Energy concepts involved in MOS characterization

Olof Engström, Tomasz Gutt, and Henryk M. Przewłocki

Abstract—Starting from a quantum statistical reasoning, it is demonstrated that entropy properties of silicon/silicon dioxide interface electron traps may have a strong influence on measured distributions of interface states, depending on measurement method used. For methods, where the Fermi-level is used as a probe to define an energy position, the scale is based on free energy. On the other hand, methods based on thermal activation of electrons give the distribution on an enthalpy scale. It is shown that measured interface state distributions are influenced by the distribution of entropy, and that common features of measured energy distributions may be influenced by entropy variations. These results are used to interpret experimental data on the energy distribution of electron capture cross sections with an exponential increase followed by a more or less constant value as the energy distance of the traps from the conduction band edge increases. Such a relation is shown to be consistent with a situation where the emission and capture processes of electrons obey the Meyer-Neldel rule.

Keywords—C-V technique, capture cross sections, interface states, Meyer-Neldel rule, MOS, thermally stimulated current.

1. Introduction

Techniques commonly used for investigating electrical interface properties of metal-oxide-semiconductor (MOS) structures can be divided into two different classes depending on the energy concepts involved. In the capacitance versus voltage (C-V) [1], charge pumping [2] and conductance techniques [1], the position of the Fermi-level at the oxide-semiconductor interface is used to define the energy scale when determining the position of an interface electron state in relation to the semiconductor band edges. Another class includes methods where the energy position is measured by thermal activation, as for example in a thermally stimulated current experiment [3]. It has been shown that the energy quantities in these two cases are to be interpreted as different thermodynamic potentials; in the first case as free energies, in the second case as enthalpies [4–7]. A third energy scale is governed by quantum mechanical energy level calculations, where only the electronic potentials of the defect systems are taken into account. This corresponds to the electronic eigenvalues of the interface states and gives rise to a third energy scale. In principle, these three different energy quantities are identical only at zero absolute temperature, $T = 0$ K.

When measuring the interface electron state densities, D_{it}, of MOS structures by Fermi-probe technique, often two characteristic features are obtained when D_{it} is plotted as a function of the Fermi-level position at the interface: a U-shaped over-all distribution and two peaks at about 0.3 eV from the conduction and valence bands, respectively [1]. The latter are generally associated with the Pb-center [8]. It has been suggested that the peaks may be influenced by the merging of states on a free energy scale, due to a varying entropy along the interface state distribution [6]. Another common feature is the energy dependence of capture cross sections. In a number of works, a distribution has been found where the capture cross section increases exponentially with increasing energy distance to the conduction band and rolls over to a more or less constant value for energies deeper than about 0.3 eV [9–15].

In the present paper, we study interface electron states by taking into account the influence of total entropy changes when electrons are emitted to and captured from the conduction band. This treatment will be used as a background to explain experimental electron capture data for MOS interfaces. By adding new experimental data to that existing in the literature, we demonstrate that the energy dependence of capture cross sections can be considered as a result of interface states obeying the Meyer-Neldel rule (MNR) [16].

2. Carrier statistics of interface states

2.1. Occupation probabilities in the grand canonical ensemble

The probability, $P(1)$, to capture one electron, for an interface trap capable to hold one electron, can be expressed in the grand canonical ensemble as [17]

$$P(1) = \frac{Z_1 \exp \left(\frac{\mu}{kT} \right)}{\sum_{r} Z_r \exp \left(\frac{\mu}{kT} \right)},$$ \hspace{1cm} (1)

where μ is the Fermi-level at the interface, k is Boltzmann’s constant and T is absolute temperature. Z_r is the partition function of the canonical ensemble and is given by

$$Z_r = \sum_{i} \exp \left(\frac{-E_{ir}}{kT} \right) \equiv \exp \left(- \frac{G_r}{kT} \right).$$ \hspace{1cm} (2)

