Multiple virulence factors regulated by AlgU contribute to the pathogenicity of Pseudomonas savastanoi pv. glycinea in soybean

Viet Tru Nguyen1,2,* , Nanami Sakata2,* , Giyu Usuki2, Takako Ishiga2, Yoshiteru Hashimoto2,3 and Yasuhiro Ishiga2

1 Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Daklak, Vietnam
2 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
3 Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan

ABSTRACT

Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.

Subjects Agricultural Science, Microbiology, Molecular Biology, Plant Science

Keywords AlgU, Pseudomonas savastanoi pv. glycinea, Pathogenicity, Soybean, Coronatine, Extracellular polysaccharide

INTRODUCTION

Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. The disease is characterized by circular necrotic lesions on leaves surrounded by a chlorotic halo (Ignjatov et al., 2007). In P. syringae, P. cannabina, and P. savastanoi, the phytotoxin Coronatine (COR) is important in inducing chlorosis, and contributes to bacterial growth and lesion formation (Bender et al., 1987; Budde & Ullrich, 2000; Peñaloza-Vázquez et al., 2000; Uppalapati et al., 2005; Qi et al., 2011; Sakata et al., 2021). In Psg PG4180,
COR synthesis genes reside on a 90 kb plasmid designated p4180A (Bender, Young & Mitchell, 1991), with a 32 kb COR gene cluster which consists of two distinct regions encoding coronafacic acid (CFA) and coronamic acid (CMA) (Bender, 1999). Psg produces COR not only for the biological fitness of pathogens in planta (Ullrich et al., 1993) but also in vitro (Hoitink & Sinden, 1970; Palmer & Bender, 1993). Many studies showed the roles of COR in chlorosis, promoting lesion formation, and suspension of both stomatal and salicylic acid (SA)-dependent defenses (Peñaloza-Vázquez et al., 2000; Kloek et al., 2001; Zhao et al., 2003; Brooks, Bender & Kunkel, 2005; Melotto et al., 2006; Uppalapati et al., 2007). COR contributes to P. syringae pv. tomato (Pst) DC3000 virulence by suppressing the host defense response (Uppalapati et al., 2007). COR suppresses pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), especially stomatal-based defense in the early Pst DC3000 infection stage in Arabidopsis thaliana and tomato (Melotto et al., 2006; Ishiga et al., 2018).

Besides COR, the type three secretion system (T3SS) also plays a critical role in P. syringae virulence. The T3SS, is encoded by the hrc (hypersensitive response and pathogenicity) cluster, and transfers type three effectors (T3Es) into plant cells to suppress PTI, contribute to pathogenesis, and enhance disease symptoms and bacterial multiplication (Brooks, Bender & Kunkel, 2005; Lam et al., 2014). Furthermore, Psg also produces pectolytic enzymes which allow the pathogen to invade and multiply in the intercellular spaces of host tissues. This is the physiological capability of Psg in using plant polysaccharides and providing flexibility for its pathogen activity (Haefelet & Lindow, 1987).

AlgU, an extracytoplasmic function (ECF) sigma factor, is also important in supporting P. syringae growth and disease development (Markel et al., 2016). AlgU regulates between 800 to 1,000 genes (Yu et al., 2014), and importantly contributes to virulence gene regulation as well as flagellin repression (Schreiber & Desveaux, 2011; Markel et al., 2016; Bao et al., 2020). Pst DC3000 AlgU is not only able to regulate gene expression associated with T3SEs and the phytotoxin COR, but also alginate biosynthesis (Ishiga et al., 2018). Moreover, AlgU (previously called AlgT) also induces transcription of the algT-mucAB gene cluster and the algD operon, which are responsible for alginate biosynthesis in Psg PG4180 (Schenk et al., 2006). Although AlgU has been extensively studied in several P. syringae pathovars, its roles in Psg pathogenicity have not been elucidated yet.

To identify genes related to P. syringae pathogenicity, researchers carried out a screen for P. syringae mutants with reduced virulence. Pst DC3000 Tn5 mutants with reduced virulence on A. thaliana found the crucial functions of COR in virulence (Brooks et al., 2004). Sakata et al. (2019) also screened for P. cannabina pv. alisalensis (Pcal) KB211 Tn5 mutants with reduced virulence on cabbage plants using a dip-inoculation method, and identified multiple virulence factors including the T3SS, membrane transporters, transcription factors, and amino acid metabolism genes. Thus, it is tempting to speculate that each P. syringae pathovar has developed its own virulence factors. However, a screening study to identify Psg virulence factors has not been conducted previously.
To investigate \(Psg \) virulence factors, we constructed a bacterial mutant library based on transposon insertion in \(Psg \), and screened for mutants with less or no chlorosis on soybean leaves after syringe-inoculation. We successfully identified several virulence factors including COR, T3Es, and AlgU. Expression profiles revealed that AlgU promotes virulence in host plants by up-regulation of COR-related gene expression. We also showed that \(algU \) mutant showed reduced COR production and biofilm formation compared to WT. Our results provide evidence that AlgU plays a critical role in promoting \(Psg \) pathogenesis.

