Transgenic mouse models generated by hydrodynamic transfection for genetic studies of liver cancer and preclinical testing of anti-cancer therapy

Hye-Lim Ju1, Kwang-Hyub Han2, Jong Doo Lee3 and Simon Weonsang Ro1,4

1 Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, Korea
2 Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
3 Department of Nuclear Medicine, Catholic Kwandong University, Seoul, Korea
4 Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide; however, the genetic mechanisms underlying its pathogenesis are incompletely understood. Genetically engineered mouse (GEM) models of HCC have been developed to elucidate the role of individual cancer-related genes in hepatocarcinogenesis. However, the expensive and time-consuming processes related to generating a GEM model discourage the development of diverse genotype models. Recently, a simple and inexpensive liver-specific transgenic approach was developed, in which a hydrodynamics-based transfection (HT) method was coupled with the Sleeping Beauty transposase system. Various HT models in which different oncogenic pathways are activated and/or tumor-suppressing pathways inactivated have been developed in recent years. The applicability of HT models in liver cancer research is expected to broaden and ultimately elucidate the cooperation between oncogenic signaling pathways and aid in designing molecular therapy to target altered pathways.

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, ranking third among all cancer-related mortalities and accounting for 500,000–600,000 deaths annually.1,2 Many of the treatment modalities developed for HCC offer limited success. Moreover, the 5-year survival rate remains considerably low.3,4 Surgical resection or local ablation therapy are preferred treatment options for early-stage HCC. However, tumors recur in approximately 70% of these patients within 5 years.2 Molecular target therapy has been investigated intensively in recent years as a promising treatment option for patients with advanced HCC.5,6

Epidemiological and molecular studies have shown that HCC development spans several decades and is associated with diverse factors and conditions.7–10 Patients with chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection are at a much higher risk of developing HCC than noninfected individuals. Other risk factors for HCC include alcohol abuse, diabetes, and obesity, which cause chronic liver injury, leading to liver fibrosis and cirrhosis.11,12 Recent years have seen an accumulation of knowledge regarding the genetic and epigenetic changes associated with HCC development. High-throughput oncogenomic studies have revealed deregulated signal transduction pathways in hepatocarcinogenesis.13–17 Hundreds of genes are known to undergo genetic alterations during HCC development.18,19 Hence, it is of critical importance to identify oncogenes that play a major role in hepatocarcinogenesis and those that are genetic modifiers or bystanders. Further, the identification of oncogenic partners that cooperatively induce HCC will lead to a greater understanding of the molecular mechanism of pathogenesis, as well as provide new insights into molecular target therapy design. In this sense, genetically engineered mouse (GEM) models for HCC with alterations in candidate oncogenes or tumor suppressor genes should serve as valuable tools for clarifying the contribution of any given gene to hepatocarcinogenesis as well as the development of new drugs targeting specific oncogenic signaling pathways.20–22

HCC: A multistep Carcinogenic Process Requiring Oncogenic Collaboration

The development of HCC is considered a complex multistep process; each stage requires an additional genetic or epigenetic alteration (Fig. 1). Thus, it is believed that cells of origin will acquire multiple genetic mutations during carcinogenesis to become malignant cancer cells.23,24 To better understand the roles of cancer-related genes in HCC development, various
GEM models for HCC have been developed.20–22 Consistent with the idea of multistep carcinogenesis, GEM models for liver cancer have shown that oncogenic mutations within a single gene are generally highly inefficient at inducing liver cancer (Table 1). This implies that oncogenic collaborations among multiple cancer-related genes are likely required for liver cells to become malignant.

The Myc protein is a transcription factor that activates various genes promoting cell proliferation and growth, and it plays a critical role in the carcinogenesis of various cancers.52,53 Genetic analyses have revealed that c-Myc overexpression, which is commonly caused by genomic amplification, is present in up to 70% of viral and alcohol-related HCCs.54 Transgenic mice overexpressing c-Myc alone inefficiently develop liver tumors with a long latency (65–90 weeks) and an incidence rate of 55%.27 However, coexpression of c-Myc with an additional oncogene, such as epidermal growth factor (EGF) or E2F transcription factor 1 (E2F1) greatly shortens the latency of HCC and induces liver cancer in 100% of mice.27,30,47 Thus, oncogenic collaborations with additional oncogenes and growth factors is likely critical in c-Myc-induced hepatocarcinogenesis.

