2 × N GRIDS HAVE UNBOUNDED ANAGRAM-FREE CHROMATIC NUMBER

Saman Bazarghani, Paz Carmi, Vida Dujmović, Pat Morin

Abstract. We show that anagram-free vertex colouring a 2 × n square grid requires a number of colours that increases with n. This answers an open question in Wilson’s thesis and shows that even graphs of pathwidth 2 do not have anagram-free colourings with a bounded number of colours.

1 Introduction

Two strings s and t are said to be anagrams of each other if s is a permutation of t. A single string s := s₁, ..., s₂r is anagramish if its first half s₁, ..., sᵣ and its second half sᵣ₊₁, ..., s₂r are anagrams of each other. A string is anagram-free if it does not contain an anagramish substring.

In 1961, Erdős [3] asked if there exists arbitrarily long strings over an alphabet of size 4 that are anagram-free.¹ In 1968 Evdokimov [4, 5] showed the existence of arbitrarily long anagram-free strings over an alphabet of size 25 and in 1971 Pleasants [10] showed an alphabet of size 5 is sufficient. Erdős’s question was not fully resolved until 1992, when Keränen [7] answered it in the affirmative.

A path v₁, ..., v₂r in a graph G is anagramish under a vertex c-colouring φ : V(G) → {1, ..., c} if φ(v₁), ..., φ(v₂r) is an anagramish string. The colouring φ is an anagram-free colouring of G if no path in G is anagramish under φ. The minimum integer c for which G has an anagram-free vertex c-colouring is called the anagram-free chromatic number of G and is denoted by χπ(G).

For a graph family ℱ, χπ(ℱ) := max{χπ(G) : G ∈ ℱ} or χπ(ℱ) := ∞ if the maximum is undefined. The results on anagram-free strings discussed in the preceding paragraph can be interpreted in terms of χπ(ℱ) where ℱ is the family of all paths. Slightly more complicated than paths are trees. Wilson and Wood [13] showed that χπ(T) = ∞ for the family T of trees and Kamčev, Łuczak, and Sudakov [6] showed that χπ(T₂) = ∞ even for the family T₂ of binary trees.

One positive result in this context is that of Wilson and Wood [13], who showed that every tree T of pathwidth p has χπ(T) ≤ 4p + 1. Since trees are graphs of treewidth 1 it is natural to ask if this result can be extended to show that every graph G of treewidth t

¹This was an incredibly prescient question since it is not at all obvious that there exist arbitrarily long anagram-free strings over any finite alphabet. The only justification for choosing the constant 4 is that a short case analysis rules out the possibility of length-8 anagram-free strings over an alphabet of size 3.
and pathwidth p has $\chi_\pi(G) \leq f(t, p)$ for some $f : \mathbb{N}^2 \to \mathbb{N}$. Carmi, Dujmović, and Morin [2] showed that such a generalization is not possible for any $t \geq 3$ by giving examples of n-vertex graph of pathwidth 3 (and treewidth 3) with $\chi_\pi(G) \in \Omega(\log n)$. The obvious remaining gap left by these two works is graphs of treewidth 2. Our main result is to show that G_n, the $2 \times n$ square grid has $\chi_\pi(G_n) \in \omega_n(1)$. Since G_n has pathwidth 2, we have:

Theorem 1. For every $c \in \mathbb{N}$, there exists a graph of pathwidth 2 that has no anagram-free vertex c-colouring.

Wilson [11, Section 7.1] conjectured that $\chi_\pi(G_n) \in \omega_n(1)$, so this work confirms this conjecture. Prior to the current work, it was not even known if the family of $n \times n$ square grids had anagram-free colourings using a constant number of colours.

In a larger context, this lower bound gives more evidence that, except for a few special cases (paths [4, 7, 10], trees of bounded pathwidth [13], and highly subdivided graphs [12]), the qualitative behaviour of anagram-free chromatic number is not much different than that of treedepth/centered colouring [9]. Very roughly: For most graph classes, every graph in the class has an anagram-free colouring using a bounded number of colors precisely when every graph in the class has a colouring using a bounded number of colours in which every path contains a colour that appears only once in the path.

The remainder of this paper is organized as follows: Section 2 gives some definitions and states a key lemma that shows that, under a certain periodicity condition, every sufficiently long string contains a substring that is ϵ-close to being anagramish. In Section 3 we prove Theorem 1. In Section 4 we prove the key lemma. Section 5 concludes with some final remarks about the (non-)constructiveness of our proof technique.

