Transfusion-transmitted hepatitis E: What we know so far?

Carmen Ka Man Cheung, Sunny Hei Wong, Alvin Wing Hin Law, Man Fai Law

Abstract

Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. There is growing concern about transfusion-transmitted HEV (TT-HEV) as an emerging global health problem. HEV can potentially result in chronic infection in immunocompromised patients, leading to a higher risk of liver cirrhosis and even death. Between 0.0013% and 0.281% of asymptomatic blood donors around the world have HEV viremia, and 0.27% to 60.5% have anti-HEV immunoglobulin G. HEV is infectious even at very low blood concentrations of the virus. Immunosuppressed patients who develop persistent hepatitis E infection should have their immunosuppressant regimen reduced; ribavirin may be considered as treatment. Pegylated interferon can be considered in those who are refractory or intolerant to ribavirin. Sofosbuvir, a nucleotide analog, showed modest antiviral activity in some clinical studies but sustained viral response was not achieved. Therefore, rescue treatment remains an unmet need. The need for HEV screening of all blood donations remains controversial. Universal screening has been adopted in some countries after consideration of risk and resource availability. Various pathogen reduction methods have also been proposed to reduce the risk of TT-HEV. Future studies are needed to define the incidence of transmission through transfusion, their clinical features, outcomes and prognosis.

Key Words: Hepatitis E virus; Acute and chronic hepatitis; Immunosuppression; Blood transfusion; Transplantation

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
Grade B (Very good): 0
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Citation: Cheung CKM, Wong SH, Law AWH, Law MF. Transfusion-transmitted hepatitis E: What we know so far? World J Gastroenterol 2022; 28(1): 47-75
URL: https://www.wjgnet.com/1007-9327/full/v28/i1/47.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i1.47

INTRODUCTION

Hepatitis E virus (HEV) was first discovered as an epidemic of non-A, non-B hepatitis in the 1980s[1], and has since become one of the major global causes of viral hepatitis. The World Health Organization estimated that HEV caused approximately 44000 deaths in 2015, and accounted for 3.3% of global deaths related to viral hepatitis[2]. A recent meta-analysis concluded that approximately 939 million of the global population have ever experienced HEV infection, and 15 to 110 million individuals have recent or ongoing infection[3]. The infection is generally self-limiting; however, it poses a threat to some vulnerable patients resulting in a significant burden of in-patient admissions, chronic infection, organ failure, and death[4]. The mortality rate can be greater than 20% in patients with chronic liver disease, cirrhosis, or pregnancy [4,5]. With a high HEV serological prevalence among the global population, the safety of blood products has become a public health concern. Herein, we review existing evidence on transfusion-transmitted HEV (TT-HEV), and the implications for screening of blood donations.

VIROLOGY

HEV is a positive-sense, single-stranded RNA icosahedral virus belonging to the genus Orthohepevirus within the Hepeviridae family[6]. Orthohepevirus A has eight distinct genotypes, of which HEV-1, -2, -3 and -4 infect humans[7]. HEV genotype C1, belonging to the species Orthohepevirus C, circulates in rats and can cause cross-species infection and sporadic zoonotic transmission to humans[8].

HEV exists in urine or feces as non-enveloped virions encased by a capsid. It circulates in blood in a membrane-associated, quasi-enveloped form (eHEV) which is considered to be less contagious[9]. The entry mechanisms for HEV are not well characterized, but once the genomic RNA is uncoated and delivered to the cytosol, the replication cycle is initiated[10]. The viral release that initiates subsequent infection requires multivesicular bodies through endosomal sorting complexes required for transport[11].

EPIDEMIOLOGY

The prevalence rates of HEV antibody are higher in developing countries than in developed countries[12]. The highest anti-HEV immunoglobulin G (IgG) seropositivity rate has been reported in Africa with a mean of 21.76%, followed by Asia (15.80%), Europe (9.31%), North America (8.05%), South America (7.28%), and Oceania (5.99%). In addition, the reported anti-HEV immunoglobulin M (IgM) seroprevalence rate was 3.09%, 1.86%, 0.79%, 0.22% and 2.43% in Africa, Asia, Europe, North America, and South America, respectively[3].
Among the four major genotypes that can infect humans, HEV-1 and -2 are mostly found in developing countries including Asia, Africa, Latin America, and Mexico. Infection is mainly transmitted \textit{via} fecally contaminated water, but occasionally also by person-to-person and vertical transmission\cite{13}. Hepatitis E occurs as outbreaks as well as sporadic cases of acute hepatitis, with the preponderance of cases among adolescents and young adults. When stratified by age, the estimated incidence of HEV-1 and -2 infection is roughly between 0.5\% and 1.0\% for ages 0 to 15 years, with rates increasing to between 1.0\% and 1.4\% for ages 15 years to 20 years, then falling rapidly to a lower rate of 0.2\% and below in individuals older than 30 years\cite{14}.

HEV-3 accounts for most of the autochthonous infection in developed countries while HEV-4 is mainly found in Asia and sporadically in Europe\cite{15,16}. The reported seroprevalence of HEV-3 ranged from 0.6\% to 52.5\% in Europe, 6\% in United States, 3 to 16\% in United Kingdom and up to 52\% in some regions of France\cite{17}. HEV-3 and HEV-4 are zoonotic viruses which are frequently transmitted \textit{via} food, close contact with animals, or transfusion of viremic blood units\cite{18}.

CLINICAL FEATURES AND EXTRAHEPATIC MANIFESTATIONS

The incubation period following exposure to HEV ranges from 2 to 6 wks. HEV infection commonly takes a clinically silent, asymptomatic course with around 5\% to 30\% of infected individuals developing acute hepatitis\cite{19}. Symptoms of acute hepatitis include fever, malaise, anorexia, vomiting, followed by jaundice, tea-colored urine, and hepatomegaly\cite{20}. It is then followed by a convalescent phase with gradual recovery within a few weeks in immunocompetent patients\cite{21}. Acute liver failure is rare and occurs more frequently in middle-aged/elderly patients\cite{22}. Fulminant hepatitis with fatal outcome is uncommon, but has been observed in pregnant women or in patients with pre-existing liver disease. The development of fulminant hepatitis appears to be related to host-specific factors rather than virus genotype, variants, or specific substitutions\cite{23}. HEV superinfection may trigger liver decompensation in patients with chronic liver disease or cirrhosis, resulting in acute-on-chronic liver failure, which is associated with significant short-term mortality\cite{24,25}. Further research is needed to clarify the clinical features, course of illness, and prognosis of patients with decompensated cirrhosis who develop HEV infection.

HEV-3 and HEV-4 can persist in immunocompromised patients resulting in chronic infection, defined as viral replication lasting for more than 3 to 6 mo\cite{26}. It has been well described in patients after solid organ or stem cell transplant, hematology patients receiving chemotherapy, or HIV-infected patients\cite{27-32}. The prevalence of anti-HEV IgG was about 11.6\% and viral RNA was 2\% in solid organ transplant recipients\cite{33}. In solid organ transplant recipients who were positive for HEV RNA, more than 60\% developed chronic hepatitis\cite{33}.

The natural history of chronic hepatitis E infection is not well understood\cite{34}. In liver transplant recipients infected by HEV, histological analyses of liver biopsy revealed atypical morphology that is distinct from those in immunocompetent patients during early phases of infection\cite{35}. Proliferation of, and cytokine production by, CD4+ and CD8+ T-cells were impaired in patients with persistent HEV viremia\cite{36}. Chronic hepatitis E leads to liver fibrosis and cirrhosis. Cases of HEV-related hepatocellular carcinoma have been reported\cite{37}.

Although HEV predominantly infects hepatocytes, it may also affect other organs and present as extrahepatic manifestations. The mechanisms by which HEV can induce extrahepatic manifestations are not fully understood, but hypotheses include direct cytopathic tissue damage by extrahepatic replication, or immunological processes induced by an overwhelming host immune response\cite{39}. Details of extrahepatic manifestations are shown in Table 1\cite{39-44}.

PREVALENCE IN BLOOD DONORS

Viremia

The prevalence of HEV RNA in blood donors varies around the world. (Table 2)\cite{45-78}. Most countries have a low prevalence of HEV viremia, ranging from 0.0013\% to 0.086\%. A relatively higher rate of viremia was reported in Germany (0.12\%) and China (0.281\%)\cite{49,70}. A meta-analysis of 10 studies from China showed a pooled prevalence of HEV RNA of 0.1\%\cite{79}. The actual prevalence might have been underes-
Table 1 Extrahepatic manifestations associated with hepatitis E virus infection

System	Extrahepatic manifestations	
Neurological	Guillain-Barré syndrome (GBS)	
	Neuralgic amyotrophy	
	Neuropathy	
	Bell’s palsy	
	Encephalitis	
	Transverse myelitis	
	Myositis	
	Myasthenia gravis	
	Pseudotumor cerebri	
	Seizure	
Renal	Decrease glomerular filtration rate	
	Glomerulonephritis	
	Nephrotic syndrome	
	Mixed cryoglobulinemia	
Hematological	Thrombocytopenia	
	Hemolytic anemia	
	Aplastic anemia	
	Hemophagocytic syndrome	
	Monoclonal gammopathy of uncertain significance (MGUS)	
Others	Thyroiditis	
	Pancreatitis	
	Myocarditis	
	Polyarthritis	

Estimated as some studies included in the meta-analysis conducted RNA detection only in those donors who were positive for anti-HEV IgM or antigen[79].

The prevalence of HEV-3 and -4 is affected by dietary habits[80]. Consumption of raw pork tartare and undercooked pork liver may represent a relevant risk factor for HEV infection in Germany[49]. Regular consumption of pork meat and shellfish were also reported in the viremic donors in China[70].

Since 70% of infections with HEV-3 and -4 are asymptomatic[81], it can be difficult to identify infected blood donors, as viremia occurs primarily during the pre-icteric phase[82]. Katiyar et al[72] described anti-HEV IgG positivity in 60.5% of the tested donors in India and yet none of them were positive for HEV RNA. In India, human HEV is caused exclusively by the HEV-1 genotype, which causes brief hepatitis and seldom results in chronic infection[83,84]. The difference in endemicity between HEV genotypes may affect the propensity to cause symptomatic disease and viral persistence, which in turn influences the likelihood of viremia among blood donors.

Other factors influencing the reported prevalence of HEV viremia are the sensitivity and plasma pool size of the various nucleic acid test screening platforms used[85]. For example, 33 of 90 donations with a viral load of 20-750 IU/mL were positive when tested individually but missed in the pooled screening in a study by Hogema et al[57]. Delage et al[66] revealed a low prevalence (π = 11/50765) and viral loads of HEV-RNA in Canadian blood donors based on individual nucleic acid amplification techniques (NAT). They postulated that if pooled NAT was used, only two positive donations with viral loads > 1000 IU/mL would have been detected. The true frequency of viremia in blood donors in studies using pooled NAT could be underestimated due to a dilution effect. Vollmer et al[86] found that screening using individual NAT yielded an approximately 50% higher detection frequency compared with NAT of a mini-pool of 96 samples; nevertheless, samples exclusively positive for individual NAT had a
Table 2 Hepatitis E virus ribonucleic acid prevalence in donor, only studies include more than 1000 study subjects are included

Ref.	Country	Initial screening method	Number of donations screened	Number positive donations	Prevalence (95% CI)	HEV genotype: n/N	Median (range) viral load, IU/mL	Outcome of recipient		
Europe										
Fischer et al [45], 2015	Austria	RT-PCR (plasma pool of 96 samples) with 95% LOD 11.6 IU/mL	58915	7	0.012%	3: 7/7	(2200 to 290000)	N/A		
Vercouter et al [46], 2019	Belgium	RT-PCR (plasma pool of 6 samples) with 95% LOD 18.6 IU/mL	38137	7	0.018%	N/A		N/A		
Harritshøj et al [47], 2016	Denmark	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	25637	11	0.043% (0.02% - 0.07%)	3 (in 2 samples)	13 (unquantifiable to 920)	(1) Look-back testing was performed in 7 recipients; all were tested negative for HEV RNA and anti-HEV IgM; (2) No recipient developed transaminitis; and (3) One patient had strongly positive anti-HEV IgG assay which may indicate recent HEV infection or secondary immune response by HEV re-exposure.		
Gallian et al [48], 2014	France	RT-PCR (plasma pool of 96 samples) with 95% LOD 23 IU/mL	53234	22	0.045% (0.043% - 0.047%).	3c: 5/14; 3f: 8/14; 3 1/14	(468 to 5155800)	N/A		
Westhölter et al [49], 2018	Germany	RT-PCR (plasma pool of 24 samples) with 95% LOD 18.6 IU/mL	18737	23	0.123%	3: 6/7	(120 to 11200000)	(1) Retrospective analysis of 4 viremic donors showed that they were HEV-positive in previous donations; (2) In 3 donors, testing of the previously donated blood in pools of 24 samples failed to identify viremic donations but were positive in unpoled samples; (3) Fourteen recipients had received HEV RNA positive blood products; (4) One immunosuppressed recipient tested positive for HEV RNA, developed acute on chronic liver failure, and died; and (5) One immunocompetent recipient developed acute self-limited episode of hepatitis E		
Dreier et al [50], 2018	Germany	RT-PCR with 95% LOD 4.7 IU/mL for FFP, platelet concentrates, and RBC supernatant; 95% LOD 8.9 IU/mL for RBCs.	235524	182	0.077%	3: 4/4	(< 25 to 69.4)	(1) Nine viremic donations were transfused to 6 different recipients; (2) Two recipients were immunocompromised (heart transplantation and leukemia); (3) Two recipients died shortly after transfusion for reasons other than HEV infection; and (4) None of the other 4 recipients developed acute HEV infection or had detectable HEV RNA / anti-HEV IgG		
Corman et al [51], 2013	Germany	RT-PCR (plasma pool of 96 samples mixed in metapools of 20)	93955	14	0.015%	3: 14/14	(3.1 to 4.8 Log10 IU/mL)	N/A		
Vollmer et al [52], 2012	Germany	RT-PCR (plasma pool of 48 samples) with 95% LOD 4.7 IU/mL	16125	13	0.081%	3: 13/13	(13 to 68100)	N/A		
Baylis et al [53], 2012	Germany	RT-PCR (plasma pool of 96 samples) with 95% LOD 250 IU/mL	18,100	4	0.022%	3	(3.26 to 5.35 Log10 copies/mL)	Donations screened positive for HEV were excluded from pharmaceutical production		
O Riordan et al	Ireland	TMA assay with 95% LOD	24985	5	0.020%	3: 3/3	(10 to 44550)	N/A		
Author(s)	Year	Country	Methodology (Plasma Pool or Individual Plasma)	LOD (IU/mL)	Sensitivity (% and range)	3c: positive/total	3e: positive/total	3a: positive/total	2: positive/total	Other notes
---------------------------	------	---------	---	-------------	---------------------------	-------------------	-------------------	-------------------	-----------------	-------------
Cheung CKM et al	2016			5.5	(0.0065%-0.0467%)	N/A	N/A	N/A	N/A	
Spreafico et al	2020	Italy	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	0.0065-0.0467	N/A	N/A	N/A	N/A	N/A	
Spada et al	2018	Italy	RT-PCR, plasma pool and sensitivity varies according to anti-HEV IgG and IgM status	0.0065-0.0467	N/A	N/A	N/A	N/A	N/A	
Hogema et al	2015	Netherlands	RT-PCR (plasma pool of 96 samples) with 95% LOD 7.9 IU/mL	0.0065-0.0467	N/A	N/A	N/A	N/A	N/A	
Slot et al	2013	Netherlands	RT-PCR (plasma pool of 48 or 480 samples) with 95% LOD 25 IU/mL	0.029-0.079	3c: 15/17; 3e: 2/17	N/A	N/A	N/A	N/A	
Grabarczyk et al	2018	Poland	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	0.035-0.079	3c: 2/3; 3e: 1/3	N/A	N/A	N/A	N/A	
Rivero-Juarez et al	2019	Spain	RT-PCR (plasma pool of 8 samples) with sensitivity 670 IU/mL	0.035-0.079	3: 4/4	N/A	N/A	N/A	N/A	
Sauleda et al	2015	Spain	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	0.030-0.079	3f (in 1 sample)	N/A	N/A	N/A	N/A	
Baylis et al	2012	Sweden	RT-PCR (plasma pool of 96 samples) with 95% LOD 250 IU/mL	0.013-0.030	3	N/A	N/A	N/A	N/A	
Harvala et al	2019	United Kingdom	RT-PCR (plasma pool of 24 samples) with 95% LOD 18.6 IU/mL	0.026-0.030	3c: 112/149; 3e: 21/149; 3a: 1/149; 2 distantly related to 3h, and 1 clustered distinctly with 3a	N/A	N/A	N/A	N/A	
Thom et al	2018	United Kingdom	RT-PCR (plasma pool of 24 samples)	0.040-0.040	3: 10/10	N/A	N/A	N/A	N/A	
Hewitt et al	2014	United Kingdom	RT-PCR (plasma pool of 24 samples)	0.035-0.035	3: 79/79	N/A	N/A	N/A	N/A	

