Data Article

Data from quantitative serum proteomic analysis after laparoscopic gastric plication

Parisa Savedoroudi a, b, Tue Bjerg Bennike b, Kenneth Kastaniegaard b, Mohammad Talebpour c,***, Alireza Ghassempour a,**, Allan Stensballe b,*

a Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
b Department of Health Science and Technology, Aalborg University, Denmark
c Laparoscopic Surgery Ward, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran

Article info

Article history:
Received 7 May 2019
Accepted 22 May 2019
Available online 30 May 2019

Keywords:
Bariatric surgery
Laparoscopic gastric plication
Obesity
Proteomics

Abstract

Bariatric surgery is an effective treatment for morbid obesity with a sustained weight loss and improvements in metabolic syndrome. We present a label free quantitative shotgun proteomics approach to analyze the serum proteome of obese people who underwent Laparoscopic Gastric Plication (LGP) as a new bariatric surgery. Pre-surgery serum samples of obese individuals were compared with the serum of the same subjects 1–2 months post-surgery (T1) and 4–5 months post-surgery (T2). The data provide a list of 224 quantifiable proteins with at least two unique peptides that were quantifiable in at least 70% of samples. Gene ontology biological processes and molecular functions of differentially regulated proteins between pre- and post-surgery samples were investigated using WebGestalt online tool. In addition, molecular networks of differentially abundant proteins were determined through Ingenuity Pathway Analysis (IPA) software. This report is related to the research article entitled “Serum proteome changes and accelerated reduction of fat mass after Laparoscopic Gastric Plication in morbidly obese patients” (Savedoroudi et al. [1]). Proteomics data have been deposited to the ProteomeXchange.
This report is associated with the research article aimed at investigating the effect of weight loss due to laparoscopic gastric plication (LGP) as a new bariatric surgical procedure on the human serum proteome \[1\]. A total of 288 proteins was identified using a shotgun label-free proteomics experiment, of which 224 proteins were quantifiable with at least two unique peptides in 70% of samples or more (Supplementary Table 1). The raw mass data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD010528. The list of submitted proteomics raw-files into the ProteomeXchange and corresponding sample names are shown in Table 1. Significantly regulated proteins between pre- and post-surgery samples were discussed in detail in Savedoroudi et al. \[1\]. Gene ontology enrichment analysis for biological process and molecular function of differentially regulated proteins at T1 and T2 are represented in Table 2 and Table 3, respectively. In Table 4, molecular networks of differentially regulated proteins are shown.
Table 1
Description of file-names and MaxQuant output in the ProteomeXchange repository PXD010528. MS files were analyzed in MaxQuant. All samples were analyzed in triplicates. Timepoint 1: 1–2 months post-surgery; Timepoint 2: 4–5 months post-surgery.