β-catenin, one of the key downstream effectors of the Wnt signaling pathway, plays an important role in liver development and regeneration.55,56 Activation of the Wnt/β-catenin pathway is found in 30% of human hepatic tumors, occurring through either an activating mutation within β-catenin itself or reduced expression of APC, a negative regulator of β-catenin.57 GEM models expressing an activated form of β-catenin or liver-specific APC knockout induce hepatomegaly or HCC with a long latency, while coexpression of activated β-catenin with an additional oncogene, such

Table 1. Genetically engineered mouse models for HCC

Genes	Incidence rate (%)	Latency (weeks)	Refs.
AAT	100	52–90	25
APC+/−	67	38	26
c-myc	55	65–90	27
E2F-1	33	52	28–30
EGF	100	24–36	31,32
HBx	84	52–104	33–35
HCV core	32	80–105	36,37
NEMO+/−	100	52	38–40
P53+/−	10.9	60	41
PTEN+/−	66	44	42
SV40 T-antigen	100	20	43
TAK1+/−	80	39	44
TGF-α	50	>52	45,46
c-myc + E2F1	100	26–39	30,47
c-myc + EGF	100	12–18	32
β-catenin(Δex3) + HRAS12V	100	8	48
KRAS12D + HBx	62.5	34	49
P53+/− + c-myc	75	21	50
PTEN+/− + GRP94−/−	80	25	51
as HRASG12V, leads to HCC as early as 8 weeks following oncogenic expression.26,48,58,59

Phosphatase and tensin homolog (PTEN) is a tumor suppressor that negatively regulates the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, which regulates cell survival, proliferation, and energy metabolism.60 Absence or reduced expression of PTEN was found in approximately 40% of HCC cases.61 GEM models with knockout of PTEN in the liver resulted in HCC in 66% of mice at 44 weeks.42 A concomitant knockout of Grp94, a major endoplasmic reticulum (ER) chaperone protein, highly accelerated the development of HCC in PTEN-null livers; no tumors were found in the livers of PTEN-null mice, while 100% of mice with PTEN and Grp94 double knockout developed HCC by 8 months of age.51

In humans, P53 inactivation is a common event in a variety of cancers including HCC.62,63 Mutations within P53 are found in aflatoxin-induced HCC at a frequency of 50%, and in HCC not induced by aflatoxin at 28–42%.64–66 GEM models have revealed that HCC development induced by p53 inactivation is greatly accelerated when additional oncogenes are expressed.41,50

Hydrodynamics-Based Transfection (HT) Model for HCC

Although traditional GEM models have significantly contributed to our understanding of the molecular mechanisms underlying hepatocarcinogenesis, development of a GEM model usually involves expensive and time-consuming processes, such as microinjection of transgenes into pronuclei (for transgenic models), transfection and manipulation of embryonic stem cells (for knockout models), as well as implantation and subsequent breeding. Additionally, proto-oncogenes or tumor suppressor genes are often critical for embryonic or fetal development, and thus genetic manipulations can cause unwanted developmental side effects.

To overcome these issues, a very elegant and simple method for liver transgenesis was recently developed in which naked DNA plasmids encoding a gene of interest were directly delivered into the liver via HT.67–70 The HT method uses the physical force generated by rapid injection of a large volume of DNA solution into the lateral tail vein. This creates increased pressure in the vena cava, pushing the DNA solution into the large hepatic vein and subsequently hepatic tissue. The fenestrae of liver sinusoids are enlarged by the hydrostatic pressure, allowing plasmids to pass through capillary walls and reach the hepatocytes.71 HT is highly specific for hepatocytes, thus enhancing the versatility of this method in liver-specific transgenesis.68

One major limitation of HT is that prolonged expression of a transgene is difficult to achieve. Plasmids delivered into hepatocytes are eventually degraded without chromosomal integration, and furthermore, gene expression from the episomal DNA is rapidly turned off within several days.68,72,73 This problem can be resolved by use of the Sleeping Beauty (SB) transposon system.74–76 The SB system consists of a transposon made up of a gene expression cassette flanked by a specific DNA sequence of inverted repeats and a source of transposase enzyme (SB transposase) that recognizes the DNA sequence. During SB-mediated transposition, the SB transposase excises the transposon from the delivered plasmid DNA and integrates into any one of approximately 10^8 TA dinucleotide base pairs scattered randomly throughout the genome, guaranteeing random chromosomal insertion of the transgene.73

