Short Papers

A Simple, Fast and Highly-Accurate Algorithm to Recover 3D Shape from 2D Landmarks on a Single Image

Ruiqi Zhao, Yan Wang, and Aleix M. Martinez

Abstract—Three-dimensional shape reconstruction of 2D landmark points on a single image is a hallmark of human vision, but is a task that has been proven difficult for computer vision algorithms. We define a feed-forward deep neural network algorithm that can reconstruct 3D shapes from 2D landmark points almost perfectly (i.e., with extremely small reconstruction errors), even when these 2D landmarks are from a single image. Our experimental results show an improvement of up to two-fold over state-of-the-art computer vision algorithms; 3D shape reconstruction error (measured as the Procrustes distance between the reconstructed shape and the ground-truth) of human faces is \(<0.004\), cars is \(0.022\), human bodies is \(0.022\), and highly-deformable flags is \(0.0004\). Our algorithm was also a top performer at the 2016 3D Face Alignment in the Wild Challenge competition (done in conjunction with the European Conference on Computer Vision, ECCV) that required the reconstruction of 3D face shape from a single image. The derived algorithm can be trained in a couple hours and testing runs at more than 1,000 frames/s on an i7 desktop. We also present an innovative data augmentation approach that allows us to train the system efficiently with small number of samples. And the system is robust to noise (e.g., imprecise landmark points) and missing data (e.g., occluded or undetected landmark points).

Index Terms—3D modeling and reconstruction, fine-grained reconstruction, 3D shape from a single 2D image, deep learning

1 INTRODUCTION

HUMANS can readily and accurately estimate the 3D shape of an object from a set of 2D landmark points on a single image [1]. Many computer vision approaches have been developed over the years in an attempt to replicate this outstanding human ability. As an example, the approaches in [2], [3], [4], [5], [6] provide 3D shape estimates of a set of 2D landmark points on a single image. Other works, such as structure from motion (SfM) and shape from shading, require a sequence of images [7], [8], [9]. In general, the results of SfM are not as accurate as the ones reported in the present paper. Although less precise, an advantage of SfM is that they do not require learning from labelled data and can work on most object classes. The above mentioned algorithms learn a set of 3D shape bases, with the assumption that the deformation in a test image can be represented as a linear combination of these bases. This linear assumption limits the applicability of these approaches on highly deformable or articulated shapes, a point that is only exacerbated when the number of 2D landmark points is small (i.e., non-dense fiducials). To resolve these problems, some previous works, e.g., [3], [4], are specifically designed to recover the 3D shape of an object by introducing domain-specific priors into the 3D estimate. However, the addition of these priors typically limit the applicability of the resulting algorithms. Another solution is to identify the set of piecewise segments that belong to the same surface and then solve for each section separately [10], [11]. However, these algorithms require multiple images or video sequences to identify consistency and smoothness in the movement.

Estimating the 3D geometry of an object from a single view is an ill-posed problem. Nevertheless, with the available 3D ground-truth of a number of 2D sample images with corresponding 2D landmarks, we can learn the mapping from 2D to 3D landmark points, i.e., we can define a mapping function \(f(.)\) that given a set of 2D landmark points \(x\) outputs their corresponding 3D coordinates \(y\), \(y = f(x)\). There are three main challenges in this task: (1) how to define a general algorithm that works in a wide range of rigid and non-rigid objects; (2) how to define an algorithm that yields good results whether we have a small or a large number of samples; and (3) how to make this process run in real-time (\(>60\) frames/s).

In order to deal with the aforementioned challenges, we propose a deep-network framework to estimate the function \(f(.)\). The proposed model is illustrated in Fig. 1. Unlike most existing methods, our work derives a deep neural network that uses a set of hierarchical nonlinear transformations to recover depth information of a number of known 2D landmark points on a single image. The 3D shape is estimated by combining the input and output of the neural network and the shape is recovered up to scale. The major contributions of the herein derived algorithm can be summarized as follows.

(1) Our algorithm is extremely general and can be applied to recover the 3D shape of basically any rigid or non-rigid object for which a number of training samples (i.e., 2D and their corresponding 3D landmark points) is available. As examples, we provide results on human faces, cars, human bodies and flags.

(2) Our algorithm is not limited by the number of training samples. When the number of training data is very large, we employ mini-batch training to parallelize gradient-based optimization and reduce computational cost. When the training set is small, we use an innovative data augmentation approach that can generate many novel samples of the 2D landmark points of a given set of 3D points using several camera models.

(3) Compared with previous algorithms, our proposed multilayer neural network can be trained very quickly. Additionally, in testing, our algorithm runs much faster than real-time (\(>1,000\) frames/s on an i7).

