DETERMINATION OF THE GENUS OF SURFACES FROM THE SPECTRUM OF SCHRODINGER OPERATORS ATTACHED TO HEIGHT FUNCTIONS

BRICE CAMUS

Abstract. Using results on inverse spectral problems, in particular the so-called new wave invariants attached to a classical equilibrium, we show that it is possible to determine the Morse index of height functions. For compact Riemannian surfaces \(M \subset \mathbb{R}^3 \) this imply that we can retrieve the topology (via the genus).

Our results are independent from the choice of a metric on \(M \) and can be obtained from the choice of a ‘generic’ height-function. For surfaces of genus zero, diffeomorphic to a 2-sphere, the method allows to detect the convexity, or the local convexity of the surface.

keywords: Micro-local analysis; Schrödinger operators; Inverse spectral problems.

1. Introduction.

1.1. Basic definitions and setting. We are here interested in applications of the inverse spectral problem for certain special differential operators in the semi-classical regime. Let \(X \) be compact (boundaryless) Riemannian manifold equipped with a strictly positive density and \(\Delta_X \) the (positive) induced Laplace-Beltrami operator. In particular, we consider the so called \(h \)-quantized Schrödinger operator:

\[
P_h = h^2 \Delta_X + V, \text{ on } L^2(X),
\]

also called semi-classical Schrödinger operator, where the potential \(V \) is measurable and bounded from below on \(X \).

Remark 1. With some mild conditions on \(V \), we could also assume that \(X \) is non-compact. But to simplify we stay in the compact situation.

By a standard result, see \cite{3}, when \(V \) is bounded from below \(P_h \) has a self-adjoint realization on a dense subset of \(L^2(X) \). To this quantum operator \(P_h \) we can associate a classical counterpart with the Hamiltonian, or total energy, function on the phase space:

\[
p(x, \xi) = ||\xi||_x^2 + V(x) \text{ on } T^*X.
\]

Here the notation:

\[
||\xi||_x^2 = \sum_{i,j} g_{ij} \xi_i \xi_j, \quad g_{ij} = G^{-1},
\]
designs the norm (or scalar product at \(x \)) induced by the Riemannian metric \(G = g^{ij}(x) \) at \(x \). We note \(\Phi_t \) the Hamiltonian flow of \(H_p = \partial_\xi p_\cdot \partial_\xi - \partial_x p_\cdot \partial_x \).

Here we are mainly interested in an asymptotic relation between the semi-classical eigenvalues \(\{ \lambda_j(h) : j \in \mathbb{N} \} \) of \(P_h \):

\[
P_h \phi_j(x, h) = \lambda_j(h) \phi_j(x, h), \quad \phi_j \in L^2(X), \quad \text{as } h \to 0^+,
\]

and the set of fixed point \(\mathcal{P} \) (see below) for the map \(\Phi_t \) (viewed as a map on \(\mathbb{R}_t \times T^*X \)). We refer to the introduction of [7] for a general presentation of this kind of relation between quantum and classical mechanics.

In the last section of this article we will work with compact orientable surfaces \(M \) of \(\mathbb{R}^3 \) and Schrödinger operators \(h^2 \Delta_M + z \) attached to height-functions \(z \) on \(M \).

Spectral statistics.

Consider an interval \(I = [E_1, E_2] \) with \(E_1 < E_2 \) and \(I(\varepsilon) = [E_1 - \varepsilon, E_2 + \varepsilon] \). For each \(\varepsilon > 0 \) the pullback \(p^{-1}(I(\varepsilon)) \) is a compact subset of \(T^*X \) and by a standard argument, see [3], it follows that the spectrum \(\sigma(P_h) \cap I(\varepsilon) \) is discrete and consists for each \(h \) in a sequence:

\[
\lambda_1(h) \leq \lambda_2(h) \leq \ldots \leq \lambda_j(h),
\]

of eigenvalues of finite multiplicities, if \(\varepsilon \) and \(h \) are positive. In general no formula is known to compute the eigenvalues \(\lambda_j(h) \) and to get pertinent information about the spectrum (and the classical dynamics) it is interesting to study the following spectral distributions:

\[
\Upsilon(E, h, \varphi) = \sum_{\lambda_j(h) \in I(\varepsilon)} \varphi(\frac{\lambda_j(h) - E}{h}),
\]

where \(\varphi \in \mathcal{S}(\mathbb{R}) \) is a test function, conveniently chosen, see below.

