The importance of tropical edible fruit plants for tribal communities in East Aceh region, Indonesia

Z I Navia1*, A B Suwardi2 and Nuraini2
1 Department of Biology, Faculty of Engineering, Samudra University, Langsa, Aceh Province, Indonesia, 24416
2 Department of Biology Education, Faculty of Training and Education, Samudra University, Langsa, Aceh Province, Indonesia, 24416.

Corresponding author: navia1529@gmail.com

Abstract. The study investigated the diversity and use of tropical edible fruits consumed by tribal communities in East Aceh, Indonesia. The plant materials were randomly collected from four villages in two subdistricts, while local knowledge was gathered through a survey and in-depth interviews. Data were collected by surveying 80 people, 20 from each of four study areas, simple random sampling selected for this study. A total of 32 tropical edible fruit plant species were found in the study area. The fruits are rich in macro and micro-nutrients. Besides being a source of food, they can also be used as remedies for various diseases. This plant has the potential to be used as a commercial crop to increase food shortages, tribal economy, and to regenerate degraded lands. In addition, this study could contribute to educating the younger generation on the importance of tropical edible fruit plants.

1. Introduction

More than 700 edible fruits are known to grow in the humid tropics and therefore more than 100 of them have been cultivated by local people. These species are both native and introduced. Approximately 30 tropical fruits have a high economic value and are the best fruits that are commercially marketed throughout the world. Tropical fruits play a significant role in the lives of rural communities in developing countries [1–5] as a source of nutrition [6–11], medicine [12, 13] and household income [9, 14]. In addition, tropical fruits are also major sources of traditional beverages, food recipes, oil, medicines, spices, condiment, rituals, feed, firewood, construction, and ritual materials for rural people [5, 9, 15–18].

The home garden is commonly viewed as a land-use system involving the intentional management of multipurpose trees and shrubs [19] and rich in biodiversity, including wild and cultivated plants [20, 21]. In many aspects, including the economy, ecology, and culture, this area plays an important role in rural communities [11, 22–24]. The plants in the home garden provide a source for a wide variety of food, medicinal, and ceremonial materials. Furthermore, the home garden has an ecological function to store water, prevent erosion [23, 25], protect biodiversity [26, 27], and carbon storage [27].

The rural communities in the East Aceh region contain large home gardens, planted with various vegetables, fruits, and tubers. Vegetables and tubers rich in fiber, nutrition, and bioactive components are very crucial for the sustainability of human wellbeing [12, 28]. Fruit plants, however, are rich in nutrients to ensure food quality and diversity and can also provide household incomes [2–6, 16, 29,
This study aimed to assess the contribution of the tropical edible fruit plants for tribal communities in the East Aceh Region, Indonesia.

2. Materials and methods

The study was conducted from January to April 2021 in two subdistricts namely Madat (5°06′32.7″N 97°30′54.8″E) and Peunaron (4°34′20.6″N 97°39′48.8″E). These study areas have climatic conditions generally lowland, hilly, partly swampy, and partly mangrove forests, with an altitude of 0-308 m above sea level, and the average daily temperature of the area is 29°C [31].

2.1. Data collection

A field survey was conducted in two subdistricts, namely Peunaron (Arul Pinang and Peunaron Baru village) and Madat (Madat and Paya Deumam Peut village), East Aceh District. East Aceh District is generally lowland, hilly, partly swampy, and partly mangrove forests, with an altitude of 0-308 m above sea level. A total of 80 respondents (20 individuals from each village) were randomly sampled. The interview was conducted face to face in the Indonesian language and each interview lasted between 15 and 50 minutes. The interview uses a questionnaire composed of several sections, including plant species, vernacular names, number of individuals, habits, and use.

The samples of plants were collected in the home garden along with reporting their vernacular names, the number of species, and use. The identification of plant species is carried out at the Biology Laboratory Samudra University, Aceh, Indonesia. The botanical names have been updated using The Plant List (www.theplantlist.org), and Plants of the World online (http://www.plantsoftheworldonline.org).

