Teaching first-year medical students in basic clinical and procedural skills – A novel course concept at a medical school in Austria

Abstract

Introduction: Clerkships are still the main source for undergraduate medical students to acquire necessary skills. However, these educational experiences may not be sufficient, as there are significant deficiencies in the clinical experience and practical expertise of medical students.

Project description: An innovative course teaching basic clinical and procedural skills to first-year medical students has been implemented at the Medical University of Graz, aiming at preparing students for clerkships and clinical electives. The course is based on several didactic elements: standardized and clinically relevant contents, dual (theoretical and virtual) pre-course preparation, student peer-teaching, small teaching groups, hands-on training, and the use of medical simulation. This is the first course of its kind at a medical school in Austria, and its conceptual design as well as the implementation process into the curriculum shall be described.

Evaluation: Between November 2011 and January 2013, 418 students have successfully completed the course. Four online surveys among participating students have been performed, with 132 returned questionnaires. Students’ satisfaction with all four practical course parts was high, as well as the assessment of clinical relevance of contents. Most students (88.6%) strongly agreed/agreed that they had learned a lot throughout the course. Two thirds of the students were motivated by the course to train the acquired skills regularly at our skills laboratory. Narrative feedbacks revealed elements contributing most to course success.

Conclusions: First-year medical students highly appreciate practical skills training. Hands-on practice, peer-teaching, clinically relevant contents, and the use of medical simulation are valued most.

Keywords: Clinical skills, skills laboratory, practical training, undergraduate education, medical simulation

Introduction

The achievement of clinical competence is a gradual process, and repetitive training is a central element of this educational continuum [1], [2], [3]. Traditional medical curricula rely primarily on clerkships during the clinical period of study to acquire and train clinical skills, while the preclinical period is mainly used to teach basic sciences [4]. However, an investigation using student focus groups showed that junior clerkships were predominantly passive experiences with hardly any opportunity to train clinical skills [5]. Accordingly, Nielsen et al. [6] reported that the chances of training practical procedures during clerkships are scarce and that medical students have to work hard in order to be able to perform relevant skills. Several studies have identified a lack of clinical experience and practical competence by medical students [4], [7], [8], [9]. Limited practical experience, however, leads to reduced self-confidence, hesitancy, and anxiety in students due to fear of causing harm to patients [10], [11]. In addition, there are currently no standardized tools to assess procedural skills competence of medical students prior to certification, leading to inequity of assessment and competence before qualification [12]. Two concepts aiming at preparing medical students better for the demands of their future profession are problem-based learning and the introduction of basic clinical skills courses [13].

Medical University of Graz

At the Medical University of Graz, the human medicine curriculum covers six years and is divided into three stages [http://www.medunigraz.at/images/content/file/studium/humanmedizin/pdf/studienplan_v11_01102013.pdf, last viewed on 17.09.2013]. During the
first phase of study – lasting for one year – mainly natural sciences are taught, supplemented with an internship at a hospital ward. During the subsequent four years a modular system provides students with the required medical knowledge using clerkships to teach and train clinical skills. Within these four years students have to go through 16 weeks (560 hours) of mandatory electives. Clerkships are predetermined clinical placements as part of the main curriculum, whereas electives are mandatory clinical activities of students in medical specialties of their own choice (see Attachment 1). In order to complete the second stage of study students have to pass an OSCE, testing the performance of clinical skills and practical procedures. The course of study is finalized by another two semesters spent working at three hospital wards of different specialization and at a family physician.

In this article we want to report on the conceptual design and implementation of a novel course teaching basic clinical and procedural skills to first-year students. To the authors’ knowledge, this is the first course of its kind at a medical school in Austria. Furthermore, we are going to present the results of initial course evaluations.

Project description

In spring 2011, the Curriculum Commission decided to introduce a practical course aiming at preparing preclinical students better for compulsory clerkships and electives. A work group was established, consisting of teachers of different medical specialties and of two experienced medical students working as student instructors at our Clinical Skills Center (CSC). Skills deemed as essential were identified on the basis of the recently introduced Austrian Catalogue of Competence for Medical Skills [14], which is comparable to the Swiss Catalogue of Learning Objectives for Undergraduate Medical Training and the German Consensus Statement on Practical Skills in Medical School [15], [16].

In June 2011, a new practical course called “Clinical Elective License” (CEL) was implemented into the human medicine curriculum of the Medical University of Graz. It was designated as a compulsory course for first-year students. The CEL encompasses one European Credit Transfer and Accumulation System (ECTS) point corresponding to 25 hours of actual work. For successful completion, students have to attend at least 85 per cent of the lessons and demonstrate sufficient theoretical preparation as well as active cooperation. In November 2011, first CEL courses were held.

In order to guarantee appropriate pre-course preparation, CSC peer-teachers have compiled the “Graz’ Skills Guide” under guidance and supervision of clinical teachers. Beginning with necessary anatomical and physiological knowledge, this handbook describes the performance of clinical skills and procedures by using written text, procedural algorithms, and high-quality image series specifically developed for the course. The “Graz’ Skills Guide” is available online and free of charge for every student at the Medical University of Graz.

Course contents

The CEL is a six-part course with two virtual and four practical phases. After having worked through the “Graz’ Skills Guide”, students have to pass a Web-Based-Training (WBT) featuring multiple-choice questions summarizing the subjects taught. Ten hours have been designated as practical training time, four hours for the first and two hours for each of the following course parts. Teaching groups consist of three to six students at most, with every group being tutored by one of our CSC peer-teachers.

The first practical part of the CEL (“Medical Skills I”) provides students with skills regarding medical history taking, physical examination, and common (non-)invasive procedures (see Table 1). Course participants learn how to take medical histories in a structured manner through patient-doctor role plays. Physical examination techniques are trained on a cardiopulmonary patient simulator and on fellow course participants. Practice of relevant procedures, such as blood taking and injections, concludes the course.

The second practical course part “Medical Skills II” focuses on the cardiovascular system (see Table 1). Students learn diagnostic modalities (blood pressure measurement, electrocardiography recording), get to know important cardiac arrhythmias, train cardiopulmonary resuscitation and manual defibrillation, and recapitulate the main points of cardiovascular examination by working through four common heart valve diseases on our cardiopulmonary patient simulator.

