BALANCING CONSTRAINTS AND REWARDS WITH META-GRADEINT D4PG

Dan A. Calian*
dancaliam@google.com
Daniel J. Mankowitz*
dmankowitz@google.com
Tom Zahavy
Zhongwen Xu
Junhyuk Oh
Nir Levine
Timothy Mann
DeepMind
London, UK

ABSTRACT

Deploying Reinforcement Learning (RL) agents to solve real-world applications often requires satisfying complex system constraints. Often the constraint thresholds are incorrectly set due to the complex nature of a system or the inability to verify the thresholds offline (e.g., no simulator or reasonable offline evaluation procedure exists). This results in solutions where a task cannot be solved without violating the constraints. However, in many real-world cases, constraint violations are undesirable yet they are not catastrophic, motivating the need for soft-constrained RL approaches. We present two soft-constrained RL approaches that utilize meta-gradients to find a good trade-off between expected return and minimizing constraint violations. We demonstrate the effectiveness of these approaches by showing that they consistently outperform the baselines across four different Mujoco domains.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms typically try to maximize an expected return objective (Sutton & Barto, 2018). This approach has led to numerous successes in a variety of domains which include board-games (Silver et al., 2017), computer games (Mnih et al., 2015, Tessler et al., 2017) and robotics (Abdolmaleki et al., 2018). However, formulating real-world problems with only an expected return objective is often sub-optimal when tackling many applied problems ranging from recommendation systems to physical control systems which may include robots, self-driving cars and even aerospace technologies. In many of these domains there are a variety of challenges preventing RL from being utilized as the algorithmic solution framework. Recently, Dulac-Arnold et al. (2019) presented nine challenges that need to be solved to enable RL algorithms to be utilized in real-world products and systems. One of those challenges is handling constraints. All of the above domains may include one or more constraints related to cost, wear-and-tear, or safety, to name a few.

Hard and Soft Constraints: There are two types of constraints that are encountered in constrained optimization problems; namely hard-constraints and soft-constraints (Boyd & Vandenberghe, 2004). Hard constraints are pairs of pre-specified functions and thresholds that require the functions, when evaluated on the solution, to respect the thresholds. As such, these constraints may limit the feasible solution set. Soft constraints are similar to hard constraints in the sense that they are defined by pairs of pre-specified functions and thresholds, however, a soft constraint does not require the solution to hold the constraint; instead, it penalizes the objective function (according to a specified rule) if the solution violates the constraint (Boyd & Vandenberghe, 2004, Thomas et al., 2017).

Motivating Soft-Constraints: In real-world products and systems, there are many examples of soft-constraints; that is, constraints that can be violated, where the violated behaviour is undesirable but not catastrophic (Thomas et al., 2017, Dulac-Arnold et al., 2020). One concrete example is that of energy minimization in physical control systems. Here, the system may wish to reduce the amount of energy used by setting a soft-constraint. Violating the constraint is inefficient, but not

*indicates equal contribution.
catastrophic to the system completing the task. In fact, there may be desirable characteristics that can only be attained if there are some constraint violations (e.g., a smoother/faster control policy). Another common setting is where it is unclear how to set a threshold. In many instances, a product manager may desire to increase the level of performance on a particular product metric \(A \), while ensuring that another metric \(B \) on the same product does not drop by ‘approximately \(X\% \)’. The value ‘\(X\% \)’ is often inaccurate and may not be feasible in many cases. In both of these settings, violating the threshold is undesirable, yet does not have catastrophic consequences.

Lagrange Optimization: In the RL paradigm, a number of approaches have been developed to incorporate hard constraints into the overall problem formulation (Altman, 1999; Tessler et al., 2018; Efroni et al., 2020; Achiam et al., 2017; Bohez et al., 2019; Chow et al., 2018; Paternain et al., 2019; Zhang et al., 2020; Efroni et al., 2020). One popular approach is to model the problem as a Constrained Markov Decision Process (CMDP) (Altman, 1999). In this case, one method is to solve the following problem formulation: \(\max_\pi J_R^\pi \text{ s.t. } J_C^\beta \leq \beta \), where \(\pi \) is a policy, \(J_R^\pi \) is the expected return, \(J_C^\beta \) is the expected cost and \(\beta \) is a constraint violation threshold. This is often solved by performing alternating optimization on the unconstrained Lagrangian relaxation of the original problem (e.g., Tessler et al. (2018)), defined as: \(\min_{\lambda \geq 0} \max_\pi J_R^\pi + \lambda (\beta - J_C^\beta) \). The updates alternate between learning the policy and the Lagrange multiplier \(\lambda \).

In many previous constrained RL works (Achiam et al., 2017; Tessler et al., 2018; Ray et al., 2019; Satija et al., 2020), because the problem is formulated with hard constraints, there are some domains in each case where a feasible solution is not found. This could be due to approximation errors, noise, or the constraints themselves being infeasible. The real-world applications, along with empirical constrained RL research results, further motivates the need to develop a soft-constrained RL optimization approach. Ideally, in this setup, we would like an algorithm that satisfies the constraints while solving the task by maximizing the objective. If the constraints cannot be satisfied, then this algorithm finds a good trade-off (that is, minimizing constraint violations while solving the task by maximizing the objective).

In this paper, we extend the constrained RL Lagrange formulation to perform soft-constrained optimization by formulating the constrained RL objective as a nested optimization problem (Sinha et al., 2017) using meta-gradients. We propose MetaL that utilizes meta-gradients (Xu et al., 2018; Zahavy et al., 2020) to improve upon the trade-off between reducing constraint violations and improving expected return. We focus on Distributed Distributional Deterministic Policy Gradients (D4PG) (Barth-Maron et al., 2018) as the underlying algorithmic framework, a state-of-the-art continuous control RL algorithm. We show that MetaL can capture an improved trade-off between expected return and constraint violations compared to the baseline approaches. We also introduce a second approach called MeSh that utilizes meta-gradients by adding additional representation power to the reward shaping function.

Our main contributions are as follows: (1) We extend D4PG to handle constraints by adapting it to Reward Constrained Policy Optimization (RCPO) (Tessler et al., 2018) yielding Reward Constrained D4PG (RC-D4PG); (2) We present two soft constrained meta-gradient techniques: Meta-Gradients for the Lagrange multiplier learning rate (MetaL); and Meta-gradient Reward Shaping (MeSh) (3) We derive meta-gradient updates for both MetaL and MeSh (Theorem 1 and 2, respectively); (4) We perform extensive experiments and investigative studies to showcase the properties of these algorithms. MetaL outperforms the baseline algorithms across domains, safety coefficients and thresholds from the Real World RL suite (Dulac-Arnold et al., 2020).

2 Background

A **Constrained Markov Decision Process (CMDP)** is an extension to an MDP (Sutton & Barto, 2018) and consists of the tuple \((S, A, P, R, C, \gamma) \) where \(S \) is the state space; \(A \) is the action space; \(P : S \times A \rightarrow S \) is a function mapping states and actions to a distribution over next states; \(R : S \times A \rightarrow \mathbb{R} \) is a bounded reward function and \(C : S \times A \rightarrow \mathbb{R}^K \) is a \(K \)-dimensional function representing immediate penalties (or costs) relating to \(K \) constraints. The solution to a CMDP is a policy \(\pi : S \rightarrow \Delta_A \) which is a mapping from states to a probability distribution over actions. This policy aims to maximize the expected return \(J_R^\pi = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r_t] \) and satisfy the constraints \(J_C^\beta = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t c_t] \leq \beta, i = 1 \ldots K \). For the purpose of the paper, we consider a single constraint; that is, \(K = 1 \), but this can easily be extended to multiple constraints.

1. This is also the first time meta-gradients have been applied to an algorithm with an experience replay.
2. This theorem can be found in the Appendix, Section B.2.
Meta-Gradients is an approach to optimizing hyperparameters such as the discount factor, learning rates, etc. by performing online cross validation while simultaneously optimizing for the overall RL optimization objective such as the expected return (Xu et al., 2018; Zahavy et al., 2020). The goal is to optimize both an inner loss and an outer loss. The update of the θ parameters on the inner loss is defined as $\theta' = \theta + f(\theta, \eta)$, where $\theta \in \mathbb{R}^d$ corresponds to the parameters of the policy $\pi_\theta(a|s)$ and the value function $v_\eta(s)$ (if applicable). The function $f: \mathbb{R}^k \rightarrow \mathbb{R}^d$ is the difference error loss:

$$J_{\text{lagrange}} = \lambda (\beta - J_{\text{lagrange}}).$$

As in RCPO, a proxy objective $J_{\text{lagrange}} - \lambda J_{\text{lagrange}}$ is used that converges to the same set of locally optimal solutions as the relaxed objective (Tessler et al., 2018). Meta-gradients have been previously used to learn intrinsic rewards for policy gradient (Zheng et al., 2018) and auxiliary tasks (Veeriah et al., 2019). Meta-gradients have also been used to adapt optimizer parameters (Young et al., 2018; Franceschi et al., 2017). In our setup, we consider the continuous control setting, provide the first implementation of meta-gradients for an algorithm that uses an experience replay, and focus on adapting meta-parameters that encourage soft constraint satisfaction while maximizing expected return.