2.2. Data analysis

2.2.1. Frequency index. To compare the relative importance of each plant species, the frequency index was calculated. According to [32], the frequency index is a numerical expression of the percentage frequency of citation for a single plant species by informants. The following formula was used to calculate the frequency index [33]:

\[FI = \frac{FC}{N} \times 100 \]

where FC is the number of informants who mentioned the use of the plant species, and N is the total number of informants in each area. The frequency index was high when many informants mentioned a particular plant and low when there were few reports.

2.2.2. Diversity index. Fruit plant species diversity in the study area was determined using the Shannon-Wiener index (H') calculated using the following formula [34].

\[H' = -\sum_{i=1}^{s} (P_i) \ln (P_i) \]

where \(H' \) = Shannon-Wiener Diversity Index, \(s \) = number of species \(P_i \) = the proportion of individuals or abundance of the \(i \) species expressed as the proportion of the total abundance \(\ln \) = natural logarithm of \(P_i \).

3. Results and discussion

3.1. Floristic composition of fruit plant species

A total of 32 fruit plant species represented by 23 genera and 19 families were recorded at the four villages (Table 1). The highest number of fruit plant species is with 26 species in Arul Pinang Village, followed by 23 species in Paya Deumam Peut, and 20 species in Madat and Peunaron Baru. The number of species found in this study is greater than that found in Langsa City, Aceh [35], and North Sumatra, Indonesia [36] with as many as 30 species, 18 species in the Burie District, Ethiopia [30], 15 species in Ciputat Subdistrict, Tangerang, Indonesia [37], 13 species in Southwestern Ethiopia [38],
and 4 species in the Bulen District, Northwestern Ethiopia [39] fruit plant species growing in the home garden. However, the number of fruit plant species found in this study is smaller than those found in Tenggulun Subdistrict, Indonesia as many as 39 species [11], 57 species in Jabon Mekar Village, Bogor District, Indonesia [40], 40 species in Hintalo Wejerat District [41], and in Kerala, India, i.e. 86 species [42]. This difference in fruit plant diversity species was influenced by the scale of the home garden and local culture within the study area [9, 10, 43]. The marked link between home garden scale and abundance of species have been observed in Prasetyo in Indonesia [40], Das and Das in India [44], and Sunwar in Nepal [45].

