Kcnq2/Kv7.2 controls the threshold and bihemispheric symmetry of cortical spreading depolarization

Isamu Aiba and Jeffrey L. Noebels

Abstract

Spreading depolarization (SD) is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca$^{2+}$ flux, Na$^{+}$ current in interneurons, and glial Na$^{+}$-K$^{+}$ ATPase with SD susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining SD threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify SD threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is an SD modulatory gene with significant control over the seizure-SD transition threshold, bihemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1$^{cre+}$::Kcnq2floxflox) revealed spontaneous cortical seizures and SD. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical SDs in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the nonselective Kv7.2 inhibitor XE991 to Kv1.1-KO mice reproduced the Kcnq2 cKO-like SD phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents directly and actively modulate SD properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical SD threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic SD triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive SD regulatory gene, and point to SD as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit SD incidence.
Introduction

Spreading depolarization (SD) is a slow-moving wave of cellular depolarization in the brain gray matter associated with human neurological deficits in the setting of acute traumatic brain injury, ischemic/hemorrhage stroke, migraine with aura, and other conditions1–6. Recent experimental studies also implicate SD in sudden unexpected death in epilepsy (SUDEP7–9) and early epileptogenesis in glioblastoma10. While the exact inciting mechanisms remain to be elucidated and could vary across different clinical settings, SD begins as a localized severe depolarization of brain tissue that profoundly elevates the extracellular concentration of excitatory solutes such as potassium and glutamate which diffuse and further depolarize surrounding tissue, creating a self-regenerative, spreading wave of cellular depolarization and edema1. Cellular depolarization during SD is so severe that transmembrane ionic gradients fail, transiently silencing the activity of affected networks or causing permanent damage when brain tissue is metabolically compromised11,12. SD may remain clinically silent, or promote malignant neurovascular inflammation that may contribute to longer lasting neurological deficits13,14.

Seizures and SD are related excitatory events and can be generated alone or in temporally associated manners in isolated brain slices, intact and injured brains, and computational simulations15–20. Cortical seizures elevate extracellular K+ concentration to a ceiling level of 7-14 mM21–23, a concentration range close to the SD threshold1,24, sometimes leading to secondary generation of SD8,16,25. SD arising secondary to a seizure may contribute to postictal
complications such as migraine and hemiplegia (e.g. Todd’s paralysis), whereas SD preceding a seizure may underlie migraine-related seizures. However, not all seizures are associated with SD, and epilepsy patients do not always display peri-ictal SD-related deficits. While their relationship is complex, no molecular determinants for this seizure-SD coupling threshold have yet been identified.

The growing identification of genes causally assigned to clinically defined epilepsy syndromes is providing decisive mechanistic insight into the molecularly diverse pathogenesis of seizure disorders. Similarly, while fewer in number, genetic analysis of complicated migraine with aura syndromes such as familial hemiplegic migraine (FHM) revealed molecular mechanisms underlying SD threshold and susceptibility. The genes identified in FHM so far share a risk of developmental epileptic co-morbidity via distinct mechanisms, including calcium current facilitation of synaptic glutamate release (FHM1: CACNA1A), impaired extracellular K+ and glutamate clearance (FHM2: ATP1A2), and defective inhibitory neuron excitability (FHM 3: SCN1A). These genes assign an SD threshold-determining role to excitatory/inhibitory synaptic function and ionic homeostasis in the interstitial space. In epilepsy, mutations in genes regulating intrinsic membrane excitability, including SCN1A, are a common cause of epilepsy with a wide range of phenotypic severity. Given the distant relationship between seizure and SD, genes among this group may also contribute to SD threshold, however it is not known whether they generate distinctive SD phenotypes.

To further explore the influence of intrinsic membrane excitability defects, we evaluated the ability of Kcnq2/Kv7.2 channel activity to affect cortical SD using a viable conditional Kcnq2 KO mouse model (Kcnq2-cKO: Emx1-cre::Kcnq2flox/flox) and synthetic Kcnq2 channel modulators. Kcnq2 encodes the potassium channel subunit Kv7.2 that forms heterotetramers in axon membranes and generates non-inactivating hyperpolarizing M-type K+ current to set the resting membrane potential. Mutations in human KCNQ2 are associated with a phenotypic spectrum of neonatal-onset epilepsies extending from benign neonatal to severe developmental encephalopathy. We combined in vivo/vitro electrophysiology and Kcnq2 pharmacology to examine SD characteristics of Kcnq2-cKO mice and compare them with a second axonal potassium channel seizure model, Kv1.1 deficient mice. Our recordings from
Kv1.1-KO and Kcnq2-cKO mice identified significant differences in their cortical SD phenotypes as well as a direct interdependence of these two axonal potassium channels on SD threshold.

Materials and methods

Animal

All animal experimental protocols were approved by Baylor College of Medicine IACUC. Experiments were conducted on WT C57BL6J, Emx1-cre::Kcnq2flox/flox conditional KO (Kcnq2-cKO) mouse lines. Kcnq2-flox mice were a gift of Dr A. Tzingounis. Emx1-IRES-cre (JAX Stock No:005628) mice were purchased from the Jackson Laboratory. Kv1.1 KO mice (Tac:N:NIHS-BC) were obtained from the BCM breeding colony (also available from Jackson laboratory (JAX Stock No:003532). All animals were housed and bred in the Center of Comparative Medicine at Baylor College of Medicine.

Study design and Statistics

In vivo DC monitoring sessions were carried out to capture at least 20 spontaneous SD events. In total, 16 Kcnq2 and 8 Kv1.1-KO and -WT mouse pairs were implanted, while four of Kcnq2-cKO mice were excluded because of poor postsurgical recovery or damage at the implant site. The identity of the mouse genotype was not blinded since it could be behaviorally identified during careful monitoring, however the EEG data were reviewed by two experienced investigators.

In vitro acute brain slice experiments were carried out in a blinded manner by masking the identity of the tissue genotype, and due to this experimental design, N is not always equal between groups. In order to reduce the number of animals and increase statistical power, most in vitro drug experiments involved repeated measurements. Because of the robust pharmacological and genetic effects, we set a minimum N=6 for independent comparisons and N=4 for repeated measurements in the same slice. In vivo anesthetized mouse experiments were repeatedly performed in each mouse to increase the statistical power. In these studies, latency differences between the onset of the 1st (baseline) and 2nd (drug) evoked SD were compared.

All statistical comparisons were made using an unpaired t-test for 2-group comparisons and repeated measures ANOVA with post hoc Tukey's multiple comparisons test unless mentioned.
Statistics were computed using Graphpad Prism (GraphPad) and R software. All data are presented as mean ± standard deviation. Imaging data were analyzed using Image-J software.

Acute brain slice preparation

Mice were deeply anesthetized with i.p. avertin (bromoethanol) followed by intracardiac perfusion with 10 ml of dissection solution (110 mM NMDG, 8 mM MgSO₄, 25 mM NaHCO₃, 1.25 mM Na₂HPO₄, 3mM KCl, 10 mM glucose, 0.4 mM ascorbate, saturated with 95% O₂/5% CO₂ gas), and then decapitated. The brain was extracted into ice-cold dissection solution, sagitally hemisected, and 300 µm coronal slices were cut on a vibratome (Leica 1300s) and the ventral portion was trimmed. Slices were incubated in dissection solution for 5 minutes at 33°C, then transferred to a submerged slice chamber and maintained in ACSF (in mM: 130 mM NaCl, 3 mM KCl, 25 mM NaHCO₃, 1.25 mM Na₂HPO₄, 10 mM glucose, 0.4 mM ascorbate, saturated with 95% O₂/5% CO₂ gas) at room temperature. All *in vitro* recordings were made at 32-33°C.

Recurrent SD generation was difficult to reproducibly trigger in a WT cortical slice bathed in normal ACSF. Therefore, in order to facilitate SD generation with recoverability, we elevated the KCl concentration of ACSF from 3 mM to 5 mM throughout the experiments.

Models of SD generation and detection *in vitro* acute brain slices

In separate experiments, cortical SD was induced by potassium chloride (KCl) bath application, KCl microinjection, Mg²⁺ free bath solution, and exposure to oxygen-glucose deprivation (OGD) solution. In all 3 models, SD’s were generated and detected using a glass electrode (1-2 MΩ, filled with ACSF) placed in cortical layer 2-3 (50 µm depth) while simultaneously monitoring the intrinsic optical signal changes (IOS, i.e. light transparency increase due to tissue swelling) using a CCD camera (DMK27BU, Imaging Source, acquisition rate: 0.2-0.5Hz). SD onset was determined by detecting the IOS signal coincident with the electrophysiological depolarization within the imaging field. SD propagation rate was calculated by tracking the propagating wavefront over time. Imaged data of SD propagation were converted to the ratio \((ΔI/I₀)\). Since a DC shift was not always detected if the SD faded before reaching the recording electrode, most SD latency and propagation parameters were based on IOS signals.
Bath KCl application was conducted by incrementally increasing the bath KCl concentration. Pairs of cortical slices were incubated in a chamber and monitored as they were serially exposed to ACSF containing elevated KCl (10 to 14 mM, 1 mM increment, 5 minutes each). The KCl concentration that triggered SD was considered as the threshold.

