Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer

Fade Gong*, Li-Ya Chiu*, Kyle M. Miller *

Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America

* These authors contributed equally to this work.
* kyle.miller@austin.utexas.edu

Abstract

Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.

Introduction

Genome maintenance relies on the precise replication and repair of our genetic information. This is a daunting task given the 3 X 10^9 bp size of the human genome and the presence of thousands of DNA lesions that are generated per cell per genome every day by various genotoxic processes and agents. To maintain genome integrity in these adverse conditions, cells contain DNA damage response (DDR) pathways that detect, signal, and repair DNA lesions [1,2]. Multiple DNA repair pathways are present to accommodate diverse DNA lesions. A particularly cytotoxic DNA lesion is the DNA double-strand break (DSB). DSBs can promote mutations, DNA degradation, or ligation to other DNA ends, resulting in genome instability. DSBs are repaired mainly by non-homologous end-joining (NHEJ) and homologous recombination (HR) in mammalian cells [3]. NHEJ ligates the two broken DNA ends together [4], whereas HR uses a homologous DNA template to accurately copy and repair the DSB [5,6].
The importance of DDR pathways is highlighted by the various diseases associated with DDR defects, including neurodegenerative disorders, immune deficiencies, and cancer [1,7].

Eukaryotic nuclear DNA is organized into chromatin [8]. The basic unit of chromatin is the nucleosome, consisting of DNA wrapped around histone proteins [8,9]. Chromatin organizes the genome and controls its accessibility, making chromatin integral for DNA-based processes. Chromatin is highly modified by posttranslational modifications (PTMs), including phosphorylation, methylation, and acetylation [10–13]. PTMs regulate chromatin structure as well as modulate chromatin interactions of "reader" proteins that contain PTM binding domains [11,14–16]. Epigenetic changes and mutations within chromatin regulatory proteins are observed in different diseases, including cancer [17]. As many DDR activities occur within chromatin, understanding the interplay between chromatin and the DDR is fundamental for obtaining mechanistic details of DDR activities in both normal and diseased contexts.

Chromatin PTMs are dynamically regulated in response to DNA damage both locally at the lesion site and globally where they perform several functions [18–22]. These include modulating chromatin structure at DNA damage sites and across the genome to facilitate the DDR, including signaling [22–24], repair [25], and transcriptional responses [26,27]. Another fundamental role of PTMs is to provide docking sites for the recognition and accumulation of DDR factors at damage sites where they orchestrate DDR functions. For example, DNA damage-induced phosphorylation of histone variant H2AX (γH2AX) is recognized by the BRCT domains of MDC1, which mediate the recruitment of downstream signaling and repair proteins to damage sites [28]. 53BP1 represents another histone PTM DDR factor reader [29,30], which recognizes the bivalent marks H4K20me2 and H2AK13/15ub at damage sites [31,32]. Histone PTMs and their DDR functions have been comprehensively reviewed [18–21,33]. Here, we discuss acetylation signaling with a focus on acetylation readers that are involved in mammalian genome maintenance and DNA repair. We also consider DDR-related acetylation signaling in cancer and its potential impact on cancer therapies.

Acetylation Signaling in the DDR

Acetylation is the covalent attachment of an acetyl-group (-COCH3) to the ε-amino groups of a lysine residue on histones and non-histone proteins by histone acetyltransferases (HATs) [34,35], which can be removed by histone deacetylases (HDACs) [36] (Fig 1A). Acetylation levels are regulated by the concerted activities of HATs and HDACs [21,35,36]. The importance of acetylation signaling is well established in many cellular processes, including transcription and the DDR [14]. One salient function of acetylation is to regulate chromatin structure. This is exemplified by H4K16ac, which blocks inter- and intra-chromosomal folding to promote an open chromatin structure [37]. Acetylated proteins are also bound by acetyl-lysine reader proteins. The principal acetylation recognition proteins contain the acetyl-lysine binding bromodomain (BRD), although other domains have acetyl-lysine interaction capabilities (Fig 1B) [16,38,39]. Since acetylation changes upon UV damage were observed over 30 years ago, numerous DNA damage responsive acetylations have been reported [21,40]. The involvement of acetylation reader proteins in deciphering these signals to promote the DDR is less clear. Recent studies have identified over one-third of human BRD proteins directly responding to DNA damage, suggesting that, collectively with HATs and HDACs, the entire acetylation signaling machinery orchestrates DDR activities within chromatin (Table 1) [41–44].

HATs, HDACs, and the DDR

The involvement of mammalian HATs and HDACs in the DDR is exemplified by their common localization to damage sites [21]. The HAT TIP60 (KAT5), a key component of the NuA4
complex, is involved in DSB repair from early signaling events to downstream repair pathway choices [45]. Upon DNA damage, TIP60 acetylates histones and the Ataxia telangiectasia mutated (ATM) kinase to enhance its activity [46–48]. Acetylated H4K16 by TIP60 promotes HR repair, whereas deacetylation facilitates NHEJ [47,49]. The DSB pathway choice regulated by TIP60 occurs in part by its ability to acetylate H2AK15, which impedes RNF168 ubiquitylation to block 53BP1 recruitment, thereby promoting HR [48]. The HAT Males absent on the first (MOF) regulates global H4K16Ac levels, and its loss impacts the DDR. Indeed, cells deficient of MOF exhibit impaired recruitment of DDR factors and a reduced capacity for DSB repair by HR and NHEJ [50–52]. Among HDACs, HDAC1 and HDAC2 play particularly important roles in DSB repair by deacetylating histones, including H3K56ac and H4K16ac [27,49]. HDACs can also target both histone and non-histone proteins. For example, SIRT6 deacetylates H3K56 and also the DDR factor CtIP, which regulates both the rapid recruitment of the remodeling factor SNF2H and the activity of CtIP at damage sites to promote DNA repair [53,54]. These studies highlight important functions of HATs and HDACs in the DDR (reviewed in [21]).

Readers of Acetylated Lysines in the DDR: Bromodomain Proteins

Emerging evidence has highlighted the importance of acetylation readers, including BRD proteins, in the DDR. One or more BRDs are encoded in 42 human proteins [38,55]. BRD domains consist of several α-helices linked by loops that form a hydrophobic cavity that specifically recognizes acetyl-lysines. BRD proteins can be broadly classified as HATs, components of ATP-dependent chromatin remodeling complexes, and/or transcriptional regulators [38,41,56]. Dysfunction of BRD proteins has been identified in diseases, including cancer [57]. The demonstrated druggability of the BRD by small molecule inhibitors has motivated targeting BRD proteins as cancer therapies [58–61].
Table 1. DDR functions of mammalian acetylation readers.

Domain	Protein	Complex	Histone Binding Ac targets	Damage recruitment	DDR Ac binding	DDR functions	Reference
BRD	ATAD2	-	K3K14, H4K5	-	-	NHEJ, HR, NER	[181,182]
	ATAD2B	-	H4K5	-	-	-	[38]
	ACF1 (BAZ1A)	CHRAC, ACF	-	Laser, R.E., UV	N	NHEJ, HR, NER, Checkpoint	[41,94,95,98]
	WSTF (BAZ1B)	WICH, B-WICH	-	Laser, UV	N	NER, DDR signaling, Checkpoint	[41,95,97,98]
	BAZ2B	-	H3K14	-	-	-	[38]
	BPTF	NURF	H4K5/16	-	-	-	[41]
	BRD2	-	H3K14/18, H4K5/8/12/16/20	-	-	-	[55]
	BRD3	-	H3K9/14, H4K5/8/12/16/20	-	-	-	[55]
	BRD4	-	H3K9/14, H4K5/8/12/16	-	Y	Regulate chromatin	[55,71]
	BRD7	-	H3K9/14, H4K8/12/16	-	-	Regulate p53 activity	[91,92,183]
	BRDT	-	H2BK12/15, H3K9/14/18/23, H4K5/8/12/16	-	-	-	[55]
	BRPF1	-	H2AK5, H3K14, H4K12	-	-	-	[184]
	CECR2	CERF	H3K9/14	-	Y	DDR signaling	[38,185]
	CBP (CREBBP)	-	H2BK85, H3K9/14/36/56, H4K12/20/44	Laser, R.E.	-	NHEJ, HR, NER	[44,55,76,186,187]
	GCN5	SAGA, ATAC	H2AK5, H3K9/14, H4K8/14/16	Laser, UV	-	NER, Regulate chromatin	[27,41,55,77,83]
	BAF180 (PBRM1)	PBAF	H3K4/9/14/18/23	Laser	Y	Transcription repression, Regulate p53 activity, Promote cohesion	[42,55,89,91]
	p300	-	H3K36/56, H4K12/20/44	Laser, R.E., UV	-	NHEJ, HR, NER, DDR signaling, Checkpoint, Regulate p53 activity	[41,44,55,76,176,186–192]
	PCAF	ATAC	H3K9/14/36, H4K8/16/20	Laser	-	Regulate p53 activity	[41,55,78,191]
	BRM (SMARCA2)	BAF	H3K9/14, H4K5/8/12/16	Laser	Y	NHEJ, DDR signaling	[41,44,55,193]
	BRG1 (SMARCA4)	BAF, PBAF	H2BK5, H3K9/14, H4K8/12/K16	Laser, UV	Y	NER, Regulate chromatin, Transcription repression, Checkpoint, DDR signaling	[41,42,44,55,85–87,193,194]
	TAF1	-	H3K9/14, H4K5/8/12/16	-	-	Checkpoint	[195]
	TRIM24	-	H3K23, H4K16	Laser	-	Regulate p53 activity	[41,69,196]
	KAP1 (TRIM28)	-	No binding	IR, Laser	N	DDR signaling, Heterochromatin repair, Transcription repression	[64,66,68,113,197]
	TRIM33	-	H3K18/23	Laser	-	Regulate ALC1 activity	[41,43,70]
	ZMYND8	NuRD	H4K5/8/12/16	Laser	Y	Transcription repression, HR	[41]
	ZMYND11	-	No binding	-	-	-	[160]

