Highly sensitive liquid chromatography mass spectrometry method on triple quadrupole (QQQ) mass spectrometer was successfully applied for pharmacokinetic study of stepharine in rabbit plasma. Specific ion transitions of stepharine protonated precursor ion were selected and recorded in the certain retention time employing dynamic selected reaction monitoring mode. The developed method facilitated quantitative measurements of stepharine in plasma samples in linear range of five orders of magnitude with high accuracy and low standard deviation coefficient and pharmacokinetics parameters were calculated. The apparent volume of stepharine distribution (estimated as ratio of clearance to elimination rate constant, data not shown) allows us to assume that stepharine was extensively distributed throughout the body.

1. Introduction

Stephaglabrine sulfate is a sulfate of isoquinoline proaporphinealkaloid extracted from tuber roots of *Stephania glabra* (Roxb.) of the family Menispermaceae. Stephaglabrinesulfate has the chemical formula \(\text{(C}_{18}\text{H}_{19}\text{NO}_{3})_{2}\cdot\text{1/2H}_{2}\text{SO}_{4}\) (Figure 1) and is a white crystal powder with the melting point in the range of 243-244°C, with the subsequent decomposition, soluble in water and aqueous alcohol [1, 2]. Since stephaglabrine sulfate is the dimeric salt, it dissociates to stepharine base with molecular weight 297.1359, which is possible to detect as protonated ion [3].

It has been shown that intramuscular injection of stephaglabrine sulfate in dose of 0.1 mg/kg to rabbits significantly decreases intensity of trophic disturbances of denervated extremities at traumatic injuries of sciatic nerve. Stephaglabrine assists histological neogenesis and regeneration, electrophysiological and functional recovery of nerves after injury [4, 5]. However pharmacokinetic study of the stephaglabrine sulfate still remains poorly investigated.

The main aim of this study is to establish a valid method for detection of stepharine in rabbit plasma after intramuscular administration of the drug. For this purpose, quantitative assay of stepharine has been developed using selected reaction monitoring (SRM). The procedure consists of extraction of stepharine from rabbit plasma, detection by liquid chromatography/tandem mass spectrometry (LC-MS/MS), and measurements of the concentration of stepharine in plasma samples eliciting on the detection of characteristic fragment ions at certain retention time.

Based on the obtained data pharmacokinetic parameters of stepharine were calculated.

2. Material and Methods

2.1. Materials. Acetonitrile HPLC grade was purchased from Acros (USA), glacial acetic acid was purchased from Merck (Germany), ammonium formate chromatography grade was purchased from Fluka (Germany), ammonia hydroxide was
The selected rabbits were administrated intramuscular with stephaglabrine sulfate at doses 0.1 mg/kg as it was established before [4]. Each animal received a single dose.

2.4. Analytical Instruments and Conditions. Stephaglabrine is the dimeric salt; therefore detection of stepharine compound only (dissociated salt) with m/z = 298.4 is available LS-MS approach [3]. LC-MS and liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis were performed on Agilent 6520 Q-TOF mass spectrometer (Agilent, USA) equipped with 1200 HPLC system (Agilent Technologies) nanoflow liquid chromatography system and 6490 Triple Quad mass spectrometer interfaced with 1200 HPLC system microflow liquid chromatography. Evaluation of the compound purity, identity, and full fragment ions spectra was performed on Q-TOF mass spectrometry coupled with chromatographic separation on Zorbax C-18 SB 80 column (75 μm × 43 mm, 5 μm particle size, 80 Å pore size). One μL of stepharine sulfate solution (0.1 μg/mL) loaded at flow rate of 2 μL/min in the mobile phase A (12 mM ammonia formate with pH adjusted to 4.55 with glacial acetic acid) for 3.5 minutes. The elution of stepharine was carried out at flow rate of 0.3 μL/min with the gradient of solvents A and B (acetonitrile) starting and maintained at 5% of mobile phase B for 2 minutes and increasing to 95% of solvent B at 20 minutes. Analytical column was washed with 100% of mobile phase B for 7 minutes followed by column equilibration at starting gradient conditions of solvent A-solvent B system (20:1, v/v) for 10 minutes. The 6520 Q-TOF mass spectrometer was operated in electrospray ionization at positive mode equipped with HPLC-Chip ion source interface at temperature 340°C. The drying gas (nitrogen) flow rate was 4 L/min, capillary voltage −1952 V, scan rate 3.225 scan/sec at 4 GHz mode, and scan range 100–700 m/z.

