TLRs, Treg, and B cells, an interplay of regulation during helminth infection

Isis Ludwig-Portugal1 and Laura E. Layland2,3*

1 Institutes of Molecular Medicine and Experimental Immunology, University Bonn, Bonn, Germany
2 Institute of Medical Microbiology, Immunology, and Parasitology, University Clinic Bonn, Bonn, Germany
3 Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany

Edited by: Anthony L. DeFranco, University of California, USA
Reviewed by: Maisaki Hikida, Kyoto University, Japan
Liewei Lu, The University of Hong Kong, Hong Kong
Correspondence: Laura E. Layland, Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Tugendstrasse 30, 81675 Munich, Germany. e-mail: laura.layland@ mikrobio.med.tum.de

Commonly described as masters of regulation parasitic helminth infections provide a fascinating insight into the complexity of our immune system. As with many other pathogens helminths have developed complex evasion strategies and the immune response of the host has to find a balance between eliciting severe damage to eliminate the parasite or limiting damage and thereby accepting the infection. Nevertheless, one should not forget that these infections still pose a serious public health problem and can elicit severe disfigurement or death in the individual. An interesting spin-off of helminth manipulation on host responses is the apparent prevention of autoimmune diseases or allergy although the actual mechanisms remain unclear. It is well known that Toll-like-receptors (TLR) and non-TLR PRRs play a critical role in initiating innate immune responses which in turn create appropriate adaptive immune reactions. Helminths comprise of a multitude of (glyco)-proteins and (glyco)-lipids and some have been shown to trigger TLR, or alter TLR-mediated responses.

In contrast to micro-parasites which evade host detection by antigenic variation or elaborate subterfuge, helminths are elaborately bold and have flourished in mammalian hosts throughout our evolution. Although a diverse range of nematodes (roundworms), trematodes (flatworms), and cestodes (tapeworms) have adopted humans as their definite hosts and dwell in various organs and lymphatics, the invoked immune responses by the host are surprisingly stereotypical (Maizels and Yazandanbaksh, 2003; Maizels et al., 2004; Anthony et al., 2007). These culminate in the production of various Th2 associated cytokines (IL-5, IL-13, IL-4) and immunoglobulins (IgE) from effector cells which all stem from a cacophony of cellular responses such as mast cell and eosinophil mobilization. The absolute requirement for type 2 immunity has been demonstrated in various infection systems but this response rarely results in expulsion of the parasite (Allen and Maizels, 2011). Indeed, although helminths can elicit severe immunopathology, the majority of infections remain asymptomatic, that is, the host tolerates the worm and it is this immuno-modulatory capacity of the worm that currently fascinates many immunologists (Moreau and Chauvin, 2010). The well-documented induction of regulatory T cells (Treg) during various helminth infections (Everts et al., 2010; Grainger et al., 2010; Layland et al., 2010; Blankenhaus et al., 2011) has also provided insight into the evolutionary direction of such hypo-responsive states: coveting the host's self-imposed system of immune homeostasis and self-tolerance. Interestingly, upon cure of infection, expanded populations of Treg return to normal levels and this is usually accompanied by ameliorated responses to foreign antigens (Kamradt, 2005; Layland et al., 2007).

HELMINTH-MEDIATED IMMUNE-MODULATION ON INNATE CELLS

The requirement of triggering PRR on innate cells, and the consequential necessity of pro-inflammatory responses to pathogenic organisms is an undisputed fact (Medzhitov and Janeway, 1997). In addition, there is now a wealth of literature emphasizing the importance of such stimulations in directing efficient and appropriate adaptive immune reactions (Pasare and Medzhitov, 2005; Schenten and Medzhitov, 2011). Indeed, several studies have demonstrated that ongoing infections in the absence of certain TLR, deviatesadaptive responses which exacerbates the immunopathology of the host. This is of particular interest when studying parasitic infections, such as helminths since they utilize such immune-regulation for their own survival (Venugopal et al., 2009; Everts et al., 2010). In this regards, much research has focused on the responses of classical innate cells such as dendritic cells (DC) and macrophages. TLR-triggering of DC promotes pro-inflammatory/Th1 environments which would theoretically coincide with the typically induced Th1 responses observed in the acute phase of helminth infections (Maizels and Yazdanbaksh, 2003; Maizels et al., 2004, 2009; Anthony et al., 2007; Hotez et al., 2008; Allen and Maizels, 2011). Although such correlations were observed using dsRNA from the eggs of the tropical trematode Schistosoma mansoni which activates TLR3 (Aksoy et al., 2010;
Table 1 | An overview of selective helminth-derived products, their innate cell signaling component, and the effects they have on the adaptive immune system.

