On the low-x NLO evolution of 4 point colorless operators

A. V. Grabovsky

Budker Institute of Nuclear Physics and Novosibirsk State University, 630090 Novosibirsk, Russia

E-mail: A.V.Grabovsky@inp.nsk.su

Abstract: The NLO evolution equations for quadrupole and double dipole operators have been obtained within the high energy operator expansion method. The corresponding quasi-conformal evolution equations for the composite operators were constructed.
1 Introduction

This paper develops the Wilson line approach to high energy scattering proposed in [1] to the case of quadrupole and double dipole operators in the next to leading order (NLO). Such operators naturally appear when one studies amplitudes for diffractive processes with the production of 3 or 4 particles in the Regge limit. Moreover, the quadrupole operator enters the definition of the Weizs"acker-Williams gluon distribution [2], [3], [4] which gives the Fock space number density of gluons inside dense hadrons in light-cone gauge. One can find the NLO evolution equation for the operator necessary for the Weizs"acker-Williams gluon distribution differentiating the quadrupole equation obtained in this paper. This result is going to be presented in a future work.

In the Wilson line approach to high energy scattering [1] the amplitudes are convolutions of impact factors and a Green function. The impact factors describe the decomposition of the colliding particles into quarks and gluons while the Green function is responsible for the interaction of these quarks and gluons with the quarks and gluons from the other colliding particle. In this framework such fast-moving partons are depicted as Wilson lines with the path going along their trajectories. Hence, the corresponding Green functions are the operators constructed of the Wilson lines. These operators obey the evolution equations with respect to the rapidity divide. This rapidity divide separates the gluon field into the fast quantum one and the slow external field of the other particle, through which the current quark or gluon is propagating.

In the most thoroughly studied case of a virtual photon splitting into quark antiquark pair, the corresponding Wilson line operator is a color dipole. The evolution equation
for this operator is known as the Balitsky - Kovchegov (BK) equation \cite{1, 5}. The NLO corrections to this equation were calculated in \cite{6, 7, 8, 9}. Another interesting case is application of this formalism to a proton. The proton has baryon color structure and can be described as a 3-quark Wilson loop operator (3QWL). The evolution equation for this operator was calculated in the leading order (LO) in \cite{10} and in the NLO in \cite{11}. The latter calculation was based on the NLO hierarchy of the evolution equations for the Wilson lines with open indices \cite{12} and the connected contribution to the 3QWL kernel \cite{13}. These results were also obtained in the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK) formalism \cite{14}. The hamiltonian equivalent to the NLO hierarchy was obtained in \cite{15} and the evolution equation for the 3QWL in \cite{16}. The NLO kernel for the evolution Wilson line operators was also constructed in \cite{17}.

The quadrupole and the double dipole are 4-particle colorless operators. Their LO linear evolution equations were derived in \cite{4, 9, 18, 19}. Here the results of \cite{12} and \cite{13} are used to construct the NLO evolution equations for these operators and the results of \cite{9} and \cite{11} are used to check these equations.

The paper is organized as follows. The next section contains the definitions and necessary results. Sections 3 and 4 present the NLO evolution equations for the quadrupole and the double dipole operators in the standard and quasi-conformal forms. Section 5 discusses different checks of the results. Section 6 concludes the paper.

\section{Definitions and building blocks}

The light cone vectors \(n_1\) and \(n_2\) are defined as

\[n_1 = (1, 0, 0, 1), \quad n_2 = \frac{1}{2} (1, 0, 0, -1), \quad n_1^+ = n_2^- = n_1 n_2 = 1\]

(2.1)

and any vector \(p\) can be decomposed as

\[p^+ = p_\perp = pm_2 = \frac{1}{2} (p^0 + p^3), \quad p_+ = p^- = pm_1 = p^0 - p^3,\]

(2.2)

\[p = p^+ n_1 + p^- n_2 + p_\perp, \quad p^2 = 2p_+ p^- - p_\perp^2,\]

(2.3)

\[pk = p^{\mu} k_{\mu} = p^+ k^- + p^- k^+ - \vec{p} \vec{k} = p_+ k_- + p_- k_+ - \vec{p} \vec{k}.\]

(2.4)

For brevity the following notation for traces is used

\[tr(U_i U_j^\dagger ... U_k U_l^\dagger) \equiv U_{ij...kl},\]

(2.5)

where

\[U_i = U (\vec{r}_i, \eta) = Pe^{i g \int_{-\infty}^{+\infty} b_\eta^+ (r^+ - \vec{r}) dr^+},\]

(2.6)

and \(b_\eta^-\) is the external shock wave field built from only slow gluons

\[b_\eta^- = \int \frac{d^4 p}{(2\pi)^4} e^{-ipz} b^- (p) \theta (\epsilon^\eta - p^+).\]

(2.7)
The parameter η separates the slow gluons entering the Wilson lines from the fast ones in the impact factors. The field

$$b^\mu (r) = b^- (r^+, \vec{r}) n^\mu_2 = \delta (r^+) b^0 (\vec{r}) n^\mu_2.$$ \hspace{1cm} (2.8)

The coordinates $\vec{r}_{1,2,3,4}$ denote the quarks, and \vec{r}_0, \vec{r}_5 are the coordinates of the gluons. In intermediate formulas the coordinates $\vec{r}_{6,7}$ will also be used. The $SU(N_c)$ identities

$$U_{4}^{t\alpha} = 2tr(t^\alpha U_4 t^\dagger U_4^\dagger), \quad (t^\alpha)^{i}_{j}(t^\beta)^{k}_{l} = \frac{1}{2} \delta^{i}_{k} \delta^{j}_{l} - \frac{1}{2N_c} \delta^{j}_{i} \delta^{l}_{k}$$

are necessary to rewrite the $SU(N_c)$ operators only through the Wilson lines in the fundamental representation. For a generic operator O the rapidity evolution equation has the form

$$\frac{\partial}{\partial \eta} \langle O \rangle = \langle K_{LO} \otimes O \rangle + \langle K_{NLO} \otimes O \rangle.$$ \hspace{1cm} (2.10)

where $K_{LO} \sim \alpha_s$ and $K_{NLO} \sim \alpha_s^2$. The $\langle \ldots \rangle$ brackets were explicitly written to denote that the calculation was performed in the shockwave background. Hereafter they will be often omitted to avoid overloading the notation. The BK equation in this notation reads [1]

$$\frac{\partial U_{12}^{t\gamma}}{\partial \eta} = \frac{\alpha_s}{2\pi^2} \int d\vec{r}_0 \frac{\vec{r}_{12}^{\gamma^2}}{\vec{r}_{10}^{\gamma^2} \vec{r}_{20}^{\gamma^2}} (U_{210} U_{012} - N_c U_{212}^{t\gamma}),$$

where $\vec{r}_{ij} = \vec{r}_i - \vec{r}_j$. The LO quadrupole evolution equation reads [4]

$$\frac{\partial U_{12}^{t\gamma 34\delta}}{\partial \eta} = \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \left\{ \frac{\vec{r}_{14}^{\gamma^2}}{\vec{r}_{10}^{\gamma^2} \vec{r}_{40}^{\gamma^2}} (U_{10} U_{02}^{t\gamma} + U_{40} U_{12}^{t\gamma} - (0 \rightarrow 1 \equiv 0 \rightarrow 4)) + \frac{\vec{r}_{12}^{\gamma^2}}{\vec{r}_{10}^{\gamma^2} \vec{r}_{20}^{\gamma^2}} (U_{10} U_{02}^{t\gamma} + U_{20} U_{10}^{t\gamma} - (0 \rightarrow 1 \equiv 0 \rightarrow 2)) - \frac{\vec{r}_{24}^{\gamma^2}}{2\vec{r}_{20}^{\gamma^2} \vec{r}_{40}^{\gamma^2}} (U_{10} U_{02}^{t\gamma} + U_{30} U_{04}^{t\gamma} - (0 \rightarrow 4 \equiv 0 \rightarrow 2)) - \frac{\vec{r}_{13}^{\gamma^2}}{2\vec{r}_{10}^{\gamma^2} \vec{r}_{30}^{\gamma^2}} (U_{40} U_{12}^{t\gamma} + U_{20} U_{34}^{t\gamma} - (0 \rightarrow 1 \equiv 0 \rightarrow 3)) + (1 \leftrightarrow 3, 2 \leftrightarrow 4) \right\}.$$ \hspace{1cm} (2.12)

Here $(0 \rightarrow 1 \equiv 0 \rightarrow 4)$ stands for the substitution $U_0 \rightarrow U_1$ or $U_0 \rightarrow U_4$, which gives the same result. In addition $(1 \leftrightarrow 3, 2 \leftrightarrow 4)$ means that one has to change $\vec{r}_1 \leftrightarrow \vec{r}_3, \vec{r}_2 \leftrightarrow \vec{r}_4$ and $U_1 \leftrightarrow U_3, U_2 \leftrightarrow U_4$. We will also need the LO evolution equations for the double dipole, sextupole and the dipole-quadrupole product. All these equations follow from the LO hierarchy [1] directly:

$$\frac{\partial U_{12}^{t\gamma} U_{34}^{t\delta}}{\partial \eta} = \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \left(\frac{\vec{r}_{13}^{\gamma^2}}{\vec{r}_{10}^{\gamma^2} \vec{r}_{30}^{\gamma^2}} - \frac{\vec{r}_{24}^{\gamma^2}}{2\vec{r}_{20}^{\gamma^2} \vec{r}_{40}^{\gamma^2}} \right) \times (U_{21} U_{34} - U_{21} U_{34}^{t\delta} - U_{21} U_{34} - U_{21} U_{34}^{t\gamma}) + U_{41} \frac{\partial U_{12}^{t\gamma}}{\partial \eta} + U_{21} \frac{\partial U_{41}^{t\gamma}}{\partial \eta}.$$ \hspace{1cm} (2.13)
\[
\frac{\partial U_{12}^{34\dagger} U_{76\dagger}}{\partial \eta} = \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \left\{ \left(U_{01}^{7602\dagger} \right)^4 U_{01}^{12\dagger} U_{01}^{7606\dagger} - (0 \to 7 \equiv 0 \to 6) \right\} \\
\times \left(\frac{\vec{r}_{16}^2}{\vec{r}_{01}^2 \vec{r}_{07}^2} - \frac{\vec{r}_{17}^2}{\vec{r}_{01}^2 \vec{r}_{07}^2} \right) + \left(\frac{\vec{r}_{27}^2}{\vec{r}_{02}^2 \vec{r}_{07}^2} - \frac{\vec{r}_{26}^2}{\vec{r}_{02}^2 \vec{r}_{06}^2} \right) \\
\times (U_{01}^{7602\dagger} U_{01}^{7606\dagger} - (0 \to 7 \equiv 0 \to 6)) \\
\left\{ (1 \to 3, 2 \to 4) \right\} + U_{76\dagger} \frac{\partial U_{12}^{34\dagger}}{\partial \eta} + U_{12}^{34\dagger} \frac{\partial U_{76\dagger}}{\partial \eta}.
\]

(2.14)

\[
\frac{\partial U_{12}^{34\dagger 56\dagger}}{\partial \eta} = \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \left(\frac{\vec{r}_{25}^2}{\vec{r}_{02}^2 \vec{r}_{05}^2} \right) \left(U_{01}^{3456\dagger} U_{21\dagger} U_{21} - (0 \to 5 \equiv 0 \to 2) \right) \\
- \left(\frac{\vec{r}_{15}^2}{\vec{r}_{01}^2 \vec{r}_{05}^2} \right) (U_{01}^{5612\dagger} U_{21\dagger} U_{21} U_{01}^{5612\dagger} - (0 \to 5 \equiv 0 \to 1)) \\
- \left(\frac{\vec{r}_{26}^2}{\vec{r}_{02}^2 \vec{r}_{06}^2} \right) (U_{01}^{3456\dagger} U_{21\dagger} U_{21} U_{01}^{3456\dagger} - (0 \to 2 \equiv 0 \to 6)) \\
+ \left(\frac{\vec{r}_{16}^2}{\vec{r}_{01}^2 \vec{r}_{06}^2} \right) (U_{01}^{5612\dagger} U_{21\dagger} U_{21} U_{01}^{5612\dagger} - (0 \to 1 \equiv 0 \to 6)) \\
+ \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} \right) (U_{01}^{5612\dagger} U_{21\dagger} U_{21} U_{01}^{5612\dagger} - (0 \to 1 \equiv 0 \to 2)) \\
\left\{ (1 \to 3 \to 5 \equiv 1, 2 \to 4 \to 6 \to 4 \equiv 2) \right\} + (1 \to 5 \equiv 3 \to 1, 2 \to 6 \to 4 \equiv 2).
\]

(2.15)

Here 1 \to 3 \to 5 \equiv 1 stands for permutation, i.e. one has to change \(\vec{r}_1 \rightarrow \vec{r}_3, \vec{r}_3 \rightarrow \vec{r}_5, \vec{r}_5 \rightarrow \vec{r}_1 \) and \(U_1 \rightarrow U_3, U_3 \rightarrow U_5, U_5 \rightarrow U_1 \).

