Introduction

The conceptus, comprised of the placenta and the fetus proper, is not genetically identical to the mother yet fails to induce the rejection response traditionally observed for allogeneic organ transplants. Nearly 70 yr ago, Peter Medawar recognized this apparent paradox and posited three possible explanations: (1) the conceptus is kept physically separate from maternal immune cells; (2) the maternal immune system is generally suppressed; and (3) the conceptus does not express rejection antigens (Medawar, 1953). These ideas have since been largely dis-qualified for the following reasons. First, the main functional unit of the placenta, i.e., the villous tree in humans and the labyrinth in mice, positions placental epithelial cells (trophoblasts) directly in the maternal bloodstream (see Fig. 1 for the architecture of a human placental villus). Moreover, other populations of trophoblasts invade the uterine lining (the “decidua”), where they can locally interact with maternal immune cells. Second, maternal immune responses to pathogens and experimental foreign antigens are essentially intact across gestation, thus ruling out generalized immunosuppression. Third, trophoblasts secrete proteins into the maternal circulation, and various trophoblast subtypes express a variety of potential alloantigens, including nonclassic MHC class Ib molecules (HLA-E and HLA-G; Apps et al., 2009), oncofetal antigens (Jungbluth et al., 2007), cell type-specific proteins (Moore and Dveksler, 2014), and ubiquitously expressed minor histocompatibility antigens such as H-Y protein (Holland et al., 2012; Linscheid and Petroff, 2013). While human trophoblasts are uniformly negative for HLA class II, HLA-A, and HLA-B, some subtypes express HLA-C (Apps et al., 2009; Hiby et al., 2010; Proll et al., 1999), whose mismatch alone can trigger bone marrow graft failure (Petersdorf et al., 1997). In mice, some trophoblast subtypes express low levels of H-2K/D (Erlebacher et al., 2007; Redline and Lu, 1989), but even transgene-directed expression of allogeneic H-2K at high levels in all trophoblasts does not compromise pregnancy (Rogers et al., 1998; Shomer et al., 1998).

Thus, the paradox of fetomaternal tolerance has become focused on the more refined question of how an allograft that does express rejection antigens and does interact extensively with immune cells in an immune-competent host fails to elicit a traditional rejection response. Here we review our current understanding of systemic maternal B and T cell responses to the fetoplacental allograft, emphasizing the divergence in response apparent for antigens expressed by trophoblasts versus fetal blood cells and the potential role of cell type-specific protein glycosylation in explaining this divergence.

Maternal B and T cell responses to fetal blood cell antigens

Despite a varied architecture across mammals, the placenta forms an anatomic barrier between maternal and fetal circulation that separates fetal cells of nontrabocblast origin from the maternal immune system. However, in both humans and mice, antigenic quantities of fetal blood cells can enter maternal circulation and trigger maternal alloimmunization (Masson et al., 2016). As a result of rapid fetal blood cell sequestration in the maternal liver, human maternal T cell responses to fetal blood cell antigens are polyreactive, targeting multiple, often non-HLA allogeneic antigens, such as Rho(D) (Leyte et al., 2002). In contrast, mice do not mount robust antibody responses to Rho(D) and are thus unimunized to the paternal alloantigen.

Maternal T cell responses to fetal blood cell antigens are antigen-specific, targeting paternal alloantigens that do not express maternal HLA molecules. This supports the presence of an immunosuppressive mechanism that regulates maternal B cell responses to paternal HLA molecules and RBC alloantigens such as Rh(D). Synthesizing these older observations with more recent work in mice, we discuss how the decision between tolerance or immunity to a given fetoplacental antigen appears to be a function of whether the antigen is trophoblast derived—and thus decorated with immunosuppressive glycans—or fetal blood cell derived.

PERSPECTIVE

Maternal–Fetal Interactions Focus

Trophoblast antigens, fetal blood cell antigens, and the paradox of fetomaternal tolerance

Gabrielle Rizzuto1 and Adrian Erlebacher2,3,4,5

The paradox of fetomaternal tolerance has puzzled immunologists and reproductive biologists alike for almost 70 yr. Even the idea that the conceptus evokes a uniformly tolerogenic immune response in the mother is contradicted by the long-appreciated ability of pregnant women to mount robust antibody responses to paternal HLA molecules and RBC alloantigens such as Rh(D). Synthesizing these older observations with more recent work in mice, we discuss how the decision between tolerance or immunity to a given fetoplacental antigen appears to be a function of whether the antigen is trophoblast derived—and thus decorated with immunosuppressive glycans—or fetal blood cell derived.

