This is a repository copy of Characteristics, management and outcomes of patients with severe traumatic brain injury in Victoria, Australia compared to United Kingdom and Europe: A comparison between two harmonised prospective cohort studies.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/174760/

Version: Published Version

Article:
Wiegers, E.J.A., Trapani, T., Gabbe, B.J. et al. (10 more authors) (2021) Characteristics, management and outcomes of patients with severe traumatic brain injury in Victoria, Australia compared to United Kingdom and Europe: A comparison between two harmonised prospective cohort studies. Injury. ISSN 0020-1383

https://doi.org/10.1016/j.injury.2021.04.033

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Characteristics, management and outcomes of patients with severe traumatic brain injury in Victoria, Australia compared to United Kingdom and Europe: A comparison between two harmonised prospective cohort studies

Eveline J.A. Wiegers, Tony Trapani, Belinda J. Gabbe, Dashiell Gantner, Fiona Lecky, Andrew I.R. Maas, David K. Menon, Lynnette Murray, Jeffrey V. Rosenfeld, Shirley Vallance, Hester F. Lingsma, Ewout W. Steyerberg, D. James Cooper, the CENTER-TBI and OzENTER-TBI investigators and participants12, Collaboration groups: CENTER-TBI and OzENTER-TBI investigators and participants

ARTICLE INFO

Article history:
Accepted 7 April 2021
Available online xxx

Keywords:
Traumatic brain injury
Trauma systems
Intensive care
Outcome comparison
Comparative effectiveness research

ABSTRACT

Objective: : The aim of this manuscript is to compare characteristics, management, and outcomes of patients with severe Traumatic Brain Injury (TBI) between Australia, the United Kingdom (UK) and Europe.

Methods: : We enrolled patients with severe TBI in Victoria, Australia (OzENTER-TBI), in the UK and Europe (CENTER-TBI) from 2015 to 2017. Main outcome measures were mortality and unfavourable outcome (Glasgow Outcome Scale Extended <5) 6 months after injury. Expected outcomes were compared according to the IMPACT-CT prognostic model, with observed to expected (O/E) ratios and 95% confidence intervals.

Results: : We included 107 patients from Australia, 171 from UK, and 596 from Europe. Compared to the UK and Europe, patients in Australia were younger (median 32 vs 44 vs 44 years), a larger proportion had secondary brain insults including hypotension (30% vs 17% vs 21%) and a larger proportion received ICP monitoring (75% vs 74% vs 58%). Hospital length of stay was shorter in Australia than in the UK (median: 17 vs 23 vs 16 days), and a higher proportion of patients were discharged to a rehabilitation unit in Australia than in the UK and Europe (64% vs 26% vs 28%). Mortality overall was lower than expected (27% vs 35%, O/E ratio 0.77 [95% CI: 0.64 – 0.87]). O/E ratios were comparable between regions for mortality in Australia 0.86 [95% CI: 0.49–1.23] vs UK 0.82 [0.51–1.15] vs Europe 0.76 [0.60–0.87]). Unfavourable outcome rates overall were in line with historic expectations (O/E ratio 1.32 [0.96-1.68] vs 1.13 [0.84-1.42] vs 0.96 [0.85-1.09]).

Conclusions: : There are major differences in case-mix between Australia, UK, and Europe: Australian patients are younger and have a higher rate of secondary brain insults. Despite some differences in management and discharge policies, mortality was less than expected overall, and did not differ between regions. Functional outcomes were similar between regions, but worse than expected, emphasizing the need to improve treatment for patients with severe TBI.

© 2021 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

Traumatic Brain Injury (TBI) is a leading cause of death and long-term disability, particularly in young adults. Sixty-nine million individuals worldwide are estimated to sustain a TBI each year.\(^1\) In Australia, TBI accounts for over 1000 Intensive Care Unit (ICU) admissions per year.\(^2\) Half of severe TBI patients will be severely disabled or dead within six months of the injury, with lifetime costs largely due to disabled survivors of an estimated annual hospital costs of €33 billion of indirect and direct costs in Europe.\(^3,\)\(^4\) For Australia, the lifetime cost for each severe TBI was estimated at $4.8 million.\(^5,\)\(^6\)

Although recent randomised trials of alternative current therapies have provided guidance for clinicians (SAFE-TBI, DECPRA, RESCUEicp, POLAR), trials of new therapies have been generally discouraging or require further investigations to resolve uncertainty.\(^7-\)\(^11\) Guideline recommendations for TBI care are often weak, leaving opportunity for individual treatment preferences and resource availability, resulting in variation of care. Comparative effectiveness research subsequently has been embraced internationally, and uses practice variation to measure benefits and risks of systems of care and interventions in ordinary settings and broader populations, reflecting daily clinical practice.\(^12\)

An earlier study that compared outcomes following major trauma involving serious head injury managed in Victoria, Australia and the UK concluded that the absence of an organized trauma system in the UK at that time was associated with increased risk-adjusted mortality compared to management in the inclusive trauma system of Victoria, Australia over these years.\(^13\) However, contemporary global comparisons of patients with severe TBI have been few, are largely limited to North America and Europe, and are hampered by different times, settings and populations. Improved understanding of the benefits and limitations of different approaches to care for TBI patients requires comparisons across trauma care systems, using comparable methods of data collection and comparable time periods. Practice variation in the management of TBI patients admitted to the ICU might then offer opportunities for identification of best practices using comparative effectiveness research.

This study compared demographics, treatment characteristics and outcomes in two prospective harmonised cohorts of severe TBI patients in the state of Victoria Australia (population 6 million; OzENTER-TBI), with UK and Europe (CENTER-TBI).

Methods

Study population

Data came from the Collaborative European NeuroTrauma Effectiveness Research (CENTER-TBI) Core Study and the OzENTER-TBI (Australia-Europe NeuroTrauma Effectiveness Research in Traumatic Brain Injury) Study. Both studies were longitudinal cohort studies with harmonised data points and outcome assessments. The OzENTER-TBI Study was conducted in the two designated adult major trauma centres in Victoria, Australia at different intervals between February 2015 to March 2017. These centres receive 85% of adults with severe TBI from a state population of 6 million. The CENTER-TBI Core study included TBI patients that were admitted to the ICU across 54 centres in the European Union, the United Kingdom (UK) and Israel between 2015 and 2017. Patients or family were given the opportunity to opt-out of data collection in the OzENTER-TBI Study. Ethics approval in the OzENTER-TBI study was granted by Human Research Ethics Committees of the local university, along with the two participating adult major trauma centres. The CENTER-TBI Core study was approved by the medical ethics committees of all participating centres and consent was obtained according to local regulations. More detailed information about the CENTER-TBI Core Study can be found in the study protocol and the publication of the main results.\(^14-\)\(^16\) Patients of any age were included if they underwent a CT-scan of the brain and were admitted to the ICU within 24 hours of injury. Patients with a pre-existing neurological disorder that would otherwise confound outcome assessment were excluded. For the purpose of the current study, we included all patients with severe TBI, which was defined as a Glasgow Coma Scale (GCS) score of 3–8 at baseline that were admitted to the ICU.

