On the filtration of a free algebra by its associative lower central series.

George Kerchev

Abstract

This paper concerns the associative lower central series ideals M_i of the free algebra A_n on n generators. Namely, we study the successive quotients $N_i = M_i/M_{i+1}$, which admit an action of the Lie algebra W_n of vector fields on \mathbb{C}^n. We bound the degree $|\lambda|$ of tensor field modules F_λ appearing in the Jordan-H"older series of each N_i, confirming a recent conjecture of Arbesfeld and Jordan. As an application, we compute these decompositions for small n and i.

1 Introduction

Let $A_n = \mathbb{C}\langle x_1, x_2, \ldots, x_n \rangle$ be the algebra over \mathbb{C} of noncommutative polynomials with generators x_1, x_2, \ldots, x_n. We consider the lower central series of Lie ideals L_i defined inductively by $L_1 = A_n$ and $L_{i+1} = [A_n, L_i]$. We denote by M_i the two-sided ideal in A_n generated by L_i, $M_i := A_nL_iA_n$. This is the same as the left-sided ideal A_nL_i. This follows from the identity below where $a, c \in A_n$ and $b \in L_{i-1}$:

$$[a, b]c = -a[b, c] + [ac, b].$$

In this paper, we study the Jordan-Hölder series of $N_i = M_i/M_{i+1}$. The Jordan-Hölder series give decompositions (in the Groethendieck group) of N_i into sums of irreducible W_n-modules of F_λ, where $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$ for $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ are non-negative integers; $|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_n$. Here W_n, the Lie algebra of polynomial vector fields, acts on the N_i. The Jordan-Hölder constituents are F_λ.

We prove the following conjecture of Arbesfeld and Jordan on the upper bound of $|\lambda|$.

Theorem 1.1. For \mathcal{F}_λ in the Jordan-Hölder series of N_m we have

$$|\lambda| \leq 2m - 2 + 2^{\frac{n-2}{2}}$$

For m odd, this can be improved to

$$|\lambda| \leq 2m - 2.$$

We apply similar techniques to those of [AJ], [BJ], who studied the Lie quotients $B_i = L_i/L_{i+1}$. The proof of Theorem 1.1 depends on the following:

Theorem 1.2. $N_i = V \cdot L_i/(A \cdot L_{i+1} \cap V \cdot L_i)$ where V is spanned by elements of A_n of degree ≤ 1.

Feigin and Shoikhet [FS] introduced the quotients $B_i = L_i/L_{i+1}$. They were further studied by Dobrovolska, Etingof, Kim and Ma [DE] [DKM] [EKM], as well as Arbesfeld and Jordan ([AJ]). In [DE] and [AJ], bounds $|\lambda|$ for the Jordan-Hölder series of B_i were produced, and checked for small i and n by computer. We prove an analogous bound on $|\lambda|$ for the Jordan-Hölder series of N_i and show that it grows linearly with i.

The structure of this paper is as follows. The following two subsections 1.1 and 1.2 contain a review of the representation theory of the Lie algebra of polynomial vector fields and the tensor field modules over W_n. Section 2 presents a proof of the main result. In Section 3 the Jordan-Hölder series for $N_m(A_n)$ for small n and m are computed.

1.1 Representation theory of the Lie algebra of polynomial vector fields

Let W_n denote the Lie algebra of polynomial vector fields. As a vector space, we have:

$$W_n = \bigoplus_i \mathbb{C}[x_1, x_2, \ldots, x_n]\partial_i.$$

The Lie bracket is given by:

$$[p\partial_i, q\partial_j] = p \frac{\partial q}{\partial x_i} \partial_j - q \frac{\partial p}{\partial x_j} \partial_i.$$
According to [EKM], W_n acts on each N_i, and as a W_n-module, N_i has a Jordan-Hölder series whose simple quotients are of the form F_λ (see section 2.3 below for the definition). Let h_M be the Hilbert series for a graded vector space M. Then we have:

$$h_{F_\lambda} = \frac{p}{(1 - t_1)(1 - t_2) \cdots (1 - t_n)},$$

where $\deg p = \| \lambda \|$.

We will bound $h_{N_i} \prod_i (1 - t_i)$. This bound and the knowledge of the Hilbert series of F_λ as above will allow us to control decompositions of the N_i into the F_λ.

1.2 Tensor field modules over W_n

For $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$, $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n$, where the λ_i are nonnegative integers, let V_λ be the irreducible representation of \mathfrak{gl}_n of highest weight λ. We set $|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_n$.

Let \mathcal{F}_λ be the space of polynomial tensor fields of type V_λ on \mathbb{C}^n. As a vector space $\mathcal{F}_\lambda := \mathbb{C}[x_1, x_2, \ldots, x_n] \otimes V_\lambda$. It is known that \mathcal{F}_λ is a representation of W_n with action given by the standard Lie derivative formula for action of vector fields on covariant tensor fields (see [R]).

