Supplemental Materials

3D-QSAR and Molecular recognition of Klebsiella pneumoniae NDM-1 inhibitors

Huaichuan Duan1,†, Xinyu Liu2,†, Wei Zhuo3, Jinke Gu3, Xin Sun1, Ke Zuo1, Qing Luo1, Yafei Luo4, Dianyong Tang4,*, Hubing Shi2*, Jianping Hu1,*

1 College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
2 Laboratory of tumor targeted and immune therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, Sichuan University and Collaborative Innovation Center for Biotherapy, Chendu 610041, China
3 Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
4 International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, China

* Correspondence: tangdy2008@163.com(D.T.); shihubing77@sina.com(H.S.); hjpcdu@163.com (J.H.)
† These authors contributed equally to this work.
Figure S1 The structure-activity relationship based on all available experimental data.
Figure S2 Key residues for molecular recognition NDM-1 by Cmpd #17 were obtained by energy decomposition method (A) and proximity principle within 0.4nm (B), as well as the structure of NDM-1-Cmpd #17 complex.
| Cmpd # | IC₅₀ a (nM) | pIC₅₀ | CoMFA | CoMSIA | | | | |
|---|---|---|---|---|---|---|---|---|
| | | | Pred. b | Res. c | Error Rate | Pred. | Res. | Error Rate |
| **Training Set** | | | | | | | | |
| 1 | 7.9 | 5.102 | 5.148 | 0.046 | 0.9% | 5.054 | -0.048 | -0.9% |
| 2 | 56 | 4.252 | 4.228 | -0.024 | -0.6% | 4.206 | -0.046 | -1.1% |
| 3 | 81 | 4.092 | 4.148 | 0.056 | 1.4% | 4.090 | -0.002 | 0.0% |
| 4 | 53 | 4.276 | 4.288 | 0.012 | 0.3% | 4.206 | -0.07 | -1.6% |
| 5 | 20 | 4.699 | 4.556 | -0.143 | -3.0% | 4.723 | 0.024 | 0.5% |
| 10 | 52 | 4.284 | 4.192 | -0.092 | -2.1% | 4.229 | -0.055 | -1.3% |
| 11 | 21 | 4.678 | 4.653 | -0.025 | -0.5% | 4.723 | 0.045 | 1.0% |
| 12 | 20 | 4.699 | 4.789 | 0.090 | 1.9% | 4.804 | 0.105 | 2.2% |
| 13 | 13 | 4.886 | 4.906 | 0.020 | 0.4% | 4.881 | -0.005 | -0.1% |
| 14 | 120 | 3.921 | 3.875 | -0.046 | -1.2% | 3.858 | -0.065 | -1.7% |
| 16 | 1.5 | 5.824 | 5.733 | -0.091 | -1.6% | 5.742 | -0.082 | -1.4% |
| 17 | 5.0 | 5.301 | 5.339 | 0.038 | 0.7% | 5.383 | 0.082 | 1.5% |
| 18 | 182 | 3.740 | 3.788 | 0.048 | 1.3% | 3.635 | -0.105 | -2.8% |
| 20 | 235 | 3.629 | 3.577 | -0.052 | -1.4% | 3.573 | -0.056 | -1.5% |
| 21 | 68 | 4.167 | 4.079 | -0.088 | -2.1% | 4.235 | 0.068 | 1.6% |
| 22 | 263 | 3.580 | 3.572 | -0.008 | -0.2% | 3.639 | 0.059 | 1.6% |
| 23 | 249 | 3.604 | 3.548 | -0.056 | -1.6% | 3.665 | 0.061 | 1.7% |
| **Test Set** | | | | | | | | |
| 6 | 48 | 4.319 | 4.281 | -0.038 | -0.9% | 4.282 | -0.037 | -0.9% |
| 7 | 55 | 4.260 | 4.130 | -0.130 | -3.1% | 4.130 | -0.13 | -3.1% |
| 8 | 92 | 4.036 | 4.251 | 0.215 | 5.3% | 4.251 | 0.215 | 5.3% |
| 9 | 135 | 3.87 | 4.100 | 0.230 | 5.9% | 4.100 | 0.23 | 5.9% |
| 15 | 5 | 5.301 | 5.226 | -0.075 | -1.4% | 5.226 | -0.075 | -1.4% |
| 19 | 113 | 3.947 | 3.950 | 0.003 | 0.1% | 3.950 | 0.003 | 0.1% |

a Experimental data obtained from references 28 and 29. b Pred. (Predicted values) stands for predicted pIC₅₀ values. c Res. (Residual values) stands for residual values between experimental and predicted pIC₅₀ values.
System	Donor	Acceptor	Distance (Å)	Angle (°)	Occupancy (%)
NDM-1	S145-OG-HG	D192-OD2	2.607±0.09	12.17±6.55	99.89
	S249-OG-HG	D90-OD2	2.647±0.10	12.85±6.92	99.54
	T190-OG1-HG1	D192-OD1	2.649±0.10	17.31±9.12	99.43
	S213-OG-HG	D254-OD2	2.654±0.10	14.68±7.98	91.01
	R85-NH2-HH21	D82-OD2	2.772±0.09	25.60±8.91	89.09
	R234-NH2-HH22	D267-OD2	2.794±0.09	18.25±9.65	67.65
	N146-ND2-HD21	S160-OG	2.875±0.08	18.60±9.93	66.77
	H228-ND1-HD1	D225-OD1	2.806±0.10	29.31±13.37	65.63
	H228-ND1-HD1	D225-OD2	2.806±0.10	30.73±13.93	63.90
	R234-NH1-HH11	D267-OD1	2.803±0.09	16.79±8.79	61.37
	S145-OG-HG	D192-OD2	2.631±0.10	12.25±6.53	99.76
	T190-OG1-HG1	D192-OD1	2.649±0.10	18.46±9.51	99.12
	R85-NH2-HH21	D82-OD2	2.773±0.09	26.31±8.66	95.83
	R234-NH2-HH22	D267-OD2	2.788±0.09	17.46±9.06	94.08
	T62-OG1-HG1	N76-OD1	2.746±0.11	17.36±9.84	91.90
	R234-NH1-HH11	D267-OD1	2.804±0.10	16.12±8.39	86.68
	T119-OG1-HG1	D90-OD1	2.801±0.11	19.89±10.37	78.87
	S213-OG-HG	D254-OD1	2.655±0.11	14.31±7.83	74.85
	Q37-NE2-HE21	N76-OD1	2.851±0.08	25.89±13.15	73.00
	H228-ND1-HD1	D225-OD2	2.803±0.10	26.17±12.75	65.46
	N146-ND2-HD21	S160-OG	2.876±0.08	20.89±10.58	64.98
	R85-NE-HE	D82-OD2	2.854±0.09	31.59±7.53	63.25
H228-ND1-HD1	D225-OD1	Distance	Angle		
--------------	----------	----------	-------		
2.80±0.10	30.52±14.74	60.88			

a Distance stands for the average distance between the H-bond donor atom and the acceptor atom.
b Angle stands for the average angle of the donor atom, hydrogen atom and acceptor atom.
c Occupancy is the ratio of the snapshots with H-bond to all MD conformations.