Novel BPS Wilson Loops in Quiver Chern-Simons-matter theories

Jun-Bao Wu
Institute of High Energy Physics, Chinese Academy of Sciences

Based on work done with Hao Ouyang and Jia-ju Zhang
1510.05475(PLB), 1511.02967

East Asia Joint Workshop on Fields and Strings
USTC, Hefei, China

May 28, 2016
Wilson loops in AdS/CFT

- Wilson loop plays an important role in the studies of confinement in QCD.

 - Gravity dual of Wilson loops was studied soon after the correspondence was proposed.
 - Rey, Yee, 1998
 - Maldacena 1998

 - The VEV of a circular half-BPS Wilson loop can be computed exactly using localization at finite 't Hooft coupling and finite N.
 - Pestun, 07

 - This VEV is a nontrivial function of the coupling constant, interpolating between weak coupling results from perturbative field theory and strong coupling results (in Large N limit) from gravity side.
 - Berestein et al, 98
 - Drukker, Gross, Ooguri 99

Jun-Bao Wu IHEP-CAS 2/65
Wilson loops in AdS/CFT

- Wilson loop plays an important role in the studies of confinement in QCD.
- it also plays an important role in AdS/CFT correspondence.
Wilson loops in AdS/CFT

- Wilson loop plays an important role in the studies of confinement in QCD.
- it also plays an important role in AdS/CFT correspondence.
- Gravity dual of Wilson loops was studied soon after the correspondence was proposed.

[Rey, Yee, 1998][Maldacena 1998]
Wilson loops in AdS/CFT

- Wilson loop plays an important role in the studies of confinement in QCD.
- It also plays an important role in AdS/CFT correspondence.
- Gravity dual of Wilson loops was studied soon after the correspondence was proposed.
 \[\text{[Rey, Yee, 1998]}\text{[Maldacena 1998]}\]
- The VEV of a circular half-BPS Wilson loop can be computed exactly using localization at finite 't Hooft coupling and finite N \[\text{[Pestun, 07]}\].
Wilson loops in AdS/CFT

- Wilson loop plays an important role in the studies of confinement in QCD.
- It also plays an important role in AdS/CFT correspondence.
- Gravity dual of Wilson loops was studied soon after the correspondence was proposed.

 \[\text{[Rey, Yee, 1998][Maldacena 1998]} \]

- The VEV of a circular half-BPS Wilson loop can be computed exactly using localization at finite 't Hooft coupling and finite N \[\text{[Pestun, 07]} \].

- This VEV is a nontrivial function of the coupling constant, interpolating between weak coupling results from perturbative field theory and strong coupling results (in Large N limit) from gravity side \[\text{[Berestein etal, 98][Drukker, Gross, Ooguri 99]} \].
ABJM theory

- \textit{ABJM} theory is 3d $U(N)_k \times U(N)_{-k}$ super-Chern-Simons theory with $\mathcal{N} = 6$ supersymmetries.
ABJM theory

- **ABJM** theory is 3d $U(N)_k \times U(N)_{-k}$ super-Chern-Simons theory with $\mathcal{N} = 6$ supersymmetries.

- This theory is low energy effective theory of N M2-branes put at C_4/Z_k.

Jun-Bao Wu IHEP-CAS 8/65
ABJM theory

- **ABJM** theory is 3d $U(N)_k \times U(N)_{-k}$ super-Chern-Simons theory with $\mathcal{N} = 6$ supersymmetries.

- This theory is low energy effective theory of N M2-branes put at C_4/Z_k.

- It is holographically dual to M-theory on $AdS_4 \ast S^7/Z_k$ or type IIA string theory on $AdS_4 \times CP^3$.
Wilson loops in ABJM theory - I

- BPS Wilson loop in ABJM theory was constructed in
 [Drukker, Plefka, Young (DPY), 08][Chen, JW, 08]
 [Rey, Suyama, Yamaguchi (RSY), 08].
BPS Wilson loop in ABJM theory was constructed in [Drukker, Plefka, Young (DPY), 08][Chen, JW, 08] [Rey, Suyama, Yamaguchi(RSY), 08].

Such Wilson loop was 1/6 BPS when it is along a line or a circle. It is closely related to 1/2— (1/3-)BPS Wilson loop in generic $\mathcal{N} = 2(3)$ Chern-Simons-matter (CSM) theories in [Gaiotto, Yin (GY), 07].
Wilson loops in ABJM theory - I

- BPS Wilson loop in ABJM theory was constructed in
 [Drukker, Plefka, Young (DPY), 08][Chen, JW, 08]
 [Rey, Suyama, Yamaguchi(RSY), 08].

