Environment changes at the Ludlow and Pridoli boundary (Subpolar Urals)

Bronislav I. KANEV • Dept. Of Ceramics and Silicate Engineering at Institute of Ceramics and Polymer Engineering, University of Miskolc • slava.kanev.1995@mail.ru
Tatiana M. BEZNOZOVA • Institute of Geology Komi SC UB RAS • beznosova@geo.komisc.ru
Vladimir A. MATVEEEV • Institute of Geology Komi SC UB RAS, Syktyvkar • vamatveev@geo.komisc.ru
László A. GÖMZE • Dept. Of Ceramics and Silicate Engineering at Institute of Ceramics and Polymer Engineering, University of Miskolc • femgomze@uni-miskolc.hu

Abstract
The section of the Upper Silurian on the Western slope of the Subpolar Urals is located on the Kozhym River basin. This paper presents the results of studying of the geological structure of the Upper Ludlowian section and data on lithology, geochemistry, and environment reconstructions of carbonate-terrigenous deposits of the late Ludlow and at the boundary of the Ludlow and Pridoli.

Keywords: environment, isotopes of carbonate carbon and oxygen, Ludlow, Pridoli, Sr/Ba ratio, Upper Silurian, Urals

1. Introduction
In the regional stratigraphic scheme of the Urals adopted in 1991 the Upper Ludlow on the investigated territory corresponds to the Sizim Regional Stage (= Ludfordian). The Lower Pridoli corresponds to the Belush'ya Regional Stage. The boundary of the Ludlow and Pridoli is established in the roof of the terrigenous-carbonate sequence [1, 2]. At the same time, there is another approach to determining the boundary between Ludlow and Pridoli [3].

This work is aimed to characterizing of the environment reconstruction of the boundary beds of the Sizim Regional Stage of Ludlow and Belush'ya Regional Stage of Pridoli.

The section of the boundary deposits of the Ludlow and Pridoli (section 236) is located on the left bank of the Kozhym River, in 700 m below the mouth of the Syv'yu River (Fig. 1).

2. Materials and methods
More than 80 samples of carbonate rocks have been studied to reconstruct the sedimentation environment of the Ludlow and Pridoli boundary deposits. Stratified sampling was conducted from all types of deposits transversely to stretch of rocks, every 50 cm. The barium and strontium contents were determined by the emission spectral analysis. Measurements of the stable isotopes ratios of carbon and oxygen (δ13С и δ18О) are made with mass spectrometer «DELTA V Advantage». All analytical works were carried out at the N.P. Yushkin Institute of Geology of the Komi Scientific Centre of Ural Branch of Russian Academy of Sciences (in further: SC UB RAS).

3. Results and discussion
By the ratio Sr / Ba in sediments of the same age is possible to trace the transition from less saltwater sediments to normal marine, the Sr / Ba ratio of more than one indicates marine conditions, a ratio of less than one indicates a saltwater water environment. The increase in this ratio indicates an increase in salinity, and, conversely, it's lowering - the decrease in salinity [4, 5].

The distribution of the Sr / Ba ratio in the Upper Ludlow sediments is uneven with numerous deviations in the direction of increase and decrease, and varies from 0.57 to 30. The Sr / Ba ratio in the Lower Pridoli deposits varies from 1 to 7,9 (Fig.
2). Bearing in mind that most of the samples came from the boundary deposits of Ludlow and Pridoli showed a Sr / Ba ratio greater than one, it can be concluded that normal marine environment were in palaeobasin at the boundary of Ludlow and Pridoli.

The concentration of strontium in the samples of the Upper Ludlow varies from 46 to 450 ppm is shown in Fig. 3. We must underline that the fault of this method can be obtained up to 27.7 – 30%. The Clarke’ concentration of strontium in carbonate rocks by A.A. Beus is 610 ppm [6]. The study samples demonstrate lower Sr concentration. This is probably due to the fact that these carbonate deposits formed under conditions of hydrodynamic activity of water, at which strontium could be released [7, 8]. Such values indicate the penetration of freshwater in the basin [9].

The results of isotopic analysis of the boundary deposits of Ludlow and Pridoli are shown in graphs (Figs. 3 and 4). These results showed that none of the figurative points of distribution of δ13C and δ18O in the carbonate rocks of the Ludlow and Pridoli deposits did not fall within the range of the isotopic composition characteristic of the carbonate of normal sedimentary origin (Fig. 4). This probably indicates specific environment of sedimentation of these carbonate rocks.

The isotopic composition of carbon in the studied carbonate deposits of the upper Ludlow is characterized by a change in
the value of δ¹³C from -2.8‰ at the beginning, -7.8‰ closer to the middle part, then there is an increase in the values of δ¹³C to -3.2‰ in the upper part of the studied section. At the same time, the value of δ¹⁸O has a tendency to decrease from 27.1 to 20.4‰ in the lower part of the section, then there is a tendency to increase to 26.1‰ in the middle part. The upper part of the sequence demonstrates absence of significant changes in δ¹⁸O.

