Proof of a conjecture of Wiegold for nilpotent Lie algebras

A. A. Skutin

Abstract. Let \(g \) be a nilpotent Lie algebra. By the breadth \(b(x) \) of an element \(x \) of \(g \) we mean the number \(|g : C_g(x)| \). Vaughan-Lee showed that if the breadth of all elements of the Lie algebra \(g \) is bounded by a number \(n \), then the dimension of the commutator subalgebra of the Lie algebra does not exceed \(n(n+1)/2 \). We show that if \(\dim g' > n(n+1)/2 \) for some nonnegative \(n \), then the Lie algebra \(g \) is generated by the elements of breadth \(> n \), and thus we prove a conjecture due to Wiegold (Question 4.69 in the Kourovka Notebook) in the case of nilpotent Lie algebras.

Bibliography: 4 titles.

Keywords: nilpotent Lie algebras, finite \(p \)-groups, breadth of an element, estimate for the size of the commutator subalgebra.

§1. Introduction

In this paper we prove an analogue of a conjecture of Wiegold’s (see [1], 4.69) for nilpotent Lie algebras.

Definition 1. The breadth \(b(x) \) of an element \(x \) of a finite \(p \)-group \(G \) is the number satisfying \(p^{b(x)} = |G : C_G(x)| \), where \(C_G(x) \) is the centralizer of the element \(x \) in \(G \).

The Wiegold conjecture for \(p \)-groups is formulated as follows.

Conjecture 1. Let \(G \) be a finite \(p \)-group and let \(|G'| > p^{n(n-1)/2} \) for some nonnegative integer \(n \). Then \(G \) is generated by the elements of breadth at least \(n \).

A survey of this conjecture can be found in [2]. In [3] Vaughan-Lee proved that for every finite \(p \)-group \(G \) of breadth \(b = \max_{g \in G} b(g) \) we have \(|G'| \leq p^{b(b-1)/2} \).

Conjecture 1 was proved by this author in [4]. Here we prove an analogue of Conjecture 1 suggested by Ant. A. Klyachko for nilpotent Lie algebras.

Definition 2. The breadth \(b(x) \) of an element \(x \) of a nilpotent Lie algebra \(\mathcal{A} \) is the number satisfying \(b(x) = \dim(\mathcal{A}) - \dim(C_{\mathcal{A}}(x)) \), where \(C_{\mathcal{A}}(x) \) denotes the centralizer of the element \(x \) in \(\mathcal{A} \).

Conjecture 2. Let \(g \) be a nilpotent Lie algebra for which it is known that \(\dim g' > n(n-1)/2 \) for some nonnegative \(n \). Then \(g \) is generated by the elements of breadth at least \(n \).

This work was supported by the Russian Foundation for Basic Research (grant no. 19-01-00591-a).

AMS 2020 Mathematics Subject Classification. Primary 17B20; Secondary 17B50.

© 2020 Russian Academy of Sciences (DoM) and London Mathematical Society
In this paper we prove Conjecture 2; moreover, we prove that the following theorems hold.

Theorem 1. Let g be a nilpotent Lie algebra over a finite field $F \neq F_2$ and let the dimension of the commutator subalgebra of g be strictly greater than $n(n-1)/2$ for some nonnegative integer n. Then the set of elements of g which have breadth at least n cannot be covered by $|F| - 1$ proper subalgebras of g.

Theorem 2. Let g be a nilpotent Lie algebra over the field F_2 and let the dimension of the commutator subalgebra of g be strictly greater than $n(n-1)/2$ for some nonnegative integer n. Then the set of elements of g which have breadth at least n cannot be covered by two proper subalgebras of g one of which has codimension at least 2 in g.

Theorem 3. Let g be a nilpotent Lie algebra over an infinite field F and let the dimension of the commutator subalgebra of g be strictly greater than $n(n-1)/2$ for some nonnegative integer n. Then the set of elements of g which have breadth at least n cannot be covered by finitely many proper subalgebras of g.