In some experiments, KCl microinjection was used to trigger SD to characterize its propagation pattern in physiological KCl concentration. A single injection of 1 M KCl was pressure ejected via a micropipette placed in Layer 2/3 using a picospritzer (pressure: 40 psi, pulse duration: 100-500 ms, estimated ejection volume: ~20 nl). In other slices, SD was triggered by exposure to nominally Mg$^{2+}$ free ACSF in which MgSO$_4$ was eliminated in the ACSF without compensation of the bath divalent cation concentration.

Finally, some slices were challenged metabolically using oxygen/glucose deprivation (OGD). OGD-SDs were induced by superfusing the cortical slices in the ACSF equilibrated with 95%N$_2$/5%CO$_2$ and reduced glucose concentration (0–5mM glucose concentration osmotically balanced to 10mM with sucrose). For pharmacological tests, slices were preincubated for 5-10 minutes in ACSF containing the test compound, and then further exposed to OGD solution containing the same test compound.

In vitro electrophysiology

Spontaneous excitatory and inhibitory postsynaptic currents (sEPSC and sIPSC) were analyzed using the standard patch-clamp technique as described previously. Briefly, the somatosensory layer 2-3 cortical pyramidal neurons were whole-cell recorded with micro-pipettes (2-4MΩ) containing Cs-gluconate based solution. Spontaneous postsynaptic currents in each neuron were recorded at -70 mV and 0 mV, respectively, and analyzed using pClamp software (Molecular devices).

In vivo cortical SD activity in anesthetized mice

For acute (non-survival) *in vivo* studies, mice were anesthetized by intraperitoneal injection of urethane (1.5 mg/kg). A craniotomy (1.0 mm diameter) was made over the somatosensory cortex and covered with a gelfoam pledget soaked with saline. A thinned skull region was created 2 mm anterior to the cranial window and ~0.1mm silver wire was placed for electrophysiological DC recording. In order to reduce the variability of tissue oxygenation, a
flow of O$_2$ was supplied to the nares. All mice showed a spO$_2$ >95% as measured by pulse oximetry on the hindlimb (MouseOX, Starr Life Sciences Corp, PA). In order to avoid the initial hyperglycemia spike evoked by anesthesia, SD experiments were conducted >30 minutes after anesthesia induction. In vivo cortical SD threshold was determined by sequential application of KCl (125, 250, 500, 1000 mM, 2 µl) directly applied to the pial surface within the cranial window as described previously8. SD was detected electrophysiologically by a strong negative DC shift and an IOS signal (>640 nm light scatter) recorded with a CCD camera (DMK27BU, Imaging Source).

Chronic cortical SD monitoring in freely behaving mice.

Spontaneous unfiltered cortical EEG activity was recorded with chronic electrodes implanted in freely moving Kcnq2-cKO (Emx1$^{+/-}$- kcnq2$^{flox/flox}$), and WT mice (Emx1$^WT/WT$- kcnq2$^{flox/flox}$). Juvenile mice (P18-20, 12-18 g body weight) were anesthetized with isofluorane (3% induction, 1.5-2.0% maintenance), scalp hair removed, and the skin cleansed with iodine/70% ethanol, locally anesthetized by lidocaine/bupivacaine mix, and a midline incision was made to expose the skull. Four bilaterally symmetric burr holes were made (+2 mm lateral, ±1.5mm anterior/posterior) over the frontal and parietal cerebral surface, and 2 burr holes for ground electrodes over the cerebellum (±1 mm lateral, +1 mm posterior from lambda). Silicon-coated silver wires (0.5 mm diameter) were inserted into the subdural space. A microconnector connected to the leads was glued onto the skull and cemented using Metabond (Parkell Inc). After recovery, mice were injected with meloxicam (5 mg/kg, s.c.) for 3 days for postoperative analgesia. Recordings were started as early as 5 days after surgery. Mice were transferred to a transparent box and the implanted microconnectors were tethered to the DC amplifier (ADI bioamp). DC activity was chronically monitored using ADI Powerlab software system. The recording room was maintained on a 12-hour dark-light cycle. Mice were able to freely explore and had access to water and food. A seizure was identified as a slow stereotypic sharp wave oscillation overriding a small DC shift (~0.2 mV) while SD was detected as a negative DC shift >5 mV in peak amplitude and the depolarization lasting for at least 30 seconds.

Drugs
Retigabine was obtained from Tocris and ML213 from Sigma. Both drugs were freshly dissolved in DMSO at 100mM on the day of the experiment. XE991 was purchased from Alomone labs and Sigma.

Data availability
Data supporting the findings of this study are available within the article and upon request.

Results

Spontaneous cortical SD in awake kcnq2-cKO mice.

We first characterized spontaneous SD generation in Kcnq2-deficient mice using chronic DC-band EEG recordings in awake animals implanted with cortical surface EEG electrodes. Because homozygous Kcnq2 deletion in the germline (Sox2-cre43) and pan-neuronal (Act16b-cre44) population resulted in neonatal death (at P0-1), likely due to respiratory failure45, we studied conditional Kcnq2 KO (Emx1-cre::Kcnq2$^{flox/flox}$, hereafter Kcnq2-cKO) mice in which Kcnq2 is selectively deleted in forebrain excitatory cells as well as peripheral ganglia46, allowing prolonged survival into adulthood. In order to capture the native early developmental epilepsy phenotype while minimizing post-surgical mortality, the bilateral cortical EEG electrodes were implanted on a postnatal day 19-22 mice (Figure 1A) and recordings were conducted >5 days after surgical recovery.

By optimizing the recording conditions, we obtained stable DC-band EEG recordings in freely behaving mice sufficient to detect sub-mV slow DC potential changes over multiple days of monitoring. During the chronic recording, we identified stereotyped large negative DC shifts, suggestive of SD, in association with generalized cortical seizure activity (Figure 1B&C). During a total of >1500 hours of chronic recordings from six Kcnq2-cKO mice, we detected 35 discrete SDs in the aftermath of seizure activity (0.6±0.4 SD per day, n=8 mice, total 67 days monitoring). The spontaneous seizure and SD events were tightly coupled; 97% (34/35) of seizures were followed by SD, and all SDs were preceded by seizure activity (Figure 1E). The SD generation pattern was regionally stereotyped, in that SDs were always first detected in the posterior cortex and were bilaterally synchronous (left vs right offset: 2.5 ± 3.6 s). The mean duration of seizure events was 23.4 ± 8.7 s, and the duration of the DC shift was 118 ± 51 s (anterior) and 100 ± 40 s (posterior). The mean SD amplitude was larger in posterior (13.3 ± 3.9 mV) than anterior (8.4 ±
3.1 mV) electrodes (p<0.001). SD propagation velocity (calculated based on the distance between posterior and anterior electrode pairs) was 8.4 ± 10.9 mm/minute. This high velocity is consistent with the fast SD propagation rate in Kcnq2-cKO cortical slices (discussed later in Figure 4E&F), however, spatial variability in SD generation/propagation pattern (e.g. generation between electrodes, see Discussion) may also contribute to the calculated velocity.

Following recovery from the large bilateral negative shift, unilateral ectopic slow DC shifts were occasionally detected at a posterior electrode (Figure 1C, red arrow), possibly representing a new isolated SD event or re-detection of a wandering SD. Thus, unlike the stereotypic SD generation (i.e. bilateral, posterior origin), the propagation pattern of each SD was somewhat variable. Two of the recorded mice died suddenly following a seizure-induced terminal SD with hind-limb extension, suggestive of SUDEP.

The spectral frequencies of fast cortical EEG activity during SD was analyzed in high-pass filtered (>0.1Hz) traces (Figure 1D). Electrographic seizures were characterized by synchronous high amplitude oscillatory activity (Figure 1D, b. Ictal), followed by a second period of brief EEG suppression during the negative slope of the DC shift. During the nadir of the negative DC shift, fast activity was enhanced, but after recovery from the negative DC shift, EEG activity was attenuated, while small spike and burst activities were detected (Figure 1D, c. Post-SD). The ectopic DC shift reactivated the EEG activity even during the post-SD EEG suppression (Figure 1D left, arrowhead). Video monitoring demonstrated that the initial seizure was convulsive, followed by post-ictal immobility during the SD phase. Overall, a single seizure led to a complex EEG and behavior abnormality sequence lasting 1-3 minutes in these animals.

No seizure or SD was ever detected in paired littermate WT control mice. In prolonged circadian recordings, we also found that 80% (28/35) of seizure-SD events in the mutants were detected during the dark phase, suggesting an influence of diurnal rhythm (Figure 1F).

Together, chronic DC recordings revealed a unique aspect of the epileptic phenotype of Kcnq2-cKO mice characterized by tight seizure-SD coupling, bilateral SD generation/propagation, and a strong diurnal expression.

Spontaneous seizure and SD in Kv1.1-KO mice.

In order to compare the role of epilepsy-related potassium currents in SD, we made similar chronic recordings from age-matched juvenile Kcna1 KO mice. Kcna1 encodes Kv1.1, a
tetrameric voltage-gated potassium channel mediating delayed rectifier current widely expressed in the brain. Similar to Kcnq2, Kv1.1 is enriched within the axonal initial segment\(^47,48\), and loss of these channels results in severe epilepsy in fly, mice, and humans\(^49,50,51(p1),52,53\). The seizure phenotype in Kv1.1-KO mice is well documented, however *in vivo* cortical SD susceptibility in this model has not been studied.

