Spt5 modulates co-transcriptional spliceosome assembly in Saccharomyces cerevisiae

Citation for published version:
Maudlin, I & Beggs, J 2019, 'Spt5 modulates co-transcriptional spliceosome assembly in Saccharomyces cerevisiae', RNA, vol. 25, pp. 1298-1310. https://doi.org/10.1261/rna.070425.119

Digital Object Identifier (DOI):
10.1261/rna.070425.119

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
RNA

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Spt5 modulates cotranscriptional spliceosome assembly in *Saccharomyces cerevisiae*

ISABELLA E. MAUDLIN and JEAN D. BEGGS
Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom

ABSTRACT

There is increasing evidence from yeast to humans that pre-mRNA splicing occurs mainly cotranscriptionally, such that splicing and transcription are functionally coupled. Currently, there is little insight into the contribution of the core transcription elongation machinery to cotranscriptional spliceosome assembly and pre-mRNA splicing. Spt5 is a member of the core transcription elongation machinery and an essential protein, whose absence in budding yeast causes defects in pre-mRNA splicing. To determine how Spt5 affects pre-mRNA splicing, we used the auxin-inducible degron system to conditionally deplete Spt5 in *Saccharomyces cerevisiae* and assayed effects on cotranscriptional spliceosome assembly and splicing. We show that Spt5 is needed for efficient splicing and for the accumulation of U5 snRNPs at intron-containing genes, and therefore for stable cotranscriptional assembly of spliceosomes. The defect in cotranscriptional spliceosome assembly can explain the relatively mild splicing defect as being a consequence of the failure of cotranscriptional splicing. Coimmunoprecipitation of Spt5 with core spliceosomal proteins and all spliceosomal snRNAs suggests a model whereby Spt5 promotes cotranscriptional pre-mRNA splicing by stabilizing the association of U5 snRNP with spliceosome complexes as they assemble on the nascent transcript. If this phenomenon is conserved in higher eukaryotes, it has the potential to be important for cotranscriptional regulation of alternative splicing.

Keywords: transcription; pre-mRNA splicing; yeast

INTRODUCTION

Genes in most eukaryotes contain noncoding sequences (“introns”) that interrupt the coding sequences (“exons”). Introns are present in the nascent transcripts (pre-mRNAs) and are excised and the exons joined in a process called pre-mRNA splicing. Introns are defined by short conserved sequences: the 5′ splice site (5′SS), the 3′SS, and the branch point (BP). Trans-acting factors recognize these motifs and position the pre-mRNA for the two transesterification reactions catalyzed by the spliceosome. The spliceosome is a large macromolecular complex composed of small nuclear ribonucleoprotein particles (snRNPs)—U1, U2, U4/U6, and U5—and many non-snRNP proteins (for review, see Hoskins and Moore 2012). Both in vitro and in vivo, the snRNPs assemble on the pre-mRNA in a stepwise manner. First, the U1 snRNP binds to the 5′SS, and the U2 snRNP binds to the BP, forming the prespliceosome, or A complex. The U4/U6•U5 tri-snRNP then joins, forming the pre-B intermediate complex, which is unstable (Boesler et al. 2016). The pre-B complex undergoes substantial rearrangements to produce the B complex in which the tri-snRNP is stably associated. The spliceosome undergoes further structural rearrangements to form the catalytically active B* complex, which catalyzes the first step of splicing. Further rearrangements promote the second catalytic step that generates the spliced RNA and then the spliceosome dissociates. The splicing factors are then recycled for a new round of splicing (for review, see Will and Lührmann 2011).

There is increasing evidence from lower to higher eukaryotic organisms that splicing occurs mainly cotranscriptionally—that is, spliceosomes assemble and splicing catalysis occurs as RNA polymerase II (RNAPII) transcribes along the gene, before transcription termination (Kotovic et al. 2003; Görnemann et al. 2005; Lacadie and Rosbash 2005; Listerman et al. 2006; Carrillo Oesterreich et al. 2010, 2016; Ameur et al. 2011; Khodor et al. 2012; Tilgner et al. 2012; Brugiolo et al. 2013; Nojima et al. 2015; Harlen et al. 2016; Wallace and Beggs 2017). By definition, cotranscriptional splicing occurs in close proximity to the transcription elongation machinery, and it is well-established that transcription and splicing are functionally...
coupled such that they influence one another (Fong and Zhou 2001; de la Mata et al. 2003; Howe et al. 2003; Alexander et al. 2010a; Ip et al. 2011; Braberg et al. 2013; Chathoth et al. 2014; Dujardin et al. 2014; Fong et al. 2014; Aslanzadeh et al. 2018). There are two nonmutually exclusive models for how transcription affects splicing: (i) the speed of RNAPII elongation affects intron/exon recognition (termed the “kinetic” model); and/or (ii) the transcription elongation machinery facilitates recruitment of splicing factors to the site of transcription (termed the “recruitment” model) (for review, see Kornblihtt et al. 2004; Bentley 2005, 2014; Perales and Bentley 2009; de la Mata et al. 2011; Dujardin et al. 2013; Merkhofer et al. 2014).

Spt5 is the most highly conserved core transcription elongation factor that, following initiation of transcription, associates tightly with RNAPII during elongation until transcription termination, and acts as a docking site for protein complexes that influence RNAPII processivity, RNA processing, and histone modifications (for review, see Hartzog and Fu 2013). It is thought that Spt5 enhances RNAPII processivity by stabilizing the interaction between its clamp domain and the DNA template (Hirtreiter et al. 2010; Klein et al. 2011; Martinez-Rucobo et al. 2011). In metazoans, DSIF (Spt4/5 in Saccharomyces cerevisiae) and NELF cause RNAPII to pause in a stable manner downstream from the transcription start sites, referred to as promoter-proximal pausing (for review, see Adelman and Lis 2012). Depletion of Spt5 in Schizosaccharomyces pombe causes genome-wide defects in transcription elongation (Shetty et al. 2017). In mammals, Spt5 depletion does not cause such genome-wide defects but seems to be important for elongation only on long genes (Fitz et al. 2018). Spt5 has a conserved but nonessential carboxy-terminal region (CTR) that is differentially phosphorylated during the course of transcription, and is important for RNAPII elongation and histone modification (Zhou et al. 2009). In particular, phosphorylation of the CTR of Spt5 by the Bur1/2 kinase complex is important for Paf1 complex (Paf1C) recruitment to elongating RNAPII (Laribee et al. 2005; Liu et al. 2009). Paf1C is associated with RNAPII along actively transcribed genes where it serves as a “platform” that coordinates the association of transcription factors and chromatin-modifying enzymes with RNAPII, thereby facilitating transcription elongation (for review, see Jaehning 2010). Paf1C is required for H2BK123 mono-ubiquitination, which in turn is required for H3K4 di- and trimethylation (Krogan et al. 2003; Ng et al. 2003; Wood et al. 2003; Xiao et al. 2005b). The Paf1 complex also affects H3K36 trimethylation (Chu et al. 2007).

