van den Berg, M., & Kappeler, T. (2021). Localisation for the torsion function and the strong Hardy inequality. *Mathematika, 67*(2), 514-531. https://doi.org/10.1112/mtk.12086
LOCALIZATION FOR THE TORSION FUNCTION AND THE STRONG HARDY INEQUALITY

M. VAN DEN BERG AND T. KAPPELER

Abstract. Two-sided bounds for the efficiency of the torsion function are obtained in terms of the square of the distance to the boundary function under the hypothesis that the Dirichlet Laplacian satisfies a strong Hardy inequality. Localization properties of the torsion function are obtained under that hypothesis. An example is analyzed in detail.

§1. Introduction and main results. Let Ω be an open set in $\mathbb{R}^m, m \geq 1$, with finite Lebesgue measure $|\Omega|, 0 < |\Omega| < \infty$, and with boundary $\partial \Omega$. The torsion function for Ω is the unique solution of

$$-\Delta v = 1, \quad v \in H^1_0(\Omega),$$

and is denoted by v_Ω. The function v_Ω is non-negative and satisfies,

$$\lambda_1(\Omega)^{-1} \leq \|v_\Omega\|_{\infty} \leq (4 + 3m \log 2) \lambda_1(\Omega)^{-1}, \quad (1)$$

where

$$\lambda_1(\Omega) = \inf_{\varphi \in H^1_0(\Omega) \setminus \{0\}} \frac{\|\nabla \varphi\|^2}{\|\varphi\|^2} \quad (2)$$

is the first eigenvalue of the Dirichlet Laplacian and where $\|\cdot\|_p$ denotes the standard L^p norm, $1 \leq p \leq \infty$. The m-dependent constant in the right-hand side of (1) has subsequently been improved [17, 24]. We denote the sharp constant by c_m,

$$c_m = \sup\{\lambda_1(\Omega) \|v_\Omega\|_{\infty} : \Omega \text{ open in } \mathbb{R}^m, 0 < |\Omega| < \infty\}. \quad (3)$$

The torsion function and its L^1 norm, the torsional rigidity, play key roles in different parts of analysis. For example, the torsional rigidity of a cross section of a beam appears in the computation of the angular change when a beam of a given length and a given modulus of rigidity is exposed to a twisting moment [4, 22]. It also arises in the definition of gamma convergence [10] and in the study of minimal submanifolds [20]. Moreover, $v_\Omega(x)$ equals the expected lifetime of Brownian motion in Ω starting at $x \in \Omega$. This immediately implies the non-negativity of v_Ω, and that for open sets Ω_1, Ω_2,

$$\Omega_1 \subset \Omega_2 \Rightarrow v_{\Omega_1}(x) \leq v_{\Omega_2}(x), \quad \forall x \in \Omega_1. \quad (4)$$

This in turn implies that the torsional rigidity $\|v_\Omega\|_1$ is monotone increasing in Ω. The torsion function has been studied extensively, and numerous works have been written on this subject. We just mention the paper [9], and the references therein.

The torsion function is defined for an open subset $\Omega \subset \mathbb{R}^m$ of infinite measure, provided that the bottom of the spectrum of the Dirichlet Laplacian, denoted by $\lambda_1(\Omega)$, is bounded away from 0. Indeed, by considering an increasing sequence of sets $\Omega \cap B(0; k), k \in \mathbb{N}$,
where \(B(p; R) = \{ x \in \mathbb{R}^m : |p - x| < R \} \) denotes the open ball with center \(p \) and radius \(R \), one obtains a weak solution of

\[
-\Delta v_{\Omega} = 1, \quad v|_{\partial\Omega} = 0.
\]

(5)

This solution is non-negative, satisfies both (4) and (1), and satisfies the probabilistic interpretation mentioned above. See [7, Theorem 1], [5, Theorem 5.3], and [10] for further details.

We remark that the torsion function has been defined in greater generality. Instead of the Dirichlet Laplacian, one considers a positive, self-adjoint Schrödinger operator \(L := -\Delta + V \), where \(V \) is bounded, measurable, and non-negative (or even more generally, a positive, self-adjoint, elliptic operator of second order) acting in \(L^2(\Omega) \) with Dirichlet or Neumann boundary conditions or on closed manifolds. In the latter situation, one requires potentials \(V \) such that the bottom of the spectrum of the Laplacian is bounded away from 0. We denote by \(v_L \) the torsion function associated to \(L \). It was discovered in recent papers [2, 3], and references therein that under appropriate conditions, the reciprocal \(v_{\Omega}^{-1} \) of the torsion function \(v_{\Omega} \) can be used for approximating eigenvalues and eigenfunctions of the Schrödinger operator \(L \).

The phenomenon of localization of eigenfunctions of Schrödinger operators is a prominent and very active research area and has important applications in the applied sciences. The literature is extensive. See, for example, the review paper of [19]. Explicit estimates on the localization of the eigenfunctions in terms of bounds on their exponential decay away from the subdomains, where they concentrate, were obtained in [3].

In this paper, we continue this study. Our results are obtained under the hypothesis that the Dirichlet Laplacian satisfies the strong Hardy inequality, defined as follows.

Definition 1. The Dirichlet Laplacian \(-\Delta \) acting in \(L^2(\Omega) \) satisfies the strong Hardy inequality, with constant \(c_\Omega \in (0, \infty) \), if

\[
\|\nabla w\|_2^2 \geq \frac{1}{c_\Omega} \int_\Omega \frac{w^2}{d_\Omega^2}, \quad \forall w \in C_c^\infty(\Omega),
\]

(6)

where \(d_\Omega \) is the distance to the boundary function,

\[
d_\Omega(x) = \inf\{|x - y| : y \in \mathbb{R}^m \setminus \Omega\}, \quad x \in \Omega.
\]

Both the validity and applications of inequalities like (6) to spectral theory and partial differential equations have been investigated in depth. See, for example, [1, 11–14].
particular, it was shown in [1, p. 208], that for any proper simply connected open subset \(\Omega \) in \(\mathbb{R}^2 \), \(c_\Omega = 16 \).

Our first result in Theorem 1, stated below, states that the efficiency of the torsion function of the Dirichlet Laplacian on an open set \(\Omega \) of \(\mathbb{R}^m \) with \(0 < |\Omega| < \infty \) can be bounded from above and below by the efficiency of the square of the distance to the boundary function, whereas item (ii) and (iii) of Theorem 1 give sufficient conditions for the localization of the torsion function to hold and, respectively, not to hold.

In Theorem 2(i)–(iii) we analyze an example illustrating the use of Theorem 1. In Theorem 2(iv) we give an example of \(\kappa \)-localization with \(0 < \kappa < 1 \).

We now define the notion of efficiency and localization in precise terms. The efficiency of \(v_\Omega \), introduced in [15], is defined as follows.

Definition 2. Let \(\Omega \) be an open set in \(\mathbb{R}^m \) with \(0 < |\Omega| < \infty \). The efficiency, or mean to max ratio, of \(v_\Omega \) is

\[
\Phi(\Omega) = \frac{\|v_\Omega\|_1}{|\Omega|\|v_\Omega\|_\infty}.
\]

Let \((\Omega_n) \) be a sequence of open sets in \(\mathbb{R}^m \) with \(0 < |\Omega_n| < \infty \), \(n \in \mathbb{N} \). We say that \((v_{\Omega_n}) \) has vanishing efficiency if \(\lim_{n \to \infty} \Phi(\Omega_n) = 0 \).

