Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism

Yasuhiro Kazukia,b,1, Kaoru Kobayashic, Masumi Hirabayashid,e, Satoshi Abeb, Naoyo Kajitanib, Kanako Kazukib, Shoko Takeharab, Masato Takiguchib, Daisuke Satohb, Jiro Kuzef,3, Tetsuichi Sakumab, Takehito Kanekoh,3, Tomoji Mashimoi, Minoru Osamuraj, Mari Hashimotok, Riko Wakatsukil, Rika Hirashimam, Ryoichi Fujiwaraa, Tsuneo Deguchin, Atsushi Kuriharaa, Yasuko Tsukazakim, Naoto Sendam, Takashi Yamamotom, and Mitsuo Oshimurab

aDepartment of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, 683-8503 Tottori, Japan; bChromosome Engineering Research Center, Tottori University, Yonago, 683-8503 Tottori, Japan; cCenter for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan; dDepartment of Physiology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787 Aichi, Japan; eQuality and Reliability Assurance Division, Taiho Pharmaceutical Co., Ltd., Tokushima, 771-0194 Tokushima, Japan; fDepartment of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526 Hiroshima, Japan; gDivision of Science and Engineering, Graduate School of Arts and Science, Iwate University, Morioka, 020-8551 Iwate, Japan; hInstitute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Kyoto, Japan; iInstitute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, 565-0871 Osaka, Japan; jSchool of Pharmacy, Kitasato University, Minato-ku, 108-8461 Tokyo, Japan; kDrug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Shinagawa-ku, 140-8710 Tokyo, Japan; lTsukuba Bioanalytical Laboratory, Shin Nippon Biomedical Laboratories, Ltd., Tsukuba, 305-0047 Ibaraki, Japan; and mDepartment of Chemistry and Biotechnology, FH Aachen University of Applied Sciences, 52428 Jülich, Germany

Edited by Martin M. Matzuk, Baylor College of Medicine, Houston, TX, and approved January 4, 2019 (received for review May 15, 2018)

Although “genomically” humanized animals are invaluable tools for generating human disease models as well as for biomedical research, their development has been mainly restricted to mice via established transgenic-based and embryonic stem cell-based technologies. Since rats are widely used for studying human disease and for drug efficacy and toxicity testing, humanized rat models would be preferred over mice for several applications. However, the development of sophisticated humanized rat models has been hampered by the difficulty of complex genetic manipulations in rats. Additionally, several genes and gene clusters, which are megabase range in size, were difficult to introduce into rats with conventional technologies. As a proof of concept, we herein report the generation of genomically humanized rats expressing key human drug-metabolizing enzymes in the absence of their orthologous rat counterparts via the combination of chromosome transfer using mouse artificial chromosome (MAC) and genome editing technologies. About 1.5 Mb and 700 kb of the entire UDP glucuronosyltransferase family 2 and cytochrome P450 family 3 subfamily A genomic regions, respectively, were successfully introduced via the MACs into rats. The transchromosomal rats were combined with rats carrying deletions of the endogenous orthologous genes, achieved by genome editing. In the “transchromosomal humanized” rat strains, the gene expression, pharmacokinetics, and metabolism observed in humans were well reproduced. Thus, the combination of chromosome transfer and genome editing technologies can be used to generate fully humanized rats for improved prediction of the pharmacokinetics and drug–drug interactions in humans, and for basic research, drug discovery, and development.

Humanized animal model | mouse artificial chromosome | chromosome transfer | genome editing | transchromosomal rat

Genomically humanized animals obtained by the introduction of entire human genomic loci into model organisms are invaluable tools as disease models, for investigating cis-acting regulatory elements, and understanding their role in domainwide regulation, as well as for several biomedical applications (1). The development of humanized animal models has been mainly limited to mice via transgenic and embryonic stem (ES) cell-based technologies (2). Since rats are widely used animal models for studying human disease and for testing the efficacy and toxicity of drugs, their humanization would be more preferable over that of mice for various applications (3, 4). However, since complex manipulation in rat ES cells is much more challenging, megabase (Mb)-sized humanized rat models have yet to be developed, possibly owing to the chromosomal instability during long in vitro culture (5).

The generation of humanized mouse models with Mb-sized human genomic loci is very difficult via conventional gene transfer techniques, including the use of plasmids, P1-derived artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs), due to the capacity for cloning DNA (6–8). To overcome this obstacle, sequential recombinase-mediated casse-tte exchange (S-RMCE) or sequential knockin via BACs in mouse ES cells was used to develop humanized mice with Mb-sized large genomic DNA (9, 10). However, these methods are very laborious owing to the requirement for more than five

Significance

Genomically humanized animals overcoming species differences are invaluable for biomedical research. Although rats would be preferred over mice for several applications, generation of a humanized model is restricted to mice due to the difficulty of complex genetic manipulations in rats. In this study, we successfully generated humanized rats with megabase-sized gene clusters via combination of chromosome transfer using mouse artificial chromosome vector and genome editing technologies. In the humanized UGT2 and CYP3A transchromosomal rats described in this paper, the expression of the human genes, as well as the pharmacokinetics and metabolism of relevant probe substrates, accurately mimic the situation in humans. Thus, the advanced technologies can be used to generate fully humanized rats useful for biomedical research.

Author contributions: Y.K., K. Kobayashi, T.S., T.M., and R.F. designed research; Y.K., K. Kobayashi, S.A., R.F., N. Scheer, and M. Oshimura performed research; Y.K., K. Kobayashi, M. Hirabayashi, S.A., N.K., K. Kazuki, S.T., D.S., J.S., T.S., T.M., M. Osamura, M. Hashimoto, R.W., R.H., R.F., T.D., A.K., Y.T., N. Senda, T.Y., and M. Oshimura analyzed data; T.S. and T.Y. contributed new reagents/analytic tools; Y.K., K. Kobayashi, S.A., K. Kazuki, S.T., J.K., R.F., T.D., A.K., Y.T., N. Senda, N. Scheer, and M. Oshimura wrote the paper; and Y.K., K. Kobayashi, T.Y., N. Scheer, and M. Oshimura supervised the study. The authors declare no conflict of interest.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808255116/-/DCSupplemental.