(1) Forty-three patients who had received blood components from HEV-infected donors were followed up; (2) The overall transmission rate was 42% (18 of 43 exposed patients); (3) One recipient developed clinical hepatitis and 4 recipients developed asymptomatic transaminitis; and (4) Four heavily
Study	Country	Methodology	Samples	Detection Rate	Genotyping Success	LOD (IU/mL)
Cleland et al [65], 2013	United Kingdom	Nested PCR (plasma pool of 24 samples) with 95% LOD 201 IU/mL	43560	3.0069%	N/A	N/A
Delage et al [66], 2013	United States	RT-PCR on individual samples with 95% LOD 18.6 IU/mL	50724	3.0059%	N/A	(23 to 1420)
Roth et al [67], 2013	United States	RT-PCR (plasma pool of 96 samples) with 95% LOD 18.6 IU/mL	50765	0.022%	N/A	(<10 to 3080)
Stramer et al [68], 2013	United States	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	18829	0.011%	N/A	14 IU/mL
Xu et al [69], 2013	United States	RT-PCR (plasma pool of 7 to 8 samples) with 95% LOD 200 IU/mL and nested PCR with 95% LOD 400 IU/mL	1939	N/A	N/A	N/A
Baylis et al [53], 2012	United States	RT-PCR (plasma pool of 96 samples) with 95% LOD 250 IU/mL	51075	N/A	N/A	N/A
Wen et al [70], 2018	China	RT-PCR on individual plasma	5345	0.281%	N/A	N/A
Tsoi et al [71], 2019	Hong Kong	RT-PCR with 95% LOD 7.89 IU/mL	10000	0.023%	N/A	N/A
Katiyar H et al [72], 2018	India	RT-PCR (plasma pool of 3 samples) with LOD 100 IU/mL	1799	N/A	N/A	N/A
Minagi T et al [73], 2016	Japan	RT-PCR (plasma pool of 50 or 500 samples) with 95% LOD 152 IU/mL	620140	0.0058%	N/A	(<1.69 to 7.22 log10 copies/mL)
Intharasongkroh et al [74], 2019	Thailand	RT-PCR (plasma pool of 6 samples) with 95% LOD 53.5 IU/mL	30115	0.086%	N/A	N/A
Cheung CKM et al. Transfusion-transmitted hepatitis E

Others	Country	Methodological Details	Sensitivity	Specificity	Limit of Detection	Limit of Accuracy	RBC	RNA	RT-PCR	N/A	N/A
Head et al[75], 2017	Australia	TMA (plasma pool of 6 samples)	74131	1	0.0013%	N/A	180	N/A	N/A	N/A	N/A
Shrestha et al[76], 2017	Australia	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	14799	1	0.0068% (0.0002%-0.0376%)	3	15000	N/A	N/A	N/A	N/A
Hewitt et al[77], 2018	New Zealand	RT-PCR (plasma pool of 8 to 12 samples)	5000	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Maponga et al[78], 2020	South Africa	TMA assay on individual plasma with 95% LOD 7.9 IU/mL	10000	1	0.01%	3	79000	All donations from donors with active HEV infection were discarded			

CI: Confidence interval; FFP: Fresh frozen plasma; HEV: Hepatitis E virus; Ig: Immunoglobulin; LOD: Limit of detection; RBC: Red blood cells; RNA: Ribonucleic acid; RT-PCR: Real time polymerase chain reaction; TMA: Transcription mediated amplification.

corresponding viral load of < 25 IU/mL. High-sensitivity individual NAT can yield false-positive results[55]. Whether the identification of low-level HEV-positive donors translates into clinical significance and whether a single individual NAT is adequate remain undefined.

Antibodies

In addition to direct detection of HEV RNA, another important indirect assessment of HEV burden is the prevalence of anti-HEV IgM and IgG in blood donors (Table 3)[45, 46,54-56,58,59,61,63,65,68,69,71,72,77,87-124]. HEV IgG prevalence increases with age which likely represents the cumulative effect of HEV exposure over a lifetime, especially as IgG antibodies can persist for decades[81]. The absence of detectable antibodies in donors was related to an increased risk of transfusion transmission of HEV[64]. However, the presence of anti-HEV IgG may not always be protective as multiple HEV reinfections could occur despite pre-existing antibodies[125]. Various HEV strains in serum are capable of replication in cell culture and generate infectious particles in the culture supernatant despite the coexistence of antibodies[126]. Anti-HEV IgM could be used to detect recent infection yet it failed to identify infected donors during the window period. For example, a meta-analysis of data from 28 countries found that only 26.6% of viremic blood units had positive anti-HEV antibodies[127]. In another study by Tedder et al[128], a significant portion of viremic individuals (n = 57/79) were seronegative at the time of donation. Anti-HEV IgM sometimes exhibits unexpectedly long persistence for up to 3 years after a self-limiting acute hepatitis E episode[129]. Only a minority of anti-HEV IgM-positive donors have detectable RNA[58,93,103,109]. All these findings suggest that detection of anti-HEV IgG or IgM alone may not provide effective screening of HEV in blood donors.
Table 3 Seroprevalence of hepatitis E in blood donors

Ref.	Country	Number of donations screened	Assay used	Number of samples positive for HEV IgG antibodies	Anti-HEV IgG prevalence (95%CI)	Number of samples positive for HEV IgM antibodies	Anti-HEV IgM prevalence (95%CI)	Number of samples positive for HEV RNA in anti-HEV IgM positive	Viral load, IU/mL	Genotype
Europe										
Fischer et al[45], 2015	Austria	1203 (from HEV RNA negative donors)	Wantai	163	13.55% (11.6%-15.5%)	N/A	N/A	0	N/A	N/A
Vercouter et al [46], 2019	Belgium	356 (from HEV RNA negative donors)	Wantai	31	8.71% (6.20%-12.10%)	0	N/A	0	N/A	N/A
Miletić et al[57], 2019	Croatia	1036	3 commercial ELISA assays were used, only findings with highest prevalence are shown	209	20.17%	46	4.44%	0	N/A	N/A
Holm et al[88], 2015	Denmark	504	In-house NIH assay	54	10.7% (8.2%-13.7%)	N/A	N/A	N/A	N/A	N/A
Dimeglio et al [69], 2018	France	300	Wantai	23	7.7% (4.9%-11.3%)	2	0.6% (0.1%-2.4%)	0	N/A	N/A
Juhl et al[90], 2013	Germany	1019	RecomWell assay and Western blot	69	6.8% (5.3%-8.3%)	N/A	N/A	N/A	N/A	N/A
Dalekos et al [91], 1998	Greece	3016	Abbott assay and Western blot	8	0.27%	0	N/A	N/A	N/A	N/A
O'Riordan et al [54], 2016	Ireland	1076	Wantai	57	5.3% (4.0%-6.8%)	2	0.19%	0	N/A	N/A
Sprefico et al [55], 2020	Italy	767	DiaPro	52	6.8% (5.1%-8.8%)	0	N/A	0	N/A	N/A
Spada et al[56], 2018	Italy	10011	Wantai	869	8.7% (8.14%-9.25%)	46	0.4% (0.34%-0.61%)	0	N/A	N/A
De Sabato et al [92], 2017	Italy	170	Bio-Chain Institute and Western blot	15	8.82%	3	1.76%	0	N/A	N/A
Lucarelli et al [93], 2016	Italy	313	Wantai	153	48.9% (43%-54%)	2	0.6% (0.08%-2.3%)	1	100	3
Puttini et al[94], 2015	Italy	132	EIAGen HEV IgG kit	12	9.1%	N/A	N/A	N/A	N/A	N/A
Author(s)	Country	Lab	Sample Size	Prevalence	Methods	Anti-HEV	Range	Titer	Sensitivity	Specificity
--------------------------	-----------	-------	-------------	-------------	--------------------------------------	----------------	-------	-------	-------------	-------------
Hogema et al [95], 2014	Netherlands	Wantai	513	11.31%	N/A	N/A	N/A	N/A	N/A	N/A
Slot et al [58], 2013	Netherlands	Wantai	5239	26.7%	49	0.94%	4	N/A	Range: < 25 to 3700	N/A
Grabarczyk et al [59], 2018	Poland	Wantai	3079	43.52%	39	1.27%	N/A	N/A	N/A	N/A
Sauleda et al [61], 2015	Spain	Wantai	1082	19.96%	13	1.20%	0	N/A	N/A	N/A
Wantai										
Mateos et al [96], 1999	Spain	Abbott assay and Western blot	34	3.9%	0	N/A	N/A	N/A	N/A	N/A
Niederhauser et al [97], 2018	Switzerland	Wantai	3609	20.4%	737	4.9%	N/A	N/A	N/A	N/A
Kaufmann et al [98], 2011	Switzerland	Wantai	550	4.9%	27	N/A	N/A	N/A	N/A	N/A
Thom et al [63], 2018	United Kingdom	Wantai	1714	6.1%	104	5.0%-7.3%	N/A	N/A	N/A	N/A
Cleland et al [65], 2013	United Kingdom	Wantai	1559	4.7%	73	3.6%-5.8%	0	N/A	N/A	N/A
Beale et al [99], 2011	United Kingdom	Wantai	262	11.8%	31	1.5%	0	N/A	N/A	N/A

North America

| Zafullah et al [100], 2018 | United States | Wantai | 5040 (from HEV RNA negative donor) | 11.29% | 146 | 2.90% | 0 | N/A | N/A |
| MP Biomedicals | 10.65% | 93 | 1.85%
| Wantai | 12.28% | 34 | 0.67%
| Wantai | 7.3% | 26 | 0.58% (0.39%-0.85%)
| Wantai | 18.8% | 8 | 0.4% (0.1%-0.7%)
| Wantai | 10% | 19 | 4.75%
| Wantai | 11.3% | 8 | 2.0% | 0 | N/A | N/A |

South America
Di Lello et al [101], 2020
Bangueses et al [102], 2020
Asia

Chen et al[104], 2019
Wen et al[70], 2018
Wang et al[105], 2017
Ma et al[106], 2015
Ren et al[107], 2014
Zhuang et al[108], 2014
Tsoi et al[71], 2019
Tripathy et al[109], 2019
Katiyar et al[72], 2018
Gajjar et al[110], 2014
Parsa et al[111], 2016
Hesamizadeh et al[112], 2016
Naeimi et al[113], 2015
Ehteram et al[114], 2013
Taremi et al[115], 2007
Takeda et al[116], 2010
Shrestha et al[117], 2019
Authors

Nasrallah et al
Jupattanasin et al
Africa
Traoré et al
Ibrahim et al
Meldal et al
Lopes et al
Ben-Ayed et al
Others
Hewitt et al

ALT: Alanine aminotransferase; CI: Confidence interval; DSI: Diagnostic Systems Incorporated; ELISA: Enzyme-linked immunosorbent assay; HEV: Hepatitis E virus; NIH: National Institutes of Health.

Geographical variation, racial differences, and diverse study methodology and laboratory techniques all contribute to differences in HEV seroprevalence. More than one-third of donors had evidence of past HEV infection in Poland, India, Nepal and Burkina Faso[59,72,117,120]. Lucarelli et al[93] reported an unexpectedly high prevalence (48.9%) of anti-HEV IgG among 313 donors in central Italy. Eating raw dried pig liver sausage was the only independent risk factor for HEV IgG in their study, but the authors speculated that the uncontrolled expansion of the wild boar population had resulted in contamination of the soil and watercourses for people living in rural areas, and this may also have also contributed to the high prevalence of HEV[93].

Caution is needed when interpreting the HEV serology results because commercial kits for serological detection show marked variation in sensitivity and specificity. Despite the relatively high sensitivity of the IgM assay, the sensitivity of IgG detection kits is highly dependent on a patient’s immune status, being 80% to 90% in immunocompetent individuals, but falling dramatically to 15% to 45% in immunocom-
promised patients[130]. In a meta-analysis conducted in Europe, the pooled anti-HEV IgG seroprevalence rates determined by different commercial assays showed large variability with reported seroprevalence rates ranging from 2% to 17%[131]. Poor concordance of test results between the Wantai, Dia.Pro and MP Diagnostics HEV enzyme-linked immunosorbent assays (ELISA) were observed[132,133]. This may partly explain the broad ranges of anti-HEV IgG prevalence (5.3% to 48.9%) reported in Italy[55,56,92-94]. In contrast, most studies conducted in China used the Wantai assay and revealed a similar seroprevalence of around 20% to 30%. This assay is believed to be more sensitive than other commercial assays in detecting anti-HEV IgG[134,135].

