A three step one-pot regioselective synthesis of highly substituted pyrazolo[1,5-a]pyrimidines assisted by KHSO4 in aqueous media under ultrasound irradiation

Shunan Kaping 1, Philippe Helissey 2 and Jai Narain Vishwakarma 3, 4, *

1 Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India
shunan.kaping@yahoo.in (S.K.), jnvishwakarma@rediffmail.com (J.N.V.)
2 Laboratoire de Chimie Thérapeutique, UMR CNRS No. 8638, Université Paris Descartes, Faculte des Sciences Pharmaceutiques et Biologiques, 12, rue de l’Hôpital, 75006 Paris, France
philippe.helissey@parisdescartes.fr (P.H.)
4 * Corresponding author at: Organic Research Laboratory, Department of Chemical Science, Assam Don Bosco University, Tapesia Gardens, Sonapur 782402, Assam, India.
e-mail: jnvishwakarma@dbuniversity.ac.in (J.N. Vishwakarma).

ABSTRACT

A simple and efficient synthesis of substituted pyrazolo[1,5-a]pyrimidine derivatives has been developed by the use of ultrasound. 5-Methyl-4-phenyl-1H-pyrazol-3-amine required for the synthesis of pyrazolo[1,5-a]pyrimidine derivatives has been easily obtained by the reaction of 3-(dimethylamino)-2-phenylacrylonitrile (formed from readily available 2-phenylacetonitrile) with hydrazine hydrate in refluxing ethanol. The 5-amino-pyrazole was then reacted with various formylated active proton compounds in presence of KHSO4 in aqueous medium under ultrasound irradiation to give the desired products. The chemical structures of the newly synthesized compounds were confirmed by IR, 1H NMR, 13C NMR and Mass spectral data. X-ray crystallographic study of a selected compound 6-[4-chlorophenyl]-2-methyl-3-phenylpyrazolo[1,5-a]pyrimidin-7-amine (7c) was performed to ascertain the regioselectivity of the reaction. Crystal data for compound 7c: Triclinic, space group P-1 (no. 2), a = 8.0198(3) Å, b = 14.0341(6) Å, c = 14.2099(6) Å, α = 87.672(2)°, β = 83.902(2)°, γ = 89.120(2)°, V = 1588.87(11) Å3, Z = 4, T = 293(2) K, μ(Mo Kα) = 0.248 mm-1, Dcalc = 1.400 g/cm3, 12918 reflections measured (4.012 ≤ θ ≤ 49°), Rint = 0.0411, R = 0.1320 (all data).

1. Introduction

Ultrasound irradiation has found application in material science, life sciences, medicinal chemistry, cleaning, sonar, electronics, agriculture and oceanography, etc. [1]. Ultrasound technology has also gained significant attention in the field of organic synthesis [2], due to its general commercial availability as well as its various advantages like enhanced reaction rates, greater selectivity, shorter reaction time, precipitation of practically pure products, use of less hazardous solvents, high to excellent yields and minimization of waste products [3,4]. It offers an alternative and convenient pathway for reactions to be carried out efficiently [1]. Ultrasound irradiation works on the principle of cavitation. During the process of irradiation, sound waves pass through the reaction medium whereby the molecules of the medium are separated generating millions of microscopic bubbles. These bubbles grow in size and reach a state of maximum strain ultimately leading to its collapse. These rapid and violent implosions of millions of bubbles generate localised hot spots of about 5000 °C and pressures of about 1000 atmospheres [2,5]. Such localised hot spots act as micro-reactor which enhances the chemical reaction more effectively [6].

The synthesis of pyrazolo[1,5-a]pyrimidine derivatives have gained significant interest due to their various biological [7-11] and pharmacological activities. Recently, pyrazolo[1,5-a]pyrimidines as translocator protein 18 kDa (TSPO) ligands [12] have been studied. Hassan and co-workers [13] reported the synthesis of 2-[(4-methoxyphenyl)amino]-5,7-dimethyl-N-phenylpyrazolo[1,5-a]pyrimidine-3-carboxamide and 7-amino-N-[4-chlorophenyl]-6-cyano-5-[4-methoxyphenyl]-2-[4-[4-methoxyphenyl]amino]pyrazolo[1,5-a]pyrimidine-3-carboxamide which were found to exhibit growth inhibitory activity against Ehrlich Ascites Carcinoma (EAC) cells when compared with doxorubicin drug. Also, pyrazolo[1,5-a]pyrimidine nucleus is an interesting and versatile scaffold for the preparation of various drugs like zaleplon, indiplon and ocinaplan [14-16].