MATERIALS & METHODS

Bacterial strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are listed in [Table 1](#). *Pseudomonas* strains were routinely cultured on King’s B (KB; *King, Ward & Raney, 1954*) medium or mannitol-glutamate (MG; *Keane, Kerr & New, 1970*) medium at 28 °C. *Escherichia coli* (*E. coli*) cultures were grown on Luria-Bertani (LB; *Sambrook, Fritsch & Maniatis, 1989*) medium at 37 °C. The bacterial cell densities at 600 nm (OD\(_{600}\)) were measured using a Biowave CO8000 Cell Density Meter (Funakoshi, Tokyo, Japan) as described in *Sakata et al. (2021)*.

Bacterial in vitro growth measurements

Wild-type, the \(algU \) mutant, and the \(algU \)-complemented strain were grown at 28 °C on LB medium. The bacterial suspensions were standardized to an OD\(_{600}\) of 0.05 with LB, and bacterial growth was measured at OD\(_{600}\) for 6, 9, and 12 h.

Plant material and inoculation procedures

Soybean plants (*Glycine max*), cultivar “Enrei”, were grown in a growth chamber at 22 °C, with approximately 60% humidity, and a supplementary light intensity of 200–350 \(\mu \)mol/(m\(^2\) s) for a 14 h photoperiod. All soybean plants used for virulence studies were 3 or 4-week-old.

\(Psg \) carrying Tn5 transposon was syringe-infiltrated into soybean leaves at an OD\(_{600}\) of 0.1 (5 \(\times \) 10\(^7\) CFU/ml) containing 0.02% Silwet L-77 (OSi Specialties Inc., Danbury, CT, USA). The disease symptoms were fully developed at 6 days post inoculation (dpi) ([Fig. 1A](#)). The mutants which showed different disease symptoms or virulence reduction in comparison to \(Psg \) WT were selected.

For spray inoculation, bacterial suspensions were applied to observe disease symptoms on whole soybean plants as described previously (*Uppalapati et al., 2007*). Plants were sprayed with a bacterial suspension at an OD\(_{600}\) of 0.2 (1 \(\times \) 10\(^8\) CFU/ml) in sterile distilled water containing 0.025% Silwet L-77 until runoff. After inoculation, plants were transferred to growth chambers at 28 °C with approximately 90% to 100% humidity for 24 h in the dark before maintaining plants at approximately 70% humidity.

For syringe inoculation, bacteria were suspended at a final concentration at an OD\(_{600}\) of 0.1 (5 \(\times \) 10\(^7\) CFU/ml), 0.01 (5 \(\times \) 10\(^6\) CFU/ml), and 0.001 (5 \(\times \) 10\(^5\) CFU/ml), and infiltrated with a one-ml blunt syringe into leaves. The plants were then incubated at 70–80%
Bacterial strain or plasmid	Locus	Relevant characteristics	Reference or source
E. coli strain			
DH5a	F–λ–φ80dlacZΔM15Δ (lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–mK+) supE44 thi-1 gyrA relA1	Takara, Kyoto, Japan	
S17-1	Thi pro hsdR-hsdM + recA (chr::RP4-2-Tc::Km::Tn7)	Schäfer et al. (1994)	
P. savastanoi pv. glycinea			
Vibrio T8	psg	Wild-type	MAFF301684
VTC23	cfa6::mTn5, Nal', Km'	This study	
VTD16	cfa5::mTn5, Nal', Km'	This study	
VTD28	cfa4::mTn5, Nal', Km'	This study	
VTD29	cfa7::mTn5, Nal', Km'	This study	
VTD30	cfa3::mTn5, Nal', Km'	This study	
VTE13	cfa8::mTn5, Nal', Km'	This study	
VTE17	cfa7::mTn5, Nal', Km'	This study	
VTF3	cfa2::mTn5, Nal', Km'	This study	
VTE13	cfa6::mTn5, Nal', Km'	This study	
VTE22	cfa7::mTn5, Nal', Km'	This study	
VTB2	cfa5::mTn5, Nal', Km'	This study	
VTB2	Type III effector protein XopAD::mTn5, Nal', Km'	This study	
VTH40	MFS transporter::mTn5, Nal', Km'	This study	
VTM22	Hypothetical protein::mTn5, Nal', Km'	This study	
VTO15	ABC transporter permease::mTn5, Nal', Km'	This study	
VTO41	Sigma factor algU::mTn5, Nal', Km'	This study	
VTP20	DNA-binding protein::mTn5, Nal', Km'	This study	
VTE41	Unknown, Nal', Km'	This study	
VTE6	Unknown, Nal', Km'	This study	
VTO37	Unknown, Nal', Km'	This study	
VTT8	Unknown, Nal', Km'	This study	
algU mutant (VTO41) + pDSKG-algU	algU mutant complemented with pDSKG-algU, Nal', Gen'	This study	
Plasmid			
pBSLC1	Transposon vector constructed by ligation of pBSL118 and pHSG396 at EcoRI site, Amp', Km', Cm'	Sawada et al. (2018)	
pDSK519	Broad-host-range cloning vector, Ken'	Keen et al. (1988)	
pDSKG	Broad-host-range cloning vector, Gen'	This study	
pDSKG-algU	The vector containing algU gene inserted into pDSKG, Gen'	This study	

Note:
Amp', ampicillin resistance; Cm', chloramphenicol resistance; Gen', gentamicin; Km', kanamycin resistance; Nal', nalidixic acid resistance.

