A Characterization of $T_{2g+1,2}$ among Alternating Knots

Yi NI

Department of Mathematics, Caltech, MC 253-37 1200 E California Blvd,
Pasadena, CA 91125, USA
E-mail: yini@caltech.edu

Abstract Let K be a genus g alternating knot with Alexander polynomial $\Delta_K(T) = \sum_{i=-g}^{g} a_i T^i$. We show that if $|a_g| = |a_{g-1}|$, then K is the torus knot $T_{2g+1, \pm 2}$. This is a special case of the Fox Trapezoidal Conjecture. The proof uses Ozsváth and Szabó’s work on alternating knots.

Keywords Alternating knots, Alexander polynomial, strongly quasipositive fibered knots

MR(2010) Subject Classification 57M25

1 Introduction

Alternating knots have many good properties. For example, the information from the Alexander polynomial of an alternating knot K determines the genus of K and whether K is fibered [2, 11]. Even so, there are still some open problems about alternating knots. One of these problems is the following conjecture made by Fox [3, Problem 12].

Conjecture 1.1 (Fox Trapezoidal Conjecture) Let K be an alternating knot with normalized Alexander polynomial

$$\Delta_K(T) = \sum_{i=-g}^{g} a_i T^i,$$

(1.1)

where g is the genus of K. Then

$$|a_i| \leq |a_{i-1}| \quad \text{when} \quad 0 < i \leq g.$$

Moreover, if $|a_i| = |a_{i-1}|$ for some i, then $|a_j| = |a_i|$ whenever $0 \leq j \leq i$.

This conjecture was known for 2–bridge knots [9] and alternating arborescent knots [12]. Using Heegaard Floer homology, Ozsváth and Szabó [14] proved the first part of the conjecture for $i = g$. See (2.2) for the precise inequality. As a result, they proved the conjecture for genus–2 knots.

In this paper, we will prove the second part of Conjecture 1.1 for $i = g$. In this case, we will get a stronger conclusion.

Theorem 1.2 Let K be an alternating knot with normalized Alexander polynomial given by (1.1), where g is the genus of K. If $|a_g| = |a_{g-1}|$, then K or its mirror is the torus knot $T_{2g+1, \pm 2}$.

Received July 31, 2020, accepted May 31, 2021
Supported by NSF (Grant No. DMS-1811900)
Our proof uses Ozsváth and Szabó’s work [14].

This paper is organized as follows. In Section 2, we prove that if a knot K has thin knot Floer homology, and $|a_g| = |a_{g-1}|$, then K is a strongly quasipositive fibered knot. In Section 3, we prove that strongly quasipositive fibered alternating knots are connected sums of torus knots of the form $T_{2n+1,2}$. Hence we get a proof of Theorem 1.2.

2 Thin Knots with $|a_g| = |a_{g-1}|$

Let $K \subset S^3$ be a knot with knot Floer homology $[16, 18]$

$$\widehat{HF}K(S^3, K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{HF}K_j(S^3, K, i).$$

We say the knot Floer homology is thin, if it is supported in the line

$$j = i - \tau,$$

where $\tau = \tau(K)$ is the concordance invariant defined in [15].

By work of Hedden [10], we will make the following definition of strongly quasipositive fibered knots. We do not need the original definition of strong quasipositivity in [19].

Definition 2.1 A strongly quasipositive fibered knot is a fibered knot $K \subset S^3$, such that the open book with binding K supports the tight contact structure on S^3.

Now we can state the main result we will prove in this section.

Proposition 2.2 Let $K \subset S^3$ be a knot with thin knot Floer homology. Let the normalized Alexander polynomial be given by (1.1). If $|a_g| = |a_{g-1}|$, then K or its mirror is a strongly quasipositive fibered knot.

