Advanced Honey Bee Coupling Intensification Techniques Combined with Neural Networks for Proficient Facts Connotation

K. Kalyani

Abstract: Flock Aptitude Is A Communal Performance Of Societal Classifications Like Individuals Like Ant Cluster Escalation, Fish Training, Birds Assembling, Bee Cluster Optimization And Particle Crowd Escalation. In This Work, A Mixture Crowd Intelligence Based Performance For Statistics Classification Is Suggested Using Honey Bee Mating Optimization Algorithm With Neural Network (HBMO-NN). Honey Bee Reproducing Procedure May Be Restrained As A Distinctive Group-Founded Attitude To Intensification, In Which The Exploration Procedure Is Stimulated By The Progression Of Factual Sweetie-Bee Marital And Imaginator The Iterative Coupling Progression Of Honey Bees And Schemes To Excellent Qualified Drones For Copulating Progression Through The Aptness Functions Enrichment For Mixture Of Greatest Weights For Secrated Layers Of NN Classifiers. Advanced HBMO (AHBMO-NN) Procedure Is Nowadays Realistic To Categorize The Information Efficiently Through Teaching The Neural System. The Arrangement Precision Of AHBMO-NN Is Assosiated With Several Other Procedures. In This Work, Promoted Honey-Bee Coupling Optimization Procedure (AHBMO-NN) Is Offered And Verified By Few Benchmark Instances. A Developed Way Of Honey Bee Mating Optimization Performance Is Joined With Neural Network Which Increases Exactitude And Decrease Time Interruption In Complication Of Numerous Factual World Datasets.

Key Words: Swarm Intelligence, Honey Bee Mating Optimization, Fitness Function, Classification, Neural Network.

I. INTRODUCTION:-

The Honey Bee Reproducing Optimization technique stands a group-founded kind intensification performance, in which the examining method imitators the coupling development in honeybun-bee associations. Accordingly, the HBMO process remains interrelated towards the universal field of crowd aptitude, nevertheless the coupling progression which is constructed on boundary besides metamorphosis machinists, powerfully communicate this process to transformative calculating excessively. Fundamentals on the coupling bee procedures remain concisely pronounced onward, constructed on universal models offered. A honeybun colony communities a particular monarch-bee, some thousands of murmurs and numerous tens of thousands of employee-bees. The monarch-bee is focussed in egg positioning and survives up to 5 or 6 years, although murmurs and employee-bees live no longer than 6 months. Mermen, deliberated as forebears of the association, companion with the monarch-bee and then expire. They are haploid and performance to transmission the genome transmissible from their mother to the subsequent group without fluctuating its inherent configuration, excluding through transmutations. The evolutionary section of the procedure starts through the reproducing journey of the society. Throughout the copulating journey the monarch companions with murmurs to arrange a chromosomal group, also called spermatheca, which comprises of DNAs conventional by the monarch from murmurs. The another phase of the evolutionary progression starts afterwards the genomic pond was occupied with genes, and comprises in refinement eggs with genomic evidence from the spermatheca, constructed on boundary procedures among genes. The last stage of the evolutionary progression comprises in floating the broods based on the fitness function engendered throughout the following stage, and making an innovative generation of bees, based on transmutation workers.

In this exertion, Academia of California, Irvine databank is used. Through the investigation of prevailing technique, based on the proficient consequences, that it sources Scalability disputes, absenteeism of precision and time depletion in instance of outsized datasets. To experiment this concern, our work is concentrated on numerous approaches deliberated and to progress the fitness function assessment in Advanced honey bee mating optimization (AHBMO) [2]. Our objectives are to resolve convolution and scalability concerns in real world datasets and to recover the proficiency in data cataloguing. The weights are optimized through the evaluation of enhanced fitness function. The results obtained from the Advanced honey bee mating optimization with Neural Network is to avoid scalability issues in large datasets, reduce the time consumption and also provide better accuracy and performance. In our exertion, the Academy of California, Irvine catalogue is used. Several more researchers are used this databank for honey bee reproducing optimization performances such as Iris flower, wine, heart disease, cancer, diabetes and soya been etc. The UCI datasets are used here to calculate the intermission, exactness and adeptness in countless data and sources of the data are dissimilar from each other. Since that time, it has been broadly used by scholars, educationalists, and scientists all over the world as a topmost source of machine learning data sets and it is universally known as standard datasets.

