How multipotential cells initiate distinct gene expression programs in response to external cues to instruct cell fate choice remains a fundamental question in biology. Establishment of CD4 and CD8 T cell fates during thymocyte development is critically regulated by T cell receptor (TCR) signals, which in turn control expression of the CD4-determining transcription factor ThPOK. However, the mechanism whereby differential TCR signals are molecularly interpreted to promote or antagonize ThPOK expression, and thereby CD4 versus CD8 lineage fates remains unknown. Here we show, using reverse genetic and molecular approaches that an autonomous, position-independent TCR-sensing switch is embedded within the ThPOK locus. Further, using an in vivo mutagenesis approach, we demonstrate that differential TCR signals are interpreted during lineage commitment by relative binding of EGR, NFAT and Ebox factors to this bistable switch. Collectively our study reveals the central molecular mechanism whereby TCR signaling influences differential lineage choice. Ultimately, these findings may provide an important new tool for skewing T cell fate to treat cancer and autoimmune diseases.
ow bipotential cells use environmental cues to precisely orchestrate distinct gene expression programs in order to promote alternate developmental fates, remains a fundamental question in biology. CD4–CD8 T-cell lineage commitment in the thymus provides a valuable model system to understand this process. T cells develop in the thymus from the early thymocyte progenitor stage to the mature SP CD4 and CD8 stages via a precisely ordered series of intermediate steps. The CD4+CD8+ (double positive, or DP) stage is particularly important, as thymocytes first express a complete αβTCR at this stage, allowing them to engage MHC on antigen-presenting cells and undergo positive selection. Prior to positive selection DP thymocytes are believed to be lineage-uncommitted, i.e., not biased towards either CD4 or CD8 lineage choice. After positive selection, DP thymocytes split into alternate CD4 and CD8 lineages, by undergoing selective loss of one of the coreceptors. There is a tight correlation between a thymocyte’s TCR specificity for MHC class II or I, and differentiation to the CD4 or CD8 lineages, respectively.

The near-perfect correlation between lineage choice and MHC restriction can be explained by the kinetic-signaling model, which postulates that relatively long or short TCR signals promote CD4 versus CD8 commitment, respectively. At the molecular level, it is established that the transcription factor (TF) ThPOK is necessary and sufficient to drive CD4 commitment, and to prevent CD8 commitment, of developing thymocytes. Accordingly, ThPOK protein levels are higher in class II-restricted thymocytes than in class I-restricted thymocytes, suggesting a causal link between TCR engagement and ThPOK expression. However, the fundamental question of how differential TCR signals control lineage-specific ThPOK expression, and thereby alternate lineage fate, remains to be resolved.

What is known so far is that ThPOK expression in thymocytes and mature T cells is controlled primarily at the transcriptional level via several stage- and lineage-specific cis elements. Of particular importance is the 400 bp ThPOK silencer, SiThPOK, which is located 3 kb upstream of the distal ThPOK promoter. Germline deletion of the SiThPOK in mice causes promiscuous expression of ThPOK and diverts all thymocytes towards the CD4 lineage, demonstrating that the SiThPOK is essential for repression of ThPOK transcription in cells that would normally adopt the CD8 lineage. Our understanding of how the SiThPOK is regulated, however, remains rudimentary. Deletion of 2 Runx consensus binding motifs severely impairs silencing function, and mice lacking Runx1 and Runx3 or the obligate Runx-binding partner Cbfb, exhibit loss of the T-cytotoxic lineage. Interestingly, while constitutive expression of ThPOK causes redirection of class I-restricted thymocytes to the CD4 lineage, overexpression of Runx3 is not sufficient to redirect MHC II-restricted thymocytes to the CD8+ lineage. Furthermore, Runx factors are bound to the SiThPOK at all stages of thymic development, indicating that differential binding by Runx factors is not responsible for differential silencer function in class I- versus II-restricted thymocytes. Hence, the molecular basis for how differential TCR signals regulate ThPOK expression in class I- versus class II-restricted thymocytes remains to be determined.

Regulation of the Cd4 gene during thymic development somewhat parallels that of ThPOK, in that it is also controlled by a stage-specific silencer element, SiCd4, which selectively represses Cd4 transcription in SP CD8 but not SP CD4 thymocytes, and which contains functionally critical Runx-binding sites. However, no evidence has emerged to date that Cd4 transcription and the SiCd4, in particular, are regulated by TCR signals. Indeed, this would seem intuitively unlikely given that Cd4 is transcribed in both un signaled DP thymocytes and strongly signaled SP CD4 thymocytes.

As outlined above, the molecular genetic mechanisms by which TCR-dependent regulation of ThPOK transcription is controlled remain unknown. Here, we seek to resolve this critical issue using an in vivo gene targeting approach. First, through reciprocal swapping of the SiSilPOK with the SiSilCD4, we provide molecular genetic proof that TCR signals directly target the SiSilPOK. Second, using precise in vivo gene editing we identify an autonomous, position-independent TCR-sensing switch within the SiSilPOK that controls ThPOK expression in developing thymocytes. Collectively, our study defines the central molecular genetic mechanism whereby TCR signaling influences lineage choice via regulation of ThPOK expression.

Results

In vivo silencer swap reveals the autonomous and position-independent function of SiSilPOK. While we previously showed that strong TCR signals induce ThPOK transcription in thymocytes, the molecular mechanisms that connect TCR signals with ThPOK induction are unknown. We reasoned that TCR signals may induce ThPOK expression either by (1) activation of positive regulatory elements (enhancers/promoters), or (2) inactivation of the SiSilPOK silencer (Supplementary Fig. 1). To genetically test whether the SiSilPOK encodes the autonomous and locus-independent capacity to sense differences in MHC class I-versus class II-restricted TCR signaling, we generated SiSilPOK swap mice, in which the SiSilPOK is inserted into the Cd4 gene in place of its own SiCd4 silencer element (CD4SilPOKsil mice). We used this approach because SiCd4 and SiSilPOK share important functional attributes, i.e., both are active in developing class I-restricted thymocytes and both are dependent on binding of Runx factors. The murine SiSilPOK and SiCd4 elements are predicted to interact with 183 and 164 TFs, respectively, many of which are differentially regulated between mature CD4 and CD8 thymocytes and thus may contribute to lineage-specific regulation of the SiSilPOK and SiCd4 elements. Interestingly, 129 of these TFs are predicted to bind both SiSilPOK and SiCd4 elements (Supplementary Fig. 2a–c), suggesting substantial commonality in control of both elements. On the other hand, some TFs are predicted to show unique or highly preferred binding to the SiSilPOK versus SiCd4 elements, suggesting a selective role in the control of the SiSilPOK. Hence, we hypothesized that the SiSilPOK might substitute in many respects for the SiCd4, but that some functions might be specialized, including the ability to respond to differential TCR signals.

