Interactive Effect of Smoking and NQO1 Haplotypes on Lung Cancer Risk

Jin Hee Kim¹ and Yun-Chul Hong²,³

¹Department of Environmental Health, Graduate School of Public Health, Seoul National University; ²Department of Preventive Medicine, Seoul National University College of Medicine; ³Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea

Received: 26 June 2014 Accepted: 19 November 2014

Address for Correspondence:
Yun-Chul Hong, MD
Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 110-799, Korea
Tel: +82-2-740-8394, Fax: +82-2-747-4830
E-mail: ychong1@snu.ac.kr

Funding: This study was supported by the Eco-technopia 21 Project of the Ministry of Environment, Republic of Korea (2007).

INTRODUCTION

Global statistics estimate that approximately 25% of lung cancers are not directly attributable to smoking although cigarette smoking has been known to be the major cause of lung cancer (1). Moreover, only 10% of smokers develop lung cancer (2). These observations suggest that genetic variations related to the individual metabolism may determine susceptibility to lung cancer.

NAD(P)H:quinone oxidoreductase 1 (NQO1), which is known to be related to carcinogen metabolism and oxidative status, was evaluated for lung cancer development. The genotypes of two NQO1 polymorphisms, namely, IVS1-27C > G and Ex6+40C > T, were determined in 616 lung cancer cases and 616 lung cancer-free controls and haplotypes composed of the two polymorphisms were estimated. In the evaluation of the effect of the NQO1 genotypes or diplotypes, we did not find any significant association with lung cancer risk after adjusting for body mass index and smoking status. However, when we evaluated the effect of the NQO1 diplotypes for lung cancer risk in combination with smoking, smokers without the C-T/C-T diplotype showed a significantly increased risk of lung cancer compared with nonsmokers without the C-T/C-T diplotype (adjusted OR, 2.2; 95% CI, 1.67-3.02), and smokers with the C-T/C-T diplotype showed the highest OR of lung cancer (adjusted OR, 2.7; 95% CI, 1.78-4.21). Moreover, a trend test showed an additive interaction between smoking and the NQO1 C-T/C-T diplotype (P_trend < 0.01). The additive effect of smoking and the NQO1 C-T/C-T diplotype was more apparent in squamous cell carcinoma, although this effect was statistically significant in all lung cancer cell types (all cell types, P_trend < 0.05). This result suggests that haplotypes of the NQO1 gene play an important role in the development of lung cancer by interaction with smoking.

Keywords: Smoking; NQO1 Polymorphism; Lung Cancer Risk; Interaction

The role of genetic polymorphisms of NAD(P)H:quinone oxidoreductase 1 (NQO1), which codes for a proline-to-serine change at position 187 in the amino acid sequence of NQO1 protein. This NQO1 pro187ser polymorphism has been reported to be associated with greatly diminished levels of protein due to its accelerated degradation via the ubiquitin proteasomal pathway (17, 18). Moreover, in genotype-phenotype studies, cell lines and tissues obtained from persons with the homozygous mutant NQO1 genotype were reported to show deficient NQO1 activity (19-22). Although several studies have reported a relation between the NQO1 pro187ser polymorphism and lung cancer risk, their results were found to be inconsistent probably due to small sample sizes, mixed populations, or disregard of polymorphisms in other sites of the NQO1 gene (10-15, 23-27).

Therefore, in this study we estimated the effects of NQO1 gene polymorphisms on lung cancer risk using a haplotype-based approach in a relatively large sample.

MATERIALS AND METHODS

Study populations

A total of 616 Korean patients that were newly diagnosed with lung cancer at Chungbuk National University Hospital in Cheongju, Dankook University Hospital in Cheonan, and Inha University Hospital in Gyeonggi. A total of 616 Korean patients were newly diagnosed with lung cancer at Chungbuk National University Hospital in Cheongju, Dankook University Hospital in Cheonan, and Inha University Hospital in Gyeonggi. A total of 616 Korean patients were newly diagnosed with lung cancer at Chungbuk National University Hospital in Cheongju, Dankook University Hospital in Cheonan, and Inha University Hospital in Gyeonggi. A total of 616 Korean patients were newly diagnosed with lung cancer at Chungbuk National University Hospital in Cheongju, Dankook University Hospital in Cheonan, and Inha University Hospital in Gyeonggi.
sity Hospital in Incheon between 2001 and 2003, and 616 controls without lung cancer that were individually matched to cases by age and sex were recruited. The exclusion and inclusion criteria applied were reported in a previous study (2, 28). Detailed information on diet, smoking habits, lifestyle, weight, height, medical treatment, and other socio-economic characteristics were collected by trained interviewers using a structured questionnaire. Venous blood samples of all subjects were collected into heparinized tubes and stored at -70°C until used for DNA extraction.

