An immunopathogenic perspective of interleukin-1 signaling

Xinwen Lin1,2,3, Trix Twelkmeyer1,2, Si-Yu Wang4, Ruo-Nan Xu4, Fu-Sheng Wang4, Chao Zhang3,4 and Hong Tang1,2,5

Cellular & Molecular Immunology (2020) 17:892–893; https://doi.org/10.1038/s41423-020-0475-y

Interleukin-1 (IL-1), referred to as two distinct proteins, IL-1α and IL-1β, was first described almost 50 years ago. IL-1α and IL-1β represent immediate early innate cytokines critically involved in alarming and activating the host defense system. Therefore, any impairment of IL-1 signaling pathways often leads to devastating outcomes, such as autoimmunity and autoinflammation, dysmetabolism, cardiovascular disorders, and cancer. Many advances in targeting IL-1 in immune therapies have been achieved; for example, the IL-1-blocking agents anakinra (IL-1 receptor antagonist, IL-1Ra), canakinumab (anti-IL-1 β mAb), and MABp1 (anti-IL-1α mAb) have been approved for clinical use or are being evaluated. Remarkably, the CANTOS study, which included over 10,000 patients, showed that blocking IL-1β not only reduced atherosclerosis-related cardiovascular mortality but was also effective in inflammatory diseases related to lung cancer, arthritis, and gout.

Nevertheless, because of the specific spatiotemporal expression pattern of IL-1 and the complex regulatory networks of IL-1-related pathways, it is still not fully understood how exactly IL-1 functions, and how to precisely rectify dysfunctional IL-1 signaling during diverse inflammatory conditions remains unknown.

For a long time, IL-1α and IL-1β, albeit sharing limited sequence homology, were considered redundant. They share similar three-dimensional structures and interact with the same receptor, a heterodimer composed of IL-1R1 and IL-1R accessory protein (IL-1Rap), to initiate the NF-κB signal transduction cascade. However, strong evidence is accumulating that IL-1α and IL-1β each play specific roles in different pathological conditions (Table 1). For example, it was reported that neutrophil recruitment induced by necrotic cells is likely dependent on IL-1α but not IL-1β. The preferential usage of IL-1α over IL-1β for activating IL-1R1 has also been confirmed in other studies, including studies in drug-induced liver injury (DILI), fatty acid-induced vascular response and atherosclerosis, and autoimmune disease. In a dextran sulfate sodium (DSS)-induced colitis mouse model, IL-1α from the intestinal epithelium drives intestinal inflammation, whereas IL-1β acts to heal the intestinal epithelial barrier. Moreover, in murine neonatal sepsis, IL-1α but not IL-1β accounts for morbidity and mortality. IL-1α signaling is also critical in leukocyte recruitment and pulmonary inflammation in response to Aspergillus fumigatus and Legionella pneumophila infection.

IL-1α and IL-1β differ from each other in gene expression and posttranscriptional modification. IL-1α precursor protein is expressed and preserved in a wild variety of mesenchymal cells, including keratinocytes, epithelial cells of the lung and entire gastrointestinal tract, and brain astrocytes. In contrast, the IL-1β precursor is an inducible factor produced mainly by myeloid cells after TLR signaling is activated. Furthermore, the IL-1α precursor is fully active, and upon direct release from damaged cells, it functions as an alarm to initiate the inflammatory response. IL-1α precursor protein can also be cleaved by an array of different proteases, such as granzyme B, elastase, and calpain-1, leading to drastically enhanced bioactivity. The inactive IL-1β precursor, on the other hand, can be cleaved by inflammasome-activated caspase-1 and released via a tightly controlled GSDMD pore to the extracellular matrix. It is worth noting that most studies on inflammammasomes or IL-1β do not exclude the potential involvement of IL-1α, especially considering that inflammasomal activation also facilitates IL-1α secretion.

The understanding of IL-1α and IL-1β is also complicated due to their shared usage of IL-1R1, which uses MyD88 as an adaptor in the pro-inflammatory NF-κB signaling pathway. IL-1R1 signal specificity may be based on the IL-1R1-expressing cell type and associated IL-1 stimulation from neighboring cells. In a mouse model of DILI, the expression of IL-1R1 is mainly restricted to myeloid cells among hepatic lymphocytes. In one study, IL-1α made by macrophages activated neutrophils via a paracrine loop and promoted hepatic injury during the early phase of DILI. In another study, liver cells lacking IL-1R1 resisted cell death but were dependent on neighboring cells, arguing for the involvement of IL-1 from these cells. The involvement of IL-1 in distinct immunological, neural, and physiological activities in the brain has recently been revealed in vivo, and it depended on different cell type-specific IL-1R1 signaling pathways. Liu et al. employed genetic knock-in reporter mice to track and reciprocally delete and/or express IL-1R1 in specific CNS cell types, including endothelial cells, ventricular cells, peripheral myeloid cells, microglia, astrocytes, and neurons. Particularly, they demonstrated that endothelial IL-1R1-driven leukocyte recruitment to the central nervous system accounted for impaired neurogenesis; ventricular IL-1R1 regulated monocyte recruitment; and noninflammatory ventricular, astrocyte, and neuronal IL-1R1-mediated neuromodulatory activities.

