Early and Long-Term Outcomes of Venous Stent Implantation for Iliac Venous Stenosis After Catheter-Directed Thrombolysis for Acute Deep Vein Thrombosis

Akimasa Matsuda, MD; Norikazu Yamada, MD, PhD; Yoshito Ogihara, MD; Akihiro Tsuji, MD, PhD; Satoshi Ota, MD, PhD; Ken Ishikura, MD, PhD; Mashio Nakamura, MD, PhD; Masaaki Ito, MD, PhD

Background: Although stent implantation is used worldwide for peripheral arterial disease, there is little data on the safety and long-term patency of stents implanted for venous disease.

Methods and Results: We studied 13 patients with 14 lesions (6 males, 7 females, mean age: 63.2±10.2 years) diagnosed with venous stenosis and who underwent venous stenting. We examined the location of the stenosis, safety of venous stenting, implantation success rate, and long-term stent patency rate. All patients were suffering from venous stenosis in the left common iliac vein because of iliac vein compression syndrome. No major complications occurred during stent implantation. Acute stent occlusion occurred in 1 patient, who was given additional thrombolytic therapy. Of the 13 patients, 10 underwent venography or contrast-enhanced computed tomography (CT) during mid-term follow-up (mean: 12.9±16.1 months), and only 1 stent was occluded, resulting in a patency rate of 90.0%. The latter patient decided to stop taking warfarin soon after stent implantation. Furthermore, 5 patients underwent contrast-enhanced CT to assess the long-term patency of their stents (mean: 79.6±31.2 months), and none was occluded.

Conclusions: Venous stents display a high long-term patency rate, and hence are a useful tool for treating iliac venous stenosis. (Circ J 2014; 78: 1234–1239)

Key Words: Deep vein thrombosis; Iliac vein compression syndrome; Venous stenosis; Venous stents
Venous Stenting for Iliac Venous Stenosis

All 13 patients underwent venous stent implantation between May 2000 and June 2008. The following information was obtained for each case: intravascular ultrasound (IVUS) scan findings; the number, size, and type of stents used; the stent implantation site; and whether thrombolysis or concurrent rheolytic thrombectomy for acute DVT. During the procedure, all patients underwent full anticoagulation with unfractionated heparin through the side port of the introducer sheath. The heparin dose was adjusted to produce an activated partial thromboplastin time of twice the control value. After the procedure, all the patients were started on additional warfarin. The unfractionated heparin was discontinued after a therapeutic prothrombin time-international normalized ratio (PT-INR) had been obtained. The warfarin dose was adjusted to produce a PT-INR of 1.5–2.5.

Follow-up
Acute stent patency (within 2 weeks of stent implantation) and mid-term stent patency (approximately 1 year after stent implantation) were assessed with venography or contrast-enhanced CT; 3 patients were lost to mid-term follow-up, and we evaluated long-term stent patency (>3 years later) with contrast-enhanced CT in 5 patients. We diagnosed post-thrombotic syndrome based on the CEAP classification.

Results
The characteristics of the 13 patients (6 males, 7 females; mean age 63.2±10.2 years) enrolled in this study are shown in Table 1. During the same period, there were 74 cases of DVT for which catheter-directed thrombolysis was performed in our hospital, and the stent implantation rate was 17.6%. All patients were suffering from acute DVT or venous stenosis in the left common iliac vein because of iliac vein compression syndrome and continued to exhibit symptoms such as leg swelling and pain or venous stasis related to venous stenosis after thrombolytic therapy. One patient had stenotic lesions in both the left common iliac and external iliac vein. Thrombophilia, including protein S deficiency and antithrombin deficiency, was detected in 2 patients.

Stents
The stent implantation sites were the left common iliac vein in 13 lesions and the left external iliac vein in 1 lesion. Easy Wallstents (Boston Scientific) were implanted into 7 patients, SMART stents (Cordis, Bridgewater, NJ, USA) were implant-
Complications Related to Stent Implantation
No major complications occurred during stent implantation; 1 patient exhibited in-stent thrombosis immediately after stent implantation. There were no complications such as pulmonary thromboembolism, vascular injury, major bleeding, stent fracturing, or stent migration.

