ON SPACES ADMITTING NO ℓ_p OR c_0 SPREADING MODEL

SPIROS A. ARGYROS AND KEVIN BEANLAND

Abstract. It is shown that for each separable Banach space X not admitting ℓ_1 as a spreading model there is a space Y having X as a quotient and not admitting any ℓ_p for $1 \leq p < \infty$ or c_0 as a spreading model.

We also include the solution to a question of W.B. Johnson and H.P. Rosenthal on the existence of a separable space not admitting as a quotient any space with separable dual.

1. Introduction

A Banach space X is said to have, for $1 \leq p < \infty$, an ℓ_p spreading model if there is a $\delta > 0$ and a sequence (x_n) in X such that for all $n \in \mathbb{N}$, $n \leq \ell_1 < \cdots < \ell_n$ and $(a_i) \in c_0$,

$$\delta \|(a_i)_{i=1}^n\|_p \leq \| \sum_{i=1}^n a_i x_{\ell_i} \| \leq \frac{1}{\delta} \|(a_i)_{i=1}^n\|_p.$$

For $p = \infty$ we say X has a c_0 spreading model. The first example of a space not admitting any ℓ_p or c_0 as a spreading model was provided by E. Odell and Th. Schlumprecht in [14]. This space X_S is the completion of $c_00(\mathbb{N})$ under a norm that is a modification of the norm of Schlumprecht’s space S. As with the norming set of S, the norming set of X_S is defined using the saturation method. In the case of X_S, the norming set includes ℓ_2 convex combination of certain weighted functionals at every step of its, inductive, construction. The idea of including this type of structure in a given norming set can be traced back to work of R.C. James [12] and can also be found in the W.T. Gowers’ construction [10] of a space not containing c_0, ℓ_1 or a reflexive subspace. Recently, in [4], it was shown that there exist hereditarily indecomposable spaces not admitting any ℓ_p or c_0 as a spreading model. In [11], the authors construct a space not admitting an ℓ_p, c_0 or reflexive spreading model. In paper [3] they show that a variant of the space X_S does not admit any ℓ_p or c_0 as a k-iterated spreading model for any $k \in \mathbb{N}$.

In [5] it is shown that every separable Banach space either contains ℓ_1 or is a quotient of a hereditarily indecomposable space. The main theorem of this paper is

The second author acknowledges support from the Fulbright Foundation - Greece and the Fulbright program.

2010 Mathematics Subject Classification. Primary: 46B20, Secondary: 46B45.

Key words: spreading models, quotients of Banach spaces.
a similar dichotomy for spaces that do not admit ℓ_1 spreading models. By the well-known lifting property of ℓ_1, if a space X admits an ℓ_1 spreading model, then any Y having X as a quotient must also admit an ℓ_1 spreading model. More precisely, our main theorem is the following dichotomy.

Theorem 1. Let X be a separable Banach space. Exactly one of the following holds:

1. X admits an ℓ_1 spreading model.
2. There is a separable space Y not admitting any ℓ_p for $1 \leq p < \infty$ or c_0 as a spreading model such that X is a quotient of Y.

We outline the proof of the above theorem: The first step is to pass from a separable space X not admitting an ℓ_1 spreading model to a space Z_X with a bimonotone Schauder basis, having X as a quotient and not having an ℓ_1 spreading model. The second step is to show that for any space Z with a bimonotone Schauder basis and not having an ℓ_1 spreading model, one can construct a ground set $G_Z \subset c_0$ such that the space Y_{G_Z}, having G_Z as its norming set, also does not have ℓ_1 as a spreading model. After this, using the method in [14], we construct a space $T_{G_{Z,2}}$ not having any ℓ_p or c_0 as a spreading model. The final, and most difficult, step is to show that the space $T_{G_{Z,2}}$ has Z as a quotient.

The paper is organized as follows. In section 2 we give several definitions including the definition of a ground set G_Z determined by a space with a basis Z. We also prove the first two steps stated above. In section 3 we define, for a space Z with a basis, the space $T_{G_{Z,2}}$ and show that it does not admitting any ℓ_p or c_0 spreading model. In section 4 we prove that $T_{G_{Z,2}}$ has Z as a quotient. We conclude by combining the above to prove our main result and showing that if a space X has as a quotient every space not admitting an ℓ_1 spreading model, then X contains ℓ_1.

The final section includes a result that is independent from the rest of the paper. Namely, we observe that a space constructed in [2] does not admit as quotient any space with separable dual. This solves a question posed in [13, page 86, Remark IV.1]. We thank W.B. Johnson for bringing this problem to our attention and simplifying our original solution.

2. Spaces having no ℓ_1 spreading model

Let c_{00} be the vector space of all finitely supported scalar sequences and (e_n) denote the unit vector basis of c_0. Suppose X has a Schauder basis $(x_n)_{n \in \mathbb{N}}$. Let (x_n^*) be the biorthogonal functionals of (x_n). For $x \in \text{span}(x_i)_{i=1}^\infty$ let $\text{supp}(x) = \{i : x_i^*(x) \neq 0\}$. Let $B_X = \{x \in X : \|x\| \leq 1\}$ and $S_X = \{x \in X : \|x\| = 1\}$.

Our first definition can be found in [5] Definition 14.1.

Definition 2. Let Z be a space with a bimonotone Schauder basis $(z_i)_{i \in \mathbb{N}}$ and $(\Lambda_i)_{i \in \mathbb{N}}$ be a partition of \mathbb{N} such that each Λ_i is infinite. Define $G_Z \subset c_{00}$ as
follows:

\[G_Z = \left\{ \sum_{i=1}^{d} a_i \left(\sum_{n \in E \cap \Lambda_i} e_n^* \right) : (a_i)_{i=1}^{d} \subset \mathbb{Q}, \| \sum_{i=1}^{d} a_i e_i^* \| \leq 1 \right\}, \]

(E finite interval of \(\mathbb{N} \)).

\(G_Z \) is an example of a ground set. Let \(Y_{G_Z} \) be the Banach space that is the completion of \(c_{00} \) with the norming set \(G_Z \) and \((y_n) \) denote its natural basis.

The space \(Z \) is naturally a quotient of \(Y_{G_Z} \). In the next definition, we define the map. In Proposition 6 we will show it is a quotient map.

Definition 3. Define \(G_{Z} : Y_{G_Z} \rightarrow Z \) by

\[Q_{G_Z} y_n = e_i \text{ for } n \in \Lambda_i. \]

Notice that for each \(i \in \mathbb{N} \) and \((a_j)_{j \in \Lambda_i} \), we have

\[Q_{G_Z} \left(\sum_{j \in \Lambda_i} a_j y_j \right) = \left(\sum_{j \in \Lambda_i} a_j \right) e_i. \]

For an arbitrary separable space \(X \) we can construct a space \(Z_X \) with a basis that retains many properties of \(X \). The following construction can be found in [5] (also see [10]).