The following notion of localization for the torsion function has been motivated by the one for eigenfunctions in [19], and has been used previously in [6].

Definition 3. For any sequence of open sets \((\Omega_n) \) in \(\mathbb{R}^m \) with \(0 < |\Omega_n| < \infty \), \(n \in \mathbb{N} \), let

\[
\mathcal{A}((\Omega_n)) = \left\{(A_n) : (\forall n \in \mathbb{N})(A_n \subset \Omega_n, A_n \text{ measurable}), \lim_{n \to \infty} \frac{|A_n|}{|\Omega_n|} = 0 \right\},
\]

and

\[
\kappa = \sup \left\{ \limsup_{n \to \infty} \frac{\int_{A_n} v_{\Omega_n}}{\|v_{\Omega_n}\|_1} : (A_n) \in \mathcal{A}((\Omega_n)) \right\}.
\]

We say that if (i) \(0 < \kappa < 1 \), then \((v_{\Omega_n}) \) \(\kappa \)-localizes, (ii) \(\kappa = 1 \), then \((v_{\Omega_n}) \) localizes, and (iii) \(\kappa = 0 \), then \((v_{\Omega_n}) \) does not localize.

Before stating our main results we review some basic facts. We note that

\[
B(x; d_\Omega(x)) \subset \Omega,
\]

and \(|B(x; d_\Omega(x))| \leq |\Omega|\). Hence \(d_\Omega \) is bounded from above and

\[
\|d_\Omega\|_\infty \leq \left(\omega_m^{-1}|\Omega|\right)^{1/m},
\]

where \(\omega_m = |B(0; 1)| \). Since the torsion function is pointwise increasing with respect to the domain,(4), it follows by (9) that,

\[
v_\Omega(x) \geq v_{B(x; d_\Omega(x))}(x) = \frac{d_\Omega(x)^2}{2m}, \quad \forall x \in \Omega,
\]

where we have used that

\[
v_{B(p; R)}(x) = \frac{1}{2m}(R^2 - |x - p|^2), \quad \forall x \in B(p; R).
\]
By (10),
\[\frac{1}{2m} \| d_{\Omega}^2 \|_1 \leq \| v_{\Omega} \|_1. \] (11)

Under the additional assumption that \(\Omega \) satisfies (6), it was shown in [7, Theorem 2] that
\[\| v_{\Omega} \|_1 \leq c_{\Omega} \| d_{\Omega}^2 \|_1. \] (12)

Furthermore, \(d_{\Omega} \) is uniformly continuous. Hence for any \(\eta \in \mathbb{R}^+ \), the subset \{ \(d_{\Omega} \geq \eta \) \} is relatively closed in \(\Omega \), and hence measurable.

Throughout we denote for \(\nu \geq 0 \) by \(j_{\nu} \) the first positive zero of the Bessel function \(J_{\nu} \).

For the ball \(B(p; 1) \subset \mathbb{R}^m, m \geq 2 \), we have \(\lambda_1(B(p; 1)) = j_{(m-2)/2}^2 \). Our main results are as follows.

Theorem 1. (i) If \(\Omega \) is an open subset of \(\mathbb{R}^m \) with \(0 < |\Omega| < \infty \), and which satisfies (6) with the strong Hardy constant \(c_{\Omega} \), then
\[(2mc_m c_{\Omega})^{-1} \frac{\| d_{\Omega}^2 \|_1 \| \Omega \|_{\infty}}{\| d_{\Omega}^2 \|_\infty} \leq \Phi(\Omega) \leq c_{\Omega} j_{(m-2)/2}^2 \frac{\| d_{\Omega}^2 \|_1 \| \Omega \|_{\infty}}{\| d_{\Omega}^2 \|_\infty}, \] (13)

where \(c_m \) is the sharp constant in (3).

(ii) Let \((\Omega_n) \) be a sequence of open sets in \(\mathbb{R}^m \) with \(0 < |\Omega_n| < \infty, n \in \mathbb{N} \), and which satisfies (6) with strong Hardy constants \(c_{\Omega_n} \). Suppose
\[c = \sup \{ c_{\Omega_n} : n \in \mathbb{N} \} < \infty. \] (14)

If \((\eta_n) \) is a sequence of strictly positive real numbers such that
\[\lim_{n \to \infty} \frac{|\{ d_{\Omega_n} \geq \eta_n \}|}{|\Omega_n|} = 0, \] (15)

and
\[\lim_{n \to \infty} \frac{\eta_n^2 |\Omega_n|}{\int_{\{d_{\Omega_n} \geq \eta_n\}} d_{\Omega_n}^2} = 0, \] (16)

then \((v_{\Omega_n}) \) localizes along the sequence \(A_n = \{ x \in \Omega_n : d_{\Omega_n} \geq \eta_n \} \).

(iii) Let \((\Omega_n) \) be a sequence of open sets in \(\mathbb{R}^m \) with \(0 < |\Omega_n| < \infty, n \in \mathbb{N} \), which satisfies (6) with strong Hardy constants \(c_{\Omega_n} \). Suppose that (14) holds. If any sequence \((A_n) \) of measurable sets, \(A_n \subset \Omega_n, n \in \mathbb{N} \), with
\[\lim_{n \to \infty} \frac{|A_n|}{|\Omega_n|} = 0, \]
satisfies
\[\lim_{n \to \infty} \frac{\int_{A_n} d_{\Omega_n}^2}{\int_{\Omega_n} d_{\Omega_n}^2} = 0, \]
then \((v_{\Omega_n}) \) does not localize.

Theorem 1(i) can be interpreted as follows. Given an open subset \(\Omega \) of \(\mathbb{R}^m \) with \(0 < |\Omega| < \infty \), we define the efficiency of \(d_{\Omega}^2 \) as
\[D(\Omega) = \frac{\| d_{\Omega}^2 \|_1 \| \Omega \|_{\infty}}{\| d_{\Omega}^2 \|_\infty}. \]

Theorem 1(i) asserts that under condition (6), the efficiencies of \(v_{\Omega} \) and \(d_{\Omega}^2 \) are comparable.
Let \((\Omega_n)\) be a sequence of open sets in \(\mathbb{R}^m\) with \(0 < |\Omega_n| < \infty\). We say that \(d_{\Omega_n}^2\) localizes if
\[
\sup \left\{ \limsup_{n \to \infty} \frac{\int_{\Omega_n} d_{\Omega_n}^2}{\| d_{\Omega_n} \|_1} : (A_n) \in \mathcal{A}(\{\Omega_n\}) \right\} = 1,
\]
where \(\mathcal{A}(\{\Omega_n\})\) is given by (7). Theorem 1(iii) asserts that for any sequence \((\Omega_n)\) satisfying the conditions of Theorem 1(iii), the following holds: if \(d_{\Omega_n}^2\) does not localize, then neither does \((v_{\Omega_n})\).

