A New Joint De-Speckling Framework for Real Optical Coherence Tomography Images

Pradeep K. Gupta, Shyam Lal, Farooq Husain

Abstract: Now a day’s OCT is a most frequently used method to diagnose the eye related diseases. The acquisition procedure of OCT images added the speckle noise in the images. Speckle noise degrades the quality of the image. Presence of speckle noise makes diagnosis tasks difficult. This researcher paper, proposed a hybrid de-noising approach that reduce the effect of speckle noise. This framework used the preprocessing filter, post processing filter along with curvelet transform. Due to various advantages of SRAD filter, this filter is used as a pre-processing filter. After pre-processing Curvelet transform is exploited to improve the performance of the proposed framework. In the last of proposed framework a variant of total variation regularization is used for smoothing the output. The proposed framework is evaluated on real OCT images. The results of experiments conducted on real OCT images shows better performance in comparison to various traditional filters. The proposed framework shows the strong de-noising capability along with edge preservation.

Keywords: diagnose, OCT, Curvelet transform, SRAD filter.

I. INTRODUCTION

Enhancement of OCT images is always prime concern for the accurate diagnosis of retinal diseases. At present OCT widely used in ophthalmology for the detection of glaucoma, cataract disease [2-3]. OCT imaging technique used the detection of coherence source for the formation of image, therefore OCT images have inherent feature of speckle noise therefore the image analysis of OCT images is a very difficult task [4]. It is a locally correlated and multiplicative in nature noise. Therefore pre-processing is a necessary step in OCT image analysis. A number of de-speckling filters already has been proposed for de-speckling the OCT images. In the literature different types of spatial and non-linear filters [5], [6] are used to de-speckling the OCT images. These filters are tradeoff between speckle noise reduction capability and edge preservation ability of image. Linear filters also admits blur into the images and therefore degrades the contrast of the image [7]. Partial diffusion equation are used to proposed Speckle Reducing Anisotropic Diffusion (SRAD) filter [8]. The noise reduction capability of these filters are depends on different variables. Adaptive filters like hybrid median filter [18] used the local neighborhood concept to calculate the de-noised pixel value. The structural information of image are restored by bilateral filter [9] and trilateral filter [10]. The drawback of these type filters is that the performance of these filters is noise dependent. To deal with the correlated noise wavelet-based filters are proposed. These filters decompose the image by using multi-scale resolutions. Out of different variants of wavelet transform, shift invariant wavelet give better results [26]. Recently dual tree complex wavelet [23] and Curvelet transform [25] are also used to remove the speckle noise from the OCT images. These transforms give better result in comparison to conventional wavelets. The speckle noise from the OCT images can also be reduced by Sparse and redundant representation of image along with K-SVD algorithm [10]. Discrete wavelet transform with Bayesian threshold is also used for speckle noise removal from OCT images [11]. Recently a number of hybrid techniques are also being used to improve the performance of different filters. These techniques exploited properties of different filters to achieve the better performance. In hybrid techniques one or two filters are used serially. A number of hybrid techniques are being proposed in literature. Combination of Discrete Wavelet Transform and Anisotropic Diffusion filter has been used to improve the de-speckling capability of the filter. This technique also has the capability of edge preservation [12]. SRAD filter, wavelet soft thresholding along with guided filter is also used to design a hybrid technique [13]. In hybrid technique, there is a trade of between de-speckling capability and edge preservation ability of the filter. Therefore in this article a hybrid de-speckling framework is proposed that reduce the speckle noise along with edge preservation capability. The proposed framework used a preprocessing filter, Curvelet transform along with post processing filter. The remaining sections of this paper are section 2 describes about mathematical representation of speckle noise and Section 3 about the proposed hybrid framework with block diagram. Sections 4 tells about the materials and methods used in this paper. Sections 5 discuss about the results and Sections 6 concludes the outcome of the proposed hybrid framework.