Helminth-derived product	Helminth species	PRR	Consequences on innate immunity	Consequences on adaptive immunity
SEA	*S. mansoni*	DC-SIGN, Dectin-2, MR, MGL	Increase IL-1β, IL-10, and OX40L.	Dominant Th2 or dampened Th responses
ES (Eggs)	*S. mansoni*	CLR?	Increase IL-10 and down-regulate IL-12	Down-regulate IL-12
PS lipids	*Ascaris lumbricoides*	TLR2	Increase IL-10 and down-regulate IL-12	Dominant Th2
AgB	*Echinococcus granulosus*	TLR	Down-regulates IL-12	Down-regulate IL-12
ES-62	*A. viteae*	TLR4	–	Dominant Th2
Calreticulin	*H. polygyrus*	Scavenger receptor		
Cystatins	Multiple	ND		
HSP70	Multiple	TLR4		
Lysyl-PS lipids	*S. mansoni*	TLR2	Increase IL-10	Induces Treg
ES	*H. polygyrus*	Unknown	Increase IL-10	Induces Treg
TGF-β homolog	*B. malayi*	TGF	Increase IL-10	Induces Treg
dsRNA	*S. mansoni*	TLR3	Increase IFN-α	Dominant Th1

ROLE OF B CELLS IN HELMINTH INFECTION AND TLR

Surprisingly, despite possessing an array of PRR little is known about the effects of helminth-derived products on innate B cell responses. Both TLR2 and TLR4 were found to be expressed on circulating B cells during helminth infection reflecting systemic microbial ligand exposure. It was speculated that this bacterial translocation may be induced by schistosomal egg movement from the vascular system to the gut or the skin during infection (Onugwu et al., 2011). Several reports have noted that B cells promote and support Th2 type-immune responses during helminth infections, in order to control opposing Th1-type responses (Hernandez et al., 1997; Moulin et al., 2000, 2008; Blackwell and Else, 2001). Their production of IgE represents one of the classical hallmarks of helminth disease and this immunoglobulin can trigger degranulation and the release of soluble factors from mast cells and basophils (Pennock and Grecis, 2006; Voehringer, 2009). Although the role of IgE...
in providing protective immunity appears limited, other antibodies, particularly IgM and IgG, have been shown to be effective. In addition, several helminth models have demonstrated antibody-mediated passive immunity and parasite-specific maternal IgG can protect offspring from *H. polygyrus* or *Trichinella spiralis* (Harris and Gause, 2010). However, a recent study showed that the protective role of B cells seems to be more distinct. Using B cell deficient mice, Liu et al. (2010) demonstrated that most of the parameters of mucosal primary and memory Th2 responses after infection with *N. brasiliensis* or *H. polygyrus* are not impaired if B cells are missing. The only scenario in which B cells were important was the successful expulsion of the parasite *H. polygyrus* after secondary inoculation. Nevertheless, B cells not only function by producing important protective antibodies (Liu et al., 2010) but through antibody-independent activities as well including antigen presentation, providing co-stimulation and regulatory/effector functions (Linton et al., 2003; Harris and Gause, 2010).