There is evidence that Spt5 affects the pre-mRNA splicing outcome. For example, mutations in Spt5 or its partner, Spt4, result in splicing defects in S. cerevisiae (Lindstrom et al. 2003; Burcin et al. 2005; Xiao et al. 2005a), and depletion of Spt4 in mammalian cells results in changes to alternative splicing patterns (Liu et al. 2012). Further, depletion of Spt5 in mammalian cells causes pre-mRNA accumulation on some genes (Diamant et al. 2012). Similarly, depletion of Spt5 in S. pombe causes pre-mRNA accumulation, as shown by RNA sequencing (Shetty et al. 2017). Additionally, it was shown in yeast that Spt5 is enriched on intron-containing genes compared to intronless genes (known as “intron bias”) and that Spt5 coimmunoprecipitates with Prp40, a core protein of the U1 snRNP (Moore et al. 2006). Further, Spt5 was found to crosslink more to pre-mRNA intron sequences compared to exon sequences in S. cerevisiae (Battaglia et al. 2017).

Collectively, these studies demonstrate that Spt5 is important for splicing outcome, but there is no clear insight into how this happens. As Spt5 functions during transcription, it seems likely that it affects splicing cotranscriptionally although, apparently, this has not been investigated. Here, an auxin-inducible degron (AID) system (Nishimura et al. 2009; Mendoza-Ochoa et al. 2018) was used to conditionally deplete Spt5 in S. cerevisiae, and effects on cotranscriptional spliceosome assembly and splicing were investigated. Analysis of cotranscriptional spliceosome assembly showed that depletion of Spt5 did not affect transcriptional U1 or U2 snRNP recruitment, meaning at least the prespliceosome or A complex can form cotranscriptionally in the absence of Spt5. However, cotranscriptional recruitment of the U5 snRNP was reduced, indicating that B complex cannot efficiently or stably form cotranscriptionally in the absence of Spt5. Further, Spt5 pulls down all spliceosomal snRNAs and coimmunoprecipitates with spliceosomal proteins. We propose that Spt5 affects U5 snRNP recruitment and pre-B and/or B complex formation cotranscriptionally through interaction with components of the spliceosome. Together, these data provide insight into how Spt5 could specifically affect cotranscriptional pre-mRNA splicing to cause a mild splicing defect in S. cerevisiae.

RESULTS

Use of the AID system to conditionally deplete Spt5
To determine whether the physical presence of Spt5 affects cotranscriptional spliceosome assembly in vivo in S. cerevisiae, Spt5 was conditionally depleted using the AID system. Spt5 was carboxy-terminally tagged with the AID* degron and 6xFlag epitope in a strain that allowed conditional induction with β-estradiol and auxin to the culture, the auxin-inducible degron (AID system). Spt5 was carboxy-terminally tagged with the AID system. Spt5 was carboxy-terminally tagged with the AID* degron and 6xFlag epitope in a strain that allowed conditional induction with β-estradiol of Osr1R1, the auxin-binding receptor protein from Oryza sativa (McIsaac et al. 2014; Mendoza-Ochoa et al. 2018). Following the addition of β-estradiol and auxin to the culture, the auxin-bound Os1R1 targets the Spt5-AID* protein for ubiquitination and degradation by the proteasome. Western blotting showed that treatment for 40 min resulted in the
reduction of Spt5-AID* to 40%, on average, of the undepleted amount (Fig. 1A). Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) analysis across three intron-containing genes (Fig. 1B) showed that, in wild-type conditions, Spt5-AID* occupancy peaks over introns and exon 2 of the genes analyzed (Fig. 1C). After auxin treatment, Spt5-AID* was significantly depleted at each of the intron-containing genes tested (Fig. 1C).

Depletion of Spt5 reduces the cotranscriptional recruitment of the U5 snRNP without affecting cotranscriptional prespliceosome assembly

As splicing factors assemble cotranscriptionally, their close proximity to chromatin enables them to be cross-linked to the DNA template and analyzed by ChIP-qPCR. In this way, the cotranscriptional recruitment of splicing factors and spliceosome assembly can be monitored in vivo (Kotovic et al. 2003; Görnemann et al. 2005; Lacadie and Rosbash 2005; Tardiff and Rosbash 2006). ChIP was performed, using antibodies against core members of the spliceosome, to determine whether depletion of Spt5 affects cotranscriptional spliceosome assembly at the intron-containing genes ACT1, RPS13, and ECM33. These three genes are well expressed and their transcripts are cotranscriptionally spliced (Wallace and Beggs 2017). Antibodies were used that detect Prp40 (U1 snRNP), Lea1-3HA (U2 snRNP) or Prp8 (U5 snRNP), which allowed a determination of which stage, if any, of cotranscriptional spliceosome assembly may be affected by depletion of Spt5. In conditions without auxin or β-estradiol, the ChIP profiles of U1 snRNP (Prp40), U2 snRNP (Lea1-3HA), and U5 snRNP (Prp8), were as expected; the U1 and U2 snRNP signals peaked near the 3′SS, and the U5 snRNP peaked nearer the 3′end of the gene. ChIP-qPCR showed that depletion of Spt5 for 40 min did not significantly or consistently affect U1 or U2 snRNP occupancies on the intron-containing genes tested (Fig. 2A,B), relative to conditions without depletion. In contrast, depletion of Spt5 resulted in a significant reduction in U5 snRNP occupancy where it normally peaks on ACT1 (amplicon 5, exon 2), on RPS13 (amplicons 4 and 5, exon 2) and on ECM33 (amplicons 4 and 5, exon 2) (Fig. 2C). Moreover, the U5 ChIP signal declined prematurely compared with normal.

