Effects of Defaunation on Fermentation Characteristics and Methane Production by Rumen Microbes \textit{In vitro} When Incubated with Starchy Feed Sources

W. Z. Qin1,2, C. Y. Li3, J. K. Kim1, J. G. Ju1 and M. K. Song$^{1,+}$

1 Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea

\textbf{ABSTRACT:} An \textit{in vitro} experiment was conducted to examine the effects of defaunation (removal of protozoa) on ruminal fermentation characteristics, CH$_4$, production and degradation by rumen microbes when incubated with cereal grains (corn, wheat and rye). Sodium lauryl sulfate as a defaunation reagent was added into the culture solution at a concentration of 0.000375 g/ml, and incubated anaerobically for up to 12 h at 39°C. Following defaunation, live protozoa in the culture solution were rarely observed by microscopic examination. A difference in pH was found among grains regardless of defaunation at all incubation times (p<0.01 to 0.001). Defaunation significantly decreased pH at 12 h (p<0.05) when rumen fluid was incubated with grains. Ammonia-N concentration was increased by defaunation for all grains at 6 h (p<0.05) and 12 h (p<0.05) incubation times. Total VFA concentration was increased by defaunation at 6 h (p<0.05) and 12 h (p<0.01) for all grains. Meanwhile, defaunation decreased acetate and butyrate proportions at 6 h (p<0.05, p<0.01) and 12 h (p<0.01, p<0.001), but increased the propionate proportion at 3 h, 6 h and 12 h incubation (p<0.01 to 0.001) for all grains. Defaunation increased \textit{in vitro} effective degradability of DM (p<0.05). Production of total gas and CO$_2$ was decreased by defaunation for all grains at 1 h (p<0.05, p<0.05) and then increased at 6 h (p<0.05, p<0.05) and 12 h (p<0.05, p<0.05). CH$_4$ production was higher from faunation than from defaunation at all incubation times (p<0.05). (\textbf{Key Words:} Defaunation, Grains, Fermentation, Degradation, Total Gas, CH$_4$)

\textbf{INTRODUCTION}

Cereal grains as the principal source of energy in the diets are widely used for intensive production of ruminant livestock all over the world. The primary component in grain is starch, which constitutes approximately 60 to 80\% of the total ingredients of cereal grains (Huntington, 1997). Numerous studies (Ørskov, 1986; Huntington et al., 2006) have reported that the rumen is the main site of starch digestion, where the ruminal microorganisms contribute to 60 to 90\% of the starch digestion. The rate and extent of starch digestion is also determined by processing approaches and the properties of starch granule (McAllister and Cheng, 1996). Thus, the potential cereal grain digestion is closely associated with the complex resident microflora involved in the digestion process. Additionally, due to their numerical predominance and metabolic diversity, the ruminal bacteria have a key role in starch digestion in the rumen (Cheng et al., 1991). Ruminal protozoa are also believed to participate in the process by ingesting and digesting starch particles (Huntington, 1997). Some researchers (Coleman, 1992; Nagaraja et al., 1992) suggested that the presence of protozoa in the rumen can help ruminants fed high grain diets stabilize rumen fermentation through slowing starch digestion, thus reducing the risk of acidosis.

However, the fermentation of cereal grains in the rumen is generally accompanied by inevitable losses in heat and methane (Huntgate, 1966). It has been proven that protozoa are indirectly involved in methane production due to their close symbiotic relationship with methanogens, which allowed interspecies hydrogen transfer between them (Finlay et al., 1994). Based on this viewpoint, there is wide interest in investigating the effect of the elimination of protozoa (defaunation) on methane production. Some \textit{in vitro} (Newbold et al., 1995) and \textit{in vivo} (Morgavi et al., 2008) studies have also indicated that methanogens

* Corresponding Author: Man K. Song. Tel: +82-43-261-2545, Fax: +82-43-273-2240, E-mail: mksong@cbnu.ac.kr
2 Institute of Animal Science, Yanbian academy of agricultural sciences, Longjing, Jilin, China.
3 Department of Animal Science, Yanbian University, Yanji, Jilin, China.
Submitted Apr. 30, 2012; Accepted Jun. 16, 2012; Revised Jul. 1, 2012
associated with protozoa contributed to 9 to 25% of methane production in the rumen. Meanwhile, Johnson and Johnson (1995) indicated that the energy loss through methane emission to the atmosphere represents 2 to 12% of the gross energy ingested by ruminants. Therefore, inhibition of methane production in the rumen can benefit not only ruminant production but also the environment (Becker and Wikselaar, 2011). Consequently, research has been focused on manipulating the number of protozoa to inhibit methane production (Schönhusen et al., 2003; Mohammed et al., 2004).

Many studies (Ørskov, 1986; Offner et al., 2003) are available describing the characteristics of starch degradation of cereal grains in the rumen. But little information is available on the relationship between cereal grain degradation and methane production as influenced by protozoa. A more efficient use of energy in ruminant diets could result from information regarding cereal grain metabolism and methane production in the rumen. The aim of this in vitro study, therefore, was to investigate the effects of defaunation of rumen fluid on fermentation, degradation and methane production when incubated with starch-rich grain feeds.