For the self and the pairwise NLO interactions one can take the results of [12] while the triple-interaction diagrams were already calculated in [13]. The results of these papers were derived using sharp cutoff on the rapidity variable. Since this paper is devoted to color singlet operators one can drop the kernels which vanish acting on the colorless operators, as was shown in [15]. The rest reads

\[
\frac{\partial \langle U_1 \rangle}{\partial \eta} \bigg|_{NLO} = \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_5 d\vec{r}_0 J_{11105} \left[f^{ade} (t^{d}_1 t^{e}_1) U_1 U_1 \right] \beta \ln \left(\frac{\vec{r}_{15}^2}{\mu^2} \right),
\]

(2.16)

\[
\beta = \left(\frac{11}{3} - \frac{2 n_f}{3 N_c} \right), \quad \beta \ln \frac{1}{\mu^2} = \left(\frac{11}{3} - \frac{2 n_f}{3 N_c} \right) \ln \left(\frac{\mu^2}{4 e^{2\gamma(1)}} \right) + \frac{67}{9} - \frac{\pi^2}{3} - 10 n_f, \quad \beta \ln \frac{1}{\mu^2} = \left(\frac{11}{3} - \frac{2 n_f}{3 N_c} \right) \ln \left(\frac{\mu^2}{4 e^{2\gamma(1)}} \right) + \frac{67}{9} - \frac{\pi^2}{3} - 10 n_f,
\]

(2.17)

\(n_f \) is the number of the quark flavours, \(\mu^2 \) is the renormalization scale in the MS-scheme and \(J_{ijklm} = J(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4, \vec{r}_5, \vec{r}_6) \)

\[
J_{12305} = \left(\frac{\vec{r}_{01} \vec{r}_{05}^2}{\vec{r}_{01}^2 \vec{r}_{05}^2 \vec{r}_{25}^2} + \frac{2 (\vec{r}_{01} \vec{r}_{03}) (\vec{r}_{05} \vec{r}_{25})}{\vec{r}_{01}^2 \vec{r}_{03}^2 \vec{r}_{05}^2 \vec{r}_{25}^2} - \frac{2 (\vec{r}_{01} \vec{r}_{03}) (\vec{r}_{25} \vec{r}_{35})}{\vec{r}_{01}^2 \vec{r}_{03}^2 \vec{r}_{25}^2 \vec{r}_{35}^2} + \frac{2 (\vec{r}_{01} \vec{r}_{05}) (\vec{r}_{25} \vec{r}_{35})}{\vec{r}_{01}^2 \vec{r}_{05}^2 \vec{r}_{25}^2 \vec{r}_{35}^2} \right) \\
\times \ln \left(\frac{\vec{r}_{03}^2}{\vec{r}_{35}^2} \right).
\]

(2.18)
This function has the properties
$$J_{ijk50} = -J_{jik50}, \quad J_{11105} = \frac{(\vec{r}_1f_0)}{\vec{r}_1^{-2}r_0^{-2}r_{15}^{-2}} \ln \left(\frac{\vec{r}_0^{12}}{\vec{r}_{15}^{2}} \right).$$ \hspace{1cm} (2.19)

$$\frac{\partial \left(U_1 \right)_j^i (U_2)_k^l}{\partial \eta} \bigg|_{NLO} = \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_5 d\vec{r}_0 \left(A_1 + A_2 + A_3 + \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_5 \left(B_1 + N_cB_2 \right) \right).$$ \hspace{1cm} (2.20)

Here
$$A_1 = \left((t^a U_1)_i^j (U_2 t^b)_k^l + (t^a U_2)_i^j (U_1 t^b)_k^l \right) \left[f^{ade} f^{bde'} U_0^{dd'} \right. (U_5^{ee'} - U_0^{ee'}) 4L_{12}$$
\[+ 4n_f L_{12}^q tr \left(t^a U_5 t^b (U_0^l - U_0^l) \right) \bigg) \right],$$ \hspace{1cm} (2.21)

where $L_{ij} \equiv L(\vec{r}_i, \vec{r}_j)$ and $L_{ij}^q \equiv L^q(\vec{r}_i, \vec{r}_j)$ were introduced in this form in [11]

$$L_{12} = \left[\begin{array}{c} \frac{1}{\vec{r}_1^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \left(\frac{1}{\vec{r}_1^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \right) \ln \left(\frac{\vec{r}_1^{2} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}}{\vec{r}_1^{2} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \right) \right] \right].$$ \hspace{1cm} (2.22)

$$L_{12}^q = \frac{1}{\vec{r}_1^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \ln \left(\frac{\vec{r}_1^{2} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}}{\vec{r}_1^{2} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \right) - 1 \right].$$ \hspace{1cm} (2.23)

These functions have the unintegrable singularity at $\vec{r}_0 = 0$, which is canceled by the subtraction in the color structure. They are symmetric conformally invariant functions $L_{ij}^q = L_{ji}^q = L_{ij}^q | r_0^{\alpha} r_0^{\alpha}$.

$$A_2 = 4(U_0 - U_1)^{dd'} (U_5 - U_2)^{ee'} \left\{ i \left[f^{ade'} (t^d U_1 t^a)_k^l (t^e U_2)_k^l - f^{ade} (t^a U_1 t^d)_k^l (U_2 t^e)_k^l \right] J_{12105} \right.$$
\[+ i \left[f^{ade'} (t^d U_1)_k^l (t^e U_2^a)_k^l - f^{ade} (U_1 t^d)_k^l (t^a U_2 t^e)_k^l \right] J_{12205} \right\},$$ \hspace{1cm} (2.24)

$$A_3 = 2U_0^{dd'} \left\{ i \left[f^{ade'} (t^d U_1 t^a)_k^l (t^e U_2)_k^l - f^{ade} (t^a U_1 t^d)_k^l (U_2 t^e)_k^l \right] (U_5 - U_2)^{ee'} \right. \times (J_{21205} + J_{21205} - J_{21205} + J_{11205} - J_{11205})$$
\[+ i \left[f^{ade'} (t^d t^e U_1)_k^l (t^a U_2)_k^l - f^{ade} (t^a U_1 t^d)_k^l (t^e U_2)_k^l \right] \left(U_5 - U_1 \right)^{ee'} \right\}. \hspace{1cm} (2.25)

$$B_1 = 2 \ln \left(\frac{\vec{r}_1^{2}}{\vec{r}_1^{2}} \right) \ln \left(\frac{\vec{r}_2^{2}}{\vec{r}_2^{2}} \right)$$
\[\times \left\{ (U_5 - U_1)^{ab} i \left[f^{ade} (t^a U_1 t^d)_k^l (t^e U_2)_k^l + f^{ade} (t^e U_1 t^d)_k^l (t^d U_2)_k^l \right] \left(\vec{r}_1^{2} - \vec{r}_1^{2} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12} \right) \right\},$$ \hspace{1cm} (2.26)

$$B_2 = \beta (2U_5 - U_1 - U_2)^{ab} \left\{ \left(t^a U_1 \right)_k^l (U_2 t^b)_k^l + (U_1 t^b)_k^l (U_2)_k^l \right\}$$
\[\times \left\{ \frac{\left(\vec{r}_1^{2} - \vec{r}_1^{2} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12} \right)}{\vec{r}_1^{2} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_1^{12} - \vec{r}_2^{12} - \vec{r}_5^{12}} \right\}. \hspace{1cm} (2.27)
\[
\frac{\partial}{\partial \eta} \left((U_1)_i^j (U_2)_k^l (U_3)_m^n \right)_{NLO} = \frac{i\alpha_s^2}{2\pi^4} \int d\vec{r}_0 d\vec{r}_5 \\
\times \left\{ f^{de} \left[(t^a U_1)_i^j (t^b U_2)_k^l (t^c U_3)_m^n (U_0 - U_1)^{ad} (U_5 - U_2)^{be} \right] J_{12305} \\
+ f^{ade} \left[(t^a U_1)_i^j (t^b U_2)_k^l (t^c U_3)_m^n (U_0 - U_3)^{ad} (U_5 - U_2)^{be} \right] J_{13205} \\
- (t^a U_1)_i^j (t^b U_2)_k^l (t^c U_3)_m^n (U_0 - U_3)^{de} (U_5 - U_2)^{be} \right] J_{32105} \\
+ f^{bde} \left[(t^a U_1)_i^j (t^b U_2)_k^l (t^c U_3)_m^n (U_0 - U_1)^{ad} (U_5 - U_3)^{ce} \right] J_{13205} \right\}.
\]

We will also need the following functions. The function \(M_{ij}^{jk} \equiv M(\vec{r}_i, \vec{r}_j, \vec{r}_k) \) was introduced in [11]

\[
M_{2}^{ij} = \frac{1}{2} \left(J_{12205} + J_{23205} - J_{13205} - J_{22205} \right) \\
= \frac{1}{4\vec{r}_{01}^2 \vec{r}_{25}^2} \left(\vec{r}_{12}^2 \vec{r}_{23}^2 - \vec{r}_{15}^2 \vec{r}_{23}^2 - \vec{r}_{03}^2 \vec{r}_{12}^2 - \vec{r}_{02}^2 \vec{r}_{15}^2 \right) \ln \left(\frac{\vec{r}_{02}^2}{\vec{r}_{25}^2} \right).
\]

It was also introduced as \(M_2 \) in [20]. It has the property

\[
M_{k}^{ij} \big|_{\vec{r}_i \to 0} = -M_{k}^{ji}.
\]