In Theorem 2 below we analyze the torsion function for a sequence of open simply connected sets \((\Omega_{\varepsilon,n})_{n \geq 4} \subset \mathbb{R}^2\) with \(0 < \varepsilon_n < 1\). The construction is as follows. Let \(Q\) be the open unit square in \(\mathbb{R}^2\) with vertices \((0,0),(1,0),(0,1),(1,1)\). Let \(n \in \mathbb{N}\), and for any given \(n \in \mathbb{N}\), let \(L_1, \ldots, L_{n-1}\) be the closed line segments of lengths \(1 - \varepsilon_n\) with endpoints \(\left(\frac{1}{2n},0\right), \left(\frac{2}{2n},0\right), \ldots, \left(\frac{n-1}{2n},0\right)\) pointing in the direction \((0,1)\). Let
\[
\Omega_{\varepsilon,n} = Q \setminus \bigcup_{j=1}^{n-1} L_j.
\]

Theorem 2. Let \(0 < \alpha < 1\), \(c > 0\),
\[
\varepsilon_n = cn^{-\alpha},
\]
and
\[
N_{\alpha,c} = \min\{n \in \mathbb{N} : n^\alpha \geq 2c, cn^{1-\alpha} \geq 2\}.
\]
(Note that \(N_{\alpha,c} \geq 4\).)

(i) If \(n \geq N_{\alpha,c}\), then
\[
\frac{1}{3072c_2} \left(cn^{-\alpha} + c^{-2}n^{2\alpha-2} \right) \leq \Phi(\Omega_{\varepsilon,n}) \leq \frac{64f_0^2}{3} \left(cn^{-\alpha} + c^{-2}n^{2\alpha-2} \right),
\]
where \(c_2\) is given by (3).

(ii) If \(0 < \alpha < \frac{2}{3}\), then \((v_{\Omega_{\varepsilon,n}})\) localizes along the sequence
\[
A_n = \left\{ x \in \Omega_{\varepsilon,n} : d_{\Omega_{\varepsilon,n}}(x) \geq \frac{1}{2n} \right\}.
\]

(iii) If \(\frac{2}{3} < \alpha < 1\), then \((v_{\Omega_{\varepsilon,n}})\) is not localizing.

(iv) If \(\alpha = \frac{2}{3}\), then \((v_{\Omega_{\varepsilon,n}})\) is \(\kappa_c\)-localizing along (18) with
\[
\kappa_c = \frac{c^3}{1 + c^2}.
\]

The paper is organized as follows. The proofs of Theorems 1 and 2(i)--(iii) are given in Section 2. The proof of Theorem 2(iv) involves tools from Brownian motion and is deferred to Section 3.

§2. Proofs of Theorems 1 and 2(i)--(iii). Proof of Theorem 1(i). Since \(|\Omega| < \infty\), the inradius \(\|d_{\Omega}\|_\infty\) is finite, and by (2) and (6),
\[
\lambda_1(\Omega) \geq c_1^{-1} \inf_{\varphi \in H_1^0(\Omega), \|\varphi\|_2^2 = 1} \int_{\Omega} \varphi^2 d_{\Omega}^2 \geq c_1^{-1} \|d_{\Omega}\|_{\infty}^{-2} \inf_{\varphi \in H_1^0(\Omega), \|\varphi\|_2^2 = 1} \|\varphi\|_2^2 = c_1^{-1} \|d_{\Omega}\|_{\infty}^2.
\]
(20)
By (3) and (20),
\[\|v_\omega\|_{\infty} \leq c_m \lambda_1(\Omega)^{-1} \leq c_m \epsilon \Omega \|d_\omega\|_\infty^2. \]
(21)

The lower bound in (13) follows from (21) and the lower bound in (11).

Since \(\Omega \) has inradius \(\|d_\omega\|_{\infty} \), \(\Omega \) contains an open ball with radius \(\|d_\omega\|_{\infty} \) and center \(p_\omega \).

By the monotonicity of the Dirichlet eigenvalues
\[\lambda_1(\Omega) \leq \lambda_1(B(p_\omega; \|d_\omega\|_{\infty}) = f_{(m-2)/2}^2 \|d_\omega\|_{-\infty}^2. \]
(22)

By the first inequality in (1) and (22),
\[\|v_\omega\|_{-1/\infty} \leq f_{(m-2)/2}^2 \|d_\omega\|_{-\infty}^2. \]
(23)

The upper bound in (13) follows from (23) and the upper bound in (12).

Proof of Theorem 1(ii). By (6), and suppressing \(n \) dependence,
\[
\int_{\Omega} v_\omega = -\int_{\Omega} v_\omega \Delta v_\omega = \int_{\Omega} |\nabla v_\omega|^2 \\
\geq \frac{1}{c_\Omega} \int_{\Omega} \frac{v_\omega^2}{d_\omega^2} \geq \frac{1}{c_\Omega} \int_{\{d_\omega < \eta\}} \frac{v_\omega^2}{d_\omega^2} \\
\geq \frac{1}{c_\Omega \eta^2} \int_{\{d_\omega < \eta\}} v_\omega^2.
\]
(24)

On the other hand, by Cauchy–Schwarz,
\[
\left(\int_{\{d_\omega < \eta\}} v_\omega^2 \right)^2 \leq \|d_\omega < \eta\| \int_{\{d_\omega < \eta\}} v_\omega^2.
\]
(25)

Combining (24) and (25) yields,
\[
\left(\int_{\{d_\omega < \eta\}} v_\omega^2 \right)^2 \leq c_\Omega \eta^2 |\Omega| \left(\int_{\{d_\omega < \eta\}} v_\omega + \int_{\{d_\omega \geq \eta\}} v_\omega \right).
\]
(26)

Solving the quadratic inequality (26) gives,
\[
\int_{\{d_\omega < \eta\}} v_\omega \leq \frac{c_\Omega \eta^2 |\Omega|}{2} + \left(\frac{c_\Omega \eta^4 |\Omega|^2}{4} + c_\Omega \eta^2 |\Omega| \int_{\{d_\omega \geq \eta\}} v_\omega \right)^{1/2} \\
\leq c_\Omega \eta^2 |\Omega| + \left(c_\Omega \eta^2 |\Omega| \int_{\{d_\omega \geq \eta\}} v_\omega \right)^{1/2}.
\]
(27)

By (10),
\[
\int_{\{d_\omega \geq \eta\}} v_\omega \geq \frac{1}{2m} \int_{\{d_\omega \geq \eta\}} d_\omega^2.
\]
(28)

By (27) and (28),
\[
\frac{\int_{\{d_\omega < \eta\}} v_\omega}{\int_{\{d_\omega \geq \eta\}} v_\omega} \leq \frac{2mc_\Omega \eta^2 |\Omega|}{\int_{\{d_\omega \geq \eta\}} d_\omega^2} + \left(\frac{2mc_\Omega \eta^2 |\Omega|}{\int_{\{d_\omega \geq \eta\}} d_\omega^2} \right)^{1/2}.
\]
(29)

To complete the proof we suppose that \((\Omega_n) \) and \((\eta_n) \) are sequences satisfying (15) and (16), respectively, and that \(c_{\Omega_n} \) satisfies (14). If
\[
\lim_{n \to \infty} \frac{\eta_n^2 |\Omega_n|}{\int_{\{d_{\Omega_n} \geq \eta_n\}} d_{\Omega_n}^2} = 0,
\]
then by (29)

$$\lim_{n \to \infty} \frac{\int_{\{d_{\Omega_n} < \eta_n\}} v_{\Omega_n}}{\int_{\{d_{\Omega_n} \geq \eta_n\}} v_{\Omega_n}} = 0,$$

and

$$\lim_{n \to \infty} \frac{\int_{\{d_{\Omega_n} < \eta_n\}} v_{\Omega_n}}{\int_{\Omega_n} v_{\Omega_n}} = 0.$$

Hence

$$\lim_{n \to \infty} \frac{\int_{\{d_{\Omega_n} \geq \eta_n\}} v_{\Omega_n}}{\int_{\Omega_n} v_{\Omega_n}} = 1. \quad (30)$$

Let $A_n = \{d_{\Omega_n} \geq \eta_n\}$. Then $A_n, n \in \mathbb{N}$, is relatively closed in Ω, and hence measurable. By hypothesis (15),

$$\lim_{n \to \infty} \frac{|A_n|}{|\Omega_n|} = 0,$$

and by (30) we have $\limsup_{n \to \infty} \frac{\int_{A_n} v_{\Omega_n}}{\int_{\Omega_n} v_{\Omega_n}} = 1$. Hence (8) holds with $\kappa = 1$.

