The spectrum of (136199) Eris between 350 and 2350 nm: Results with X-Shooter*

A. Álvarez-Candal¹, N. Pinilla-Alonso², J. Licandro³, J. Cook², E. Mason⁵, T. Roush⁶, D. Cruikshank⁶, F. Gourgeot¹, E. Dotto⁷, and D. Perna⁸

¹ European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile
e-mail: aalvarez@eso.org
² NASA Post-Doctoral Program, Resident Research Associate at NASA Ames Research Center, Moffett Field, CA, USA
³ Instituto de Astrofísica de Canarias, c/Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain
⁴ Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain
⁵ Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218
⁶ NASA Ames Research Center, Moffett Field, CA, USA
⁷ Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Roma, Italy
⁸ Istituto Nazionale di Astrofisica (INAF), Osservatorio Astronomico di Capodimonte, Italy

Received / Accepted

ABSTRACT

Context. X-Shooter is the first second-generation instrument for the ESO-Very Large Telescope. It is a spectrograph covering the 300 – 2480 nm spectral range at once with a high resolving power. These properties enticed us to observe the well known trans-Neptunian object (136199) Eris during the science verification of the instrument. The target has numerous absorption features in the optical and near-infrared domain which has been observed by different authors, showing differences in their positions and strengths.

Aims. Besides testing the capabilities of X-Shooter to observe minor bodies, we attempt at constraining the existence of super-volatiles, e.g., CH₄, CO and N₂, and in particular try to understand the physical-chemical state of the ices on Eris’ surface.

Methods. We observed Eris in the 300 – 2480 nm range and compared the newly obtained spectra with those available in the literature. We identified several absorption features, measuring their positions and depth and compare them with those of reflectance of pure methane ice obtained from the optical constants of this ice at 30 K to study shifts in their positions and find a possible explanation for their origin.

Results. We identify several absorption bands in the spectrum all consistent with the presence of CH₄ ice. We do not identify bands related with N₂ or CO. We measured the central wavelengths of the bands and find variable shifts, with respect to the spectrum of pure CH₄ at 30 K.

Conclusions. Based on these wavelength shifts we confirm the presence of a dilution of CH₄ in other ice on the surface of Eris and the presence of pure CH₄ spatially segregated. The comparison of the centers and shapes of these bands with previous works suggest that the surface is heterogeneous. The absence of the 2160 nm band of N₂ can be explained if the surface tem-
perature is below 35.6 K, the transition temperature between the alpha and beta phases of this ice.

Our results, including the reanalysis of data published elsewhere, point to an heterogeneous surface on Eris.

Key words. Kuiper belt objects: (136199) Eris – Instrumentation: spectrographs – Techniques: spectroscopic

1. Introduction

To interpret the surface composition of minor bodies it is necessary to observe their spectra in the widest possible spectral range. This is typically achieved by observing the target with different instruments, techniques, and calibrations. This results in a lack of simultaneous datasets and having often to rely on other parameters (e.g., albedo, photometric magnitudes) to scale the complete spectrum. Luckily, new instrumentation allows us to overcome some of these problems. One of such new instruments is X-Shooter (XS hereafter), which is also the first second-generation instrument developed for the ESO-Very Large Telescope (D’Odorico et al. 2006) and is currently mounted in its unit 2 (Kueyen).

More detailed discussion of XS is given in Section 2, but, as an overview, XS is a spectrograph that obtains spectra from 300 to 2480 nm in a single image at high resolving powers (from 3,000 up to 10,000). This wavelength range sufficiently covers many known ices and silicates. At the time of its science verification we decided to test its capabilities by observing a well known trans-Neptunian object with absorption features in most of this spectral range: (136199) Eris (hereafter Eris).

Eris, formerly known as 2003 UB₃₁₃, is one of the largest bodies in the trans-Neptunian region, with a diameter < 2340 km (B. Sicardy, personal communication), and, together with other two thousand-km-sized objects [(134340) Pluto and (136472) Makemake], shows CH₄ absorption bands in the spectrum, from the visible to the near infrared,(see Brown et al. 2005, Licandro et al. 2006).

Rotational light-curves of Eris have had little success obtaining a reliable rotational period (e.g., Carraro et al. 2006 or Duffard et al. 2008). Roe et al. (2008) proposed a rotational period of 1.08 days. The light-curve seems not related to Eris’ shape, but probably to an albedo patch. Nevertheless, due to the noise in the data, even if this albedo patch indeed exists, it is clear that there are no large albedo heterogeneities.

A close look at the spectroscopic data shows that there exist a subtle heterogeneity. Abernathy et al. (2009) compared their spectra with that of Licandro et al. (2006) finding different central wavelengths and different depths for a few selected methane absorption bands. Nevertheless, recent results pointed otherwise: Tegler et al. (2010), using their own results, and those of Quirico and Schmitt (1997a), showed that a single component, CH₄ diluted in N₂, could explain the wavelength shifts because those shifts change by increasing with increasing wavelength.

The orbit of Eris is that of a scattered disk object (Gladman et al. 2008). It has a perihelion distance of 49.5 AU, and it is currently located at 97 AU and approaching perihelion. At 97 AU,

* Observations made during X-Shooter Science Verification, program 60.A-9400(A), PIs: Alvarez-Candal and Mason
its equilibrium temperature is \(\lesssim 30 \) K as estimated by the Stefan-Boltzmann law and assuming conservation of energy. Therefore, based on models of volatiles retention (see Schaller and Brown [2007]) and its similarities with Pluto, Eris’ surface is expected to be covered in N\(_2\), CO and CH\(_4\) ices. Of these species, only CH\(_4\) has been clearly seen on Eris.

