Secondary bacterial infections trigger New Onset Atrial Fibrillation in ICU Covid-19 ARDS patients

George E Zakynthinos
General University Hospital of Larissa: Panepistemiako Geniko Nosokomeio Larisas

Vasiliki Tsolaki (✉ vasotsolaki@yahoo.com)
General University Hospital of Larisa https://orcid.org/0000-0003-2412-5388

Nikitas Karavidas
General University Hospital of Larissa: Panepistemiako Geniko Nosokomeio Larisas

Vassileios Vazgiourakis
General University Hospital of Larissa: Panepistemiako Geniko Nosokomeio Larisas

George Dimeas
University of Thessaly Faculty of Medicine: Panepistemio Thessalias Tmema Iatrikes

Konstantinos Mantzarlis
General University Hospital of Larissa: Panepistemiako Geniko Nosokomeio Larisas

George Vavougios
University of Thessaly Faculty of Medicine: Panepistemio Thessalias Tmema Iatrikes

Demosthenes Makris
General University Hospital of Larissa: Panepistemiako Geniko Nosokomeio Larisas

Research

Keywords: Covid-19 ARDS, New Onset Atrial Fibrillation, Sepsis, Septic shock, ICU

DOI: https://doi.org/10.21203/rs.3.rs-528971/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Cardiac arrhythmias, mainly atrial fibrillation (AF), is frequently reported in COVID-19 patients, yet causality has not been explored. Intensive Care Unit patients frequently present AF during critical illness. Sepsis is one of the main contributors of AF occurrence in ICU patients. The aim of the study was to explore if Covid-19 myocardial involvement is the only contributor for New Onset Atrial Fibrillation (NOAF) in intubated ICU patients.

Methods

Consecutive intubated, Covid-19ARDS patients, were prospectively studied for factors triggering NOAF. Demographics, data on Covid-19 infection duration, severity of illness and ARDS are reported. Echocardiographic findings, troponin levels and secondary infection (sepsis/septic shock) data were collected on the day of AF and compared to the preceding days’ and/or ICU admission data. Comparison was also performed between NOAF and control group (no AF) on admission.

Results

Among 105 patients screened, 79 were eligible; nineteen presented NOAF (24%). Baseline characteristics did not differ between the NOAF and control groups. Troponin levels were mildly elevated upon ICU admission in both groups. NOAF occurred on the 18 ± 4.8 days from Covid-19 symptoms’ onset, and the 8.5 ± 2.1 ICU day. Seventeen patients in the NOAF group (89.5%) presented a septic secondary infection vs 25 (41.6%) in the control group (p < 0.001). In sixteen NOAF patients (84.2%), AF occurred concurrently with a secondary septic episode. Noradrenaline, lactate levels and inflammation biomarkers presented a gradual increase in the days preceding the AF day (all p < 0.05). Troponin increased compared to admission (p = 0.017). AF did not resolve or re-occurred if sepsis persisted. Upon ICU admission left ventricular ejection fraction was rather normal, yet, global longitudinal strain was equally impaired (< 16.5%) in 63% vs 78% in the NOAF and control groups, respectively. The right ventricle was mildly dilated, and 36 (45.6%) patients had pericardial effusion. Echocardiographic findings did not change on NOAF occurrence.

Conclusion

Secondary infections seem to be major contributors for NOAF in Covid-19 patients, probably playing the role of the “second hit” in an affected myocardium from Covid-19.

Backround
The main manifestation of coronavirus disease 2019 (Covid-19) is pneumonia leading to Acute Respiratory Distress Syndrome (ARDS) in 6% of cases [1]. Cardiovascular disease and complications are frequently reported in Covid-19 patients [2]. Yet, cardiac involvement is frequently based on mildly increased troponin levels [3–6]; more detailed examinations are still rather scarce [7, 8].

Cardiac arrhythmias, mainly atrial fibrillation (AF), are not uncommon in COVID-19 patients [9–11]. However, there is a lack of clear association of new onset AF (NOAF), to direct myocardial damage depicted with Cardiac Magnetic Resonance (CMR), histopathologic findings or even echocardiographic findings. In addition, Covid-19 myocarditis seems to be an uncommon finding [12].

Studies do not clearly report on the exact time that NOAF appeared [9, 10, 13–15]. However, NOAF is far more frequent in Intensive Care Unit (ICU) patients compared to patients in the ward [9, 10, 13–15]. Therefore, as respiratory worsening occurs after several days from symptom onset, AF seems to occur late in the course of the disease, when the patients have been admitted in the ICU [1, 13, 14]. Severe Covid-19 could be a risk factor, yet, in ICU, other-than SARS-CoV-2 trigger factors may be implicated, which have not yet been explored.

In the non-Covid-19 era, NOAF is a frequently encountered arrhythmia in ICU patients [16]. Multiple factors are implicated, leading to structural or electrical remodeling of the atria, triggering AF, sepsis being the leading one [16]. Sepsis could be a possible trigger factor in Covid-19 as well, as the incidence of ICU-acquired secondary infections is increased, partly attributed to the immunosuppressive drug protocols adopted [18–21].

In the present study we hypothesized that other factors than SARS-CoV-2 infection may contribute to NOAF occurrence in ICU patients with Covid-19 ARDS. Therefore, we aimed to evaluate in a cohort of intubated, ICU, Covid-19 ARDS patients: 1). the incidence of NOAF and investigate possible factors leading to its occurrence, 2). the course of NOAF during ICU stay, and 3). the cardiac involvement using echocardiography and troponin levels upon ICU admission.

Methods

Study population. Consecutive patients admitted in the ICU (March 2020-February 2021) at the University Hospital of Larissa, Greece with laboratory confirmed (real-time PCR) SARS-CoV-2 infection and ARDS were included in this prospective study. The study was approved by the local ethics committee (55951/2020), with a waiver for informed consent. All patients were admitted intubated, and evaluation included the period from the first ICU day until the 28th day (either still in the ICU, discharged or dead).

All eligible (according to inclusion/exclusion criteria) patients were divided in two groups: the NOAF group including patients with new onset AF during ICU stay without previous history of AF, and the control group, including all other patients not presenting AF. Patients were included in the NOAF group if they presented at least one AF episode lasting more than 10 minutes or suffered multiple AF episodes during a 24-hour period, or AF episodes needing direct electrical cardioversion due to hemodynamic instability.
Exclusion criteria were: 1). history of recent myocardial infarction or previous echocardiography presenting wall motion abnormalities indicating ischemic disease, 2). recent admission for either coronary artery bypass graft, cardiac surgery or percutaneous transluminal coronary angioplasty (PTCA), 3). severe aortic or mitral stenosis or regurgitation, 4). patients with a history of heart failure from any cause or previous echocardiographic findings indicating Left Ventricular Ejection Fraction (LVEF) below 45%, 5). known Right Ventricular (RV) dysfunction, 6). cardiomyopathy of any type, 7). presence of pacemaker, 8). congenital heart disease, 9). brief AF episodes not meeting inclusion criteria, 10). history of NOAF occurring in the ward or presenting upon ICU admission, 11). death during the first 48 hours of ICU admission, 12). permanent AF, 13) history of paroxysmal atrial fibrillation (PAF). However, PAF patients were analyzed separately (Appendix).

