NICMOS OBSERVATIONS OF HIGH-REDSHIFT RADIO GALAXIES: WITNESSING THE FORMATION OF BRIGHT ELLIPTICAL GALAXIES?

L. Pentericci,¹,² P. J. McCarthy,³ H. J. A. Röttgering,³ G. K. Miley,³ W. J. M. van Breugel,⁴ and R. Fosbury⁵

Received 2000 January 6; accepted 2001 February 12

ABSTRACT

We present the results of a near-infrared imaging program of a sample of 19 radio galaxies with redshift between 1.7 and 3.2, using the NICMOS Camera 2 on the Hubble Space Telescope (HST). The galaxies were observed in H band, which, for 18 of the 19 targets, samples the rest-frame optical emission longward of the 4000 Å break. For many sources this band contains emission lines, but we estimated that this causes relatively little confusion in most cases. The high angular resolution of the HST allows a detailed study of the host galaxies. The images show a wide range of morphologies, including (i) compact systems, (ii) systems with substructures such as multiple emission peaks, and (iii) systems comprised of several components spread over areas of up to 100 kpc. Three galaxies appear unresolved, and in two others a nuclear point source dominates the emission in the central region. The morphologies of some of the lowest redshift targets are well represented by de Vaucouleurs profiles, consistent with them being elliptical galaxies. Their average effective radius derived is a factor of 2 smaller than that of \(\sim 1 \) 3CR radio galaxies at similar rest-frame wavelength. The near-infrared continuum light is generally well aligned with the radio axis, and the aligned light is very red, with typical \(V-H \) colors of \(\sim 3.5-4.4 \). For several galaxies, where WFPC2 \(V \)- or \(R \)-band images were available, we computed a high-resolution map of the optical-to-infrared spectral indices: all multicomponent systems present net color differences between the various clumps, and we argue that most probably the continuum emission has a stellar origin. Indicative ages of these stellar populations, as determined by the amplitude of the 4000 Å break vary between 0.5 and 1.3 Gyr. Finally, in many of the small NICMOS frames we observe nearby faint objects close to the high-redshift radio galaxies. The number density of these faint objects is slightly higher than that observed in the deep NICMOS parallel observations of random fields: furthermore, these objects tend to be aligned with the direction of the main axis of the radio sources, suggesting that they may be related to the presence of the AGN.

Subject headings: galaxies: active — galaxies: evolution — galaxies: formation — infrared: galaxies

1. INTRODUCTION

The study of the early universe has received a considerable boost in the past few years, due to the development of new techniques for finding large numbers of galaxies at high redshift (e.g., \(U \)- and \(B \)-band dropouts, Steidel et al. 1996). Although radio galaxies are no longer the only class of well-studied high-redshift galaxies, they remain of exceptional cosmological interest, since they are likely to be amongst the most massive galaxies known in the early universe and may be the progenitors of brightest cluster galaxies observed at low redshift.

Their large masses can be inferred from their \(K \)-band luminosities and the near-IR \(K-z \) Hubble diagram (e.g., van Breugel et al. 1998). Furthermore, there is evidence that they are undergoing vigorous star formation: at least in some high-redshift radio galaxies (HzRGs) the UV continuum is dominated by young stars, with estimated star formation (SF) rates of up to \(1000 \) \(M_\odot \) yr\(^{-1}\) (Dey et al. 1997). Submillimeter continuum dust emission has been detected in several of the highest redshift galaxies (e.g., Papadopoulos et al. 2000), also implying similar large SF rates. These stars are expected to settle on dynamical timescales and evolve into fully developed elliptical galaxies.

Evidence that HzRGs might be located in protocluster environments includes: (i) the recent discovery of a megaparsec-scale structure of more than 15 Ly\(\alpha \) emitting galaxies around the radio galaxy MRC 1138–262 at \(z = 2.156 \) (Pentericci et al. 2000a); around this same radio galaxy, the detection of luminous X-ray emission which is probably extended and has been attributed to a hot cluster atmosphere (Carilli et al. 1998); (ii) large Faraday rotation of the polarized radio emission indicating that some HzRGs are surrounded by dense hot magnetized cluster gas (Carilli et al. 1997; Pentericci et al. 2000b); (iii) excess of companion galaxies detected along the axes or in the vicinity of the radio sources (Röttgering et al. 1996); (iv) possible excess of Lyman break selected galaxies in the fields of several other powerful radio sources (e.g., Lacy & Rawlings 1996) and in particular several candidate companion galaxies (with two objects spectroscopically confirmed) in the vicinity of MRC 0316–257, at \(z = 3.14 \) (Le Fevre et al. 1996; McCarthy, Persson, & West 1992), and a number of faint red companions of 4C 41.17 at \(z = 3.8 \) detected from deep Keck imaging at 2 μm (Graham et al. 1994).

Having both large stellar masses (e.g., 4C 41.17 with \(M \sim 10^{11} \) \(M_\odot \), van Breugel et al. 1998) and high star formation rates (see above), and being located in the densest regions of the early universe, it is natural to propose that HzRGs will evolve into present-day brightest clusters galaxies (e.g., Best, Longair, & Röttgering 1997, 1998).
In previous papers we have described our studies of HzRGs with the Hubble Space Telescope at optical (UV rest-frame) wavelengths (Pentericci et al. 1998, 1999). It was found that several HzRGs, such as MRC 1138—262 at \(z = 2.2 \) and 4C 41.17 at \(z = 3.8 \) (Dey et al. 1997), are comprised of numerous continuum clumps embedded in giant (\(\sim 100 \) kpc) diffuse Ly\(\alpha \) halos. Such morphologies are strikingly similar to simulations of forming bright cluster galaxies, made on the basis of the hierarchical models, which predict that the most massive systems are assembled from smaller building blocks (e.g., Baron & White 1987;Dubinski 1998). Indeed, the sizes, profiles, and luminosities of the individual clumps are similar to those of the Lyman break galaxies (LBG) (e.g., Steidel et al. 1996; Giavalisco, Steidel, & Macchetto 1996), indicating that HzRGs could be formed by an assembly of LBGs (Pentericci et al. 1998).

The well-known alignment observed between the rest-frame UV morphology and the radio axis (Chambers, Miley, & van Breugel 1987; McCarthy et al. 1987) implies that the UV emission is strongly affected by the active galactic nucleus, e.g., by scattered light from a QSO or a young population of stars whose formation is triggered by the passage of the radio jet. Studies of the near-infrared morphology (rest-frame optical) are particularly important to reveal the nature of the older stellar population (e.g., Lilly 1988), although observations of the continuum emission are made difficult by the presence of strong emission lines in the near-IR bands (Eales & Rawlings 1993).

There have been extensive ground-based near-IR studies of powerful radio galaxies at intermediate and high redshift (e.g., Eisenhardt & Chokshi 1990; McCarthy et al. 1992; Eales et al. 1997; Best et al. 1997, 1998; van Breugel et al. 1998). The most important results of these searches are (i) the morphologies of \(z \sim 1 \) galaxies in the near-IR emission are considerably more relaxed and symmetric than in the optical emission; surface photometry of 3CR \(z \sim 1 \) galaxies has shown that they follow a de Vaucouleurs law (Best et al. 1998), implying that they are dynamically evolved systems (e.g., Rigler & Lilly 1994) with inferred stellar masses of up to \(10^{12} \, M_\odot \); (ii) 3CR radio galaxies show a possible excess of emission at large radii, resembling the halo that surrounds nearby cD galaxies (Best et al. 1998); (iii) models of spectral energy distributions of radio galaxies having redshifts between 1 and 3 have been used to infer the ages of their stellar populations, suggesting ages in excess of 1 Gyr and formation redshift of \(z \sim 5 \) or higher (e.g., McCarthy 1993b; Lilly 1988); (iv) deep near-infrared (K-band) imaging reveals clustering of red galaxies around some \(z \sim 1 \) 3CR galaxies (e.g., Roche et al. 1998; Best 2000); (v) van Breugel et al. (1998) found strong evolution of the morphology of HzRGs at rest frame visual (>4000 \(\AA \)) wavelengths, from aligned galaxies at redshift greater than 3 to more symmetrical and compact galaxies at \(z < 3 \).

With NICMOS it is possible to study the near-infrared morphology of HzRGs to a resolution comparable to the size of our optical WFPC2 images, allowing us to investigate the morphologies of their evolved stellar populations at redshifts larger than 2. We can then address questions such as whether there are already well-formed ellipticals at those epochs; the importance and the frequencies of merging with subgalactic clumps at different epochs; how the presence of substructures evolves with redshift; the relationship between the radio source and the near-infrared emission in the central regions of the galaxies. In particular, one can examine to what extent the optical/UV alignment effect is also present at near-infrared wavelengths.

In this paper we present NICMOS observations of a sample of 19 radio galaxies with \(1.8 \leq z \leq 3.2 \). In § 2 we describe the sample selection and the observations. Section 3 is devoted to the presentation of the results, and a description of the morphologies of the individual objects. In § 4 we analyze the morphologies of the galaxies and their optical-to-infrared colors; we then discuss the implication of our NICMOS results for the study of the alignment effect, and we investigate the statistics of (aligned) companion galaxies around the targets.

