The group of autoequivalences and the Fourier-Mukai number of a projective manifold

Kotaro Kawatani
Osaka University

Abstract

Let X be a smooth projective variety and $\text{Aut}(D(X))$ the group of autoequivalences of the derived category of X. In this paper we show that X has no Fourier-Mukai partner other than X when $\text{Aut}(D(X))$ is generated by shifts, automorphisms and tensor products of line bundles.

1 Introduction

In this paper, a projective manifold means a smooth projective variety over the complex number field \mathbb{C}. We consider the derived category $D(X)$ of a projective manifold X. That is $D(X)$ is the bounded derived category of the abelian category $\text{Coh}(X)$ of coherent sheaves on X. As is well-known since [Muk], for some X, there is another projective manifold Y which is not isomorphic to X but the derived category $D(Y)$ is equivalent to $D(X)$ as triangulated categories. We call such a Y a Fourier-Mukai partner of X.

Let $\text{FM}(X)$ be the set of isomorphic classes of Fourier-Mukai partners of X. It is conjectured in [Kaw] that the set $\text{FM}(X)$ is a finite set. For instance if X is an algebraic surface, the conjecture holds (cf. [BM]). Hence we call the cardinality of $\text{FM}(X)$ the Fourier-Mukai number of X. We note that, when X is a projective K3 surface, [HLOY] makes the counting formula of the Fourier-Mukai number of X.

Let $\text{Aut}(D(X))$ be the group of autoequivalences of $D(X)$. There are a few cases when the group $\text{Aut}(D(X))$ is exactly determined. For instance $\text{Aut}(D(X))$ is determined by [BO, Theorem 3.1] when the canonical bundle K_X (or $-K_X$) is ample. When X is an abelian variety, $\text{Aut}(D(X))$ is determined by [Orl2].

In this paper we shall study the relation between $\text{Aut}(D(X))$ and $\text{FM}(X)$:
Does \text{Aut}(D(X)) give us informations on \text{FM}(X) ?

We shall give an answer to this question in an easy case. Namely our theorem is the following:

\textbf{Theorem 1.1. (=} \textsc{Theorem [2.1]}\textbf{)} Let \(X\) be a projective manifold. We assume that \text{Aut}(D(X)) is trivially generated (cf. \textsc{Definition 2.1}). Then \text{FM}(X) = \{X\}.

As an application of \textsc{Theorem 1.1} we show the following:

\textbf{Corollary 1.2. (=} \textsc{Corollary [3.5]}\textbf{)} Let \(X\) be a projective manifold such that \(\text{deg} K_X|_C \neq 0\) for any irreducible curve \(C \subset X\). Then \text{FM}(X) = \{X\}.

We found the paper \textsc{Fav} and noticed that \textsc{Theorem 1.1} is a special case of \textsc{Fav, Corollary 4.3} on arXiv after we have finished this paper. However our proof is independent of Favero’s proof and much simpler than his. In addition our motivation is essentially different from his.

\textbf{Acknowledgement.} I thanks Akira Fujiki, Yoshinori Namikawa and Keiji Oguiso who read an earlier draft and suggested several improvements. I’m very grateful to Yukinobu Toda for answering my question and giving me a suggestion for \textsc{Proposition 3.4}.

\section{The group of autoequivalences}

In this section we recall some known results on \text{Aut}(D(X)). First we give the following easy examples of autoequivalences:

1. The shift of complexes \([1] : D(X) \to D(X)\).

2. The (right derived) functor \(\mathbb{R}f_* : D(X) \to D(X)\), where \(f\) is an automorphism of \(X\).

3. The tensor products by \(L \otimes : D(X) \to D(X)\) where \(L \in \text{Pic}(X)\) and \(\text{Pic}(X)\) is the Picard group of \(X\).

\textbf{Definition 2.1.} We define the subgroup \text{Tri}(X) of \text{Aut}(D(X)) by the following condition: \text{Tri}(X) is the subgroup generated by shifts, automorphisms and tensor products with line bundles. \text{Tri}(X) is called the \textit{trivial group generated by} \(X\). If \text{Aut}(D(X)) = \text{Tri}(X), \text{Aut}(D(X))\) is said to be \textit{trivially generated}.

