Necessity of Reviewing and Establishing the National Guidelines Regarding Antimicrobial Therapy for Bacterial Isolates

Dr. Irfan Ali Mirza1, Dr. Humaira Zafar2*, Dr. Wajid Hussain3

1Head Department of Microbiology, Consultant Microbiologist, Armed forces Institute of Pathology, Rawalpindi, Pakistan
2Consultant Microbiologist, Department of Pathology, AL Nafees Med College & Hospital, Islamabad, Pakistan
3Consultant Microbiologist, Department of Microbiology, Armed forces Institute of Pathology, Rawalpindi, Pakistan

Abstract

The emergence of anti-microbial resistance (AMR) is one the biggest challenges faced by the clinicians around the Globe. To coup up with the situation, further management options are heading towards deficiency. In such condition appropriate selection of antibiotics in light of results obtained from culture and sensitivity harbors great significance. The currently used microbiological diagnostic and management options are based upon the guidelines derived from Western data. The National data regarding accurate guidelines for diagnostic and management modalities are deficient. Therefore, the objectives of this review article will be to identify the significance of reviewing and establishing the National guidelines, as a stride to reduce AMR. The literature review had emphasized the need of reviewing and establishing the regional and National guidelines as a significant factor to reduce anti-microbial resistance.

Keywords:
- Anti-microbial susceptibility
- Anti-microbial resistance
- National guidelines
- Aerobic Bacterial isolates
- Anaerobic bacterial isolates

1 Introduction

The era from the years 1930s to 1960s was a golden period for the discovery of many efficacious antibiotics. This short era unfortunately ruined earlier, when the researchers became helpless in view of emergence of resistant bugs. Thus, catastrophe for the development of newer antibiotics, malpractices and injudicious use of antibiotics, trends of sailing the drugs without prescription, self-medications, etc, all are the predisposing factors for emergence of AMR. The resultant of all this, lead to increased morbidity and mortality rates. An Australian study recognized that 47% of the prescribed antibiotic were not in acquiescence with patient’s culture and sensitivity reports or the recommended guidelines. Same is the situation in US hospitals, where 50% usage of anti microbials for any age group, was considered unnecessary.

The emergence of AMR has become a challenging task around the globe. It is ranked amongst the leading cause of mortalities. A published WHO report for the year 2014, concluded that about 700,000 to several million people die annually as a consequence of AMR6. While as per the report of year 2019 by center for disease control (CDC), 2.8 million people per anum develop AMR, out of which 35,000 people die. Thus necessity of a collaborative global approach is the need of time to combat this emerging threat7.

Like the state of Global insurgence, Pakistan is facing the same challenge i.e increasing prevalence of AMR. A study report for the year 2017, concluded that injudicious use of antibiotics, self medication, culture for sale and buying without proper prescription, predisposes to AMR. However, super added factors includes, lack of good diagnostic facilities, increased use of antibiotics in domestic animals, lack of surveillance systems, and trend of aggressively managing the patient by using more potent drugs. All are considered to promote emergence of AMR8-3. Besides all this, the trend of malpractices focusing scanty dispensing by unexperienced healthcare professionals are all the
provoking features for AMR. A published report for the year 2018, concluded by analyzing the census of 15 years data, which over the period from 2000 to 2015, 67% increased consumption of antibiotics were observed in Pakistan. Thus, adding up to the emergence of AMR.

A published report by WHO showed that 20% of childhood mortality in Pakistan, is the result of acute respiratory tract infections (ARTIs). However, Global statistics revealed that 40% of childhood mortality in developing countries i.e Bangladesh, Indonesia, Nepal, and India, results from ARTIs. The major factor behind such high mortality is the lack of health care facilities and accurate management options. Other highlighted factors includes malpractice for antibiotics prescription i.e penicillins, cephalosporins, and macrolides, to treat viral ARTIs. Comparatively various International guidelines recommend the limited use of antibiotics for ARTIs. Nutshell of all this has resulted in increased economical burden for the health care system. Besides that a substantial increase in AMR was observed, adding up to increased morbidity and mortality.

2 Reported data

In view of this current situation, only way out will be the enactment of an antimicrobial stewardship program (ASP), both in community and hospital settings. This collaborated effort by various health regulating bodies at Global level, will endorse judicious use of antimicrobials whilst restraining the influence of AMR. For ASP, the patrons could be the infectious disease (ID) physicians/ practitioners, clinical pharmacists, nurses and microbiologist. A unanimous decision and collaborative efforts of all these can be a step forward to reduce the morbidity and mortality rates from AMR. In Pakistan this role is played by the Medical Microbiology and Infectious Diseases Society of Pakistan (MMIDSP). Which is devoted to develop and gadget native ASPs throughout the country.