This time and cost-effective methodology has allowed for diverse HCC models expressing various oncogenes to be developed rapidly. The first report of an HCC model generated by HT was published in 2005 by Dr. Largaespada’s research group.77 In that study, HT of transposons expressing activated NRAS (NRASG12V) with plasmids encoding SB transposase induced multiple tumors in livers of p19Arf-null mice approximately 1 month post-HT, demonstrating the applicability of HT technology coupled with the SB transposon system for generating HCC transgenic models. Soon after publication, Tward et al. used the simple liver-specific transgenic approach and reported that HT of transposons encoding Met and activated β-catenin gave rise to HCC in 74% of mice within 1 month.78 Since then, dozens of HCC models expressing a variety of oncogenes have been developed.

HT Models for Oncogenic Collaboration Studies in HCC

Considering the diverse genetic factors and multistep carcinogenic process in HCC, the relationships between tumor-related genes are of high importance for understanding the genetic mechanisms involved in HCC pathogenesis. To investigate potential oncogenic collaborations between two cancer-related genes using traditional GEM models, breeding experiments between two GEM strains carrying individual oncogenic mutations should be performed to acquire genetic alterations in the two target genes. Furthermore, mutations within tumor suppressor genes are, in general, only effective when both alleles are mutated, requiring a well-designed mating strategy. Such multiple time-consuming breeding methods limit the generation of diverse mouse models with alternations in various combinations of proto-oncogenes and tumor suppressor genes. However, this problem can easily be circumvented in HT models; coexpression of two oncogenes in hepatocytes can be achieved by simply mixing transposons encoding individual oncogenes and performing HT using the transposon mixture. Thus, transgenic livers carrying various combinations of oncogenic mutations can be developed efficiently using this approach, suggesting the versatility of HT models in elucidating potential oncogenic collaborations in HCC development.

HT models have shown increased tumor development when specific combinations of oncogenic mutations were introduced in the liver. For example, mice expressing activated AKT developed HCC approximately 6 months post-HT.79 The latency was significantly shortened when activated AKT was coexpressed with NRASG12V or an activated form
of β-catenin. In addition, HT models expressing short hairpin RNA downregulating p53 (shp53) alone failed to induce tumors. However, coexpression of shp53 with gene X of HBV (HBx) induced HCC 139 days post-HT. Lee et al. successfully used HT to develop double transgenic mouse models expressing an activated form of β-catenin together with NRAS_{G12V} or a dominant-negative Spry2 (SPRY2^{Y55F}), revealing that an oncogenic collaboration between Wnt and RAS signaling pathways is critical in hepatocarcinogenesis. Further, Xu et al. investigated oncogenic cooperation between Bmi1 and activated RAS during hepatocarcinogenesis using an HT model. They concluded that neither Bmi1 nor activated RAS alone was sufficient to develop HCC, while coexpression induced HCC in 78.6% of mice between 15 and 30 weeks post-HT. Patil et al. also reported that coexpression of cyclinD1 and c-Met resulted in HCC, while expression of either gene individually failed to induce tumors, revealing an oncogenic collaboration between these two genes in HCC.

To investigate a potential oncogenic collaboration among RAS, c-Myc, Hedgehog, and P53 signaling pathways in HCC development, Ju et al. used an HT-mediated transgenic approach. Transposons encoding HRAS_{G12V} (for activation of RAS signaling), a constitutively active form of Smo (SmoM2, for activation of Hedgehog signaling), c-Myc (for activation of Myc-mediated signaling), and shp53 (for suppressing P53 signaling) were developed first, and then HT was performed using various combinations of oncogenes (Fig. 2a). Mice transfected with HRAS_{G12V} and shp53 showed numerous nodules as early as 4 weeks post-HT (Fig. 2b and Table 2). Tumors were found in the livers of c-Myc plus HRAS_{G12V} mice 2 months post-HT, while c-Myc plus shp53 mice showed tumors with a low frequency around 7 months post-HT.
post-HT (Fig. 2b and Table 2). No tumors were observed in livers coexpressing SmoM2 and c-Myc, HRASG12V or shp53. Of note, histopathologic examination revealed that livers of HRASG12V and shp53 mice showed highly malignant and poorly differentiated HCCs, while moderately differentiated and well-differentiated HCCs were observed in HRASG12V plus c-Myc and c-Myc plus shp53 mice, respectively. Thus, depending on the oncogenic combination, it was determined that the incidence rate, tumor latency and histopathologic features of tumors were highly variable, revealing that collaborations among different oncogenic signaling pathways greatly affect HCC pathogenesis.