Revised Manuscript Received on January 15, 2020.

Dr. K. Kalyani, Asst. Professor, Dept. of Computer Science, Marudupandiyar College of Arts and Science, (Affiliated to Bharathidasan University) Thanjavur. E-mail: drkkalynims@gmail.com
II. NEURAL NETWORKS :-
Neural Networks are known vibrant and quick system for productivity forecasting. MLP neural system is measured as the session of forage system which comprises numerous layers of computational units. Each units is a demonstration of neuron in which involves of a linear or non-linear stimulation function. The construction of the system is a absorbed and manifold layer graph and neurons in each layer is fully associated with the neurons of the subsequent layer.

The loads of the network are usually prepared unsystematically and are increasingly transformed reiteration during the training process learn a goal function. Training in such networks means that the network has to learn the goal function. To do so, each input composed with its equivalent output is presented to the network. Learning algorithm tries to adjust the weight in all layers in a way that the error between calculated output and accurate output become small. The most known and popular learning process is Back Propagation. The Learning algorithm is used to reduce the overall error of the network based on optimization method called gradient descent.

After vaccination of any input to primary layer of the network defined error function in the output layer. To regulate those weights which modifications continue until the alteration of weights of the first layer. This progression is done for all proceedings of training data in each time. After finding the best restrictions (kind of activation function in hidden layer and number of hidden layer neurons) of the NN model, in alongside with the preparation of the network in each repetition,

III. HBMO COMBINED WITH NEURAL NETWORK (NN)
HBMO-NN algorithm was exploited to elevate the masses of the system. The loads are optimized by the estimation of suitability function. The HBMO algorithm is functioned based on bee’s auxiliary with crossover and mutation operator. The replacement of bees is done by fitness calculated after boundary and metamorphosis processes. So the suitability function of HBMO is heightened as AHBMO. The HBMO consists of F1 and F2 as Fitness Function whereas in AHBMO comprises additional two functions of F3, F4.

Aptness 1- is the sum of Euclidean remoteness of employee bees to its drone and drone to the queen bee. Fitness 2-is the proportion of the typical dynamism sustainability of employee bees with its murmur. Fitness 3-is the ratio of the average Euclidean remoteness of the murmur to the queen with the sum of Euclidean distance of all the employee bees to the queen. Fitness 4-is the input particle which is strained with threshold significance of the employee bees and murmur, we use an better-quality way of Bee optimization technique known as Advanced Honey Bee Mating Optimization is combined with Neural Network to form hybrid algorithms named as (AHBMO-NN) which improves accuracy and reduce time delay in complexity of numerous grounds.

• .The HBMO process initiated through the coupling-trip, where a queen (best clarification) chooses murmur probabilistically to preparation the spermatheca.
• A murmur then nominated since the list at unsystematic aimed at the formation of children. Construction of number of new young by cross- overing the drones “genotypes with the empress’s”.
• Habit of employees to conduct local examine on young bees. Reworking of employees suitability based on the quantity of perfection accomplished on broods. Replacement of feebler monarchs by righter children.

The procedure begin with three manipulator-definite constraints and one predefined restraint. The predefined constraint is the amount of employees, demonstrating the quantity of heuristics prearranged in the package. The three worker-defined constraints are the quantity of monarchs, the queen’s spermatheca dimension and the quantity of young’s that is born by all sovereigns.

HBMO-Neural Networks Process
Step 1: The contribution neuron n is feed with teaching data x_m with preferred target y_n.
Step 2: The input preparation data x_m undertakes recapitulation process. In each reiteration, the weightage of each node w(n) is calculated.
Step 3: The bias or mistake amount of each node is considered as delta function.
Step 4: The heaviness of each node w(n) is calculated based on the delta node and the effort data x_m. The w(n) characterize masses of associates between system contribution x_m and neuron n in input layer and the Symbols. y_n signifies productivity signal of neuron n.
Step 5: The weight w(n) is accustomed in the concealed layer by Advanced Honey Bee Mating Optimization process.
Step 6: The target production is investigated and endures back dissemination system to reach bias reduced operative output.