The third practical CEL part (“Surgical Skills”) deals with principles of working in sterile areas, desmurgia, and wound care (see Table 1). In our simulation operating theatre, students learn how to prepare for aseptic interventions, are shown the performance of wound toilet, disinfection, and local anesthesia, and train different forms of wound closure. Rounding out the course, catheterization of the urinary bladder is practiced on urologic manikins.

The course “Emergency Skills” concludes the practical CEL parts (see Table 1). First, airway management techniques are trained. With the aid of a simulation software, students learn how to apply the ABCDE approach (Airway/Breathing/Circulation/Disability/Exposure) and get to know clinical characteristics of different medical emergencies. Short emergency simulations using high-fidelity patient simulators finalize the course. The medical emergencies trained are the ones previously used in the virtual course part. The goal of the simulation sequences is the integrated practice of skills acquired throughout the CEL in a realistic setting.

In order to pass the CEL, students have to complete a second WBT. Its multiple-choice questions focus on the contents of the practical courses.
Table 1: Contents of the practical course parts of the "Clinical Elective License".

Course part “Emergency Skills”	Course part “Surgical Skills”	Course part “Medical Skills I”	Course part “Medical Skills II”
Airway management techniques:	Preparation for operating theatres / sterile areas:	Blood pressure measurement	ECG recording
- Jaw-thrust/chin-lift maneuver	- Change of clothes	- ECG analysis / relevant cardiac rhythms	- Cardiopulmonary resuscitation
- Oropharyngeal suction	- Surgical scrub	- Cardiopulmonary resuscitation with manual defibrillation	- Neurological examination:
- Use of supraglottic airway devices	- Performance of wound toilet, disinfection and local anesthesia	- Heart valve diseases:	- Consciousness and meningism
Cardiopulmonary resuscitation	Wound closure:	- Minal regurgitation	- Reflexes
Structured assessment of critically ill patients	- Suture	- Minal stenosis	- Motoricity, sensibility and coordination testing
Emergency simulations	- Skin clips	- Aortic regurgitation	- Abdominal examination
	- Fibrin glue	- Aortic stenosis	- Venous blood taking
	- Applying of bandages		Determination of glucose level
	Catheterization of the urinary bladder		Use of drug ampules / infusions
			Intra- / intramuscular / subcutaneous injections
			Venous cannulation
Course principles

The CEL is based on several didactic elements: standardized and clinically relevant contents, dual (theoretical and virtual) pre-course preparation, student peer-teaching, small teaching groups, hands-on training, and the use of medical simulation. The course parts build on each other and contain repetitive sequences for maximization of learning outcomes. In addition to the compulsory courses, students are invited to train at our CSC in their course-free time.

Course evaluation

Four course evaluations have been carried out so far (February, May, and July 2012; February 2013). Between November 2011 and February 2013, 418 students have successfully participated in the CEL. Every student who had passed at least one practical course part at the time of the respective evaluation was defined eligible for our study and asked to complete an online questionnaire on a voluntary basis. The standard course questionnaires of the Medical University of Graz were used. Answers could be given on a six-point Likert-type scale, ranging from 1 (“I totally agree”) to 6 (“I totally disagree”). We combined the results of these evaluations. Ratings are displayed as mean value ± one standard deviation. Statistical analysis was performed using IBM® SPSS Statistics, Version 20.

For a more detailed feedback, we included open questions. These asked students

1. what they liked most about the CEL, and
2. about suggestions for improvement.

The narrative statements were categorized; ‘n’ refers to the number of references to respective topics.

Evaluation

A total number of 132 students voluntarily participated in the course evaluation and, therefore, 132 completed questionnaires were included in our analysis. Seventy-six (57.6%) of the 132 students were male, 98 (74.2%) were between twenty and twenty-five years of age, and 30 (22.7%) were below the age of twenty. Every student had completed “Medical Skills I”, 110 students (83.3%) had passed “Medical Skills II”, 96 students (72.7%) had finished “Surgical Skills”, and 72 students (54.5%) “Emergency Skills”.

Item analysis

Students’ satisfaction with all four practical course parts was high, with ratings ranging from 1.4±0.6 to 1.8±1.3 (mean value ± one standard deviation). Students strongly agreed that the contents of the CEL were important for their future profession (1.2±0.6). Statements referring to perceived theoretical and practical learning outcomes both received high approval (1.5±0.9 and 1.4±0.9, respectively). Most students participated with pleasure (1.6±1.0) and reported to have worked effectively during the course (1.9±1.0). The peer-teachers were perceived as being very interested in students’ learning outcome (1.5±1.0). Two thirds of the students (65.2%) strongly agreed/agreed that the CEL had motivated them to train the acquired clinical skills regularly at the CSC. Further details of course evaluations are summarized in Figure 1.

Free-text analysis

Almost all comments about positive aspects of the CEL could be attributed to one of four categories. These were the active training of various skills (n=38), the peer-teachers’ motivation and expertise (n=27), clinically relevant course contents (n=26), and the use of simulation-based education (n=11).

Analysis of free-text comments revealed four major topics for course improvement. Most suggestions referred to longer course duration and more time for practical training (n=44). Twenty-seven comments asked for organizational adaptions, especially regarding the enrolment process. Splitting of “Medical Skills I” into two courses due to its considerable volume and reduction of theoretical course contents were mentioned 14 times each.

