Eliciting a mathematical model from the traffic safety index to estimate the number of road traffic accidents

Sahar S. Neham1*
1Al-Furat Al-Awsat Technical University, Kerbalaa Technical Institute,
*E-mail: Sahars.neham@atu.edu.iq

Abstract. Traffic accidents have become one of the most important problems experienced by countries, leading to the death or injury of many people and the waste of money, which is supposed to be spent on developmental and economic projects that benefit the entire society. In Iraq with the absence of suitable recording system of (Iraqi Roads Traffic Accident Data) and the lack in the measure of highway safety. Thus, lead to error in the analysis of traffic accidents. The aim of this study is to estimate Road Safety Index value and developing a model related it with Road Traffic Accident. To reach the research aim, parameters of Roadway, traffic, Roadside, Pavement and Miscellaneous, characteristics of ten cities in central and southern Iraq (Baghdad, Babylon, Karbala, Najaf, Qadissiya, Muthanna, Dhi Qar, Wasit, Maysan and Basra) were studied. The results show that the extra increase of Road Traffic Accident can be represented by negative exponential trend in relation with Road Safety Index, at 0.05 level of significance 87.6% of variation in Road Safety Index can be accounted for by exponential relationship with Road Traffic Accident.

Key Word: Traffic Safety; Traffic Accident; Road Safety Index; Level of Service.

1. Introduction

Traffic accidents have become one of the major daily concerns that threaten the lives of people and increase their fatalities annually. In developing countries, 85% of 1.25 million people die each year due to the Road Traffic Accident (RTA), and Iraq is ranked 18th out of the 180 countries in the total number of deaths due to traffic accidents according to the WHO report 2015.

All counties suffer from the road accident problem. Because countries vary widely in their road safety systems experiences and development levels, the magnitude of the problem is changed from one country to another. Majority of road injuries and deaths happen typically in developing and transitional countries according to [1]. ETSC explain that any measurement casually related to count accidents and fatalities or realize the process that leads to accidents, it is a safety performance indicator [2].

A number of researchers have studied the possibility of reducing the number of traffic accidents such as [3], NCHRP by adding protected / permitted LT phase, left turn phasing and displaced left turn lane the result show the percentage of reduction in number of traffic accident is 4-10, 23-48 and 48-85 in sequence [4]. [5] have shown that The World Health Organization [6] statistics almost 1.26 million people are killed in road accidents each year worldwide and an additional 50 million people are estimated injured. It is estimated they will become the world’s third leading cause of death by the year 2020 if no effective actions and efficient measures are taken.

Traffic safety is a complex issue where many of the factors that cause traffic accidents overlap, these factors have been studied by many researchers such as [7], studied the factors that aim to identify the elements that affect traffic safety: road design, environment, driver, vehicle, And the mutual relationship of each other.
[8] submitted a composite index, named a road safety development index (RSDI) containing three emphasis themes of the road safety domain these are: Product focus (fatality rates), People focus (road user behavior), and System focus (safer roads, safer vehicles, enforcement, socio-economic level and organizational performance). [9] Industrialized a Road Safety Index methodology (SPIs), dials with six risk domains these are: alcohol and drugs, protective systems, roads and trauma management, speed and vehicle. 21 European countries well studied at five weighting approaches were explored to combine the separate indicators into one overall index, which were: analytic hierarchy process, budget allocation, factor analysis, data envelopment analysis, and equal weighting.

[10] proposed the hierarchical fuzzy TOPSIS effectiveness method. In the application case, it shows the high correlation between the number of road fatalities per million inhabitants and derived composite index. Furthermore, [11] study of 28 European countries combination between risk indicators and a hierarchy of safety performance indicators for the sake of meaningful road safety benchmarking. 0.34-0.70 Road Safety Index developed by [12] for different type of roads in Bengaluru. [13] Study how to reduce number of RTA by suggesting an Expert system for RTA that affords expert discussion in the area of highway safety in Iraq. Finally Table 1 listed number of studies deals with traffic accident by developing modeled to road traffic accident (number or severity) and road traffic safety index.