D4PG is a state-of-the-art continuous control RL algorithm with a deterministic policy (Barth-Maron et al., 2018). It is an incremental improvement to DDPG (Lillicrap et al., 2015). The overall objective of DDPG is to maximize $J(\theta_a, \theta_c) = E[Q_{\theta_c}(s, a)]$, where $\pi_{\theta_a}(s)$ is a deterministic policy with parameters θ_a and $Q_{\theta_c}(s, a)$ is an action value function with parameters θ_c. The actor loss is defined as: $L_{\text{actor}} = ||\nabla_{\theta_a} J(\theta_a) = E[Q_{\theta_c}(s, a)] ||_2$ where ∇ is a stop gradient. The corresponding gradient update is defined as $\nabla_{\theta_a} J(\theta_a) = E[Q_{\theta_c}(s, a)]$. The critic is updated using the standard temporal difference error loss: $L_{\text{critic}} = (r(s, a) + \gamma Q_{\pi}(s, \pi(s')) - Q_{\theta_c}(s, a))^2$ where Q_{π} is the target critic and actor networks respectively. In D4PG, the critic is a distributional critic based on the C51 algorithm (Bellemare et al., 2017) and the agent is run in a distributed setup with multiple actors executed in parallel, n-step returns and with prioritized experience replay. We will use the non-distributional critic update in our notation for ease of visualization and clarity for the reader.

3 REWARD CONSTRAINED D4PG (RC-D4PG)

This section describes our modifications required to transform D4PG into Reward Constrained D4PG (RC-D4PG) such that it maximizes the expected return and satisfies constraints.

The constrained optimisation objective is defined as: $\max_{\pi_\theta} J_{\text{lagrange}}$ subject to $J_{\text{lagrange}} \leq \beta$, where $J_{\text{lagrange}} = E[Q_{\theta_c}(s, a)]$ and $J_{\text{lagrange}} = E[C(s, a)]$; the parameter $\theta = (\theta_a, \theta_c)$ from here on in; $C(s, a)$ is a long-term penalty value function (e.g., sum of discounted immediate penalties) corresponding to constraint violations. The Lagrangian relaxation objective is defined as $J_{\text{lagrange}} + \lambda (\beta - J_{\text{lagrange}})$. As in RCPO, a proxy objective $J_{\text{lagrange}} - \lambda J_{\text{lagrange}}$ is used that converges to the same set of locally optimal solutions as the relaxed objective (Tessler et al., 2018). Note that the constant β does not affect the policy improvement step and is only used for the Lagrange multiplier loss update. To optimize the proxy objective with D4PG, reward shaping of the form $r(s, a) - c(s, a)$ is required to yield the reward shaped critic loss defined as: $L_{\text{critic}}(c, \lambda) = (r(s, a) - c(s, a) + \gamma Q_{\pi}(s, \pi(s')) - Q_{\theta_c}(s, a))^2$. The actor loss is defined as before. The Lagrange loss is defined as: $L_{\text{lagrange}}(\lambda) = \lambda (\beta - J_{\text{lagrange}})$ where $\lambda \geq 0$. Since RC-D4PG is off-policy, it requires storing the per time-step penalties, c, inside the transitions stored in the experience replay buffer (ER). For training the Lagrange multiplier an additional penalty buffer is used to store the per-episode penalties J_{lagrange}. The learner then reads from this penalty buffer for updating the Lagrange multiplier. RC-D4PG updates the actor/critic parameters and the Lagrange

3 This can easily be extended to include the distributional critic.
4 Meta-Gradients for the Lagrange Learning Rate (MetaL)

In this section, we introduce the MetaL algorithm which extends RC-D4PG to use meta-gradients for adapting the learning rate of the Lagrangian multiplier. The idea is to update the learning rate such that the outer loss (as defined in the next subsection) is minimized. Our intuition is that a learning rate gradient that takes into account the overall task objective and constraint thresholds will lead to improved overall performance.

Algorithm 1 MetaL

1: Input: penalty \(c(\cdot) \), constraint \(C(\cdot) \), threshold \(\beta \), learning rates \(\alpha_1, \alpha_{\theta_a}, \alpha_{\theta_c}, \alpha_\eta \), max. number of episodes \(M \)
2: Initialize actor, critic parameters \(\theta_a \) and \(\theta_c \), Lagrange multiplier \(\lambda = 0 \), meta-parameter \(\eta = \alpha_\lambda \)
3: for \(1 \ldots M \) do
4: Inner loss:
5: Sample episode penalty \(J_C^T \) from the penalty replay buffer
6: \(\lambda' \leftarrow [\lambda - \alpha_\eta \exp(\alpha_\lambda)(\beta - J_C^T)]_+ \) \hspace{1cm} \triangleright \text{Lagrange multiplier update}
7: Sample a batch with tuples \(\langle s_t, a_t, r_t, c_t \rangle_{t=1}^T \) from ER and split into training/validation sets
8: Accumulate and apply actor and critic updates over training batch \(T_{\text{train}} \) by:
9: \(\nabla \theta_a = 0, \nabla \theta_c = 0 \)
10: for \(t = 1 \ldots T_{\text{train}} \) do
11: \(R_t = r_t - \lambda' c_t + \gamma \hat{Q}(\lambda, s_{t+1}, a_{t+1}) \sim \pi_T(s_{t+1}; \theta_c) \)
12: \(\nabla \theta_c = \alpha_\theta \partial (R_t - \hat{Q}(\lambda, s_t, a_t; \theta_c))^2 / \partial \theta_c \) \hspace{1cm} \triangleright \text{Critic update}
13: \(\nabla \theta_a = \alpha_\theta \mathbb{E}[\nabla \phi(a_t) \nabla \theta_a \pi_\theta(s_t) | a_t = \pi(s_t)] \) \hspace{1cm} \triangleright \text{Actor update}
14: \(\theta'_c \leftarrow \theta_c - \frac{1}{T_{\text{train}}} \sum \nabla \theta_c \)
15: \(\theta'_a \leftarrow \theta_a + \frac{1}{T_{\text{train}}} \sum \nabla \theta_a \)
16: Outer loss: Compute outer loss and meta-gradient update using validation set \(T_{\text{validate}} \):
17: \(\alpha_\lambda' \leftarrow \alpha_\lambda - \alpha_\eta \frac{\partial J'(\theta'_c, \lambda', \alpha'_\lambda)}{\partial \theta'_c} \) \hspace{1cm} \triangleright \text{Meta-parameter update}
18: \(\lambda \leftarrow \lambda', \theta_a \leftarrow \theta'_a, \theta_c \leftarrow \theta'_c, \alpha'_\lambda \leftarrow \alpha'_\lambda \)
19: return \(\theta_a, \theta_c, \lambda \)

Meta-parameters, inner and outer losses: The meta-parameter is defined as \(\eta = \alpha_\lambda \). The inner loss is composed of three losses, the actor, critic, and Lagrange loss respectively. The actor and critic losses are the same as in RC-D4PG. The Lagrange multiplier loss is defined as: \(L_{\text{Lagrange}}(\lambda) = \exp(\alpha_\lambda) \lambda (\beta - J_C^T) \) where \(\alpha_\lambda \) is the meta-parameter as defined above. The meta-parameter is wrapped inside an exponential function to magnify the effect of \(\alpha_\lambda \) while also ensuring non-negativity of the effective learning rate. The inner loss updates are

\[
\begin{bmatrix}
\theta'_c \\
\theta'_a \\
\lambda'
\end{bmatrix} =
\begin{bmatrix}
\phi_c(\theta_a, \eta) \\
\phi_a(\theta_c, \eta) \\
\phi_c(\theta_c, \lambda)
\end{bmatrix}
\quad - \quad
\begin{bmatrix}
\alpha_{\theta_a} \frac{dL_{\text{actor}}(\theta_a)}{d\theta_a} \\
\alpha_{\theta_c} \frac{dL_{\text{critic}}(\theta_c, \lambda)}{d\theta_c} \\
\alpha_\lambda \frac{dL_{\text{Lagrange}}(\lambda)}{d\lambda}
\end{bmatrix}
\] where \(\alpha_{\theta_a}, \alpha_{\theta_c}, \alpha_1 \) are the fixed actor, critic and Lagrange multiplier learning rates respectively. The outer loss is defined as \(J'(\theta'_c, \lambda', \alpha'_\lambda) = L_{\text{outer}} = L_{\text{critic}}(\theta'_c, \lambda', \alpha'_\lambda) \). We tried different variants of outer losses and found that this loss empirically yielded the best performance; we discuss this in more detail in the experiments section. This is analogous to formulating MetaL as the following nested optimization problem: \(\min_{\alpha_\lambda} J'(\theta(\alpha_\lambda), \lambda(\alpha_\lambda)), \text{s.t. } \theta, \lambda \in \arg \min_{\theta, \lambda \geq 0} \{-J_C^T - \lambda(\alpha_\lambda)(\beta - J_C^T)\} \). We treat the lower level optimization problem as the Lagrange relaxation objective (inner loss). We then treat the upper level optimization as the meta-gradient objective \(J'(\theta(\alpha_\lambda), \lambda(\alpha_\lambda)) \) (outer loss). This transforms the optimization problem into soft-constrained optimization since the meta-parameter \(\alpha_\lambda \) guides the learning of the Lagrange multiplier \(\lambda \) to minimize the outer loss while attempting to find a good trade-off between minimizing constraint violations and maximizing return (inner loss).