The studies described above demonstrate that HT models can be applied efficiently to investigate oncogenic collaborations among various signaling pathways during hepatocarcinogenesis. The application of HT transgenic models to study HCC genetically will likely increase due to the simplicity and reduced time and resources of the method compared with traditional transgenic models.

Application of the HT Model in Preclinical Testing of HCC Anti-Cancer Therapy

Xenograft models for HCC have been preferred over transgenic models in preclinical studies, mainly due to the rapid generation of human cancers in vivo. However, criticism has been raised in applying xenograft models for preclinical research from the microenvironmental perspective. To develop xenograft models for HCC, established human cancer cells are transplanted into immunocompromised mice. Considering the important roles of immune cells and inflammatory responses in HCC development, the impaired immune system in xenograft models provides an unnatural microenvironment in which tumor development can go awry. Furthermore, cancer cells are often transplanted ectopically, mainly in subcutaneous locations, which hardly recapitulates the liver microenvironment and thus enhances the problem of disparate microenvironments. Lastly, the neovascularature that develops in xenografts often shows histologically distinct features when compared with human tumors, possibly explaining why many anti-angiogenic agents effective in xenograft models have failed in clinical trials.

In HT models for HCC, however, tumors develop under the natural microenvironment of the liver. Mice with functional immune systems are used to generate HT models and tumors develop in the orthotopic location. Furthermore, the HT model for HCC is easily generated and tumors can be efficiently induced in the liver within a short period of time. It has been reported that HCC development can be achieved within 1 month post-HT, depending on the oncogene(s) expressed from transposon vectors. Thus, this fast and simple method for the induction of autochthonous tumors would greatly benefit preclinical studies of anti-cancer therapy for HCC.

Rudalska et al. showed that treatment with sorafenib in HCC models generated by HT improved the median survival of HCC-bearing mice by 20–30%. The survival advantage in these mice highly resembled that in HCC patients treated with sorafenib (35% median survival advantage compared with those given placebo). However, sorafenib treatment was highly effective in HCC xenograft models, exhibiting a median survival advantage of 50–100%. Tumor growth regression was even observed in xenograft mouse models treated with sorafenib at a higher dose. Thus, it is believed that HT models for HCC can complement xenograft models for predicting the treatment response in human patients.

The HT methodology can easily provide suitable HCC models for preclinical testing of drugs targeting specific signaling pathways. For example, to investigate an anti-tumor effect by targeting the AKT-mTOR signaling pathway, Wang et al. developed a murine HCC model induced by an activated form of AKT via hydrodynamic transfection and administered rapamycin, an mTORC1 inhibitor, to the mice following HT. They found that 100% of the rapamycin-treated mice survived, whereas none survived in the vehicle-treated group at 6 weeks post-HT. Similarly, to investigate whether an inhibition of the Notch signaling affects tumor development in the liver, Huntzicker et al. used an HT model of liver cancer induced by activated forms of RAS and AKT, which exhibited an active Notch signaling. They treated mice with antagonistic antibodies specific to Notch2 or the Notch ligand, jagged1, for 5 weeks following hydrodynamic transfection and found that the inhibition of the Notch signaling pathway significantly reduced tumor burden in the liver. Another study using an HT model of HCC for preclinical testing of molecular target therapy was reported by Dr. Scott Lowe’s research group. Using a liver cancer model with YAP overexpression and p53 suppression generated by hydrodynamic transfection, they showed that inhibition of Nestin using a transposon-mediated knockdown strategy completely suppressed tumor formation in the liver.