This kind of problem leads to a mathematically rigorous version of the so-called Gutzwiller formula (see [13]), a formula intensively used in physics and quantum-chemistry. For example see [14] for various applications in physics and quantum chaos with also many references. The so-called semi-classical approximation consists in studying the asymptotic behavior of Eq.(1) as the parameter \(h \) tends to zero. For a rigorous mathematical study of this problem a non-exhaustive list of references is [5, 8, 17, 18].

Wave and new wave invariants.

To study Eq.(1), a classical approach (see [11, 5] and section 3 of [7]) is to study the asymptotic behavior, as \(h \to 0^+ \), of the localized trace:

\[
\omega(E, h, t) = \text{Tr} \left(\Theta(P_h) e^{-\frac{i}{h}(P_h - E)} \right), \quad \Theta \in C^\infty_0.
\]

I will follow now the terminology used in [15]. For \(E \) regular it is known since a while that \(\Omega \) admits an asymptotic expansion of the form:

\[
\omega(E, h, t) \sim \sum_{j=-n}^{\infty} a_j(E, t) h^j, \quad \text{as } h \to 0^+.
\]
Definition 2. The coefficients $a_j(E, t)$ are some distributions on the line \mathbb{R}_t and are called wave invariants of P_h.

When $E = E_c$ is critical certain new coefficients appear in the asymptotic expansion of $\omega(E, h, t)$ as h tends to 0. In particular, one can predict a general expansion in the form:

$$\omega(E_c, h, t) \sim \sum_{k=0}^{n-1} \sum_{j=-n_0}^{\infty} a_{j,k}(E_c, t) h^k \log(h)^j, \quad \text{as } h \to 0^+,$$

for some $p \in \mathbb{N}^*$, see [4] for the singularity near $t = 0$ and [7] for many examples of new wave invariants. In this work we only use the top-order coefficients of Eq. (2) near a non-degenerate singularity (see Theorem 6 below).

Definition 3. These extra distributional coefficients appearing in Eq. (2) are called new wave invariants.

In general, the top order coefficient w.r.t. h of the expansion involving the new wave invariants contains many information on the shape of the symbol.

2. Hypotheses and semi-classical results.

We recall first the general result determining the wave invariants at a regular energy level. Consider X a closed smooth Riemannian manifold, $n = \dim(X)$ and $V \in C^\infty(X)$ a positive potential. Let $\{\lambda_j(h) : j \in \mathbb{N}\}$ be the spectrum of the Schrödinger operator $S_h = h^2 \Delta_X + V$ where Δ_X is the Laplacian on X (here given as a positive operator). This spectrum of S_h is always discrete, and with finite multiplicities, when X is compact or if V is 'confining', i.e. $V(x) \to \infty$ when $d(x, x_0) \to \infty$ for some $x_0 \in X$. The justification is that both conditions insure that the level-sets Σ_E defined below are compact and that the resolvent of S_h is a compact operator.

Let Φ_t be the Hamilton flow of $H(x, \xi) = ||\xi||_2^2 + V(x)$ on T^*X and given $E > 0$ define the energy surface:

$$\Sigma_E = \{(x, \xi) \in T^*X : H(x, \xi) = E\}.$$

Recall that the flow can be viewed as a map $\Phi_t : \Sigma_E \to \Sigma_E$ (conservation of the energy). Also when the surfaces Σ_E are compact the general theory of differential equations insures that the flow is complete (property of the maximal solutions of a Cauchy-problem). To simplify notations we write $z = (x, \xi) \in T^*X$. We recall that E is regular (or non-critical) when $dH \neq 0$ everywhere on Σ_E and critical otherwise. Below, we use the subscript E_c to distinguish out critical values of H. The so-called period manifold of Φ_t on Σ_E is:

$$\mathcal{P} = \{(T, z) \in \mathbb{R} \times \Sigma_E : \Phi_T(z) = z\}.$$

At a non-critical energy level.