As shown in Algorithm[1] the inner loss gradients are computed for \(\lambda \) (line 6), \(\theta_c \) (line 12) and \(\theta_a \) (line 13) corresponding to the Lagrange multiplier, critic and actor parameters respectively. The Lagrange multiplier is updated by sampling episode penalties which is an empirical estimate of \(J_C^T \).
from a separate penalty replay buffer (line 5) to compute the gradient update. The updated multiplier is then utilized in the critic inner update (lines 11 and 12) to ensure that the critic parameters are a function of this new updated Lagrange multiplier. The actor and critic parameters are updated using the training batch, and these updated parameters along with a validation batch are used to compute the outer loss (line 17). The meta-parameter α_λ is then updated along the gradient of this outer loss with respect to $\eta = \alpha_\lambda$. We next derive the meta-gradient update for α_λ, and present it in the following theorem (see the Appendix, Section A for the full derivation). Intuition for this meta-gradient update is provided in the experiments section.

Theorem 1 MetaL gradient update: Let $\beta \geq 0$ be a pre-defined constraint violation threshold, meta-parameter $\eta = \alpha_\lambda$ and $J^\pi_θ = \mathbb{E}\left[C(s,a) s = s_t, a = \pi_θ(s_t)\right]$ is the discounted constraint violation function, then, the meta-gradient update is:

$$
\alpha'_\lambda \leftarrow \alpha_\lambda - \eta \left(\Delta_c(s,a) \alpha_1 \exp(\alpha_\lambda) \cdot \left(J^{\pi_θ}_c - \beta \right) \left(-2 \alpha_\theta_c (\nabla_{\theta_c} Q_{\phi_c}(s,a))^T \nabla_{\theta_c} Q_{\theta_c}(s,a) + 1 \right) \right),
$$

where Δ is the TD error; α_θ_c is the critic learning rate and α_η is the meta-parameter learning rate.

5 Meta-Gradient Reward Shaping (MeSh)

We present MeSh, an alternative approach to performing soft-constrained optimizing using meta-gradients. This approach predicts a scale and offset, $\kappa_S, \kappa_O = f_\phi(s_t, a_t, r_t, c_t)$ where f_ϕ is the meta-shaping network, with meta-parameters $\eta = \phi$, and the tuple (s_t, a_t, r_t, c_t) corresponds to the state, action, reward and per-step constraint-violation penalty c_t. These parameters shape the reward function to yield the meta-shaped reward: $r_{\text{meta-shaped}} = r_t - \kappa_S \cdot \lambda c_t + \kappa_O$. They provide additional degrees of freedom to shaping the reward which may yield an improved overall solution.

MeSh trains two critics, an inner critic with parameters $\theta_{c,in}$ used in the inner loss and an outer critic with parameters $\theta_{c,out}$ which is used in the outer loss. The inner critic is trained using the meta-shaped reward $r_{\text{meta-shaped}}$ and the outer critic is trained using the regular shaped reward $r_{\text{shaped}} = r_t - \lambda c_t$. The Lagrange multiplier λ is fixed for training the inner critic and is updated according to the Lagrange multiplier update equation for training the outer critic. We defer the detailed implementation of this algorithm, its gradient update (Theorem 2) and intuition for the update to the Appendix, Section B.

6 Experiments

The experiments were performed using domains from the Real-World Reinforcement Learning (RWRL) suite\footnote{https://github.com/google-research/realworldrl_suite}, namely cartpole:swingup, walker:walk, quadruped:walk and humanoid:walk. We will refer to these domains as cartpole, walker, quadruped and humanoid from here on in.

We focus on two types of tasks with constraints: (1) solvable constraint tasks - where the task is solved and the constraints can be satisfied; (2) unsolvable constraint tasks - where the task can be solved but the constraints cannot be satisfied. Unsolvable constraint tasks correspond to tasks where the constraint thresholds are incorrectly set and cannot be satisfied, situations which occur in many real-world problems as motivated in the introduction. The specific constraints we focused on for each domain can be found in the Appendix (Section C). The goal is to showcase the soft-constrained performance of MetaL, with respect to reducing constraint violations and maximizing the return in both of these scenarios (solvable and unsolvable constraint tasks) with respect to the baselines.

The baseline algorithms we focused on for each experiment are D4PG without any constraints, RC-D4PG (i.e., hard constraint satisfaction) and Reward Shaping D4PG (RS-D4PG) (i.e., soft constraint satisfaction). RS-D4PG uses a fixed λ for the duration of training. We compare these baselines to our best performing meta-gradient variant MetaL. Note that D4PG, RC-D4PG and our meta-gradient variants have no prior information regarding the Lagrange multiplier. RC-D4PG and MetaL attempt to learn a suitable multiplier value from scratch, i.e. the initial Lagrange multiplier value is set to 0.0. In contrast, RS-D4PG has prior information (i.e. it uses a pre-selected fixed Lagrange multiplier).
Experimental Setup: For each domain, the action and observation dimensions are shown in the Appendix, Table 4. The episode length is 1000 steps, the base reward function is computed within the dm_control suite (Tassa et al., 2018). The upper bound reward for each task is 1000. Each task was trained for 20000 episodes. Each variant of D4PG uses the same network architecture (see the Appendix, Table 5 for more details).

We use different performance metrics to compare overall performance. We track the average episode return (R), but we also define the penalized return: $R_{\text{penalized}} = R - \psi_{\beta,C}$, which captures the trade-off between achieving optimal performance and satisfying the constraints. Here, R is the average return for the algorithm upon convergence (computed as an average over the previous 100 episodes); λ is a fixed constant that determines how much to weight the constraint violation penalty. For the purposes of evaluation, we want to penalize algorithms that consistently violate the constraints and therefore set $\lambda = 1000$. Since the upper bound of rewards for each domain is 1000, we are essentially weighing equally attaining high performance and satisfying constraints. Finally, $\psi_{\beta,C} = \max(0, J_{\pi}^C - \beta)$ is defined as the overshoot. Here β is the constraint violation threshold and defines the allowable average constraint violations per episode: J_{π}^C is the average constraint violation value per episode upon convergence for a policy π. The overshoot, $\psi_{\beta,C}$, tracks the average constraint violations that are above the allowed constraint violation threshold β.

We investigate each algorithm’s performance along a variety of dimensions which include different constraint violation thresholds (see the Appendix, Table 6). All experiments are averaged across seeds. Each variant of D4PG uses the same network architecture (see Appendix, Table 6). All experiments are averaged across 3 seeds.

6.1 Main Results

We begin by comparing the performance of our meta-gradient variants, MetaL and MeSh. We then analyze the performance of our best variant, MetaL, with respect to using different outer losses. Then we analyse the overall performance of all methods, followed by dissecting performance along the dimensions of safety coefficient and domain respectively. Finally, we investigate the derived gradient update for MetaL from Theorem 1 and provide intuition for the algorithm’s behaviour.

MetaL and MeSh performance: We compare the performance of MetaL with that of MeSh across all domains, averaging over safety coefficients and thresholds, as shown in Figure 1 (left). We evaluate two variants of MeSh with small (64 × 64 × 64) and larger (512 × 512 × 256) fully-connected layer sizes in the intrinsic network f_{ϕ}. We observe that MeSh performance varies with architecture size, with MeSh (φsmall) obtaining better penalized return compared to MeSh (φlarge) on three of the domains. Compared to the MeSh variants, MetaL obtains higher penalized return across all domains, indicating that MetaL finds a better trade-off between constraint satisfaction and reward maximization. Hence, from here on in, we focus our attention to MetaL, and investigate MeSh further in the Appendix.

![Figure 1: (Left) MetaL and MeSh performance across domains. (Right) MetaL performance using different outer losses.](image)

MetaL outer loss: We wanted to determine whether different outer losses would result in improved overall performance. We used the actor loss (L_{actor}) and the combination of the actor and critic losses as the outer loss ($L_{\text{actor}} + L_{\text{critic}}$) and compared them with the original MetaL outer loss.
Figure 1 shows that using just the actor loss results in the worst performance; while using the critic loss always results in better performance. The best performance is achieved by the original critic-only MetaL outer loss. This implies that fitting the critic well is more important compared to the actor for attaining a high performing policy.

