DAVENPORT’S CONSTANT FOR GROUPS WITH LARGE EXPONENT

GAUTAMI BHOWMIK AND JAN-CHRISTOPH SCHLAGE-PUCHTA

Abstract. Let G be a finite abelian group. We show that its Davenport constant $D(G)$ satisfies $D(G) \leq \exp(G) + \frac{|G|}{\exp(G)} - 1$, provided that $\exp(G) \geq \sqrt{|G|}$, and $D(G) \leq 2\sqrt{|G|} - 1$, if $\exp(G) < \sqrt{|G|}$. This proves a conjecture by Balasubramanian and the first named author.

1. Introduction and results

For an abelian group G we denote by $D(G)$ the least integer k, such that every sequence g_1, \ldots, g_k of elements in G contains a subsequence g_{i_1}, \ldots, g_{i_s} with $g_{i_1} + \cdots + g_{i_s} = 0$.

Write $G = \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_r}$ with $n_1|\ldots|n_r$, where we write \mathbb{Z}_n for $\mathbb{Z}/n\mathbb{Z}$. Put $M(G) = \sum n_i - r + 1$. In several cases, including 2-generated groups and p-groups, the value of $D(G)$ matches with the obvious lower bound $M(G)$, however, in general this is not true. In fact there are infinitely many groups of rank 4 or more where $D(G)$ is greater than $M(G)$ see, for example, [11]. As far as upper bounds are concerned we have only rather crude ones. One such example, which is appealing for its simple structure, is the estimate $D(G) \leq \exp(G)(1 + \log \frac{|G|}{\exp(G)})$, due to van Emde Boas and Kruyswijk [4]. This bound, for the case when $\frac{|G|}{\exp(G)}$ is small, was improved by Bhowmik and Balasubramanian [1] who proved that $D(G) \leq \frac{|G|}{k} + k - 1$, where k is an integer $\leq \min(\frac{|G|}{\exp(G)}, 7)$, and conjectured that one may replace the constant 7 by $\sqrt{|G|}$. Here we prove this conjecture. It turns out that the hypothesis that k be integral creates some technical difficulties, therefore we prove the following, slightly sharper result.

Theorem 1.1. For an abelian group G with $\exp(G) \geq \sqrt{|G|}$ we have $D(G) \leq \exp(G) + \frac{|G|}{\exp(G)} - 1$, while for $\exp(G) < \sqrt{|G|}$ we have $D(G) \leq 2\sqrt{|G|} - 1$.

We notice that the first upper bound is actually reached for groups of rank 2 where $D(G) = \exp(G) + \frac{|G|}{\exp(G)} - 1$. An application of our bound to random groups and (\mathbb{Z}_n^*, \cdot) will be the topic of a forthcoming paper.

Let $s_{\leq n}(G)$ be the least integer k, such that every sequence of length k contains a subsequence of length $\leq n$ adding up to 0 and let $s_{= n}(G)$ be the least integer k such that any sequence of length k in G contains a zero-sum of sequence of length exactly equal to n. In the special case where $n = \exp(G)$ we use the more standard notation of $\eta(G)$ and $s(G)$ respectively. We need the following bounds on η and s.

Theorem 1.2. (1) We have $s(\mathbb{Z}_3^4) = 19$, $s(\mathbb{Z}_5^4) = 41$, $s(\mathbb{Z}_3^5) = 91$, and $s(\mathbb{Z}_5^5) = 225$.

2000 Mathematics Subject Classification. Primary 11B13, 11B70.
(2) We have $s(\mathbb{Z}_p^d) = 37$, $s(\mathbb{Z}_p^3) \leq 157$, $s(\mathbb{Z}_p^5) \leq 690$, and $s(\mathbb{Z}_p^6) \leq 3091$.

(3) If $p \geq 7$ is prime and $d \geq 3$, then $\eta(\mathbb{Z}_p^d) \leq \frac{p^d - p}{p^d - p}(3p - 7) + 4$.

The above results for \mathbb{Z}_p are due to Bose\cite{bose}, Pelegrino\cite{pelegrino}, Edel, Ferret, Landjev and Storner\cite{edel}, and Potechin\cite{potechin}, respectively. The value of $s(\mathbb{Z}_p^3)$ was determined by Gao, Hou, Schmid and Tangadurai\cite{gao}, the bounds for higher rank will be proven in section\cite{section4} using the density increment method. The last statement will be proven by combinatorial means in section\cite{section5}.

We further need some information on the existence of zero-sums not much larger then $\exp(G)$.

Theorem 1.3. Let p be a prime, $d \geq 3$ an integer. Then a sequence of length $(6p - 4)p^{d-3} + 1$ in \mathbb{Z}_p^d contains a zero-sum of length $\leq \frac{3p^{d-1}}{2}$. If $d \geq 4$, then a sequence of length $(6p - 4)p^{d-4} + 1$ in \mathbb{Z}_p^d contains a zero-sum of length $\leq 2p$.

The proof of Theorem\cite{theo13} uses the inductive method. To deal with the inductive step we require the following.