Data collection

Detailed information on demographics, injury characteristics, and clinical characteristics was collected. Clinical data was collected on a daily basis: at ICU admission, during ICU stay (days 1–7, day 10, day 14, day 21, and day 28), and at ICU discharge. Data collection was undertaken by trained Research Coordinators and entered into an online Case Report Form. CT scans were obtained in all patients upon presentation and centrally reviewed. Follow up CT scans were acquired as clinically indicated. All patients were treated according to local protocol.

Outcome assessment

The eight-point Glasgow Outcome Scale Extended (GOSE; overall effect of injury) was collected at 6 months after injury. The GOSE was measured by either a postal questionnaire or a structured (telephone) interview by a trained assessor.\(^17\) The categories ‘vegetative state (GOSE 2)’ and ‘lower severe disability (GOSE 3)’ were combined resulting in a seven-point ordinal scale. Unfavourable outcome was defined as a GOSE<5, and Favourable outcome as a GOSE >4.

Statistical analysis

Patients were stratified into three groups: patients that were admitted to a study centre in 1) Australia (OzENTER-TBI Study), 2) the United Kingdom (CENTER-TBI Study), 3) Europe (CENTER-TBI Study). Countries that included less than 50 severe TBI patients were omitted from analysis.

Baseline characteristics were presented as median values with interquartile ranges (IQR) for continuous variables and as frequencies and percentages for categorical variables. ANOVA was used for comparison of continuous variables across strata. The χ² test was used for comparison of categorical variables.

The IMPACT CT model was used to calculate the expected mortality and expected proportion of patients with unfavourable outcome at 6 months in patients with severe TBI.\(^18\) The IMPACT CT (International Mission for Prognosis and Analysis of Clinical Trials in TBI Computed Tomography) model was developed for predicting 6 month outcome in adult patients with moderate to severe head injury using their key covariates. The model was developed and validated in collaboration with the CRASH trial collaborations both including large numbers of individual patient data. The model discriminates well; and has been validated for the purpose of classification and characterization of large cohorts of patients.\(^19\) Observed to expected (O/E) ratios were calculated with 95% confidence intervals. We performed a sensitivity analysis of the outcome comparison after multiple imputation, with use of the mice package in R. All statistical analyses were performed in R (version 3.5.1) and RStudio (version 10.1.36). CENTER-TBI data

\(^1\) Corresponding author.

E-mail address: e.wiegers@erasmusmc.nl (E.J.A. Wiegers).
was accessed using a bespoke data management tool, 'Neurobot' (http://neurobot.incf.org, RRID: SCR_01700), vs 2.0 (data freeze: June 2019).

Results

In total, 198 patients were included in the OzENTER-TBI Study and 2138 patients were included in the CENTER-TBI ICU Core Study. After excluding patients with missing GCS at baseline (n= 133), patients with no severe GCS (n= 1135), and patients that were included in countries that included less than 50 patients (n= 194), 874 patients were included in this study (Fig. 1). These patients were from three regions: Victoria, Australia (2 MTCs, n=107), UK (8 MTCs, n=171), and Europe (28 MTCs, n=596, The Netherlands, Italy, Spain, Belgium, Norway, France each of which had > 50 patients enrolled and were included).

Patients with severe TBI in Victoria, Australia, compared to those in the UK and Europe, were younger (median: 32 [IQR: 23-48] vs 44 years [IQR: 27-56] and 44 years [IQR: 26 – 62], p=0.003), a higher proportion was injured due to a road traffic incident (60% vs 51% vs 55%, p<0.001), and a lower proportion due to a fall (21% vs 31% vs 34%). Although a higher proportion of patients in Victoria, Australia and Europe than the UK, were transported direct to the trauma centre from the accident scene (90% vs 89% vs 66%) the transport times (from scene to trauma centre) for primary referrals were similar (median: 97 [IQR: 64-151] vs 105 [IQR: 80 – 127] minutes) in Victoria, Australia and the UK, but shorter in Europe (median: 73 [IQR: 54-100] minutes). In Australia, UK and Europe, two thirds of severe TBI patients were intubated before hospital arrival (67% vs 60% vs 70%). However ICP monitors (75% vs 74% vs 58%, p<0.001), and intensive therapies (74% vs 71% vs 54%, p<0.001) were used in a higher proportion of patients in Australia and UK than Europe. Patients’ brain injury severities expressed as GCS scores, and pupil reactivities were similar in all regions, but CT scans reported epidural hematomas in a higher proportion of patients in Australia (p=0.004), and contusions in a lower proportion of patients in Europe (p=0.02).

More patients in Victoria, Australia had secondary brain insults recorded in the prehospital and emergency room phases of care. In Australia compared to UK/Europe, hypotension was recorded in 30% vs 17% / 21% (p=0.03), and hypoxia in 28% vs 19% / 22% (p=0.23) Major extracranial injuries were observed in a lower proportion of patients in Australia than in the UK and Europe (59% vs 61% vs 68%, p=0.08), but thorax/cheest injuries were observed in a higher proportion of patients in Australia. (Table 1, Table 2)

Both extracranial surgeries and cranial surgeries were performed in more patients in Australia than in the UK and Europe (43% vs 20% vs 36%, p<0.001 and 68% vs 50% vs 42%, p<0.001), but most acute management medical practices were equivalent. Two interventions for refractory intracranial hypertension were used in a lower proportion of patients in Australia than the UK and Europe. These were intensive hypopcapnia (1.1% vs 8.5% vs 6.7%) (p=0.06), and decompressive craniectomy (14% vs 25% vs 15%) (p=0.01). There were no differences in the proportion of patients with large intracranial hematomas (Marshall classification V/VI; 27% vs 41% vs 34%). (Table 2)

However, despite the many similarities in other factors, ICU length of stay was substantially shorter in Australia than the UK and Europe, (median: 8.8 vs 13 days vs 11 days, p<0.001), and hospital length of stay was shorter in Australia than in the UK, but similar to Europe (median 17 vs 23 vs 16 days, p<0.001). In Australia although ICU times were shorter, most TBI deaths (19%) occurred in the ICU, and a further 3% occurred after ICU. In the UK, ICU mortality was 16%, with another 5% occurring later. In Europe,
2% of hospital deaths occurred after ICU. In Australia, the median time from ICU admission to death in ICU was 4.1 days [IQR: 1.2 - 8.9] and the median time from ICU admission to decision of withdrawal of treatment was 3.7 days [IQR: 1.3 - 7.8], compared to 7.1 days [IQR: 3.1 - 13] and 8.0 [IQR: 2.5 - 12] in the UK, and 1.7 days [IQR: 0.6 - 6.4] and 1.1 [IQR: 0.3 - 4.6] days in Europe (p=0.01 and p<0.01). Withdrawal of therapy due to very severe brain injury was the primary cause of death in both countries (91% in Australia vs 89% in the UK). In Australia 64% of TBI patients were discharged to a rehabilitation centre compared to 26% in UK and 28% in Europe (P<0.001) where the most common discharge destination was a second hospital.

