J/ψ Measurements with the ALICE Experiment at the LHC

Christoph Blume, for the ALICE Collaboration
Institut für Kernphysik, University of Frankfurt,
Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
E-mail: blume@ikf.uni-frankfurt.de

Abstract. We review recent results on J/ψ production measured by the ALICE collaboration at the LHC. For pp collisions at √s = 7 TeV yields and spectra of inclusive and prompt J/ψ, as well as results on their polarization and the charged particle multiplicity dependence of yields are presented. The nuclear modification factor R_AA obtained for inclusive J/ψ at mid-(|y| < 0.9) and forward-rapidities (2.5 < y < 4), covering the p_T range down to 0, for centrality selected Pb-Pb collisions are discussed. Also, first results on the J/ψ v_2 at forward-rapidities are shown.

1. Introduction
The understanding of J/ψ production processes in elementary collisions still poses a challenge to theoretical models. The main question is to what extent q̅q octet states have to be included in the calculation [1, 2]. A consistent description of the measured cross sections and polarization has to be achieved within a given model approach, such as the Color Singlet Model (CSM), Color Evaporation Model (CEM), or the Non-Relativistic QCD model (NRQCD). It is important to distinguish between the different sources contributing to inclusive J/ψ measurements. Roughly speaking, at low p_T about 10% of these originate from the weak decay of b-hadrons, while the 90% prompt J/ψ are either directly produced (∼50%) or are due to feed down from heavier states (∼40%), such as ψ' or χ_c. The J/ψ from b-decays can be measured by exploiting the fact that the secondary decay vertex will have a displacement relative to the main interaction vertex and allows thus a direct determination of the beauty cross section. Another interesting aspect is the question whether Multi-Parton Interactions (MPI) affect the J/ψ production in pp collisions. This can be addressed by measuring the dependence of the yield as a function of the underlying charged particle multiplicity. Finally, pp collisions serve as an important reference measurement to heavy-ion collisions in order to identify any medium effects.

Quarkonia in general are a unique probe for the properties of the hot and dense medium produced in high energy heavy-ion collisions. It has been suggested very early on that J/ψ production should be suppressed in AA collisions relative to pp due to screening of the q̅q potential by free color charges [3]. Indeed, such a suppression beyond what is expected due to Cold Nuclear Matter (CNM) effects has been observed experimentally for J/ψ at the SPS and at RHIC [4, 5, 6]. The CNM effects include nuclear absorption and shadowing of parton distributions and can be determined from pA collisions. A surprising aspect of these measurements is the observation that the amount of suppression is very similar at SPS and
Figure 1. The differential J/ψ cross section for pp collisions at \(\sqrt{s} = 7 \) TeV as a function of transverse momentum \(d^2 \sigma_{J/\psi}/dp_Tdy \) measured at midrapidity (\(|y| < 0.9\)) and at forward rapidity (2.5 < \(y \) < 4) (left panel) and as a function of rapidity \(d\sigma_{J/\psi}/dy \) [11]. The ALICE results are compared to data from the other LHC experiments [12, 13, 14], obtained in similar rapidity ranges.

RHIC, despite the clearly different energy densities. In addition, a larger suppression at forward rapidities than at mid-rapidity has been seen at RHIC. These findings have led to the idea that also regeneration mechanisms might play a role at higher energies where the number of produced c\(\bar{c} \) pairs is large [7, 8]. This regeneration might happen throughout the evolution of the Quark-Gluon Plasma (QGP) [9] or statistically at hadronization [10] and counteracts the suppression within a QGP.

ALICE is capable of measuring J/ψ at mid-rapidity (\(|y| < 0.9\)) with the detectors of the central barrel (ITS, TPC, TRD) via the di-electron decay channel. Electrons are identified using the particle identification capabilities of TPC, TRD, and TOF. In addition, secondary vertices of \(B \to J/\psi \) decays can be localized with the help of the ITS. At forward rapidities (2.5 < \(y \) < 4) J/ψ are detected in the muon spectrometer via their di-muon decay channel. Hadrons are suppressed by an absorber of ten interaction lengths thickness and the muons passing through it are tracked by several layers of pad chambers. A trigger on single and di-muons allows the collection of a high statistics J/ψ sample. The acceptance covers in both the central and forward case, the \(p_T \) range down to 0.