Table 1. Summary of Previous Studies Developing Models for Traffic Safety

Author	Year	Developed model	Description
Smeed	1949	\(F = \frac{F}{V} = a(F)^{\beta} \)	\(F \): number of fatalities in road accidents in the country
		\(V \): number of vehicles in the country	
		\(P \): population	
		\(a = 0.003, \beta = \frac{2}{3} \)	
		\(Ft \): is the number of fatalities for some country in a year t,	
		\(Vt \): is the number of vehicle kilometers travelled in that year,	
		\(\alpha, \beta \): are constants	
		\(Ft \): is the number of fatalities for a country in a year t,	
		\(Vt \): is the number of vehicle kilometers travelled in the year t,	
		\(V_{max} \): is the maximum number of vehicle kilometers,	
		\(K \): is the time lag in years, and	
		\(x, w, z, y, and c \): are constants	
		\(M_0 \): is the value of motorization at maximum personal risk,	
		\(T_t \): is the point where the exponential curve meets the T-axis,	
		\(T \): is the traffic risk, fatalities per number of vehicles, and	
		\(M \): is the motorization, vehicles per population	
		\(R \): is the risk of particular factor kilometers is the exposure in traffic,	
		\(W \): is the weight of the risk factor in a particular country	
		\(wi \): the weights of the Xi	
		\(Xi \): normalized indicators for country i	
		In most approaches \(\sum_{i=1}^{n} w_i = 1 \) and ranged from 0 to 1	

2. Data Collection

For the purpose of reaching the aim of the search the data of Road Traffic Accidents (RTA) in Iraq from the ministry of planning - Central Statistical Organization (CSO) at 2010 was taken for the cities of central and southern Iraq and depending on the type of incident. Table 2 lists the distribution of these accident.
Table 2. Number of Accidents Recorded According to the City and the Nature of the Accident

City	Crash	Coup	Runover	Other	Total
Baghdad	593	130	730	0	1453
Babylon	553	126	586	3	1268
Karbala	117	17	232	9	375
Najaf	675	57	425	6	1163
Qadissiya	332	112	419	55	918
Muthanna	153	83	73	0	309
Dhi Qar	304	80	237	0	621
Wasit	155	93	75	1	324
Maysan	62	33	72	10	177
Basra	483	62	420	0	965

3. Methodology (Road Safety Index (RSI) Measurement)

It is a common practice that road traffic accidents are a problem that leads to death, injury or damage to property, and many people have no awareness of the magnitude of the problem. In many developing countries, people believe that driver error is the main cause of traffic accidents, ignoring many reasons and factors that contribute or increase the number and size of damage caused by road traffic accidents. On the other hand, many researchers indicated that increase the probability and severity of accidents occur by many factors that can be chosen as risk factors. To meet the requirement of this research,

a) Table 3 explained the five studied traffic engineering factors and it is weighted that can be effect on the RTA to estimate RSI using the same technique dependent by [12].

Table 3. Characteristics and Weight of Traffic Engineering Factors

Factors of Traffic Engineering Study	Parameters	Relative Weight
Characteristics of Roadway	Carriageway width	0.34
	Number of intersections/km	
	Type of intersection	
	Speed	
	On-street parking	
Characteristics of Traffic	Road markings	0.26
	Speed Breakers/km	
	Number of Fatalities/km	
	Signs	
Characteristics of Roadside	Presence of Obstacles	0.18
	Shoulder	
	Street Lighting Interval	
Characteristics of Pavement	Pavement status	0.13
	Potholes/km	
Characteristics of Miscellaneous	Bus-stop distance from Intersection	0.09
	Intersection visibility	
	Presence of median	

b) Apply this below equation to calculate RSI

c) \[RSI = \frac{\sum_{i=1}^{n} W_i \times V_{ei}}{\sum_{i=1}^{n} W_i \times V_{si}} \] (1) [12].
Where:

N: number of Traffic Engineering Characteristics Study;
Wi: relative weightage to each Traffic Engineering Characteristics Study;
Veᵢ: service characteristics score for existing situation and
Vsᵢ: service characteristics value scores.

d) Checked the Calculated numerical scale of RSI suggested by [14] as shown in Table 4.

RSI range	Inadequate	Poor	Average	Good	Excellent
RSI Rating	Less than 20%	20-40%	40-60%	60-80%	More than 80%
10%	30%	50%	70%	90%	

e) Checked the Level of Service (LOS) based on calculated numerical scale of RSI suggested by [8] as shown in Table 5.

RSI %	LOS				
0.80-1.00	Excellent				
0.60-0.80	Very Good				
0.40-0.60	Good/Average				
0.20-0.40	Poor				
0.00-0.20	Very Poor				

4. Case Study

In order to reach the objective of the research, sections of the road network of ten cities in central and southern Iraq (Baghdad, Babylon, Karbala, Najaf, Qadissiya, Muthanna, Dhi Qar, Wasit, Maysan and Basra) were studied.