In chronic recordings from eight Kv1.1 KO mice (P30-40), we identified 166 seizures (3.8 ± 5.0 per day) and 23 SD episodes (0.3 ± 0.2 per day) over 43 days of recording. Unlike Kcnq2-cKO mice, the co-occurrence of seizure and SD was far less common; of 166 seizures detected, only 4.8% (9/166) were associated with SD, and 14 SD episodes were detected without any preceding seizure activity (*Figure 2A-F*). The mean seizure duration was 52.1 ± 29.2 s, which is significantly longer than those detected in Kcnq2-cKO mice (Kcnq2-cKO: n=32, Kv1.1 KO: n=166, p<0.0001, Mann Whitney U-test). In Kv1.1-KO mice, the mean durations of SD were 97.52 ± 44.6 s (anterior) and 82.17 ± 27.0 s (posterior), and the amplitudes were 8.9 ± 5.4 mV (anterior) and 7.2 ± 5.3 mV (posterior). The calculated mean SD propagation velocity was 3.2 ± 2.5 mm/min, which is much slower than in Kcnq2-cKO (p<0.001, Mann Whitney U-test). Remarkably, all 9 postictal SDs were generated following a complete termination of seizure activity with a variable mean latency (24 ± 24 s), in contrast to Kcnq2-cKO mice, in which SDs were generated before full termination of the ongoing seizure activity.

As shown in *Figure 2B&C*, 74% (17/23) of spontaneous SD events in Kv1.1-KO mice were unilaterally generated even when detected following a bilateral (i.e. generalized) seizure. 13% (3/23) of the SD events were near-simultaneously detected in both hemispheres with a mean latency of 18.6 ± 1.6 s, whereas this latency is still much longer than that seen in Kcnq2-cKO mice (2.5 ± 3.6s). Unlike Kcnq2-cKO mice, in Kv1.1-KO mice, 87% (20/23) of SDs were detected first in the anterior electrodes (*Figure 2B&C*). There was slight EEG suppression following the SD (*Figure 2D&E*), which was less pronounced compared with those reported previously in anesthetized animals. Also unlike the cKO model, no clear circadian dependency was detected (*Figure 2G*).

Together these results indicate that the susceptibility of cortical SD is strongly linked to intrinsic membrane excitability characteristics regulated by Kv7.2 and Kv1.1 voltage-gated potassium channels, while their regional and temporal thresholds are largely dependent on the specific channel subtype.
Kcnq/Kv7 channel inhibition in Kv1.1-KO mice partially phenocopies SD pattern of Kcnq2-cKO mice

The SD pattern in Kcnq2-cKO cortex is unusual in that these events are tightly linked to preceding seizures and are generated bilaterally. In order to test whether a loss of Kv7 current directly contributed to the SD generation pattern, we administered the nonselective Kv7/Kcnq inhibitor XE991 (5-10 mg/kg, i.p.) to 5 Kv1.1-KO mice and monitored spontaneous cortical EEG activity. In all Kv1.1-KO mice, bilateral seizure-SD complexes were triggered shortly after drug injection (9.9 ± 3.9 minutes). Three of these mice showed almost identical short-latency bilateral SD temporal onset, while the other 2 showed a delayed onset (33.0 and 13.3 s) between hemispheres. The calculated SD propagation rate of the SDs generated following XE991 administration was faster than the spontaneous SDs of untreated Kv1.1-KO (after XE991: 6.4 ± 2.3 mm/min, n=5, spontaneous SD: 3.2 ± 2.5 mm/min, n=20; p=0.0041 Mann Whitney U-test).

While cortical SD did not provoke noticeable motor behavior in either model, unlike the spontaneous seizure/SD complex in Kcnq2-cKO mice, the XE991-induced seizure-SD complex was lethal in Kv1.1-KO mice. We found that 3 Kv1.1-KO mice barely survived the SD occurrence and subsequently died with a latency of 5.2 ± 0.9 minutes (Figure 3A), and the other 2 Kv1.1-KO mice died suddenly during the repolarization phase of the DC shifts (Figure 3A, death was determined by the irreversible loss of spontaneous EEG activity). It is noteworthy that 3 of these Kv1.1-KO mice displayed seizures but never postictal SD during > 48-hour untreated pre-drug baseline recordings, suggesting that pharmacological Kv7 inhibition not only reproduced the bilateral SD generation pattern of Kcnq2 mutants but also facilitated postictal SD generation. No seizures or SD were detected in WT mice following XE991 administration within 24 hours of administration (n=4, Figure 3C), suggesting the drug had no proconvulsant or SD triggering effects.

Together, these DC recording studies in awake epileptic mice suggest a critical functional role of Kv7.2 current in regulating bilateral SD generation, and a distinctive SD phenotype between Kcnq2 and Kcnal1 mutants.

SD threshold is lowered in Kcnq2-cKO cortical slices in vitro
We next examined whether the SD threshold of cortical networks is intrinsically altered in cortical brain slices.

The first set of experiments examined SD generation using a seizure induction model. Cortical slices were incubated in nominally Mg$^{2+}$ free solution to increase spontaneous tissue excitability while monitoring local field potentials and the intrinsic optical signal (IOS). This condition produced spontaneous SD following a brief episode of fast activity in both WT and mutant cortex. The latency until SD onset was significantly faster in the cKO than WT (p<0.001). With this global increase in cellular excitability, we found that SDs were generated in multiple confluent foci, and we could not reliably calculate a propagation rate. These results indicate that the Kcnq2-cKO cortical slice is intrinsically more susceptible to SD generation under pro-epileptic conditions.

One mechanism underlying the higher SD susceptibility could be attributable to altered sensitivity to extracellular K$^+$. Therefore we next determined the K$^+$ contribution to SD threshold under physiological conditions by incrementally elevating the bath K$^+$ concentrations while monitoring SD incidence as described above. These experiments revealed a subtle but significant reduction of the K$^+$ threshold in the cKO cortical slices (Figure 4C&D; p<0.05).

We also examined whether SD propagation is altered in cKO tissue using KCl microinjection model where, unlike the bath application model, a focally generated SD propagates through non-depolarized cortical tissue. In these experiments, SD was triggered by KCl microinjection (1M KCl, 50 psi) into layer 2/3 and the propagation rate was visually analyzed by tracking the intrinsic optical signal (IOS) in an area >500 µm away from the KCl injection site (Figure 4E) where the arrival of IOS coincided with the DC potential shift (Figure 4F). In agreement with the lower KCl SD threshold, we found that SD propagation speed was also faster in mutant cortical slices compared with the littermate control (p<0.005).

We also measured SD susceptibility of Kv1.1-WT and -KO cortical tissues prepared from P30-40 mouse pairs. Unlike Kcnq2-cKO tissue, there were no differences in SD thresholds) as determined by K$^+$ bath application (Figure 4G) or the propagation rates as determined by KCl microinjection model (Figure 4H).

Together, these results indicate that genetic deficiency of Kv7.2, but not Kv1.1 containing channels significantly increases intrinsic susceptibility to SD. These different effects likely
contribute to the seizure-SD transition and unique SD propagation pattern manifested in vivo in genetically and pharmacologically Kv7.2 depleted cortex.

Cortical synaptic excitatory-inhibitory balance did not correlate with SD threshold

We examined the synaptic excitatory/inhibitory balance because a shift in this ratio has correlated with a lowered SD threshold in some genetic mouse models. Both the sEPSC and sIPSC amplitudes in the somatosensory layer 2/3 pyramidal neurons were increased in Kcnq2-cKO mice (Figure 5C), while, unexpectedly, only sEPSC amplitudes were enhanced in the Kv1.1-KO neurons (Figure 5D). There were no significant differences in the frequencies of sEPSC and sIPSC events of both epilepsy mouse mutants compared to WT (Figure 5E&F). Overall, the excitatory/inhibitory balance shifted toward excitation in the global Kv1.1-KO mice, while both synaptic activities were enhanced in the interneuron-sparing Kcnq2-cKO mice. While these models are not fully comparable, each of the two potassium channel deficiencies modulates the amplitude of the resting excitatory synaptic activities, and therefore this parameter does not explain the distinct SD threshold.

Effect of pharmacological inhibition and activation of Kv7 currents on SD in vitro

We next examined the acute modulatory activities of Kv7 channel blockade or activation on SD studied in vitro using XE991, a Kv7 inhibitor, and retigabine, a Kcnq2 opener. The effects on SD propagation rate were measured using the KCl microinjection model described above (Figure 4), in which SD was repetitively generated in WT cortical slices (by KCl puffs) while incubated with vehicle (0.1% DMSO) or XE991 (50 µM, a dose expected to fully inhibit Kv7.2 containing channels) followed by wash-out. XE991 did not modulate SD propagation rate (p=0.37, Figure 6A). In contrast, XE991 slightly reduced the KCl threshold when examined using the KCl bath application model (p<0.005, Figure 6B). Taken together, this Kv7 inhibitor has a marginal facilitatory effect on SD generation in vitro.

We then examined the effect of retigabine, a clinically used non-selective Kv7 current activator (Figure 6B&C). Retigabine was without effect at 10 µM, while at 30 µM, retigabine either completely blocked SD (2/6) or greatly reduced the speed of propagation (4/6 slices). This inhibitory effect was fully reversed by extensive drug washout (> 30 min). Retigabine also
elevated the KCl threshold of SD as measured in the incremental KCl bath application model (p=0.016, **Figure 6D**).