Raw file	Sample	MS system
2bef-1	2/Befo re surgery	Q Exactive HF
2bef-2	2/Befo re surgery	Q Exactive HF
2bef-3	2/Befo re surgery	Q Exactive HF
2aft1-1	2/After surgery at timepoint 1	Q Exactive HF
2aft1-2	2/After surgery at timepoint 1	Q Exactive HF
2aft1-3	2/After surgery at timepoint 1	Q Exactive HF
3bef-1	3/Befo re surgery	Q Exactive HF
3bef-2	3/Befo re surgery	Q Exactive HF
3bef-3	3/Befo re surgery	Q Exactive HF
3aft1-1	3/After surgery at timepoint 1	Q Exactive HF
3aft1-2	3/After surgery at timepoint 1	Q Exactive HF
3aft1-3_170725101835	3/After surgery at timepoint 1	Q Exactive HF
3aft2-1	3/After surgery at timepoint 2	Q Exactive HF
3aft2-2	3/After surgery at timepoint 2	Q Exactive HF
3aft2-3	3/After surgery at timepoint 2	Q Exactive HF
4bef-1	4/Befo re surgery	Q Exactive HF
4bef-2	4/Befo re surgery	Q Exactive HF
4bef-3	4/Befo re surgery	Q Exactive HF
4aft1-1	4/After surgery at timepoint 1	Q Exactive HF
4aft1-2	4/After surgery at timepoint 1	Q Exactive HF
4aft1-3	4/After surgery at timepoint 1	Q Exactive HF
5bef-1	5/Befo re surgery	Q Exactive HF
5bef-2	5/Befo re surgery	Q Exactive HF
5bef-3	5/Befo re surgery	Q Exactive HF
5aft1-1	5/After surgery at timepoint 1	Q Exactive HF
5aft1-2	5/After surgery at timepoint 1	Q Exactive HF
5aft1-3	5/After surgery at timepoint 1	Q Exactive HF
5aft2-1	5/After surgery at timepoint 2	Q Exactive HF
5aft2-2	5/After surgery at timepoint 2	Q Exactive HF
5aft2-3	5/After surgery at timepoint 2	Q Exactive HF
6bef-1	6/Befo re surgery	Q Exactive HF
6bef-2	6/Befo re surgery	Q Exactive HF
6bef-3	6/Befo re surgery	Q Exactive HF
6aft1-1	6/After surgery at timepoint 1	Q Exactive HF
6aft1-2	6/After surgery at timepoint 1	Q Exactive HF
6aft1-3	6/After surgery at timepoint 1	Q Exactive HF
6aft2-1	6/After surgery at timepoint 2	Q Exactive HF
6aft2-2	6/After surgery at timepoint 2	Q Exactive HF
6aft2-3	6/After surgery at timepoint 2	Q Exactive HF
7bef-1	7/Befo re surgery	Q Exactive HF
7bef-2	7/Befo re surgery	Q Exactive HF
7bef-3	7/Befo re surgery	Q Exactive HF
7aft1-1	7/After surgery at timepoint 1	Q Exactive HF
7aft1-2	7/After surgery at timepoint 1	Q Exactive HF
7aft1-3	7/After surgery at timepoint 1	Q Exactive HF
7aft2-1	7/After surgery at timepoint 2	Q Exactive HF
7aft2-2	7/After surgery at timepoint 2	Q Exactive HF
7aft2-3	7/After surgery at timepoint 2	Q Exactive HF
8bef-1	8/Befo re surgery	Q Exactive HF
8bef-2	8/Befo re surgery	Q Exactive HF
8bef-3	8/Befo re surgery	Q Exactive HF
8aft1-1	8/After surgery at timepoint 1	Q Exactive HF
8aft1-2	8/After surgery at timepoint 1	Q Exactive HF
8aft1-3_170725085836	8/After surgery at timepoint 1	Q Exactive HF
8aft2-1	8/After surgery at timepoint 2	Q Exactive HF
8aft2-2	8/After surgery at timepoint 2	Q Exactive HF
8aft2-3	8/After surgery at timepoint 2	Q Exactive HF
9bef-1	9/Befo re surgery	Q Exactive HF