Published online February 4, 2019.
rounds of cloning, selection of correctly targeted mouse ES cell clones, and testing their capacity to form chimeric mice at each step.

This challenge was addressed by applying transchromosomic (Tc) technology using human chromosome fragments (hCFs), or human artificial chromosomes (HACs), to generate mice with Mb-sized segments of the human genome (11–17). The most significant problem with freely segregating chromosomes with human centromeres has been mosaicism, possibly owing to the instability of hCFs or HACs in mice. Thus, to improve the stability, we constructed mouse artificial chromosome (MAC) vectors from a native mouse chromosome by chromosome engineering (18). The MAC vector was more stable in adult tissues and hematopoietic cells in mice than hCFs or HAC vectors (18, 19). However, the cloning of large Mb-sized segments from human chromosomes into MACs and the application of Tc technology with hCFs/HACs/MACs to rats have not been reported.

Since the Tc technology can introduce a Mb-sized human gene but not disrupt the orthologous gene, the Tc technologies are required to combine with knockout (KO) technologies such as conventional KO technologies in mouse ES cells or genome editing to generate fully humanized animal models. Genome editing technologies, such as zinc-finger nucleases (ZFN), transcription activator–like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9), were utilized to induce mutations or large genomic deletions for orthologous gene cluster KO animals (20–24).

In the present study, we established a strategy for the development of Mb-sized gene cluster humanized rat models by combining MAC-mediated genomic transfer (MMGT) and genome editing technologies. As a proof of concept, we targeted the UDP glucuronosyltransferase family 2 (UGT2) gene cluster and the cytochrome P450 family 3 subfamily A (CYP3A) gene cluster because of their important roles in drug metabolism and the reported species differences in these genes between humans and rodents (25, 26). Although the UDP glucuronosyltransferase family 1 (UGT1) has a very important role in drug metabolism (27), we decided to select the comparably important UGT2 cluster (27) for humanization because of its significantly larger size (~1.5 Mb versus ~200 kb), allowing for more challenging validation of the technology with highly integrated and functional Mb-sized Tc rat chromosomes harboring a 1.5-Mb region including the UGT2 cluster (10 coding genes) from human chromosome 4 (hChr.4) or a ~700-kb region including the CYP3A cluster (four coding genes) from hChr.7 by the transfer of MACs with desired gene clusters. Furthermore, we disrupted the endogenous rat Ugt2 gene cluster (~762 kb) or rat Cyp3a (Cyp3a23/1 and Cyp3a2u) using genome editing technologies. We also confirmed the retention of the MAC, and the expected tissue-specific expression and enzymatic function of the UGT2 and CYP3A enzymes in rats.

Results

Construction of UGT2-MAC and CYP3A-MAC. A MAC vector stably maintained in mice has been developed and various small- to intermediate-size genes of interest from circular vectors such as plasmids, PACs, and BACs have been transferred to the MAC vector by a site-specific recombination system for several applications (28–30). However, the loading of a large Mb-sized gene cluster to the MAC vectors has not been demonstrated yet. In this study, the HAC-mediated Mb-sized gene cloning system developed previously was thus applied to the MAC vector and the MMGT was applied to rat (31, 32). To generate “humanized” Tc rats with the entire human UGT2 cluster (10 coding genes: UGT2B4, UGT2B7, UGT2B10, UGT2B11, UGT2B15, UGT2B17, UGT2B28, UGT2A1, UGT2A2, and UGT2A3) or CYP3A cluster (4 coding genes: CYP3A4, CYP3A5, CYP3A7, and CYP3A43), two MACs containing these clusters were constructed using the Cre/loxP-mediated Mb-sized gene cloning system (Fig. 1).

To clone ~1.5 Mb of the UGT2 cluster on hChr.4 into a MAC (MAC4), hChr.4 was transferred from mouse A9 cells to homologous recombination-proficient DT40 cells using microcell-mediated chromosome transfer (MMCT). The hChr.4 was truncated at the AC125239 locus and a loxP sequence was introduced into the AC074378 locus on the hChr.4 in DT40 cells (Fig. 2A and SI Appendix, Figs. S1–S3). The modified hChr.4, hChr.4–ΔAC125239-loxP in DT40 cells was then introduced into Chinese hamster ovary (CHO) cells containing one of the MAC vectors (MAC4 with hygromycin resistant gene, EGFP gene, and loxP) using MMCT to obtain hybrid CHO clones with two different exogenous chromosomes: the MAC4 and the modified hChr.4 (hChr.4–ΔAC125239-loxP). To induce reciprocal translocation between the MAC4 and the modified hChr.4, Cre expression vectors were transfected into the CHO hybrids, and recombinant clones were selected. Two out of six drug-resistant clones were PCR positive with UGT2 cluster-, MAC-, and Hprt-reconstitution-specific primers (SI Appendix, Fig. S4). Fluorescence in situ hybridization (FISH) analyses showed that the defined region of hChr.4 containing the UGT2 cluster had been cloned into the MAC4 vector in the CHO hybrid cells (designated UGT2-MAC) (Fig. 2A). The CYP3A-MAC was also constructed as described above for the UGT2-MAC (Fig. 2B and SI Appendix, Figs. S5–S7).

Generation of Tc Mice with CYP3A-MAC. Before the generation of Tc rats with the MACs, the MAC function was tested in mice because no MAC with a Mb-sized gene or gene cluster had ever been transferred in mice. Tc mice with the CYP3A-MAC and fully humanized CYP3A (CYP3A-MAC/Cyp3a-KO) mice were generated. FISH, flow cytometry (FCM), reverse transcription-PCR (RT-PCR), and drug-metabolizing activity analyses showed that the CYP3A-MAC was functional and more stably maintained than CYP3A-HAC in mice, and that the CYP3A-MAC has the same stability as the empty MAC (SI Appendix, Figs. S8–S11) (16, 18).