The functions \(\tilde{L}_{ij} \equiv \tilde{L}(\vec{r}_i, \vec{r}_j) \) and \(M_{ij} \equiv M(\vec{r}_i, \vec{r}_j) \) were introduced in [11] as well

\[
\tilde{L}_{12} = \frac{1}{2} \left(M_{21}^{12} - M_{12}^{12} \right) = \frac{\vec{r}_{12}^2}{8\vec{r}_{01}^2 \vec{r}_{25}^2} \left[\frac{\vec{r}_{12}^2 \vec{r}_{05}^2}{\vec{r}_{15}^2 \vec{r}_{25}^2} - \frac{1}{\vec{r}_{01}^2 \vec{r}_{25}^2} - \frac{1}{\vec{r}_{02}^2 \vec{r}_{15}^2} \right] \ln \left(\frac{\vec{r}_{01}^2 \vec{r}_{25}^2}{\vec{r}_{15}^2 \vec{r}_{02}^2} \right),
\]

\[
M_{12} = \frac{1}{4} \left(M_{21}^{11} + M_{12}^{22} \right) = \frac{\vec{r}_{12}^2}{16\vec{r}_{05}^2} \left[\frac{\vec{r}_{12}^2 \vec{r}_{05}^2}{\vec{r}_{15}^2 \vec{r}_{25}^2} - \frac{1}{\vec{r}_{01}^2 \vec{r}_{25}^2} - \frac{1}{\vec{r}_{02}^2 \vec{r}_{15}^2} \right] \ln \left(\frac{\vec{r}_{01}^2 \vec{r}_{25}^2}{\vec{r}_{15}^2 \vec{r}_{02}^2} \right).
\]

Here \(\tilde{L}_{ij} \) is conformally invariant. Moreover, \(\tilde{L}_{ij} \) is antisymmetric w.r.t. both \(5 \leftrightarrow 0 \) and \(i \leftrightarrow j \) transformations while \(M_{ij} \) is antisymmetric w.r.t. \(5 \leftrightarrow 0 \). One can also combine all the terms \(\sim \beta \) into \(M_{ij}^{\beta} \equiv M^{\beta}(\vec{r}_i, \vec{r}_j) \)

\[
M_{12}^{\beta} = \frac{N_c \beta}{2} \left\{ \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2} \right) + \frac{\vec{r}_{01}^2 \vec{r}_{12}^2}{\vec{r}_{02}^2} \ln \left(\frac{\vec{r}_{02}^2}{\vec{r}_{01}^2} \right) \right\}.
\]

The NLO BK kernel reads [9]

\[
\langle K_{NLO} \otimes U_{12} \rangle = \alpha_s^2 \int d\vec{r}_0 d\vec{r}_5 \left\{ M_{12} - N_c \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{01}^2} \right) \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{20}^2} \right) \right\} \times \left((U_{210} U_{01}) - N_c (U_{21}) \right) + \frac{\alpha_s^2}{4\pi} \int d\vec{r}_0 d\vec{r}_5 \left\{ \tilde{L}_{12}(U_{015} U_{210} U_{51} - (0 \leftrightarrow 5)) \right. \\
+ L_{12}(U_{01520} - U_{01} U_{215} U_{51} - (0 \leftrightarrow 5)) + (0 \leftrightarrow 5)) \\
- 2nf L_{12}^{\beta} tr(t^a U_{1} t^{b} U_{2} U_{\beta}(U_0 - U_5)) \right\} + (5 \leftrightarrow 0)).
\]
3 Construction of the kernel

First, one has to discuss the singularities of the building blocks from the previous section. All the ultraviolet (UV) singularities in (2.16), (2.20), and (2.28) were removed by the renormalization. It means that these expressions converge at $\vec{r}_0 = \vec{r}_{1,2,3,4,5}$ and $\vec{r}_5 = \vec{r}_{0,1,2,3,4,5}$. In particular, the functions J in A_2 (2.24), A_3 (2.25), and (2.28) are convergent at these points, which ensures UV-safety of these expressions. However, the function J_{11105} in the first line of (2.16), has the UV singularity at $\vec{r}_0 = \vec{r}_5 = \vec{r}_1$. As in (2.22) this singularity is removed by the subtraction in the color structure.

Nevertheless, these expressions have infrared (IR) singularities, which appear as both $\vec{r}_{0,5} \to \infty$. Indeed, changing the variables e.g. as $r_0 = u t$, $r_5 = u \tilde{t}, \tilde{t} = 1 - t$, one faces a logarithmic singularity integrating w.r.t. u first

$$\int d\vec{r}_5 d\vec{r}_0 J_{12305} = \int d\phi_5 d\phi_0 \int_0^1 dt \int_0^{+\infty} du \left(\frac{2 \cos(\phi_{05})}{u(t^2 + \tilde{t}^2 - 2tt \cos(\phi_{05}))} \ln \left(\frac{t}{\tilde{t}} \right) + O \left(\frac{1}{u^2} \right) \right).$$

Hence this double integral is ill-defined and requires either regularization or definition in terms of the iterated integrals. To understand how to correctly treat the IR singularities one can either return to the diagrams and keep the regularization, or calculate the known dipole equation and fix the definition from there. The latter way is attempted here. Assembling BK kernel (2.34) from (2.16–2.20), one can see that all the β-functional terms go to M_{12}^β, A_1 (2.21) reshapes to the terms $\sim L_{12}$, L^β_{12}, the Wilson line operators from (2.16), (2.24–2.25) depending on both \vec{r}_5 and \vec{r}_0 give the term $\sim \bar{L}_{12}$ after the symmetrization

$$A(U)F(\vec{r}) \to [AF]^{sym}$$

$$= \frac{[A + A (0 \leftrightarrow 5)] [F + F (0 \leftrightarrow 5)] + [A - A (0 \leftrightarrow 5)] [F - F (0 \leftrightarrow 5)]}{4}. \quad (3.2)$$

Next, B_1 (2.26) gives one half of the double logarithm contribution. All the remaining terms are to be equal to the other half of the double logarithm contribution. They read

$$\Delta K = \frac{\alpha_s^2 N_c}{16 \pi^4} \int d\vec{r}_0 d\vec{r}_5 \{ (U_{21} U_{51} - U_{01} U_{210}) (J_{22105} + J_{11205})$$

$$+ (J_{21105} - J_{12105} + J_{12055} - J_{21205}) (2N_c U_{21} - U_{01} U_{210} - U_{21} U_{51}) \}. \quad (3.3)$$

This term is IR safe. The second line is the product of 2 expressions symmetric w.r.t. $0 \leftrightarrow 5$ permutation. Therefore one can set $U_5 \to U_0$ there. In the first line there is a product of 2 expressions antisymmetric w.r.t. $0 \leftrightarrow 5$ permutation. Hence, one could add and subtract $N_c U_{211}$ in the first brackets and write

$$\Delta K = \frac{\alpha_s^2 N_c}{8 \pi^4} \int d\vec{r}_0 d\vec{r}_5 \{ (N_c U_{21} - U_{210} U_{01}) (J_{22105} + J_{11205})$$

$$+ (J_{21105} + J_{12205} - J_{12055} - J_{21205}) (N_c U_{21} - U_{01} U_{210}) \} \quad (3.4)$$

$$= \frac{\alpha_s^2 N_c}{8 \pi^4} \int d\vec{r}_0 \int d\vec{r}_5 (N_c U_{21} - U_{01} U_{210})$$

$$\times \{ J_{22105} - J_{12105} + J_{12105} - J_{12105} + J_{21105} + J_{12205} \}. \quad (3.5)$$
One could understand the latter integral as an iterated one. Then, using the integrals
\[\int \frac{d\vec{r}_5}{\pi} (J_{ijkl05} - J_{iklj05}) = \left(\frac{\vec{r}_{0j} \vec{r}_{0j}}{\vec{r}_{0j}^2} - \frac{\vec{r}_{0k} \vec{r}_{0k}}{\vec{r}_{0k}^2} \right) \ln \left(\frac{\vec{r}_{jk}^2}{\vec{r}_{0j}^2} \right) \ln \left(\frac{\vec{r}_{jk}^2}{\vec{r}_{0k}^2} \right), \quad \int d\vec{r}_5 J_{ijkl05} = 0, \] one could get the other half of the double logarithm term in the BK kernel
\[\Delta K \rightarrow \frac{\alpha_s^2 N_c}{8\pi^3} \int d^4r_0 (N_c U_{2t1} - U_{0t1} U_{2t0}) \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{10}^2} \right) \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{20}^2} \right). \] (3.7)

Although such treatment gives the correct result, it does not take into account the IR singularity of J. Indeed if one introduces the dimensional regularization into (3.3) then one gets
\[\Delta K \rightarrow \frac{\alpha_s^2 N_c}{8\pi^4} \int d^dr_0 d^dr_5 \left(N_c U_{2t1} - U_{0t1} U_{2t0} \right) \times (J_{22105} - J_{21205} + J_{11205} - J_{12105} + J_{21105} + J_{12205}). \] (3.8)

However, in the dimensional regularization the integral $\int d^dr_5 J_{ijkl05}$ would be $\sim \epsilon$ rather than 0 and the double integral
\[\int d^dr_0 d^dr_5 J_{ijkl05} = 2\pi^2 \zeta(3), \] (3.9)
because the second integral w.r.t. r_0 has an IR divergence as $r_0 \to \infty$ and starts from $\frac{1}{\epsilon}$. Therefore if one wants to integrate the coefficient of $U_{0t1} U_{2t0}$ w.r.t. d^dr_5, one has to keep the result in the dimension d without expanding the series. At the same time the coefficient of $N_c U_{2t1}$ gets the doubled contribution since
\[\int d\vec{r}_0 \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{10}^2} \right) \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{20}^2} \right) = 4\pi^2 \zeta(3). \] (3.10)

Thus, the result depends on the regularization. Such an ambiguity is the consequence of the fact that the initial expressions do not have the IR regularization. To avoid this ambiguity one needs the evolution equations for Wilson lines (2.24–2.25) with the IR regularization. Alternatively, one can write them in the form where the terms which do not depend on U_5^{ab} and U_0^{ab} are integrated w.r.t. the coordinate of the other gluon.

In this paper the procedure discussed in (3.2–3.7) is used. Technically it means that for the terms $\sim U_5^{ab} U_0^{a'b'}$, the gluons are treated equally and the kernel is represented in the form of symmetrized sum (3.2). In the terms depending only on U_5^{ab} or only on U_0^{ab}, the integration order is fixed as $\int d\vec{r}_0 \int d\vec{r}_5$ or $\int d\vec{r}_5 \int d\vec{r}_0$ correspondingly and the integrals are understood as iterated. As a result, one can take the inner integral via (3.6). The terms independent of U_5^{ab} and U_0^{ab} are also symmetrized according to (3.2) and in them the substitution $J_{ijkl05} \rightarrow J_{ijijkl05}$ is made. This substitution can be understood as follows. First one drops the terms with $\int d\vec{r}_5 J_{ijkl05}$. They vanish (3.6) if one treats the integrals as iterated. Next, one adds the totally antisymmetric w.r.t. ($5 \leftrightarrow 0$) terms J_{ijkl05}. These terms vanish if they are integrated w.r.t. \vec{r}_0 and \vec{r}_5 in the double integral. After that the first
integral in (3.6) is enough to calculate all the integrals. Again, I stress that although such treatment gives the correct dipole result (as well as the evolution equation for the baryon operator coinciding with [11]) it involves the cavalier treatment of the IR singularities.

Taking the contributions of the self-interaction of one Wilson line (2.16), the connected contributions of 2 Wilson lines (2.20) and the connected contributions of 3 Wilson lines (2.28) with the appropriate charge conjugation, and using the integration procedure described above, one can write the full NLO evolution of the quadrupole operator \(tr(U_1U_2^\dagger U_3U_4^\dagger) \equiv U_{12}^\dagger U_{34} \) as

\[
\langle K_{NLO} \otimes U_{12}^\dagger U_{34} \rangle = \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_5 \left(G_s + G_a \right) + \frac{\alpha_s^2}{8\pi^3} \int d\vec{r}_0 \left(G_{\beta} + G \right),
\]

(3.11)

Following (3.2) the 2-gluon contribution can be decomposed into the product \(G_s \) of the symmetric coordinate and color structures and the product \(G_a \) of the antisymmetric ones w.r.t. \(0 \leftrightarrow 5 \) transposition, i.e. the substitution \(\vec{r}_0 \leftrightarrow \vec{r}_5 \) and \(U_0 \leftrightarrow U_5 \). After color convolution and integration w.r.t. \(\vec{r}_0 \) or \(\vec{r}_5 \) of the contributions which do not depend on the other variable one comes to the 1-gluon part. It contains the contribution proportional to \(\beta \)-function \(G_{\beta} \) (\(\beta = \frac{11}{3} - \frac{2n_f}{N_c} \)) and the rest \(G \). One can see that all the \(G \)'s separately vanish without the shockwave, i.e. if all the \(U \to 0 \).

