The 78,000-Mr Intermediate Chain of Chlamydomonas Outer Arm Dynein Is a Microtubule-binding Protein

Stephen M. King,* Ramila S. Patel-King,* Curtis G. Wilkerson,* and George B. Witman†

*Department of Biochemistry, The University of Connecticut Health Center, Farmington, Connecticut 06032; and †Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545

Abstract. A previous study (King et al., 1991. J. Biol. Chem. 266:8401-8407) showed that the 78,000-Mr intermediate chain (IC78) from the Chlamydomonas outer arm dynein is in direct contact with α-tubulin in situ, suggesting that this protein may be involved in binding the dynein to the doublet microtubules. Molecular genetic analysis of this chain recently demonstrated that it is a WD repeat protein essential for outer arm assembly (Wilkerson et al., 1995. J. Cell Biol. 129:169-178). We have now transcribed and translated IC78 in vitro, and demonstrate that this molecule binds axonemes and microtubules, whereas a homologous protein (the 69,000-Mr intermediate chain [IC69] of Chlamydomonas outer arm dynein) does not. Thus, IC78 is a bona fide microtubule-binding protein. Taken together with the previous results, these findings indicate that IC78 is likely to provide at least some of the adhesive force that holds the dynein to the doublet microtubule, and support the general hypothesis that the dynein intermediate chains are involved in targeting different dyneins to the specific cell organelles with which they associate. Analysis of the binding activities of various IC78 deletion constructs translated in vitro identified discrete regions of IC78 that affected the binding to microtubules; two of these regions are specifically missing in IC69. Previous studies also showed that IC78 is in direct contact with IC69; the current work indicates that the region of IC78 that mediates this interaction is coincident with two of IC78's WD repeats. This supports the hypothesis that these repeats are involved in protein-protein interactions within the dynein complex.

Dyneins are molecular motors responsible for ciliary and flagellar movement, the directed movement of membrane-bound organelles, positioning of the Golgi apparatus, nuclear movements, spindle formation and orientation, and possibly some types of chromosomal movement. Dyneins occur as several distinct isoforms, each of which consists of two or more heavy chains (DHCs)1 associated with a variety of accessory proteins (for reviews see Holzbauer et al., 1994 and Witman et al., 1994). Recent molecular studies have indicated that at least some of the accessory proteins, namely, the intermediate chains (ICs), found in cytoplasmic and flagellar outer arm dynein derive from a common ancestor (Mitchell and Kang, 1991; Paschal et al., 1992). However, to date, there has been little experimental evidence (see below) to support this proposal.

We have been using the outer arm dynein from Chlamydomonas as a model system to learn more about the functions of specific dynein subunits. This dynein (Fig. 1 A) consists of 3 DHCs (α, β, and γ; each >500 kD [Mitchell and Brown, 1994; Wilkerson et al., 1994]), 2 ICs (IC78 and IC69 [Also referred to as IC70; Mitchell and Kang, 1991]; 76.5 and 63.4 kD, respectively [Mitchell and Kang, 1991; Wilkerson et al., 1995]), and 10 light chains (LCs; 8-22 kD [King and Patel-King, 1995; Pfister et al., 1982; Piperno and Luck, 1979]). The purified dynein retains both ATP-sensitive (motor) and -insensitive (structural) microtubule-binding domains (Haimo et al., 1979; Haimo and Fenton, 1988). Structurally, each DHC consists of a globular head and a flexible stem. The head, formed from the COOH-terminal ~350 kD, contains the ATPase and motor domains, and is presumed to bind transiently to the B tubule of the opposing doublet microtubule during force generation. The stem, formed from the NH2-terminal part of the

1. Abbreviations used in this paper: DHC, dynein heavy chain; EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide; IC, dynein intermediate chain; IC/LC, intermediate chain/light chain complex; LC, dynein light chain; MARP, microtubule-associated repetitive protein.
chain, extends to the base of the dynein and appears to interact with the stems of the other DHCs to hold the dynein together (Johnson and Wall, 1983; Sakakibara et al., 1993; Witman et al., 1983; Goodenough and Heuser, 1984; Sale et al., 1985; for review see Witman et al., 1994). The ICs interact with each other and with several of the LCs to form an IC/LC complex (Mitchell and Rosenbaum, 1986; King et al., 1991) that is located at the base of the soluble dynein particle (King and Witman, 1990). Studies using the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) revealed that IC78 is in direct contact with α-tubulin in situ, suggesting a role for this component in the ATP-insensitive (or structural) binding of the outer arm to the flagellar doublet microtubule (King et al., 1991).

Figure 1. (A) Model for the outer arm dynein of *Chlamydomonas* and its association with the outer doublet microtubule (shaded). Intermediate chains IC78 and IC69 are closely associated with each other and with the 8-, 11-, 14-, and 20-kD LCs in an IC/LC complex (Mitchell and Rosenbaum, 1986; King et al., 1991) located at the base of the stems of the α, β, and γ DHCs (King and Witman, 1990). The 19-kD LC is associated with the NH₂-terminal one-third of the β DHC (which presumably corresponds to that chain's stem) (Sakakibara et al., 1993), but has not been shown to be a part of the IC/LC complex. The 16-kD LC and 18- and 22-kD LCs are associated with the α and γ DHCs, respectively (Pfister and Witman, 1984), although their location in the heads of these chains is speculative. (B) Predicted domain structure of IC78 showing the basic NH₂-terminus (diagonally hatched box), the glutamine-proline-rich region that is expected to form a polyproline II helix (filled box), and WD repeats A–F (horizontally hatched boxes) (Wilkerson et al., 1995).

To date, this latter observation provides the sole experimental basis for the hypothesis that ICs are involved in attachment of the dynein motor to its cargo.

