Diagnosing ΛHDE model with statefinder hierarchy and fractional growth parameter

ZHOU Lanjun1 & WANG Shuang2

1Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China; 2School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Recently, a new dark energy model called ΛHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and holographic dark energy (HDE). Two key parameters of this model are the fractional density of cosmological constant $\Omega_{\Lambda 0}$, and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of $\Omega_{\Lambda 0}$ and c on the ΛHDE model. In this paper, we apply various DE diagnostic tools to diagnose ΛHDE models with different values of $\Omega_{\Lambda 0}$ and c; these tools include statefinder hierarchy $\{S^{(1)}_3, S^{(1)}_4\}$, fractional growth parameter ϵ, and composite null diagnostic (CND), which is a combination of $\{S^{(1)}_3, S^{(1)}_4\}$ and ϵ. We find that: (1) adopting different values of $\Omega_{\Lambda 0}$ only has quantitative impacts on the evolution of the ΛHDE model, while adopting different c has qualitative impacts; (2) compared with $S^{(1)}_3$, $S^{(1)}_4$ can give larger differences among the cosmic evolutions of the ΛHDE model associated with different $\Omega_{\Lambda 0}$ or different c; (3) compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.

Key words: Dark Energy, Cosmology, Cosmological Constant

PACS number(s): 95.36.+x, 98.80.Ck, 98.80.Es.

Citation: Zhou L J, & Wang, S Diagnosing ΛHDE model with statefinder hierarchy and fractional growth parameter. Sci China-Phys Mech Astron, 2016, ??: ??, doi: ??

1 Introduction

Dark energy (DE) has become one of the most important problems in modern cosmology [1–4]. Although numerous DE models [5–12] have been proposed, the nature of DE is still in dark.

In principle, the DE problem may be an issue of quantum gravity [13]. It is commonly believed that the holographic principle [14] is just a fundamental principle of quantum gravity. Based on holographic principle, Li [15] firstly proposed a promising DE model, which is called holographic dark energy (HDE) model. In this model, the density of HDE can be written as

$$\rho_{\text{hde}} = 3c^2 M_p^2 L^{-2},$$

where c is a dimensionless parameter and M_p is the reduced Planck mass. L is the IR cutoff length scale, which takes the form [16]:

$$L = \frac{a}{\sqrt{|k|}} \sin n(\sqrt{|k|} \int_{t}^{\infty} \frac{dt'}{a}),$$

where a is the scale factor, k is a constant representing the space curvature, and the function $\sin n(x)$ is defined as

$$\sin n(x) = \begin{cases}
\sin(x), & \text{if } k > 0 \\
x, & \text{if } k = 0 \\
\sinh(x), & \text{if } k < 0
\end{cases}$$

The HDE model is the first theoretical model inspired by holographic principle; in addition, it is in good agreement...
with the current cosmological observations. Therefore, in recent years, this model has drawn a lot of attention and has been widely studied in the literature [17–24].

In a latest paper [25], inspired by the multiverse scenario, a new model called AHDE was proposed. In this model, dark energy consists of two parts: cosmological constant Λ and HDE. Now the density of total DE is

\[\rho_{de} = \rho_\Lambda + \rho_{hde}, \]

Both the theoretical implications and observational constraints were simply discussed in [25].

It should be mentioned that the AHDE model has two key parameters: fractional density of cosmological constant $\Omega_{\Lambda 0}$ and dimensionless HDE parameter c. Since they determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of $\Omega_{\Lambda 0}$ and c on the AHDE model. Two diagnostic tools are often used to analyze various DE models. The first one is statefinder hierarchy [26, 27], which is a model-independent geometrical diagnostic tool. The second one is the fractional growth parameter ϵ [28, 29], which provides a scale-independent diagnostic of growth history of universe. In addition, a combination of statefinder hierarchy and fractional growth parameter, which is called composite null diagnostic (CND) [27], is often used to diagnose DE models. The main aim of this work is making use of these tools to distinguish the AHDE models with different $\Omega_{\Lambda 0}$ or different c. In the process of analysis, we use these best-fit values to set the other model parameters.

This paper is organized as follows. In Sec. 2, we briefly review the AHDE model. In Sec. 3, we introduce the diagnostic tools used in this work. In Sec. 4, we present the obtained results. Conclusions and discussions are given in Sec. 5.

