The role of noncoding RNAs in epithelial cancer

Massimiliano Agostini¹, Carlo Ganini¹, Eleonora Candi¹,² and Gerry Melino¹,³

Abstract
Regulatory noncoding RNAs (ncRNAs) are a class of RNAs transcribed by regions of the human genome that do not encode for proteins. The three main members of this class, named microRNA, long noncoding RNA, and circular RNA play a key role in the regulation of gene expression, eventually shaping critical cellular processes. Compelling experimental evidence shows that ncRNAs function either as tumor suppressors or oncogenes by participating in the regulation of one or several cancer hallmarks, including evading cell death, and their expression is frequently deregulated during cancer onset, progression, and dissemination. More recently, preclinical and clinical studies indicate that ncRNAs are potential biomarkers for monitoring cancer progression, relapse, and response to cancer therapy. Here, we will discuss the role of noncoding RNAs in regulating cancer cell death, focusing on those ncRNAs with a potential clinical relevance.

Facts
- Many of the genetic and epigenetics alterations in human cancers are found in noncoding regions of the DNA.
- miRNAs and IncRNAs have been largely described in their role in controlling epithelial tissues homeostasis, both in physiological and pathological conditions such as cancer.
- The clinical application of ncRNAs is already under evaluation in ongoing clinical trials exploring their role as biomarkers for patient survival, metastasis development prediction, or therapy response.

Open questions
- What is the role of regulatory ncRNA in pyroptosis, ferroptosis, and autophagy?
- What is the functional interplay between miRNA, IncRNA, and circRNA in cancer biology?

Introduction
Protein-coding genes undoubtfully play an established role in cancer transformation and progression, however, recent compelling evidence is highlighting a role for noncoding RNAs. There is no question that loss or mutation of crucial genes are frequent events in cancer biology: the mutation of the tumor suppressor gene p53 is observed in almost 50% of human cancers¹–⁷, and the amplification of the oncogene MYC⁸ or the translocation of BCL-2 gene⁹–¹² are crucial drivers in various cancer contexts¹³–¹⁶. However, many of the recurrent genetic and epigenetic alterations are found in genes that do not codify for proteins but that codify for an entire class of molecules called noncoding RNAs (ncRNAs), which play a key role in the regulation of many cellular activities. The non-protein-coding regions of the human genome are transcribed into molecules of RNA classified as regulatory noncoding RNAs⁷. ncRNAs are mainly transcribed by RNA polymerase II and share several characteristics with messenger RNAs (mRNAs). Indeed, they have a cap structure at the 5' end, a poly(A) tail at the 3' end and their expression is controlled by canonical promoter elements and transcription factors. Conventionally, regulatory ncRNAs are classified either as...
small ncRNAs, if they are shorter than 200 ribonucleo-
tides or as long noncoding RNAs (lncRNAs), longer than
200 ribonucleotides. Small ncRNAs include microRNAs
(miRNAs), which mediates post-transcriptional RNA
silencing, piwiRNAs, which regulate chromatin mod-
ifications and transposons repression, as well as the more
recent circular RNAs (circRNAs).\(^\text{18}\). In this review, we shall discuss the role of ncRNAs in
regulating cancer cell death (Table 1).\(^\text{19}\). In particular, we
will describe those regulatory ncRNAs that have been
largely investigated, on the basis of both in vitro and
in vivo evidence as clinical data.

### Epithelial ncRNAs

Recently, miRNAs and IncRNAs have gained significant
attention for their role in controlling epithelial tissue
homeostasis in normal and pathological conditions, being
key regulators of epithelial progenitor stem cells prolifera-
tion, somatic lineage specification, and differentiation\(^\text{20,21}\).

Distinct miRNAs control epidermal development, epi-
dermal differentiation, and adult stem cells maintenance
(for reviews see refs.\(^\text{22,23}\)). These include the miR-20
family, miR-24, the miR-200 family, miR-205, and miR-
203\(^\text{24–28}\). The latter has been described in his mechanistic
role in the control of epithelial progenitor cells prolifera-
tion and in the inhibition of cellular senescence, having as a
target one of the epithelial master genes, the transcription
factor TP63\(^\text{24,29}\). Interestingly, these
epithelial-specific miRNAs have also been implicated in
controlling key regulators genes of the pathogenesis of
many adenocarcinomas and squamous cell carcinomas
(SCC)\(^\text{30}\). As an example, the miR-200 family, controlling
the expression of ZEB1 and ZEB2, have been described in
the epithelial-to-mesenchymal transition (EMT) in ovar-
ian cancer and SCCs. Moreover, miR-203, targeting
ABL1, SOCS3, and ZEB3, controls EMT in ovar-
ian cancer and SCCs.\(^\text{30}\) More recently, miR-203
has been implicated in the control of epidermal homeostasis
pressing the expression of pro-differentiation genes through
a not-yet identified mechanism\(^\text{30}\). Moreover, the pro-differentiation
IncRNA, uc.291, has been shown acting as a pro-
differentiation transcript by facilitating the activation/
binding of the chromatin remodeling complex SWI/SNF
(BAF) in proximity to the epidermal differentiation
complex (EDC) genes to allow their expression\(^\text{40}\).