Cite this: Eur. J. Chem. 2020, 11(3), 179-186
Journal website: www.eurjchem.com
Realising the importance of these molecules, we have recently reported [17-20] a general synthetic strategy and demonstrated the applicability for the synthesis of pyrazolo[1,5-a] pyrimidines. In view of the importance of these molecules we have extended our synthetic strategy for 5-methyl-4-phenyl pyrazolo[1,5-a]pyrimidine derivatives and the details are presented herein.

2. Experimental

2.1. Material and methods

Melting points were recorded by open capillary method and are uncorrected. The IR spectra were recorded on a Perkin-Elmer 983 spectrometer (Perkin-Elmer). High resolution 1H NMR and 13C NMR (400 MHz and 600 MHz) were measured on an EQUITRON Digital Ultrasonic Cleaner-2.5 L, model 8425.025. THERMO Finnigan LCQ Advantage max ion trap mass spectrometer [23]. The electron spray mass spectra were recorded on a DRX-400 Varian spectrometer and Bruker spectrometer, [21] triplet, respectively. The X-ray diffraction data was solved with SHELXL [22] refinement package using Least Squares minimization. Molecular graphics and preparation of material for publication were obtained using Olex2 1.3-beta [23]. The electron spray mass spectra were recorded on a THERMO Finnigan LCQ Advantage max ion trap mass spectrometer. Ultrasound irradiation was carried out in an EQUITRON Digital Ultrasonic Cleaner-2.5 L, model 8425.025. 424 at 170 Watt and 50 Hz. Formylated active proton compounds were synthesized by our previously reported procedure [24,25].

2.1.1. Synthesis

2.1.1.1. Synthesis of 2-methyl-3-phenyl-7-arylpyrazolo[1,5-a]pyrimidin-7-amine (5a-e)

A mixture of aminopyrazole (3) [Scheme 1] (1 mmol), enaminoines (4) (1 mmol), and KHSO₄ (2 mmol) was irradiated under the influence of ultrasound waves for 8-21 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. The completion of reaction monitored by TLC the precipitate was collected by filtration, washed repeatedly with water to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidines (5) in 88-96 % yields. Further, purification was achieved by column chromatography using silica gel and 20 % EtOAc-hexane [Scheme 2].

2.1.1.2. Synthesis of 2-methyl-3-phenyl-6-arylpyrazolo[1,5-a]pyrimidin-7-amine (7a-c)

A mixture of aminopyrazole (3) (1 mmol) and enaminoines (4) (1 mmol), and KHSO₄ (2 mmol) was irradiated under the influence of ultrasound waves for 8-21 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. After the completion of reaction monitored by TLC the precipitate was collected by filtration, washed repeatedly with water to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidines (7) in 75-84 % yields. Further, purification was achieved by column chromatography (silica gel, 20 % EtOAc-hexane) [Scheme 2].

2.1.1.3. Synthesis of 2-methyl-3-phenyl-6-arylpurazolo[1,5-a]pyrimidin-7-amine (7a-c)

A mixture of aminopyrazole (3) (1 mmol) and enaminoines (4) (1 mmol), and KHSO₄ (2 mmol) was irradiated under the influence of ultrasound waves for 8-21 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. After the completion of reaction monitored by TLC the precipitate was collected by filtration, washed repeatedly with water to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidines (7) in 75-84 % yields. Further, purification was achieved by column chromatography (silica gel, 20 % EtOAc-hexane) [Scheme 2].

2.1.1.4. Synthesis of 2-methyl-3-phenyl-6-arylpurazolo[1,5-a]pyrimidin-7-amine (7a-c)

A mixture of aminopyrazole (3) (1 mmol) and enaminoines (4) (1 mmol), and KHSO₄ (2 mmol) was irradiated under the influence of ultrasound waves for 8-21 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. After the completion of reaction monitored by TLC the precipitate was collected by filtration, washed repeatedly with water to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidines (7) in 75-84 % yields. Further, purification was achieved by column chromatography (silica gel, 20 % EtOAc-hexane) [Scheme 2].

