Keratocan, a Cornea-specific Keratan Sulfate Proteoglycan, Is Regulated by Lumican*

Received for publication, January 7, 2005, and in revised form, April 4, 2005
Published, JBC Papers in Press, April 22, 2005, DOI 10.1074/jbc.M500249200

Eric C. Carlson,a,b Chia-Yang Liu,c,d Tai-ichiro Chikama,a Yasuhiyo Hayashi,a Candace W.-C. Kao,a,4 David E. Birkb, James L. Funderburghd,g, James V. Jester,b,i and Winston W.-Y. Kaoa,i,i

From the Department of Ophthalmology, University of Cincinnati, Cincinnati, Ohio 45267-0527, the Bascom Palmer Eye Institute and Departments of Ophthalmology, Pharmacology, and Cell Biology, University of Miami School of Medicine, Miami, Florida 33136, the Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, the Department of Ophthalmology, University of Pittsburgh, Pennsylvania 15213, and the Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9057

Lumican is an extracellular matrix glycoprotein widely distributed in mammalian connective tissues. Corneal lumican modified with keratan sulfate constitutes one of the major proteoglycans of the stroma. Lumican-null mice exhibit altered collagen fibril organization and loss of corneal transparency. A closely related protein, keratocan, carries the remaining keratan sulfate of the cornea, but keratocan-null mice exhibit a less severe corneal phenotype. In the current study, we examined the effect of lumican overexpression in corneas of wild type mice. These mice showed no alteration in collagen organization or transparency but had increased keratocan expression at both protein and mRNA levels. Corneas of lumican-null mice showed decreased keratocan. This coupling of keratocan expression with lumican also was observed after intrastromal injection of a lumican expression minigene into the corneal stroma of Lum−/− mice. Small interfering RNA knockdown of lumican in vitro reduced keratocan expression, whereas co-injection of a lumican-expressing minigene with a β-galactosidase reporter driven by the keratocan promoter demonstrated an increase of keratocan transcriptional activity in response to lumican expression in Lum−/− corneas in vitro. These observations demonstrate that lumican has a novel regulatory role in keratocan expression at the transcriptional level. Such results help provide an explanation for the differences in severity of corneal manifestation found in Lum−/− and Kera−/− mice. The results also suggest a critical level of small proteoglycans to be essential for collagen organization but that overabundance is not detrimental to extracellular matrix morphogenesis.

* The studies were in part supported by National Institutes of Health Grants EY11845, EY12486, EY09068, EY13215, EY08098, and EY05129; Research To Prevent Blindness (RPB); and the Ohio Lions Eye Research Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

a,b Present address: Dept. of Ophthalmology, Cole Eye Institute Cleveland Clinic Foundation, Cleveland, OH 44195.

c,d Recipient of an Olga Weiss Scholarship from RPB.

e Julius and Doris Stein RPB Professor of Ophthalmology.

f Recipients of the RPB Senior Scientific Investigator Award.

To whom correspondence should be addressed: Dept. of Ophthalmology, University of Cincinnati, 3223 Eden Ave., Cincinnati, OH 45267-0527. Tel.: 513-558-2802; Fax: 513-558-3108; E-mail: Winston.Kao@uc.edu.

Lumican is a member of the small leucine-rich proteoglycan (SLRP) family with expression reported in cornea, sclera, aorta, cartilage, liver, skeletal muscle, kidney, pancreas, brain, placenta, and lung (1–6). Lumican co-localizes with collagen fibrils in the corneal stroma and has been hypothesized to be involved in modulation of the highly organized collagen matrix required for corneal transparency (7, 8). These predictions were substantiated by findings of corneal opacity, skin fragility, and abnormally large collagen fibril diameters and disorganized interfibrillar spacing present in lumican-null mice (1, 7, 9–11). More recently, studies have shown lumican involvement in cell migration and proliferation during embryonic development and wound healing (12–15). The delayed epithelial wound healing phenotype in Lum−/− mice is potentially due to the involvement of lumican in cellular migration, adhesion, and/or proliferation (12, 16). Under normal conditions, lumican is not expressed by epithelial cells, but transient expression is reported by migrating cells during wound healing and development (12, 17). Impairment of cell migration and proliferation may partially explain the delay of epithelial wound healing in lumican-null mice. Recent reports have also showed delayed epithelial-mesenchymal transition in lumican-null mice. Lumican-null mouse lens epithelial cells showed decreased α-smooth muscle actin expression and the delayed epithelial-mesenchymal transition induction by transforming growth factor β-2 in vitro (18). A role for lumican has also been suggested in growth and metastasis of breast, colon, and pancreatic cancer (19–21) and in cellular apoptosis (21). A cell surface receptor for lumican has also been demonstrated (22). These observations demonstrate lumican to have multiple functions, and it may serve as a matrikine in regulating cellular activities via interaction with integrin and/or growth factor receptors besides serving as a component of ECM, similar to what has been suggested for many other ECM components (23–25). The full extent of cellular functions mediated by lumican, however, remains to be determined.