Recently, we described the cloning and sequencing of a full-length cDNA encoding IC78 (Wilkerson et al., 1995). The predicted sequence indicates that the NH₂-terminal 22 residues constitute a highly charged, lysine-rich region (Fig. 1 B). This basic region is separated from the rest of the protein by a short glutamine-proline-rich region predicted to form a polyproline II helix. Polyproline II helices generally form flexible linkers between domains of a protein (Adzhubei and Sternberg, 1994), suggesting that the highly charged NH₂-terminal region is a discrete structural domain and probably a discrete functional domain as well. The COOH-terminal half of the protein contains a series of six repeated elements known as WD repeats; such repeats are believed to be involved in subunit–subunit interactions within multisubunit complexes (Neer et al., 1994). Although not previously reported, the WD repeats also are present in *Chlamydomonas* IC69 and in the 74,000-Mr IC (IC74) of cytoplasmic dynein, which are homologous to IC78 (Wilkerson et al., 1995). The fact that the WD repeats are conserved suggests that they may perform similar functions in the different chains. Using the IC78 cDNA as a probe, we identified seven independently isolated strains, generated by insertional mutagenesis and selected on the basis of a slow swimming phenotype, in which the IC78 gene was completely removed from the genome, and one strain in which there was a large insertion within this gene (Wilkerson et al., 1995). Electron microscopic analysis of the disruption mutant and of several of the deletion mutants revealed that in every case the outer arm was completely and specifically lost, indicating that IC78 is essential for outer arm assembly.

To clarify the role of IC78 in outer arm assembly, we have now investigated the ability of in vitro–translated IC78 to bind to microtubules and axonemes. The results demonstrate that IC78 is a bona fide microtubule-binding protein, suggesting that IC78 is essential for outer arm assembly because it provides at least some of the adhesive force for binding the arm to the flagellar microtubules. This finding provides additional support for the general hypothesis that dynein ICs are involved in binding dyneins to the organelles with which they associate. We also have investigated the relationship between IC78 functional domains and the predicted structural domains of the polypeptide. We have identified two, and possibly three distinct regions within IC78 that affect microtubule-binding activity; one of these is contained within the highly charged NH₂-terminal region, the other is located in the center of the molecule and includes another highly basic sequence. The homologous protein IC69 does not bind microtubules in vitro; although IC69 also contains basic regions, the specific sequences that would have been homologous to the regions important for microtubule-binding in IC78 are not present in IC69. Finally, we have identified the region of IC78 that is involved in binding to IC69. This activity is localized to two of the WD repeats in IC78, supporting the hypothesis that these repeats may be responsible for subunit–subunit interactions within the dynein complex. It is likely that at least some of the WD repeats in IC69 of outer arm dynein and IC74 of cytoplasmic dynein have a
similar function, as such subunit–subunit interactions are common to all dynein ICs.

Materials and Methods

Plasmids and Constructions

Two plasmids were used in this study: pC78k3, which consists of a 2.65-kb insert containing the entire coding sequence for IC78 cloned between the EcoRI and Xhol sites of pBluescript II SK− (Wilkerson et al., 1995), and pB70-16, which contains the cDNA for IC70 cloned into pBluescript II KS+ (Mitchell and Kang, 1991). pB70-16 was the generous gift of Dr. D. Mitchell (SUNY Health Science Center, Syracuse, NY). NH2-terminal deletions were constructed in one of two ways. In the first, pC78k3 was digested with Smal, PstI, and BamHI (each enzyme cuts once within the coding sequence and once within the 5’-polylinker) and religated. The resulting constructs (78ASmal, 78APstI, and 78ABamHI) rely on internal codons for translation initiation and are expected to produce fragments corresponding to M324-H683, M453-H683, and M480-H683, respectively. To construct the NH2-terminal deletion series 78A321N-78A1951N, a linker containing part of the 5’-untranslated region of IC78, a translation initiation signal abutted to an EcoRI site, and an in-frame stop codon flanked by an upstream ApaI site and a downstream SacI site was cloned between the Xbal and EcoRI sites of pC78k3. This plasmid then was digested with ApaI to protect the vector and with SacI to provide a substrate for exonuclease ExoIII. The digestion was stopped at various times, the plasmid cut with EcoRI, blunt ended with S1 nuclease, and the ends repaired with T7 DNA polymerase. The 5’ ends of individual clones then were sequenced to determine the extent of the deletion; only those that retained the correct reading frame were used.

For COOH-terminal deletions of IC78 (the series 78A679C-78A1951C) and 78ASmal (78ASmalAC), a linker containing KpnI and NruI sites was inserted between the Xhol and KpnI sites (the latter was not preserved upon religation) in the 3’-polylinker of both plasmids. Plasmids then were cut with Xhol and KpnI to provide appropriate substrates for exonuclease digestion. Individual clones were sequenced to determine the precise point of truncation. Insertion of the linker, which provides a unique site with which to linearize the plasmid for mRNA runoff, was made necessary by our observation that vector protected from digestion by the 3’ overhang of the ApaI site (located between Xhol and KpnI in the original polylinker) apparently could not be digested with S1 nuclease and therefore could not be religated.

Oligonucleotide-directed deletions within 78A1309C were made essentially as described by Kunkel et al. (1987). For selection purposes, each oligonucleotide incorporated a restriction site determined by the terminal three bases 5’ to the desired deletion. Therefore, for each construct a single residue encoded by the other half of the restriction site is inserted within the boundaries of the deletion. The restriction sites used and the residue inserted are tabulated in Fig. 8.

In Vitro Transcription and Translation

Plasmid constructs were linearized and transcribed in vitro using T7 RNA polymerase. pB70-16 was transcribed with T7 RNA polymerase. Individual RNAs were translated using the rabbit reticulocyte lysate system (Promega Corp., Madison, WI) containing [35S]methionine (New England Nuclear, Boston, MA). Before use for axoneme/microtubule-binding experiments, the lysates were spun at ~180,000 g for 5 min in an airfuge (Beckman Instruments, Palo Alto, CA) to pellet any nascent polypeptide chains still attached to polysomes. The specific activity of the [35S]methionine pool in the lysate was determined as described by Butner and Kirschner (1991). From this value and the number of methionines in IC78, the specific activity of the in vitro translated polypeptide was calculated. The amount of IC78 translated in vitro was then determined by cutting IC78 bands (identified by autoradiography) out of gels and counting the amount of radioactivity in the bands.

Preparation of Axonemes and Microtubules

Chlamydomonas flagella were isolated from the wild-type strain 1132D- and from the outer armless mutant odal by standard methods (Witman, 1986). Flagella were demembranated with HMEK buffer (1% NP-40, washed with 10 mM Heps, pH 7.5, 5 mM MgSO4, 0.5 mM EDTA, 25 mM KC1), and either used immediately or stored in 50% glycerol at −20°C. Stored axonemes were washed twice with HMEK before use.