2.1.1.5. Synthesis of 2-methyl-3-phenyl-6-arylpurazolo[1,5-a]pyrimidin-7-amine (7a-c)

A mixture of aminopyrazole (3) (1 mmol) and enaminoines (4) (1 mmol), and KHSO₄ (2 mmol) was irradiated under the influence of ultrasound waves for 8-21 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. After the completion of reaction monitored by TLC the precipitate was collected by filtration, washed repeatedly with water to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidines (7) in 75-84 % yields. Further, purification was achieved by column chromatography (silica gel, 20 % EtOAc-hexane) [Scheme 2].
2-Methyl-3-phenyl-7-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine (9c): Color: Yellow solid. Yield: 49 %. M.p.: 131-133 °C. FT-IR (KBr, v, cm⁻¹): 1604 (C=N), 1542 (C=C). 1H NMR (400 MHz, CDCl3, δ ppm): 2.67 (s, 3H, CH3), 2.79-3.73 (t, 1H, Ar), 7.43-7.50 (m, 3H, 2H-Ar, 1H-pyridine), 7.61 (d, 1H, C6-H, J = 4.4 Hz), 7.73 (d, 2H, Ar, J = 6.8 Hz), 7.91-7.95 (m, 1H, pyridine), 8.59 (d, 1H, C5-H, J = 4.4 Hz), 8.80 (bs, 1H, pyridine), 9.09 (d, 1H, pyridine, J = 7.6 Hz). 13C NMR (100 MHz, CDCl3, δ ppm): 14.5, 107.9, 125.9, 126.2, 126.6, 128.7, 129.2, 132.4, 136.8, 143.7, 148.7, 149.1, 150.1, 152.4. MS (El, m/z %): 287 (MH⁺).

2-Methyl-3-phenyl-5-(pyridin-2-yl)pyrazolo[1,5-a]pyrimidine (9d): Color: Yellow solid. Yield: 44 %. M.p.: 152-154 °C. FT-IR (KBr, v, cm⁻¹): 1606 (C=N), 1552 (C=C). 1H NMR (400 MHz, CDCl3, δ ppm): 2.66 (s, 3H, CH3), 3.70-3.75 (m, 2H, Pyridine), 7.48-7.52 (t, 2H, Ar), 7.79-7.84 (m, 3H, Ar), 7.98 (d, 1H, C7-H, J = 7.6 Hz), 8.52 (d, 1H, pyridine, J = 8.6 Hz), 8.63-8.68 (m, 2H, C6-C1, 1H-pyridine). 13C NMR (100 MHz, CDCl3, δ ppm): 14.6, 105.2, 109.8, 121.9, 124.8, 126.4, 128.6, 128.9, 132.5, 134.6, 137.0, 145.0, 149.2, 153.1, 154.3, 155.1. MS (El, m/z %): 287 (MH⁺).

2.1.1.3. Synthesis of 2-methyl-3-phenyl-7-heteroaryl pyrazolo[1,5-a]pyrimidines (9a-d)

A mixture of aminopyrazole [3] (1 mmol) and enamino[8a or 8b] (1 mmol), in the presence of KHSO4 (2 mmol) was irradiated under the influence of ultrasound waves for 11-16 minutes in 5 mL of ethanol:water (1:1, v/v) mixture to give a precipitated product. After the completion of the reaction monitored by TLC, the precipitate was collected after filtration, washed repeatedly with ethanol:water (1:1, v/v) to ensure complete removal of acid and dried to give practically pure pyrazolopyrimidine (9) in 85-87 % yields. Further, purification was achieved by column chromatography (silica gel, 20 % EtOAc-hexane) (Scheme 3).

In case of the reaction between compounds 3 and 8c under similar conditions, two regio-isomeric products 9c and 9d were isolated in 49 and 44 % yields, respectively.

2-Methyl-3-phenyl-7-(pyridin-4-yl)pyrazolo[1,5-a]pyrimidines (9a-d): Color: Yellow solid. Yield: 87 %. M.p.: 204-206 °C. FT-IR (KBr, v, cm⁻¹): 1601 (C=N), 1553 (C=C). 1H NMR (400 MHz, CDCl3, δ ppm): 2.66 (s, 3H, CH3), 6.89-6.92 (m, 1H, C6-H), 7.32-7.36 (t, 1H, ArH), 7.48-7.51 (t, 2H, ArH), 7.72 (d, 2H, ArH, J = 8 Hz), 8.00 (bs, 2H, pyridine), 8.53-8.55 (m, 1H, C5-H), 8.86 (br, 2H, pyridine). 13C NMR (100 MHz, CDCl3, δ ppm): 14.7, 105.7, 123.2, 126.8, 128.8, 129.1, 132.1, 138.7, 143.2, 147.3, 148.9, 150.6, 153.0, 152.9. MS (El, m/z %): 287 (MH⁺).

