Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases*

Received for publication, March 31, 2016, and in revised form, May 9, 2016 Published, JBC Papers in Press, May 23, 2016, DOI 10.1074/jbc.M116.730382

Marco Igor Valencia-Sánchez‡, Anna Rodriguez-Hernández‡‡, Ruben Ferreira§, Hugo Aníbal Santamaria-Suárez‡, Marcelino Arciniega†, Anne-Catherine Dock-Bregenő, Dino Moras**, Brice Beiné*‡, Heydyn Mertens**, Dmitri Svergun**, Luis G. Brieba*, Morton Grøtli§, and Alfredo Torres-Larios‡‡

From the 4Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Mexico City 04510, Mexico, the 5Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato 04510, Mexico, the 6Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden, the 1Laboratoire de Biologie Intégrative des Milieux Marins, CNRS UMR8227, 29680 Roscoff, France, the 2Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, CNRS UMR 7104, 1 Rue Laurent Fries, Illkirch, France, and the 41European Molecular Biology Laboratory, Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg 22603, Germany

Glycyl tRNA synthetase (GlyRS) provides a unique case among class II aminocyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α_2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form ($\alpha_3\beta_2$) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the $\alpha_3\beta_2$ GlyRS from the bacterium *Aquifex aeolicus* is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP. The crystal structure of the α-subunit in the complex with an analog of glycyl adenylate at 2.8 Å resolution presents a conformational arrangement that properly positions the cognate amino acid. This work shows that glycine is recognized by a subset of different residues in the two types of GlyRS. A structural and sequence analysis of class II catalytic domains shows that bacterial GlyRS is closely related to alanyl tRNA synthetase, which led us to define a new subclassification of these ancient enzymes and to propose an evolutionary path of $\alpha_2\beta_2$ GlyRS, convergent with α_2 GlyRS and divergent from AlaRS, thus providing a possible explanation for the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

Aminoacyl tRNA synthetases are ancient enzymes that attach cognate amino acids to their corresponding tRNAs (1–3). This task is performed in two steps as follows: amino acid activation with ATP, followed by attachment of the resulting aminoacyl adenylate to the cognate tRNA (4–6). According to their sequence and structural features, there are two main classes of non-related aaRSs, which evolved independently from two different domains corresponding to two modes of ATP binding (7–10). These classes are further divided into subclasses according to protein sequence, structural features of the catalytic domain, the presence of accessory domains, and similarity of amino acids (11–13). Most aaRSs are descended from a single ancestor (monophyletic); however, there are two clearly recognized exceptions, lysyl tRNA synthetase and GlyRS (2, 12, 14–16). GlyRS, a class II aaRS, can be found as an α_2 homodimer in eukarya, archaea, and some bacteria (14, 17–20) and as an $\alpha_3\beta_2$ heterotetramer in most bacteria and chloroplasts (21–23). Notably, the limited extent of the sequence conservation between the two forms does not allow inference to a common ancestor between them. Nonetheless, the catalytic domains contained in the α-subunits of both GlyRSs share the same fold (11, 14, 16, 22–24). The euarkyotic GlyRS belongs to the subclass Ila, specific for hydrophobic and small polar amino acids, with similarities with HisRS, ThrRS, ProRS, and SerRS.

* Authors declare that they have no conflicts of interest with the contents of this article.

†† M. I. V. S. and A. T. L. dedicate this work to Prof. Enrique Merino Pérez, IBT-de Genómica para la Biodiversidad, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato 04510, México, for his constant support and encouragement.

‡ Author’s Choice—Final version free via Creative Commons CC-BY license.

*† This article was selected as a Paper of the Week.

The atomic coordinates and structure factors (code 5SF5W) have been deposited in the Protein Data Bank (http://wwpdb.org/).

1 Recipient of a grant from CONACyT to perform graduate studies. Part of this work in was performed to fulfill the requirements of a doctoral dissertation in the Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México.

‡ Supported by a CONACyT postdoctoral fellowship.

§ Supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) Grants CB2015-253323 and PDCPN2014-47543 and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, Universidad Nacional Autónoma de México (PAPIIT-DGA) Grant IN202416. To whom correspondence should be addressed: Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, México D.F. 04510, México. Fax: 52-55-5622-5630; E-mail: torres@icf.unam.mx.

** The abbreviations used are: aaRS, aminoacyl tRNA synthetase; Gly-SA, GSA, or GSAd, 3^\prime-O-[N-γ-glycyl]sulfamoyl] adenosine; SAXS, small-angle x-ray scattering; TCS, transitive consistency score; SEC-MALS, size exclusion chromatography coupled to multiangle light scattering; PCA, principal component analysis; r.m.s.d., root mean square deviation; PDB, Protein Data Bank; GlyRS, glycyl tRNA synthetase; HisRS, histidyl tRNA synthetase; ThrRS, threonyl tRNA synthetase; ProRS, prolyl tRNA synthetase; SerRS, seryl tRNA synthetase; PheRS, phenylalanyl tRNA synthetase; AlaRS, alanyl tRNA synthetase; SepRS, phosphoserinyl tRNA synthetase; PyrRS, pyrrolylsyl tRNA synthetase.
Bacterial GlyRS, however, belongs to the subclass IIc, together with PheRS, AlaRS, SepRS, and PylRS, the most heterogeneous group of the three subclasses (25–27). However, there are some studies that place AlaRS or bacterial GlyRS within subclass IIa and/or do not consider the existence of two types of GlyRS belonging to different subclasses (28–32).

The ~35-kDa α-subunit of bacterial GlyRS contains the aminoacylation site (22, 24, 33, 34). However, no activity has been demonstrated for this domain alone, suggesting that the β-subunit is required for catalysis (21, 33, 35–37). The ~65-kDa β-subunit has the most important tRNA recognition elements but is not homologous to the anticondor binding domain of eukaryotic GlyRS (23, 37). Two crystal structures are available for the bacterial GlyRS α-subunit in the apo-conformation (PDB entries 3rf1 and 1j5w), leaving unclear whether the recognition details of the small substrates, glycine and ATP, are shared by the two types of enzymes.

Here, we show that the bacterial GlyRS α-subunit, which has all of the molecular determinants needed for the first step of the reaction, is indeed able to perform this catalysis. The crystal structure of this subunit in complex with an analog of glycyl adenylate (5’-O-[N-(l-glycyl)sulfamoyl] adenosine, also known as Gly-SA, G5A, or GSAd) allows the conformational changes correlated with glycine recognition to be defined. A comparison of the α-subunit of bacterial GlyRS with the activation domain of archaeal and eukaryotic GlyRS establishes that the two classes of GlyRS employ different chemical strategies to recognize glycine as a substrate. Moreover, a structural and sequence analysis performed on the activation domain of class II aaRS defines a new subclass IId, comprising AlaRS and bacterial αβ2 GlyRS. This consequently modifies subclass IIC to contain (αβ2)PheRS, SepRS, and possibly PylRS. This classification standing on common structural motifs and active site residues in class IId enzymes allows us to propose a divergence of bacterial GlyRS from AlaRS, which resolves the puzzling existence of two proteins sharing the same fold and function but not a common ancestor.

