with a T-cell-specific Tfam deficiency (Tfam<sup>Lck^{−/−} mice) and these animals also showed premature age-associated multi-morbidity. Why then does loss of mitochondrial function in T cells have this effect? Transcriptomics showed upregulation of senescence-associated markers (including p21) in various tissues of Tfam<sup>Lck^{−/−} and Tfam<sup>Cd4^{−/−} mice. Incubation of hepatocytes or pre-adipocytes with serum from Tfam<sup>Lck^{−/−} mice or with TNF was sufficient to induce p21 expression, suggesting that the increased expression of pro-inflammatory cytokines in T cells with defective mitochondria may drive senescence and morbidity.

In support of this idea, TNF blockade prevented systemic senescence and multi-morbidity in Tfam<sup>Cd4^{−/−} mice. Boosting levels of the metabolic cofactor NAD⁺ (which is known to decline during ageing) also had a protective effect in Tfam<sup>Cd4^{−/−} mice. The authors propose that these new mouse models could help to identify other beneficial therapeutics for patients with age-associated inflammatory diseases.

Yvonne Bordon

ORIGINAL ARTICLE Desdin-Mico, G. et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science https://doi.org/10.1126/science.aao860 (2020)