Only a few IncRNAs have been studied so far in the
regulation of epithelial development, such as ANCR, an
anti-differentiation IncRNA, and TINCR, a terminal
differentiation-induced IncRNA; however, the mechanism
through which they maintain the cell of the epidermis in
an undifferentiated state has not been identified yet\(^\text{37,38}\).\(^\text{39}\).

Similarly, LIN00941 has also been implicated in the
control of epidermal homeostasis repressing the expres-
sion of pro-differentiation genes through a not-yet identi-
fied mechanism\(^\text{39}\). Moreover, the pro-differentiation
IncRNA, uc.291, has been shown acting as a pro-
differentiation transcript by facilitating the activation/
binding of the chromatin remodeling complex SWI/SNF
(BAF) in proximity to the epidermal differentiation
complex (EDC) genes to allow their expression\(^\text{40}\).

While several studies investigated the specific con-
tributions of miRNAs in epithelial cancer development,
the role of lncRNAs in this context has not been investigated thoroughly yet.

microRNAs with pro-apoptotic functions

let-7

let-7 has been one of the first miRNAs isolated and characterized in the nematode C. elegans. The human genome contains 13 let-7 family member genes, which are distributed in different genomic loci and codify for 9 mature miRNAs. Let-7 expression is downregulated in many cancers, such as lung, breast, pancreatic cancer, and melanoma and in many cancer-associated clinical conditions like cholestasis. Moreover, downregulation of let-7 expression correlates with poor survival in lung cancer, ovarian cancer, and head and neck SCC patients. Functionally, let-7 acts as a tumor suppressor partially through the downregulation of several genes involved in cell death, as shown by the ectopic expression of let-7 resulting in the inhibition of BCL2L1 in colorectal cancer or by the induction of apoptosis via upregulation of BAK and BAX and downregulation of BCL-XL protein levels. Although in vivo delivery of let-7 in mouse models of lung cancer demonstrated its therapeutic potential, its tumor suppressor functions might be associated with repression of cell proliferation and elimination of cancer cells mainly through a non-apoptotic mechanism.

miR-15/16

miR-15 and miR-16 are localized on chromosome 13q14. This chromosomal region is frequently deleted in B-cell chronic lymphocytic leukemia (B-CLL). miR-15 and miR-16 are found in a 30-kb region, which is lost in CLL, and both genes are either deleted or downregulated in most of CLL cases (~68%). However, several studies suggested that miR-15/16 could be also downregulated by additional mechanisms, such as defective DROSHA processing or epigenetic alterations. The tumor suppressor action of miR-15/16 is the result of the induction of cell death through the repression of the anti-apoptotic proteins BCL-2 and BMM1 (Fig. 1a). More recently, the tumor suppressor function of miR-15/16 has also been observed in solid tumors such as mesothelioma, chondrosarcomas, where its expression is suppressed in order to promote tumor neo-angiogenesis. Moreover, the miR-15/16 knockout mouse model supports the in vivo tumor suppressor activity of miR-15/16. Indeed, deletion of miR-15/16 gene results in B cells proliferation and in the development of lymphoid malignancies.

miR-34

The miR-34 family consists of three different transcripts miR-34a, miR-34b, and miR-34c with high sequence homology. In humans, the miR-34a gene is located on the chromosomal region 1p36.22, which is frequently deleted in many human cancers, including neuroblastoma, glioma, breast cancer, lung cancer, colorectal cancer, and melanoma. The miR-34b and miR-34c genes are both encoded on chromosome 11q23.1, and rearrangements of this region have been observed in several solid tumors and in hematological malignancies. Both in vitro and in vivo studies have shown that the miR-34 family genes (in particular miR-34a) act as tumor suppressors: when overexpressed they repress several oncogenes, resulting in an increased cancer cell death and in an inhibition of metastasis development. miR-34a has also been shown to play a role in the regulation of NF-κB in CD8 + T cells, promoting their cytotoxic activity. In the context of cell death, miR-34 family acts on proteins such as BCL-2, BIRC5 (Survivin), CREB, and YY1, which are involved in apoptosis regulation (Fig. 1b).

