RESEARCH ARTICLE

Transmission dynamics and control of Rickettsia rickettsii in populations of Hydrochoerus hydrochaeris and Amblyomma sculptum

Gina Polo1*, Carlos Mera Acosta2, Marcelo B. Labruna1, Fernando Ferreira1

1 Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil, 2 Institute of Physics. University of São Paulo, São Paulo, SP, Brazil

* gina@vps.fmvz.usp.br

Abstract

Background

Brazilian Spotted Fever (BSF), caused by the bacterium Rickettsia rickettsii, is the tick-borne disease that generates the largest number of human deaths in the world. In Brazil, the current increase of BSF human cases has been associated with the presence and expansion of capybaras Hydrochoerus hydrochaeris, which act as primary hosts for the tick Amblyomma sculptum, vector of the R. rickettsii in this area.

Methods

We proposed a semi-discrete-time stochastic model to evaluate the role of capybaras in the transmission dynamics of R. rickettsii. Through a sensitivity analysis, we identified the parameters with significant influence on the R. rickettsii establishment. Afterward, we implemented the Gillespie’s algorithm to simulate the impact of potential public health interventions to prevent BSF human cases.

Results

The introduction of a single infected capybara with at least one infected attached tick is enough to trigger the disease in a non-endemic area. We found that to avoid the formation of new BSF-endemic areas, it is crucial to impede the emigration of capybaras from endemic areas by reducing their birth rate by more than 58%. Model results were corroborated by ex-situ data generated from field studies, and this supports our proposal to prevent BSF human cases by implementing control strategies focused on capybaras.

Conclusion

The proposed stochastic model illustrates how strategies for the control and prevention of vector-borne infectious diseases can be focused on amplifier hosts management practices.
This work provides a basis for future prevention strategies for other neglected vector-borne diseases.

Author Summary

A stochastic model for the spread of *R. rickettsii* among the *Amblyomma sculptum* tick vector and the *Hydrochoerus hydrochaeris*, amplifier host, was formulated. We found that the introduction of a single infected capybara, with at least one infected attached tick, is enough to trigger the disease in a non-endemic area. To avoid disease propagation, it is crucial to impede the emigration of capybaras from endemic areas by keeping the population in a stable state. Otherwise, to eliminate the disease from endemic areas, a reduction by more than 58% in the capybara birth rate is necessary. These results allow improving the planning of public actions to prevent Brazilian Spotted fever based on the control of capybara population and provided a basis for planning prevention programs for other neglected vector-borne diseases.

Introduction

Rickettsia rickettsii is the etiological agent of the Brazilian spotted fever (BSF), the deadliest spotted fever in the world. This infection is partially pathogenic to *Amblyomma sculptum* ticks, main vectors of the *R. rickettsii* in South America [1, 2], generating a drop in the infection rate with each tick generation [3]. In addition, *A. sculptum* ticks are unable to maintain the *R. rickettsii* infection in successive generations by transovarial and transstadial transmissions [4]. Hence, the maintenance of *R. rickettsii* depends on a constant introduction of new susceptible animals (i.e., newborn of vertebrate hosts), which act as amplifier hosts and guarantee the constant creation of new cohorts of infected ticks [4–7]. This suggests that control strategies focused on vectors [8, 9] are not enough for the prevention of this tick-borne infectious disease.

In Brazil, the capybara *Hydrochoerus hydrochaeris* acts as the amplifier host of *R. rickettsii* infection [10, 11]. In southeastern Brazil, both capybaras and BSF occurrences have increased significantly over the last three decades [5, 12]. In turn, these occurrences have been spatiotemporally associated with rising production and spatial expansion of sugarcane crops, the main food source of capybaras [13]. In BSF-endemic areas, population densities of capybaras have reached numbers up to 40 times higher than those recorded in natural environments such as the Amazon and Pantanal [14]. However, the effectiveness of control strategies focused on this amplifier host and their impact on the transmission of *R. rickettsii* are unknown.

The dynamics of complex transmission cycles, such as tick-borne infectious diseases have been broadly analyzed. Hudson et al. published the first deterministic model representing the dynamics of the Louping-ill disease, an acute viral zoonosis which mainly affects sheep [15]. O’Callaghan et al. put forward tick-borne diseases dynamics considering the potential effect of a vaccination program for *Ehrlichia ruminantium* [16]. Similarly, Rosà et al. developed a model for the tick-borne encephalitis virus including the tick stages and different transmission routes [17, 18]. Despite their important role in the understanding of vector-borne diseases dynamics, unfortunately they do not include the seasonal behavior of the vector life cycle, neither the onset nor the extinction of these diseases. As it is well established, stochastic models should be used in phenomena that do not satisfy the law of large numbers such as large...
communities with minor outbreaks [19]. In fact, the extinction of endemic diseases can only
be analyzed with stochastic models, since extinction occurs when the epidemic process devi-
ates from the expected level [19].