- Such Wilson loop was 1/6 BPS when it is along a line or a circle. It is closely related to 1/2—(1/3-)BPS Wilson loop in generic $\mathcal{N} = 2(3)$ Chern-Simons-matter (CSM) theories in
 [Gaiotto, Yin (GY), 07].

- To provide a matrix model calculation for the VEV of this 1/6 BPS Wilson loop was the original motivation for Kapustin, Willett and Yaakov to develop the localization in 3d CSM theories.
 [Marino, lecture notes, 11]
It was proved that such Wilson loop is at most $1/6$ BPS \cite{DPY08,RSY08}. In \cite{Ouyang1511} we gave a proof without some unnecessary assumptions.

However the simplest F-string solution dual to Wilson loop is half-BPS \cite{DPY08,RSY08}. Then the construction of half-BPS Wilson loops in ABJM theory appeared as a big challenge. Such loop was finally constructed by Drukker and Trancanelli (DT) in 2009 by including the fermions in the construction and build a super-connection. This construct was elegantly explained by K. Lee and S. Lee in 2010 via the Brout-Englert-Higgs mechanism.
It was proved that such Wilson loop is at most $1/6$ BPS \cite{DPY08,RSY08}. In \cite{OuyangJWZhang1511} we gave a proof without some unnecessary assumptions.

However the simplest F-string solution dual to Wilson loop is half-BPS. \cite{DPY08,RSY08}.

Then the construction of half-BPS Wilson loops in ABJM theory appeared as a big challenge. Such loop was finally constructed by Drukker and Trancanelli (DT) in 2009 by including the fermions in the construction and build a super-connection.

This construct was elegantly explained by K. Lee and S. Lee in 2010 via the Brout-Englert-Higgs mechanism.
It was proved that such Wilson loop is at most 1/6 BPS \cite{DPY08,RSY08}. In \cite{Ouyang1511} we gave a proof \textit{without some unnecessary assumptions}.

However the simplest F-string solution dual to Wilson loop is half-BPS. \cite{DPY08,RSY08}.

Then the construction of half-BPS Wilson loops in ABJM theory appeared as a big challenge.
Wilson loops in ABJM theory - II

- It was proved that such Wilson loop is at most $1/6$ BPS [DPY 08][RSY 08]. In [Ouyang, JW, Zhang, 1511] we gave a proof without some unnecessary assumptions.

- However the simplest F-string solution dual to Wilson loop is half-BPS. [DPY, 08][RSY, 08].

- Then the construction of half-BPS Wilson loops in ABJM theory appeared as a big challenge.

- Such loop was finally constructed by Drukker and Trancanelli (DT) in 2009 by including the fermions in the construction and build a super-connection.
Wilson loops in ABJM theory - II

- It was proved that such Wilson loop is at most 1/6 BPS \([DPY 08][RSY 08]\). In \([Ouyang, JW, Zhang, 1511]\) we gave a proof \textit{without some unnecessary assumptions}.

- However the simplest F-string solution dual to Wilson loop is half-BPS. \([DPY, 08][RSY, 08]\).

- Then the construction of half-BPS Wilson loops in ABJM theory appeared as a big challenge.

- Such loop was finally constructed by \textit{Drukker and Trancanelli (DT) in 2009} by including the fermions in the construction and build a super-connection.

- This construct was elegantly explained by \textit{K. Lee and S. Lee in 2010} via the \textit{Brout-Englert-Higgs} mechanism.
Wilson loops in CSM theories - I

- GY type Wilson loops exist for CSM theories with \(\mathcal{N} = 2 \) SUSY. And generically it preserves only two super Poincare supercharges independent of the amount of the supersymmetries of the full theory.
Wilson loops in CSM theories - I

- GY type Wilson loops exist for CSM theories with $\mathcal{N} = 2$ SUSY. And generically it preserves only two super Poincare supercharges independent of the amount of the supersymmetries of the full theory.

- In another word, generically it is $1/\mathcal{N}$–BPS. (Exception was found in [Drukker, Cooker, Trancanelli, 1506] in $\mathcal{N} = 4$ CSM theories.)
Wilson loops in CSM theories - I

- GY type Wilson loops exist for CSM theories with $\mathcal{N} = 2$ SUSY. And generically it preserves only two super Ponicare supercharges independent of the amount of the supersymmetries of the full theory.

- In another word, generically it is $1/\mathcal{N}$–BPS. (Exception was found in [Drukker, Cooker, Trancanelli, 1506] in $\mathcal{N} = 4$ CSM theories.)