1Department of Pathology, University of California San Francisco, San Francisco, CA; 2Center for Reproductive Sciences, University of California San Francisco, San Francisco, CA; 3Biomedical Sciences Program, University of California San Francisco, San Francisco, CA; 4Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA; 5Bakar ImmunoX Initiative, University of California San Francisco, San Francisco, CA.

Correspondence to Adrian Erlebacher: adrian.erlebacher@ucsf.edu.

© 2022 Rizzuto and Erlebacher. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
In both species, this exposure can occur during delivery, and in humans it can also occur during the third trimester as a result of occult placental microhemorrhage.

The classic example of a situation in which the mother becomes immunized to a fetal blood cell antigen is the clinical condition known as hemolytic disease of the fetus and newborn (HDFN), which is caused by maternal B cells that have reacted to alloantigens expressed by fetal RBCs (Webb and Delaney, 2018).

Most cases of alloimmunization occur in women lacking the integral RBC membrane protein Rhesus (Rh)D antigen (Rh(D)− women) who are exposed to Rh(D)+ fetal blood during late gestation or delivery. HDFN, or Rh disease, as it is known when Rh(D) is the inciting antigen, can then occur when anti-Rh(D) IgG antibodies are transported across the placenta by the same pathway that provides protective passive immunization to the developing fetus. Maternal anti-Rh(D) antibodies then bind to fetal RBCs, which subjects them to antibody-dependent lysis. The clinical outcome is variable and ranges from mild anemia to fetal or neonatal death. Before the advent of preventive therapy, clinically significant HDFN occurred in ~16% of gestations with maternal/fetal Rh incompatibility, or 1 in 1,000 total pregnancies, attesting to the pathogenicity of the response (Tovey, 1992; Urbaniak and Greiss, 2000). Although mice lack Rh(D), a mouse
Maternal B cell responses to trophoblast antigens

Considering the grave pathogenicity of maternal T cells, it is unsurprising that the field naturally won't be pleased when maternal B cells, via their antibody production, interfere with fetal RBCs. We are interested in the nature of B cell responses to fetal RBC antigens, both at the molecular and cellular levels. Our work employing B cell transgenic models of RBC disease was developed by Stowell et al. (2013), who speculated that the human RBC KEL antigen on fetal RBCs, which was otherwise engendered by the maternal circulation of mice only during delivery, and thus the anti-KEL antibodies become measurable in maternal blood cells entering the maternal circulation of mice only during delivery, and this anti-KEL antibody response may also occur (Kemen et al., 2019).

Our laboratory has recently examined the fate of the noncytotoxic B cell help that supports both CD8 T cell and B cell responses in contrast, recent work showing that T cell help is indispensable for the generation of IgG antibodies to KEL antigen. Nonetheless, since mice do not mount responses directly against fetal RBCs, the KEL-specific B cell responses were not detected in experiments using transgenic mice lacking fetal KEL RBCs.

Maternal B cell responses to trophoblast antigens

Maternal B cell responses to trophoblast antigens have been studied in detail. The field has long been interested in the nature of B cell responses to fetal RBC antigens, both at the molecular and cellular levels. Our work employing B cell transgenic models of RBC disease was developed by Stowell et al. (2013), who speculated that the human RBC KEL antigen on fetal RBCs, which was otherwise engendered by the maternal circulation of mice only during delivery, and thus the anti-KEL antibodies become measurable in maternal blood cells entering the maternal circulation of mice only during delivery, and this anti-KEL antibody response may also occur (Kemen et al., 2019).

Our laboratory has recently examined the fate of the noncytotoxic B cell help that supports both CD8 T cell and B cell responses in contrast, recent work showing that T cell help is indispensable for the generation of IgG antibodies to KEL antigen. Nonetheless, since mice do not mount responses directly against fetal RBCs, the KEL-specific B cell responses were not detected in experiments using transgenic mice lacking fetal KEL RBCs.