The first indication of regulatory B cells came from studies on autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and type 1 diabetes and interestingly the onset of these diseases can be dampened by ongoing helminth infections (Fillatreau et al., 2008; Huisaarts et al., 2011). Although their induction correlates to dampened Th1 responses they have also been shown to modulate Th2 responses during helminth infections. In schistosomiasis for example, lack of B cells enhances Th2-driven immunopathology and the up-regulation of FasL expression on B cells correlates with increased apoptosis of activated CD4+ T cells (Lundy and Boros, 2002). Recent studies have identified that CD19+CD23hi B2 B cells, induced during *H. polygyrus* infection, have the capacity to down-modulate allergic airway inflammatory reactions (Wilson et al., 2010). In contrast to the previously described IL-10-producing B cells (Smits et al., 2010), these CD23+ B cells suppressed allergic responses in an IL-10 independent manner. A possible explanation for their suppressive capacity is the expression of CD23, which is the low affinity IgE receptor and has been shown to have inhibitory effects on airway inflammation (Haçcu et al., 2000). Interestingly, resistance to schistosomiasis in hyperexposed individuals was correlated to circulating CD23+ B cells expressing the CD23b isoform and CCR5, the homing receptor for lymphoid follicles. Moreover, CD23-bound IgE cross-linking increased surface expression of CCR5, suggesting that these circulating B cells may play a role in the capture and shuttling of schistosomal antigens directly to splenic follicles (Onguru et al., 2011). Further elucidation of these helmint induced regulatory B cells may identify new strategies to modulate chronic inflammatory diseases or attenuate allergic diseases (Amu et al., 2010; Smits et al., 2010). Of interest, in a study of *S. mansoni*-infected individuals with multiple sclerosis it was observed that expression levels of TLR2 were significantly higher on B cells and moreover, could be significantly up-regulated upon exposure to SEA. Furthermore, SEA increased IL-10 production from anti-CD40-activated B cells which in turn suppressed T cell responses (Correale and Farez, 2009). In association, SEA was shown to induce IL-10 in DC (Kane et al., 2004) and other studies have shown using non-parasite derived antigens that triggering TLR4 can induce IL-10 secretion in B cell in a Myd88-dependent manner (Yanaba et al., 2009).

MECHANISMS OF Treg INDUCTION VIA TLR-TRIGGERING HELMINTH COMPONENTS

The essential purpose of naturally occurring Treg (nTreg) and induced Treg (iTreg) are well-characterized: prevention of overt reactions to self-antigens and mediating adaptive responses during infection (Rudensky, 2011). Nevertheless, their phenotypic characteristics and functional mechanisms remain incompletely understood. One could imagine that the numerous reported novel features of Treg are subject to not only the underlying disease but also dependent on their location and interaction with other cell types. Furthermore they show high plasticity and there has been a flourish of reports demonstrating their re-programming capabilities (Hori, 2010). For example, human PBMCs contain CD4+Foxp3+CCR6+ cells that can produce IL-17 upon TCR stimulation, *in vitro* however, this process requires the presence of IL-1β, IL-2, IL-21, and IL-23 (Voo et al., 2009). Again, the requirement of multiple cytokines highlights that re-programming or phenotypic alterations only occur under certain scenarios. Another facet that remains incompletely understood is the driving force behind iTreg induction. During helminth infections there is a general expansion of Treg (CD4+CD25hiFoxp3+) but this development remains in a homeostatic relationship to CD4+ T effector cells (Layland et al., 2007, 2010; Blankenhaus et al., 2011; Othman et al., 2011). It is the failure to expand that causes deviations in the immune responses and usually results in exaggerated immunopathology (Layland et al., 2007; McSorley et al., 2008). Such responses were observed during *in vivo* infections with *S. mansoni* which elicits chronic inflammation of the liver and intestine in over 200 million people worldwide (Wilson et al., 2007). This blood fluke has a complicated lifecycle and within the definitive mammalian host, the parasite undergoes no less than three different life-stages. However, as mentioned above, it is not the adult worms of these infections that trigger destructive immune responses but their offspring. In schistosomiasis, the ensuing immunopathology arises from the abundant eggs that are released from fecund females and which must penetrate the intestine to be excreted with the stool. This is facilitated by the development of granulomas which are mediated by schistosome-specific CD4+ T effector cells (Asahi and Stadecker, 2003; Wilson et al., 2007). *S. mansoni* infections of TLR2-deficient mice displayed overt pathological symptoms due to the failure of these mice to increase the numbers of Treg during infection. The balance could be restored by the adoptive transfer of helminth-specific Treg in deficient animals (Layland et al., 2007). These *in vivo* experiments correlated to the previously described studies showing that lipids from *S. mansoni* eggs specifically triggered TLR2 to induce IL-10 Treg. Although correct activation of TLR and NLR signaling pathways are crucial for directing host defenses the role of TLR in Treg induction remains controversial since TLR agonists can have either direct or indirect effects on Treg (Conroy et al., 2008). For example, TLR-triggered IL-6 production from DC can suppress Treg function (Pasare and Medzhitov, 2005) whereas other studies have shown that combinations of IL-1 and IL-6 can enhance the suppressive capabilities of Treg (Kubo et al., 2004). TLR9 on the other hand was shown to directly aid the conversion of effector cells to Treg but this was dependent on the tissue and TLR-activated...
DC subset (Hall et al., 2008; Mills, 2008; Rutitzky and Stadecker, 2011).