Theorem 1.3. [R] If $\lambda_1 \geq 2$, or if $\lambda = (1^n)$, then \mathcal{F}_λ is irreducible. Otherwise, if $\lambda = (1^k, 0^{n-k})$, then \mathcal{F}_λ is the space $\Omega^k = \Omega^k(\mathbb{C}^n)$ of polynomial differential k-forms on \mathbb{C}^n, and it contains a unique irreducible submodule which is the space of all closed differential k-forms.

Denote by \mathcal{F}_λ the irreducible submodule of \mathcal{F}_λ, so that $\mathcal{F}_\lambda = \mathcal{F}_\lambda$ unless $\lambda = (1^k, 0^{n-k})$ for some $1 \leq k \leq n - 1$.

2 Proof of Conjecture 1.1

In this section we prove the bound of the Jordan-Hölder series of N_i stated in Theorem 1.1.

We begin by proving Theorem 1.2. This result is also useful in simplifying computation of the Hilbert series of N_i. We fix n, and let A denote A_n. For the proof of Theorem 1.2 we use the following Lemma:
Lemma 2.1. For \(b \in L_{i-1}, a, x, y \in A \), we have the following identity:

\[
yx[a, b] = x[ya, b] + y[xa, b] - [xya, b] \mod A L_{i+1}.
\]

Proof. Let \(b, a, x, y \) be as above. Then we have the following identities:

\[
[xa, b] = x[a, b] + a[x, b] \mod L_{i+1}, \tag{1}
\]

\[
[xya, b] = xy[a, b] + xa[y, b] + ya[x, b] \mod L_{i+1}. \tag{2}
\]

Multiplying (1) by \(y \), we get

\[
y[xa, b] = yx[a, b] + ya[x, b] \mod A L_{i+1}. \tag{3}
\]

Interchanging \(x \) and \(y \) in (3), we get

\[
x[ya, b] = xy[a, b] + xa[y, b] \mod A L_{i+1}. \tag{4}
\]

Now subtract (2) from (3) and (4). We get

\[
yx[a, b] = x[ya, b] + y[xa, b] - [xya, b] \mod A L_{i+1}. \tag{5}
\]

Taking \(y \) to be of degree one and applying the lemma repeatedly, we can reduce the term in front of the bracket of an arbitrary element of \(A \cdot L_i \) to something in \(V \cdot L_i \) by adding terms in \(A \cdot L_{i+1} \cap V \cdot L_i \), which is exactly Theorem 1.2.

2.1 Proof of Theorem 1.1

We first recall some definitions and results that we will need in the proof.

Definition 2.2. Let \(\bar{Z} \) be the image of \(A[A, [A, A]] \) in \(B_1 \), which was shown in \([\text{FS}]\) to be central in \(B \). We define \(\bar{B}_1 \) to be the quotient \(\bar{B}_1 = B / \bar{Z} \).

Now, recall the Feigin-Shoiket map \([\text{FS}]\).

Theorem 2.3. There is a unique isomorphism of algebras,

\[
\xi : \Omega^e_x \to A/A[A, [A, A]],
\]

\[
x_i \mapsto x_i.
\]

It restricts to an isomorphism \(\xi : \Omega^e_{*, \text{ex}} \to B_2 \), and descends to an isomorphism \(\xi : \Omega^e_x / \Omega^e_{*, \text{ex}} \to \bar{B}_1 \).

4
For the second part of the proof of Theorem 1.1 we use some of the methods introduced in [AJ]. Recall the map from [AJ]:

Theorem 2.4. There is a surjective map $f_m : (\Omega^\text{ev})^\otimes m \to B_m$ such that

$$f_m(a_1, \ldots, a_m) = [\xi(a_1), [\xi(a_2), \ldots [\xi(a_{m-1}), \xi(a_m)]]],$$

where $\xi : \Omega^\text{ev} \to \hat{B}_1$ is the Feigin-Shoiket map from Theorem 2.3.

We recall that the algebra of zero forms is in fact $\mathbb{C}[x_1, x_2, \ldots, x_n]$ and will be referred to as S. We also use that f_m is surjective when restricted to $Y := (\Omega^0)^\otimes m - 2 \otimes (\bigoplus_{j+k\leq \frac{n-2}{2}} \Omega^{2j} \otimes \Omega^{2k})$ as shown by Bapat and Jordan. Using Theorem 1.2, we define a similar map for $Z = S \otimes Y = \Omega^0 \otimes (\Omega^0)^{\otimes m-2} \otimes (\bigoplus_{j+k\leq \frac{n-2}{2}} \Omega^{2j} \otimes \Omega^{2k}).$

Since $f_m|_Y$ is surjective, by Theorem 1.2, so is $\tilde{f}_m : Z \to N_m$.

$$a \otimes b \mapsto af_m(b)$$

where $a \in \Omega^0$, $b \in \Omega^0$. Here, on the right hand side, by abuse of notation, a is $\xi(a)$.

