Clearance of Inflammatory Cytokines in Patients with Septic Acute Kidney Injury
During Renal Replacement Therapy Using the EMiC2 Filter (Clic-AKI study)

Nuttha Lumlertgul¹,²,³, Anna Hall¹,⁴, Luigi Camporota¹, Siobhan Crichton⁵, Marlies Ostermann¹

Nuttha Lumlertgul, ¹Department of Critical Care, Guy’s & St Thomas’ Hospital, NHS Foundation
Trust, 249 Westminster Bridge Road, London, United Kingdom, ²Division of Nephrology and
Excellence Centre for Critical Care Nephrology, King Chulalongkorn Memorial Hospital,
Bangkok, Thailand, ³Critical Care Nephrology Research Unit, Chulalongkorn University,
Bangkok, Thailand; Email: Nuttha.Lumlertgul@gstt.nhs.uk

Anna Hall, ¹Department of Critical Care, Guy’s & St Thomas’ Hospital, NHS Foundation Trust,
249 Westminster Bridge Road, London, United Kingdom, ⁴Zorgsaam Terneuzen, Rotterdam,
The Netherlands; Email: ap_hall@icloud.com

Luigi Camporota, ¹Department of Critical Care, Guy’s & St Thomas’ Hospital, NHS Foundation
Trust, 249 Westminster Bridge Road, London, United Kingdom; Email: Luigi.Camporota@gstt.nhs.uk

Siobhan Crichton, ⁵Medical Research Council Clinical Trials Unit, University College London,
London, United Kingdom; Email: s.crichton@ucl.ac.uk

Marlies Ostermann, ¹Department of Critical Care, Guy’s & St Thomas’ Hospital, NHS
Foundation Trust, 249 Westminster Bridge Road, London, United Kingdom; Email:
Marlies.Ostermann@gstt.nhs.uk

Short Title: EMiC2 High Cut-off Filter and cytokine clearance
Corresponding Author

Marlies Ostermann, MD, PhD

Department of Critical Care

King’s College London

Guy’s & St Thomas’ NHS Foundation Hospital

London SE1 7EH

United Kingdom

Email: marlies.ostermann@gstt.nhs.uk

Phone number: +44 2071883038
Abstract

Background: The Ultraflux EMiC2 membrane is a high cutoff hemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous hemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance.

Methods: This was a prospective observational study conducted in critically ill patients with sepsis and acute kidney injury requiring kidney replacement therapy. We measured concentrations of 12 cytokines [Interleukin (IL) IL-1β, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), monocyte chemoattractant protein (MCP)-1, epidermal growth factor (EGF)] in plasma at baseline (T0) and pre- and post-dialyzer at 1, 6, 24, and 48 hours after CVVHD initiation and in the effluent fluid at corresponding time points. Outcomes were the effluent and adsorptive clearance rates, sieving coefficients (SCs), mass balances, and changes in serial serum concentrations.

Results: Twelve patients were included in the final analysis. All cytokines except EGF concentrations declined over 48 hours (p<0.001). Apart from IL-4, IL-8 and MCP-1, the SCs of the cytokines were <0.6. The effluent clearance rates were variable and ranged from negligible values for IL-2, IFN-γ, IL-1α, IL-1β, and EGF, to 19.0 ml/min for TNF-α. Negative or minimal adsorption was observed. The effluent and adsorptive clearance rates remained steady over time. The percentage of cytokine removal was low for most cytokines throughout the 48-hour period.

Conclusion: EMiC2-CVVHD achieved modest removal of most cytokines by diffusion and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine
concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal.

Trial registration: NCT03231748, registered on 27th July 2017

Keywords EMiC2 filter, middle cutoff, high cutoff, extracorporeal blood purification, sepsis, removal, acute kidney injury, CRRT, kidney replacement therapy
INTRODUCTION

Sepsis is a life-threatening condition in which a dysregulated release of pro- and anti-inflammatory cytokines can lead to multiple organ failure and increased mortality [1]. Management of sepsis is supportive [2].

Critically ill patients with sepsis-associated acute kidney injury (AKI) requiring kidney replacement therapy (KRT) are at particularly high risk of death [3]. The role of extracorporeal blood purification, including removal of small inflammatory mediators and/or toxins and restoration of "immune balance" is unclear. Several strategies are possible including high-volume hemofiltration, use of high-cutoff (HCO) membrane and adsorption techniques [4]. HCO hemofiltration with a cut-off up to 60kDa has been shown to achieve higher cytokine clearance than conventional membranes (15-30kDa) but the effects on clinical outcomes such as hemodynamic improvement, severity scores and survival are inconclusive [5-11]. Besides, the concomitant loss of albumin, proteins, micronutrients, and antibiotics is a concern [12, 13].