\textbf{2}
Remark 2.2. The trivial group Tri(X) is written by the following:

$$\text{Tri}(X) = (\text{Aut}(X) \times \text{Pic}(X)) \times \mathbb{Z}[1],$$

where Aut(X) is the group of automorphisms of X. Namely for $f \in \text{Aut}(X)$ and $L \in \text{Pic}(X)$, we have

$$f_* \circ L \otimes f_*^{-1}(?) = f_*(L) \otimes (?).$$

For instance, when K_X or $-K_X$ is ample, Aut(D(X)) is trivially generated by [BO, Theorem 3.1]. The first nontrivial example of an autoequivalence was found by Mukai. Let us recall his example.

Let A be an abelian variety, \hat{A} the dual abelian variety of A and P the Poincaré line bundle on $A \times \hat{A}$. We define the functor $\Phi : D(\hat{A}) \rightarrow D(A)$ by the following way:

$$\Phi : D(\hat{A}) \rightarrow D(A), \quad \Phi(?) := R\pi_A^*(P \otimes \pi^{*}_{\hat{A}}(?)), \quad (2.1)$$

where $\pi_A : A \times \hat{A} \rightarrow A$ and $\pi_{\hat{A}} : A \times \hat{A} \rightarrow \hat{A}$ are the natural projections. Then Φ is an equivalence between $D(\hat{A})$ and $D(A)$ by [Muk] Theorem 2.2. The definition (2.1) seems special, but the following theorem claims that it is sufficiently general.

Theorem 2.3. ([Orl, Theorem 2.18]) Let X be a projective manifold and Y a Fourier-Mukai partner of X. Then, for any equivalence $\Phi : D(X) \rightarrow D(Y)$, there is an object $P^\bullet \in D(X \times Y)$ such that

$$\Phi(?) = R\pi_Y^*(P^\bullet \otimes \pi_X^* (?)), \quad (2.2)$$

where π_X (resp. π_Y) is the natural projection from $X \times Y$ to X (resp. Y). Moreover P^\bullet is unique up to isomorphism.

Thus we obtain the following useful corollary:

Corollary 2.4. Let x_0 be a closed point of X and O_{x_0} the skyscraper sheaf of x_0. If $\Phi(O_{x_0}) \simeq O_{y_0}$ for a closed point $y_0 \in Y$, then there is a Zariski open subset U of X such that

$$x \in U \Rightarrow \exists y \in Y \text{ such that } \Phi(O_x) \simeq O_y.$$

In addition, assume that for all $x \in X$ there is a closed point $y \in Y$ such that $\Phi(O_x) \simeq O_y$. Then there is an isomorphism $f : X \rightarrow Y$ and $L \in \text{Pic}(Y)$ such that $\Phi(?) \simeq L \otimes (f_*(?))$.

Proof. See [Huy] Corollary 5.23 and Corollary 6.14.]
3 Proof of Theorem 1.1

In this section we shall prove our main theorem. We first cite a key lemma of the proof essentially due to [BO]. We define the support $\text{Supp}(E)$ of $E \in D(X)$ by

$$\text{Supp}(E) = \bigcup_i \text{Supp}(H^i(E)),$$

where $H^i(E)$ is the i-th cohomology with respect to the t-structure $\text{Coh}(X)$.

Lemma 3.1. ([BO, Proposition 2.2] or [Huy, Lemma 4.5]) Let X be a projective manifold and $E \in D(X)$. Assume that $\dim \text{Supp}(E) = 0$ and $\text{Hom}_{D(X)}(E, E[i]) = \begin{cases} 0 & (i < 0) \\ \mathbb{C} & (i = 0). \end{cases}$

Then E is isomorphic to $O_x[n]$ for some $x \in X$ and $n \in \mathbb{Z}$.

Lemma 3.1 is essentially due to [BO]. The above formulation of the lemma is due to [Huy].

Now let X and Y be projective manifolds and $\Phi : D(X) \to D(Y)$ an equivalence. Then we remark that Φ induces the natural group isomorphism $\Phi_* : \text{Aut}(D(X)) \to \text{Aut}(D(Y))$ by the following way:

$$\Phi_* : \text{Aut}(D(X)) \to \text{Aut}(D(Y)), \quad \Phi_*(F) := \Phi \circ F \circ \Phi^{-1}.$$

Theorem 3.2. (=Theorem 1.1) Let X be a projective manifold. Assume that $\text{Aut}(D(X))$ is trivially generated. Then $\text{FM}(X) = \{X\}$.