Definition 4. Let \(X \) be a separable Banach space. Let \(R : \ell_1 \rightarrow X \) be a bounded linear operator such that \((R e_i)_{i=1}^{\infty} \) is a dense subset of \(S_X \). Let

\[W = \left\{ E R^* x^* : x^* \in B_X \text{ and } E \text{ is an interval of } \mathbb{N} \right\}. \]

Define the following norm on \(c_{00} \): For \((a_i) \in c_{00} \) let

\[\| \sum_{i} a_i e_i \|_{Z_X} = \sup \{ f(\sum_{i} a_i e_i) : f \in W \} \]

\[= \sup \{ \sum_{i \in E} a_i x_i : E \text{ finite interval in } \mathbb{N} \} \]

In the above \(R e_i = x_i \) for all \(i \in \mathbb{N} \). Let \(Z_X \) be the completion of \(c_{00} \) with the above norm.

Note that \(Z_X \) depends on the choice of the dense sequence \((x_n) \). Note that \((e_n) \) is a bimonotone Schauder basis of \(Z_X \). We now define the natural mapping from \(Z_X \) to \(X \). It is easy to see that this map is a bounded quotient map.

Definition 5. Let \(X \) be a separable Banach space such that \((x_i) \) is dense in \(S_X \) and \(Z_X \) be defined as above. Define \(Q_X : Z_X \rightarrow X \) by \(Q_X(e_i) = x_i \) and extending linearly.

In the next proposition we collect some important facts concerning the spaces and operators defined above. The proofs can be found in [5] Lemmas 14.3 and 14.8].
Proposition 6. Let X be a separable space and Z be a space with a bimonotone Schauder basis. Then

1. For every $x \in S_X$ there is a $y \in S_{Z_X}$ such that $Q_Xy = x$. In particular, $Q_X : Z_X \to X$ is a quotient.
2. If X does not contain ℓ_1 then Z_X does not contain ℓ_1.
3. For every $z \in S_Z$ there is a $y \in S_{Y_{G_Z}}$ such that $Q_{G_Z}y = x$. In particular, $Q_{G_Z} : Y_{G_Z} \to Z$ is a quotient.
4. If Z does not contain ℓ_1 then Y_{G_Z} does not contain ℓ_1.

Proof. We prove only (3). Let $z = \sum_{i=1}^d a_i z_i \in Z$ with $\|z\| = 1$. Let $\ell_i \in A_i$ for all $i = 1, \ldots, d$ and $x = \sum_{i=1}^d a_i \ell_i$. Clearly $Q_{G_Z}x = z$. We will show that $\|x\| = 1$.

Let $(b_i)_{i=1}^d$ such that $\|\sum_{i=1}^d b_i z_i^*\| \leq 1$ and $\sum_{i=1}^d a_i b_i = (\sum_{i=1}^d b_i z_i^*)(\sum_{i=1}^d a_i z_i) = 1$. By definition $\sum_{i=1}^d b_i e_i^* \in G_Z$. Therefore

$$1 = \sum_{i=1}^d b_i e_i^* (\sum_{i=1}^d a_i e_i) \leq \|x\|.$$

Let $\varepsilon > 0$. Find scalars $(c_i)_{i=1}^d$ and an interval E such that

$$\sum_{i \in E} c_i a_i = (\sum_{i \in E} c_i e_i^*) (\sum_{i=1}^d a_i e_i) \geq \frac{\|x\|}{1 + \varepsilon}.$$

Using bimonotonicity $\|\sum_{i \in E} c_i z_i^*\| \leq 1$. Therefore

$$\frac{\|x\|}{1 + \varepsilon} \leq \sum_{i \in E} c_i a_i \leq (\sum_{i \in E} c_i e_i^*) (\sum_{i=1}^d a_i z_i) \leq 1.$$

Since ε was arbitrary $\|x\| \leq 1$. \qed

Our next result of this section is the following analogue of Proposition 6 (4).

Proposition 7. If Z has a basis and does not admit an ℓ_1 spreading model then Y_{G_Z} does not admit an ℓ_1 spreading model.

Before proving the above, we make a remark that allows us to estimate the norms of vectors in Y_{G_Z} in terms of their images under the quotient map Q_{G_Z}. We also recall an important theorem on the existence of ℓ_1 spreading models in a Banach space not containing ℓ_1.

Remark 1. Let $\sum_j a_j e_j \in Y_{G_Z}$, then

$$\sum_j a_j e_j \in G_X \leq \sup \{\|Q_{G_Z} P_E(\sum_j a_j e_j)\| : E \text{ is an interval in } \mathbb{N}\}.$$

In the above, $P_E(\sum_j a_j e_j) = \sum_{j \in E} a_j e_j$.
Proof. Let $E \subset \mathbb{N}$ be an interval and $(b_i)_{i=1}^d$ be scalars such that $\| \sum_{i=1}^d b_i z_i^* \| \leq 1$. Using (3)

$$\left| \left(\sum_{i=1}^d b_i \sum_{j \in E \cap \Lambda_i} e_j^* \right) \left(\sum_{i=1}^\infty \sum_{j \in \Lambda_j} a_j e_j \right) \right| = \left| \sum_{i=1}^d b_i \left(\sum_{j \in \Lambda_i \cap E} a_j \right) \right|$$

$$\leq \| Q_G Z \sum_{i=1}^d \left(\sum_{j \in \Lambda_i \cap E} a_j z_j \right) \| Z$$

(6)

Since E and $(b_i)_{i=1}^d$ are arbitrary, the remark follows. \qed

The next theorem we need due to H.P. Rosenthal [15]. A similar statement can be found in [6].

Theorem 8. Let X be a Banach space not containing ℓ_1. Then the following are equivalent.

1. X does not have an ℓ_1 spreading model.
2. Every seminormalized weakly null sequence (x_n) has a Cesaro summable subsequence. In other words, there is a subsequence (y_n) of (x_n) such that $\| 1/n \sum_{i=1}^n y_i \| \to 0$ as $n \to \infty$.

Proof of Proposition 7. Using Proposition 6 (4), $Y_G Z$ does not contain ℓ_1. Let (z_n) be a seminormalized weakly null sequence in $Y_G Z$. Our goal is to extract a Cesaro summable subsequence. We pass to a subsequence (z_n') of (z_n) that has the following properties:

1. (z_n') is equivalent to a block sequence of (y_n);
2. $(Q_G Z z_n')$ is either a bimonotone basic sequence or $\| Q_G Z z_n' \| < 2^{-n}$;
3. $(Q_G z_n')$ is Cesaro summable.