Quantitative analysis was acquired in SRM (selected reactions monitoring) mode on Agilent 6490 triple quadrupole mass spectrometer (Agilent, USA) operated in the positive mode and equipped with Jet Stream ESI ion source. Stepharine was detected in the scheduled selected reaction monitoring (SRM) with unit resolution at both first (Q1) and third (Q3) quadrupoles. The retention time point of stepharine was determined as 9.8 with isolation width of 1 minute for the scheduled SRM method application. The optimal conditions of the analysis were achieved as follows: capillary voltage was −4500 V, nozzle voltage was set at −1200 V, flow rate of drying gas (N₂) was 16 L/min, flow rate of sheath gas (N₂) was 8 L/min, temperature of drying gas was set at 340°C, temperature of sheath gas was set at 290°C, and nebulizer gas was operated at 20 psi. The transitions for protonated stepharine [M+H]+ 298.4 → 161.2, 192.1, 238.2 were selected for SRM analysis. The isolation window for the fragment ions was set at 0.27 amu, the optimum fragmentor voltage was adjusted to 310 V and collision energy −19 eV. All the samples including calibration points were analyzed in three replications. 30 μL of the samples was injected and loaded on chromatographic column. Calibration was performed on standard samples solution prepared in 20% acetonitrile with concentration of stepharine from 10⁻⁴ μg/mL to 100 μg/mL. Chromatographic separation was performed on Thermo Hypersil-Keystone ODS column (Thermo Scientific, USA) 100 × 2.1 mm, 5 μm particle size, at flow rate of 200 μL/min and with the following elution conditions: loading onto the column at maintained 20% of mobile phase B for 3 minutes, increasing the gradient to 50% of B at 5 minutes following increasing the gradient to 100% of mobile phase B at 15 minutes. The column was washed and maintained at 100% mobile phase B from 15 to 22 minutes and the composition was decreased to 20% of solvent B at 23 minute. The column was reequilibrated at starting conditions of solvent A-solvent B system (5:1, v/v) for 10 minutes at flow 200 μL/min.

2.5. Preparation of the Standard Samples of the Stepharine and Determination of LOD and LOQ. The stock solution of
staphaglabrine sulfate (1 mg/mL) was prepared by dissolving
weighted reference compound in appropriate volume of
water-acetonitrile 20% solution. Calibration standards in
range of 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001 μg/mL were
prepared by dilution of the working solution (100 μg/mL) in
of 20% acetonitrile to determine limit of detection (LOD), lin-
earity, and limit of quantitation (LOQ). Each standard sample
was analyzed in 10 replicates using developed scheduled SRM
method. The fragment ion of stepharine with m/z = 161.2
was considered as ion quantifier, while fragment ions with
m/z = 192.1 and m/z = 238.2 were considered as ion
qualifiers. Calibration curve was plotted in linear regression
fashion. Peaks with signal-to-noise ratio (SNR) more than 7.0
(calculated according to root-mean-square algorithm) and
relative standard deviation (RSD) less than 15% were allowed
to fit the calibration curve.

2.6. Extraction of Stepharine from Rabbit Plasma Samples.
0.5 mL of blood samples from each animal was collected from
ear vein in the tubes with EDTA before administration
and at 15, 30, 60, 90, 120, 180, 480, 720, and 1440 minutes after
drug ingestion. Blood samples were immediately put on ice
and centrifuged at 5000 g for 10 minutes at 4°C within one
hour after blood collection. The obtained plasma was placed
in sterile tube and kept at −20°C until analysis.