The EMiC2 filter (Fresenius, Bad Homburg, Germany) is a super high-flux polysulfone (PS) - based membrane with a cut-off of 45kDa. Case reports showed reduction in serum k-free light chains and myoglobin levels with the EMiC2 filter but actual removal by the filter was not investigated [14-17]. Other studies reported higher removal of kappa light chains (23kDa), β2-microglobulin (17kDa), myoglobin (17kDa), IL-6, and IL-8 in patients receiving treatment with EMiC2 filters compared with standard high-flux membranes [18-21]. Continuous veno-venous hemodialysis (CVVHD) using the EMiC2 filter was well tolerated and albumin loss was limited [22].

The exact role of the EMiC2 filter in the treatment of sepsis-associated AKI is unknown. Furthermore, the causal link between reduction of plasma cytokine concentration and
extracorporeal cytokine removal has not been demonstrated [20, 22]. Before proceeding to a trial comparing the EMiC2 filter with other commercially available filters to manage sepsis-associated AKI, it is important to determine the characteristics and the actual magnitude of cytokine removal in vivo. In this pilot study, we aimed to measure the clearance of middle molecular weight cytokines using the EMiC2 filter in patients receiving CVVHD.

MATERIAL AND METHODS

This study was a prospective observational study in a 62-bed mixed tertiary-care intensive care unit (ICU) between July and September 2017. The study was approved by the Research Ethics Committee (16/LO/0313), registered on clinicaltrials.gov (NCT03231748, registered on 27th July 2017), and conducted in accordance with the Declaration of Helsinki 2013. Written informed consent was obtained from all patients or their legal representatives.

Subjects

Eligible patients were critically ill adult patients with AKI and sepsis in whom a decision had been made by the clinical team to start citrate-based CVVHD. Exclusion criteria were lack of consent, pre-existing dialysis dependent kidney failure, life expectancy <24 hours, haemoglobin <7g/dL, and need for extracorporeal membrane oxygenation (ECMO).

Kidney replacement therapy (KRT) setting

CVVHD was performed with the dialysis machine multiFiltrate using the high cut-off dialyzer Ultraflux® EMiC2 and a bicarbonate-buffered dialysate (Fresenius Medical Care, Bad Homburg, Germany) at 25-30 ml/kg/h [23]. Regional citrate anticoagulation was used in all patients.
Cytokine measurement

The concentrations of interleukin (IL) -2, IL-4, IL-6, IL-8, IL-10, vascular endothelial growth factor (VEGF), interferon gamma (IFN-γ), tumour necrosis factor alpha (TNF-α), IL-1alpha (IL-1α), IL-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), epidermal growth factor (EGF) were measured before initiation of CVVHD (T0) and pre- and post-dialyzer during CVVHD at 1, 6, 24, and 48 hours (T1, T6, T24, and T48, respectively) (Additional file 1). These molecules were also measured in the effluent at the same time points (T1, T6, T24, and T48). If CVVHD had to be temporarily discontinued, sampling was performed 1-2 hours after CVVHD was re-started using the same circuit. In case a circuit change was necessary within the first 24h of the study, sampling was re-commenced de novo with the new filter. If a further filter change was necessary within the first 24h, the patient was withdrawn from the study.

Laboratory analyses

Blood and effluent samples were centrifuged at 3,000 rpm for 15 minutes and stored in a -80 °C freezer until batch analysis at the end of the study. The cytokine concentrations were determined by electro chemiluminescent immunoassay (ECLIA) method using an Evidence Investigator Bioship system (Randox Laboratories Limited, the United Kingdom).

Outcomes of interest

The primary outcome of interest was cytokine clearance during EMiC2 based CVVHD. The secondary endpoints were adsorption by the EMiC2 filter, sieving coefficients, changes in cytokine concentrations in plasma, and reduction ratios of all cytokines over 48 hours.

Sieving coefficient

Sieving coefficient (Sc) is the ratio of a solute in the effluent compared to its plasma concentration. It represents the efficiency of each molecule removal across the filter and depends on various
factors e.g. molecular size, protein binding, and filter porosity. Sieving coefficients are calculated using the following equation [20]:

\[
SC = \frac{C_{\text{effluent}}}{(C_{\text{predialyzer}} + C_{\text{postdialyzer}})/2}
\]

Formula [1]

where \(C_{\text{predialyzer}} \) is the concentration of the pre-dialyzer plasma sample (pg/ml), \(C_{\text{postdialyzer}} \) is the concentration of the post-dialyzer plasma sample (pg/ml), and \(C_{\text{eff}} \) is the concentration in effluent (pg/ml).

A \(SC < 1 \) indicates that a mass transfer process where the concentrations have not equilibrated. A \(SC = 1 \) indicates that the substance is freely permeable, and a \(SC > 1 \) means an increase in concentration during the transfer process.

Clearances

Effluent clearance (\(Cl_{\text{eff}} \)) at each sampling time point was estimated using the following equation [24]:

\[
Cl_{\text{eff}} \left(\frac{\text{ml}}{\text{min}} \right) = \frac{Q_{df}}{60} \times \frac{C_{\text{effluent}}}{(C_{\text{predialyzer}} + C_{\text{postdialyzer}})/2}
\]

Formula [2]

where \(Q_{df} \) represents dialysate flow rate (ml/hr).