In this work, we propose a discrete-state semi-discrete-time stochastic framework to evaluate
the role of capybaras in the transmission dynamics of R. rickettsii. We identify the param-
eters with significant influence on the R. rickettsii establishment and subsequently evaluate the
impact of potential public health interventions to prevent BSF in humans.

Materials and methods

Model

The R. rickettsii dynamics in populations of H. hydrochaeris and A. sculptum is represented in
Fig 1. Our model was adjusted to a semi-discrete time dynamics in order to consider the
1-year life cycle of the tick A. sculptum, which is primarily controlled by the larval behavioral
diapause [20]. Thus, larvae exclusively quest and feed from April to July for 110 days, nymphs
from July to October for 104 days and adults particularly quest, feed and reproduce from Octo-
ber to March for 151 days, as shown in Fig 1.

![Schematic representation of the R. rickettsii dynamics in populations of H. hydrochaeris and A. sculptum](https://doi.org/10.1371/journal.pntd.0005613.g001)

Deaths, births, and migrations are not represented in the capybara population. Tick deaths are also not represented.
The tick population is classified according to the life cycle stages as larvae (L), nymphs (N) or adults (A), which could be detached from a capybara or attached to it. When a tick gets infected by an infected capybara, it remains infected until it dies. Thus, each *A. sculptum* stage is also classified according to whether it is susceptible (S) or infected (I). In this way, the population of each tick stage is represented by three indexes, where the first index denotes the infection status, the second index denotes the tick life cycle stage, and the third index denotes detachment (D) or attachment (A).

Attached ticks at the larval and nymph stages detach at the respective rates of θ_L and θ_N. Furthermore, detached ticks at larval, nymph and adult stages can attach at rates α_L, α_N and α_A, and can die at rates δ_L, δ_N and δ_A. The production rate ρ of larvae is assumed to be proportional to the total number of adult attached ticks AA.

On the other hand, capybaras are classified as susceptible S_C, infected I_C and recovered R_C as shown in Fig 1. They reproduce at a constant rate μ_C, die at rate δ_C and recovered at rate γ_C. All capybaras have the same susceptibility and there is no increased death rate of infected individuals due to disease. Susceptible capybaras can get infected by an attached larva, nymph or adult tick at a rate of λ_L, λ_N and λ_A, respectively. Once capybaras are infected, they keep the *R. rickettsii* in the bloodstream for 7 to 10 days \[11\], during which the infection of new susceptible larvae or nymphs that feed on it can occur at rates β_L and β_N, respectively. After this period, capybaras become immune to the disease. We do not consider a transmission rate from infected capybaras to susceptible adult ticks β_A because of the time of *R. rickettsii* infection in ticks is greater than the time of laying. Thus, eggs can be infected only if adult ticks become infected during the larval or nymph stages \[4\]. Additionally, we consider a vertical transmission and hence infected adult ticks can produce infected detached larvae at rate ρ_T. In this way, there are 25 distinct reactions in the stochastic model which are listed in Table 1. The equivalent deterministic equations associated with the stochastic reactions are presented in the S1 File.

Time series simulations

The stochastic process detailed in Table 1 was simulated in the R programming language employing the Gillespie’s algorithm. For each simulation we performed the number of iterations needed to get a stable performance.

We assumed a finite number of individuals distributed over a finite set of discrete states. Given an initial time t_0 and an initial population state $X(t_0)$, the Gillespie’s algorithm allows us to generate the time-evolution trajectory of the state vector $X(t) \equiv (X_1(t), \ldots, X_N(t))$, where $X_i(t)$ is the population size of state i at time t and N is the number of states. Changes in the number of individuals in each state occur due to reactions between interacting states. The states interact through M reactions R_j, where $j = 1, \ldots, M$ denotes the jth reaction. A reaction is defined as any process that instantaneously changes the population size of at least one state \[21, 22\]. The time step to the next reaction was then determined as $\tau = \frac{1}{a(x)} \ln(1/r_j)$, where $a(x) = \Sigma a_i(x)$ and the index of the next reaction to execute R_j is the smallest integer j satisfying $j = \Sigma_{i = 1}^{M} z_i(x) > r_j a_i(x)$ \[21, 22\].