MATERIALS AND METHODS

Preparation of culture solution and its incubation

Rumen contents were obtained 2 h after the morning feeding (09:00) from three ruminally-cannulated Holstein cows fed 9 kg/d total diet daily (7 kg concentrate and 2 kg ryegrass, as fed basis), feeding was done twice (09:00 and 18:00 h) daily, in an equal quantity. The rumen fluid was strained through 12 layers of cheesecloth to remove the feed particles. Carbon dioxide (CO₂) was flushed into the strained rumen fluid for 30 s. Culture solution was prepared by mixing 40 ml strained rumen fluid with 40 ml McDougall’s artificial saliva. The preparation of the defaunation of rumen culture solution was done according to the report of Abel et al. (2006). Sodium lauryl sulfate (Sigma, L5750) was added at a concentration of 0.000375 g/ml as a defaunation reagent into the mixed culture solution to remove ruminal protozoa. The experiment was conducted essentially in a 2 (faunation and defaunation)×3 (three kinds of cereal grains) factorial design. Based on an air dried basis the nitrogen free extract (NFE) contents, as determined by proximal analyses using the AOAC (1995) method, were similar for 0.9 g corn, 1 g wheat and 1.1 g rye. These grains were ground through a 1 mm screen (Wiley mill) and were added to the culture solution with all microbes (faunation) or without protozoa (defaunation) in order to supply a similar amount of NFE contents. Degradability of the ground cereal grains was examined by preparing them in a small nylon bags (5×5 cm, with pore size of 50 μm) and placing them in 160 ml bottles containing the mixed culture solution. The bottles were then sealed with rubber stoppers and were incubated anaerobically in a shaking incubator (VS-8480SR, VISON Science, Bucheon, Korea) at a speed of 135 rpm/min up to 12 h at 39°C. The in vitro incubation was done 3 times in duplicate each time under similar conditions. The chemical composition of cereal grains added to the culture solution is shown in Table 1.

Measurement and analysis

Incubation was stopped by removing the bottles from the shaking incubator at 1, 3, 6 and 12 h, and pH of the culture solution was immediately measured. At the same time an aliquot of culture solution (0.8 ml) was collected from each bottle for ammonia and volatile fatty acid (VFA) analysis. Ammonia-N concentration was determined by the method of Fawcett and Scott (1960) using a spectrophotometer. The 0.8 ml of culture solution was mixed with 0.2 ml 25% phosphoric acid and 0.2 ml pivalic acid solution as the internal standard for the VFA analysis as described by Li et al. (2010). Total gas production was also measured at 1, 3, 6 and 12 h from the culture bottles through the 3-way stopcock connected to bottle using a 50 ml glass syringe. A gas sample was transferred to a 5 ml vacuum tube and analyzed for methane (CH₄) and carbon dioxide (CO₂) by gas chromatograph (YL 6100GC, Young Lin Instrument Co., Korea) equipped with flame ionization detector (FID) and thermal conductivity detector (TCD). A 30 m silica capillary column (Agilent HP-PLQT Q, 19095F-Q04, 0.54 mm i.d., USA) was used to identify CH₄ and CO₂ peak analysis. The oven and injector temperatures for gas analysis were 100°C and 150°C, and temperatures for FID and TCD detector were respectively kept at 230°C and 150°C. The Nitrogen (N₂) gas was used as the carrier gas at a flow rate of 30 ml/min. Nylon bags containing feed prior to and post incubation were washed with tap water and dried at 60°C for 48 h in a drying oven to measure dry matter (DM) degradation. Crude protein (CP), ether extract (EE), and organic acid (OM) were analyzed according to AOAC (1995). The neutral detergent fiber (NDF) was analyzed by the methods of Van Soest et al. (1991).

Estimation of effective degradability in vitro

Percent disappearance of DM at each incubation time

Cereal grains	Chemical composition (% DM basis)			
	CP	EE	NDF	Ash
Rye	11.73	5.16	21.41	2.23
Wheat	9.57	4.89	18.85	1.48
Corn	7.08	3.04	16.05	1.20

Table 1. Chemical composition of cereal grains added to the culture solutions (% DM basis).
was calculated from the portion remaining in the nylon bags after incubation. Disappearance rate was fitted to the equation of Ørskov and McDonald (1979):

\[Y(t) = a + b(1 - e^{-ct}) \]

Where \(Y(t) \) is the proportion of the incubated material degraded at time \(t \), ‘\(a \)’ is the water soluble and instantly degradable fraction; ‘\(b \)’ is the potentially degradable fraction; ‘\(c \)’ is the fractional rate of degradation of fraction \(b \) (h-1). Non linear parameters \(a \), \(b \) and \(c \) were estimated by an iterative least square procedure to calculate effective degradability of DM (EDDM) according to the following equation (Ørskov and McDonald, 1979):

Effective degradability = \(a + b(\times c)/(c + r) \)

Where ‘\(r \)’ is the fractional outflow rate and a hypothetical fractional outflow rate (\(kp \)) of 0.05 h was used for estimation of effective degradability.

