Non-invasive analysis of intestinal development in preterm and term infants using RNA-Sequencing

Jason M. Knight1,3, Laurie A. Davidson2,3, Damir Herman6*, Camilia R. Martin7, Jennifer S. Goldsby2,3, Ivan V. Ivanov5, Sharon M. Donovan8 & Robert S. Chapkin2,3,4

1Department of Electrical Engineering, Texas A&M University, College Station, TX, 2Department of Nutrition & Food Science, Texas A&M University, College Station, TX, 3Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, 4Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX, 5Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 6Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 7Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 8Department of Food Science & Human Nutrition, University of Illinois, Urbana, IL.

The state and development of the intestinal epithelium is vital for infant health, and increased understanding in this area has been limited by an inability to directly assess epithelial cell biology in the healthy newborn intestine. To that end, we have developed a novel, noninvasive, molecular approach that utilizes next generation RNA sequencing on stool samples containing intact epithelial cells for the purpose of quantifying intestinal gene expression. We then applied this technique to compare host gene expression in healthy term and extremely preterm infants. Bioinformatic analyses demonstrate repeatable detection of human mRNA expression, and network analysis shows immune cell function and inflammation pathways to be up-regulated in preterm infants. This study provides incontrovertible evidence that whole-genome sequencing of stool-derived RNA can be used to examine the neonatal host epithelial transcriptome in infants, which opens up opportunities for sequential monitoring of gut gene expression in response to dietary or therapeutic interventions.

Growth and maturation of the gastrointestinal tract occurs on a set developmental ontogeny1,2. Although some aspects of intestinal development appear to be hardwired and do not emerge until a specific gestational age3, others are influenced by dietary intake1 and microbial colonization4. Accordingly, the early neonatal period is a critical phase for both intestinal digestive development as well as establishment (colonization) of the intestinal microbiota5. Functional immaturity of the gut compromises nutrient absorption and utilization in the preterm6. This digestive immaturity, coupled with immature mucosal barrier function, immune response and inappropriate bacterial colonization, makes premature neonates particularly susceptible to intestinal inflammation and injury and the development of necrotizing enterocolitis (NEC), a potentially lethal bowel disorder1,3–6.

The intestine is lined by epithelial cells that process nutrients and provide the first line of defense against pathogens. Because colonization of the intestine with non-pathogenic, or commensal, bacteria is vital for infant health, it is important to understand how epithelial cells and the microbial ecosystem are modulated by diet and disease7. Therefore, our on-going efforts are directed at understanding the regulation of neonatal development by components present in human milk, as it is the gold standard for infant nutrition10–12. Advancing knowledge in this area has been limited by an inability to directly assess epithelial cell biology in the healthy newborn intestine. Previously, to that end, we developed non-invasive high throughput microarray techniques to examine intestinal gene expression in stool samples11 and to probe the cross-talk between host gene expression and the microbiota12. This methodology has the advantage of using exfoliated cell mRNA directly isolated from feces, which contains sloughed small intestinal and colon cells, and therefore does not require invasive procedures or discomfort to the subject.

In this study, we applied our non-invasive methodology, which has been optimized in the term infant, to the extremely preterm infant (24–30 weeks gestational age). With respect to neonatal health, it is well known that extremely preterm infants are a vulnerable population whose intestinal and immune development is modulated early in the postnatal period by multiple environmental factors, such as medications, indigenous microorganisms
in the intensive care unit, and limited enteral diet13. Using global transcriptome RNA Sequencing (RNA-Seq) profiling, we compared host transcript abundance and alternative splicing in healthy term and extremely preterm infants. This novel application of RNA-Seq to measure host gene expression has, for the first time, provided insight into host responses to dietary and environmental influences in the early neonatal period.

Results

Fecal samples were obtained from three term and three preterm infants and enriched for host mRNA transcripts through poly A+ RNA selection. We also considered the effects of pooling by sequencing a sample consisting of multiple term infants. Approximately 50 M reads were sequenced for each individual and 30 M reads for the pooled sample, and on average 5075 human genes were detected above an FPKM threshold of one despite 55–90% of the reads mapping to a representative set of microbial genomes (Supplementary Table 1). Complementary analyses were conducted using ERCC spike-in RNA controls, sample correlations, and qPCR in order to validate the host mRNA transcript data.

