Biodiversity study of several peatland types in Papua

S Sundari1*, L K Ibo1, J S Rahajoe1, L Alhamd1, H Gunawan2 and N C Priyono2

1Botany Division, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta Bogor KM. 46 Cibinong Science Center, Cibinong 16911
2Peatland Restoration Agency (BRG), Jl. Teuku Umar No.10, Menteng, Central Jakarta 10350

*E-mail: ssundari1977@gmail.com

Abstract. Research on biodiversity study of several peatland types in Papua had been carried out in Merauke and Mappi. The plot method was used for ecological research and interviews method for ethnobotany research. The results showed that the most important species which have the highest Importance Value Index (IVI) were Beilschmiedia sp., Carallia brachiate (Lour.) Merr. and Kibara corticea (Blume) Hook. f. & A. Thoms. in Kaliki Village, whereas it was Melaleuca leucadendra (L.) L only in Marga Mulia Village, Merauke. The most important species which have the highest IVI were Semecarpus forstenii Blume, Archidendron clypearia (Jack) I.C. Nielsen, and Campnosperma auriculatum (Blume) Hook.f. in Khanami Village, while they were Calophyllum euryphyllum Lauterb, Diospyros toposiodes King & Gamble, and Syzygium effusum (A.Gray) Müll. Stuttg in Yame Village, Mappi. The plants are used for building materials and ships, medicinal materials, food ingredients, animal feed, energy-producing materials/firewood, and material in traditional rituals.

1. Introduction

Indonesia has the most extensive peatlands among tropical countries, which is about 21 million ha, spread mainly in Sumatera, Kalimantan and Papua. In their natural state, peatlands support a broad range of habitats and provide a home for unique biodiversity. Along with storing large quantities of carbon, peatlands also play an important role in the retention, purification and release of water and in the mitigation of droughts and floods. They provide a source for fish, non-timber forest products, and other goods and services. Their special characteristics also make peatlands unique space for culture, leisure, and education activities. Peat has also been extracted to generate energy and supply growing media to the horticulture industry. Many natural peatlands have been converted and drained to allow for conventional agriculture and forestry. Most of the peatlands are still forest cover and are habitat for various species of fauna and rare plants. More importantly, peatlands store carbon (C) in large quantities. Peatlands conversion will disrupt all the functions of the peatland ecosystems [1].

Papua Province has ± 2.8 million ha of potential wetland area for agriculture use, it is second ranks in Indonesia after Sumatera ± 3.9 million ha [2]. Therefore, this area is very potential for agricultural extensification for supporting food sovereignty programs in Indonesia. The type of soil in wetland may be alluvial or peat. The alluvial soil is a precipitate formed from a mixture of materials such as mud, humus, and sand with different mixing ratios, while peat is the result of weathering of organic materials such as leaves, branches, and shrubs in a state of saturated water for a very long
time. Soil is called peat soil if the peat thickness is more than 50 cm, thus, peatland is wetland with peat thickness greater than 50 cm [3].

Merauke Regency is one of the regencies in Papua which has a land area of 4.6 million ha consisting of 3.1 million ha in the form of forest cover and 1.5 million ha in the form of non-forest cover. Forest cover which is around ± 66 % consists of primary forest, secondary forest, swamp forest, eucalyptus/acacia forest, and mangrove forest. Changes in land cover in Merauke Regency between 1990 and 2004 experienced significant alterations in primary forest areas, secondary forests, peat swamp forests, and mangrove forests, which indirectly had an impact on biodiversity. In addition, forest damage can be caused by rampant illegal logging, changes in land, plantations, and settlements [12].

The location of Merauke Regency is in the southern part of Papua Province and the easternmost district of Republic Indonesia. The forest in this area has a vegetation characteristic that is very different from the forest area in northern Papua. Forest in southern Papua especially Merauke and Mappi are monsoon forests where most of the vegetation is dominated by certain species, which successively from the river/sea edge are mangrove forests, swamp forests (mostly in the form of sago), and peat swamp forests. This situation is greatly influenced by climate, where the climate of Merauke and Mappi Districts has a tropical climate with very striking rainy and dry seasons differences [12].

The existence of peat swamp forests in Merauke and Mappi is one of the carbon reservoirs. Indonesia’s tropical peat has a wealth of unique flora and fauna and has a high ecological value. From approximately 258,650 tree species in the world, around 13-15% (around 35,000-40,000 species) exist in Indonesia’s peat ecosystems [8]. About 30,122 tree species with a diameter of 10 cm in a ha in peat swamp forests of Indonesia. The main role of peat swamp forests is as carbon storage in nature [4][6].