Statistical analyses

Data were analyzed using the general linear models (GLM) procedure of SAS (V 9.1, 2002). Six treatments were replicated twice per time and repeated 3 times. For each variable measured at each time, replicates were averaged, and the total number of observations was 6 (treatments)x3 (times) = 18 observations. The 18 observations obtained were subjected to least squares analysis of variance according to the following models:

\[Y_{ijk} = \mu + \tau_i + S_j + O_{ij} + e_{ijk} \]

Where \(Y_{ijk} \) is dependent variable, \(\mu \) is the overall mean, \(\tau_i \) is the fixed effect of treatment \(i = 6 \), \(S_j \) is the random effect of repeated time \(j = 3 \), \(O_{ij} \) is the \(i \)th incubation time and \(e_{ijk} \) is the error term.

Differences among treatments was considered, and the differences between faunation and defaunation was evaluated by pairwise t-test.

RESULTS

At each incubation time, microscopic examination was carried out to observe live protozoa through a 160/0.35 objective, and protozoa were rarely observed after 1 h incubation, indicating that live protozoa in the culture solution were almost eliminated by adding sodium lauryl sulfate. The pH of the culture solution decreased in all treatments regardless of defaunation as the incubation time advanced (Table 2). Defaunation significantly decreased \((p<0.01 \text{ to } 0.001)\) pH of the culture solution for all of the grains except 1 h incubation compared with faunation. Differences in pH of the culture solution was found between the grains regardless of defaunation \((p<0.01 \text{ to } 0.001)\). pH of culture solution from wheat and rye was relatively lower \((p<0.001)\) than that from corn in both faunation and defaunation at 6 h and 12 h incubations. While pH from corn by faunation was the highest \((p<0.001)\), pH from rye by defaunation was the lowest \((p<0.001)\) after 12 h incubation.

Ammonia-N concentration of the culture solution increased for all the grains in both faunation and defaunation with advancing incubation times (Table 2). Defaunation increased ammonia-N concentration at 6 h \((p<0.05)\) and 12 h \((p<0.05)\) incubation times compared with faunation. Ammonia-N concentration in the rye culture was the highest \((p<0.001)\) among the grains and then followed by wheat and corn.

Defaunation increased total VFA concentration at 6 h \((p<0.05)\) and 12 h \((p<0.01)\) incubation time (Table 2) compared with faunation. The total VFA concentration from both faunation and defaunation also increased when incubated with wheat and rye at 6 h \((p<0.001)\) and 12 h \((p<0.001)\) incubation compared with corresponding values from corn. Furthermore, rye produced more total VFA \((p<0.001)\) than wheat and corn at 6 h and 12 h incubation. Defaunation decreased proportions of acetate \((C_2)\) at 6 h \((p<0.05)\) and 12 h \((p<0.01)\) but butyrate \((C_4)\) at 3 h \((p<0.05)\), 6 h \((p<0.01)\) and 12 h \((p<0.01)\). Meanwhile, \(C_2\) proportion of corn from faunation and defaunation was higher than wheat and rye at 12 h \((p<0.001)\) incubation. Defaunation, however, increased \(C_3\) proportion for all cereal grains in comparison with faunation from 3 h incubation \((p<0.01 \text{ to } 0.001)\). Thus, defaunation decreased \(C_2 \text{ to } C_3\) ratio for all the grains from 3 h incubation \((p<0.05 \text{ to } 0.001)\).

The effect of defaunation for grains on gas production is shown in Table 4. Defaunation firstly decreased total gas production at 1 h \((p<0.05)\) and 3 h \((p<0.05)\) and \(CO_2\) production at 1 h \((p<0.05)\) incubation, but then increased \((p<0.001)\) total gas and \(CO_2\) production at 6 h \((p<0.05,\ p<0.05)\ and 12 h \((p<0.05,\ p<0.05)\) incubation for all grains. Rye in both faunation and defaunation cultures produced the highest amounts of total gas and \(CO_2\) through all incubation times \((p<0.001)\) among grains in the present study. Defaunation clearly decreased \((p<0.05)\) \(CH_4\) production at all the incubation times compared with faunation. However, corn resulted in a relatively lower \((p<0.001)\) \(CH_4\) generation from both faunation or defaunation than wheat and rye during 12 h incubations. In addition, defaunation was associated with a higher percent of \(CO_2\) \((p<0.05 \text{ to } 0.001)\) and a lower percent of \(CH_4\) \((p<0.01 \text{ to } 0.001)\) in total gas than faunation through all the incubation times. Similarly, defaunation resulted in lower ratio of \(CH_4\) to \(CO_2\) plus \(CH_4\) \((p<0.01 \text{ to } 0.001)\) and \(CH_4\) to \(CO_2\) \((p<0.01 \text{ to } 0.001)\) than faunation.
Table 2. pH, ammonia-N concentration and concentration and proportions of major VFAs in the culture solution as influenced by faunation or defaunation when incubated with different cereal grains

