Generalization of the h-Deformation to Higher Dimensions\footnote{To be appear in J. Phys. A}

M. Alishahiha

Institute for Studies in Theoretical Physics and Mathematics,
P.O.Box 19395-5746, Tehran, Iran

Department of Physics, Sharif University of Technology,
P.O.Box 11365-9161, Tehran, Iran

e-mail: alishah@netware2.ipm.ac.ir

Abstract

In this article we construct $GL_h(3)$ from $GL_q(3)$ by a singular map. We show that there exist two singular maps which map $GL_q(3)$ to new quantum groups. We also construct their R-matrices and will show although the maps are singular but their R-matrices are not. Then we generalize these singular maps to the case $GL(N)$ and for C_n series.
There exist two types of $SL(2)$ quantum groups. One is the standard $SL_q(2)$, another one is the Jordanian quantum group which is also called the h-deformation of $SL(2)$. Quantum matrices in two dimensions, admitting left and right quantum spaces, are classified [1]. One is the q-deformation of $GL(2)$, the other is the h-deformation. The q-deformation of $GL(N)$ has been studied extensively but in the literature only the two dimensional case of h-deformation has been studied.[2-7]

In ref. 8 it is shown that $GL_h(2)$ can be obtained from $GL_q(2)$ by a singular limit of a similarity transformation. We will show this method can be used successfully, for construction of $GL_h(N)$. In other words, at first we will consider the $GL(3)$, and introduce two singular maps which convert $GL_q(3)$ to $GL_h(3)$. Then we generalize one of the singular maps to N-dimensional case. We will use R-matrix of $GL_q(N)$ which by this map, results to a new R-matrix. Also, by this map one can obtain h-deformation of C_n series, but can not for B_n and D_n series.

In this article we denote q-deformed objects by primed quantities. Unprimed quantities represent transformed objects.

Consider Manin’s q-plane with the following quadratic relation between coordinates.

$$x'y' = qy'x'. \quad (1)$$

By the following linear transformation:

$$
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix}
=
\begin{pmatrix}
 1 & \frac{h}{q^2-1} \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
\quad (2)
$$

the relation (1) changes to $xy - qyx = hy^2$. For the case of $q = 1$, one get the relation of two dimensional h-plane. In fact g itself is singular in the $q = 1$ case, but the resulting relation for the plane is non-singular.

The above linear transformation on the plane induces the following similarity transformation on the R-matrix of $GL_q(2)$.

$$R_h = \lim_{q \to 1} (g \otimes g)^{-1}R_q(g \otimes g). \quad (3)$$

Although the above map is singular, the resulting R-matrix is non-singular and is the well known R-matrix of $GL_h(2)$.
Now consider 3-dimensional Manin’s quantum space:

\[x'_i x'_j = q x'_j x'_i \quad i < j, \]

and consider the following linear transformation:

\[X = g^{-1} X', \]

where

\[
g = \begin{pmatrix}
\lambda_1 & \alpha & \beta \\
0 & \lambda_2 & \gamma \\
0 & 0 & \lambda_3
\end{pmatrix}.
\]

Here \(\alpha, \beta \) and \(\gamma \) are parameters which can be singular at \(q = 1 \). So they can be written as \(\frac{1}{f(q)} \) where \(f(1) = 0 \). The Taylor expansion of \(f(q) \) about \(q = 1 \) is \(f(q) = \frac{1}{h}(q - 1) + O((q - 1)^2) \). We need only the first term, because we are only interested in the behaviour of \(f(q) \) in the neighbourhood of \(q = 1 \). The coefficient of first term in the Taylor expansion, \(h \), plays the role of the deformation parameter for the new quantum group. The \(\lambda_i \)s can be made equal to 1 by rescaling.

