New Adomian’s Polynomials Formulas for the Non-linear and Non-autonomous Ordinary Differential Equations

Zaouagui IN1* and Badredine T2
1Department of Physics, University El-Hadj Lakhdar, Batna 1, Batna 05000, Algeria
2Department of Mathematics, University Ferhat Abbas Selfi 1, Selfi 19000, Algeria

Abstract
In this paper, Adomian decomposition method has been adopted to resolve the non-linear and non-autonomous ordinary differential equations. It has been proved that this technique permits to give new expressions for the Adomian’s polynomials (??) and (??).

Keywords: Decomposition method; Adomian’s polynomials; Ordinary differential equations; Cauchy’s problems

Introduction
The principle of the Adomian decomposition method consists in decomposing the nonlinear operator into a series of functions (where each term is called Adomian’s Polynomial) and then to calculate the solution as a series of function where each term can be easily determined with Adomian’s algorithm [1-15].

The previous works concerning this method deal only with the case of non-linear autonomous differential equation see [16-27]. In this paper, this technique is applied to non-linear and non-autonomous differential equations. By using a classical theorem for the nth derivate of compositions of functions, new expressions of Adomian’s polynomials are determined [28-37].

Numerical examples treated in this work in order to compare the Adomian decomposition method with other classical methods such as Euler, Heun and the Runge Kutta method of the 4th order.

Application of the Decomposition Method to Non-autonomous and Non-linear Differential Equations
Let us consider the following non-linear and non-autonomous differential equation:

\[\frac{d^2u}{dt^2} = f(t,u) \]

\[u(t_0) = c \]

where \(f \) is the non-linear term.

By integrating both sides the equation (??) we obtain:

\[u = \int_0^t f(s,u)ds + c \]

The canonical form [11,14] of Cauchy’s problem of the eqn. (3) is:

\[u = \lambda \int_0^t f(s,u)ds + c \]

The Adomian’s method consists in setting the solution in a series form:

\[u = \sum_{n=0}^{\infty} a_n \]

and the non-linear term \(f(t,u) \) is written by the form:

\[f(t,u) = \sum_{n=0}^{\infty} a_n \]

where the \(a_n \)'s are terms dependent on \(t, u, u_1, \ldots, u_n \) and are called Adomian’s polynomials.

Inserting eqns. (5) and (6) into eqn. (4) leads to:

\[\sum_{n=0}^{\infty} a_n \]

which implies:

\[a_n = \int_0^t A_n ds \quad \text{for} \quad n \geq 1 \]

Remark
In practice it’s difficult to calculate all the terms of the series (5) that’s why an approximation of the solution is used by truncating the series: \(\phi_n = \sum_{n=0}^{\infty} a_n \).

Notations
Let \(n \in \mathbb{N}, k = (k_1, k_2, \ldots, k_n) \in \mathbb{N}^n, t \in \mathbb{R} \) and \(f \) is a multivariate function, we note:

\[\begin{align*}
| k | & = k_1 + k_2 + \cdots + k_n \\
| nk | & = k_1 + 2k_2 + \cdots + nk_n \\
\partial^n f & = \frac{\partial^{k_1} f}{\partial t^{k_1}} \\
\end{align*} \]

Adomian’s Polynomials

The terms \(A_n \) are given by the formulas:

\[A_0(t,u) = f(t,u) \]

\[A_n(t,u_1,\ldots,u_n) = \frac{1}{n!} \frac{d^n}{dt^n} f(t + \lambda(t-t_0), \sum_{n=0}^{\infty} a_n) \quad \text{for} \quad n \geq 1 \]

Proof
For convenience we define two operators \(F \) and \(L \) as follows:

\[F \]

\[L \]

Received November 21, 2017; Accepted November 23, 2017; Published November 27, 2017

Citation: Zaouagui IN, Badredine T (2017) New Adomian’s Polynomials Formulas for the Non-linear and Non-autonomous Ordinary Differential Equations. J Appl Comput Math 6: 373. doi: 10.4172/2168-9679.1000373

Copyright: © 2017 Zaouagui IN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
\[
\begin{align*}
F(U) &= (1, f(t, u)) \\
L(U) &= \frac{d}{dt} \mathcal{A} (U(t, u)) \\
\text{From equation (??) we have: } L(U) &= F(U), \text{ so } L'(U(t, u)) = F'(U)
\end{align*}
\]

and it follows that:
\[
\left[\int_{t_0}^{t_0} u'(s) \, ds\right] = L'_1(F(U))
\]

We obtain an equation of the form:
\[
U_0 + C = N(U_0)
\]

According to Abbaoui et al. and Himoun et al. [11,14], the Adomian’s polynomials \(A_n \) associated with \(U_0 \) are given by the relationship [3,4]:
\[
A_n(U_0, U_1, \ldots, U_n) = \frac{1}{n!} \frac{d^{n+1}}{dt^{n+1}} N\left(\sum_{m=0}^{n} U_m \lambda^m\right)_{|t=0} \text{ for } n \geq 2
\]

where again
\[
\begin{align*}
U_0 &= C \\
U_1 &= A_1(U_0) - N(U_0) \\
U_n &= A_n(U_0, \ldots, U_{n-1}) = \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} N\left(\sum_{m=0}^{n-1} U_m \lambda^m\right)_{|t=0} \text{ for } n \geq 2
\end{align*}
\]

This translates into:
\[
\begin{align*}
U_0 &= \lambda(t_0, c) \\
U_1 &= \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} L\left(f(\sum_{m=0}^{n-1} U_m \lambda^m)\right)_{|t=0} \\
U_n &= \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} L\left(f(\sum_{m=0}^{n-1} U_m \lambda^m)\right)_{|t=0} \text{ for } n \geq 2
\end{align*}
\]