In addition to the application to molecular target therapy, an HT model of HCC has been applied to investigate chemoprevention of HCC by dietary carbohydrate restriction. Malignant cells
heavily rely on glucose for increased energy production and metabolic processes required for rapid cellular proliferation. Studies have shown that dietary carbohydrate restriction is a promising anti-cancer therapy. To test a tumor prevention effect of dietary carbohydrate restriction in hepatocarcinogenesis, Lee et al. used an HT model of HCC induced by an activated RAS and p53 suppression. Mice were fed an isocaloric carbohydrate-restriction diet beginning 2 weeks prior to hydrodynamic transfection and throughout the 6-week experiment. Liver cancer development in the HT mouse model was significantly suppressed by the dietary carbohydrate restriction. This suggests that HT models can be applied for preclinical testing of various HCC anti-cancer strategies.

REFERENCES

1. Ince N, Wands JR. The increasing incidence of hepatocellular carcinoma. *N Engl J Med* 1999;340:598–602.
2. El-Serag HB. Hepatocellular carcinoma. *N Engl J Med* 2011;365:1118–27.
3. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. *Lancet* 2003;362:1907–17.
4. Bosch FX, Ribes J, Diaz M, et al. Primary liver cancer: worldwide incidence and trends. *Gastroenterology* 2004;127:55–66.
5. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. *Hepatology* 2008;48:1312–27.
6. Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. *Nat Rev Gastroenterol Hepatol* 2013;10:34–42.
7. Hassan MM, Hwang LY, Hatten CJ, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. *Hepatology* 2002;36:1206–13.
8. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. *Gastroenterology* 2007;132:2557–76.
9. Ascha MS, Hanoumeh IA, Lopez R, et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. *Hepatology* 2010;51:1972–8.
10. Yang HI, Yuen MF, Chan HL, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. *Lancet Oncol* 2011;12:568–74.
11. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. *Annu Rev Pathol* 2011;6:425–56.
12. Pellicoro A, Ramachandran P, Iredale JP, et al. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. *Nat Rev Immunol* 2014;14:181–94.
13. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. *Nat Genet* 2002;31:339–46.
14. Ye QH, Qin LX, Forgues M, et al. Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. *Nat Med* 2005;9:416–23.
15. Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. *Cancer Cell* 2006;10:99–111.
16. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. *Nat Rev Cancer* 2006;6:674–87.
17. Lee JS, Thorgeirsson SS. Comparative and integrative functional genomics of HCC. *Oncogene* 2006;25:3801–9.
18. Zender L, Villanueva A, Tovar V, et al. Cancer gene discovery in hepatocellular carcinoma. *J Hepatol* 2010;52:921–9.
19. Imbeaud S, Ladeiro Y, Zucman-Rossi J. Identification of novel oncogenes and tumor suppressors in hepatocellular carcinoma. *Semin Liver Dis* 2010;30:75–86.
20. Newell P, Villanueva A, Friedman SL, et al. Experimental models of hepatocellular carcinoma. *J Hepatol* 2008;48:858–79.
21. Sanchez A, Fabregat I. Genetically modified animal models recapitulating molecular events altered in human hepatocarcinogenesis. *Clin Transl Oncol* 2009;11:208–14.
22. Heindryckx F, Collé I, Van Vlierberghe H. Experimental mouse models for hepatocellular carcinoma research. *Int J Exp Pathol* 2009;90:367–86.
23. Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular carcinomas. *Oncogene* 2006;25:3778–86.
24. Kumar M, Zhao X, Wang XW. Molecular carcinogenesis of hepatocellular carcinoma and intrahepatic cholangiocarcinoma: one step closer to personalized medicine? *Clin Canc Res* 2011;17:5.
25. Geller SA, Nichols WS, Kim S, et al. Hepatocarcinogenesis is the sequel to hepatitis in Zell alpha 1-antitrypsin transgenic mice: histopathological and DNA ploidy studies. *Hepatology* 1994;19:389–97.
26. Colnot S, Decaens T, Niwa-Kawakita M, et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. *Proc Natl Acad Sci USA* 2004;101:17216–21.
27. Thorgeirsson SS, Santoni-Rugiu E. Transgenic mouse models in carcinogenesis: interaction of c-myc with transforming growth factor alpha and hepatocyte growth factor in hepatocarcinogenesis. *Br J Clin Pharmacol* 1996;42:43–52.
28. Conner EA, Lemmer ER, Omori M, et al. Dual functions of E2F-1 in a transgenic mouse model of liver carcinogenesis. *Oncogene* 2000;19:5054–62.
29. Lee JS, Chu IS, Mikayelyan A, et al. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. *Nat Genet* 2004;36:1306–11.
30. Conner EA, Lemmer ER, Sanchez A, et al. E2F1 blocks and c-Myc accelerates hepatic ploidy in transgenic mouse models. *Biochem Biophys Res Commun* 2003;302:114–20.
31. Borilak J, Meier T, Halter R, et al. Epidermal growth factor-induced hepatocellular carcinoma: gene expression profiles in precursor lesions, early stage and solitary tumours. *Oncogene* 2005;24:1809–19.
32. Tonjes RR, Lehler J, O’Sullivan JF, et al. Autoimmune polyglandular syndrome type 1 (APS-1) associates with a susceptibility allele of the CD26 locus during hepatocarcinogenesis in transgenic mice. *Oncogene* 1995;10:765–8.
33. Koike K, Moriya K, Ino S, et al. High-level expression of hepatitis B virus HBx gene and hepatocarcinogenesis in transgenic mice. *Hepatology* 1994;19:810–9.
34. Chisari FV, Pinkert CA, Milich DR, et al. A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. *Science* 1985;230:1157–60.
35. Toshkov I, Chisari FV, Bannach P. Hepatic preneoplasia in hepatitis B virus transgenic mice. *Hepatology* 1994;20:1162–72.
36. Moriya K, Fujiie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. *Nat Med* 1998;4:1065–7.
37. Tanaka N, Moriya K, Kiyosawa K, et al. Hepatitis C virus core protein induces spontaneous and persistent activation of peroxisome proliferator-activated receptor alpha in transgenic mice: implications for HCV-associated hepatocarcinogenesis. *Int J Cancer* 2008;122:124–31.
38. Berezai N, Malato Y, Sander LE, et al. Hepatocyte-specific NEMO deletion promotes NK/NKT cell and TRAIL-dependent liver damage. *J Exp Med* 2009;206:1727–37.
39. Luende T, Berezai N, Kotsikoris V, et al. Deletion of NEMO/IKK gamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. *Cancer Cell* 2007;11:119–32.
40. Seki E, Brenner DA. The role of NF-kappaB in metabolic and nuclear response in the liver. *Nat Rev Gastroenterol Hepatol* 2008;4:197–206.
41. Goldstein I, Young DA, Donaldson IA, et al. Disruption of Trp53 in livers of mice induces forma-
ion of carcinomas with bilinear differentiation.

