Effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy: A systematic review and meta-analysis of randomized control trials

Biruk Beletew Abate, Melaku Bimerew, Bereket Gebremichael, Ayeilgn Mengesha Kassie, MesfinWudu Kassaw, Teshome Gebremeskel, Wubet Alebachew Bayih

1 Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia, 2 College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia, 3 College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia

* These authors contributed equally to this work.
‡ AMK, MWK, TG and WAB also contributed equally to this work.
* birukkelemb@gmail.com

Abstract

Background
Hypoxic perinatal brain injury is caused by lack of oxygen to baby’s brain and can lead to death or permanent brain damage. However, the effectiveness of therapeutic hypothermia in birth asphyxiated infants with encephalopathy is uncertain. This systematic review and meta-analysis was aimed to estimate the pooled relative risk of mortality among birth asphyxiated neonates with hypoxic-ischemic encephalopathy in a global context.

Methods
We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines to search randomized control trials from electronic databases (PubMed, Cochrane library, Google Scholar, MEDLINE, Embase, Scopus, Web of Science, Cochrane Central Register of Controlled Trials (CENTRAL), and meta register of Current Controlled Trials (mCRT)). The authors extracted the author’s name, year of publication, country, method of cooling, the severity of encephalopathy, the sample size in the hypothermic, and non-hypothermic groups, and the number of deaths in the intervention and control groups. A weighted inverse variance fixed-effects model was used to estimate the pooled relative risk of mortality. The subgroup analysis was done by economic classification of countries, methods of cooling, and cooling devices. Publication bias was assessed with a funnel plot and Eggers test. A sensitivity analysis was also done.
Results

A total of 28 randomized control trials with a total sample of 35, 92 (1832 hypothermic 1760 non-hypothermic) patients with hypoxic-ischemic encephalopathy were used for the analysis. The pooled relative risk of mortality after implementation of therapeutic hypothermia was found to be 0.74 (95%CI; 0.67, 0.80; I² = 0.0%; p<0.996). The subgroup analysis revealed that the pooled relative risk of mortality in low, low middle, upper-middle and high income countries was 0.32 (95%CI; -0.95, 1.60; I² = 0.0%; p<0.813), 0.5 (95%CI; 0.14, 0.86; I² = 0.0%; p<0.998), 0.62 (95%CI; 0.41–0.83; I² = 0.0%; p<0.634) and 0.76 (95%CI; 0.69–0.83; I² = 0.0%; p<0.975) respectively. The relative risk of mortality was the same in selective head cooling and whole-body cooling method which was 0.74. Regarding the cooling device, the pooled relative risk of mortality is the same between the cooling cap and cooling blanket (0.74). However, it is slightly lower (0.73) in a cold gel pack.

Conclusions

Therapeutic hypothermia reduces the risk of death in neonates with moderate to severe hypoxic-ischemic encephalopathy. Both selective head cooling and whole-body cooling method are effective in reducing the mortality of infants with this condition. Moreover, low income countries benefit the most from the therapy. Therefore, health professionals should consider offering therapeutic hypothermia as part of routine clinical care to newborns with hypoxic-ischemic encephalopathy especially in low-income countries.

Introduction

Hypoxic-ischemic encephalopathy (HIE) is a complication resulting from intrapartum and neonatal asphyxia. Adverse intrapartum events remains a major cause of neonatal mortality and burden of disease in emerging economies [1, 2]. Neonatal encephalopathy due to perinatal asphyxia occurs in 1 up to 3 per 1000 live births in high-income countries, and in up to 20 per 1000 live births in low and middle-income countries [3]. The burden in low and middle-income countries is far higher than in high-income countries, and it accounts for approximately one million deaths annually [4]. If not treated, 62% of infants with perinatal hypoxic brain injury will die or have moderate to severe disabilities by the age of 18 to 22 months; treatment reduces this rate to 41% [5, 6]. Survivors also develop long-term neurologic disabilities as follows: 45% have cognitive and developmental delay or learning difficulties, 29%, some degree of cerebral palsy, 26%, blindness or vision defects, 17%, gross motor and coordination problems, epilepsy, 9%, hearing loss or deafness, and 1%, behavioral issues [7, 8].

Intrapartum hypoxia resulting in hypoxic-ischemic encephalopathy (HIE) is one of the causes of neonatal encephalopathy, with no definitive test to make the diagnosis. In addition, very little knowledge is available in terms of neuroprotective strategies, the use of therapeutic hypothermia (TH) is one of the strategies commonly used and shown most promising neuroprotective intervention [9, 10].

In neonates with perinatal asphyxia, admission hyperoxemia increased the incidence of Hypoxic Ischemic Encephalopathy (HIE). Among neonates with HIE, admission hyperoxemia increased the risk of abnormal brain magnetic resonance imaging findings. The careful use of oxygen during and after resuscitation is necessary [11]. The phenomenon in which
oxygen supplementation following a period of oxygen deficiency augments the injury is
known as “the oxygen paradox”. Thus a powerful mean to reduce HIE is to avoid hyperoxia
which results in rapid cell swelling [12].

Regarding the percentage of oxygen a systematic review and meta-analysis revealed that
there is a significant reduction in the risk of neonatal mortality and a trend towards a reduc-
tion in the risk of sever HIE in newborn resuscitated with 21% O2 [13]. Hypoxic insults to the
brain have been associated with an elevation in brain temperature. It is speculated that this
temperature increase is caused by increased metabolic demands and inflammatory mediators
released after acute ischemic injury [14]. Hypothermia prevents death in neonates with hyp-
oxic-ischemic encephalopathy due to perinatal asphyxia and considered to be the standard
treatment for infants with this condition [1, 15]. It has been suggested that lowering core body
temperature by 1˚C results in a 6% to 10% reduction in whole-body metabolic demands [16].

Two methods of hypothermia are commonly used (selective head cooling and whole-body
hypothermia) [17]. Brain cooling is effective in reducing the extent of brain injury even when
it is initiated up to 5.5 hours after brain ischemia in near-term sheep fetuses. Reductions in
brain temperature by 2˚C to 5˚C provide neuroprotection in newborn and adult animal mod-
els of brain ischemia [18].

Improved survival and neurodevelopmental outcome at 18 months of age have been
reported in multiple trials of therapeutic hypothermia, and currently, it is the only neuropro-
tective strategy for neonates suspected to have suffered an intrapartum hypoxic-ischemic
event.

According to International Liaison Committee on Resuscitation (ILCOR) 2020, hypother-
mia treatment cooling only be considered in neonatal care facilities with the capabilities for
multidisciplinary care and availability of adequate resources to offer intravenous therapy,
respiratory support, pulseoximetry, antibiotics, anticonvulsants, and pathology testing [19].