2 RELATED WORK

Directly related to our work are several approaches that reconstruct 3D shape from a single image [2], [3], [4], [5], [12]. Previous methods usually fit a shape-space model to recover the 3D configuration of the object from the 2D locations of landmarks in a single image [2], [3], [13], [14]. In [3], the authors address the human pose recovery problem by presenting an activity-independent method, given 2D locations of anatomical landmarks. Unfortunately, this method is limited to the reconstruction of human bodies. Lin et al. [4] derived an algorithm to recover 3D models of cars. In [13], an optimization method for location analysis is proposed to map the discriminant parts of the object into a 3D geometric representation. In [2], a shape-based model is designed, which represents a 3D
shape as a linear combination of shape bases. In [14], the authors extend this previous work to deal with outliers in the 2D correspondences and rotation asynchronization. More broadly, but also related to our work, reconstructing 3D shape from a sequence of 2D images using structure from motion has been extensively investigated [15]. In particular, the work of [6] can recover the 3D shape of an object from 2D landmark points on a single image using SfM-trained models. 3D surface reconstruction is also related to our work, e.g., two camera models (weak-perspective and perspective) were used to reconstruct a deformable surface from a single image and a template 3D shape [16].

Except [16], the works summarized above assume a low-dimensional embedding of the underlying shape space, and represent each 3D shape as a linear combination of shape bases [17], [18]. A major limitation of linear models is that when the true (but unknown) mapping function is nonlinear, the accuracy drops significantly [19]. Methods such as [20], [21], [22], [23] fall into the category of nonlinear mapping, but like some of the aforementioned algorithms, they are limited to certain types of object categories, e.g., [3] is designed for reconstructing 3D human pose from 2D image landmarks and [4] focuses on 3D car modeling. These algorithms thus make prior assumptions or use special geometric properties of the object to constrain the solution space that do not typically generalize well to other object categories.

An additional limitation of the above cited papers is their inability to learn from either large or small datasets. Some existing algorithms require very small training sets, but are unable to yield improvements when larger datasets are available. On the other hand, some algorithms require very large training sets and are incapable of yielding reasonable results when the number of samples is small.

3 Proposed Approach

In this section, we describe how to recover the 3D shape of an object given its 2D landmarks on a single image.

3.1 Preliminaries

Let us denote the n 2D landmark points on the ith image

$$ W_i = \begin{pmatrix} u_{i1} & u_{i2} & \cdots & u_{in} \\ v_{i1} & v_{i2} & \cdots & v_{in} \end{pmatrix} \in \mathbb{R}^{2 \times n}, $$(1)

where $(u_{ij}, v_{ij})^T$ are the 2D coordinates of the landmark points in the jth image. Our goal is to recover the 3D coordinates of these 2D landmark points

$$ S_i = \begin{pmatrix} x_{i1} & x_{i2} & \cdots & x_{in} \\ y_{i1} & y_{i2} & \cdots & y_{in} \\ z_{i1} & z_{i2} & \cdots & z_{in} \end{pmatrix} \in \mathbb{R}^{3 \times n}, $$

where $(x_{ij}, y_{ij}, z_{ij})^T$ are the 3D coordinates of the landmarks in the jth image.

Assuming a weak-perspective camera model, with calibrated camera matrix $M = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \end{pmatrix}$, the weak-perspective projection of the object 3D landmark points is given by

$$ W_i = M S_i, $$

(3)

This result is of course defined up to scale, since $u_i = \lambda x_i$ and $v_i = \lambda y_i$, where $x_i = (x_{i1}, x_{i2}, \ldots, x_{in})$, $y_i = (y_{i1}, y_{i2}, \ldots, y_{in})$, $z_i = (z_{i1}, z_{i2}, \ldots, z_{in})$, $u_i = (u_{i1}, u_{i2}, \ldots, u_{in})$ and $v_i = (v_{i1}, v_{i2}, \ldots, v_{in})$. This will require that we standardize our variables when deriving our algorithm.

3.2 Deep 3D Shape Reconstruction from 2D Landmarks

3.2.1 Proposed Neural Network

Given a training set with m 3D landmark points $\{S_i\}_{i=1}^m$, we aim to learn the function $f : \mathbb{R}^{2n} \rightarrow \mathbb{R}^n$, that is

$$ \hat{z}_i = f(\hat{x}_i, \hat{y}_i), $$

(4)

where \hat{x}_i, \hat{y}_i, and \hat{z}_i are obtained by standardizing x_i, y_i, and z_i to eliminate the effect of scaling and 3D translation

$$ \hat{x}_{ij} = \frac{x_{ij} - \bar{x}_i}{\sigma(x_i)}, \quad (\sigma(x_i) + \sigma(y_i))/2, $$

$$ \hat{y}_{ij} = \frac{y_{ij} - \bar{y}_i}{\sigma(x_i) + \sigma(y_i))/2}, $$

$$ \hat{z}_{ij} = \frac{z_{ij} - \bar{z}_i}{\sigma(x_i) + \sigma(y_i))/2}, $$

\bar{x}_i, \bar{y}_i, and \bar{z}_i are mean values, and $\sigma(x_i)$, $\sigma(y_i)$, and $\sigma(z_i)$ are the standard deviations.

