Adsorption and removal studies of heavy metal Pb(II) on their Water Solution on adsorbent surface of Vinyl Alcohol/Chitosan-Graphene Oxide

Layth S. Jasim*1 and Sajjad H. Irhayyim2

1,2Department of Chemistry, College of Education, University of Al-Qadisiyah, Diwaniya, Iraq
layth.alhayder@qu.edu.iq

Abstract
Chitosan / polyvinyl alcohol/graphene oxide (CH-g-PVA/GO) hydrogel was prepared by using iron chloride as a cross-linking agent. This hydrogel was used to remove lead ions as it was found to have a suitable surface area for adsorption time was 120 mint. The adsorption is proven using FESEM and FTIR analysis, TEM analysis, and knowledge of AFM surface roughness. Also, TGA shows that the hydrogel is stable at high temperatures. The study of the hydrogel's kinetic parameter was performed by using the lead ion applied to the adsorption of the pseudo-second-order because (R^2) approximates the correct model.

Keywords: Adsorption, Heavy elements (Pb(II)), Graphene oxide, polyvinyl alcohol, Hydrogels.

Introduction
Water pollution with heavy metals is a global environmental problem due to the significant increase in the levels of heavy elements in water [1]. Through the continuous development and the large increase in the population and factories, we note that human activities significantly impact water pollution with heavy metals, such as wastewater drainage and liquid waste disposal from industries, especially in densely populated areas and industrial areas [2-4]. Contamination of water with heavy metals leads to a change in water properties, such as taste, color, odor, turbidity, and pH [5], even in low concentrations, can be very injurious to humans [6]; Heavy metals are among the most serious environmental problems due to their biological toxicity, Difficulty with breakdown, long half-life and ability to enter the food chain [7]. Heavy metals such as lead are toxic metals that, when consumed above the permissible level can lead to chronic diseases such as high blood pressure, kidney and liver problems and skin irritation, is a mineral with a relatively low concentration, which is insoluble and highly toxic to humans and living organisms [8,9].
Removing toxic heavy metals from water is of great importance in providing necessary health and environmental protection. One method used is the adsorption of hydrogels [10]. One of the materials applied to remove pollutants and impurities from water and their modified derivatives was graphene oxide, which can absorb suspended and water-soluble materials due to its large surface area [11]. Graphene oxide used to remove lead from water, it found to be a good material for absorbing lead due to the functional groups (hydroxyl, carboxylate) that is, the high concentration of negatively charged groups on the surface, which results in the attraction of many pollutants, including heavy metal ions (positively charged), as it provides a suitable porous structure to absorb toxic metals efficiently [12, 13]. The present research aims to explore the feasibility of using cross-linked hydrogels (CH-g-PVA/GO) and study of the adsorption of heavy elements (Pb(II)) from their aqueous solution on the surface of the hydrogel superimposed chitosan, polyvinyl alcohol, graphene oxide.

Experimental

Chemicals and materials

Chitosan was supplied (Himedia, India). (Sigma-Aldrich, Germany) supplied Graphene Oxide (GO). (Merck, Germany) supplied polyvinyl alcohol (PVA). (Fluka, Germany) supplied iron chloride (FeCl3). (Merck, Germany) supplied iron sulfate (FeSO4). Lead nitrate (Pb(NO3)2) was supplied by (Alpha Chemika). (Merck, Germany) supplied acetic acid (CH3COOH). (Merck, Germany) supplied sodium hydroxide (NaOH).

Preparation of (CH-g-PVA/GO) hydrogel

To prepare hydrogel (CH-g-PVA/GO) we dissolve (4g) of chitosan in (100ml) of acetic acid at a concentration of (3%), then stir with the motor, At a temperature of 60 °C for (60) minutes, then prepare a solution of (PVA) by dissolving (4g) of it in (100ml) of distilled water and at a temperature of 80 °C with constant stirring for (6) hours, after that we prepare a solution of (GO) Dissolving 0.05g of it in 100ml of distilled water and then placing it in the ultrasound machine for one hour. Then we prepare the crosslinking agent (FeCl3), iron chloride (3.24g) and dissolve it with a small amount of water. We prepare iron sulfate (FeSO4) by taking a quantity of (1.5g) from it and dissolving it with a small amount of water. After that, we mix the solutions by adding the chitosan solution to the PVA solution with continuous stirring and at a temperature of 70 °C for a period of (30) minutes. We add the (GO) solution to the formed solution and also with continuous stirring for (15) minutes, followed by adding Crosslinking agents (FeCl3) and (FeSO4) slowly with continuous stirring for (60) minutes. Then we prepare (500ml) of (NaOH) (10% w / v). We distill the resulting solution in the form of drops using a syringe and then leave the product for a period of (5) hours. We wash the material formed with distilled water without ions until reaching pH = 7. We dry it at a
temperature of 60°C for a period of (24) hours, after which it is left at 40°C for a period of (24) hours, and then ground to obtain a constant weight of the compound hydrogel.