Genotyping
In studies of single nucleotide polymorphism (SNP) based on limited numbers of subjects, low minor allele frequencies of SNPs may lead to null results, despite meaningful relationships between these SNPs and target diseases. Therefore, we first selected four NQO1 SNPs (rs689452, rs689453, rs1800566, and rs10517) which have more than 10% minor allele frequencies based on the SNP500Cancer database (http://snp500cancer.nci.nih.gov/home.cfm). Dan Stram’s haplotype-tagging SNP program (tagSNP.exe v2) was then used to determine the best set of haplotype-tagging SNPs. Based on this tagging SNP program, three SNPs (rs689452, rs689453 and rs1800566; min RSQ = 0.9507) were selected from the above four and genotyped in 43 controls preferentially. One (rs689453) of these SNPs (rs689452, rs689453, and rs1800566) was excluded for further genotyping because it showed the same genotype (GG) in all of the 43 controls. Finally, two sites (rs689452, IVS1-27C > G; and rs1800566, Ex6+40C > T) were genotyped in all samples. Genotypings were performed completely blind of case-control status, and repeatability testing was conducted on 5% of the subjects, which resulted in a 99.6% concordance rate.

DNA was extracted from whole blood samples using a QIAamp DNA Blood Mini Kit (Qiagen, Valencia, CA, USA). SNP genotyping was performed using a single base primer extension assay (for rs689452) with the SNaPShot assay kit (ABI, Foster City, CA, USA) and using SNP-IT™ assays (for rs1800566) with the SNPStream 25K® System (Orchid Biosciences, Princeton, NJ, USA), as previously described (29). The designed primers were as follows: rs689452-forward, 5’-TCTTCTACAGACTGCACT-CC-3’, rs689452-reverse, 5’-TCTGAGTGAGCCAGATAGC-3’, rs689452-SNP, 5’-TTTGGTTGTTGATATGGTTTCC-3’; rs1800566-forward, 5’-TGTTCTTTCTGTATCCTCAGATG-3’, rs1800566-reverse, 5’-ATTGAATCCGCGCTC-3’, rs1800566-SNP, 5’-TGCCCAATGCTATATGTCAGTGGAG-3’.

Statistical analyses
To identify whether each SNP site was on the Hardy-Weinberg equilibrium (HWE), the distributions of observed and expected genotype frequencies were compared using the chi-square test. When genotype data was not available for at least one of the two SNPs, the subjects with missing genotype were excluded in haplotype estimation. Individual haplotypes composed of two polymorphisms, IVS1-27C > G and Ex6+40C > T, were estimated from genotype data using the PHASE program (ver. 2.0.2). Linkage disequilibrium between two polymorphic sites was estimated as the relative disequilibrium (D’) (30). Unconditional logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI) for the NQO1 polymorphisms in the lung cancer patients and control subjects. A probability level of 0.05 was used as the criterion for statistical significance, and SAS version 9.3 (SAS Institute Inc., Cary, NC, USA) was used for the statistical analysis.

Ethics statement
The study protocol was approved by institutional review board at the Seoul National University Hospital (IRB No., C-0602-083-169). Written informed consent was provided by all study participants.

RESULTS
The characteristics of the lung cancer cases and control subjects are shown in Table 1. Body mass index (BMI) and smoking were found to affect the OR of lung cancer (BMI, OR, 1.14; and smoking, OR, 2.4; 95% CI, 1.86-3.09) while age, sex, and family history of cancer were not significantly different between cases and controls.

