INTRODUCTION

Modern life style and certain environmental exposure may have caused male infertility [1]. Various factors can directly or indirectly lead to this sexual disfunction [2-5]. These days, the number of male with infertility problem keeps increasing across the world. Various types of modern medicine have been applied to solve this problem but many of which yield negative effects [6, 7].

Infertility problem has been a global issue [8]. Various studies had been done to investigate whether there is a reduction of quality in men’s fertility in the last 40 y [9]. Many researches proved that there is a drop of density in human sperm. A study comparing the quality of amount of sperm compared to those born before 1950s [10]. A review also found out that males born prior to 1970s have 25% lower of sperm abnormality and a 20% decrease of sperm motility. It was male fertility in 1977 and 1994 in Belgium shows an 11.8% increase in sperm concentration and motility at doses of 100, 150, 200 and 250 mg/kg body weight, whereas a significant decrease of abnormal sperm morphology was found at doses of 150, 200 and 250 mg/kg body weight.

The content of L-dopa in velvet beans may be varying depending on the origin and environmental conditions. The Indonesian velvet beans, especially originating from Bantul district, have L-dopa content of 7.56% [25]. Despite the numerous studies on the ability of L-dopa in velvet beans in increasing the fertility of men, however L-dopa in velvet beans from Indonesia has not been well investigated on their ability in increasing the fertility of m. m, as well as the dose which give the significant effect. The recent study is conducted to provide a more comprehensive understanding of the effect of Indonesia velvet beans extract on the fertility of male albino mice (Mus musculus), especially on the concentration, motility, and morphology of sperm.

MATERIALS AND METHODS

Material

Sample or material used in this research is the seed of velvet beans (Mucuna pruriens) which originates from Yogyakarta Indonesia, whereas animals were obtained from the Laboratorium of Biotechnology of Institut Teknologi Bandung (ITB).

Sample preparation

The chosen velvet beans were cleaned, peeled, dried up, and then mashed using a grilling machine. The velvet bean powder was then

ABSTRACT

Objective: This research aims to determine the dose of Indonesian velvet bean (Mucuna pruriens) extract which has significant effect on the fertility mice (concentration, motility and morphology of mice sperm). The extract is expected to become an alternative infertility herbal medicine relatively more secure and affordable replacing synthetic hormonal drugs which tend to have negative effects.

Methods: The seed was taken from Yogyakarta Indonesia. Fertility test was done to fertile adult male albino mice 12 w old, weighing 25-35 grams. Fertility tests performed on seven groups of mice; i.e. negative control, positive control and treatment groups (five dose levels at 50, 100, 150, 200 and 250 mg/kg body weight). Subsequent fertility test results were statistically tested, including tests of normality (Kolmogorov-Sminov) followed by T test (Independent-Samples T Test).

Results: The sperm concentration and motility increased as an increased dose of seed extract was applied, as well as decreased abnormal morphology. The highest change in the quality and quantity of sperm occurred at the dose of 250 mg/kg body weight with increased sperm concentration of about 22 million, sperm motility increased by 18% and decreased abnormal sperm morphology by 12%. Statistical analysis showed a significant increase in sperm concentration and motility at doses of 100, 150, 200 and 250 mg/kg body weight, whereas a significant decrease of abnormal sperm morphology was found at doses of 150, 200 and 250 mg/kg body weight.

Conclusion: Based on this study it is concluded that Indonesian velvet beans seed extract can increased the fertility of albino male mice significantly at dose level 250 mg/kg body weight.

Keywords: Mucuna pruriens, L-dopa, Sperm Concentration, Sperm Motility, Sperm Morphology
extracted using the macerarion method (3 x 24 h) with water and ethanol (1:1) as the solvent and citric acid added until the pH reached 3 in room temperarure. Every 24 h, the samples were filtered and remacerated. The addition of citric acid was done to increase the solubility of the main compound in velvet bean, L-dopa. The solvent in the velvet bean macerate was then evaporated using the rotary vacuum evaparator. The evaporated macerate was then dried up using the freeze dryer, resulting brown-black dry velvet bean extract in 1.58%.

