New inequalities involving the Geometric-Arithmetic index✩

José M. Rodrígueza, Juan A. Rodríguez-Velázquezb,*, José M. Sigarretac

aDepartamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
bDepartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
cFacultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, 39650 Acalpulco Gro., Mexico

Abstract

Let \(G = (V, E) \) be a simple connected graph and \(d_i \) be the degree of its \(i \)th vertex. In a recent paper [J. Math. Chem. 46 (2009) 1369-1376] the first geometric-arithmetic index of a graph \(G \) was defined as

\[
GA_1 = \sum_{ij \in E} \frac{2\sqrt{d_i d_j}}{d_i + d_j}.
\]

This graph invariant is useful for chemical proposes. The main use of \(GA_1 \) is for designing so-called quantitative structure-activity relations and quantitative structure-property relations. In this paper we obtain new inequalities involving the geometric-arithmetic index \(GA_1 \) and characterize the graphs which make the inequalities tight. In particular, we improve some known results, generalize other, and we relate \(GA_1 \) to other well-known topological indices.

Keywords: Graph invariant, Vertex-degree-based graph invariant, Topological index, Geometric-arithmetic index.

✩Supported in part by two grants from Ministerio de Economía y Competitividad (MTM2013-46374-P and MTM2015-69323-REDT), Spain, and a grant from CONACYT (FOMIX-CONACyT-UAGro 249818), México.

*Corresponding author

Email addresses: jomaro@math.uc3m.es (José M. Rodríguez), juanalberto.rodriguez@urv.cat (Juan A. Rodríguez-Velázquez), jsmathguerrero@gmail.com (José M. Sigarreta)
1. Introduction

A graph invariant is a property of graphs that is preserved by isomorphisms. Around the middle of the last century theoretical chemists discovered that some interesting relationships between various properties of organic substances and the molecular structure can be deduced by examining some invariants of the underlying molecular graph. Those graph invariants that are useful for chemical purposes were named topological indices or molecular structure descriptors. The Wiener index, introduced by Harry Wiener in 1947, is the oldest topological index related to molecular branching. Wiener defined this topological index as the sum of all shortest-path distances of a graph, and he showed that it is closely correlated with the boiling points of alkane molecules [33]. Based on its success, many other topological indices have been developed subsequently to Wiener’s work.

Topological indices based on vertex degrees have been used over 40 years. Among them, several indices are recognized to be useful tools in chemical researches. Probably, the best known such descriptor is the Randić connectivity index [24]. There are more than thousand papers and a couple of books dealing with this molecular descriptor (see, e.g., [13, 16, 17, 27, 28] and the references therein). During many years, scientists were trying to improve the predictive power of the Randić index. This led to the introduction of a large number of new topological descriptors resembling the original Randić index. The first geometric-arithmetic index GA_1, defined in [32] as

$GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v}$

where uv denotes the edge of the graph G connecting the vertices u and v, and d_u is the degree of the vertex u, is one of the successors of the Randić index. Although GA_1 was introduced in 2009, there are many papers dealing with this index (see, e.g., [5, 6, 7, 20, 8, 9, 25, 26, 29, 32] and the references therein). There are other geometric-arithmetic indices, like $Z_{p,q}$ [6], where $Z_{0,1} = GA_1$, but the results in [6, p.598] show that GA_1 gathers the same information on observed molecule as $Z_{p,q}$.

As described in [6], the reason for introducing a new index is to gain prediction of target property (properties) of molecules somewhat better than
obtained by already presented indices. Therefore, a test study of predictive power of a new index must be done. As a standard for testing new topological descriptors, the properties of octanes are commonly used. We can find 16 physico-chemical properties of octanes at www.moleculardescriptors.eu. The GA_1 index gives better correlation coefficients than the Randić index for these properties, but the differences between them are not significant. However, the predicting ability of the GA_1 index compared with Randić index is reasonably better (see [6, Table 1]). Although only about 1000 benzenoid hydrocarbons are known, the number of possible benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid hydrocarbons with 35 benzene rings is $5.85 \cdot 10^{21}$ [31]. Therefore, the modeling of their physico-chemical properties is very important in order to predict properties of currently unknown species. The graphic in [6, Fig.7] (from [6, Table 2], [30]) shows that there exists a good linear correlation between GA_1 and the heat of formation of benzenoid hydrocarbons (the correlation coefficient is equal to 0.972). Furthermore, the improvement in prediction with GA_1 index comparing to Randić index in the case of standard enthalpy of vaporization is more than 9%. That is why one can think that GA_1 index should be considered for designing so-called quantitative structure-activity relations and quantitative structure-property relations, where "structure" means molecular structure, "property" some physical or chemical property and "activity" some biologic, pharmacologic or similar property.