Discussion

First evaluations have displayed high student satisfaction with the CEL concept. Students especially valued the opportunity to actively practice various clinical skills, the quality of our peer-teachers, clinical relevance of course contents, and the use of simulation-based education. The course evaluations revealed possibilities for improvement as well. The most frequent suggestion was the extension of course duration. Although difficult to implement given the tight timetable of first-year students, this idea will receive ample consideration. Improving the organizational handling of the CEL was another focal point. Initially, students chose course dates individually via our online course system. However, during the first months a handful of CEL courses was cancelled due to low numbers of enrolled students (<3). Reacting to numerous suggestions, course dates have been set for each student starting with the study year 2012/13. This predetermined CEL schedule now allows for numerically equal course groups, guarantees courses and reduces students’ organizational burden, leading to improved student satisfaction. It has to be evaluated how well the skills acquired at our CSC will translate into the clinical stage of study. It must not be forgotten that training in the skills laboratory does not replace, but supplement clinical experience [10]. However, in the study by Nielsen et al. [6] 70 per cent of students were convinced to be able to transfer skills from the educational laboratory into patient treatment. Students within an innovative curriculum with skills laboratory
training from the first year of study are better trained in basic clinical skills and, therefore, better prepared for clerkships, compared to students in traditional curricula [17]. In addition, Liddell and colleagues [18] proved that a single basic skills tutorial during the early part of medical study has a long-lasting positive effect on students’
clinical performance and reduces hesitancy to practice procedures during clerkships. Thus, we are optimistic that the CEL provides students with the necessary competence and confidence to successfully perform medical skills and practical procedures in the clinical setting.

Limitations
As our primary objective was to assess students’ perception of the course concept, we did not investigate their performance after completion of the CEL. However, further investigations addressing students’ short- and long-term competence and the transferability of skills into patient care are already being carried out.

Conclusions
The CEL concept has proven its value for students at the Medical University of Graz. Based on first course evaluations, factors contributing most to this success are hands-on training, motivated and experienced student instructors, clinically relevant contents, and the utilization of medical simulation. The most common suggestion for improvement was an extension of course duration. Additional research on students’ competence in the short- and long-term and on possible improvements in patient care will ultimately decide the CEL’s educational value.

Acknowledgements
The authors want to thank Elisabeth Koch for performing course evaluations and data acquisition, Dominik Födinger and all other current and former CSC peer-teachers for their commitment, and each and every student who has evaluated the course and offered suggestions for improvement.

Competing interests
The authors declare that they have no competing interests.

Attachments
Available from
http://www.gms.de/en/journals/zma/2014-31/zma000898.shtml

References
1. Carraccio CL, Benson BJ, Nixon LJ, Derstine PL. From the educational bench to the clinical bedside: translating the Dreyfus developmental model to the learning of clinical skills. Acad Med. 2008;83(8):761–777. DOI: 10.1097/ACM.0b013e31817fe632
2. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406. DOI: 10.1037/0033-295X.100.3.363
3. ten Cate O, Snell L, Carraccio C. Medical competence: the interplay between individual ability and the health care environment. Med Teach. 2010;32(8):669–675. DOI: 10.3109/0142159X.2010.500897
4. Remmen R, Scherpbier AJ, Derese A, Denekens J, Hermann I, Van der Vleuten C, Van Royen P, Bossaert L. Unsatisfactory basic skills performance by students in traditional medical curricula. Med Teach. 1998;20(5):526–533.
5. Remmen R, Denekens J, Scherpbier AJ, Van der Vleuten CP, Hermann I, Van Pyynmboeck H, Bossaert L. Evaluation of skills training during clerkships using student focus groups. Med Teach. 1998;20(5):426–432.
6. Nielsen DG, Moercke AM, Wickmann-Hansen G, Eika B. Skills training in laboratory and clerkship: connections, similarities, and differences. Med Educ Online. 2003;8:12. Zugänglich unter/available from: http://med-ed-online.net/index.php/meo/article/view/4334/4516
7. McManus IC, Richards P, Winder BC. Clinical experience of UK medical students. Lancet. 1998;351(9105):802–803. DOI: 10.1016/S0140-6736(05)78929-7
8. Goodfellow PB, Claydon P. Students sitting medical finals – ready to be house officers? J R Soc Med. 2001;94(10):516–520.
9. Remes V, Sinisaari J, Harjuja A, Helenius I. Emergency procedure skills of graduating medical doctors. Med Teach. 2003;25(2):149–154. DOI: 10.1080/014215903100092535
10. Du Boulay C, Medway C. The clinical skills resource: a review of current practice. Med Educ. 1999;33(3):185–191. DOI: 10.1046/j.1365-2923.1999.00384.x
11. Sarikaya O, Civaner M, Kalaia S. The anxieties of medical students related to clinical training. Int J Clin Pract. 2006;60(11):1414–1418. DOI: 10.1111/j.1742-1241.2006.00869.x
12. Morris MC, Gallagher TK, Ridgway PF. Tools used to assess medical students’ competence in procedural skills at the end of a primary medical degree: a systematic review. Med Educ Online. 2012;17. Zugänglich unter/available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427596/
13. Fischer T, Simmenroth-Nayda A, Herrmann-Lingen C, Wetzel D, Chenot JF, Kleiber C, Staat H, Kochen MM. Medizinische Basisfähigkeiten - ein Unterrichtskonzept im Rahmen der neuen Approbationsordnung. Z Allg Med. 2003;79(9):430–432. DOI: 10.1055/s-2003-43063
14. Iberer F, Kresse A, Manhal S, Reibnegger G, Toplak H, Krismer M, Mikerevic S, Mutz N, Prierer K, Prodinger W, Vogel W, Kainberger F, Lischka M, Luger A, Mallingr R, Rieder A, Schmidts M, Albigger K, Studnicka M. Österreichischer Kompetenzlevekatalog für ärztliche Fertigkeiten. Graz/Innsbruck/Wien/Salzburg: Med. Universitäten; 2011. Zugänglich unter/available from: http://www.meduniwien.ac.at/bemaw/mue/downloads/oekaef.pdf
15. Bürgi H, Rindlisbacher B, Bader C, Bloch R, Bosnan F, Gasser C, Gerke W, Humair JP, Im Hof V, Kaiser H, Lefebvre D, Schläppi P, Sottas B, Spinas GA, Stuck AE. Swiss Catalogue of Learning Objectives for Undergraduate Medical Training. Bern: Universität Bern; 2008. Zugänglich unter/available from: http://solo.smifk.ch/solo2008

16. Schnabel KP, Boldt PD, Breuer G, Fichtner A, Karsten G, Kujumdshiev S, Schmidt M, Stosch C. Konsensusstatement “Praktische Fertigkeiten im Medizinstudium” – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/zma000770

17. Remmen R, Scherpber A, Van der Vleuten C, Denekens J, Derese A, Hermann I, Hoogenboom R, Kramer A, Van Rossum H, Van Royen P, Bossaert L. Effectiveness of basic clinical skills training programmes: a cross-sectional comparison of four medical schools. Med Educ. 2001;35(2):121–128.