Keratan sulfate-containing proteoglycans (KSPGs) are uniquely abundant in the cornea and have long been thought to be essential for corneal transparency. Lumican constitutes only about half of corneal KSPG. Most of the remaining corneal keratan sulfate modifies keratocan, a protein with high sequence similarity to lumican. In adult tissues, keratocan is
limited to corneal stroma, and keratocan expression is consid-
ered a phenotypic marker for keratocytes. Lumican-null (Lum^{−/−}) mice manifest corneal opacity, skin fragility, and
impaired collagen fibrillogenesis (1, 12); however, ablation of
Kera genes.

In the current study, we have approached the question as to
the function of the KSPG in the cornea by overexpressing
lumican in the corneal stroma of the mouse. This experiment
explores the potential of a stoichiometric relationship between
corneal collagen KSPG. The results indicate that the presence
of excess lumican does not have any adverse effects on corneal
morphogenesis, collagen organization, or corneal transparency.
However, using a number of different experimental ap-
proaches, lumican expression was found to exert a direct effect
on the expression of keratocan. These findings provide a new
explanation for the differences of clinical manifestations in
corneas of Lum^{−/−} and Kera^{−/−} mice and document a novel
acellular regulatory function of lumican.

EXPERIMENTAL PROCEDURES

Preparation of Kera-Lum Transgenic Mice— Two oligonucleotides, a 5′ ClaI (CCA TCG ATG CCA CCA TGG AGA CAC AG) primer and a 3′ Sall (ACG GTCGAC GCA GAT CCT CTT CTA GAG) primer, were synthesized by the University of Cincinnati DNA core facility (Cincinnati, OH) and used to generate lumican cDNA using 100 ng of pSecLum as a template in a standard PCR (28). The PCR product was digested by ClaI and SalI, gel-purified, and ligated to the keratocan 2-kb promoter
in the pBSK vector (29). The fidelity of the Kera-Lum minigene was verified by nucleotide sequence in both strands. A schematic of this construct is shown in Fig. 1A. The Kera-Lum minigene was released by FspI and Sall digestion and used for pronuclei injection of fertilized mouse eggs by the Cincinnati Children’s Hospital Research Foundation Transgenic Core Facility (Cincinnati, OH). To identify transgenic mice, tail DNA from mice was used for genotyping as described previously (30).

Western Blot— Mice genomic DNA was extracted from eyes using TRI-reagentTM (Molecular Research Center, Cincinnati, OH) and used to generate lumican cDNA using 100 ng of pSecLum as a template in a standard PCR (28). The PCR product was digested by ClaI and SalI, gel-purified, and ligated to the keratocan 2-kb promoter
in the pBSK vector (29). The fidelity of the Kera-Lum minigene was verified by nucleotide sequence in both strands. A schematic of this construct is shown in Fig. 1A. The Kera-Lum minigene was released by FspI and Sall digestion and used for pronuclei injection of fertilized mouse eggs by the Cincinnati Children’s Hospital Research Foundation Transgenic Core Facility (Cincinnati, OH). To identify transgenic mice, tail DNA from mice was used for genotyping as described previously. Reagents used in this assay, unless otherwise specified, were from Promega (Madison, WI). CDNA was synthesized in a 200-μl reaction mixture containing 40 μl of 5× reverse transcription buffer, 20 μl of 0.1 M dithiothreitol, 8 μl of 25 mm dNTPs, 10 μl of RNasin (40 units/μl), 10 μl of random hexamers (50 μm) (Amersham Biosciences), 10 μl of avian myeloblastosis virus reverse transcriptase (9.5 units/μl), and 10 μg of heat-denatured corneal total RNA extracts from transgenic mouse corneas. Diethylpyrocarbonate-treated water was added to bring the final reaction volume to 200 μl. The reaction was then incubated at 25°C for 10 min, 42°C for 90 min, and 100°C for 2 min and then immediately placed on ice. A 20-μl aliquot of the described reverse transcription reactions was added to 80 μl of a PCR mixture containing 8 μl of 10× PCR buffer (no MgCl₂), 8 μl of 25 mm MgCl₂, 10 μl of 20 μg/ml primers (Ktn9, 5′-CCT ACC AAC AGC AGG ACT; BGH, 5′-TAG AAG GCA CAG TCG AGG), 0.5 μl of Taq polymerase (5 units/μl), and 45.5 μl of double-distilled H₂O. The PCR was performed for 35 cycles at 94°C for 1 min, 57°C for 1 min, and 72°C for 2 min for 35 cycles, followed by a 5-min extension time at 72°C at the end of 35 cycles.

