Modeling and Simulation of Urban Arterial Traffic Signal Coordinated Control

Wei Li1,2, a, Xin Bi1, b, Yunxia Cao1, c and Jinsong Du1,d

1Shenyang Institute of Automation of Chinese Academy of Sciences, Shenyang 110016, PR China.
2University of Chinese Academy of Sciences, Beijing 100049, PR China;
aliwei3@sia.cn, bbixin@sia.cn, ccaoyunxia@sia.cn, djsdu@sia.cn

Keywords: Traffic Signal, Coordinated Control, Offset Model.

Abstract. Traffic congestion is a major concern for many cities throughout the world. Developing a sophisticated traffic monitoring and control system would result in an effective solution to this problem. In order to reduce traffic delay, a novel urban arterial traffic signal coordinated control method is presented. The total delay of downstream and upstream vehicles is considered and the function describing the relationship between vehicles delay and signal offset among intersections is established. Finally, comparing the performance of traffic signal under method proposed in this paper with the traditional isolated traffic signal control method, the microscopic simulation results show that the method proposed in this paper has better performance in the aspect of reducing the vehicles delay. The offset model is tested in a simulation environment consisting of a core area of three intersections. It can be concluded that the proposed method is much more effective in relieving oversaturation in a network than the isolated intersection control strategy.

Introduction

Traffic signals are common features of urban areas throughout the world, controlling vehicles’ traveling through intersections. They are used to improve the traffic safety, maximizing the capacity and minimizing the delays at the intersection. Thus careful design of the traffic signal control would result in increasing the efficiency of the road network to yield economical and environmental benefits. In a conventional traffic signal controller, the traffic lights under control change at a constant cycle without considering the traffic status of adjacent intersections. This isolated control method cannot maximize the traffic capacity of the intersection. Arterial traffic signal coordinated control is proved a effective method to reduce vehicles delay and number of stops at intersections [1].

A considerable amount of work has been done on the problem of modeling and controlling several traffic junctions in the arterial. Reference [2] proposed a green-wave signal control model based on minimum delay; in reference [3], a two-way green wave band control was presented, but this traffic condition is rare in reality and limited to its application; the coordinated control method put forward in reference [4] only focused on the vehicle delay at an isolated intersection without considering the total delay while driving through the arterial. Based on the previous work, in this paper, vehicles delay through the arterial is considered. The delay of the downstream and upstream vehicles at intersections is analyzed. An offset model is proposed to solve the traffic signal timing control problem for unsaturated traffic arterial, the aim is to relieve the traffic congestion. The paper is organized as follows: Section II gives a brief introduction about arterial control system. Section III discusses the offset model of arterial traffic signal control system in details. Section IV discusses the simulation result and draws a conclusion question.

Description of arterial control system

Transportation system is an extremely complex system with a strong randomness, fuzziness and uncertainty, the internal mechanism and accurate mathematical model of which is difficult to understand and build [5]. Thus, the vehicles delay model is based on the assumptions as follows:
1. Turning traffic at intersections is neglected;
2. Stochastic errors caused by stochastic oversaturation are not considered;
3. The traffic flow is stable in a signal cycle and unsaturated;
4. The delay of external approach is not considered.

Fig. 1 Urban arterial adjacent intersections

Fig. 1 shows that the urban arterial under control is composed of several adjacent intersections such as S₁, S₂, S₃, ... Sₙ. The distance between adjacent intersections is L₁, L₂, L₃, ... Lₙ (m) respectively. The upstream traffic is donated as $Q_{up} (pcu/s)$ and the downstream traffic as $Q_{down} (pcu/s)$. Let the driving speed in upstream direction be $v_{up} (m/s)$ and be $v_{down} (m/s)$ in downstream direction. The arterial signal cycle and split are determined by traditional methods [6].

