A Note on Efficiency of Downsampling and Color Transformation in Image Quality Assessment

Hossein Ziaei Nafchi and Mohamed Cheriet
Synchromedia Laboratory for Multimedia Communication in Telepresence
École de technologie supérieure, Montreal (QC), Canada H3C 1K3

Abstract—Several existing and successful full reference image quality assessment (IQA) models use linear color transformation and downsampling before measuring similarity or quality of images. This paper indicates to the right order of these two procedures and that the existing models have not chosen the more efficient approach. In addition, efficiency of these metrics is not compared in a fair basis in the literature.

Index Terms—Image quality assessment, downsampling, color space conversion, mean filtering, image resolution.

I. INTRODUCTION

APPLICATIONS of perceptual image quality assessment (IQA) in image and video processing, such as image acquisition, image compression, image restoration and multimedia communication, have led to the development of many IQA metrics. IQA models (IQAs) mimic the average quality predictions of human observers. This quality prediction is an easy task for the human visual system (HVS) and the result of the evaluation is reliable. Automatic quality assessment, e.g. objective evaluation, is not an easy task because images may suffer from various types and degrees of distortions.

Among IQAs, the conventional metric mean squared error (MSE) and its variations are widely used in full-reference IQA (FR-IQA) applications because of their simplicity. However, in many situations, MSE does not correlate with the human perception of image fidelity and quality [1], [2]. Because of this limitation, a number of IQAs have been proposed to provide better correlation with the HVS [3]–[8]. In general, these better performing models take into account the structural and/or color distortions.

FSIMc, VSI, and SCQI are FR-IQA metrics with state-of-the-art performance. Given the reference or distorted RGB input image, these metrics first convert it into a luminance (L) and two chromaticity channels (C1 and C2) with the following linear operators:

$$\begin{bmatrix} L \\ C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_4 & \lambda_5 & \lambda_6 \\ \lambda_7 & \lambda_8 & \lambda_9 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$ (1)

where, values of \(\lambda_{1,9}\) coefficients vary depending on the color space. The aforementioned metrics apply average filtering of size \(M \times M\) on each converted channel, and downsample them by a factor of \(M\). The value of \(M\) is set to \([\min(h,w)/256]\) [9], where \(h\) and \(w\) are image height and width, and \([\cdot]\) is the round operator. The average filtering for luminance channel can be computed by the following equation:

$$g_{ij} = \sum_{k=0}^{M-1} \sum_{l=0}^{M-1} \omega_{kl} L_{i+k, j+l}$$ (2)

where, \(\omega_{kl} = \frac{1}{12}\), and \(g\) is the filtered image. In this paper, height and width of the filter are considered to be equal.

Fig. 1 illustrates this procedure for four RGB pixels converted into a typical channel (L), and downsampled by a factor of two (\(M = 2\)). Exactly the same procedure should be repeated for the other two channels (C1 and C2).

II. ALTERNATIVE STRATEGY

We show that downsampling and color transformation is a more efficient strategy than color transformation and downsampling. Fig. 2 illustrates how downsampling and color transformation is the better choice. In the suggested strategy, conversion to the other two channels (e.g. C1 and C2) is done using the already downsampled RGB channels. In fact, conversion is applied on the reduced size RGB channels instead of original size RGB channels. Note that both old strategy and suggested strategy need the same number of downsampling operations, but different conversion operations. The positive effect of the proposed strategy vary depending on the downsampling factor \(M\).

III. EXPERIMENTS

In experiments, three state-of-the-art FR-IQAs including FSIMc [6], VSI [7], and SCQI [8] were chosen. Note that many other metrics in literature could have been used in this experiment. Table I lists the run times of three IQA models.
when applied on images of size 384x512 \cite{10}, 1080x1920 \cite{11}, and 2160x3840 \cite{12}. The experiments were performed on a Corei7 3.40GHz CPU with 16 GB of RAM. The IQA models are tested in MATLAB 2013b running on Windows 7. The source codes of these metrics are provided by their authors \cite{13}–\cite{15}. Only color space conversion and downsampling parts of these codes are replaced with the suggested strategy. From first row to fourth row: four RGB pixels, downsampled to the chromaticity channels, e.g. \(\lambda_1, \lambda_2, \lambda_3 \).

