Search for monotop signatures in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7 fb$^{-1}$ of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thus substantially extending a previous limit published by the CDF Collaboration.

Submitted to Physical Review Letters
Extensions of theories beyond the standard model (BSM), such as those with universal extra dimensions [1] or supersymmetry [2][3], predict the existence of neutral massive particles that are “invisible”, that is, they interact only weakly with matter. Such particles can be produced in collider experiments, but escape detection so that their existence can only be inferred by the presence of a large imbalance in transverse momentum ($E_{\text{miss}}^T$). Both the ATLAS [4] and CMS [5] Collaborations have performed searches for monojet [6][7] and monophoton [8][9] signatures that manifest themselves through the presence of a single jet or photon associated with large $E_{\text{miss}}^T$. These searches have not revealed any evidence for BSM monojet or monophoton final states, but the non-observation can be explained within a theory where new particles favor coupling to massive standard model (SM) particles such as the top quark. In this Letter we present a search for events in which an invisible BSM particle is produced in association with a top quark [10][20]. Such events, containing single top quarks and large $E_{\text{miss}}^T$, are referred to as “monotop” candidates.

At tree level a monotop system can be produced through two main mechanisms: it can originate either (i) from the decay of a heavy bosonic resonance, with $E_{\text{miss}}^T$ arising from an invisible fermionic state (for instance, $d\bar{s} \rightarrow \tilde{u} \rightarrow t\tilde{\chi}_0^1$, where $d$ and $s$ denote anti-d and anti-s quarks, $\tilde{u}$ are any of the up-type squarks of $R$-parity violating supersymmetry [21], and $t$ and $\tilde{\chi}_0^1$ are the top quark and neutralino), or (ii) through flavor-changing (FC) interactions mediated by a lighter up-type quark that produce an invisible bosonic state (for instance, $ug \rightarrow u^* \rightarrow t\nu$, where $u$, $g$, $t$, and $\nu$ are an up quark, gluon, top quark, and invisible BSM particle, respectively) [10]. In both cases the new invisible particles are assumed to be either long-lived or strongly connected to a hidden sector that possibly contains a dark matter candidate. Consequently, even in the presence of non-vanishing couplings to SM particles, which enable the production of invisible particles in collider experiments, an $E_{\text{miss}}^T$ signature is expected. The present study focuses on the second class of the above-mentioned processes, and, more precisely, it investigates the production of a bosonic invisible state yielding large $E_{\text{miss}}^T$ in association with a single top quark that decays to a bottom quark and a W boson, the latter decaying into a pair of quarks.

The search is performed on data from proton-proton collisions recorded at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$, and recorded with the CMS detector at the CERN LHC. The most important backgrounds for the event signature with three jets and large $E_{\text{miss}}^T$ are $Z$+jets, $W$+jets, and $t\bar{t}$ processes. The $Z$+jets and $W$+jets backgrounds are estimated from data, and the signal yield is determined simultaneously with multijet background, using a likelihood approach based on the observed multiplicity of b-tagged jets.

We interpret the results within a simplified field theory [10][11] where the invisible particle can be either a scalar ($\phi$) or a vector ($v$) boson, with its Lagrangian given by

$$
\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kin}} + a_{\phi}^{\text{FC}} \phi \bar{u}u + a_{v}^1 \gamma_{\mu}w\bar{u}u + \text{h.c.},
$$

where $\mathcal{L}_{\text{SM}}$ denotes the SM Lagrangian, $\mathcal{L}_{\text{kin}}$ kinetic terms for the $\phi$ and $v$ fields, and the remaining terms model the interactions of the invisible states with up-type quarks. The coupling strengths are embedded in two $3 \times 3$ matrices in flavor space ($a_{\phi}^{\text{FC}}$, $a_{v}^1$), where only the elements connecting the first and third generations are non-vanishing and set to 0.1, as done in Ref. [10].

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.
Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [5].

Events are recorded using a trigger requiring \( E_{\text{miss}} > 150 \) GeV. For the background estimation we use an independent control sample of events with an isolated single-muon trigger with a transverse momentum threshold of \( p_T > 24 \) GeV.

