Cervical Epidural Analgesia with Laryngeal Mask Airway Assisted Ventilation for Thymectomy in Myasthenia Gravis

Avinash Londhe1 and Madhu Chavan

Department of Cardiac Anesthesia, B.J. Govt. Medical College and Sasson Hospital, Pune, Maharashtra, India

1Corresponding author: Avinash Londhe, Department of Cardiac Anesthesia, B.J. Govt. Medical College and Sasson Hospital, Pune, Maharashtra, India, E-mail: apl9951@yahoo.co.in

Received date: October 08, 2018; Accepted date: October 22, 2018; Published date: October 27, 2018

Abstract

Myasthenia gravis is a disease of great significance to the anesthesiologist, because it affects the neuromuscular junction. In this paper, we discuss the case of a 57 y. Old male patient with newly diagnosed myasthenia gravis who is scheduled for transsternal thymectomy. Anaesthesia for thymectomy in myasthenia is challenging. We have used a modern approach and have successfully done thymectomy under general anaesthesia avoiding need for intubation of trachea and most importantly avoiding use of muscle relaxant. We maintained adequate muscle relaxation with the use of inhalational agent (Sevoflurane) and anaesthetic dose of local anaesthetic through cervical epidural.

Keywords: Myasthenia gravis; Transsternal thymectomy; General anaesthesia

Introduction

Myasthenia Gravis (MG) is an autoimmune disease characterized by weakness and fatigability of skeletal muscles, with improvement following rest. It may be localized to specific muscle groups or it may be generalized. The incidence is 50-142 cases per million population. Myasthenia Gravis is caused by a decrease in the numbers of postsynaptic acetylcholine receptors at the neuromuscular junction, which decreased the capacity of the neuromuscular end-plate to transmit the nerve signal. The perioperative management of this particular patient introduced several problems and topics for discussion: (a) The preoperative approach and the premedication to be used (b) The anesthetic drugs and more in particular the use of neuromuscular blocking agents and (c) the postoperative analgesia [1-6].

Case Presentation

A 57 year old male (weight-72 kg) Presented with ptosis, generalized weakness since 2 months. He was diagnosed by neurologist as a case of Myasthenia Gravis [7-9]. His diagnosis was confirmed by positive neostigmine test, antiAchR Ab titer 1.75 nmol/L. (Normal level 0.0-0.25). CT scan showed well defined mildly enhancing soft tissue mass in anterior mediastinum 6.6 × 4.4 cm. most likely to be a thymoma. He was started on tab pyridostigmine 30 mg TID. Patient showed good response to medical line of management. His function test was normal. All other studies are normal. Patient was referred to our hospital for thymectomy. Patient was scheduled for transsternal thymectomy. Routine preanaesthetic evaluation done. His routine medication continued on the day of surgery.

On arrival to operation theatre, IV line secured with 16 G cannula and inj. Ranitidine, Glycopyrrolate, ondansetron and antibiotics given, intravenously. ECG, pulse oximeter were attached. Invasive BP monitoring was established with right radial artery cannulation. ABG showed PaO2-79 mmHg, PCO2-37 mmHg, pH-7.4, Hco3-22.8 mmol/lit. In sitting position under close monitoring of vitals, cervical epidural catheter at C7-T1 level inserted [3]. Patient was made supine on operative table. Test dose of Lignocaine 2% 3 cc given. Oxygen by face mask @5 lit/min started. Injection Lignocaine 2% 5 cc and Ropivacaine 0.75% 7 ml administered through catheter. Segmental block was confirmed with loss of temperature sense from suprasternal notch to upper abdomen [10-13].

Premedication Injection Fentanyl 100 μg and Injection Midazolam 1 mg was given. Patient was induced with injection Propofol 100 mg. Preoxygenation with 100% O2 continued via facemask. Gentle manual ventilation started with O2 and sevoflurane 2-4%. After adequate depth of anaesthesia, laryngeal mask airway Supreme No 4 TM inserted [4,5]. Cuff inflated initially assisted bag ventilation given. Then Patient connected to ventilator settings 500 ml. VT and 16 RR. Inhalational agent sevoflurane 1-2% and Injection. Propofol infusion @5 ml/h [6,7]. Used during surgery. One suction catheter No. 14 inserted through the suction part of laryngeal mask airway, to ensure continuous deflation of stomach [14].

After painting and draping, surgery started. Sternotomy done. Heamodynamics were stable during sternotomy [15-17]. Airway pressure was between 15-20 cm H₂O throughout surgery.