Previous randomized control trials conducted across the world reported the relative risk of
mortality among birth asphyxiated neonates with hypoxic-ischemic encephalopathy after the
implementation of therapeutic hypothermia. The relative risk of mortality in such randomized
control trials ranged from 0.00 [20] to 0.95 [21]. This indicates, there is an inconsistency report
on the relative risk of mortality across different countries in the world. Moreover, there is no
globally denoted pooled data which can be used as a baseline in designing strategies for the
prevention of neonatal mortality particularly due to hypoxic-ischemic encephalopathy. There-
fore, this systematic review and meta-analysis aimed to estimate the pooled relative risk of
mortality among birth asphyxiated neonates with hypoxic-ischemic encephalopathy in a global
context.

Methods

Reporting

The results of this review were reported based on the Preferred Reporting Items for Systematic
Review and Meta-Analysis statement (PRISMA) guideline (S1 Checklist).

Searching strategy and information sources

We identified studies providing data on the effect of therapeutic hypothermia/ cooling therapy
on newborn mortality from hypoxic-ischemic encephalopathy from PubMed, Cochrane
library, Google Scholar, MEDLINE, Embase, Scopus, Web of Science, Cochrane Central Regis-
ter of Controlled Trials (CENTRAL), and metaRegister of Current Controlled Trials (mCRT).
The last search was performed in April, 2020. The search was performed by using keywords/
phrases and medical subject headings (MeSH) terms. To retrieve additional potentially eligible
studies snowball searching in the reference list of papers was also conducted. Articles with incomplete reported data were handled through contacting corresponding authors. We used the search terms independently and/or in combination using Boolean operators like “OR” or “AND”.

The core search terms and phrases were “neonates”, “newborn”, “infant”, and “therapeutic hypothermia”, “cooling therapy”, “asphyxia”, “hypoxic-ischemic”, “hypoxic-ischaemic”, “encephalopathy”. The search strategies were developed using different Boolean operators. Remarkably, to fit advanced PubMed database, the following search strategy was applied: (neonate [MeSH Terms] OR newborn OR perinatal OR infant) AND (hypothermia [MeSH Terms] OR cool OR cooling OR temperature OR body temperature) AND (death OR mortality) AND (asphyxia [MeSH Terms] OR hypoxic-ischemic OR hypoxic-ischaemic OR hypoxia OR brain OR encephalopathy AND therapy (S1 Table).

Study selection
Retrieved studies were exported to reference manager software, Endnote version 8 to remove duplicate studies. Two investigators (BB and TG) independently reviewed the retrieved studies using their titles and abstracts before retrieval of full-text papers. We used pre-specified inclusion criteria to further screen the full-text articles. Disagreements were discussed during a consensus meeting with other reviewers (AM and MW) for the final selection of studies to be included in the analysis.

Eligibility criteria
We included RCTs that analyzed the effect of whole-body hypothermia or selective head cooling on newborn mortality from hypoxic-ischemic encephalopathy compared with non-hypothermic patients. We only included studies that fulfilled all criteria. There were no restrictions for language, length of follow up, publication date, or status. Researches that did not report our outcome of interest were excluded.

Quality assessment
After combining the Database search results duplicate articles were removed using Endnote (version X8). The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Randomized Controlled Trials was used [22, 23]. Four independent authors appraised the quality of all potential studies to be included for analysis. The appraisal was repeated by exchanging with each other. Thus, one paper was appraised by two Authors. Any disagreement between the reviewers was solved by taking the mean score of the two reviewers (S2 Table).

Data extraction
The authors developed a data extraction form on the excel sheet which includes the author’s name, year of publication, country, method of cooling, the severity of encephalopathy, the sample size in the hypothermic, and non-hypothermic groups, and the number of deaths in the intervention and control groups. The data extraction sheet was piloted using 4 papers randomly. The extraction form was adjusted after piloted the template. Two of the authors extracted the data using the extraction form in collaboration. The third and fourth authors checked the correctness of the data independently. Any disagreements between reviewers were resolved through discussions with a third reviewer and fourth reviewer if required. Any mistyping of data was resolved through crosschecking with the included papers. If we got
incomplete data, we excluded the study after two attempts were made to contact the corresponding author by email.

Statistical analysis

The primary outcome was the relative risk (RR) of death, which was calculated as the proportion of death among hypothermic over the proportion of death among non-hypothermic patients.

After the data was extracted using Microsoft Excel format, we imported the data to STATA version 14.0 statistical software for further analysis. Using the binomial distribution formula, standard error was calculated for each study. We pooled the estimates RR of death by a fixed-effects model meta-analysis [24]. The pooled estimates RR of death with 95% CI were presented using forest plots. We examined the heterogeneity between the studies using Cochrane’s Q statistics (Chi-square), inverse variance (I²), and p-values [25]. Subgroup analysis was done by stratifying studies using the method of cooling and the economy classification of the country where the study was conducted (low-income economies, lower-middle-income economies, upper-middle-income economies, and high-income economies) [26].

When statistical pooling is not possible, non-pooled data was presented in table form. Sensitivity analysis was employed to see the effect of a single study on the overall estimation. Publication bias was checked by the funnel plot and more objectively through Egger’s regression test [27].

Results

Study selection

A total of 21,572 studies were identified using electronic searches (through Database searching (n = 21,560) and other sources (n = 12)). After duplication removed, a total of 11,150 articles remained (10422 duplicated). Finally, 1500 studies were screened for full-text review and, 28 articles with a total sample of 3,592 (1,832 hypothermic 1,760 non-hypothermic) patients were included for the final analysis (Fig 1).

Characteristics of included studies

Table 1 summarizes the characteristics of the 28 included studies in the systematic review and meta-analysis [20, 21, 28–50]. Regarding the income of countries in which the trial was done, 15 studies were done in high income, 4 studies in upper middle income, 7 in low middle income, and 2 studies in low-income countries. Regarding methods of cooling used, 20 studies used whole body cooling while the remaining 8 studies used selective head cooling. Eleven included studies used cold gel pack, 9 studies used cooling blanket, and 8 studies used cooling caps as a cooling device. There were 1126/3592 deaths, 483/1832 in the hypothermia group, and 643/1760 in the control group (Tables 1 and 2).

Characteristics of excluded studies

Almost all excluded studies were case series. The majority used whole body cooling methods. The highest proportion of those studies was from Africa. Regarding the exclusion criteria some studies were excluded because the study discontinued due to adverse outcomes, study details unclear, the protocol only, and they were case series (Table 3).
Inclusion and exclusion criteria of studies included in the meta-analysis

Almost all included randomized control trials used similar eligibility criteria. They used the following inclusion criteria: 5 min or 10 min Apgar score, cord PH 7.1, base deficit, GA > 36 weeks, BW > 2500 g, and encephalopathy. On the other hand, Major congenital malformation, metabolic disorder, chromosomal abnormalities, congenital infection, persistent pulmonary hypertension, premature rupture of membranes, and >6 h of age used as exclusion criteria (Table 4).