Notice that (2) has two cases. Let $\varepsilon > 0$. Find n_0 such that $\| 1/n_0 \sum_{i=1}^{n_0} Q_G Z z_n' \| + 3/n_0 < \varepsilon$. Let E be an arbitrary interval. Find n_1, n_2 in \mathbb{N} such that

$$n_1 = \min \{ n \in \{1, \ldots, n_0\} : \text{supp} z_n' \cap E \neq \emptyset \}$$

$$n_2 = \max \{ n \in \{1, \ldots, n_0\} : \text{supp} z_n' \cap E \neq \emptyset \}$$

Assume first that $(Q_G Z z_n')$ is bimonotone basic. Since (z_n') is a block, for $n_1 < n < n_2$ we have $Q_G P_E(z_n') = Q_G (z_n')$. Using this fact, our assumption on n_0 and fact
that \((Q_{G_2}z'_n)\) is basic we have

\[
\|Q_{G_2}P_E(\frac{1}{n_0} \sum_{n=1}^{n_0} z'_n)\| = \frac{1}{n_0} \left[\|Q_{G_2}P_E(z'_n)\| + \| \sum_{n=n_1+1}^{n_2-1} Q_{G_2}z'_n\| + \|Q_{G_2}P_Ez'_n\| \right] \\
\leq \frac{2}{n_0} + \frac{1}{n_0} \sum_{i=1}^{n_0} Qz'_n < \varepsilon.
\]

Since \(E\) was arbitrary, applying Remark 1, we finish the proof in the case when \((Q_{G_2}z'_n)\) bimonotone basic. In the case that \(\|Q_{G_2}z'_n\| < 2^{-n}\) we have

\[
\frac{1}{n_0} \| \sum_{n=n_1+1}^{n_2-1} Q_{G_2}z'_n\| < \frac{1}{n_0}.
\]

Proceeding the same way as in the first inequality of (7), using (8) and the fact that \(3/n_0 < \varepsilon\), we finish the proof. \(\square\)

The final proposition of this section is analogous to Proposition 6 (2).

Proposition 9. If \(X\) does admit an \(\ell_1\) spreading model then \(Z_X\) does not admit an \(\ell_1\) spreading model.

Proof. By Proposition 6 (b) we have that \(Z_X\) does not contain \(\ell_1\). Therefore, applying Theorem 8 we can consider an arbitrary seminormalized weakly null sequence and show it has a Cesaro summable subsequence. The following remark is a restatement of (4).

Remark 2. Let \(\sum_i a_i e_i \in Z_X\) and \(P_E(\sum_i a_i e_i) = \sum_{i \in E} a_i e_i\). Then

\[
\| \sum_i a_i e_i\|_Z = \sup\{\|Q_XP_E(\sum_i a_i e_i)\|_X : E \text{ is an interval in } \mathbb{N}\}.
\]

For an arbitrary seminormalized weakly null sequence in \(Z_X\) we can pass to a subsequence satisfying the same (1), (2) and (3) as in the proof of Proposition 7. Since Remark 2 is the same as Remark 1 with a different quotient map, by mimicking the proof of Proposition 7 it can be shown that this subsequence in Cesaro summable, as required. \(\square\)

3. The construction of \(T_{G_2,2}\) and some properties

For the rest of the paper we fix a space \(Z\) having a bimonotone Schauder basis and not admitting an \(\ell_1\) spreading model. In this section we define the space \(T_{G_2,2}\) that does not admit any \(\ell_p\) or \(c_0\) spreading model and has \(Z\) as a quotient. To start, we fix two increasing sequences of natural numbers \((m_j)_{j=1}^\infty\) and \((n_j)_{j=1}^\infty\) satisfying:

(a) \(\sum_{i=1}^\infty \frac{1}{m_i} < \frac{1}{10}\).
(b) \(\lim_{i \to \infty} ((i-1)m_{i-1})^{s_i} = 0\). Where \(s_i = \log m_i(m_i)\).
(c) \(\lim_{i \to \infty} \frac{n_i^\alpha}{m_i} = \infty\) for all \(\alpha > 0\).
We now define the norming set inductively. Let $G_0 = G_Z$ (recall the definition from (P)). Suppose G_n has been defined for some $n \geq 0$ define G_{n+1} as follows:

$$G'_{n+1} = \left\{ \frac{1}{m_j} \sum_{i=1}^{d} f_i : j \in \mathbb{N}, \; d \leq n_j, \; (f_i)_{i=1}^{d} \subset G_n \text{ and } f_1 < \cdots < f_d \right\}$$

$$G''_{n+1} = \left\{ \sum_{i=1}^{n} \lambda_i f_i : n \in \mathbb{N}, \; \lambda_i \geq 0, \; \sum_{i=1}^{n} \lambda_i^2 \leq 1, \; (f_i)_{i=1}^{n} \subset G'_{n+1}, \; w(f_i) = m_i \right\}$$

Let $G_{n+1} = G''_{n+1} \cup G_n$. Let $D_{GZ} = \cup_{n=1}^{\infty} G_n$.

Let $T_{GZ,2}$ be the completion of c_{00} under the norm $\|x\|_{D_{GZ}} = \{f(x) : f \in D_G\}$.

Notation 1. Let $f \in G_n \setminus G_Z$ for some $n \in \mathbb{N}$.

1. If $f \in G'_n$ then $f = 1/m_j \sum_{i=1}^{d} f_i$ for some $j \in \mathbb{N}$. In this case we say f is weighted and set the ‘weight of f' = $w(f) = m_j$. Note that this weight is not unique.

2. If $f \in G''_n$ then $f = \sum_{i=1}^{k} \lambda_i f_i$ where $w(f_i) = m_i$ and $\sum_{i=1}^{k} \lambda_i^2 \leq 1$. Set $w(f) = \{m_i : \lambda_i \neq 0\}$. If $|w(f)| > 1$ we say f is not weighted.

3. For $\sum_{i=1}^{k} \lambda_i f_i \in G''_n$ let $f_{\leq i_0} = \sum_{i=1}^{i_0} \lambda_i f_i$ and $f_{> i_0} = \sum_{i=i_0+1}^{k} \lambda_i f_i$.

A variant of the next theorem can be found in [2, Theorem 11.3]. We include the proof here to give a more complete presentation.

Theorem 10. Let Z be a space with a bimonotone Schauder basis not having an ℓ_1 spreading model. Then $T_{GZ,2}$ does not have any ℓ_p or c_0 as a spreading model.

Before passing to the proof we state two lemmas.

Lemma 11. Suppose $y \in c_{00}$ and $\varepsilon > 0$. There is an $i_0 \in \mathbb{N}$ such that for all $f \in D_{GZ}$, $f_{> i_0}(y) < \varepsilon$.

Proof. Let i_0 such that $\sum_{i>i_0} |\text{supp } y|/m_i < \varepsilon$. The evaluation follows easily. \square

The next lemma follows from standard arguments which, in the interest of brevity, we omit.