2 Periodicity in Strings

An *alphabet* Σ is a finite non-empty set. A *string over* Σ is a (possibly empty) sequence $s := s_1, \ldots, s_n$ with $s_i \in \Sigma$ for each $i \in \{1, \ldots, n\}$ The *length* of s is the length, n, of the sequence. For an integer k, Σ^k (the k-fold cartesian product of Σ with itself) is the set of all length-k strings over Σ. The *Kleene closure* $\Sigma^* := \bigcup_{k=0}^\infty \Sigma^k$ is the set of all strings over Σ. For each $1 \leq i \leq j \leq n + 1$, $s[i : j] := s_i, s_{i+1}, \ldots, s_{j-1}$ is called a *substring* of s. (Note the convention that $s[i : j]$ does not include s_j, so $s[i : j]$ has length $j - i$.)

Let $s := s_1, \ldots, s_n$ be a string over an alphabet $\Sigma := [s_i : i \in \{1, \ldots, n\}]$ and, for each $a \in \Sigma$, define $h_a(s) := |\{i \in \{1, \ldots, n\} : s_i = a\}|$. The *histogram* of s is the integer-valued $|\Sigma|$-vector $h(s) := (h_a(s) : a \in \Sigma)$ indexed by elements of Σ. Observe that a string s_1, \ldots, s_2r is anagramish if and only if $h(s_1, \ldots, s_r) = h(s_{r+1}, \ldots, s_{2r})$ or, equivalently, $h(s_1, \ldots, s_r) - h(s_{r+1}, \ldots, s_{2r}) = 0$. For each $a \in \Sigma$, let $\tau_a := |h_a(s_1, \ldots, s_r) - h_a(s_{r+1}, \ldots, s_{2r})|$. Then $\tau(s) := \sum_{a \in \Sigma} \tau_a(s)$ is a useful measure of how far a string is from being anagramish and $\tau(s) = 0$ if and only if s is anagramish.

A string $s := s_1, \ldots, s_n$ is ℓ-periodic if each length-ℓ substring of s contains every character in $\Sigma := \bigcup_{i=1}^n s_i$. We make use of the following lemma, which states that every sufficiently long ℓ-periodic string contains a long substring that is ϵ-close to being anagramish.

Lemma 2. For each $r_0, \ell \in \mathbb{N}$ and each $\epsilon > 0$, there exists a positive integer n such that each
The proof of Lemma 2 is deferred to Section 4. We now give some intuition as to how it is used. The process of checking if a string is anagramish is often viewed as finding common terms in the first and second halves and crossing them both out. If this results in a complete cancellation of all terms, then the string is an anagram. Lemma 2 tells us that we can always find a long substring s where, after exhaustive cancellation, only an ϵ-fraction of the original terms remain. Informally, the substring s is ϵ-close to being anagramish.

Lemma 2 says that, if up to ϵr terms in each half of s were each allowed to cancel two terms each in the other half of s, then it would be possible to complete the cancellation process. To achieve this type of one-versus-two cancellation in our setting, we decompose our coloured pathwidth-2 graph into pieces of constant size. The vertices in each piece can be covered with one path or partitioned into two paths. In this way an occurrence H_z of a particular coloured piece in one half can be matched with two like-coloured pieces H_x and H_y in the other half. We construct a single path P that contains all vertices in H_z and only half the vertices in each of H_x and H_y. In this way, the colours of vertices $P \cap H_z$ can cancel the colours of the vertices in $P \cap (H_x \cup H_y)$.

Since Lemma 2 requires that the string s be ℓ-periodic, the following lemma will be helpful in obtaining strings that can be used with Lemma 2.

Lemma 3. Let Σ be an alphabet and let $P : \Sigma^* \rightarrow \{0, 1\}$ be a function such that,

1. (A1) if $P(s') = 0$ for some substring s' of s then $P(s) = 0$; and
2. (A2) for each $n \in \mathbb{N}$, there exists at least one $s \in \Sigma^n$ such that $P(s) = 1$.

Then there exists $\ell \in \mathbb{N}$ and $\Xi \subseteq \Sigma$ such that, for each $n \in \mathbb{N},$

1. (C1) there exists $s \in \Xi^n$ such that $P(s) = 1$; and
2. (C2) every string in $\{s \in \Xi^n : P(s) = 1\}$ is ℓ-periodic.

