The Relationship between Diaspore Characteristics with Phylogeny, Life History Traits, and Their Ecological Adaptation of 150 Species from the Cold Desert of Northwest China

Hui-Liang Liu, 1,2 Dao-Yuan Zhang, 1,2 Shi-Min Duan, 1,2 Xi-Yong Wang, 1,2 and Ming-Fang Song 1,2

1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2 Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China

Correspondence should be addressed to Dao-Yuan Zhang; zhangdy@ms.xjb.ac.cn

Received 22 August 2013; Accepted 4 December 2013; Published 30 January 2014

Copyright © 2014 Hui-Liang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Diaspore characteristics of 22 families, including 102 genera and 150 species (55 represented by seeds and 95 by fruits) from the Gurbantunggut Desert were analyzed for diaspore biological characteristics (mass, shape, color, and appendage type). The diaspore mass and shape were significantly different in phylogeny group (APG) and dispersal syndromes; vegetative periods significantly affected diaspore mass, but not diaspore shape; and ecotypes did not significantly affect diaspore mass and shape, but xerophyte species had larger diaspore mass than mesophyte species. Unique stepwise ANOVA results showed that variance in diaspore mass and shape among these 150 species was largely dependent upon phylogeny and dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrained diaspore mass and shape. Diaspores of 85 species (56.67%) had appendages, including 26 with wings/bracts, 18 with pappus/hair, 14 with hooks/spines, 10 with awns, and 17 with other types of appendages. Different traits (mass, shape, color, appendage, and dispersal syndromes) of diaspore decided plants forming different adapted strategies in the desert. In summary, the diaspore characteristics were closely related with phylogeny, vegetative periods, dispersal syndromes, and ecotype, and these characteristics allowed the plants to adapt to extreme desert environments.

1. Introduction

Heritable characteristics of seeds that contribute to seed and seedling survivorship under natural conditions are open to natural selection. Sexual reproduction can improve the success rate of breeding more than asexual reproduction for plants in the face of adversity, so in response to plant propagation, sexual reproduction is the focus of the study [1]. Seeds are a component of such a set; flower and fruit type, the type of placentation, the number of ovules per ovary, and the process of embryo development are traits that are generally evolutionarily conservative and strongly associated with family membership and seed mass [2]. Natural selection that maintains phenotypic constancy in these traits may preclude evolutionary change in seed mass if it is developmentally and genetically correlated with them. In any case, the strong taxonomic effect on seed mass suggests that there are factors other than the ecological features measured in this study that determine seed mass [3]. Diaspore mass and shape is a core characteristic in the life history of a plant [4]. Variation of the diaspores between or within species has important ecological and evolutionary significance [5]. Characteristics of diaspore can be used as an important basis for taxonomy. Many previous studies have shown that the type of plant diaspores
and their morphological characteristics, such as mass, shape, color, and appendages, as well as fecundity pattern and postdispersal level, are closely related to their life-form, dispersal syndrome, reproductive strategy, seed germination, seedling settlement, and population distribution, in which seed mass and shape were effective in dispersal syndromes, dispersal distance, and longevity of the soil seed bank [6–9].

A comparative study based on a large sample will enable ecologists to distinguish the main ways plants adapt to evolution and identify the plants with fitness (or lack of fitness) showing the physiological characteristics of life history in specific habitats [10]. Currently a study on a large sample of the diaspore characteristics in a same floristic has become a research hotspot of ecology, such as tropical wetlands in Venezuela [3, 6, 11], various habitats in Europe [12], New Zealand forests, and semiarid areas of Australia [7–9, 13], while the mainly focuses on the Inner Mongolia grassland and Horqin sandy in China [14–16] and the Qinghai-Tibet plateau alpine meadow communities [17, 18]. However, less information is available regarding on diaspore traits in the arid cold desert area in northwest China, but referred seed dispersal traits of 24 cruciferous short-lived plants [19].

Information on seed dispersal of desert plants is crucial in order to understand adaptative strategies of plants in desert areas. Our aim in this study is to discuss (1) the relationship of biological characteristics with phylogeny group (APG), vegetative periods, dispersal syndromes, and ecotypes and (2) the relationship between biological characteristics and dispersal adaptation to the desert ecological environment. The study may utilize to further reveal the universal pattern of plant life history and reproductive strategies in this cold desert and ulteriorly understand the continuous mechanisms for desert vegetation, population-proliferation regime, weed invasion mechanisms, and biodiversity loss mechanisms. Therefore, it has a great significance in taxonomy, ecology, and evolutionary biology for studying other cold deserts.

2. Materials and Methods

2.1. Study Area and Species Traits. The cold desert is well-known due to it being located in colder areas with and higher latitude; and it is a dry, cold area of land that receives almost no precipitation. When it does, it is usually in the form of snow or fog [20]. The Gurbantunggut Desert ranged in latitude from 44°1′–46°20′ and longitude from 84°31′–90°00′, with an area of 4.88 × 10^6 km^2; it is the second largest desert in China. It does not only contain the largest fixed and semifixed desert in the central region but also contains a salination desert in the southern edge, so it formed an abundant xerophytes and halophytes community [21]. This area is a typical inland temperate desert climate. In this area, the mean annual temperature is 7.3°C and the winter temperature could fall down to −20°C. The annual rainfall is very low in the summer, but there is significant snow in winter and spring (the largest number of snow thickness is between 20 and 30 cm) [22]. The stable wet sand layer by melting snow provides an important guarantee for plants survival and formation, so the species richness is relatively higher in this desert than other central deserts richness is relatively higher including 206 species [21]. Therefore, plant types with both short and long vegetative periods evolved. The natural vegetation in the desert is dominated by Haloxylon ammodendron and Haloxylon persicum [21]. Herbaceous plants are widespread and abundant in spring and early summer. Short-lived or ephemeral plants obtain certain development. Amaranthaceae is in a clearly dominant position while Brassicaceae, Asteraceae, Fabaceae, Poaceae, and so forth are common [21, 23, 24].

2.2. Composition of Materials. In this paper, 150 plant species were selected for the study and classified into 28 families and 102 genera, which accounted for 72.8% of species, 82.9% of genera, and 93.3% of family in this area. Among them, there was one gymnosperm (0.67%), 15 monocotyledon (10.00%), with dominant Poaceae (13 species, 8.67%), and 134 dicotyledon (89.33%), with dominant Amaranthaceae (38 species, 25.33%), Brassicaceae (20 species, 13.33%), and Asteraceae (14 species, 9.33%). They were divided into 10 APG II taxonomic phylogeny groups as follows [25]: Coniferales, Monocots, Commelinids, Eudicots, Core eudicots, Rosids, Eurosids I, Eurosids II, Euasterids I, and Euasterids II (Table 1).

Plant types with both short and long vegetative periods were evolved in this area [24] and short (ephemeral) plants included annuals, annuals/biennials, and biennials herb, so vegetative periods were divided into annuals (AH), annuals/biennials (ABH), biennials (BH), biennials/perennials (BPH), perennials (PH), shrubs (S), semishrubs (SS), small arbor (SA), annuals ephemerals (AE), annuals/biennials ephemerals (ABE), and biennial ephemerals (BE) (Table 1).

Ecotypes were divided into 2 categories: xerophyte (67 species, 44.67%) and mesophyte (83 species, 55.33%) (Table 1).

2.3. Study Methods on Morphology Characteristics and Dispersal Syndromes

2.3.1. Morphology Characteristics. Metrical objects of 150 species could be divided into seeds (55 species) and fruits (95 species), which could be further divided into various types.

(1) Mass: With reference to Thompson's method [26], we randomly selected 100 seeds or fruits in each species, measuring the weight (g) with fine balance (Sartorius BS110S, accuracy to 0.0001 g). Each species had five repeats, and then we took the average value and calculated the standard error. If the appendages were valuable for dispersal, we measured including them.

(2) Shape: according to Thompson et al.'s methods [26], the seed shape was calculated as the variance of the three main perpendicular dimensions after dividing all values by length. Totally spherical seeds would have shape = 0, with this value increasing as they became flatter or elongated. In other words, larger values of variance were associated with flatter seeds; smaller variance indicated more round seeds.
Table 1: The species, APG II taxonomic phylogeny group, family, vegetative period, metrical object, diaspora characteristics (length, width, height, shape (variance), color, appendages), first dispersal phase (dispersal syndrome), second dispersal phase, and ecotype of 150 species in the Gurbantunggut Desert, northwest China.

APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype				
Coniferopsida	Ephedraceae	Ephedra przewalskii Stapf	S Cone		3.926 ± 0.054	1.700 ± 0.051	0.854 ± 0.054	0.114	Light brown	Bract	Anemochory	Ant	Xerophyte			
Monocots	Liliaceae	Eremurus inderiensis (M. Bieb.) Regel	PH Seed		5.766 ± 0.125	3.454 ± 0.089	2.788 ± 0.073	4.320 ± 0.146	3.408 ± 0.107	2.002 ± 0.085	0.052	Brown	Wing	Anemochory	Ant	Xerophyte
Iridaceae	Iris lactea Pall. var. chinensis (Fisch.) Koidz.	PH Seed		2199.16 ± 30.34												
Commelinids	Poaceae	Achnatherum inebrians (Hance) Keng	PH Seed		3.176 ± 0.071	0.704 ± 0.015	0.864 ± 0.015	1.764 ± 0.148	2.636 ± 0.594	1.764 ± 0.980	0.157	Brown	Hair	Zoochory	Ant	Xerophyte
		Stipagrostis adscensionis L.	AH Caryopsis		57.00 ± 1.15	4.422 ± 0.491	2.636 ± 0.148	21.764 ± 0.890	1.241 ± 0.240	1.537 ± 0.440	0.150	Brownish green	Awn	Zoochory	—	Xerophyte
		Stipagrostis pennata Trin.	PH Caryopsis		88.16 ± 0.53	4.214 ± 0.393	2.412 ± 0.240	2.412 ± 0.850	0.574 ± 0.028	0.378 ± 0.016	0.167	Yellowish green	Awn	Zoochory	—	Xerophyte
		Chloris virgata Sw.	AH Caryopsis		39.72 ± 0.80	0.584 ± 0.021	0.440 ± 0.017	0.372 ± 0.017	0.574 ± 0.028	0.378 ± 0.016	0.130	Pale yellow	Awn	Zoochory	Ant	Mesophyte
		Bragrostis minor Host-E. poaeoides Beauv.	AE Seed		7.58 ± 0.24	0.378 ± 0.016	0.440 ± 0.017	0.372 ± 0.017	0.574 ± 0.028	0.378 ± 0.016	0.028	Reddish brown	None	Anemochory	—	Mesophyte
		Eremopyrum bonaepartis (Spreng.) Nevski	AE Caryopsis		177.86 ± 4.59	1.324 ± 0.043	1.042 ± 0.072	1.1748 ± 0.482	1.9574 ± 0.041	1.042 ± 0.072	0.176	Yellowish green	Awn	Zoochory	Ant	Mesophyte
		Eremopyrum triticeum (Gaertn.) Nevski	AE Caryopsis		184.76 ± 3.20	1.394 ± 0.083	1.096 ± 0.041	19.574 ± 1.02	1.394 ± 0.065	1.042 ± 0.072	0.184	Yellowish green	Awn	Zoochory	Ant	Xerophyte
		Elymus atratus Turcz.	PH Caryopsis		155.82 ± 1.37	0.652 ± 0.034	0.652 ± 0.034	1.5372 ± 0.966	1.466 ± 0.066	0.638 ± 0.025	0.206	Pale yellow	Awn	Zoochory	Ant	Mesophyte
		Elymus sibiricus L.	PH Caryopsis		221.22 ± 4.19	1.466 ± 0.066	0.638 ± 0.025	13.708 ± 0.872	2.736 ± 0.230	2.166 ± 0.157	0.199	Light green	Awn	Zoochory	Ant	Xerophyte
		Leymus racemosus (Lam.) Tzvel.	PH Caryopsis		944.44 ± 14.73	2.116 ± 0.048	0.648 ± 0.025	10.758 ± 0.301	10.758 ± 0.301	0.814 ± 0.039	0.156	Pale yellow	Hair	Zoochory	Ant	Mesophyte
		Melia toosendan Schur	PH Caryopsis		42.60 ± 1.04	2.116 ± 0.048	0.648 ± 0.025	10.758 ± 0.301	10.758 ± 0.301	0.814 ± 0.039	0.171	Pale yellow	Hair	Zoochory	Ant	Mesophyte
		Stipa capillata L.	PH Caryopsis		334.06 ± 5.20	0.814 ± 0.039	0.788 ± 0.038	2.002 ± 0.085	3.408 ± 0.107	2.002 ± 0.085	0.187	Pale yellow	Awn	Zoochory	Ant	Mesophyte
Table 1: Continued.

APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype			
		Stipa sareptana Beck.	PH	Caryopsis	367.18 ± 2.76	12.512 ± 0.369	0.205	Yellowish brown	Awn	Zoochory	Ant	Mesophyte			
Eudicots	Papaveraceae	Corydalis stricta Steph.	PH	Seed	44.66 ± 0.84	1.429 ± 0.043	0.086	Black	Placenta	Barochory	—	Xerophyte			
		Glaucoma squamigerum Kar. et Kir.	BPH	Seed	41.88 ± 0.18	1.272 ± 0.044	0.065	Black	None	Autochory	—	Xerophyte			
		Hypecoum erectum L.	AE	Seed	29.96 ± 0.28	0.822 ± 0.032	0.045	Dark brown	Wart	Barochory	—	Xerophyte			
Ranunculaceae		Ceratocephalus testiculatus	AE	Achenecetum	106.46 ± 0.99	4.548 ± 0.276	0.018	Black	Beak/spine	Zoochory	—	Mesophyte			
		Clematis songarica Bge.	SS	Achene	234.84 ± 11.31	1.800 ± 0.044	0.126	Brown	Pappus	Anemochory	—	Mesophyte			
Core eudicots	Caryophyllace	Gypsophila perfoliata L.	PH	Seed	31.06 ± 0.45	0.944 ± 0.010	0.048	Black	Wart	Barochory	—	Mesophyte			
Acanthaceae		Agriophyllum squarrosum (L.) Moq.	AH	Seed	115.82 ± 2.70	1.712 ± 0.074	0.108	White	None	Barochory	Ant	Xerophyte			
		Anabasis aphylla L.	SS	Utricle	114.36 ± 1.98	0.524 ± 0.040	0.104	Dark reddish brown	Bract	Anemochory	—	Mesophyte			
		Atriplex acheri Moq.	AH	Utricle	304.26 ± 10.19	6.428 ± 0.266	0.150	Light yellowish brown	Bract	Anemochory	Ant	Mesophyte			
		Atriplex tataraica L.	AH	Utricle	109.94 ± 3.21	0.884 ± 0.042	0.168	Yellowish brown	Bract	Anemochory	Ant	Mesophyte			
	Bassia dasyphylla (Fisch. et Mey.) O. Kuntze	AH	Utricle	66.32 ± 0.78	2.692 ± 0.115	0.150	Light yellowish brown	Spine	Zoochory	Ant	Xerophyte				
	Bassia Sedoides (Pall.) O. Kuntze	AH	Utricle	42.98 ± 0.49	2.958 ± 0.165	0.040	Yellowish brown	Hook/spine	Zoochory	—	Xerophyte				
	Camphorosma monspeliaca L.	SS	Utricle	53.58 ± 1.45	1.350 ± 0.039	0.083	Yellowish brown	Hair	Anemochory	Ant	Xerophyte				
	Geratocarpus arenarius L.	AH	Utricle	151.14 ± 2.49	10.484 ± 1.246	0.364	Yellowish brown	Spine	Zoochory	Ant	Mesophyte				
APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype			
---	---	---	---	---	---	---	---	---	---	---	---	---	---		
Ceratoides ewersmanniana (Stschel. ex Losinsk.) Botsch. et Bakh.	S	Utricle	330.64 ± 4.65	7.27 ± 0.566	Hair	0.179	Ceratoides lateens (J. F. Gmel.) Reveale et Holmgren	S/SS	Utricle	434.80 ± 14.25	7.272 ± 0.566	Anemochory	Ant	Mesophyte	
Chenopodium acuminatum Willd.	AH	Seed	35.22 ± 0.16	0.968 ± 0.024	Black	0.065	Chenopodium aristatum Linn.	AH	Seed	10.66 ± 0.22	0.340 ± 0.018	None	Barochory	Ant	Mesophyte
Chenopodium glaucum Linn.	AH	Seed	21.58 ± 0.21	0.864 ± 0.049	Black	0.074	Corispermum lehmannianum Bunge.	AH	Utricle	73.10 ± 1.01	1.708 ± 0.077	None	Barochory	Ant	Mesophyte
Halogeton arachnoideus Moq.	AH	Seed	43.88 ± 0.92	1.798 ± 0.077	None	0.095	Halogeton glomeratus (Bieb.) C. A. Mey.	AH	Seed	105.98 ± 1.12	2.634 ± 0.083	None	Barochory	Ant	Mesophyte
Halostadys caspica (Bieb.) C. A. Mey.	S	Utricle	24.24 ± 0.74	1.366 ± 0.060	None	0.046	Haloxylo ammodendron (C. A. M.) Bge.	SA	Utricle	388.80 ± 11.50	10.676 ± 0.419	Anemochory	Ant	Mesophyte	
Haloxylo persicum Bge. ex Boiss. et Buhse	SA	Utricle	797.18 ± 8.45	9.528 ± 0.149	None	0.147	Horaninowia ulicina Fisch. et Mey.	AH	Utricle	23.00 ± 0.57	0.986 ± 0.091	None	Barochory	Ant	Mesophyte
Kalidium capsicum (L.) Ung.-Sternb.	SS	Utricle	15.12 ± 0.20	0.728 ± 0.029	None	0.032	Kalidium cuspidatum (Ung.-Sternb.) Grub.	SS	Utricle	11.90 ± 0.38	0.642 ± 0.026	None	Anemochory	Ant	Mesophyte
Kalidium foliatum (Paß.) G Moq.	SS	Utricle	16.06 ± 0.65	0.608 ± 0.040	None	0.047									
Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype				
--------	--------------------------------	-------------------	-----------------	-------------------------------	--	--------------------------	----------------	------------	---	-------------------------	----------				
	Kochia iranica Litv. ex Bornm.	AH Utricle	47.34 ± 0.80	1.568 ± 0.080	0.037 Dark brown	Hair	Anemochory	Ant	Mesophyte						
	Petrosonia sibirica (Pall.) Bge.	AH Utricle	174.96 ± 1.51	1.988 ± 0.030	0.104 Pale yellow	Bract	Anemochory	Ant	Mesophyte						
	Salicornia europaea Linn.	AH Utricle	5.54 ± 0.04	0.430 ± 0.017	0.049 Dark brown	None	Anemochory	— Xerophyte	Mesophyte						
	Salsola affinis C. A. Mey.	AH Utricle	626.96 ± 15.51	7.106 ± 0.347	0.072 Yellowish brown	Bract	Anemochory	Ant	Xerophyte						
	Salsola foliosa (L.) Schrad.	AH Utricle	103.94 ± 0.40	5.834 ± 0.214	0.182 Reddish brown	Bract	Anemochory	— Xerophyte	Mesophyte						
	Salsola heptapotamica Iljin	AH Utricle	518.34 ± 6.87	5.958 ± 0.290	0.139 Yellowish brown	Bract	Anemochory	Ant	Xerophyte						
	Salsola nitaria Pall.	AH Utricle	180.20 ± 3.96	7.556 ± 0.397	0.115 Yellowish brown	Bract	Anemochory	Ant	Xerophyte						
	Salsola ruthenica Iljin	AH Utricle	271.46 ± 4.11	7.484 ± 0.109	0.129 Brown	Bract	Anemochory	Ant	Xerophyte						
	Salsola subcansa M. Pop.	AH Utricle	1071.36 ± 2.37	9.694 ± 0.509	0.117 Yellowish brown	Bract	Anemochory	Ant	Xerophyte						
	Suaeda acuminata (C. A. Mey.) Moq.	AH Utricle	56.88 ± 1.67	1.456 ± 0.088	0.020 Dark brown	None	Barochory	Ant	Xerophyte						
	Suaeda altissima (L.) Pall.	AH Utricle	34.74 ± 0.57	0.924 ± 0.026	0.029 Black	None	Barochory	Ant	Xerophyte						
	Suaeda corniculata (C. A. Mey.) Bunge	AH Utricle	33.79 ± 0.58	0.580 ± 0.021	0.047 Yellowish brown	None	Barochory	Ant	Xerophyte						
	Suaeda microphylla (C. A. M.) Pall.	SS Utricle	31.66 ± 0.51	1.086 ± 0.040	0.003 Black/yellowish brown	None	Barochory	Ant	Xerophyte						
	Suaeda physophora Pall.	SS Utricle	247.52 ± 2.11	1.870 ± 0.088	0.029 Reddish brown	Perianth	Anemochory	Ant	Mesophyte						
	Suaeda salsa (L.) Pall.	AH Utricle	15.20 ± 0.28	0.726 ± 0.036	0.034 Black	None	Barochory	Ant	Mesophyte						
APGII taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype			
--------------------------------	--------	---------	-------------------	----------------	------------------------------	--------------------------------------	-------------------------------	----------------	-------------	--	----------------------	---------			
Polygonaceae															
Ataphaxis frutescens (Rgl.)		S	Achene	283.68 ± 6.26	7.596 ± 0.096	5.322 ± 0.174	3.326 ± 0.226	Brown	Perianth	Anemochory	Ant	Xerophyte			
Calligonum chinorum		S	Achene	2672.20 ± 121.39	10.138 ± 0.269	6.614 ± 0.521	5.738 ± 0.437	Brown	Hook/spine	Zoochory — Mesophyte	—				
Calligonum mongolicum		SS	Achene	5934.84 ± 57.75	14.056 ± 0.538	12.604 ± 0.390	12.454 ± 0.398	Yellowish brown Hook/spine	Zoochory — Xerophyte						
Calligonum leucochadum		S	Achene	2829.50 ± 124.68	10.614 ± 0.423	10.250 ± 1.378	8.240 ± 1.235	Yellowish brown Wing	Zoochory — Xerophyte						
Runex pseudonatronatus		PH	Achene	211.74 ± 4.07	4.614 ± 0.229	4.548 ± 0.276	3.600 ± 0.180	Yellowish brown Bract	Anemochory	Ant	Mesophyte				
Tamaricaceae															
Reaumuria soongoriae		SS	Capsule	916.18 ± 12.07	6.050 ± 0.156	2.568 ± 0.064	2.500 ± 0.058	Dark brown	Hair	Anemochory	Ant	Mesophyte			
Plumbaginaceae		PH	Utricle	26.40 ± 0.63	1.288 ± 0.063	1.234 ± 0.062	1.288 ± 0.063	Light brown	Bract	Anemochory	Ant	Mesophyte			
Limonium coniloides		PH	Utricle	45.50 ± 1.22	1.984 ± 0.088	1.972 ± 0.023	0.944 ± 0.020	Light brown	Bract	Anemochory	Ant	Mesophyte			
Limonium gmelini		PH	Utricle	21.40 ± 0.42	0.896 ± 0.066	0.868 ± 0.067	0.109	Light brown	Bract	Anemochory	Ant	Mesophyte			
Limonium suffruticosum		SS	Utricle	30.26 ± 0.52	1.148 ± 0.071	0.154	0.149	Light brown	Bract	Anemochory	Ant	Mesophyte			
Rosids	Geraniaceae	Erodium oxypyrhynchum M. B. Fl.		AE Capsule	225.44 ± 2.55	5.366 ± 0.119	1.086 ± 0.092	0.902 ± 0.014	0.154	Brown	Pappus/beak	Anemochory	Ant	Xerophyte	
Eurosids I	Fabaceae	Allagi sparsifolia Shap.		SS Pod	487.46 ± 6.42	3.672 ± 0.129	2.292 ± 0.073	8.616 ± 0.251	0.078	Brown	None	Autochory	Ant	Xerophyte	
Amorpha fruticosa L.		S/SS Pod	911.84 ± 9.71	2.836 ± 0.050	1.628 ± 0.056	4.402 ± 0.129	3.358 ± 0.067	1.266 ± 0.044	11.424 ± 0.639	0.091	Light yellowish brown	Awn, papery calyx	Anemochory	Ant	Mesophyte
Eremopartum songoricum (Litv) Vass	SS Pod	1547.34 ± 26.08	2.836 ± 0.050	1.628 ± 0.056	4.402 ± 0.129	3.358 ± 0.067	1.266 ± 0.044	11.424 ± 0.639	0.091	Light yellowish brown	Awn, papery calyx	Anemochory	Ant	Mesophyte	
Glycyrrhiza inflata Batal.		PH Pod	3790.04 ± 53.64	4.920 ± 0.250	3.688 ± 0.141	11.346 ± 0.689	0.091	Brown	None	Autochory	Ant	Xerophyte			
APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype			
---------------------------------	-------	---------	------------------	---------------	-----------------------------	--	------------------------	----------------	-----------	---	---------------------	---------			
Zygophyllaceae															
Nitraria robowonskii Kom.	S	Berry	4599.56 ± 91.07	7.916 ±0.174	4.598 ±0.281	6.758 ±0.130	0.059	Dark reddish brown	None	None		Xerophyte			
Nitraria sibirica Pall.	S	Berry	3826.70 ± 59.66	5.489 ±0.281	3.616 ±0.137	5.352 ±0.089	0.055	Dark reddish brown	None	None		Xerophyte			
Peganum harmala Linn.	PH	Seed	289.36 ± 2.84	2.796 ±0.151	1.301 ±0.061	2.936 ±0.074	0.038	Brown	None	Autochory	Ant	Mesophyte			
Zygophyllum fabago L.	PH	Seed	297.76 ± 9.15	2.301 ±0.061	1.534 ±0.038	2.936 ±0.074	0.038	Light brown	None	Barochory	-	Xerophyte			
Zygophyllum pterocarpum Bge.	PH	Seed	170.24 ± 4.38	2.796 ±0.151	1.301 ±0.061	2.936 ±0.074	0.038	Light brown	None	Barochory	-	Xerophyte			
Zygophyllum xanthoxylon Maxim.	S	Capsule	10652.78 ± 292.29	28.588 ±1.133	26.336 ±1.051	15.058 ±1.390	0.051	Pale yellow	Hook/spine	Anemochory	Ant	Xerophyte			
Rosaceae															
Agrimonia asiatica Juz.	PH	Achenecetum	463.34 ± 9.21	5.489 ±0.281	3.616 ±0.137	5.352 ±0.089	0.055	Dark brown	None	Autochory	Ant	Mesophyte			
Cannabis sativa L.	AH	Capsule	433.82 ± 46.22	4.598 ±0.281	3.616 ±0.137	5.352 ±0.089	0.055	Dark brown	None	Autochory	-	Mesophyte			
Eurosids II															
Brassicaceae															
Alyssum deserorum Stapf.	AE	Seed	37.32 ± 0.50	1.474 ±0.043	1.044 ±0.044	0.334 ±0.013	0.107	Yellow	None	Ombro-hydrochory	-	Mesophyte			
Alyssum linifolium Steph. ex Willd.	AE	Seed	18.00 ± 0.29	1.474 ±0.043	1.044 ±0.044	0.334 ±0.013	0.107	Yellow	None	Ombro-hydrochory	-	Xerophyte			
Camelina microcarpa Andrz.	AH	Seed	31.66 ± 0.24	1.474 ±0.043	1.044 ±0.044	0.334 ±0.013	0.107	Yellow	None	Ombro-hydrochory	-	Xerophyte			

