On $\mathbb{Z}/3$-Godeaux surfaces

Stephen Coughlan Giancarlo Urzúa

September 9, 2016

Abstract

We prove that Godeaux–Reid surfaces with torsion group $\mathbb{Z}/3$ have topological fundamental group $\mathbb{Z}/3$. For this purpose, we describe degenerations to stable KSBA surfaces with one $\frac{1}{4}(1,1)$ singularity, whose minimal resolution are elliptic fibrations with two multiplicity 3 fibres and one I_4 singular fibre. We study special such degenerations which have an involution, describing the corresponding Campedelli double plane construction. We also find some stable rational degenerations, some of which have more singularities, and one of which has a single $\frac{1}{5}(1,2)$ singularity, the minimal possible index for such a surface. Finally, we do the analogous study for the Godeaux surfaces with torsion $\mathbb{Z}/4$.

Contents

1 Introduction 1
2 Reid’s construction of $\mathbb{Z}/3$-Godeaux surfaces 3
3 A stable $\mathbb{Z}/3$-Godeaux with $\frac{1}{4}(1,1)$ singularity 8
4 On $\mathbb{Z}/4$-Godeaux surfaces 16

1 Introduction

Godeaux surfaces are surfaces of general type with $p_g = q = 0$ and $K^2 = 1$. Such surfaces have been a classical object of study for a long time. We refer to [1] and [3] for surveys of differing vintage. In [13], Miyaoka showed among other things, that Godeaux surfaces have cyclic torsion group $H^2(X,\mathbb{Z})_{\text{tors}}$ of order at most five, and Reid [15] gave explicit constructions of the surfaces and their moduli spaces when the torsion has order 3, 4 or 5. In the two latter cases, it is clear from Reid’s construction that the topological fundamental group is isomorphic to the torsion group, but the fundamental group in the $\mathbb{Z}/3$ case has not been computed before. In this article, we refer to such surfaces as Godeaux–Reid surfaces, (or simply $\mathbb{Z}/3$-Godeaux surfaces). Our main result is that the topological fundamental group of the Godeaux–Reid surface is indeed $\mathbb{Z}/3$.
We consider KSBA stable degenerations \[10\] of certain Godeaux–Reid surfaces with an involution. Specifically, we study a boundary divisor corresponding to Godeaux surfaces with a single \(\frac{1}{4}(1,1)\) singularity. Those with an involution have a resolution of singularities as described in the abstract above, and we can compute the topological fundamental group explicitly.

Theorem 1.1. The topological fundamental group of the Godeaux–Reid surface is \(\mathbb{Z}/3\).

The presence of an involution, which was only recently discovered by Reid \[17\], is crucial in the configuration of the singular fibres of the elliptic fibration, which in turn is important for the computation of the fundamental group. We also analyse the quotient, describing the Godeaux surface as a Campedelli double plane, see \[2\] and \[9\].

Theorem 1.2. The Godeaux–Reid surface with an involution is a Campedelli double plane. That is, the quotient gives a double cover of \(\mathbb{P}^2\) branched in a curve of degree 10 with five \((3,3)\) points and one 4-point.

When the Godeaux surface is stable with a single \(\frac{1}{4}(1,1)\) singularity and an involution, the branch curve breaks into two quintics, now with four \((3,3)\)-points, one 4-point and a worse singularity of the form \(\{(y^2 - x^2)(y^2 - x^4) = 0\}\) in a neighbourhood of \(0 \in \mathbb{C}^2\); see Proposition \[2.7\]. This splitting of the branch curve also occurs in degenerations of the Craighero–Gattazzo surface considered in \[14\].

We also find the quotient by this involution of the corresponding family of universal coverings, obtaining after a flip and a divisorial contraction a special family of K3 surfaces with nodes; see Subsection \[3.2\].

We then consider stable \(\mathbb{Z}/3\)-Godeaux surfaces with other types of Wahl singularity, through the phenomenon described by Kawamata in \[8\] of confluence of a multiple fibre and a non-multiple singular fibre in an elliptic fibration. We show (see Subsection \[3.3\])

Theorem 1.3. There are stable rational \(\mathbb{Z}/3\)-Godeaux surfaces with a single \(\frac{1}{5}(1,2)\) singularity, with one \(\frac{1}{4}(1,1)\) and one \(\frac{1}{5}(1,2)\) singularities, and with one \(\frac{1}{5}(1,1)\) and two \(\frac{1}{5}(1,2)\) singularities. The latter has a model as a blown up plane from a pencil of cubics.

The minimal resolution of a stable Godeaux surface with a \(\frac{1}{4}(1,1)\) must have Kodaira dimension 1 (see e.g. \[19\] Remark 5.3), and so the smallest index of a Wahl singularity in a rational stable Godeaux surface is achieved by \(\frac{1}{5}(1,2)\). We remark that for simply connected Godeaux surfaces, the singularity \(\frac{1}{5}(1,2)\) appears in rational and non-rational stable surfaces; see \[13\] Table 1.

All stable degenerations mentioned above, have completely explicit descriptions in terms of Reid’s original moduli parameters. In particular, we exhibit large subvarieties and even divisors in the boundary of the KSBA moduli space, and further degenerations can be studied simply by specialising the parameters.

In the last section, we make the corresponding study for \(\mathbb{Z}/4\)-Godeaux surfaces, where the covering surface is a complete intersection and so it is easier to understand. This also serves as a key to unlock the more complicated details of the \(\mathbb{Z}/3\) case. We know of two different involutions on such surfaces, and we consider the one whose quotient is an Enriques surface \[9\], \[12\]. We get similar results concerning stable degenerations of the
double cover, including the phenomenon of the branch curve breaking into two pieces. We refer to Section 4 for details.

Gorenstein stable degenerations of Godeaux surfaces have been studied recently in a series of articles [4], [5]. Our work uses stable Godeaux surfaces of Gorenstein index two and three.

Acknowledgements

The first author is partially supported by the DFG through grant number Hu 337-6/2, and the second author is supported by the FONDECYT regular grant 1150068 funded by the Chilean Government.

2 Reid’s construction of $\mathbb{Z}/3$-Godeaux surfaces

In [15], Reid showed that the moduli space of $\mathbb{Z}/3$-Godeaux surfaces is irreducible and 8-dimensional, by constructing surfaces Y of general type with $p_g = 2$, $K^2 = 3$ and with fixed point free $\mathbb{Z}/3$-action σ, such that the quotient $Y/\sigma = X$ is the Godeaux surface. More recently, Reid [16, §7], [17] clarified the construction of Y using a parallel unprojection and a 4-dimensional key variety. We briefly describe this construction below.

2.1 The key variety $W \subset \mathbb{P}(1^3, 2^3, 3^3)$

Let $W \subset \mathbb{P}(1^3, 2^3, 3^3)$ be the 4-dimensional $\mathbb{Z}/3$-invariant variety defined by 9 equations $R_0, R_1, R_2, S_0, S_1, S_2, T_0, T_1, T_2$ formed by taking the orbits of

\[R_0: -x_0z_0 + y_1y_2 - r_0x_1x_2 = 0 \]
\[S_0: -y_0z_0 + r_1x_2y_1 + r_2x_1y_2 + sx_1x_2 = 0 \]
\[T_0: -z_1z_2 + r_0y_2^2 + sx_0y_0 + r_1r_2x_0^2 = 0 \]

under the $\mathbb{Z}/3$-action σ. The coordinates x_i, y_i, z_i for $i = 0, 1, 2$ have respective weights 1, 2, 3, and σ acts on them by cyclic permutation of indices (012):

\[\sigma: x_i \mapsto x_{\sigma(i)}, \ y_i \mapsto y_{\sigma(i)}, \ z_i \mapsto z_{\sigma(i)}. \]

Moreover, r_i (respectively s) are weighted homogeneous of degree 2 (resp. 3) and chosen so that σ permutes the indices of r_i (resp. fixes s). Let A denote the restriction of the ample generator of the ambient space to W, that is, $\mathcal{O}_W(A) = \mathcal{O}_W(1)$. Then according to [17], W is a Fano 4-fold with $K_W = -3A$, $A^3 = 1$ and $3 \times \frac{1}{3}(1,1,2,2)$ points.

Theorem 2.1 (Reid [15,17]). The canonical model of the covering surface $Y' \subset \mathbb{P}(1^2, 2^3, 3^2)$ is the intersection of W with the σ-invariant weighted linear subspace

\[Y' = W \cap (x_0 + x_1 + x_2 = z_0 + z_1 + z_2 = 0). \]

Reid proves that for general choices of r_i and s, the surface Y' is smooth and irreducible (this is checked by computer), and the action of σ on Y' is fixed point free. Thus the quotient surface X' is a Godeaux surface with torsion $\mathbb{Z}/3$.

3
Proposition 2.2 (Reid [15, §3]). The coarse moduli space of $\mathbb{Z}/3$-Godeaux surfaces is irreducible, unirational of dimension 8, covered by the 9-dimensional parameter space given by the following forms for r_i and s

$$r_0 = a_{11}x_1^2 + a_{12}x_1x_2 + a_{22}x_2^2 + b_0y_0 + b_1y_1, \quad r_1 = \sigma(r_0), \quad r_2 = \sigma(r_1),$$

$$s = c_2(x_0^2x_1 + x_1^2x_2 + x_2^2x_0) + c_3(x_0^2x_2 + x_1^2x_0 + x_2^2x_1) + d_2(x_0y_1 + x_1y_2 + x_2y_0) + d_3(x_0y_2 + x_1y_0 + x_2y_1).$$

Proof. This is just a translation of Reid’s result [15] to the new key variety description of Y'. It is easy to write out the general forms for r_i and s:

$$r_0 = \sum_{i \leq j} a_{ij}x_i x_j + \sum_{i} b_i y_i, \quad r_1 = \sigma(r_0), \quad r_2 = \sigma(r_1),$$

$$s = c_1 \Sigma(x_0^3) + c_2 \Sigma(x_0^2x_1) + c_3 \Sigma(x_0^2x_2) + c_4x_0x_1x_2 + d_1 \Sigma(x_0y_0) + d_2 \Sigma(x_0y_1) + d_3 \Sigma(x_0y_2),$$

where $\Sigma(m)$ denotes the orbit sum $m + \sigma(m) + \sigma^2(m)$ of m under the action of $\mathbb{Z}/3$.

