GP233 YP_002014682 GP71 YP_655916 YP_655355 GP51 GP78 NP_818073 GP108 ACY76180 Hypothetical protein Tail fiber assembly protein	Many are harmless but can cause diarrhoea to dysentery
Mycobacterium Phage	ACU41726 GP233 YP_002014682 GP71 YP_655916 YP_655355 GP51 GP78 NP_818073 GP108 ACY76180 Hypothetical protein Tail fiber assembly protein	Pulmonary disease, Tuberculosis and leprosy
Prochlorococcus phage	ACY76180 Hypothetical protein	Marine cyanobacteria
Pseudomonas phage	TAILC_BPSK2	Nosocomial hospital infections
Serratia phage KSP20	TAILC_BPSK2	Nosocomial hospital infections
Streptomyces phage	NP_958289 ORF9	Antibiotic producing bacteria
Vibrio phage	AAQ96489 Hypothetical protein	Gastroenteritis, septicaemia

Other phages

Azospirillum phage Halomonas phage	YP_001686888 Hypothetical protein YP_001686782 hypothetical protein HAPgp46	Nitrogen fixing plant bacterium Salt water
Microcystis aeruginosa phage	YP_851126 hypothetical protein MalMM01_gp112	Harmful blue-green algae
Prochlorococcus phage	ACY76180 hypothetical protein	Common marine cyanobacteria
Species/Type	Accession(s)	Protein(s)	Host(s)
Synechococcus phage	YP_003097380	Tail fiber-like protein	Marine cyanobacteria
	SRSM4_083	Hypothetical protein	
Agricultural Viruses			
Bovine herpesvirus 5 YP_003662471	Envelope glycoprotein	Cattle	
	K		
Bovine herpesvirus type 2 P12641	Envelope glycoprotein	Cattle	
	B		
Bovine viral diarrhea virus CAD67689	Hypothetical protein	Cattle	
	lab		
Avian infectious bronchitis virus ACJ12832	Polyprotein 1ab	Poultry	
	lab		
Infectious bronchitis virus	Replicase polyprotein	Poultry	
	1ab: InfB NSP3 Adrp		
	Domain		
Equid herpesvirus 1, 4 and 9 YP_002333504	Tegument protein UL37	Horse	
Suid herpesvirus 1 YP_0053068	Tegument protein UL37	Pigs	
Swinepox virus NP_570175	Kelch-like protein	Pigs	
Plant, Food and Environmental Viruses			
Anguillid herpesvirus 1 YP_003358210	ORF71	Eel	
	ADB93794	Fish	
Viral hemorrhagic septicemia virus	Polymerase: Large	Fish	
	protein		
Cherry necrotic rusty mottle mosaic virus ABZ89196	Replication protein	Cherry	
Radish mosaic virus BAG84603 Polyprotein		Radish	
Watermelon mosaic virus ACF60797 Polyprotein		Watermelon	
Ostreid herpesvirus 1 YP_024568ORF23	Oyster	Oyster	
Arabis mosaic virus BAF33582	Strawberry and raspberries		
Viral hemorrhagic septicemia virus	Polypeptide NTB	Fish	
	binding domain		
Shrimp white spot syndrome virus	ADB93794 Polymerase;	Shrimp	
	Large protein		
Antheraea pernyi nucleopolyhedrovirus ABQ12330	ETM	Environment Insect Chinese Tuss Moth	
Murid herpesvirus 2 NP_064139	pR34	Environment Rodents	
Allpahuayo virus NP_064139		Environment Rodents	
Organism	Protein/Component	Accession Number	Setting
--------------------------------	-------------------	------------------	--
Helicobasidium mompa endornavirus 1	Nucleocapsid protein	YP_003280846	Environment Root rot fungus
Paramecium bursaria Chlorella virus	YP_001498106 and others Hypothetical proteins		Environmental Algae
Archaecal BJ1 virus	YP_919057 hypothetical protein	BJ1_gp30	Environmental
West Caucasian bat virus	YP_919057		Environmental Bat
Cyprinid herpesvirus 3	BAF48875		Family pet Goldfish
Caviid herpesvirus 2	AAD11961		Zoo Marsupial
Macropodid herpesvirus 1	Glycoprotein B		Zoo Marsupial
Macropodid herpesvirus 2	Glycoprotein B		Zoo Monkey
Macacine herpesvirus 1	Glycoprotein B		Zoo Monkey
Cercopithecine herpesvirus 1, 2 and 16	Envelope glycoprotein B		Zoo Monkey
Papiine herpesvirus 2	AAA85650		Zoo Monkey
Chimpanzee alpha-1 herpesvirus	BAE47051		Zoo Monkey
Figure 1:
The immune network localisation of the human proteins showing homology with HIV-1 proteins