42. Watanabe S, Hori Y, Katoja E, et al. Non-alcoholic steatohepatitis and hepatocellular carcinoma: lessons from hepatocyte-specific phos- phatase and tensin homolog (PTEN)-deficient mice. J Gastroenterol Hepatol 2007;22:596–510.

43. Lou DJ, Molina T, Bennoun M, et al. Conditional hepatocarcinogenesis in mice expressing SV 40 early sequences. Cancer Lett 2005;229:107–14.

44. Inokuchi S, Aoyama T, Miura K, et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogene- sis. Proc Natl Acad Sci USA 2010;107:844–9.

45. Jappan C, Stahle C, Harkins RN, et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990;61:1137–46.

46. Lee GH, Merlino G, Fausto N. Development of liver tumors in transforming growth factor alpha transgenic mice. Cancer Res 1992;52:5162–70.

47. Calvisi DF, Conner EA, Ladu S, et al. Activation of the canonical Wnt/beta-catenin pathway con- fers growth advantages in c-Myc/E2F1 trans- genic mouse model of liver cancer. J Hepatol 2005;42:842–9.

48. Harada N, Oshima H, Katoh M, et al. Hepato- carcinoma: lessons from hepatocyte-specific phos- phatase and tensin homolog (PTEN/MMAC1/TEP1) in hepatocellular carci na. Cancer 2003;97:1929–40.

49. Ye H, Zhang C, Wang BJ, et al. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci USA 1998;97:1973–7.

50. Bressac B, Kew M, Wands J, et al. Selective G to T mutations of p53 gene in hepatocellular carci- noma from southern Africa. Nature 1991;350: 429–31.