Therefore, we requested observing time during XS science verification to make the most of its high resolving power to detect features of CO and N\(_2\), and to obtain Eris spectrum simultaneously between 300 and 2480 nm.

The article is organized as follows: in Sec. 2 we describe the instrument and the observations. In Sec. 3 we present the results obtained from our analysis, while the discussion and conclusions are presented in Secs. 4 and 5 respectively.

2. Observation and data reduction

2.1. X-Shooter

The instrument is an echelle spectrograph that has an almost fixed spectral setup. The observer can choose between SLIT (and slit width) or IFU (Integral Field Unit) modes. We used the SLIT mode. The detailed description of the instrument is available at ESO’s webpage\(^1\). This spectrograph has the ability to simultaneously obtain data over the entire 300 – 2480 nm spectral range by splitting the incoming light from the telescope into three beams, each sent to a different arm: ultra-violet—blue (UVB), visible (VIS), and near-infrared (NIR). Using two dicroichs the light is first sent to the UVB arm, then the VIS arm and the remaining light arrives to the NIR arm. The disadvantage of this optical path is the high thermal background in the K region of the NIR spectrum.

Each arm operates independently from the others, with the sole exception of the two CCDs (UVB and VIS) which are controlled by the same FIERA (Fast Imaging Electronic Readout Assembly) controller. Therefore, if the two exposures finish at the same time, their read-out is made sequentially. The read-out mode of the NIR detector is totally independent from the others, operated by an IRACE (Infra Red Array Control Electronics) controller.

2.2. The observational setup

We observed Eris on two nights of the XS Science Verification, August 14\(^{th}\) and September 29\(^{th}\), 2009. As mentioned above we used the SLIT mode selecting the high gain readout mode and 2 \(\times\) 1 binning for the UVB and VIS detectors. The read-out and binning for the NIR detector are fixed. The slit widths were 1.0”, 0.9”, and 0.9”, for the UVB, VIS, and NIR arms, respectively, giving a resolving power of about 5,000 per arm. As usual with NIR observations, we nodded on the slit to remove the sky contribution. As the nod is made by the telescope, we finished with two exposures per arm per night.

To remove the solar and telluric signals from Eris spectra, we observed the G5 star SA93-101 (Landolt[1992]) with the same observational setup as Eris and a similar airmass to minimize effects of differential refraction. Details of the observations are presented in Table\(^{1}\).

\(^{1}\) http://www.eso.org/sci/facilities/paranal/instruments/xshooter/
Table 1. Observational Circumstances. We show the exposure time per each arm, t_{ARM}.

Date	Airmass a	Seeing b (")	t_{UVB} (s)	t_{VIS} (s)	t_{NIR} (s)	Star (Airmass)
2009-08-14UT07:24	1.073-1.146	0.7-0.8	2 \times 1680	2 \times 1680	2 \times 1800	SA93-101 (1.113)
2009-09-29UT05:50	1.065-1.163	0.9-1.2	2 \times 1680	2 \times 1680	2 \times 1800	SA93-101 (1.153)

a Beginning of the observation.
b Minimum and maximum values during the span of the observation.

2.3. Data reduction

The data presented here were reduced using the XS pipeline (0.9.4). There are newer versions of the pipeline, but we have verified, after processing the spectra, that no significant improvements are obtained in terms of SNR, therefore we use version 0.9.4. The pipeline accounts for flat-fielding, wavelength calibration, merging of different orders, and further extraction of the spectra. The whole reduction relies on calibration files taken during daytime and on a set of static files provided as part of the pipeline release.

The data were wavelength and spatially calibrated by creating a two-dimensional wave map. This is necessary due to the curvature of the echelle orders. The map is created by taking images of ThAr lamps combined with pinhole masks, for all three arms. The final accuracy of the calibration is better than 1 Å through the complete spectral range.

After careful evaluation we decided not to use the one-dimensional spectra produced by the pipeline, but instead make our own extraction using a merged two-dimensional spectrum generated during the process. The extraction was made in a usual way with apall.iraf.

Once all spectra were extracted, we divided those of Eris by the corresponding star, used as telluric and solar analogue star (Table 1). After the division we removed the remaining bad pixels from the spectra using a median filtering technique (as in Alvarez-Candal et al. 2007). This last step left us with three separated spectra, one per arm. As there exists a small overlap between their spectral ranges, the construction of the final spectrum is straightforward. The resulting spectra, between 350 and 2350 nm, normalized to unity at 600 nm, are presented in Fig. 1.

A few of the echelle orders were not well merged, in particular in the visible. We checked that none of them removed important information, e.g., being the minimum or the edge of an absorption band, and decided to ignore them. Two other features at 1576 and 1583 nm, each in a different spectrum, are artifacts introduced by the star and poor telluric correction, respectively. Another feature, at 2160 nm, is due to an order badly merged during the reduction process. Finally, the feature at about 400 nm is introduced by the star (Alvarez-Candal et al. 2008) and does not represent any compound present on Eris surface. All these features are marked in Figs. 2 to 4.

3. Spectroscopic Analysis

The spectra presented in Fig. 1 are similar throughout the complete wavelength range, as shown by the small residues resulting from the calculated ratio of both spectra (Figs. 2, 3, and 4). They both present clear CH$_4$ absorptions from the visible up to the near infrared and have similar spectral slopes in the visible (see first row of Table 2 below).