Meta-analysis

The effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy. All of the studies (n = 28) reported the magnitude of mortality among cooled and non-cooled neonates with hypoxic-ischemic encephalopathy [20, 21, 28–50]. The authors calculated the relative risk of mortality in all included studies. The relative risk of mortality ranged from 0.001 [20] up to 0.95 [21].
The fixed-effects model analysis from those studies revealed that the pooled relative risk of mortality was found to be 0.74 (95%CI; 0.67, 0.80; I² = 0.0%; p < 0.996) (Fig 2).

Subgroup analysis of the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy. The subgroup analysis was done through stratifying by country income level, method of cooling, and device of cooling. Based on this, the pooled relative risk of mortality was 0.32, 0.5, 0.62, and 0.76 in the low, low middle, upper-middle, and high-income countries respectively (Fig 3 and Table 5). The relative risk of mortality was the same in selective head cooling and whole-body cooling method which was 0.74 (Fig 4 and Table 5).

Regarding the cooling device, the pooled relative risk of mortality is the same between the cooling cap and cooling blanket (0.74). However, it is slightly lower (0.73) in the cold gel pack (Fig 5 and Table 5).

Table 1. Distribution of studies on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy.

Authors	Year	Country	Income	N Hypo: STD	Cooling method/ Device	Mortality HYPO: STD	Relative risk	Yes Total	Overall appraisal
Lin et al. [28]	2006	China	upper-middle	32:30	SHC: cooling caps	2:2	0.94	12/13	Included
Zhou et al. [29]	2010	China	upper-middle	138:118	SHC: cooling caps	31:46	0.85	13/13	Included
Akisu et al. [20]	2013	Turkey	upper-middle	11:10	SHC: cooling caps	0.2	0	13/13	Included
Robertson et al. [30]	2008	Uganda	Low	21:15	WBC: cooling blanket	1:7	0.1	11/13	Included
Thayril et al. [31]	2013	India	low-middle	17:16	WBC: cooling blanket	4:2	3.2	12/13	Included
Bharadwaj et al. [32]	2012	India	low-middle	62:62	WHC: cold gel pack	3:6	0.5	11/13	Included
Bhat et al. [33]	2006	India	low-middle	20:15	WHC: cold gel pack	3:5	0.45	13/13	Included
Azzoparadi et al. [21]	2009	UK	High	163:162	WHC: cooling blanket	42:44	0.86	12/13	Included
Jacobs et al. [34]	2011	Australia	High	91:78	WHC: cold gel pack	51:58	0.75	12/13	Included
Shankaran et al. [35]	2005	USA	High	102:103	WHC: cooling blanket	45:64	0.71	12/13	Included
Simbruner et al. [36]	2010	Germany	High	53:58	WHC: cooling blanket	27:48	0.62	11/13	Included
Gluckman et al. [37]	2005	USA	High	108:110	SHC: cooling caps	36:42	0.82	13/13	Included
Zhou et al. [29]	2010	China	upper-middle	100:94	SHC: cooling caps	31:46	0.65	12/13	Included
Eicher et al. [38]	2005	USA	High	32:33	WHC: cooling blanket	10:14	0.75	13/13	Included
Battin et al. [39]	2003	New Zealand	High	13:13	SHC: cooling caps	5:7	0.72	12/13	Included
Shankaran et al. [40]	2002	USA	High	9:10	WHC: cooling blanket	2:3	0.74	13/13	Included
Joy et al. [41]	2012	India	low-middle	58:58	WHC: cold gel pack	1:4	0.25	11/13	Included
Maoulaine et al. [42]	2017	Morocco	Low	19:19	SHC: cooling caps	3:7	0.43	13/13	Included
Laptook et al. [43]	2018	USA	High	83:85	WBC: cooling blanket	6:5	0.86	12/13	Included
Gane et al. [44]	2013	India	low-middle	53:50	WBC: cold gel pack	4:8	0.5	13/13	Included
Selway et al. [45]	2010	USA	High	102:103	WBC: cold gel pack	24:38	0.65	12/13	Included
Susan et al. [34]	2011	USA	High	110:111	WBC: cold gel pack	55:67	0.77	13/13	Included
Jose et al. [46]	2018	India	low-middle	74:70	WBC: cold gel pack	18:28	0.6	12/13	Included
Azzopardi et al. [47]	2014	UK	High	145:135	WHC: cooling blanket	47:49	0.95	10/13	Included
Shankaran et al. [48]	2012	USA	High	58:43	WBC: cold gel pack	6:7	0.64	10/13	Included
Battin et al. [49]	2001	New Zealand	High	20:20	SHC: cooling caps	3:4	0.75	11/13	Included
Gane et al. [44]	2013	India	low-middle	60:60	WBC: cold gel pack	4:8	0.5	10/13	Included
Namasiyavam et al. [43]	2017	USA	High	78:79	WBC: cold gel pack	19:22	0.85	11/13	Included

https://doi.org/10.1371/journal.pone.0247229.t001
Sensitivity analysis. We employed a leave-one-out sensitivity analysis to identify the impact of the individual study on the pooled relative risk of mortality. The results of this sensitivity analysis showed that our findings were not dependent on a single study. Our pooled estimated relative risk varied between 0.72(0.65, 0.79) [36] and 0.75(0.68, 0.82) [21] after the deletion of a single study (S1 Fig).

Publication bias. We have also checked publication bias and a funnel plot showed symmetrical distribution (S2 Fig). Egger’s regression test p-value was 0.156, which indicated the absence of publication bias (S3 Fig).

Discussion

This systematic review and meta-analysis of RCTs was conducted to assess the effectiveness of therapeutic hypothermia/cooling therapy to reduce mortality of asphyxiated neonates with hypoxic-ischemic encephalopathy. Therapeutic hypothermia is found to be effective to reduce the risk of death in neonates with moderate to severe hypoxic-ischemic encephalopathy. In
addition, both selective head cooling and whole-body cooling methods are effective in reducing the mortality of infants with this condition. The pooled relative risk of mortality among birth asphyxiated neonates who have got cooling therapy was found to be nearly 26% lower compared with those who haven't got cooling therapy. This result was similar with a systematic review and meta-analysis conducted in 2010 and 2013 [3, 15, 17, 51].