Our laboratory has recently examined the fate of the noncytotoxic B cell help that supports both CD8 T cell and B cell responses in contrast, recent work showing that T cell help is indispensable for the generation of IgG antibodies to KEL antigen. Nonetheless, since mice do not mount responses directly against fetal RBCs, the KEL-specific B cell responses were not detected in experiments using transgenic mice lacking fetal KEL RBCs.
model previously used to study T cell responses in which a paternally inherited transgene directs expression of a transmembrane form of chicken OVA (mOVA; Ehst et al., 2003) throughout the conceptus, with particularly high expression by trophoblasts positioned within the maternal bloodstream (Erlebacher et al., 2007). By using fluorescently labeled antigen tetramers to visualize OVA-specific B cells in the spleen (Taylor et al., 2012), we found that such B cells sensed trophoblast mOVA (t-mOVA) starting around midgestation, when the antigen starts being shed into the maternal circulation. Even in the presence of systemic adjuvant and T cell help, the OVA-specific B cells failed to expand and did not differentiate into germinal center cells. Strikingly, mOVA mating also rendered OVA-specific B cells unable to respond to vaccination with chicken-derived OVA (c-OVA), demonstrating that t-mOVA induced the suppression of antigen-specific B cells.

Because the protein coding sequence of c-OVA and trophoblast-derived OVA is identical, we evaluated whether a trophoblast-specific posttranslational modification could explain the divergent response of B cells to the two forms of the protein. Indeed, while both sources of OVA were decorated with N-linked glycans, a biochemical analysis revealed that t-OVA was more heavily glycosylated and that its glycans were terminated with α2,6- and α2,3-linked sialic acid residues (Rizzuto et al., 2022). These sialic acids can serve as “self” ligands by binding to sialic acid-binding Ig-like lectins (Siglec), a family of transmembrane proteins that typically inhibit immune cell activation (Laubli and Varki, 2020). Accordingly, we found that OVA-specific B cells were no longer suppressed in mice lacking the B cell-specific inhibitory Siglec, CD22, which recognizes α2,6-linked sialic acids, and that the maternal B cell response to t-mOVA was fully unleashed in pregnant mice lacking Lyn, the Src family tyrosine kinase member uniquely required for CD22 inhibitory activity (Rizzuto et al., 2022; Smith et al., 1998). That the response to trophoblast antigen was more dramatic in Lyn−/− versus CD22−/− pregnant females hints at engagement of additional inhibitory receptor(s) upstream of Lyn, such as Siglec-G (Nitschke, 2014).

These observations suggest a critical role for protein glycosylation in suppressing antigen-specific maternal B cell responses to trophoblast antigens. Intriguingly, this idea was foreshadowed by both an old hypothesis stating that trophoblast antigens are masked by a “sialomucin coat” (Beer and Sio, 1982), and by experiments in the 1960s, which, although controversial at the time, showed that neuraminidase treatment unmasks immunogenicity of crude mouse placenta homogenates (Currie et al., 1968; Taylor et al., 1979). While sialylated glycans decorate most mammalian cell surface proteins, an identical protein that is expressed in different cell types (or by the same cell type under various conditions) is often differently glycosylated because of the cells’ differential expression of sugar transporters, glycosyltransferases, or deglycosylases or as the result of dissimilar transit speeds through the ER/Golgi processing pathway (Varki et al., 2022). Accordingly, as compared with mOVA expressed by nonplacental organs such as the adult skin (where mOVA serves as a rejection antigen; Ehst et al., 2003), mOVA in maternal plasma was more sialylated as well as more glycosylated in general (Rizzuto et al., 2022). Moreover, its levels of α2,6-sialylation and overall glycosylation matched that of mOVA from placental tissue but not the fetus proper, confirming that its source was indeed the placenta, where, as mentioned, the protein is expressed at particularly high levels by trophoblasts bathed in maternal blood.