To obtain \(\alpha, \beta \) and \(\gamma \) we should apply this map to the \(q \)-deformed plane and its dual, and require that the mapped plane and its dual be non-singular at \(q = 1 \). The following are the only singular maps satisfying this condition:

\[
g_1 = \begin{pmatrix}
1 & \frac{h}{q-1} & \beta \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad g_2 = \begin{pmatrix}
1 & \alpha & \beta \\
0 & 1 & \frac{h}{q-1} \\
0 & 0 & 1
\end{pmatrix}, \quad g_3 = \begin{pmatrix}
1 & \alpha & \frac{h}{q-1} \\
0 & 1 & \gamma \\
0 & 0 & 1
\end{pmatrix}.
\]

Here \(\alpha, \beta \) and \(\gamma \) (in \(g_1, g_2, g_3, \)) are non-singular parameters. Note that the \(R \)-matrices obtained from these maps, solve the quantum Yang-Baxter equation and are non-singular for \(q = 1 \).

Let us denote the dependence of \(g_1, g_2 \) and \(g_3 \) on parameters explicitly:

\[
g_1 := g_1\left(\frac{h}{q-1}, \beta\right), \quad g_2 := g_2\left(\frac{h}{q-1}, \alpha, \beta\right), \quad g_3 := g_3\left(\frac{h}{q-1}, \alpha, \gamma\right).
\]

It is easy to show that:

\[
g_1\left(\frac{h}{q-1}, \beta\right)g_1\left(0, -\beta\right) = g_1\left(\frac{h}{q-1}, 0\right)
\]
so all non-singular parameters in the above matrices can be set to zero. Moreover the
R-matrices $R(g_1)$ and $R(g_2)$ which are obtained by formula (3) using $g_1\left(\frac{h}{q-1},0\right)$ and
g_2\left(\frac{h}{q-1},0,0\right)$ respectively, are equivalent, because:

$$\left(s \otimes s\right)^{-1} R(g_2)(s \otimes s) = R(g_1).$$

where $s = e_{13} + e_{21} + e_{32}$. So, there are only two independent cases. The R-matrices
corresponding to these transformations are non-singular and have been first obtained by
Hietarinta [9]. The first case (the trivial case) is $\beta = 0$ in g_1 (or $\alpha = \beta = 0$ in g_2) and
the second case is $\alpha = \gamma = 0$ in g_3. The h-deformed quantum plane and its dual and
R-matrices corresponding to these cases are:

First case

$$[x_1, x_2] = hx_2^2, \quad \eta_3^2 = \eta_2^2 = \{\eta_1, \eta_2\} = 0,$$

$$[x_1, x_3] = 0, \quad \{\eta_2, \eta_3\} = \{\eta_1, \eta_3\} = 0,$$

$$[x_2, x_3] = 0, \quad \eta_1^2 = -h \eta_2 \eta_1. \quad (11)$$

and the non-zero elements of R-matrix except for $R_{ijij} = 1$ are:

$$R_{1121} = R_{2122} = -R_{1112} = -R_{1222} = h,$$

$$R_{1122} = h^2. \quad (12)$$

Second case

$$[x_1, x_2] = 2hx_3x_2, \quad \{\eta_1, \eta_2\} = -2h \eta_3 \eta_2,$$

$$[x_1, x_3] = hx_3^2, \quad \eta_1^2 = -h \eta_3 \eta_1,$$

$$[x_2, x_3] = 0, \quad \eta_3^2 = \eta_2^2 = \{\eta_1, \eta_3\} = \{\eta_2, \eta_3\} = 0. \quad (13)$$

and the non-zero elements of R-matrix except for $R_{ijij} = 1$ are:

$$R_{1113} = R_{1333} = -h, \quad R_{1131} = R_{3133} = h,$$

$$R_{2132} = -R_{1223} = 2h \quad R_{1133} = h^2. \quad (14)$$
A linear transformation on the plane induces a similarity transformation on the quantum matrices acting upon it.

\[M' = gMg^{-1}, \]

(15)

The algebra of functions, \(GL_q(3) \), is obtained from the following relations:

\[R'M'_1M'_2 = M'_2M'_1R'. \]

(16)

Applying transformation (15) one easily obtains for the case of \(q = 1 \).

\[RM_1M_2 = M_2M_1R. \]

(17)

So the entries of the transformed quantum matrix \(M \) fulfill the commutation relations of the \(GL_h(3) \), for both \(g \)'s. It is easy to show that the \(h \)-deformed determinant is central, so it can be set to 1. A quantum group’s differential structure is completely determined by \(R \)-matrix [10]. One therefore expects that by these similarity transformations the differential structure of the \(h \)-deformation be obtained from that of the \(q \)-deformation.

\[
\begin{align*}
M_2dM_1 - R_{12}dM_1M_2R_{21} &= 0, \\
dM_2dM_1 + R_{12}dM_1dM_2R_{21} &= 0.
\end{align*}
\]

(18)

Now, it is obvious that, defining \(dM := g^{-1}dMg \) and using the above relations the differential of \(GL_h(3) \) can be easily obtained from the corresponding differential structure of \(GL_q(3) \).