On the other hand, the terms of r_i involving x_0 are redundant. Moreover, we can assume $b_2 = 0$ using coordinate changes of the form $y_i \mapsto y_i - \varepsilon x_j x_k$. For s, there are four independent sections of the invariant eigenspace $H^0(3K_{Y'})^{inv}$ and we just choose them in a nice way.

Finally, a coordinate transformation of the form $x_i \mapsto \lambda x_i$, $y_i \mapsto y_i$, $z_i \mapsto \lambda^{-1}z_i$ for parameter λ reduces us to an 8-dimensional moduli space, because the transformation acts by scaling the parameters in r_i and s. □

We write \mathcal{M} for the KSBA moduli space of $\mathbb{Z}/3$-Godeaux surfaces [10]. We do not distinguish between \mathcal{M} and the moduli space of covering surfaces.

Recall from [15] that the blowup $\phi_{Y'}: \tilde{Y}' \to Y'$ of the three basepoints of $|K_{Y'}|$ has a model inside the scroll $\mathcal{F} = \text{Proj}_{\mathbb{P}^3}(\mathcal{O} \oplus 3\mathcal{O}(-2))$ with base and fibre coordinates (x_1, x_2) and (t, y_0, y_1, y_2) respectively. Ignoring the t variable for simplicity (see proof of Lemma 2.3 below and [15, §3]), the five defining equations of \tilde{Y}' are

$$f: x_1 x_2 R_0 + x_2 x_0 R_1 + x_0 x_1 R_2 = 0$$

$$g: x_0 S_0 - y_0 R_1 \equiv x_1 S_1 - y_1 R_2 \equiv x_2 S_2 - y_2 R_0 = 0$$

$$h_0: x_1 x_2 S_0 + y_0 x_2 R_1 + y_0 x_1 R_2 = 0$$

and $h_1 = \sigma(h_0)$, $h_2 = \sigma(h_1)$. In fact, the general fibre of $\tilde{Y}' \to \mathbb{P}^1$ is a weighted complete intersection $f_1 = g_6 = 0$ in $\mathbb{P}(1, 2, 2, 2)$, and h_0 (respectively h_1, h_2) is used only to cut out the fibre over the distinguished point $P_0 = (0, 1)$, (resp. $P_1 = (1, 1)$, $P_2 = (0, 1)$) of the base \mathbb{P}^1.

Lemma 2.3. Let Y' be a surface in \mathcal{M} and suppose C is a curve in $|K_{Y'}|$ corresponding to the section $(\alpha_0, \alpha_1, \alpha_2)$ of $H^0(K_{Y'})$, where $\alpha_0 + \alpha_1 + \alpha_2 = 0$. Then C is isomorphic to the following complete intersection of a quadric and a cubic in \mathbb{P}^3 with coordinates t^2, y_0, y_1, y_2:
(i) If the α_i are all nonzero,
\[
\begin{align*}
\alpha_1\alpha_2(y_1y_2 - r_0x_1x_2) + \alpha_0\alpha_2(y_0y_2 - r_1x_0x_2) + \alpha_0\alpha_1(y_0y_1 - r_2x_0x_1) &= 0, \\
-y_0y_1y_2 + r_0x_1x_2y_0 + r_1x_0x_2y_1 + r_2x_0x_1y_2 + sx_0x_1x_2 &= 0
\end{align*}
\]
where x_i, r_i and s are evaluated at $x_i = \alpha_i t$.

(ii) If α_0 vanishes,
\[
\begin{align*}
y_1y_2 - r_0x_1x_2 &= 0, \\
y_0^2(y_1 - y_2) - x_1(r_1x_2y_1 + r_2x_1y_2 + sx_1x_2) &= 0
\end{align*}
\]
where now x_i, r_i and s are evaluated at $x_0 = 0$, $x_1 = t$, $x_2 = -t$.

Curves corresponding to $\alpha_1 = 0$ and $\alpha_2 = 0$ are obtained in a similar manner, or from the action of σ on C_{α_0}.

Proof. Substitute $x_i = \alpha_i t$ for $i = 0, 1, 2$ in equations f, g. For reasons of bihomogeneity, we can divide f by t^2, and this gives the two relations in part (i). The h_i are redundant here because of the syzygies
\[y_0f + x_1x_2g = x_0h_0, \; y_1f + x_0x_2g = x_1h_1, \; y_2f + x_0x_1g = x_2h_2.\]

For part (ii), examining the same syzygies, we see that if α_0 vanishes, then we must take f and h_0, because now g, h_1, h_2 are redundant.

Remark 2.4. The automorphism σ acts on the base of $Y' \to \mathbb{P}^1$ and there are two σ-invariant curves F_ω and F_{ω^2} in $|K_{Y'}|$ corresponding to $(1, \omega, \omega^2)$ and $(1, \omega^2, \omega)$ respectively, where ω is a primitive cube root of unity. The action of σ on these curves is $(t, y_0, y_1, y_2) \mapsto (\omega^2 t, y_1, y_2, y_0)$. If we further assume that Y' has \mathfrak{S}_3 symmetry (see Section 2.2 below), then F_ω has equations
\[
\begin{align*}
y_1y_2 + \omega^2 y_0y_2 + \omega y_0y_1 - b_0t(y_0 + \omega y_1 + \omega^2 y_2) + 3(a_{11} - a_{12})t^2 &= 0, \\
-y_0y_1y_2 + b_0t(y_0^2 + \omega^2 y_1^2 + \omega y_2^2) + (a_{12} - a_{11} - d_2)t^2(y_0 + \omega y_1 + \omega^2 y_2) - 3c_2t^3 &= 0 \quad (2.1)
\end{align*}
\]
and F_{ω^2} is similar, with ω and ω^2 interchanged.

2.2 A family with \mathfrak{S}_3 symmetry and quotients

As observed in [17], there is a special subfamily $\mathcal{M}^s \subset \mathcal{M}$ for good choices of r_i and s, such that the general surface Y' in \mathcal{M}^s has a larger automorphism group \mathfrak{S}_3 rather than just $\mathbb{Z}/3$. This family is defined by
\[
\mathcal{M}^s: (a_{11} = a_{22}, \; b_1 = 0, \; c_2 = c_3, \; d_2 = d_3) \subset \mathcal{M}.
\]
and \mathfrak{S}_3 acts by permutation on the indices of x_i, y_i, z_i. The family \mathcal{M}^s is irreducible and 4-dimensional. The action of \mathfrak{S}_3 on Y' descends to an involution on the $\mathbb{Z}/3$-Godeaux surface.
Remark 2.5. From now on, we will use the superscript s to denote the intersection $\mathcal{D}^s = \mathcal{D} \cap \mathcal{M}^s$ of a stratum $\mathcal{D} \subset \mathcal{M}$ with the \mathfrak{S}_3-symmetric family \mathcal{M}^s.

Let $\tau_0 = (12), \tau_1 = (02), \tau_2 = (01)$ be the involutions in \mathfrak{S}_3 acting on Y' in \mathcal{M}^s. They are conjugate under the action of σ, so we use $\tau = \tau_0$ for our computations. The action of τ on $\mathbb{P}(1^3, 2^3, 3^3)$ has eigenspace decomposition

Degree	+	-
1	$x_0, x_1 + x_2, x_1 - x_2$	
2	$y_0, y_1 + y_2, y_1 - y_2$	
3	$z_0, z_1 + z_2, z_1 - z_2$	

The relevant part of the fixed locus of τ on the ambient space breaks into two pieces $\text{Fix}(\tau) = \text{Fix}_1 \cup \text{Fix}_2$ and here we have to be a bit careful because of the weighted \mathbb{C}^*-action:

$$\text{Fix}_1 = (x_1 - x_2 = y_1 - y_2 = z_1 - z_2 = 0),$$
$$\text{Fix}_2 = (x_0 = x_1 + x_2 = y_1 - y_2 = z_1 + z_2 = z_0 = 0).$$

The intersection $Y' \cap \text{Fix}_1$ gives five isolated fixed points of τ_0 contained in the curve $(-2, 1, 1) \in |K_{Y'}|$. Indeed, according to Lemma 2.3, the intersection of $F_{(-2,1,1)}$ with $y_1 = y_2$ on \tilde{Y}' is six points, but one of these is the intersection of F with the (-1)-curve preimage of a basepoint of $|K_{Y'}|$, and this basepoint is actually contained in $Y' \cap \text{Fix}_2$. The following proposition treats $Y' \cap \text{Fix}_2$.

Proposition 2.6 (cf. [9]). The fixed curve R of the involution τ on X' is a smooth rational curve. There are smooth curves R_0 and R_0' in Y' with $g(R_0) = 0$ and $g(R_0') = 1$ which intersect transversally at 4 points and $R_0 + R_0' \in |K_{Y'}|$. Moreover, $R_0^2 = -3$ and $R_0'^2 = -2$. The image of R_0 in X' is R and that of R_0' is R'.

Proof. The preimage of R on Y' is the σ-orbit of the intersection $R_0 = \text{Fix}_2 \cap Y'$. By the above eigenspace decomposition, we see that R_0 is a component of the curve C_0 in $|K_{Y'}|$ corresponding to $\alpha_0 = 0$. Since Y' is in \mathcal{M}^s, we see by Lemma 2.3 that C_0 is the intersection of the following quadric and cubic in \mathbb{P}^3:

$$C_0: (2a_{11} - a_{12})t^4 + b_0y_0t^2 + y_1y_2 = ((2a_{11} - a_{12} - d_2)t^4 + y_0^2 + b_0t^2(y_1 + y_2))(y_1 - y_2) = 0.$$

The cubic is clearly reducible, so $C_0 = R_0 + R_0'$ has two components, where R_0 is a nonsingular conic, and R_0' is an intersection of two quadrics in \mathbb{P}^3 (an elliptic curve). The slice $\text{Fix}_2 \cap Y'$ cuts out R_0. Note also that R_0 and R_0' intersect in four points, thus C_0 is a curve of arithmetic genus 4 as expected.