Maternal T cell responses to trophoblast antigens

Experiments in mice, again largely using the mOVA system described above, have revealed several distinct mechanisms that limit maternal CD4 T cell responses to trophoblast antigens. One mechanism documented for early gestation is the entrapment of migratory dendritic cells (DCs) within the decidua, which precludes input from these potent APCs in the uterine draining lymph nodes (Collins et al., 2009). Instead, t-mOVA undergoes cell-free transport within myometrial lymphatic vessels, akin to its cell-free transport within the maternal bloodstream described above. Accordingly, the antigen is taken up and presented by spleen- and lymph node–resident APCs. Since these APCs are of maternal origin, maternal T cell awareness of the fetoplacental allograft thus occurs entirely via the “indirect” allorecognition pathway and not the “direct” or “semidirect” pathways that would involve, respectively, antigen presentation by fetal APCs or the transfer of intact fetal MHC–peptide complexes to maternal APCs (Erlebacher et al., 2007). Sole reliance on the indirect allorecognition pathway might itself be considered a mechanism of fetomaternal tolerance, since it substantially reduces the number of T cells participating in the rejection response. However, indirect allorecognition is sufficient to trigger organ rejection (Marino et al., 2016), and in fact expression of the mOVA antigen alone is sufficient to elicit the rejection of otherwise syngeneic skin grafts (Ehst et al., 2003). Thus, an outstanding question has been the exact nature of maternal T cell responses to trophoblast antigens and how they might differ from responses to pathogen-encoded antigens or minor histocompatibility antigens encountered following organ transplantation, which are similarly presented by the indirect allorecognition pathway.

The fate of trophoblast antigen–specific CD4 T cells has been investigated using the mOVA system in conjunction with T cell adoptive transfers, as well as a modified version of this system in which a model antigenic peptide, 2W1S (Rees et al., 1999), is incorporated into mOVA construct (generating 2W1S-mOVA).
This latter approach allows for the visualization of the endogenous repertoire of CD4 T cells using 2WIS-MHCII tetramers. Perhaps not surprisingly, given that pregnancy is not an inflammatory state that induces the systemic activation of maternal APCs, CD4 T cells responding to t-mOVA or trophoblast 2WIS do not differentiate into T helper 1 (Th1) cells (Rizzuto et al., 2022; Rowe et al., 2012). However, OVA-specific CD4 T cells fail to differentiate into Th1 cells even when the mice are given adjuvants, and OVA- and 2WIS-specific CD4 T cells both fail to differentiate into Th1 cells when the mice are respectively injected with C-ova plus adjuvants or infected with 2WIS-expressing Listeria monocytogenes, two manipulations that generate strong Th1 responses when mice do not bear mOVA' concepti (Rizzuto et al., 2022; Rowe et al., 2012). These observations indicate that trophoblast antigen-specific CD4 T cells experience dominant immune suppression, and the field has largely focused on the potential role of regulatory T cells in mediating this suppression. Accordingly, 2WIS-specific regulatory T cells (Tregs) expand concurrently with the release of 2WIS-mOVA antigen from the placenta beginning at midgestation (Kalekar et al., 2016; Rowe et al., 2012; Suah et al., 2021), and partial depletion of these cells disinhibits IFNγ production by the non-converted population of 2WIS-specific CD4 T cells (Rowe et al., 2012). The idea that Tregs are important for pregnancy is also supported by observations that systemic Treg cell frequencies increase at midgestation, and more so in allogeneic than syngeneic pregnancies (Aluvihare et al., 2004; Rowe et al., 2011; Thure et al., 2007; Zhao et al., 2007). In addition, partial Treg cell depletion beginning at midgestation, achieved by administration of diphtheria toxin to mice that express the diphtheria toxin receptor from the Foxp3 locus, results in a significant rate of fetal loss following allogeneic but not syngeneic mating (Chaturvedi et al., 2015; Rowe et al., 2012). A similar, but lesser degree of fetal loss is evident in mice lacking the Foxp3 locus enhancer element called conserved noncoding sequence 1 that is required for peripheral conversion of naïve CD4 T cells to induced Tregs (Samstein et al., 2012). Provocatively, the conserved noncoding sequence 1 element is uniquely found within placental mammals (Andersen et al., 2012), thus linking the evolution of the placenta with placental-specific induced Tregs that may foster tolerance to trophoblast antigens by suppressing effector T cell responses.