One published report for the year 2014 analysed that implementing accurate guidelines for antibiotic usage and minimizing absurd practice of antibiotics to reduce AMR. Moreover, it was identified that due to deficiency of prophylactic management guidelines for antibiotics, usually results in prolonged management, might exceeding 7 to 10 days. Thus, overall management cost per patient increases alot. Besides this, workload on hospital, nurses, doctors adds up too much. This all effects the quality care of patients and lead to emergence of AMR. The National Action Plan of Pakistan, for combating anti microbial resistance, was laid out in the year 2017. This is in view to fulfil the commitment and decision of World Health Assembly Resolution 2015. The resolution emphasized dire necessity of establishing the Regional and National action plans at Global level. It was also entrenched that for National action plan, multi-sectoral approach, along with involvement of all stakeholders should be opted. It was accentuated that policies should be formulated to ensure reduction of inappropriate Antimicrobial use and discourage antibiotics sale without prescription.

The published report by Zaman et al, in 2017, narrated various microbial causes of AMR. Hydrolysis, efflux, altered targeted sites are the common causes for AMR of P-Lactams (Penicillins, Monobactams Penemers, Cephalosporins.). Phosphorylation, acetylation, nucleotidylation, efflux, and alteration in argeted sites, were the common identified causes for Aminoglycosides (Streptomycin, Gentamicin, Spectinomycin) AMR. Reprogramming peptidoglycan biosynthesis results in AMR for Glycopeptides (Vancomycin, Teicoplanin). Monoxygenation, efflux, altered target results in AMR for Tetracyclines (Minocycline, Tigecycline). Hydrolysis, glycosylation, phosphorylation, efflux, altered target causes Macrolide (Erythromycin, azithromycin) AMR. Nucleotidylation, efflux, altered target causes AMR for (Clindamycin). The current review article has highlighted the necessity of reviewing the anti microbial susceptibility. The result of current study had highlighted that around the Globe, emergence of anti microbial resistance is on the rise. Mostly identified factors from National and International data revealed the common etiological factors. Amongst all these, maximum focus was given for the establishment of Regional and National guidelines for anti microbial. The resultant will be a step forward to review accurate management options, which in turn will be helpful to reduce the emergence of resistance pattern.

3 Conclusion

The literature review had emphasized the need of reviewing and establishing the regional and National guidelines as a significant factor to reduce anti-microbial resistance.

4 Recommendations

1. Collaborative efforts are required to review and establish Regional and National anti microbial susceptibility guidelines.

2. Antibiotic Stewardship should be promoted at community and hospital settings.

3. Policies should be formulated to stop the malpractices for antibiotics prescribing trends.

4. Policies should be formulated to consider culture and sensitivity as initial protocol for antibiotic prescription.

5. Policies should be formulated for the Pharmaceutical compaines and chemists regarding discouraging antibiotic sailing without prescription.

5 Conflicts of interest

None

6 Author’s contribution
IAM: Provision of all technical support for completion of review article, references gathering for introduction and literature review along with introduction write up.

HZ: Topic selection for manuscript writing, abstract writing, final formatting of entire manuscript, planning for bench work for said topic to proceed for article.

WH: References gathering for introduction and literature review and write up of literature review.

7 References

1. Molnar A. Antimicrobial Resistance Awareness and Games. Trends Microbiol. 2019; 27(1): 1–3.

2. Tangcharoensathien V, Chanvatik S, Sommanustweechai A. Complex determinants of inappropriate use of antibiotics. Bull. World Health Organ. 2018; 96(2): 141–144.

3. Ingram PR, Seet JM, Budgeon CA, Murray R. Point-prevalence study of inappropriate antibiotic use at a tertiary Australian hospital. Intern Med J. 2012; 42(6): 719–721.

4. CDC Antibiotic Use in the United States 2017: Progress and Opportunities. Website:[https://www.cdc.gov/antibiotic-use/stewardship-report/pdf/stewardship-report.pdf] Retrieved on 29th Dec 2019.

5. Broom A, Broom J, Kirby E. Cultures of resistance? A Bourdieusian analysis of doctors’ antibiotic prescribing. Soc Sci Med. 2014; 110: 81–88.

6. WHO Antimicrobial Resistance: Global Report on Surveillance. Website: [http://www.who.int/drugresistance/documents/surveillancereport/en/] Retrieved on 29th Dec 2019.

7. Antimicrobial resistance. CDC. Website: [https://www.cdc.gov/drugresistance/index.html] Retrieved on 29th Dec 2019.

8. Baig MT, Sial AA, Huma A, Ahmed M, Shahid U, Syed N. Irrational antibiotic prescribing practice among children in critical care of tertiary hospitals. Pak J Pharm Sci. 2017; 30(4): 1483–1489.

9. Joseph HA, Agboawalla M, Hurd J, Silfka JK, Pitz A, Bowen A. What Happens When “Germs Don’t Get Killed and They Attack Again and Again”: Perceptions of Antimicrobial Resistance in the Context of Diarrheal Disease Treatment Among Laypersons and Health-Care Providers in Karachi, Pakistan. Am J Trop Med Hyg. 2016; 95: 221–228.