DEAE-purified bovine brain tubulin was prepared by the procedure of Valleé (1986) and was kindly provided by Dr. Anthony Moss (Auburn University, Auburn, AL). Polymerized microtubules were stabilized with taxol before use in the sedimentation assays.

Sedimentation Assays

To assess the axoneme/microtubule-binding activity of in vitro translation products, 10 μl of the reticulocyte lysate was added to a microfuge tube containing 10 μl HMEK buffer and 10 μl axonemes (6 mg/ml) or microtubules (18 mg/ml). The same amounts were used in all experiments. Control tubes contained reticulocyte lysate and 20 μl HMEK, but no axonemes or microtubules. Samples were incubated at room temperature for 30 min and then sedimented for 1 min in a microfuge or, when microtubules were used, in an airfuge. Supernatant was removed and the pellets washed in 500 μl HMEK before preparation for gel electrophoresis (King et al., 1986). It is important to note that all binding experiments took place in the presence of >50 mg/ml cellular protein derived from the reticulocyte lysate. Quantitation of autoradiographs was performed using the program Quantity One (pdi, Huntington Station, NY) running on a Sparc workstation (Sun Microsystems Inc., Mountain View, CA). The amount of binding observed for any one construct was quite reproducible, e.g., in four different experiments performed on different days, values of 67, 70, 72, and 77% were obtained for the amount of 78A1309C bound to wild-type axonemes.

Cross-linking experiments were performed as described in King et al. (1991). Briefly, axonemes with bound in vitro translation products were resuspended in HMEK buffer and treated with 0 or 1 mM EDC (Pierce Chemical Co., Rockford, IL) for 60 min at room temperature. The reaction was terminated by the addition of a fivefold molar excess of β-mercaptoethanol before preparation for electrophoresis. Samples were separated in 8 or 10% acrylamide gels and then subjected to autoradiography. 14C-labeled molecular weight standards were obtained from Amersham Corp. (Arlington Heights, IL).

Immunoprecipitation

mAbs 1878A and 1869A (King et al., 1985; 1986) were purified from ascites fluid and bound to protein A–Affigel beads (Bio-Rad Laboratories, Hercules, CA). The antibody–protein A interaction was stabilized by cross-linking with dimethylimidilidate (Pierce Chemical Co.) by the procedure of Schneider et al. (1982). For immunoprecipitation experiments, the beads were incubated for 30–60 min with reticulocyte lysates containing in vitro translation products and washed several times with 0.05% Tween 20 in TBS, before resuspension in electrophoresis sample buffer.

Computational Methods

The program PHD was used to predict the secondary structure of IC78 (Rost and Sander, 1993). Hydrophilicity and surface probability were determined using the GCG suite of programs (Devereux et al., 1984).

Results

IC78 Is a Bona Fide Microtubule-binding Protein

Previously, we used the zero-length cross-linking reagent EDC to demonstrate that, within the axoneme, IC78 inter-
acts directly with α-tubulin (King et al., 1991). However, those experiments could not determine whether IC78 merely is in contact with tubulin or is a microtubule-binding protein per se. To address this important question, we investigated the ability of in vitro–translated IC78 to bind to microtubules. The plasmid pc78k3 (Wilkerson et al., 1995), which contains the full-length cDNA encoding IC78, was transcribed in vitro, and the resulting mRNA translated in a rabbit reticulocyte lysate system. Quantitation of radioactivity incorporated into IC78 revealed that ~1 fmol (~80 pg) protein was synthesized per microliter reticulocyte lysate. Subsequently, the ability of the translation products to bind axonemes and taxol-stabilized bovine brain microtubules was assessed in a simple sedimentation assay. In the absence of axonemes, in vitro–translated IC78 remained in the supernatant. In the presence of axonemes (derived either from wild-type or from the outer armless strain oda1), significant amounts (up to 60%) of the IC78 translation product were found in the pellet (Fig. 2 A, top panel). Similar results were obtained when microtubules were substituted for axonemes in the assay (Fig. 2 B), indicating that the binding was due to direct interaction between IC78 and tubulin. Binding of IC78 to axonemes was sensitive to the addition of 0.6 M NaCl (not shown), which is the salt concentration required to release >90% of outer arm dynein from the axoneme. Approximately 86% of bound IC78 was released by the salt treatment, indicating that binding is mediated largely by ionic interactions similar to those which attach the arm to the doublet microtubule in vivo. Further evidence that this interaction is similar to that which occurs in vivo was obtained from protein cross-linking experiments described below.

Assuming that tubulin accounts for ~50% of total axonemal protein, each assay contained ~1 nmol tubulin; when brain microtubules were used, the concentration of tubulin was even higher. Inasmuch as the assay mixture contained only ~10 fmol of IC78, these experiments were performed under conditions where a large excess (~107-fold in molar terms) of potential IC78 binding sites were present. Because only extremely small amounts of in vitro translated product were available, it was not possible to saturate the available binding sites in the sedimentation assays. However, the fact that much of the IC78 bound to axonemes or microtubules, even though IC78 was present at a concentration of only 80 ng/ml in a background of >50 mg/ml cellular protein from the lysate, strongly suggested that the IC78–microtubule interaction was specific.

As an alternative test of whether the interaction of IC78 with the microtubules was specific, we examined the binding properties of IC69. IC69 is homologous to IC78, has a similar isoelectric point (predicted 5.4 vs. 6.6 for IC78), has similar WD repeats, and also has a basic NH2-terminus (see Fig. 10) (Wilkerson et al., 1995), but it is not cross-linked to tubulin by treatment of the intact axoneme with EDC (King et al., 1991). IC69 was produced by in vitro transcription and translation of the plasmid pBe70-16 (Mitchell and Kang, 1991). Under the same assay conditions as were used for IC78, IC69 remained exclusively in the supernatant and showed no detectable axonemal binding activity (Fig. 2 A, bottom panel). These results indicate that the interaction of IC78 with axonemes and microtubules is specific. We conclude that IC78 is a bona fide microtubule-binding protein. The results also indicate that, in contrast to IC78, IC69 is not a microtubule-binding protein.