Lemma 12. Let $f \in D_{GZ} \setminus G_Z$ such that $w(f) = \{m_{j_0}\}$ for some $j_0 \in \mathbb{N}$. Let $j > j_0$ and $(x_i)_{i=1}^{n_j}$ be a normalized block sequence in $T_{GZ,2}$. Then

$$f(\frac{1}{n_j} \sum_{i=1}^{n_j} x_i) < \frac{3}{m_{j_0}}.$$

Proof of Theorem 10. It is easy to see that neither ℓ_p, for $1 < p < \infty$, nor c_0 is finitely block representable in $T_{GZ,2}$ and therefore can not be admitted as a spreading model. Indeed, let $(y_k)_{k=1}^{\infty}$ be a block sequence in $T_{GZ,2}$. For every $i \in \mathbb{N}$ we have

$$\| \sum_{k=1}^{n_i} y_k \| \geq \frac{n_i}{m_i}.$$
We have assumed that for all $\alpha > 0$, \(\lim_{i \to \infty} n_i^\alpha / m_i = \infty \) (assumption (c)). Therefore for no $p > 1$ does there exist a C_p such that for every $i \in \mathbb{N}$, $\| \sum_{k=1}^{n_i} y_k \| \leq C_p n_i^\frac{1}{p}$.

It remains to show that $T_{G_\varepsilon,2}$ does not admit an ℓ_1 spreading model. Let (w_n) be a bounded sequence generating an ℓ_1 spreading model. We must pass to further subsequences of (w_n) to achieve additional properties. First, it is well-known that since $(w_n) \subset X$ generates an ℓ_1-spreading model then for $0 < \varepsilon < 10^{-4}$ we can find a block sequence (y_n) of (w_n) which generates a $(1 - \varepsilon)$-ℓ_1 spreading model. Secondly, since Y_{G_ε} does not admit an ℓ_1 spreading model, we may apply the Erdos-Madigor theorem \([5]\) to find an $n_0 \in \mathbb{N}$ and a block sequence (z_n) of (y_n) such that $z_n = \sum_{i \in F_n} x_i / n_0$ where $|F_n| = n_0$ for all $n \in \mathbb{N}$ and $\| z_n \|_{G_Z} < \varepsilon$. Passing to a further subsequence of $(z_n)_n$ (for example, $(z_{kn_0})_{k=1}^\infty$) we have a subsequence (x_n) of (z_n) satisfying

- (x_n) generates and ℓ_1 spreading model with constant $(1 - \varepsilon)$.
- $\| x_n \|_{G_Z} < \varepsilon$ for all $n \in \mathbb{N}$.

The next step is to prove the following claim.

Claim 13. There is an $i_0 \in \mathbb{N}$ such that for each $n > 2$ there is a $w^n \in D_{G_\varepsilon} \setminus G_Z$ satisfying

(a) $w^n(x_n) \leq m_{i_0}$;
(b) $\psi^n(x_n) > 1 - 4\sqrt{\varepsilon}$.

Since (x_n) is a $(1 - \varepsilon)$-ℓ_1 spreading model for each $n > 2$ there is a $\phi^n = \sum_{i=1}^{k} \lambda_i^n \phi_i^n$ such that $\phi^n(x_2 + x_n) > 2(1 - \varepsilon)$. It follows that $\phi^n(x_2) > 1 - 2\varepsilon$ and $\phi^n(x_n) > 1 - 2\varepsilon$.

Apply Lemma 11 for x_2 and ε to find an i_0 such that for each $n \geq 2$, $\phi^n_{\leq i_0}(x_2) < \varepsilon$.

We claim that $\phi^n_{\leq i_0}$ is our desired ψ^n. By definition $\phi^n_{\leq i_0}$ satisfies (a). It suffices to prove that (b) holds. Notice that

(9) $\phi^n_{\leq i_0}(x_2) = \phi^n(x_2) - \phi^n_{> i_0}(x_2) > 1 - 3\varepsilon$.

Now observe that

(10) $\phi^n_{\leq i_0}(x_n) > 1 - 2\varepsilon - \sum_{i=0+1}^{k} \lambda_i^n \phi_i^n(x_n)$.

Using (9)

(11) $\left(\sum_{i=1}^{i_0} (\lambda_i^n)^2 \right) \frac{1}{2} \geq \phi^n_{\leq i_0}(x_2) > 1 - 3\varepsilon$.

From (11) we have,

(12) $\left(\sum_{i=i_0+1}^{\infty} \lambda_i^n \phi_i^n(x_n) \right)^2 \leq \sum_{i=i_0+1}^{\infty} (\lambda_i^n)^2 = \sum_{i=1}^{\infty} (\lambda_i^n)^2 - \sum_{i=1}^{i_0} (\lambda_i^n)^2 < 3\varepsilon$.

Combining (10), (12) and the fact that $2\varepsilon + \sqrt{3\varepsilon} < 4\sqrt{\varepsilon}$, (b) follows.
What (a) and (b) together tell us is that for every \(n > 2 \) there is a functional \(\psi^n \) which almost norms \(x_n \) and has only ‘small’ (less than some fixed \(m_{i_0} \)) weights. This allows us to show, in the next lemma, that no element in the sequence \((x_n)\) can be normed by functionals with weights larger than \(m_{i_0} \).

Lemma 14. Let \(n > 2 \) and \(\phi \in D_{G_Z} \) with \(w(\phi) > m_{i_0} \). Then

\[
\phi(x_n) < \frac{1}{2}.
\]

Proof. Let \(\phi \in D_{G_Z} \) with \(w(\phi) > m_{i_0} \). Then \(f = (\psi^n + \phi)/\sqrt{2} \in D_{G_Z} \). Using Claim (b)

\[
\phi(x_n) = \sqrt{2} f(x_n) - \psi^n(x_n) < \sqrt{2} - 1 + (4\sqrt{\varepsilon}) < \frac{1}{2}.
\]

As desired. \(\square \)

We can now arrive at a contradiction using the following vector

\[
z = \frac{1}{n_{i_0 + 1}} \sum_{q=1}^{n_{i_0 + 1}} x_{n_{i_0 + 1} + q}.
\]

Find \(\phi \in D_{G_Z} \) such that \(\phi(z) > 1 - \varepsilon \). Using the Lemma and Lemma we have:

\[
9 < 1 - \varepsilon < \phi(z) = \phi_{\leq i_0}(z) + \phi_{> i_0}(z) < \sum_{i=1}^{i_0} \frac{3}{m_i} + \frac{1}{2} < \frac{3}{10} + \frac{1}{2}.
\]

This is a contradiction. \(\square \)

We now describe the tree decomposition of the functionals in \(D_{G_Z} \). First we must set some notation. Let \(\mathbb{N}^{< \mathbb{N}} \) be the set of all finite tuples of \(\mathbb{N} \). For \(\delta, \gamma \in \mathbb{N}^{< \mathbb{N}} \) we write \(\delta \prec \gamma \) if \(\delta \) is an initial segment of \(\gamma \). Let \(\gamma(i) \) the the \(i \)th coordinate of \(\gamma \). Let \(\mathbb{N}^d \) denote the set of \(d \)-tuples of \(\mathbb{N} \) and \(\mathbb{N}^{\leq d} = \cup_{i \leq d} \mathbb{N}^i \). For \(\gamma \in \mathbb{N}^d \) let \(Im_{\gamma} \subset \mathbb{N}^{d+1} \) denote the immediate successors of \(\gamma \). The following proposition describes a decomposition of the functionals in \(D_{G_Z} \). Tree decompositions are a ubiquitous component in constructions of this type. As such, we omit the proof of the proposition.