§ 2. Statements and proofs of the main lemmas

Definition 3. The breadth $b_{h}(x)$ of an element x of a finite-dimensional Lie algebra g with respect to a proper subalgebra $h \subseteq g$ is the number such that $\dim(h/C_{h}(x)) = b_{h}(x)$, where $C_{h}(x) = \{h \in h \mid [x, h] = 0\}$ is the centralizer of x in h. It follows from this definition that $b(x) = b_{g}(x)$.

The next two lemmas are well known in the theory of Lie algebras, and therefore we present them without proof.

Lemma 1. Let g be a Lie algebra over a finite field F. Then g cannot be covered by $|F|$ proper subalgebras. Moreover, if g is covered by $|F| + 1$ proper subalgebras $h_1, h_2, \ldots, h_{|F|+1}$, then every h_i is of codimension 1 in g.

Lemma 2. Let g be a nilpotent Lie algebra over a field F. Suppose that there is a central subalgebra f of codimension 2 in g. Then $\dim g' \leq 1$.

Lemma 3. Consider an ideal h of a finite-dimensional nilpotent Lie algebra g which has codimension 1 in g. Let f denote the ideal of g generated by elements $x \in h$ such that $b_{h}(x) = b(x)$. In this case

1) if $f = h$, then $g' = h'$;

2) if f is of codimension at most 1 in h, then the commutator subalgebra b' also has codimension at most 1 in g'.

Proof. Consider the factorization homomorphism $\pi : g \rightarrow g/h'$. For every element x in h such that $b_{h}(x) = b(x)$ we have $\{[x, y] \mid y \in g\} = \{[x, z] \mid z \in h\} \subseteq h'$. Therefore, $\pi(x)$ is contained in the centre of $\pi(g)$, and $\pi(f)$ is a central Lie subalgebra of $\pi(g)$. If $f = h$, then we see that $\pi(f) = \pi(h)$ is a central Lie subalgebra of $\pi(g)$ of codimension 1, and therefore $\pi(g)$ is Abelian and $g' = h'$. In the case when f has codimension not exceeding 1 in h we see that $\pi(f)$ is a central Lie subalgebra of $\pi(g)$ of codimension not exceeding 2. Therefore, by Lemma 2, we have $\dim \pi(g') \leq 1$ and h' has codimension not exceeding 1 in g'.

This completes the proof of the lemma.
Lemma 4. Let \mathfrak{g} be a finite-dimensional nilpotent Lie algebra. Then for every ideal \mathfrak{h} of codimension 1 of \mathfrak{g} and every element x belonging to $\mathfrak{g} \setminus \mathfrak{h}$ we have $\dim \mathfrak{g}' \leq b(x) + \dim \mathfrak{h}'$.

Proof. The set $V = \{ [x, h] \mid h \in \mathfrak{h} \}$ forms a vector space of dimension not exceeding $b(x)$. Therefore, it suffices to prove that $\mathfrak{g}' = V + \mathfrak{h}'$. The commutator subalgebra \mathfrak{h}' of the ideal \mathfrak{h} is also an ideal of the Lie algebra \mathfrak{g}. We claim that $V + \mathfrak{h}'$ is an ideal of \mathfrak{g}:

$$[[x, h], g] \in \mathfrak{h}' \quad \text{for all} \quad [x, h], g \in \mathfrak{g} \setminus \mathfrak{h}. $$

It is clear that the image of the element x under the homomorphism $\pi: \mathfrak{g} \to \mathfrak{g}/(V + \mathfrak{h}')$ commutes with itself and with the ideal $\pi(\mathfrak{h})$ of codimension 1 in $\pi(\mathfrak{g})$, and thus $\pi(x)$ belongs to the centre of $\pi(\mathfrak{g})$. Moreover, $\pi(\mathfrak{h})$ is an Abelian Lie algebra, since the commutator subalgebra of \mathfrak{h} is contained in $\ker \pi$. This implies that $\pi(\mathfrak{g}) = \mathfrak{g}/(V + \mathfrak{h}')$ is Abelian and $\mathfrak{g}' \subseteq V + \mathfrak{h}' \subseteq \mathfrak{g}'$, $\mathfrak{g}' = V + \mathfrak{h}'$. This completes the proof of the lemma.

