Thrombotic microangiopathy associated treatment in a patient with relapsed multiple myeloma

Urpu Salmenniemi, Kari Remes
Turku University Hospital, Department of Medicine, Finland

Abstract

Thrombotic thrombocytopenic purpura (TTP) and hemolytic-uremic syndrome (HUS) describe microvascular occlusive disorders characterized by thrombocytopenia due to increased platelet aggregation and fragmentation hemolysis. We report here what to our knowledge is the second case of TTP/HUS associated with bortezomib treatment.

Introduction

Thrombotic thrombocytopenic purpura (TTP) and hemolytic-uremic syndrome (HUS) describe microvascular occlusive disorders characterized by thrombocytopenia due to increased platelet aggregation and fragmentation hemolysis. Clinical distinction between the two entities is rarely clear and, therefore, the term TTP/HUS has also been used. In rare cases, TTP/HUS may occur secondary to identifiable causes, such as drugs, infections and malignancies. We read with great interest the case report by Alonso et al. of a patient with disseminated adenocarcinoma presenting as TTP. We report here a patient in whom bortezomib treatment was an apparent cause of TTP/HUS.

Case Report

A 52-year old woman was diagnosed with lambda-light chain multiple myeloma in 1994. Upfront autologous stem cell transplantation was performed leading to complete response (CR). In December 2008, the disease relapsed with bone pains, hypercalcemia and renal failure. Laboratory results at presentation were: Hb 86 g/L, WBC 5.1x10^9/L, platelets 148x10^9/L, creatinine 188 μmol/L (reference range 60-100), ionized calcium 2.07 mmol/L. Bone marrow aspiration showed 50-100% plasma cells, serum free lambda chain concentration was 1580.0 μg/mL and 24-h urine lambda chain secretion was 1176 mg. There were new lytic lesions identifiable on plain X-rays and magnetic resonance imaging revealed a plasmacytoma causing LIII nerve root compression. After conventional treatment of hypercalcemia and urgent radiotherapy to low back, systemic treatment with bortezomib (1.3 mg/m² days 1, 4, 8, 11, for a 21-day cycle) and dexamethasone (20 mg days 1-2, 4-5, 8-9, 11-12) at 3-week intervals was started. CR was obtained after three cycles. Details of blood counts, plasma creatinine concentration, lactate dehydrogenase (LDH) levels and dose modifications due to thrombocytopenia during the treatment are shown in Table 1.

During the fifth treatment cycle (day 11) the patient was admitted to hospital with diarrhea and severe orthostatic hypotension. She needed red blood cell and platelet transfusions but response was minimal. Laboratory tests showed: hemoglobin 78 g/L, erythrocytes 2.84x10^12/L, hematocrit 0.23, LDH 3001 U/L (reference range 105-205), reticulocytes 2.2% (reference range 0.6-2.0), direct Coombs test negative, APTT 26.9 seconds (s) (reference range 23-33), D-dimer 8.3 mg/L (reference range <0.5), fibrinogen 3.5 g/L (reference range 2-4), and serum creatinine 421 μmol/L. Peripheral blood smear demonstrated a significant increase of schistocytes (25% of 500 red cells) and thrombocytopenia. Findings were consistent with thrombotic microangiopathic hemolysis. TTP/HUS was suspected and plasma exchange therapy was started. Bone marrow aspirate and negative u-immunofixation confirmed the remission of myeloma, and subcutaneous fat staining for amyloid was negative. Gingival biopsy stained positive for fibrin consistent with HUS. Stool sample for Enterohaemorrhagic E. coli (cause of typical HUS in children) was negative. At that time, analytical tests for plasma ADAMTS13 activity was not yet available in our institution. A total of 14 daily plasma exchanges were performed and at the end of treatment hemoglobin level was 90 g/L, platelet count 58x10^9/L and 14% of schistocytes were found in the peripheral blood smear. Serum LDH had dropped to 272 U/L and plasma creatinine level to 298 μmol/L. No dialysis was required. After bortezomib discontinuation no recurrence occurred. The patient was never rechallenged with bortezomib.