We performed the SiSilPOK > SiCd4 swap in 2 steps: first we generated mice in which the SiCd4 is deleted (Cd4sil/sil mice) (Fig. 1a). As previously reported, Cd4sil/sil mice exhibit gain of CD4 expression by mature CD8 T lymphocytes both in heterozygous and homozygous condition, consistent with the fact that the SiCd4 is required to suppress Cd4 expression after CD8 commitment. Next, we inserted the SiSilPOK into the Cd4sil/sil (at the site of the SiCd4 deletion) to test whether it was able to restore normal regulation of Cd4 expression (CD4SilPOKsil mice), as assessed at the single-cell level by FACs (Fig. 1a). Expression of the CD4SilPOKsil allele was first assessed in heterozygous CD4SilPOKsil/+ mice, in which the CD4SilPOKsil allele is expressed in combination with a normal Cd4 allele regulated by the endogenous SiCd4. T cells from these mice showed no change in coreceptor expression pattern in thymocytes or peripheral T cells, including no gain of CD4 expression on CD8 T cells, suggesting that the SiSilPOK substituted fully for the function of the endogenous SiCd4 in the CD8 lineage and/or is functionally complemented by the wt Cd4 allele. We next generated hemizygous CD4SilPOKsil–/– mice, in which only the CD4SilPOKsil allele is expressed, by crossing CD4SilPOKsil mice to Cd4-deficient (Cd4–/–) mice. Importantly, these mice show severe...
alteration of CD4 expression in the thymus, i.e., downregulation of CD4 on most immature (TCRlo−) thymocytes. As a result, normal immature DP (CD4+CD8+TCRlo) thymocytes are largely replaced by aberrant SP CD8 TCRlo cells (distinguishable from mature SP CD8 cells by the absence of surface TCR; Supplementary Fig. 3) (Fig. 1b–d). Thus, insertion ofSilThPOK into the Cd4 locus represses transcription of Cd4 in most DP thymocytes, revealing an inherent capacity of the SilThPOK to repress transcription at the DP stage.

Downmodulation of CD4 at the DP stage is expected to impair TCR signaling by MHC class II-restricted thymocytes leading to a defect in their differentiation, similar to CD4 knockout mice in which most class II-restricted thymocytes are redirected to the CD8 lineage18. Indeed, CD4^ThPOKsil^/CD4^o^ mice show a
Fig. 1 SIlThPOK represses gene expression at the DP stage in CD4ThPOK.Sil knock-in mice. a Schematic of Cd4 gene organization in wt mice (top row), Cd4Δsil (second row) or Cd4ThPOK.Sil knock-in mice (bottom row). Black boxes indicate exons. Enhancers are shown as white boxes, the Cd4 silencer as a red circle, and the ThPOK silencer as a red triangle. b FACS analysis of Cd4, and Cd8a expression of total thymocytes (top row), or indicated gated thymocyte subsets (bottom 2 rows) of Cd4Δsil/Δsil, Cd4ThPOK.Sil, Cd4Δsil/Δsil, and wt mice. Note that Cd4 expression is severely reduced at immature DP-like stage, but is substantially upmodulated in many CD69+ TCRβ+ thymocytes that have received a recent TCR signal. c FACS analysis of Cd4 and Cd8a expression of total mesenteric lymph node (LN) cells (top row), or gated TCRβ+ LN cells subsets (bottom row) of same strains of mice as above. Results are representative of three independent experiments (n = 3, for each strain). d Plots showing % of DP, SP CD4, SP CD8, and DN thymocytes for mice of indicated genotypes. N = 3 independent animals. Data are presented as mean values ±/−SEM. A P value < 0.05 was considered significant. Significant differences were determined by one-way ANOVA with post hoc Tukey HSD (honest significant difference), and indicated by asterisks (*P < 0.01; **P < 0.005; ***P < 0.001). Statistical significance was calculated for each indicated mutant line relative to wt mice.

reduction in the frequency of SP CD4 thymocytes and peripheral CD4 T cells compared to wt mice (~50% of normal) (Fig. 1b–d). To distinguish whether this reflects a block in the development of class II-restricted cells, or redirection to the CD8 lineage, we backcrossed CD4ThPOK.Sil mice to a β2m-deficient background, in which only MHC class II-restricted cells can develop.19 While, the frequency of SP CD4 cells was reduced, particularly in the periphery (spleen and lymph node), the CD8 compartment was not substantially increased (Fig. 2a, b), implying that the defect in CD4 generation reflects a partial block in development rather than redirection to the CD8 lineage. We speculated that remaining CD4 cells in CD4ThPOK.Sil/ThPOK.Sil mice might be strongly skewed toward higher affinity TCRs that are relatively less dependent on CD4 coengagement for efficient TCR signaling. To test this hypothesis, we introduced the AND TCR transgene, which recognizes the MHC II I-Ak allele with high affinity, onto the CD4ThPOK.Sil background. Notably, AND TCR+ I-Ak+ CD4ThPOK.Sil/ThPOK.Sil mice showed normal frequencies of mature CD4 thymocytes, supporting the view that high-affinity TCRs are unaffected on the CD4ThPOK.Sil background (Supplementary Fig. 4a; note that SP CD8 thymocytes are immature DP-like cells, not mature CD8 thymocytes). In contrast to most MHC class II-restricted cells, the development of class I-restricted T cells appears normal. Thus, on the MHC class II-deficient background, in which only class I-restricted cells can develop, all cells mature appropriately to the CD8 lineage and give rise to normal frequencies of CD8 cells (Supplementary Fig. 4b).

SIlThPOK encodes inherent capacity to respond to TCR signal. To directly test whether the SIlThPOK encodes the inherent capacity for TCR responsiveness in the context of CD4ThPOK.Sil mice, we treated CD4ThPOK.Sil/ThPOK.Sil MHC II deficient mice in vivo with anti-TCR antibody, as an inducer of strong TCR signaling, and used Cd4 transcription from the knock-in locus as a readout of TCR responsiveness. We focused on CD69+ CD4+/− CD8+ thymocytes, because they are the functional equivalent of CD69+ DP thymocytes (since SIlThPOK is repressing Cd4 expression at the immature DP equivalent stage). In normal thymic development the first signaled thymocytes appear as CD69+ CD4+ CD8+. Importantly, we detected a strong increase of Cd4 mRNA levels in activated (CD69+) thymocytes derived from treated versus untreated mice, providing direct biochemical evidence that the SIlThPOK encodes the inherent capacity for inducibility in an autonomous and position-independent manner in response to strong TCR signals (Supplementary Fig. 5a, b). Since TCR signaling increases Cd4 expression from the CD4ThPOK.Sil knock-in locus, TCR signaling appears to counteract SIlThPOK function. Altogether our data indicate that the SIlThPOK represses the Cd4 locus at the DP stage via a cell-autonomous and position-independent mechanism, and confers susceptibility to inactivation by strong TCR signals in activated (CD69+) thymocytes.

SIlCd4 element cannot substitute for the TCR-sensing capacity of the SIlThPOK. Next, we tested the proposition whether the capacity to respond to TCR signals is unique to the SIlThPOK or might be shared with other regulatory elements at the ThPOK locus. For this purpose, we carried out a converse silencer swap approach in which the SIlThPOK was replaced by an exogenous silencer element. We first used the human adult-specific y-globin silencer.21 However, this silencer failed to repress ThPOK expression in DP thymocytes or in any other thymocyte stage (Supplementary Fig. 6), suggesting that the y-globin gene does not work in the context of T lymphocytes. To overcome this limitation, we instead used the SIlCd4, which is known to be active in the T-cell lineage. Accordingly, we replaced the 418 bp SIlThPOK by the 434 bp SIlCd4 in the context of the endogenous ThPOK locus, to generate ThPOK.SilCd4 (Fig. 3a). As mentioned above, the SIlCd4 is selectively active in SP CD8 cells, but unlike the SIlThPOK is not active in DP thymocytes. FACS analysis of homozygous ThPOK.SilCd4 knock-in mice showed essentially normal CD4:CD8 T-lymphocyte ratios in mature thymocytes and peripheral T cells, consistent with the efficient functional substitution for the SIlThPOK by the SIlCd4 during T-cell development (Fig. 3b, c). Furthermore, RT-PCR analysis showed normal repression of ThPOK transcription in sorted mature SP CD8 thymocytes. However, expression levels of ThPOK at other stages of T-lymphocyte development were severely altered, i.e., upmodulated in DP T-lymphocyte precursors, and downmodulated in CD4+ 8lo (eightfold) and SP CD4 lymphocytes in thymus and peripheral immune sites (five- to sixfold) (Fig. 3d).