Fibril Diameter— Mice were sacrificed, and corneas were immediately excised using scissors and forceps and placed in 1 ml of a solution containing 4 mM guanidine HCl, 0.01 M sodium acetate, 0.01 M Na-EDTA, 0.005 M benzamidine-HCl, and 0.1 M e-amino-n-caproic acid and allowed to incubate at 4°C overnight. Corneas were then homogenized using a Tissuemizer® (Tekmar, Cincinnati, OH) three times for 30 s each time. After homogenization, samples were incubated at 4°C overnight. Following this incubation, the samples were centrifuged, and the superna-
tant was dialyzed against double-distilled H₂O overnight at 4°C in a dialysis bag. Precipitates were collected by centrifugation, air-dried for 10 min, and resuspended in 100 μl of 6 M urea in 0.1 M Tris acetate, pH 7.4. The samples were then centrifuged, supernatants were collected, and optical densities were measured with a spectrophotometer at 280 nm. Routinely, about 7–10 μg of total protein could be extracted from each cornea. Samples were then digested with 0.1 unit/ml endo-β-
galactosidase (Sigma) at 37°C overnight. Western blots were performed as described previously (30) and developed using an ECL development kit, ECL-Plus® (Amersham Biosciences) according to the manufacturer’s recommendations. Band intensities were measured using NIH Image (National Institutes of Health, Bethesda, MD). Antibodies to mouse lumican and mouse keratocan were used as primary antibodies (12, 26).

In Vivo Confocal Microscopy— In vivo confocal microscopy through focusing (CMFT) was used to measure corneal epithelial thickness, stromal thickness, and corneal haze in the nontransgenic, Lum^{−/−} and Kera^{−/−} bigenic mice (these mice were produced by grade 3) were ini-
tially anesthetized by intraperitoneal injection of ketamine HCl (100 mg/kg body weight, Dodge Animal Health, Fort Dodge, IA) and xylazine (10 mg/kg body weight, Akorn, Inc., Decatur, IL). Eyelids were then held open using tape, and the central cornea was scanned using a tandem scanning confocal microscope (Tandem Scanning Corp., Reston, VA) equipped with a ×24 surface contact objective (numerical aperture of 0.85, 0.1 mm). Thick-scan confocal imaging measurements were obtained using previously described techniques (31–33). During observations, both eyes were kept moist using topically applied artificial tear solution (Celluvic, Allergan Inc., Irvine, CA) to avoid corneal desiccation, and a drop of artificial tears was placed on the tip of the objective to serve as an immersion fluid. CMFT collects a series of digital, two-dimensional images through the cornea at known intervals that can later be reconstructed to generate a three-di-
ensional image from which quantitative measurements of corneal sublayer thickness and light scattering can be obtained. Three CMFT scans in the forward, anterior to posterior, direction were obtained from the right eye of each animal. Depth intensity profiles were then generated, and thickness measurements for the epithelium and stroma were then obtained using previously published formulas (22, 33). To assess light scattering, a 2×4 scans of high intensity was generated from the corneal stroma to integrate an estimate of backscattering light using previously published techniques (33, 34). The average epithelial thickness, stromal thickness, and corneal haze were calculated from three separate z-scans from the same eye, and then the mean and S.D. from three separate animals were calculated.