The isotopic composition of carbon and oxygen in the deposits of the Lower Pridoli are characterized by an increase in the values of δ¹³C (from -2.1 to -7.8‰) compared with conventional marine carbonates (from -2 to 2‰) (Fig. 3). This probably indicates a sufficiently high bioproductivity in the basin [10].

In general, the boundary deposits of the Ludlow and Pridoli are characterized by lower values of δ¹³C (from -2.1 to -7.8‰) compared with conventional marine carbonates (from -2 to 2‰) (Fig. 3). This probably indicates a sufficiently high bioproductivity in the basin [10].

The isotopic composition of oxygen in the carbonate deposits of the upper Ludlow also has lower values of δ¹⁸O (20.4 – 27.1‰) compared with conventional marine carbonates (28 – 30‰) (Figs. 3 and 4). This may be a consequence of the influence of two factors: insignificant desalination and higher temperatures of paleobasin water. The fluctuation of the temperature gradient can be associated with the water circulation, and the change in the salinity of the water with the influx of fresh meteoric waters [8]. At the turn of the Ludlow and Pridoli there is a cardinal change in the composition of biota [11, 12].

4. Conclusion

Sedimentation in Ludlow occurred in a fairly bioproductive basin with a relative low sea level, slightly desalinized and with relatively high water temperatures. Boundary deposits of the Ludlow and Pridoli were formed in environment of increased hydrodynamics with periodic influx of fresh water into the basin. Shallowing of the basin in the late Ludlow followed by transgression in the early Pridoli caused biotic turnover in the North Urals palaeobasin. The basin occupied the north-eastern margin of the Baltia palaeocontinent.

5. Acknowledgement

This work was supported by the Program of Fundamental Research of RAS “Biota in the geological history of the Timan-Severouralsk region: phylogenetics, evolution, paleocology and paleoclimate, biostratigraphy, stratigraphic geocorrelation” (project no. 115012130017).

References

[1] Matveev, V. A. – Kaney, B. I. (2016): Features of the upper Ludlow deposits in the silurian key section on the western slope of the Subpolar Urals. Vestnik of Institute of Geology Komi SC UB RAS. 2016. № 8 (260). pp. 3-8.
[2] Explanatory notes to the stratigraphical schemes of the Urals: Precambrian, Paleozoic. Antygin N. Ya., Ed., Yekaterinburg. 1994.
[3] Modzalevskaya, T. L. – Márás, T. (1991): On the age of the lower boundary of the Greben Regional Stage of the Urals. Proceedings of the Estonian Academy of Sciences. Geology. 1991. 40 (3), pp. 100–103.
[4] Katchenkov, S. M. (1959): Small chemical elements in sedimentary rocks and oills. – Leningrad: Gostoptekhizdat, 1959. – (Tr. VNIGRI, issue 143). - 271 p.
[5] Maslov, A. V. (2005): Sedimentary rocks: Methods of study and interpretation of obtained data: Textbook / Maslov A. V. Ekaterinburg: Publishing house of the USMU, 2005. - 289 p.
[6] Perelman A. I. (1989): Geochemistry. Moscow: Higher School, 1989. - 528 p.
[7] Letnikova, E. F. (2005): Geochemical specificity of carbonate deposits of various geodynamic settings of the northeastern segment of the Paleo-Asian Ocean. Litosfera = Lithosphere. 2005. - No. 1. pp. 70-81.
[8] Yudovich, Ya. E. (1981): Regional geochemistry of strata. Leningrad, Nauka, 1981, 276 p.
[9] Yudovich, Ya. E. – Ketris, M. P. (2011): Geochemical indicators of lithogenesis (lithological geochemistry). Syktyvkar: Geoprint. 2011. 742 p.
[10] Nurgaleeva, N. G. (2005): Relationship between carbon and oxygen isotopes in carbonate rocks in the eastern Russian Plate. Uchen. Zap. KGU: Estestven. Nauki, 2005, vol. 147, part 3. pp. 38–48.
[11] Beznosova, T. M. (2008): Brachiopod communities and biostratigraphy of Upper Ordovician, Silurian and Lower Devonian of the north-eastern margin of Baltya Palaeocontinent. Ekaterinburg. URO RAN, 2008. 218 p.
[12] Beznosova, T. M. – Matveev, V. A. – Sokolova, L. V. – Kaney B. I. (2017): Regional manifestation of the global Ludford event (Lau Event) in the section of the Western slope of the Subpolar Urals. Geodynamics, substance, ore genesis of the East European Platform and its folded framing: Extended abstract of scientific conference reports. Syktyvkar: IG Komi SC UB RAS, 2017. pp. 19-21.

Környezetváltozás a Ludlowi és Pridoli korok határán (sarkvidéki Ural)

A szerzők által vizsgált és jelen munkában bemutatott felső-silurian szakasz az Urál-hegység sarkköri (subpoláris) Paleozoikum hagyományos és megszakadás folyamán szárazföldi karbonát lelőhelyek litológiájára, geokémiajára és környezeti rekonstrukciójára vonatkozóan.