TIME-RESOLVED NEAR-INFRARED PHOTOMETRY OF EXTREME KUIPER BELT OBJECT HAUMEA

PEDRO LACERDA
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; pedro@ifa.hawaii.edu

Received 2008 September 1; accepted 2008 November 22; published 2009 January 29

ABSTRACT
We present time-resolved near-infrared (J and H) photometry of the extreme Kuiper belt object (136108) Haumea (formerly 2003 EL61) taken to further investigate rotational variability of this object. The new data show that the near-infrared peak-to-peak photometric range is similar to the value at visible wavelengths, \(\Delta m_R = 0.30 \pm 0.02 \) mag. Detailed analysis of the new and previous data reveals subtle visible/near-infrared color variations across the surface of Haumea. The color variations are spatially correlated with a previously identified surface region, redder in \(B-R \) and darker than the mean surface. Our photometry indicates that the \(J-H \) colors of Haumea (\(J-H = -0.057 \pm 0.016 \) mag) and its brightest satellite Hi‘iaka (\(J-H = -0.399 \pm 0.034 \) mag) are significantly (greater than 9\(\sigma \)) different. The satellite Hi‘iaka is unusually blue in \(J-H \), consistent with strong 1.5 \(\mu \)m water-ice absorption. The phase coefficient of Haumea is found to increase monotonically with wavelength in the range 0.4 < \(\lambda < 1.3 \). We compare our findings with other solar system objects and discuss implications regarding the surface of Haumea.

Key words: Kuiper Belt – methods: data analysis – minor planets, asteroids – Solar system: general – techniques: photometric

1. INTRODUCTION

Kuiper belt objects (KBOs) orbit the sun in the trans-Neptunian region of the solar system. Mainly due to their large heliocentric distances and resulting low temperatures, KBOs are among the least processed relics of the planetary accretion disk and thus carry invaluable information about the physics and chemistry of planet formation. Moreover, as a surviving product of the debris disk of the Sun, the Kuiper belt is a nearby analog to the chemistry of planet formation. Moreover, as a surviving product of the debris disk of the Sun, the Kuiper belt is a nearby analog to the chemistry of planet formation. Moreover, as a surviving product of the debris disk of the Sun, the Kuiper belt is a nearby analog to the chemistry of planet formation.

Haumea is remarkable in many ways. With approximate triaxial semi-axes \(1000 \times 800 \times 500 \) km, it is one of the largest known KBOs. Its elongated shape is a consequence of the very rapid 3.9 hr period rotation, and those two properties combined can be used to infer Haumea’s bulk density (\(\rho \sim 2500 \text{ kg m}^{-3} \)), assuming that the object’s shape has relaxed to hydrostatic equilibrium (Rabinowitz et al. 2006; Lacerda & Jewitt 2007). Haumea’s rapid rotation and the spectral and orbital similarity between this object and a number of smaller KBOs, have led Brown et al. (2007) to suggest that an ancient shattering collision (greater than 1 Gyr ago; Ragozzine & Brown 2007) could explain both. Haumea is one of the bluest known KBOs, with \(B-R = 0.97 \pm 0.03 \) mag (Rabinowitz et al. 2006; Lacerda et al. 2008), and it has an optical and infrared spectrum consistent with a surface coated in almost pure water-ice (Tegler et al. 2007; Trujillo et al. 2007). This stands in contrast with other large KBOs such as Pluto, Eris, and 2005 FY\(_9\), which have methane-rich surfaces (Cruikshank et al. 1976; Brown et al. 2005; Licandro et al. 2006). Two satellites have been detected in orbit around Haumea. The innermost, Namaka, has an orbital period of \(P_{\text{orb}} \sim 34 \) days, an apparent orbital semimajor axis \(a \sim 1'' \), and a fractional optical brightness of \(f \sim 1.5 \% \) with respect to Haumea. The outermost, Hi‘iaka has \(P_{\text{orb}} \sim 41 \) days, \(a \sim 1''/2 \), and \(f \sim 6\% \) (Brown et al. 2006).