One interesting absorption detected on Eris spectra is located at 620 nm. This band has been observed in all the giant planets and in Titan’s spectrum and it appears in other previously published
Fig. 1. Eris spectra obtained with X-Shooter. The resolving power is about 5,000 for the spectral range. The spectra were arbitrarily normalized to unity at 600 nm. The spectrum of September 2009 was shifted by 1 in the flux scale for clarity. Note that we removed parts with strong atmospheric absorption.

Fig. 2. Ratio of the X-Shooter spectra obtained in the ultra-violet—blue region. The artifacts mentioned in the text are marked with a vertical dashed line. Normalization and offsets are the same as in Fig. 1. At the bottom it is shown the ratio of both spectra, offset by -1 in the scale for clarity.

spectra of Eris, but has not been discussed. The band has been assigned to CH$_4$ in its gaseous (Giver 1978) and liquid (Ramaprasad et al. 1978; Patel et al. 1980) phases, in laboratory experiments. The band strength is ~ 1 order of magnitude smaller than the 730 nm band, thus, its appearance certainly suggests relatively long path-lengths, and likely high concentrations of CH$_4$.

Also, at first glance, these data resemble those already available in the literature, for example: Licandro et al. (2006), Alvarez-Candal et al. (2008) in the visible; Dumas et al. (2007), Guilbert et al. (2009), and Merlin et al. (2009) in the near infrared. These similarities indicate that there are no spectral differences within the uncertainties of the data, suggesting an $a\ priori$ homogeneous surface. With this in mind, and along with the datasets mentioned above, we will use a combined
3.1. Quantitative interpretation of the spectra

In order to quantify the information in the Eris spectrum we have determined a number of spectral parameters and these are listed in Table 2.

All the measurements presented in the following sections have been made by our team. We preferred, for the sake of keeping the data as homogeneous as possible, to measure all quantities rather than use published values. Along with our Eris data we present values obtained for other Eris spectra, see below, and Pluto (column labeled h), these last data from Merlin et al. (2010) their April 13, 2008 spectrum.)
Organics of this general kind characteristically have very low albedo (material consisting of complex macromolecular carbonaceous material that is similar to the insoluble organic matter found in most carbonaceous meteorites. This material contains both aromatic and aliphatic hydrocarbons, amorphous carbon, and other materials of undetermined structure. Organics of this general kind characteristically have very low albedo (~ 0.02 – 0.06) and distinctive red color in the spectral region 300 – 1000 nm.

The Eris spectra we use are: visible from Licandro et al. (2006), Alvarez-Candal et al. (2008), their October 2006 spectrum, and Abernathy et al. (2009) both spectra); and near-infrared from Dumas et al. (2007), Guilbert et al. (2009), and Merlin et al. (2009) their December 2007 spectrum).

In this paper we use the shorthand term organics to mean the relatively refractory solid material consisting of complex macromolecular carbonaceous material that is similar to the insoluble organic matter found in most carbonaceous meteorites. This material contains both aromatic and aliphatic hydrocarbons, amorphous carbon, and other materials of undetermined structure. Organics of this general kind characteristically have very low albedo (~ 0.02 – 0.06) and distinctive red color in the spectral region 300 – 1000 nm.

We measured the spectral slope, which provides an indication of the presence of organic materials. To compute it we fit the continuum with a linear function, ignoring absorption features, between 600 and 800 nm. The process was repeated many times, each time removing randomly points from the datasets. The average value was adopted as the spectral slope and the standard deviation as the error. The results are shown in the first row of Table 2.

The depth of an absorption feature is computed following

$$D_\lambda [\%] = (1 - f_\lambda) \times 100,$$

Table 2. Comparison of spectral parameters: Spectral slope in the visible, S'_λ, in % (100 nm)$^{-1}$, and percentile depth of the absorption feature, D_λ at a given wavelength λ.

Band (nm)	a (%)	b (%)	c (%)	d (%)	e (%)	f (%)	g (%)	h (%)
620	5.3 ± 1.0	(…)	3.9 ± 3.7	4.7 ± 1.0	(…)	(…)	(…)	Undet.
730	15.8 ± 1.8	15.0 ± 4.6	15.7 ± 5.2	15.1 ± 2.0	(…)	(…)	(…)	5.6 ± 1.1
790	9.7 ± 0.7	8.1 ± 3.6	8.8 ± 3.3	7.2 ± 0.8	(…)	(…)	(…)	Undet.
840	5.9 ± 1.4	Undet.	8.2 ± 5.4	5.4 ± 1.1	(…)	(…)	(…)	2.7 ± 0.9
870	13.2 ± 1.8	15.1 ± 1.4	19.0 ± 7.5	14.1 ± 1.1	(…)	(…)	(…)	3.8 ± 3.3
890	46.3 ± 1.4	35.1 ± 7.6	55.9 ± 8.8	41.8 ± 3.9	(…)	(…)	(…)	16.2 ± 1.1
1000	20.2 ± 8.3	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1015	31.2 ± 4.3	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1135	39.3 ± 2.1	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1160	54.5 ± 5.0	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1190	34.4 ± 2.0	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1240	9.0 ± 0.9	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1335	72.2 ± 2.6	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1485	(…)	(…)	(…)	(…)	18.9 ± 5.8	32.1 ± 1.7	31.1 ± 0.9	12.9 ± 0.9
1670	64.4 ± 7.3	(…)	(…)	(…)	61.2 ± 9.5	77.7 ± 7.5	82.1 ± 8.3	59.1 ± 2.9
1690	17.4 ± 4.8	(…)	(…)	(…)	15.5 ± 6.1	16.3 ± 6.8	14.6 ± 2.2	5.3 ± 0.2
1720	66.2 ± 7.3	(…)	(…)	(…)	53.6 ± 10.9	68.3 ± 5.4	59.2 ± 3.0	50.2 ± 1.2
1800	Undet.	(…)	(…)	(…)	66.8 ± 4.8	72.4 ± 13.7	70.3 ± 3.4	56.0 ± 0.6
2200	Undet.	(…)	(…)	(…)	89.5 ± 29.2	81.1 ± 18.1	60.4 ± 8.4	50.7 ± 1.1