When E is non-critical, we have, see [11] or [5], the following general result concerning the wave invariants at the energy E:
Theorem 4 (Semi-classical trace formula at a regular level.).

Assume that E is regular and that the restriction of Φ_t to Σ_E is a clean flow (see section 2 of [11]). Then there exists a sequence of distributions on the real line, $\{\gamma_k\}_k$, such that for every test function φ with Fourier-transform $\hat{\varphi} \in C^\infty_0$:

$$\text{Tr} \varphi\left(\frac{S_h - E}{h} \right) = \sum_{j=0}^{\infty} \varphi\left(\frac{\lambda_j(h) - E}{h} \right) \sim \sum_{j=1}^{\infty} \gamma_j(\hat{\varphi}) h^{-n+jc_j(h)}.$$

Moreover, the supports of the distributions γ_j are contained in the sets of periods of the closed trajectories of Φ_t on Σ_E.

For a better description of the coefficients appearing in Theorem 4 we refer to [11, 5] (we do not need their explicit expressions here), see also [9] for a similar high-energy result concerning elliptic operators on a compact manifold. Also, under our hypotheses the trace in Theorem 4 and the functional $\Upsilon(E,h,\varphi)$ are equal modulo a function of fast decay w.r.t. h.

Such a coefficient, of order $O(h^\infty)$, is negligible in semi-classical asymptotic expansions.

The idea we want to use here is that by a clever choice of supp($\hat{\varphi}$) we can eliminate the wave invariants appearing in Theorem 4:

- If $\hat{\varphi}$ is flat at the origin the set:
 $$\{\{0\} \times \Sigma_E\} \subset P,$$
 does not contribute.
- If supp($\hat{\varphi}$) $\subset [-T_0,T_0]$, for T_0 small enough then no periodic orbit:
 $$\{(T,z) : \Phi_T(z) = z\} \subset P,$$
 will contribute to the asymptotic expansion.

At a critical energy level. We allow now the presence of critical points for H and we impose the type of singularity:

(A1) The potential V is a Morse function on X.

A fortiori, in I there is finitely many critical values $E^1_c,...,E^l_c$ and in $p^{-1}(I)$ finitely many fixed points $z^1_0,...,z^l_0$ of the energy function p.

Remark 5. The number of critical points $z^j_0 = (x_0,0)$ is equal to the number of critical energy levels. Otherwise V would not be a Morse function on X.

Next, we impose two conditions on our test function φ:

(A2) $\hat{\varphi}$ is flat at 0, i.e. $\hat{\varphi}^{(j)}(0) = 0$, $\forall j \in \mathbb{N}$.

(A3) For some sufficiently small T we have supp($\hat{\varphi}$) $\subset [-T,T]$.

A fundamental property is that the singularity of $\Upsilon(s,h,\varphi)$ as $s \to E_c$ describes partially the singularity of V. In fact with conditions (A2) and (A3) we will only see the new wave invariants attached to the critical point z^j_0 in Σ_{E_j}. We have:
Theorem 6 (New wave invariants at a critical level).
Under the conditions \((A_1), (A_2)\) and \((A_3)\) we have:
\[
\text{Tr} \varphi \left(\frac{S_h - E_j}{h} \right) \sim \sum_{j=0}^{\infty} h^j c_j(\hat{\varphi}).
\]
The leading coefficient is of the form:
\[
c_0(\varphi) = \frac{e^{i\pi m_0/2}}{(2\pi)} \int_{\mathbb{R}} \frac{\hat{\varphi}(t)}{|\det(d\Phi_t(z_0^j) - \text{Id})|^{1/2}},\ m_0 \in \mathbb{Z}.
\]
We refer to \([11, 7, 6, 16]\) for a proof. Observe that \((A_3)\) implicitly insures that \(\det(d\Phi_t(z_0^j) - \text{Id}) \neq 0\). Because of our implicit choice for \(\varphi\), not all the new wave invariants are present in this formula. The other new wave invariants are studied:
- In \([4]\), near \(t = 0\).
- In \([6, 16]\), near a period of \(d\Phi_t(z_0^j)\).