Biodiversity and its potential in the Papua forest area, especially Merauke and Mappi have not been fully exploited in peat swamp forests, so it is necessary to collect data and information on vegetation types. Some information has been carried out in the form of tree species vegetation in Wasur National Park [7], areca nut replacement plants by the community around Wasur National Park [10], and the potential of traditional medicinal plants [11].

This research was conducted to complete Herbarium information about plants species and to know plant species in various peat types in Papua. The useful plants’ species in tropical peatlands were also found out for revegetation and economic revitalization of local communities.

2. Materials and Methods
2.1. Study sites
The research was conducted in two Regencies of Papua Province, Merauke and Mappi. Research in Merauke was done in Kaliki Village, Kurik District, and in Marga Mulia Village, Semangga District. However, research in Mappi was done in Khanami Village and Yame Village, Assue District. The study sites in Merauke and Mappi were shown in Figures 1 and 2, respectively.
3.2. Ecological research

Ecological research was carried out by making a plot of 20 m x 20 m in one plot in Kaliki Village of Kurik District and two plots in Marga Mulia Village of Semangga District, Merauke Regency. The research was continued by making one plot in Khanami Village and three plots in Yame Village, Assue District, Mappi Regency.
All plants in the plot were enumerated, measured the circumference of the stem at breast height (± 130 cm), and estimated the free branch height of plants. All the chopped plants which have not yet identified for a taxonomic position, species names, and their usability were taken as herbarium samples as ecological evidence (voucher specimen) or taken for identification purposes. Direct identification in the field was carried out on plant species that have been known with certainty, both taxonomic position and local names. Scientific names (Latin) checking was based on the publication of the latest revision in Flora Malesiana [9] and searching through Plant List APG III [14].

Vegetation data analysis was performed by calculating the Importance Value Index (IVI). The IVI calculation is intended to identify common species and it play an important role in shaping forest ecosystems. IVI is calculated by the equation [5].

\[
\text{Density} (Ds) = \frac{\text{individual number of respective tree species}}{\text{Total area of the plot}} \tag{1}
\]

\[
\text{Relative Density} (RDs) = \frac{\text{Density of respective tree species}}{\text{All tree species density}} \times 100\% \tag{2}
\]

\[
\text{Frequency} (F) = \frac{\text{Observation plot number where respective tree species existed}}{\text{Total number of observation plot}} \tag{3}
\]

\[
\text{Relative Frequency} (RF) = \frac{\text{Frequency of respective tree species}}{\text{All tree species frequency}} \times 100\% \tag{4}
\]

\[
\text{Dominance} = \frac{\text{Basal area number of respective tree species}}{\text{Total area of the plot}} \tag{5}
\]

\[
\text{Relative Dominance} = \frac{\text{Dominance of respective tree species}}{\text{All tree species dominance}} \times 100\% \tag{6}
\]

\[
\text{Importance Value Index (IVI) } = RDs + RF + RD \tag{7}
\]

2.3. Ethnobotany research

Ethnobotany research related to the use of plants was conducted by interviewing 50 respondents in Merauke and 30 respondents in Mappi who were living around the peatlands.

3. Results and Discussion

3.1. Plant Ecology

The results showed that there were two types of peatlands in Merauke Regency, wet peat in Kaliki Village, Kurik District, and dry peat in Marga Mulia Village, Semangga District. The type of peat in Khanami Village and Yame in the Assue District, Mappi Regency was wet peat. The peatlands in Mappi were larger than those in Merauke Regency. Vegetation analysis results in the Kaliki Village plot, Kurik District were presented in Table 1. The results showed that there were 12 trees species in the plot. The most important species which have the highest IVI were Beilschmiedia sp., Carallia brachiate (Lour.) Merr., and Kibara coriacea (Blume) Hook. f. & A. Thomps.
Table 1. Results of vegetation analysis in Kaliki Village, Kurik District, Merauke.