Determining the level of L-dopa

The percentage of L-dopa identified uses high-performance liquid chromatography (HPLC) analysis [26]. This step started with making a standard solution of L-dopa with concentrations 25, 50, 75, 100 and 125 ppm. The velvet bean extract was tested using HPLC with a testing parameter of λ = 280 nm, speed flow 1 ml/minute and solvent ratio of H2O: Methanol: H3PO4, that is 97:20:1 [27].

Animal treatments

In this study, 45 male mice (12 w old) weighing about 25-30 g were used for the investigation. The mice were aclimatized to an average temperature of 23-29 °C for seven days so that these tested animals could adapt themselves to their new environment during the treatment. They were grouped into cages of 30x20x12 cm3. Each mouse of treatment group received certain doses of velvet beans extract (L-dopa treatments, 50 mg/kg), group III-VI: administration of velvet beans extract whereas that in the positive control group was given pure L-dopa of dose 50 mg/kg body weight. The amount of velvet beans extract was then evaporated using the rotary vacuum evaporator. The evaporated macerate was then dried up using the rotary vacuum evaporator. The evaporated macerate was then dissolved with 2 ml PBS until it became homogenous.

Assesments the sperm concentration [28]

Neck-dislocated died mice were located on a tray for surgery. Their cauda epididymis was isolated using phosphate buffered saline (PBS). They were grouped into cages of 30 x 20 x 12 cm3. Sperm suspension containing pipet was the dissolved by PBS until 1.1. The sperm suspension was emptied by a leukocyte pipet until 1.0. The sperm suspension containing pipet was the dissolved by PBS until 1.1 before it was well shaked. The calculation of sperm concentration made into a percentage. Abnormal sperm includes abnormality such as broken, detached and thin head; broken, crooked and droplet cytoplasm middle part; or broken, crooked and coil tail. The observation used a microscope of 400x magnifications.

Assessment the motility of the sperm [28]

Sperm motility was observable from sperm suspension dropped on neubauer counting chamber observed by a microscope of 400x magnifications. Sperm motility is valued on the basis of percentage of good sperm motility, that is, the sperm which moves fast, straight forward and active.

Assessment the morphology of the sperm [28]

Sperm morphology is observable with colouring eosin Y 1%. Sperm morphology testing was conducted by differentiating the shape of normal and abnormal sperm of 100 sperms observed before it was made into a percentage. Abnormal sperm includes abnormality such as broken, detached and thin head; broken, crooked and droplet cytoplasm middle part; or broken, crooked and coil tail. The normality of the data acquired was then tested using the test of normality (Kolmogorov-Sminov). Normally distributed data can be analysed using the T test (Independent-Samples T Test). The software SPSS 20 was used for the analysis.

RESULTS

The level of L-dopa

The chromatogram of HPLC indicates that the peak standard L-dopa appears at the retention time (RT) of 3.44. The seed extract chromatogram shows seven peaks at different retention period. Having been compared to standard calibration curve, the obtained data show that percentage of L-dopa in the Indonesian velvet bean extract was 13.9%.

The effect of the velvet bean extracts on sperm concentration, motility, and morphology

Mice sperm concentration was observed on the 31st day after the application of velvet beans extract for 30 d. The result of this observation can be seen in table 1.

Table 1: The experimental results of mice sperm concentration
Mice groups (n=5)

I
II
III
IV
V
VI
VII

*) Significantly different from control (p<0.05)

Table 2: The experimental results of mice sperm motility
Mice groups (n=5)

I
II
III
IV
V
VI
VII

*) Significantly different from control (p<0.05)
Based on the data acquired, we can conclude that the velvet bean extract apparently succeeded in increasing the sperm concentration of the mice, in all dosage used in this research (50, 100, 150, 200, and 250 mg/kg). The smallest improvement happened on the 50 mg/kg dosage, while the largest improvement happened on the 250 mg/kg dosage. In general, it is observed that in the dosage range of 50-250 mg/kg, the sperm concentration and the dosage correlates positively.