Identification of IC78 Regions that Affect Microtubule Binding

To determine which regions of IC78 are important for binding to microtubules, we generated a series of constructs designed to produce truncated versions of IC78 in which various amounts of the molecule were deleted from the NH2-terminus, the COOH-terminus, or both (Fig. 3).
These constructs were then transcribed and translated in vitro, and assayed as above to determine if they were capable of binding to axonemes or brain microtubules.

As reported above, the intact IC78 bound to and cosedimented with axonemes or brain microtubules. However, truncation of the NH2-terminal 20 residues of IC78 (construct 78Δ213N) resulted in loss of binding activity (Fig. 4); the remaining portion of the chain (G21-H683, preceded by a methionine inserted for initiation) was unable to bind to the axonemal or brain microtubules. Fragments in which more extensive portions of the NH2-terminal region were deleted (up to K225; constructs 78Δ414N, 78Δ522N, 78Δ735N, and 78Δ819N) similarly were unable to bind to microtubules. These results indicate that at least the first 20 residues of IC78 are important for microtubule binding.

Truncated versions of IC78 in which the COOH-terminus was deleted down to L386 (constructs 78Δ1951C–78Δ1309C) bound readily to axonemal or brain microtubules. For example, 70% of 78Δ1309C (M1–L386) bound to and cosedimented with the microtubules (Fig. 5, top panel). However, further truncation towards the NH2-terminus (down to L263 or beyond; constructs 78Δ941C and 78Δ679C) completely abolished binding (Fig. 5, middle and bottom panels). Therefore, the central region of IC78 (D264–L386) contains a second domain essential for microtubule binding.

Surprisingly, if IC78 was truncated from the NH2-terminus partially or completely through this second domain (to M324 and beyond), then axonemal and brain microtubule-binding activity was restored to the resulting COOH-terminal fragments (constructs 78ASmal, 78APstl, and 78ABamHI) (Fig. 6). These results indicate that removal of the entire NH2-terminal half of IC78 unmasks microtubule-binding activity in the COOH-terminal half of the molecule. COOH-terminal fragments as short as 203 amino acids (residues M480–H683; construct 78ABamHI) were capable of binding to axonemal microtubules (Fig. 6, bottom panel). A fragment (M324–5604; construct 78ASmalAC) in which the COOH-terminal 79 residues were deleted also bound to microtubules (Fig. 6, bottom panel). Thus, at least some of the COOH-terminal microtubule-binding activity is likely to be contained in the region of overlap between the latter two fragments (residues M480–S560).

This does not rule out the possibility that there are additional microtubule-binding sites COOH- or NH2-terminal to this region. The interaction between 78ΔSmal and axonemes was partially sensitive to increasing ionic strength; 58% of the bound translation product was released by washing with HMEK buffer containing 0.6 M NaCl, and additional amounts were released by increasing the salt concentration to 1 M (not shown).

NH2-terminal Half of IC78 Is Cross-linked to α-tubulin by EDC

It was of considerable interest to determine which of the regions identified above were binding to microtubules in a physiologically relevant manner. Inasmuch as IC78 in dynein in situ can be readily cross-linked to axonemal α-tubulin by low concentrations of EDC (King et al., 1991), we investigated whether the intact chain, and fragments representing the NH2- and the COOH-terminal half of the chain, could be similarly cross-linked to α-tubulin after their binding to oda1 axonemes in vitro.

IC78 was translated in vitro and bound to oda1 axonemes. An aliquot of the axonemes was then treated with 1 mM EDC; an identical aliquot was left untreated. After analysis of the aliquots by SDS-PAGE (Fig. 7, top panels), a single additional 127-kD band was observed in the EDC-treated sample. This is precisely the size of the IC78/α-tubulin conjugate identified previously after treatment of intact, native axonemes with EDC (King et al., 1991). Because EDC cross-links only proteins in which aspartate or glutamate residues on one protein are in intimate contact with lysine residues on the other protein (Hoare and Koshland, 1966), the IC78/tubulin interaction in vitro is likely to be very similar to that which occurs in vivo. This provides additional evidence that in vitro translated IC78

![Figure 3. Properties of IC78 and NH2- and COOH-terminally deleted constructs. This diagram indicates the regions of IC78 covered by the various constructs described in Results, and whether that product was competent to bind axonemes/microtubules and IC69. Predicted structural features of IC78 are as in Fig. 1 B. Regions important for microtubule binding (solid bars 1, 2, and 3) and IC69 binding (vertically hatched bar) are indicated at the top of the figure; solid bar 2 corresponds to residues D264–D321 (see Results). n.d., not determined.](image-url)
The NH₂-terminus of IC78 is essential for microtubule binding. The fragment 78Δ213N, which lacks only the first 20 amino acids of IC78, was expressed in vitro and assayed for microtubule binding activity as in Fig. 2. All of the product remained in the supernatant in both the presence and absence of axonemes.

binds to axonemal microtubules in a specific and physiologically relevant manner.

A similar experiment was carried out with the fragment 78Δ1309C (M₁-L386), which contains both the NH₂-terminal and the central regions that were observed to be important for microtubule binding in vitro. Reaction of axoneme-bound 78Δ1309C with EDC generated a single additional band with a relative molecular mass of 92,000 (Fig. 7, bottom panels). The mass of this conjugate is consistent with the cross-linking of the 43-kD translation product to tubulin. In contrast, when the same experiment was carried out with bound 78ΔSmaI (M₃₂₄-H₆₈₃), which contains the COOH-terminal microtubule-binding activity, no cross-linked products were observed, even at higher concentrations of EDC (Fig. 7, middle panels). Therefore, it appears that the sites responsible for cross-linking of IC78 to α-tubulin reside exclusively in the NH₂-terminal half of the molecule.