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
1	Burseraceae	Santiria laevigata Blume	2.50	5.00	0.25	6.25	0.22	8.42	19.67
2	Chrysobalanaceae	Atuna cf. racemose Raf.	5.00	10.00	0.50	12.50	0.10	3.75	26.25
3	Lauraceae	Beilschmiedia sp.	5.00	10.00	0.50	12.50	0.98	37.50	60.00
4	Lauraceae	Cryptocarya massoy (Oken) Kosterm.	2.50	5.00	0.25	6.25	0.01	0.23	11.48
5	Lauraceae	Litsea sp.	2.50	5.00	0.25	6.25	0.17	0.18	11.43
6	Monimiaceae	Kibara coriacea (Blume) Hook. f. & A. Thomps.	10.00	20.00	0.75	18.75	0.03	1.34	40.09
7	Myrtaceae	Tristaniopsis sp.	5.00	10.00	0.25	6.25	0.01	0.18	14.07
8	Myrtaceae	Syzygium callianthum Merr. & L.M. Perry.	2.50	5.00	0.25	6.25	0.01	0.18	11.43
9	Myrtaceae	Eucalyptus papuana F.Muell.	2.50	5.00	0.25	6.25	0.01	0.48	11.73
10	Myrtaceae	Rhodomyturus tomentosa (Aiton) Hassk.	2.50	5.00	0.25	6.25	0.18	7.06	18.31
11	Rhizophoraceae	Carallia brachiata (Lour.) Merr.	5.00	10.00	0.25	6.25	0.87	33.45	49.70
12	Rutaceae	Evodia latifolia DC.	5.00	10.00	0.25	6.25	0.01	0.55	16.80
	Sum		50	100	4.00	100	2.60	100	300

All species in Marga Mulia peatland, Semangga District, Merauke Regency was Melaleuca cf. leucadendra (L.) L. from the Myrtaceae family. Vegetation analysis results in Khanami Village plot, Assue District were presented in Table 2. The results showed that there were 13 trees species in the plot. The most important species which have the highest IVI were Semecarpus forstenii Blume, Archidendron clypearia (Jack) I.C., and Macaranga sp.

Table 2. Results of vegetation analysis in Khanami Village, Assue District, Mappi.

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
1	Anacardiaceae	Semecarpus forstenii Blume	12.5	16.67	0.25	5.26	0.54	55.15	77.08
2	Anacardiaceae	Campnosperma auriculatum (Blume) Hook.f.	5.00	6.67	0.50	10.53	0.04	3.86	21.06
3	Burseraceae	Canarium sp.	7.50	10.00	0.50	10.53	0.04	4.27	24.79
4	Burseraceae	Trioma sp.	5.00	6.67	0.50	10.53	0.02	2.29	19.48
5	Clusiaceae	Calophyllum sp.	2.50	3.33	0.25	5.26	0.01	0.99	9.59
Vegetation analysis results of peatland in Yame plot 1, Assue District, Mappi Regency were presented in Table 3. The results showed that there were 13 trees species in the plot. The most important species which have the highest IVI were Calophyllum erythrophyllo Lauter., Acronychia pedunculata (L). Miq., and Gymnosperma papuanum (S. Moore) L.A.S. Johnson.

Table 3. Results of vegetation analysis in Yame Village plot 1, Assue District, Mappi.

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
1	Cardiopteridaceae	Gonocaryum litorale (Blume) Sleumer.	2.50	3.03	0.25	5.88	0.03	1.58	10.50
2	Casuarinaceae	Gymnostoma papuanum (S. Moore) L.A.S. Johnson.	5.00	6.06	0.25	5.88	0.53	29.31	41.25
3	Clusiaceae	Calophyllum astrocoriaceum Whitmore.	2.50	3.03	0.25	5.88	0.01	0.64	9.55
4	Clusiaceae	Calophyllum erythrophyllo Lauter.	15.00	18.18	0.50	11.76	0.31	16.82	46.76
5	Cunoniaceae	Ceratopetalum succirubrum C.T. White.	12.50	15.15	0.25	5.88	0.12	6.48	27.51
6	Ixonanthaceae	Ixonanthes papuana (Schltr.) H.J.P. Winkl.	2.50	3.03	0.25	5.88	0.01	0.53	9.44
7	Myrtaceae	Syzygium sp.	7.50	9.09	0.50	11.76	0.15	8.32	29.17
8	Myrtaceae	Tristaniopsis sp.	5.00	6.06	0.25	5.88	0.02	0.89	12.83
9	Myrtaceae	Rhodaninia cinerea Jack.	2.50	3.03	0.25	5.88	0.05	2.50	11.42
10	Myrtaceae	Syzygium goniopetorium	2.50	3.03	0.25	5.88	0.07	3.87	12.78
IOP Conf. Series: Earth and Environmental Science 572 (2020) 012002

Vegetation analysis results of peatland in Yame plot 2, Assue District, Mappi Regency were presented in Table 4. The results showed that there were 21 trees species in the plot. The most important species which have the highest IVI were Diospyros toposioides King & Gamble, Calophyllum soulattri Burm. f., and Schefflera divaricata (Blume) Koord.