Plasma proteins were precipitated with acetonitrile. For
this purpose, two volumes of acetonitrile were added to
100 μL of rabbit plasma into 1.5 mL plastic tube and 30%
ammonia hydroxide was added to adjust the pH to 10. After
vortex-mixing for 15 minutes at ambient temperature one
volume of chloroform was added three times consequently
for 2 hours and incubated at 30°C under regular stirring at
900 rpm at each occasion. The first fraction of upper organic
layer was collected after 2 hours of incubation, the second and
the third fractions of chloroform extract were collected after
additional 30 and 60 minutes of incubation, respectively.
The collected fractions were combined and transferred to a new
tube and dried under vacuum at 30°C. The resulting pellet was
resuspended in 100 μL of 20% water-acetonitrile solution and
centrifuged at 14000 rpm for 15 minutes immediately before
use. The obtained solution was used for LC-MS analysis.

2.7. Selectivity. Selectivity was investigated on serum obta-
ned from 5 different rabbits, which were not administrated
with staphaglabrine sulfate (5 blank samples). Rabbit serum
samples were treated as described for staphaglabrine sulfate
extraction and analyzed in scheduled SRM mode in 10
replicates for possible interfering compounds. Selectivity was
evaluated as confident if response level was less than 20% of
summarized response of limit of detection and limit of
quantitation.

2.8. Assessment of Matrix Effect and Extraction Efficiency.
Matrix effect was evaluated as ion suppression or ion enha-
cegment. Matrix effect was investigated in plasma by mea-
suring the peak intensities of stepharine in 5 different
samples (100 μL) enriched with 0.03 μg/mL of stepharine by
postextraction addition in five technical replicates. Samples
of rabbit plasma were treated as described for extraction
procedure. The obtained organic solvent fractions were dried
and resuspended in 100 μL of 20% acetonitrile-water solution.
Stephaglabrine was spiked in matrix extracts to give final
concentrations of 30 ng/mL and analyzed using scheduled
SRM method. Matrix effect of 15% was accepted. Peak areas
of the compound of interest in matrixes with spiked stapha-
glabrine were compared with peak areas of stepharine of the
same concentrations prepared in 20% acetonitrile. Matrix-
fluence factor f has been calculated as

\[f = \frac{A_{\text{add}} - A_{\text{end}}}{A_{\text{aq}}} \times 100, \]

(1)

where \(A_{\text{add}} \) is the peak area of the compound added in
plasma, \(A_{\text{end}} \) the peak area of the endogenous compound,
and \(A_{\text{aq}} \) the peak area of the standard compound in water-
acetonitrile solution.

The recovery efficiency was evaluated in five different
surrogate rabbit plasma samples. Each rabbit plasma was divi-
ded in three equal volumes of 100 μL. To one hundred μL of
portion of rabbit plasma were added 3, 50, and
100 ng/mL of stepharine to final concentration. Plasma samples
were treated with acetonitrile/chloroform solvent system
for deproteinization. The resulting extract was dried and
resuspended in 100 μL of 20% acetonitrile solution. The recov-
ered amount of stepharine extracted from plasma was mea-
sured in 5 replicates. Recovery was estimated by comparison
of peak areas of extracted stepharine and peak areas of
stepharine measured in standard solutions with the same
concentrations. The recovery was calculated according to the
formula:

\[R(\%) = \frac{C_m}{C_a} \times 100, \]

(2)

where \(C_m \) is the measured concentration of stepharine after
extraction; \(C_a \) is the known initial concentration of stapha-
glabrine added in rabbit plasma.