Some inequalities involving the geometric-arithmetic index and other topological indices were obtained in [5, 6, 7, 8, 20, 25, 26, 29, 32]. The aim of this paper is to obtain new inequalities involving the geometric-arithmetic index GA_1, and characterize the graphs which make the inequalities tight. In particular, we improve some known results, generalize other, and we relate GA_1 to other well-known topological indices.

2. New equalities involving GA_1

Throughout this paper, $G = (V, E) = (V(G), E(G))$ denotes a (non-oriented) finite simple (without multiple edges and loops) connected graph with $E \neq \emptyset$. Note that the connectivity of G is not an important restriction, since if G has connected components G_1, \ldots, G_r, then

$$GA_1(G) = GA_1(G_1) + \cdots + GA_1(G_r).$$

Furthermore, every molecular graph is connected.
From now on, the order (the cardinality of $V(G)$), size (the cardinality of $E(G)$), and maximum and minimum degree of G will be denoted by $n, m, \Delta, \delta,$ respectively.

We will denote by M_1 and M_2 the first and second Zagreb indices, respectively, defined as

$$M_1 = M_1(G) = \sum_{u \in V(G)} d_u^2, \quad M_2 = M_2(G) = \sum_{uv \in E(G)} d_u d_v.$$

These topological indices have attracted growing interest, see e.g., [3, 4, 10, 14, 18] (in particular, they are included in a number of programs used for the routine computation of topological indices).

The following inequality was given in [20] (see also [6, p.610]) and [25, Theorem 3.7],

$$GA_1(G) \leq \frac{1}{2\delta} M_1(G).$$

(1)

Since $M_1(G) \geq \delta^2 n$, Theorem 2.1 below improves (1).

Theorem 2.1. For any graph G,

$$\frac{\delta M_1(G)}{2\Delta^2} \leq GA_1(G) \leq \frac{\sqrt{nM_1(G)}}{2},$$

and each equality holds if and only if G is a regular graph.

Proof. First of all, note that for every function $f : [\delta, \Delta] \to \mathbb{R}$, we have

$$\sum_{uv \in E(G)} (f(d_u) + f(d_v)) = \sum_{u \in V(G)} d_u f(d_u).$$

Since $\frac{4}{d_u + d_v} \leq \frac{1}{d_u} + \frac{1}{d_v}$, by taking $f(d_u) = \frac{1}{d_u}$ we deduce

$$\sum_{uv \in E(G)} \frac{1}{d_u + d_v} \leq \frac{1}{4} \sum_{uv \in E(G)} \left(\frac{1}{d_u} + \frac{1}{d_v} \right) = \frac{n}{4}. $$

4
Cauchy-Schwarz inequality gives
\[
GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v}
\]
\[
\leq \sum_{uv \in E(G)} \sqrt{d_u + d_v} \frac{1}{\sqrt{d_u + d_v}}
\]
\[
\leq \left(\sum_{uv \in E(G)} (d_u + d_v) \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{1}{d_u + d_v} \right)^{1/2}
\]
\[
\leq \left(\sum_{u \in V(G)} d_ud_u \right)^{1/2} \left(\frac{n}{4} \right)^{1/2}
\]
\[
= \sqrt{nM_1(G)}.
\]

On the other hand, for any \(uv \in E(G) \) we have
\[
\frac{2\delta}{d_u + d_v} \leq \frac{2\sqrt{d_ud_v}}{d_u + d_v}
\]
and
\[
\frac{1}{\Delta^2} \leq \frac{4}{(d_u + d_v)^2} = \frac{2}{d_u + d_v}
\]

Hence,
\[
\frac{1}{\Delta^2} \frac{d_u + d_v}{2} \leq \frac{2}{d_u + d_v},
\]
and so
\[
\frac{\delta}{\Delta^2} \frac{d_u + d_v}{2} \leq \frac{2\delta}{d_u + d_v} \leq \frac{2\sqrt{d_ud_v}}{d_u + d_v},
\]
which implies that
\[
\frac{\delta M_1(G)}{2\Delta^2} = \frac{\delta}{2\Delta^2} \sum_{u \in V(G)} d_u^2 = \frac{\delta}{2\Delta^2} \sum_{uv \in E(G)} (d_u + d_v) \leq GA_1(G).
\]

Notice that all the equalities above hold if and only if the graph is regular. \(\square \)

The following elementary lemma will be an important tool to derive some results.
Lemma 2.2. Let g be the function $g(x, y) = \frac{2\sqrt{xy}}{x+y}$ with $0 < a \leq x, y \leq b$. Then

\[
\frac{2\sqrt{ab}}{a+b} \leq g(x, y) \leq 1.
\]

The equality in the lower bound is attained if and only if either $x = a$ and $y = b$, or $x = b$ and $y = a$, and the equality in the upper bound is attained if and only if $x = y$. Besides, $g(x, y) = g(x', y')$ for some $x', y' > 0$ if and only if x/y is equal to either x'/y' or y'/x'. Finally, if $0 \leq x' < x \leq y$, then $g(x', y) < g(x, y)$.