The explicit determination of all wave invariants, near a critical point of arbitrary signature, is a somehow complicated analytic problem involving oscillatory integrals with degenerate phases. For an operator which is not a Schrödinger operator some new terms can generally appear at a period of \(d\Phi_t(z_0^j)\) (see \([6]\)).

New wave invariants. In our setting, the top-order coefficient, given by the Duistermaat-Guillemin-Uribe density, is indeed a smooth function as long as we stay away from any period of the linearized flow at the point \(z_0^j\). When \(X = \mathbb{R}^n\) an explicit computation, done in \([16]\) in a suitable system of linear coordinates, shows that:
\[
d\nu_t(z_0) = \frac{1}{| \prod_{j=1}^{r} \sinh(\alpha_j(z_0)t) \prod_{j=r+1}^{n} \sin(\alpha_j(z_0)t)|}.
\]
We must simply retain that the density \(d\nu_t(z_0)\) determines:
- The signature \((n - r, r)\) of the Hessian of \(V\) at \(z_0\).
- Eigenvalues \(\alpha_j(z_0)\).

The last affirmation follows via Taylor-series and evaluation at several times.

Remark 7. In general, if the metric and the height function are unknown, the spectral expectation determines only the numbers \(\alpha_j\) and not the respective eigenvalues of \(G(x_0)\) and \(d^2V(x_0)\). A similar indetermination is already valid for linear combinations of harmonic oscillators on \(\mathbb{R}^n\).

It follows that, when the potential is Morse-function on \(X\), we can retrieve the morse index of \(X\) by several successive applications of Theorem 6: we have only to cross finitely many critical energy levels and to collect the index at each energy.
3. Application to Surfaces.

There is a nice application to compact smooth surfaces $M \subset \mathbb{R}^3$ equipped with a Riemannian metric (not necessarily the metric of \mathbb{R}^3 restricted to M). We assume that $M \subset \mathbb{R}^3$ is smooth, boundaryless, orientable and that M carries a smooth Riemannian metric G, fixed once for all. We take Δ_M as the Laplace-Beltrami operator attached to this metric (following the convention of geometers we may assume that Δ_M is positive). Let us chose as potential V a height function. We can assume V to be positive, this can always be achieved via a translation, M being compact. If we embed M in \mathbb{R}^3, via some coordinates (x,y,z), we can chose V as the projection on the z axis. It is a standard result of topology, see chapter 6 of [2], that for almost embedding V will be a Morse function.

Then, for any choice of a smooth Riemannian metric on M, we have:

Proposition 8. Under the previous conditions on V, the semi-classical spectrum of $P_h = h^2\Delta_M + V(x)$, defined as an unbounded operator on $L^2(M)$, determines the topology of M.

Remark 9. Observe that the knowledge of the metric is not required. We only need a kinetic energy operator which is micro-locally elliptic and with a principal symbol nowhere degenerated (see below). The knowledge of V is also not required. We only need to recover the number of critical points of V and their signature to conclude.

Proof of Proposition 8. We will use a variational argument w.r.t. the energy E. Since M is compact our potential has a maximum E_{max} and it will be sufficient to perform spectral estimates below E_{max}. Let $\lambda_j(h)$ be the spectrum of P_h, each eigenvalue being repeated according to it’s multiplicity.