Table 1: Continued.
Table 1: Continued.

APGII taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype
Camelina sativa (Linn.) Crantz	AH	Seed	31.90 ± 0.83	1.114 ± 0.028	0.614 ± 0.019 2.104 ± 0.025	1.274 ± 0.059 0.828 ± 0.028 0.502 ± 0.024	0.061 Yellowish brown	None	Ombrophydrochory — Mesophyte			
Cardaria draba (L.) Desv.	PH	Seed	206.44 ± 0.68	1.670 ± 0.046	0.760 ± 0.027 0.620 ± 0.021	0.670 ± 0.046 0.620 ± 0.021 0.516 ± 0.025	0.070 Reddish brown	None	Ombrophydrochory Ant Xerophyte			
Cardaria pubescens (C. A. Meyer) Jarmoenko	PH	Seed	94.80 ± 1.30	1.420 ± 0.011	0.320 ± 0.013 0.220 ± 0.011	1.240 ± 0.063 0.620 ± 0.025 0.430 ± 0.020 0.370 ± 0.013	0.081 Light reddish brown	None	Ombrophydrochory Ant Xerophyte			
Descurainia Sophia (L.) Webb. ex Prantl	AH	Seed	10.60 ± 0.07	0.920 ± 0.025	0.420 ± 0.015 0.220 ± 0.011	0.336 ± 0.013 0.324 ± 0.063 0.620 ± 0.025 0.430 ± 0.020 0.3740 ± 0.016	0.091 Brown	None	Ombrophydrochory Ant Xerophyte			
Erysimum hieracifolium L.	BPH	Seed	29.22 ± 0.34	0.916 ± 0.025	0.420 ± 0.015 0.220 ± 0.011	0.336 ± 0.013 0.324 ± 0.063 0.620 ± 0.025 0.430 ± 0.020 0.3740 ± 0.016	0.091 Brown	None	Ombrophydrochory Ant Xerophyte			
Eudantium syricum (L.) R. Br.	AE	Silicle	400.92 ± 6.52	1.898 ± 0.051	1.630 ± 0.040 8.708 ± 0.430	3.704 ± 0.299 1.332 ± 0.079 3.038 ± 0.115 1.220 ± 0.028 0.972 ± 0.024	0.129 Yellowish brown	Wing	Barochory Ant Mesophyte			
Isatis costata C. A. Mey.	BH	Silicle	394.58 ± 24.67	1.220 ± 0.028	0.972 ± 0.024 0.620 ± 0.025 0.430 ± 0.020 0.3740 ± 0.016	0.129 Yellowish brown	Wing	Barochory Ant Mesophyte				
Isatis violascens Bge.	AE	Silicle	223.52 ± 3.15	1.898 ± 0.051	1.630 ± 0.040 8.708 ± 0.430	3.704 ± 0.299 1.332 ± 0.079 3.038 ± 0.115 1.220 ± 0.028 0.972 ± 0.024	0.129 Yellowish brown	Wing	Barochory Ant Mesophyte			
Lepidium apetalum Wild.	ABH	Seed	18.00 ± 0.13	0.684 ± 0.022	0.312 ± 0.015 0.930 ± 0.026	0.544 ± 0.023 0.336 ± 0.015 0.466 ± 0.015 1.016 ± 0.023 0.620 ± 0.022 0.362 ± 0.020	0.106 Reddish brown	None	Ombrophydrochory Mesophyte			
Lepidium ferganense Korsch.	PH	Seed	21.34 ± 0.52	0.684 ± 0.022	0.312 ± 0.015 0.930 ± 0.026	0.544 ± 0.023 0.336 ± 0.015 0.466 ± 0.015 1.016 ± 0.023 0.620 ± 0.022 0.362 ± 0.020	0.106 Reddish brown	None	Ombrophydrochory Mesophyte			
Lepidium latifolium var. affine C. A. Mey	PH	Seed	15.22 ± 0.36	0.544 ± 0.023	0.336 ± 0.015 0.466 ± 0.015 1.016 ± 0.023 0.620 ± 0.022 0.362 ± 0.020	0.106 Reddish brown	None	Ombrophydrochory Mesophyte				
Lepidium perfoliatum L.	ABE	Seed	78.32 ± 0.26	1.878 ± 0.042	1.188 ± 0.041 0.446 ± 0.015	1.024 ± 0.040 0.567 ± 0.038 0.360 ± 0.017 0.360 ± 0.017 0.966 ± 0.037	0.102 Yellowish brown	None	Ombrophydrochory Ant Mesophyte			
Malcolina africana (L.) R. Br.	BE	Seed	13.64 ± 0.00	0.678 ± 0.026	0.200 ± 0.026 0.448 ± 0.026 0.200 ± 0.026 0.448 ± 0.026 0.200 ± 0.026 0.448 ± 0.026	0.117 Yellowish brown	None	Ombrophydrochory Mesophyte				
Neotorkaria korolkovii (Rgl. et Schmihl.) Hedge et J. Leonard.	ABE	Seed	9.46 ± 0.11	0.448 ± 0.026	0.200 ± 0.026 0.448 ± 0.026 0.200 ± 0.026 0.448 ± 0.026 0.200 ± 0.026 0.448 ± 0.026	0.117 Yellowish brown	None	Ombrophydrochory Mesophyte				
Syrenia siliculosa (M. Bieb.) Andr.	BH	Seed	20.94 ± 0.39	0.678 ± 0.026	0.420 ± 0.015 0.220 ± 0.011	0.336 ± 0.013 0.324 ± 0.063 0.620 ± 0.025 0.430 ± 0.020 0.3740 ± 0.016	0.103 Orange	None	Ombrophydrochory Xerophyte			
Table 1: Continued.

APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype									
Euasterids I Scrophulariaceae	Dodartia orientalis L.	PH Seed	8.72 ± 0.15	0.516 ± 0.099	0.356 ± 0.008	0.324 ± 0.009	2.540 ± 0.103	1.096 ± 0.064	0.588 ± 0.024	1.458 ± 0.042	0.722 ± 0.029	0.522 ± 0.029	3.304 ± 0.046	2.608 ± 0.051	1.316 ± 0.040	1.294 ± 0.027	0.028	Black	None	Barochory —	Mesophyte
Leptorhabdos parvisflora Benth.	AH Seed	111.26 ± 1.11	1.111	0.36	0.036	0.011	0.284 ± 0.016	1.598 ± 0.034	0.592 ± 0.022	3.396 ± 0.063	2.756 ± 0.035	1.544 ± 0.029	2.756 ± 0.053	2.352 ± 0.042	1.292 ± 0.154	4.732 ± 0.120	0.054	Dark brown	Hair	Barochory Ant	Mesophyte
Veronica fergania M Pop.	AE Seed	40.60 ± 0.65	0.081	Brown	None	Barochory Ant	Mesophyte														
Solanaceae	Datura stramonium L.	SS Seed	691.98 ± 5.76	0.065	Black	None	Barochory —	Xerophyte													
Hyoscyamus niger L.	BH Seed	62.94 ± 0.97	0.057	Yellowish brown	None	Barochory —	Xerophyte														
Boraginaceae	Arnebia decumbens (Vent.) Coss. et Kral.	AE Nutlet	1335.44 ± 11.70	0.052	Brown	Hook/spine	Zoochory —	Xerophyte													
Heliotropium ellipticum Ldb.	PH Schizocarp	95.82 ± 1.27	0.049	Brownish green	Wart	Barochory Ant	Xerophyte														
Lappula myosotis Moench	ABE Nutlet	435.18 ± 2.71	0.021	Dark brown	Spine	Zoochory Ant	Xerophyte														
Lappula spinocarpa (Forsk.) Aschers. ex Kuntze	AE Nutlet	1491.06 ± 57.20	0.016	Light yellowish brown	Spine	Zoochory Ant	Xerophyte														
Malvaceae	Malvastrum orientalis L.	AH Seed	153.88 ± 2.99	0.062	Light brown	Hair	Barochory Ant	Xerophyte													
Althaea officinalis L.	PH Schizocarp	593.78 ± 8.71	0.062	Light brown	Hair	Barochory Ant	Xerophyte														
Althaea nudiflora Lindl.	BH Schizocarp	858.18 ± 6.37	0.054	Dark brown	Hair	Barochory Ant	Xerophyte														
Hibiscus trionum L.	AH Seed	454.08 ± 5.71	0.028	Black	Wart	Barochory Ant	Xerophyte														
Euasterids I Scrophulariaceae	Dodartia orientalis L.	PH Seed	8.72 ± 0.15	0.516 ± 0.099	0.356 ± 0.008	0.324 ± 0.009	2.540 ± 0.103	1.096 ± 0.064	0.588 ± 0.024	1.458 ± 0.042	0.722 ± 0.029	0.522 ± 0.029	3.304 ± 0.046	2.608 ± 0.051	1.316 ± 0.040	1.294 ± 0.027	0.028	Black	None	Barochory —	Mesophyte
Leptorhabdos parvisflora Benth.	AH Seed	111.26 ± 1.11	1.111	0.36	0.036	0.011	0.284 ± 0.016	1.598 ± 0.034	0.592 ± 0.022	3.396 ± 0.063	2.756 ± 0.035	1.544 ± 0.029	2.756 ± 0.053	2.352 ± 0.042	1.292 ± 0.154	4.732 ± 0.120	0.054	Dark brown	Hair	Barochory Ant	Mesophyte
Veronica fergania M Pop.	AE Seed	40.60 ± 0.65	0.081	Brown	None	Barochory Ant	Mesophyte														
Solanaceae	Datura stramonium L.	SS Seed	691.98 ± 5.76	0.065	Black	None	Barochory —	Xerophyte													
Hyoscyamus niger L.	BH Seed	62.94 ± 0.97	0.057	Yellowish brown	None	Barochory —	Xerophyte														
Boraginaceae	Arnebia decumbens (Vent.) Coss. et Kral.	AE Nutlet	1335.44 ± 11.70	0.052	Brown	Hook/spine	Zoochory —	Xerophyte													
Heliotropium ellipticum Ldb.	PH Schizocarp	95.82 ± 1.27	0.049	Brownish green	Wart	Barochory Ant	Xerophyte														
Lappula myosotis Moench	ABE Nutlet	435.18 ± 2.71	0.021	Dark brown	Spine	Zoochory Ant	Xerophyte														
Lappula spinocarpa (Forsk.) Aschers. ex Kuntze	AE Nutlet	1491.06 ± 57.20	0.016	Light yellowish brown	Spine	Zoochory Ant	Xerophyte														
APGII taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype									
--------------------------------	-------------------------	--	-------------------	----------------	-----------------------------	--	-------------------------	----------------	------------	---	------------------------	----------									
Euasterids II	Campanulaceae	Codonopsis damatica (Schrenk) C. B. Clarke	PH Seed	50.18 ± 0.41	1.301 ± 0.035	0.636 ± 0.027	0.074	Light brown	None	Barochory	Ant Mesophyte										
	Asteraceae	Arctium lappa L.	BH Achene	1153.06 ± 9.95	2.556 ± 0.089	1.320 ± 0.022	0.117	Brown	Pappus	Anemochory	Ant Mesophyte										
APG II taxonomic phylogeny group	Family	Species	Vegetative period	Metrical object	Mass of 100 seeds (Mean ± SE)	Length, width, and height (Mean ± SE)	Diaspore shape variance	Diaspore color	Appendages	First dispersal phase (dispersal syndromes)	Second dispersal phase	Ecotype									
---------------------------------	-------	---------	-------------------	----------------	-----------------------------	---------------------------------------	------------------------	----------------	-------------	--	------------------------	---------									
						5.412 ± 0.028	0.107	Brown	Pappus	Anemochory		Ant									
						2.376 ± 0.076	0.107	Light brown	None	Anemochory		Ant									
						1.324 ± 0.030	0.107	Light brown	None	Anemochory		Ant									
						1.208 ± 0.016	0.107	Light brown	None	Anemochory		Ant									
						0.394 ± 0.017	0.107	Light brown	None	Anemochory		Ant									
						0.308 ± 0.021	0.107	Light brown	None	Anemochory		Ant									
						1.546 ± 0.033	0.107	Light brown	None	Anemochory		Ant									
						0.572 ± 0.022	0.107	Light brown	None	Anemochory		Ant									
						0.370 ± 0.014	0.107	Light brown	None	Anemochory		Ant									
						2.932 ± 0.175	0.107	Light brown	None	Anemochory		Ant									
						0.908 ± 0.022	0.107	Light brown	None	Anemochory		Ant									
						0.878 ± 0.022	0.107	Light brown	None	Anemochory		Ant									
						9.638 ± 0.294	0.107	Light brown	None	Anemochory		Ant									
						5.160 ± 0.087	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						5.016 ± 0.137	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						2.988 ± 0.044	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.140 ± 0.065	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						0.552 ± 0.044	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						4.876 ± 0.196	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						2.560 ± 0.077	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.384 ± 0.052	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						5.904 ± 0.205	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						3.158 ± 0.113	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.114 ± 0.076	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						10.262 ± 0.329	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						6.682 ± 0.293	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						2.244 ± 0.217	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.628 ± 0.047	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						0.758 ± 0.021	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						0.320 ± 0.012	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						4.852 ± 0.053	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						2.556 ± 0.039	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.410 ± 0.034	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						3.322 ± 0.134	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.302 ± 0.053	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						0.712 ± 0.047	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						22.088 ± 0.579	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						13.344 ± 0.219	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						12.596 ± 0.332	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						2.852 ± 0.069	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.540 ± 0.013	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						1.104 ± 0.044	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						4.492 ± 0.156	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						3.366 ± 0.158	0.107	Light yellow	Hook/spine	Zoochory		Ant									
						0.806 ± 0.070	0.107	Light yellow	Hook/spine	Zoochory		Ant									

Notes: AH: annuals; ABH: annuals/biennials; BH: biennials; BPH: biennials/perennials; PH: perennials; S: shrubs; SS: semishrubs; SA: small arbors; AE: annual ephemerals; ABE: annuals/biennials ephemerals; BE: biennial ephemerals.
According to the three-dimensional mean variance, we classified them into seven grades and calculated the frequency of occurrence (percentage) at each grade. Finally, combining observation and [6, 23], we determined the shape of each species and calculated the frequency (percentage) of each shape group.