Retrieval of the IVC Filters
All the IVC filters that had been implanted in the patients with acute DVT were successfully retrieved after thrombolysis and stent implantation. No complications related to IVC filter implantation or retrieval occurred.

Mid-Term Follow-up
We administered warfarin-based anticoagulation therapy to all patients; 3 patients were lost to the mid-term follow-up; 1 patient suffered leg swelling because of a stent occlusion during the mid-term follow-up period (mean follow-up period: 12.9 ± 16.1 months). Imaging studies (venography: 6 patients, contrast-enhanced CT: 4 patients) were performed for the remaining 10 patients to verify whether the stents were occluded, but stent occlusion was only detected in 1 patient. Thus, the stent patency rate for the mid-term phase was 90.0%.

Complications Related to Stent Implantation
No major complications occurred during stent implantation; 1 patient exhibited in-stent thrombosis immediately after stent implantation. There were no complications such as pulmonary thromboembolism, vascular injury, major bleeding, stent fracturing, or stent migration.

Retrieval of the IVC Filters
All the IVC filters that had been implanted in the patients with acute DVT were successfully retrieved after thrombolysis and stent implantation. No complications related to IVC filter implantation or retrieval occurred.

Mid-Term Follow-up
We administered warfarin-based anticoagulation therapy to all patients; 3 patients were lost to the mid-term follow-up; 1 patient suffered leg swelling because of a stent occlusion during the mid-term follow-up period (mean follow-up period: 12.9 ± 16.1 months). Imaging studies (venography: 6 patients, contrast-enhanced CT: 4 patients) were performed for the remaining 10 patients to verify whether the stents were occluded, but stent occlusion was only detected in 1 patient. Thus, the stent patency rate for the mid-term phase was 90.0%.

Table 2. Details of Stent and Implantation
Case no.	Stent Diameter (mm)	Length (mm)	Predilatation	Post-dilatation	Additional thrombolytic therapy after stenting
1	Easy Wallstent	10	50	–	–
2	Easy Wallstent	12	50	+	–
3	Easy Wallstent	10	65	–	–
4	SMART	12	60	+	–
5	SMART	12	40	+	+
6	SMART	10	60	+	+
7	Easy Wallstent	12	50	+	+
8	Easy Wallstent	10	65	+	+
9	Luminexx	10	100	+	–
10	Easy Wallstent	12	50	+	+
11	Easy Wallstent	12	30	+	–
12	SMART	10	40	+	+
13	SMART	10	40	+	–

Table 3. Follow-up Data
Case no.	Occlusion in acute phase	Occlusion in mid-term phase	Diagnostic method	Warfarin therapy (duration)	Recurrence of VTE	Prognosis
1	–	–	Venography	Discontinued (84 months)	Died of tongue cancer	
2	+	–	Venography	Continuing	–	
3	–	Not examined	–	Discontinued (48 months)	–	
4	–	–	Venography	Discontinued (51 months)	–	
5	–	–	Venography	Discontinued (45 months)	–	
6	–	–	Venography	Continuing	–	
7	–	–	Enhanced CT	Continuing	–	
8	–	–	Venography	Continuing	Died of postoperative ileus	
9	–	+	Enhanced CT	Discontinued (28 months)	–	
10	–	not examined	–	Discontinued (32 months)	–	
11	–	not examined	–	Discontinued (6 months)	–	
12	–	–	Enhanced CT	Continuing	–	
13	–	–	Enhanced CT	Continuing	–	

VTE, venous thromboembolism.
Venous Stenting for Iliac Venous Stenosis

A 69-year-old woman (case no. 9) was admitted because of acute proximal DVT, and catheter-directed thrombolysis was initiated. After the clot had been dissolved, we implanted a stent (Luminexx, 10×100 mm) in a severe stenotic lesion in her left common iliac vein, which had been caused by iliac compression syndrome. After stent implantation, adequate stent expansion was confirmed by venography and IVUS. After discharge, the patient stopped taking warfarin of her own accord (10 days after stenting); however, her left leg subsequently began to swell. Complete obstruction from in-stent thrombosis was detected by CT at 1 month after stent implantation (Figure 2). Catheter-directed thrombolysis was not performed, but anticoagulation therapy was resumed, but despite long-term anticoagulation therapy, recanalization was not achieved. Finally, we ceased the anticoagulation therapy at 28 months according to the patient’s wishes. After cessation of anticoagulation therapy, exacerbation of lower limb swelling has not been observed.