Given the severe misregulation of ThPOK levels in ThPOK.SilCd4 mice, we questioned whether the coreceptor expression pattern of their SP thymocytes really correlates appropriately with MHC restriction, despite the superficially normal CD4:CD8 ratio. To definitively address this issue, we crossed ThPOK.SilCd4 mice with MHC class I- or II-deficient mice (or TCR transgenic mice expressing class II- or I-restricted TCRs) to restrict development exclusively to class II- or I-restricted cells, respectively. ThPOK.SilCd4 MHC I−/− mice developed a considerable proportion of misdirected class II-restricted CD8 T lymphocytes in the thymus compared to control MHC I−/− mice, of which a few are also detected in the periphery, although less than in the thymus, presumably reflecting homeostatic mechanisms that favor class II-restricted T lymphocytes expressing the appropriate CD4 coreceptor (Fig. 4a). Interestingly, redirected CD8 SP thymocytes were evident only at the mature CD69- stage, not among signaled (TCRβ+ CD69+) thymocytes, which are thought to contain lineage-committed semi-mature CD4 and CD8 SP cells in WT mice. Hence, derepression of ThPOK appears to be influencing post-commitment events in CD8 SP differentiation. Even more strikingly, ThPOK.SilCd4 MHC II−/− mice develop almost equal frequencies of mature CD4 and CD8 T lymphocytes in the thymus, in contrast to MHC II−/− control mice (Fig. 4b). The proportion of SP CD4 cells was also elevated in the periphery compared to control MHC II−/−
Fig. 2 SilTHPOK causes partial redirection of MHC class II-restricted thymocytes to CD8 lineage in CD4THPOK.Sil knock-in mice. a FACS analysis of CD4 and CD8a expression by indicated thymic or peripheral lymphocyte populations of wt, CD4THPOK.Sil/+ or CD4THPOK.Sil/ThPOK.Sil mice crossed to the β2m−/− background. b Plots showing % of DP, SP CD4, and SP CD8 thymocytes and LN for mice of indicated strains on β2m−/− background. N = 3 independent animals, for each strain. Data are presented as mean values ±/− SEM. A P value < 0.05 was considered significant. Significant differences between indicated mutant mice and WT mice were determined by one-way ANOVA with post hoc Tukey HSD (honest significant difference), and indicated by asterisks (* P < 0.01; ** P < 0.005; *** P < 0.001). Statistical significance was calculated for each indicated mutant line relative to β2m−/− mice.
mice, although to a lesser degree (Fig. 4b). Conversely, there is substantial misdirection of class II-restricted thymocytes to the CD8 lineage in ThPOKCD4Sil MHC I−/− mice compared to control MHC I−/− mice (Fig. 4b). A few misdirected MHC II-restricted CD8 T cells are also detected in the periphery, although proportionally less than in the thymus. These data demonstrate that the SilCD4 cannot substitute functionally for the SilThPOK, especially failing to repress ThPOK transcription in DP thymocytes and causing inappropriate reduction of ThPOK transcription in CD4+ 8lo and SP CD4 thymocytes. Most importantly, other endogenous ThPOK regulatory elements cannot confer TCR sensitivity in the absence of the SilThPOK. As a consequence, thymocytes from ThPOKCD4Sil mice exhibit random lineage commitment independent of MHC specificity (Fig. 4a, b).
Fig. 3 Substitution of the Cd4 silencer for the ThPOK silencer in the context of the endogenous ThPOK locus maintains normal SP CD4 and CD8 frequencies. a Schematic of ThPOK gene organization in ThPOK^{CD4.Si} knock-in mice. Black boxes indicate exons. Enhancers are shown as white boxes, and the Cd4 silencer as a red circle. b FACS analysis of Cd4 and Cd8x expression by indicated thymic populations of wt or ThPOK^{CD4.Si/CD4.Si} mice. c FACS analysis of Cd4 and Cd8a expression by indicated splenic populations of same mice as in panel b. Graphic comparison of proportions of DN, SP CD4, and SP CD8 subsets within gated TCRβ + spleen lymphocytes of wt or ThPOK^{CD4.Si/CD4.Si} mice (n = 7) (right panel). There were no statistically significant differences between mice of ThPOK^{CD4.Si/CD4.Si} and ThPOK^{+/+} genotypes by one-way ANOVA with post hoc Tukey HSD. d RT-PCR analysis showing relative expression of ThPOK mRNA in indicated sorted thymocyte subsets of wt or ThPOK^{CD4.Si/CD4.Si} mice. Results are a combination of three replicates per strain. RT-PCR data represent four technical replicates, each derived from pooled RNA of three animals. Data are presented as mean values +/− SEM. A P value < 0.05 was considered significant. All FACS results are representative of at least three experiments. Statistical significance was determined between mice of ThPOK^{CD4.Si/CD4.Si} and ThPOK^{+/+} genotypes by one-way ANOVA with post hoc Tukey HSD, and indicated by asterisks (**P < 0.01; ***P < 0.005; ****P < 0.001).

Altogether these results suggest that ThPOK promoters and enhancers are insufficient to support normal levels of ThPOK transcription in response to TCR signal when linked to the SiL{Cd4}. Thus TCR sensitivity is exclusive to the SiL{ThPOK}.

TCR responsiveness of the SiL{ThPOK} may be encoded by an evolutionarily conserved TF consensus site signature. To identify TFs that could be responsible for TCR responsiveness of the murine SiL{ThPOK} during thymic development, we first assessed interspecies conservation of the ThPOK and Cd4 silencers. This revealed that the SiL{ThPOK} but not the SiL{Cd4} showed extensive sequence homology between all mammalian species examined (Supplementary Fig. 7a). Further, organization of TF consensus sites (as predicted by JASPAR algorithm) was well conserved between species for the SiL{ThPOK}, but not the SiL{Cd4} element. Thus 524 of 1315 (40%) predicted TF sites for the mouse SiL{ThPOK} element were also conserved in relative position/orientation in placentals and marsupial mammals (human versus opossum), compared to only 106 of 1071 (10%) for the mouse SiL{Cd4} element (Supplementary Fig. 7b). Given that precise motif grammar may not be critical for function of some cis elements (e.g., billboard enhancers), we compared just the relative number of sites for each TF within each element, regardless of position. We excluded TFs not expressed at the DP > SP transition (according to IMMGEN Skyline RNA-seq database), and not evolutionarily conserved (i.e., not predicted to bind both human and mouse homologs of either SiL{ThPOK} or SiL{Cd4}). For the remaining 170 TFs, the number of binding sites within SiL{ThPOK} and SiL{Cd4} elements for three mammalian species (human, mouse, opossum) was averaged across all three species, and the ratio between SiL{ThPOK} and SiL{Cd4} calculated for each TF, to reveal candidate TFs that may selectively bind SiL{ThPOK} or SiL{Cd4}. Importantly, TF sites that are overrepresented in the SiL{ThPOK} versus the SiL{Cd4} include many TFs implicated in TCR signaling, such as Ebox factors (HEB, E2A), Egr1, NFAT, and NkR (Supplementary Fig. 8a). Conversely, the SiL{Cd4} is enriched for different TF consensus sites that do not include sites for TFs implicated in TCR signaling (Supplementary Fig. 8b). The most enriched sites were mapped onto the respective sequence coordinates of the SiL{ThPOK} or SiL{Cd4} to define distinct, evolutionarily conserved TF site signatures. Strikingly, the distribution of preferentially represented TF sites is closely conserved across species for the SiL{ThPOK}, but not for the SiL{Cd4} (Supplementary Fig. 8c). Of note, this does not imply that the latter are functionally unimportant, but rather that motif grammar (relative order and spacing of TF sites) may be more important for the function of the SiL{ThPOK}, than the SiL{Cd4}.