2 Theoretical model

In this section, we briefly introduce how to calculate the evolution of reduced Hubble parameter $E(z) \equiv H / H_0$ for the AHDE model, where H and H_0 denote Hubble parameter and its present-day value. We will neglect the effect of radiation component, because in this paper we focus on dark energy which has effect only in low-redshift region. Thus, $E(z)$ and fractional HDE energy density Ω_{hde} for AHDE model are determined by the following equations [25]:

\[\frac{1}{E(z)} \frac{dE(z)}{dz} = -\frac{\Omega_{hde}}{1 + z} \left(\frac{3\Omega_{\Lambda 0} + \Omega_{de} - 3}{2\Omega_{hde}} + \frac{1}{2} + \frac{\Omega_{hde}}{c^2} + \Omega_k \right), \]

\[\frac{d\Omega_{hde}}{dz} = -\frac{2\Omega_{hde}(1 - \Omega_{hde})}{1 + z} \left(\frac{\Omega_{hde}}{c^2} + \Omega_k + \frac{1}{2} - \frac{3\Omega_{\Lambda 0} + \Omega_k}{2(1 - \Omega_{hde})} \right), \]

where the fractional density of curvature and cosmological constant are:

\[\Omega_k = \frac{\rho_k}{3M_p^2H^2} = \frac{\Omega_{\Lambda 0}(1 + z)^2}{E^2}, \]

\[\Omega_\Lambda = \frac{\rho_\Lambda}{3M_p^2H^2} = \frac{\Omega_{\Lambda 0}}{E^2}. \]

Here the subscript ‘0’ denotes the present-day value. Using the initial condition $E(z = 0) = 1$ and $\Omega_{hde0} = \Omega_{de0} - \Omega_{\Lambda 0}$ where Ω_{hde0} and Ω_{de0} denote the present-day fractional density of HDE and total DE, we can solve Eq. (5) and Eq. (6) numerically.

The observational constraints of the AHDE model has been briefly studied in [25]. In a work in preparation [30], several cosmological observations, including type Ia Supernova, cosmic microwave background, baryon acoustic oscillation and growth factor, are used to constrain the AHDE model. The best-fit results are $\Omega_{de0} = 0.716$, $\Omega_{\Lambda 0} = 0.564$, $c = 0.171$ and $\Omega_k = -0.0002$. As mentioned above, the main aim of this work is to distinguish the AHDE models with different $\Omega_{\Lambda 0}$ or different c. In the process of analysis, we use these best-fit values to set the other model parameters.

3 Diagnostic tools

3.1 The statefinder hierarchy

Statefinder hierarchy [26, 27] is a powerful geometry diagnostic, which makes use of the information from high-order derivatives of scale factor a to distinguish different DE models from the ΛCDM model. It has been already used to study various DE models [31–33].

To derive the expression of statefinder hierarchy, first we Taylor-expand the the scale factor $a(t)/a_0$ around the present epoch t_0:

\[\frac{a(t)}{a_0} = 1 + \sum_{n=1}^{\infty} \frac{A_n(t_0)}{n!} [H_0(t - t_0)]^n \]

where

\[A_n = \frac{a(t)^{(n)}}{a(t)H^2}, n \in N \]

with $a(t)^{(n)} = \frac{d^n a(t)}{dt^n}$. Notice that $A_2 = -q$ represents the deceleration parameter. For ΛCDM model, the functions above can be expressed by the fractional matter density Ω_m:

\[A_2 = 1 - \frac{3}{2} \Omega_m, \]

\[A_3 = 1, \]

\[A_4 = 1 - \frac{9}{2} \Omega_m, \]

Thus, we define the statefinder hierarchy S_n as [27]

\[S_2 = A_2 + \frac{3}{2} \Omega_m, \]

\[S_3 = A_3, \]

\[S_4 = A_4 + \frac{9}{2} \Omega_m, \]

it is obvious that every parameter of S_n remains unity for ΛCDM model during cosmic evolution. In [27], the authors
further introduce two statefinder hierarchy members: $S^{(i)}_3$ and $S^{(i)}_4$, which are given by
\begin{align}
S^{(i)}_3 &= A_3, \\
S^{(i)}_4 &= A_4 + 3(1 + q).
\end{align}