2. OBSERVATIONS

2.1. Sample Selection

Two subsamples of objects were observed. The first subsample consists of 14 radio galaxies from the Molonglo Reference Catalog (MRC) (McCarthy et al. 1996). The MRC/1 Jy sample was defined simply using a flux density limit at 408 MHz of \(S_{408} \geq 0.95 \) Jy, within a restricted region of the sky (\(-30 < \text{decl.} < -20, |b| > 15 \)); 99.5% of the sources in the catalog have been optically identified, and 46 of the 426 radio galaxies in the sample have spectroscopically confirmed redshift \(1.6 < z < 3.2 \) (see McCarthy et al. 1990 and McCarthy et al. 1991 for the optical identification and spectroscopy of the higher redshift galaxies). The MRC/1Jy survey is one of the largest complete radio samples for which there is a homogeneous and nearly complete set of optical and infrared photometry (see the mentioned papers and McCarthy et al. 1992 for infrared observations).

We then added five targets selected from a sample of ultra–steep-spectrum radio galaxies (USs). This sample comprises the largest set of radio galaxies having redshifts larger than 2, which were selected on the basis of the radio spectral indices (\(z \leq 1.1 \) where \(S_\nu = S_\nu 0 \nu^\beta \)). This selection technique has proved to be the most effective tool for identifying such radio galaxies. Several samples of USs sources (e.g., Chambers et al. 1996; Röttgering et al. 1994) have led to the discovery of more than 80 radio galaxies with \(z > 2 \), about 60% of the 150 such sources known to date (e.g., van Breugel et al. 1999). All the highest redshift radio galaxies (\(z > 3.5 \)) have been found using this technique (e.g., van Breugel et al. 1999). The USS sample covers a larger area in the sky than the MRC sample and allows us to probe a wider range of radio sources parameters such as their luminosity and size. Furthermore, selecting sources from the USS sample will give a larger overlap with the existing database of WFPC2 images (Pentericci et al. 1999).

The final sample consists of 19 radio galaxies, uniformly spanning a redshift range between \(z = 1.68 \) and \(z = 3.13 \), and having a large range of properties, e.g., a range of nearly 3 mag in the infrared luminosity and a factor of 8 in radio power. The radio galaxies are listed in Table 1: for each object we report the redshift, the position of the radio core, the total flux at 4.7 GHz, the spectral index between 4.7 and 8.2 GHz, the total size in arcseconds, and an indication of the radio morphology.

2.2. Observations and Data Reduction

2.2.1. HST/NICMOS

In Table 2 we list the radio galaxies observed and various observational parameters. All objects were observed with
NICMOS Camera 2, which has a plate scale of 0.0762 \times 0.0755 \text{ pixel}^{-1} and a total field of view of 19.2' \times 19.2'. The filter used was the F160W filter, which is centered at 1.6 \mu m, has a bandwidth of 0.4 \mu m, and has the minimum background amongst the available NICMOS filters; we also used the F165M filter, which is centered at 1.7 \mu m and has a bandwidth of 0.2 \mu m. We had initially selected this second filter for many of the objects, because it would have provided a bandpass free from line emission for most of the galaxies in the sample, in particular those in the lowest and in the highest redshift ranges (z < 2.09 and z > 2.6). Unfortunately, using this filter the response was limited by

Source	z	R.A. (1950)	Decl. (J2000)	S_{437}	S_{499}\,\mu m	Size (arcsec)	Morphology
MRC 0140−257	2.64	01 42 41.16	−25 30 34.1	47	1.3	4.2	Double
MRC 0152−209	1.89	01 54 55.77	−20 40 26.3	115	1.9	1.6	One-sided
MRC 0156−252	2.09	01 58 33.45	−24 59 30.2	112	1.1	8.3	Double, distorted
USS 0211−122	2.34	02 14 17.37	−11 58 46.7	54	1.5	17.0	Double
USS 0316−257	3.13	03 18 12.06	−25 35 09.7	101	1.3	7.6	Double
MRC 0324−228	1.89	03 27 04.44	−22 39 42.6	131	1.2	9.7	Double, no core
USS 0350−279	1.90	03 52 51.64	−24 49 22.6	86	1.2	≤0.6	Unresolved
MRC 0406−244	2.44	04 08 31.44	−24 18 16.7	108	1.3	10.0	Double
MRC 0943−242	2.93	09 45 32.79	−24 28 49.8	55	1.8	3.9	Double, no core
USS 2202+128	2.70	22 05 14.27	+13 05 33.7	52	1.5	4.2	Double
MRC 2224−273	1.68	22 27 43.26	−27 01 01.7	60	1.6	≤0.6	Unresolved
USS 2349+280	2.89	23 51 59.08	+29 10 28.9	34	1.6	15.2	Double

Notes.—Col. (1), 1950 IAU name of the radio galaxy; col. (2), redshift; cols. (3) and (4), position of the radio core (J2000 coordinates; units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds); col. (5), total flux and 4.7 GHz; col. (6), total spectral index between 4.7 and 8.2 GHz; col. (7), total extension in arcsecond; col. (8), radio morphology at 8.2 GHz.

* Spectral index between 4.7 GHz and 408 MHz.

* Spectral index between 4.7 GHz and 1.4 GHz.

Source	Date	N (orbits)	\(\mu (\text{mag})\)	\(T_{\text{exp}}\) (s)	Filter	\(\lambda\)	Cont. Lines	% Flux
MRC 0140−257	1997 Oct 17	4	25.00	10195	F160W	3850−4950	H\beta	1
MRC 0152−209	1997 Dec 26	4	25.05	10259	F160W	4840−6230	[O III]	6
MRC 0156−252	1997 Sep 28	4	24.89	9232	F160W	4530−5830	[O III], H\beta	5
USS 0211−122	1997 Oct 19	4	24.65	10195	F160W	4190−5390	[O III], H\beta	3
MRC 0316−257	1997 Oct 17	4	24.76	10195	F160W	3390−4360	[O III]	10
MRC 0324−228	1997 Jun 22	2	24.50	5065	F165M	5540−6230
MRC 0350−279	1997 Oct 18	4	24.63	10195	F160W	4830−6210	[O III]	...
MRC 0406−244	1997 Aug 11	5	24.84	12824	F160W	4070−5230	[O III], H\beta	17
MRC 0943−242	1997 Jun 22	3	24.55	7694	F160W	3560−4580	[O I]	7
MRC 1017−220	1997 Jun 13	2	24.25	5065	F165M	5780−6500	[O I]	...
MRC 1138−262	1997 Nov 27	5	24.57	12824	F160W	4430−5700	[O III], H\beta	2
USS 1410−001	1998 Jan 07	4	24.76	10195	F160W	4200−5410	[O III], H\beta	9
USS 1707+105	1997 Oct 24	4	25.01	10195	F160W	4180−5370	[O III], H\beta	2
MRC 2025−218	1997 Sep 09	4	24.64	10259	F160W	3860−4960	H\beta	1
MRC 2048−272	1997 Oct 23	4	24.61	10259	F160W	4580−5880	[O III], H\beta	26
MRC 2104−242	1997 Oct 24	4	24.61	10259	F160W	4010−5160	[O III], H\beta	26
USS 2202+128	1997 Jun 21	2	24.25	5065	F165M	4320−4860	H\beta	2
MRC 2224−273	1997 Nov 11	4	24.68	10259	F160W	5220−6720	H\alpha, [O I]	28
USS 2349+280	1997 Nov 24	4	24.78	10195	F160W	3600−4630	[O III]	2

Notes.—Col. (1), 1950 IAU name of the radio galaxy; col. (2), observation date; col. (3), number of orbits; col. (4), limiting surface brightness in H magnitudes; col. (5), total exposure time (seconds); col. (6), filter used; col. (7), rest-frame wavelength range covered by the observations; col. (8), emission lines falling in the continuum band; col. (9), estimated percentage of line flux in the total emission measured within a 4\,'' circular aperture.
readout noise and dark current, and we had to change our initial observing strategy to use the F160W filter. The wider filter bandwidth included bright emission lines for many of the sources (see Table 2), but we estimate that in most cases this causes relatively little confusion in determining their real continuum morphologies (however, see next section). The high sensitivity of this filter allowed the galaxies to be mapped within the allocated 2 to 5 orbits per object.

Each orbit included two 1026 s exposures using the MIF1024 Multiaccum exposure sequence and one shorter exposure using the STEP64 sampling sequence. The exposure times for the STEP64 samples were 384, 411, 512, or 576 s depending on the orbit. The total integration time for each galaxy is given in Table 2. To facilitate removal of residual flat field and imperfection of the detector, the targets were offset by ~3" between each exposure, giving a grid of 15, 12, 9, or 6 exposures.

The NICMOS imaging data were processed in the following manner: the zero level determined from the first read of each exposure sequence was subtracted from all other exposures; then a scaled version of the best dark exposure provided by the HST archive was subtracted. The resulting sequences of "read" in each Multiaccum or STEP64 series were then used to produce a masked, linearized and, to first order, cosmic-ray-rejected image using an algorithm written by McLeod (1997). Then for the exposures which were obtained before 1997 August the pedestal level (i.e., significant fluctuations of the zero level between sequences) was subtracted separately from each quadrant of the HgCdTe detector and again the cosmic-ray-rejection algorithm was used. For the observations taken after 1997 August the last two steps could be skipped. Finally, the images were flat fielded using the best flat field provided by the HST archive. The images were then registered using fractional pixel shifts and were combined using a mask for removal of bad pixels and hot pixels (this mask was constructed directly using the observation frames) and a multipass ±3 pixel cosmic-ray-rejection algorithm. In combining the images, we weighted them using their exposure times.