II. MATHEMATICAL REPRESENTATION OF SPECKLE NOISE

The nature of the speckle noise present in the OCT image is multiplicative therefore the mathematical model of the speckle noise can be represented as

\[I_o = I N_m + N_a \] \hspace{1cm} (1)

\(I \) represent noise free image, \(I_o \) represent the output image corresponding to input image \(I \), \(N_m \) represent the multiplicative part of speckle noise and \(N_a \) represent the additive part of the speckle noise [16].
III. PROPOSED HYBRID FRAMEWORK

The proposed de-speckling framework is a type of hybrid approach. This approach is a three step approach. In first step pre-processing filtering is performed by using SRAD filter. SRAD filter gives better result for lower noise variance in comparison to conventional methods [13]. In second step the proposed framework used Curvelet transform. It is the extension of wavelet transform. In this transform image is decomposed at specified scales, locations and orientations. The Curvelet transform is helpful to preserve the structure of the image [14]. The last step of proposed framework used a post processing filter. In this step a modified variant of total variation regularization is used. Last step of the proposed framework is used for edge preservation [15]. The procedural steps of our proposed framework are:

Step 1: Apply SRAD filtering on noisy OCT image using eq. (2).
Step 2: Apply Curvelet transform de-noising on output of step 1.
Step 3: Apply Huber variant of TV regularization on the output of step 2 to get the de-noised image.

A. Speckle Reducing Anisotropic Diffusion Filter
OCT image despeckling can be perform by SRAD filter. SRAD filter is a Partial Differential Equation (PDE)-based speckle reducing filter. SRAD filter is used to preserves the edge details of image along with reducing the speckle noise. Let \(I_0(x, y) \) is given gray level image having finite power and no zero values over the image support \(\Omega \), corresponding to this \(I_0(x, y; t) \) is the output image as per the following equation

\[
\begin{align*}
\frac{\partial (x, y, t)}{\partial t} &= div[c(q) \nabla I(x, y; t)] \\
I_0(x, y; 0) &= I_0(x, y), \frac{\partial (x, y, t)}{\partial t} \bigg|_{t=0} = 0
\end{align*}
\]
(2)

here div, \(\nabla \) represent divergence and gradient [8].

B. Curvelet transform
Curvelet transform that is helpful to represent the image at various scale, and orientation is proposed. This transform decompose the image using a linear and weighted combination of basis function. It has time-frequency localization properties of wavelets [14]. The main advantage of curvelet transform, it has superior performance over local Ridgelet transform. Basically 2D-curves are 2D extension of wavelets. Scale, orientation and two translation parameters decide the Curvelets. Curvelets used a spatial band-pass filter with multiscale ridgelets to isolate different scales [17]. Basically in Curvelet transform to decompose the image into its constituents the following steps are used

1. Subband Decomposition- The object \(O \) is decomposed into subbands such that

\[
O \leftrightarrow (\Delta_0 O, \Delta_1 O, \Delta_2 O \ldots \ldots \ldots \ldots)
\]

2. Smooth Partitioning- Each subband is smoothly windowed into sequence of an appropriate scale

\[
\Delta_s O \leftrightarrow (w_0 \Delta_s O)_{q \in Q_s}
\]

3. Renormalization- output of step 2 is convert into unit scale.

\[
gQ = \left(T_0^{-1}\right)(w_0 \Delta_s O), \quad Q \in Q_s
\]

4. Ridgelet Analysis- Each square is analyzed via the discrete ridgelet transform.

C. Huber variant of TV regularization
In step 3 of the proposed framework a modified variant of TV regularization is used. Last step of the proposed framework is used for preserving the structure with speckle noise reduction. During this post processing step of proposed framework it is assume that speckle is a multiplicative noise and converted into a Gaussian distribution with a square-root transformation [15]. Staircase artifacts due to Traditional TV regularization are remove by Huber penalty function.

D. Ablation Experiment
To demonstrated the effectiveness of each step of the proposed framework a ablation experiment was conducted for the image 1 and image 2 at noise variance 0.6.
These nonlinear co-noising process. SR2rHMF) [18] decomposition filter −𝜎

mM0nisotropic diffusion (SRAD)
df

q

c

edes−𝜎

isotropic diffusion filter (NCF) [19], dual tree complex wavelet(DTCWT) using soft thresholding [23], adaptive weighted bilateral filter (AWBF) [24], classical non local mean filter (NLM) [27] weighted guided filter [22] and second order total generalized variation decomposition filter (TGVD) [21].

A. Image database

To find out the result of proposed framework, real images of OCT provided by Jinming Duan, School of Computer Science, University of Nottingham, UK [21] was used.

B. Quality matrices

The different quality matrices used in this proposed framework are: Peak Signal to Noise Ratio(PSNR), Contrast-to-noise ratio (CNR), Structural residual(SR) and Structure similarity index (SSIM).