Nguyen et al. (2021), *PeerJ*, DOI 10.7717/peerj.12405
humidity for the rest of the experimental period. Leaves were removed and photographed at five dpi.

To measure bacterial growth in soybean leaves after spray inoculation, individual second leaf pairs were selected at six dpi, weighed and surface-sterilized in 5% H$_2$O$_2$ for 3 min, and then rinsed three times with sterile water. The leaves were then homogenized, and appropriate dilutions were plated on KB medium containing the appropriate antibiotics. The bacterial colony forming units (CFU) were normalized as CFU/g using the total inoculated leaf mass. The population at 0 dpi was estimated using leaves harvested 1 h post inoculation (hpi) without surface-sterilization. For syringe-inoculation, leaf discs

Figure 1 Disease symptoms on soybean leaves syringe-inoculated with Pseudomonas savastanoi pv. glycinea (Psg) wild-type (WT) and mutants. (A) Disease symptoms on soybean leaves syringe-inoculated with 5×10^7 colony forming units (CFU)/ml of the Psg WT at six dpi. (B) Disease symptoms on soybean leaves syringe-inoculated with 5×10^7 colony forming units (CFU)/ml of the Psg mutants at six dpi. Scale bars shows 1 cm. DOI: 10.7717/peerj.12405/fig-1
were harvested using a 3.5 mm-diameter cork-borer from syringe-infiltrated leaf zone. The leaves were then homogenized, and appropriate dilutions were plated on KB medium containing the appropriate antibiotics. The bacterial colony forming units (CFU) were normalized as CFU/cm² using the leaf square meters. The bacterial populations were evaluated in at least three independent experiments.

Transposon-mediated mutagenesis and identification of mutated genes
Transposon-mediated mutagenesis was carried out, as described previously (Sakata et al., 2019). Briefly, pBSLC1 (Sawada et al., 2018) carrying mini-Tn5 transposon were transferred into Psg to build a mutant library. We developed more than 1,000 individual Psg mutant lines. After the inoculation assay, we identified the mutated genes by rescuing the transposon insertion sites into an E. coli plasmid and sequencing (Sakata et al., 2019).

Complementation of the algU mutant
The algU-complemented strain was constructed as described in Ishiga et al. (2018). Briefly, the pDSKG vector was made from pDSK519 vector (Keen et al., 1988) by replacing kanamycin cassette to gentamycin. The algU and promoter region were transferred into the pDSKG vector to generate pDSKG-algU. The pDSKG-algU construct was introduced into the algU mutant by electrophoresis to generate the complemented strain.

Real-time quantitative RT-PCR
For Psg gene expression profiles, data were collected as previously described in Sakata et al. (2021). Specifically, bacteria were grown in HS medium optimized for COR production (HSC; Palmer & Bender, 1993) for 3 and 48 h. Bacterial RNA was extracted using the ReliaPrep RNA Cell Miniprep System Kit (Promega, WI, USA) according to the manufacture’s protocol. Two micrograms of total RNA were treated with gDNA Remover (TOYOBO, Osaka, Japan) to eliminate genomic DNA, and the DNase-treated RNA was reverse transcribed using the ReverTra Ace qPCR RT Master Mix (TOYOBO). The cDNA (1:10) was then used for RT-qPCR using the primers shown in Table S1 with THUNDERBIRD SYBR qPCR Mix (TOYOBO) on a Thermal Cycler Dice Real Time System (TaKaRa). Psg outer membrane lipoprotein I (oprI) was used to normalize gene expression.

COR quantification by HPLC
Psg WT, the algU mutant, and the algU-complemented strain were cultured in HSC for 7 days. Culture supernatant was obtained by centrifugation (12,000 × g for 5 min). Cell pellets were dried at 65 °C and weighed. The 500 µl of supernatants were extracted twice with 500 µl of ethyl acetate and 25 µl of HCl, and the organic phase was transferred to a new microcentrifuge tube. The sample was dried by centrifugal evaporator at 55 °C, and the dried sample was dissolved with 0.05% trifluoroacetic acid (TFA)/acetonitrile (9:1, v/v). The culture supernatant was analyzed by HPLC with a
Shimadzu LC20A system equipped with a Symmetry C8 column (4.6 × 250 mm; Waters Corporation, MA, USA) as described previously (Sakata et al., 2021).