18. Liddell MJ, Davidson SK, Taub H, Whitecross LE. Evaluation of procedural skills training in an undergraduate curriculum. Med Educ. 2002;36(11):1035–1041. DOI: 10.1046/j.1365-2923.2002.01306.x

Corresponding author:
cand.med. Lukas Mileder
Medical University of Graz, Clinical Skills Center,
Auenbruggerplatz 33, A-8036 Graz, Austria, Phone:
+43/699/11751318
lukas.mileder@medunigraz.at

Please cite as
Mileder L, Wegscheider T, Dimai HP. Teaching first-year medical students in basic clinical and procedural skills – A novel course concept at a medical school in Austria. GMS Z Med Ausbild. 2014;31(1):Doc6. DOI: 10.3205/zma000898, URN: urn:nbn:de:0183-zma0008985

This article is freely available from
http://www.egms.de/en/journals/zma/2014-31/zma000898.shtml

Received: 2013-05-23
Revised: 2013-09-17
Accepted: 2013-11-20
Published: 2014-02-17

Copyright
©2014 Mileder et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.
Die Ausbildung erstjähriger Medizinstudierender in der Durchführung grundlegender klinischer Fertigkeiten – Ein neues Ausbildungskonzept an einer österreichischen Medizinuniversität

Zusammenfassung

Einleitung: Medizinstudierende erlernen erforderliche Fertigkeiten nach wie vor primär im Rahmen von Praktika und Famulaturen. Diese Form der praktischen Ausbildung erscheint jedoch als nicht ausreichend, da signifikante Defizite in der klinischen Erfahrung und praktischen Kompetenz von Medizinstudierenden bestehen.

Projektbeschreibung: An der Medizinischen Universität Graz wurde eine innovative Lehrveranstaltung eingeführt, um erstjährigen Medizinstudierenden die Durchführung grundlegender klinischer Fertigkeiten und praktischer Maßnahmen als Vorbereitung auf Famulaturen und Praktika zu vermitteln. Die Lehrveranstaltung basiert auf mehreren didaktischen Elementen: Standardisierte, klinisch relevante Lehrinhalte, duale (theoretische und virtuelle) Vorbereitung, studentisches Peer-Teaching, Kleingruppenunterricht, praktisches Training und die Verwendung medizinischer Simulation. Dies ist die erste Lehrveranstaltung dieser Art an einer österreichischen Medizinuniversität, und das Konzept sowie die Implementierung in das Curriculum sollen zur Beschreibung gelangen.

Evaluierung: Zwischen November 2011 und Januar 2013 haben 418 Studierende erfolgreich an der Lehrveranstaltung teilgenommen. Es wurden vier Online-Evaluierungen unter den teilnehmenden Studierenden durchgeführt und 132 Fragebögen beantwortet. Die studentische Zufriedenheit mit allen vier praktischen Lehrveranstaltungssteilen war ebenso wie die Beurteilung der klinischen Relevanz der Lehrinhalte hoch. Die meisten Studierenden (88,6%) stimmten zu, im Rahmen der Lehrveranstaltung viel gelernt zu haben. Zwei Drittel der Studierenden wurden motiviert, die erworbenen Fähigkeiten regelmäßig in unserem klinischen Trainingszentrum zu trainieren. Die am meisten geschätzten Lehrveranstaltungsaspekte wurden durch Auswertung der Freitextevaluierungen identifiziert.

Schlussfolgerung: Praktisches Fertigkeitentraining wird von erstjährigen Medizinstudierenden mit großem Enthusiasmus angenommen. Am meistengeschätzten werden die Möglichkeit aktiven Trainings, Peer-Teaching, klinisch relevante Lehrinhalte und die Nutzung medizinischer Simulation.

Schlüsselwörter: Klinische Fertigkeiten, klinisches Trainingszentrum, praktische Ausbildung, studentische Lehre, medizinische Simulation
Fertigkeiten von Studierenden hart erarbeitet werden muss. Zahlreiche Studien haben einen Mangel an klinischer Erfahrung und praktischer Kompetenz unter Medizinstudierenden aufgezeigt [4], [7], [8], [9]. Limitierte praktische Erfahrung führt bei Studierenden jedoch zu reduziertem Selbstbewusstsein, zögerlichem Verhalten und Ängsten bedingt durch die Sorge, Patienten zu schaden [10], [11]. Darüber hinaus existieren im Moment keine standardisierten Verfahren zur Beurteilung der praktischen Kompetenz von Medizinstudierenden vor Studienabschluss, was wiederum zu einer uneinheitlichen Bewertung und variabler Kompetenz führt [12]. Zwei Konzepte, mithilfe derer Medizinstudierende besser auf die Anforderungen ihres zukünftigen Berufes vorbereitet werden sollen, sind problembasiertes Lernen und einführende klinische Fertigkeitenkurse [13].

Medizinische Universität Graz

Das Humanmedizinstudium an der Medizinischen Universität Graz umfasst sechs Jahre, die in drei Studienabschnitte unterteilt sind [http://www.medunigraz.at/images/content/file/studium/humanmedizin/pdf/studienplan_v11_01102013.pdf, zuletzt besucht am 17.09.2013]. Während des ersten Studienabschnittes im Umfang von einem Jahr werden mehrheitlich Naturwissenschaften gelehrt, ergänzt durch ein Praktikum an einer klinischen Abteilung. Im Laufe der folgenden vier Jahre wird mithilfe eines modularen Systems das erforderliche medizinische Wissen vermittelt, während klinische Fertigkeiten im Rahmen von (Block-)Praktika erlernt und trainiert werden. Innerhalb dieser vier Jahre müssen Studierende außerdem 16 Wochen (560 Stunden) an Pflichtfamulaturen absolvieren (siehe Anhang 1). (Block-)Praktika stellen vorgegebene praktische Kurse im Rahmen des Hauptcurriculums dar, während unter Famulaturen die verpflichtende Mitarbeit an von Studierenden frei wählbaren medizinischen Abteilungen verstanden wird. Zum Abschluss des zweiten Studienabschnittes ist ein objektives Strukturiertes Klinisches Examen (OSKE) zu absolvieren, in dessen Rahmen die Durchführung klinischer Fertigkeiten und praktischer Maßnahmen überprüft wird. Das Medizinstudium wird durch zwei Semestern unterschiedlicher Spezialisierung und in einer allgemeinmedizinpraxis geschlossen.