Model of arterial traffic signal control system

The total delay time of motorcade while driving through the arterial is the sum of delay time at each intersection. It includes two cases: the upstream vehicles delay and the downstream vehicles delay. In order to maximize the intersections capacity, the total delay time which is donated as D should be minimized. Variable D can be expressed as,

$$D = \sum_{i=1}^{n} D_i$$ \hspace{1cm} (1)

Where variable D_i represents the sum of the upstream and downstream motorcade’s delay time at ith ($1 \leq i \leq n$) intersection.

Delay model of downstream vehicles

It can be calculated that the average time from intersection Si to Si+1 is L_i/v_{down}. Assuming that the offset between intersection S_i and S_{i+1} is $\phi_{i,i+1}$. There are two conditions of vehicles delay while driving from intersection S_i to S_{i+1} [7]. They are as follows:

1. When the first vehicle of motorcade arrives at the intersection S_{i+1}, the red light at the intersection S_{i+1} just lights up then vehicles delay happens. This condition is called Motorcade Front Delay Model (or MFDM, for short).
2. The first vehicle of motorcade drives through S_{i+1} successfully, however, when vehicles at the end of motorcade are ready to cross intersection S_{i+1}, the red light at S_{i+1} lights up then vehicles delay happens. This condition is called Motorcade End Delay Model (or MEDM, for short).

Downstream Motorcade Front Delay Model. Assuming that Q_{max} represents maximum traffic capacity of intersection during green time; T_{red} represents red time during one signal cycle T; T_{green} represents green time during one signal cycle; T_q represents vehicles queuing time; $\phi_{i,i+1}$ represents the offset between the intersection S_i and S_{i+1}. Then,

$$\phi_{i+1,i} = \left[\frac{L_i}{v_{down}} \right] (mod T) + T_{red}$$ \hspace{1cm} (2)
Let T_d be the vehicles dispersing time. During T_d after signal turns green, then,

$$Q_{down} \ast (T_{red} + T_d) = Q_{max} \ast T_d$$ \hspace{1cm} (3)

The total delay formulation in this situation is as follows.

$$D^{i+1}_{down} = 0.5 \ast T_{red} \ast Q_{down} \ast (T_{red} + T_d)$$ \hspace{1cm} (4)

Variable T_{red} and T_d can be found by solving equations (2) and (3) respectively. By putting T_{red} and T_d into equation (4), a delay model at the $(i+1)^{th}$ intersection S_{i+1} can be established.

$$D^{i+1}_{down} = \frac{Q_{down}Q_{max}\left[\frac{\phi_{i+1,i}}{v_{down}} - \left(\frac{L_i}{v_{down}}\right)^{(modT)}\right]^2}{2(Q_{max} - Q_{down})}$$ \hspace{1cm} (5)

Downstream Motorcade End Delay Mode. When the end of motorcade arrives at the intersection S_{i+1}, signal turns red. Let T_{ed} be the time gap between the first vehicle in motorcade stops at the intersection S_{i+1} and the last vehicle in motorcade leaves S_{i+1}. Then,

$$T_{ed} = \left[\frac{L_i}{v_{down}}\right] (modT) - \phi_{i+1,i}$$ \hspace{1cm} (6)

Let T_d be the vehicles dispersing time. During T_d after signal turns green, then,

$$Q_{max} \ast T_d = Q_{down} \ast T_{ed}$$ \hspace{1cm} (7)

The total delay formulation in this situation is as follows.

$$D^{2}_{down} = 0.5Q_{down}T_{ed}^2 + Q_{down} \left(T_d - T_{ed} \right) + 0.5T_{d}Q_{down}T_{ed}$$ \hspace{1cm} (8)

Variable T_{red} and T_d can be found by solving equations (5) and (6) respectively. By putting T_{ed} and T_d into equation (7), a delay model at the $(i+1)^{th}$ intersection can be established.

