1. Introduction

1.1. A dimension for a triangulated category has been introduced by Rouquier in [Ro], which gives a new invariant for algebras and algebraic varieties under derived equivalences. For related topics see also [BV], and [Hap], p.70.

Let \mathcal{C} be a triangulated category with shift functor $[1]$, \mathcal{I} and \mathcal{J} full subcategories of \mathcal{C}. Denote by $\langle \mathcal{I} \rangle$ the smallest full subcategory of \mathcal{C} containing \mathcal{I} and closed under isomorphisms, finite direct sums, direct summands, and shifts. Any object of $\langle \mathcal{I} \rangle$ is isomorphic to a direct summand of a finite direct sum $\bigoplus I_i[n_i]$ with each $I_i \in \mathcal{I}$ and $n_i \in \mathbb{Z}$. Define $\mathcal{I} \ast \mathcal{J}$ to be the full subcategory of \mathcal{C} consisting of the objects M, for which there is a distinguished triangle $I \to M \to J \to I[1]$ with $I \in \mathcal{I}$ and $J \in \mathcal{J}$. Now define $\langle \mathcal{I} \rangle_n := \{0\}$, and $\langle \mathcal{I} \rangle_n := (\langle \mathcal{I} \rangle_{n-1} \ast \langle \mathcal{I} \rangle)$ for $n \geq 1$. Then $\langle \mathcal{I} \rangle_1 = \langle \mathcal{I} \rangle$, and $\langle \mathcal{I} \rangle_n = (\langle \mathcal{I} \rangle \ast \cdots \ast \langle \mathcal{I} \rangle)$, by the associativity of \ast (see [BV]). Note that $\langle \mathcal{I} \rangle_\infty := \bigcup_{n=0}^{\infty} \langle \mathcal{I} \rangle_n$ is the smallest thick triangulated subcategory of \mathcal{C} containing \mathcal{I}.

By definition, the dimension of \mathcal{C}, denoted by $\dim(\mathcal{C})$, is the minimal integer $d \geq 0$ such that there exists an object $M \in \mathcal{C}$ with $\mathcal{C} = \langle M \rangle_{d+1}$, or ∞ when there is no such an object M. See [Ro].

Let A be a finite-dimensional algebra over a field k. Denote by $A\text{-mod}$ the category of finite-dimensional left A-modules, and by $D^b(A\text{-mod})$ the bounded derived category. Define the derived dimension of A, denoted by $\text{der.dim}(A)$, to be the dimension of the triangulated category $D^b(A\text{-mod})$. By [Ro] and [KK] one has

$$\text{der.dim}(A) \leq \min\{l(A), \, \text{gl.dim}(A), \, \text{rep.dim}(A)\}$$

where $l(A)$ is the smallest integer $l \geq 0$ such that $\text{rad}^{l+1}(A) = 0$, $\text{gl.dim}(A)$ and $\text{rep.dim}(A)$ are the global dimension and the representation dimension of A (for the definition of $\text{rep.dim}(A)$ see [Au]), respectively. In particular, we have $\text{der.dim}(A) < \infty$.

* The corresponding author.

Supported in part by the National Natural Science Foundation of China (Grant No. 10301033). Email: xwchen@mail.ustc.edu.cn, yeyu@ustc.edu.cn, pzhanglei@sjtu.edu.cn.
Our main result is

Theorem Let A be a finite-dimensional algebra over an algebraically closed field k. Then $\text{der.dim}(A) = 0$ if and only if A is an iterated tilted algebra of Dynkin type.

1.2. Let us fix some notation. For an additive category \mathcal{A}, denote by $C^*(\mathcal{A})$ the category of complexes of \mathcal{A}, where $* \in \{-, +, b\}$ means bounded-above, bounded-below, and bounded, respectively; and by $C(\mathcal{A})$ the category of unbounded complexes. Denote by $K^*(\mathcal{A})$ the corresponding homotopy category. If \mathcal{A} is abelian, we have derived category $D^*(\mathcal{A})$.