Table 4. Results of vegetation analysis in Yame Village plot 2, Assue District, Mappi.

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
1	Aquifoliaceae	*Ilex* brassii Merr. & L.M. Perry.	7.50	7.14	0.25	3.13	0.04	2.50	12.77
2	Araliaceae	*Scheflera divaricata* (Blume) Koord.	15.00	14.29	0.75	9.38	0.11	6.87	30.53
3	Burseraceae	*Haplolobus floribundus* (K. Schum.) H.J. Lam.	2.50	2.38	0.25	3.13	0.01	0.51	6.02
4	Casuarinaceae	*Gymnostoma papuanum* (S. Moore) L.A.S. Johnson.	5.00	4.76	0.50	6.25	0.03	1.57	12.58
5	Clusiaceae	*Calophyllum soulattri* Burm.f.	10.00	9.52	0.75	9.38	0.27	16.50	35.40
6	Clusiaceae	*Garcinia* sp.	2.50	2.38	0.25	3.13	0.02	0.92	6.42
7	Clusiaceae	*Calophyllum bicolor* P.F. Stevens.	2.50	2.38	0.25	3.13	0.06	3.44	8.94
8	Clusiaceae	*Garcinia hunsteinii* Lauterb.	2.50	2.38	0.25	3.13	0.01	0.63	6.14
9	Dipterocarpaeae	*Vatica rassak* Blume.	5.00	4.76	0.50	6.25	0.20	12.28	23.29
10	Ebenaceae	*Diospyros toposioides* King & Gamble.	15.00	14.29	0.75	9.38	0.25	15.13	38.80
11	Ebenaceae	*Diospyros ulo* Merr.	2.50	2.38	0.25	3.13	0.00	0.07	5.58
12	Lauraceae	*Alseodaphne* sp.	2.50	2.38	0.25	3.13	0.01	0.46	5.96
13	Myristicaceae	*Horsfieldia laevigata* Warb.	2.50	2.38	0.25	3.13	0.03	1.75	7.25

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
1	Oleaceae	*Calophyllum soulattri* Blume.	2.50	3.03	0.25	5.88	0.16	9.01	17.92
2	Phyllanthaceae	*Antidesma tetrandrum* Blume.	5.00	6.06	0.25	5.88	0.25	13.91	25.85
3	Rutaceae	*Acronychia pedunculata* (L.) Miq.	17.50	21.21	0.75	17.65	0.11	6.16	45.01

No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
11	Oleaceae	*Calophyllum soulattri* Blume.	2.50	3.03	0.25	5.88	0.16	9.01	17.92
12	Phyllanthaceae	*Antidesma tetrandrum* Blume.	5.00	6.06	0.25	5.88	0.25	13.91	25.85
13	Rutaceae	*Acronychia pedunculata* (L.) Miq.	17.50	21.21	0.75	17.65	0.11	6.16	45.01

Sum	Ds	RDs	F	RF	D	RD	IVI		
82.50	100	4.25	100	1.82	100	300			
No.	Family	Species	Ds	RDs	F	RF	D	RD	IVI
-----	--------------	--	-----	-----	-----	-----	-----	-----	------
1	Aquifoliaceae	*Horsfieldia* sp.	2.50	5.26	0.25	3.85	0.01	0.89	10.00
2	Burseraceae	*Litsea* sp.	2.50	5.26	0.25	3.85	0.01	0.75	9.86
3	Casuarinaceae	*Gymnostoma papuanum* (S. Moore)	2.50	5.26	0.25	3.85	0.08	5.55	14.66
		Calophyllum austrocoriaceum							
4	Clusiaceae	*Kayea* sp.	2.50	5.26	0.25	3.85	0.19	12.79	21.90
5	Clusiaceae	*Garcinia parvifolia* (Miq.) Miq.	2.50	5.26	0.25	3.85	0.02	1.48	10.59
6	Clusiaceae	*Ceratopetalum succirubrum* C.T. White.	2.50	5.26	0.25	3.85	0.03	1.80	10.91
7	Cunoniaceae	*Diospyros ulo* Merr.	2.50	5.26	0.25	3.85	0.08	5.92	15.03
8	Ebenaceae	*Fagraea racemosa* Jack.	2.50	5.26	0.50	7.69	0.14	9.23	22.19
9	Gentianaceae	*Litsea* sp.	2.50	5.26	0.50	7.69	0.06	4.19	17.14
10	Lauraceae	*Ficus* sp.	2.50	5.26	0.25	3.85	0.02	1.31	10.42