It is conceivable that reduced U5 snRNP recruitment could be an indirect consequence of reduced RNAPII occupancy following Spt5 depletion, for example, causing loss
of interactions between certain splicing factors and RNAPII. However, ChIP using an antibody against RNAPII (Rpb1) (Fig. 2D) showed no consistent effect on RNAPII occupancy across these intron-containing genes. Moreover, western blotting, performed with extracts from cells grown with or without 40 min of auxin treatment, showed no significant difference in the total cellular level of Prp8 protein upon Spt5 depletion (Fig. 2E), indicating that the observed loss of U5 snRNP occupancy, as measured by ChIP of Prp8 following Spt5 depletion, was not simply due to a reduction in the total cellular level of the Prp8 protein.

Depletion of Spt5 causes defects in pre-mRNA splicing

Next, the effect of Spt5 depletion on splicing was investigated for the same intron-containing genes (ACT1, RPS13, and ECM33). In order to distinguish defects at different stages of splicing catalysis, reverse transcriptase real-time quantitative PCR (RT-qPCR) assays were performed using primers that distinguish unspliced pre-mRNA, lariat (excised intron lariat or lariat-exon 2) and spliced exons (Fig. 3A). An increase in 3′SS and 5′SS or BP signals is indicative of pre-mRNA accumulation and a first step splicing defect. Increased signals for 3′SS and lariat are indicative of a second step splicing defect (lariat-exon 2). Increased lariat signal only (without 3′SS or BP accumulation) suggests accumulation of the excised intron-lariat. RT-qPCR of lariat species involves using a primer that spans the conserved branchsite of the lariat. Of the genes tested, only ACT1 lariats can be reliably measured this way.

RT-qPCR on total (steady-state) RNA showed that depletion of Spt5 resulted in accumulation of pre-mRNA for ACT1 (BP and 3′SS signals) ECM33 (5′SS signal) and RPS13 (5′SS signal), indicating a first step defect in pre-mRNA splicing (Fig. 3B;
Supplemental Fig. S1). In the case of ACT1, we were also able to quantify lariat species, which shows that depletion of Spt5 resulted in a reduction in lariat signal, supporting a first step splicing defect (Fig. 3B; Supplemental Fig. S1). The observation that the levels of the spliced mRNAs were not significantly changed likely reflects the relatively short Spt5 depletion time as well as the relatively mild splicing defect.

Spt5 interacts with snRNPs

RNA immunoprecipitation (RIP) was performed in which Spt5-AID*-6Flag was pulled down using a Flag antibody and associated RNA was purified followed by RT-qPCR to detect any association of Spt5 with U1, U2, U4, U5, and U6 spliceosomal RNAs. RIP analysis showed Spt5 interacting mostly with the U1 snRNA, and also with U2, U4, U5, and U6 snRNAs significantly above background (Fig. 4A). RT-qPCR of intron-containing transcripts showed Spt5 pulling down more pre-mRNAs in comparison with spliced RNAs, in agreement with previous studies, which found that Spt5 exhibited intron bias and interaction with nascent pre-mRNAs (especially introns) (Fig. 4B; Moore et al. 2006; Battaglia et al. 2017). To investigate the possibility of an interaction between Spt5 and spliceosomal proteins, coimmunoprecipitation experiments were performed in which Spt5-AID*-6Flag was pulled down using a Flag antibody, followed by western blotting with antibodies against Prp40 (U1), Lea1-3HA (U2), and Prp8 (U5). As shown in Figure 4C, Prp8 was specifically coimmunoprecipitated with Spt5-AID*-6Flag and, as the addition of RNase did not affect the coimmunoprecipitation, this interaction appears to be RNA-independent. No pulldown of Prp8 was detected using a control strain with untagged Spt5, confirming the specificity of the coimmunoprecipitation. Although Prp40 (U1 snRNP) and Lea1 were not detected in the pulldown of Spt5 (Fig. 4C), immunoprecipitation of Prp40, Lea1, and Prp8 each coimmunoprecipitated Spt5 in an RNase-resistant manner (Fig. 4D). Therefore, Spt5 appears to interact with several core spliceosomal proteins, but only the coimmunoprecipitation between Spt5-AID*-6Flag and Prp8 was reciprocal. RT-qPCR analysis demonstrated the effectiveness of the RNase treatment for both snRNAs and pre-mRNA (Fig. 4E).

The effect of Spt5 depletion on cotranscriptional recruitment of the U5 snRNP is not Paf1-dependent

To test whether the effect of Spt5 depletion on cotranscriptional spliceosome assembly was due to loss of Paf1C, a core member of the complex, Paf1, was depleted by the AID system and effects on cotranscriptional spliceosome assembly were determined. Western blotting showed that 30 min of auxin treatment resulted in a significant reduction in Paf1-AID* to, on average, 8% relative to cells without auxin treatment (Fig. 5A). The ChiP-qPCR analysis showed that, in addition to being depleted in whole cell extracts, Paf1 was significantly depleted across the intron-containing genes tested after auxin treatment (Fig. 5B). However, in contrast to the effect of depleting Spt5, ChIP-qPCR analysis showed no significant change in the occupancy of the U5 snRNP at ACT1, ECM33 or RPS13, following 30 min of Paf1-AID* depletion, relative to conditions prior to auxin addition (Fig. 5C; Supplemental Fig. S2). Nor were consistent changes in U1 or U2 snRNP occupancy observed (data not shown).

To determine whether Paf1-AID* depletion affected pre-mRNA splicing, RT-qPCR was performed, as described above, on total (steady-state) RNA. No significant change in the levels of the pre-mRNA, spliced exons or exon 2 was observed for ACT1, RPS13, and ECM33 following depletion of Paf1-AID*, relative to conditions prior to auxin addition (Fig. 5D).
DISCUSSION

There is some evidence that core members of the transcription elongation complex interact with splicing factors (Brés et al. 2005; Moore et al. 2006; Cao et al. 2015; Li et al. 2016), and can affect splicing outcome (Lindstrom et al. 2003; Burckin et al. 2005; Xiao et al. 2005a; Diamant et al. 2012; Liu et al. 2012; Shetty et al. 2017). However, there is currently little insight into how the core transcription elongation machinery affects cotranscriptional splicing or whether observed effects are direct or indirect (for review, see Neugebauer 2002; Merkhofer et al. 2014). Here, using the AID system to conditionally deplete transcription elongation factor Spt5, we provide insight into the contribution of Spt5 to pre-mRNA splicing in S. cerevisiae.