In diesem Artikel berichten wir über die Konzeption sowie die Implementierung einer neuartigen Lehrveranstaltung, die erstjährigen Studierenden die Durchführung klinischer Fertigkeiten und praktischer Maßnahmen vermittelt. Nach dem Wissen der Autoren handelt es sich bei der beschriebenen Lehrveranstaltung um die erste dieser Art an einer Medizinischen Universität in Österreich. Darüber hinaus werden wir die Ergebnisse der ersten Evaluierungen präsentieren.

Projektbeschreibung

Im Frühjahr 2011 entschied die Studienkommission die Einführung einer praktischen Lehrveranstaltung zur besseren Vorbereitung vor klinischer Studierender auf Praktika und Famulaturen. Dazu wurde eine Arbeitsgruppe, bestehend aus Lehrenden unterschiedlicher Fachrichtungen und zwei erfahrenen Medizinstudierenden und Instruktionen des Clinical Skills Center (CSC), eingesetzt. Die zu vermittelnden Fertigkeiten wurden mithilfe des kurz zuvor erstellten Österreichischen Kompetenzlevelkatalogs für ärztliche Fertigkeiten [14], vergleichbar zum „Swiss Catalogue of Learning Objectives for Undergraduate Medical Training“ und dem deutschen Konsensusstatement „Praktische Fertigkeiten im Medizinstudium“ [15], [16], identifiziert.

Im Juni 2011 wurde die neue praktische Lehrveranstaltung „Famulaturlizenz“ (FL) im Humanmedizincurriculum der Medizinischen Universität Graz implementiert. Die FL wurde als verpflichtende Lehrveranstaltung für erstjährige Studierende designiert. Die FL umfasst einen European Credit Transfer and Accumulation System (ECTS)-Punkt und entspricht damit einem Gesamtaufwand von 25 Stunden. Zur erfolgreichen Absolvierung müssen Studierende zumindest 85% der Lehrveranstaltungszeit absolvieren und sowohl ausreichende theoretische Vorbereitung als auch aktive Mitarbeit demonstrieren. Im November 2011 wurden erste FL-Lehrveranstaltungen abgehalten.

Zur Gewährleistung einer ausreichenden Vorbereitung auf die Lehrveranstaltung haben die Peer-Teacher des CSC unter Anleitung und Supervision von klinischen Lehrenden den „Grazer Skills Guide“ erstellt. Diese Lernunterlage beschreibt, ausgehend vom erforderlichen anatomischen und physiologischen Grundlagenwissen, die Durchführung klinischer Fertigkeiten und praktischer Maßnahmen mithilfe von Textteilen, Algorithmen und hochqualitativen Fotoserien, die extra für diesen Kurs erstellt wurden. Der „Grazer Skills Guide“ ist online und für jede/-n Studierende/-nder der Medizinischen Universität Graz kostenfrei erhältlich.

Lehrveranstaltungsinhalte

Die FL ist eine sechsteilige Lehrveranstaltung mit zwei verteilten und vier praktischen Teilen. Nach theoretischer Vorbereitung unter Verwendung des „Grazer Skills Guide“ müssen die Studierenden ein Web-Based-Training (WBT) absolvieren, dessen Multiple-Choice-Fragen sich auf den Lehrstoff beziehen. An praktischer Lehrzeit stehen zehn Stunden zur Verfügung, vier Stunden für den ersten Kursteil und jeweils zwei Stunden für die drei folgenden Kursteile (siehe Tabelle 1). Die Lehrveranstaltungsgruppen bestehen aus drei bis maximal sechs Studierenden und werden jeweils von einem CSC-Peer-Teacher betreut. Der erste praktische FL-Teil („Medical Skills I“) vermittelt Studierenden Fertigkeiten bezüglich Anamneseerhebung, physikalischer Untersuchung und häufiger (nicht-)invasiver Maßnahmen (siehe Tabelle 1). Die Teilnehmer erler-
„Medical Skills I“	„Medical Skills II“	„Surgical Skills“	„Emergency Skills“
Anamneseerhebung	Blutdruckmessung	Vorbereitung für Operationssäle / sterile Arbeitsbereiche:	- Techniken des Atemwegsmanagements:
Kardiopulmonale Untersuchung:	Ableitung eines Elektrokardiogramms	- Kleidungswechsel	- Esmarch-Handgriff
- Arterielle / venöse Pulse	EKG-Analyse / Relevante Herzrhythmusstörungen	- Chirurgische Händedesinfektion	- Oropharyngeales Absaugen
- Präkordiale Palpation	Kardiopulmonale Reanimation mit manueller Defibrillation	Durchführung von Wundreinigung, Desinfektion und Lokalanästhesie	- Beutel-Masken-Beatmung
- Auskultation und Perkussion	Kardiopulmonale Untersuchung von Herzklappenerkrankungen:	Wundverschluss:	- Anwendung supraglottischer Atemwegshilfen
Hals-, Nasen-, Ohren-Untersuchung	- Mitralklappeninsuffizienz	- Chirurgische Naht	- Kardiopulmonale Reanimation
Lymphknotenpalpation	- Mitralklappenstenose	- Klammernaht	- Strukturierte Beurteilung von kritisch kranzen Patienten
Neurologische Untersuchung:	- Aortenklappeninsuffizienz	- Fibrinkleber	- Notfallsimulationen
- Bewusstsein und Meningismus	- Aortenklappenstenose	Anlage von Verbinden	
- Reflexe	Katheterisierung der Harnblase		
- Motorik, Sensibilität und Koordination			
Abdominale Untersuchung			
Venöse Blutabnahme			
Bestimmung des Blutzuckerspiegels aus Kapillarblut			
Handhabung von Medikamentenampullen und Infusionen			
Intravenöse / intramuskuläre / subkutane Injektionen			
Legen venöser Verweilkatheter			
nen die strukturierte Erhebung der Patientengeschichte mithilfe von Arzt-Patient-Rollenspielen. Physikalische Untersuchungstechniken werden an einem kardiopulmonalen Patientensimulator und an Lehrveranstaltungssteilnehmen trainiert. Das Training relevanter Maßnahmen, wie beispielsweise Blutabnahme und Injektionen, beschließt den Lehrveranstaltungsteil.