Transmission Electron Microscopy— Corneas from three mice per line were prepared for transmission electron microscopy. Briefly, the corneas were fixed in situ in 4% paraformaldehyde, 2.5% glutaralde-
yde, 0.1 M sodium cacodylate, pH 7.4, with 8.0 mM CaCl₂ for 2 h (8). The corneas were then postfixed with 1% osmium tetroxide and en bloc stained with uranyl acetate, 50% ethanol. After dehydration in an ethanol series, followed by propylene oxide, the corneas were infiltrated and embedded in Epon 812, natrosol, dodecyl succinic anhydride, and DMP-30 (Electron Microscope Sciences). Thin sections were cut using a Reichert UCT ultramicrotome and a diamond knife and stained with 2% aqueous uranyl acetate, 1% phosphotungstic acid, pH 3.2. Sections taken from the central cornea and the anterior and posterior stroma were analyzed independently using electron microscopy. Sections were examined and photographed at 75 kV using a Hitachi 7000 transmission electron microscopy.

Fibril Diameter Analyses— Fibril diameter analyses were done for the nontransgenic and transgen-
ic lines. For each line, fibril diameters were measured in micro-
graphs from nonoverlapping regions of the anterior and posterior
stroma from the central taken at ×31,680. Micrographs were randomly chosen in a masked manner from the different groups and digitized, and diameters were measured using a RM Biometrics-Bioquant Image Analysis System (Memphis, TN).

Northern Hybridization— Total RNA was extracted from two mouse corneas using TRI-reagent™ (Molecular Research Center, Cincinnati, OH). Ten μg of total RNA were subjected to Northern blot hybridization with 32P-labeled mouse keratocan cDNA probe as described previously (35). Hybridization signals were detected with a PhosphorImager (Am-
ersham Biosciences).

Intratracheal Injection— Lumican-null mice were utilized in this study after preoperative examination for exclusion criteria such as
ocular disease, wound, or infection (12). Animal care and use conformed to the Association for Research in Vision and Ophthalmology Resolution on the Use of Animals in Research. All animal protocols were approved by the Institutional Animal Care and Use Committee of the University of Cincinnati. Mice were anesthetized by intraperitoneal injections of

Downloaded from http://www.jbc.org/ by guest on July 18, 2018
Keratocan Expression Is Regulated by Lumican

RESULTS

The initial goal of this study was to investigate the role of lumican in the corneal stroma by generating transgenic mice with tissue-specific lumican overexpression. To this end, a lumican minigene encoding a lumican-c-Myc tag fusion protein under the control of the 3.2-kb keratocan promoter was prepared (29). Fig. 1A shows a diagram of the Kera-Lum minigene used to create transgenic mice by pronuclear injection. Fig. 1B shows PCR genotyping with a nontransgenic (NTG) and positive control (+), and the transgenic mouse lines Kera-Lum5, Kera-Lum38, and Kera-Lum50 were positive for the transgenic construct (B). Shown are RT-PCR of Kera-Lum5, Kera-Lum38, and Kera-Lum5 mouse lines. The presence of the 1,016-bp DNA fragment is positive for the transgene (C). Shown are Western blots using anti-lumican and anti-c-Myc antibodies from partially purified corneal extracts from three lines of transgenic animals compared with a nontransgenic control. The transgenic lines show a 3–4-fold increase in lumican (approximately 45 kDa) expression as compared with the nontransgenic control. c-Myc Western blotting revealed a positive signal in all three transgenic lines but no signal in the nontransgenic mouse (D).

TABLE I

Mean corneal epithelial thickness, stromal thickness, and light scattering with the S.D. is shown for nontransgenic and Kera-Lum WT founder lines 38 and 5 as measured by CMTF.

Animal type	Epithelium	Stroma	Haze
	μm	μm	μm
Nontransgenic	48.42 ± 3.29	52.23 ± 5.46	565.26 ± 90.14
Kera-Lum38	46.27 ± 2.99	53.26 ± 3.23	696.73 ± 92.21
Kera-Lum5	45.42 ± 1.86	59.19 ± 5.58	643.42 ± 47.30

OVERALL, there was no significant difference in epithelial or stromal thickness between nontransgenic and transgenic animals. The amount of light scattering measured in U_{auc}, indicative of corneal haze, appears greater in transgenic as compared with nontransgenic animals.

