Endoplasmic reticulum stress in chondrodysplasias caused by mutations in collagen types II and X

Katarzyna Gawron

Received: 31 January 2016 / Revised: 1 July 2016 / Accepted: 5 July 2016 / Published online: 15 August 2016

Abstract The endoplasmic reticulum is primarily recognized as the site of synthesis and folding of secreted, membrane-bound, and some organelle-targeted proteins. An imbalance between the load of unfolded proteins and the processing capacity in endoplasmic reticulum leads to the accumulation of unfolded or misfolded proteins and endoplasmic reticulum stress, which is a hallmark of a number of storage diseases, including neurodegenerative diseases, a number of metabolic diseases, and cancer. Moreover, its contribution as a novel mechanistic paradigm in genetic skeletal diseases associated with abnormalities of the growth plates and dwarfism is considered. In this review, I discuss the mechanistic significance of endoplasmic reticulum stress, abnormal folding, and intracellular retention of mutant collagen types II and X in certain variants of skeletal chondrodysplasia.

Keywords Endoplasmic reticulum stress · Unfolded protein response · Mutation · Collagen · Chondrodysplasia · Mechanism

Introduction

The endoplasmic reticulum (ER) is an eukaryotic organelle responsible for synthesis, folding, trafficking, and sorting of proteins. It also plays an important role in lipid and steroid synthesis as well as calcium homeostasis (Engin and Hotamisligil 2010; Hosoi and Ozawa 2009). An imbalance between the load of unfolded proteins and the processing capacity in ER leads to the accumulation of unfolded or misfolded proteins and ER stress (Ron and Walter 2007; Schröder and Kaufman 2005; Sano and Reed 2013). To alleviate accumulation of unfolded proteins, the process being toxic to cells, ER triggers an evolutionarily conserved signaling cascade, named unfolded protein response (UPR) (Engin and Hotamisligil 2010; Schröder and Kaufman 2005; Tsuru et al. 2016; Lin et al. 2008). Adaptation and restoration of ER function through UPR signaling comprise translational attenuation of global protein synthesis, upregulation of ER chaperones and prevention from trafficking (to the proper subcellular localizations), as well as degradation of unstable or partially folded mutant proteins by an endoplasmic reticulum-associated degradation (ERAD) system (Engin and Hotamisligil 2010; Hosoi and Ozawa 2009; Ron and Walter 2007; Schröder and Kaufman 2005; Bernales et al. 2006). If ER stress is excessive or prolonged and cannot be resolved, signaling switches from prosurvival to proapoptotic (Hosoi and Ozawa 2009; Szegedi et al. 2006). ER stress and UPR are critical for the normal cellular homeostasis and development of the organism and are also known to play major roles in the pathogenesis of many diseases such as neurodegenerative (Uehara et al. 2006; Hoozemans et al. 2007; Perri et al. 2016) and cardiovascular (Minamino et al. 2010; Kassan et al. 2012) diseases, diabetes (Basha et al. 2012), obesity (Hosoi et al. 2008), inflammation (Ha et al. 2015), and cancer (Suh et al. 2012; Chhabra et al. 2015; Lin et al. 2008; Mahdi et al. 2016; Yoshida 2007a). In recent years, accumulating evidence indicates that abnormal folding and accumulation of structural proteins that are produced to fulfill their physiological function in the extracellular space of tissues may lead to ER stress and induction of a wide range of systemic diseases. For instance, several reports linked ER stress to mutations in collagen type II that induce various forms of spondyloepiphyseal dysplasia.
Correct protein folding in influx of the nascent unfolded or misfolded polypeptides exceeds the processing capacity of the ER (Schröder and Kaufman 2005; Sano and Reed 2013). The physiological state of the ER is challenged when the perturbation of protein folding and constitutes a signal transducer of the earliest phase of stress response (Liu et al. 2016). UPR first alleviates the ER stress by diminishing the overall protein load via PERK-mediated phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α) (Mahdi et al. 2016; Liu et al. 2016; Joshi et al. 2013; Zhang et al. 2013). In turn, the decrease in eIF2 activity promotes the translation of activating transcription factor 4 (ATF4) resulting in the activation of CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) production, which promotes ER stress-induced apoptosis (Ron and Walter 2007;
ATF6 is a basic leucine zipper (bZIP) transcription factor that upon dissociation of Grp78 translocates to the Golgi complex, in which it undergoes proteolytic cleavage by the serine protease (S1P) and the metalloprotease (S2P) (sites 1 and 2, respectively) (Shen et al. 2002; Zhang et al. 2013; Nadanaka et al. 2006). The cleaved 50 kDa cytoplasmic bZIP-containing fragment translocates to the nucleus, where it binds to the ER stress response element (ERSE) and activates genes involved in the adaptive stress response, i.e., Grp78, CHOP, and X-box binding protein 1 (XBP1) (Anelli and Sitia 2008; Nadanaka et al. 2006; Brown et al. 2000). It has been shown that cell- or tissue-specific UPR may exist under ER stress; for example, cAMP response element binding protein H (CREBH) has been identified as a regulated intramembrane proteolysis (RIP)-regulated liver-specific transcription factor that is cleaved upon ER stress (Zhang et al. 2006) while old astrocyte specifically induced substance (OASIS), which is similar to the ATF6 family, has been identified as a transducer of ER stress in astrocytes (Kondo et al. 2005). IRE1 is a type 1 transmembrane serine/threonine receptor protein kinase which is activated via homodimerization and transautophosphorylation upon dissociation from Grp78 (Hosoi and Ozawa 2009; Zhang et al. 2013). The activated domain of IRE1 acts like a nuclease and catalyzes the removal of a small intron from XBP1 messenger RNA (mRNA) (Zhang et al. 2013; Yoshida 2007b). This splicing creates a translational frameshift in XBP1 to produce an active transcription factor which directly binds to the ERSE and the UPR element (UPRE), leading to the upregulation of genes such as ER chaperones, e.g., Grp78 gene (HSPA5) (Hosoi and Ozawa 2009; Suh et al. 2012; Anelli and Sitia 2008; Shen et al. 2002) (Fig. 1).

Protein quality control primarily promotes cell survival and the maintenance of cellular homeostasis by switching on several pathways of the adaptive response. One of the central ER

![Fig. 1](https://example.com)
stress defense strategies is to upregulate coordinately its chaperoning capacity. Chaperones are specialized proteins that play a key role in cellular homeostasis by assisting in protein folding, assembly of the macromolecular complexes, protein transport, and cellular signaling (Ullman et al. 2008). In the ER, the main function of chaperones is to prevent inappropriate aggregation of nascent peptide chains during protein synthesis. Chaperones bind to and stabilize exposed hydrophobic domains of target proteins and promote proper folding of newly synthesized proteins. This process involves cycles of controlled binding and release of target polypeptides (Horwich 2004; Chaudhuri and Paul 2006). While some chaperones non-specifically interact with a wide variety of polypeptides, others are restricted to specific subsets or even individual proteins. Chaperones are expressed and maintained at steady levels in unstressed cell; however, their expression is highly upregulated during stress conditions. Dysregulated chaperonic activity results in unfolded, misfolded, or aggregated proteins that will eventually be targeted to degradation pathways or accumulate in cells, leading to impairment of function and eventually contributing to various diseases. Apart from their critical role in protein folding, chaperones also function as signal-transducing molecules by affecting the transition between active and inactive states of signaling molecules, changing their subcellular localization or affecting protein-protein interactions (Engin and Hotamisligil 2010). Interestingly, chaperones are able to distinguish between the native and non-native states of targeted proteins, but how they discriminate between correctly and incorrectly folded proteins and how they target the latter for degradation are yet to be explored (Vembur and Brodsky 2008). Apart from molecular chaperones, the ubiquitin proteasome pathway (UPP) is referred to as the second part of a protein quality control system (PQCS) and plays a critical role in cell function and survival. It has been shown that disturbance in or impairment of the UPP, which may be induced by the accumulation of misfolded proteins in the ER or loss of function of the enzymes involved in the ubiquitin conjugation and deconjugation pathway, leads to altered UPP function, which positively affects the accumulation of protein aggregates in the cell. The formation of oligomers and aggregates occurs in the cell when a critical concentration of misfolded protein is reached. Aggregated proteins inside the cell often lead to the formation of “an amyloid-like structure,” which eventually causes different types of degenerative disorders and, ultimately, cell death (Anelli and Sitia 2008). Finally, when correct folding is impossible and degradation by the UPP is insufficient, then the UPR switches from being prosurvival to proapoptotic (Engin and Hotamisligil 2010; Schröder and Kaufman 2005). Typically, excessive ER stress leads to apoptosis via an increase in the expression of CHOP or by inducing caspase-dependent apoptosis (Lin et al. 2008; Szegedi et al. 2006; Chiribau et al.