Hypertrophy-inducing activity assay on potato tuber tissue

Potato tubers were cut from the central tuber portion to ensure samples of high uniformity. After washing in tap water for 5 min, each disc was washed with sterile distilled water several times. Potato tuber discs were inoculated using toothpicks by placing the tip in *Psg* WT, COR-defective mutants (*cfa6* and *cmaA*), the *algU* mutant, and the *algU*-complemented strain on a KB medium plate, and then placing the toothpick on the potato tuber disc. The discs were then placed at 23 °C incubator (darkness) for 5 days. Photographs were taken at five dpi.

Biofilm formation assay

Biofilm formation was assayed as described previously (Shao et al., 2019). Briefly, the bacterial strains were incubated overnight in LB broth and resuspended in fresh LB broth to an OD\textsubscript{600} of 0.1. Bacterial suspensions (120 μl) were put into 96-well plates and incubated at 28 °C for 24, 48, 72, and 96 h. The bacterial solutions were discarded and washed three times with distilled water. The biofilm forming bacteria were treated with 150 μl of 0.1% crystal violet (CV; Fuji film, Tokyo, Japan) for 20 min without shaking. The dye was discarded and washed twice with distilled water. The plate was dried completely, subsequently the biofilm was eluted with 150 μl of 100% ethanol, and the CV were dissolved completely. Finally, the eluted biofilm sample’s absorbance was measured at OD\textsubscript{595}.

RESULTS

Identification and characterization of reduced virulence mutants

To identify *Psg* virulence genes, we screened 1,000 transposon insertion mutants for reduced disease symptoms on soybean leaves using the syringe-infiltration method. Disease symptoms caused by *Psg* WT showed a small water-soaked lesion surrounded by regions of chlorosis (Fig. 1A). A total of 28 mutants showed no or less chlorosis at six dpi (Fig. 1B). Seventeen mutants out of 28 had transposon insertions in genes encoding COR biosynthesis-related genes (Table 1). Soybean leaves inoculated with COR biosynthesis mutants (VTD29, VTE13, VTI15, and VTR4), the *algU* mutant (VTO41), and an unknown-function mutant (VTF6) showed no chlorosis (Fig. 1B).

Reduced disease symptoms and bacterial growth in soybean

We identified the 28 mutants which showed reduced disease symptoms compared to *Psg* WT by syringe-inoculation (Fig. 1B). We further investigated whether these mutants also showed reduced virulence via spray-inoculation, and selected two mutants related to COR biosynthesis (*cmaA* and *cfa6*), and others. Soybean leaves inoculated with all mutants showed significantly reduced bacterial populations than those of *Psg* WT (Fig. 2A). Among all mutants, the *algU* mutant (VTO41) showed dramatically reduced bacterial populations and disease symptoms at six dpi (Figs. 2A and 2B). To confirm
whether the altered algU mutant phenotype originates from a corresponding mutation, an algU-complemented strain was generated. Psg WT and the algU-complemented strain showed the same bacterial population levels as well as disease symptom development in soybean (Figs. S1A and S1B). We also confirmed that algU is apparently dispensable for Psg growth in rich LB medium, since no growth difference was observed among WT, algU mutant, and algU-complemented strain (Fig. S2).

To further investigate the algU contribution to Psg virulence, we conducted syringe infiltration with WT, algU mutant, and algU-complemented strain. As a result, the algU mutant showed reduced symptoms and bacterial populations at all inoculum levels we tested (Figs. 3A–3F). Taken together, these results indicate that AlgU contributes to growth both on leaf surface and in apoplast, and to causing disease.

AlgU regulates the expression of Psg virulence genes in HSC medium
Pst DC3000 AlgU positively regulates virulence gene transcription (Markel et al., 2016; Ishiga et al., 2018). To investigate whether Psg AlgU also regulates virulence genes, we analyzed virulence gene expression profiles in HSC medium. COR biosynthesis-related genes including cmaA and corR, in the algU mutant showed reduced expression at 48 h after incubation (Figs. 4A and 4C). Moreover, hrpL, encoding HrpL (an alternative sigma factor recognizing the hrp box in the promoter of T3SS genes), also showed significantly less expression in the algU mutant at both 3 and 48 h after incubation compared to Psg WT (Fig. 4D). These results indicate that AlgU positively regulates COR biosynthesis-related genes and hrpL.

To investigate whether AlgU can coordinate gene expression involved in Psg motility, we determined the expression profile of fliC (encoding flagellin, relating to flagellar
Figure 3 Disease symptoms and bacterial populations in soybean leaves after syringe inoculation.
Disease symptom and bacterial populations in leaves syringe-inoculated with *Pseudomonas syringae pv. glycinea* (*Psg*) wild-type (WT), the *algU* mutant, and the *algU*-complemented strain at 5×10^7 colony forming units (CFU)/ml (A, B), 5×10^6 CFU/ml (C, D), and 5×10^5 CFU/ml (E, F), respectively.
mobility). At 3 h after incubation, there was no difference in the flagellar-encoding gene expression between the algU mutant and Psg WT. However, after 48 h incubation, relative flIC expression was greater in the algU mutant compared to Psg WT (Fig. 4E). Additionally, algD expression was down regulated in the algU mutant (Fig. 4F), indicating that AlgU positively regulates alginate biosynthesis-related genes.