Items	Treatment	SEM¹	Pr>F²	Pr>	³			
	Faunation	Defaunation	F vs D					
pH	Corn	Wheat	Rye	Corn	Wheat	Rye	1 h	
	7.47ᵃ	7.35ᵇ	7.26ᵇ	7.47ᵃ	7.45ᵇ	7.39ᵇ	0.022 ***	NS
Ammonia (mg/100 ml)	12.41ᵃ	12.76ᵇ	14.28ᵇ	13.46ᵇ	14.72ᵇ	14.82ᵇ	0.576 *	NS
Total VFAs (mmoles/100 ml)	55.04ᵃ	62.15ᵇ	64.16ᵇ	56.28ᵇ	56.78ᵇ	61.41ᵇ	1.450 **	NS
Molar proportion (mmoles/100 mmoles)								
Acetate (C₂)	67.59	68.17	66.75	67.18	67.60	67.90	0.457 NS	NS
Propionate (C₃)	17.81	17.90	18.61	18.55	18.29	18.58	0.476 NS	NS
Butyrate (C₄)	11.17	10.78	11.09	10.60	10.82	10.36	0.347 NS	NS
C₂/C₃	3.80	3.81	3.59	3.63	3.70	3.66	0.111 NS	NS
pH	7.09ᵃ	6.93ᵇ	6.84ᵇ	7.00ᵃ	6.96ᵇ	6.84ᵇ	0.039 NS	NS
Ammonia (mg/100 ml)	11.85ᵇ	14.73ᵃ	15.39ᵇ	16.16ᵇ	16.92ᵃ	17.52ᵃ	0.874 NS	NS
Total VFAs (mmoles/100 ml)	67.84	69.86	71.66	64.29	68.48	70.75	3.027 NS	NS
Molar proportion (mmoles/100 mmoles)								
Acetate (C₂)	68.46	67.38	66.70	66.8	66.80	67.13	0.593 NS	NS
Propionate (C₃)	17.08ᵇ	17.74ᵈ	18.16ᵇ	19.91ᵇ	20.38ᵇ	20.80ᵇ	0.617 ** ***	***
Butyrate (C₄)	11.33ᵃ	11.29ᵃ	11.68ᵃ	9.35ᵇ	9.18ᵇ	8.37ᵇ	0.394 ***	*
C₂/C₃	4.01ᵃ	3.80ᵇ	3.67ᵇ	3.37ᵇ	3.29ᵇ	3.24ᵇ	0.130 NS	**
pH	6.83ᵃ	6.70ᵇ	6.49ᵇ	6.62ᵇ	6.19ᵇ	6.09ᵇ	0.029 NS	NS
Ammonia (mg/100 ml)	12.11ᵇ	14.79ᵇ	15.89ᵇ	18.26ᵇ	18.88ᵇ	19.55ᵇ	0.879 NS	*
Total VFAs (mmoles/100 ml)	81.07ᵃ	85.24ᵈ	96.18ᵇ	90.59ᵇ	99.98ᵇ	103.21ᵇ	2.287 ***	*
Molar proportion (mmoles/100 mmoles)								
Acetate (C₂)	67.54ᵃ	66.73ᵇ	66.02ᵇ	61.76ᵈ	62.52ᵈ	63.54ᶜ	0.365 ***	*
Propionate (C₃)	17.35ᵇ	18.07ᵇ	18.58ᵇ	27.29ᵃ	26.75ᵃ	26.95ᵃ	0.652 *** **	***
Butyrate (C₄)	12.34ᵃ	12.44ᵃ	12.20ᵇ	7.52ᵇ	7.32ᵇ	6.67ᵇ	0.480 *** **	***
C₂/C₃	3.90ᵃ	3.71ᵇ	3.56ᵇ	2.26ᵇ	2.34ᵇ	2.36ᵇ	0.116 *** **	***
pH	6.48ᵃ	6.33ᵇ	6.38ᵇ	5.96ᵇ	5.68ᵈ	5.63ᵈ	0.034 ***	*
Ammonia (mg/100 ml)	14.11ᵇ	17.47ᵃ	19.43ᵃ	17.63ᵇ	20.22ᵇ	21.35ᵇ	0.759 ***	*
Total VFAs (mmoles/100 ml)	104.84ᵃ	115.81ᵈ	114.14ᵈ	140.40ᵈ	147.53ᵇ	157.06ᵈ	2.084 *** **	***
Molar proportion (mmoles/100 mmoles)								
Acetate (C₂)	64.79ᵃ	63.45ᵇ	62.87ᵇ	59.07ᵇ	56.42ᵈ	56.69ᵈ	0.352 *** **	***
Propionate (C₃)	18.37ᵇ	18.86ᵃ	19.14ᶜ	33.09ᵇ	34.92ᵃ	35.51ᵃ	0.408 *** **	***
Butyrate (C₄)	14.11ᵇ	14.62ᵃ	14.79ᵇ	5.38ᵇ	6.04ᵇ	5.27ᵇ	0.441 *** **	***
C₂/C₃	3.54ᵃ	3.36ᵇ	3.29ᵇ	1.79ᵇ	1.62ᶜ	1.60ᶜ	0.059 *** ***	***

¹ SEM = Standard error of means. ² Pr>F = Probability level. ³ Pr>| = Probability level; Comparison between faunation and defaunation treatment (F = Faunation; D = Defaunation). * p<0.05; ** p<0.01; *** p<0.001; NS = Non significant.

Defaunation significantly increased EDDM of grains (p<0.05) despite no differences in degradation parameters of a, b and c. Within grains, regardless of defaunation, wheat and rye showed a higher EDDM and parameters c (p<0.001) than corn as shown in Table 3.