Undet. = Undetermined; References: (a) This work; (b) Abernathy et al. (2009); (c) Licandro et al. (2006); (d) Alvarez-Candal et al. (2008); (e) Guilbert et al. (2009); (f) Merlin et al. (2009); (g) Dumas et al. (2007); (h) Merlin et al. (2010). Pluto
where \(f_\lambda \) is the normalized reflectance at the wavelength \(\lambda \). This formula gives the percentile value of the absorption depth of a given band and information about the quantity of the absorbing material, as well as a possible indication of the path-length traveled by the light. To compute it we first normalized the band by fitting a linear function to the band’s borders and dividing the band by that function. Note that this does not change the position of the minimum, while making it easier to measure \(D \) for multiple, overlapping bands (such as the 1690 nm one). The values are reported in Table 2. All values for Eris are compatible to within the errors.

Information about the physical state of the near-surface ices was evaluated by measuring band shifts between the Eris data, in several small spectral windows, with respect to synthetic spectra calculated using Hapke models describing the light reflected from particulate surfaces. We used the optical constants of pure CH\(_4\) at 30 K (Grundy et al. 2002), the most likely temperature at Eris surface (J. Cook, personal communication), to model the Eris spectrum and evaluated the goodness of the fit using a \(\chi^2 \) criterion. Because the CH\(_4\) bands at different wavelengths are caused by differing path-lengths, we used two different grain size as free parameters in the models. The grain sizes range from tens of micrometers to the scale of meters (for the weakest bands). Using such a large range of particle sizes was necessary because we are only using pure CH\(_4\), a more complete modeling (beyond the scope of this article) including neutral darkening and reddening material would likely result in smaller particle sizes.

The spectral model uses only the optical constants of CH\(_4\) ice from Grundy et al. (2002) at full resolution. The optical constants were shifted from \(-2\) to \(+1\) nm at 0.1 nm intervals. At each spectral shift, a best fit model spectrum is derived and \(\chi^2 \) is evaluated. The \(\chi^2 \) measurements are then fit to a quadratic curve to estimate the best fit shift. To evaluate the error, we calculated a correlation matrix around the minimum and added quadratically the uncertainty of the wavelength calibration, as mentioned on the corresponding works: 1 Å for this work’s data and Licandro et al. (2006), 0.3 Å for Abernathy et al. (2009), and 4 Å for all the rest, as estimated by Merlin et al. (2009).

Table 3 lists the measured shifts in wavelength, and Fig. 5 illustrates the relationship between shifts and wavelength. Eris observations indicate an average blue shift of \(~5\) Å, while Pluto is \(~20\) Å. Note that considering all the available datasets, no apparent relation seems to exits. Nevertheless, if we consider one isolated spectrum, like XS for instance, it is possible to see that the shifts increase towards longer wavelengths (black diamonds in Fig. 5), as shown by Tegler et al. (2010) and Licandro et al. (2006) light-brown triangles) but derived from smaller datasets, while other spectra do not show any tendency, unless subsets of data are used. Licandro et al.’s band at 890 nm has a blue shifts comparable to that measured for Pluto. There are four Eris absorption bands which show redshifts: Alvarez-Candal et al. (2008) @ 790 nm, this work’s spectrum @ 840 nm, and the spectra of Guilbert et al. (2009) and Merlin et al. (2009) @ 1720 nm, nevertheless all of them are within three sigmas from a null shift.

The 1690 nm absorption feature, that only appears on pure CH\(_4\), also shows non zero wavelength shifts, this might be due to a temperature difference between the models and the actual ice on Eris’ surface. Anyhow, the shift is in all cases within three sigma from the laboratory position.

As mentioned above, we used only pure CH\(_4\) at 30 K in the models. Methane ice at this temperature is at its phase I. During the modeling, we determined that some bands could not be fit with pure CH\(_4\)(I), but could be better explained by a mix of CH\(_4\)(I) and CH\(_4\)(II). This phase of methane
Table 3. Shifts of CH\(_4\) bands, with respect to the spectrum of pure CH\(_4\) at 30 K.