Long-Term Follow-up

The mean follow-up after stent implantation was 79.9±29.8 months (range 28–117 months). During follow-up, 2 patients died of tongue cancer and postoperative ileus, respectively. No deaths because of venous thromboembolism occurred. We list the long-term outcomes of anticoagulation therapy in Table 3. At the time of the last follow-up examination, 7 patients had

Table 4. Review of Venous Stenting Studies

Year	Author	n	Acute phase patency rate (%)	Chronic phase patency rate (%)	Follow-up (months)	Diagnostic method
1998	Binkert et al13	8	100	100	35	Venous US
						Venography
2000	Patel et al14	10	100	80	36	Venous US
2000	O’Sullivan et al15	35	93.6	93.6	12	Venous US
2001	Heijmen et al16	6	100	83	12	Venous US
2001	Hurst et al17	17	–	79	14–17	Venography
						Venous US
2002	Lamont et al18	15	93	87	16	Venous US
2005	Kwak et al19	22	96	95	24	Venous US
2006	Kim et al20	18	100	88	6	Venography
2008	Hartung et al21	29	89.7	78.9	63	Venous US
2012	Funatsu and Nakamura22	20	95	93.8	50	Venography
						Venous US
						Enhanced CT
	Present study	13	92.3	90.0	79.9	Venography
						Enhanced CT

Representative Case of Stent Occlusion

Figure 1. Stent occlusion during the acute phase (case 2). (A) Stent (Easy Wallstent, 12×50 mm) implanted after thrombolytic therapy. (B) After stent implantation. (C) At 2 days after stent implantation, catheter-directed thrombolytic therapy (Fountain infusion system, 5Fr×10 cm) was initiated because of stent occlusion (yellow arrows). (D) Final imaging examination.
Bolysis is being increasingly used to treat DVT and venous disease. Stent implantation for venous stenosis is a catheter intervention for venous disease and is considered to be an effective treatment for venous stagnation. In our hospital, venous stents are implanted in patients with venous stasis because of severe stenosis after complete thrombolysis. On the other hand, we exclude young subjects or with a rich collateral through the pelvic venous plexus.

All patients in the present series were suffering from left common iliac vein stenosis. The left common iliac vein is often compressed (iliac compression syndrome) because it runs behind the right iliac artery, and in some patients there is a pelvic venous spur in this region. As a result, the left leg is prone to venous stagnation and DVT.

To treat the patients with DVT, we placed a sheath in the popliteal vein ipsilateral to the lesion and performed stent implantation. After stent implantation, stent expansion was confirmed by IVUS. The 6 patients who exhibited inadequate stent expansion were treated with additional low-pressure balloon dilatation. Vascular injury, bleeding, infection, and pulmonary embolism were absent as complications, but 1 patient suffered in-stent thrombosis just after stent implantation. In that patient, venous stenosis and a thrombus developed in the distal part of the lesion, probably because of in-stent thrombus formation.

Catheter-directed thrombolysis was highly effective, but venous stenosis remained in the distal portion of the lesion.

stopped taking anticoagulants, and 6 patients were continuing to receive anticoagulation therapy. The mean duration of anticoagulant therapy in the patients who ceased treatment was 42.0±24.1 months. None of the surviving patients who had ceased anticoagulation therapy developed recurrent venous thromboembolism. Contrast-enhanced CT was performed to examine the long-term stent patency in 5 patients (including 2 patients who had discontinued anticoagulation therapy; mean duration of stent implantation: 79.6±31.2 months). Good stent patency was observed in all 5 patients, and none of the stents had fractured.

Only 1 patient had leg swelling according to the CEAP classification (C3), but post-thrombotic syndrome was not observed in any other patient (CEAP classification: C0).

Discussion

Venous stenosis can lead to blood flow stagnation and cause DVT. Also, the administration of anticoagulation therapy alone in patients with poor collateral vessels can lead to leg swelling, pain, and skin ulcers because of venous stenosis. Therefore, it is important to treat stenotic lesions in such patients.