Surprisingly, our recent work on trophoblast glycans revealed that OVA-specific CD4 T cells are not disinhibited when Tregs are depleted during mOVA pregnancies, even though these pregnancies cause OVA-specific CD4 T cells to convert to Treg cells to some extent (Rizzuto et al., 2022). We also unexpectedly found that immunodominant t-mOVA peptides are presented to splenic CD4 T cells by OVA-specific B cells, and not DCs. Such B cell–exclusive antigen presentation, which we speculate is a consequence of how trophoblast antigen glycans influence antigen transport within the spleen, might thus also be considered a mechanism of fetomaternal tolerance, since strong CD4 T cell responses usually require input from DCs (Archambault et al., 2013). Moreover, we found that the glycan-mediated suppression of the OVA-specific B cells contributes to the suppression of OVA-specific CD4 T cells, since the CD4 T cell suppression is partially reversed in pregnant LYN-deficient mice whose B cells can no longer signal via inhibitory Siglecs, and which show robust B cell responses to t-mOVA (Rizzuto et al., 2022). It is likely that these results will be relevant to CD4 T cell responses to the 2WIS antigen, since the 2WIS-mOVA protein is only 14 amino acids longer than the mOVA protein and is presumably decorated by trophoblasts with the same immunosuppressive glycans as t-mOVA. The intersection of glycan-suppressed B cells and the generation of antigen-specific Tregs currently remains unclear, although B cell–deficient μMT mice intriguingly show blunted midgestational expansion of maternal Tregs (Busse et al., 2019). Thus, B cell–mediated presentation of trophoblast antigens may explain why trophoblast antigen-specific Tregs expand during pregnancy, but with the ultimate importance of Tregs in maintaining fetomaternal tolerance depending on the specific antigen in question.

In contrast to the more classically tolerance-like maternal CD4 T cell response to trophoblast-derived antigens, the CD8 T cell response is best described as nonimmunogenic, since this response is characterized by neither tolerance nor immunity. Thus, while CD8 T cells do not become activated to t-mOVA, even when the mice are given adjuvants, mOVA-mated mice show robust CD8 T cell responses to OVA vaccination (Tay et al., 2015). Moreover, trophoblast antigen-specific CD8 T cells persist postpartum in an antigen-experienced/quasi-memory state and can participate in the antigen-specific rejection of skin grafts and tumor cells, albeit with reduced effector capacity (Barton et al., 2017; Jasti et al., 2017; Kinder et al., 2020; Lewis et al., 2022). It currently remains unclear the extent to which this response can be explained by differences in the APC type that present trophoblast antigens to CD4 and CD8 T cells (B cells versus DCs in the case of t-mOVA; Rizzuto et al., 2022), or whether the sialylation of trophoblast antigens influences the CD8 T cell response.

Are there any instances of antigen-specific placental rejection? Although not the topic of this review article, mechanisms also exist to protect the conceptus from attack by T cells, should they happen to become activated, as well as mechanisms that prevent antibodies from damaging trophoblasts. These mechanisms rely on the unique tissue characteristics and immunology of the maternal–fetal interface (reviewed in Erlebacher [2013]), as well as the high expression of complement regulatory proteins by trophoblasts, as alluded to above. Given this redundancy, it is perhaps not surprising that manipulations that induce what we would consider to be true placental rejection have not yet been described. We acknowledge that many perturbations can trigger fetal loss in mice. However, some of these, such as low-dose LPS or systemic maternal B cell and DC activation with anti-CD40 antibodies in the peri-implantation period, induce fetal loss via nonspecific inflammation that does not involve an antigen-specific component and thus cannot be considered ruptures in fetomaternal tolerance (Erlebacher et al., 2004; Gendron et al., 1990). Other manipulations, including maternal Treg cell depletion (Rowe et al., 2011), PD-L1/PD-1 blockade (Gulera et al., 2005), myeloid-derived suppressor cell depletion (Ostrand-Rosenberg et al., 2017), and indoleamine 2,3-dioxygenase
inhibition (Munn et al., 1998), show greater loss of allogeneic versus syngeneic concepti and are thus more indicative of antigen-specific rejection. However, in some of these models, the fetal loss was no longer observed in the genetic knockout (Baban et al., 2004; Taglauer et al., 2009), and in all mouse models of fetal loss to date, antigen-specific T cells have not been observed to accumulate in an appreciable way at the maternal–fetal interface. This situation thus raises questions about exact effector mechanisms, since it contrasts with the robust T cell infiltration observed during organ and tumor rejection. Remarkably, several case reports now show that pregnancy is unharmed in women with cancer who received checkpoint blockade inhibitors in early gestation, thus suggesting that these pathways are not singularly required for fetomaternal tolerance (Xu et al., 2019).