DISCUSSION

The rate and extent of starch fermentation are influenced by the grain type, the method of cereal grain processing and rumen microbe species (Hale, 1973; Ørskov, 1986). Some studies have shown that removal of protozoa generally resulted in a higher cereal grain degradation (Mackie et al., 1978; Mendoza et al., 1993). In the present experiment, our results on degradability were similar to those of previous reports. An explanation for this is that protozoa can manipulate the ruminal cereal grain hydrolysis process by engulfing numbers of bacteria to slow ruminal fermentation rates (Kurihara et al., 1978) or by ingesting starch granules and decreasing the accessibility of these
Table 3. Degradation parameters (a, b, and c) and effective degradability (ED) DM of the experimental diets in the culture solution as influenced by faunation or defaunation when incubated with different cereal grains

Parameters and EDDM	Faunation	Defaunation	SEM²	Pr>F¹	Pr>	t	²		
	Corn	Wheat	Rye	Corn	Wheat	Rye	F vs D		
a	3.05	2.288	1.636	1.756	3.51	2.83	0.450	NS	NS
b	60.28	64.99	66.66	79.09	74.68	71.84	5.018	NS	NS
c	0.096c	0.596b	0.862a	0.084c	0.365b	0.596b	0.070	***	NS
EDDM	40.52d	62.14b	64.37b	49.76c	66.86c	69.11a	1.321	***	*

¹ a = Intercept representing rapidly soluble fraction in the rumen; b = Fraction of degradable at time infinity; c = Rate constant of disappearance of fraction “b”.

² SEM = Standard error of means. ¹ Pr>F = Probability level. ² Pr>|t| = Probability level; Comparison between faunation and defaunation treatment (F = Faunation; D = Defaunation).

Table 4. Gas production in the culture solution as influenced by faunation or defaunation when incubated with different cereal grains

Items	Faunation	Defaunation	SEM¹	Pr>F²	Pr>	t	²		
	Corn	Wheat	Rye	Corn	Wheat	Rye	F vs D		
Total gas (ml)	14.83c	17.33b	21.50a	9.92d	10.75d	11.67d	0.563	***	*
CO₂ (ml)	10.78c	12.45b	15.65a	7.96d	8.75b	9.73d	0.460	***	*
CH₄ (ml)	3.47c	4.24b	5.19a	1.43d	1.57d	1.69d	0.106	***	*
CO₂ % in total gas	72.65b	71.83b	72.79b	80.45c	81.52a	83.54a	1.601	**	**
CH₄ % in total gas	23.40a	24.50a	24.14a	14.45b	15.79b	13.39b	0.644	***	*
CH₄/(CH₄+CO₂)	0.244a	0.254a	0.249a	0.152b	0.162b	0.138b	0.010	**	**
CH₄/CO₂	0.323a	0.341a	0.332a	0.180b	0.194b	0.161b	0.006	***	*
Total gas (ml)	35.17c	44.63b	53.83a	31.47d	42.37b	49.67c	1.365	***	*
CO₂ (ml)	24.25d	30.03c	36.52b	25.83d	34.29b	40.16b	0.990	***	NS
CH₄ (ml)	8.81c	11.10b	13.54a	4.91d	6.66d	7.00c	0.635	***	*
CO₂ % in total gas	69.00b	67.87b	67.79b	82.08c	81.00a	80.93c	1.838	***	*
CH₄ % in total gas	24.97a	25.04a	25.11a	15.60b	15.68b	14.08b	1.298	***	*
CH₄/(CH₄+CO₂)	0.265c	0.270c	0.270c	0.160b	0.162b	0.149b	0.022	**	**
CH₄/CO₂	0.365b	0.370b	0.371b	0.190b	0.194b	0.174b	0.012	***	*
Total gas (ml)	62.50f	80.03d	90.50c	72.14c	101.64b	112.00c	1.324	***	*
CO₂ (ml)	41.42c	53.13c	64.33c	58.24d	78.59c	92.86c	1.603	***	*
CH₄ (ml)	17.10c	21.22b	25.10a	11.39d	15.85c	17.03c	0.638	***	*
CO₂ % in total gas	66.22c	66.40c	70.88c	80.80c	77.29c	82.90c	1.440	***	**
CH₄ % in total gas	27.39a	26.49a	27.74a	15.77b	15.59b	15.21b	0.585	***	*
CH₄/(CH₄+CO₂)	0.293c	0.285a	0.281a	0.163b	0.168b	0.155b	0.011	**	**
CH₄/CO₂	0.414c	0.399a	0.391a	0.195b	0.202b	0.183b	0.006	***	*
Total gas (ml)	109.50d	128.36c	147.17b	125.81c	151.69b	163.33a	1.959	***	*
CO₂ (ml)	77.75c	87.93d	100.03c	101.95c	123.69b	134.45c	2.344	***	*
CH₄ (ml)	29.53c	34.82b	38.68a	19.88c	23.15d	23.72d	0.922	***	*
CO₂ % in total gas	71.01b	68.47b	67.96b	81.01c	81.54a	82.32a	0.953	***	*
CH₄ % in total gas	26.97a	27.14a	26.29a	15.79b	15.26b	14.52b	0.649	***	*
CH₄/(CH₄+CO₂)	0.275a	0.284a	0.279a	0.163b	0.158b	0.149b	0.005	**	**
CH₄/CO₂	0.380d	0.397c	0.387c	0.195b	0.187b	0.175b	0.10	***	*

¹ SEM = Standard error of means. ² Pr>F = Probability level.

a,b,c = Means in the same row with different superscripts differ regardless of defaunation.