C. Peak Signal to Noise Ratio(PSNR):- It is the ratio of maximum power to noise power of signal.

\[
PSNR(\text{dB}) = 10 \log_{10} \left(\frac{I_{\text{MAX}}^2}{\text{MSE}} \right)
\]

(17)

Where \(I_{\text{MAX}} \) is the maximum power of signal \(\text{MSE} \) is Mean Square Error of signal.

D. Contrast-to-noise ratio (CNR):- It measure the contrast between interested ROI and noisy background of the image and defined as

\[
\text{CNR} = \frac{1}{N} \sum_{n=1}^{N} \frac{\mu_n - \mu_b}{\sqrt{(\sigma_n^2 + \sigma_b^2)}}
\]

where \(\mu_b, \sigma_b^2 \) are mean and variance of the background noise of the image and \(\mu_n, \sigma_n^2 \) are the \(n \)th ROI of the image.

E. Structural Residual (SR):- It measure how much original structure is preserved during denoising process. SR at pixel \(p \) is calculated by taking the weighted average of a number of nearby and similar noise samples in noise layer \(L_n \) given as [28]:

\[
L'_n(p) = \frac{1}{\Omega} \sum_{q \in \Omega} w(p,q,\sigma_d,\sigma_s) L_n(q)
\]

where \(\Omega \) is the neighbourhood pixel of \(p \), \(w \) is a weight function. after the calculation of structure residual map , we can calculate the structure residual feature SR given by the equation

\[
\text{SR} = \sqrt{\frac{\sum_{p} L'_n(p)^2}{N}}
\]

(14)

where \(N \) is the total number of pixel in the image.

F. Structural Similarity Index Metric (SSIM): It measure the similarity between the original and denoised image defined as:

\[
\text{SSIM}(I,O) = \frac{(2\mu_I\mu_O + c_1)(2\sigma_{I,O} + c_2)}{\mu_I^2 + \mu_O^2 + c_1(\sigma_I^2 + \sigma_O^2 + c_2)}
\]

(11)

from the quantitative and qualitative results it is clear that the result are improving from step to step

IV. MATERIAL AND METHODS

To demonstrate the worthiness of proposed framework, the results of proposed framework are compared with many state of art filters proposed by different researchers. These filter are Speckle reducing anisotropic diffusion (SRAD) [8], hybrid median filter (HMF) [18], nonlinear complex diffusion filter (NCF) [19], dual tree complex wavelet(DTCWT) using soft thresholding [23], adaptive weighted bilateral filter (AWBF) [24], classical non local mean filter (NLM) [27] weighted guided filter [22] and second order total generalized variation decomposition filter (TGVD) [21].

Table 1: PSNR, CNR, SR, & SSIM values for ablation Experiment

For Noisy image 1 at noise variance=0.6	For Noisy image2 at noise variance=0.6							
PSNR	CNR	SR	SSIM	PSNR	CNR	SR	SSIM	
After Step 1	30.7997	4.90814	7.3545	0.60193	29.5376	3.9401	8.5047	0.61049
After Step 2	34.7687	6.21345	3.4565	0.80164	33.5478	5.9452	4.4036	0.79849
After Step 3	37.9474	7.21760	2.0258	0.99998	37.6950	7.21760	2.0271	0.99996

Fig 2:- Ablation Experiment Results for Image 1 and Image2

Table 1: PSNR, CNR, SR, & SSIM values for ablation Experiment
A New Joint De-Speckling Framework for Real Optical Coherence Tomography Images

Where \((\mu_I,\sigma_I^2)\) and \((\mu_O,\sigma_O^2)\) are the mean and variance of the input and output images respectively. \(\sigma_{I,O}\) is the covariance between the input and output images and \((c_I,c_O)\) are constant.

V. RESULT AND DISCUSSION

The quantitative and qualitative results of proposed framework are find out by conducting a experiment on real OCT images. all the Results are find out by MATLAB R2018. The noisy image are obtained by adding different noise 0.2,0.4,0.6,0.8, and 1.0 to the noise free image. The quantitative and qualitative result of proposed framework is compared with eight state of art filter at different noise variance.