GOSE at 6 months was available in 776 (89%) patients. The follow-up rate was higher in Victoria (n=99, 93%), compared to UK
Table 2
Management characteristics of patients with severe TBI in Victoria, Australia, the UK and Europe

Variable	Total number of patients	AustraliaN=107	UKN=171	EuropeN=596	p-value
Referral					
Primary referral	96 (90%)	113 (66%)	73 (89%)		<0.001
Time to study centre (median (IQR)) - minutes	97 (64 – 151)	105 (80 – 127)	73 (54 – 100)	0.70	
Secondary referral	11 (10%)	58 (34%)	65 (11%)		<0.001
Time to study centre (median (IQR)) - minutes	439 (308 – 512)	325 (239 – 499)	308 (225 – 435)	0.43	
Diagnostic and surgical interventions					
Arrived Intubated	71 (67%)	102 (60%)	416 (70%)		0.04
Missing	1	-	2		
ICP monitor placed	80 (75%)	126 (74%)	343 (58%)		<0.001
Cerebral Surgery	72 (68%)	85 (50%)	248 (42%)		<0.001
Missing	1	1	1		
Extracranial Surgery	45 (43%)	35 (20%)	215 (36%)		<0.001
Missing	3	-	2		
Treatment characteristics					
Intensive Monitoring*	79 (74%)	121 (71%)	319 (54%)		<0.001
Mechanical Ventilation for at least 24 hours	104 (97%)	162 (95%)	510 (86%)		<0.001
Invasive Blood Pressure	106 (99%)	163 (96%)	545 (92%)		0.01
Monitoring					
Missing	-	1	2		
Hypothermia (<35 °C)	15 (16%)	24 (15%)	61 (11%)		0.21
Missing	13	6	32		
Mild Hypothermia with a lower limit of 35 °C	23 (24%)	48 (29%)	67 (12%)		<0.001
Missing	13	6	32		
Intensive Monitoring**	13	6	32		
Hypocapnia [PaCO2 < 4.0 kPa (30 mmHg)]					
Missing	13	6	32		
Metabolic Suppression**	23 (24%)	40 (24%)	183 (32%)		0.06
Missing	13	6	32		
Paralysis	54 (57%)	88 (53%)	171 (30%)		<0.001
Missing	13	6	32		
Decompressive craniectomy	13 (14%)	41 (25%)	84 (15%)		0.01
Missing	13	6	32		

ANOVA was used for comparison of continuous variables across strata. The χ² test was used for comparison of categorical variables. P values relate to how likely differences between groups could occur while no differences between groups exist.

* A combination of ICP Monitor, Invasive Blood Pressure Monitoring, and Mechanical Ventilation for at least 24 hours

** Metabolic suppression for ICP control with high dose barbiturates or propofol

(n=135, 79%) and similar to Europe (n=542, 91%). Six-month mortalities were 24% vs 30% vs 28%. (Table 3). Overall, six-month mortality was better than predicted (27% vs 35%, observed to expected ratio 0.77 [95% CI: 0.64 – 0.87]), and similar in Victoria, UK and Europe (0.86 [95% CI: 0.49–1.23] vs 0.82 [0.51–1.15] vs 0.76 [0.60–0.87]). In all 3 regions however, unfavourable non-independent functional outcomes measured by GOS-SE ≤4 were similar to predicted (1.32 [0.96-1.86] vs 1.13 [0.84-1.42] vs 0.96 [0.85-1.09]). Unadjusted unfavourable outcomes rates exceeded 50% (63% vs 65% vs 55%). The unadjusted proportion of survivors with severe disability at 6 months was similar in Australia and the UK (51% and 50%), compared to 37% in Europe (Table 3). The observed to expected ratios after multiple imputation were similar to those in complete case analysis. (Supplemental Table 1)

Discussion

Compared to TBI patients in the UK, and Europe, patients in Victoria, Australia were younger, and higher proportions had road traffic incidents compared to falls, secondary insults in the pre-hospital and emergency phases of care (predominantly hypotension), and epidural hematomas. A lower proportion received intensive hypothermia and decompressive craniectomy therapies, and the patients treated in Victoria had shorter times to withdrawal of
Table 3
Outcomes among patients with severe TBI in Victoria, Australia, the UK and Europe

Variable	Australia (N=107)	UK (N=171)	Europe (N=596)	P-value
Total number of patients				
Length of Stay				
Hospital Length of Stay, median (IQR) – days	17 (8.8–30)	23 (8.1–54)	16 (1.8–33)	<0.001
Hospital Length of stay for all patients who survived to hospital discharge, median (IQR) – days	19 (11–32)	30 (12–60)	22 (8.6–38)	<0.001
ICU Length of stay, median (IQR) – days	8.8 (4.6–15)	13 (5.6–20)	11 (3.2–21)	<0.05
ICU Length of stay for all patients who survived to ICU discharge, median (IQR) – days	9.6 (4.9–16)	14 (7.4–22)	14 (5.6–23)	0.02
Hospital Mortality				
ICU Mortality	20 (19%)	28 (16%)	124 (21%)	0.39
In-hospital Mortality	24 (22%)	36 (21%)	139 (23%)	0.82
Cause of Death (for patients that died in-hospital)				0.21
Head injury/initial injury	20 (83%)	2 (8.3%)	2 (8.3%)	
Head injury/secondary intracranial damage	4 (17%)	8 (32%)	15 (14%)	
Systemic Trauma	1 (4.2%)	-	4 (3.7%)	
Other (including medical complications)	-	2 (8%)	9 (8.4%)	
Missing	-	-	32	
Final Discharge	67 (64%)	42 (26%)	153 (28%)	
Location	7 (6.7%)	33 (20%)	116 (21%)	
Rehab Unit	Other hospital	6 (5.7%)	46 (28%)	
Home	1 (1.0%)	5 (3.1%)	15 (2.7%)	
Other	24 (23%)	36 (22%)	139 (25%)	
Mortality	2	9	39	
6-month Outcome				
6-months mortality	24 (24%)	41 (30%)	154 (28%)	0.58
Missing	8	35	54	
6-month predicted probability of mortality**	29%	34%	36%	
Observed versus expected mortality**	0.86 [0.49 – 1.23]	0.82 [0.51 – 1.15]	0.76 [0.60 – 0.87]	0.72
6-months unfavourable outcome (GOSE<5)	62 (63%)	88 (65%)	297 (55%)	0.05
Missing	8	35	54	
6-month predicted probability of unfavourable outcome **	47%	56%	55%	
Observed versus expected unfavourable outcome **	1.32 [0.96 – 1.68]	1.13 [0.84 – 1.42]	0.96 [0.85 – 1.09]	0.10
6-month GOSE 2-4 vs 5-8	38 (51%)	47 (50%)	143 (37%)	0.01

The χ² test was used for comparison of categorical variables. P values relate to how likely differences between groups could occur while no differences between groups exist. The outcome comparisons with the IMPACT CT model were based on patients in whom both information on predicted outcome and observed outcome was available. A chi-squared goodness of fit was applied to the observed versus expected values.