In addition, IL-1 is also a licensing signal to permit effector cytokine production by precommitted T helper lineage cells, including Th1, Th2, and Th17 cells. IL-1R1 signaling stabilizes cytokine transcripts to enable productive and rapid effector functions in CD4+ T cells. Moreover, the pathogenetic roles of GM-CSF-secreting Th cells have been reported in central nervous system inflammation, sepsis, and the recently reported COVID-19. IL-1R1 signaling is required for the maintenance and pathogenicity of GM-CSF-producing Th cells. Specifying the cell sources and magnitude of IL-1α and IL-1β
signaling through the shared IL-1R1 is critical to understanding CD4+ T helper functions.

The therapeutic activities of anti-IL-1 antibodies across diseases argue for innate inflammatory response as a metamnarrative in modern medicine. More efforts are needed to clarify the roles of IL-1/IL-1R1 signaling and effectors to better understand the immunopathogenesis of diseases and improve current targeted treatments.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing interests.

REFERENCES

1. Mizel, S. B. & Farar, J. J. Revised nomenclature for antigen-nonspecific T-cell proliferation and helper factors. *Cell Immunol.* **48**, 433–436 (1979).
2. Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. *Immunity* **50**, 778–795 (2019).
3. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality; analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). *Eur. Heart J.* **39**, 3499–3507 (2018).
4. Chen, C.-J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. *Nat. Med.* **13**, 851–856 (2007).
5. Zhang, C. et al. Macrophage-derived IL-1alpha promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. *Cell Mol. Immunol.* **15**, 973–982 (2018).
6. Freigang, S. et al. Fatty acid-induced mitochondrial uncoupling elicits inflammatory, independent IL-1alpha and sterile vascular inflammation in atherosclerosis. *Nat. Immunol.* **14**, 1045–1053 (2013).
7. Lukens, J. R. et al. RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. *Nature* **498**, 224–227 (2013).
8. Bersudsky, M. et al. Non-redundant properties of IL-1α and IL-1β during acute colon inflammation in mice. *Gut* **63**, 598–609 (2014).
9. Benjamin, J. T. et al. Cutting Edge: IL-1α and not IL-1β drives IL-1R1-dependent neonatal murine sepsis lethality. *J. Immunol.* **201**, 2873–2878 (2018).
10. Caffrey, A. K. et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary *Aspergillus fumigatus* challenge. *PloS Pathog.* **11**, e1004625 (2015).
11. Barry, K. C., Fontana, M. F., Portman, J. L., Dugan, A. S. & Vance, R. E. IL-1α signaling initiates the inflammatory response to virulent *Legionella pneumophila* in vivo. *J. Immunol.* **190**, 6329–6339 (2013).
12. Malik, A. & Kanneganti, T. D. Function and regulation of IL-1alpha in inflammatory diseases and cancer. *Immunol. Rev.* **261**, 124–137 (2018).
13. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. *Nat. Rev. Immunol.* **20**, 143–157 (2020).
14. Groß, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. *Immunity* **36**, 388–400 (2012).
15. Gehrike, N. et al. Hepatocyte-specific deletion of IL-1R1 attenuates liver injury by blocking IL-1 driven autoinflammation. *J. Hepatol.* **68**, 986–995 (2018).
16. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. *Immunity* **50**, 317–333 e316 (2019).
17. Visan, I. Mapping IL-1 in the brain. *Nat. Immunol.* **20**, 245 (2019).
18. Jain, A., Song, R., Wakeland, E. K. & Pasare, C. T cell-intrinsic IL-1R signaling licenses effector cytokine production by memory CD4 T cells. *Nat. Commun.* **9**, 3185 (2018).
19. Stienne, C. et al. Foxo3 transcription factor drives pathogenic T helper 1 differentiation by inducing the expression of eomes. *Immunity* **45**, 774–787 (2016).
20. Huang, H. et al. High levels of circulating GM-CSF+ CD4+ T cells are predictive of poor outcomes in sepsis patients: a prospective cohort study. *Cell. Mol. Immunol.* **16**, 602–610 (2019).
21. Zhou, Y. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. *Nat. Sci. Rev.* https://doi.org/10.1093/nsr/nwaa041 (2020).
22. Komucuzi, J. et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. *Immunol. Med.* **50**, 1289–1304. e1286 (2019).