By estimating f using a training set, we learn the geometric property of the given object. Herein, we model the function $f(.)$ using a multilayer neural network.

Fig. 1 depicts the overall architecture of our neural network. It contains L layers. The lth layer is defined as

$$ a^{(l+1)} = \tanh \left(\Omega^{(l)} a^{(l)} + b^{(l)} \right), $$

(6)

where $a^{(l)} \in \mathbb{R}^d$ is an input vector, $a^{(l+1)} \in \mathbb{R}^r$ is the output vector, d and r specify the number of input and output nodes, respectively, and $\Omega \in \mathbb{R}^{r \times d}$ and $b \in \mathbb{R}^r$ are network parameters, with the former a weighting matrix and the latter a bias vector. Our neural network uses a Hyperbolic Tangent function, $\tanh(.)$.

Our objective is to minimize the sum of euclidean distances between the predicted depth location $a^{(L)}_i$ and the ground-truth z_i of our m 3D landmark points. Formally:

$$ \min_{a^{(L)}_i} \sum_{i=1}^m \|a^{(L)}_i - z_i\|^2 $$

subject to

$$ a^{(1)}_i = W_i S_i, $$

(7)

where $a^{(1)}_i$ is the input to the first layer.
Fig. 2. Deep network for dealing with missing data. \(\mathbf{d}^{(0)} \) is the input to the network, “A” is the recurrent layer with \(r \) steps for estimating missing inputs. “B” is the multilayer neural network defined in Section 3.2.1 and summarized in Fig. 1. “C” combines the results of “A” and “B” to yield the final output of the network.

\[
\min_{\mathbf{a}_{i}} \sum_{i=1}^{v} \| \mathbf{z}_i - \mathbf{a}_{i}^{(L)} \|_2^2,
\]

with \(\| \cdot \|_2 \) the euclidean metric.

We utilize the RMSProp algorithm to optimize our model parameters. In a multilayer neural network, the appropriate learning rates can vary widely during learning and between different parameters. RMSProp is a technique that updates parameters of a neural network to improve learning. It can adaptively adjust the learning rate of each parameter separately to improve convergence to a solution.

3.2.2 Testing

When testing on the \(t \)th object, we have \(\mathbf{u}_t \) and \(\mathbf{v}_t \), and want to estimate \(\mathbf{x}_t, \mathbf{y}_t \), and \(\mathbf{z}_t \). From Eq. (3) we have \(\mathbf{u}_t = \lambda_x \mathbf{x}_t \) and \(\mathbf{v}_t = \lambda_y \mathbf{y}_t \). Thus, we first standardize the data

\[
\begin{align*}
\hat{\mathbf{u}}_{ij} &= \frac{\mathbf{u}_{ij} - \mathbf{u}_t}{\sigma(\mathbf{u}_t) + \sigma(\mathbf{v}_t))}/2, \\
\hat{\mathbf{v}}_{ij} &= \frac{\mathbf{v}_{ij} - \mathbf{v}_t}{\sigma(\mathbf{u}_t) + \sigma(\mathbf{v}_t))}/2.
\end{align*}
\]

This yields \(\hat{\mathbf{x}}_t = \hat{\mathbf{u}} \) and \(\hat{\mathbf{y}}_t = \hat{\mathbf{v}} \). This means we can directly feed \((\hat{\mathbf{u}}, \hat{\mathbf{v}}) \) into the trained neural network to obtain its depth \(\hat{\mathbf{z}}_t \). Then, the 3D shape of the object can be recovered as \((\hat{\mathbf{u}}_t, \hat{\mathbf{v}}_t, \hat{\mathbf{z}}_t)^T \), a result that is defined up to scale.

3.2.3 Missing Data

To solve the problem of missing data, we add a recurrent layer [24] on top of the multi-layer neural network to jointly estimate both the 2D coordinates of missing 2D landmarks and their depth. The complete network is trained in an end-to-end fashion, Fig. 2. The module named “A” corresponds to the recurrent layer that estimates the 2D entries of the missing data, while “B” is the multi-layer neural network described before and summarized in Fig. 1. The output of “A” is thus the full set of 2D landmarks and their depth \((\hat{\mathbf{u}}_t, \hat{\mathbf{v}}_t, \hat{\mathbf{z}}_t)^T \), and \(\ell_2 \) is the loss function used in this module.