Generation of Tc Rats with UGT2-MAC or CYP3A-MAC. Establishment of germline-competent rat ES cells with the MAC-carrying gene cluster is challenging due to chromosome instability of rat ES cells during long-term culture. The UGT2-MAC and CYP3A-MAC were introduced into a male rat ES cell line (BLK2i-1) via CHO cells using MMCT. PCR analyses using primers for the detection of the UGT2-MAC or CYP3A-MAC showed that 12 of 22 BLK2i-1 (UGT2-MAC) clones and 11 of 12 BLK2i-1 (CYP3A-MAC) clones contained intact UGT2-MAC and CYP3A-MAC, respectively. FISH analyses showed that the UGT2-MAC and the CYP3A-MAC were present as an individual chromosome without integration into the host rat chromosomes in BLK2i-1 (UGT2-MAC) and BLK2i-1 (CYP3A-MAC) clones, respectively (Fig. 2 C and F). Two BLK2i-1 (UGT2-MAC) clones and 4 BLK2i-1 (CYP3A-MAC) clones that were karyotypically normal were used for the subsequent production of chimeras.

In the case of UGT2-MAC rat chimera production, among 13 male chimeric rats, 2 (15%) were capable of germline transmission (Fig. 2D and Table 1). FISH analyses showed that a single UGT2-MAC was contained in the Tc rat (Fig. 2E). In the case of CYP3A-MAC rat chimera production, among 31 male chimeric rats, 11 (35%) were capable of germline transmission (Fig. 2G and Table 1). FISH analyses showed that a single CYP3A-MAC was contained in the Tc rat (Fig. 2F). Taken together, the MACs with gene cluster were successfully transferred to germline-competent rat ES cells and transmitted through the germline. The germline-transmitted Tc UGT2-MAC rats and Tc CYP3A-MAC rats were mated with the Ugt2-KO rats and Cyp3a-KO rats, respectively, to generate humanized rats, as described below. Both humanized UGT2 and
CYP3A rats transmitted the UGT2-MAC and CYP3A-MAC, respectively, stably at least beyond the F₈ generation.

Generation of Ugt2-KO and Cyp3a-KO Rats.

Ugt2 cluster KO. The simultaneous formation of two double-strand breaks (DSBs) causes the joining of separate breakage sites, resulting in loss of the region between the two DSB sites. Only Ugt2 genes are included in the rat Ugt2 cluster, which allowed us to apply the large deletion approach for the generation of Ugt2 KO rats. To produce Ugt2 cluster (~762-kb) KO rats, we simultaneously induced two targeted DSBs in the rat genome using the CRISPR/Cas9 system. hCas9 mRNA and two gRNAs with target sites upstream of Ugt2a1 and the coding region of Ugt2b31-like were injected into rat fertilized eggs (Fig. 3 A). Finally, we obtained one Ugt2 cluster KO rat strain with concatenation of the genomic sequence upstream of Ugt2a1, a 102-bp insertion, and the Ugt2b31-like region. To confirm the disruption of rat UGT2 function, gemfibrozil glucuronidation activity, a typical marker activity of UGT2 enzymes, was then investigated in the F₂ rats with homozygous deletion (33). The gemfibrozil glucuronidation activity test revealed the decrease of metabolic activity in the liver of Ugt2-KO rats compared with that of wild-type (WT) rats (Fig. 3 B). These results suggested the functional deletion of rat Ugt2 genes in the Ugt2-KO rats. The Ugt2 cluster KO rats were mated with the Tc UGT2-MAC rats to generate fully humanized UGT2 rats (designated UGT2-MAC/Ugt2-KO rats). The Ugt2-KO and UGT2-MAC/Ugt2-KO rats did not display any obvious physiological abnormalities. They grew up without any significant abnormalities, especially in terms of body weight, and showed no anatomical differences compared with the WT controls.

Cyp3a-KO. Among rat Cyp3as, Cyp3a23/3a1 and Cyp3a2 are the major CYP3A enzymes in the liver (34, 35). In addition, these enzymes can metabolize some prototypical substrates of human CYP3A enzymes (36, 37). Thus, in this study, we decided to disrupt the most important Cyp3a genes, 3a23/3a1 and 3a2, via TALEN. A pair of TALEN mRNAs targeting exon 5 of rat Cyp3a23/3a1 and Cyp3a2 were injected into rat fertilized eggs (Fig. 3 C and SI Appendix, Fig. S12). Finally, we produced two independent homozygous big deletion (BD) mutants (derived from nos. 32 and 58) and four independent homozygous insertion/deletion mutants including the 3-bp insertion (derived from no. 51), the 1-bp deletion (derived from no. 62), the 9-bp deletion, and the 30-bp deletion (each derived from no. 65). To confirm the disruption of rat CYP3A function, the metabolic activity of triazolam, a typical marker of the activity of CYP3A enzymes (38), was then investigated in the six homozygous rat lines. Triazolam metabolic activity testing revealed the loss of CYP3A activity compared with that of WT rats and humans in five out of the six lines, but not in one line (no. 62) (Fig. 3 D). We randomly selected two lines, nos. 65 with the 9-bp deletion (designated #65del9) and no. 58 with a BD mutation (designated #58) for further investigation. As with rat Cyp3a2 BD for #65del9 and #58 (SI Appendix, Fig. S12B), rat Cyp3a was considered to be functionally deleted in both lines by disruption of Cyp3a23/3a1 and Cyp3a2 via TALEN (Cyp3a-KO). Thus, the #58- and #65del9-Cyp3a-KO rat strains were selected for the production of...
of humanized CYP3A rats. The Cyp3a-KO rats were mated with the Tc CYP3A-MAC, and the resultant Cyp3a-KO and CYP3A-MAC/Cyp3a-KO rats also did not display any obvious physiological or anatomical abnormalities.