2.2.2. Supporting Ground-Based Observations

For three radio galaxies in the sample (MRC 0156—252, MRC 0406—244, and MRC 2104—242) we gathered extensive ground-based optical and near-IR data during the last few years. In Table 3 we summarize the relevant observations. Some results on MRC 0406—244 were already published by Rush et al. (1997).

For the spectroscopic observations at the ESO/NTT Telescope, the detector was a Tektronix CCD with 1024 pixels and a scale along the slit of 0.37 pixel -1. The CCD was binned by a factor of 2 in the wavelength direction. Using a 2:5 wide slit with ESO grating 3 we achieved a spectral resolution of 2.8 Å (full width at half-maximum, FWHM). The raw spectra were bias subtracted and flat fielded; the sky contribution was then removed by subtracting a sky-spectrum obtained avoiding the regions where the target was positioned; finally, wavelength calibration was performed by measuring the position on the CCD of known lines from a He-Ar calibration lamp, fitting a polynomial function to these data and applying the resultant calibration factors. The accuracy of the calibration is better than 0.3 Å.

The J and K images were obtained with the Las Campanas du Pont 2.5 m telescope and its 256 × 256 HgCdTe array camera, which has a pixel scale of 0.35. The integration times ranged from 4000 to 9000 s and the objects were moved on the array every 150 s. The data were calibrated with standard stars from Elias et al. (1983). The reduction followed standard techniques. The r, i, and Ly images were also obtained at Las Campanas using a 800 × 800 Texas Instruments CCD detector: the exposures were binned 2 × 2 resulting in a pixel scale of 0.332. The Ly images were obtained with interference filters having 1% bandwidths. Several 1800 s exposures of each field were obtained, with approximately 10′ offsets between each image.

All data were reduced using standard IRAF procedures. The various images were then registered with the NICMOS frames using the position of several point sources in the field, with the AIPS (Astronomical Image Processing System) tasks XTRAN and HGEOM, assuming a linear transformation. The accuracy of the registration is about 0.2.

All the radio galaxies with the exceptions listed below were imaged with the VLA in A array as part of a high-resolution, multifrequency radio polarimetric study carried out on a large sample of HzRGs; for further details about

TABLE 3

Galaxy	Telescope	Date	Band	\(\lambda\)	\(T_{\text{exp}}\)	Res. (arcsec)	Ref.
MRC 0156—252	du Pont	1989 Oct	Lyz	3700/50	8100	1.5	1
	2.5 m	1996 Nov	\(K_s\)	2.2 \(\mu\)	4770	0.9	1
MRC 0406—244	du Pont	1996 Feb	Lyz	4200/100	9000	1.1	2
	2.5 m	1996 Nov	\(K_s\)	2.2 \(\mu\)	9030	0.9	2
MRC 2104—242	NTT/EMMI	1997 Nov	Spectr. Grat 3	4180	4800	2.8 Å	1
	2.5 m	1989 Oct	Lyz	4265/50	7800	1.4	1
	1991 Sep	r	6400	3100	0.7	1	
	1997 Jun	Spectr. Grat 3	4240	7200	2.8 Å	1	

Notes. Col. (1), radio galaxy; col. (2), telescope used; col. (3), observation date; col. (4), filter or grating used; col. (5), observed wavelength (in Å); col. (6), total exposure time (in seconds); col. (7), resolution; col. (8), references.

References. —(1) This paper; (2) Rush et al. 1997.
the observations see Carilli et al. (1997). For a subset of galaxies, new VLA observations were carried out: the radio galaxies MRC 0324−228 and MRC 0350−279 were observed in the B array configuration at 4.85 GHz (C band). The radio galaxies MRC 0152−209, MRC 1017−220, MRC 2048−272, and MRC 2224−273 were observed in the A array configuration as part of a new high-resolution multifrequency radio survey. Details of these observations have been presented elsewhere (Pentericci et al. 2000b).

2.3. Emission Line Contamination

As explained earlier we observed most of our targets with the F160W broadband filter. This resulted in the unavoidable inclusion of bright emission lines normally found in radio galaxies. For the lowest redshift object (MRC 2224−273 at z = 1.68), the strong emission line Hα falls in the observed wavelength range; for the objects in the redshift range 1.9 < z < 2.6, [O III] and Hβ become important; finally, for the higher redshift objects (z ≥ 2.9) the emission line [O II] is within the observed wavelength range. In Table 2 we have listed, for each object, the lines that can contribute substantially to the continuum band flux and the total estimated contribution to the continuum flux.

Since we do not have direct measurements for the line fluxes and their equivalent widths, we have estimated the total contaminating flux using other measured lines (in most cases Lyα and/or Hα). We have used the emission line ratio reported by McCarthy (1993a) and Eales & Rawlings (1996), i.e., Lyα/[O II] = 5, [O III]/[O II] = 3, Lyα/Hα = 1.6. Note, however, that these are only average ratios. For example, Eales & Rawlings (1993) find that the line emission ratios can vary significantly (within a factor of 10) from object to object, due to the different physical conditions of the gas and/or the presence of dust which can attenuate the Lyα line (e.g., in USS 0211−122, van Ojik et al. 1994). Another important source of uncertainty is the difference in the apertures used to derive the continuum and line fluxes: the continuum flux was measured through a fixed 4′′ diameter aperture, while the line fluxes (mostly taken from the literature) were measured within different apertures and with slits of different sizes. When the apertures used to determine the emission line flux were known (in about half of the cases) we corrected for this by simply scaling the line flux to an aperture of 4′′. Therefore, the values for the emission line contamination given in Table 2 are only indicative. Most important, the line contribution may vary spatially and some parts of the galaxies might be more effected than others, with a much higher line contribution than that listed in Table 2.

2.4. Astrometry

The coordinate frame for the NICMOS images determined from the image header information has uncertainties of the order of 0′′.6 due to the uncertainty in the position of the guide star (HST Data Handbook 1995). Since the optical galaxies are generally clumpy on a scale of a few tenths of arcsec, it is important to obtain the better relative registration between the radio and the optical images for a detailed intercomparison.

Our radio maps have a typical resolution of 0′′.2, which is comparable to that of the NICMOS images. The exceptions are the radio maps of MRC 0324−228 and MRC 0350−279, which have a resolution of 1′′.2.

To align the NICMOS and the radio VLA images we overlayed the radio cores (for the identification of radio cores see Carilli et al. 1997 and Pentericci et al. 2000b) on the peak position of the near-infrared emission, on the assumption that this IR peak coincides with the galaxy nucleus. In these cases the estimated uncertainty in the overlay is ~0′′.1. In the cases of MRC 0324−218, MRC 0943−242, USS 1707+105, and MRC 2048−272 where no radio core was detected, we used the absolute HST and VLA astrometry to align the maps; in these cases the accuracy achieved is only ~0′′.8.

3. RESULTS

3.1. Summary

In Figures 1–19 we present the images of the radio galaxies. In most cases we show gray-scale representations of the NICMOS emission with VLA contours superimposed (unless the radio emission is unresolved) and a contour map of the continuum emission to better delineate the morphology of the central regions (for all sources except the three unresolved ones).

Galaxy (1)	Comp. (2)	Aperture (arcsec) (3)	M4 (4)	Error (5)
MRC 0140−257.......	Main	4	20.13	0.07
MRC 0152−209.......	Main	4	18.69	0.04
MRC 0156−252.......	A	4	18.39	0.10
MRC 0316−257.......	Main	4	20.23	0.05
MRC 0324−228.......	Main	4	19.93	0.03
MRC 0350−279.......	Main	4	20.26	0.10
MRC 0406−244.......	A	4	18.91	0.04
MRC 0943−242.......	Main	4	19.77	0.08
MRC 1017−220.......	Main	4	18.28	0.05
MRC 1138−262.......	A	4	18.04	0.03
USS 1410−001.......	Main	4	19.25	0.05
USS 1707+105.......	A	4	20.15	0.04
MRC 2025−218.......	Main	4	18.94	0.04
MRC 2048−272.......	Main	4	20.18	0.04
MRC 2104−242.......	A	4	19.91	0.10
MRC 2224−273.......	Main	4	19.23	0.05
USS 2349+280.......	Main	4	19.94	0.05
In Table 4 we list the total NICMOS H-band magnitudes for each object, derived using a fixed 4" circular aperture. The errors in the magnitudes, reported in column (5), are dominated by the inaccuracy in the sky subtraction. For those galaxies that have more components, we also report the magnitudes of the other clumps brighter than 23.5: the letters in Table 4 refer to the components as labeled in the figures. For MRC 1138—262 and USS 1707+105 we kept the same nomenclature as previous papers (Pentericci et al. 1998, 1999).

The NICMOS H-band 3 σ limiting surface brightnesses achieved ranges from $\mu_{H(3 \sigma)} = 24.8$ to $\mu_{H(3 \sigma)} = 25.1$ (see Table 2) for the objects that were imaged with the F160W filter and only $\mu_{H(3 \sigma)} = 23.7$ for those observed with the F165M filters and for shorter exposure times. In almost all cases the signal-to-noise ratio is good and allows us to study in detail the morphology of the galaxies. The exceptions are the very faint radio galaxy MRC 0324—228 at $z = 1.89$ and the highest redshift object in the sample, MRC 0316—257 at $z = 3.13$.