* Length of stay was missing in: 0, 7, 12 patients.
** according to the IMPACT-CT model. ANOVA was used for comparison of continuous variables across strata.
therapy for severe brain injuries, contributing to shorter ICU and hospital times. The proportion discharged to rehabilitation centres in Victoria was greater than UK and Europe but at 6 months after injury, mortality and functional outcomes in all 3 regions were similar, with unfavourable non-independent living being similar to IMPACT predictions.

The younger age of severe TBI patients in Victoria, Australia compared to the UK, likely reflects patient selection within the Victorian Trauma system, which directs adult trauma patients preferentially to two adult trauma centres, but triages patients 65 years old and over with an isolated TBI related to a low fall, to different neurosurgical centres that did not participate in the OzENTER-TBI. A recent Registry study in Victoria of severe TBI patients reported a 85%:15% patient division between the two major trauma centres of our study and the other hospitals with neurological services, and also a median age of severe TBI patients in the white state of 41.5 years,(14) which is comparable to the UK (44 years), but different to this study (32 years). Selection in Victoria also likely accounts for the lower proportion of falls compared to UK which are more common in the elderly, and the higher rate of road traffic incidents (60% vs 50%). The higher rates of hypotension and hypoxia in Australia may relate to the higher percentage of road traffic incidents in this cohort, with associated greater haemorrhage and thoracic injuries. Our data suggest they are not due to different prehospital intubation rates nor to longer transport times, however they are likely to impact upon patient outcomes. Future research in Australia may optimally be directed towards further improvements in fluid resuscitation and intubation protocols aimed at reducing these secondary insults. (20, 21)

We found large variation between Australia, the UK and Europe in the use of brain-specific treatments including ICP monitoring, metabolic suppression, intensive hypocapnia, and paralysis. Intensive hypocapnia is little used in Australia due to concerns about short duration of action, and possible adverse implications of cerebral vasocostriction. Several attempts to improve the quality of evidence for ICP monitoring have been performed in the past, which have been complicated by ethical challenges in randomizing patients between ICP monitoring and no ICP monitoring, and result in low evidence recommendations.(22, 23) Recent developments in technology resulted in new monitoring techniques, also known as multimodal monitoring, that can provide the neuro intensivist with information and assist in management decision making.(24, 25) Currently, several collaborations and research efforts are being made to resolve the outstanding questions about the roles and indications for neuro monitoring after TBI and demonstrate unequivocally whether monitor-guided interventions lead to improved outcomes for patients.(26) Another therapeutic option is decompressive craniectomy, which we found to be less common in Australia and Europe than the UK (P=0.01). A current randomised trial is testing decompressive craniectomy after evacuation of intracranial hematomas for brain swelling, but in patients with diffuse severe TBI and combined diffuse and mass lesion TBI, two large randomised trials in 2011 and 2016 found that decompressive craniectomy increased severely disabled survivors at 6 months. At 12 months, neither study showed an increase in patients surviving with a GOSE ≥ 5 (7, 8, 27, 28).

ICU and hospital times were 50% shorter for TBI patients in Australia than the UK. Since dying patients consume less hospital time than survivors, timing of death impacts these findings, and in Australia almost all TBI deaths occurred during the first 9 days in ICU. In the UK, ICU stays were longer, yet one third of UK deaths occurred after ICU. It is possible that some of these differences may be because step down care of critically ill patients may have been differentially labelled as ICU or non-ICU care in different hospitals, but such details were unavailable. Since 80% of TBI deaths in both countries were due to such severe head injury that withdrawal of care took place, the unexpected difference in timings of this decision making may be a factor driving reduced hospital times and costs in Australia, compared to the UK.

A higher proportion of patients was discharged to rehabilitation facilities in Victoria than in the comparable countries where a second (less acute) hospital was most common, although this might be explained in part by the younger age of patients in Victoria. However, availability of rehabilitation services in Victoria for road trauma patients who are compensable through the Transport Accident Commission, may be another driver.(29) Lower levelRCT evidence and expert opinion suggest that TBI rehabilitation is beneficial in improving the functional outcomes beyond what we would expect from spontaneous recovery.(30, 31) However, the probability of receiving rehabilitation is associated with patients’ and regional characteristics. Also, it might be challenging to meet the key success criteria for health and rehabilitation services such as inclusion of and access to and inclusion of well-coordinated multidisciplinary processes incorporating the varying needs of the individuals having sustained a TBI. However, our results may also question the beneficial impact of earlier rehabilitation on long term functional outcomes in severe TBI patients. Therefore, future studies should assess the necessity of more extensive multidimensional and standardized assessment of functional and psychological impairments and corresponding rehabilitation needs.

However despite these differences, after adjusting for predicted outcomes using IMPACT CT, patient outcomes at 6 months in all three regions were very similar: mortality tended to be better than predicted, but independent outcomes were not, indicating that the number of people living with severe disability was increased compared to predicted in all regions. Also, we did not observe any substantial differences in outcome between Victoria, Australia, the UK and Europe, confirming the results of a recent study (32) Although this could be the result of a homogenous standard of treatment in the three regions, this might also suggest that the differences in therapies may be discordant and urges the need for future studies that study the effect of these therapies in isolation. The IMPACT CT prognostic scheme accounts for only about a third of outcome variance, and outcomes in all three regions may have been affected by unmeasured confounders. This, coupled with the large confidence intervals for our estimates of observed/expected unfavourable outcome in Victoria and the UK may mean that significant differences were missed.

Strengths of this study were the enrollment of patients with severe TBI across three large regions and many countries, and the detailed information on demographics, therapies, and outcomes. Limitations were first that our three cohorts were a small proportion of all patients with TBI in Australia, UK, and Europe, and they were not enrolled consecutively which could introduce selection bias. Second, follow-up data was missing in some patients, adding some uncertainty to the interpretation of the outcome comparisons.

This study highlights regional differences in patient characteristics which need to be considered when interpreting and comparing results from clinical studies on TBI from different regions. This collaboration within the InTBI initiative will enable future meta-analyses for research questions that require larger numbers. Results from observational studies may give rise to new insights in disease mechanisms and rejuvenate industry interests and investment in TBI.