Data collection. Baseline characteristics and disease severity (APACHE II, SOFA score) were recorded on admission. Demographics, medical history, and data concerning COVID-19 infection prior to hospital admission were collected from patients’ medical records and/or next-of-kin. Laboratory findings [inflammation markers (CRP, ferritin), coagulation, electrolytes] and the SOFA score were recorded daily. Troponin levels were recorded on ICU admission, the NOAF day and whenever indicated, according to attending physicians.

Blood, urinary and endotracheal aspirate (ETA) cultures were collected on admission, every 3 days (per local protocol) and whenever indicated, according to the attending physicians, but always on the day of AF occurrence and the day after. Heart rhythm was assessed continuously from the patients’ monitor (General Electric, Carescape B850); ECG tracings (12-lead) could be reviewed for the preceding 72-hours (GE monitor’s software), while 12-lead ECG was performed daily.

All patients received enhanced prophylactic anticoagulation according to current suggestions for Covid-19, except in patients with contraindication (coagulation abnormalities, thrombocytopenia, active bleeding).

Echocardiography was performed on admission and whenever indicated, but always on the AF day, according to AHA guidelines [22], by trained operators (VT, NK, VV), (General Electric, Vivid E95). We used a standard procedure to assess LV and RV sizes, function and filling measurements (2D imaging, color doppler, Tissue Doppler Imaging (Appendix) [23]. Left ventricular myocardial performance was assessed using the two-dimensional speckle-tracking method [23].

In patients needing cardioversion after 24 hours due to AF persistence, a transesophageal echocardiography (TEE) preceded. If pulmonary embolism (PE) was suspected, Computed Tomography Pulmonary Angiography (CTPA) was performed.

All patients were assessed under satisfactory loading conditions (Appendix). Central Venous Oxygen Saturation (ScVO\textsubscript{2}) measurements were performed on admission, in episodes of hemodynamic instability, and whenever indicated according to attending physicians.
Definitions

Sepsis, septic shock, and types of infections were defined according to recently updated terms [24, 25]. Secondary infections included all hospital acquired Blood Stream Infections (BSI), Hospital/Ventilator-Associated Pneumonia (HAP/VAP) and Urinary Tract Infections (UTI) occurring after 48 hours of hospital admission (Appendix).

Atrial fibrillation management protocol

All NOAF episodes received amiodarone (750 mg daily) after a loading dose of 150–300 mg administration (± b-blockers for rate control). Direct electrical cardioversion was performed only in patients with hemodynamic instability, defined as a significant increase in vasopressor dosage after AF appearance, according to the attending physicians’ assessment. However, attending physicians were encouraged to postpone electrical cardioversion until the patient had received the amiodarone loading dose.

Statistical analyses. Results are given as mean (± Standard Deviation, SD) in normally distributed parameters and as median (± Standard Deviation, SD) in not normally distributed values. Normally distributed continuous indices were compared with Student’s t-test (between two groups) and one-way ANOVA (for multiple group and other repetitive variable measurement comparisons); non-normally distributed indices were compared via the Mann-Whitney-U and Wilcoxon test. Finally, Chi-square was used when testing categorical data. Data were analyzed using SPSS (IBM SPSS statistics version 25).

Results

Among one hundred and five patients with Covid-19 ARDS admitted in the ICU, seventy-nine patients were eligible for the study (Fig. 1). Nineteen patients presented NOAF (24%), constituting the NOAF group; the rest 60 patients comprised the control group. The two groups did not differ in baseline characteristics, Charlson comorbidity index, laboratory findings, disease severity upon admission and lung mechanics (Table 1). Troponin levels were mildly elevated upon ICU admission in both groups (0.17 ±0.4 vs 0.15 ±0.55, p=1) (Table 1). Thirteen (73%) in the NOAF and 54 (84%) in the control groups (p=0.08) received corticosteroids (Table 1). Five patients (26%) vs 19 (32%) had received Tocilizumab (p=0.66), while four (21%) vs 18 (30%) had received anti-IL-1 therapy (p=0.64), respectively. Six patients, in whom severe pulmonary embolism was suspected, underwent CTPA. One in the control and none in the NOAF group was diagnosed with significant PE.

New Onset AF occurred late in the course of hospitalization, 18±4.8 days from Covid-19 symptoms’ onset and on 8.5±2.1 ICU day. Only one patient (70-years-old) presented a short AF episode lasting 3 min (2nd ICU day) and another two (65 and 72-years-old) presented with NOAF on ICU admission and were excluded. In all other patients, NOAF occurred after/on the 3rd ICU day (range 3-23 ICU day).
Laboratory and clinical data on AF day, compared to data on the third preceding the AF day are presented in Table 2.

Septic secondary infection episodes

Twenty five (41.6%) patients in the control group (upon ICU admission in two) and 17 (89.5%) in the NOAF group presented at least one secondary infection episode during their ICU stay ($p<0.001$) (Fig. 1). Secondary infections occurred after the sixth ICU day in 30 (71.4%) patients.

NOAF group. Sixteen patients (84.2%) presented a septic secondary infection concurrently with NOAF, thirteen of whom (81.3%) presenting with septic shock. Eleven patients (57.9%) had primary bacteremia and five (26.3%) suffered ventilator-associated pneumonia (VAP)-two accompanied with bacteremia. Pan-drug resistant (PDR) or extensively drug resistant (XDR) Gram (-) bacteria (*Klebsiella pneumoniae* and/or *Acinetobacter baumannii*) were the main isolates. All NOAF patients had negative blood, urine and ETA cultures on admission. In 14/16 patients, NOAF presented during the first septic episode. Notably, antibiotics were added or modified in 18/19 patients, in the two preceding or the NOAF day, for suspected septic secondary infections, according to the attending physicians. Interestingly, in one of the two patients with NOAF upon ICU admission (excluded per protocol), the blood cultures drawn on admission revealed *Acinetobacter baumannii*.