10. Barker AK, Brown K, Ahsan M, Sengupta S, Saifdar N. What drives inappropriate antibiotic dispensing? A mixed-methods study of pharmacy employee perspectives in Haryana, India. BMJ Open. 2017; 7(3): 131-90.

11. Klein EY, Boeckel VTP, Martinez EM, Pant S, Gandra S, Levin SA, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci. USA. 2018; 115(15): 3463–3470.

12. Shahid A, Iftikhar F, Arshad MK, Javed Z, Sufyan M, Ghuman RS, et al. Knowledge and attitude of physicians about antimicrobial resistance and their prescribing practices in Services hospital, Lahore, Pakistan. J Pak Med Assoc. 2017; 67: 968.

13. Iftikhar S, Sarwar MR, Saqib A, Sarfraz M, Shoab Q. Antibiotic Prescribing Practices and Errors among Hospitalized Pediatric Patients Suffering from Acute Respiratory Tract Infections: A Multicenter, Cross-Sectional Study in Pakistan. Medicina. 2019; 55(2): 44.

14. Vashishtha VM. Current status of tuberculosis and acute respiratory infections in India: Much more needs to be done! Indian Pediatr. 2010; 47(1): 88–89.

15. Economics T. Pakistan, Prevalence of acute respiratory infection (ARI) (% of children under 5). Website: [https://tradingeconomics.com/pakistan/prevalence-of-acute-respiratory-infection-ari-percent-of-children-under-5-q3-wb-data.html] Retrieved on 22nd Jan 2020.

16. Alumran A, Hurst C, Hou XY. Antibiotics overuse in children with upper respiratory tract infections in Saudi Arabia: Risk factors and potential interventions. Clin Med Diagn. 2011; 1(1): 8–16.

17. Smith MR, Zhou C, Robinson JD, Taylor JA, Elliott MN, Heritage J, et al. Communication practices and antibiotic use for acute respiratory tract infections in children. Ann Family Med. 2015; 13(3): 221–227.

18. Sarwar MR, Saqib A, Iftikhar S, Sadiq T. Antimicrobial use by WHO methodology at primary health care centers: A cross sectional study in Punjab, Pakistan. BMC Infect Dis. 2018; 18(1): 492.

19. Ayukkelbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control. 2017; 6: 47.

20. Aabenhus R, Hansen MP, Sautz LT, Bjerrum L. Characterisation of antibiotic prescriptions for acute respiratory tract infections in Danish general practice: A retrospective registry based cohort study. NPJ Prim Care Respir Med. 2017; 27(1): 37.

21. Ali SR, Ahmed S, Lohana H. Trends of empiric antibiotic usage in a secondary care hospital, Karachi, Pakistan. Int J Pediatr. 2013; 8(1): 1–4.
22. Dyar OJ, Huttner B, Schouten J, Pulcini C. What is antimicrobial stewardship? Clin Microbiol Infect. 2017; 23: 793–798.

23. Buckel WR, Veillette JJ, Vento TJ, Stenehjem E. Antimicrobial Stewardship in Community Hospitals. Med. Clin N Am. 2018; 102: 913–928.

24. Baur D, Gladstone BP, Burkert F, Carrara E, Foschi F, Döbele S, Tacconelli E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect Dis. 2017; 17(9): 990–1001.

25. SHEA Antimicrobial Stewardship. Website: [https://www.shea-online.org/index.php/practice-resources/priority-topics/antimicrobial-stewardship] Retrieved on 29th Dec 2019

26. Nori P, Guo Y, Ostrowsky B. Creative Collaborations in Antimicrobial Stewardship: Using the Centers for Disease Control and Prevention’s Core Elements as Your Guide. Med Clin N Am. 2018; 102(5): 845–854.

27. Parente DM, Morton J. Role of the Pharmacist in Antimicrobial Stewardship. Med Clin N Am. 2018; 102(5): 929–936.

28. Carter EJ, Greendyke WG, Furuya EY, Srinivasan A, Shelley AN, Bothra A, et al. Exploring the nurses’ role in antibiotic stewardship: A multisite qualitative study of nurses and infection preventionists. Am. J. Infect. Control. 2018; 46(5): 492–497.

29. Thomas M. Prescribing in A Rheumatology Clinic. Website: [https://www.pharmaceutical-journal.com/news-analysis/prescribing-in-a-rheumatology-clinic/10971435.article?firstPass=false] Retrieved on 29th Dec 2019.

30. Nausheed S, Hammad R, Khan A. Rational use of antibiotics — a quality improvement initiative in hospital setting. JPMA. 2013; 63(1): 60-64

31. Anti microbial resistanse, National action plan, Pakistan, 2017. Website: [https://www.nih.org.pk/wp-content/uploads/2018/08/AMR-National-Action-Plan-Pakistan.pdf] Retrieved on 13th Jan 2020.

32. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun TK, Hossain N, et al. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus. 2017; 9(6): 1403.