Proof of Theorem 1(iii). By Cauchy–Schwarz, and suppressing n-dependence,

$$\left(\int_A v_{\Omega} \right)^2 \leq \left(\int_A d_{\Omega}^2 \right) \left(\int_A \frac{v_{\Omega}^2}{d_{\Omega}^2} \right). \quad (31)$$

By (6), the first two equalities in (24), and by (31) we obtain

$$\int_{\Omega} v_{\Omega} \geq \frac{1}{c_{\Omega}} \int_A \frac{v_{\Omega}^2}{d_{\Omega}^2} \geq \frac{1}{c_{\Omega}} \frac{\left(\int_A v_{\Omega} \right)^2}{\int_A d_{\Omega}^2}.$$

Hence

$$\int_A v_{\Omega} \leq c_{\Omega}^{1/2} \left(\int_{\Omega} v_{\Omega} \right)^{1/2} \left(\int_A d_{\Omega}^2 \right)^{1/2},$$

and together with (11)

$$\frac{\int_A v_{\Omega}}{\int_{\Omega} v_{\Omega}} \leq c_{\Omega}^{1/2} \left(\frac{\int_A d_{\Omega}^2}{\int_{\Omega} v_{\Omega}} \right)^{1/2} \leq (2mc_{\Omega})^{1/2} \left(\frac{\int_A d_{\Omega}^2}{\int_{\Omega} v_{\Omega}} \right)^{1/2}.$$

This implies the assertion of Theorem 1(iii). \qed

Proof of Theorem 2(i). We use Theorem 1(i). First note that for a rectangle $R_{a,b}$ with side lengths a and b, where $a \geq b$, one has

$$\|d_{R_{a,b}}\|_2^2 = \frac{ab^3}{12} - b^4 \geq \frac{ab^3}{24}. \quad (32)$$

To obtain a lower bound for $\|d_{\Omega_{\varepsilon,n}}^2\|_1$, we add a closed line segment of length 1 to the boundary of $\Omega_{\varepsilon,n}$, and obtain that the resulting set is the union of $n + 1$ disjoint rectangles, denoted by $\hat{\Omega}_{\varepsilon,n}$. See Figure 2.
Hence, by (32),
\[\|d_{\Omega_n}^2\|_1 \geq \|d_{\tilde{\Omega}_n}^2\|_1 \geq \frac{1 - \varepsilon_n}{24n^2} + \frac{\varepsilon_n^3}{24} \geq \frac{1}{48} (\varepsilon_n^3 + n^{-2}), \] (33)
where we have used that \(\varepsilon_n \leq \frac{1}{2} \) for \(n \geq N_{\alpha,c} \).
To obtain an upper bound for $\|d_{\Omega/n}^2\|_1$, we have the following estimate:

$$d_{\Omega/n}(x) \leq \begin{cases} \frac{1}{2n}, & \forall (x_1, x_2) \in \{\Omega_{\varepsilon/n} : x_2 \leq 1 - \varepsilon_n\}, \\ 1 - x_2, & \forall (x_1, x_2) \in \{\Omega_{\varepsilon/n} : x_2 \geq 1 - \varepsilon_n\}. \end{cases}$$ \hspace{1cm} (34)$$

Since

$$|\{\Omega_{\varepsilon/n} : x_2 \leq 1 - \varepsilon_n\}| = 1 - \varepsilon_n \leq 1,$$ \hspace{1cm} (35)

we have by (34) and (35),

$$\int_{\{\Omega_{\varepsilon/n} : x_2 \leq 1 - \varepsilon_n\}} d_{\Omega/n}^2 \leq \frac{1}{4n^2} \hspace{1cm} (36)$$

and

$$\int_{\{\Omega_{\varepsilon/n} : x_2 \geq 1 - \varepsilon_n\}} d_{\Omega/n}^2 \leq \int_{1 - \varepsilon_n}^1 dx_2 (1 - x_2)^2 = \frac{\varepsilon_n^3}{3}. \hspace{1cm} (37)$$

Hence we have

$$\|d_{\Omega/n}^2\|_1 \leq \frac{1}{3}(\varepsilon_n^3 + n^{-2}). \hspace{1cm} (38)$$

Finally, we observe that

$$\frac{1}{2} \varepsilon_n \leq \|d_{\Omega/n}\|_{\infty} \leq \varepsilon_n, \hspace{1cm} n \geq N_{\alpha,c}, \hspace{1cm} (39)$$

and (17) follows from (33), (38), (39), Theorem 1(i), $|\Omega_{\varepsilon/n}| = 1$, and that for a proper simply connected subset Ω in \mathbb{R}^2, $c_\Omega = 16$, [1]. This proves the assertion of Theorem 2(i).

Proof of Theorem 2(ii). We use Theorem 1(ii), and choose $\eta_n = \frac{1}{2n}$. Then

$$|\{d_{\Omega/n} \geq \frac{1}{2n}\}| \leq \varepsilon_n,$$

and (15) holds. Since for $n \geq N_{\alpha,c}$, $\{d_{\Omega/n} \geq \frac{1}{2n}\}$ contains a rectangle with side lengths $1 - n^{-1}$ and $cn^{-\alpha} - \frac{1}{n}$, respectively, we have by (32)

$$\int_{\{d_{\Omega/n} \geq \frac{1}{2n}\}} d_{\Omega/n}^2 \geq \frac{1}{24} (1 - n^{-1})(cn^{-\alpha} - n^{-1})^3 \geq \frac{c^3}{192} (1 - n^{-1})n^{-3\alpha} \geq \frac{c^3}{256}n^{-3\alpha},$$

where we have used that $cn^{1-\alpha} \geq 2$ for $n \geq N_{\alpha,c} \geq 4$. Hence

$$\frac{\eta_n^2 |\Omega_{\varepsilon/n}|}{\int_{\{d_{\Omega/n} \geq \eta_n\}} d_{\Omega/n}^2} \leq \frac{64n^{3\alpha-2}}{c^3}, \hspace{1cm} n \geq N_{\alpha,c},$$

and (16) holds for $0 < \alpha < \frac{2}{3}$. This proves the assertion of Theorem 2(ii) by Theorem 1(ii).