Adsorptive clearance (\(K_{\text{ad}} \)) was calculated as:

\[
K_{\text{ad}} \left(\frac{\text{ml}}{\text{min}} \right) = \frac{M_{\text{ad}}}{C_{\text{predialyzer}}}
\]

Formula [3]

\(M_{\text{ad}} \) represents mass removal rate by membrane adsorption (pg/min) (see below):

The average hourly effluent clearance (\(Cl_{\text{total}} \)) during the study period was calculated using the following formula:

\[
Cl_{\text{total}} \left(\frac{\text{ml}}{47} \right) = \frac{Cl_{1h} + Cl_{6h}}{2} \times 5 \times 60 + \frac{Cl_{16h} + Cl_{24h}}{2} \times 18 \times 60 + \frac{Cl_{24h} + Cl_{48h}}{2} \times 24 \times 60
\]

Formula [4]
The period between starting CVVHD and the 1-hour time point was not included due to the necessary equilibration process. Average clearance per minute (Clmean) was determined from Cltotal as follows:

\[
Clmean \left(\frac{ml}{min} \right) = \frac{Cl_{total}}{47 \times 60} \quad \text{Formula [6]}
\]

Mass balance

Mass balance equations describe the transport of molecules and account for material entering and leaving a system. They allow the estimation of contribution from adsorption and removal into the effluent. Mass balance of the cytokines at each time point was calculated as follows:

\[
M_{predialyzer} = Q_i \times C_{predialyzer}; \quad Q_i = Q_b \times (1 - \frac{Hct}{100}) \quad \text{Formula [7]}
\]

\[
M_{postdialyzer} = Q_o \times C_{postdialyzer}; \quad Q_o = Q_i - Q_{uf} \quad \text{Formula [8]}
\]

\[
M_{total} = M_{predialyzer} - M_{postdialyzer} \quad \text{Formula [9]}
\]

\[
M_{df} = Q_{df} \times C_{eff} \quad \text{Formula [10]}
\]

\[
M_{ad} = M_{total} - M_{df} \quad \text{Formula [11]}
\]

where \(Q_i\) is inlet plasma flow rate (ml/min); \(Q_b\) is blood flow rate (ml/min); Hct is hematocrit at sampling time; \(Q_o\) is outlet plasma flow rate (ml/min); \(Q_{uf}\) is ultrafiltration rate (ml/min); \(Q_{df}\) is dialysate flow rate (ml/min); \(M_{predialyzer}\) is inlet mass rate (pg/min); \(M_{postdialyzer}\) is outlet mass rate (pg/min); \(M_{total}\) is total mass removal rate (pg/min); \(M_{df}\) is mass removal rate by dialysis (pg/min); \(M_{ad}\) is mass removal rate by membrane adsorption (pg/min).

We only included subjects with detectable pre-dialyzer concentrations when analyzing the SCs, effluent and adsorptive clearance rates, and mass balances.

Reduction ratios

The reduction ratio (RR) of plasma cytokine concentrations at each time point was calculated as follows [18]:
\[
RR = \frac{C_{\text{predialyzer time}X-\text{Ctime}0}}{C_{\text{time}0}} \times 100 \quad \text{Formula [12]}
\]

where \(C_{\text{time}0}\) = plasma concentrations of cytokines at baseline before CVVHD initiation.

Statistical analyses

The Kolmogorov-Smirnov test was performed to test for normal distribution of continuous variables. Normally distributed data were summarised as mean ± standard deviation. Missing data were not imputed. Non-parametric variables were summarised as median with interquartile range. Changes in median levels over time were compared using generalised estimating equations (GEE). Spearman's correlation was performed to assess the correlation between plasma cytokine concentrations and clearance rates. Linear regression was performed to investigate the link between molecular weight and clearance. A \(p\) value < 0.05 was considered statistically significant. Data were analyzed using Stata 16 (StataCorp, College Station, Texas).

RESULTS

Patient characteristics

Thirteen patients were recruited to the study, but one patient was excluded because KRT was not started for clinical reasons. Baseline characteristics, severity scores, clinical and laboratory data at KRT initiation of the remaining 12 patients are presented in Table 1. The median dialysate volume was 2400 mL (IQR 2300 to 3000), and the median ultrafiltration rate was 40 mL/hour (IQR 0 to 190). Eight patients were discharged alive from the ICU.

Cytokine Plasma Concentrations

Median and interquartile range of pre-dialyzer plasma cytokine concentrations at baseline and pre-determined time points are displayed in Table 2. IL-2, EGF, IFN-\(\gamma\), IL-1\(\beta\) were undetectable
in 3, 3, 2, and 1 patient, respectively, throughout the whole study period. The plasma concentrations of all cytokines except EGF significantly decreased over time (p <0.001). Figure 1 demonstrates the pre-filter cytokine concentrations at each time point relative to baseline levels (T0, 100%). At 48 hours, the pre-filter cytokine concentrations decreased to 38.98 ± 18.89% for IFN-γ and to 90.57 ± 52.21% for IL-2, corresponding to reduction ratios of -61.02% and -9.43%, respectively. (Additional file 2) In contrast, for EGF, the pre-filter cytokine concentrations at 48 hours were 161.74 ± 97.84% higher compared with baseline.