Overall performance: We averaged the performance of MetaL across all safety coefficients, thresholds and domains and compared this with the relevant baselines. As seen in Table 1, MetaL outperforms all of the baseline approaches by achieving the best trade-off of minimizing constraint violations and maximizing return. This includes all of the soft constrained optimization baselines (i.e., RS-D4PG variants), D4PG as well as the hard-constrained optimization algorithm RC-D4PG. It is interesting to analyze this table to see that the best reward shaping variants are (1) $RS - 0.1$ which achieves comparable return, but higher overshoot and therefore lower penalized return; (2) $RS - 1.0$ which attains significantly lower return but lower overshoot resulting in lower penalized return. D4PG has the highest return, but this results in significantly higher overshoot. While RC-D4PG attains lower overshoot, it also yields significantly lower overall return. We now investigate this performance in more detail by looking at the performance per domain and per safety coefficient.

Performance as a function of safety coefficient: We analyzed the average performance per safety coefficient, while averaging across all domains and thresholds. As seen in Figure 2, MetaL achieves comparable average return to that of D4PG. In addition, it significantly outperforms both D4PG and RC-D4PG in terms of penalized return. As can be seen in the graph, choosing a different reward shaping value can lead to drastically different performance. This is one of the drawbacks of the RS-D4PG variants. It is possible however, to find comparable RS variants (e.g., $RS - 0.1$ for the lowest safety coefficient of 0.05). However, as can be seen in Figure 3 for the highest safety coefficient and largest threshold, this RS variant fails completely at the humanoid task, further highlighting the instability of the RS approach. Figure 3 which presents the performance of MetaL and the baselines on the highest safety coefficient and largest threshold (to ensure that the constraint task is solvable), shows that MetaL has comparable performance to RC-D4PG (a hard constrained optimization algorithm). This further highlights the power of MetaL whereby it can achieve comparable performance when the constraint task is solvable compared to hard constrained optimization algorithms and state-of-the-art performance when the constraint task is not solvable.

Performance per domain: When analyzing the performance of all the algorithms per domain, averaging across safety coefficients and constraint thresholds, we found that MetaL has significantly better penalized return compared to D4PG, RC-D4PG and RS-D4PG variants across the domains (other than quadruped for $RS - 0.1$). A table of the results can be seen in the Appendix, Figure 7.

Algorithm behaviour analysis: Since MetaL is a soft-constrained adaptation of RC-D4PG, we next analyze MetaL’s gradient update in Theorem 1 to understand why the performance of MetaL differs
from that of RC-D4PG in two types of scenarios: (1) solvable and (2) unsolvable constraint tasks. For both scenarios, we investigate the performance on cartpole for a constraint threshold of 0.11.\footnote{This threshold was chosen as varying the safety coefficient at this threshold yields both solvable and unsolvable constraint tasks which is important for our analysis.}

For (1), we set the safety coefficient to a value of 0.3. The learning curve for this converged setting can be seen in Figure 4 (left). We track 4 different parameters here: the Lagrangian multiplier λ (red curve), the mean penalty value J_C^λ (orange curve), the meta-parameter α_λ (black curve) and the scaled Lagrangian learning rate $\alpha_\lambda \cdot \exp(\beta)$ (green curve). The threshold β is shown as the blue dotted line. Initially there are many constraint violations. This corresponds to a large difference for $J_C^\lambda - \beta$ (orange curve minus blue dotted line) which appears in the gradient in Theorem 1. As a result, the meta-parameter α_λ increases in value as seen in the figure, and therefore increases the scaled learning rate to modify the value of λ such that an improved solution can be found. Once J_C^λ is satisfying the constraint in expectation ($J_C^\lambda - \beta \approx 0$), the scaled learning rate drops in value due to $J_C^\lambda - \beta$ being small. This is an attempt by the algorithm to slow down the change in λ since a reasonable solution has been found (see the return for MetaL (green curve) in Figure 4 (right)).

For (2), we set the safety coefficient to a value of 0.05 making the constraint task unsolvable in this domain. The learning curves can be seen in Figure 4 (middle). Even though the constraint task is unsolvable, MetaL still manages to yield a reasonable expected return as seen in Figure 4 (right). This is compared to RC-D4PG that overfits to satisfying the constraint and, in doing so, results in poor average reward performance. This can be seen in Figure 4 (middle) where RC-D4PG has lower overshoot than MetaL for low safety coefficients. However, this is at the expense of poor expected return and penalized return performance as seen in Figure 4 (left). We will now provide some intuition for MetaL performance and relate it to the α_λ gradient update.

In this setting, there are consistent constraint violations leading to a large value for $J_C^\lambda - \beta$. At this point an interesting effect occurs. The value of α_λ decreases, as seen in the figure, while it tries to adapt the value of λ to satisfy the constraint. However, as seen in the gradient update, there is an exponential term $\exp(\alpha_\lambda)$ which scales the Lagrange multiplier learning rate. This quickly drives the gradient down to 0, and consequently the scaled Lagrange multiplier learning rate too, as seen in Figure 4 (middle). This causes λ to settle on a value as seen in the figure. At this point the algorithm optimizes for a stable fixed λ and as a result finds the best trade-off for expected return at this λ value. In summary, MetaL will maximize the expected return for an ‘almost’ fixed λ, whereas RC-D4PG will attempt to overfit to satisfying the constraint resulting in a poor overall solution.

Figure 4: The learning progress of MetaL for solvable (left) and unsolvable (middle) constraint tasks. In both cases, MetaL attempts to try and maximize the return (right).

Preprint. Under review.
7 DISCUSSION

In this paper, we presented two soft-constrained RL techniques, MetaL and MeSh, that combined meta-gradients and constrained RL to find a good trade-off between minimizing constraint violations and maximizing returns. MetaL focuses on adapting the learning rate of the Lagrange multiplier update, while MeSh focuses on adapting the shaped reward. We show that across safety coefficients, domains and constraint thresholds, our best performing algorithm MetaL outperforms all of the baseline algorithms. We also derive the meta-gradient updates for MetaL and MeSh respectively. MetaL is then used for an investigative study where we provide empirical intuition for the derived gradient update that helps explain this meta-gradient variant’s performance. We believe the proposed techniques will generalize to other policy gradient algorithms but leave this for future work.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Jonas Degrave, Steven Bohez, Yuval Tassa, Dan Belov, Nicolas Heess, and Martin A. Riedmiller. Relative entropy regularized policy iteration. CoRR, abs/1812.02256, 2018.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 22–31. JMLR. org, 2017.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 449–458. JMLR. org, 2017.

Steven Bohez, Abbas Abdolmaleki, Michael Neunert, Jonas Buchli, Nicolas Heess, and Raia Hadsell. Value constrained model-free continuous control. arXiv preprint arXiv:1904.04623, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-based approach to safe reinforcement learning, 2018.

Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning. CoRR, abs/1904.12901, 2019.

Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint arXiv:2003.11881, 2020a.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning, 2020b.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps, 2020.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse gradient-based hyperparameter optimization, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana, and Alejandro Ribeiro. Constrained reinforcement learning has zero duality gap. In Advances in Neural Information Processing Systems, pp. 7555–7565, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning. arXiv preprint arXiv:1910.01708, 2019.

Harsh Satija, Philip Amortila, and Joelle Pineau. Constrained markov decision processes via backward value functions. arXiv preprint arXiv:2008.11811, 2020.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of Go without human knowledge. Nature, 550, 2017.

Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary Computation, 22(2):276–295, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller. Deepmind control suite. CoRR, abs/1801.00690, 2018.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Mannor. A deep hierarchical approach to lifelong learning in minecraft. In AAAI, volume 3, pp. 6, 2017.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv preprint arXiv:1805.11074, 2018.

Philip S Thomas, Bruno Castro da Silva, Andrew G Barto, and Emma Brunskill. On ensuring that intelligent machines are well-behaved. arXiv preprint arXiv:1708.05448, 2017.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh, Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary tasks. NeurIPS, 2019.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning. NeurIPS, 2018.

Kenny Young, Baoxiang Wang, and Matthew E. Taylor. Metatrace actor-critic: Online step-size tuning by meta-gradient descent for reinforcement learning control, 2018.

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado van Hasselt, David Silver, and Satinder Singh. Self-Tuning Deep Reinforcement Learning. 2020.

Ruiyi Zhang, Tong Yu, Yilin Shen, Hongxia Jin, Changyou Chen, and Lawrence Carin. Reward constrained interactive recommendation with natural language feedback, 2020.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient methods. NeurIPS, 2018.
A Meta-Gradient for Learning the Lagrange Multiplier Learning Rate (MetaL)

This section details the meta-gradient derivation in MetaL for the meta-parameter $\eta = \alpha_\lambda$.

Step 1: Compute the inner loss updates for the Lagrange multiplier and the actor/critic networks.