Fig. 2 Quality control interplay in the “ER-Golgi-lysosomes/extracellular space axis.” Extracellular space proteins, e.g., collagens, are synthesized by ribosomes and translocated into the endoplasmic reticulum (ER). In the ER, proteins accomplish their native form (folding, assembling) under strict quality control mechanisms. Appropriate folding/structure of the proteins enables their transport and modification in the Golgi, followed by transport to the extracellular space and/or to lysosomes. Accelerated aggregation of unfolded/misfolded proteins which overload the folding capacity within the ER induces the ER stress sensors, i.e., protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1) which further activate the unfolded protein response (UPR) signaling. Unfolded/misfolded proteins are retained and directed to degradation by endoplasmic reticulum-associated degradation (ERAD) system, apoptosis, or autophagy (reciprocal regulation, yellow arrows). Under the quality control mechanisms, the ER stress aims to restore the homeostasis within ER through regulation of protein entry into the ER, folding, and degradation. Black arrows show the alternative pathways of the ER-Golgi-lysosomes/extracellular space axis depending on the proper folding, unfolding, or misfolding of protein. Red, intermittent arrows depict homeostatic control pathways (plus sign stimulatory, minus sign inhibitory).
In certain circumstances when excessive ER stress fails to induce apoptosis, autophagy might also serve as an alternative route leading to cell death and necrosis (Szegedi et al. 2006; Suh et al. 2012; Ullman et al. 2008) (Fig. 2).

Endoplasmic reticulum stress and the diseases

Many inherited disorders of connective tissue are caused by mutations in genes encoding structural components of the extracellular matrix (ECM) or enzymes that participate in their posttranslational modifications and assembly. Often the mutations interfere with ECM protein folding and inhibit their secretion from the cell resulting in disruption of their function in connective tissue. Therefore, although the prevailing paradigm for inherited diseases of the ECM has involved predominantly extracellular molecular pathology, more recently, an increasing number of reports have shown that intracellular processes may affect the pathology of these conditions as well (Bateman et al. 2009).

Up to now, the role of ER stress and the activation of pathways leading to UPR have been extensively investigated in a number of neurodegenerative disorders, e.g., Alzheimer’s and Parkinson’s diseases (Perri et al. 2016; Uehara et al. 2006; Hoozemans et al. 2007; Ron et al. 2010), cancer (Chhabra et al. 2015; Suh et al. 2012; Ha et al. 2015), and chronic metabolic diseases such as obesity, insulin resistance, and type 2 diabetes (Hotamisligil 2010); in a number of lysosomal storage disorders, e.g., Fabry’s and Gaucher’s diseases (Yam et al. 2006; Maor et al. 2013; Ron et al. 2010); and in the pathology of diseases involving professional secretory tissues such as cystic fibrosis and α1-antitrypsin deficiency (Bartoszewski et al. 2011; Alam et al. 2014). Recent reports investigating effects of mutations on assembly and secretion of several ECM components suggest that multiple outcomes such as misfolding and intracellular accumulation of mutant ECM proteins may result from induction of ER stress (Chung et al. 2009; Liang et al. 2014; Rajpar et al. 2009; Pieri et al. 2014; Firtina et al. 2009; Gould et al. 2007; Nugent et al. 2009; Bateman et al. 2009; Boot-Handford and Briggs 2010; Yang et al. 2005).

Mutations leading to cartilage pathology

Cartilage is a connective tissue that serves multiple functions during embryonic development and in postnatal life. It is composed of collagenous proteins, mainly type II in hyaline cartilage, collagen type X, glycoproteins, proteoglycans, and glycosaminoglycans (Sophia Fox et al. 2009; Yang et al. 2005). The chondrocyte, the only resident cell found in cartilage, proliferates and secretes ECM forming the cartilage template of the skeleton during development. In adults, chondrocytic cells produce and maintain ECM that participates in growth, mechanical support, and function of diarthrodial joints between bones (Sophia Fox et al. 2009; Mackie et al. 2011). Longitudinal bone growth is dependent on the strict temporal regulation and control of chondrocyte proliferation, differentiation, hypertrophy, apoptosis, and vascular invasion within the growth plate by a complex network of regulatory molecules and interactions of cells and ECM (Mackie et al. 2011; Karsenty 2008; Karsenty et al. 2009). Until now, over 400 skeletal disorders have been described, and several are caused by mutations in cartilage ECM genes that are critical to endochondral ossification (Warman et al. 2011). Although individually rare, they cause a significant impact on the quality of life for patients suffering from skeletal abnormalities. Genes encoding cartilage ECM proteins affected by mutations which disrupt growth plate differentiation comprise collagen types II, IX, X, and XI; aggrecan; cartilage oligomeric matrix protein (COMP); and matrilin 3 (Hintze et al. 2008; Chung et al. 2009; Liang et al. 2014; Ho et al. 2007; Mäkitie et al. 2010; Kuivanieni et al. 1997; Warman et al. 2011; Bateman et al. 2009; Boot-Handford and Briggs 2010; Yang et al. 2005; Briggs et al. 2015). The list of collagenopathies associated with mutations in collagen types II and X is presented in Table 1.