In recent years, the use of catheter interventions for vascular disease has spread rapidly in conjunction with the development of catheter devices. In addition, catheter-directed thrombolysis is being increasingly used to treat DVT and venous disease. Stent implantation for venous stenosis is a catheter intervention for venous disease and is considered to be an effective treatment for venous stagnation. In our hospital, venous stents are implanted in patients with venous stasis because of severe stenosis after complete thrombolysis. On the other hand, we exclude young subjects or with a rich collateral through the pelvic venous plexus.

All patients in the present series were suffering from left common iliac vein stenosis. The left common iliac vein is often compressed (iliac compression syndrome) because it runs behind the right iliac artery, and in some patients there is a pelvic venous spur in this region. As a result, the left leg is prone to venous stagnation and DVT.

To treat the patients with DVT, we placed a sheath in the popliteal vein ipsilateral to the lesion and performed stent implantation. After stent implantation, stent expansion was confirmed by IVUS. The 6 patients who exhibited inadequate stent expansion were treated with additional low-pressure balloon dilatation. Vascular injury, bleeding, infection, and pulmonary embolism were absent as complications, but 1 patient suffered in-stent thrombosis just after stent implantation. In that patient, venous stenosis and a thrombus developed in the distal part of the lesion, probably because of in-stent thrombus formation.

Catheter-directed thrombolysis was highly effective, but venous stenosis remained in the distal portion of the lesion.

Figure 2. Stent occlusion during the mid-term phase (case 9). (A) Stent (Luminexx, 10×100 mm) implanted after thrombolytic therapy. (B) After stent implantation (yellow arrowheads indicate the stent). (C) Contrast-enhanced CT (4 days after stent implantation; green arrows show stent patency). (D) Contrast-enhanced CT (1 month after stent implantation; blue arrows show stent occlusion).
Blood flow stagnation was also observed at this site, and so an additional stent was implanted. After treatment, no recurrence developed during the chronic phase of the patient’s condition. Only 1 patient developed stent obstruction in the acute phase and that patient did not undergo balloon dilatation after stent implantation. Angiography performed just after stent implantation suggested that the stent might not have been large enough. Therefore, it was considered that blood flow stagnation led to the formation of a thrombus. The patient’s blood flow was restored by catheter-directed thrombolysis, and no recurrence was observed.

IVC filters are often required in cases of acute DVT treated with a catheter intervention. In this study, we implanted retrievable IVC filters in all patients. After completion of the catheter intervention, the IVC filters can be retrieved. However, implantation of a permanent IVC filter increases the risk of recurrent DVT, so IVC filters should only be implanted during the catheter intervention. In this study, all of the IVC filters were successfully retrieved.

Of the 10 patients in whom we were able to assess stent patency during the mid-term follow-up phase, occlusion was only observed in 1 patient. After discharge, the latter patient exhibited good patency, and there were no fractured stents.

Thus, stent implantation is considered to be an appropriate treatment for venous stent obstruction in patients with proximal deep vein thrombosis. Circ J 2012; 76: 2697–2704.

Conclusions

In conclusion, venous stent implantation for iliac venous stenosis is associated with a high long-term patency rate and is an effective and safe therapy.

References

1. Hirsch AT, Haskal ZJ, Hertzler NR, Bakal CW, Creeger MA, Halperin JL, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): A collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation 2006; 113: e463–e544.

2. Soga Y, Iida O, Kawasaki D, Yamauchi Y, Suzuki K, Hirano K, et al. Contemporary outcomes after endovascular treatment for aorto-iliac artery disease. Circ J 2012; 76: 2697–2704.

3. Tsuji A, Yamada N, Ota S, Ishikura K, Najamura M, Ito M. Early results of rheolytic thrombectomy in patients with proximal deep vein thrombosis. Circ J 2011; 75: 1742–1746.

4. Eklöf B, Rutherford RB, Bergan JJ, Carpentier PH, Gloviczki P, Kistner RL, et al. Revision of the CEAP classification for chronic venous disorders: Consensus statement. J Vasc Surg 2004; 40: 1248–1252.