The above-mentioned similarity between our finding and others can be explained by different scientific assumption. Pathophysiologically, it is known that birth asphyxia leads to hypoxia and hypoxic ischemic insult. Initially, hypoxic ischemic (HI) insult results in primary energy failure which is characterized by decreased ATP production. This in turn leads to loss of integrity of the neuronal cell membrane, with calcium entry into the cell facilitated by activation of NMDA receptor and other excitotoxic neurotransmitters. At this stage, decreasing cerebral metabolism, antagonizing NMDA receptors and suppressing excitotoxic neurotransmitters are fundamental interventional strategies to be used to reverse brain damage/ treat HIE in asphyxiated neonates. In the absence of any intervention, secondary energy failure associated with moderate to severe HIE will occur after 6–48 hours’ period of latency due to oxidative stress, inflammation, and ultimately leads to cell death. At this stage, interventional strategies targeted to reduce oxidative stress markers, inflammation and cell death are crucial to treat HIE in asphyxiated neonates [44, 52].

Another mechanism could be through reducing cerebral metabolism by inhibiting post depolarization release of many toxins. It can also reduce oxidative stress-induced DNA damage by reducing stress markers, attenuate excitatory brain damage, and suppress inflammation and programmed cell death (apoptosis) [44]. So, it is assumed that asphyxiated neonates who got cooling therapy will have reduced risk of mortality than neonates without cooling therapy.

Table 3. Characteristics of excluded studies on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy.

Excluded Studies	Country	Cooling method	Device	N	Comments	Reasons for exclusion
Horn [56]	South Africa	Selective head cooling	Frozen gel packs	4	Due to wide temperature fluctuations, the study stopped prematurely	Case series
Thomas [57]	India	Whole-body cooling	Frozen gel packs	20	The mean rectal temperature during cooling was 32.96 oC.	Case series
Horn [58]	South Africa	Selective head cooling	Selective head	5	A pilot study with frozen gel packs around the head	Case series
Rajhans [59]	India	Whole-body cooling	Blanketrol II	5	Only two babies completed cooling for 72 hours	Case series
Horn [60]	South Africa	Selective head cooling	Servo controlled Fan	10	Excessive shivering reported in the cooled infants.	Case series
Robertson [61]	Uganda	Whole-body cooling	Water bottles	56	Study protocol of a previously published cooling trial.	Protocol only
Thomas [57]	India	Whole-body cooling	Frozen gel packs	14	The adverse outcome was seen in 3 (2 deaths, 1 developmental delay) of the 14 infants (out of 20)	Case series
Li [62]	China	Whole-body cooling	Not described	93	Hypothermic induced within 10 hours, maintaining rectal temperature 33.5uC for 72 hours.	Study details unclear.
See [63]	Malaysia	Whole-body cooling	Ambient Temperature	17	Cooled by manipulating environmental temperature; report no neurological deficit in 14/15 stage 2 NE babies.	Case series
Horn [64]	South Africa	Selective Head Cooling	Frozen gel packs	14	Active rewarming using a radiant warmer	Case series
Tan [53]	Uganda	Whole-body cooling	Water bottles	19	One year follow up of previously recruited infants from a cooling trial.	Duplicate data

https://doi.org/10.1371/journal.pone.0247229.t003
Table 4. Inclusion and exclusion criteria of included studies on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy.

Authors	Inclusion criteria	Exclusion criteria
Lin ZL et al. [28]	5 min Apgar, 6 AND Cord pH, 7.1 or base deficit .15 mmol/L AND encephalopathy	Major congenital abnormalities, persistent pulmonary
		Hypertension
Zhou WH et al. [29]	5 min Apgar, 6 AND Cord pH, 7 or base deficit #16 mmol/L AND need for resuscitation at 5 minutes of age	Major congenital abnormalities, maternal fever
		.38uC, infection, rupture of membranes .18
		hours or foul-smelling liquor, another encephalopathy
Akisu M et al. [30]	5 min Apgar, 6 AND Cord pH, 7.1 or base deficit .10 mmol/L AND encephalopathy	Major congenital malformation, metabolic disorder, chromosomal abnormalities, congenital infection, transitory drug depression
		Apnoea or cyanosis, absent cardiac output .10 min
Robertson et al. [30]	5 min Apgar, 6 AND encephalopathy (Thompson score .5)	Major congenital malformations, Imminent death at the time of randomization
Thayyil S et al. [31]	5 min Apgar, 6 AND encephalopathy (Thompson score .5)	Major congenital malformations, Imminent death at the time of randomization
Bharadwaj et al. [32]	10 min Apgar, 6 AND arterial pH#7 or base excess $12 meq AND encephalopathy	Major congenital abnormalities, no spontaneous respiration by 20 min, outborn babies
Bhat M et al. [33]	10 minute Apgar, 5 AND Cord pH, 7 and or base deficit .18 meq/L	Major congenital abnormalities, persistent pulmonary
		Hypertension
Azzopardi et al. [21]	GA > = 36 weeks with PHI, moderate to severe encephalopathy, and abnormal background on aEEG	Major congenital abnormalities or >6 h of age
Jacobs et al. [34]	GA > = 35 weeks with PHI and moderate or severe encephalopathy	Major congenital abnormalities, >6 h of age, BW <2 kg, overt bleeding, required >80% oxygen, death was imminent, or therapeutic hypothermia had commenced before assessment
Shankaran et al. [35]	GA > = 36 weeks with PHI, <6 h of age, and encephalopathy or seizures	Major congenital abnormalities, BW < = 1800 g, or >6 h of age
Simbruner et al. [36]	GA > = 36 weeks, PHI, encephalopathy, and abnormal EEG or aEEG findings	Major congenital abnormalities, >5.5 h of age, received anticonvulsant therapy, BW <1800 g, HC less than the third percentile for GA if BW and length are greater than the third percentile, imperforate anus, or gross hemorrhage
Gluckman et al. [37]	GA > = 36 weeks with PHI, moderate to severe encephalopathy, and abnormal background on an EEG	Major congenital abnormalities, >5.5 h of age, received prophylactic anticonvulsants, BW <1800 g, HC <2 SD for gestation if BW and length >—2 SD, or critically ill and unlikely to benefit from intensive care
Zhou et al. [29]	GA > = 37 weeks, BW >= 2500 g, PHI, and encephalopathy	Major congenital abnormalities, signs of infection, other causes of encephalopathy or severe anemia
Eicher DJ et al. [38]	>= 35 weeks gestation, >= 2000 gm birth weight, were <=6 hours after birth and encephalopathy	Neonates with clinical sepsis, maternal choorioamnionitis, weight or head circumference less than 10th percentile for gestation age, or congenital abnormalities were excluded
Battin MR et al. [39]	1) gestational age >=37 weeks; 2) 5-minute Apgar score below 6 or cord/first arterial pH <7.1; and 3) encephalopathy	Major congenital abnormalities or those who presented to National Women’s Hospital neonatal unit after 6 hours of age
Shankaran et al. [40]	All term infants who were >36 weeks’ gestation and admitted to the neonatal intensive care unit at below 6 hours of age	1) inability to perform random assignment by 6 hours of age, 2) chromosomal abnormality, 3) major congenital anomaly, 4) severe growth restriction <= 1800 g birth weight, 5) infant unlikely to survive
Joy R et al. [41]	GA > = 37 weeks, BW >= 2500 g, PHI, and encephalopathy	Major congenital abnormalities, signs of infection, other causes of encephalopathy or severe anemia
Maoulainine et al. [42]	GA > = 36 weeks with PHI, <6 h of age, and encephalopathy or seizures	Major congenital abnormalities, BW < = 1800 g, or >6 h of age
Laptok AR et al. [43]	GA > = 36 weeks with PHI, moderate to severe encephalopathy, and abnormal background on an EEG	Major congenital abnormalities or >6 h of age
Gane B. D et al. [44]	>= 37 weeks with umbilical cord blood or arterial blood (within the first postnatal hour) PH <= 7 or base deficit >= 16 meq with evidence of encephalopathy	more than 6 h of age at the time of randomization, had major congenital abnormalities, did not establish spontaneous respiration by 20 min after birth
Selway L et al. [45]	1) gestational age >37 weeks; 2) 5-minute Apgar score below 6 or cord/first arterial pH <7.1; and 3) encephalopathy	Major congenital abnormalities or those who presented to National Women’s Hospital neonatal unit after 6 hours of age
Susan E. et al. [34]	35 weeks’ gestation or more at birth, could have hypothermia initiated within 6 hours of birth, had moderate or severe encephalopathy	hypothermia could not start within8 hours of birth if the birth weight was less than 2 kg if major congenital abnormalities were suspected
Jose S et al. [46]	moderate and severe encephalopathy within 6 hours after birth after an acute perinatal event	Major congenital abnormalities, signs of infection, other causes of encephalopathy or severe anemia