The retigabine effect is largely due to the modulation of the Kv7 channels since the inhibitory effect was absent when tested on Kcnq2-cKO brain slices (**Figure 6E**). ML216, a structural analog of retigabine and more selective Kv7.2 and 7.4 channel opener, also fully inhibited SD generation in 80% (4/5) of experiments and reduced SD propagation in the rest (**Figure 6F**).

In addition to Kv7 channels, retigabine has an off-target potentiating effect on GABA_A currents. We therefore examined the GABA_A dependency of retigabine using repetitive KCl evoked SD in acute cortical slices. Consistent with previous studies, exposure to the GABA_A antagonist, gabazine (10µM) significantly increased the SD propagation rate (p<0.05). Retigabine was still effective in this condition, consistently reducing SD velocity (p<0.01), and the effect was reversible (p<0.05). These results indicate that SD inhibition by retigabine is independent of GABA_A signaling (**Figure 6G**).

The SD inhibitory effect of retigabine was further tested in the mouse cortex *in vivo*. In urethane anesthetized WT adult mice, SD was elicited by superfusing incrementally increasing concentrations of KCl onto the pial surface through a cranial window created over the posterior cortex and detected with both a surface electrode as well as transcranial imaging of the intrinsic optical signal (light scatter, **Figure 7A**). In each animal, the SD threshold was determined twice, first at pre-drug baseline, and then 20 minutes after i.p injection of drug or DMSO vehicle control. In these experiments, 30 mg/kg retigabine (but not 10 mg/kg) significantly increased the KCl threshold of SD required to trigger an SD (**Figure 7B&C**).

After testing the SD threshold, the frequency of recurrent SD generation during a continuous 0.5M KCl application was determined in a subset of animals. Consistent with an elevated SD threshold, the number of recurrent SDs in response to a continuous surface application of 0.5M KCl was decreased following retigabine treatment (**Figure 7D**).

Together these results indicate that Kv7 inhibition and activation bidirectionally modulate SD in the WT brain. Given the pharmacological concentration range of retigabine on Kcnq current (0.1–100 µM), these data also suggest that SD inhibition required near-maximal concentrations for an anti-SD effect.

Retigabine inhibits SD in mild, but not severe oxygen-glucose deprivation (OGD) model.
Kv7 activators have been shown to reduce neuronal damage following experimental ischemia, where SD could potentially contribute to progression of the lesion61,62. We examined whether the Kv7 activator retigabine can also inhibit SD generated during the experimental in vitro ischemia model. In this model, exposure to OGD solution (0% O\textsubscript{2}, 0 or 2 mM glucose, see Methods for detail) results in spontaneous SD generation (\textbf{Figure 8A&B}), and the latency to the first SD after OGD exposure is used as a readout of SD threshold. In this model, retigabine (30 µM) was without effect when SD was triggered by exposures to a 0% O\textsubscript{2}/0 mM glucose solution (\textbf{Figure 8C}). However, retigabine significantly delayed SD onset when bathed with 0% O\textsubscript{2}/2 mM glucose OGD solution (\textbf{Figure 8C}). Thus the acute inhibitory effect of retigabine appears limited under conditions of mild hypoxic/metabolic deprivation, but not effective when glucose metabolism is severely compromised.

To determine whether retigabine might be effective in subcortical brain regions where seizure-induced SD has been linked to local hypoxia and cardiorespiratory arrest7, we examined its effect on SD evoked by OGD in slices of medulla containing the nucleus tractus solitaries (nTS). Some ion channel mutations implicated in SUDEP, including loss of Kv1.1, significantly lower SD threshold in this region8,63. The effect of retigabine was tested in brainstem slices prepared from juvenile Kv1.1 KO mice based on the latency to OGD-SD onset determined by the IOS changes (\textbf{Figure 8E-G}). Retigabine did not block or delay SD onset in this model under 5 mM glucose OGD conditions (\textbf{Figure 8G}). Thus the inhibitory effect of retigabine on SD is model-dependent and likely influenced by both the severity of metabolic stress and the functional contribution of Kcnq2 channels in different anatomical networks.

\textbf{Discussion}

Our study identifies a novel role of Kcnq2/Kv7.2 in the regulation of susceptibility to pathological long-lasting depolarization of cortical networks. Chronic DC recordings in freely behaving mice revealed a distinctive cortical SD phenotype when Kv7.2 subunits are genetically removed or pharmacologically inhibited compared to a related axonal potassium channel, Kcna1/Kv1.1. Unlike Kv1.1 deficient mice, loss of Kv7.2 in excitatory neurons facilitated tightly coupled seizure-SD transitions, bihemispheric SD generation, and a circadian expression pattern favoring the dark cycle. \textit{In vitro} analyses of acute cortical slices in response to multiple
SD triggers revealed that the lower SD threshold is intrinsic to cortical tissue excitability and that Kv7.2 activity bidirectionally regulates K⁺ SD thresholds. These results support Kcnq2/Kv7.2 availability as a critical and pharmacologically accessible molecular determinant of SD threshold and cortical distribution. Fluctuations of this current under pathological states⁶⁴–⁶⁶ may contribute to SD susceptibility, and serve as a therapeutic target in epilepsy and other neurological disorders.

Kcnq2/Kv7.2 regulates seizure/SD transition

Seizures in Kcnq2 mice reliably triggered SD expression 97% (34/35 events) of the time, and at very short latency, sometimes even commencing during the seizure. This is in sharp contrast to Kv1.1-KO mice, in which only 5% (9/175) of seizures were associated with SD, with a significantly longer postictal latency. The severity of the seizure itself is unlikely to explain these differences, as seizure duration was longer in Kv1.1-KO mice and should create an even larger extracellular potassium surge and tissue hypoxia. Instead, the conversion of uncoupled seizure/SD to a tightly coupled Kcnq2-cKO-like SD phenotype by acute pharmacological inhibition (Figure 3) indicates the presence of a functional Kcnq2/Kv7.2 activity-dependent threshold mechanism. While the threshold is multifactorial and state-dependent, our study suggests that reducing Kv7.2 current lowers the threshold for seizure to SD transition. In addition to the SD threshold, changes in tissue metabolism, astrocytic extracellular homeostasis, and synaptic network functions during chronic epileptic conditions may also modulate the SD phenotype⁶⁷,⁶⁸.

Although they were rare, the presence of seizure-independent isolated spontaneous SD events in awake Kv1.1 KO mice has not been previously reported (Figure 2C). The triggering mechanism of these isolated events is not known, but may reflect focal changes in cortical hyperexcitation⁸¹ or vascular insufficiency, since cerebral autoregulation may be impaired in some forms of epilepsy⁶⁹,⁷⁰.

Kcnq2/Kv7.2 regulation of bihemispheric SD generation

Another salient feature of reduced Kv7.2 availability is the bihemispheric symmetry of SD following a generalized seizure. The majority of SD-related neurological deficits during migraine auras such as visual scotomata and hemiplegia are unilateral⁷¹. Short latency,
bihemispheric SD generation in this model is likely a direct consequence of the preceding
generalized seizure activity, which raises extracellular K\(^+\) and lowers tissue oxygenation in both
hemispheres simultaneously. A similar bilateral SD generation has been reported following a
generalized seizure induced by systemic chemoconvulsant (PTZ) injection\(^{25}\). In this regard, the
predominant unilateral SD in Kv1.1-KO mice after a bilateral generalized seizure seems more
difficult to explain (Figure 2B), however the fact that acute Kv7 inhibition produced
bihemispheric SD generation in Kv1.1 KO mice indicates that Kv7 activity acts as a barrier for
bilateral generation. Based on its enrichment within axonal initial segments and nodes\(^{37,47}\), Kv7.2
activity may limit long-range (e.g. transcallosal) axonal propagation of hyperactivity, thereby
reducing the likelihood of contralateral SD generation in symmetric brain regions, as described
in Leao’s seminal study\(^{72}\). This mechanism might also contribute to the faster tissue propagation
velocity into the surrounding neocortex.

SD modulation by Kv7.2 activity

Kcnq2/Kv7.2 containing channels generate a non-inactivating outward current that counteracts
the generation of persistent sodium current (INaP\(^{73}\)) an initial inward current of SD\(^1\). Genetic
deletion or pharmacological inhibition of M-current likely facilitates INaP and facilitated
continuous membrane depolarization, while augmentation may attenuate INaP, which may
elevate the SD threshold. This relationship is in contrast to Kv1.1, which acts to limit action
potential bandwidth and frequency\(^{52,37,74}\). Loss of this fast current may be critical for promoting
synchronous action potential bursting leading to seizures, but might be less important as a brake
for slow sustained cellular depolarization leading to SD.

Both Kv1.1 and Kv7.2 regulate axonal excitability and neurotransmitter release. However
changes in the excitatory-inhibitory synaptic balance did not clearly correlate with SD threshold.
The increased sIPSC amplitude in the Kcnq2-cKO, but not in the global Kv1.1-KO, was
unexpected because selective deletion of the Kv7.2 channel in excitatory neurons should not
directly alter the excitability of inhibitory neurons. These lasting changes in synaptic excitatory-
inhibitory balance may be due to complex remodeling and synaptic/circuit homeostasis during
the formation of hyperexcitable recurrent circuitry\(^{67}\). Similar biological changes during chronic
epilepsy might also affect SD thresholds, and we have observed elevated cortical SD threshold in
aging Kv1.1 KO mice.
We showed that retigabine could delay SD onset following submaximal OGD stimulation. Interestingly, Kv7.2 activators are neuroprotective in experimental ischemia and brain trauma studies, and the anti-SD properties of the activator may contribute to these neuroprotective effects. It should be noted that only a relatively high, sedating, drug concentration effectively inhibited SD. Thus these activators may be of limited prophylactic utility, while they might find an adjunctive role in sedated patients requiring critical care. We also found asymmetric effects of the Kcnq2 activator and inhibitor. The Kv7 inhibitor had a relatively small facilitatory effect on SD generation, whereas the activator could fully suppress SD at a high concentration. This result may indicate relatively small basal Kv7 activity, with a capacity to generate larger currents upon potentiation by GPCR signaling and binding of agonists. It has also been suggested that Kv7 activators may indirectly antagonize NMDARs, which are important contributors to SD initiation/propagation. However evidence of functional NMDAR inhibition is limited and requires further study.