Proposition 15. Let \(n \in \mathbb{N} \) and \(f \in G_n \setminus G_0 \). Then there is a set \(T_f \subset \mathbb{N}^{\leq 2n} \cup \{0\} \) and a collection \((f_\gamma)_{\gamma \in T_f} \) of functionals which we call a tree decomposition satisfying the following properties:

1. \(f_{\emptyset} = f \).
2. Let \(S^f_\gamma = Im_{\gamma} \cap T_f \) and \(T^f_\gamma = T_f \setminus N^d \). If \(\gamma \in T_f \) and \(S^f_\gamma = \emptyset \) we say that \(\gamma \) is a terminal node. In this case, \(f_\gamma \in G_0 \).
(3) Let $0 \leq k < n$. If $\gamma \in T_f^{(2k)}$ then

$$f_\gamma = \sum_{\delta \in S_\gamma^f} \lambda_\delta f_\delta$$

where $w(f_\delta) = m_{\delta(2k+1)}$, $\sum_{\delta \in S_\gamma^f} \lambda_\delta^2 \leq 1$

If $\gamma \in T_f^{(2k+1)}$, then

$$f_\gamma = \frac{1}{m_{\gamma(2k+1)}} \sum_{\delta \in S_\gamma^f} f_\delta,$$

where $(f_\delta)_{\delta \in S_\gamma^f}$ are successive and $|S_\gamma^f| \leq n_{\gamma(2k+1)}$.

We need one more definition.

Definition 16. Let $f \in D_{G_Z} \setminus G_Z$ and $T_f \subset \mathbb{N}^< \cup \{0\}$ such that the collection $(f_\gamma)_{\gamma \in T_f}$ is a tree decomposition.

1. For $\alpha \in T_f$ let $|\alpha| = k$ whenever $\alpha \in \mathbb{N}^k$.
2. Let $M_f = \{\alpha \in T_f : \alpha$ is a terminal node of $T_f\}$.

4. Z is a quotient of $T_{G_{Z^2}}$

As the title above suggests, the main objective of this section is to prove that Z is a quotient of $T_{G_{Z^2}}$. After we establish this, we will proof the main theorem and one proposition. To begin we require two lemmas.

Lemma 17. Let $n \in \mathbb{N}$ and $f \in D_{G_Z}$. Suppose that for all $\alpha \in M_f$, $|\alpha| \geq 2n$. Then $\|f\|_\infty \leq 10^{-n}$.

Proof. We proceed by induction on n. For $n = 1$ we have

$$\|f\|_\infty = \| \sum_{\delta \in S_0} \frac{\lambda_\delta}{m_{\delta(1)}} \sum_{\beta \in S_\delta} f_\beta \|_\infty \leq \sum_{\delta \in S_0} \frac{1}{m_{\delta(1)}} \sup_{\beta \in S_\delta} \|f_\beta\|_\infty < \frac{1}{10}. $$

In the above we used the for each $\delta \in S_0$, the functionals $(f_\beta)_{\beta \in S_\delta}$ have disjoint support. Assume the claim for some $n \geq 1$. We will prove it for $n + 1$.

$$\|f\|_\infty = \| \sum_{\delta \in S_0} \frac{\lambda_\delta}{m_{\delta(1)}} \sum_{\beta \in S_\delta} f_\beta \|_\infty \leq \sum_{\delta \in S_0} \frac{1}{m_{\delta(1)}} \sup_{\beta \in S_\delta} \|f_\beta\|_\infty < \sum_{j=1}^{\infty} \frac{1}{m_j} \frac{1}{10^n} \leq \frac{1}{10^{n+1}}. $$

In the above we used that for each $\delta \in S_0$, the functionals $(f_\beta)_{\beta \in S_\delta}$ have disjoint support and have terminal nodes each of height greater than $2n$. \square

Lemma 18. Let $j_0 \in \mathbb{N}$ and $f \in D_{G_Z}$ such that for all $\alpha \in M_f$ there is a $\beta \prec \alpha$ such that f_β is weighted and $w(f_\beta) \geq m_{j_0}$. Then $\|f\|_\infty \leq 2 \sum_{j \geq j_0} \frac{1}{m_j}$.

Proof. For every $\alpha \in M_f$ let

$$\beta_\alpha = \min\{\beta : \beta \prec \alpha, f_\beta$ is weighted and $w(f_\beta) \geq m_{j_0}\}.$$

Notice that if $\alpha \neq \alpha'$ are in M_f then β_α is either equal to or not comparable with $\beta_{\alpha'}$. We will prove the following by induction: For all $\gamma \in T_f$ such that there is an $\alpha \in M_f$ with $\gamma \preceq \beta_\alpha$ one of the following holds:
(1) If $\gamma = \beta_\alpha$ for some $\alpha \in \mathcal{M}_f$ then $\|f_\gamma\|_\infty \leq \frac{1}{w(f_\gamma)}$.
(2) If $\gamma \prec \beta_\alpha$ for all $\alpha \in \mathcal{M}_f$ with $\gamma \prec \alpha$ and f_γ is weighted then
$$\|f_\gamma\|_\infty \leq \frac{2}{w(f_\gamma)} \sum_{j \geq j_0} \frac{1}{m_j}.$$
(3) If $\gamma \prec \beta_\alpha$ for all $\alpha \in \mathcal{M}_f$ with $\gamma \prec \alpha$ and f_γ is not weighted then
$$\|f_\gamma\|_\infty \leq 2 \sum_{j \geq j_0} \frac{1}{m_j}.$$

After we prove the above, by taking $\gamma = 0$, the lemma follows.

For the base case of the induction, we suppose that $\gamma = \beta_\alpha$ for some $\alpha \in \mathcal{M}_f$. Since it is clear that for all $\alpha \in \mathcal{M}_f$, $\|f_\beta_\alpha\|_\infty \leq 1/w(f_\beta_\alpha)$, we are done.

Let $\gamma \in \mathcal{T}_f$ such that $\gamma \prec \beta_\alpha$ for all $\alpha \in \mathcal{M}_f$ with $\gamma \prec \alpha$. Assume that for all $\tilde{\gamma}$ with $\gamma \prec \tilde{\gamma} \leq \beta_\alpha$ for some β_α, (1), (2) or (3) holds (depending on $\tilde{\gamma}$).