A fascinating aspect of helminth infections is the development of initial Th1 responses which convert over time to Th2 responses. Indeed the failure to develop Th2 responses after egg deposition during schistosomiasis results in exacerbated granuloma inflammation due to more prominent Th1 and Th17 responses and results in substantial damage to the hepatic parenchyma, accelerating morbidity (Rutitzky and Stadecker, 2011). Other alterations to the immune balance have been verified in murine studies of *S. mansoni* infection using various cellular and cytokine deficient strains. The requirement of T reg was first noted in studies with IL-10 knockout mice since these mice developed such overt granuloma responses that they had accelerated death (Hoffmann et al., 2000; Hesse et al., 2004). In helminth infected individuals both IL-10 and TGF-β are up-regulated and although T reg are the main source of these anti-inflammatory mediators their release from B cells and other APC have also been shown to dampen overt responses (Hoffmann et al., 2000; Hesse et al., 2004; Mangan et al., 2004; Perona-Wright et al., 2006; Correale et al., 2008; Mitre et al., 2008). In a recent *in vitro* study by (Grainger et al., 2010) a helminth product termed excretory–secretory antigen [HES] from *H. polygyrus* and another related nematode was shown to induce de novo Foxp3 expression in splenocytes due to the ligation of HES to the TGF-β receptor.

In enhancing the knowledge about T reg, it was observed that during schistosomiasis their absence elicited increased immunopathology and moreover, lack of control over schistosome-specific immune responses (Layland et al., 2007, 2010). In other models such as the murine model of filariasis (*Liptosomoides sigmodontis*) and *Strongyloides ratti*, removal of T reg can lead to worm death but inhibits the priming of Th2 responses as well (Gillan and Devaney, 2005; Taylor et al., 2007; Korten et al., 2008; Allen and Maizels, 2011; Blankenhans et al., 2011). Helminth-derived T reg also possess greater suppressive activities and can antigen specifically suppress helminth-specific effector T cells. Although little remains known about the mechanism employed by these cells, characterization, and gene expression profiles have elucidated that such cells have distinctive markers such as CD103 and Granzyme B (Korten et al., 2008; McSorley et al., 2008; Taylor et al., 2009; Layland et al., 2010). These profiles provide hints as to how these cells orchestrate both molecular and cellular events (Figure 1). Expression levels of CTLA-4 and GITR have been identified on T reg during chronic helminth infections in mouse and human and *in vivo* studies have investigated how the absence of these molecules influences the functionality of Treg. Absence of GITR in *Trichuris muris* can reduce worm numbers (D’Elia et al., 2009) for example and in already established infection of *L. sigmodontis*, removal of Treg only has an effect on the parasitic load when combined with blocking CTLA-4 or activating CTLA-4.

FIGURE 1 Schematic illustration of TLR–Treg–B cell interactions during helminth infections. Multiple products derived from various life-stages of helminth parasite have been shown to trigger innate pathways such as TLR or CTL. The triggering of such responses promotes a specific Th milieu although many have been shown to encourage Th2 or regulatory phenotypes. Alternatively, they may modulate responses to other innate stimuli or bystander antigens. Several helminth antigens have been shown to use TLR2 or 4 and some have been described to induce Treg. The ensuing Treg population is distinguished by their display of distinct markers such as GITR and CTLA-4. IL-10-producing Treg have been shown to promote IgG4 production by B cells and in vitro this was found to be dependent on IL-10, TGF-β, and GITR–GITR-L interaction. These non-inflammatory scenarios would be beneficial during helminth infections since they would control excessive immune responses.
Treg AND B CELLS IN HELMINTH INFECTION