5. Result

Table 6 to Table 8 illustrated the average score of all studied parameters of traffic characteristic for three of the case study as an example, as well as these Tables describe the value of RSI, on the other hand Table 9 explained the finale results of RSI and LOS for the studied cities.
Table 6. Traffic Characteristics and Score Value for Road network in Baghdad City

Factors of Traffic Engineering Study	Parameters	Data Observing	Score	Average Score	RSI
	Carriageway width	2 lane with median	35	30	31.67
Characteristics of Roadway	Number of intersections/km	2	30		
	Type of intersection	Right angle	30		
	Speed	85% more than limit	20		
	On- street parking	Valid	10		
		Edge, Lane, Center line, Stop and Zebra Crossing marking	30		31.67
Characteristics of Traffic	Road markings				0.38
	Speed Breakers/km	4	30		
	Number of Fatalities/km	Serues Damage	45		
	Signs	N.A.S*	55		
Characteristics of Roadside	Presence of Obstacles	Tree, Billboards and road users distractive	50		51.67
	Shoulder	N.A.S*	50		
	Street Lighting Interval	50m	55		
Characteristics of Pavement	Pavement status	Average	45		
	Potholes/km	8	40		
	Bus-stop distance from Intersection	20m	50		
Characteristics of Miscellaneous	Presence of median	25cm height	55		
	Intersection visibility	Good	40		48.33
	Presence of median	25cm height	55		

N.A.S: No adequate signs; RSI: Road Safety Index

Table 7. Traffic Characteristics and Score Value for Road network in Babylon City

Factors of Traffic Engineering Study	Parameters	Data Observing	Score	Average Score	RSI
	Carriageway width	2 lane with median	65		53.33
Characteristics of Roadway	Number of intersections/km	3	40		
	Type of intersection	Four – leg & Three Leg	55		
	Speed	75% more than limit	57		
	On- street parking	Valid	30		
		Edge, Lane, Center line, Stop and Zebra Crossing marking	10		39.5
Characteristics of Traffic	Road markings				0.51
	Speed Breakers/km	5	45		
	Number of Fatalities/km	Fatality & Injury	55		
	Signs	N.A.S*	40		
Characteristics of Roadside	Presence of Obstacles	Tree, Billboards and road users distractive	66		67.33
	Shoulder	N.A.S*	86		
	Street Lighting Interval	30m	50		
Characteristics of Pavement	Pavement status	Average	50		42.5
	Potholes/km	10	35		
Characteristics of Miscellaneous	Bus-stop distance from Intersection	40m	45		54.33
	Intersection	Good	63		
	Presence of median	10cm height	55		

N.A.S: No adequate signs; RSI: Road Safety Index
Table 8. Traffic Characteristics and Score Value for Road network in Karbala City

Factors of Traffic Engineering Study	Parameters	Data Observing	Score	Average Score	RSI
Characteristics of Roadway	Carriageway width	2 lane with median	60	48.33	
	Number of intersections/km	4	35		
	Type of intersection	Four – leg & Three Leg	50		
	Speed	35% more than limit	33		
	On-street parking	Valid	15		
Characteristics of Traffic	Road markings	Edge, Lane, Center line, Stop and Zebra Crossing marking	5	28.5	0.40
	Speed Breakers/km	3	40		
	Number of Fatalities/km	Fatality & Injury	50		
	Signs	N.A.S*	28		
Characteristics of Roadside	Presence of Obstacles	Tree, Billboards and road users distractive	41		
	Shoulder	N.A.S*	56	45.67	
	Street Lighting Interval	20m	40		
Characteristics of Pavement	Pavement status	Average	36	30.5	
	Potholes/km	10	25		
Characteristics of Miscellaneous	Bus-stop distance from	20m	34		
	Intersection visibility	Poor	50	41.67	
	Presence of median	20cm height	41		

*N.A.S: No adequate signs; RSI: Road Safety Index

Table 9. Summery of Results

City	RTA	RSI	LOS
Baghdad	1453	0.28	Poor
Babylon	1268	0.30	Poor
Karbala	375	0.48	Good
Najaf	1163	0.34	Poor
Qadissiya	918	0.43	Good
Muthanna	309	0.57	Good
Dhi Qar	621	0.42	Good
Wasit	324	0.51	Good
Maysan	177	0.68	Very Good
Basra	965	0.38	Poor

5.1. Relationship between RTA and RSI

Figure 1 shows that an exponential relation explains increasing variation (87.6 %) of Road Traffic Accident in relation with Road Safety Index.
5.2. Developed Regression Model Relate RTA with RSI

The following regression model was developed by STATISCA software according to the data summarized in Table 9.

\[
RTA = 7222.8e^{-5.609RSI} \quad R^2 = 0.876 \quad 0.28 \leq RSI \leq 0.68 \quad (2)
\]

Where:
RTA: Road Traffic Accident.
RSI: Road Safety Index.