TRANSFUSION-TRANSMITTED HEPATITIS E

HEV transmission via transfusion has been reported since 2004[136] and there has been increasing recognition of the risk of transmitting HEV by transfusion in recent years. Cases of TT-HEV are shown in Table 4[137-150]. Identical genomic sequences were identified in most infected patients and blood donors. Table 4 Likely only represents the tip of the iceberg as other probable or possible cases have been reported in the literature[151,152]. At the same time, patients with mild symptoms of hepatitis E may have gone undiagnosed. Physicians should stay vigilant for HEV infection in patients who have received a blood transfusion.

Although blood components that contain larger plasma volumes, principally frozen plasma and platelet components, are believed to transmit HEV more readily [64], a number of TT-HEV cases associated with red blood cell transfusion have also been described[138,140,141,143,144,148-150]. Red blood cell transfusion was a significant risk factor for HEV seropositivity in patients on hemodialysis in Croatia[153]. Twenty percent (n = 8/40) of multiply transfused thalassemia patients were anti-HEV IgG positive compared with 11.0% (n = 10/91) in blood donors[154]. In contrast, a study in Iran found anti-HEV antibodies in only 1.67% of patients with thalassemia, suggesting a low rate of TT-HEV in that country[155]. Results from these two studies in thalassemia patients were limited by the small sample size. Ankcorn et al[156] analyzed 1591 patients with hematologic malignancy and found that the more transfusions of non-HEV screened blood products the patients had received, the higher their likelihood of being IgG seroreactive was, suggesting HEV acquisition via transfusion in these patients.

A study by Hewitt et al[64] indicated that a viral concentration of between 407 and 257039 IU/mL in blood products was associated with TT-HEV, and that a high viral load in donors rendered infection more likely (P < 0.0001). However, this may not be true in immunocompromised patients. In a systematic review, Dreier et al[50] calculated the median transfused viral load in HEV-infected and non-infected immunocompromised patients. Although the transfused viral load was higher in the infected than the non-infected individuals (4.80 × 10^4 IU vs 1.55 × 10^4 IU), the between-group difference was not statistically significant (P = 0.1086)[50]. A potential reason for this finding is that a low viral concentration (150 IU/mL) of the blood component could already be infectious[140].

Most cases of TT-HEV occur in immunocompromised recipients, such as patients with hematologic malignancies, or recipients of solid organ or hematopoietic stem cell transplants. However, patients on simple immunosuppressants like corticosteroids and cyclosporine or even immunocompetent individuals are also at risk[157]. Massive transfusion increased the risk of HEV transmission in an immunocompetent trauma patient[158]. Spontaneous resolution, viral eradication by immunosuppressant reduction and/or ribavirin are possible[159] but occasionally there are cases which have progressed into chronic hepatitis, liver cirrhosis or multi-organ failure. Transfusion recipients are more vulnerable to chronic liver injury than the general population as a result of foodborne infection[140]. More than 60% (n = 56/85) of solid organ transplant recipients infected with HEV developed chronic hepatitis, with tacrolimus use as an independent predictive factor[160]. Pas et al[161] screened 1200 solid-organ transplant recipients in the Netherlands for HEV RNA and identified 12 patients with HEV infection. Nine of these 12 patients had been treated with a tacrolimus-based regimen postoperatively. In liver transplant recipients, graft hepatitis with rapid histological disease progression and requirement of re-transplantation due to liver cirrhosis has been reported[162,163]. The rapid progression of HEV infection to advanced fibrosis and cirrhosis has also been observed in individuals receiving kidney or heart transplants[33]. In 50 patients with hematologic malignancy and clinically
Study	Number of patients	Comorbidity	Blood component received (n)	Viral load of transfused blood product IU/mL	Genotype	Treatment	Outcome
Okano et al [137], 2020	1	AML on chemotherapy	Plt	N/A	3b	Nil	Spontaneous resolution and developed HEV antibodies after cessation of chemotherapy for AML
Gallian et al [138], 2019	23	Solid organ transplant, n = 9; allogeneic hematopoietic stem cells transplant, n = 4; hematologic malignancies, n = 5; immunosuppressant, n = 2; immunocompetent, n = 3	RBC n = 7; apheresis Plt n = 3; whole blood-derived pooled Plt n = 6; FFP n = 7	Ranged from 1.14 × 10^3 to 31 × 62.10	3a, n = 1; 3c, n = 4; 3d, n = 16; 3e, n = 1; 4d, n = 1	Ribavirin, n = 15	Acute HEV infection, n = 8; spontaneous resolution, n = 4; ribavirin treatment, n = 3; immunosuppressant reduction, n = 1; chronic HEV infection, n = 14, all immunosuppressed; resolution with ribavirin, n = 10; resolution with immunosuppressant reduction, n = 4; One solid organ transplant recipient did not clear HEV infection despite ribavirin and died of multiorgan failure
Ledesma et al [139], 2019	2	Allogeneic BMT, n = 1; liver transplant, n = 1	Plt	3 × 10^4	3e	Ribavirin, n = 1	The patient received BMT remained HEV-infected and IgM/IgG-negative until death; the patient with liver transplant was treated successfully with a course of ribavirin
Satake et al [140], 2017	19	Hematologic malignancies, n = 6; organ transplant, n = 2; systemic disease, n = 8; no major comorbidity, n = 3	RBC n = 10; Plt n = 6; FFP n = 3	Ranged from 1.5 × 10^7 to 5.3 × 10^8	4, n = 2	N/A	Two patients with malignant lymphoma and two who had received liver transplant developed chronic hepatitis E; the two liver transplant recipients were successfully cleared of HEV by ribavirin
Lhomme et al [141], 2017	3	Solid organ transplant	One patient received RBC; one patient received RBC and Plt; one patient received Plt and FFP	Ranged from 3.6 to 8.2 log IU	3, n = 1; 3f, n = 2	N/A	N/A
Yamazaki et al [142], 2017	2	Hematologic malignancies treated with chemotherapy	N/A	N/A	3b	N/A	Did not become chronic hepatitis E
Belliere et al [143], 2017	1	Heart transplant	RBC	1430 copies/mL	3	Ribavirin	Died from multi-organ failure despite treatment
Riveiro-Barciela et al [144], 2017	1	Immunocompetent, admitted for disseminated infection	RBC	75000	3	Nil	Spontaneous resolution
Hoad et al [145], 2017	1	Liver transplant	FFP	947	3	Ribavirin	Resolved with treatment
Matsui et al [146], 2015	1	AMI post CABG with hemorrhagic cardiac tamponade	Plt	10^6 copies	3	Nil	Spontaneous resolution
Huzly et al [147], 2013	1	Immunocompromised	Apheresis Plt	30888-37273	3f	N/A	N/A
Coilly et al [148], 2013	1	Liver transplant	RBC	3.5 log_{10}	3c	Ribavirin	Resolved with treatment
Boxall et al [149], 2006	1	Lymphoma on chemotherapy	RBC	N/A	3	Nil	Spontaneous resolution
ALT: Alanine aminotransferase; AMI: Acute myocardial infarction; AML: Acute myeloid leukemia; BMT: Bone marrow transplant; CABG: Coronary artery bypass graft; FFP: Fresh-frozen plasma; HEV: Hepatitis E virus; Ig: Immunoglobulin; Plt: Platelet concentrates; RBC: Red blood cell.

TREATMENT

The management strategy for HEV infection should be determined by the clinical presentation. Currently, there is limited information in the published literature that describes the clinical features of TT-HEV, or the optimal approach to management. Acute TT-HEV infections are usually subclinical or mild, with no severe or fulminant cases reported[140]. Therefore, most acute HEV infections should be treated conservatively, while waiting for spontaneous clearance, although a short course of ribavirin may also be considered. In 21 patients with acute HEV infection who were at high risk of liver failure, receiving immunosuppressive therapy for an autoimmune disease or undergoing chemotherapy, a short course of ribavirin for up to 3 mo was associated with rapid virological response and normalization of liver enzymes[167].

The current practice for management of chronic HEV infection is mainly based on observational data[18]; Figure 1 shows a proposed algorithm for management. In patients who are on immunosuppressants, the first-line intervention should be a dose reduction or discontinuation of the immunosuppressive drug[168,169]. In solid organ transplant recipients, reducing the dose of immunosuppressive therapies that principally target T-cells can achieve HEV clearance in nearly one third of patients[160]. Most immunosuppressive drugs such as cyclosporine and tacrolimus increase HEV replication in vitro; mycophenolate mofetil is the only immunosuppressant agent demonstrated to have an anti-viral effect[170].

If modification of the immunosuppressant regimen is not possible or is unsuccessful, pharmacological agents such as ribavirin and/or pegylated interferon-alpha (peg-IFN) can be used[171]. In a meta-analysis that included 395 patients with chronic hepatitis E, ribavirin monotherapy for a median of 3 mo achieved sustained virological response (SVR) in 76% of patients[172]. The reported dose of ribavirin in the literature ranged from 29 to 1200 mg/d, and the duration from 1 to 18 mo. Data on the optimal treatment regimen are needed[173]. HEV RNA should be assessed in the serum and in the stool before treatment discontinuation[169]. A second course of ribavirin for 6 mo...
Figure 1 Recommended algorithm for management of transfusion-transmitted hepatitis E.

Acute transfusion-transmitted hepatitis E

- Monitor clinical symptoms, liver function and HEV RNA
- Reduce immunosuppressant if possible

Severe hepatitis with liver dysfunction

- Consider early ribavirin treatment

Preexisting chronic liver disease, receiving chemotherapy/immunosuppressive therapy

- Await for spontaneous clearance

- Yes
 - No treatment needed

- No
 - Chronic HEV infection

Ribavirin for 3 mo

Refactory to or intolerant of ribavirin

- HEV RNA in serum and stool positive

Ribavirin for 6 mo

- Persistent HEV infection or relapse

- HEV clearance

Pegylated interferon-alpha in patients with hematologic disorders, receiving hemodialysis, HIV, liver or kidney transplant recipients

can be attempted in cases of treatment failure\[172\]. HEV RNA concentrations decrease within the first week of initiating ribavirin therapy, and a greater reduction in viral load on day 7 is an independent predictor of SVR\[174\]. Ribavirin failure has been linked to the presence of certain single nucleotide variants (SNVs) and in-frame insertions in the hypervariable region of open reading frame (ORF) 1 in the HEV genome\[175\].

For those who are refractory to, or intolerant of, ribavirin, peg-IFN can be considered. Its efficacy has been documented in patients with hematologic disorders, patients receiving hemodialysis, and in combination with ribavirin in patients with HIV\[176-178\]. Close monitoring is needed if it is used in transplant recipients because of an increased risk of acute humoral and cellular rejection\[179,180\]. Peg-IFN was thought to be safe only in liver transplant recipients until recent case reports described its successful use in a kidney transplant recipient\[181-183\].

Sofosbuvir is a nucleotide analog shown to decrease replication of HEV-3 in vitro\[184\]. However, in clinical studies, only modest antiviral activity was observed and SVR was not achieved\[185-187\]. Rescue treatment for patients who are not eligible for, or not responding to, ribavirin and/or peg-IFN remains an unmet need.

HOW TO REDUCE TRANSFUSION-TRANSMITTED HEPATITIS E

The background risk of foodborne HEV transmission to both donors and recipients of blood products is not negligible. The transfusion-related risk of infection only exceeds the annual dietary risk when more than 13 individual donor components are transfused\[188\]. Strategies to reduce de novo infection, such as modifying eating habits and eliminating HEV from pigs and other animals that are used for food production are essential\[189\]. The one available vaccine (HEV 239, Hecolin, Xiamen, China) is licensed only in China, and has yet to play a fundamental role in global outbreaks or pandemic control\[190\]. Nonetheless, the transmissibility and disease phenotype may not be the same for a person who acquires the virus orally and a person who gets infected intravenously, as there may be some protection provided by the acidic environment of the stomach and the mucosal barrier in the gut\[191\]. The infectivity of the non-enveloped form is different to that of enveloped HEV\[9\]. Data reporting
outcomes of recipients of HEV-infected blood products are sparse[47,49,50,60,64]. Policies on screening HEV in blood products differ between countries. Universal screening was adopted in the United Kingdom, Ireland, and the Netherlands. Germany and France implemented targeted screening of donated plasma intended for use in high-risk patients[192]. In Japan, the use of nucleic acid-based screening is limited to Hokkaido[193]. Blood donors are not routinely tested for HEV infection in China including Hong Kong[70,71,194]. There has been much debate on mandatory HEV screening in blood donations[195]. Key questions, such as whether or not to screen, which laboratory assay to use, which donors to screen (universal or selective screening), and which types of blood components to screen should be assessed based on risk assessment, resource availability, health economics, and political or other influences. The answers may vary considerably by geographical location[169,196]. In areas where HEV is highly endemic, most donors and/or recipients have probably been exposed to HEV previously and would have positive IgG antibodies. Therefore, the decision on serological screening should also take into consideration the prevalence of HEV infection in that particular region.

All donors should answer a questionnaire about symptoms of clinical hepatitis and potential exposure to HEV prior to blood donation. Donation should be deferred in any donors with a history of clinical hepatitis[197]. Neither alanine aminotransferase (ALT) nor anti-HEV IgM testing correlate with the presence of HEV RNA, supporting the use of NAT for screening of blood donations[60,61,105]. A simulation study by Kampf et al[198] reported that testing for HEV RNA by NAT with a pool size of 96, and a 95% limit of detection of 20 IU/mL will result in an 80% reduction in expected HEV transmissions as well as of consequent chronic infections with severe complications. The risk of transmission could be reduced by 90% in NAT using a mini-pool of 24 samples[198].

If opting for selective screening instead of universal screening, a clear definition of at-risk patients is warranted[199]. Targeted screening should be contemplated for blood components that will be supplied to transplant recipients, or patients with hematologic malignancies or chronic liver disease, as these individuals are at high risk of developing fulminating hepatitis, acute on chronic liver failure, or chronic hepatitis. However, it is not yet clear whether patients with rheumatologic diseases, those on low-intensity immunosuppression, or elderly individuals should only receive HEV-negative blood products. A multicenter retrospective study in Europe including 21 rheumatology and internal medicine patients found that patients with rheumatoid arthritis who were receiving methotrexate or biologics were at risk of chronic hepatitis E infection[200]. However, another study in France did not find worse hepatitis E severity or increased risk of chronicity in 23 patients with inflammatory arthritis treated with immunosuppressants[201].