For a finite-dimensional algebra A, denote by A-mod, A-proj and A-inj the category of finite-dimensional left A-modules, projective A-modules and injective A-modules, respectively.

For triangulated categories and derived categories we refer to [V], [Har], and [Hap]; for representation theory of algebras we refer to [ARS] and [Ri]; and for tilting theory we refer to [Ri] and [Hap], in particular, for iterated tilted algebras we refer to [Hap], p.171.

2. **Proof of Theorem**

Before giving the proof of Theorem, we make some preparations.

2.1. Let $A = \bigoplus_{j \geq 0} A(j)$ be a finite-dimensional positively-graded algebra over k, and A-gr the category of finite-dimensional left \mathbb{Z}-graded A-modules with morphisms of degree zero. An object in A-gr is written as $M = \bigoplus_{j \in \mathbb{Z}} M(j)$. For each $i \in \mathbb{Z}$, we have the degree-shift functor $(i) : A$-gr \rightarrow A-gr, defined by $M(i)(j) = M(i+j), \forall j \in \mathbb{Z}$. Let $U : A$-gr \rightarrow A-mod be the degree-forgetful functor. Then $U(M(i)) = U(M), \forall i \in \mathbb{Z}$. Clearly, A-gr is a Hom-finite abelian category, and hence by Remark A.2 in Appendix it is Krull-Schmidt. An indecomposable in A-gr is called a gr-indecomposable module. The category A-gr has projective covers and injective hulls. Assume that $\{e_1, e_2, \cdots, e_n\}$ is a set of orthogonal primitive idempotents of $A(0)$, such that $\{P_i := Ae_i = \bigoplus_{j \geq 0} A(j)e_i \mid 1 \leq i \leq n\}$ is a complete set of pairwise non-isomorphic indecomposable projective A-modules. Then P_i (resp. $I_i := D(e_i, A) = \bigoplus_{j \leq 0} D(e_i, A_{i-j})$) is a projective (resp. an injective) object in A-gr. One deduces that $\{P_i(j) \mid 1 \leq i \leq n, j \in \mathbb{Z}\}$ is a complete set of pairwise non-isomorphic indecomposable projective objects in A-gr, and $\{I_i(j) \mid 1 \leq i \leq n, j \in \mathbb{Z}\}$ is a complete set of pairwise non-isomorphic indecomposable injective objects in A-gr.

Let $0 \neq M \in A$-gr. Define $t(M) := \max\{i \in \mathbb{Z} \mid M(i) \neq 0\}$ and $b(M) := \min\{i \in \mathbb{Z} \mid M(i) \neq 0\}$. For a graded A-module $M = \bigoplus_{i \in \mathbb{Z}} M(i)$, set $\text{top}(M) := M(\text{top}(M))$, and $\text{bot}(M) := M(\text{bot}(M))$, both of which are viewed as $A(0)$-modules. Denote by Ω^n (resp. $\Omega_{A(0)}$) the n-th syzygy functor on A-gr (resp. $A(0)$-mod), $n \geq 1$. Similarly we have Ω^{-n} and $\Omega_{A(0)}^{-n}$.

We need the following observation.

Lemma 2.1. Let M be a non-zero non-projective and non-injective graded A-module. With notation above we have
(i) Either $b(\Omega(M)) = b(M)$ and $\bot(\Omega(M)) = \Omega_{A(0)}(\bot(M))$, or $b(\Omega(M)) > b(M)$.

(i') Either $t(\Omega^{-1}(M)) = t(M)$ and $\top(\Omega^{-1}(M)) = \Omega_{A(0)}^{-1}(\top(M))$, or $t(\Omega^{-1}(M)) < t(M)$.