For the higher dimensions, there are several generalizations which depend on the position of singularity in \(g \). For example we consider the following generalization:

\[g = \sum_{i=1}^{N} e_{ii} + \frac{h}{q-1} e_{1N} \]

(19)

The general aspect of the contraction for arbitrary \(N \) can be obtained from this simple map. By inserting this map in (3) we will obtain the general form of the \(h \)-deformed \(R \)-matrix, which solves the quantum Yang-Baxter equation.

1- The series \(A_{n-1} \)
After applying this singular map, the corresponding h-deformed R-matrix will become:

\[
R_h = \sum_{i,j=1}^{N} e_{ii} \otimes e_{jj} + 2h \sum_{i>1} (e_{ii} \otimes e_{iN} - e_{iN} \otimes e_{ii})
- h(e_{1N} \otimes e_{NN} - e_{NN} \otimes e_{1N}) - h(e_{11} \otimes e_{1N} - e_{1N} \otimes e_{11})
+ h^2(e_{1N} \otimes e_{1N}).
\] (20)

Consider N-dimensional q-deformed quantum space

\[
x_i'x_j' = qx_j'x_i', \quad i < j.
\] (21)

Assume the following linear singular transformation

\[
x_i' = g_{ij}x_j.
\] (22)

By the above transformation and in the $q = 1$ case we obtain the h-deformed quantum plane as follows:

\[
x_ix_j = x_jx_i, \quad 1 < i < j \leq N,
\]

\[
[x_1, x_j] = 2hx_Nx_j, \quad [x_1, x_N] = h(x_N)^2.
\] (23)

2- The series B_n, C_n and D_n

The corresponding q-deformed R-matrix has order $N^2 \times N^2$, where $N = 2n + 1$ for B_n and $N = 2n$ for D_n and C_n and it is given by [11]:

\[
R_q = \sum_{i \neq i'}^N e_{ii} \otimes e_{ii} + e_{N+1,i+1} \otimes e_{N+1,i+1} + \sum_{i \neq j,j'} e_{ii} \otimes e_{jj}
+ q^{-1} \sum_{i \neq i'} e_{i'i'} \otimes e_{ii} + (q - q^{-1}) \sum_{i>j} e_{ij} \otimes e_{ji}
- (q - q^{-1}) \sum_{i>j} q^{\rho_i - \rho_j} e_{ij} e_{ij} \otimes e_{i'i'}.
\] (24)

The second term is present only for the series B_n. Here $i' = N+1-i, j' = N+1-j, \epsilon_i = 1, i = 1, ..., N$ for the series B_n and D_n, $\epsilon_i = 1, i = 1, ..., N, \frac{N}{2}$, $\epsilon_i = -1, i = \frac{N}{2} + 1, ..., N$ for the series C_n and $(\rho_1, ..., \rho_N)$ is:

\[
(n-n+1, \frac{1}{2}, 0, \frac{1}{2}, ..., -n + \frac{1}{2}) \quad \text{for } B_n
\]

\[
(n, n-1, ..., 1, -1, ..., -n) \quad \text{for } C_n
\]

\[
(n-1, ..., 1, 0, 0, -1, ..., -n+1) \quad \text{for } D_n
\] (25)
By inserting this R-matrix in (3), the coefficient of $e_{1N} \otimes e_{1N}$ will become:

$$\frac{h^2}{q-1}(q^{-1} + 1)(1 + \epsilon_N q^{2N-\rho_1}).$$ \hspace{1cm} (26)