Results

α-Subunit of Bacterial GlyRS Is Able to Perform the Amino Acid Activation—We were able to obtain highly purified α-subunit GlyRS of the hyperthermophilic bacterium Aquifex aeolicus (α-AaGlyRS) by means of a heat treatment and an anisogenic His tag affinity chromatography step. A final purification step using size exclusion chromatography coupled to multiangle light scattering (SEC-MALS) indicated a homogenous dimeric population of 69.1 kDa (theoretical mass = 67.4 kDa), in agreement with previous reports (21, 36). Small angle x-ray scattering (SAXS) further confirmed the dimeric nature of the ensemble. Because of the evolutionary conservation of all amino acids involved in glycine activation (see below), we speculated that the α-subunit alone would be able to catalyze the first step of the reaction, the attachment of glycine to ATP. With the use of an alternative method based on thin layer chromatography to monitor the activity, we found that α-AaGlyRS was indeed able to perform the first step of aminoacylation (Fig. 1). In contradiction with previous reports, the α-subunit showed weak activity at pH values ranging from 6.0 to 8.0 and glycine concentrations from 80 μM to 10 mM. Under the best possible reaction conditions, the observed k_{cat} for glycine was 0.11 ± 0.016 mM, similar to a previously reported value for the full-length Escherichia coli enzyme (21). Nevertheless, the k_{cat} reaction was extremely slow, only 2.3×10^{-4} s$^{-1}$. Previous studies have performed an ATP-PP, exchange assay, which follows the reverse reaction of incorporation of 32P from PPγS into ATP (21, 33, 35–37), whereas in our study the Gly-AMP synthesis was measured directly. These findings provide biological relevance to our reported crystal structure (see below) and support the functional existence of an αβ2 quaternary structure, rather than an (αβ2)4 organization.

Binding to a Transition State Analog Promotes Conformational Changes in the α-Subunit of Bacterial GlyRS—To understand amino acid and nucleotide recognition in bacterial GlyRS, we solved the crystal structure of α-AaGlyRS in complex with GSAd at 2.81 Å resolution (Table 1). The electron density map unambiguously showed all features of the bound GSAd and its molecular surroundings in all five molecules in the asymmetric unit (Fig. 2B).

As shown previously (PDB code 1j5w (24)), the α-subunit forms a homodimer (Fig. 2A), with 58% of its 2492 Å2 interface formed by a 97-residue helical region located at the C-terminal part of the subunit and situated on top of the signature antiparallel β-strand of class II synthetases. Further details on the description of the general architecture of this subunit have been given previously (24).

Comparison of α-AaGlyRS with previously solved structures of this subunit in the apo-form reveals conformational changes in the region formed by residues 112–123 (Fig. 2, C and D). This segment is the topological equivalent of the so-called amino acid loop found in HisRS, ProRS, ThrRS, SerRS, and eukaryotic GlyRS (38). Here, the movement of this region causes an ~5 Å displacement of Trp-115 when compared with the apo structure, allowing it to form a cation–π interaction with the glycine moiety of GSAd (Fig. 2D, see below) and to form a hydrogen bond with the O1S atom of GSAd (equivalent to the O1P atom of the cognate Gly-AMP (Fig. 3D)). As a result, the size of the active site pocket is reduced from an area and volume of 706 Å2 and 960 Å3 to 451 Å2 and 636 Å3.

In correlation with this movement, thermal shift assays showed a displacement of the T_m values of α-AaGlyRS in the presence of GSAd, from 83.2 °C (no ligand) to 92.3 °C (8 mM GSAd). We could not detect significant changes in the presence of glycine, ATP, or ATP + glycine. The reported crystal structure of the α-subunit of bacterial GlyRS shows a productive, biologically meaningful complex that allows the recognition mechanisms in the two types of GlyRS to be compared.

Mechanism of Glycine Recognition Differs in the Two Types of Known GlyRS—Although nucleotide recognition shows common features in both types of GlyRSs (Fig. 3), critical differences are found at the amino acid recognition level, which is centered on the amino group. In eukaryotic GlyRS, the amino group is recognized by three conserved and negatively charged glutamic acid residues (Glu-522, Glu-296, and Glu-245 in PDB code 2tz8) (Fig. 4, A and C) (39). In contrast, in the bacterial type GlyRS, the amino group is recognized through five conserved different residues (Trp-115, Gln-76, Gln-78, Thr-33, and Gln-78) and

$\text{Insights into the Polyphyletic Origins of GlyRSs}$
Interestingly, Gln-76 interacts directly with the glycine carbonyl group and also with the amino moiety through hydrogen bonding, with Gln-78, of a solvent molecule (Fig. 4D). The amino group of GSAd also interacts with the side chains of Thr-33 and Glu-156 (Fig. 4, B and D).

The differences with eukaryotic GlyRS are also extended to the region of the amino acid loop. In eukaryotic GlyRS, the hydroxyl group of a non-conserved Tyr-386 contacts the carbonyl group of GSAd (Fig. 4E). In contrast, in bacterial GlyRS, an absolutely conserved Trp-115 makes a clear cation-π interaction with the amino moiety of GSAd and also contacts the O1S atom of GSAd (Figs. 2D and 4E).

In addition, in eukaryotic GlyRS, the binding of the noncognate alanine is prevented in part by a non-conserved Ser (or Ala) residue (524) and the highly negatively charged recognition cavity (Fig. 4, C and F). In contrast, in bacterial GlyRS, this steric hindrance is made by a pair of highly conserved Thr residues (158 and 140) together with a nearby solvent molecule (Fig. 4F).

The structural sequence alignment combined with multiple sequence alignments indicate seven highly conserved residues that are shared by the two types of GlyRS (Fig. 3B). Five of these...
are involved in ATP recognition, and as such, these residues are highly conserved and shared by many aaRSs. There is only one residue that is shared by the two types of GlyRS for the recognition of glycine (Glu-156 in bacterial GlyRS and Glu-522 in eukaryotic GlyRS). Not another single residue is shared in any other region of the catalytic domain. Comparison of the electrostatic potentials within the glycine binding pockets shows a highly negatively charged region in eukaryotic GlyRS and a less polar environment in bacterial GlyRS. The comparison of the two types of GlyRSs and further analysis as shown below indicate that their differences are so profound, up to the level of amino acid recognition, that it is extremely unlikely for them to share a common ancestor, even when their catalytic domains have the same overall fold.

