Exceptional new record of Cretaceous Hauterivian Angiospermid Pollen from Southern England

N.F. HUGHES, A.B. McDOUGALL and J.L. CHAPMAN
University Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, England

ABSTRACT - Routine SEM examination of a previously neglected part of the Wealden succession in the borehole at Kingsclere, Southern England, has revealed a very well preserved set of specimens, in a single sample (KCE 777), of a type of early pollen grain only known hitherto from isolated grains. This tectate-columellate monosulcate pollen with sharply segmented muri and sturdy columellae is the earliest known with generally accepted angiospermid characters, and appears to be of Cretaceous Hauterivian age. The nature of the simple tectate pattern over the aperture suggests a style of pollen development to bear in mind when searching for even earlier pollen of this group.

INTRODUCTION
Although the Kingsclere borehole sample KCE 475 (borehole depth in feet) was originally used by Couper (1958) to erect the taxon Clavatipollenites hughesii, and was restudied by Kemp (1968) to amplify that taxon, it was not until SEM scan-search was applied (Hughes, Drewry and Laing 1979) that it was fully realised that this and adjacent rich samples (KCE 469 to KCE 475) of late Barremian to early Aptian age (Kemp 1970) contained not one but seven or more diverse monosulcate or trichotomosulcate taxa of angiospermid pollen in reasonable abundance. Even with light microscopy Kemp (1968, p.428) recorded some doubts on the homogeneity of this early taxon.

Subsequent similar studies of continuous rock successions have led to knowledge of a diverse Barremian pollen succession (Hughes and McDougall, 1990) in the Dorset and Isle of Wight, London (Warlingham borehole) and the Norfolk-Lincolnshire areas, and to recognition of a late Hauterivian for the earliest samples discovered (Hughes and McDougall 1987); when this last paper was written however, the earliest angiospermid pollen grains known were all single specimens of striking appearance but collected from scattered localities and therefore subject to caution in interpretation.

The present paper is concerned with an unusually fine record discovered during examination of samples not previously studied (KCE 682 - KCE 787) from deep in the Kingsclere borehole (details of locality with record). In sample KCE 777 is a set of ten specimens of a pollen type only known previously from Isolated grains. This tectate-columellate monosulcate pollen of late Barremian to early Aptian age (Kemp 1970) contained not one but seven or more diverse monosulcate or trichotomosulcate taxa of angiospermid pollen in reasonable abundance. Even with light microscopy Kemp (1968, p.428) recorded some doubts on the homogeneity of this early taxon.

The previously published single specimen record CFB Retisulc.-muriverm (Hughes and McDougall, 1987) from the Warlingham borehole (WM 1488/7) is similar to the new fossils. This specimen is now re-recorded (Fig. 2) below as CFB HAUTERIVIAN-COLTHICK on a Palaeontologic Data-Handling Code form GOR (Hughes, 1989); such re-arrangements of records are deliberately provided for to accommodate new knowledge, and in such a case the old record is superseded but referenced.

POLLEN DESCRIPTION
The ten specimens of the Group Retisulc pollen (Hughes, 1989) were observed on two stubs (AM 592, 593) fitted with Mark 3 Cambridge Grids, and made up from preparation Y391 of the Kingsclere sample KCE 777. The record is registered as the palaeotaxon HAUTERIVIAN-COLTHICK, with all details entered (Fig. 1) on a Palaeotaxon Record Form (PTR; see Hughes 1989). All ten specimens (A-K) have been used in description, and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture of the material recorded, Specimen C (Plate 1) displays both the aperture and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture and figures of seven are included in the adjacent plates. Of the material recorded, Specimen C (Plate 1) displays both the aperture
PDHC

PALEOTAXON RECORD FORM

Identifiers	J RETISULC POLLEN	G Cretaecean Hauterivian
Succession age	(Era) (Period) (Age/Stage) (Chron)	
Originator	A N.F. Hughes South Science Department University of Cambridge	
Date/time	B 90 January 15	
Paleotaxon name	C Hauterivian - Colthick	

Description

M Monosulcate, max. diameter (17) 20.9 (24) μm. Testa reticulate; exine thick, 2-3 μm; muri 0.5 μm wide, 0.5 μm high, T-shaped per micro; calomelae 0.4 μm wide, 0.7 μm high, settled-shaped; aperture membrane covered by equidimensional fragments of muri, max. diam. 10 μm.

Variation

N Med. lumen, sculpture of four baculae (calomelae bands), 3 specimens.