Der zweite praktische Lehrveranstaltungsteil („Medical Skills II“) behandelt das kardiovaskuläre System (siehe Tabelle 1). Die Studierenden erlernen diagnostische Maßnahmen (Blutdruckmessung, Ableiten eines Elektrokardiogramms), lernen wichtige Herzrhythmusstörungen zu erkennen, trainieren die Durchführung der kardiopulmonalen Reanimation mit manueller Defibrillation und wiederholen die Eckpunkte der kardiovaskulären Untersuchung anhand von vier häufigen Herzklappenerkrankungen an unserem kardiopulmonalen Patientensimulator.

Der dritte praktische FL-Teil („Surgical Skills“) befasst sich mit Prinzipien des sterilen Arbeitens, Verbandslehre und Wundversorgung (siehe Tabelle 1). In unserem Simulationsoperationssaal erlernen die Studierenden die Vorbereitung auf aseptische Eingriffe, bekommen die Durchführung von Wundreinigung, Desinfektion und Lokalanästhesie demonstriert und trainieren verschiedene Formen des Wundverschlusses. Zum Abschluss wird die Katheterisierung der Harnblase an urologischen Phantomen geübt.

Der Lehrveranstaltungsteil „Emergency Skills“ beschließt die praktischen FL-Teile (siehe Tabelle 1). Zu Beginn werden Techniken des Atemwegsmanagements trainiert. Mithilfe einer Simulationssoftware erlernen die Studierenden die Anwendung der ABCDE-Beurteilung (Airway/Breathing/Circulation/Disability/Exposure) und lernen klinische Charakteristika verschiedener medizinischer Notfälle kennen. Kurze Notfallsimulationen an High-Fidelity-Patientensimulatoren beschließen den Kursteil. Die trainierten Notfälle entsprechen dabei den zuvor im Rahmen der virtuellen Simulation verwendeten Fällen. Das Ziel der Simulationssequenzen ist die integrative Anwendung der während der gesamten FL erlerneten Fertigkeiten in einem realistischen Setting.

Zum erfolgreichen Abschluss der FL müssen die Studierenden ein zweites WBT absolvieren. Dessen Multiple-Choice-Fragen beziehen sich auf die Inhalte der praktischen Lehrveranstaltungssteile.

Prinzipien der Lehrveranstaltung

Die FL basiert auf mehreren didaktischen Elementen: Standardisierte und klinisch relevante Inhalte, duale (theoretische und virtuelle) Vorbereitung, studentisches Peer-Teaching, Kleingruppenunterricht, praktisches Fertigkeitentraining und der Einsatz medizinischer Simulationen. Die Lehrveranstaltungssteile bauen aufeinander auf und beinhalten repetitive Sequenzen zur Maximierung des Lernerfolges. Ergänzend zu den verpflichtenden Lehrveranstaltungssteilen können Studierende in der lernveranstaltungsfreien Zeit an unserem CSC trainieren.

Lehrveranstaltungsevaluierung

Bislang wurden vier Lehrveranstaltungsevaluierungen durchgeführt (Februar, Mai und Juli 2012; Februar 2013). Zwischen November 2011 und Februar 2013 haben 418 Studierende die FL erfolgreich absolviert. Jede/r Studierende, die/der zum Zeitpunkt der jeweiligen Evaluierung zumindest einen praktischen Lehrveranstaltungsteil abgeschlossen hatte, konnte an unserer Studie teilnehmen und wurde gebeten, einen Online-Fragebogen auf freiwil- liger Basis zu beantworten. Es wurden die Standard-Lehrveranstaltungsfragebögen der Medizinischen Universität Graz verwendet. Antworten konnten auf einer sechsteiligen Likert-ähnlichen Skala gegeben werden, reichend von 1 („Ich stimme völlig zu“) bis 6 („Ich stimme überhaupt nicht zu“). Wir kombinierten die Ergebnisse der Evaluierungen. Die Ergebnisse sind dargestellt als Mittelwert ± eine Standardabweichung. Die statistische Auswertung erfolgte mit IBM® SPSS Statistics, Version 20.

Wir inkludierten offene Fragen für ein umfassenderes Feedback. Studierende wurden einerseits gefragt, was ihnen an der FL am meisten gefallen hatte, und andererseits nach Verbesserungsvorschlägen. Die narrativen Kommentare wurden kategorisiert: „n“ bezieht sich dabei auf die Häufigkeit der Nennung der einzelnen Aspekte.

Evaluierung

Eine Gesamtzahl von 132 Studierenden nahm an den Lehrveranstaltungsevaluierungen teil. Somit konnten 132 Fragebögen in unsere Analyse eingeschlossen werden. Sechsundsechzig (57,6%) der 132 Studierenden waren männlich, 98 (74,2%) waren zwischen zwanzig und fünfundzwanzig Jahre alt und 30 (22,7%) waren jünger als zwanzig Jahre. Jede/r Studierende hatte „Medical Skills I“ abgeschlossen, 110 Studierende (83,3%) „Medical Skills II“, 96 Studierende (72,7%) „Surgical Skills“ und 72 Studierende (54,5%) „Emergency Skills“.

Item-Analyse

Die Zufriedenheit der Studierenden war für alle vier praktischen Lehrveranstaltungssteile hoch und reichte von 1,4±0,6 bis 1,8±1,3 (Mittelwert ± eine Standardabwei- chung). Die Studierenden stimmten deutlich zu, dass die Inhalte der FL bedeutend für ihre zukünftige Tätigkeit seien (1,2±0,6). Die Aussagen bezüglich des theoretischen und praktischen Lernerfolges erhielten jeweils hohe Bewertungen (1,5±0,9 und 1,4±0,9). Die meisten Studierenden nahmen an der Lehrveranstaltung mit Freude teil (1,6±1,0) und gaben an, währenddessen besonders leistungsfähig gewesen zu sein (1,9±1,0). Die Peer-Teacher wurden als am Lernerfolg der Studierenden sehr interessiert eingeschätzt (1,5±1,0). Zwei Drittel der Studierenden (65,2%) stimmten völlig zu/stimmten zu, dass sie durch die FL motiviert worden waren, die erworbenen Fertigkeiten regelmäßig am CSC...
zu trainieren. Zusätzliche Ergebnisse der Lehrveranstaltungsevaluierungen sind in Abbildung 1 zusammengefasst.