Table-1 Advanced HBMO-Neural Network: (AHBMO-NN)

Stage	Description
0	Step 1: HBMO algorithm is implemented as bunching technique.
	Step 2: The algorithm begin with matting flight, so first we have to generate a random cluster. wherever a monarch(best solution) chooses murmurs Probabilistically to practise the spermatheca. A murmur then designated Since the list arbitrarily for the formation of clutches.
1	Step 3: HBMO procedure focus on queens speed and energy so that it can choose best drones for mating.
	Step 4: We have to check queens energy is greater than zero then only queen Choose the drone.
	Step 5: So far we randomly generate cluster and set the best separate as the monarch.
2	Step 6: Afterwards each conversion the queen’s rapidity and vigour decays. In that it can update queen’s vigour and rapidity for every iteration.
	Step 7: Compute Fitness Function by Stage 1 and 2.
Stage 1: Step 1: The AHBMO acquires Weightage W(n) as the input from the Hidden Neuron.
Step 2: The Weightage W(n) are adjusted based on the appropriateness estimated.

Stage 2: Compute the aptness value of each unsystematic collections.

Stage 3: Reappearance Stage 1 for N repetitions to find the greatest assessment for the gatherings.
 Step 1: Updating the fitness value of heuristic functions for next iteration.
 Step 2: Generate broods by applying crossover (is a genetic operator used to vary the programming of a chromosome from one generation to the next) and mutation.
 Step 3: Then replacement of feebler monarchs by righter children.

Stage 4: Analyze the stage 1 to 3 outcome and novelty of the greatest collection choices to organize the X.

Where f_1 is the summation of Euclidean remoteness of employee bees to its drone and drone to the Queen Bee, Br is a Replacement of Bees in the existing round, $a_l \ (l = 1, \ldots, \beta)$ is the figure of employee bees, β is the quantity of collections, $d_{w(b)}$, d is the Euclidean remoteness from employee bee i in gathering j to its murmur, $d_{d_i Q(b)}$ is the Euclidean distance from jth drone to the Queen bee. Function f_2 is the ratio of the average vigour of employee bees with its drone. Function f_3 is the proportion of the average Euclidean distance of the murmur to the $Q(b)$ with the summation of Euclidean remoteness of all the employee bees to the Monarch Bee. Function f_3 is the input particle is sifted with inception value of the employee bees($a_1 \ldots \alpha_1$) and drone($\beta_1 \ldots \beta_1$). So that the worker bees are eliminated based on this threshold value which reclaims slightest reiteration and dynamism adeptness.

The figures A, B, C, D are predefined factors used to heaviness the influence of each of the sub-objectives and $A + B + C + D = 1$. The suitability purpose definite overhead has the objective of instantaneously diminishing the intra-cluster remoteness among employee bees and murmur, as enumerated by f_1 and of exploiting the collection head’s vigour in its group as computed by f_2; and generating group with inadequate size as computed by f_3; and also of improving the energy indulgence in the groups as enumerated by f_4. Affording to the suitability function, a lesser value of f_1, f_2 advises compressed bands with the optimum set of employee bees that have appropriate dynamism to achieve the drone tasks. A minor value of f_3 means that the dimension of the collections situated faster to the BS is smaller. A slight value of f_4 displays that the formed gatherings are extra energy competent.

IV. EXPERIMENTAL RESULT AND DISCUSSION:

Input Dataset Statistics: Table-2

Dataset Used	Iris	Liver	Cancer	Diabetes	Arrhythmia
No of Instances	150	345	32	768	452
No of Classes	3	2	2	2	16
No of Attribute	5	78	57	9	280

Table-3

This Table Represents the Data Analysis using HBMO-ANN Algorithm with the Standard Repository Dataset.