Bacterial GlyRS Presents Key Differences Compared with Other Class II Synthetases—A hallmark of class II synthetases is the presence of key residues located in each of their three characteristic motifs (Fig. 5A) (7). In bacterial GlyRS, the signature sequence of motif 2, formed by the first two strands of the antiparallel β-sheet that forms the floor of the active site, presents several changes compared with the consensus sequence (Fig. 5B). In particular, there are three key differences. 1) Unique to bacterial GlyRS, an arginine residue (Arg57) is located where a hydrophobic residue is otherwise always present (Fig. 5, A–C). Additionally, an Arg residue makes a salt bridge with two highly conserved Asp residues (Fig. 5C). In the rest of class II synthetases, a Phe, Tyr, Val, or His residue helps to stabilize a hydrophobic region located at the dimeric interface (Fig. 5C). 2) Similar to AlaRS, there is an insertion (Pro-59 in bacterial GlyRS and two to six residues in AlaRS) between an absolutely conserved Arg and an acidic residue (Fig. 5, A and B). 3) In many aaRSs, a fully conserved acidic residue recognizes the amino moiety of the cognate amino acid (Fig. 5, A, B and D). In bacterial GlyRS, AlaRS, HisRS, SepRS, and PylRS, another residue occupies this position (Fig. 5B). In bacterial GlyRS, a glutamine residue is substituted in place of this acidic residue (Fig. 5, A, B and D). In α-AaGlyRS, Gln-78 makes a hydrogen bond with a solvent molecule that interacts with the amino moiety of the cognate glycine (Fig. 5D). These sequence-structure observations confirm that bacterial GlyRS has non-canonical features that are somewhat shared with other atypical aaRSs, like AlaRS, and not with eukaryal GlyRS.

Bacterial GlyRS and AlaRS Form a Structural Subclass of aaRS—To gain further insight into the evolutionary origin of bacterial GlyRS, we performed pairwise structural alignments of the catalytic core (proposed to reflect the primordial synthetase (40)), among the available crystal structures of all types of class II aaRS using two different algorithms (Dali (41) and...
STAMP (42)). We also performed a multiple sequence alignment using the structural information through T-Coffee Expresso (43). Finally, we performed a principal component analysis (PCA) on the Cα atoms of 80 residue cores common to the structure of class II aaRSs, according to the algorithm implemented in Bio3D (44). The information derived from each of the four approaches is summarized in Figs. 6–10, Tables 2 and 3, and supplemental Figs. S1 and S2. We were able to clearly identify four subclasses of class II aaRSs. These subclasses could be defined either using the whole catalytic domain just devoid of big insertions (Fig. 6, Table 2, and supplemental Figs. S1 and S2) or a small Cα core of 80 atoms (Figs. 7–10). The analysis of the Cα core of 80 atoms showed that the main differences between the groups are found in two helical regions and one β-strand (PC1 and PC2, residues 16–22, 46–58, and 61–64 of the Cα core, Figs. 7 and 9A). Notably, the PCA analysis (Fig. 9) shows that only these two components, which together account for almost 50% of the structural variance of the core between the class II structures (Fig. 9B), allow us to define a clear separation between the subgroups, most importantly, the group formed by bacterial GlyRS and AlaRS and the rest of class II aaRSs (Figs. 9C and 10). The four subgroups are maintained even if bacterial GlyRS or AlaRS is removed from the PCA. At the whole catalytic domain level, the superposition of representatives of the four subclasses shows a general fold agreement (Fig. 6, average Dali Z-score of 13.4). A closer approach allows us to visualize the differences among the four established divisions (groups with Dali Z-scores equal to or higher than 18.5, which turned out to be equal to the branches of the STAMP analysis based on r.m.s.d.) and the agreement between them (Fig. 6, Table 2, and supplemental Fig. S1). Each subclass is mostly defined by the relative angles of two helices located at the back of the active site (subclass IIa versus IIb), by the length of these helices (subclass IIa and IIb versus IIc and IID), or by the length and relative orientation of three strands of the active site β-sheet (subclass IIc versus IID). Notably, each subclass is in full agreement with previously proposed divisions. However, subclass Iic is now divided in two distinct subclasses: Iic, including PheRS, SerRS, and possibly PylRS, which groups with subclass IIc according to the structural classification (Figs. 8–10 and supplemental Fig. S1) but with subclass IIb according to the sequence analysis (supplemental Fig. S2). The other subclass, IID, includes AlaRS and bacterial GlyRS, which match not only in helical length but also the length and orientation of three strands of the active site β-sheet (Fig. 11).

Bacterial GlyRS and AlaRS Share Key Residues Important for Both Protein Structure and Substrate Recognition—The structural sequence alignment coupled with multiple sequence alignments (Fig. 11, A and B) indicate that there are 15 residues either absolutely or highly conserved by bacterial GlyRS and AlaRS. Five of these are involved in ATP recognition (Fig. 11, B and C). Outside of this, the amino acid recognition region surprisingly revealed that the equivalent of Trp-115 in bacterial GlyRS is also found in AlaRS (Trp-192, PDB code 2zzg) (Fig. 11, B, C and E) (45). This residue is absolutely conserved in AlaRSs from all domains of life and bacterial GlyRS and only in these synthetases. Notably, there is a conformational change in the region of Trp-192 in AlaRS in response to ligand binding (45),
similar to the one seen in bacterial GlyRS. There is also a highly conserved Ala-31 (Ala-99 in AlaRS), which is 4 Å from Trp-115 (Fig. 11, B and E), besides an equivalent of Glu-156 (Asp-248 in AlaRS) that recognizes the amino group of the cognate amino acid (Fig. 11D) complements the remarkable similarities in the active site cavity. Interestingly, a partial solvent-mediated recognition of the amino group is also found, for example, in ThrRS (46).

Furthermore, there are four residues, outside the active site cavity, that are highly conserved in AlaRS and bacterial GlyRS (Fig. 11, B and F). These amino acids are Phe-13, Gly-124, Tyr-141, and Gln-143 in bacterial GlyRS, which correspond to Phe-69, Gly-199, Phe-216, and Gln-218 in AlaRS (Fig. 11, B and F). As mentioned previously, there are no such residues, indicative of a much higher sequence-structure relatedness, in the comparison of both types of GlyRS.

Taken together, the structural and sequence similarities between the catalytic domains of AlaRS and bacterial GlyRS demonstrate a greater degree of conservation than that observed between the two types of GlyRSs. These similarities and differences allow for a new subclass of aaRSs to be defined that is clearly different from any other subgroup.