Define the Lagrange multiplier loss as:

$$ L_{\text{lambda}} = \exp(\alpha_\lambda)\lambda \left(\beta - \mathbb{E} \left[C(s, a) | s = s_t, a = \pi_\theta(s_t) \right] \right) $$ \hspace{1cm} (1)

To update the Lagrange multiplier, compute $f(\tau, \lambda, \eta) = \alpha_1 \nabla_\lambda L_{\text{lambda}}(\lambda)$:

$$ f(\tau, \lambda, \eta) = \alpha_1 \nabla_\lambda L_{\text{lambda}}(\lambda) = \alpha_1 \exp(\alpha_\lambda) \left(\beta - \mathbb{E} \left[C(s, a) | s = s_t, a = \pi_\theta(s_t) \right] \right) $$

The Lagrange multiplier is updated as follows:

$$ \lambda' = \lambda - f(\tau, \lambda, \eta) \hspace{1cm} (2) $$

Next, define the actor loss as:

$$ L_{\text{actor}}(\theta_a) = \|SG(\nabla_a Q_{\theta_e}(s_t, a_t) + a_{\theta_{a,t}}) - a_{\theta_{a,t}}\|_2 $$ \hspace{1cm} (3)

where SG is a stop-gradient applied to the target. To update the actor, compute $f(\tau, \theta_a, \eta) = -\alpha_{\theta_a} \nabla_{\theta_a} L_{\text{actor}}(\theta_a)$:

$$ f(\tau, \theta_a, \eta) = \alpha_{\theta_a} \mathbb{E} \left[\nabla_a Q(s, a) \nabla_{\theta_a} \pi(s) \right] \hspace{1cm} (4) $$

$$ \theta'_{\alpha} = \theta_a - f(\tau, \theta_a, \eta) \hspace{1cm} (5) $$

The final inner update is the critic. Define the critic loss as the squared TD error:

$$ L_{\text{critic}} = (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta_e}(s, a))^2 $$ \hspace{1cm} (6)

Note that the updated Lagrange multiplier λ' is used in the critic loss computation. We therefore need to compute the gradient of the critic loss with respect to the critic parameters θ_e to be used in the critic update: $f(\tau, \theta_e, \lambda', \eta) = \alpha_{\theta_e} \nabla_{\theta_e} L_{\text{critic}}(\theta_e)$.

Thus, the critic update is:

$$ f(\tau, \theta_e, \lambda', \eta) = \alpha_{\theta_e} \nabla_{\theta_e} L(\theta_e) = -2\alpha_{\theta_e} (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta_e}(s, a)) \nabla_{\theta_e} Q_{\theta_e}(s, a) $$

$$ \theta'_{\epsilon} = \theta_e - f(\tau, \theta_e, \lambda', \eta) \hspace{1cm} (7) $$

Step 2: Define the meta-objective $J'(\tau', \theta'_e, \lambda'(\eta))$:

We define the meta-objective as $L_{\text{outer}} = L_{\text{critic}}$. That is,

$$ J'(\tau', \theta'_e(\lambda'(\eta)), \lambda'(\eta)) = (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta_e}(s, a))^2 \hspace{1cm} (8) $$

Step 3: Compute the meta-gradient:

$$ \frac{\partial J'(\tau', \theta'_e(\lambda'(\eta)), \lambda'(\eta))}{\partial \eta} = \left(\nabla_{\theta_e} J'(\tau', \theta'_e(\lambda'(\eta)), \lambda'(\eta)) \right)^T \nabla_{\lambda'} \theta'_e(\nabla_{\lambda'} \lambda'(\eta)) + \frac{\partial J'(\tau', \theta'_e(\lambda'(\eta)), \lambda'(\eta))}{\partial \lambda'} (\nabla_{\lambda'} \lambda'(\eta)) $$
First start with \(\frac{\partial J}{\partial \eta} \) and using Equation 2, we get:

\[
\frac{d\lambda'}{d\eta} = \frac{d\lambda}{d\eta} - \frac{\partial f(\tau, \lambda, \eta)}{\partial \eta} = \frac{- \partial f(\tau, \lambda, \eta)}{\partial \lambda} \tag{9}
\]

\[
\frac{\partial \alpha_1 \exp(\alpha_\lambda)}{\partial \alpha_\lambda} = \alpha_1 \exp(\alpha_\lambda) \left(J^\tau_C - \beta \right) \tag{10}
\]

\[
\text{Then, compute } \frac{\partial J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta))}{\partial \lambda'} \text{ which yields:}
\]

\[
\frac{\partial J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta))}{\partial \lambda'} = -2 \cdot (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta'_c}(s, a)) \cdot c(s, a) \tag{11}
\]

\[
\text{Compute } \nabla_{\theta'_c} J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta)):
\]

\[
\nabla_{\theta'_c} J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta)) = -2 \cdot (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta'_c}(s, a)) \nabla_{\theta'_c} Q_{\theta'_c}(s, a) \tag{12}
\]

\[
\text{Denote:}
\]

\[
\delta = r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta'_c}(s, a) \tag{13}
\]

\[
\text{Finally, compute } \nabla_{\lambda'} \theta'_c. \text{ Using Equation 7 we get:}
\]

\[
\nabla_{\lambda'} \theta'_c = \nabla_{\lambda'} f(\tau, \theta_c, \lambda, \eta)
\]

\[
= -\nabla_{\lambda'} (-2\alpha_{\theta_c} \cdot (r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta_c}(s, a)) \nabla_{\theta_c} Q_{\theta_c}(s, a))
\]

\[
= -2\alpha_{\theta_c} \cdot c(s, a) \cdot \nabla_{\theta_c} Q_{\theta_c}(s, a)
\]

The meta-gradient \(\frac{\partial J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta))}{\partial \eta} \) is therefore:

\[
\frac{\partial J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta))}{\partial \eta} = (\nabla_{\theta'_c} J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta)))^T \nabla_{\lambda'} \theta'_c (\frac{\partial \lambda'}{\partial \eta}) + \frac{\partial J'(\tau', \theta'_c(\lambda'(\eta)), \lambda'(\eta))}{\partial \lambda'} (\frac{\partial \lambda'}{\partial \eta})
\]

\[
= -2\delta \cdot (\nabla_{\theta'_c} Q_{\theta'_c}(s, a))^T \cdot \left(-2\alpha_{\theta_c} \cdot c(s, a) \cdot \nabla_{\theta_c} Q_{\theta_c}(s, a) \right) \cdot \left(\alpha_1 \exp(\alpha_\lambda) \left(J^\tau_C - \beta \right) \right)
\]

\[
+ \left(-2\delta \cdot c(s, a) \right) \cdot \left(\alpha_1 \exp(\alpha_\lambda) \left(J^\tau_C - \beta \right) \right)
\]

\[
= -2\delta \cdot c(s, a) \cdot \alpha_1 \exp(\alpha_\lambda) \cdot \left(J^\tau_C - \beta \right) \cdot \left(-2\alpha_{\theta_c} (\nabla_{\theta'_c} Q_{\theta'_c}(s, a))^T \nabla_{\theta_c} Q_{\theta_c}(s, a) + 1 \right)
\]

The meta-gradient update is therefore:

\[
\alpha'_\lambda = \alpha_\lambda - \alpha_\eta \left(-2\delta \cdot c(s, a) \cdot \alpha_1 \exp(\alpha_\lambda) \cdot \left(J^\tau_C - \beta \right) \left(-2\alpha_{\theta_c} (\nabla_{\theta'_c} Q_{\theta'_c}(s, a))^T \nabla_{\theta_c} Q_{\theta_c}(s, a) + 1 \right) \right)
\]
B META-GRADIENT REWARD SHAPING (MESH)

As mentioned in the main text MESH shapes the extrinsic reward using a scale, \(s_G \), and an offset, \(s_T \), predicted by a neural network \(f_\phi \), whose parameters are the meta-parameters \(\eta = \phi \). The inner loss is defined as \(L_\text{inner}(\theta_a, \theta_c, \lambda) = L_\text{actor}(\theta_a) + L_\text{critic,in}(\theta_c, \lambda) \) where \(L_\text{actor}(\theta_a, \theta_c, \lambda) = -\mathbb{E}[Q_{\theta_c}(s, \pi_{\theta_a}(s))] \) and \(L_\text{critic,in}(\theta_c, \lambda) = \delta^2 \) where \(\delta \) is the squared TD error trained on the meta-shaped reward \(r_{\text{meta-shaped}} \). The outer loss is \(L_\text{outer} = J'(\theta'_a, \theta'_c, \omega) = \|SG(\nabla_\theta Q_{\theta'_c}\omega(s_t, a_t) + \alpha_t, \beta_t) - \alpha_t, \beta_t \|^2 \) which is the original D4PG actor loss. The full algorithmic overview is presented as Algorithm 2. We also derived the meta-gradient update and present it as Theorem 2 where we also provide intuition for the update itself. We also analyze the algorithm’s performance under different hyper-parameter settings and meta-shaping reward formulations.

B.1 ALGORITHM

The pseudo-code for MESH is shown in Algorithm 2.

