Imaging pancreatic islet cells by positron emission tomography

Junfeng Li, Johann Karunananthan, Bradley Pelham, Fouad Kandeel

Junfeng Li, Johann Karunananthan, Bradley Pelham, Fouad Kandeel, Department of Diabetes, Endocrinology and Metabolism, Beckman Research Institute of the City of Hope, Duarte, CA 91010, United States

Author contributions: All authors equally contributed to this paper with conception and design of the study, literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Supported by The grant from the Larry L. Hillblom Foundation.

Conflict-of-interest statement: No potential conflicts of interest for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution-Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Fouad Kandeel, MD, PhD, Department of Diabetes, Endocrinology and Metabolism, Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, United States. fkandeel@coh.org
Telephone: +1-626-2180224
Fax: +1-626-4719373

Received: December 29, 2015
Peer-review started: January 14, 2016
First decision: February 29, 2016
Revised: July 25, 2016
Accepted: August 6, 2016
Article in press: August 8, 2016
Published online: September 28, 2016

Abstract

It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in PET tracers (such as carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells.

Key words: Diabetes; Pancreatic islet cells; Positron emission tomography; Imaging tracers

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Positron emission tomography (PET) is an important non-invasive functional imaging modality that is being explored for the purpose of quantifying engrafted pancreatic islet. There are still several issues that must be overcome before PET can be adopted as the gold standard for the accurate, noninvasive, and non-toxic evaluation of native β cells or pancreatic islet mass in vivo, which remains a difficultly and highly challenging goal. To complement the previous review published in 2010 by our group, this review summarizes the latest developments in PET tracers (such as carbon-11,
fluorine-18, copper-64 and gallium-68) for the imaging of pancreatic islet cells.

Li J, Karunanithan J, Pelmh B, Kandela F. Imaging pancreatic islet cells by positron emission tomography. World J Radiol 2016; 8(9): 764-774 Available from: URL: http://www.wjgnet.com/1949-8470/full/v8/i9/764.htm DOI: http://dx.doi.org/10.4329/wjr.v8.i9.764

INTRODUCTION

Type 1 diabetes (T1D) remains the predominant form of diabetes in childhood. Although disease onset may occur at any time, the peak onset for diagnosis is in the mid-teens\(^{[1]}\). The prevalence of T1D in the United States population under 20 years of age has increased by 30% between 2001 and 2009\(^{[2]}\).

Pancreatic islets are comprised of clusters of cells, of which there are five different types: Alpha, beta, delta, gamma, and epsilon cells, all of which produce hormones that are secreted directly into the bloodstream. However, the majority of the pancreatic islet mass is made up of beta cells (65%-80%), which help regulate blood glucose levels via their production of insulin. T1D is caused by the autoimmune destruction of the pancreatic beta cells\(^{[3]}\), which limits or completely eliminates the production and secretion of insulin. As the result of long-term hyperglycemia, patients with T1D may develop serious micro- and macrovascular complications such as heart disease, stroke, kidney failure, blindness, leg amputations, and premature death\(^{[4-6]}\).

Currently, there is no cure for T1D. Experimental treatments are based on strategies that aim to modify the autoimmune processes responsible for beta cell destruction, replace beta cell mass, or both, including stem cell transplantation, targeting these specific biomarkers for PET imaging in C-11, F-18, Cu-64, and Ga-68 labeled radioligands below the body surface. Given an appropriate tracer, PET can accurately detect the disturbed biochemical processes and physiological abnormality in living organism. Thus, the development of safe, effective and highly specific PET tracers of pancreatic islets (i.e., primarily β cells) would help us the early diagnosis of β-cell-associated metabolic diseases, as well as the capability of monitoring the therapeutic efficacy of islet transplantation. This information will greatly assist us in developing new techniques for extending the survival of islet grafts on a more widespread basis for every T1D patients.