AlgU contributes to COR biosynthesis and biofilm formation in Psg

We demonstrated that COR biosynthesis-related genes in the algU mutant showed reduced expression in HSC medium (Figs. 4A–4D). To investigate whether AlgU contributes to COR production, we first conducted a hypertrophy-inducing activity test on potato tuber tissues for COR detection (Sakai et al., 1979; Völksch, Bublitz & Fritsche, 1989). Potato tuber tissues inoculated with Psg WT showed hypertrophy response, but those inoculated with COR-defective mutants (cmaA and cfa6) showed no response (Fig. 5A). The algU mutant-inoculated potato tuber tissues showed less hypertrophy response compared to those inoculated with Psg WT and the reduction was restored in the

Figure 4 Gene expression profiles involved in the virulence of *Pseudomonas savastanoi pv. glycinea* (Psg) wild-type (WT) and algU mutant in liquid HSC broth. Psg WT and algU mutant were grown in HSC broth for 3 and 48 h, adjusted to an OD₆₀₀ of 0.1, and grown again in fresh HSC broth for 3 h. Gene expression was normalized using the housekeeping gene *Psg* outer membrane lipoprotein I (oprI) by real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) with gene-specific primer sets (Table S1). (A) cmaA, (B) cfl, (C) corR, (D) hrpL, (E) flIC, and (F) algD. Vertical bars indicate the standard error for three biological replicates. The different letters (a–c) indicate a significantly statistical difference (P < 0.05, Turkey’s HSD test).
algU-complemented strain (Fig. 5A). Furthermore, we also quantified COR production by using HPLC. Psg WT produced around 90 ng/g of COR in HSC medium (Fig. 5B). However, the algU mutant produced only around one third as much COR compared to Psg WT (Fig. 5B). We also confirmed that the algU-complemented strain recovered COR production more than WT (Fig. 5B). Taken together, these results suggest that AlgU contributes to COR biosynthesis in Psg.

Since we also demonstrated that alginate biosynthesis-related genes algD showed reduced expression in algU mutant (Fig. 4F), we next investigated the biofilm formation ability in Psg WT and the algU mutant. The algU mutant showed a reduction in biofilm formation at 24, 48, and 72 hpi (Fig. 6). These results suggest that AlgU also contributes to biofilm formation in Psg.

DISCUSSION

We attempted to identify Psg virulence factors that are crucial in soybean pathogenicity. We screened 1,000 Psg mutants by syringe-infiltration and identified 28 mutants with reduced virulence (Fig. 1B). Several important virulence factors contribute to Psg virulence.

Figure 5 COR quantification of *Pseudomonas savastanoi* pv. *glycinea* (Psg) wild-type (WT), the algU mutant, and the algU-complemented strain. (A) Observation of hypertrophy-inducting activity on potato tuber tissue inoculated with *Pseudomonas savastanoi* pv. *glycinea* (Psg) wild-type (WT), COR-defective mutants (*cmaA* and *cfa6*), the algU mutant, and the algU-complemented strain. Potato tuber discs were inoculated using toothpicks by placing the tips in the Psg WT, cmaA, cfa6, algU mutant, and the algU-complemented strain on a KB medium plate and then placing the toothpick on the potato tuber disc. Photographs were taken at five dpi. (B) COR quantification of *Pseudomonas savastanoi* pv. *glycinea* (Psg) wild-type (WT) and the algU mutant grown in liquid HS broth by HPLC. Psg WT, the algU mutant, and the algU-complemented strain were cultured in HSC broth for 7 days. HPLC analysis was conducted by a Shimadzu LC20A system equipped with a Symmetry C8 column. COR in the culture supernatant was identified, as compared with authentic COR as the standard. Vertical bars indicate the standard error for three biological replicates. Asterisks indicate a significant difference from WT in a t test (**P < 0.01). N.D. indicates not detected by HPLC. Full-size [DOI: 10.7717/peerj.12405/fig-5](https://doi.org/10.7717/peerj.12405/fig-5)
including COR, the T3SS, and AlgU (Table 1). Sigma factor AlgU regulates not only \textit{algD}, but also other virulence genes including \textit{hrpL} and COR (Figs. 4A–4F). Our study provides new insights into AlgU function as a global regulatory hub for \textit{Psg} pathogenicity by regulating the expression of multiple virulence genes.