Here E_{ir} is the eigenenergy of the trap in state i with a maximum of I available states and with r electrons captured. The partition function can also be expressed by introducing free energy G_r as defined in Eq. (2). Using Eq. (2)
in Eq. (1) and introducing the definition of a “free energy level of the trap”, \(G_T \), as the free energy difference for \(r = 1 \) and \(r = 0 \),

\[
G_T \equiv G_1 - G_0 ,
\]

one finds

\[
P(1) = \frac{1}{1 + \exp \left(\frac{G_T - \mu}{kT} \right)} .
\]

From this equation, it can be seen that the occupation probability, \(P(1) \), of the trap is determined by the relation between the free energy position, \(G_T \), and the Fermi-level, \(\mu \). Especially, when these two quantities coincide, the probability of trap occupation is 1/2. From this we can make the following important statement: \textit{When the Fermi-level is used as a probe to select interface state energy positions, the energy scale of the distribution obtained is based on a free energy.} It has been argued that for deep bulk energy levels this quantity can be identified as the Gibbs free energy [18].

\subsection*{2.2. Thermal emission rates}

At thermal equilibrium, the emission of electrons from an interface energy level, \(G_T \), to the conduction band is balanced by a capture process governed by the average thermal velocity of electrons in the conduction band, \(v_{th} \), and the capture cross section, \(\sigma_n \), of electrons according to the following equality:

\[
e_n P(1) = v_{th} \sigma_n n \left(1 - P(1) \right) ,
\]

where \(e_n \) is the thermal emission rate for electrons from the trap level to the conduction band and \(n \) is the concentration of electrons in the conduction band. The latter quantity follows the standard expression

\[
n = N_c \exp \left(- \frac{G_c - \mu}{kT} \right) ,
\]

where \(N_c \) is the effective density of states in the conduction band and \(G_c \) is the free energy of carriers in the conduction band (equal to the “conduction band edge position” at \(T = 0 \) K), respectively. Introducing the definition \(\Delta G_n \equiv G_c - G_T \), as depicted in Fig. 1, we find from Eqs. (5) and (6):

\[
e_n = v_{th} \sigma_n N_c \exp \left(- \frac{\Delta G_n}{kT} \right) .
\]

Taking into consideration that the electron emission from the interface trap system may be connected to a change in entropy, \(\Delta S_n \), due to electronic degeneracy and ionic vibration [4, 7, 17, 18], we use the thermodynamic relation:

\[
\Delta H_n = \Delta G_n + \Delta S_n T ,
\]

where \(\Delta H_n \) is an enthalpy. Thus, an alternative expression for Eq. (7) is given by

\[
e_n = v_{th} \sigma_n N_c \exp \left(\frac{\Delta S_n}{k} \right) \exp \left(- \frac{\Delta H_n}{kT} \right) .
\]

In an Arrhenius plot of the emission rate for different temperatures, the slope of the activation curve gives the enthalpy value if the temperature dependencies of the pre-exponential factors in Eq. (9) are known.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{mosstructure.png}
\caption{Band model of the MOS structure on a free energy scale.}
\end{figure}
For traps in semiconductors, the entropy, ΔS_n, is often temperature dependent [19]. As the thermodynamic relationship between entropy and free energy is $\Delta S_n = -\partial \Delta G_n / \partial T$, this means that the temperature dependence of ΔG_n is nonlinear. In practice it exhibits a shape shown schematically in Fig. 2. In the present treatment, we assume for simplicity, that ΔS_n is temperature independent, meaning that ΔG_n is a linear function of T. For such a case it is readily shown from Eq. (2) that the mean value of the occupied eigenenergy levels, $E_{i,r}$, fulfills a relation to the free energy and the entropy as given by Eq. (8). For a one-electron trap with only one energy level, this means that the energy eigenvalue distance from the conduction band, ΔE_n, of this level fulfills the relation:

$$\Delta E_n = \Delta G_n + \Delta S_n T.$$

(10)

Hence, the enthalpy and the energy eigenvalue are identical for this specific case.