Uncharacterized acetylation interactions: ASH1L, BAZ2A, BRD1, BRD8, BRD9, BRPF3, BRWD1, BRWD3, MLL, PHIP, SP100, SP110, SP140, SP140L, TAF1L, TRIM66

Double PHD

	DPF3	PBAF	H3K14	-	-	-	[114]
	MORF	-	H3K9/14	-	-	-	[115]
	MOZ	-	H3K9/14	-	-	-	[115,116]

(Continued)
Regulation of chromatin states by BRD proteins in the DDR

Chromatin exists between open and condensed states that impact its functionality. In heterochromatin, DSBs require specific factors as well as chromatin remodeling complexes to overcome the chromatin barrier to allow damage recognition and signaling to promote repair[62,63]. The BRD protein KAP1 (TRIM28) functions in DSB repair within heterochromatin. ATM phosphorylates KAP1 in response to DSBs[64], which disperses the nucleosome remodeler CHD3 from chromatin to trigger chromatin relaxation, allowing repair to occur within heterochromatin[64–66]. Three KAP1 tripartite motif-containing (TRIM) family paralogs (TRIM24, TRIM33, and TRIM66) also contain BRDs[67]. TRIM24 and TRIM33 are recruited to DNA damage and are involved in the DDR[41,43]. Although KAP1 BRD lacks acetyl-lysine binding[68], the plant homeodomain (PHD)-BRD tandem domains of TRIM24 and TRIM33 can read methylated or acetylated histones[69,70]. Whether these TRIM BRD proteins act interdependently or independently in the DDR awaits further investigation.

An isoform of BRD4, a member of the bromodomain and extra-terminal (BET) family of BRD proteins, has been reported to insulate chromatin to modulate γH2AX spreading around damaged DNA[71]. BRD4 contains two BRD domains and functions as a regulator of various transcriptional processes[72]. Successful targeting of the BRDs of BRD4 by small molecule inhibitors has gained widespread attention for its potential as an anticancer therapy and as a proof of concept for the "druggability" of BRD proteins[58,59]. In the DDR, inhibition of BRD4 with the BRD targeting inhibitor JQ1 resulted in increased DNA damage signaling of γH2AX formation, while survival from DNA damage was improved[71]. These data implicate the BRD of BRD4 as a key domain involved in regulating the cellular response to DNA damage. The BRDs of BRD4 have been shown to bind acetylated histone H3 and H4[55]. BRD4 has also been reported to act as a HAT, acetylating H3 and H4[73]. It is unclear how BRD4 recognizes damaged chromatin and if its HAT activity participates in its DDR functions. It will be important to distinguish the specific acetylated residues read and/or acetylated by BRD4 in cells upon DNA damage compared to those targeted during normal transcription to understand mechanistically how BRD4 promotes both transcriptional regulation in unperturbed cells and DNA damage signaling in response to DNA damage.
BRD-containing HATs in the DDR

The BRD-containing HATs GCN5, PCAF, p300, and CBP exist in multiple complexes from yeast to human that regulate transcription both through their enzymatic HAT activity and also through interacting with chromatin [74,75]. The BRD in HATs can broadly recognize acetylated lysines mainly on H3 and H4 tails but also on H2A/H2B and non-histone factors [55]. For example, GCN5 and PCAF primarily acetylate H3 tails, but their BRDs bind H3ac and H4ac. This suggests the BRD may promote HAT activity by binding certain acetylated residues that would then promote the acetylation of other targets. Interestingly, these HATs are all recruited to DNA damage, where they participate in various aspects of the DDR including NER, DSB repair, and checkpoint regulation [21,41,44,76–78]. The DDR function of BRDs within these HATs is uncharacterized. Future studies identifying both HAT targets and BRD recognition signals will be essential to understand how HATs coordinate their catalytic activities with BRD reader capabilities to promote the DDR.

BRD protein components of chromatin remodeling complexes in the DDR

ATP-dependent chromatin remodeling complexes control the accessibility of chromatin factors to DNA by disrupting DNA–histone interaction, sliding/evicting nucleosome, or altering nucleosome composition, thereby regulating chromatin-based processes including transcription and DNA repair [79,80]. Chromatin remodeling complexes are organized into four principal families: switching defective/sucrose nonfermenting (SWI/SNF), imitation switch (ISWI), chromodomain, helicase, DNA binding (CHD), and inositol requiring 80 (INO80) [79]. In mammalian cells, ten BRD proteins have been identified within these four chromatin remodeling families (Fig 2A) [38,41,79]. Acetylation reader activities appear to represent a universal component of these complexes, and several studies are now defining their DDR functions within chromatin remodeling complexes.

The mammalian SWI/SNF complexes BAF and PBAF contain BRD proteins including BRG1 (SMARCA4) and BRM (SMARCA2) that are involved in the DDR [81]. The ATPase subunit BRG1 functions in both complexes, whereas the ATPase BRM is exclusive to BAF. BRG1 is recruited to DNA damage and functions in the DDR, including through the binding of DSB-associated nucleosomes containing γH2AX, which requires the BRD to recognize GCN5-dependent H3ac [82–87]. BRM associates with DNA damage in a p300/CBP-dependent manner, which facilitates the recruitment of KU70 for NHEJ [41,44]. The role of BRM BRD in the DDR is unknown. PBAF contains two additional BRD proteins: BAF180 (PBRM1) and BRD7. BAF180 encodes six BRDs and is linked to the DDR [42,88,89]. With BRG1, BAF180 regulates PBAF in damage-induced transcription repression (see below) [42]. BAF180 also promotes cohesion, a function impaired upon mutations within its two BRDs, which leads to genome instability [89]. BRD7 interacts with BRCA1 and regulates p53, suggesting its involvement in the DDR [90–92].

The chromatin remodeler ISWI exists in many complexes that contain multiple BRD proteins [93]. The BRD protein ACF1 (BAZ1A) is a non-catalytic subunit of CHRAC and ACF ISWI complexes. ACF1 is recruited to damage, where it helps recruit KU for NHEJ [94]. ACF1 also regulates the G2/M DNA damage checkpoint [95]. Although ACF1 damage-recruitment is independent from its BRD, its chromatin binding domains could still promote DDR functions. WSTF (BAZ1B) is specific for the WICH ISWI complex [96]. WSTF is recruited to DNA damage where it regulates γH2AX as a kinase that targets H2AX Y142 [41,95,97]. The potential interplay between remodeling, acetylation binding, and kinase activity of this BRD DDR factor is worth investigating. ACF1 and WSTF are also recruited to UV-C laser irradiation and
Fig 2. Acety-lysine readers within (A) chromatin remodeling complexes and (B) BRD protein pathways involving DNA damage within transcriptionally active chromatin. (A and B).

Abbreviations: BRD, bromodomain; DSB, DNA double-strand break; ac, acetylation; me, methylation. Common and alternative names include: BRG1 (SMARCA4), BRM (SMARCA2), BAF180 (PBRM1), ACF1 (BAZ1A), WSTF (BAZ1B), KAP1 (TRIM28).

doi:10.1371/journal.pgen.1006272.g002
function in NER [98]. Currently, acetylation targets of ACF1 or WSTF BRDs remain unidentified, making mechanistic interpretations of these results challenging. The ISWI complex NURF also contains Bromodomain PHD Finger Transcription Factor (BPTF) that is recruited to DNA damage [41]. The BRD of BPTF recognizes H4K16ac to regulate transcription [99]. It will be interesting to determine whether BPTF participates in an acetylation-dependent DDR activity involving H4K16ac.