Band (nm)	\(a\) (Å)	\(b\) (Å)	\(c\) (Å)	\(d\) (Å)	\(e\) (Å)	\(f\) (Å)	\(g\) (Å)	\(h\) (Å)
730	\(-4.1 \pm 1.3\)	\(-13.9 \pm 1.1\)	\(-0.3 \pm 1.6\)	\(-8.0 \pm 4.2\)	(…)	(…)	(…)	\(-19.7 \pm 4.2\)
790	\(-0.2 \pm 1.3\)	\(-6.0 \pm 1.0\)	\(-4.3 \pm 1.7\)	\(+0.9 \pm 4.1\)	(…)	(…)	(…)	(…)
840	\(+3.9 \pm 1.6\)	(…)	\(-5.9 \pm 3.4\)	\(-3.3 \pm 4.5\)	(…)	(…)	(…)	(…)
870	\(-3.3 \pm 2.0\)	\(-5.9 \pm 1.1\)	\(-8.7 \pm 2.8\)	\(-3.0 \pm 5.0\)	(…)	(…)	(…)	\(-21.0 \pm 5.2\)
890	\(-4.2 \pm 1.3\)	\(-4.7 \pm 1.0\)	\(-12.4 \pm 1.5\)	\(-8.1 \pm 4.3\)	(…)	(…)	(…)	\(-17.6 \pm 4.2\)
1000	\(-2.0 \pm 1.6\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1015	\(-2.8 \pm 3.3\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1135	\(-5.6 \pm 1.6\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1160	\(-4.5 \pm 1.5\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1190	\(-5.4 \pm 2.0\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1240	\(-1.4 \pm 1.8\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1335	\(-6.7 \pm 2.1\)	(…)	(…)	(…)	(…)	(…)	(…)	(…)
1670	\(-9.4 \pm 1.9\)	(…)	(…)	(…)	\(-1.7 \pm 5.2\)	\(-0.3 \pm 5.0\)	\(-7.7 \pm 4.5\)	\(-26.3 \pm 4.3\)
1690	\(-7.1 \pm 3.2\)	(…)	(…)	(…)	\(-6.8 \pm 5.6\)	\(-1.4 \pm 5.1\)	\(-5.5 \pm 5.0\)	\(+2.6 \pm 5.3\)
1720	\(-10.5 \pm 2.2\)	(…)	(…)	(…)	\(+3.5 \pm 5.4\)	\(+3.7 \pm 4.7\)	\(-8.4 \pm 4.7\)	\(-24.8 \pm 4.2\)
1800	(…)	(…)	(…)	(…)	\(-3.5 \pm 4.3\)	Undet.	\(-10.6 \pm 4.5\)	\(-23.4 \pm 4.1\)
2200	(…)	(…)	(…)	(…)	Undet.	Undet.	\(-4.3 \pm 6.9\)	\(-34.9 \pm 4.2\)

Undet. = Undetermined ; References: (a) This work; (b) Abernathy et al. (2009); (c) Licandro et al. (2006); (d) Alvarez-Candal et al. (2008); (e) Guilbert et al. (2009); (f) Merlin et al. (2009); (g) Dumas et al. (2007); (h) Merlin et al. (2010), Pluto

Fig. 5. Wavelength shifts for the spectra analyzed in this work.

ice, CH\(_4\)\(\text{II}\), occurs at temperatures below 20.4 K. The detailed results and implications are beyond the scope of the current report.
Using all the CH\textsubscript{4} bands in the Eris data and comparison with similar bands in data reported for Pluto (Merlin et al. [2010]), we conclude that at least some of the CH\textsubscript{4} on Eris appears to be diluted in another material. By analogy to Pluto we assume N\textsubscript{2} is the main diluting agent.

3.2. Qualitative interpretation of the spectra

Other than the overall blue shift of the bands discussed in the previous section, at first glance there does not appear to be any systematic behavior of the individual bands analyzed. Licandro et al. [2006] suggested that different measured shifts indicated different levels of dilution of CH\textsubscript{4} in a N\textsubscript{2} matrix: Pure CH\textsubscript{4} at the bottom, with CH\textsubscript{4} concentration decreasing towards the surface. The proposed mechanism is based on the fact that N\textsubscript{2} condenses at a lower temperature than CH\textsubscript{4}. Therefore, while approaching aphelion CH\textsubscript{4} condensed first while N\textsubscript{2} was still in its gaseous phase. As Eris gets farther away from the Sun, its surface temperature decreases and N\textsubscript{2} starts condensing as well, thus the mixing of CH\textsubscript{4} in N\textsubscript{2} increases. This was later supported by Merlin et al. [2009], who also added a top layer of pure CH\textsubscript{4}, as a result of the null shift they measured in near-infrared bands. In contrast, Abernathy et al. [2009], measured blue shifts for five selected absorptions and identified a correlation between the shift and the geometric albedo at the wavelength of maximum band absorption, opposite to the behavior reported by Licandro et al. [2006]. They proposed the difference was due to a heterogeneous surface. More recent data presented by Tegler et al. [2010], on Pluto and Eris, suggests that this stratigraphic analysis of the data has overlooked the fact that the blue-shifts increase as CH\textsubscript{4} becomes more diluted, i.e., less abundant, in N\textsubscript{2}.

Our results support Abernathy et al.’s [2009] suggestion: that Eris surface is heterogeneous. Considering all the data sets, there is no apparent correlation between the shift of central wavelengths of bands and the supposed depths where they form (deeper bands closer to the surface, shallower bands deeper on the surface, Fig. 6). The XS data alone shows increasing blue shifts towards longer wavelength (shallower depths), which supports the condensation mechanism proposed in Licandro et al. [2006], but using all the data we cannot confirm this hypothesis. In conclusion, any stratigraphic analysis should be regarded as local representing the part of the surface observed during the exposure.

3.3. Comparison between X-Shooter spectra

The molecule of methane ice is optically very active. It has four fundamental vibrational modes in the infrared between 3000 and 8000 nm, but all of them lead to a huge number of overtones and combinations, which can be observed with progressively diminishing absorbances into the near-infrared and visible wavelength range (Grundy et al. [2002]). We can see several of these bands in our two XS spectra. Although both spectra look very similar and display the same bands, some of them display subtle differences as can be seen in Figs. 2, 3, and 4 (up to 1800 nm where the noise in the spectra does not allow detailed comparisons).

There are several factors that can be responsible for these differences. In pure methane ice, differences in the optical path-lengths followed by the scattered light result in different depths and widths for the bands. Moreover, as investigated by Grundy et al. [2002], temperature changes in the ice produce slight differences in the central peaks of these absorption bands. The situation is a
bit different when CH$_4$ is diluted in other ices, as it could be for Eris, and the shape of the bands is influenced by the concentration of CH$_4$ in the matrix.