Proof. Take Ξ to be a minimal subset of Σ such that there exists $s \in \Xi^n$ with $P(s) = 1$, for each $n \in \mathbb{N}$. Such a Ξ exists by (A2) and the fact that Σ is finite. By definition, Ξ satisfies (C1) so we need only show that it also satisfies (C2). If $|\Xi| = 1$ then we are done since every string over a 1-character alphabet is 1-periodic.

For $|\Xi| > 1$, the minimality of Ξ implies that, for any $a \in \Xi$, there exist $\ell_a \in \mathbb{N}$ such that $P(s) = 0$ for each $s \in \Xi^{\ell_a}$. Therefore (A1) implies that, for each $\ell \geq \ell_a$, $P(s) = 0$ for each $s \in \Xi^\ell$. Set $\ell := \max\{\ell_a : a \in \Xi\}$. Now (A1) implies that, for every $s \in \Xi$, every length ℓ-substring of s contains every character in Ξ, so s is ℓ-periodic. \qed

3 Proof of Theorem 1

For each $n \in \mathbb{N}$, let G_n be the $2 \times n$ square grid with top row a_0, \ldots, a_{n-1} and bottom row b_0, \ldots, b_{n-1} (see Figure 1). For convenience, we let $G := G_\infty$. For each $i, j \in \mathbb{N}$ with $i \leq j$, define $G[i : j] := G[\bigcup_{i \leq z \leq j} [a_z, b_z]]$ and we call $G[i : j]$ a $(j-i)$-block. Note that each t-block $G[i : i + t]$ is isomorphic to G_t with the mapping $f : G_t \rightarrow V(G[i : i + t])$ given by $f_t(a_j) := a_{i+j}$ and $f_t(b_j) := b_{i+j}$ for each $j \in \{0, \ldots, t - 1\}$.
For each \(n \in \mathbb{N} \), let \(\Phi_{c,n} \) be the set of all \(c^{2n} \) functions \(\phi : V(G_n) \to \{1, \ldots, c\} \), i.e., all vertex \(c \)-colourings of \(G_n \). Given some \(\phi \in \Phi_{c,n} \), each \(t \)-block \(G[i : i + t] \) defines a vertex colouring \(\phi[i : i + t] \in \Phi_{c,i} \) of \(G_t \) defined as \(\phi[i : i + t](v) := \phi(f_i(v)) \) for each \(v \in V(G[i : i + t]) \).

Our strategy will be to break \(G_n \) up into small pieces using 4-blocks that all have the same colouring. Observe that any string \(s \in \Sigma^t \) defines a colouring of \(G_{4b} \) where \(\phi_s[4j : 4j + 4] := \phi_j \) for each \(j \in \{0, \ldots, b - 1\} \). Indeed, this is a bijection between \(c \)-colourings of \(G_{4b} \) and strings in \(\Phi_{c,4}^b \).

Lemma 4. If \(\chi_n(G_n) \leq c \) for each \(n \in \mathbb{N} \) then there exists \(\Xi_{c,4} \subseteq \Phi_{c,4} \) such that, for each \(b \in \mathbb{N} \), there exists \(s \in (\Xi_{c,4})^b \) such that \(\phi_s \) is an anagram-free vertex colouring of \(G_{4b} \) and every such \(s \) is \(\ell \)-periodic.

Proof. For any \(s \in (\Phi_{c,4})^* \), let \(P(s) := 1 \) if \(\phi_s \) is an anagram-free colouring of \(G_{4|s|} \) and let \(P(s) := 0 \) otherwise. Then \(P \) has property (A1) of Lemma 3 since any substring of \(s \) of \(s \) defines a colouring of \(G_{4|s|} \) that appears in the colouring of \(G_{4|s|} \); if the colouring \(\phi_s \) of \(G_{4|s|} \) is not anagrom-free then neither is the colouring \(\phi_s \) of \(G_{4|s|} \). By assumption, \(\chi_n(G) \leq c \), so \(G_{4b} \) has some anagram-free vertex \(c \)-colouring, so \(P \) also satisfies property (A2) of Lemma 3. The result now follows from Lemma 3. \(\square \)

