Facile one-step synthesis of TiO$_2$/Ag/SnO$_2$ ternary heterostructures with enhanced visible light photocatalytic activity

Zewu Zhang1,2, Yuhang Ma1,2, Xiaohai Bu1,2, Qiong Wu1,2, Zusheng Hang1,2, Zhao Dong1,2 & Xiaohan Wu1,2

Novel TiO$_2$/Ag/SnO$_2$ composites were successfully prepared by a facile one-step reduction approach using stannous chloride as both SnO$_2$ precursor and reducing agent. The Ag nanoparticles with sizes of 2.04–3.94 nm were located on TiO$_2$ matrix and immobilized by the surrounded SnO$_2$. The resulted TiO$_2$/Ag/SnO$_2$ nanocomposites were used as photocatalyst for photodegradation of methylene blue under visible light. The experimental results demonstrated that the visible light photocatalytic activity of the TiO$_2$/Ag/SnO$_2$ was significantly enhanced in comparison with the individual TiO$_2$ or the binary composite (TiO$_2$/Ag or TiO$_2$/SnO$_2$) and the degradation rate was up to about 9.5 times that of commercial TiO$_2$. The photocatalytic activity of the TiO$_2$/Ag/SnO$_2$ composites could be well controlled by simply tuning the dosages of Ag precursor and the optimized activity of the composites was obtained when the dosage of Ag precursor was 2%. Moreover, the TiO$_2$/Ag/SnO$_2$ photocatalyst exhibited high stability for degradation of methylene blue even after four successive cycles.

Currently, photocatalysis applications for addressing environmental issues such as environment pollution and energy crises have attracted more and more attention and gradually become a research hotspot$^{1-4}$. In most case, non-toxic, chemically stable, controllability of redox power through materials engineering, and the capable of retrieval and extended use without substantial loss of activity are often recognized as the rubric of semiconductor photocatalysis$^{5-7}$. However, conventional homogeneous photocatalysis have inherent drawbacks such as the easy recombination of photo-induced electron-hole (e^-/h^+) pairs and the absorption of light only at ultraviolet region ($\lambda<400$ nm)8. Developing heterogeneous photocatalysis has been an effective strategy to enlarge the range of wavelengths of light absorption and promote the separation of the charge-carrier9,10. Therefore, the heterogeneous photocatalysis often shows more appealing than its homogeneous counterpart.

Among the multi-heterogeneous systems that have been developed, TiO$_2$-based photocatalysts have triggered considerable interest due to their unique photocatalytic activity and good chemical stability11. Heterostructures of TiO$_2$ and other oxides, such as ZnO12, SnO$_2$$^{13-15}$, and Fe$_2O_3$16 to form the semiconductor coupling is believed to overcome the facile recombination of e^-/h^+ pairs. In the suitably assembled semiconductors, the efficient charge transfer can be occurred, ultimately leading to the spatially separation of the charge-carrier. In particular, the SnO$_2$/TiO$_2$ system with high photocatalytic activity has attracted extensive interest. On one hand, SnO$_2$ possessed a high electron mobility (\sim100–200 cm2V$^{-1}$s$^{-1}$)17, which gives rise to a faster transport of photoinduced electrons. On the other hand, the conduction band (CB) edge of SnO$_2$ is more positive than that of TiO$_2$18, which may lead to the transformation of photoexcited electrons from the CB of TiO$_2$ to that of SnO$_2$, and the opposite transformation direction for holes in the heterojunction between TiO$_2$ and SnO$_2$19. By this way, the recombination of charge carriers can be greatly suppressed, thereby resulting in an enhanced photocatalytic performance.

Additionally, in regard to the weak visible light response, decorating TiO$_2$ with noble metal nanoparticles (NPs) to construct the noble metal/TiO$_2$ composite was suggested to be an effective method to extend the photoresponse of TiO$_2$ to visible light region due to the localized surface plasmon resonance (SPR) for metallic

1School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 21167, P. R. China. 2Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 21167, P. R. China. Correspondence and requests for materials should be addressed to Z.Z. (email: zhangzw@njit.edu.cn) or Z.D. (email: njit_dongzhao@163.com)
nanoparticles. In these heterogeneous systems, the noble metal NPs can be excited by visible light in the ways that the oscillating electric field of the light interacts with the conduction electrons. As a result, a strong oscillation of these electrons appears when the incident photon frequency is comparable to the collective oscillation of the conduction electrons. Still now, there are several methods have been reported for incorporation of noble metal NPs into TiO$_2$, such as adsorption of preformed noble metal colloids and photo-deposition. But unfortunately, all of these strategies are suffered from the weak interaction between TiO$_2$ and noble metal NPs, and also the problem of inhomogeneity distribution of noble metal NPs. As is well known, the strong linkage of noble metal NPs to TiO$_2$ may enhance the electron transfer between noble metal NPs and TiO$_2$ and can also prevent the metal NPs to leach from TiO$_2$ surface. Moreover, the surface homogeneity distribution of small noble metal NPs might increase the density of metal/TiO$_2$ interface. All of these enhance the photocatalytic activity of the composites comprised with the pure TiO$_2$. In these regards, it is necessary to develop a facile strategy to prepare the composite photocatalyst that coupled with noble metal NPs, SnO$_2$ and TiO$_2$.