Cytokine removal

Sieving coefficients

IL-2, IL-10, VEGF, IFN-γ, TNF-α, IL-1α, IL-1β, and EGF were undetectable in the effluent of 9, 2, 5, 9, 1, 7, 7, and 11 patients, respectively. Sieving coefficients over time are reported in Additional file 3. The mean SCs were highest for IL-8 (1.52), IL-4 (1.35) and MCP-1 (0.81); while it was negligible for EGF (0.05) and IL-2 (0.06), and lower than 0.6 in others. The median reduction ratios for MCP-1, IL-4, and IL-8 were -59.94%, -13.46%, and -58.93%, respectively. Linear regression showed a negative relationship between the molecular weight of each cytokine and the corresponding SC (β = 0.03, R² = 0.09, p <0.001), while sampling time after CVVHD initiation was not related with the SC (Additional file 4).

Clearance rates

The adsorption and effluent clearance rates at each time point are shown in Table 3 and Additional file 5. The median time-weighted effluent clearance rates varied from 0 mL/min in 5 cytokines (IL-2, IFN-γ, IL-1α, IL-1β, and EGF) to 33.9 mL/min (MCP-1), 55.4 mL/min (IL-4), and 63.8 mL/min (IL-8). The effluent clearance rates were constant during the 48-hour period for most cytokines,
except for IL-10 and TNF-α where clearance rates were higher at T48. The median time-weighted adsorption rates ranged from -64.0 ml/min (IQR -91.2 to -43.4) for IL-4 to 9.8 ml/min (IQR -3.8 to 46.3) for IL-2. Negative values for adsorption were observed in all cytokines at some time points. There were no significant changes in adsorption rates over time. Correlations between serum concentrations and adsorption and effluent clearance are shown in Additional file 6.

Mass balance

The total mass transfer (M_{total}) and mass balance via adsorption (M_{ad}) and diffusion (M_{df}) are demonstrated in Additional file 7. Total mass transfer and the contributions from M_{df} and M_{ad} were calculated in percentage of $M_{\text{predialyzer}}$ and shown in Figure 2. There was marked heterogeneity in the proportion of diffusion and adsorption for all cytokines over time. Diffusion ($\%M_{\text{df}}/M_{\text{predialyzer}}$) contributed more to cytokine removal than adsorption ($\%M_{\text{ad}}/M_{\text{predialyzer}}$) for IL-4, TNF-α, and MCP-1. At 1 hour after CVVHD initiation, total removal ($\%M_{\text{total}}/M_{\text{predialyzer}}$) ranged from -12.24% (IL-8) to 10.27% (TNF-α). The total cytokine removal rates remained stable over the observation period except for VEGF which rose due to increased adsorption. At 48 hours, $\%M_{\text{total}}/M_{\text{predialyzer}}$ varied from -19.06% (IFN-γ) to 43.54% (VEGF).

DISCUSSION

This is the first study which investigated the transport characteristics of 12 molecules across the EMIC2 membrane. The key findings were: first that the plasma concentrations of all molecules declined over 48 hours, except for EGF. Second, the sieving coefficients and effluent clearance rates were low for most cytokines, except for IL-4, IL-8, and MCP-1. Third, minimal or negative adsorption was observed for all cytokines. Finally, the total removal rates and contributions from diffusion and adsorption were heterogeneous but were mostly low to moderate.
Extracorporeal blood purification to attenuate the effects of pro-inflammatory and anti-inflammatory mediators in sepsis remains a controversial issue. Although some studies showed potentially promising results and a reduction of cytokine concentrations in plasma with particular extracorporeal techniques, it is not always clear whether these declines in cytokine levels are related to the filter, or simply a reflection of the dynamic nature of sepsis [4]. Baseline cytokine concentrations of our patient cohort were similar or lower than previous reports in the literature [25-34]. This possibly reflects the heterogeneity in phenotypes and severity of sepsis and also underlines the complexity of cytokine profile interpretation in this setting. Whilst some cytokines are pro-inflammatory and associated with poor outcomes [35], others have a potentially beneficial role. For instance, EGF represents tissue recovery or regeneration after injury and is associated with cellular proliferation and survival in sepsis [36].

