The current study conducted to detect the genetic diversity between four genetic groups of Kurdish local chicken using RAPD-PCR technique. Ten random markers used to amplified DNA were selected for genotyping the four lines. One hundred twenty four polymorphic bands were amplified, the bands size ranged between (2500 and 100 bp). The primer (OPA-05, OPA-18) produced maximum number of polymorphic bands, while primers named (OPA-16) produced minimum number of polymorphic bands. The (WNFS) genetic group showed the highest number of amplified fragments (55) for both male and female (30), (25) respectively. While (BBN) genetic group showed the lowest number of amplified fragments (20) for both male and female (7), (13) respectively. According to the results obtained from the current study, it can be conclude that the four genetic groups differ genetically. Moreover the results will help the breeders to study new selection strategies between the four genetic groups.

Abstract

The current study conducted to detect the genetic diversity between four genetic groups of Kurdish local chicken using RAPD-PCR technique. Ten random markers used to amplified DNA were selected for genotyping the four lines. One hundred twenty four polymorphic bands were amplified, the bands size ranged between (2500 and 100 bp). The primer (OPA-05, OPA-18) produced maximum number of polymorphic bands, while primers named (OPA-16) produced minimum number of polymorphic bands. The (WNFS) genetic group showed the highest number of amplified fragments (55) for both male and female (30), (25) respectively. While (BBN) genetic group showed the lowest number of amplified fragments (20) for both male and female (7), (13) respectively. According to the results obtained from the current study, it can be conclude that the four genetic groups differ genetically. Moreover the results will help the breeders to study new selection strategies between the four genetic groups.

Keywords: Kurdish Chicken, Molecular Genetics, Characterization, RAPD.
Introduction

The evolution of genetic science during the past decades, and knowledge of the impact of environment factors contribute to the emergence of new adapted poultry strains. Several countries have categorized their livestock (1, 2, 3) in order to satisfy their genetic characteristics and know what genes they have. Therefore the progress of genetic science especially by development of molecular techniques, it has been possible to make selection (4), Identification (5), characterization (6), and genetic improvement (7) of livestock.

Iraq is one of the countries that have wide varieties of livestock animals. Accordingly a project was launched several years ago to characterize the local chicken in the north (Kurdistan region). Many traits were evaluated such as egg trait (8, 9, 10, 11, 12, 13, 14, 15), carcass traits (16, 17, 18, 19, 20), characterization (21), reproduction (22), production (9, 23, 24). More over (25) studied the polymorphism of genetic lines by using RAPD markers. The method named Randomly Amplified polymorphic DNA (RAPD) was used to characterize several organisms (26) genome based on whole genom (27), and chromosome level (28).

Up to date, there is no research on the genetic convergence between these lines, which stated as the main objective of this experiment between the production lines in the province of Kurdistan region.

Materials and methods

Chickens lines:

The current study was carried out in July 2019. Blood samples were collected from a total of (52) local chickens bred at the farm of animal production department, college of Agriculture, University of Salahaddin Erbil, and at animal production department, college of Agriculture, University of Sulaimani, in association with the ministry of Agriculture in KGR-Iraq. The chickens were representing Black (B=12), Black with brawn neck (BBN=18), white with shank feather (WSF=12), and white non-feathering shank (WNFS=10) as it shown in Table 1.

Blood samples collection and DNA extraction:

At least 2.5 ml of fresh blood sample was withdrawn from wing vein from each of the chicken in EDTA tube, (23) gauge needle. The blood was gently mixed with anticoagulant, and kept on ice. Subsequently the blood samples were transported to the laboratory and stored at –20 C° until the isolation of genomic DNA.

Genomic DNA was isolated using a commercial kit, AccuPrep® Genomic DNA Extraction kit (Bioneer, South Korea) with slight modifications. [20 μl of proteinase K, total volume 200 μl of 20 μl whole blood and 180 μl of PBS, and 200 μl of Binding buffer (GC)] were added to 1.5-μl Eppendorf tube, the samples mix immediately by vortex mixer and then incubated at 60 °C for 10 min in boiling water bath. After incubation, 100 μl isopropanol was added and gently pipetted for a few min, then samples spin down at 10.000 rpm for 1 min. The cleared lysates were transferred into binding column tube (2 ml) then centrifuged at 12.000 rpm for 2 min and then the binding column tube transferred to new (2 ml) tube.