Let \(\Xi_{c,4} \) and \(\ell \) be defined as in Lemma 4. Let \(\phi^* \) be an arbitrary element of \(\Xi_{c,4} \) and let \(\Sigma := \{(k, \phi) : k \in \{1, \ldots, \ell\}, \phi \in \Phi_{c,4k}\} \). For a string \(s := (k_1, \phi_1), \ldots, (k_r, \phi_r) \in \Sigma^* \), define \(n_{s,i} := 4(i + \sum_{j=1}^i k_j) \), define \(n_s := n_{s,r} \). Fix a vertex \(c \)-colouring \(\phi^* \in \Phi_{c,4} \) of \(G_4 \) and define the colouring \(\phi_s \) of \(G_n \) as follows:

1. for each \(i \in \{0, \ldots, r\} \), \(\phi[n_{s,i}, n_{s,i+4}] := \phi^* \); and
2. for each \(i \in \{1, \ldots, r\} \), \(\phi[n_{s,i-1} + 4, n_{s,i}] := \phi_i \).

See Figure 2. In words, \(G_n \) is decomposed into blocks each of whose length is a multiple of 4. There are colourful blocks of lengths \(4k_1, 4k_2, \ldots, 4k_{|s|} \leq 4\ell \) and these are interleaved with boring blocks, each of length 4. The colourful blocks have their vertex colours determined by \(s \). The boring blocks are all coloured the same way, by \(\phi^* \).
Define the function $P : \Sigma^* \rightarrow \{0, 1\}$ so that $P(s) := 1$ if ϕ_s is an anagram-free colouring of G_n, and $P(s) := 0$ otherwise. Observe that any substring s' of s defines a colouring $\phi_{s'}$ of $G_{n'}$ that appears in the colouring ϕ_s of G_n. Therefore P satisfies property (A1) of Lemma 3. Furthermore, if $\chi_n(G_n) \leq c$ for each $n \in \mathbb{N}$, then Lemma 4 implies that there exists a string $s \in \Sigma^b$ with $P(s) = 1$ for each $b \in \mathbb{N}$. Therefore P satisfies property (A2) of Lemma 3. Therefore, Lemma 3 implies the following result:

Lemma 5. If $\chi_n(G_n) \leq c$ for each $n \in \mathbb{N}$ then there exists $\ell \in \mathbb{N}$ such that, for each $k \in \mathbb{N}$ there exists an ℓ-periodic string $s \in \Sigma^k$ such that ϕ_s is an anagram-free vertex colouring of G_n.

Lemma 2 and 5 immediately imply:

Lemma 6. If $\chi_n(G_n) \leq c$ for each $n \in \mathbb{N}$ then, for each $r_0 \in \mathbb{N}$ and $\varepsilon > 0$, there exists $r \geq r_0$ and a string $s := s_1, \ldots, s_{2r} \in \Sigma^{2r}$ with $\tau(s) \leq \varepsilon r$ such that ϕ_s is an anagram-free vertex colouring of G_n.

Proof. By Lemma 5, for each $k \in \mathbb{N}$ there exists an ℓ-periodic string $s' \in \Sigma^k$ such that $\phi_{s'}$ is an anagram-free vertex colouring of G_n. Applying Lemma 2 to s' proves the existence of the desired string s. \square

Lemma 6 shows the existence of colourings of G_n for arbitrarily large values of n that are defined by strings that are ε-close to being anagramish. The last step, done in the next lemma, is to show that there is enough flexibility when constructing a path in G_n that we can find a path that has an anagramish colour sequence.

Lemma 7. For any $\ell \in \mathbb{N}$, there exists $\varepsilon > 0$ and $r_0 \in \mathbb{N}$ such that, for any integer $r \geq r_0$ and any ℓ-periodic $s := s_1, \ldots, s_{2r} \in \Sigma^{2r}$ with $\tau(s) \leq \varepsilon r$, the graph G_n contains a path $P = v_1, \ldots, v_{2m}$ such that $\phi_s(v_1), \ldots, \phi_s(v_{2m})$ is anagramish.

Proof. For each $a \in \Sigma$ define $\delta_a := h_a(s_1, \ldots, s_r) - h_a(s_{r+1}, \ldots, s_{2r})$ and define sets $A_a \subseteq \{i \in \{1, \ldots, r - 1\} : s_i = a\}$ and $B_a \subseteq \{i \in \{r + 1, \ldots, 2r - 1\} : s_i = a\}$ as follows:

1. If $\delta_a = 0$ then $A_a = B_a = \emptyset$.
2. If $\delta_a > 0$ then $|A_a| = 2\delta_a = 2|B_a|$.
3. If $\delta_a < 0$ then $|A_a| = |B_a| = \frac{1}{2}|B_a|$.