Abbildung 1: Fragebogen-Items und studentische Evaluierungen: Mittelwert (rote Linie) ± Standardabweichung (schwarzer Balken).
Freitext-Analyse

Die überwiegende Mehrheit der positiven FL-Aspekte konnte einer von vier Kategorien zugeordnet werden. Diese waren das aktive Training verschiedener Fertigkeiten (n=38), die Erfahrung und Motivation der Peer-Teacher (n=27), klinisch relevante Lehrveranstaltungs Inhalte (n=26) und der Einsatz simulationsbasierter Ausbildung (n=11).

Die Auswertung der Freitextkommentare zeigte vier Hauptaspekte zur Lehrveranstaltungsoptimierung auf. Die meisten Vorschläge bezogen sich auf eine Ausweitung der Lehrveranstaltungszeit und mehr Zeit für praktisches Training (n=44). Siebenundzwanzig Kommentare empfahlen organisatorische Adaptierungen und hier vor allem des Anmeldeprozesses. Die Aufteilung von „Medical Skills I“ in zwei Teile aufgrund des großen Umfangs und die Reduktion theoretischer Lehrveranstaltungs Inhalte wurden jeweils 14 Mal erwähnt.

Diskussion

Die ersten Lehrveranstaltungsevaluierungen haben hohe studentische Zufriedenheit mit dem FL-Konzept aufgezeigt. Die Studierenden schätzten insbesondere die Möglichkeit verschiedene klinische Fertigkeiten aktiv zu trainieren, die Qualität unserer Peer-Teacher, die klinische Relevanz der Inhalte und den Einsatz simulationsbasierter Ausbildung.

Die Evaluierungen haben auch Möglichkeiten zur Lehrveranstaltungsoptimierung aufgezeigt. Die häufigste Empfehlung war die Ausweitung der Lehrveranstaltungszeit. Obgleich dies bedingt durch den dichtgedrängten Lehrplandesersten Studienjahresschwierig zu implementieren ist, werden wir auf die Bedeutung für die Qualität der Lehrveranstaltungen eingehen. Die Verbesserung des organisatorischen Ablaufes der FL stellte einen weiteren Vorschlag dar. Zu Beginn wählen die Studierenden ihre Lehrveranstaltungstermine individuell über unser Online-Kurssystem. Während der ersten Monate mussten jedoch einige Lehrveranstaltungen aufgrund zu geringer Teilnehmerzahlen (<3) abgesagt werden. Beginnend mit dem Studienjahr 2012/13 wurden daher aufgrund zahlreicher Empfehlungen die Lehrveranstaltungstermine für jede/n Studierende/n im Vorhinein festgesetzt. Dieser vorgefertigte FL-Lehrveranstaltungsplan ermöglicht zahlenmäßig einheitliche Gruppen, garantiert die Abhaltung von Lehrveranstaltungen und reduziert den organisatorischen Aufwand der Studierenden, was sich in gesteigerter studentischer Zufriedenheit niederschlägt. Es wird dann zum Evaluieren sein, in welchem Umfang die an unserem CSC erworbenen Fertigkeiten in den klinischen Studienabschnitt transferiert werden können. Es darf nicht verborgen werden, dass das Training in einem Simulationszentrum klinische Erfahrung nicht ersetzt, sondern ergänzt [10]. In der Studie von Nielsen et al. [6] waren jedoch 70 Prozent der Studierenden überzeugt, Fertigkeiten vom klinischen Trainingszentrum in die Pati-entenversorgung transferieren zu können. Studierende aus einem innovativen Curriculum mit praktischem Fertigkeitstraining ab dem ersten Studienjahr sind im Vergleich zu Studierenden aus traditionellen Curricula besser in grundlegenden klinischen Fertigkeiten ausgebildet und daher auch besser auf Praktika vorbereitet [17]. Darüber hinaus haben Liddell und Kollegen [18] nachgewiesen, dass ein singuläres Tutorial in grundlegenden Fertigkeiten zu einem frühen Zeitpunkt im Studium einen nachhaltigen positiven Effekt auf die klinische Leistung von Studierenden hat und die Sicherheit, praktische Maßnahmen während Praktika anzuwenden, reduziert. Wir sind daher optimistisch, dass die FL die Studierenden mit der erforderlichen Kompetenz und dem notwendigen Selbstvertrauen ausstattet, medizinische Fertigkeiten und praktische Maßnahmen im Rahmen der klinischen Tätigkeit anzuwenden. Limitationen

Da es unser primäres Ziel war, die studentische Einschätzung des Lehrveranstaltungskonzeptes zu erheben, haben wir die Leistung der Studierenden nach Absolvierung der FL nicht untersucht. Zusätzliche Untersuchungen bezüglich der kurz- und langfristigen Kompetenz der Studierenden sowie hinsichtlich der Umsetzbarkeit der Fertigkeiten in die Versorgung von Patienten werden zur Zeit jedoch durchgeführt. Konklusion

Das FL-Konzept hat seinen Wert für die Studierenden der Medizinischen Universität Graz unter Beweis gestellt. Basierend auf den Ergebnissen der ersten Lehrveranstaltungsevaluierungen sind das praktische Fertigkeits training, motivierte und erfahrene studentische Instruktoren, klinisch relevante Inhalte und der Einsatz von medizinischer Simulation jene Faktoren, die am meisten zu diesem Erfolg beigetragen haben. Der häufigste Verbesserungsvorschlag war die Ausweitung der Lehrveranstaltungszeit. Zusätzliche Studien bezüglich der kurz- und langfristigen Kompetenz der Studierenden und hinsichtlich möglicher Verbesserungen in der Patientenversorgung werden letztendlich den didaktischen Wert der FL entscheiden. Danksagung