ChIP-qPCR, using antibodies against individual snRNP components, is a well-established method to monitor stepwise cotranscriptional spliceosome assembly (Kotovic et al. 2003; Görnemann et al. 2005; Lacadie and Rosbash 2005; Tardiff and Rosbash 2006). In particular, Prp8 is a reliable indicator of the presence of the U5 snRNP, as the absence of Prp8 results in failure to form stable U5 snRNP or U4/U6.U5 tri-snRNP or their failure to assemble into spliceosomes (Brown and Beggs 1992). It was also shown previously that prespliceosomes can form in vivo in the absence of the U5 snRNP, as the absence of Prp8 results in failure to form stable U5 snRNP or U4/U6.U5 tri-snRNP or their failure to assemble into spliceosomes (Brown and Beggs 1992). It was also shown previously that prespliceosomes can form in vivo in the absence of the U5 snRNP, as the absence of Prp8 results in failure to form stable U5 snRNP or U4/U6.U5 tri-snRNP or their failure to assemble into spliceosomes (Brown and Beggs 1992). It was also shown previously that prespliceosomes can form in vivo in the absence of the U5 snRNP, as the absence of Prp8 results in failure to form stable U5 snRNP or U4/U6.U5 tri-snRNP or their failure to assemble into spliceosomes (Brown and Beggs 1992).

Following Spt5 depletion, we observed normal cotranscriptional recruitment of the U1 and U2 snRNPs but not of U5 snRNP to intron-containing genes (Fig. 2), indicating unperturbed cotranscriptional assembly of the prespliceosome (A complex) but possible failure to form pre-B complex. However, the observation of a low level signal for U5 snRNP may indicate that transient pre-B complex forms but, in the absence of Spt5, dissociates, without conversion to B complex (Figs. 2C, 6). Single molecule imaging analyses of spliceosome assembly in vitro have shown that individual stages of stepwise spliceosome assembly, including tri-snRNP association with the prespliceosome, are reversible in S. cerevisiae (Hoskins et al. 2011), and there is separate evidence that both steps of splicing can be reversed in vitro (Tseng and Cheng.

FIGURE 4. (Continued on next page)
Therefore, we cannot rule out the possibility that stable B complex forms and is rapidly converted to activated spliceosome that is itself unstable and is rapidly disassembled. Although Spt5 promotes transcription elongation, the effects of Spt5 depletion on US snRNP recruitment are not simply due to altered transcription. Under the Spt5 depletion conditions used, the transcript levels did not significantly change (exon 2 in Fig. 3B), nor did RNAP II occupancy (Fig. 2D) change for the intron-containing genes tested. Moreover, changes to transcription would be predicted to affect the cotranscriptional recruitment of U1, U2, and US snRNPs similarly, whereas U1 and U2 snRNP recruitment was not changed by Spt5 depletion. A defect in the cotranscriptional formation of spliceosomes can explain the observed mild splicing defect (Fig. 3). This is consistent with previous studies in which mutations in Spt5 caused splicing defects in S. cerevisiae, and where depletion of Spt5 resulted in pre-mRNA accumulation in S. pombe (Lindstrom et al. 2003; Burckin et al. 2005; Shetty et al. 2017). It has been demonstrated that splicing is more efficient when cotranscriptional (Aslanzadeh et al. 2018), so that, although Spt5 likely does not affect post-transcriptional splicing, this does not compensate for lack of cotranscriptional splicing, explaining the relatively modest splicing defect observed when Spt5 was depleted.

How might this effect of Spt5 on cotranscriptional spliceosome assembly be mediated? Coimmunoprecipitation experiments showed a reciprocal association of Spt5 and Prp8 (Fig. 4C,D). We also observed Prp40 (U1 snRNP) pull-down of Spt5, which is in agreement with a previous study (Moore et al. 2006). However, Prp40 (U1) and Lea1 (U2) coimmunoprecipitated Spt5 in a nonreciprocal manner, which might suggest that these interactions occur in the context of the spliceosome. Indeed, RIP experiments showed that Spt5 interacted with all five spliceosomal snRNAs (Fig. 4A), with U1 snRNA being pulled down the most, and that the intronic regions of the pre-mRNAs were enriched in the pulldowns compared with the exons (Fig. 4B). Although the interactions of Spt5 with the snRNP proteins are reproducibly all resistant to RNase treatment (Fig. 4C,D), the intronic regions of ACT1 (the only transcript analyzed by RT-qPCR after RNase treatment) were relatively protected against the RNase treatment compared with the mRNA splice junction and the snRNAs, therefore it cannot be ruled out that the Spt5 interactions with splicing factors are intron-mediated. While our data are consistent with direct interactions between Spt5 and splicing factors occurring in vivo, we cannot exclude the possibility that interactions may be indirect or form post-lysis (Mili and Steitz 2004). Assuming that these interactions occur in vivo, as Spt5 is a transcription elongation factor, they presumably occur at sites of transcription elongation.

The amino-terminal region of Prp8 (U5 snRNP) has been reported to interact with several U1 snRNP proteins, including Prp40 (for review, see Grainger and Beggs 2005). Interestingly, the conserved WW domains of Prp40 were proposed to bind the amino-terminal part of Prp8p in yeast, through proline-rich motifs (Abovich and Rosbash 1997; Wiesner et al. 2002), possibly bridging interactions across the intron. In a functional analysis of the role of the Prp40 WW
Spt5 modulates cotranscriptional spliceosome assembly

domains in splicing, Görmemann et al. (2011) found that deletion of the Prp40 WW domains reduced cotranscriptional US snRNP recruitment without affecting U1 or U2 snRNP recruitment, similar to our findings for Spt5 depletion. It is therefore tempting to speculate that Spt5 may promote interaction between Prp8, in the U5 snRNP, and Prp40 (and potentially other U1 snRNP proteins) during tri-snRNP recruitment, thereby facilitating stable B complex formation cotranscriptionally, as indicated in our proposed model (Fig. 6).

Together, these data provide insight into how Spt5 could affect pre-mRNA splicing, by modulating cotranscriptional recruitment or stable association of the U5 snRNP and/or tri-snRNP during spliceosome assembly, most likely by direct or indirect interaction with the spliceosome (Fig. 6). We further show that the defect caused by Spt5 depletion is apparently not a consequence of failure to recruit the Paf1 complex to RNAPII (Fig. 5), more directly implicating Spt5 itself, rather than recruitment of downstream transcription factors.