Proof. We only justify (i). Note that $\rad(A) = \rad(A(0)) \oplus A(1) \oplus \cdots$, and that for a graded A-module M, the projective cover P of $M/\rad(A)M$ in A-mod is graded. It follows that it gives the projective cover of M in A-gr. Since A is positively-graded, it follows that $b(P) = b(M)$, and that $\bot(P)$ is the projective cover of $\bot(M)$ as $A(0)$-modules. If $\bot(P) = \bot(M)$, then $b(\Omega(M)) > b(M)$. Otherwise, $b(\Omega(M)) = b(M)$ and $\bot(\Omega(M)) = \Omega_{A(0)}(\bot(M))$.

2.2. Let $A = \bigoplus_{j \geq 0} A_{(j)}$ be a finite-dimensional positively-graded algebra over k. The category A-gr is said to be locally representation-finite, provided that for each $i \in \mathbb{Z}$, the set

$$\{ [M] \mid M \text{ is gr-indecomposable such that } M_{(i)} \neq 0 \}$$

is finite, where $[M]$ denote the isoclass in A-gr of the graded module M. By degree-shifts, one sees that A-gr is locally representation-finite if and only if the set

$$\{ [M] \mid M \text{ is gr-indecomposable such that } M_{(0)} \neq 0 \}$$

is finite, if and only if A-gr has only finitely many indecomposable objects up to degree-shifts.

If A is in addition self-injective, then A-gr is a Frobenius category. In fact, we already know that A-gr has enough projective objects and injective objects, and each indecomposable projective object is of the form $P_{(j)}$; since A is self-injective, it follows that $P_{(j)}$ is injective in A-mod, so is $P_{(j)}$ in A-gr; similarly, each $I_{(j)}$ is a projective object in A-gr.

Note that the stable category A-gr is triangulated (see [Hap, Chap. 1, Sec. 2]), with shift functor induced by Ω^{-1}.

Proposition 2.2. Let $A = \bigoplus_{j \geq 0} A_{(i)}$ be a finite-dimensional positively-graded algebra which is self-injective. Assume that $\dim(A$-gr) = 0 and $\gl\dim(A_{(0)}) < \infty$. Then A-gr is locally representation-finite.

Proof. Since $\dim(A$-gr) = 0, it follows that A-gr = $\langle X \rangle$ for some graded module X. Without loss of generality, we may assume that $X = \bigoplus_{l=1}^{r} M_{(i)}$, where $M_{(i)}$'s are pairwise non-isomorphic non-projective gr-indecomposable modules. It follows that every gr-indecomposable A-module is in the set $\{ \Omega_{(j)}^{l}(M_{(i)}) \mid i \in \mathbb{Z}, 1 \leq l \leq r, 1 \leq j \leq n \}$. Therefore, it suffices to prove that for each $1 \leq l \leq r$, the set

$$\{ j \in \mathbb{Z} \mid \Omega_{(l)}^{l}(M_{(i)}) \neq 0 \}$$

is finite.

For this, assume that $\gl\dim(A_{(0)}) = N$, $b(M_{(i)}) = j_{0}$, and $t(M_{(i)}) = i_{0}$. Since $\gl\dim(A_{(0)}) < \infty$, it follows from Lemma 2.1(i) that if $b(\Omega(M)) = b(M)$ then $p.d(\bot(\Omega(M))) = p.d(\bot(M)) - 1$ as $A_{(0)}$-modules, and otherwise $b(\Omega(M)) > b(M)$. By using Lemma 2.1(i) repeatedly we have

$$\text{if } j \geq \max\{ 1, -j_{0}N \}, \text{ then } b(\Omega^{l}(M_{(i)})) > 0.$$
Dually, if \(j \geq \max\{1, i_0 \} \), then \(t(\Omega^{-j}(M^i)) < 0 \). Note that \(b(\Omega^j(M^i)) > 0 \) (resp. \(t(\Omega^{-j}(M^i)) < 0 \)) implies that \(\Omega^j(M^i)(0) = 0 \) (resp. \(\Omega^{-j}(M^i)(0) = 0 \)). It follows that the set considered above is finite.