* p<0.05; ** p<0.01; *** p<0.001; NS = Non significant.
substrates to prevent its immediate and rapid fermentation by bacteria (Coleman, 1986; Coleman, 1992). Thus both of these factors can decrease degradation of cereal grains and our results indicate that the defaunation agent used in the present study showed strong toxicity to rumen protozoa but without effect on bacteria. This selective toxicity can be explained in that the defaunation agent reacts with cholesterol in eukaryotic membranes but not in prokaryotic cells (Wina et al., 2005), causing protozoal cells to rupture and lyse (Kilta et al., 1996). In addition, the three cereal grains used in the present experiment also differed significantly in EDDM regardless of the presence of protozoa. As expected, wheat and rye had relatively higher EDDM than corn, suggesting that wheat and rye starch was more rapidly fermented by ruminal microbes than corn. Similar results were also observed by others (Orskov, 1986; McAllister et al., 1990; Lanzas et al., 2007). Decreased EDDM in corn might be simply due to thickness of the protein matrix which coats starch granules (McAllister and Cheng, 1996), and this matrix is relatively difficult to be hydrolyzed by water and enzymes (McAllister et al., 1990). On the other hand, the distribution of starch granules within the kernel varies with cereal grain type (Swan et al., 2006). The starch granules in rye and wheat endosperms seem to be floury and have a relatively small particle size. Consequently, the smaller starch granules have a larger surface area available for microbial and enzymatic starch hydrolysis which results in rapid degradation.

In the present study, defaunation resulted in lower pH compared with faunation, which is in agreement with other research (Nagaraja et al., 1992; Mendoza et al., 1993). The difference in ruminal pH between the faunated and defaunated cultures was related to total VFA concentration. Thus, the increase in total VFA concentration that was observed from defaunation could be responsible for the lower pH.

Some studies (Abel et al., 2006; Kiran and Mutsvangwa, 2010) reported that defaunation generally led to a decrease in NH\textsubscript{3}-H concentration. However, our results in the current study are in contrast to the previous reports. One of the possible reasons for this is that the eliminated protozoa in the culture solution were a source of microbial protein and contributed to the additional NH\textsubscript{3}-H production.

The rate and extent of DM digestion may influence the proportion of VFA produced in culture solution. In the present in vitro study, defaunation firstly tended to slightly decrease the total VFA concentration at 1 h and 3 h incubations, and this may be related to the defaunating process. But after complete elimination of live protozoa from the culture solution, defaunation led to a significant increase in total VFA concentration up to 12 h incubation. Results of the present experiment are in line with some other reports (Nagaraja et al., 1992; Abel et al., 2006). The higher total VFA concentration might be closely related to the increased EDDM by defaunation. Increased total VFA concentration by defaunation might be due to increased bacterial numbers (Nagaraja et al., 1992). It generally has been observed that bacterial populations are larger after defaunation (Hristov et al., 2001), possibly reflecting both decreased engulfing of bacteria by protozoa and the killed protozoa supplying additional substrate for bacterial reproduction, thus resulting in a higher level of total VFA production (Williams and Withers, 1991; Williams and Coleman, 1992). Additionally, defaunation increased the molar proportion of C3 but decreased the molar proportions of C2 and C4. Numerous studies (Williams and Withers, 1991; Nagaraja et al., 1992; Eugene et al., 2004) have also reported that increased C3 was often accompanied by decreases in C2 and C4 proportions. The shift in proportions of VFA may be associated with the selective engulfment of starch-hydrolyzing bacteria by protozoa (Kurihara et al., 1968). It has been indicated that the high C3 proportion may result from increased bacterial numbers and a shift in the predominant bacterial species by defaunation. Thus, defaunation resulted in a lower C2 to C3 ratio compared with faunation. The individual cereal grains appeared with almost the same trend in VFA characteristics between faunation and defaunation. Meanwhile, rye showed similar results to wheat from the defaunation treatment in comparison with corn, which corresponded with its result of EDDM. That would indicate that NFE content in rye may be more rapidly available for rumen microbes, thus stimulating microbial growth and VFA production.