Lemma 5. Let \mathfrak{g} be a nilpotent Lie algebra. Then for every number $n \leq \dim \mathfrak{g}'$ there is a finite-dimensional Lie subalgebra $\mathfrak{h} \subseteq \mathfrak{g}$ such that $\dim \mathfrak{g}' \geq \dim \mathfrak{h}' \geq n$.

Proof. By assumption, $n \leq \dim \mathfrak{g}'$; hence there are linearly independent elements $a_1, \ldots, a_n \in \mathfrak{g}'$. Let $A \subseteq \mathfrak{g}$ be a finite subset such that the linear space $\langle [A, A] \rangle$ contains a_1, \ldots, a_n. The Lie algebra \mathfrak{g} is nilpotent; so the Lie algebra \mathfrak{h} generated by the set A is finite-dimensional. By construction, $\{a_1, \ldots, a_n\} \subseteq \mathfrak{h}'$ and $\dim \mathfrak{h}' \geq n$. This completes the proof of the lemma.

§ 3. Proof of Theorem 1

We argue by contradiction. Assume that proper subalgebras $\mathfrak{h}_1, \ldots, \mathfrak{h}_{|\mathfrak{F}|-1}$ cover all elements whose breadth is not less that n. We claim that, in this case, $\dim \mathfrak{g}' \leq n(n - 1)/2$. We apply Lemma 5 to the Lie algebra \mathfrak{g} and the number $\min(\dim \mathfrak{g}', n(n - 1)/2 + 1) \leq \dim \mathfrak{g}'$; we see that there is a finite-dimensional subalgebra \mathfrak{u} of \mathfrak{g} such that $\dim \mathfrak{u}' \geq \min(\dim \mathfrak{g}', n(n - 1)/2 + 1)$. We can also assume that \mathfrak{u} is not contained in any \mathfrak{h}_i. Replacing \mathfrak{g} by \mathfrak{u} and the subalgebras \mathfrak{h}_i by $\mathfrak{h}_i \cap \mathfrak{u}$, we may assume that the Lie algebra \mathfrak{g} is finite-dimensional. We use induction on the dimension of \mathfrak{g}. We may assume that every \mathfrak{h}_i is a maximal ideal of codimension 1 in \mathfrak{g} (since every proper Lie subalgebra of a finite-dimensional nilpotent Lie algebra is contained in some ideal of codimension 1) and that $\mathfrak{h}_1 \neq \mathfrak{h}_2$ (since every non-Abelian finite-dimensional nilpotent Lie algebra \mathfrak{g} has at least two distinct maximal ideals). Consider an arbitrary ideal $I \neq \mathfrak{h}_i$ of codimension 1 in \mathfrak{g} such that $I \cap \mathfrak{h}_1 = I \cap \mathfrak{h}_2 = \mathfrak{h}_1 \cap \mathfrak{h}_2$. We let J denote the ideal of \mathfrak{g} generated by the elements x belonging to I for which $b_I(x) = b(x)$.

Consider the case $J = I$. Applying Lemma 3 to $I < \mathfrak{g}$ we see that $I' = \mathfrak{g}'$. The rest of the proof follows from the induction assumption: the Lie algebra I has lower dimension, and all its elements of breadth at least n are contained in the union of the proper subalgebras $I \cap \mathfrak{h}_i$ (since $b_I(x) \leq b(x)$).

Now we may assume that $I \neq J$; we note that the set $I \setminus (J \cup \mathfrak{h}_i)$ consists of elements of the breadth no greater than $n - 2$ in I (since J is generated by
the elements \(\{ g \in I \mid b_I(g) = b(g) \} \) and \(b_I(x) \leq b(x) \). Applying the induction assumption to the Lie algebra \(I \) and the \(|F| - 1 \) proper subalgebras \(J, I \cap h_1 = I \cap h_2, I \cap h_3, \ldots, I \cap h_{|F| - 1}, \) we conclude that \(\dim I' \leq (n - 1)(n - 2)/2 \). Finally, consider an arbitrary element \(a \) outside \(I \cup h_i \) (such an element exists by Lemma 1). The breadth of \(a \) does not exceed \(n - 1 \), and therefore \(\dim g' \leq b(a) + \dim I' \leq n(n - 1)/2 \) by Lemma 4.