In conclusion, differences exist in case-mix between Victoria, Australia compared to the UK and Europe, including a younger age and a higher rate of secondary brain insults. Despite some differences in management and discharge policies, mortality and functional outcomes are largely similar. Contemporary mortality is better than expected based on historical data, but independent living outcomes may not have improved. These findings are likely driven by increased survival with disability over time and emphasize the
Fig. 2. Probabilities of state of severe TBI patients during the first two weeks after ICU admission. The x-axis represents time from ICU admission in hours, y-axis represents the probability to be in one of the following states; discharged from ICU, still in ICU, or died in ICU.

need for further global efforts in order to refine recommendations for severe TBI patients.

Fig. 2

Ethics approval and consent to participate

In each recruiting site ethical approval was given; an overview is available online (https://www.center-tbi.eu/project/ethical-approval).

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available via https://www.center-tbi.eu/data on reasonable request.

Funding

This research was funded by the European Commission 7th Framework program (602150), the Australian Health and Medical Research Council (NHMRC 1074181) and the Transport Accident Commission Victoria Australia (ISCR N 14–129). Additional funding was obtained from the Hannelore Kohl Stiftung (Germany), from OneMind (USA), from Integra LifeSciences Corporation (USA) and from Neurotrauma Sciences (USA). The funders had no role in the design of the study and collection, analysis, interpretation of data and in writing the manuscript.

Authors’ contributions

EW analyzed the data and drafted the tables and Figs. EW, and DJC interpreted the data and drafted the manuscript. DJC designed the study protocol and supervised the study. TT, HL, ES, and AM were involved in regular meetings on the manuscript and reviewed the manuscript multiple times. All authors were involved in the design of the CENTER-TBI and the OZCENTER-TBI study and reviewed and approved the final version of the manuscript. The lead author that the manuscript is an honest, accurate, and transparent account of the study being reported; no important aspects of the study have been omitted.

Collaboration groups

Cecilia Åkerlund1, Krisztina Amrein2, Nada Andelic3, Lasse Andreassen4, Audny Anke5, Anna Antoni6, Gérard Audibert7, Philippe Azouvi8, Maria Luisa Azzolini9, Ronald Bartels10, Pál Barzag11, Romuald Beaumont12, Ronny Beer13, Bo-Michael Bellander14, Antonio Belli15, Habib Benali16, Maurizio Berardino17, Luigi Beretta18, Morten Blaabjerg18, Peter Bragge19, Alexandra Brazinova20, Vibeke Brink21, Joanne Brooker22, Camilla Brorsson23, Andras Buki24, Monika Bullinger25, Manuel Cabeleira26, Alessio Caccioppola27, Emiliana Calappi27, Maria Rosa Calvi6, Peter Cameron28, Guillermo Carbayo Lozano29, Marco Carbonara7, Simona Cavallo17, Giorgio Chevallard30, Arturo Chieregato30, Giuseppe Citerio31, 32, Iris Ceyisakar33, Hans Clusmann34, Mark Coburn35, Jonathan Coles36, Jamie D. Cooper37, Marta Correia18, Amra Cović39, Nicola Curr40, Endre Czeizler24, Marek Czosnyka26, Claire Dahyot-Fizelier41, Paul Dark42, Helen Dawes43, Véronique De Keyser44, Vincent Degos45, Francesco Della Corte45, Hugo den Boogert46, Bart Depreitere46, Dula Dilvesi47, Abhishek Dixit48, Emma Donoghue49, Jens Dreier50, Guy-Loup Dubière50, Ari Ercole48, Patrick Esser49, Erzsébet Ezer51, Martin Fabricius52, Valery L. Feigin53, Kelly Foks54, Shirin Frisvold55, Alex Furmanov56, Pablo Gagliardo57, Damien Galanaud56, Dashiell Gantner58, Guoyi Gao59, Pradeep George59, Alexandr Ghyuyen60, Lelde Giga61, Ben Glocker62, Jagoš Golubovic67, Pedro A. Gomez63, Johannes Gratz64, Benjamin Gravesteijn35, Francesca Grossi65, Russell L. Gruen65, Deepak Gupta66, Juanita A. Haagasma63, Iain Haitsm67, Raimund Helbok13, Erik Helseth58, Lindsay Horton69, Jilse Huijbden73, Peter J. Hutchinson70, Bram Jacobs71, Stefan Jankowski72, Mike Jarrett71, Ji-yao Jiang84, Faye Johnson73, Kelly Jones74, Mladen Karan75, Angelos G. Kolas80, Erwin Kompaj82, Daniel Kondziella82, Evgenios Koraropoulos84, Lars-Owe Koskinen75, Noëmi Kovács76, Ana Kowark83, Alfonso Lagares83, Linda Lanyon85, Steven Laureys67, Fiona Lecky78, 79, Didier Ledoux77, Rolf Lefering80, Valerie Legrand81, Aurelie Lejeune82, Leon Levy83, Roger Lightfoot84, Hester Lingsma89, Andrew I.R. Maas44, Ana M. Castaño-León82, Marc Maeglin85, Marek Majdan80, Alex Manara86, Geoffrey Manley87, Costanza Martin80, Hugues Maréchal89, Julia Matern89, Catherine McMahan80, Béla Melegh89, David Menon86, Tomas Menovsky44, Ana Mikolc83, Benoit Misser77, Visakh Muraleedharan85, Lynnette Murray88, Ancuta Negr62, David Nelson71, Virginia Newcombe48, Daan Nieboer33, Józef Nyríd34, Otseile Olubukola78, Matej Oresic33, Fabrizio Ortolano27, Aarno Palotie84, 55, 96, Paul M. Parizel67, Jean-François Payen98, Natasha Perera72, Vincent Perlberg86, Paolo Perso99, Wilco Peul100, Anna Piippo-Karlajainen101, Matti Pirinen94, Horia Ples95, Suzanne Polinder87, Inigo Pompoco90, Jussi P. Posti102, Louis Puybasset103, Andreae Radoi104, Arminas Ragauskas105, Rahul Raj101, Malin Rambadagallal106, Jonathan Rhodes107, Sylvia Richardson108, Sophie Richter48, Samuli Ripatti94, Saulius Rocka101, Cecilia Roe95, Olav Roise101, 111, Jonathan Rosand112, Jeffrey V. Rosenfeld113.
Christina Rosenlund114, Guy Rosenthal56, Rolf Rossaint15, Sandra Rossi99, Daniel Rueckert62, Martin Rusnak115, Juan Sahuquillo104, Oliver Sakowitz89, 116 Renan Sanchez-Porras116, Janos Sandor117, Nadine Schafer40, Silke Schmidt118, Herbert Schoechl119, Guus Schoonman120, Rico Frederik Schou121, Elisabeth Schwendenewein6, Charlie Sewalt112, Toril Skandsen122, 123, Peter Smielewski26, Abayomi Sorinola124, Emmanouil Stamatakis48, Simon Stanworth40, Robert Stevens125, William Stewart126, Ewout W. Streyberg123, 127, Nino Stocchetti128, Nina Sundströmi129, Anneliese Synnot22, 130, Rilkka Takala131, Viktoría Tamás124, Tomas Tamosiutis132, Mark Steven Taylor20, Braden Te Ao51, Olli Tenovuo102, Alice Theadom53, Matt Thomas86, Dick Tibboel133, Marjolein Timmers74, Christos Toliass134, Tony Trapani28, Cristina Maria Tudora62, Andreas Unterberg89, Peter Vajkoczy135, Shirley Vallance28, Egils Valeinis61, Zoltan Vamos51, Mathieu van der Jagt136, Gregory Van der Steen44, Jouke van der Naalt71, Jeroen T.J.M. van Dijck100, Thomas A. van Essen100, Wim Van Hecke137, Caroline van Heugten138, Dominique Van Praag139, Thijs Vande Vyvere137, Roel P.J. van Vijk100, Alessia Vargiolu1, 12, Emmanouil Vega82, Kimberley Vet33, Jan Verheyden157, Paul M. Vespas140, Anne Vik122, 141, Rimantas Vilciunas132, Victor Volovich67, Nicole von Steinbuecher59, Daphne Voormolen23, Petar Vulekovic47, Kevin K.W. Wang142, Eveline Wiegers22, Guy Williams48, Lindsey Wilson69, Stefan Winzeck48, Stefan Wolf45, Zhuhui Yang142, Peter Ylen144, Alexander Younis89, Frederik A. Zeiler48, 145, Veronika Zelinkova20, Agata Ziverte61, Tommaso Zoretti27