(Continued)
Table 4. (Continued)

Authors	Inclusion criteria	Exclusion criteria
Azzopardi M.D et al. [47]	GA > = 37 weeks, BW > = 2500 g, PHI, and encephalopathy	Major congenital abnormalities, signs of infection, other causes of encephalopathy or severe anemia
Shankaran, MD et al. [48]	GA > = 36 weeks with PHI, < 6 h of age, and encephalopathy or seizures	Major congenital abnormalities, BW < = 1800 g, or > 6 h of age
Battin, M. R et al. [49]	GA > = 36 weeks with PHI, < 6 h of age, and encephalopathy or seizures	Major congenital abnormalities, BW < = 1800 g, or > 6 h of age
Gane, B. D et al. [44]	GA > = 37 weeks, BW > = 2500 g, PHI, and encephalopathy	Major congenital abnormalities, signs of infection, other causes of encephalopathy or severe anemia
Namasivayam A et al. [43]	GA > = 36 weeks with PHI, moderate to severe encephalopathy, and abnormal background on aEEG	Major congenital abnormalities or > 6 h of age

https://doi.org/10.1371/journal.pone.0247229.t004

Fig 2. Forest plot showing the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy.

https://doi.org/10.1371/journal.pone.0247229.g002
The subgroup analysis by income in our study found that cooling therapy can reduce mortality of asphyxiated neonates in low and middle income countries better than in high income countries. In contrast to this result, a systematic review and meta-analysis conducted in low income countries found a different result.

Fig 3. Subgroup analysis by the country level of income on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic-ischemic encephalopathy.

https://doi.org/10.1371/journal.pone.0247229.g003

The subgroup analysis by income in our study found that cooling therapy can reduce mortality of asphyxiated neonates in low and middle income countries better than in high income countries. In contrast to this result, a systematic review and meta-analysis conducted in low
and middle income (LMI) countries found no significant reduction of neonatal mortality with cooling therapy in those countries. But, it had failed to exclude clinically important benefits/harms of cooling therapy due to wide CI. Rather, it had explained as the apparent lack of treatment effect might be due to the heterogeneity and poor quality of the included studies, inefficiency of the low technology cooling devices, lack of optimal neonatal intensive care [53].

In line with results of this meta-analysis, literatures had revealed that cooling therapy can reduce mortality of asphyxiated neonates in LMI countries [15, 53]. However, safety and affordability of cooling therapy in those countries was under question [52]. Since this meta-analysis had not explored safety and affordability issues of cooling therapy, authors had failed to strongly praise direct application of cooling therapy in LMI countries. According to ILCOR (2020) cooling treatment should be considered when neonatal care facilities fulfill infrastructures and adequate resources to offer intravenous therapy, respiratory support, pulseoximetry, antibiotics, anticonvulsants, and pathology testing [19].

Concerning cooling methods, the relative risk of mortality among asphyxiated neonates who got selective head cooling therapy or whole-body cooling therapy was found to be the same. A meta-analysis conducted in 2012 had revealed a slightly reduced risk of mortality in neonates who got whole body cooling therapy than neonates with selective head cooling therapy [51]. Literature indicated that, even if both whole-body and selective head cooling are effective methods to provide cooling therapy and have comparable outcomes, whole-body cooling is more commonly used due to the ease of administration. Selective head cooling is more problematic (vulnerable for high temperature fluctuations and hyperthermia during rewarming) which makes it difficult for clinical application. Whole body cooling provides systemic effect with cooling of almost all parts of the brain, while selective head cooling cools only cortical part of the brain [28, 54, 55]. Due to these reasons, authors of this meta-analysis believe that whole body cooling is more applicable and effective than selective head cooling; but it needs further research and explanation.

Regarding cooling devices, the pooled relative risk of mortality was found to be the same between cooling cap and cooling blanket. However, it was slightly lower in cold gel pack. Literatures comparing cooling cap, cooling blanket and cold gel pack in terms of effectiveness were not found. So, authors of this meta-analysis suggest the need for further researches on this issue.

Strength and limitations

This meta-analysis has several strengths. One is absence of heterogeneity among included randomized control trials in all pooling analysis. Besides, included randomized control trials have