Vegetation analysis results of peatland in Yame plot 3, Assue District, Mappi Regency were presented in Table 5. The results showed that there were 19 trees species in the plot. The most important species which have the highest IVI were *Palaquium* sp., *Syzygium effusum* (A. Gray) Müll. Stuttg., and *Syzygium anomalum* Lauterb.

Table 5. Results of vegetation analysis in Yame Village plot 3, Assue District, Mappi.
Similar to peatland in Khanami Village, in Yame Village peatland was also found species of *Canarium*, and other species like *banyan*, cassava, red guava, white guava, and various woods that were widely used for building materials and ships, with the local name of *tiva* wood, *nani* wood, and *pasang* wood. The results showed that species diversity in Mappi peatland was higher than in Merauke peatland. The condition of peatland in Marga Mulia Village, Semangga District was closer to swamp forest, where only one species was found, namely *Melaleuca cf leucadendra* (L.) L. from the family of Myrtaceae. Based on interviews with the head of Marga Mulia Village, Semangga District that most of the dry peat forest in this area has been turned into rice fields and settlements, so that only a little forest remains.

The condition of peatland in Mappi is better than that in Merauke. There had been no conversion of land from forests to rice fields. In addition, the species were more diverse and more directed towards peat swamp forests. The lack of land-use change in the Mappi peatland was likely due to the high dependence of the community on the forest, especially for the necessities of life such as the use of wood for building houses and ships, and also for traditional medicine, food, and animal feed, therefore the communities surrounding there protect the forests very well.

Figure 3. Peatlands in Kaliki Village, Kurik District, Merauke.

Figure 4. Peatlands in Marga Mulia Village, Kurik District, Merauke.
3.2. Ethnobotany
The study was conducted in two villages namely Kaliki Village, Kurik District, and Marga Mulia Village, Semangga District. The results of research in Kaliki found about 53 species of plants that are used by indigenous people (Marind Tribe). The utilization of plants by local communities was high since they use the forest for their daily needs. Of the 53 useful plant species utilized by the Marind Tribe in the Kaliki Village, mostly was used as building materials and medicinal materials, but it was also used as food, animal feed, as an energy/firewood producing material, and as an ingredient in rituals / events custom. The most important plant species according to them was *wati* plant (*Piper methysticum*) (Figure 7), which was believed to be an invaluable treasure. This plant is used in rituals or traditional events.

In Marga Mulia Village, Semangga District, around 28 species of plants that found were used by the local community for food, medicine, and building materials. Most of the species used are cultivated plants that exist around their environment. The lack of use for plants in Marga Mulia Village because it was a transmigration area so that it had brought a change in the lives of the Marind Tribe in the Village. According to the head of Marga Mulia Village, initially, the Marind Tribe's
livelihood was hunting and farming in the forest and moving around. However, after being introduced to rice plants, the Marind Tribe began to farm and became a settled farming community and implemented an agricultural system.

The utilization of plants in the peatland of Mappi Regency by surrounding communities was more widely used for building materials and ships. Another plant that commercially utilized is agarwood (gaharu), which was taken directly from the forest or nurseries. The nurseries obtain seeds and saplings from the forest. The people who live around the peat forest in Khanami were a combination of various tribes namely, Auyu Tribe, which is a native tribe in Mappi, some migrant tribes such as Bugis, Javanese and Ambonese. People who live around the peat forests of Yame in Assue District, it was also a combination of various tribes. Although the natives still depend on the surrounding peat forest, they have started to learn farming and trading from migrants. Some of the plants used by the communities around the peatlands shown in Table 6.

Table 6. Useful plants in Merauke and Mappi peatlands.