The CHD member nucleosome remodeling and histone deacetylase (NuRD) plays well-established roles in the DDR [100–103]. Although the canonical NuRD complex lacks any BRD protein, multiple studies have identified BRD proteins associated with this complex at DNA damage sites. For example, ZNF827 can specifically recruit NuRD to ALT telomere to regulate HR [104], whereas the BRD protein ZMYND8 recruits NuRD to DSBs within actively transcribing chromatin [41]. The INO80 chromatin remodeling family includes the NuA4 complex, which displays various DDR functions [45,63,79]. In addition to remodeling activity by p400, NuA4 also acetylates histones through its associated HAT activity by TIP60. Both chromatin remodeling and HAT activities play critical roles in DNA damage signaling and repair, including promoting HR and suppressing alternative-NHEJ [47,105–109]. The NuA4 complex contains the BRD protein BRD8 as well as GAS41, a YEATS protein with acetyl-lysine recognition capabilities [79,110]. These acetylation readers have the potential to coordinate the DDR functions of NuA4, although further studies are needed to elucidate the mechanistic details of how these large multi-subunit complexes promote the DDR in the context of acetylation. Thus, these studies highlight the involvement of BRD proteins within chromatin remodelers that have the potential to link acetylation signaling with the DDR.

Transcription, DNA damage, and BRD proteins

Transcription can be hindered by DNA damage, requiring molecular retooling of the chromatin environment to avoid conflicts between DNA repair and active transcription. Indeed, transcriptionally active genes located nearby DSBs are repressed by the DDR kinases ATM [111] and DNA-PK [112] to facilitate DSB repair. Acetylation readers have been identified that coordinate the DDR within transcriptionally active chromatin. The chromatin remodeling PBAF complex (SWI/SNF-B), which contains two BRD proteins BAF180 and BRG1, silences transcription upon DSBs and promotes NHEJ [42]. Although acetylation targets for the complex were not identified, point mutations identified in cancer genomes in BRDs of BAF180 rendered this complex defective for transcription silencing. The BRD protein ZMYND8 plays key roles in damage-induced transcriptional repression [41]. Upon DNA damage specifically within actively transcribing chromatin, ZMYND8 is recruited through its BRD to TIP60-mediated H4 acetylations. ZMYND8 associates with the NuRD complex and facilitates its accumulation at damage sites to mediate transcriptional repression and promote HR repair [41]. KAP1 participates in damage-induced formation of repressive chromatin. KAP1 is found in a methyltransferase complex with HP1 and Suv39h1, which promote H3K9me3 upon DSBs to form repressive chromatin transiently at break sites [113]. How KAP1-dependent H3K9me3 affects transcription within these damaged regions is unclear. These examples provide key examples for how BRD proteins participate in transcription responses to DNA damage (Fig 2B).

Whether these pathways are coordinated or act independently at DSBs across varied chromatin landscapes needs further investigation. Interestingly, NuRD and KAP1 complexes are associated with gene repression, whereas PBAF is associated with active transcription. Identifying DDR-specific regulatory cues that switch these transcriptional regulators into DNA damage factors is needed to create a full view of the interplay between transcription and the DDR. It seems clear that transcription-associated DDR complexes must perform their normal functions
in gene regulation while also being able to promote DNA repair of damaged DNA within transcriptionally active chromatin.

Non-BRD Acetylation Binding Proteins in the DDR

Several domains in addition to the BRD can bind acetylated lysines, including double PHD fingers [114], tandem PHD fingers [115,116], double pleckstrin homology (PH) domain [117], and the YEATS domain [39]. Four YEATS-containing proteins have been identified in humans and their functions in various cellular processes identified [118]. Several YEATS proteins participate in the DDR. In yeast, the YEATS domain of Taf14 binds H3K9ac, a mark that is responsive to DNA damage in human cells [27]. Disruption of Taf14 acetylation interactions impairs the DDR and sensitizes cells to DNA damaging agents [119]. The human YEATS protein ENL, a transcriptional elongation factor, is phosphorylated by ATM in response to DSBs. Phosphorylated ENL interacts with Polycomb Repressive Complex 1 specifically at DSBs to promote lesion-induced transcriptional repression [120]. Loss of ENL and transcriptional repression at DSB sites reduces the association of the NHEJ factor KU with damage sites, suggesting that this pathway acts to repress transcription in the presence of a DSB to allow its repair. Yeast Yaf9 and its close human homolog GAS41 are conserved components of the NuA4, a complex involved in the DDR (Fig 2) [105,107,118,121]. The DNA-dependent protein kinase, catalytic subunit, DNA-PKcs, contains a bromodomain-like module that recognizes TIP60-dependent H2AX K5-Ac to promote the formation of γH2AX at DSBs [122,123]. Thus, acetylation readers in addition to BRD proteins are also critical facilitators of the DDR.

Cancer Epigenetics: Acetylation Signaling

Acetylation modifiers and readers in cancer

Changes in acetylation signaling resulting from misregulated HATs or HDACs can cause abnormal gene expression patterns, including activation of proto-oncogenes and silencing of tumor suppressor genes [74,124,125] as well as impair DNA damage responses [21], which collectively can impact genome–epigenome stability (Fig 3). Altered acetylation signaling pathways have been identified in numerous cancers. Various genetic alterations in HATs have been found in hematological and solid cancers [124]. HATs can exhibit altered substrate targeting through mislocalization, aberrant protein interactions, or remodeled activities that can disrupt normal cell function. For instance, inactivating or truncated mutations in CBP/p300 HAT catalytic domains, which impair acetylation of H3K18 and non-histone substrates BCL6 and p53, have been identified in cancers [126–128]. BCL6 and p53 are transcriptional regulators involved in the DDR, and decreased acetylated BCL6 and p53 may enhance DNA damage tolerances, which can favor cancer survival [129–131]. Of note, no significant gene expression differences were found in mutant versus wt CBP/p300 containing small cell lung cancers, suggesting that mechanisms other than altered gene expression may contribute to these cancer-associated HAT mutations [128]. Given the broad involvement of CBP/p300 in gene regulation and the DDR, it remains unclear the primary cellular targets of these HATs in cancer. Analysis of genome stability pathways and acetylation reader associations with chromatin in CBP/p300 mutant cancers could provide answers to these outstanding questions.

Decreased histone acetylation levels are most frequently observed in cancer [132], which, in addition to defective HAT activity, can also be a consequence of hyper-active HDACs. Altered HDAC levels, activities, and recruitment occur in cancer and all provide potential mechanisms to facilitate tumorigenesis [125,133]. For example, HDAC1 and HDAC2 expression is often enhanced in many cancers and has been correlated with transcriptional repression of tumor suppressors, including p21 [134,135]. Global reductions of H4K16ac have been identified in
various cancer cell lines and tumors as being associated with tumor progression [136]. Because HDAC1 and HDAC2 deacetylate H4K16 to promote DSB repair [49], it is tempting to speculate that the observed HDAC1/HDAC2 overexpression and hypoacetylated H4K16 in cancers could deregulate the DDR, resulting in genetic and epigenetic instability that would promote tumorigenesis [137,138]. Although many HATs and HDACs are altered in cancer and concomitant histone modification changes are observed, mechanistic studies are needed to provide molecular insights into the relationship between epigenetic changes and the DDR that are involved in cancer.

Mutated or misregulated readers of acetylation, including BRD proteins, are involved in several different cancer types. The Mixed Lineage Leukemia (MLL) protein, a methyltransferase containing a BRD, is commonly fused with other chromatin proteins in haematological cancers and is able to induce leukemic transformation [139]. A non-MLL BRD contained within the MLL fusion or the loss of the BRD of MLL, a common event in MLL onco-fusion proteins, may also contribute to leukemogenesis [140–142]. For example, domain-swapping experiments identified a specific function of the CBP BRD in MLL–CBP-induced acute myeloid leukemia (AML) [143]. Recently, the development of inhibitors that block BRD acetyl-lysine interactions has uncovered the role of BRDs in several cancers [17,72]. In nuclear protein of the testis (NUT) midline carcinoma (NMC), BRD4 can be fused with the NUT protein [144,145], and these fusions are tethered to acetylated chromatin by BRDs. Inhibition of BRD-NUT by small molecule BET BRD inhibitors promoted differentiation and decreased MYC expression to inhibit proliferation [58,146]. In leukemia with MLL fusions, BRD4 can interact with MLL fusions and associated proteins, including the super elongation complex (SEC) and the polymerase-associated factor complex (PAFc), two critical regulators of transcriptional elongation [59]. Blocking BRD4 chromatin recruitment can constrain MYC and the expression of its target genes to inhibit proliferation and promote apoptosis [59,147–149]. TRIM BRD proteins have been linked to cancer [67], and the chromatin binding module including the BRD of TRIM24 has been implicated in transcription regulation of cancer-specific genes in breast [69] and prostate cancers [150]. Thus, BRD proteins are involved in several...
cancers, but whether their DDR activities also play a role in tumorigenesis remains an open question.