Proof of Theorem 2(iii). We use Theorem 1(iii), and let for $n \in \mathbb{N}$, A_n be an arbitrary measurable subset of $\Omega_{\varepsilon/n}$ such that $\lim_{n \to \infty} |A_n| = 0$. By (33),

$$\|d_{\Omega/n}^2\|_1 \geq \frac{1}{48n^2}. \hspace{1cm} (40)$$
By (34),
\[
\int_{A_n \cap \{ x_2 \leq 1 - \epsilon_n \}} d_{\Omega_{n},n}^2 \leq |A_n| \frac{4n^2}{4n^2}.
\] (41)
By (37), (40), and (41),
\[
\int_{A_n} d_{\Omega_{n},n}^2 \leq c^3 n^{2-3\alpha} + 12|A_n|.
\]
This implies
\[
\lim_{n \to \infty} \frac{\int_{A_n} d_{\Omega_{n},n}^2}{\int_{\Omega_{n,n}} d_{\Omega_{n,n}}^2} = 0,
\]
since \(\frac{2}{3} < \alpha < 1\), and the hypothesis on \(A_n\). This proves the assertion of Theorem 2(iii) by Theorem 1(iii).

§3. Proof of Theorem 2(iv). Let \((B(s), s \geq 0; \mathbb{P}_x, x \in \mathbb{R}^d)\) be Brownian motion associated to the Laplacian in \(\mathbb{R}^d\). Here \((B(s), s \geq 0)\) takes values in \(\mathbb{R}^d\), \(\mathbb{P}_x\) is Wiener measure with \(\mathbb{P}_x(B(0) = x) = 1\), and for every Borel set \(A \in \mathbb{R}^d\),
\[
\mathbb{P}_x(B(s) \in A) = (4\pi s)^{-d/2} \int_A dy e^{-|x-y|^2/(4s)}, \quad s > 0.
\] (42)
If \(\Omega \subset \mathbb{R}^d\) is open and \(x \in \Omega\), then we denote the first exit time (or life time) of \(\Omega\) by
\[
T_\Omega = \inf\{s \geq 0 : B(s) \in \mathbb{R}^2 \setminus \Omega\}.
\]
It is convenient to denote the first hitting time of a closed set \(C\) by
\[
\tau_C = \inf\{s \geq 0 : B(s) \in C\}.
\]
It is well known that the unique weak solution \(u_\Omega\) of
\[
\Delta u = \frac{\partial u}{\partial t}, \quad \text{in } \Omega \times (0, \infty),
\]
with \(u|_{\partial \Omega \times (0, \infty)} = 0\), and with initial datum
\[
u(x; 0) = 1, \quad x \in \Omega,
\] is given by
\[
u_\Omega(x; t) = \mathbb{P}_x(T_\Omega > t).
\] (43)
Since
\[
u_\Omega(x) = \int_0^\infty dt \nu_\Omega(x; t),
\] (44)
we obtain by (43) and (44) that
\[
u_\Omega(x) = \mathbb{E}_x(T_\Omega),
\]
and
\[
\|v_\Omega\|_1 = \int_{\Omega} dx \int_0^\infty dt \nu_\Omega(x; t).
\]
For the facts above, we refer to [16]. Now let \(d = 2 \), and let \(B = (B_1, B_2) \), where \(B_1 \) and \(B_2 \) are independent one-dimensional Brownian motions with probability measures \(\mathbb{P}^{(1)}_{x_1} \) and \(\mathbb{P}^{(1)}_{x_2} \), respectively, and \(\mathbb{P}_x = \mathbb{P}^{(1)}_{x_1} \otimes \mathbb{P}^{(1)}_{x_2} \). We have that \(\inf\{ s \geq 0 : B_2(s) = a \} = T_{(-\infty,a)} \). Since
\[
\mathbb{P}^{(2)}_{x_2}[T_{(-\infty,a)} > t] = \frac{2}{\pi^{1/2}} \int_0^\infty e^{-\theta^2} \, d\theta e^{-(a-x_2)/(4t)^{1/2}}, \quad \forall x_2 < a,
\]
we have that the density \(\rho(a, \tau) \) of the random variable \(\inf\{ s \geq 0 : B_2(s) = a \} \) with \(x_2 = 0 \), is given by
\[
\rho(a, \tau) = \frac{a}{2\pi^{1/2}\tau^{3/2}} e^{-a^2/(4\tau)} 1_{\mathbb{R}^+}(\tau). \quad (45)
\]

The following lemma will be used in the proof of Theorem 2(iv).

Lemma 3. Let \(\Omega \) be an open, bounded, and connected set in \(\mathbb{R}^2 \) which contains an open rectangle \(R_{a,b} \equiv R_{a,b}(p) \), \(a \geq b \), with sides \(K_1 = [(p, 0) - (p + b, 0)] \), \(K_2 = [(p, 0) - (p, a)] \), \(K_3 = [(p + b, 0) - (p + b, a)] \), \(K_4 = [(p + b, a) - (p, a)] \). Let
\[
\Omega_{a,b} \equiv \Omega_{a,b}(p) = \Omega \setminus (\bigcup_{j=1}^3 K_j).
\]
If \(x \in R_{a,b} \), then
\[
v_{\Omega_{a,b}}(x) \leq \frac{1}{2} (x_1 - p)(p + b - x_1) + 2^{9/2} e^{-\pi(a-x_2)/(2b)} \lambda_1(\Omega_{a,b})^{-1}. \quad (46)
\]

Proof. By (43) and (44), for any \(x \in R_{a,b} \),
\[
v_{\Omega_{a,b}}(x) = \int_0^\infty dt \, \mathbb{P}_x[T_{\Omega_{a,b}} > t]
\]
\[
= \int_0^\infty dt \, \mathbb{P}_x[T_{R_{a,b}} > t] + \int_0^\infty dt \, \mathbb{P}_x[T_{R_{a,b}} \leq t < T_{\Omega_{a,b}}]
\]
\[
\leq v_{R_{a,b}}(x_1, x_2) + \int_0^\infty dt \, \mathbb{P}_x[T_{R_{a,b}} \leq t < T_{\Omega_{a,b}}]
\]
\[
\leq \frac{1}{2} (x_1 - p)(p + b - x_1) + \int_0^\infty dt \, \mathbb{P}_x[T_{R_{a,b}} \leq t < T_{\Omega_{a,b}}], \quad (47)
\]
where we have used that \(a \mapsto v_{R_{a,b}}(x_1, x_2) \) is monotone increasing and bounded from above by \(\frac{1}{2} (x_1 - p)(p + b - x_1) \). See Figure 3. The latter is the torsion function for the interval \((p, p + b)\). To bound the second term in the right-hand side of (47), we use the inclusion
\[
\{T_{R_{a,b}} \leq t < T_{\Omega_{a,b}} \} \subset \{ B(T_{R_{a,b}}) \in K_4 \} \cap \{ t < T_{\Omega_{a,b}} \}.
\]
This inclusion states that the event of a Brownian path starting, for example, at \(x \) in \(R_{a,b} \) exiting the rectangle \(R_{a,b} \) before \(t \) but not exiting \(\Omega_{a,b} \) before \(t \) has to exit the rectangle at \(K_4 \), while staying in \(\Omega_{a,b} \) until \(t \). By Cauchy–Schwarz,
\[
\mathbb{P}_x[T_{R_{a,b}} \leq t < T_{\Omega_{a,b}}] \leq \left(\mathbb{P}_x[B(T_{R_{a,b}}) \in K_4] \right)^{1/2} \left(\mathbb{P}_x[t < T_{\Omega_{a,b}}] \right)^{1/2}
\]
\[
\leq 2^{3/4} \left(\mathbb{P}_x[B(T_{R_{a,b}}) \in K_4] \right)^{1/2} e^{-t \lambda_1(\Omega_{a,b})}/8, \quad (48)
\]
where we have used that for open sets \(\Omega \subset \mathbb{R}^2 \), or for open subsets \(\Omega \subset \mathbb{R}^1 \),
\[
\mathbb{P}_x[T_{\Omega} > t] \leq 2^{3/2} e^{-t \lambda_1(\Omega)/4}. \quad (49)
\]
See [6, pp. 10, 11]. Let $S_{a,b} = (p, p + b) \times (-\infty, a)$ be the half-strip of width b below the line segment K_4. Note that $R_{a,b} \subset S_{a,b}$ and that $|S_{a,b}| = \infty$. By (48), by applying (49) to the open set $\Omega_1 = (0, b)$, and using (45),