Die Autoren möchten Elisabeth Koch für die Durchführung von Lehrveranstaltungsevaluierungen und Datenerhebung, Dominik Födinger und allen weiteren aktiven oder ausgeschiedenen CSC-Peer-Teachers für ihren Einsatz sowie jeder/m Studierenden, die/die die Lehrveranstaltung evaluiert und Verbesserungsvorschläge beigesteuert hat, danken.
Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter
http://www.egms.de/en/journals/zma/2014-31/zma000898.shtml
1. Anhang.pdf (30 KB)

Praktika und Pflichtfamulaturen während der ersten drei Studienjahre an der Medizinischen Universität Graz

Literatur

1. Carraccio CL, Benson BJ, Nixon LJ, Derstine PL. From the educational bench to the clinical bedside: translating the Dreyfus developmental model to the learning of clinical skills. Acad Med. 2008;83(8):761–777. DOI: 10.1097/ACM.0b013e31817eb632
2. Ericsson KA, Krampe RT, Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol Rev. 1993;100(3):363–406. DOI: 10.1037/0033-295X.100.3.363
3. ten Cate O, Snell L, Carraccio C. Medical competence: the interplay between individual ability and the healthcare environment. Med Teach. 2010;32(8):669–675. DOI: 10.3109/0142159X.2010.500897
4. Remmen R, Scherpibjer A, Derese A, Denekens J, Hermann I, van der Vleuten C, Royen P, Bossaert L. Effectiveness of basic clinical skills training programmes: a cross-sectional comparison of four medical schools. Med Educ. 2001;35(2):121–128.
5. McManus IC, Richards P, Winder BC. Clinicalexperience of UK medical students. Lancet. 1998;351(9105):802–803. DOI: 10.1016/S0140-6736(05)78929-7
6. Nielsen DG, Moercke AM, Wickmann-Hansen G, Eika B. Skills training in laboratory and clerkship: connections, similarities, and differences. Med Educ Online. 2003;8(12). Zugänglich unter/available from: http://med-ed-online.net/index.php/meo/article/view/4334/4516
7. McManus IC, Richards P, Winder BC. Clinical experience of UK medical students. Lancet. 1998;351(9105):802–803. DOI: 10.1016/S0140-6736(05)78929-7
8. Goodfellow PB, Claydon P. Students sitting medical finals – ready to be house officers? J R Soc Med. 2001;94(10):516–520.
9. Remes V, Sinisaari I, Harjuila A, Helenius I. Emergency procedure skills of graduating medical doctors. Med Teach. 2003;25(2):149–154. DOI: 10.1080/014215903100092535
10. Du Boulay C, Medway C. The clinical skills resource: a review of current practice. Med Educ. 1999;33(3):185–191. DOI: 10.1046/j.1365-2923.1999.00384.x
11. Sarkaya O, Civaner M, Kalaca S. The anxieties of medical students related to clinical training. Int J Clin Pract. 2006;60(11):1414–1418. DOI: 10.1111/j.1742-1241.2006.00869.x
12. Morris MC, Gallagher TK, Ridgway PF. Tools used to assess medical students competence in procedural skills at the end of a primary medical degree: a systematic review. Med Educ Online. 2012;17. Zugänglich unter/available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427596/
13. Fischer T, Simmenroth-Nayda A, Herrmann-Lingen C, Wetzel D, Chenot JF, Kleiber C, Staats H, Kochen MM. Medizinische Basisfähigkeiten - ein Unterrichtskonzept im Rahmen der neuen Approbationsordnung. Z Allg Med. 2003;79(9):432-436. DOI: 10.1055/s-2003-43063
14. Iberer F, Kresse A, Manhal S, Reibnegger G, Toplak H, Krismer M, Mikerevic S, Mutz N, Pierer K, Prodinger W, Vogel W, Kainberger F, Lischka M, Lugar A, Mailinger R, Rieder A, Schmidts M, Albegger K, Studnicka M. Österreichischer Kompetenzlevelkatalog für Ärztliche Fertigkeiten. Graz/Innsbruck/Wien/Salzburg: Med. Universitäten; 2011. Zugänglich unter/available from: http://www.meduniwien.ac.at/bemaw/mue/downloads/oekeaef.pdf
15. Bürgi H, Rindlisbacher B, Bader C, Bloch R, Bosnan F, Gasser C, Gerke W, Humair JP, Im Hof V, Kaiser H, Lefebvre D, Schlappi P, Sottis B, Spinias GA, Stuck AE. Swiss Catalogue of Learning Objectives for Undergraduate Medical Training, Bern: Universität Bern; 2008. Zugänglich unter/available from: http://sclo.smifk.ch/sclo2008
16. Schnabel KP, Boltz PD, Breuer G, Fichtner A, Karsten G, Kujumdshiev S, Schmidts M, Stosch C. Konsensusstatement “Praktische Fertigkeiten im Medizinstudium” – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3025/zma000770
17. Remmen R, Scherpibjer A, Van der Vleuten C, Denekens J, Derese A, Hermann I, Hoogenboom R, Kramer A, Van Rossum H, Royen P, Bossaert L. Effectiveness of basic clinical skills training programmes: a cross-sectional comparison of four medical schools. Med Educ. 2001;35(2):121–128.
18. Liddell MJ, Davidson SK, Taub H, Whitecross LE. Evaluation of procedural skills training in an undergraduate curriculum. Med Educ. 2002;36(11):1035–1041. DOI: 10.1046/j.1365-2923.2002.01306.x

Korrespondenzadresse:
cand.med. Lukas Mileder
Medizinische Universität Graz, Clinical Skills Center, Auenbruggerplatz 33, A-8036 Graz, Österreich, Tel.: +43/699/11751318
lukas.mileder@medunigraz.at

Bitte zitieren als
Milederalt.:DieAusbildungerstjährigerMedizinstudierenderin...

Morris MC, Gallagher TK, Ridgway PF. Tools used to assess medical students competence in procedural skills at the end of a primary medical degree: a systematic review. Med Educ Online. 2012;17. Zugänglich unter/available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427596/