A single clinical situation, which like many pregnancy complications is currently of unclear pathogenesis, may in fact represent coordinated T cell– and antibody-mediated attack of the placenta. Villitis of unknown etiology (VUE) is diagnosed when, in the absence of infection, histologic examination of the placenta reveals a lymphocyte infiltrate in the stroma of the trophoblast-lined placental villi (Kim et al., 2015; Redline and Patterson, 1993; Tamblyn et al., 2013). This infiltrate predominantly consists of maternal CD8 T cells, and affected villi show expression of T cell–recruiting chemokines with upregulation of ICAM-1 and the deposition of complement components on a damaged syncytiotrophoblast layer (Ito et al., 2015; Lee et al., 2013; Kim et al., 2008; Kim et al., 2009; Rudzinski et al., 2013). Cases of VUE are designated as mild or severe based on the extent of villus involvement. Mild VUE is focally limited, is not associated with adverse pregnancy outcomes, and is observed in upwards of a third of all mature placentas. Severe VUE, on the other hand, is characterized by diffuse infiltration of placental villi and is associated with a mild increase in the risk of stillbirth and the presence of maternal T cells within the fetus (Redline, 2007). Consistent with an adaptive immune etiology, severe cases show a high recurrence risk in subsequent pregnancies (Redline and Abramowsky, 1985). Moreover, there is an association between VUE and the detection of maternal anti-HLA antibodies in serum (Lee et al., 2011).

Drawing on the divergence in maternal responses to trophoblast versus fetal blood cell antigens outlined above, we propose the following model for VUE pathogenesis that is based on the priming of maternal T and B cells specific for fetal blood cell antigens rather than trophoblast antigens. First, placental microhemorrhage exposes maternal T cells to fetal blood cells that express paternal allogeneic HLA. Maternal CD4 and CD8 T cells are then activated via the direct allorecognition pathway, with CD4 T cells also providing help for a B cell response. Second, there is focal damage to the usually impenetrable syncytiotrophoblast layer, perhaps via alloantibody binding and complement activation, and potentially involving the killing of trophoblasts. This allows CD8 T cells to gain access to the underlying villous stroma, where they encounter fetal fibroblasts, macrophages, and endothelial cells, which express the full set of paternal class I HLA, thus vigorously activating the T cells and reinforcing the inflammatory reaction. It is also possible that T cells gain entry to the villous stroma in focal areas where the syncytiotrophoblast layer has been damaged by a pathogen, or merely by compromised blood flow.

Summary and future prospects

Now is a very exciting time in reproductive immunology, as newly developed tools are allowing us to thoroughly dissect adaptive immune responses to the fetoplacental allograft. Based on the current literature, we have tried here to articulate a framework that explains why these responses appear to be so divergent, with trophoblast antigens inducing tolerance and fetal blood cell antigens driving immunity (Fig. 1). This framework relies on clinical observation and the study of a limited number of “model” antigens in mice (such as mOVA, 2W1S-mOVA, and KEL), and thus an important next step is to determine the extent to which the same principles we articulate here apply to bona fide trophoblasts antigens, as well as to fetal proteins that are transported across the placenta into the maternal bloodstream. It is also unclear the extent to which these principles apply to CD8 T cell responses to fetal and placental antigens. Indeed, many minor histocompatibility antigens, including those encoded by the Y-chromosome and that appear to elicit maternal CD8 T cell responses (James et al., 2003; Lissauer et al., 2012; van Kampen et al., 2001; Verdijk et al., 2004), show both placental and fetal expression, and it is unclear whether they reflect exposure to trophoblasts versus fetal blood cells. It will also be crucial to determine the extent to which the maternal immune system is even aware of the non–plasma membrane proteins of trophoblasts, noting that cytoplasmic proteins are much less likely to be modified with glycans of any kind.