Recently, our group reported a convenient Sn$^{2+}$ reduction method to prepare a ternary heterostructure TiO$_2$/SnO$_x$-Au photocatalyst and the photocatalyst exhibited an enhanced visible photocatalytic performance as compared with TiO$_2$/SnO$_2$ and TiO$_2$/Au binary composites. In this catalytic system, the Au nanoparticles were connected with SnO$_x$ surface directly, which may weaken the interaction with noble metal NPs and TiO$_2$ matrix inevitably. In this regard, it may be more meaningful to construct a ternary heterostructure in which noble metal NPs were coupled with both TiO$_2$ matrix and tin oxides accelerant.

In the present work, we have constructed a ternary heterostructure TiO$_2$/Ag/SnO$_2$ photocatalyst with Ag nanoparticles by SnO$_2$, by which we want to maximize the potential of Ag NPs for extending the visible-light absorption and the SnO$_2$ species for inhibiting the recombination rate of photo-generated h^+/e^- pairs. The preparation route was shown in Fig. 1. The Ag NPs in the ternary composites exhibited a quite uniform distribution with the particles size could be facilely tuned from 2.04 nm to 3.94 nm. The ternary TiO$_2$/Ag/SnO$_2$ composites offered an enhanced catalytic activity for degradation of methylene blue under the visible light irradiation as compared with the single TiO$_2$ and the binary hybrid materials (TiO$_2$/Ag and TiO$_2$/SnO$_2$).

Experiment

Synthesis of TiO$_2$/Ag/SnO$_2$ composites. In a typical experiment, 1.0 g of P25 TiO$_2$ was dispersed in deionized water (100 mL) by ultrasonic processing. Then a mixture aqueous solution containing SnCl$_2$ (0.5 g) and hydrochloric acid (3.0 mL) were added into the above solution, which was allowed for stirring at room temperature for 12 h. The precipitate was collected by centrifugation, followed by washing with water and redispersed into 70 mL water. Subsequently, 0.5 mL of AgNO$_3$ solution (50 mM) was added. After reaction for 30 min, 2 mL of 0.15 M sodium formate solution was added. The mixture was allowed to stir for another 4 h, and then the product was collected by centrifugation, washing with water and drying in a vacuum oven at 75°C. The obtained samples were labeled as TiO$_2$/Ag/SnO$_2$(x wt%), where the x denoted the nominal content of Ag NPs in the ternary composites.

Characterization. Transmission electron microscopy (TEM) experiments were conducted on a JEM-1230 microscope operated at 100 kV. The samples for the TEM measurements were suspended in ethanol and supported onto a Cu grid. The powder X-ray diffraction (XRD) patterns were recorded on a Bruker D8 Advance
Diffractometer (Germany) with Cu Kα radiation (λ = 1.5406 Å). X-ray photoelectron spectra (XPS) measurements were carried out in a Thermo ESCALAB 250 instruments (USA) using non-monochromatic Al Kα radiation. The nitrogen adsorption and desorption isotherms were measured at −196 °C on an ASAP 2020 (Micromertics USA). The specific surface area was determined from the linear part of the BET equation (P/P0 = 0.05–0.25). The pore size distribution was derived from the desorption branch of the N2 isotherm using the Barrett-Joyner-Halenda (BJH) method. UV-vis spectra were recorded on a Shimadzu UV 3600 spectrometer.

Evaluation of photocatalytic performance. 40 mg TiO2/Ag/SnO2 composites were added into 100 mL of 3.12 × 10−5 mg/L methylene blue (MB) solution. A 500 W xenon lamp, the main wavelength of which lies in the 365–720 nm range, was used as the visible light source. Before irradiation, the solution was stirred for 30 min in dark in order to achieve absorption-desorption equilibrium. Then, the aforementioned mixture solution was irradiated in a photochemical chamber under continuous stirring with reflux water to keep the temperature constant. At certain time intervals, 2 mL solution was drawn out and centrifuged to obtain clear liquid. The quantitative determination of MB was performed by measuring the intensity of its absorption peak with a UV-vis spectrophotometer.

Results and Discussion

The TiO2/Ag/SnO2 ternary composites were prepared followed by the strategy containing a facile one step reduction approach by using stannous chloride as both SnO2 precursor and reducing agent. The commercial Degussa P25 TiO2 composed with 80% anatase and 20% rutile was used as the support due to its good application prospect28. In the first step, the TiO2 particles were activated with Sn2+ by the inorganic grafting between Sn2+ and surface hydroxyl groups on TiO2 particles29. Secondly, AgNO3 solution was added into the TiO2/Sn2+ species. It is well known that the isoelectric point of Degussa P25 TiO2 is about 6.230. Therefore, the surface of TiO2 is possessed of negative charge in the neutral environment. Except the part of the TiO2 surface being neutralized by Sn2+, the residual position with negative charge can be served as the adsorption site for self-assembly of Ag+.