Time-resolved optical photometry of Haumea has revealed evidence for a localized surface feature both redder and darker than the surrounding material (Lacerda et al. 2008). Although the existing data are unable to break the degeneracy between the physical size and the color or albedo of this dark, red spot (hereafter, DRS), the evidence points to it taking a large (greater than 20\%) fraction of the instantaneous cross section. The composition of the DRS remains unknown but its albedo and \(B-R \) color are consistent with the surfaces of Eris, 2005 FY\(_9\), and Pluto’s and Iapetus’ brighter regions. These observations motivated us to search for rotational modulation of the water-ice band strength that might be associated with the optically detected DRS.

In this paper, we provide further constraints on the surface properties of Haumea. We present time-resolved near-infrared (\(J \) and \(H \)) data and search for visible/near-infrared color variability. We also constrain the \(J \)-band phase function of Haumea and compare it with its optical counterparts. Finally, we measure the \(J-H \) color of Hi‘iaka, the brightest satellite of Haumea.

2. OBSERVATIONS

Near-infrared observations were taken using the 8.2 m diameter Subaru telescope atop Mauna Kea, Hawaii. We used the Multi-Object Infrared Camera and Spectrograph (MOIRCS; Tokoku et al. 2003) which is mounted at the f/12.2 Cassegrain focus. MOIRCS accommodates two 2048 \(\times 2048 \) pixel HgCdTe (HAWAII-2) arrays, with each pixel projecting onto a square 0'117 on a side in the sky. Observations were obtained through broadband \(J \) (\(\lambda_c = 1.26 \mu \text{m}, \Delta \lambda = 0.17 \mu \text{m} \)) and \(H \) (\(\lambda_c = 1.64 \mu \text{m}, \Delta \lambda = 0.28 \mu \text{m} \)) filters. The data were instrumentally calibrated using dark frames and dome flat-field images obtained...
immediately before and after the night of observation. Because of technical difficulties with detector 1, we used detector 2 for all our science and calibration frames. Science images were obtained in sets of two dithered positions 15” apart, which were later mutually subtracted to remove the infrared background flux.

The night of 2008 April 15 UT was photometric, allowing us to absolutely calibrate the data using observations of standard star FS33 from the UKIRT Faint Standards catalog (Hawarden et al. 2001). The Haumea flux through each filter was measured using circular aperture photometry relative to a field star, while a second field star was used to verify the constancy of the first. The dispersion in the star-to-star relative photometry indicates a mean 1σ uncertainty of ±0.015 mag in J and ±0.023 mag in H. The field star was calibrated to the standard star FS33 at airmass 1.02, just short of the telescope’s Alt-Az elevation limit. From scatter in the standard star photometry we estimate a systematic uncertainty in the absolute calibration of 0.04 mag in J and 0.02 mag in H. A brief journal of observations can be found in Table 1. The final calibrated broadband photometric measurements are listed in Tables 2 and 3.

We generally obtained two consecutive sets of two dithered images in each filter before switching filters (i.e., \(JJ - JJ - HH - HH - \ldots \)). This results in sets of four data points all within 3–4 minutes of each other. To reduce the scatter in the light curves we binned each of these sets of consecutive measurements into a single data point, with each binned point obtained by averaging the times and magnitudes of the set. The error bar on each binned point includes the error on the mean magnitude and the average uncertainty of the unbinned measurements, added in quadrature. The binned measurements are listed in Tables 4 and 5.