- $2/5$–BPS DT-type Wilson loops in $\mathcal{N} = 5$ CSM theories ([Hosomichi, Lee3, Park, 0806], [ABJ, 08]) were found by K. Lee and S. Lee.
Wilson loops in CSM theories - I

- GY type Wilson loops exist for CSM theories with $N = 2$ SUSY. And generically it preserves only two super Poincare supercharges independent of the amount of the supersymmetries of the full theory.

- In another word, generically it is $1/N$–BPS. (Exception was found in [Drukker, Cooker, Trancanelli, 1506] in $N = 4$ CSM theories.)

- 2/5-BPS DT-type Wilson loops in $N = 5$ CSM theories ([Hosomichi, Lee3, Park, 0806], [ABJ, 08]) were found by K. Lee and S. Lee.

- 1/2-BPS DT-type Wilson loops in $N = 4$ CSM theories [HLLLP, 0805][for $N = 4$ orbifold ABJM theory, Benna etal, 08] were constructed in [Ouyang, JW, Zhang, 1506][Cooke, Drukker, Trancanelli, 1506].
Wilson loops in CSM theories - II

- The previous results may tend to let people feel that DT type Wilson loops are very rare and their existence requires that the theory have a quite large number of supersymmetries.
- DT type Wilson loops also seem to preserve more supersymmetries than the GY type Wilson loops when they are along the same contour.
- Taken home message of this talk is that both these two speculations are incorrect.
Wilson loops in CSM theories - II

- The previous results may tend to let people feel that DT type Wilson loops are very rare and their existence requires that the theory have a quite large number of supersymmetries.
- DT type Wilson loops also seem to preserve more supersymmetries than the GY type Wilson loops when they are along the same contour.
Wilson loops in CSM theories - II

- The previous results may tend to let people feel that DT type Wilson loops are very rare and their existence requires that the theory have a quite large number of supersymmetries.
- DT type Wilson loops also seem to preserve more supersymmetries than the GY type Wilson loops when they are along the same contour.
- Taken home message of this talk is that both these two speculations are incorrect.
Let us consider generic $\mathcal{N} = 2$ quiver SCSM theories with bifundamental matters.

- The Chern-Simons levels are k_1 and k_2, respectively.
- The vector multiplet for gauge group $U(N_1)$ include A_{μ}, σ, χ, D and the last three fields are the auxiliary fields.
- Similarly for gauge group $SU(N_2)$ we have the vector multiplet $\hat{A}_{\mu}, \hat{\sigma}, \hat{\chi}, \hat{D}$.
Let us consider generic $\mathcal{N} = 2$ quiver SCSM theories with bifundamental matters.

Let us pick two adjacent nodes in the quiver diagram and the corresponding gauge group are $U(N_1)$ and $U(N_2)$. The Chern-Simons levels are k_1 and k_2, respectively.
\(\mathcal{N} = 2 \) quiver CSM theories - vector multiplets

- Let us consider generic \(\mathcal{N} = 2 \) quiver SCSM theories with bifundamental matters.

- Let us pick two adjacent nodes in the quiver diagram and the corresponding gauge group are \(U(N_1) \) and \(U(N_2) \). The Chern-Simons levels are \(k_1 \) and \(k_2 \), respectively.

- The vector multiplet for gauge group \(U(N_1) \) include \(A_\mu, \sigma, \chi, D \) and the last three fields are the auxiliary fields. Similarly for gauge group \(SU(N_2) \) we have the vector multiplet \(\hat{A}_\mu, \hat{\chi}, \hat{\sigma}, \hat{D} \).
\[\mathcal{N} = 2 \] quiver CSM theories - chiral multiplets

- The chiral multiplet in the bifundamental representation of \(U(N_1) \times U(N_2) \) includes the scalar \(\phi \), the spinor \(\psi \) and the auxiliary field \(F \).
For the vector multiplet part, we only need the off-shell supersymmetry transformation of $A_\mu, \sigma, \hat{A}_\mu, \hat{\sigma}$ is,

$$
\delta A_\mu = \frac{1}{2}(\bar{\chi}\gamma_\mu \theta + \bar{\theta}\gamma_\mu \chi), \quad \delta \sigma = -\frac{i}{2}(\bar{\chi}\theta + \bar{\theta}\chi), \\
\delta \hat{A}_\mu = \frac{1}{2}(\bar{\chi}\gamma_\mu \theta + \bar{\theta}\gamma_\mu \hat{\chi}), \quad \delta \hat{\sigma} = -\frac{i}{2}(\bar{\chi}\theta + \bar{\theta}\hat{\chi}).
$$