(3) Color: combining observation and [6, 23], we can determine the diaspore color of each species and calculate the frequency (percentage) of each color group.

(4) Appendage: We observed and recorded the appendage features, such as wing/bract, pappus/hair, hook/spine, awn, or other kinds of appendages (such as style/perianth/beak/warts/placenta, etc.).

2.3.2. Dispersal Syndromes. Because seed dispersal was divided into two phases. (1) Phase I dispersal represents the movement of the seeds from the parent plant to a surface, each of 150 study species were assigned to one of five dispersal syndromes in their prismatic dispersal phase, on the basis of data from field collections, observing seed ornamentation and appendages from published flora [27–29].

1. Zochorous species are defined as having awns, spines, or hooks to adhere to animals (epizoochory) or seed with fleshly or arillate fruits for animals to eat (endochory);
2. Anemochorous species are defined as having membranous wings, bracts, perianth, balloon, hair, or dust seed (<0.01 mg);
3. Autochorous species are divided into ballistically dispersed species possessing explosively dehiscing capsules by wind and by wetting that throw the seeds some distance from the parent plant;
4. Barochorous species are defined as those lacking any obvious dispersal mechanism or disperser reward; and
5. Ombrohydrochorous dispersed species are defined as the seeds producing a mucilage upon being wetted (Table 1).

(2) Phase II dispersal includes both horizontal and vertical movement of the seeds after arrival on the surface until it is lodged or germinated. Though many species are subject to secondary dispersal by animals (major ants (myrmecomochory), indicated by the presence of an elaiosome or an appendage on seeds that is attractive to ants) or water, for the purpose of this analysis it was examined only the primary phase of dispersal. Meanwhile, ants as a mass of predators, the seeds were divided to secondary dispersal type.

2.4. Data Analysis. SPSS 15.0 was used for calculating the mean and the standard error of data. The ANOVA method (SPSS 15.0) was applied to analyze the significant difference between the diaspore mass (weight)/shape in different APG, vegetative periods, ecotypes, and dispersal syndromes. To examine differences in diaspore mass and shape among vegetative periods and taxonomic class rank, we used the Kruskal-Wallis test (K-W) after categorization of the variables. The association between nominal traits was determined with the Pearson χ² test-statistic. Correlations between quantitative traits were examined using Pearson correlation coefficient. Diaspore mass was log-transformed prior to statistical analysis. One-way analysis of variance ANOVA was applied after verifying the homogeneity of variance by Levene’s test.

3. Results

3.1. The Relationship between Diaspore Mass with Phylogeny, Life History Traits, and Ecotype. The species of Core eudicot were the most abundant in all groups of APG II (Figure 1). Except for Coniferopsida and Rosids, which are only one species in their APG II taxonomic group, diaspore mass differed significantly among the phylologic group (K-W: H = 29.938, df = 7, P < 0.001); group of Monocots had the highest diaspore mass; and Eudicots had the smallest diaspore mass (Figure 1). Except for ABH, the diaspore mass differed significantly among the vegetative period (K-W: H = 17.677, df = 8, P = 0.024); the species of shrub had the highest diaspore mass and ephemerals had the smallest diaspore mass (Figure 2). The diaspore mass differed significantly among dispersal syndromes (F = 8.383, df = 4, P < 0.001); the zoochorous species had the highest diaspore mass and the ombro-hydrychorous species had the smallest diaspore mass (Figure 3). The dispersal syndromes had a significant relationship with APG (K-W: H = 75.921, df = 7, P < 0.001) and vegetative period (K-W: H = 28.108, df = 8, P < 0.001). The second dispersal seeds by ants were about 72.7% (Table 1). There were significant differences between diaspores mass and ant dispersal (Z = -3.343, P = 0.001). The diaspore mass did not differ significantly amongecotypes (Z = -1.701, P = 0.089), but the species of xerophytes had a higher diaspore mass than the species of mesophyte (Figure 4).

3.2. The Relationship between Diaspore Shape with Phylogeny, Life History Traits, and Ecotype. The diaspore mean shape variance showed differences in APG II group (K-W: H = 29.120, df = 7, P < 0.001) and dispersal syndromes (F = 3.596, df = 4, P = 0.008); the species of Commelinids of zoochorous had the largest shape mean variance and the species of Monocots and ombro-hydrychor had smallest shape mean variance (Figures 5 and 7), but not in different vegetative period (K-W: H = 9.101, df = 8, P = 0.334) (Figure 6) or ecotype (Z = -0.830, P = 0.407) (Figure 8). According to shape mean variance and observation, the diaspore shape of 150 species could be divided into the following nine groups (Figure 9), of which 63.33% (95 species) are close to spherical or oval. There were significant differences between diaspore shape and ant dispersal (Z = -2.218, P = 0.027). Two ANOVAs showed only significant interaction between APG and dispersal syndromes in shape variance (F = 2.707, P = 0.003).

The the source of variance is following by Mazer’s method [3], multi-ANOVAs detected that variance in the diaspore mass accounted for 17.2% by APG, 6.6% by vegetative period, 16.1% by dispersal syndromes, and 0.1% by ecotype, while in the diaspore shape it was accounted 12.9% by APG, 5.5% by vegetative period, 3.9% by dispersal syndromes, and 0.2% by ecotype (Table 2).

3.3. Diaspore Color. According to comparison and observation, the diaspore color of 150 species could be divided into the following eight groups (Figure 10), of which 68.67% (103
3.4. Diaspore Appendages. Of the 150 species examined, 85 species (56.67%) had typical appendages, in which (1) 26 species (17.33%) had wings or bracts, which effectively spread with the wind; (2) 18 species (12.00%) had pappus or hairs, which effectively spread with the wind or stuck on animals; (3) 14 species (9.33%) had hooks or spines, which effectively hook on animals; (4) 10 species (6.67%) had awns, which effectively hang on animals or insert into the soil cracks for colonization; and (5) 17 species (11.33%) had other appendages, including style, perianth, beak, warts, placenta, and so forth, separately helping in different ways of dispersal (Table 1). The diaspores with appendage have a significant relationship with diaspore mass \((Z = -1.109, P = 0.267)\).
Figure 5: Box plots showing mean (+), median (—), quartiles, and outliers (-) of diaspore shape (variance) of 150 species grouped by different APG II taxonomic phylogeny group. Because Coniferopsida and Rosids are only one species, they do not compare with others.

Figure 6: Box plots showing mean (+), median (—), quartiles, and outliers (-) of diaspore shape (variance) of 150 species grouped by different vegetative periods. Because annual-biennial (ABH) species is only one species, it does not compare with others. AH = annuals; ABH = annuals/biennials; BH = biennials; BPH = biennials/perennials; PH = perennials; S = shrubs; SS = semishrubs; SA = small arbor; AE = annuals ephemerals; ABE = annuals/biennials ephemerals; BE = biennial ephemerals.

Figure 7: Box plots showing mean (+), median (—), quartiles, and outliers (-) of diaspore shape (variance) of 150 species grouped by different dispersal syndromes.

Figure 8: Box plots showing mean (+), median (—), quartiles, and outliers (-) of diaspore shape (variance) of 150 species grouped by different ecotypes.
constraints on this trait. In this paper, diaspore mass and shape showed significant differences \((P < 0.05)\) among APG groups, indicating that the phylogenetic factor was one of the prerequisites for adaptation. This may suggest that phylogeny imposes limits to variability in reproductive traits within a clade, because of similar developmental and design constraints in related species. Miles and Dunham [32] also pointed out that any comparative study lacking a phylogenetic perspective would be incomplete.

Vegetative periods of plants have a close relationship with adaptation to interference [33]. In this paper, diaspore mass showed significant differences \((P < 0.05)\) among vegetative periods in general, while the variance in shape did not show much difference among vegetative periods. It was indicated that diaspore mass was more effective than diaspore shape in seed dispersal between different vegetative periods in this area.