In general, transcripts consisted of hundreds of reads that accumulated in a narrow region in or close to the 3' UTR. A typical example is RefSeq id NM_000482, representing apolipoprotein A-IV (Supplementary Figure 1). Since bacterial RNA in stool is much more abundant than human RNA14, the first objective was to ascertain the efficacy of host poly A+ RNA enrichment, library preparation, and sequencing procedures. We note that poly A+ RNA enrichment precludes the use of these data to probe microbiome diversity or transcript levels due to the bias this procedure might place on the microbial transcripts. ERCC spike-in controls added at step A in Figure 1 were used to verify the integrity of sample handling from steps A to B. The ERCC controls reflect a diverse set of sequence content and length, have low homology with eukaryotic transcripts and span a large range of concentrations. The amount of observed reads from the six individual samples, which mapped to known ERCC transcripts, is plotted in Figure 2. The observed ERCC reads were highly correlated between samples (all Pearson correlation coefficients > 0.998, all Spearman correlation coefficients > 0.992). Additionally, each sample correlated strongly to the known concentrations (all Pearson correlation coefficients > 0.88, all Spearman correlation coefficients > 0.9, see methods for

Figure 1 | Fecal samples were processed to enrich eukaryotic mRNA, develop libraries, and assess bioinformatic sequencing content. The steps in cyan were applied to mRNA processing and the magenta steps were applied to sequenced read data. Step A, ERCC controls were spiked-in to determine processing efficacy and reproducibility up to and including step B.
Furthermore, using known quantities and concentrations of
exogenous ERCC transcripts, we observed reads from mRNA species
present at amounts as low as 800 molecules in our samples.

We subsequently validated RNA-Seq against qPCR as in15. For this
purpose, eleven differentially-expressed genes, as detected by RNA-
Seq, were selected based on the fact that in the RNA-Seq data set
expression of each gene in all term infants was either higher or lower
than each gene in all preterm infants. In addition, we selected genes
with FPKM greater than 10 since genes expressed at a lower level are
typically difficult to detect by qPCR. Nine of the eleven genes mea-
sured (Figure 3) demonstrated fold-changes of similar magnitude
and direction by qPCR and RNA-Seq (Supplementary Table 2),
while SLC2A1 and RPS16 differed in directionality of differential
expression. By comparison, a similar RNA-Seq validation using
qPCR in the literature observed four out of five DE genes replicated16.

To obtain a benchmark for comparison, the average quantified
gene expression for three preterm and three term infants were com-
pared. Overall, global transcriptional profiles compared favorably
with high correlation for highly expressed genes (Figure 4). In addition,
expression correlation between individual samples verified the
presence and detection of human epithelial mRNA transcripts in the
fecal samples (Supplementary Figure 3, Figure 5a). Examples of
genes associated with specific intestinal cell types included absorptive
enterocytes (lactase, 7.4-fold higher expression in preterm than term
and sucrase – isomaltase, 1.7-fold higher expression in term than
preterm), Goblet cells (muc-2, 1.3-fold higher expression in preterm
than term), enteroendocrine cells (chromogranin A, 12-fold higher
expression in term than preterm) and Paneth cells (lysozyme, 1.6-
fold higher expression in preterm than term). In some cases where
small volumes of stool are available, pooling of samples may be
necessary. Therefore, the effect of sequencing pooled samples versus
individual samples from term infants was assessed. Individual sam-
ples and their pooled counterparts exhibited homogeneity as deter-
dined by Spearman correlation coefficients plotted in a heatmap
(Figure 5a). Interestingly, the preterm individuals appeared more
heterogeneous amongst themselves and as compared to the term
samples. This is potentially a result of the larger clinical variation
of the preterm samples in terms of nutrition and gut health. In
addition, when considering genes expressed at an arbitrary cutoff
threshold (>10 Fragments per Kilobase per Million [FPKM]), the
number of genes expressed (Figure 5b) in common among the four
term infant samples (three individual and one pooled) was larger
than the number of genes expressed in common by any subset of
these samples. Therefore, the term individual samples and the pooled
sample were more similar than dissimilar.

Functional gene set enrichment analysis was performed using
Ingenuity Pathway Analysis (IPA) pathway profiling17 to probe the
biological relevance of the differentially expressed genes between
preterm and term infants. For this purpose, differentially expressed
genes with a p value cutoff <0.05 between groups were associated
with canonical gene networks using the Ingenuity Knowledge base
(Figure 6). Broad differences in genes associated with lipid metabol-
ism, molecular transport, organismal injury, infectious disease and cellular development were observed. This is further highlighted in Table 1 (preterm expression) and Table 2 (term expression), where differentially-expressed genes associated with these networks are documented. Preterm infants expressed numerous genes associated with immune cell function (e.g., CASP1, IL-1beta, IL-33, NFkB1A, S100-A9, SOCS3, and TREM-1) and lipid metabolism (e.g., ApoA1, ApoA4, ASAH1, MTM1 and PLIN2) (Table 1). In contrast, term infants exhibited highly up-regulated expression of genes associated with regulation of cell growth/cell cycle (e.g., CDKN2B, ESRRA, INSR, KREMEN2, MTRNR2L6, PDPK1 and TRIM36) (Table 2).