After one hour of surgery, inj. Ropivacaine 5 ml 0.75% given through epidural catheter. Thymectomy was completed uneventfully. Throughout surgery patient was stable haemodynamically. Surgeon was happy with muscle relaxation [18-24]. At the end of procedure all anaesthetic agents discontinued. 10 min later patient regained consciousness, responding to verbal commands. Laryngeal mask airway was safely removed after deflation of cuff and thorough suction. There was no evidence of regurgitation of gastric contents as per Litmus Paper test. After removal of laryngeal mask airway patient were conscious, obeying commands, opening eye, yet pain free. Patient shifted to PACU with O₂ by mask [25-30].

In PACU, postoperative analgesia was continued with inj. Ropivacaine infusion for 24 h. Patient was comfortable and analgesia
was excellent, no residual muscle weakness early breathing exercise and incentive spirometry were started. Postoperative X-ray chest showed no abnormality and the excised mass was diagnosed as follicular thymic hyperplasia [31-40].

Discussion and Conclusion

Anaesthesia for thymectomy in Myasthenia gravis is challenging. The different anaesthetic techniques for thymectomy are classified into muscle relaxant and non-muscle relaxant techniques. It is well known that myasthenic patients are sensitive to non-depolarizing NMBs and resistant to NMBS.

The use of muscle relaxants in myaesthenic patients has been associated with i) A higher rate of unsuccessful extubation, ii) Longer post-operative mechanical ventilation, iii) Longer stay in hospital. We have successfully done thymectomy under general anaesthesia avoiding need for intubation of trachea and most importantly avoiding use of muscle relaxant we maintained adequate muscle relaxation with the use of inhalational agent (sevoflurane) and anaesthetic doses of local anaesthetic through epidural. Surgical muscle relaxation, analgesia was not a problem throughout operative period. We could remove the laryngeal mask airway immediately after surgery in or without any complications. We conclude that anaesthesia for Thymectomy can be achieved safely with the above mentioned techniques.

References

1. Jamal BT, Herb K (2009) Perioperative management of patients with myasthenia gravis: prevention, recognition, and treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107: 612-615.
2. Loach AB, Young AC, Spalding JM, Smith AC (1975) Postoperative management after thymectomy. Br Med J 1: 309-312.
3. Leventhal SR, Orkin FK, Hirsh RA (1980) Prediction of the need for postoperative mechanical ventilation in myasthenia gravis. Anaesthesiology 53: 26-30.
4. Lee HS, Lee HS, Lee HE, Bae MK, Chung KY, et al. (2015) Predictive factors for myasthenic crisis after videoscopic thymectomy in patients with myasthenia gravis. Muscle Nerve 52: 216-220.
5. Watanabe A, Watanabe T, Obama T, Mawatari T, Ohsawa H, et al. (2004) Prognostic factors for myasthenic crisis after transsternal thymectomy in patients with myasthenia gravis. J Thorac Cardiovasc Surg 127: 868-876.
6. Lacomis D (2005) Myasthenic crisis. Neurocrit Care 3: 189-194.
7. Gracey DR, Divertie MB, Howard FM Jr, Payne WS (1984) Postoperative respiratory care after transsternal thymectomy in myasthenia gravis. A 3-year experience in 53 patients. Chest 86: 67-71.
8. Grittii P, Sgarzi M, Carrara B, Lanterra LA, Novellino L, et al. (2012) A standardized protocol for the perioperative management of myasthenia gravis patients. Experience with 110 patients. Acta Anaesthesiol Scand 56: 66-75.
9. Tripathi M, Kaushik S, Dubey P (2003) The effect of use of pyridostigmine and requirement of vecuronium in patients with myasthenia gravis. J Postgrad Med 49: 311-314.
10. Gramstad L (1987) Atracurium, vecuronium and pancuronium in end-stage renal failure. Dose-response properties and interactions with azathioprine. Br J Anaesth 59: 995-1003.
11. Dretchen KL, Morgenroth VH, Staendaet FG, Walts LF (1976) Azathioprine: effects on neuromuscular transmission. Anesthesiology 45: 604-609.
12. Gildsen RS, Martyn JA, Tomera JF (1988) Azathioprine fails to alter the dose-response curve of d-tubocurarine in rats. Anesthesiology 68: 595-598.
37. Small S, Ali HH, Lennon VA, Brown RH, Carr DB, et al. (1992) Anesthesia for an unsuspected Lambert-Eaton myasthenic syndrome with autoantibodies and occult small cell lung carcinoma. Anesthesiology 76: 142-145.

38. Brown JC, Charlton JE (1975) A study of sensitivity to curare in myasthenic disorders using a regional technique. J Neurol Neurosurg Psychiatry 38: 27-33.

39. Weingarten TN, Araka CN, Mogensen ME, Sorenson JP, Marienau ME, et al. (2014) Lambert-Eaton myasthenic syndrome during anesthesia: a report of 37 patients. J Clin Anesth 26: 648-653.

40. Takeda J, Izawa H, Ochiai R (1993) Suppression of neuromuscular transmission by sevoflurane in patients with myasthenia gravis. Anesthesiology 79: 960.