All parameters were estimated using previously generated data from *ex situ* field works in southeastern Brazil \[4, 5, 11, 14, 23\]. It is noteworthy that the natural capybara birth rate μ assumes the value of 70% of adults, 64% of females, a litter size mean of 4.2 pups, 1.23 births per female per year and a pregnancy success of 85% \[14, 23\]. If capybaras die at an exponential rate, then δ_C is the fraction required to die each day. The birth rate of a susceptible tick was determined assuming a female weight of 500mg \[4\], CEI (mg egg mass/mg engorged female \times 100) of 48.4% \[4\], 18.8 eggs/ 1 mg of eggs \[24\] and hatching success of 68% \[4\].
Table 1. Events and reactions of the tick-capybara-disease stochastic process.

Event	Reaction
Birth of capybara	\(S_C \xrightarrow{\nu_C} S_C + 1 \)
Birth of susceptible detached larvae	\(S_{LD} \xrightarrow{\nu_{LD}} \) \(S_{LD} + 1 \)
Birth of infected detached larvae	\(I_{LD} \xrightarrow{\mu_{LD}} I_{LD} + 1 \)
Engorgement of a susceptible larva	\(S_{LD} \xrightarrow{\delta_{LD}} (S_{LD} - 1) + (S_{LA} + 1) \)
Engorgement of an infected larva	\(I_{LD} \xrightarrow{\delta_{LD}} (I_{LD} - 1) + (I_{LA} + 1) \)
Transmission from an infected capybara to a susceptible larva	\(S_{LA} \xrightarrow{\beta_{LA}} (S_{LA} - 1) + (I_{LA} + 1) \)
Transmission from an infected larva to a susceptible capybara	\(S_{LA} \xrightarrow{\beta_{LA}} (S_{LA} - 1) + (I_{LA} + 1) \)
Stage change from susceptible larvae to detached nymph	\(S_{LA} \xrightarrow{\delta_{LA}} (S_{LA} - 1) + (S_{ND} + 1) \)
Stage change from infected larvae to detached nymph	\(S_{LA} \xrightarrow{\delta_{LA}} (S_{LA} - 1) + (S_{ND} + 1) \)
Recovery rate of capybara	\(I_C \xrightarrow{\gamma_C} (I_C - 1) + (R_C + 1) \)
Death of a susceptible capybara	\(S_C \xrightarrow{\delta_S} S_C - 1 \)
Emigration of a susceptible capybara	\(S_C \xrightarrow{c_C} S_C - 1 \)
Death of an infected capybara	\(I_C \xrightarrow{\delta_I} I_C - 1 \)
Emigration of an infected capybara	\(I_C \xrightarrow{c_I} I_C - 1 \)
Death of a recovered capybara	\(R_C \xrightarrow{\delta_R} R_C - 1 \)
Emigration of a recovered capybara	\(R_C \xrightarrow{c_R} R_C - 1 \)
Engorgement rate of a susceptible nymph	\(S_{ND} \xrightarrow{\nu_{ND}} (S_{ND} - 1) + (S_{NA} + 1) \)
Engorgement rate of an infected nymph	\(I_{ND} \xrightarrow{\nu_{ND}} (I_{ND} - 1) + (I_{NA} + 1) \)
Transmission from an infected nymph to a susceptible capybara	\(S_C \xrightarrow{\beta_{CA}} (S_C - 1) + (I_C + 1) \)
Transmission from an infected capybara to a susceptible nymph	\(S_{NA} \xrightarrow{\beta_{CA}} (S_{NA} - 1) + (I_{NA} + 1) \)
Stage change from susceptible nymph to detached adult	\(S_{NA} \xrightarrow{\delta_{NA}} (S_{NA} - 1) + (S_{AD} + 1) \)
Stage change from infected nymph to detached adult	\(I_{NA} \xrightarrow{\delta_{NA}} (I_{NA} - 1) + (I_{AD} + 1) \)
Engorgement of a susceptible adult	\(S_{AD} \xrightarrow{\nu_{AD}} (S_{AD} - 1) + (S_{AA} + 1) \)
Engorgement of an infected adult	\(I_{AD} \xrightarrow{\nu_{AD}} (I_{AD} - 1) + (I_{AA} + 1) \)
Transmission from an infected adult to a susceptible capybara	\(S_C \xrightarrow{\beta_{CA}} (S_C - 1) + (I_C + 1) \)

Likewise, the birth rate of an infected tick was determined assuming a transovarial transmission of 42.8% [4], filial infection rate of 50% [4], female weight of 372.20 mg [4], CEI of 39.55% [4], 18.8 eggs/1 mg of eggs, [24] and hatching success of 44.2% [4]. We consider a population of 20 adult female ticks per capybara and the groups of capybaras were restricted to 50 individuals [14, 23, 25]. A full list of the model’s parameters used in the simulations is given in Table 2.