2.9. Sample Stability. Freeze-thaw stability of stephaglabrine
sulfate solution was evaluated because samples were stored at
−20°C. The stability of stephaglabrine pool solutions
(in water-acetonitrile 20%) at concentrations of 10 μg/mL,
50 μg/mL, and 100 μg/mL was evaluated after three cycles
of overnight freezing following 3 hours of bench thaw at
ambient temperature. The loss of stepharine was evaluated by
comparison with freshly prepared standard solutions of the
same concentrations. Loss of 10% and less was accepted.

2.10. Pharmacokinetics Model Design. Calibration curve and
pharmacokinetics parameters such as area under the plasma
concentration-time curve (AUC) were estimated using
trapezoidal method for the observed data and extrapolated
to infinity from the last data point using the elimination con-
stant (\(K_d \)); the values reported as the maximum plasma con-
centration (\(C_{\text{max}} \)) and the time corresponding to maximum
plasma concentration (\(t_{\text{max}} \)) are the actual observed ones;
the elimination constant (\(K_d \)) was calculated as the negative
slopes of the logarithmic-linear final portion of the plasma concentration-time curve by using linear regression. Half-time of absorption (t\textsubscript{1/2}) was determined using elimination constant (\(\ln(2)/K\textsubscript{el}\)). All the parameters were calculated in Mass Hunter Quantitative Analysis B03.02 (Agilent), Sigma Plot (version 9.0), and Microsoft Excel software.

\[
\int_{15}^{T_{\text{max}}} C_0 \left(1 - e^{-k_1t} \right) dt + \int_{T_{\text{max}}}^{\infty} C_0 e^{-k_1t} dt = C_0 \left(T_{\text{max}} - 15 \right) + \left(\frac{e^{-k_1T_{\text{max}}} - e^{-15k_1}}{k_1} \right) + e^{-k_1T_{\text{max}}} \left(\frac{T_{\text{max}} - 15}{k_1} \right) \]

(3)

3. Results and Discussion

3.1. Method Development

3.1.1. Mass Spectrometry Determination of Stepharine. Stephaglabrine sulfate is well-known alkaloid compound originated from plants substrates and represented as the dimeric salt of stepharine [3]. Chemical structure and properties of this molecule were mostly investigated by spectroscopy and spectrophotometry methods [2, 6]. Only a small portion of researches were accomplished using mass spectrometry analysis [7, 8] and no one reported considerate quantitative analysis of stepharine.

In this study the commercially available stephaglabrine sulfate was analyzed on a high resolution quadrupole time-of-flight mass spectrometer. The obtained data of 100 ng of the compound loaded onto the column demonstrates identification of protonated stepharine precursor ion \([M+H]^+\) with high accuracy mass measurements (error 2 ppm) and with \(m/z = 298.346\) (Figure 2). The content of stepharine in sample makes a total of more than 97.5%, while the traced amount of 2.5% was assigned to auxiliary substances in the regions of 12.7, 15.2, and 18.7 minutes with \(m/z = 234.909, 284.183,\) and 279.153. At the certain chromatographic conditions the retention time point for stepharine was determined as 10.6 minutes.

Fragment ions spectra of stepharine were obtained for confident approval of the certain compound. Solvents adducts corresponding to \([M+NH_4]^+\) or \([M+CH_3COO]^+\)
were not observed. Thus, as identity and purity of the obtained commercial compound were determined, we used it further to prepare standard calibration samples and injection form of stepharine for animals. Based on the obtained data of stepharine structure and its fragment ions behavior, the method of quantitative assay on triple quadrupole mass spectrometer was further developed.