$$P_x[B(T_{R_{a,b}}) \in K_4] \leq P_x[B(T_{S_{a,b}}) \in K_4]$$

$$= \int_0^\infty d\tau \rho(a - x_2, \tau) \mathbb{P}_{x_1}[T(0,b) > \tau]$$

$$\leq 2^{3/2} \int_0^\infty d\tau \frac{a - x_2}{2\pi 1/2 3/2} e^{-\pi(a-x_2)^2/(4\tau)} e^{-\pi^2 \tau/(4b^2)}$$

$$= 2^{3/2} e^{-\pi(a-x_2)/(2b)},$$

and where we have used [18, formula 3.472.3] for the last equality. By (48) and (50)

$$P_x[T_{R_{a,b}} \leq t < T_{\Omega_1}] \leq 2^{3/2} e^{-\pi(a-x_2)/(4b)} - \lambda_1(\Omega_{a,b})/8.$$

Integrating both sides of (51) with respect to t, and using (47) completes the proof. \hfill \square

Proof of Theorem 2(iv). To prove (19) we first obtain a lower bound on the right-hand side of (8) by making a particular choice for (A_n):

$$A_n = \{x \in \Omega_{\text{even}} : x_2 > 1 - cn^{-2/3}\}.$$

Figure 3: $\Omega_{a,b} = \Omega \setminus (\cup_{j=1}^3 K_j)$: Rectangle $R_{a,b}$ with sides K_2, K_3 of length a, and K_1, K_4 of length b.

Integrating both sides of (51) with respect to t, and using (47) completes the proof.
We let
\[B_n = \{ x \in \Omega_{e,n} : 1 - cn^{-2/3} \geq x_2 > 1 - cn^{-2/3} - n^{-3/4} \}, \]
and
\[C_n = \{ x \in \Omega_{e,n} : 1 - cn^{-2/3} - n^{-3/4} \geq x_2 \}, \]
so that \(\Omega_{e,n} = A_n \cup B_n \cup C_n \). By (8), and the monotonicity of the torsion function,
\[\kappa \geq \limsup_{n \to \infty} \frac{c^3}{12n^2} \int_{A_n} v_{\Omega_{in,n}} \geq \frac{c^3}{12n^2} - \frac{c^4}{24n^{5/3}}. \]
By (55) and (56),
\[\kappa \geq \limsup_{n \to \infty} \frac{c^3 - \frac{1}{3}c^4 n^{-2/3}}{c^3 + 12n^2 \int_{B_n} v_{\Omega_{in,n}} + 12n^2 \int_{C_n} v_{\Omega_{in,n}}} \]
\[= \limsup_{n \to \infty} \frac{c^3}{c^3 + 12n^2 \int_{B_n} v_{\Omega_{in,n}} + 12n^2 \int_{C_n} v_{\Omega_{in,n}}}. \]
By (21) and (39),
\[\| v_{\Omega_{in,n}} \|_\infty \leq 16c_2 \| d_{\Omega_{in,n}} \|_\infty^2 \leq 16c_2 c^2 n^{-4/3}, \quad n \geq N_{2/3,c}. \]
Since \(|B_n| = n^{-3/4} \), we have by (58),
\[12n^2 \int_{B_n} v_{\Omega_{in,n}} \leq 12n^2 |B_n| \| v_{\Omega_{in,n}} \|_\infty \]
\[\leq 192c_2 c^2 n^{-1/12}. \]
This, together with (57), yields
\[\kappa \geq \limsup_{n \to \infty} \frac{c^3}{c^3 + 12n^2 \int_{C_n} v_{\Omega_{in,n}}}. \]
In order to bound the integral in the right-hand side from above, we use Lemma 3 for each of the \(n \) rectangles \(R_{a,b}(p) \) in \(\Omega_{e,n} \), with \(p = \frac{k}{n} \), \(0 \leq k \leq n - 1 \), with \(b = 1 \), and \(a = 1 - cn^{-2/3} \). Note that for any \(p = \frac{k}{n} \) the set \(\Omega_{a,b}(p) \) introduced in Lemma 3 coincides with \(\Omega_{e,n} \), and that each point in \(C_n \) satisfies \(a - x_2 \geq n^{-3/4} \). By (20) and (39),
\[\lambda_1(\Omega_{a,b}) = \lambda_1(\Omega_{e,n}) \geq \frac{1}{16 \| d_{\Omega_{in,n}} \|_\infty^2} \geq \frac{1}{16c^2 n^{-4/3}}. \]
Hence the second term in the right-hand side of (46) is bounded from above by \(21^{1/2} c^2 n^{-4/3} e^{-\pi n^{1/4}/2} \) uniformly for all points \(x \in C_n \). Since \(|C_n| \leq 1 \), we have
\[\int_{C_n} 2^{9/2} e^{-\pi (a-x_2)/(2b)} \lambda_1(\Omega_{a,b})^{-1} \leq 21^{1/2} c^2 n^{-4/3} e^{-\pi n^{1/4}/2}. \]
Integrating the first term in the right-hand side of (46) over one rectangle in C_n, and adjusting the coordinate frame appropriately, gives a contribution

$$
\int_{0}^{1-cn^{-2/3} - n^{-3/4}} dx_2 \int_{0}^{1/n} dx_1 \frac{x_1}{2} (n^{-1} - x_1) = \frac{1}{12n^2} \left(1 - cn^{-2/3} - n^{-3/4} \right).
$$

Summing over all n rectangles in C_n gives, together with (60) and Lemma 3,

$$
12n^2 \int_{C_n} v_{\Omega_{ia,n}} \leq 1 - cn^{-2/3} - n^{-3/4} + 3 \cdot 2^{21/2} c^2 n^{2/3} e^{-\pi n^{1/4}/2}.
$$

(61)

By (59) and (61) we conclude

$$
\kappa \geq \frac{c^3}{1 + c^3}.
$$

We now prove the converse inequality by obtaining an upper bound for the right-hand side of (8). We first observe, by the monotonicity, that the torsion for $\Omega_{\epsilon,1,n}$ is bounded from below by the torsion for the set in Figure 2. The latter is the union of n disjoint rectangles $R_{a,b}$ with $b = \frac{1}{n}$ and $a = 1 - cn^{-2/3}$, together with one disjoint rectangle with $a = 1$ and $b = cn^{-2/3}$. By (32) we find

$$
\int_{\Omega_{ia,n}} v_{\Omega_{ia,n}} \geq \frac{1 - cn^{-2/3}}{12n^2} - \frac{1}{24n^4} + \frac{c^3}{12n^2} - \frac{c^4}{24n^{8/3}}.
$$