Theorem 1.4. Let p be a prime, $d \geq 2$ an integer. Then there exist integers k, M, such that $M \geq \eta(\mathbb{Z}_p^d)$, every sequence of length M contains at least k disjoint zero-sums, and $M \leq p^{d-1} + pk$.

Note that the statement is trivial if $\eta(\mathbb{Z}_p^d) \leq p^{d-1}$. However, this bound is false for $p = 2$ and all d, as well as for the pairs $(3, 3), (3, 4), (3, 5)$ and $(5, 3)$. We believe that this is the complete list of exceptions. From the Alon-Dubiner-theorem and Roth-type estimates one can already deduce that the above bound for η holds for all but finitely many pairs. However, dealing with the exceptional pairs by direct computation is way beyond current computational means.

2. Systems of disjoint zero-sums

Let $D_k(G)$ be the least integer t such that every sequence of length t in G contains k disjoint zero-sum sequences. The most direct way to prove the existence of many disjoint zero-sums is by proving the existence of rather short zero-sums, therefore we are interested in zero sums of length not much beyond p.

Lemma 2.1. Every sequence of length $6p - 3$ in \mathbb{Z}_p^d contains a zero-sum of length $\leq \frac{3p^{d-1}}{2}$, every sequence of length $6p - 3$ in \mathbb{Z}_p^3 contains a zero-sum of length $\leq 2p$, and every sequence of length $(d + 1)p - d$ in \mathbb{Z}_p^d contains a zero sum of length $\leq (d - 1)p$.

Proof. We claim that a sequence of length $6p - 3$ in \mathbb{Z}_p^3 contains a zero sum of length p or $3p$. To see this we adapt Reiher’s proof of Kemnitz’ conjecture\cite{kemnitz}. For a sequence S denote by $N^\ell(S)$ the number of zero-sum subsequences of S of length ℓ. Let S be a sequence of length $6p - 3$ without a zero sum of length p or $3p$, T a subsequence of length $4p - 3$, and U a subsequence of length $5p - 3$. Then the Chevalley-Warning theorem gives the following equations.

\[
1 + N^p(T) + N^{2p}(T) + N^{3p}(T) \equiv 0 \pmod{p},
\]
\[
1 + N^p(U) + N^{2p}(U) + N^{3p}(U) + N^{4p}(U) \equiv 0 \pmod{p},
\]
\[
1 + N^p(S) + N^{2p}(S) + N^{3p}(S) + N^{4p}(S) + N^{5p}(S) \equiv 0 \pmod{p}.
\]

By assumption S, and a fortiori U and T do not contain zero sums of length p or $3p$, thus all occurrences of N^p and N^{3p} vanish. If $N^{5p}(S) \neq 0$, and Z is a zero
Lemma 2.2. If \(a \leq d \), then \(s_{\leq k}(\mathbb{Z}_p^d) \leq \frac{p^{d-1}}{p-1}(s_{\leq k}(\mathbb{Z}_p^a) - 1) + 1 \)

Proof. Let \(A \) be a sequence of length \(\frac{p^{d-1}}{p-1}(s_{\leq k}(\mathbb{Z}_p^a) - 1) + 1 \) in \(\mathbb{Z}_p^d \). If \(A \) contains \(0 \), then we found a short zero sum. Otherwise let \(U \) be a subgroup of \(\mathbb{Z}_p^a \) with \(U \cong \mathbb{Z}_p^a \) chosen at random. The expected number of elements of \(A \), which are in \(U \) is slightly bigger than \(s_{\leq k}(\mathbb{Z}_p^a) - 1 \), hence there exists a subgroup which contains at least \(s_{\leq k}(\mathbb{Z}_p^a) \) elements of the sequence. Restricting our attention to this subgroup we obtain the desired zero sum. \(\square \)

Lemma 2.3. We have

\[
D_k(\mathbb{Z}_p^3) \leq \max \left(5p - 2, \frac{3(p-1)}{2} + 2p + 5 \right),
\]

and, for \(d \geq 4 \),

\[
D_k(\mathbb{Z}_p^d) \leq \max \left((6p-4)p^{d-3} + 1, \frac{3(p-1)}{2}k + 1 + (6p-4)p^{d-3}(\frac{1}{4} + \frac{3}{2p} - \frac{3}{4p^2} - \frac{1}{dp}) \right)
\]

Proof. We only give the proof for the second inequality, the first one being significantly easier.

Let \(S \) be a sequence of length at least \((6p-4)p^{d-3} + 1 \). Then we can find a zero sum of length \(\leq \frac{3(p-1)}{2} \). We continue doing so until there are less zero-sums left. Then we remove zero sums of length \(\leq 2p \), until there are less than \((6p-4)p^{d-4} + 1 \) points left. Among the remaining points we still find zero sums of length at most \(D(\mathbb{Z}_p^d) = d(p-1) + 1 \), hence, in total we obtain a system of at least

\[
\frac{|S| - (6p-4)p^{d-3} - 1}{3(p-1)/2} + \frac{(6p-4)p^{d-3} - (6p-4)p^{d-4}}{2p} + \frac{(6p-4)p^{d-4}}{d(p-1) + 1}
\]
disjoint zero sums. Hence,

\[
D_k(\mathbb{Z}_p^d) \leq (6p-4)p^{d-3} + 1 + \max \left(0, \frac{3(p-1)}{2}k - \frac{(6p-4)p^{d-3} - (6p-4)p^{d-4}}{2p} + \frac{(6p-4)p^{d-4}}{d(p-1) + 1} \right),
\]

and our claim follows. \(\square \)
The reader should compare our result with a similar bound given by Freeze and Schmid\[7, Proposition 3.5\]. In our result the coefficient of \(k \) is smaller, while the constant term is much bigger. The following result is an interpolation between these results.