Nevertheless, it should be noted that miR-34-deficient animals are not showing increased susceptibility to either spontaneous or to irradiation-induced nor MYC-initiated tumorigenesis. Strikingly in 2013, a miR-34 mimic (MRX34) became the first microRNA tested in a phase 1 clinical trial (NCT002862145). In particular, a liposomal miR-34 mimic was administered intravenously to patients with unresectable liver cancer or metastatic cancer refractory to standard treatment, with or without liver involvement. From these studies, MRX34 treatment was associated with antitumor activity and acceptable safety, but subsequent monitoring showed immune-related toxicities. To date, it is not clear whether further clinical trials will be started.

miR-29

The miR-29 family is composed of three isoforms, miR-29b-1 and miR-29a form one cluster on chromosome 7q32, while miR-29b-2 and miR-29c form a second cluster on chromosome 1q23. Of note that the first cluster region is frequently deleted in myelodysplastic syndromes and therapy-related acute myeloid leukemia (AML). In addition, several experimental observations showed that miR-29 family is downregulated in chronic lymphocytic leukemia, lung cancer, invasive breast cancer, and cholangiocarcinoma. miR-29 functions as a tumor suppressor gene in several cancer types. Indeed, ectopic expression of miR-29b induced apoptosis in cholangiocarcinoma cell lines and reduced tumorigenicity in a xenograft model of lung cancer, rhabdomyosarcoma, and AML. Mechanistically, miR-29 induces cell death by directly repressing the expression of the anti-apoptotic BCL-2 family member, MCL-1 (Fig. 1c). In addition, modulation of miR-29 expression results in the upregulation of some pro-apoptotic genes, such as BIM and the tumor suppressor programmed cell death-4 (PDCD4) in
AML, and also inhibits the expression of DNMT3B in hepatocarcinoma cell lines. Interestingly, MCL-1 mRNA inversely correlated with miR-29a or miR-29b expression in 45 primary AML samples.

### microRNAs with anti-apoptotic functions

**miR-21**

The human miR-21 gene is located in the fragile site FRA17B on chromosome 17q23.2. Expression profile studies on tumor samples, including lung, breast, stomach, prostate, colon, pancreatic tumors, and B-cell lymphomas showed that miR-21 is the most commonly upregulated miRNA in solid tumors and hematological malignancies, indicating miR-21 as an “oncomiR”. Indeed, functional studies in several cancer cell lines demonstrated that knockdown of miR-21 activates caspases leading to apoptotic cell death. Moreover, in vitro evidence also suggested a positive regulatory role in pyroptosis through the activation of the NLRP3 inflammasome. At a molecular level, miR-21 suppresses the expression of pro-apoptotic genes, such as APAF1, PDCD4, RHOB, and FASLG. The oncogenic role of miR-21 was also confirmed in vivo by generating conditionally expressing miR-21 mice. This mouse model demonstrated that miR-21 is capable of initiation, maintenance, and prolonged survival of tumors in vivo and demonstrated the importance of miR-21 in hematological malignancies.

**miR-155**

The human gene miR-155 is localized on chromosome 21 within an exon of a noncoding RNA, from the B-cell Integration Cluster (BIC). miR-155 is mainly expressed in lymphoid tissues, including thymus and spleen, where it regulates several physiological functions of these organs, such as antibodies and cytokines production. In addition, several observations have shown that miR-155 is accumulated in non-Hodgkin lymphomas, as in the

---

[Fig. 1 microRNAs with pro-apoptotic functions and relative inhibited molecular pathways.](#)
diffuse large B-cell lymphomas, and Burkitt lymphomas and in Hodgkin lymphomas. The oncogenic role of miR-155 was confirmed by the generation of genetically modified mice, developing B-cell lymphoma upon its overexpression. Among the molecular mechanisms underlying its oncogenic properties, the direct repression of SH2-containing inositol phosphatase (SHIP-1) (Fig. 2b), a positive regulator of apoptosis, seems to play a pivotal role. Apart from hematologic malignancies, miR-155 is also overexpressed in several solid tumors, such as breast, colon, pancreatic, and lung cancer, and has also been described in the regulation of autophagy in an experimental mouse model of pancreatitis. More recently, the therapeutic efficacy of an anti-miR-155 was tested in vivo by using a novel delivery system targeting the acidic tumor microenvironment: a nucleic acid anti-miR-155 linked to a peptide with a low pH-induced transmembrane structure (pHLIP) effectively inhibited miR-155 expression after intravenous administration, leading to cancer regression in a mouse model of lymphoma.

miR-221

miR-221/222 is a microRNA with oncogenic properties, highly conserved in vertebrates, located on the X chromosome in humans, mice, and rats. Overexpression of miR-221/222 has been observed in several human malignancies, including hepatocellular carcinoma, breast, prostate, pancreatic cancer, and glioblastoma. The oncogenic activities of miR-221 were also confirmed in vivo as the overexpression of miR-221 in p53−/−; Myc liver progenitors stimulates tumor onset and progression. The oncogenic activity of miR-221 might be partially explained by the repression of PUMA and BIM proteins (Fig. 2c). Interestingly, in vivo preclinical studies showed that a cholesterol-modified isofrom of anti-miR-221 significantly reduced miR-221 levels in livers after injection, reducing tumor cell proliferation, and increasing the expression of apoptosis and cell-cycle arrest markers, eventually prolonging mice survival. Although miR-221 is classified as an “oncomiR”, it should be noted that his role as tumor suppressor gene has also been observed.

