양자점용 가교제를 이용한 고해상도 양자점 광패터닝 기술
양 지혜, 강문성†
서강대학교 화공생명공학과

High-resolution Patterning of Colloidal Quantum Dots via Non-destructive, Light-driven Ligand Crosslinking
Jeehye Yang and Moon Sung Kang†
Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, Republic of Korea

Abstract: 최근 우수한 발광 특성을 갖는 양자점을 고해상도 디스플레이의 발광 소재로 도입하고자 하는 노력이 활발하다. 양자점을 활용한 디스플레이의 실현을 위해서는 콜로이드 상태인 다색의 양자점을 고해상도로 패터닝하는 기술의 확립이 필요하다. 본 연구에서는 ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate)를 양자점용 가교제로 활용하여 용액공정을 기반으로 형성된 양자점 박막을 고해상도로 패터닝한 기술을 개발하고자 한다. 양자점용 가교제의 양말단에는 아지드 그룹을 포함한 작용기가 존재한다. 아지드 기는 자외선에 의해 광 활성화되어 양자점 표면의 알킬 리간드와 가교 결합을 형성함으로써, 양자점 박막에 화학적 내구성을 부여한다. 본 기술을 기반으로, 적색, 녹색, 청색의 카드뮴 기반 양자점을 고해상도로 패터닝하고 정밀하게 배열하여 인치 당 화소 수 1400 이상의 패턴 형성에 성공하였다. 또한 가교 반응 후에도 성능 저하가 없는 양자점 박막 및 자발광 양자점 다이오드를 개발하였다.

Keywords: colloidal quantum dots, light-driven ligand crosslinker (LiXer), high-resolution patterning, quantum dot light-emitting diode (QD-LED)

1. 서 론
양자점은 직경이 수 나노미터 수준으로 작아져 양자 구속 효과를 얻는 반도체 결정 입자가 될 수 있다[1,2]. 양자점은 발광색의 반지름이 작고 발광 효율이 우수한 특성으로 인해 OLED에 이은 차세대 디스플레이 발광 소재로 높은 관심을 받고 있다[3-5]. 현재 상용화되어 있는 양자점 디스플레이는 양자점의 형광(photoluminescence, PL) 특성을 활용한 액정형 디스플레이이다. 적색, 녹색, 청색의 파장을 가진 온보드를 얻는 양자점에 포함된 필름을 카드뮴 백라이트유닛 앞에 덧대고, 양자점을 청색 빛을 통해 광학적으로 여기시킴으로써 고요질의 백색 광원을 얻는 방식으로 형성된 백색 광원이 액정층과 컬러 필터 층을 통과하고 적색(R), 녹색(G), 청색(B)의 3원색으로 분리되면서 디스플레이 상의 이미지가 구현된다[6-8]. 결과적으로 양자점 형광 필름을 도입함으로써 기존 액정형 디스플레이보다 색 재현율이 향상된 디스플레이를 선보일 수 있었다. 하지만 양자점의 우수한 발광 특성을 온전히 활용하기 위해서는 양자점 발광층이 디스플레이 장치의 전면부에 위치하여 양자점으로부터 발생된 빛이 직점 사람의 눈으로 인식될 수 있는 형태의 디스플레이가 필요하다. 즉, 양자점을 컬러 필터 층에 도입하거나, 궁극의 형태로는 현재의 유기발광다이오드(organic light emitting diode, OLED)를 기반으로 한 디스플레이와 같이 전제에 대해 자발광이 가능한 양자점 발광 다이오드(quantum dot light emitting diode, QD-LED)
양자점용 가교제를 이용한 고해상도 양자점 광패터닝 기술

Figure 1. 다양한 양자점 광패터닝 방법. a: X-ray 조사에 따른 양자점 표면 리간드의 graphitization 반응을 활용한 양자점 광패터닝 기술. 아래 SEM 이미지는 해당 기술을 통해 패턴된 CsPbBr₃ 양자점 박막의 이미지임. b: 광활성 분자와 양자점 리간드와의 표면 반응을 유도하여 양자점 박막을 패터닝하는 기술. 아래 형광 이미지는 고해상도 패턴된 녹색CdSe/CdₓZnₓSe/ySₓ/ZnS 양자점 박막의 사진임.