Diaspore mass and shape are also related to vegetation dynamics [33]. Diaspore mass and shape showed no significant differences \((P > 0.05)\) among ecotypes overall, but the species of xerophyte had a far greater average mass than mesophyte, indicating that xerophyte plants often increased diaspore mass to reduce the displacement and increase the probability of effective colonization. Harel et al. [34] found that seed mass significantly decreased with increasing aridity and rainfall variability in seven out of fifteen in the hot desert of Israel. Butler et al. [33] reported that seed diameter and size in high-rainfall sites trended to have smaller seeds in the rain forest of Australia. Thus, we inferred that diaspore mass might be related with the rainfall or moisture in different ecosystems; in other words, plants in the drier environments produced larger diaspore mass.

Diaspore mass and shape showed significant differences among dispersal syndromes, which indicated that both of them were key factors in determining the dispersal syndrome. Moles et al. [35] had investigated a total of 11481 species from 10 vegetation type categories and found that in 40–50 latitude zone, seeds trend to wind dispersal, but this data is absent in the cold desert. In this paper, diaspores of 45 species were light and round shape (single mass less than 1 mg and three-dimensional mean variance less than 0.090), in which there were 21 species (46.67%) as annual herbaceous or ephemeral plants, tending to take the wind for large-scale dispersal, while the heavy or irregularly shaped (often as a result of the existence of appendage) fruits often disperse in virtue of animals or self-transmission [4, 6]. Our data proves this theory could be expanded in this cold desert. In addition, Thomson et al. [36] used generalized linear mixed models with basic life-history and ecological traits to predict seed dispersal mechanisms and found that actual dispersal mechanisms (c.50% correct) was equally well to inferred dispersal mechanisms by the model; whether this model is also suitable for this desert still needs to be examined in the future.

This phylogenetic pattern of diaspore mass was previously shown in different floras [37]. In this study, we synthesized information on phylogenetic, life history, and ecological factors, using unique stepwise ANOVAS to infer the correlations between diaspore mass/shape and phylogeny, life history, and ecotype. The result of this study showed that variance in diaspore mass and shape among these 150 species is largely dependent upon phylogeny and seed dispersal syndromes. Therefore, it was suggested that phylogeny may constrain diaspore mass, and as dispersal syndromes may be related to phylogeny, they also constrain diaspore mass and shape. That is, inherent characteristics of species may play a prominent...
Table 2: Multiway tests of between-subjects effects.

Source	df	F	Sig.	R^2	F	Sig.	R^2	
Model	20	5.833	0.000	0.481	2.725	0.000	0.302	
APG	7	5.856	0.000	0.169	3.185	0.004	0.125	
Vegetative period	8	2.152	0.036	0.071	1.223	0.291	0.053	
Dispersal syndromes	4	9.733	0.000	0.160	1.748	0.143	0.040	
Ecotype	1	0.248	0.619	0.001	0.313	0.577	0.003	
Remove APG	Model	13	4.654	0.000	0.309	2.168	0.014	0.173
APG	7	2.853	0.006	0.117	1.509	0.160	0.073	
Vegetative period	8	7.650	0.000	0.157	4.706	0.001	0.115	
Dispersal syndromes	4	1.490	0.224	0.008	0.584	0.446	0.003	
Ecotype	1	11.35	0.000	0.193	1.296	0.275	0.029	
Remove vegetative period	Model	12	7.974	0.000	0.415	3.686	0.000	0.247
APG	7	7.094	0.000	0.215	3.782	0.001	0.149	
Vegetative period	8	11.35	0.000	0.193	1.296	0.275	0.029	
Dispersal syndromes	4	0.432	0.512	0.002	0.390	0.533	0.003	
Ecotype	1	0.944	0.333	0.005	0.255	0.614	0.003	
Remove dispersal syndromes	Model	16	3.829	0.000	0.320	2.902	0.000	0.263
APG	7	4.444	0.000	0.163	5.068	0.000	0.202	
Vegetative period	8	2.474	0.016	0.103	1.002	0.438	0.045	
Dispersal syndromes	4	0.944	0.333	0.005	0.255	0.614	0.003	
Ecotype	1	6.164	0.000	0.480	2.867	0.000	0.300	
Remove ecotype	Model	19	6.103	0.000	0.175	3.322	0.003	0.127
APG	7	2.184	0.033	0.072	1.246	0.278	0.056	
Vegetative period	8	10.030	0.000	0.164	1.745	0.144	0.037	

role in evolution of diaspore mass and shape, and stochastic factors such as environmental conditions are also important selective pressures.

4.2. Diaspore Morphological Characteristics and Dispersal Syndrome Adaptive to the Desert Environment. Plants growing in the Gurbantunggut Desert developed relevant diaspore morphology characteristics and dispersal syndromes adaptive to the desert environment in the long-term evolution. The Gurbantunggut Desert had a typical arid climate, including deeply buried groundwater and lack of surface runoff; most survivors in this environment were xerophyte plants [21]. *Haloxylon persicum* community developed well at the top and upper section of sand dunes, accompanied by *Stipagrostis adscensionis*, *Stipagrostis pennata*, *Eremosparton songoricum*, and *Agriophyllum squarrosum*, and so forth. Therefore, plants growing on moving sand dunes often had middle (*Haloxylon persicum*) or large (*Eremosparton songoricum*) weighted diaspores. Some of them were slim shaped although light weight (*Stipagrostis adscensionis*, *Stipagrostis pennata*, *Corispermum lehmannianum*, etc.), being effective against long-distance dispersal and in occupying the surrounding optimizational environment [15]. On the other hand, there were extensive biological soil crusts at the bottom and lower section of sand dunes, which played an important role in sand-fixation [22]. Plants living here must develop their diaspores to adapt the uniform and dense “shell” [38, 39]; thus they were generally small and light or had appendages which enable them to effectively disperse by the wind, pass through the cracks of the biological soil crusts, and settle down, such as *Erodium oxyrrhynchum*, *Stipagrostis adscensionis*, and *S. pennata*, which could take a special way named “active drill” into soil cracks using awns or needles. The small diaspore of *Bassia dasyphylla*, *Bassia sedoides*, *Kochia iranica*, and *Camphorosma monspeliaca* had hooks/spines or short hairs, and enabled them to disperse via wind or animal. *Genus Nitraria* had bright and juicy berries, which could attract animals feeding in order to improve wide-ranged dispersal. In contrast, most species of Fabaceae and Zygophyllaceae which had large and heavy diaspores, such as *genus Glycyrrhiza*, *Sophora alopecuroides*, and *Zygophyllum fabago*, mainly used to take full advantage of the favorable surrounding nutritional conditions. Thomson et al. [40] found that once a plant height was accounted for, the
small-seeded species dispersed further than did large-seeded species. Our results were focusing only on diaspore mass and morphological characteristics, not taking into account plant height. In the future study, we will try to reveal whether small-seeded species may disperse further from the parent plant, accounting for plant height, than do large-seeded species in this desert?

There was a certain proportion of salt desert and salinity wasteland in Gurbantunggut Desert peripheral areas especially on the southern edge, where distributing a variety of typical halophytes or wide adaptable plants [21]. Among them, Althaea officinalis, Dodartia orientalis, Peganum harmala, and most species of Amaranthaceae had small and light diaspores (single dry weight less than 1 mg) and close to spherical (three-dimensional mean variance less than 0.09%). They were not only easy to disperse by wind but also effective at forming persistent soil seed bank [8, 9, 13, 26]. Typical halophytes of genus Atriplex, Anabasis, Halogeton, and Salsola were usually wind-borne with the flat wing-like appendages, but when the rainfall was enough they could also drift on the water surface to a farther place.

Mesophyte was also an important part of the flora and a majority of them were weeds. Their diaspores were small, and light mass, they effectively improved the dispersal range and effective reproductive rate, such as Heliotropium ellipticum, Eragrostis minor, Hyoscyamus niger, and many species of Brassicaceae and Labiatae. Diaspores with appendages like wings/bracts or pappus/hairs were generally wind-borne and those with hooks/spines were easy to stick on animals for long-distance spread or insert into soil cracks to settle. Besides, diaspores of Plantago lessingii, mostly Brassicaceae and Labiatae mesophyte plants had mucilage which is an effective means to resist against environmental and man-made interference.

On the surface, the brown-color which was close to the sand color could help them to avoid been eaten by ants. However, it was found that the diaspore color and ant dispersal had no significant relationship (Z = −1.109, P = 0.267). It may suggest that the ant could not see the diaspore color; they looked for the food relying on the seed appendage or elaiosome. It was concluded that diaspore morphology characteristics and dispersal syndromes would cause some adaptive changes due to different settling environments.