Doing the same for the double dipole operator \(tr(U_1U_2^\dagger)tr(U_3U_4^\dagger) \equiv U_{12}^\dagger U_{34} \), one can write its full NLO evolution equation as

\[
\langle K_{NLO} \otimes U_{12}^\dagger U_{34} \rangle = U_{12}^\dagger \langle K_{NLO} \otimes U_{34} \rangle + U_{34} \langle K_{NLO} \otimes U_{12}^\dagger \rangle + \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_5 \left(\tilde{G}_s + \tilde{G}_a \right) + \frac{\alpha_s^2}{8\pi^3} \int d\vec{r}_0 \left(\tilde{G}_{\beta} + \tilde{G} \right).
\]

(3.12)

Here the NLO dipole kernel is written in our notation in (2.34), \(\tilde{G}_s(\tilde{G}_a) \) is the product of the coordinate and color structures (anti)symmetric w.r.t. \(0 \leftrightarrow 5 \) transposition, \(\tilde{G}_{\beta} \) is proportional to \(\beta \)-function and \(\tilde{G} \) is the remaining contribution with 1 gluon crossing the shockwave.

3.1 Quadrupole

We start from the product of the symmetric structures

\[
G_s = G_{s1} + njG_q + G_{s2}.
\]

(3.13)

\[
G_{s1} = \left(\left(U_{0^\dagger 34} U_{15} U_{025} U_{034} - (5 \to 0) \right) + (5 \leftrightarrow 0) \right) \left(L_{12} + L_{32} - L_{13} \right) \\
+ \left(\left(U_{015} U_{0234} U_{15} U_{034} - (5 \to 0) \right) + (5 \leftrightarrow 0) \right) \left(L_{12} + L_{14} - L_{42} \right) \\
+ (1 \leftrightarrow 3, 2 \leftrightarrow 4),
\]

(3.14)
where L was introduced in (2.22). It is a conformally invariant contribution. \[
G_q = \bigg(\frac{U_{0\,34\,12\,5}}{N_c} - \frac{U_{0\,15\,U_{2\,34\,11}}}{N_c^2} - U_{2\,15\,U_{0\,34\,1}} - (5 \to 0) \bigg) + (5 \leftrightarrow 0) \\
\times \frac{1}{2} (L_{12}^q + L_{32}^q - L_{13}^q) + \frac{1}{2} (L_{12}^q + L_{14}^q - L_{22}^q) \\
\times \bigg(\frac{U_{0\,12\,34\,15} + U_{2\,34\,15\,10}}{N_c} - \frac{U_{0\,15\,U_{2\,34\,11}}}{N_c^2} - U_{5\,1\,U_{2\,34\,10}} - (5 \to 0) \bigg) + (5 \leftrightarrow 0) \\
+(1 \leftrightarrow 3, 2 \leftrightarrow 4),
\] (3.15)

Here L^q is defined in (2.23). \[
G_{s2} = \frac{1}{2} \left(U_{0\,34\,15\,2\,05\,1} - U_{0\,1\,U_{2\,15\,U_{4\,10\,5\,3}}} + (5 \leftrightarrow 0) \right) (M_{34}^2 - M_{13}^2 + M_{24}^2 - M_{21}^2 + (5 \leftrightarrow 0)) \\
+ \frac{1}{2} \left(U_{0\,35\,10\,2\,15\,1} - U_{0\,1\,U_{2\,15\,U_{4\,11\,5\,1}}} + (5 \leftrightarrow 0) \right) (M_{34}^2 - M_{13}^2 + M_{24}^2 - M_{21}^2 + (5 \leftrightarrow 0)) \\
+ \frac{1}{2} \left(U_{0\,15\,10\,4\,2\,15\,1} - U_{0\,15\,U_{2\,15\,U_{2\,34\,10}}} + (5 \leftrightarrow 0) \right) (M_{24}^2 + M_{14}^2 + (5 \leftrightarrow 0)) \\
+ \frac{1}{2} \left(U_{0\,34\,15\,10\,2\,15\,1} - U_{5\,0\,U_{2\,15\,U_{0\,34\,11}}} + (5 \leftrightarrow 0) \right) (M_{34}^2 + M_{14}^2 + (5 \leftrightarrow 0)) \\
+(1 \leftrightarrow 3, 2 \leftrightarrow 4),
\] (3.16)

where M_{ij}^{jk} is defined in (2.29). Using property (2.30) one can show that G_{s2} vanishes without the shockwave, i.e. when all the $U \to 1$. Indeed, it is clear from the representation \[
2G_{s2} = (U_{2\,15\,U_{5\,1\,U_{0\,34\,1}}} - U_{4\,10\,U_{5\,1\,U_{0\,34\,1}}} + U_{0\,15\,10\,4\,2\,15\,1} - U_{0\,34\,15\,10\,2\,15\,1} + (5 \leftrightarrow 0)) \\
\times (M_{34}^2 - M_{13}^2)
\] (3.17)

The contribution which is the product of the antisymmetric w.r.t. 5 \leftrightarrow 0 parts reads \[
G_a = G_{a1} + G_{a2} + G_{a3}.
\] (3.18)

\[
G_{a1} = \frac{1}{2} \left(U_{0\,1\,U_{2\,15\,U_{4\,10\,5\,3}}} + U_{0\,34\,15\,2\,05\,1} - (5 \leftrightarrow 0) \right) (M_{34}^2 - M_{13}^2 + M_{24}^2 + M_{21}^2 + (5 \leftrightarrow 0)) \\
+ \frac{1}{2} \left(U_{0\,3\,U_{2\,15\,U_{4\,15\,1}} + U_{0\,35\,10\,2\,15\,1} - (5 \leftrightarrow 0) \right) (M_{24}^2 - M_{21}^2 + M_{34}^2 + M_{31}^2 + (5 \leftrightarrow 0)) \\
+(1 \leftrightarrow 3, 2 \leftrightarrow 4).
\] (3.19)
Here the functions \hat{L} and M_{ij} are defined in (2.31) and (2.32).

\[
G_{a2} = \frac{1}{2} (U_{01^34^15^021^5} - (5 \leftrightarrow 0)) (\hat{L}_{13} + 2M_{24} - M_{13}^{12} + M_{34}^{12} - (5 \leftrightarrow 0)) \\
+ \frac{1}{2} (U_{01^35^102^34^15} - (5 \leftrightarrow 0)) (\hat{L}_{42} - 2M_{12} + 2M_{14} + M_{21}^{12} - (5 \leftrightarrow 0)) \\
+ (1 \leftrightarrow 3, 2 \leftrightarrow 4). \tag{3.20}
\]

From (2.31) and (2.32) one can see that it is possible to express G_a in terms of only one function $M_{ij}^{\beta k}$ (2.29).

The β-functional part of 1-gluon contribution G_{β} (3.11) has the same structure as LO kernel (2.12)

\[
G_{\beta} = \frac{r_{14}^2}{r_{10}^2 r_{40}^2} M_{14}^\beta (U_{10^1} U_{02^34^1} + U_{41^0} U_{12^33^0} - (0 \rightarrow 1 \equiv 0 \rightarrow 4)) \\
+ \frac{r_{12}^2}{r_{10}^2 r_{20}^2} M_{12}^\beta (U_{10^1} U_{02^34^1} + U_{21^0} U_{10^1} - (0 \rightarrow 1 \equiv 0 \rightarrow 2)) \\
- \frac{r_{24}^2}{2 r_{20}^2 r_{40}^2} M_{24}^\beta (U_{10^1} U_{02^34^1} + U_{30^1} U_{04^12^1} - (0 \rightarrow 4 \equiv 0 \rightarrow 2)) \\
- \frac{r_{13}^2}{2 r_{10}^2 r_{30}^2} M_{13}^\beta (U_{41^0} U_{12^33^0} + U_{21^0} U_{34^11^0} - (0 \rightarrow 1 \equiv 0 \rightarrow 3)) + (1 \leftrightarrow 3, 2 \leftrightarrow 4). \tag{3.21}
\]

Here M^β is defined in (2.33). The 1-gluon term without beta function reads

\[
G = G_1 + G_0. \tag{3.22}
\]

In G one can pick the terms independent of \bar{r}_0 and integrate them out if they are convergent. We call these terms G_0. In fact the choice of G_0 is not unique. We have

\[
G_0 = \frac{N_c}{4} (U_{41^0} U_{21^3} - U_{41^3} U_{21^0}) \left\{ \left(\frac{r_{14}^2}{r_{10}^2 r_{40}^2} + \frac{r_{23}^2}{r_{20}^2 r_{30}^2} - \frac{r_{13}^2}{r_{10}^2 r_{30}^2} - \frac{r_{24}^2}{r_{20}^2 r_{40}^2} \right) \right. \\
\times \ln \left(\frac{r_{12}^2}{r_{12}^2} \right) \ln \left(\frac{r_{20}^2}{r_{12}^2} \right) + \left. \left(\frac{r_{13}^2}{r_{10}^2 r_{30}^2} + \frac{r_{24}^2}{r_{20}^2 r_{40}^2} - \frac{r_{13}^2}{r_{10}^2 r_{30}^2} - \frac{r_{24}^2}{r_{20}^2 r_{40}^2} \right) \right. \\
\times \ln \left(\frac{r_{14}^2}{r_{14}^2} \right) \ln \left(\frac{r_{40}^2}{r_{14}^2} \right) \right) + \left. \left. \left(\ln \left(\frac{r_{20}^2}{r_{24}^2} \right) \ln \left(\frac{r_{40}^2}{r_{24}^2} \right) + \ln \left(\frac{r_{10}^2}{r_{13}^2} \right) \ln \left(\frac{r_{30}^2}{r_{13}^2} \right) \right. \right. \right) \\
\left. \times \left(\frac{r_{12}^2}{r_{10}^2 r_{20}^2} - \frac{r_{14}^2}{r_{10}^2 r_{40}^2} \right) \right) + (1 \leftrightarrow 3, 2 \leftrightarrow 4). \tag{3.23}
\]
The symmetric contribution reads

\[\tilde{G}_s = \tilde{G}_{s1} + n_f \tilde{G}_q + \tilde{G}_{s2}, \]

(3.26)
\[\tilde{G}_{s1} = (\{ U_{012} U_{41350} - U_{015} U_{2152340} \} + (5 \rightarrow 0)) \left(L_{14} - L_{13} + L_{23} - L_{24} \right) + (1 \leftrightarrow 3, 2 \leftrightarrow 4), \]
(3.27)

\[\tilde{G}_q = \frac{1}{2} \left(\{ L_{14} - L_{13} + L_{23} - L_{24} \} + (1 \leftrightarrow 3, 2 \leftrightarrow 4), \right) \]
(3.28)

\[\tilde{G}_{s2} = \frac{1}{2} \left(U_{015413} U_{21051} - U_{015} U_{2152340} + (5 \leftrightarrow 0) \right) (M_{12}^2 + M_{21}^2 - M_{34}^1 - M_{23}^1 + (5 \leftrightarrow 0)) \]
(3.29)