Long noncoding RNAs

Long noncoding RNAs are classified as endogenous ncRNAs longer than 200 nucleotides. They are transcribed by RNA polymerase II from an independent promoter and processed as coding RNAs. Indeed, they are capped, spliced, and polyadenylated, however, IncRNAs lack a significant open-reading frame. Compared with protein-coding transcripts, IncRNAs are overall expressed at lower levels and they are not highly evolutionarily conserved, with only 5–6% of IncRNAs harboring conserved sequences.
Several studies have described a range of molecular mechanisms by which IncRNAs may exert their functions. In particular, IncRNAs have been described as molecular scaffolds or architectural RNAs in a variety of cellular processes, among which epigenetics modifications, alternative splicing, mRNA translation, and maintenance, and acting as decoys or "sponges" for miRNAs or transcription factors.

**IncRNAs with pro-apoptotic function**

**GAS5**

The growth arrest-specific transcript 5 (GAS5) is located at 1q25, and the gene transcribed contains 12 exons that do not encode for functional proteins. GAS5 is a tumor suppressor gene, and is one of the most expressed lncRNAs in all human tissues. The expression of GAS5 in cancers is significantly reduced. Reduced expression has been observed in breast, prostate, head and neck, gastric, colorectal, pancreatic, and cervical cancer, and more importantly, its expression is negatively correlated with clinical-pathological characteristics, such as tumor size, staging, or metastasis. Moreover, in vivo studies have shown inhibition of breast tumor growth by inducing cell-cycle arrest and apoptosis after the overexpression of GAS5 in breast cancer cell lines and their subsequent injection in nude mice. Several molecular mechanisms of action for GAS5 have been proposed, including inhibition of translation and decoy or miRNA sponge activity. The decoy function of GAS5 has been shown in HeLa and HepG2 cell lines, and its expression is negatively correlated with clinical-pathological characteristics, such as tumor size, staging, or metastasis. Moreover, in vivo studies have shown inhibition of breast tumor growth by inducing cell-cycle arrest and apoptosis after the overexpression of GAS5 in breast cancer cell lines and their subsequent injection in nude mice.

**MEG3**

Maternally expressed gene 3 (MEG3) located on the human chromosome region 14q32.3 is expressed in many normal tissues. However, MEG3 expression is lost in several human tumors including osteosarcoma, hepatocellular cancer, gastric cancer, and non-small cell lung cancer (NSCLC) by promoter or intergenic differentially methylated region hypermethylation, suggesting that loss of MEG3 expression contributes to tumor development in several tissues. Importantly, patients with lower levels of MEG3 expression had a relatively poor prognosis. MEG3 functions as a tumor suppressor gene, and its re-expression inhibits cell proliferation and promotes apoptosis in human glioma and NSCLC cell lines. At a molecular level, MEG3 function is mediated, at least partially, by the activation of the tumor suppressor gene p53 by the downregulation of MDM2 expression.

**NKILA**

The human gene that encodes NKILA, an NF-κB-interacting lncRNA, is located on chromosome 20. NKILA is downregulated in breast cancer, nasopharyngeal carcinoma, and melanoma. In addition, reduced NKILA expression is associated with breast cancer metastasis and poor patient prognosis. Mechanistically, the transcription factor NF-κB upregulates the expression of NKILA, which in turn binds to NF-κB/IkB, and directly masks the phosphorylation motifs of IkB, resulting in the inhibition of IKK-induced IkB phosphorylation, and NF-κB activation, forming a negative regulatory loop. This regulatory mechanism is promoting tumorigenesis by inhibiting apoptosis and increasing invasion. More recently, NKILA has also been shown to regulate T-cells activation by inhibiting NF-κB activity, and ectopic expression of NKILA in tumor-specific CTLs and TH1 cells correlated with apoptosis and shorter patient overall survival.

**NEAT1**

The Homo sapiens nuclear paraspeckle assembly transcript 1 (NEAT1) sequence is a product of the NEAT1 gene, which is located on chromosome 11. NEAT1 has been identified as a p53 target gene that plays an important role in the formation of paraspeckles, and is indispensable for cell-cycle arrest and apoptosis in response to genotoxic stress. Therefore, it has a key function in suppressing neoplastic transformation and cancer onset. Indeed, in a pancreatic cancer mouse model, NEAT1 deficiency increased transformation and contributed to the development of premalignant pancreatic intraepithelial neoplasia and cystic lesions through global changes in gene expression. Moreover, NEAT1 expression is downregulated in several cancers, while increased NEAT1 levels are correlated with better overall survival in colorectal cancer patients. In addition, elevated NEAT1 levels have been associated with enhanced apoptosis after DNA damage by irradiation of chronic lymphocytic leukemia cells. However, NEAT1 role is controversial since several studies also characterized its oncogenic activity. As matter of fact, during tumorigenesis NEAT1 levels are increased, and high levels of NEAT1 were associated with worse prognosis in gastric adenocarcinoma and laryngeal SCC. Accordingly, modulation of NEAT1 expression promotes cell survival and/or proliferation of human cancer cell lines, and NEAT1 acts as an oncogene in a mouse model of skin carcinogenesis. At a molecular level, one possible mechanism by which NEAT1 exerts its oncogenic role, at least in ovarian cancer, is the interaction with the tumor suppressor miRNA miR-34a-5p, acting as a sponge and negatively regulating miR-34a expression.
Overall, NEAT1 can elicit a context-specific function in either promoting or suppressing neoplastic transformation.