Proof. Let Y be an arbitrary Fourier-Mukai partner of X and $\Phi : D(X) \to D(Y)$ an equivalence. We fix Φ. We would like to show that Y is isomorphic to X.

Choose a very ample line bundle L_Y on Y and fix it. Since the induced morphism $\Phi_* : \text{Aut}(D(X)) \to \text{Aut}(D(Y))$ is an isomorphism, we have

$$\exists F \in \text{Aut}(D(X)) \text{ s.t. } \Phi_*(F) = L_Y \otimes (-).$$

We remark that the following diagram commutes:

$$\begin{align*}
D(X) & \xrightarrow{\Phi} D(Y) \\
F \downarrow & \quad \downarrow L_Y \otimes (-) \\
D(X) & \xrightarrow{\Phi} D(Y).
\end{align*}$$
Since \(kL_Y \) has a global section for any positive integer \(k \in \mathbb{Z}_{>0} \), we can make a morphism \(E \to E \otimes kL_Y \) for any \(E \in D(Y) \). Thus, for any \(k \in \mathbb{Z}_{>0} \) and \(E \in D(Y) \), we have \(\text{Hom}_{D(Y)}(E, E \otimes kL_Y) \neq 0 \). Thus we have

\[
\text{Hom}_{D(X)}(O_x, F^k(O_x)) \cong \text{Hom}_{D(Y)}(\Phi(O_x), \Phi(O_x) \otimes kL_Y) \neq 0.
\]

As \(\text{Aut}(D(X)) \) is trivially generated, \(F \) should be written by

\[
F(?) = L_X \otimes f_*(?)[n],
\]

where \(f \in \text{Aut}(X) \), \(L_X \in \text{Pic}(X) \) and \(n \in \mathbb{Z} \). We shall prove that \(n = 0 \) and \(f = \text{id}_X \).

Suppose to the contrary that \(n \neq 0 \). Since \(n \neq 0 \), for sufficiently large \(\ell \in \mathbb{Z}_{>0} \), we have \(\text{Hom}_{D(X)}(O_x, F^\ell(O_x)) = 0 \) where \(F^\ell \) is the \(\ell \) times composition of \(F \). This is contradiction. Hence \(n \) should be 0.

We assume that \(f \neq \text{id}_X \). Then there is a closed point \(x \in X \) such that \(f(x) \neq x \). Since \(F(O_x) = O_{f(x)} \), we have

\[
\text{Hom}_{D(X)}(O_x, F(O_x)) = 0.
\]

This is contradiction.

Thus we have \(F = L_X \otimes (-) \). Hence for any positive integer \(k \),

\[
\Phi(O_x) \otimes kL_Y = \Phi(O_x \otimes kL_X) = \Phi(O_x).
\]

Thus each Hilbert polynomial of \(H^i(\Phi(O_x)) \) with respect to \(L_Y \) is constant. Since \(L_Y \) is very ample, it follows that \(\dim \text{Supp}(H^i(\Phi(O_x))) = 0 \). Thus \(\dim \text{Supp}(\Phi(O_x)) = 0 \). By Lemma 3.1 we have

\[
\Phi(O_x) = O_{y_x}[n_x],
\]

for some \(y_x \in Y \) and \(n_x \in \mathbb{Z} \). By the first half assertion of Corollary 2.4 \(n_x \) is locally constant. Hence, \(n_x \) is constant. So we put \(n_x = n \). Then \(Y \) is isomorphic to \(X \) by the last half assertion of Corollary 2.4 \(\square \).

Remark 3.3. The converse of Theorem 3.2 does not hold. For instance, there are projective K3 surfaces \(X \) with Fourier-Mukai number one (See [HLOY] or [Ogu]). On the other hand, as is well-know by [ST], the spherical twist \(T_S \) by a spherical object \(S \in D(X) \) gives an autoequivalence of \(D(X) \) which does not belong to \(\text{Tri}(X) \). Thus \(\text{Tri}(X) \) is a proper subgroup of \(\text{Aut}(D(X)) \).

\footnote{For example a line bundle on \(X \) is a spherical object.}
Let us consider the following three statements for a projective manifold X:

(A) The canonical bundle K_X (or $-K_X$) is ample.
(B) The autoequivalence group $\text{Aut}(D(X))$ is trivially generated.
(C) The Fourier-Mukai number of X is one.