3. RESULTS AND DISCUSSION

3.1. Color Versus Rotation

The new data record just over one full rotation of Haumea. Figure 1 combines previously published \(B \) and \(R \) data (Lacerda et al. 2008) with the new \(J \) and \(H \) data and shows that all four filters exhibit very similar variability with a combined total range \(\Delta m = 0.30 \pm 0.02 \) mag. As described in Section 2, to improve the signal-to-noise ratios (S/Ns) of the \(J \) and \(H \) data, we binned sets of measurements taken back-to-back (usually sets of four); the resulting light curve is shown in Figure 2. There, the previously identified DRS (Lacerda et al. 2008) on the surface of Haumea is clearly apparent at rotational phases close to \(\phi = 0.8 \) in the \(B \) and \(R \) curves. The near-infrared data generally follow the \(R \)-band data but show a slight visible/near-infrared reddening which coincides with the DRS.
The differences between the individual light curves in Figures 1 and 2 are small. To highlight color variations on Haumea, we plot in Figure 3 all possible combinations of visible-to-near-infrared color curves. The curves are calculated by interpolating the better-sampled B and R data to the binned J and H rotational phases (Figure 2) and subtracting. The error bars are dominated by the uncertainties in the near-infrared measurements, which are added quadratically to the mean B or R errors. When taken separately, the color curves in Figure 3 appear to differ only marginally from a rotationally constant value. However, the color $B - H$, and arguably $B - J$, $R - H$, and $J - H$, show visible reddening humps for rotational phases close to where the DRS was found to lie ($\phi \sim 0.8$). To locate and quantify color variability features in the curves in Figure 3 we employ a running Gaussian probability test. In this test, we consider a moving rotational phase window and calculate the quantity

$$G = \frac{\sum_{i=0}^{N} (G_i - C_0)/e_i}{\sqrt{N}}$$

(1)

for the points that fall within the window. In Equation (1), N is the number of points within the window, c_i and e_i are the color values and respective error bars of those points, and C_0 is the median color of all points (dotted horizontal lines in Figure 3). We then move the window along each color curve in rotational phase steps of 0.05 to obtain a running-G value. Equation (1) represents a Gaussian deviate with zero mean and unity standard deviation and can thus be converted to a Gaussian probability, $p(G)$, assuming that the points are normally distributed around the median. The probability $p(G)$ is sensitive to unlikely sequences of deviant points, all on one side of the median. Figure 4 shows the test results for each of the color curves using a window size $\Delta \phi = 0.25$ (see discussion below). The figure shows that the $B - H$ curve has a significant ($\sim 4 \sigma$) nonrandom feature close to $\phi = 0.8$. The test also detects weaker (2.8σ and 2.5σ) features in the $B - J$ and $R - H$ curves close to $\phi = 0.8$.

The size of the rotational phase window $\Delta \phi$ is physically motivated by the fraction of the surface of Haumea that is visible at any given instant. In that sense, it should not be larger than $\Delta \phi = 0.5$. Moreover, although half the surface is visible, projection effects in the limb region will make the effective visible area smaller, by possibly another factor 2. In Figure 5, we illustrate the effect of the window size by replotting...
the running \(p(G) \) for color curve \(B - H \) using four window sizes, \(\Delta \phi = 0.20, 0.25, 0.33, \) and 0.50. As expected, \(p(G) \) does not differ much for windows 0.20 \(\leq \Delta \phi \leq 0.33 \). For the largest window size \(\Delta \phi = 0.50 \) the probability begins to appear diluted, but even then the test succeeds in locating the feature at \(\phi = 0.8 \).

The near-infrared measurements presented here are considerably less numerous than the optical data that were used to identify the DRS in \(B - R \) (Lacerda et al. 2008). Also, the \(J \) and \(H \) measurements may show systematic correlations because they were measured on the same night using the same telescope. Nevertheless, the observed changes in \(B \) and \(R \) relative to \(J \) and \(H \) do not suffer from this effect and are likely to be real. A visible/near-infrared reddening was already observed in our 2007 data (see \(J_{2007} \) points in Figure 1) adding confidence to our conclusions. The results presented above suggest that the region close to the DRS is also spectrally anomalous in the visible-to-near-infrared wavelength range with respect to the average surface of Haumea.

In Figure 6, we combine our four-band data to produce reflectivity versus wavelength curves at different rotational phases. We focus on the DRS region and plot curves at \(\phi = 0.3 \) and \(\phi = 0.4 \) as illustrative of the mean Haumea surface. We employed interpolation to calculate color indices at the given rotational phases, which were subsequently converted to reflectivities relative to the \(R\)-band. To enhance the subtle differences with rotation we normalize all curves by that at \(\phi = 0.4 \); an inset in Figure 6 shows the reflectivities before normalization. Figure 6 shows that relative to the majority of the surface of Haumea the region near \(\phi = 0.7 \) displays an enhanced
Figure 2. Binned near-infrared light curve of Haumea. Here, sets of consecutive data points in Figure 1 have been binned to reduce scatter. The green hexagons (J-band) and the red circles (H-band) mark the mean rotational phase and the magnitude of consecutive measurements (mostly sets of four). Measurements from 2007 (Lacerda et al. 2008) are marked for direct comparison: the green squares are J-band measurements, while the densely sampled B- and R-band data are plotted as thick cyan and orange lines. The vertical axis corresponds to the J_{2008} apparent magnitude. Data in other bands have been shifted using the mean colors (see the text).