**IncRNAs with anti-apoptotic functions**

**CCAT**

Colon cancer-associated transcript (CCAT) is located within the 8q.24.21 genomic region that is frequently amplified in colorectal cancer (CRC)\(^{12,13}\). Expression profile studies highlight that CCAT1 and CCAT2 genes are frequently overexpressed in CRC, and their expression is associated with shorter progression-free and overall survival.

The oncogenic function of CCAT is the result of the activation of genes involved in cell proliferation and in the inhibition of apoptosis. Indeed, CCAT regulates the overexpression of MYC, possibly through its physical interaction with TCF7L2, leading to genomic instability and promoting cell growth (Fig. 4a). In addition, a second possible molecular regulatory mechanism has been observed in SCC; in this context, CCAT regulates transcription of genes involved in cell proliferation and survival by a physical interaction with both transcription factors p63 and SOX2\(^{123}\). (Fig. 4b). Finally, overexpression of CCAT has been observed in other types of cancer, including gastric, breast, and lung cancer\(^{124}\).

**FAL1**

The gene encodes for focally amplified LncRNA on chromosome 1 (FAL1), and is localized at the chromosomal region 1q21.2. FAL1 functions as an oncogene in several cancers, and is upregulated in ovarian, thyroid cancer and NSCLC\(^{12,13}\). In addition, FAL1 expression correlates with some clinical and pathological characteristics of NSCLC and ovarian cancer patients. Both in vitro and in vivo studies demonstrated that the biological function of FAL1 is to regulate cell cycle, cell death, migration, and invasion\(^{127}\). Mechanistically, FAL1 interacts with the epigenetic repressor BMI1 and modulates the transcription of a number of genes involved in cell-cycle arrest and apoptosis, such as CDKN1A, FAS, BTG2, TP53I3, FBXW7, and CYFIP2\(^{128}\) (Fig. 4c).
The human PVT1 gene is located in the human chromosome 8q24 region close to the well-established oncogene MYC. Interestingly, the amplification of 8q24 is a frequent event in a vast variety of cancers including CRC, where it is also associated with clinical findings of decreased overall survival. PVT1 functions as an oncogene by inhibiting the apoptosis of tumor cells, promoting cell proliferation, and affecting tumor invasion and metastasis generation. However, a detailed molecular mechanism underlying its anti-apoptotic activity is still missing. Recently, a possible mechanism by which PVT1 inhibits cell death has been described in nasopharyngeal carcinomas. In particular, PVT1 down regulates the expression of cleaved caspase-9, caspase-7, and PARP, inhibiting apoptosis and also promoting radiation resistance.

Circular RNAs

Circular RNAs (circRNAs) were identified more than 20 years ago, and for many years have just been considered as secondary products of aberrant splicing processes. Only recently, with the advent of next-generation sequencing, a large number of circRNAs has been identified, several of them showing high and stable expression. Nearly 10% of genes transcribed in cells can produce circRNAs.

CircRNAs are transcribed by RNA polymerase II (Pol II), and they are generated by alternative splicing of pre-mRNA, in which the 5’ and the 3’ ends are joined together by a covalent bond, forming a single-strand continuous loop structure in a process known as “backsplicing.” Moreover, several molecular mechanisms of action have been proposed to characterize their role in different biological and pathological processes. In particular, circRNAs are likely to function as miRNA sponges, to enhance the transcription of their parental genes or acting as decoys or scaffolds for proteins.

The research on circRNAs is still in its infancy and their specific functions in several physiological processes and in the pathogenesis of human diseases is still largely unknown. However, recently high-throughput sequencing

---

**Fig. 4** IncRNAs with an anti-apoptotic activity and relative molecular mechanisms. A CCAT is an oncogene that protects from cell death by up-regulating the expression of MYC. B p63, SOX2, and CCAT form a trimeric complex, which in turn binds the promoter region of EGFR and positively upregulates its expression. This results in sustaining cell survival. C FAL1 associates with the epigenetic repressor BMI1 and regulates its stability in order to modulate the transcription of a number of genes involved in cell death. CCAT colon cancer-associated transcript, MYC Myc proto-oncogene, SOX2 sex determining region box-2, EGFR epithelial growth factor receptor, FAL1 focally amplified lncRNA on chromosome 1, BMI1 polycomb complex protein BMI1.
studies on clinical tumor samples showed a deregulation of circRNAs expression in tumors\textsuperscript{138,139}. In particular, their downregulation has been described in proliferative cells across different tumor types, indicating that some circRNAs may have tumor suppressive roles. Global transcriptome analysis on 144 samples of localized prostate cancer, identifying 76,311 circRNAs, showed a correlation of circRNAs expression with tumor aggressivity, suggesting that 171 circRNAs are essential to prostate cancer cell proliferation\textsuperscript{140}.