Components of several chromatin-remodeling complexes are highly mutated in cancer, including BRG1 and BAF180 in SWI/SNF and CHD4 in NuRD [110,151]. Mutations within these complexes have been associated with aberrant gene expression and genome instability [152,153], although it is not fully understood if DDR functions of these mutated complexes impact cancer. The BRD protein ZMYND8 is a component of the NuRD complex that, along with CHD4, displays mutations or altered expression in various cancers [154–158]. Aberrant regulation of the ZMYND8-NuRD DDR pathway could disrupt its transcription and DNA repair functions, resulting in genome instability [41]. In addition, enhancer-bound ZMYND8 has been shown to act as a controller for expression of enhancer RNA (eRNA), which are short, non-coding RNAs transcribed from enhancers [159]. Loss of ZMYND8 resulted in increased eRNA expression and hyper-enhancer activity that promoted cancer phenotypes [158]. The BRD protein ZMYND11, a paralog of ZMYND8, is an H3.3K36me3 reader that represses gene expression by regulating transcriptional elongation [160] and mRNA splicing [161]. Although ZMYND11 DDR functions are unknown, it appears to play a central role in cancer suppression. Indeed, ZMYND11 depletion caused up-regulation of MYC, and enhanced proliferation in cancer cells and mutations of ZMYND11 were identified in several cancers [160]. Interestingly, some mutations in the histone H3.3 variant, including at K36, have been identified in cancer, including chondroblastomas, in which high levels of mutations in H3.3 K36 and defects in HR repair are observed [162]. It is tempting to speculate that the tumor suppression of ZMYND11 could be linked to the DDR. Additional work is needed to understand the relationship between H3K36 methylation, the DDR, and cancer, information that could be clinically relevant for drugs targeting these pathways [163].

These studies highlight the involvement of acetylation “writers,” “erasers,” and “readers” in cancer. Although regulation of gene expression is most commonly associated with acetylation signaling, these pathways also play crucial roles in the DDR that promote genome and epigenome maintenance (Fig 3). How alterations in these pathways relate to DDR defects and their contributions to tumorigenesis is poorly understood. Defective DNA repair pathways are prevalent in many cancers, and genome instability is considered a hallmark of cancer. Although defects in acetylation signaling pathways could promote mutations and genome instability, these dysfunctional pathways might also provide opportunities to treat these cancers with epigenetic drugs, targeting acetylation signaling pathways as well as therapies that target cancer cells with defective DDR capacities (Fig 3). For example, PARP inhibitors can cause synthetic lethality to kill HR-defective tumors (i.e., BRCA1 and BRCA2 mutant cancers). Cancers exhibiting impaired acetylation signaling pathways resulting in defective DNA repair could be similarly treated. Understanding how DDR pathways are deregulated in acetylation signaling defective cancers can provide insights into the development and use of therapeutic strategies targeting the DDR [164].

Targeting acetylation signaling for cancer therapy

Deregulation of acetylation signaling in cancer has been intensively investigated and led to the development of a wide variety of small molecule inhibitors targeting acetylation signaling pathways (Table 2). The recent emergence of the importance of HATs, HDACs, and BRD proteins as key mediators of the DDR and genome maintenance (Table 1) requires an understanding of how these small molecule inhibitors impact the genome integrity functions of these pathways [21]. This information can reveal new insights into their drug mechanisms, which could provide a framework for considering opportunities for combinatorial treatment using these
inhibitors with traditional cancer therapies. So far, HDAC inhibitors are one of the most well-characterized epigenome-targeting drugs and show promising therapeutic efficacy toward some cancers. HDAC inhibitors are known in some cases to directly modulate the cancer epigenome, leading to changes in gene expression profiles, an effect that is proposed to promote cell cycle arrest and cell death. HDAC inhibitors can also suppress DNA damage repair capacity in cancer cells. HDAC inhibitors reduced the expression level of key repair proteins such as KU proteins in NHEJ and RAD50 in HR in various cancer cell lines [165–169]. HDAC inhibitors also elevated reactive oxygen species (ROS) levels, a potential source for DNA damage [170,171]. Because HDACs regulate the DDR, including HDAC1/2, inhibition of these HDACs resulted in hyperacetylated H4K16 and H3K56 along with defective NHEJ, thereby impairing the DDR [49]. Thus, HDAC inhibitors impair the DDR in several ways, causing sensitization of cancer cells to DNA damaging agents including radiation (Table 2) [165–167]. HAT inhibitors including curcumin [172,173] also sensitize cells to DNA damaging agents (Table 2). However, in contrast to HDAC inhibitors, the progress of HAT inhibitors in cancer treatment has been slower due to their pleiotropic effects and poor bioavailability [174]. The potent and selective HAT inhibitor C646 has displayed antitumor efficacy in several cancer types and inhibition of DNA repair (Table 2) [175,176]. Additional studies identifying the anticancer drug mechanism

Table 2. Effects on DDR by small molecule inhibitors targeting acetylation signaling.

Family	Target	Inhibitors	Phase	Tested cancer type	Effects on the DDR	References
HAT	CBP/ p300	Curcumin	Clinical	multiple	PARPi, CPT and HU sensitivity; (+) BRCA1 mRNA; (-) ATR activity; (+) Ku70/ Ku80 recruitment	[172]
	p300	C646	Preclinical	melanoma	Cisplatin sensitivity; (+) DNA repair genes mRNA i.e., Rad51, γH2AX	[176]
			lung	IR sensitivity; (+) IR-p-CHK1	[199]	
HDAC	Class I/II	Vorinostat (SAHA)	FDA approved in 2006	multiple	IR sensitivity; (+) HR & NHEJ proteins, i.e., Rad50, Ku70; (+) γH2AX IRIF; (+) IR-induced HR & NHEJ proteins, i.e., Rad51, Ku80	[165–167,200,201]
	Class I	Romidepsin (FK228)	FDA approved in 2009	ovarian	(+) γH2AX/Rad51/53BP1 foci with cisplatin c.t., and in s.c.	[202]
			lung	IR sensitivity; (+) IR-γH2AX	[203]	
			thyroid	(+)γH2AX/ROS; (-) Ku70/80 and Rad51; (+) γH2AX in s.c.	[168]	
			renal cell	(+) γH2AX/ROS with 5-FU c.t. and in s.c.	[204]	
	Class I/ II	Panobinostat (LBH589)	FDA approved in 2015	lung, bladder	IR sensitivity; (+) IR-γH2AX; (-) Mre11/Nbs1/ Rad51 protein	[205,206]
			leukemia	(+) γH2AX; (+) DNA repair protein/signaling, i.e., Chk1/p-Chk1 with TOPIIIi c.t.	[207,208]	
BRD	BET family	JQ1	Preclinical	NMC, myeloma, prostate	-	[58,147,209]
			glioma	(-) IR-γH2AX	[71]	
			leukemia	(+) γH2AX & 53BP1 foci	[210]	
	I-BET151	Preclinical	leukemia, myeloma	-	[59,179]	
	I-BET762	Clinical	myeloma	-	[177,179]	
	CBP/ p300	I-CBP112	Preclinical	leukemia	Dox sensitivity; (+) γH2AX foci with JQ1 c.t.	[180]

The inhibitor, clinical phase, cancer type, and effects on the DDR are provided for drug targeting of acetylation signaling factors. Abbreviations: CPT, camptothecin; c.t., co-treatment; Dox, doxorubicin; HU, hydroxyurea; IR, ionizing radiation; IRIF, ionizing radiation induced foci; PARPi, PARP inhibitor; ROS, reactive oxygen species; s.c., subcutaneous xenograft tumor model; TOPIIIi, Topoisomerase II inhibitor; 5-FU, 5-fluorouracil. (-) indicates decreased levels; (+) indicates increased levels.

doi:10.1371/journal.pgen.1006272.t002
of these acetylation signaling inhibitors are important to aid in the further development of acetylation signaling inhibitors for the treatment of cancer.

Small molecule inhibitors targeting the BRD have drawn significant attention for new classes of anticancer drugs. For example, JQ1, a potent BRD4 inhibitor, has displayed anti-tumor activities in preclinical studies [58]. In addition to JQ1, a variety of other BET family BRD inhibitors, including I-BET151 [59] and I-BET762 [177], show therapeutic promise in hematological malignancies [178]. These inhibitors have been shown to inhibit BRD4 chromatin interactions, thereby blocking MYC-mediated tumor growth and survival [59,147,179]. Reduced BRD4 function by JQ1 also alters the cellular response to ionizing radiation [71], indicating that BRD4 inhibition also impacts the DDR. A p300/CBP BRD inhibitor I-CBP112 showed enhanced topoisomerase inhibitor doxorubicin induced cytotoxicity effect in leukemic cell lines [180]. I-CBP112 also displayed a synergistic cytotoxic effect with JQ1, as more γH2AX foci were observed in co-treated cells (Table 2). These results suggest that CBP/p300 and BRD4 may function in different DDR pathways, thus providing selectivity for these inhibitors in either CBP/p300 mutant cells with BRD4 inhibitors or vice versa. These studies emphasize the promise of drugging acetylation signaling in cancer. As numerous BRD proteins are involved in the DDR, it will be vital to understand whether these BRD inhibitors impact DNA damage signaling/repair and whether these effects are advantageous or inhibitory towards the use of these compounds at therapeutic agents in cancer (Fig 3).