*출처: (좌) ACS Nano, 10, 1224-1230 (2016); (우) Adv. Mater., 2003805 (2020).
양자점 박막을 성공적으로 패턴화하였으나, 고 에너지 X-선 또는 플라즈마 소스는 양자점 박막의 발광 효율을 저하시킬 가능성이 높아 발광 소자 제조에 해당 기술을 적용하는 것은 어려워 보인다. Talapin 그룹은 양자점 표면을 다양한 과일의 자외선-가시광선(UV-Vis, 254~450 nm) 및 전자빔에 반응을 갖는 분자로 치환하여 양자점 박막을 패턴남았다. 광원이 조사되면 리간드 분자가 광분해 되고 양자점 표면의 화학적 특성이 바뀌면서 광원 조사된 영역과 조사되지 않은 영역 간 용해도 차이가 발생한다. 이후 현상액을 이용해 광원에 노출되지 않은 영역을 선택적으로 제거함으로써 양자점 박막을 패턴하였지만, 리간드 치환 과정에서 양자점의 발광 효율이 약 40% 감소하였다[21,22].

이에 최근에는 양자점 표면 리간드와 반응이 가능한 광분해성 리간드를 최소량 도입하여, 패턴공정 후에도 양자점 박막의 발광 효율이 ~75% 유지되는 방법을 개발하였고, 해당 기술을 기반으로 1.5 µm 수준의 고해상도 양자점 패턴 형성에 성공하였다. 하지만, 양자점 표면 리간드와 광분해성 분자의 반응 단계에서 필연적으로 산성의 부산물이 발생하기 때문에 양자점 발광소자로의 적용을 위해서는 방법의 개선이 필요해 보인다[23].

패턴공정을 통해 형성된 양자점 박막의 최종 발광 효율은 해상도와 더불어 자발발광 양자점 디스플레이의 성능을 결정하는 중요한 인자로 반드시 확보되어야 하는 요소이다. 본 연구에서는 양자점 표면의 우수한 발광 특성을 보존하면서 고해상도로 패턴을 형성할 수 있는 효과적인 광패턴링 방법을 개발하였다. Phenyl azide가 양자점 발광효율 상승에 기여하는 기능성을 제시하였다(Figure 2a).

2. 양자점용 광가교제를 이용한 고해상도 광패턴

2.1. 양자점용 광가교제(LiXer)를 이용한 양자점 박막의 광가교

Figure 2a는 자외선에 의하여 개시되는 양자점용 광가교제(LiXer)와 양자점 표면 알킬 리간드의 광교체 반응을 도식화한 것이다. 본 연구에서는 암달란에 fluorinated phenyl azide가 달린 ethane-1,2-diyi bis (4-azido-2,3,5,6-tetrafluorobenzoate)를 양자점용 광가교제로 사용하였다. Fluorinated phenyl azide는 잘 알려진 광활성 작용기로, UV (254 nm)에 노출되면 반응성이 높은 nitrene 중간체를 형성하며, 근처에 있는 알킬 사슬과 쉽게 탄소(C)-수소(H) 삼성 반응을 통해 결합을 형성한다[24,25]. 양자점의 표면은 양자점의 안정적인 분산과 특성 유지를 위해 긴 지방측 사슬(예: oleic acid, alkylthiol)로 둘러싸여 있기 때문에, LiXer를 첨가하여 이 움직이는 양자점의 리간드가 서로 가교된 양자점 네트워크를 형성할 수 있다. 해당 방법은 광화학적 반응 직후의 긴 알킬 리간드가 닫힌 고성능의 양자점을 온전히 활용할 수 있기 때문에, 양자점에 광활성 기능을 부여하기 위해 리간드 치환은 해야 했던 이전 방법들과 달리 양자점 표면 처리에 따른 발광 특성의 저하가 나타나지 않는다[21,22]. 해당 방법을 통해 형성된 양자점 패턴의 형성 과정은 다음과 같다(Figure 2b).