Discussion

In this work, we explored three long-standing questions regarding bacterial GlyRS. The first was based on previous experimental evidence suggesting that the full $\alpha_2\beta_2$ tetramer was needed for any reaction step. The second concerned the comparison of substrate recognition and the active sites of the two types of GlyRSs at the molecular level. Finally, the third question deals with the subclassification of class IIc aaRSs and the possible origin of bacterial GlyRS.

![Image](http://www.jbc.org/Downloadedfrom/insights-into-the-polyphyletic-origins-of-glyrs)
Subunit of Bacterial GlyRS Is Dimeric and Active for the First Step of Aminoacylation—The \(\alpha \)-subunit of bacterial GlyRS contains all the determinants for aminoacyl-adenylate synthesis, and here we show that the activation of glycine can indeed take place with this chain alone. Given the high sequence conservation of this subunit in bacteria (Pfam family PF2091), it is likely that the same observation would apply to all available enzymes.

The rigorous purification of the \(\alpha \)-subunit, which included a heating step to 75 °C for 30 min (\(T_m \) of the \(\alpha \)-subunit 83.2 °C, according to thermal shift assays), nickel-nitrilotriacetic acid affinity purification in the presence of relatively high amounts of salts (1M KCl and 0.5M urea), and SEC-MALS purification, allowed us to obtain a homogeneous dimeric population of 69.1-kDa protein, free of even trace amounts of higher molecular weight complexes. Previous works have reported that the \(\alpha \)-subunit of bacterial GlyRS contains the aminoacyl adenylate synthesis site, but, unlike this study, no activity had been seen. These findings also support the functional existence of a \((\alpha_2\beta_2) \) quaternary structure for bacterial GlyRS, rather than an \((\alpha\beta)_2 \) organization, as seen in most PheRSs (47).

Two Types of GlyRS Recognize Glycine in Distinct Ways—The crystal structure of a bacterial GlyRS \(\alpha \)-subunit in a complex with GSAd allows comparison between both types of GlyRS. To function in a meaningful biological context, these synthetases must exclude any amino acid other than glycine, including the
near-cognate alanine. This recognition problem was solved in different ways by the two types of GlyRSs, which further highlight their distinct origin.

Both types of GlyRSs share 1) the same basic architecture of class II synthetases, a six-stranded antiparallel β-sheet. However, the active site domains are not similar enough to share the same subclass, 2) the same ATP-binding site, which is a common feature of all class II synthetases, built using residues of the characteristic motifs 2 and 3. However, the motif 2 signature is different in the two types of GlyRSs, 3) a glutamic acid residue (Glu-156) that helps to recognize the amino moiety of the cognate amino acid glycine.

Beyond these general similarities, there are key differences at the molecular level between the two types of GlyRSs. First, other than the class II antiparallel β-sheet, there are no other structural elements or residues shared by the two types of GlyRS in this domain. Second, the character of the eukaryotic GlyRS dimerization interface is mainly hydrophobic like most class II synthetases, whereas that of the bacterial GlyRS is stabilized by a number of salt bridges. Third, the most impressive difference between the two classes of GlyRSs is their highly distinct strategies for amino acid recognition. Whereas bacterial GlyRS interacts with the amino group of glycine through five absolutely conserved residues, eukaryotic GlyRS uses three absolutely conserved glutamic acids, creating an electronegative pocket, to perform this task. To further illustrate the different character of this region, an absolutely conserved residue in eukaryotic GlyRS (Arg-410) that interacts with two highly conserved residues, Glu-245 and Glu-522, is substituted by a highly conserved Phe (142) in bacterial GlyRS.

The dynamics of the reaction, exemplified by the amino acid loop and its topological analog in bacterial GlyRS, also differs in both types of GlyRS. In eukaryotic GlyRS, the hydroxyl group of a non-conserved Tyr residue contacts the carboxyl moiety of the cognate glycine. In bacterial GlyRS, an absolutely conserved Trp (115) residue closes the amino acid binding cavity, forming a cation-π interaction with the amino group of the cognate glycine. Finally, the discrimination of the near-cognate alanine is made in bacterial GlyRS by two nearly absolutely conserved Thr residues (140 and 158) that also bind a solvent molecule, although in eukaryotic GlyRS this task is done mainly through a non-conserved Ser or Ala residue (524), equivalent of Thr-158 (Fig. 4B). The equivalent of Thr-140 is a non-conserved position (Ala, His, or Ser-408) in eukaryotic GlyRS.

Such disparate differences have only been partially observed until now in the case of SerRSs, where a subset of methanogenic archaea possesses a SerRS with different amino acid recognition elements than those found in the majority of SerRSs (48). However, in this case, both types of SerRS appear to belong to subclass IIa of aaRSs (Figs. 8, 9C, and 10 and PDB entries 2dq0 and 2c9). Overall, the features of the homologous catalytic core of the two types of GlyRSs are so different that it is extremely unlikely for them to share a common origin.
There Are Four Structural Subclasses of Class II aaRSs—We used the standard accepted structure and sequence comparison methods to detect structural relationships, including the following: an all-against-all similarity matrix using Dali Z-scores; a dendrogram built according to the overall Cα r.m.s.d. values derived from the STAMP superposition algorithm (42) as implemented in MultiSeq (51, 52); a PCA and r.m.s.d. dendrogram based on a conserved core of 80 Cα atoms using bio3D (44); and a dendrogram built with PhyML (53) according to a weighted multiple sequence alignment made using structural information, as implemented in T-Coffee Expresso (43) and validated using Transitive Consistency Score (TCS) (54). Using these tools and the crystal structures from several species and in complex with different ligands, we were able to define four different class II divisions that are in general agreement with previous proposals. We made this classification proposal based mainly on the structural features of a monomeric catalytic core. Remarkably, even if this core is reduced to a minimal structure of 80 Cα atoms, it is still possible to define the four subclasses. It is noteworthy that the new adjustment of class IIc and IId takes into account the physicochemical character of the cognate amino acids, the aminoacylation site, and correct quaternary structures among the four proposed subclasses (Table 3). PheRS and SepRS are clear functional outsiders from the subclass IId (AlaRS and bacterial GlyRS); the corresponding amino acids are much bigger than Ala and Gly; the aminoacylation sites are different (3'-OH for AlaRS and GlyRS and 2'-OH for Phe and SepRS (27)), and the quaternary structures are also different, most notably between bacterial GlyRS (αβ)2 and PheRS (αβ)2 (Table 3). In this way, subclasses IIc and IId encompass much more homogeneous and coherent members, as opposed to the previous subclass IIc, which included a wide variety of aaRSs (25–27).