Sensitivity analysis

To quantify the impact of the variation of each parameter on the output of the BSF model, we combined uncertainty through the Latin hypercube sampling (LHS) with the robust Partial rank correlation coefficient (PRCC) method [26, 27]. Initially, we obtained a random...
parameter distribution divided into one hundred equal probability intervals, which were then sampled. Thus, a LHS matrix was generated with one hundred rows for the number of simulations (sample size) and six columns corresponding to the number of varied parameters (α, μ_C, λ, γ_C, δ_C, ϵ_C). The parameters α and λ were varied according to the life cycle season. BSF model solutions were then simulated using each combination of parameter values through ten year simulation. One thousand model outputs were obtained and the parameter and output values were transformed into their ranks. Subsequently, we computed the PRCCs between each parameter and the average infected population size.

Results and discussion

Initially, we simulated the formation of an endemic area by the introduction of infected capybaras and infected attached ticks. For a more realistic simulation of current BSF-endemic areas of southeastern Brazil, we consider a growing population of capybaras (births greater than deaths and high emigration). We assume that this scenario corresponds with the onset of a BSF epidemic. We found that the introduction of a single infected capybara or a single infected tick is unable to trigger the disease in a non-endemic area of 50 susceptible capybaras. However, the introduction of an infected capybara with at least one infected tick attached is enough to establish a new endemic area, as shown in Fig 2 scenario A. This scenario illustrates how the fraction of infected capybaras and ticks converges to a constant from year 2 onward. In this equilibrium state, the average fraction of infected capybaras is 8.9% (95% CI = 0%-28.6%), 18.2% (95% CI = 0%-44.9%) and 17.5% (95% CI = 0%-43.9%) in the larvae, nymphs and adults season respectively. In this scenario, the average fraction of infected detached larvae is 1.25%

Table 2. Parameters and values used in simulations.

Param.	Value	Description
μ	0.005 d^{-1}	Birth rate of capybara [14, 23]
ρ_{SS}	2709%	Susceptible larvae production per adult susceptible tick [4]
ρ_{SI}	305%	Susceptible larvae production per adult infected tick [4]
ρ_I	228%	Infected larvae production per adult infected tick [4]
E_L	10%	Larval engorgement [4]
a_L	0.003 d^{-1}	Attached rate of a larva [4]
θ_{SL}	35%	Stage change susceptible larvae [4]
θ_{IL}	17%	Stage change infected larvae [4]
a_N	0.006 d^{-1}	Attached rate of a nymph [4]
E_N	40%	Nymph engorgement [4]
θ_{SN}	60%	Stage change susceptible nymph [4]
θ_{IN}	60%	Stage change infected nymph [4]
a_A	0.009 d^{-1}	Attached rate of an adult [4]
E_A	70%	Adult engorgement [4]
λ_L	$9.4 \times 10^{-5} d^{-1}$	Transmission from an infected larvae to a susceptible capybara [11]
λ_N	0.046 d^{-1}	Transmission from an infected nymph to a susceptible capybara [11]
λ_A	0.046 d^{-1}	Transmission from an infected adult tick to a susceptible capybara [11]
β_L	12%	Transmission from an infected capybara to a susceptible larvae [4, 11]
β_N	25%	Transmission from an infected capybara to a susceptible nymph [4, 11]
$(1/\gamma)$	10 days	Capybara’s infection period [5]
γ	0.027 d^{-1}	Recovery rate of capybaras [5]
δ_C	0.002 d^{-1}	Death rate of capybaras [14]
ϵ_C	0.003 d^{-1}	Emigration rate of capybaras

https://doi.org/10.1371/journal.pntd.0005613.t002
(95% CI = 0%-7.04%), infected attached larvae 0.7% (95% CI = 0%-6.5%), infected detached
nymphs 1.35% (95% CI = 0%-9.36%), infected attached nymphs 0.8% (95% CI = 0%-6.95%),
infected detached adults 0.46% (95% CI = 0%-5.17%) and infected attached adults 0.54% (95%
CI = 0%-5.64%). These results are consistent with previous observations in BSF-endemic areas
in which the fraction of infected
A. sculptum
adults attached to horses has been reported at 0%
[28] and the fraction of infected detached adults
A. sculptum
at 1% (95% CI = 0.01%-7.8%)
[28], 0.2% (95% CI = 0.01%-1.04%) [10] and 1.28% (95% CI = 0.07%-5.59%) [29]. The fraction
of infected capybaras and other tick populations remains unreported.

In scenario A, an average of 57.1% (95% CI = 22.8%-91.4%), 78.2% (95% CI = 49.6%-99.9%),
and 77.2% (95% CI = 48.1%-99.9%) of capybaras became immune after a primary infection
with R. rickettsii in the larvae, nymph and adult seasons, respectively. In practical terms, these
immune capybaras include the Rickettsia-seropositive animals that are usually found in serosur-
vey studies in BSF-endemic areas. These numbers agree with previous serosurvey studies that
reported 50-80% of capybaras to be seropositive for R. rickettsii in BSF-endemic areas [10, 30].