Mutations in collagen type II

Collagen II, a main structural protein of cartilaginous tissues, is first synthesized as procollagen, characterized by the presence of an extended triple-helical domain flanked by the globular N-terminal and C-terminal propeptides (Arnold and Fertala 2013). Biosynthesis of procollagen molecules is a complex process that involves posttranslational modifications of the nascent pro-α chains. These modifications include hydroxylation of proline residues and lysine residues by prolyl-4 hydroxylase (P4H) and lysyl hydroxylase (LH), respectively. In turn, the posttranslational modifications and formation of the triple-helical structure are controlled by molecular chaperones that belong to the group of proteins residing in the ER, which includes heat shock protein 47 (HSP47), Grp78, and protein disulfide isomerase (PDI), amongst which the latter enzyme also acts as the β subunit of the ααββ tetramer that constitutes functional P4H (Chung et al. 2009; Ono et al. 2012; Patterson and Dealy 2014). In addition, by binding to the individual pro-α(1)II chains and preventing their premature association, P4H may also act as a chaperone during biosynthesis of procollagen molecules. Procollagen molecules are released from the ER and directed toward secretory pathways following biosynthesis of individual pro-α(1)II chains, their posttranslational modifications, and folding into triple-helical structure (Chung et al. 2009; Ono et al. 2012).
Disease	Locus	Gene	Inh	Protein	MIM	Main clinical features	Ref.
Hypochondrogenesis, achondrogenesis type II (ACG2)	12q13.11	COL2A1	AD	Type II collagen	200610	Severe micromelic dwarfism, incomplete ossification of the vertebral bodies, disorganization of the costochondral junction, small chest, prominent abdomen	Nishimura et al. 2005; Forzano et al. 2007; Comstock et al. 2010
Spondyloepiphyseal dysplasia congenita (SEDc, SDC)	12q13.11	COL2A1	AD	Type II collagen	183900	Disproportionate short stature (short trunk), abnormal epiphyses, flattened vertebral bodies, myopia, and/or retinal degeneration with retinal detachment and cleft palate	Anderson et al. 1990; Donahue et al. 2003; Nishimura et al. 2005
Kniest dysplasia	12q13.11	COL2A1	AD	Type II collagen	156550	Short stature, disproportionate (short trunk), platyspondyly, lumbar kyphoscoliosis, coronal vertebral clefts, hypoplastic pelvic bones, hip dislocation, delayed epiphyseal ossification (early), megaepiphyses (late), narrowing of joint spaces, limited joint mobility, painful joints	Gilbert-Barnes et al. 1996; Nishimura et al. 2005
Stickler syndrome type 1 (arthro-ophthalmopathy)	12q13.11	COL2A1	AD	Type II collagen	108300	Clinically and genetically heterogeneous disorder, characterized by ocular, auditory, skeletal, and oro-facial abnormalities. Most forms are characterized by the eye findings of high myopia, vitreoretinal degeneration, retinal detachment, and cataracts. Additional findings comprise midline clefting (cleft palate or bifid uvula), Pierre Robin sequence, flat midface, sensorineural or conductive hearing loss, mild spondyloepiphyseal dysplasia, and early-onset OA	Nishimura et al. 2005; Ang et al. 2007; Olavarrieta et al. 2008; Hoornaert et al. 2010
Platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T)	12q13.11	COL2A1	AD	Type II collagen	151210	Decreased ossification of the skull base, disc-like platyspondyly, short thin ribs, hypoplastic pelvis with wide sacrosciatic notches and flat acetabular roof, short tubular long bones with metaphyseal cupping	Nishimura et al. 2004; Zankl et al. 2005
Spondyloepimetaepiphyseal dysplasia, Strudwick type (SEMD)	12q13.11	COL2A1	AD	Type II collagen	184250	Severe dwarism, superficially resembling the Morquio syndrome, pectus carinatum, and scoliosis which are usually marked. Cleft palate and retinal detachment frequently associated, as in SEDc (183900). A distinctive radiographic feature is irregular sclerotic changes, described as “dappled” in the metaphyses of the long bones Short stature, platyspondyly, mild biconcave disc (fish-mouth vertebrae), kyphosis, short ilia, horizontal acetabulae, flattened capital femoral epiphyses, acetabular spurs (infancy), very short distal phalanges (2nd, 3rd, 4th, 5th), short metacarpals (2nd, 3rd, 4th, 5th), cone-shaped epiphyses, brachydactyly “E-like” changes, short feet, short phalanges, short metatarsals (4th)	Sulko et al. 2005; Shapiro et al. 2006; Czarny-Ratajczak et al. 2009
Spondyloperipheral dysplasia	12q13.11	COL2A1	AD	Type II collagen	271700	Short stature, platyspondyly, mild biconcave disc (fish-mouth vertebrae), kyphosis, short ilia, horizontal acetabulae, flattened capital femoral epiphyses, acetabular spurs (infancy), very short distal phalanges (2nd, 3rd, 4th, 5th), short metacarpals (2nd, 3rd, 4th, 5th), cone-shaped epiphyses, brachydactyly “E-like” changes, short feet, short phalanges, short metatarsals (4th)	Zankl et al. 2004; Bedeschi et al. 2011
To date, about 330 records of mutations in collagen type II α1 (COL2A1) that cause chondrodysplasias have been published (Stenson et al. 2009). These mutations alter the gene encoding the α1 chain of procollagen type II causing various types of the disease, which can be lethal, i.e., hypochondrodysplasia or deforming, i.e., spondyloepiphyseal dysplasia congenita (SEDC), Kniest dysplasias, and Stickler syndrome or may appear as mild knee and hip joint diseases (Nishimura et al. 2005; Su et al. 2008; Warman et al. 2011; Arnold and Fertala 2013; Li et al. 2014). The most frequent amino acid substitutions in collagen type II occur at the G position of the G-X-Y triplets; for instance, a G853E (p.G1053E) substitution was found in a patient with a lethal form of SED. Some reports described substitutions in the Y position; for example, cysteine substitutions for arginine residues were found in the Y positions 75 (p.R275C), 519 (p.R719C), and 789 (p.R989C) in

Table 1 (continued)

Disease	Locus	Gene	Inh	Protein	MIM	Main clinical features	Ref.
Czech dysplasia, spondyloepiphyseal dysplasia with precocious OA	12q13.11	COL2A1	AD	Type II collagen	609162	Normal stature, mild platyspondyly, irregular vertebral endplates, narrow intervertebral disc spaces, irregular sclerotic acetabulae, flattened capital femoral epiphyses, narrow iliac wings, narrow short femoral neck, arthralgia, flexion contractures (knee), osteochondromatosis (knee), short metacarpals (4th–5th), onset of joint pain in childhood, waddling gait, hip replacement in early adulthood, hearing loss	Hoornaert et al. 2007; Tzschach et al. 2008; Matsui et al. 2009
Avascular necrosis of the femoral head (ANFH)	12q13.11	COL2A1	AD	Type II collagen	608805	Patients present with groin pain, onset of symptoms in 2nd to 5th decades of life, degeneration of hip joint, narrowing of joint space, avascular necrosis/cystic changes/sclerosis of femoral head, generalized osteoporosis (in some patients), mild scoliosis (in some patients)	Liu et al. 2005; Nishimura et al. 2005; Su et al. 2008; Kannu et al. 2011; Li et al. 2014
Legg-Calvé-Perthes disease (LCPD)	12q13.11	COL2A1	AD	Type II collagen	150600	Disease onset between 6 and 9 years, short stature, necrosis of capital femoral epiphysis, more severe in females, more frequent in males	Miyamoto et al. 2005; Miyamoto et al. 2008; Li et al. 2014
Otospondylomegaepiphyseal dysplasia (OSMED), Nance-Sweeney chondrodysplasia, chondrodystrophy with sensorineural deafness	12q13.11	COL2A1	AR	Type II collagen	215150	Short stature, sensorineural hearing loss, epiphyseal dysplasia, premature OA, midface hypoplasia, increased lumbar lordosis, vertebral coronal clefs (newborn), enlarged odontoid (childhood), platyspondyly (childhood), joint contractures and pains, enlarged joints, short hands/ fingers/ metacarpals, prominent interphalangeal joints	Miyamoto et al. 2005
Metaphyseal (chondro) dysplasia, Schmid type (MCDS, MCS)	6q21–22.3	COL10A1	AD	Type X collagen	156500	Short stature (mild to moderate), adult height 130–160 cm, mild platyspondyly, coxa vara, femoral and tibial bowing, metaphyseal abnormalities of distal and proximal femurs/proximal tibiae and fibulae/distal radius and ulna, metaphyseal cupping of proximal phalanges and metacarpals, waddling gait, leg pain during childhood	Mäkitie et al. 2005; Ho et al. 2007; Mäkitie et al. 2010

