Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields

X. S. Rao*, C. K. Ong, B. B. Jin, C. Y. Tan, S. Y. Xu, P. Chen, J. Li, and Y. P. Feng
Centre for Superconducting and Magnetic Materials and Department of Physics,
National University of Singapore, Singapore 119260
(March 24, 2022)

We have studied an anomalous microwave (mw) response of superconducting YBa$_2$Cu$_3$O$_{7-δ}$ (YBCO) microstrip resonators in the presence of a weak dc magnetic field, H_{dc}. The surface resistance (R_s) and reactance (X_s) show a correlated non-monotonic behaviour as a function of H_{dc}. R_s and X_s were found to initially decrease with elevated H_{dc} and then increase after H_{dc} reaches a crossover field, H_c, which is independent of the amplitude and frequency of the input mw signal within the measurements. The frequency dependence of R_s is almost linear at fixed H_{dc} with different magnitudes ($<H_{dc}=H_c$ and $>H_c$). The impedance plane analysis demonstrates that r_H, which is defined as the ratio of the change in $R_s(H_{dc})$ and that in $X_s(H_{dc})$, is about 0.6 at $H_{dc}<H_c$ and 0.1 at $H_{dc}>H_c$. The H_{dc} dependence of the surface impedance is qualitatively independent of the orientation of H_{dc}.

PACS number(s): 74.25.Nf, 74.76.Bz, 74.60.Ge, 74.60.Ec.

I. INTRODUCTION

In general, it is expected that the surface impedance of high-temperature superconducting (HTS) thin films will increase as a function of applied dc or mw field. This nonlinearity was believed to be mainly contributed by weak links and vortex dynamics in the HTS films [1–12]. Besides, other sources of nonlinearity, such as intrinsic pairbreaking, local heating of grain boundaries and thermal switch of superconducting grains, were also introduced to explain the diverged experimental data [13–15].

Recently, several anomalous microwave responses, i.e. surface resistance R_s and (or) surface reactance X_s change non-monotonically with applied mw or dc magnetic field, were observed [16–19]. Choudhury et al. reported an anomalous field dependence of surface resistance R_s of a YBCO suspended line resonator in the presence of a weak, perpendicular dc magnetic field at 10K. They found a sharp decrease of R_s at small H_{dc} (\sim5 Gauss) with subsequent increase at higher fields. Hein et al. observed a correlated reduction in R_s and X_s of epitaxial YBCO films in both dc and mw magnetic fields of the scale 20 mT at frequencies $f=8.5$ and 77 GHz and temperatures $T=77$ and 4.2K, respectively. The field effects on R_s and X_s were found to correlate within the framework of the two-fluid model (TFM). The reduction in R_s and X_s was attributed to magnetic field-induced suppression of the spin-flip scattering rate. Similar effects were also reported by Kharel and his colleagues. Besides correlated changes in R_s and X_s, uncorrelated non-monotonic field dependence was also observed in their measurement of YBCO coplanar resonators at 8.0GHz and different temperatures (15, 35 and 75K). As far as we know, the origins of these anomalous microwave responses are still pending and the experimental data are very limited. More experimental investigations are needed to give enough clues for learning the mechanisms underneath the anomalous effects.

In this work, we employed a microstrip resonator technique to measure R_s and X_s of YBCO thin films in dc magnetic fields H_{dc} up to 200 Gauss at 77K. It was observed that R_s decreases as H_{dc} raises from zero and this is followed by a monotonically increase of R_s at higher H_{dc}. Correlatively, X_s show a similar behavior. The effects were investigated at different mw amplitudes and frequencies in different dc field alignments. The experimental data have been examined with several theoretical models.

II. SAMPLE PREPARATION

The double-sided YBCO thin films were prepared by on-axis pulsed-laser deposition (PLD) technique on polished LaAlO$_3$ (100) substrates with the size of $15 \times 10 \times 0.5$ mm3. The films are 400nm thick and show a strong preferential

* Corresponding author. Tel:+65-8742615; fax:+65-7776126; e-mail: scip7099@leonis.nus.edu.sg
orientation with the c-axis perpendicular to the film surface. The AFM results show that the grain sizes of both faces of the double-sided films are around 1 \(\mu m \times 1 \mu m \) and the root-mean-square (rms) surface roughness of both faces in a 50\(\mu m \times 50 \mu m \) area are similar, around 170 nm while their mean roughness are also similar, which are around 130 nm. The dc critical current density \(J_c \) is in excess of \(10^6 A/cm^2 \) at 77K and the transition temperature \(T_c \) is around 90K with a narrow transition width, 0.5~1K. Employing a dielectric resonant cavity \cite{20}, the surface resistances of the films were measured at 10.66GHz, 77K before patterning. The resultant \(R_s \) are around 1 m\(\Omega \) and the difference of the surface resistance between the two sides is smaller than 5%.