2-Methyl-3-phenyl-7-(pyridin-3-yl)pyrazolo[1,5-a]pyrimidines (9a-d): Color: Yellow solid. Yield: 85 %. M.p.: 149-151 °C. FT-IR (KBr, v, cm⁻¹): 1608 (C=N), 1554 (C=C). 1H NMR (400 MHz, CDCl3, δ ppm): 2.51 (s, 3H, CH3), 6.88 (d, 1H, C6-H, J = 4.4 Hz), 7.31-7.35 (t, 1H, ArH), 7.47-7.55 (m, 3H, 2H-Ar, 1H-pyridine). 7.72 (d, 2H, ArH, J = 8 Hz), 8.52-8.57 (m, 2H, pyridine) 878 (d, 1H, C6-H, J = 4.4 Hz), 9.2 (s, 1H, pyridine). 13C NMR (100 MHz, CDCl3, δ ppm): 14.4, 107.2, 110.1, 123.4, 126.7, 128.6, 128.8, 129.1, 132.2, 137.0, 143.1, 147.3, 149.0, 149.8, 151.8, 152.8. MS (El, m/z %): 287 (MH⁺).
Methyl 2, 7-dimethyl-3-phenylpyrazolo[1, 5- a]pyrimidine-6-carboxylate (12b): Color: Yellow solid. Yield: 85 %. M.p.: 110–112 °C. FT-IR (KBr, cm−1): 1725 (C=O), 1602 (C=N), 1523 (C=C). 1H NMR (600 MHz, CDCl3, δ ppm): 2.66 (s, 3H, CH3), 3.21 (s, 3H, CH3). 3.96 (s, 3H, OCH3), 7.32–7.34 (t, 1H, Ar), 7.47–7.49 (t, 2H, Ar), 7.68–7.69 (m, 2H, Ar), 8.94 (s, 1H, C=H). 13C NMR (150 MHz, CDCl3, δ ppm): 14.1, 14.3, 14.9, 61.3, 110.1, 110.8, 126.6, 128.5, 128.8, 128.9, 129.1, 131.7, 146.0, 149.9, 151.2, 151.5, 164.6. MS (EI, m/z (%)): 281 (M+).

Ethyl 2, 7-dimethyl-3-phenylpyrazolo[1, 5- a]pyrimidine-6-carboxylate (12c): Color: Yellow solid. Yield: 90 %. M.p.: 104–106 °C. FT-IR (KBr, cm−1): 1711 (C=O), 1602 (C=N), 1531 (C=C). 1H NMR (600 MHz, CDCl3, δ ppm): 1.42–1.44 (t, 3H, CH3), 2.66 (s, 3H, CH3), 3.21 (s, 3H, CH3). 4.1–4.44 (q, 2H, CH2). 7.32–7.34 (t, 1H, Ar), 7.47–7.49 (m, 2H, Ar). 7.67–7.69 (m, 2H, Ar). 8.94 (s, 1H, C=H). 13C NMR (150 MHz, CDCl3, δ ppm): 14.1, 14.3, 14.9, 61.3, 110.1, 110.8, 126.6, 128.5, 128.8, 131.5, 145.7, 149.7, 150.7, 154.7, 164.8. MS (EI, m/z (%)): 296 (MH+).

3. Results and discussion

3.1. Chemistry

For the synthesis of the target pyrazolo[1,5- a]pyrimidine we first required 3-aminopyrazole of type 3. This was synthesized as shown in Scheme 1 starting from easily accessible phenyl acetonitrile (1) which was acylated by its reaction with N,N-dimethylethaldimethylacetamide (DMA-DMA). The intermediate (2) without further purification was reacted with hydrazine hydrate in refluxing ethanol [29]. After the completion of the reaction, monitored by TLC, the reaction mixture was evaporated and cooled. To this, water was added whereby brown solid was formed, which was collected by filtration and washed with water. Aminopyrazole (3) thus obtained was dried over anhydrous CaCl2 and was used for subsequent reaction without further purification.

3-Aminopyrazole (3) was then irradiated with an equimolar quantity of enaminones (4) in the presence of KHSO4 (2 equivalents) in 5 mL of water-ethanol mixture (1:1, v/v) in an ultrasonic bath at 60 °C (Scheme 2). The progress of the reaction was monitored by thin layer chromatography. The products were obtained in 88–96 % yields in 5–12 minutes. The reaction mixture was allowed to cool to room temperature and the precipitate was collected by filtration, washed with ethanol-water (1:1, v/v) and finally dried over anhydrous CaCl2 to give practically pure product 5. Encouraged by this, the reaction of enaminoitriles 6 with aminopyrazole 3 (Scheme 2) was subsequently explored and the expected 7-aminopyrazolo pyrimidines 7 were obtained in 75–84 % overall yields in 8–21 minutes under similar conditions.