Figure 3. Visible and near-infrared color curves of Haumea. Each curve represents deviations from the respective rotationally medianed mean color (from bottom up, $B - J = 1.856 \pm 0.012$ mag, $B - H = 1.799 \pm 0.021$ mag, $R - J = 0.885 \pm 0.012$ mag, $R - H = 0.828 \pm 0.016$ mag, and $J - H = -0.057 \pm 0.016$ mag) and is vertically shifted by 0.1 mag for clarity. Slight reddening bumps are observable in $B - H$, $B - J$, and possibly in $R - H$ and $J - H$.

Figure 4. Running Gaussian probability for each of the color curves in Figure 3. Unlikely sequences of points all above or below the median colors (horizontal, dotted lines in Figure 3) will be visible as peaks in this figure. The color curve $B - H$ shows a significant peak at rotational phase $\phi \sim 0.8$. Curves $B - J$ and $R - H$ show smaller but noticeable features at the same rotational phase.

Figure 5. Running Gaussian probability for the $B - H$ color curve for four window sizes, $\Delta \phi = 0.20, 0.25, 0.33$, and 0.50. The running probability $p(G)$ is calculated in a window of width $\Delta \phi$ which is evaluated in rotational phase steps of 0.05. The differences are minimal for window sizes $0.20 \leq \Delta \phi \leq 0.33$. For the largest window size $\Delta \phi = 0.50$ the probability begins to appear diluted. See the text for details.

H-band reflectivity which, close to $\phi = 0.8$, is accompanied by a depressed B-band reflectivity. Close to $\phi = 0.9$, B remains depressed, while H is restored to average values. We note that this variation is consistent with the results shown in Figure 4. To summarize, the DRS region is both fainter in B and brighter in H than the rest of Haumea.

The presence of a blue absorber on the DRS could explain the fainter B reflectance. A recent U- and B-band photometric study of KBOs (Jewitt et al. 2007) suggests that objects in the classical population (objects in quasi-circular orbits between the 2:1 and the 3:2 mean-motion resonance with Neptune) lack significant blue absorption. As discussed by those authors,
Our J and H photometry suggests that the 1.5 μm water-ice band is weaker (less deep) close to the DRS. In contrast, Lacerda et al. (2008) found marginal evidence that the 1.5 μm band is deeper close to the DRS. One difference between the two measurements is that while here we use J versus H, Lacerda et al. (2008) used J versus the “CH₄,” filter to assess possible variations in the water-ice band. The latter filter has a bandpass (center 1.60 μm, FWHM 0.11 μm) between the 1.5 μm and the 1.65 μm band diagnostic of crystalline water-ice and is thus affected by the degree of crystallinity of the ice. The two measurements can be reconciled if the DRS material has an overall less deep 1.5 μm water-ice band but a larger relative abundance of crystalline water ice. We simulated this scenario using synthetic reflectance spectra [calculated using published optical constants for crystalline water ice (Grundy & Schmitt 1998) and a Hapke model with the best-fit parameters for Haumea (Trujillo et al. 2007)]. By convolving two model spectra, one for T = 30 K and one for T = 140 K (to simulate a weaker crystalline band), with the J, H, and CH₄, band-passes we found an effect similar to what is observed. The 30 K spectrum, taken to represent the DRS material, shows a ∼3% higher H-to-J flux ratio, but a ∼4% lower CH₄-to-J flux ratio than the 140 K spectrum. However, this possibility is not unique and time-resolved H-band spectra are required to test this scenario.