These results provide evidence of a role for a transcription elongation factor in cotranscriptional spliceosome assembly and thereby for the recruitment model of cotranscriptional splicing. As Spt5 is highly conserved, it will be of interest to determine whether Spt5 plays a similar role in cotranscriptional spliceosome assembly in higher eukaryotes, which is crucial for cotranscriptional regulation of alternative splicing.

MATERIALS AND METHODS

Yeast strains and growth conditions

Yeast strains are listed in Table 1. Spt5 was carboxy-terminally AID*-6Flag tagged in a W303 strain containing a centromeric plasmid that allowed conditional induction of OsTIR1 using the β-estradiol system (McIsaac et al. 2014; Mendoza-Ochoa et al. 2018). Pa1 was carboxy-terminally AID*-6Flag tagged in a W303 strain containing a centromeric plasmid that allowed conditional induction of OsTIR1 using the β-estradiol system (McIsaac et al. 2014).
AID*-6Flag tagged in the YBRT background strain. For tagging, a plasmid was used with the AID* cassette comprised of the AUX/IAA (AID*) recognition motif for auxin-mediated depletion and a 6× Flag tag for immunodetection (Morawska and Ulrich 2013).

Auxin time course experiments
To induce TIR1 using the β-estradiol system, cells, grown in leucine-deficient yeast minimal media (YMM) to OD_{600} 0.7, were treated with 10 μM β-estradiol (Sigma-Aldrich #E8875; dissolved in 100% ethanol) to induce TIR1 expression and 0.75 mM Indole-3-acetic acid (IAA; auxin) (Acros organics #122160100) to deplete Spt5-AID*, for 40 min. To deplete Paf1-AID*, cells grown in YPDA medium to OD_{600} 0.7 were treated with 0.75 mM IAA for 30 min. After incubation with auxin, samples were taken for protein, RNA and chromatin extraction as described below.

Protein sample preparation and western blotting
Protein samples were prepared using a NaOH lysis and trichloroacetic acid (TCA) precipitation protocol (Volland et al. 1994). For western blotting, 25 µg of protein was run on a NuPAGE 4%–12% Bis-Tris gel (Invitrogen #NP0323BOX) at 180 V in 1× MOPS-SDS buffer (Invitrogen #1862491). Proteins were transferred to a Bio-Rad nitrocellulose membrane (0.2 µm, #LC2009) using a semi-wet transfer unit (Bio-Rad) at 100 V for 1 h at 4°C in Tris-Glycine transfer buffer (200 mM Tris, 1.5 M glycine) with 10% methanol. After transfer, proteins of interest were visualized using the Odyssey infrared imaging system (LI-COR Bioscience), and quantified by the median method of the Odyssey software. Data were normalized against the 3-Phosphoglycerate Kinase (Pgk1) loading control. Primary and secondary antibodies used are listed in Table 2.

RNA preparation and RT-qPCR
RNA was extracted using a modified GTC:phenol method and RT-qPCR was performed as described in Alexander et al. (2010b). A list of primers used for RT-qPCR can be provided upon request.

Chromatin immunoprecipitation (ChIP)
Fifty milliliters of culture at OD_{600} 0.8 were cross-linked in 1% (w/v) formaldehyde for 10 min with shaking at room temperature. The reaction was stopped by incubating the cells for 5 min with 2.5 mL of 2.5 M glycine. Cells were harvested by centrifugation and washed twice in ice-cold 1× PBS. Cell pellets were resuspended in 350 µL FA1 buffer (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1% sodium deoxycholate, one complete EDTA-free proteinase inhibitor tablet [Roche #11836145001], PhosSTOP tablets [Sigma Aldrich #000000004906845001]) and 350 µL zirconia beads. The cells were disrupted using the Mini-Beadbeater-24 (BioSpec Products) twice at 2000 rpm for 2 min with 2 min on ice in

![FIGURE 6. Model: a role for Spt5 in cotranscriptional spliceosome assembly. In wild-type conditions (without Spt5 depletion), Spt5 facilitates cotranscriptional spliceosome assembly by promoting stable recruitment of the U5 snRNP. This may be mediated, either directly or indirectly, by the interaction between Spt5 and core members of the spliceosome, although it is unclear whether the interaction occurs already at the pre-spliceosome stage. Upon Spt5 depletion (indicated by the red cross), the U5 snRNP is either not recruited or does not remain stably associated, so that pre-B/B complexes or later complexes do not form, or form and then rapidly disassemble, leading to defects in splicing catalysis.](image-url)
between. The sample was separated from the beads by centrifugation at 1000g for 2 min. The sample was centrifuged at 20,000g for 15 min at 4°C. The pellet was resuspended in 600 µL FA1 buffer, and the sample sonicated using a New T彬or Biorupt sonicator (Diaimagen) for 15 cycles 30 sec on and 30 sec off. The sample was centrifuged at 20,000g for 30 min at 4°C and the supernatant containing solubilized chromatin was retained. For immunoprecipitation, the appropriate amount of chromatin was incubated in 20 µL Protein A/G Dynabeads (Life Technologies #10001D/ 10003D) conjugated to the antibody on a rotating wheel overnight at 4°C. A list of the antibodies for ChIP can be found in Table 2.

The beads were washed three times in FA1 buffer, twice in FA2 buffer (50 mM HEPES-KOH pH 7.5, 0.5 M NaCl, 1 mM EDTA pH 8.0, 1% Triton X-100, 0.1% sodium deoxycholate), twice in FA3 buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 1 mM EDTA pH 8.0, 0.5% NP-40, 0.5% Na deoxycholate) and once in Tris-EDTA pH 8.0 0.05% TWEEN-20. Crosslinking was reversed with 150 µL elution buffer (50 mM Tris-HCl pH 8.0, 1% Triton X-100, 0.1% sodium deoxycholate) and once in Tris-EDTA pH 8.0 0.05% TWEEN-20. Twenty microliters of loading buffer was added to the beads, incubated with 1 mg of protein on a rotating wheel for 1 h at room temperature. The beads were washed eight times in lysis buffer. Twenty microliters of loading buffer was added to the beads, input and nonbound samples, which were boiled for 10 min before loading on a 4%–12% Bis-Tris gel followed by western blotting as described above. A list of antibodies used for coimmunoprecipitation and subsequent western blotting can be found in Table 2.