In this established endemic area, we observe that 563 capybaras migrated over 10 years.
Sensitivity analysis of scenario A show that the capybara birth rate variation had the great-
est impact on the average infected population size. In the nymph and adult ticks seasons, when
the infection of capybaras is greater, the correlation value between the birth rate of capybaras
and the average infected population is PRCC>0.6, being significant in both seasons (Fig 3).
Since in BSF-endemic areas of southeastern Brazil the population of capybaras is growing [5,
12–14], theoretically, the epidemic will survive forever [31]. Considering \(\mu = \delta_C + \epsilon \), where \(\mu_C \)
represents birth, \(\delta_C \)-death and \(\epsilon \) emigration rate of capybaras, the population growth generates
a high rate of emigration and consequently the spread of the disease. In this way, to better
understand the effect of changes in capybara population, we investigate the host-tick-infection
dynamics for different values of \(\mu_C \) under three additional scenarios: 1) an endemic area with
a stable state of capybaras (births equal deaths, no emigration and no importation of the disease from outside); 2) an endemic area with a decrease of 80% and 3) 90% in the birth rate of capybaras.

Contrary to the expected behavior [32], when the population is in a stable state, the disease does not disappear. Indeed, the proportion of infected individuals remains constant over time from year 2 onward as shown in Fig 2B. In this scenario, the average fraction of infected capybaras is 4.6% (95% CI = 0.01%-19.3%), 6.3% (95% CI = 0.01%-23.1%) and 7.4% (95% CI = 0.01%-25.4%) in the larvae, nymphs and adults seasons, respectively. To ensure births equals deaths ($\mu_C = \delta_C$) and thereby guarantee no emigration ($\epsilon = 0$), it is necessary to control the capybara’s birth rate in 58%. Thereby, though the disease does not disappear, this birth rate guarantees that the $R. rickettsii$ will not spread from BSF-endemic areas.

Thus, for the elimination of the $R. rickettsii$ from endemic areas, a decrease in the capybara’s birth rate to values lower than 0.0021 is necessary. However, this can lead to a decline in capybaras population over time. When a decrease of 80% ($\mu_C = 0.0011$) in the birth rate of capybaras is considered, infected individuals tend to disappear in the fourth year along with a decrease in the total population size, as shown in Fig 2C. Otherwise, when a decrease of of 90% ($\mu_C = 0.0005$) in the birth rate of capybaras is considered, infected ticks and capybaras tend to disappear from the second year as shown in Fig 2D.

Strategies to reduce the birth rate of capybaras include the reduction of the carrying capacity, their removal, either by euthanasia or regulated hunting, and their reproductive control. As capybaras natality depends primarily on the availability of food sources, as is typically the case for rodents [33], the reduction of the carrying capacity in BSF-endemic areas is a plausible strategy to reduce their birth rate [34]. Polo et al. found a spatiotemporal relationship between the occurrence of BSF and the increment and expansion of sugarcane crops, the main food source of capybaras in southeastern Brazil and the most important agricultural product in the region [13]. Furthermore, in this area, there is a constant availability of water sources, which allow the establishment of capybaras, as this is a semiaquatic vertebrate that depends on water sources for thermic regulation, reproduction, and predator protection [33]. Certainly, controlling these aspects is not feasible.

Additionally, because of the constant increment and abundance of vital resources offered by the environment in BSF-endemic areas of southeastern Brazil, it is important to consider that in response to the removal or elimination of recovering capybaras from theses areas, a reintroduction of susceptible animals can occur [13].
unfed *A. sculptum* in pastures [35], and the fact that just one infected capybara with a single infected tick attached is sufficient to establish an endemic area, can cause a rapid spread of the disease and consequently an increased risk of transmission to humans.

Reproductive control of capybaras through deferentectomy and ligation of fallopian tubes was previously tested in southeastern Brazil [36]. It was observed that the reproductive management did not negatively influence individual or collective behavioral aspects, with the animals defending their territory and not migrating [36]. The sterilization of capybaras has already been authorized as a way to prevent BSF human cases in a small endemic area of southeastern Brazil [37].