AD autosomal dominant; AR, autosomal recessive; COL2A1, collagen type II alpha 1; COL10A1, collagen type X alpha 1; OA, osteoarthritis
patients with a mild form of SED, a mild form of OA, and a severe form of SEDc (Hoornaert et al. 2006; Hintze et al. 2008). Relatively rare mutations comprise substitutions in the X position of the G-X-Y triplets that were found in patients with Stickler syndrome (Table 1) (Richards et al. 2000). For example, Chung et al. (2009) investigated the R992C (p.R1192C) substitution in the X position of a G-X-Y triplet of collagen type II. Corresponding substitution (p.R1147C) originally described in mice represents skeletal abnormalities similar to those seen in patients with SEDc (Donahue et al. 2003). Using a system expressing recombinant collagen type II, Chung et al. (2009) demonstrated that R992C mutant caused aberrant electrophoretic mobility and was characterized by relatively low thermostability and the presence of intramolecular disulfide bonds. Additionally, the expression of aberrant collagen type II was associated with ER stress and increased apoptosis of cells producing the mutant. Furthermore, Jensen et al. (2011) demonstrated the association between excessive intracellular accumulation of the R992C mutant molecules and ER stress using organotypic cartilage-like constructs. Other substitution in collagen type II (R789C, p.R989C) also caused misfolding of mutant molecules, decreased their thermostabilities, promoted excessive intracellular accumulation, and increased apoptosis (Hintze et al. 2008). These results genuinely have shown that beyond the loss of function effect, certain mutations in collagen type II may also cause a gain-of-function, i.e., cytotoxic effect. Moreover, these data contribute to the understanding of the molecular basis of mutations that trigger pathological changes seen at the level of skeletal tissues and suggest that mutations in collagen type II associated with variations of thermostability and disturbance of correct folding of the collagen triple helix apart from the pathological impact on extracellular collagenous framework also alter intracellular processes. More recently, Arita et al. (2015) employed a SED mouse model to analyze the morphology of the growth plate. This model consists of conditional expression of the R992C mutant or the wild type (WT) transgene by using a tetracycline (Tet)-modulated promoter, leading to the transgene being switched off in the presence of doxycycline (Dox). Morphological analyses of growth plates from newborn, 2-week-old, 6-week-old, and 10-week-old mice suggest excessive accumulation of collagen type II chains within dilated chondrocytes present in growth plates of mice harboring R992C mutants. The presence of similarly dilated cells was neither observed in WT mice nor mice maintained in Tet-off conditions. A histological study of the tibial growth plates showed aberrations in growth plate organization. In contrast to chondrocytes found in growth plates of WT mice, the columnar organization of chondrocytes in mice harboring R992C mutant was disturbed, alterations being indicated by the presence of disorganized columns. Switching off the expression of the R992C mutant in mice with Dox-regulated promoter maintained in Tet-off conditions resulted in developing growth plates with correctly organized chondrocytes (Fig. 3). Abundant collagen type II deposits were noted in the extracellular spaces of growth plates of WT mice, while in contrast, in mice with the mutation, the extracellular content of collagen type II was significantly reduced and its increased intracellular accumulation was clearly visible. Analysis of Sirius red-stained deposits of collagen fibrils present in the growth plates of WT mice indicated their organized pattern of distribution in the longitudinal septa present between adjacent columns of chondrocytes. By contrast, the collagenous matrix present in the growth plates of the mice harboring collagen type II mutant lacked clear structural continuity, and the longitudinal septa were irregularly thickened. In summary, the studies with transgenic mice have shown that the presence of R992C collagen type II results in skeletal aberrations that include alterations of the linear growth. Aberrant columnar organization of chondrocytes was associated with ER stress, abnormal architecture of collagenous matrix, unusual organization of primary cilia, atypical cell polarization, and reduced proliferation of chondrocytes harboring the mutation. In turn, Liang et al. (2014) constructed a mouse model harboring the p.G1170S mutation in collagen type II. Severe defects in skeletal development (chondrodysplasia phenotype) were observed in homozygotes, but not in heterozygotes. Homozygous fetuses were smaller, with shortened and widened long bones, abnormal scapulae, shapeless pelvises, nonossified middle phalanges, malformed ribsages, and less-mineralized vertebrae. These defects indicate that cartilage shaping was disturbed in mice lacking normal collagen type II and endochondral ossification was slowed. In contrary, skeletons from heterozygotes resembled wild types by appearance. Abnormal features of the skeleton were confirmed at the molecular level as well. Chondrocytes in the resting zones of homozygotes were normally distributed; however, the proliferating zones consisted of fusiform cells decreased in number, aligned transversely and chaotically, while the hypertrophic zone was lost. Proteoglycans, collagen type II, and expression of SOX9 (which regulates the expression of collagen type II) in the growth plate were significantly decreased in homozygotes. The analysis of cultured chondrocytes collected from embryonic cartilage by a confocal microscope showed that mutated type II procollagen in homozygotes assembled into bundles, co-localized with the ER, and was retained intracellularly. Intracellular accumulation resulted in ER distention and ER stress-UPR-apoptosis cascade activation. Additionally, expression of several ER stress-related genes, corresponding to CHOP, total XBP1 (tXBP1), spliced XBP1 (sXBP1), Grp78, ATF4, and ATF6, was upregulated in homozygotes and partly increased in heterozygotes. Cell apoptosis prevented the formation of a hypertrophic zone and disrupted normal chondrogenic signaling pathways. In consequence, in homozygotic mice harboring the p.G1170S mutation,
abnormally developed growth plate was found. In contrast, heterozygotes had normal phenotypes with limited ER stress. These results suggest that chondrocytes’ death related to ER stress-UPR-apoptosis cascade was a crucial cause of chondrodysplasia.

A novel COL2A1 missense mutation (p.D1469A) in mice was identified, which was situated in the C-propeptide region of α1 chain (Furuichi et al. 2011). Mutation in this position corresponds to human COL2A1 mutation responsible for platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T). Skeletal defects found in the homozygotes were similar to those in PLSD-T patients. Accumulation of mutant proteins in abnormally expanded rough ER was accompanied by disrupted secretion of this mutant protein into extracellular space and upregulation of ER stress-related genes, corresponding to Grp78 and CHOP in chondrocytes (Table 2).

Mutations in collagen type X

Collagen type X belongs to non-fibrillar collagens produced by chondrocytes residing within the hypertrophic zone of mammalian growth plates. Each protein chain consists of a carboxyl-terminal non-collagenous domain (NC1), the main triple-helical domain, an amino-terminal non-collagenous domain (NC2), and a signal peptide. Collagen trimers are stabilized and propagate correctly from the C- to the N-terminal end of the molecule as a result of potent hydrophobic interactions between the NC1 domains. Missense, nonsense, and frameshift mutations in collagen type X alpha1 (COL10A1) cause MCDS. Forty of the 42 reported mutations alter the NC1 domain, whereas two alter the signal peptide cleavage site of the collagen type X protein chain. Both, haploinsufficiency and dominant-negative mechanisms have been reported. Affected individuals are clinically normal at birth, but after they start walking, they develop a disproportionate short stature. The shortening and deformities of the long bones are due to impaired function of the thickened and irregular growth plates (Table 1) (Warman et al. 2011; Mäkitie et al. 2005; Bateman et al. 2003, 2005; Chan et al. 1998).