51. Tannapfel A, Busse C, Weinas L, et al. INK4a/ARF alterations and p53 mutations in hepatocellular carcinomas. Oncogene 2001;20:7104–9.

52. Schlaeger C, Longerich T, Schiller C, et al. Etiol- ogical hepatocarcinogenesis in mice expressing transforming growth factor alpha in the liver. Adv Genet 2013;74:133–8.

53. Zhang G, Vargo D, Budker V, et al. Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers. Hum Gene Ther 2007;18:479–91.

54. Hu TH, Huang CC, Lin PR, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carci- noma. Proc Natl Acad Sci USA 2002;99:15763–72.

55. Shizawa H, Takeda M, Namba M. Human hepatocarcinogenesis (review). Int J Oncol 2013;42:1133–8.

56. Tward AD, Jones KD, Yant S, et al. Distinct properties of the beta-catenin oncogenic form of beta-catenin. J Cell Biol 2011;194:473–41.

57. Aronovich EL, Bell JB, Belur LR, et al. Prospective and genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology 2008;47:1200–10.

58. Xu CR, Lee S, Ho C, et al. Bmi1 functions as an oncogene independent of Ink4a/Arf repression in hepatocarcinogenesis. Mol Cancer Res 2009;7:1937–45.

59. Patil MA, Lee SA, Macias E, et al. Role of cyclin D1 as a mediator of c-Met- and beta-catenin- induced hepatocarcinogenesis. Cancer Res 2009;69:253–61.

60. Ju HL, Ahn SH, Kim do Y, et al. Investigation of oncogenic cooperation in simple liver-specific transgenic mouse models using noninvasive in vivo imaging. PLoS One 2013;8.e59869.

61. Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res 2010;60:6335–41, discussion 40.

62. Gopinathan A, Tuveson DA. The use of GEM models for experimental cancer therapeutics. Dis Model Mech 2008;1:83–6.

63. Wu SD, Ma YS, Fang Y, et al. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Cell 2012;38:218–25.

64. Hernández-Gea V, Toffanin S, Friedman SL, et al. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013;144:512–27.

65. Boci G, Daines R, Marzangoi C, et al. Antiangio- genic versus cytotoxic therapeutic approaches to human pancreas cancer: an experimental study with a vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor and gemci- tabine. Eur J Pharmacol 2004;498:9–18.

66. Ju L, Zhang MH, Yuan SZ, et al. Antiangiogenic therapy for human pancreatic carcinoma xenografts in nude mice. World J Gastroenterol 2005;11:4471–4.

67. Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol 2014;184:912–23.

68. Rudalska R, Dauch D, Longrich T, et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med 2014;20:138–46.

69. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378–90.
96. Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66:11851–8.

97. Feng YX, Wang T, Deng YZ, et al. Sorafenib suppresses postsurgical recurrence and metastasis of hepatocellular carcinoma in an orthotopic mouse model. Hepatology 2011;53:483–92.

98. Wang C, Cigliano A, Delogu S, et al. Functional crosstalk between AKT/mTOR and Ras/MAPK pathways in hepatocarcinogenesis: implications for the treatment of human liver cancer. Cell Cycle 2013;12:1999–2010.

99. Wang C, Cigliano A, Jiang L, et al. 4EBP1/eIF4E and p70S6K/RPS6 axes play critical and distinct roles in hepatocarcinogenesis driven by AKT and N-Ras proto-oncogenes in mice. Hepatology 2015;61:200–13.

100. Huntzicker EG, Hotzel K, Choy L, et al. Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology 2015;61:942–52.

101. Tsahlarganeh DF, Xue W, Calvisi DF, et al. p53-dependent Nestin regulation links tumor suppression to cellular plasticity in liver cancer. Cell 2014;158:579–92.

102. Lee JD, Choi MA, Ro SW, et al. Synergic chemoprevention with dietary carbohydrate restriction and supplementation of AMPK-activating phytochemicals: the role of SIRT1. Eur J Cancer Prev, in press.

103. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029–33.

104. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011;11:85–95.

105. Ho VW, Leung K, Hsu A, et al. A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res 2011;71:4484–93.

106. Healy ME, Chow JD, Byrne FL, et al. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol 2015;62:599–606.