Our observations show that HzRGs have a wide variety of near-infrared morphologies. Of the 19 galaxies, three are unresolved (MRC 0350—279, MRC 1017—220, USS 2202+128); of these, the first two are also unresolved in the radio at all frequencies and MRC 1017—220 has been classified as a broad-line radio galaxy (BLRG) by Kapahi et al. (1998) on the basis of its emission line spectrum. In two other cases, MRC 1138—262 and MRC 2025—218, a nuclear point source dominates the emission in the central regions, but there is clearly underlying extended emission. For all other systems no nuclear point source contributes substantially to the emission. The morphologies of the galaxies vary from compact or unresolved structures to systems comprised of several components spread over large areas (up to 100 kpc). A large fraction of the systems shows close (within ~5") emission clumps that might be part of the systems, but only in a few cases, where additional information is available (e.g., narrowband imaging, spectroscopy, etc.); we can conclude that these small components are physically associated with the radio galaxies.

Comparison with the radio sources shows that typically the near-infrared emission is well aligned with the radio axis. The alignment effect will be extensively discussed in §4.

In the next subsection we will make some remarks on the individual objects.

3.2. Individual Objects

MRC 0140—257 $z = 2.64$.—The galaxy is shown in Figure 1: it has two peaks of emission with almost the same

![Figure 1](image1.png)

Figure 1. Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0140—257 at $z = 2.64$ with contours from the VLA 8.2 GHz observations superimposed. Right: Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8 times $0.8 \times 10^{-2} \mu$Jy.

MRC 0152—209 $z = 1.89$.—The galaxy is shown in Figure 2: it has two peaks of emission with almost the same

![Figure 2](image2.png)

Figure 2. Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0152—209 at $z = 1.89$. Right: Contour representation of the same image. Contour levels of flux density at: 1, 2, 4, 8, 16, 32 times $1.8 \times 10^{-1} \mu$Jy.
F.3. Top panel: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0156$^{+252}$ at $z = 2.09$ with contours from the VLA 8.2 GHz observations superimposed. Bottom panel: Contour representation of the continuum emission. Contour levels of flux density at: $1, 2, 4, 8, 16, 32, 64, 128$ times 10^{-2} Jy.

MRC 0156$^{+252} z = 2.09$.—This galaxy is shown in Figures 3 and 20a–20d and is discussed more extensively in § 3.3.

USS 0211 $^{+122} z = 2.34$.—The host galaxy (Fig. 4) of this very large (134 kpc) radio source consists of a nucleus plus faint diffuse emission, having the shape of an arc. The galaxy is misaligned with respect to the radio axis; however, the radio source shows a jet feature extending from the core toward south, whose curvature suggests that the radio axis might be precessing.

MRC 0316 $^{+257} z = 3.13$.—The galaxy is shown in Figure 5. There are two objects separated by only ~2″. The identification is the fainter diffuse object to the west. The other object could well be at the same redshift. Given the high redshift of this radio galaxy, the NICMOS image samples rest-frame continuum emission that is mostly below the 4000 Å break, therefore we are not really imaging the older stellar population.

MRC 0324 $^{+228} z = 1.89$.—The galaxy is shown in Figure 6. There are two faint and diffuse objects separated by only ~1′.5 which could be identified as the host galaxy of the radio source. Ground-based observations do not resolve the two components (McCarthy et al. 1996), which could be part of the same system; alternatively, one could be the radio galaxy and the other just a foreground object.

The VLA snapshot radio image at 4.5 GHz with a resolution of 1″2, shows a simple double radio source with no core detected. The direction of the radio axis is at 25° with respect to the relative orientation of the two emission clumps.

MRC 0350 $^{+279} z = 1.90$.—The identification of this radio source is the unresolved object in Figure 7. There are two faint objects at a distance of only 6′ to the east: one of them is compact and the other one diffuse and elongated. The radio source is unresolved in our VLA B array snapshot observation, so we do not show it.

MRC 0406 $^{+244} z = 2.44$.—This galaxy is shown in Figures 8 and 21a–21d and is discussed further in § 3.3.

MRC 0943 $^{+242} z = 2.93$.—This galaxy is shown in Figure 9: it has a cigar shape and is elongated along the radio axis. The WFPC2 optical image is remarkably similar. The galaxy is extensively discussed in McCarthy et al. (2001, in preparation).

MRC 1017 $^{+220} z = 1.77$.—The identification of this radio source is the unresolved object in Figure 10. There are two faint diffuse clumps about 5′ away. The radio source is unresolved.
Fig. 5.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0316 - 257 at \(z = 3.13 \) with contours from the VLA 8.2 GHz observations superimposed. Right: Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4 times \(1.2 \times 10^{-2} \) \(\mu \)Jy.

also unresolved. Kaphai et al. (1998) have classified this radio galaxy as a BLRG on the basis of its emission line spectrum.

\textit{MRC 1138 - 262} \(z = 2.16 \).—The central object of this very large system in Figure 11 has a large contribution from a nuclear point source, but clearly there is extended emission below it. In addition several other components are visible in a region of about \(10'' \times 10'' \) around the nucleus: all have WFPC2 optical counterparts and are embedded in a giant Ly\(\alpha \) halo. This galaxy is further discussed in Pentericci et al. (1997, 1998).

\textit{USS 1410 - 001} \(z = 2.33 \).—This is a very elongated object (Fig. 12), consisting of the galaxy core plus two other clear peaks and diffuse emission extending for more than 4" along the galaxy axis. The very red \((V - H = 5.6) \) and compact object only 2" from the core might also be part of the system. The galaxy and the radio source are strongly misaligned: the angle between the optical and radio axis is nearly 45°. However, the northern component of the radio source is curved, suggesting the radio axis might be precessing, in which case the elongated near-infrared emission could be extended along the previous position of the radio jet.

Fig. 6.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0324 - 228 at \(z = 1.89 \) with contours from the VLA 4.5 GHz observations superimposed. Right: Contour representation of the continuum emission from the two possible identifications of the host galaxy. Contour levels of flux density at: 1, 2, 4, 8 times \(1.3 \times 10^{-2} \) \(\mu \)Jy.
FIG. 7.—Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0350−279 at \(z = 1.90 \).

USS 1707 + 105 z = 2.35.—This is a large multiple system (Fig. 13) consisting of two or possibly three different galaxies (see Pentericci et al. 1999) separated by 3′−4″ and located along the radio axis. The radio core is not detected in the present radio image; however, it seems most likely that the radio emission comes from the most luminous and larger galaxy, centrally located between the two radio lobes that is indicated with the letter A in Figure 13. This galaxy is comprised of a main body plus a few smaller clumps and shows diffuse emission toward north, along the direction of the radio axis, but also perpendicular to it.

MRC 2025−218 z = 2.63.—The galaxy is shown in Figure 14. The emission is dominated by a nuclear point source. Once this is subtracted there is a large diffuse galaxy roughly aligned with the radio axis. The radio source is small, and the southern radio jet presents a sharp bent.

MRC 2048−272 z = 2.06.—The galaxy is shown in Figure 15. Two bright objects can be seen separated only by 2′:5 with a third faint object 2″ to the east. With the present astrometry the correct identification is probably the central object. The radio core is undetected in our VLA radio images.

MRC 2104−242 z = 2.49.—This galaxy is shown in Figures 16 and 23a–23c and is discussed more extensively in § 3.3.

USS 2202 + 128 z = 2.70.—The object (Fig. 17) is not resolved on the present image. The radio source is small and S-shaped, suggesting the radio axis might be precessing.

MRC 2224−273 z = 1.68.—This galaxy (Fig. 18) has a simple pear-shaped morphology. There is a small compact object only 2′:6 away, located along in the direction of the

FIG. 8.—**Left:** Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0406−244 at \(z = 2.44 \) with contours from the VLA 8.2 GHz observations superimposed. **Right:** Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8, 16, 32, 64, 128 times \(1.5 \times 10^{-21} \) ergs s \(^{-1}\) cm \(^{-2}\).

FIG. 9.—**Left:** Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 0943−242 at \(z = 2.93 \) with contours from the VLA 8.2 GHz observations superimposed. **Right:** Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8, 16 times \(1.2 \times 10^{-2} \) mJy.
galaxy main axis. The radio source is unresolved at all frequencies in our VLA observations (Pentericci et al. 2000b).

USS 2349 + 280 $z = 2.89$. The galaxy is shown in Figure 19: it consists of two components embedded in a halo of diffuse emission. The sharpness of the separation between the two components suggest that could be due to a dust lane (the NICMOS image samples the emission interval 3600–4630 Å, which can be still effected strongly by dust). The WFPC optical image is very similar (Chambers et al. 1996).

3.3. Detailed Multiwavelength Comparisons

MRC 0156 – 252. In Figures 20a–20c we show the NICMOS image in gray-scale overlayed with contours

Fig. 10.—Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 1017 – 220 at $z = 1.77$. The host of the radio source is the unresolved object to the east.

Fig. 11.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 1138 – 262 at $z = 2.16$ and its close companions, with contours from the VLA 8.2 GHz observations superimposed. Right: Contour representation of the continuum emission from the central region. Contour levels of flux density at: 1, 2, 4, 8, 16, 32, 64, 128 times 1.3×10^{-2} μJy.

Fig. 12.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy USS 1410 – 001 at $z = 2.33$ with contours from the VLA 8.2 GHz observations superimposed. Right: Contour representation of the continuum emission from the host galaxy. Contour levels of flux density at: 1, 2, 4, 8, 16 times 1.1×10^{-2} μJy.
Fig. 13.—*Top panel:* Gray-scale representation of the near-infrared continuum emission of the radio galaxy USS 1707 + 105 at $z = 2.35$ and its close companions, with contours from the VLA 8.2 GHz observations superimposed. *Bottom panel:* Contour representation of the continuum emission from the host galaxy. Contour levels of flux density at: 1, 2, 4, 8, 16 times 0.9×10^{-2} μJy.