According to the classic treatment of molecules trapped in matrices, the guest CH$_4$ molecules can exist as isolated molecules or as clusters of various sizes in the nitrogen matrix (dimer, trimer, etc). Quirico and Schmitt (1997a) made a detailed study for the case of methane diluted in nitrogen. In the specific case of an isolated CH$_4$ molecule (i.e., which has only N$_2$ molecules as first neighbors), the motion of the molecule is a slightly hindered rotation, thus, the CH$_4$ bands show a characteristic fine structure that can be seen in comparison with the shape of these bands for pure ice. However, for a cluster, the different CH$_4$ molecules interact with each other, the molecular rotational motion is perturbed or no longer exist, and the profile of a band can be strongly modified with respect to that of the isolated molecule (monomer). Consequently, a CH$_4$ absorption band can be the sum of several different bands corresponding to the monomer and other various clusters all present in the sample. Its dilution alters the shape and central frequency of the bands.

3.4. Comparison with Pluto

The immediate comparison for Eris is Pluto: both objects present CH$_4$-dominated spectra, and similar sizes. Pluto’s surface composition is made of N$_2$ (the major constituent of the surface), CH$_4$, and CO ices. Eris content of pure CH$_4$ seems higher than in Pluto, as witnessed by the deeper band at 1690 nm (and also the rest) and the smaller spectral shifts of the absorption bands when compared to pure CH$_4$. Eris lower visible spectral slope indicates a lower content of organics than on Pluto.

The other ices, N$_2$ and CO, were observed and identified on Pluto by absorption bands at 2150 and 2350 nm respectively. Thus we would expect to find them on Eris. Unfortunately, due to the low SNR in the K region of our spectra, we did not find any of them. Note that an overtone of CO is observed on Pluto at 1579 nm (Douté et al. 1999) that we do not detect. The SNR of our spectra in that region is about 15 while the spectral resolution is more than five times higher than that reported by Douté et al. (750), therefore if the CO content, and physical-chemical properties, were similar on Eris, then that absorption should have been detected.

Even if not directly detected, N$_2$ can be inferred on Eris surface. The shifts measured above are evidence of the mixture of CH$_4$ with another ice. On Pluto that ice is N$_2$, and probably CO. The measured blue-shifts for Eris are not as large as those measured in Pluto, possibly indicating a lower dilution level of CH4 in N2 than for Pluto.

4. Discussion

Comparing the different datasets of Eris we do not find any evidence of major heterogeneities on its surface. For instance, the values of spectral slopes and depth of absorption bands presented in Table 2 are all compatible within the uncertainties. As a comparison, Pluto’s surface has variations in albedo of up to 35 % (Stern et al. 1997).

The visible slope is indicative of the presence of organics, i.e., the redder the slope, the larger the amount of organics and the lower the albedo in the visible. In the case of Eris all slopes have a value close to 3 % (100 nm)$^{-1}$, with error bars in the range of 1 % (100 nm)$^{-1}$ (see Table 2), smaller than that for Pluto (12 % (100 nm)$^{-1}$), thus pointing to a larger fraction of organics on Pluto than
on Eris. This is compatible with a higher albedo in the visible for Eris (over 0.7, e.g., Stansberry et al. 2008) compared to Pluto (averaging 0.6, Young et al. 2001).

One mechanism to form organic material is the polymerization of carbon bearing molecules, such as CH₄. Laboratory experiments show that long-term irradiation of astrophysical ice mixtures (with the presence of simple hydrocarbons and nitrogen) results in the selective loss of hydrogen and the formation of an irradiation mantle of carbon residues (Moore et al. 1983; Johnson et al. 1984; Strazzulla et al. 1991). They also show how as the radiation dose increases, more complex polymers, poor in hydrogen content, form and an initially neutral-colored and high-albedo ice becomes red as the albedo in the visible decreases. Further irradiation gradually reduces the albedo at all wavelengths and, finally, the material becomes very dark, neutral in color, and spectrally featureless (Andronico et al. 1987; Thompson et al. 1987). Since TNOs are exposed to ultraviolet solar radiation, the solar wind, and the flux of galactic cosmic-rays, it is reasonable to expect that an irradiation mantle with a red color could be formed on their surfaces. A continuous deposition of fresh volatiles, via sublimation and condensation, acts to keep a neutral color surface with high albedo.

Assuming the lower visible spectral slope of Eris is due purely to a lower content of organics, then CH₄ on its surface if either younger than that of Pluto, or it is somehow protected against polymerization. One possible explanation would the recent collapse of Eris’ atmosphere, that covered its surface masking the organics below.

Schaller and Brown (2007) showed, using a simple model of loss of volatiles as a function of the surface temperature and size of the objects, that Eris, as well as Pluto, should have retained CH₄, N₂, and CO, therefore we expect to detect them. Methane is easily seen, while N₂ can be inferred from the wavelengths shifts measured in the visible. The case of CO is more complicated, as mentioned above we do not have any detection. But, building on (i) Schaller and Brown (2007) results, (ii) the fact that N₂ and CO are very similar molecules and therefore likely to co-exist (Scott 1976), (iii) CO observation on Pluto; CO should be present on Eris surface. We will discuss below the possible cause of the non direct detection of either N₂ nor CO.