Variables	Characteristics	Pooled prevalence (95% CI)	I²(P-value)
Country income level	High	0.76 (0.69, 0.83)	0.0% (0.975)
	Upper middle	0.62 (0.41, 0.83)	0.0% (0.634)
	Low-middle	0.50 (0.14, 0.86)	0.0% (0.998)
	Low	0.32 (-0.95, 1.60)	0.0% (0.813)
Methods of cooling	Selective head cooling	0.74 (0.60, 0.87)	0.0% (0.798)
	Whole body cooling	0.74 (0.66, 0.81)	0.0% (0.998)
Device of cooling	Cooling caps	0.74 (0.60, 0.87)	0.0% (0.798)
	Cooling blanket	0.74 (0.64, 0.85)	0.0% (0.721)
	Cold gel pack	0.73 (0.62, 0.84)	0.0% (0.993)
This study also has certain limitations. First, this systematic review and meta-analysis only assessed the impact of therapeutic hypothermia on mortality. It lacks data on the impact of reducing...
disabilities and chronic complications among survived infants. Moreover, safety and affordability issues of applying therapeutic hypothermia in LMIC is not addressed here and needs further investigation.
Conclusion
Therapeutic hypothermia reduces the risk of death in neonates with moderate to severe hypoxic-ischemic encephalopathy. Both selective head cooling and whole-body cooling method are equally effective in reducing the mortality of infants with this condition. Cold gel pack was slightly better than the cooling cap and cooling blanket in reducing mortality. Cooling therapy can be applied by using low-cost servo-controlled cooling devices/low technology devices like ice pack, cold gel pack, cooling cap, cooling fans, cooling blanket, water bottles and others. Therefore, health professionals should consider offering therapeutic hypothermia as part of routine clinical care to newborns with hypoxic-ischemic encephalopathy especially in low- and middle-income countries after exploring safety issues with fulfillment of neonatal care facilities infrastructures and adequate resources to offer multi care like intravenous therapy, respiratory support, pulseoximetry, antibiotics, anticonvulsants, and pathology testing. Additional randomized control trial targeting safety, affordability and effective method of cooling and cooling devices to be applied in LMI countries should also be investigated.

Supporting information
S1 Checklist. PRISMA checklist. (DOCX)
S1 Fig. Sensitivity analysis the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic ischemic encephalopathy. (DOCX)
S2 Fig. Funnel plot showing publication bias on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic ischemic encephalopathy. (DOCX)
S3 Fig. Eggers test showing publication bias on the effects of therapeutic hypothermia on death among asphyxiated neonates with hypoxic ischemic encephalopathy. (DOCX)
S1 Table. Search strategy used for one of the databases. (DOCX)
S2 Table. Quality appraisal result of included studies; using Joanna Briggs Institute (JBI) quality appraisal checklist. (DOCX)
S1 Synopsis. (DOCX)

Author Contributions
Conceptualization: Biruk Beletew Abate, Melaku Bimerew, Bereket Gebremichael, Ayelign Mengesha Kassie, MesfinWudu Kassaw, Teshome Gebremeskel, Wubet Alebachew Bayih.
Data curation: Biruk Beletew Abate, Melaku Bimerew, Ayelign Mengesha Kassie, MesfinWudu Kassaw, Teshome Gebremeskel, Wubet Alebachew Bayih.
Formal analysis: Biruk Beletew Abate, Melaku Bimerew, Ayelign Mengesha Kassie, Teshome Gebremeskel, Wubet Alebachew Bayih.
Funding acquisition: Biruk Beletew Abate, Melaku Bimerew, Teshome Gebremeskel.
Investigation: Biruk Beletew Abate, Mesfin Wudu Kassaw, Teshome Gebremeskel, Wubet Alebachew Bayih.

Methodology: Biruk Beletew Abate, Wubet Alebachew Bayih.

Project administration: Biruk Beletew Abate, Wubet Alebachew Bayih.

Resources: Biruk Beletew Abate, Melaku Bimerew, Wubet Alebachew Bayih.

Software: Biruk Beletew Abate, Mesfin Wudu Kassaw, Wubet Alebachew Bayih.

Supervision: Biruk Beletew Abate, Bereket Gebremichael, Ayelign Mengesha Kassie, Mesfin Wudu Kassaw, Wubet Alebachew Bayih.

Validation: Biruk Beletew Abate, Bereket Gebremichael, Ayelign Mengesha Kassie, Wubet Alebachew Bayih.

Visualization: Biruk Beletew Abate, Bereket Gebremichael, Mesfin Wudu Kassaw, Wubet Alebachew Bayih.

Writing – original draft: Melaku Bimerew, Mesfin Wudu Kassaw, Teshome Gebremeskel, Wubet Alebachew Bayih.

Writing – review & editing: Biruk Beletew Abate, Melaku Bimerew, Bereket Gebremichael, Ayelign Mengesha Kassie, Teshome Gebremeskel, Wubet Alebachew Bayih.

References

1. Prof.-Aggrey-Wasunna.pdf. Neonatal Therapeutic hypothermia. http://www.kenyapaediatric.org/. 2018.

2. Levene ML, Kornberg J, Williams T. The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early human development. 1985; 11(1):21–6. https://doi.org/10.1016/0378-3782(85)90115-x PMID: 4006822

3. Edwards AD, Brocklehurst P, Gunn AJ, Halliday H, Juszczak E, Levene M, et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ. 2010; 340:c363. https://doi.org/10.1136/bmj.c363 PMID: 20144981

4. Lawn JE, Cousens S, Zupan J. Team LNSS. 4 million neonatal deaths: when? Where? Why? The lancet. 2005; 365(9462):891–900. https://doi.org/10.1016/S0140-6736(05)71048-5 PMID: 15752534

5. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, et al. Childhood outcomes after hypothermia for neonatal encephalopathy. New England Journal of Medicine. 2012; 366(22):2085–92. https://doi.org/10.1056/NEJMoai1112066 PMID: 2264631

6. Finer N, Robertson C, Richards R, Pinnell L, Peters K. Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome. The Journal of pediatrics. 1981; 98(1):112–7. https://doi.org/10.1016/s0022-3476(81)80555-0 PMID: 7452386

7. Murray DM, Baia P, O’CONNOR CM, Ryan CA, Connolly S, Boylan GB. The predictive value of early neurological examination in neonatal hypoxic-ischaemic encephalopathy and neurodevelopmental outcome at 24 months. Developmental Medicine & Child Neurology. 2010; 52(2):e55–e9. https://doi.org/10.1111/j.1469-8749.2009.03550.x PMID: 20041933

8. Mwaniki MK, Atieno M, Lawn JE, Newton CR. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. The Lancet. 2012; 379(9814):445–52. https://doi.org/10.1016/S0140-6736(11)61577-8 PMID: 22244654

9. Encephalopathy Neonatal and Neurologic Outcome ne. Report of the American College of Obstetricians and Gynecologists’ Task Force on neonatal encephalopathy. Pediatrics 2014; 133(5):e1483–1488.