Previous studies explored cytokine changes and cytokine removal by the EMiC2 filter, but none have fully investigated the various mechanisms of cytokine clearance in critically ill patients with sepsis [19-22]. Despite reported decent removal of IL-6, IL-8, IL-1β, and TNF-α (MW 8.4 to 25 kDa) in-vitro, the effluent clearance rates varied markedly in humans [20, 21, 37]. Our data show that the majority of cytokines did not achieve high SCs apart from IL-8, IL-4 and MCP-1. Several factors might affect in-vivo clearance e.g. duration of blood contact, binding to protein or plasma components, dialysate rate or ultrafiltration rate, molecular weight, serum concentration, or sampling time after filter installation. In a previous study using a HCO membrane, a decline in plasma IL-1ra and IL-6 was observed in patients with high baseline concentrations [5]. This corresponds with our results showing that serum IL-2, IL-6 and IL-1β concentrations were positively correlated with effluent clearance rates. We also noted that the effluent clearance rates remained constant over time which may be explained by the use of citrate based anticoagulation [38].
The contribution of adsorption to total cytokine removal with EMiC2 filters was minimal. This is compatible with in-vitro data showing no adsorptive capacity of EMiC2 filters compared with other membranes [37]. We noted a small degree of adsorption of IL-2 and VEGF which contributed to total mass removal. However, “negative adsorption” was also observed for all cytokines consistent with similar reports in the literature [9, 22, 24]. The mechanisms for this “desorption” phenomenon are unclear and might be explained by effects of hemocencentration on the outflow side (which we corrected for in our study), release of previously bound cytokines [39], activation of the inflammatory system through reverse diffusion [22], cytokine induction from dialyzer bio-incompatibility [40], activation or deactivation by enzymes after sampling, or sampling errors.

We found that the changes in cytokine concentrations seen in plasma were discordant with the extent of removal by clearance and adsorption. Despite a decline in serum concentrations, we found low total mass removal rates across the filter for most cytokines. The SCs and clearance rates were highest for IL-4, IL-8, and MCP-1, but their plasma reduction ratios varied significantly from -13.46% to -59.94%. Although VEGF showed the highest total mass removal at 48 hours, the reduction ratio was -34.88% which was lower than others.

Some of our findings are compatible with data in the literature but not all. For instance, a previous study demonstrated higher IL-6 and IL-8 clearance by the EMiC2 filter than the standard membrane, but showed no difference in plasma cytokine decline over time [20]. Another study showed comparable IL-6 clearance between the EMiC2 and high-flux membrane [21]. Similarly, studies using the EMiC2 or HCO membranes reported no changes in plasma concentrations despite detectable clearance in the ultrafiltrate [5, 9, 22, 41]. These results, together with our findings highlight that a rise or fall in serum concentrations during KRT might be related to factors
other than extracorporeal removal e.g. changes in cytokine production, intradialytic cytokine release, general improvement of the underlying disease, or response to treatment.

This is the first study to investigate a comprehensive panel of cytokines which are representative of pro- and anti-inflammatory cytokines with different molecular weights between 8-45 kDa in real clinical settings. Adsorption and diffusive clearances were evaluated extensively by determination of their SCs, clearance rates, and mass balances across the membrane over a 48-hour period. However, some limitations need to be acknowledged. First, this was a pilot study to investigate the mechanistic impact of using the EMiC2 filter. It was not powered to assess an association with clinical outcomes. Second, we did not intend to compare the EMiC2 filter with other filters. Therefore, there was no control group. However, this is an exploratory study to characterize the transport characteristics of cytokines when using the EMiC2 filter. This investigation is essential before proceeding to larger clinical studies investigating the role of blood purification with the EMiC2 filter as an adjunctive therapy in sepsis. Third, we selected 12 different molecules but did not measure all potential pro- and anti-inflammatory cytokines. We acknowledge that our conclusions only apply to the cytokines measured and that it is possible that other cytokines or medium-sized molecules are removed at higher quantities when using the EMiC2 filter. Fourth, the cohort of included patients was heterogenous and there were some patients with undetectable cytokine concentrations throughout the whole study period. Given the mechanistic nature of this project, we only included subjects with detectable pre-dialyzer concentrations when analyzing the SCs, effluent and adsorptive clearance rates, and mass balances. Finally, our aim was to describe clearance and adsorption of cytokines during CVVHD with an EMiC2 filter. Although we showed that only small amounts of cytokines were actually removed, we acknowledge that we cannot exclude any immunomodulatory effects [42, 43].
CONCLUSION

