Post traumatic recurrent ventricular tachycardia in intensive care unit: It’s time not to give up

To the Editor,

Cardiac dysfunction with electrocardiographic (ECG), echocardiographic (ECHO) changes and sudden cardiac death following acute neurological injury has been well reported. Here, we describe the occurrence of recurrent ventricular tachycardia (VT) following traumatic brain injury (TBI) which reverted following surgical evacuation of extradural haematoma (EDH).

A 58-year-old hypertensive, diabetic male presented in triage after road side accident with score on Glasgow Coma Scale of E3V2M5. During examination, bilateral pupils were 2 mm in size and were reacting to light. A non-contrast computed tomographic scan of head revealed right sided frontotemporal EDH with midline shift of 5.5 mm. In the triage, he had a cardiac arrest following VT for which
Letters to Editor

The spontaneous disappearance of life-threatening ventricular arrhythmias following haematoma evacuation suggests a neurogenic cause rather than a cardiac cause in our case. Repeated VT was due to the presence of non-evacuated extradural haematoma. As per Monro-Kellie doctrine, once the compensatory reserve is exhausted, ICP increases and brain shifts may occur. Raised ICP leads to impairment of “Neuro-autonomic cardiovascular regulation (NCR)” system. The NCR has 3 parts. The first being neuronal component - cerebral cortex (insular and medial prefrontal region, amygdala, terminal stria), hypothalamus, brainstem (periaqueductal gray matter, parabrachial bridge, nucleus tractus solitarius, medial reticular zone of the medulla). Sympathetic fibres originating from cervical and thoracic ganglia of autonomic system (second component) which supplies atria, ventricles, coronaries and peripheral vasculature (last component). Rise in ICP often resulted in sympathetic surge, wave of central catecholamine outflow and alteration in hypothalamus, insular region, which leads to cardiac arrhythmias, blood pressure alterations and myocardial damage. Excessive prolongation of the QTc interval driven by abnormalities in the insula and hypothalamus have been seen in acute neurological injuries.[1] In a prospective observational study, abnormal ECG changes (62%), elevated troponin I levels (54%), and echocardiographic abnormalities (42%) were seen in severe TBI.[2] Prathep et al. reported in a retrospective study, elevated serum troponin levels (24%), abnormal echocardiographic changes (22.3%), without documentation of ECG changes.[3]

Autonomic dysfunction in patients with extradural, subdural or intracerebral haematoma has been postulated as a risk factor for neurogenic cardiomyopathy.[4] Autonomic control of heart rate is disrupted proportional to the degree of neurologic insult after acute brain injury. ICP >30 mmHg or a cerebral perfusion pressure (CPP) <40 mmHg may be associated with marked autonomic dysfunction and poor outcome. Ventricular arrhythmia leading to sudden cardiac deaths are well reported. We believe episodes of ventricular arrhythmias were timely intervened during each episode in our patient. Hence, recurrent ventricular arrhythmias were witnessed; otherwise a sudden cardiac death would have been seen in our case too. Sudden rise in ICP intermittently would have precipitated autonomic dysfunction resulting in recurrent episodes of VT. This would have been conclusive had ICP been monitored (not done in our case). After surgical evacuation of haematoma, ICP normalized and further ventricular arrhythmias disappeared. Our case is similar to that reported by Krishnamoorthy et al., where within 5 minutes of subdural haematoma decompression, complete cardiac dysfunction reversibility was seen (ejection fraction improved to 55% from 35% with resolution of hypokinesia).[4]

Repeated episodes of CPR and defibrillation are considered to be a poorer marker of outcome and efforts are generally considered less fruitful. However, constant vigilance and awareness of brain heart interaction with optimal management avoided an unfavorable neurological outcome despite multiple life-threatening episodes. At one-year follow-up, the patient is able to perform his daily activities.

To conclude, recurrent ventricular arrhythmias requiring CPR following TBI may not always be a marker of poor outcome. Definitive treatment of brain injury-induced cardiac arrhythmias includes surgical...
removal of intracranial pathology at earliest if possible along with intensive care to decrease in the ICP. It is worth exploring the long-term outcome of head injury patients with cardiac dysfunction.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due anonymity will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Mohit Mittal, Shalvi Mahajan
Department of Neuroanaesthesia, Medicity, Gurgaon, Haryana, "Department of Anaesthesia and Intensive Care, PGIMER, Chandigarh, India

Address for correspondence:
Dr. Shalvi Mahajan,
Department of Anaesthesia and Intensive Care,
PGIMER, Chandigarh - 160 012, India.
E-mail: drshalvimahajan@gmail.com

References
1. Winchell RJ, Hoyt DB. Analysis of heart-rate variability: A noninvasive predictor of death and poor outcome in patients with severe head injury. J Trauma 1997;43:927-33.
2. Hasanin A, Kamal A, Amin S, Zakaria D, El Sayed R, Mahmoud K, et al. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma Resusc Emerg Med 2016;24:58.
3. Prathep S, Sharma D, Hallman M, Joffe A, Krishnamoorthy V, Mackensen GB, et al. Preliminary report on cardiac dysfunction after isolated traumatic brain injury. Crit Care Med 2014;42:142-7.
4. Krishnamoorthy V, Sharma D, Prathep S, Vavilala MS. Myocardial dysfunction in acute traumatic brain injury relieved by surgical decompression. Case Rep Anesthesiol 2013;2013:482596.