Positron emission tomography (PET) is highly sensitive, noninvasive imaging methodology\(^{[7]}\) in biomedical research, which uses the γ-rays associated with positron annihilation events to localize positron-emitting targeted tracers inside an organism. The low interaction of γ-rays in the human body allows physicians to accurately detect signals in patients even if they originate deep below the body surface. Given an appropriate tracer, PET can accurately detect the disturbed biochemical processes and physiological abnormality in living organism.

| Table 1 Representative beta-cell-specific biomarkers for positron emission tomography imaging of islets |
|---|---|
| Biomarkers | Probe name | Ref. |
| Vesicular | $[^{[1]}]C$ (+)-dihydropyrothebenezine | [13,39-41] |
| monoamine | $[^{[1]}]F$-FP (+)-DTBZ | [14,15,42,43] |
| transporter | (VMAT2) $[^{[1]}]Cu$-CB-TE2A (+)-DTBZ | [44,45] |
| Glucagon-like peptide-1 | $[^{[1]}]F$-TTCO-Cys $^{[4]}$-Exendin-4 | [23] |
| transporter | $[^{[1]}]F$-FBEM-Cys $^{[4]}$-exendin-4 | [26] |
| transporter | $[^{[1]}]Ga$-DO3A VS-Cys $^{[4]}$-Exendin-4 | [55] |
| transporter | $[^{[1]}]Cu$-DO3A VS-Cys $^{[4]}$-Exendin-4 | [22] |
| transporter | $[^{[1]}]Cu$-Mal Sar-Exendin-4 | [22] |
| transporter | $[^{[1]}]Cu$-Mal Sar-Exendin-4 | [22] |
| Glucokinase | $[^{[1]}]F$-FP-(+)-DTBZ | [28] |
| transporter | $[^{[1]}]Cu$-DO3A VS-Cys $^{[4]}$-Exendin-4 | [58] |
| Somatostatin | $[^{[1]}]Cu$-DOTA-octreotide | [63] |
| receptors | $[^{[1]}]Cu$-(Exendin-4) | [10,11] |

over time. This information would be crucial to creating and assessing the effectiveness of pancreatic islet transplantation, revealing why some islet transplants are more successful that others, and would lead to new methods for islet grafts to last longer periods of time on a more widespread basis for every T1D patients.

Many investigators are currently searching for and evaluating beta-cell-specific biomarkers for PET imaging of islets\(^{[13-20]}\). A number of potential candidates have been reported, such as glucagon-like peptide-1 receptor (GLP-1R)\(^{[19,21-28]}\), vesicular monoamine transporter (VMAT2)\(^{[14,29-32]}\), sulfonyleurea receptor (SUR1)\(^{[33]}\), glucose transporter 2, glucokinase (GK)\(^{[28]}\), reporter gene\(^{[34]}\), glycogen, zinc transporters, fluorodithizone\(^{[35]}\), and monoclonal antibodies\(^{[36]}\). To complement the previous review published in 2010 by our group\(^{[36]}\), this review summarizes the latest developments since 2011 in C-11, F-18, Cu-64, and Ga-68 labeled radioligands targeting these specific biomarkers for PET imaging pancreatic islet cells (Table 1).
11C- **18**F- AND **64**Cu-LABELED DTBZ ANALOGUES AS VMAT2 PROBES FOR IMAGING PANCREATIC ISLET CELLS

VMAT2 is mainly responsible for carrying monoamines, such as dopamine, from the neuron into the storage granules. It was demonstrated that VMAT2 is mainly distributed in the central nervous system (CNS) and β-cells in the pancreatic islets by histology studies of gene expression.[37] VMAT2 expression is correlated with the insulin levels in monkey and human pancreatic tissue.[38] Therefore, VMAT2 could become a suitable target for trapping β-cell function. [11C] (+)-dihydrotetrabenazine ([+]-11C-DTBZ, Figure 1) as VMAT2 ligand was first synthesized by DaSilva et al.[39] in 1993, and has been applied for imaging VMAT2 in the pancreas of mice, non-human primate and humans.[13,40] However, recent findings of nonspecific binding of (+)-11C-DTBZ in human pancreas overcasts its clinical applications.[41]

Kung et al.[42] developed a novel DTBZ fluorine-18 probe, [18F]-FP-(+) DTBZ (Figure 1). It has been evaluated of VMAT2 pancreatic binding sites of animals and humans in PET imaging. In the in vivo rats biodistribution studies, the probe showed the highest pancreas uptake (5% ID/g at 30 min p.i.). In the blocking study, 78% blockade of pancreas uptake in rats was observed. PET imaging result indicated that F-18 tracer has avid pancreatic uptake in health rats.[43]

In healthy and T1D subject studies,[44] pancreatic uptake showed the significant difference uptake between control and T1D subjects (Figure 2): (1) pancreas uptake of T1D patients (10.7 ± 2.6) was lower than that of control subjects (17.2 ± 4.0); and (2) there is not different in the kidney cortex uptake (3.01 ± 0.34 vs 2.90 ± 0.48).