Our study has shown that in patients with sepsis and AKI receiving KRT with the EMiC2 filter, clearance of cytokines by diffusion was modest and adsorption was minor. We observed a decline in serum concentrations of most cytokines during the study period but were unable to detect an obvious correlation between serum concentration and cytokine clearance. The results suggest that mechanisms other than extracorporeal removal contribute to changes in plasma cytokine concentrations. Further work to determine the role of the EMiC2 filter in clinical practice is required.
	List of Abbreviations	
1	AKI	Acute kidney injury
2	APACHE	Acute Physiologic and Chronic Health Evaluation
3	Ceff	Effluent concentration
4	Cleff	Effluent clearance
5	Clmean	Time weighted average clearance
6	Ctotal	Total clearance
7	Cpredialyzer	Predialyzer serum concentration
8	Cpostdialyzer	Postdialyzer serum concentration
9	CKRT	Continuous kidney replacement therapy
10	CVVHD	Continuous veno-venous hemodialysis
11	CVVHDF	Continuous veno-venous hemodiafiltration
12	EGF	Epidermal growth factor
13	HCO	High cut-off
14	Hct	Hematocrit
15	IFN	Interferon
16	ICU	Intensive care unit
17	IL	Interleukin
18	IQR	Interquartile range
19	Kad	Adsorptive clearance
	Symbol	Description
---	----------	--
1	kDa	Kilodalton
2	KRT	Kidney replacement therapy
3	M_{ad}	Mass removal by adsorption
4	M_{df}	Mass removal by dialysis
5	$M_{predialyzer}$	Predialyzer mass balance
6	$M_{postdialyzer}$	Postdialyzer mass balance
7	M_t	Total mass removal rate
8	MCP	Monocyte chemoattractant protein
9	PMMA	Polymethyl methacrylate
10	PS	Polysulfone
11	Q_b	Blood flow rate
12	Q_i	Predialyzer plasma flow rate
13	Q_{df}	Dialysate flow rate
14	Q_o	Postdialyzer plasma flow rate
15	Q_{uf}	Ultrafiltration rate
16	RR	Reduction ratio
17	SC	Sieving coefficient
18	SOFA	Sequential Organ Failure Assessment
19	TNF	Tumor necrosis factor
20	VEGF	Vascular endothelial growth factor
DECLARATIONS

Ethical approval and consent to participate
The study was approved by the National Research Ethics Committee (16/LO/0313). Written informed consent was obtained from all patients or their legal representatives.

Consent for publication
Patients and/or legal representatives gave written consent to participating in the study and for their anonymous data to be included in publications.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests
Dr. Ostermann has received speaker honoraria and research funding from Fresenius Medical. All other authors declare no conflicts of interests.

Funding
The study was partially supported by an independent research grant from Fresenius Medical. The company was not involved in the design of the protocol, conduct of the study, interpretation of the results and writing of the manuscript.
Authors’ contributions

The protocol was developed by MO, who also oversaw the project. AH recruited patients, collected the samples, and reviewed the manuscript. NL performed the statistical analysis, wrote the first draft, and handled subsequent versions of the manuscript. SC contributed to the statistical analysis and reviewed the manuscript. LC helped developing the protocol and reviewed the manuscript. All authors approved the final manuscript.

Acknowledgement

We would like to acknowledge the support from the research nurse, Katie Lei, and renal nurses, Helen Dickie and Linda Tovey, in the critical care department at Guy’s & St Thomas’ Hospital who helped recruiting patients and taking the samples according to the study protocol.
Figure legends

Figure 1 Cytokine plasma concentrations expressed as a percentage of the concentration at time = 0 hour. (A) Mean and standard error of interleukin-2 (IL-2), IL-4, IL-6, IL-8, IL10, vascular endothelial growth factor (VEGF) concentrations. (B) Mean and standard error of interferon-ylim (IFN-ylim), tumour necrosis factor-alpha (TNF-alpha), IL-1alpha, IL-1beta, monocyte chemoattractant protein-1 (MCP-1), epidermal growth factor (EGF)

Figure 2 The median levels of total amount of cytokine moved (Mt), expressed as a percentage of the inlet mass rate (%Mt/Mi) at t = 1, 6, 24, and 48 hours after continuous veno-venous hemodialysis initiation (connected line). For each time point, the relative proportions of adsorption (%Mad/Mi, gray bars) and diffusion (%Mdf/Mi, dotted bars) are shown. (2A) IL-2, (2B) IL-4, (2C) IL-6, (2D) IL-8, (2E) IL-10, (2F) VEGF, (2G) IFN-ylim, (2H) TNF-alpha, (2I) IL-1alpha, (2J) IL-1beta, (2K) MCP-1, (2L) EGF
1 References

2 1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama. 2016; 315(8):801-810.

3 2. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017; 45(3):486-552.

4 3. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019; 96(5):1083-1099.

5 4. Atan R, Crosbie D, Bellomo R. Techniques of extracorporeal cytokine removal: a systematic review of the literature. Blood Purif. 2012; 33(1-3):88-100.

6 5. Morgera S, Slowinski T, Melzer C, Sobottke V, Vargas-Hein O, Volk T et al. Renal replacement therapy with high-cutoff hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis. 2004; 43(3):444-453.

7 6. Haase M, Bellomo R, Baldwin I, Haase-Fielitz A, Fealy N, Davenport P et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis. 2007; 50(2):296-304.

8 7. Chelazzi C, Villa G, D'Alfonso MG, Mancinelli P, Consales G, Berardi M et al. Hemodialysis with High Cut-Off Hemodialyzers in Patients with Multi-Drug Resistant Gram-Negative Sepsis and Acute Kidney Injury: A Retrospective, Case-Control Study. Blood Purif. 2016; 42(3):186-193.

9 8. Morgera S, Haase M, Kuss T, Vargas-Hein O, Zuckermann-Becker H, Melzer C et al. Pilot study on the effects of high cutoff hemofiltration on the need for norepinephrine in septic patients with acute renal failure. Crit Care Med. 2006; 34(8):2099-2104.