Number of specimens

L 10

Locality

C UK NG SU 68538 + 73.2 m Kingsclere No1 Bankhead

Rock sample

D Wealden beds

Sample position

E Sample KCE 777 feet (RTE +537 feet)

Sample lithology

F Silstone, mottled grey-purple

Preservation

G Preparation Y391; slabs AM592-593 Assemblies 99% triloculate spores.

Specimen repository

H Sedgwick Museum, Cambridge

Reference

I Earlier records

J Record ends

Explanation of Plate 1

Palaeotaxon Hauterivian-Colthick: scale bars 1 micron; 10 microns Figs 3 and 6.

Figs 1-5. Specimen C: stub AM592-307750. 1, 2, 5, 60° tilt.

Figs 6-9. Specimen A: stub AM592-292771. 7, rotated 30°.
Exceptional new record of Cretaceous Hauterivian Angiospermid Pollen from Southern England
Fig. 2. Observation record (GOR form) for revised Retisulc pollen record CfA Hauterivian-colthick from Warlingham borehole (WM1488/7).

Explanation of Plate 2

Palaeotaxon Hauterivian-Colthick: scale bars 1 micron: 10 microns Figs 3 and 5. Figs 1-2. Specimen F; stub AM593-335731.
Figs 3-4. Specimen H; stub AM593-241805.
Figs 5-6. Specimen J; stub AM592-330751.
Figs 7-8. Specimen K; stub AM593-331815.
Exceptional new record of Cretaceous Hauterivian Angiospermid Pollen from Southern England
Fig. 3. Diagram to illustrate the evidence for succession dating of the Kingsclere borehole sample KCE 777. Columns: A-C, Kingsclere borehole. A, Depth in metres below RTE of rig. B, Samples in borehole (depths in feet). C, Event numbers relating to palynomorph assemblages. D-F, Warlingham borehole. D, Event numbers from palynomorphs (from Hughes and McDougall, 1990). E, Samples in borehole (depths in feet). F, Depth in metres below RTE. G, Hauterivian-Barremian boundary taken between samples 1423/2 and 1416 in the Warlingham borehole (Hughes and McDougall, 1990).

Explanation of Plate 3

Figs 1-2. Palaeotaxon Hauterivian-Colthick; Specimen E; stub AM952-322823: scale bars 1 micron.
Figs 3-8 Assemblage, representative specimens: scale bars 10 microns.
Figs 3-4. *Pilosisporites trichopapilloius* Del. et Spr. 3, Distal aspect; stub AM592-313733. 4, Proximal aspect; stub AM 592-313770.
Fig. 5. *Aequirviradites spinulosus* Cookson and Dettman; stub AM592-250762.
Fig. 6. CIA Hauterivian-cactisulc Hughes and McDougall 1987; stub AM592-280818.
Fig. 7. *Concavissimisporites varierrucatus* (Couper) Brenner; stub AM592-265775.
Fig. 8. *Ephedritites* sp.; stub AM592-335747.
Exceptional new record of Cretaceous Hauterivian Angiospermid Pollen from Southern England
Sample WM 1423/2 marks the entry of ClA Retisulc-dentat and others in the reference succession (see Hughes et al., 1979); these pollen grains occur in quantity, and are clearly lacking in the assemblage KCE 763. They are also lacking in sample KCE 682, but no palynomorphs are common at this level. There are no KCE samples available above this until KCE 475 which contains abundant crotonoids and other Retisulc pollen of a distinct palynoflora which begins (Fig. 3) in the Warlingham borehole with WM 1345.

PALAEOBIOLOGIC SIGNIFICANCE

The aperture structure observed in these Hauterivian-Colchidic pollen grains is simple, as befits their early occurrence. The aperture membrane is thinner than the non-apertural foot-layer (plus nexine) although continuous with it; the membrane curls or collapses inward in the dry grain. The general reticulate tectum of the grain breaks down over the aperture to small equidimensional tectal fragments with sculpture similar to that of the muri and also supported on individual columellae. The aperture with these tectal mural fragments (TMF) resembles the \textit{granular aperture type} of Albian reticulate monosulcates (Chapman, 1987) and also several Barremian biorecords (Hughes et al., 1979). In extant pollen, this type of aperture seems only to arise during the later stages of pollen wall development (Rowley, 1959; Horvat, 1966); the foot-layer and columellae develop all over the grain, and the position of the aperture is only apparent once the tectum begins to form as a reticulum. Only fragments of reticulum develop over the scattered columellae of the membrane, giving a somewhat disorganised appearance as a result of a process which seems not to be tightly controlled. It is interesting that in pollen-grain specimen C (Plate 1, figs 1-5) and two others, isolated baculae occur scattered on the foot-layer within the lumina of the general reticulum. This may suggest that the very open reticulum has evolved from a much denser state with smaller lumina which would have shown much less contrast with the aperture.