Since the standard reduction potential of the Sn4+/Sn2+ (0.151 V vs. standard hydrogen electrode, SHE) is lower than that of Ag+/Ag (0.80 V vs. SHE), the deposited Ag+ can be easily reduced to Ag NPs at ambient temperature by the surrounding Sn2+ species, with the Sn2+ species being oxidized to SnO2. As a result, Ag NPs were incorporated onto TiO2 surface and isolated by the SnO2 species.

Figure 2(a) showed the TEM image of TiO2/Ag/SnO2 photocatalyst with the nominal Ag content was 1 wt%. It was obviously that the Ag NPs with the average particle size of about 2.04 nm were well-distributed on the TiO2 surface (with the size range of Ag NPs is 1.1 nm–2.9 nm). We attributed it to the evenly distribution of Sn2+ species on TiO2 that gives rise to the uniform adsorption sites for Ag+. As a result, the Ag NPs were homogeneously

Figure 2. TEM images of as-prepared TiO2/Ag/SnO2 photocatalysts with different Ag contents: (a) 1 wt%, (b) 2 wt% and (c) 5 wt%. (d) HRTEM images of TiO2/Ag/SnO2 (2 wt%) photocatalysts.
distributed in the ternary composites. Interestingly, the particles size of the Ag NPs on the support could be tuned by facilely changing the dosage of AgNO₃ (Fig. 2(b,c)). When the nominal dosage of AgNO₃ was 2 wt%, the average size of the formed Ag NPs increased to ~2.66 nm (with the size range of Ag NPs is 1.5 nm~3.6 nm). Further increase the nominal concentration of Ag to 5 wt%, the Ag NPs possessed a larger particles size (~3.94 nm, with the size range of Ag NPs is 2.0 nm~6.4 nm), suggesting that the particle size of the incorporated Ag NPs on TiO₂ surface could be easily controlled. It should be mentioned that the SPR effect is strongly related to the content and particle size of noble metal NPs³¹, therefore it seems that the convenient adjustment of Ag NPs is crucial for optimizing the photocatalysis. But beyond that, it should be mentioned that Ag NPs in all the heterostructure composites exhibited uniform distribution even with the growth of Ag NPs. Figure 2(d) displayed the typical HRTEM images of the TiO₂/Ag/SnO₂ (2 wt%).

Figure 3 displayed the energy dispersive X-ray (EDX) spectroscopy of TiO₂/SnO₂/Ag photocatalysts. The result showed that the content of Ti, O and Sn in all samples is almost the same, suggesting that the incorporation of Ag NPs in the photocatalysts have little influence on the content of TiO₂ and Sn species. Additionally, the Ag content in TiO₂/SnO₂/Ag samples increased with the increased dosage of AgNO₃, demonstrating that the concentration of Ag NPs can be easily tuned in our experiment. Figure 3 also displayed the HAADF-STEM of the TiO₂/Ag/SnO₂. Though the images appear blurry, it might be concluded that Ag nanoparticles were tightly covered by Sn species from the red frames in the mapping images of Ag(Ag-L) and Sn(Sn-L), which is bright in Ag images but dark in Sn images.

XRD patterns of the TiO₂/Ag/SnO₂ samples were shown in Fig. 4. All the samples exhibited the mixed crystalline phase containing anatase and rutile, which is on account of the P25 TiO₂ that used as the support in our experiment containing anatase and rutile phases³². The result also suggested that the loading of SnO₂ or Ag had minor influence on the crystalline phase of original TiO₂. No obvious Ag and Sn species peaks could be seen in
the composites that incorporated 1 wt% and 2 wt% Ag, which might be attributed to the relatively low crystallinity of Sn species and the quite small Ag NPs, respectively. As increasing the size of the supported Ag NPs to 3.94 nm (TiO₂/Ag/SnO₂(5 wt%)), the diffraction peaks that could be assigned to the Ag NPs with face-centered cubic structures (fcc) emerged.

The chemical and bonding environments of the ternary composites were ascertained by XPS measurements. As shown in Fig. 5, the fully scanned spectra revealed that the presence of Ti, O, Sn and Ag in all the ternary TiO₂/Ag/SnO₂ composites. The high-resolution spectrum of the Ag 3d region in the TiO₂/Ag/SnO₂(5 wt%) displayed two peaks corresponding to metallic Ag at binding energies of 367.8 eV and 373.8 eV in Ag 3d₃/₂ and Ag 3d₅/₂ levels, with the splitting of the 3d doublet is 6.0 eV, revealing the complete reduction of Ag⁺ in the experiment. It was obvious that the peaks of Ag 3d shifted to the lower position as compared to these of bulk Ag (368.3 eV for Ag 3d₃/₂ and 374.3 eV for Ag 3d₅/₂), indicating the increase in electrons density of Ag species and also revealing

Figure 4. XRD patterns for (a) TiO₂/SnO₂, (b) TiO₂/Ag/SnO₂(1 wt%), (c) TiO₂/Ag/SnO₂(2 wt%) and (d) TiO₂/Ag/SnO₂(5 wt%).