(1)
Supersymmetry transformation

For the vector multiplet part, we only need the off-shell supersymmetry transformation of $A_{\mu}, \sigma, \hat{A}_{\mu}, \hat{\sigma}$ is,

$$
\delta A_{\mu} = \frac{1}{2}(\bar{\chi}\gamma_{\mu}\theta + \bar{\theta}\gamma_{\mu}\chi), \quad \delta \sigma = -\frac{i}{2}(\bar{\chi}\theta + \bar{\theta}\chi),
$$
$$
\delta \hat{A}_{\mu} = \frac{1}{2}(\bar{\chi}\gamma_{\mu}\theta + \bar{\theta}\gamma_{\mu}\hat{\chi}), \quad \delta \hat{\sigma} = -\frac{i}{2}(\bar{\chi}\theta + \bar{\theta}\hat{\chi}). \quad (1)
$$

For the matter part we only need the off-shell supersymmetry transformation of ϕ and ψ

$$
\delta \phi = i\bar{\theta}\psi, \quad \delta \bar{\phi} = i\bar{\psi}\theta,
$$
$$
\delta \psi = (-\gamma^{\mu}D_{\mu}\phi - \sigma\phi + \phi\hat{\sigma})\theta + i\bar{\theta}F, \quad (2)
$$
$$
\delta \bar{\psi} = \bar{\theta}(\gamma^{\mu}D_{\mu}\bar{\phi} + \hat{\sigma}\bar{\phi} - \bar{\phi}\sigma) - i\theta F,
$$
GY type BPS Wilson loops

In Minkowski spacetime, one can construct a GY type 1/2 BPS Wilson loop along an infinite straight line $x^\mu = \tau \delta^\mu_0$ as

$$W_{GY} = \mathcal{P} \exp \left(-i \int d\tau L_{GY}(\tau) \right),$$

$$L_{GY} = \begin{pmatrix} A_\mu \dot{x}^\mu + \sigma |\dot{x}| & \hat{A}_\mu \dot{x}^\mu + \hat{\sigma} |\dot{x}| \\ \dot{A}_\mu \dot{x}^\mu + \dot{\sigma} |\dot{x}| & \hat{A}_\mu \dot{x}^\mu + \hat{\sigma} |\dot{x}| \end{pmatrix}. \quad (3)$$
GY type BPS Wilson loops

▶ In Minkowski spacetime, one can construct a GY type 1/2 BPS Wilson loop along an infinite straight line $x^\mu = \tau \delta_0^\mu$ as

$$W_{GY} = \mathcal{P} \exp \left(-i \int d\tau L_{GY}(\tau) \right),$$

$$L_{GY} = \begin{pmatrix}
A_\mu \dot{x}^\mu + \sigma |\dot{x}| \\
\hat{A}_\mu \dot{x}^\mu + \hat{\sigma} |\dot{x}|
\end{pmatrix}. \quad (3)$$

▶ The preserved SUSY can be denoted as

$$\gamma_0 \theta = i \theta, \quad \bar{\theta} \gamma_0 = i \bar{\theta}. \quad (4)$$
We can also construct the DT type Wilson loop

\[W_{DT} = \mathcal{P} \exp \left(-i \int d\tau L_{DT}(\tau) \right), \]

\[L_{DT} = \begin{pmatrix} A & \bar{f}_1 \\ f_2 & \hat{A} \end{pmatrix}, \]

\[A = A_\mu \dot{x}^\mu + \sigma |\dot{x}| + m\phi\bar{\phi}|\dot{x}|, \quad \bar{f}_1 = \bar{\zeta}\psi|\dot{x}|, \]

\[\hat{A} = \hat{A}_\mu \dot{x}^\mu + \hat{\sigma} |\dot{x}| + n\phi\bar{\phi}|\dot{x}|, \quad f_2 = \bar{\psi}\eta|\dot{x}|. \]
DT-type BPS Wilson loops - 1

- We can also construct the DT type Wilson loop

\[W_{DT} = \mathcal{P} \exp \left(-i \int d\tau L_{DT}(\tau) \right), \]

\[L_{DT} = \begin{pmatrix} A & \bar{f}_1 \\ f_2 & \hat{A} \end{pmatrix}, \]

\[A = A_\mu \dot{x}^\mu + \sigma |\dot{x}| + m\phi \bar{\phi} |\dot{x}|, \quad \bar{f}_1 = \bar{\zeta} \psi |\dot{x}|, \]

\[\hat{A} = \hat{A}_\mu \dot{x}^\mu + \hat{\sigma} |\dot{x}| + n\bar{\phi} \phi |\dot{x}|, \quad f_2 = \bar{\psi} \eta |\dot{x}|. \]