Noradrenaline dose was increased from 0.08±0.06 μg/kg/min three days before NOAF to 0.44±0.22 μg/kg/min exactly before AF appearance ($p=0.01$), reaching the highest value (0.52±0.06 μg/kg/min) after NOAF ($p=0.033$ compared to the value on NOAF occurrence). Lactate increased (1.1±0.3 vs 2.3±0.5, $p<0.001$); in 13 patients lactate increased >2 mmol/l. No modification in sedation had been done that could have provoked hypotension. A positive fluid balance was noted in patients with sepsis in the preceding 3 days (6948.13±2829 ml), while ScVO$_2$ presented a significant rise on the day of AF compared to admission (75.8±3 vs 69.6±3.6%, $p<0.001$)(Table 2).

Laboratory findings

CRP values showed a gradual increase during the days preceding AF (Table 2) and a subsequent decrease thereafter.

Troponin levels significantly increased on the AF day compared to admission (0.64±1.04 vs 0.16±0.31 ng/dl, $p=0.017$). The highest value was observed in one patient (4.43 ng/dl) subsiding over the next days. This patient, with primary bacteremia presented laboratory and echocardiographic signs of septic cardiomyopathy.

Echocardiographic findings

Left Ventricular function did not differ between groups, although RV function was mildly impaired in the control group. (Table 3). Left Ventricular Global Longitudinal Strain (GLSLV) was -12±4% in patients without AF and -14±6% in NOAF patients. Noteworthy, GLSLV was abnormal (<16.6%) in 78% of the
patients in the control and 63% in the NOAF group [26]. Covid-19 patients presented moderate RV dilation (Right Ventricular End Diastolic Area/Left Ventricular End Diastolic Area > 0.6 in both groups). Twenty-six (43%) vs ten (52%) in the control and NOAF groups respectively, presented mild pericardial effusion ($p = 0.48$). Echocardiographic measurements did not significantly change on NOAF occurrence (Table 3).

Outcome.

Arrhythmia In all patients, NOAF lasted more than one hour. Sixteen patients (84%) returned to sinus rhythm (SR), 13 during the first 24 hours and the rest during 48 hours, although short recurrent AF episodes (after cardioversion), lasting less than 30 minutes were recorded in 4 patients. Only one patient, presenting severe hemodynamic instability, was electrically cardioverted, one hour after unsuccessful amiodarone infusion; in this patient, AF recurred, returning to sinus rhythm after 24 hours. Nine TEE were performed in five patients; in all, cardiac chambers, including the appendage were free from thrombi.

In six patients (including three in whom SR was not restored) signs of sepsis were not resolving until death. In three, AF recurred after 4-9 days on SR, coinciding with a new septic episode, returning to SR with sepsis resolution. Amiodarone infusion was continued until ICU discharge or death.

Mortality: In NOAF group, 28th day mortality was 47% (9/19) vs 41.7% (25/60) in the control group ($p = 0.57$). Three patients died without converting to SR. All ten survivors were discharged on SR, under amiodarone. Among them, we were able to contact three patients (aged 45, 56, 76 years) discharged home; patients are on SR (2-7 months later); amiodarone has been stopped.

Discussion

Our study demonstrates that myocardial dysfunction is present in intubated ICU patients with severe Covid-19 ARDS, as depicted by the echocardiographic findings of impaired left and right ventricular function, mild pericardial effusion and mild elevation of troponin levels. However, New Onset Atrial Fibrillation occurred in ICU, Covid-19 ARDS patients, mainly in relation to a secondary infection that led to severe sepsis/septic shock. Demographics, ARDS severity, respiratory system mechanics, mechanical ventilatory modes and electrolytes did not differ between groups, while hypoxemia degree was quite improving in NOAF patients on the day AF occurred. We suggest that sepsis triggered NOAF occurrence, in the setting of an affected, from Covid-19, myocardium; sepsis resolution was crucial to maintain SR (under amiodarone infusion).

Our understanding on the cardiovascular effects of Covid-19 is still limited [4]. In our cohort, Left Ventricular EF was rather normal, although impaired global longitudinal strain indicated occult myocardial injury in the majority (74%) of Covid-19 ARDS patients upon ICU admission; abnormal GLSLV (< 16.6%) has been reported in 42% of Covid-19 patients admitted in the ward, while data on ICU patients are scarce [26–29]. In addition, a moderate RV enlargement was observed, which is in accordance with various Covid-19 reports [30, 31]. However, multiple factors may explain this finding apart from Covid-19; RV dilation is exacerbated by mechanical ventilator settings (PEEP), especially when lung compliance is
preserved [32, 33]. Interestingly, 45.6% of the patients had a mild pericardial effusion. Pericardial effusion incidence has not been thoroughly evaluated in Covid-19 [34, 35]. In addition, troponin levels were elevated on ICU admission, a finding that has been linked to myocardial involvement in Covid-19 [3–6]. The above data support the notion that a degree of myocardial injury is present in severe Covid-19 patients, admitted in the ICU [36]. However, there was no difference between the NOAF and control group, in any parameter concerning the cardiac involvement.

Among atrial arrhythmias, AF is the most frequent in Covid-19 patients; NOAF prevalence varies between 3–10% in non-ICU patients [10, 11]. In our study, NOAF incidence was 24%, which is in accordance with the higher incidence reported in ICU patients [9–11, 13, 37–39]. Colon et al, noted a NOAF incidence of 16.5% in ICU patients [14]. However, no reference is made on possible secondary conditions and the timing of arrhythmia occurrence. Increased inflammatory markers and vasopressor need were reported during AF appearance, without specifying whether AF occurrence was coincidental to a secondary infection episode [2, 9]. Other studies confirm the increased NOAF incidence in ICU Covid-19 patients, varying between 16.5–40%, yet, without specifying whether the virus or other factors, frequently present in critically-ill patients, are associated to its occurrence [9, 10, 11, 13–15, 37–39]. Similarly, existing data lack information about the exact time of NOAF appearance in the course of Covid-19 [10, 11, 13, 14, 37–39]. An early, in the course of the infection, virally driven hyperinflammation-cytokine storm has been proposed as a possible mechanism, partially explaining NOAF occurrence in patients hospitalized in the wards [2, 9]. In our study, NOAF appeared late in the course of the disease, approximately during the 18th post symptom onset day (8th ICU day), when COVID-19 symptoms usually subside [39]. Although myocarditis has also been suggested as a possible mechanism for arrhythmias in Covid-19, histological findings indicate macrophage infiltration, with no clear association to myocardial injury, and, although troponin is high, myocarditis is established in only 4.5% of the severely ill, Covid-19 patients with heart failure, undergoing endomyocardial biopsies; thus, the virus does not seem to directly invade the cardiac cells in order to initiate AF [12, 40]. Our findings support that non cardiac causes, such as systemic infection, may contribute to NOAF.