Figure 5. XPS patterns of (a) TiO₂/Ag/SnO₂(1 wt%), (b) TiO₂/Ag/SnO₂(2 wt%) and (c) TiO₂/Ag/SnO₂(5 wt%).
the strong interaction between Ag and the semiconductors36. Moreover, the binding energies of Sn 3d5/2 and Sn 3d3/2 are 486.8 and 495.1 eV, respectively, indicating that tin, in all samples, is in the +4 oxidation state37,38. In the experiment, Sn2+ was completely oxidized by the excess Ag+, and the formed Sn4+ species could not be easily reduced by sodium formate39,40. As a consequence, it is reasonably to calculate that the Sn species in TiO2/Ag/SnO2 ternary heterostructures are dominated by the SnO2. The Ti 2p spectrum in TiO2/Ag/SnO2(1 wt%) can be ascribed to Ti 2p3/2 and Ti 2p1/2 that centered at binding energies of 464.3 and 458.6 eV correspondingly. The splitting of the binding energies was ~5.7 eV, which indicated that the typical Ti4+ in the composite sample41,42. The Ti 2p spectrum do not vary with the increase the content of Ag NPs, suggesting that the incorporation of higher quantity of Ag have few influence on the chemical environments of TiO2. We attributed it to the lager amount of TiO2 species in the composites that could offer abundant electrons without the alteration of the chemical state of TiO2 particles.

The nitrogen adsorption-desorption isotherm and corresponding size distribution of the as-prepared TiO2/Ag/SnO2 samples were shown in Fig. 6. It was obviously that all the TiO2/Ag/SnO2 samples exhibited the typical porous characteristics, as evidenced by the significant type IIb curves in the N2 absorption-desorption isotherm43. This pore should be ascribed to the space among the stacking of the grain in the TiO2 matrix or the SnO2 shells. Additionally, the feature of the isotherm was not be changed as the alteration of Ag content, indicating that Ag NPs were mainly deposited on the surface of TiO2 instead of filling into the pores of TiO2 matrix. The same result could also be verified from the pore size distribution of the sample in Fig. 6(ii), which showed the similar pore size distribution of the two samples, with the average pore size being ~40 nm.

The optical properties of the as prepared samples were characterized by UV-vis DRS, and the results were shown in Fig. 7. Compared with the unmodified TiO2 nanoparticles, the absorption measurements of the TiO2/Ag/SnO2 sample exhibited enhanced photoabsorption in the range of 400–650 nm, which can be attributed to the light-harvesting enhancements by the surface plasmon resonance of Ag NPs27. Moreover, the absorption edge of the TiO2/Ag/SnO2 composite extended an unambiguous red-shift compared to the TiO2 and TiO2/SnO2, which reflected that the electronic structure and optical properties of the TiO2 and TiO2/SnO2 have been modified by the incorporated Ag species. The band-gap energy of the samples can also be determined from the plot of (ahν)1/2 versus hν (Fig. 7(ii))44. The optical band gap energy of the TiO2/Ag/SnO2(1 wt%) composite was measured to be 2.7 eV, which was relatively lower than that of TiO2(3.2 eV) and TiO2/SnO2(3.0 eV). These result also confirmed that the incorporation of Ag and SnO2 caused a red shift of the UV-Vis absorption spectrum and narrowed the
were well matched the first-order reaction kinetics. The calculated rate constant \(k \) for TiO\(_2\), TiO\(_2\)/SnO\(_2\), TiO\(_2\)/Ag followed the order of TiO\(_2\)/Ag/SnO\(_2\) and TiO\(_2\)/Ag/SnO\(_2\) (2 wt%) samples were \(0.002 \text{ min}^{-1} \) and facilitate charge carriers separation\(^45\). Interestingly, as compared the rate constant with that of TiO\(_2\)/SnO\(_x\)/Au giving a 9.5 times higher rate constant of MB degradation than the commercialize TiO\(_2\).

Visible-light photocatalytic activity. The photocatalytic performances of the as-prepared TiO\(_2\)/Ag/SnO\(_2\) composites were evaluated by monitoring its characteristic absorption band at 650 nm to measure the degradation rate of MB under visible light irradiation. Before irradiation, the reaction mixtures were stirred in dark for 30 min to ensure that the adsorption–desorption equilibrium of MB was established. As shown in Fig. 8(i), the ternary TiO\(_2\)/Ag/SnO\(_2\) heterostructure exhibited a slightly increase adsorption efficiencies for MB (~10%) as compared with the commercial TiO\(_2\) and binary heterostructure(TiO\(_2\)/Ag, and TiO\(_2\)/Sn\(_2\)) composite, demonstrating that the incorporation of Ag and Sn species can increase the adsorption of MB.