(1) 양자점과 LiXer의 혼합 용액을 기판에 스프링 코팅한 후, (2) 형성된 박막에 UV을 조사하고, (3) 양자점용 가교제(light-driven ligand crosslinker, LiXer)를 도입하여 연속 용액 공정에 노출되어도 손상이 없는 구조적으로 견고한 양자점 패턴에 성공하였다. 또한 광패턴링 공정 과정에서 발생할 수 있는 양자점 박막의 발광 효율의 변화를 분석하고, 광가교된 양자점 박막을 이용한 QD-LED를 제작하여 광패턴링 공정에 따른 양자점 박막의 광전기적 특성의 변화를 살펴보았다.
양자점용 가교제를 이용한 고해상도 양자점 광패터닝 기술

Figure 2. 양자점용 광가교제 (LiXer)를 이용한 양자점 박막의 광패터닝 방법. a: LiXer의 양 말단에 달린 아지드 (-N₃)기의 자외선 노광에 따른 광활성화 및 이웃한 양자점 표면 리간드와의 C-H 삽입 반응을 나타낸 그림. 본 실험에서는 ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate)를 LiXer로 사용함(화학구조식 참고). b: LiXer를 이용한 양자점 박막의 광패터닝 공정. 본 기술의 반복을 통해 수평 및 수직 방향으로 적층된 다색의 양자점 패턴의 형성이 가능함.

Figure 3. LiXer와 양자점 간의 광가교반응 여부 및 가교된 양자점 박막의 화학적 내구성 평가. 양자점(CdSe / CdZnS QD, diameter = 13 nm)과 LiXer (5 wt%)를 단순 혼합하여 형성한 박막(before, before crosslinking)과 동일한 박막에 자외선(254 nm, 0.4 mWcm⁻²)을 노광하여 광가교시킨 박막(after, after crosslinking)의 a: FT-IR, b: GI-SAXS 분석 결과. c: 5 wt%의 LiXer를 사용해 광가교 된 박막의 화학적 내구성을 보여주는 사진. 두 박막의 침지에 사용된 toluene은 양자점과 LiXer의 분산에 사용된 용매임. 광가교된 양자점 박막을 toluene 용매에 침지하기 전(d)과 후(e)의 AFM 결과.
직방향으로의 적층 공정도 가능하다(Figure 2d).

2.2. 양자점 박막의 가교 여부 및 화학적 내구성 평가

실제 UV 노출 시 양자점과 LiXer 간 반응이 이루어지는지 확인하기 위해 FT-IR (Fourier transform infrared spectroscopy) 분석을 진행하였다(Figure 3a). 위쪽에 낸 스펙트럼(before crosslinking)은 toluene에 분산시킨 양자점(CdSe/CdZnS QD, diameter = 13 nm)과 LiXer (5 wt%) 혼합 용액을 기판에 스핀 코팅하여 형성한 양자점-LiXer 혼합 박막의 FT-IR 결과이고, 아래 스펙트럼(after crosslinking)은 동일한 박막에 UV (254 nm, 0.4 mWcm⁻²)를 노광하여 얻은 결과이다. 2130과 1250 cm⁻¹에서 나타나는 신호는 LiXer의 아지드(-N₃)그룹의 존재를 나타내는 지표로, 양자점 박막이 UV에 노출된 후 해당 신호들의 세기가 감소한 것을 통해 양자점과 LiXer간 결합 반응이 진행하려고 전달되었다[26]. Figure 3b는 가교 전후 양자점 박막의 GI-SAXS (grazing incidence small-angle X-ray scattering) 분석 결과이다. 양자점과 5 wt%의 LiXer가 혼합되어 있는 가교 되지 않은 박막의 경우, qₑᵥ = 0.04386 Å⁻¹에서 피크가 나타났다. 이 수치는 양자점을 평균 중심 거리(center to center distance, d)로 환산했을 때 14.3 nm에 해당하는 값이다. 동일한 박막에 자외선을 노광하여 가교 반응을 진행한 경우에도 비슷한 qₑᵥ 값(0.04394 Å⁻¹)을 갖는 피크가 보였으며, 이는 양자점 간 거리에 눈에 띄는 변화가 없음을 나타낸다. 가교 반응에 따르 양자점 박막의 화학적 내구성을 살펴보기 위해 가교 전/후의 두 박막을 양자점과 LiXer의 분산 용액으로 사용된 모체 용매인 toluene에 첨가하여 보았다(Figure 3c). 가교 되지 않은 양자점 박막의 경우 toluene에 노출된 부분이 즉시 용해되었다. 이와는 대조적으로 가교 된 양자점 박막은 장시간 toluene에 담겨 두어도 용해되지 않았다. AFM (atomic force microscopy) 분석을 통해 가교 된 양자점 박막은 모체 용매에 침지시키더라도 박막의 형태가 보존된다는 것을 확인하였다(Figure 3d,e).