Lemma 2.4. Let \(N, d \geq 3 \) be integers, \(p \) a prime number, and define \(a \) to be the largest integer such that \(N > (a + 1)p^{d-a+1} \). If \(a \geq 2 \), then \(D_k(\mathbb{Z}_p^d) \leq N \), where

\[
k = \frac{N}{(a-1)p} - \frac{\sum_{\nu=a}^{d-1} \nu + 1}{p(\nu-1)} p^{d-a} - 1 \geq \frac{N}{(a-1)p} (1 - \frac{1}{a(1-p^{-1})})
\]

Proof. Let \(S \) be a sequence of length \(N \) in \(\mathbb{Z}_p^d \). We have to show that \(S \) contains a system of \(k \) disjoint zero sums. Since \(N > (a + 1)p^{d-a+1} \), \(S \) contains a zero sum of length \(\leq (a - 1)p \). We remove zero sums of this length, until the remaining sequence has length \(< (a+1)p^{d-a+1} \). From this point onward we remove zero sums of length \(\leq ap \), until the remainder has length \(< (a+2)p^{d-a+2} \), and so on. In this way we obtain a disjoint system consisting of

\[
N - (a + 1)p^{d-a+1} + \frac{(a + 1)p^{d-a+1} - (a + 2)p^{d-a+2}}{ap} + \cdots + \frac{dp^2 - (d + 1)p}{ap} + 1
\]

zero sums. This sum almost telescopes, yielding the first expression for \(k \). For the inequality note that the sequence \(\frac{\nu + 1}{p(\nu-1)} \) is decreasing, hence the summands in the series are decreasing faster than the geometrical series \(\sum p^{-\nu} \), and we conclude that the whole sum is bounded by the first summand multiplied by \((1 - p^{-1})^{-1} \). Our claim now follows. \(\square \)

The following result is a special case of a result of Lindström\[12\] (see also \[7, Theorem 7.2, Lemma 7.4\]).

Lemma 2.5. Every sequence of length \(2^{d-1} + 1 \) in \(\mathbb{Z}_2^d \) contains a zero-sum of length \(\leq 3 \), and this bound is best possible. Every sequence of length \(2^{(d+1)/2} + 1 \) in \(\mathbb{Z}_2^d \) contains a zero-sum of length \(\leq 4 \).

3. PROOF OF THEOREM \[11\]

In this section we show that Theorem \[1.4\] implies Theorem \[11\].

Lemma 3.1. Let \(G \) be an abelian group of rank \(r \geq 3 \). Assume that Theorem \[1.4\] holds true for all proper subgroups of \(G \). Then it holds true for \(G \) itself.

Proof. Let \(p \) be a prime divisor of \(|G| \). Choose an elementary abelian subgroup \(U \cong \mathbb{Z}_p^d \) of \(G \), such that \(d \geq 3 \), \(\exp(G) = p \exp(G/U) \), and \(|U| \) is minimal under these assumptions. Put \(H = G/U \). Let \(A \) be a sequence consisting of \(\exp(G) + \frac{|G|}{\exp(G)} - 1 \) or \(2\sqrt{|G|} - 1 \) elements, depending on whether \(\exp(G) > \sqrt{|G|} \) or not. Denote by \(\mathcal{A} \) the image of \(A \) in \(H \). Then we obtain a zero-sum, by choosing a large system of disjoint zero-sums in \(\mathbb{Z}_p^d \), and then choosing a zero-sum among the elements in \(H \) defined by these sums, provided that

\[
D(H) \leq \frac{|\mathcal{A}| - M}{p} + k,
\]

where \(M \geq \eta(\mathbb{Z}_p^d) \) and \(k = k(p,d,M) \) is defined as in Theorem \[1.4\]. The left hand side can be estimated using the inductive hypothesis. We have \(\exp(H) = \frac{\exp(G)}{p} \),

...
follows, provided that \(\operatorname{exp}(G) \geq \sqrt{|G|} \) and \(\operatorname{exp}(H) \geq \sqrt{|H|} \). Then our claim follows, provided that
\[
\frac{\operatorname{exp}(G)}{p} + \frac{|G|}{\operatorname{exp}(G)p^d} - 1 \leq \frac{|A| - M}{p} + k,
\]
inserting the choice of \(A \) and rearranging terms this becomes
\[
\operatorname{exp}(G) + \frac{|G|}{\operatorname{exp}(G)p^{d-1}} - p \leq \operatorname{exp}(G) + \frac{|G|}{\operatorname{exp}(G)} - 1 - M + pk.
\]
The quotient of \(G \) by its largest cyclic subgroup contains at least \(\mathbb{Z}_p^{d-1} \), hence, \(\frac{|G|}{\operatorname{exp}(G)} \geq p^{d-1} \). Clearly, by replacing \(\frac{|G|}{\operatorname{exp}(G)} \) with a lower bound we lose something, hence, it suffices to establish the relation
\[
1 - p \leq p^{d-1} - 1 - M + pk.
\]
However, this relation is implied by Theorem 1.4.