However, the initial result of [18F]-FP-(+) DTBZ-PET in T1D patient, similarly with (+)-11C- DTBZ,[41] indicated that it has more VMAT2 value than expected. For this reason, Harris et al.[45] suggested that tracer non-displaceable binding in T1D and health pancreas are different. In the result indicated that it was distinctly increased approximately two-fold in tissues of diabetic individuals vs healthy individuals from fresh frozen cadaveric pancreas. This initial result supports their hypothesis and currently, they are ongoing to focus on directly measurement of \(V_{co} \) in the healthy human and T1D patient pancreas by (R) and (S) enantiomers.

Although 11C- and 18F-labeled DTBZ as VMAT2 PET probes have been performed in the pancreas of animal and human subjects, they would be limited in clinical application due to non-specific issues. Currently, there have only been limited reports using other PET nuclides. Recently, Kumar et al.[46] reported synthesis of the 64Cu-specific bifunctional chelator scaffold DTBZ analogues: 64Cu-CB-TE2A(+) DTBZ (IC50 = 16.8 ± 6.9 nmol/L) and 64Cu-CB-TE2A(-) DTBZ (IC50 = 253.2 ± 107.8 nmol/L). As we knew that, the IC50 values of (+)-DTBZ and (-)-DTBZ were 0.97 ± 0.48 nmol/L and 2.2 ± 0.3 μmol/L, respectively[47]. The VMAT2 specific binding affinity of 64Cu-CB-TE2A(+) DTBZ was not compromised by their chemical modifications, while that of its (-) counterpart remained low as in 11C- or 18F-labeled (±) DTBZ.[48] Currently, there are no further reports on PET imaging using 64Cu-CB-TE2A(+) DTBZ in animal studies.

In conclusion, 11C- and 18F-labeled DTBZ analogues for β cell imaging/pancreatic islet cells imaging have been applied in primates and humans studies; however, nonspecific binding of (+)-11C-DTBZ and 18F-FP-(+) DTBZ in human pancreas overcasts their clinical applications. The suitable imaging tracer should exhibit selective binding to β-cells along with low non-specific binding to adjacent tissues.

18F-, **68**Ga-, AND **64**Cu-LABELING EXENDIN ANALOGUES AS GLP-1 PROBES FOR IMAGING PANCREATIC ISLET CELLS

Discovered in the early 1980s,[46,47] GLP-1, an incretin peptide secreted by the intestine as a response to nutrient ingestion, plays a significant role in glucose homeostasis. GLP-1 is an endogenous incretin peptide released from the intestine in response to nutrient ingestion and plays a significant role in glucose homeostasis. Although GLP-1R is found in pancreas, brain, heart, kidney, and GI tract[48,49], a recent study revealed that...
GLP-1R is highly expressed in β-cells in the pancreatic islet, suggesting that ligands of GLP-1R could be ideal tracers for imaging pancreatic islet. However, native GLP-1 is degraded rapidly (half-life < 2 min) by dipeptidyl peptidase-IV. Thus, dipeptidyl peptidase-IV-resistant agonist or antagonist targeted GLP-1R are suitable for PET imaging tracers.

In 1992, Eng et al. discovered exendin-4, which currently it is more attractive as a high-affinity probe. Exendin-4 has a 53% similar sequence identity to human GLP-1 and exhibits closely related properties; on the other hand, it is much more stability than GLP-1. Thus exendin-4 has attracted significant attention on developing promising PET tracers for imaging pancreatic islet cells in rodent, primates and human studies since 2011, such as

\[
\text{18F-TTCO-Cys}^4\text{-exendin-4} \quad [23],
\]

\[
\text{18F-FBEM-Cys'-exendin-4 (x = 0 or 40)} \quad [26],
\]

\[
\text{68Ga-DO3AVS-Cys}^{40}\text{-exendin-4} \quad [26, 27],
\]

and

\[
\text{64Cu-DO3A-VS-Cys}^{40}\text{-exendin-4} \quad [55]
\]

(Figure 3).

We developed a novel fluorine-18 exendin-4 probe:

\[
\text{18F-TTCO-Cys}^{40}\text{-exendin-4} \quad \text{(Figure 4)} \quad [23]
\]

with high radiosynthesis yield (80%) and high radiochemical purity (99%). An insulinoma INS-1 tumor model used in PET images of small animals, the result indicated that

\[
\text{18F-TTCO-Cys}^{40}\text{-exendin-4}
\]

to GLP-1R (Figure 4A). Additionally, in contrast to the radiometal-labeled exendin-4 analogues,

\[
\text{18F-tracer}
\]

does not have a significantly lower uptake in kidney and quicker clearance rate [55].