2.3. Influence of entropies on the energy distribution of interface states

When measuring D_g by Fermi-probe technique, the energy resolution is determined by a weight function [4], $w = \partial P(1)/\partial (\Delta G_n)$, which is obtained from Eq. (4) as

$$w(\Delta G_n) = \frac{1}{kT} \exp\left(\frac{\Delta \mu - \Delta G_n}{kT} \right) \left\{ 1 + \exp\left(\frac{\Delta \mu - \Delta G_n}{kT} \right) \right\}^{-2},$$

(11)

where $\Delta \mu = G_c - \mu$.

The interface state density distribution on a free energy scale is then given by

$$D_g(\Delta G_n) = \int_0^{\Delta E_g} D_g(\Delta E_n) \left\{ w(\Delta G_n(\Delta E_n)) \right\} d(\Delta E_n),$$

(12)

where the function $\Delta G_n(\Delta E_n)$ is given by Eq. (10) and ΔE_g is the semiconductor energy band gap.

In order to study the influence of a varying entropy, we assume that D_g calculated on an energy eigenvalue scale is constant. We will see that changes in the entropy distribution make clear changes in D_g when based on a free energy scale. As an example, taking the entropy distribution on an eigenenergy scale as shown in Fig. 3a, the corresponding interface state distribution is demonstrated in Fig. 3b on a free energy scale. Here we notice how $D_g(\Delta G_n)$ is merged towards the conduction band by the $\Delta S_n(\Delta E_n)$ function chosen in Fig. 3a. This shape of $\Delta S_n(\Delta E_n)$ gives the standard features often observed for D_g as measured by C-V technique: the increased inter-

![Fig. 3. Entropy in units of k as a function of eigenenergy (a) used for calculating the interface state density, D_g, as a function of free energy (b) for a D_g distribution which is constant on an eigen energy scale.](image)

2.4. Interface traps following the Meyer-Neldel rule

Considering a set $\{j\}$, constituting a “family” of electron traps with properties given by $(\epsilon_j, \sigma_j, \Delta S_j, \Delta H_j)$, the thermal emission rate for each member, j, can be expressed as

$$e_j = v_{th} \sigma_j N_c \exp\left(\frac{\Delta S_j}{k} \right) \exp\left(-\frac{\Delta H_j}{kT} \right)$$

$$= v_{th} \sigma_j N_c \exp\left(-\frac{\Delta G_j}{kT} \right), \quad j = 1, 2, 3, \ldots$$

(13)

Assuming that there exists an “iso-kinetic” temperature T_c such that the emission rate, e_c, is equal for all $j = 1, 2, 3, \ldots$, we have for $e_c \equiv e_j(T_c)$:

$$e_c = v_{th} \sigma_j N_c \exp\left(\frac{\Delta S_j}{k} \right) \exp\left(-\frac{\Delta H_j}{kT_c} \right)$$

$$= v_{th} \sigma_j N_c \exp\left(-\frac{\Delta G_j}{kT_c} \right).$$

(14)
For an Arrhenius plot, this means that all activation curves would intercept at the iso-kinetic temperature, \(T_c \), with a common emission rate, \(e_c \). Such a feature indicates that the family, \(\{ j \} \), obeys the Meyer-Neldel rule [16]. From Eq. (14), we find

\[
\ln \sigma_j = \ln \frac{e_c}{\nu_0 N_c} + \frac{\Delta G_j}{kT_c}.
\]

(15)

Hence, for a set of interface traps following the Meyer-Neldel rule, one would expect the logarithm of the capture cross sections to be a linear function of the free energy, \(\Delta G_j \). Such experimental data are commonly found for SiO\(_2\)/Si interfaces [9–15] and will be further discussed below.