Next suppose that \(\operatorname{exp}(G) \geq \sqrt{|G|} \) and \(\operatorname{exp}(H) < \sqrt{|H|} \). Then
\[
\sqrt{|G|}/p^d = \sqrt{|H|} > \operatorname{exp}(H) = \operatorname{exp}(G)/p \geq \sqrt{|G|}/p^2,
\]
thus \(d < 2 \), but this case was excluded from the outset.

If \(\operatorname{exp}(G) < \sqrt{|G|} \) and \(\operatorname{exp}(H) < \sqrt{|H|} \), the same argument as in the first case yields \(D(G) \leq 2\sqrt{|G|} - 1 \), provided that
\[
-2p\sqrt{|H|} - p \leq 2\sqrt{|G|} - 1 - M + pN.
\]
Since \(|H| = \frac{|G|}{p^d} \) and \(M - pN \leq p^{d-1} \) this becomes
\[
(2 - 2p^{-(d-2)/2})\sqrt{|G|} \geq p^{d-1} - p + 1.
\]
As \(\operatorname{exp}(H) < \sqrt{H} \) we have that \(H \) is of rank at least 3, which by our assumption on the size of \(H \) implies that \(|G| \geq p^{2d} \). This implies
\[
(2 - 2p^{-(d-2)/2})\sqrt{|G|} \geq (2 - 2p^{-(d-2)/2})p^d > \frac{1}{2}p^d > p^{d-1} - p + 1,
\]
and our claim is proven.

If \(\operatorname{exp}(G) < \sqrt{|G|} \) and \(\operatorname{exp}(H) \geq \sqrt{|H|} \), the theorem follows provided that
\[
(\operatorname{exp}(H) + \frac{|H|}{\operatorname{exp}(H)} - 1)p \leq 2\sqrt{|G|} - 1 - M + kp,
\]
that is
\[
\operatorname{exp}(G) + \frac{|G|}{p^{d-2}\operatorname{exp}(G)} - p \leq 2\sqrt{|G|} - 1 - p^{d-1}.
\]
The bounds for \(\operatorname{exp}(G) \) and \(\operatorname{exp}(H) \) imply
\[
\sqrt{|G|}p^{d/2-1} \leq \operatorname{exp}(G) < \sqrt{|G|},
\]
and in this range the left hand side is increasing as a function of \(\operatorname{exp}(G) \), hence, this inequality is certainly true if
\[
\sqrt{|G|} \geq 1 + p^{d-1} + \sqrt{|G|}p^{2-d} - p,
\]
which follows from \(\sqrt{|G|} \geq p^{d} \). If this is not the case, then \(|H| < p^{d} \) and by the choice of \(p \) we have that \(H \) has rank at most 2, that is, \(H = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \) and \(G = \mathbb{Z}_p^{d-2} \oplus \mathbb{Z}_{pn_1} \oplus \mathbb{Z}_{pn_2} \), say. Then \(D(H) = n_1 + n_2 - 1 \), thus it suffices to prove
\[
D_{n_1+n_2-1}(\mathbb{Z}_p^d) \leq 2\sqrt{p^{d}n_1n_2} - 1.
\]
Denote the right hand side by \(N \). Then Lemma 2.4 shows that our claim holds true, provided that
\[
n_1 + n_2 - 1 \leq \frac{N}{(a - 1)p} (1 - \frac{1}{a(1 - p^{-1})}).
\]
Using the trivial bound \(n_1 + n_2 - 1 \leq n_1 n_2 \) we find that this inequality follows from
\[
\frac{ap^{d-a}}{(a - 1)p} (1 - \frac{1}{a(1 - p^{-1})}) \geq \frac{a + p^{-(d-a)}}{4a} (ap^{-a} + p^{-d}),
\]
and by direct inspection we see that our claim follows for all \(a \geq 2 \), with exception only the case \((p, a) = (2, 2)\). In this case our claim follows from Lemma 2.5, provided that \(d > 3 \). Finally, if \(p = 2 \) and \(d = 3 \), then \(D(G) = M(G) \) was shown by van Emde Boas[3] under the assumption that Lemma 5.1 holds true for all prime divisors of \(|H|\), which we today know to hold for all primes. Hence the proof is complete. □

We know that \(D(\mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2}) = n_1 + n_2 - 1 \), hence Theorem 1.1 holds true for all groups of rank \(\leq 2 \). Hence Theorem 1.1 follows by induction over the group order.