Inspecting at a more subtle level, wavelength shifts of absorption features, we find evidence of variable shifts, along one single spectrum and comparing the same band in different spectra, which indicate changing mixing ratios of CH₄ in another ice, probably N₂ and/or CO. Different spectra sample different regions on Eris, so, assuming that a given absorption is always produced at the same depth, then most of the layers sampled by the spectra show evidence of heterogeneity (Fig. 6). Therefore, the surface of Eris is covered by an heterogeneous mix of ices: patches of pure CH₄ mixed with a dilution of CH₄ in N₂ and/or CO. In both cases, the CH₄ is so active optically that its features dominate the appearance of the spectrum.

Figure 6 was constructed combining the information contained in Tables 2 and 3. As mentioned above, each absorption band maps a determined depth on Eris’ surface, therefore, we can picture it as composed of layers. For simplicity we adopt an average value of Dₜ, computed from every Eris entry, as a proxy of real depth: topmost layers (shorter path-lengths) have larger values of Dₜ, while deeper layers (large path-lengths) have smaller values of Dₜ. Given all of the data presented, Fig. 6 shows variability between datasets suggesting Eris’ surface is heterogeneous. If we consider individual spectra, or restricted datasets, relations appear. If we concentrate only on XS data, black diamonds, the topmost layers show on average the larger blue shifts and probably higher level of...
Fig. 6. Measured wavelength shifts vs. averaged D_{λ}. The averaged D_{λ} is the average value as obtained from the Eris entries in Table 2, the error bar is just the standard deviation around the average. D_{λ} is used as proxy of real depth in the surface, as indicated by the legends on the top of the figure. Note that, with exception of XS spectrum, filled symbols are used for absorption bands in the visible and open ones for bands in the near infrared ($\lambda > 1000$ nm).

dilution of CH$_4$ in N$_2$ (Brunetto et al. 2008), while the deepest layer mapped by the spectra show purer on average CH$_4$, smaller shifts.

It is important to keep in mind that the relationship between the depth of an absorption band and the path-lengths traveled by a photon is not a direct one, multiple scattering could account for large path-lengths without the need to traverse large physical depths.

The uncertainty in Eris rotational period unfortunately precludes any attempt of rotationally resolved spectroscopy with our current dataset. Considering the Roe et al. (2008) measurement of 1.08 ± 0.02 days for the rotation of Eris and the 48 days interval between our spectra, the indetermination on the rotational phase will add up to about one day, i.e., almost one rotational period.

Why was it not possible to directly detect neither N$_2$ nor CO in Eris spectra? At the temperature predominating at Eris’ orbit (less than 36 K), N$_2$ should be in its α state and therefore show an absorption band at 2160 nm, the only band covered by our K region spectra. However, this band is too narrow for the resolution of the spectra and the SNR is insufficient. Previous spectra of Eris in the near-infrared (Brown et al. 2005, Dumas et al. 2007, Guilbert et al. 2009, Merlin et al. 2009) have had better SNR than our XS spectra, in the K region, and the resolving power sufficient to detect βN$_2$ but have failed to detect it. One possibility is that the majority of the N$_2$, if present on Eris’ surface, is in the α state. Quirico and Schmitt (1997b) showed that CO diluted in αN$_2$ has a narrow transition band. Its $0 - 2$ transition, 2352 nm, is the strongest one and should appear on our data, unfortunately the low SNR in that region of our spectra does not allow us to impose any
constraint on it. However, as mentioned in Sec. 3.3, its 0 – 3 transition at 1579 nm is in a region with good SNR, but we do not detect it. According to the quoted experimental setup in Quirico and Schmitt’s work, this transition would need a resolving power of over 12,000 to be observable, if mixed with αN₂. This resolution is twice as large as that of XS, and therefore undetectable with our observational setup.

To detect the features at 1579 and 2352 nm of CO in a dilution with N₂ in α-state, we would need to have resolving power of more than 10000, which could be achieved with XS using its smallest slit width, 0.4′′. Given a similar set up and that Eris has $m_v < 17$, we would need several hours to gather enough signal as to resolve the bands. The alternative is to wait until Eris enters into a region where the surface temperature rises above that of the phase transition from αN₂ to βN₂, the features get wider and easier to resolve with less resolution, on the other hand they also decrease in intensity, but a proper rebinning of the spectrum should be enough to avoid increasing the exposure times beyond practicality. However this will not happen until the year 2166.

5. Conclusions

Using X-Shooter, a new instrument at the ESO-Very Large Telescope, we obtained two new spectra of Eris. The spectra were obtained at high resolving power, $\lambda/\Delta \lambda \sim 5,000$, covering the 300 to 2480 nm at once. We compared these datasets with those available in the literature and with a dataset of Pluto.

The main results are summarized below:

- The deeper CH₄ absorption bands on Eris indicate a higher content of CH₄ than on Pluto. This interpretation is also supported by the smaller shift of the CH₄ features, from the positions of pure CH₄, when compared to Pluto.
- Neither N₂ or CO are directly detected in our spectra, whereas both have been reported for Pluto.
- CH₄ is probably diluted in another ice, likely N₂ and/or CO. This can be inferred from the systematic wavelength shift of the CH₄ absorption bands in the Eris spectra from all individual observations.
- We do not see major differences between the Eris spectra, indicating that there are no large heterogeneities on the regions of its surface sampled by the two observations.
- We do observe indications of heterogeneity at a more subtle level. Central wavelengths of individual CH₄ absorption bands have different shifts when independent spectra of Eris are compared. Considering only the XS data for Eris, there is an indication of an increasing blue shift with increasing wavelength. This nicely illustrates the advantage the XS design for simultaneously obtaining data over a broad wavelength range.