Fig. 1. Schematic of Kera-Lum minigene used for transgenic mouse generation. Lum cDNA containing the c-Myc tag was ligated to the 3.2-kb keratocan promoter followed by a BGH polyadenylation signal with pBSK vector (A). Shown is PCR genotyping of three lines of Kera-Lum transgenic mice, a nontransgenic littermate (NTG), and a positive plasmid DNA control. The presence of the 1,500-bp fragment is positive for the transgenic construct (B). Shown is RT-PCR of Kera-Lum5, Kera-Lum38, and Kera-Lum5 transgenic mice and a nontransgenic control. The presence of the 1,016-bp DNA fragment is positive for the transcript from the transgene (C). Shown are Western blots using anti-lumican and c-Myc antibodies from partially purified corneal extracts from three lines of transgenic animals compared with a nontransgenic control probing for lumican. The transgenic animals show a 3–4-fold increase in lumican (approximately 45 kDa) expression as compared with the nontransgenic control. c-Myc Western blotting revealed a positive signal in all three transgenic lines but no signal in the nontransgenic mice (D).
detected in nontransgenic corneas, further confirming the presence of recombinant lumican encoded by the transgene in the cornea.

The data summarized in Table I demonstrate that there were no significant differences between the nontransgenic and transgenic mice for epithelial thickness, stromal thickness, and haze. The average epithelial and stromal thicknesses in the nontransgenic mice were 48.42 ± 3.29 and 52.33 ± 5.46 μm, respectively. Light scattering in the nontransgenic mice was 565 ± 90.14 Uaw. Although the level of light scattering appeared higher in the transgenic mice compared with the nontransgenic, the increased scattering was not significantly different between nontransgenic and transgenic Kera-Lum mice. Nevertheless, transgenic mice showed slightly elevated levels of corneal haze compared with the nontransgenic mice. Furthermore, animals showing higher levels of expression of the transgene (Kera-Lum38) show higher levels of haze than transgenic mouse lines with lower levels of expression (Kera-Lum5).

Electron microscopy examination revealed that the stromal architecture was nearly identical among nontransgenic and the two transgenic mouse lines (Kera-Lum5 and -38; Fig. 2). Fibril packing and spacing were comparable in normal and overexpressing stromas. No significant differences were observed between the anterior and posterior stroma. Occasionally in the transgenic lines there appeared to be limited regions with less ordered packing. Fibril diameters were not significantly different in nontransgenic versus transgenic lines. Fibril diameters from the anterior stroma were 24 ± 4 nm (n = 406) and 23 ± 3 nm (n = 484), whereas values for the posterior stroma were 22 ± 3 nm (n = 273) and 24 ± 3 nm (n = 462) for nontransgenic and transgenic, respectively. The fibril diameters were in the 9–36-nm range for all samples.

After characterizing lumican expression and corneal architecture of the transgenic founder lines, keratocan expression was analyzed to determine whether lumican overexpression might impact corneal KSPG equilibrium. Keratocan expression was determined through Western blot analysis using an anti-keratocan antibody (26). Surprisingly, Fig. 3A shows 5–6-fold higher keratocan expression in corneas of transgenic mice than that of nontransgenic littermates, suggesting an up-regulated keratocan expression caused by excess lumican. To further examine whether lumican may modulate keratocan expression, proteoglycans were extracted from corneas of Lum+/-, Lum-/-, and Lum-/- mouse corneas (B). Keratocan is up-regulated ~5-fold in the Kera-Lum lines as compared with the nontransgenic control. Keratocan levels decrease in the heterozygous (Lum-/-) and homozygous (Lum-/-) knockout corneas. Northern blotting hybridization of total RNA (10 μg) from two corneas of Lum-/-, Lum-/-, wild-type Lum+/-, nontransgenic littermate (Lum+/-), and Kera-Lum transgenic mice. Keratocan mRNA is down-regulated in Lum-/- mouse corneas and up-regulated in the Kera-Lum transgenic mouse (C).

FIG. 2. Transmission electron micrographs showing similar stromal architecture in stromas from nontransgenic and transgenic mouse corneas. The collagen fibril diameters in corneas of wild type and transgenic mice are virtually identical. In addition, fibril packing and spacing are comparable in normal and overexpressing lines. Identical results were observed in both the anterior and posterior regions of the stroma. Bar, 300 nm.