4. Proof of Theorem 1.4: The case \(p \leq 7 \)

4.1. The primes 2 and 3. To prove Theorem 1.4 for \(p = 2 \), we want to show that in a set of \(2^d \) points we can find a system consisting of many disjoint zero-sums. We first remove one zero-sum of length \(\leq 2 \), then zero-sums of length \(\leq 3 \), until this is not possible anymore, and then we switch to zero-sums of length 4. Finally we remove zero-sums of length \(\leq d + 1 \), which is possible in view of \(D(\mathbb{Z}_2^d) = d + 1 \).

In this way we obtain at least
\[
\frac{2^d - 2}{3} + \frac{2^{d-1} + 2 - 2^{(d+1)/2} - 1}{4} + \frac{2^{(d+1)/2} - d - 2}{d + 1} + 1 = \frac{2^d}{4} + \frac{2^d - 2}{24} - \frac{2^{(d-3)/2}}{d + 1} + \frac{2^{(d+1)/2} - 1}{d + 1}
\]
zero-sums. Disregarding the last fraction we see that this quantity is \(\geq 2^{d-2} \), provided that \(d \geq 7 \). For \(3 \leq d \leq 6 \) we obtain our claim by explicitly computing this bound.

Next we consider \(p = 3 \). For \(d \geq 6 \) we have
\[
\eta(\mathbb{Z}_3^d) \leq \eta(\mathbb{Z}_3^d) \leq 3^{d-6} \eta(\mathbb{Z}_3^6) < 3^{d-1},
\]
hence, Theorem 1.4 holds true with \(N = 0, M = 3^{d-1} \). For \(d = 5 \) it follows from Lemma 2.1 that a sequence of length \(\eta(\mathbb{Z}_3^5) \) contains a system of \(N = \frac{\eta(\mathbb{Z}_3^5) - 2d - 6}{3d - 3} \) disjoint zero-sums, hence, our claim follows provided that
\[
\eta(\mathbb{Z}_3^5) \leq 3\left[\frac{\eta(\mathbb{Z}_3^5) - 16}{12}\right] + 3^4,
\]
that is, 89 \(\leq 21 + 81 \). In the same way we see that for \(d = 4 \) a sequence of length 39 in \(\mathbb{Z}_3^4 \) contains a system of 4 disjoint zero-sums, thus our claim follows from 39 \(\leq 12 + 27 \). Finally it is shown in [2, Proposition 1], that a sequence of length 15 in \(\mathbb{Z}_3^3 \) contains a system of 3 disjoint zero-sums. Together with \(\eta(\mathbb{Z}_3^5) = 17 \) our claim follows in this case as well.
4.2. The prime 5. We begin by proving the second statement of Theorem [12]. We
do so by using a density increment argument together with explicit calculations.
Define the Fourier bias $\|A\|_u$ of a sequence A over \mathbb{F}_p^d as

$$\|A\|_u := \frac{1}{|A|} \max_{\xi \notin \mathbb{F}_p^d \setminus \{0\}} \sum_{\alpha \in A} e(\xi, \alpha).$$

Then we have the following.

Lemma 4.1. Let $p \geq 3$ be a prime number, A be a sequence over \mathbb{F}_p^d. Then A
contains a zero-sum of length p, provided that

$$\frac{|A|^{p-1}}{p^{|p-1|d}} > \|A\|_{u}^{p-3} \left(\|A\|_u + \frac{p - 1}{2p^{d-1}}\right) + \left(\frac{p}{2}\right) \frac{|A|^{p-2}}{p^{|p-1|d}}$$

Proof. Let N be the number of solutions of the equation $a_1 + \cdots + a_p = 0$ with
$a_i \in A$. From [17, Lemma 4.13] we have

$$N \geq \frac{|A|^p}{p^{d}} - \|A\|_{u}^{p-2}|A|^{(p-2)d}.$$

A solution $a_1 + \cdots + a_p = 0$ corresponds to a zero-sum of A, if a_1, \ldots, a_p are distinct
elements in A. Using Möbius inversion over the lattice of set partitions one could
compute the over-count exactly, however, it turns out that the resulting terms are
of negligible order, which is why we bound the error rather crudely. The number of
solutions M in which not all elements are different is at most $\binom{p}{k}$ times the
number of solutions of the equation $2a_1 + a_2 + \cdots + a_{p-1} = 0$. Since multiplication by 2 is
a linear map in \mathbb{F}_p^d we have that $\|2A\|_{u} = \|A\|$, using [17, Lemma 4.13] again we obtain

$$M \leq \frac{|A|^{p-1}}{p^{d}} + \|A\|_{u}^{p-3}|A|^{(p-3)d}.$$

Hence the number of zero-sums is at least

$$N - M \geq \frac{|A|^p}{p^{d}} - \|A\|_{u}^{p-2}|A|^{(p-2)d} - \frac{|A|^{p-1}}{p^{d}} - \|A\|_{u}^{p-3}|A|^{(p-3)d},$$

and our claim follows. \(\square \)

We now use this lemma recursively to obtain bounds for $s(\mathbb{Z}_5^d)$, starting from
$s(\mathbb{Z}_5^2) = 37$.