해당 결과들은 LiXer를 통해 가교가 된 양자점 박막은 구조적인 변화 없이 매우 높은 화학적 내구성을 갖는다는 것을 보여준다. 이는 본 기술의 반복 공정을 통해 다양한 형태의 다색 양자점 패턴을 형성할 수 있다는 점을 덜부르게 한다.

2.3. RGB 양자점을 이용한 수평형/수직형 양자점 패턴 제작

가교 된 양자점 박막은 구조적으로 매우 견고하기 때문에, 패턴된 포토마스크를 이용하여 원하는 부분에만 광반응을 유도하고, 비가교 영역을 현상해냄으로써 쉽게 양자점 패턴을 만들 수 있다. Figure 4a,b는 적색 양자점을 기반으로 형성한 패턴의 광학 및 형광(inset) 이미지이다. 패턴은 (1) toluene에 분산된 QD와 LiXer 혼합 용액을 Si/SiO₂ 웨이퍼에 스팀 공정한 후, (2) 포토 마스크를 통해 필름에 선택적으로 UV를 조사하고(254 nm, 0.4 mWcm⁻²), (3) toluene으로 박막 전체를 행구하여 가교 되지 않은 영역을 제거하여 형성하였다. 광학 및 형광 이미지와 AFM 분석을 통해 1.5 monolayer 수준의 두께를 갖는 고해상도의 양자점 원형 패턴(직경 2 µm, 간격 3 µm)과 선 패턴(너비 3 µm, 간격 4 µm, 선폭거칠기 0.14 µm)이 형성됨을 확인하였다.

본 기술이 적용된 공정을 반복 적용하면, 단색 양자점 박막을 수 µm수준으로 패턴링할 것을 넘어 다색 RGB 양자점 패턴 또한 형성할 수 있다. 고해상도로 양자점 패턴을 형성하고, 이를 위한 위치에 정밀하게 배치시키는 기술은 자발광 QD-LED 기반의 디스플레이를 실현하는데 있어 반드시 해결해야 할 중요한 과제 중 하나이다. Figure 4c,d는 본 광패터닝 공정 기술의 반복을 통해 형성한 RGB 양자점 패턴의 형광 이미지이다. 단일 양자점 패턴의 크기가 4 µm × 16 µm이고, 간격은 포함한 한 개의 RGB 픽셀 크기가 18 µm × 18 µm로, 이는 디스플레이의 픽셀 해상도를 나타내는 인치 당 픽셀 수(pixel per inch, ppi)로 환산 시 1400 ppi를 넘는 수준이다. 이 값은 현재 상용 OLED 디스플레이에 사용되는 값보다 높다. 더하여 가교 된
양자점용 가교제를 이용한 고해상도 양자점 광패턴 기술

양자점 박막의 높은 화학적 내구성은 수평 방향의 RGB 패턴 외에도 수직방향으로 적층 된 다색 양자점 패턴의 제작을 가능하게 한다. 실제로 3회에 걸친 반복 광패터닝 공정을 통해 형성된 RGB 양자점 패턴의 형광 이미지. Figure 4에서 보이는 단일 양자점 패턴의 크기는 4 µm × 16 µm이고, 간격을 포함한 한 개의 RGB 패턴 크기는 18 µm × 18 µm로, 이는 디스플레이의 핵심 해상도를 나타내는 인치 당 픽셀 수(pixel per inch, ppi)로 환산 시 1400 ppi를 넘는 수준임. Figure 4d는 Figure 4c를 확대해서 보여준 형광 이미지임.