3.1.2. Optimization and Validation of Stephaglabrine Extraction. Efficient extraction of stepharine from rabbit plasma needs to be applied for pharmacokinetic study. There is a little information related to isolation of stepharine from plant tissues and organs [3, 6, 9, 10]. Obviously, these protocols poorly fit the isolation procedure from animal tissues and liquids. In this research we have proposed deproteination of rabbit plasma using acetonitrile/chloroform solvents system highly alkalinated with ammonia hydroxide. To evaluate the recovery of stepharine after extraction, amount of stepharine was added to one hundred \(\mu \text{L} \) of rabbit plasma sample to give final concentrations of 3, 50, and 100 ng/mL. Prior assessment of the rabbit plasma was performed to find no interferences with the compound of interest. Stepharine was extracted and the recovery of the extract from rabbit plasma stepharine was evaluated on triple quadrupole mass spectrometer by comparison with peak area of spiked standard stepharine solutions (3, 50, and 100 ng/mL) (Figure 3).

Among several organic solvents which were tested (acetonitrile, methanol, hexane, and dichloromethane), acetonitrile has demonstrated the best recovery yielded at the level of 88.46 ± 4.07% in five replicates \((n = 5)\) of each tested sample (Table 1).

As a result, the extracted compound was found as stepharine with \(m/z = 298.34 \) and charge state \(z = 1^+ \). Efficiency of stepharine extraction in methanol solution with pH adjusted to 10 was appreciated at a close level of acetonitrile extraction and yielded 67.5 ± 5.23%. Treatment with dichloromethane and hexane as extracting solvents was depauperaed and made mean recovery of 24.4 ± 6.3% (data not shown) which is in consequence of low solubility of stepharine sulfate in highly nonpolar solvents. Thus, based on the successful yield we choose the alkalized acetonitrile/chloroform solvents system for liquid extraction of stepharine from rabbit plasma. Matrix (rabbit plasma with spiked stepharine) was observed to have no significant ion suppressing effect and consisted of matrix-influence factor \(f \) in range from \(-0.07\) to \(-0.09\) with maximum RSD = 12.17% in three replicates among all matrix samples. Stability of stepharine demonstrates loss of less than 6% during over three freeze-thaw cycles and mean sample stability was estimated 94.6%.

3.1.3. Development of SRM for Stepharine Quantitative Analysis. Since the chromatographic conditions attributed to analysis on triple quadrupole LC-MS system have been changed as described in Section 2.4, the retention time of stepharine is also shifted and defined at 11.6 ± 0.3 minute. Combination of low pH maintained at 4.55 by addition of acetic acid in association with proton-capturing ammonium formate and rapid increasing the gradient to composition of water/acetonitrile with relatively strong hydrophobic properties caused best reproducibility, peak sharpness, and intensity of the stepharine chromatographic peak. Scheduled selected reactions monitoring (SRM) mode was used for stepharine detection on triple quadrupole which is allowed targeted scanning of stepharine compound. The precursor ion of stepharine compound with \(m/z = 298.34 \) and its fragment ions produced after collision-induced dissociation were monitored at the certain retention time (11.5 ± 1 minute) with narrow isolation width (±0.27 amu) in standard samples (solutions of stephaglabrine in acetonitrile) as well as after extraction from rabbit plasma. The collision energy at the level of \(-19\) eV and fragmentor voltage at \(-310\) V were adjusted for the transitions (298.34\(^{1+} \rightarrow 161.2^{1+} \), 192.1\(^{1+} \), and 238.2\(^{1+} \)) to attain high sensitivity, reproducibility, and stability of the signal. Three fragment ions (161.2\(^{1+} \), 192.1\(^{1+} \), 238.2\(^{1+} \)) obtained from stepharine precursor ion with \(m/z = 298.34^{1+} \) after collision-induced dissociation were recorded on triple quadrupole mass spectrometer for the quantitative analysis and pharmacokinetic characterization. Selection of the defined fragment ions was based on absence of solvent adducts, and SNR was exceeding 7.0 for all the fragment ions

![Figure 3: Comparison of peak areas of the spiked standard solutions of stepharine in amounts 15, 50, and 100 ng (solid lines) and observed amount of stepharine after extraction from rabbit plasma (dashed lines). The chromatograms demonstrate peaks of the most abundant fragment ion with \(m/z = 161.2 \).