The motility of the sperm was presented in table 2. Data show the use of Indonesian velvet beans extract can increase mice sperm motility in all doses. The sperm morphology was presented in table 3.

DISCUSSION

The experimental results showed the velvet bean extract apparently succeeded in increasing the sperm concentration of the mice, in all dosage used in this research (50, 100, 150, 200, and 250 mg/kg). Another interesting phenomena observed is that L-dopa was able to increase the sperm concentration of the mice, but a higher increase was observed in mice that were given the velvet bean extract. The concentration of L-dopa which was given to the positive control group was 50 mg/kg, equivalent to 1.75 mg, while based on the HPLC result showed that the concentration of L-dopa in the velvet bean extract in each dosage was equivalent to 0.22, 0.44, 0.88, 1.77 and 3.55 mg. This fact proved that the L-dopa contained in the velvet beans was not the only one that affected the sperm concentration of the mice.

The result of the normality test showed that the sperm concentration of the mice in all seven treatments has a larger significance value than the degree of freedom 0.05. Thus, H0 was accepted, which means that the concentration of the positive control group and the treatment group with the 50 mg/kg dosage did not have a significant difference to the control group. However, the treatment groups that were given the 100, 150, 200, or 250 mg/kg dosage showed a significant difference from the control group.

The increase in sperm concentration indicated the success in spermatogenesis process. This process is heavily affected by gonadotrophine hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones stimulate testis, sex organ in men. Both hormones are produced by the cells in the anterior pituitary, known as gonadotrophins. The secretion of these hormones is affected by GnRH (gonadotropin releasing hormone) that is secreted by the hypothalamus. Both hormones work on different part of the testis. LH works on Leydig cells to control the secretion of testosterone, while FSH works on tubulus seminiferosa, especially on sertoli cells to improve spermatogenesis.

The motility of the sperm was presented in table 2. Data show the use of Indonesian velvet beans extract can increase mice sperm motility in all doses. The sperm morphology was presented in table 3.

Table 3: The experimental results of mice sperm morphology

Mice groups (n=5)	Treatments	Abnormal sperm morphology (%)
I	Negative control	16.5±1.81
II	Positive control	16.2±1.64
III	Treatment Group (50 mg/kg body weight)	15.4±0.69
IV	Treatment Group (100 mg/kg body weight)	13.0±3.31
V	Treatment Group (150 mg/kg body weight)	11.0±1.22*
VI	Treatment Group (200 mg/kg body weight)	8.6±0.89*
VII	Treatment Group (250 mg/kg body weight)	4.6±1.34*

*) Significantly different from control (p<0.05)

Sperm morphology depends on testosterone hormone secreted by Leydig cells. Disturbance in testosterone supply leads to dysfunction of the epididymis, in which spermatozoa grows [29]. Given the significant role of testosterone in spermatogenesis process, its limited supply will disturb this process and cause primary or spermatogenesis abnormalities such as over or undersized head, coiled tail, double tail and others [30].

The study shows that Indonesian velvet beans extract can increase sperm concentration and motility as well as reduce its abnormal morphology. This increase in sperm quality and quantity is inseparable from L-dopa component found in Indonesian velvet beans. This compound increase not only sexual activity but also hormones regulating spermatogenesis is process such as FSH and LH.

L-dopa in human body is changed into dopamine by aromatic L-amino acid decarboxylase enzyme as a catalyst. As previously explored, psychological stress reduces dopamine and testosterone level. Increased dopamine in body can directly reduce psychological stress and stimulate brain to secrete hormone LH [31].

Increased sperm concentration and motility as well as decreased abnormal sperm morphology of mice occur because of L-dopa and other components contained in velvet beans extract which influence the secretion of testosterone. Secreted by Leydig cells, this hormone plays significantly in spermatogenesis process. The hormone belongs to steroid which is synthesized from cholesterol. The synthesis process of steroid and its derivatives is called steroidogenesis [32].