Further Definition of Regions in the NH₂-terminal Half of IC78 Important for Microtubule Binding

Because microtubule binding was observed only for those large NH₂-terminal fragments which contained both the extreme NH₂-terminal domain (M₁-T₂₀) and the region from D₂₆₄-L₃₈₆, it was not possible to use simple truncations to assess the importance to microtubule binding of parts of the molecule located between these two regions. To investigate the contribution of these other parts to this activity, we produced a series of constructs in which various small internal regions were deleted from the fragment.
Figure 7. EDC cross-linking of in vitro–translated IC78 and fragments. In vitro-translated IC78, 78ASmaI, and 78A1309C were bound to axonemes, washed with HMEK buffer, and then treated with 1 mM EDC. The samples were separated in an 8% minigel and autoradiographed. For IC78, reaction with EDC generated a cross-linked product with a relative molecular mass of 127,000 that appeared to be identical to the product previously shown to derive from the cross-linking of IC78 to ct-tubulin (King et al., 1991). No detectable difference between EDC-treated and untreated samples was observed for 78ASmaI. However, after treatment with EDC, an extra product with a relative molecular mass of 92,000 was obtained with 78A1309C. The apparent mass of this product is consistent with the cross-linking of 78A1309C (43 kD) to tubulin. The diagram indicates the regions of IC78 represented by the constructs.

78A1309C (Fig. 8). These fragments were then assayed for the ability to bind to and cosediment with axonemes. The deletion of the region from S2–D29 reduced by 58% the amount of fragment cosedimenting with axonemes, confirming the importance of this region for microtubule binding. The deletion P296–D323 reduced binding by 35%. In contrast, deletion of the adjacent regions T272–E293 or A326–S339 had little or no effect on binding. This confirms that most if not all of the microtubule-binding activity in this central part of the molecule is contained within the region extending from D264–D323 (see above), and probably within the smaller region from P296–D323. None of the other small deletions (ΔS116–D140, ΔK187–E206, ΔA236–S253) had a noticeable effect on the binding activity of the fragment. Therefore, within the NH2-terminal half of IC78, the highly charged NH2-terminal domain and the region from D264–D323 appear to be uniquely important for microtubule binding.

IC78 Region that Binds IC69 Is Coincident with Two WD Repeats

IC78 interacts with IC69 in situ (Mitchell and Rosenbaum, 1986; King et al., 1991). To determine the region of IC78 responsible for this interaction, IC69 was translated in vitro and allowed to interact for 30 min with various IC78 constructs that likewise had been translated in vitro. The samples were then immunoprecipitated with either antibody 1878A or 1869A (both antibodies are highly specific for their respective IC; see King et al., 1985; 1991). The immunoprecipitates were then examined by SDS-PAGE to determine if the nonimmunoreactive intermediate chain or fragment was coprecipitated.

When intact IC78, 78ASmaI, and 78A1309C were immunoprecipitated with 1878A, significant amounts of IC69 also were found in the pellets (Fig. 9). These data suggest that the region of IC78 involved in binding IC69 is located in residues M132–L386 (i.e., the overlap region between 78ASmaI and 78A1309C). The 1878A epitope is correlated with the sequence extending from A326 to F334 (King, S. M., and G. B. Witman, unpublished results); hence, fragments truncated further towards the NH2- or COOH-terminus (e.g., 78A679C or 78ABamHI) lack the 1878A epitope and could not be used here.

In the converse experiment, the antibody 1869A immunoprecipitated IC69 together with minor amounts of IC78, 78ASmaI, and 78A1309C (Fig. 9), but did not coprecipitate 78A679C or 78ABamHI along with IC69 (not shown). We previously observed that binding of the 1869A antibody to native outer arm dynein causes significant disruption of the complex (see King and Witman, 1990) and this likely accounts for the small amounts of IC78 and constructs coprecipitated with IC69 by this antibody. In any case, the data obtained with antibody 1869A support the assignment of residues M132–L386 of IC78 as containing the site of interaction with IC69. This section of IC78 coincides closely with WD repeats A and B (S307–S339 and H358–V390, respectively) (see Fig. 1 B and Wilkerson et al., 1995).

Discussion

In the studies reported here, we found that the 78,000-Mr intermediate chain (IC78) of Chlamydomonas outer arm dynein, produced by translation in a rabbit reticulocyte lysate, is able to bind to axonemes and bovine brain microtubules in vitro. The interaction appears to be specific and similar to that which occurs in vivo based on the following observations: (a) Binding occurs when IC78 is present at a concentration of only ~80 ng/ml in a background of >50 mg/ml cellular protein in the reticulocyte lysate. (b) The bound protein is released by 0.6 M NaCl, which is the concentration that releases >90% of outer arm dynein from the axoneme. (c) Binding occurs under conditions where IC69, a homologous protein with similar WD repeats, a similar basic NH2-terminus, and a similar size and isoelec-
Relative Axoneme Binding

Designation	Relative Axoneme Binding
78Δ1309C	100
ΔSΔ-D26	42
ΔSΔ-D40	100
ΔP28-D123	65
ΔP26-S199	90

Restriction Site

Residue Inserted
XhoI
HindIII
SacII
PvuI
NsiI
PstI
BstBI

Residue Inserted

- E
- L
- R
- S
- H
- Q

Figure 8. Location of oligonucleotide-directed deletions made within 78Δ1309C. For each product, the percent binding to axonemes relative to 78Δ1309C is reported. Also indicated is the restriction site used to select for each deletion and the single amino acid residue inserted between the boundaries of the deletion.

Figure 9. IC78 binds IC69 in vitro. 10 μl of the IC78, 78ΔSmaI, or 78Δ1309C translation mixture was added to an equal volume of lysate containing in vitro-translated IC69. After incubation for 30 min, the samples were divided into two aliquots and immunoprecipitated either with antibody 1878A or 1869A. The supernatants (S) were saved and the pellets (P) washed several times with 0.05% Tween 20 in TBS before electrophoresis in an 8% acrylamide minigel and autoradiography. Some of the short fragments of IC69 resulting from translation initiation at internal methionines do not contain the epitope recognized by mAb 1869A and hence are not immunoprecipitated by that antibody. Similarly, some of the IC69 fragments apparently lack the region of IC69 that interacts with IC78 and are not coprecipitated by antibody 1878A.

Previous results showed that IC78 is located at the base of the soluble outer arm dynein (King and Witman, 1990), that it is in direct contact with α-tubulin in the axoneme (King et al., 1991), and that it is essential for outer arm assembly (Wilkerson et al., 1995). Taken together with the current finding that IC78 is a microtubule-binding protein, these results indicate that IC78 is almost certainly involved in attaching the outer arm dynein to the doublet microtubule by virtue of its microtubule-binding activity. This raises the possibility that the ICs of other dynein isoforms may have a similar role in attaching those dyneins to the specific cell organelles with which they associate.