Fig. 14.—*Left:* Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 2025 $-$ 218 at $z = 2.63$ with contours from the VLA 8.2 GHz observations superimposed. *Right:* Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8, 16, 32, 64, 128 times 1.2×10^{-2} μJy.

Fig. 15.—*Left:* Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 2048 $-$ 272 at $z = 2.06$ with contours from the VLA 8.2 GHz observations superimposed. *Right:* Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8, 16 times 1.4×10^{-2} μJy.
Fig. 16.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 2104–242 at $z = 2.49$ with contours from the VLA 8.2 GHz observations superimposed. Right: Contour representation of the continuum emission from the central region. The elongated feature northwest of the galaxy core is a spike from the nearby star. Contour levels of flux density at: 1, 2, 4, 8, 16 times $1.4 \times 10^{-2} \mu$Jy.

Fig. 17.—Gray-scale representation of the near-infrared continuum emission of the radio galaxy USS 2202+128 at $z = 2.70$ with contours from the VLA 8.2 GHz observations superimposed.

Fig. 18.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy MRC 2224–273 at $z = 1.68$. Right: Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8, 16, 32, 64 times $1.4 \times 10^{-2} \mu$Jy.
from (a) the I-band emission, (b) the K-band emission, and (c) the Lyα narrowband emission. In Figure 20d we show in gray-scale the radio jets at 8.2 GHz superimposed on Lyα narrowband contours. The I band contains nearly pure continuum emission, with the relatively weak Mg II λ2798 line falling at one end of the filter band; the K band is contaminated by the Hα emission line falling at the lower edge of the filter; finally, the NICMOS H band contains a contribution from the [O III] line (see Table 2).

The emission from the ionized gas is very extended ($\sim 9''$) and is not associated with the optical and near-infrared emission; the Lyα does not follow the optical/near-infrared components, but peaks at the location where the radio jet bends sharply. This case is very similar to that of MRC 1138 $-$ 262 (Pentericci et al. 1997) and 1243 $+$ 036 (van Ojik et al. 1996): the most likely interpretation is that a cloud of ionized gas is responsible for the deflection of the radio jet and that the gas emission is strongly enhanced in this region

Fig. 19.—Left: Gray-scale representation of the near-infrared continuum emission of the radio galaxy USS 2349 $+$ 280 at $z = 2.89$. Right: Contour representation of the continuum emission. Contour levels of flux density at: 1, 2, 4, 8 times 1.2×10^{-2} μJy.

Fig. 20.—The NICMOS image of MRC 0156 $-$ 252 in gray-scale overlayed with contours representing the I-band emission (top left), K-band emission (top right), and narrowband Lyα emission (bottom left). The bottom right panel shows the 8.2 GHz radio emission in gray-scale overlayed with contour of the narrowband Lyα emission.
due to shock ionization. Note also that the optical galaxy is located at a minimum of the Ly$_\alpha$ emission, a common feature of many HzRGs (e.g., MRC 1138$-$262 and MRC 2104$-$242 below).

Another interesting feature of MRC 0156$-$252 is the presence of two smaller components aligned (within 5°) with the radio axis but located beyond the radio hot-spots. They are of comparable brightness in the H band (see Table 4), but the easternmost clump, labeled C in Figure 3, is much redder than clump B. This difference in colors may be due to a difference in age of the stellar population: McCarthy et al. (1992) argued on the basis of ground-based data that the central galaxy contains a very old stellar populations (~2.8 Gyr) or alternatively a very reddened QSO spectrum. The bluer colors of component B, which is located near the bent in the radio jet, might be interpreted as enhanced star formation induced by the passage of the jet.

MRC 0406$-$244.—This galaxy is extensively discussed in Rush et al. (1997). In Figures 21a$-$21c we show the NICMOS image in gray-scale overlayed with contours from (a) the I-band emission, (b) the K-band emission, and (c) the Ly$_\alpha$ narrowband emission. In Figure 21d we show in gray-scale the radio jets at 8.2 GHz superimposed to Ly$_\alpha$ narrowband contours. The K and H filters contain contributions from line emission: in particular the K band contains the strong H$_\alpha$ + [N ii] $\lambda\lambda$6548,6584 system and the H band contains the [O iii] $\lambda\lambda$4959,5007 lines. The I band is purely continuum emission.

The main body of the galaxy shows two emission peaks, and a number of components distributed in a sort of envelope on both sides. The galaxy along the radio axis, which coincides remarkably well with a radio peak, is most probably at a different redshift (Rush et al. 1997). There is a spatial shift in the peak of the emission at different wavelengths: the peak of the I band coincides with that of H band, while the K-band peak probably lies in between the two NICMOS peaks, although due to the lower resolution (0.9') and larger pixels size of this image, with the present overlay we cannot exclude that the K-band peak coincides with the brightest H-band peak.

The net color gradient between the northern side and the southern was interpreted by Rush et al. (1997) with the fact that most of the emission in the southeast extension is the result of line contamination. The northwest components that appear in the I band are probably true continuum flux.

A high-resolution spectrum of the Ly$_\alpha$ line taken along the direction of the radio axis is presented in Figure 22. The spectrum has a total spatial extent of ~8", similar to the extent seen in the narrowband image. The emission comes from two components which are offset both in space (~2")

Fig. 21. The NICMOS image of MRC 0406$-$244 in gray-scale overlayed with contours representing the I-band emission (top left), K-band emission (top right), and narrowband Ly$_\alpha$ emission (bottom left). The bottom right panel shows the 8.2 GHz radio emission in gray-scale overlayed with contour of the narrowband Ly$_\alpha$ emission.
and velocity (~ 1150 km s$^{-1}$); with the help of the narrowband image we identify the brightest component with the main body of the galaxy, while the other component is the northwestern extension. They both have a FWHM of ~ 850 km s$^{-1}$. An interesting feature is the deep trough which may be due to absorption by associated neutral hydrogen, a feature common to many HzRGs (van Ojik et al. 1997). The neutral gas is as spatially extended as the ionized gas and has a velocity gradient of ~ 200 km s$^{-1}$.

MRC 2104−242.—In Figure 23 we show the NICMOS image in gray-scale overlayed with contours from (left) the R-band emission, (center) the K-band emission, and (right) the Lyα narrowband emission. Note the residuals of a spike of a bright nearby star located to the north of the radio galaxy. We do not show an overlay of the Lyα gas with the radio emission since the radio hot-spots are located further beyond the region of the gas emission (see the radio map in Fig. 16). The radio axis is oriented at 12° (counterclockwise), implying that both the continuum and line emission are well aligned with it. In Figure 24 we present a high-resolution spectrum of the Lyα line.

The galaxy is comprised of several components, each having very different colors: (i) the nucleus of the radio galaxy, which has a very red color $V - H \sim 5$, (ii) a series of smaller bluer clumps northern of it; (iii) a narrow elongated feature to the south.

As in MRC 0156−262, the nucleus coincides with a minimum of Lyα emission. To the north of it, a bright component is clearly seen in R band and is associated with the brightest Lyα emission, which at this position has a FWHM of ~ 500 km s$^{-1}$, a rather low value compared with average HzRGs, but consistent with the relation found by van Ojik et al. (1997) that the largest radio sources tend to have Lyα emission with lower velocity dispersion.

Finally, the narrow elongated feature is associated with spectacular Lyα emission, which has three different peaks, having velocities of 140, 670, and 990 km s$^{-1}$ blueward of the central Lyα emission. The overall velocity dispersion of the system is 1270 km s$^{-1}$ (FWHM).

Note that the Lyα spectrum shows that the Lyα emission extends beyond that seen in the Lyα image and spans a total region of $\sim 14''$, as large as the radio source.
Table 5 we report the best-fit parameters, and that the fit that we have obtained for these radio galaxies, and in exponential profile gave the worst results. In Figure 25 we show well represented by a de Vaucouleurs law, while the exponential. This was not done for (i) the three unresolved galaxies and (ii) the two galaxies in which the emission in the central region is dominated by a point source. In these last cases, although we could subtract a central point source revealing the extended underlying galaxies, the subtraction was not good enough to allow a fit of the residual.

Whenever there were companions in the vicinity of the main galaxy to be fitted, they were subtracted and replaced by an average background value.

For nine out of 14 galaxies, the fit gave meaningless results, in particular for those having more than one peak of emission within the main body of the galaxy (e.g., MRC 0406–244) and for those with an irregular morphology. Also some apparently regular galaxies (such as MRC 0943–242) are not well represented by any of the above laws. For five of the galaxies (namely, MRC 0152–209, USS 0211–122, USS 1707+105A, MRC 2048–272, and MRC 2224–273), the surface brightness profile could be well represented by a de Vaucouleurs law, while the exponential profile gave the worst results. In Figure 25 we show the fit that we have obtained for these radio galaxies, and in Table 5 we report the best-fit parameters, r_e and μ_e, that were determined by minimizing the χ^2. We also report the values of the reduced χ^2, which indicates that the fits are quite good in all cases.

The average effective radius for the five galaxies is $r_e = 5.4 \pm 1.6$ kpc (adopting $H_0 = 50$ km s$^{-1}$ Mpc$^{-1}$, and $q_0 = 0.5$), with a median value of 5.3 kpc.