Let $S^3_0(K)$ be the manifold obtained by 0-surgery on K. Ozsváth and Szabó proved that if $\widehat{HF}K(S^3, K)$ is thin and $\tau(K) \geq 0$, then

$$HF^+(S^3_0(K), s) \cong \mathbb{Z}b_s + (\mathbb{Z}[U]/U^{\delta(-2\tau,s)})$$

for $s > 0$, where

$$\delta(-2\tau, s) = \max\left\{0, \left\lfloor \frac{|\tau| - |s|}{2} \right\rfloor \right\}$$

and

$$(-1)^{s-\tau}b_s = \delta(-2\tau, s) - t_s(K)$$

with

$$t_s(K) = \sum_{j=1}^{\infty} ja_{s+j}.$$

See [14, Theorem 1.4] and the paragraph after it.

Using (2.1), one can deduce the following inequality as in [14]:

$$|a_{g-1}| \geq 2|a_g| + \begin{cases} -1 & \text{if } |\tau| = g, \\ 1 & \text{if } |\tau| = g - 1, \\ 0 & \text{otherwise.} \end{cases}$$

(2.2)
Proof of Proposition 2.2 It follows from [17] that $a_g \neq 0$. If $|a_g| = |a_{g-1}|$, then by (2.2) we must have

$$|a_g| = 1, \quad |\tau| = g.$$

By [6, 13], K is fibered. Replacing K with its mirror if necessary, we may assume $\tau = g$. It follows from [14, Corollary 1.7] that the open book with binding K supports the tight contact structure. \hfill \Box

3 Strongly Quasipositive Fibered Alternating Knots

Suppose that K is a fibered alternating link. Let $D \subset S^2$ be a reduced connected alternating diagram of K. Applying Seifert’s algorithm to D, we can get a Seifert surface F which is a union of disks and twisted bands corresponding to the crossings in D. We call the disks Seifert disks with boundary Seifert circles, and call the twisted bands Seifert bands. By [5, Theorem 5.1], F is a fiber of the fibration of $S^3 \setminus K$ over S^1.

Following [7], we say a Seifert circle is nested, if each of its complementary regions contains another Seifert circle. It is well-known that F decomposes as a Murasugi sum of two surfaces along a nested Seifert circle C [11, 20]. More precisely, let D_1, D_2 be the two disks bounded by C. Let B_i be the union of Seifert bands connecting C to Seifert circles in D_i, $i = 1, 2$. We cut F open along $B_{3-i} \cap C$ to get a disconnected surface. Let F_i be the component such that the projection of ∂F_i is supported in D_i. Then F is a Murasugi sum of F_1 and F_2. Gabai [4] proved that F is a fiber of a fibration of $S^3 \setminus K$ if and only if each F_i is a fiber of a fibration of $S^3 \setminus \partial F_i$, $i = 1, 2$.

Definition 3.1 If a diagram contains no nested Seifert circles, then this diagram is special as defined in [11].

Suppose that $D \subset S^2$ is a reduced connected special alternating diagram for a link K. Let S_1, \ldots, S_k be the Seifert circles in D. Since D is special, these Seifert circles bound disjoint disks D_1, \ldots, D_k. We color the complementary regions of D by two colors black and white, so that two regions sharing an edge have different colors. The coloring convention is that the disks D_1, \ldots, D_k have the black color. Clearly, there are no other black regions. We will construct the black graph Γ_B and the white graph Γ_W as usual. Namely, the vertices in Γ_B (or Γ_W) are the black (or white) regions, and the edges correspond to the crossings. These two graphs are embedded in S^2 as a pair of dual graphs. We also construct the reduced black graph Γ'_B by deleting all but one edges connecting two vertices v_i and v_j if there is any edge connecting them.

The following proposition can be found in [1, Propositions 13.24 and 13.25].

Proposition 3.2 Suppose that $D \subset S^2$ is a reduced connected special alternating diagram for a fibered link K, then all but one vertices in Γ_W have valence 2. As a result, K is a connected sum of torus links

$$K = \#_{i=1}^\ell T_{k_i, 2}.$$

From Proposition 3.2, it is not hard to get the following characterization of D in terms of Γ'_B.