Sperm motility is an important aspect in fertilization/ insemination process. A large amount of sperm is not sufficient for the insemination to take place successfully without being supported by good sperm motility. Having consumed L-dopa substance contained in velvet beans extract, the mice have increased sperm motility and level of dopamine in the brain. This dopamine stimulates the hypothalamus to secrete GnHR. Dopamine-stimulated hypothalamus increases the secretion of hormone LH and FSH [33]. Hormone FSH regulates
spermatogenesis and nutrition needed in spermatogenesis process. Increased FSH hormone secretion improves the quality of spermatogenesis because this hormone provides all required nutrition. One benefit of increased FSH secretion is the provision of energy required by sperm to move/motile.

Sperm abnormality is caused by lack of FSH and LH in testis. Gonadotropin serum (FSH and LH) correlates with the growth of sperm. Abnormal sperm morphology is caused by lack of FSH and LH in testis. FSH and LH so that they can increase the quality of sperm morphology in spermatogenesis process [35, 36].

CONCLUSION

The result of the fertility test showed that the Indonesian velvet bean cotyledon extract can increase the concentration and motility of sperm and reduce abnormal morphology of the sperm in mice. The change of quality and quantity in the sperm happened at the highest dosage was given, 250 mg/kg. The increase in the sperm concentration was about 22 million sperms, while the increase of sperm motility was about 18%, and the decrease in abnormal sperm morphology was about 12%.

ACKNOWLEDGEMENT

The authors are thankful to the Indonesia Ministry of Research and Higher Education for the provision of funds and facilities for this study.

CONFLICT OF INTERESTS

We declare that we have no conflict of interest.

REFERENCES

1. Mathur M, Sundaramoorby S. Plants with aphrodisiac potentials, knowledge and the gaps. Indian Medicinal Plants. Jaipur: Aavinshkar Publisher; 2009. p. 336.

2. Nadeem F, Fahim A, Bugti S. Effects of cigarette smoking on male fertility. Turkish J Med Sci 2012;42(Suppl 2):1400–5.

3. Oyeiyio IF, Raji Y, Elumike BO, Bolarinwa AF. Effects of nicotine on sperm characteristics and fertility profiles in adult male rats: a possible role of cessation. J Reprod Infertil 2011;12:201–8.

4. Hansen C, Luben TJ, Sacks JD, Oslan A, Jeffay S, Strader L, et al. The effect of ambient air pollution on sperm quality. Environ Health Perspect 2010;118:203–9.

5. Sheiner EK, Sheiner E, Hammel RD, Potashnik G, Carel R. Effect of occupational exposures on male fertility: a literature review. Ind Health 2003;41:55–62.

6. Hart BL. The evolution of herbal medicine: behavioral perspectives. Annu Rev 2005;70:975–89.

7. Cabrero JT. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 2000;33:179–89.

8. Martinez G, Daniels K, Chandra A. Fertility of men and women aged 15–44 y in the United States: National survey of family growth 2006–2010. Natl Health Stat Report 2012;1:1–28.

9. Charles WC, Julian AG. Testosterone rebound therapy. Fertil Steril 1978;29:1.

10. Van KW. Determination of sperm quantity in young Belgian men during recent decades. Hum Reprod 1999;9:73.

11. Carlsen E, Giewerman A, Keiding N, Skakkebaek NE. Evidence for decreasing the quality of semen during past 50 y. Br Med J 1992;305:609–13.

12. McLachlan R, de Krester D. Male infertility: the case for continued research. Med J Aust 2001;174:116–7.

13. Prakash S, Prithiviraj E, Suresh S, Lakshmi NV, Ganesh MK, Anuradha M, et al. Morphological diversity of sperm: a mini review. Iran J Reprod Med 2014;12:239–42.

14. Caas A, Vavouri T. Sperm epigenomics: challenges and opportunities. Frontiers Genetics Bioinformatics Computational Biol 2014;5:1–7.