Table 1. Comparison of the baseline characteristics of lung cancer cases and controls

Characteristics	Case (n = 616)	Control (n = 616)	Crude OR (95% CI)
Age (mean ± SD [yr])	65.3 ± 10.2	65.3 ± 10.2	1.0 (0.99-1.01)
Sex (number of male [%])	483 (78.4)	483 (78.4)	1.0 (0.76-1.31)
Body mass index (mean ± SD [kg/m²])	22.0 ± 3.3	22.9 ± 3.1	1.1 (1.06-1.14)
Cigarette smoking (number of smokers [%])	490 (79.6)	381 (61.9)	2.4 (1.86-3.09)
Family history of cancer (% present)	118 (22.7)	105 (20.9)	1.1 (0.82-1.49)
Cell type of lung cancer (number [%])			
AC	168 (27.3)		
SCC	240 (39.0)		
Other NSCLCs	112 (18.1)		
SCLC	96 (15.6)		

AC, adenocarcinoma; SCC, squamous cell carcinoma; NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; OR, odds ratio; CI, confidence interval.
In the evaluation of the effect of the NQO1 genotypes (Table 2), we did not find any significant association with lung cancer risk after adjusting for BMI and smoking status, although the CC genotype of Ex6+40C>T showed a preventive effect for lung cancer risk as shown by its crude OR (crude OR, 0.7; 95% CI, 0.50-0.97).

When we tested HWE of each NQO1 site, both cases and controls were found to be on the HWE (both IVS1-27C > G and Ex6+40C>T, P > 0.05). In addition, the two sites were found to be strongly linked (D’ = 1, P < 0.01). Therefore, we evaluated the effect of the NQO1 diplotype for lung cancer risk and did not find any significant association with lung cancer risk after adjusting for BMI and smoking status (Table 3). Because smoking is a major risk factor of lung cancer and the NQO1 is related to the metabolism of tobacco carcinogens, we evaluated the effects of smoking in combination with the various NQO1 diplotypes. When smoking status and diplotypes were analyzed as categorical variables (Table 4), both smokers with the C-T/C-T diplotype and smokers without the C-T/C-T diplotype showed significantly higher risks of lung cancer than nonsmokers without the C-T/C-T diplotype (adjusted OR, 2.7; 95% CI, 1.78-4.21 and adjusted OR, 2.2; 95% CI, 1.67-3.02, respectively). In addition, the trend test showed an additive interaction of smoking with the NQO1 diplotype (P_{trend} < 0.01). Furthermore, when we estimated the combined effect of smoking and the NQO1 diplotype on non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) separately (Table 4), the additive effect of smoking and the NQO1 diplotype was found in both NSCLC and SCLC although the OR of lung cancer was greater in SCLC than in NSCLC. In the analyses of each NSCLC cell type (Table 5), the additive effect of smoking and NQO1 diplotype was found to be more apparent in squamous cell carcinoma (SCC) than in adenocarcinoma (AC) or in other NSCLCs, although all types showed similar trends in terms of the combined effect of smoking and NQO1 diplotypes on lung cancer risk.

DISCUSSION

NQO1 has been reported to be an important factor for carcinogen metabolism and cancer patient survival (3). However, previous studies have produced inconsistent results on the associations between lung cancer risk and NQO1 gene polymorphisms (10-15, 26, 27). Because these inconsistencies may have been due to small sample sizes or disregard for other polymorphisms

Genotypes (rs number)	Case, No. (%)	Control, No. (%)	Crude OR (95% CI)	Adjusted OR* (95% CI)
IVS1-27C>G (rs689452)				
CC	247 (40.6)	228 (37.2)	1.1 (0.77-1.56)	1.0 (0.70-1.47)
GC	277 (45.6)	299 (48.9)	0.9 (0.67-1.32)	0.8 (0.58-1.21)
CC+CG	527 (86.2)	527 (86.1)	1.0 (0.73-1.39)	0.9 (0.65-1.29)
GG	84 (13.8)	85 (13.9)	1.0 (ref.)	1.0 (ref.)
Ex6+40C>T (rs1800566)				
CC	189 (30.8)	213 (34.6)	0.7 (0.50-0.97)	0.7 (0.51-1.04)
CT	306 (49.8)	309 (50.3)	0.8 (0.57-1.06)	0.8 (0.54-1.06)
CC+CT	495 (80.6)	522 (84.9)	0.7 (0.55-1.00)	0.7 (0.54-1.03)
TT	119 (19.4)	93 (15.1)	1.0 (ref.)	1.0 (ref.)

*OR obtained after adjusted for BMI and smoking status. OR, odds ratio; CI, confidence interval.