From Eq. (15) it is also seen that increasing the iso-kinetic temperature, \(T_c \), to high values makes the capture cross section less dependent on the free energy, \(\Delta G_j \), which may explain the constant range for capture cross sections often found for the deeper part of the \(D\) distribution of MOS interfaces, at energies larger than about 0.3 eV [9–15]. A second possibility would be that the enthalpy for releasing an electron from the trap is the product between \(T_c \) and \(\Delta S_n \), i.e., corresponds to the total heat for releasing the electron at this temperature:

\[
\Delta H_j = \Delta S_j T_c.
\]

(16)

Such a relation has been discussed for deep bulk levels by Van Vechten and Thurmond [18]. As a motivation for MNR to be valid for interface states, it was also suggested by Johnston et al. [20] and was further used in [21] to explain the existence of MNR among a large number of bulk traps in GaAs. It means that the entropy is an increasing function of enthalpy or, in the theoretical treatment above, with the eigenenergy difference, \(\Delta E_n \). For a case where Eq. (16) is valid, we find from Eq. (13) that \(\Delta G_j = 0 \) which means that all traps of the family have the same capture cross section \(\sigma_j \equiv \sigma_c \) for all \(j = 1, 2, 3, \ldots \) However, for the present case we find from the slopes of the curves in Figs. 4 and 5 that \(T_c \approx 300 \) K, which is the temperature

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig4}
\caption{Electron capture cross sections of Si/SiO\(_2\) interface states as a function of free energy position in relation to the conduction band.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig5}
\caption{Capture cross section versus free energy taken from the literature, showing the interception of curves. Each curve represents one interface state “family”. Data intercepting at points marked in the diagram represent a “dynasty”. The slopes of the curves give the iso-kinetic temperatures and the intercepts with the ordinate axis give the \(e_c \) values (Eq. (14)).}
\end{figure}

3. Experimental

In order to confirm the results earlier published in the literature [9–15], we repeated measurements on thermally oxidized MOS structures by using the conductance technique [1]. The samples were prepared by oxidizing 4-inch, n-type, phosphorus doped silicon wafers at 1000°C in an N\(_2\)/O\(_2\) flow with 31/45 min ramp-up/ramp-down rates to obtain SiO\(_2\) thicknesses of \(t_{\text{ox}} = 60 \) and 160 nm. The wafers were annealed afterwards in nitrogen for \(t(N_2) = 0, 10, 120 \) and 1440 min at the temperature \(T = 1050°C \) with 40/55 min ramp-up/ramp-down rates. Then, 416 nm of aluminium was deposited, followed by the standard post-metallization annealing at 450°C for 20 min in N\(_2\)/H\(_2\). Figure 4 shows the capture cross section for electrons as a function of free energy distance from the conduction band for a large number of samples taken from this series of wafers. For the lower energy part, the capture cross sections increase exponentially over more than six orders of
magnitude. At $\Delta G_n = 0.4$ eV, the increasing feature rolls off and becomes either close to constant or decreases with increasing energy. Often in the literature, a more constant behavior is observed in this energy range [9–15]. Figure 5 depicts corresponding data for the low energy part, redrawn from literature [9–15]. An interesting feature of these results is that the different families, representing different MOS systems, in a couple of cases seem to cluster into common crossing points at about 0.3–0.4 eV. From the slopes of the curves, the iso-kinetic temperature T_c can be calculated while the intercepts at the ordinate axis gives the emission rate e_c, in accordance with Eq. (14). Each family has its own values of these quantities but, interesting enough, in some cases they seem to cluster into “dynasties”, i.e., at one common ΔG value some families have one common σ value. Moreover, the different families originate from the results of different authors! The data indicate that for each dynasty there exists at least one common free energy value, ΔG_j, with a common capture cross section, governed by the crossing points in Fig. 5. This means that plotting the e_c values versus the inverse T_c values in an Arrhenius plot would give one activation curve for each dynasty. As seen in Fig. 6, this is indeed the case. Because all ΔG_j values at the crossing points in Fig. 5 were taken at about the same room temperature, the slope of the activation plots in Fig. 6 is expected to be equal to the free energies as deduced from Eq. (13).