We also tested the probe in the islet (1000 IEQ) graft in the liver in mice. The data indicated that the mice with transplanted islets (Figure 4D) had significantly higher (P < 0.01) uptake into the liver post injection as compared to the control mice (Figure 4E). To the blocking study, it also demonstrated that the tracer only specific GLP-1R in the liver. Currently, we are undertaking the evaluation of

\[
\text{18F-TTCO-Cys}^{40}\text{-exendin-4}
\]

in non-human primates.

Recently, Selvaraju et al. developed a promising gallium-68 probe:

\[
\text{68Ga-DO3AVS-Cys}^{40}\text{-exendin-4}.
\]

Their imaging results in primates indicated the pancreas was easily visualized after injection of

\[
\text{68Ga-DO3A-exendin-4 by iv (injection dose, 0.05 µg/kg)} \quad \text{(Figure 5).}
\]

The probe was excreted in the urine and trapped in the kidney cortex (Figure 5, bottom row). No other organs displayed accumulation similarly with the pancreas and kidneys. The intestine, liver, spleen, heart, and lungs were displayed lower uptake.

In the specific study (Figure 5), co-injection of different doses of cold DO3A-exendin-4 (0.05-20 µg/kg)
decreased the uptake in the pancreas from 9.2 to 0.8 in SUV curve (0.05-20 µg/kg) at 90 min p.i. The highest pharmacologic dose (20 µg/kg) was almost blocked more than 90% uptake. These imaging and kinetic results indicated that the tracer has specific binding to GLP-1R. The result of progressive competition with exendin-4 exhibited it was dose-dependently inhibited.

Eriksson et al.\(^{[56]}\) evaluated the first patient with pancreatitis. PET imaging for pancreatic islet cells

Li J et al. PET imaging for pancreatic islet cells
creatic insulinoma using 68Ga-DOTA-Cys40-exendin-4. PET/CT imaging of whole-body 68Ga-DOTA-Cys40-exendin-4 showed several small GLP-1R-positive lesions in the liver and a lymph node. Neither of the lesions had been conclusively detected by morphological imaging with CT and ultrasound or molecular imaging with 11C-5-HTP or 18F-FDG PET/CT. Native pancreas, containing a large number of cells positive for GLP-1R, exhibited marked uptake of 68Ga-exendin-4. The PET/CT imaging result indicated that 68Ga-exendin-4 probe has more specific binding GLP-1R than other imaging techniques and provided the basis for continued systemic therapy.

Due to the renal excretion of 68Ga-DOTA-Cys40-exendin-4 and the extensive intracellular retention of radioactivity in the kidney cortex, which remains a concern given the likelihood of repeated imaging studies in humans, Eriksson thus evaluated the dosimetry of 68Ga-DOTA-Cys40-exendin-4 in rats, pigs, nonhuman primates and a human [57]: (1) human whole body effective dose: 0.014-0.017 mSv/MBq; (2) The absorbed dose in the kidneys: 0.28-0.65 mGy/MBq; and (3) The maximum yearly administered amounts: 536-455 MBq. More than 200 MBq of this probe can be serviced yearly in clinical, allowing for repeated (2-4 times) scanning.

In addition, several 64Cu-labeled exendin-4 tracers also were reported: (1) [Lys40(DOTA-64Cu)-NH$_2$]-exendin-4 [68] showed high binding specificity to rodent β cells by ex vivo autoradiography; (2) 64Cu-DOTA-Cys40-exendin-4 (Figure 3) [65] demonstrated the feasibility of in vivo PET imaging islets grafted in mouse liver by virtue of a high and specific uptake in INS-1 tumors despite high renal uptake; and (3) 64Cu-BaMalSar-exendin-4 and 64Cu-Mal:Sar-(exendin-4) [22], indicated persistent and specific uptake in an INS-1 insulinoma model with high renal uptake.

Taken together, these results indicated that Exendin analogues hold great potential for non-invasive imaging of pancreatic islet cells/beta cells.

11C-LABELLED TRACER AS GK PROBE FOR IMAGING PANCREATIC ISLET CELL

GK as an enzyme predominantly presents in β cells in the pancreas [59] and in hepatocytes [60], which plays a key role on regulation of glucose homeostasis in blood [20]. GK could be a potentially biomarker for imaging pancreatic islet since it expressed in pancreatic β cells, not in exocrine cells.