Figure 2, 3
The B-cell epitope prediction profiles for the peptide matches between HIV-1 and human proteins. The prediction method calculates the antigenicity amino acid by amino acid allowing definition of the immunogenic spectrum along the length of the peptide \(^{64}\). Each bar within each set of histograms thus represents a single amino acid, derived from the alignments in tables 1 to 10. The default threshold predicting B-cell epitopes is 0.35.
Fig 4: The localisation of the APP\textsubscript{717} London mutation and of the beta- and gamma-secretase (\(\beta\) and \(\gamma\)) cleavage sites (\(\uparrow\)). The beta-amyloid sequence is highlighted in grey. The peptide used for homology searches is underlined.

\[\ldots \text{LTNIKTEIEEVKM} \uparrow\beta \text{DAEFRHDGVEVHQQKLVPFAEDVGSNKGAIIGLMVGVVY} \uparrow\gamma \text{IATIV}^{717} \text{ITLM} \uparrow\gamma \text{LKK} \ldots\]

Mutation: V→I

A	C	D	E	F	G	H	I	K	L
Alanine	Cysteine	Aspartate	Glutamate	Phenylalanine	Glycine	Histidine	Isoleucine	Lysine	Leucine
M	N	P	Q	R	S	T	V	W	Y
Methionine	Asparagine	Proline	Glutamine	Arginine	Serine	Threonine	Valine	Tryptophan	Tyrosine
Reference List

1. "Seroprevalence of herpes simplex virus type 2 among persons aged 14-49 years--United States, 2005-2008," MMWR Morb. Mortal. Wkly. Rep. 59(15), 456 (2010).

2. C. Abrahamsberg, et al., "Targeted ablation of plectin isoform 1 uncovers role of cytolinker proteins in leukocyte recruitment," Proc. Natl. Acad. Sci. U. S. A. 102(51), 18449 (2005).

3. J. B. Alimonti, T. B. Ball, and K. R. Fowke, "Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS," J. Gen. Virol. 84(Pt 7), 1649 (2003).

4. S. F. Altschul, et al., "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," Nucleic Acids Res. 25(17), 3389 (1997).

5. O. Andersen, et al., "Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study," J. Neurol. 240(7), 417 (1993).

6. S. Bansil, et al., "Multiple sclerosis in India: a case-control study of environmental exposures," Acta Neurol. Scand. 95(2), 90 (1997).

7. M. O. Borghi, et al., "Autoantibodies against beta 2-microglobulin-free HLA antigens in AIDS patients," J. Acquir. Immune. Defic. Syndr. 6(10), 1114 (1993).

8. K. L. Bost, et al., "Individuals infected with HIV possess antibodies against IL-2," Immunology. 65(4), 611 (1988).

9. V. V. Brinar and M. Habek, "Rare infections mimicking MS," Clin. Neurol. Neurosurg. (2010).

10. M. G. Brown, et al., "Seroprevalence of dengue virus antibodies in healthy Jamaicans," Hum. Antibodies. 18(4), 123 (2009).

11. H. E. Broxmeyer, et al., "Regulation of myeloid progenitor cell proliferation/survival by IL-31 receptor and IL-31," Exp. Hematol. 35(4 Suppl 1), 78 (2007).