Algorithm 2 MESH

1: \textbf{Input}: penalty \(c() \), constraint \(C() \), threshold \(\beta \), learning rates \(\alpha_1, \alpha_\theta_a, \alpha_\theta_c, \alpha_{\theta'_c, \omega} \), max. number of episodes \(M \), fixed \(\lambda \) for inner-critic, meta-parameters \(\eta = \phi \) (meta-shaping network parameters)
2: Initialize actor parameters \(\theta_a \), inner critic parameters \(\theta_{c,in} \), outer critic parameters \(\theta_{c,out} \), Lagrange multiplier \(\lambda = 0 \)
3: for \(1 \ldots M \) do
4: Sample episode penalty \(J_C^\epsilon \) from the penalty replay buffer
5: \(X' = [\lambda - \alpha_1 (J_C^\epsilon - \beta)]_+ \) \text{ Lagrange multiplier update}
6: Sample batch with tuples \(\langle s_t, a_t, r_t, c_t \rangle \) from \(\mathcal{E}_T \) and split into training/validation sets
7: \textbf{Inner loss}: Accumulate and apply actor and critics updates over training batch \(T_{train} \)
8: \(\nabla \theta_a = 0, \nabla \theta_{c,in} = 0, \nabla \theta_{c,out} = 0 \)
9: for \(t = 1 \ldots T_{train} \) do
10: \(\kappa_S, \kappa_Q = f_\phi(s_t, c_t) \)
11: \(\tilde{R}_{t, in} = r_t - \kappa_S \cdot \lambda c_t + \kappa_Q + \gamma Q_{\theta_c}(\lambda, s_{t+1}, a_{t+1} \sim \pi_T(s_{t+1}); \theta_{c,in}) \)
12: \(\tilde{R}_{t, out} = r_t - X' c_t + \gamma Q_{\theta_c}(\lambda, s_{t+1}, a_{t+1} \sim \pi_T(s_{t+1}); \theta_{c,out}) \)
13: \(\nabla \theta_{c,in} = \alpha_{\theta_{c,in}} \frac{\partial \tilde{R}_{t, in} - \tilde{Q}_{\theta_c}(\lambda, s_t; \theta_{c,in})}{\partial \theta_{c,in}} \text{ Inner critic update} \)
14: \(\nabla \theta_{c,out} = \alpha_{\theta_{c,out}} \frac{\partial \tilde{R}_{t, out} - \tilde{Q}_Q(\lambda, s_t, a_t; \theta_{c,out})}{\partial \theta_{c,out}} \text{ Outer critic update} \)
15: \(\nabla \theta_a = \alpha_{\theta_a} \mathbb{E}[\nabla_\theta Q_{\theta'_c}(s_t, a_t) \nabla_\theta \pi_{\theta_{a}}(s_t) | a_t = \pi(s_t)] \text{ Actor update} \)
16: \(\theta'_{c, in} \leftarrow \theta_{c, in} - \frac{1}{T_{train}} \sum \nabla \theta_{c, in} \)
17: \(\theta'_{c, out} \leftarrow \theta_{c, out} - \frac{1}{T_{train}} \sum \nabla \theta_{c, out} \)
18: \(\theta'_a = \theta_a + \frac{1}{T_{train}} \sum \nabla \theta_a \)
19: \textbf{Outer loss}: Compute outer loss and meta-gradient update using validation set \(T_{validate} \):
20: \(\phi' = \phi - \eta J'(\theta'_a, \theta'_c, \omega) \) \text{ Meta-parameters update} \)
21: \(\lambda = X', \theta_a = \theta'_a, \theta_{c, in} = \theta'_{c, in}, \theta_{c, out} = \theta'_{c, out}, \phi = \phi' \)
22: return policy parameters \(\theta_a \)

B.2 META-GRADIENT DERIVATION

We first state the theorem for the meta-gradient update in MESH and then derive it.

Theorem 2 Let \(\beta \geq 0 \) be a pre-defined constraint violation threshold and \(\eta = \phi \) be the parameters of the neural network \(f_\phi \) used for reward meta-shaping, then the meta-gradient update is,
\[\eta' = \eta - \alpha \eta \cdot \left[2\alpha \alpha \alpha_{\theta_{c,in}} \mathbb{E} [\nabla_a Q_{\theta_{c,in}} (s, a) \nabla a \pi (s)]_{a = \pi (s)} \left(\nabla_{\theta_{c,in}} Q_{\theta_{c,in}} (s, a) \nabla a \pi (s) \right)_{a = \pi (s)} \right] \]

\[\cdot \nabla_{\theta_{c,in}} Q_{\theta_{c,in}} (s, a) \left(\hat{\lambda} c (s, a) - \nabla a \kappa_S - \nabla a \kappa_T \right) \]

where \(\alpha \) is the meta-parameter learning rate.

Step 1: Define the inner losses and compute the inner loss updates. First, we define the losses.

Define the Lagrange multiplier loss as:

\[L_{\text{lambda}} = \lambda \left(\beta - \mathbb{E} [C (s, a) | s = s_t, a = \pi (s_t)] \right) \] \hfill (17)

To update the Lagrange multiplier, compute

\[f (\tau, \lambda, \eta) = \alpha \nabla L_{\text{lambda}} (\lambda) \]

\[= \alpha \left(\beta - \mathbb{E} [C (s, a) | s = s_t, a = \pi (s_t)] \right) \] \hfill (18)

\[\lambda' = \lambda - f (\tau, \lambda, \eta) \] \hfill (19)

The inner update is performed using an inner critic with parameters \(\theta_{c,in} \) and a fixed \(\hat{\lambda} \) whose loss is defined as:

\[L_{\text{in,critic}} = \hat{\delta}^2 \] \hfill (20)

where

\[\hat{\delta} = r (s, a) - \kappa_S \cdot \hat{\lambda} c (s, a) + \kappa_T + \gamma Q_T (s', \pi_T (s')) - Q_{\theta_{c,in}} (s, a) \]

is the meta-shaped TD error.

\(\kappa_S \) and \(\kappa_T \) are the scale and the offset predicted by the meta-shaping network \(f_\phi \), parameterized by \(\phi \). The parameters of the meta-shaping network are the meta-parameters: \(\eta = \phi \).

The inner critic’s parameters are updated as follows,

\[\theta'_{c,in} = \theta_{c,in} + f (\tau, \theta_{c,in}, \eta) \] \hfill (21)

where the update function \(f (\tau, \theta_{c,in}, \eta) \) is:

\[f (\tau, \theta_{c,in}, \eta) = -\alpha \theta_{c,in} \nabla_{\theta_{c,in}} L_{\text{in,critic}} (\theta_{c,in}) \]

\[= 2\alpha \theta_{c,in} \hat{\delta} \nabla_{\theta_{c,in}} Q_{\theta_{c,in}} (s, a) \]

The updated critic parameters \(\theta'_{c,in} \) are used in the actor loss:

\[L_{\text{actor}} (\theta_a) = -\mathbb{E} [Q_{\theta_{c,in}} (s, \pi (s))] \] \hfill (22)

where the expectation is with respect to the state distribution \(d(s) \).

To update the actor, compute

\[f (\tau, \theta_a, \eta) = -\alpha \theta_a \nabla a L_{\text{actor}} (\theta_a) \]

\[= \alpha \theta_a \mathbb{E} [\nabla_a Q_{\theta_{c,in}} (s, a) \nabla a \pi (s)]_{a = \pi (s)} \] \hfill (23)

\[\theta'_a = \theta_a + f (\tau, \theta_a, \eta) \] \hfill (24)
Step 2: Define the meta-objective outer loss $J'(\theta_a')$.

The outer critic with parameters $\theta_{c,out}$ is used in the outer loss and is trained on the shaped reward; it does not take the meta-parameter network predictions κ_S and κ_T into account. The outer critic loss is defined as:

$$L_{\text{critic}} = \delta^2,$$

where

$$\delta = r(s, a) - \lambda' c(s, a) + \gamma Q_T(s', \pi_T(s')) - Q_{\theta_{c,out}}(s, a)$$

is the TD error.

The outer critic update is therefore:

$$\theta'_{c,out} = \theta_{c,out} + f(\tau, \theta_{c,out})$$

The meta-objective outer loss is defined as:

$$J'(\theta_a') = \|SG(\nabla_a Q_{\theta_{c,out}}(s_t, a_t) + a_t \theta_a') - a_t \theta_a'\|^2$$

Step 3: Calculate the gradient of the outer loss with respect to the meta-parameters:

$$\nabla_\eta J'(\theta_a') = \nabla_{\theta_a'} J'(\theta_a') \cdot \nabla_{\theta_a} J'(\theta_a') \cdot \left(\frac{\partial \theta_{c,in}}{\partial \kappa_S} \cdot \nabla_{\phi} \kappa_S + \frac{\partial \theta_{c,in}}{\partial \kappa_T} \cdot \nabla_{\phi} \kappa_T\right)$$

The sum occurs due to the multi-variate chain rule as $\theta_{c,in}(\kappa_S(\phi), \kappa_T(\phi))$.