Several reports of in vitro protein assembly assays, analyses of human MCDS cartilage, as well as transgenic mouse models of MCDS provided evidence that COL10A1 mutations inducing MCDS result in some mRNA degradation, but also determine a gain-of-function effect on the growth plate. For instance, MCDS probant heterozygous for a p.Y663X nonsense mutation produced a truncated α1(X) chain lacking the last 18 amino acids of the NC1 domain that...
Mutation	Study model	Gene	Protein	Molecular/cellular mechanism	Disease	Ref.
p.R1192C	In vitro, ex vivo, in vivo (mice)	COL2A1	Type II collagen	Aberrant electrophoretic mobility and low thermostability, slow rates of secretion into the extracellular space of mutant protein, presence of atypical disulfide bonds, ER stress induction (increased PDI level), increased apoptosis of cells producing mutant collagen (increased amount of cleaved PARP), dilated chondrocytes in tibial growth plate, unusual organization of primary cilia, atypical cell polarization, reduced proliferation of chondrocytes leading to aberrant organization of the growth plate	Spondyloepiphyseal dysplasia (SED)	Chung et al. 2009; Gawron et al. 2010; Jensen et al. 2011; Arita et al. 2015
p.R989C	In vitro	COL2A1	Type II collagen	Misfolding, decreased thermostability and excessive intracellular accumulation of mutant molecules, dilated ER cisternae in chondrocytes, increased apoptosis (increased level of cleaved caspase 3)	Severe form of spondyloepiphyseal dysplasia congenita (SED, SDC)	Hintze et al. 2008; Jensen et al. 2011
p.G1170S	Ex vivo, in vivo (mice)	COL2A1	Type II collagen	Upregulated expression of ER stress-related genes corresponding to CHOP, tXBP1, sXBP1, Grp78, ATF4, ATF6, increased apoptosis (increased level of cleaved caspase 3), dilated ER in chondrocytes with abnormally accumulated mutant collagen and glycogen granules, proliferating zones of the growth plates consisted of fusiform cells decreased in number, chaotically aligned, hypertrophic zone lost	SED	Liang et al. 2014
p.D1469A	In vivo (mice)	COL2A1	Type II collagen	Mutated collagen retained in the ER, abnormally expanded ER, upregulated ER stress-associated genes of Gnp94 and CHOP in chondrocytes	Platyspondylic lethal skeletal dysplasia, Torrance type (PLSD-T)	Furnichi et al. 2011
p.Y663X	Human probant, in vivo (mice)	COL10A1	Type X collagen (alpha-1 chain)	Growth plate expansion at birth, intracellular retention of mutant collagen type X within the ER of cells in the upper part of the hypertrophic zones, increased levels of Grp78, CHOP, and sXBP1, affected growth plate maturation, impaired longitudinal bone growth	Metaphyseal (chondro) dysplasia, Schmid type (MCDS, MCS)	Ho et al. 2007
p.Y598D	In vivo (mice)	COL10A1	Type X collagen (alpha-1 chain)	Instability of the mutant transcripts, mutant misfolding leading to formation of aberrant disulfide bonds, retained mutant collagen in the ER, enhanced expression of the sXBP1, and Grp78, UPR activation	MCDS	Wilson et al. 2002; Wilson et al. 2005
p.G618V	In vivo (mice)	COL10A1	Type X collagen (alpha-1 chain)	The upper hypertrophic zones of tibial, femur and ribs growth plates markedly expanded (apparently at birth) due to intracellular retention of mutant protein, upregulated gene expression and protein level of Grp76 in the upper hypertrophic zone, significantly induced active ATF6α in hypertrophic chondrocytes expressing mutant collagen type X	MCDS	Rajpar et al. 2009; Wilson et al. 2005
p.N617K	In vivo (mice)	COL10A1	Type X collagen (alpha-1 chain)	Impaired mutant collagen secretion, expansion of hypertrophic zones of growth plates, induction of the sXBP1 and Grp78, upregulated CHOP transcript expression and protein in upper hypertrophic zones	MCDS	Tsang et al. 2007

ER, endoplasmic reticulum; UPR, unfolded protein response; PDI, protein disulfide isomerase; Grp78, glucose-regulated protein 78 kDa; CHOP, CCAAT/enhancer binding protein homologous protein; XBP1, X-box binding protein 1; tXBP1, total XBP1; sXBP1, spliced variant of XBP1; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; ATF6α, active form of ATF6; Gnp94, glucose-regulated protein 94 kDa
did not form stable homotrimers and were unable to form stable heterotrimers with WT α1(X) chains. Iliac crest growth plate cartilage from the probant contained 64% of WT and 36% of mutant mRNA, and the hypertrophic zone was disorganized and expanded (Ho et al. 2007). In turn, in transgenic FCdel mice corresponding to a human MCDS, p.P620fsX621 mutation showed an early-onset MCDS phenotype with disproportionate shortening of the limbs and coxa vara deformities of the femoral necks. The severity of changes correlated with higher copy numbers/expression of the transgene and increased levels of sXBP1. The FCdel α1(X) chains that lacked the C-terminal 60 amino acids of the NC1 domain were synthesized by the HC, but the protein accumulated within the ER. Retention of the FCdel α1(X) chains was associated, in a concentration-dependent manner, with increased thickness and abnormal maturation of the hypertrophic zone. Thickening of the hypertrophic zones of the FCdel+/− and FCdel+/+ mice, in the absence of endogenous collagen type X, indicated that the retained protein was accompanied by a gain-of-function effect, activating ER stress signaling and affecting growth plate maturation (Ho et al. 2007). Another group constructed mutants predicted either to prohibit subunit folding and assembly (NC1del10 and p.Y598D, respectively) or to allow trimerization and secretion of mutated α1(X) chains (p.N617K and p.G618V). All four mutations resulted in the formation of aberrant disulfide bonds and significantly increased amounts of BiP, and the sXBP1 mRNA, two key markers of the UPR (Wilson et al. 2002, 2005). In the study of Rajpar et al. (2009), a knock-in mouse model of the COL10A1 (p.N617K) mutation inducing MCDS was generated. It has been demonstrated that the MCDS-associated expanded hypertrophic zone occurred because of disrupted vascular endothelial growth factor (VEGF)-mediated osteoclast erosion of the mineralized cartilage at the vascular invasion front. ER stress and a strong UPR caused by misfolding mutant collagen type X were key features of the hypertrophic chondrocytes in the MCDS mouse. Furthermore, the targeted stimulation of ER stress in hypertrophic chondrocytes in vivo was sufficient to replicate the MCDS growth plate phenotype functionally, demonstrating the central role played by ER stress in the disease mechanism. Similar results were reported in a MCDS-expressing transgenic mouse line harboring a 13-bp deletion in COL10A1 (13del). Mutant collagen type X molecules were accumulated within hypertrophic chondrocytes that underwent ER stress which lead to altered chondrocyte differentiation (Table 2) (Tsang et al. 2007). It is therefore possible, that in vivo interference with the assembly of collagen type X acts dominantly negative, resulting in poor or no secretion of mutant homotrimers and heterotrimers and reduced amounts of normal collagen type X in the ECM. In the absence of mutant collagen type X in the ECM, the phenotype could be attributed to haploinsufficiency for collagen type X (Chan et al. 1998; Bateman et al. 2003). However, if mutant collagen type X is secreted to the ECM, there could be a dominant-negative effect on structural properties of ECM.

Conclusions and perspectives

The endoplasmic reticulum is one of the major cellular sites for the synthesis, maturation, and folding of secreted, membrane-bound, and organelle-targeted proteins. Perturbations of ER homeostasis via acceleration of unfolded or misfolded proteins cause a stress condition for this organelle. To deal with it and restore a more favorable folding environment, the ER triggers an evolutionarily conserved signaling cascade, named UPR. In addition to physiological processes, increasing evidence suggests that ER stress is involved in certain groups of diseases, for instance neurodegenerative and metabolic diseases as well as in some malignancies, occurring as a result of protein aggregation. Moreover, an increasing number of reports cite ER stress as a novel mechanistic paradigm of connective tissue diseases caused by mutations in several types of collagens. This refers to mutations in collagen type VI that induce mild to severe phenotype of myopathies and mutations in collagen type IV that are responsible for developing of nephropathies, ocular dysgenesis, brain malformations, or cerebral hemorrhages. More importantly, a significant number of reports from in vitro studies and mice models with skeletal abnormalities corresponding to chondrodysplasias point to ER stress as a mechanism involved in the pathogenesis of these group of diseases.

Chondrodysplasias comprise a wide spectrum of phenotypes predominantly affecting cartilage and bone, from the severe disorders that are perinatally lethal to the milder conditions that are recognized in the postnatal period and childhood. The milder chondrodysplasias are characterized by disproportionate short stature, eye abnormalities, cleft palate, and hearing loss. Treatment is difficult and limited, particularly when the pathological process begins before birth and can affect the entire skeletal system. Additionally, considering potential pleiotropic effects of mutant genes, patients suffering from chondrodysplasias may have complications with central and peripheral nervous system, bone marrow, immune system, kidney, heart, etc.