Discussion
Nutritional regulation of intestinal development begins in utero with exposure to protein-rich amniotic fluid and continues after birth with human milk and/or infant formula. These developmental processes are essential for continued cellular differentiation of the gut and development of mucosal immunity. In the healthy term infant, the continuum of enteral stimulation is continued postnatally, whereas the preterm infant is typically supported on parenteral nutrition with limited enteral stimulation in the first few weeks of life. In addition, postnatal exposure to environmental organisms in the neonatal intensive care unit and the routine use of antibiotics can lead to aberrant intestinal development, microbial colonization and risk of intestinal disease in the preterm infant. Hence, it is imperative to understand the transcriptional responses of the preterm gut so that specific nutritional practices can be employed in order to optimize intestinal development.

Sensitive noninvasive tests will become critical tools in tailoring nutritional interventions, including pre- and probiotics, in order to promote intestinal development and maturation in the growing infant. As part of this effort, our laboratory has developed a molecular methodology that utilizes stool samples containing intact...
sloughed epithelial cells in order to noninvasively quantify intestinal gene expression profiles in both the human infant and adult. Systems biology approaches, such as computational linear discriminant analysis (LDA), were used to identify the best single genes and two- to three-gene combinations for distinguishing term breast-fed versus formula-fed groups. In addition, putative “Master” regulatory genes were identified using coefficient of determination (CoD) analysis. Collectively, these approaches can be used to identify mechanistic pathways of intestinal development in the first few months of life, and to assess the impact of nutrition and other environmental exposures on the microbiome in the developing gut.

In this study, we have extended upon our initial observations by unraveling previously inaccessible complexities in the term vs preterm infant intestinal transcriptome by non-invasively interrogating the infant intestine using RNA-Seq, rather than gene microarray.

In order to develop a more comprehensive understanding of the complexity of transcriptome profiles in the intestine, we utilized neonatal stool samples containing intact sloughed epithelial cells and generated large-scale RNA-Seq genome profiles. For this purpose, poly A mRNA were first copied into DNA sequences, randomly sheared, attached to linkers and directly sequenced. Sequences were compared with the reference human genome, and the density of corresponding reads determined. Furthermore, using this form of global digital transcriptome profiling, we documented the host transcript abundance and alternative splicing in healthy term infants at 12-weeks postnatal age and extremely preterm infants (24–30 weeks gestational age) at 2–5 weeks postpartum. Although the precise origin of exfoliated cells is not known, results from our previous study, and reported herein, indicate that genes associated with discrete epithelial cell types (absorptive enterocytes, goblet cells, enteroendocrine cells, and Paneth cells) are detectable. Thus, it is likely that transcriptome signatures of both the small and large intestine can be monitored over time.

The examination of global alterations in gene expression offers insight into the effects of premature birth and the resultant influence of environmental exposures uniquely experienced by the preterm infant (e.g. antibiotics, other medications, prolonged period of parenteral nutrition) on intestinal mRNA profiles. RNA-Seq (validated by qPCR) revealed that following an enrichment process, reads from stool derived RNA are of human origin. Unlike RNA extracted from human cell cultures or surgical specimens, where the quality and quantity of RNA is usually high and RNA degradation can be controlled with tissue handling, infant stool represents a unique biological sample. Typically, expressed host transcripts consist of a narrow stretch of RNA that is rarely longer than several hundred bp. While exon-exon junctions in principle can be detected, we noted that less than 5% of transcripts exhibited their splice variants. In this respect, non-invasive gene expression analysis using infant stool
appears to be more challenging than analysis of formalin fixed, paraffin embedded (FFPE) tissue. Unlike FFPE tissue blocks that can yield large quantities of fragmented DNA and RNA sufficient to explore complete topologies of expressed genes and local properties of DNA, infant stool requires careful enrichment of human RNA. Our experience with gene expression in the infant gut indicates that next generation sequencing provides a robust non-invasive glimpse into the host transcriptome. We expect that the development of novel methodologies for library preparation will allow us to further elucidate the physiology of the developing infant intestine.