Our screening identified that 17 out of 28 reduced virulence mutants were related to COR biosynthesis genes. These COR biosynthesis mutants were mostly disrupted by \textit{Tn5} on the \textit{cfa} and \textit{cma} operons (Table 1). The \textit{cfa} and \textit{cma} operons encode enzymes related to CFA and CMA biosynthesis, respectively, the two elements that are ligated together to form COR (\textit{Bender, 1999}). Together, these results indicate that COR is an important \textit{Psg} virulence factor.

The \textit{algU} mutant showed reduced virulence in plants both spray-and syringe-inoculated (Figs. 2, S1, 3), indicating that AlgU contributes to \textit{Psg} multiplication both on leaf surface and in apoplast, and causing disease. Our results indicate that AlgU regulate several virulence factors. Firstly, gene expression related to COR biosynthesis, such as \textit{cmaA} and \textit{corR} (but not \textit{cfl}) were suppressed in the \textit{algU} mutant (Figs. 4A–4C). Moreover, COR production in the \textit{algU} mutant also less than that of \textit{Psg} WT (Figs. 5A and 5B), suggesting that AlgU contributes to COR production in \textit{Psg}. Consistent with our results, \textit{Ishiga et al. (2018)} demonstrated that gene expression related to COR biosynthesis was suppressed during \textit{Pst} DC3000 \textit{algU} mutant infection. Furthermore, AlgU also contributes to \textit{Pst} DC3000 virulence by regulating COR production to overcome stomatal-based defense (\textit{Ishiga et al., 2018}). Together, these results suggest that AlgU suppresses stomatal-based defense in the early \textit{Psg} infection stage with soybean plants. Moreover, COR contributes to virulence by overcoming apoplastic defense as well as stomatal-based defense in \textit{Pcal} (\textit{Sakata et al., 2021}). Further study on COR contribution in \textit{Psg} virulence will be needed to understand AlgU-mediated COR regulation.
Secondary, the \textit{algD} expression profile in the \textit{algU} mutant was significantly reduced in comparison with \textit{Psg} WT, indicating that AlgU is important in regulating alginate biosynthesis gene expression (Fig. 4F). This result was consistent with a previous report in \textit{Pst} DC3000 (Ishiga et al., 2018), in which \textit{algD} expression was significantly suppressed in an \textit{algU} mutant. Further, alginate plays a crucial role in epiphytic fitness and survival, and contributes to \textit{P. syringae} virulence (Yu et al., 1999). Alginate is one of the exopolysaccharides (EPSs), which are the major components of biofilms, in \textit{Psg} (Osman, Fett & Fishman, 1986; Sutherland, 2001). We demonstrated that biofilm formation was significantly decreased in the \textit{algU} mutant compared with \textit{Psg} WT (Fig. 6). \textit{Psg} PG4180 AlgU is important in virulence and bacterial growth in host plants, but it is not dependent on alginate production (Schenk, Weingart & Ullrich, 2008; Yu et al., 2014). Additionally, AlgU, but not AlgD plays a crucial role in \textit{Pst} DC3000 virulence (Markel et al., 2016). Together, it is tempting to speculate that alginate function in virulence differs in each \textit{P. syringae} pathovar. Thus, further study is needed to understand AlgU regulating genes involved in biofilm formation and alginate function in \textit{Psg} virulence.

Thirdly, expression profiles also revealed \textit{hrpL} transcripts were suppressed in the \textit{algU} mutant compared with \textit{Psg} WT (Fig. 4D). \textit{Pst} DC3000 AlgU functions to regulate \textit{hrpL} expression (Ishiga et al., 2018). Markel et al. (2016) also demonstrated that AlgU plays an important role in virulence by regulating the expression of T3Es and \textit{hrpL}. In \textit{P. syringae}, both the T3SS and T3Es genes are in turn encoded by the \textit{hrp} gene cluster, while the sigma factor HrpL directly regulates both \textit{hrc} and \textit{hop} genes (Lam et al., 2014). Although many studies were carried out to elucidate the functions and mode of actions of the T3SS and its T3Es, AlgU regulation on the T3SS system is still unknown in \textit{P. syringae} infection processes. Therefore, further precise characterization of AlgU-mediated T3SS regulation will be needed to understand global gene expression networks during \textit{Psg} infection.

Lastly, \textit{flaC} transcripts in the \textit{algU} mutant were increased compared with those of \textit{Psg} WT (Fig. 4E). In \textit{Pst} DC3000, AlgU not only downregulates flagellar and chemotaxis genes \textit{in vitro} (Markel et al., 2016), but also negatively regulates \textit{flaC} expression during infection (Bao et al., 2020). \textit{flaC} encodes the flagellin protein including the \textit{flg22} epitope which triggers PTI (Felix et al., 1999; Zipfel et al., 2004; Parys et al., 2021; Colaianni et al., 2021). Recent studies reported the important role of AlgU in de-flagellation during the \textit{P. syringae}-plant interaction to reduce PTI activation, and promote bacterial fitness in its host (Bao et al., 2020). Likewise, AlgU also plays an important role in de-flagellation of \textit{P. syringae pv. maculicula} ES4236, in which transposon inactivation of AlgW led to decreased AlgU activity and increased the flagella expression, as well as reduced bacterial growth \textit{in planta} (Schreiber & Desveaux, 2011). Therefore, it is tempting to speculate that high levels of flagellin protein production in the \textit{algU} mutant activate PTI.