Theorem 2.3. For any graph G,

\[
\frac{\sqrt{(\Delta + \delta)^2 M_2(G) + 4\Delta^3 \delta m(m-1)}}{\Delta(\Delta + \delta)} \leq GA_1(G) \leq \frac{\sqrt{M_2(G) + \delta^2 m(m-1)}}{\delta},
\]

and each equality holds if and only if G is regular.

Proof. By Lemma 2.2, for any edge $uv \in E(G)$ we have

\[
\frac{2\sqrt{d_ud_v}}{d_u + d_v} \geq \frac{2\sqrt{\Delta \delta}}{\Delta + \delta}. \tag{2}
\]

Notice also that

\[
\frac{1}{\Delta^2} \leq \frac{4}{(d_u + d_v)^2} \leq \frac{1}{\delta^2} \tag{3}
\]

Inequalities (2) and (3) lead to

\[
(GA_1(G))^2 = \left(\sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} \right)^2 \geq \frac{1}{\Delta^2} \sum_{uv \in E(G)} d_ud_v + \sum_{uv, xy \in E(G), \ uv \neq xy} \frac{8\Delta \delta}{(\Delta + \delta)^2}
\]

\[
= \frac{M_2(G)}{\Delta^2} + \frac{4\Delta \delta}{(\Delta + \delta)^2} m(m-1) = \frac{(\Delta + \delta)^2 M_2(G) + 4\Delta^3 \delta m(m-1)}{\Delta^2(\Delta + \delta)^2}.
\]
In a similar way, we obtain

\[(GA_1(G))^2 = \frac{1}{\delta^2} \sum_{uv \in E(G)} d_u d_v + 2 \sum_{uv, xy \in E(G), \ uv \neq xy} \frac{2 \sqrt{d_u d_v} \ 2 \sqrt{d_x d_y}}{d_u + d_v \ d_x + d_y} \leq \frac{M_2(G)}{\delta^2} + m(m - 1) \]

To conclude the proof we can observe that equality (2) holds for \(uv \in E(G)\) if and only if \(d_u = \Delta\) and \(d_v = \delta\) or \(d_u = \delta\) and \(d_v = \Delta\). Furthermore, the equalities in (3) hold for every \(uv \in E(G)\) if and only if \(G\) is regular.

We will use the following particular case of Jensen’s inequality.

Lemma 2.4. If \(f\) is a convex function in \(\mathbb{R}_+\) and \(x_1, \ldots, x_k > 0\), then

\[f \left(\frac{x_1 + \cdots + x_k}{k} \right) \leq \frac{1}{k} \left(f(x_1) + \cdots + f(x_k) \right).\]

We recall that the Randić index is defined as

\[R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d_u d_v}}.\]

The following result provides a bound on \(GA_1\) involving the Randić index.

Theorem 2.5. For any graph \(G\),

\[GA_1(G) + \Delta R(G) \geq 2m,\]

and the equality holds if and only if \(G\) is a regular graph.
Proof. It is well-known that for all \(a, b > 0 \),
\[
\frac{a}{b} + \frac{b}{a} \geq 2,
\]
and the equality holds if and only if \(a = b \). Applying this inequality, we obtain
\[
\sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} + \sum_{uv \in E(G)} \frac{d_u + d_v}{2\sqrt{d_ud_v}} \geq 2m.
\]
Therefore,
\[
\sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} + \sum_{uv \in E(G)} \frac{\Delta}{\sqrt{d_ud_v}} \geq 2m.
\]
and we have
\[
GA_1(G) + \Delta R(G) \geq 2m.
\]

To conclude the proof we only need to observe that the above equality holds if and only if \(2\sqrt{d_ud_v} = d_u + d_v = 2\Delta \) for every \(uv \in E(G) \). \(\square \)

In 1998 Bollobás and Erdős [2] generalized the Randić index by replacing 1/2 by any real number. Thus, for \(\alpha \in \mathbb{R} \setminus \{0\} \), the general Randić index is defined as
\[
R_\alpha = R_\alpha(G) = \sum_{uv \in E(G)} (d_ud_v)^\alpha.
\]
The general Randić index, also called variable Zagreb index in 2004 by Milicević and Nikolić [19], has been extensively studied [16]. Note that \(R_{-1/2} \) is the usual Randić index, \(R_1 \) is the second Zagreb index \(M_2 \), \(R_{-1} \) is the modified Zagreb index [23], etc. In Randić’s original paper [24], in addition to the particular case \(\alpha = -1/2 \), also the index with \(\alpha = -1 \) was briefly considered.