(continued on next page)
Raw file	Sample	MS system
9bef-2	9/Before surgery	Q Exactive HF
9bef-3	9/Before surgery	Q Exactive HF
9aft1-1	9/After surgery at timepoint 1	Q Exactive HF
9aft1-2	9/After surgery at timepoint 1	Q Exactive HF
9aft1-3	9/After surgery at timepoint 1	Q Exactive HF
10bef-1	10/Before surgery	Q Exactive HF
10bef-2	10/Before surgery	Q Exactive HF
10bef-3	10/Before surgery	Q Exactive HF
10aft1-1	10/After surgery at timepoint 1	Q Exactive HF
10aft1-2	10/After surgery at timepoint 1	Q Exactive HF
10aft1-3	10/After surgery at timepoint 1	Q Exactive HF
10aft2-1	10/After surgery at timepoint 2	Q Exactive HF
10aft2-2	10/After surgery at timepoint 2	Q Exactive HF
10aft2-3	10/After surgery at timepoint 2	Q Exactive HF
11bef-1	11/Before surgery	Q Exactive HF
11bef-2	11/Before surgery	Q Exactive HF
11bef-3	11/Before surgery	Q Exactive HF
11aft1-1	11/After surgery at timepoint 1	Q Exactive HF
11aft1-2	11/After surgery at timepoint 1	Q Exactive HF
11aft1-3	11/After surgery at timepoint 1	Q Exactive HF
11aft2-1	11/After surgery at timepoint 2	Q Exactive HF
11aft2-2	11/After surgery at timepoint 2	Q Exactive HF
11aft2-3	11/After surgery at timepoint 2	Q Exactive HF
12bef-1	12/Before surgery	Q Exactive HF
12bef-2	12/Before surgery	Q Exactive HF
12bef-3	12/Before surgery	Q Exactive HF
12aft1-1	12/After surgery at timepoint 1	Q Exactive HF
12aft1-2	12/After surgery at timepoint 1	Q Exactive HF
12aft1-3	12/After surgery at timepoint 1	Q Exactive HF
14bef-1	14/Before surgery	Q Exactive HF
14bef-2	14/Before surgery	Q Exactive HF
14bef-3	14/Before surgery	Q Exactive HF
14aft1-1	14/After surgery at timepoint 1	Q Exactive HF
14aft1-2	14/After surgery at timepoint 1	Q Exactive HF
14aft1-3	14/After surgery at timepoint 1	Q Exactive HF
14aft2-1	14/After surgery at timepoint 2	Q Exactive HF
14aft2-2	14/After surgery at timepoint 2	Q Exactive HF
14aft2-3	14/After surgery at timepoint 2	Q Exactive HF
15bef-1	15/Before surgery	Q Exactive HF
15bef-2	15/Before surgery	Q Exactive HF
15bef-3	15/Before surgery	Q Exactive HF
15aft1-1	15/After surgery at timepoint 1	Q Exactive HF
15aft1-2	15/After surgery at timepoint 1	Q Exactive HF
15aft1-3	15/After surgery at timepoint 1	Q Exactive HF
17bef-1	17/Before surgery	Q Exactive HF
17bef-2	17/Before surgery	Q Exactive HF
17bef-3	17/Before surgery	Q Exactive HF
17aft1-1	17/After surgery at timepoint 1	Q Exactive HF
17aft1-2	17/After surgery at timepoint 1	Q Exactive HF
17aft1-3	17/After surgery at timepoint 1	Q Exactive HF
17aft2-1	17/After surgery at timepoint 2	Q Exactive HF
17aft2-2	17/After surgery at timepoint 2	Q Exactive HF
17aft2-3	17/After surgery at timepoint 2	Q Exactive HF
18bef-1	18/Before surgery	Q Exactive HF
18bef-2	18/Before surgery	Q Exactive HF
18bef-3	18/Before surgery	Q Exactive HF
18aft1-1	18/After surgery at timepoint 1	Q Exactive HF
18aft1-2	18/After surgery at timepoint 1	Q Exactive HF
18aft1-3	18/After surgery at timepoint 1	Q Exactive HF
21bef-1	21/Before surgery	Q Exactive HF
21bef-2	21/Before surgery	Q Exactive HF
21bef-3	21/Before surgery	Q Exactive HF
2. Experimental design, materials and methods

2.1. Study cohort and sample treatment

A total of 16 obese subjects undergoing LGP was investigated at three timepoints; pre-surgery (n = 16), at 1–2 months post-surgery (T1, n = 16), at 4–5 months post-surgery (T2, n = 9). The detailed characteristics of patients were mentioned in Savedoroudi et al. [1]. The six most abundant serum proteins (albumin, IgG, IgA, antitrypsin, transferrin and haptoglobin) were depleted in the serum samples using the Agilent Multiple Affinity Removal column (4.6 × 50 mm) according to the instructions recommended by the manufacturers (Agilent Technologies, CA, USA). Then, the filter-aided sample preparation (FASP) protocol was utilized to prepare samples as described previously [1,3]. Written consent was obtained from all participants and the institutional review board and the

Table 1 (continued)

Raw file	Sample	MS system
21 aft1-1	21/After surgery at timepoint 1	Q Exactive HF
21 aft1-2	21/After surgery at timepoint 1	Q Exactive HF
21 aft1-3	21/After surgery at timepoint 1	Q Exactive HF

The MaxQuant output in folder "txt" contains a range of files containing important search information. Below file was used for further processing in Perseus post-analysis program and quantitative analysis.

proteinGroups.txt File containing all proteins with corresponding label free quantitative information

