Supporting Information

In situ grown hierarchical NiO nanosheet@nanowire arrays for a high-performance electrochromic energy storage application

Shangzhi Yaoa,b, Yong Zhang*a,b, Jingyi Caia,b, Yong Hongc, Yan Wanga,b, Jiewu Cuia,b, Xia Shua,b, Jiaqin Liua,d, Hark Hoe Tane and Yucheng Wu*a,b

Experimental section

Materials

Nickel nitrate (Ni(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O), urea (CH\textsubscript{4}N\textsubscript{2}O), nickel(II) acetate tetrahydrate (Ni(CH\textsubscript{3}COO)\textsubscript{2}·4H\textsubscript{2}O), ethanol (C\textsubscript{2}H\textsubscript{6}O), and KOH were used directly without any further purification.

Pre-seed layer treatment

FTO coated glass substrates (30×50 mm2 in size) were carefully ultrasonicated in acetone, ethanol and DI water sequentially for 0.5 h to obtain clean surface. Subsequently, the FTO glass substrates were immersed in a 15 mM Ni(CH\textsubscript{3}COO)\textsubscript{2}·4H\textsubscript{2}O at 65°C for 0.5 h. Then, the treated glass was transferred to heating plate and annealed at 275°C for 0.5 h in air.

Synthesis of hierarchical NiO nanosheet@nanowire arrays

The hierarchical NiO arrays were synthesized by one-step hydrothermal process following heat treatment procedure. First, 290 mg Ni(NO\textsubscript{3})\textsubscript{2}·6H\textsubscript{2}O and 600 mg CH\textsubscript{4}N\textsubscript{2}O were transferred in 40 mL DI water and 10 mL ethanol and stirred until the solution became clear. The mixed solution was subsequently poured into a 100 mL autoclave, and the post-treated FTO glass substrates were immersed in the solution to
initiate growth of the film. NiO precursor layer was obtained by solution phase reaction at 120°C for 1, 3, 6 and 9 h. When the autoclave was cooled down naturally, the obtained precursor films were carefully cleaned with flowing deionized water and ethanol for 5 minutes, respectively. Subsequently, this precursor was then transformed into NiO by heat treatment at 350°C for 2 h in air with a heating rate of 2 °C/min. The synthesized NiO films are named as NiO-X, where X stands for the different hydrothermal time. A schematic illustrating the experiment procedure is given in Scheme 1.

Material Characterization

The micro size and morphology feature of the synthesized samples were analyzed by using SEM (Hitachi Regulus 8230) and TEM (JEM-2100F). XRD patterns of the samples from 10 to 90 degrees were examined on a X’Pert Pro MPD (PANalytical B.V.) with Cu Kα radiation (λ= 1.54 Å). XPS data was examined with A Thermo ESCALAB250Xi system using Al Kα radiation.

Electrochemical tests

Electrochemical tests were performed with a three-electrode system. 1 M KOH aqueous solution was used as the reaction electrolyte. The synthesized NiO sample, an Ag/AgCl electrode and a clean Pt wire electrode were used as the working, reference and counter electrode, respectively. Chronoamperometry (CA), cyclic voltammetry (CV), i-t curve and galvanostatic charge–discharge (GCD) measurements were tested accompanying corresponding in situ spectroscopic test at 550 nm by an electrochemical workstation (CHI760E) and a Shimadzu UV-3600 UV-VIS-NIR spectrophotometer. Detailly, the CV measurements were tested in the applied voltage
range of -1.0~1.0 V with scan rate of 0.005 V/s. The optical transmittance of the film was tested over the wavelength range from 300 to 1300 nm. The dynamic optical modulation was obtained at 550 nm by applying voltage between -1.0 V and 1.0 V with a duration of 20 s for each step. Electrochemical impedance spectroscopy (EIS) was tested with AC amplitude of 0.005 V with a frequency range of 0.1~100 kHz. The calculated mass loading of the NiO-3h electrode is 0.037 mg cm\(^{-2}\).

Figure S1. (a) High magnification FESEM image and (b) corresponding SAED patterns and EDS maps of NiO-3h.

Figure S2. Statistical analysis of the length of NiO-3h.
Figure S3. FESEM image of the precursors of (a) NiO-1h, (b) NiO-3h, (c) NiO-6h and (d) NiO-9h.

Figure S4. (a) FESEM image and (b) transmittance spectra of NiO-3h synthesized under the same conditions but without the seed layer treatment of the FTO substrate.
Figure S5. The FESEM picture of cross-sectional view and corresponding EDS maps of NiO-9h.
Figure S6. TGA and DTA curves of the NiO precursor.

Figure S7. EPR spectrum of the NiO-3h film.
Figure S8. Current profile of the NiO-3h with a square wave potential oscillating between +1.0 and -1.0 V in an activation process.

Figure S9. Optical photographs of NiO-3h at (a) bleached state and (b) colored state.
Figure S10. XPS O 1s spectrum of (a) NiO-1h, (b) NiO-3h, (c) NiO-6h and (d) NiO-9h.

Figure S11. CV curves of NiO-3h at various scan rates.
Figure S12. The power law relationship between the peak currents and scan rates of the NiO-3h thin films.

Figure S13. Capacitance retention and coulombic efficiency of the NiO-3h electrode over 1000 cycles at a current density of 0.42 mA/cm².
Figure S14 (a) Raman spectra of the coloring and bleaching states of NiO-3h film after 700 cycles. (b) Ni 2p of NiO-3h at different cycling times.
Sample	ΔT (%) at 550 nm	CE (cm²C⁻¹)	Cycle stability	Capacitive performance	References
NiO	63.6%	42.8	90.8% after 3000C	308 F/g at 2 A/g	7
Al-doped NiO	58.4%	54.2	30% decrease after 2000C	NA	11
NiO-Co5	52%	NA	NA	88.24 mF/cm² at 0.4 mA/cm²	40
NiO	51%	40	<10% after 3000C	NA	41
N-doped carbon coated NiO	54.27% at 450 nm	48.5	NA	235.8 F/g at 2 A/g	42
Li-doped NiO	66.8%	31.2	NA	13 mF/cm² at 0.1 mA/cm²	43
NiO nano-sheets	66.9%	48.51	NA	129.32 mF/cm² at 5 mV/s	44
NiO MS-HMS	47%	85.3	NA	NA	45
Hierarchical NiO film	95%	91.2	86.5% after 700C	117.2 mF/cm² at 0.14 mA/cm²	This work

Table S1. Switching time of the NiO samples.

Sample	ΔT (%) at 550 nm	CE (cm²C⁻¹)	Cycle stability	Capacitive performance	References
NiO	63.6%	42.8	90.8% after 3000C	308 F/g at 2 A/g	7
Al-doped NiO	58.4%	54.2	30% decrease after 2000C	NA	11
NiO-Co5	52%	NA	NA	88.24 mF/cm² at 0.4 mA/cm²	40
NiO	51%	40	<10% after 3000C	NA	41
N-doped carbon coated NiO	54.27% at 450 nm	48.5	NA	235.8 F/g at 2 A/g	42
Li-doped NiO	66.8%	31.2	NA	13 mF/cm² at 0.1 mA/cm²	43
NiO nano-sheets	66.9%	48.51	NA	129.32 mF/cm² at 5 mV/s	44
NiO MS-HMS	47%	85.3	NA	NA	45
Hierarchical NiO film	95%	91.2	86.5% after 700C	117.2 mF/cm² at 0.14 mA/cm²	This work

Table S2. A summary of electrochromic energy storage performance based on different nickel oxide materials.