4. Discussion

The theoretical $D_n(\Delta G_n)$ curves in Figs. 3a and 3b were based on an assumption that the value of $D_n(\Delta E_n)$ is constant. There is no experimental or theoretical support for such an approach. The idea is to demonstrate the strong influence of entropy variation among the interface states on measured $D_n(\Delta G_n)$ distributions. Such consideration is seldom taken into account when comparing theoretically calculated $D_n(\Delta E_n)$ data with measured $D_n(\Delta G_n)$ results. Theoretical calculations of, for example, the U-shaped interface state distribution by Sakurai and Sugano [22] or of the Pb-center by Edwards [23] were made for eigenenergy scales. Even if these results demonstrate the occurrence of specific distribution characteristics, it is the aim of the present work to point out the influence of electron state degeneracies and ionic vibrational changes [7], together manifesting the total entropy of interface states.

The entropy distribution as shown in Fig. 3a, with a constant value for lower energies and a linear behavior for energies about above 0.3 eV, gives rise to a $D_n(\Delta G_n)$ distribution which qualitatively agrees with the features found from Fermi-probe measurements like the C-V technique. Furthermore, it gives a motivation for the shape of the free energy distribution of capture cross sections normally found at SiO$_2$/Si interfaces by assuming that this kind of states belong to “families” obeying the Meyer-Neldel rule. A fascinating observation is that these families can be portioned into clusters of “dynasties”, including centers with equal capture cross sections at equal free energy positions. The condition for making up a dynasty is that one capture cross section is identical for the members of each family. An interesting observation in Figs. 5 and 6 is that this occurs at ΔG_n values of about 0.3–0.4 eV, where the Pb-center is normally found. This would mean that centers giving rise to what is normally labeled as the “Pb-center” may have widely different capture cross sections as given by the interception points between the curves in Fig. 5.

References

[1] E. H. Nicollian and J. R. Brews, MOS (Metal-Oxide-Semiconductor) Physics and Technology, New York: Wiley-Interscience, 1982.
[2] G. Groeseneken, H. E. Maes, N. Beltran, and R. F. DeKeersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Dev., vol. ED-31, pp. 42–53, 1984.
[3] P. Blood and J. W. Onton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States. London: Academic Press, 1992.
[4] O. Engström and A. Alm, “Energy concepts of insulator-semiconductor interface traps”, J. Appl. Phys., vol. 54, pp. 5240–5244, 1983.
[5] O. Engström and M. S. Shivaraman, “Statistics for the interpretation of deep level transient spectroscopy on insulator-semiconductor interfaces”, J. Appl. Phys., vol. 58, pp. 3929–3930, 1985.
[6] O. Engström, “Influence of entropy properties on measured trap energy distributions at insulator-semiconductor interface”, Appl. Phys. Lett., vol. 55, pp. 47–49, 1989.
[7] O. Engström and H. G. Grimmeiss, “Vibrionic states of silicon-silicon dioxide interface traps”, Semicond. Sci. Technol., no. 4, pp. 1106–1115, 1989.
[8] E. H. Poindexter, “MOS interface states: overview and physico-chemical perspective”, Semicond. Sci. Technol., no. 4, pp. 961–969, 1989.
[9] W. Fahrner and A. Goetzberger, “Energy dependence of electrical properties of interface states in Si-SiO$_2$ interfaces”, Appl. Phys. Lett., vol. 17, pp. 16–18, 1970.
[10] H. Deuling, E. Klausmann, and A. Goetzberger, “Interface states in Si-SiO$_2$ interfaces”, Solid State Electron., vol. 15, pp. 559–571, 1972.
Olof Engström received the Ph.D. degree in solid state physics from the University of Lund in 1975 and was later employed by ASEA AB for research on high power thyristors, by AB Rifa for development of MOS technology and by the Swedish Defence Research Institute for sensor research. In 1984, he came to Chalmers University of Technology as a Professor in solid state electronics. Between 1996 and 1999, he served as Dean of Chalmers School of Electrical and Computer Engineering and 1999–2002 he was the Director of the Microtechnology Center at Chalmers (MC2). From 2003 he is back in research as a Professor at the Department of Microtechnology and Nanoscience of MC2. His present research interest is in semiconductor quantum structures and interfaces. In 1991, he founded Samba Sensors AB, a company for production of fiberoptical pressure sensors.