The samples were concentrated and the purity of the extracted DNA examined using Nanodrop (Nano-Drop2000, Delaware USA) based on 260 and 280 nm absorbance and agarose gel electrophoresis analysis (29).

RAPD-PCR condition and electrophoresis:

Table (2) was shown the 10 different decamer oligonucleotides RAPD markers, which were
used for genotyping the four lines. The genomic DNA for the four lines was amplified by PCR with following profile: initial denaturation of 5 min at 94 °C; 40 cycles of 1 min at 94 °C, 1 min at 43 °C and 1 min at 72 °C with final elongation of 5 min at 72 °C. The PCR products were resolved by electrophoresis through 1.5% agarose gel and visualized by Ethidium bromide staining (30).

The RAPD bands were scored visually from the Ethidium bromide staining agarose gel. The analysis was based on the generated date from the detection of polymorphic fragments. The genotypes were analyzed in the form of binary variable by scoring the presence as (1) and absence (0). The genetic distance and genetic identity among the genetic groups in both males and females were calculated using Nei equations (31) by using (pop gene) software.

Results and discussion

Table (2) was shown all of primers that were used with their information. A total of 10 primers were screened for RAPD analysis. One hundred twenty four polymorphic bands were amplified, the bands size ranged between 100 bp and 2500 bp. The primer (OPA-05, OPA-18) produced maximum number of polymorphic bands, while primers named (OPA-6) produced minimum number of polymorphic bands. The detected polymorphisms were varied among the four genetic groups (black, black brown neck, white shank feather, and white non-feathering shank). The (WNFS) genetic group showed the highest number of amplified fragments (55) for both male and female (30, 25) respectively. While (BBN) genetic group showed the lowest number of amplified fragments (20) for both male and female (7, 13) respectively as we showed in (Table 3).

Table (4) shows the Na and Ne, h, I for the two groups of male and female Kurdish local chicken was analyzed using ten RAPD markers. The genetic distance in male groups found highest (D=1.2040) between B and WSF and lowest (D=0.1054) between (B) and (WNFS). While in female groups it was found that the highest genetic distance (D=0.9163) was observed between (WSF) and (WNFS) and the lowest (D=0.2231) was between (BBN) and (WNFS). In addition, the males genetic identity was higher (I=0.900) between (B) and (WNFS), and lower (I=0.3000) was between both (B), and (WSF), and between (BBN) and (WSF). In females genetic identity the highest (I=0.8000) was between (BBN) and (WNFS) and the lowest (I=0.4000) was between (WSF) and (WNFS) (Table 5). Dendrogram was constructed to show the phylogenetic relationships among the four lines Figure 1 was shown the male phylogenetic relationship that indicates the (WSF) genetic group to be the most distance from the other genetic groups, while B and BBN were closely related. As for female phylogenetic relationship (Figure 2) indicate that (WNFS) line recorded most distance from the other genetic groups, while (BBN) and (WSF) were closely related.

It is obvious that the project of breeding local chicken in Kurdistan region government-Iraq was started 15 years ago. The four mapped genetic groups (B, BBN, WSF, WNFS) were bred and selected for 12 generation, in the directorate of agricultural research in Erbil, moreover it is selected according to the feathering color and appearance of shank feather (12). The results of genetic distance in male genetic groups of this study supporting the findings of (21) who recorded that there was no significant difference between genetic groups (B) and (WNFS) in their egg length, which both inherited by roosters (32). Moreover the (WSF) genetic group was higher in their egg length while the lower recorded for the (BBN) genetic group. Furthermore the genetic distance of the hen genetic groups was linked to the breadth traits, which already inherited by hen. According to the correlation results found by (21), there is
no significant difference between genetic groups (BBN) and (WSF), moreover the (WNFS) genetic group was the higher and the (B) genetic group was the lowest in egg breadth trait. (33) used the RAPD marker in their study to characterize Five Egyptian indigenous chicken strains and they found that RAPD marker is a valuable tool to evaluate genetic diversity of chicken.