Overall, studies on clinical samples together with in vitro experiments showed that circRNAs play a role in several hallmarks of cancer having either tumor suppressive or oncogenic functions\textsuperscript{141–143}. To our knowledge, no circRNAs from the literature have a clear and defined role in cancer biology proven by in vitro or in vivo experiments or by clinical data. However, we have decided to describe one of the more studied circRNAs that has a role in cell death regulation.

circFOXO3

circFOXO3 is a circular transcript of 1435 nucleotides derived from the tumor suppressor gene FOXO3\textsuperscript{144}. Several expression profile studies indicated that circFOXO3 is downregulated in several tumors such as breast and NSCLC, suggesting a possible role as a tumor suppressor gene\textsuperscript{145,146}. Both gain and loss of function experiments showed that circFOXO3 function is associated with the induction of apoptosis and with the inhibition of cell-cycle progression and angiogenesis. At a molecular level, ectopic expression of circFOXO3 decreases the interaction between FOXO3 and MDM2, releasing FOXO3 from MDM2-dependent degradation, therefore increasing FOXO3 activity, promoting PUMA expression, and enhancing cell death\textsuperscript{147}.

Perspectives and conclusions

During the last decades, we have witnessed considerable developments in understanding the role of the regulatory ncRNAs in the regulation of physiological processes as well as in the pathogenesis of several diseases. Deregulation of ncRNAs expression has been largely documented during the initiation, progression, and dissemination of cancer, and preclinical studies have shown that they can be used as diagnostic and prognostic biomarkers. More importantly, it has been documented that ncRNAs can be released into the extracellular space and detected in body fluids (blood or urine) as circulating ncRNAs, potentially showing their application in liquid biopsies\textsuperscript{148}. The clinical application of ncRNAs is already under evaluation in ongoing clinical trials trying to describe their role as biomarkers for patient survival, metastasis development prediction, or therapy response (Table 2).

| ncRNA | Study title | Condition or disease | Interventions | Primary purpose | Clinical trials identifier | Status |
|-------|-------------|----------------------|---------------|----------------|--------------------------|--------|
| miR-16 | MesomiR 1: A Phase I Study of TargomiRs as 2nd or 3rd Line Treatment for Mesothelioma | Non-small cell lung cancer | Drug: TargomiRs | Treatment | NCT02369198 | Completed |
| miR-34 | Critical Role of MicroRNA-34a and MicroRNA-194 in Acute Myeloid Leukemia | Leukemia | Genetic RNA analysis | Not Reported | NCT01057199 | Completed |
| miR-29-2 | Phase 1: safety, tolerability and pharmacokinetic study of MRG-201 in healthy volunteers | Healthy volunteers | Drug: MRG-201 | Treatment | NCT03591367 | Completed |
| miR-155 | The Potential Role Of microRNA-155 And Telomerase Reverse Transcriptase In Diagnosis Of Non-Muscle Invasive Bladder Cancer | Bladder cancer | Diagnostic test | Not Reported | NCT03518637 | Unknown |
| miR-221 | Clinical Significance of Hepatic and Circulating microRNAs miR-221 and miR-222 in Hepatocellular carcinoma | Liver cancer | Analysis of microRNA expression | Not Reported | NCT01912819 | Recruiting |
| miR-197 | Noncoding RNA in the exosome of the epithelial ovarian cancer | Ovarian cancer | Sequencing miRNA/lncRNA | Not reported | NCT03751800 | Recruiting |
| miR-222 | Circulating miRNA as biomarkers of hormone sensitivity in breast cancer | Breast cancer | Drug: tamoxifen, letrozole, anastrozole, exemestane | Treatment | NCT01612871 | Completed |
| miR-221 | Circulating microRNA as disease markers in pediatric cancer | Leukemia lymphoma | Not reported | Observational | NCT01541800 | Recruiting |

Source: ClinicalTrials.gov.
As from above, regulatory ncRNAs play a key role in driving or preventing the process of tumorigenesis and preclinical studies indicate that modulation of their expression by mimetic or inhibitory oligonucleotides might be a novel therapeutic approach for cancer therapy. Indeed, a limited number of clinical trials using drugs based on ncRNAs, especially on microRNAs, are evaluating clinical safety, tolerability, and efficacy of this approach (Table 2). Although therapeutic applications are still at an early phase, a new chapter in the pharmacological treatment of human diseases has started. The recent approval of the RNA-targeting oligonucleotides drug Spinraza for the treatment of spinal muscular atrophy by FDA[149] makes reasonable to believe that more ncRNAbased drugs will be soon available on the patient’s bedside.