These analyses define a clear subgroup for AlaRS and bacterial GlyRS. According to the sequence analysis, however, it is less clear how to classify PylRS, which has been suggested to

Subclass	Type of amino acid	Amino acid	Quaternary structure	aa site1 (outliers)2	Particular Features3	Post transfer editing4
IId	charged and large	Asp	α2	3'	ACBD5 shared with Ala and LysRS	
Iic	large	Phe (αβ)2	2'	1	Tyr	
Ic	hydrophobic and small	Ala	α2	3' 3	Helicoidal domain on the C-ter6	Gly, Ser

Table 3: Proposed subgroups of class II aaRSs

1. Aminoacylation site (2' or 3' OH of the terminal ribose of the cognate tRNA).
2. Number of residues in motif two that do not agree with the canonical sequence.
3. Although this proposed classification is based solely on the structural and sequence features of the catalytic core of class IIaaRSs, there are some characteristics that are shared among its members.
4. ACBD is anticodon binding domain.
5. Editing carried out after the first step of the reaction against standard amino acids.
6. PylRS can be either subclass IIc according to the structural analysis or subclass IId according to the sequence analysis. It is placed in the frontier in this table because of the aminoacylation site properties of PheRS and SepRS, which are different from PylRS.
the main differences shown in RMSF (root mean square fluctuations) plot. (68). An r.m.s.d. and a PCA, shown in Figs. 8 and 9, were performed using the Bio3D package in R to determine the invariant core of class II aaRSs using the structural features of the conserved core of 80 Cα atoms of class II aaRSs. 39 structures from the alignment described in Fig. 6 were further trimmed, and the largest positional differences were excluded to determine the invariant core of class II aaRSs using the Bio3D package in R (68). An r.m.s.d. and a PCA, shown in Figs. 8 and 9, were performed using the 80 residues core depicted in C. A histogram of pairwise r.m.s.d. values B, root mean square fluctuations (RMSF) plot. C, location on the 80-residue core of the main differences shown in B.

belong to subclass IIc (55) (consistent with our structure-based classification) or IIIb (56) (as in our sequence analysis). There also appears to be a discrepancy in the case of HisRS at the sequence level. However, HisRS can be confidently placed in class IIa due to the presence of an anticodon recognition domain located on the C-terminal region, which is another signature of this subclass.

Recent phylogenetic trees have not commented on the proposed subdivision (27, 55). However, a relationship between AlaRS and bacterial GlyRS has even been suggested based on the insertions in the catalytic core and the C-terminal helical domain (57, 58). To address this, in this work we presented a complete analysis of all class II synthetases, defined a new subclass, and explored the similarities between AlaRS and bacterial GlyRS.

Bacterial GlyRS and AlaRS Are Highly Related—In contrast to its comparison with eukaryal GlyRS, bacterial GlyRS shares several key features with AlaRS. First, these two enzymes display similar catalytic cores whose architectures are distinct from other subclasses. Second, they present a similarly modified motif 2 signature: an insertion between an Arg and an acidic residue and a variation in this position of Glu for Asp, where the overwhelming consensus is a Glu residue in most class II aaRSs. Third, in the active site, they share the same strategy for the recognition of the amino group. Fourth, they share an absolutely conserved Trp involved in the recognition of the cognate amino acids and a highly conserved Ala in the vicinity of this site. An interesting case of a structural/functional convergence is seen in this particular feature in methanogenic archaea SerRS, where a different motif approaches a Trp (396) in a different conformation but with the same apparent role (PDB code 2cj9). Fifth, outside of the active site, AlaRS and bacterial GlyRS share four other highly conserved residues.

Proposed Models for the Origin of the Two Types of GlyRS—GlyRSs exhibit an unusual scenario for two enzymes with the same activity and the same overall fold of the catalytic domain. In most cases, these similarities would indicate that they share a common origin. Accordingly, we may consider different scenarios for the structural source of the catalytic core of GlyRSs as follows. 1) A single common ancestor, where an initial α1β2 GlyRS gave rise to another GlyRS α2 or vice versa. We consider this hypothesis unlikely, according to the analysis presented in this work. 2) Two different ancestors with an emergence of a dimeric eukaryotic type α2 from an ancient ancestor for all class II synthetases and another emergence of α1β2 GlyRS from AlaRS or a pre-AlaRS.

We believe there are several points that support this second hypothesis. First, there is high structural and sequence similarity between the catalytic cores of AlaRS and bacterial GlyRS. Second, the amino acids Ala and Gly are related in nature, only differing by one methyl group and thus may be recognized in a similar manner. In fact, it is possible to delineate changes in bacterial GlyRS in the positions of Thr-158, Thr-140, and/or Glu-256 or in the equivalent and absolutely conserved Gly-250, Val-215, and Asp-248 positions of AlaRS to partially interconvert the amino acid specificity (45, 59). Third, AlaRS presents editing activity against Gly and Ser to cope with the misincorporation of these amino acids (1/300 for Ser and 1/170 for Gly) in the active site (60). It is possible that a pre-AlaRS, able to aminoacylate both Ala and Gly, may have given rise to GlyRS. Taken together, we favor that the second scenario would more easily solve the paradox of the presence of two proteins with the same function and sharing the same primordial fold but not a single common ancestor. The two types of GlyRS represent a beautiful case of iso-functional paralogs between species (61).

Experimental Procedures

Protein Purification

The cDNA coding for α-AaGlyRS was synthesized by GenScript, optimized according to *E. coli* codon frequency, and subcloned into the pET-28 vector (Novagen). Recombinant α-
AaGlyRS was expressed with an N-terminal His6 affinity purification tag in *E. coli* BL21(DE3) cells. Cells were grown at 37 °C until an *A*$_{600}$ of 1.0 was reached. At that time, cells were induced for 10 h with a final concentration of 1 mM isopropyl β-D-thiogalactopyranoside at 37 °C and were harvested by centrifugation (5515 × g for 20 min). The resulting cell pellet from 2 liters of culture was frozen at −80 °C until needed. For α-AaGlyRS purification, the cell pellet was thawed and then resuspended in 20 ml of buffer A (50 mM sodium phosphate, pH 6.3, 100 mM potassium chloride, 1 mM MgCl$_2$). Cells were lysed by sonication on ice and then centrifuged at 20,410 × g for 30 min. The resulting supernatant was heated at 75 °C for 30 min and then centrifuged again at 20,410 × g for 30 min. The supernatant was supplemented with the following additives: 1 M KCl, 0.5 M urea, 50 mM imidazole, and 10% glycerol (final concentrations) and applied to a 5-ml Ni$^{2+}$-Sepharose FF column (GE Healthcare) connected to an Äkta FPLC system (GE Healthcare). The column was then washed with buffer A plus additives to remove nonspecifically bound proteins. The target protein was eluted with a 100-ml gradient of buffer A plus 500 mM imidazole. Fractions containing α-AaGlyRS were pooled and concentrated (Amicon Ultra-filter Millipore, 30 kDa) to 15 mg/ml. The protein was 99% pure as judged by denaturing gel electrophoresis. The protein was loaded onto a size exclusion chromatography Superdex S-75 10/300 analytical column (GE Healthcare) connected to DAWN Heleos-II and Optilab RI detectors (Wyatt Technologies). The column was run at a flow rate of 0.5 ml/min. One peak was eluted that included 99.9% of the injected mass and corresponded to the dimeric form of α-AaGlyRS, according to the light scattering measurements. Prior to crystallization, the protein was desalted into 20 mM HEPES, pH 7.2, 50 mM NaCl, and 1 mM DTT.