For any given fibre of $\tilde{Y}' \to \mathbb{P}^1$, the locus $(t = 0)$ gives the intersection of that fibre with the three (-1)-curves in \tilde{Y}'. Thus we see from the above equations, that R_0 contains one basepoint and R_0' contains two. This implies that $K_{Y'} \cdot R_0 = 1, K_{Y'} \cdot R_0' = 2$ and the above stated self-intersection numbers follow from the adjunction formula. □

Proposition 2.7. The surface $Z' = X'/\tau$ is rational with five A_1 singularities. If $\psi_{X'}: X'' \to X'$ is the blow-up of the five points fixed by τ, then the quotient $\pi_{Z''}: X'' \to Z''$
is such that Z'' is the minimal resolution of Z', $K_{Z''}^2 = -2$, and the divisor $3K_{Z''} + B$ is nef, where $B := \pi_{Z''}(\psi^*(R))$. The linear system $|3K_{Z''} + B|$ is a base point free pencil of rational curves. There is a sequence of 11 blowdowns from Z'' to \mathbb{P}^2 such that the image of B is an (irreducible) plane curve of degree 10 with five $(3, 3)$-points and one 4-point (i.e., a Campedelli curve).

Proof. Let E_1, \ldots, E_5 be the exceptional curves of $\psi_{X'}$, and let $C_i = \pi_{Z''}(E_i)$. The double cover formula reads

$$K_{X''} \equiv \pi_{Z''}^*(K_{Z''} + \frac{1}{2}(B + C_1 + \cdots + C_5)).$$

With this and the formula for the blow-up, one computes $\pi_{Z''}^*(3K_{Z''} + B) \equiv \psi^*(R')$, because $3K_{X'} \equiv R + R'$. Since $R^2 = 0$, we have that $3K_{Z''} + B$ is nef. The surface Z'' is the minimal resolution of Z', and one computes $K_{Z''}^2 = -2$ with the canonical formula above.

Then we satisfy the requirements of [2, Prop. 3.9], and we belong to the surfaces analyzed in [2, §6]. In particular, by [2, Lemma 6.1], the linear system $|3K_{Z''} + B|$ is a base point free pencil of rational curves. The curves C_1, \ldots, C_5 are components in the fibres. Since the canonical class of X' is ample and by the possibilities in [2, Cor. 6.2], the curves C_i are in distinct fibres. Moreover, each of these fibres is a chain of three rational curves: $A_{i, 1} + C_i + A_{i, 2}$ where the central curve is C_i, and the $A_{i, j}$ are (-1)-curves. One checks that B is a 6-section in this pencil, and intersects each $A_{i, j}$ in three points.

We notice that the image of the linear system $|K_{Y'}|$ in Z' defines a pencil of genus 4 curves with two base points (at the same point). Let Δ in Z'' be the image of $F_\omega + F_{\omega^2}$, where F_ω and F_{ω^2} are the two genus 4 curves in $|K_{Y'}|$ fixed by the action of σ, and permuted by τ. Then Δ is a smooth genus two curve. Let Γ in Z'' be the image of the curve in $|K_{Y'}|$ which contains the five fixed points of τ (see description of fixed loci by τ above). Then Γ is a nodal curve of arithmetic genus 2. Notice that Δ intersects each of the $A_{i, j}$ at one point transversally, and $\Delta \cdot C_i = 0$. Also, Γ intersects each $A_{i, j}$ at one point transversally, and $\Gamma \cdot C_i = 1$. Notice that $B^2 = -6$, $\Delta^2 = 2$, and $\Gamma^2 = 2$.

Let $Z'' \to \mathbb{F}_m$ be the blow-down of one of $A_{i, 1}$ or $A_{i, 2}$ and then C_i for each i, so blow-down ten times, where \mathbb{F}_m is a Hirzebruch surface. If Γ_0 is the $(-m)$-curve in \mathbb{F}_m and F is a fibre, then one verifies

$$\Delta' \sim 2\Gamma_0 + (m + 3)F, \quad \Gamma' \sim 3\Gamma_0 + \frac{1}{2}(9 + 3m)F, \quad B' \sim 6\Gamma_0 + (3m + 7)F$$

where Δ', Γ', B' are the images of Δ, Γ, B. Since none of these curves are equal to Γ_0, we have nonnegative intersection with Γ_0. Using that, one easily shows $m = 1$. This implies that $\Gamma_0 \cdot B' = 4$, $\Gamma_0 \cdot \Delta' = 2$, and $\Gamma_0 \cdot \Gamma' = 3$. Therefore, in \mathbb{P}^2, the image of B is an irreducible degree 10 curve with five $(3, 3)$-points and one 4-point, the image of Δ is a degree 4 curve with a node, and the image of Γ is a degree 6 curve with six nodes and one triple point.

Proposition 2.8. The minimal model of the quotient Y'/τ is a K3 surface with five A_1 singularities.
Proof. We write $\pi_V : Y' \to V'$ for the quotient map. By the adjunction formula for double covers, $K_{Y'} = \pi_V^* K_{V'} + R_0$, by Proposition 2.6 (see also [9]), we know that $K_{Y'} \cdot R_0 = 1$ and $R_0^2 = -3$. Thus $\pi_V^* K_{V'} = -2$, which implies that $K_{V'}^2 = -1$. The residual component R'_0 of C_0 is also τ-invariant, and $\pi_V|_{R'_0}$ is ramified in the four points where R'_0 intersects R_0. Since $3 = C_0^2 = (R_0 + R'_0)^2 = -3 + 2 \cdot 4 + R'_0^2$, we see that $R'_0^2 = -2$, and hence $\pi_V^*(R'_0)$ is a (-1)-curve. Thus $\pi_V^*(R'_0)$ is contracted to get V'_\min. Since $R_0 + R'_0 = C \in |K_{Y'}|$, it follows from the projection formula that $K_{V'_\min}$ is numerically trivial, and we also know that $p_g(V'_\min) = 1$, because we computed the invariants of τ above. Thus V'_\min is a K3 surface. \qed

In the right column of Figure 1, we show the situation described in this section. In the next section we will describe and use the degenerated situation shown at the left side of Figure 1.

3 A stable $\mathbb{Z}/3$-Godeaux with $\frac{1}{4}(1,1)$ singularity

3.1 Covering with three $\frac{1}{4}(1,1)$ and Dolgachev 3, 3 surface

We now consider the divisor Y in \mathcal{M} defined by $b_0 = 0$, previously considered in [8]. According to Proposition 2.2, Y is covered by an 8-dimensional parameter space divided out by a \mathbb{C}^*-action. Moreover, the space of admissible parameters is connected and so Y is irreducible.
Lemma 3.1. The general member Y in \mathcal{Y} has a free σ-action and $3 \times \frac{1}{3}(1,1)$ points forming an orbit under σ, one at each of the coordinate points P_y. After taking the quotient by σ, we get a stable $\mathbb{Z}/3$-Godeaux surface with a single $\frac{1}{3}(1,1)$ singularity.

Proof. We work in a neighbourhood of $P = P_y$. Relations R_0, R_2 and S_1 serve to eliminate variables y_0, y_2, z_1 in favour of local coordinates x_1, x_2, z_2. Thus P is a hypersurface singularity inside the $\frac{1}{3}(1,1,1)$ point induced by the \mathbb{C}^*-action on the ambient space. The tangent cone of $T_1 - \bar{b}_1 R_0$ is a quadric of rank 3 in the local coordinates, and hence P is a $\frac{1}{3}(1,1)$ singularity.

The nonsingularity and irreducibility of Y follows by a computer calculation for choices of parameters. The fact that σ is fixed point free is a standard computation. \hfill \square

Under the degeneration $Y' \sim Y$, the three basepoints of $|K_Y|$ deform to the $\frac{1}{3}(1,1)$ singular points P_0, P_1, P_2 of Y. The resolution $\phi_Y: \tilde{Y} \rightarrow Y$ is given by a single blow up at each of P_0, P_1, P_2 with exceptional (-4)-curves E_0, E_1, E_2. Indeed,

$$K_{\tilde{Y}} \equiv \phi^*_Y(K_Y) - \frac{1}{2}(E_0 + E_1 + E_2),$$

and \tilde{Y} has an elliptic fibration over \mathbb{P}^1 given by the vector space of global sections

$$H^0(K_{\tilde{Y}}) = \langle x_0, x_1, x_2 \rangle / (\sum x_i = 0),$$

where we abuse notation to write $x_i = \phi^*_Y(x_i)$. The image of a fibre under ϕ_Y is a curve of arithmetic genus 4 with three nodes at basepoints P_0, P_1, P_2.

By the Kodaira formula for the canonical class, $K_{\tilde{Y}} \sim (\chi(\mathcal{O}_{\tilde{Y}}) - 2)F + \gamma F$, where F is a fibre and γ is a term which is zero if and only if there are no multiple fibres. Since $\chi(\mathcal{O}_{\tilde{Y}}) = 3$ and the fibration is induced by $|K_{\tilde{Y}}|$, we see that there are no multiple fibres, and the E_i are 2-sections of the fibration. The automorphism σ acts on the base of the fibration, and the fibres corresponding to $(1, \omega, \omega^2)$ and $(1, \omega^2, \omega)$ are σ-invariant. According to Lemma 2.3 above, each fibre has a birational model as the intersection of a quadric and a cubic in \mathbb{P}^3.

We consider now the special case when Y has an involution.

Proposition 3.2. The general surface Y in \mathcal{Y}^8 with \mathfrak{S}_3-action has three fibres of type I_4 forming an orbit under σ, 24 I_1 fibres comprising eight orbits, and the two σ-invariant fibres F_ω and F_{ω^2} are nonsingular.

Proof. Consider the fibre F_0 corresponding to $(0, 1, -1)$ in $|K_{\tilde{Y}}|$. Since $b_0 = 0$ for Y in \mathcal{Y}^8, we use the proof of Proposition 2.6 to write $\psi_Y(F_0)$ as

$$Lt^4 + y_1 y_2 = 0, \quad (Mt^4 - y_0^2)(y_1 - y_2) = 0,$$

where for brevity we write $L = 2a_{11} - a_{12}$ and $M = 2a_{11} - a_{12} - d_2$. A short calculation shows that by generality assumption, F_0 breaks into four components given by

- $F_0^1: \lambda t^2 + iy_1 = y_1 - y_2 = 0,$
- $F_0^2: \lambda t^2 - iy_1 = y_1 - y_2 = 0,$
- $F_0^3: \mu t^2 + y_0 = Ly_0^2 + My_1 y_2 = 0,$
- $F_0^4: \mu t^2 - y_0 = Ly_0^2 + My_1 y_2 = 0.$
where $\lambda^2 = L$, $\mu^2 = M$. From the equations, we see that $P_0 \in F_0^1, F_0^2$, whereas $P_1, P_2 \in F_0^3, F_0^4$.