Next, we calculate the gradients individually. The first one is:

$$\nabla_{\theta_{c,in}} \theta_a' = -E[\nabla_a Q_{\theta_{c,out}}(s, a) \nabla_{\theta_{c,in}} \pi_{\theta_a}(s)|a=\pi(s)]$$

For the next gradient, $\nabla_{\theta_{c,in}} \theta_a'$, we use Equation 24 and have:

$$\nabla_{\theta_{c,in}} \theta_a' = \nabla_{\theta_{c,in}} \theta_a + \nabla_{\theta_{c,in}} f(\tau, \theta_a, \eta)$$

and

$$\nabla_{\theta_{c,in}} f(\tau, \theta_a, \eta) = \alpha_{\theta_a}(\nabla_{\theta_{c,in}} E[\nabla_a Q_{\theta_{c,in}}(s, a) \nabla_{\theta_a} \pi_{\theta_a}(s)|a=\pi(s)])$$

Therefore:

$$\nabla_{\theta_{c,in}} \theta_a' = \alpha_{\theta_a}(\nabla_{\theta_{c,in}} E[\nabla_a Q_{\theta_{c,in}}(s, a) \nabla_{\theta_a} \pi_{\theta_a}(s)|a=\pi(s)])$$

For $\frac{\partial \theta_{c,in}}{\partial \kappa_S}$ we use equation 21 and have:

$$\frac{\partial \theta_{c,in}}{\partial \kappa_S} = \frac{\partial \theta_{c,in}}{\partial \kappa_S} + \frac{\partial f(\tau, \theta_{c,in}, \eta)}{\partial \kappa_S}$$

Note that $f(\tau, \theta_{c,in}, \eta) = 2\alpha_{\theta_{c,in}} \hat{\delta} \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a)$. Therefore:

$$\frac{\partial \theta_{c,in}}{\partial \kappa_S} = \frac{\partial (2\alpha_{\theta_{c,in}} \hat{\delta} \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a))}{\partial \kappa_S} = -2\alpha_{\theta_{c,in}} \hat{\lambda} c(s, a) \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a)$$
Finally, for $\frac{\partial \theta'_{c,in}}{\partial \kappa_T}$, we get:

$$\frac{\partial \theta'_{c,in}}{\partial \kappa_T} = \frac{\partial (2\alpha_{\theta_{c,in}} \cdot \delta \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a))}{\partial \kappa_T} = 2\alpha_{\theta_{c,in}} \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a) \tag{38}$$

Putting all this together, the meta-gradient is:

$$\nabla_{\eta} J'(\theta'_{a}) = \nabla_{\theta'_{c,in}} J'(\theta'_{a}) \cdot \nabla_{\theta'_{c,in}} \theta'_{a} \cdot \left(\frac{\partial \theta'_{c,in}}{\partial \kappa_S} \cdot \nabla_{\phi} \kappa_S + \frac{\partial \theta'_{c,in}}{\partial \kappa_T} \cdot \nabla_{\phi} \kappa_T \right)$$

$$= -E[\nabla_a Q_{c,out}^\prime(s, a) \nabla_{\theta'_{a}} \pi(s)|_{a=\pi(s)}(\alpha_{\theta_{a}} \nabla_{\theta_{c,in}}^\prime Q_{\theta_{c,in}}(s, a) \nabla_{\theta_{a}} \pi_{\theta_{a}}(s)|_{a=\pi(a)})]$$

$$+ \left[-2\alpha_{\theta_{c,in}} \hat{\lambda} c(s, a) \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a) \cdot \nabla_{\phi} \kappa_S + 2\alpha_{\theta_{c,in}} \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a) \cdot \nabla_{\phi} \kappa_T \right]$$

$$= 2\alpha_{\theta_{a}} \alpha_{\theta_{c,in}} E[\nabla_a Q_{c[out]} \nabla_{\theta_{a}} \pi(s)|_{a=\pi(s)}] \left(\nabla_{\theta_{c,in}}^\prime E[\nabla_a Q_{c[in]} \nabla_{\theta_{a}} \pi_{\theta_{a}}(s)|_{a=\pi(s)}] \right)$$

$$\cdot \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a) \left[\hat{\lambda} c(s, a) \cdot \nabla_{\phi} \kappa_S - \nabla_{\phi} \kappa_T \right]$$

So, the meta-gradient update for the meta-network parameters is:

$$\eta' = \eta - \alpha_{\eta} \nabla_{\eta} J'(\theta'_{a})$$

$$= \eta - \alpha_{\eta} \left[\begin{array}{c}
A \nabla_{\theta_{a}} \alpha_{\theta_{c,in}} E[\nabla_a Q_{c[out]} \nabla_{\theta_{a}} \pi(s)|_{a=\pi(s)}] \\
B \left(\nabla_{\theta_{c,in}}^\prime E[\nabla_a Q_{c[in]} \nabla_{\theta_{a}} \pi_{\theta_{a}}(s)|_{a=\pi(s)}] \right) \\
C \cdot \nabla_{\theta_{c,in}} Q_{\theta_{c,in}}(s, a) \\
D \left[\hat{\lambda} c(s, a) \cdot \nabla_{\phi} \kappa_S - \nabla_{\phi} \kappa_T \right]
\end{array} \right]$$

B.2.1 THEORETICAL INTUITION

We have divided the gradient into a number of terms (A, B, C, D, E) which we will now discuss to provide some intuition for the gradient update. The first term A consists of the actor learning rate $\alpha_{\theta_{a}}$ and the inner critic learning rate $\alpha_{\theta_{c,in}}$. These terms significantly influence the magnitude of the meta-gradient update. We observed this effect in the meta-gradient experiments. The second term B contains the outer loss deterministic policy gradient update, with respect to the updated parameters of the outer critic $\theta'_{c,out}$ and the actor θ'_{a} respectively. Term C corresponds to the inner loss deterministic policy gradient update with respect to the updated inner critic parameters $\theta'_{c,in}$ and the actor parameters θ_{a} from the previous update respectively. A gradient of this term is taken with respect to $\theta'_{c,in}$, which occurs since $\theta'_{c,in}$ is a function of ϕ, the parameters of the meta-shaping network. Term D corresponds to the gradient of the inner critic action value function with respect to the inner critic parameters. Term E contains the value of the fixed Lagrangian multiplier $\hat{\lambda}$, the immediate cost $c(s, a)$ and the gradients of the scale and offset parameters, κ_S and κ_T with respect to the meta-network parameters ϕ respectively. If a constraint is violated, $c(s, a) = 1$ then the Lagrangian multiplier, along with the scaling gradient, $\nabla_{\phi} \kappa_S$ has an effect on the overall meta-gradient update. This ensures that the meta-parameters are aware that the constraint has been violated. If the constraint is not violated, $c(s, a) = 0$ ensuring that the Lagrangian multiplier does not need to be taken into account when updating the meta-network parameters. However, the offset parameter gradient $\nabla_{\phi} \kappa_T$ still has an effect on the overall meta-gradient update. This provides the agent with an additional degree of freedom for shaping the immediate reward.
B.3 Implementation Details and Additional Experiments

As described in the main text, MeSh shapes the reward using a scale (κ_S) and an offset (κ_O) predicted by a meta-shaping network f_ϕ: $r_{\text{meta-shaped}} = r_t - \kappa_S \hat{\lambda} c_t + \kappa_O$. The meta-shaping network, f_ϕ, receives as input the per-timestep state, action, reward and penalty: (s_t, a_t, r_t, c_t). $\hat{\lambda}$ is fixed at 0.1.

The scale κ_S is parameterized by a linear layer with a scaled sigmoid activation, $\kappa_S = \upsilon_S \cdot \sigma(\bar{\kappa}_S)$, where $\bar{\kappa}_S$ is the raw scale predicted by the meta-shaping network; hence, the scale κ_S is bounded in the range $(0, \upsilon_S)$.

The offset κ_O is parameterized by a linear layer with a scaled hyperbolic tangent activation, $\kappa_O = \upsilon_O \cdot \tanh(\bar{\kappa}_O)$, where $\bar{\kappa}_O$ is the raw offset predicted by the meta-shaping network; hence the offset κ_O is bounded in the range $(-\upsilon_O, \upsilon_O)$.

Besides varying the architecture size (as mentioned in the main text), we also conducted experiments to analyze the effect on performance of an alternative formulation for the meta-shaped reward, $\kappa_S(r_t - \lambda c_t) + \kappa_O$. Performance of various MeSh variants in terms of the reward formulation and the scaling factors for the raw predicted offset and scale are shown in Table 2. The table shows that for the alternative reward shaping formulation, υ_O, the multiplicative factor for κ_S, affects performance considerably, with a low value ($\upsilon_O = 1.0$) obtaining considerably better reward and overshoot performance than a high value ($\upsilon_O = 10.0$). In the main text we present the MeSh variant which performed best, i.e. with the $r_{\text{meta-shaped}}$ reward formulation, $\upsilon_O = 3.0$, $\upsilon_S = 10.0$, having an effective predicted Lagrange multiplier (i.e. $\kappa_S \cdot \hat{\lambda}$) in the range $(0.0, 1.0)$.