Lemma 3.3 Under the same assumptions as in Proposition 3.2, the graph Γ'_B is a tree.
Proof Since \(D \) is connected, \(\Gamma^r_B \) is also connected. If \(\Gamma^r_B \) contains only two vertices, there is exactly one edge by the definition of \(\Gamma^r_B \), so our conclusion holds. From now on, we assume \(\Gamma^r_B \) has at least three vertices. Let \(R \) be a complementary region of \(\Gamma^r_B \), then it is not a bigon since any two vertices in \(\Gamma^r_B \) are connected by at most one edge and \(\Gamma^r_B \) has at least three vertices. Let \(v \) be the vertex corresponding to \(R \) in \(\Gamma_W \), then \(v \) has valence \(> 2 \). By Proposition 3.2, \(\Gamma^r_B \) has at most one complementary region, which means that \(\Gamma^r_B \) is a tree. □

Lemma 3.4 Under the same assumptions as in Proposition 3.2, if two vertices in \(\Gamma_B \) are connected by an edge, then they are connected by at least two edges.

Proof Using Lemma 3.3, if \(D_i \) and \(D_j \) are connected through only one crossing, then \(D \) is not reduced, a contradiction. □

We say two Seifert bands are parallel if they connect the same two Seifert disks. The following lemma is well-known. See, for example, [7, Proposition 5.1].

Lemma 3.5 If two Seifert bands are parallel, then we can deplumb a Hopf band from \(F \). The resulting surface can be obtained by removing one of the bands from \(F \).

Lemma 3.6 Let \(K \) be a strongly quasipositive fibered alternating knot, and let \(D \) be a reduced connected alternating diagram for \(K \). Let \(C \) be a nested Seifert circle. If \(C \) is connected to two pairs of parallel bands, then these two pairs of bands are on the same side of \(C \).

Proof If \(C \) is connected to two pairs of parallel bands on different sides of \(C \), then we can deplumb a negative Hopf band from \(F \). See Figure 1. Hence the open book with page \(F \) supports an overtwisted contact structure [8, Lemma 4.1], a contradiction. □

![Figure 1](image)

Figure 1 If two collections of parallel bands are on different sides of a nested Seifert circle, we can deplumb a positive Hopf band and a negative Hopf band. The two dashed circles are the cores of the Hopf bands.

Proposition 3.7 Let \(K \) be a strongly quasipositive fibered alternating knot. Then \(K \) is a connected sum of torus knots of the form \(T_{2n_i+1,2} \) for \(n_i > 0 \).

Proof If \(D \) is special, by Proposition 3.2, \(K \) is a connected sum of torus knots \(T_{2n_i+1,2} \). Since \(K \) is strongly quasipositive, each \(n_i \) must be positive, so our conclusion holds.

Now we assume that \(D \) contains at least one nested Seifert circle. We say a nested Seifert circle is extremal, if one of its complementary regions contains no other nested Seifert circles.
Let C_1, \ldots, C_m be a maximal collection of extremal nested Seifert circles in \mathcal{D}, and let R_i be the complementary region of C_i which contains no other nested Seifert circles. Then R_1, \ldots, R_m are mutually disjoint. Let \mathcal{D}' be the diagram obtained from \mathcal{D} by Murasugi desumming along $C_1 \cup \cdots \cup C_m$. Let \mathcal{D}_i be the part of \mathcal{D}' supported in R_i, and let

$$\mathcal{D}^* = \mathcal{D}' \setminus \left(\bigcup_{i=1}^{m} \mathcal{D}_i \right).$$

By [4], \mathcal{D}^* and \mathcal{D}_i are alternating diagrams representing fibered links.

Since R_i contains no other nested Seifert circles, \mathcal{D}_i is special. By Lemma 3.4, C_i is connected to another circle in R_i by at least a pair of parallel bands.

We claim that \mathcal{D}^* is special. Otherwise, let C be an extremal nested Seifert circle, and let R be the complementary region of C which contains no other nested Seifert circles in \mathcal{D}^*. Since C_1, \ldots, C_m is a maximal collection of extremal nested Seifert circles, R must contain at least one C_i. By Lemma 3.4, C_i is connected to another circle in $R \setminus R_i$ (including C) by at least a pair of parallel bands. This is a contradiction to Lemma 3.6.