Characterization of UGT2- and CYP3A-Humanized Rats. EGFP encoded by the UGT2-MAC/CYP3A-MAC was expressed in all tissues examined, suggesting that the UGT2-MAC/CYP3A-MAC was retained in the respective organs (Fig. 4 A and E). FISH analyses showed that the UGT2-MAC and CYP3A-MAC was detected in ≥84% and ≥90% of cells, respectively, in all examined tissues, including the liver, intestine, kidney, spleen, lung, heart, muscle, thymus, brain, and testis (Fig. 4 B, C, F, and G). To confirm expression of the genes from the UGT2-MAC/CYP3A-MAC, RT-PCR analyses were conducted on various tissues from the Tc rat. In the UGT2-MAC/Ugt2-KO rats, UGT2A3 was expressed in

Table 1. Production of chimeric Tc rat and germline-transmitted Tc rat

Gene	Line no.	No. of injected embryos	No. of embryos developed to pups (%)	No. of pups analyzed	No. of chimeras (%)	GT chimeras/total male chimeras
UGT2	1	33	13 (39)	13	10 (77)	2/8
	2	60	36 (60)	35	19 (54)	0/5
CYP3A	4	35	11 (31)	11	9 (82)	4/7
	8	60	21 (35)	21	18 (86)	4/8
	11	70	46 (66)	46	30 (65)	2/9
	21	36	22 (61)	22	21 (95)	1/7

GT, germline transmission.
the liver, small intestine, and kidney; UGT2B4 was mainly expressed in the liver; UGT2B7 was expressed in the liver, small intestine, kidney, and lung; UGT2B10 was expressed in the liver; UGT2B11 was mainly expressed in the liver, small intestine, and kidney; UGT2B15 was mainly expressed in the liver, small intestine, lung, brain, and testis; and UGT2B28 was mainly expressed in the liver, small intestine, and kidney (Fig. 4D). These expression profiles are largely consistent with those observed in humans (39). To confirm the effect of Ugt2 KO and humanization on the expression of the related endogenous Ugt1 drug-metabolizing enzymes, we determined the relative expression levels of rat Ugt1a1, Ugt1a5, and Ugt1a8 in the liver of WT, Ugt2-KO, and UGT2-MAC/Ugt2-KO rats. We selected those genes because a previous report showed that their hepatic expression levels in WT rats were remarkably high compared with those in other tissues (40). According to our results, there was no significant difference in the hepatic expression levels of these genes among the three different rat lines (SI Appendix, Fig. S13). Therefore, Ugt2 KO and humanization do not significantly affect the expression of the endogenous rat Ugt1 genes that we analyzed in this study.

In the CYP3A-MAC/Cyp3a-KO rats, both CYP3A4 and CYP3A5 were robustly expressed in the liver and small intestine, and CYP3A5 additionally in the lung (Fig. 4H). This expression profile is consistent with the one observed in the previously generated humanized CYP3A-HAC mice and in humans (16, 41, 42). To confirm the effect of Cyp3a KO and humanization on the expression of other major Cyp enzymes in rat livers (43), we determined the relative expression levels of Cyp1a2, Cyp2c11, and Cyp2d11 in the liver of WT, Cyp3a-KO, and CYP3A-MAC/Cyp3a-KO rats (SI Appendix, Fig. S14). Cyp3a KO moderately increased the rat Cyp1a2 expression level, while the expression level in CYP3A-MAC/Cyp3a-KO rats was similar to that in WT rats. The expression levels of rat Cyp2c11 were highly increased in both Cyp3a-KO and CYP3A-MAC/Cyp3a-KO rats at a similar level. The rat Cyp2d11 expression was moderately increased in both Cyp3a-KO and CYP3A-MAC/Cyp3a-KO rats. Thus, Cyp3a KO may affect the expression of other endogenous rat Cyp enzymes. On the other hand, since the hydroxylation activities of triazolam were much lower in the liver of Cyp3a-KO rats (Fig. 3D), Cyp enzymes increased by Cyp3a KO do not affect the metabolism of triazolam in the following functional study in CYP3A-humanized rats.

Functional Analyses in UGT2- and CYP3A-Humanized Rats.

UGT2-humanized rats. To analyze the function of human UGT2 in rats, zidovudine and gemfibrozil glucuronidation was investigated in WT, Ugt2-KO, and UGT2-MAC/Ugt2-KO rats. In the present study, these two medications were selected as UGT2-selective substrates. Zidovudine is mainly metabolized by human UGT2B7, which is an important isof orm in UGT2 family (44). In the Ugt2-KO rats, no zidovudine glucuronidation activity was observed in the liver microsomes, indicating that rat Ugt2 is not functional in the liver. In contrast, higher zidovudine glucuronidation activity was observed in an incubation time-dependent manner in the liver microsomes that were prepared from UGT2-MAC/Ugt2-KO rats as well as those from WT rats and human
showing that the introduced human UGT2 gene(s) produced functional UGT2 protein(s) in the liver. These results were also confirmed using gemfibrozil as UGT2-selective substrates (SI Appendix, Fig. S15). Taken together, glucuronidation activities of UGT2 substrates in liver microsomes from UGT2-MAC/Ugt2-KO rats were similar to those in human liver microsomes.

CYP3A-humanized rats. To confirm the functional activity of CYP3A expressed in liver and intestine of CYP3A-MAC/Cyp3a-KO rats, the metabolites of the CYP3A probe substrate triazolam, α-OH triazolam and 4-OH triazolam, were examined (45). Treatment with pregnenolone 16α-carbonitrile (PCN), a CYP3A inducer, substantially increased the formation of α-OH triazolam and 4-OH triazolam in the liver and intestine of CYP3A-MAC/Cyp3a-KO rats, but not in Cyp3a-KO rats (SI Appendix, Fig. S16). Furthermore, immunoinhibition assays showed that the anti-human CYP3A4 antibody inhibited triazolam metabolism in the liver microsomes from CYP3A-MAC/Cyp3a-KO rats but not in those from WT rats (SI Appendix, Fig. S17). These findings suggest that human CYP3A proteins expressed in the liver and intestine of CYP3A-MAC/Cyp3a-KO rats were functional, and that CYP3A-specific metabolic activities in the liver and intestine of CYP3A-MAC/Cyp3a-KO rats were mediated by human CYP3A proteins expressed in the CYP3A-MAC/Cyp3a-KO rats.