Since our potential is a Morse function, by Sard’s theorem, we obtain that the energy function $p(x,\xi)$ has only finitely many critical values E_j^c, $j \in \{1,\ldots,N\}$, attached to single critical points. When $\text{supp}(\hat{\varphi})$ is small enough and does not contains the origin we have:

$$\gamma(E,h,\varphi) \sim \begin{cases} O(h^{\infty}), & \text{for } E \text{ non-critical,} \\ \epsilon_j^c(\varphi) + O(h), & \text{for } E = E_j^c \text{ critical.} \end{cases}$$

Hence, the semi-classical spectrum determines each critical value E_j^c of V.

Now for j fixed we can use a simple micro-local argumentation. The only critical point on $\Sigma_{E_j^c}$ is of the form $z_j^0 = (x_j^0,0)$ with $V(x_j^0) = E_j^c$. We pick a function in $\psi \in C_0^\infty(T^*M)$ such that $0 \leq \psi \leq 1$ everywhere and $\psi = 1$ in a neighborhood of z_j^0. Always with our conditions (A_2) and (A_3) on $\text{supp}(\hat{\varphi})$, we have:

$$\Upsilon(E,h,\varphi) = \text{Tr} \left(\psi^{\mu}(x, h D_x) \varphi \left(\frac{P_h - E_j^c}{h} \right) \right) + O(h^{\infty}).$$
The important fact here is that on $\text{supp}(1 - \psi)$ there is no critical point of p. Hence with condition (A_2) and (A_3) we have:

$$\text{Tr} \left((1 - \psi^w(x, hD_x)) \varphi \left(\frac{P_h - E^j_c}{h} \right) \right) = \mathcal{O}(h^{\infty}),$$

which easily follows from a non-stationary phase argument. On $\text{supp}(\psi)$, which can be chosen arbitrary small up to an error of order $\mathcal{O}(h^{\infty})$, we can use local coordinates around x^0_j and the Laplace operator has the form:

$$-h^2 \sum_{i,j} \sqrt{g} \frac{\partial}{\partial x_i} \frac{1}{\sqrt{g}} g_{ij} \frac{\partial}{\partial x_j} + V = -h^2 \sum_{i,j} g_{ij}(x) \frac{\partial}{\partial x_j} \frac{\partial}{\partial x_i} + V + h^2 \sum_{i,j} \sqrt{g} \frac{\partial}{\partial x_i} \left(\frac{1}{\sqrt{g}} g_{ij}(x) \right) \frac{\partial}{\partial x_j}.$$

Here we write the metric $G = g^{ij}$, $G^{-1} = g_{ij}$ and $g = \det G$. Hence, in the sense of the h-calculus, we have $p_h := p_0 + hp_1$ with a principal symbol:

$$p_0(x, \xi) = \sum_{i,j} g_{ij}(x) \xi_j \xi_i + V(x),$$

and a sub-principal symbol:

$$p_1(x, \xi) = \sqrt{g}(x) \sum_{i,j} \left(\frac{\partial}{\partial x_i} \frac{1}{\sqrt{g}} g_{ij} \right) x_j \xi_j.$$

Observe that $p_1 = 0$ at every point where $\xi = 0$ and the sub-principal symbol p_1 will play no essential role for the estimates below. You can also use the convention that $h^2\Delta$ is the quantization of $||\xi||^2$. This makes no difference for the spectral estimates below.

Next, since V is independent of the choice of the metric on M we can freely assume that near the origin:

$$g_{ij}(x) = \text{Id} + \mathcal{O}(||x||).$$

In this system of local coordinates we obtain that:

$$\text{Tr} \left(\psi^w(x, hD_x) \varphi \left(\frac{P_h - E^j_c}{h} \right) \right) \sim C^j_0(\hat{\varphi}) + \mathcal{O}(h),$$

where:

$$C^j_0(\hat{\varphi}) = C \int_{\mathbb{R}} \nu_t(z^0_j) \hat{\varphi}(t) dt, \quad C \in \mathbb{C}^*.$$
In our setting we can apply standard results on the linearized flow, see [1], to compute the density \(\nu_t(z_0^j) \). This density, of the form given by Eq. (3), determines the number of positive and negative eigenvalues of \(V \) at \(x_0^j \).