The monotop model is implemented within the FEYNRULES package [22, 23] and is interfaced [24, 25] with the MADGRAPH 5 event generator [26]. Simulated events are produced for masses of invisible particles from 0 to 0.2 TeV in steps of 0.05 TeV, and from 0.2 to 1 TeV in steps of 0.1 TeV. The production cross sections are calculated at leading order (LO) with MADGRAPH with the CTEQ6.1L [27] parton distribution functions (PDF).

The main backgrounds are generated using MADGRAPH. For W+jets and Z+jets processes, events are generated including up to four additional partons. For Z(→ ee, \( \mu \mu \), \( \tau \tau \)) + jets processes we use the next-to-next-to-leading order (NNLO) cross sections of 3.50 nb and 37.5 nb, respectively, as calculated using the FEWZ 3.1 program [28]. For the Z(→ \( \nu \nu \)) + jets process we use events generated in four bins of \( H_T \), the scalar sum of \( p_T \) of all of the generated jets in the process: 50 < \( H_T \) < 100 GeV, 100 < \( H_T \) < 200 GeV, 200 < \( H_T \) < 400 GeV, and \( H_T > 400 \) GeV, with respective LO cross sections of 381, 160, 41.5, and 5.27 pb. The \( t\bar{t} \) sample includes up to three additional partons at the matrix element level, and is rescaled to an inclusive NNLO cross section of 246 pb [29].

Other SM backgrounds arise from single top quark and diboson (WW, WZ, and ZZ) production. Single top quark production is modeled with POWHEG 1.0 [30–33], and diboson production is modeled with PYTHIA 6.4.22 [34]. All Monte Carlo (MC) generated events are evolved using PYTHIA and processed with a full simulation of the CMS detector implemented in the GEANT4 [35] package.

We require at least one reconstructed primary vertex and reject events with evidence of significant beam halo or events with a large amount of detector noise [36].

The CMS particle-flow (PF) algorithm [37–39] is used to reconstruct and identify each particle with an optimized combination of information from all the CMS subdetectors. The only charged PF particles considered in reconstructing an event are those associated with the main primary vertex, which is defined as the primary vertex with the largest sum of \( p_T^2 \) of all the associated tracks. Particles identified as originating from other collisions in the beam crossing (pileup) are removed from consideration.

The three jets from \( t \to bW \to bq'q' \) decay are reconstructed using the anti-\( k_T \) clustering algorithm [40] with a distance parameter of 0.5. During jet reconstruction, the charged particles arising from pileup interactions are excluded, while the neutral pileup component is accounted for using the area-based energy subtraction procedure described in Refs. [41, 42]. Jet energy corrections used in this measurement rely on simulation and on studies performed in data [43]. Only jets with \( p_T \geq 35 \) GeV and \( |\eta| < 2.4 \) are considered, where \( \eta \) is the pseudorapidity. The two highest-\( p_T \) (leading) jets must have a \( p_T > 60 \) GeV, while the \( p_T \) of the jet with third highest \( p_T \) has to be above 40 GeV. The invariant mass of the three jets has to be less than 250 GeV. Events containing additional jets with a \( p_T \) above 35 GeV are rejected. We require one of the three jets to be identified as a candidate jet from a b quark. The identification algorithm is based on the reconstruction of a displaced secondary vertex [44]. A jet from a b quark is tagged...
with \(\approx 70\%\) efficiency. The probability to tag a light jet from \(u, d,\) or \(s\) quarks, or a gluon jet is 1–4\% depending on the jet \(p_T\). We also use events without \(b\)-tagged jets in order to define a background-enriched sample to extract the normalization for multijet background.

Signal-candidate events containing isolated muons or electrons are rejected. Muons are reconstructed by matching tracks from the outer muon detector to tracks reconstructed by the inner tracker [45]. Muons are required to have \(p_T > 10\) GeV and \(|\eta| < 2.4\). Electrons are reconstructed by associating tracks from the inner tracker to clustered energy deposits in the electromagnetic calorimeter [46]. Electrons are required to have \(p_T > 20\) GeV and be within \(|\eta| < 2.5\), excluding the transition region between barrel and endcap defined by \(1.44 < |\eta| < 1.57\). Standard CMS muon and electron identification criteria [45, 46] are applied. The muon (electron) relative isolation variable \(I_{rel}\) is computed by first summing the transverse momenta of the reconstructed particles in a cone of \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4\) (0.3) around the muon (electron) direction, excluding the contribution of the lepton, and then dividing this sum by the transverse momentum of the lepton. The lepton candidates are rejected if they satisfy \(I_{rel} < 0.2\).