The kinetics of triazolam metabolism were analyzed to assess whether the enzymatic properties of CYP3A introduced in the CYP3A-MAC/Cyp3a-KO rats were the same as those in humans (SI Appendix, Fig. S18). The ratios of intrinsic clearance (V_{max}/K_m) for α-OH triazolam and 4-OH triazolam formation in the liver microsomes from CYP3A-MAC/Cyp3a-KO rats and humans were more than 20-fold higher than those from WT rats (Fig. 5B and SI Appendix, Table S2), suggesting that the kinetics of triazolam in the liver microsomes from CYP3A-MAC/Cyp3a-KO rats were very similar to those from humans, but not to those from WT rats. Next, we analyzed the pharmacokinetic profiles of triazolam and its metabolites after its i.v. administration of triazolam (SI Appendix, Figs. S19 and S20 and Table S3). The ratios of areas under the curves (AUCs) for α-OH triazolam and triazolam (α-OH/triazolam) in CYP3A-MAC/Cyp3a-KO rats were eightfold higher than those in Cyp3a-KO rats, while the AUC ratios of α-OH triazolam and 4-OH triazolam (α-OH/4-OH) in CYP3A-MAC/Cyp3a-KO rats were much higher than those in WT rats (Fig. 5C and D and SI Appendix, Table S3). After the i.v. administration of triazolam, CYP3A-MAC/Cyp3a-KO rats showed the predominant formation of α-OH triazolam, consistent with the results in liver microsomes. Similar results were also obtained after the oral administration of triazolam (SI Appendix, Table S4). This observation is consistent with the clinical data in humans as described previously (46) and it reflects a clear species difference in the formation of α-OH triazolam.
triazolam and 4-OH triazolam between rats and humans, where the CYP3A-MAC/Cyp3a-KO rats more faithfully reflect the human situation than WT rats. Among the pharmacokinetic parameters calculated, clearances after i.v. and oral administration in Cyp3a-KO rats were lower than those in WT rats. Oral bioavailability in all strains were decreased by PCN treatment (SI Appendix, Table S5).

To further validate the value of the CYP3A-MAC/Cyp3a-KO rats for predicting human drug metabolism, we used midazolam, another common CYP3A probe drug. As shown in SI Appendix, Fig. S21, midazolam was preferentially metabolized to 4-OH midazolam in liver microsomes of WT rats. In contrast, 1′-OH midazolam was preferentially formed in liver microsomes of CYP3A-MAC/Cyp3a-KO rats and humans. In summary, our results show that CYP3A-MAC/Cyp3a-KO rats reflected the human metabolism of midazolam as well as triazolam. Taken together, these results strongly support the utility of CYP3A-MAC/Cyp3a-KO rats as a model to predict human drug metabolism.

Discussion

In this study, we established a sophisticated strategy for the development of Mb-sized gene cluster humanized rat models by the approach of combining MMGT and genome editing technologies. We successfully cloned human Mb-sized gene clusters into MACs by a combination of telomere-directed chromosome truncation and loxP insertion in DT40 cells and Cre/loxP-mediated reciprocal translocation cloning in CHO cells. We subsequently introduced the MACs with Mb-sized human gene clusters mainly relied on labor- and time-intensive approaches using the Cre/loxP system, involving the targeting of two independent loxP sites at each end of the cluster, followed by Cre-mediated chromosomal deletion in ES cells and testing the capability of the ES cells to transmit the germline to the next generation at each step. Although such complex manipulations have been performed in mice, they are very difficult in rats owing to the chromosomal instability of rat ES cells. Therefore, the success of the large deletion in fertilized rat eggs described in this study is an important achievement and a prerequisite for the generation of fully humanized rats.

Rats are widely used for in vivo pharmacokinetic and drug−drug interaction studies for various reasons (48). Although rats are often considered as more advantageous models than mice for pharmacological study, the absence of complex genetic manipulation technologies in rat ES cells has thus far hindered the efficient generation of valuable humanized model rats. At least, the generation of Cyp-KO rats by genome editing has previously been described (49, 50). By combining the MAC approach with state-of-the-art genome engineering technologies, namely, TALEN and CRISPR/Cas9, the present study provides the successful generation of humanized UGT2 and CYP3A rats.

In this study, the tissue-specific expression pattern of UGT2 and CYP3A genes observed in humans was reproduced in the humanized UGT2 and CYP3A rats. It should be noted that tissue-specific expression of UGT2 and CYP3A genes has also been reported in the human prostate (41, 51). The analysis of the expression of UGT2 and CYP3A in prostate and their association...
with cancer development using the humanized UGT2 and CYP3A rats will be an interesting subject for future investigations (S2–S4).

The conventional Tg methods using plasmids or BACs can be associated with altered gene expression due to position effects at the site of integration into the host genome and varying copy numbers of the transgenes, making faithful reproduction of human gene expression by this approach in different species very challenging. Since the MAC technology overcomes these limitations and a single MAC containing the genes of interest can be transferred readily to different species, the MAC approach has potential to provide a very powerful tool for achieving reproducible human gene expression in a variety of different species.

The analysis of species differences is an important application for rat models humanized for drug-metabolizing enzymes, such as those described in our study. Such species differences between humans and rats have been described for hepatic glucuronidation of gemfibrozil (55). Consistent with the previous finding, the glucuronidation rate of gemfibrozil was much lower in human than in rat liver microsomes (SI Appendix, Fig. S15). Notably, our humanized UGT2 rats also showed a lower rate of gemfibrozil glucuronidation than the wild-type rats (SI Appendix, Fig. S15), indicating that humanized rats can mimic human glucuronidation of gemfibrozil. This has also been reported that the rates of zidovudine glucuronidation were very similar between human and rat liver microsomes (S5, S7) and the rates of zidovudine glucuronidation were also similar in liver microsomes prepared from our humanized UGT2 rats, wild-type rats, and human in our study (Fig. S4). It therefore appears likely that the described humanized UGT rats are a useful tool to predict human drug glucuronidation.