2. pp Collisions

Figure 1 shows the J/ψ spectra measured for pp collisions at \(\sqrt{s} = 7 \) TeV [11]. The presented data correspond to an integrated luminosity of 5.6 nb\(^{-1}\) (15.6 nb\(^{-1}\)) for the di-electron (di-muon) measurement. A good agreement of the \(p_T \) spectrum at forward rapidity with the corresponding measurement by the LHCb collaboration [13] is found. Due to the coverage of the low \(p_T \) region, the data at mid-rapidity complement the results by the ATLAS and CMS experiments [12, 14]. Therefore they allow to fill the gap in the J/ψ rapidity distribution (right panel of Fig. 1) and make it possible to determine the integrated cross section.

The same measurement has been performed for pp collisions at \(\sqrt{s} = 2.76 \) TeV, although
Figure 2. Left: The fraction of J/ψ from the decay of b-hadrons as a function of p_T [16] together with results from ATLAS [14] and CMS [17] in pp collisions at $\sqrt{s} = 7$ TeV. Right: The differential cross section of prompt J/ψ as a function of p_T compared to results from ATLAS [14] and CMS [17] at mid-rapidity and to theoretical calculations [18, 19, 20].

only a limited integrated luminosity is available in the di-electron case due to the brevity of the run (1.1 nb$^{-1}$ for $J/\psi \rightarrow e^+e^-$, 19.9 nb$^{-1}$ for $J/\psi \rightarrow \mu^+\mu^-$) [15]. Since these data serve as a reference for the determination of the nuclear modification factor R_{AA} in heavy-ion collisions, they currently limit the achievable statistical and systematic errors on R_{AA}.

The fraction of J/ψ originating from decays of beauty hadrons f_B is extracted from fits with simulated templates to distributions of the pseudo-proper decay length

$$x = \frac{c \cdot L_{xy} \cdot m_{J/\psi}}{p_T^{J/\psi}}$$

with

$$L_{xy} = \vec{L} \cdot \vec{p}_T^{J/\psi} / p_T^{J/\psi},$$

(1)

where \vec{L} is the vector pointing from the primary to the decay vertex. The left panel of Fig. 2 shows the resulting p_T dependence of f_B at mid-rapidity in pp collisions at $\sqrt{s} = 7$ TeV. Due to its unique acceptance at very low p_T, ALICE determines f_B down to $p_T = 1.3$ GeV/c. At higher p_T, a good agreement with data by the ATLAS [14] and CMS [17] collaborations is found. Combining the measurement of $f_B(p_T)$ with the p_T spectrum of inclusive J/ψ (left panel Fig. 1) yields the corresponding spectrum of prompt J/ψ (right panel of Fig. 2). The data match the NLO NRQCD calculations which include color singlet as well as octet contributions [18, 19, 20]. However, the theory is below the measurements by roughly an order of magnitude, if only the color singlet part is considered.

Another observable that can help to discriminate between the different theory approaches is the J/ψ polarization. ALICE measures it via the distributions of the polar angle θ and the azimuthal angle ϕ of the decay muons at forward rapidities (2.5 < y < 4) in the p_T range 2 - 8 GeV/c [21]

$$W(\cos \theta) \propto \frac{1}{3 + \lambda_\theta} (1 + \lambda_\theta \cos^2 \theta)$$

and

$$W(\phi) \propto 1 + \frac{2\lambda_\phi}{3 + \lambda_\theta} \cos 2\phi.$$

(2)
The nuclear modification factor, defined as

\[R_{AA} = \frac{d^2N_{\psi}^{AA}/(dp_Tdy)}{(T_{AA}) d^2\sigma_{\psi}^{pp}/(dp_Tdy)}, \]

where \(T_{AA} \) is the nuclear overlap function as determined by Glauber calculations, has been measured by ALICE for inclusive J/\(\psi \) at mid-rapidity \(|y| < 0.9\) and forward rapidity \(2.5 < y < 4\) for Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\ \text{TeV} \) [25, 26]. A clear suppression relative to pp collisions is observed in both cases. While at forward rapidities \(R_{AA} \) quickly drops to a value

Figure 3. Left: The acceptance corrected angular distributions for the J/\(\psi \) decay muons in the range \(2 < p_T < 3 \) GeV/c. The simultaneous fit to the results in the Collins-Soper and helicity frames is also shown. Right: \(\lambda_\theta \) and \(\lambda_\phi \) as a function of \(p_T \) for inclusive J/\(\psi \), measured in the helicity (closed squares) and Collins-Soper (open circles) frames [21].

An example for the fits, which are performed in the Collins-Soper and the helicity frame, is shown in the left panel of Fig. 3. The \(p_T \) -dependence of the resulting values for \(\lambda_\theta \) and \(\lambda_\phi \) is shown in the right panel of Fig. 3. All values are found to be close to zero. It should be pointed out that these fits are for inclusive J/\(\psi \), i.e. they contain the contributions from J/\(\psi \)' -, \(\chi_c^- \), and \(b \)-decays.