In general position, define the Morse index of a critical point \(x_0 \) as the dimension of the negative eigenspace in \(x_0 \). If \(z \) is Morse function we denote by \(N_j(z) \) the number of critical points of \(z \) with index \(j \). Since for a surface we have only \(j = 0, 1, 2 \) we can retrieve the Euler characteristic:

\[
N_0(z) - N_1(z) + N_2(z) = \chi(M) = 2(1 - g(M)),
\]

where \(g(M) \) is the genus of \(M \).

Remark 10. Of course this approach is still valid in dimension \(n > 2 \) but then the genus is no more a sufficient topological invariant. For a nice overview on Morse theory and indexes see [2] or [10] for surfaces. Observe that, for an unknown metric and an unknown height function, we can still retrieve the Morse index of \(V \) but not the Hessian of \(V \). This is because in formula (3) we can only retrieve the ratios \(\alpha_j(z_0) \) of eigenvalues of \(G(x_0^j) \) and \(d^2V(x_0^j) \) in a given system of coordinates.

The notion of Morse-Smale function (see, e.g., [2] p.158) is here central. Morse-Smale functions are moreover dense in every \(C^r \)-spaces (\(r \geq 1 \)) (Kupka-Smale-Theorem, p.159 and remark 6.7 p.160 in [2]). To a Smale-Morse function is attached the Morse-Smale-Floer complex and this complex is isomorphic to the complex giving the singular homology (Theorem on Morse homology, Theorem 7.4 of [2]). For a surface it is known that the topology is given by the genus or the Euler characteristic and this one is also given by the Euler-Poincaré characteristic of the complex of homology. That a certain Morse-function determines the topology of a surface is also contained in the book [10] page 70.

About the choice of a height function.

For certain simple surfaces, e.g., convex surfaces diffeomorphic to a 2-sphere, there is no bad embedding since the height-function \(z \) always shows up a strict minimum and a strict maximum. Such a height function is also a perfect Morse function, i.e. a Morse function with exactly 2 critical points attached respectively to a strict minimum and a strict maximum. For a surface of genus 0 we can still have several critical points at the same critical value. This is not generic and unstable under a small perturbation of \(z \).

For surfaces of higher genus some 'bad' embeddings are possible if the height function is chosen transverse to a level set (non-generic choice).

The first embedding (here \(z \) is the axe of symmetry) is not favorable: the set of critical point consists of 2 circles. These circles are manifolds of critical points attached respectively to a maxima and a minima of \(V \) of energies \(E_{\min} < E_{\max} \). In that situation, a compact manifold of critical points of dimension 1, we can here anyhow apply the results of [4] or [16]. If we still assume that conditions \((A_2) \) and \((A_3) \) are satisfied, each of these circles
contributes as a 1-dimensional submanifold in the 4-dimensional phase space:

\[\Upsilon(E_{\text{min}}, \varphi, h) \sim C_1 \int_{\theta \in S^1} \int_{t \in \text{supp} (\hat{\varphi})} \frac{h^{-\frac{1}{2}} \hat{\varphi}(t)}{\sin(\alpha(\theta)t)} \frac{dt}{\sqrt{|t|}} d\theta + O(h^{\frac{1}{2}}), \quad C_1 \in \mathbb{C}^* \]

for the circle of minima and:

\[\Upsilon(E_{\text{max}}, \varphi, h) \sim C_2 \int_{\theta \in S^1} \int_{t \in \text{supp} (\hat{\varphi})} \frac{h^{-\frac{1}{2}} \hat{\varphi}(t)}{\sinh(\alpha(\theta)t)} \frac{dt}{\sqrt{|t|}} d\theta + O(h^{\frac{1}{2}}), \quad C_2 \in \mathbb{C}^* \]

for the circle of minima. Observe that the order w.r.t. \(h \) is now \(-1/2 \).