For RNase treatment, 1 mg of protein was incubated with 100 µg/mL RNase A (Sigma Aldrich #R4642) for 30 min at room temperature prior to immunoprecipitation. The efficiency of RNase treatment was verified by RNA extraction and RT-qPCR as described above.

RNA immunoprecipitation

RNA immunoprecipitation was performed using a protocol modified from Churchman and Weissman (2012). Cells at OD600 0.8 were harvested by centrifugation and subjected to cryogeniclysis and DNase treatment as described in Churchman and Weissman (2012). For immunoprecipitation, 1 mg of lysate was incubated with 20 µL of dynabeads Protein A/G Dynabeads (Life Technologies #10001D/10003D) conjugated to the antibody on a rotating wheel for 2 h at 4°C. As a negative control, a mock pulldown using IgG was performed. The Flag antibody used for immunoprecipitation can be found in Table 2. The beads were washed four times in lysis buffer. RNA was extracted and purified from input and pulldown samples using the Qiagen miRNeasy mini kit according to the manufacturer's instructions. RIP data are presented as percentage of input. A list of primers used for RT-qPCR to detect snRNAs can be provided upon request.

Table 2. Antibodies used in this study for western blotting, ChIP, RIP, and coimmunoprecipitation

Antibody	Application
Rabbit anti-Prp40 (rabbit 11 Eurogentec 2014)	Western blotting
Rabbit anti-Prp8 (R1703 final bleed boon peptide 5/046)	Western blotting
Rat anti-Flag (Agilent #200474)	Western blotting
Mouse anti-Rpb1 (Diaimagen #C15100055-100)	Western blotting
Mouse anti-Pgk1 (Abcam #22C5D8)	Western blotting
Mouse anti-HA (Santa Cruz #F-7)	Western blotting
Goat anti-mouse IRDye680RD (LI-COR #926-68070)	Western blotting
Goat anti-rabbit IRDye680RD (LI-COR #926-32223)	Western blotting
Goat anti-rat IRDye800RD (LI-COR #926-32219)	Western blotting
Goat anti-rabbit IRDye800RD (LI-COR #925-32211)	Western blotting
Rabbit anti-Prp40 (rabbit 11 Eurogentec 2014)	Western blotting
Rabbit anti-Prp8 (R1703 final bleed boon peptide 5/046)	Western blotting
Rabbit anti-HA (Abcam #AB9110)	Western blotting
Mouse anti-Flag (Sigma M2 #F1804)	Western blotting
Mouse anti-Rpb1 (Diaimagen #C15100055-100)	Western blotting
SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

This work was supported by Wellcome funding to J.D.B. (104648) and a Wellcome Trust PhD Studentship to I.E.M. (105256). Work in the Wellcome Centre for Cell Biology is supported by Wellcome core funding (092076).

Author contributions: I.E.M. performed all experiments; J.D.B. supervised the work; I.E.M. and J.D.B. jointly conceived of the project and wrote the manuscript.

Received January 18, 2019; accepted May 29, 2019.

REFERENCES

Abovich N, Roshbash M. 1997. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 89: 403–412. doi:10.1016/S0092-8674(00)80221-4

Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13: 720–731. doi:10.1038/nrg3293

Alexander RD, Innocente SA, Barrass JD, Beggs JD. 2010a. Splicing-dependent RNA polymerase II pausing in yeast. Mol Cell 40: 582–593. doi:10.1016/j.molcel.2010.11.005

Alexander RD, Barrass JD, Dichtl B, Kos M, Obtulowicz T, Robert MC, Koper M, Karkusiewicz I, Mariconti L, Tollervey D, et al. 2010b. Ribosys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3′-end processing in Saccharomyces cerevisiae. RNA 16: 2570–2580. doi:10.1261/rna.2162610

Ameur A, Zaghloul A, Halvardsson J, Wetterbom A, Gyllensten U, Cavelier L, Feuk L. 2011. Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in human brain. Nat Struct Mol Biol 18: 1435–1440. doi:10.1038/nsmb.2143

Aslanzadeh V, Huang Y, Sanguinetti G, Beggs JD. 2018. Transcription rate strongly affects splicing fidelity and cotranscriptionality in budding yeast. Genome Res 28: 203–213. doi:10.1101/gr.225615.117

Battaglia S, Lidschreiber M, Baejen C, Torkler P, Vos SM, Cramer P. 2017. RNA-dependent chromatin association of transcription elongation factors and Pol II CTD kinases. Elife 6: e25637. doi:10.7554/eLife.25637

Bentley DL. 2005. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors.Curr Opin Cell Biol 17: 251–256. doi:10.1016/j.cceb.2005.04.006

Bentley DL. 2014. Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15: 163–175. doi:10.1038/nrrg3662

Boesler C, Rigo N, Anokhina MM, Tauchert MJ, Agafonov DE, Kastner B, Urlaub H, Ficner R, Will CL, Lührmann R. 2016. A splicingosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nat Commun 7: 11997. doi:10.1038/ncomms11997

Braberg H, Jin H, Moehle EA, Chan YA, Wang S, Shales M, Benshop JJ, Morris JH, Qiu C, Hu F, et al. 2013. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154: 775–788. doi:10.1016/j.cell.2013.07.033

Brés V, Gomes N, Pickle L, Jones KA. 2005. A human splicing factor, SKIP, associates with P-TFEb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19: 1211–1226. doi:10.1101/gad.1291705

Brown JD, Beggs JD. 1992. Roles of PRP8 protein in the assembly of splicing complexes. EMBO J 11: 3721–3729. doi:10.1002/j.1460-2075.1992.tb05457.x

Brugiolo M, Herzel L, Neugebauer KM. 2013. Counting on co-transcriptional splicing. F1000Prime Rep 5: 5–9. doi:10.12703/P5-9

Burckin T, Nagel R, Mandel-Gutfreund Y, Shuei L, Clark TA, Chong JL, Chang TH, Squazzo S, Hartzog G, Ares M. 2005. Exploring functional relationships between components of the gene expression machinery. Nat Struct Mol Biol 12: 175–182. doi:10.1038/nsmb891