In the present functional analyses of Cyp3a-KO and humanized CYP3A rats, we used triazolam as a probe drug. Triazolam is a highly specific CYP3A substrate and its clearance occurs almost entirely by hepatic metabolism by CYP3A4 after i.v. administration (S8). First, in vitro studies showed that the formation rates of 4-OH triazolam in the liver microsomes of Cyp3a-KO rats were lower than those of WT rats (SI Appendix, Fig. S16). The in vitro findings were consistent with the in vivo findings that plasma concentrations of 4-OH triazolam in vehicle-treated Cyp3a-KO rats were lower than those in vehicle-treated WT rats (SI Appendix, Fig. S19). These results suggested that the formation of 4-OH triazolam is catalyzed by rat CYP3A enzymes in WT rats. Next, in vitro studies showed low formation rates of α-OH triazolam and 4-OH triazolam in liver microsomes of vehicle-treated CYP3A-MAC/Cyp3a-KO and Cyp3a-KO rats (SI Appendix, Fig. S16). Plasma concentration profiles of α-OH triazolam and 4-OH triazolam were also similar between vehicle-treated CYP3A-MAC/Cyp3a-KO and vehicle-treated Cyp3a-KO rats (SI Appendix, Fig. S19), suggesting that human CYP3A-dependent formation of α-OH triazolam and 4-OH triazolam in vehicle-treated CYP3A-MAC/Cyp3a-KO rats was as low as in Cyp3a-KO rats. Importantly, however, PCN treatment increased the plasma concentrations of α-OH triazolam over those of 4-OH triazolam in CYP3A-MAC/Cyp3a-KO rats, but not in Cyp3a-KO rats. These results suggested that the human CYP3A-dependent formation of α-OH triazolam was enhanced by PCN treatment. Interestingly, plasma concentrations of 4-OH triazolam were markedly decreased and those of α,4-dihydroxymidazolam were largely increased by PCN only in WT rats (SI Appendix, Figs. S19 A and D and S20), suggesting that further metabolism of 4-OH triazolam to α,4-dihydroxytriazolam may be enhanced by PCN in WT rats. The further metabolism of 4-OH-triazolol complicates the comparison of the AUC ratio of α-OH triazolam and 4-OH triazolam between PCN-treated CYP3A-MAC/Cyp3a-KO and PCN-treated WT rats. Thus, the comparison of the AUC ratios in PCN-treated CYP3A-MAC/Cyp3a-KO rats with those in vehicle-treated WT rats appeared more accurate and was therefore undertaken in our analysis (Fig. S5D). Taking together the findings of the in vitro (Fig. S5B) and in vivo studies (Fig. S5 C and D), we observed that 4-OH triazolam preferentially formed in WT rats, but that α-OH triazolam was mainly formed in CYP3A-MAC/Cyp3a-KO rats and humans.

Importantly, in these so-called humanized CYP3A and UGT2 rat strains, the pharmacokinetic profiles and metabolism of relevant probe substrates observed in humans were well reproduced. In this study, we used triazolam as a probe drug to compare the performance of CYP3A enzymes in humans and rats. However, the metabolism of not only triazolam but also midazolam showed different characteristics between humans and rats (S9). The preferential formation of 1′-OH midazolam rather than 4-OH midazolam occurs in human liver microsomes. In contrast, midazolam is predominantly metabolized to 4-OH midazolam in rat liver microsomes. This feature found in human liver microsomes was found in CYP3A-MAC/Cyp3a-KO rats (SI Appendix, Fig. S21). Another difference between humans and rodents is the fact that CYP3A4 is expressed in human intestine and liver, whereas different CYP3A enzymes are expressed in both tissues in rodents (S60). Owing to the human-like expression of CYP3A4 in liver and intestine of the described humanized rat, this model can also be applied to study differences of drug metabolism between humans and rodents resulting from the distinct tissue distribution of corresponding enzymes. Therefore, these humanized rats provide useful models not only for elucidating the mechanism of the temporal and spatial regulation of UGT2/CYP3A gene expression, but also for the improved prediction of human pharmacokinetics and drug–drug interactions.

Hence, we successfully modified the CYP3A5 single-nucleotide polymorphism (SNP) in the humanized CYP3A mouse using genome editing technology (S61). The SNP conversion of CYP3A5 (g.6986G to A, *3 to *1) in the mouse ES cells and fertilized eggs recapitulated the CYP3A5*1 carrier phenotype in humans. This SNP conversion method can also be applied to rat ES cells or rat fertilized eggs containing MACs with human genes, such as CYP3A4 and UGT2-MACs, providing a means to readily establish relevant allelic human variants from an existing MAC humanized rat model. Thus, our approaches may be applicable to understand pharmacogenetic differences between major sequences and the variants in humans.

Whereas the UGT2/CYP3A models described in the present report have primary applications in drug metabolism and pharmacokinetic studies, it should be noted that the approach described herein has compelling utility for other applications. Since MACs can carry multiple and/or very large genes, and can be transmitted through the germline and stably maintained in vivo, this technology can be used to generate rat (and presumably other animal) models containing large genomic regions of genes with known species specificities, such as genes encoding other drug-metabolizing enzymes [CYP2C cluster (~400 kb)], drug transporters [OATP1 (700 kb)], or components of the immune system [e.g., the HLA cluster (3 Mb), TCRαβ (1 Mb), TCRβ (620 kb), IgH (~1.5 Mb), Igκ (~2 Mb), and Iγ (~1 Mb)].

In summary, the described combination of chromosome transfer of Mb-sized human gene clusters via MAC and genome editing for orthologous gene disruption provides a powerful approach for the generation of fully humanized Tc rats with various important applications in basic research, drug discovery, and development.