Conclusions

According to the results obtained from the current study, it can be conclude that the four lines differ genetically. Moreover the results will help the breeders to study new selection strategies between the four genetic groups. Further studies are needs to provide the genetic map of these genetic groups based on microsatellite markers.

Table 1: the information of sample collected

Line	Erbil Male	Erbil Female	Sulaymaniyah Male	Sulaymaniyah Female	Total
B	2	4	2	4	12
BBN	4	5	4	5	18
WSF	2	4	2	4	12
WNFS	2	3	2	3	10
Total	10	16	10	16	52

Table 2: List of RAPD markers

Primer codes	Primer sequence	(G+C) %	Size range of Fragments (bp)
OPA-03	5’-AGT CAG CCA C-3’	60.0	160 - 1300
OPA-04	5’-AAT CGG GCT G-3’	60.0	600 – 1200
OPA-05	5’-AGG GGT CTT G-3’	60.0	500 – 3000
OPA-12	5’-TCG GCG ATA G-3’	60.0	450 - 2800
OPA-16	5’-AGC CAG CCA A-3’	60.0	300 – 1700
OPA-18	5’-AGG TGA CCG T-3’	60.0	130 - 1500
OPA-19	5’-CAA ACG TCG G-3’	60.0	550 – 2300
OPA-20	5’-GTT GCG ATC C-3’	60.0	400 - 1600
OPB-07	5’-GGT GAC GCA G-3’	70.0	450 - 1400
Table 3: Number of bands amplified in each primer for the four genetic groups

Primer codes	B	BBN	WSF	WNFS	Total*				
	Male	Female	Male	Female	Male	Female			
OPA-03	0	3	0	0	3	1	4	3	14
OPA-04	0	0	0	0	4	1	4	4	13
OPA-05	4	0	0	4	0	0	7	5	20
OPA-12	0	0	0	0	0	0	1	1	2
OPA-16	0	0	0	0	0	0	0	1	1
OPA-18	4	5	1	2	4	0	2	2	20
OPA-19	3	3	1	1	3	4	2	2	19
OPA-20	1	0	0	3	0	0	5	1	10
OPB-07	0	0	5	2	3	3	3	2	18
OPC-02	0	0	0	1	0	0	2	4	7
Total**	12	11	7	13	17	9	30	25	124

B= Black, BBN= Black brown neck, WSF= White with shank feather, WNFS= White non-feathering shank. * The total of bands amplified for each primer. ** The total of bands amplified for each gender within genetic groups.

Table 4: The observed number of alleles, effective number, and gene diversity of males and females in Kurdish local chicken

Locus	Male (N= 4)	Female (N= 4)						
	Na	Ne	H	I	Na	Ne	h	I
OPA-03	2.0000	1.6000	0.3750	0.5623	2.0000	2.0000	0.5000	0.6931
OPA-05	2.0000	2.0000	0.5000	0.6931	2.0000	2.0000	0.5000	0.6931
OPA-12	2.0000	2.0000	0.5000	0.6931	2.0000	1.6000	0.3750	0.5623
OPA-16	2.0000	1.6000	0.3750	0.5623	2.0000	1.6000	0.3750	0.5623
OPA-18	2.0000	2.0000	0.5000	0.6931	1.0000	1.0000	0.0000	0.0000
OPA-19	2.0000	1.6000	0.3750	0.5623	1.0000	1.0000	0.0000	0.0000
OPA-20	1.0000	1.0000	0.0000	0.0000	1.0000	1.0000	0.0000	0.0000
OPA-04	2.0000	1.6000	0.3750	0.5623	2.0000	2.0000	0.5000	0.6931
OPC-02	2.0000	1.6000	0.3750	0.5623	2.0000	2.0000	0.5000	0.6931
OPB-07	2.0000	1.6000	0.3750	0.5623	2.0000	1.6000	0.3750	0.5623
Mean	1.9000	1.6600	0.3750	0.5453	1.7000	1.5800	0.3125	0.4460
S.D.	0.3162	0.2989	0.1443	0.2013	0.4830	0.4367	0.2224	0.3130
Na = observed number of alleles; Ne = effective number of alleles; h = gene diversity; I = Shannon’s information index.