Table 1: PSNR, CNR, SR, & SSIM Comparison for Real OCT Image 1 for different noise variance

Filter	PSNR 0.2	PSNR 0.4	PSNR 0.6	PSNR 0.8	PSNR 1.0	CNR 0.2	CNR 0.4	CNR 0.6	CNR 0.8	CNR 1.0
SRAD[8]	30.8060	30.8026	30.7997	30.7832	30.7539	5.12806	5.01976	4.90814	5.32212	4.96632
HMF[18]	30.8317	30.3385	29.6439	28.8202	27.9743	4.78824	4.65252	4.26583	3.97549	3.59154
DCTWT[23]	35.6614	35.2769	34.8363	34.4025	33.9486	4.86892	4.45936	4.38646	4.13698	4.04275
NCDF[19]	22.1638	21.8370	22.2322	21.8602	20.4732	5.61149	5.85305	5.74181	5.97599	6.35150
NLM[27]	37.6785	37.3214	36.2881	34.2995	32.2799	5.83842	6.19000	6.86127	7.45103	8.30340
AWBF[24]	32.5473	31.3214	30.2881	29.2995	28.2690	4.87091	4.84390	4.01725	3.93299	3.28691
WGF[22]	27.5493	26.3714	26.2841	24.2895	22.2599	2.82689	2.92733	2.65594	2.67693	3.10091
TGVD[21]	37.5453	37.3214	36.2881	34.2995	32.2799	5.03256	5.30090	5.34986	5.31751	5.28452
Proposed	39.4852	38.8396	37.9474	36.9345	35.9128	6.99991	7.05842	7.21760	7.43037	7.50471

Table 2: Visual Comparison for Real OCT Image 1 for noise variance=0.2

Noisy Image

SRAD

HMF

DCTWT

NCDF

NLM

AWBF

WGF

TGVD

Proposed

Table 2: Visual Comparison for Real OCT Image 1 for noise variance=0.4

Noisy Image

SRAD

HMF

DCTWT

NCDF

NLM

AWBF

WGF

TGVD

Proposed

Fig2 (a): The visual comparison of Real OCT image 1 for noise variance=0.2

Fig2(b): The visual comparison of Real OCT image 1 for noise variance=0.4
Table 1 shows PSNR, CNR, SR & SSIM values comparison for real OCT image 1 at different noise variance values (0.2, 0.4, 0.6, 0.8, 1.0) from the quantitative values it is clear that the proposed framework is outperform in terms of PSNR, CNR, SR & SSIM in comparison to eight most used despeckling filters in literature. fig.2(a), (b), (c), (d) & (e) shows the visual comparisons of the proposed framework with eight state of the art filters. The visual results also shows that the proposed framework preserves the fine structure of the image.

Fig 2(c): The visual comparison of Real OCT image 1 for noise variance=0.6

Fig 2(d): The visual comparison of Real OCT image 1 for noise variance=0.8

Fig 2(e): The visual comparison of Real OCT image 1 for noise variance=0.8
Table 2: PSNR, CNR, SR, & SSIM Comparison for Real OCT Image 2 for different noise variance

Filter	PSNR	CNR	SR	SSIM																
	0.2	0.4	0.6	0.8	1.0	0.2	0.4	0.6	0.8	1.0	0.2	0.4	0.6	0.8	1.0	0.2	0.4	0.6	0.8	1.0
SRA[8]	29.5027	29.5229	29.5376	29.5308	29.5751	4.0022	3.9370	3.9401	4.0287	4.1081										
HMF[18]	28.8313	28.4855	27.9630	27.3156	26.5936	5.5241	5.9484	6.2562	6.1474	6.7111										
DCTWT[23]	34.6839	34.3270	33.5721	32.8900	32.0775	5.4566	5.4671	5.2610	5.3322	5.1708										
NCDF[19]	26.2547	25.6695	24.4172	22.7946	21.1317	5.1851	5.1530	5.2409	4.7169	4.5599										
NLM[27]	36.2447	35.6295	34.4121	32.7996	31.1117	6.0354	6.6996	6.8172	7.0270	8.1977										
AWBF[24]	29.3261	28.6387	27.6950	26.6279	25.5866	4.0577	4.0312	3.7812	3.7569	3.1911										
WGF[22]	29.3461	28.6587	27.6950	26.6279	25.5866	4.0577	4.0312	3.7812	3.7569	3.1911										
TGVD[21]	24.2222	24.3561	24.0878	24.5905	24.9841	2.9200	2.4754	2.3907	2.4218	2.8149										
Proposed	39.3261	38.6387	37.6950	36.6279	35.5866	6.2650	6.2760	6.2284	6.5654	6.5724										

Fig3(a): The visual comparison of Real OCT image 2 for noise variance=0.2

Fig3(b): The visual comparison of Real OCT image 2 for noise variance=0.4
Table 2 shows PSNR, CNR, SR & SSIM values comparison for real OCT image 1 at different noise variance values (0.2, 0.4, 0.6, 0.8, 1.0) from the quantitative values it is clear that the proposed framework outperforms in terms of PSNR, CNR, SR & SSIM in comparison to eight most used despeckling filters in literature. Fig. 3(a), (b), (c), (d) & (e) shows the visual comparisons of the proposed framework with eight state of the art filters. The visual results also shows that the proposed framework preserves the fine structure of the image.