Diplotypes*	Case, No. (%)	Control, No. (%)	Crude OR (95% CI)	Adjusted OR* (95% CI)
C-T/C-T	189 (31.2)	191 (31.3)	1.0 (ref.)	1.0 (ref.)
C-T/G-C	113 (18.7)	115 (18.8)	1.0 (0.72-1.38)	1.1 (0.74-1.49)
C-C/C-C	119 (19.0)	92 (15.1)	1.3 (0.90-1.78)	1.3 (0.92-1.90)
G-C/G-C	88 (14.5)	107 (17.5)	0.8 (0.59-1.18)	0.9 (0.61-1.27)
C-C/C-C	91 (15.1)	21 (3.4)	0.9 (0.48-1.76)	0.9 (0.47-1.87)

Total: 606 (100), 611 (100)

*A pair of haplotypes composed of two polymorphic sites, IVS1-27C>G and Ex6+40C>T. OR obtained after adjusted for BMI and smoking status. OR, odds ratio; CI, confidence interval.

Subgroup of lung cancer	Smoking status	Diplotypes*	Case, No. (%)	Control, No. (%)	Crude OR (95% CI)	Adjusted OR* (95% CI)	P_{trend}
All	Nonsmoker	Others'/Others or C-T/Others	98 (16.2)	201 (32.9)	1.0 (ref.)	1.0 (ref.)	< 0.01
	Smoker	Others/Others or C-T/Others	27 (4.5)	33 (5.4)	1.7 (0.96-2.95)	1.6 (0.87-2.94)	< 0.01
NSCLC	Nonsmoker	Others/Others or C-T/Others	393 (64.8)	318 (52.0)	2.5 (1.91-3.36)	2.2 (1.67-3.02)	< 0.01
	Smoker	Others/Others or C-T/Others	88 (14.5)	59 (9.7)	3.1 (2.03-4.60)	2.7 (1.78-4.21)	< 0.01
SCLC	Nonsmoker	Others/Others or C-T/Others	88 (17.2)	169 (23.7)	1.0 (ref.)	1.0 (ref.)	< 0.01
	Smoker	Others/Others or C-T/Others	24 (4.7)	31 (6.0)	1.5 (0.82-2.69)	1.4 (0.76-2.69)	< 0.01

*A pair of haplotypes composed of two polymorphic sites, IVS1-27C>G and Ex6+40C>T. Other haplotypes except C-T. OR obtained after adjusted for BMI. P value obtained from the Cochran-Armitage trend test. NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; OR, odds ratio; CI, confidence interval.
in the NQO1 gene, we used a haplotype-based approach in a relatively large number of subjects to increase statistical sensitivity. The two sites investigated in this study (IVS1-27C > G and Ex6+40C > T) were found to be linked strongly to each other. In connection with the strong linkage in our study, HapMap showed that these two loci exist as a haplotype block in the Asian population [http://www.hapmap.org/cgi-perl/gbrowse/gbrowse/], showing the reliability of our data and the importance of considering both of these loci.

In the present study, we evaluated the combined effect of smoking and NQO1 diplotype on lung cancer risk because smoking is the major factor in the development of lung cancer. Our study results showed that diplotypes of the NQO1 gene as well as smoking play an important role in the development of lung cancer and there is an additive interaction between smoking and NQO1 diplotype. These study results support the hypothesis that NQO1 has a shorter protein half-life in individuals with the T allele at Ex6+40C > T compared to individuals with the wild type C allele, and thus confers a higher risk of lung cancer development (17-22). Moreover, in the present study, we used a web-based tool (Improbizer, http://www.cse.ucsc.edu/%7Ekent/improbizer/improbizer.html#NumMotifs) to identify whether or not the IVS1-27G > C polymorphism is located in a protein binding motif that has a potential to modulate NQO1 functionally although it is located in an intron. In the analysis using the web-based tool, this site was found to be located in the protein binding motif of NQO1 intron1, indicating the potential for the functional regulation of NQO1 protein activity.

In the present study, we also conducted subgroup analyses according to lung cancer cell type, because subtypes of lung cancer differ in many respects in terms of cellular origin, genetic and molecular changes, and clinical features. Trend analyses showed that the combined effect of smoking and NQO1 diplotype on lung cancer risk was statistically significant for all lung cancer cell types. However, our data also showed that this trend was more apparent in SCC. This more apparent relation with SCC is biologically plausible, because NQO1 protein may function as an oxidative stress inhibitor and SCC is more likely to be affected by tobacco smoke containing oxidative stress inducers than the other cell types of lung cancer (3, 31-35). Although SCLC showed the largest OR of lung cancer in terms of NQO1 diplotype effect, the small number of nonsmokers with the C-T/C-T diplotype in SCLC patients and controls caused the confidence interval to broaden. Therefore, further studies are needed on a larger number of subjects to estimate the effects of the NQO1 diplotype on lung cancer risk in various types of lung cancer.