(62)

In order to avoid abuse of notation, we keep (52), (53), and (54), and denote by (D_n) an arbitrary sequence of in $\mathfrak{A}(\Omega_{\epsilon,1,n})$. That is, $D_n \subset \Omega_{\epsilon,1,n}$, measurable, $n \in \mathbb{N}$, with $\lim_{n \to \infty} |D_n| = 0$. We have

$$
\int_{D_n} v_{\Omega_{ia,n}} = \int_{D_n \cap (A_n \cup B_n)} v_{\Omega_{ia,n}} + \int_{D_n \setminus (A_n \cup B_n)} v_{\Omega_{ia,n}}
$$

$$
\leq \int_{A_n} v_{\Omega_{ia,n}} + \int_{B_n} v_{\Omega_{ia,n}} + \int_{D_n \setminus C_n} v_{\Omega_{ia,n}}.
$$

(63)

By (58),

$$
\int_{B_n} v_{\Omega_{ia,n}} \leq 16c_2 c^2 n^{-25/12}.
$$

(64)

We use Lemma 3 to bound the third term in the right-hand side of (63) from above. We have, as before, that for each point $x \in C_n$, both $a - x_2 \geq n^{-3/4}$ and $\frac{x_1}{2} \left(\frac{1}{n} - x_1 \right) \leq \frac{1}{8n^2}$, where the x_1 coordinate is adjusted to the rectangle under consideration. This gives

$$
v_{\Omega_{ia,n}}(x) \leq \frac{1}{8n^2} + 2^{17/2} c^2 n^{-4/3} e^{-\pi n^{1/4}/2}, \quad \forall x \in C_n.
$$

Hence

$$
\int_{D_n \setminus C_n} v_{\Omega_{ia,n}} \leq |D_n \cap C_n| \left(\frac{1}{8n^2} + 2^{17/2} c^2 n^{-4/3} e^{-\pi n^{1/4}/2} \right)
$$

$$
\leq |D_n| \left(\frac{1}{8n^2} + 2^{17/2} c^2 n^{-4/3} e^{-\pi n^{1/4}/2} \right).
$$

(65)

By (62) and (64),

$$
\limsup_{n \to \infty} \int_{B_n} v_{\Omega_{ia,n}} = 0.
$$
Figure 4: $\tilde{\Omega}_n$: The vertical half lines, periodically extended, are at distance $\frac{1}{n}$, and have distance $cn^{-2/3}$ to the horizontal line.

Moreover, by (62) and (65),

$$\limsup_{n \to \infty} \frac{\int_{D_n \cap C_n} v_{\Omega_{n,n}}}{\int_{\Omega_{n,n}} v_{\Omega_{n,n}}} \leq \limsup_{n \to \infty} \frac{4|D_n|}{3(1 + c^3)} = 0.$$

It remains to find an upper bound for $\int_{\tilde{\Omega}_n} v_{\Omega_{n,n}}$. Let $\tilde{\Omega}_n$ be the connected open set in \mathbb{R}^2 with boundary consisting of the horizontal line $\{x_2 = 1\}$ and the vertical half-lines $\{x_2 \leq 1 - cn^{-2/3}, x_1 = k/n, k \in \mathbb{Z}\}$. See Figure 4.

We first show that the bottom of the spectrum of the Dirichlet Laplacian on $\tilde{\Omega}_n$ is bounded away from 0. By inserting Neumann boundary conditions on the line $x_2 = 1 - cn^{-2/3}$, the bottom of the spectrum decreases and decouples into the union of the spectra of the horizontal strip at width $cn^{-2/3}$ with Dirichlet boundary conditions on $x_2 = 1$, and Neumann boundary condition on $x_2 = 1 - cn^{-2/3}$, and vertical half-strips of width n^{-1} with Neumann boundary condition at the top end and Dirichlet conditions on the half lines. By taking the double of these half-strips, we obtain that the bottom of the spectrum here is the same as the bottom of the infinite strip of width n^{-1}. Combining these inequalities gives for $n \geq N_{\alpha,c}$,

$$\lambda_1(\tilde{\Omega}_n) \geq \min\left\{\frac{\pi^2 h^{4/3}}{4c^2}, \pi^2 h^2\right\}$$

$$= \frac{\pi^2 h^{4/3}}{c^2}.$$

Hence the torsion function for $\tilde{\Omega}_n$ exists (see (5) and the preceding paragraph), and by the monotonicity property (4)

$$v_{\Omega_{n,n}}(x) \leq v_{\tilde{\Omega}_n}(x), \quad \forall x \in \Omega_{n,n}.$$
Note that
\[v_{\tilde{\Omega}_n}(x_1, x_2) = v_{\tilde{\Omega}_n}(x_1 + \frac{1}{n}, x_2), \quad \forall x \in \tilde{\Omega}_n. \]

Let
\[E_n = \{ x \in \mathbb{R}^2 : 1 > x_2 > 1 - cn^{-2/3} - n^{-3/4} \}. \]

We have
\[\mathbb{P}_x[T_{\Omega_n,n} > t] \leq \mathbb{P}_x[T_{\bar{\Omega}_n} > t] \]
\[= \mathbb{P}_x[T_{\bar{\Omega}_n} > t, T_{E_n} > t] + \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}] \]
\[\leq \mathbb{P}_x[T_{E_n} > t] + \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}]. \quad (67) \]

Integrating both sides of (67) with respect to \(t \) over \(\mathbb{R}^+ \) gives
\[v_{\Omega_n,n}(x) \leq v_{E_n}(x) + \int_0^\infty dt \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}] \]
\[= \frac{1}{2}(1 - x_2)(x_2 - 1 + d_n) + \int_0^\infty dt \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}], \]
where
\[d_n = cn^{-2/3} + n^{-3/4}. \quad (68) \]

Hence
\[\int_{A_n} v_{\Omega_n,n} \leq \int_{A_n} dx \frac{1}{2}(1 - x_2)(x_2 - 1 + d_n) + \int_{A_n} dx \int_0^\infty dt \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}] \]
\[\leq \frac{1}{12}d_n^3 + \int_{A_n} dx \int_0^\infty dt \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}]. \]

By (62) and (68), we have
\[\limsup_{n \to \infty} \frac{1}{n} \frac{d_n^3}{v_{\Omega_n,n}} \leq \frac{c^3}{1 + c^3}. \]

To complete the proof it therefore suffices to show that
\[\limsup_{n \to \infty} n^2 \int_{A_n} dx \int_0^\infty dt \mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}] = 0. \quad (69) \]