Center-TBI

1 Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
2 János Szentágóthai Research Centre, University of Pécs, Pécs, Hungary
3 Division of Surgery and Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
4 Department of Neurosurgery, University Hospital Northern Norway, Tromso, Norway
5 Department of Physical Medicine and Rehabilitation, University Hospital Northern Norway, Tromso, Norway
6 Trauma Surgery, Medical University Vienna, Vienna, Austria
7 Department of Anaesthesiology & Intensive Care, University Hospital Nancy, Nancy, France
8 Raymond Poincare hospital, Assistance Publique – Hôpitaux de Paris, Paris, France
9 Department of Anaesthesiology & Intensive Care, S Raffaele University Hospital, Milan, Italy
10 Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
11 Department of Neurosurgery, University of Szeged, Szeged, Hungary
12 International Projects Management, ARTTIC, Munich, Germany
13 Department of Neurology, Neurological Intensive Care Unit, Medical University of Innsbruck, Innsbruck, Austria
14 Department of Neurosurgery & Anesthesia & intensive care medicine, Karolinska University Hospital, Stockholm, Sweden
15 NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
16 Anesthesie-Réanimation, Assistance Publique – Hôpitaux de Paris, Paris, France
17 Department of Anesthesia & ICU, AOU Città della Salute e della Scienza di Torino – Orthopedic and Trauma Center, Torino, Italy
18 Department of Neurology, Odense University Hospital, Odense, Denmark
19 BehaviourWorks Australia, Monash Sustainability Institute, Monash University, Victoria, Australia
20 Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
21 Quesgen Systems Inc., Burlingame, California, USA
22 Australian & New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Department of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
23 Department of Surgery and Perioperative Science, Umeå University, Umeå, Sweden
24 Department of Neurosurgery, Medical School, University of Pecs, Hungary and Neurotrauma Research Group, Janos Szentagothy Research Centre, University of Pecs, Hungary
25 Department of Medical Psychology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
26 Brain Physics Lab, Division of Neurosurgery, Dept of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
27 Neuro ICU, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
28 ANZIC Research Centre, Monash University, Department of Epidemiology and Preventive Medicine, Melbourne, Victoria, Australia
29 Department of Neurosurgery, Hospital of Cruces, Bilbao, Spain
30 NeuroIntensive Care, Niguarda Hospital, Milan, Italy
31 School of Medicine and Surgery, Università Milano Bicocca, Milano, Italy
32 NeuroIntensive Care, ASST di Monza, Monza, Italy
33 Department of Public Health, Erasmus Medical Center-University Medical Center, Rotterdam, The Netherlands
34 Department of Neurosurgery, Medical Faculty RWTH Aachen University, Aachen, Germany
35 Department of Anaesthesiology, University Hospital of Aachen, Aachen, Germany
36 Department of Anesthesia & Neurointensive Care, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
37 School of Public Health & PM, Monash University and The Alfred Hospital, Melbourne, Victoria, Australia
38 Radiology/MRI department, MRC Cognition and Brain Sciences Unit, Cambridge, UK
39 Institute of Medical Psychology and Medical Sociology, Universitätmedizin Göttingen, Göttingen, Germany
40 Oxford University Hospitals NHS Trust, Oxford, UK
41 Intensive Care Unit, CHU Poitiers, Poitiers, France
42 University of Manchester NIHR Biomedical Research Centre, Critical Care Directorate, Salford Royal Hospital NHS Foundation Trust, Salford, UK
43 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
44 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
45 Department of Anesthesia & Intensive Care, Maggiore Della Carità Hospital, Novara, Italy
46 Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
47 Department of Neurosurgery, Clinical centre of Vojvodina, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
48 Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
49 Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin,
Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
50 Intensive Care Unit, CHR Citadelle, Liège, Belgium
51 Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
52 Departments of Neurology, Clinical Neurophysiology and Neuroanesthesiology, Region Hovedstaden Rigshospitalet, Copenhagen, Denmark
53 National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
54 Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
55 Department of Anaesthesiology and Intensive Care, University Hospital Northern Norway, Tromsø, Norway
56 Department of Neurosurgery, Hadassah-hebrew University Medical Center, Jerusalem, Israel
57 Fundación Instituto Valenciano de Neurorehabilitación (FINAVAN), Valencia, Spain
58 Department of Neurosurgery, Shanghai Renji hospital, Shanghai Jiaotong University/school of medicine, Shanghai, China
59 Karolinska Institutet, INCF International Neuroinformatics Coordinating Facility, Stockholm, Sweden
60 Emergency Department, CHU, Liège, Belgium
61 Neurosurgery clinic, Pauls Stradins Clinical University Hospital, Riga, Latvia
62 Department of Computing, Imperial College London, London, UK
63 Department of Neurosurgery, Hospital Universitario 12 de Octubre, Madrid, Spain
64 Department of Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Austria
65 College of Health and Medicine, Australian National University, Canberra, Australia
66 Department of Neurosurgery, Neurosciences Centre & JPN Apex trauma centre, All India Institute of Medical Sciences, New Delhi-110029, India
67 Department of Neurosurgery, Erasmus MC, Rotterdam, the Netherlands
68 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
69 Division of Psychology, University of Stirling, Stirling, UK
70 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital & University of Cambridge, Cambridge, UK
71 Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
72 Neurointensive Care, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
73 Salford Royal Hospital NHS Foundation Trust Acute Research Delivery Team, Salford, UK
74 Department of Intensive Care and Department of Ethics and Philosophy of Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
75 Department of Clinical Neuroscience, Neurosurgery, Umeå University, Umeå, Sweden
76 Hungarian Brain Research Program - Grant No. KTIA_13_NAP-A-II/11, University of Pécs, Pécs, Hungary
77 Cyclotron Research Centre, University of Liège, Liège, Belgium
78 Centre for Urgent and Emergency Care Research (CURE), Health Services Research Section, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
79 Emergency Department, Salford Royal Hospital, Salford UK
80 Institute of Research in Operative Medicine (IFOM), Witten/Herdecke University, Cologne, Germany
81 VP Global Project Management CNS, ICON, Paris, France
82 Department of Anaesthesiology-Intensive Care, Lille University Hospital, Lille, France
