ON DOUBLE COSETS IN FREE GROUPS

RITA GITIK AND ELIYAHU RIPS

Abstract. It is shown that for any finitely generated subgroups \(H \) and \(K \) of a free group \(F \), and for any \(g \in F \) the double coset \(HgK \) is closed in the profinite topology of \(F \).

A well-known theorem of M. Hall [2] states (in different language) that any finitely generated subgroup of a free group is closed in the profinite topology. We show that a slight modification of its proof [6] yields a stronger result:

Theorem. For any finitely generated subgroups \(H \) and \(K \) of a free group \(F \), and for any \(g \in F \) the double coset \(HgK \) is closed in the profinite topology of \(F \).

A free group \(F = \langle X \rangle \) can be viewed as the fundamental group of a wedge \(W \) of \(|X|\) oriented circles labeled by elements of \(X \). Subgroups of \(F \) correspond bijectively to based covering spaces of \(W \), and any covering space of \(W \) is a graph which inherits orientation and labeling of its edges from \(W \).

Let \(X_0 \subset X \) and let \(\Gamma \) be a subgraph of a covering of \(W \). An \(X_0 \)-component of \(\Gamma \) is a maximal connected subgraph of \(\Gamma \) with all its edges labeled by elements of \(X_0 \).

Lemma. Let \(\Gamma \) be a subgraph of a covering of \(W \) such that \(\Gamma \) has finitely many vertices. There exists an embedding of \(\Gamma \) in a covering \(\Gamma' \) of \(W \) such that \(\Gamma \) and \(\Gamma' \) have the same vertices, and for any \(X_0 \subset X \) distinct \(X_0 \)-components of \(\Gamma \) remain distinct in \(\Gamma' \).

Proof. We give an algorithm for constructing \(\Gamma' \) by adding edges to \(\Gamma \) in a unique way. For any vertex \(v \) of \(\Gamma \) and for any \(x \in X \) the number of edges labeled with \(x \) having an endpoint at \(v \) is either 0, 1 or 2. If the number is 0, we add an edge labeled with \(x \) with both endpoints at \(v \). If the number is 1 or 2, let \(p_x \) be the maximal path consisting of edges labeled only with \(x \) and with an endpoint at \(v \). If \(p_x \) has both endpoints at \(v \) we do nothing. Otherwise we add to \(\Gamma \) an edge labeled with \(x \) connecting the endpoints of \(p_x \). It is clear that the projection from \(\Gamma \) to \(W \) extends uniquely to a covering map from \(\Gamma' \) to \(W \).

Remark. Let \(H \) be a finitely generated subgroup of \(F \), and let \(f \in F \setminus H \). Let \(\Gamma \) be the minimal connected subgraph of the covering \(C \) of \(W \) corresponding to \(H \) which contains the core of \(C \) (cf. [6]) and the path \(p \) beginning at the basepoint \(v_0 \) of \(C \) whose projection in \(W \) represents \(f \). Embed \(\Gamma \) in a covering \(\Gamma' \) as in the lemma. Then as \(\Gamma \) has finitely many vertices, so does \(\Gamma' \), therefore the subgroup \(M \) of \(F \)

1991 Mathematics Subject Classification. 20F32, 20E05, 20E26.
corresponding to Γ' has finite index in F. As p is not a closed path in Γ, it remains not closed in Γ', hence $f \notin M$. As Γ is a subgraph of Γ', H is a subgroup of M, proving M. Hall’s theorem (cf. [6]).

Proof of the theorem. As $HgK = H(gKg^{-1})g$, it is enough to consider the case $g = 1$.

By an observation due to P.Kropholler, we can replace F by a subgroup of finite index (cf. [3]), so we can assume that K is a free factor of F, $F = K \ast L$. Let X_1 and X_2 be sets of free generators of K and L respectively, then $X = X_1 \cup X_2$ is a set of free generators of F. Let $f \in F, f \notin HK$. Our goal is to construct a subgroup M of finite index in F such that $Mf \cap HK = \emptyset$.

Let Γ, Γ' and M be as in the remark. As $f \notin HK$, the X_1-component of v_0 in Γ does not contain the endpoint of p, therefore the lemma implies that Γ' has the same property. But the condition $Mf \cap HK = \emptyset$ is equivalent to the condition that the endpoint of p does not belong to the X_1-component of v_0, proving the theorem.

Remarks.

1) The first published proof of the theorem is due to G.A. Niblo [3], who found a much more simple and elegant argument than the original proof of the authors [1].

2) A more general result saying that for any finitely generated subgroups H_1, \ldots, H_n of a free group F the set $H_1 \cdots H_n$ is closed in the profinite topology on F was obtained by L. Ribes and P.A. Zalesskii [4], and by K. Henckell, S.T. Margolis, J.E. Pin and J. Rhodes [5].

3) It is easy to construct a closed subset B of F and a finitely generated subgroup K such that the product BK is not closed in the profinite topology of F.

References

[1] R. Gitik and E. Rips, *On Separability Properties of Groups*, Int J. of Algebra and Computation 5 (1995), 703-717.
[2] M. Hall, Jr., *Coset Representations in Free Groups*, Trans. AMS 67 (1949), 431-451.
[3] G.A. Niblo, *Separability Properties of Free Groups and Surface Groups*, J. of Pure and Applied Algebra 78 (1992), 77-84.
[4] L. Ribes and P.A. Zalesskii, *On the Profinite Topology on a Free Group I*, Bull. LMS 25 (1993), 37-42.
[5] K. Henckell, S.T. Margolis, J.E. Pin and J. Rhodes, *Ash’s Type II Theorem*, Profinite Topology and Malcev Products I, Int J. of Algebra and Computation 1 (1991), 411-436.
[6] J.R. Stallings, *Topology of Finite Graphs*, Invent. Math. 71 (1983), 551-565.