The structures of the synthesised compounds were confirmed by their spectral data (IR, 1H NMR, 13C NMR and MS spectroscopy). Also X-ray crystallography for compound 7c as model was performed for ascertaining the structure. The 1H NMR spectra of compounds 5a–e, showed doublet for the C=H and C–H protons at around δ 8.51 and 6.85 ppm, respectively.

The 1H NMR spectra of compound 7b–c, showed sharp singlet for C=H protons at about δ 8.20 ppm, whereas, the –NH2 protons for compound 7b resonated as singlet at δ 6.04 ppm and that for compound 7c, the signal get mixed with the aromatic protons.

Also, the reaction of aminopyrazole 3 with 3-(dimethyl amino)-1-(heteroaryl)prop-2-en-1-ones was investigated under similar conditions whereby the desired 2-methyl-3-phenyl-7-heteroaryl-pyrazolo[1,5- a]pyrimidine (9) was formed (Scheme 3) in 12–16 minutes in 83–85 % yields. Surprisingly, in case of the reaction of aminopyrazole 3 with compound 8c, regioisomeric products 9c and 9d were formed (Scheme 3). The regioisomeric products 9c and 9d showed Rf value at 0.2 and 0.4, respectively, and were therefore easily isolated by column chromatography using silica gel (60–120 mesh) and 20 % EtOAc-hexane as eluent. The products isolated were differentiated with the help of 1H NMR.

A plausible mechanism for the formation of the products has been rationalized as follows: Assisted by KHSO4, the enamine undergoes Aza-Michael addition-elimination reaction to give an adduct which subsequently undergoes cyclo-dehydration to yield the proposed pyrazolo[1,5- a]pyrimidines 9. The nucleophilic attack by aminopyrazole could follow two routes. Route 1 result in the formation of compound 9c as shown in the following Scheme 5.

The analysis and the identities of the compounds were established using 1H NMR. The C=H, C–H protons for compounds 9b, 9c appeared as doublets in the range δ 8.59–8.78 and δ 6.88–7.61 ppm, respectively, with coupling constant of 4.4 Hz. For compound 9a, the C=H, C–H protons appeared as multiplet at δ 8.53–8.55 and δ 6.89–6.92 ppm, respectively. In case of regioisomeric product 9d clear distinction of the substitution at C-5 were made as observed in the coupling constant [30]. The C=H proton showed doublet at δ 7.98 ppm with coupling constant 7.6 Hz [30] and the doublet of C–H proton gets buried with the help of spectral analytic data.

In order to further examine the generality of this green methodology, we finally took up the reaction of aminopyrazole 3 with formylated active proton compounds 11 (Scheme 4) derived from 1,3-diketones in situ. It was utterly pleasing to observe that the reactions went to completion giving the expected product 12 within 6–20 minutes in 88–90 % yields. The identities of these products and its distinction were established with the help of spectral analytic data.

In the case of compounds 12b-c, the C=H protons gave singlet at about δ 8.92 ppm and for compound 12a, it appeared as singlet at δ 8.83 ppm. The methyl protons at C-2, for all the synthesised compounds gave a sharp singlet at around δ 2.62 ppm.
Table 1. Synthesis of pyrazolo[1,5-a]pyrimidine derivatives.

Compounds	Time (in minutes)	Yield experimental/literature (%)	M.p./Lit M.p. (°C)
5a	5	96/76	142-143/251 [26]
5b	6	95/75	179-180/178-180 [27]
5c	6	88/Unreported	176-177
5d	12	88/67	197/196-198 [27]
5e	5	98/Unreported	230-232
7a	12	75/81	219-220/215-216 [28]
7b	21	83/Unreported	235
7c	8	84/Unreported	248-250
9a	12	87/Unreported	204-206
9b	16	85/Unreported	149-151
9c	11	49/Unreported	131
9d	11	44/Unreported	152-154
12a	20	88/Unreported	265
12b	6	85/Unreported	110-112
12c	9	98/Unreported	104-106

Table 2. Crystal data and structure refinement for compound 7c.