This review focuses on basic mechanisms of ER stress and its significance in certain variants of chondrodysplasia caused by mutations in collagen types II and X. Regarding collagen type II, the following are discussed: substitutions in the X position of a G-X-Y triplet that are present with skeletal abnormalities similar to those seen in patients with SEDc; substitutions in the Y position that lead to abnormalities found in patients with a mild form of SED, a mild form of OA, and a severe form of SED; as well as a missense mutation in the C-propeptide region of α1 chain which is associated with PLSD-T. Considering collagen type X, missense,
nonsense, and frameshift mutations responsible for MCDS have been described on the basis of reports from in vitro protein assembly assays, analyses of human cartilage, as well as transgenic mice models. The retained collagen type II/X mutant proteins caused a gain-of-function effect on the growth plate activating ER stress signaling and affecting growth plate organization with decreased thermostability and excessive intracellular accumulation of mutant molecules leading to apoptosis of cells producing collagen mutants as a hallmark. Taking together, efforts should be undertaken in the future investigations to verify the observations from the studies discussed herein, which showed a significant contribution of the ER stress and associated downstream signaling as a pathogenic mechanism of certain variants of chondrodysplasia. A better understanding of this association would be advantageous in designing preventive strategies, early ameliorative management, and/or perhaps novel therapies of the individuals being at risk of developing skeletal diseases. Such interventions potentially translate into a reduction in health costs associated with musculoskeletal disease.

ACG2, achondrogenesis type II; ATF4, activating transcription factor 4; ATF6, activating transcription factor 6; AS, Alport syndrome; AD, autosomal dominant; AR, autosomal recessive; ANFH, avascular necrosis of the femoral head; bZIP transcription factor, basic leucine zipper; BM, Bethlem myopathy; CNX, calnexin; CRT, calreticulin; CREBH, cAMP response element binding protein H; COMP, cartilage oligomeric matrix protein; C/EBP, CCAAT/enhancer binding protein; CHOP, CCAAT/enhancer binding protein homologous protein; COL2A1, collagen type II α1; COL10A1, collagen type X α1; DOX, doxycycline; ER, endoplasmic reticulum; ERAD, endoplasmic reticulum-associated degradation system; ERSE, ER stress response element; eIF2α, eukaryotic translation initiation factor 2α; ECM, extracellular matrix; Grp78, glucose-regulated protein 78 kDa; Grp94, glucose-regulated protein 94 kDa; HSP47, heat shock protein 47; Ire1, inositol-requiring enzyme 1; LCPD, Legg-Calvé-Perthes disease; LH, lysyl hydroxylase; MCDS/MCS, metaphyseal (chondro) dysplasia, Schmid type; OASIS, old astrocyte specifically induced substance; OA, osteoarthritis; OI, osteogenesis imperfecta; OSMED, otospondylomegaly syndrome; PLSD-T, platyspondylial lethal skeletal dysplasia, Torrance type; P4H, prolyl-4-hydroxylase; PDI, protein disulfide isomerase; PERK, protein kinase RNA-like endoplasmic reticulum kinase; PQC, protein quality control system; RIP-regulated liver-specific transcription factor, regulated intramembrane proteolysis; sXBP1, spliced variant of X-box binding protein 1; SEMD, spondyloepimetaphyseal dysplasia, Strudwick type; SEDc / SDC, spondyloepiphysyeal dysplasia congenita; TBMN, thin-basement-membrane nephropathy; tXBP1, total X-box binding protein 1; UPP, ubiquitin proteasome pathway; UCMD, Ullrich congenital muscular dystrophy; UPR, unfolded protein response; UPRE, UPR element; VEGF, vascular endothelial growth factor; WT, wild type; XBP1, X-box binding protein 1.

Acknowledgments I thank Prof. Andrzej Fertala from the Department of Orthopaedic Surgery, Sidney Kimmel Medical College, TJU, Philadelphia, PA, USA, for the critical comments to this review. I am grateful to Prof. Patrick Venables from the Kennedy Institute, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK, for the constructive notes and the assistance in English proofreading during the preparation of this manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alam S, Li Z, Atkinson C, Jonigk D, Janciauskiene S, Mahadeva R (2014) Z α1-antitrypsin confers a proinflammatory phenotype that contributes to chronic obstructive pulmonary disease. Am J Respir Crit Care Med 189(8):909–931
Anderson II, Goldberg RB, Marion RW, Upholt WB, Tsipouras P (1990) Spondyloepiphysyeal dysplasia congenita: genetic linkage to type II collagen (COL2A1). Am J Hum Genet 46(5):896–901
Anelli T, Sita R (2008) Protein quality control in the early secretory pathway. EMBO J 27(2):315–327
Ang A, Ung T, Puvanachandra N, Wilson L, Howard F, Ryalls M, Richards A, Meredith S, Laidlaw M, Poulson A, Scott J, Snaed M (2007) Vireous phenotype: a key diagnostic sign in Stickler syndrome types 1 and 2 complicated by double heterozygosity. Am J Med Genet A 143A(6):604–607
Arita M, Fertala J, Hou C, Steplewski A, Fertala A (2015) Mechanisms of aberrant organization of growth plates in conditional transgenic mouse model of spondyloepiphysyeal dysplasia associated with the R992C substitution in collagen II. Am J Pathol 185(1):214–229
Arnold WV, Fertala A (2013) Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 45(8):1556–1567
Barral JM, Broadley SA, Schaffar G, Hartl FU (2004) Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 15(1):17–29
Bartoszewski R, Rab A, Fu L, Bartoszezwska S, Collawn J, Bebok Z (2011) CFTR expression regulation by the unfolded protein response. Methods Enzymol 491:3–24
Basha B, Samuel SM, Triggle CR, Ding H (2012) Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress? Exp Diabetes Res 2012:481840
Bateman JF, Boot-Handford RP, Lamaned SR (2009) Genetic diseases of connective tissues: cellular and extracellular effects of ECM mutations. Nat Rev Genet 10(3):173–183
Bateman JF, Freddi S, Nattrass G, Savarirayan R (2003) Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet 12(3):217–225
Bateman JF, Wilson R, Freddi S, Lamaned SR, Savarirayan R (2005) Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat 25(6):525–534
Bedeschi MF, Bianchi V, Gentilin B, Colombo L, Natacci F, Giglio S, Andreucci E, Trespardi L, Acaia B, Furga AS, Lalatta F (2011)
Prenatal manifestation and management of a mother and child affected by spondyloepiphysial dysplasia with a C-propeptide mutation in COL2A1: case report. Orphanet J Rare Dis 6:7

Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508

Bodian DL, Chan TF, Poon A, Schwarz U, Yang K, Byers PH, Kwok PY, Klein TE (2009) Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum Mol Genet 18(3):463–471

Boot-Handford RP, Briggs MD (2010) The unfolded protein response and its relevance to connective tissue diseases. Cell Tissue Res 339(1):197–211

Briggs MD, Bell PA, Wright MJ, Pirog KA (2015) New therapeutic targets in rare genetic skeletal diseases. Expert Opin Orphan Drugs 3(10):1137–1154

Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100(4):391–398

Chan D, Weng YM, Graham HK, Silennoe DO, Bateman JF (1998) A nonsense mutation in the carboxyl-terminal domain of type X collagen causes haploinsufficiency in Schmid metaphyseal chondrodysplasia. J Clin Invest 101(7):1490–1499

Chaudhuri TK, Paul S (2006) Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 273(7):1331–1349

Chhabra S, Jain S, Wallace C, Hong F, Liu B (2015) High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol 8:77

Chiribau CB, Gaccioli F, Huang CC, Yuan CL, Hatzoglou M (2010) Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 30(14):3722–3731

Chung HJ, Jensen DA, Gawron K, Fertala A (2009) R992C (p.R1192C) substitution in collagen II alters the structure and its relevance to connective tissue diseases. Cell Tissue Res 339(3):306–318

Comstock JM, Putnam AR, Sangle N, Lowichik A, Rose NC, Optiz J (2010) Recurrence of achondrogenesis type 2 in sibs: additional evidence for germinal mosaicism. Am J Med Genet A 152A(7):1822–1824

Czamy-Rajczak M, Chrzanska K, Bieganski T, Sulkov J, Baranska D, Kocyla-Karczmarewicz B, Kuszel L, Jakubowski L, Niedzielski K, Kozlowski K (2009) Severe neonatal spondyloepiphyseal dysplasia in two siblings. Am J Med Genet A 149A(10):2166–2172

De Palma S, Capitano D, Vasso M, Braghetta P, Scotton C, Pollock P, Lochmüller H, Muntoni F, Ferti A, Aletti C (2014) Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies. J Proteome Res 13(11):5202–5230