By analysis of the microtubule-binding properties of truncated versions of IC78, and of IC78 fragments containing small internal deletions, we were able to identify three regions of IC78 that appear to be important for microtubule binding in vitro.

The first of these regions corresponds to the NH2-terminal ~20 amino acids; truncation of these residues prevents the remainder of the chain from binding to microtubules. Sequence analysis of IC78 (Wilkerson et al., 1995) revealed that the NH2-terminal 24 amino acids form a highly charged, lysine-rich region that is separated from the rest of the molecule by a short glutamine-proline-rich segment predicted to form a polyproline II helix. Such helices form flexible linkers between domains in proteins (Adzhubei and Sternberg, 1994), so the highly charged NH2-terminus is likely to form a discrete structural and functional domain. The current findings imply that one of its functions is to bind microtubules.

The second region important for microtubule binding is located in the center of the polypeptide, within the region D264-D323 and probably between P298 and D323. Truncation through the wider region from the COOH-terminus eliminated binding of the remaining N-terminal portion of the molecule; deletion of the smaller section within this region reduced the amount of binding of a large NH2-terminal.
fragment. The wider region contains two charged sequences of interest. The first (EEVMDKFYWDDASD₂₈₇) is acidic, shares substantial similarity to part of the repeated sequence in the microtubule-associated repetitive protein (MARP-1) from Trypanosoma brucei (Schneider et al., 1988; Hemphill et al., 1992):

MARP-1 E E V A T D M R H V D E
IC78 E E V A M D F K Y W D D
 * * * * + * +

and is predicted to form an α helix (results not shown). The second sequence is very basic (304SDKSKRRQ₃₁₁) and has the highest surface probability of any region in the entire molecule. Because of its similarity to the MARP-1 protein, the acidic sequence would seem to be a likely candidate for a microtubule-binding domain. However, deletion of the region Y₂₇₇-E₂₉₃ had no effect on the ability of the NH₂-terminal fragment 78A1309C to bind to microtubules. In contrast, deletion of P₂₉₈-D₃₂₃ significantly reduced binding, suggesting that the basic residues in this region are likely to be the ones important for microtubule binding.

The third region that has microtubule-binding activity is located in the COOH-terminal half of the molecule, between residues M₄₈₀ and S₅₆₄. This region contains WD repeats D (_S519₅₅₉) and E (_D547₅₉₈), which are likely to be involved in interactions between protein subunits (Neer et al., 1994, and see below). However, there are several reasons to question the physiological relevance of this binding. First, the microtubule-binding activity of this region is only revealed when the entire NH₂-terminal half of the molecule is deleted. Second, the interaction between axonemes and fragments containing this region is not completely disrupted by washing with 0.6 M NaCl. Third, bound fragments containing only this region are not cross-linked to tubulin by EDC. Finally, the homologous protein IC69 contains similar WD repeats, but does not bind to microtubules in vitro. These observations do not rule out the possibility that a portion of this region functions as a microtubule-binding domain in vivo, but there is no independent evidence to support such a role. This region may be binding to the axonemes nonspecifically, possibly through residues exposed due to misfolding as a result of deletion of the NH₂-terminal half of the molecule, although the fact that binding is observed in the presence of >50 mg/ml of other protein argues against this. Alternatively, binding of this region to microtubules may be regulated by sequences present in the NH₂-terminal half of the chain; such regulation might prevent microtubule binding until the dynein has docked at the correct location on the axoneme (see below). In this case, the absence of the NH₂-terminal regulating sequence might then leave the COOH-terminal domain free to bind to microtubules.

Because axoneme-bound fragments containing the NH₂-terminal and central domains appear to be cross-linked to tubulin by EDC, it is likely that this binding is physiologically relevant. One or both of these regions is probably in direct contact with tubulin after binding. As noted earlier, both outer arm dynein and IC78 are released from outer doublet microtubules by 0.6 M NaCl and thus appear to be attached to the microtubule by ionic bonds. Both of the above regions contain highly basic stretches that have the potential to interact with tubulin, which is acidic, via electrostatic bonds. Our finding that truncation of either of these regions completely eliminated binding suggests either that these regions interact to form a single binding site, or that they act cooperatively to increase the affinity of IC78 for microtubules.

An objective alignment of IC78 and IC69 (Ogawa et al., 1995) reveals that most of the difference in mass between these two chains is due to large gaps in the IC69 sequence corresponding to IC78's L₂₇D₈₂, K₂₂₉D₃₅₃, and L₂₉₆K₃₀₈ (Fig. 10, and see Fig. 7 in Ogawa et al., 1995). The first gap eliminates essentially all of the sequence in IC69 that would have been homologous to the NH₂-terminal region important for microtubule binding in IC78; the other two gaps eliminate most of the IC69 sequence that would have been homologous to the central region important for microtubule binding in IC78. IC69 is not cross-linked to tubulin in the native, intact axoneme, and IC69 produced by in vitro translation does not bind to axonemes. Therefore, the absence of these regions appears to be specifically correlated with the lack of microtubule-binding activity in IC69. Apparently, IC69 either did not retain, or did not evolve, the specific sequences necessary for microtubule binding.

The sequences of IC78 that are important for microtubule binding also are not highly conserved in IC74 of cytoplasmic dynein. This is consistent with the presumed absence of a site within cytoplasmic dynein for structural binding to microtubules. However, the fact that IC78 binds outer arm dynein to flagellar microtubules strength-
ens the argument that the homologous IC74 may be involved similarly in targeting cytoplasmic dynein to the organelles with which it associates. Multiple forms of IC74 generated by phosphorylation (Dillman and Pfister, 1994) and alternative splicing (Paschal et al., 1992) have been described, and these variants may well play a role in the attachment of cytoplasmic dynein to different cellular structures.