The design of the microstrip resonator was done with the help of a commercial full wave electromagnetic simulator, IE3D, and the quasi-TEM analytical formulations \cite{21} for microstrip resonator. The resonator geometry is chosen so that it has a characteristic impedance of 50\(\Omega \). The meandering micro strip has a width of 169 \(\mu m \) and is coupled with the outer circuits by a capacitive gap of 500 \(\mu m \). The traditional wet etching method was employed to fabricate the microstrip resonator. We have checked the geometry of the resonator after the etching process and found the actual strip width is around 4 \(\mu m \) narrower than the designed value.

III. EXPERIMENTAL RESULTS

The microwave responses of the resonators were measured at 77K using a vector network analyzer and the dc magnetic field was applied by a copper solenoid. There is no remanent field in the measurements since all the experimental set-ups are made of Teflon except the copper solenoid. The changes in surface impedance associated with the application of dc magnetic field are extracted from the measured quantities as follow \cite{22}:

\[
\Delta Z_a(H_{dc}) = Z_a(H_{dc}) - Z_a(0) = \Gamma[\Delta f_{-3dB}(H_{dc}) - \Delta f_{-3dB}(0) + i2(f_0(0) - f_0(H_{dc}))]
\]

where \(\Gamma \) is a geometric factor determined from the sample dimensions, \(f_0 \) and \(\Delta f_{-3dB} \) are the resonance frequency and the -3dB (half power) bandwidth of the resonance peak, respectively. The loaded quality factor \(Q_L \) of the resonator can be easily obtained from \(f_0 \) and \(\Delta f_{-3dB} \). \(Q_L = f_0/\Delta f_{-3dB} \). We replace \(Q_L \) with unloaded quality factor because the coupling is very weak (insertion loss>30dB).

Figure 1(a) shows the typical data for \(\Delta f_{-3dB} \), which is proportional to \(R_s \), of the fundamental resonant peak as a function of applied dc field \(H_{dc} \). The input mw power was fixed at \(-10 dBm\) and the sample was initially cooled in a zero-field state where the earth magnetic field (~0.3 Gauss) was neglected. We do not give absolute values of \(R_s \) and \(X_s \) because \(\Gamma \) is difficult to be determined for the current in the microstrip is highly non-uniform \cite{23,22}. Fortunately, only the functional dependence of \(\Delta Z_s \) and the ratio of \(\Delta R_s \) and \(\Delta X_s \) are of importance to learn the mechanisms of microwave nonlinearity and they can be determined without the geometric factor. For the case \(H_{dc} \) was applied parallel to the c-axis of the film (namely, perpendicular to the surface of the film), \(R_s \) drops dramatically as \(H_{dc} \) is increased from zero. After passing through a minimum, \(R_s \) begin to increase monotonically when \(H_{dc} \) is further raised. The minimum depth is 23\% of the \(R_s \) value in zero dc field and the crossover field (\(H^c_\parallel \)) is 4.5 Gauss, which is of the same order of that reported by Choudhury et al. \cite{16}. The shift of the resonant frequency, \(f_0 \), shown in Figure 1(b) reveals that the change of \(X_s \) is correlated with that of \(R_s \). The resonant peak initially shifts to higher frequency (\(X_s \) decreases, correspondingly) and then shifts down. The \(H^c_\parallel \) value determined from \(X_s(H_{dc}) \) is the same as that from \(R_s(H_{dc}) \) within 1.5 Gauss.

The general features observed above were presented again for \(H_{dc} \perp c \) while the crossover field \(H^c_{dc} \) is of the order 80~90 Gauss. The difference between \(H^c_{dc} \parallel \) and \(H^c_{dc} \perp \) may come from the serious demagnetizing effect and the anisotropy of the HTS films. The insets in Fig.1 show the curves normalised with \(H^c_{dc} \parallel \) and \(H^c_{dc} \perp \), respectively. The two curves almost collapse to one. The implication of this result will be discussed below.

Similar effects are observed as the input power is varied. Fig.2 shows the \(\Delta f_{-3dB} \) versus \(H_{dc} \) with different orientations when the input mw power is fixed at \(-20 dBm\). No shift of the crossover field \(H^c_c \), which represents \(H_{dc} \parallel c \) or \(H_{dc} \perp c \), at different input mw power levels is observed within the accuracy of the measurement. It means that \(H^c_c \) is independent of the amplitude of the input microwave signal. However, the decrease in \(R_s \) is more prominent than that of \(P=-10 dBm \). The minimum depth in this case is as large as 43\% of the zero-dc field \(R_s \) value.