Donahue LR, Chang B, Mohan S, Miyakoshi N, Wergedal JE, Baylink DJ, Hawes NL, Rosen CJ, Ward-Bailey P, Zheng QY, Bronson RT, Johnson KR, Davison MT (2003) A missense mutation in the mouse Col2a1 gene causes spondyloepiphyseal dysplasia congenita, hearing loss, and retinoschisis. J Bone Miner Res 18(9):1612–1621

Engin F, Hotamisligil GS (2010) Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab 12(Suppl 2):108–115

Fawcett TW, Martindale JL, Guyton KZ, Hais T, Holbrook NJ (1999) Complexes containing activating transcription factor (ATF)/CREB-responsive element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339(Pt 1):135–141

Firtina Z, Danysz BP, Bai X, Gould DB, Kobayashi T, Duncan MK (2009) Abnormal expression of collagen IV in lens activates unfolded protein response resulting in cataract. J Biol Chem 284(51):35872–35884

Forzano F, Lituana M, Viassolo V, Superti-Furga A, Wildhardt G, Zabel B, Faravelli F (2007) A familial case of achondrogenesis type II caused by a dominant COL2A1 mutation and ‘patchy’ expression in the mosaic father. Am J Med Genet A 143A(23):2815–2820

Furuchi T, Masuya H, Murakami T, Nishida K, Nishimura G, Suzuki T, Imaizumi K, Kudo T, Okhawa K, Wakanaka K, Ikegawa S (2011) ENU-induced missense mutation in the C-propeptide coding region of Col2a1 creates a mouse model of platyspondylic lethal skeletal dysplasia, Torrance type. Mamm Genome 22(5–6):318–328

Gawron K, Jensen DA, Steplewski A, Fertala A (2010) Reducing the effects of intracellular accumulation of thermolabile collagen II mutants by increasing their thermostability in cell culture conditions. Biochem Biophys Res Commun 396(2):213–218

Gilbert-Barness E, Langer LO Jr, Optiz JM, Laxova R, Sotelo-Arila C (1996) Kniest dysplasia: radiologic, histopathological, and scanning electronmicroscopic findings. Am J Med Genet 63(1):34–45

Gould DB, Marchant JK, Savinova OV, Smith RS, John SW (2007) Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum Mol Genet 16(7):798–807

Ha Y, Liu H, Xu Z, Yokota H, Narayanay SP, Lemptalsi T, Smith SB, Caldwell RW, Caldwell RB, Zhang W (2015) Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma. Cell Death Dis 6:e1900

Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102

Hintze V, Steplewski A, Ito H, Jensen DA, Rodeck U, Fertala A (2008) Cells expressing partially unfolded R789C/p.R989C type II procollagen mutant associated with spondyloepiphyseal dysplasia undergo apoptosis. Hum Mutat 29(6):841–851

Ho MS, Tsang KY, Lo RL, Susic M, Mäkية O, Chan D, Ng VC, Silennoe DO, Boot-Handford RP, Gibson G, Cheung KM, Cole WG, Cheah KS, Chan D (2007) COL10A1 nonsense and frameshift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet 16(10):1201–1215

Hoornaert KP, Dewinter P, Vervoete I, Beemer FA, Courtens W, Fryer A, Fryssira H, Lees M, Müllner-Eidenböck A, Rimoin DL, Siderius L, superti-Furga A, Temple K, Willems PJ, Zankl A, Zweier C, De Paepe A, Coucke P, Mortier GR (2006) The phenotypic spectrum in patients with argininosuccinate lyase deficiency mutations in the COL2A1 gene. J Med Genet 43(5):406–413

Hoornaert KP, Mark K, Kozlowski K, Cole T, Le Merrer M, Leroy JG, Coucke PJ, Sillence D, Mortier P, Mortier GR (2007) Czech dysplasia metatarsal type: another type II collagen disorder. Eur J Hum Genet 15(12):1269–1275

Hoornaert KP, Vervoete I, Dewinter C, Rosenberg T, Beemer FA, Leroy JG, Wendt L, Björck E, Bonduelle M, Boute O, Cormier-Daire V, De Die-Smulders C, et al. (2010) Stickler syndrome caused by COL2A1 mutations: genotype-phenotype correlation in a series of 100 patients. Eur J Hum Genet 18(8):872–880

Hoozemans JJ, van Haastert ES, Eikenboom BP, de Vos RA, Rozemuller JM, Schepers W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711

Horwich A (2004) Cell biology: sight at the end of the tunnel. Nature 431(7008):520–522

Hosoi T, Ozawa K (2009) Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci (Lond) 118(1):19–29

Hosoi T, Sasaki M, Miyahara T, Hashimoto C, Matsuo S, Yoshii M, Ozawa K (2008) Endoplasmic reticulum stress induces leptin resistance. Mol Pharmacol 74(6):1610–1619

Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140(6):900–917

Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, Valant V, Greenberg SM, Rosand J, Gould DB (2012)
COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet 90(1):91–101

Jensen DA, Steplewski A, Gawron K, Fertala A (2011) Persistence of intracellular and extracellular changes after incompletely suppressing expression of the R789C (p.R989C) and R992C (p.R1192C) collagen II mutants. Hum Mutat 32(7):794–805

Jiang HY, Wek SA, McGarth BC, Lu D, Hai T, Harding HP, Wang X, Ron D, Caven DR, Wek RC (2004) Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 24(3):1365–1377

Joshi M, Kulkarni A, Pal JK (2013) Small molecular modulators of eukaryotic initiation factor 2kineses, the key regulators of protein synthesis. Biochimie 95(11):1980–1990

Kannu P, O’Rielly DD, Hyland JC, Kokko LA (2011) Avascular necrosis of the femoral head due to a novel C propeptide mutation in COL2A1. Am J Med Genet A 155A(7):1759–1762

Karsenty G (2008) Transcriptional control of skeletogenesis. Annu Rev Genomics Hum Genet 9:183–196

Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648

Kassan M, Galán M, Partyka M, Saifudeen Z, Henrion D, Trebak M, Lin JH, Walter P, Yen TS (2008) Endoplasmic reticulum stress in disease. Annu Rev Pharmacol Toxicol 48:648–672

Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

Kondo S, Murakami T, Tatsuki M, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 24(3):1365–1377

Kuivaniemi H, Tromp G, Prockop DJ (1997) Mutations in fibrillar collagen chains (types I, II, III, and XI), fibril-associated collagen (type IX), and CRTAP cause severe recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 12(3):666–672

Liu MQ, Chen Z, Chen LX (2016) Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin 37(4):425–443

Liu YF, Chen WM, Lin YF, Yang RC, Lin MW, Li LH, Chang YH, Jou YS, Lin PY, Su JS, Huang SF, Hsiao KJ, Fann CS, Hwang HW, Chen YT, Tsai SF (2005) Type II collagen gene variants and inherited osteonecrosis of the femoral head. N Engl J Med 352(22):2294–2301

Mackie EJ, Tatarczuch L, Mirams M (2011) The skeleton: a multifunctional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 211(2):109–121

Mahdi AA, Rivzi SH, Parveen A (2016) Role of endoplasmic reticulum stress and unfolded protein responses in health and diseases. Indian J Clin Biochem 31(2):127–137

Maor G, Rencus-Lazar S, Filocamo M, Steller H, Segal D, Horowitz M (2013) Unfolded protein response in Gaucher disease: from human to Drosophila. Orphulet J Rare Dis 8:140

Marini JC, Cabral WA, Barnes AM (2010) Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res 339(1):59–70

Matsui Y, Michigami T, Tachikawa K, Yamazaki M, Kawabata H, Nishimura G (2009) Czech dysplasia occurring in a Japanese family. Am J Med Genet A 149A(10):2285–2289

Mäkitie O, Susic M, Cole WG (2010) Early-onset metaphyseal chondrodysplasia type Schmid associated with a COL10A1 frameshift mutation and impaired trimerization of wild-type α1(X) protein chains. J Orthop Res 28(11):1497–1501