In the recurrent network, we use the notation \(\hat{\mathbf{u}}^{(s)}_i \) and \(\hat{\mathbf{v}}^{(s)}_i \) to specify the estimated values of \(\hat{\mathbf{u}}_{ij} \) and \(\hat{\mathbf{v}}_{ij} \) at iteration \(s \). Here, \(i \) specifies the \(t \)th sample. The input to our above defined network can then be written as \(\mathbf{d}^{(s)} = (\hat{\mathbf{u}}^{(0)}_1, \hat{\mathbf{v}}^{(0)}_1, \ldots, \hat{\mathbf{u}}^{(0)}_n, \hat{\mathbf{v}}^{(0)}_n)^T \), with \(s = 0 \) specifying the initial input. If the values of \(\hat{\mathbf{u}}_{ij} \) and \(\hat{\mathbf{v}}_{ij} \) are missing, then \(\hat{\mathbf{u}}^{(s)}_{ij} \) and \(\hat{\mathbf{v}}^{(s)}_{ij} \) are set to zero. Otherwise the values of \(\hat{\mathbf{u}}_{ij} \) and \(\hat{\mathbf{v}}_{ij} \) are standardized using Eq. (8) to obtain \(\hat{\mathbf{u}}^{(s)}_{ij} \) and \(\hat{\mathbf{v}}^{(s)}_{ij} \).

In subsequent iterations, from \(s = 1 \) to \(s \), if the \(j \)th landmark is not missing, \(\hat{\mathbf{u}}^{(s)}_{ij} = \hat{\mathbf{u}}^{(s-1)}_{ij} \) and \(\hat{\mathbf{v}}^{(s)}_{ij} = \hat{\mathbf{v}}^{(s-1)}_{ij} \). If the \(j \)th landmark is missing, then \(\hat{\mathbf{u}}^{(s)}_{ij} = \hat{g}_{ij}^{(s)} = \sum_{k=1}^{2n-1} w_{ik} \hat{\mathbf{z}}^{(s-1)}_{ik} \), \(\hat{\mathbf{v}}^{(s)}_{ij} = \hat{g}_{ij}^{(s)} = \sum_{k=1}^{2n-1} w_{ij} \hat{\mathbf{z}}^{(s-1)}_{ik} \), where \(\hat{g}(-) \) can be the identity function or a nonlinear function (e.g., \(\tanh(-) \)) and \(w_{ij}^{k}, k = 1, \ldots, 2n, j = 1, \ldots, n \) are the parameters of the recurrent layer. In our experiments we find that \(\hat{g}(-) \) being the identity function works best.

We set the number of iterations to \(r \), which yields \(\mathbf{d} = \sum_{i=1}^{r} \lambda_i \mathbf{d}^{(i)} \) as the final output of the recurrent layer, where \(\lambda_i \) are learned weights. We initialize \(\lambda_i \) as \(0 < \lambda_1 < \ldots < \lambda_r \) and \(\sum_{i=1}^{r} \lambda_i = 1 \). The vector \(\lambda = (\lambda_1, \ldots, \lambda_r)^T \) is then learned using backpropagation. By using the weighted sum of the output at each step rather than the output at the last step as final output of the recurrent layer, we can enforce intermediate supervision to make the recurrent layer gradually converge to the desirable output.

3.2.4 Data Augmentation Approach

In many applications the number of training samples (i.e., 2D and corresponding 3D landmark points) is small. However, any regressor designed to learn the mapping function \(f(-) \) requires of a large number of training samples with the 2D landmarks as seen from as many cameras views (i.e., rotation) as possible. We resolve this with a simple, yet effective data augmentation approach.

The key to our approach is to note that, for a given object, its 3D structure does not change. What changes are the 2D coordinates of the landmark points in the image. For example, scaling or rotating an object in 3D yields different 2D coordinates of the same object landmarks. Thus, our task is to generate as many of these possible sample views as possible. We do this with a camera model.

Herein, we use an affine camera model to generate a very large number of images of the known 3D sample objects. We do this by varying the camera view through random rotations. Specifically, we use the weak-perspective camera model defined above.

We also use this data augmentation step to model imprecisely localized 2D landmark points. All detection algorithms yield imprecise detections (even when fiducial detections are done by humans) [25], [26]. We address this problem by modeling the detection error as Gaussian noise, with zero mean and variance \(\sigma \). Specifically, we use a small variance equivalent to about 3 percent the size of the object. This means that, in addition to the 2D landmark points given by the camera models used above, we will incorporate 2D landmark points that have been altered by adding this random Gaussian noise. This allows our neural network to learn to accurately recover the 3D shape of an object from imprecisely localized 2D landmark points.