Department of Microtechnology and Nanoscience Chalmers University of Technology SE-412 96 Göteborg, Sweden

e-mail: olof.engstrom@mc2.chalmers.se

Tomasz Gutt obtained the M.Sc. and Ph.D. degrees in 1976, 1984, respectively, specializing in technological process diagnostics and measurements of MOS structures. In the period of 1980–1992 at the Institute of Electron Technology, Warsaw, Poland, he worked on the development of a computer aided IC manufacturing system. From 1993 until 2003 he was employed by ICL Ltd. and Fujitsu. At present, with the Institute of Electron Technology, he carries out research on semiconductor-insulator interface quality characterization methods.

e-mail: tgutt@ite.waw.pl

Department of MOS System Studies Institute of Electron Technology Lotników av. 32/46 02-668 Warsaw, Poland

Henryk M. Przewłocki obtained the M.Sc., Ph.D., and D.Sc. degrees in 1959, 1969, and 2001, respectively, specializing in physics, technology, and measurements of MOS structures. In the period of 1965–1983, he also taught various courses to graduate and undergraduate students of the Technical University of Warsaw, Poland. At present he is head of a research group at the Institute of Electron Technology in Warsaw, specializing in photoelectric properties and measurement methods of MOS structures. He has served as consultant and committeeman to numerous scientific, industrial and educational organizations in Poland and worldwide and has received a number of prestigious awards, including the highest Polish award, the National Award for Outstanding Achievements in Technical Sciences.

e-mail: hmp@ite.waw.pl

Department of MOS System Studies Institute of Electron Technology Lotników av. 32/46 02-668 Warsaw, Poland

[11] M. Morita, K. Tsubouchi, and N. Mikoshiba, “Measurement of interface-state parameters near the band edge at the Si/SiO2 interface by the conductance method”, Appl. Phys. Lett., vol. 33, pp. 745–747, 1978.
[12] W. D. Eades and R. M. Swanson, “Determination of the capture cross section and degeneracy factor of Si-SiO2 interface states”, Appl. Phys. Lett., vol. 44, pp. 988–990, 1984.
[13] N. Hanei, L. Vishnubhotla, and T. P. Ma, “Possible observation of P0 and P3 centers at irradiated (100)Si/SiO2 interface from electrical measurements”, Appl. Phys. Lett., vol. 59, pp. 3416–3418, 1991.
[14] M. Uren, “Interface state capture cross section measurements on vacuum annealed and radiation damaged Si/SiO2 surfaces”, J. Electrochem. Soc., vol. 145, pp. 683–689, 1988.
[15] J. Alborn, W. Füssel, N. D. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross sections of defect states at the Si/SiO2 interface”, J. Appl. Phys., vol. 88, pp. 842–849, 2000.
[16] A. Yelon and B. Movaghar, “Microscopic explanation of the compensation Meyer-Neldel rule”, Phys. Rev. Lett., vol. 65, pp. 618–620, 1990.
[17] Handbook of Semiconductors, P. T. Landsberg, Ed. New York: Elsevier, 1992, vol. 1, chapter 6.
[18] J. A. Van Vechten and C. D. Thurmond, “Entropy of ionization and temperature variation of ionization levels of defects in semiconductors”, Phys. Rev. B, vol. 14, pp. 3539–3550, 1976.
[19] C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs and GalP”, J. Electrochem. Soc., vol. 122, pp. 1133–1141, 1975.
[20] S. W. Johnston, R. S. Crandall, and A. Yelon, “Evidence of the Meyer-Neldel rule in InGaAsN alloys and the problem of determining trap capture cross sections”, Appl. Phys. Lett., vol. 83, pp. 908–909, 2003.
[21] O. Engström and M. Kaniewska, “Discovery of classes among deep level centers in gallium arsenide” (submitted to J. Mat. Sci. B).
[22] T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si-SiO2 interfaces”, J. Appl. Phys., vol. 52, pp. 2889–2896, 1981.
[23] A. H. Edwards, “Theory of the Pb center at the \{111\} Si/SiO2 interface”, Phys. Rev. B, vol. 36, pp. 9638–9648, 1987.