The photodegradation of MB does not occur without the presence of photocatalysts, as evidenced by little change in the absorption peak after visible light irradiated for 2 h. After addition of a trace amount of photocatalyst into the solution, the adsorption peak significant decreased, suggesting the degradation of the organic pollutant proceeded. Figure 8(i) showed plots of \(C_t/C_0 \) in the degradation of MB, where \(C_0 \) is initial concentration of MB and \(C_t \) is the concentrations of the MB at time \(t \), respectively. It is undisputed that the degradation rate of MB followed the order of TiO\(_2\)/Ag/SnO\(_2\) > TiO\(_2\)/Ag > TiO\(_2\)/SnO\(_2\) > TiO\(_2\) after the same irradiation time. The result indicated that the degradation efficiency of MB could be improved in the presence of Ag or SnO\(_2\) modified TiO\(_2\) photocatalytic systems as compared to pure TiO\(_2\), particularly remarkably enhanced with the Ag/SnO\(_2\) co-decorated TiO\(_2\) photocatalyst. Furthermore, the photocatalytic degradation of the organic pollutant could be regarded as a pseudo–first-order kinetics reaction to evaluate the degradation rate. The linear relationships between \(\ln(C_t/C_0) \) and reaction time using the samples were shown in Fig. 8(ii), and the plots of all the samples were well matched the first-order reaction kinetics. The calculated rate constant \(k \) for TiO\(_2\), TiO\(_2\)/SnO\(_2\), TiO\(_2\)/Ag and TiO\(_2\)/Ag/SnO\(_2\) (2 wt%) samples were \(0.002 \text{ min}^{-1} \), \(0.004 \text{ min}^{-1} \), \(0.008 \text{ min}^{-1} \) and \(0.019 \text{ min}^{-1} \), respectively. It is apparent that TiO\(_2\)/Ag/SnO\(_2\) (2 wt%) exhibited the best degradation efficiency among the above four samples, giving a 9.5 times higher rate constant of MB degradation than the commercialize TiO\(_2\).

As discussed before, the excellent photocatalytic performance for the TiO\(_2\)/Ag/SnO\(_2\) (2 wt%) sample, on one hand, should be largely attributed to the SPR effect of Ag NPs induced broadband optical absorption enhancement. The porous characteristic of the ternary composites may also promote the connection between the embedded Ag NPs and the external environment, leading to a strong SPR effect of Ag NPs. On the other hand, it could be ascribable to the SnO\(_2\) species may serve as an electron tank to accept the photogenerated electrons and facilitate charge carriers separation\(^45\). Interestingly, as compared the rate constant with that of TiO\(_2\)/SnO\(_2\)/Au reported previously\((0.014 \text{ min}^{-1})^{37}\), it could be found that the \(k \) values of the samples\((0.019 \text{ min}^{-1} \text{ for TiO}_2/\text{Ag/SnO}_2, 2\text{wt%})\) even exhibited an increased photocatalytic activity. In the previous report, it was suggested that the electron trapping capability of Au was excellent than that of Ag upon the higher electron affinity of Au NPs, which inevitably give rise to a higher photocatalytic activity for the Au modified photocatalysts\(^36\). In this work, the abnormal higher activity of TiO\(_2\)/Ag/SnO\(_2\) can be attributed to the intimate connection among the Ag, SnO\(_2\) and TiO\(_2\). In our experiment, the Ag NPs were initially absorbed on TiO\(_2\) surface, and reduced by the surrounding Sn\(^{2+}\) species, rustling in Ag NPs directly located on the TiO\(_2\), and anchored by the SnO\(_2\) species. This structure may allow the maximum improvement level of interaction between each component of the photocatalyst, resulting in an enhanced photocatalytic performance. While for the TiO\(_2\)/SnO\(_2\)/Au, the Au NPs were located on the SnO\(_2\) surface, which may weaken the interaction between noble metal NPs and TiO\(_2\) matrix. Indeed, comparing the rate constant with that of Au-based and Ag-based photocatalysts reported previously listed in Table 1, it can be found that the activity of TiO\(_2\)/Ag/SnO\(_2\) (2 wt%) in our experiment is much higher than that of most reports for the photodegradation of MB.

![Figure 8](image-url)
Besides, one can see that the TiO$_2$/Ag/SnO$_2$ heterostructure catalysts with Ag content 2% revealed the highest photocatalytic activity. When the Ag content is relatively low (<2%), the photodegradation of MB enhanced gradually with increase of the Ag content, which may be attributed to the increase of the electron transfer interface both of Ag-TiO$_2$ and Ag-SnO$_2$. However, when the Ag content exceeded 2%, an opposite phenomenon was observed by further increase the content of Ag. The lower photocatalytic performance should be ascribed to the re-combined electrons and holes upon the excess content of Ag NPs.