It is important to note that, when the original training set is small, we can still train our neural network effectively using this trick. In fact, we have found experimentally that we do not need a large number of training samples to obtain extremely low reconstruction errors using our derived approach and this data augmentation trick. This is significant because deep neural net usually require very large training sets to learn to detect and recognize objects in images.

3.2.5 Implementation Details

Our feed-forward neural network contains six layers. The number of nodes in each layer is \([2n, 2n, 2n, 2n, 2n, n] \). We divide our training data into a training and a validation set. In each of these two sets, we perform data augmentation.

We use Keras library [27] on top of Theano [28] to implement our proposed multilayer neural network. Early stopping is enabled to prevent overfitting. We stop the training process if the validation error does not decrease after 10 iterations. We set the initial learning rate at 0.01.
4 EXPERIMENTAL RESULTS

We provide experiments on a variety of databases to test the effectiveness of our algorithm. We used the following datasets: the Human 3.6M database [29], the CMU Motion Capture database [31], the fine-grained 3D car (FG3DCar) database [4], the Binghampton-Pittsburgh 4D Spontaneous Expression (BU–3DFE) database [31], [32] and the flag flapping in the wind database [33]. We also report our results on the sequestered dataset of the 3D Face Alignment in the Wild Challenge (3DFAW), done in conjunction with the 2016 European Conference on Computer Vision (ECCV), where the herein derived algorithm was a top performer.

Comparisons with the state-of-the-art demonstrates that our algorithm is significantly more accurate and efficient in recovering 3D shape from a single 2D image than previously defined methods. The 3D reconstruction error is evaluated using the Procrustes distance between the reconstructed shape and the ground-truth. The ground-truth is given in millimeters (mm) in the original dataset. But, the ground-truth is normalized to a standard scale (given by Eq. (5)) to make the error measure invariant to scale.

Also, to demonstrate the robustness of our method, we perform sensitivity analysis on these datasets. Results show that our method is tolerant to moderate Gaussian noise. We also show results of how our method handles missing data.

4.1 Human 3.6M Database

The Human 3.6M database [29] contains 3.6 million 3D human poses and corresponding images from 17 scenarios such as discussion and smoking. The motions in the database were performed by 11 professional actors (5 female and 6 male).

As suggested by [35], the data from five subjects (S1, S5, S6, S7, S8) are used for training, and the data from two subjects (S9, S11) are used for testing. During testing, we also truncate the frames beyond 30 seconds for each sequence. The frame rate is downsampled from original 50 to 10 fps. Each body shape contains 32 joints. Unlike the paper [35], which used video sequence to do the training and testing, we only use image information and treat each frame independently. The comparison results are shown in Table 1. Our result is even better than the method which requires a sequence to train and test.

4.2 CMU Motion Capture Database

The CMU motion capture database contains 3D human body joints locations of subjects performing various physical activities. It contains 144 subjects and the following categories: human interaction, interaction with environment (playground, uneven terrain and path with obstacles), locomotion (running, walking, jumping and varied), physical activities & sports (basketball, dance, gymnastics, aerobatics, martial arts, racquet/paddle sports, soccer, boxing, general exercise and stretching, golf and frisbee), situations & scenarios (common behaviors and expressions, pantomime, communication gestures and signals and cross-category variety) and test motions.

Each body shape is defined by 15 3D landmark points. To provide a fair comparison, we follow the experimental setting of [2], where sequences of subject 86 are used for training and sequences of subjects 13, 14 and 15 are used for testing. We train the neural network in 10,000 epochs. We train one batch for at most 300 iterations within one epoch. The batch is either the original training data (the first epoch) or a random rotation of the original training data in 3D space. To represent real human shape in a 2D image, we set the rotation angle to be uniformly distributed within the range of $[-20^\circ, 20^\circ]$ about the x axis, $[-20^\circ, 20^\circ]$ about the y axis and $[-180^\circ, 180^\circ]$ about the z axis.

Comparative results are in Table 2. As seen in this table, our results are significantly more accurate than those given by previous algorithms. To further demonstrate the effectiveness and generality of our method, we randomly selected several 2D images from the human-in-the-wild dataset [34] and used the herein derived algorithm to recover the 3D shape of the human bodies in these images. The results are in Fig. 3.

To further verify that our proposed approach is better than state-of-the-art algorithms, we compare our method with the one proposed in [36]. We directly test the public available trained model [36] on the Joint-limit dataset proposed in this paper. The testing error is 0.039. We train and test our proposed model on the Joint-limit dataset which yields a testing error of 0.035. Our method achieves better performance compared with this pose-specific method.

4.3 3D Face Reconstruction

The BU–3DFE database has images of 100 subjects performing six facial expressions in front of a 3D scanner. Each subject performed each expression 25 times, for a total of 2,500 3D sample images. Every sample has 83 annotated 3D landmarks. We randomly select 60 subjects for training, 10 for validation and the remaining 30 for testing.