The other main aperture structure in early pollen is of the \textit{muri-bordered} type, in which the aperture membrane is a narrow strip of thin foot-layer edged with muri and columellae but itself devoid of sculpture. Examples are to be seen in the roof-muried taxa of Chapman (1986), the \textit{Retimonocolpites complex} (sensu Doyle et al., 1975) and the biorecords Retisulc-dubdent (Hughes et al., 1979). Extant pollen studies (Angold, 1967) suggest that in this case, the aperture position, shape and structure are determined early in pollen wall development as an area where columellae are not formed. This muri-bordered aperture appears to require control of the whole of pollen wall formation from the first pre-nexine template.

What is not clear is why this earliest pollen should possess apparently segmented muri, when most of the monosulcate successors in Barremian rocks do not, with the exception of the crotonoid and some other forms which appear later. Thus far, search in earlier Hauterivian and Valanginian rocks in Britain has not revealed precursors; tectate columellate grains reported by Trevisan (1988) from rocks of these ages in Italy are of types with simple muri similar to those of Barremian age in Britain. Walker and Walker (1984) figure, with their excellent techniques, some Barremian-Aptian grains of the TMF type (see above) from the Potomac Group; they choose to refer to them as \textit{Clavatipollenites}

although there is no close resemblance to the relevant holotype, and they regard them as \textit{relatively advanced} and therefore not indicative of the early evolution of angiosperms.

We are of the opinion that the adequately quantified and dated occurrence of Retisulc-Hauterivian-colchidic pollen described above should not be considered either \textit{primitive} or \textit{advanced}, despite the elaborate appearance in the tectum. The strength of this record encourages the belief that the occurrence of Retisulc-muribeaded from Warlingham (WM 1465; Hughes and McDougall, 1987), although only of isolated specimens, may also be significant. Search for precursors in continuous successions below these occurrences has not yet yielded any candidates differing markedly from those described by Hughes and McDougall (1987).

Manuscript received March 1990
Revised manuscript accepted February 1991

REFERENCES

Angold, R.E. 1967. The ontogeny and fine structure of the pollen grain of \textit{Endymion monoscriptus} (L.). Review Palaeobotany Palynology 3, 205-212.

Chapman, J.L. 1986. Practical difficulties in the application of the species concept in Albian angiosperm pollen. Special Papers in Palaeontology 35, 41-53.

Chapman, J.L. 1987. Comparison of Chloranthaceae pollen with the Cretaceous \textit{Clavatipollenites complex}; taxonomic implication. Pollen et Spores 29 (2-3), 249-272.

Couper, R.A. 1958. British Mesozoic microspores and pollen grains. Palaeontographica B, 103, 75-179.

Doy. J.A., Van Campo, M. and Lugardon, B. 1975. Observations on exine structure of Eucommioids and Lower Cretaceous angiosperm pollen. Pollen et Spores 17 (3), 429-486.

Horvat, F., 1966. Contribution a la connaissance de l’ultrastructure des parois du pollen de \textit{Tradescantia pulchella} L. Grana palynologica 6 (3), 416-434.

Hughes, N.F. 1989. Fossils as information. Cambridge University Press, 136pp.

Hughes, N.F., Drewry, G.E. and Laing, J.F. 1979. Barremian earliest angiosperm pollen. Palaeontographica 222, 51-535.

Hughes, N.F. and McDougall, A.B. 1987. Records of angiosperm pollen entry into the English Early Cretaceous succession. Review Palaeobotany Palynology 50, 255-272.

Hughes, N.F. and McDougall, A.B. 1990. New Wealden correlation for the Wessex Basin. Proceedings Geologists Association 101 (1), 85-90.

Kemp, E.M. 1968. Probable angiosperm pollen from British Barremian to Albian strata. Palaeontographica 111, 421-434.

Kemp, E.M. 1970. Aptian and Albian microspores from Southern England. Palaeontographica B 131, 73-143.

Rowley, J. 1959. The fine structure of the pollen wall in Connaceae. \textit{Grana palynologica} 2 (1), 3-31.

Trevisan, L. 1988. Angiosperm pollen (monosulcate-trichotomosulcate phase) from very early Lower Cretaceous of Southern Tuscany, Italy. Abstracts 7th International Palynological Congress, Brisbane, 165.

Walker, J.W. and Walker, A.G. 1984. Ultrastructure of Lower Cretaceous angiosperm pollen and the origin and early evolution of flowering plants. \textit{Annals Missouri Botanical Garden} 71, 464-521.