Table 2

Gen set	Description	P-value	Overlap Gen-ID
Biological Process			
GO:0051223	regulation of protein transport	4.87E-05	CRP, GPLD1, APOA1, APOA2, APOD, IL1RAP, LCP1, SRGN, RBP4, SAA1, CD14, ADIPOQ
GO:0070201	regulation of establishment of protein localization	8.84E-05	CRP, GPLD1, APOA1, APOA2, APOD, IL1RAP, LCP1, SRGN, RBP4, SAA1, CD14, ADIPOQ
GO:0034284	response to monosaccharide	0.000109	GPLD1, APOA2, SERPINF1, APOM, SPARC, THBS1, ADIPOQ
GO:0032880	regulation of protein localization	0.000256	CRP, GPLD1, APOA1, APOD, IL1RAP, LCP1, SRGN, RBP4, SAA1, CD14, ADIPOQ
GO:0009743	response to carbohydrate	0.000314	GPLD1, APOA2, SERPINF1, APOM, SPARC, THBS1, ADIPOQ
GO:0009746	response to hexose	0.000532	GPLD1, APOA2, SERPINF1, APOM, THBS1, ADIPOQ
GO:0009749	response to glucose	0.000532	GPLD1, APOA2, SERPINF1, APOM, THBS1, ADIPOQ
GO:0050707	regulation of cytokine secretion	0.000746	CRP, APOA1, APOA2, IL1RAP, SRGN, SAA1, CD14
GO:0051224	negative regulation of protein transport	0.00081	APOA1, APOA2, APOD, SRGN, ADIPOQ
GO:1904950	negative regulation of establishment of protein localization	0.00081	APOA1, APOA2, APOD, SRGN, ADIPOQ

Molecular Function

GO:0005319	lipid transporter activity	0.00279	APOF, APOA1, APOA2, APOD, APOM, RBP4
GO:0005496	steroid binding	0.00279	GC, APOF, APOA1, APOA2, APOD, SHBG
GO:0071813	lipoprotein particle binding	0.0101	CRP, APOA1, APOA2, THBS1
GO:0071814	protein-lipid complex binding	0.0101	CRP, APOA1, APOA2, THBS1
GO:0043178	alcohol binding	0.0105	APOF, APOA1, APOA2, APOD, RBP4
GO:0008289	lipid binding	0.0122	F10, GC, APOF, APOA1, APOA2, APOD, APOM, RBP4, SHBG, THBS1, CD14
GO:0005215	transporter activity	0.0128	GC, HBB, APOF, APOA1, APOA2, APOD, APOM, RBP4
GO:0022892	substrate-specific transporter activity	0.0170	HBB, APOF, APOA1, APOA2, APOD, APOM, RBP4
GO:0015485	cholesterol binding	0.0206	APOF, APOA1, APOA2, APOD
GO:0032934	sterol binding	0.0206	APOF, APOA1, APOA2, APOD
2.2. LC-MS/MS analysis

Initially, the peptides were resuspended in 2% acetonitrile, 0.1% FA and 0.1% trifluoroacetic acid. LC-MS/MS analysis was carried out on a UPLC-nanoESI MS/MS setup with a Dionex RSLC nanopump (Dionex, CA, USA). The system was coupled online with an emitter for nanospray ionization (New objective picotip 360-20-10) to a Q Exactive HF mass spectrometer (Thermo Scientific, Waltham, USA). The samples were analyzed in a random order, in triplicates. The peptide material was loaded onto a 2cm C18 trapping column (Dionex Acclaim PepMap RSLC C18) and separated using a 75cm C18 reversed-phase column (Dionex Acclaim PepMap RSLC C18). Both columns were kept at 60°C. The peptides were eluted with a gradient of 98% solvent A (0.1% FA) and 2% solvent B (0.1% FA in acetonitrile), which was increased to 8% solvent B on a 5-min ramp gradient and subsequently to 30% solvent B on a 45-min ramp gradient, at a constant flow rate of 300nL/min. The mass spectrometer was operated in positive mode using a Top15 data-dependent MS/MS scan method. A full MS scan in the 375−1500 m/z range was acquired at a resolution of 120 000 with an AGC target of 3 × 10^6 and a maximum injection time of 50 ms. Fragmentation of precursor ions was performed by higher-energy C-trap dissociation with a normalized collision energy of 27. MS/MS scans were acquired at a resolution of 15000 with an AGC target of 2 × 10^5; maximum injection time was 100 ms. Dynamic exclusion was set to 5s.