The ranking of these metrics using their original conversion and downsampling strategy and the suggested strategy respectively is listed below.

1) 384x512: SCQI, VSI, FSIM\(_c\) (no change)
2) 1080x1920: VSI, SCQI, FSIM\(_c\) \(\Rightarrow \) SCQI, VSI, FSIM\(_c\)
3) 2160x3840: FSIM\(_c\), SCQI, VSI \(\Rightarrow \) SCQI/FSIM\(_c\), VSI

It is worth to mention that there is no change in quality scores when old strategy is replaced with the suggested strategy. In other words, their quality prediction accuracy remains unchanged. The suggested conversion strategy should be used with caution. If a metric only uses a luminance channel \cite{3}, \cite{4}, \cite{17}, the old strategy should be used.

IV. CONCLUSION

This paper suggests a more efficient strategy for those image quality assessment metrics that use downsampling and conversion to another color space. It was shown that downsampling first and then color space conversion is the better choice. In addition, run times of metrics should be compared on images with different size. The suggested strategy in this paper is highly recommended to be used in design of future IQA metrics in order to increase their efficiency, and to be able to compare their efficiency in a fair basis.

ACKNOWLEDGMENTS

The authors thank the NSERC of Canada for their financial support under Grants RGPDD 451272-13 and RGPIN 138344-14.

REFERENCES

[1] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electronics Letters, vol. 44, no. 13, pp. 800–801, June 2008.
[2] Z. Wang and A. Bovik, “Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98–117, Jan 2009.
[3] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, April 2004.
[4] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity for image quality assessment,” in Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, Nov 2003, pp. 1398–1402.
[5] E. C. Larson and D. M. Chandler, “Most apparent distortion: full-reference image quality assessment and the role of strategy,” Journal of Electronic Imaging, vol. 19, no. 1, p. 011006, 2010.
[6] L. Zhang, D. Zhang, X. Mou, and D. Zhang, “FSIM: A Feature Similarity Index for Image Quality Assessment,” IEEE Transactions on Image Processing, vol. 20, no. 8, pp. 2378–2386, Aug 2011.
[7] L. Zhang, Y. Shen, and H. Li, “VSI: A Visual Saliency-Induced Index for Perceptual Image Quality Assessment,” IEEE Transactions on Image Processing, vol. 23, no. 10, pp. 4270–4281, Oct 2014.
[8] S. H. Bae and M. Kim, “A novel image quality assessment with globally and locally consilient visual quality perception,” IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2392–2406, May 2016.
[9] https://eece.uwaterloo.ca/~z70wang/research/ssim/
[10] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. Kuo, “Color image database TID2013: Peculiarities and preliminary results,” in 4th European Workshop on Visual Information Processing (EUVIP), June 2013, pp. 106–111.
[11] D. Kundu and B. L. Evans, “Full-reference visual quality assessment for synthetic images: A subjective study,” in Proc. IEEE Int. Conf. on Image Processing (accepted), 2015.
[12] L. Song, X. Tang, W. Zhang, X. Yang, and P. Xia, “The SJTU 4K video sequence dataset,” in International Workshop on Quality of Multimedia Experience (QoMEX), July 2013, pp. 34–35.
[13] L. Zhang, D. Zhang, X. Mou, and D. Zhang, “Feature similarity index,” Online: http://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM
[14] L. Zhang, Y. Shen, and H. Li, “Visual saliency induced index,” Online: http://sse.tongji.edu.cn/linzhang/IQA/VSI/VSI.htm.
[15] S. H. Bae and M. Kim, Online: https://sites.google.com/site/sunghobaecv/iqa.