Here \(L, L^q \), and \(M^j_k \) are introduced in (2.22), (2.23), and (2.29). The antisymmetric contribution reads

\[\tilde{G}_a = \frac{1}{2} \left(U_{015413} U_{21051} - U_{015} U_{2152340} + (5 \leftrightarrow 0) \right) \times (M_{11} - M_{12} + M_{21}^2 - M_{34}^1 - M_{23}^1 + (1 \leftrightarrow 3, 2 \leftrightarrow 4)). \]
(3.30)

The \(\beta \)-functional contribution has the form

\[\tilde{G}_\beta = \left(\frac{\bar{r}_{13}^2}{\bar{r}_{10}^2 - \bar{r}_{30}^2} M_{13}^\beta - \frac{\bar{r}_{23}^2}{\bar{r}_{20}^2 - \bar{r}_{30}^2} M_{23}^\beta - \frac{\bar{r}_{14}^2}{\bar{r}_{10}^2 - \bar{r}_{40}^2} M_{14}^\beta + \frac{\bar{r}_{24}^2}{\bar{r}_{20}^2 - \bar{r}_{40}^2} M_{24}^\beta \right) \times (U_{21413} + U_{21341} - U_{2101340} - U_{2104130}), \]
(3.31)

where \(M^\beta \) is introduced in (2.33). The remaining contribution reads

\[\tilde{G} = \tilde{G}_1 + \tilde{G}_0. \]
(3.32)

\[\tilde{G}_0 = \frac{1}{4} (2U_{21} U_{413} - N_c U_{21413} - N_c U_{21341}) \left(\frac{2\bar{r}_{13}^2}{\bar{r}_{10}^2 + \bar{r}_{01}^2} - \frac{\bar{r}_{12}^2}{\bar{r}_{10}^2 + \bar{r}_{02}^2} + \frac{\bar{r}_{14}^2}{\bar{r}_{10}^2 + \bar{r}_{04}^2} \right) \times \ln \left(\frac{\bar{r}_{13}^2}{\bar{r}_{01}^2} \right) + \left(\frac{2\bar{r}_{24}^2}{\bar{r}_{20}^2 + \bar{r}_{04}^2} - \frac{\bar{r}_{12}^2}{\bar{r}_{10}^2 + \bar{r}_{02}^2} + \frac{\bar{r}_{14}^2}{\bar{r}_{10}^2 + \bar{r}_{04}^2} \right) \ln \left(\frac{\bar{r}_{24}^2}{\bar{r}_{20}^2} \right) \ln \left(\frac{\bar{r}_{14}^2}{\bar{r}_{04}^2} \right) \]
(3.33)
To construct composite conformal operators we use the prescription [9] (see also [21])

As for the quadrupole, it is straightforward to check that none of the functions \(\tilde{G}_s, \tilde{G}_a, \tilde{G}_\beta, \tilde{G} \) has unintegrable singularities.

4 Quasi-conformal evolution equation for composite operators

To construct composite conformal operators we use the prescription [9] (see also [21])

\[
\mathcal{O}^{\text{conf}} = \mathcal{O} + \frac{1}{2} \frac{\partial \mathcal{O}}{\partial \eta} \bigg|_{r_{m,n}^2 \to r_{n,m}^2} \ln \left(\frac{r_{m,n}^2}{r_{n,m}^2} \right),
\]

where \(a \) is an arbitrary constant. The conformal dipole reads [9]

\[
\mathcal{U}^{\text{conf}}_{12} = \mathcal{U}_{21} + \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \frac{\vec{r}_{12}^2}{r_{12}^2 r_{20}^2} \ln \left(\frac{ar_{12}^2}{r_{10}^2 r_{20}^2} \right) (\mathcal{U}_{21} - \mathcal{U}_{01}).
\]

The evolution equation for this operator [9] is quasi-conformal

\[
\frac{\partial \mathcal{U}^{\text{conf}}_{12}}{\partial \eta} = \frac{\alpha_s}{2\pi^2} \int d\vec{r}_0 \frac{\vec{r}_{12}^2}{r_{12}^2 r_{20}^2} \left(1 + \frac{\alpha_s}{2\pi} M_{12}^\beta \right) (\mathcal{U}_{21} - \mathcal{U}_{01}) \ln \left(\frac{r_{m,n}^2}{r_{n,m}^2} \right),
\]

where \(M_{12}^\beta \) is defined in (2.33); \(L^C_{ij} \equiv L^C(\vec{r}_i, \vec{r}_j) \) and \(\tilde{L}^C_{ij} \equiv \tilde{L}^C(\vec{r}_i, \vec{r}_j) \) were introduced in this form in [11]

\[
L^C_{ij} = L_{ij} + \frac{\vec{r}_{12}^2}{4r_{01}^2 r_{02}^2 r_{25}^2} \ln \left(\frac{r_{02}^2 r_{15}^2}{r_{05}^2 r_{12}^2} \right) + \frac{\vec{r}_{12}^2}{4r_{02}^2 r_{05}^2 r_{15}^2} \ln \left(\frac{r_{01}^2 r_{25}^2}{r_{05}^2 r_{12}^2} \right),
\]

\[
\tilde{L}^C_{ij} = \tilde{L}_{ij} + \frac{\vec{r}_{12}^2}{4r_{01}^2 r_{02}^2 r_{25}^2} \ln \left(\frac{r_{02}^2 r_{15}^2}{r_{05}^2 r_{12}^2} \right) - \frac{\vec{r}_{12}^2}{4r_{02}^2 r_{05}^2 r_{15}^2} \ln \left(\frac{r_{01}^2 r_{25}^2}{r_{05}^2 r_{12}^2} \right).
\]
For the conformal quadrupole operator using (2.12) we have

\[
U^{\text{conf}}_{12\uparrow 34\uparrow} = U_{12\uparrow 34\uparrow} + \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0
\times \left\{ \frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} \ln \left(\frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} \right) \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{4\uparrow 0} U_{12\uparrow 30\uparrow} - (0 \to 1) \right)
+ \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \ln \left(\frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \right) \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{2\uparrow 0} U_{10\uparrow 34\uparrow} - (0 \to 1) \right)
- \frac{\vec{r}_{24}^2}{2\vec{r}_{20}^2 \vec{r}_{40}^2} \ln \left(\frac{\vec{r}_{24}^2}{\vec{r}_{20}^2 \vec{r}_{40}^2} \right) \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{30\uparrow} U_{04\uparrow 12\uparrow} - (0 \to 4) \right)
- \frac{\vec{r}_{13}^2}{2\vec{r}_{12}^2 \vec{r}_{30}^2} \ln \left(\frac{\vec{r}_{13}^2}{\vec{r}_{12}^2 \vec{r}_{30}^2} \right) \left(U_{4\uparrow 0} U_{12\uparrow 30\uparrow} + U_{2\uparrow 0} U_{34\uparrow 10\uparrow} - (0 \to 1) \right)
+ (1 \leftrightarrow 3, 2 \leftrightarrow 4) \right\} .
\]

(4.6)

The conformal double dipole operator reads

\[
(U_{12\uparrow} U_{34\uparrow})^{\text{conf}} = U_{12\uparrow} U_{34\uparrow} + \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0 (U_{21\uparrow 14\uparrow 3} + U_{2\uparrow 34\uparrow 1} - U_{2\uparrow 10\uparrow 34\uparrow 0} - U_{2\uparrow 04\uparrow 30\uparrow 1})
\times \left\{ \frac{\vec{r}_{13}^2}{\vec{r}_{10}^2 \vec{r}_{30}^2} \ln \left(\frac{\vec{r}_{13}^2}{\vec{r}_{10}^2 \vec{r}_{30}^2} \right) - \frac{\vec{r}_{23}^2}{\vec{r}_{20}^2 \vec{r}_{30}^2} \ln \left(\frac{\vec{r}_{23}^2}{\vec{r}_{20}^2 \vec{r}_{30}^2} \right)
- \frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} \ln \left(\frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} \right) + \frac{\vec{r}_{24}^2}{\vec{r}_{20}^2 \vec{r}_{40}^2} \ln \left(\frac{\vec{r}_{24}^2}{\vec{r}_{20}^2 \vec{r}_{40}^2} \right)
+ U_{4\uparrow 3} (U_{2\uparrow 1} - U_{2\uparrow 1}) + U_{2\uparrow 1} (U_{4\uparrow 3} - U_{4\uparrow 3}).
\]

(4.7)

The evolution equations for the conformal quadrupole and double dipole operators in the conformal basis have the general form

\[
\frac{\partial U^{\text{conf}}_{12\uparrow 34\uparrow}}{\partial \eta} = \frac{\alpha_s}{4\pi^2} \int d\vec{r}_0 \left\{ \frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{4\uparrow 0} U_{12\uparrow 30\uparrow} - (0 \to 1) \right)^{\text{conf}}
+ \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{2\uparrow 0} U_{10\uparrow 34\uparrow} - (0 \to 1) \right)^{\text{conf}}
- \frac{\vec{r}_{24}^2}{2\vec{r}_{20}^2 \vec{r}_{40}^2} \left(U_{10\uparrow} U_{02\uparrow 34\uparrow} + U_{30\uparrow} U_{04\uparrow 12\uparrow} - (0 \to 4) \right)^{\text{conf}}
- \frac{\vec{r}_{13}^2}{2\vec{r}_{12}^2 \vec{r}_{30}^2} \left(U_{4\uparrow 0} U_{12\uparrow 30\uparrow} + U_{2\uparrow 0} U_{34\uparrow 10\uparrow} - (0 \to 1) \right)^{\text{conf}} + (1 \leftrightarrow 3, 2 \leftrightarrow 4) \right\}
+ \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0 d\vec{r}_5 \left(G_s^{\text{conf}} + G_a^{\text{conf}} \right) + \frac{\alpha_s^2}{8\pi^3} \int d\vec{r}_0 \left(G_\beta + G^{\text{conf}} \right),
\]

(4.8)
\[
\frac{\partial (U_{12}^\dagger U_{34}^\dagger)^{conf}}{\partial \eta} = \left\{ \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0 \left[\frac{4\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} (U_{41}^\dagger U_{20}^\dagger U_{01}^\dagger - N_c U_{41}^\dagger U_{21}^\dagger)^{conf} + \frac{\vec{r}_{13}^2}{\vec{r}_{10}^2 \vec{r}_{30}^2} - \frac{\vec{r}_{23}^2}{\vec{r}_{20}^2 \vec{r}_{30}^2} - \frac{\vec{r}_{14}^2}{\vec{r}_{10}^2 \vec{r}_{40}^2} + \frac{\vec{r}_{24}^2}{\vec{r}_{20}^2 \vec{r}_{40}^2} \right] \\
\times (U_{21}^\dagger U_{34}^\dagger + U_{21}^\dagger U_{34}^\dagger - U_{21}^\dagger U_{34}^\dagger - U_{21}^\dagger U_{34}^\dagger)^{conf} \right\} + \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0 \left(\tilde{G}_s^{conf} + \tilde{G}_a^{conf} \right) + \frac{\alpha_s^2}{8\pi^2} \int d\vec{r}_0 \left(\tilde{G}_\beta + \tilde{G}^{conf} \right). \tag{4.9}
\]

As in the previous section, the individual NLO evolution of the dipoles here is taken out of the functions \(\tilde{G}\)

\[
\langle K_{NLO} \otimes U_{12}^{conf} \rangle = \frac{\partial U_{12}^{conf}}{\partial \eta} - \frac{\alpha_s}{2\pi^2} \int d\vec{r}_0 \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} (U_{21}^\dagger U_{01}^\dagger - N_c U_{21}^\dagger)^{conf}. \tag{4.10}
\]

Therefore one can rewrite (4.9)

\[
\frac{\partial (U_{12}^\dagger U_{34}^\dagger)^{conf}}{\partial \eta} = \left\{ U_{34}^\dagger \frac{\partial U_{12}^{conf}}{\partial \eta} + \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0 \left[\frac{4\vec{r}_{12}^2}{\vec{r}_{10}^2 \vec{r}_{20}^2} \right] \\
\times \left\{ (U_{41}^\dagger U_{20}^\dagger U_{01}^\dagger - N_c U_{41}^\dagger U_{21}^\dagger)^{conf} - U_{41}^\dagger (U_{21}^\dagger U_{01}^\dagger - N_c U_{21}^\dagger)^{conf} \right\} + \frac{\alpha_s}{8\pi^2} \int d\vec{r}_0 \left(\tilde{G}_s^{conf} + \tilde{G}_a^{conf} \right) + \frac{\alpha_s^2}{8\pi^2} \int d\vec{r}_0 \left(\tilde{G}_\beta + \tilde{G}^{conf} \right). \tag{4.11}
\]

Plainly, \(G_\beta\) and \(\tilde{G}_\beta\) are the same as in (3.11) and (3.12). The other functions \(G^{conf}\) will be given below.

