What is Algebraic in Process Theory?

Bas Luttik

Formal Methods Group
Eindhoven University of Technology

August 1, 2005
In mathematics: two kinds of algebra

Elementary algebra is about the real number system

- Solving systems of equations

 Find real numbers x, y such that $4x + 2y = 14$ and $4x - 2y = 2$

- Expressing properties of operations on reals by means of equations

 For all real numbers x, y and z: $x \cdot (y + z) = x \cdot y + x \cdot z$.

Abstract algebra is about the fundamental operations of arithmetic in general (adDITION, multiplication, . . .)
Abstract Algebra

“[…] deals not primarily with the manipulation of sums and products of numbers […] but with sums and products of elements of any sort”

(Mac Lane/Birkhoff)

Desideratum: abstract from objects, concentrate on operations

The abstraction is achieved by axiomatic definitions.

A group is any set with an associative binary operation with identity and inverse in the set.

Benefits: it elegant and general, and facilitates connexions
Process algebra

A process algebra is a set with process-theoretic operations (sequencing, choice, parallel composition, etc.) defined on it.

CSP: process-theoretic operations defined on failure sets.

CCS: process-theoretic operations defined on LTSs modulo observation congruence

ACP: process-theoretic operations defined by axioms
(Elementary) Algebraic Achievements

Expressiveness results

E.g., Stack is finitely definable (with recursive spec) with choice and sequential composition, but not with choice and prefix multiplication.

Axiomatisations

For many process algebras a ground-complete set of equational axioms has been given.

Unique decomposition results

For many process algebras it has been proved that processes have a unique decomposition w.r.t. parallel composition.
An Abstract Algebraic Result (1)

1. A process algebra is virtually always a commutative monoid under parallel composition, i.e.,

\[x \parallel y = y \parallel x , \]
\[x \parallel (y \parallel z) = (x \parallel y) \parallel z , \text{ and} \]
\[x \parallel 0 = 0 \parallel x = x . \]

2. For every commutative monoid it makes sense to ask:

Does it have unique decomposition?

(For, the notion has an abstract algebraic definition!)
An Abstract Algebraic Result (2)

A decomposition order on a commutative monoid is a well-founded partial order \rightarrow^* on it such that for all x, y, z:

(i) $x \rightarrow^* 0$;

(ii) $x \rightarrow^+ y$ implies $x \mid z \rightarrow^+ y \mid z$;

(iii) $x \mid y \rightarrow^* z$ implies $z = x' \mid y'$ with $x \rightarrow^* x'$ and $y \rightarrow^* y'$;

(iv) $x \rightarrow^+ y^n$ for all $n \in \mathbb{N}$ implies $y = 0$.

Theorem: A commutative monoid has unique decomposition iff it can be endowed with a decomposition order.

Proof: Generalisation of Milner’s proof for a concrete process algebra.
Not yet abstract algebraic

1. We’re lacking an abstract algebraic definition of *atomic action*

2. Binders are not algebraic!

\[
(\nu x)(P \mid Q) = P \mid (\nu x)Q \quad \text{provided that } x \notin \text{fn}(P)
\]

\[
(\sum x P) \cdot Q = \sum x (P \cdot Q) \quad \text{provided that } x \notin \text{FV}(Q)
\]

We’re lacking, e.g., an abstract algebraic definition of *mobility*.

3. ...
Conclusion

Most algebra in process theory is elementary.

Many advanced process-theoretic concepts have no abstract algebraic definition.

Benefits of a more abstract algebraic approach:

1. insight in fundamental operations on behaviour;
2. elegant mathematical theory of behaviour; and
3. facilitates connexions with other areas of mathematics/logic.