2.3. Let us recall some related notion in [BG] and [G]. Let \(A \) and \(\{e_1, e_2, \ldots, e_n\} \) be the same as in 2.1, and \(\mathbf{M} \) the full subcategory of \(A\text{-gr} \) consisting of objects \(\{P_j(i) \mid 1 \leq j \leq n, \ i \in \mathbb{Z} \} \). Then \(\mathbf{M} \) is a locally finite-dimensional in the sense of [BG]. One may identify \(A\text{-gr} \) with \(\text{mod}(\mathbf{M}) \) such that a graded \(A \)-module \(M \) is identified with a contravariant functor sending \(P_j(i) \) to \(e_j M_{(j-i)} \). Now it is direct to see that \(A\text{-gr} \) is locally representation-finite if and only if the category \(\mathbf{M} \) is locally representation-finite in the sense of [BG], p.337.

Let us follow [G], p.85-93. Let \(G \) be the group \(\mathbb{Z} \). Then \(G \) acts freely on \(\mathbf{M} \) by degree-shifts. Moreover, the orbit category \(\mathbf{M}/G \) can be identified with the full subcategory of \(A\text{-mod} \) consisting of \(\{P_j \mid 1 \leq j \leq n\} \). Hence we may identify \(\text{mod}(\mathbf{M}/G) \) with \(A\text{-mod} \). With these two identifications, the push-down functor \(F_\lambda : \text{mod}(\mathbf{M}) \rightarrow \text{mod}(\mathbf{M}/G) \) is nothing but the degree-forgetful functor \(U : A\text{-gr} \rightarrow A\text{-mod} \). The following is just a restatement of Theorem d) in 3.6 of [G].

Lemma 2.3. Let \(k \) be algebraically closed, and \(A \) be a finite-dimensional positively-graded \(k \)-algebra. Assume that \(A\text{-gr} \) is locally representation-finite. Then the degree-forgetful functor \(U \) is dense, and hence \(A \) is of finite representation type.

2.4. **Proof of Theorem:** If \(A \) is an iterated tilted algebra of Dynkin type, then by Theorem 2.10 in [Hap], p.109, we have a triangle-equivalence \(D^b(A\text{-mod}) \simeq D^b(kQ\text{-mod}) \) for some Dynkin quiver \(Q \). Note that \(kQ \) is of finite representation type, and that \(D^b(kQ\text{-mod}) = \langle M(0) \rangle \), where \(M \) is the direct sum of all the (finitely many) indecomposable \(kQ \)-modules. It follows that \(\text{der.dim}(A) = \text{der.dim}(kQ) = 0 \).

Conversely, if \(\text{dim}D^b(A\text{-mod}) = 0 \), it follows from the fact that \(D^b(A\text{-mod}) \) is Krull-Schmidt (see e.g. Theorem B.2 in Appendix) that \(D^b(A\text{-mod}) \) has only finitely many indecomposable objects up to shifts. Since \(K^b(A\text{-proj}) \) is a thick subcategory of \(D^b(A\text{-mod}) \), it follows that \(K^b(A\text{-proj}) \) has finitely many indecomposable objects up to shifts. Consequently, \(\text{s.gl.dim}(A) < \infty \) (for the definition of \(\text{s.gl.dim}(A) \) see B.3 in Appendix).

By Theorem 4.9 in [Hap], p.88, and Lemma 2.4 in [Hap], p.64, we have an exact embedding
\[
F : D^b(A\text{-mod}) \rightarrow T(A)\text{-gr},
\]
where \(T(A) = A \oplus DA \) is the trivial extension algebra of \(A \), which is graded with \(\text{deg}A = 0 \) and \(\text{deg}DA = 1 \). Since \(\text{gl.dim}A \leq \text{s.gl.dim}(A) - 1 < \infty \) (see Corollary B.3 in Appendix), it follows from Theorem 4.9 in [Hap] that the embedding \(F \) is an equivalence. Now by applying Proposition 2.2 to the graded algebra \(T(A) \) we know that \(T(A)\text{-gr} \) is locally representation-finite. It follows from Lemma 2.3 that \(T(A) \) is of finite representation type, and then the assertion follows from a theorem of Assem, Happel, and Roldán in [AHR], which says the trivial extension algebra \(T(A) \) is of finite representation type if and only if \(A \) is an iterated tilted algebra of Dynkin type (see also Theorem 2.1 in [Hap], p.199, and [HW]).