We trained our neural network in 50,000 epochs and used the same training strategy as described in the preceding section, with the difference that we restricted rotations about the z axis in the range of $[-60^\circ, 60^\circ]$ to more accurately reflect real head movement.

The mean testing error of our algorithm is 0.0032. To provide comparative results against the state-of-the-art, we train and test the algorithm of [2] and use the same experimental setting described above. Comparative results are in Table 3.

We also validate the cross database generality of our trained model on the Helen database of [37]. Here, we randomly select some face images and manually label the face landmarks. The reconstructed 3D shapes are shown in Fig. 4.

To provide an additional unbiased result, we participated in the 3DFAW competition, which was conducted in conjunction with ECCV. Three of the four datasets in the challenge are subsets of MultiPIE [38], BU-4DFE [39] and BP4D-SPontaneous [40] databases.

Database	This paper	Zhou et al. [2]
BU–3DFE Face	0.0032	0.0053
3DFAW	0.0042	0.0055
FG3DCar	0.0020	0.0042

1. https://competitions.codalab.org/competitions/10261
Fig. 3. Results of our algorithm on images of the humans in-the-wild dataset [34]. The first and fifth columns are the single 2D images and 2D landmarks (in yellow) used by our algorithm. The reconstructed 3D shapes are shown on the second, third, fourth, sixth, seventh and eight columns; these show the 3D reconstruction from multiple views to more clearly demonstrate the quality of the recovered 3D shape.

Fig. 4. Illustration of our 3D estimation results on the Helen database [37]. The model is trained on the BU–3DFE face database and tested on Helen. The first and fifth columns show the input 2D images with landmarks (in yellow); the other columns show the estimated 3D shapes.

Fig. 5. Illustration of our 3D estimation results on the FG3DCar database. The first and fifth columns corresponds to the input 2D images and landmark points (in yellow), with the other columns showing the recovered 3D shapes.
respectively. Another dataset TimeSlice3D contains annotated 2D images that are extracted from online videos. In total, there are 18,694 images. Each image has 66 labeled 3D fiducial points and a face bounding box centered around the mean 2D projection of the landmarks. The 2D to 3D correspondence assumes a weak-perspective projection. The depth values have been normalized to have zero mean. Because this competition required that we also estimate the 2D landmark points in the image, we incorporated an additional deep network to our architecture to the model summarized in Fig. 1 and trained it to detect 2D face landmarks [41]. Details of this deep net are in the Supplementary Documentation, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2772922.

Reconstruction error was reported by the organizers of the competition on a sequestered dataset to which we did not have prior access. Our algorithm was a top performer, with a significant margin over other methods. Herein, we also provide comparative results against the algorithm of [2] in Table 3.

4.4 FG3DCar Database
This is a fine-grained 3D car database. It consists of 300 images of 30 different car models as seen from multiple views. Each car model has 10 images. Each image has 64 annotated 2D landmarks and a 3D shape reconstructed Computer-Aided Design (CAD) model. We adopt the default setting for training and testing, i.e., half of the 3D shapes of each car model is used for training, the other half is used for testing. In order to train our neural network, we further split the 150 3D training sample shapes into training (120 shapes) and validation (30 shapes) sets. Testing is conducted on the remaining 150 images.

The neural network is trained for 100,000 epochs. We follow the same procedure used in the preceding two sections and train our neural network on one batch for at most 300 iterations in each epoch. The batch is either composed of the 120 training samples (the first epoch) or a random 3D rotation of the 120 training samples. We augment the validation set 2,000 times using the data augmentation approach described above, resulting in a total of 60,000 validation sample images.

The mean 3D reconstruction error on the testing set is 0.0020. Comparative results with the method of [2] are in Table 3. Qualitative examples of our results are shown in Fig. 5.

4.5 Flag Flapping in the Wind Database
The flag flapping in the wind database [33] has 450 frames, each of which has 540 vertices. We use the first 300 frames for training and the rest for testing. The network is trained in 30,000 epochs and we use the same procedure described in the preceding sections.

The mean testing error is 0.0004. Fig. 6 shows some of our reconstructed results compared with the ground-truth. The reconstructed 3D shape is shown using filled red circles and the 3D ground-truth with open green circles. As we can see in these results, the reconstructed and true shape are almost identical.

4.6 Discussion on Training Strategy
As we saw in the results above, the proposed algorithm yields significantly superior results to those given by state-of-the-art algorithms. In this section we evaluate the contribution of the proposed data augmentation approach. To evaluate this contribution, we show reconstruction errors obtained with and without our data augmentation approach in Table 4. As can be seen in the table, the proposed data augmentation approach has a significant contribution on the final results.
In this table, we also show the results we obtained when using the whole training dataset or 3/4, 1/2 and 1/4 of the dataset. As we can see in the table, our data augmentation approach allows us to train our algorithm with as little as 1/4th of the dataset and still obtained comparable results to those attained when we utilize all the training set.