One of the weaknesses of the present study is that the control population was a heterogeneous mixture of healthy people and patients with a variety of different conditions that could be associated with NQO1 polymorphisms. This may possibly weaken our results even though we did not find any significant relationship between NQO1 polymorphisms and the development of diseases of the controls by our literature search (36, 37).

The present study suggests that diplotypes of the NQO1 gene play an important role in the development of lung cancer, and there is an additive interaction between smoking and polymorphisms in the NQO1 gene for the risk of developing lung cancer. However, we need to clearly understand the function of the NQO1 C-T haplotype in the development of lung cancer through further laboratory research.

DISCLOSURE

The authors have no conflicts of interest to disclose.

AUTHOR CONTRIBUTION

Conception and coordination of the study, statistical analysis, and manuscript preparation: Kim JH, Hong YC.
REFERENCES

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.
2. Kim JH, Kim H, Lee KY, Kang JW, Lee KH, Park SY, Yoon HI, Jheon SH, Sung SW, Hong YC. Aryl hydrocarbon receptor gene polymorphisms affect lung cancer risk. Lung Cancer 2007; 56: 9-15.
3. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 2000; 129: 77-97.
4. Cadenas E. Antioxidant and prooxidant functions of DT-diaphorase in quinone metabolism. Biochem Pharmacol 1985; 49: 127-40.
5. O’Brien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 1991; 80: 1-41.
6. Asher G, Lotem I, Cohen B, Sachs L, Shaul Y. Regulation of p53 stability and p53-dependent apoptosis by NADH quinone oxidoreductase 1. Proc Natl Acad Sci U S A 2001; 98: 11883-9.
7. Lind C, Cadenas E, Hochstein P, Ernster L. DT-diaphorase: purification, properties, and function. Methods Enzymol 1990; 186: 287-301.
8. Siegel D, Gustafson DL, Dehn DL, Han JY, Boonchoong P, Berliner LJ, Ross D. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 979-87.
9. Chao C, Zhang ZF, Berthiller J, Boffetta P, Berliner L, Ross D. Characterization of a polymorphism in NAD(P)H:quinone oxidoreductase (DT-diaphorase). Br J Cancer 1997; 75: 69-75.
10. Choo KH, Lee KY, Park JD, Hong YC, Kim YD, Kang JW, Kim H. Influence of NQO1, ALDH2, and CYP2E1 genetic polymorphisms, smoking, and alcohol drinking on the risk of lung cancer in Koreans. Cancer Causes Control 2009; 20: 137-45.
11. Guo S, Gao M, Li X, Li Y, Chu S, Zhu D, Niu W. Lack of association between NADPH quinone oxidoreductase 1 (NQO1) gene C609T polymorphism and lung cancer: a case-control study and a meta-analysis. PLoS One 2012; 7: e47389.
12. Liu Y, Zhang D. The NQO1 C609T polymorphism and risk of lung cancer: a meta-analysis. Asian Pac J Cancer Prev 2011; 12: 3091-5.
13. Vines P, Veglia F, Garte S, Malaveille C, Mattullo G, Dunning A, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, et al. Genetic susceptibility according to three metabolic pathways in cancers of the lung and bladder and in myeloid leukemias in nonsmokers. Ann Oncol 2007; 18: 1230-42.
14. Yang M, Choi Y, Hwangbo B, Lee JS. Combined effects of genetic polymorphisms in six selected genes on lung cancer susceptibility. Lung Cancer 2007; 57: 135-42.
15. Kim JH, Hong YC. No Association between Tumor Necrosis Factor-alpha Gene Polymorphisms and Lung Cancer Risk. Environ Health Toxicol 2013; 28: e2013012.
16. Kim JH, Kim H, Lee KY, Choe KH, Ryu JS, Yoon HI, Sung SW, Yoo KY, Hong YC. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer risk. Hum Mol Genet 2006; 15: 1181-6.
17. Lee KM, Choi JY, Park SK, Chung HW, Ahn B, Yoo KY, Han W, Noh DY, Ahn SH, Kim H, et al. Genetic polymorphisms of ataxia telangiectasia mutated and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2005; 14: 2275-6.
18. Lewis SJ, Cherry NM, Niven RM, Barber PV, Povey AC. Polymorphisms in the NAD(P)H: quinone oxidoreductase gene and small cell lung cancer risk in a UK population. Cancer Epidemiol Biomarkers Prev 2005; 14: 177-83.
19. Lin P, Hsheu YM, Ko JL, Li, Liang YF, Tsai KJ, Chen CY. Analysis of NQO1, GSTP1, and MnSOD genetic polymorphisms on lung cancer risk in Taiwan. Lung Cancer 2003; 40: 129-35.
20. Menzel HJ, Sarmanova J, Sousek P, Berberich R, Grünewald K, Haun M, Kraft HG. Association of NQO1 polymorphism with spontaneous breast cancer in two independent populations. Br J Cancer 2004; 90: 1989-94.
21. Anwar A, Siegel D, Kepa JK, Ross D. Interaction of the molecular chaperone Hsp70 with human NAD(P)H:quione oxidoreductase 1. J Biol Chem 2002; 277: 14060-7.
22. Siegel D, Anwar A, Winski SL, Kepa JK, Zolman KL, Ross D. Rapid polyubiquitination and professional degradation of a mutant form of NAD(P)(H): quinone oxidoreductase 1. Mol Pharmacol 2001; 59: 263-8.
23. Ross D, Traver RD, Siegel D, Kuehl BL, Misra V, Rauth AM. A polymorphism in NAD(P)H:quinone oxidoreductase (NQO1): relationship of a homozygous mutation at position 609 of the NQO1 cDNA to NQO1 activity. Br J Cancer 1998; 74: 995-6.
24. Siegel D, McGuinness SM, Winski SL, Ross D. Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics 1999; 9: 113-21.
25. Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, Gibson NW. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 1992; 52: 797-802.
26. Vineis P, Guo S, Espinosa C, Tomatis R. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer susceptibility. Br J Cancer 2004; 90: 1209-15.
27. Kim JH, Hong YC. Interaction of the molecular chaperone Hsp70 with human NAD(P)H:quinone oxidoreductase 1. J Biol Chem 2002; 277: 14060-7.
28. Siegel D, Anwar A, Winski SL, Kepa JK, Zolman KL, Ross D. Rapid polyubiquitination and professional degradation of a mutant form of NAD(P)(H): quinone oxidoreductase 1. Mol Pharmacol 2001; 59: 263-8.
29. Ross D, Traver RD, Siegel D, Kuehl BL, Misra V, Rauth AM. A polymorphism in NAD(P)H:quinone oxidoreductase (NQO1): relationship of a homozygous mutation at position 609 of the NQO1 cDNA to NQO1 activity. Br J Cancer 1998; 74: 995-6.
30. Siegel D, McGuinness SM, Winski SL, Ross D. Genotype-phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics 1999; 9: 113-21.
31. Traver RD, Horikoshi T, Danenberg KD, Stadlbauer TH, Danenberg PV, Ross D, Gibson NW. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 1992; 52: 797-802.
32. Vineis P, Guo S, Espinosa C, Tomatis R. Genetic polymorphisms of ataxia telangiectasia mutated affect lung cancer susceptibility. Br J Cancer 2004; 90: 1209-15.
increases risk for small cell lung cancer: effect of gender and smoking dose. Pharmacogenetics 2003; 13: 607-18.