Table 1. Species, genus, and family of fruit plant species in the study area

Botanical name	Family	Vernacular name	Plant type	Economic value	Location	Total
Anacardium occidentale L.	Anacardiaceae	Jambu mete	Tree	consumption	AP, PD, M	4
Ananas comosus (L.) Merr.	Bromeliaceae	Nanas	Herb	consumption	AP	3
Annona muricata L.	Annonaceae	Sirsak	Tree	consumption	PD	29
Annona squamosa L.	Annonaceae	Srikaya	Tree	consumption	AP, PB, PD	3
Artocarpus heterophyllus Lamk.	Moraceae	Nangka	Tree	consumption	AP, PB, PD, M	5
Averrhoa bilimbi L.	Oxalidaceae	Belimbing wuluh	Tree	consumption & sell	AP, PB, PD, M	6
Averrhoa carambola L.	Oxalidaceae	Belimbing besar	Tree	consumption	AP, PD, M	1
Carica papaya L.	Caricaceae	Pepaya	Herb	consumption	AP, PB, PD	7
Citrus aurantifolia (Christm.&Panzer) Swingle	Rutaceae	Jeruk Nipis	Tree	consumption & sell	AP, PB, PD	2
Citrus hystrix DC.	Rutaceae	Jeruk purut	Tree	consumption	PB, PD	1
Citrus limon (L.) Burm.f.	Rutaceae	Jeruk lemon	Tree	consumption	AP, PB, PD, M	3
Citrus maxima (Burm.) Merr.	Rutaceae	Jeruk bali	Tree	consumption & sell	PD, M	2
Cocos nucifera L.	Areceae	Kelapa	Tree	consumption	AP, PB, M	1
Durio zibethinus Murr.	Malvaceae	Durian	Tree	consumption	AP, PB	4
Garcinia mangostana L.	Clusiaceae	Manggis	Tree	consumption	AP	7
Lansium domesticum Corr.	Meliaceae	Duku	Tree	consumption	AP	5
Litchi chinensis Sonn.	Sapindaceae	Kelengkeng	Tree	consumption	AP, PB, PD, M	13
Mangifera foetida Lour	Anacardiaceae	Mancang	Tree	consumption	AP	16
Mangifera indica L.	Anacardiaceae	Mangga	Tree	consumption	AP, PB, PD, M	4
Manilkara kauki (L.) Dubard	Sapotaceae	Sawo	Tree	consumption	AP, PD, M	8
Muntingia calabura L.	Muntingiaceae	Ceri	Tree	consumption	AP, PB, M	4
Musa acuminata Colla	Musaceae	Pisang ayam	Herb	consumption	AP, PB, PD, M	10
Musa x paradisiaca L.	Musaceae	Pisang kepok	Herb	consumption	AP, PB, PD, M	3
Nephelium lappaceum L.	Sapindaceae	Rambutan	Tree	consumption	PB, PD, M	9
Passiflora edulis Sims	Passifloraceae	Markisa	Climber	consumption	AP, PD, M	4
Psidium guajava L.	Myrtaceae	Jambu biji	Tree	consumption	AP, PB, PD	5
Punica granatum L.	Lythraceae	Delima	Tree	consumption	AP, PB, PD	4
Sandoricum koetjape (Burm.f.) Merr.	Meliaceae	Boh Situi	Tree	consumption	AP, PD, M	7
Syzygium aqueum (Burm.f.) Alston	Myrtaceae	Jambu air	Tree	consumption	PB, PD, M	16
Syzygium malaccense (L.) Merr. & L.M.Perry	Myrtaceae	Jambu bol mirah	Tree	consumption	AP, PB, M	3
Syzygium samarangense (Blume) Merr. & L.M. Perry	Myrtaceae	Jambu mirah	Tree	consumption	AP, PB, PD, M	5
Tamarindus indica L.	Fabaceae	Asam	Tree	consumption	PB	5

Total (ind) 199
3.2. Frequency of fruit tree species

Fruit plants grown in gardens typically differ widely depending on needs. The fruit plants which were found most frequently were 16 productive fruit plant species (Figure 1). There were 4 species of fruit plants most frequently observed in all research areas, namely *M. Indica*, *M. acuminata*, *M. paradisiaca*, *A. bilimbii*, and *A. heterophyllus*. Some fruit plant species, including the *M. Fœtida*, *L. domesticum*, and *G. Mangostana* are present only in the village of Alur Pinang. *Tamarindus indica* is only found in Peunaron Baru village, and *C. maxima* most commonly found in the village Paya Deumam Peut.

![Figure 1](image)

Figure 1. The frequency of each species in the study area. a. Arung Pinang village; b. Peunaron Baru village; c. Madat village; d. Paya Deumam Peut village

Based on the frequency value reported at the research site, it shows that *M. indica* has the highest quotation frequency value of 80-90% at all locations. Followed by *M. acuminata* at 70%, *M. paradisiaca* and *A. bilimbii* at 40% at the Alur Pinang village, while in Peunaron Baru *M. acuminata* and *C. Aurantifolia* at 70%, at the Madat village *M. acuminata* at 90% and *M. paradisiaca* at 70%, and in the Paya Deumam Peut village *C. maxima* at 90% and *M. paradisiaca* at 80%. *M. indica* and *M. acuminata* were the species of fruit plants most frequently recorded in the home garden. The most favorite in home gardens is fruit plants and vegetables that provide a source of food [46]. The study findings are the same as Navia et al [9] and Elfirida et al [11], as these plant species are widely grown
by rural communities in home plantations. Garden fruit plants have many advantages, including as a shade tree, ornamental plants, a source of nutrition for the family, and have a social role as they can share with the local community once harvested [8, 37].