12. Z. Cai, et al., "hnulp1, a basic helix-loop-helix protein with a novel transcriptional repressive domain, inhibits transcriptional activity of serum response factor," Biochem. Biophys. Res. Commun. 343(3), 973 (2006).

13. G. Caldarola, et al., "Herpes simplex virus infection in pemphigus vulgaris: clinical and immunological considerations," Eur. J. Dermatol. 18(4), 440 (2008).
14 G. Campadelli-Fiume, P. Mirandola, and L. Menotti, "Human herpesvirus 6: An emerging pathogen," Emerg. Infect. Dis. 5(3), 353 (1999).

15 J. Chen, et al., "Maintenance of naive CD8 T cells in nonagenarians by leptin, IGFBP3 and T3," Mech. Ageing Dev. 131(1), 29 (2010).

16 L. Chen, et al., "Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation," Blood. 108(10), 3428 (2006).

17 Y. I. Choi, et al., "PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla," Immunity. 29(6), 888 (2008).

18 V. W. Chow, et al., "An Overview of APP Processing Enzymes and Products," Neuromolecular. Med. (2009).

19 S. D. Cook and P. C. Dowling, "A possible association between house pets and multiple sclerosis," Lancet. 1(8019), 980 (1977).

20 F. C. Costa, et al., "Gene expression profiles of erythroid precursors characterise several mechanisms of the action of hydroxycarbamide in sickle cell anaemia," Br. J. Haematol. 136(2), 333 (2007).

21 H. D. Coutinho, "Burkholderia cepacia complex: virulence characteristics, importance and relationship with cystic fibrosis," Indian J. Med. Sci. 61(7), 422 (2007).

22 D. H. Cribbs, et al., "Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer's A beta peptide," Biochemistry 39(20), 5988 (2000).

23 F D'Herelle, the bacteriophage: its role in immunity (Williams and Wilkins, Baltimore, 1922).

24 M. M. Davis, "A new trigger for T cells," Cell. 110(3), 285 (2002).

25 M. de Haas, "IgG-Fc receptors and the clinical relevance of their polymorphisms," Wien. Klin. Wochenschr. 113(20-21), 825 (2001).

26 S. Dupont, et al., "FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination," Cell. 136(1), 123 (2009).

27 M. Eckey, et al., "Mixed lineage kinase 2 enhances trans-repression of Alien and nuclear receptors," Mol. Cell Endocrinol. 213(1), 71 (2003).

28 P. Eikelenboom and F. C. Stam, "Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study," Acta Neuropathol. 57(2-3), 239 (1982).
29 P. Eikelenboom, et al., "Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer's disease," Neurodegener. Dis. 7(1-3), 38 (2010).

30 K. A. El Shaikh, M. S. Gabry, and G. A. Othman, "Recovery of age-dependent immunological deterioration in old mice by thyroxine treatment," J. Anim Physiol Anim Nutr. (Berl). 90(5-6), 244 (2006).

31 M. Elishmereni, I. Bachelet, and F. Levi-Schaffer, "DNAM-1: an amplifier of immune responses as a therapeutic target in various disorders," Curr. Opin. Investig. Drugs. 9(5), 491 (2008).

32 M. M. Esiri, S. C. Biddolph, and C. S. Morris, "Prevalence of Alzheimer plaques in AIDS," J. Neurol. Neurosurg. Psychiatry. 65(1), 29 (1998).

33 A. L. Fauchais, et al., "Immunological profile in primary Sjogren syndrome Clinical significance, prognosis and long-term evolution to other auto-immune disease," Autoimmun. Rev. (2010).

34 S. Flajollet, et al., "RREB-1 is a transcriptional repressor of HLA-G," J. Immunol. 183(11), 6948 (2009).

35 M. Flores, et al., "Dominant expression of the inhibitory Fc gamma RIIB prevents antigen presentation by murine plasmacytoid dendritic cells," J. Immunol. 183(11), 7129 (2009).