10. Martinek K, Hart AR, Yap S, Mitra S, Robertson NJ. Management and investigation of neonatal encephalopathy: 2017 update. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2017; 102 (4):F346–F58. https://doi.org/10.1136/archdischild-2015-309639 PMID: 28389438

11. Kapadia VS, Chalak LF, DuPont TL, Rollins NK, Brion LP, Wyckoff MH. Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy. The Journal of pediatrics. 2013; 163(4):949–54. https://doi.org/10.1016/j.jpeds.2013.04.043 PMID: 23759422
12. Saugstad OD. The oxygen paradox in the newborn: keep oxygen at normal levels. The Journal of Pediatrics. 2013; 163(4):934–5. https://doi.org/10.1016/j.jpeds.2013.06.003 PMID: 23866716

13. Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008; 94(3):176–82. https://doi.org/10.1159/000143397 PMID: 18612215

14. Karaszewski B, Wardlaw JM, Marshall I, Cvorolka K, Haga K, et al. Early brain temperature elevation and anaerobic metabolism in human acute ischemic stroke. Brain. 2009; 132(4):955–64. https://doi.org/10.1093/brain/awp010 PMID: 19346327

15. Galvao TF, Silva MT, Marques MC, de Oliveira ND, Pereira MG. Hypothermia for perinatal brain hypoxia-ischemia in different resource settings: a systematic review. Journal of tropical pediatrics. 2013; 59(6):453–9. https://doi.org/10.1093/jtroped/ftt047 PMID: 23780995

16. Verco LJ, Hockings LE. Therapeutic hypothermia for brain injury. Anaesthesia & Intensive Care Medicine. 2013; 14(9):371–4.

17. Shah PS, editor. Hypothermia: a systematic review and meta-analysis of clinical trials. Seminars in Fetal and Neonatal Medicine; 2010: Elsevier.

18. Gunn AJ, Gunn TR, Gunning MI, Williams CE, Gluckman PD. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics. 1998; 102(5):1098–106. https://doi.org/10.1542/peds.102.5.1098 PMID: 9794940

19. Wyckoff MH, Wylle J, Aziz K, de Almeida MF, Fabres J, Fawke J, et al. Neonatal life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2020; 142(16_suppl_1):S185–S221.

20. Akisu M, Huseyinov A, Yalaz M, Cetin H, Kultermas N. Selective head cooling with hypothermia suppresses the production of platelet-activating factor in cerebrospinal fluid of newborn infants with perinatal asphyxia. Prostaglandins, leukotrienes and essential fatty acids. 2003; 69(1):45–50. https://doi.org/10.1016/s0952-3278(03)00055-3 PMID: 12878450

21. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. New England Journal of Medicine. 2009; 361(14):1349–58. https://doi.org/10.1056/NEJMoa0900854 PMID: 19797281

22. Peters MD, Godfrey CM, McInerney P, Soares CB, Khalil H, Parker D. The Joanna Briggs Institute reviewers’ manual 2015: methodology for JBI scoping reviews. 2015.

23. Institute JB. Meta-analysis of statistics: assessment and review instrument (JBI mastari). Adelaide: Joanna Briggs Institute. 2006;20032007.

24. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Research synthesis methods. 2010; 1(2):97–111. https://doi.org/10.1002/jrsm.12 PMID: 26061376

25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003; 327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120

26. Bank W. Country and Lending Groups [Online]. 2013.

27. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997; 315(7109):629–34. https://doi.org/10.1136/bmj.315.7109.629 PMID: 9310563

28. Lin Z, Yu H, Lin J, Chen S, Liang Z, Zhang Z. Mild hypothermia via selective head cooling as neuroprotective therapy in term neonates with perinatal asphyxia: an experience from a single neonatal intensive care unit. Journal of perinatology. 2006; 26(3):180–4. https://doi.org/10.1038/sj.jp.7211412 PMID: 16407967

29. Zhou W-h, Cheng G-q, Shao X-m, Liu X-z, Shan R-b, Zhuang D-y, et al. Selective head cooling with mild systemic hypothermia after neonatal hypoxic-ischemic encephalopathy: a multicenter randomized controlled trial in China. The Journal of Pediatrics. 2010; 157(3):367–72. https://doi.org/10.1016/j.peds.2010.03.030 PMID: 20488453

30. Robertson NJ, Nakakeeto M, Hagmann C, Cowan FM, Acocella D, Iwata O, et al. Therapeutic hypothermia for birth asphyxia in low-resource settings: a pilot randomised controlled trial. The Lancet. 2008; 372(9641):801–3. https://doi.org/10.1016/S0140-6736(08)61329-X PMID: 18774411

31. Thayil S, Shankaran S, Wade A, Cowan FM, Ayer M, Sathesinan K, et al. Whole-body cooling in neonatal encephalopathy using phase changing material. Archives of Disease in Childhood-Fetal and Neonatal Edition. 2013; 98(3):F280–F1. https://doi.org/10.1136/archdischild-2013-303840 PMID: 23471462

32. Bharadwaj SK, Vishnu Bhat B. Therapeutic hypothermia using gel packs for term neonates with hypoxic ischemic encephalopathy in resource-limited settings: a randomized controlled trial. Journal of tropical pediatrics. 2012; 58(5):382–8. https://doi.org/10.1093/troped/fms005 PMID: 22396230
33. Bhat MA. Re: Therapeutic hypothermia following perinatal asphyxia. Archives of Disease in Childhoo d-Fetal and Neonatal Edition. 2006; 91(6):F464–F. https://doi.org/10.1136/fnn.2006.097915 PMID: 17056849

34. Jacobs S, Morley C, Inder T, Stewart M, Smith K, McNamara P, et al. Infant Cooling Evaluation Collabo- ration. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopa-thy: a randomized controlled trial. Arch Pediatr Adolesc Med. 2011; 165(8):692–700. https://doi.org/10.1001/archpediatrics.2011.43 PMID: 21464374

35. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. New England Journal of Medicine. 2005; 353(15):1574–84. https://doi.org/10.1056/NEJMcp050929 PMID: 16221780

36. Simbruner G, Mittal RA, Rohlmann F, Muche R. Systemic hypothermia after neonatal encephalopathy: outcomes of neo. nEURO. network RCT. Pediatrics. 2010; 126(4):e771–e8. https://doi.org/10.1542/peds.2009-2441 PMID: 20855387

37. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, et al. Selective head cooling with mild systemic hypothermia after neonatal asphyxia: a randomised trial. The Lancet. 2005; 365(9460):663–70. https://doi.org/10.1016/S0140-6736(05)17946-X PMID: 15721471

38. Eicher DJ, Wagner CL, Katikaneni LP, Hulsey TC, Bass WT, Kaufman DA, et al. Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatric neurology. 2005; 32(1):11–7. https://doi.org/10.1016/j.pediatrneurol.2004.06.014 PMID: 15607598

39. Battin MR, Penrice J, Gunn TR, Gunn AJ. Treatment of term infants with head cooling and mild systemic hypothermia (35.0 °C and 34.5 °C) after perinatal asphyxia. Pediatrics. 2003; 111(2):244–51. https://doi.org/10.1542/peds.111.2.244 PMID: 12563046

40. Shankaran S, Laptook A, Wright LL, Ehrenkranz RA, Donovan EF, Fanaroff AA, et al. Whole-body hypothermia for neonatal encephalopathy: animal observations as a basis for a randomized, controlled pilot study in term infants. Pediatrics. 2002; 110(2):377–85. https://doi.org/10.1542/peds.110.2.377 PMID: 12165594