Thus F_0 is an I_4 fibre $F_0 = F_0^1 + F_0^2 + F_0^3 + F_0^4$ where F_0^1 and F_0^2 are opposite sides, and the 2-sections intersect F_0 as follows: E_0 intersects F_0^1 and F_0^2 transversally, while E_1 and E_2 intersect F_0^3 and F_0^4 transversally. See Figure 1.

Standard Euler number considerations predict the general \widetilde{Y} has a further 24 nodes in fibres. We compute directly that for general Y, these correspond to 24 I_4 fibres. Indeed, let S be the disjoint union $S = \bigsqcup \{C : C \in |K_Y|^0\}$, where $|K_Y|^0$ means we ignore the three I_4 fibres where one of $\alpha_i = 0$. Then $S \subset \mathbb{P}^3 \times (\mathbb{P}^1 - \{3 \text{ points}\})$ is the relative sextic complete intersection of quadric and cubic described in Lemma 2.3(i). Consider the affine piece S_t where t is nonzero, to ignore the three lines of nodes in S. The Jacobian subscheme J of S is codimension 2 in the ambient space, defined by 2×2 minors of the Jacobian matrix which has entries of degree $\left(\frac{15}{2}, \frac{1}{2} \frac{1}{2}\right)$. Thus J has relative degree 7. Intersecting with S_t decreases this degree by 3 because of the three nodes on every curve, and so the expected degree of $S_t \cap J$ is $6 \times (7 - 3) = 24$. We check using a computer that this intersection is indeed reduced, and comprises 24 points on distinct fibres.

A direct computation using equations (2.1) shows that F_ω and $F_{\omega, 2}$ are nonsingular for general Y.

\begin{corollary}
The quotient surface $\widetilde{X} = \overline{Y}/\sigma$ is a Dolgachev $(3, 3)$-surface, that is an elliptic surface with two fibres of multiplicity 3. It also has one I_4 fibre, eight I_1 fibres and a 6-section E.
\end{corollary}

\begin{theorem}
The topological fundamental group of a $\mathbb{Z}/3$-Godeaux surface is $\mathbb{Z}/3$.
\end{theorem}

\begin{proof}
The action of σ in a \mathbb{Q}-Gorenstein degeneration $Y' \sim Y$ over a disc is such that the quotient is a \mathbb{Q}-Gorenstein degeneration $X' \sim X$ over a disc. From X to X', we are \mathbb{Q}-Gorenstein smoothing the $\frac{1}{4}(1, 1)$ singularity of X. On the other hand, the resolution of X is a Dolgachev $(3, 3)$-surface \widetilde{X}, and so X has topological fundamental group $\pi_1(X)$ isomorphic to $\mathbb{Z}/3$.

We now follow the strategy in [11]. Using Seifert–van-Kampen theorem, we have that $\pi_1(X) \simeq \left(\pi_1(X \setminus E) \ast \pi_1(U)\right)/\langle \gamma \rangle_n$ where U is a small neighborhood of the singularity in X, and so $\pi_1(U)$ is trivial, γ is a loop around E in $X \setminus E$, and $\langle \gamma \rangle_n$ is the smallest normal subgroup in $\pi_1(X \setminus E)$ containing γ. But by Proposition 3.2 there is a \mathbb{P}^1 from the I_4 fibre in \widetilde{X}, which intersects the 6-section E transversally at one point, and so γ is trivial in $\pi_1(X \setminus E)$. Therefore $\pi_1(X \setminus E) \simeq \mathbb{Z}/3$. Now, since $X' \sim X$ is \mathbb{Q}-Gorenstein smoothing, the surface X' is homeomorphic to $X \setminus E$ union the Milnor fibre M_f of $\frac{1}{4}(1, 1)$ corresponding to the smoothing, glued along the corresponding link L. So we apply Seifert–van-Kampen theorem again to X' using that decomposition. Since the generator γ of $\pi_1(L)$ is trivial in $\pi_1(X \setminus E)$ and the inclusion induces $\pi_1(L) = \mathbb{Z}/16 \rightarrow \pi_1(M_f) = \mathbb{Z}/4$, we obtain that $\pi_1(X') \simeq \mathbb{Z}/3$. Similarly, one can use the same strategy with the \mathbb{Q}-Gorenstein degeneration $Y' \sim Y$ and the elliptic fibration \overline{Y}, to prove that Y' is simply-connected, and so $\pi_1(X') \simeq \mathbb{Z}/3$.
\end{proof}
3.2 Stable Campedelli double plane, K3 quotient and its flipped family

As before, since the involutions τ_i are conjugate under the action of σ, we use $\tau = \tau_0$ for our computations. The following explains how the involution descends to \tilde{X}.

Proposition 3.5. The action of τ on \tilde{X} has two invariant fibres, and swaps the two fibres of multiplicity three. One of the invariant fibres is the I_4 fibre, of which two components are fixed pointwise. The other invariant fibre is nonsingular and contains four isolated fixed points.

Proof. From Proposition 3.2, the intersections of Fix_i with Y are:

$$Y \cap \text{Fix}_1 = P_0 \cup \text{four points on the fibre } F_{(-2,1,1)},$$

$$Y \cap \text{Fix}_2 = F_0^1 + F_0^2 =: R_0.$$

We can check that $F_{(-2,1,1)}$ is nonsingular directly using Lemma 2.3. Moreover, the two σ-invariant fibres are exchanged by τ. The involution must act nontrivially on the 6-section E, fixing two points which are the intersection points of E with Fix_2 from above.

The 2-sections E_1 and E_2 on \tilde{Y} form an orbit under τ, while E_0 is invariant with two fixed points at the intersection with the I_4 fibre.

Corollary 3.6. The quotient \tilde{X}/τ has four A_1 singularities on one fibre. Its resolution is the blow-up at two points of a relatively minimal rational elliptic surface with one fibre of multiplicity three. The singular fibres are I_2, I_0^*, and four I_1. Thus a contraction of \tilde{X}/τ to \mathbb{P}^2 gives a Halphen pencil of index 3.

We now describe the corresponding stable Campedelli double plane which is an analogue of Proposition 2.7. We introduce some notation. Let $\tilde{X} \to \tilde{X}$ be the blow-up at the four points fixed by τ, and let \tilde{Z} be the minimal resolution of \tilde{X}/τ. Let $\pi_{\tilde{Z}}: \tilde{X} \to \tilde{Z}$ be the quotient by τ. Let B_1, B_2 be the image by $\pi_{\tilde{Z}}$ of the fixed curve by τ in \tilde{X}, and let C_1, C_2, C_3, C_4 be the image of the exceptional curves of $\tilde{X} \to \tilde{X}$. Thus, $B_1 + B_2 + C_1 + \ldots + C_4$ is the branch curve of $\pi_{\tilde{Z}}$. Let $A_1 + A_2 + B_1 + B_2$ be the image of the I_4 fibre by $\pi_{\tilde{Z}}$, and so A_1, A_2 and B_1, B_2 are opposite sides of the new I_4, and $A_1^2 = -1, B_i^2 = -4$. Let E_0 be the image by $\pi_{\tilde{Z}}$ of the (-4)-curve from E in \tilde{X}. Let Γ be the image by $\pi_{\tilde{Z}}$ of proper transform of the fibre in \tilde{X} which contains the four fixed points by τ. Finally, let Δ be the image by $\pi_{\tilde{Z}}$ of the two multiple fibres in \tilde{X}.

Proposition 3.7. The linear system defined by $A_1 + E_0 + A_2 \sim 3K_{\tilde{Z}} + E_0 + B_1 + B_2$ defines a genus 0 fibration $f: \tilde{Z} \to \mathbb{P}^1$, which pulls back to \tilde{X} as a genus 2 fibration. Each C_i belongs to one fibre of f which is formed by (-1)-curves $A_{i,1}, A_{i,2}$ and C_i. The blow-down of $A_1, A_{1,1}, \ldots, A_{4,1}$ and E_0, C_1, \ldots, C_4 is the blow-up at one point of \mathbb{P}^2. After blowing-down to \mathbb{P}^2 the curves B_1, B_2 become quintics such that $B_1 + B_2$ has four $(3,3)$-points, one 4-point, and one singular point of the form $\{(y^2 - x^2)(y^2 - x^4) = 0\}$ locally at $(0,0) \in \mathbb{C}^2_{x,y}$. We also realize Δ as a quartic with two nodes, and Γ as a sextic with two triple points and four double points.
Proof. The linear system $|A_1 + E_0 + A_2|$ defines a rational fibration in \widetilde{Z}. The curve $B_1 + B_2$ is a 6-section, and so the pull back is a fibration of genus 2 curves. Notice that the curves C_i are in fibres of $|A_1 + E_0 + A_2|$. The options for the irreducible components of the fibre containing C_i are as in \cite[Cor. 6.2]{2}. In \widetilde{X} a (-2)-curve has to intersect the 6-section E since K_X is ample. Therefore, as in Proposition \ref{prop:2.7} the only possible irreducible components for a fibre containing C_i are two (-1)-curves $A_{i,1}$, $A_{i,2}$, so that they form a chain with C_i as central curve. Since after blowing down A_1, A_2 we obtain a relatively minimal Halphen fibration of index 3, one can check that Γ intersects each $A_{i,j}$ transversally at one point. Notice that $\Gamma \cdot C_i = 1$ as well, and Γ is a 3-section of $|A_1 + E_0 + A_2|$. Also, $\Delta \cdot A_{i,j} = 1$ for all i, j, and Δ is a 2-section of $|A_1 + E_0 + A_2|$. We also have $B_j \cdot A_i = 1$, $B_i \cdot E_0 = 1$, $B_i \cdot B_2 = 0$, $\Delta^2 = 0$, and $\Gamma^2 = -2$. Since $K_Z^2 = -2$, after blowing down $A_1, A_{1,1}, \ldots, A_{4,1}$ and E_0, C_1, \ldots, C_4 we arrive to a Hirzebruch surface \mathbb{F}_m. Since we know the self-intersections of the images of Δ, Γ, and $B_1 + B_2$, we obtain as in Proposition \ref{prop:2.7} that $m = 1$.