Reward formulation	υ_O	υ_S	R	$R_{\text{penalized}}$	$\max(0, J_\pi^C - \beta)$
$\kappa_S(r_t - \lambda c_t) + \kappa_O$	1.0	1.0	738.02 ± 6.73	535.86	0.20
	3.0	1.0	717.11 ± 8.00	542.35	0.17
	3.0	10.0	162.56 ± 19.65	-200.28	0.36
$r_t - \kappa_S \lambda c_t + \kappa_O$	1.0	10.0	493.57 ± 0.94	338.85	0.15
	3.0	10.0	838.72 ± 6.36	438.74	0.40

Table 2: Average reward (and std. dev. over last 100 episodes at convergence), penalized reward and constraint overshoot for MeSh variants on cartpole (single seed, 0.2 and 0.1 safety coefficients).

C Constraint Definitions

The per-domain safety constraints of the Real-World Reinforcement Learning (RWRL) suite that we use in the paper are given in Table 3.

D Experimental Setup

The action and observation dimensions for the task can be seen in Table 4. Parameters that were used for each variant of D4PG can be found in Table 5. The per-domain constraint thresholds (β) can be found in Table 6.

E Additional MetaL Experiments

E.1 Performance as a Function of Domain

In Table 7 we present quantitative performance for all algorithms as a function of the domain.

E.2 Sub-optimal Learning Rate Performance

Another indication of the improved performance of MetaL comes from comparing its performance on the largest initial Lagrange learning rate (corresponding to its lowest average performance) with
Cartpole variables: x, θ

Type	Constraint		
slider_pos	$x_l < x < x_r$		
slider_accel	$\ddot{x} < A_{\text{max}}$		
balance_velocity*	$	\theta	> \theta_L \lor \dot{\theta} < \dot{\theta}_L$

Walker variables: θ, u, F

Type	Constraint		
joint_angle	$\theta_L < \theta < \theta_U$		
joint_velocity*	$\max_i	\dot{\theta}	< L_0$
dangerous_fall	$0 < (u_z \cdot x)$		
torso_upright	$0 < u_z$		

Quadruped variables: θ, u, F

Type	Constraint		
joint_angle*	$\theta_{L,i} < \theta_i < \theta_{U,i}$		
joint_velocity	$\max_i	\dot{\theta}	< L_0$
upright	$0 < u_z$		
foot_force	$F_{\text{EE}} < F_{\text{max}}$		

Humanoid variables: θ, u, F

Type	Constraint		
joint_angle_constraint*	$\theta_{L,i} < \theta_i < \theta_{U,i}$		
joint_velocity_constraint	$\max_i	\dot{\theta}	< L_0$
upright_constraint	$0 < u_z$		
dangerous_fall_constraint	$F_{\text{head}} < F_{\text{max},1}$, $F_{\text{torso}} < F_{\text{max},2}$		
foot_force_constraint	$F_{\text{foot}} < F_{\text{max},3}$		

Table 3: Safety constraints available for each RWRL suite domain; the constraints we use in this paper are indicated by an asterisk (*).

Domain: Task	Observation Dimension	Action Dimension
Cartpole: Swingup	5	1
Walker: Walk	18	6
Quadruped: Walk	78	12
Humanoid: Walk	67	21

Table 4: Observation and action dimension for each task.

Hyperparameter	Value
Policy net	256-256-256
σ (exploration noise)	0.1
Critic net	512-512-256
Critic num. atoms	51
Critic vmin	-150
Critic vmax	150
N-step transition	5
Discount factor (γ)	0.99
Policy and critic opt. learning rate	0.0001
Replay buffer size	10000000
Target network update period	100
Batch size	256
Activation function	elu
Layer norm on first layer	Yes
Tanh on output of layer norm	Yes

Table 5: Hyperparameters for all variants of D4PG.
Table 6: Constraint thresholds (β) for each domain.

Domain	Thresholds
Cartpole	0.07, 0.09, 0.115
Walker	0.545, 0.645, 0.745
Quadruped	0.057, 0.077, 0.097
Humanoid	0.278, 0.378, 0.478

Table 7: Performance per domain. MetaL compared to baselines in terms of return, penalized return and constraint overshoot average across the safety coefficients and thresholds for each domain.

Domain	Algorithm	$R_{\text{penalized}}$	R	$\max(0, J^C - \beta)$
Cartpole	D4PG	451.61 ± 4.65	855.77	0.40
	MetaL	656.52 ± 3.62	851.25	0.19
	RC-D4PG	489.46 ± 38.55	514.98	0.03
	RS-0.1	648.50 ± 2.01	854.42	0.21
	RS-1.0	152.09 ± 0.61	152.09	0.00
	RS-10.0	161.89 ± 0.93	161.89	0.00
	RS-100.0	160.85 ± 1.42	160.85	0.00
Walker	D4PG	236.78 ± 45.22	858.77	0.62
	MetaL	270.52 ± 46.01	717.42	0.45
	RC-D4PG	-260.76 ± 49.81	207.70	0.47
	RS-0.1	187.38 ± 36.98	691.21	0.50
	RS-1.0	167.93 ± 35.84	619.93	0.45
	RS-10.0	-586.30 ± 0.89	1.14	0.59
	RS-100.0	-620.75 ± 0.81	1.07	0.62
Quadruped	D4PG	647.30 ± 0.79	998.71	0.35
	MetaL	822.03 ± 1.83	997.92	0.18
	RC-D4PG	717.76 ± 38.26	839.64	0.12
	RS-0.1	810.57 ± 0.09	999.35	0.19
	RS-1.0	847.83 ± 0.37	998.73	0.15
	RS-10.0	393.86 ± 32.98	599.14	0.21
	RS-100.0	337.19 ± 56.27	541.85	0.20
Walker	D4PG	383.16 ± 10.77	981.18	0.60
	MetaL	852.68 ± 13.22	969.06	0.12
	RC-D4PG	789.43 ± 59.59	791.32	0.00
	RS-0.1	834.42 ± 15.24	978.83	0.14
	RS-1.0	810.77 ± 45.21	845.59	0.03
	RS-10.0	554.33 ± 66.41	554.33	0.00
	RS-100.0	379.51 ± 90.38	379.51	0.00
RC-D4PG on the smallest learning rate (corresponding to its highest average performance). The results can be found in Figure 5 for return and penalized return (left) and overshoot (right) respectively. We noticed two interesting results. First, the performance is similar (if not slightly better for MetaL) on a sub-optimal learning rate for both return and penalized return. Second, the overshoot performance is better for MetaL indicating that it learns to satisfy constraints better than RC-D4PG, even at this sub-optimal learning rate.

Figure 5: Performance (left) and overshoot (right) as a function of the best performing Lagrange learning rate for RC-D4PG ($\alpha_1 = 0.001$) and the worst performing initial Lagrange learning rate for MetaL ($\alpha_1 = 0.005$).

F REWARD CONSTRAINED D4PG ALGORITHM

The pseudocode for RC-D4PG can be found in Algorithm 3.

Algorithm 3 Reward Constrained D4PG (RC-D4PG)

1: **Input**: penalty $c(\cdot)$, constraint $C(\cdot)$, threshold β, learning rates $\alpha_1 < \alpha_\theta_a < \alpha_\theta_c$, max. number of episodes M
2: Initialize actor parameters θ_a, critic parameters θ_c, Lagrange multipliers $\lambda = 0$
3: for $1 \ldots M$ do
4: Sample episode penalty J^c_α from the penalty replay buffer
5: $\lambda \leftarrow [\lambda - \alpha_1 (J^c_\alpha - \beta)]_+$ \hspace{1cm} \triangleright Lagrange multiplier update
6: Sample batch $(s_t, a_t, r_t, s_{t+1}, c_t)_{t=1}^T$ from ER
7: $\nabla \theta_c = 0, \nabla \theta_a = 0$
8: for $t = 1 \ldots T$ do
9: $R_t = r_t - \lambda c_t + \gamma \hat{Q}(\lambda, s_{t+1}, a_{t+1} \sim \pi_{\text{Target}}(s_{t+1}); \theta_c)$
10: $\nabla \theta_c \leftarrow \alpha_\theta_c \partial \hat{Q}(R_t - \hat{Q}(\lambda, s_t, a_t; \theta_c))^2$ $/ \partial \theta_c$
11: $\nabla \theta_a \leftarrow \alpha_\theta_a \mathbb{E} [\nabla_a \hat{Q}(s_t, a_t) \nabla_a \pi_a(s_t)|a_t = \pi(s_t)]$ \hspace{1cm} \triangleright Critic update
12: $\theta_c \leftarrow \theta_c - \frac{1}{T} \sum \nabla \theta_c$
13: $\theta_a \leftarrow \theta_a + \frac{1}{T} \sum \nabla \theta_a$
14: **return** policy parameters θ_a