SiL{ThPOK} regions responsible for lineage-specific silencing bind multiple effectors of TCR signaling. Before determining the role of specific TF binding to the SiL{ThPOK} for its lineage-specific function, we first determined the essential region of the SiL{ThPOK} required for its lineage and stage-specific function by creating three different SiL{ThPOK} deletion mutant alleles: (A) Δ1–150 bp (line NR82); (B) Δ1–261 bp (line QK27); and (C) Δ357–418 bp (line QC48) (Fig. 5a). All three mutant mouse lines were bred to homozygosity. Strikingly, both QC48 and QK27 deletions resulted in a severe reduction in SP CD8 cells in both the thymus and periphery, suggesting the failure of silencing activity during thymic development (Fig. 5b–e). In contrast, homozygous mutant NR82 mice developed normal proportions of CD8 T cells in the thymus and periphery. These results indicate that the regions deleted in lines QC48 and QK27, but not NR82, encode non-redundant functions essential for silencing. Next, we tested whether the absence of CD8 SP thymocytes in QC48/−/− and QK27/−/− mice reflected a block in the development of MHC class I-restricted thymocytes or redirection to the CD4 lineage by crossing each mutant onto a MHC class II-deficient background, which restricts development to class I-restricted cells. Strikingly, even on the MHC class II-deficient background QC48 and QK27 mice still generate CD4 T cells, in contrast to MHC II−/− control mice which develop only CD8 cells, suggesting redirection of class I-restricted T cells to the CD4 lineage (Fig. 5f–i). Collectively, nonoverlapping regions of the SiL{ThPOK}, i.e., 150–260 bp and 358–418 bp, are individually essential for lineage-specific SiL{ThPOK} function. Notably, both of these regions are enriched for EGR consensus motifs, while the 358–418 bp region also includes two NFAT motifs.

Of note, a 34-bp region containing conserved Runx-binding motifs, which have previously been shown to be essential for SiL{ThPOK} function, was left intact in both QC48 and QK27 mutants, so that their phenotypes are not attributable to disruption of Runx binding. Nevertheless, we noticed that this 34-bp region also encodes several predicted EGR, Ebox, and NFAT-binding sites (Fig. 6a). In order to evaluate the importance of these motifs, we generated further knock-in mice in which this 34-bp segment of the murine SiL{ThPOK} was replaced with a 34-bp segment of the murine SiL{Cd4} that also contains two closely spaced Runx sites, but lacks any of the predicted Egr, Ebox or NFAT motifs (ThPOK^{SiL.Cd4.RxnX} mice) (Fig. 6a). Importantly, ThPOK^{SiL.Cd4.RxnX} mice showed a striking reduction in SP CD8 thymocytes and CD8 peripheral T cells, albeit less severe than control ThPOK^{SiL.Cd4.RxnX} mice in which both Runx sites are deleted (Fig. 6b). Crossing ThPOK^{SiL.Cd4.RxnX} mice to OT-1 TCR transgenic mice reveal substantial redirection of class I-restricted thymocytes to the CD4 lineage, indicating aberrant ThPOK upmodulation as a result of impaired silencer function (Fig. 6c). Hence, the presence of Runx motifs at this location within the SiL{ThPOK} is not sufficient to confer normal regulation of silencer activity. Rather other motifs surrounding the Runx sites, including predicted Egr, Ebox, and NFAT sites, are also critical, suggesting functional synergy between these factors and Runx factors in the control of SiL{ThPOK} activity.
Fig. 4 Substitution of the \textit{Cd4} silencer for the \textit{ThPOK} silencer perturbs the correlation between MHC restriction and lineage choice. \textbf{a} FACS analysis of \textit{CD4} and \textit{CD8a} expression by indicated thymic or peripheral lymphocyte populations of wt or \textit{ThPOK}\textit{Cd4-Sil/CD4-Sil} mice crossed to the \textit{β2m}-deficient background. \textbf{b} FACS analysis of \textit{CD4} and \textit{CD8a} expression by indicated thymic or peripheral lymphocyte populations of wt or \textit{ThPOK}\textit{Cd4-Sil/CD4-Sil} mice crossed to the MHC II-deficient background. \(N = 3\) independent animals per strain. Data are presented as mean values \(+/-\) SEM. A \(P\) value < 0.05 was considered significant. Statistical significance was determined between mice of \textit{ThPOK}\textit{Cd4-Sil/CD4-Sil} and \textit{ThPOK}\textit{+/-} genotypes on \textit{β2m}-/- or MHC II--/- background by one-way ANOVA with post hoc Tukey HSD, and indicated by asterisks (*\(P < 0.01\); **\(P < 0.005\); ***\(P < 0.001\)). Statistical significance was calculated for each indicated mutant line relative to \textit{β2m}-/- mice (\textbf{a}), or MHC II--/- mice (\textbf{b}).
Given that regions required for SiThPOK function are notably enriched for EGR and NFAT consensus motifs, we directly tested whether EGR and NFAT can bind to the SiThPOK by EMSA. We used two different labeled oligos corresponding to 161–268 bp (probe 1) and 169–371 bp (probe 2) regions of the SiThPOK. For each region, we generated alternate probes encoding either the endogenous SiThPOK sequence (wt probes), or mutant sequences in which consensus Egr or NFAT motifs (as determined by JASPAR algorithm) are disrupted (mutant probes). We observed that (1) both wt probes bind to EGR1 and NFAT2 factors, as evidenced by band shift upon incubation with cell lysates overexpressing either factor, while (2) mutant probes failed to undergo such band shift, or to a much lesser extent, demonstrating site-specificity of this TF binding (Fig. 7a).
Fig. 5 Distinct nonoverlapping regions of SilThPOK are required for its silencing function. a Schematic of positions of transcription factor (TF) consensus binding sites within murine SilThPOK (top row). Different TF motifs are color-coded according to the legend at the left. b FACS analysis of CD4, CD8a, TCRβ, and CD69 expression of total thymocytes (top and second rows), or CD4 and CD8a expression of indicated gated thymocyte subsets (bottom 2 rows) of ThPOKΔΔQ24, ThPOKΔΔQ27 and wt mice, as indicated. Note that mature CD8 population is absent in both mutant lines. c FACS analysis of TCR expression of total mesenteric lymph node (LN) cells (top row), or gated TCR+ LN cells subsets (bottom row) of same strains of mice as above. Results are representative of multiple experiments. N = 3 independent animals per strain. d Plots showing % of DP, SP CD4, SP CD8, and DN thymocytes, or (e) SP CD4 and SP CD8 T cells from LN for mice of indicated genotypes. N = 5 independent animals per strain. Data are presented as mean values ±/− SEM. A P value <0.05 was considered significant. Statistical differences were determined by one-way ANOVA with post hoc Tukey HSD, and indicated by asterisks (*P < 0.01; **P < 0.005; ***P < 0.001).