Appendix

This appendix includes an exposition on some material we used. They are well-known, however their proofs seem to be scattered in various literature.

A. Krull-Schmidt categories

This part includes a review of Krull-Schmidt categories.

A.1. An additive category \(C \) is **Krull-Schmidt** if any object \(X \) has a decomposition \(X = X_1 \oplus \cdots \oplus X_n \), such that each \(X_i \) is indecomposable with local endomorphism ring (see [Ri], p.52).

Directly by definition, a factor category (see [ARS], p.101) of a Krull-Schmidt category is Krull-Schmidt.

Let \(C \) be an additive category. An idempotent \(e = e^2 \in \text{End}_C(X) \) splits, if there are morphisms \(u : X \to Y \) and \(v : Y \to X \) such that \(e = vu \) and \(\text{Id}_Y = uv \). In this case, \(u \) (resp. \(v \)) is the cokernel (resp. kernel) of \(\text{Id}_X - e \); and \(\text{End}_C(Y) \simeq e \text{End}_C(X)e \) by sending \(f \in \text{End}_C(Y) \) to \(vf u \). If in addition \(\text{Id}_X - e \) splits via \(X \xrightarrow{\psi} Y' \xrightarrow{\psi'} X \), then \(\psi' X \simeq Y \oplus Y' \). One can prove directly that an idempotent \(e \) splits if and only if the kernel of \(\text{Id}_X - e \) exists, if and only if the kernel of \(\text{Id}_X - e \) exists. It follows that if \(C \) has cokernels (or kernels) then each idempotent in \(C \) splits; and that if each idempotent in \(C \) splits, then each idempotent in a full subcategory \(D \) splits if and only if \(D \) is closed under direct summands.

A ring \(R \) is **semiperfect** if \(R/\text{rad}(R) \) is semisimple and any idempotent in \(R/\text{rad}(R) \) can be lifted to \(R \), where \(\text{rad}(R) \) is the Jacobson radical.

Theorem A.1. An additive category \(C \) is Krull-Schmidt if and only if any idempotent in \(C \) splits, and \(\text{End}_C(X) \) is semiperfect for any \(X \in C \).

In this case, any object has a unique (up to order) direct decomposition into indecomposables.

Proof. For \(X \in C \) denote by \(\text{add}X \) the full subcategory of the direct summands of finite direct sums of copies of \(X \), and set \(R := \text{End}_C(X)^{op} \). Let \(\text{R-proj} \) denote the category of finitely-generated projective left \(R \)-modules. Consider the fully-faithful functor

\[
\Phi_X := \text{Hom}_C(X, _): \text{add}X \to \text{R-proj}.
\]

Assume that \(C \) is Krull-Schmidt. Then \(X = X_1 \oplus \cdots \oplus X_n \) with each \(X_i \) indecomposable and \(\text{End}_C(X_i) \) local. Set \(P_i := \Phi_X(X_i) \). Then \(_RR = P_1 \oplus \cdots \oplus P_n \) with \(\text{End}_R(P_i) \simeq \text{End}_C(X_i) \) local. Thus \(R \) is semiperfect by Theorem 27.6(b) in [AF], and so is \(\text{End}_C(X) \simeq R^{op} \). Note that every object \(P \in \text{R-proj} \) is a direct sum of finitely many \(P_i \)'s: in fact, note that \(\{S_i := P_i/\text{rad}(P_i)\}_{1 \leq i \leq n} \) is the set of pairwise non-isomorphic simple \(R \)-modules and that the projection \(P \to \overline{P} := P/\text{rad}(P) = \bigoplus_i S_i^{m_i} \) is a projective cover, thus \(P \simeq \bigoplus_i P_i^{m_i} \). It follows that \(P \) is essentially contained in the image of \(\Phi_X \), and hence \(\Phi_X \) is an equivalence. Consider \(\text{R-Mod} \), the category of left \(R \)-modules. Since \(\text{R-Mod} \) is abelian, it follows that any idempotent in \(\text{R-Mod} \) splits. Since \(\text{R-proj} \) is a full subcategory of \(\text{R-Mod} \)
closed under direct summands, it follows that any idempotent in R-proj splits. So each idempotent in \(\text{add}(X) \) splits. This proves that any idempotent in C splits.