Crystallization and Structure Determination

Crystals of α-AaGlyRS were obtained by sitting-drop vapor diffusion. Drops containing 1 μl of α-AaGlyRS at 15 mg/ml yielded crystals at 18 °C when mixed with 1 μl of a reservoir solution containing 30% polyethylene glycol monomethyl ether 2000 and 100 mM potassium thiocyanate. Crystals were soaked for 2 days in a solution containing a final concentration of 28 mM GSAd by mixing 1.3 μl of the drop containing crystals, 2.5 μl of reservoir solution, and 1.5 μl of GSAd at 100 mM. The synthesis of GSAd was performed as described previously (62). Crystals were cryoprotected in a solution prepared with the mother liquor supplemented with 15% glycerol and then flash-frozen in liquid nitrogen. Diffraction data were collected at 100
K using a wavelength of 0.9785 Å at the Life Sciences Collaborative Access Team (LS-CAT) 21-ID-G beamline at the Advanced Photon Source (Argonne National Laboratory, Argonne, IL). Data were indexed and processed with iMOSFLM (63) and reduced with Aimless (64). The structure was solved by molecular replacement using Balbes (65), with a final search model based on the structure of the GlyRS from *Thermotoga maritima* (PDB code 1j5w). There are five monomers in the asymmetric unit, with a crystal solvent content of 57%. The initial R_free was 0.35. The ligand GSAd was fitted by means of the LigandFit program of the PHENIX suite (66). Refinement was alternated with manual building/refinement in COOT (67), PHENIX, and the PDB_REDO server (68). Non-crystallographic symmetry restraints were used for the refinement. The model presents no Ramachandran outliers, with 1355 residues (97%) on the favored and 36 residues (3%) on the allowed regions. B-factor refinement was limited to one value per amino acid. Monomers A and B present the best adjustment to the electron density according to the wwPDB validation report (0 residues with RSR-Z scores >2), and all figures were prepared using these monomers as templates. Two solvent molecules were located near the glycine recognition site. They could be well fitted and seen on double difference and omit maps for monomer B, and they can be seen as peaks bigger

FIGURE 9. Bacterial GlyRS and AlaRS form a subclass of aaRSs. **A,** contribution of each of the 80 residues Cα core, as defined in the analysis described in Fig. 7, to the first two principal components found. **B,** contribution of each component to the total variance of the distribution of structures. **C,** plot along PC1 and PC2, which describe the change that covers 49% of the structural variance in class II aaRSs.
than 3.5σ on difference, $F_o - F_c$ electron density maps on the four other monomers. No other solvent molecules were added to the model. σA-weighted $2F_o - F_c$-simulated annealing omit maps were used to validate further the quality of the model. Data collection and refinement statistics are summarized in Table 1. Analysis of the interface was performed with the PISA server (69). Because of the absence of ideal geometric parameters from MSDchem, the geometry of the GSAd ligand was adjusted to that observed in PDB code 3hy0 (structure of catalytic fragment of E.coli AlaRS in the complex with GlySA). Validation of the GSAd ligand was performed with the ValLigURL server (70). Figures were prepared with PyMOL (The PyMOL Molecular Graphics System, Version 1.7.4, Schrödinger, LLC).

Thermal Shift Assays

According to the protocol of Ref. 71, purified α-AaGlyRS in 25 mM NaH$_2$PO$_4$, 25 mM KCl, and 10 mM MgCl$_2$, at a final concentration of 1 mg/ml, was mixed with different concentrations of ligands and a 1:100 dilution of SYPRO Orange dye (Invitrogen) in a final volume of 10 μl. The dye was excited at 490 nm and the emitted light intensity was recorded at 575 nm. Data were collected at 1 °C intervals from 25 to 99 °C on a StepOnePlus real time PCR system and analyzed using the Protein Thermal Shift software from Applied Biosystems. No significant differences were detected using three different values of pH (5, 7, and 8). Assays were performed in triplicate.

Measurements of SAXS Data

Data collection for SAXS of α-AaGlyRS was performed following standard procedures in the European Molecular Biology Laboratory (EMBL) on the storage ring Petra III (DESY, Hamburg, Germany) on the P12 beamline (72). The scattered intensity was recorded as a function of the scattering vector s using a wavelength of 0.124 nm at 23 °C. The measurements were carried out in 30 mM HEPES, pH 7.4, 25 mM NaCl, and 1 mM DTT, with exposure times of 20 × 0.05 s. The average of the data was normalized and subtracted the scattering attributed to the solvent using automatic procedures (73). The SAXS data were processed using PRIMUS (73), where the values of the forward scattering intensity I_0 and radii of gyration R_g were evaluated from the experimental SAXS patterns using the Guinier approximation; these parameters were also computed from the entire scattering curve using Porod’s law by the calculation of the distance distribution function $P(r)$ using the program
GNOM (74). Three different approaches were used to determine the molecular weight as follows: the I_0 value, the Porod volume (from the Pr function), and the excluded volume (from DAMMIF calculations). The low resolution shape was reconstructed \textit{ab initio} by the DAMMIF method (75). The theoretical SAXS patterns of dimer and monomer from the crystallographic structure were predicted using CRYSOL (76) and were compared graphically with the experimental data using Sasplot (73). The missing flexible residues of the His tag/tobacco etch virus were modeled using Coral (77). The crystallographic structure with the flexible residues was superposed with the \textit{ab initio} envelope using Supcomb (78).