Next, we will prove some bounds on \(GA_1 \) involving the general Randić index. To this end, we need the following additional tool.

Lemma 2.6. [29, Lemma 3] Let \(h \) be the function \(h(x, y) = \frac{xy}{x+y} \) with \(\delta \leq x, y \leq \Delta \). Then
\[
\delta \leq h(x, y) \leq \Delta.
\]
Furthermore, the lower (respectively, upper) bound is attained if and only if \(x = y = \delta \) (respectively, \(x = y = \Delta \)).
As we will show in Theorems 2.7 and 2.9, bounds on R_α immediately impose bounds on GA_1.

Theorem 2.7. Let G be a graph and $\alpha \in \mathbb{R} \setminus \{0\}$. Then the following statements hold.

(a) If $\alpha \leq -1/2$, then $\delta^{-2\alpha} R_\alpha(G) \leq GA_1(G) \leq \Delta^{-2\alpha} R_\alpha(G)$.

(b) If $\alpha \geq -1/2$, then $\delta \Delta^{-2\alpha-1} R_\alpha(G) \leq GA_1(G) \leq \Delta \delta^{-2\alpha-1} R_\alpha(G)$.

Furthermore, each equality holds if and only if G is a regular graph.

Proof. Lemma 2.6 gives

$$\frac{\delta}{\sqrt{d_u d_v}} \leq \frac{2\sqrt{d_u d_v}}{d_u + d_v} \leq \frac{\Delta}{\sqrt{d_u d_v}}.$$

If $\alpha \geq -1/2$, then

$$\delta (d_u d_v) \leq \Delta^{2\alpha+1} \frac{2\sqrt{d_u d_v}}{d_u + d_v}, \quad \delta^{2\alpha+1} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \leq \Delta (d_u d_v).$$

If $\alpha \leq -1/2$, then

$$\delta (d_u d_v) \leq \Delta^{2\alpha+1} \frac{2\sqrt{d_u d_v}}{d_u + d_v}, \quad \Delta^{2\alpha+1} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \leq \Delta (d_u d_v).$$

We obtain the results by summing up these inequalities for $uv \in E(G)$.

If the graph is regular, then the lower and upper bounds are the same, and they are equal to $GA_1(G)$. If the equality holds in the lower bound, then Lemma 2.6 gives $d_u = d_v = \delta$ for every $uv \in E(G)$; hence, $d_u = \delta$ for every $u \in V(G)$ and the graph is regular. If the equality is attained in the upper bound, then Lemma 2.6 gives $d_u = d_v = \Delta$ for every $uv \in E(G)$ and we conclude $d_u = \Delta$ for every $u \in V(G)$. \qed

We would emphasize the following direct consequence of Theorem 2.7. The upper bound was previously stated in [25] and the lower bound in [29].

Corollary 2.8. For any graph G,

$$\delta R(G) \leq GA_1(G) \leq \Delta R(G),$$

and each equality holds if and only if G is regular.
Theorem 2.9. Let G be a graph and $\alpha \in \mathbb{R} \setminus \{0\}$. Then the following statements hold.

(a) If $\alpha \leq 1/2$, then $\delta^{-2\alpha+1}\Delta^{-1}R_{\alpha}(G) \leq GA_1(G) \leq \Delta^{-2\alpha+1}\delta^{-1}R_{\alpha}(G)$.

(b) If $\alpha \geq 1/2$, then $\Delta^{-2\alpha}R_{\alpha}(G) \leq GA_1(G) \leq \delta^{-2\alpha}R_{\alpha}(G)$.

Furthermore, each equality holds if and only if G is a regular graph.

Proof. Notice that

$$GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} = 2 \sum_{uv \in E(G)} \frac{(d_ud_v)^{\alpha}(d_ud_v)^{-\alpha+1/2}}{d_u + d_v}.$$

Now, if $\alpha \leq 1/2$, then $\delta^{-2\alpha+1} \leq (d_ud_v)^{-\alpha+1/2} \leq \Delta^{-2\alpha+1}$, which implies that

$$\delta^{-2\alpha+1}\Delta^{-1}R_{\alpha}(G) \leq GA_1(G) \leq \Delta^{-2\alpha+1}\delta^{-1}R_{\alpha}(G).$$

Analogously, if $\alpha \geq 1/2$, then $\Delta^{-2\alpha+1} \leq (d_ud_v)^{-\alpha+1/2} \leq \delta^{-2\alpha+1}$, which implies that

$$\Delta^{-2\alpha}R_{\alpha}(G) \leq GA_1(G) \leq \delta^{-2\alpha}R_{\alpha}(G).$$

If the graph is regular, then the lower and upper bounds are the same, and they are equal to $GA_1(G)$. If a bound is attained, then we have either $d_u d_v = \delta$ or $d_u d_v = \Delta$ for every $uv \in E(G)$, so that G is a regular graph. \qed

It is readily seen that if $\alpha < 0$, then Theorem 2.7 gives better results than Theorem 2.9 and, if $\alpha > 0$, then Theorem 2.9 gives better results than Theorem 2.7.