Assume that f_γ weighted. Then

$$(14) \quad \|f_\gamma\|_\infty = \frac{1}{w(f_\gamma)} \sum_{\delta \in S_\gamma} f_\delta \|f_\delta\|_\infty \leq \frac{1}{w(f_\gamma)} \max_{\delta \in S_\gamma} \|f_\delta\|_\infty \leq \frac{2}{w(f_\gamma)} \sum_{j \geq j_0} \frac{1}{m_j}.$$

In the above we used the induction hypothesis for $\delta \in S_\gamma$ since $\gamma \prec \delta \leq \beta_\alpha$ whenever $\gamma \prec \beta_\alpha$. Note that if $\delta = \beta_\alpha$ then $\|f_\delta\|_\infty \leq 1/m_{j_0} < 2 \sum_{j \geq j_0} 1/m_j$.

Assume that f_γ is not weighted. Let $A_\gamma = \{\delta \in S_\gamma : \delta = \beta_\alpha, \alpha \in \mathcal{M}_f\}$. Splitting the set S_γ and applying the induction hypothesis we have

$$(15) \quad \|f_\gamma\|_\infty \leq \sum_{\delta \in S_\gamma} \|f_\delta\|_\infty = \sum_{\delta \in A_\gamma} \|f_\delta\|_\infty + \sum_{\delta \in S_\gamma \setminus A_\gamma} \|f_\delta\|_\infty \leq \sum_{j \geq j_0} \frac{1}{m_j} + \sum_{\delta \in S_\gamma \setminus A_\gamma} \frac{1}{w(f_\delta)} \sum_{j \geq j_0} \frac{1}{m_j} \leq 2 \sum_{j \geq j_0} \frac{1}{m_j}.$$

In the above we used that $\sum_{\delta \in S_\gamma \setminus A_\gamma} \frac{1}{w(f_\delta)} < 1$.

We are now ready to prove the main proposition of this section.

Proposition 19. Let $Q : T_{G_\mathbb{Z},2} \to Z$ be the bounded linear map defined by $Q(e_i) = z_n$ for $i \in \Lambda_n$. Then Q is a quotient map.

Notice that Q makes the same identifications as the map $Q_{G_\mathbb{Z}}$ from Definition 3.

Proof. Let $z = \sum_{i=1}^d a_i z_i \in Z$ such that $\|z\|_Z = 1$. We will construct a vector x such that $Qx = z$ and $\|x\| = 1$; of course, this is sufficient to prove the proposition.

Assume that $j_0 \in \mathbb{N}$ satisfies the following:

$$(1) \quad \sum_{j \geq j_0} \frac{2d}{m_j} < \frac{1}{5}$$

$$(2) \quad \frac{2(j_0 - 1)m_{j_0 - 1}}{m_{j_0}} < \frac{1}{10}$$

$$(3) \quad \frac{d}{10^m} < \frac{1}{5}$$

We will prove:

$$(4) \quad \sum_{j \geq j_0} \frac{m_j}{m_{j_0}} < \frac{1}{10}$$

We will prove by induction that

$$(5) \quad \sum_{j \geq j_0} \frac{m_j}{m_{j_0}} < \frac{1}{10}$$

for $j_0 = 0$.

Inductive Step: Let $j_0 \geq 0$ such that (5) holds. Then

$$\sum_{j \geq j_0} \frac{m_j}{m_{j_0}} < \frac{1}{10}.$$
For each \(t \in \{1, \ldots, n_j \} \) let \((\ell^d_i)_{i=1}^d \subset \Lambda_i\) such that
\[
\ell^1_1 < \ell^2_1 < \cdots < \ell^d_1 < \ell^1_{t+1} < \cdots.
\]

Now set
\[
x = \frac{1}{n_j} \sum_{i=1}^{n_j} \sum_{t=1}^{d} a_i e_{\ell^d_i} = \sum_{i=1}^{d} a_i \sum_{t=1}^{n_j} \frac{1}{n_j} e_{\ell^d_i}.
\]

Let \(y_t = \sum_i a_i e_{\ell^d_i} \). Note that \((y_t)_{t=1}^{n_j}\) is a block sequence and \(Qx = z\). It is easy to see for all \(t \in \{1, \ldots, n_j \} \),

\[
\|y_t\| \leq \|y_t\|_1 \leq \sum_{i=1}^{d} |a_i| \leq d.
\]

and

\[
\|x\| \leq \|x\|_1 \leq \sum_{i=1}^{d} |a_i| \leq d.
\]

We will also need the following easy remark

Remark 3. Let \(g \in G_Z \) and \(t \in \{1, \ldots, n_j \} \). Then \(g(y_t) \leq 1 \).

Note that for all \(t \in \{1, \ldots, n_j \} \), \(QG_Z(y_t) = z \). Since \(\|z\| = 1 \) we can apply Proposition 6 (3) to deduce that \(\|y_t\|_{G_Z} = 1 \). The remark follows.

We observe first that \(\|x\| \geq 1 \): Suppose \((b_i)_{i=1}^{d}\) is a scalar sequence such that
\[
\sum_{i=1}^{d} a_i b_i = (\sum_{i=1}^{d} b_i z^*_i) (\sum_{i=1}^{d} a_i z_i) = 1.
\]

By definition \(\sum_{i=1}^{d} b_i (\sum_{t=1}^{n_j} e_{\ell^d_i}^*) \in G_Z \). Thus
\[
\|x\| \leq \left(\sum_{i=1}^{d} b_i \sum_{t=1}^{n_j} e_{\ell^d_i}^* \right) \left(\sum_{i=1}^{d} a_i \frac{1}{n_j} \sum_{t=1}^{n_j} e_{\ell^d_i}^* \right) = \sum_{i=1}^{d} a_i b_i = 1.
\]

Therefore, for \(f \in D_G \) it suffices to show that \(f(x) \leq 1 \). Partition \(M_f \) as follows:

\[
A_1 = \{ \alpha \in M_f : |\alpha| \geq 2s_{j_0} \}
\]
\[
A_2 = \{ \alpha \in M_f : \exists \beta < \alpha, \ w(\beta) \geq m_{j_0} \}
\]
\[
A_3 = M_f \setminus (A_1 \cup A_2)
\]

Let \(f = f_1 + f_2 + f_3 \) such that for \(i \in \{1, 2, 3\} \), \(f_i \) has \(A_i \) as its terminal nodes.

This splits the rest of the proof naturally into three separate cases. The first two cases are taken care of by Lemmas 17 and 18 respectively.

Using Lemma 17 and condition (3) on \(j_0 \)

\[
|f_1(x)| \leq \|f_1\|_{\infty} \|x\|_1 \leq \frac{d}{10^{s_{j_0}}} < \frac{1}{5},
\]

Similarly, using Lemma 18 and condition (1) on \(j_0 \) we have

\[
|f_2(x)| \leq \|f_2\|_{\infty} \|x\|_1 \leq 2d \sum_{j \geq j_0} \frac{1}{m_j} < \frac{1}{5}.
\]
To estimate $|f_3(x)|$ it is convenient to separate the support of x into 2 sets. Let

$$E_2 = \{ t \in \{1, \ldots, n_{j_0}\} : \exists \alpha \in A_3, \ supp y_t \cap range g_\alpha \neq \emptyset \ and$$

$$supp y_t \not\subset range g_\alpha \}$$

and $E_1 = \{1, \ldots, n_{j_0}\} \setminus E_2$.