Conversely, assume that each idempotent in C splits and \(R^{\text{op}} = \text{End}_C(X) \) is semiperfect for each X. Then again by Theorem 27.6(b) in [AF] we have $R = Re_1 \oplus \cdots \oplus Re_n$ where each e_i is idempotent such that e_iRe_i is local. Since $1 = e_1 + \cdots + e_n$ and e_i splits in C as $X \xrightarrow{u_i} Y_i \xrightarrow{v_i} X$, it follows that $X \simeq Y_1 \oplus \cdots \oplus Y_n$ via the morphism $(u_1, \cdots, u_n)^t$ with inverse (v_1, \cdots, v_n). Note that $\text{End}_C(Y_i) \simeq e_i\text{End}_C(X)e_i = (e_iRe_i)^{\text{op}}$ is local. This proves that C is Krull-Schmidt.

For the last statement, it suffices to show the uniqueness of decomposition in $\text{add}X$ for each X. This follows from the fact that Φ_X is an equivalence, since the uniqueness of decomposition in R-proj is well known by Azumaya’s theorem (see e.g. Theorem 12.6(2) in [AF]). This completes the proof. $lacksquare$

A.2. Let k be a field. An additive category C is a Hom-finite k-category if $\text{Hom}_C(X,Y)$ is finite-dimensional k-space for any $X,Y \in C$, or equivalently, $\text{End}_C(X)$ is a finite-dimensional k-algebra for any object X.

Corollary A.2. Let C be a Hom-finite k-category. Then the following are equivalent.

(i) C is Krull-Schmidt.

(ii) Each idempotent in C splits.

(iii) For any indecomposable $X \in C$, $\text{End}_C(X)$ has no non-trivial idempotents.

Remark A.2. By Corollary A.2 (ii), a Hom-finite abelian k-category is Krull-Schmidt.

In particular, the category of coherent sheaves on a complete variety is Krull-Schmidt (see [At], Theorem 2(i)).

B. Homotopically-minimal complexes

In this part A is a finite-dimensional algebra over a field k.

B.1. A complex $P^\bullet = (P^n, d^n) \in C(A\text{-proj})$ is called homotopically-minimal provided that a chain map $\phi^\bullet : P^\bullet \rightarrow P^\bullet$ is an isomorphism if and only if it is an isomorphism in $K(A\text{-proj})$ (see [K]).

Applying Lemma B.1 and Proposition B.2 in [K], and duality, we have

Proposition B.1. (Krause) Let $P^\bullet = (P^n, d^n) \in C(A\text{-proj})$. The following statements are equivalent.

(i) The complex P^\bullet is homotopically-minimal.

(ii) Each differential d^n factors through $\text{rad}(P^{n+1})$.

(iii) The complex P^\bullet has no non-zero direct summands in $C(A\text{-proj})$ which are null-homotopic.

Moreover, in $C(A\text{-proj})$ every complex P^\bullet has a decomposition $P^\bullet = P'^\bullet \oplus P''^\bullet$ such that P'^\bullet is homotopically-minimal and P''^\bullet is null-homotopic.
B.2. For $P^\bullet \in C(A\text{-proj})$, consider the ideal of $\End_{C(A\text{-proj})}(P^\bullet)$:
\[\Htp(P^\bullet) = \{ \phi^\bullet : P^\bullet \to P^\bullet \mid \phi^\bullet \text{ is homotopic to zero} \} . \]

Lemma B.2. Assume $\rad^1(A) = 0$. Let P^\bullet be homotopically-minimal. Then $\Htp(P^\bullet)^k = 0$.