15. Meeker JD, Rossano MG, Protas B, Diamond MP, Puscheck E, Daly D, et al. Cadmium, lead, and other metals in relation to semen quality: Human evidence for molybdenum as a male reproductive toxicant. Environ Health Perspect 2008;116:1473–9.

16. Parandini R, Yusofvand N, Ghorbani R. The enhancing effects of akoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. Iran J Reprod Med 2012;10:355–62.

17. Ojo OO, Bhadauria S, Rath SK. Dose-dependent adverse effects of salmoincyon on male reproductive organs and fertility in mice. PLoS One 2013;8:e69086. Doi:10.1371/journal.pone.0069086. [Article in Press]

18. Shukla AA, Sridha KK, Ahmad MK, Rajender S, Shankhwar SN, Singh V. Withania somnifera improves semen quality in stress-related male fertility. J Evidence-Based Comprehensive Altern Med 2011;10:1093/jecam/epi138. [Article in Press]

19. Shukla KK, Mahdi AA, Ahmad MK, Shankhwar SN, Rajender S, Jaiswar SP. Mucuna pruriens improves male fertility by its action on the hypothalamus-pituitary-gonadal axis. Fertil Steril 2009;92:1934–40.

20. Abrahm J. Effect of mucuna purines seeds on fertility of male albino rats ratus norvegicus. J Pharm Res 2011;4:233–6.

21. Sathiyarayanan I, Arulmozhi S. Mucuna pruriens Linn—a comprehensive review. Pharmacog Rev 2007;1:157–62.

22. Kavitha, Thangamani C. Amazing bean ‘Mucuna pruriens’: a comprehensive review. J Med Plants Res 2014;8:38–43.

23. Kumar AKV, Srinivasan KK, Shanbhag T, Rao SG. Aphrodisiac activity of the seeds of mucuna pruriens. Indian Drugs 1994;31:321–7.

24. Harvey NS. Serial cognitive profiles in levodopa-induced hypopsexuality. Br J Psychiatry 1998;153:833–6.

25. Sardjono RE, Musthapa I, Shohlin H, Ramdhani RP. The physicochemical composition of Indonesian velvet bean (Mucuna pruriens L). Global J Res Plants Indigenous 2012;1:101-8.

26. Raina AP, Khatri R. Quantitative determination of L-DOPA in seeds of Mucuna pruriens germplasm by high-performance thin layer chromatography. Indian J Pharm Sci 2011;73:459–62.

27. Misra L, Wagner N. Extraction of bioactive principles from Mucuna pruriens seeds. Indian J Biochem Biophys 2007;44:55–60.

28. Aleisa MS. Effect of ginger supplements on some reproductive parameters and spermatogenesis of mice. J Life Sci 2014;4:271–7.

29. Robaire B, Hinton BF, Orgin-Brist MC, Koohil and Neill’s Physiology of Reproduction: The Epididymis. Atlanta: Elsevier; 2006.

30. Attia AA. Light and electron microscopic studies of the effect of alprazolam on the testicular tissue of mice. Int J Adv Res 2014;2:413–31.

31. Weinbauer GF, Luetjens CM, Simoni M, Nieschlag E. Andrology: physiology of testicular function. New York: Springer; 2010.

32. Shukla KK, Mahdi AA, Ahmad MK, Jaiswar SP, Shankhwar SN, Tiwari SC. Mucuna pruriens improves male fertility by its action on the hypothalamus-pituitary-gonadal axis. J Med Plants Res 2012;6:138–43.

33. Weerakkody K, Wu LS. Effects of putative neurotransmitters on testosterone production from in vitro mouse interstitial cells culture. J Anim Vet Adv 2003;2:119–25.

How to cite this article

• Ratnamingshi Eko Sardjono, Vienda Pradipta, Iqbal Musthapa. The effect of Indonesian velvet bean extract on the fertility of male albino mice. Int J Pharm Pharm Sci 2016;8(8):Suppl 2:56-59.