Future studies encompassing field data should be performed to evaluate the role of alternative reservoirs in the dynamics of *R. rickettsii*. This is a limitation of our work since we considered BSF-endemic areas of southeastern Brazil, where capybaras are the major, though not the exclusive, hosts for either larval, nymphal or adult stages of *A. sculptum*. In most BSF-endemic areas, the only medium-to-large-sized animal species is the capybara; therefore it is the only host for the *A. sculptum* adult stage, and consequently, the only suitable host species to sustain an *A. sculptum* population in the area [7, 10, 38]. However, there have been some previous reports of *A. sculptum* immature stages (larvae and nymphs) on small animals (wild mice, mar- supials, birds) which usually share the same habitat with capybaras [39, 40]. Nevertheless, comparing to capybaras, the amount of larvae or nymphs that feed on these animals is minimal; i.e., while hundreds to thousands larvae and nymphs are commonly found feeding on a single capybara [41], we usually find less than 10, or exceptionally a few dozen *A. sculptum* ticks on individual small animals [39–41]. Indeed, this condition is also favored by the fact that all active stages of *A. sculptum* tend to host-quest on vegetation above 15 cm from the soil, precluding their direct contact with small mammals or ground-feeding passerine birds [20, 42].

This work offers an alternative for the planning of prevention strategies for tick-borne neglected infectious diseases. The planning of these type of interventions is usually performed by public entities through heuristic techniques, such as trial and error methods, without obtaining optimal results. The results of our work accurately match with data previously generated from field studies on the *R. rickettsii* dynamics in southeastern Brazil and will potentially allow the formulation of public policy to prevent BSF human cases based on the control of capybara population growth. Furthermore, this work will provide a basis for the planning of prevention programs for other neglected vector-borne infectious diseases.

Supporting information

S1 File. Equivalent deterministic equations associated with the reactions of the stochastic model for the larval, nymph and adult tick seasons. (PDF)

Acknowledgments

The authors would like to thank Dr. Dennis Chao, Prof. Pejman Rohani and Prof. Philip O’Neill for the explanations and discussions valuable to the advancement of the model at the 7th Summer Institute in Statistics and Modeling in Infectious Diseases at the University of Washington in Seattle, Washington, USA.

Author Contributions

Conceptualization: GP MBL FF.

Data curation: GP.
Formal analysis: GP CMA.
Funding acquisition: GP MBL FF.
Methodology: GP CMA FF.
Project administration: MBL FF.
Software: GP CMA.
Supervision: FF.
Visualization: GP CMA MBL FF.

References

1. Nava S, Beati L, Labruna M, Caceres A, Mangold A, Guglielmone A. Reassessment of the taxonomic status of *Amblyomma cajennense* (Fabricius, 1787) with the description of three new species, *Amblyomma tonelliae* n. sp., *Amblyomma interandinum* n. sp. and *Amblyomma patinoi* n. sp., and reinstatement of *Amblyomma mixtum* Koch, 1844, and *Amblyomma sculpturn* Berlese, 1888 (Ixodida: Ixodidae). Ticks and Tick-borne Diseases. 2014; (5):252–276. PMID: 24556273

2. Martins TF, Barbieri ARM, Costa FB, Terassini FA, Camargo LMA, Peterka CRL, et al. Geographical distribution of *Amblyomma cajennense* (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of *A. cajennense* (sensu stricto). Parasites and Vectors. 2016; 9(1):186 https://doi.org/10.1186/s13071-016-1460-2 PMID: 27036324

3. Niebylski ML, Peacock MG, Schwan TG. Lethal effect of *Rickettsia rickettsii* on its tick vector (*Dermacentor andersoni*). Applied and Environmental Microbiology. 1999 Feb; 65(2):773–778. PMID: 9925615

4. Soares JF, Soares HS, Barbieri AM, Labruna MB. Experimental infection of the tick *Amblyomma cajennense*, Cayenne tick, with *Rickettsia rickettsii*, the agent of Rocky Mountain spotted fever. Medical and Veterinary Entomology. 2012; 26(2):139–151. https://doi.org/10.1111/j.1365-2915.2011.00982.x PMID: 22007869

5. Labruna MB. Ecology of rickettsia in South America. Annals of the New York Academy of Sciences. 2009; 1166(1):156–166. https://doi.org/10.1111/j.1749-6632.2009.04516.x PMID: 19538276

6. Labruna MB. Brazilian spotted fever: the role of capybaras. In: Capybara. Springer New York; 2013. p. 371–383.

7. Krawczak FS, Agostinho WC, Polo G, Moraes-Filho J, Labruna MB. Comparative evaluation of *Amblyomma ovale* ticks infected and noninfected by *Rickettsia* sp. strain Atlantic rainforest, the agent of an emerging rickettsiosis in Brazil. Ticks and Tick-borne Diseases. 2016; 7(3):502–507. https://doi.org/10.1016/j.ttbdis.2016.02.007 PMID: 26895674

8. Gaff H, Schaefer E. Metapopulation models in tick-borne disease transmission modelling. Adv Exp Med Bio. 2010; 673:51–65. https://doi.org/10.1007/978-1-4419-6064-1_4