3.2. Phase Function

Atmosphereless solar system bodies exhibit a linear increase in brightness with decreasing phase angle. At small angles (α < 0.01 to 1 deg.), this phase function becomes nonlinear causing a sharp magnitude peak. The main physical mechanisms thought to be responsible for this opposition brightening effect are shadowing and coherent backscattering. In simple terms, shadowing occurs because although a photon can always scatter back in the direction from which it hit the surface, other directions may be blocked. The implication is that back-illuminated (α ∼ 0°) objects do not shadow their own surfaces and appear brighter. The brightening due to coherent backscattering results from the constructive interference of photons that scatter in the backward direction from pairs of surface particles (or of features within a particle; Nelson et al. 2000). The constructive interference decreases rapidly with increasing phase angle. Generally, it is believed that shadowing regulates the decrease in brightness with phase angle from a few up to tens of degrees, while coherent backscattering mainly produces the near-zero phase angle spike (French et al. 2007).

The relative importance of shadowing and coherent backscattering on a given surface is difficult to assess. An early prediction by Hapke (1993) was that the angular width of the exponential brightness peak should vary linearly with wavelength in the case of coherent backscattering, given its interference nature. Shadowing, on the other hand, should be acomromatic. However, more recent work has shown that the wavelength dependence of coherent backscattering can be very weak (Nelson et al. 2000). Thus, while a strong wavelength dependence is usually attributable to coherent backscattering, a weak wavelength dependence may be explained by either mechanism. It was also expected that higher albedo surfaces should be less affected by shadowing because more multiply scattered photons will reach the observer even from shadowed surface regions (Nelson et al. 1998). Coherent backscattering is a multiple-scattering process that thrives on highly reflective surfaces. Subsequent studies have shown that low albedo surfaces can also display strong coherent backscattering at very low phase angles (Hapke et al. 1998). Finally, while both effects cause a brightening toward opposition, only coherent backscattering has an effect on the polarization properties of light scattered from those objects: it favors the electric field component parallel to the scattering plane and thus gives rise to partially linearly polarized light (Boehnhardt et al. 2004; Bagnulo et al. 2006). With the currently available instruments, useful polarization measurements can only be obtained on the brightest KBOs.

Our 2007 July J-band light-curve data (Lacerda et al. 2008) and the 2008 April data presented here together show that Haumea appears brighter in the latter data set. After calculating the time-medianed apparent magnitudes, and correcting them to unit helio- and geocentric distances (R and Δ) using mₗ(1, 1, α) = mₗ − 5 log(RΔ), a difference of 0.096 magnitudes remains between the data sets, which we attribute to the different phase angles (α₂₀₀⁷ = 1.13 deg and α₂₀₀⁸ = 0.55 deg) at the two epochs. Assuming a phase function of the form...
$m_J(\alpha) = m_J(1, 1, 0) + \beta_J \alpha$, we derive a slope $\beta_J = 0.16 \pm 0.04 \text{ mag deg}^{-1}$. The uncertainty in β_J was calculated by interpolating the 2008 J light curve to the rotational phases of the 2007 J light curve (both corrected to $R = \Delta = 1 \text{ AU}$) and calculating the standard deviation of the difference.

In Figure 7, we plot the phase coefficient β versus the central wavelengths of the filters $B, V, I,$ and J. The visible $\beta_{B, V, I}$ values are taken from Rabinowitz et al. (2006) where they are measured in the phase range $0.5 < \alpha < 1.0 \text{ deg}$. A linear fit to the relation is overplotted as a dotted line showing that β_J increases with λ. The fit has a slope $\Delta\beta/\Delta\lambda = 0.09 \pm 0.03 \text{ mag deg}^{-1} \mu\text{m}^{-1}$ and a 1 μm value $\beta_{1\mu\text{m}} = 0.14 \pm 0.02 \text{ mag deg}^{-1}$. Using a χ^2 test we are only able to reject a constant β_J at the 2σ level. However, the monotonic increase of β_J with wavelength plus the high albedo ($p_V > 0.6$, Rabinowitz et al. 2006) of Haumea both suggest that coherent backscattering is dominant in the range of phase angles observed.