Activity Assays

Glycine Activation—The first step of the aminoacylation reaction was measured using a previously described method to quantify the synthesis of aminoacyl-adenylate (79). Reaction conditions were initially screened for optimization of pH, enzyme, ATP, and glycine concentrations. The final reaction mix contained the α-subunit of Aa-GlyRS at 40 μM in 50 mM Tris, pH 8.0, 50 mM KCl, 10 mM MgCl$_2$, 0.5 mM ATP, 0.25 μCi of $[\alpha-32P]$ATP and varying concentrations of glycine. Reactions were pre-incubated for 5 min at 45 °C and started by the addition of enzyme. 1-μl time points were quenched in 4 μl of buffer containing 0.1% SDS and 400 mM sodium acetate, pH 5.2. 2-μl aliquots were spotted on pre-washed PEI-cellulose thin layer chromatography (TLC) plates and developed in 0.1M ammonium acetate, 5% acetic acid solution. The TLC plates were dried and exposed to a phosphor-screen overnight to monitor Gly-$[32P]$AMP, $[32P]$AMP, and $[32P]$ATP.

Images were obtained on an Amersham Biosciences Storm 820 Imager and quantified with ImageQuant TI version 2005. The total fraction of $[32P]$AMP was plotted against time to obtain initial velocities; the slopes from the linear data were then plotted against glycine concentration and fit to a hyper-
bolic Michaelis-Menten equation using Prism6 software. All experiments were performed in triplicate.

Aminoacylation Reactions—According to Refs. 80–82, the aminoacylation of *A. aeolicus* tRNA\(^{\text{Gly}}\) was assayed using identical buffer conditions as for the glycine activation reaction, with the exception of using 5 mM ATP and the omission of labeled ATP. Instead in vitro transcribed tRNA\(^{\text{Gly}}\) was radiolabeled at the 3′-end using \([\alpha^-\text{32P}]\text{ATP}\) and the *E.coli* tRNA nucleotidyltransferase, and labeled tRNA was purified using a QIAquick nucleotide removal kit (Qiagen), followed by buffer exchange using Amicon Ultra 3-kDa filter (Millipore). All reactions were initiated by the addition of enzyme, and 1–µl aliquots were quenched in 10 µl of buffer containing 0.1% SDS and 400 mM sodium acetate, pH 5.2, and 0.1 mM P1 nuclease SIGMA were quenched in 10 µl of the quenched mix were spotted on pre-washed PEI-cellulose TLC plates and developed and treated like the ones for the glycine activation reaction.

Structural and Sequence Analysis

STAMP—A collection of 111 crystal structures from class II aaRSs was chosen according to their diversity in specificity, species, and ligands bound in the active site to take into account conformational changes. The catalytic cores of these structures were selected by including the residues located between motifs 1 and 3 and excluding additional insertions or domains not comprising common structural motifs for most aaRSs. An example of the trimmed catalytic cores is found in Fig. 6. The PDB entries of the structures used and a partial description of them are found in supplemental Fig. S1. The approximate length of each structure of the working set was 200 residues. An overall multiple structural alignment was made using the STAMP algorithm (42) as implemented in MultiSeq in VMD (51, 52). The program generates trees according to four different criteria as follows: Qres (structure similarity per residue); Qh (structural homology); percent identity, and r.m.s.d. Bacterial GlyRS and AlaRS appeared in a separate group in the trees calculated according to all four parameters. Although all the trees were highly similar to each other, the percent identity and r.m.s.d. trees were in full agreement with previous subclass definitions. The same results were obtained when the algorithm was applied to just a sample of representative aaRSs.

Structure-based multiple sequence alignments were made for the cases of the two types of GlyRSs and AlaRS. All the sequences contained in Pfam families PF01411 (AlaRS), PF02091 (bacterial GlyRS) and PF00587 (subclass IIa, but trimmed for eukaryal GlyRS) were analyzed. The catalytic cores were selected and aligned with the ClustalW plug-in in MultiSeq. Non-redundant sets were generated using the sequence QR tool in MultiSeq (83). A profile alignment was calculated taking into account the structures aligned for each type of aaRS.

DALI—A sample of structural cores as defined above was used to perform an all-against-all three-dimensional structural comparison with the Dali pairwise comparison server. A matrix was generated based on the resulting Z-score values. Although no tree was derived from this matrix, four clear groups are defined, taking into account a cutoff of 18.5. The Z-score value for structures belonging to other subgroups was between 11.9 and 16.5. In most cases other than PylRS, a clear gap is seen between members and non-members of the subclass.

T-Coffee Expresso—A non-redundant set of sequences of the catalytic core of 63 structures from different species used for the alignment with STAMP were aligned using structural information with the T-Coffee Expresso server (43). The obtained alignment was further validated by means of the suggested TCS method, which identifies the most correct positions on the alignment (54). An estimated phylogenetic tree was built with PhyML (53) according to the tcs_weighted obtained file, where the sequences are ordered according to their TCS score. The tree was visualized with Archaeopteryx (84).

Root Mean Square Deviation and PCA with Bio3D—The analysis was performed using the Bio3D package in R (44). 39 structures derived from the STAMP analysis were selected, three of different species and in complex with different ligands for each type of aaRS. The aligned structures were used in Bio3D to define an invariant core with the minimal structural variance among all the protein structures. This core of 80 Cα atoms was the basis for the r.m.s.d. dendrogram calculation and PCA. The structures were superimposed onto this core, and the variances shown by PC1 and PC2 were used to define the four different subgroups.

References

1. Berg, P., and Offengand, E. J. (1958) An enzymatic mechanism for linking amino acids to RNA. *Proc. Natl. Acad. Sci.* U.S.A. **44**, 78–86
2. Ibbma, M., and Soll, D. (2000) Aminoacyl-tRNA synthesis. *Annus. Rev. Biochem.** 69**, 617–650
3. Pang, Y. L., Poruri, K., and Martinis, S. A. (2014) tRNA synthetase: tRNA aminoacylation and beyond. *Wiley Interdiscip. Rev. RNA* **5**, 461–480
4. Berg, P. (1956) Acyl adenylate—synthesis and properties of adenyly acetate. *J. Biol. Chem.* **222**, 1015–1023
5. Preiss, J., Berg, P., Offengand, E. J., Bergmann, F. H., and Dieckmann, M. (1959) The chemical nature of the RNA–amino acid compound formed by amino acid-activating enzymes. *Proc. Natl. Acad. Sci. U.S.A.* **45**, 319–328
Insights into the Polyphyletic Origins of GlyRSs

synthetase reveals a distinct zinc-dependent mode of substrate recognition. *EMBO J.* 25, 2498–2509

49. Lichtarge, O. (2001) Getting past appearances: the many-fold consequences of remote homology. *Nat. Struct. Biol.* 8, 918–920

50. Majorek, K. A., Dunin-Horkawicz, S., Steczkiwicz, K., Muszewska, A., Nowotny, M., Ginalska, K., and Bujnicki, J. M. (2014) The RNAse H-like superfamily: new members, comparative structural analysis and evolutionary classification. *Nucleic Acids Res.* 42, 4160–4179