3.3. Fruit plant species diversity
In Paya Deumam Peut, the highest diversity of fruit was in comparison with the other three locations (3.53) (Table 2). Based on the Shannon Diversity Index, plants in home gardens in all villages have H’ values between 2.37 and 3.53, respectively. It shows the index of the diversity of fruit plant species of the area was graded as medium to high [34]. However, Priyanti and Fauziah [37] reported another finding that the fruit diversity was low to medium in the home garden in Ciputat Subdistrict, Tangerang, Indonesia.

Table 2. The Shannon diversity and evenness indexes of four villages in the study area

Village	Richness	Shannon (H’)
Alur Pinang	48	3.13
Peunaron Baru	38	2.47
Madat	40	2.37
Paya Deumam Peut	73	3.53

3.4. Contribution of fruit plant species to livelihood for households
Fruit plants cultivated in community gardens are typically annuals and perennials. People grow these fruit plants for their consumption in order to meet household nutritional needs, this is in line with reported in Langsa City, Indonesia [35], Tenggulun Subdistrict, Aceh Tamiang District, Indonesia [11], and Burie District, Ethiopia [30], where fruit plant species were mainly used on their own in the home gardens. Fruit plants are rich sources of nutrition for the maintenance of human health, food quality, and food diversity [3, 5, 8, 13, 16]. Many rural communities have reported income from the traditional market sale of various fruits [9–11, 14]. These fruits in addition to being used as food, fruit plant species are also used as medicine (9 species), spices and condiment (5 species), firewood (5 species), fodder (3 species), and the household item (3 species) (Table 3).

Table 3. Other uses of the fruit plant species in the study area

Use	Species
Medicine	Ananas comosus, Annona muricata, Averrhoa bilimbi, Carica papaya,
	Citrus aurantifolia, Citrus limon, Garcinia mangostana, Psidium guajava,
	Tamarindus indica
Spices and condiment	Averrhoa bilimbi, Citrus aurantifolia, Citrus hystrix, Cocos nucifera,
	Tamarindus indica
Fodder	Musa acuminata, Musa x paradisiaca, Artocarpus heterophyllus
Firewood	Artocarpus heterophyllus, Durio zibethinus, Lansium domesticum,
	Nephelium lappaceum, Syzygium aqueum
Household items	Durio zibethinus, Lansium domesticum, Nephelium lappaceum

Traditionally, as many as 48 % of respondents used several species as medicine, for example, A. comosus as treatment of digestive problem and A. bilimbi et C. aurantifolia to treat cough. The fruit of A. comosus has potential as an antibacterial agent such as Staphylococcus aureus [47], while A. bilimbi has bioactive compounds such as saponins [48, 49] are considered to have antitussive and expectorant effects in order to efficiently treat cough [50, 51]. C. aurantifolia has essential oil content with potential as antiviral agents [52]. The community uses several species as animal feed (20 %), such as A. heterophyllus, M. paradisiaca, M. acuminata, their leaves are used as feed for goats. This is confirmed by the high content of starch and energy that the livestock can metabolize to make digestion easier [53]. Firewood is the primary energy source in the study region for 71 % of respondents. Local
communities collect firewood from the home garden for cooks. They also gathering wood for various household devices and utensils such as tables, chairs, beds, doors, or windows. *D. zibethinus* is the most commonly used multipurpose by local people compatible with Elfrida et al [11] reported in the Aceh Tamiang district.

The findings of this study show the importance of fruit plants' role in supporting household livelihoods in different ways, including food supplies, medicines, animal feed, firewood, and household goods. Due to the high production and diversity of edible cultivated species, home gardens can also make a significant contribution to the food supply, tribal economy, and to regenerate degraded lands, especially for rural communities [54]. In addition, in this report, the considerable potential for enhancing food security and providing a contribution to household income needs to be supported by proper home garden management. Furthermore, the integration of scientific management into indigenous knowledge in East Aceh District can promote rural agriculture.