Let $A := \bigcup_{a \in \Sigma} A_a$ and $B := \bigcup_{a \in \Sigma} B_a$. The sets A_a and B_a are chosen so that they satisfy the following **global independence constraint**: There is no pair $i, j \in A \cup B$ such that $i - j = 1$. To see that this is possible, first observe that, because r is not in A or in B we need only concern ourselves with pairs where both $i, j \in \{1, \ldots, r - 1\}$ or pairs where both $i, j \in \{r + 1, \ldots, 2r - 1\}$. Thus, we can choose the elements of A_a, for each $a \in \Sigma$ and then independently choose the elements of B_a, for each $a \in \Sigma$.

We show how to choose the elements of A_a for each $a \in \Sigma$. The same method works for choosing the elements in B_a. Observe that, because s is ℓ-periodic, $|\{i \in \{1, \ldots, r - 1\} : s_i = a\}| \geq \lceil (r - 1)/\ell \rceil$ for each $a \in \Sigma$. This allows us to greedily choose the elements in A_a for each $a \in \Sigma$. At each step we simply avoid choosing i if $i - 1$ or $i + 1$ have already been chosen in some previous step. At any step in the process, at most εr elements have already been
Figure 3: Constructing the anagramish path P: (1) top and bottom paths are matched with zig-zag paths; (2) all remaining colourful blocks receive top paths; (3) all boring blocks receive top, updown, or downup paths.

Figure 4: Subpaths of P through colourful blocks: A top path and a bottom path contribute the same amount as a single zig-zag path.

chosen in previous steps and each of these eliminates at most 2 options. Therefore, there will always be an element available to choose, provided that $2\epsilon r < \lfloor (r-1)/\ell \rfloor$. In particular, for any $r \geq r_0 \geq 2\ell$, $\epsilon < 1/(4\ell)$ works.

We now construct the path P in a piecewise fashion. Refer to Figure 3. For each $i \in \{1, \ldots, 2r\}$, let $H_i := G[n_{5,i} : n_{5,i+1} - 4]$. The subgraph H_1, \ldots, H_{2r} are what is referred to above as colourful blocks. The colouring of $V(H_i)$ by ϕ_s is defined by s_i.

1. For each $a \in \Sigma$ such that $\delta_a > 0$, group the elements of A_a into pairs. For each pair (i, j), P contains the path through the top row of H_i and the path through the bottom row of H_j. For each element $i \in B_a$, P contains the zig-zag path with both endpoints in the top row of H_i and that contains every vertex of H_j. (Note that the zig-zag path begins at the top and ends at the bottom row because H_i is a t-block for t a multiple of 4; in particular, t is even.)

2. For each $a \in \Sigma$ such that $\delta_a < 0$ we proceed symmetrically to the previous case, but reversing the roles of A_a and B_a. Specifically, we group the elements of B_a into pairs. For each pair (i, j), P contains the path through the top row of H_i and the path through the bottom row of B_j. For each element $i \in A_a$, P contains the zig-zag
path with both endpoints in the top row of H_i and that contains every vertex of H_i.

3. For each $i \in \{1, \ldots, 2r\} \setminus \bigcup_{a \in \Sigma} (I_a \cup B_a)$, P contains the top row of H_i.

The rules above define the intersection, P_i, of P with each colourful block H_i of G_{ns}. If P_i is the path through the bottom (top) row of H_i then we call H_i a bottom (top) block. If P_i is the zig-zag path that contains every vertex of H_i then we call H_i a zig-zag block. Note that $\sum_{a \in \Sigma} |\delta_a| = 0$ and this implies that the number of bottom blocks among H_1, \ldots, H_{r-1} is the same as the number of bottom blocks among H_{r+1}, \ldots, H_{2r}. Indeed, this number is exactly $\beta := \frac{1}{2} \sum_{a \in \Sigma} |\delta_a| = \frac{1}{2} \tau(s)$.

We now define how P behaves for the boring blocks, that we name Q_0, \ldots, Q_{2r-1}. The first boring block Q_0 comes immediately before H_1. Each boring block Q_j, for $j \in \{1, \ldots, 2r-1\}$ comes immediately after H_j and immediately before H_{j+1}. In almost every case, P uses the path through the top row of Q_j. The only exceptions are when H_j or H_{j+1} are bottom blocks. Note that, because of the global independence constraint, these two cases are mutually exclusive. See Figure 5.