For obvious reasons, directly examining the host epithelium in the human preterm infant is unlikely, as intestinal biopsies are not routinely performed unless medically indicated. Therefore, noninvasive methodologies currently provide us the best snap shot of infant gene expression and host-microbe dynamic interactions in an in vivo setting. Although future well-controlled studies are needed to evaluate environmental/dietary exposures, this study highlights the potential of using the described noninvasive technology. We evaluated genes that were over-expressed in preterm vs. term (Table 1) or term vs. preterm intestine (Table 2). Although none of the infants were clinically ill at the time the stool samples were collected, one of the major categories of genes overexpressed in preterm vs. term samples was immune function. Because of the vast number of exfoliated epithelial cells shed from the lining of the intestine on a daily basis, it is unlikely that changes in cell composition, e.g., contribution of inflammatory cells from the submucosa, directly contributed to alterations in gene expression. Several cytokines, including IL-1α and IL-33 were up-regulated in preterm vs. term. In addition, several genes that regulate the expression of cytokines and other immune genes were expressed at 3- (NFKB1α) to 6-fold (CASP1) higher levels in preterm vs. term infant exfoliated cells. Previous studies have shown that immortalized cells isolated from fetuses (H4 cells) or tissue explants from fetuses mount a more robust proinflammatory cytokine response (IL-8) after inflammatory stimulation with lipopolysaccharide or IL1β than cells from adult tissue (Caco-2) or exfoliants from older children. The excessive inflammatory response of the immature intestine is in part due to a developmental under-expression of IkBα as well as overexpression of the NFkB/MyD88 innate inflammatory genes (TLR2, TLR4, MyD88, TRAF-6, NFKB1 and IL-8) and under-expression of negative regulator genes (SIGHRR, IRAK-M, A-20 and TOLLIP) in fetal intestine relative to older children. Thus, it appears that activation status of the intestinal innate immune response may contribute to excessive inflammation in the immature intestine in response to colonizing bacteria, which is a hallmark of NEC.

In exfoliated cells of term infants, up-regulated immune genes were associated with balancing the immune system, e.g. promoting T-cell development (LCP2; 3.6-fold greater in term than preterm), while inhibiting macrophage activation (LENG9; 16-fold greater in term than preterm). The majority of genes were involved in cell turnover, by regulating proliferation and apoptosis. One of the most highly differentially-expressed genes was an anti-apoptotic factor (MTRNR2L6), which was 5-fold higher in term than preterm. Another notable gene is SP3, which is a transcription factor that can be regulated through short-chain fatty acid - acetylation, potentially supporting the role of these products of microbial metabolism in regulating normal gut growth in term infants.

In summary, we provide incontrovertible evidence that whole-genome sequencing of stool-derived RNA can be used to generate a global transcriptome gene expression signature in neonates. We have also compared for the first time, the intestinal global transcriptome in individual term and preterm and pooled term infants. Our findings provide insight into the global patterns of gene expression that vary in exfoliated epithelial cells of term and preterm infants. We anticipate that the described noninvasive RNA sequencing-based

Figure 6 | Network enrichment analysis (Ingenuity IPA software) was performed using differentially expressed genes. Three networks of interest (a) Lipid metabolism, molecular transport, small molecule biochemistry; (b) Neurological disease, organismal injury and abnormalities, and infection disease; and (c) Cellular development, tissue development, lipid metabolism were generated. Red indicates higher expression in preterm infants and green indicates higher expression in term infants.
Table 1 | Representative differentially expressed genes that were significantly higher in preterm infants versus term infants