New-onset AF is a common arrhythmia in non-Covid-19 ICU patients, occurring in 19–35% of patients, sepsis being the main triggering factor [16, 41, 42]. Walkey et. al, reported an increased incidence (35%) of NOAF among septic patients, further increasing with disease severity [16]. In our study, 84.2% of the patients presented sepsis and 68.4% had septic shock on NOAF episodes. Inflammation markers, vasopressor need, and lactate levels presented a gradual increase in the preceding the AF days. The positive fluid balance during the last three days, and the rise in ScVO₂ values, further supported NOAF’s association to sepsis-induced vasodilation [43].

An increased incidence of secondary infections has been observed in our cohort; 42% in the control group and 89% in the NOAF group, consistent with recent reports. Buetti et al, reported an increased daily risk (HR 4.5) to acquire an ICU-BSI in Covid-19 compared to non-Covid-19 patients; BSIs usually occurred after the 7th ICU day [17]. Similarly, Rouze et al, reported that ventilator associated lower respiratory tract infections were more frequent in Covid-19 ARDS patients (50.5%) compared to influenza (30.3%) and ICU
patients with non-viral infections (25.3%), similarly occurring after the 7th ICU day [18]. Corticosteroids, Tocilizumab and Anakinra, used in COVID-19 ARDS, may be partly responsible [17, 18, 44]. In our study, NOAf occurred on the 8.5 ± 2.1 ICU day, mostly coinciding with the first BSI/VAP septic episode. We suggest that sepsis, with adrenergic overstimulation, due to endogenous elevated catecholamine levels and exogenous catecholamine administration (as in septic shock), constitutes the second “hit”, to trigger AF in a diseased/affected, from SARS-CoV-2, myocardium [2, 16]. Interestingly, patients in both groups were of comparable age and did not present factors indicating apparent cardiovascular disease, known to increase AF occurrence risk [11].

Troponin levels were significantly raised on the AF day compared to admission, further supporting the association of NOAf to secondary sepsis. Troponin elevation has been repeatedly reported in bacterial sepsis, reflecting altered cardiomyocyte permeability or some degree of necrosis, frequently associated with cardiac dysfunction [45, 46]. Sepsis induced myocardial dysfunction is very frequent, attributed to increased circulating catecholamine and cytokine levels, found in severe sepsis and septic shock [47, 48]. However, decreased systemic vascular resistance may mask the altered myocardial performance. We believe that sepsis-induced vasoplegia is responsible for the apparently preserved LVEF in our patients when NOAf appeared.

Rhythm control has been found more beneficial than rate control in ICU patients [42]. Most patients in our study returned to sinus rhythm with pharmacologic cardioversion (amiodarone); AF could not be restored in patients with non-resolving sepsis or re-occurred in those with recurrent septic episodes.

Our study has limitations. It was conducted in a single center serving an urban population, thus the number of patients is limited. However, although our findings may not be generalizable across the world, they may have particular importance in South Europe and other countries with an increased incidence of nosocomial infections from PDR/XDR, as in our study [49]. In addition, we consider an advantage that the study population was rather homogenous: we prospectively enrolled consecutive, intubated patients with severe Covid-19, with no obvious preexisting cardiovascular disease in order to eliminate known factors triggering AF. Cardiac Magnetic Resonance tomography was not performed, but its utility in ICU is limited by the out-of-hour availability and the requirement for some breath-holding, while no patients underwent endomyocardial biopsy (caring inherent risks), as it is not suggested due to the low incidence of myocarditis in Covid-19 [12]. Instead, in all patients, troponin levels and a full echocardiographic examination were performed, which seem appropriate to reveal cardiac involvement in Covid-19.

Conclusion

In conclusion, myocardial function is altered in Covid-19 patients, probably lowering the threshold for arrhythmogenicity. Secondary infections seem to be major contributors for NOAf occurrence in ICU Covid-19 ARDS patients, probably playing the role of the “second hit” in an affected myocardium. Sepsis should be suspected in case of late NOAf occurrence in these patients. Furthermore, AF did not resolve or re-
occurred if sepsis persisted. Further research on the arrhythmogenicity of COVID-19 in severe ICU Covid-19 ARDS patients is needed.

Abbreviations

A: late diastolic ventricular filling velocity with atrial contraction; AHA: American Heart Association; AF: atrial fibrillation; ANOV: Analysis Of Variance; APACHE II: Acute Physiology and Chronic Health Evaluation II; ARDS: Acute Respiratory Distress Syndrome; BSI: Blood Stream Infection; CAD: Coronary Artery Disease; Covid-19: Coronavirus Disease 2019; CMR: Cardiac Magnetic Resonance; CRP: C-Reactive Protein; CTPA: Computed Tomography Pulmonary Angiography; E: left ventricular early diastolic peak velocity, E': early diastolic tissue Doppler velocity; ECG: Electrocardiography; EF: Ejection Fraction; ETA: Endotracheal Aspirate; GLS: Global Longitudinal Strain; GLSLV: global longitudinal strain of the left ventricle; HAP: Hospital Acquired Pneumonia; HF: Heart Failure; ICU: Intensive Care Unit; IL-1: Interleukin-1; NOAF: New Onset Atrial Fibrillation; LV: Left Ventricle; LVOT VTI: Velocity Time Integral in the Left Ventricular Outflow Tract; MI: Myocardial Infarction; PAF: Paroxysmal Atrial Fibrillation; PCR: Polymerase Chain Reaction; PE: Pulmonary Embolism; PEEP: Positive End Expiratory Pressure; PDR: Pan-drug resistant; PTCA: Percutaneous Transluminal Coronary Angioplasty; RV: Right Ventricle; RVEDA/LVEDA: Right Ventricular End Diastolic Area to Left Ventricular End Diastolic Area; RVFAC: Right Ventricular Fractional Area Change; RV s': Tissue doppler peak systolic velocity at the tricuspid annulus, S': systolic tissue Doppler velocity; SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2; ScVO$_2$: Central Venous Oxygen Saturation; SOFA: Sequential Organ Failure Assessment; SR: Sinus Rhythm; TAPSE: Tricuspid Annular Plane Systolic Excursion; TEE: Transesophageal Echocardiography; TTE: Transthoracic Echocardiography; UTI: Urinary Tract Infection; VAP: Ventilator Associated Pneumonia; XDR: Extensively Drug Resistant;

Declarations

Funding: None

Conflict of Interest: None

Acknowledgements

None

Authors’ contributors

GEZ contributed to the concept, design, and data collection; conducted the analyses; and drafted the manuscript. VT contributed to concept and design, data collection, and critical revisions of the manuscript. DM contributed to concept and design, data collection, and critical revisions of the manuscript. NK, GD, VV and KM, contributed to concept and design and critical revisions of the manuscript. GV contributed to statistical analysis and critical revisions of the manuscript.
Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The data set used for this manuscript will be available from the corresponding author upon reasonable request.