To obtain these functions one has to calculate the evolution equations for conformal operators (4.6, 4.7) using (2.11–2.15) and express the results in terms of conformal operators via (4.1). Technically, it means that one has to add to the kernels of the evolution equations from the previous section the corrections in the form of double integrals w.r.t. \(\vec{r}_0\) and \(\vec{r}_5\) [9]. To get the conformally invariant results one has to symmetrize these corrections according to (3.2). Then, the terms with color operators independent of \(\vec{r}_0\) (or \(\vec{r}_5\)) can be integrated w.r.t. \(\vec{r}_0\) (or \(\vec{r}_5\)) via the integrals from appendix A of [22]. Finally, the terms with color operators independent of both \(\vec{r}_0\) and \(\vec{r}_5\) can be integrated with respect to both \(\vec{r}_0\) and \(\vec{r}_5\).

In addition to the integrals from appendix A of [22], one needs the following integral

\[
\int d\vec{r}_0 \left(\frac{\vec{r}_{01}^2 \vec{r}_{02}^2}{\vec{r}_{01}^2 \vec{r}_{02}^2} - \frac{\vec{r}_{01}^2 \vec{r}_{03}^2}{\vec{r}_{01}^2 \vec{r}_{03}^2} \right) \ln^2 \left(\frac{\vec{r}_{02} \vec{r}_{13}}{\vec{r}_{03} \vec{r}_{12}} \right) = \frac{\pi}{3} \ln^3 \left(\frac{\vec{r}_{13}^2}{\vec{r}_{12}^2} \right). \tag{4.12}
\]

4.1 Quadrupole

For the symmetric contribution \(G_s^{conf}\) we have

\[
G_s^{conf} = G_{s1}^{conf} + n_f G_q + G_{s2}^{conf}, \tag{4.13}
\]
where \(G_q \) did not change. It is defined in (3.15).

\[
G_{s1}^{conf} = (\{U_{0134}\langle 150215 - U_{016} U_{215} U_{013415} - (5 \leftrightarrow 0)\} + (5 \leftrightarrow 0)) (L_{12}^C + L_{21}^C - L_{13}^C)
+ (\{U_{01520215} - U_{151} U_{215} U_{0134150} - (5 \leftrightarrow 0)\} + (5 \leftrightarrow 0)) (L_{12}^C + L_{14}^C - L_{42}^C)
+ (1 \leftrightarrow 3, 2 \leftrightarrow 4),
\]

where \(L^C \) is defined in (4.4).

\[
G_{s2}^{conf} = \frac{1}{2} (U_{0134} U_{215} U_{134150} - U_{013} U_{215} U_{41501} + (5 \leftrightarrow 0))
\times (M_1 C_{34} - M_1 C_{43} + \frac{1}{2} (U_{013520215} - U_{013} U_{215} U_{134150} + (5 \leftrightarrow 0))
\times (M_3 C_{14} - M_3 C_{41} + \frac{1}{2} (U_{01520215} - U_{151} U_{215} U_{0134150} + (5 \leftrightarrow 0)) (M_2 C_{13} - M_2 C_{31} + \frac{1}{2} (U_{0134150215} - U_{013520215} + (5 \leftrightarrow 0)) (M_1 C_{23} - M_1 C_{32} + \frac{1}{2} (U_{0134150215} + (5 \leftrightarrow 0)) (M_1 C_{12} - M_1 C_{21} + \frac{1}{2} (U_{0134150215} + (5 \leftrightarrow 0)) + (1 \leftrightarrow 3, 2 \leftrightarrow 4).\]

Here \(M_{i}^{Cjk} \equiv M^{C}(\vec{r}_i, \vec{r}_j, \vec{r}_k) \) reads

\[
M_{2}^{C13} = M_2^{C13} + \frac{\vec{r}_{13}^{2} \vec{r}_{23}^{2}}{8 \vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \ln \left(\frac{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}}{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \right) - \frac{\vec{r}_{12}^{2}}{4 \vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \ln \left(\frac{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}}{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \right) + \frac{\vec{r}_{23}^{2}}{8 \vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \ln \left(\frac{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}}{\vec{r}_{01}^{2} \vec{r}_{02}^{2} \vec{r}_{03}^{2} \vec{r}_{12}^{2} \vec{r}_{23}^{2} \vec{r}_{35}^{2}} \right)\] (4.16)

The function \(M_{i}^{Cjk} \) is conformally invariant. It does not have property (2.30). Nevertheless like \(G_{s2} \), \(G_{s2}^{conf} \) can be rearranged to form (3.17) where instead of \(M_{i}^{jk} \) will be \(M_{i}^{Cjk} \). As a result \(G_{s2}^{conf} \) vanishes without the shockwave. Finally, one can see that \(G_{a}^{conf} \) can be formally obtained from \(G_{a} \) via the substitution \(M \rightarrow M^{C}, L \rightarrow L^{C} \).

The contribution which is the product of the antisymmetric w.r.t. \(5 \leftrightarrow 0 \) parts reads

\[
G_{a}^{conf} = G_{a1}^{conf} + G_{a2}^{conf} + G_{a3}^{conf}.\] (4.17)
The integrated w.r.t. \(\tilde{r}_5 \) part of the kernel has the form

\[
G^\text{conf} = G^\text{conf}_1 + G^\text{conf}_2.
\]
Here

\[
\mathbf{G}_{1}^{conf} = (\mathbf{U}_{01}^{*} \mathbf{U}_{21} \mathbf{U}_{40} - \mathbf{U}_{01}^{*} \mathbf{U}_{2}^{*} \mathbf{U}_{41}^{*} - \mathbf{U}_{2}^{*} \mathbf{U}_{41}^{*} (N_{c}^{2} - 1)) \\
\times \frac{1}{4} \left[\frac{1}{\mathbf{r}_{01}^{2} \mathbf{r}_{04}^{2}} \left(\ln^{2} \left(\frac{\mathbf{r}_{02}^{2} \mathbf{r}_{14}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{12}^{2}} \right) - \ln^{2} \left(\frac{\mathbf{r}_{03}^{2} \mathbf{r}_{14}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{12}^{2}} \right) \right) - \frac{\mathbf{r}_{13}^{2}}{\mathbf{r}_{02}^{2} \mathbf{r}_{04}^{2}} \ln^{2} \left(\frac{\mathbf{r}_{02}^{2} \mathbf{r}_{13}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{12}^{2}} \right) \\
+ \frac{\mathbf{r}_{23}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{02}^{2}} \left(\ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{23}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{12}^{2}} \right) - \ln^{2} \left(\frac{\mathbf{r}_{03}^{2} \mathbf{r}_{24}^{2}}{\mathbf{r}_{04}^{2} \mathbf{r}_{23}^{2}} \right) \right) - \frac{\mathbf{r}_{24}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{02}^{2}} \ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{24}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{23}^{2}} \right) \\
+ \frac{\mathbf{r}_{34}^{2}}{\mathbf{r}_{04}^{2} \mathbf{r}_{03}^{2}} \left(\ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{34}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{13}^{2}} \right) + \ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{24}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{13}^{2}} \right) \right) \right] + (1 \leftrightarrow 3, 2 \leftrightarrow 4).
\]

\[
\mathbf{G}_{2}^{conf} = \frac{N_{c}}{4} (\mathbf{U}_{21}^{*} \mathbf{U}_{41}^{*} - \mathbf{N}_{c} \mathbf{U}_{21}^{*} \mathbf{U}_{41}^{*} (N_{c}^{2} - 1)) \\
\times \frac{1}{4} \left[\frac{\mathbf{r}_{12}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{02}^{2}} \ln^{2} \left(\frac{\mathbf{r}_{02}^{2} \mathbf{r}_{23}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{12}^{2}} \right) - \frac{\mathbf{r}_{14}^{2}}{\mathbf{r}_{01}^{2} \mathbf{r}_{04}^{2}} \ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{14}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{12}^{2}} \right) \\
+ \frac{\mathbf{r}_{34}^{2}}{\mathbf{r}_{04}^{2} \mathbf{r}_{03}^{2}} \ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{34}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{13}^{2}} \right) + \ln^{2} \left(\frac{\mathbf{r}_{01}^{2} \mathbf{r}_{24}^{2}}{\mathbf{r}_{03}^{2} \mathbf{r}_{13}^{2}} \right) \right] + (1 \leftrightarrow 3, 2 \leftrightarrow 4).
\]

It was straightforwardly checked that all the integrals of \(\mathbf{G}_{s}^{conf}, \mathbf{G}_{o}^{conf}, \) and \(\mathbf{G}^{conf} \) do not have unintegrable singularities.

4.2 Double dipole

For symmetric contribution \(\mathbf{G}_{s}^{conf} \) we have

\[
\mathbf{G}_{s}^{conf} = \mathbf{G}_{s1}^{conf} + n_{f} \mathbf{G}_{q} + \mathbf{G}_{s2}^{conf},
\]

where \(\mathbf{G}_{q} \) (3.15) did not change.