Because the practical application of photocatalyst requires its renewable, we carried out four cycling tests to degrade MB using the as-prepared TiO$_2$/Ag/SnO$_2$(2 wt%) photocatalyst to investigate its stability, as shown in Fig. 9a. It is observed that the TiO$_2$/Ag/SnO$_2$(2 wt%) sample only exhibited a slight decline for photocatalytic decomposition of MB shows after four cycles (9.1%). Almost no changes can be found from the XRD pattern of catalyst after reaction (Fig. 9b), demonstrating the excellent stability of the catalyst.

Based on the above experimental results and discussion, a possible mechanism for degradation of MB by visible-light-driven TiO$_2$/Ag/SnO$_2$ nanocomposites under visible light irradiation was proposed and presented in Fig. 10. Under visible light irradiation, only the Ag SPR can be excited, resulting in the emerging of electrons in the CB while the holes (h$^+$) remain in the VB of Ag NPs. These photo-induced electrons can get sufficient energy to surmount the Schottky barrier on Ag/TiO$_2$ and Ag/SnO$_2$ and move into the CB of semiconductor (TiO$_2$ or SnO$_2$) through their tightly-coupled interfaces, where the electrons can be consequently trapped by the adsorbed molecular oxygen.

Table 1. Comparison of rate constant for the photodegradation of MB using catalysts containing Ag nanoparticles.

photocatalyst	photocatalyst concn (mg)	initial MB concn (10^{-5} M)	degradation rate (10^{-2} min$^{-1}$)	ref
Au/Ag/TiO$_2$	0.03	3	1.06	24
Ag/ZnO	150	0.5	0.55	25
Ag$_3$Mo$_2$O$_5$/Ag	50	3.13	0.23	26
TiO$_2$/SnO$_2$/Au	40	3.12	1.4	27
TiO$_2$/Ag/SnO$_2$	40	3.12	1.9	this work

Figure 9. (a) Conversion of 4-NP in 4 successive cycles of reduction using TiO$_2$/Ag/SnO$_2$(2 wt%) as photocatalyst, (b) XRD pattern of the TiO$_2$/Ag/SnO$_2$(2 wt%) catalyst after reaction, (c) Effects of a series of scavengers on the degradation efficiency of MB by TiO$_2$/Ag/SnO$_2$(2 wt%) photocatalyst.

Figure 10. Proposed photocatalytic mechanism for degradation of MB by TiO$_2$/Ag/SnO$_2$ nanocomposites under visible light irradiation.
and produce superoxide radicals (\bulletO$_2^-$)18. At the same time, the h+ on the VB of Ag in turn accept electrons from water or the dye molecules adsorbed on the surface of catalysts, resulting in hydroxyl radicals (\bulletOH) generating in the surface of Ag NPs46. These reactive oxygen species and h+ are potent oxidizing agents for the degradation of methylene blue molecules. In order to distinguish the roles of the active species, we have taken the trapping experiment with scavenger investigation. Three reagents, t-BuOH, p-benzoquinone and EDTA, were used as the scavengers of \bulletOH, \bulletO$_2^-$ and h+, respectively. Figure 9c showed the degradation rates of MB by TiO$_2$/Ag/SnO$_2$(2 wt%) in the conditions of adding scavengers. When t-BuOH (5 mM) was added into reaction solution, the photocatalytic efficiency was slightly reduced to 85.3%. However, the photocatalytic efficiency exhibited a significant decrease with the addition of p-benzoquinone (5 mM) or EDTA (5 mM), and the degradation rates of MB were reduced to 42.9% and 21.6%, respectively. Obviously, the results suggested that \bulletO$_2^-$ and h+ are the main active species in the current photocatalytic system. The unique structure of TiO$_2$/Ag/SnO$_2$ with Ag NPs tightly immobilized on TiO$_2$ by SnO$_2$ species may promote the interactions between Ag and the semiconductor (TiO$_2$ and SnO$_2$), which can accelerate the separation of photo-induced holes and electrons. As a result, the holes and electrons can be entirely involved in the photocatalytic reactions, and a strong photocatalytic activity is expected.

Conclusions

In summary, the ternary TiO$_2$/Ag/SnO$_2$ heterostructure composites were successfully prepared by a facile one-step reduction approach using SnCl$_2$ as both SnO$_2$ precursor and reducing agent. The Ag$^+$ was first adsorbed on TiO$_2$ surface and then reduced by the surrounding Sn$^{2+}$ species, resulting in the formation of the TiO$_2$/Ag/SnO$_2$ composite. The obtained TiO$_2$/Ag/SnO$_2$ heterostructure exhibited enhanced photocatalytic activity toward MB degradation under visible light irradiation as compared to individual TiO$_2$ or the binary composite (TiO$_2$/Ag or TiO$_2$/SnO$_2$). The significantly improved photocatalytic activity should be attributed to the SPR effect of Ag NPs and also the fast charge separation by the formation of tightly connected interface of TiO$_2$/Ag and SnO$_2$/Ag. Moreover, the TiO$_2$/Ag/SnO$_2$ composite exhibited good visible-light photocatalytic stability and reusability.