$$D^{2}_{down} = \frac{Q_{max}^2T_{ed}^2}{2Q_{down}} + Q_{down}^2 \left(\frac{Q_{max}}{Q_{down}} - 1 \right) + \frac{Q_{down}^2T_{ed}^2}{2Q_{max}}$$ \hspace{1cm} (9)

Considering the above two cases, let D_d be the total delay time of downstream motorcade at intersection S_{i+1}. Then D_d can be expressed as:

$$D_d = \sum_{j=1}^{i} \alpha_i D^{i}_{down} + (1-\alpha_i)D^{2}_{i+1} \quad \alpha_i \in [0,1]$$ \hspace{1cm} (10)

Delay Model of Upstream Vehicles

Let L_i/v_{sp} be the vehicle travel time from S_{i+1} to S_i and $\phi_{i,i+1}$ be the offset between S_i and S_{i+1}. The same as vehicles in downstream direction, the delay time of upstream vehicles also includes two
conditions: (1) when a vehicle arrives at the intersection S_i, the red light just lights up; (2) when a vehicle arrives at the intersection S_i, the red light has already lighted up.

Upstream Motorcade Front Delay Model. Let Q_{max} be the maximum traffic capacity of intersection during green time and T_q be queuing time. When a vehicle arrives at the intersection S_i, the red light just lights up. Then,

$$\phi_{i,i+1} = \left[\frac{l_i}{V_{up}} \right] \text{mod} T + T_r$$ \hspace{1cm} (11)

Let T_d be the dispersing time. During T_d after signal turns green, then,

$$Q_{up}(T_r + T_d) = Q_{\text{max}} T_d$$ \hspace{1cm} (12)

The total delay formulation in this situation is as follows.

$$D_{(i)up}^1 = 0.5T_r Q_{up}(T_r + T_d)$$ \hspace{1cm} (13)

Variable T_r and T_d can be found by solving equations (11) and (12) respectively. By putting T_r and T_d into equation (13), a delay model at the ith intersection can be established.

$$D_{(i)up}^1 = \frac{Q_{\text{max}} Q_{up} \left\{ \phi_{i,i+1} + \left[\frac{l_i}{V_{up}} \right] \text{mod} T \right\}^2}{2 \left(Q_{\text{max}} - Q_{up} \right)}$$ \hspace{1cm} (14)

Upstream Motorcade End Delay Mode. When the end of motorcade arrives at the intersection S_i, the signal turns red. Let T_{ed} be the time gap between the first vehicle in motorcade stops at the intersection S_i and the last vehicle in motorcade leaves S_i. Then,

$$\left[\frac{l_i}{V_{up}} \right] \text{mod} T - T_{ed} = \phi_{i,i+1}$$ \hspace{1cm} (15)

The total delay formulation in this situation is as follows.

$$D_{(i)up}^2 = Q_{up} T_r T_{ed} - 0.5Q_{up} T_{ed}^2 + \frac{0.5Q_{up}^2 T_{ed}^2}{Q_{\text{max}}}$$ \hspace{1cm} (16)

Considering the above two cases, let D_u be the total delay time of upstream motorcade at intersection S_i. Then D_u can be expressed as:

$$D_u = \sum_{i=2}^{n} \left[\beta_i D_{(i)up}^1 + (1 - \beta_i) D_{(i)up}^2 \right], \beta_i \in [0,1]$$ \hspace{1cm} (17)

Assuming that D is the total vehicles delay in the arterial, considering the downstream and upstream vehicles delay, D can be expressed as:

$$D = D_d + D_u = \sum_{i=2}^{n} \left[\alpha_i D_{(i+1)down} + (1 - \alpha_i) D_{(i+1)up}^2 \right] + \sum_{i=2}^{n} \left[\beta_i D_{(i)down} + (1 - \beta_i) D_{(i)up}^2 \right]$$ \hspace{1cm} (18)
Simulation and Analysis

An arterial road with three intersections, S1, S2, S3, is built; each intersection includes two-way six lanes at east-west direction and two-way four lanes at south-north direction. Table 1 shows saturation flow at above three intersections. The traffic data of the intersections is acquired by traffic radar installed at each intersection. The signal cycle and green time of each intersection is determined according to flow rate [8].