Our results showed a positive correlation for cereal grains between total gas production and EDDM. Chai et al. (2004) suggested that gas measurement can be considered as a method to estimate potential starch degradation. Thus, the increased total gas production which occurred from these cereal grains from both faunation and defaunation can be attributed to the higher EDDM in the culture solution. Furthermore, our results in the present study also showed a higher percent of CO\textsubscript{2} and a lower percent of CH\textsubscript{4} in the total gas from defaunated cultures. This indicated that the increase in total gas production might be accompanied by increased CO\textsubscript{2} production rather than CH\textsubscript{4}. Metabolic H\textsubscript{2} consumed by methanogens is the principal pathway for CH\textsubscript{4} generation in the rumen and the quantity of methane generated is closely related to the end products of carbohydrate fermentation (Yane-Ruiz et al., 2010). Castillo et al. (2004) and Li et al. (2009 a, b) reported that increased C3 production resulted in suppressed methane production due to competition with methanogens for the available H\textsubscript{2}. These findings are in line with our results that lower methane production from defaunated cultures was accompanied by increased C3 production (Table 2). Additionally, protozoa also play an important role on
methanogenesis, which could be related to their participation in \(\text{H}_2 \) metabolism or their influences on methanogen populations and the species of the microbiota. Based on the results of \textit{in vivo} and \textit{in vitro} trials Hegarty (1999) and Morgavi et al. (2010) summarized that the complete elimination of protozoa from the rumen would result in a 13% decrease in methane production. Defaunation significantly reduced \(\text{CH}_4 \) production for all the grain feeds in the current study compared with faunation (Table 4). Finlay et al. (1994) described a symbiotic relationship between ciliate protozoa and methanogens that are found inside or in close association with protozoal cells, which has been established to allow an interspecies \(\text{H}_2 \) transfer between ciliate protozoa and methanogens. This indicates that protozoa indirectly contributed to methane production. In the present study, defaunation decreased \(\text{CH}_4 \) production by 11% compared with faunation (Table 4). Therefore, the number and activity of methanogens are believed to be indirectly restricted by defaunation, and the disturbance of the synergy between protozoa and methanogens could be partly responsible for the reduction of \(\text{CH}_4 \) production. Meanwhile, other similar defaunation experiments have proved that methanogens were not directly affected by adding a defaunation reagent (Dohme et al., 1999), thus indicating that the present defaunation agent could be applied to eliminate protozoa to study its effects on methanogenesis by methanogens. On the other hand, the difference in gas proportions was not found between cereal grains from both faunation and defaunation cultures. One of the possible reasons for these results might be due to the fact that we used the same amount of NFE content for all the cereal grains, thus resulting in a similar establishment of microbial groups.

Based on the results obtained from the present experiment, it is concluded that defaunation can widely modify the \textit{in vitro} fermentation pattern resulting in a higher EDDM, shifts in molar proportion of VFA production and a reduction of methane emission. Modification of the fermentation pattern can be attributed to the change of rumen micro-flora caused by the elimination of protozoa. Besides, according to the metabolic characteristics of cereal grains in the present study, wheat and rye seem to be more sensitive to this modification when compared with corn. However, more detailed studies are needed to conduct to verify these findings.

REFERENCES

Abel, H., B. Schröder, P. Lebzien and G. Flachowsky. 2006. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal. Br. J. Nutr. 95:99-104.

AOAC. 1995. Official methods of analysis, 13th edn. Association of official analytical chemists, Washington, DC, USA.

Becker, P. M. and P. G. Wikselaar. 2011. Effects of plant antioxidants and natural vicinal diketones on methane production, studied \textit{in vitro} with rumen fluid and a poly lactate as maintenance substrate. Anim. Feed Sci. Technol. 170:201-208.

Castillo, C., J. Benedito, J. Mendez, V. Pereira, M. Lopez-Alonso, M. Miranda and J. Hernandez. 2004. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed Sci. Technol. 115:101-116.

Chai, W. Z., A. H. Van Gelder and J. W. Cone. 2004. Relationship between gas production and starch degradation in feed samples. Anim. Feed Sci. Technol. 114:195-204.

Cheng, K. J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. R. Kawashima). Academic Press, Toronto, Ont., pp. 595-624.

Coleman, G. S. 1986. The amylase activity of 14 species of entodiniomorphid protozoa and the distribution of amylase in rumen digesta fractions of sheep containing no protozoa or one of seven different protozoal populations. J. Agric. Sci. (Camb.) 107:709-721.

Coleman, G. S. 1992. The rate of uptake and metabolism of starch grains and cellulose particles by \textit{Entodinium species}, \textit{Eudiplodinium maggi}, some other entodiniomorphid protozoa and natural protozoal populations taken from the ovine rumen. J. Appl. Microbiol. 73:507-513.

Dohme, F., A. Machmüller, B. L. Estermann, P. Pfister, A. Wasserfallen and M. Kreuzer. 1999. The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett. Appl. Microbiol. 29:187-192.

Eugene, M., H. Archimede and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Sci. 85:81-97.

Fawcett, J. K. and J. E. Scott. 1960. A rapid and precise method for the determination of urea. J. Clin. Pathol. 13:156-163.

Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley and R. R. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS. Microbiol. Lett. 117:157-162.

Hale, W. H. 1973. Influence of processing on the utilization of grains (starch) by ruminant. J. Anim. Sci. 37:1075-1080.

Hegarty, R. S. 1999. Reducing rumen methane emissions through elimination of rumen protozoa. Aust. J. Agric. Res. 50:1321-1327.

Hristov, A. N., M. Ivan, L. M. Rode and T. A. McAllister. 2001. Fermentation characteristics and ruminal ciliate protozoal populations in cattle fed medium- or high-concentrate barley-based diets. J. Anim. Sci. 79:515-524.

Hungate, R. E. 1966. The Rumen and its Microbes. Academic press, New York.

Huntington, G. B. 1997. Starch utilization by ruminants: From basics to the bunk. J. Anim. Sci. 75:852-867.

Huntington, G. B., D. L. Harmon and C. J. Richards. 2006. Site, rates, and limits of starch digestion and glucose metabolism in growing cattle. J. Anim. Sci. 84:14-24.

Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from...
cattle. J. Anim. Sci. 73:2483-2492.
Kilta, P. T., G. W. Mathison and T. W. Fenton. 1996. Effect of alfalfa root saponins on digestive function in sheep. J. Anim. Sci. 74:1144-1156.
Kirwan, D. and T. Mutsangwa. 2010. Effects of partial ruminal defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J. Anim. Sci. 88:1034-1047.
Kurihara, Y., J. M. Eadie, P. N. Hobson and S. O. Mann. 1968. Relationship between bacteria and ciliate protozoa in the sheep rumen. J. Gen. Microbiol. 51:267-288.
Kurihara, Y., T. Takechi and F. Shibata. 1978. Relationship between bacteria and ciliate protozoa in the rumen of a sheep fed a purified diet. J. Agric. Sci. (Camb.) 90:373-382.
Lanzas, C., D. G. Fox and A. N. Pell. 2007. Digestion kinetics of dried cereal grains. Anim. Feed Sci. Technol. 136:265-280.
Li, X. Z., C. G. Yan, S. H. Choi, R. J. Long, G. L. Jin and M. K. Song. 2009a. Effects of addition level and chemical type of propionate precursors in dicarboxylic acid pathway on fermentation characteristics and methane production by rumen microbes in vitro. Asian-Aust. J. Anim. Sci. 22:82-89.
Li, X. Z., R. J. Long, C. G. Yan, S. H. Choi, G. L. Jin and M. K. Song. 2010. Rumen microbial responses in fermentation characteristics and production of CLA and methane to linoleic acid in associated with malate or fumarate. Anim. Feed Sci. Technol. 155:132-139.
Li, X. Z., S. H. Choi, G. L. Jin, C. G. Yan, R. J. Long, C. Y. Liang and M. K. Song. 2009b. Linolenic acid in association with malate or fumarate increased CLA production and reduced methane generation by rumen microbes. Asian-Aust. J. Anim. Sci. 22:819-826.
Mackie, R. I., F. M. C. Gilchrist, A. M. Roberts, P. E. Hannah and H. M. Schwartz. 1978. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets. J. Agric. Sci. (Camb.) 90:241-254.
McAllister, T. A. and K. J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29-36.
McAllister, T. A., L. M. Rode, D. J. Major, K. J. Cheng and J. G. Buchanan-Smith. 1990c. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci. 70:571-579.
Mendoza, G. D., R. A. Britton and R. A. Stock. 1993. Influence of ruminal protozoa on site and extent of starch digestion and ruminal fermentation. J. Anim. Sci. 71:1572-1578.
Mohammed, N., N. Ajisaka, Z. A. Lila, K. Hara, K. Mikuni, K. Hara, S. Kanda and H. Itabashi. 2004. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J. Anim. Sci. 82:1839-1846.
Morgavi, D. P., E. Forano, C. Martin and C. J. Newbold. 2010. Microbial ecosystem and methanogenesis in ruminants. Animal 4:1024-1036.
Morgavi, D. P., J. P. Jouany and C. Martin. 2008. Changes in methane emission and rumen fermentation parameters induced by defaunation in sheep. Aust. J. Exp. Agric. 48:69-72.
Nagaraja, T. G., G. Towne and A. A. Beharka. 1992. Moderation of ruminal fermentation by ciliated protozoa in cattle fed a highgrain diet. Appl. Environ. Microbiol. 58:2410-2414.
Newbold, C. J., B. Lassalas and J. P. Jouany. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett. Appl. Microbiol. 27:230-234.
Offner, A., A. Bach and D. Sauvant. 2003. Quantitative review of in situ starch degradation in the rumen. Anim. Feed Sci. Technol. 106:81-93.
Ørskov, E. R. 1986. Starch digestion and utilization in ruminants. J. Anim. Sci. 63:1624-1633.
Ørskov, E. R. and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92:499-506.
SAS Inc. 2002. SAS User’s guide: Statistical analysis system institute, SAS Inc., Cary, NC, USA.
Schönhusen, U., R. Zitman, S. Kuhla, W. Jentsch, M. Derno and J. Voigt. 2003. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Anim. Nutr. 57:279-295.
Steel, R. G. D. and J. H. Torrie. 1980. Principles and procedures of statistics. Mcgraw Hill Book Co., NY, USA.
Swan, C. G., G. P. Bowman, J. M. Martin and M. J. Giroux. 2006. Increased puroindoline levels slow ruminal digestion of wheat (Triticum aestivum L.) starch by cattle. J. Anim. Sci. 84:641-650.
Van Soest, P. J., B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
Williams, A. G. and G. S. Coleman. 1992. The Rumen Protozoa. Springer-Verlag, New York, USA.
Williams, A. G. and S. E. Withers. 1991. Effect of ciliate protozoa on the activity of polysaccharide-degrading enzymes and fibre breakdown in the rumen ecosystem. J. Appl. Microbiol.70: 144-155.
Wina, E., S. Muetzel and K. Becker. 2005. The impact of saponins or saponin containing plant materials on ruminant production-A Review. J. Agric. Food. Chem. 53:8093-8105.
Yanez-Ruiz, D. R., B. B. Macias, E. Pinloche and C. Newbold. 2010. The persistence of bacterial and methanogenic archaeal communities residing in the rumen of yong lambs. FEMS. Microbiol. Ecol. 72:272-278.