FIG. 3. Western blots probing for keratocan in the three transgenic lines (A) and in Lum+/-, Lum-/-, and Lum-/- mouse corneas (B). Keratocan is up-regulated ~5-fold in the Kera-Lum lines as compared with the nontransgenic control. Keratocan levels decrease in the heterozygous (Lum-/-) and homozygous (Lum-/-) knockout corneas. Northern blotting hybridization of total RNA (10 μg) from two corneas of Lum-/-, Lum-/-, wild-type Lum+/-, nontransgenic littermate (Lum+/-), and Kera-Lum transgenic mice. Keratocan mRNA is down-regulated in Lum-/- mouse corneas and up-regulated in the Kera-Lum transgenic mouse (C).
paralleled those of the Western blot analysis, demonstrating a 2-fold increase in lumican levels following intrastromal injection of pSecLum plasmid DNA, as compared with empty vector control.

Lumican-null mouse corneas 5 days after intrastromal injection of pSecLum or empty vector control plasmid DNA. Hematoxylin and eosin (H&E) staining revealed no significant morphological changes between empty vector- and pSecLum-injected corneas. Immunohistochemistry using anti-lumican antibody detects the presence of lumican in the pSecLum-injected cornea.

Fig. 5. Western blot for lumican (bottom) and keratocan (top) of corneal extracts from Lum^{-/-} mice 5 days after intrastromal injection of pSecLum or empty vector control plasmid DNA. Lumican levels increase as expected following intrastromal injection of pSecLum plasmid DNA. Keratocan levels also increase 2-fold after injection of pSecLum plasmid DNA, as compared with the empty vector control.

Fig. 6. Down-regulated expression of keratocan by bovine keratocytes treated with lumican siRNA. A, lumican was detected by Western blotting (as described under “Experimental Procedures”) in culture medium (lanes 2 and 4) or cell lysates (lanes 1 and 3) of primary cultures of bovine keratocytes that had been transfected (lanes 3 and 4) with siRNA to bovine lumican or mock-transfected controls (lanes 1 and 2) 96 h after transfection. Transfection of siRNA significantly suppresses the synthesis of lumican. B, quantitative real time RT-PCR was used to determine relative mRNA pools in primary keratocytes 72 h after lumican siRNA transfection (solid bars) or mock transfection (patterned bars) using primer/probes for keratocan, aldehyde dehydrogenase (ALDH), and biglycan as previously described (39).
injected intrastromally into \(\text{Lum}^{-/-} \) mice with either a lumican-expressing minigene (pSecLumWT) or an empty vector control (pSecTag2A). 4 days following intrastromal injection, corneas were harvested, and \(\beta \)-galactosidase activities were determined. Fig. 7 shows a histogram of the \(\beta \)-galactosidase units/cornea \((n = 4)\) of the vector or lumican minigene co-injected with pKera3.2INT-\(\beta \)GEO. Lumican expression significantly increases the activity of the keratocan promoter, demonstrating the ability of lumican to regulate keratocan gene expression at the promoter level.

FIG. 7. Keratocan promoter activity assay performed in \(\text{Lum}^{-/-} \) animals measuring the ability of the keratocan promoter to drive \(\beta \)-GEO expression in the presence or absence of lumican. The ability of an empty vector (Vector) or a lumican-expressing plasmid DNA construct (Lumican) to influence the expression of a \(\beta \)-GEO reporter gene by the keratocan promoter was measured 4 days after intrastromal injection. The presence of lumican significantly increases the activity of the keratocan promoter as shown in \(\beta \)-galactosidase \(10^{4} \) units/cornea as compared with vector control.

DISCUSSION

Keratocan and lumican are regulators of collagen matrix organization and assembly in the corneal stroma (40). Besides regulating collagen fibrillogenesis, lumican plays a role in several biological processes such as wound healing, epithelial-mesenchymal transition, and tumorigenesis (12, 18, 19, 21, 24, 41). The results reported here indicate a novel biological role of lumican as a modulator of keratocan gene expression by keratocytes.