In this work, we just use $S^{(i)}_3$ and $S^{(i)}_4$ to diagnose the AHDE model. From Eq. (13) and Eq. (14), we can derive them for the AHDE case, which can be expressed as
\begin{align}
S^{(i)}_3 &= -q' + q + 2q^2, \\
S^{(i)}_4 &= -q'' + (3 + 7q)q' + (3q - 7q^2 - 6q^3),
\end{align}
where the deceleration parameter takes the form
\begin{equation}
q = \frac{1}{2}(1 + 3w_{de}\Omega_{de} - 3\Omega_\Lambda - \Omega_k) = \frac{1}{2}(1 + 3w_{de}\Omega_{de} - \Omega_k).
\end{equation}

Note that the prime denotes the derivative with respect to $s = \ln a$.

3.2 The fractional growth parameter

In linear perturbation theory, the perturbation of the matter density ρ_m is defined as $\delta_m = \delta \rho_m/\rho_m$. It satisfies the equation
\begin{equation}
\delta_m + 2\frac{a}{d} \frac{d}{dz} \delta_m - \frac{4\pi G}{M_p^2} \rho_m \delta_m = 0.
\end{equation}

Note that the dot above denotes the derivative with respect to time t. The growth rate of linear density perturbation is defined as $f = d\delta_m/d\ln a$. The one-order and two-order derivatives of δ_m with respect to time t can be written as:
\begin{equation}
\dot{\delta}_m = f H \delta_m,
\end{equation}
\begin{equation}
\ddot{\delta}_m = (f H + f \dot{H} + f^2 H^2) \delta_m.
\end{equation}

Substituting Eqs. (18) and (19) into Eq. (17), we can derive the equation which determines f:
\begin{equation}
\frac{df}{dz} = \frac{f^2 + 2f - f_1(z)}{1 + z} - \frac{dH/dz}{H} f,
\end{equation}
where $f_1(z) = \rho_m/H^2 = \frac{3\Omega_{m0}(1+z)^3}{H^2}$, and the present-day fractional matter density $\Omega_m = 1 - \Omega_{\Lambda0} - \Omega_{k0}$. Using the initial condition $f(z = 0) = 1$, this equation can be numerically solved for the ΛCDM model and the AHDE model. Based on $f(z)$, another null diagnostic, which is called fractional growth parameter ϵ, is defined as [28, 29]
\begin{equation}
\epsilon(z) = f(z)/f_{\Lambda CDM}(z).
\end{equation}

In [27], the author also introduced a quantity called composite null diagnostic (CND), which is a combination of statefinder hierarchy members and fractional growth parameter. In this paper, we use two CND pairs $\{S^{(i)}_3, \epsilon\}$ and $\{S^{(i)}_4, \epsilon\}$ to diagnose the AHDE model.

4 Result

In this section, we use the three diagnostic tools to explore the impacts of various model parameters of AHDE. To discuss the effects of key parameters Ω_{A0} and c, we vary Ω_{A0} and c respectively, while fixing other parameters according to the best-fit values shown in Sec. [2].

Firstly, we study the impacts of Ω_{A0}. In Fig. 1, we plot the evolutionary trajectories of $S^{(i)}_3(z)$, $S^{(i)}_4(z)$ and $\epsilon(z)$ for the AHDE model, while fixing $c = 0.171$ and varying Ω_{A0} among 0, 0.2, 0.4 and 0.6. In order to make a comparison, we also plot the result of the ΛCDM model as a solid line. For all the four cases associated with different Ω_{A0}, all the curves of $S^{(i)}_3$, $S^{(i)}_4$ and ϵ have similar evolutionary trajectories. For example, all the curves of $S^{(i)}_3$ and $S^{(i)}_4$ have significant differences at low-redshift, and descend monotonically at higher-redshift. In addition, all the curves of ϵ have convex vertex at $z \sim 0.4$ and descend monotonically at higher-redshift. These results show that adopting different values of Ω_{A0} only has quantitative impacts on the cosmic evolution of the AHDE model.