Proof. Let $\phi^\bullet \in \Htp(P^\bullet)$ with homotopy $\{ h^n \}$. Then $\phi^n = d^{n-1}h^n + h^{n+1}d^n$. Since by assumption both d^{n-1} and d^n factor through radicals, it follows that ϕ^n factors through $\rad P^n$. Therefore, for $k \geq 1$ morphisms in $\Htp(P^\bullet)^k$ factor through the k-th radicals. So the assertion follows from $\rad^1(A) = 0$. □

Denote by $C^{-,b}(A\text{-proj})$ the category of bounded above complexes of projective modules with finitely many non-zero cohomologies, and by $K^{-,b}(A\text{-proj})$ its homotopy category. It is well-known that there is a triangle-equivalence $\mathbf{p} : D^b(A\text{-mod}) \simeq K^{-,b}(A\text{-proj})$.

The following result can be deduced from Corollary 2.10 in [BS]. See also [BD].

Theorem B.2. The bounded derived category $D^b(A\text{-mod})$ is Krull-Schmidt.

Proof. Clearly $D^b(A\text{-mod})$ is Hom-finite. By Corollary A.2 it suffices to show that $\End_{D^b(A\text{-mod})}(X^\bullet)$ has no non-trivial idempotents, for any indecomposable X^\bullet.

By Proposition B.1 we may assume that $P^\bullet := pX^\bullet$ is homotopically-minimal. Since P^\bullet is indecomposable in $K^{-,b}(A\text{-proj})$, it follows from Proposition B.1(iii) that P^\bullet is indecomposable in $C(A\text{-proj})$. Since idempotents in $C(A\text{-proj})$ split, it follows that $\End_{C(A\text{-proj})}(P^\bullet)$ has no non-trivial idempotents. Note that
\[\End_{D^b(A\text{-mod})}(X^\bullet) = \End_{K^{-,b}(A\text{-proj})}(P^\bullet) = \End_{C(A\text{-proj})}(P^\bullet)/\Htp(P^\bullet). \]

Since by Lemma B.2 $\Htp(P^\bullet)$ is a nilpotent ideal, it follows that any idempotent in the quotient algebra $\End_{C(A\text{-proj})}(P^\bullet)/\Htp(P^\bullet)$ lifts to $\End_{C(A\text{-proj})}(P^\bullet)$. Therefore $\End_{C(A\text{-proj})}(P^\bullet)/\Htp(P^\bullet)$ has no non-trivial idempotents. □

B.3. For $X^\bullet = (X^n, d^n)$ in $C^b(A\text{-mod})$, define the width $w(X^\bullet)$ of X^\bullet to be the cardinality of $\{ n \in \mathbb{Z} \mid X^n \neq 0 \}$. The strong global dimension $\sgl \dim(A)$ of A is defined by (see [S])
\[\sgl \dim(A) := \sup \{ w(X^\bullet) \mid X^\bullet \text{ is indecomposable in } C^b(A\text{-proj}) \} . \]

By Proposition B.1 an indecomposable X^\bullet in $C^b(A\text{-proj})$ is either homotopically-minimal, or null-homotopic (thus it is of the form $\cdots \to 0 \to P \overset{\text{id}}{\to} P \to 0 \to \cdots$, for some indecomposable projective A-module P). So we have
\[\sgl \dim(A) = \sup \{ 2, w(P^\bullet) \mid P^\bullet \text{ is homotopically-minimal and indecomposable in } C^b(A\text{-proj}) \} . \]

Let M be an indecomposable A-module with minimal projective resolution $P^\bullet \overset{\epsilon}{\to} M$. Denote by $\tau_{\leq -m}P^\bullet$ the brutal truncation of P^\bullet, $m \geq 1$. By Proposition B.1(ii) $\tau_{\leq -m}P^\bullet$ is homotopically-minimal.