Patients co-infected with HIV with CD4+ count < 200/mm³ are at risk for persistent HEV infection[29]. In HIV patients with low CD4+ count, anti-HEV IgG seroconversion was delayed until immune reconstitution occurred[202]. A recent meta-analysis found that the HEV RNA positivity rate was significantly higher in transplant recipients than in HIV-positive patients [1.2% (95%CI: 0.9-1.6) vs 0.39% (95%CI: 0.2-0.7); P = 0.0011], possibly due to better immune status in the HIV-positive individuals using anti-retroviral therapy[203].

HEV-1 and -2 infections can take a fulminant course in pregnancy, resulting in liver failure, membrane rupture, spontaneous abortions, and stillbirths[204]. HEV-3 infection in pregnancy appears to be less virulent without significant maternal, fetal, or neonatal complications[205-207]. During pregnancy, a reduced cellular immunity and a high level of steroid hormones, in particular estrogen, progesterone, and human chorionic gonadotropin, influence viral replication/expression and possibly explain the disease severity[208]. The immune response could be influenced by HEV genotype, translating into different outcomes[209]. Ribavirin and peg-IFN are contraindicated in pregnancy due to concerns of teratogenicity[210]. Further studies are needed to clarify the risk of transmission of HEV to pregnant women via blood transfusion however, in view of the potentially serious disease course and absence of a safe treatment, pregnant women are a priority group for HEV-negative blood products.

Roth et al[67] evaluated the safety of plasma-derived medicinal products (PDMP) and found a very low prevalence of HEV RNA (0.002%) in plasma donors. Since viral reduction methods are used in the manufacturing processes of PDMP, these data do not support routine screening of all plasma pools intended for producing PDMP. Currently there is a lack of evidence to suggest that human serum albumin or coagulation factor concentrates are a major source of HEV infection[211,212].
The cost effectiveness of HEV screening of blood donations was analyzed in the Netherlands. Screening of whole blood donations in pools of 24 would prevent 4.52 of the 4.94 TT-HEV infections annually at a cost of approximately €310000 (Euro) per prevented chronic case. The estimated cost per incurable case prevented was 10-fold higher. Costs could potentially be reduced by 85% if only the blood products intended for use by immunocompromised patients were screened. Additional costs for selective screening may arise for logistic reasons and a possible increase in the number of blood products that expire before use. They concluded that preventing HEV transmission by screening of blood donations appears not excessively expensive compared with other blood-screening measures but the impact on disease burden may be small as only a minority of all HEV cases are transmitted by blood transfusion.[213]. Another economic analysis performed in North America found a very low estimated risk of TT-HEV infection risk leading to severe liver disease. When compared with no screening, the costs were $2.68 (USD) per component for a selective screening approach, and $6.68 per component for universal screening. The respective costs per quality-adjusted life-year gained were $225546 and $561810, respectively, which exceeded the threshold for what is considered as "cost-effective"[66].

In addition to screening, various pathogen reduction methods have been proposed to reduce risk of TT-HEV. Solvent/detergent treatment could not eliminate non-enveloped HEV in plasma[214]. Non-enveloped HEV is also resistant to the Intercept method, which combines a synthetic psoralen amotosalen HCl treatment with ultraviolet A light illumination to block the replication of DNA and RNA[215]. However, substantial viral reduction has been demonstrated during the manufacturing process of plasma products using immunosorbent chromatography, nanofiltration, cold ethanol fractionation and heat treatment[216]. Anti-HEV antibodies enhanced HEV removal by nanofiltration[217]. Furthermore, ultraviolet C light provided effective inactivation of HEV in platelet concentrates[218].

CONCLUSION

To conclude, TT-HEV is gaining attention worldwide. Although the overall prevalence of viremic blood donations is low, HEV can cause sinister consequences in immunocompromised recipients. Future studies are needed to define the incidence of transmission through transfusion, clinical features, outcomes, and prognosis. The decision on a screening policy in asymptomatic blood donors should be based on local risk assessment and health economics.

REFERENCES

1 Khuroo MS. Chronic liver disease after non-A, non-B hepatitis. Lancet 1980; 2: 860-861 [PMID: 6107528]
2 World Health Organization. Hepatitis E Fact sheet [DOI: 10.1097/grh.0000000000000052]
3 Li P, Liu J, Li Y, Su J, Ma Z, Bramer WM, Cao W, de Man RA, Peppelenbosch MP, Pan Q. The global epidemiology of hepatitis E virus infection: A systematic review and meta-analysis. Liver Int 2020; 40: 1516-1528 [PMID: 32281721 DOI: 10.1111/liv.14468]
4 Wallace SJ, Swann R, Donnelly M, Kemp L, Guacci J, Murray A, Spoor J, Lin N, Miller M, Dalton HR, Hussaini SH, Gunson R, Simpson K, Stanley A, Fraser A. Mortality and morbidity of locally acquired hepatitis E in the national Scottish cohort: a multicentre retrospective study. Aliment Pharmacol Ther 2020, 51: 974-986 [PMID: 32285976 DOI: 10.1111/apt.15704]
5 Berglov A, Hallager S, Weis N. Hepatitis E during pregnancy: Maternal and foetal case-fatality rates and adverse outcomes-A systematic review. J Viral Hepat 2019; 26: 1240-1248 [PMID: 31095813 DOI: 10.1111/jvh.013129]
6 Purdy MA, Harrison TJ, Jameel S, Meng XJ, Okamoto H, Van der Poel WHM, Smith DB; Ictv Report Consortium. ICTV Virus Taxonomy Profile: Hepeviridae. J Gen Virol 2017; 98: 2645-2646 [PMID: 29022866 DOI: 10.1099/jgv.0.009940]
7 Primadaharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11 [PMID: 31109076 DOI: 10.3390/v11050456]
8 Sridhar S, Yip CC, Wu S, Chew NF, Leung KH, Chan JF, Zhao PS, Chan WM, Poon RW, Tsai HW, Cai JP, Chan HS, Leung AW, Tse CW, Zee JS, Tsang OT, Cheng VC, Lau SK, Woo PC, Tsang DN, Yuen KY. Transmission of Rat Hepatitis E Virus Infection to Humans in Hong Kong: A Clinical and Epidemiological Analysis. Hepatology 2021; 73: 10-22 [PMID: 31960460 DOI: 10.1002/hep.31138]
9 Yin X, Ambardekar C, Lu Y, Feng Z. Distinct Entry Mechanisms for Nonenveloped and Quasi-Envelopec Hepatitis E Viruses. J Virol 2016; 90: 4232-4242 [PMID: 26865708 DOI:...
Himmelbach K, Bender D, Hildt E. Life cycle and morphogenesis of the hepatitis E virus. *Emerg Microbes Infect* 2018; 7: 196 [PMID: 30498191 DOI: 10.1038/s41426-018-0198-7]

Kenney SP, Meng XJ. Hepatitis E Virus Genotype Structure and Replication Strategy. *Cold Spring Harb Perspect Med* 2019; 9 [PMID: 29530948 DOI: 10.1101/cespereview.c031724]

Kmus B, Wierzbka T, Krain L, Nelson K, Labrique AB. Epidemiology of hepatitis E in low- and middle-income countries of Asia and Africa. *Semin Liver Dis* 2013; 33: 15-29 [PMID: 23564386 DOI: 10.1055/s-0033-1338111]

Khuoro MS, Khuoro MS. Hepatitis E: Discovery, global impact, control and cure. *World J Gastroenterol* 2016; 22: 7030-7045 [PMID: 27610014 DOI: 10.3748/wjg.v22.i31.7030]

Rein DB, Stevens GA, Theaker J, Wiersma ST. The global burden of hepatitis E virus genotypes 1 and 2 in 2005. *Hepatology* 2012; 55: 988-997 [PMID: 22121109 DOI: 10.1002/hep.25505]

Hakze-van der Honing RW, van Coillie E, Antonis AF, van der Poel WH. First isolation of hepatitis E virus genotype 4 in Europe through swine surveillance in the Netherlands and Belgium. *PLoS One* 2011; 6: e22673 [PMID: 21829641 DOI: 10.1371/journal.pone.0022673]

Garbuglia AR, Scognamiglio P, Petrosillo N, Mastroianni CM, Sordillo P, Gentile D, La Scala P, Girardi E, Capobianchi MR. Hepatitis E virus genotype 4 outbreak, Italy, 2011. *Emerg Infect Dis* 2013; 19: 110-114 [PMID: 23260079 DOI: 10.3201/eid1901.120983]

Donnelly MC, Scobie L, Crossan CR, Dalton H, Hayes PC, Simpson KJ. Review article: hepatitis E - a concise review of virology, epidemiology, clinical presentation and therapy. *Aliment Pharmacol Ther* 2017; 46: 126-141 [PMID: 28449246 DOI: 10.1111/apt.14109]

Goel A, Aggarwal R. Hepatitis E: Epidemiology, Clinical Course, Prevention, and Treatment. *Gastroenterol Clin North Am* 2020; 49: 315-330 [PMID: 32389365 DOI: 10.1016/j.gtc.2020.01.011]

Kamar N, Izopet J, Pavio N, Aggarwal R, Labrique A, Wedemeyer H, Dalton HR. Hepatitis E virus infection. *Nat Rev Dis Primers* 2017; 3: 17086 [PMID: 29154369 DOI: 10.1038/nrdp.2017.36]

Dalton HH, Stableforth W, Thuraiarajah P, Hazeldine S, Remnarace R, Usama W, Farrington L, Hamad N, Sieberhagen C, Ellis V, Mitchell J, Hussaini SH, Banks M, Ijaz S, Bendall RP. Autochthonous hepatitis E virus infection in the UK: a concise review of virology, epidemiology, clinical presentation and therapy. *Aliment Pharmacol Ther* 2017; 46: 126-141 [PMID: 28449246 DOI: 10.1111/apt.14109]

Goel A, Aggarwal R. Hepatitis E: Epidemiology, Clinical Course, Prevention, and Treatment. *Gastroenterol Clin North Am* 2020; 49: 315-330 [PMID: 32389365 DOI: 10.1016/j.gtc.2020.01.011]

Kamar N, Izopet J, Pavio N, Aggarwal R, Labrique A, Wedemeyer H, Dalton HR. Hepatitis E virus infection. *Nat Rev Dis Primers* 2017; 3: 17086 [PMID: 29154369 DOI: 10.1038/nrdp.2017.36]

Dalton HH, Stableforth W, Thuraiarajah P, Hazeldine S, Remnarace R, Usama W, Farrington L, Hamad N, Sieberhagen C, Ellis V, Mitchell J, Hussaini SH, Banks M, Ijaz S, Bendall RP. Autochthonous hepatitis E virus infection in the UK: a concise review of virology, epidemiology, clinical presentation and therapy. *Aliment Pharmacol Ther* 2017; 46: 126-141 [PMID: 28449246 DOI: 10.1111/apt.14109]

Haffar S, Shalimar, Kaur RJ, Wang Z, Prokop LJ, Murad MH, Bazerbachi F. Acute liver failure caused by hepatitis E virus genotype 3 and 4: A systematic review and pooled analysis. *Liver Int* 2018; 38: 1965-1973 [PMID: 29675889 DOI: 10.1111/liv.13861]

Smith DB, Simmons P. Hepatitis E virus and fulminant hepatitis--a virus or host-specific pathology? *Liver Int* 2015; 35: 1334-1340 [PMID: 24974734 DOI: 10.1111/liv.12629]

Pradas M, López-López P, Rivero A, Rivero-Juarez A. Role of Hepatitis E Virus Infection in Acute-on-Chronic Liver Failure. *Biomed Res Int* 2018; 2018: 9098535 [PMID: 30069045 DOI: 10.1155/2018/9098535]

Radha Krishna Y, Saraswat VA, Das K, Himanshu G, Yachha SK, Aggarwal R, Choudhuri G. Clinical features and predictors of outcome in acute hepatitis A and hepatitis B virus hepatitis on cirrhosis. *Liver Int* 2009; 29: 392-398 [PMID: 19267864 DOI: 10.1111/j.1478-3231.2008.01887.x]

Kamar N, Rostaing L, Legrand-Abgrall F, Izopet J. How should hepatitis E virus infection be defined in organ-transplant recipients? *Am J Transplant* 2013; 13: 1935-1936 [PMID: 23659713 DOI: 10.1111/ajt.12253]

Pischke S, Stiefel P, Franz B, Bremer B, Suneetha PV, Heim A, Ganzmueller T, Schluet J, Horn-Wichmann R, Raupach R, Darmredde M, Scheibner Y, Taubert R, Haverich A, Manns MP, Wedemeyer H, Bara CL. Chronic hepatitis e in heart transplant recipients. *Am J Transplant* 2012; 12: 3128-3133 [PMID: 22823202 DOI: 10.1111/j.1600-6143.2012.02400.x]

Ollier L, Tieudie N, Sanderson F, Heudier P, Giordanengo V, Fuzibet JG, Nicand E. Chronic hepatitis after hepatitis E virus infection in a patient with non-Hodgkin lymphoma taking rituximab. *Ann Intern Med* 2009; 150: 430-431 [PMID: 19230381 DOI: 10.7326/0003-4819-150-6-200903170-00026]

Dalton HH, Bendall RP, Keane FE, Tedder RS, Ijaz S. Persistent carriage of hepatitis E virus in patients with HIV infection. *N Engl J Med* 2009; 361: 1025-1027 [PMID: 19726781 DOI: 10.1056/NEJMoa0903778]

Sridhar S, Chan JFW, Yap DYH, Teng JLL, Huang C, Yip CCY, Hung IFN, Tang SCW, Lau SKP, Woo PCY, Yuen KY. Genotype 4 hepatitis E virus is a cause of chronic hepatitis in renal transplant recipients in Hong Kong. *J Viral Hepat* 2018; 25: 209-213 [PMID: 28984015 DOI: 10.1111/jvh.12799]

Wang Y, Chen G, Pan Q, Zhao J. Chronic Hepatitis E in a Renal Transplant Recipient: The First Report of Genotype 4 Hepatitis E Virus Caused Chronic Infection in Organ Recipient. *Gastroenterology* 2018; 154: 1199-1201 [PMID: 29432746 DOI: 10.1053/j.gastro.2017.12.028]

Owada Y, Oshio Y, Inagaki Y, Harada H, Fujiyama N, Kagawish N, Yasigawa T, Usui J, Akutsu N, Itabashi Y, Saito K, Watarai Y, Ichimaru N, Imamura R, Kyakuno M, Ide K, Shibuya Y, Okabe
Cheung CKM et al. Transfusion-transmitted hepatitis E

Y, Ono M, Sasaki K, Shiiose A, Yamagishi K, Ohnishi H, Nagashima S, Takahashi M, Yuzawa K, Okamoto H, Ohkohchi N. A Nationwide Survey of Hepatitis E Virus Infection and Chronic Hepatitis E in Heart and Kidney Transplant Recipients in Japan. Transplantation 2020; 104: 437-444 [PMID: 31205267 DOI: 10.1097/TP.0000000000002801]