Small icy bodies in the solar system show very diverse phase function versus wavelength behaviors (Rabinowitz et al. 2007). Most KBOs for which the phase curve has been measured in more than one band show steeper slopes toward longer wavelengths. We show here that in the case of Haumea this behavior extends into the near-infrared. The Centaurs (Rabinowitz et al. 2007) and the Uranian satellites (Karkoschka 2001) show little variation in the phase curve with wavelength for $\alpha < 3–6 \text{ deg}$, suggesting that shadowing is dominant over coherent backscattering. Other objects show opposite or even nonmonotonic relations between phase function slope and wavelength. For instance, some types of terrain on the Jovian moon Europa have phase functions that vary nonmonotonically with wavelength (Helfenstein et al. 1998), while Pluto’s phase function has a weak wavelength dependence opposite to that seen in Haumea, from $\beta_H = 0.037 \pm 0.001 \text{ mag deg}^{-1}$ to $\beta_R = 0.032 \pm 0.001 \text{ mag deg}^{-1}$ (Buratti et al. 2003).

In Figure 8, we plot the slope of the β_J versus λ relation against approximate geometric albedo for a number of KBOs and Centaurs. The values $\Delta\beta/\Delta\lambda$ were obtained from linear fits to the phase slope measurements in three bands by Rabinowitz et al. (2007). The scatter in Figure 8 is substantial and no clear relation is evident between albedo and the wavelength dependence of the phase function. As a result, the interpretation of these results in terms of physical properties of the surface is problematic. The photometric (and polarimetric) phase functions depend in a nontrivial way on the size and spatial arrangement of surface regolith particles, as well as on their composition. Besides, the phase functions of KBOs can only be measured in a narrow range of phase angles (currently $0.5 < \alpha < 1.2 \text{ deg}$ in the case of Haumea) making it difficult to recognize the presence or width of narrow opposition peaks. Nevertheless, further evidence that coherent backscattering is responsible for the observed linearity between β and λ can be sought using polarization measurements of the surface of Haumea.

3.3. Satellite

We stacked our ~70 frames in each filter to increase the S/N of any real features around Haumea and so attempt to detect the satellites. In the stacked frames, we used a field star as representative of the point-spread function (PSF), scaled it to the brightest pixel of Haumea and subtracted it from the KBO. The result is shown in Figures 9 and 10, where the original image, the PSF, and the subtracted image are plotted: one satellite, Hi’iaka, is clearly visible through both filters. We measure a Hi’iaka–Haumea separation $d = 0.872 \pm 0.002$ (P.A. = 184.67 ± 0.13 deg), and flux ratios (with respect to Haumea) of 0.088 ± 0.001 and 0.064 ± 0.002 in J and H, respectively. The mean UT of the frame stack is 2008 April 15.23134. We do not detect any other sources in the vicinity of Haumea, although we are sensitive to objects as faint as $0.11 \times$ the J-band (and $0.21 \times$ the H-band) flux of Hi’iaka. At the time of observation, the fainter, inner satellite Namaka was within 0.72 of Haumea (D. Ragozzine 2008, private communication), which explains why it is invisible in our data. Given its fractional brightness (~1%) with respect to Haumea, Namaka has negligible contribution to the near-infrared photometry presented here.
Haumea has a color index $J - H = -0.057 \pm 0.016$ mag (see Figure 3 and Table 6). Our photometry of Hi’iaka relative to Haumea implies a color $J - H = -0.399 \pm 0.034$ mag for the former. This color index is unusually blue, but consistent with the observation that the 1.5 μm band is deeper for Hi’iaka than for Haumea (N. Takato et al. 2006, private communication; Barkume et al. 2006). Table 6 lists the derived colors of Haumea and Hi’iaka. A sample of $J - H$ colors of 40 KBOs and Centaurs found in the literature (Delsanti et al. 2006) shows a pronounced clustering around $J - H = 0.4$ mag with a dispersion of ~ 0.2 mag. The two significant outliers are KBOs (19308) 1996 TO66 ($J - H = -0.21 \pm 0.17$ mag) and (24835) 1995 SM55 ($J - H = -0.49 \pm 0.06$ mag) which both possess near-infrared spectra consistent with water-ice absorption (Brown et al. 1999; Barkume et al. 2008).

The $J - H$ colors of Haumea and Hi’iaka are significantly (greater than 9σ) different. Given the current best estimates for the mass and orbit of Hi’iaka, particles collisionally ejected...
Figure 10. Same as Figure 9 for H-band data.