The well-known Pólya-Szegő inequality can be stated as follows.

Lemma 2.10. [15, p.62] If $0 < n_1 \leq a_j \leq N_1$ and $0 < n_2 \leq b_j \leq N_2$ for $1 \leq j \leq k$, then

$$
\left(\sum_{j=1}^{k} a_j^2 \right)^{1/2} \left(\sum_{j=1}^{k} b_j^2 \right)^{1/2} \leq \frac{1}{2} \left(\sqrt{\frac{N_1N_2}{n_1n_2}} + \sqrt{\frac{N_1N_2}{n_1n_2}} \right) \left(\sum_{j=1}^{k} a_jb_j \right).
$$

Theorems 2.11, 2.12 and 2.13 will show the usefulness of Pólya-Szegő inequality to deduce lower bounds on GA_1, as well as the usefulness of Cauchy-Schwarz inequality to deduce upper bounds.
Theorem 2.11. For any graph G,

$$\frac{2\Delta \delta^2}{\Delta^2 + \delta^2} \sqrt{mR_{-1}(G)} \leq GA_1(G) \leq \Delta \sqrt{mR_{-1}(G)} ,$$

and each equality holds if and only if G is a regular graph.

Proof. First of all, Lemma 2.6 gives

$$\delta \leq \frac{2d_ud_v}{d_u + d_v} \leq \Delta. \quad (4)$$

We also have

$$\frac{1}{\Delta} \leq \frac{1}{\sqrt{d_ud_v}} \leq \frac{1}{\delta}. \quad (5)$$

These inequalities and Pólya-Szego inequality give

$$GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} \geq \left(\sum_{uv \in E(G)} \frac{1}{d_u + d_v} \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{(2d_ud_v)^2}{(d_u + d_v)^2} \right)^{1/2} \geq \frac{2\Delta \delta}{\Delta^2 + \delta^2} \sqrt{R_{-1}(G)} \left(\sum_{uv \in E(G)} \delta^2 \right)^{1/2} = \frac{2\Delta \delta^2}{\Delta^2 + \delta^2} \sqrt{mR_{-1}(G)} .$$

Cauchy-Schwarz inequality gives

$$GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_ud_v}}{d_u + d_v} \leq \left(\sum_{uv \in E(G)} \frac{1}{d_u + d_v} \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{(2d_ud_v)^2}{(d_u + d_v)^2} \right)^{1/2} \leq \sqrt{R_{-1}(G)} \left(\sum_{uv \in E(G)} \Delta^2 \right)^{1/2} = \Delta \sqrt{mR_{-1}(G)} .$$

If the graph is regular, then the lower and upper bounds are the same, and they are equal to $GA_1(G)$. If the equality holds in the lower bound, then the left hand side equality holds in (4), so that Lemma 2.6 gives $d_u = d_v = \delta$.
for every \(uv \in E(G) \); hence, \(d_u = \delta \) for every \(u \in V(G) \) and the graph is regular. Analogously, if the equality holds in the upper bound, then the right hand side equality holds in (4), so that Lemma 2.6 gives \(d_u = d_v = \Delta \) for every \(uv \in E(G) \) and we can conclude that \(d_u = \delta \) for every \(u \in V(G) \).

Theorem 2.12. For any graph \(G \),

\[
\frac{4\Delta^2 \delta^2 \sqrt{2\delta M_1(G)R_{-1}(G)}}{(\Delta^2 + \delta^2)(\delta + \Delta)^2} \leq GA_1(G) \leq \frac{\sqrt{2\Delta M_1(G)R_{-1}(G)}}{2},
\]

and each equality holds if and only if \(G \) is a regular graph.