As a result of this:
\[
\begin{align*}
U_0 &= \lambda(t_0, c) \\
U_1 &= \int_{t_0}^{t_1} f(t, c) \, dt \\
U_n &= \int_{t_0}^{t_n} \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} \left(\lambda(t_0, c) + \sum_{m=0}^{n-1} U_m \lambda^m\right) \, dt_{|t=0} \text{ for } n \geq 2
\end{align*}
\]

Considering the fact that the sequence \(\left(U_n\right)_{n \in \mathbb{N}} \) is defined by:
\[
U_0 = (t_0, u_0), U_1 = (t_0 - t_0, u_1) \text{ and } U_n = (0, u_n) \text{ for } n \geq 2, \text{ we obtain:}
\]
\[
\begin{align*}
u_0 &= c \\
u_1 &= \int_{t_0}^{t_1} f(t, c) \, dt \\
u_n &= \int_{t_0}^{t_n} \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} f(t_n, u_n) \, dt_{|t=0} \\
&= \int_{t_0}^{t_n} \frac{1}{(n-1)!} \frac{d^{n+1}}{dt^{n+1}} f(t_n, u_n) \, dt_{|t=0} \text{ for } n \geq 2
\end{align*}
\]

which ends the proof by a simple identification with eqn. (8).

Lemma

Let \(f \) be a function of two variables \(u \) and \(v \). The Adomian’s polynomials associated with \(f \) are given by the relationship [3,4]:
\[
A_n(u, v) = \sum_{i+j=n} \partial^i_v \partial^j_u f(u, v) \frac{u^i v^j}{i! j!} \text{ for } n \geq 1
\]

\[
A_n(u_0, u_1, \ldots, u_n) = \sum_{i+j+k=n} \partial^k_v \partial^j_u f(u_0, u_1, \ldots, u_n) \frac{u_0^i u_1^j u_n^k}{i! j! k!} \text{ for } n \geq 1
\]
Numerical Example

Let us solve the following equation:
\[u'' - (t-1)u = \exp(u - t) \quad u(1) = 1 \]

The exact solution of this equation is the function: \(u(t) = t - \ln t \). By the Adomian decomposition method, we obtain:

\[
\begin{align*}
A_1(t) &= 0 \\
A_2(t) &= -t \\
A_3(t) &= (t-1)^2 \\
A_4(t) &= (t-1)^3 \\
A_5(t) &= (t-1)^4 \\
A_6(t) &= (t-1)^5 \\
A_7(t) &= (t-1)^6 \\
A_8(t) &= (t-1)^7 \\
A_9(t) &= (t-1)^8 \\
\end{align*}
\]

Table 2: Adomian decomposition approximation of the order of Taylor’s expansion.

\(\alpha \)	\(\beta_1 \)	\(\beta_2 \)	\(\beta_3 \)	\(\beta_4 \)	\(\beta_5 \)
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	0
1	1	0	0	0	0
3	0	0	0	0	0
2	1	0	0	0	0
1	1	1	0	0	0
4	0	0	0	0	0
3	1	0	0	0	0
2	2	0	0	0	0
2	1	1	0	0	0
1	1	1	1	0	0
5	0	0	0	0	0
4	1	0	0	0	0
3	2	0	0	0	0
2	1	1	1	0	0
2	1	1	1	1	0

Table 1: \(A_i \)'s expressions for \(n=5 \).

\(i \)	\(t_i \)	\(u_i \) Euler	\(u_i \) Heun	\(u_i \) M. Euler	\(u_i \) R. K. 4	\(\varphi_i(t) \)	\(u_i(t) \)
1.0	1.000000000	1.000000000	1.000000000	1.000000000	1.000000000	1.000000000	
0.9	1.000000000	1.005525855	1.005350500	1.005360500	1.005350500	1.005350500	
0.8	1.011051709	1.023501284	1.023156191	1.023158142	1.023156191	1.023156191	
0.7	1.035712333	1.057260082	1.056675110	1.056678005	1.056675110	1.056675110	
0.6	1.177720662	1.198018251	1.191145834	1.191145834	1.191145834	1.191145834	
0.5	1.142216782	1.194310397	1.191233436	1.191233436	1.191233436	1.191233436	
0.4	1.237212636	1.317745922	1.316293880	1.316293880	1.316293880	1.316293880	
0.3	1.375517812	1.495957568	1.493973311	1.493973311	1.493973311	1.493973311	
0.2	1.581126058	1.788667163	1.809410311	1.809410311	1.809410311	1.809410311	
0.1	1.899476467	2.379025091	2.402810915	2.402810915	2.402810915	2.402810915	

It’s easy to see that \(\varphi_i(t) \) is an approximation of the \(6 \)th order of Taylor’s expansion of in the neighborhood of 1.

With the Euler, Heun, Modified Euler and Runge Kutta methods within the interval \([0,1,1]\), by Considering the subdivision: \(t_{i+1}=t_i-0.1, \:
i=0,\ldots,8 \) and \(t_0=1 \), we obtain by Maple the following results (Table 2).

Conclusion

In this paper we have generalized the application of the decomposition method to non-linear and non-autonomous differential equations. We have obtained new expressions for the Adomian polynomials \(A(x) \) and \(A(y) \). The case of autonomous non-linear differential equation [2] becomes, of course, a particular case of this work. Moreover, we not that the Adomian method is more general than some classical methods because the terms of truncated series can be easily deduced in a recursive way. However, the solution coincides quite often with that of another classical method (in the example studied, the solution coincides with the Taylor series).

References

1. Adomian G (1994) Solving frontier problems of physics: The decomposition method Kluwer Academic Publishers.