One of the most well-characterized immune cell interplays has been elucidated in individuals infected with filariasis. As mentioned above, many infected patients have an asymptomatic condition which is characterized by elevated levels of Treg, IL-10, and filarial-specific IgG4 (Satouguina et al., 2002; Adjobimey and Hoerauf, 2010). IgG4 is the protective non-complement binding IgG subclass. The advantages of such B cell responses is apparent in patients suffering from allergy or helminth infections where high IgE responses need to be counter-regulated in order to avoid excessive immunopathology. Further in vitro studies were able to decipher that IL-10-producing T cells or Treg could induce IgG4 from B cells in an IL-10/TGF-β dependent manner (Mahany et al., 1996; Doetze et al., 2000; Satouguina et al., 2002, 2008; Adjobimey and Hoerauf, 2010). Such interactions were further shown to be mediated through cell contact and GITR–GITR-L interactions but interestingly not CTLA-4 (Satouguina et al., 2008). However, there is a small population of infected individuals that develop deliberating pathological symp- toms and in contrast to hypo-responsive people, have elevated levels of IgE and IL-4 (Adjobimey and Hoerauf, 2010). Why and how these patients develop such polar responses remains unresolved. A possible hypothesis could be that during the development of worm-friendly environments, individuals suffer secondary infections, redirecting B cell responses through alternative TLR-mediated actions and driving non-protective effector T cell repertoires.

As with every aspect of immunology, immune responses to any infection are never black and white. In vitro and in vivo experiments have both advantages and disadvantages but extrapolating those findings to “real-life” situations have to be viewed with caution. We are often extremely naive in how other aspects, such as our commensal flora or elements within the environment can sway our reactions. Within this review we have described multiple helmint-derived products that elicit both communal and unique host responses. Some of these mechanisms are TLR dependent either at the innate or adaptive side and such immunomodulation appears to benefit the worm in its long term relationship with the host but also the host from developing allergies or autoimmunity. Deciphering those molecules will hopefully provide new strategies in combating such diseases.

REFERENCES

Adjobimey, T., and Hoerauf, A. (2010). Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann. Trop. Med. Parasitol. 104, 455–464.

Aksu, E., Zouain, C. S., Vanhoutte, E., Fontaine, J., Pavelka, N., Thiéblemont, N., Willems, F., Ricciardi-Castagnoli, P., Goldmann, M., Capron, M., Ryffel, B., and Trottine, E. (2005). Double-stranded RNAs from the helminth parasite Schistosoma activate TLR3 in dendritic cells. J. Biol. Chem. 280, 277–283.

Allen, J. E., and Maizels, R. M. (2011). Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 11, 375–388.

Amu, S., Saunders, S. P., Kronenberg, M., Mangan, N. E., Atzberger, A., and Fallon, P. G. (2010). Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 125, 1114–1124.e8.

Anthony, R. M., Ruttitzky, L. I., Urban, J. F. Jr., Stadecer, M. L., and Gause, W. C. (2007). Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987.

Asahi, H., and Stadecer, M. J. (2003). Analysis of egg antigens inducing hepatic lesions in schistosomiasis infection. Parasitol. Int. 52, 361–367.

Blackwell, N. M., and Else, K. I. (2001). B cells and antibodies are required for resistance to the parasitic gastrointestinal nematode Trichurus muris. Infect. Immun. 69, 3860–3868.

Blankenhuis, B., Klemm, U., Eschbach, M. L., Sparwasser, T., Huen, J., Kuhl, A. A., Loddenkemper, C., Jacobs, T., and Breitol, M. (2011). Strongyloides: acute infection induces expansion of FoxP3+ regulatory T cells that interfere with immune response and parasite clearance in BALB/c mice. J. Immunol. 186, 4295–4305.

Brattig, N. W., Bazzochi, C., Kirschning, C. I., Reiling, N., Buttner, D. W., Cecilian, F., Geisinger, F., Hochrein, H., Ernst, M., Wagner, H., Bandi, C., and Hoerauf, A. (2004). The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J. Immunol. 173, 437–445.

Conroy, H., Marshall, N. A., and Mills, K. H. (2008). TLR ligand suppression or enhancement of Treg cells? A double-edged sword in immunity to tumours. Oncogene 27, 168–180.

Correale, J., and Farez, M. (2009). Helminth antigens modulate immune responses in cells from multiple sclerosis patients through TLR2-dependent mechanisms. J. Immunol. 183, 5999–6012.

Correale, J., Farez, M., and Razzitte, G. (2008). Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann. Neurol. 64, 187–199.

D’Elia, R., Behnke, J. M., Bradley, J. E., and Else, K. I. (2009). Regulatory T cells: a role in the control of helminth-driven intestinal pathology and worm survival. J. Immunol. 182, 2540–2548.