Summary

Mounting evidence highlights the crucial function of acetylation signaling in regulating the DDR and maintaining genome integrity. Acetylation reader proteins, including BRD proteins, are vital effector proteins for acetylated lysines that recognize and read these signals to orchestrate the DDR. Understanding the mechanisms by which acetylation reader proteins promote chromatin-based responses to DNA damage can provide critical insights into understanding how genome–epigenome maintenance is achieved. Genome instability is common in cancer as is defective acetylation signaling pathways. Whether altered acetylation signaling is causal or merely correlative for genome instability in cancer remains an important question. How acetylation signaling impacts cancer epigenetics and its contributions to the DDR and cancer treatments warrants further investigations. Given the rapid development of epigenetic drugs targeting acetylation signaling, including BRD inhibitors, it is critical to further decipher how inhibitors of acetylation signaling affect the DDR and whether this information can be leveraged to improve the use of these drugs in cancer treatment. We envision that a deeper understanding of how acetylation signaling is involved in the DDR and in cancer will help develop targeted therapies using epigenetic drugs either alone or in combination with DNA damaging agents to improve cancer treatments.

References

1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461 (7267):1071–8. doi: 10.1038/nature08467 PMID: 19847258
2. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Molecular cell. 2010; 40(2):179–204. doi: 10.1016/j.molcel.2010.09.019 PMID: 20965415
3. Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Molecular cell. 2012; 47(4):497–510. doi: 10.1016/j.molcel.2012.07.029 PMID: 22920291
4. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual review of biochemistry. 2010; 79:181–211. doi: 10.1146/annurev.biochem.052008.095131 PMID: 20192759
5. Huertas P. DNA resection in eukaryotes: deciding how to fix the break. Nature structural & molecular biology. 2010; 17(1):11–6.

6. Symington LS. Mechanism and regulation of DNA end resection in eukaryotes. Critical reviews in biochemistry and molecular biology. 2016:1–18.

7. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nature reviews Molecular cell biology. 2010; 11(3):220–8. doi: 10.1038/nrm2858 PMID: 20177397

8. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nature reviews Genetics. 2010; 11(4):285–96. doi: 10.1038/nrg2752 PMID: 20300089

9. Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974; 184(4139):868–71. PMID: 4825889

10. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nature reviews Molecular cell biology. 2010; 11(3):220–8. doi: 10.1038/nrm2858 PMID: 20177397

11. Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nature reviews Genetics. 2010; 11(4):285–96. doi: 10.1038/nrg2752 PMID: 20300089

12. Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974; 184(4139):868–71. PMID: 4825889

13. Weake VM, Workman JL. Signals and combinatorial functions of histone modifications. Annual review of biochemistry. 2008; 79:473–99. doi: 10.1146/annurev-biochem-061809-175347 PMID: 21529160

14. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annual review of biochemistry. 2007; 76:75–100. PMID: 17362198

15. Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nature reviews Molecular cell biology. 2007; 8(12):983–94. PMID: 18037899

16. Musselman CA, Lalonde ME, Cote J, Kutateladze TG. Perceiving the epigenetic landscape through histone readers. Nature structural & molecular biology. 2012; 19(12):1218–27.

17. Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. The New England journal of medicine. 2012; 367(7):647–57. doi: 10.1056/NEJMra1112635 PMID: 22894577

18. Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nature cell biology. 2011; 13(10):1161–9. doi: 10.1038/ ncb2344 PMID: 21968989

19. Miller KM, Jackson SP. Histone marks: repairing DNA breaks within the context of chromatin. Biochemical Society transactions. 2012; 40(2):370–6. doi: 10.1042/BST20110747 PMID: 22435814

20. Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Molecular cell. 2013; 49(5):795–807. doi: 10.1016/j.molcel.2013.01.017 PMID: 23416108

21. Gong F, Miller KM. Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutation research. 2013; 750(1–2):23–30. doi: 10.1016/j.mrfmmm.2013.07.002 PMID: 23927873

22. Murga M, Jaco I, Fan Y, Soria R, Martinez-Pastor B, Cuadrado M, et al. Global chromatin compaction limits the strength of the DNA damage response. The Journal of cell biology. 2007; 178(1):1101–8. PMID:17893239

23. Burgess RC, Burman B, Kruhlak MJ, Misteli T. Activation of DNA damage response signaling by condensed chromatin. Cell reports. 2014; 9(5):1703–17. doi: 10.1016/j.celrep.2014.07.024 PMID: 25131201

24. Khurana S, Kruhlak MJ, Kim J, Tran AD, Liu J, Nyswaner K, et al. A macrohistone variant links dynamic chromatin compaction to BRCA1-dependent genome maintenance. Cell reports. 2014; 8 (4):1049–62. doi: 10.1016/j.celrep.2014.07.024 PMID: 25131201

25. Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes & development. 2011; 25(5):409–33.

26. Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, et al. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell. 2008; 132 (2):221–32. doi: 10.1016/j.cell.2007.12.013 PMID: 18243098

27. Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. The EMBO journal. 2009; 28(13):1678–89. doi: 10.1038/ emboj.2009.119 PMID: 19407812

28. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005; 123(7):1213–26. PMID: 16377563

29. Zimmermann M, de Lange T. 53BP1: pro choice in DNA repair. Trends in cell biology. 2013.
30. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nature reviews Molecular cell biology. 2014; 15(1):7–18. doi: 10.1038/nrm3719 PMID: 24326623

31. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell. 2006; 127(7):1361–73. PMID: 17190600

32. Fradet-Turcotte A, Canny MD, Escribano-Diaz C, Orthwein A, Leung CC, Huang H, et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature. 2013; 499(7456):50–4. doi: 10.1038/nature12318 PMID: 23760478

33. van Attikum H, Gasser SM. Crosstalk between histone modifications during the DNA damage response. Trends in cell biology. 2009; 19(5):207–17. doi: 10.1016/j.tcb.2009.03.001 PMID: 19342239

34. Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nature reviews Molecular cell biology. 2015; 16(4):258–64. doi: 10.1038/nrm3931 PMID: 25549891

35. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nature reviews Molecular cell biology. 2007; 8(4):284–95. PMID: 17380162

36. Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature reviews Molecular cell biology. 2008; 9(3):206–18. doi: 10.1038/nrm2346 PMID: 18292778

37. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006; 311(5762):844–7. PMID: 16469925

38. Filipakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell. 2012; 149(1):214–31. doi: 10.1016/j.cell.2012.02.013 PMID: 22464331

39. Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell. 2014; 159(3):558–71. doi: 10.1016/j.cell.2014.09.049 PMID: 25417107

40. Ramanathan B, Smerdon MJ. Changes in nuclear protein acetylation in u.v.-damaged human cells. Carcinogenesis. 1986; 7(7):1087–94. PMID: 3087643

41. Gong F, Chiu LY, Cox B, Aymard F, Clouaire T, Leung JW, et al. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes & development. 2015; 29(2):197–211.

42. Kakarougkas A, Ismail A, Chambers AL, Riballo E, Herbert AD, Kunzel J, et al. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Molecular cell. 2014; 55(5):723–32. doi: 10.1016/j.molcel.2014.06.028 PMID: 25066234

43. Kulkarni A, Oza J, Yao M, Sohail H, Ginjala V, Tomas-Loba A, et al. Tripartite Motif-containing 33 (TRIM33) Protein Functions in the Poly(ADP-ribose) Polymerase (PARP)-dependent DNA Damage Response through Interaction with Amplified in Liver Cancer 1 (ALC1) Protein. The Journal of biological chemistry. 2013; 288(45):32357–69. doi: 10.1074/jbc.M113.549164 PMID: 23926104

44. Ogawa H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S, et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene. 2011; 30(8):2135–46. doi: 10.1038/onc.2010.592 PMID: 21217779

45. Gursoy-Yuzugullu O, House N, Price BD. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. Journal of molecular biology. 2016; 428(9 Pt B):1846–60. doi: 10.1016/j.jmb.2015.11.021 PMID: 26625977

46. Sun Y, Xu Y, Roy K, Price BD. DNA damage-induced acetylation of lysine 3016 of ATM activates ATM kinase activity. Molecular and cellular biology. 2007; 27(24):8502–9. PMID: 17923702

47. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nature structural & molecular biology. 2013; 20(3):317–25.