9. Nelson CA, Hayes CM, Markowitz MA, Flynn JJ, Graham AC, Delorey MJ, et al. The heat is on: Killing blacklegged ticks in residential washers and dryers to prevent tickborne diseases. Ticks and Tick-borne Diseases. 2016; 7(5):958–963. https://doi.org/10.1016/j.ttbdis.2016.04.016 PMID: 27156138

10. Krawczak FS, Nieri-bastos FA, Nunes FP, Soares J, Moraes-filho J. Rickettsial infection in *Amblyomma cajennense* ticks and capybaras (*Hydrochoerus hydrochaeris*) in a Brazilian spotted fever-endemic area. Parasites and Vectors. 2014; 7:1–7. https://doi.org/10.1186/1756-3305-7-7

11. Souza CE, Moraes-Filho J, Ogrozewalska M, Uchoa FC, Horta MC, Souza SSL, et al. Experimental infection of capybaras *Hydrochoerus hydrochaeris* by *Rickettsia rickettsii* and evaluation of the transmission of the infection to ticks *Amblyomma cajennense*. Veterinary Parasitology. 2009; 161(1):116–121. https://doi.org/10.1016/j.vetpar.2008.12.010 PMID: 19147293

12. Del Fiol F, Junqueira F, Miranda C, Maria T, Filho B. A febre maculosa no Brasil. Revista Panamericana de Salud Pública. 2010; 27(10):461–466. https://doi.org/10.1590/S1020-48892010000600008

13. Polo G, Labruna MB, Ferreira F. Satellite hyperspectral imagery to support tick-borne infectious diseases surveillance. PLoS ONE. 2015; p. e0119190.

14. Ferraz K, De Barros Ferraz S, Moreira J, Couto H, Verdade L. Capybara (*Hydrochoerus hydrochaeris*) distribution in agroecosystems: a cross-scale habitat analysis. Journal of Biogeography. 2007; 34(2):223–230. https://doi.org/10.1111/j.1365-2699.2006.01568.x
15. Hudson P, Norman R, Laurenson M, Newborn D, Gaunt M, Jones L, et al. Persistence and transmission of tick-borne viruses: *Ixodes ricinus* and louping-ill virus in red grouse populations. Parasitology. 1995; 111:49–58. https://doi.org/10.1017/S0031182000075818

16. O’Callaghan C, Medley G, Peter T, Mahan S, Perry B. Predicting the effect of vaccination on the transmission dynamics of heartwater (*Cowdria ruminantium*) infection. Preventive Veterinary Medicine. 1999; 42:49–61.

17. Rosa R, Pugliese A, Norman R, P.J. Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation. Journal of Theoretical Biology. 2003; 224:359–376. https://doi.org/10.1016/S0022-5193(03)00173-5 PMID: 12941594

18. Rosa R, Pugliese. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Mathematical Biosciences. 2007; 208:216–240. https://doi.org/10.1016/j.mbs.2006.10.002 PMID: 17125804

19. Anderson H, T.B. Stochastic Epidemic Models and their Statistical Analysis. Lectures Notes in Statistics. Springer; 2000.

20. Labruna M, Amaku M, Metzner J, Pinter A, Ferreira F. Larval behavioral diapause regulates life cycle of *Amblyomma cajennense* (Acari: Ixodidae) in Southeast Brazil. J Med Entomol. 2003; 40:170–178. https://doi.org/10.1603/0022-2585-40.2.170 PMID: 12693845

21. Gillespie D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics. 1976; 22:403–434. https://doi.org/10.1016/0021-9991(76)90041-3

22. Pineda-Krch M. Gillespie’s SSA: Implementing the Gillespie Stochastic Simulation Algorithm in R. Journal of Statistical Software. 2008; 25:1–18. https://doi.org/10.18637/jss.v025.i12

23. Sarango V. Manual para manejo de capibaras. Programa para la conservación y manejo sostenible del patrimonio natural y cultural de la reserva de la biosfera Yasuni. 2011; 1:1–39.

24. Labruna M, Cerqueira R, Oliveira P. Study of the weight of eggs from six Ixodid Species from Brazil. Memorias Instituto Oswaldo Cruz. 1997; 92:205–207. https://doi.org/10.1590/S0074-02761997000400009

25. Souza C, Berger Calic S, Camargo M, Savani E, Lacerra de Souza S, Castor Lima V, et al. O papel da capivara (*Hydrochaeris hydrochaeris*) na cadeia epidemiológica da febre maculosa brasileira. Rev Bras Parasitol Vet. 2004; 13:203–205.