While our study identifies a major role of Kv7.2 expressed in excitatory neurons in the regulation of SD, their role in inhibitory neurons has not been assessed here and could also impact SD, but likely in a more complex manner. As evident from our result (Figure 6G), acute network disinhibition facilitates SD and thus global Kcnq2 deficiency may have a less pronounced phenotype compared to the cKO model. On the other hand, potentiation of GABA had little SD modulatory effect, and increased interneuronal excitability by Kcnq2/Kv7.2 deletion may instead facilitate SD by accelerating extracellular K+ accumulation. Further study is needed to fully elucidate the role of Kv7.2 currents in specific inhibitory interneuron populations, which may have additional significance in KCNQ2 encephalopathies.

Acknowledgments

We thank Dr A. Tzingounis for generously sharing Kcnq2-flox mice.

Funding

This work was supported by American Heart Association career development grant 19CDA34660056 (I.A.), Curtis Hankamer Basic Research Fund at Baylor College of Medicine (IA), NIH Center for SUDEP Research (NS090340 and NS29709, J.L.N), and Blue Bird Circle Foundation (J.L.N.)
Competing interests
The authors report no competing interests.

Figure legends

Figure 1. Spontaneous Seizure/SD complexes predominate in Emx1-Kcnq2cKO mice
Chronic cortical DC recording from juvenile Kcnq2-cKO mouse.
A. Recording configuration.
B&C. Spontaneous seizure/SD complex in awake Kcnq2-cKO mouse shown at slow (**B**) and fast (**C**) time scales. SD was detected as a sharp negative DC potential shift following a brief generalized seizure detected simultaneously in both hemispheres. A solitary ectopic DC shift was occasionally detected posteriorly (**C**, arrowhead).
D. Characterization of fast EEG activity during seizure and SD. The negative DC shifts of SD were detected immediately after or even before the end of seizure activity. Left: slow time scale, right: faster scale. High-frequency EEG activity was enhanced during the nadir of the DC shift (**b**), followed by suppression with occasional spikelets (**c**).
E. Almost all (97%, n= 34/35) spontaneous seizures were followed by SD. No SD’s were detected without a preceding seizure.
F. Circadian cycle of seizure/SD complexes in 7 Kcnq2-cKO mice. Histogram of seizure and SD incidence during 24 h period (bin size = 1 hour, dark gray = dark phase). Spontaneous seizure/SD complexes were detected primarily during the dark phase (p<0.0001, Fisher’s exact test).

Figure 2. Spontaneous bilateral seizure with unilateral SD and seizure independent SD in Kcna1 KO mice.
Chronic DC recording in juvenile Kv1.1/Kcna1 KO mouse.
A. Representative trace of SD following a seizure (Postictal SD, **B**) and isolated unilateral SD (**C**).
D&E EEG characteristics of SDs. No clear EEG suppression was detected in these recordings.
F. Unlike Kcnq2-cKO mouse, seizure (n=166) and SD (n=14) were often detected independently, and a seizure+SD complex accounted for 4.8% (9/189) of total events.
G. Histogram of seizure, SD, and seizure+SD detected from 8 Kv1.1 KO mice. There was no clear circadian dependency.

Figure 3. Kv7 inhibitor XE991 triggers bilateral seizure/SD complex and death in Kv1.1 KO mice.
After baseline recordings, Kv1.1 KO (n=5) and WT (n=4) mice were administered a single dose of XE991 (5-10 mg/kg i.p.), triggering bilateral seizure-SD complexes in all Kv1.1 KO mice. A. 60% (3/5) of KO mice acutely survived the seizure-SD complex but subsequently died. B. Remaining mice (2/5 mice) died immediately following the bilateral seizure-SD. No seizure or SD were detected in 4 Kv1.1 WT control mice and all survived.

Figure 4. SD threshold is lowered in Kcnq2-cKO, but not in Kv1.1 KO cortical slices in vitro.

A&B SD onset following exposure to nominally Mg\(^{2+}\) free solution is faster in cKO mouse cortical slices. Representative traces (A) and quantification (B) of wild type (WT: 10.6±2.0 minutes, n=13), and mutant (cKO: 7.7±1.2 minutes, n=12) slices. C&D. Kcnq2-cKO cortical slices had a lowered K\(^{+}\) SD threshold. Pairs of slices were incubated and bath K\(^{+}\) concentration was incrementally elevated until SD is detected. (C-D) SD was evoked at lower bath K\(^{+}\) concentration in Kcnq2-cKO (10.6±0.2 mM, n=14) than WT slices (11.2±0.2 mM, n=14), p<0.05. E&F. SD propagation rate was faster in Kcnq2-cKO slices. SD was evoked by focal KCl microinjection and detected by IOS (see Methods). The velocity of SD propagation was faster in the Kcnq2-cKO slices (WT: 2.4±0.2 mm/min, n=12), cKO: 3.6±0.2 mm/min, n=10, p<0.005).- G. SD threshold determined by incrementally increasing bath K\(^{+}\) concentrations. (WT: 10.6±0.3 mM, n=12, KO: 10.9±0.5 mM, n=14). H. SD propagation rate was determined by focal KCl microinjection. WT: 2.7±0.1 mm/min, n=17, KO: 2.8±0.1 mm/min, n=13). * p<0.05, *** p<0.005

Figure 5. sEPSC and sIPSC balances in the cortical layer 2/3 pyramidal neurons of Kcnq2-cKO and Kv1.1-KO mice.

A&B. Representative traces of sEPSC and sIPSC activity recorded from layer2/3 cortical pyramidal neurons. C&D sEPSC amplitudes were enhanced in both Kcnq2-cKO (WT: 7.6±1.0 pA, cKO: 10.9±1.0 pA) and Kv1.1-KO (WT: 8.4±0.8 pA, KO: 11.40±0.8 pA), while sIPSC amplitudes were increased only in Kcnq2-cKO (WT: 7.8±1.2 pA, cKO: 10.7±1.2 pA), not in Kv1.1-KO cortical tissue (WT: 11.0±1.0 pA, KO: 14.2±1.7 pA). E&F No differences were detected in the frequencies of sEPSC (Kcnq2-WT: 23.2±0.7 Hz, -cKO: 22.7±0.2 Hz; Kv1.1-WT: 22.7±0.3 Hz, -KO: 22.9±0.1 Hz) and sIPSC (Kcnq2-WT: 26.8±0.3 Hz, -cKO: 27.0±0.4 Hz,
Kv1.1-WT: 26.6±0.3 Hz, -KO: 26.1±0.3 Hz. n=18 for Kcnq2-WT and cKO, n=19 for Kv1.1 WT and KO neurons. Mann-Whitney U-test was used for the statistical comparisons of these data.

Figure 6. Acute Enhancement/Inhibition of SD in WT cortex by Kv7 inhibitor/activator in vitro.

A&B. Effect of XE991 on SD propagation rate and K+ threshold. A. SD propagation rate measured from SD repetitively generated in single slices while incubated in the drug was unchanged. Control: 2.4 ± 0.2 mm/min, XE991: 2.8 ± 0.5 mm/min, Wash: 2.6 ± 0.6 mm/min, n=6, p=0.37 n.s = not significant B. SD threshold was decreased by Kcnq inhibitor in K+ bath application model. Control: 11.0 ± 0.2 mM, XE991: 10.0 ± 0.2 mM, n=12 each, *p<0.005 C&D. Retigabine dose-dependently reduced SD propagation rate (C, n=6) and elevated the K+ threshold (vehicle: 11.5 ± 0.2 mM, retigabine: 12.8 ± 0.3 mM, n=12, p=0.016) (D, n=12). E. Retigabine (30 µM) did not alter SD propagation in Kcnq2-cKO slices. n=4 F. ML216 (20 µM), another Kv7 activator, also inhibited SD propagation in WT slices. (Control: 2.4 ± 0.4 mm/min, ML216: 0.3 ± 0.7 mm/min, wash: 2.5 ± 0.6 mm/min, n=5) G. Retigabine effect on SD was analyzed in the presence of the GABA\textsubscript{A}R antagonist gabazine. Gabazine increased the SD propagation rate, however retigabine still reduced the SD propagation rate. (Control: 2.4 ± 0.6 mm/min, gabazine: 4.1 ± 0.5 mm/min, gabazine + retigabine: 1.6 ± 0.8 mm/min, wash: 2.2 ± 0.5 mm/min, n=6, * p<0.05, ** p<0.01).