Multiple microtubule-binding sites have been identified within other MAPs, including tau (Butner and Kirschner, 1991), MAP-2 (Lewis et al., 1988) and MAP-4 (Chapin and Bulinski, 1991); in these cases at least some of the contact sites are arranged as a series of imperfect repeats ending in the glycine-rich sequence PGGG. In MAP-4, these repeats are adjacent to a basic proline-rich region; in vitro studies indicate that both regions bind to microtubules, although the proline-rich region appears to bind most tightly (Aizawa et al., 1991). This interaction may thus be analogous to that of IC78 and microtubules. However, with the possible exception of MARP-1 (which also exhibits a multiple repeat structure [Schneider et al., 1988; Hemphill et al., 1992]), IC78 shows no overt similarity with other MAPs, indicating that it contains at least one and perhaps two novel microtubule-binding motifs.

After high salt extraction from the axoneme, the Chlamydomonas outer arm routinely is obtained as two discrete particles: a γ subunit containing the γ DHC and 2 LCs, and an α/β dimer consisting of the α and β DHCs, IC78 and IC69, and the remaining LCs (Pfister et al., 1982). Efficient rebinding of either particle to dynein-depleted axonemes requires the presence of the other particle (Fay, R. B., and G. B. Witman. 1977. The localization of flagellar ATPases in Chlamydomonas reinhardtii. J. Cell Biol. 75:286a; Takada and Kamyia, 1994; King, S. M., and G. B. Witman, unpublished results), suggesting that the α/β dimer must associate with the γ subunit before strong binding can occur. Thus, although we demonstrate here that IC78 is a microtubule-binding protein, this component apparently is not sufficient for strong binding of the outer arm to the doublet microtubule. It is possible that other dynein polypeptides also contribute to the ATP-insensitive microtubule-binding of the outer arm to the doublet microtubules; for example, the α DHC from sea urchin sperm flagella has been suggested to participate in this interaction (Bell et al., 1982; Moss et al., 1992). Alternatively, the interaction of the γ subunit with the α/β dimer may cause a conformational change in IC78 that allows binding to occur; this would ensure that outer arm binding sites were not occupied by the α/β dimer alone.

It also is likely that the outer arm interacts with other axonemal proteins in addition to tubulin. Flagellar outer arm dynein decorates the entire surface of microtubules assembled from purified brain tubulin (Haimo et al., 1979; Haimo and Fenton, 1988), whereas outer arm dynein binds to a specific site on outer doublet microtubules both in vitro (Fay, R. B., and G. B. Witman. 1977. The localization of flagellar ATPases in Chlamydomonas reinhardtii. J. Cell Biol. 75:286a; Takada and Kamyia, 1994) and in vivo. Thus, the outer doublet microtubules probably contain some protein which specifies the outer arm binding site. Recently, Takada and Kamyia (1994) reported that a 7S factor was necessary for efficient assembly of outer arms onto outer doublet microtubules. This factor was correlated with an ~70-kD polypeptide, and with a small pointed structure at the site where the outer arm normally attaches to the outer doublet. Thus, the 70-kD polypeptide and this structure may specify the outer arm binding site. Further experiments will be necessary to determine if this factor interacts with IC78 or with some other dynein polypeptide. In any case, it should be noted that some of the experiments reported here used axonemes from the mutant odal, which lacks the 7S factor; thus, the binding we observed using odal axonemes, as well as that observed with brain microtubules, could not have been mediated by the 7S factor.

Previous studies have used detergent-induced dissociation (Mitchell and Rosenbaum, 1986) and direct chemical cross-linking (King et al., 1991) to determine that IC78 and IC69 interact directly with each other and with several of the dynein LCs. Such IC/IC complexes also have been found in dyneins from sea urchin (Tang et al., 1982; Moss et al., 1992) and trout (King et al., 1990) sperm flagella and probably are a general feature of outer arm design (for review see Witman et al., 1991). In the present study, we found that the site in IC78 that interacts with IC69 apparently is localized to the central region (M324–L366) of IC78. This region correlates very closely with IC78's WD repeats A (S357–S392) and B (H358–V398) (Wilkeron et al., 1995). It has been proposed that WD repeats are involved in subunit–subunit interactions within multisubunit complexes, and that they may act in pairs to form a site for subunit binding (Neer et al., 1994). Our findings are in good agreement with this proposal. It will be of considerable interest to determine if IC78's other WD repeats are similarly involved in binding the dynein LCs and perhaps the β DHC. Inasmuch as subunit–subunit interactions appear to be a feature common to all dynein ICs, it is likely that the WD repeats in IC69 and IC74 have a similar role.

The present study has identified two, and possibly three, regions of IC78 that appear to be important for binding the outer arm to the outer doublet microtubule, as well as one region that appears to be important for binding IC78 to IC69 within the dynein complex. Recently, several insertional mutants of Chlamydomonas were identified in which the IC78 gene has been completely deleted (Wilkeron et al., 1995). Thus, it should now be possible to use site-directed mutagenesis to alter these regions of the IC78 cDNA or gene that encode the presumptive functional domains identified in this study, and then transform the altered DNA into the null mutants to test the roles of these domains, and of specific residues within these domains, in vivo.

We are grateful to Dr. David Mitchell for providing the cDNA clone for IC69 and to Dr. Anthony Moss for bovine brain tubulin.

This study was supported by grants GM30626 and CA12708 awarded by the National Institutes of Health, and by a grant from the Patrick and Catherine Weldon Donaghue Medical Research Foundation.

Received for publication 4 October 1994 and in revised form 8 June 1995.

References

Aizawa, H., Y. Emori, A. Mori, H. Murahashi, H. Sakai, and K. Suzuki. 1991.
Functional analyses of the domain structure of microtubule-associated protein-4 (MAP-4) reveal specific interactions with dynein light chains and other MAPs. Bell, C. W., and I. R. Gibbons. 1982. Structure of the dynen-1 outer arm in sea urchin sperm flagella. II. Analysis by proteolytic cleavage. *J. Biol. Chem.* 257:516-522.