Property	Value
Empirical formula	C_{19}H_{15}N_{4}Cl
Formula weight	334.80
Temperature (K)	293(2)
Crystal system	Triclinic
Space group	P-1
a (Å)	8.0198(3)
b (Å)	14.0341(6)
c (Å)	14.2099(6)
α (°)	87.672(2)
β (°)	83.902(2)
γ (°)	89.120(2)
Volume (Å³)	1588.87(11)
Z	4
μ (g/cm³)	1.400
F(000)	696.0
Crystal size (mm³)	0.27 x 0.23 x 0.17
Radiation	MoKα (λ = 0.71073)
2θ range for data collection (°)	4.012 to 49
Index ranges	-8 ≤ h ≤ 9, -16 ≤ k ≤ 16, -16 ≤ l ≤ 16
Reflections collected	12918
Independent reflections	5152 [R_{int} = 0.0411, R_{exp} = 0.0429]
Data/restraints/parameters	5152/0/449
Goodness-of-fit on F²	1.071
Final R indexes (I>2σ(I))	R₁ = 0.0486, wR₂ = 0.1176
Final R indexes [all data]	R₁ = 0.0737, wR₂ = 0.1320
Largest diff. peak/hole (e Å³)	0.30/0.30

Figure 1. Molecular structure of compound 7c.

Further, ¹³C NMR and mass spectroscopy were in support of the structure. A summary of the synthesized pyrazolo[1,5-a]pyrimidines is presented in Table 1.

3.2. X-ray crystallography

The confirmation and regioselectivity of the structure was done with the help of X-ray crystal structure by taking compound 6-[4-chlorophenyl]-2-methyl-3-phenylpyrazolo[1,5-a]pyrimidin-7-amine 7c (Figure 1) as a model. Single crystals of C_{19}H_{15}N_{4}Cl practicable for X-ray data analysis were crystallized with methanol. A suitable crystal was selected and mounted on a CCD (Charge-Coupled Device) area detector diffractometer. The crystal was kept at 293(2) K during data collection. X-ray data for compound 7c was solved using Olex2 [Experimental section]. Yellow crystals of compound 7c suitable for single X-ray diffraction measurements were grown by the slow crystallisation in methanol. The crystallographic data for the structure were deposited to the Cambridge Crystallographic Data Center (CCDC no. 967390).
Table 3. Bond lengths for compound 7c.

Atom	Atom	Length (Å)
N8	C27	1.340(4)
C1	C3	1.742(3)
C2	C20	1.742(3)
N2	C9	1.354(3)
N1	C7	1.372(3)
C10	C6	1.390(3)
N6	C27	1.356(3)
N5	C30	1.368(6)
N4	C29	1.391(3)
N3	C8	1.319(3)
N3	C10	1.364(3)
N7	C20	1.314(4)
N7	C29	1.363(3)
C7	C9	1.399(4)
C7	C8	1.413(3)
N4	C6	1.485(4)
N4	C30	1.388(4)
N4	C9	1.347(3)
C26	C27	1.393(4)
C26	C28	1.417(4)
C26	C23	1.478(4)
N1	C12	1.337(3)
C10	C11	1.389(4)
C11	C12	1.412(3)
C11	C13	1.471(3)
C3	C2	1.379(4)
C3	C4	1.386(4)

Table 4. Bond angles for compound 7c.

Atom	Atom	Atom	Angle (°)
N8	C27	N6	115.6(3)
N8	C27	C26	127.9(3)
C9	N2	C10	124.3(2)
N1	N2	C10	112.4(2)
N6	N5	C29	124.1(2)
N6	C29	C27	23.7(2)
C34	C33	C32	121.1(3)
C29	N7	C29	114.0(2)
C9	C7	C6	122.6(2)
N7	C29	C30	133.0(2)
C7	C8	G6	120.0(2)
N7	C29	G6	211(2)
C27	C26	C28	16.5(3)
C27	C26	C23	23.8(2)
N1	N2	C2	130.9(19)
N3	C10	C11	133.5(2)
C10	C11	C12	105.0(2)
C12	C11	C13	127.8(2)
C4	C3	C1	120.1(3)
N7	C28	C26	127.4(2)
N4	C9	C7	120.0(3)
N1	C12	C1	113.0(2)
C25	C20	C21	120.7(3)
C31	N5	N6	104.0(2)
C30	C32	126.3(2)	
C2	C6	C7	121.7(2)
N5	C31	C30	113.1(2)
C14	C13	C18	117.8(2)
C17	C10	C13	120.9(3)
N2	C9	C7	116.1(2)
C14	C15	C16	120.3(3)

Compound 7c crystallizes in a triclinic cell (space group P-1) with a = 8.0198 (3) Å, b = 14.0341 (6) Å, c = 14.2099 (6) Å, α = 97.672 (2)°, β = 83.902 (2)°, γ = 89.120 (2)°, V = 1588.87 (11) Å³ and Z = 4. The molecular graphic was performed using Olex2 1.3.0-beta (Figure 1).