Doetze, A., Satouguina, J., Burchard, G., Rau, T., Loiger, C., Fleischer, B., and Hoerauf, A. (2000). Antigen-specific cellular hypersensitivity in a chronic human helminth infection is mediated by Th(b)/Th(r)/Th2-type cytokines IL-10 and transforming growth factor-beta but not by a Th(b)/Th(r)/Th2 shift. Int. Immunol. 12, 623–630.

Everts, B., Smits, H. M., Hokke, C. H., and Yazdanabakhsh, M. (2010). Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. Eur. J. Immunol. 40, 1525–1537.

Filletrau, S., Gray, D., and Anderton, S. M. (2008). Not always the bad guys: B cells as regulators of autoimmune pathology. Nat. Rev. Immunol. 8, 391–397.

Gillan, V., and Devaney, E. (2005). Regulatory T Cells modulate Th2 responses induced by Brugia pahangi third-stage larvae. Infect. Immun. 73, 4034–4043.

Goodridge, H. S., McGuiness, S., Houston, K. M., Egan, C. A., Al-Riyami, L., Akocer, M. I., Harnett, M. M., and Harnett, W. (2007). Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol. 29, 127–137.

Greninger, J. B., Smith, K. A., Hewinson, I. P., McSweeney, H. J., Harscay, Y., Filby, K. J., Finney, C. A., Greenwood, E. J., Knox, D. P., Wilson, M. S., Belkaid, Y., Rudensky, A. Y., and Maizels, R. M. (2010). Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-beta pathway. J. Exp. Med. 207, 2331–2341.

Haczu, A., Takeda, K., Hamelmann, E., Loader, I., Joehaum, A., Redai, L., Irvin, C. G., Lee, J. J., Kikutani, H., Conrad, D., and Gelfand, E. W. (2000). CD23 exhibits negative regulatory effects on allergic sensitization and airway hyperresponsiveness. Ann. J. Respir. Crit. Care Med. 161, 952–960.

Hall, J. A., Bouloudou, N., Sun, C. M., Wennfelt, E. A., Black, R. B., Zhu, Q., Grigg, M. E., Berzofsky, J. A., and Belkaid, Y. (2008). Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649.
Harris, N., and Gause, W. C. (2010). To B or not to B? Cells and the Th2-type immune response to helminths. Trends Immunol. 32, 80–88.

Hernandez, H. J., Wang, Y., and Stadecker, M. J. (1997). Infection with Schistosoma mansoni, B cells are required for T helper type 2 cell responses but not for granuloma formation. J. Immunol. 158, 4832–4837.

Hesse, M., Piccirillo, C. A., Belkaid, Y., Prulier, J., Mentink-Kane, M., Leusink, M., Cheever, A. W., Shevach, E. M., and Wynn, T. A. (2004). The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. J. Immunol. 172, 3157–3166.

Hoffmann, K. F., Cheever, A. W., and Wynn, T. A. (2000). IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164, 6406–6416.

Hori, S. (2010). Developmental plasticity of Foxp3+ regulatory T cells. Curr. Opin. Immunol. 22, 575–582.

Hotze, P. J., Brindley, P. J., Bethony, J. M., Hussaarts, L., van der Vlugt, L. E., Yazdanbakhsh, M., Piccirillo, C. A., Belkaid, Y., Harris, N., and Gause, W. C. (2010). To Ludwig-Portugall and Layland TLR–T reg–B cell interplay. Trends Immunol. 31, 2174–2184.

Linton, P. J., Bautista, B., Biederman, E., Bradley, E. S., Harbertson, J., Kondrack, R. M., Padrick, R. C., and Bradley, I. M. (2003). Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J. Exp. Med. 197, 875–883.

Liu, Q., Kreider, T., Bowdridge, S., Liu, Z., Song, Y., Gaydo, A. G., Urban, J. F. Jr., and Gause, W. (C. 2010). B cells have distinct roles in host protection against different nematode parasites. J. Immunol. 184, 5213–5223.

Lundy, S. K., and Boros, D. L. (2002). Fas ligand-expressing B-1a lymphocytes mediate CD4(+)+T-cell apop- tosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10. Infect. Immun. 70, 812–819.

Mahanty, S., Mollis, S. N., Ravichandran, M., Aerts, J. S., Kumarawami, V., Jayaraman, K., Ottesen, E. A., and Nutman, T. B. (1996). High levels of sponta- neous and parasite antigen-driven interleukin-10 production are associated with antigen-specific hyporesponsiveness in human lymphatic filariasis. J. Infect. Dis. 173, 769–773.