Table 1: Stepharine extraction recovery from rabbit plasma using acetonitrile and methanol.

Extracting organic solvent	Concentration of stepharine in preextracted plasma, \(\mu g/mL \)	Postextraction recovery, % ± RSD
Acetonitrile	3	85.4 ± 5.2
	50	87.8 ± 3.3
	100	92.2 ± 3.7
Methanol	3	67.1 ± 4.7
	50	66.3 ± 6.1
	100	69.1 ± 4.9

The results are averaged on five replicates \((n = 5)\).
and made 16.7, 12.1, and 13.3 for \(m/z \) 161.2, 192.1, and 238.2, respectively (Figure 4).

At the certain conditions, lowest limit of detection was obtained at the level of concentration \(10^{-4} \) \(\mu \)g/mL. However, at the lowest limit of detection the RSD consisted of more than 27%: therefore we used concentration point of 0.001 \(\mu \)g/mL for quantitative analysis. Thus, a range of five orders of magnitude from \(10^{-3} \) \(\mu \)g/mL to 100 \(\mu \)g/mL was considered for calibration curve plotting and the lowest limit of quantitation was attributed to 0.001 \(\mu \)g/mL with RSD of 2.39%.

Since no significant intercepts and curvatures were observed within the inspected concentration range, we applied linear model to fit the calibration curve. Heteroscedasticity was evaluated by comparison of covariance of the lowest (0.001 \(\mu \)g/mL) and the highest calibrators (100 \(\mu \)g/mL) and the best fit of linearity was achieved at weighting factor \(1/x \). The achieved linearity of the dependence of peak area of stepharine on concentration in standard samples is demonstrated in Figure 5.

Each calibration point measurement was averaged on five replicates of each standard sample. The Pearson’s correlation coefficient within this range was \(r^2 = 0.99984 \). Reproducibility of precursor peak area (RSD 9.3%, replicates \(n = 5 \), and concentration 0.001 \(\mu \)g/mL) was achieved while injecting stepharine onto the column equilibrated with 20% of mobile phase B (acetonitrile) and followed by a rapid increase of acetonitrile to 50% which caused early elution of nonpolar compounds coextracting with stepharine from crude rabbit plasma extract. Quantitative assessment was accomplished with fragment ion \(m/z = 161.2 \), which was assigned as ion-quantifier.

The concentration of stepharine in rabbit plasma samples after intramuscular administration was determined using calibration curve plotted in linear regression fashion. Content of stepharine extracted from rabbit plasma was analyzed in five replicates of each sample before and after administration.

3.2. Pharmacokinetic Parameters of Stepharine Sulfate. Stephaglabrine sulfate affects the synaptic transmission and diminishes frequency of miniature endplate potential at low concentration [10]. It also inhibits cholinesterase and pseudocholinesterase in vitro [11] and possesses antihypertensive activity without side effects such as \(\alpha \)- or \(\beta \)-adrenergic blockade, sedative or depressant effect. Pharmacokinetic parameters of stephaglabrine after intramuscular administration were determined. Animals were treated with stephaglabrine sulfate in dose of 0.1 mg/kg and 0.5 mL blood samples were collected subsequently before and after administration of drug as described in experimental section. Measurements of the stepharine in plasma were made immediately after extraction and utilized calibration curve extrapolated in the same testing day. The concentrations of stepharine measured...

Figure 4: Extracted ion chromatogram (XIC) and SRM-spectrum of 10 pg of stepharine transitions 298.4\(^{+1} \) → 161.2\(^{+1} \), 192.1\(^{+1} \), 238.2\(^{+1} \) registered in dynamic selected monitoring mode at the retention time 11.76 minutes.
in rabbit plasma at the defined time points are given in Table 2.