Now the point is that $B_1 + B_2$ has degree 10 in \mathbb{P}^2, but there are possibilities for the degrees of B_1 and B_2. Since A_1, E_0 gives nodes to B_1 and B_2, the degree cannot be smaller than 3. The possibilities of $B_k \cdot A_{i,1}$ are 0, 1, 2, 3. We check that the only possibility that works is B_k intersects two $A_{i,1}$ at two points each (possible infinitely near) and the other two at one point each. Therefore, each B_k becomes a quintic in \mathbb{P}^2. The image in \mathbb{P}^2 of Δ is a quartic with two nodes, and the image of Γ is a sextic with two triple points and four double points. \hfill \square

Proposition 3.8. The minimal model of the quotient \widetilde{Y}/τ is a K3 surface, which has an elliptic fibration with singular fibres I_2, I_4 and I_0^*, a (-2)-curve which is a 2-section, and a (-4)-curve which is a 4-section.

Proof. Let us consider the I_4 fibre $F_0 = \sum_{i=1}^{4} F_0^i$ that is τ-invariant $= \tau_0$. Under the quotient by τ, the two curves F_0^1 and F_0^2 that are pointwise fixed go to (4)-curves, while F_0^3 and F_0^4 of go to (1)-curves. After contracting the (1)-curves, we get an I_2 fibre. The other two I_2 fibres are identified to give a single I_4 fibre. The nonsingular invariant fibre maps to an I_0^* after resolving the four A_1 singularities. The two (4)-curves E_1 and E_2 which form a τ-orbit are identified to give a (4)-curve which is a 4-section. After blowing down F_0^3 and F_0^4, it passes through the two nodes of the I_2-fibre. The image of the single (4)-curve E_0 is a (2)-curve which is a 2-section. The multiplicity 2 of the (1)-components disappears after contracting and stays in the central curve of the I_0^*, so there are no multiple fibres. Notice that $p_g = 1$, and so the minimal model of \widetilde{Y}/τ_0 is a K3 surface. \hfill \square

Let $\pi_V: Y \to V$ be the quotient by τ. Notice that V has five A_1 singularities (four from the four fixed points, and one from two of the $\frac{1}{3}(1,1)$ singularities), and one $\frac{1}{3}(1,1)$ singularity. The minimal resolution \widetilde{V} of V is the minimal resolution of \widetilde{Y}/τ. Using the notation in the proof of Proposition \ref{prop:3.8}, let D_1 and D_2 be the images of F_0^3 and F_0^4 in V. Notice that in \widetilde{V}, the proper transforms of D_1 and D_2 are (1)-curves intersecting transversally at one point the (4)-curve which is the exceptional divisor of the $\frac{1}{3}(1,1)$ singularity. See Figure \ref{fig:1} for this and what follows.
We have $V' \sim V$, where $V' := Y'/\tau$ is the blow-up at one point of a nodal K3 surface, as in Proposition 2.8. Let us consider that degeneration over a disc \mathbb{D}. This is, we consider the \mathbb{Q}-Gorenstein deformation $(V \subset V') \to (0 \in \mathbb{D})$ where V' is a fibre for some $t \in \mathbb{D} \setminus \{0\}$. Let $V \to U$ be the contraction of the curve D_1. Then, there is a blow-down deformation $(U \subset U') \to (0 \in \mathbb{D})$ which commutes with $V \to \mathbb{D}$ over \mathbb{D}. This and what follows is explained in [6], see also [19, §2]. In this way, we have an extremal neighborhood $(V' \subset V') \to (0 \in \mathbb{D})$ where V' is a fibre for some $t \in \mathbb{D} \setminus \{0\}$. Let $V \to U$ be the contraction of the curve D_1. Then, there is a blow-down deformation $(U \subset U') \to (0 \in \mathbb{D})$ which commutes with $V \to \mathbb{D}$ over \mathbb{D}. This and what follows is explained in [6], see also [19, §2]. In this way, we have an extremal neighborhood $(D_1 \subset V') \to (Q \in U)$ of type k1A. Notice that $(Q \in U)$ is a $\frac{1}{3}(1,1)$ singularity. This extremal neighborhood is of flipping type, and it is the simplest case among all k1A (see [19, Prop.2.15]). After we perform the flip, we obtain a Gorenstein deformation $(V'' \subset V') \to (0 \in \mathbb{D})$ where V'' is the minimal resolution of U. Hence the flipping curve is the (-3)-exceptional curve. Since this was a flip, the fibre V' in V appears also in V_1.

![Figure 2: Birational transformations on K3 family](image)

After that, the proper transform of D_2 together with the (-1)-curve in V' generate a contractible divisor in V_1. After this divisorial contraction, we obtain a Gorenstein deformation $(V_2 \subset V_2') \to (0 \in \mathbb{D})$ where V_2 is the blow-down of $D_2 \subset V_1$, and the general fibre is a nodal K3 surface V''_1. Notice that the branch curve of $V'' \to V'$ in V_1' has a 4-point, and degenerates nontrivially to a nonreduced curve formed by three irreducible components (one with multiplicity 2), two passing through one A_1, and the three together having two 3-points in the smooth locus of V_2, as shown in Figure 2. We have proved:

Proposition 3.9. The \mathbb{Q}-Gorenstein deformation $V' \sim V$ over a disk \mathbb{D} is birationally equivalent over \mathbb{D} to a Gorenstein deformation $V'' \sim V_2$, where V'' is the blow-down of a (-1)-curve in V', and V_2 is the K3 surface with five nodes obtained after the flip and divisorial contraction explained above.

3.3 Stable rational $\mathbb{Z}/3$-Godeaux surfaces

A known method for producing $\frac{1}{n}(1, n-1)$ singularities on an elliptic fibration is to merge a nodal fibre with a multiple fibre of multiplicity n; see e.g. [7], [19, §4]. We apply this method with $n = 3$ to the Dolgachev (3, 3) surfaces \tilde{X}. To achieve that, we first merge a nodal fibre in \tilde{Y}, the universal cover of \tilde{X}, with a σ-fixed fibre so that \tilde{Y} acquires an A_2 singularity. Then the quotient by σ gives what we want. We can do this independently with each of the two fixed fibres. In fact, this approach extends to Y' in \mathcal{M} with a single A_2-singularity that is fixed by σ. For such Y', one of the σ-invariant genus 4 fibres of the canonical pencil $\tilde{Y}' \to \mathbb{P}^1$ acquires a node.
Proposition 3.10. There are two divisors B_ω and B_{ω^2} each defined by hypersurfaces in \mathcal{M} corresponding to surfaces Y with an A_2 singularity that is fixed by σ. The quotient X of such a surface is a Godeaux surface with a $\frac{1}{3}(1, 2)$ singularity.

Proof. We consider the σ-invariant fibre F_ω on Y, corresponding to $(1, \omega, \omega^2)$ in $H^0(K_Y)$. The computation for F_{ω^2} is similar. Suppose F_ω has a node Q. Since Q is a distinguished point of F_ω, it is fixed by σ. Thus by Lemma 2.3 and the discussion following, $Q = (1, \lambda, \omega^2 \lambda, \omega \lambda)$ in \mathbb{P}^3 for some λ. We substitute Q into the equations for F_ω and rearrange a little to get the following two conditions:

\[
\begin{align*}
\lambda^2 &= (b_0 + \omega^2 b_1)\lambda + \omega^2 a_{11} + a_{12} + \omega a_{22} \\
2\lambda^3 &= -3((\omega^2 d_2 + \omega d_3)\lambda + \omega c_2 + \omega^2 c_3).
\end{align*}
\] (3.1)

Eliminating λ gives a single hypersurface in \mathcal{M} defining B_ω. The other divisor B_{ω^2} is obtained by interchanging ω and ω^2.

It remains to check that the general surface in B_ω has a single A_2 singularity and no others. Consider a neighbourhood U of $Q \in F_\omega$ in Y. We can write U as the complete intersection in $\mathbb{A}^3 \times \Delta_s$ given by the equations of Lemma 2.3(i) with $\alpha_1 = \omega + s$ and $\alpha_2 = \omega^2 - s$, where s is the coordinate on the disc Δ and we assume $t \neq 0$. A careful (but tedious) analysis of the two equations confirms that Q is an A_2 singularity for the general surface in B_ω.

Remark 3.11. The hypersurface defining B_ω is too large to reproduce here, so we consider B_ω^s, the restriction of B_ω to \mathcal{M}^s. In fact, we have $B_\omega^s = B_{\omega^2}^s = (B_\omega \cap B_{\omega^2})^s$, because the involution maps the first A_2 singularity to a second A_2 singularity. The hypersurface in \mathcal{M}^s defining $(B_\omega \cap B_{\omega^2})^s$ is

\[
\frac{2}{3}(a_{11} - a_{12})^3 + 2(a_{11} - a_{12})^2 d_2 + (a_{11} - a_{12})(3b_0 c_2 - b_0^2 d_2 + \frac{3}{2} d_2^2) + \frac{1}{2} c_2(3c_2 + 3b_0 d_2 - 2b_0^3).
\]

Lemma 3.12. All intersections between \mathcal{Y}, B_ω, and B_{ω^2} are transversal. Thus, for a general Y in any of these intersections, each singularity of Y can be \mathbb{Q}-Gorenstein smoothed independently, and the same applies to the Godeaux quotient X, see Figure 3 below.

Proof. Let Y be a general surface in $\mathcal{Y} \cap B_\omega$. For simplicity, we work analytically on B_ω, but the Lemma also holds in the algebraic setting. From equation (3.1) above, we can solve for λ using the quadratic, and substitute into the cubic to get an analytic hypersurface defining B_ω.

To smooth the $\frac{1}{4}(1, 1)$ singularity, let Y_ε be the surface with parameters $b_0 = \varepsilon$, $b_1 = b_1 - \varepsilon \omega$ and all others the same as those for Y. Thus Y_ε remains in B_ω, but is no longer in \mathcal{Y}. To smooth the $\frac{1}{9}(1, 2)$ singularity, simply vary one of a_{ij} or b_1 while fixing $b_0 = 0$ and the other parameters, so that any root of the quadratic is no longer a root of the cubic in (3.1).}

Let X_i for $i = 1, 2, 3$ be stable Godeaux surfaces such that X_1 has one $\frac{1}{9}(1, 2)$ singularity, X_2 has one $\frac{1}{4}(1, 1)$ and one $\frac{1}{9}(1, 2)$, and X_3 has one $\frac{1}{4}(1, 1)$ and two $\frac{1}{9}(1, 2)$ singularities. Let Y_i be the corresponding cyclic cover of X_i. All of them relate under \mathbb{Q}-Gorenstein degenerations as shown in Figure 3.