Maiels, R. M., Balic, A., Gomez-Escolar, N., Nair, M., Taylor, M. D., and Allen, J. E. (2004). Helminth parasites – masters of regulation. Immunol. Rev. 201, 89–116.

Maiels, R. M., Pearce, E. J., Artis, D., Yazdanbakhsh, M., and Wynn, T. A. (2009). Regulation of pathogenesis and immunity in helminth infec- tions. J. Exp. Med. 206, 2059–2066.

Maiels, R. M., and Yazdanbakhsh, M. (2003). Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744.

Mangal, S. E., Fallon, R. E., Smith, P. van Rooijen, N., McKenzie, A. N., and Fallon, P. G. (2004). Helminth infection protects mice from anan- phylaxis via IL-10-producing B cells. J. Immunol. 173, 6346–6356.

McSorley, H. J., Harcus, Y. M., Murray, J., Taylor, M. D., and Maizels, R. M. (2008). Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia malayi. J. Immunol. 181, 6456–6466.

Medzhitov, R., and Janeway, C. A. Jr. (1997). Innate immunity: the virtues of a non-conditional system of recognition. Cell 91, 295–298.

Meyer, S., van Lintel, E., Imberty, A., van Kooyk, Y., Geyer, H., Geyer, R., and van Die, I. (2005). DC-SIGN mediates binding of dendritic cells to authentic pseudo-Lewis-Y glycolipids of Schistosoma mansoni cer- cariae, the first parasite-specific ligand of DC-SIGN. J. Biol. Chem. 280, 37349–37359.

Mills, K. H. (2008). TLR9 turns the tide on Treg cells. Immunology 29, 528–520.

Mitre, E., Chien, D., and Nutman, T. B. (2008). CD4(+) and CD25(+) T cells are the predominant interleukin-10-producing cells in the circulation of filaria-infected patients. J. Infect. Dis. 197, 94–101.

Moreau, E., and Chauvin, A. (2010). Immunity against helminths: interactions with the host and the intercurrent infections. J. Biomed. Biotechnol. 2010, 428593.

Moulin, V., Andris, F., Thielenmans, K., Maliszewski, C., Urban, J., and Moser, M. (2000). B lymphocytes regulate dendritic cell (DC) func- tion in vivo: increased interleukin 12 production by DCs from B cell-deficient mice results in T helper cell type 1 deviation. J. Exp. Med. 192, 472–482.

Okano, M., Satoskar, A. R., Nishizaki, K., Abe, M., and Harnd, D. A. Jr. (1999). Induction of Th2 responses and IgE is largely due to carbohydrates func- tioning as adjuvants on Schistosoma mansoni egg antigens. J. Immunol. 163, 6712–6717.

Okano, M., Satoskar, A. R., Nishizaki, K., and Harnd, D. A. Jr. (2001). Lacto-N-fucopentaose III found on Schistosoma mansoni egg antigens as adjuvants for vaccines. J. Immunol. 167, 442–450.