The same measurements were also carried out for different resonant modes (second and third harmonics), shown in Fig.3(a). The field dependencies of \(R_s \) for different resonant modes are qualitatively the same. \(R_s \) first decreases with \(H_{dc} \) and then increase after \(H_{dc} \) reaches the crossover field \(H^c_c \). The crossover fields \(H^c_c \) measured from the second and third modes are almost the same as that from the fundamental mode. Thus \(H^c_c \) is also independent of the frequency of the input mw signals. As is well known, the frequency dependence of \(R_s \) is an important key in the determination of the microwave loss mechanism. To shed some light on the microwave loss mechanism in the applied dc magnetic field with different magnitudes, we chose three typical \(H_{dc} \): zero dc field, \(H^c \) and a field larger than \(H^c \) to plot the
−3dB bandwidth as a function of the harmonic numbers, as shown in Fig.3(b). Nearly linear frequency dependencies of R_s are found for all the three values of H_{dc} and even the slopes of the three curves are almost independent of H_{dc}. The similarity in the frequency dependence of R_s would suggest the microwave loss mechanisms at the three dc fields are essentially the same as each others. The linear frequency dependence rules out the loss mechanisms with f^2 dependence, such as two fluid model [27], BCS theory [28] and weakly coupled grain model [11,12]. And it implies that the hysteretic losses due to pinning and nucleation of Josephson fluxons [3] may play an important role in the loss mechanism.

Although the loss mechanism is almost same in our measurements, the effect of H_{dc} on the loss mechanism is totally different for the case $H_{dc}<H_c$ and $H_{dc}>H_c$. To illustrate the effect of the applied dc field, we adopt an impedance plane analysis, which has been proven to be a powerful approach in distinguishing between various nonlinear mechanisms of superconductors, in terms of r-parameter [9,27]. Here the dc field-induced changes in the surface impedance are characterised by a dimensionless r_{H} which is defined as the ratio of the change of surface resistance and reactance with varying H_{dc} at fixed input mw powers, i.e., $r_{H} = \Delta R_s(H_{dc})/\Delta X_s(H_{dc})$. Figure 4 demonstrates Δf_{-3dB} versus f_0 dependencies at $P_{mw}=-10$dBm for varied H_{dc} values and for different orientations of the applied dc magnetic field. The r_{H}-parameter can be easily extracted from the slopes of the curves (r_{H} is one-half of the slope). The obtained value for r_{H} is about 0.6 if H_{dc} is below H_c, while r_{H}~0.1 if the dc field is above H_c. The transition of r_{H} happens within a narrow field range at the crossover dc field. The prominent difference in the values of r_{H} implies that the dc field below H_c plays a different role with that above H_{dc} in determining the surface impedance. It is noted that the r_{H}~0.1 at $H_{dc}>H_c$ is consistent with the r_{H} values (0.1 - 0.2) reported by other groups [11,12,25]. The impedance plane analysis at $P_{mw}=-20$dBm presents a similar behavior. It should be stressed that Fig.4 is qualitatively different from the similar analysis given in Fig.5 of Ref. 17. This suggests that the anomalous response reported by Hein et al. and what observed in this work may come from different origins.

In addition, Fig.4 shows that for different orientations of H_{dc} ($H_{dc}||c$ and $H_{dc}⊥c$) the two sets of data points essentially coincide with each other on the same curve. As shown in the insets of Figure 1, the $R_s(H_{dc})$ and $X_s(H_{dc})$ curves with different H_{dc} orientations can also be normalised to coincide with each other. Combining these observations together, we conclude that the effects of H_{dc} on the surface impedance are essentially independent on the orientations of the applied dc magnetic field.

Three samples were measured in this work. Though quantitative differences are found, the features of the data are essentially the same as mentioned above. The quantitative differences may come from the differences on growth, deposition and patterning of the films.

IV. DISCUSSIONS

The results show that H_c is independent of both the amplitude and frequency of the applied microwave signal. It implies that H_c may be related to some characteristic parameters of the YBCO films. Since the effects of dc magnetic field change dramatically at H_c, one could naturally expect that the observed H_c in the measurements is simply a manifestation of H_{c1}, the lower critical field of the superconducting YBCO films. Below H_c, the external dc field causes a decrease in R_s for some reasons. Above H_c, the dc fluxons begin to penetrate into the samples and produce additional loss with a large increase of the surface impedance. This may give an qualitative description on some features of the anomalous effect mentioned above. However, we can not definitely clarify the relationship of H_c to H_{c1} while the origin of the drop in R_s is still not known. The conception, which says the observed H_c is a manifestation of H_{c1}, needs to be further studied.

