The role of platelet-activating factor (PAF) as a mediator of increased conjunctival vascular permeability was investigated in a guinea-pig model of immediate hypersensitivity. Vascular permeability of the conjunctiva was determined by measuring the albumin content in lavage fluid (LF) after topical challenge with either PAF or ovalbumin. PAF produced a dose-dependent increase of the vascular permeability within minutes. Topical pretreatment with levocabastine, a potent histamine H1-antagonist demonstrated no effect towards the vascular permeability in response to PAF provocation. Pretreatment with eyedrops containing the specific PAF antagonist BN 52021 (1%) showed a significant inhibition of both the vascular permeability (60.2%) and the clinical score (27.5%) after PAF challenge. In sensitized guinea-pigs, levocabastine showed a marked inhibition of both the vascular permeability (80.5%) and the clinical score (70%) after topical challenge with ovalbumin. BN 52021, although to a lesser extent, showed a similar effect towards the vascular permeability (26.8%) and the clinical score (28%) after antigen provocation. When BN 52021 and levocabastine were administered in combination, the vascular permeability was significantly decreased after antigen challenge in comparison with eyes pretreated with levocabastine alone. These results indicate that PAF plays a role in the acute phase of allergic conjunctivitis in the guinea-pig.

Key words: Allergic conjunctivitis, Guinea pig, H1-antagonist, PAF antagonist, Platelet-activating factor (PAF), Vascular permeability

Introduction

Allergic conjunctivitis is characterized by bilateral hyperaemia, itching, tearing and oedema. Increased vascular permeability has also been described as an important feature of allergic conjunctivitis.1 It is an immediate hypersensitivity reaction (type I); after interaction of the antigen–IgE antibody complex with the mast cell, the clinical signs and symptoms appear within minutes. Histamine, released from the granules of the mast cells, seems to play a key role but other mediators including leukotrienes (LT), prostaglandins (PG) and platelet-activating factor (PAF) seem to take part in the inflammatory process.2 PAF has been shown to induce a wide variety of biological actions such as chemotaxis and activation of neutrophils3 and eosinophils;4 moreover PAF induces increased vascular permeability.5 On a molar basis, PAF appeared to be 1,000 to 10,000 times more potent in inducing vascular permeability changes in skin compared with histamine.6 Because of these effects, PAF has been implicated in the pathogenesis of allergic diseases including allergic conjunctivitis.

In a number of studies PAF receptor antagonists have been shown to be very effective in inhibiting various effects after PAF challenge in different models. In the eye, PAF antagonists have been shown to be capable of inhibiting corneal oedema formation and pupillary constriction after intracameral injection of PAF7 and they partially reduced the endotoxin-induced breakdown of the blood–aqueous barrier.8 Furthermore, the specific PAF antagonist BN 52021 showed a significant inhibition of oedema, leucocyte infiltration and vascularization of the cornea in a rabbit model of immunologic keratitis9 after challenge with albumin. In view of these findings, we studied the inhibitory effect of BN 52021 towards microvascular permeability and clinical signs after PAF and antigen provocation in a guinea-pig model of immediate hypersensitivity.

Materials and Methods

Female Hartley strain guinea-pigs (weight range, 350–450 g) were sensitized to ovalbumin...
housed and cared in accordance with the guidelines of the ARVO statement for the use of animals in ophthalmic and vision research.

Clinical score: For estimation of the inflammatory signs, the total impression of hyperaemia, oedema and swelling was combined in a clinical score (CS) and expressed by visual analogic scales 0–100% by two independent observers.

Albumin assay: Total albumin concentration in LF was determined using radial immunodiffusion. Samples were tested in an appropriate dilution. Agar plates (1.5%) containing a 1/100 dilution of guinea-pig albumin anti-serum were used for this purpose. Various concentrations of guinea-pig albumin were used as a standard.

Statistical evaluation: Student’s *t*-test was used for statistical calculations. A *p* value < 0.01 was taken as significant.

Results

Effects of PAF: Topical application of PAF (10 µg) resulted, within 5 min, in an inflammatory reaction consisting of hyperaemia, conjunctival oedema and periorbital swelling which disappeared within 4 h. The maximum CS was observed after 30 min.

PAF provocation produced a dose related increase of the albumin concentration in LF (Fig. 1). The minimal dose to provoke a leakage of albumin from the conjunctiva vessels was 3 µg/eye. Maximum levels of albumin in LF were found after 30 min, showing a decline to zero 4 h after challenge (Fig. 2). The increase of the vascular permeability with time showed a straight correlation with the development of clinical signs and symptoms.

Pretreatment with BN 52021 showed a significant effect on both the CS (Fig. 3) and the albumin concentration in LF (Fig. 4). The mean albumin content in LF after BN 52021 treatment was inhibited (by 60.2%) in comparison with control eyes.

Levocabastine showed no effect on the CS and failed to reduce the conjunctival microvascular permeability after PAF administration.