Table 3: PSNR, CNR, SR, & SSIM Comparison for Real OCT Image 3 for different noise variance

Filter	PSNR	CNR								
	0.2	0.4	0.6	0.8	1.0					
	0.2	0.4	0.6	0.8	1.0					
SRAD[8]	29.6994	29.7012	29.7066	29.6857	29.6477	4.3465	4.3343	4.3769	4.4763	4.1106
HMF[18]	29.3935	28.8137	28.0139	27.1350	26.2189	4.5104	4.0829	5.1413	5.3318	6.5147
DCTWT[23]	34.9839	34.4506	33.7661	32.9315	32.0877	5.0636	4.9253	5.3298	5.0448	5.2210
NCDF[19]	27.0172	26.0861	25.1030	23.7213	22.4235	5.2488	5.1021	5.2699	5.3739	5.9866
NLM[27]	37.0182	36.0851	34.1000	32.9703	27.4025	5.0444	4.7134	4.5502	4.8152	4.5827
AWBF[24]	37.3261	26.6387	25.6950	24.6279	23.5866	4.3003	4.0962	4.0715	3.0514	3.0472
WGF[22]	29.4856	28.8390	27.9475	26.9346	25.9129	2.8268	2.9273	2.6559	2.6769	3.1009
TGVD[21]	25.3803	25.3564	25.4160	25.0503	25.0964	3.4181	3.4994	3.5579	3.7968	4.0207
Proposed	39.4852	38.8396	37.9474	36.9345	35.9128	5.8940	6.0928	6.6812	8.1901	7.2103
NR						0.5802	0.5825	0.5861	0.5886	0.5939
SSIM						0.5802	0.5825	0.5861	0.5886	0.5939
A New Joint De-Speckling Framework for Real Optical Coherence Tomography Images

Method	HMF	DCFTWT	NCDF	NLM	AWBF	WGF	TGVD	Proposed
	8.6469	4.5430	3.0334	3.5944	2.5990	3.0270	3.7254	2.0198
	9.2438	4.8306	3.0357	4.0020	2.6561	3.0291	3.7632	2.0242
	10.135	5.2267	3.0394	5.0296	2.0160	3.0323	3.6691	2.0299
	11.188	5.7538	3.0439	6.3449	2.0890	3.0362	4.2569	2.0365
	12.4622	6.3409	3.0492	6.2137	2.1950	3.0408	4.1814	2.0432
	0.6171	0.8186	0.9999	0.9022	0.7821	0.9999	0.7270	0.9999
	0.5930	0.8051	0.9999	0.8957	0.7590	0.9999	0.7152	0.9999
	0.5621	0.7905	0.9999	0.8621	0.7226	0.9999	0.6967	0.9999
	0.5317	0.7950	0.9999	0.7086	0.7145	0.9999	0.6718	0.9999
	0.5005	0.7560	0.9999	0.6012	0.6972	0.9999	0.6455	0.9999

Noisy Image3	SRAD	HMF	DCTWT	NCDF	NLM	AWBF	WGF	TGVD	Proposed
Fig4(a): The visual comparison of Real OCT image 3 for noise variance=0.2									
Noisy Image3	SRAD	HMF	DCTWT	NCDF	NLM	AWBF	WGF	TGVD	Proposed
Fig4(b): The visual comparison of Real OCT image 3 for noise variance=0.4									
Noisy Image3	SRAD	HMF	DCTWT	NCDF	NLM	AWBF	WGF	TGVD	Proposed
Fig4(c): The visual comparison of Real OCT image 3 for noise variance=0.6									
Table 3 shows PSNR, CNR, SR & SSIM values comparison for real OCT image1 at different noise variance values (0.2, 0.4, 0.6, 0.8, 1.0) from the quantitative values it is clear that the proposed framework is outperform in terms of PSNR, CNR, SR & SSIM in comparison to eight most used despeckling filters in literature. Fig.4(a),(b),(c),(d) & (e) shows the visual comparisons of the proposed framework with eight state of the art filters. The visual results also shows that the proposed framework preserves the fine structure of the image.