First we bound $|E_2|$ (the cardinality of E_2). Observe that $|E_2| < 2|A_3|$. Indeed, for each $t \in E_2$ there is an $\alpha \in A_3$ and each $\alpha \in A_3$ corresponds to at most 2 elements of E_2. By definition, for $\alpha \in A_3$: $|\alpha| < 2s_{j_0}$ and for all $\beta < \alpha$ such that f_β is weighted, $w(f_\beta) \leq m_{j_0-1}$. These facts together yield that $|A_3| \leq ((j_0-1)n_{j_0-1})^{s_{j_0}}$.

Using the above along with condition (2) on j_0 we conclude that

$$|E_2| < 2|A_3| \leq 2((j_0-1)n_{j_0-1})^{s_{j_0}} < n_{j_0}/(5d) \tag{21}$$

Using (21) and (16) we have

$$f_3\left(\frac{1}{n_{j_0}} \sum_{t \in E_2} y_t\right) \leq \frac{1}{n_{j_0}} \sum_{t \in E_2} \|y_t\| \leq \frac{d|E_2|}{n_{j_0}} < \frac{1}{5} \tag{22}$$

We now pass to the final evaluation. Let $x_1 = \sum_{t \in E_1} y_t$. For $\gamma \in T_{f_3}$ let

$$I_\gamma = \{ t \in \{1, \ldots, n_{j_0}\} : supp y_t \subset range f_\gamma \}.$$

Let $\gamma \in T_{f_3}$, we will prove the following:

(1) If $\gamma \in A_3$ then $|f_\gamma(x_1)| \leq |I_\gamma|$.

(2) If $\gamma \notin A_3$ and f_γ is weighted then

$$|f_\gamma(x_1)| \leq \frac{2}{w(f_\beta)} |I_\gamma|.$$

(3) If $\gamma \notin A_3$ and f_γ is not weighted then

$$|f_\gamma(x_1)| \leq \frac{1}{5} |I_\gamma|.$$

The proof goes by induction (and is similar to the proof of Lemma 13). For the base case we assume that $\gamma \in A_3$. Using Remark 3 we have

$$|f_\gamma(x_1)| \leq |f_\gamma(\sum_{t \in I_\gamma} y_t)| \leq |I_\gamma|.$$

Assume that $\gamma \notin A_3$ and that for all γ' with $\gamma < \gamma'$ either (1), (2) or (3) holds (depending on γ').
Our first case is when f_γ is weighted. Splitting the sum and applying the appropriate induction hypothesis we have

$$|f_\gamma(x_1)| \leq \frac{1}{w(f_\gamma)} \sum_{\delta \in S_\gamma \cap A_3} |f_\delta(x_1)| + \frac{1}{w(f_\gamma)} \sum_{\delta \in S_\gamma \setminus A_3} |f_\delta(x_1)|$$

$$\leq \frac{1}{w(f_\gamma)} \left(\sum_{\delta \in S_\gamma \cap A_3} I_\delta + \frac{1}{5} \sum_{\delta \in S_\gamma \setminus A_3} I_\delta \right)$$

$$\leq \frac{2}{w(f_\gamma)} |I_\gamma|$$

Assuming γ is not weighted, we again apply the induction hypothesis to get the desired estimate.

$$|f_\gamma(x_1)| \leq \sum_{\delta \in S_\gamma} |f_\delta(x_1)| \leq \sum_{\delta \in S_\gamma} \frac{2}{w(f_\delta)} |I_\delta|$$

$$\leq 2 \max_{\delta \in S_\gamma} |I_\delta| \sum_{j=1}^{\infty} \frac{1}{m_j} \leq \frac{1}{5} |I_\gamma|.$$

The inductive proof is finished. It follows that

$$|f_\gamma(1/n_j \sum_{t \in E_1} y_t)| = \frac{1}{n_j} |f_\delta(x_1)| \leq \frac{|E_1|}{5n_j} \leq \frac{1}{5}.$$

Combining (18), (19), (22) and (26) we have

$$|f(x)| \leq |f_1(x)| + |f_2(x)| + |f_\delta(x)| < \frac{4}{5} < 1.$$

This finishes the proof of the proposition. \(\square\)

We can now prove our main theorem. Of course, all that is required is to apply our previous work and compose quotient maps.

Proof of Theorem 7. Let X be a separable Banach space not admitting an ℓ_1 spreading model. By Proposition 9 the space Z_X has a basis and does not admit an ℓ_1 spreading model. Moreover the map $Q_X : Z_X \to X$ is a quotient map. Let $Z_X = Z$. Define G_Z as in 11 and $T_{G_Z,2}$ as above. Theorem 10 says that $T_{G_Z,2}$ has no ℓ_p or c_0 spreading model. Theorem 19 yields that the map $Q : T_{G_Z,2} \to Z$ is a quotient. $Q_X \circ Q : T_{G_Z,2} \to X$ is the desired quotient. \(\square\)

We conclude with one last proposition that relates to our main theorem. In particular, we note that there does not exist a space Y not admitting any ℓ_p or c_0 as a spreading model and having, as a quotient, every space X not admitting an ℓ_1 spreading model. In other words, there is no universal space satisfying the requirements of our theorem.

Proposition 20. Suppose X has as a quotient every space not admitting an ℓ_1 spreading model. Then X contains a copy of ℓ_1.

Proof. Recall that if the Bourgain ℓ_1-index \cite{7} of a space is unbounded (i.e. equals ω_1) then the space contains ℓ_1. The main result of \cite{4} states that for each countable ordinal ξ there is a separable space X_ξ that does not admit an ℓ_1 spreading model and has hereditary ℓ_1-index greater than ω_ξ^ξ. If a space X has, as quotient, every space not admitting an ℓ_1 spreading model it must have have the space X_ξ as quotient for each $\xi < \omega_1$. It follows that X must have unbounded Bourgain index.

Looking more closely at the construction of X_ξ, one can observe that the ground space X_{G_ξ} on which X_ξ is built also does not admit an ℓ_1 spreading model and has ℓ_1-index greater than ω_ξ (just not hereditarily).