Zhou X, de Man RA, de Knecht RJ, Metselaar HJ, Peppelenbosch MP, Pan Q. Epidemiology and management of chronic hepatitis E infection in solid organ transplantation: a comprehensive literature review. Rev Med Virol 2013; 23: 295-304 [PMID: 23813631 DOI: 10.1002/rmv.1751]

Mirazo S, Arbizu J. Hepatitis E and chronic liver damage in apparently immunocompetent individuals: Now what? Ann Hepatol 2019; 18: 539-540 [PMID: 31130468 DOI: 10.1016/j.ahep.2019.05.002]

Pretzer U, Böhm F, Longerich T, Seebach J, Heidary Navid M, Friemel J, Marques-Maggio E, Bawohl M, Heikenwalder M, Schirrmacher P, Dutkowski P, Clavien PA, Schemmer P, Schnitzler P, Gotthardt D, Müllhaupt B, Weber A. Molecular detection of hepatitis E virus (HEV) in liver biopsies after liver transplantation. Mod Pathol 2015; 28: 523-532 [PMID: 25412844 DOI: 10.1038/modpathol.2014.147]

Suneetha PV, Pischke S, Schlaphoff V, Grabowski J, Fytili P, Gronert A, Bremer B, Markova A, Jaroszewicz J, Bara C, Manns MP, Cornberg M, Wedemeyer H. Hepatitis E virus (HEV)-specific T-cell responses are associated with control of HEV infection. Hepatology 2012; 55: 695-708 [PMID: 22066345 DOI: 10.1002/hep.24738]

Borentain P, Colson P, Bolon E, Gauchez P, Cosso D, Gérolami R. Hepatocellular carcinoma complicating hepatitis E virus-related cirrhosis. Hepatology 2018; 67: 446-448 [PMID: 28873236 DOI: 10.1002/hep.29508]

Pischke S, Hartl J, Pas SD, Lohse AW, Jacobs BC, Van der Eijk AJ. Hepatitis E virus: Infection beyond the liver? J Hepatol 2017; 66: 1082-1095 [PMID: 27913223 DOI: 10.1016/j.jhep.2016.11.016]

Fousekis FS, Mitselos IV, Christodoulou DK. Extrahepatic manifestations of hepatitis E virus: An overview. Clin Mol Hepatol 2020; 26: 16-23 [PMID: 31601068 DOI: 10.3330/cmh.2019.0082]

Kamar N, Weclawski H, Guilbeau-Frugier C, Legrand-Abravanel F, Cointault O, Ribes D, Esposito L, Carade-Desangles I, Guittard J, Sallusto F, Muscari F, Peron JM, Alric L, Izopet J, Rostaing L. Hepatitis E virus and the kidney in solid-organ transplant patients. Transplantation 2012; 93: 617-623 [PMID: 22298032 DOI: 10.1097/TP.0b013e31824f14c]

Noble J, Jouve T, Malvezzi P, Rostaing L. Renal complications of liver diseases. Expert Rev Gastroenterol Hepatol 2018; 12: 1135-1142 [PMID: 30269605 DOI: 10.1080/17474124.2018.150984]

Kamar N, Marion O, Abravanel F, Izopet J, Dalton HR. Extrahepatic manifestations of hepatitis E virus. Liver Int 2016; 36: 467-472 [PMID: 27065692 DOI: 10.1111/liv.13037]

Liu H, Ma Y. Hepatitis E virus-associated Guillain-Barre syndrome: Revision of the literature. Brain Behav 2020; 10: e01496 [PMID: 31828968 DOI: 10.1002/brb3.1496]

Ripellino P, Pasi E, Melli G, Staedler C, Fraga M, Moradpour D, Sahli R, Aubert V, Martinetti G, Bilh F, Bernasconi E, Terzorioli Beretta-Piccoli B, Ceryy A, Dalton HR, Zehnder C, Mathis B, Zecca F, Disanto C, Kaelin-Lang A, Gobbi C. Neurologic complications of acute hepatitis E virus infection. Neurrol Neuroimmunol Neuroinflamm 2020; 7 [PMID: 31806684 DOI: 10.1212/NXI.0000000000000643]

Fischer C, Hofmann M, Danzer M, Hofer K, Kaar J, Gabriel C. Seroprevalence and Incidence of hepatitis E in blood donors in Upper Austria. PLoS One 2015; 10: e0119976 [PMID: 25751574 DOI: 10.1371/journal.pone.0119976]

Vercouter AS, Van Houtte F, Verhoye L, González Fraile I, Blanco L, Compernolle V, Meuleman P. Hepatitis E virus prevalence in Flemish blood donors. J Viral Hepat 2019; 26: 1218-1223 [PMID: 3194897 DOI: 10.1111/j.vlh.13161]

Harritsjoh LH, Holm DK, Saeknome SG, Jensen BA, Hogerna BM, Fischer TK, Midgley SE, Krog JS, Erikstrup C, Ullum H. Low transfusion transmission of hepatitis E among 25,637 single-donation, nucleic acid-tested blood donors. Transfusion 2016; 56: 2225-2232 [PMID: 27385646 DOI: 10.1111/trf.13700]

Gallian P, Lhomme S, Piquet Y, Sauné K, Abravanel F, Assal A, Tiberghien P, Izopet J. Hepatitis E virus infections in blood donors, France. Emerg Infect Dis 2014; 20: 1914-1917 [PMID: 25340881 DOI: 10.3201/eid2011.140516]

Westhölder D, Hiller J, Denzer U, Polywka S, Ayuk F, Rybczynski M, Horvatits T, Gundlach S, Blöcker J, Schulze Zur Wiesch J, Fischer N, Addo MM, Peine S, Göke B, Lohse AW, Lügetheinmann M, Pischke S. HEV-positive blood donations represent a relevant infection risk for immunosuppressed recipients. J Hepatol 2018; 69: 36-42 [PMID: 29551705 DOI: 10.1016/j.jhep.2018.02.031]

Dreier J, Knabbe C, Vollmer T. Transfusion-Transmitted Hepatitis E: NAT Screening of Blood Donations and Infectious Dose. Front Med (Lausanne) 2018; 5: 5 [PMID: 29450199 DOI: 10.3389/fmed.2018.00005]

Corman VM, Drexler JF, Eckerle I, Roth WK, Drosten C, Eis-Hubinger AM. Zoonotic hepatitis E virus strains in German blood donors. Vox Sang 2013; 104: 179-180 [PMID: 22913247 DOI: 10.1111/j.1423-0410.2012.01638.x]

Vollmer T, Diekmann J, Johne R, Eberhardt M, Knabbe C, Dreier J. Novel approach for detection of hepatitis E virus infection in German blood donors. J Clin Microbiol 2012; 50: 2708-2713
Hepatitis E virus: seroprevalence and frequency of viral RNA detection among US blood donors.

Hepatitis E virus infection in the Irish blood donor population. Transfusion 2016; 56: 2868-2876 DOI: 10.2807/1560-7917.es2016.18.10.1800386

Universal screening.

Transfusion 2016; 56: 722-728 DOI: 10.1111/trf.13402

Incidence and duration of hepatitis E virus infection in Dutch blood donors. Transfusion 2016; 56: 1245-1253 DOI: 10.1111/trf.14531

Silent hepatitis E virus infection in Dutch blood donors, 2011 to 2012. Euro Surveill 2013; 18 DOI: 10.2807/1560-7917.es2013.18.31.20550

Molecular and serological infection marker screening in blood donors indicates high endemicity of hepatitis E virus in Poland. Transfusion 2018; 58: 972-979 DOI: 10.1111/trf.12929

Hepatitis E Virus Infection in Blood Donors and Risk to Patients in the United States and Canada. Transfusion Med Rev 2019; 33: 139-145 DOI: 10.1016/j.tmrv.2019.05.017

Hepatitis E virus in blood donors and the necessity for screening. J Viral Hepat 2019; 26: 603-608 DOI: 10.1111/jvh.13296

Hepatitis E virus infection in the Irish blood donor population. Vox Sang 2015; 108: 283-289 DOI: 10.1111/vox.12056

Hepatitis E virus in blood donors, 2011 to 2012. Euro Surveill 2013; 18 DOI: 10.2807/1560-7917.es2013.18.31.20550

The prevalence and transmission study in southeast England. Vox Sang 2014; 55: 1766-1773 DOI: 10.1111/trf.12326

Estimated transfusion risk.

Transfusion-transmitted hepatitis E

Tracking visitors to your site Visit statistics
hepatitis E virus viremia and antibodies among healthy blood donors in India. *Indian J Gastroenterol* 2018; 37: 342-346 [PMID: 30156666 DOI: 10.1007/s12664-018-0880-7]

73 **Minagi T,** Okamoto H, Ikegawa M, Ideno S, Takahashi K, Sakai K, Hagiwara K, Yunoki M, Wakisaka A. Hepatitis E virus in donor plasma collected in Japan. * Vox Sang* 2016; 111: 242-246 [PMID: 27280485 DOI: 10.1111/vox.12422]

74 **Intharasongkroh D,** Thongmee T, Sa-Nguanmoo P, Klinfung S, Duang-In A, Wasitthaksarem R, Theamoolers A, Charoonrungsrit U, Oota S, Payungsoom S, Vongpusawad S, Chirawathorn C, Poovorawan Y. Hepatitis E virus infection in Thai blood donors. *Transfusion* 2019; 59: 1035-1044 [PMID: 30443992 DOI: 10.1111/trf.15041]

75 **Hoad VC,** Seed CR, Fryk JJ, Harley R, Flower RLP, Hogema BM, Kidy P, Faddy HM. Hepatitis E virus RNA in Australian blood donors: prevalence and risk assessment. *Vox Sang* 2017; 111: 614-621 [PMID: 28833229 DOI: 10.1111/vox.12559]

76 **Shrestha AC,** Flower RL, Seed CR, Keller AJ, Harley R, Chan HT, Hoad V, Warrillow D, Northill J, Holmberg JA, Faddy HM. Hepatitis E virus RNA in Australian blood donations. *Transfusion* 2016; 56: 3086-3093 [PMID: 27667133 DOI: 10.1111/trf.13799]

77 **Hewitt J,** Harte D, Sutherland M, Croucher D, Fouche L, Flanagan P, Williamson D. Prevalence of hepatitis E virus antibodies and infection in New Zealand blood donors. *NZ Med J* 2018; 131: 38-43 [PMID: 29389927]

78 **Maponga TG,** Lopes T, Cable R, Pistorius C, Preiser W, Andersson MI. Prevalence and risks of hepatitis E virus infection in blood donors from the Western Cape, South Africa. *Vox Sang* 2020; 115: 695-702 [PMID: 32597542 DOI: 10.1111/vox.12966]

79 **Wang M,** Fu P, Yin Y, He M, Liu Y. Acute, Recent and Past HEV Infection among Voluntary Blood Donors in China: A Systematic Review and Meta-Analysis. *PLoS One* 2016; 11: e0161089 [PMID: 27597991 DOI: 10.1371/journal.pone.0161089]

80 **Di Cola G,** Fantilli AC, Pisano MB, Ré VE. Foodborne transmission of hepatitis A and hepatitis E viruses: A literature review. *Int J Food Microbiol* 2021; 338: 108986 [PMID: 32357099 DOI: 10.1016/j.ijfoodmicro.2020.108986]

81 **Kamar N,** Bendall R, Legrand-Abraham F, Xia NS, Ijaz S, Izopet J, Dalton HR. Hepatitis E. *Lancet* 2012; 379: 2477-2488 [PMID: 22549046 DOI: 10.1016/S0140-6736(11)61849-7]

82 **Pérez-Gracia MT,** Suay B, Mateos-Lindemann ML. Hepatitis E: an emerging disease. *Infect Genet Evol* 2014; 22: 40-59 [PMID: 24434240 DOI: 10.1016/j.meegid.2014.01.002]

83 **Gupta N,** Sarangi AN, Dadhich S, Dixit VK, Chetri K, Goel A, Aggarwal R. Acute hepatitis E infection in India, 2014-2018. *Indian J Gastroenterol* 2018; 37: 44-49 [PMID: 29399748 DOI: 10.1007/s12664-018-0819-z]

84 **Mevis FM,** Sabeena S, Sanjay R, Robin S, Devadiga S, Prasad V, Oliver D, Ameen A, Arunkumar G. Currently circulating genotypes of hepatitis E virus in India, 2014-2018. *Indian J Med Microbiol* 2019; 37: 563-568 [PMID: 32436881 DOI: 10.4103/imjm.IJMM_19_449]

85 **Gallian P,** Couchouron A, Dupont I, Fabra C, Piquet Y, Djoudi R, Assal A, Tiberghien P. Comparison of hepatitis E virus nucleic acid test screening platforms and RNA prevalence in French blood donors. *Transfusion* 2017; 57: 223-224 [PMID: 28097700 DOI: 10.1111/trf.13889]

86 **Vollmer T,** Diekmann J, Knabbe C, Dreier J. Hepatitis E virus blood donor NAT screening: as much as possible or as much as needed? *Transfusion* 2019; 59: 612-622 [PMID: 30548866 DOI: 10.1111/trf.15058]

87 **Miletic M,** Vuk T, Vecić-Miletic M, Jukić J, Jemeršić I. Estimation of the hepatitis E virus RNA prevalence and risk assessment among Croatian blood donors. *Transfus Clin Biol* 2019; 26: 229-233 [PMID: 31277986 DOI: 10.1016/j.trcl.2019.06.234]

88 **Holm DK,** Moessen BK, Engle RE, Zeriahl HL, Georgsen J, Purcell RH, Christensen PB. Declining prevalence of hepatitis E antibodies among Danish blood donors. *Transfusion* 2015; 55: 1662-1667 [PMID: 25819381 DOI: 10.1111/trf.13028]

89 **Dineglio C,** Beau F, Broult J, Gouy P, Izopet J, Lastèvre S, Abravanel F. Hepatitis E prevalence in French Polynesian blood donors. *PLoS One* 2018; 13: e0208934 [PMID: 30532225 DOI: 10.1371/journal.pone.0208934]

90 **Juhl D,** Baylis SA, Blümel J, Görg S, Hennig H. Seroprevalence and incidence of hepatitis E virus infection in German blood donors. *Transfusion* 2014; 54: 49-56 [PMID: 23441647 DOI: 10.1111/trf.12121]

91 **Dalekos GN,** Zervou E, Eliaf M, Germanos N, Galanakis E, Bourantas K, Siamopoulos KC, Tsianos EV. Antibodies to hepatitis E virus among several populations in Greece: Increased prevalence in an hemodialysis unit. *Transfus Clin Biol* 1998; 38: 589-595 [PMID: 9601693 DOI: 10.1016/j.trcl.2019.06.234]