- To make it preserve the SUSY in (4) at least classically, it is enough to require that [K. Lee, S. Lee, 2010]

\[\delta L_{DT} = \partial_\tau G + i[L_{DT}, G], \]

for some Grassmann odd matrix

\[G = \begin{pmatrix} \bar{g}_1 \\ g_2 \end{pmatrix}. \]
We find that the necessary and sufficient conditions for the existence of such \bar{g}_1 and g_2 are

$$\bar{\zeta}_\alpha = \bar{\alpha}(1, i), \quad \eta_\alpha = (1, -i)\beta,$$

$$m = n = 2i\bar{\alpha}\beta. \quad (8)$$

Such DT type Wilson loop is $1/2$ BPS, and the preserved SUSY is the same as (4). Note that there are two free complex parameters $\bar{\alpha}$ and β in the Wilson loop, and they can be any complex constants. When $\bar{\alpha} = \beta = 0$, it becomes the GY type Wilson loop.
Generalizations

- There could be other matters couple to these two gauge fields. They will change the on-shell values of σ and $\hat{\sigma}$ in the Wilson loops we will construct. The structure of these Wilson loops will not be changed.

- We also constructed half-BPS circular Wilson loops for $\mathcal{N} = 2$ superconformal quiver Chern-Simons theory in Euclidean space.

- This construction can be also applied to the case when $U(N)$ is replaced by $SO(N)$ or $USp(N)$, and the case when there are matter fields in the adjoint representation. For the last case, one just simply let $\hat{A}_\mu \equiv A_\mu$ and $\hat{\sigma} \equiv \sigma$.

- The case with multi matter fields in the bifundamental and anti-bifundamental representations were also considered. The DT type Wilson loops can be divided into four classes.
Generalizations

- There could be other matters couple to these two gauge fields. They will change the on-shell values of σ and $\hat{\sigma}$ in the Wilson loops we will construct. The structure of these Wilson loops will not be changed.

- We also constructed half-BPS circular Wilson loops for $\mathcal{N} = 2$ superconformal quiver Chern-Simons theory in Euclidean space.

- The case with multi matter fields in the bifundamental and anti-bifundamental representations were also considered. The DT type Wilson loops can be divided into four classes.
Generalizations

- There could be other matters couple to these two gauge fields. They will change the on-shell values of σ and $\hat{\sigma}$ in the Wilson loops we will construct. The structure of these Wilson loops will not be changed.

- We also constructed half-BPS circular Wilson loops for $\mathcal{N} = 2$ superconformal quiver Chern-Simons theory in Euclidean space.

- This construction can be also applied to the case when $U(N)$ is replaced by $SO(N)$ or $USp(N)$, and the case when there are matter fields in the adjoint representation. For the last case, one just simply let $\hat{A}_\mu \equiv A_\mu$ and $\hat{\sigma} \equiv \sigma$.
Generalizations

- There could be other matters couple to these two gauge fields. They will change the on-shell values of σ and $\hat{\sigma}$ in the Wilson loops we will construct. The structure of these Wilson loops will not be changed.

- We also constructed half-BPS circular Wilson loops for $\mathcal{N} = 2$ superconformal quiver Chern-Simons theory in Euclidean space.

- This construction can be also applied to the case when $U(N)$ is replaced by $SO(N)$ or $USp(N)$, and the case when there are matter fields in the adjoint representation. For the last case, one just simply let $\hat{A}_\mu \equiv A_\mu$ and $\hat{\sigma} \equiv \sigma$.

- The case with multi matter fields in the bifundamental and anti-bifundamental representations were also considered. The DT type Wilson loops can be divided into four classes.
GY-type Wilson loops in ABJM theory - I

- In ABJM theory, there are four scalars ϕ_I and four fermions ψ_I in the bifundamental representation.
GY-type Wilson loops in ABJM theory

In ABJM theory, there are four scalars ϕ_I and four fermions ψ_I in the bifundamental representation.

A general GY type Wilson loop along the timelike infinite straight line $x^\mu = \tau \delta^\mu_0$ takes the form

$$W_{GY} = \mathcal{P} \exp \left(-i \int d\tau L_{GY}(\tau) \right),$$

$$L_{GY} = \begin{pmatrix} \mathcal{A}_{GY} & \hat{\mathcal{A}}_{GY} \\ \hat{\mathcal{A}}_{GY} & \mathcal{A}_{GY} \end{pmatrix},$$

$$\mathcal{A}_{GY} = A_\mu \dot{x}^\mu + \frac{2\pi}{k} R^I J \phi_I \phi^J |\dot{x}|,$$

$$\hat{\mathcal{A}}_{GY} = \hat{A}_\mu \dot{x}^\mu + \frac{2\pi}{k} S_I J \phi^I \phi J |\dot{x}|.$$ \hspace{1cm} (9)
GY-type Wilson loops in ABJM theory - 1