In general, the diaspore characteristics were closely related to phylogeny; vegetative periods, dispersal syndromes and ecotype, and these characteristics allowed the plants to adapt extreme desert environments. Diaspore characteristics of plants in this area are influenced by natural selection forces. This study has provided new insights into diaspore characteristics and their ecological adaptation in this cold desert. However, there are still many unanswered questions concerning key aspects of the dispersal traits. These are key research questions arising from this study, and important ones that will need to be addressed in the future.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

Funds for this study were provided by the National Basic Research Priorities Program of China (2012FY111500), West Light Foundation of The Chinese Academy of Sciences (XBB5201303), and the National Natural Science Foundation (31100399) of China.

References

[1] J. P. Kochmer and S. N. Handel, “Constraints and competition in the evolution of flowering phenology,” Ecological Monographs, vol. 56, pp. 303–325, 1986.
[2] J. G. Hodgson and J. M. L. Mackey, “The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance,” New Phytologist, vol. 104, no. 3, pp. 497–515, 1986.
[3] S. J. Mazer, “Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms,” Ecological Monographs, vol. 59, no. 2, pp. 153–175, 1989.
[4] J. L. Harper, P. H. Lovell, and K. G. Moore, “Shapes and sizes of seeds,” Annual Review of Ecological Systems, vol. 1, pp. 327–356, 1970.
[5] M. Westoby, E. Jurado, and M. Leishman, “Comparative evolutionary ecology of seed size,” Trends in Ecology and Evolution, vol. 7, no. 11, pp. 368–372, 1992.
[6] E. Gordon, “Seed characteristics of plant species from riverine wetlands in Venezuela,” Aquatic Botany, vol. 60, no. 4, pp. 417–431, 1998.
[7] E. Jurado, M. Westoby, and D. Nelson, “Diaspore weight, dispersal, growth form and perenniality of central Australian plants,” Journal of Ecology, vol. 79, no. 3, pp. 811–828, 1991.
[8] A. T. Moles, D. W. Hodson, and C. J. Webb, “Seed size and shape and persistence in the soil in the New Zealand flora,” Oikos, vol. 89, no. 3, pp. 541–545, 2000.
[9] A. T. Moles, D. I. Warton, and M. Westoby, “Seed size and survival in the soil in arid Australia,” Austral Ecology, vol. 28, no. 5, pp. 575–585, 2003.
[10] J. P. Grime, Plant Strategies, Vegetation Processes, and Ecosystem Properties, John Wiley & Sons, Chichester, UK, 2001.
[11] H. G. Baker, “Seed weight in relation to environmental conditions in California,” Ecology, vol. 53, pp. 997–1010, 1972.
[12] R. M. Bekker, J. P. Bakker, U. Grandin et al., “Seed size, shape and vertical distribution in the soil: indicators of seed longevity,” Functional Ecology, vol. 12, no. 5, pp. 834–842, 1998.
[13] M. R. Leishman and M. Westoby, “The role of seed size in seedling establishment in dry soil conditions—experimental evidence from semi-arid species,” Journal of Ecology, vol. 82, no. 2, pp. 249–258, 1994.
[14] Z. M. Liu, X. H. Li, R. P. Li, and Y. M. Luo, “A comparative study on diaspore shape of 70 species found in the sandy land of Horqin,” Acta Prataculturae Sinica, vol. 12, pp. 55–61, 2003.
[15] Z. Liu, Q. Yan, X. Li, J. Ma, and X. Ling, “Seed mass and shape, germination and plant abundance in a desertified grassland in northeastern Inner Mongolia, China,” Journal of Arid Environments, vol. 69, no. 2, pp. 198–211, 2007.
[16] Y. K. Zhong, Q. H. Bao, W. Sun, and H. Y. Zhang, “The influence of mowing on seed amount and composition in soil seed bank of typical steppe. III. Mass and weight of seeds of 120 plant species,”
[17] H. Bu, X. Chen, X. Xu, K. Liu, P. Jia, and G. Du, “Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet plateau,” Plant Ecology, vol. 191, no. 1, pp. 127–149, 2007.

[18] H. Bu, G. Du, X. Chen, X. Xu, K. Liu, and S. Wen, “Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates,” Plant Ecology, vol. 195, no. 1, pp. 87–98, 2008.

[19] X. F. Liu and D. Y. Tan, “Ecological significance of seed mucilage in desert plants,” Chinese Bulletin of Botany, vol. 24, pp. 414–424, 2007.

[20] Wikipedia on Ask.com.

[21] L. Y. Zhang and C. D. Chen, “Study on the general characteristics of plant diversity of Gurbantunggut sandy desert,” Acta Ecologica Sinica, vol. 22, pp. 1923–1932, 2002.

[22] Y. Zhang, J. Chen, X. Wang, H. Pan, Z. Gu, and B. Pan, “The distribution patterns of biological soil crust in Gurbantunggut desert,” Acta Geographica Sinica, vol. 60, no. 1, pp. 53–60, 2005.

[23] CRFX, Flora Xinjiangensis, Xinjiang Science, Technology and Health Press, Urumqi, China, 1993–2011.

[24] H. L. Liu, Y. Tao, D. Qiu, D. Y. Zhang, and Y. K. Zhang, “Effects of artificial sand-fixing on community characteristics of a rare desert shrub,” Conservation Biology, vol. 27, pp. 1011–1019, 2013.

[25] APG, “An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II,” Botanical Journal of the Linnean Society, vol. 141, pp. 339–436, 2003.

[26] K. Thompson, S. R. Band, and J. G. Hodgson, “Seed size and shape predict persistence in soil,” Functional Ecology, vol. 7, no. 2, pp. 236–241, 1993.

[27] Y. Gutterman, Survival Strategies of Annual Desert Plants, Springer, Heidelberg, Germany, 2002.

[28] M. R. Leishman, M. Westoby, and E. Jurado, “Correlates of seed size variation: a comparison among five temperate floras,” Journal of Ecology, vol. 83, no. 3, pp. 517–530, 1995.

[29] K. van Oudtshoorn and M. W. van Rooyen, Dispersal Biology of Desert Plants, Springer, Berlin, Germany, 1999.

[30] A. T. Moles, D. D. Ackerly, C. O. Webb et al., “Factors that shape seed mass evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10540–10544, 2005.

[31] A. T. Moles, D. D. Ackerly, C. O. Webb, J. C. Twiddle, J. B. Dickie, and M. Westoby, “A brief history of seed size,” Science, vol. 307, no. 5709, pp. 576–580, 2005.

[32] D. B. Miles and A. E. Dunham, “Historical perspectives in ecology and evolutionary biology: the use of phylogenetic comparative analyses,” Annual Review of Ecology and Systematics, vol. 24, pp. 587–619, 1993.

[33] D. W. Butler, R. J. Green, D. Lamb, W. J. F. McDonald, and P. I. Forster, “Biogeography of seed-dispersal syndromes, life-forms and seed sizes among woody rain-forest plants in Australia’s subtropics,” Journal of Biogeography, vol. 34, no. 10, pp. 1736–1750, 2007.

[34] D. Harel, C. Holzapfel, and M. Sternberg, “Seed mass and dormancy of annual plant populations and communities decreases with aridity and rainfall predictability,” Basic and Applied Ecology, vol. 12, no. 8, pp. 674–684, 2011.

[35] A. T. Moles, D. D. Ackerly, J. C. Tweddle et al., “Global patterns in seed size,” Global Ecology and Biogeography, vol. 16, no. 1, pp. 109–116, 2007.

[36] F. J. Thomson, A. T. Moles, T. D. Auld, D. Ramp, S. Ren, and R. T. Kingsford, “Chasing the unknown: predicting seed dispersal mechanisms from plant traits,” Journal of Ecology, vol. 98, no. 6, pp. 1310–1318, 2010.

[37] J. Lord, M. Westoby, and M. Leishman, “Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation,” American Naturalist, vol. 146, no. 3, pp. 349–364, 1995.

[38] J. Belnap, “Nitrogen fixation in biological soil crusts from southeast Utah, USA,” Biology and Fertility of Soils, vol. 35, no. 2, pp. 128–135, 2002.

[39] J. Belnap and O. L. Lange, Biological Soil Crust: Structure, Function and Management, Springer, Berlin, Germany, 2003.

[40] F. J. Thomson, A. T. Moles, T. D. Auld, and R. T. Kingsford, “Seed dispersal distance is more strongly correlated with plant height than with seed mass,” Journal of Ecology, vol. 99, no. 6, pp. 1299–1307, 2011.