To prove (69) we let \(L_n = \{(x_1, 1 - d_n) : x_1 \in \mathbb{R}\} \). We have by the strong Markov property,
\[\mathbb{P}_x[T_{E_n} \leq t < T_{\bar{\Omega}_n}] \leq \mathbb{E}_x \left(\int_0^{\tau_n} \mathbb{P}_x[B(t_n)]T_{\tilde{\Omega}_n} > t - \tau \right) \]
\[\leq \mathbb{E}_x \left(\int_0^{\tau_n} \mathbb{P}_x[B(t_n)]T_{\tilde{\Omega}_n} > t - \tau \right) \]
\[= \int_0^{\tau_n} d\tau \sup_{z \in L_n \cap \tilde{\Omega}_n} \mathbb{P}_z[T_{\tilde{\Omega}_n} > t - \tau] \]
\[= \int_0^{\tau_n} d\tau \frac{\partial}{\partial \tau} \left(\mathbb{P}_x[T_{E_n} < \tau] \right) \mathbb{P}_{(2n)^{-1}, 1 - d_n}[T_{\tilde{\Omega}_n} > t - \tau], \quad (70) \]
where \(1_{\tau_{\Omega_n} \in d\tau}\) is the indicator function on the set of Brownian paths which hit \(L_n\) in the infinitesimal interval \(d\tau\). We have used in the final equality in (70) that \(x_1 \mapsto \mathbb{P}_{(x_1,1-d_n)}[\tau_{\Omega_n} > t - \tau], x_1 \in \mathbb{R}\) is periodic in \(x_1\) with period \(n^{-1}\), and which has equal maxima at \((((2n)^{-1} + kn^{-1})/n, 1 - d_n) : k \in \mathbb{Z}\). Hence the supremum in the third line in (70) is a maximum for \(z = ((2n)^{-1}, 1 - d_n)\). Integrating the convolution in the right-hand side of (70) with respect to \(t\) over \(\mathbb{R}^+\) gives

\[
\int_0^\infty dt \mathbb{P}_{x}[T_{E_n} \leq t < \tau_{\Omega_n}]
\leq \left(\int_0^\infty dt \frac{\partial}{\partial t} (\mathbb{P}_{x}[\tau_{E_n} < \tau]) \right) \int_0^\infty d\tau \mathbb{P}_{(2n)^{-1},1-d_n}[\tau_{\Omega_n} > \tau]
= v_{\Omega_n}((2n)^{-1}, 1 - d_n).
\]

One verifies that Lemma 3 also holds if \(\Omega\) contains the open rectangle \((p, p+b) \times (-\infty, a)\). Indeed, the first term in the right-hand side of (46) is the torsion function for the infinite strip of width \(b\). The second term takes into account that the strip is cutoff at \(a\). With this we arrive at

\[
\int_0^t dt \mathbb{P}_{x}[T_{E_n} \leq t < \tau_{\Omega_n}] \leq \frac{1}{8n^2} + 2^{9/2}e^{-\pi n^{1/4}/2} \lambda_1(\Omega_n)^{-1}.
\]

Since \(|A_n| = cn^{-2/3}\), we find by (71) and (66),

\[
n^2 \int_{A_n} dx \int_0^t dt \mathbb{P}_{x}[T_{E_n} \leq t < \tau_{\Omega_n}] \leq \frac{c}{8n^{2/3}} + 2^{9/2}2^{-2}c^3 e^{-\pi n^{1/4}/2}.
\]

This implies (69). \(\square\)

References

1. A. Ancona, On strong barriers and an inequality of Hardy for domains in \(\mathbb{R}^n\). *J. Lond. Math. Soc.* 34 (1986), 274–290.

2. D. N. Arnold, G. David, M. Filoche, D. Jerison and S. Mayboroda, Computing spectra without solving eigenvalue problems. *SIAM J. Sci. Comput.* 41 (2019), B69–B92.

3. D. N. Arnold, G. David, M. Filoche, D. Jerison and S. Mayboroda, Localization of eigenfunctions via an effective potential. *Comm. Partial Differential Equations* 44 (2019), 1186–1216.

4. C. Bandle, *Isoperimetric Inequalities and Applications*, Monographs and Studies in Mathematics, Pitman (London, 1980).

5. M. van den Berg, Estimates for the torsion function and Sobolev constants. *Potential Anal.* 36 (2012), 607–616.

6. M. van den Berg, D. Bucur, T. Kappeler, On efficiency and localisation for the torsion function. *Potential Anal.*, to appear, arXiv:2005.06366.

7. M. van den Berg and T. Carroll, Hardy inequality and \(L^p\) estimates for the torsion function. *Bull. Lond. Math. Soc.* 41 (2009), 980–986.

8. M. van den Berg, F. Della Pietra, G. di Blasio and N. Gavitone, Efficiency and localisation for the first Dirichlet eigenfunction. *J. Spectr. Theory*, to appear, arXiv:1905.06591.

9. L. Brasco, On torsional rigidity and principal frequencies: An invitation to the Kohler–Jobin rearrangement technique. *ESAIM Control Optim. Calc. Var.* 20 (2014), 315–338.

10. D. Bucur, G. Buttazzo, *Variational Methods in Shape Optimization Problems*, Progress in Nonlinear Differential Equations and their Applications 65, Birkhäuser Boston, Inc. (Boston, MA, 2005).

11. E. B. Davies, *Heat Kernels and Spectral Theory*, Cambridge Tracts in Mathematics, 92, Cambridge University Press (Cambridge, 1989).

12. E. B. Davies, The Hardy constant. *Q. J. Math. Oxford Ser.* (2) 46 (1995), 417–431.

13. E. B. Davies, A review of Hardy inequalities. *Oper. Theory Adv. Appl.* 110 (1999), 55–67.

14. E. B. Davies, Sharp boundary estimates for elliptic operators. *Math. Proc. Cambridge Philos. Soc.* 129 (2000), 165–178.

15. F. Della Pietra, N. Gavitone and S. Guarino Lo Bianco, On functionals involving the torsional rigidity related to some classes of nonlinear operators. *J. Differential Equations* 265 (2018), 6424–6442.

16. R. Durrett, *Brownian Motion and Martingales in Analysis*, Wadsworth Mathematics Series, Wadsworth Advanced Books & Software (Belmont, CA, 1984).
17. T. Giorgi and R. G. Smits, Principal eigenvalue estimates via the supremum of torsion. *Indiana Univ. Math. J.* **59** (2010), 987–1011.
18. I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, 7th edn., Academic Press (New York, 2007).
19. D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions. *SIAM Rev.* **55** (2013), 601–667.
20. S. Markvorsen and V. Palmer, Torsional rigidity of minimal submanifolds. *Proc. Lond. Math. Soc.* **93** (2006), 253–272.
21. L. E. Payne and I. Stakgold, On the mean value of the fundamental mode in the fixed membrane problem. Collection of articles dedicated to Alexander Weinstein on the occasion of his 75th birthday. *Appl. Anal.* **3** (1973), 295–306.
22. G. Pólya and G. Szegö, *Isoperimetric Inequalities in Mathematical Physics*, Annals of Mathematics. Annals **27**, Princeton University Press (Princeton, 1951).
23. R. Sperb, *Maximum Principles and Applications*, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers] (New York–London, 1981).
24. H. Vogt, L_{∞}-estimates for the torsion function and L_{∞}-growth of semigroups satisfying Gaussian bounds. *Potential Anal.* **51** (2019), 37–47.

M. van den Berg,
School of Mathematics,
University of Bristol,
Fry Building, Woodland Road,
Bristol, BS8 1UG,
U.K.
Email: mamvdb@bristol.ac.uk

T. Kappeler,
Institut für Mathematik,
Universität Zürich,
Winterthurerstrasse 190 Zürich, CH-8057,
Switzerland
Email: thomas.kappeler@math.uzh.ch