10 9. Atan R, Peck L, Visvanathan K, Skinner N, Eastwood G, Bellomo R et al. High cut-off hemofiltration versus standard hemofiltration: effect on plasma cytokines. Int J Artif Organs. 2016; 39(9):479-486.

11 10. Villa G, Chelazzi C, Morettini E, Zamidei L, Valente S, Caldini AL et al. Organ dysfunction during continuous veno-venous high cut-off hemodialysis in patients with septic acute kidney injury: A prospective observational study. PLoS One. 2017; 12(2):e0172039.

12 11. Atan R, Peck L, Prowle J, Licari E, Eastwood GM, Storr M et al. A Double-Blind Randomized Controlled Trial of High Cutoff Versus Standard Hemofiltration in Critically Ill Patients With Acute Kidney Injury. Crit Care Med. 2018; 46(10):e988-e994.

13 12. Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes. Int J Artif Organs. 2013; 36(7):455-463.

14 13. Morgera S, Rocktäschel J, Haase M, Lehmann C, von Heymann C, Ziemer S et al. Intermittent high permeability hemofiltration in septic patients with acute renal failure. Intensive Care Med. 2003; 29(11):1989-1995.

15 14. Jayaballa M, Bose B, Gangadharan Komala M, Fischer ER, Taper J, Sud K. Effective Removal of κ-Free Light Chains with Hemodialysis Using Fresenius Ultraflux® EMiC®2 Dialyser in a Patient with Myeloma Cast Nephropathy, with Associated Cost Savings. Blood Purif. 2016; 42(2):158-159.

16 15. Dilken O, Ince C, van der Hoven B, Thijssen S, Ormskerk P, de Geus HRH. Successful Reduction of Creatine Kinase and Myoglobin Levels in Severe Rhabdomyolysis Using Extracorporeal Blood Purification (CytoSorb®). Blood Purif. 2020:1-5.
16. Diaz-Tejeiro R, Regidor D, Moral J, Padrón M, Cueto L, Muñoz MA et al. Acute renal failure due to rhabdomyolysis. Renal replacement therapy with intermediate cut-off membranes (EMiC2). Nefrologia. 2018; 38(6):664-665.

17. Lyubimova NV, Timofeeva YS, Gromova EG, Kuznetsova LS, Votyakova OM, Kushlinskii NE. Free Immunoglobulin Light Chains as Criteria of Extracorporeal Hemocorrection in Patients with Monoclonal Gammapathies. Bull Exp Biol Med. 2017; 163(4):493-496.

18. Schmidt JJ, Hafer C, Clajus C, Hadem J, Beutel G, Schmidt BM et al. New high-cutoff dialyzer allows improved middle molecule clearance without an increase in albumin loss: a clinical crossover comparison in extended dialysis. Blood Purif. 2012; 34(3-4):246-252.

19. Weidhase L, Haussig E, Haussig S, Kaiser T, de Fallois J, Petros S. Middle molecule clearance with high cut-off dialyzer versus high-flux dialyzer using continuous veno-venous hemodialysis with regional citrate anticoagulation: A prospective randomized controlled trial. PLoS One. 2019; 14(4):e0215823.

20. Eichhorn T, Hartmann J, Harn S, Linsberger I, König F, Valicek G et al. Clearance of Selected Plasma Cytokines with Continuous Veno-Venous Hemodialysis Using Ultraflux EMiC2 versus Ultraflux AV1000S. Blood Purif. 2017; 44(4):260-266.

21. Weidhase L, de Fallois J, Haußig E, Kaiser T, Mende M, Petros S. Myoglobin clearance with continuous veno-venous hemodialysis using high cutoff dialyzer versus continuous veno-venous hemodiafiltration using high-flux dialyzer: a prospective randomized controlled trial. Crit Care. 2020; 24(1):644.

22. Balgobin S, Morena M, Brunot V, Besnard N, Daubin D, Platon L et al. Continuous Veno-Venous High Cut-Off Hemodialysis Compared to Continuous Veno-Venous Hemodiafiltration in Intensive Care Unit Acute Kidney Injury Patients. Blood Purif. 2018; 46(3):248-256.

23. Ci-Ca® CVVHD with Ultraflux® EMiC®2. https://www.freseniusmedicalcare.hu/fileadmin/data/masterContent/pdf/Healthcare_Professionals/04_Acute_Therapies/06_CRRT_and_plasma_filters/Br_CiCa-EMiC2_Product_05_13_GB_w_RGB_.pdf. Accessed 20 Oct 2020.

24. Ricci Z, Ronco C, Bachetoni A, D'Amico G, Rossi S, Alessandrini E et al. Solute removal during continuous renal replacement therapy in critically ill patients: convection versus diffusion. Crit Care. 2006; 10(2):R67.

25. Heering P, Morgera S, Schmitz FJ, Schmitz G, Willers R, Schultheiss HP et al. Cytokine removal and cardiovascular hemodynamics in septic patients with continuous venovenous hemofiltration. Intensive Care Med. 1997; 23(3):288-296.