Table 5: Nei’s unbiased measures of genetic identity and genetic distance for male and female Kurdish local chicken

Gender	Genetic groups	B	BBN	WSF	WNFS
Male	B	1	0.6000	0.3000	0.9000
	BBN	0.5108	1	0.3000	0.5000
	WSF	1.2040	1.2040	1	0.4000
	WNFS	0.1054	0.6931	0.9163	1
Female	B	1	0.5000	0.5000	0.7000
	BBN	0.6931	1	0.6000	0.8000
	WSF	0.6931	0.5108	1	0.4000
	WNFS	0.3567	0.2231	0.9163	1

B= Black, BBN= Black brown neck, WSF= White with shank feather, WNFS= White non-feathering shank

Figure 1: Phylogenetic dendrogram of the four male genetic groups based on Nei genetic distance.

Figure 2: Phylogenetic dendrogram of the four female genetic groups
References:

1) Al-Jallad T, Choumane W, Hmeshe M. Characterization and estimation of genetic diversity in two Syrian chicken phenotypes using molecular Markers. Int. J. Poult. Science. 2012;11:16-22.

2) Sapon MA, Hossain MS, Nahar TN. Morphometric Characterization and Molecular Identification of Different Cattle in Some Selected Regions of Bangladesh. International Journal of Innovation and Applied Studies. 2014 Oct 1;8(4):1791.

3) Ibrahim AM, Sabry A M, Hassan MM, El-Hallous E I and Mohamed AA. Genetic characterization of local chicken from Taif region in Saudi Arabia using RAPD marker. International journal of biosciences, 2015; 6 (10): 142-148.

4) Chen CY, Misztal I, Aguilar I, Tsuruta S, Meuwissen TH, Aggrey SE, Wing T, Muir WM. Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: an example using broiler chickens. Journal of animal science. 2011 Jan 1;89(1):23-8.

5) Farrag SA, Tanatarov AB, Soltan ME. Using of DNA fingerprinting in poultry Research. International Journal of poultry science. 2010;9(5):406-16.

6) Meydan H, Jang CP, Yıldız MA, Weigend S. Maternal origin of Turkish and Iranian native chickens inferred from mitochondrial DNA D-loop sequences. Asian-Australasian journal of animal sciences. 2016 Nov;29(11):1547.

8) Hermiz HN, Abas KA, Al-Khatib T R, Amin SM, Ahmed AM and Hamad DA. Effect of strain and storage period on egg quality characteristics of local Iraqi laying hens. Res. Opin. Anim. Vet. Sci., 2012; 2 (1): 98-101.

9) Abas KA, Hermiz HN, Al-Khatib TR, Amin SM, Ahmed AM, Hamad DA. Comparative productive performance of local hens in Erbil-Kurdistan region. Journal of zankoy sulaimani. 2014;16:203-6.

10) Abdulla SS, Kirkuki SM, Mohammed RM and Ali SM. (). Effect of different lines of local Iraqi chicken and ISA Brown on egg internal quality. Assiut Vet. Med. J., 2016; 62(148): 1-6.

11) Aziz SR, Shaker A, Korkuki SM. Changes in external egg traits of chickens during pre-and post-molting periods. Poultry Science Journal. 2017 Oct 1;5(2):91-5.

12) Shaker AS, Aziz SR. Internal traits of eggs and their relationship to shank feathering in chicken using principal component analysis. Poultry science journal. 2017 Jun 1;5(1):1-5.

13) Shaker AS, Kirkuki SM, Aziz SR, Jalal BJ. Influence of Genotype and Hen Age on the Egg Shape Index. Int. J. Biochem. Biophy. Mol. Biol. 2017;2:68-70.