Category and Gene ID	Term (average FPKM)	Preterm (average FPKM)	Preterm/ Term	p value (uncorrected)	Description
Lipid Metabolism					
ApoA4	483.85	18651.40	38.55	0.0001	Lipid metabolism, chylomicron and VLDL secretion
ApoA1	254.23	6906.41	27.17	0.0001	Lipid metabolism, reverse cholesterol transport
ASAP1	14.90	80.51	5.40	0.0064	Acid ceramidase, mediates cell growth arrest, differentiation and apoptosis
CERS2	92.13	371.37	4.03	0.0061	Ceramide synthase 2, regulates cell growth
MTF1	3.10	59.97	19.36	0.0037	Lipid phosphatase that negatively regulates EGFR degradation
PLIN2	127.72	359.13	2.81	0.0149	Controls the levels of lipid droplets, regulation of colonic cell growth
Immune					
CASP1	128.56	888.21	6.91	0.0030	Inflammases mediate activation of caspase 1 and promote secretion of IL-1beta and IL-18
IL1B	2343.32	6974.19	2.98	0.0926	Linked to intestinal disorders of inflammation in neonates
ICAM1	34.94	112.40	3.22	0.0280	Leukocyte trafficking across the endothelium
IL33	10.52	61.12	5.81	0.0144	Innate immune cell modulation, mediates Th2 immune response (parasite infections)
LCP1	14.06	72.14	5.13	0.0081	Associated with active Crohn’s disease
NFKBIA	373.98	1164.21	3.11	0.0112	Regulates many epithelial and immune cell functions
PFKFB3	237.61	621.85	2.62	0.0271	Gene target of PPARgamma, regulates diet induced intestine inflammation response
S100A9	71.14	1192.90	16.77	0.0043	Calcium and zinc binding protein that regulates inflammatory and immune responses; functions extracellularly as an antimicrobial
SOCS3	164.05	748.63	4.56	0.0017	Suppressor of cytokine signaling, generally anti-inflammatory that limits IL-6 induction of STAT3
TREM-1	15.29	96.78	6.33	0.0172	Expressed on myeloid cells (PMNs, monocytes/macrophages), increases with inflammatory diseases, linked to macrophage amplification of chronic inflammation
TYROBP	153.23	902.38	5.89	0.0067	An adaptor protein associated with multiple cell surface activating receptors expressed on both lymphoid and myeloid lineages
Cellular Function					
CEBPB	75.39	290.56	3.85	0.0098	Transcription factor regulating keratin synthesis
CFLAR	30.29	139.71	4.61	0.0451	Apoptosis regulatory protein, tissue homeostasis
FAM65B	9.00	169.30	18.81	0.0007	Promotes myogenic differentiation and cytokoskeletal rearrangement
FUBP1	31.78	110.84	3.49	0.0128	DNA binding protein that promotes c-myc expression
GOS2	2927.30	60194.00	20.56	0.0003	Promotes apoptosis, prevents bcl2-bax heterodimers
KDM5B	32.12	98.30	3.06	0.0281	Histone demethylase, favors cell proliferation
MMP1	53.25	159.15	2.99	0.0392	Matrix metalloproteinase, potential regulator of intestinal homeostasis
NPM1	59.07	165.49	2.80	0.0484	Nucleolar acidic protein, plays a positive role in cell proliferation and growth
SERPINA1	136.74	534.73	3.91	0.0012	Serine protease inhibitor, proteolytic activity towards insulin, protects lower respiratory tract

Methods

Subject recruitment. The experimental human protocol for term infants was approved by the University of Illinois and Texas A&M Institutional Review Boards and for preterm infants by the Beth Israel Deaconess Medical Center and Texas A&M Institutional Review Boards. Informed consent was obtained from parents prior to participation in the study, and all experiments were performed in accordance with relevant guidelines and regulations. Details of the study admission criteria and protocols for term infants have been previously described. Briefly, healthy, term-exclusively BF or FF infants were eligible for enrollment into the study. All infants considered term and gestational age was similar for BF (39.7 ± 0.8 weeks; range: 38 5/7 to 41 3/7 weeks) and FF (39.7 ± 0.4 weeks; range: 38 5/7 to 40 4/7 weeks) infants. For each term infant, a stool sample was collected at three months-of-age. In addition, stool samples were collected from six extremely preterm (24–30 weeks) gestation infants admitted to the Beth Israel Deaconess Medical Center neonatal intensive care unit (NICU). The six preterm infants had a gestational age ranging from 24 1/7 weeks of gestation to 30 0/7 weeks. Four infants under 30 weeks gestational age had a stool sample collected at 4–5 weeks of life, while two preterm infants at 30 weeks gestational age had a stool sample collected at 2 weeks of life. All six preterm infants were on full enteral feedings (1 formula; 2 breast milk; 3 mixed formula). For full metadata for term and preterm infants, please consult Supplementary Tables 3 and 4.

Sample preparation and sequencing. PolyA⁺ RNA was isolated from stool samples from term and preterm infants as previously described. ERCC was diluted 1:10 and 0.5 mL was added to each sample. Pooled polyA⁺ samples from 18 term infants or 6 preterm infants were processed with the NuGEN Ovation 3'-DGE kit (San Carlos, CA) to convert RNA into cDNA followed by NuGEN Encore NGS Library System I kit to create Illumina libraries, as per manufacturer’s instructions. Sequencing on Illumina GAIIx and HiSeq 2000 platforms (San Diego, CA) were carried out using standard Illumina protocols on the Texas A&M University campus. Briefly, 70 ng of each sample were used to synthesize first and second strand cDNA, which was purified using Agencourt RNAclean XP beads (Brea, CA) included in the kit. The cDNA was linearly amplified using the NuGEN Ovation 3'-DGE kit (San Carlos, CA) to convert RNA into cDNA followed by NuGEN Encore NGS Library System I kit to create Illumina libraries, as per manufacturer’s instructions. Sequencing on Illumina GAIIx and HiSeq 2000 platforms (San Diego, CA) were carried out using standard Illumina protocols on the Texas A&M University campus. Briefly, 70 ng of each sample were used to synthesize first and second strand cDNA, which was purified using Agencourt RNAclean XP beads (Brea, CA) included in the kit. The cDNA was linearly amplified using the NuGEN Ovation 3'-DGE kit (San Carlos, CA) to convert RNA into cDNA followed by NuGEN Encore NGS Library System I kit to create Illumina libraries, as per manufacturer’s instructions. Sequencing on Illumina GAIIx and HiSeq 2000 platforms (San Diego, CA) were carried out using standard Illumina protocols on the Texas A&M University campus. Briefly, 70 ng of each sample were used to synthesize first and second strand cDNA, which was purified using Agencourt RNAclean XP beads (Brea, CA) included in the kit.
Table 2 | Representative differentially expressed genes that were significantly higher in term versus preterm infants