Family	Species	Local name	Part which is used	Utilization
Acanthaceae	*Andrographis panulcata* Ness.	Sambiroto	Leaves	Malaria medicine
Anacardiaceae	*Buchanania sp.*	Kayu dayung	Stem	Building materials
Anacardiaceae	*Mangifera indica* L.	Mangga air/piaw	Fruit	Food and medicine
			Wood skin	Diarrhea medication
Apocynaceae	*Alstonia macrophylla* Wall. ex G. Don.	Domber	Wood skin	Animal feed for dogs which are used for hunting
Apocynaceae	*Alstonia scholaris* (L.) R. Br.	Kayu susu daun lebar	Leaves and wood skin	Malaria medicine, intestinal worms, and toothache medicine
Apocynaceae	*Tabernaemontana pandacaqui* Lam.	Kayu susu daun keriting	Root	Diarrhea medication
Areaceceae	*Metroxylon sago* (Willd).	Sagu/dah	Sago starch	Food and medicine
			Midrib	House wall
			Leaves	House roof
Arecaceae	*Derris trifoliata* Lour.	Kunad	Wood skin	Animal feed for dogs which are used for hunting
Arecaceae	*Cocos nucifera* L.	Kelapa/onggad	Fruit	Food and diarrhea medication
Bambucaceace	*Bambusa sp.*	Bambu/illa, yella	Young shoots/bamboo shoots	Stem Hunting gear (material to make arrows)

doi:10.1088/1755-1315/572/1/012002
Family	Species	Part Used	Medicinal Use
Bombacaceae	*Ceiba pentandra* (L.) Gaertn.	Stem skin	Medication to speed dry up the wound
Boraginaceae	*Diospyros ulo* Merr.	Stem skin	Pulmonary pain medication
Caricaceae	*Carica papaya* L.	Stem skin	Animal feed for dogs which are used for hunting
Cyperaceae	*Sp 1*	Stem skin	Food and malaria medicine
Dilleniaceae	*Tetracera scandens* (L.) Merr.	Leaves	Noken woven
Euphorbiaceae	*Codiaeum variegatum* (L.) Rumph.	All parts of the plant	Ornamental plants
Euphorbiaceae	*Codiaeum variegatum* (L.) Rumph.	All parts of the plant	Ornamental plants and ritual
Euphorbiaceae	*Phyllanthus niruri* L.	Root, stem, and leaves	Medicine to facilitate the birth process
Fabaceae	*Sophora tomentosa* L.	Leaves	Treating cough and wet lungs
Gentianaceae	*Fraraea sp.*	Leaves	Internal medicine
Gnetaceae	*Gnetum Genemon* L.	Leaves	Food
Hypoxidaceae	*Curculigo sp.*	Old leaves	For sago wrapping
Lamiaceae	*Coles blumei* Benth.	Leaves	Blood booster medication
Lauraceae	*Alseodaphne* sp.	Stem	Building materials
Lauraceae	*Endiandra* sp.	Stem	Building materials
Leguminosae	*Acacia auriculiformis* Benth.	Stem	Building materials and firewood
Leguminosae	*Cassia javanica* L.	Stem	Building materials and firewood
Leguminosae	*Acacia auriculiformis* Benth.	Stem	Building materials
Leguminosae	*Archidendron clypearia* (Jack) I.C. Nielsen.	Wood skin	Fish poison medicine
Malvaceae	*Abelmoschus manihot* (L.) Medik.	Leaves	Food and medicine to
There were 41 species of plants utilized by the Marind, from 25 families with different habitats, including forests, gardens, roadside, and house yards. The forest edge was the primary habitat of most useful plant species found. Most people use plants as traditional medicine (23 species) and then as building materials (10 species) and food ingredients (9 species). This requires that people live dependent on nature. The potential economic plant was wati plant (*Piper methysticum*). This plant was considered a treasure by the Marind, but its existence has begun to disappear. From the survey results in Merauke Regency, it was known that only one family planted and started cultivating wati with tree prices ranging from 2-10 million rupiah.

3.3. Comparison with other tropical peatlands

The results of ecology and ethnobotany were compared to tropical peat swamp forest in Kalampangan and Sebangau, Central Kalimantan. These ecological results were very different on the plant species. The peat swamp forests of Central Kalimantan were dominated by *Tetramerista glabra*, *Calophyllum sp.*, *Shorea sp.*, *Combretocarpus rotundatus*, *Palaquium sp.*, *Buchanania sessilifolia*, *Syzygium sp.*, *Dactylocladus stenostachys*, *Dyera costulata*, *Ilex cymosa*, *Tristaniopsis obovata*, and *Dyospyros sp.* [13]. All the species were not found in Merauke and Mappi peatlands.
However, the ethnobotany results were similar to Central Kalimantan tropical peat swamp forests. The plants were used for building materials and ships, medicinal materials, food ingredients, animal feed, and energy-producing materials/firewood by Dayak Tribe [13].