Adsorption Isotherm

Different concentrations of zinc Lead ion solution ranging from (10-100) mg/L were prepared by placing 0.05 g of aqueous gel (the adsorbent surface) in 10 ml of each concentration. These concentrations were placed in a shaker for 120 minutes. The filter absorption calculated after separating it from the centrifuge for 15 minutes at 6000 revolutions per minute using a (UV-Vis spectrum) device, and the concentrations calculated according to the following law:

\[Q_e = \frac{(C_o-C_t) \cdot V_{ml}}{m} \]

(1)

The percentage of adsorbent removal can be determined through the following equations:

\[Re \% = \frac{(C_o-C_t)}{C_o} \times 100 \]

(2)

Where Qe represents the amount of adsorbed material, Co and Ct are the initial and equilibrium concentrations for the adsorbent the solution in mg/L, respectively; m is the hydrogel mass in mg. V is the volume of the solution in L [14-15].

Results and Discussion

Characterization

The analysis was done by FT-IR for CH-g-PVA/GO (Figure (1)) below. At (3400-3525 cm\(^{-1}\)) shows hydroxyl group interfering with the amine group package (3415 cm\(^{-1}\)) Indicates the presence of graphene oxide in the compound, and the beam that appears at (1650 cm\(^{-1}\)) confirms the presence of the associated alkyl groups and that the beam is at (1400-1550 cm\(^{-1}\)) It refers to the carbonyl group With the presence of graphene oxide, this indicates the hydrogen interaction between the graphene oxide sheets and the polymeric chains., but at (1357 cm\(^{-1}\)) it refers to the carbonyl group in the carboxyl group and the bundle (1319 cm\(^{-1}\)) refers to the bond between nitrogen and carbon. Band (1061 cm\(^{-1}\)) refers to iron chloride. After adsorption, the adsorption beams of the active groups present on the compound's surface are shifted and decreased due to the hydrogen bonding with these groups [14, 15].
Fig. 1: FT-IR analysis for CH-g-PVA/GO Before and after Lead ion (Pb(II)) Adsorption

The analysis by technique FE-SEM that Hydrogel Poly (CH-g-PVA/GO)) micrographs of hydrogels demonstrate that they have porous structures Figure (2). That is, they have good sites of absorption and structure of composite membranes with shell-like shape. The pores are interconnected. This is due to the strong bonding of the polymeric chains by the cross-linking agent and enhances the hydrogel's swelling rate. After adsorption, the surface images appear. The appearance becomes rough due to the grafting with Lead ion (Pb(II)) due to the filling of the pores and the interconnection of the adsorbed Lead ion (Pb(II)) molecules with the active centers of the adsorption surface, and the Lead ion (Pb(II)) particles are visible on the surface of the compound; this indicates that the adsorption process has occurred [16, 17].

Figure (2): FE SEM

TEM analysis of hydrogel poly (CH-g-PVA/GO) has small granules and uniform distribution. It has excellent dispersion, uniformly arranged, and lumpy, which belongs to the chitosan matrix. After adsorption, the poly (CH-g-PVA/GO) is covered with heterocyclic nanoparticles of Lead ion particles Figure (3) [18].
The thermal behavior (TGA) of the CH-g-PVA/GO compound has been studied by TGA, which measures the change in the sample mass within the thermal range (0-900) °C with a heating rate of 100°C / min in the presence of gas. Nitrogen, Figure (4) and Table (1) shows that the prepared hydrogel compound is very stable within the temperature range of (0-25)°C and does not suffer breakage at this temperature range and when the temperature reaches the range of (25 -244°C) begins with a slight dissolution of 3.90 and is attributed To water molecules adsorbed on the surface, and when the temperature range reaches (244-332)°C part of it is dissolved by (23.51%) in the form of CO₂, CO, which is due to the removal of the host groups containing the oxygen atom such as COOH, OH, and COC(9). The temperature range is between (332-548), the decomposition in it is at (17.1%), which is attributed to the thermal breakdown of the interlocking polymeric chains of the hydrogel complex, The temperature range is between (548-743)°C, the decomposition in it is at(10.8) [19].