Mäkitie O, Susic M, Ward L, Barclay C, Glaueux FH, Cole WG (2005) Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations-findings in 10 patients. Am J Med Genet A 137A(3):241–248

Minamino T, Komuro I, Kitakaze M (2010) Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res 107(9):1071–1082

Miyamoto Y, Matsuda T, Kitoh H, Haga N, Ohashi H, Nishimura G, Ikegawa S (2007) A recurrent mutation in type II collagen gene causes Legg-Calvè-Perthes disease in a Japanese family. Hum Genet 121(5):625–629

Miyamoto Y, Nakashima E, Hirao K, Ohashi H, Ikegawa S (2005) A type II collagen mutation also results in osto-spondylo-megaepiphysyeal dysplasia. Hum Genet 118(2):175–178

Nadanaka S, Yoshida H, Sato R, Mori K (2006) Analysis of ATF6 activation in site-2 protease-deficient Chinese hamster ovary cells. Cell Struct Funct 31(2):109–116

Nishimura G, Haga N, Kitoh H, Tanaka Y, Sonoda T, Kitamura M, Shirahama S, Itoh T, Nakashima E, Ohashi H, Ikegawa S (2005) The phenotypic spectrum of COL2A1 mutations. Hum Mutat 26(1):36–43

Nishimura G, Nakashima E, Mabuchi A, Shimamoto K, Shimamoto T, Shimao Y, Nagai T, Yamaguchi T, Kosaki R, Ohashi R, Makita Y, Ikegawa S (2004) Identification of COL2A1 mutations in platyspondylic skeletal dysplasia, Torrance type. J Med Genet 41(1):75–79

Nugent AE, Speicher DM, Gradisar I, McBurney DL, Banaga A, Doane KJ, Horton WE Jr (2009) Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1. J Histochem Cytochem 57(10):923–931

Okada M, Ikegawa S, Moriori M, Yamashita A, Saito A, Sawai H, Murotsuki J, Ohashi H, Okamoto T, Nishimura G, Imaizumi K, Tsumaki N (2015) Modeling type II collagenopathy skeletal dysplasia in humans resulting from targeted disruption of the mouse Hipx gene. Hum Mol Genet 24(2):299–313

Olavarrieta L, Morales-Angulo C, del Castillo I, Moreno F, Moreno-Pelayo MA (2008) Sticker and branchio-oto-renal syndromes in a patient with mutations in EYA1 and COL2A1 genes. Clin Genet 73(3):262–267

Ono T, Miyazaki T, Ishida Y, Uehata M, Nagata K (2012) Direct in vitro and in vivo evidence for interaction between Hsp47 protein and collagen triple helix. J Biol Chem 287(9):6810–6818
Endoplasmic reticulum stress in chondrodysplasias

Patterson SE, Dealby CN (2014) Mechanisms and models of endoplasmic reticulum stress in chondrodysplasia. Dev Dyn 243(7):875–893

Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD (2016) The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Front Cell Dev Biol 3:80

Pieri M, Stefanou C, Zaravinos A, Erguler K, Stylianou K, Lapathitis G, Karaiskos C, Savva I, Paraskeva R, Dweep H, Sticht C, Anastasiadou N, Zouvari I, Gounenos D, Felekkis K, Saleem M, Voskarides K, Gretz N, Deltas C (2014) Evidence for activation of the unfolded protein response in collagen IV nephropathies. J Am Soc Nephrol 25(2):260–275

Rajpar MH, McDermott B, Kung L, Eardley R, Knowles L, Heeman M, Thornton DJ, Wilson R, Bateman JF, Poulson R, Arvan P, Kadler KE, Briggs MD, Boot-Handford RP (2009) Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet 5(10):e1000691

Richards AJ, Baguley DM, Yates JR, Lane C, Nicol M, Harper PS, Scott JD, Snead MP (2000) Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet 67(5):1083–1094

Ron I, Rapaport D, Walter P (2007) Signal integration in the endoplasmic reticulum. Annu Rev Biochem 74:739–817

Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14(1):20–28

Sano R, Reed JC (2013) ER stress-induced cell death mechanisms. Biochim Biophys Acta 1833(12):3460–3470

Schröder M (2008) Endoplasmic reticulum stress responses. Cell Mol Life Sci 65(6):862–894

Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

Shapiro F, Mulhem H, Weis MA, Eyre D (2006) Rough endoplasmic reticulum abnormalities in a patient with spondyloepimetaphyseal dysplasia with scoliosis, joint laxity, and finger deformities. Ultrastruct Pathol 30(5):393–400

Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111

Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6):461–468

Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, Cooper DN (2009) The Human Gene Mutation Database: 2008 update. Genome Med 1(1):13

Su P, Li R, Liu S, Zhou Y, Wang X, Patil N, Mow CS, Mason JC, Huang D, Wang Y (2008) Age at onset-dependent presentations of premature hip osteoarthritis, avascular necrosis of the femoral head, or Legg-Calvé-Perthes disease in a single family, consequent upon a p.Gly1170Ser mutation of COL2A1. Arthritis Rheum 58(6):1701–1706

Suh DH, Kim MK, Kim HS, Chung HH, Song YS (2012) Unfolded protein response to autophagy as a promising druggable target for anticancer therapy. Ann N Y Acad Sci 1265:944–957

Verbeek E, Meuwissen ME, Verheijen FW, Govaert PP, Licht DJ, Kuo DS, Poulton CJ, Schot R, Lequin MH, Duda J, Halley HD, de Coo RL, den Hollander JC, Oegema R, Gould DB, Mancini GM (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20(8):844–851

Vollonghi I, Pezzini A, Del Zotto E, Giossi A, Costa P, Ferrari D, Padovani A (2010) Role of COL4A1 in basement-membrane integrity and cerebral small-vessel disease. The COL4A1 stroke syndrome. Curr Med Chem 17(13):1317–1324

Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

Wilson R, Freddi S, Bateman JF (2002) Collagen X chains harboring Schmid metaplastic chondrodysplasia NC1 domain mutations are selectively retained and degraded in stably transfected cells. J Biol Chem 277(15):12516–12524

Wilson R, Freddi S, Chan D, Cheah KS, Bateman JF (2005) Misfolding of collagen X chains harboring Schmid metaplastic chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem 280(16):15544–15552

Yam GH, Booshard N, Zuber C, Steinnmann B, Roth J (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants. Am J Physiol Cell Physiol 290(4):C1076–C1082

Yang L, Carlson SG, McMurray D, Horton WE (2005) Multiple signals induce endoplasmic reticulum stress in both primary and immortalized chondrocytes resulting in loss of differentiation, impaired cell growth, and apoptosis. J Biol Chem 280(35):31156–31165

Yoshida H (2007a) ER stress and diseases. FEBS J 274(3):630–658

Yoshida H (2007b) Unconventional splicing of XBP1 mRNA in the unfolded protein response. Antioxid Redox Signal 9(12):2323–2333
Zankl A, Neumann L, Ignatius J, Nikkels P, Schrander-Stumpel C, Mortier G, Omran H, Wright M, Hilbert K, Bonafe L, Spranger J, Zabel B, Superti-Furga A (2005) Dominant negative mutations in the C-propeptide of COL2A1 cause platyspondylic lethal skeletal dysplasia, Torrance type, and define a novel subfamily within the type 2 collagenopathies. Am J Med Genet A 133A(1):61–67

Zankl A, Zabel B, Hilbert K, Wildhardt G, Cuenot S, Xavier B, Havitinh R, Bonafe L, Spranger J, Superti-Furga A (2004) Spondyloperipheral dysplasia is caused by truncating mutations in the C-propeptide of COL2A1. Am J Med Genet A 129A(2):144–148

Zhang H, Nakajima S, Kato H, Gu L, Yoshitomi T, Nagai K, Shinmori H, Kokubo S, Kitamura M (2013) Selective, potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues. Br J Pharmacol 170(4):822–834

Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124(3):587–599