Mechanisms of increased trophoblast membrane protein sialylation are also an open area of research. As alluded to above, these mechanisms might include increased activity of sialyltransferases and sialic acid transporters, decreased activity of sialidases, and altered transit through the ER/Golgi processing pathway. Trophoblast antigen sialylation (and glycosylation more generally) might also be regulated in subtype-specific fashion and under the influence of paracrine factors. Indeed, recent evidence suggests that the glycan pattern of extravillous trophoblasts located in the uterine decidua might in part be regulated by cross talk with uterine natural killer cells and DCs (Borowski et al., 2020). There may also be important, perhaps hormonally driven, changes in the glycosylation of maternally expressed proteins during pregnancy. For example, maternal IgG species are well documented to become more galactosylated and sialylated during pregnancy, and the extent of this increase shows a striking association with the amelioration of rheumatoid arthritis that is often observed in latter gestation (Bondt et al., 2018; van de Geijn et al., 2009). Lastly, we note that patients with lupus, an autoimmune disease characterized by B cell hyperactivity, show decreased protein levels of LYN (Brodie et al., 2018) and high rates of pregnancy complications (Buyon et al., 2015). These observations raise the possibility that changes in the glycosylation of trophoblast antigens, or in how maternal immune cells respond to trophoblast antigen-associated glycans, can cause these antigens to become pathologically immunogenic in some patients.
expression of MHC class I, and defects in Fas and its ligand. *Eur. J. Immunol.* 28:3479–3487. https://doi.org/10.1002/(SICI)1521-4141(199811)

Rowe, J.H., J.M. Ertelt, M.N. Aguiller, M.A. Farrar, and S.S. Way. 2011. Foxp3(+) regulatory T cell expansion required for sustaining pregnancy compromises host defense against prenatal bacterial pathogens. *Cell Host Microbe.* 10:54–64. https://doi.org/10.1016/j.chom.2011.06.005

Rowe, J.H., J.M. Ertelt, L. Xin, and S.S. Way. 2012. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. *Nature.* 490: 102–106. https://doi.org/10.1038/nature11462

Rudzinski, E., M. Gilroy, C. Newbill, and T. Morgan. 2013. Positive C4d immunostaining of placental villous syncytiotrophoblasts supports host-versus-graft rejection in villitis of unknown etiology. *Pediatr. Dev. Pathol.* 16:7–13. https://doi.org/10.2350/12-051195-OA.1

Samstein, R.M., S.Z. Joselewicz, A. Arvey, P.M. Treuting, and A.Y. Rudensky. 2012. Extrathymic generation of regulatory T cells in placental mam-
mals mitigates maternal-fetal conflict. *Cell.* 150:29–38. https://doi.org/10.1016/j.cell.2012.05.031

Shomer, B., V. Toder, I. Egorov, and R. Ehrlich. 1998. Expression of allogeneic MHC class I antigens by transgenic mouse trophoblast does not interfere with the normal course of pregnancy. *Transgenic Res.* 7:343–355. https://doi.org/10.1023/a:1008997308025

Smith, K.G., D.M. Tarlinton, G.M. Doody, M.L. Hibbs, and D.T. Fearon. 1998. Inhibition of the B cell by CD22: A requirement for Lyn. *J. Exp. Med.* 187:807–811. https://doi.org/10.1084/jem.187.5.807

Stowell, S.R., K.L. Henry, N.H. Smith, K.E. Hudson, G.R. Halverson, J.C. Park, A.M. Bennett, K.R. Girard-Pierce, C.M. Arthur, S.T. Bunting, et al. 2013. Alloantibodies to a paternaly derived BKC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model. *Blood.* 122: 1494–1504. https://doi.org/10.1182/blood-2013-05-488794

Suh, A.N., D.-K.V. Tran, S.H. Khiew, M.S. Andrade, J.M. Pollard, D. Jain, J.S. Smith, K.G., D.M. Tarlinton, G.M. Doody, M.L. Hibbs, and D.T. Fearon. 1998. Inhibition of the B cell by CD22: A requirement for Lyn. *J. Exp. Med.* 187:807–811. https://doi.org/10.1084/jem.187.5.807

Tay, C.S., E. Tagliani, M.K. Collins, and A. Erlebacher. 2013. Cis-acting and the role of the complement regulatory proteins. *J. Exp. Med.* 151:1562–1570

Thuera, C., M.L. Zencussen, A. Schumacher, S. Langwisch, U. Schulte-Wrede, A. Teles, S. Paeschke, H.D. Volk, and A.C. Zencussen. 2007. Kinetics of regulatory T cells during murine pregnancy. *Am. J. Reprod. Immunol.* 58:514–523. https://doi.org/10.1111/j.1600-0897.2007.00538.x