Then we study the impacts of c. In Fig. 2, we plot the evolutionary trajectories of $S^{(i)}_3(z)$, $S^{(i)}_4(z)$ and $\epsilon(z)$ for the AHDE model, while fixing $\Omega_{A0} = 0.564$ and varying c among 0.1, 0.3, 0.5 and 0.7. To make a comparison, we also plot the result of the ΛCDM model as a solid line. The curves associated with different Ω_{A0}, the curves of $S^{(i)}_3$, $S^{(i)}_4$ and ϵ associated with different c have different evolutionary trajectories. For example, all the curves of $S^{(i)}_3$ and $S^{(i)}_4$ have different evolutionary behavior at low-redshift, and have a trend of coincidence at high-redshift. In addition, among the curves of ϵ, the curve associated with $c = 0.1$ has a convex vertex above the ΛCDM line; the curves associated with $c = 0.5$ and $c = 0.7$ have concave vertex under the ΛCDM line; while the curves associated with $c = 0.3$ has both two kinds of vertex. These results show that adopting different values of c has qualitative impacts on the cosmic evolution of the AHDE model.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Ω_{A0} & 0 & 0.2 & 0.4 & 0.6 \\
\hline
c & 0.171 & & & \\
\hline
$S^{(i)}_{30}$ & 37.2915 & 20.8119 & 8.5451 & 1.8763 \\
$S^{(i)}_{40}$ & 487.4201 & 237.5444 & 74.5956 & 6.0481 \\
\hline
$\Delta S^{(i)}_{30}$ & & & & \\
$\Delta S^{(i)}_{40}$ & & & & \\
\hline
\end{tabular}
\caption{The present values of $S^{(i)}_3$ and $S^{(i)}_4$, and their differences $\Delta S^{(i)}_{30} = S^{(i)}_{30}(\text{max}) - S^{(i)}_{30}(\text{min})$, $\Delta S^{(i)}_{40} = S^{(i)}_{40}(\text{max}) - S^{(i)}_{40}(\text{min})$. A varying Ω_{A0} is adopted in the analysis.}
\end{table}
Table 2 The present values of $S_3(1)$, $S_4(1)$, and their differences $\Delta S_{30}^{(1)} = S_{30}^{(1)}(\text{max}) - S_{30}^{(1)}(\text{min})$, $\Delta S_{40}^{(1)} = S_{40}^{(1)}(\text{max}) - S_{40}^{(1)}(\text{min})$. A varying c is adopted in the analysis.

$\Omega_{\Lambda 0}$	0.564			
c	0.1	0.3	0.5	0.7
$S_{30}^{(1)}$	6.5876	1.3002	0.9447	0.8640
$S_{40}^{(1)}$	72.3008	1.9622	0.9734	0.9850
$\Delta S_{30}^{(1)}$	5.7236			
$\Delta S_{40}^{(1)}$	71.3158			

To compare $S_3^{(1)}$ and $S_4^{(1)}$ for the cases associated with different $\Omega_{\Lambda 0}$ or different c with more details, we list the present values of $S_3^{(1)}$ and $S_4^{(1)}$ and their differences in tables [1] and [2]. Notice that $S_{30}^{(1)}$ and $S_{40}^{(1)}$ are the present values of $S_3^{(1)}$ and $S_4^{(1)}$, while $\Delta S_{30}^{(1)} = S_{30}^{(1)}(\text{max}) - S_{30}^{(1)}(\text{min})$ and $\Delta S_{40}^{(1)} = S_{40}^{(1)}(\text{max}) - S_{40}^{(1)}(\text{min})$ denotes the differences between the maximum and minimum values of $S_3^{(1)}$ and $S_4^{(1)}$.

From these two tables, we can see that $\Delta S_{40}^{(1)}$ is much larger than $\Delta S_{30}^{(1)}$. This means that compared with $S_3^{(1)}$, $S_4^{(1)}$ can give larger differences among the cosmic evolutions of the AHDE model associated with different $\Omega_{\Lambda 0}$ or different c.