1. When H_j is a bottom block P uses a path that begins at the bottom row of Q_j but moves immediately to the top row of Q_j and uses the entire path along the top row. We call this a downup path.

2. When H_{j+1} is a bottom block, P uses a path that begins at the top row of Q_j and moves immediately to the bottom row of Q_j and uses the entire path along the bottom row. We call this a updown path.

This completely defines the path $P := v_1, \ldots, v_{2m}$. All that remains is to argue that $\rho := \phi_s(v_1), \ldots, \phi_s(v_{2m})$ is anagramish.

Observe that the number of downup paths and the number of updown paths in Q_0, \ldots, Q_{r-1} is exactly the same as the number of bottom blocks among H_1, \ldots, H_{r-1} which is exactly β. Similarly, the number of updown paths and downup paths in $Q_{r+1}, \ldots, Q_{2r-1}$ is exactly β. Now every path that is neither downup nor updown uses the top row. This implies that the sequence of colours contributed to ρ by the intersection of P with Q_0, \ldots, Q_{r-1} is a permutation of the sequence of colours contributed to ρ by the intersection of P with $Q_{r+1}, \ldots, Q_{2r-1}$.

Finally, by construction, each pair of top and bottom blocks in H_1, \ldots, H_{r-1} contributes exactly the same amount as a single matching zig-zag block in $H_{r+1}, \ldots, H_{2r-1}$. Specifically, if $x, y \in A_a$, and $z \in B_a$, H_x is a top block, H_y is a bottom block and H_z is a zig-zag block, then the contributions of P_x and P_y to ρ cancels out the contribution of P_z. After doing this cancellation exhaustively, all that remains are top blocks, which also cancel each other perfectly. This completes the proof. □
Proof of Lemma 2. Define an even-length string t over the alphabet Σ to be a-unbalanced if $\tau_a(t) > \ell|t|/\ell$ and a-balanced otherwise. If t is a-balanced for each $a \in \Sigma$ then t is balanced. Observe that, if t is balanced then $\tau(t) \leq \ell|t|$. A string is everywhere unbalanced if it contains no balanced substring of length $r \geq r_0$. Our goal therefore is to show that there is an upper bound $n := n(\ell, \epsilon, r_0)$ on the length of any ℓ-periodic everywhere unbalanced string.

Let h be a positive integer (that determines n and whose value will be discussed later), and let $n := r_02^h$. Let s be an ℓ-periodic everywhere unbalanced string of length n over the alphabet Σ. The fact that s is ℓ-periodic, implies that the $|\Sigma| \leq \ell$. Assume, without loss of generality, that r_0 is a multiple of ℓ.

Consider the complete binary tree T of height h whose leaves, in order, are length-r_0 strings whose concatenation is s and for which each internal node is the substring obtained by concatenating the node’s left and right child. Note that for each $v \in V(T)$ and each $a \in \Sigma$, the fact that s is ℓ-periodic and r_0 is multiple of ℓ implies that $h_a(v) \geq |v|/\ell$.

For each $a \in \Sigma$, let $S_a := \{v \in V(T) : v$ is a-unbalanced$\}$. Since s is everywhere unbalanced, $\bigcup_{a \in \Sigma} S_a = V(T)$. Therefore,

$$(h + 1)n = \sum_{v \in V(T)} |v| \leq \sum_{a \in \Sigma} \sum_{v \in S_a} |v|$$

and therefore, there exists some $a^* \in \Sigma$ such that $\sum_{v \in S_{a^*}} |v| \geq (h + 1)n/|\Sigma| \geq (h + 1)n/\ell$. At this point we are primarily concerned with appearances of a^*, so let $X := S_{a^*}$, and, for each node $v \in V(T)$, let $W(v) := h_{a^*}(v)$.

For each non-leaf node v of T, let $R(v)$ denote a child of v such that $W(R(v)) \leq \frac{1}{2}W(v)$. (It is helpful to think of T as being ordered so that each right child y with sibling x has $W(y) \leq W(x)$.) For a non-leaf node $v \in X$ the fact that v is a^*-unbalanced implies that

$$W(R(v)) \leq \frac{1}{2}W(v) - \frac{\epsilon}{2\ell} \cdot |v| \leq (\frac{1}{2} - \frac{\epsilon}{2\ell})W(v)$$

From this point on we use the following shorthands. For any $S \subseteq V(T)$, $L(S) := \sum_{v \in S} |v|$, $W(S) := \sum_{v \in S} W(v)$, and $R(S) = \{R(v) : v \in S\}$. Summarizing, we have a complete binary tree T of height h and $X \subseteq V(T)$ with the following properties:
1. For each $v \in V(T)$, $W(v) \geq |v|/\ell$.
2. $L(X) \geq (h+1)n/\ell$.
3. For each non-leaf node $v \in X$, $W(R(v)) \leq (1 - \frac{\ell}{2})W(v)$.