92 **De Sabato L,** Di Bartolo I, Montomoli E, Trombetta C, Ruggeri MF, Ostanello F. Retrospective Study Evaluating Seroprevalence of Hepatitis E Virus in Blood Donors and in Swine Veterinarians in Italy (2004). *Zoonoses Public Health* 2017; 64: 308-312 [PMID: 27911040 DOI: 10.1111/zph.12332]

93 **Lucarelli C,** Spada E, Taliani G, Chionne P, Madonna E, Marcontonio C, Pazzotti P, Bruni R, La Rosa G, Pisani G, Dell’Orso L, Ragone K, Tormei C, Ciccaglione AR. High prevalence of anti-hepatitis E virus antibodies among blood donors in central Italy, February to March 2014. *Euro Surveill* 2016; 21 [PMID: 27494608 DOI: 10.2807/1560-7917.ES.2016.21.30.30299]
donors and renal transplant recipients: a retrospective study from central Italy. Infez Med 2015; 23: 253-256 [PMID: 26397295]

Hogema BM, Molier E, Slot E, Zaatier HL. Past and present of hepatitis E in the Netherlands. Transfusion 2014; 54: 3092-3096 [PMID: 24889277 DOI: 10.1111/trf.12733]

Mateos ML, Camarero C, Lasa E, Teruel JL, Mir N, Baquero F. Hepatitis E virus: relevance in blood donors and risk groups. Vox Sang 1999; 76: 78-80 [PMID: 10085522 DOI: 10.1159/000031024]

Niederhauser C, Widmer N, Hotz M, Tinguely C, Fontana S, Allemann G, Borri M, Infanti L, Sarraj A, Sigle J, Stalder M, Thierbach J, Waldvogel S, Wiengand T, Züger M, Gowlan P. Current hepatitis E virus seroprevalence in Swiss blood donors and apparent decline from 1997 to 2016. Euro Surveill 2018; 23 [PMID: 30180927 DOI: 10.2807/1560-7917.ES.2018.23.15.1700616]

Kaufmann A, Kenfak-Foguena A, Andrè C, Cannelini G, Bürgisser P, Moradpour D, Darling KE, Cavassini M. Hepatitis E virus seroprevalence among blood donors in southwest Switzerland. PLoS One 2011; 6: e21150 [PMID: 21701586 DOI: 10.1371/journal.pone.0021150]

Beale MA, Tettkam K, Szyprulska R, Tedder RS, Ijaz S. Is there evidence of recent hepatitis E virus infection in English and North Welsh blood donors? Vox Sang 2011; 100: 340-342 [PMID: 21399204 DOI: 10.1111/j.1423-0410.2010.01412.x]

Zafrullah M, Zhang X, Tran C, Nguyen M, Kamili S, Purdy MA, Stramer SL. Disparities in detection of antibodies against hepatitis E virus in US blood donor samples using commercial assays. Transfusion 2018; 58: 1254-1263 [PMID: 29520800 DOI: 10.1111/trf.14553]

Di Lello FA, BLEJER J, Alter A, Bartoli S, Vargas F, Ruiz R, Galli C, Blanco S, Carrizzo LH, Gallego S, Fernandez R, Martinez AP, Flichman DM. Seroprevalence of hepatitis E virus in Argentinean blood donors. Eur J Gastroenterol Hepatol 2020 [DOI: 10.1097/meg.0000000000001853]

Bangueses F, Abin-Carrquiry JA, Cancela F, Carubelo J, Mirazo S. Serological and molecular prevalence of hepatitis E virus among blood donors from Uruguay. J Med Virol 2021; 93: 4010-4014 [PMID: 32592500 DOI: 10.1002/jmv.26231]

Nouhin J, Prak S, Madec Y, Barennes H, Weissel R, Hok K, Pavio N, Rouzet F. Hepatitis E virus antibody prevalence, RNA frequency, and genotype among blood donors in Cambodia (Southeast Asia). Transfusion 2016; 56: 2597-2601 [PMID: 27480100 DOI: 10.1111/trf.13731]

Chen X, Gong P, Wagner AL, Li Y, Wang G, Lu Y. Identification of hepatitis E virus subtype 4f in blood donors in Shanghai, China. Virus Res 2019; 265: 30-33 [PMID: 30836112 DOI: 10.1016/j.viruses.2019.03.001]

Wang M, He M, Wu B, Ke L, Han T, Wang J, Shan H, Ness P, Guo N, Liu Y, Nelson KE. The association of elevated alanine aminotransferase levels with hepatitis E virus infections among blood donors in China. Transfusion 2017; 57: 273-279 [PMID: 28194856 DOI: 10.1111/trf.13991]

Ma L, Sun P, Lin F, Wang H, Rong X, Dai Y, Liu J, Qian L, Fang M, Su N, Xiao W, Ye S, Li C. Prevalence of hepatitis E virus in Chinese blood donors. J Int Med Res 2015; 43: 257-262 [PMID: 25710945 DOI: 10.1177/0306041814520524]

Ren F, Zhao C, Wang L, Wang Z, Gong X, Song M, Zhaung H, Huang Y, Shan H, Wang J, Liu Q, Ness P, Nelson KE, Wang Y. Hepatitis E virus seroprevalence and molecular study among blood donors in China. Transfusion 2014; 54: 910-917 [PMID: 24372259 DOI: 10.1111/trf.12536]

Zhuang W, Ding X, Lyu C, Xiang L, Teng H, Li J. Hepatitis E virus seroprevalence among blood donors in Jiangsu Province, East China. Int J Infect Dis 2014; 26: 9-11 [PMID: 24981426 DOI: 10.1016/j.ijid.2014.04.022]

Tripathy AS, Puranik S, Sharma M, Chakraborty S, Devakate UR. Hepatitis E virus seroprevalence among blood donors in Pune, India. J Med Virol 2019; 91: 813-819 [PMID: 30489644 DOI: 10.1002/jmv.25370]

Gajjar MD, Bhatnagar NM, Sonani RV, Gupta S, Patel T. Hepatitis E seroprevalence among blood donors: A pilot study from Western India. Asian J Transfus Sci 2014; 8: 29-31 [PMID: 24678170 DOI: 10.4103/0973-6247.126685]

Parsa R, Adibzadeh S, Behzad Behbahani A, Farhadi A, Yaghobi R, Rafiei Dehbidi GR, Hajizamani S, Rahbar S, Nikouyan N, Okhovat MA, Naderi S, Salehi S, Alizadeh M, Ranjbaran R, Zarnegar G, Alavi P. Detection of Hepatitis E Virus Genotype 1 Among Blood Donors From Southwest of Iran. Hepat Mon 2016; 16: e34202 [PMID: 27630719 DOI: 10.5812/hepatmon.34202]

Hesamizadeh K, Sharafi H, Keyvani H, Alavimian SM, Najafi-Tireh Shabankareh A, Sharifi Olyaie R, Keshvari M. Hepatitis A Virus and Hepatitis E Virus Seroprevalence Among Blood Donors in Tehran, Iran. Hepat Mon 2016; 16: e32215 [PMID: 27110256 DOI: 10.5812/hepatmon.32215]

Naeimi B, Mazloom Kalimani F, Poorfatahla AA, Azimzadeh M, Mankhian A, Akbarzadeh S, Hajiani G, Kooshesh F, Khamisipour G. Hepatitis E Virus Seroprevalence Among Blood Donors in Bushehr, South of Iran. Hepat Mon 2015; 15: e29219 [PMID: 26834784 DOI: 10.5812/hepatmon.29219]

Ehteram H, Ramezani A, Eslamifar A, Sofian M, Barifazl M, Ghassemi S, Aghakhani A, Mashayekhi P. Seroprevalence of Hepatitis E Virus infection among volunteer blood donors in central province of Iran in 2012. Iran Microbiol 2013; 17: 172-176 [PMID: 23825737]

Taremi M, Gachkar L, MahmoudArabi S, Kheradpezhouh M, Khoshbaten M. Prevalence of antibodies to hepatitis E virus among male blood donors in Tabriz, Islamic Republic of Iran. East Mediterr Health J 2007; 13: 98-102 [PMID: 17546911]

Takeda H, Matsubayashi K, Sakata H, Sato S, Kato T, Hino S, Tadokoro K, Ikeda H. A nationwide survey for prevalence of hepatitis E virus antibody in qualified blood donors in Japan. Vox Sang
Cheung CKM et al. Transfusion-transmitted hepatitis E

2010; 99: 307-313 [PMID: 20576022 DOI: 10.1111/j.1423-0410.2010.01362.x]

Shrestha AC, Flower RL, Seed CR, Rajkarnikar M, Shrestha SK, Thapa U, Hoad VC, Faddy HM. Hepatitis E virus seroepidemiology: a post-earthquake study among blood donors in Nepal. BMJ Infect Dis 2016; 16: 707 [PMID: 27887586 DOI: 10.1186/s12879-016-2043-8]

Nasrallah GK, Al Abi ES, Ghandour R, Ali NH, Taleb S, Hedaya L, Ali F, Huwaidy M, Hussein M. Seroprevalence of hepatitis E virus among blood donors in Qatar (2013-2016). Transfusion 2017; 57: 1801-1807 [PMID: 28453170 DOI: 10.1111/trf.14116]

Jupattanasin S, Chainuvati S, Chotiyaputta W, Chamnan T, Supapunog O, Charoonraungrit U, Oota S, Louisirirotchanalos S. A Nationwide Survey of the Seroprevalence of Hepatitis E Virus Infections Among Blood Donors in Thailand. Viral Immunol 2019; 32: 302-307 [PMID: 31403386 DOI: 10.1089/vim.2018.0146]

Traoré KA, Ououba JB, Rouamba H, Nébié YK, Dahourou H, Rossetto F, Traoré AS, Barro N, Roques P. Hepatitis E Virus Prevalence among Blood Donors, Ouagadougou, Burkina Faso. Emerg Infect Dis 2016; 22: 755-757 [PMID: 26982195 DOI: 10.3201/eid2204.151728]

Ibrahim EH, Abdelwalah SF, Nady S, Hashem M, Galal G, Sobhy M, Saleh AS, Shata MT. Prevalence of anti-HEV IgM among blood donors in Egypt. Egypt J Immunol 2011; 18: 47-58 [PMID: 23082470]

Meldal BH, Sarkodie F, Owusu-Ofori S, Allain JP. Hepatitis E virus infection in Ghanaian blood donors - the importance of immunoassay selection and confirmation. Vox Sang 2013; 104: 30-36 [PMID: 22845878 DOI: 10.1111/j.1423-0410.2012.01637.x]

Lopes T, Cabele R, Pistoriuss C, Maponga T, Ijaz S, Preiser W, Tedder R, Andersson M. Racial differences in seroprevalence of HAV and HEV in blood donors in the Western Cape, South Africa: a clue to the predominant HEV genotype? Epidemiol Infect 2017; 145: 1910-1912 [PMID: 28357965 DOI: 10.1017/S0950268817000365]

Ben-Ayed Y, Hannachi H, Ben-Alaya-Bouaifiss N, Gouaidier D, Eriki H, Bahr H. Hepatitis E virus seroprevalence among hemodialysis and hemophiliac patients in Tunisia (North Africa). J Med Virol 2015; 87: 441-445 [PMID: 25331682 DOI: 10.1002/jmv.24062]

Kawakami K, Nagashima S, Takahashi M, Okamoto H. The spontaneous clearance of hepatitis E virus strain in Hokkaido, Japan. Emerg Infect Dis 2017; 24: 75-79 [PMID: 27699946 DOI: 10.1128/JVI.01262-17]

Kataki M, Takanaka T, Takahashi H, Hoshino Y, Nagashima S, Jirintai, Mizuo H, Yazaki Y, Takagi T, Azuma M, Kusano E, Isoda N, Sugano K, Okamoto H. Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 2010; 48: 1112-1125 [PMID: 20107086 DOI: 10.1128/JCM.02002-09]

God A, Vijay HJ, Katiyar H, Aggarwal R. Prevalence of hepatitis E virusemia among blood donors: a systematic review. Vox Sang 2020; 115: 120-132 [PMID: 32030767 DOI: 10.1111/vox.12887]

Schemmerer M, Rauh C, Jilg W, Wenzel JJ. Time course of hepatitis E-specific antibodies in adults. J Viral Hepat 2017; 24: 75-79 [PMID: 27699946 DOI: 10.1111/jvh.12621]

Kataki M, Takanaka T, Takahashi H, Hoshino Y, Nagashima S, Jirintai, Mizuo H, Yazaki Y, Takagi T, Azuma M, Kusano E, Isoda N, Sugano K, Okamoto H. Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 2010; 48: 1112-1125 [PMID: 20107086 DOI: 10.1128/JCM.02002-09]

God A, Vijay HJ, Katiyar H, Aggarwal R. Prevalence of hepatitis E virusemia among blood donors: a systematic review. Vox Sang 2020; 115: 120-132 [PMID: 32030767 DOI: 10.1111/vox.12887]

Kataki M, Takanaka T, Takahashi H, Hoshino Y, Nagashima S, Jirintai, Mizuo H, Yazaki Y, Takagi T, Azuma M, Kusano E, Isoda N, Sugano K, Okamoto H. Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J Clin Microbiol 2010; 48: 1112-1125 [PMID: 20107086 DOI: 10.1128/JCM.02002-09]

Riveiro-Barciela M, Rando-Segura A, Barreira-Diaza A, Bes M, P Ruzo S, Piron M, Quer J, Sauleda S, Rodriguez-Frias F, Esteban R, Buti M. Unexpected long-lasting anti-HEV IgM positivity: Is HEV antigen a better serological marker for hepatitis E infection diagnosis? J Viral Hepat 2020; 27: 747-753 [PMID: 32106351 DOI: 10.1111/jvh.13282]

Kar P, Karna R. A Review of the Diagnosis and Management of Hepatitis E. Infect Dis 2020; 1-11 [DOI: 10.1017/s40506-020-02335-4]

Hartl J, Otto B, Madden RG, Webb G, Woolson KL, Kriston L, Vettorazzi E, Lobse AW, Dalton HR, Pfickse S. Hepatitis E Seroprevalence in Europe: A Meta-Analysis. Viruses 2016; 8 [PMID: 27595158 DOI: 10.3390/v8080211]

Shrestha AC, Flower RL, Seed CR, Stramer SL, Faddy HM. A Comparative Study of Assay Performance of Commercial Hepatitis E Virus Enzyme-Linked Immunosorbent Assay Kits in Australian Blood Donor Samples. J Blood Transfus 2016; 2016; 9647675 [PMID: 27891290 DOI: 10.1155/2016/9647675]