[BÖ] proved that $(A) \Rightarrow (B)$ and $(A) \Rightarrow (C)$. As we wrote in Remark 3.3, the converse does not hold. Our theorem claims that $(B) \Rightarrow (C)$.

Now we would like to show that the proposition $(B) \Rightarrow (A)$ does not hold.

Proposition 3.4. Let X be a projective manifold such that $\deg K_X|_C \neq 0$ for any irreducible curve $C \subset X$. Then $\text{Aut}(D(X))$ is trivially generated.

For instance, let Y be a projective manifold such that K_Y is ample and let $X \to Y$ be the blowing up at a point of Y. Then X satisfies the assumption.

Proof. We choose an arbitrary autoequivalence $F \in \text{Aut}(D(X))$ and fix it. Since the functor $\otimes K_X[\dim X]$ is the Serre functor, the following diagram commutes up to isomorphisms:

$$
\begin{array}{ccc}
D(X) & \xrightarrow{F} & D(X) \\
\otimes K_X & \downarrow & \otimes K_X \\
D(X) & \xrightarrow{F} & D(X).
\end{array}
$$

Thus we have

$$
F(O_x) \simeq F(O_x) \otimes K_X. \quad (3.1)
$$

It suffices to show that $\dim \text{Supp}(F(O_x)) = 0$ by Lemma 3.1 and Corollary 2.4. Suppose to the contrary that $\dim \text{Supp}(F(O_x)) > 0$. Then there is an irreducible curve C contained in $\text{Supp}(F(O_x))$. In particular we assume that $C \subset \text{Supp}(H^i(F(O_x)))$ for some $i \in \mathbb{Z}$. Now we put $\mathcal{F} = H^i(F(O_x))|_C$. Notice that $\text{rank } \mathcal{F} > 0$. Thus we have

$$
\deg \mathcal{F} \otimes K_X|_C - \deg \mathcal{F} = \text{rank } \mathcal{F} \cdot \deg K_X|_C \neq 0
$$

On the other hand $\deg \mathcal{F} \otimes K_X|_C - \deg \mathcal{F}$ should be 0 by (3.1). This is contradiction.

The next corollary easily follows from Proposition 3.4 and Theorem 3.2.

Corollary 3.5. Notations are being as above. Then $\text{FM}(X) = \{X\}$.

6
References

[BM] T. Bridgeland and A. Maciocia, *Complex surfaces with equivalent derived categories*, Math. Z. 236 (2001), 677–697.

[BO] A. Bondal and D. Orlov, *Reconstruction of a variety from the derived categories and groups of autoequivalences*, Comp. Math. 125 (2001), 27–344.

[Fav] D. Favero, *Some finiteness results for Fourier-Mukai partners*, arXiv:0712.0201.

[HLOY] S.Hosono, B.H.Lian, K.Oguiso, and S-T. Yau, *Fourier-Mukai number of a K3 surface*, Algebraic structures and moduli spaces, 177–192, CRM Proc. Lecture Notes, 38, Amer. Math. Soc., Providence, RI, 2004.

[Huy] D. Huybrechts *Fourier-Mukai transformations in algebraic geometry*, Oxford Science Publications (2006).

[Kaw] Y. Kawamata *D-Equivalence and K-Equivalence* J. Diff. Geometry. 61 (2002) 147–171.

[Muk] S.Mukai, *Duality between D(X) and D(\hat{X}) with its applications to Picard sheaves*, Nagoya Math. J. 81 (1981), 153–175.

[Ogu] K. Oguiso, *K3 surfaces via almost primes*, Math. Res. Lett. 9 (2002), 47–63.

[Orl] D. Orlov, *On equivalences of derived categories and K3 surfaces*, J. Math. Sci. (New York) 84 (1997), 1361–1381.

[Orl2] D. Orlov *Derived categories of coherent sheaves on abelian varieties and equivalences between them*, Izv. Math. 66 (2002), 569–594.

[ST] P.Seidel and R.Thomas *Braid group actions on derived categories of coherent sheaves*, Duke Math. J. 108(2001), 37–108.

Kotaro Kawatani
Department of Mathematics
Osaka University
Toyonaka 563-0043, Japan
kawatani@cr.math.sci.osaka-u.ac.jp