Consider a 3-dimensional subgroup U, and let $\xi \in \mathbb{Z}_5^4$ be a vector such that $v \perp U$.
Let n_1, \ldots, n_5 be the number of elements of A in each of the 5 cosets of U, ζ be a
fifth root of unity. If $\max(n_i) \geq 37$, we have a zero-sum of length p in one of the
hyperplanes. Hence

$$\|A\|_u \leq \frac{1}{|A|} \max_{0 \leq n_1 + \cdots + n_5 = |A|} \max_{0 \leq n_i \leq 36} |n_1 + n_2\zeta + \cdots + n_5\zeta^4|.$$

Since $1 + \zeta + \cdots + \zeta^4 = 0$, we have

$$n_1 + n_2\zeta + \cdots + n_5\zeta^4 = (36 - n_1) + (36 - n_2)\zeta + \cdots + (36 - n_5)\zeta^4,$$

that is,

$$\max_{0 \leq n_1 + \cdots + n_5 = |A|} \max_{0 \leq n_i \leq 36} |n_1 + n_2\zeta + \cdots + n_5\zeta^4| = \max_{0 \leq n_1 + \cdots + n_5 = 180 - |A|} \max_{0 \leq n_i \leq 36} |n_1 + n_2\zeta + \cdots + n_5\zeta^4|.$$
For $|A| \geq 144$ the right hand side equals $180 - |A|$, and we obtain a zero-sum, provided that

$$\left(\frac{|A|}{625} \right)^4 > \left(\frac{180 - |A|}{|A|} \right)^2 \left(\frac{180 - |A|}{|A|} + \frac{2}{125} \right) + \frac{2}{125} \left(\frac{|A|}{625} \right)^3.$$ \tag{1}

One easily finds that this is the case for $|A| = 157$, and we deduce $s(\mathbb{Z}_5^d) \leq 157$. The same argument yields for $d = 5$ the inequality

$$\left(\frac{|A|}{3125} \right)^4 > \left(\frac{780 - |A|}{|A|} \right)^2 \left(\frac{780 - |A|}{|A|} + \frac{2}{625} \right) + \frac{2}{625} \left(\frac{|A|}{3125} \right)^3,$$ \tag{2}

which is satisfied for $|A| \geq 690$, that is, we obtain $s(\mathbb{Z}_5^d) \leq 690$. Finally for \mathbb{Z}_5^d we obtain

$$\left(\frac{|A|}{15625} \right)^4 > \left(\frac{3445 - |A|}{|A|} \right)^2 \left(\frac{3445 - |A|}{|A|} + \frac{2}{3125} \right) + \frac{2}{3125} \left(\frac{|A|}{15625} \right)^3,$$ \tag{3}

which is satisfied for $|A| \geq 3091$, thus the last inequality follows as well.

Hence, Theorem 1.2 is proven.

We have $\eta(\mathbb{Z}_5^d) = 33$, and among 33 elements we can find one zero-sum of length ≤ 5, one of length ≤ 10, and one more among the remaining $18 \geq D(\mathbb{Z}_5^d) = 13$ points. Hence we can take $M = 33$, $N = 3$, and Theorem 1.3 follows. Moreover we have $\eta(\mathbb{Z}_5^d) \leq s(\mathbb{Z}_5^d) - 4 \leq 153$, and among 153 elements we can find one zero-sum of length ≤ 5, 13 zero-sums of length ≤ 10, and one more zero-sum, that is, we can take $N = 15$, and Theorem 1.3 follows for $d = 4$ as well.

For $d = 5$ we have $\eta(\mathbb{Z}_5^d) \leq s(\mathbb{Z}_5^d) - 4 \leq 686$, and among 686 points in \mathbb{Z}_5 we find 24 disjoint zero-sums of length ≤ 20, thus taking $M = 686$, $N = 24$, our claim follows since $M \leq 625 + 120$. For $d \geq 6$ we have

$$s(\mathbb{Z}_5^d) \leq 5^{d-6} s(\mathbb{Z}_5^6) \leq 3091 \cdot 5^{d-6} < 5^{d-1},$$

and our claim becomes trivial.

5. Proof of Theorem 1.4: The case $p \geq 7$

We begin by proving the last statement of Theorem 1.2

Lemma 5.1. Let A be a sequence of length $3p - 3$ in \mathbb{Z}_p^2 without a zero-sum of length $\leq p$. Then $A = \{a^{p-1}, b^{p-1}, c^{p-1}\}$ for suitable elements $a, b, c \in \mathbb{Z}_p^2$.

Proof. A prime p is said to satisfy property B if in every maximal zero-sum free subset of \mathbb{Z}_p^2 some element occurs with multiplicity at least $p - 2$. Gao and Geroldinger have shown that the condition of the above lemma holds true if p has property B, and Reiner has shown that every prime has property B. \square

For $p = 7$ we need a little more specific information.

Lemma 5.2. Let A be a sequence of length 15 over \mathbb{Z}_7^2, which does not contain a zero-sum of length ≤ 7. Then there exist a cyclic subgroup which contains 3 elements of A.