Ethics approval and consent to participate.

This study was approved by the Institutional Ethics Committees of the University Hospital of Larissa (55951/2020), with a waiver for informed consent.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1 Critical Care Department, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 2 University of Thessaly Faculty of Medicine, 3 Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly

References

1. Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, Shrestha BR, Arabi YM, Ng J, Gomersall CD, Nishimura M, Koh Y, Du B; Asian Critical Care Clinical Trials Group. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med. 2020 May;8(5):506-517. doi: 10.1016/S2213-2600(20)30161-2. Epub 2020 Apr 6. Erratum in: Lancet Respir Med. 2020 May;8(5):e42. PMID: 32272080; PMCID: PMC7198848.

2. Gawałko M, Kapłon-Cieślicka A, Hohl M, Dobrev D, Linz D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int J Cardiol Heart Vasc. 2020 Oct;30:100631. doi: 10.1016/j.ijcha.2020.100631. Epub 2020 Sep 1. PMID: 32904969; PMCID: PMC7462635.

3. Wang Y, Shu H, Liu H, Li X, Zhou X, Zou X, Pan S, Xu J, Xu D, Zhao X, Yang X, Yu Y, Yuan Y, Qi H, Wang Q, Shang Y. The peak levels of highly sensitive troponin I predicts in-hospital mortality in COVID-19 patients with cardiac injury: a retrospective study. Eur Heart J Acute Cardiovasc Care. 2020 Oct
4. Tsolaki V, Zakynthinos GE. Are Patients with COVID-19 Dying of or with Cardiac Injury? Am J Respir Crit Care Med. 2020 Jul 15;202(2):300-301. doi: 10.1164/rccm.202004-1083LE. PMID: 32432894; PMCID: PMC7365367.

5. Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, Cooper LT Jr, Chahal CAA. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020 Sep;17(9):1463-1471. doi: 10.1016/j.hrthm.2020.05.001. Epub 2020 May 5. PMID: 32387246; PMCID: PMC7199677.

6. Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa FG, Adler Y, De Ferrari GM. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart. 2020 Aug;106(15):1127-1131. doi: 10.1136/heartjnl-2020-317186. Epub 2020 Jun 4. PMID: 32499236.

7. D’Alto M, Marra AM, Severino S, Salzano A, Romeo E, De Rosa R, Stagnaro FM, Pagnano G, Verde R, Murino P, Farro A, Ciccarelli G, Vargas M, Fiorentino G, Servillo G, Gentile I, Corcione A, Cittadini A, Naeije R, Golino P. Right ventricular-arterial uncoupling independently predicts survival in COVID-19 ARDS. Crit Care. 2020 Nov 30;24(1):670. doi: 10.1186/s13054-020-03385-5. PMID: 33256813; PMCID: PMC7703719.

8. Bagate F, Masi P, d’Humières T, Al-Assaad L, Chakra LA, Razazi K, de Prost N, Carteaux G, Derumeaux G, Mekontso Dessap A. Advanced echocardiographic phenotyping of critically ill patients with coronavirus-19 sepsis: a prospective cohort study. J Intensive Care. 2021 Jan 20;9(1):12. doi: 10.1186/s40560-020-00516-6. PMID: 33472693; PMCID: PMC7816136.

9. Yarmohammadi H, Morrow JP, Dizon J, Biviano A, Ehler F, Saluja D, Waase M, Elias P, Poterucha TJ, Berman J, Kushnir A, Abrams MP, Rubin GA, Jou S, Hennessey J, Uriel N, Wan EY, Garan H. Frequency of Atrial Arrhythmia in Hospitalized Patients With COVID-19. Am J Cardiol. 2021 Feb 20:S0002-9149(21)00150-8. doi: 10.1016/j.amjcard.2021.01.039. Epub ahead of print. PMID: 33617812; PMCID: PMC7895683.

10. Angeli F, Spanevello A, De Ponti R, Visca D, Marazzato J, Palmiottio G, Feci D, Reboldi G, Fabbri LM, Verdecchia P. Electrocardiographic features of patients with COVID-19 pneumonia. Eur J Intern Med. 2020 Aug;78:101-106. doi: 10.1016/j.ejim.2020.06.015. Epub 2020 Jun 20. PMID: 32586646; PMCID: PMC7305928.

11. Bhatla A, Mayer MM, Adusumalli S, Hyman MC, Oh E, Tierney A, Moss J, Chahal AA, Anesi G, Denduluri S, Domenico CM, Arkles J, Abella BS, Bullinga JR, Callans DJ, Dixit S, Epstein AE, Frankel DS, Garcia FC, Kumareswaram R, Nazarian S, Riley MP, Santangeli P, Schaller RD, Supple GE, Lin D, Marchlinski F, Deo R. COVID-19 and cardiac arrhythmias. Heart Rhythm. 2020 Sep;17(9):1439-1444. doi: 10.1016/j.hrthm.2020.06.016. Epub 2020 Jun 22. PMID: 32585191; PMCID: PMC7307518.

12. Kawakami R, Sakamoto A, Kawai K, Gianatti A, Pellegrini D, Nasr A, Kutys B, Guo L, Cornelissen A, Mori M, Sato Y, Pescetelli I, Brivio M, Romero M, Guagliumi G, Virmani R, Finn AV. Pathological
Evidence for SARS-CoV-2 as a Cause of Myocarditis: JACC Review Topic of the Week. J Am Coll Cardiol. 2021 Jan 26;77(3):314-325. doi: 10.1016/j.jacc.2020.11.031. PMID: 33478655; PMCID: PMC7816957.

13. Iacopino S, Placentino F, Colella J, Pesce F, Pardeo A, Filannino P, Artale P, Desiro D, Sorrenti P, Campagna G, Fabiano G, Peluso G, Giacopelli D, Petretta A. New-Onset Cardiac Arrhythmias During COVID-19 Hospitalization. Circ Arrhythm Electrophysiol. 2020 Nov;13(11):e009040. doi: 10.1161/CIRCEP.120.009040. Epub 2020 Oct 6. PMID: 33021400; PMCID: PMC7668341.

14. Colon CM, Barrios JG, Chiles JW, McElwee SK, Russell DW, Maddox WR, Kay GN. Atrial Arrhythmias in COVID-19 Patients. JACC Clin Electrophysiol. 2020 Sep;6(9):1189-1190. doi: 10.1016/j.jacep.2020.05.015. Epub 2020 May 28. PMID: 32972558; PMCID: PMC7253953.

15. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, Satlin MJ, Campion TR Jr, Nahid M, Ringel JB, Hoffman KL, Alshak MN, Li HA, Wehmeyer GT, Rajan M, Reshetnyak E, Hupert N, Horn EM, Martinez FJ, Gulick RM, Safford MM. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020 Jun 11;382(24):2372-2374. doi: 10.1056/NEJMc2010419. Epub 2020 Apr 17. PMID: 32302078; PMCID: PMC7182018.

16. Bosch NA, Cimini J, Walkey AJ. Atrial Fibrillation in the ICU. Chest. 2018 Dec;154(6):1424-1434. doi: 10.1016/j.chest.2018.03.040. Epub 2018 Apr 6. PMID: 29627355; PMCID: PMC6335260.

17. Buetti N, Ruckly S, de Montmollin E, Reignier J, Terzi N, Cohen Y, Shiami S, Dupuis C, Timsit JF. COVID-19 increased the risk of ICU-acquired bloodstream infections: a case-cohort study from the multicentric OUTCOMEREA network. Intensive Care Med. 2021 Feb;47(2):180-187. doi: 10.1007/s00134-021-06346-w. Epub 2021 Jan 27. PMID: 33506379; PMCID: PMC7839935.

18. Rouzé A, Martin-Loeches I, Povoa P, Makris D, Artigas A, Bouchereau M, Lambiotte F, Metzelard M, Cuchet P, Boule Geronimi C, Labruyere M, Tamion F, Nyunga M, Luyt CE, Labreuche J, Poully O, Bardin J, Saade A, Asfar P, Baudel JL, Beurton A, Garot D, Ioannidou I, Kreitmann L, Llitjos JF, Magira E, Mégarbane B, Meguerditchian D, Moglia E, Mekontso-Dessap A, Reignier J, Turpin M, Pierre A, Plantefève G, Vinsonneau C, Floch PE, Weiss N, Ceccato A, Torres A, Duhamel A, Nseir S; coVAPid study Group. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. Intensive Care Med. 2021 Feb;47(2):188-198. doi: 10.1007/s00134-020-06323-9. Epub 2021 Jan 3. PMID: 33388794; PMCID: PMC7778569.

19. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed [9/3/2021].

20. Rosas IO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS, Savic S, Youngstein T, Del Sorbo L, Cubillo Gracian A, De La Zerda DJ, Ustianowski A, Bao M, Dimonaco S, Graham E, Matharu B, Spotswood H, Tsai L, Malhotra A. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med. 2021 Feb 25. doi: 10.1056/NEJMoa2028700. Epub ahead of print. PMID: 33631066.
21. REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W, Berry LR, Bhimani Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng AC, Detry MA, Duffy EJ, Estcourt LJ, Fitzgerald M, Goossens H, Haniffa R, Higgins AM, Hills TE, Horvat CM, Lamontagne F, Lawler PR, Leavis HL, Linstrum KM, Litton E, Lorenzi E, Marshall JC, Mayr FB, McAuley DF, McGlothlin A, McGuinness SP, McVerry BJ, Montgomery SK, Morpeth SC, Murthy S, Orr K, Parke RL, Parker JC, Patanwala AE, Pettilä V, Rademaker E, Santos MS, Saunders CT, Seymour CW, Shankar-Hari M, Sligl WI, Turgeon AF, Turner AM, van de Veerdonk FL, Zarychanski R, Green C, Lewis RJ, Angus DC, McArthur CJ, Berry S, Webb SA, Derde LPG. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021 Feb 25. doi: 10.1056/NEJMoa2100433. Epub ahead of print. PMID: 33631065.

22. Cheitlin MD, Alpert JS, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davidson TW, Davis JL, Douglas PS, Gillam LD. ACC/AHA Guidelines for the Clinical Application of Echocardiography. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. Circulation. 1997 Mar 18;95(6):1686-744. doi: 10.1161/01.cir.95.6.1686. PMID: 9118558.

23. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005 Dec;18(12):1440-63. doi: 10.1016/j.echo.2005.10.005. PMID: 16376782.

24. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). 2016 Feb 23;315(8):801-10. doi: 10.1001/jama.2016.0287. PMID: 26903338; PMCID: PMC4968574.

25. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008 Jun;36(5):309-32. doi: 10.1016/j.ajic.2008.03.002. Erratum in: Am J Infect Control. 2008 Nov;36(9):655. PMID: 18538699.

26. Rothschild E, Baruch G, Szekely Y, Lichter Y, Kaplan A, Taieb P, Laufer-Perl M, Beer G, Kapusta L, Topilsky Y. The Predictive Role of Left and Right Ventricular Speckle-Tracking Echocardiography in COVID-19. JACC Cardiovasc Imaging. 2020 Nov;13(11):2471-2474. doi: 10.1016/j.jcmg.2020.07.026. Epub 2020 Aug 18. PMID: 33011117; PMCID: PMC7434478.

27. Bursi F, Santangelo G, Sansalone D, Valli F, Vella AM, Toriello F, Barbieri A, Carugo S. Prognostic utility of quantitative offline 2D-echocardiography in hospitalized patients with COVID-19 disease.
Baycan OF, Barman HA, Atici A, Tatlisu A, Bolen F, Ergen P, Icten S, Gungor B, Caliskan M. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int J Cardiovasc Imaging. 2021 Jan;37(1):135-144. doi: 10.1007/s10554-020-01968-5. Epub 2020 Aug 15. PMID: 32803484; PMCID: PMC7429089.

Kim M, Nam JH, Son JW, Kim SO, Son NH, Ahn CM, Shim CY, Hong GR, Kim IC, Choi J, Kang SM, Choi YH, Yoon HK, Uhm JS, Jung IH. Cardiac Manifetstations of Coronavirus Disease 2019 (COVID-19): a Multicenter Cohort Study. J Korean Med Sci. 2020 Oct 19;35(40):e366. doi: 10.3346/jkms.2020.35.e366. PMID: 33075857; PMCID: PMC7572233.

Bleakley C, Singh S, Garfield B, Morosin M, Surkova E, Mandalia MS, Dias B, Androulakis E, Price LC, McCabe C, Wort SJ, West C, Li W, Khatzer R, Senior R, Patel BV, Price S. Right ventricular dysfunction in critically ill COVID-19 ARDS. Int J Cardiol. 2021 Mar 15;327:251-258. doi: 10.1016/j.ijcard.2020.11.043. Epub 2020 Nov 23. PMID: 33242508; PMCID: PMC7681038.

Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Rothschild E, Baruch G, Peri Y, Arbel Y, Topilsky Y. Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study. Circulation. 2020 Jul 28;142(4):342-353. doi: 10.1161/CIRCULATIONAHA.120.047971. Epub 2020 May 29. PMID: 32469253; PMCID: PMC7382541.

Tsolaki V, Zakynthinos GE. RV dysfunction in Covid-19 ARDS: Is there a difference in the impact of mechanical ventilation and ECMO? Int J Cardiol. 2021 May 1;330:273. doi: 10.1016/j.ijcard.2021.01.041. Epub 2021 Jan 28. PMID: 33516843; PMCID: PMC7843134.

Dimopoulou D, Spyridis N, Dasoula F, Krepis P, Eleftheriou E, Liaska M, Servos G, Maritsi D, Tsolia M. Pericarditis as the Main Clinical Manifestation of COVID-19 in Adolescents. Pediatr Infect Dis J. 2021 May 1;40(5):e197-e199. doi: 10.1097/INF.0000000000003096. PMID: 33847300.

Blagojevic NR, Bosnjakovic D, Vukomanovic V, Arsenovic S, Lazic JS, Tadic M. Acute pericarditis and severe acute respiratory syndrome coronavirus 2: Case report. Int J Infect Dis. 2020 Dec;101:180-182. doi: 10.1016/j.ijid.2020.09.1440. Epub 2020 Sep 28. PMID: 33002620; PMCID: PMC7521428.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, and the Northwell C-RC, Barnaby DP, Becker LB, Chelico JD et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the NewYork City Area. 2020;323:2052-2059. doi: 10.1001/jama.2020.6775.

Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19. SN Compr Clin Med. 2020 Aug 14:1-6. doi: 10.1007/s42399-020-00454-2. Epub ahead of print. PMID: 32838188; PMCID: PMC7426193.
38. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, Xiao W, Wang YN, Zhong MH, Li CH, Li GC, Liu HG. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J (Engl). 2020 May 5;133(9):1025-1031. doi: 10.1097/CM9.0000000000000744. PMID: 32044814; PMCID: PMC7147277.

39. Vahey GM, Marshall KE, McDonald E, Martin SW, Tate JE, Midgley CM, Killerby ME, Kawasaki B, Herlihy RK, Alden NB, Staples JE; Colorado Investigation Team2. Symptom Profiles and Progression in Hospitalized and Nonhospitalized Patients with Coronavirus Disease, Colorado, USA, 2020. Emerg Infect Dis. 2021 Feb;27(2):385-395. doi: 10.3201/eid2702.203729. PMID: 33496225.

40. Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry MC, Bois MC, Lin PT, Maleszewski JJ, Stone JR. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020 Oct 14;41(39):3827-3835. doi: 10.1093/eurheartj/ehaa664. PMID: 32968776; PMCID: PMC7543528.

41. Walkey AJ, Benjamin EJ, Lubitz SA. New-onset atrial fibrillation during hospitalization. J Am Coll Cardiol. 2014 Dec 9;64(22):2432-3. doi: 10.1016/j.jacc.2014.09.034. Epub 2014 Dec 1. PMID: 25465427; PMCID: PMC5102149.

42. Arrigo M, Ishihara S, Feliot E, Rudiger A, Deye N, Cariou A, Guidet B, Jaber S, Leone M, Resche-Rigon M, Vieillard Baron A, Legrand M, Gayet E, Mebazaa A. New-onset atrial fibrillation in critically ill patients and its association with mortality: A report from the FROG-ICU study. Int J Cardiol. 2018 Sep 1;266:95-99. doi: 10.1016/j.ijcard.2018.03.051. PMID: 29887481.

43. Textoris J, Fouché L, Wiramus S, Antonini F, Tho S, Martin C, Leone M. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011 Jul 26;15(4):R176. doi: 10.1186/cc10325. PMID: 21791065; PMCID: PMC3387619.

44. Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, Avezum A, Lopes RD, Bueno FR, Silva MVAO, Baldassare FP, Costa ELV, Moura RAB, Honorato MO, Costa AN, Damiani LP, Lisboa T, Kawano-Dourado L, Zampieri FG, Olivato GB, Righy C, Amendola CP, Roepke RML, Freitas DHM, Forte DN, Freitas FGR, Fernandes CCF, Melro LMG, Junior GFS, Morais DC, Zung S, Machado FR, Azevedo LCP; COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. 2020 Oct 6;324(13):1307-1316. doi: 10.1001/jama.2020.17021. PMID: 32876695; PMCID: PMC7489411.

45. Kim JS, Kim M, Kim YJ, Ryoo SM, Sohn CH, Ahn S, Kim WY. Troponin Testing for Assessing Sepsis-Induced Myocardial Dysfunction in Patients with Septic Shock. J Clin Med. 2019 Feb 12;8(2):239. doi: 10.3390/jcm8020239. PMID: 30759844; PMCID: PMC6406324.

46. Wu AH. Increased troponin in patients with sepsis and septic shock: myocardial necrosis or reversible myocardial depression? Intensive Care Med. 2001 Jun;27(6):959-61. doi: 10.1007/s001340100970. PMID: 11497152.

47. Jeong HS, Lee TH, Bang CH, Kim JH, Hong SJ. Risk factors and outcomes of sepsis-induced myocardial dysfunction and stress-induced cardiomyopathy in sepsis or septic shock: A comparative
retrospective study. Medicine (Baltimore). 2018 Mar;97(13):e0263. doi: 10.1097/MD.00000000000010263. PMID: 29595686; PMCID: PMC5895365.

48. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008 Jun;36(6):1701-6. doi: 10.1097/CCM.0b013e318174db05. PMID: 18496368.

49. Tsolaki V, Mantzarlis K, Mpakalis A, Malli E, Tsimpoukas F, Tsirogianni A, Papagiannitsis C, Zygoulis P, Papadonta ME, Petinaki E, Makris D, Zakynthinos E. Ceftazidime-Avibactam To Treat Life-Threatening Infections by Carbapenem-Resistant Pathogens in Critically Ill Mechanically Ventilated Patients. Antimicrob Agents Chemother. 2020 Feb 21;64(3):e02320-19. doi: 10.1128/AAC.02320-19. PMID: 31818820; PMCID: PMC7038311.