CONCLUSIONS

Our findings indicate that multiple virulence factors regulated by AlgU, including COR biosynthesis, biofilm formation, and T3SS, contributes to \textit{Psg} virulence in soybean.
Our findings help to expand understanding of AlgU roles in \(Psg \) virulence. Further studies on AlgU regulated mechanisms will be needed to fully understand \(Psg \) virulence.

ACKNOWLEDGEMENTS

We thank Dr. Christina Baker for editing the manuscript. \(Psg \) WT were given from the NARO Genebank, Ibaraki, Japan.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by JSPS KAKENHI (No. 19K06045) and by JST ERATO (No. JPMJER1502). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

JSPS KAKENHI: 19K06045.

JST ERATO: JPMJER1502.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Viet Tru Nguyen conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Nanami Sakata conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Giyu Usuki performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Takako Ishiga performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Yoshiteru Hashimoto performed the experiments, prepared figures and/or tables, and approved the final draft.
- Yasuhiro Ishiga conceived and designed the experiments, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

The raw measurements are available in the Supplementary File.
Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.12405#supplemental-information.

REFERENCES

Bao Z, Wei HL, Ma X, Swingle B. 2020. Pseudomonas syringae AlgU downregulates flagellin gene expression, helping evade plant immunity. Journal of Bacteriology 202:e0041819.

Bender CL. 1999. Chlorosis-inducing phytotoxins produced by Pseudomonas syringae. European Journal of Plant Pathology 105:1–12.

Bender CL, Srope HE, Sims JJ, Cooksey DA. 1987. Reduced pathogen fitness of Pseudomonas syringae pv. tomato Tn5 mutants defective in coronatine production. Physiological and Molecular Plant Pathology 30:237–283.

Bender CL, Young SA, Mitchell RE. 1991. Conservation of plasmid DNA sequences in coronatine-producing pathovars of Pseudomonas syringae. Applied and Environmental Microbiology 57:993–999.

Brooks DM, Bender CL, Kunkel BN. 2005. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid–dependent defenses in Arabidopsis thaliana. Molecular Plant Pathology 6:629–639.

Brooks DM, Hernández-Guzmán G, Kloek AP, Alarcón-Chaidez F, Sreedharan A, Rangaswamy V, Peñaloza-Vázquez A, Bender CL, Kunkel BN. 2004. Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions 17:162–174.

Budde IP, Ulrich MS. 2000. Interactions of Pseudomonas syringae pv. glycinea with host and nonhost plants in relation to temperature and phytotoxin synthesis. Molecular Plant-Microbe Interactions 13:951–961.

Colaianni NR, Parys K, Lee H-S, Conway JM, Kim NH, Edelbacher N, Mucyn TS, Madalinski M, Law TF, Jones CD, Belkhadir Y, Dangl JL. 2021. A complex immune response to flagellin epitope variation in commensal communities. Cell Host & Microbe 29:635–649.e9.

Felix G, Duran JD, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal 18:265–276.

Haefelet DM, Lindow SE. 1987. Flagellar motility confers epiphytic fitness advantages upon Pseudomonas syringae. Applied and Environmental Microbiology 53:2528–2533.

Hoitink H, Sinden S. 1970. Partial purification and properties of chlorosis inducing toxins of Pseudomonas phaseolicola and Pseudomonas glycinea. Phytopathology 60:1236–1237.

Ignjatov M, Milošević M, Nikolić Z, Vujaković M, Petrović D. 2007. Characterization of Pseudomonas savastanoi pv. glycinea isolates from Vojvodina. The Polish Phytopathological Society 45:43–54.

Ishiga T, Ishiga Y, Betsuyaku S, Nomura N. 2018. AlgU contributes to the virulence of Pseudomonas syringae pv. tomato DC3000 by regulating production of the phytotoxin coronatine. Journal of General Plant Pathology 84:189–201.

Keane P, Kerr A, New P. 1970. Crown gall of stone fruit II. Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences 23:585–596.

Keen NT, Tamaki S, Kobayashi D, Trollinger D. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70:191–197.

King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44:301–307.
Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. *Plant Journal* 26:509–522.

Lam HN, Chakravarthy S, Wei HL, Nguyen BH, Stodghill PV, Collmer A, Swingle BM, Cartinhour SW. 2014. Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions. *PLOS ONE* 9:e106115.

Markel E, Stodghill P, Bao Z, Myers C, Swingle B. 2016. AlgU controls expression of virulence genes in Pseudomonas syringae pv. tomato DC3000. *Journal of Bacteriology* 198:2330–2344.