The interplay between processes on soft and hard processes can be investigated by studying the dependence of the J/\(\psi \) yield on the charged particle multiplicity of the underlying event. The latter is dominated by soft processes, which usually require a modeling of MPI in order to achieve a proper theoretical description, and thus could probe the impact parameter of the pp collision. ALICE has measured the relative J/\(\psi \) yield as a function of \(dN_{ch}/d\eta \) up to four times the mean multiplicity of \(dN_{ch}/d\eta \) = 6.01 ± 0.01(stat.) +0.20(stat.) -0.12(syst.) [22]. As shown in Fig. 4 an almost linear increase of the J/\(\psi \) yield is observed, both at mid-rapidity and at forward rapidities, while \(dN_{ch}/d\eta \) is determined in both cases around mid-rapidity \(|\eta| < 1\). Such a behavior is not seen in Monte Carlo models as Pythia6.4, if only J/\(\psi \) from hard productions processes are considered. In this case the J/\(\psi \) yield is essentially independent from the charged particle multiplicity of the underlying event. The experimental finding suggests that MPI affect also processes on a harder scale, such as J/\(\psi \) production [23], and thus introduce an impact parameter dependence even in elementary pp collisions [24].

3. Pb-Pb Collisions

The nuclear modification factor, defined as

\[R_{AA} = \frac{d^2N_{\psi}^{AA}/(dp_Tdy)}{(T_{AA}) d^2\sigma_{\psi}^{pp}/(dp_Tdy)}, \]

where \(T_{AA} \) is the nuclear overlap function as determined by Glauber calculations, has been measured by ALICE for inclusive J/\(\psi \) at mid-rapidity \(|y| < 0.9\) and forward rapidity \(2.5 < y < 4\) for Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\ \text{TeV} \) [25, 26]. A clear suppression relative to pp collisions is observed in both cases. While at forward rapidities \(R_{AA} \) quickly drops to a value
of 0.5 and then is independent of centrality for $N_{\text{part}} > 100$, there seems to be an indication that R_{AA} is higher at mid-rapidity (see left panel of Fig. 5). However, the current systematic errors, especially on the pp reference, are still too large to draw a firm conclusion. Since the ALICE acceptance allows to measure J/ψ down to $p_T = 0$, the p_T dependence of R_{AA} can be studied in this low transverse momentum region. This is shown in the right panel of Fig. 5 for forward rapidities. A significant decrease of R_{AA} with increasing p_T is observed. While R_{AA} is
about 0.6 for \(p_T \leq 1 \text{ GeV}/c \), it drops to values below 0.4 at higher \(p_T \) and thus agrees with the measurement by the CMS collaboration in this \(p_T \) region [27]. Also shown in this figure is a comparison with PHENIX results for Au-Au collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) [6], which indicates a sizable rise of \(R_{AA} \) at lower \(p_T \) with increasing center-of-mass energy.

A possible explanation for the increase of \(R_{AA} \) with \(\sqrt{s_{NN}} \) might be that at higher energies an additional contribution from \(J/\psi \) re-creation is playing a stronger role, due to the higher number of \(c\bar{c} \) pairs present in the fireball. In fact, models that include this effect in addition to suppression mechanisms provide a reasonable description of the data (see Fig. 6). The transport models include CNM effects (shadowing and absorption by hadrons), suppression in the hot medium due to color screening, feed down from \(b \)-hadrons, and continuous \(c\bar{c} \) recombination throughout the evolution of the plasma phase [29, 30]. The statistical hadronization model assumes that all \(J/\psi \) are dissolved inside the plasma and that they are only formed at the hadronization stage by distributing the \(c\bar{c} \) quarks formed in initial hard scatterings according to statistical weights [28]. Another model ascribes the suppression to nuclear shadowing and comover absorption, but also has to include recombination in order to match the data [31]. However, for a final interpretation a precise understanding of CNM effects is mandatory and is addressed with the recent \(p\text{-}Pb \) data.