2.3. Data analysis and processing

Mass spectrometry data were analyzed in MaxQuant version 1.6.0.1 and searched against the Uniprot human reference FASTA database (August 2017) [4,5]. Label-free protein quantitation (LFQ) algorithm was performed with a minimum ratio count of 1. Standard settings in MaxQuant were employed, including carbamidomethylation of cysteines as a fixed modification, and acetylation of protein N-terminals, oxidation of methionine, and deamidation of asparagine and glutamine as
variable modifications. A maximum of two tryptic missed cleavages was allowed. The false discovery rate (FDR) of identified proteins and peptides was set to a maximum of 1%, using a target-decoy fragment spectra search strategy. Hereby, high confidence identifications were ensured. The "match between runs" feature was enabled to transfer peptide identifications across LC-MS/MS runs, based on accurate retention time and mass-to-charge. The output from MaxQuant, containing the list of proteins identified below 1% FDR, was further filtered and processed in Perseus version 1.6.0.2[6]. All reverse hits and proteins identified only by site were removed from further analysis, and the data were log 2-transformed. At least two unique peptides were required for a protein quantitation. Additionally, the unique peptides were required to be quantifiable in at least 70% of samples.

2.4. Bioinformatics analysis

Differentially regulated proteins between pre- and post-surgery subjects were functionally categorized based on gene ontology (GO) classification using WEB-based GEnet SeT AnaLysis Toolkit (WebGestalt) [7]. Identification of networks was performed with Ingenuity Pathway Analysis software (IPA; Ingenuity Systems, Redwood City, CA, www.ingenuity.com). Gene symbols and the corresponding protein fold change were imported to IPA software using core analysis. Standard settings in IPA were employed, including: direct and indirect relationships between focused molecules with default settings of 35 molecules/network, based on experimentally observed data (high confidence...
predictions and moderate confidence interactions excluded) were considered. All sources of data from human, mouse and rat studies in the Ingenuity Knowledge Base were included.

Acknowledgments

Financial support by the Shahid Beheshti University Research Council is gratefully acknowledged. The Danish National Mass Spectrometry Platform for Functional Proteomics (PRO-MS; grant no. 5072-00007B), The Obel Family Foundation; the SparNord Foundation and the Svend Andersen Foundation are acknowledged for grants to the analytical platform enabling parts of this study.

Conflict of interest

There is no conflict of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104077.

References

[1] P. Savedoroudi, T.B. Bennike, K. Kastaniegaard, M. Talebpour, A. Ghassempourt, A. Stensballe, Serum Proteome Changes and Accelerated Reduction of Fat Mass after Laparoscopic Gastric Plication in Morbidly Obese Patients, J. proteomics 203 (2019) 103373. https://doi.org/10.1016/j.jprot.2019.05.001.
[2] J.A. Vizcaíno, R.G. Côté, A. Csordas, J.A. Dianes, A. Fabregat, J.M. Foster, J. Griss, E. Alpi, M. Birim, J. Contell, The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013, Nucleic Acids Res. 41 (2012) D1063–D1069. https://doi.org/10.1093/nar/gks1262.
[3] T. Bennike, U. Ayturk, C.M. Haslauer, J.W. Froehlich, B.L. Proffen, O. Barnaby, S. Birkelund, M.M. Murray, M.L. Warman, A. Stensballe, A normative study of the synovial fluid proteome from healthy porcine knee joints, J. Proteome Res. 13 (2014) 4377–4387. https://doi.org/10.1021/pr500587x.
[4] J. Cox, N. Neuhauser, A. Michalski, R.A. Scheltema, J.V. Olsen, M. Mann, Andromeda: a peptide search engine integrated into the MaxQuant environment, J. Proteome Res. 10 (2011) 1794–1805. https://doi.org/10.1021/pr101065j.
[5] J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification, Nat. Biotechnol. 26 (2008) 1367–1372. https://doi.org/10.1038/nbt.1511.
[6] S. Tyanova, T. Temu, P. Sinticyn, A. Carlson, M.Y. Hein, T. Geiger, M. Mann, J. Cox, The Perseus computational platform for comprehensive analysis of (pro) omics data, Nat. Methods 13 (2016) 731–740. https://doi.org/10.1038/nmeth.3901.
[7] J. Wang, D. Duncan, Z. Shi, B. Zhang, WEB-based gene set analysis toolkit (WebGestalt): update 2013, Nucleic Acids Res. 41 (2013) W77–W83. https://doi.org/10.1093/nar/gkt439.