The \(E_T^{miss}\) vector is defined by the negative vector sum of the transverse momenta of all the reconstructed particles in the event. The \(E_T^{miss}\) threshold of 350 GeV used in the analysis is optimized to give the most sensitive exclusion limit on the production cross section. This threshold is also nearly optimal for attaining best significance in the signal.

The dominant backgrounds after implementing the selection criteria are \(t\) and \(V+jets\) events, with \(V\) being either a \(Z\) or a \(W\) boson. For electroweak vector boson production, additional jets originate from multijet processes and this can lead to large systematic uncertainties in the production of up to three additional jets. For this reason, we estimate the \(V+jets\) background using data.

The control region for \(W+jets\) and \(Z+jets\) backgrounds is defined with an alternative selection, requiring one or two isolated muons in addition to the three jets. A tighter selection is applied for muons, requiring them to satisfy \(p_T \geq 40\) GeV and \(|\eta| < 2.1\). In this case, the relative combined isolation variable in a cone of \(\Delta R < 0.4\) must be below 0.12. As in the signal selection, the three jets are required to have \(p_T > 60, 60, 40\) GeV respectively, and the invariant mass of the three jets has to be less than 250 GeV. Events with any additional jets with a \(p_T\) above 35 GeV, as well as events with additional isolated electrons or muons are rejected.

The \(Z(\rightarrow \nu\nu)+jets\) background is estimated from events with two muons and three jets. In such events, we replace the requirement for \(E_T^{miss} > 350\) GeV with the requirement for the vector sum of the \(p_T\) of the two muons and of \(E_T^{miss}\) to be greater than 350 GeV. We also eliminate most of the non-\(Z\) backgrounds by selecting events with \(\mu^+\mu^-\) invariant mass between 60 and 120 GeV. The \(Z(\rightarrow \nu\nu)+jets\) background is calculated using the following equation:

\[
N(Z \rightarrow \nu\nu) = \frac{N_{\text{obs}}^{\mu\mu}}{A \times \epsilon(\mu\mu)} \cdot \frac{B(Z \rightarrow \nu\nu)}{B(Z \rightarrow \mu\mu)} \tag{2}
\]

where \(N_{\text{obs}}^{\mu\mu}\) is the number of observed events with two muons, \(A \times \epsilon(\mu\mu)\) is the product of acceptance and efficiency to identify and select the two muons, as measured in simulation, and \(B(Z \rightarrow \nu\nu)/B(Z \rightarrow \mu\mu) = 5.94\) [47] is the ratio of branching fractions for \(Z\) decays into two neutrinos and two muons. The accuracy of the background estimate is limited by the number of selected events with two muons. The estimated \(Z(\rightarrow \nu\nu)+jets\) background is presented in Table[1].

The \(W(\rightarrow \ell\nu)+jets\) background is calculated from events with a single muon and three jets. Just as in the selected signal events, \(E_T^{miss}\) has to be greater than 350 GeV. The transverse mass con-
constructed with the muon-$p_T$ and $E_T^{\text{miss}}$ vectors has to be less than 180 GeV. From simulation we estimate the single-muon background that does not arise from W boson production (roughly a third of events), and subtract it from the observed number of events. The resulting number is divided by the acceptance and efficiency of the single-muon selection, providing thereby the number of $W(\rightarrow \mu \nu)$+jets events. Assuming lepton universality, we use the same estimate for events with other lepton flavors. In the simulation, we calculate the probability that the $W(\rightarrow \ell \nu)$+jets event can be present after applying the lepton veto that is used to select signal events. The resulting estimate of the $W(\rightarrow \ell \nu)$+jets background is calculated as follows:

$$ N(W \rightarrow \nu, \text{lost } \ell) = \frac{N_{\text{obs}}(\mu) - N_{\text{non-W}}^{\text{MC}}}{A \times \epsilon(\mu)} \sum_{\ell = e, \mu, \tau} P(\text{lost } \ell) $$  \hspace{1cm} (3)