Proof. Notice that

\[
GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \leq \sum_{uv \in E(G)} \frac{d_u + d_v}{2\sqrt{d_u d_v}}.
\]

Using the Cauchy-Schwarz inequality, we obtain

\[
GA_1(G) \leq \left(\sum_{uv \in E(G)} \frac{(d_u + d_v)^2}{4} \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{1}{d_u d_v} \right)^{1/2}.
\]

\[
\leq \left(\frac{\Delta}{2} \sum_{uv \in E(G)} (d_u + d_v) \right)^{1/2} (R_{-1}(G))^{1/2}
\]

\[
= \sqrt{\frac{\Delta M_1(G)R_{-1}(G)}{2}}.
\]

Let us prove the lower bound. Notice that

\[
\frac{2\sqrt{d_u d_v}}{d_u + d_v} = \frac{4d_u d_v}{(d_u + d_v)^2} \frac{d_u + d_v}{2\sqrt{d_u d_v}}.
\]

By Lemma 2.2, we have

\[
\frac{4\Delta \delta}{(\Delta + \delta)^2} \leq \frac{4d_u d_v}{(d_u + d_v)^2} \leq 1.
\]
Since
\[
2 \sqrt{d_u d_v} \geq \frac{4 \delta \Delta}{(\delta + \Delta)^2} \frac{d_u + d_v}{2 \sqrt{d_u d_v}},
\]
we have
\[
GA_1(G) \geq \frac{4 \delta \Delta}{(\delta + \Delta)^2} \sum_{uv \in E(G)} \frac{d_u + d_v}{2 \sqrt{d_u d_v}}.
\]
Since \(\delta \leq \frac{d_u + d_v}{2} \leq \Delta\), \(\frac{1}{\Delta} \leq \frac{1}{\sqrt{d_u d_v}} \leq \frac{1}{\delta}\), the Pólya-Szegö inequality gives
\[
\sum_{uv \in E(G)} \frac{d_u + d_v}{2 \sqrt{d_u d_v}} \geq \frac{\left(\sum_{uv \in E(G)} \left(\frac{d_u + d_v}{4} \right)^2 \right)^{1/2}}{\left(\sum_{uv \in E(G)} \frac{1}{d_u d_v} \right)^{1/2}} \frac{\Delta \delta \sqrt{2 \delta M_1(G) R_{-\alpha}(G)}}{\Delta^2 + \delta^2}.
\]
Therefore,
\[
GA_1(G) \geq \frac{4 \delta \Delta}{(\delta + \Delta)^2} \frac{\Delta \delta \sqrt{2 \delta M_1(G) R_{-\alpha}(G)}}{\Delta^2 + \delta^2}.
\]

If \(G\) is a regular graph, then the lower and upper bounds are the same, and they are equal to \(GA_1(G)\). If we have the equality in the upper bound, then \(d_u + d_v = 2\Delta\) for every \(uv \in E(G)\); hence, \(d_u = \Delta\) for every \(u \in V(G)\) and so the graph is regular. By analogy we can see that the equality in the upper leads to regularity of \(G\).

\[\Box\]

Theorem 2.13. For any graph \(G\) and \(\alpha > 0\),
\[
k_\alpha \sqrt{R_\alpha(G) R_{-\alpha}(G)} \leq GA_1(G) \leq \sqrt{R_\alpha(G) R_{-\alpha}(G)},
\]
with
\[
k_\alpha := \begin{cases}
\frac{2 \Delta^{1/2} \delta^{3/2}}{\Delta^2 + \delta^2}, & \text{if } 0 < \alpha \leq 1, \\
\frac{2 \Delta^{\alpha-1/2} \delta^{\alpha+1/2}}{\Delta^{2\alpha} + \delta^{2\alpha}}, & \text{if } \alpha \geq 1,
\end{cases}
\]
and each inequality holds only if \(G\) is a regular graph.
Proof. Cauchy-Schwarz inequality and Lemma 2.2 give

\[GA_1(G) = \sum_{uv \in E(G)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} \]

\[\leq \left(\sum_{uv \in E(G)} (d_u d_v)^{-\alpha} \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{4d_u d_v (d_u d_v)^{\alpha}}{(d_u + d_v)^2} \right)^{1/2} \]

\[\leq \left(\sum_{uv \in E(G)} (d_u d_v)^{-\alpha} \right)^{1/2} \left(\sum_{uv \in E(G)} (d_u d_v)^{\alpha} \right)^{1/2} \]

\[= \sqrt{R_\alpha(G) R_{-\alpha}(G)}. \]

Lemma 2.6 gives

\[\delta^\alpha \leq \frac{2d_u d_v}{d_u + d_v} (d_u d_v)^{(\alpha - 1)/2} \leq \Delta^\alpha, \quad \text{if } \alpha \geq 1, \]

\[\delta \Delta^{\alpha - 1} \leq \frac{2d_u d_v}{d_u + d_v} (d_u d_v)^{(\alpha - 1)/2} \leq \Delta \delta^{\alpha - 1}, \quad \text{if } 0 < \alpha \leq 1, \]