26. Blower S, H.D. Sensitivity and uncertainty analysis of complex-models of disease transmission—an HIV model, as an example. International Statistical Review. 1994; 62:229–243. https://doi.org/10.2307/1403510

27. Marino S, Hogue I, Ray C, DEK. A methodology for performing global uncertainty and sensitivity analysis In systems Biology. Journal of Theoretical Biology. 2008; 254:178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 PMID: 18572196

28. Guedes E, Leite R, Pacheco R, Silveira I, MB L. Rickettsia species infecting *Amblyomma* ticks from an area endemic for Brazilian spotted fever in Brazil. Rev Bras Parasitol Vet. 2011; 20:308–311. https://doi.org/10.1590/S0074-02762010000500049 PMCID: 22166385

29. Guedes E, Leite R, Prata M, Pacheco R, Walker D, MB L. Detection of *Rickettsia rickettsii* in the tick *Amblyomma cajennense* in a new Brazilian spotted fever-endemic area in the state of Minas Gerais. Mem Inst Oswaldo Cruz. 2005; 100:841–845. https://doi.org/10.1590/S0074-02762005000800004 PMID: 16444414

30. Souza C, Berger Calic S, Camargo M, Savani E, Lacerra de Souza S, Castor Lima V, et al. O papel da capivara (*Hydrochaeris hydrochaeris*) na cadeia epidemiológica da febre maculosa brasileira. Rev Bras Parasitol Vet. 2004; 13:203–205.

31. Britton T, House T, Lloyd A, Mollison D, Riley S, Trapman P. Five challenges for stochastic epidemic models involving global transmission. Epidemics. 2015; 10:54–57. https://doi.org/10.1016/j.epidem.2014.05.002 PMID: 25843384

32. Diekmann O, Heesterbeek H, Britton T. Mathematical Tools for Understanding Infectious Diseases Dynamics. Princeton University Press; 2013.

33. Moreira J, Alvarez M, Tarifa T, Pacheco V, Taber A, Tirira D, et al. Taxonomy, Natural History and Distribution of the Capybara. In: Capybara. Springer New York; 2013. p. 3–37.

34. Allman E, Rhodes J. Dynamic Modeling with Difference Equations. In: Mathematical Models in Biology An Introduction. Cambridge University Press; 2004. p. 371–383.

35. Lopes C, Oliveira P, Haddad J, Domingues L, Pinheiro R, Borges L, et al. Biological parameters of ticks (*Amblyomma cajennense* Fabricius, 1787) under field and laboratory conditions in Pedro Leopoldo, State of Minas Gerais, Brazil. Brazilian Journal of Veterinary Parasitology. 2008; 17:14–17. PMID: 20059808
36. Rodrigues M. Aspectos Ecológicos e Controle Reprodutivo em uma População de Capivaras Sinantrópicas no Campus da Universidade Federal de Viçosa MG. Ph.D. Thesis. 2013; Available from: http://repositorio.ufv.br/handle/123456789/1457.

37. Rodrigues L. MPF e prefeitura de BH fecham acordo e capivaras da Pampulha serão esterilizadas. 2017; Available from: http://agenciabrasil.ebc.com.br/geral/noticia/2017-02/mpf-e-prefeitura-de-bh-fecham-acordo-e-esterilizam-capivaras-da-pampulha-serao.

38. Labruna M, Krawczak F, Gerardi M, Binder L, Barbieri A, Paz G, et al. Isolation of Rickettsia rickettsii from the tick Amblyomma sculpturn from a Brazilian spotted fever-endemic area in the Pampulha Lake region, southeastern Brazil. Vet Parasitol Reg Stud Rep. 2017; p. In press.

39. Horta M, Labruna M, Pinter A, Linardi P, Schumaker T. Rickettsia infection in five areas of the state of São Paulo, Brazil. Memorias do Instituto Oswaldo Cruz. 2007; 102:793–801. https://doi.org/10.1590/S0074-02762007000700003 PMID: 18094887

40. Santolin I, Luz H, Alchorne N, Pinheiro M, Melinski R, Faccini J, et al. Ticks on birds caught on the campus of the Federal Rural University of Rio de Janeiro, Brazil. Rev Bras Parasitol Vet. 2012;(21):213–218. https://doi.org/10.1590/S1984-29612012000300007 PMID: 23070429

41. Perez C, Almeida A, Almeida A, Carvalho V, Balestrin D, Guimarães M, et al. Ticks of genus Amblyomma (Acari: Ixodidae) and their relationship with hosts in endemic area for spotted fever in the State of São Paulo. Rev Bras Parasitol Vet. 2008;(17):210–217. https://doi.org/10.1590/S1984-29612008000400008 PMID: 19265580

42. Labruna M, Pinter A, Castro M, Castagnolli K, Garcia M, Szabo M. Some records on host questing behavior of Amblyomma cajennense (Acari: Ixodidae) larvae. Rev Bras Parasitol Vet. 2002;(11): 91–93.