3. 광전기적 특성 저하 없는 광가교 양자점 박막 제조

3.1. 광가교된 양자점 박막의 광물리적 특성 분석
양자점 박막의 패턴성을 위해 반응성이 높은 라디칼 분자를 활용하는 전략은 종종 양상의 검과 같 이 여겨진다. 중간체 라디칼은 비교적 낮은 활성화 에너지로 인해 온화한 조건에서(UV 조사 시간 < 10 s) 활성화가 가능하며, 반응성이 높아 쉽게 양자점 박막을 가교 시킬 수 있는 유용한 작용기이다. 하지만, 동시에 반응성 라디칼이 양자점 표면을 공격함으로써 양자점 표면에 트랩 준위를 만들어 결과적으로는 양자점의 발광 효율을 감소시킬 수 있다[23,27]. 아지드 라디칼과 양자점 표면 반응이 발광 효율을 떨어뜨리는 주된 요인이라는 점을 감안할 때, 가교 후에도 특성 저하 없는 양자점 패턴 을 만들기 위해서는 공정에 사용되는 LiXer의 함 량을 최적화하여 지나친 표면 공격을 최소화하는
것이 중요하다. Figure 5a는 참가된 LiXer의 함량에 따른 양자점 박막(CdSe/CdZnS QD, diameter = 13 nm)의 발광 효율(PL QY)을 보여주는 결과이다. LiXer의 함량이 충분하지 못한 경우(< 2 w%) 현상 과정에서 일부 양자점 박막이 제거되었다(Figure 5b). 2 w% 이상의 LiXer를 사용할 경우 현상 과정에서도 손상되지 않는 견고한 양자점 네트워크를 형성할 수 있었지만, 양자점 박막의 발광 효율이 감소하였다(Figure 5a). 따라서 과도한 가교제 사용에 따른 발광 효율의 저하를 막기 위해 현상 과정에 대해 최소한의 화학적 내구성을 보장하는 LiXer의 최적 함량을 탐색하였다. 최적의 LiXer 함량은 사용하는 양자점의 크기에 따라서도 달라진다. 작은 양자점 일수록 발광효율이 저하가 없으면서 화학적 내구성을 갖는 양자점 박막을 만들기 위해 좀 더 많은 LiXer가 필요하며, 양자점의 크기가 커질수록 좀 더 적은 양의 LiXer로도 충분한 화학적 내구성을 보장할 수 있었다(Figure 5c). 최적 함량의 LiXer를 사용하여 가교된 양자점 박막의 PL decay 거동과 PL 특성을 분석해 본 결과, 순수한 양자점 박막과 비교하여 광물리적 특성(발광 효율, 색 순도)의 저하가 나타나지 않았다. RGB 양자점 모두에 대해서 가교 후에도 본연의 원색 발광이 유지되는 것을 확인하였고, 스펙트럼을 통해 얻은 색 영역(color gamut)은 최신 상용 디스플레이(sRGB 또는 DCI-P3)의 표준을 훨씬 능가하는 것으로 확인되었다(Figure 5c,f).

*출처: Nat. Commun., 11, 2874 (2020).
3.2. Quantum-dot Light-emitting Diode (QD-LED) Performance Analysis

We manufactured a quantum-dot light-emitting diode (QD-LED) by introducing a quantum-dot layer to the electroluminescence (Figure 6a). We used a transparent ZnO nanocrystalline film as the electron transport layer (ETL) to facilitate the injection of electrons from the ITO anode into the quantum-dot layer (28). MoO₃/Al was used as the hole transport layer (HTL) to inject holes from the MoO₃/Al cathode into the quantum-dot layer. We also used 4,4-bis(N-carbazolyl)-1,1-biphenyl (CBP) as the hole transport layer. The quantum-dot layer consisted of CdSe/CdZnSe/ZnSeS QD (diameter = 20 nm) with 1 wt% LiXer added, and the film was cross-linked using ultraviolet light (Figure 6b). The QD-LED was then fabricated using a spin-coating process to form a 30 nm-thick film (Figure 6c).