If \(\alpha \geq 1 \), then these inequalities, \(\Delta^{-\alpha} \leq (d_u d_v)^{-\alpha/2} \leq \delta^{-\alpha} \) and Lemmas 2.10 and 2.6 give

\[GA_1(G) = \sum_{uv \in E(G)} \frac{\sqrt{d_u d_v}}{d_u + d_v} \]

\[\geq \left(\sum_{uv \in E(G)} (d_u d_v)^{-\alpha} \right)^{1/2} \left(\sum_{uv \in E(G)} \frac{4(d_u d_v)^{2}}{(d_u + d_v)^2} (d_u d_v)^{(\alpha - 1)/2} \right)^{1/2} \]

\[\frac{1}{2} \left(\frac{\Delta^\alpha}{\delta^\alpha} + \frac{\delta^\alpha}{\Delta^\alpha} \right) \]

\[= \frac{2\Delta^\alpha \delta^\alpha}{\Delta^{2\alpha} + \delta^{2\alpha}} \sqrt{R_{-\alpha}(G)} \left(\sum_{uv \in E(G)} \frac{2d_u d_v}{d_u + d_v} d_u + d_v (d_u d_v)^{\alpha} \right)^{1/2} \]

\[\geq \frac{2\Delta^\alpha \delta^\alpha}{\Delta^{2\alpha} + \delta^{2\alpha}} \sqrt{R_{-\alpha}(G)} \left(\frac{\delta}{\Delta} \sum_{uv \in E(G)} (d_u d_v)^{\alpha} \right)^{1/2} \]

\[= \frac{2\Delta^{\alpha - 1/2} \delta^{\alpha + 1/2}}{\Delta^{2\alpha} + \delta^{2\alpha}} \sqrt{R_{\alpha}(G) R_{-\alpha}(G)}. \]

14
If $0 < \alpha \leq 1$, then similar computations (using the bounds for $0 < \alpha \leq 1$) give the lower bound.

If the graph is regular, then the two bounds are the same, and they are equal to $GA_1(G)$. If the lower bound is attained, then Lemma 2.6 gives $d_u = d_v = \delta$ for every $uv \in E(G)$ and we conclude $d_u = \delta$ for every $u \in V(G)$. If the lower bound is attained, then Lemma 2.6 gives $d_u = d_v = \Delta$ for every $uv \in E(G)$ and we conclude $d_u = \Delta$ for every $u \in V(G)$.

In [29, Theorem 4] appear the inequalities

$$\frac{2\delta^2}{\Delta^2 + \delta^2} \sqrt{M_2(G)R_{-1}(G)} \leq GA_1(G) \leq \sqrt{M_2(G)R_{-1}(G)}.$$

Theorem 2.13 generalizes these bounds. Furthermore, the following consequence of Theorem 2.13 (with $\alpha = 1$) improves the lower bound above.

Corollary 2.14. We have for any graph G

$$\frac{2\delta}{\Delta^2 + \delta^2} \sqrt{\delta M_2(G)R_{-1}(G)} \leq GA_1(G) \leq \sqrt{M_2(G)R_{-1}(G)},$$

and the equality is attained if and only if G is a regular graph.

The modified Narumi-Katayama index

$$NK^* = NK^*(G) = \prod_{u \in V(G)} d_u^{d_u} = \prod_{uv \in E(G)} d_u d_v$$

was introduced in [11], inspired in the Narumi-Katayama index defined in [22] (see also [12], [21]). Next, we prove some inequalities relating the modified Narumi-Katayama index with others topological indices.

Theorem 2.15. We have for any graph G and $\alpha \in \mathbb{R} \setminus \{0\}$

$$R_\alpha(G) \geq m NK^*(G)^{\alpha/m},$$

and the equality holds if and only if $(d_u d_v)$ has the same value for every $uv \in E(G)$.

Proof. Using the fact that the geometric mean is at most the arithmetic mean, we obtain

\[
\frac{1}{m} R_\alpha(G) = \frac{1}{m} \sum_{uv \in E(G)} (d_ud_v)^\alpha \geq \left(\prod_{uv \in E(G)} (d_ud_v)^\alpha \right)^{1/m} = NK^*(G)^{\alpha/m}.
\]

The equality holds if and only if \((d_ud_v)\) has the same value for every \(uv \in E(G)\).

Theorems 2.7 and 2.15 have the following consequence.

Corollary 2.16. We have for any graph \(G\) and \(\alpha \in \mathbb{R} \setminus \{0\}\)

\[
GA_1(G) \geq \delta^{-2\alpha} m NK^*(G)^{\alpha/m}, \quad \text{if } \alpha \leq -1/2,
\]

\[
GA_1(G) \geq \delta \Delta^{-2\alpha-1} m NK^*(G)^{\alpha/m}, \quad \text{if } \alpha \geq -1/2,
\]

and the equality holds if and only if \(G\) is regular.