Effect of combinatorial disruption of EGR, NFAT, and Ebox motifs on SilThPOK function. Next, to test the in vivo relevance of EGR, Ebox (TCF12/3), and NFAT motifs for SilThPOK function, we generated a series of mutant mouse lines in which we mutated different combinations of these sites (numbered as shown in Fig. 7b) within the context of the endogenous full-length SilThPOK element: (1) the QK9 allele, containing mutations of three EGR (E6, E7, E9), one Ebox (T6), and one NFAT (N5) site, (2) the QW82 allele, containing mutations of two EGR (E6, E7), and one Ebox (T6) site, and (3) The QY53 allele, containing mutations of three EGR (E6, E7, E9), and one NFAT (N5) (Fig. 7b).

All mutants showed major defects in thymic development: (1) Homozygous QK9−/− mice completely lack CD8 T cells in thymus and periphery, suggesting loss of SilThPOK function (Fig. 7c, d). Furthermore, crossing to MHC class II-deficient background to limit thymocyte development to class I-restricted cells, showed the preferential generation of CD4 rather than CD8 T cells, compared to MHC II−/− control mice, indicating redirection of class I-restricted thymocytes to the CD4 lineage, presumably consequent to aberrant ThPOK upmodulation (Fig. 8a, b). (2) Homozygous QW82 mice display a similar phenotype to QK9 mice, i.e., lack of CD8 T-cell development, and substantial redirection of class I-restricted cells to the CD4 lineage, as evidenced by the presence of a large proportion of CD4 T cells in class II-deficient QW82−/− mice (Fig. 8a–d), suggesting a severe defect of SilThPOK repression. (3) Homozygous QY53−/− mouse also displays a striking block in CD8 development and redirection of a large proportion of class I-restricted thymocytes to the CD4 lineage as QK9 and QW82 mice (Figs. 7c, d and 8a–d). Collectively, our mutational analysis indicates that (a) two EGR consensus motifs that are mutated in all three mutant lines (E6, E7, E9 sites; Fig. 7a) are indispensable for CD8 lineage-specific ThPOK silencing, while (b) NFAT, Ebox, and EGR sites (N3, E9, and T6 sites) that are mutated in only some lines are unnecessary or redundant for this process. Of note, while the QC48 deletion showed a severe developmental phenotype (Fig. 5), this may not be attributable to Egr or Nfat sites contained within this region, as mutating all Egr sites (line TO61) or all Nfat sites (line RQ17) within this region had no effect on CD4/CD8 ratio. It remains possible that Egr and Nfat sites within the QC48 region are collectively required for correct lineage choice.

Effect of disruption of specific NFAT and Ebox motifs on SilThPOK function. To separately evaluate the contribution of these NFAT and Ebox binding sites to silencer activity independent of EGR site mutations, we generated two additional mutant alleles, with mutations of (A) Ebox site T6 (line RJ59), or (B) NFAT site N3, which also affects adjoining Stat and EGR motifs (line RS59) (Fig. 9a). As expected from our previous mutants, neither homozygous line induced skewing toward the CD4 lineage. Surprisingly, however, they displayed substantial spontaneous skewing toward the CD8 lineage in the thymus, resulting in a CD4/CD8 ratios of 1.3:1 and 1.8:1 for homozygous RJ59−/− and RS59−/− mice, respectively (versus 3:1 in wt mice) (Fig. 9b–d). In addition, there was a notable increase in atypical mature DN T cells in the thymus (Fig. 9b). Similar CD8 skewing was evident in peripheral T cells of Ebox mutant RJ59−/− mice, but not NFAT mutant RS59−/− mice (Fig. 9c, e). We did not observe substantial misdirection of either class I- or class II-restricted cells in RJ59−/− or RS59−/− mice crossed to MHC II and MHC I-deficient backgrounds, suggesting that reduction in ThPOK expression in these lines may occur too late in development to allow CD8 commitment. Altogether, these data suggest that Ebox and NFAT binding to specific sites near conserved Runx-binding sites of the SilThPOK is necessary to oppose silencer function during the development of class II-restricted thymocytes to the CD4 lineage.

CD4 commitment involves in–tra–locus chromatin looping between the SilThPOK and other cis-regulatory elements. Given that enhancers and silencers function in part by controlling chromatin topology, we asked whether topological assembly of ThPOK regulatory regions may be regulated in a stage- and/or lineage-specific manner. Accordingly, we performed 3C analysis on different thymocyte populations, i.e., predominantly class I-restricted thymocytes from OT-1 transgenic mice, predominantly class II-restricted thymocytes from AND transgenic mice, unsignalled DP thymocytes from CD3δ−/− thymocytes, and ThPOKAsil thymocytes which express ThPOK constitutively due to absence of the SilThPOK (Fig. 10a, b). Interestingly, we observed a selective interaction between SilThPOK with the lymphoid enhancer (GTE) in OT-1 transgenic thymocytes, correlating with transcriptional repression of ThPOK. Conversely, interaction between the lymphoid enhancer (GTE) and the distal promoter was only observed in AND transgenic and ThPOKAsil thymocytes, correlating with transcriptional activation of ThPOK. These observations suggest that the SilThPOK may specifically sequester the GTE enhancer away from the distal promoter in class I-restricted thymocytes (Fig. 10c). Analysis of publicly available databases indicates striking stage- and lineage-specific changes in chromatin accessibility and histone modification of the SilThPOK, GTE enhancer, and distal promoter during thymic development (Supplementary Fig. 9a, b).
CD4 versus CD8 lineage commitment is controlled by TCR specificity, such that long and/or strong TCR signals elicited by MHC class II lead to CD4 commitment, whereas weak and/or transient signals elicited by MHC class I lead to CD8 commitment. But how differential TCR signals culminate in alternate transcriptional programs driving CD4 versus CD8 choice has remained an open question. In this study, using a regulatory element swap approach, we provide compelling evidence that the SilThPOK encodes the intrinsic capacity to respond...
Fig. 7 Mutation of EGR and NFAT-binding motifs adjacent to conserved Runx sites impairs Sil\(^{ThPOK}\) function.

a. EMSA analysis showing EGR1 and NFAT2 binding to oligos comprising wt silencer sequence (region surrounding Runx sites), or mutated at consensus EGR or NFAT motifs, as indicated.

b. Position of TF consensus binding sites for wt silencer, or indicated variant alleles. FACS analysis of TCR\(\beta\), CD69, CD4, and CD8 expression of total thymocytes, gated thymocytes (c), and peripheral T-cell subsets (d) of wt mice or mutant lines, as indicated. Results are representative of multiple experiments. \(N = 6\) independent animals per strain. Data are presented as mean values \(+/-\) SEM. A \(P\) value < 0.05 was considered significant. Statistical significance was determined between indicated mutant mice and ThPOK\(^{+}/+\) mice by one-way ANOVA with post hoc Tukey HSD, and indicated by asterisks (*\(P<0.01\); **\(P<0.005\); ***\(P<0.001\)). Statistical significance was calculated for each indicated mutant line relative to wt mice.
to TCR signaling leading to MHC restricted lineage choice, and show how this occurs at the molecular level.