Recently, Jahan et al. [20] reported the synthesis of 11C-AZ12504948 (Figure 6) as a new probe for GK imaging in pancreas and liver. PET/CT imaging in pigs indicated that moderate pancreatic uptake was observed. The hepatic distribution was homogeneous and followed similar kinetics as the pancreas but with higher amplitude 30 min p.i. In the block study, co-injection of cold AZ12504948 with probe reduced radioactivity uptake by 24% in pancreas and by 15% in the liver after 30-60 min p.i. However, due to high uptake in the liver, it was not suitable to quantify the level of islet cells in liver for treatment of T1D by islet transplantation.

PANCREATIC SOMATOSTATIN RECEPTORS (SSTRS) -TARGETED PROBES FOR β-CELL IMAGING

Natural somatostatin as a peptide hormone, distributes in the hypothalamus, adrenals and pancreas, which it is a cyclic tetradecapeptide [61]. In the pancreas, somatostatin is considered an important regulator of insulin and other pancreatic endocrine hormones secretion [62]. In the rodent islets of Langerhans that consist of endocrine...
Li J et al. PET imaging for pancreatic islet cells

Figure 6 Chemical structures of \([^{11}C]AZ12504948, \text{L-3,4-Dihydroxy-6-}^{18}\text{F-fluoro-phenylalanine and }^{11}\text{C-5-hydroxy-L-tryptophan. }\[^{18}\text{F}]\text{F-DOPA: L-3,4-Dihydroxy-6-}^{18}\text{F-fluoro-phenylalanine; }\[^{11}\text{C}]\text{5-HTP: }^{11}\text{C-5-hydroxy-L-tryptophan.}

cells, the insulin-secreting beta cells are the majority of the cell population and abundantly express SSTRs. Therefore, the expression of SSTRs is considered a potential biomarker for the measurement of beta cells.

Sako et al.\(^6\) developed a novel gallium-68 analogue: \(^{68}\text{Ga-DOTA-octreotide. In normal and diabetic rats studies, high accumulation of }^{68}\text{Ga-tracer was observed in the urinary bladder and kidney. Accumulation of }^{68}\text{Ga-tracer was apparent in the normal pancreas, while weak radioactivity was detected in the liver. The }^{68}\text{Ga-DOTA-octreotide radioactivity in the pancreas showed a rapid increase within 1 min p.i. and then gradually increased and reached 0.99% ± 0.24% ID at the end of the PET scans. In contrast, }^{68}\text{Ga-tracer radioactivity in the liver quickly reached a peak at 15 s p.i. and decreased rapidly thereafter reaching 0.17% ± 0.08% ID at the end of the PET scans. The accumulation of }^{68}\text{Ga-DOTA-octreotide was much higher in the kidney and urinary bladder. Blocking studies indicated that the pancreatic accumulation of }^{68}\text{Ga-tracer was significantly decreased in the unlabeled octreotide-treated group. In the STZ-treated DM model rats, it exhibited lower accumulation in the pancreas than that in normal rats. Thus }^{68}\text{Ga-tracer could be a potential PET tracer for quantifying islet cells.}

OTHER PROBES FOR ISLET CELLS IMAGING

L-3,4-Dihydroxy-6-\(^{18}\text{F-fluoro-phenylalanine}

Sweet et al.\(^3\) discovered the scaffolds of L-Dihydroxyphenylalanine could become \(\beta\)-cell probes for PET imaging. \[^{18}\text{F}]\text{F-DOPA (Figure 7) was successfully radiosynthesized and its biochemical mechanism was researched. The mechanism of }^{18}\text{F-DOPA was changed to }^{18}\text{F-dopamine by decarboxylation in the aromatic amino decarboxylase has been confirmed by blocking study, which resulted in back diffusion of the PET probe from the neuroendocrine cells into extracellular spaces.}

In 2014, Eriksson et al.\(^16\) attempted to use \[^{18}\text{F}]\text{F-DOPA as the probe for imaging transplanted islet cells. }\text{In vivo imaging revealed irregular distribution of the transplantation islet mass in the abdominal wall, since the probe was excreted by biliary excretion, which could be potentially effect of graft map (Figure 7).}

\[^{11}\text{C-5-hydroxy-L-tryptophan}

5-hydroxy-\(^{11}\text{C}\)-tryptophan (\[^{11}\text{C}]\text{5-HTP, Figure 6) as biogenic precursor, was first applied for evaluation of rate of serotonin biosynthesis by dopa decarboxylase (DDC) in CNS\(^6\)\). High pancreas uptake of the probe in the health human has not previously been systematically investigated.