Melotto M, Underwood W, Koczan J, Nomura K, He SY. 2006. Plant stomata function in innate immunity against bacterial invasion. *Cell* 126:969–980.

Osman SF, Fett WF, Fishman ML. 1986. Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. *Journal of Bacteriology* 166:66–71.

Palmer DA, Bender CL. 1993. Effects of environmental and nutritional factors on production of the polyketide phytoxin coronatine by Pseudomonas syringae pv. glycinea. *Applied and Environmental Microbiology* 59:1619–1626.

Parys K, Colaìanni NR, Lee H-S, Hohmann U, Edelbacher N, Trgovcevic A, Blahovska Z, Lee D, Mechtler A, Muhari-Portik Z, Madalinski M, Schandry N, Rodriguez-Arévalo I, Becker C, Sonnleitner E, Korte A, Bläsi U, Geldner N, Hothorn M, Jones CD, Dangel JI, Belkhadir Y. 2021. Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. *Cell Host & Microbe* 29:620–634.

Peñaloza-Vázquez A, Preston GM, Collmer A, Bender CL. 2000. Regulatory interactions between the Hrp type III protein secretion system and coronatine biosynthesis in Pseudomonas syringae pv. tabaci DC3000. *Microbiology* 146:2447–2456.

Qi M, Wang D, Bradley CA, Zhao Y. 2011. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine Pseudomonads. *PLOS ONE* 6:e16451.

Sakai R, Nishiyama K, Ichihara A, Shiraishi K, Sakamura S. 1979. Studies on the mechanism of physiological activity of coronatine. *Japanese Journal of Phytopathology* 45:645–653.

Sakata N, Ishiga T, Masuo S, Hashimoto Y, Ishiga Y. 2021. Coronatine contributes to Pseudomonas cannabina pv. alisalensis virulence by overcoming both stomatal and apoplastic defenses in dicot and monocot plants. *Molecular Plant-Microbe Interactions* 34:746–757 DOI 10.1094/MPMI-09-20-0261-R.

Sakata N, Ishiga T, Saito H, Nguyen VT, Ishiga Y. 2019. Transposon mutagenesis reveals Pseudomonas cannabina pv. alisalensis optimizes its virulence factors for pathogenicity on different hosts. *PeerJ* 7:e7698.

Sambrook J, Fritsch E, Maniatis T. 1989. *Molecular cloning: a laboratory manual*. Second Edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.

Sawada T, Eguchi M, Asaki S, Kashiwagi R, Shimomura K, Taguchi F, Matsu H, Yamamoto M, Noutoshi Y, Toyoda K, Ichinose Y. 2018. MexEF-OprN multidrug efflux pump transporter negatively controls N-acetyl-homoserine lactone accumulation in Pseudomonas syringae pv. tabaci 6605. *Molecular Genetics and Genomics* 293:907–917.

Schenk A, Berger M, Keith LM, Bender CL, Muskhelishvili G, Ullrich MS. 2006. The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. *Journal of Bacteriology* 188:8013–8021.
Schenk A, Weingart H, Ullrich MS. 2008. The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of *Pseudomonas syringae* pv. *glycinea*. *Microbiology* 154:413–421.

Schreiber KJ, Desveaux D. 2011. AlgW regulates multiple *Pseudomonas syringae* virulence strategies. *Molecular Microbiology* 80:364–377.

Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. 1994. Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli* plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum*. *Gene* 145:69–73.

Shao X, Xie Y, Zhang Y, Deng X. 2019. Biofilm formation assay in *Pseudomonas syringae*. *Bio-Protocol* 9:e3237.

Sutherland I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. *Microbiology* 147:3–9.

Ullrich M, Bereswill S, Volksch B, Fritsche W, Geider K. 1993. Molecular characterization of field isolates of *Pseudomonas syringae* pv. *glycinea* differing in coronatine production. *Microbiology* 139:1927–1937.

Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. *Plant Journal* 42:201–217.

Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL. 2007. The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with *Pseudomonas syringae* pv. tomato DC3000. *Molecular Plant-Microbe Interactions* 20:955–965.

Völksch B, Bublitz F, Fritsche W. 1989. Coronatine production by *Pseudomonas syringae* pathovars: screening method and capacity of product formation. *Journal of Basic Microbiology* 29:463–468.

Yu X, Lund SP, Greenwald JW, Records AH, Scott RA, Nettleton D, Lindow SE, Gross DC, Beattie GA. 2014. Transcriptional analysis of the global regulatory networks active in *Pseudomonas syringae* during leaf colonization. *mBio* 5:e0168314.

Yu J, Peñalola-Vázquez A, Chakrabarty AM, Bender CL. 1999. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of *Pseudomonas syringae* pv. *syringae*. *Microbial Microbiology* 33:712–720.

Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA. 2003. Virulence systems of *Pseudomonas syringae* pv. *tomato* promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. *Plant Journal* 36:485–499.

Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. *Nature* 428:764–767.