![Fig. 3: TEM for (CH-g-PVA/GO) after and before adsorption](image1)

![Fig. 4: The carve of stability for (CH-g-PVA/GO) by using TGA](image2)
Table 1. Thermal decomposition values CH-g-PVA/GO

Stage	TGA Range(°C)	Mass Loss	DTA(°C)
1	25-244	3.90	212(+)
2	244-332	23.51	303(+)
3	332-548	17.1	598(-)
4	548-743	10.8	737(-)

Using atomic force microscopy, the prepared surface's external shape analyzed, which gives a three-dimensional image of the sample's shape through which statistical information can obtain on the surface roughness values of the surface roughness (Figure (5) and Table (2)) [20].

Table 2. Statistical roughness coefficients for CH-g-PVA/GO

H-g-PVA/GO	The statistical value of roughness
2.373	Roughness rate(R_a)nm
3.399	Average square root of roughness(R_q)nm
-1.631	Torsion of the surface(R_s)nm
10.04	Flat peaks(R_{pk})nm
11.08	The upper limit of the height of the peaks(R_p)nm
20.57	Minimum roughness depth(R_v)nm
31.66	The maximum height of the rough surface(R_z)nm

Figure 5: 3D image of the atomic force microscope (CH-g-PVA/GO)
Adsorption Kinetics Study and Equilibrium Time Effect

Through practical experiments, the kinetic models of lead ion absorption were accurately determined on the Chitosan-PVA / GO union's surface and the percentage removal of Pb(II) shown in Figure (6).

![Figure 6. Effect of reaction time on Lead ion adsorption.](image)

By analyzing the two pseudo-pseudo-models of the first and second-order Figure (7). Where the kinetic constants and correlation coefficients were calculated for the adsorption process as in Table (3), where it was noticed that the value (R2) of the second-order false model is much higher than the first false model, so the adsorption of the lead ion solution is considered a first-order error [21-23].

![Figure 7. Effect of reaction time (A), pseudo-first-order (B), and the pseudo-second-order (C) on Lead ion adsorption.](image)
Table 3. Kinetic adsorption coefficients of Lead ion on (CH-g-PVA/GO)

	Slope (g. mg⁻¹.min⁻¹)	Intercept	Slope
Pseudo-first order Pb(II)			
R²	qₑ (mg/g)	kₚ(min⁻¹)	
0.7374	16.22414	0.0032	2.7865
			-0.0032
Pseudo-second order Pb(II)			
qₑ (mg/g)		kₑ (mg⁻¹.min⁻¹)	
0.1067	0.132846	8.57	0.1067

Conclusion

A study of the CH-g-PVA/GO performed using lead ion. Due to the compound's high absorption activity, it can be used to absorb lead ions. The results showed that the compound had an increased ability to absorb lead ions through the results of (SEM-TEM) and absorption from the pseudo-second-order model (R² = 0.9997) (A pseudo-second-class comparative model).

References

1- Zhou, Qiaoqiao, et al. "Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017." Global Ecology and Conservation 22 (2020): e00925.

2- Khan, Mohd Shahnawaz, et al. "Heavy metal pollution and risk assessment by the battery of toxicity tests." Scientific Reports 10.1 (2020): 1-10.

3- Adeyemi, Azeem Adedeji, and Zacchaeus Olusheyi Ojekunle. "Concentrations and health risk assessment of industrial heavy metals pollution in groundwater in Ogun state, Nigeria." Scientific African 11 (2021): e00666.

4- Liu, Yu, and Rong Ma. "Human health risk assessment of heavy metals in groundwater in the luan river catchment within the north China Plain." Geofluids 2020 (2020).

5- Mohammadian, Sadjad, et al. "Field-scale demonstration of in situ immobilization of heavy metals by injecting iron oxide nanoparticle adsorption barriers in groundwater." Journal of Contaminant Hydrology 237 (2021): 103741.
6- Farghali, A. A., et al. "Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions." Journal of Nanostructure in Chemistry 7.2 (2017): 101-111.