Remark 11. Both formulae for \(\Upsilon(E_{\text{max}}, \cdot) \) and \(\Upsilon(E_{\text{min}}, \cdot) \) easily follow from an application of a stationary phase method with a compact manifold of critical point and a non-degenerate transverse Hessian.

Here \(\alpha(\theta) \) is the ratio of the eigenvalues of the linearized operator in the transverse direction to \(\Sigma_{E_{\text{min}}} \simeq \Sigma_{E_{\text{max}}} \simeq S^1 \) evaluated at the point \(\theta \in S^1 \). Observe that \(\alpha(\theta) \) is negative for \(E = E_{\text{max}} \) (hyperbolic flow) and positive for \(E = E_{\text{min}} \) (periodic flow). Observe that, only from the spectral estimates, we can still see:

- Hyperbolic contributions: unstable equilibria at the maximal energy.
- Trigonometric contributions: stable equilibria at the minimal energy.

The previous situation can be generalized for a smooth curve \(\gamma \), necessarily isomorphic to \(S^1 \), of critical points with a non-degenerate transverse Hessian at each point of \(\gamma \).

Remark 12. For a generic choice of the metric \(G \) on \(\mathbb{T}^2 \) the function \(\theta \mapsto \alpha(\theta) \) is not constant along \(S^1 \). Unfortunately, the spectrum of the associated Schrödinger operator \(-h^2 \Delta_\theta + z \) only determines the average of the density along the circles. To get a better description here requires to perform eigenfunction estimates. See, e.g. [4] for this point.
For the second embedding, where x is the axe of symmetry, z is a Morse function and we meet successively the critical points:

- a singularity of type $(0, 2)$: strict minimum,
- a singularity of type $(1, 1)$: first saddle point,
- a singularity of type $(1, 1)$: second saddle point,
- a singularity of type $(2, 0)$: strict maximum.

This gives:

$$\chi(T^2) = 1 - 2 + 1 = 0 \Rightarrow g(T^2) = 1.$$

The situation of the second embedding is generic and stable (e.g., w.r.t. a little deformation of the height function). This allows to retrieve T^2, up to a smooth deformation.

Remark 13. Results concerning Morse-functions are not specific to height-functions and Proposition 8 can be generalized to $h^2 \Delta_M + V$ where V is a Morse-function on M. The interest here is the evident physical interpretation: the choice of $V(x) = z(x)$, $x \in M$ is equivalent to put a particle, forced to move freely on M along geodesics, in a constant gravitation field. Also a height-function gives a function independent of the choice of the metric on M. For example, this is not the case of a potential $V(x)$ depending (locally) on the geodesic distance $d(x_0, x)$ on M. Such a potential depends on G and can be singular at conjugate points.

Convexity and measure.

Assume that $g(M) = 0$ then if M is convex every choice of a height-function gives a perfect Morse function. But if M is not convex certain choice of the potential give locally a number of critical points greater than 2, with the same Morse index.

![Figure 2. A non-convex surface: locally we see 3 critical points.](image)
From the point of view of statistical mechanics it could be interesting to put a probability measure \(\mu(z) \) on all choice possible for \(z \) and to average the spectral estimates with respect to \(\mu \). This is here simply equivalent to chose a probability measure on \(\mathbb{S}^2 \) since the full problem is invariant under translation. A similar construction is possible for the choice of the metric \(G \): if \(G \) is in a bounded set of metrics \(G_\alpha \), estimates given by conditions \((A_2)\) and \((A_3)\) are still globally valid and so are our conclusions. One could average the results with respect to some probability measure \(\mu(\alpha) \).