The PSF of NICMOS might influence the result of the fit. It is difficult to recover accurately its shape since the NIC 2 frames are very small and contain none or few point sources; furthermore, it is known that the PSF of NICMOS varies both spatially and with time (Colina & Rieke 1997). Only for USS 1707+105 we could construct a model of the PSF using two nonsaturated point sources near the radio galaxy. We then deconvolved the frame of USS 1707+105 and fitted again the image obtained: the resulting parameters r_e and μ_e are, within the error, comparable to those obtained by fitting the original image. So we are confident that, at least for the three largest galaxies (namely, USS 0211–122, USS 1707+105A, and MRC 0152–209), the PSF does not influence the results of the fit.

Another possible source of confusion might be the presence of spatially extended line emission, especially if this is distributed differently from the continuum emission. However, as we see from Table 2, line emission should be negligible in all cases except for MRC 2224–273, where it contributes for $\sim 30\%$ of the total H-band flux.

We emphasize that while the good fit to the $R^{1/4}$ law suggests that these galaxies might be morphologically ellipticals/bulges, a knowledge of the spectral energy distribution is also needed to fully determine their nature.

It is interesting to notice that all the galaxies which can be well represented by the de Vaucouleurs law are in the lowest part of our redshift range (below $z \sim 2.4$). This hints at a possible redshift evolution, although there is not net dependence of morphology on redshift. We can compare these results to what is obtained for lower redshift 3CR radio galaxies. It is well known that a large fraction ($\sim 80\%$) of the $z \sim 1$ radio galaxies have profiles which are well fitted by a de Vaucouleurs law (e.g., Best et al. 1998; McLure & Dunlop 2000). In particular, McLure & Dunlop (2000) derived basic parameters for a sample of $z \sim 1$ 3CR radio galaxies from I-band WFPC2 images (using F814W or

Fig. 24.—High-resolution spectrum of the Lyα emission line from MRC 2104–242, taken with the NTT, having a resolution of 2.8 Å
F785LP filters). These images have a resolution similar to ours; in addition we selected from their sample, a subgroup of objects such that the rest-frame emission sampled by the observations was as similar as possible to that of our five galaxies. In practice we selected the nine galaxies where the rest-frame range sampled was fully above the 4000 Å break. These galaxies are at a median redshift of 0.75. Their average r_e is 11.9 ± 2.4 kpc, with a median value of 8.5 kpc.

Although the two samples are small, the indication is that the $z \sim 2$ radio galaxies are at least a factor of 2 smaller than the lower redshift radio galaxies. Only one high-redshift galaxy (USS 1707 + 105A) has a radius comparable to its lower redshift counterparts. For reference, the brightest cluster ellipticals in the local universe have an average effective radius of 32 kpc, and values vary from 10 kpc to several tens of kpc (e.g., Schombert 1988).

The above results indicate that a dynamically relaxed and relatively old stellar population is already in place in most of the $z \sim 1$ systems, while it becomes rarer at redshift $z \sim 2$ and disappears at even higher redshift. A possible evolutionary scenario for the hosts of powerful radio galaxies that can be inferred from these results is the following: at redshifts from 3.5 to $z \sim 2.5$ most galaxies show considerable substructure and clumpiness, suggesting strong interactions and mergers. At $z \sim 2$ some host galaxies appear morphologically relaxed; between $z \sim 2$ and $z \sim 1$ almost all systems (up to 80%) evolve into fully developed elliptical galaxies, and during this time the characteristic scale length

![Graphs of surface brightness profiles for five radio galaxies](image)

Fig. 25.—Surface brightness profiles for the five radio galaxies which are well represented by a de Vaucouleurs law: the filled circles are the data with their relative error bars, while the dotted lines are the best-fit laws.

Table 5

Galaxy	z (1)	r_e (arcsec) (2)	r_e (kpc) (3)	μ_e (H-mag arcsec$^{-2}$) (4)	χ^2/ν (5)
MRC 0152-209	1.89	0.64	5.3	20.8	1.33
USS 0211-122	2.34	0.73	5.7	21.8	1.11
MRC 1707+105	2.35	1.62	12.7	23.7	1.06
MRC 2048-272	2.06	0.2	1.6	19.1	0.64
MRC 2224-273	1.68	0.2	1.7	18.6	1.12

Notes: Col. (1), Radio galaxy; col. (2), redshift; col. (3), best-fitting r_e in arcseconds; col. (4), best-fitting r_e in kpc; col. (5), best-fitting μ_e; col. (6), reduced χ^2.

No. 1, 2001 NEAR-INFRARED PROPERTIES OF HzRGs 79
of the galaxies increases on average by a factor of 2. As argued by Best et al. (1998) these galaxies will then continue to accumulate matter through mergers and gas infall: if the mergers occur homologously (e.g., Schombert 1987), a merger of a large galaxy with a small systems gives as a result a remnant with a larger radius and a more diffuse morphology as compared to the original galaxy. In this way the hosts of high-redshift radio galaxies would then evolve into present-day brightest cluster galaxies.

4.2. Colors: Comparison between WFPC2 and NICMOS Morphologies

For those objects (eight) that have both the WFPC2 and NICMOS images, we constructed a color index map in the following way. The optical images were initially convolved with a Gaussian function to bring them to the same resolution as the near-infrared ones (0.2). For the galaxies USS 0211–122, MRC 0943–242, MRC 1138–242, USS 1410–001, USS 1707+105, MRC 2025–218, and MRC 2104–242 that were imaged with the planetary camera (Pentericci et al. 1998, 1999) we rebinned both frames on a finer pixel scale; using factors of 3 and 5 for the WFPC2 and the NICMOS, respectively, the final pixel scales agreed to better than 1.3%. For the galaxy MRC 0406–242 which has been imaged on the WF3 chip (Rush et al. 1997), the factors used were 4 and 3, respectively, for the WFPC2 and the NICMOS, and the agreement between the final scales was better than 2%.

The WFPC2 and NICMOS images were aligned by comparing the location of stars that were present on both frames. If this was not possible (e.g., because on the small NICMOS frame there were no point sources) we used the location of distinct peaks of the radio galaxy itself. We only applied integer shifts to avoid interpolation. After sky subtraction we calibrated both images to units of flux density in μJy, using the information in the headers of the WFPC2 images and the calibration of the NICMOS Camera 2 filters derived by Colina & Rieke (1997).

Finally, we derived color maps as

\[
\text{COLOR} = \log (S_{\text{WFPC2}}) - \log (S_{\text{NICMOS}}),
\]

excluding all pixels having fluxes less than 3 σ (where σ is the rms noise), and we rebinned the final image by averaging regions of 2 × 2 pixels. The resulting image can be calibrated on a scale of two-point spectral index α, where \(S_\lambda \sim \lambda^{-\alpha}\), or alternatively can be scaled to magnitude color index as:

1. \(R-H = 1.17 + 0.91x\) for those galaxies that were imaged with the F702W filter (all galaxies at redshift beyond 2.9),
2. \(V-H = 1.40 + 1.08x\) for those that were imaged with the F606W filter (all other galaxies).

The resulting maps of the two-point index are presented in Figures 26, 27, 28, and 29. Note that there are some spurious color structures, like sharp pixel-to-pixel variations, especially at the edges of some small components, due to regions with very different signal-to-noise in the two colors, the difference in PSF shape, and the uncertainty of ~0.1 in the alignment procedure.

We shall use these color maps in the next section to study the alignment effect. Here we just examine the distribution of the color indices and their possible relations to other properties of the radio sources.

We limit this study to the clumpiest objects, which have a complex color index distribution, i.e., the four galaxies MRC 0406–244, MRC 1138–262, USS 1707+105, and MRC 2104–242. We measured the color index in different regions of the above galaxies by averaging over a circle with ~0.2 radius around the peaks in the emission present in the WFPC2 image and/or in the NICMOS image (some components are present only in one of the two bands). We only considered regions of emission that are surely part of the systems i.e., that emit Lyα at the same redshift and/or are embedded in the Lyα halo of the galaxies. In Figure 30 we present a histogram with the distribution of optical-to-infrared spectral indices. The median color index is around \(x = 2\) and more than 75% of the components have spectral indices between 1.5 and 3 (corresponding to \(V-H\) colors between 3 and 4.6), indicating that the radio galaxies contain very red regions.

Note that since the redder bands is in some cases (e.g., MRC 2104–242, see Table 2) contaminated by line emission, a very irregular and clumpy distribution of the emitting gas could produce sharp color gradients between the various components.

Since many properties of HzRGs depend on radio size (e.g., van Ojik et al. 1997) it is interesting to determine whether there is a correlation between the color index of the clumps and their distance from the radio core. The results
4.3. The Radio/Near-Infrared Alignment Effect

Our images show that the near-infrared continuum emission of HzRGs is generally aligned with the main axis of the radio emission. This is the so-called alignment effect which has been studied for more than a decade. Several models have been proposed to explain its nature (for a review see McCarthy 1993a and references therein), the most viable ones being: (i) star formation stimulated by the radio jet as it propagates outward from the nucleus (Chambers et al. 1987; McCarthy et al. 1987; de Young 1989; Daly 1990); (ii) scattering of light from an obscured nucleus by dust or free electrons (di Serego Alighieri, Fosbury, & Tadhunter 1989; Scarrott, Rolph, & Tadhunter 1990; Tadhunter et al. 1992; Cimatti et al. 1993); (iii) nebular continuum emission from warm line emitting clouds (Dickson et al. 1995). There is evidence that all these mechanisms contribute to the alignment effect, with strong variations from object to object (e.g., Pentericci et al. 1999). We will try to assess their contribution using the new near-infrared images and the color maps constructed in the previous section.