\[
\mathbf{G}_{s1}^{conf} = \left(\mathbf{U}_{01}^{*} \mathbf{U}_{21} \mathbf{U}_{40} - \mathbf{U}_{01}^{*} \mathbf{U}_{2}^{*} \mathbf{U}_{41}^{*} - \mathbf{U}_{2}^{*} \mathbf{U}_{41}^{*} (N_{c}^{2} - 1)) \right) \left(L_{14}^{C} - L_{13}^{C} + L_{23}^{C} - L_{24}^{C} \right) \\
+ (1 \leftrightarrow 3, 2 \leftrightarrow 4),
\]

\[
\mathbf{G}_{s2}^{conf} = \left(M_{41}^{C13} - M_{4}^{C31} + M_{3}^{C14} - M_{3}^{C41} - M_{4}^{C23} + M_{4}^{C32} - M_{3}^{C24} + M_{3}^{C42} \right) \\
\times \frac{1}{2} (\mathbf{U}_{41}^{*} \mathbf{U}_{01}^{*} \mathbf{U}_{03}^{*} \mathbf{U}_{12}^{*} + \mathbf{U}_{41}^{*} \mathbf{U}_{05}^{*} \mathbf{U}_{01}^{*} \mathbf{U}_{13}^{*} - \mathbf{U}_{03}^{*} \mathbf{U}_{21}^{*} \mathbf{U}_{04}^{*} - \mathbf{U}_{03}^{*} \mathbf{U}_{23}^{*} \mathbf{U}_{05}^{*} + (5 \leftrightarrow 0)) \\
+ (M_{4}^{C12} - M_{4}^{C21} + M_{3}^{C21} - M_{3}^{C12} - M_{4}^{C34} + M_{4}^{C43} - M_{3}^{C43} + M_{3}^{C34} \right) \\
\times \frac{1}{2} (\mathbf{U}_{05}^{*} \mathbf{U}_{3}^{*} \mathbf{U}_{01}^{*} \mathbf{U}_{12}^{*} - \mathbf{U}_{05}^{*} \mathbf{U}_{21}^{*} \mathbf{U}_{04}^{*} + (5 \leftrightarrow 0)) + (1 \leftrightarrow 3, 2 \leftrightarrow 4).
\]
The antisymmetric contribution reads

\[
\tilde{G}_a = \frac{1}{2}(U_{0513}U_{0125}U_{0125}U_{0125} - U_{03}U_{0125}U_{0125} - U_{0125}U_{0125} - U_{0125}U_{0125} - (5 \leftrightarrow 0))
\]

\[
\times (M_{14}^3 + M_{14}^3 - R_{341} + R_{342})
\]

\[
+ \frac{1}{2}(U_{0513}U_{0125}U_{0125}U_{0125} + U_{0513}U_{0125}U_{0125}U_{0125} - U_{0125}U_{0125}U_{0125}U_{0125} - (5 \leftrightarrow 0))
\]

\[
\times (M_{14}^3 + M_{14}^3 + (1 \leftrightarrow 3, 2 \leftrightarrow 4)).
\]

(4.29)

The contribution with 1 gluon crossing the shockwave has the form

\[
\tilde{G}_a^{\text{conf}} = \frac{1}{4}(U_{012}U_{012}U_{012}U_{012} - U_{012}U_{012}U_{012}U_{012})
\]

\[
\times \left[\frac{\tilde{r}_{12}^2}{\tilde{r}_{01}^2 \tilde{r}_{02}^2} \left(\ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{12}^2}{\tilde{r}_{03}^2 \tilde{r}_{02}^2} \right) - \ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{12}^2}{\tilde{r}_{03}^2 \tilde{r}_{12}^2} \right) \right) + \ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{12}^2}{\tilde{r}_{03}^2 \tilde{r}_{12}^2} \right) \right]
\]

\[
+ \left(\frac{\tilde{r}_{13}^2}{\tilde{r}_{01}^2 \tilde{r}_{03}^2} + \frac{\tilde{r}_{23}^2}{\tilde{r}_{02}^2 \tilde{r}_{03}^2} \right) \ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{23}^2}{\tilde{r}_{03}^2 \tilde{r}_{02}^2} \right) - \left(\frac{\tilde{r}_{14}^2}{\tilde{r}_{01}^2 \tilde{r}_{04}^2} + \frac{\tilde{r}_{24}^2}{\tilde{r}_{02}^2 \tilde{r}_{04}^2} \right) \ln^2 \left(\frac{\tilde{r}_{01}^2 \tilde{r}_{24}^2}{\tilde{r}_{02}^2 \tilde{r}_{14}^2} \right)
\]

\[
+ \frac{1}{4} \left(N_\text{c}U_{012}U_{012}U_{012} - 2U_{012}U_{012} \right) \left[\frac{\tilde{r}_{24}^2}{\tilde{r}_{02}^2 \tilde{r}_{04}^2} \ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{34}^2}{\tilde{r}_{03}^2 \tilde{r}_{24}^2} \right) \right]
\]

\[
+ \frac{\tilde{r}_{13}^2}{\tilde{r}_{01}^2 \tilde{r}_{03}^2} \ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{13}^2}{\tilde{r}_{03}^2 \tilde{r}_{12}^2} \right) - \frac{\tilde{r}_{14}^2}{\tilde{r}_{01}^2 \tilde{r}_{04}^2} \left(\ln^2 \left(\frac{\tilde{r}_{02}^2 \tilde{r}_{14}^2}{\tilde{r}_{04}^2 \tilde{r}_{12}^2} \right) + \ln^2 \left(\frac{\tilde{r}_{04}^2 \tilde{r}_{24}^2}{\tilde{r}_{02}^2 \tilde{r}_{14}^2} \right) \right) \right] + (1 \leftrightarrow 3, 2 \leftrightarrow 4).
\]

(4.30)

As for the quadrupole, it was straightforwardly checked that all the integrals of \(\tilde{G}_a^{\text{conf}} \), \(\tilde{G}_a^{\text{conf}} \), and \(\tilde{G}^{\text{conf}} \) do not have unintegrable singularities.

5 Checks

There are two checks which can be done for the results of this paper. The evolution equations for the quadrupole and double dipole operators can be obtained from the NLO JIMWLK hamiltonian [16] and the general evolution equations from [17].

In this paper the following two checks were done. First, quadrupole kernels (3.11) and (4.8) go into BK ones (2.34) and (4.3) in the dipole limits 1 \(\to \) 2, 2 \(\to \) 3, 3 \(\to \) 4, and 4 \(\to \) 1. Double dipole kernels (3.12) and (4.9) also have the correct dipole limits 1 \(\to \) 2 and 3 \(\to \) 4. In these limits they also go into the BK ones (2.34) and (4.3) times \(N_\text{c} \). This statement can be checked straightforwardly going to the dipole limits in explicit expressions (3.11), (4.8), (3.12), and (4.9). Our kernels match the Balitsky-Fadin-Kuraev-Lipatov NLO kernel [23] in these limits.

The second check is that in SU(3) our kernels respect the identity

\[
B_{123} \equiv U_{12}U_{34}^\dagger - U_{12}U_{34}^\dagger,
\]

where \(B_{123} \) is the 3-quark Wilson loop (baryon) operator defined as

\[
B_{123} \equiv U_1 \cdot U_2 \cdot U_3 = \epsilon^{i j h} \epsilon_{i j h} U_{1 i} U_{2 j} U_{3 h}.
\]

(5.1)
The evolution equations for the l.h.s. of (5.1) in the standard and quasi-conformal forms are given in [11]. They read

\[
\frac{\partial B_{123}}{\partial \eta} = \frac{\alpha_s(\mu^2)}{8\pi^2} \int d\vec{r}_0 \left(B_{100}B_{320} + B_{200}B_{310} - B_{300}B_{210} - 6B_{123} \right)
\times \left\{ \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2\vec{r}_{02}^2} + \frac{3\alpha_s}{4\pi} \left[\ln \left(\frac{\vec{r}_{01}^2}{\vec{r}_{02}^2} \right) \left(\frac{1}{\vec{r}_{02}^2} - \frac{1}{\vec{r}_{01}^2} \right) - \frac{\vec{r}_{12}^2}{\vec{r}_{10}^2\vec{r}_{02}^2} \ln \left(\frac{\vec{r}_{12}^2}{\mu^2} \right) \right] \right\} + (1 \leftrightarrow 3) + (2 \leftrightarrow 3)
\]

\[
- \frac{\alpha_s^2n_f}{16\pi^4} \int d\vec{r}_0d\vec{r}_5 \left\{ \left(\frac{1}{3} \left(U_1U_0^\dagger U_5 + U_5U_0^\dagger U_1 \right) \cdot U_2 \cdot U_3 - \frac{1}{9} B_{123} tr(U_0^\dagger U_5) \right)
+ \left(U_1U_0^\dagger U_2 \right) \cdot U_3 \cdot U_5 + \frac{1}{6} B_{123} - \frac{1}{4} (B_{013}B_{002} + B_{001}B_{023} - B_{012}B_{003})
+ \left(1 \leftrightarrow 2 \right) \right\} L_{12}^5 + (1 \leftrightarrow 3) + (2 \leftrightarrow 3)
\]

\[
- \frac{\alpha_s^2}{8\pi^4} \int d\vec{r}_0d\vec{r}_5 \left\{ \frac{1}{2} \left[\frac{\vec{r}_{13}^2}{\vec{r}_{10}^2\vec{r}_{30}^2} - \frac{\vec{r}_{32}^2}{\vec{r}_{30}^2\vec{r}_{20}^2} \right] (B_{100}B_{320} - B_{200}B_{310})
\right\} \right\} + (1 \leftrightarrow 3) + (2 \leftrightarrow 3)
\]

\[
- \frac{\alpha_s^2n_f}{16\pi^4} \int d\vec{r}_0d\vec{r}_5 \left\{ \left\{ \frac{1}{3} \left(U_1U_0^\dagger U_5 + U_5U_0^\dagger U_1 \right) \cdot U_2 \cdot U_3 - \frac{1}{9} B_{123} tr(U_0^\dagger U_5) \right) \right\} \right\} + (1 \leftrightarrow 3) + (2 \leftrightarrow 3)
\]

where L, L_i^j, M_i^{jk} and M_{ij} are introduced in (2.22), (2.23), (2.29), and (2.32),(5.3) and (5.4).
\[-\frac{\alpha^2}{8\pi^4} \int d\tilde{r}_0 d\tilde{r}_5 \left\{ \left(\tilde{L}_C^r \left(U_0 U_5^\dagger U_2 \right) \cdot (U_1 U_0^\dagger U_5) \cdot U_3 \right) + L_{12}^r \left[\left(U_0 U_5^\dagger U_2 \right) \cdot (U_1 U_0^\dagger U_5) \cdot U_3 + tr \left(U_0 U_5^\dagger \right) \left(U_1 U_0^\dagger U_2 \right) \cdot U_3 \cdot U_5 \right] \right. \\
\left. - \frac{3}{4} \left[B_{155} B_{235} + B_{255} B_{135} - B_{355} B_{125} \right] + \frac{1}{2} B_{123} \right] \\
+ \left[\left(U_0 U_5^\dagger U_3 \right) \cdot \left(U_2 U_0^\dagger U_1 \right) \cdot U_5 + \left(U_1 U_0^\dagger U_2 \right) \cdot \left(U_3 U_5^\dagger U_0 \right) \cdot U_5 \right] \\
+ (5 \text{ all permutations } 1 \leftrightarrow 2 \leftrightarrow 3) \right\} + (0 \leftrightarrow 5), \tag{5.4} \]