36 C. B. Fordyce, et al., "Microglia Kv1.3 channels contribute to their ability to kill neurons," J. Neurosci. 25(31), 7139 (2005).

37 K. Fukuta, et al., "Remodeling of sugar chain structures of human interferon-gamma," Glycobiology. 10(4), 421 (2000).

38 A. Gadgil and S. R. Duncan, "Role of T-lymphocytes and pro-inflammatory mediators in the pathogenesis of chronic obstructive pulmonary disease," Int. J. Chron. Obstruct. Pulmon. Dis. 3(4), 531 (2008).

39 A. Goate, et al., "Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease," Nature. 349(6311), 704 (1991).

40 J. Gommeaux, et al., "Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes," Eur. J. Immunol. 39(4), 956 (2009).

41 D. B. Graham, et al., "Ly9 (CD229)-deficient mice exhibit T cell defects yet do not share several phenotypic characteristics associated with SLAM- and SAP-deficient mice," J. Immunol. 176(1), 291 (2006).

42 F. Granucci and I. Zanoni, "The dendritic cell life cycle," Cell Cycle. 8(23), 3816 (2009).
43 W. Gu, et al., "Mammalian male and female germ cells express a germ cell-specific Y-Box protein, MSY2," Biol Reprod. 59(5), 1266 (1998).

44 H. Guan, et al., "Neuronal repellent Slit2 inhibits dendritic cell migration and the development of immune responses," J. Immunol. 171(12), 6519 (2003).

45 J. B. S. Haldane, "The Origin of Life," in 148 ed.1928), pp.3-10.

46 H. I. Hall, et al., "Estimation of HIV incidence in the United States," JAMA. 300(5), 520 (2008).

47 B. F. Haynes, N. I. Nicely, and S. M. Alam, "HIV-1 autoreactive antibodies: are they good or bad for HIV-1 prevention?," Nat. Struct. Mol. Biol. 17(5), 543 (2010).

48 W. R. Heath, et al., "Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens," Immunol. Rev. 199, 9 (2004).

49 T. A. Hodgson, et al., "Oral pemphigus vulgaris associated with HIV infection," J. Am. Acad. Dermatol. 49(2), 313 (2003).

50 S. Itagaki, et al., "Ultrastructural localization of complement membrane attack complex (MAC)-like immunoreactivity in brains of patients with Alzheimer's disease," Brain Res. 645(1-2), 78 (1994).

51 K. Itoh, et al., "Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly," J. Immunol. 168(2), 541 (2002).

52 R. F. Itzhaki, et al., "Association of HSV1 and apolipoprotein E-varepsilon4 in Alzheimer's disease," J. Neurovirol. 7(6), 570 (2001).

53 S. Jilek, et al., "Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study," Lancet Neurol. 9(3), 264 (2010).

54 J. E. Kaplan, et al., "Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America," MMWR Recomm. Rep. 58(RR-4), 1 (2009).

55 A. Kasza, et al., "Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression," BMC. Mol. Biol. 11, 14 (2010).

56 J. M. Kean, et al., "Seroepidemiology of human polyomaviruses," PLoS. Pathog. 5(3), e1000363 (2009).

57 A. K. Kiener and A. M. Vollmar, "The atrial natriuretic peptide regulates the production of inflammatory mediators in macrophages," Ann. Rheum. Dis. 60 Suppl 3, iii68-iii70
58 K. Kobayashi, et al., "Detection of Fc gamma binding protein antigen in human sera and its relation with autoimmune diseases," Immunol. Lett. 79(3), 229 (2001).

59 T. Kordossis, et al., "Prevalence of Sjogren's-like syndrome in a cohort of HIV-1-positive patients: descriptive pathology and immunopathology," Br. J. Rheumatol. 37(6), 691 (1998).

60 K. Kostelidou, N. Trakas, and S. J. Tzartos, "Extracellular domains of the beta, gamma and epsilon subunits of the human acetylcholine receptor as immunoadsorbents for myasthenic autoantibodies: a combination of immunoadsorbents results in increased efficiency," J. Neuroimmunol. 190(1-2), 44 (2007).