Discussion

Bortezomib is one of the novel myeloma drugs with significant efficacy in new and relapsed diseases. It reversibly inhibits the action of proteasome and degradation of multiple intracellular proteins involved in the pathogenesis of the disease. Common adverse effects are gastrointestinal and hematologic toxicities, peripheral neuropathy and orthostatic hypotension. Transient thrombocytopenia is typical with the mean platelet nadir of approximately 40% of baseline that usually recovers until the next cycle. In our patient, both orthostatic hypotension and diarrhea were timely related to bortezomib administration. The drop in platelet count was more prominent than expected but recovered before the next cycle. It is evident that fragmentation hemolysis had insidiously commenced already at the beginning of the treatment and propagated during each bortezomib cycle. There were no signs of other causes of fragmentation. The fact that discontinuation of bortezomib resolved fragmentation further supports its causative role. Most cases of acquired idiopathic TTP are caused by severe deficiency of von Willebrand factor-cleaving metalloprotease, ADAMTS13, caused by autoantibody and leading to accumulation of ultra large VWF multimers that propagate platelet aggregation. The microvascular thrombi in TTP are platelet-rich and stain negative for fibrin in contrast to HUS. Plasma exchange removes the circulating autoantibody and the ultra large VWF multimers and replaces the missing ADAMTS13 protease activity. Thrombotic microangiopathy and severe renal failure are the predominant features of HUS. In the classic form of HUS, ADAMTS13 activity is normal and plasma exchange is not effective. TTP or HUS like thrombotic microangiopathy may also occur in some distinct clinical settings, including allogeneic hematopoietic stem cell transplantation and use of antineoplastic agents (mitomycin, cisplatin, bleomycin). In these, microangiopathy is believed to be caused by direct microvascular toxicity initiated by endothelial injury. Interestingly, HUS-like thrombotic microangiopathy has been described with use of anti-vascular endothelial growth fac-
tor (VEGF) agents, i.e. bevacizumab and sunitinib. In mouse models, ablation of VEGF production in the kidney was sufficient to recapitulate the glomerular injury seen in patients. This may be the most probable mechanism by which also bortezomib can cause thrombotic microangiopathy since bortezomib is known to decrease transcription of VEGF and other pro-angiogenic molecules by NF-κB inhibition.

Conclusions

In summary, we describe what to our knowledge is the second case of TTP/HUS associated with bortezomib treatment. Bortezomib is increasingly used in the treatment of multiple myeloma and clinicians should be aware of this association in patients with anemia and unexpectedly severe thrombocytopenia.

Table 1. Laboratory values during velcade treatment.

Cycle	Hb	Plt	Creat	LDH
	D1	D8		
Cycle 1	116	108	99	202
Cycle 2	90	171	53	
Cycle 3	101	88	62	508
Cycle 4	88	104	25	
Cycle 5	84	121	150	268
	D11		126	555

D, day; Hb, haemoglobin; Plt, platelet count; Creat, serum creatinine; LDH, serum lactate dehydrogenase (reference range 105-205). Cycle 1: Velcade was not given days 8 and 11; Cycle 3: Velcade dose was reduced to 1.0 mg/m²; Cycle 4: Velcade was not given days 8 and 11.

References

1. Franchini M, Zaffanello M, Veneri D. Advances in the pathogenesis, diagnosis and treatment of thrombotic thrombocytopenic purpura and haemolytic uremic syndrome. Thromb Res 2006;118:117-84.
2. Dlott JS, Danielson CFM, Blue-Hnidy DE, et al. Drug-induced thrombotic thrombocytopenic purpura/haemolytic uremic syndrome: A concise review. Ther Apher Dial 2004;8:102-11.
3. Alonso JV, Fonseca J, Lopera E, et al. A report of disseminated adenocarcinoma presenting as thrombotic thrombocytopenic purpura. Hematology Reports 2011;3:e14.
4. Choi MK, Hong JY, Jang JH, et al. TTP-HUS associated with sunitinib. Cancer Res Treat 2008;40:211-3.
5. Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008;358:1129-36.
6. Karin M, Cao Y, Greten FR, et al. NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301-10.
7. Morito R, Hashino S, Shirai S, et al. Thrombotic microangiopathy after treatment with bortezomib and dexamethasone in a patient with multiple myeloma. Int J Hematol 2008;88:248-50.