83 Department of Neurosurgery, Rambam Medical Center, Haifa, Israel
84 Department of Anesthesiology & Intensive Care, University Hospitals Southampton NHS Trust, Southampton, UK
85 Cologne-Merheim Medical Center (CMMC), Department of Traumatology, Orthopedic Surgery and Sportmedicine, Witten/Herdecke University, Cologne, Germany
86 Intensive Care Unit, Southmead Hospital, Bristol, Bristol, UK
87 Department of Neurological Surgery, University of California, San Francisco, California, USA
88 Department of Anesthesia & Intensive Care, M. Bufalini Hospital, Cesena, Italy
89 Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
90 Department of Neurosurgery, The Walton centre NHS Foundation Trust, Liverpool, UK
91 Department of Medical Genetics, University of Pécs, Pécs, Hungary
92 Department of Neurosurgery, Emergency County Hospital Timisoara, Timisoara, Romania
93 School of Medical Sciences, Örebro University, Örebro, Sweden
94 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
95 Analytic and Translational Genetics Unit, Department of Medicine; Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
96 Program in Medical and Population Genetics; The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
97 Department of Radiology, University of Antwerp, Edegem, Belgium
98 Department of Anaesthesiology & Intensive Care, University Hospital of Grenoble, Grenoble, France
99 Department of Anesthesia & Intensive Care, Azienda Ospedaliera Università di Padova, Padova, Italy
100 Dept. of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands and Dept. of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
101 Department of Neurosurgery, Helsinki University Central Hospital
102 Division of Clinical Neurosciences, Department of Neurosurgery and Turku Brain Injury Centre, Turku University Hospital and University of Turku, Turku, Finland
103 Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Teaching Hospital, Assistance Publique, Hôpitaux de Paris and University Pierre et Marie Curie, Paris, France
104 Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d’Hebron Research Institute, Barcelona, Spain
105 Department of Neurosurgery, Kaunas University of technology and Vilnius University, Vilnius, Lithuania
106 Department of Neurosurgery, Rezekne Hospital, Latvia
107 Department of Anaesthesia, Critical Care & Pain Medicine NHS Lothian & University of Edinburgh, Edinburgh, UK
108 Director, MRC Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK
109 Department of Physical Medicine and Rehabilitation, Oslo University Hospital/University of Oslo, Oslo, Norway
110 Division of Orthopedics, Oslo University Hospital, Oslo, Norway
111 Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
112 Broad Institute, Cambridge MA Harvard Medical School, Boston MA, Massachusetts General Hospital, Boston MA, USA
113 National Trauma Research Institute, The Alfred Hospital, Monash University, Melbourne, Victoria, Australia
114 Department of Neurosurgery, Odense University Hospital, Odense, Denmark
115 International Neurotrauma Research Organisation, Vienna, Austria
116 Klinik für Neurochirurgie, Klinikum Ludwigshurg, Ludwigshurg, Germany
117 Division of Biostatistics and Epidemiology, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
118 Department Health and Prevention, University Greifswald, Greifswald, Germany
119 Department of Anaesthesiology and Intensive Care, AUVA Trauma Hospital, Salzburg, Austria
120 Department of Neurology, Elisabeth-Tweesteden Ziekenhuis, Tilburg, the Netherlands
121 Department of Neuroanesthesia and Neurointensive Care, Odense University Hospital, Odense, Denmark
122 Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
123 Department of Physical Medicine and Rehabilitation, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
124 Department of Neurosurgery, University of Pécs, Pécs, Hungary
125 Division of Neuroscience Critical Care, John Hopkins University School of Medicine, Baltimore, USA
126 Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
127 Dept. of Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
128 Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milano, Italy
129 Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
130 Cochrane Consumers and Communication Review Group, Centre for Health Communication and Participation, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
131 Perioperative Services, Intensive Care Medicine and Pain Management, Turku University Hospital and University of Turku, Turku, Finland
132 Department of Neurosurgery, Kaunas University of Health Sciences, Kaunas, Lithuania
133 Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children’s Hospital, Rotterdam, The Netherlands
134 Department of Neurosurgery, Kings college London, London, UK
135 Neurologie, Neurochirurgie und Psychiatrie, Charité – Universitätsmedizin Berlin, Berlin, Germany
136 Department of Intensive Care Adults, Erasmus MC– University Medical Center Rotterdam, Rotterdam, the Netherlands
137 icometrix NV, Leuven, Belgium
138 Movement Science Group, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
139 Psychology Department, Antwerp University Hospital, Edegem, Belgium
140 Director of Neurocritical Care, University of California, Los Angeles, USA
141 Department of Neurosurgery, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
142 Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
143 Department of Neurosurgery, Charié – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
144 VTT Technical Research Centre, Tampere, Finland
145 Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
146 OZENTER-TBI
147 D. Jamie Cooper1,2, Dashieh Gantner1,2, Russel Gruen3, Lynette Murray1, Jeffrey V Rosenfeld5, Dinesh Varma4,5, Tony Trapani1, Shirley Vallance1 Christopher Mclsaac7, Andrea Jordan7
148 School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
149 Department of Intensive Care, The Alfred Hospital, Melbourne, Australia
150 College of Health and Medicine, The Australian National University, Acton, Australian Capital Territory, Australia
151 Department of Surgery, Monash University, Melbourne, Australia
152 Department of Neurosurgery, The Alfred Hospital, Melbourne, Australia
153 Department of Radiology, The Alfred Hospital, Melbourne, Australia
154 Department of Intensive Care, Royal Melbourne Hospital, Melbourne, Australia

Declaration of Competing Interest

AIRM declares consulting fees from PresSura Neuro, Integra Life Sciences, and NeuroTrauma Sciences. DKM reports grants from the UK National Institute for Health Research, during the conduct of the study; grants, personal fees, and non-financial support from GlaxoSmithKline; personal fees from Neurotrauma Sciences, Lantmaanen AB, Pressura, and Pfizer, outside of the submitted work. ES reports personal fees from Springer, during the conduct of the study. DJC is an Australian NHMRC Practitioner Fellow and reports grants from the NHMRC and consulting fees to Monash University from PresSura Neuro. All other authors declare no competing interests.