14
Proposition 3.13. The surfaces X_2 and X_3 are rational.

Proof. Let $i = 2, 3$. By construction, if $\tilde{Y}_i \to Y_i$ is the minimal resolution of the three $\frac{1}{4}(1,1)$ singularities, then there is an elliptic fibration $\tilde{Y}_i \to \mathbb{P}^1$ such that the A_2 singularity(ies) is(are) in the node of an(two) I_1 fibre(s) F_w and/or F_{w2} that are σ-invariant. The quotient $\tilde{X}_i := \tilde{Y}_i/\sigma$ is the minimal resolution of X_i at the $\frac{1}{4}(1,1)$ singularity. Therefore, there is an elliptic fibration $X_i \to \mathbb{P}^1$ with an(two) I_1 fibre(s) such that the $1/9(1,2)$ of the surface is(are) at the node(s), and that (those) fibre(s) is(are) multiple with multiplicity 3. Take one $1/9(1,2)$ singularity and minimally resolve. Then the multiple fibre becomes an I_3 fibre in the induced elliptic fibration. Notice that $K_{\tilde{X}_i}^2 = 0$, and so the self-intersection of the canonical class in the resolution is -2. Therefore the proper transform of the I_1 is a (-1)-curve.

In the case $i = 2$, we obtain an elliptic fibration with $p_g = q = 0$ and one multiple fibre of multiplicity 3. This corresponds to a Halphen pencil of index 3 in \mathbb{P}^2. In the case $i = 3$, we obtain an elliptic fibration with $p_g = q = 0$ and no multiple fibre. This corresponds to a pencil of cubics in \mathbb{P}^2. So in both cases they are rational surfaces.

Proposition 3.14. The surface X_1 is rational.

Proof. Assume X_1 is not rational. Let \tilde{X}_1 be its minimal resolution, and let S be the minimal model of \tilde{X}_1. We know that S cannot be of general type since $K_{\tilde{X}_1}^2 = 1$ and $K_{\tilde{X}_1}$ is ample; see e.g. [19] Prop. 3.6]. Therefore $K_{S}^2 = 0$. Also, we have that $K_{\tilde{X}_1}^2 = 1-2 = -1$, and so S is the blow down of one (-1)-curve $E \subset \tilde{X}_1$. Let Γ_1 be the (-2)-curve in the exceptional divisor of $\tilde{X}_1 \to X_1$, and let Γ_2 be the (-5)-curve. Since K_S is nef, we have that E cannot touch Γ_1. Let $m = E \cdot \Gamma_2$. Since $K_{\tilde{X}_1}$ is ample, we have $m \geq 2$. Since K_S is nef, we have $m \leq 3$. If $m = 3$, then S cannot have Kodaira dimension 1 since $K_S \cdot \Gamma_5' = 0$ and Γ_5' is not a fibre of an elliptic fibration (image of Γ_2). Therefore S must be an Enriques surface since $p_g(X_1) = q(X_1) = 0$. Then $\pi_1(X_1) = \mathbb{Z}/2$. On the other hand, we have a \mathbb{Q}-Gorenstein smoothing $X' \to X_1$ over a disk \mathbb{D}, where X' is a nonsingular $\mathbb{Z}/3$-Godeaux surface, and so we have a surjective morphism $\pi_1(X') = \mathbb{Z}/3 \to \pi_1(X_1) = \mathbb{Z}/2$, which is a contradiction.
Thus $m = 2$. Let us again consider the \mathbb{Q}-Gorenstein smoothing $X' \rightsquigarrow X_1$ over \mathbb{D} above. We notice that a loop α around Γ_2 will satisfy $\alpha^2 = 1$ in $\pi_1(\tilde{X}_1 \setminus \{ \Gamma_1 \cup \Gamma_2 \})$, because $\Gamma_2 \cdot E = 2$, $\Gamma_1 \cdot E = 0$, and $E = \mathbb{P}^1$. But $\alpha^3 = 1$ as well, and so α is trivial in $\pi_1(\tilde{X}_1 \setminus \{ \Gamma_1 \cup \Gamma_2 \})$. By the same Seifert–Van-Kampen argument in Theorem [3.4] this would imply $\pi_1(X_1) = \pi_1(X') = \mathbb{Z}/3$. Then S is a Dolgachev surface with two multiple fibres of multiplicities 3 and 1 because $\Gamma_2 \cdot \mathcal{D}_{12} = 1, \Gamma_2 \cdot E = 2, \Gamma_2 \cdot \mathcal{D}_{11} = 1$ where $3at$ is the degree of the multi-section Γ_2' in the elliptic fibration of S. Then $a = b = t = 1$, and Γ_2' is a 3-section.

We now consider the \mathbb{Q}-Gorenstein degeneration $X_1 \rightsquigarrow X_2$ over \mathbb{D} above. Since around the singularity $1/9(1,2)$ this deformation is trivial, we resolve simultaneously to obtain a \mathbb{Q}-Gorenstein smoothing $X'_1 \rightsquigarrow X'_2$ over \mathbb{D} (of the singularity $1/4(1,1)$). Since $K^2_{X'_1} = -1$, the canonical class of the 3-fold is nef. As in [20 §2], we either have a divisorial contraction or a flip for the family (the other “ending options” are not possible). In case of a flip, the central fiber would become smooth, and then there would be a contradiction since the Kodaira dimension must be constant in a smooth deformation (and X_2 is rational by the previous proposition). So we have a divisorial contraction, and it must correspond to a (-1)-curve in X'_2 which does not touch the singularity $1/4(1,1)$. But then in the general fiber this (-1)-curve propagates as the curve E above. So we contract this divisor in the family, to obtain another \mathbb{Q}-Gorenstein smoothing $X''_1 \rightsquigarrow X''_2$ over \mathbb{D}, where X''_2 is a Dolgachev $3,3$ surface. But now the canonical class of the 3-fold must be nef (again flips are not allowed by the above argument) and so, by [7 Theorem 5.1], the canonical class of this new 3-fold has index 3 (or 1), but this is locally a \mathbb{Q}-Gorenstein smoothing of $1/4(1,1)$, which has index 2, a contradiction.

\[\square\]

4 On $\mathbb{Z}/4$-Godeaux surfaces

4.1 Setup and involution

Start with $\mathbb{P}(1,1,1,2,2)$ with coordinates x_1, x_2, x_3, y_1, y_3 and a $\mathbb{Z}/4$-action

$$\sigma: (x_1, x_2, x_3, y_1, y_3) \mapsto (ix_1, -x_2, -ix_3, iy_1, -iy_3).$$

Now let Y' be the intersection of two quartics q_0 and q_2 in eigenspaces 0, 2 of the form

$$q_0: x_1^4 + x_2^4 + x_3^4 + x_1^2 x_2^2 + a_1 x_1 x_2 x_3 + a_2 x_1 x_2 y_1 + a_3 x_2 x_3 y_3 + a_4 y_1 y_3,$$

$$q_2: x_1^2 x_2^2 + x_2^2 x_3^2 + y_1^2 + y_3^2 + b_1 x_1^2 x_3 + b_2 x_1 x_3^2 + b_3 x_1 x_2 y_3 + b_4 x_2 x_3 y_1.$$

Reid [15] (see also [13]) showed that for general choices of parameters a_i, b_i, the surface Y' is the nonsingular canonical model of general type with $p_g = 3, K^2 = 4$ and a free $\mathbb{Z}/4$-action, whose quotient X' is a Godeaux surface with $\pi_1 = \mathbb{Z}/4$. Their coarse moduli space is 8-dimensional, irreducible and unirational. As before, we use \mathcal{M} for the KSBA moduli space of stable $\mathbb{Z}/4$-Godeaux surfaces.

Remark 4.1. For future use, we want to allow certain monomials to appear with coefficient zero, thus we do not use the above displayed parameters.
Following Keum–Lee [§4.3], there is a 4-dimensional family $\mathcal{M}^s \subset \mathcal{M}$ with an involution τ on X' induced by the following action on Y':

$$\tau: (x_1, x_2, x_3, y_1, y_3) \mapsto (-x_1, x_2, -x_3, y_1, y_3).$$

(4.1)

The group generated by τ and σ is $\mathbb{Z}/2 \times \mathbb{Z}/4$. For surfaces in \mathcal{M}^s, the allowed monomials for q_0 and q_2 are

$$q_0: x_1^4, x_2^4, x_3^4, x_1^2x_2^2, x_1x_2x_3, y_1y_3,$$
$$q_2: x_1^2x_2, x_2^2x_3, x_1^2x_3, x_1x_3^2, y_1^2, y_2^2.$$

Let Y' in \mathcal{M}^s be the nonsingular cover of a $\mathbb{Z}/4$-Godeaux $X' = Y'/\sigma$. The following Lemma is an easy version of Proposition [2.6].

Lemma 4.2. The fixed curve R_0 of τ on Y' is the curve of genus 5 defined by $(x_2 = 0)$. The five σ-orbits Q_1, \ldots, Q_5 on Y' corresponding to the five isolated fixed points P_1, \ldots, P_5 of τ on $X' = Y'/\sigma$ are given by $Q_1: (x_1 = x_3 = 0)$ and $Q_2, \ldots, Q_5: (y_1 = y_3 = 0)$. The σ-orbit Q_1 is pointwise fixed by τ, whereas Q_2, \ldots, Q_5 are only τ-invariant.

Remark 4.3. The Classification Theorem of [2] implies that the quotient X'/τ must be an Enriques surface, and by [12 Thm 3.2], this is the unique involution on any Godeaux surface such that the quotient is an Enriques surface. We work out this quotient in detail below.

First note that $H^0(3K_{Y'})^{\text{inv}} = \langle x_1x_2, x_2x_3^2 \rangle$, and so $|3K_{Y'}^{\text{inv}} - R_0|$ is the pencil in $[2K_{Y'}]$ spanned by x_1^2, x_2^2; cf. [9 §4]. Next consider the pencil Λ in $|K_{Y'}|$ spanned by x_1, x_3, of genus 5 curves on Y' with four base points forming the σ-orbit Q_1. By construction of Y', we see that σ acts as an involution on Λ. Thus each curve in $|3K_{Y'}^{\text{inv}} - R_0|$ is a reducible curve $C + \sigma(C)$ for C in Λ, with a node at each of the four basepoints.