Crystal data, data collection and structure refinement details are listed in Table 2. The crystal structure consists of two independent molecules per asymmetric unit, the pyrazolo[1,5-a]pyrimidine nucleus arranged in an opposite manner. The interaction of H1 with the Cg ring C20-C25 stabilize the crystal packing. Also, the π-π interaction of the pyrazolo[1,5-a]pyrimidine rings between C10-C11-C12-N1-N2 and C31-C30-C29-N6-N5, C10-N3-C8-C7-C9-N2 and C29-N6-C27-C26-C28-N7 rings interactions could be the contributing factor to this arrangement and stacking [31]. In both molecules, the pyrazolo[1,5-a]pyrimidine rings are planar with torsional angles C30-C29-N6-C27 -178.56°, N5-N6-C29-N7 -178.91°, C31-C30-C29-N6 -0.04°. The bond length and angles are within the normal ranges [52]. The bond length C10-N5 and C29-N7 which is single bond does not differ very much from bond lengths of N1-C12, N3-C8 and N5-C11, N7-C28 which are double bonds. Similarly, C11-C12, C8-C7 and C30-C31, C28-C26 which are single bonds does not vary much with that of C11-C10, C7-C8 and C30-C29, C26-C27 which are formally double bonds. This pattern could be due to the delocalization of the ring system. Selected bond lengths and bond angles are given in Tables 3 and 4. The phenyl groups at C3 and C6 position in both the molecules are oriented to the plane of the pyrazolo[1,5-a]pyrimidine nucleus with torsion angles of C1-C6-C7-C9 and C18-C13-C11-C12 as 44.67° and 36.78°, respectively, and C24-C23-C26-C27 and C37-C32-C30-C31 as -41.63° and -41.05°, respectively.
4. Conclusion

We have developed an efficient, facile and environmentally friendly synthetic strategy for the synthesis of hitherto unknown pyrazol[1,5-d]pyrimidine derivatives with formylated acetophenones and its equivalent in the presence of KHSO4 and lead to mild reaction conditions with precipitation of practically pure products that could be easily isolated by filtration, ensuring complete removal of the acid by washing with EtOH/H2O (1:1, v/v).

Acknowledgements

Authors wish to thank Rev. Fr. Dr. Stephen Mavelly, Vice Chancellor, Assam Don Bosco University for providing infrastructure for the execution of this work. Authors also wish to express their gratitude to Indian Institute of Technology (IIT), Guwahati, Tezpur University, Tezpur, Guwahati, Sophisticated Analytical Instrument Facility-North-Eastern Hill University [SAIF-NEHU], Shillong and Sophisticated Analytical Instrument Facility-Central Drug Research Institute [SAIF-CDRI] Lucknow, for providing spectral and analytical data. Our thanks are also due to the Department of Biotechnology, Government of India for a research grant. This manuscript is a part of the Ph.D. thesis of Dr. Shunan Kaping, Assam Don Bosco University, India, 2016, www.shodhganga.inflibnet.ac.in

Supporting information

CCDC-967390 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or by e-mailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0)1223-336033.

Disclosure statement

Conflict of interests: The Authors declare that they have no conflict of interest.

Author contributions: All authors contributed equally to this work.

Ethical approval: All ethical guidelines have been adhered to.

Sample availability: Samples of the compounds are available from the author.