4.7 Noise and Missing Data

To determine how sensitive the proposed neural network is to inaccurate 2D landmark detections, we add independent random Gaussian noise with variance σ to the databases used in the preceding sections. That is, we add noise to the training and testing samples. Specifically, we apply Gaussian noise to the 2D landmarks.

Fig. 7a shows how little the performance degrades as σ increases when noise is added to the CMU Motion Capture database. The average height of subjects in this dataset is 1,500 mm, meaning the variance of the noise σ is about 3 percent. In Fig. 7a, we can see the robustness of the proposed algorithm to inaccurate 2D landmark positions. Fig. 7e shows the relative reconstruction error averaged across the testing subjects for each landmark with and without noise.

The results on the BU–3DFE Face Database, FG3DCar Database and Flag Flapping in the Wind sequence are shown in Figs. 7b, 7c, and 7d and 7f, 7g, and 7h. The average width of the faces in BU–3DFE is 140 mm, hence, the variance is 5 percent. The mean width of the car models in FG3DCar is 569 pixel, hence, the variance is 2 percent. The mean width of the flags is 386 mm, hence, the variance is 3 percent.

Finally, we tested the ability of the trained system to deal with missing data. Here, each training and validation sample had either 2.5 or 5 percent randomly selected landmark points missing; during training and testing. Comparative results with different proportions of missing landmark points are in Table 5. As can be seen in the table, our paper can achieve smaller reconstruction errors compared with [2], [35] even when ours has missing data and that of [2], [35] do not. We also compare our algorithm with a simple nearest neighbor approach. In this approach, for each testing sample, its 3D reconstruction is the 3D shape in the training set whose 2D projection has the smallest euclidean distance with that of the test image. Fig. 8 shows qualitative results on a few images of humans in the wild and face in the wild databases, respectively.

5 Conclusions

We have presented a simple algorithm for the reconstruction of 3D shapes from 2D landmark points that yields extremely low reconstruction errors. Specifically, we proposed to use a feed-forward neural network to learn the mapping function between a set of 2D landmark points and an object’s 3D shape. The exact same neural network is used to learn the mappings of rigid (e.g., cars), articulated (e.g., human bodies), non-rigid (e.g., faces), and highly-deformable objects (e.g., flags). The system performs extremely well in all cases and yields results as much as two-fold better than previous state-of-the-art algorithms. This neural network runs much faster than real-time, >1000 frames/s, and can be trained with small sample sets.

Acknowledgments

Research supported by the National Institutes of Health, grant R01 DC 014498 and the Human Frontier Science Program, grant RGP0036/2016.

References

[1] A. M. Martinez, “Computational models of face perception,” Current Directions Psychological Sci., vol. 26, pp. 263–269, 2017.

[2] X. Zhou, S. Leonardos, X. Hu, and K. Daniilidis, “3D shape estimation from 2D landmarks: A convex relaxation approach,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 4447–4455.

[3] V. Ramakrishna, T. Kanade, and Y. Sheikh, “Reconstructing 3D human pose from 2D image landmarks,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 573–586.

[4] Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis, “Jointly optimizing 3D model fitting and fine-grained classification,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 466–480.

[5] A. Kar, S. Tulsiani, J. Carreira, and J. Malik, “Category-specific object reconstruction from a single image,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1966–1974.
[6] O. C. Hamsici, P. F. U. Gotardo, and A. M. Martinez, “Learning spatially-smooth mappings in non-rigid structure from motion,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 260–273.

[7] J. Fayad, C. Russell, and L. Agapito, “Automated articulated structure and 3D shape recovery from point correspondences,” in Proc. IEEE Conf. Comput. Vis. Pattern Anal., 2013, pp. 431–438.

[8] P. F. U. Gotardo and A. M. Martinez, “Kernel non-rigid structure from motion,” in Proc. IEEE Conf. Comput. Vis. Pattern Anal., 2011, pp. 802–809.

[9] L. A. Jeni, J. F. Cohn, and T. Kanade, “Dense 3D face alignment from 2D videos in real-time,” in Proc. 11th IEEE Int. Conf. Workshops Autom. Face Recognit., 2015, pp. 1–8.

[10] C. Russell, J. Fayad, and L. Agapito, “Energy based multiple model fitting for non-rigid structure from motion,” in Proc. IEEE Conf. Comput. Vis. Pattern Anal., 2011, pp. 3009–3016.

[11] C. Russell, R. Yu, and L. Agapito, “Video pop-up: Monocular 3D reconstruction of dynamic scenes,” in Proc. Eur. Conf. Comput. Vis., 2014, pp. 583–598.