4. Conclusion
A total of 32 tropical edible fruit plant species were found in the study area. The fruits are rich in macro and micro-nutrients. Besides being a source of food, they can also be used as remedies for various diseases. This plant has the potential to be used as a commercial crop to increase food shortages, tribal economy, and to regenerate degraded lands. In addition, this study could contribute to educating the younger generation on the importance of tropical edible fruit plants.

Acknowledgements
We are grateful to all people in the studied villages for their kind hospitality and share of knowledge. We are also grateful that the University of Samudra, Aceh, Indonesia has supported this study.

References
[1] Saka J D K and Msonthi J D 1994 *Forest Ecology and Management* **64** 245–8
[2] Mwema C M, Mutai B K, Lagat J K, Kibet L K and Maina M C 2012 *Curr. Res. J. Soc. Sci.* **4** 425–30
[3] Mabaya E, Jackson J, Ruethling G, Carter C M and Castle J 2014 *Intl. Food Agribus. Man.* **17** 69–74
[4] Khruoomo N and Deb C R 2018 *J. Exp. Biol. Agric. Sci.* **6** 405–13
[5] Suwardi A B, Navia Z I, Harmawan T, Nuraini, Syamsuardi and Mukhtar E 2020 *IOP Conf. Ser. Mater. Sci. Eng.* **725** 012064
[6] Navia Z I and Chikmwati T 2015 *Bangladesh J. Bot.* **44** 429–36
[7] Biswas P, Bhattacharya T, Chanda A and Das S 2018 *Int. J. of Recent Sci. Res.* **9** 24158–65
[8] Navia Z I, Suwardi A B and Saputri A 2019 *Bul. Plasma Nutfah* **25** 133–42
[9] Navia Z I, Suwardi A B, Harmawan T, Syamsuardi and Mukhtar E *J. Agric. Rural Dev. Tropics Subtropics* **121** 89–98
[10] Suwardi A B, Navia Z I, Harmawan T, Syamsuardi and Mukhtar E 2020 *BIODIVERSITAS* **21** 1850–60
[11] Elfrida, Mubarak A and Suwardi A B 2020 *BIODIVERSITAS* **21** 3670–5
[12] Suwardi A B, Indriaty and Navia Z I 2018 *Innovare. J. Food Sci.* **6** 9–12
[13] Suwardi A B, Navia Z I, Harmawan T, Syamsuardi and Mukhtar E 2019 *Advances in Ecological and Environmental Research* **4** 79–85
[14] Suwardi A B, Navia Z I, Harmawan T, Syamsuardi and Mukhtar E 2020 *Ethnobot. Res. Appl.* **20** 1–13
[15] Maghembe J A, Simons A J, Kwaresi F and Rarieya M 1998 *Selecting indigenous trees for domestication in southern Africa: priority setting with farmers in Malawi, Tanzania, Zambia and Zimbabwe* (Nairobi: ICRF Nairobi Kenya)
[16] Suwardi A B, Navia Z I, Harmawan T, Syamsuardi and Mukhtar E 2019 *J. Med Plants* **7** 285–90
[17] Navia Z I, Audira D, Afifah N, Turnip K, Nuraini and Suwardi A B 2020 BIODIVERSITAS 21 4467–73
[18] Sutrisno I H, Akob B, Navia Z I, Nuraini and Suwardi A B 2020 BIODIVERSITAS 21 4990–8
[19] Kumar B M 2006 Carbon sequestration potential of tropical homegardens Tropical Homegardens: A Time-Tested Example of Sustainable Agroforestry ed Kumar B M and Nair P K R (Netherlands: Springer) pp 185–204
[20] Kumar B M and Nair P K R 2004 Agrofor. Syst. 61 135–52