Recently, Eriksson et al.\(^16\) reported that \textit{in vitro} binding assay for \[^{11}\text{C}]\text{5-HTP in endocrine cells, and}
exocrine cells. The result showed that only specific binding in insulinoma cell line and human islets, namely endocrine cells. The further studied indicated that the probe targeted serotonin, which was produced by intracellular. In the non-human primate studies, they were pretreated by inhibition of DDC enzyme, which the probe was converted to 11C-serotonin, and inhibition of monoamine oxidase-A (MAO-A), which was responsible for serotonin degradation (Figure 8). In the result indicated that it was distinctly decreased in DDC and increased in MAO-A in primates pancreas. It displayed the similarly result in the rat by inhibition of MAO-A, and uptake was decreased in rodent with induced diabetes. Therefore, 11C5-HTP as PET probe could be suitable to quantitative the level of the serotonergic system in pancreas.

CONCLUSION

Ideal islet and β cell imaging probes would have a suitable washout and residence time in the subjects, be able to provided high specific binding for PET images with lowest non-specific binding in surrounding tissues without toxic to islets, and without pretreatment of islets before transplanted islet.

Currently, many research investigators are developing and evaluating biomarkers specific for pancreatic islet cells, particularly beta cells. A number of potential candidates for islet cell imaging have been reported, such as VMAT2, GLP-1R, SUR1, and GK. Carbon-11, fluorine-18, gallium-68 and copper-64 labeled PET tracers targeting these biomarkers have been evaluated in rodents, non-human primates, and humans. Among them, some tracers displayed great potential for noninvasive imaging of pancreatic islet cells. For example, 18F-TTCO-Cys$_{40}$-exendin-4 demonstrated specific binding to GLP-1R and was suitable to quantity the level of islet cells in the rodent; 68Ga-Ga-DO3AVS-Cys$_{40}$-exendin-4 displayed promising data of PET imaging in human studies and evaluated the dosimetry in rats, pigs, monkey and one patient for transfer into clinic study.

However, the accurate, noninvasive, and safe detection of β-cell mass or grafted islet mass in vivo remains a highly and difficultly challenging goal. Developing PET tracers with nontoxic, high specific binding to β-cell in the pancreatic islet is an important objective for future studies.

REFERENCES

1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383: 69-82 [PMID: 23890997 DOI: 10.1016/S0140-6736(13)6091-7]

2. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, Bell R, Badarau A, Talton JW, Crume T, Liese AD, Merchant AT, Lawrence JM, Reynolds K, Dolan L, Liu LL, Hanman RF. Prevalence of type 1 and type 2 diabetes among
Li J et al. PET imaging for pancreatic islet cells

children and adolescents from 2001 to 2009. JAMA 2014; 311: 1778-1786 [PMID: 24794371 DOI: 10.1001/jama.2014.3201]

Marathe CS, Drogemuller CJ, Marathe JA, Loudavaris T, Hawthorne WJ, O’Connell PJ, Radford T, Kay TW, Horowitz M, Coates PT. Islet cell transplantation in Australia: screening, remote transplantation, and incretin hormone secretion in insulin independent patients. Horm Metab Res 2015; 47: 16-23 [PMID: 25350521 DOI: 10.1055/s-0034-1389941]

Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464: 1293-1300 [PMID: 20432533 DOI: 10.1038/nature08933]

Harjatsalo V, Forsblom C, Groop PH. Time trends in mortality in patients with type 1 diabetes: nationwide population based cohort study. BMJ 2011; 343: d5364 [PMID: 21903695 DOI: 10.1136/bmj.d5364]

Kashiwagi A. General concept and pathophysiological mechanisms of progression of macrovascular complications in diabetes. Nihon Rinshio 2010; 68: 777-787 [PMID: 20446659]

van Belle T, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011; 91: 79-118 [PMID: 21248163 DOI: 10.1152/physrev.00003.2010]

Vrochides D, Paraskevai S, Papanikolaou V. Transplantation for type 1 diabetes mellitus. Whole organ or islets? Hippokratia 2009; 13: 6-8 [PMID: 19240814]

Langer RM. Islet transplantation: lessons learned since the Edmonton breakthrough. Transplant Proc 2010; 42: 1421-1424 [PMID: 20620447 DOI: 10.1016/j.transproceed.2010.04.021]

