SPECTROSCOPY OF LENSING GALAXIES IN THE GTC ERA

Vyacheslav N. Shalyapin1 and Luis J. Goicoechea2

1. FIRST TARGETS AND GOALS

Time delays between multiple images of lensed quasars can be used in lensing mass reconstructions and the determination of cosmological parameters (e.g., Oguri 2007). However, a spectroscopic follow-up of lensing galaxies is essential to use time delays to constraint lensing mass distributions or cosmology (for a recent review see Schneider et al. 2006). Here, we present the first observations of our spectroscopic programme with OSIRIS on the GTC, which are part of an ambitious project with the new 10.4 m telescope (Ullán \& Goicoechea 2003). These 2011 data of faint galaxies at relatively large angular separations from lensed quasars have been obtained in average seeing conditions or even worse.

We have recently measured the three time delays of the quadruple quasar HE 1413+117 (Cloverleaf quasar) [1] and SDSS 1116+4118 [2]. The external shear strength in this lens system is $\gamma \sim 0.1$, and the shear direction points towards the three field galaxies 1, 2, and H2 [3]. Thus, we have obtained OSIRIS/GTC spectra of the galaxies 1 and 2, which allow us to discuss the contribution of these targets to the external shear on the Cloverleaf. We have also taken long-slit spectra of the galaxy between the pair of quasars SDSS 1116+4118 at redshift $z \sim 3$. Both quasars are separated by 13.7, so we want to check if the galaxy produces an image splitting $\Delta \theta \sim 14''$ for a source at $z \sim 3$ (Sánchez Alvaro \& Rodríguez Calonge 2007 Ellison et al. 2007).

2. RESULTS AND DISCUSSION

2.1. HE 1413+117 (Cloverleaf quasar)

This year we have performed seven 2 ksec spectroscopic observations of the galaxies 1 and 2 in the southwest of the Cloverleaf quasar, using the low-resolution grism R300R ($\lambda/\Delta \lambda = 348$) and placing the slit along the line joining both galaxies (e.g., MacLeod et al. 2009). From the first five datasets of each galaxy corresponding to March 31 and June 6 (mean seeing of $\sim 1''$), we infer the combined spectra that appear in Figure 1. The galaxy No. 2 ($R \sim 24$ mag) has a noisy spectrum that only includes one strong emission line splitting $\Delta \theta \sim 14''$ for a source at $z \sim 3$ (Sánchez Alvaro \& Rodríguez Calonge 2007 Ellison et al. 2007).

Key Words: Galaxies: general — Gravitational lensing: strong — Techniques: spectroscopic

1Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Proskura St., 61085 Kharkov, Ukraine (vshal@ukr.net).

2Departamento de Física Moderna, Universidad de Cantabria, Avda. de Los Castros s/n, 39005 Santander, Spain (goicol@unican.es).
Fig. 1. Spectra of the galaxies 1 and 2 around the Clover-leaf quasar. Vertical dashed and dotted lines correspond to emission and absorption lines at $z = 0.57$, respectively. The three gray highlighted regions are associated with prominent atmospheric and night sky features.

mag) galaxies at $z \sim 0.5–0.6$ (e.g., Bamford et al. 2005). Therefore, we consider a singular isothermal sphere (SIS) model and an upper limit $V_{\text{rot}} \leq 175$ km s$^{-1}$ to describe the halo mass of the galaxy No. 1. If the main lens redshift was $z = 0.57$, then the shear from this galaxy would be less than 0.02. However, the main lens redshift is likely about 2 (Goicoechea & Shalyapin 2010), and thus, the effective shear should be less than 0.002 (Momcheva et al. 2006). This shear strength is significantly lower than the external shear in the system ($\gamma \sim 0.1$).

2.2. SDSS 1116+4118

We have observed the lens system candidate on March 31 and April 7, 2011. The low-resolution spectra along the major and minor axes of the galaxy between the pair of quasars at $z \sim 3$ are displayed in Figure 2. The exposure times/seeing values are 2.0 ksec/2′′00 (major axis) and 1.2 ksec/2′′35 (minor axis), and both spectra are consistent with each other. From the Kinney-Calzetti templates, we conclude that the candidate for main lensing galaxy ($R \sim 19$ mag; Sánchez Alvaro & Rodriguez Calonge 2007) is a spiral (Sb?) at $z = 0.195 \pm 0.002$. Assuming a SIS model and a standard rotation velocity ($V_{\text{rot}} \leq 300$ km s$^{-1}$), the lensing galaxy candidate can only generate an image splitting $\Delta \theta \leq 2''$ for a source at $z \sim 3$. This is well below the observed separation between the pair of quasars. Even for an extremely massive spiral with $V_{\text{rot}} \sim 500$ km s$^{-1}$, e.g., UGC 12591 (Giovanelli et al. 1986) or ISO-HDFS 27 (Rigopoulou et al. 2002), the predicted image splitting is $\Delta \theta \sim 6''$. This extreme value is less than half of the angular separation between the two distant quasars.

Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

REFERENCES

Bamford, S. P., Milvang-Jensen, B., Aragón-Salamanca, A., & Simard, L. 2005, MNRAS, 361, 109
Ellison, S. L., Hennawi, J. F., Martin, C. L., & Sommer-Larsen, J. 2007, MNRAS, 378, 801
Giovanelli, R., Haynes, M. P., Rubin, V. C., & Kent Ford, W. 1986, ApJ, 301, L7
Goicoechea, L. J., & Shalyapin, V. N. 2010, ApJ, 708, 995
MacLeod, C. L., Kochanek, C. S., & Agol, E. 2009, ApJ, 699, 1578
Momcheva, I., Williams, K., Keeton, C., & Zabludoff, A. 2006, ApJ, 641, 169
Oguri, M. 2007, ApJ, 660, 1
Rigopoulou, D., Franceschini, A., Aussel, H., Genzel, R., Thatte, N., & Cesarsky, C. J. 2002, ApJ, 580, 789
Sánchez Alvaro, E., & Rodríguez Calonge, F. J. 2007, astro-ph/0701537
Schneider, P., Kochanek, C. S., & Wambsganss, J. 2006, In: Gravitational Lensing: Strong, Weak & Micro. Eds. G. Meylan, P. Jetzer, & P. North. (Berlin: Springer-Verlag)
Ullán, A., & Goicoechea, L. J. 2003, Revista Mexicana de Astronomía y Astrofísica Conference Series, 16, 317