Funding

Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi-110 003, India

ORCID

Shunan Kaping
http://orcid.org/0000-0001-7898-5039

References

[1] Baluja, S.; Khachaduz, N.; Solanki, A. Open J. Org. Chem. 2013, 1, 1-5.
[2] Buriol, L.; Munche, T. S.; Frizzo, C. P.; Marzari, M. R. B.; Zanatta, N. Bonacorso, H. G.; Martins, M. A. P. Ultrason. Sonochem. 2013, 20, 1139-1143.
[3] Cravotto, G.; Cintas, P. Chem. Soc. Rev. 2006, 35, 180-196.
[4] Puri, S.; Kaur, B.; Parmar, A.; Kumar, H. Gurr. Org. Chem. 2013, 17, 1790-1828.
[5] Breatnach, L. C.; Teixeira, V. E.; Ritter, M.; Siqueira, G. M.; Carneiro, W.; Pereira, C. M. P.; Freitag, R. A. Ultrason. Sonochem. 2011, 18, 704-707.
[6] Mason, T. J.; Cobley, A. G.; Graves, J. E.; Morgan, D. Ultrason. Sonochem. 2011, 18, 226-230.
[7] Bruni, F.; Selleri, S.; Contozanno, A.; Guerrilli, G.; Cassili, M. L.; Giusti, L. J. Heterocycl. Chem. 1995, 32, 291-298.
[8] Maeba, I.; Nishiya, Y.; Kanazawa, S.; Sato, A. Heterocycles 1995, 41, 507-513.
[9] Bellec, Ch.; Lhommet, G. J. Heterocycl. Chem. 1995, 32, 1793-1799.
[10] Howard, A. S. Comprehensive Heterocyclic Chemistry II, Vol. 8, Pergamon Press, Oxford, 249, 1995.
[11] Barrett, D. Heterocycl. Chem. 1997, 45, 1839-1855.
[12] Demant, A.; Medran-Navarrete, V.; Cacheux, F.; Kuhnast, B.; Pottier, G.; Bernards, N.; Marguet, F.; Puech, F.; Boisgard, R.; Dole, F. J. Med. Chem. 2015, 58, 7449-7464.
[13] Hassan, A. S.; Hafez, T. S.; Osman, S. A. Sci. Pharm. 2015, 83, 27-39.
[14] George, C. F. P. Lancer 2001, 359, 1623-1626.
[15] Wegner, F.; Deuther-Conrad, W.; Scheunemann, M.; Brust, P.; Fischer, S.; Hiller, A.; Diekers, M.; Strecker, K.; Wohlfarth, K.; Allgaier, C.; Steinbach, J.; Hoepfing, A. Eur. J. Pharmacol. 2008, 580, 1-2.
[16] Ahmeda, S.; Veliajane, N.; Grossel, U.; Sterbal, I.; Perek, B.; Golobic, A.; Kocar, D.; Dahmann, G.; Stanovnik, B.; Svet, J. Mol. Divers. 2013, 17, 731-743.
[17] Kalita, U.; Kaping, S.; Nellant, J.; Helissey, P.; Vishwakarma, J. N. Heteroletters 2014, 4, 137-145.
[18] Devi, A. S.; Kaping, S.; Vishwakarma, J. N. Mol. Divers. 2015, 19, 759-771.
[19] Kaping, S.; Boix, I.; Singh, L. I.; Helissey, P.; Vishwakarma, J. N. Mol. Divers. 2016, 20, 379-390.
[20] Kaping, S.; Kalita, U.; Sun, M.; Singh, L. I.; Vishwakarma, J. N. Monatsh. Chem. 2016, 147, 1257-1276.
[21] Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Acta Cryst. A 2016, 72, 73-74.
[22] Shelekhin, G. M. Acta Crystal. C 2015, 71, 3-8.
[23] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystal. 2009, 42, 339-341.
[24] Chanda, K.; Dutta, M. C.; Karim, E.; Vishwakarma, J. N. Indian Chem. Soc. 2004, 41, 791-793.
[25] Chanda, K.; Dutta, M. C.; Vishwakarma, J. N. Ind. J. Chem. B 2004, 43, 2475-2477.
[26] Elnagdi, M. H.; Erian, A. W. Bull. Chem. Soc. 1990, 63, 1854-1856.
[27] Almanzar, S.; Elnagdi, M. H.; El-Din, A. M. S. J. Het. Chem. 2004, 41, 267-272.
[28] Bellec, C.; Mattei, P. C. J. Chem. 1981, 59, 2826-2832.
[29] Gopalakarny, A.; Chzewski, G.; Sh, M.; Berger, D.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wosiecowich, D.; Mallon, R. Biorg. Med. Chem. Lett. 2009, 19, 6890-6892.
[30] Radl, S.; Blahouscová, M.; Tkádelevcová, M.; Havlicková, J. Heterocycles 2010, 80, 1359-1379.
[31] Etse, K. S.; Dassonneville, B.; Zaragosa, G.; Demounceau, A. Tetrahedron Lett. 2017, 58, 789-793.
[32] Portilla, J.; Quiroa, J.; Cobo, J.; Low, J. N.; Gidelew, C. Acta. Cryst. C 2006, 62, 186-189.

Copyright © 2020 by Authors. This work is published and licensed by Atlanta Publishing House LLC, Atlanta, GA, USA. The full terms of this license are available at http://www.eurjchem.com/index.php/eurjchem/pages/view/terms and incorporate the Creative Commons Attribution-Non COMMERCIAL (CC BY NC) (International, v4.0) License (http://creativecommons.org/licenses/by-nc/4.0/). By accessing the work, you hereby accept the Terms. This is an open access article distributed under the terms and conditions of the CC BY NC License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited without any further permission from Atlanta Publishing House LLC (European Journal of Chemistry). No use, distribution or reproduction is permitted which does not comply with these terms. Permissions for commercial use of this work beyond the scope of the License (http://www.eurjchem.com/index.php/eurjchem/pages/view/terms) are administered by Atlanta Publishing House LLC (European Journal of Chemistry).