Effects of ovalbumin: Ovalbumin administration produced a dose-dependent increase in vascular permeability in sensitized animals (data not shown). As a useful concentration for our experiments, a 0.5% solution of ovalbumin was used (dose per eye 125 µg). The inflammatory response to ovalbumin showed a similar clinical reaction in comparison with PAF. After 24 h the
The role of PAF in allergic conjunctivitis

eyes of the challenged guinea-pigs were free from signs of inflammation.

Levocabastine as a pretreatment significantly reduced the mean of the clinical score (Fig. 5) and showed a significant inhibition (80.5%) of the vascular permeability (Fig. 6). BN 52021 alone showed a significant effect towards the inflammatory response after ovalbumin challenge, reducing the clinical score and inhibiting the vascular permeability (26.8%). The combination of levocabastine (0.05%) and BN 52021 (1%) in one solution showed an even greater inhibitory effect towards the clinical score and vascular permeability (Figs. 5 and 6) in comparison with levocabastine alone. The mixture showed a significant inhibition of the mean clinical score (73%) and the vascular permeability (79%), as compared with the effect of levocabastine alone.

Discussion

This study shows that PAF plays a role in the acute phase of allergic conjunctivitis. Topical application of PAF to the eyes of guinea-pigs resulted in an inflammatory response including hyperaemia, oedema and swelling of the conjunctiva.

FIG. 2. Time course for albumin recovery in LF in response to PAF (10 μg/eye) and ovalbumin (250 μg/eye) after 30 min (n = 8). PAF, ○; ovalbumin, ●.

FIG. 3. Effect of levocabastine 0.05% (Levo) and BN 52021 1% (BN) on the clinical score in response to PAF provocation (10 μg/eye) after 30 min (n = 8).
*Significant difference from eyes receiving only the solvent (control) p < 0.01.

FIG. 4. Effect of levocabastine 0.05% (Levo) and BN 52021 1% (BN) on albumin recovery in LF in response to PAF provocation (10 μg/eye) after 30 min (n = 8).
*Significant difference from eyes receiving only the solvent (control) p < 0.01.

FIG. 5. Effect of levocabastine 0.05% (Levo), BN 52021 1% (BN) and a combination of both (Levo + BN) on the clinical score in response to ovalbumin provocation (125 μg/eye) after 30 min (n = 5–8).
*Significant difference from eyes receiving only the solvent (control) p < 0.01.
*Significant difference from eyes receiving levocabastine (Levo) p < 0.01.
F. Meijer, J. L. van Delft and N. J. van Haeringen

Allergic conjunctivitis. However, a substantial part of the inflammatory response remains present using histamine antagonists as a pretreatment, reflecting the possible involvement of other mediators. Our study shows that pretreatment with BN 52021 alone and in combination with levocabastine before antigen challenge resulted in a significant inhibition of the clinical score and vascular permeability (Figs. 5 and 6). This suggests that the non-histaminergic component of the acute phase of allergic conjunctivitis is at least partly mediated by PAF. Other reports also showed a significant effect of different PAF antagonists on the vascular permeability in various types of inflammation.11,17

The mechanism of action of PAF is still not completely understood. PAF receptors situated on target cells are thought to be responsible for the effects of PAF.19 But it has also been suggested that PAF employs its activity via the secondary synthesis of lipooxygenase products.19 It is likely that many of the effects attributed to PAF are dependent on the secondary generation of LT and PG. PAF has been shown to release LT,20 and in a rabbit conjunctival provocation model the inflammatory response after PAF challenge could be inhibited using a lipooxygenase inhibitor.21 Also, topical administration of LT results in a similar inflammatory response when compared with PAF provocation.22 However, LT antagonists appeared to be less effective in suppressing the conjunctival vascular permeability after antigen administration in comparison with exogenous LT challenge in guinea-pigs. Because of the significant effect of BN 52021 after ovalbumin challenge, it seems that PAF plays a more prominent role compared to LT in the acute phase of allergic conjunctivitis in guinea-pigs.

Because levocabastine pretreatment showed no effect on CS and vascular permeability after PAF administration, it seems that PAF does not trigger the mast cell to release histamine from its granules. This is confirmed by the observation that during in vitro experiments PAF was not able to release histamine from human dispersed cutaneous mast cells.23

Because albumin is not produced by the lacrimal gland of the guinea-pig,24 the concentration of albumin on the ocular surface of the eye is a result of the flow of tissue fluids and other serum proteins across the epithelium to the ocular surface under the influence of several mediators. The LF collected from the surface of the eye at this stage is a mixture of 'leaking' serum and reflex tearing from the lacrimal gland, resulting in some variation between animals but not between the eyes of one animal. Stocket al.10 observed that in the conjunctival system the
The role of PAF in allergic conjunctivitis

clinical evaluation was as good as an experimental estimate of the mediator effect measured by extravasation of Evans blue. Because, in our model, clinical score and albumin leakage showed a clear correlation, the observed differences in albumin leakage are due to pharmacological effects and not to the collection method of the LF.

Although the major response in the immediate hypersensitivity reaction seems to be histamine mediated, the effectiveness of BN 52021 in inhibiting the inflammatory response after ovalbumin challenge demonstrates the important role of PAF in the acute phase of allergic conjunctivitis.