Materials and Methods

Cell Culture. UGT2-MAC and CYP3A-MAC were constructed using a previously described Mb-sized gene cloning system via HAC (17, 31, 32). MAC4 and MAC1 vectors were used to generate the UGT2-MAC and, CYP3A-MAC, respectively. The structure of MAC1 contained a centromere from mouse chromosome 11, EGFP flanked by H45 insulators, 5′HPRT-loxP site, PGK-hyg, PKG-puro, and telomeres. The structure of MAC1 contained a centromere from mouse chromosome 11, EGFP flanked by H45 insulators, PKG-neo, loxP-3′
HPRT site, PKG-puro, and telomeres (18). Chicken DT40 cells containing hChr4 or hChr7 were maintained at 40 °C in RPMI medium 1640 supplemented with 10% fetal bovine serum (FBS), 1% chicken serum, 50 μM 2-mercaptoethanol, and 1.5 mM G418 (62). Hprt-deficient CHO (hprt−/−) cells containing MAC4 or MAC1 used as fusion recipients for hChr4 or hChr7 transfer, respectively, were maintained at 37 °C in Ham’s F-12 nutrient mixture (Invitrogen) supplemented with 10% FBS. Mouse embryonic fibroblasts (MEFs) were isolated from embryos at 13.5 day postcoitum (d.p.c.). MEFs were grown in DMEM (Sigma-Aldrich) plus 10% FBS. Parental mouse ES cell lines, individual human chromosome hybrid TTZF clones were maintained on mitomycin C (Sigma-Aldrich)-treated Jcl:ICR (CLEA Japan) MEFs and neomycin-resistant MEFs (Oriental Yeast Co., Ltd.), respectively, as feeder layers in DMEM with 18% FBS (HyClone), 1 mM sodium pyruvate (Invitrogen), 0.1 mM nonessential amino acids (Invitrogen), 0.1 mM 2-mercaptoethanol (Sigma-Aldrich), 2 mM l-glutamine (Invitrogen), and 1,000 unit/mL leukemia inhibitory factor (Funakoshi). A parental rat ES cell line (BLK2i-1, RGD ID: 10054010) and the microcell hybrid BLK2i-1 clones were maintained on mitomycin C-treated MEFs and neomycin-resistant MEFs, respectively, as feeder layers, as described previously (63).

Modification of hChr4 and hChr7 in DT40 Cells. Homologous recombination-proficient chicken DT40 cells (1 x 105) were collected in 0.5 mL of RPMI with 25 μg of linearized targeting vector and electroporated at 550 V and 25 μF using a Gene Pulser apparatus (Bio-Rad). Drug-resistant DT40 clones were selected in 1.5 mg/mL G418, 0.3 μg/mL puromycin, 1.5 mg/mL hygromycin, or 0.5 mg/mL l- histidinol. Homologous recombination in DT40 hybrid clones was identified by PCR analyses using primers described in SI Appendix, Table S1.

MMCT. MMCT was performed as described previously (12). DT40 cells containing the modified chromosomes (hChr4-4AUC25239-lop and hChr7-lop-ΔAC073842) were transferred to CHO (MAC4) and CHO (MAC1) cells, respectively, via MMCT. To transfer the UGT2-MAC or CYP3A-MAC to mouse ES cells and rat ES cells, CHO cells containing the UGTC2-MAC or CYP3A-MAC were used as donor microcell hybrids. Briefly, mouse ES and rat ES cells were fused with microcells prepared from the donor hybrid cells, and selected with G418 (250 and 150 μg/mL, respectively). The transferred UGTC2-MAC or CYP3A-MAC in ES cells were characterized by PCR and FISH analyses.

FISH Analyses. The transplanted cells and homogenized tissue samples were incubated for 15 min in 0.075 M KCl, fixed with methanol and acetic acid (3:1), and then slides were prepared using standard methods. FISH analyses were performed using fixed metaphase or interphase spreads of each cell hybrid using digoxigenin-labeled (Roche) DNA [human COT-1 DNA/mouse COT-1 DNA (Invitrogen)] and biotin-labeled DNA (UGT2-BAC (RP11-643N16), CYP3A-BAC (RP11-757A13), COT-1 DNA, PGK-neo, l-actin-hid, PKG-puro, and PKG-hygro), essentially as described previously (12). Chromosomal DNA was counterstained with DAPI (Sigma-Aldrich). Images were captured using an Axiosmager Z2 fluorescence microscope (Carl Zeiss).

Chimeric Rat Production. Chimeric rats were produced as reported previously (64). Briefly, ES cells derived from each of the BLK2i-1 (UGT2-MAC) (nos. 1 and 2), BLK2i-1 (CYP3A-MAC) nos. 4, 8, 11, and 21, and BLK2i-1 were microinjected into the blastocoele cavity of C57BL/6J ES blastocytes (9–11 ES cells per blastocyst). Then, the blastocytes were transferred into uteri of pseudopregnant recipient rats at 3.5 d.p.c. (12–15 blastocysts per recipient). The contribution of the ES cells in the resultant offspring was confirmed by their coat color and/or fluorescence due to GFP gene expression. All animal experiments were approved by the Animal Care and Use Committee of National Institute for Physiological Sciences and Tottori University.

ACKNOWLEDGMENTS. We thank Toko Kurosaki, Yukako Sumida, Hiromichi Kohno, Masami Morimura, Kei Yoshiida, Eri Kaneda, Akiko Ashiba, Dr. Kazuomi Nakamura, Rina Ohnishi, Etsuko Ueno, Kei Hiramatsu, Dr. Yoshiteru Kai, Motoshi Kimura, Chie Ishihara, Yoko Kowakami, Chiga Igawa (Tottori University), and Yuki Yamasaki (Chiba University) for their technical assistance; Dr. Hiroyuki Kugoh, Dr. Masaharu Hiratsuka, Dr. Tetsuya Ohbayashi, Dr. Takahito Ohira (Tottori University), Dr. Robert H. Tukey (University of California, San Diego), and Dr. Yasuko Narita-Chiba for critical discussions; and the Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. This study was supported in part by the Planned Collaborative Project and the Cooperative Study Program of the National Institute for Physiological Sciences, Japan (Y.K.); the City Area Program (Basic Stage) and Innovation Strategy Support Program from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (M. Oshimura); the Takeda Science Foundation (M. Oshimura and Y.K.); the 21st Century Center of Excellence program from the Japan Society for the Promotion of Science (JSPS) (M. Oshimura); the Mondokira Memorial Foundation for Medical and Pharmaceutical Research (Y.K.); the Naito Foundation (Y.K.); the Regional Innovation Strategy Support Program from MEXT (Y.K. and M. Oshimura); the Funding Program for Next Generation World-Leading Researchers (NEXT program) from the JSPS (Y.K.); the Basic for Supporting Innovative Drug Discovery and Life Science Research from the Japan Agency for Medical Research and Development (AMED) under Grant JP18bm0301009 (to Y.K.); the Basic Science and Platform Technology Program for Innovative Biological Medicine from AMED under Grant JP18am0101124 (to Y.K.); and JSPS KAKENHI Grant JP15H04285 (to Y.K.). This work was partly performed at the Tottori Bio Frontier managed by Tottori prefecture.
30. Satoh D, et al. (2017) Establishment of a novel hepatocyte model that expresses four cytochrome P450 genes stably via mammalian-derived artificial chromosome for pharmacokinetcs and toxicity studies. PloS One 12:e0187072.