7- Aseel M Aljeboree Ayad F Alkaim" Removal of Antibiotic Tetracycline (TCs) from aqueous solutions by using Titanium dioxide (TiO2) nanoparticles as an alternative material

8- Aseel M. Aljeboree. " Removal of Vitamin B6 (Pyridoxine) Antibiotics Pharmaceuticals From Aqueous Systems By ZnO." International Journal of Drug Delivery Technology9(2)2019 :125-129

9- Nadher D. Radhy, Layth S. Jasim " Synthesis of Graphene Oxide/Hydrogel Composites and Their Ability for Efficient Adsorption of Crystal Violet." J. Pharm. Sci. & Res. 11 (2019): 456-463.

10- Gebretsadik, Hirut, Abraha Gebrekidan, and Libargachew Demlie. "Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low cost adsorbent." Cogent Chemistry 6.1 (2020): 1720892.

11- Layth S. Jasim ,Nadher D. Radhy ,Hayder O. Jamel " Synthesis and Characterization of Poly (Acryl Amide - Maleic Acid) Hydrogel: Adsorption Kinetics of a Malachite Green from Aqueous Solutions" Eurasian Journal of Analytical Chemistry 13(2018): em74

12- Bloor, J. M., et al. "Graphene oxide biopolymer aerogels for the removal of lead from drinking water using a novel nano-enhanced ion exchange cascade." Ecotoxicology and Environmental Safety 208 (2021): 111422.

13- Melilli, G., Yao, J., Chiappone, A., Sangermano, M., & Hakkarainen, M. (2021). Photocurable “all-lignocellulose” derived hydrogel nanocomposites for adsorption of cationic contaminants. Sustainable Materials and Technologies, 27, e00243.

14- Kumar, Bijender, and Yuvraj Singh Negi. "Water absorption and viscosity behaviour of thermally stable novel graft copolymer of carboxymethyl cellulose and poly (sodium 1-hydroxy acrylate)." Carbohydrate polymers 181 (2018): 862-870.

15- Kumar, Bijender, et al. "Nanoporous Sodium Carboxymethyl Cellulose-g-poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization." Gels 6.4 (2020): 49.

16- Adheem, Hamzah M., and Layth S. Jasim. "Preparation and Characterization of a three-component hydrogel composite and study of kinetic and thermodynamic applications of adsorption of some positive and
negative dyes from their aqueous solutions." IOP Conference Series: Materials Science and Engineering. Vol. 928. No. 5. IOP Publishing, 2020.

17- Eivazzadeh-Keihan, Reza, et al. "A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy." International journal of biological macromolecules 140 (2019): 407-414.

18- Rafigh, Sayyid Mahdi, and Amir Heydarinasab. "Mesoporous chitosan–SiO2 nanoparticles: synthesis, characterization, and CO2 adsorption capacity." ACS Sustainable Chemistry & Engineering 5.11 (2017): 10379-10386.

19- Salama, Ahmed. "Carboxymethyl cellulose-g-poly (acrylic acid)/calcium phosphate composite as a multifunctional hydrogel material." Materials Letters 157 (2015): 243-247.

20- Kolsuz Ozcetin, H., and Derya Surmelioglu. "Effects of bleaching gel containing TiO2 and chitosan on tooth surface roughness, microhardness and colour." Australian Dental Journal 65.4 (2020): 269-277.

21- Rosset, Morgana, et al. "Effect of concentration in the equilibrium and kinetics of adsorption of acetylsalicylic acid on ZnAl layered double hydroxide." Journal of Environmental Chemical Engineering 8.4 (2020): 103991.

22- Aseel M. ALjeboree ,Abass N. ALshirfi Ayad F. ALkaim, Removal of Pharmaceutical Amoxicillin drug by using (CNT) decorated Clay/ Fe2O3 Micro/Nanocomposite as effective adsorbent: Process optimization for ultrasound-assisted adsorption ." International Journal of Pharmaceutical Research 11(4) (2019): 80-86.

23- Waleed K. Abdulsahib, Safaa H. Ganduh, Nadher D. Radia, Layth S. Jasim " New Approach for Sulfadiazine Toxicity Management using Carboxymethyl Cellulose Grafted Acrylamide Hydrogel" International Journal of Drug Delivery Technology 10(2)2020: 259-264