48. Jacquet K, Fradet-Turcotte A, Aavvakumov N, Lambert JP, Roques C, Pandita RK, et al. The Tip60 Complex Regulates Bivalent Chromatin Recognition by 53BP1 through Direct H4K20me Binding and H2AK15 Acetylation. Molecular cell. 2016; 62(3):409–21. doi: 10.1016/j.molcel.2016.03.031 PMID: 27153538

49. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S, et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature structural & molecular biology. 2010; 17(9):1144–51.
50. Sharma GG, So S, Gupta A, Kumar R, Cayrou C, Avvakumov N, et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Molecular and cellular biology. 2010; 30(14):3582–95. doi:10.1128/MCB.01476-09 PMID: 20479123

51. Li X, Corsa CA, Pan PW, Wu L, Ferguson D, Yu X, et al. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Molecular and cellular biology. 2010; 30(22):5335–47. doi:10.1128/MCB.00350-10 PMID: 20837706

52. Gupta A, Hunt CR, Hegde ML, Chakraborty S, Chakraborty S, Udayakumar D, et al. MOF phosphorylation by ATM regulates 53BP1-mediated double-strand break repair pathway choice. Cell reports. 2014; 8(1):177–89. doi:10.1016/j.celrep.2014.05.044 PMID: 24953651

53. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Molecular cell. 2013; 51(4):454–68. doi:10.1016/j.molcel.2013.06.018 PMID: 23911928

54. Kaidi A, Weinert BT, Choudhary C, Jackson SP. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 2010; 329(5997):1348–53. doi:10.1126/science.1192049 PMID: 20829486

55. Filippakopoulos P, Knapp S. The bromodomain interaction module. FEBS letters. 2012; 586(17):2692–704. doi:10.1016/j.febslet.2012.04.045 PMID: 22710155

56. Marmorstein R, Zhou MM. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harbor perspectives in biology. 2014; 6(7):a018762. doi:10.1101/cshperspect.a018762 PMID: 24984779

57. Muller S, Filippakopoulos P, Knapp S. Bromodomains as therapeutic targets. Expert reviews in molecular medicine. 2011; 13:e29. doi:10.1017/S1462399411001992 PMID: 21933453

58. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, et al. Selective inhibition of BET bromodomains. Nature. 2010; 468(7327):454–68. doi:10.1038/nature09504 PMID: 20871596

59. Zhang G, Smith SG, Zhou MM. Discovery of Chemical Inhibitors of Human Bromodomains. Chemical reviews. 2015; 115(21):11625–68. doi:10.1021/acs.chemrev.5b00205 PMID: 26492937

60. Barbieri I, Cannizzaro E, Dawson MA. Bromodomains as therapeutic targets in cancer. Briefings in functional genomics. 2013; 12(3):219–30. doi:10.1093/bfgp/elt007 PMID: 23543289

61. Zhang G, Smith SG, Zhou MM. Discovery of Chemical Inhibitors of Human Bromodomains. Chemical reviews. 2015; 115(21):11625–68. doi:10.1021/acs.chemrev.5b00205 PMID: 26492937

62. Soria G, Polo SE, Almouzni G. Prime, repair, restore: the active role of chromatin in the DNA damage response. Molecular cell. 2012; 46(6):1344–54. doi:10.1016/j.molcel.2013.02.011 PMID: 23498941

63. Ziv Y, Bielopolski D, Galanty Y, Lukas C, Taya Y, Schultz DC, et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature cell biology. 2006; 8(8):870–6. PMID:16862143

64. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Molecular cell. 2008; 31(2):167–77. doi:10.1016/j.molcel.2008.05.017 PMID: 18657500

65. Goodarzi AA, Kurka T, Jeggo PA. KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nature structural & molecular biology. 2011; 18(7):831–9.

66. Hatakeyama S. TRIM proteins and cancer. Nature reviews Cancer. 2011; 11(11):792–804. doi:10.1038/nrc3193 PMID: 21979307

67. Zhang G, Smith SG, Zhou MM. Discovery of Chemical Inhibitors of Human Bromodomains. Chemical reviews. 2015; 115(21):11625–68. doi:10.1021/acs.chemrev.5b00205 PMID: 26492937

68. Zeng L, Yap KL, Ivanov AV, Wang X, Mujtaba S, Plošnikova O, et al. Structural insights into human KAP1 PHD finger-brmodomain and its role in gene silencing. Nature structural & molecular biology. 2008; 15(6):626–33.

69. Tsai WW, Wang Z, Yiu TT, Akdemir KC, Xia W, Winter S, et al. TRIM24 links a non-canonical histone signature to breast cancer. Nature. 2010; 468(7326):927–32. doi:10.1038/nature09542 PMID: 2164480

70. Agricola E, Randall RA, Gaarenstroom T, Dupont S, Hill CS. Recruitment of TIF1gamma to chromatin via its PHD finger-bromodomains activates its ubiquitin ligase and transcriptional repressor activities. Molecular cell. 2011; 43(1):85–96. doi:10.1016/j.molcel.2011.05.020 PMID: 21726812

71. Floyd SR, Pacold ME, Huang Q, Clarke SM, Lam FC, Cannell IG, et al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature. 2013; 498(7453):246–50. doi:10.1038/nature12147 PMID: 23728299
72. Shi J, Vakoc CR. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular cell. 2014; 54(5):728–36. doi: 10.1016/j.molcel.2014.05.016 PMID: 24905006

73. Devaiah BN, Case-Borden C, Gegenone A, Hsu CH, Chen Q, Meerzaman D, et al. BRD4 is a histone acetyltransferase that evicts nucleosomes from chromatin. Nature structural & molecular biology. 2016; 23(6):540–8.

74. Farria A, Li W, Dent SY. KATs in cancer: functions and therapies. Oncogene. 2015; 34(38):4901–13. doi: 10.1038/onc.2014.453 PMID: 25659580

75. Bedford DC, Kasper LH, Fukuyama T, Brindle PK. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics. 2010; 5(1):9–15. PMID: 20117077

76. Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Meerzaman D, et al. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic acids research. 2014; 42(13):8433–48. doi: 10.1093/nar/gku533 PMID: 24939902

77. Guo R, Chen J, Mitchell DL, Johnson DG. GCN5 and E2F1 stimulate nucleotide excision repair by promoting H3K9 acetylation at sites of damage. Nucleic acids research. 2011; 39(4):1390–7. doi: 10.1093/nar/gkq983 PMID: 20972224

78. Love IM, Sekaric P, Shi D, Grossman SR, Androphy EJ. The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle. 2012; 11(13):2458–66. doi: 10.4161/cc.20864 PMID: 22713239

79. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annual review of biochemistry. 2009; 78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223 PMID: 19355820

80. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nature reviews Molecular cell biology. 2006; 7(6):437–47. PMID: 16723979

81. Wilson BG, Roberts CW. SWI/SNF nucleosome remodellers and cancer. Nature reviews Cancer. 2011; 11(7):481–92. doi: 10.1038/nrc3068 PMID: 21654818

82. Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN, et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. The EMBO journal. 2006; 25(17):3986–97. PMID: 16932743

83. Lee HS, Park JH, Kim SJ, Kwon SJ, Kwon J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. The EMBO journal. 2010; 29(8):1434–45. doi: 10.1038/emboj.2010.27 PMID: 20224553

84. Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics & chromatin. 2012; 5:4.

85. Zhang L, Zhang Q, Jones K, Patel M, Gong F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle. 2009; 8(23):3953–9. PMID: 19001545

86. Zhao Q, Wang QG, Chen SY, Chen SY, Chen SY, Chen SY, et al. Mad and homologous recombination repair factor hMre11 regulates replication licensing. The EMBO journal. 2009; 28(44):30424–32. doi: 10.1038/emboj.2009.348 PMID: 19740755

87. Gong F, Fahy D, Liu H, Wang W, Smerdon MJ. Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle. 2008; 7(8):1067–74. PMID: 18414052

88. Brownlee PM, Chambers AL, Oliver AW, Downs JA. Cancer and the bromodomains of BAF180. Biochemical Society transactions. 2012; 40(2):364–9. doi: 10.1042/BST20110754 PMID: 22435813

89. Brownlee PM, Chambers AL, Cloney R, Bianchi A, Downs JA. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell reports. 2014; 6(6):973–81. doi: 10.1016/j.celrep.2014.02.012 PMID: 24613357

90. Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, et al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer research. 2010; 70(6):2538–47. doi: 10.1158/0008-5472.CAN-09-2089 PMID: 20551151

91. Burrows AE, Smogorzewska A, Elledge SJ. Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(32):14280–5. doi: 10.1073/pnas.1008699107 PMID: 20660729

92. Drost J, Mantovani F, Tocco F, Eikorn R, Corneli A, Holstein H, et al. BRD7 is a candidate tumour suppressor gene required for p53 function. Nature cell biology. 2010; 12(4):380–9. doi: 10.1038/ncb2038 PMID: 20228809

93. Aydin OZ, Vermeulen W, Lans H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle. 2014; 13(19):3016–25. doi: 10.4161/15384101.2014.956551 PMID: 25486562
114. Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature. 2010; 466(7303):258–62. doi: 10.1038/nature09139 PMID: 20613843

115. Ali M, Yan K, Lalonde ME, Degerny C, Rothbart SB, Strahl BD, et al. Tandem PHD fingers of MORF/MOZ acetyltransferases display selectivity for acetylated histone H3 and are required for the association with chromatin. Journal of molecular biology. 2012; 424(5):328–38. doi: 10.1016/j.jmb.2012.10.004 PMID: 23063713

116. Qiu Y, Liu L, Zhao C, Han C, Li F, Zhang J, et al. Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription. Genes & development. 2012; 26(12):1376–91.