As can be seen in Figs. [1] and [2], compared with $S_3^{(1)}$ and $S_4^{(1)}$, ϵ has very different evolutionary trajectories. So we can use a composite null diagnostic (CND), which is a combination of $\{S_3^{(1)}$, $S_4^{(1)}\}$ and ϵ, to diagnose the AHDE model. The results are shown in Fig. [3], which gives the evolutionary trajectories of the CND pairs $\{S_3^{(1)}$, $\epsilon\}$ (left panels) and $\{S_4^{(1)}$, $\epsilon\}$ (right panels) for different $\Omega_{\Lambda 0}$ (upper panels) and different c (lower panels). The current values of $\{S_3^{(1)}$, $\epsilon\}$ and $\{S_4^{(1)}$, $\epsilon\}$ are marked by the round dots, and the arrows indicate the time directions of evolution, i.e. $z \to 0$. To make a comparison, we also plot the result of ΛCDM as star-shape points. For the cases of varying $\Omega_{\Lambda 0}$, the curves of CND pairs only have quantitative differences: at high-redshift region, each curve of $\{S_3^{(1)}$, $\epsilon\}$ and $\{S_4^{(1)}$, $\epsilon\}$ starts from the neighbourhood of the star symbol of the ΛCDM model, then evolves towards the direction of the increase of ϵ; after passing a turning point, it continues evolving towards the direction of the decrease of ϵ and the increase of $\{S_3^{(1)}$, $S_4^{(1)}\}$. On the other side, for the cases of varying c, the curves of CND pairs have qualitative differences: the curve associated with $c = 0.1$ has a similar evolutionary trajectory with the case of varying $\Omega_{\Lambda 0}$; in contrast, the curve associated with $c = 0.5$ or $c = 0.7$ evolves towards an opposite direction, and returns to the neighbourhood of the star symbol of the ΛCDM model. These results further verify the conclusions of Figs. [1] and [2]. Moreover, since using
a single diagnostic tool can only give 1-dimensional evolution information, adopting CND has much stronger ability to diagnose the ΛHDE model.

5 Conclusion and Discussion

In a latest paper [25], a new DE model called ΛHDE was proposed. In this model, DE consists of two parts: cosmological constant Λ and HDE. Two key parameters of this model are the fractional density of cosmological constant ΩΛ0 and the dimensionless HDE parameter c. Since these two parameters determine the dynamical properties of DE and the destiny of universe, it is important to study the impacts of different values of ΩΛ0 and c on the ΛHDE model.

Two diagnostic tools are often used to analyze various DE models. One is statefinder hierarchy \(S^{(1)}_3, S^{(1)}_4 \), another is the fractional growth parameter \(\epsilon \). In addition, the CND pair, which is a combination of these two quantities, is also widely used to diagnose DE models. Therefore, the main aim of this work is making use of these diagnostic tools to distinguish the ΛHDE models with different \(\Omega_{\Lambda 0} \) or different \(c \).

The conclusions of this work are as follows: Firstly, from Figs. 1 and 2, we find that adopting different values of \(\Omega_{\Lambda 0} \) only has quantitative impacts on the evolution of the ΛHDE model, while adopting different \(c \) has qualitative impacts; Secondly, by comparing tables 1 and 2, we find that compared with \(S^{(1)}_3, S^{(1)}_4 \) can give larger differences among the cosmic evolutions of the ΛHDE model associated with different \(\Omega_{\Lambda 0} \) or different \(c \); Thirdly, by analyzing Fig. 3 in details, we find that compared with the case of using a single diagnostic, adopting a CND pair has much stronger ability to diagnose the ΛHDE model.

In this work, only two kinds of diagnostic tools, statefinder hierarchy and fractional growth parameter, are used to diagnose the ΛHDE model. There are some other diagnostic tools, such as \(w-w' \) analysis [35,36]. It is interesting to make use of these diagnostic tools to analyze various DE models, and compare the advantages and disadvantages of various diagnostic tools. In addition, it is also very interesting to study the impacts of supernova’s systematic uncertainties [37–42] on the ΛHDE model. These will be done in future works.

We wish to thank Li Nan and Cheng Cheng for valuable suggestions and technological supports. SW is supported by the National Natural Science Foundation of China under Grant No. 11405024.
Figure 3 (colour online) The evolutionary trajectories of the CND pairs $[S_{3}^{(1)}, \epsilon]$ (left panels) and $[S_{4}^{(1)}, \epsilon]$ (right panels) for different $\Omega_{0\Lambda}$ (upper panels) and different c (lower panels). The current values of $[S_{3}^{(1)}, \epsilon]$ and $[S_{4}^{(1)}, \epsilon]$ for the ΛHDE models are marked by the round dots, and the arrows indicate the time directions of cosmic evolution, i.e. $z \rightarrow 0$. To make a comparison, we also show the result of the ΛCDM model in this figure as star-shape points.