(ejection velocities 10–200 m s$^{-1}$) from its surface will likely reach Haumea only on hyperbolic orbits (Stern 2009). The escape speed from the surface of Hi’iaka (near 130 m s$^{-1}$, assuming water-ice density) rivals the escape speed from the Haumea system at the orbit of Hi’iaka (\sim120 m s$^{-1}$), meaning that only hyperbolic mass exchange is possible. The same cannot be said about Namaka which is both smaller and deeper into the potential well of the satellite system. It is therefore more likely that Haumea is polluted by ejecta from Namaka than from Hi’iaka. Whether this means that the $J - H$ color of Namaka is closer to that of Haumea remains to be seen.

4. SUMMARY

From time-resolved, near-infrared photometry of KBO Haumea we find the following:

1. The near-infrared peak-to-peak photometric range is $\Delta m_R = 0.30 \pm 0.02$ mag. The new data reveal slight visible/near-infrared color variations on Haumea, which are spatially correlated with a previously identified surface region, redder in $B - R$ and darker than the mean surface. We find that near this region Haumea displays an enhanced H-band reflectance accompanied by B-band absorption relative to elsewhere on the surface. Time-resolved spectra are needed to learn more about the physicochemical properties of this anomalous region.

2. The rotationally medianed visible and near-infrared colors of Haumea are $R - J = 0.885 \pm 0.012$ mag and $J - H = -0.057 \pm 0.016$ mag.

3. We detect Hi’iaka, Haumea’s brightest satellite, in both J and H and measure its color $J - H = -0.399 \pm 0.034$ mag. The $J - H$ color difference between Hi’iaka and Haumea is significant (greater than 9σ). This suggests that either the transfer of surface ejecta between the two is negligible, or that their surface colors are not controlled by ejecta transfer. Ejecta transfer between Haumea and the inner satellite Namaka is neither ruled out nor substantiated by our data but is more likely given the configuration of the system.

4. The slope of the J-band phase function in the phase angle range $0.55 \leq \alpha(\text{deg}) \leq 1.14$ is $\beta_J = 0.16 \pm 0.04$ mag deg$^{-1}$. Combining this measurement with slopes obtained
in three other visible wavelengths we find that the slope of Haumea’s phase function varies monotonically with wavelength. The slope of this relation is $\Delta \beta / \Delta \lambda \sim 0.09 \text{ mag deg}^{-1} \mu \text{m}^{-1}$ and $\beta_{1 \mu \text{m}} \sim 0.14 \text{ mag deg}^{-1}$. This finding confirms previous inferences that coherent backscattering is the main cause of opposition brightening for Haumea.

We appreciate insightful discussions and comments from David Jewitt and Jan Kleyna. We thank Will Grundy for sharing useful software routines, and Jon Swift and Nuno Peixinho for valuable discussions that contributed to this work. P.L. was supported by a grant to David Jewitt from the National Science Foundation.

Note added in proof. In a more recent private communication, D. Ragozzine (2008) has supplied a correction to his initial estimate of the position of Namaka relative to Hi’iaka and Haumea. In the refined estimate, Namaka is found to be roughly between Hi’iaka and Haumea. This has two effects in the results presented here. Firstly, given that Namaka is ~ 4 times fainter than Hi’iaka, and in the limiting case that Namaka has a $J-H$ color more similar to Haumea than to Hi’iaka, then Hi’iaka may be even bluer than we find, but not bluer than $J-H = -0.5 \text{ mag}$. It is, however, more likely that Namaka has a surface similar to Hi’iaka, which would imply our estimate is accurate. Secondly, the distance we measure between Hi’iaka and Haumea ($d \sim 0.87$) is underestimated by about 0.07.