Recently, several groups proposed that magnetic field-induced recovery of superconductivity might account for the anomalous microwave response [12,13]. Magnetic impurities are likely to be present in most HTS materials. The interaction between localised magnetic moments of magnetic impurities and cooper pairs which are in the singlet state destroys the pair correlation and is accompanied by spin-flip scattering [29]. An external magnetic field forces the localised magnetic moments to align, frustrates the spin-flip scattering, and leads to a reduction of pair breaking. According to two-fluid model the increase of pair electrons can lead to the decrease of R_s and X_s. This mechanism has been proven to be effective in explaining some of the experimental results [17]. However, it is obvious that the feature of Fig.4 is qualitatively different from that of the similar analysis given in Fig.5 of Ref.[17]. So it is doubtful that the anomalous response we observed comes from the same origin as that in Ref.[17]. In addition, a phenomenological description is proposed in terms of this mechanism [30]. Simulation shows that quantitative fitting of the experimental data with this model requires a large increase of pair density (>50%) with a relatively small change of external field (80~90 Gauss). So the applicability of this mechanism to the present experimental results is questionable.

A phenomenological model of the nonlinear microwave response of a superconducting weak link was proposed by Velichko to describe the effect of both dc and mw magnetic fields [31]. The results show that the value of $Z_s(H)$...
of both “the non-shunted” and “the shunted WL” can fall with increased H under certain conditions. However, the observed correlated decrease in R_s and X_s still cannot be explained by the model. For “the non-shunted WL”, R_s and X_s initially increase as H raises from zero and then decrease with elevated magnetic field, which is inconsistent with our experimental observation. For “the shunted WL”, a decrease in R_s is accompanied by an increase of X_s. This is also inconsistent with our data. As shown by Herd et al., however, if a network of weak links with a distribution of the I,R_n products was considered, the decrease of X_s with H can be expected \cite{12}. It is not sure whether a network of “the shunt WL” can account for the decrease of both R_s and X_s.

Similar effects were once observed by Thompson et al. \cite{33}, in the measurements of ac hysteretic losses in Nb$_2$Ge material. With fixed ac amplitude, the ac loss was observed initially decrease and then increase with elevated dc-bias magnetic field after passing through a minimum. The decrease of ac losses was explained in terms of Abrikosov vortex-antivortex annihilation within the frame of critical state model \cite{34}. One of the central features of this theory lies in an ac amplitude-dependent H_c at which ac loss reaches its minimum. While this feature was observed in Thompson’s experiment, it is opposite to our observation. As we mentioned above, H_c is almost independent of the amplitude of the input mw signal.

So far the observed anomalous microwave response can not be explained consistently by any of the proposed models. It is generally expected that both of the intrinsic and extrinsic effects in the HTS thin films may have their contributions to the microwave loss. To get a clear understanding of the anomalous effect, all these effects should be taken into account. The high value of R_s ($\sim 1\Omega$ at 10.66 GHz, 77K) shows that the films used in this work are highly granular and most likely consist of a microbridge-type weak links. The weak links may play an important role in the anomalous effects though the mechanism is not known at present. As we know, granularity has been ruled out as a general source of the anomaly observed in their experiments since their films showed well-established qualities and excellent power handling capabilities. This can also explain why Fig.4 is qualitatively different from the Fig.5 in Ref.17. This suggest that the anomalies effects may have more than one source.

V. CONCLUSIONS

We have observed an anomalous microwave response in HTS thin-film microstrip resonators. The main results of this work are summarized as follows: (a) The surface resistance and reactance show a correlated non-monotonic behavior in the presence of a weak dc magnetic field. The R_s drops as H_{dc} raises from zero, after passing through a minimum, it increases gradually as H_{dc} is further increased. The X_s presents a similar behavior; (b) The crossover field H_c, at which R_s reaches its minimum, is independent of the amplitude and frequency of the input microwave signal within the ranges of measurements; (c) The qualitative effects of H_{dc} on the surface impedance are essentially independent of dc field orientation, microwave amplitude and frequency, while prominently different at $H_{dc}<H_c$ ($r_H\sim0.6$) and at $H_{dc}>H_c$ ($r_H\sim0.1$); (d) At a fixed H_{dc} and P_{mw}, the frequency dependence of the surface resistance is almost linear. This linear frequency dependence and even the slope of R_s-f are unchanged at varied H_{dc} magnitudes ($<H_c$, = H_c and >H_c). Several mechanisms were examined and they can not give a satisfactory explanation on the results. The origin of the observed anomaly is still not clear. Further efforts should be addressed to understand it fully.