where $N_{\text{obs}}(\mu)$ is the observed number of single muon events, $N_{\text{non-W}}^{\text{MC}}$ is the background that does not arise from W bosons, and is estimated through simulation, $A \times \epsilon(\mu)$ is the product of acceptance and efficiency to identify and select the muon, as measured in simulation, $P(\text{lost } e)$ and $P(\text{lost } \mu)$ are the probabilities that an electron or a muon from a W+jets event passes the lepton veto, and $P(\text{lost } \tau)$ is the probability for a $\tau$ lepton to decay into hadrons and $\nu_\tau$, but not be rejected by the jet selections. The accuracy of the $W(\rightarrow \ell \nu)$+jets background estimate is limited by the number of selected muon events and by the uncertainty in the simulation of background from other than W boson sources. The rate of W+jets events with one b-tagged jet is estimated by scaling the rate without b-tagged jets by the probability to have a b-tagged jet in simulated W+jets events. The estimated background from W+jets is given in Table 1.

The most important background after $V+$jets processes is from $t\bar{t}$ production, followed by single top quark and diboson production. These backgrounds are estimated through simulation. The leading systematic uncertainties arise in the simulated $t\bar{t}$ sample. They are related to the choice of the renormalization and factorization scales and the scale that determines the transition between modeling additional partons at matrix element level and at the level of parton showers. Other systematic uncertainties originate from jet energy scale and resolution, b-tagging efficiency and mistagging rate, choice of PDF, and accuracy of the luminosity measurement. The yields from background $t\bar{t}$, single top quark, and diboson sources, together with the systematic uncertainties are given in Table 1.

Figure 1 shows the distribution of the invariant mass of the three jets before requiring their invariant mass to be less than 250 GeV, in events with one b-tagged jet. We do not present a simulation of the multijet background, thus for the comparison between data and simulated backgrounds we suppress the potential contribution from this source with an additional cut on the opening azimuthal angle between the two leading jets: $|\phi^{\text{jet}1} - \phi^{\text{jet}2}| < 2.8$. The shaded areas represent the sum of the systematic uncertainties related to the renormalization and factorization scales for the $t\bar{t}$ and $V+$jets backgrounds, smoothed in a second-order polynomial fit, and taken in quadrature. Agreement is observed between data and background predictions. The dashed line in Fig. 1 indicates the prediction from a model based on a 700 GeV invisible vector boson.

The signal cross section, as well as the number of multijet background events, are measured in data using a likelihood approach, where each systematic source is treated as a nuisance parameter. The method is based on the observed number of events without and with just a single b-tagged jet accepted in selecting the signal. These two event categories contain untagged and tagged signal and background events as shown in the following system of equations:

$$
\begin{align*}
N^{0b}_{0b} &= P^{0b}_{\text{sig}} \cdot N_{\text{sig}} + P^{0b}_{\text{MJ}} \cdot N_{\text{MJ}} + N^{0b}_{\text{other}} \\
N^{1b}_{1b} &= P^{1b}_{\text{sig}} \cdot N_{\text{sig}} + P^{1b}_{\text{MJ}} \cdot N_{\text{MJ}} + N^{1b}_{\text{other}}
\end{align*}
$$  \hspace{1cm} (4)
Figure 1: The invariant mass of the three jets prior to the selection on their mass to be less than 250 GeV, for events with one b-tagged jet. Data are compared to the simulated backgrounds. The expectation from a model for an invisible vector particle with a mass of 700 GeV is represented by the dashed line.
where $P_{\text{sig}}^{0\text{b}}$ and $P_{\text{sig}}^{1\text{b}}$ are the probabilities to tag 0 or 1 jet as a b jet in the selected signal events, $P_{\text{MJ}}^{0\text{b}}$ and $P_{\text{MJ}}^{1\text{b}}$ are the corresponding probabilities for the selected multijet events in data, and $N_{\text{other}}^{0\text{b}}$ and $N_{\text{other}}^{1\text{b}}$ are the known contributions to 0 and 1 b-tagged event categories from other backgrounds. The $P_{\text{sig},\text{MJ}}^{0\text{b},1\text{b}}$ probabilities are obtained through simulation. The system above is solved to estimate the number of multijet ($N_{\text{MJ}}$) and signal ($N_{\text{sig}}$) events, by using a numerical minimization of the following likelihood:

$$L(\sigma_{\text{sig}}, \nu) = \text{Poisson} \left( N_{\text{obs}}^{0\text{b}} \mid N^{0\text{b}} \right) \times \text{Poisson} \left( N_{\text{obs}}^{1\text{b}} \mid N^{1\text{b}} \right),$$

where $\sigma_{\text{sig}}$ is the signal cross section, $\nu$ is the vector of the nuisance parameters describing uncertainties in the expected number of events from the Eq. (4), and $N_{\text{obs}}^{0\text{b}}$ and $N_{\text{obs}}^{1\text{b}}$ are, respectively, the total number of observed events in event categories without and with one b tag.

The number of expected SM background events is compared to the data after applying the final selections, and is presented in Table 1. Systematic uncertainties in the simulated backgrounds (tt, single top, and $VV'$) are presented as sums of the uncertainties from all of the respective sources, taken in quadrature. The multijet background is calculated using all the other backgrounds and data in Eq. (5). The uncertainty in the multijet background is determined by the uncertainties in the other backgrounds, and is therefore not included in the quadratic sum of background uncertainties.

Table 1: Total number of selected events in data compared to the background prediction. The background yields are given with statistical (first) and systematic (second) uncertainties. The multijet background is calculated using all the other backgrounds and therefore its uncertainty is not included in the quadratic sum of background uncertainties.

|                | No b tag | One b tag |
|----------------|----------|-----------|
| tt             | 6±0±5    | 12±0±12   |
| W+jets         | 18±9±7   | 3±1±2     |
| Z+jets         | 103±33±9 | 11±10±1   |
| single top     | 2±1±1    | 1±1±1     |
| $VV'$          | 5±0±0    | 0±0±0     |
| multijet       | 6(±39)   | 1(±9)     |
| total bkgd     | 140±36   | 28±16     |
| data           | 143      | 30        |

No excess is observed above the background expectation, and limits are set at 95% confidence level (CL). The limits are calculated using the CL$_{\text{s}}$ technique, which is based on statistical inference method jointly adopted by the ATLAS and CMS Collaborations for the Higgs boson searches [48]. The resulting limits are calculated using the expected signal and background predictions along with their uncertainties, and the likelihood given in Eq. (5). Statistical uncertainties, arising from number of observed events with one or two muons in the control regions are modeled with Poisson probabilities while all other uncertainties are modeled as log-normal distributions.

Figure 2 shows the 95% CL expected and observed limits on the product of the production cross section of the monotop and the branching ratio of the W decay to $qq'$, as a function of mass of the invisible bosonic state, for scalar and vector fields.

In summary, a search has been performed by the CMS Collaboration for invisible particles produced in association with a single top quark that decays into three jets, one of which is b-tagged. The results are interpreted using a monotop model that predicts the existence of scalar
or vector invisible particles. The signal and the backgrounds are extracted using a likelihood-based method. No excess of data over the standard model prediction is found and exclusion limits are set at 95% confidence level. The observed lower limits on mass for invisible scalar and vector particles are set at 330 GeV and 650 GeV, respectively. These results substantially extend a previous limit on monotop production of an invisible vector particle published by the CDF Collaboration [49].

**Acknowledgments**

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

[1] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions”, *Phys. Rev. D* **64** (2001) 035002, [arXiv:hep-ph/0012100](http://arxiv.org/abs/hep-ph/0012100).

[2] H. P. Nilles, “Supersymmetry, supergravity and particle physics”, *Phys. Rept.* **110** (1984) 1, [doi:10.1016/0370-1573(84)90008-5](http://dx.doi.org/10.1016/0370-1573(84)90008-5).

[3] H. E. Haber and G. L. Kane, “The search for supersymmetry: Probing physics beyond the standard model”, *Phys. Rept.* **117** (1985) 75, [doi:10.1016/0370-1573(85)90051-1](http://dx.doi.org/10.1016/0370-1573(85)90051-1).

[4] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider”, *JINST* **3** (2008) S08003, [doi:10.1088/1748-0221/3/08/S08003](http://dx.doi.org/10.1088/1748-0221/3/08/S08003).