Up to some $SU(4)$ transformation, the only GY-type Wilson line preserving Poincare supercharges are the ones with $R^I_J = S^I_J = \text{diag}(-1, -1, 1, 1)$. They are $1/6$-BPS preserving the supersymmetries

$$\gamma_0 \theta^{12} = i \theta^{12}, \quad \gamma_0 \theta^{34} = -i \theta^{34},$$

$$\theta^{13} = \theta^{14} = \theta^{23} = \theta^{24} = 0.$$ \hspace{1cm} (10)
Up to some $SU(4)$ transformation, the only GY-type Wilson line preserving Poincare supercharges are the ones with $R^I_J = S^I_J = \text{diag}(-1, -1, 1, 1)$. They are 1/6-BPS preserving the supersymmetries

$$\gamma_0 \theta^{12} = i \theta^{12}, \quad \gamma_0 \theta^{34} = -i \theta^{34},$$

$$\theta^{13} = \theta^{14} = \theta^{23} = \theta^{24} = 0.$$ \hspace{1cm} (10)

Here θ_{IJ}’s are the parameters of Poincarè SUSY and they satisfy

$$\theta^{IJ} = -\theta^{JI}, \quad (\theta^{IJ})^* = \bar{\theta}_{IJ}.$$ \hspace{1cm} (11)
GY-type Wilson loops in ABJM theory - I

- Up to some $SU(4)$ transformation, the only GY-type Wilson line preserving Poincare supercharges are the ones with $R^I_J = S_J^I = \text{diag}(-1, -1, 1, 1)$. They are $1/6$-BPS preserving the supersymmetries

$$
\gamma_0 \theta^{12} = i\theta^{12}, \quad \gamma_0 \theta^{34} = -i\theta^{34},
$$

$$
\theta^{13} = \theta^{14} = \theta^{23} = \theta^{24} = 0. \quad (10)
$$

- Here θ_{IJ}’s are the parameters of Poincarè SUSY and they satisfy

$$
\theta^{IJ} = -\theta^{JI}, \quad (\theta^{IJ})^* = \bar{\theta}_{IJ}. \quad (11)
$$

- This is just the Wilson loop that was constructed in [DPY][Chen JW][RSY]. Here we show that this is the only form of GY type $1/6$ BPS Wilson loops up to some $SU(4)$ transformation. Especially, we find that we do not need to require that R^I_J or S_J^I is a hermitian matrix \textit{a priori}, and we show that it is the result of supersymmetry.
We turn to constructing a DT type Wilson loop along a straight line that preserves at least the supersymmetries (10). A general DT type Wilson loop is

\[W_{\text{DT}} = \mathcal{P} \exp \left(-i \int d\tau L_{\text{DT}}(\tau) \right), \]

\[L_{\text{DT}} = \begin{pmatrix} \mathcal{A} & \bar{f}_1 \\ f_2 & \hat{\mathcal{A}} \end{pmatrix}, \]

\[\mathcal{A} = \mathcal{A}_{\text{GY}} + \frac{2\pi}{k} M_I^J \phi_I \bar{\phi}^J |\hat{x}|, \]

\[\hat{\mathcal{A}} = \hat{\mathcal{A}}_{\text{GY}} + \frac{2\pi}{k} N_I^J \bar{\phi}^I \phi_J |\hat{x}|, \]

\[\bar{f}_1 = \sqrt{\frac{2\pi}{k}} \bar{\zeta}_I \psi^I |\hat{x}|, \quad f_2 = \sqrt{\frac{2\pi}{k}} \bar{\psi}_I \eta^I |\hat{x}|. \]
The supersymmetry conditions give that

\[
\begin{align*}
\bar{\zeta}_{1,2} &= \bar{\alpha}_{1,2} \zeta, & \bar{\zeta}^\alpha &= (1, i), \\
\bar{\zeta}_{3,4} &= \bar{\gamma}_{3,4} \bar{\mu}, & \bar{\mu}^\alpha &= (1, -i), \\
\eta^{1,2} &= \eta^{1,2}, & \eta^\alpha &= (1, -i), \\
\eta^{3,4} &= \nu^{3,4}, & \nu^\alpha &= (1, i),
\end{align*}
\]

(13)

\[
M^I_J = N_J^I = 2i \begin{pmatrix}
\bar{\alpha}_2 \beta^2 & -\bar{\alpha}_2 \beta^1 \\
-\bar{\alpha}_1 \beta^2 & \bar{\alpha}_1 \beta^1 \\
\bar{\gamma}_4 \delta^4 & -\bar{\gamma}_4 \delta^3 \\
-\bar{\gamma}_3 \delta^4 & \bar{\gamma}_3 \delta^3
\end{pmatrix}.
\]

(14)
We found four class of solutions,

- Class I: $\bar{\gamma}_{3,4} = \delta_{3,4} = 0$.