Shapiro AM, Hsu R, Hsue S, Wikstrand A, Rydén A, Lubberink M, Kandeel F, Nyman G, Karlsson F, Holdstock J, Cicyk WJ, Churchill TA, Korsgren O, Eriksson O, Jensen-Waern M. Positron emission tomography and immunofluorescence among clinically available positron emission tomography tracers. J Nucl Med 2011; 52: 973-984 [PMID: 21613374 DOI: 10.2967/jnumed.111.098142]

Gambhir SS. PET imaging of beta cell mass of the endocrine pancreas. Nat Rev Cancer 2006; 6: 184-194 [PMID: 16580165 DOI: 10.1038/nrc1827]

Singhal T, Herold K, Skovronsky DM, Herold KC, McCarthy TJ, Calle RA, Carson NM. Novel approaches toward early diagnosis of islet allograft rejection. JNM 2008; 50: 1029-1034 [PMID: 18461005 DOI: 10.1002/jnumed.20600]

Jahan M, Johnsrrom P, Nag S, Takano A, Korsgren O, Johansson L, Haldin C, Eriksson O. Synthesis and biological evaluation of [11C]AZ12504948; a novel tracer for imaging of glucokinase in pancreas and liver. Nucl Med Biol 2012; 39: 167-176 [PMID: 22030263 DOI: 10.1016/j.nucmedbio.2011.07.011]

Wu Z, Liu S, Nair I, Omori K, Scott T, Todorov I, Shively JE, Conti PS, Li Z, Kandeel F. 64Cu-labeled sarcophagine exendin-4 for microPET imaging of glucagon like peptide-1 receptor expression. Theranostics 2014; 4: 770-777 [PMID: 24955138 DOI: 10.7150/thno.7759]

Wu Z, Liu S, Hassink M, Nair I, Park R, Li L, Todorov I, Fox JM, Li Z, Shively JE, Conti PS, Kandeel F. Development and evaluation of 18F-TTCO-Cys46-Exendin-4: a PET probe for imaging transplanted islets. J Nucl Med 2013; 54: 244-251 [PMID: 23297075 DOI: 10.2967/jnumed.13.109694]

Gao H, Niu G, Yang M, Quan Q, Ma Y, Muggle EN, Ahn JM, Lakey JR, Yakimets WJ, Churchill TA, Korsgren O, Eriksson O, Jensen-Waern M. Positron emission tomography tracers for sulfonylurea receptor in pancreatic islets. Mol Imaging 2010; 9: 772-782 [PMID: 20824509 DOI: 10.1007/s11307-010-0406-x]

Kiesewetter DO, Guo N, Guo J, Gao H, Zhu L, Ma Y, Niu G, Chen X. Evaluation of an [18F]JEF-NOTA Analog of Exendin-4 for Imaging of GLP-1 Receptor in Insulomimetics. Theranostics 2012; 2: 999-1009 [PMID: 23139727 DOI: 10.7150/thno.5276]

Kiesewetter DO, Gao H, Ma Y, Niu G, Quan Q, Guo N, Chen X. 18F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma. Eur J Nucl Med Mol Imaging 2012; 39: 463-473 [PMID: 22170321 DOI: 10.1007/s00259-011-1980-0]

Selvaraju RK, Velikyan I, Johansson L, Wu Z, Todorov I, Shively J, Kandeel F, Korsgren O, Eriksson O. In vivo imaging of the glucagon-like peptide 1 receptor in the pancreas with 68Ga-labeled DO3A-exendin-4. J Nucl Med 2013; 54: 1458-1463 [PMID: 23761918 DOI: 10.2967/jnumed.13.114066]

Mikkola K, Yin CB, Fagerholm Y, Ishizu T, Elomaa VV, Rajander J, Jurttila J, Saanioki T, Tolvanen T, Tilri M, Gouni E, Béhé M, Gotthardt M, Reubi JC, Mäcke H, Roivainen A, Solin O, Nautila P. 64Cu- and 68Ga-labeled [Nle14,Lys40]A(4xh)DAGA[NH2]-exendin-4 for pancreatic beta cell imaging in rats. Mol Imaging Biol 2014; 16: 255-263 [PMID: 24101374 DOI: 10.1007/s11307-013-0691-2]

Jahan M, Eriksson O, Johnström P, Korsgren O, Sundin A, Johansson L, Haldin C. Decreased defluorination using the novel beta-cell imaging agent [18F]F-DBE-TDBZ-d4 in pigs examined by PET. EJNMMI Res 2011; 1: 33 [PMID: 22214308 DOI: 10.1186/2191-219x-1-33]