117. Su D, Hu Q, Li Q, Thompson JR, Cui G, Fazly A, et al. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106. Nature. 2012; 483(7387):104–7. doi: 10.1038/nature10861 PMID: 22307274

118. Schulze JM, Wang AY, Kobor MS. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2009; 87(1):65–75. doi: 10.1139/O08-111 PMID: 19234524

119. Shanle EK, Andrews FH, Meriesh H, McDaniel SL, Dronamraju R, DiFiore JV, et al. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes & development. 2015; 29(17):1795–800.

120. Ui A, Nagaura Y, Yasui A. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair. Molecular cell. 2015; 58(3):468–82. doi: 10.1016/j.molcel.2015.03.023 PMID: 25921070

121. Bird AW, Yu DY, Pray-Grant MG, Qiu Q, Harmon KE, Megee PC, et al. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature. 2002; 419(6905):411–5. PMID: 12353039

122. Wang L, Xie L, Ramachandran S, Lee Y, Yan Z, Zhou L, et al. Non-canonical Bromodomain within DNA-PKcs Promotes DNA Damage Response and Radiosensitivity through Recognizing an IR-Induced Acetyl-Lysine on H2AX. Chemistry & biology. 2015; 22(7):849–61.

123. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, et al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Molecular and cellular biology. 2007; 27(20):7028–40. PMID: 17709392

124. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011; 471(7337):189–95. doi: 10.1038/nature09730 PMID: 21390130

125. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. The Journal of clinical investigation. 2014; 124(10):306–13. PMID: 12402037

126. Chevry F, Costa M. Histone modifications and cancer: biomarkers of prognosis? American journal of cancer research. 2012; 2(5):589–97. PMID: 22957310

127. Kurniawan B, Kuo S, Marks PA. Histone acetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(5):1241–6. PMID: 14734806
135. Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell death and differentiation. 2005; 12(4):395–404. PMID: 15665816

136. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature genetics. 2005; 37(4):391–400. PMID: 15765097

137. Barkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005; 434(7035):864–70. PMID: 15829956

138. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005; 434(7035):907–13. PMID: 15829965

139. Deshpande AJ, Bradner J, Armstrong SA. Chromatin modifications as therapeutic targets in MLL-rearranged leukemia. Trends in immunology. 2012; 33(11):563–70. doi: 10.1016/j.it.2012.06.002 PMID: 22867873

140. Wang J, Muntean AG, Hess JL. ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood. 2012; 119(5):1151–61. doi: 10.1182/blood-2011-06-362079 PMID: 22174154

141. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T, et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood. 2010; 115(17):3570–9. doi: 10.1182/blood-2009-06-229542 PMID: 20194896

142. Meyer C, Hofmann J, Burmeister T, Groger D, Park TS, Emerenciano M, et al. The MLL recombinome of acute leukemias in 2013. Leukemia. 2013; 27(11):2165–76. doi: 10.1038/leu.2013.135 PMID: 23628958

143. Santillan DA, Theisler CM, Ryan AS, Popovic R, Stuart T, Zhou MM, et al. Bromodomain and histone acetyltransferase domain specificities control mixed lineage leukemia phenotype. Cancer research. 2006; 66(20):10032–9. PMID: 17047066

144. French CA, Miyoshi I, Kubonishi I, Grier HE, Perez-Atayde AR, Fletcher JA. BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer research. 2003; 63(2):304–7. PMID: 12543779

145. French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, et al. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene. 2008; 27(15):2237–42. PMID: 17934517

146. Grayson AR, Walsh EM, Cameron MJ, Godec J, Ambrose JM, et al. MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene. 2014; 33(13):1736–42. doi: 10.1038/onc.2013.126 PMID: 23604113

147. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011; 146(6):904–17. doi: 10.1016/j.cell.2011.08.017 PMID: 21889194

148. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proceedings of the National Academy of Sciences of the United States of America. 2011; 108(40):16669–74. doi: 10.1073/pnas.1108190108 PMID: 21949397

149. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011; 478(7370):524–8. doi: 10.1038/nature10334 PMID: 21814200

150. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D, et al. TRIM24 Is an Oncogenic Transcriptional Activator in Prostate Cancer. Cancer cell. 2016; 29(6):846–58. doi: 10.1016/j.ccell.2016.04.012 PMID: 27238081

151. Le Gallo M, O’Hara AJ, Rudd ML, Urick ME, Hansen NF, O’Neil NJ, et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nature genetics. 2012; 44(12):1310–5. doi: 10.1038/ng.2455 PMID: 23104009

152. Helming KC, Wang X, Roberts CW. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer cell. 2014; 26(3):308–17. doi: 10.1016/j.ccr.2014.07.018 PMID: 25203320

153. Lai AY, Wade PA. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nature reviews Cancer. 2011; 11(8):588–96. doi: 10.1038/nrc3091 PMID: 21734722

154. Bierkens M, Krijgsman O, Witting SM, Bosch L, Jaspers A, Meijer GA, et al. Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes, chromosomes & cancer. 2013; 52(1):56–68.
155. Panagopoulos I, Micci F, Thorsen J, Haugom L, Buechner J, Kerndrup G, et al. Fusion of ZMYND8 and RELA genes in acute erythroid leukemia. PLoS ONE. 2013; 8(5):e63663. doi: 10.1371/journal.pone.0063663 PMID: 23667654

156. Park J, Betel D, Gryfe R, Michalickova K, Di Nicola N, Gallinger S, et al. Mutation profiling of mismatch repair-deficient colorectal cancers using an in silico genome scan to identify coding microsatellites. Cancer research. 2002; 62(5):1284–8. PMID: 11888892

157. Wada Y, Matsuura M, Sugawara M, Ushijima M, Miyata S, Nagasaki K, et al. Development of detection method for novel fusion gene using GeneChip exon array. Journal of clinical bioinformatics. 2014; 4(1):3. doi: 10.1186/2043-9113-4-3 PMID: 24533689

158. Shen H, Xu W, Guo R, Rong B, Gu L, Wang Z, et al. Suppression of Enhancer Overactivation by a RACK7-Histone Demethylase Complex. Cell. 2016; 165(2):331–42. doi: 10.1016/j.cell.2016.02.064 PMID: 27058665

159. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010; 465(7295):182–7. doi: 10.1038/nature09033 PMID: 20393465

160. Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature. 2014; 508(7495):263–8. doi: 10.1038/nature13045 PMID: 24590075

161. Fang D, Gan H, Lee JH, Han J, Wang Z, Riester SM, et al. The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science. 2016; 352(6291):1344–8. doi: 10.1126/science.aee0065 PMID: 22729140

162. Pfister SX, Markkanen E, Jiang Y, Sarkar S, Woodcock M, Orlando G, et al. Inhibiting WEE1 Selectively Kills Histone H3K36me3-Deficient Cancers by dNTP Starvation. Cancer cell. 2015; 28(5):557–68. PMID:26602815

163. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nature reviews Cancer. 2008; 8(3):193–204. doi: 10.1038/nrc2342 PMID: 18256616

164. Blattmann C, Oertel S, Ehemann V, Thiemann M, Huber PE, Bischof M, et al. Enhancement of radiation response in osteosarcoma and rhabdomyosarcoma cell lines by histone deacetylase inhibition. International journal of radiation oncology, biology, physics. 2010; 78(1):237–45. doi: 10.1016/j.ijrobp.2010.03.010 PMID: 20646843

165. Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Molecular cancer research: MCR. 2012; 10(8):1052–64. doi: 10.1158/1541-7786.MCR-11-0587 PMID: 22729783

166. Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. International journal of radiation oncology, biology, physics. 2005; 62(1):223–9. PMID: 15850925

167. Lin SF, Lin JD, Chou TC, Huang YY, Wong RJ. Utility of a histone deacetylase inhibitor (PXD101) for thyroid cancer treatment. PLoS ONE. 2013; 8(10):e77684. doi: 10.1371/journal.pone.0077684 PMID: 24155971

168. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clinical cancer research: an official journal of the American Association for Cancer Research. 2005; 11(13):4912–22.

169. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioderoxicin-binding protein-2, and down-regulates thioderoxicin. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99(18):11700–5. PMID: 12189205

170. Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, et al. Role of thioderoxicin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(3):873–8. PMID: 15637150

171. Ogiwara H, Ull A, Shiotani B, Zou L, Yasui A, Kohn T. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor. Carcinogenesis. 2013; 34 (11):2486–97. doi: 10.1093/carcin/bgt240 PMID: 23825154

172. Oike T, Ogiwara H, Amornwichet N, Nakano T, Kohn T. Chromatin-regulating proteins as targets for cancer therapy. Journal of radiation research. 2014; 55(4):613–28. doi: 10.1093/jrr/rtt227 PMID: 24522270
174. Furdas SD, Kannan S, Sippl W, Jung M. Small molecule inhibitors of histone acetyltransferases as epigenetic tools and drug candidates. Archiv der Pharmazie. 2012; 345(1):7–21. doi: 10.1002/ardp.201100209 PMID: 22234972

175. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chemistry & biology. 2010; 17(5):471–82.

176. Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. The Journal of investigative dermatology. 2013; 133(10):2444–52. doi: 10.1038/jid.2013.187 PMID: 23698071

177. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW, et al. Suppression of inflammation by a synthetic histone mimic. Nature. 2010; 468(7327):1119–23. doi: 10.1038/nature09589 PMID: 21068722

178. Chaidos A, Caputo V, Karadimitris A. Inhibition of bromodomain and extra-terminal proteins (BET) as a potential therapeutic approach in haematological malignancies: emerging preclinical and clinical evidence. Therapeutic advances in hematology. 2015; 6(3):128–41. doi: 10.1177/2040620715576662 PMID: 26137204

179. Chaidos A, Caputo V, Gouvedenou K, Liu B, Marigo I, Chaudhry MS, et al. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood. 2013; 123(5):471–82.

180. Picaud S, Fedorov O, Thanasopoulou A, Leonards K, Jones K, Meier J, et al. Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. Cancer research. 2015; 75(23):5106–19. doi: 10.1182/blood-2013-01-476420 PMID: 24335499

181. Revenko AS, Kalashnikova EV, Gemo AT, Zou JX, Chen HW. Chromatin loading of E2F-MLL complex by cancer-associated coregulator ANCCA via reading a specific histone mark. Molecular and cellular biology. 2010; 30(22):5260–72. doi: 10.1128/MCB.00484-10 PMID: 20855524

182. Caron C, Lestrat C, Marsal S, Escoffier E, Curtet S, Virolle V, et al. Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene. 2010; 29(37):5171–81. doi: 10.1038/onc.2010.259 PMID: 20581866

183. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, et al. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochemical and biophysical research communications. 2007; 358(2):435–41. PMID: 17498659

184. Poplawski A, Hu K, Lee W, Natesan S, Peng D, Carlson S, et al. Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain. Journal of molecular biology. 2014; 426(8):1661–76. doi: 10.1016/j.jmb.2013.12.007 PMID: 24333487

185. Lee SK, Park EJ, Lee HS, Lee YS, Kwon J. Genome-wide screen of human bromodomain-containing proteins identifies Cецr2 as a novel DNA damage response protein. Molecules and cells. 2012; 34(1):85–91. doi: 10.1007/s10059-012-0112-4 PMID: 22699752

186. Tillhon M, Cazzalini O, Nardo T, Necchi D, Sommatis S, Stivala LA, et al. p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG. DNA repair. 2012; 11(10):844–52. doi: 10.1016/j.dnarep.2012.08.001 PMID: 22954786

187. Ogiwara H, Kohno T. CBP and p300 histone acetyltransferases contribute to homologous recombination by transcriptionally activating the BRCA1 and RAD51 genes. PLoS ONE. 2012; 7(12):e52810. doi: 10.1371/journal.pone.0052810 PMID: 23285190

188. Jang ER, Choi JD, Lee JS. Acetyltransferase p300 regulates NBS1-mediated DNA damage response. FEBS letters. 2011; 585(1):47–52. doi: 10.1016/j.febslet.2010.11.034 PMID: 21108945

189. Kim MK, Shin JM, Eun HC, Chung JH. The role of p300 histone acetyltransferase in UV-induced histone modifications and MMP-1 gene transcription. PLoS ONE. 2009; 4(3):e52810. doi: 10.1371/journal.pone.0002810 PMID: 19285190

190. Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. Embo Journal. 2003; 22(4):975–86. PMID: 12574133

191. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Molecular and cellular biology. 1999; 19(2):844–52. doi: 10.1016/S1050-0750(98)00046-4 PMID: 9891054

192. Qi W, Chen H, Xiao T, Wang R, Li T, Han L, et al. Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair. Mutagenesis. 2016; 31(2):193–203. doi: 10.1093/mutage/gev075 PMID: 26546801
193. Smith-Roe SL, Nakamura J, Holley D, Chastain PD 2nd, Rosson GB, Simpson DA, et al. SWI/SNF complexes are required for full activation of the DNA-damage response. Oncotarget. 2015; 6(2):732–45. PMID:25544751

194. Husain A, Begum NA, Taniguchi T, Taniguchi H, Kobayashi M, Honjo T. Chromatin remodeler SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nature communications. 2016; 7:10549. doi: 10.1038/ncomms10549 PMID: 26842758

195. Buchmann AM, Skaar JR, DeCaprio JA. Activation of a DNA damage checkpoint response in a TAF1-defective cell line. Molecular and cellular biology. 2004; 24(12):5332–9. PMID: 15169897

196. Jain AK, Allton K, Duncan AD, Barton MC. TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Molecular and cellular biology. 2014; 34(14):2695–709. PMID:24820418

197. Noon AT, Shibata A, Rief N, Lobrich M, Stewart GS, Jeggo PA, et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nature cell biology. 2010; 12(2):177–84. doi:10.1038/ncb2017 PMID: 20081839

198. Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. The Journal of cell biology. 2007; 177(2):219–29. PMID:17438073

199. Oike T, Komachi M, Ogiwara H, Amomwichet N, Saithoy Y, Torikai K, et al. C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology. 2014; 111(2):222–7.

200. Lee JH, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proceedings of the National Academy of Sciences of the United States of America. 2010; 107(33):14639–44. doi: 10.1073/pnas.1008522107 PMID: 20679231

201. Munshi A, Tanaka T, Hobbs ML, Tucker SL, Richon VM, Meyn RE. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolongation of gamma-H2AX foci. Molecular cancer therapeutics. 2006; 5(8):1967–74. PMID:16928817

202. Wilson AJ, Lalani AS, Wess E, Saskowski J, Khabele D. Romidepsin (FK228) combined with cisplatin stimulates DNA damage-induced cell death in ovarian cancer. Gynecologic oncology. 2012; 127 (3):579–86. doi: 10.1016/j.ygyno.2012.09.016 PMID: 23010348

203. Zhang Y, Adachi M, Zou H, Hareyama M, Imai K, Shinomura Y. Histone deacetylase inhibitors enhance phosphorylation of histone H2AX after ionizing radiation. International journal of radiation oncology, biology, physics. 2006; 65(3):859–66. PMID:16751067

204. Kim MJ, Lee JS, Park SE, Yi HJ, Jeong IG, Kang JS, et al. Combination treatment of renal cell carcinoma with belinostat and 5-fluorouracil: a role for oxidative stress induced DNA damage and HSP90 regulated thymidine synthase. The Journal of urology. 2015; 193(5):1660–8. doi: 10.1016/j.juro.2014.11.091 PMID: 25433007

205. Geng L, Cuneo KC, Fu A, Tu T, Atadja PW, Hallahan DE. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer research. 2006; 66(23):11298–304. PMID:17145876

206. Groselj B, Kerr M, Kiltie AE. Radiosensitisation of bladder cancer cells by panobinostat is modulated by Ku80 expression. Radiotherapy and Oncology: the European Society for Therapeutic Radiology and Oncology. 2013; 108(3):429–33.

207. Maiso P, Colado E, Ocio EM, Garayoa M, Martin J, Atadja P, et al. The synergy of panobinostat plus doxorubicin in acute myeloid leukemia suggests a role for HDAC inhibitors in the control of DNA repair. Leukemia. 2009; 23(12):2265–74. doi: 10.1038/leu.2009.182 PMID: 19612608

208. Xie C, Drenberg C, Edwards H, Caldwell JT, Chen W, Inaba H, et al. Panobinostat enhances cytara-bine and daunorubicin sensitivities in AML cells through suppressing the expression of BRCA1, CHK1, and Rad51. PLOS ONE. 2013; 8(11):e79106. doi: 10.1371/journal.pone.0079106 PMID: 24244429

209. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014; 510(7504):278–82. doi: 10.1038/nature13229 PMID: 24759320

210. Stewart HJ, Horne GA, Bastow S, Chevassut TJ. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer medicine. 2013; 2(6):826–35. doi: 10.1002/cam4.146 PMID: 24403256