Assuming that a considerable fraction of the blue light is scattered light from a central quasar (see, e.g., Cimatti et al. 1994), we can estimate the percentage of scattered light there would be in the H band. According to unification...
models the incident spectrum seen by the scattering medium is that of a quasar, $S \propto \nu^{-\beta}$ (we use β to distinguish this parameter from the optical-to-infrared spectral index, defined as α). As a value for β we take the one derived from the composite spectra of quasars from the MRC catalog (the same parent catalog from which most of our sources were taken) compiled by Baker & Hunstead (1995). They found $\beta = 1$ for the steeper cases. Thompson scattering by thermal electrons is wavelength independent (although in some cases it has serious energetic difficulties, e.g., Eales & Rawlings 1990); in this case the scattered spectrum will be in a shape similar to the incident one. For dust scattering, the output spectrum will be bluer than the incident one (for optically thin dust), with the exact shape depending on the size of the grains (e.g., Dey et al. 1996 and references therein).

Assuming 50% of the blue flux (at ~ 1800 Å rest frame) is scattered light, and that the scattered component has a power-law spectrum with $\beta = 1$, we can calculate its contribution at ~ 5000 Å for components with different observed

![Graph](image.png)

Fig. 30. Distribution of the optical-to-infrared spectral indices of the components of the four clumpy radio galaxies, MRC 0406 – 244, MRC 1138 – 262, USS 1707 + 105, and MRC 2104 – 242.

![Graph](image.png)

Fig. 31. Optical-to-infrared color indices of the components of the four clumpy radio galaxies MRC 0406 – 244 (triangles), MRC 1138 – 262 (squares), USS 1707 + 105 (asterisks), and MRC 2104 – 242 (plus signs), plotted vs. their distance from the galaxy radio core (or nucleus).
optical-to-infrared spectral indices. The fraction of scattered light in the optical will also be 50% for those components with an observed spectral index $\alpha = 1$; it will be 26% for the components with an observed optical-to-infrared spectral index $\alpha = 2$; it will be 10% for those with an index $\alpha = 3$; and finally it will be 4% for the components with $\alpha = 4$. These percentages would decrease considerably if the scattering is wavelength dependent; on the other hand they could increase if we allow for some reddening. However, it is clear that for components with observed optical-to-infrared spectra steeper than $\alpha > 2$, as most radio galaxies exhibit (see Fig. 30), scattered light cannot be the dominant fraction of the emission at 5000 Å rest-frame wavelength.

We note that in those objects the aligned component has a nearly uniform spectral index whereas in other ones, the color varies considerably. To the first category belong the galaxies USS 0211−122, MRC 0943−242 USS 1410+001, and MRC 2025−218 (although this last case is more complicated due to the presence of a strong unresolved nuclear component), where the aligned light has a nearly constant spectral index (~ 2.3 for USS 0211−122 and MRC 2025−218, and ~ 2 for MRC 0943−242 and USS 1410+001).

For two of these objects there exist also polarization measurements, showing that the rest-frame UV emission is polarized: USS 1410−001 has a polarization of 10% (Cimatti et al. 1998) and an estimated total contribution of scattered light of 40 to 60% (depending on the nature of the scatterer) at 1800 Å (rest frame), MRC 2025−218 has a polarization of 8% (Cimatti et al. 1994), and the total SED of the galaxy can be fitted by models in which scattered light accounts for a very large fraction of the emission at 1800 Å.

Then from the uniformity of the spectral indices in the aligned component, and using the calculations above, we conclude that in these objects also a considerable fraction ($\sim 30\%$–40% or more) of the rest-frame optical emission could be scattered light.

For the other galaxies (namely, MRC 0406−244, MRC 1138−262, USS 1707+105, and MRC 2104−242) the optical-to-infrared color index varies considerably within the different regions. Furthermore, the spectral indices of some components are considerably steeper than $\alpha = 2$, and in some galaxies the components are located outside the ionization cone. In the source MRC 1138−262 if we were to draw such a cone so that all the continuum emission would line inside, it should have a half-opening angle of at least $70\degree$. This is much wider than what is expected by models of AGN unification (up to $45\degree$, e.g., Barthel 1989), and than values found through imaging of the emission line regions in active galaxies: for example, Wilson & Tsvetanov (1994) find average half-opening angles of $\sim 30\degree$. The same thing is valid for USS 1707+105A, which is clearly extended in a direction perpendicular to the radio source and therefore outside the ionization cone. These characteristics argue against scattering as a major contributor to the light, since in this case we would expect components with uniform and bluer colors (assuming that the properties of the scattering medium do not vary considerably amongst the various components). Hence, we conclude that in these systems the contribution of scattered light to the optical continuum must be very small (less than 10%).

If we then assume that in these galaxies most of the emission is produced stellar light, we can derive an approximate age for the stellar population and compare it with the age of the radio sources, to determine whether jet-induced star formation could be a viable mechanism to account for the stellar population. To derive an indicative age for the stars, we have matched the amplitude of the 4000 Å break observed in the clumps with the amplitudes (at the same rest-frame wavelengths) derived from the spectral energy distributions of stellar populations evolving according to the galaxy isochrone synthesis spectral evolution library compiled by Bruzual & Charlot (1993). We used their 1995 model, assuming a simple stellar population, and a Salpeter initial mass function (IMF), with star masses ranging from 0.1 to 125 M_\odot. The instantaneous starburst model, which evolves most rapidly, can reproduce the observed 4000 Å break in 0.5 Gyr for the bluest components of HzRGs, to 1.3 Gyr for the reddest ones. All other modes of star formation (e.g., starburst with a finite duration, an exponentially declining star formation mode, etc.) require a longer time to reproduce the same colors.

Clearly, there are a number of uncertainties in this age determination, e.g., the inferred ages could be wrongly estimated in those components that have a contribution of line emission in any of the two bands. In any case the indication is that these components have rather large ages, of the order of half a Gyr or more.

The typical lifetime of a radio source can be easily derived as $t = D/2v$, where v is the expansion speed of the hot spots and D is the total extent of a radio source. The velocity v is typically in the range 0.01–0.2c (e.g., Alexander & Leahy 1987), and our sources have maximum extent of about 200 kpc. Therefore, their lifetime will be in the range 0.2–3×10^7 yr, i.e., about 100 times shorter than that of the stellar population. Note that alternative estimates of the radio source lifetime, e.g., from spectral aging arguments, also in general lead to ages of $\sim 10^7$ yr (Carilli et al. 1991). Clearly, if the radio activity was recurrent, then the observed clumps could have formed during previous phases of activity.

Finally, we mention the model proposed by West (1994), in which the anisotropy of the optical and infrared emission around a typical high-redshift radio galaxy is due to the anisotropy of the surrounding density distribution (see also Eales 1992). In this model, galaxy formation proceeds along preferred directions which are related to large-scale elongated distribution of matter: in the prolate potential of the forming galaxy, the gas will fall and settle into a disk whose axis is along the major axis of the distribution of matter. The radio jets then will be emitted along this axis, hence the alignment between their direction and the distribution of the surrounding material (gas and stars). Within this model the relative ages of the radio jets and stellar components do not have to be matched. However, this model alone cannot explain the alignment effect since, for example, it cannot explain the polarization properties of many HzRGs.

4.4. Companion Galaxies and Their Relation to the Alignment Effect

Most HzRGs in our sample show very close companion objects. We define a companion as a small (size $\leq 1\arcmin$) object that is located within a region delineated by a 100 kpc diameter around the radio source. We exclude objects with a stellar profile (although they might be in some cases high-redshift unresolved objects, rather than stars) and those which can be recognized as spirals, on the assumption that they are most probably foreground systems. We do not
consider the inner 30 kpc from the galaxy centers, to ensure that the regions of the source itself are excluded from the statistics (this is true in almost all cases except for the larger systems, but the overall result does not depend on them).

The average number of companion galaxies for the 19 HzRGs is 1.9 ± 0.3 down to a magnitude limit of $m_H = 23.5$. From deep counts of NICMOS parallel orbit, Yan et al. (1998) derive an average cumulative density of galaxies in H band down to a magnitude $m_H = 23.5$ of $\sim 1.5 \times 10^5$ galaxies deg$^{-2}$. The expected number of galaxies in a circular area of radius 50 kpc is 1.4. Therefore, there is a marginal (2σ) excess of objects in the area around HzRGs.

We do not have any other systematic information on these possible companion galaxies that might tell us about their real redshifts. However, further evidence that these objects may be associated with the radio galaxies is provided by the distribution of the orientation of companions with respect to the radio axis (or optical axis if the radio source is unresolved). In computing this distribution we have excluded companions of the two radio galaxies that are unresolved both in the radio and in the near-infrared emission (MRC 0324−228 and MRC 1017−220) since in these cases it is impossible to determine any preferred direction. The result is presented in Figure 32: the histogram shows that the companion galaxies are predominantly located along the radio axis. A Kolmogorov-Smirnov test shows that the distribution differs from a uniform distribution between 0° and 90° with 99% probability.

Röttgering et al. (1996) reported a similar effect, finding a statistical excess of optical companions located along the radio axis of USS radio sources. While they defined companions as objects that are located within a circle with diameter equal to the radio source extension, we prefer to use a fixed scale, since we do not assume a priori that the companion galaxies are related to the presence of the radio sources. However, it is significant that, even with a different definition, both groups find an excess density in the direction of the radio axis.