We could also obtain the contributions of a surface \(M \) carrying a flat section in the following sense:

There exist an open subset \(U \subset \mathbb{R}^3 \) and a two-dimensional plane \(P \subset \mathbb{R}^3 \) such that \(U \cap M = U \cap P \).

The flat section can be interpreted a 2-dimensional subset of critical points when the height function \(z \) is chosen transversally to this section. The associated result is simply the Lebesgue measure of the flat section. Observe that, as predicted by the general theory of Morse-functions, this situation is not generic and not stable under a small perturbation of \(z \).

Final Remark. At a first look it might seem childish to use semi-classical methods. But the 'high-energy' method (see e.g. [9]) is not working: when the energy \(E \) is larger than the maximum of the potential \(E_{\text{max}} \) we have that the kinetic energy is bounded from below by \(||\xi||^2 \geq E - E_{\text{max}} > 0 \).

By ellipticity of the Laplacian, it is not possible to produce any new wave invariant in this regime.

Acknowledgments. It is a great pleasure to thank George Marinescu for useful discussions (and providing references) concerning the Morse index. This work was partially supported by a Deutsche Forschungsgemeinschaft Grant (D.F.G., the German research foundation) *Microlocal analysis applied to mathematical physics and geometry*. The D.F.G. is greatly acknowledged for this support.

References

[1] R. Abraham and J.E. Marsden, *Foundations of mechanics*, second edition, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass.(1978).

[2] A. Banyaga and D. Hurtubise, *Lectures on Morse Homology*, Kulwer Academic Publishers 29 (2004).

[3] F.A. Berezin and M.A. Shubin, *The Schrödinger Equation*, Mathematics and Its Applications 66, Kluwer Academic Publishers.

[4] R. Brummelhuis, T. Paul and A. Uribe, Spectral estimates around a critical level, Duke Mathematical Journal 78 (1995) no. 3, 477-530.

[5] R. Brummelhuis and A. Uribe, A semi-classical trace formula for Schrödinger operators, Communications in Mathematical Physics 136 (1991) no. 3, 567-584.

[6] B. Camus, A semi-classical trace formula at a non-degenerate critical level, Journal of Functional Analysis 208 (2004), no. 2, 446-481.
[7] B. Camus, Inverse spectral problems for Schrödinger and pseudodifferential operators. Preprint.
[8] Y. Colin de Verdière, Spectrum of the Laplace operator and periodic geodesics: Thirty years after. Annales de l’institut Fourier 57 (2007) no. 7, 2429-2463.
[9] J.J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Inventiones Mathematicae 29 (1975), 39-79.
[10] A. Gramain, Topologie des surfaces, Presses universitaire de France (1971).
[11] V. Guillemin and A. Uribe, Circular symmetry and the trace formula, Inventiones Mathematicae 96 (1989), 385-423.
[12] V. Guillemin and A. Uribe, Some inverse spectral results for semi-classical Schrödinger operators.
[13] M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971) 343-358.
[14] F. Haake, Quantum signatures of chaos. With a foreword by H.Haken. Second edition. Springer-Verlag, Berlin, (2001).
[15] H. Hezari, Inverse spectral problems for Schrödinger operators, Communications in Mathematical Physics 288 (2009), 1061-1088.
[16] D. Khuat-Duy, A semi-classical trace formula for Schrödinger operators in the case of a critical energy level, Journal of Functional Analysis 146 (1997) no. 2, 299-351.
[17] T. Paul and A. Uribe, The semi-classical trace formula and propagation of wave packets, Journal of Functional Analysis 132 (1995), no. 1, 192-249.
[18] J. Sjöstrand and M. Zworski, Quantum monodromy and semi-classical trace formulae. Journal de mathématiques pures et appliquées 81 (2002), 1-33.

LUDWIG MAXIMILIANS UNIVERSITÄT MÜNCHEN., MATHEMATISCHES INSTITUT, THERESIENSTR. 39 D-80803 MÜNCHEN., EMAIL: CAMUS@MATH.LMU.DE