Figure 7. SD inhibition by retigabine in in vivo anesthetized WT mouse cortex.
SD was triggered by repetitively applying a KCl solution (100, 300, 500, 1000 mM for 2 minutes) to the cortical surface. A. SD wave was detected with IOS signal shown in a pseudocolored image, and B. electrophysiologically with Ag/AgCl electrode. C. Summary of SD threshold measurement. In each animal, SD threshold was measured before and after drug injection. Vehicle (0.1% DMSO) and 10 mg/kg retigabine had no effect, while 30 mg/kg retigabine significantly increased K+ evoked SD threshold. ****p<0.001 D. Number of recurrent SD events during continuous 0.5 M KCl application for 30 minutes. Retigabine 30 mg/kg significantly decreased the regenerative SD number. *p<0.05, ** p<0.01
Figure 8. A-D Kv7.2 activator retigabine inhibits mild, but not severe OGD-induced SD. A. Image of OGD-SD wave in cortical slice triggered by continuous exposure to OGD solution (0% O2, 0 mM glucose), and detected as IOS traveling across cortical tissue. B. Arrival of IOS signal (upper) near electrode coincided with negative DC potential shift (lower trace). C&D. Retigabine delayed OGD-SD when metabolic stress was mild (2mM glucose), but had no effect during severe compromise (0mM glucose). Retigabine did not inhibit SD propagation rate (D). n=8 each, * p<0.05 E-G. Retigabine had no effect on OGD-SD generated in slices of the medulla at the level of the nucleus tractus solitarius (nTS). E. SD was triggered by 0% O2/5 mM glucose solution with or without 30 µM retigabine. F, G. SD onset was determined by the IOS signal peak at the lateral margin of the nTS. (n=7 in all experiments).

References

1. Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. *Physiol Rev.* 2001;81(3):1065-1096. doi:10.1152/physrev.2001.81.3.1065

2. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. *Nat Med.* 2011;17(4):439-447. doi:10.1038/nm.2333

3. Dreier JP, Major S, Foreman B, et al. Terminal spreading depolarization and electrical silence in death of human cerebral cortex. *Ann Neurol.* 2018;83(2):295-310. doi:10.1002/ana.25147

4. Carlson AP, Shuttleworth CW, Major S, Lemale CL, Dreier JP, Hartings JA. Terminal spreading depolarizations causing electrocortical silencing prior to clinical brain death: case report. *J Neurosurg.* 2018;131(6):1773-1779. doi:10.3171/2018.7.JNS181478

5. Dreier JP, Major S, Lemale CL, et al. Correlates of Spreading Depolarization, Spreading Depression, and Negative Ultraslow Potential in Epidural Versus Subdural Electrocorticography. *Front Neurosci.* 2019;13:373. doi:10.3389/fnins.2019.00373

6. Major S, Huo S, Lemale CL, et al. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. *GeroScience.* 2020;42(1):57-80. doi:10.1007/s11357-019-00142-7

7. Aiba I, Noebels JL. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. *Sci Transl Med.* 2015;7(282):282ra46. doi:10.1126/scitranslmed.aaa4050
8. Aiba I, Wehrens XHT, Noebels JL. Leaky RyR2 channels unleash a brainstem spreading depolarization mechanism of sudden cardiac death. *Proc Natl Acad Sci U S A*. 2016;113(33):E4895-4903. doi:10.1073/pnas.1605216113

9. Loonen ICM, Jansen NA, Cain SM, et al. Brainstem spreading depolarization and cortical dynamics during fatal seizures in *Cacna1a* S218L mice. *Brain*. 2019;142(2):412-425. doi:10.1093/brain/awy325

10. Hatcher A, Yu K, Meyer J, Aiba I, Deneen B, Noebels JL. Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. *J Clin Invest*. Published online April 6, 2020. doi:10.1172/JCI133316

11. Dreier JP, Reiffurth C. The stroke-migraine depolarization continuum. *Neuron*. 2015;86(4):902-922. doi:10.1016/j.neuron.2015.04.004

12. Herreras O, Makarova J. Mechanisms of the negative potential associated with Leão’s spreading depolarization: A history of brain electrogenesis. *J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab*. 2020;40(10):1934-1952. doi:10.1177/0271678X20935998

13. Takizawa T, Qin T, Lopes de Morais A, et al. Non-invasively triggered spreading depolarizations induce a rapid pro-inflammatory response in cerebral cortex. *J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab*. Published online June 26, 2019:271678X19859381. doi:10.1177/0271678X19859381

14. Harriott AM, Chung DY, Uner A, et al. Optogenetic Spreading Depression Elicits Trigeminal Pain and Anxiety Behavior. *Ann Neurol*. Published online October 5, 2020. doi:10.1002/ana.25926

15. Gabriel S, Njunting M, Pomper JK, et al. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus from patients with and without hippocampal sclerosis. *J Neurosci Off J Soc Neurosci*. 2004;24(46):10416-10430. doi:10.1523/JNEUROSCI.2074-04.2004

16. Avoli M, Drapeau C, Louvel J, Pumaire R, Olivier A, Villemure JG. Epileptiform activity induced by low extracellular magnesium in the human cortex maintained in vitro. *Ann Neurol*. 1991;30(4):589-596. doi:10.1002/ana.410300412

17. Fabricius M, Fuhr S, Willumsen L, et al. Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. *Clin Neurophysiol Off J Int Fed Clin Neurophysiol*. 2008;119(9):1973-1984. doi:10.1016/j.clinph.2008.05.025

18. Dreier JP, Major S, Pannek H-W, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. *Brain J Neurol*. 2012;135(Pt 1):259-275. doi:10.1093/brain/awr303
19. Wei Y, Ullah G, Schiff SJ. Unification of neuronal spikes, seizures, and spreading depression. *J Neurosci Off J Soc Neurosci.* 2014;34(35):11733-11743. doi:10.1523/JNEUROSCI.0516-14.2014

20. Lapilover EG, Lippmann K, Salar S, et al. Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. *Neurobiol Dis.* 2012;48(3):495-506. doi:10.1016/j.nbd.2012.06.024

21. Somjen GG. Ion regulation in the brain: implications for pathophysiology. *Neurosci Rev J Bringing Neurobiol Neurol Psychiatry.* 2002;8(3):254-267. doi:10.1177/1073858402008003011

22. Raimondo JV, Burman RJ, Katz AA, Akerman CJ. Ion dynamics during seizures. *Front Cell Neurosci.* 2015;9. doi:10.3389/fncel.2015.00419

23. Hablitz JJ, Heinemann U. Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex. *Brain Res Dev Brain Res.* 1989;46(2):243-252. doi:10.1016/0165-3806(89)90288-5

24. Bogdanov VB, Middleton NA, Theriot JJ, et al. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations. *J Neurosci Off J Soc Neurosci.* 2016;36(17):4733-4743. doi:10.1523/JNEUROSCI.3694-15.2016

25. Koroleva VI, Vinogradova LV, Bures J. Reduced incidence of cortical spreading depression in the course of pentylentetrazol kindling in rats. *Brain Res.* 1993;608(1):107-114. doi:10.1016/0006-8993(93)90780-q

26. Xu S-Y, Li Z-X, Wu X-W, Li L, Li C-X. Frequency and Pathophysiology of Post-Seizure Todd’s Paralysis. *Med Sci Monit Int Med J Exp Clin Res.* 2020;26:e920751. doi:10.12659/MSM.920751

27. van den Maagdenberg AMJM, Pietrobon D, Pizzorusso T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. *Neuron.* 2004;41(5):701-710. doi:10.1016/s0896-6273(04)00085-6

28. van den Maagdenberg AMJM, Pizzorusso T, Kaja S, et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. *Ann Neurol.* 2010;67(1):85-98. doi:10.1002/ana.21815

29. Unekawa M, Ikeda K, Tomita Y, Kawakami K, Suzuki N. Enhanced susceptibility to cortical spreading depression in two types of Na+,K+-ATPase α2 subunit-deficient mice as a model of familial hemiplegic migraine 2. *Cephalalgia Int J Headache.* 2018;38(9):1515-1524. doi:10.1177/0333102417738249

30. Kros L, Lykke-Hartmann K, Khodakjah K. Increased susceptibility to cortical spreading depression and epileptiform activity in a mouse model for FHM2. *Sci Rep.* 2018;8(1):16959. doi:10.1038/s41598-018-35285-8
31. Parker PD, Suryavanshi P, Melone M, et al. Non-canonical glutamate signaling in a genetic model of migraine with aura. *Neuron*. 2021;109(4):611-628.e8. doi:10.1016/j.neuron.2020.11.018

32. Leo L, Gherardini L, Barone V, et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. *PLoS Genet*. 2011;7(6):e1002129. doi:10.1371/journal.pgen.1002129

33. Jansen NA, Dehghani A, Linssen MML, Breukel C, Tolner EA, van den Maagdenberg AMJM. First FHM3 mouse model shows spontaneous cortical spreading depolarizations. *Ann Clin Transl Neurol*. 2020;7(1):132-138. doi:10.1002/acn3.50971

34. Chever O, Zerimech S, Scalmani P, et al. *GABAergic Neurons and Na\(_{V}1.1\) Channel Hyperactivity: A Novel Neocortex-Specific Mechanism of Cortical Spreading Depression*. bioRxiv; 2020. doi:10.1101/2020.03.14.991158

35. Reiffurth C, Alam M, Zahedi-Khorasani M, Major S, Dreier JP. Na\(^{+}/K\)\(^{-}\)ATPase \(\alpha\) isoform deficiency results in distinct spreading depolarization phenotypes. *J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab*. 2020;40(3):622-638. doi:10.1177/0271678X19833757