Acknowledgements
We apologize for those whose contributions could not be cited due to space constraints. This work has been supported by the Medical Research Council (to G.M.), UK Associazione Italiana per la Ricerca contro il Cancro (AIRC) to G.M. IG Agostini et al. based on ncRNAs, especially on microRNAs, are evalu-
preclinical studies indicate that modulation of their function.

References
1. Katenhuber, E. R. & Lowe, S. W. Putting p53 in context. Cell 170, 1062–1078 (2017).
2. Aubrey, B. J., Kelly, G. L., Janic, A., Herold, M. J. & Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppress? Cell Death Differ. 25, 104–113 (2018).
3. Baugh, E. H., Ke, H., Levine, A. J., Bonneau, R. A. & Chan, C. S. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25, 154–160 (2018).
4. Kaiser, A. M. & Attardi, L. D. Deconstructing networks of p53-mediated tumor suppression in vivo. Cell Death Differ. 25, 93–103 (2018).
5. Kim, M. P. & Lozano, G. Mutant p53 partners in crime. Cell Death Differ. 25, 161–168 (2018).
6. Parrales, A., Thoenen, E. & Iwakuma, T. The interplay between mutant p53 and the mevalonate pathway. Cell Death Differ. 25, 460–470 (2018).
7. Nemenjorova, A. et al. Non-oncogenic roles of TAp73 from multiclassigenicity to metabolism. Cell Death Differ. 25, 144–153 (2018).
8. Gabay, M., Li, Y. & Fehlner, D. W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring. Harb. Perspect. Med. 4, https://doi.org/10.1101/cshperspect.a014241 (2014).
9. Tsujimoto, Y., Finger, L. R., Yunis, J., Nowell, P. C. & Croce, C. M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 225, 1097–1099 (1984).
10. Adams, J. M. & Cory, S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 25, 27–36 (2018).
11. Gross, A. & Katz, S. G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 24, 1348–1358 (2017).
12. Strasser, A. & Vaux, D. L. Viewbng BCL2 and cell death control from an evolutionary perspective. Cell Death Differ. 25, 13–20 (2018).
13. Chami, M., Aloni-Grinstein, R., Moliadsky, A. & Rotter, V. p53 on the crossroad between regeneration and cancer. Cell Death Differ. 24, 8–14 (2017).
14. Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53 I have a DREAM. Cell Death Differ. 25, 114–122 (2018).
15. Furth, N., Ayton, Y. & Oren, M. p53 shades of Hippo. Cell Death Differ. 25, 81–92 (2018).
16. Furth, N. & Ayton, Y. The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ. 24, 1488–1501 (2017).
17. Huttunenhofer, A., Schattner, P. & Polacek, N. Non-coding RNAs: hope or hype? Trends Genet. 21, 289–297 (2005).
18. Chen, L. L. The biology and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 17, 205–211 (2016).
19. Galluzzi, L. et al. Molecular mechanisms of cell death recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).
20. Flynn, R. A. & Chang, H. Y. Long non-coding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14, 752–761 (2014).
21. Moran, V. A., Perera, R. J. & Khalil, A. M. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40, 6391–6400 (2012).
22. Aberrant, D., Candi, E., Knight, R. A. & Melino, G. miRNAs, ‘stemness’ and skin. Trends Biochem. Sci. 33, 585–591 (2008).
23. Mancini, M. et al. MicroRNAs in human skin ageing. Ageing Res. Rev. 17, 9–15 (2014).
24. Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452, 225–229 (2008).
25. Amelio, I. et al. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. J. Cell Biol. 199, 367–363 (2012).
26. Viticchie, G. et al. MicroRNA-203 contributes to skin re-epithelialization. Cell Death Dis. 3, e435 (2012).
27. Tucci, P. et al. Loss of p53 and its microRNA-203 target results in enhanced cell migration and metastasis in prostate cancer. Proc. Natl Acad. Sci. USA 109, 15312–15317 (2012).
28. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–600 (2008).
29. Lena, A. M. et al. miR-303 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ. 15, 1187–1195 (2008).
30. Bommer, G. T. et al. p53-mediated activation of miRNA34a candidate tumor-suppressor genes. Clin. Biol. 17, 1298–1307 (2007).
31. Hurteau, G. J., Carlson, J. A., Spivack, S. D. & Brock, G. J. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res. 67, 7972–7976 (2007).
32. de Pedro, I., Alonso-Lecue, P., Sanz-Gomez, N., Freije, A. & Gandarillas, A. Sublethal UV irradiation induces squamous differentiation via a p53-independent, DNA damage-mitosis checkpoint. Cell Death Dis. 9, 1094 (2018).
33. Messenger, Z. J. et al. CEBPbeta deletion in oncogenic Ras skin tumors is a synthetic lethal event. Cell Death Dis. 9, 1054 (2018).
34. Singh, T. P., Veyra-Garcia, P. A., Wagner, K., Penninger, J. & Wolf, P. Cbl-b deficiency provides protection against UV-induced skin damage by modulating inflammatory gene signature. Cell Death Dis. 9, 835 (2018).
35. Bigas, J., Sevilla, L. M., Carceller, E., Boix, J. & Perez, P. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 9, 588 (2018).
36. Xue, Z. et al. lincRNA-Cox2 regulates NLRP3 inflammasome and autophagy mediated neuroinflammation. Cell Death Dis. 26, 130–145 (2019).
37. Kretz, M. et al. Suppression of progenitor differentiation requires the long non-coding RNA ANCR. Genes Dev. 26, 338–343 (2012).
38. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINC. Nature 493, 231–235 (2013).
41. Rouh, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).
42. Zhang, L., Yang, Z., Huang, W. & Wu, J. H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis. Cell Death Dis. 10, 168 (2019).
43. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3735–3736 (2004).
44. Shell, S. et al. Let-7 expression de...
121. Ozawa, T. et al. CCAT1 and CCAT2 long noncoding RNAs, located within the Ma, Y. et al. Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas. Cancer Res. 71, 7606–7616 (2011).