Category and Gene ID	Term (average FPKM)	Preterm (average FPKM)	Term/Preterm	p value (uncorrected)	Description
Immune CD177	197.49	19.186	10.29	0.01215	A glycosylphosphatidylinositol (GPI)-anchored membrane protein is a potential receptor for PR3, the preferred target of antineutrophil cytoplasmic antibodies (ANCAs) in Wegener’s granulomatosis. Involved in neutrophil transmigration.
IFI27	4643.67	1503.71	3.09	0.0256	Mediates IFN-induced apoptosis
IRF9	293.77	45.0231	6.53	0.0048	Transcription regulatory factor that mediates type I interferons
LEN9	1209.33	73.0508	16.55	0.00145	Negative regulators of macrophage activation
LCP2	86.2228	24.4284	3.53	0.0378	STP76, a substrate for T cell ZAP70, promotes T cell development
Cellular Function					
ABCC5	122.498	20.6639	5.93	0.00545	ATP binding cassette transporter
ATP5B	162.509	41.1475	3.95	0.01605	ATP synthase
BNP2	44.0329	7.76199	5.67	0.0191	bcl-2 binding protein, responsive to estrogen; regulates cell dynamics by interacting with cdc42
CDKN2B	243.227	86.5265	2.81	0.02475	Cyclin dependent kinase inhibitor, controls cell cycle G1 progression
DYNL1L	528.599	129.298	4.09	0.01345	Intracellular transport and motility
ESRRB	435.007	83.0017	5.24	0.01245	Estrogen receptor related alpha, cell growth and maintenance
INSR	49.2393	14.5811	3.38	0.00755	Insulin receptor, regulates cell growth
KREM2N	63.2595	0	NA	0.0284	Receptor for Dickkopf protein, cooperates with Dickkopf to block Wnt signaling
MLLT4	53.2364	14.4052	3.70	0.0059	Organization of cell junctions, belongs to the cell adhesion system
MTRNR2L2	340.597	36.8941	9.23	0.00025	Antiapoptotic factor
PDK1	54.8395	9.62117	5.70	0.0045	Master lipid kinase regulating PI-3 kinase pathway/Akt, apical endosome trafficking
RAP2A	81.8369	29.7633	2.75	0.0357	Belongs to the ras oncogene family, regulates cytoskeletal rearrangements
SCN1A	132.419	16.8286	7.87	0.0077	Sodium mediated non voltage ion channel. Mediates diffusion of luminal sodium and water through the apical membrane
SP3	56.516	21.7481	2.60	0.0271	A transcription factor that can be regulated by acetylation, e.g., SCFA, can regulate insulin like growth factor action.
TRIM36	50.8464	5.88888	8.63	0.0004	Mediates ubiquitination and proteosomal degradation; chromosome segregation and cell cycle regulation

Next generation sequencing read alignment. A wide array of reference genomes were assembled to identify the rough composition of detected RNA reads (see Supplementary Methods). The UCSC hg19 human reference genome was used with annotation from the Illumina iGenomes resource. Microbial, mitochondrial, fungal, viral, and protozoan nucleotide databases were obtained from Refseq version 59 which resulted in 18.5 Gb, 100 Mb, 2.3 Gb, and 1.7 Gb genomes, respectively. 580 Mb of ribosomal sequences were obtained from SILVA release 111, using both small and large subunit repositories. BWA was used to align reads against the bacterial reference genome due to its size. SNAP was used to align to mitochondrial, ribosomal, and viral references, and STAR was used for protozoan, fungal, human, and ERCC reference genomes due to the possible presence of splice junctions. All alignment was performed using default tolerance parameters and considered acceptable based on the agreement with known and observed ERCC controls. We also compared our alignments against the slower TopHat aligner and obtained similar results. Read mapping results were visualized in Integrative Genomics Viewer, IGV. Additional details regarding reference genomes and automated source code for analysis are available in the Supplementary Materials.