31. Kuzuki Y, Oshimura M (2011) Human artificial chromosomes for gene delivery and the development of animal models. Mol Ther 19:1591–1601.

32. Hoshiya H, et al. (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Mol Ther 17:309–317.

33. Mano Y, Usui T, Kamimura H (2007) The UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver. Drug Metab Dispos 35:2040–2044.

34. Mahnke A, et al. (1997) Expression and inducibility of cytochrome P450 3A4 (CYP3A4) and other members of the CYP3A subfamily in rat liver. Arch Biochem Biophys 337:62–68.

35. Matsuura T, et al. (2004) Isolation and characterization of a new major intestinal CYP3A form, CYP3A62, in the rat. J Pharmacol Exp Ther 309:1282–1290.

36. Mandlekar SV, et al. (2007) Development of an in vivo rat screen model to predict pharmacokinetic interactions of CYP3A4 substrates. Xenobiotica 37:923–942.

37. Kobayashi K, Urashima K, Shimada N, Chiba K (2002) Substrate specificity for rat cytochrome P450 (CYP) isoforms: Screening with cDNA-expressed systems of the rat. Biochem Pharmacol 63:889–896.

38. Aueviriyavit S, Kobayashi K, Chiba K (2010) Species differences in mechanism-based inactivation of CYP3A in humans, rats and mice. Drug Metab Pharmacokinet 25:93–100.

39. Court MH, et al. (2012) Quantitative distribution of mRNAs encoding the 19 human UDP-glucuronosyltransferase enzymes in 26 adult and 3 fetal tissues. Xenobiota 42:266–277.

40. Shelby MK, Cherrington NJ, Vansell NR, Klaassen CD (2003) Tissue mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. J Pharmacol Exp Ther 309:193–202.

41. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T (2003) Tissue distribution of the rat UDP-glucuronosyltransferase gene family. Drug Metab Dispos 31:326–333.

42. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T (2003) Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 123:369–375.

43. Komori M, et al. (1990) Fetus-specific expression of a form of cytochrome P450 in human livers. Biochemistry 29:4430–4433.

44. Caron E, Rioux N, Nicolas O, Lebel-Talbot H, Hamelin BA (2005) Quantification of the expression and inducibility of 12 rat cytochrome P450 isoforms by quantitative RT-PCR. J Biochem Mol Toxicol 19:368–378.

45. Barbarier O, et al. (2000) 3′-azido-3′-deoxythymidine (AZT) is glucuronidated by human UDP-glucuronosyltransferase 2B7 (UGT2B7). Drug Metab Dispos 28:497–502.

46. van Waterschoot RA, et al. (2009) Inhibition and stimulation of intestinal and hepatic CYP3A activity: Studies in humanized CYP3A4 transgenic mice using triazolam. Drug Metab Dispos 37:2305–2313.

47. Birling MC, et al. (2017) Efficient and rapid generation of large genomic variants in rats and mice using CRISMeR. Sci Rep 7:42331.

48. Iannaccone PM, Jacob HJ (2009) Rat in vivo and in vitro small intestinal cytochrome P450 (CYP) radiometric assay. Yakugaku Zasshi 129:778–787.

49. Karypidis AH, Olsson M, Andersson SO, Rane A, Ekstrom I (2008) Deletion polymorphism of the UGT2B17 gene is associated with increased risk for prostate cancer and correlated to gene expression in the prostate. Pharmacogenomics J 8:147–151.

50. Fujimura T, et al. (2009) Expression of cytochrome P450 3A4 and its clinical significance in human prostate cancer. Urology 74:391–397.

51. Leskela S, et al. (2007) Cytochrome P450 3A5 is highly expressed in normal prostate cells but absent in prostate cancer. Endol Relat Cancer 14:645–654.

52. Di Marco A, D’Antoni M, Attaccalite S, Carotenuto P, Laufer R (2005) Determination of drug glucuronidation and UDP-glucuronosyltransferase selectivity using a 96-well radiometric assay. Drug Metab Dispos 33:812–819.

53. Sim SM, Back DJ, Breckenridge AM (1991) The effect of various drugs on the glucuronidation of zidovudine (azidothymidine; AZT) by human liver microsomes. Br J Clin Pharmacol 32:17–21.

54. Mano Y, Usui T, Kamimura H (2007) Comparison of inhibition potentials of drugs against zidovudine glucuronidation in rat hepatocytes and liver microsomes. Drug Metab Dispos 35:602–606.

55. Nolting A, Abramowicz W (2000) Lack of interaction between citalopram and the CYP3A4 substrate triazolam. Pharmacotherapy 20:750–755.

56. Ghosal A, Satoh H, Thomas PE, Bush E, Moore D (1996) Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450. Drug Metab Dispos 24:940–947.

57. Komura H, Iwaki M (2008) Species differences in vitro and in vivo small intestinal metabolism of CYP3A4 substrates. J Pharm Sci 97:1775–1800.

58. Abe S, et al. (2017) Modification of single-nucleotide polymorphism in a fully humanized CYP3A4 mouse by genome editing technology. Sci Rep 7:15189.

59. Kazuki Y, et al. (2004) Human chromosome 21q22.2-qter carries a gene(s) responsible for downregulation of mlc2a and PEBP in Down syndrome model mice. Biochem Biophys Res Commun 317:491–499.

60. Hirabayashi M, et al. (2013) A retrospective analysis of germline competence in rat and mouse Embryonic stem cells. Transgenic Res 22:411–416.

61. Kobayashi T, et al. (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799.