For each $i \in \{0, \ldots, h\}$, let $X_i \subseteq X$ denote the set of nodes $v \in X$ for which the path from the root of T to v contains exactly i nodes in X, excluding v. See Figure 6. Observe that, since each node in X_i has an ancestor in X_{i-1},

$$n \geq L(X_0) \geq L(X_1) \geq \cdots \geq L(X_h).$$

We will show that there exists an integer $t := t(\epsilon, \ell, r_0)$ such that, for each $i \in \{0, \ldots, h-t\}$,

$$L(X_{i+t}) \leq (1 - (1/2)^{t+1})L(X_i). \quad (1)$$

In this way,

$$(h+1)n/\ell \leq L(X) = \sum_{i=0}^{h} L(X_i) \leq \sum_{i=0}^{h} L(X_{t[i/t]}) \quad \text{(since $t[i/t] \leq i$)}
= t \cdot \sum_{i=0}^{h/t} L(X_{it}) \quad \text{(for h a multiple of t)}
\leq t \cdot \sum_{i=0}^{\infty} (1 - (1/2)^{t+1})^i L(X_0) \quad \text{(by Equation (1))}
\leq tn \cdot \sum_{i=0}^{\infty} (1 - (1/2)^{t+1})^i \quad \text{(since $|X_0| \leq n$)}
= tn2^{t+1},$$

which is a contradiction for sufficiently large h; in particular, for $h > \ell t 2^{t+1} - 1$.

It remains to establish Equation (1), which we do now. Define $A_0 := X_i$ and, for each $j \geq 1$, define A_j to be the subset of X_{i+j} that are descendants of some node in $R(A_{j-1})$. See Figure 6. To upper bound $L(X_{i+j})$ observe that X_{i+j} can be split into two sets A'_j and B defined as follows: The nodes A'_j do not have an ancestor in $R(A_0)$ and therefore $L(A'_0) \leq (1/2)L(A_0)$. The nodes in B do have an ancestor in $R(A_0)$ and therefore have an ancestor in A_1. Iterating this argument, we obtain

$$L(X_{i+j}) \leq (1/2)L(A_0) + (1/2)L(A_1) + \cdots + (1/2)^{j}L(A_{j-1}) + L(A_j) \leq (1/2)L(A_0) + (1/4)L(A_0) + \cdots + (1/2)^{j}L(A_0) + L(A_j) = (1 - (1/2)^{j})L(A_0) + L(A_j) = (1 - (1/2)^{j})L(X_i) + L(A_j).$$

So all that remains to establish 1 is to prove that $L(A_j) \leq (1/2)^{j+1}L(X_i)$.

Figure 6: The partitioning of X into X_0, \ldots, X_h. Shaded nodes are in X and all nodes in X_i are shaded with the same colour. Starting with $A_0 = X_0$, the elements of A_0, \ldots, A_h are highlighted (in orange). The elements of $R(A_0), \ldots, R(A_h)$ are also highlighted (in pink).

To to this, observe that, for each $j \in \{1, \ldots, t\}$,

$$W(A_j) \leq W(R(A_{j-1})) \leq \left(\frac{1}{2} - \frac{\epsilon}{2\ell}\right) \cdot W(A_{j-1})$$

which implies

$$W(A_t) \leq \left(\frac{1}{2} - \frac{\epsilon}{2\ell}\right)^t W(A_0) \leq \left(\frac{1}{2} - \frac{\epsilon}{2\ell}\right)^t \cdot L(A_0) = \left(\frac{1}{2} - \frac{\epsilon}{2\ell}\right)^t \cdot L(X_i)$$

Since s is ℓ-periodic,

$$L(A_t) \leq \ell \cdot W(A_t) \leq \ell \cdot \left(\frac{1}{2} - \frac{\epsilon}{2\ell}\right)^t \cdot L(X_i) \leq L(X_i)/2^{t+1}$$

for $t = \lceil \log(2\ell)/\log((1/(1 - \frac{\epsilon}{\ell})) \rceil$.