4. Conclusions

The diversity of flora in Mappi peatland was outweighed Merauke peatland since there has been a minimal land-use change in Mappi peatland. Generally, the use of plants by communities around the peat forest is for the needs of life, medicine, houses, ship, and religious rituals. Local people in Merauke and Mappi still hunt for wildlife for their daily needs.

Most of the local inhabitants of Merauke have a habit of hereditary burning grass (forest floor) with the aim that after the forest was burnt, it will grow new grass so the deer will come to the area and the people can hunt it down. Even though forests burning potentially damage to the ecosystem, people believe that burning forests is a legacy of ancestors that is difficult to change. Therefore, education is needed. It needs to be done in stages to change the habits and culture of the community in order to not burn the forest continuously.

Acknowledgement

This work was supported by Peatland Restoration Agency (BRG). We thank to the people in Kaliki Village, Kurik District, and Marga Mulia Village, Semangga District for their help during field work in Merauke. We also thank to the people in Khanami Village and Yame Village, Assue District for their help during field work in Mappi.

5. References

[1] Agus F dan Subiksa I G M 2008 Lahan Gambut: Potensi untuk Pertanian dan Aspek Lingkungan Balai Penelitian Tanah dan World Agroforestry Centre (ICRAF) Bogor (in Indonesian)
[2] Alihamsyah T 2004 Potensi dan Pendayagunaan Lahan Rawa untuk Peningkatan Produksi Padi, Ekonomi Padi dan Beras Indonesia Badan Litbang Pertanian Jakarta (in Indonesian)
[3] Driessen P M 1978 Peat Soils: in: IRRI Soil and Rice IRRI Los Banos Philippines 763-779
[4] Hooijer A, Silvius M, Wösten H and Page S 2006 Peat-CO$_2$, Assesment of CO$_2$ Emissions from Drained Peatlands in SE Asia Delft Hydraulics report Q3943
[5] Indriyanto 2006 Ekologi Hutan Penerbit Bumi Aksara Jakarta
[6] Joosten H 2009 Peatland Status and Drainage Related Emissions in All Countries of The World The Global Peatland CO$_2$ Picture Wetlands International Bangkok
[7] Mangera Y 2008 Analisis vegetasi jenis pohon di kawasan hutan kampung wasur pada taman nasional wasur Distrik Merauke Kabupaten Merauke J. Agricola 18-36
[8] Osaki M, Nursyamsi D, Noor M, Wahyunto and Segah H 2016 Peatland in Indonesia Book of Tropical Peatland Ecosystems M. Osaki and N. Tsuji (Eds.) Springer Publisher 49-55
[9] Steenis CGJ van 1950 Flora Malesiana Ser. I Vol. 1 Noordhoff-Kolff Jakarta
[10] Susiarti S 1999 Jenis-jenis pengganti pinang dalam budaya menginang oleh masyarakat di kawasan TN Wasur, Merauke, Irian Jaya Workshop dan Promosi Flora Kawasan Timur Indonesia Candikuning 15-17 Juli 1999 1-8
[11] Susiarti S dan Rahayu R D 1997 Peran bahan obat alami dan pengujian anti bakteri dari Desa Soa, Merauke, Irian Jaya Simposium Penelitian Bahan Obat Alami IX.Fakultas Farmasi UGM 12-13 November 1997 1-13
[12] Tahiy S, Dinauik E, Gusti, Hendra N B, Septiawan A W, Marlina M, Purwanti B, Anwar S, Cahyono R dan Karim I 2017 Strategi perencanaan tata guna lahan mendukung pembangunan rendah emisi kabupaten merauke Kelompok Kerja Teknis Inisiatif Pembangunan Rendah Emisi, Kab. Merauke 170 hal
[13] Tuah S J, Jamal Y M and Limin S 2003 Nutritional characteristics in leaves of plants native to tropical peat swamps and heath forests of Central Kalimantan TROPICS 12 221-245
[14] www.theplantlist.org. (accessed on March 3, 2019)