122. Alaiyan, B. et al. Differential expression of colon cancer associated transcript1 (CCAT1) along the colonic adenoma-carcinoma sequence. BMC Cancer 13, 196 (2013).

123. Jiang, Y. et al. Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat. Commun. 9, 3619 (2018).

124. McClelland, M. L. et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J. Clin. Invest. 126, 639–652 (2016).

125. Zhong, X., Hu, X. & Zhang, L. Oncogenic long noncoding RNA FAL1 in human cancer. Mol. Cell Oncol. 2, e977154 (2015).

126. Jeong, S. et al. Relationship of focally amplified long noncoding on chromosome 1 (FAL1) IncRNA with E2F transcription factors in thyroid cancer. Medicine 95, e2599 (2016).

127. Pan, C. et al. Long non-coding RNA FAL1 promotes cell proliferation, invasion and epithelial-mesenchymal transition through the PTEN/AKT signaling axis in non-small cell lung cancer. Cell Physiol. Biochem. 43, 339–352 (2017).

128. Hu, X. et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell 26, 344–357 (2014).

129. Tseng, Y. Y. et al. PTV1 dependence in cancer with MYC copy-number increase. Nature 512, 82–86 (2014).

130. Popescu, N. C. & Zimonjic, D. B. Chromosome-mediated alterations of the MYC gene in human cancer. J. Cell Mol. Med. 6, 151–159 (2002).

131. Guan, Y. et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin. Cancer Res. 13, 5745–5755 (2007).

132. He, Y. et al. Long non-coding RNA PVT1 predicts poor prognosis and induces radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 9, 235 (2018).

133. Mukherjee, A. & Williams, D. W. More alive than dead: non-apoptotic roles for caspases in neoplastic development, plasticity and disease. Cell Death Differ. 24, 1411–1421 (2017).

134. Coquiereille, C., Masorez, B., Hétuin, D. & Bailleul, B. Ms-processing yields circular RNA molecules. FEBS J. 7, 155–160 (1993).

135. Barrett, S. P., Wang, P. L. & Salzman, J. Circular RNA biogenesis can proceed through an exo-containing lariat precursor. eLife 4, e07540 (2015).

136. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

137. Menczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

138. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881 e813 (2019).

139. Xiong, D. D. et al. High throughput circRNA sequencing analysis reveals novel insights into the mechanism of nitride chloride against hepatocellular carcinoma. Cell Death Dis. 10, 658 (2019).

140. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

141. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

142. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

143. Gao, L. et al. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10, 745 (2019).

144. Yang, W., Wu, D. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by GCN5 coactivator enhances radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 10, 658 (2019).

145. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

146. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

147. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

148. Gao, L. et al. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10, 745 (2019).

149. Yang, W., Wu, D. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by GCN5 coactivator enhances radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 10, 658 (2019).

150. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

151. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

152. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

153. Gao, L. et al. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10, 745 (2019).

154. Yang, W., Wu, D. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by GCN5 coactivator enhances radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 10, 658 (2019).

155. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

156. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

157. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

158. Gao, L. et al. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10, 745 (2019).

159. Yang, W., Wu, D. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by GCN5 coactivator enhances radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 10, 658 (2019).

160. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

161. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).

162. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

163. Gao, L. et al. CircCDR1as upregulates autophagy under hypoxia to promote tumor cell survival via AKT/ERK1/2/mTOR signaling pathways in oral squamous cell carcinomas. Cell Death Dis. 10, 745 (2019).

164. Yang, W., Wu, D. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by GCN5 coactivator enhances radioresistance by regulating DNA repair and cell apoptosis in nasopharyngeal carcinoma. Cell Death Dis. 10, 658 (2019).

165. Chen, S. et al. Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843 e822 (2019).

166. Kristensen, L. S., Hansen, T. B., Veno, M. T. & Kjems, J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565 (2018).