Table 1 Traffic flow and Saturation flow of each intersection (unit: veh/h)

Intersection	North Entry	South Entry	East Entry	West Entry
#1 Traffic flow	538	643	1731	1617
Saturation flow	3000	3000	4500	4500
#2 Traffic flow	783	650	1631	1738
Saturation flow	3000	3000	4500	4500
#3 Traffic flow	635	681	1849	1965
Saturation flow	3000	3000	4500	4500

Table 2 Signal cycle and green time of each intersection (unit: s)

Intersection	Signal Cycle	Green Time	Signal Offset
#1	65	34	17
#2	74	36	24
#3	79	43	22

Table 2 shows the signal cycle and green time of each intersection. The simulation platform MATLAB is used to analyze the benefit of offset models proposed in this paper. To analyze the adaptability of the offset model, a considerable amount of experiments have been done. Table 3 shows the comparison results of three intersections with coordinated control method and with isolated control method respectively.

Table 3 Comparison of delay time under two different control methods (unit: s)

Intersection	Coordinated control method	Isolated control method	
Cycle	Φ₁,₂	Φ₂,₃	
#1	38.2	78.3	126.7
#2	40.3	105.2	166.1
#3	35.5	113.6	182.2
#4	46.8	120.5	193.4
#5	43.6	124.5	205.4
#6	38.9	127.5	207.4
#7	42.1	137.0	209.8
#8	40.6	137.9	213.1
#9	39.9	138.8	214.4
#10	37.4	136.3	215.9

Φ₁,₂ in Table 3 represents the signal offset between the intersection S1 and intersection S2. Likely, Φ₂,₃ is the offset between S2 and S3. The simulation experiments have been done in successive ten signal cycles. The simulation results in Table 3 show that traffic signals under coordinated control method have better performance than those under isolated control in the aspect of reducing arterial vehicles delay.

Summary

Signal offset optimization model is established in this paper by considering the downstream and upstream vehicles delay in the arterial. The function describing the relationship between the vehicles and offset among intersections is set, which provides a basis for optimizing signal offset through artificial intelligent algorithms in future work. The simulation results show that the performance of the offset optimization model is better than signal under no coordination, which proves that the signal offset model is effective.
References

[1] M.C. Choy, D. Srinivasan and R.L. Cheu: IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, “Cooperative Hybrid Agent Architecture for Real-time Traffic Signal Control”, 33(2003), p.597-607.

[2] Y.T. Chang and G.X. Peng: Central South Highway Engineering, “Delay Evaluation of Urban Road Green Wave Control System”, 9(2004), p.5-9.

[3] X.J. Zheng and M.K. Chen: Computer and Communications, “A Method to Control Bidirectional Green Wave Signal”, 22(2004), p.46-48.

[4] T.P. Wang and M. Jiang: Electronic Engineer, “A Method to Control Bidirectional Green Wave Signal”, 29(2003), p.31-33.

[5] M.L. Huang and B.C. Lu: Information and Control, “Optimization of Multiphase Traffic Signal Timing at Intersection Based on Species Niching Particle Swarm Optimization Algorithm”, 40(2011), p.115-119.

[6] Q.P. Wang: Journal of Xi’an University of Architecture and Technology, “Optimization Study on Multi-intersection Signal Coordination Control in Urban Road”, 40(2008), p.429-433.

[7] M.C. Choy and D. Srinivasan: Intelligent Transport Systems, “Cooperative multi-agent system for coordinated traffic signal control”, 153(2006), p.41-50.

[8] E. Camponogara and H.F. Scherer: IEEE Transactions on Automation Science and Engineering, “Distributed Optimization for Model Predictive Control of Linear Dynamic Networks with Control-input and Output Constraints”, 8(2010), p.233-242.