61 B. Krone, et al., "Common infectious agents in multiple sclerosis: a case-control study in children," Mult. Scler. 14(1), 136 (2008).

62 H. S. Kwon, et al., "Human immunodeficiency virus type 1 Tat protein inhibits the sirt1 deacetylase and induces T cell hyperactivation," Cell Host. Microbe. 3(3), 158 (2008).

63 S. F. Landrette, et al., "Plag1 and Plagl2 are oncogenes that induce acute myeloid leukemia in cooperation with Cbfb-MYH11," Blood. 105(7), 2900 (2005).

64 J. E. Larsen, O. Lund, and M. Nielsen, "Improved method for predicting linear B-cell epitopes," Immunome. Res. 2, 2 (2006).

65 L. Lin, et al., "topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage," Oncogene. 24(21), 3385 (2005).

66 W. R. Lin, et al., "Herpesviruses in brain and Alzheimer's disease," J. Pathol. 197(3), 395 (2002).

67 H. Liu, et al., "The FGL2-Fc gammaRIIB pathway: a novel mechanism leading to immunosuppression," Eur. J. Immunol. 38(11), 3114 (2008).

68 M. Liu, et al., "Identification and characterization of a JC virus pentanucleotide repeat element binding protein: cellular nucleic acid binding protein," Virus Res. 58(1-2), 73 (1998).

69 A. Lleo, et al., "Autophagy: highlighting a novel player in the autoimmunity scenario," J. Autoimmun. 29(2-3), 61 (2007).

70 Y. Luo, J. W. Pollard, and A. Casadevall, "Fc gamma receptor cross-linking stimulates cell proliferation of macrophages via the ERK pathway," J. Biol Chem. 285(6), 4232 (2010).
71. Z. Lygerou, et al., "hPop1: an autoantigenic protein subunit shared by the human RNase P and RNase MRP ribonucleoproteins," EMBO J. 15(21), 5936 (1996).

72. A. H. Maghzi, et al., "Viral pathophysiology of multiple sclerosis: A role for Epstein-Barr virus infection?," Pathophysiology. (2010).

73. J. J. Marchalonis, et al., "Autoantibodies against peptide-defined epitopes of T-cell receptors in retrovirally infected humans and mice," Adv. Exp. Med. Biol. 383, 211 (1995).

74. Y. Matsumoto, "Autoimmune rheumatic diseases associated with HIV infection and its pathogenesis," Nippon Rinsho. 55(6), 1486 (1997).

75. R. J. Mayer, et al., "The role of protein ubiquitination in neurodegenerative disease," Acta Biol Hung. 42(1-3), 21 (1991).

76. P. L. McGeer, et al., "Activation of the classical complement pathway in brain tissue of Alzheimer patients," Neurosci. Lett. 107(1-3), 341 (1989).

77. T. Mesplede, et al., "The POU transcription factor Oct-1 represses virus-induced interferon A gene expression," Mol. Cell Biol. 25(19), 8717 (2005).

78. A. Mohan, et al., "Prevalence of viral infection detected by PCR and RT-PCR in patients with acute exacerbation of COPD: a systematic review," Respirology. 15(3), 536 (2010).

79. S. S. Mohapatra, "Role of natriuretic peptide signaling in modulating asthma and inflammation," Can. J. Physiol Pharmacol. 85(7), 754 (2007).

80. Gesualdi N. Montesano, et al., "AROS-29 is involved in adaptive response to oxidative stress," Free Radic. Res. 40(5), 467 (2006).

81. M. A. Morelli, et al., "An aggregating elastin-like pentapeptide," J. Biomol. Struct. Dyn. 11(1), 181 (1993).

82. S. Moretti, et al., "Neuronal semaphorins regulate a primary immune response," Curr. Neurovasc. Res. 3(4), 295 (2006).

83. H. Murai and J. Kira, "Myasthenia gravis associated with HIV infection," Ryoikibetsu. Shokogun. Shirizu. (35), 192 (2001).