References

[1] V. Andova, M. Petrusevski, Variable Zagreb indices and Karamata’s inequality, MATCH Commun. Math. Comput. Chem. 65 (2011) 685-690.

[2] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225-233.

[3] B. Borovicanin, B. Furtula, On extremal Zagreb indices of trees with given domination number, Appl. Math. Comput. 279 (2016) 208-218.

[4] K. C. Das, On comparing Zagreb indices of graphs, MATCH Commun. Math. Comput. Chem. 63 (2010) 433-440.

[5] K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Comput. Chem. 64 (2010) 619-630.

[6] K. C. Das, I. Gutman, B. Furtula, Survey on Geometric-Arithmetic Indices of Graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595-644.
[7] K. C. Das, I. Gutman, B. Furtula, On the first geometric-arithmetic index of graphs, *Discrete Appl. Math.* **159** (2011) 2030-2037.

[8] K. C. Das, N. Trinajstić, Comparison between first geometric-arithmetic index and atom-bond connectivity index, *Chem. Phys. Lett.* **497** (2010) 149-151.

[9] Z. Du, B. Zhou, N. Trinajstić, On geometric-arithmetic indices of (Molecular) Trees, Unicyclic Graphs and Bicyclic Graphs, *MATCH Commun. Math. Comput. Chem.* **66** (2011) 681-697.

[10] B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices, *Discr. Appl. Math.* **178** (2014) 83-88.

[11] M. Ghorbani, M. Songhori, I. Gutman, Modified Narumi-Katayama index, *Kragujevac J. Sci.* 34 (2012) 57-64.

[12] I. Gutman, A property of the simple topological index, *MATCH Commun. Math. Comput. Chem.* **25** (1990) 131-140.

[13] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.

[14] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, *Chem. Phys. Lett.* **17** (1972) 535-538.

[15] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities. Cambridge University Press, 1952.

[16] X. Li, I. Gutman, Mathematical Aspects of Randić Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.

[17] X. Li, Y. Shi, A survey on the Randić index, *MATCH Commun. Math. Comput. Chem.* **59** (2008) 127-156.

[18] M. Liu, A simple approach to order the first Zagreb indices of connected graphs, *MATCH Commun. Math. Comput. Chem.* **63** (2010) 425-432.

[19] A. Miličević, S. Nikolić, On variable Zagreb indices, *Croat. Chem. Acta* **77** (2004) 97-101.
[20] M. Mogharrab, G. H. Fath-Tabar, Some bounds on GA_1 index of graphs, \textit{MATCH Commun. Math. Comput. Chem.} \textbf{65} (2010) 33-38.

[21] H. Narumi, New topological indices for finite and infinite systems, \textit{MATCH Commun. Math. Comput. Chem.} \textbf{22} (1987) 195-207.

[22] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, \textit{Mem. Fac. Engin. Hokkaido Univ.} \textbf{16} (1984) 209-214.

[23] S. Nikolić, G. Kovačević, A. Milčević, N. Trinajstić, The Zagreb indices 30 years after, \textit{Croat. Chem. Acta} \textbf{76} (2003) 113-124.

[24] M. Randić, On characterization of molecular branching, \textit{J. Am. Chem. Soc.} \textbf{97} (1975) 6609-6615.

[25] J. M. Rodríguez, J. M. Sigarreta, On the geometric-arithmetic index, \textit{MATCH Commun. Math. Comput. Chem.} \textbf{74} (2015), 103-120.

[26] J. M. Rodríguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, \textit{Appl. Math. Comput.} \textbf{277} (2016), 142153.

[27] J. A. Rodríguez, J. M. Sigarreta, On the Randić index and condicional parameters of a graph, \textit{MATCH Commun. Math. Comput. Chem.} \textbf{54} (2005) 403-416.

[28] J. A. Rodríguez-Velázquez, J. Tomás-Andreu, On the Randic index of polymeric networks modelled by generalized Sierpinski graphs, \textit{MATCH Commun. Math. Comput. Chem.} \textbf{74} (2015) 145-160.

[29] J. M. Sigarreta, Bounds for the geometric-arithmetic index of a graph, \textit{Miskolc Math. Notes} \textbf{16} (2015) 1199-1212.

[30] TRC Thermodynamic Tables. Hydrocarbons; Thermodynamic Research Center, The Texas A & M University System: College Station, TX, 1987.

[31] M. Vőge, A. J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons, \textit{J. Chem. Inf. Comput. Sci.} \textbf{42} (2002) 456-466.
[32] D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, *J. Math. Chem.* 46 (2009) 1369-1376.

[33] H. Wiener, Structural determination of paraffin boiling points, *J. Am. Chem. Soc.* 69 (1947) 17-20.