Cao Y, Wen L, Wang Z, Ma L. 2015. SKIP interacts with the Paf1 complex to regulate flowering via the activation of FLC transcription in Arabidopsis. Mol Plant 8: 1816–1819. doi:10.1016/j.molp.2015.09.004

Carrillo Oesterreich F, Preibisch S, Neugebauer KM. 2010. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol Cell 40: 571–581. doi:10.1016/j.molcel.2010.11.004

Carrillo Oesterreich F, Herzel L, Straube K, Hujer K, Howard J, Neugebauer KM. 2016. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165: 372–381. doi:10.1016/j.cell.2016.02.045

Chatham KT, Barrass JD, Webb S, Beggs JD. 2014. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol Cell 53: 779–790. doi:10.1016/j.molcel.2014.01.017

Chu Y, Simic R, Warner MH, Amrdt KM, Prelich G. 2007. Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. EMBO J 26: 4646–4656. doi:10.1038/sj.emboj.7601887

Churchman LS, Weissman JS. 2012. Native elongating transcript sequencing (NET-seq). Curr Protoc Mol Biol 1: 14.4.1–14.4.17. doi:10.1002/0471142727.mb0414s98

de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, Bentley D, Kornblihtt AR. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 12: 525–532. doi:10.1016/j.molcel.2003.08.001

de la Mata M, Muñoz MJ, Allo M, Fededa JP, Schor IE, Kornblihtt AR. 2011. RNA polymerase II elongation at the crossroads of transcription and alternative splicing. Genes Res Int 2011: 1–9. doi:10.4061/2011/39865

Diamant G, Amir-Zilberstein L, Yamaguchi Y, Handa H, Dikstein R. 2012. DSIF restricts NF-kB signaling by coordinating elongation with mRNA processing of negative feedback genes. Cell Rep 2: 722–731. doi:10.1016/j.celrep.2012.08.041

Dujardin G, Lafaille C, Petrillo E, Buggiano V, Gómez Acuña Li, Fiszbein A, Godoy Herz MA, Nieto Moreno N, Muñoz MJ, Allo M, et al. 2013. Transcriptional elongation and alternative splicing. Biochim Biophys Acta 1829: 134–140. doi:10.1016/j.bbagen.2012.08.005

Dujardin G, Lafaille C, de la Mata M, Marasco LE, Muñoz MJ, Le Jossic-Corcos C, Corcos L, Kornblihtt AR. 2014. How slow RNA polymerase II elongation favors alternative exon skipping. Mol Cell 54: 683–690. doi:10.1016/j.molcel.2014.03.044

Fitz J, Neumann T, Pavli R. 2018. Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. EMBO J 37: e97965. doi:10.15252/embj.201797965

Fong YW, Zhou Q. 2001. Stimulatory effect of splicing factors on transcriptional elongation. Nature 414: 929–933. doi:10.1038/414929a

Fong N, Kim H, Zhou Y, Ji X, Qiu J, Saldi T, Diener K, Jones K, Fu XD, Bentley DL. 2014. Pre-mRNA splicing is facilitated by an optimal
Spt5 modulates cotranscriptional spliceosome assembly

RNA polymerase II elongation rate. Genes Dev 28: 2663–2676. doi:10.1101/gad.252106.114

Görmemann J, Kotovic KM, Hujer K, Neugebauer KM. 2005. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 19: 53–63. doi:10.1016/j.molcel.2005.05.007

Görmemann J, Barrandon C, Hujer K, Rutz B, Rigaut G, Kotovic KM, Fauch C, Neugebauer KM, Séraphin B. 2011. Cotranscriptional spliceosome assembly and splicing are independent. mcb.23.0.409083

Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM, Hirtreiter A, Damsma GE, Cheung ACM, Klose D, Grohmann D, Hoskins AA, Moore MJ. 2012. The spliceosome: a flexible, reversible interaction and requires the cap binding complex. Cell Rep 15: 2147–2158. doi:10.1016/j.celrep.2016.05.010

Hartog GA, Fu J. 2013. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. Biochim Biophys Acta 1829: 105–115. doi:10.1016/j.bbagrm.2012.08.007

Hirtreiter A, Damsma GE, Cheung ACM, Klose D, Grohmann D, Vojnic E, Martin ACR, Cramer P, Werner F. 2010. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res 38: 4040–4051. doi:10.1093/nar/gkq135

Hoskins AA, Moore MJ. 2012. The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37: 179–188. doi:10.1016/j.tibs.2012.02.009

Hoskins AA, Friedman LJ, Gallagher SS, Crawford DJ, Anderson EG, Wombacher R, Ramirez N, Cornish VW, Gelles J, Moore MJ. 2011. Ordered and dynamic assembly of single spliceosomes. Science 331: 1289–1295. doi:10.1126/science.1198830

Howe KJ, Kane CM, Ares M. 2003. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. RNA 9: 993–1006. doi:10.1261/ma.5390803

Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG, Odom DT, Blencowe BJ. 2011. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 21: 390–401. doi:10.1101/gr.111070.110

Jaehning JA. 2010. The Pafl complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta 1799: 379–388. doi:10.1016/j.bbabmb.2010.01.001

Khodor YL, Menet JS, Tolan M, Rosbash M. 2012. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA 18: 2174–2186. doi:10.1261/rna.034090.112

Klein BJ, Bose D, Baker KJ, Yossof ZM, Zhang X, Murakami KS. 2011. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci 108: 546–550. doi:10.1073/pnas.1013828108

Kornblitt AR, De La Mata M, Fededa JP, Muñoz MJ, Nogués G. 2004. Multiple links between transcription and splicing. RNA 10: 1489–1498. doi:10.1261/rna.7100104

Kotovic KM, Lockshon D, Boric L, Neugebauer KM. 2003. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 23: 5768–5779. doi:10.1128/MCB.23.16.5768-5779.2003

Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, et al. 2003. The Pafl complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11: 721–729. doi:10.1016/S1097-2765(03)00091-1

Lacadie SA, Rosbash M. 2005. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5’s base pairing in yeast. Mol Cell 19: 65–75. doi:10.1016/j.molcel.2005.05.006

Laribee RN, Krogan NJ, Xiao T, Shibata Y, Hughes TR, Greenblatt JF, Strahl BD. 2005. BUR kinase selectively regulates H3 K4 methylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr Biol 15: 1487–1493. doi:10.1016/j.cub.2005.07.028