Now \mathcal{D}^* is special. There are at least two Seifert circles in \mathcal{D}^*, since C_1 is nested in \mathcal{D}. By Lemma 3.4, C_1 is connected to another Seifert circle in \mathcal{D}^* by at least a pair of parallel bands. We again get a contradiction to Lemma 3.6. Hence \mathcal{D} does not contain any nested Seifert circle. This finishes our proof.

Proof of Theorem 1.2 By [14], $\widehat{HF}(S^3, K)$ is thin. It follows from Proposition 2.2 that K is strongly quasipositive and fibered. Using Proposition 3.7, K is a connected sum of $T_{2g+1,2}$. The condition on the Alexander polynomial forces K to be $T_{2g+1,2}$. \qed

References

[1] Burde, G., Zieschang, H.: Knots, Second Edition, De Gruyter Studies in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin, 2003

[2] Crowell, R.: Genus of alternating link types, *Ann. of Math.* (2), 69, 258–275 (1959)

[3] Fox, R. H.: Some problems in knot theory, In: Topology of 3-manifolds and Related Topics (Proc. The Univ. of Georgia Institute, 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, 168–176

[4] Gabai, D.: The Murasugi sum is a natural geometric operation, Low-dimensional Topology (San Francisco, Calif., 1981), Contemp. Math., Vol. 20, Amer. Math. Soc., Providence, RI, 1983, 131–143

[5] Gabai, D.: Detecting fibred links in S^3, *Comment. Math. Helv.*, 61(4), 519–555 (1986)

[6] Ghiggini, P.: Knot Floer homology detects genus-one fibred knots, *Amer. J. Math.*, 130(5), 1151–1169 (2008)

[7] Goda, H., Hirasawa, M., Yamamoto, R.: Almost alternating diagrams and fibered links in S^3, *Proc. London Math. Soc.* (3), 83(2), 472–492 (2001)

[8] Goodman, N.: Overtwisted open books from sobering arcs, *Algebr. Geom. Topol.*, 5, 1173–1195 (2005)

[9] Hartley, R. I.: On two-bridged knot polynomials, *J. Austral. Math. Soc. Ser. A*, 28(2), 241–249 (1979)

[10] Hedden, M.: Notions of positivity and the Ozsváth–Szabó concordance invariant, *J. Knot Theory Ramifications*, 19(5), 617–629 (2010)

[11] Murasugi, K.: On the genus of the alternating knot, I, II, *J. Math. Soc. Japan*, 10, 94–105, 235–248 (1958)

[12] Murasugi, K.: On the Alexander polynomial of alternating algebraic knots, *J. Austral. Math. Soc. Ser. A*, 39(3), 313–333 (1985)

[13] Ni, Y.: Knot Floer homology detects fibred knots, *Invent. Math.*, 170(3), 577–608 (2007)

[14] Ozsváth, P., Szabó, Z.: Heegaard Floer homology and alternating knots, *Geom. Topol.*, 7, 225–254 (2003)

[15] Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus, *Geom. Topol.*, 7, 615–639 (2003)

[16] Ozsváth, P., Szabó, Z.: Holomorphic disks and knot invariants, *Adv. Math.*, 186(1), 58–116 (2004)
[17] Ozsváth, P., Szabó, Z.: Holomorphic disks and genus bounds. *Geom. Topol.*, **8**, 311–334 (2004)

[18] Rasmussen, J.: Floer homology and knot complements, Thesis (Ph.D.)–Harvard University, ProQuest LLC, Ann Arbor, MI, 2003

[19] Rudolph, L.: Quasipositivity as an obstruction to sliceness, *Bull. Amer. Math. Soc. (N.S.)*, **29**(1), 51–59 (1993)

[20] Stallings, J.: Constructions of fibred knots and links, In: Algebraic and Geometric Topology, (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., Vol. XXXII, Amer. Math. Soc., Providence, RI, 1978, 55–60