[21] Moreno-Calles A, Casas A, Blancas J, Caballero J, Garcia-Barrios L, Perez-Negron E and Ragel-Landa S 2010 Agrofor. Syst. 80 315–31
[22] Mendoza V E, Lok R and Somarriba E 2001 Agrofor. Syst. 51 85–96
[23] Senanayake R L, Sangakkara U R, Pushpakumara D K N G and Stamp P 2009 Trop. Agric. Res. 21 1–9
[24] Van Heezik Y M, Dickinson K J M, Freeman C and Porter S 2014 Ecol. Soc. 19 17
[25] Larios C, Casas A, Vallejo M, Moreno-Calles A I and Blancas J 2013 J. Ethnobiol Ethnomed. 9 1–16
[26] Kehlenbeck K and Maass B L 2004 Agrofor. Syst. 63 53–62
[27] Kaswanto and Nakagoshi N 2012 Hibikia 16 161–71
[28] Kusharto C M 2006 Jurnal Gizi dan Pangan 1 45–54
[29] Bvenura C and Sivakumar D 2007 Food Res. Intl. 99 15–30
[30] Abebe A, Kiros H and Sorecha E M 2019 Turkish J. Agriculture-Food Science and Technology 7 946–54
[31] The Central Bureau of Statistics of East Aceh Region 2020 East Aceh Regency in figure 2020 (East Aceh: The Central Bureau of Statistics of East Aceh Region)
[32] Mahwasane S T, Middleton L and Boaduo N 2013 South African Journal of Botany 88 69–75
[33] Madikizela B, Ndhlala A R, Finnie J F and van Staden J 2012 Journal of Ethnopharmacology 141 61–71
[34] Barbour G M, Burk J K and Pitts W D 1987 Terrestrial Plant Ecology (USA: The Benyamin/Cummings Publishing)
[35] Navia Z I, Suwardi A B and Saputri A 2017 Pros. SEMNAS BIOETI KE-4 & KONGRES PTTI KE-12 (Padang: Jurusan Biologi FMIPA Universitas Andalas) p 774–82
[36] Silalahi S and Nisyawati BIODIVERSITAS 19 229–38
[37] Priyanti and Fauziah R 2016 Jurnal Riau Biologica 1 140–8
[38] Mathewos M, Hundera K and Biber-Freudenberger L 2018 Agriculture 8 190
[39] Beyene M, Mohammed M and Nigatu L 2018 Agric. For Fish 7 121–32
[40] Prasetyo B 2007 BIODIVERSITAS 8 43–7
[41] Tsegazeabe H, Haileleslasie M, Mekonen T, Ghiwot G, Gebremichael E and Solomon A 2012 Asian J. Agric. Sci. 4 110–6
[42] George M V and Christopher G 2019 Agroforest Syst. 94 297–307
[43] Arora R K and Anjula P 1996 Wild edible plants of India: diversity conservation and use (New Delhi: ICAR)
[44] Das T and Das A K Curr. Sci. 89 155–163
[45] Sunwar S, Thornstrom C G, Subdeb A and Bystrom M 2006 Biodivers Conserv. 15 4211–38
[46] Tefera M, Mirutse G and Ensermu K 2015 J. Ethnobiol. Ethnomed. 11 64
[47] Loon Y K, Satari M H and Dew W 2018 Padjadjaran Journal of Dentistry 30 1–6
[48] Wahab N H B A, Effendy M, Mariam, Zuraida W and Aqilah S 2009 J. Pharmacogn. 1 64–6
[49] Kumar A S, Kavimani S and Jayaveera K N 2011 Intl. J. Phytopharmacol 2 53–60
[50] Roy A, Geetha R V and Lakshmi T 2011 Intl. J. Drug Dev. Res. 3 101–6
[51] Hasim, Arifin Y Y, Andrianto D and Faridah D N 2019 Jurnal Aplikasi Teknologi Pangan 8 86–93
[52] Astani A and Schnitzler P 2014 Iran J. Microbiol. 6 149–55
[53] Amalina I F, Haziq M J, Syukor A R A, Rashid A H M and Izzati K A N 2020 IOP Conf. Ser.
Mater. Sci. Eng. 736 022016

[54] Tynsong H B and Tiwari K 2010 J. Biodivers. 1 1–11