Surjectivity of \tilde{f}_m implies that the Jordan-Hölder series of Z dominates the Jordan-Hölder series of N_m. We seek a large W_n-submodule $\tilde{I} \subseteq \text{Ker} \tilde{f}_m$, so that the Jordan-Hölder series of Z/\tilde{I} still dominates the Jordan-Hölder series of N_m. Then for the proof of Conjecture 1.1 it will be sufficient to show that all F_λ occurring in the Jordan-Hölder series of Z/\tilde{I} satisfy the bound on $|\lambda|$.

As in [AJ], we define R as

$$R := \mathbb{C}[x_1, x_2, \ldots, x_n]^{\otimes m} = \mathbb{C}[x_{1,1}, x_{2,1}, \ldots, x_{n,1}, x_{1,2}, \ldots, x_{n,m}].$$

Let $R' = S \otimes R = \mathbb{C}[x_{1,0}, x_{2,0}, \ldots, x_{n,0}, x_{1,1}, \ldots, x_{n,m}]$. Let the ideals J_j of R' for $0 \leq j \leq m-1$ be generated by $X_{i,j} = x_{i,j} - x_{i,j+1}$.

Let $\tilde{I} = J_0^2 + \sum_{i=1}^{m-2} J_i^3 + J_{m-1}^2$. Let $J = \sum_{i=1}^{m-2} J_i^3 + J_{m-1}^2$. We will show that $\tilde{I} = \text{Ker} \tilde{f}_m$.

Lemma 2.5. The ideal J_0^2Z is a subset of the Kernel of \tilde{f}_m
Proof. This is straightforward from Lemma 2.1. J_0^2Z is spanned by elements of the form $(x \otimes 1 \otimes 1 - 1 \otimes x \otimes 1) * (y \otimes 1 \otimes 1 - 1 \otimes y \otimes 1) * (1 \otimes a \otimes b)$ where * is the Fedosov product. We have that
\[
(x \otimes 1 \otimes 1 - 1 \otimes x \otimes 1) * (y \otimes 1 \otimes 1 - 1 \otimes y \otimes 1) * (1 \otimes a \otimes b) = xy \otimes a \otimes b - x \otimes ya \otimes b - y \otimes xa \otimes b + 1 \otimes xy a \otimes b.
\]
Consider the image of the map \tilde{f}_m.
\[
\tilde{f}_m(x y \otimes a \otimes b - x \otimes ya \otimes b - y \otimes xa \otimes b + 1 \otimes xy a \otimes b) = y[x[a, b] - x[ya, b] + y[xa, b] - [xya, b]].
\]
By Lemma 2.1 this is zero in N_m so the spanning set of J_0^2Z maps to zero. □

Arbesfeld and Jordan showed that $JZ \subseteq \text{Ker} f_m$. Lemma 2.5 implies that $J_0^2 \cdot Z \subseteq \text{Ker} \tilde{f}_m$. Thus we have $Z/IZ \rightarrow N_m$.

We finish the proof analogously to [AJ].

As in [AJ] $h_{Z/IZ} = h_{R'/I} \times h_{X'}$ where $h_{X'}$ is the Hilbert series of the generators over R'. Again by using the results from [BJ] we have
\[
h_{X'} = \sum_{j+k \leq 2\left\lfloor \frac{m-2}{2} \right\rfloor} \sigma_{2j} \times \sigma_{2k},
\]
where $\sigma_l = \sum_{i_1 \leq i_2 \leq \ldots \leq i_l} t_{i_1}t_{i_2} \ldots t_{i_l}$ are the elementary symmetric functions.

We can also compute
\[
h_{R'/I} = \frac{(1 + \sum t_i + \sum_{i \leq j} t_it_j)^{m-2}(1 + \sum t_i)^2}{(1 - t_1)(1 - t_2) \ldots (1 - t_n)}.
\]
We now use that
\[
h_{Z/IZ} = \frac{Q(t_1, t_2, \ldots, t_n)}{(1 - t_1)(1 - t_2) \ldots (1 - t_n)}.
\]
Thus $Q = h_{X'} \times (1 + \sum t_i + \sum_{i \leq j} t_it_j)^{m-2}(1 + \sum t_i)^2$. So the degree of Q is $2m - 2 + 2\left\lfloor \frac{m-2}{2} \right\rfloor$.