Dataset Used	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	Accuracy	No. of Classes
Iris	0.981	0.011	0.947	0.933	0.877	0.91	1.005	1.000547	3
Liver	0.729	0.271	0.71	0.749	0.719	0.405	0.741	1.051125	2
Cancer	0.71	0.21	0.726	0.7	0.734	0.325	0.66	1.028431	2
Table 4
This Table Represents the Data Analysis using AHBMO-NN Algorithm with the Standard Repository Dataset.

Dataset Used	TP Rate	FP Rate	Precision	Recall	Measure	MCC	ROC Area	Accuracy	No. of Classes
Iris	0.989	0.004	1.008	0.987	0.98	0.97	1.087	1.001585	3
Liver	0.797	0.214	0.89	0.799	0.788	0.469	0.784	1.065278	2
Cancer	0.9	0.4	0.789	0.8	0.768	0.367	0.81	1.050737	2

The Figure-1 illustrates the Accuracy of HBMO-NN is 75% and in AHBMO-NN is 95%

The Figure-2 illustrates the Time of HBMO-NN is 15 min and in AHBMO-NN is 9.4 min
V. CONCLUSION:

In this research, first check the efficiency of HBMO-NN in Data Cataloguing tasks, based on the attained results, the HBMO-NN causes Scalability disputes in case of outsized Datasets. To challenge this Scalability issue, the research is focus based on alternates scrutinised, and committed to progress the fitness function assessment in Advanced HBMO-NN. Our objectives are to answer complication and scalability issues in real world datasets and to expand competence in data extrapolation. We executed and matched this AHBMO-NN with the HBMO-NN, from the results, it conclude that AHBMO-NN can obtain competitive results against the real world data sets used, although there is some growth in the computational effort needed. Guidelines for forthcoming work include examination and manipulation by relating this tool to more challenging data sources comprising continuous qualities.

REFERENCES

1. Omid Bozorg Haddad, and M. A. Mariño “Hbmo In Engineering Optimization “. Iran University of Science and Technology, Department of Civil engineering, Tehran, Iran Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt 1053.

2. L. Qingyoug, S. Zhiqing, S. Jun and S. Zhongzhi, “Swarm Intelligence Clustering Algorithm Based on Attractor”, Lecture Notes in Computer Science, Springer Link, Vol. 3621, 2005, pp. 496-504.

3. “A Survey on Artificial Bee Colony Models for Numerical Optimizations and its Work In Image Segmentation and Data Classification”. Lavanya Gunasekaran and Srinivasan Subramaniam Australian Journal of Basic and Applied Sciences ISSN:1991-8178.

4. “An Enhanced K Means Clustering using Improved Hopfield Neural Network and Genetic Algorithm”, International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-2, Issue-3, July 2013.

5. Baris Yuce , Michael S. Packianather . “Honey Bees Inspired Optimization Method: The Bees Algorithm “.Insects 2013, 4, 646-662; doi:10.3390/insects4040646.

6. K. Lenin and B. R. Reddy “Bumble Bees Mating Optimization (BBMO) Algorithm for Solving Optimal Reactive Power Dispatch Problem”. International Journal of Electronics and Electrical Engineering Vol. 3, No. 4, August 2015 Jawaharlal Nehru Technological University , Kukatpally, Hyderabad 500 085, India.

7. “Association Rules Optimization using Artificial Bee Colony Algorithm with Mutation” International Journal of Computer Applications (0975 – 887) Volume 116 – No. 13, April 2015/ 29 Manish Gupta Asst. Professor, Computer Science Dept. Vikrant Institute of Technology & Management Gwalior, India.

8. “Training A Feed-Forward Neural Network With Artificial Bee Colony Based Ackpropagation Method “. International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 4, August 2012.

9. Yuksel Celik1 and Erkan Ulker “An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization” Hindawi Publishing. The ScientificWorld Journal Volume 2013, Article ID 370172.

10. Yannis Marinakis1, Magdalene Marinaki2 and Nikolaos Matsatsinis1 “A Hybrid Clustering Algorithm based on Honey Bees Mating ptimization and Greedy Randomized Adaptive Search Procedure”.

11. UCI Machine Learning Repository //archive.ics.uci.edu/ml/datasets.