CNI polarimetry with 3He

T. L. Trueman1

1Physics Department, Brookhaven National Laboratory, Upton, NY 11973

Abstract

By making use of previous analysis of CNI for pp and pC scattering, the spin-flip factor for np scattering is determined as a function of energy and then used to calculate the p^3He asymmetry $A_N(s)'$ arising in p^3He elastic scattering. It is found to be comparable to $A_N(s)$ for pp scattering, but of the opposite sign. It seems that this method could be a practical for measuring the polarization of a 3He beam.
The Coulomb-nuclear interference enhancement (CNI) at small $-t$ has been studied for high energy proton polarimetry for some time and it seems interesting to see how it would work for 3He. Nigel Buttimore and Elliot Leader and I looked at this a little about five years ago as part of a program to find an absolute polarimeter for protons [1].

Because 3He is also has spin $1/2$ the formalism is similar to pp [2]; further since the spin of the 3He nucleus is carried by the neutron to a large extent, we will think about this asymmetry as being a polarization measurement of the neutron. Here we will do a very rough calculation which can be improved in several obvious ways.

The most striking difference from pp is that here there are six rather than five amplitudes, the new one corresponding to the neutron (3He) flip and designated as $\phi_6(s,t)$. We can rather generally write (we will neglect ϕ_2, ϕ_4 and set $\phi_3 = \phi_1 = \phi_+^{\prime}$ throughout)

$$\phi_p^{^3He}(s,t) = \frac{3s}{8\pi} \sigma_ppp(s)(i + \rho_{pp}(s))F_H(t),$$

$$\phi_\nu^{^3He}(s,t) = \frac{\tau_{p}\sqrt{-t}}{m} \phi_+^{^3He}(s,t),$$

$$\phi_6^{^3He}(s,t) = -\frac{\tau_{n}\sqrt{-t}}{3m} \phi_+^{^3He}(s,t).$$

The two single spin symmetries, for the proton and the neutron, are

$$A_N \frac{d\sigma}{dt} = -\frac{8\pi}{s} \text{Im}(\phi_+^{\prime} \phi_6^{\prime}),$$

$$A_{N'} \frac{d\sigma}{dt} = \frac{8\pi}{s} \text{Im}(\phi_+ \phi_6^{\prime}).$$

F_H can be calculated by standard Glauber methods. Here we use simply the harmonic oscillator form $F_H(t) = \exp(t(B/2 + a^2/4))$ with $a^2 = 57.4 GeV^{-2}$ for illustration [3]. The pp total cross section σ_{pp}, the shape parameter B and and the real to imaginary ratio ρ_{pp} are taken from elastic pp data [4]. The value of τ_p is reasonably well measured at $p_L = 24 GeV/c$ and $p_L = 100 GeV/c$ [5].
We still need τ_n. We can get an approximate idea of its size from data obtained by the RHIC polarimeter group: the elastic scattering can be thought of as taking place through the exchange of $I = 0$ and $I = 1$ particles (or Regge poles); it is known that the $I = 1$ contribution to the non-flip scattering is very small so we can write (approximately)

$$\tau_0 = \tau_p + \tau_n.$$ \hspace{1cm} (0.1)

We can also write

$$\tau_{pC} = \tau_0$$ \hspace{1cm} (0.2)

which is obtained by the RHIC polarimeter group’s proton-carbon measurements at $p_L = 21.7 \, GeV/c$ and $p_L = 100 \, GeV/c$ \cite{5}. So we can determine τ_n at these two energies at least from

$$\tau_n = 2\tau_{pC} - \tau_p$$ \hspace{1cm} (0.3)

Alternatively, we can use a fit I made to both sets of measurements using a Regge model which then gives $\tau_n(s)$ as shown in Fig. 1:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Energy Dependence of real and imaginary parts of pp and np spin-flip factors.}
\end{figure}

In order to calculate the CNI analyzing power we need the e.m. amplitudes \cite{1}:

$$\phi_{+}^{em}(s,t) = \frac{2s}{t} \frac{\alpha}{2m\sqrt{-t}} F_{em}(t),$$

$$\phi_{-}^{em}(s,t) = \frac{2s}{t} \frac{\alpha}{2m\sqrt{-t}} \kappa_p F_{em}(t),$$

$$\phi_{6}^{em}(s,t) = \frac{s}{t} \frac{\alpha}{2m\sqrt{-t}} \kappa_n F_{em}(t),$$

where $F_{em}(t) = \exp (a^2 t/4)$. Note that m in all these formulas denotes the proton mass. In the second of these equations one might want to use the 3He ion mass along with the magnetic moment of 3He rather than $\kappa_n = -1.91$ \cite{6}. We leave the expressions this way for consistency with our simple approach.
Let’s look first at the two asymmetries in the absence of hadronic spin flip, Fig. 2:

![Graphs of \(A_N \) and \(A'_N \)]

FIG. 2: Analyzing powers \(A_N \) and \(A'_N \) at \(p_L = 100 \text{GeV/c} \) with zero hadronic spin-flip factor

Now look at the same things in Fig. 3 using the \(\tau \)-values found from the \(pp \) and \(pC \) analysis, Fig. 1: we see that the hadronic spin flip significantly modifies the shape of the

![Graphs of \(A_N \) and \(A'_N \)]

FIG. 3: Analyzing powers \(A_N \) and \(A'_N \) at \(p_L = 100 \text{GeV/c} \) using the non-zero hadronic spin-flip factors in text.

analyzing power curve especially for the neutron and, very important, both asymmetries are large enough that they should be readily measurable.
FIG. 4: Analyzing power A'_N for colliding beams of protons with momentum of 150 GeV/c on a beam of 3He at beam momentum $P = 3 \times 150$ GeV/c.

From our experience with pp and pC we would expect at least a 10% measurement of polarization to be possible in this way and should be applicable to colliding beams [7]. An estimate of this for the neutron for 150 GeV colliding beams of p on 3He is shown in Fig. 4. The method can be extended to 3He $- ^3$He scattering.

Thanks to Nigel Buttimore for some important discussions on this topic.

[1] N. H. Buttimore, E. Leader, and T. L. Trueman, Phys.Rev. D64 (2001) 094021
[2] T. L. Trueman, Proc. 16th International Spin Physics Symposium SPIN2004.
[3] H. Collard et al Phys. Rev. 138, B 57 (1965).
[4] Review of Particle Physics 592 (2004).
[5] H. Okada et al., Proc. 17th International Spin Physics Symposium SPIN06, p.681. arXiv:hep-ex 0704.1031v1
[6] N. H. Buttimore, Proceedings of Spin 2002, BNL, ed. Y.Makdisi,page 844.
[7] T. L. Trueman ”Spin asymmetries for elastic proton scattering and the pomeron spin-dependent couplings”, BNL-HET-07-14 (to be published).