33. Simonato L, Agudo A, Ahrens W, Benhamou S, Benhamou S, Boffetta P, Brennan P, Darby SC, Forastiere F, Fortes C, et al. Lung cancer and cigarette smoking in Europe: an update of risk estimates and an assessment of inter-country heterogeneity. Int J Cancer 2001; 91: 876-87.

34. Wang H, Tan W, Hao B, Miao X, Zhou G, He F, Lin D. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res 2003; 63: 8057-61.

35. Yang P, Wentzlaff KA, Katzmann JA, Marks RS, Allen MS, Lesnick TG, Lindor NM, Myers JL, Wiegert E, Midhun DE, et al. Alpha 1-antitrypsin deficiency allele carriers among lung cancer patients. Cancer Epidemiol Biomarkers Prev 1999; 8: 461-5.

36. Kristiansen OP, Larsen ZM, Johannesen J, Nerup I, Mandrup-Poulsen T, Pociot F. No linkage of P187S polymorphism in NAD(P)H: quinone oxidoreductase (NQO1/DIA4) and type 1 diabetes in the Danish population. DIEGG and DSGD. Danish IDDM Epidemiology and Genetics Group and The Danish Study Group of Diabetes in Childhood. Hum Mutat 1999; 14: 67-70.

37. Wang G, Zhang L, Li Q. Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochem Biophys Res Commun 2006; 341: 310-3.