References

1. Trécmé ST. Medical therapy for ocular allergy. Mayo Clin Proc 1992; 67: 557–565.
2. Abelson MB, Schaefer K. Conjunctivitis of allergic origin: immunologic mechanism and current approaches to therapy. Surv Ophthalmol 1993; 38: 115–132.
3. Zorati EM, Sedgwick JB, Vritis RR, Busse WW. The effect of platelet-activating factor on the generation of superoxide anion in human eosinophils and neutrophils. J Allergy Clin Immunol 1991; 88: 749–758.
4. Kroegel C, Yukawa T, Dent G, Chaner P, Chung KF, Barnes PJ. Platelet activating factor induces eosinophil peroxidase release from purified eosinophils. Immunology 1988; 64: 559–562.
5. Braquet P, Touqui L, Shen TY, Vergaftig BB. Perspectives in platelet-activating factor research. Pharmacol Rev 1987; 39: 97–145.
6. Hwang SB, Li CI, Iarn MH, Shen TY. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor antagonist. Lab Invest 1985; 52: 617–620.
7. Sheng Y, Birde DL. Intracameral injected platelet activating factor (PAF) induces marked intracorneal inflammatory reactions. Curr Eye Res 1992; 11: 1067–1078.
8. Lin N, Bazan HEP, Braquet P, Bazan NG. Prolonged effect of a new platelet-activating factor antagonist on vascular permeability in an endotoxin model. Curr Eye Res 1991; 10: 1924.
9. Verbeij NJ, van Haeringen NJ. Interference of a ginkgolide with models of corneal diseases. In: Braquet P, ed. Ginkgolides — Chemistry, Biology, Pharmacology and Clinical Perspectives, Barcelona: JR Prous Science Publishers SA, 1988; 749–757.
10. Gautheron PD, Coulbaux L, Sugue MF. A study of PAF-induced ocular inflammation in the rat and its inhibition by the PAF antagonist, L-652731. J Pharmacol Exp Ther 1987; 241: 152–159.
11. Stock RL, Roth SI, Kim ED, Walsh MK, Thuman R. The effect of PAF, histamine and ethanol on the vascular permeability of the guinea pig conjunctiva. Invest Ophthalmol Vis Sci 1990; 31: 987–992.
12. Woodward DF, Spada CS, Nieves Al, Hawley SB, Williams JS. Platelet-activating factor causes goblet cell depletion in the conjunctiva. Eur J Pharmacol 1989; 128: 25–30.
13. Morley J, Page CP, Paul W. Inflammatory actions of platelet activating factor in guinea pig skin. Br J Pharmacol 1983; 80: 503–509.
14. Jager GV, van Delft JL, van Haeringen NJ, Verbeij NJ, Braquet P. Antagonists of platelet activating factor prevents prostaglandin E1-induced ocular hypertension in rabbits. Prostaglandins 1993; 45: 97–105.
15. Woodward DF, Ledgard SE, Nieves AL. Conjunctival immediate hypersensitivity: re-evaluation of histamine involvement in the vasopermeability response. Invest Ophthalmol Vis Sci 1986; 27: 57–65.
16. Abelson MB, George MA, Schaefer K, Smith LM. Evaluation of the new ophthalmic antihistamine, 0.05% levocabastine, in the clinical allergen challenge model of allergic conjunctivitis. J Allergy Clin Immunol 1994; 94: 458–464.
17. Rubin RM, Samples JR, Rosenhaus JT. Prostaglandin-independent inhibition of ocular vascular permeability by a platelet-activating factor antagonist. Arch Ophthalmol 1988; 106: 1116–1120.
18. Evans TW, Chung KF, Rogers DF, Barnes PJ. Effect of platelet-activating factor on arterial vascular permeability: possible mechanisms. J Appl Physiol 1989; 65: 479–486.
19. Spencer DA. An update on PAF. Clin Exp Allergy 1992; 22: 521–524.
20. Pepelow PV, Milchalis D. Platelet-activating factor and its relationship to prostaglandins, leukotrienes and other aspects of arachidonic metabolism. Prostaglandins Leukot Essent Fatty Acids 1990; 40: 71–82.
21. Muller A, Meynier P, Bonne C. PAF induced conjunctivitis in the rabbit is mediated by peptide-leukotrienes. J Ocul Pharmacol 1990; 6: 227–232.
22. Gary RS, Woodward DF, Nieves AL, Williams SS, Gleason JG, Wasserman MA. Characterization of the conjunctival vasopermeability response to leukotrienes and their involvement in immediate hyperemia. Invest Ophthalmol Vis Sci 1988; 29: 119–126.
23. Thomas G, Church MK. Platelet-activating factor does not release histamine from human dispersed cutaneous mast cells. J Clin Exp Allergy 1990; 20: 377–382.
24. Thörn I, van Aggelen EJ, Glatius E, Tan KL, van Haeringen NJ. Comparison of tears and lacrimal gland fluid in the rabbit and guinea pig. Curr Eye Res 1985; 4: 913–920.

Received 17 January 1995; accepted in revised form 7 March 1995