Gene expression quantification. As a genome-guided assembly method, Cufflinks was used to estimate gene expression for the human reference and HTSeq was used for all other references. Due to the 3’ selection based enrichment and subsequent observed 3’ bias in read alignment, normalized read counts for expression correlation results were also used. Read counts were obtained using HTSeq and normalized by the mean expression of 3804 “house-keeping” mRNA species as determined by Cuffcorr. Correlation of ERCC measurements between samples and known concentrations was performed following log transformation and addition of 0.001 to the counts to avoid unbounded values. This was utilized for the Spearman correlation coefficient because of the logarithmic nature of the concentrations provided in ERCC spike-in kits. Differential expression testing was performed using Cuffdiff as available from the Cufflinks package. Genes with P-values < 0.05 were input into the Ingenuity IPA analysis tools (Ingenuity Systems Inc., Redwood City, CA) to assess pathway, biological function, and upstream activity and are visualized in a volcano plot in Supplementary Figure 5 as produced by the cummerbund package.

Real time PCR was used for gene expression confirmation. For this purpose, cDNA was prepared from fecal RNA from three term and three preterm infants using SuperScript II (LifeTechnologies, Carlsbad, CA) followed by PCR on an ABI 7900HT Real Time PCR System. TaqMan assays were purchased for ABC5, APOA4, CASP1, DYNL1L, NFKBIA, PLIN2, PPAP2A, RPS16, SCN9A1, SLC2A1, and TMSB4X (LifeTechnologies). These genes were selected from a larger set of differentially expressed genes in term vs. preterm infants as identified in the IPA analysis.

Ingenuity pathway analyses. “Functional enrichment” analysis was performed using Ingenuity Pathway Analysis (IPA) version 2.0 software. To perform IPA analysis, all differentially expressed genes (P < 0.05) in the preterm or term infants were uploaded into three columns for the purpose of generating Illumina probe ID, t-value (fold change) and P-value data. P-values were uncorrected for multiple testing owing to the number of human fecal samples. By default, during IPA analysis, only molecules from the data set associated with the Ingenuity Knowledge Base repository (Ingenuity Systems Inc.) were considered. Functional Analysis identified the biological functions and/or diseases that were most significant to the data set. The significance of the association between the data set and the specific pathways of interest was determined in three ways: (a) as a ratio of the number of molecules from the data set that mapped to the pathway divided by the total number of molecules that mapped to the Ingenuity Knowledge Base pathway, (b) Fisher’s exact test was used to calculate a P value determining the probability that the association between the genes in the data set and the pathway of interest could be explained by chance alone, and (c) activation state (“increased” or “decreased”) was inferred by the activation z-score. The derivations of the z-scores are based on relationships in the molecular network that represent experimentally observed causal associations between genes and those functions. "Canonical pathway" analysis was used to identify networks from the IPA library that were most significantly modulated across subject groups. Significance of the association between each data set and the canonical pathway was measured in 2 ways: (1) as a ratio of the number of molecules from the data set that mapped to the pathway
divided by the total number of molecules that mapped to the canonical pathway, and (2) Fisher’s exact test was used to calculate p-values determining the probability that the association between genes in the dataset and each canonical pathway was explained by chance alone.

1. Comcare, C. E. & Tappenden, K. A. Development of the intestinal intestine: implications for nutrition support. *Nutr Clin Pract* 22, 159–173 (2007).

2. Tremblay, E. et al. Gene-expression profile analysis in the mid-gestation human intestine discloses greater functional immaturity of the colon as compared with the ileum. *J Pediatr Gastroenterol Nutr* 52, 670–678, doi:10.1097/MPG.0b013e318273349e (2011).

3. Neu, J. Gastrointestinal development and meeting the nutritional needs of premature infants. *Am J Clin Nutr* 85, 629S–634S (2007).

4. Chowdhury, S. R. et al. Transcriptome profiling of the small intestinal epithelium in germfree versus conventional piglets. *BMJ genomics* 8, 215; doi:10.1186/1471-2164-8-215 (2007).

5. Van den Abbeele, P., Van de Wiele, T., Verstraete, W. & Possemiers, S. The host selects mucosal and luminal associations of coevolved gut microorganisms: a novel concept. *FEBS Microbiol Rev* 35, 681–704, doi:10.1111/j.1574-6976.2001.00270.x (2001).

6. Claud, E. C. & Walker, W. A. Bacterial colonization, probiotics, and necroptizing enterocolitis. *J Clin Gastroenterol* 42 Suppl 2, 546–52, doi:10.1097/ MCG.0b013e31815a57a8 (2008).

7. Dietl-Jones, W. L. & Askin, D. F. Nutritional modulation of neonatal outcomes. *AACN Clin Issues* 22, 590–597, doi:10.1186/1755-8794-4-68 (2013).

8. Nanthakumar, N. N., Fusunyan, R. D., Sanderson, I. & Walker, W. A. Inflammation in the developing human intestine: A possible pathophysiologic contribution to necroptizing enterocolitis. *Proc Natl Acad Sci U S A* 97, 6043–6048 (2000).