84. P. Nagarajan, et al., "Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis," Oncogene. 28(8), 1053 (2009).

85. A. Nagel, et al., "Clinical activity of pemphigus vulgaris relates to IgE autoantibodies against desmoglein 3," Clin. Immunol. 134(3), 320 (2010).
M. Noda, et al., "AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia," J. Neurosci. 20(1), 251 (2000).

O. D. Olaleye, et al., "A survey for haemagglutination-inhibiting antibody to West Nile virus in human and animal sera in Nigeria," Comp Immunol. Microbiol. Infect. Dis. 13(1), 35 (1990).

M. L. Opsahl and P. G. Kennedy, "Investigating the presence of human herpesvirus 7 and 8 in multiple sclerosis and normal control brain tissue," J. Neurol. Sci. 240(1-2), 37 (2006).

H. Ostrowska, et al., "Lysosomal high molecular weight multienzyme complex," Cell Mol. Biol Lett. 8(1), 19 (2003).

S. Paul, S. Planque, and Y. Nishiyama, "Immunological Origin and Functional Properties of Catalytic Autoantibodies to Amyloid beta Peptide," J. Clin. Immunol. (2010).

E. R. Peralta, B. C. Martin, and A. L. Edinger, "Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence," J. Biol Chem. 285(22), 16814 (2010).

G. G. Petranyi, "The complexity of immune and alloimmune response," Transpl. Immunol. 10(2-3), 91 (2002).

R. B. Pyles, "The association of herpes simplex virus and Alzheimer's disease: a potential synthesis of genetic and environmental factors," Herpes. 8(3), 64 (2001).

F. J. Quintana, et al., "Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis," Proc. Natl. Acad. Sci. U. S. A. 105(48), 18889 (2008).

M. Ramos-Casals, et al., "Systemic autoimmune diseases in patients with hepatitis C virus infection: characterization of 1020 cases (The HISPAMEC Registry)," J. Rheumatol. 36(7), 1442 (2009).

K. L. Randall, et al., "Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production," Nat. Immunol. 10(12), 1283 (2009).

M. L. Rogers, et al., "ProNGF mediates death of Natural Killer cells through activation of the p75NTR-sortilin complex," J. Neuroimmunol. (2010).

N. Sahu and A. August, "ITK inhibitors in inflammation and immune-mediated disorders," Curr. Top. Med. Chem. 9(8), 690 (2009).

A. Salminen, et al., "SIRT1 longevity factor suppresses NF-kappaB-driven immune responses: regulation of aging via NF-kappaB acetylation?" Bioessays. 30(10), 939 (2008).
100 T. Scheider, et al., "The HIV-1 Nef protein shares an antigenic determinant with a T-cell surface protein," AIDS. 7(5), 647 (1993).

101 J. A. Schillinger, et al., "National seroprevalence and trends in herpes simplex virus type 1 in the United States, 1976-1994," Sex Transm. Dis. 31(12), 753 (2004).

102 C. Schwab, et al., "Extracellular neurofibrillary tangles are immunopositive for the 40 carboxy-terminal sequence of beta-amyloid protein," J. Neuropathol. Exp. Neurol. 57(12), 1131 (1998).

103 M. Schweneker, A. S. Bachmann, and K. Moelling, "JM4 is a four-transmembrane protein binding to the CCR5 receptor," FEBS Lett. 579(7), 1751 (2005).

104 P. L. Schwimmbeck, et al., "Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus," J. Clin. Invest. 84(4), 1174 (1989).

105 S. Sethi, "Infection as a comorbidity of COPD," Eur. Respir. J. 35(6), 1209 (2010).

106 M. J. Shapiro, et al., "Phosphorylation at serine 318 is not required for inhibition of T cell activation by ALX," Biochem. Biophys. Res. Commun. 396(4), 994 (2010).