Our comparison of the SilThPOK and SilCD4 elements shows that while they share the ability to suppress gene transcription in committed CD8 cells, they function very differently in early thymocyte developmental stages, particularly at the DP and CD4^+8^lo stages. Thus, these silencers possess intrinsically distinct functional capacities regardless of the genomic context, and dominantly control other cis elements in both endogenous and exogenous gene contexts. For example, the SilThPOK suppresses the transcription of Cd4 in DP thymocytes of wt mice. Conversely, derepression of ThPOK transcription in DP thymocytes of ThPOK^CD4^+^8^lo mice mirrors expression of endogenous Cd4 in DP thymocytes of wt mice. Hence, differential stage-specific regulatory control of the ThPOK and Cd4 loci appears to be autonomous and encoded primarily within their respective silencers.

The shared ability of SilThPOK and SilCD4 elements to repress transcription following CD8 lineage commitment may largely reflect the presence of evolutionarily conserved Runx-binding motifs in both silencers, which have previously been shown to be critical for the activity of both the SilCD4 and SilThPOK elements. Nevertheless, the mechanism by which Runx binding supports silencing is not well understood. ChIP analysis shows binding of Runx complexes (Runx1 or 3) to the SilThPOK at all stages of thymic development, regardless of whether ThPOK is expressed, suggesting that the TCR responsiveness of the ThPOK...
silencer requires Runx factors to synergize with other factors bound to the SilThPOK. Our finding that knocking the Runx motifs from the SilCD4 into the SilThPOK (ThPOK-Sil.CD4.Rx mice) causes aberrant redirection of class I-restricted thymocytes to the CD4 lineage, indicates that precise TF-binding site syntax surrounding the Runx sites is critical for SilThPOK function, and that the mere presence of Runx sites even at the same relative position of the silencer is not sufficient. Interestingly, some thymocytes still develop to the CD8 lineage in ThPOK-Sil.CD4.Rx mice, compared to mice which lack Runx sites, indicating that silencing still occurs for some cells, possibly those expressing particularly low-affinity TCRs. We conclude that the regions surrounding the Runx sites of the SilThPOK and SilCD4 elements recruit different TFs that critically control stage-specific activity of these elements. Our analysis reveals that motifs for TFs implicated in TCR signaling are preferentially represented in the Sil ThPOK versus SilCD4, and that disrupting these motifs perturbs normal regulation of silencing, leading to abnormal CD4-8 development. In particular, specific EGR sites nearby to conserved Runx-binding sites are necessary to promote silencer function and oppose CD4 development, while certain Ebox and NFAT sites are necessary to oppose silencer function and permit CD4 development.

Fig. 9 Mutation of HEB/E2A binding motifs adjacent to conserved Runx sites enhances SilThPOK function. a Position of TF consensus binding sites for wt silencer, or indicated mutant RJ59 and RS59 alleles. FACS analysis of TCRβ, CD69, CD4, and CD8 expression of (b) total thymocytes, gated thymocytes and (c) peripheral T-cell subsets of wt mice or mutant lines, as indicated. d, e Plots showing % of DP, SP CD4, SP CD8, and DN thymocytes for mice of indicated genotypes. N = 6 independent animals per strain. Data are presented as mean values ± SEM. A P value < 0.05 was considered significant. Statistical significance was determined between mice of ThPOK-Sil.CD4+/- and ThPOK+/- genotypes by one-way ANOVA with post hoc Tukey HSD, and indicated by asterisks (*P < 0.01; **P < 0.005; ***P < 0.001). Statistical significance was calculated for each indicated mutant line relative to wt mice.
There is substantial data to support an important role of TCR signaling in the induction of EGR30, NFAT31, and Ebox factors32. EGR factors have in turn been implicated in CD4 development33 and regulation of Th differentiation and function36. NFAT proteins are induced strongly in CD4 compared to DP and CD8 thymocytes37, and have been previously implicated in the control of positive selection38,39. Finally, we previously showed that conditional deletion of HEB/E2A at the DP stage leads to a severe defect in CD4 T-cell development, while deletion of the E protein antagonists Id2 and Id3 at the DP stage favors CD4 over CD8 lineage development40. Our current data provide a partial molecular genetic mechanism for some of these effects. Targeting specific Ebox and NFAT sites in silencer (T6/N5) causes loss of mature CD4 thymocytes, and gain of mature DN and CD8 thymocytes, indicating increased silencing activity, which results in diminished ThPOK expression and consequent loss of CD4 expression. So HEB and NFAT factors appear to play a role in tuning SilThPOK activity in response to different TCR signals, such that strong/long TCR signals elicited in MHC class II-restricted thymocytes cause preferential association of HEB and NFAT factors to the SilThPOK leading to its loss of activity. Cooperative interaction of Ebox and NFAT factors has been established in other cellular contexts41. On the other hand, targeting specific EGR sites in the silencer (E6/E7) drives the development of all thymocytes to the CD4 lineage, indicating blockade of silencer function and constitutive ThPOK expression. Hence, it appears that even weak class I-restricted signals are sufficient to trigger EGR binding to these sites and EGR binding to SilThPOK is obligatory for silencing function. The effect of mutation of these EGR sites appears to be dominant over the effect of mutation of Ebox and NFAT-binding sites (since QK9, QW82, and QY53 mice have both E6/E7 sites and one or more T6/N5 sites mutated). It’s been shown that CD4-inducing TCR signals result in increased Egr1 and Egr2 induction versus CD8-inducing signals42. So, EGR factors induced by TCR signals are necessary to actively turn on silencer activity but may not be involved in tuning silencer activity in response to differential TCR signaling.

Analysis of available ATAC-seq data from purified thymocyte subsets indicates that the SilThPOK region is accessible in DN1-DP stages, suggesting that it is poised for activity, but that this accessibility is substantially lost in both CD4 and CD8 thymocytes (Supplementary Fig. 9a). We suggest that this loss of accessibility is due to dense binding by TFs that are induced during positive selection and lineage commitment, including NFAT, Ebox, and EGR factors. Based on ATAC data, it further

Fig. 10 Chromosome conformation capture (3C) reveals altered proximity of SilThPOK with other ThPOK cis elements in MHC class I- versus class II-restricted thymocytes.

a. Schematic of ThPOK gene organization showing exons (dark blue boxes), promoters (light blue boxes), enhancers (green boxes), and silencer (red box). Arrowheads at bottom of the panel indicate the position/orientation of PCR primers, while connected arrows at top of the panel show different primer combinations that were utilized.

b. 3C analysis of physical interactions of SilThPOK with other ThPOK cis elements in total thymocytes from AND Tg+ (class II-restricted), OT-1 Tg+ (class I-restricted), CD3δ−/− (uncommitted; blocked at DP stage), and ThPOKΔSil (DRE knockout) mice, respectively. N = 3 independent animals per strain.

c. Model of proposed ThPOK cis element interactions in class I- versus class II-restricted thymocytes.
appears that the ThPOK distal promoter and GTE enhancer become markedly more accessible during the transition from the DP to SP CD4 stage, and that the GTE simultaneously comes into close proximity with the distal ThPOK promoter according to 3C analysis. These changes do not occur in class I-restricted cells, where the GTE instead loops to the S5 trans-GTE. S5-ThPOK-deficient cells which instead exhibit constitutive interaction of distal promoter and lymphoid enhancer (GTE), suggesting that weak TCR signals promote differential silencer-dependent chromatin organization of the ThPOK locus. In the context of our mutational analysis, one might hypothesize that EGR factors promote looping of the silencer to the GTE, while Ebox/NFAT factors may oppose it.