§ 4. Proof of Theorem 2

Theorem 4. Let \(g \) be a finite-dimensional nilpotent Lie algebra over a finite field \(F \) such that the following two conditions hold for some nonnegative integers \(n \) and \(k \), \(n \leq k + 1 \):

1) the set of all elements of breadth at least \(n \) is covered by \(|F| \) proper subalgebras \(h_i \) of the Lie algebra \(g \);

2) the Lie algebra \(g \) is generated by the set of elements of breadth not exceeding \(k \).

Then \(\dim g' \leq (n - 1)(n - 2)/2 + k \).

Proof. We use induction on the dimension of \(g \). We may assume that the \(h_i \) are maximal ideals of codimension 1 in \(g \) (since every proper Lie subalgebra of a finite-dimensional nilpotent Lie algebra is contained in some ideal of codimension 1) and \(h_1 \neq h_2 \) (since every non-Abelian finite-dimensional nilpotent Lie algebra \(g \) has at least two distinct maximal ideals). Consider an arbitrary ideal \(I \neq h_i \) of codimension 1 in \(g \) such that \(I \cap h_1 = I \cap h_2 = h_1 \cap h_2 \). We denote the ideal of \(g \) generated by the elements \(x \) of \(I \) such that \(b_I(x) = b(x) \) by \(J \).

Consider the case \(J = I \). Applying Lemma 3 to \(I \triangleleft g \), we see that \(I' = g' \). The rest of the proof follows from the induction assumption: the Lie algebra \(I \) and all its elements of breadth at least \(n \) are contained in the union of the proper subalgebras \(I \cap h_i \) (since \(b_I(x) \leq b(x) \)); moreover, the set \(I \setminus \bigcup_{i \geq 2} h_i \) generates \(I \) (by Lemma 1) and contains the elements whose breadth does not exceed \(n - 1 \leq k \).

Thus, we may assume that \(J \) is a proper ideal of the Lie algebra \(I \). Consider the case when the codimension of \(J \) in \(I \) is 1. Applying Lemma 3 to \(I \triangleleft g \) we see that \(\dim g' \leq \dim I' + 1 \). Every element of the set \(I \setminus (h_1 \cap h_2) \cup h_3 \cup \cdots \cup h_{|F|} \) has breadth not exceeding \(n - 1 \) in \(I \), and this set generates \(I \) (by Lemma 1). Moreover, for every element \(g \) of \(I \setminus (J \cup (h_1 \cap h_2) \cup h_3 \cup \cdots \cup h_{|F|}) \) we have \(b_J(g) \leq n - 2 \). Applying the induction assumption to the Lie algebra \(I \), its proper subalgebras \(J, h_1 \cap h_2, h_3, \ldots, h_{|F|} \), and the parameters \(n - 1 \) and \(n - 1 \) we see that \(\dim I' \leq (n - 3)(n - 2)/2 + n - 1 \). Therefore, in the case when \(k \geq 2 \) we have

\[
\dim g' \leq \dim I' + 1 \leq \frac{(n - 3)(n - 2)}{2} + n = \frac{(n - 2)(n - 1)}{2} + 2 \leq \frac{(n - 2)(n - 1)}{2} + k\]