9. Nanthakumar, N. N., Fusunyan, R. D., Sanderson, I. & Walker, W. A. Inflammation in the developing human intestine: A possible pathophysiologic contribution to necroptizing enterocolitis. *Proc Natl Acad Sci U S A* 101, 7404–7408, doi:10.1073/pnas.0400741101 (2004).

10. Zeissig, S. et al. Syrature induces intestinal sodium absorption via Sp3-mediated transcriptional up-regulation of epithelial sodium channels. *Gastroenterology* 132, 236–248, doi:10.1053/gastro.2006.10.033 (2007).

11. Davidson, L. A., Lupton, J. R., Miskovsky, E., Fields, A. P. & Chapkin, R. S. Quantification of human intestinal gene expression profiles using exfoliated colonicocytes: a pilot study. *Biomarkers* 8, 51–61, doi:10.1080/13547502000042668 (2003).

12. Schwartz, S. A. et al. Transcriptome profiling in formaldehyde fixed paraffin-embedded (FFPE) tumor tissues, input amount and formaldehyde fixation. *J Natl Cancer Inst* 102, 1105–1110, doi:10.1093/jnci/djp011 (2010).

13. Davidson, L. A., Jiang, Y. H., Lupton, J. R. & Chapkin, R. S. Noninvasive detection of putative biomarkers for colon cancer using fecal messenger RNA. *Epidemiol Biomarkers Prev* 14, 1871–1883, doi:10.1093/epi NR/epn182 (2005).

14. Davidson, L. A. & Lupton, J. R. Transcriptome analysis to define novel concepts of diet-dependent interaction between gut microorganisms and human disease. *Virology* 374, 150–157, doi:10.1016/j.virol.2007.07.005 (2008).

15. Davidson, L. A., Lupton, J. R., Miskovsky, E., Fields, A. P. & Chapkin, R. S. Transcriptome analysis in formalin-fixed paraffin-embedded specimens. *Physiol Gastrointest Liver Physiol* 38 Suppl 2, S46–52, doi:10.1152/physiolggi.002013.00391.13 (2012).

16. Davidson, L. A., Jiang, Y. H., Lupton, J. R. & Chapkin, R. S. Optimal method for transcriptome analysis of exfoliated colonic epithelial cells. *J Physiol Gastrointest Liver Physiol* 295, G582–589, doi:10.1123/japi.00004.2010 (2010).

17. Schwart, S. A. et al. Metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. *Genome Biol* 13, r32; doi:10.1186/gb-2012-13-4-r32 (2012).

18. Arboleya, S. et al. Establishment and development of intestinal microbiota in preterm neonates. *FEMS Microbiol Ecol* 79, 763–772, doi:10.1111/j.1574-6941.2011.01261.x (2012).

19. Triff, K. et al. Genome-wide analysis of the rat colon reveals proximal-distal differences in histone modifications and proto-oncogene expression. *Physiol Genomics* 45, 1229–1243 (2013).

20. Davidson, L. A. et al. Identification of actively translated mRNA transcripts in a rat model of early-stage colon carcinogenesis. *Cancer Prev Res (Phila)* 2, 984–994, doi:10.1158/1940-6207.CAPR-09-0114 (2009).

21. Marione, J. C. et al. “RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.” *Genome Res* 18, 1509–1517 (2008).

22. Davidson, L. A., Jiang, Y. H., Lupton, J. R. & Chapkin, R. S. Noninvasive detection of putative biomarkers for colon cancer using fecal messenger RNA. *Cancer Epidemiol Biomarkers Prev* 4, 643–647 (1995).

23. Donovan, S. M. Role of human milk components in gastrointestinal development: Current knowledge and future needs. *J Pediatr* 149, S49–S61, doi:10.1016/j.jpeds.2006.05.052 (2006).

24. Zhao, C. et al. Noninvasive detection of candidate molecular biomarkers in subjects with a history of insulin resistance and colorectal adenomas. *Cancer Prev Res (Phila)* 2, 590–597, doi:10.1158/1940-6207.CAPR-08-0233 (2009).

25. Hatjis, C. et al. Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers. *J Natl Cancer Inst* 100, 1871–1883, doi:10.1093/jnci/djx078 (2008).

26. Brosseau, J. P. et al. High-throughput quantification of splicing isoforms. *RNA* 16, 442–449, doi:10.1261/rna.1877010 (2010).

27. Wood, H. M. et al. Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens. *Nucleic Acids Res* 38, e151; doi:10.1093/nar/gks1000 (2010).

28. Kerick, M. et al. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. *BMC Med Genomics* 4, 68; doi:10.1186/1755-8794-4-68 (2011).