36. Hu W, Bean BP. Differential Control of Axonal and Somatic Resting Potential by Voltage-Dependent Conductances in Cortical Layer 5 Pyramidal Neurons. *Neuron*. 2018;97(6):1315-1326.e3. doi:10.1016/j.neuron.2018.02.016

37. Devaux JJ, Kleopa KA, Cooper EC, Scherer SS. KCNQ2 is a nodal K\(^{+}\) channel. *J Neurosci Off J Soc Neurosci*. 2004;24(5):1236-1244. doi:10.1523/JNEUROSCI.4512-03.2004

38. Dirkx N, Miceli F, Taglialatela M, Weckhuysen S. The Role of Kv7.2 in Neurodevelopment: Insights and Gaps in Our Understanding. *Front Physiol*. 2020;11:570588. doi:10.3389/fphys.2020.570588

39. Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. *Nat Genet*. 1998;18(1):25-29. doi:10.1038/ng0198-25

40. Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. *Brain J Neurol*. 2003;126(Pt 12):2726-2737. doi:10.1093/brain/awg286

41. Nappi P, Miceli F, Soldovieri MV, Ambrosino P, Barrese V, Taglialatela M. Epileptic channelopathies caused by neuronal Kv7 (KCNQ) channel dysfunction. *Pflugers Arch*. 2020;472(7):881-898. doi:10.1007/s00424-020-02404-2

42. Soh H, Pant R, LoTurco JJ, Tzingounis AV. Conditional deletions of epilepsy-associated KCNQ2 and KCNQ3 channels from cerebral cortex cause differential effects on neuronal excitability. *J Neurosci Off J Soc Neurosci*. 2014;34(15):5311-5321. doi:10.1523/JNEUROSCI.3919-13.2014
43. Hayashi S, Tenzen T, McMahon AP. Maternal inheritance of Cre activity in a Sox2Cre deleter strain. *Genes N Y N 2000*. 2003;37(2):51-53. doi:10.1002/gene.10225

44. Zhan X, Cao M, Yoo AS, et al. Generation of BAF53b-Cre transgenic mice with pan-neuronal Cre activities. *Genes N Y N 2000*. 2015;53(7):440-448. doi:10.1002/dvg.22866

45. Watanabe H, Nagata E, Kosakai A, et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. *J Neurochem*. 2000;75(1):28-33. doi:10.1046/j.1471-4159.2000.0750028.x

46. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. *J Neurosci Off J Soc Neurosci*. 2002;22(15):6309-6314. doi:20026564

47. Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. *J Neurosci Off J Soc Neurosci*. 2008;28(53):14329-14340. doi:10.1523/JNEUROSCI.4833-08.2008

48. Vivekananda U, Novak P, Bello OD, et al. Kv1.1 channelopathy abolishes presynaptic spike width modulation by subthreshold somatic depolarization. *Proc Natl Acad Sci U S A*. 2017;114(9):2395-2400. doi:10.1073/pnas.1608763114

49. Holth JK, Bomben VC, Reed JG, et al. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy. *J Neurosci Off J Soc Neurosci*. 2013;33(4):1651-1659. doi:10.1523/JNEUROSCI.3191-12.2013

50. Yuan H, Yuan H, Wang Q, et al. Two novel KCNA1 variants identified in two unrelated Chinese families affected by episodic ataxia type 1 and neurodevelopmental disorders. *Mol Genet Genomic Med*. Published online July 23, 2020:e1434. doi:10.1002/mgg3.1434

51. Verdura E, Fons C, Schlüter A, et al. Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. *J Med Genet*. 2020;57(2):132-137. doi:10.1136/jmedgenet-2019-106373

52. D’Adamo MC, Liantonio A, Rolland J-F, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. *Int J Mol Sci*. 2020;21(8). doi:10.3390/ijms21082935

53. Allen NM, Weckhuysen S, Gorman K, King MD, Lerche H. Genetic potassium channel-associated epilepsies: Clinical review of the Kv family. *Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc*. 2020;24:105-116. doi:10.1016/j.ejpn.2019.12.002

54. Tottene A, Conti R, Fabbro A, et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. *Neuron*. 2009;61(5):762-773. doi:10.1016/j.neuron.2009.01.027
55. Yeung SYM, Greenwood IA. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. *Br J Pharmacol*. 2005;146(4):585-595. doi:10.1038/sj.bjp.0706342

56. Gunthorpe MJ, Large CH, Sankar R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. *Epilepsia*. 2012;53(3):412-424. doi:10.1111/j.1528-1167.2011.03365.x

57. Provence A, Angoli D, Petkov GV. K\textsubscript{V} 7 Channel Pharmacological Activation by the Novel Activator ML213: Role for Heteromeric K\textsubscript{V} 7.4/K\textsubscript{V} 7.5 Channels in Guinea Pig Detrusor Smooth Muscle Function. *J Pharmacol Exp Ther*. 2018;364(1):131-144. doi:10.1124/jpet.117.243162

58. Otto JF, Kimball MM, Wilcox KS. Effects of the anticonvulsant retigabine on cultured cortical neurons: changes in electroresponsive properties and synaptic transmission. *Mol Pharmacol*. 2002;61(4):921-927. doi:10.1124/mol.61.4.921

59. Treven M, Koenig X, Assadpour E, et al. The anticonvulsant retigabine is a subtype selective modulator of GABAA receptors. *Epilepsia*. 2015;56(4):647-657. doi:10.1111/epi.12950

60. Main MJ, Cryan JE, Dupere JR, Cox B, Clare JJ, Burbidge SA. Modulation of KCNQ2/3 potassium channels by the novel anticonvulsant retigabine. *Mol Pharmacol*. 2000;58(2):253-262. doi:10.1124/mol.58.2.253

61. Jaeger HM, Pehlke JR, Kaltwasser B, et al. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angiogenesis. *Oncotarget*. 2015;6(16):14033-14044. doi:10.18632/oncotarget.4226

62. Bierbower SM, Choveau FS, Lechleiter JD, Shapiro MS. Augmentation of M-type (KCNQ) potassium channels as a novel strategy to reduce stroke-induced brain injury. *J Neurosci Off J Soc Neurosci*. 2015;35(5):2101-2111. doi:10.1523/JNEUROSCI.3805-14.2015

63. Aiba I, Noebels JL. Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. *Sci Transl Med*. 2015;7(282):282ra46. doi:10.1126/scitranslmed.aaa4050

64. Tzour A, Leibovich H, Barkai O, et al. KV 7/M channels as targets for lipopolysaccharide-induced inflammatory neuronal hyperexcitability. *J Physiol*. 2017;595(3):713-738. doi:10.1113/JP272547

65. Chen S, Yaari Y. Spike Ca2+ influx upmodulates the spike afterdepolarization and bursting via intracellular inhibition of KV7/M channels. *J Physiol*. 2008;586(5):1351-1363. doi:10.1113/jphysiol.2007.148171

66. Barrese V, Tagliatalata M, Greenwood IA, Davidson C. Protective role of Kv7 channels in oxygen and glucose deprivation-induced damage in rat caudate brain slices. *J Cereb Blood*
Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(10):1593-1600. doi:10.1038/jc bf m.2015.83

67. Soh H, Park S, Ryan K, Springer K, Maheshwari A, Tzingounis AV. Deletion of KCNQ2/3 potassium channels from PV+ interneurons leads to homeostatic potentiation of excitatory transmission. eLife. 2018;7. doi:10.7554/eLife.38617

68. Losi G, Cammarota M, Carmignoto G. The Role of Astroglia in the Epileptic Brain. Front Pharmacol. 2012;3. doi:10.3389/fphar.2012.00132

69. Lv S, Guo Z-N, Jin H, et al. Compromised Dynamic Cerebral Autoregulation in Patients with Epilepsy. BioMed Res Int. 2018;2018:6958476. doi:10.1155/2018/6958476

70. Hascoet JM, Monin P, Vert P. Persistence of impaired autoregulation of cerebral blood flow in the postictal period in piglets. Epilepsia. 1988;29(6):743-747. doi:10.1111/j.1528-1157.1988.tb04229.x

71. Pescador Ruschel MA, De Jesus O. Migraine Headache. In: StatPearls. StatPearls Publishing; 2020. Accessed November 25, 2020. http://www.ncbi.nlm.nih.gov/books/NBK560787/

72. Leao AAP. SPREADING DEPRESSION OF ACTIVITY IN THE CEREBRAL CORTEX. J Neurophysiol. 1944;7(6):359-390. doi:10.1152/jn.1944.7.6.359

73. Golomb D, Yue C, Yaari Y. Contribution of persistent Na+ current and M-type K+ current to somatic bursting in CA1 pyramidal cells: combined experimental and modeling study. J Neurophysiol. 2006;96(4):1912-1926. doi:10.1152/jn.00205.2006

74. Glasscock E, Qian J, Kole MJ, Noebels JL. Transcompartmental reversal of single fibre hyperexcitability in juxtaparanodal Kv1.1-deficient vagus nerve axons by activation of nodal KCNQ channels. J Physiol. 2012;590(16):3913-3926. doi:10.1113/jphysiol.2012.235606

75. Sampath D, Lam PM, Laoprasert M, et al. Effects of a potassium channel opener on brain injury and neurologic outcomes in an animal model of neonatal hypoxic-ischemic injury. Pediatr Res. Published online January 2, 2020. doi:10.1038/s41390-019-0734-8

76. Vigil FA, Bozdemir E, Bugay V, et al. Prevention of brain damage after traumatic brain injury by pharmacological enhancement of KCNQ (Kv7, “M-type”) K+ currents in neurons. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2020;40(6):1256-1273. doi:10.1177/0271678X19857818

77. Brown DA, Adams PR. Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature. 1980;283(5748):673-676. doi:10.1038/283673a0

78. Abbott GW. KCNQs: Ligand- and Voltage-Gated Potassium Channels. Front Physiol. 2020;11:583. doi:10.3389/fphys.2020.00583
79. Klass A, Sánchez-Porras R, Santos E. Systematic review of the pharmacological agents that have been tested against spreading depolarizations. *J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab*. 2018;38(7):1149-1179. doi:10.1177/0271678X18771440

80. Aiba I, Shuttleworth CW. Characterization of inhibitory GABA-A receptor activation during spreading depolarization in brain slice. *PloS One*. 2014;9(10):e110849. doi:10.1371/journal.pone.0110849

81. Desroches M, Faugeras O, Krupa M, Mantegazza M. Modeling cortical spreading depression induced by the hyperactivity of interneurons. *J Comput Neurosci*. 2019;47(2-3):125-140. doi:10.1007/s10827-019-00730-8
Figure 1. Spontaneous Seizure/SD complexes predominate in Emx1-Kcnq2 cKO mice.