Butner, K. A., and M. W. Kirschner. 1991. Tau protein binds to microtubules through a flexible array of distributed weak sites. *J. Cell Biol.* 115:717-730. Chapin, S. J., and J. C. Bulinski. 1991. Non-neuronal 210 x 10^6 M, microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of MAP2 and tau. *J. Cell Sci.* 98:27-36. Devereux, J., P. Hasebe, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12:387-395. Dillman, J. F., III, and K. K. Pfister. 1994. Differential phosphorylation in vivo of cytoplasmic dynein associated with antagonodally moving organelles. *J. Cell Biol.* 127:1671-1681. Goodenough, U. W., and J. E. Heuser. 1984. Structural comparison of purified dynein proteins with in situ dynein arms. *J. Mol. Biol.* 180:1083-1118. Haimo, L. T., and R. D. Fenton. 1988. Interaction of Chlamydomonas dynein with tubulin. *Cell Motil. Cytoskeleton.* 9:129-139. Haimo, L. T., B. R. Telzer, and J. L. Rosenbaum. 1979. Dynein binds to and crossbridges cytoplasmic microtubules. *Proc. Natl. Acad. Sci. USA.* 76:5759-5763. Houry, D. G., and D. E. Kosland. 1966. A procedure for the selective modification of carboxyl groups in proteins. *J. Am. Chem. Soc.* 88:2057-2058. Hemphill, A., M. Affolter, and T. Seebeck. 1992. A novel microtubule-binding motif identified in a high molecular weight microtubule-associated protein from Trypanosoma brucei. *J. Cell Biol.* 117:95-103. Holzbauer, E. L. F., A. Mikami, B. M. Paschal, and R. B. Vallee. 1994. Molecular characterization of cytoplasmic dynein. In Microtubules. J. S. Hyams, and C. W. Lloyd, editors. Wiley-Liss, Inc., New York. 251-267. Lewis, S. A., D. Wang, and N. J. Cowan. 1988. Microtubule-associated protein 2 (MAP2) shares a microtubule-binding motif with tau protein. *Science (Wash. DC).* 242:596-599. Mitchell, D. R., and K. Brown. 1994. Sequence analysis of the Chlamydomonas α and β dynein heavy chain genes. *J. Cell Sci.* 107:635-644. Mitchell, D. R., and Y. Kang. 1991. Identification of od5 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. *J. Cell Biol.* 113:835-842. Mitchell, D. R., and J. L. Rosenbaum. 1986. Protein-protein interactions in the 185 ATPase of Chlamydomonas outer dynein arms. *Cell Motil. Cytoskeleton.* 6:510-520. Moss, A. G., W. S. Sale, L. A. Fox, and G. B. Witman. 1992. The α subunit of outer arm dynein mediates structural and rigor binding to microtubules. *J. Cell Biol.* 118:1189-1200. Neer, E. J., C. J. Schmidt, R. Nambudripad, and T. F. Smith. 1994. The ancient regulatory-protein family of WD-repeat proteins. *Nature (Wash. DC).* 371:297-300. Ogawa, K., K. Kamiya, C. G. Wilkerson, and G. B. Witman. 1995. Interspecies conservation of outer arm dynein intermediate chain sequences defines two intermediate chain subclasses. *Mol. Biol. Cell.* 6:685-696. Paschal, B. M., A. Mikami, K. K. Pfister, and R. B. Vallee. 1992. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. *J. Cell Biol.* 118:1133-1143. Pfister, K. K., and G. B. Witman. 1984. Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. *J. Biol. Chem.* 259:12072-12080. Pfister, K. K., R. B. Fay, and G. B. Witman. 1982. Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. *Cell Motil.* 2:525-547. Piperno, G., D. J. L. Luck. 1979. Aminoacid aminoisotopenphosphates from flagella of Chlamydomonas reinhardtii: purification of two dyneins. *J. Biol. Chem.* 254:3084-3090. Rost, B., and C. Sander. 1993. Prediction of protein structure at better than 70% accuracy. *J. Mol. Biol.* 232:584-599. Sakakibara, H., S. Takada, S. M. King, G. B. Witman, and R. Kamiya. 1993. A Chlamydomonas outer arm dynein mutant with a truncated β heavy chain. *J. Cell Biol.* 122:653-661. Sale, W. S., U. W. Goodenough, and J. E. Heuser. 1985. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. *J. Cell Biol.* 101:1400-1412. Schneider, C. R., A. Newman, D. R. Sutherland, U. Asser, and M. F. Greaves. 1982. A one-step purification of membrane proteins using a high affinity immunomatrix. *J. Biol. Chem.* 257:10766-10769. Schneider, A., A. Hemphill, T. Wyley, and T. Seebeck. 1988. The large microtubule-associated protein of Trypanosoma brucei has tandemly repeated, near identical sequences. *Science (Wash. DC).* 241:459-462. Takada, S., and R. Kamiya. 1994. Functional reconstitution of Chlamydomonas outer dynein arms from α-β and γ subunits: requirement of a third factor. *J. Cell Biol.* 126:737-745. Tang, W.-J. Y., C. W. Bell, W. S. Sale, and I. R. Gibbons. 1982. Structure of the dynein-1 outer arm in sea urchin sperm flagella. I. Analysis by separation of subunits. *J. Biol. Chem.* 257:508-515. Vallee, R. B. 1986. Reversible assembly purification of microtubules without assembly-promoting agents and further purification of tubulin, microtubule-associated proteins, and MAP fragments. *Methods Enzymol.* 134:89-104. Wilkerson, C. G., S. M. King, and G. B. Witman. 1994. Molecular analysis of the γ heavy chain of Chlamydomonas flagellar outer-arm dynein. *J. Cell Sci.* 107:497-506. Wilkerson, C. G., S. M. King, A. Perez-Garcia, J. Paroul, and G. B. Witman. 1995. The 78,000 M, intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. *J. Cell Biol.* 129:169-178. Witman, G. B. 1986. Isolation of Chlamydomonas flagella and axonemes. *Methods Enzymol.* 134:280-290. Witman, G. B., K. A. Johnson, K. K. Pfister, and J. S. Wall. 1983. Fine structure and molecular weight of the outer arm dyneins of Chlamydomonas. *J. Submicrosc. Cytol.* 15:193-197. Witman, G. B., S. M. King, A. G. Moss, and C. G. Wilkerson. 1991. The intermediate chain/light chain complex: an important structural entity of outer arm dynein. In Comparative Spermatology, 20 Years After. B. Baccetti, editor. Raven Press, New York. 439-443. Witman, G. B., C. G. Wilkerson, and S. M. King. 1994. The biochemistry, genetics and molecular biology of flagellar dynein. In Microtubules J. S. Hyams, and C. W. Lloyd, editors. Wiley-Liss, Inc., New York. 229-249.