26. Hoffmann JN, Hartl WH, Deppisch R, Faist E, Jochum M, Inthorn D. Hemofiltration in human sepsis: evidence for elimination of immunomodulatory substances. Kidney Int. 1995; 48(5):1563-1570.

27. Jekarl DW, Kim JY, Ha JH, Lee S, Yoo J, Kim M et al. Diagnosis and Prognosis of Sepsis Based on Use of Cytokines, Chemokines, and Growth Factors. Dis Markers. 2019; 2019:1089107.

28. Kellum JA, Johnson JP, Kramer D, Palevsky P, Brady JJ, Pinsky MR. Diffusive vs. convective therapy: effects on mediators of inflammation in patient with severe systemic inflammatory response syndrome. Crit Care Med. 1998; 26(12):1995-2000.

29. Low C, Syed D, Khan D, Tetik S, Walborn A, Hoppensteadt D et al. Modulation of Interleukins in Sepsis-Associated Clotting Disorders: Interplay With Hemostatic Derangement. Clin Appl Thromb Hemost. 2017; 23(1):34-39.

30. Lvovschi V, Arnaud L, Parizot C, Freund Y, Juillien G, Ghilani-Dalbin P et al. Cytokine profiles in sepsis have limited relevance for stratifying patients in the emergency department: a prospective observational study. PLoS One. 2011; 6(12):e28870.
31. Peng Z, Pai P, Hong-Bao L, Rong L, Han-Min W, Chen H. The impacts of continuous veno-venous hemofiltration on plasma cytokines and monocyte human leukocyte antigen-DR expression in septic patients. Cytokine. 2010; 50(2):186-191.

32. Pickkers P, Sprong T, Eijk L, Hoeven H, Smits P, Deuren M. Vascular endothelial growth factor is increased during the first 48 hours of human septic shock and correlates with vascular permeability. Shock. 2005; 24(6):508-512.

33. van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005; 23(1):35-38.

34. Kox M, Waalders NJB, Kooistra EJ, Gerretsen J, Pickkers P. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. Jama. 2020.

35. Meduri GU, Headley S, Kohler G, Stentz F, Tolley E, Umberger R et al. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest. 1995; 107(4):1062-1073.

36. Klingensmith NJ, Chen CW, Liang Z, Burd EM, Farris AB, Arbiser JL et al. Honokiol Increases CD4+ T Cell Activation and Decreases TNF but Fails to Improve Survival Following Sepsis. Shock. 2018; 50(2):178-186.

37. Harm S, Schildböck C, Hartmann J. Cytokine Removal in Extracorporeal Blood Purification: An in vitro Study. Blood Purif. 2020; 49(1-2):33-43.

38. Fischer KG. Essentials of anticoagulation in hemodialysis. Hemodial Int. 2007; 11(2):178-189.

39. De Vriese AS, Colardyn FA, Philippé JJ, Vanholder RC, De Sutter JH, Lameire NH. Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol. 1999; 10(4):846-853.

40. Vaslaki L, Weber C, Mitteregger R, Falkenhagen D. Cytokine induction in patients undergoing regular online hemodiafiltration treatment. Artif Organs. 2000; 24(7):514-518.

41. Kade G, Lubas A, Rzeszotarska A, Korsak J, Niemczyk S. Effectiveness of High Cut-Off Hemofilters in the Removal of Selected Cytokines in Patients During Septic Shock Accompanied by Acute Kidney Injury-Preliminary Study. Med Sci Monit. 2016; 22:4338-4344.

42. Morgera S, Haase M, Rocktäschel J, Böhler T, von Heymann C, Vargas-Hein O et al. High permeability haemofiltration improves peripheral blood mononuclear cell proliferation in septic patients with acute renal failure. Nephrol Dial Transplant. 2003; 18(12):2570-2576.

43. Morgera S, Haase M, Rocktäschel J, Böhler T, Vargas-Hein O, Melzer C et al. Intermittent high-permeability hemofiltration modulates inflammatory response in septic patients with multiorgan failure. Nephron Clin Pract. 2003; 94(3):c75-80.
Additional files

Additional file 1. Sites of sampling from the CVVHD circuit

Additional file 2. Reduction ratio of cytokine concentrations at t = 1 (n=12), 6 (n=12), 24 (n=11), and 48 (n=7) hours compared with baseline pre-filter concentrations (%)

Additional file 3. Sieving coefficient (SC) over time and mean SC (± standard error) for each cytokine

Additional file 4. Scatter plot and linear regression diagram showing the relation of sieving coefficient with molecular weights of analyzed cytokines and time

Additional file 5. Clearance rates (mL/min) of cytokines by adsorption (pink bars) and effluent (blue bars) over time visualized as box and whisker plots (horizontal bars indicate median values)

Additional file 6. Spearman's correlation between serum levels and clearances by adsorption and effluent

Additional file 7. Mass balances for all cytokines (pg/min): Mass removal rate by adsorption (Mad), mass removal rate by dialysis (Mdf), and total mass removal rate (Mt)