The effect of stephalagrin injection on the rabbit plasma is demonstrated on the tracking time-concentration curves (Figure 6). The concentration-time curves show that plasma concentration of alkaloid varied more than 10-fold from the baseline. It should be noted that among all the studied animals stephalagrin varied in narrow concentration ranged from 5.7 to 8.1 ng/mL in first fifteen minutes after administration. The maximum concentration (C_{max}) of the drug was observed at 90 minutes in all cases. Registered maximum concentration fluctuated in a few more wide limits: from 13.9 to 33.9 ng/mL that apparently related with the individual particularities of the animals. However, the minimum concentration of the substance was discovered through 12 hours in all analyzed cases.

The observed close values of elimination rate constants (K_{eq}) suggested the common mechanism of excretion. After 24 hours of intramuscular administration stephalagrin was not found in plasma samples. Thus, considering stated generality in maximum concentration reached and declination fashion one can assume that stephalagrin was rapidly cleared from

Table 2: Concentration of stephalagrin in rabbit plasma after intramuscular administration*.

Time after administration, minutes	ST01	ST02	ST03	ST04	ST05	ST06
0	0	0	0	0	0	0
15	8.1 ± 0.6	7.9 ± 0.2	6.8 ± 0.4	5.7 ± 0.2	6.3 ± 0.2	7.0 ± 0.3
30	9.4 ± 0.5	16.5 ± 0.8	14.8 ± 0.2	7.3 ± 0.3	12.7 ± 0.3	13.9 ± 0.2
60	10.0 ± 0.3	29.3 ± 2.2	19.5 ± 0.6	9.5 ± 0.5	18.5 ± 0.2	20.4 ± 0.2
90	13.9 ± 0.9	33.9 ± 2.8	20.4 ± 1.7	14.2 ± 0.2	21.2 ± 0.2	25.8 ± 0.1
120	5.8 ± 0.1	10.4 ± 0.5	6.5 ± 0.1	9.7 ± 0.2	5.1 ± 0.3	7.6 ± 0.09
180	3.8 ± 0.1	7.8 ± 0.3	n/a	2.8 ± 0.2	2.9 ± 0.07	3.3 ± 0.08
480	1.8 ± 0.02	1.2 ± 0.02	n/a	0.7 ± 0.01	1.4 ± 0.08	1.2 ± 0.08
720	1.5 ± 0.02	1.3 ± 0.01	n/a	0.6 ± 0.01	0.9 ± 0.04	0.7 ± 0.02
1440	0	0	n/a	0	0	0

*Measurements were made up by using calibration curve and averaged on five replicates.

Figure 5: Calibration curve of stephalagrin plotted in the range of 100 pg/mL to 100 μg/mL. Calibration curve was weighted with 1/x factor and the correlation coefficient made $r^2 > 0.99$. Each data point averaged on three replicates.
In this research we have developed and validated highly sensitive liquid chromatography/tandem mass spectrometry method for detection and quantitation of stepharine in rabbit plasma after intramuscular administration and designed pharmacokinetic model. The extraction of stepharine from plasma samples was optimized and yielded more than 66% of stepharine. The identity of the parent drug extracted from plasma was confirmed by high resolution Q-TOF (quadrupole time-of-flight) and quantitative analysis was assessed by selected reactions monitoring on QQQ mass spectrometers by three characteristic transitions (298.4 → 161.2, 192.1, 238.2) of stepharine protonated precursor ion. Calibration curve of stepharine peak areas against its concentration was plotted in the range from 0.001 μg/mL to 100 μg/mL with standard deviation ±3%. The obtained pharmacokinetics data suggested that stepharine exhibits extensive distribution and rapidly cleared from the body.