- Class II: $\bar{\alpha}_{1,2} = \beta_{1,2} = 0$.

- Class III: $\beta_{1,2} = \delta_{3,4} = 0$.

- Class IV: $\bar{\alpha}_{1,2} = \bar{\gamma}_{3,4} = 0$.

Generically these Wilson loops preserving the same SUSY as GY type Wilson loops, i.e., they are $\frac{1}{6}$-BPS. In class I and II, for special parameters in the constructions, the Wilson loops become the half-BPS ones found by Drukker and Trancanelli. Our novel DT type Wilson loops include $\frac{1}{6}$-BPS GY type and half-BPS DT type ones as special cases.
We found four class of solutions,

- **Class I**
 \[\bar{\gamma}_{3,4} = \delta_{3,4} = 0. \] (15)

- **Class II**
 \[\bar{\alpha}_{1,2} = \beta^{1,2} = 0. \] (16)

- **Class III**
 \[\beta^{1,2} = \delta_{3,4} = 0. \] (17)

- **Class IV**
 \[\bar{\alpha}_{1,2} = \bar{\gamma}_{3,4} = 0. \] (18)

Generically these Wilson loops preserving the same SUSY as GY type Wilson loops, i.e., they are 1/6-BPS. In class I and II, for special parameters in the constructions, the Wilson loops become the half-BPS ones found by Drukker and Trancanelli. Our novel DT type Wilson loops include 1/6-BPS GY type and half-BPS DT type ones as special cases.
We found four class of solutions,

- **Class I**
 \[\bar{\gamma}_{3,4} = \delta^{3,4} = 0. \]
 \[(15) \]

- **Class II**
 \[\bar{\alpha}_{1,2} = \beta^{1,2} = 0. \]
 \[(16) \]

- **Class III**
 \[\beta^{1,2} = \delta^{3,4} = 0. \]
 \[(17) \]

- **Class IV**
 \[\bar{\alpha}_{1,2} = \bar{\gamma}_{3,4} = 0. \]
 \[(18) \]

Generically these Wilson loops preserving the same SUSY as GY type Wilson loops, i.e., they are 1/6-BPS.
Novel DT-type Wilson loops in ABJM theory - III

- We found four class of solutions,
- Class I

\[\bar{\gamma}_{3,4} = \delta^{3,4} = 0. \] (15)

- Class II

\[\bar{\alpha}_{1,2} = \beta^{1,2} = 0. \] (16)

- Class III

\[\beta^{1,2} = \delta^{3,4} = 0. \] (17)

- Class IV

\[\bar{\alpha}_{1,2} = \bar{\gamma}_{3,4} = 0. \] (18)

- Generically these Wilson loops preserving the same SUSY as GY type Wilson loops, i.e., they are 1/6-BPS.
- In class I and II, for special parameters in the constructions, the Wilson loops become the half-BPS ones found by Drukker and Trancanelli. Our novel DT type Wilson loops include 1/6-BPS GY type and half-BPS DT type ones as special cases.
DT type Wilson loops in $\mathcal{N} = 3, 4$ Chern-Simons-matter theories

- We found similar pattern in $\mathcal{N} = 4$ CSM theories: generally the DT type BPS Wilson loop along a straight line/circle is $1/4$ BPS, the same as GY type Wilson loops. For special parameters, supersymmetries preserved by the loops are enhanced to half-BPS.

For $\mathcal{N} = 3$ CSM theories, the DT type BPS Wilson loop along a straight line/circle is $1/3$ BPS. There is no supersymmetry enhancement here. This is consistent with the results from the dual M-theory side [Chen, JW, Zhu, 14].
DT type Wilson loops in $\mathcal{N} = 3, 4$ Chern-Simons-matter theories

- We found similar pattern in $\mathcal{N} = 4$ CSM theories: generally the DT type BPS Wilson loop along a straight line/circle is $1/4$ BPS, the same as GY type Wilson loops. For special parameters, supersymmetries preserved by the loops are enhanced to half-BPS.