Proof. The proof can be done either by a mindless computer calculation or by a slightly more sophisticated human readable argument, however, as the latter also boils down to a sequence of case distinction we shall be a little brief. Let A be a counterexample, that is, a zero-sum free sequence of length 15, such that every
Without loss we may assume that A contains no two elements x, y with $y = 2x$. Suppose that A contains two such elements. Then replacing y by x gives a new sequence A', such that for an element in \mathbb{Z}_7^2 the shortest representation as a subsum of A' is at least as long as the shortest representation as a subsum of A. In particular, A' contains no short zero sum.

There is at most one subgroup which contains two different elements. Without loss we may assume that $(1,0), (3,0), (0,1), (0,3)$ are in A. The subgroup generated by $(1,1)$ can contain either $(5,5)$ with multiplicity 2, or one of $(1,1), (2,2), (5,5)$ with multiplicity 1. If $(5,5)$ occurs twice, the remaining elements of the sequence must be among $\{ (2,3), (2,4), (3,2), (3,5), (4,2), (4,5), (5,3), (5,4) \}$, which can easily be ruled out. If $(5,5)$ does not occur twice, then all subgroups different from $\langle (1,0), (0,1) \rangle, \langle (1,1) \rangle$ contain one element with multiplicity 2. The only possible elements in $\langle (1,-1) \rangle$ are $(1,6), (6,1)$, and by symmetry we may assume that $(6,1)$ occurs twice. Now $(1,2)$ must contain $(6,5)$, and we conclude that the remaining points are $(2,6), (3,1), (5,4)$, and we obtain the zero-sum $(5,4) + (6,1) + (3,1) + (0,1)$.

There exist 3 different elements x, y, z, each of multiplicity 2 in A, such that $x + y \in \langle z \rangle$. Otherwise there are 6 elements of \mathbb{Z}_7^2, such that no two generate the same subgroup, and the sum of two different of them is contained in two fixed cyclic subgroups, which easily gives a contradiction.

$(1,0), (0,1)$ and $(2,2)$ cannot all occur with multiplicity 2. Suppose otherwise. Then the only further elements which can occur with multiplicity 2 are $(1,6), (2,4), (4,2), (4,6), (6,1), (6,4)$. Moreover, two elements which are exchanged by the map $(x,y) \mapsto (y,x)$ cannot both occur in A, hence we may assume that $(6,1)$ occurs twice in A, while $(1,6)$ does not. Then $(2,4)$ and $(4,6)$ occur twice in A, and we get the zero-sum $2 \cdot (6,1) + (1,6) + (1,0)$.

$(1,0), (0,1)$ and $(1,1)$ cannot all occur with multiplicity 2. Using the previous result one finds that all further elements of multiplicity 2 have one coordinate equal to 1. By symmetry we may assume that there are two further elements of the form $(1,t)$. If there is an element of the form $(x,y), 2 \leq x \leq 5$, this immediately gives a zero-sum of length $8 - x$, hence all elements in A are $(1,0)$, or of the form $(1,t), (6,t)$. Since there are at least 8 different elements in A, there are at least 6 different elements of the form $(x,0)$, which can be written as the sum of one element of the form $(1,t)$ and one of the form $(6,t)$. Hence we obtain a zero-sum of length 2 or 3.

$(1,0), (0,1)$ and $(4,4)$ cannot all occur with multiplicity 2. There are at least 6 elements occurring with multiplicity 2, thus there are at least two further elements outside the subgroup $\langle (1,-1) \rangle$. But every element different from $(2,4), (3,5), (4,2), (5,3)$ immediately gives a zero-sum, and $(2,4)$ and $(4,2)$ as well as $(5,3)$ and $(3,5)$ cannot both occur at the same time, thus we may assume that $(5,3)$. The only possible element in $\langle (3,1) \rangle$ is $(1,5)$, and this element can only occur once. Hence $(2,4)$ becomes impossible, and we conclude that $(4,2)$ occurs with multiplicity 2. But then all elements in $\langle (1,-1) \rangle$ yield zero-sums.

We can now finish the proof. We know that there exist two elements $x, y \in A$, both with multiplicity 2, such that $(x+y)$ contains an element of multiplicity 2. We may set $x = (1,0), y = (0,1)$, and let (t,t) be the element in $(x+y)$. Then
t = 0, 3, 5, 6 immediately yields a short zero-sum, while t = 1, 2, 4 was excluded above. Hence no counterexample exists.