5. Hirsh J, Hoak J. Management of deep vein thrombosis and pulmonary embolism. Circulation 1996; 93: 2212–2245.

6. Raju S, Neglen P. High prevalence of nonthrombotic iliac vein lesions in chronic venous disease: A permissive role in pathogenesis. J Vasc Surg 2006; 44: 136–143.

7. Yamada N, Ishikura K, Ota S, Tsuji A, Nakamura M, Ito M, et al. Pulse-spray pharmacomechanical thrombolysis for proximal deep vein thrombosis. Eur J Vasc Endovasc Surg 2006; 31: 204–211.

8. Ferris EJ, Lim WN, Smith PL, Casali R. May-Thurner syndrome. Radiology 1983; 147: 29–31.

9. El Sayed HF, Kougias P, Zhou W, Lin PH. Utility of retrievable vena cava filters and mechanical thrombectomy in the endovascular management of acute deep venous thrombosis. Vascular 2006; 14: 305–312.

10. Decousus H, Leizorovicz A, Parent F, Tardy B, Girard P, Laporte S, et al. A clinical trial of vena cava filters in the prevention of pulmonary embolism in patients with proximal deep vein thrombosis: Prevention du Risque d’Embolie Pulmonaire par Interruption Cava Study Group. N Engl J Med 1998; 338: 409–415.

11. Ota S, Yamada N, Tsuji A, Ishikura K, Nakamura M, Ito M, et al. The Günther-tulip retrievable IVC filter: Clinical experience in 118 consecutive patients. J Vasc Surg 2008; 72: 287–292.

12. Guidelines for the Diagnosis, Treatment and Prevention of Pulmonary Thromboembolism and Deep Vein Thrombosis (CJS 2009). Circ J 2011; 75: 1258–1281.

13. Binkert CA, Schoch E, Stuckmann G, Largierard J, Wigger P, Schoppeke W, et al. Treatment of pelvic venous spurt (May-Thurner syndrome) with self-expanding metallic endoprostheses. Cardiovasc Intervent Radiol 1998; 21: 22–26.

14. Patel NH, Stookey KR, Ketcham DB, Cragg AH. Endovascular management of acute extensive iliofemoral deep vein thrombosis caused by May-Thurner syndrome. J Vasc Interv Radiol 2000; 11: 1297–1302.

15. O’Sullivan GJ, Semba CP, Bittner CA, Kee ST, Razaki MK, Sze DY, et al. Endovascular management of iliac vein compression (May-Thurner) syndrome. J Vasc Interv Radiol 2000; 11: 823–836.

16. Harren RH, Bollen TL, Duynendam DA, Overtoorn TT, Van Den Berg JC, Moll FL, et al. Endovascular venous stenting in May-Thurner syndrome. J Cardiovasc Surg 2001; 42: 83–87.

17. Hurst DR, Forauer AR, Bloom JR, Greenfield LJ, Wakefield TW, Williams DM. Diagnosis and endovascular treatment of ilio caval compression syndrome. J Vasc Surg 2001; 34: 106–113.

18. Lamont JP, Pearl GJ, Petatsios P, Warner MT, Gable DR, Garrett W, et al. Prospective evaluation of endoluminal venous stents in the treatment of the May-Thurner syndrome. Ann Vasc Surg 2002; 16: 61–64.

19. Kwak HS, Han YM, Lee YS, Jin GY, Chung GH. Stents in common iliac vein obstruction with acute ipsilateral deep vein thrombosis: Early and late results. J Vasc Interv Radiol 2005; 16: 815–822.

20. Kim JY, Choi D, Guk Ko Y, Park S, Jang Y, Lee do Y. Percutaneous treatment of deep vein thrombosis in May-Thurner syndrome. Cardiovasc Intervent Radiol 2006; 29: 571–575.

21. Hartung O, Bennmiloud F, Barthelemy P, Dubuc M, Namimoto T, Iatani R, et al. Evaluation of deep vein thrombosis with reduced radiation and contrast material dose at computed tomography venography: Clinical application of a combined iterative reconstruction and low-voltage technique. Circ J 2012; 76: 2614–2622.