Tongio, M.M., S. Mayer, and A. Lebec. 1975. Transfer of HLA-A antibodies from the mother to the child. Complement of information. *Transplantation.* 20:163–166. https://doi.org/10.1097/00007890-197508000-00011

Tongio, M.M., B. Wernburg, and S. Mayer. 1983. Transfer of anti-HLA-DR antibodies from the mother to the child. Are DR antigens expressed on the placenta? *Tissue Antigens.* 22:24–28. https://doi.org/10.1111/j.1399-0039.1983.tb01160.x

Tovey, L.A. 1992. Oliver memorial lecture. Towards the conquest of Rh haemolytic disease: Britain’s contribution and the role of serodilution. *Transfus. Med.* 2:99–109. https://doi.org/10.1111/j.1365-3149.1992.tb00142.x

Urbaniaik, S.J., and M.A. Greiss. 2000. RhD haemolytic disease of the fetus and the newborn. *Blood Rev.* 14:44–61. https://doi.org/10.1016/s0198-8859(01)00209-9

van de Geijn, F.E., M. Wuhrer, M.H. Selman, S.P. Willemsen, Y.A. de Man, A.M. Deelder, J.M. Hazes, and R.J. Dolbain. 2009. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: Results from a large prospective cohort study. *Arthritis Res. Ther.* 11:R93. https://doi.org/10.1186/ar2892

van Kampen, C.A., M.F. Versteeg-van der Voort Maarschalk, J. Langerak-Langerak, E. van Beelen, D.L. Roelen, and F.H. Class. 2001. Pregnancy can induce long-persisting primed CTLs specific for inherited paternal HLA antigens. *Hum. Immunol.* 62:201–207. https://doi.org/10.1016/s0198-8859(01)00209-9

Van Rood, J.J., J.G. Eernisse, and A. Van Leeuwen. 1958. Leucocyte antibodies in sera from pregnant women. *Nature.* 181:1735–1736. https://doi.org/10.1038/1811735a0

Varli, A., R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebl, D. Mohnen, T. Kinoshita, N.H. Packer, J.H. Prestegard, et al. 2022. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Verdijk, R.M., A. Kloosterman, J. Pool, M. van de Keur, A.M.I.H. Naipal, A.G.S. van Halteren, A. Brand, T. Muts, and E. Goulmy. 2004. Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells: Implications for stem cell transplantation and immunotherapy. *Blood.* 103:1961–1964. https://doi.org/10.1182/blood-2003b10-1625

Webb, J., and M. Delaney. 2018. Red blood cell alloimmunization in the pregnant patient. *Transfus. Med. Rev.* 32:213–219. https://doi.org/10.1016/j.tmrv.2018.07.002

Wegmann, T.G. 1981. The presence of class 1 MHC antigens at the maternal-fetal interface and hypotheses concerning the survival of the murine fetal alloantograft. *J. Reprod. Immunol.* 3:267–270. https://doi.org/10.1016/0165-0378(81)90034-6

Wegmann, T.G., T.R. Mosmann, G.A. Carlson, O. Olijnyk, and B. Singh. 1979a. The ability of the murine placenta to absorb monoclonal anti-fetal H-2K antibody from the maternal circulation. *J. Immunol.* 123:1020–1023

Wegmann, T.G., B. Singh, and G.A. Carlson. 1979b. Allogeneic placenta is a paternal strain antigen immunoaabsorbent. *J. Immunol.* 122:270–274

Xu, C., D. Mao, V.M. Holers, B. Palanca, A.M. Cheng, and H. Molina. 2000. A critical role for murine complement regulator Crry in fetomaternal tolerance. *Science.* 287:498–501. https://doi.org/10.1126/science.287.5452.498

Xu, W., R.J. Moor, E.T. Walpole, and V.G. Atkinson. 2019. Pregnancy with successful foetal and maternal outcome in a melanoma patient treated with nivolumab in the first trimester: Case report and review of the literature. *Melanoma Res.* 29:333–337. https://doi.org/10.1097/cmr.0000000000000586

Zhao, J.X., Y.Y. Zeng, and Y. Liu. 2007. Fetal alloantigen is responsible for the expansion of the CD4(+)CD25(+) regulatory T cell pool during preg-
nancy. *J. Reprod. Immunol.* 75:71–81. https://doi.org/10.1016/j.jri.2007.06.025