4. Conclusion

In this research we have developed and validated highly sensitive liquid chromatography/tandem mass spectrometry method for detection and quantitation of stepharine in rabbit plasma after intramuscular administration and designed pharmacokinetic model. The extraction of stepharine from plasma samples was optimized and yielded more than 66% of stepharine. The identity of the parent drug extracted from plasma was confirmed by high resolution Q-TOF (quadrupole time-of-flight) and quantitative analysis was assessed by selected reactions monitoring on QQQ mass spectrometers by three characteristic transitions (298.4 → 161.2, 192.1, 238.2) of stepharine protonated precursor ion. Calibration curve of stepharine peak areas against its concentration was plotted in the range from 0.001 μg/mL to 100 μg/mL with standard deviation ±3%. The obtained pharmacokinetics data suggested that stepharine exhibits extensive distribution and rapidly cleared from the body.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] D. S. Bhakuni and S. Gupta, “The alkaloids of Stephania glabra,” *Journal of Natural Products*, vol. 45, no. 4, pp. 407–411, 1982.

[2] M. Zhang, G. Liang, J. Yu, and W. Pan, “Aporphine alkaloids from the roots of Stephania viridiflavers,” *Natural Product Research*, vol. 24, no. 13, pp. 1243–1247, 2010.

[3] W. Y. Huang, C. H. Su, and S. J. Sheu, “Separation and identification of the constituents in Fangchi Radix of different origins,” *Journal of Food and Drug Analysis*, vol. 14, no. 4, pp. 357–367, 2006.

[4] J. Kuznecov, E. Arzamascev, and C. Malinovskaja, “Pharmacological properties and toxicologic characteristics of stefaglabrin sulphate,” in *Medicines Plant Origin in Modern Therapy*, vol. 2, p. 71, 1989.

[5] I. I. Schelchkova, T. N. Il'inskaya, and A. D. Kuzovkov, “The alkaloids of Stephania glabra,” *Chemistry of Natural Compounds*, vol. 1, no. 4, pp. 210–212, 1965.

[6] M. V. Titova, E. A. Berkovich, O. V. Reshetnyak, I. E. Kulichenko, A. V. Oreshnikov, and A. M. Nosov, “Respiration activity of suspension cell culture of Polyscias filicifolia bailey, Stephania glabra (Roxb.) miers, and Dioscorea deltoidea wall,” *Applied Biochemistry and Microbiology*, vol. 47, no. 1, pp. 87–92, 2011.

[7] M. Tomita, A. Kato, T. Ibuka, H. Furukawa, and M. Kozuka, “Mass spectra of pronuciferine and stepharine,” *Tetrahedron Letters*, vol. 6, no. 32, pp. 2825–2829, 1965.
[8] X. Dai, R. Hu, C. Sun, and Y. Pan, “Comprehensive separation and analysis of alkaloids from Stephania yunnanensis by counter-current chromatography coupled with liquid chromatography tandem mass spectrometry analysis,” *Journal of Chromatography A*, vol. 1226, pp. 18–23, 2012.

[9] B. O. Sowemimo, J. L. Beal, R. W. Doskotch, and G. H. Svoboda, “The isolation of stepharine and coclaurine from Sarcopetalum harveyanum,” *Lloydia*, vol. 35, no. 1, pp. 90–91, 1972.

[10] V. V. Bitkov, Z. M. Khashaev Kh., L. A. Pronovich, V. A. Nenashew, and S. G. Batrakov, “Effects of berberine, glaucine, stephaglabrine and sanguirythrine on the synaptic transmission,” *Neirofiziologiya*, vol. 23, no. 2, pp. 131–135, 1991.

[11] V. V. Berezhinskaya, S. S. Nikitina, and E. A. Trutneva, “Medicinal plants pharmacology and chemotherapy,” *Trudy Vsesoyuznogo Nauchno-Issledovatel’skogo Instituta Lekarstvenny Rasstenii*, vol. 14, pp. 66–69, 1971.

[12] F. Q. Alali, X. X. Liu, and J. L. McLaughlin, “Annonaceous acetogenins: recent progress,” *Journal of Natural Products*, vol. 62, no. 3, pp. 504–540, 1999.