Lemma 4.4. The image $\Lambda_{X'}$ of Λ on X' is a pencil of curves of geometric genus 3 with one node at the only basepoint P_1. Each curve in $\Lambda_{X'}$ is the image of a σ-orbit of two curves in Λ. The other four isolated fixed points P_2, \ldots, P_5 of τ appear as second nodes on four distinct curves in $\Lambda_{X'}$. Finally, there are two τ-invariant curves in $\Lambda_{X'}$.

Proof. The description of the general curve in $\Lambda_{X'}$ follows from the discussion preceding the Lemma. Using an easier version of the same computation as in the proof of Proposition [3.2] we see that for $i = 1, \ldots, 4$, the σ-orbit $C_i + \sigma(C_i)$ in Λ passing through Q_i has a node at each of the four points of Q_i. Thus the image of this orbit under quotient by σ is a curve with two nodes, one at P_1 and the other at P_i. The two τ-invariant curves in Λ are the images of $F_1: (x_1 = 0)$ and $F_3: (x_3 = 0)$. \[\square \]

Let R denote the image of R_0 in X'. Then R is a smooth genus 2 curve with $R^2 = 1$, and the above Lemma shows that $\Lambda_{X'} = |3K_{X'} - R|$.

Corollary 4.5. The pencil $\Lambda_{X'}$ descends to an elliptic half pencil on the Enriques surface given by the minimal resolution of the five A_1 points in $Z' = X'/\tau$. The image of R is a 2-section of the pencil on Z'.

17
Corollary 4.6. For general Y' in \mathcal{M}^s, the quotient $V' := Y'/\tau$ is a nodal K3 surface $(2,2,2) \subset \mathbb{P}^5$ with four A_1 singularities. The minimal resolution of V' is a K3 surface with the elliptic fibration image of the pencil $\Lambda = \langle x_1, x_3 \rangle \subset |K_{Y'}|$, and so the four (-2)-curves coming from the A_1 are sections.

Proof. The invariant monomials of the τ-action on Y' are $x_2, v_1 = x_1^2, v_2 = x_1 x_3, v_3 = x_3^2, y_1, y_3$. There is one monomial relation between these generators: $v_1 v_3 = v_2^2$, and the two quartics q_0 and q_2 can also be expressed in terms of the invariants. This gives a complete intersection $(4, 4, 4) \subset \mathbb{P}(1,2,2,2,2)$ which is however, not well formed. The variable x_2 appears only as a square, so we can divide all weights by two and set $v_0 = x_2^2$ to get the K3 surface $(2,2,2) \subset \mathbb{P}^5$.

By Lemma 4.2, the σ-orbit Q_1 descends to four A_1 singularities on Y/τ, while the other orbits Q_2, \ldots, Q_5 descend to pairs of nonsingular points on Y/τ. After blowing up the four A_1 singularities, the image of Λ is an elliptic fibration with ramification curve comprising the 4-section R_0 together with the four (-2)-curves.

As we did for $\mathbb{Z}/3$-Godeaux, in the right column of Figure 3 we show the situation described in this subsection. In the next subsections we will describe and use the degenerate situation shown at the left side of Figure 3.

Figure 4: Big picture for Section 4

4.2 A stable $\mathbb{Z}/4$-Godeaux with $\frac{1}{4}(1,1)$ singularity

We exhibit a divisor $Y \subset \mathcal{M}$ in the moduli space corresponding to $\mathbb{Z}/4$-Godeaux surfaces with a single $\frac{1}{4}(1,1)$ singularity, cf. [8]. Take $Y_{8,8} \subset \mathbb{P}(1,1,4,4,4)$ with $\mathbb{Z}/4$-action

$$\sigma: (u_1, u_3, y_1, y_2, y_3) \mapsto (\varepsilon u_1, \varepsilon^3 u_3, i y_1, y_2, -i y_3),$$

18
where $\varepsilon = \exp(\frac{2\pi i}{8})$. Although ε is a primitive 8th root of unity, σ has order four because of the \mathbb{C}^*-action on the weighted projective space. The defining equations q_0, q_2 of Y are in eigenspaces 0 and 2 respectively, and are combinations of the following monomials:

$$
q_0: u_1^8, u_1^4u_3, u_3^8, u_3^8u_3y_1, u_3^2u_3^2y_2, u_1u_3^3y_3, y_2^2, y_1y_3,
$$
$$
q_2: u_1^2u_3, u_1^6u_3, u_1^6u_3y_1, u_4^4y_2, u_4^4y_2, u_1^6u_3y_3, y_1^2, y_3^2.
$$

Lemma 4.7. The general member Y in \mathcal{Y} is a complete intersection

$$
Y_{2,4,4} \subset \mathbb{P}(1,1,1,2,2,2)
$$

Proof. The general $Y_{8,8} \subset \mathbb{P}(1,1,4,4,4)$ is quasismooth with four $\frac{1}{4}(1,1)$ singularities at $Y \cap (u_1 = u_3 = 0)$. Using adjunction, $\omega_Y = \mathcal{O}_Y(2)$, and we compute $p_g(Y) = 3, K_Y^2 = 4$. The graded ring $R(Y, K_Y) = \bigoplus_{k \geq 0} H^0(\mathcal{O}_Y(2k))$ is generated by $x_1 = u_1^2, x_2 = u_1u_3, x_2 = u_3^3$ in degree 1 and y_1, y_2, y_3 in degree 2, and the surface described in the statement of the Lemma is precisely that given by $\text{Proj} R$. The σ-action extends that of Section 4.1, with y_2 invariant, and this is still fixed point free for general Y. The \mathbb{Q}-Gorenstein smoothing of the four singularities can be done simultaneously and $\mathbb{Z}/4$-equivariantly by varying the quadric equation to $x_1x_3 - x_2^2 = \lambda y_2$ to eliminate y_2 for $\lambda \neq 0$. \qed

Remark 4.8. We use the above Lemma to interchange between $Y_{8,8} \subset \mathbb{P}(1,1,4,4,4)$ and $Y_{2,4,4} \subset \mathbb{P}(1,1,1,2,2,2)$ without further comment.

As before, there is a family $\mathcal{Y}^s = \mathcal{M}^s \cap \mathcal{Y}$ of stable $\mathbb{Z}/4$-Godeaux surfaces with an involution. The action of τ on the ambient space $\mathbb{P}(1,1,4,4,4)$ is

$$
\tau: (u_1, u_3, y_1, y_2, y_3) \mapsto (iu_1, -iu_3, y_1, y_2, y_3),
$$

and the defining equations of Y are linear combinations of the following monomials

$$
q_0: u_1^8, u_1^4u_3, u_3^8, u_3^8u_3y_1, u_3^2u_3^2y_2, y_2^2, y_1y_3,
$$
$$
q_2: u_1^2u_3, u_1^6u_3, u_1^6u_3y_1, u_4^4y_2, u_4^4y_2, u_1^6u_3y_3, y_1^2, y_3^2.
$$

Again, we can check that τ extends the smooth case of Section 4.1.

Proposition 4.9. Let X be a stable Godeaux surface with a single $\frac{1}{4}(1,1)$ point P and involution τ, arising as the quotient $X = Y/\sigma$ for general Y in \mathcal{Y}^s. The fixed curve of τ is $R = C_1 + C_2$, where the intersection $C_1 \cap C_2$ is the singular point P. There are four isolated fixed points of τ on X.

Proof. This is similar to Lemma 4.2. The fixed curve on Y is defined by $(x_2 = 0)$, and since $x_2 = u_1u_3$, R splits into two components $C_1 + C_2$ on X. Moreover, the locus $Y \cap (u_1 = u_3 = 0)$ is the σ-orbit Q_1 of $\frac{1}{4}(1,1)$ singularities, so the C_i intersect at a single $\frac{1}{4}(1,1)$ point on X. The isolated fixed points of τ are the images of four σ-orbits Q_2, \ldots, Q_5 defined by $(y_1 = y_3 = 0)$ on Y. \qed
Let $\phi_Y : \tilde{Y} \to Y$ be the minimal resolution of the four $\frac{1}{4}(1,1)$ singularities on Y. Then $K_{\tilde{Y}} = \phi_Y^*(KY) - \frac{1}{4}(E_1 + \cdots + E_4)$, where the E_i are the (-4)-exceptional curves. Since \tilde{Y} is an elliptic surface with $p_g = 3$, by the Kodaira bundle formula, we also have $K_{\tilde{Y}} \sim 2F$ where F is a fibre. The curves E_i are therefore sections of the fibration.

Thus the elliptic fibration $\tilde{Y} \to \mathbb{P}^1$ is the resolution of the pencil $\langle u_1, u_3 \rangle$, and all fibres are complete intersection curves $F_{8,8} \subset \mathbb{P}(1,4,4,4)$. Unlike in the $\mathbb{Z}/3$ case, these fibres are really just hyperplane sections of Y, and because $K_{\tilde{Y}} = 2F$, they are nonsingular at the $\frac{1}{4}(1,1)$ points.

Lemma 4.10. The elliptic surface \tilde{Y} associated to a general surface Y in \mathcal{Y} has two nonsingular fibres F_1, F_3 that are invariant under the action of σ and 48 I_1 fibres. If Y is in \mathcal{Y}^s, then 16 of the nodes in I_1 fibres form four σ-orbits of isolated τ-fixed points.

Proof. The automorphism σ acts on the base of the fibration only, and the two fibres $F_1: (u_1 = 0)$ and $F_3: (u_3 = 0)$ are invariant. A direct computation shows that for general Y, F_i are nonsingular, and the computation of singular fibres and fixed points is again an easier version of the argument in the last paragraph of the proof of Proposition 3.2. □

Let \tilde{X} be the elliptic surface obtained as the quotient \tilde{Y}/σ.

Corollary 4.11. The minimal resolution \tilde{X} of X is a $(4,4)$-Dolgachev surface, and the (-4)-curve E is a 4-section. The involution τ fixes the two multiple fibres pointwise, and E is invariant under τ, with two fixed points at the intersection with the multiple fibres. The quotient \tilde{X}/τ is a nodal Enriques surface with a (-2)-curve which is a 2-section of the elliptic fibration, and four A_1-singularities lying on distinct fibres.