5 Reflections

Although an explicit upper bound on $n := n(\epsilon, \ell, r_0)$ could be extracted from the proof of Lemma 2 it would likely be far from tight. We suspect that there is a Fourier analytic proof that would give better quantitative bounds. We have not pursued this, because we have no idea how to explicitly upper bound ℓ, for reasons discussed in the next paragraph.

Lemma 3 and its proof give absolutely no clues to help find a concrete bound on ℓ or to find a minimal set Ξ. Indeed, for some choices of P, doing so can be a difficult problem. Consider the example where $|\Sigma| = 5$ and P is predicate that tells whether or not its input is anagram-free. It is easy to see that this predicate P satisfies (A1) and the result of Pleasants [10], published in 1970, shows that this P satisfies (A2). The question of whether $|\Xi| = 4$ or
$|\Xi|=5$ is then the question of determining whether there exist arbitrarily long anagram-free strings on an alphabet of size 4. This was the open problem posed by Erdős [3] in 1961 and again by Brown [1] in 1971 and not resolved until 1992 when Keränen [7, 8] showed that the answer, in this case, is that $|\Xi|=4$. However, if this were not the case, then determining ℓ would be the question of determining the length of the longest anagram-free string over an alphabet of size 4.

Our proof uses Lemma 3 twice and each application uses a predicate P that is considerably more complicated than asking if the input string is anagram-free. It seems unlikely that we will obtain concrete bounds upper bounds on ℓ as a function of c except, possibly, through the use of computer search. The resulting value ℓ is used in the application of Lemma 2 and also within the proof of Lemma 7.

References

[1] T. C. Brown. Is there a sequence on four symbols in which no two adjacent segments are permutations of one another? *The American Mathematical Monthly*, 78(8):886–888, 1971. doi:10.1080/00029890.1971.11992892.

[2] Paz Carmi, Vida Dujmović, and Pat Morin. Anagram-free chromatic number is not pathwidth-bounded. In Andreas Brandstädt, Ekkehard Kühler, and Klaus Meer, editors, *Graph-Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings*, volume 11159 of *Lecture Notes in Computer Science*, pages 91–99. Springer, 2018. doi:10.1007/978-3-030-00256-5_8.

[3] P. Erdős. Some unsolved problems. *Magyar Tud Akad Mat Kutato Int Kozl*, 6:221–254, 1961.

[4] A. A. Evdokimov. Strongly asymmetric sequences generated by finite number of symbols. *Doklady Akademii Nauk SSSR*, 179:1268–1271, 1968.

[5] A. A. Evdokimov. Strongly asymmetric sequences generated by finite number of symbols. *Soviet Mathematics Doklady*, 9:536–539, 1968.

[6] Nina Kamčev, Tomasz Łuczak, and Benny Sudakov. Anagram-free colourings of graphs. *Comb. Probab. Comput.*, 27(4):623–642, 2018. doi:10.1017/S096354831700027X.

[7] Veikko Keränen. Abelian squares are avoidable on 4 letters. In Werner Kuich, editor, *Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17, 1992, Proceedings*, volume 623 of *Lecture Notes in Computer Science*, pages 41–52. Springer, 1992. doi:10.1007/3-540-55719-9_62.

[8] Veikko Keränen. A powerful abelian square-free substitution over 4 letters. *Theor. Comput. Sci.*, 410(38-40):3893–3900, 2009. doi:10.1016/j.tcs.2009.05.027.

[9] Jaroslav Nešetřil and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. *Eur. J. Comb.*, 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.
[10] P. A. B. Pleasants. Non-repetitive sequences. *Proceedings of the Cambridge Philosophical Society*, 68:267–274, 1970. doi:10.1017/S0305004100046077.

[11] Tim E. Wilson. *Anagram-free Graph Colouring and Colour Schemes*. Ph.D. thesis, Monash University, 2019. doi:10.26180/5c72eca26d5c7.

[12] Tim E. Wilson and David R. Wood. Anagram-free colorings of graph subdivisions. *SIAM J. Discret. Math.*, 32(3):2346–2360, 2018. doi:10.1137/17M1145574.

[13] Tim E. Wilson and David R. Wood. Anagram-free graph colouring. *Electron. J. Comb.*, 25(2):P2.20, 2018. doi:10.37236/6267.