Finally, we give the reader a concrete example: Consider the following unconditional James tree space: Let $J_{2,1}$ be the completion of $c_{00}(\mathbb{N}^{<\mathbb{N}})$ equipped with the norm

\begin{equation}
\|z\| = \sup \left\{ \left(\sum_{i=1}^{d} \left(\sum_{t \in s_i} |z(t)|^2 \right)^{1/2} \right) \right\}
\end{equation}

where the above supremum is taken over all families $(s_i)_{i=1}^{d}$ of pairwise incomparable non-empty segments of $\mathbb{N}^{<\mathbb{N}}$. For every well-founded tree S of natural numbers, let $J_{2,1}^S$ be the closed subspace supported on the coordinates of S. Using arguments similar to those in \cite{4}, for every well-founded tree S, the space $J_{2,1}^S$ has no ℓ_1 spreading model. It is easy to see that the Bourgain ℓ_1 index of $J_{2,1}^S$ is at least the height of the well founded tree S. Arguing as before, we conclude that any space having each $J_{2,1}^S$ as a quotient must contain ℓ_1. \qed

5. SPACES NOT ADMITTING QUOTIENTS WITH SEPARABLE DUALS

In this section we answer affirmatively a problem posed in \cite{13, Remark VI]. The problem asks if there exists a separable Banach space X such that every infinite dimensional quotient has a non separable dual. We note that the dual of such a space is closely connected to HI spaces. Indeed, the dual X^* must be non separable and cannot contain c_0, ℓ_1 or a reflexive subspace. Therefore, it does not contain a subspace with an unconditional basis \cite{12]. W. T. Gowers' dichotomy \cite{11} yields that X^* is saturated with HI spaces which do not contain a reflexive subspaces. Next, we provide some sufficient conditions for the existence of a space answering the Johnson-Rosenthal question in the affirmative. We note that the sufficient conditions in the following theorem are quite close to being necessary.

Theorem 21. Let X be a Banach space with the following properties:

1. X does not contain a reflexive subspace.
2. X^* is separable.
3. X^{**} is hereditarily indecomposable.

Then the dual Y^* of any quotient Y of X^* is non-separable.
Proof. Assume on the contrary that there exists a quotient \(Y \) of \(X^* \) with \(Y^* \) separable. As it is shown in [13], \(Y \) has a further quotient with a shrinking basis. Therefore, we assume that \(Y \) has a shrinking basis \((y_n)_{n \in \mathbb{N}}\) and that the biorthogonal functionals \((y_n^*)_{n \in \mathbb{N}}\) form a boundedly complete basis of \(Y^* \), which is isomorphic to a subspace of \(X^{**} \). It follows that there exists a normalized boundedly complete basic sequence \((w_n^{**})_{n \in \mathbb{N}}\) in \(X^{**} \). We will show that this yields a contradiction. Indeed, since \(X^{**} \) is HI, there exists a normalized sequence \((z_n)_{n \in \mathbb{N}}\) in \(X \) that is equivalent to a block sequence of \((w_n^{**})_{n \in \mathbb{N}}\); hence, \((z_n)_{n \in \mathbb{N}}\) is also boundedly complete. Since \(X^* \) is separable, the sequence \((z_n)_{n \in \mathbb{N}}\) has a further block sequence \((v_n)_{n \in \mathbb{N}}\) which is normalized and shrinking [13]. The sequence \((v_n)_{n \in \mathbb{N}}\) remains boundedly complete and hence \(Z = \langle (v_k)_{k \in \mathbb{N}} \rangle \) is reflexive. This contradicts assumption (i). □

Corollary 22. There exists a separable Banach space \(X \) such that every infinite dimensional quotient has non separable dual.

Proof. In [2] a Banach space \(Z \) is constructed satisfying the assumptions of Theorem 21. \(Z^* \) is the desired space. □

To conclude, we state the following problem that was communicated to the authors by W.B. Johnson.

Question 1. Does every separable space have a quotient which is either HI or has an unconditional basis?

This problem is a natural analogue of Gowers’ dichotomy for quotients. In relation to this problem, V. Ferenczi [9] proved a dichotomy for quotients of subspaces of Banach spaces. In particular, we recommend section 3 of this paper which contains several interesting questions and observations relating to these types of problems.

References

[1] G. Androulakis, E. Odell, T. Schlumprecht, and N. Tomczak-Jaegermann. On the structure of the spreading models of a Banach space. Canad. J. Math., 57(4):673–707, 2005.
[2] S. A. Argyros, A. D. Arvanitakis, and A. G. Tolias. Saturated extensions, the attractors method and hereditarily James tree spaces. In Methods in Banach space theory, volume 337 of London Math. Soc. Lecture Note Ser., pages 1–90. Cambridge Univ. Press, Cambridge, 2006.
[3] S. A. Argyros, V. Kanellopoulos, and K. Tyros. Finite order spreading models. preprint.
[4] S. A. Argyros, A. Manoussakis, and A. M. Pelczar. On the hereditary proximity to \(\ell_1 \). [http://arxiv.org/abs/0907.4317]
[5] S. A. Argyros and A. Tolias. Methods in the theory of hereditarily indecomposable Banach spaces. Mem. Amer. Math. Soc., 170(806):vi+114, 2004.
[6] B. Beauzamy and J.-T. Lapresté. Modèles étalés des espaces de Banach. Publ. Dép. Math. (Lyon) (N.S.), (4/A):ii+199+11, 1983.
[7] J. Bourgain. On separable Banach spaces, universal for all separable reflexive spaces. Proc. Amer. Math. Soc., 79(2):241–246, 1980.
[8] P. Erdős and M. Magidor. A note on regular methods of summability and the Banach-Saks property. *Proc. Amer. Math. Soc.*, 59(2):232–234, 1976.

[9] V. Ferenczi. A Banach space dichotomy theorem for quotients of subspaces. *Studia Math.*, 180(2):111–131, 2007.

[10] W. T. Gowers. A Banach space not containing c_0, l_1 or a reflexive subspace. *Trans. Amer. Math. Soc.*, 344(1):407–420, 1994.

[11] W. T. Gowers. An infinite Ramsey theorem and some Banach-space dichotomies. *Ann. of Math. (2)*, 156(3):797–833, 2002.

[12] R. C. James. Bases and reflexivity of Banach spaces. *Ann. of Math. (2)*, 52:518–527, 1950.

[13] W. B. Johnson and H. P. Rosenthal. On ω^*-basic sequences and their applications to the study of Banach spaces. *Studia Math.*, 43:77–92, 1972.

[14] E. Odell and T. Schlumprecht. On the richness of the set of p’s in Krivine’s theorem. In *Geometric aspects of functional analysis (Israel, 1992–1994)*, volume 77 of *Oper. Theory Adv. Appl.*, pages 177–198. Birkhäuser, Basel, 1995.

[15] H. P. Rosenthal. Weakly independent sequences and the banach-saks property. *Proc. of the Durham Symposium*, Juillet 1975.

[16] G. Schechtman. On Pelczynski’s paper “Universal bases” (Studia Math. 32 (1969), 247–268). *Israel J. Math.*, 22(3–4):181–184, 1975.

National Technical University of Athens, Faculty of Applied Sciences, Department of Mathematics, Zografou Campus, 157 80, Athens, Greece.

E-mail address: saargyros@math.ntua.gr

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284.

E-mail address: kbeanland@vcu.edu