Proof. The two σ-invariant fibres F_i on \tilde{Y} give rise to two fibres of multiplicity 4 on the quotient \tilde{X}. From Proposition 4.9, these two fibres are pointwise fixed by τ, and so their multiplicity on X/τ drops to two. The image of E is a (-2)-curve because E is τ-invariant. □

Corollary 4.12. For general Y in \mathcal{Y}^s with a $\frac{1}{4}(1,1)$ singularity, the quotient surface Y/τ is a nodal $K3$ surface with four A_1 singularities. The ramification curve breaks into two components, each of which passes through all four A_1 singularities.

Proof. The fact that the quotient is an intersection of three quadrics is similar to Corollary 4.6 starting from the description of Y in Lemma 4.7.

The singularities are again induced by the σ-orbit Q_1 on Y, but this time Q_1 comprises four $\frac{1}{4}(1,1)$ singularities. The local orbifold coordinates near a $\frac{1}{4}(1,1)$ point P of Q_1 are u_1, u_3, and the action of τ on these coordinates is $\frac{1}{4}(1,3)$. Thus the invariant monomials of the composite action are $w_1 = u_1^4$, $w_2 = u_1^2 u_3^2$, and $w_3 = u_3^4$ with single relation $w_1 w_3 = w_2^2$, and the image of P on Y/τ is an A_1 singularity. □

4.3 Stable rational $\mathbb{Z}/4$-Godeaux surfaces

Following the strategy explained in Section 3.3, we look for stable $\mathbb{Z}/4$-Godeaux surfaces \tilde{X} with an elliptic fibration where the multiple fibres become nodal. As in Section 3.3.
this behaviour is induced by Y having a single σ-fixed point in the hyperplane $(x_1 = 0)$ (or $(x_3 = 0)$). Such a fixed point must be an A_3 singularity or worse. This condition is independent of the presence of $\frac{1}{4}(1, 1)$ singularities.

Lemma 4.13. The following divisors $B_1, B_3 \subset \mathcal{M}$ defined by

\[
B_1: \text{no } x_1^4 \text{ monomial in } q_0 \\
B_3: \text{no } x_3^4 \text{ monomial in } q_0
\]

parametrise surfaces Y with an A_3 singularity at $P_1 = (1, 0, 0, 0, 0)$ (respectively $P_3 = (0, 0, 1, 0, 0)$) which is fixed under the action of σ. Moreover, the quotient $X = Y/\sigma$ of a general surface in B_i is a Godeaux surface with a $\frac{1}{16}(1, 3)$ singularity.

Proof. Consider a general surface Y in B_1. Since q_0 does not contain the monomial x_1^4, the coordinate point $P = P_1$ is contained in Y. Ignoring coefficients, the leading terms of q_0, q_2 at P are

\[
y_1y_3 + x_2y_1 + x_3^2 + \text{h.o.t.}, \quad x_3 + x_2^2 + \text{h.o.t.}
\]

Thus eliminating x_3 with x_2^2 and a coordinates change shows that Y has an A_3 singularity at P, and clearly P is fixed under the action of σ. Computing with local coordinates near P, we see that the action of σ on (y_1, y_3, x_2) is $(-iy_1, iy_3, ix_2)$ and so P induces a $\frac{1}{16}(1, 3)$ point on X. \hfill \square

Lemma 4.14. All intersections between \mathcal{Y}, B_1 and B_3 are transversal.

Proof. The proof is similar to that of Lemma 3.12 and we do not give full details. We only remark that a surface Y in $\mathcal{Y} \cap B_1$ is realised as a complete intersection $Y_{8,8} \subset \mathbb{P}(1, 1, 4, 4, 4)$ for which q_0 does not contain the monomial u_8^8. The \mathbb{Q}-Gorenstein smoothing of the $\frac{1}{4}(1, 1)$ point is in Lemma 4.7, and the $\frac{1}{16}(1, 3)$ point is smoothed by allowing u_1^8 to appear again. \hfill \square

In this case, the A_3 singularities on Y are fixed under τ, so it is not true that $B_i^s = (B_1 \cap B_3)^s$ here, unlike Section 3.3.

Let X_1 be the stable Godeaux surface with one $\frac{1}{16}(1, 3)$, X_2 with singularities $\frac{1}{4}(1, 1)$ and $\frac{1}{16}(1, 3)$, and X_3 with one $\frac{1}{4}(1, 1)$ and two $\frac{1}{16}(1, 3)$ singularities. Let Y_i be the corresponding cyclic cover of X_i. According to Lemma 4.14, the surfaces are related under \mathbb{Q}-Gorenstein degenerations as shown in Figure 5.

Proposition 4.15. The surfaces X_i are rational for $i = 2, 3$.

Proof. This is the same proof as in the $\mathbb{Z}/3$ case, Proposition 3.13. \hfill \square

Proposition 4.16. The surface X_1 is rational.

Proof. Let us consider a \mathbb{Q}-Gorenstein deformation $X_1 \rightsquigarrow X_2$ over a disk \mathbb{D}, so that the deformation around the singularity $\frac{1}{16}(1, 3)$ is constant. Then we resolve it simultaneously (and minimally) to obtain a \mathbb{Q}-Gorenstein smoothing $X'_1 \rightsquigarrow X'_2$. By the previous
proposition, in the central fibre X'_2 we have a (-1)-curve between the (-6)-curve and the last (-2)-curve of the exceptional divisor. This (-1)-curve intersects the (-4)-curve of the exceptional divisor of $\tilde{X}_2 \to X_2$ at one point and transversally. Therefore, we can apply the flip used in Proposition [3.9]. After the flip, the deformation $X'_1 \sim X'_2$ becomes smooth, and so the Kodaira dimension is preserved. By the previous proposition, the surface X_2 is rational, and so X_1 is rational as well.

Remark 4.17. We know of one other involution on the $\mathbb{Z}/4$-Godeaux surface, from [9, §4.2]. The automorphism $\tau: (x_1, x_2, x_3, y_1, y_3) \mapsto (x_3, x_2, x_1, y_3, y_1)$ acts on a subfamily of M, and the group generated by σ and τ is D_4. The fixed curve is genus 1 and there are five isolated fixed points. According to [2, §8.7], the quotient X/τ is a double plane of du Val type. It would be interesting to study the corresponding degenerations for this involution, and understand the behaviour of the double plane.

References

[1] I. Bauer, F. Catanese, R. Pignatelli, *Surfaces of general type with geometric genus zero: a survey*, Complex and differential geometry, 1–48, Springer Proc. Math., 8, Springer, Heidelberg, 2011.

[2] A. Calabri, C. Ciliberto, M. Mendes Lopes, *Numerical Godeaux surfaces with an involution*, Trans. Amer. Math. Soc. 359 (2007), no. 4, 1605–1632.

[3] I. Dolgachev, *Algebraic surfaces with $q = p_g = 0$*, Algebraic surfaces, 97–215, C.I.M.E. Summer Sch., 76, Springer, Heidelberg 2010 (Reprint of the 1981 first edition).

[4] M. Franciosi, R. Pardini, S. Rollenske, *Log-canonical pairs and Gorenstein stable surfaces with $K_X^2 = 1$*, Compos. Math. 151 (2015), no. 8, 1529–1542.

[5] M. Franciosi, R. Pardini, S. Rollenske, *Computing invariants of semi-log-canonical surfaces*, Math. Z. 280 (2015), no. 3, 1107–1123.
[6] P. Hacking, J. Tevelev, G. Urzúa, Flipping surfaces, arXiv:1310.1580, 2013, to appear in the Journal of Algebraic Geometry.

[7] Y. Kawamata, Moderate degenerations of algebraic surfaces, Complex algebraic varieties (Bayreuth, 1990), 113–132, Lecture Notes in Math., 1507, Springer, Berlin, 1992.

[8] A. Kazanova, Vector bundles on Godeaux surfaces, arXiv:1402.0254, 2014.

[9] J.-H. Keum, Y. Lee, Fixed locus of an involution acting on a Godeaux surface, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 205–216.

[10] J. Kollár, N. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299–338.

[11] Y. Lee, J. Park, A simply connected surface of general type with \(p_g = 0\) and \(K^2 = 2\), Invent. Math. 170 (2007), 483–505.

[12] M. Mendes Lopes, R. Pardini, Godeaux surfaces with an Enriques involution and some stable degenerations, arXiv:1502.04621, (2015).

[13] Y. Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976), no. 2, 99–111.

[14] J. Rana, J. Tevelev, G. Urzúa, The Craighero–Gattazzo surface is simply-connected, arXiv:1506.03529, 2015, accepted in Compositio Mathematica.

[15] M. Reid, Surfaces with \(p_g = 0\), \(K^2 = 1\), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), 75–92.

[16] M. Reid, Graded rings and birational geometry, Proc. of algebraic geometry symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), 1–72, (available from homepages.warwick.ac.uk/~masda/3folds/Ki/Ki.pdf).

[17] M. Reid, Parallel unprojection equations for \(\mathbb{Z}/3\) Godeaux surfaces, (available from homepages.warwick.ac.uk/~masda/codim4/God3.pdf).

[18] A. Stern, G. Urzúa, KSBA surfaces with elliptic quotient singularities, \(\pi_1 = 1\), \(p_g = 0\), and \(K^2 = 1, 2\), Israel Journal of Mathematics 214(2016), 651-673.

[19] G. Urzúa, Identifying neighbors of stable surfaces, arXiv:1310.4353, to appear in the Annali della Scuola Normale Superiore di Pisa.

[20] G. Urzúa, \(Q\)-Gorenstein smoothings of surfaces and degenerations of curves, arXiv:1311.4844, to appear in the Rendiconti del Seminario Matematico della Università di Padova.
S. Coughlan, Institut für Algebraische Geometrie, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.

Current address: Mathematisches Institut, Lehrstuhl Mathematik VIII, Universitätssstrasse 30, D-95447 Bayreuth, Germany.

E-mail address: stephencoughlan21@googlemail.com

G. Urzúa, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Campus San Joaquín, Avenida Vicuña Mackenna 4860, Santiago, Chile.

Current address: Department of Mathematics and Statistics, University of Massachusetts, 710 N. Pleasant Street, Amherst, MA 01003-9305, USA.

E-mail address: gianurzua@gmail.com