This result shows that the alignment effect not only holds for the radio galaxy hosts, but also for its neighboring galaxies within an area of at least ~ 100 kpc. An interesting issue would be also to determine how the overdensity and the alignment of these companion galaxies depend on the area considered. Unfortunately, the NICMOS data are not useful in this respect, since the NIC 2 field of view is far too small.

The above conclusions show that any model attempting to explain the alignment effect has to take into account not only the morphology of the radio galaxies hosts, but also their surroundings (for the possible origin of the alignment effect see the discussion and the references in the previous section).

5. CONCLUSION

We have presented the results of a near-infrared imaging program on a sample of 19 radio galaxies having redshift between 1.7 and 3.2, observed with NICMOS Camera 2 on the Hubble Space Telescope.

Our observations show that the host galaxies of powerful radio sources have a wide range of morphologies, from systems with simple compact morphologies to systems with substructures such as multiple emission peaks to systems comprised of several components spread over large areas. Only in a few cases does the active nucleus dominate the emission in the central region.

Following is a summary of the most important results obtained:

1. While most systems appear irregular, five galaxies at $z \sim 2$ have morphologies consistent with them being elliptical galaxies (or bulges), i.e., they can be well represented by the classical $R^{1/4}$ law. A comparison between this small sample and the host galaxies of $z \sim 1$ 3CR radio sources, observed at similar rest-frame wavelengths and resolution, indicates that there is difference of a factor 2 in their effective radii.

2. We find that in almost all extended systems the near-infrared continuum light is aligned with the radio axis, and the aligned component has very red colors. For several galaxies WFPC2 V- or R-band images were available so we computed a high-resolution map of the optical-to-infrared spectral index. These spectral indices are in general rather steep, $\alpha \sim 2$ or steeper. The clumpy systems show net color differences between the various components, which can be explained with different ages for the stellar content. Indicative ages determined from the Bruzual & Charlot models are of the order of ~ 0.5–1 Gyr in most cases, much larger than typical radio source ages.

3. In the small NICMOS frames we can see in many cases nearby faint objects around the high-redshift radio galaxies, and their space density is slightly higher than what is observed in the deep NICMOS parallel observations of random fields. Furthermore, these objects tend to be aligned with the direction of the main axis of the radio sources, suggesting that they are related to the presence of the radio galaxies.
This work is based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under contract with NASA. H. J. A. R. acknowledges support from an EU twinning project, a program subsidy granted by the Netherlands Organization for Scientific Research (NWO) and a NATO research grant. The work by W. v. B. at IGPP/LLNL was performed under the auspices of the US Department of Energy under contract W-7405-ENG-48.

REFERENCES

Alexander, P., & Leahu, J. P. 1987, MNRAS, 225, 1
Baker, J. C., & Hunstead, R. W. 1995, ApJ, 452, L95
Baron, E., & White, S. D. M. 1987, ApJ, 322, 585
Barthel, P. D. 1989, ApJ, 336, 606
Best, P. 2000, MNRAS, 317, 720
Best, P., Longair, M., & Röttgering, H. J. A. 1997, MNRAS, 286, 785
---, 1998, MNRAS, 295, 549
Bruzual, A. G., & Charlot, S. 1993, ApJ, 405, 538
Carilli, C. L., Perley, R. A., Dreher, J. W., & Leahy, J. P. 1991, ApJ, 383, 554
Carilli, C. L., Röttgering, H., van Oijk, R., Miley, G. K., & van Breugel, W. 1997, ApJS, 109, 1
Carilli, C. L., et al. 1998, ApJ, 494, 143
Chambers, K. C., Miley, G. K., & van Breugel, W. J. M. 1987, Nature, 329, 604
Chambers, K. C., et al. 1996, ApJS, 106, 247
Cimatti, A., di Serego Alighieri, S., Field, G. B., & Fosbury, R. A. E. 1994, ApJ, 422, 562
Cimatti, A., di Serego Alighieri, S., Fosbury, R., Salvati, M. S., & Taylor, D. 1993, MNRAS, 264, 421
Cimatti, A., di Serego Alighieri, S., Vernet, J., Cohen, M., & Fosbury, R. A. E. 1998, ApJ, 499, L21
Colina, L., & Rieke, M. J. 1997, HST Calibration Workshop with a New Generation of Instruments, ed. S. Casertano, R. Jedrzejewski, C. D. Keyes, & M. Stevens (Baltimore: STScI), 18
Daly, R. A. 1990, ApJ, 355, 416
Dey, A., Cimatti, A., van Breugel, W., Antonucci, R., & Spinrad, H. 1996, ApJ, 465, 157
Dey, A., van Breugel, W., Vacca, W., & Antonucci, R. 1997, ApJ, 490, 698
de Young, D. S. 1989, ApJ, 342, L59
di Serego Alighieri, S., Fosbury, R. A. E., & Tadhunter, P. Q. C. 1989, Nature, 341, 307
Dickson, R., Tadhunter, C., Shaw, M., Clark, N., & Morganti, R. 1995, MNRAS, 273, L29
Dubinski, J. 1998, ApJ, 502, 141
Eales, S. A. 1992, ApJ, 379, 49
Eales, S. A., & Rawlings, S. 1990, MNRAS, 243, 1P
---, 1993, ApJ, 411, 67
Eales, S., Rawlings, S., Law-Green, D., Gotter, G., & Lucy, M. 1997, MNRAS, 291, 593
Eisenhardt, P., & Chokshi, A. 1990, ApJ, 351, L9
Elias, J. H., Frogel, J. A., Hyland, A. R., & Jones, T. J. 1983, AJ, 88, 1027
Graham, J. R., et al. 1994, ApJ, 420, L5
Giavalisco, M., Steidel, C., & Macchetto, F. 1996, ApJ, 189, 470
HST Data Handbook, Version 2.0. 1995, ed. C. Leitherer (Baltimore: STScI)
Kapahi, V. K., Athreya, R. M., van Breugel, W., McCarthy, P. J., & Subrahmanya, C. R. 1998, ApJS, 118, 275
Lacy, M., & Rawlings, S. 1996, MNRAS, 280, 888
Le Fèvre, O. L., Delorm, J., Crampton, D., & Dickinson, M. 1996, ApJ, 471, L11
Lilly, S. 1988, ApJ, 333, 161
McCarthy, P. J. 1993a, ARA&A, 31, 639
---, 1993b, PASP, 105, 105
McCarthy, P., Kaphai, V., van Breugel, W., & Subrahmanaya, C. R. 1990, AJ, 100, 1014
McCarthy, P., et al. 1996, ApJS, 107, 19
McCarthy, P. J., Persson, S. E., & West, S. C. 1992, ApJ, 386, 52
McCarthy, P., van Breugel, W., Kaphai, V., & Subrahmanaya, C. R. 1991, AJ, 102, 522
McCarthy, P., van Breugel, W., Spinrad, H., & Djorgovski, S. 1987, ApJ, 321, L29
McLeod, B. A. 1997, in HST Calibration Workshop with a New Generation of Instruments, ed. S. Casertano, R. Jedrzejewski, C. D. Keyes, & M. Stevens (Baltimore: STScI), 281
McLure, R. J., & Dunlop, J. S. 2000, MNRAS, 317, 249
Papadopoulos, P. P., et al. 2000, ApJ, 528, 626
Pentericci, L., et al. 2000a, A&A, 361, L25
Pentericci, L., Röttgering, H., Miley, G., Carilli, C., & McCarthy, P. 1997, A&A, 300, 580
Pentericci, L., et al. 1998, ApJ, 504, 139
---, 1999, A&A, 341, 329
Pentericci, L., van Reeven, W., Carilli, C. L., Röttgering, H., & Miley, G. 2000b, A&AS, 145, 121
Rigler, M., & Lilly, S. 1994, ApJ, 427, L79
Roche, N., Eales, S., & Hippelein, H. 1998, MNRAS, 295, 946
Röttgering, H. J. A., Lacy, M., Miley, G., Chambers, K., & Sanders, R. 1994, A&A, 108, 79
Röttgering, H. J. A., West, M., Miley, G., & Chambers, K. 1996, A&A, 307, 376
Rush, B., McCarthy, P. J., Athreya, R. M., & Persson, S. 1997, ApJ, 163, 484
Schombert, J. M. 1987, ApJS, 64, 643
---, 1988, ApJ, 328, 475
Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., & Adelberger, K. L. 1996, ApJ, 462, 17
Scarrott, S. M., Rolph, C. D., & Tadhunter, C. N. 1990, MNRAS, 243, 5P
Tadhunter, C. N., Scarrott, S., Draper, P., & Rolph, C. 1992, MNRAS, 256, 53p
van Breugel, W., de Breuck, C., Röttgering, H., Miley, G. K., & Stanford, A. 1999, in Looking Deep in the Southern Sky, ed. R. Morganti & W. J. Couch (Berlin: Springer), 236
van Breugel, W. J. M., Stanford, S. A., Spinrad, H., Stern, D., & Graham, J. R. 1998, ApJ, 502, 614
van Ojik, R., et al. 1994, A&A, 289, 54
van Ojik, R., et al. 1996, A&A, 313, 25
van Ojik, R., Röttgering, H. J. A., Miley, G. K., & Hunstead, R. W. 1997, A&A, 317, 358
West, M. 1994, MNRAS, 268, 79
Wilson, A. S., & Tsvetenov, Z. I. 1994, AJ, 107, 1227
Yan, L., McCarthy, P. J., Storrie-Lombardi, L. J., & Weymann, R. J. 1998, ApJ, 503, L19