107 A. K. Sharma, et al., "Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi," Blood. 97(2), 426 (2001).

108 H. Shibayama, et al., "Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis," J. Exp. Med. 199(4), 581 (2004).

109 F. Silvestris, R. C. Williams, Jr., and F. Dammacco, "Autoreactivity in HIV-1 infection: the role of molecular mimicry," Clin. Immunol. Immunopathol. 75(3), 197 (1995).

110 K. G. Smith and M. R. Clatworthy, "FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications," Nat. Rev. Immunol. 10(5), 328 (2010).

111 J. H. Sohn, et al., "Identification of autoantibody against beta-amyloid peptide in the serum of elderly," Front Biosci. 14, 3879 (2009).

112 C. Susal, et al., "Molecular mimicry between HIV-1 and antigen receptor molecules: a clue to the pathogenesis of AIDS," Vox Sang. 65(1), 10 (1993).

113 R. Szalat, et al., "Anti-NuMA1 and anti-NuMA2 (anti-HsEg5) antibodies: Clinical and immunological features: A propos of 40 new cases and review of the literature," Autoimmun. Rev. (2010).

114 Y. C. Tan and V. T. Chow, "Novel human HALR (MLL3) gene encodes a protein homologous to ALR and to ALL-1 involved in leukemia, and maps to chromosome 7q36 associated
with leukemia and developmental defects," Cancer Detect. Prev. 25(5), 454 (2001).

115 D. Unutmaz, "NKT cells and HIV infection," Microbes. Infect. 5(11), 1041 (2003).

116 A. V. Vallat-Decouvelaere, et al., "Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia?," J. Neuropathol. Exp. Neurol. 62(5), 475 (2003).

117 W. M. van der Deure, R. P. Peeters, and T. J. Visser, "Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters," J. Mol. Endocrinol. 44(1), 1 (2010).

118 V. Vargas-Leal, et al., "Expression and function of glial cell line-derived neurotrophic factor family ligands and their receptors on human immune cells," J. Immunol. 175(4), 2301 (2005).

119 R. Veerhuis, et al., "Cytokines associated with amyloid plaques in Alzheimer's disease brain stimulate human glial and neuronal cell cultures to secrete early complement proteins, but not C1-inhibitor," Exp. Neurol. 160(1), 289 (1999).

120 R. Wasserman, Y. S. Li, and R. R. Hardy, "Differential expression of the blk and ret tyrosine kinases during B lineage development is dependent on Ig rearrangement," J. Immunol. 155(2), 644 (1995).

121 B. G. Winchester, "Lysosomal membrane proteins," Eur. J. Paediatr. Neurol. 5 Suppl A, 11 (2001).

122 D. T. Woodley, J. Remington, and M. Chen, "Autoimmunity to type VII collagen: epidermolysis bullosa acquisita," Clin. Rev. Allergy Immunol. 33(1-2), 78 (2007).

123 H. Xu, et al., "Characterization of the human Forssman synthetase gene. An evolving association between glycolipid synthesis and host-microbial interactions," J. Biol Chem. 274(41), 29390 (1999).

124 Z. Xu and B. Jin, "A novel interface consisting of homologous immunoglobulin superfamily members with multiple functions," Cell Mol. Immunol. 7(1), 11 (2010).

125 H. Yoshida, et al., "The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7," J. Biol Chem. 280(49), 41111 (2005).

126 E. Yu, et al., "Morphological and biochemical analysis of anti-nuclear matrix protein antibodies in human sera," J. Korean Med. Sci. 14(1), 27 (1999).

127 G. Zandman-Goddard and Y. Shoenfeld, "HIV and autoimmunity," Autoimmun. Rev. 1(6), 329 (2002).
R. Zhang, et al., "SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages," J. Biol Chem. 285(10), 7097 (2010).

T. Zhang, Y. Li, and W. Z. Ho, "Drug abuse, innate immunity and hepatitis C virus," Rev. Med. Virol. 16(5), 311 (2006).

R. Zivadinov, et al., "Positivity of cytomegalovirus antibodies predicts a better clinical and radiological outcome in multiple sclerosis patients," Neurol. Res. 28(3), 262 (2006).
B-Cell epitope prediction