where L^C is defined in (4.4), \tilde{L}^C — in (4.5), and

\[
M_{12}^C = \frac{\tilde{r}_{12}^2}{16\tilde{r}_{02}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \ln \left(\frac{\tilde{r}_{01}^2 \tilde{r}_{02}^2 \tilde{r}_{35}^4}{\tilde{r}_{03}^2 \tilde{r}_{15}^2 \tilde{r}_{25}^2} \right) + \frac{\tilde{r}_{12}^2}{16\tilde{r}_{01}^2 \tilde{r}_{05}^2 \tilde{r}_{25}^2} \ln \left(\frac{\tilde{r}_{03}^2 \tilde{r}_{05}^2 \tilde{r}_{12}^4 \tilde{r}_{25}^2}{\tilde{r}_{01}^2 \tilde{r}_{02}^2 \tilde{r}_{15}^2 \tilde{r}_{35}^4} \right) \\
+ \frac{\tilde{r}_{13}^2}{16\tilde{r}_{03}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \ln \left(\frac{\tilde{r}_{01}^2 \tilde{r}_{03}^2 \tilde{r}_{25}^2}{\tilde{r}_{02}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \right) + \frac{\tilde{r}_{13}^2}{16\tilde{r}_{01}^2 \tilde{r}_{03}^2 \tilde{r}_{25}^2} \ln \left(\frac{\tilde{r}_{02}^4 \tilde{r}_{03}^2 \tilde{r}_{12}^2 \tilde{r}_{25}^2}{\tilde{r}_{01}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \right) \\
+ \frac{\tilde{r}_{12}^2}{16\tilde{r}_{01}^2 \tilde{r}_{02}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \ln \left(\frac{\tilde{r}_{03}^2 \tilde{r}_{05}^2 \tilde{r}_{12}^4 \tilde{r}_{25}^2}{\tilde{r}_{01}^2 \tilde{r}_{02}^2 \tilde{r}_{15}^2 \tilde{r}_{35}^4} \right) + \frac{\tilde{r}_{12}^2}{16\tilde{r}_{01}^2 \tilde{r}_{05}^2 \tilde{r}_{25}^2 \tilde{r}_{35}^2} \ln \left(\frac{\tilde{r}_{02}^4 \tilde{r}_{05}^2 \tilde{r}_{12}^2 \tilde{r}_{25}^2}{\tilde{r}_{01}^2 \tilde{r}_{03}^2 \tilde{r}_{15}^2 \tilde{r}_{25}^2} \right) \\
+ \frac{\tilde{r}_{13}^2}{16\tilde{r}_{03}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \ln \left(\frac{\tilde{r}_{01}^2 \tilde{r}_{03}^2 \tilde{r}_{25}^2}{\tilde{r}_{02}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2} \right) + \frac{\tilde{r}_{13}^2}{16\tilde{r}_{01}^2 \tilde{r}_{03}^2 \tilde{r}_{25}^2} \ln \left(\frac{\tilde{r}_{02}^4 \tilde{r}_{03}^2 \tilde{r}_{12}^2 \tilde{r}_{25}^2}{\tilde{r}_{01}^2 \tilde{r}_{05}^2 \tilde{r}_{15}^2 \tilde{r}_{25}^2} \right) \right). \tag{5.5} \]

In order to check identity (5.1) one has to rewrite the evolution of its l.h.s. in the same operator basis as the r.h.s. To this end one can use the $SU(3)$ identities

\[
0 = [U_0 \cdot U_1 \cdot U_2 \cdot tr \left(U_0 U_5^\dagger \right) tr \left(U_3 U_5^\dagger \right)] \\
- tr \left(U_3 U_0^\dagger \right) \left(U_1 U_5^\dagger U_3 + U_3 U_5^\dagger U_1 \right) \cdot U_0 \cdot U_2 + \left(U_0 U_5^\dagger \right) \left(U_3 U_0^\dagger \right) \cdot U_2 \\
+ \left(U_1 U_5^\dagger U_0 \right) \cdot \left(U_3 U_0^\dagger U_3 \right) \cdot U_2 + \left(1 \leftrightarrow 2 \right) \left(5 \leftrightarrow 0 \right) \]

\[
0 = 2tr \left(U_5 U_0^\dagger \right) \left(U_2 U_5^\dagger U_3 + U_3 U_5^\dagger U_2 \right) \cdot U_0 \cdot U_1 \\
+ \left(U_0 U_5^\dagger U_1 + U_1 U_5^\dagger U_0 \right) \left(U_2 U_0^\dagger U_3 + U_3 U_0^\dagger U_2 \right) \cdot U_5 \\
+ \left(U_0 U_5^\dagger U_2 - U_2 U_5^\dagger U_0 \right) \left(U_3 U_0^\dagger U_1 - U_1 U_0^\dagger U_3 \right) \cdot U_5 \\
+ \left(U_0 U_5^\dagger U_3 - U_3 U_5^\dagger U_0 \right) \left(U_2 U_0^\dagger U_1 - U_1 U_0^\dagger U_2 \right) \cdot U_5 - \left(5 \leftrightarrow 0 \right) \]

in the antisymmetric color structures and then

\[
U_i \cdot U_j \cdot U_k = \left(U_i U_j^\dagger \right) \cdot \left(U_j U_k^\dagger \right) \cdot \left(U_k U_i^\dagger \right) \cdot \left(U_i^\dagger U_j \right) \cdot \left(U_j^\dagger U_k \right) \cdot \left(U_k^\dagger U_i \right) \tag{5.6} \]

with $l = 2$ to express U_2 in terms of U_2^\dagger. After that one can expand the products of Levi-Civita symbols as

\[
\varepsilon_{ijh} \varepsilon^{ij'h'} = \left| \begin{array}{ccc} \delta^i_j & \delta^j_i & \delta^i_{h'} \\ \delta^j_i & \delta^j_j & \delta^j_{h'} \\ \delta^j_{j'} & \delta^j_{h'} & \delta^j_{h'} \end{array} \right| \tag{5.7} \]

and see that (5.1) is satisfied.
6 Discussion and conclusion

This paper presents the evolution equations for the double dipole and quadrupole operators in the standard (3.11), (3.12) and quasi-conformal forms (4.8), (4.9). They have correct dipole limits and in SU(3) obey group identity (5.1) with the corresponding evolution equations for the 3QWL operator obtained in [11]. This fact ensures the correctness of all the 3 results. To construct the composite operators, prescription (4.1) was used. It was proposed in [9] for the dipole and proved in [21]. Here it gave the quasi-conformal kernels for both double dipole and quadrupole operators, thus being checked by the specific calculation of the evolution of the 4-point operators.

Unlike the dipole and the 3QWL operators, the evolution of the quadrupole and the double dipole ones generates several operators in the virtual part. Indeed, the virtual gluons do not change the color structure of a dipole or a baryon. New color structures appear in the evolution of these operators only when the gluons cross the shockwave. Therefore, one can write the virtual part of the evolution equations for them without calculation. The double dipole and the quadrupole, on the contrary, mix in the virtual part with each other and with the double dipoles and quadrupoles with the other order of the Wilson lines. Therefore they had to be calculated explicitly. Using the evolution equations for Wilson lines from [12] in this calculation, one encounters ill-defined integrals which were treated here so as to obtain the known result for the dipole and the 3QWL operators. Although such treatment gave the equations satisfying all the checks, it is important to have the initial expressions with the regularization of the IR singularities and to check the results of this paper. Such checks may be performed starting from the evolution equations found in [16] and [17].

The equations obtained in this paper may be used to derive the NLO evolution equation for Weizsäcker-Williams gluon distribution. This work is in progress. They can also be important in the analysis of higher than dipole Fock components of the virtual photon in the diffractive processes.

Acknowledgments

I would like to thank I. Balitsky for proposing this work. I am also grateful to I. Balitsky, M. G. Kozlov, R. N. Lee, A. I. Milstein, and A.V. Reznichenko for helpful discussions and to the Dynasty foundation for financial support. The study was also supported by the Russian Fund for Basic Research grant 13-02-01023 and president scholarship 171.2015.2.

References

[1] I. Balitsky, *Operator expansion for high-energy scattering*, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348].

[2] Y. V. Kovchegov and A. H. Mueller, Nucl. Phys. B 529, 451 (1998).

[3] L. D. McLerran and R. Venugopalan, Phys. Rev. D 59, 094002 (1999) [arXiv:hep-ph/9809427].
[4] F. Dominguez, A. H. Mueller, S. Munier, and Bo-Wen Xiao, *On the small-x evolution of the color quadrupole and the Weizsäcker-Williams gluon distribution*, Phys. Lett. B705, 106-111 (2011), arXiv:1108.1752 [hep-ph].

[5] Yu.V. Kovchegov, *Small x F(2) structure function of a nucleus including multiple pomeron exchanges*, Phys. Rev. D 60 (1999) 034008, [hep-ph/9901281]; *Unitarization of the BFKL pomeron on a nucleus*, Phys. Rev. D 61 (2000) 074018, [hep-ph/9905214].

[6] I. Balitsky, *Quark contribution to the small-x evolution of color dipole*, Phys. Rev. D 75, (2007) 014001 [hep-ph/0609105].

[7] Yu.V. Kovchegov and H. Weigert, *Triumvirate of Running Couplings in Small-x Evolution*, Nucl. Phys. A 784 (2007) 188, [hep-ph/0609090].

[8] I. Balitsky and G.A. Chirilli, *Next-to-leading order evolution of color dipoles*, Phys. Rev. D 77 (2008) 014019 [hep-ph/0710.4330].

[9] I. Balitsky and G. A. Chirilli, *NLO evolution of color dipoles in N=4 SYM*, Nucl. Phys. B 822, 45 (2009) [arXiv:0903.5326 [hep-ph]].

[10] R. E. Gerasimov and A. V. Grabovsky, *Evolution equation for 3-quark Wilson loop operator*, JHEP 1304, 102 (2013) [arXiv:1212.1681 [hep-th]].

[11] I. Balitsky and A. V. Grabovsky, *NLO evolution of 3-quark Wilson loop operator*, arXiv:1405.0443 [hep-ph].

[12] I. Balitsky and G. A. Chirilli, *Rapidity evolution of Wilson lines at the next-to-leading order*, arXiv:1309.7644 [hep-ph].

[13] A. V. Grabovsky, *Connected contribution to the kernel of the evolution equation for 3-quark Wilson loop operator*, JHEP 1309, 141 (2013) [arXiv:1307.5414 [hep-ph]].

[14] J. Jalilian Marian, A. Kovner, A. Leonidov and H. Weigert, Nucl. Phys. B 504 (1997) 415, [hep-ph/9701284]; Phys. Rev. D 59, (1998) 014014, [hep-ph/9706377]; J. Jalilian Marian, A. Kovner and H. Weigert, Phys. Rev. D 59, (1998) 014015, [hep-ph/9709432]; A. Kovner, J.G. Milhano and H. Weigert, Phys. Rev. D 62, (2000) 114005, [hep-ph/0004014]; H. Weigert, Nucl. Phys. A703, 823 (2002); Nucl. Phys. A 703 (2002) 823, [hep-ph/0004044]; E.Iancu, A. Leonidov and L. McLerran, Nucl. Phys. A 692 (2001) 583, [hep-ph/0011241]; E. Ferreiro, E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 703 (2002) 489, [hep-ph/0109115].

[15] A. Kovner, M. Lublinsky and Y. Mulian, *Complete JIMWLK Evolution at NLO*, arXiv:1310.0378 [hep-ph].

[16] A. Kovner, M. Lublinsky and Y. Mulian, *NLO JIMWLK evolution unabridged*, arXiv:1405.0418 [hep-ph].

[17] S. Caron-Huot, *Resummation of nonglobal logarithms and the BFKL equation*, [arXiv:1501.03754 [hep-ph]].

[18] J. Jalilian-Marian and Y. V. Kovchegov, Phys. Rev. D 70, 114017 (2004) [Erratum-ibid. D 71, 079901 (2005)].

[19] A. Dumitru and J. Jalilian-Marian, Phys. Rev. D 81, 094015 (2010), A. Dumitru, J. Jalilian-Marian, Phys. Rev. D82, 074023 (2010). [arXiv:1008.0480 [hep-ph]].

[20] A. V. Grabovsky, *Low-x Evolution Equation for Proton Green Function*, Acta Phys. Polon. Supp. 7, no. 3, 493 (2014).
[21] A. Kovner, M. Lublinsky, Y. Mulian, *Conformal symmetry of JIMWLK Evolution at NLO*, JHEP 1404 (2014) 030, [arXiv:1401.0374 [hep-th]].

[22] V. S. Fadin, R. Fiore and A. V. Grabovsky, *On the discrepancy of the low-x evolution kernels*, Nucl. Phys. B 820, 334 (2009) [arXiv:0904.0702 [hep-ph]].

[23] V.S. Fadin, R. Fiore and A.V. Grabovsky, *Matching of the low-x evolution kernels*, Nucl. Phys. B 831 (2010) 248 [hep-ph/0911.5617].