Acknowledgements

The authors would like to thank all patients for their participation in the CENTER-TBI study and the OZENTER-TBI study. The authors would like to thank all principal investigators and researchers for ICU data collection and for sharing their valuable expertise. We would like to thank the IntTBIIR funders and investigators for the collaboration and support.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.injury.2021.04.033.

References

[1] Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al, Estimating the global incidence of traumatic brain injury. J Neurosurg 2018;1:1–8.
[2] Magee F, Wilson A, Bailey MJ, Pilcher D, Socombe PJ, Young P, et al. Trauma-related admissions to intensive care units in Australia: the influence of indigeneous status on outcomes. Med J Aust 2019;210(11):493–8.
[3] Olsen J, Gustavsson A, Svensson M, Wittchen HH, Jonsson B. The economic cost of brain disorders in Europe. Eur J Neurol 2012;19(1):155–62.
[4] Scholten AC, Haagsma JA, Panneman MJ, van Beeck EF, Folinder S. Traumatic brain injury in the Netherlands: incidence, costs and disability-adjusted life years. PLoS One 2014;9(10):e109905.
[5] Economics A. The economic cost of spinal cord injury and traumatic brain injury in Australia. Report by Access Economics for the Victorian Neurotrauma Initiative Canada: Access Economics. 2009:31.

[6] Collie A, Keating C, Pezzulo L, Gabbe B, Cooper J, Brown D, et al. Brain and spinal cord injury in Australia—economic cost and burden of disease. Inj Prev 2010;16:Suppl 1:A25–A66.

[7] Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive Craniectomy in Diffuse Traumatic Brain Injury. N Engl J Med 2011;364(16):1493–502.

[8] Hutchinson PJ, Kolas AG, Timofeev IS, Corteza EA, Czosnyka M, Timothy J, et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med 2016;375(12):1199–30.

[9] Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 2015;386(10012):2499–506.

[10] Myburgh J, Cooper DJ, Finster S, Bellomo R, Norton R, Bishop N, et al. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 2007;357(9):874–84.

[11] Cooper DJ, Nichol BA, Bailey M, Bernard S, Cameron PA, Pili-Fleury S, et al. Effect of Early Sustained Prophylactic Hypothermia on Neurologic Outcomes Among Patients With Severe Traumatic Brain Injury: The POLAR Randomized Clinical Trial. JAMA 2018;320(21):2211–20.

[12] Maas AI, Monon DK, Linghsma HF, Pineda JA, Sandel ME, Manley GT. Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma 2012;29(1):32–46.

[13] Gabbe BJ, Biostat GD, Lecky FE, Bosma G, Woodford M, Jenks T, et al. The effect of an organized trauma system on mortality in major trauma involving serious head injury: a comparison of the United Kingdom and Victoria, Australia. Ann Surg 2011;253(1):138–43.

[14] Burton A. The CENTER-TBI core study: The making-of. Lancet Neurol 2017;16(12):958–9.

[15] Maas AI, Monon DK, Steyerberg EW, Citerio G, Lecky F, Manley GT, et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 2015;76(1):67–80.

[16] Steyerberg EW, Wiegens E, Sewalt C, Buki A, Citerio G, De Keyser V, et al. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. The Lancet Neurology 2019;18(10):923–34.

[17] Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma 1998;15(8):573–85.

[18] Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. Plos Med 2008;5(8):e165 discussion e.

[19] Dijkland SA, Foks KA, Polinder S, Dippel DWJ, Maas AIR, Linghsma HF, et al. Prognosis in Moderate and Severe Traumatic Brain Injury: A Systematic Review of Contemporary Models and Validation Studies. J Neurotrauma 2019;37(1):1–13.

[20] McHugh GS, Engel DC, Butcher I, Steyerberg EW, Lu J, Mushkudiani N, et al. Prognostic value of secondary insults in traumatic brain injury: results from the IMPACT study. J Neurotrauma 2007;24(2):287–93.

[21] Volpi PC, Robb C, Rota M, Vargiolo A, Citerio G. Trajectories of early secondary insults correlate to outcomes of traumatic brain injury: results from a large, single centre, observational study. BMC Emergency Medicine 2018;18(1):52.

[22] Alali AS, Fowler RA, Mainprize TG, Scales DC, Kiss A, de Mestral C, et al. Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program. J Neurotrauma 2013;30(20):1737–46.

[23] Ariès M, Regtien J, Czosnyka M, Donnelly J, Smielewski P. Neuromonitoring of patients with severe traumatic brain injury at the bedside. Critical Care 2015;19(1):1–201.

[24] Roh D, Park S. Brain Multimodality Monitoring: Updated Perspectives. Curr Neurol Neurosci Rep 2016;16(6):56.

[25] Smith M. Multimodality Neuromonitoring in Adult Traumatic Brain Injury: A Narrative Review. Anesthesiology 2018;128(2):401–15.

[26] Lazaridis C. Intracranial Pressure Monitoring in Traumatic Brain Injury: Start Ventricular or Parenchymal? Neurocritical Care 2019;31(1):22–3.

[27] Kolas AG, Scotton WJ, Belli A, King AT, Brennan PM, Bulters DO, et al. Surgical management of acute subdural haematomas: current practice patterns in the United Kingdom and the Republic of Ireland. Br J Neurosurg 2013;27(3):330–3.

[28] Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, Ponsford J, et al. Patient Outcomes at Twelve Months after Early Decompressive Craniectomy for Diffuse Traumatic Brain Injury in the Randomized DECRA Clinical Trial. J Neurotrauma 2020;37(5):810–16.

[29] Gabbe BJ, Sutherland AM, Hart MJ, Cameron PA. Population-based capture of long-term functional and quality of life outcomes after major trauma: the experiences of the Victorian State Trauma Registry. J Trauma 2010;69(3):532–6 discussion 6.

[30] Cicerone KD, Mott T, Azulay J, Sharlow-Galella MA, Ellmo WJ, Paradise S, et al. A randomized controlled trial of holistic neuropsychological rehabilitation after traumatic brain injury. Arch Phys Med Rehabil 2008;89(12):2239–49.

[31] Formisano R, Azzudina E, Seflid MK, Zampolini M, Scarpini F, Awaisi R. Early rehabilitation: benefits in patients with severe acquired brain injury. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 2017;38(1):181–4.

[32] Huigen JA, Wiegens EJA, Linghsma HF, Citerio G, Maas AIR, Monen DK, et al. Changing care pathways and between-center practice variations in intensive care for traumatic brain injury across Europe: a CENTER-TBI analysis. Intensive Care Med 2020.