VI. CONCLUSION

This researcher paper proposed a hybrid de-speckling framework for real OCT image. The proposed framework shows the ability of speckle noise reduction with the preservation of fine detail. An experiment has been conducted on real OCT images to find out the PSNR, CNR, SR and SSIM values. The results obtained for proposed framework are compared with the existing de-speckle filters. The results shows that the proposed framework outperforms in comparison to various filters. Visual results of proposed framework also show that, the proposed framework is able to preserve the edges and fine structures of the image.

REFERENCES

1. Drexler, W., Morgner, U., Ghanta, R. K., Kättner, F. X., Schuman, J. S., & Fujimoto, J. G. Ultrahigh-resolution ophthalmic optical coherence tomography Nat Med. 2001 April ; 7(4): 502-507.
2. Khaing, T. T., & Aimmamee, P. Optic disk segmentation in retinal images using active contour model based on extended feature projection. In Information and Communication Technology for Embedded Systems (IC-ICTES), 2017 8th International Conference of (pp. 1-6). IEEE.
3. Zhang, L., Lu, J., Han, H., Liu, B., Yang, J., & Wang, Q. (2017, May). Automatic cataract detection and grading using Deep Convolutional Neural Network. In Networking, Sensing and Control (ICNSC), 2017 IEEE 14th International Conference on (pp. 60-65). IEEE.
4. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Springer Science & Business Media, 2008.
5. M. Serkan, N. Musaoglu, H. Kirkici, and C. Ormeci, “Edge and fine detail preservation in SAR images through speckle reduction with an adaptive mean filter,” International Journal of Remote Sensing”, vol. 29, no. 23, p. 6727–6738, Dec 2008.
6. S. Perreault, and P. Hébert, “Median Filtering in Constant Time,” IEEE Transactions on Image Processing, vol. 16, no. 9, pp. 2389-2394, Sep 2007.
7. H. Kato and J. W. Goodman, "Nonlinear filtering in coherent optical systems through halftone screen processes," Appl Opt, vol. 14, no. 8, pp. 1813-24, Aug 01 1975.
8. Y. Yu and S. T. Acton, “Speckle Reducing Anisotropic Diffusion,” IEEE Transactions on Image Processing, vol. 11, no. 11, pp. 1260-1270, Nov 2002.
9. H. Xie, L. E. Pierce, and F. T. Ulaby, "SAR speckle reduction using wavelet denoising and Markov random field modeling," IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 10, pp. 2196-2212, Oct 2002.
10. Y. Hao, X. Feng, and J. Xu, “Multiplicative noise removal via sparse and redundant representations over learned dictionaries and total variation,” Signal Processing, vol. 92, no. 6, pp 1536-1549, June 2012.
11. Z. Zeng and I. Cumming, " Bayesian speckle noise reduction using the discrete wavelet transform," IGARSS '98, Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat.
A New Joint De-Speckling Framework for Real Optical Coherence Tomography Images

Dr. Shyam Lal is working as a assistant professor at NITR. he received Ph.D.(ECE) from Birla Institute of Technology (Deemed University), Mesra, Ranchi (JH.), India, in 2013. M.Tech.(ECE) from National Institute of Technology, Kurukshetra (HR.), India , in 2007 and B.Tech. (EIE) from Bundelkhand Institute of Engineering & Technology (Govt. Engg. College), Jhansi (U.P.), India, in 2001 he has more than 17 yrs teaching experience. His area of interest is . Artificial Intelligence: Machine and Deep Learning Algorithms with applications Optimization algorithms with Applications Digital Signal Processing.

Pradeep Kr. Gupta is working as assistant professor, PSIT Kanpur. he received his Master’s degree in Electronics Communication from NITTTR, Chandigarh, India in 2013 and Bachelor’s degree from UPTU, U.P., India in 2005. he has more than 12 yrs teaching experience. He published more than 10 Research and Review Papers in National and International Journals and Conferences of repute.