[12] S. Vicente, J. Carreira, L. Agapito, and J. Batista, “Reconstructing PASCAL VOC,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 41–48.

[13] M. Zhu, X. Zhou, and K. Daniilidis, “Single image pop-up from discriminatively learned parts,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 927–935.

[14] X. Zhou, M. Zhu, S. Leonardos, and K. Daniilidis, “Sparse representation for 3D shape estimation: A convex relaxation approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1648–1661, 2017.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[16] A. Bartoli and T. Collins, “Template-based isometric deformable 3D reconstruction with sampling-based local length self-calibration,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 1514–1521.

[17] P. F. Gotardo and A. M. Martinez, “Computing smooth time trajectories for camera and deformable shape in structure from motion with occlusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 10, pp. 2051–2065, Oct. 2011.

[18] L. Akhter, Y. Sheikh, S. Khan, and T. Kanade, “Trajectory space: A dual representation for nonrigid structure from motion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 7, pp. 1442–1456, Jul. 2011.

[19] P. F. Gotardo and A. M. Martinez, “Kernel non-rigid structure from motion,” in Proc. IEEE Conf. Comput. Vis. Pattern Anal., 2011, pp. 802–809.

[20] R. Urtasun, D. J. Fleet, A. Hertzmann, and P. Fua, “Priors for people tracking from small training sets,” in Proc. 10th IEEE Int. Conf. Comput. Vis., 2005, pp. 403–410.

[21] M. Saiz, R. Urtasun, and P. Fua, “Local deformation models for monocular 3D shape recovery,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008, pp. 1–8.

[22] A. Dame, V. A. Prisacariu, C. Y. Ren, and I. Reid, “Dense reconstruction using 3D object shape priors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 1288–1295.

[23] Y. Chen, T.-K. Kim, and R. Cipolla, “Inferring 3D shapes and deformations from single views,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 300–313.

[24] Y. Bengio and F. Gingras, “Recurrent neural networks for missing or asynchronous data,” in Proc. Int. Conf. Neural Inf. Process. Syst., 1996, pp. 395–401.

[25] Z. Zhang, et al., “BP4D: spontaneous 3D dynamic facial expression database,” in Proc. 10th IEEE Int. Conf. Workshops Autom. Face Recognit., 2013, pp. 1–6.

[26] D. Ramanan, “Learning to parse images of articulated bodies,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2007, pp. 1129–1136.

[27] Z. Zhang, et al., “BP4D: spontaneous 3D dynamic facial expression database,” in Proc. 10th IEEE Int. Conf. Workshops Autom. Face Recognit., 2013, pp. 1–6.

[28] R. White, K. Crane, and D. A. Forsyth, “Capturing and animating occluded speech,” ACM Trans. Graph., vol. 26, no. 3, 2007, Art. no. 34.

[29] D. Ramanan, “Learning to parse images of articulated bodies,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2007, pp. 1129–1136.

[30] Z. Zhang, et al., “BP4D: spontaneous 3D dynamic facial expression database,” in Proc. 10th IEEE Int. Conf. Workshops Autom. Face Recognit., 2013, pp. 1–6.

[31] R. White, K. Crane, and D. A. Forsyth, “Capturing and animating occluded speech,” ACM Trans. Graph., vol. 26, no. 3, 2007, Art. no. 34.

[32] D. Ramanan, “Learning to parse images of articulated bodies,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2007, pp. 1129–1136.

[33] Z. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis, “Sparseness meets deepness: 3D human pose estimation from monocular video,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 4966–4975.

[34] I. Akhter and M. J. Black, “Pose-conditioned joint angle limits for 3D human pose reconstruction,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1446–1455.

[35] V. Le, J. Brandt, Z. Lin, L. Bourdev, and T. S. Huang, “Interactive facial feature localization,” in Proc. 12th Eur. Conf. Comput. Vis., 2012, pp. 679–692.

[36] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-pie,” Image Vis. Comput., vol. 28, no. 5, pp. 807–813, 2010.

[37] L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale, “A high-resolution 3D facial dynamic expression database,” in Proc. 8th IEEE Int. Conf. Autom. Face Recognit., 2008, pp. 1–6.

[38] X. Zhang, et al., “BP4D: spontaneous 3D dynamic facial expression database,” Image Vis. Comput., vol. 32, no. 10, pp. 692–706, 2014.

[39] K. Zhao, F. Benitez-Quiroz, Y. Wang, Y. Liu, and A. Martinez, “Fast and precise face alignment and 3D shape reconstruction from a single 3D image,” in Proc. 14th Eur. Conf. Comput. Vis. Workshop, 2016, pp. 590–603.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.