41. Joy R, Pournami F, Bethou A, Bhat VB, Bobby Z. Effect of therapeutic hypothermia on oxidative stress and outcome in term neonates with perinatal asphyxia: a randomized controlled trial. Journal of tropical pediatrics. 2013; 59(1):17–22. https://doi.org/10.1093/tropej/fms036 PMID: 22907998

42. Maoulaine F, Elbaz M, Elfaq S, Bourioua G, Elalouani F, Barkane M, et al. Therapeutic hypothermia in asphyxiated neonates: Experience from neonatal intensive care unit of University Hospital of Marrakech. International journal of pediatrics. 2017; 2017. https://doi.org/10.1155/2017/2671410 PMID: 28567061

43. Laptook AR, Shankaran S, Tyson JE, Munoz B, Bell EF, Goldberg RN, et al. Effect of therapeutic hypothermia initiated after 6 hours of age on death or disability among newborns with hypoxic-ischemic encephalopathy: a randomized clinical trial. Jama. 2017; 318(16):1550–60. https://doi.org/10.1001/jama.2017.14972 PMID: 29067428

44. Gane BD, Bhat V, Rao R, Nandhakumar S, Harichandrarumkum K, Adhisivam B. Effect of therapeutic hypothermia on DNA damage and neurodevelopmental outcome among term neonates with perinatal asphyxia: a randomized controlled trial. Journal of tropical pediatrics. 2014; 60(2):134–40. https://doi.org/10.1093/tropej/fmt098 PMID: 24343823

45. Selway LD. State of the science: hypoxic ischemic encephalopathy and hypothermic intervention for neonates. Advances in Neonatal Care. 2010; 10(2):60–6. https://doi.org/10.1097/ANC.0b013e3181d54b30 PMID: 20386369

46. Jose S. Effect of hypothermia for perinatal asphyxia on childhood outcomes. International Journal of Contemporary Pediatrics. 2017; 5(1):86.

47. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deietf A, Eddama O, et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. New England Journal of Medicine. 2014; 371(2):140–9. https://doi.org/10.1056/NEJMoa1315788 PMID: 25006720

48. Shankaran S, Laptook AR, McDonald SA, Higgins RD, Tyson JE, Ehrenkranz RA, et al. Temperature profile and outcomes of neonates undergoing whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. Pediatric Critical Care Medicine. 2012; 13(1):53. https://doi.org/10.1097/PCC.0b013e31821926bc PMID: 21499182

49. Battin MR, Dezoete JA, Gunn TR, Gluckman PD, Gunn AJ. Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia. Pediatrics. 2001; 107(3):480–4. https://doi.org/10.1542/peds.107.3.480 PMID: 11230586

50. Bhat BV, Adhisivam B. Therapeutic cooling for perinatal asphyxia-Indian experience. The Indian Journal of Pediatrics. 2014; 81(6):585–91. https://doi.org/10.1007/s12098-014-1348-0 PMID: 24619565
51. Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Archives of pediatrics & adolescent medicine. 2012; 166(6):558–66. https://doi.org/10.1001/arch Pediatr Adolesc Med. 2012; 166(6):558–566. PMID: 22312166

52. Nair J, Kumar VH. Current and emerging therapies in the management of hypoxic ischemic encephalopathy in neonates. Children. 2018; 5(7):99. https://doi.org/10.3390/children5070099 PMID: 30029531

53. Pauliah SS, Shankaran S, Wade A, Cady EB, Thayyil S. Therapeutic hypothermia for neonatal encephalopathy in low- and middle-income countries: a systematic review and meta-analysis. PloS one. 2013; 8(3). https://doi.org/10.1371/journal.pone.0058834 PMID: 23527034

54. Thayyil S, Costello A, Shankaran S, Robertson NJ. Therapeutic Hypothermia for Neonatal Encephalopathy: Implications for Neonatal Units in India. Indian pediatrics. 2009; 46(4). PMID: 19383987

55. AlKharfy TM. Induced hypothermia to treat neonatal hypoxic-ischemic encephalopathy. Review of literature with meta-analysis and development of national protocol Neurosciences (Riyadh). 2013; 18(1):18–26. PMID: 23291793

56. Horn A, Woods D, Thompson C, Els I, Kroon M. Selective cerebral hypothermia for post-hypoxic neuroprotection in neonates using a solid ice cap. South African Medical Journal. 2006; 96(9):976–81. PMID: 17077928

57. Thomas N, George KC, Sridhar S, Kumar M, Kuruvilla KA, Jana AK. Whole body cooling in newborn infants with perinatal asphyxial encephalopathy in a low resource setting: a feasibility trial. Indian pediatrics. 2011; 48(6):445–51. https://doi.org/10.1007/s13312-011-0076-z PMID: 21169643

58. Horn A, Harrison M, Linley L. Evaluating a simple method of neuroprotective hypothermia for newborn infants. Journal of tropical pediatrics. 2010; 56(3):172–7. https://doi.org/10.1093/tropej/fmp089 PMID: 19793894

59. Rajhans A, Chouthai N, Joshi R. Whole body hypothermia (WBH) for newborns with moderate to severe hypoxic ischemic encephalopathy (HIE) in India. Pediatric Academic Society Boston. 2012.

60. Horn A, Thompson C, Woods D, Nel A, Bekker A, Rhoda N, et al. Induced hypothermia for infants with hypoxic-ischemic encephalopathy using a servo-controlled fan: an exploratory pilot study. Pediatrics. 2009; 123(6):e1090–e8. https://doi.org/10.1542/peds.2007-3766 PMID: 19433516

61. Robertson NJ, Hagmann CF, Acolet D, Allen E, Nyombi N, Elbourne D, et al. Pilot randomized trial of therapeutic hypothermia with serial cranial ultrasound and 18–22 month follow-up for neonatal encephalopathy in a low resource hospital setting in Uganda: study protocol. Trials. 2011; 12(1):138.

62. Li T, Xu F, Cheng X, Guo X, Ji L, Zhang Z, et al. Systemic hypothermia induced within 10 hours after birth improved neurological outcome in newborns with hypoxic-ischemic encephalopathy. Hospital practice. 2009; 37(1):147–52. https://doi.org/10.3810/hp.2009.12.269 PMID: 20877184

63. See K, Jamal SS, Chiam M. Short term outcome of therapeutic hypothermia in term infants with moderate to severe hypoxic ischaemic encephalopathy; the Sungai Buloh experience. Med J Malaysia. 2012; 67(3):265. PMID: 23082414

64. Horn AR, Joolay Y, Tooko L, Harrison MC. A servo-assisted gel-pack cooling method for newborn infants with hypoxic-ischemic encephalopathy. Journal of tropical pediatrics. 2012; 58(3):236–8. https://doi.org/10.1093/tropej/fmr069 PMID: 21921105