Figure 7 shows the \(J/\psi \) \(v_2 \) measurement by ALICE for the 20\% - 60\% central \(p\text{-}Pb \) collisions at \(\sqrt{s_{NN}} = 2.76 \text{ TeV} \) [32]. It is determined in the region \(2.5 < y < 4 \) by fitting the data with the following equation

\[
\frac{dN_{J/\psi}}{d\Delta \phi} \propto 1 + 2v^{obs}_2 \cos(2 \Delta \phi) \quad \text{with} \quad \Delta \phi = \phi_{\mu\mu} - \Psi_{EP,2},
\]

where \(\phi_{\mu\mu} \) is the azimuthal angle of the di-muon pair and \(\Psi_{EP,2} \) the event plane angle. \(\Psi_{EP,2} \) is measured with a 2\% resolution using the VZERO detectors. In the range \(2 < p_T < 6 \text{ GeV}/c \) an indication for a non-zero \(v_2 \) is observed, as shown in the right panel of Fig. 7, although with a significance of only 2.7 \(\sigma \). However, the magnitude of the effect is in agreement with transport model calculations that include regeneration effects [33, 34].
4. Conclusions

Transverse momentum spectra and rapidity distributions of inclusive J/ψ have been measured down to $p_T = 0$ for pp collisions at $\sqrt{s} = 2.76$ TeV and 7 TeV. A good agreement with NRQCD calculations is observed. The same applies to the spectra of prompt J/ψ. No significant J/ψ polarization in the forward region is seen in pp collisions at $\sqrt{s} = 7$ TeV. An almost linear increase of the J/ψ yield with the charged particle multiplicity of the underlying event is observed, indicating an impact parameter dependence of J/ψ production in pp collisions.

The nuclear modification factor R_{AA} has been measured for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at forward and mid-rapidity for $p_T > 0$. A clear indication for less suppression at low p_T than at high p_T is found and the R_{AA} at low p_T is clearly higher at LHC than at RHIC. Also, a first hint of a non-zero v_2 has been observed. These observations might indicate that at LHC energies regeneration effects are effective in addition to the suppression mechanisms seen at lower energies.

References
[1] N. Brambilla et al., Eur. Phys. J. C71, 1534 (2011).
[2] J.P. Lansberg, Eur. Phys. J. C61, 693 (2009).
[3] T. Matsui and H. Satz, Phys. Lett B 178, 416 (1986).
[4] B. Alessandro et al. (NA50 Collaboration), Eur. Phys. J. C 39, 335 (2005).
[5] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 232301 (2007).
[6] A. Adare et al. (PHENIX Collaboration), Phys.Rev. C 84, 054912 (2011).
[7] P. Braun-Munzinger and J. Stachel, Phys. Lett. B 490, 196 (2000).
[8] R.L. Thews, M. Schroeder, and J. Radecki, Phys. Rev. C 63, 054905 (2001).
[9] X. Zhao and R. Rapp, Phys. Lett. B 664, 253 (2008).
[10] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Phys. Lett. B 652, 259 (2007).
[11] K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B 704, 442 (2011), erratum: Phys. Lett. B 718, 692 (2012).
[12] V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C 71, 1575 (2011).
[13] R. Aaij et al. (LHCb Collaboration), Eur. Phys. J. C 71, 1645 (2011).
[14] G. Aad et al. (ATLAS Collaboration), Nucl. Phys. B 850, 387 (2011).
[15] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 718, 295 (2012).
[16] B. Abelev et al. (ALICE Collaboration), JHEP 11, 065 (2012).
[17] S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 2, 011 (2012).
[18] M. Butenschoen and B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011).
[19] Y.-Q. Ma, K. Wang, and K. Chao, Phys. Rev. Lett. 106, 042002 (2011).
[20] V.A. Saleev, M.A. Nefedov and A.V. Shipilova, Phys. Rev. D 85, 074013 (2012).
[21] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 108, 082001 (2012).
[22] B. Abelev et al. (ALICE Collaboration), Phys. Lett. B 712, 165 (2012).
[23] S. Porteboeuf and R. Granier de Cassagnac, Nucl. Phys. B 214, 181 (2011).
[24] L. Frankfurt, M. Strikman, D. Treleani, and C. Weiss, Phys. Rev. Lett. 101, 202003 (2008).
[25] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 109, 072301 (2012).
[26] R. Arnaldi et al. (for the ALICE Collaboration), arXiv:1211.2578.
[27] S. Chatrchyan et al. (CMS Collaboration), J. High. Energy Phys. 1205, 063 (2012).
[28] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, J. Phys. G 38, 124081 (2011).
[29] X. Zhao and R. Rapp, Nucl. Phys. A 859, 114 (2011).
[30] Y.-P. Liu, Z. Qu, N. Xu, P.-F. Zhuang, Phys. Lett. B 678, 72 (2009), and Priv. Comm.
[31] E. Ferreiro, Priv. Comm.
[32] E. Abbas et al. (ALICE Collaboration), arXiv:1303.5880.
[33] Y. Liu, N. Xu, and P. Zhuang, Nucl. Phys. A 834, 317C (2010), and Priv. Comm., arXiv:0910.0959.
[34] X. Zhao, A. Emerick, and R. Rapp, arXiv:1210.6583.