- For $\mathcal{N} = 3$ CSM theories, the DT type BPS Wilson loop along a straight line/circle is $1/3$-BPS. there is no supersymmetry enhancement here. This is consistent with the results from the dual M-theory side [Chen, JW, Zhu, 14].
Conclusion

▶ We constructed DT-type Wilson loops in general $\mathcal{N} = 2$ quiver CSM theories.
Conclusion

- We constructed DT-type Wilson loops in general $\mathcal{N} = 2$ quiver CSM theories.
- Along a straight line or a circle, the generic DT-type Wilson loops in $ABJM$ theory are $1/6$-BPS, which include $1/6$-BPS GY-type Wilson loops and half-BPS DT-type Wilson loops as special case.
Conclusion

- We constructed DT-type Wilson loops in general $\mathcal{N} = 2$ quiver CSM theories.

- Along a straight line or a circle, the generic DT-type Wilson loops in $ABJM$ theory are $\frac{1}{6}$-BPS, which include $\frac{1}{6}$-BPS GY-type Wilson loops and half-BPS DT-type Wilson loops as special case.

- Generically, these $\frac{1}{6}$-BPS DT-type Wilson loops are not locally $SU(3)$ invariant. This is different from the Wilson loops constructed in [Cardinali, Griguolo, Martelloni, Seminara, 12].
Discussions

- Cooke, Drukker and Trancanelli argued that classically half-BPS DT-type Wilson loops in $\mathcal{N} = 4$ CSM theories may not be truly BPS at the quantum level. Only special linear combination of these loops will be BPS at the quantum level.
Discussions

- Cooke, Drukker and Trancanelli argued that classically half-BPS DT-type Wilson loops in $\mathcal{N} = 4$ CSM theories may not be truly BPS at the quantum level. Only special linear combination of these loops will be BPS at the quantum level.

- One way to understand this is that the supercharge Q will receive quantum corrections like the dilatation operator \mathcal{D}. [Drukker, p. c. via e-mail]
Discussions

- Cooke, Drukker and Trancanelli argued that classically half-BPS DT-type Wilson loops in $\mathcal{N} = 4$ CSM theories may not be truly BPS at the quantum level. Only special linear combination of these loops will be BPS at the quantum level.

- One way to understand this is that the supercharge Q will receive quantum corrections like the dilatation operator \mathcal{D}. [Drukker, p. c. via e-mail]

- They expected that the degeneration of VEVs of two kind of Wilson loops will be lifted by quantum corrections.
Discussions

- Cooke, Drukker and Trancanelli argued that classically half-BPS DT-type Wilson loops in $\mathcal{N} = 4$ CSM theories may not be truly BPS at the quantum level. Only special linear combination of these loops will be BPS at the quantum level.

- One way to understand this is that the supercharge Q will receive quantum corrections like the dilatation operator \mathcal{D}. [Drukker, p. c. via e-mail]

- They expected that the degeneration of VEVs of two kind of Wilson loops will be lifted by quantum corrections.

- To check this idea, [Griguolo, Leoni, Mauri, Penati, Seminara, 15] performed two-loop computations of the VEVs of these Wilson loops, and found they are still degenerate.
Cooke, Drukker and Trancanelli argued that classically half-BPS DT-type Wilson loops in $\mathcal{N} = 4$ CSM theories may not be truly BPS at the quantum level. Only special linear combination of these loops will be BPS at the quantum level.

One way to understand this is that the supercharge Q will receive quantum corrections like the dilatation operator \mathcal{D}. [Drukker, p. c. via e-mail]

They expected that the degeneration of VEVs of two kind of Wilson loops will be lifted by quantum corrections.

To check this idea, [Griguolo, Leoni, Mauri, Penati, Seminara, 15] performed two-loop computations of the VEVs of these Wilson loops, and found they are still degenerate.

Currently they are performing three-loop computations.
Discussions

- If the argument of \textit{Cooke, Drukker and Trancanelli} is correct, we expect that this should apply as well to our Wilson loops in general $\mathcal{N} = 2$ CSM theories.
Discussions

- If the argument of *Cooke, Drukker and Trancanelli* is correct, we expect that this should apply as well to our Wilson loops in general $\mathcal{N} = 2$ CSM theories.
- This leads to the following two questions:
Discussions

- If the argument of *Cooke, Drukker and Trancanelli* is correct, we expect that this should apply as well to our Wilson loops in general $\mathcal{N} = 2$ CSM theories.
- This leads to the following two questions:
- **Which linear combination is truly BPS at the quantum level?**
Discussions

- If the argument of Cooke, Drukker and Trancanelli is correct, we expect that this should apply as well to our Wilson loops in general $\mathcal{N} = 2$ CSM theories.
- This leads to the following two questions:
 - Which linear combination is truly BPS at the quantum level?
 - How to construct the holographical dual of the above Wilson loops?
Thanks for Your Attention!