Tables

Table 1: Demographics and baseline characteristics in patients without AF (controls) and NOAF patients upon ICU admission.
Demographics	Control (n=60)	NOAF (n=19)	p
Age	68.2 ± 3.1	69.7 ± 3.1	0.64
Males N (%)	46 (76%)	14 (74%)	0.88
Charlson comorbidity index	3.2 ± 0.4	3.8 ± 0.88	0.11
Hypertension	46 (76.6%)	10 (52.6%)	0.05
Corticosteroids (N) (%)	54 (84%)	14 (74%)	0.075
Clinical Data			
APACHE II	16.9 ± 1.8	14.4 ± 2.8	0.12
SOFA	8 ± 1.3	7.4 ± 1	0.63
P_{\text{aO}_2}/F_{\text{tO}_2}, \text{mmHg}	111.2 ± 45.7	124.6 ± 42.2	0.35
CRS	36.7± 2.5	37.1± 8.9	0.89
Noradrenaline (µg/kg/min)	0.39 ± 0.18	0.24 ± 0.13	0.27
Laboratory Data			
D-Dimers (ng/mL) (<300)	819 ± 398.5	895 ± 353.6	0.52
Ferritin, (ng/ml), (< 330)	1,205.7 ± 952.8	1,380 ± 801.5	0.28
WBC, 10^3/L (<10 x 10^3/L)	9,273.2 ± 6498	9,543.8 ± 2108	0.08
CRP (mg/dL), (<0.5)	8.4 ± 0.4	10.9 ± 4.2	0.13
Troponin, ng/ml (<0.04)	0.15 ± 0.34	0.16 ± 0.31	1.0

Table 2: NOAF group: Clinical and laboratory data on the day of AF compared to data three days before AF occurrence.
Clinical Data

	Day -3 of AF occurrence	Day of AF occurrence	p
PaO₂/FiO₂, mmHg	162.3 ± 24.3	199.05 ± 35.5	0.056
Heart rate	65.9 ± 14.6	100 ± 6.8	0.002
Noradrenaline (µg/kg/min)	0.08 ± 0.06	0.44 ± 0.22	
Lactate, mmol/l	1.1 ± 0.4	2.3 ± 0.5	<0.001
ScVO₂, %ᵃ	69.6 ± 3.6	75.8 ± 3	<0.001

WBC, 10⁹/L (<10x 10⁹/L)	8,680 ± 2,679	10,627 ± 1,972	0.71
CRP (mg/dl) (<0.5)	7.41 ± 4.3	12.33 ± 4.1	0.01
Ferritin (ng/ml) (<330)	1,188 ± 453	999 ± 787	0.46
Na (mmol/l)	143.6 ± 4.7	145.6 ± 3.8	
K (mmol/l)	4.3 ± 0.3	4.4 ± 0.3	
Troponin, ng/ml lᵃ (<0.02)	0.16 ± 0.31	0.64 ± 1.04	

| **Positive blood culture, n(%)ᵇ** | 0 | 13 (81%) |
| **Positive ETA, N(%)** | 0 | 5 (26%) |

ᵃFor troponin and ScVO₂, the value in the first column refers on admission data

ᵇEleven patients presented primary bacteremia on the day NOAF occurred. Two more patients diagnosed with VAP on NOAF day, presented positive blood cultures, with the same isolate as the one responsible for VAP (bacteremic VAP)

Table 3. Comparison of echocardiographic variables between the control and NOAF group on admission, and between admission and the NOAF day, in the NOAF group.
	Control Group (n=60)	NOAF group (n=19)	ICU Admission	ICU admission	AF Day
Left atrial area, cm²	19.7±3.1	21.2±3.6	22.2±4.7		
Left Ventricular End Diastolic Diameter, cm	4.5±0.7	4.6±0.4	4.6±0.5		
Left Ventricular EF (Simpson method) (%)	59.9±14.4	55.1±19.5	56.6±15		
GLSLV, %	-12.3 ± 4.2	-14.7 ± 5.5	-11.9 ± 3.1		
GLSLV <16.6%, n (%)	47 (78%)	12 (63%)	0.075		
VTI_{LVOT} cm	22.2 ± 5.4	21.6 ± 7.1	22.8 ± 5.3		
E, cm/s	63 ± 21	74± 8	76 ± 16		
A, cm/sec	67± 8	72 ± 15			
E’, cm/s	8 ± 2	7 ± 1	8 ± 2		
E/E’	7.4 ± 5.1	9.9± 2.3	10.1 ± 2.3		
S’, cm/s	10 ± 3	8 ± 1	8 ± 2		
RVEDA/LVEDA	0.7 ± 0.2	0.7 ± 0.4	0.7 ± 0.3		
RV FAC, %	38.7 ± 13.3*	51 ± 21.4	36.3 ± 10		
TAPSE, mm	22.1±5.1	25.4±5.9	21.1±5		
RV s’, cm/sec	15 ± 4*	19 ± 3#	13 ± 5		
Pericardial effusion	26/60 (43%)	10/19 (52%)	11/19 (58%)		

A: late diastolic ventricular filling velocity with atrial contraction; AF, Atrial Fibrillation; EF: Ejection Fraction, E, left ventricular early diastolic peak velocity, E’, early diastolic tissue Doppler velocity; ICU, Intensive Care Unit; GLSLV, global longitudinal strain of the left ventricle; RVEDA/LVEDA, Right Ventricular End Diastolic Area to Left Ventricular End Diastolic Area; RVFAC, Right Ventricular Fractional Area Change; S’, systolic tissue Doppler velocity; RV s’, Tissue doppler peak systolic velocity at the tricuspid annulus; TAPSE: Tricuspid Annular Plane Systolic Excursion; VTI_{LVOT}, Left Ventricular Outflow Tract Velocity Time Integral;

Data are expressed as mean ± standard deviation.

*: p<0.05 for comparisons between the control and NOAF group upon ICU admission

#: p<0.05 for comparisons between echocardiographic data on admission and the NOAF day, in the NOAF group

Figures
Figure 1

Study Flowchart AF, atrial fibrillation; CAD, Coronary Artery Disease; Covid-19, Coronavirus disease-2019; ECHO, Echocardiography; EF, Ejection Fraction; HF, Heart Failure; ICU, Intensive Care Unit; MI, Myocardial Infarction; NOAF, New Onset Atrial Fibrillation.
Figure 2

Time course of vasopressor dose in the period around NOAF occurrence. Noradrenaline dose was increased from 0.08±0.06 μg/kg/min three days before NOAF to 0.44±0.22 μg/kg/min exactly before AF appearance (p=0.01), reaching the highest value (0.52±0.06 μg/kg/min) after NOAF occurrence (p=0.033, compared to NOAF occurrence). Comparisons have been performed with the Day-3 (reference value) and, also, between each day. *: p=0.01 refers to the difference between the noradrenaline dose on the day AF occurred (just before AF appearance) and the dose that the patients were receiving on the Day -3 (reference day).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- NOAFINICUCOVID19ARDSappendixcritcare.docx