Now suppose that \(p \geq 7 \) is a prime number, and \(A \) is a sequence in \(\mathbb{Z}_p^3 \) with
\[|A| = n = \frac{p^d - p}{p^2 - p}(3p - 7) + 4 \]
without zero-sums of length \(\leq p \). Let \(\ell \) be a one-dimensional subgroup of \(\mathbb{Z}_p^d \), such that \(m = |\ell \cap A| \) is maximal. Now consider all 2-dimensional subgroups containing \(\ell \). Each such subgroup contains \(p^2 - p \) points outside \(\ell \). Each point of \(A \) is either contained in \(\ell \) or occurs in \(\frac{p^d - p}{p^2 - p} \) of all such subgroups. Hence among all subgroups there is one which contains \(\lceil \frac{p^d - p}{p^2 - p}(n - m) \rceil \) points outside \(\ell \). Call this subgroup \(U \). Therefore \(U \) contains at least
\[
\left\lceil \frac{p^d - p}{p^2 - p}(n - m) \right\rceil + m \geq \left\lceil 3p - 7 + m - \frac{m - 4}{p^d - 2 + \cdots + 1} \right\rceil
\]
elements of \(A \). Since \(\eta(\mathbb{Z}_p^d) = 3p - 2 \), this quantity is \(\leq 3p - 3 \), which implies \(m \leq 4 \). Hence \(m \leq 3 \), which implies that \(\frac{m - 4}{p^d - 2 + \cdots + 1} \) is negative, and we find that \(U \) contains \(3p - 6 + m \leq 3p - 4 \) points, that is, \(m \leq 2 \). However, this implies that each of the \(p + 1 \) one-dimensional subgroups of \(U \) contain at most 2 elements of \(A \), thus \(3p - 6 \leq |A \cap U| \leq 2p + 2 \), which implies \(p \leq 8 \), hence, by our assumption \(p = 7 \). In the case \(p = 7 \) we obtain that \(U \cong \mathbb{Z}_7^2 \) contains a sequence \(A \) of 15 elements, such that no cyclic subgroup contains more than 2 of them, and \(A \) contains no zero-sum of length \(\leq 7 \).

We can now prove Theorem 1.4 for \(p \geq 7 \). We take \(M = \frac{p^d - p}{p^2 - p}(3p - 7) + 4 \), and let \(k \) be the largest integer for which Lemma 2.3 ensures \(D_k(\mathbb{Z}_p^d) \leq M \). Then the claim of Theorem 1.4 becomes
\[
\frac{M - 2p - 5}{3(p - 1)/2} p^2 \geq M
\]
for \(d = 3 \), and
\[
\frac{M - (6p - 4)p^d - 3 - \frac{1}{4p}}{3(p - 1)/2} p + p^{d - 1} \geq M
\]
for \(d \geq 4 \). After some computation one reaches the inequalities \(4p^2 \geq 6p + 25 \) and \(28p^4 \geq 144p^3 + p^2 - 33 \), which are satisfied for \(p \geq 7 \). Hence the proof of Theorem 1.4 is complete.

References

1. R. Balasubramanian, G. Bhowmik, Upper bounds for the Davenport constant, Integers 7(2) (2007), A03.
2. G. Bhowmik, J.-C. Schlage-Puchta, Davenport’s constant for Groups of the Form \(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3d \), CRM Proceedings and Lecture Notes 43 (2007), 307–326.
3. P. van Emde Boas, A combinatorial problem on finite Abelian groups II, Math. Centrum Amsterdam Afd. Zuivere Wisk 1969 ZW-007.
4. P. van Emde Boas, D. Kruyswijk, A combinatorial problem on finite Abelian groups III, Math. Centrum Amsterdam Afd. Zuivere Wisk 1969 ZW-008.
5. R. C. Bose, Mathematical theory of the symmetrical factorial design, Sankhya 8 (1947), 107-166.
6. Y. Edel, S. Ferret, I. Landjev, L. Storme, The classification of the largest caps in AG(5, 3), J. Combin. Theory Ser. A 99 (2002), 95-110.
7. M. Freeze, W.A. Schmid, Remarks on a generalization of the Davenport constant, Discrete Math. 310 (2010), 3373–3389.
8. W. Gao, A. Geroldinger, Zero sum problems in finite abelian groups: a survey, *Expo. Math* 24 (2006), 337–369.
9. W. Gao, A. Geroldinger, On zero-sum sequences in $\mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$, *Integers* 3 (2003), A8.
10. W. D. Gao, Q. H. Hou, W. A. Schmid, R. Thangadurai, On short zero-sum subsequences II, *Integers* 7 (2007), A21.
11. A. Geroldinger, Additive group theory and non-unique factorizations, in: Combinatorial Number Theory and Additive Group Theory, CRM, Barcelona, Birkhauser, 2009, 1–86.
12. B. Lindström, Determination of two vectors from the sum, *J. Combinatorial Theory* 6 (1969), 402-407.
13. G. Pellegrino, Sul massimo ordine delle calotte in $S_{4,3}$, *Matematiche (Catania)* 25 (1970), 149-157.
14. A. Potechin, Maximal caps in $AG(6, 3)$, *Des. Codes Cryptogr.* 46 (2008), 243-259.
15. C. Reiher, A proof of the theorem according to which every prime number possesses property B, Ph.D. thesis, Rostock, 2010.
16. C. Reiher, On Kemnitz’ conjecture concerning lattice-points in the plane, *Ramanujan J.* 13 (2007), 333–337.
17. T. Tao, V. H. Vu, *Additive combinatorics*, Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006.

Université de Lille 1, Laboratoire Paul Painlevé UMR CNRS 8524, 59655 Villeneuve d’Ascq Cedex, France
E-mail address: bhownik@math.univ-lille1.fr

Universiteit Gent, Krijgslaan 281, Gebouw S22, 9000 Gent, Belgium
E-mail address: jcp@math.uni-freiburg.de