References

1. Girija, K., Thuramalairajan, S., Mastelaro, V. R. & Mangalaraj, D. Photocatalytic degradation of organic pollutants by shape selective synthesis of beta-Ga$_2$O$_3$ microspheres constituted by nanospheres for environmental remediation. J. Mater. Chem. A 3, 2617–2627 (2015).
2. Xue, C., Wang, T., Yang, G. D., Yang, B. L. & Ding, S. J. A facile strategy for the synthesis of hierarchical TiO$_2$/CdS hollow sphere heterostructures with excellent visible light activity. J. Mater. Chem. A 2, 7674–7679 (2014).
3. Douglas, J. J., Sevrin, M. J. & Stephenson, C. R. J. Visible light photocatalysis: applications and new disconnections in the synthesis of pharmaceutical agents. Org. Process Res. Dev. 20, 1134–1147 (2016).
4. Zhou, P., Le, Z., Xie, Y., Fang, J. & Xu, J. Studies on facile synthesis and properties of mesoporous CdS/TiO$_2$ composite for photocatalysis applications. J. Alloy Compd. 692, 170–177 (2017).
5. Park, J. H., Kim, S. & Bard, A. J. Novel carbon-doped TiO$_2$ nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 14, 24–28 (2014).
6. Kumar, S., Surendar, T., Kumar, B., Baruah, A. & Shanker, V. Synthesis of magnetically separable and recyclable g-C$_3$N$_4$–Fe$_3$O$_4$ hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C 117, 26135–26143 (2013).
7. Chen, M. et al. Controllable synthesis of core–shell Bi@amorphous Bi$_2$O$_3$ nanospheres with tunable optical and photocatalytic activity for NO removal. Ind. Eng. Chem. Res. 56, 10251–10258 (2017).
8. Zhao, W. R. et al. Synthesis, characterization, and photocatalytic properties of SnO$_2$/rutile TiO$_2$/anatase TiO$_2$ heterojunctions modified by Pt. J. Phys. Chem. C 118, 23117–23125 (2014).
9. Zhu, Z. et al. Fabrication of magnetically recoverable photocatalysts using g-C$_3$N$_4$ for effective separation of charge carriers through like–Z-scheme mechanism with Fe$_3$O$_4$ mediator. Chem. Eng. J. 331, 615–625 (2018).
10. Cai, Z. et al. Enhanced visible light photocatalytic performance of g-C$_3$N$_4$/CdS p-n heterojunctions for degradation of organic dyes. J. Photochem. Photobiol. A: Chem. 348, 168–178 (2017).
11. Wang, M., Ioccozia, J., Sun, L., Lin, C. & Lin, Z. Inorganic-modified semiconductor TiO$_2$ nanotubes for photocatalysis. Energ. Environ. Sci. 7, 21822–2202 (2014).
12. Wang, L. et al. Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO$_2$ nanotip arrays via thermal stress. ACS Nano 10, 2636–2643 (2016).
13. Acaçyanca, E. et al. Synthesis, characterization and photocatalytic application of TiO$_2$/SnO$_2$ nanocomposite obtained under non-thermal plasma condition at atmospheric pressure. Plasma Chem. Plasma P. 36, 799–811 (2016).
14. Wu, L., Yan, H., Li X. & Wang, X. Characterization and photocatalytic properties of SnO$_2$–TiO$_2$ nanocomposites prepared through gaseous detonation method. Ceram. Int. 43, 1517–1521 (2017).
15. Xu, X. et al. Fabrication of one-dimensional heterostructured TiO$_2$@SnO$_2$ with enhanced photocatalytic activity. J. Mater. Chem. A 2, 116–122 (2014).
16. Madhumitha, A., Preethi, V. & Kannmani, S. Photocatalytic hydrogen production using TiO$_2$ coated iron-oxide core shell particles. Int. J. Hydrogen Energ. 43, 3946–3956 (2018).
17. Ramasamy, E. & Lee, I. Ordered mesoporous SnO$_2$—based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 114, 22032–22037 (2010).
18. Gu, Q. et al. Ternary Pt/SnO$_2$/TiO$_2$ photocatalysts for hydrogen production: consequence of Pt sites for synergy of dual co-catalysts. Phys. Chem. Chem. Phys. 16, 12521–12534 (2014).
19. Yuan, J. et al. TiO$_2$/SnO$_2$ double–hollow hollow spheres–highly efficient photocatalyst for the degradation of rhodamine B. Catal. Commun. 60, 129–133 (2015).
20. Liu, B. et al. Influence of dimensionality and crystallization on visible light hydrogen production of Au@TiO$_2$ core–shell photocatalysts based on localized surface plasmon resonance. Catal. Sci. Technol. 8, 1094–1103 (2018).
21. Low, J., Qiu, S., Xu, D., Jiang, C. & Cheng, B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO$_2$ nanotube arrays for photocatalytic CO$_2$ reduction. Appl. Surf. Sci. 434, 423–432 (2018).
22. Kochuvedu, S. T., Kim, D.-P. & Kim, D. H. Surface-plasmon-induced visible light photocatalytic activity of TiO$_2$ nanospheres decorated by Au nanoparticles with controlled configuration. J. Phys. Chem. C 116, 2500–2506 (2012).
23. Cai, J. et al. Synergistic effect of double—hollowed and sandwiched TiO$_2$/Au@C hollow spheres with enhanced visible-light-driven photocatalytic activity. ACS Appl. Mater. Interf. 7, 3764–3772 (2015).
24. Tahir, M., Tahir, B. & Amin, N. A. S. Synergistic effect in plasmonic Au/Ag alloy NPs co–coated TiO$_2$ NWs toward visible-light enhanced CO$_2$ photoreduction to fuels. Appl. Cataly. B: Environment. 204, 548–560 (2017).
Chen, H. W., Ku, Y. & Kuo, Y. L. Photodegradation of o-Cresol with Ag deposited on TiO2 under visible and UV light irradiation.