Galli C, Fomiatti L, Tagliacarne C, Velati C, Zanetti AR, Castaldi S, Romanò L. Seroprevalence of hepatitis E virus among blood donors in northern Italy (Sondrio, Lombardy) determined by three different assays. Blood Transfus 2017; 15: 502-505 [PMID: 29059041 DOI: 10.2430/2017.0089-17]

Park HK, Jeong SH, Kim JW, Woo BH, Lee DH, Kim HY, Ahn S. Seroprevalence of anti-hepatitis E virus (HEV) in a Korean population: comparison of two commercial anti-HEV assays. BMJ Infect Dis 2012; 12: 142 [PMID: 22726613 DOI: 10.1186/1471-2334-12-142]

Bendall R, Ellis V, Ijaz S, Ali R, Dalton H. A comparison of two commercially available anti-HEV IgG kits and a re-evaluation of anti-HEV IgG seroprevalence data in developed countries. J Med Virol 2010; 82: 799-805 [PMID: 20336757 DOI: 10.1002/jmv.21656]

Matsubayashi K, Nagaoka Y, Sakata H, Sato S, Fukai K, Kato T, Takahashi K, Mishiro S, Imai M, Takeda N, Ikeda H. Transfusion-transmitted hepatitis E caused by apparently indigenous hepatitis E virus strain in Hokkaido, Japan. Transfusion 2004; 44: 934-940 [PMID: 15157263 DOI: 10.1111/j.1537-2995.2004.03300.x]

Okano H, Nakano T, Ito R, Tanaka A, Hoshi Y, Matsubayashi K, Asakawa H, Nose K, Tsuruga S, Tchoi T, Kumazawa H, Isono Y, Tanaka H, Matusuki S, Sase T, Saito T, Mukai K, Nishimura A, Kawakami K, Nagashima S, Takahashi M, Okamoto H. The spontaneous clearance of hepatitis E

https://www.wjgnet.com
patients with hepatitis C in Tehran, Iran. Dalvand N, and sickle cell disease. S. Prevalence of hepatitis E virus infection in multiple transfused Brazilian patients with thalassemia Slavov SN 31894559

hepatitis E in patients on haemodialysis in Croatia. Jurekovic Z, Kolaric B, Jemersic L, Prpic J, Tomljenovic M, Vilibic-Cavlek T. Seroepidemiology of 10.1111/vox.12156

Apheresis Group (CAG). Serological and molecular evidence of a plausible transmission of hepatitis Andonov A 15484278

infection with a genotype 3 HEV by blood transfusion. Ticehurst JR 10.1111/j.1365-3148.2006.00652.x

hepatitis E in a ‘nonhyperendemic’ country. Boxall E 10.1099/jgv.0.001302

case report. Faguer S, Izopet J, Kamar N. Transfusion-acquired hepatitis E infection misdiagnosed as severe critical illness polynuromyopathy in a heart transplant patient. Transpl Infect Dis 2017; 19: 45-69:704-798 [PMID: 25041213 DOI: 10.1111/hei.12390]

Rivero-Barciela M, Sauleda S, Quer J, Salvador F, Gregori J, Pirón M, Rodríguez-Frias F, Batí M. Red blood cell transfusion-transmitted acute hepatitis E in an immunocompetent subject in Europe: a case report. Transfusion 2017; 57: 244-247 [PMID: 27785789 DOI: 10.1111/trf.13876]

Hoad VC, Gibbs T, Ravikumara M, Nash M, Levy A, Tracy SL, Mews C, Perkowska-Guse Z, Faddy HM, Bowden S. First confirmed case of transfusion-transmitted hepatitis E in Australia. Med J Aust 2017; 206: 289-290 [PMID: 28403756 DOI: 10.5694/mja16.01090]

Matsui T, Kang JH, Matsubayashi K, Yamazaki H, Nagai K, Sakata H, Tsuji K, Maguchi H. Rare case of transfusion-transmitted hepatitis E from the blood of a donor infected with the hepatitis E virus genotype 3 indigenous to Japan: Viral dynamics from onset to recovery. Hepatol Res 2015; 45: 696-704 [PMID: 25041213 DOI: 10.1111/hei.12390]

Hudly D, Unhau M, Bettinger D, Cathomen T, Emmerich F, Hasselblatt P, Hongel H, Herzog R, Kappert O, Maassen S, Schorb E, Schulz-Huotari C, Thimme R, Unmüssing R, Wenzel JJ, Panning M. Transfusion-transmitted hepatitis E in Germany, 2013. Euro Surveill 2014; 19 [PMID: 24906377 DOI: 10.2807/1560-7917.es2014.19.21.20813]

Coffy A, Haim-Boukobza S, Roche B, Antonini TM, Pauze A, Mokhtari C, Becq A, Farahmand H, Hauser L, Duclos-Vallée JC, Samuel D, Adam R, Roque-Afonso AM. Posttransplantation hepatitis E: transfusion-transmitted hepatitis E rising from the ashes. Transplantation 2013; 96: e4-e6 [PMID: 23857003 DOI: 10.1097/TP.0b013e318296c977]

Boxall E, Herborn A, Kochethu G, Pratt G, Adams D, Ijaz S, Teo CG. Transfusion-transmitted hepatitis E in a ‘nonhyperendemic’ country. Transfus Med 2006; 16: 79-83 [PMID: 16623913 DOI: 10.1111/j.1365-3148.2006.06562.x]

Mitsui T, Tsukamoto Y, Yamazaki C, Masuko K, Tsuda F, Takahashi M, Nishizawa T, Okamoto H. Prevalence of hepatitis E virus infection among hemodialysis patients in Japan: evidence for infection with a genotype 3 HEV by blood transfusion. J Med Virol 2004; 74: 563-572 [PMID: 15484278 DOI: 10.1002/jmv.20215]

Tiecheurst JR, Pisanic N, Forman MS, Ordaik C, Heaney CD, Ong E, Linnen JM, Ness PM, Guo N, Shan H, Nelson KE. Probable transmission of hepatitis E virus (HEV) via transfusion in the United States. Transfusion 2019; 59: 1024-1034 [PMID: 30702157 DOI: 10.1111/trf.15140]

Andonov A, Rock G, Lin L, Borlang J, Hooper J, Grudeski E, Wu J; Members of the Canadian Apheresis Group (CAG). Serological and molecular evidence of a plausible transmission of hepatitis E virus through pooled plasma. Fox Sang 2014; 107: 213-219 [PMID: 24830322 DOI: 10.1111/vox.12156]

Mržljak A, Dinjar-Kujundzic P, Knotek M, Kadumija B, Ilic M, Gulin M, Zibar L, Hrstic I, Jurekovic Z, Kolaric B, Jemersic L, Pircj J, Tomljenovic M, Vilbic-Cavlek T. Seroepidemiology of hepatitis E in patients on haemodialysis in Croatia. Int Urol Nephrol 2020; 52: 371-378 [PMID: 31894559 DOI: 10.1007/s11255-019-0263-3]

Slavov SN, Maçonettto JDM, Martinez EZ, Silva-Pinto AC, Covas DT, Eis-Hübinger AM, Kashima S. Prevalence of hepatitis E virus infection in multiple transfused Brazilian patients with thalassemia and sickle cell disease. J Med Virol 2019; 91: 1693-1697 [PMID: 31060604 DOI: 10.1002/jmv.25498]

Dalvand N, Dalvand A, Sharifi Z, Hosseini SM. Prevalence of hepatitis E virus in thalassemia patients with hepatitis C in Tehran, Iran. Iran J Microbiol 2019; 11: 535-540 [PMID: 32148686]
Anckorn MJ, Fox TA, Ijaz S, Nicholas C, Houston E, Longair I, Suri D, Mattes FM, Walker JL, Tedder RS, Sekhar M. Characterising the risk of Hepatitis E virus infection in haematological malignancies: a UK prospective prevalence study. *Br J Haematol* 2019; 186: 191-195 [PMID: 30768677 DOI: 10.1111/bjh.15796]

Haim-Boukobza S, Ferey MP, Vétillard AL, Jeblaoui A, Pélissier E, Pelletier G, Teillet L, Roque-Afonso AM. Transfusion-transmitted hepatitis E in a misleading context of autoimmunity and drug-induced toxicity. *J Hepatol* 2012; 57: 1374-1378 [PMID: 22885386 DOI: 10.1016/j.jhep.2012.08.001]

Loyzon E, Trouve-Buisson T, Pouzol P, Lerrat S, Decaens T, Payen JF. Hepatitis E Virus Infection after Platelet Transfusion in an Immunocompetent Trauma Patient. *Emerg Infect Dis* 2017; 23: 146-147 [PMID: 27983485 DOI: 10.3201/eid2301.160923]

Peters van Ton AM, Gevers TJ, Drenth JP. Antiviral therapy in chronic hepatitis E: a systematic review. *J Viral Hepat* 2015; 22: 965-973 [PMID: 25760481 DOI: 10.1111/j.vhh.12403]

Kamar N, Garrouste C, Haagsma EB, Garrigue V, Pischke S, Chauvet C, Dumortier J, Cunnesson A, Cassuto-Viguier E, Thervet E, Conti F, Lebray P, Dalton HR, Santella R, Kanaan N, Essig M, Mousson C, Radenne S, Roque-Afonso AM, Iozep J, Rostaing L. Factors associated with chronic hepatitis in patients with hepatitis E virus infection who have received solid organ transplants. *Gastroenterology* 2011; 140: 1481-1489 [PMID: 21354150 DOI: 10.1053/j.gastro.2011.02.050]

Pas SD, de Man RA, Mulders C, Balk AH, van Hal PT, Weimar W, Koopmans MP, Osterhaus AD, van der Eijk A. Hepatitis E virus infection among solid organ transplant recipients, the Netherlands. *Emerg Infect Dis* 2012; 18: 869-872 [PMID: 22316170 DOI: 10.3201/eid1805.111712]

Kamar N, Selves J, Mansuy JM, Ouezzani L, Péron JM, Guitard J, Cointault O, Esposito L, Abravanel F, Danjoux M, Durand D, Vinel JP, Iozep J, Rostaing L. Hepatitis E virus and chronic hepatitis in organ-transplant recipients. *N Engl J Med* 2008; 358: 811-817 [PMID: 18287603 DOI: 10.1056/NEJMoa0706992]

Haagsma EB, van den Berg AP, Porte RJ, Benne CA, Vennema H, Reimerink JH, Koopmans MP. Chronic hepatitis E virus infection in liver transplant recipients. *Liver Transpl* 2008; 14: 547-553 [PMID: 18338084 DOI: 10.1002/lt.21480]

von Felden J, Alric L, Pischke S, Atikten C, Schlabie S, Spengler U, Giordani MT, Schmitzler P, Bettinger D, Thimme R, Xhaard A, Binder M, Ayuk F, Lohse AW, Cornelissen JJ, de Man RA, Mallet V. The burden of hepatitis E among patients with haematological malignancies: A retrospective European cohort study. *J Hepatol* 2019; 71: 465-472 [PMID: 31108159 DOI: 10.1016/j.jhep.2019.04.022]

Cao D, Cao QM, Subramaniam S, Yugo DM, Jeffrón CL, Rogers AJ, Kenney SP, Tian D, Matzinger SR, Overend C, Cataranzo N, LeRoith T, Wang H, Piñeiro P, Lindstrom N, Clark-Deen S, Yuan L, Meng XJ. Pig model mimicking chronic hepatitis E virus infection in immunocompromised patients to assess immune correlates during chronicity. *Proc Natl Acad Sci U S A* 2017; 114: 6914-6923 [PMID: 28630341 DOI: 10.1073/pnas.1705446114]

Saravanabalaji S, Tripathy AS, Dhoot RR, Chadha MS, Raknani AL, Aarakalle VA. Viral load, antibody titers and recombinant open reading frame 2 protein-induced TH1/TH2 cytokines and cellular immune responses in self-limiting and fulminating hepatitis E. *Intervirology* 2009; 52: 78-85 [PMID: 19401616 DOI: 10.1159/000214862]

Péron JM, Abravanel F, Guillaume M, Gérolami R, Nana J, Anty R, Pariente A, Renou C, Bureau C, Robic MA, Alric L, Vinel JP, Iozep J, Kamar N. Treatment of autochthonous acute hepatitis E with short-term ribavirin: a multicenter retrospective study. *Liver Int* 2016; 36: 328-333 [PMID: 26179015 DOI: 10.1111/liv.12911]

McPherson S, Elsharkawy AM, Anckorn MJ, Ijaz S, Powell J, Rowe I, Tedder R, Andrews PA. Summary of the British Transplantation Society UK Guidelines for Hepatitis E and Solid Organ Transplantation. *Transplantation* 2018; 102: 15-20 [PMID: 28795981 DOI: 10.1097/TP.0000000000001908]

European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu.; European Association for the Study of the Liver. EASL Clinical Practice Guidelines on hepatitis E virus infection. *J Hepatol* 2018; 68: 1256-1271 [DOI: 10.1016/j.jhep.2012.09.013]

Wang Y, Zhou X, Debing Y, Chen K, Van Der Laan LJ, Neys J, Janssen HL, Metselaar HJ, Peppelenbosch MP, Pan Q. Calcineurin inhibitors stimulate and mycophenolic acid inhibits replication of hepatitis E virus. *Gastroenterology* 2016; 146: 1775-1783 [PMID: 24582718 DOI: 10.1053/j.gastro.2014.02.036]

Kamar N, Lhomme S, Abravanel F, Marion O, Peron JM, Alric L, Iozep J. Treatment of HEV Infection in Patients with a Solid-Organ Transplant and Chronic Hepatitis. *Viruses* 2016; 8 [PMID: 27537905 DOI: 10.3390/v8080222]

Gorris M, van der Leqcu BM, van Erpecum KJ, de Brijnje J. Treatment for chronic hepatitis E virus infection: A systematic review and meta-analysis. *J Viral Hepat* 2021; 28: 454-463 [PMID: 33301609 DOI: 10.1111/jvh.13456]

De Winter BCM, Hesselink DA, Kamar N. Dosing ribavirin in hepatitis E-infected solid organ transplant recipients. *Pharmacol Res* 2018; 130: 308-315 [PMID: 29499270 DOI: 10.1016/j.phrs.2018.02.030]

Kamar N, Lhomme S, Abravanel F, Cointault O, Esposito L, Cardeau-Desangles I, Del Bello A, Dör G, Lavayssière L, Negier MB, Guitard J, Ribes D, Goin AL, Broué P, Metsu D, Sauné K, Rostaing L, Iozep J. An Early Viral Response Predicts the Virological Response to Ribavirin in
Hepatitis E Virus Organ Transplant Patients. *Transplantation* 2015; 99: 2124-2131 [PMID: 2624817 DOI: 10.1097/TP.0000000000000850]