[5] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004](http://dx.doi.org/10.1088/1748-0221/3/08/S08004).

[6] ATLAS Collaboration, “Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector”, *JHEP* **04** (2013) 075, [doi:10.1007/JHEP04(2013)075](http://dx.doi.org/10.1007/JHEP04(2013)075) [arXiv:1210.4491](http://arxiv.org/abs/1210.4491).

[7] CMS Collaboration, “Search for dark matter, extra dimensions, and unparticles in monojet events in proton-proton collisions at $\sqrt{s} = 8$ TeV”, (2014) [arXiv:1408.3583](http://arxiv.org/abs/1408.3583).

[8] ATLAS Collaboration, “Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector”, *Phys. Rev. Lett.* **110** (2013) 011802, [doi:10.1103/PhysRevLett.110.011802](http://dx.doi.org/10.1103/PhysRevLett.110.011802) [arXiv:1209.4625](http://arxiv.org/abs/1209.4625).

[9] CMS Collaboration, “Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy”, *Phys. Rev. Lett.* **108** (2012) 261803, [doi:10.1103/PhysRevLett.108.261803](http://dx.doi.org/10.1103/PhysRevLett.108.261803) [arXiv:1204.0821](http://arxiv.org/abs/1204.0821).

[10] J. Andrea, B. Fuks, and F. Maltoni, “Monotops at the LHC”, *Phys. Rev. D* **84** (2011) 074025, [doi:10.1103/PhysRevD.84.074025](http://dx.doi.org/10.1103/PhysRevD.84.074025) [arXiv:1106.6199](http://arxiv.org/abs/1106.6199).

[11] J.-L. Agram et al., “Monotop phenomenology at the Large Hadron Collider”, *Phys. Rev. D* **89** (2014) 014028, [doi:10.1103/PhysRevD.89.014028](http://dx.doi.org/10.1103/PhysRevD.89.014028) [arXiv:1311.6478](http://arxiv.org/abs/1311.6478).

[12] F. del Aguila, J. A. Aguilar-Saavedra, and L. Ametller, “$Zt$ and $\gamma t$ production via top flavour-changing neutral couplings at the Fermilab Tevatron”, *Phys. Lett. B* **462** (1999) 310, [doi:10.1016/S0370-2693(99)00929-6](http://dx.doi.org/10.1016/S0370-2693(99)00929-6) [arXiv:hep-ph/9906462](http://arxiv.org/abs/hep-ph/9906462).

[13] D. E. Morrissey, T. M. P. Tait, and C. E. M. Wagner, “Proton lifetime and baryon number violating signatures at the CERN LHC in gauge extended models”, *Phys. Rev. D* **72** (2005) 095003, [doi:10.1103/PhysRevD.72.095003](http://dx.doi.org/10.1103/PhysRevD.72.095003) [arXiv:hep-ph/0508123](http://arxiv.org/abs/hep-ph/0508123).

[14] N. Desai and B. Mukhopadhyaya, “R-parity violating resonant stop production at the Large Hadron Collider”, *JHEP* **10** (2010) 060, [doi:10.1007/JHEP10(2010)060](http://dx.doi.org/10.1007/JHEP10(2010)060) [arXiv:1002.2339](http://arxiv.org/abs/1002.2339).

[15] Z. Dong et al., “Baryon number violation at the LHC: the top option”, *Phys. Rev. D* **85** (2012) 016006, [doi:10.1103/PhysRevD.85.016006](http://dx.doi.org/10.1103/PhysRevD.85.016006) [arXiv:1107.3805](http://arxiv.org/abs/1107.3805) [Erratum Phys. Rev. D 85 (2012) 03997 doi:10.1103/PhysRevD.85.03997](http://dx.doi.org/10.1103/PhysRevD.85.03997).
[16] H. Davoudiasl, D. E. Morrissey, K. Sigurdson, and S. Tulin, “Baryon destruction by asymmetric dark matter”, Phys. Rev. D 84 (2011) 096008, doi:10.1103/PhysRevD.84.096008, arXiv:1106.4320

[17] J. Wang, C. S. Li, D. Y. Shao, and H. Zhang, “Search for the signal of monotop production at the early LHC”, Phys. Rev. D 86 (2012) 034008, doi:10.1103/PhysRevD.86.034008, arXiv:1109.5963