Chronic cortical DC recording from juvenile Emx1-Kcnq2 cKO mouse. A. Recording configuration. B&C. Spontaneous seizure/SD complex in awake Kcnq2 cKO mouse shown at slow (B) and fast (C) time scales. SD was detected as sharp negative DC potential shift following a brief generalized seizure detected simultaneously in both hemispheres. A solitary ectopic DC shift was occasionally detected posteriorly (C, arrowhead). D. Characterization of fast EEG activity during seizure and SD. The negative DC shifts of SD were detected immediately after or even before the end of seizure activity. Left: slow time scale, right: faster scale. High frequency EEG activity was enhanced during the nadir of the DC shift (b), followed by suppression with occasional spikelets (c). E. Almost all (97%, n = 34/35) spontaneous seizures were followed by SD. No SD’s were detected without a preceding seizure. F. Circadian cycle of seizure/SD complexes in 7 Kcnq2 cKO mice. Histogram of seizure and SD incidence during 24h period (bin size = 1 hour, dark gray = dark phase). Spontaneous seizure/SD complexes were detected primarily during the dark phase (p<0.0001, Fisher’s exact test).
Figure 2. Spontaneous bilateral seizure with unilateral SD and seizure independent SD in Kcna1/Kv1.1 KO mice.

Chronic DC recording in juvenile Kv1.1/Kcna1 KO mouse. A. Representative trace of SD following a seizure (Postictal SD, B) and isolated unilateral SD (C). D&E EEG characteristics of SDs. No clear EEG suppression was detected in these recordings. F. Unlike Emx1-Kcnq2 cKO mouse, seizure (n=166) and SD (n=14) were often detected independently, and a seizure+SD complex accounted for 4.8% (9/189) of total events.

F. Histogram of seizure, SD and seizure+SD detected from 8 Kv1.1 KO mice. There was no clear circadian dependency.
Figure 3. Kv7 inhibitor XE991 triggers bilateral seizure/SD complex and death in Kv1.1 KO mice. After baseline recordings, Kv1.1 KO (n=5) and WT (n=4) mice were administered a single dose of XE991 (5-10 mg/kg i.p.), triggering a bilateral seizure-SD complexes in all Kv1.1 KO mice. A. 60% (3/5) of KO mice acutely survived the seizure-SD complex but subsequently died. B. Remaining mice (2/5 mice) died immediate following the bilateral seizure-SD. No seizure or SD were detected in 4 Kv1.1 WT control mice and all survived.
Figure 4. SD threshold is lowered in Kcnq2-cKO, but not in Kv1.1 KO cortical slices in vitro. A&B SD onset following exposure to nominally Mg²⁺ free solution is faster in cKO mouse cortical slices. Representative traces (A) and quantification (B) of wild type (WT: 10.6±2.0 minutes, n=13), and mutant (cKO: 7.7±1.2 minutes, n=12) slices C&D. Kcnq2-cKO cortical slices had a lowered K+ SD threshold. Pairs of slices were incubated and bath K+ concentration was incrementally elevated until SD is detected. (C-D) SD was evoked at lower bath K+ concentration in Kcnq2-cKO (10.6±0.2 mM, n=14) than WT slices (11.2±0.2 mM, n=14), p<0.05. E&F. SD propagation rate was faster in Kcnq2-cKO slices. SD was evoked by focal KCl microinjection and detected by IOS (see Methods). The velocity of SD propagation was faster in the Kcnq2-cKO slices (WT: 2.4±0.2 mm/min, n=12), cKO: 3.6±0.2 mm/min, n=10, p<0.005). G. SD threshold determined by incrementally increasing bath K+ concentrations. (WT: 10.6±0.3 mM, n=12, KO: 10.9±0.5 mM, n=14). H. SD propagation rate was determined by focal KCl microinjection. WT: 2.7±0.1 mm/min, n=17, KO: 2.8±0.1 mm/min, n=13). * p<0.05, *** p<0.005
Figure 5. sEPSC and sIPSC balances in the cortical layer 2/3 pyramidal neurons of Kcnq2-cKO and Kv1.1-KO mice.

A&B. Representative traces of sEPSC and sIPSC activity recorded from layer 2/3 cortical pyramidal neurons.

C&D. sEPSC amplitudes were enhanced in both Kcnq2-cKO (WT: 7.6±1.0 pA, cKO: 10.9±1.0 pA) and Kv1.1-KO (WT: 8.4±0.8 pA, KO: 11.40±0.8 pA), while sIPSC amplitudes were increased only in Kcnq2-cKO (WT: 7.8±1.2 pA, cKO: 10.7±1.2 pA), not in Kv1.1-KO cortical tissue (WT: 11.0±1.0 pA, KO: 14.2±1.7 pA). E&F. No differences were detected in the frequencies of sEPSC (Kcnq2-WT: 23.2±0.7 Hz, -cKO: 22.7±0.2 Hz; Kv1.1-WT: 22.7±0.3 Hz, -KO: 22.9±0.1 Hz) and sIPSC (Kcnq2-WT: 26.8±0.3 Hz, -cKO: 27.0±0.4 Hz, Kv1.1-WT: 26.6±0.3 Hz, -KO: 26.1±0.3 Hz). n=18 for Kcnq2-WT and cKO, n=19 for Kv1.1 WT and KO neurons. Mann-Whitney U-test was used for the statistical comparisons of these data.
Figure 6. Acute Enhancement/Inhibition of SD in WT cortex by Kv7 inhibitor/activator in vitro.

A&B. Effect of XE991 on SD propagation rate and K+ threshold. A. SD propagation rate measured from SD repetitively generated in single slices while incubated in drug was unchanged. n.s = not significant, n=6. B. SD threshold was decreased by Kcnq inhibitor in K+ bath application model. n=12 each * p< 0.05. C&D. Retigabine dose dependently reduced SD propagation rate (C, n=6) and elevated the K+ threshold (D, n=12). E. Retigabine (30 µM) did not alter SD propagation in Kcnq2-cKO slices. n=4 F. ML216 (20 µM), another Kv7 activator, also inhibited SD propagation in WT slices. n=5 G. Retigabine effect on SD was analyzed in the presence of the GABAAR antagonist gabazine. Gabazine increased the SD propagation rate, however retigabine still reduced the SD propagation rate. * p<0.05, ** p<0.01

1082x1499mm (114 x 110 DPI)
Figure 7

SD inhibition by retigabine in in vivo anesthetized WT mouse cortex. SD was triggered by repetitively applying a KCl solution (100, 300, 500, 1000 mM for 2 minutes) to cortical surface. A. SD wave was detected with IOS signal shown in orange in pseudocolored image, and B. electrophysilogically with Ag/AgCl electrode. C. Summary of SD threshold measurement. In each animal, SD threshold was measured before and after drug injection. Vehicle (0.1% DMSO) and 10 mg/kg retigabine had no effect, while 30 mg/kg retigabine significantly increased K+ evoked SD threshold. ****p<0.001 D. Number of recurrent SD events during continuous 0.5 M KCl application for 30 minutes. Retigabine 30mg/kg significantly decreased regenerative SD number. * p<0.05, ** p<0.01
Figure 8 A-D Kv7.2 activator retigabine inhibits mild, but not severe OGD-induced SD. A. Image of OGD-SD wave in cortical slice triggered by continuous exposure to OGD solution (0% O2, 0 mM glucose), and detected as IOS traveling across cortical tissue. B. Arrival of IOS signal (upper) near electrode coincided with negative DC potential shift (lower trace). C&D. Retigabine delayed OGD-SD when metabolic stress was mild (2mM glucose), but had no effect during severe compromise (0mM glucose). Retigabine did not inhibit SD propagation rate (D). n=8 each, * p<0.05 E-G. Retigabine had no effect on OGD-SD generated in slices of the medulla at the level of the nucleus tractus solitarius (nTS). E. SD was triggered by 0%O2/5 mM glucose solution with or without 30 µM retigabine. F, G. SD onset was determined by the IOS signal peak at the lateral margin of the nTS. (n=7 in all experiments).