For m odd, we can improve this bound to $|\lambda| \leq 2m - 2$ using the following result of [BJ]:

Theorem 2.6. $M_jM_k \subset M_{j+k-1}$ whenever j or k is odd.
To apply this, we use the following argument suggested by Pavel Etingof. Notice that

\[a[a_1, \ldots, [a_{m-1}, b[c, d]]] = a \sum_{S \subset [1, m-1]} (\prod_{i \in S} \text{ad} a_i)(b) \cdot (\prod_{i \notin S} \text{ad} a_i([c, d])) \]

If \(|S| = s \), then the corresponding term on the right hand side is in \(M_{s+1}M_{m-s+1} \). But one of the numbers \(s + 1 \) and \(m - s + 1 \) is odd, since their sum is \(m + 2 \) which is odd. So by theorem 2.6, all the terms on the right hand side are in \(M_{m+1} \), hence are zero in \(N_m \). So the left hand side is zero in \(M_m \). Now under the Feigin-Shoiket isomophism, \(A[A, A] \) corresponds to forms of degree 2 and higher, so in the proof of Theorem 2.4 we may replace \(\bigoplus_{j+k \leq \binom{m}{2}} \Omega^{2j} \otimes \Omega^{2k} \) by \(\Omega^0 \). We may then carry out the argument exactly as above, but with the dependence on \(n \) removed.

3 Conclusion

Now that we have found a lower bound of \(|\lambda| \) (Theorem 1.1), we may obtain the Jordan-Hölder series for several values of \(m, n \) for \(N_m(A_n) \) via MAGMA computation. For example, we have the following results, in which we will denote each instance of \(F_\lambda \) by the \(n \)-tuple \(\lambda \) for economy of notation.

Theorem 3.1. The Jordan-Hölder series for \(N_m(A_2) \) for \(3 \leq m \leq 7 \) are:

- \(N_3 = (2, 1) + (2, 2) \).
- \(N_4 = (3, 1) + (3, 2) + (3, 3) \).
- \(N_5 = (4, 1) + (3, 2) + 2(4, 2) + (4, 3) + (4, 4) \).
- \(N_6 = (5, 1) + (4, 2) + (3, 3) + 2(5, 2) + 2(4, 3) + 2(5, 3) + (5, 4) + (5, 5) \).
- \(N_7 = (6, 1) + 2(5, 2) + 2(4, 3) + 3(6, 2) + 3(5, 3) + 3(4, 4) + 3(6, 3) + 2(5, 4) + 2(6, 4) + (6, 5) + (6, 6) \).

These decompositions were conjectured by Arbesfeld and are now theorems.

Theorem 3.2. The Jordan-Hölder series for \(N_m(A_3) \) for \(m = 3, 4 \) are:

- \(N_3 = (2, 1, 0) + (2, 2, 0) \).
Theorem 3.3. The Jordan-Hölder series for $N_m(A_4)$, $m = 3, 4$ are:

- $N_3 = (2, 1, 0, 0) + (2, 2, 0, 0)$.
- $N_4 = (3, 3, 0, 0) + (3, 2, 0, 0) + (3, 1, 1, 1) + (3, 1, 1, 0) + (3, 1, 0, 0) + (2, 2, 1, 1) + (2, 2, 0, 0) + (2, 1, 1, 1) + (2, 1, 1, 0)$.

Note that the decomposition of N_3 was also computed in [EKM].

4 Acknowledgments

This paper is the result of research done at the Research Science Institute at MIT. The author would like to express his gratitude to Bhairav Singh for his helpful contribution as a mentor during RSI, to Pavel Etingof for posing the problem, and also to David Jordan, Martina Balagovic, Asilata Bapat for the useful discussions on Lie algebras, representation theory and MAGMA. The author would like to thank to St. Cyril and St. Methodius International Foundation, DecArt, the High Student Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences, CEE, RSI and MIT for funding.

References

[AJ] N. Arbesfeld, D. Jordan: New results on the lower central series quotients of a free associative algebra, preprinted [arXiv:0902.4899v2].

[BJ] A. Bapat, D. Jordan: Lower central series of free algebras in symmetric tensor categories, preprinted [arXiv:1001.1375v1].

[DE] G. Dobrovolska, P. Etingof: An upper bound for the lower central series quotients of a free associative algebra Int. Math. Res. Not. IMRN (2008), no. 12.

[DKM] G. Dobrovolska, J. Kim, X. Ma: On the lower central series of an associative algebra J. Algebra 320 (2008), no. 1, 213–237.

[EKM] P. I. Etingof, J. Kim, X. Ma: On Universal Lie Nilpotent Associative Algebras. Journal Algebra 321(2009), no. 2, 697–703.
[FS] B. Feigin, B. Shoikhet: *On $[A, A]/[A, [A, A]]$ and on a W_n-action on the consecutive commutators of free associative algebra* Math. Res. Lett. 14 (2007), no. 5, 781–795.

[R] A. N. Rudakov: *Irreducible representations of infinite-dimensional Lie algebras of Cartan type* Math. USSR Izv. Vol. 8, pgs. 836-866.