Li, M.

Shen, C. C.

Ma, S., Xue, J., Zhou, Y. & Zhang, Z. Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic performance: roles of anatase TiO2 sheet. J. Phys. Chem. C. 120, 21725–21730 (2016).

Chen, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanoparticels. Chem. Eng. J. 306, 1242–1247 (2017).

Zhang, Z. et al. A highly reactive and magnetic recyclable catalytic system based on AuPt nanolloys supported on ellipsoidal Fe@SiO2. J. Mater. Chem. A. 3, 4642–4651 (2015).

Li, M. et al. Heterostructured ZnO/SiO2-nanoparticles for efficient photocatalytic hydrogen production. Chem. Commun. 50, 4341–4343 (2014).

Wang, H. et al. Photocatalytic chemical degradation of nonporous SnO2 at the air-water interface and its high photocatalytic activity. J. Mater. Chem. 20, 5641–5645 (2010).

Zhang, J. M. et al. In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity. Nanoscale 5, 4894–4901 (2013).

Feng, M., Wang, S., Yang, J. & Zhang, B. Core-shell rGO/SnO2@CF with wrinkled surface used as structural anode material: high charge density and electrochemical stability. J. Mater. Chem. A 4, 18524–18531 (2016).

Zhang, X., Liu, Y., Lee, S. T., Yang, S. H. & Kang, Z. H. Coupling surface plasmon resonance of gold nanoparticles with slow–photon-effect of TiO2 photocatalytic crystals for synergistically enhanced photoelectrochemical water splitting. Energ. Environ. Sci. 7, 1409–1419 (2014).

Xu, X. B., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

Cham-Navarro, R. et al. Luminescent sensing of volatile organic compounds Using a Zn-based coordination polymer with tunable morphology. J. Inorg. Organomet. Polym. P. 27, 467–473 (2017).

Chen, F. et al. Synergetic effect of CeO2 modified TiO2 photocatalyst on the enhancement of visible light photocatalytic performance. J. Alloy. Comp. 714, 560–566 (2017).

Zhang, C. et al. In situ doping of Pt active sites via Sn in double-shelled TiO2 hollow nanospheres with enhanced photocatalytic H2 production efficiency. New J. Chem. 41, 11089–11096 (2017).

Kennedy, J. et al. Photochemical hydrogen production by reforming of methanol using Au/TiO2, Ag/TiO2 and Au–Ag/TiO2 catalysts. Catal. Struct. React. 1, 35–43 (2015).

Leong, K. H., Gan, B. L., Ibrahim, S. & Saravanan, P. Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds. Appl. Surf. Sci. 298, 2796–2801 (2012).

Zhao, S. et al. Reactive polyelectrolyte-assisted synthesis of BiOCl with enhanced photocatalytic activity. ACS Sustain. Chem. Eng. 5, 1416–1424 (2017).

Ma, S., Xue, J., Zhou, Y. & Zhang, Z. Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2, 7272–7280 (2014).

Zhou, N. et al. TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 5, 4236–4241 (2013).

Whang, T. J., Hsieh, M. T. & Chen, H. H. Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles. Appl. Surf. Sci. 258, 2796–2801 (2012).

Shen, C. C. et al. Plasmon enhanced visible light photocatalytic activity of ternary Ag/In2O3@AgBr-Ag rod-like heterostructures. J. Mater. Chem. A 3, 14661–14668 (2015).

Acknowledgements

The authors are grateful to the financial supports of National Natural Science Foundation of China (Grant Nos 21603101, 61705101, 51604155), Natural Science Foundation of Jiangsu (Grant No. BK20160774, BK20170671), the Introducing Talents Fund of Nanjing Institute of Technology (YKJ201505), the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology (ASMA201611, ASMA201604), Natural Science Fund for Colleges and Universities in Jiangsu Province (17KJB430017), and the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

Author Contributions

Z.W. Zhang and Z. Dong designed the research project and edited and revised manuscript; Y.H. Ma performed experiments, X.H. Bu and Z.S. Hang prepared figures and analyzed data; Q. Wu and X.H. Wu drafted manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