14) Shaker AS, Abdulla SM. Principal component analysis of internal egg traits for four genetic groups of local chicken.
Shaker AS, Mustafa NA, Ameen QA, Hermiz HN, Saadullah MA and Ramadan AA. Egg traits uniformity comparison between local chicken and two commercial strain using coefficient of variation. The IRES 170th international conference (pp. 10-13). Rome: IRES. 2019.

Hermiz HN, Abas KA, Ahmed AM, Al-Khatib TR, Amin SM and Hamad DA. Effect of genetic lines and season on body weights of chicks. Proceedings of the 2014 international conference on biology and biomedical engineering, (pp. 184-187). Venice.

Hermiz HN, Sardary SY, Al-Khatib TR, Salih SJ and Shaker AS. Comparison study of carcass traits in roosters resulted from different local lines and their crosses with ISA brown. International journal of advances in science engineering and technology, 2016; 4 (3): 186-189.

Hermiz HN, Abdullah MS. GENETIC AND NON GENETIC PARAMETERS FOR BODY WEIGHTS OF TWO IRAQI LOCAL CHICKENS. The Iraqi Journal of Agricultural Science. 2020;51(1):323-32.

Hermiz HN Ameen QA, Shaker A., Sardary SY and Al-Khatib TR. Principal component analysis applied to live body weight and carcass traits in ISA brown and Kurdish local roosters. Proceedings of Academisera 32th international conference, (pp. 50-53). Vienna. 2018.

Hermiz HN Ameen QA, Shaker A., Sardary SY and Al-Khatib TR. Prediction the carcass uniformity in Kurdistan local chicken by using coefficient of variation. Proceeding of academisera 32th international conference, (pp. 46-49). Vienna.2018.

Shaker AS, Hermiz HN, Al-Khatib TR, Mohammed RM. Egg shape characterization for four genetic groups of Kurdish local chickens. Food and nutrition science. 2016;1:20-5.

Mavi GK, Dubey PP, Cheema RS. Comparison of sperm attributes in two indigenous layer breeds and their relationship with fertility. Theriogenology Insight-An International Journal of Reproduction in all Animals. 2017;7(2):123-9.

Omer AA, Kirkuki SM and Abdulla HK. Comparative analysis for production traits of local chicken and ISA brown in KGR-Iraq. Assiut Vet. Med. J., 2016; 62 (149): 25-31.

Hermiz HN Ameen QA, Shaker A., Sardary SY and Al-Khatib TR. Egg production evaluation for Kurdish local chicken in two different environments and estimates of their genetic parameters. The IRES 170th international conference (pp. 27-30). Rome: The IRES.2019.

Abdulrazaq HS. Polymorphism between five local chicken in Erbil using RAPD markers. ZANCO Journal of Pure and Applied Sciences. 2016 May 17;28(1).

Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic acids research. 1990 Nov 25;18(22):6531-5.

Lynch M, Milligan BG. Analysis of population genetic structure with RAPD
markers. Molecular ecology. 1994 Apr;3(2):91-9.

28) Levin I, Crittenden LB, Dodgson JB. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA (RAPD) markers. Genomics. 1993 Apr 1;16(1):224-30.

29) Magdeldin S, editor. Gel electrophoresis: Principles and basics. BoD–Books on Demand; 2012 Apr 4.

30) Vincent A, Scherrer K. A rapid and sensitive method for detection of proteins in polyacrylamide SDS gels: Staining with ethidium bromide. Molecular Biology Reports. 1979 Dec 1;5(4):209-14.

31) Nei M. Genetic distance between populations. The American Naturalist. 1972 May 1;106(949):283-92.

32) Rath PK, Mishra PK, Mallick BK, Behura NC. Evaluation of different egg quality traits and interpretation of their mode of inheritance in White Leghorns. Veterinary world. 2015 Apr;8(4):449.

33) Rabie TS, Abdou AM. Genetic diversity and relationship among Egyptian indigenous chicken strains using random amplification of polymorphic DNA. Poult. Sci. 2010;30:473-82.