Onguru, D., Liang, Y., Griffith, Q., Noko- layczyk, B., Mwini, P., and Galley-Leal, L. (2011). Human schistoso- momoides cariae, the first parasite-specific lig- ands of a nonclonal system of recognition. Trends Immunol. 32, 2174–2184.
O-methylated glycans from *Toxo-
cama* are specific targets for anti-
body binding in human and ani-
mal infections. *Int. J. Parasitol.* 37,
97–109.
Schenten, D., and Medzhitov, R. (2011).
The control of adaptive immune
responses by the innate immune
system. *Adv. Immunol.* 109, 87–124.
Smits, H. H., Everts, B., Hartgers, F.
C., and Yazdanbakhsh, M. (2010).Chronic helminth infections pro-
tect against allergic diseases by active
regulatory processes. *Curr. Allergy
Proc.* 10, 3–12.
Tawill, S., Le Goff, L., Ali, E., Blaxter,
M., and Allen, J. E. (2004). Both
free-living and parasitic nematodes
induce a characteristic Th2 response
that is dependent on the presence
of intact glycans. *Infect. Immun.* 72,
398–407.
Taylor, M. D., Harris, A., Babayan, S.
A., Bain, O., Culshaw, A., Allen, I.
E., and Maizels, R. M. (2007). CTLA-
4 and CD4+ CD25+ regulatory T
cells inhibit protective immunity to
filarial parasites in vivo. *J. Immunol.*
179, 4626–4634.
van Die, I., van Vliet, S. J., Nyame,
A. K., Cummings, R. D., Bank, C.
M., Appelmelk, B., Geijtenbeek, T.
B., and van Kooyk, Y. (2003). The
dendritic cell-specific C-type lectin
dc-SIGN is a receptor for *Schisto-
osoma mansoni* egg antigens and rec-
ognizes the glycan antigen Lewis x.
Glycobiology 13, 471–478.
van Liempt, E., van Vliet, S. J., Enering,
A., Garcia Vallejo, J. I., Bank, C. M.
Sanchez-Hernandez, M., van Kooyk,
Y., and van Die, I. (2007). *Schisto-
osoma mansoni* soluble egg antigens
are internalized by human dendritic
cells through multiple C-type lectins
and suppress TLR-induced dendritic
cell activation. *Mol. Immunol.* 44,
2605–2615.
van Riet, E., Everts, B., Retra, K.,
Phlyipsen, M., van Hellemond, J. J.
Tielens, A. G., van der Klei, D., Hart-
gers, F. C., and Yazdanbakhsh, M.
(2009). Combined TLR2 and TLR4
ligation in the context of bacterial
or helminth extracts in human
monocyte derived dendritic cells:
molecular correlates for Th1/Th2
polarization. *BMC Immunol.* 10, 9.
doi:10.1186/1471-2172-10-9
Venugopal, P. G., Nutman, T. B., and
Sennani, R. T. (2009). Activation
and regulation of toll-like recep-
tors (TLRs) by helminth parasites.
Immunol. Res. 43, 252–263.
Voehringer, D. (2009). The role of
basophils in helminth infection.
Trends Parasitol. 25, 551–556.
Voo, K. S., Wang, Y. H., Santori,
F. R., Boggiano, C., Wang, Y. H.,
Arima, K., Bover, L., Hanabuchi,
S., Khalil, I., Marinova, E., Zheng,
Y., and van Die, I. (2009). Identifica-
tion of IL-17-producing FOXP3+
regulatory T cells in humans.
Proc. Natl. Acad. Sci. U.S.A. 106,
4793–4798.
Whelan, M., Harnett, M. M., Hous-
ton, K. M., Patel, V., Harnett, W.,
and Rigley, K. P. (2010). A filarial
nematode-secreted product signals
dendritic cells to acquire a pheno-
type that drives development of Th2
cells. *J. Immunol.* 164, 6453–6460.
Wilson, M. S., Mentink-Kane, M. M.,
Pese, J. T., Ramalingam, T. R.,
Thompson, K., and Wynn, T. A.
(2007). Immunopathology of schis-
sosomiasis. *Immunol. Cell Biol.* 85,
148–154.
Wilson, M. S., Taylor, M. D., O’Gorman,
M. T., Balic, A., Barr, T. A., Fil-
bey, K., Anderton, S. M., and
Mainz, K. M. (2010). Helminth-
induced CD19+CD23hi B cells
modulate experimental allergic and
autoimmune inflammation. *Eur. J.
Immunol.* 40, 1682–1696.
Yanaba, K., Bouaziz, J. D., Mat-
susita, T., Tsubata, T., and Ted-
der, T. F. (2009). The develop-
ment and function of regulatory B
cells expressing IL-10 (B10 cells)
requires antigen receptor diversity
and TLR signals. *J. Immunol.* 182,
7459–7472.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 08 November 2011; paper
published online: 28 December 2011;
accepted: 13 January 2012; published
online: 01 February 2012.
Citation: Ludwig-Portugall I and Lay-
land LE (2012) TLRs, T reg, and B
cells, an interplay of regulation during
helminth infection. *Front. Immun.* 3:8.
doi: 10.3389/fimmu.2012.00008
This article was submitted to Frontiers in
B Cell Biology, a specialty of Frontiers in
Immunology.

Copyright © 2012 Ludwig-Portugall and
Layland. This is an open-access article
distributed under the terms of the Cre-
vative Commons Attribution Non Com-
mersial License, which permits non-
commercial use, distribution, and repro-
duction in other forums, provided the
original authors and source are credited.