Table 10 explained the statistical model Parameters.

	R	R²	F sig.	Stand. Error	P-value Intercept	P-value RSI
Intercept	0.936	0.876	7.94E-05	173.4276	5.11E-06	7.94E-05

Referring to Table 10, it can be seen that 87.6% of variation in Road Safety Index can be accounted for by exponential relationship with Road Traffic Accident at 0.05 level of significance.

6. Conclusions

The search results agree with the search results [8], [12] and [(13]. By the results it is found RSI is highly affected by the Traffic, Roadside, Pavement and Miscellaneous characteristics.

Statistical model is developed using exponential regression technique to correlate RTA with RSI. The proposed model for RTA has explanation variation of 87.6 at 5 percent level of significance.

Developed model related RTA with RSI show that: RTA increase when RSI decrease.
Interaction between traffic offices, hospitals and engineers is required to obtain accurate and sufficient results to be adopted to achieve or develop traffic safety.

References

[1] Jacobs G, Aaron-Thomas A., and Astrop A., 2000. Estimating global road fatalities. TRL Report 445, Transport Research Laboratory, 2000, London.
[2] ETSC. 2001. Transport Safety Performance Indicators. European Transport Safety Council.
[3] Polanis, S.F. 2003. Low Cost Safety Improvement, City of Winston-Salem, North Carolina, November.
[4] NCHRP, 2003. A Guide for Addressing Unsignalized Intersection Collisions, 500, Volume 5.
[5] Peden M, Scurfield R, Sleet D, Mohan D, Hyder AA, Jarawan E, and Mathers C, 2004. The world report on road traffic injury prevention. WHO, Geneva.
[6] World Health Organization (WHO), 2004. World Report on Road Traffic Injury Prevention, WHO, Geneva.
[7] Al-Haji, G., and Asp, K., 2006b. The Evolution of International Road Safety Benchmarking Models: Towards a Road Safety Development Index (RSDI). The International Journal Science & Technology for Highways, Vol.3, pp.3-9.
[8] Al Haji, G. 2007. Road safety development index (RSDI): Theory, philosophy and practice. Department of Science and Technology. PhD Thesis, Linköping University.
[9] Hermans, E., Van den Bossche, F., and Wets, G. 2008. Combining road safety information in a performance index. Accident Analysis and Prevention, 40, pp. 1337-1344.
[10] Qiong B., Da Ruan, Yongjun S., and Elke H. 2010. Creating a Composite Road Safety Performance Index by a Hierarchical Fuzzy TOPSIS Approach. Transportation Research Institute (IMOB) Hasselt University. IEEE
[11] Shen, Y. 2012. International benchmarking of road safety performance and development using indicators and indexes: Data envelopment analysis based approaches. PhD thesis, Hasselt University.
[12] Sunil, K.U., Gowtham, T, and Pooja.M, 2015, Study on Road Safety Index. International Journal of Innovative Research in Science Engineering and Technology, Vol.4,Issue 8.
[13] Al-Jameel, H. A.,(2016. Reducing the Number of Accidents in Iraq by Using Expert System. Journalof Babylon University, Engineering Science, Iraq Vol. 24, No.5, PP. 54-65.
[14] Frederik, B., 2002. An overview and evaluation of composite indices of development., Social Indicators Research 59: 115-151. Netherlands, 115-151.
[15] Koornstra M.J.,1996. The quantifying of road safety developments, Proceedings of the Conference Road Safety in Europe, VTI conference, Sweden, pp167-186.
[16] Koornstra, M.J., 1992. The evolution of road safety and mobility. IATSS (International Association of Traffic and Safety Sciences), Research, Vol.16, No.2, pp. 129-148 National Cooperative Highway Research Program
[17] Navin, F., Bergan, A., and Qi , J., 1994. A Fundamental Relationship for Roadway Safety: A Model for Global Comparisons. Transportation Research Board, Transportation Research Record 1441, Washington D.C., pp. 53-60.
[18] Oppe S., 1989. Macroscopic models for traffic and traffic safety". Accident Analysis and Prevention, Vol.21, pp. 225-232.
[19] Smeed, R.J., 1949. Some statistical aspects of road safety research. Journal of Royal Statistical Society Series A 112, pp. 1–34.