[18] J. F. Kamenik and J. Zupan, “Discovering dark matter through flavor violation at the LHC”, Phys. Rev. D 84 (2011) 111502, doi:10.1103/PhysRevD.84.111502, arXiv:1107.0623

[19] E. Alvarez, E. Coluccio Leskow, J. Drobnak, and J. F. Kamenik, “Leptonic monotops at LHC”, Phys. Rev. D 89 (2014) 014016, doi:10.1103/PhysRevD.89.014016, arXiv:1310.7600

[20] A. Kumar, J. N. Ng, A. Spray, and P. T. Winslow, “Tracking down the top quark forward-backward asymmetry with monotops”, Phys. Rev. D 88 (2013) 075012, doi:10.1103/PhysRevD.88.075012, arXiv:1308.3712

[21] R. Barbier et al., “R-Parity-violating supersymmetry”, Phys. Rept. 420 (2005) 1, doi:10.1016/j.physrep.2005.08.006, arXiv:hep-ph/0406039

[22] N. D. Christensen and C. Duhr, “FeynRules – Feynman rules made easy”, Comput. Phys. Commun. 180 (2009) 1614, doi:10.1016/j.cpc.2009.02.018, arXiv:0806.4194

[23] A. Alloul et al., “FeynRules 2.0 - A complete toolbox for tree-level phenomenology”, Comput. Phys. Commun. 185 (2014) 2250, doi:10.1016/j.cpc.2014.04.012, arXiv:1310.1921

[24] N. D. Christensen et al., “A comprehensive approach to new physics simulations”, Eur. Phys. J. C 71 (2011) 1541, doi:10.1140/epjc/s10052-011-1541-5, arXiv:0906.2474

[25] C. Degrand et al., “UFO – The Universal FeynRules Output”, Comput. Phys. Commun. 183 (2012) 1201, doi:10.1016/j.cpc.2012.01.022, arXiv:1108.2040

[26] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301

[27] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195

[28] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush, “FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order”, Comput. Phys. Commun. 182 (2011) 2388, doi:10.1016/j.cpc.2011.06.008, arXiv:1011.3540

[29] M. Czakon, P. Fiedler, and A. Mitov, “Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(αs^4)”, Phys. Rev. Lett. 110 (2013) 252004, doi:10.1103/PhysRevLett.110.252004, arXiv:1303.6254
[30] P. Nason, “A New method for combining NLO QCD with shower Monte Carlo algorithms”, *JHEP* **11** (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.

[31] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* **11** (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092.

[32] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s- and t-channel contributions”, *JHEP* **09** (2009) 111, doi:10.1088/1126-6708/2009/09/111, arXiv:0907.4076 [Erratum: doi:10.1007/JHEP02(2010)011].

[33] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[34] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[35] GEANT4 Collaboration, “Geant4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[36] CMS Collaboration, “Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter”, *JINST* **5** (2010) T03014, doi:10.1088/1748-0221/5/03/T03014, arXiv:0911.4881.

[37] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[38] CMS Collaboration, “Commissioning of the Particle-Flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[39] CMS Collaboration, “Commissioning of the Particle-Flow reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-PFT-10-002, 2010.

[40] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-$k_t$ jet clustering algorithm”, *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[41] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* **72** (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[42] M. Cacciari and G. P. Salam, “Dispelling the $N^3$ myth for the $k_t$ jet-finder”, *Phys. Lett. B* **641** (2006) 57, doi:10.1016/j.physletb.2006.08.037, arXiv:hep-ph/0512210.

[43] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *JINST* **6** (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[44] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* **8** (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.
[45] CMS Collaboration, “The performance of the CMS muon detector in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC”, *JINST* 8 (2013) P11002, doi:10.1088/1748-0221/8/11/P11002, arXiv:1306.6905.

[46] CMS Collaboration, “Electron reconstruction and identification at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-EGM-10-004 2010.

[47] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, *Phys. Rev. D* 86 (2012) 010001, doi:10.1103/PhysRevD.86.010001.

[48] ATLAS and CMS Collaborations, “Procedure for the LHC Higgs boson search combination in summer 2011”, Technical Report ATL-PHYS-PUB-2011-011, ATL-COM-PHYS-2011-818, CMS-NOTE-2011-005, 2011.