The characterization of the lumican and keratocan-null mouse were previously reported (1, 12, 26). Whereas the lumican-null mouse has a profound phenotype, including corneal opacity and skin fragility due to altered collagen fibrillogenesis, delayed corneal epithelium wound healing (1, 12), and delayed epithelial-mesenchymal transition of injured lens (18), the keratocan-null mouse exhibited subtle clinical manifestation of thin but transparent cornea and did not develop corneal opacity as examined out to 12 months (26, 27). Further examination of the keratocan-null mouse showed no alteration of other SLRPs in the corneal stroma, including lumican (26). The result shown in Fig. 3 depicts the decrease in keratocan expression in the \(\text{Lum}^{-/-} \) and a further decrease in the \(\text{Lum}^{-/-} \) mice as compared with wild type \(\text{Lum}^{+/+} \) littermates. This suggests that the corneal phenotypes (opacity, perturbed fibrillogenesis, and thin corneal stroma) in the lumican knockout animals are not solely the result of an absence of lumican expression but also the result of a significant decrease of keratocan expression by corneal stroma of \(\text{Lum}^{-/-} \) mice. It is of interest to note that there was a marked increase of lumican expression in tendon of fibromodulin null mice (\(Fmod^{-/-} \)). It was suggested that the up-regulation of lumican might in part rescue the tendon phenotype of \(Fmod^{-/-} \) mice (42). The observations implicate that the expression of members of the SLRP family may be regulated by other members in the family. The results of our studies provide direct evidence to substantiate such a hypothesis.

The initial goal of this study was to better define the role of lumican in the cornea using transgenic animals overexpressing lumican on a wild type background. If collagen fibrillogenesis requires KSPGs and collagen in a strict stoichiometric ratio, then such an overexpression would be expected to alter corneal morphogenesis, fibril diameter, and transparency of the transgenics. The absence of such corneal pathologies indicates that overabundance of KSPG proteins is not detrimental to correct corneal morphogenesis. The keratocan knockouts and heterozygous \(\text{Lum}^{+/+} \) mice both have normal stromal collagen matrix, and only the \(\text{Lum}^{-/-} \) mice show markedly altered stromal collagen. Our current data show that the lumican knockouts not only lack lumican but also have reduced keratocan. Based on these findings, we propose that correct corneal morphogenesis requires a minimal concentration of KSPG proteins and that a strict ratio is not necessary. Excess KSPG appear not to be detrimental. This may be in part explained by the presence of a limited number of KSPG binding sites on collagen molecules (43).

Also shown was a decrease in lumican expression resulted in decreased keratocan expression. Furthermore, intrastromal injection of lumican cDNA into lumican-null animals resulted in lumican expression, but more importantly an increase in keratocan expression. Taking this finding into account coupled with the unaltered lumican expression in the keratocan knockout mouse, lumican is capable of regulating keratocan expression in the adult cornea. The idea that lumican may serve as a regulatory molecule for keratocan expression was explored to determine the mechanism by which lumican can regulate keratocan expression using an \textit{in vivo} promoter assay where the presence of lumican was able to significantly increase keratocan promoter activity in \(\text{Lum}^{-/-} \) mice as shown in Fig. 7.

Our observations are consistent with the suggestions that members of SLRP family may have additional functions besides serving as components of ECM (44). For example, decorin is another SLRP family member that shares similar functions with lumican. Not only is decorin an important molecule in ECM stabilization; it has been shown to be involved in cell proliferation and migration and protein synthesis. Analogous to the phenotypes found in lumican-null mice, decorin-null mice also exhibit skin fragility and impaired collagen fibrillogenesis (45). Furthermore, lumican and decorin are both maximally expressed in quiescent cells. Several studies have suggested the ability of ECM proteins to function as low affinity ligands for growth factor receptors and coined the term "matrikines" (23). Decorin has been identified as a matrikine, and its ability to initiate signaling pathways such as the ERK1/ERK2 pathways (46, 47) and receptor tyrosine kinases provides a signaling link between the ECM and nuclear function (48–51).

A previous report suggests the ability of lumican to serve as a ligand for macrophage receptor(s) in its low sulfated form (22). We have recently observed that stromal cells and poly-
morphonuclear neutrophils bind lumican. These observations are consistent with the existence of cell surface receptor(s) of lumican. The actual receptor responsible for this has not been identified to date, but this receptor may also exist on the keratocyte. It is plausible to hypothesize that lumican modulates the expression of keratocan and/or other genes by keratocytes. A receptor for lumican and/or KSPGs would logically be present on the keratocyte for maintaining extracellular matrix equilibrium in the corneal stroma, since collagen fibrillogenesis in the cornea proceeds in such a highly organized fashion to form a transparent tissue that regulation of the factors involved is paramount.