51. Roberts, E., Eargle, J., Wright, D., and Luthey-Schulten, Z. (2006) MultiSeq: unifying sequence and structure data for evolutionary analysis. *BMC Bioinformatics* 22, 504–506

52. Eargle, J., Wright, D., and Luthey-Schulten, Z. (2006) Multiple alignment of protein structures and sequences for VMD. *Bioinformatics* 22, 1126–1127

53. Escalona, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML. 3.0. *Syst. Biol.* 59, 307–321

54. Chang, J. M., Di Tommaso, P., and Notredame, C. (2014) TCS: A new multiple sequence alignment reliability measure to estimate alignment accuracy and improve phylogenetic tree reconstruction. *Mol. Biol. Evol.* 31, 1625–1637

55. Kavran, J. M., Gundlappali, S., O’Donoghue, P., Engler, M., Sohl, D., and Steitz, T. A. (2007) Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation. *Proc. Natl. Acad. Sci. U.S.A.* 104, 11268–11273

56. Fournier, G. P., Huang, J., and Gogarten, J. P. (2009) Horizontal gene transfer from extinct and extant lineages: biological innovation and the coral of life. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 364, 2229–2239

57. Swairjo, M. A., Otero, F. J., Yang, X. L., Lovato, M. A., Skene, R. J., McRee, D. E., Ribas de Pouplana, L., and Schimmel, P. (2004) AlanyltRNA synthetase crystal structure and design for acceptor-stem recognition. *Mol. Cell* 13, 829–841

58. Smith, T. F., and Hartman, H. (2015) The evolution of class II aminoacyl-tRNA synthetases and the first code. *FEBS Lett.* 589, 3499–3507

59. Beebe, K., Ribas De Pouplana, L., and Schimmel, P. (2003) Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. *EMBO J.* 22, 668–675

60. Schimmel, P. (2011) Mistranslation and its control by tRNA synthetases. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 366, 2965–2971

61. Gabor, T., and Koonin, E. V. (2013) Functional and evolutionary implications of gene orthology. *Nat. Rev. Genet.* 14, 360–366

62. Redwan, I. N., Ingemry, H. J., Ljungdahl, T., Lawson, C. P., and Grotli, M. (2012) Solid-Phase synthesis of 5′-O-[N-(acylsulfamoyl)adenosine derivatives. *Eur. J. Org. Chem.* 2012, 3665–3669

63. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R., and Leslie, A. G. (2011) iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. *Acta Crystallogr. D Biol. Crystallogr.* 67, 271–281

64. Evans, P. R. (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. *Acta. Crystallogr. D Biol. Crystallogr.* 67, 282–292

65. Long, F., Vagin, A. A., Young, P., and Murshudov, G. N. (2008) BALBES: a molecular-replacement pipeline. *Acta. Crystallogr. D Biol. Crystallogr.* 64, 125–132

66. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. I., Richardson, D. C., et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* 66, 213–221

67. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132

68. Joosten, R. P., Long, F., Murshudov, G. N., and Perrakis, A. (2014) The PDB_REDO server for macromolecular structure model optimization. *IUCrJ* 1, 213–220

69. Krispin, E., and Henrick, K. (2007) Inference of macromolecular assemblies from crystalline state. *J. Mol. Biol.* 372, 774–797

70. Kleywegt, G. J., and Harris, M. R. (2007) ValLigURL: a server for ligand-structure comparison and validation. *Acta Crystallogr. D Biol. Crystallogr.* 63, 935–938

71. Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorometry to detect ligand interactions that promote protein stability. *Nat. Protoc.* 2, 2212–2221

72. Blanchet, C. E., Hermes, C., Svergun, D. I., and Fiedler, S. (2015) A small and robust active beamstop for scattering experiments on high-brilliance undulator beamlines. *J. Synchrotron Radiat.* 22, 461–464

73. Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. *J. Appl. Crystallogr.* 36, 1277–1282

74. Svergun, D. I. (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. *J. Appl. Crystallogr.* 25, 495–503

75. Franke, D., and Svergun, D. I. (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. *J. Appl. Crystallogr.* 42, 342–346

76. Svergun, D., Barberato, C., and Koch, M. H. J. (1995) CRYSOIL—A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. *J. Appl. Crystallogr.* 28, 768–773

77. Petoukhov, M. V., Franke, D., Shkumatov, A. V., Tris, G., Kikhney, A. G., Gajda, M., Gorba, C., Mertens, H. D., Konarev, P. V., and Svergun, D. I. (2012) New developments in the ATSAS program package for small-angle scattering data analysis. *J. Appl. Crystallogr.* 45, 342–350

78. Kozin, M. B., and Svergun, D. I. (2001) Automated matching of high- and low-resolution structural models. *J. Appl. Crystallogr.* 34, 33–41

79. Guric-Sovuli, L., Uter, N., Bullock, T., and Perona, J. I. (2005) tRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I tRNA synthetase. *J. Biol. Chem.* 280, 23978–23986

80. Ledoux, S., and Uhlenbeck, O. C. (2008) [32P]-labeling tRNA with [3–32P]-H11032 reads through a distinct zinc-dependent mode of substrate recognition. *EMBO J.* 27, 2126–2132

81. Rodríguez-Hernández, A., Bhaskaran, H., Hadd, A., and Perona, J. I. (2010) Synthesis of Glu-tRNA(Gin) by engineered and natural aminoacyl-tRNA synthetases. *Biochemistry* 49, 6727–6736

82. Rodríguez-Hernández, A., and Perona, J. I. (2011) Heat maps for intramolecular communication in an RNP enzyme encoding glutamine. *Structure* 19, 386–396

83. O’Donoghue, P., and Luthey-Schulten, Z. (2005) Evolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information. *J. Mol. Biol.* 346, 875–894

84. Han, M. V., and Zmasek, C. M. (2009) phyloXML: XML for evolutionary biology and comparative genomics. *BMC Bioinformatics* 10, 356
Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases
Marco Igor Valencia-Sánchez, Annia Rodríguez-Hernández, Ruben Ferreira, Hugo Aníbal Santamaría-Suárez, Marcelino Arciniega, Anne-Catherine Dock-Bregeon, Dino Moras, Brice Beinsteiener, Haydyn Mertens, Dmitri Svergun, Luis G. Brieba, Morten Grøtli and Alfredo Torres-Larios

J. Biol. Chem. 2016, 291:14430-14446.
doi: 10.1074/jbc.M116.730382 originally published online May 23, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.730382

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2016/05/23/M116.730382.DC1.html

This article cites 84 references, 28 of which can be accessed free at
http://www.jbc.org/content/291/28/14430.full.html#ref-list-1