Acknowledgements. We would like to thank the X-Shooter team who made it possible that we have these data to work on. NPA wants to acknowledge the support from NASA Postdoctoral Program administered by Oak Ridge Associated Universities through a contract with NASA. JL gratefully acknowledges support from the Spanish “Ministerio de Ciencia e Innovación” project AYA2008-06202-C03-02. JC acknowledges support of the NPP program.

Also we thank C. Dumas and F. Merlin who kindly made their (reduced) data available to us, and an anonymous referee for the comments that helped to improve the quality of the manuscript.
References

Abernathy, M.R., Tegler, S.C., Grundy, W.M., Licandro, J., Romanishin, W., Cornelison, D., & Vilas, F. 2009, Icarus, 199, 520

Alvarez-Candal, A., Barucci, M.A., Merlin, F., Guibert, A., de Bergh, C. 2007, A&A, 475, 369

Alvarez-Candal, A., Fornasier, S., Barucci, M.A., de Bergh, C., & Merlin, F. 2008, A&A, 487, 741

Andronico, G., Baratta, G.A., Spinella, F., & Strazzulla, G. 1987, A&A, 184, 333

Brown, M.E., Trujillo, C.A., & Rabinowitz, D.L. 2005, ApJ, 635, L97

Brunetto, R., Caniglia, G., Baratta, G.A., & Palumbo, M.E. 2008, ApJ, 686, 1480

Carraro, G., Maris, M., Bertin, D., Parisi, M.G. 2006, A&A, 460, L39

D'Odorico, S., and 12 colleagues 2006, SPIE, 6269, 626933

Douté, S., Schmitt, B., Quirico, E., Owen, T.C., Cruikshank, D.P., de Bergh, C., Geballe, T.R., & Roush, T.L. 1999, Icarus, 142, 421

Duffard, R., Ortiz, J.L., Santos Sanz, P., Mora, A., Gutiérrez, P.J., Morales, N., & Guirarding, N. 2008, A&A, 479, 877

Dumas, C., Merlin, F., Barucci, M.A., de Bergh, C., Hainault, O., Guilbert, A., Vernazza, P., Doressoundiram, A. 2007, A&A, 471, 331

Givet, L.P. 1978, Journal of Quantitative Spectroscopy and Radiative Transfer, 19, 311

Gladman, B., Marsden, B.G., & VanLaerhoven, C. 2008, Nomenclature in the outer Solar System, in The Solar System Beyond Neptune ed. Barucci, M.A., Boehnhardt, H., Cruikshank, D., & Morbidelli, A. (Univ. of Arizona Press, Tucson), 43

Guilbert, A., Alvarez-Candal, A., Merlin, F., Barucci, M.A., Dumas, C., de Bergh, C., & Delsanti, A. 2009, Icarus, 201, 272

Grundy, W.M., Schmitt, B., & Quirico, E. 2002, Icarus, 155, 486

Johnson, R.E., Garrett, J.W., Boring, J.W., Barton, L.A., & Brown, W.L. 1984, JGR, 89, Suppl., B711

Landolt, A.U. 1992, AJ, 104, 340, 436.

Licandro, J., Grundy, W.M., Pinilla-Alonso, N., & Leisy, P. 2006, A&A, 458, L5

Merlin, F., Alvarez-Candal, A., Delsanti, A., Fornasier, S., Barucci, M.A., DeMeo, F.E., de Bergh, C., Doressoundiram, A., Quirico, E., & Schmitt, B. 2009, AJ, 137, 315

Merlin, F., Barucci, M.A., de Bergh, D., DeMeo, F.E., Alvarez-Candal, A., Dumas, C., Cruikshank, D.P. 2010, Icarus, 210, 930

Moore, M.H., Donn, B., Khanna, R., & A'Hearn, M.F. 1983, Icarus, 54, 388

Patel, C.K.N., Nelson, E.T. & Kerl, R.J. 1980, Nature, 286, 368

Prokhvatilov, A.I., & Yantsevich, L.D. 1983, Sov. J. Low Temp. Phys., 9, 94

Quirico, E., & Schmitt, B. 1997a, Icarus, 127, 354

Quirico, E., & Schmitt, B. 1997b, Icarus, 128, 181

Rampadarat, K.R., Caldwell, J. & McClure, D.S. 1978, Icarus, 35, 400

Roe, H.G., Pike, R.E., & Brown, M.E. 2008, Icarus, 198, 459

Schaller, E.L., & Brown, M.E. 2007, ApJ, 659, L61

Scott, T.A. 1976, Phys. Reports, 27, 89

Stansberry, J., Grundy, W., Brown, M., Cruikshank, D., Spencer, J., Trilling, D., & Margot, J.-L. 2008, Physical Properties of Kuiper Belt and Centaur Objects: Constraints form the Spitzer Space Telescope, in The Solar System Beyond Neptune, ed. M. A. Barucci, H. Boehnhardt, D. Cruikshank, & A. Morbidelli (Tucson: Univ. of Arizona Press), 161

Stern, S.A., Bue, M.W., & Trafton, L.M. 1997, AJ, 113, 827

Strazzulla, G., Baratta, G.A., Johnson, R.E., & Donn, B. 1991, Icarus, 91, 101

Tegler, S.C., Cornelison, D.M., Grundy, W.M., Romanishin, W., Abernathy, M.R., Bovyn, M.J., Burt., J.A., Evans, D.E., Maleszewski, C.K., Thompson, Z., & Vilas, F. 2010, ApJ, 725, 1296

Thompson, W.R., Murray, B.G.J.P.T., Khare, B.N., & Sagan, C. 1987, JGR, 92, 14933

Young, E.F., Binzel, R.P., & Crane, K. 2001, ApJ, 121, 552