175 Todd D, Meister TL, Steimann E. Hepatitis E virus treatment and ribavirin therapy: viral mechanisms of nonresponse. *Curr Opin Virol* 2018; 32: 80-87 [PMID: 30356428 DOI: 10.1016/j.coviro.2018.10.001]

176 Alric L, Bonnet D, Laurent G, Kamar N, Iozpet J. Chronic hepatitis E virus infection: successful virologic response to pegylated interferon-alfa therapy. *Ann Intern Med* 2010; 153: 135-136 [PMID: 20547885 DOI: 10.7326/0003-4819-153-2-201007200-00256]

177 Kamar N, Abravanel F, Garrouste C, Cardeau-Desangles I, Mansuy JM, Weclawiaik H, Iozpet J, Rostaing L. Three-month pegylated interferon-alfa-2a therapy for chronic hepatitis E virus infection in a haemodialysis patient. *Nephrol Dial Transplant* 2010; 25: 2792-2795 [PMID: 20494897 DOI: 10.1093/ndt/gfq282]

178 Rivero-Juarez A, Lopez-Lopez P, Frias M, Rivero A. Hepatitis E infection in HIV-Infected Patients. *Front Microbiol* 2019; 10: 1425 [PMID: 31297100 DOI: 10.3389/fmicb.2019.01425]

179 Nakano R, Ohira M, Ishiyama K, Ide K, Kobayashi T, Tahara H, Shimizu S, Arihiro K, Imamura M, Chayama K, Tanaka Y, Ohdan H. Acute Graft Rejection and Formation of De Novo Donor-Specific Antibodies Triggered by Low Cyclosporine Levels and Interferon Therapy for Recurrent Hepatitis C Infection After Liver Transplantation: A Case Report. *Transplant Proc* 2017; 49: 1634-1638 [PMID: 28838454 DOI: 10.1016/j.transproceed.2017.05.006]

180 Selzner N, Guindi M, Renner EL, Berenguer M. Immune-mediated complications of the graft in interferon-treated hepatitis C positive liver transplant recipients. *J Hepatol* 2011; 55: 207-217 [PMID: 21145865 DOI: 10.1016/j.jhep.2010.11.012]

181 Kamar N, Rostaing L, Abravanel F, Garrouste C, Esposito L, Cardeau-Desangles I, Mansuy JM, Selves J, Peron JM, Otal P, Muscari F, Iozpet J. Pegylated interferon-alfa for treating chronic hepatitis E virus infection after liver transplantation. *Clin Infect Dis* 2010; 50: e30-e33 [PMID: 20113176 DOI: 10.1086/650488]

182 Haagsma EB, Riechbros-Brilman A, van den Berg AP, Porte RJ, Niesters HG. Treatment of chronic hepatitis E in liver transplant recipients with pegylated interferon-alpha-2b. *Liver Transpl* 2010; 16: 474-477 [PMID: 20373458 DOI: 10.1002/lt.22014]

183 Ollivier-Hourmand I, Lebedel L, Lecouf A, Allaire M, Nguyen TTN, Lier C, Dao T. Pegylated interferon may be considered in chronic viral hepatitis E resistant to ribavirin in kidney transplant recipients. *BMC Infect Dis* 2020; 20: 522 [PMID: 32677900 DOI: 10.1186/s12879-020-05212-2]

184 Dao Thi VL, Debing Y, Wu X, Rice CM, Neyts J, Moradpour D, Gouttenoire J. Sofosbuvir Inhibits Hepatitis E Virus Replication In Vitro and Results in an Additive Effect When Combined With Ribavirin. *Gastroenterology* 2016; 150: 82-85.e4 [PMID: 26408347 DOI: 10.1053/j.gastro.2015.09.011]

185 van der Valk M, Zaaijer HL, Kater AP, Schinkel J. Sofosbuvir shows antiviral activity in a patient with chronic hepatitis E virus infection. *J Hepatol* 2017; 66: 242-243 [PMID: 27702641 DOI: 10.1016/j.jhep.2016.09.014]

186 van Wezel EM, de Bruiine J, Damman K, Bijmolen M, van den Berg AP, Verschuuren EAM, Ruigrok GA, Riechbros-Brilman A, Knoester M. Sofosbuvir Add-on to Ribavirin Treatment for Chronic Hepatitis E Virus Infection in Solid Organ Transplant Recipients Does Not Result in Sustained Virological Response. *Open Forum Infect Dis* 2019; 6: [DOI: 10.1093/ofid/ofz2466]

187 Cornberg M, Pischke S, Müller T, Behrendt P, Piecha F, Benckert J, Todt D, Steimann E, Papkalla A, von Karpowitz M, Koch A, Lohse A, Hardtke S, Manns MP, Wedemeyer H. Sofosbuvir monotherapy fails to achieve HEV RNA elimination in patients with chronic hepatitis E - The HepNet SofE pilot study. *J Hepatol* 2020; 73: 696-699 [PMID: 32624195 DOI: 10.1016/j.jhep.2020.05.020]

188 Tedder RS, Ijaz S, Kitchen A, Ushiroy-Lumb I, Tettmar KI, Hewitt P, Andrews N. Hepatitis E risks: pigs or blood-that is the question. *Transfusion* 2017; 57: 267-272 [PMID: 28194857 DOI: 10.1111/trf.13976]

189 Denner J. Hepatitis E virus (HEV)-The Future. *Viruses* 2019; 11 [PMID: 30871152 DOI: 10.3390/v11030251]

190 Wu X, Chen P, Lin H, Hao X, Liang Z. Hepatitis E virus: Current epidemiology and vaccine. *Hum Vaccin Immunother* 2016; 12: 2603-2610 [PMID: 27184971 DOI: 10.1080/21645515.2016.1184806]

191 Denner J, Pischke S, Steimann E, Blümel J, Glebe D. Why all blood donations should be tested for hepatitis E virus (HEV). *BMC Infect Dis* 2019; 19: 541 [PMID: 31221098 DOI: 10.1186/s12879-019-4190-1]

192 Domanovíc D, Tedder R, Blümel J, Zaaijer H, Gallian P, Niederhauser C, Sauleda Oliveras S, O’Riordan J, Boland F, Harrishlsh L, Nascimento MSJ, Ciccaigione AR, Politis C, Adlhoch C, Flan B, Oualikene-Gonin W, Rautmann G, Strengers P, Hewitt P. Hepatitis E and blood donation safety in selected European countries: a shift to screening? *Euro Surveill* 2017; 22 [PMID: 28449730 DOI: 10.2807/1560-7917.ES.2017.22.16.30514]

193 Matsubayashi K, Sakata H, Ikeda H. Hepatitis E virus infection and blood transfusion in Japan. *BSF Sci Ser* 2011; 6: 344-349 [DOI: 10.1111/j.1751-2824.2011.01512.x]

194 Lee CK, Chau TN, Lim W, Tsoi WC, Lai ST, Lin CK. Prevention of transfusion-transmitted hepatitis E by donor-initiated self exclusion. *Transfus Med* 2005; 15: 133-135 [PMID: 15859980 DOI: 10.1111/j.0958-7578.2005.00563.x]
Cheung CKM et al. Transfusion-transmitted hepatitis E

195 Pawlotsky JM. Hepatitis E screening for blood donations: an urgent need? Lancet 2014; 384: 1729-1730 [PMID: 25078305 DOI: 10.1016/S0140-6736(14)61187-9]

196 Boland F, Martinez A, Pomery L, O'Flaherty N. Blood Donor Screening for Hepatitis E Virus in the European Union. Transfus Med Hemother 2019; 46: 95-103 [PMID: 31191195 DOI: 10.1159/000499121]

197 American Association of Blood Banks. (2014) Hepatitis E virus [cited 20 March 2021]. Available from: https://www.aabb.org/docs/default-source/default-document-library/regulatory/eid/hepatitis-e-virus.pdf?sfvrsn=9f532d0e_2

198 Assal A, Abravanel F, Izopet J, Tiberghien P. Risk for Hepatitis E Virus Transmission by Donors. Vox Sang 2018; 113: 811-813 [PMID: 30318777 DOI: 10.1111/vox.12719]

199 Bi H, Yang R, Wu C, Xia J. Hepatitis E virus and blood transfusion safety. Epidemiol Infect 2020; 148: e158 [PMID: 32594963 DOI: 10.1017/S0950268820001429]

200 Pischke S, Peron JM, von Wulffen M, von Felden J, Höner Zu Siederdissen C, Fournier S, Lütgethetmann M, Iking-Konert C, Bettinger D, Par G, Thimme R, Cantagrel A, Lohse AW, Wedemeyer H, de Man R, Mallet V. Chronic Hepatitis E in Rheumatology and Internal Medicine Patients: A Retrospective Multicenter European Cohort Study. Viruses 2019; 11 [PMID: 30813268 DOI: 10.3390/v11020186]

201 Bauer H, Luxembourger C, Gottenberg JE, Fournier S, Abravanel F, Cantagrel A, Chateux E, Claudepierre P, Hudry C, I佐zet J, Fabre S, Lefevre G, Marguerie L, Martin A, Messer L, Molto A, Pallot-Prades B, Pers YM, Roque-Afonso AM, Roux C, Sordet C, Soubrier M, Veissier C, Wendling D, Péron JM, Sibilia J; Club Rhumatismes et Inflammation, a section of the French Society of Rheumatology. Outcome of hepatitis E virus infection in patients with inflammatory arthritides treated with immunosuppressants: a French retrospective multicenter study. Medicine (Baltimore) 2015; 94: e675 [PMID: 25862012 DOI: 10.1097/MD.0000000000000675]

202 Kenfak-Foguena A, Schöni-Affolter F, Bürgisser P, Witteck A, Darling KE, Kovari H, Kaiser L, Evison JM, Elzi L, Gurer-De La Fuente V, Jost M, Moradpour D, Abravanel F, Izopet J, Cavassinni M; Data Center of the Swiss HIV Cohort Study, Lausanne, Switzerland. Hepatitis E Virus seroprevalence and chronic infections in patients with HIV, Switzerland. Emerg Infect Dis 2011; 17: 1074-1078 [PMID: 21749774 DOI: 10.3201/eid/1706.101067]

203 Buescher G, Ozga AK, Lorenz E, Pischke S, May J, Addo MM, Horvatits T. Hepatitis E seroprevalence and viremia rate in immunocompromised patients: a systematic review and meta-analysis. Liver Int 2021; 41: 449-455 [PMID: 33034121 DOI: 10.1111/liv.14695]

204 Navaneethan U, Al Mohajer M, Shata MT. Hepatitis E and pregnancy: understanding the pathogenesis. Liver Int 2008; 28: 1190-1199 [PMID: 18662274 DOI: 10.1111/j.1478-3231.2008.01840.x]

205 Anty R, Ollier L, Péron JM, Nicand E, Cannavo I, Benachi A, Vivanti AJ, Letamendia E, Vauloup-Fellous C, Roque-Afonso AM. Autochthonous Hepatitis E during Pregnancy, France. Emerg Infect Dis 2018; 24: 1586-1587 [PMID: 30016249 DOI: 10.3201/eid2408.180105]

206 Jilani N, Das BC, Husain SA, Baweja UK, Chattothapadya D, Gupta RK, Sardana S, Kar P. Hepatitis E virus infection and fulminant hepatic failure during pregnancy. J Gastroenterol Hepatol 2007; 22: 676-682 [PMID: 17444855 DOI: 10.1111/j.1440-1746.2007.04913.x]

207 Kar P, Jilani N, Husain SA, Pasha ST, Anand R, Rai A, Das BC. Does hepatitis E viral load and genotypes influence the final outcome of acute liver failure during pregnancy? J Gastroenterol Hepatol 2008; 23: 2499-2504 [PMID: 18785952 DOI: 10.1111/j.1572-0241.2008.02032.x]

208 Kar P, Sengupta A. A guide to the management of hepatitis E infection during pregnancy. Expert Rev Gastroenterol Hepatol 2019; 13: 205-211 [PMID: 30791760 DOI: 10.1080/17474124.2019.1568869]

209 Horvatits T, Westhöfter D, Peine S, Schulze Zur Wiesch J, Lohse AW, Lütgethetmann M, Pischke S. Lack of evidence for human serum albumin as major source of HEV infections. Transfus Med 2016; 28: 470-473 [PMID: 29708736 DOI: 10.1111/tme.12536]

210 Juhl D, Nowak-Göttl U, Blümel J, Görg S, Hennig H. Lack of evidence for the transmission of hepatitis E virus by coagulation factor concentrates based on seroprevalence data. Transfus Med 2018; 28: 427-432 [PMID: 29280212 DOI: 10.1111/tme.12498]

211 de Vos AS, Janssen MP, Zaanij HL, Hogema BM. Cost-effectiveness of the screening of blood donations for hepatitis E virus in the Netherlands. Transfusion 2017; 57: 258-266 [PMID: 28144956 DOI: 10.1111/trf.13978]

212 Gallian P, Lhomme S, Morel P, Gross S, Mantovani C, Hauser L, Tinard X, Pouchol E, Djoudi S, Assal A, Abravanel F, Izopet J, Tiberghien P. Risk for Hepatitis E Virus Transmission by Solvent/Detergent-Treated Plasma. Emerg Infect Dis 2020; 26: 2881-2886 [PMID: 33219652 DOI: 10.3201/eid2612.191482]

213 Hauser L, Roque-Afonso AM, Beylouné A, Simonet M, Deau Fischer B, Burin des Roziers N,
Mallet V, Tiberghien P, Bierling P. Hepatitis E transmission by transfusion of Intercept blood system-treated plasma. Blood 2014; 123: 796-797 [PMID: 24482503 DOI: 10.1182/blood-2013-09-524348]

216 Farcet MR, Lackner C, Antoine G, Rabel PO, Wieser A, Flicker A, Unger U, Modrof J, Kreil TR. Hepatitis E virus and the safety of plasma products: investigations into the reduction capacity of manufacturing processes. Transfusion 2016; 56: 383-391 [PMID: 26399175 DOI: 10.1111/trf.13343]

217 Kapsch AM, Farcet MR, Wieser A, Ahmad MQ, Miyabayashi T, Baylis SA, Blümel J, Kreil TR. Antibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulin. Transfusion 2020; 60: 2500-2507 [PMID: 32794187 DOI: 10.1111/trf.16014]

218 Praditya D, Friesland M, Gravemann U, Handke W, Todt D, Behrendt P, Müller TH, Steinmann E, Seltsam A. Hepatitis E virus is effectively inactivated in platelet concentrates by ultraviolet C light. Vox Sang 2020; 115: 555-561 [PMID: 32383163 DOI: 10.1111/vox.12936]