[49] CDF Collaboration, “Search for a dark matter candidate produced in association with a single top quark in pp collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. Lett.* 108 (2012) 201802, doi:10.1103/PhysRevLett.108.201802, arXiv:1202.5653.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz3

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè2, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaitre, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Mora Herrera, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira
Universidade Estadual Paulista $^a$, Universidade Federal do ABC $^b$, São Paulo, Brazil
C.A. Bernardes$^b$, S. Dogra$^a$, T.R. Fernandez Perez Tomei$^a$, E.M. Gregores$^b$, P.G. Mercadante$^b$, S.F. Novaes$^a$, Sandra S. Padula$^a$

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev$^2$, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, R. Plestina$^7$, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.$^8$

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran$^9$, A. Ellithi Kamel$^{10}$, M.A. Mahmoud$^{11}$, A. Radi$^{12,13}$

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, J.-M. Fraisse, F. Fuks, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, N. Beaupere, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, J.D. Ruiz Alvarez, D. Sabes, L. Saetersdal, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia

L. Rurua

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, S. Beranek, M. Bontenackels, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Pernicka, D. Pfeiffer, J. Scholten, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Ata, M. Brodski, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, R. Heidemann, K. Hoepfner, D. Klinker, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Paedken, P. Papacz, S. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

V. Chevelev, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, A. Heister, F. Hoehle, B. Kargoll, T. Kress, Y. Kuess, A. Künsken, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany

I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgemeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, E. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Fucile, J. Garay García, A. Geiser, P. Gunnellini, J. Hauk, M. Hempel, D. Horton, H. Jung, A. Kalogeropoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel, I. Martin, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, O. Novgorodova, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, E. Ron, M. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt

14

15
T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwaley, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, F. Hartmann, T. Hauth, U. Husemann, I. Katkov, A. Kornmayer, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradis

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellari, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar
Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaiib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiera, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
P. Bunin, I. Golutvin, A. Kamenev, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safrovin, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin31, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic32, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Dominguez Vazquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet7, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi33, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petracciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi34, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas35, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsiour, G.I. Veres17, J.R. Vlimant, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, C. Nägeli\textsuperscript{36}, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quitnát, L. Rebane, M. Rossini, A. Starodumov\textsuperscript{57}, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler\textsuperscript{38}, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci\textsuperscript{39}, S. Cerci\textsuperscript{40}, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut\textsuperscript{41}, K. Ozdemir, S. Ozturk\textsuperscript{39}, A. Polatoz, D. Sunar Cerci\textsuperscript{40}, B. Tali\textsuperscript{40}, H. Topakli\textsuperscript{39}, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar\textsuperscript{42}, K. Ocalan\textsuperscript{43}, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak\textsuperscript{44}, M. Kaya\textsuperscript{45}, O. Kaya\textsuperscript{46}

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold\textsuperscript{47}, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev\textsuperscript{48}, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Fuytan, A. Gilbert,
A The CMS Collaboration

G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burket, J.N. Butler, H.W.K. Cheung, F. Chiebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, Y. Musienko, S. Nahm, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitemore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi
Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flories, S. Malik, F. Meier, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B.L. Winer, H. Wolfe, H.W. Wulsin
Princeton University, Princeton, USA
O. Driga, P. Elmer, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland², C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, M. De Mattia, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demaria, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, J. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy
University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, P. Verwilligen, C. Vuosalo, N. Woods
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Also at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Also at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at Sharif University of Technology, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Università degli Studi di Siena, Siena, Italy
26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
27: Also at Purdue University, West Lafayette, USA
28: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
29: Also at Institute for Nuclear Research, Moscow, Russia
30: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
31: Also at California Institute of Technology, Pasadena, USA
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Izmir Institute of Technology, Izmir, Turkey
43: Also at Necmettin Erbakan University, Konya, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Marmara University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Argonne National Laboratory, Argonne, USA
52: Also at Erzincan University, Erzincan, Turkey
53: Also at Yildiz Technical University, Istanbul, Turkey
54: Also at Texas A&M University at Qatar, Doha, Qatar
55: Also at Kyungpook National University, Daegu, Korea