Tsao HH, Skovronsky DM, Lin JK, Yen TC, Wey SP, Kang MP. Sigma receptor binding of tetrazenabine series tracers targeting VMAT2 in rat pancreas. Nucl Med Biol 2011; 38: 1029-1034 [PMID: 21982574 DOI: 10.1016/j.nucmedbio.2011.03.006]

Singhal T, Ding YS, Weinzheimer D, Normandin MD, Labarée D, Ropchan J, Nabulis N, Lin SF, Skaddan MB, Soeller WC, Huang Y, Carlson RE, Treadway JL, Cline GW. Pancreatic beta cell mass PET imaging and quantification with [11C]DTBZ and [18F]FP(+)-J-DBTZ in rodent models of diabetes. Mol Imaging Biol 2011; 13: 973-984 [PMID: 20824509 DOI: 10.1016/j.s1307-010-0406-x]

Wimalasena K. Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 2011; 31: 483-519 [PMID: 21035628 DOI: 10.1002/med.20187]

Matsuda H, Kimura H, Ogawa Y, Kawashima H, Toyoda K, Mukai E, Fujimoto H, Nakamura H, Hirao K, Ono M, Inagaki N, Saji H. Radiosynthesis and evaluation of [F-18][Mitiglinide derivatives as PET tracers for sulfonylurea receptor in pancreatic islets. J Labelled Compd Radiol 2011; 54: S510-S510
Expression of the GLP-1 receptor in mouse, rat, and human \textit{Bullock BP} \cite{Bullock:1983}. \textit{Campos RV} \cite{Campos:1993} sequences arranged in tandem. \textit{preproglucagon cDNA contains two glucagon-related coding \textit{Lund PK} \cite{Lund:1983} contains the sequence of glucagon and two related peptides. \textit{Bell GI} \cite{Bell:1992} for studying diabetes mellitus. \textit{J Mol Med (Berl)} \cite{J Mol Med (Berl):2008}. \textit{Hirsch J}, \textit{Prince M}, \textit{Maffei A}, \textit{Mann JJ}, \textit{Butler PC}, \textit{Van Heertum R}, \textit{Hediger MA}, \textit{Whitney RJ}, \textit{Hardy MA}, \textit{Harris PE}. Identification of pancreatic proglucagon. \textit{J Histochem} \cite{J Histochem Cytochem:2003}. \textit{Krohn KA}. Systematic screening of potential beta-cell imaging agents. \textit{Biochem Biophys Res Commun} \cite{Biochem Biophys Res Commun:2004}; \textit{314}: 976-983 DOI: 10.1016/j.bbrc.2003.12.182. \textit{Wu Z}, \textit{Kandel F}. Radiouclide probes for molecular imaging of pancreatic beta-cells. \textit{Adv Drug Deliv Rev} \cite{Adv Drug Deliv Rev:2010}; \textit{62}: 1125-1138 DOI: 10.1016/j.addr.2009.10.006. \textit{Göke R}, \textit{Fehmann HC}, \textit{Linn T}, \textit{Schmidt H}, \textit{Krause M}, \textit{Eng J}, \textit{Göke B}. Exendin-4 is a high potency agonist and truncated exendin-(9-39) amide is an antagonist at the glucagon-like peptide-1-(7-36)-amide receptor of insulin-secreting beta-cells. \textit{J Biol Chem} \cite{J Biol Chem:2008}; \textit{283}: 19650-19655 DOI: 10.1074/jbc.M805319200. \textit{Eng J}, \textit{Kleinman WA}, \textit{Singh L}, \textit{Singh G}, \textit{Raafman JP}. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. \textit{J Biol Chem} \cite{J Biol Chem:1992}; \textit{267}: 7402-7405 DOI: 10.1016/S0022-2822(92)90179-6. \textit{Eriksson O}, \textit{Selvaraju RK}, \textit{Johansson L}, \textit{Eriksson JW}, \textit{Sundin J}. PET imaging for pancreatic islet cells.
A, Antoni G, Sörensen J, Eriksson B, Korsgren O. Quantitative imaging of serotonergic biosynthesis and degradation in the endocrine pancreas. *J Nucl Med* 2014; 55: 460-465 [PMID: 24525204 DOI: 10.2967/jnumed.113.125187]

P- Reviewer: Gao BL, Gumustas OG
S- Editor: Gong XM
L- Editor: A
E- Editor: Wu HL
