高濃度エリソルビン酸による酸化ストレス誘導性の抗がん作用

県立広島大学生命環境学部

三浦 香織，矢間 太，田井 章博*

Vitamins (Japan), 90 (9), 433-434 (2016)

Oxidative stress-mediated antitumor activity of erythorbic acid in high doses

Kaori Miura, Futoshi Yazama and Akihiro Tai

Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima

[Biochem Biophys Rep 3, 117-122 (2015)]

エリソルビン酸（ErA）は、アスコルビン酸（AsA）の5位立体異性体である。AsA と同様、強力な抗酸化作用を示し、食品添加物に使用されてきた背景を持つ。AsA はビタミン C として抗酸化作用を示すのに対して、ErA は組織・細胞内への取り込みが悪いため AsA の 20 分の 1 程度の抗酸化作用しか示さない。つまり、ビタミン C としての作用がほとんどと言えている。また、ErA のその他の生理・薬理作用に関しての報告が少ないことから、未知なる ErA の作用の探索が期待される。近年、高濃度の AsA は抗がん作用を発揮することが報告されており、がん治療法のひとつとして臨床の場で用いられている1)。本研究では ErA の新たな生理・薬理作用の探索のため、担がんモデルマウスに対する高濃度 ErA の抗がん作用を検討することとした。

まず、マウス結腸がん由来細胞（Colon-26）を CDF1 マウス（オス、6 週齢）の背部皮下に移植して固形成させ、担がんモデルマウスを作製した。担がんモデルマウスに対して、AsA 300 mg/kg相当モル量の AsA ナトリウム、ErA ナトリウムと水和物を尾静脈より隔日で計 4 回投与した。その間の腫瘍体積の推移を計測したところ、ErA は AsA と同様に腫瘍の増殖を有意に抑制し、AsA と同等の抗がん作用を発揮する事が示された（図 1）。AsA の抗がん作用メカニズムに関しては、長らく議論が行われているが、Chen らは高濃度 AsA がプロオキシダントとして働き、産生された ROS の一種である過酸化水素ががん細胞に傷害を与えると報告

図 1 ErA と AsA の抗がん作用
Colon-26 担がん CDF1 マウスに 300 mg/kg 相当モル量の AsA 及び ErA を尾静脈より隔日で計 4 回投与した。全てのデータは平均値 ± 標準誤差で示す（n=6, *P<0.05, **P<0.01）。

*〒 727-0023 広島県庄原市七塚町 562 番地 県立広島大学生命環境学部 E-mail：atai@pu-hiroshima.ac.jp
 Colon-26細胞にErA及びAsAを添加し、その際の細胞内ROS量を測定したところ、ErA、AsA共に添加から30分後で最も高い細胞内ROS量の増加が認められた。このことから、ErA及びAsAの抗癌がん作用は産生されたROSの傷害によるものであると考えられる。また、担がんモデルマウスにErA及びAsAを投与し、その後の腫瘍、腎臓、腫瘍中AsA量をHPLCにて定量した（図2）。腫瘍組織は無投与の状態で腫瘍（1.1 μmol/g）や腎臓（0.6 μmol/g）と比較して高いAsAを保持していたが（1.9 μmol/g）、AsA及びErAの投与直後に一時的に減少することが分かった（1.4 μmol/g）。つまり、高濃度のErA及びAsAの投与によって腫瘍組織内ではROSが発生しており、このROSが腫瘍組織に傷害を与えると考えられる。このとき、もともと腫瘍組織中に保持されていたAsAがROSを消去する抗酸化剤として消費され、一時的に減少したと考えられる。ErAは細胞内への取り込みがAsAよりも悪いとされているが、同等の抗がん作用を発揮した事から、ErAの抗癌がん作用は細胞外で産生されたROSによるものと考えられる。また、投与直後に減少した腫瘍中AsA量は、初期値までいったんは回復するが、その後再び緩やかに減少する傾向も認められた。ROSによる傷害を受けた腫瘍組織は、AsAの取り込み、保持をする事ができなくなったり、その結果AsA量が減少しているのではないかと予想される。本総説論文では記載していないが、近年、酸化型のAsAがGLUT1を高発現している大腸がん細胞に取り込まれ、還元される際に内因性抗酸化物質を消費して枯渇させることにより、細胞内のROSが増加すると報告されている。そのROSによる傷害により、ATP産生が低下し、細胞死が誘導するという作用メカニズムが明らかになっている。そこで、高濃度のAsAにより細胞外で発生したROSや酸化型AsAの還元により増加した細胞内ROSを消去することにより細胞内のAsAを含めた抗酸化物質が減少し、AsA再生経路の破綻が起きていると最近では考えている。本研究の結果では、ErAはAsAとほぼ同じ抗がん作用を発揮した。酸化型ErA及び酸化型AsAの定量は行っていないが、ErAはAsA同様にプロオキシダント作用による細胞外でのROS発生に加え、上記のような体内でのROS産生に関与して抗癌がん作用を発揮している可能性があると考えている。

（平成28.5.9 受付）

文 献
1) Padayatty SJ, Riordan HD, Hewitt SM, Katz A, Hoffer LJ, Levine M (2006) Intravenously administered vitamin C as cancer therapy: three cases. CMAJ 174, 937-942
2) Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC, Khosh DB, Drisko J, Levine M (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 105, 11105-11109
3) Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulos EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350, 1391-1396
4) 森下隆雄, 田井章博 (2016) ビタミンC再生経路と酸化ストレス. ビタミン 90, 398-401

図2 AsA投与後（A）とErA投与後（B）の腫瘍、肝臓及び腎臓中AsA量の推移
Colon-26担がんCDF1マウスに300 mg/kg相当モル量のAsA及びErAを尾靜脈投与後の組織中AsA量を定量した。全てのデータは平均値±標準誤差で示す（n=4, *P<0.05）。