AUTHOR PROFILE

Dr. Farooq Husain is working as Professor & Director, Shivdan Singh Institute of Technology & Management Aligarh (Saroj), he completed his B. Sc. Engg. (B. Tech.) Degree in Electronics & Communication Engineering from Jamia Millia Islamia (Central University), New Delhi, India in 1993. He received his M. Tech. (Electronics Engg) and Ph. D. (Electronics Engineering) Degrees from Zakir Husain College of Engineering & Technology, A. M. U. Aligarh, U. P., India in 1999 and 2013, respectively. Educational Group) U.P., India... He authored more than 10 Text Books in the Disciplines of Electronics & Communication Engineering, Electrical Engineering and Computer Science & Engineering. He published more than 30 Research and Review Papers in National and International Journals and Conferences of repute.

No.98CH36174), vol. 1, pp. 7-9, 1998.
12. V. Bhatteja, A. Tripathi, A. Gupta, and A. Lay-Ekuakile, “Speckle suppression in sar images employing modified anisotropic diffusion filtering in wavelet domain for environment monitoring.” Measurement, vol. 74, pp. 246-254, Oct 2015.
13. H. Choi and J. Jeong, "Despeckling Images using a Preprocessing Filter and Discrete Wavelet Transform-Based Noise Reduction Techniques " IEEE Sensors Journal, vol. 18, no. 8, pp. 3131-3139, 2018.
14. E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast Discrete Curvelet Transforms,” SIAM Multiscale Model. Simul. 5(3), 861 (2006).
15. Muxingzi Li, Ramzi Idoughi, Biswarup Choudhury, Andwolfgang Heidrich," Statistical model for OCT image denoising" Vol. 8, No. 9 | 1 Sep 2017 | BIOMEDICAL OPTICS EXPRESS 3903
16. L.A. Zadeh, Fuzzy sets. Inf. Control 8 (3) (1965) 338–353.
17. A. Cohen, C. Rabut, and L. L. Schumaker, Eds. Nashville, }
- "Curvelets—A surprisingly effective non adaptive representation for objects with edges,” in Curve and Surface Fitting: Saint-Malo 1999
18. Nieminen, A. Heinonen, P. Neuvo, Y. "A new class of detail-preserving filters for image processing": IEEE Trans. Pattern Anal. Mach. Intell. (1) (0) 087 (74-90).
19. D. Cabrera Fernández, H.M. Salinas, C.A. Puliafito, Automated detection of reti-nal layer structures on optical coherence tomography images, Opt. Express 13(25) (2005) 10200–10216.
20. Weickert, J. “Anisotropic Diffusion in Image Processing”, vol. 1, Teubner Stuttgart,1998.
21. Duan, J. Lu, W. Tenc, C. Gottlob, I. Proudlock, F. Samani, N.N. Bai, Li. "Denoising optical coherence tomography using second order total generalized variation decomposition" Biomedical Signal Processing and Control 24 (2016) 120–127
22. Z. Li, J. Zheng, Z. Zhu, W. Yao, and S. Wu, "Weighted guided image filtering," IEEE Trans. Image Process., vol. 24, no. 1, pp. 120-129, Jan. 2015.
23. S. Chitchen, M.A. Fiddy, N.M. Fried, Denoising during optical coherence tomo-graphy of the prostate nerves via wavelet shrinkage using dual-tree complexwavelet transform, J. Biomed. Opt. 14 (1) (2009) 014031.
24. N. Anantrasirichaia*, Lindsay Nicholson, James E. Morganc, Irina Erchovac,Katie Mortlockc, Rachel V. Northc, Julie Alboc, Alin Achimac Visual, ”Adaptive-weighted bilateral filtering and other pre-processing techniques for optical coherence tomography “Computerized Medical Imaging and Graphics
25. Z. Jian, L. Yu, B. Rao, B.J. Tromberg, Z. Chen, Three-dimensional speckle supression in optical coherence tomography based on the curvelet transform,Opt. Express 18 (2) (2010) 1024–1032.
26. A. Oezcan, A. Bielenac, A.E. Desjardins, B.E. Bounab, G.J. Tearney, Speckle reduction in optical coherence tomography images using digital filtering, J. Opt. Soc. Am.A 24 (7) (2007) 1901–1910.
27. A. Buades, B. Coll, and J. M. Moral, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2, pp. 490–505, 2005.

Retrieval Number: G5111059720/2020/BEJESP
DOI: 10.35940/ijite. G5111.059720
Published By: Blue Eyes Intelligence Engineering & Sciences Publication