If $\tau_{\leq -m}P^\bullet = P'^\bullet \oplus Q'^\bullet$ in $C^b(A\text{-proj})$ with $P'^\bullet = (P^n, d^n)$, $P'^\bullet = (P'^n, \delta'^n)$, and $Q'^\bullet = (Q^n, \partial'^n)$, then both P'^\bullet and Q'^\bullet are homotopically-minimal. Assume that
$P^{t_0} \neq 0$, and set $t_0 := \max\{t \in \mathbb{Z} \mid Q^t \neq 0\}$. Then $-m \leq t_0 \leq 0$. Since M is indecomposable and both P^\bullet and Q^\bullet are homotopically-minimal, it follows that $t_0 \neq 0$, and hence $Q^{t_0} \subseteq \text{Ker}d^{t_0} \subseteq \text{rad}(P^{t_0}) = \text{rad}(P^{t_0} \oplus Q^{t_0})$, a contradiction. This proves

Lemma B.3. The complex $\tau_{\geq -m} P^\bullet$ is homotopically-minimal and indecomposable in $C^b(A\text{-proj})$.

As a consequence we have

Corollary B.3. ([S], p.541) Let A be a finite-dimensional algebra. Then

$$\text{s.gl.dim}(A) \geq \max(2, 1 + \text{gl.dim}(A)).$$

REFERENCES

[AF] F. W. Anderson, K.R. Fuller, Rings and categories of modules, Grad. Texts in Math. 13, Springer-Verlag, New York-Heidelberg-Berlin, 1974.

[AHR] I. Assem, D. Happel, and O. Roldán, Representation-finite trivial extension algebras, J. Pure Appl. Algebra 33(3)(1984), 235–242.

[ARS] M. Auslander, I. Reiten, and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Studies in Adv. Math. 36, Cambridge Univ. Press, 1995.

[At] M. F. Atiyah, On the Krull-Schmidt theorem with application to sheaves, Bulletin l’a S.M.F., tome 84 (1956), 307-317.

[Au] M. Auslander, Representation dimension of Artin algebras, Queen Mary College Mathematics Notes, London, 1971.

[BD] I. Burban, Yu. A. Drozd, Derived categories of nodal algebras, J. Algebra 272(1)(2004), 46-94.

[BG] K. Bongartz, P. Gabriel, Covering spaces in representation theory, Invent. Math. 65 (1982), 331-378.

[BS] P. Balmer and M. Schlichting, Idempotent completion of triangulated categories, J. Algebra 236(2) (2001), 819–834.

[BV] A. Bondal and M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Moscow Math. J. 3 (2003), 1-36.

[G] P. Gabriel, The universal cover of a representation-finite algebra. In: Representations of Algebras, Lecture Notes in Math. 903, 68-105, Springer-Verlag, Berlin, Heidelberg, New York, 1981.

[Hap] D. Happel, Triangulated Categories in Representation Theory of Finite Dimensional Algebras, London Math. Soc., Lecture Notes Ser. 119, Cambridge Uni. Press, 1988.

[Har] R. Hartshorne, Residue and duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin, Heidelberg, New York, 1966.

[HW] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46(1983), 347-364.

[K] H. Krause, The stable derived category of a noetherian scheme, Compos. Math., 141 (2005), 1128-1162.

[KK] H. Krause and D. Kussin, Rouquier’s theorem on representation dimension, math.RT/0505055.

[Ri] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984.

[Ro] R. Rouquier, Dimensions of triangulated categories, math.CT/0310134.

[S] A. Skowronski, On algebras with finite strong global dimension, Bulletin Polish Academy Sci. Math., 35 (1987)(9-10), 539-547.

[V] J. L. Verdier, Catégories dérivées, etat 0, Lecture Notes in Math. 569, 262-311, Springer-Verlag, Berlin, Heidelberg, New York, 1977.