The implication that lumican involvement in tumorigenesis is substantiated by the observation in which expression of lumican has been associated with colorectal epithelial cells with mild reactive dysplasia (42) and breast carcinomas (19, 41, 52). However, the precise role of lumican involvement in tumorigenesis remains elusive, since conflicting data of the levels of lumican expression during tumorigenesis has been reported in various tumors. For example, high lumican expression levels were detected in invasive carcinomas (19), whereas low lumican expression correlates with large tumor size (52). The presence of lumican receptor and multiple functions of lumican may provide an explanation for the observed variations of lumican in tumorigenesis. The pathways and mechanisms governing these processes are unclear, but the combination of the expression of lumican and its receptor(s) may contribute to the outcomes of cell behaviors during tumorigenesis.

Taken together, our results strongly support the hypothesis that lumican is a regulatory protein for keratocan expression at the promoter level in the adult mouse corneal stroma. Nevertheless, the signaling mechanism behind this novel function of lumican has yet to be determined. Like decorin, another SLRP family member, lumican may function as a matrikine through the promoter level in the adult mouse corneal stroma. Never-theless, the combination of the expression of lumican and its receptor(s) may contribute to the outcomes of cell behaviors during tumorigenesis.

Acknowledgments—We are indebted to Drs. Bruce Caterson, Brigeen Kerr, and Claire Hughes for the generous gift of anti-lumican antibodies.

REFERENCES

1. Chakravarti, S., Magnussen, T., Laas, J. H., Jepsen, K. J., LaMantia, C., and Carroll, H. (1998) J. Cell Biol. 141, 1277–1286
2. Funderburgh, J. L., Funderburgh, M. L., Mann, M. M., and Conrad, G. W. (1991) J. Biol. Chem. 266, 24773–24777
3. Funderburgh, J. L., Funderburgh, M. L., Brown, S. J., Vergnes, J. P., Hassell, J. R., Mann, M. M., and Conrad, G. W. (1993) J. Biol. Chem. 268, 11874–11880
4. Grover, J., Chen, X. N., Korenberg, J. R., and Roughley, P. J. (1995) J. Biol. Chem. 270, 21942–21949
5. Krull, N. B., and Gresser, A. M. (1992) FEBS Lett. 312, 47–52
6. Ezura, Y., Chakravarti, S., Oldberg, A., Chevonneva, I., and Birk, D. E. (2000) J. Cell Biol. 151, 779–788
7. Chakravarti, S., Petrov, W. M., Hassell, J. R., Jester, J. V., Laas, J. H., Paul, J., and Birk, D. E. (2000) Invest Ophthalmol. Vis. Sci. 41, 3365–3373
8. Birk, D. E., and Trebst, R. L. (1984) J. Cell Biol. 99, 2024–2033
9. Austin, B. A., Coulon, C., Liu, C. Y., Kao, W. W., and Rada, J. A. (2002) Invest Ophthalmol. Vis. Sci. 43, 1660–1701
10. Neame, P. J., Kay, C. J., McQuillan, D. J., Beales, M. P., and Hassell, J. R. (2000) Cell Mol. Life Sci. 57, 859–863

2 E. C. Carlson, C.-Y. Liu, T. Chikama, Y. Hayashi, C.-W.-C. Kao, J. L. Funderburgh, and W. W.-Y. Kao, unpublished data.
Keratocan, a Cornea-specific Keratan Sulfate Proteoglycan, Is Regulated by Lumican

Eric C. Carlson, Chia-Yang Liu, Tai-ichiro Chikama, Yasuhito Hayashi, Candace W.-C. Kao, David E. Birk, James L. Funderburgh, James V. Jester and Winston W.-Y. Kao

J. Biol. Chem. 2005, 280:25541-25547.
doi: 10.1074/jbc.M500249200 originally published online April 22, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M500249200

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 52 references, 29 of which can be accessed free at http://www.jbc.org/content/280/27/25541.full.html#ref-list-1