This expression is non-singular only when $\epsilon_N = -1$ and for $q = 1$ it is equal to $2Nh^2$. We thus see that only the C_n series remains non-singular. The corresponding h-deformed R-matrix is:

\[
R_h = \sum_{i,j=1}^{N} e_{ii} \otimes e_{jj} + 2Nh^2 e_{1N} \otimes e_{1N}
- \frac{2h}{N} \sum_{i=2}^{N-1} e_{1i} \otimes e_{iN} + \epsilon_i e_{iN} \otimes e_{i'N}
+ \frac{2h}{N} \sum_{i=1}^{N-1} e_{iN} \otimes e_{1i} - \epsilon_i e_{i1} \otimes e_{1i'}.
\] \hspace{1cm} (27)

So by this method we can obtain $SP_h(2n)$. The algebra $SP_q^{2n}(c)$ with generators x'_1, \ldots, x'_N and relations

\[
R'_q(x' \otimes x') = qx' \otimes x',
\] \hspace{1cm} (28)

is called the algebra of functions on quantum $2n$-dimensional symplectic space. After applying the singular transformation (19) to (28) we obtain the relations between the generators of $SP_h^{2n}(c)$:

\[
x_i x_j = x_j x_i, \quad 1 < i < j \leq N, \quad j \neq j',
\] \hspace{1cm} (29)

\[
x_1 x_j = x_j x_1 + 2hx_N x_j, \quad j \neq N,
x_{i'} x_i = x_{i'} x_i + 2h\epsilon_{i'} x_N^2, \quad 1 < i < i' \leq N.
\] \hspace{1cm} (30)

In $SP_q^{2n}(c)$ the equality $x''C'x' = 0$ holds. By applying the singular map (29), C' transforms to $C = g^t C' g$, where C is given by:

\[
C = \sum_{i=1}^{N} \epsilon_i e_{ii} - Nh\epsilon_{NN}.
\] \hspace{1cm} (31)

The Quantum group $SP_q(2n)$ acts on $SP_q^{2n}(c)$ and preserves $x''C''x' = 0$, so we have:

\[
M''C''M' = C',
\] \hspace{1cm} (32)

7
on the other hand:

\[M = g M' g^{-1}, \quad M' = (g^{-1})^t M^t g^t. \tag{33} \]

It follows that:

\[M^t C M = C, \tag{34} \]

So we conclude that the quantum group \(SP_h(2n) \) acts on \(SP_h^{2n}(c) \) and preserves \(x^t C x = 0 \). It is interesting to note that the expression \(x'^t C' x' \), which should be equal to 1 for \(SO(2n) \) and \(SO(2n+1) \) (\(B_n \) and \(D_n \) series), is singular. So we cannot obtain the \(h \)-deformation of \(B_n \) and \(D_n \) series by contraction of the \(q \)-deformation, at least by this form (upper triangular matrix) of singular transformation (\(g \)).

One of the interesting problems is to construct \(U_h(gl(3)) \), and its generalization to higher dimensions.

Acknowledgments

I would like to thank A. Aghamohammadi for drawing my attention to this problem, and V. Karimipour, A. Shariati, and M. Khorami for valuable discussions. I would also like to thank referee for his(her) useful comments, specially for the discussion on classifying the non-equivalent singular transformation.

References

1. H. Ewen, O. Ogievetsky and J. Wess, Lett. Math. Phy. 22,297 (1991)
2. E. Domidov, Yu. I. Manin, E. E. Mukhin and D. V. Zhdanovich, Prog. Theor. Phys. Suppl. 102, 203 (1990)
3. S. Zakrzewski, Lett. Math. Phys. 22, 287 (1991)
4. Ch. Ohn, Lett. Math. Phy. 25, 891 (1992)
5. V. Karimipour, Lett. Math. Phys. 30, 87 (1994)
6. B. A. Kupershmidt, J. Phys. A 25, L123 (1992)
7. A. Aghamohammadi, Mod. Phy. Lett. A 8 (1993)
8. A. Aghamohammadi, M. Khorrami and A. Shariati, J. Phys. A. 28, L225 (1995)
9. J. Hietarinta, J. Phy. A. 26, 7077 (1993)
10. A. Sudbery, Phys. Lett. B 284, 61 (1992)
11. N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, Len. Math. J. vol. 1 No. 1 (1990)