Figure 6. Cross-linked quantum-dot layer QD-LED performance analysis.

Figure 6a shows the device structure diagram. Figure 6b shows the TEM results of the actual device. Figure 6c shows the energy band diagram of the device. The QD-LED fabricated using a pure quantum dot layer (diamante, black) and the QD-LED fabricated using a cross-linked quantum dot layer (cross-linked, red) were compared (Figure 6d, e), and the results show similar electrical characteristics and 14.6% maximum external quantum efficiency (E.Q.E.) (Figure 6d, e). The device also showed similar performance under different light intensities (30 mA cm⁻²) (Figure 6f). These results indicate that the cross-linking process did not affect the performance of the quantum-dot layer.
전기적 특성이 잘 보존됨을 일관되게 증명하며, 더 나아가 본 기술이 패턴된 양자점 어레이를 필요로 하는 광전기적 응용 분야에 모두 적용 가능한 것을 시사한다. 마지막으로 Figure 6f에 삽입된 이 미지는 적색, 녹색 양자점 패턴으로 구성된 픽셀화된 QD-LED의 실제 발광 사진이다(단일 직사각형 패턴 크기 10 µm × 38 µm). 이 결과는 LiXer를 사용한 광패턴팅 기술을 통해 자발광 QD-LED 디스플레이의 실현이 가능하다는 것을 보여준다.

4. 결 론

본 연구에서는 양자점용 리간드를 활용한 매우 간편하고 동시에 효과적인 광패턴팅 기술을 제안하였다. UV 노출 시 인접한 양자점의 알킬 리간드와 결합되도록 설계된 LiXer를 사용하여 가교시킨 양자점 박막은 화학적 내구성을 가지며 후속 용액 공정에도 손상되지 않는다. 이에 기반하여 (1) 양자점-LiXer 혼합 박막 형성, (2) UV 조사 및 (3) 현상 과정으로 이루어진 광패턴팅 공정을 반복 수행함으로써 다색 양자점 패턴을 형성할 수 있다. 실제 본 기술을 활용하여 양자점 박막을 수 마이크로미터 크기로 패턴하고 수평 배열하여 1400 ppi 이상의 RGB 양자점 패턴을 만들었을 뿐만 아니라, 수직 방향으로 패턴을 빨아 적층형 다색 양자점 패턴을 제작하였다. 본 기술은 기존 광리소그래피 기술을 이용해 양자점을 패턴화할 수 있으며, 알킬 리간드를 포함하는 거의 모든 콜로이드 양자점에 적용 가능하다고 복잡성은 감소한다. 즉, 정밀한 합성 방법을 통해 제조된 높은 발광 효율을 갖는 고품질의 양자점을 이용하여 추가 공정 없이 쉽게 직접 본 기술에 적용할 수 있다. 궁극적으로 본 기술은 고해상도, 대면적 자발광 QD-LED 디스플레이 제작의 단초가 될 것으로 염청난.

References

1. L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem., 90, 2555-2560 (1986).
2. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid State Commun., 56, 921-924 (1985).
3. M. A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe Nanocrystals, J. Phys. Chem., 100, 468-471 (1996).
4. B. G. Jeong, Y.-S. Park, J. H. Chang, I. Cho, J. K. Kim, H. Kim, K. Char, J. Cho, V. I. Klimov, P. Park, D. C. Lee, and W. K. Bae, Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking, ACS Nano, 10, 9297-9305 (2016).
5. F. Zhang, S. Wang, L. Wang, Q. Lin, H. Shen, W. Cao, C. Yang, H. Wang, L. Yu, Z. Du, J. Xue, and L. S. Li, Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale, 8, 12182-12188 (2016).
6. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, White-light-emitting diodes with quantum dot color converters for display backlights, Adv. Mater., 22, 3076-3080 (2010).
7. J.-Y. Sun, F. T. Rabouw, X.-F. Yang, X.-Y. Huang, X.-P. Jing, S. Ye, and Q.-Y. Zhang, Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application, Adv. Funct. Mater., 27, 1704371 (2017).
8. C.-F. Lai, Y.-C. Tien, H.-C. Tong, C.-Z. Zhong, and Y.-C. Lee, High-performance quantum
dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays, RSC Adv., 8, 35966-35972 (2018).