CD4 versus CD8 lineage commitment is controlled by TCR signals of different strength and duration, which in turn promote different downstream patterns of TF expression. It appears that initially many/most of the TFs involved in CD4 vs CD8 commitment are induced by all TCR signals, e.g., Egr, NFAT, etc., but that their kinetics of expression may differ in response to TCR signals of different strength/duration. As a consequence, there will be differences in the level and/or duration of binding of these shared TFs to the ThPOK silencer. By mutating particular consensus motifs within the silencer, we have prevented the binding of cognate TFs to these sites, and potentially affected the recruitment of other TFs to nearby sites. The fact that some silencer mutations result in intermediate phenotypes is consistent with a multilayered and redundant control mechanism. For instance, in QW82 mutants some class I-restricted thymocytes differentiate to the CD8 lineage while others progress aberrantly to the CD4 lineage. Given that thymocytes are heterogeneous in terms of their surface TCR affinity/avidity to the MHC I and MHC II encoded by their clonotypic TCRs, it’s reasonable to speculate that those class I-restricted thymocytes which are still able to differentiate to the CD8 lineage in QW82 mice express particularly low-affinity TCRs, resulting in distinct TCR-binding patterns at the ThPOK silencer that are able to maintain its activity. Finally, it’s entirely possible that other non-TCR-dependent signal pathways also impinge on the ThPOK silencer and contribute to control of its activity, including the IL-7 signal pathway which has been implicated in CD8 commitment44. Indeed, we have identified consensus Stat factor binding sites in the silencer, and in the future will test how TCR signals may cooperate with or antagonize IL-7 signal to control silencer activity and lineage choice.

In summary, we postulate that stage-specific S5-ThPOK activity is controlled by TFs that are transcribed/activated downstream of TCR signals, including EGR, NFAT, and Ebox factors, which in turn control transcriptional organization of the ThPOK regulatory region particularly the apposition of the S5-ThPOK with other cis elements.

Methods

Mice. RAG1+/− (stock # 034159), β2m−/− (stock # 002087), and AND TCR transgenic (stock # 002761) mice have been procured from Jackson Laboratory. OT-1 TCR transgenic RAG2−/− (stock # 2334) and MHC II−/− (stock # ABBN12) mice were obtained from Taconic. C57−/− mice are from our own colony44. All other mouse lines described in this paper have been generated by the Focc Transgenic Facility on the C57BL/6J strain of M. musculus. Animal care was in accordance with NIH guidelines. Mice were maintained on a 12 h light/dark cycle, at 75 °F and 50% humidity. All experimentation involving animals was approved by the Institutional Animal Care and Use Committee (IACUC) of Fox Chase Cancer Center.

In vivo treatment with anti-TCR mAb. CD4+CD8−/− or CD4−CD8+ were crossed to MHC II−/− mice to generate compound CD4+CD8−/− or CD4−CD8+ MHC II−/− mice. Four to six-week-old animals were injected i.p. with 30 µg of azide-free anti-TCR mAb H57-597 and thymocytes isolated 15 h later.

ZFN-mediated gene targeting in mouse embryos. Site-specific mutagenesis was carried out, according to established procedures22. Briefly, a pair of ZFNs that target a specific target site near the S5-ThPOK was designed and generated by Millipore-Sigma (Genome Editing division). The ZFN target sequence is ACCG CTACCCCTAAACCaatacTGGAGAAGGGTTTAG (capital letters denote nucleotides actually bound by right and left ZFN proteins). mRNAs encoding the two site-specific ZFNs (30 µg/µl) were introduced together with double-stranded DNA-targeting constructs bearing the desired mutations/deletions into 1 cell C57BL/6J mouse oocytes by pronuclear injection, and injected oocytes were transferred to a pseudopregnant surrogate mother. Targeting constructs contained 1.5 and 0.8 kb arms of homology on either side of the desired mutations/deletion. Positive clones were identified on the basis of reduced signal intensity using primers Fl5′-ATCCCTAAGAAGAAGCCCT-3′ and R5′-AGGCCTCTTCA GTGACGGAGC-3′, and mated to C57BL/6 mice for seven generations to produce stable heritable knock-in lines.

Flow cytometry. All fluorescently labeled antibodies used were obtained from commercial sources (eBioscience, Biolegend, BD, or Invitrogen), including TCRβ-PE/Cy5 (H57-597 Cat # 109210; Biolegend), CD4-BV421 (clone RM4-5; Biolegend). Cells were stimulated with 100 U/ml IL-2 in 10% FBS/PBS at 37 °C for 18 h. Cells were then stained in 100 µl of PBS, 5% FCS at 4 °C for 30 min with 0.5 µg/ml of each primary antibody. Cells were then rinsed three times by centrifugation at 1500 rpm for 5 minutes, and then resuspended in 200 µl of PBS, 5% FCS. In total, 5 µl of PI solution (10 µg/ml PI in PBS) were added to each sample just prior to analysis. Dead cells, doublets, and debris were excluded in all analyses. Flow cytometry analyses were conducted on a FACS LSRII Cell sorting was performed on a FACSAria II (Becton, Dickinson, and Company). FACS data were collected using FACS Diva version 7.0 or 9.0, and data were analyzed using FlowJo software (versions 9.3.3, 10.1, or 10.2, FlowJo, Ashland, OR, USA). In contour plots, expression levels were shown at 5% probability, unless indicated otherwise in the figure legend. Total thymus cell counts were performed for each animal in presence of trypan blue, showing that none of the silencer mutations after the absolute number of total thymocytes relative to WT mice (1.6 × 10^6 ± 0.3 for 6–10-week-old mice). Furthermore, the frequency of pre-selection (TCRβR CD69+) DP thymocytes is unaffected in any mutant (except for CD4+CD8+ mice), excluding the possibility that mutations of ThPOK silencer may result in reduction of these precursor emtumore control mice. CD69 expression was analyzed using immunoblot analysis and used as a protein source for binding assay. DNA-binding probes were generated by annealing of synthetic double-stranded oligonucleotides corresponding to the target region and end-labeling with polynucleotide kinase and digoxigenin-11-dUTP using an EMSA Kit (Sigma). The anti-Flag Ab (Sigma) was used for ‘super-shifting’ of TF protein–DNA complexes.

Quantitative RT-PCR. Cell sorting was carried out using a BD FACSAria and FACS Diva software. 100,000 cells were sorted directly into RNA lysis buffer (4 M guanidine thiocyanate, 25 mM sodium citrate, pH 7.0, 0.5% (wt/vol) N-lauroylsarcosine (Sarkosyl) and 0.1 M 2-mercaptoethanol)45. cDNA was synthesized using the High Capacity RNA-to-cDNA kit (ThermoFisher). For mouse Cd4, we using the High Capacity RNA-to-cDNA kit (ThermoFisher). For mouse Cd4, we used commercial Taqman (probe-based) assay Mm00442754_m1 (Life Technologies), with the QuantiStudio6 thermocycler (Life Technologies) and QuantiStudio Realtime RT-PCR Software.

For mTilPok, we performed quantitative RT-qPCR using SYBR Green Master Mix (Invitrogen) and our forward/reverse primers24. ThPOK Fl5′-ACCCAGGCTGTAAGAAGGA-3′ ThPOK Rev5′-GCTGCTGTTGGCTGCGCAAAT-3′. Transcript levels are expressed as 2^ΔΔCt, where ΔΔCt refers to the difference between Ct (transcript of interest) and Ct (Rps6).