\begin{thebibliography}{9}
\bibitem{1} T. L. Hylton, A. Kapitulnik, M. R. Beasley, J. P. Carini, L. Drabeck, and G. Gruner, Appl. Phys. Lett. \textbf{53}, 1343 (1988).
\bibitem{2} A. M. Portis, D. W. Cooke, and H. Piel, Physica \textbf{C162-164}, 1547 (1989).
\bibitem{3} J. Halbritter, J. Appl. Phys. \textbf{68}, 6315 (1990).
\bibitem{4} M. W. Coffey and J. R. Clem, Phys. Rev. Lett. \textbf{67}, 386 (1991).
\bibitem{5} P.P.Nguyen, D.E.Oates, G.Dresselhaus, M.S.Dresselhaus, Phys. Rev. B \textbf{48}, 6400 (1993).
\bibitem{6} S. Shridhar, Appl. Phys. Lett. \textbf{65}, 1054 (1994)
\bibitem{7} P.P.Nguyen, D.E.Oates,G.Dresselhaus, M.S.Dresselhaus and A.C.Anderson, Phys. Rev. B \textbf{51}, 6686 (1995).
\bibitem{8} B. A. Willemsen, S. Sridhar, J. S. Derov, and J. H. Silva, Appl. Phys. Lett. \textbf{67}, 551 (1995).
\bibitem{9} M. A. Golosovsky, H. J. Snortland, and M. R. Beasley, Phys. Rev. \textbf{B51}, 6462 (1995).
\bibitem{10} M. Golosovsky, M. Tsindlekht, and D. Davidov, Supercond. Sci. Technol. \textbf{9}, 1 (1996).
\bibitem{11} L.F.Cohen, A.Cowie, J.C.Gallop, I.S.Ghosh, J.Chrosch, J.Chrosch and I.N.Goncharov, IEEE Trans. Appl. Supercond. \textbf{7}, 1291 (1997).
\bibitem{12} M.Tsindlekht, M.Golosovsky, D.Davidov, and A.F.Jacob, IEEE Trans. Appl. Supercond. \textbf{7}, 1295 (1997).
\bibitem{13} C. W. Lam, D. M. Sheen, S. M. Ali, and D. E. Oates, IEEE Trans. Appl. Supercond. \textbf{2}, 58 (1992).
\end{thebibliography}
FIG. 1. dc magnetic field dependence of (a) the -3dB bandwidth Δf_{-3dB} and (b) the resonant frequency f_0 of the microstrip resonator working at fundamental mode with input power $P_{mw}=-10\text{dBm}$. Circles correspond to $H_{dc}\parallel c$ and triangles correspond to $H_{dc}\perp c$. The insets show the curves normalised with $H_{dc}\parallel c$ and $H_{dc}\perp c$, respectively.

FIG. 2. dc magnetic field dependence of Δf_{-3dB} of the microstrip resonator working at fundamental mode with input power $P_{mw}=-20\text{dBm}$. Circles correspond to $H_{dc}\parallel c$ and triangles correspond to $H_{dc}\perp c$.

FIG. 3. (a) dc magnetic field ($\parallel c$) dependence of Δf_{-3dB} of the microstrip resonator working at fundamental mode (circles), second (triangles) and third harmonics (squares) with input power $P_{mw}=-10\text{dBm}$. (b) Frequency dependence of Δf_{-3dB} at different dc magnetic fields.

FIG. 4. Δf_{-3dB} vs f_0 on varying dc magnetic field for the microstrip resonator working at fundamental mode with input power $P_{mw}=-10\text{dBm}$. Circles correspond to $H_{dc}\parallel c$ and triangles correspond to $H_{dc}\perp c$.
\(f_0 \) (MHz) vs. \(\mu_0 H_{dc} \) (Gauss)
$P_{\text{input}} = -20\text{dBm}$
\[\Delta f_{-3dB} \quad (kHz) \]

\[\mu_0 H_{dc} \quad (Gauss) \]
Harmonic Number

$\Delta f_{-3dB} (kHz)$

$\mu_0 H_{DC} = 0 \text{ G}$
$\mu_0 H_{DC} = 30 \text{ G}$
$\mu_0 H_{DC} = 4.5 \text{ G}$
Δf_{-3dB} (kHz) vs. f_0 (MHz)

- $r_H = 0.1$
- $r_H = 0.6$