REFERENCES

Bagnulo, S., Boehnhardt, H., Muinonen, K., Kolokolova, L., Belskaya, I., & Barucci, M. A. 2006, *A&A*, 450, 1239
Barkume, K. M., Brown, M. E., & Schaller, E. L. 2006, *ApJ*, 640, L87
Boehnhardt, H., Bagnulo, S., Muinonen, K., Barucci, M. A., Kolokolova, L., Dotto, E., & Tozzi, G. P. 2004, *A&A*, 415, L21
Brown, M. E., Barkume, K. M., Ragozzine, D., & Schaller, E. L. 2007, *Nature*, 446, 294
Brown, R. H., Cruikshank, D. P., & Pendleton, Y. 1999, *ApJ*, 519, L101
Brown, M. E., Trujillo, C. A., & Rabinowitz, D. L. 2005, *ApJ*, 635, L97
Brown, M. E., et al. 2006, *ApJ*, 639, L43
Buratti, B. J., et al. 2003, *Icarus*, 162, 171
Cruikshank, D. P., Pilcher, C. B., & Morrison, D. 1976, *Science*, 194, 835
Delasante, A., Peixinho, N., Boehnhardt, H., Barucci, A., Merlin, F., Doreansoundiram, A., & Davies, J. K. 2006, *AJ*, 131, 1851
Feierberg, M. A., Lebofesky, L. A., & Tholen, D. J. 1985, *Icarus*, 63, 183
French, R. G., Verbiscer, A., Salo, H., McGhee, C., & Dones, L. 2007, *PASP*, 119, 623
Gaffey, M. J., & McCord, T. B. 1978, *Space Sci. Rev.*, 21, 555
Grundy, W. M., & Schmitt, B. 1998, *J. Geophys. Res.*, 103, 225809
Hapke, B. 1993, *Theory of Reflectance and Emittance Spectroscopy*, Topics in Remote Sensing (Cambridge: Cambridge Univ. Press)
Hapke, B., Nelson, R., & Smythe, W. 1998, *Icarus*, 133, 89
Hawarden, T. G., Leggett, S. K., Letawsky, M. B., Ballantyne, D. R., & Casali, M. M. 2001, *MNRAS*, 325, 563
Helfenstein, P., et al. 1998, *Icarus*, 135, 41
Holmberg, J., Flynn, C., & Portinari, L. 2006, *MNRAS*, 367, 449
Jewitt, D., Peixinho, N., & Hsieh, H. H. 2007, *AJ*, 134, 2046
Karkoschka, E. 2001, *Icarus*, 151, 51
Lacerda, P., & Jewitt, D. C. 2007, *AJ*, 133, 1393
Lacerda, P., Jewitt, D., & Peixinho, N. 2008, *AJ*, 135, 1749
Licandro, J., Pinilla Alonso, N., Pedani, M., Oliva, E., Tozzi, G. P., & Grundy, W. M. 2006, *A&A*, 445, L35
Malhotra, R. 1995, *AJ*, 110, 420
Merk, R., & Prialnik, D. 2006, *Icarus*, 183, 283
Nelson, R. M., Hapke, B. W., Smythe, W. D., & Horn, L. J. 1998, *Icarus*, 131, 223
Nelson, R. M., Hapke, B. W., Smythe, W. D., & Spliker, L. J. 2000, *Icarus*, 147, 545
Rabinowitz, D. L., Barkume, K., Brown, M. E., Roe, H., Schwartz, M., Tourtellotte, S., & Trujillo, C. 2006, *ApJ*, 639, 1238
Rabinowitz, D. L., Schaefier, B. E., & Tourtellotte, S. W. 2007, *AJ*, 133, 26
Ragozzine, D., & Brown, M. E. 2007, *AJ*, 134, 2160
Stern, S. A. 2009, *Icarus*, in press, arXiv:0805.3482
Tegler, S. C., Grundy, W. M., Romanishin, W., Consolmagno, G. J., Mogren, K., & Vilas, F. 2007, *AJ*, 133, 526
Tholen, D. J., & Barucci, M. A. 1989, in Asteroids II, ed. R. P. Binzel, T. Gehrels, & M. S. Matthews (Tucson, AZ: Univ. of Arizona Press), 298
Tokoka, C., et al. 2003, in Proc. SPIE, 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood (Bellingham, WA: SPIE), 1625
Trujillo, C. A., Brown, M. E., Barkume, K. M., Schaller, E. L., & Rabinowitz, D. L. 2007, *ApJ*, 655, 1172