3C analysis. Chromatin crosslinking was performed by adding 9.5 ml of 2% formaldehyde/10% FCS/PBS per 1 × 10^7 thymocytes from and Tg+ (class II restricted), OT-1 Tg+ (class II restricted), CD4−/− (uncommitted; blocked; directed stage), and ThPOKsilded (DRE knockout) mice, followed by incubation at room temperature for 10 min. The crosslinking reaction was quenched by the addition of 1.425 ml of 1 M glycine (ice cold). Cells were isolated by spinning for 8 min at 225 × g at 4 °C, and supernatants were carefully removed. Cell pellets were resuspended in 5 ml cold lysis buffer (10 mM Tris-HCL, pH 7.5; 10 mM NaCl, 5 mM MgCl2; 0.1 mM EDTA; 1 × complete protease inhibitor; 1183614500 Roche) and incubated for 10 min on ice, and nuclei isolated by centrifration at 400 × g for 5 min.
Quantitative analysis of chromosome conformation capture assays was performed using 4 BP cutter NlaIII and ThPOK BAC plasmid was used as the positive control.

Statistics and reproducibility. No statistical method was used to determine the sample size. Instead, sample sizes were rationalized by weighing sufficient replication (to determine the extent of biological variation) with reduction of total animals used. Data were excluded only for technical reasons, such as low cell viability. Regarding replication, all in vivo analyses were performed on a total of three to six animals per genotype (across at least three separate experiments). All attempts at replication were successful. Randomization was not used; assignment to experimental groups was based on genotype. To exclude physiological and environmental covariates, mice of different genotypes were derived from the same litters.

Data were analyzed by applying one-way ANOVA with post hoc Tukey HSD (Honest Significant Difference) method. A P value of less than 0.05 was considered significant. **P < 0.05, ***P < 0.01, ****P < 0.001.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The source data of graphs are provided as Supplementary Data 1. Uncropped and unedited blot/gel images corresponding to Figs. 7a and 10b are provided as Supplementary Figs. 11 and 12, respectively. All other data are available from the authors upon reasonable request.

Received: 23 November 2020; Accepted: 21 December 2021; Published online: 21 January 2022

References
1. Jameson, S. C., Hogquist, K. A. & Bevan, M. J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).
2. Katz, G. et al. T cell receptor stimulation impairs IL-7 receptor signaling by inducing expression of the microRNA miR-17 to target Janus kinase 1. Sci. Signal. 7, ra83 (2014).
3. Park, J. H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).
4. Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).
5. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T cell lineage commitment. Nature 433, 826–833 (2005).
6. Ku, C. T., Jang, H. & Peterlin, B. M. Differential chromatin looping regulates CD4 expression in immature thymocytes. Mol. Cell. Biol. 28, 907–912 (2008).
7. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T cell lineage commitment. Nature 433, 826–833 (2005).
8. Keefe, R., Dave, V., Allman, D., Wiest, D. & Kappes, D. J. Regulation of lineage commitment distinct from positive selection. Science 286, 1149–1153 (1999).
9. Park, K. H. et al. Th-POK-mediated ThPOK induction promotes development of mature (CD4+–) gammadelta thymocytes. EMBO J. 29, 2329–2341 (2010).
10. He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).
11. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).
12. Grueter, B. et al. Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4+–CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).
13. Donda, A., Schulz, M., Burki, K., De Libero, G. & Uematsu, Y. Identiﬁcation and characterization of a human CD4 silencer. Eur. J. Immunol. 26, 493–500 (1996).
14. Sawada, S., Scarborough, J. D., Killeen, N. & Littman, D. R. A lineage-speciﬁc transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77, 917–929 (1994).
15. Siu, G., Win, M. A., Lancer, D. D., Soliman, T. M. & Hedrick, S. M. A transcriptional silencer controls the developmental expression of the CD4 gene. Mol. Cell. Biol. 13, 3570–3579 (1994).
16. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).
17. Rahmetulla, A. et al. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353, 180–184 (1991).
18. Matechak, E. O., Killeen, N., Hedrick, S. M. & Fowlkes, B. J. MH class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).
19. Köller, B. H., Marrack, P., Kappler, J. W. & Smithies, O. Normal development of mo1ie deficient in beta2M, H2 class I proteins, and CD8 + T cells. Science 248, 1227–1230 (1990).
20. Karimi, M. M. et al. The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nat. Commun. 12, 99 (2021).
21. Stamatoyannopoulos, G., Josephson, B., Zhang, J. W. & Li, Q. Developmental regulation of human gamma-globin genes in transgenic mice. Mol. Cell. Biol. 13, 7636–7644 (1993).
22. Mookerjee-Basu, J. et al. Functional conservation of a developmental switch in mammary glands between the Jurassic and Cretaceous. Mol. Biol. Evol. 36, 39–53 (2019).
23. Murre, C. Helix-loop-helix proteins and lymphocyte development. Nat. Immunol. 6, 1079–1083 (2005).
24. Basa, J. et al. Essential role of a ThPOK autoregulatory loop in the maintenance of mature CD4+ T cell identity and function. Nat. Immunol. 22, 969–982 (2021).
25. Issuree, P. D., Ng, C. P. & Littman, D. R. Heritable gene regulation in the CD4+CD8 T cell lineage choice. Front. Immunol. 8, 291 (2017).
26. Jiang, H. & Peterlin, B. M. Differential chromatin looping regulates CD4 expression in immature thymocytes. Mol. Cell. Biol. 28, 907–912 (2008).
27. Kolovos, P., Knoch, T. A., Grosfeld, G. F., Cook, P. R. & Papantonis, A. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5, 1 (2012).
28. Egawa, T., Tillman, R. E., Nase, Y., Taniuchi, I. & Littman, D. R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).
29. Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).
30. Carleton, M. et al. Early growth response transcription factors are required for development of CD4(–)CD8(–) thymocytes to the CD4(+)CD8(–) stage. J. Immunol. 168, 1649–1658 (2002).
31. Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science 241, 202–205 (1988).
32. Barndt, R., Dai, M. F. & Zhaung, Y. A novel role for HEB downstream or parallel to the pre-TCR signaling pathway during alpha beta thymopoiesis. Immunity 163, 3331–3343 (1999).
33. Bettini, M. X., Hii, M., Milbrandt, J. & Kersh, G. J. Thymocyte development in early growth response gene 1-deficient mice. J. Immunol. 169, 1713–1720 (2002).
34. Lauritsen, J. P. et al. Eg2 is required for Bcl-2 induction during positive selection. J. Immunol. 181, 7779–7785 (2008).
44. Dave, V. P. et al. CD3 delta deficiency arrests development of the alpha beta but not the gamma delta T cell lineage. EMBOJ 16, 1360–1370 (1997).
45. Chomczynski, P. & Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat. Protoc. 1, 581–585 (2006).
46. Hagège, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733 (2007).

Acknowledgements
This work was supported by NIH grants R01 AI068907 (D.J.K.), R01 GM107179 (D.J.K.), and P30 CA006927 (FCCC Comprehensive Cancer Center Core Grant). J.B. received a fellowship from W. J. Avery foundation. We acknowledge the assistance of the following core facilities of the Fox Chase Cancer Center: Flow Cytometry, Cell Culture, DNA Sequencing, and Laboratory Animal. We thank D. Wiest and K. Hogquist for critical reading of the manuscript.

Author contributions
Conceptualization: J.B. and D.J.K.; methodology: J.B., D.J.K., and X.H.; investigation, J.B., J.Z., E.N., M.C., P.C., X.H., L.G., and D.J.K.; writing—original draft: J.B. and D.J.K.; writing—review & editing: J.B. and D.J.K.; funding acquisition: D.J.K.; supervision: D.J.K.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-022-02999-5.

Correspondence and requests for materials should be addressed to Dietmar J. Kappes.

Peer review information Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: George Inglis.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022