and the induction step is proved. In the case when \(k \leq 1 \) we have \(n = 2 \) (the case \(n \leq 1 \) is trivial), and the set \(I \setminus (J \cup (h_1 \cap h_2) \cup h_3 \cup \cdots \cup h_{|F|}) \) is contained in the centre of the Lie algebra \(I \). By Lemma 1 the set \(I \setminus (J \cup (h_1 \cap h_2) \cup h_3 \cup \cdots \cup h_{|F|}) \) generates a central Lie subalgebra of codimension 1 in \(I \), and thus \(I \) is Abelian. By the assumptions of Theorem 4 there is an element \(g \notin I \) such that \(b(g) \leq k \leq 1 \). Thus, the Lie subalgebra \(C_2(g) \cap I \) has codimension not exceeding 2 in \(g \) and is central in \(g \). Applying Lemma 2 to the Lie algebra \(g \), we see that \(\dim g' \leq 1 \leq (n - 1)(n - 2)/2 + k \).
Finally, we may assume that J has codimension at least 2 in I. Thus, the set $I \setminus (J \cup (h_1 \cap h_2) \cup h_3 \cup \cdots \cup h_\mathbb{F})$ generates I (by Lemma 1), and so I is generated by elements of breadth at most $n - 2$ in I. We apply the induction assumption to the Lie algebra I, its proper subalgebras J, $h_1 \cap h_2$, h_3, \ldots, $h_\mathbb{F}$, and the parameters $n - 1$ and $n - 2$; then we see that

$$\dim I' \leq \frac{(n - 3)(n - 2)}{2} + n - 2 = \frac{(n - 2)(n - 1)}{2}.$$

Finally, by the assumptions of Theorem 4 there is some $a \notin I$ such that $b(a) \leq k$. Applying Lemma 4 to the maximal ideal I and a we see that

$$\dim g' \leq b(a) + \dim I' \leq \frac{(n - 2)(n - 1)}{2} + k.$$

This completes the proof of the theorem.

4.1. **Proof of Theorem 2.** Suppose the contrary: two proper subalgebras h_1 and h_2 cover all elements of breadth at least n; let h_2 be of codimension at least 2 in g. Applying Lemma 5 to the Lie algebra g and the number $n(n - 1)/2 + 1 \leq \dim g'$ we see that there is a finite-dimensional subalgebra u of g such that $\dim u' \geq n(n - 1)/2 + 1$. We may also assume that u is not contained in any Lie algebra h_1 and $u \cap h_2$ has codimension at least 2 in u. Replacing g by u and the subalgebra h_2 by $h_1 \cap u$, we may assume that the Lie algebra g is finite-dimensional. By Lemma 1 the set $g \setminus (h_1 \cup h_2)$ generates g. All elements of $g \setminus (h_1 \cup h_2)$ have breadth not exceeding $n - 1$ in g, and therefore we can apply Theorem 4 to g, h_1, h_2 and $k = n - 1$, and then we obtain

$$\dim g' \leq \frac{(n - 1)(n - 2)}{2} + n - 1 = \frac{n(n - 1)}{2},$$

giving a contradiction.

Remark. In fact, Theorem 1 also follows from Theorem 4.

§ 5. **Proof of Theorem 3**

We argue by contradiction. Assume that proper subalgebras h_1, h_2, \ldots, h_k cover all elements of breadth at least n. In this case we can prove that $\dim g' \leq n(n - 1)/2$. The rest of the proof of Theorem 3 repeats the proof of Theorem 1 verbatim, with $|\mathbb{F}| - 1$ replaced by the number k.

Bibliography

[1] V.D. Mazurov and E.I. Khukhro (eds.), *The Kourovka notebook. Unsolved problems in group theory*, 18th ed., Sobolev Institute of Mathematics, Novosibirsk 2014, 248 pp., arXiv:1401.0296; English transl., 18th ed., Sobolev Institute of Mathematics, Novosibirsk 2014, 227 pp.; 2017, arXiv:1401.0300v10.

[2] J. Wiegold, “Commutator subgroups of finite p-groups”, *J. Austral. Math. Soc.* 10:3–4 (1969), 480–484.

[3] M.R. Vaughan-Lee, “Breadth and commutator subgroups of p-groups”, *J. Algebra* 32:2 (1974), 278–285.
[4] A. Skutin, “Proof of a conjecture of Wiegold”, *J. Algebra* 526 (2019), 1–5.

Alexander A. Skutin
Faculty of Mechanics and Mathematics,
Lomonosov Moscow State University,
Moscow, Russia
E-mail: a.skutin@mail.ru