9. J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays, Opt. Mater. Express, 2, 594-628 (2012).

10. P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices, J. Vac. Sci. Technol. A, 17, 2975-2981 (1999).

11. A. G. Shulga, A. Yamamura, K. Tsuzuku, R. M. Dragoman, D. N. Dirin, S. Watanabe, M. V. Kovalenko, J. Takeya, and M. A. Loi, Patterned quantum dot photosensitive FETs for medium frequency optoelectronics, Adv. Mater. Technol., 4, 1900054 (2019).

12. V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulović, Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays, Adv. Mater., 21, 2151-2155 (2009).

13. B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J.-H. Kim, S.-K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, and J. A. Rogers, High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes, Nano Lett., 15, 969-973 (2015).

14. P. Yang, L. Zhang, D. J. Kang, R. Strahl, and T. Kraus, High-resolution inkjet printing of quantum dot light-emitting microdiode arrays, Adv. Opt. Mater., 1901429 (2019).

15. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amarutunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Full-colour quantum dot displays fabricated by transfer printing, Nat. Photonics, 5, 176 (2011).

16. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing, Nat. Commun., 6, 7149 (2015).

17. H. Keun, Y. Jiang, J. K. Park, J. C. Flanagan, M. Shim, and S. Kim, Photoresist contact patterning of quantum dot films, ACS Nano, 12, 10024-10031 (2018).

18. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water, ACS Nano, 10, 1224-1230 (2016).

19. F. Palazon, M. Prato, and L. Manna, Writing on nanocrystals: Patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands, J. Am. Chem. Soc., 139, 13250-13259 (2017).

20. L. Wang, Y. Zhu, H. Liu, J. Gong, W. Wang, S. Guo, Y. Yu, H. Peng, and Y. Liao, Giant stability enhancement of CsPbX3 nanocrystal films by plasma-induced ligand polymerization, ACS Appl. Mater. Interfaces, 11, 35270-35276 (2019).

21. Y. Wang, I. Fedin, H. Zhang, and D. V. Talapin, Direct optical lithography of functional inorganic nanomaterials, Science, 357, 385-388 (2017).

22. Y. Wang, J.-A. Pan, H. Wu, and D. V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials, ACS Nano, 13, 13917-13931 (2019).
23. H. Cho, J.-A. Pan, H. Wu, X. Lan, I. Coropceanu, Y. Wang, W. Cho, E. A. Hill, J. S. Anderson, and D. V. Talapin, Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange, Adv. Mater., 2003805 (2020).

24. G. W. J. Fleet, R. R. Porter, and J. R. Knowles, Affinity labelling of antibodies with aryl nitrene as reactive group, Nature, 224, 511-512 (1969).

25. R. Poe, K. Schnapp, M. J. T. Young, J. Grayzar, and M. S. Platz, Chemistry and kinetics of singlet pentafluorophenyl nitrene, J. Am. Chem. Soc., 114, 5054-5067 (1992).

26. R.-Q. Png, P.-J. Chia, J.-C. Tang, B. Liu, S. Sivaramakrishnan, M. Zhou, S.-H. Khong, H. S. O. Chan, J. H. Burroughes, L.-L. Chua, R. H. Friend, and P. K. H. Ho, High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains, Nat. Mater., 9, 152 (2009).

27. C. Giansante and I. Infante, Surface traps in colloidal quantum dots: A combined experimental and theoretical perspective, J. Phys. Chem. Lett., 8, 5209-5215 (2017).

28. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure, Nano Lett., 12, 2362-2366 (2012).