Li Y, Xia C, Feng J, Yang D, Wu F, Cao Y, Li L, Ma L. 2016. The SWN domain of SKIP is required for its integration into the spliceosome and its interaction with the Pafl complex in Arabidopsis. Mol Plant 9: 1040–1050. doi:10.1016/j.molp.2016.04.011

Listerma I, Sapra AK, Neugebauer KM. 2006. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat Struct Mol Biol 13: 815–822. doi:10.1038/nsmb1135

Liu Y, Warfield L, Zhang C, Luo J, Allen J, Lang WH, Ranish J, Shokat KM, Hahn S. 2009. Phosphorylation of the transcription elongation factor Spt5 by yeast BUR kinase stimulates recruitment of the PAF complex. Mol Cell Biol 29: 4852–4863. doi:10.1128/MCB.00609-09

Liu CR, Chang CR, Chern Y, Wang TH, Hsieh WC, Shen WC, Chang CY, Chu IC, Deng N, Cohen SN, et al. 2012. Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 148: 690–701. doi:10.1016/j.cell.2011.12.032

Martinez-Rucobo PW, Sainsbury S, Cheung ACM, Cramer P. 2011. Architecture of the RNA polymerase-Spt4/5 complex and different mechanisms of transcription elongation at mammalian promoters. RNA 17: 1378–1385. doi:10.1261/rna.101125.1114

Mclsaac RS, Gibney PA, Chadlian SS, Benjamin KR, Botstein D. 2014. Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res 42: e48. doi:10.1093/nar/gkt1402

Mendoza-Ochoa GI, Barrass JD, Terlouw BR, Maudlin IE, de Lucas S, Sani E, Aslanzadeh V, Reid JAE, Beggs JD. 2018. A fast and tunable auxin-inducible degron for depletion of target proteins in budding yeast. Yeast 36: 75–81. doi:10.1002/yea.3362

Merkoheer EC, Hu P, Johnson TL. 2014. Introduction to cotranscriptional RNA splicing. Methods Mol Biol 1126: 83–96. doi:10.1007/978-1-62703-980-2_6

Mili S, Strahl BD. 2005. BUR kinase selectively regulates H3 K4 trimethylation and required degron system in budding yeast. Mol Cell 19: 65–75. doi:10.1016/j.molcel.2005.05.006

Morawaska M, Ulrich HD. 2013. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast 30: 341–351. doi:10.1002/yea.2967

Neugebauer KM. 2002. On the importance of being co-transcriptional. J Cell Sci 115: 3865–3871. doi:10.1242/jcs.00073

Ng HH, Dole S, Struhl K. 2003. The Rtf1 component of the Pafl transcriptional elongation complex is required for ubiquitination of histone H2B. J Biol Chem 278: 33625–33628. doi:10.1074/jbc.C300270200

Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M. 2009. An auxin-based degron system for the rapid depletion of...
proteins in nonplant cells. Nat Methods 6: 917–922. doi:10.1038/nmeth.1401
Nojima T, Gomes T, Grosso ARF, Kimura H, Dye MJ, Dhir S, Carmo-Fonseca M, Proudfoot NJ. 2015. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161: 526–540. doi:10.1016/j.cell.2015.03.027
Perales R, Bentley D. 2009. ‘Cotranscriptionality’: the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 36: 178–191. doi:10.1016/j.molcel.2009.09.018
Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F. 2017. Spt5 plays vital roles in the control of sense and antisense transcription elongation. Mol Cell 66: 77–88.e5. doi:10.1016/j.molcel.2017.02.023
Tardiff DF, Rosbash M. 2006. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA 12: 968–979. doi:10.1261/ma.50506
Tilgner H, Knowles DG, Johnson R, Davis CA, Chakrabortty S, Djebari S, Curado J, Snyder M, Gingeras TR, Guigó R. 2012. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22: 1616–1625. doi:10.1101/gr.134445.111
Tseng CK, Cheng SC. 2008. Both catalytic steps of nuclear pre-mRNA splicing are reversible. Science 320: 1782–1784. doi:10.1126/science.1158993
Volland C, Urban-Grimal D, Géraud G, Haguenauer-Tsapis R. 1994. Endocytosis and degradation of the yeast uracil permease under adverse conditions. J Biol Chem 269: 9833–9841.
Wallace EWJ, Beggs JD. 2017. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast. RNA 23: 601–610. doi:10.1261/rna.060830.117
Wiesner S, Stier G, Sattler M, Macias MJ. 2002. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Pap40. J Mol Biol 324: 807–822. doi:10.1016/S0022-2836(02)01145-2
Will CL, Lühmann R. 2011. Spliceosome structure and function. Cold Spring Harb Perspect Biol 3: a003707. doi:10.1101/cshperspect.a003707
Wood A, Schneider J, Dover J, Johnston M, Shilatifard A. 2003. The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278: 34739–34742. doi:10.1074/jbc.C300269200
Xiao Y, Yang YH, Burckin TA, Shieue L, Hartzog GA, Segal MR. 2005a. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-S in splicing. PLoS Comput Biol 1: e39. doi:10.1371/journal.pcbi.0010039
Xiao T, Kao C-F, Krogan NJ, Sun Z-W, Greenblatt JF, Osley MA, Strahl BD. 2005b. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol 25: 637–651. doi:10.1128/MCB.25.2.637-651.2005
Zhou K, Kuo WHW, Fillingham J, Greenblatt JF. 2009. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5. Proc Natl Acad Sci 106: 6956–6961. doi:10.1073/pnas.0806302106
Spt5 modulates cotranscriptional spliceosome assembly in *Saccharomyces cerevisiae*

Isabella E. Maudlin and Jean D. Beggs

RNA 2019 25: 1298-1310 originally published online July 9, 2019
Access the most recent version at doi:10.1261/rna.070425.119

Supplemental Material
http://rnajournal.cshlp.org/content/suppl/2019/07/09/rna.070425.119.DC1

References
This article cites 76 articles, 27 of which can be accessed free at:
http://rnajournal.cshlp.org/content/25/10/1298.full.html#ref-list-1

Open Access
Freely available online through the *RNA* Open Access option.

Creative Commons License
This article, published in *RNA*, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/.

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.

To subscribe to *RNA* go to:
http://rnajournal.cshlp.org/subscriptions

© 2019 Maudlin and Beggs; Published by Cold Spring Harbor Laboratory Press for the RNA Society