Case Report

Radiotherapy for recurrent small cell carcinoma of the ovary: A case report and review of the literature

Donato Callegaro-Filho, Thomas W. Burke, Patricia J. Eifel, Pedro T. Ramirez, Elizabeth E. Euscher, Kathleen M. Schmeler,⁎

⁎ Corresponding author at: Department of Gynecologic Oncology, Unit 1362, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA. Fax: +1 713 745 7586. E-mail address: kschmeler@mdanderson.org (K.M. Schmeler).

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a highly aggressive tumor that is generally fatal when it spreads beyond the ovary. Although stage IA disease is associated with a better prognosis, approximately 67% of patients recur regardless of treatment type (Young et al., 1994). Once recurrent disease develops, the tumors tend to be poorly responsive to chemotherapy and effective treatments have not been described (Young et al., 1994; Pautier et al., 2007; Scully, 1993). However, there are a few reports of rare patients who have survived after multi-modality treatment that included surgery, chemotherapy and radiation therapy for recurrent disease (Young et al., 1994; Cannon et al., 1975; Dickersin et al., 1982; Benrubu et al., 1993; Harrison et al., 2006; Niimi et al., 2006; Isonishi et al., 2008; Christin et al., 2008). Furthermore, previous reports have suggested that radiotherapy in the adjuvant setting has activity in the primary as well as recurrent SCCOHT (Young et al., 1994; Pautier et al., 2007; Scully, 1993; Cannon et al., 1975; Dickersin et al., 1982). In this report, we describe the case of a 35-year-old woman with stage IA SCCOHT with a sustained complete response following surgery and radiotherapy for recurrent disease. In addition, we review the available literature describing treatment for recurrent SCCOHT.

Case report

The patient initially presented at age 35 years with pelvic pain and abdominal distention. A contrast-enhanced computed tomography (CT) scan revealed a large right ovarian mass extending to the level of the umbilicus. Her CA125 level was 35 U/mL. She did not desire fertility preservation and underwent surgery including a total abdominal hysterectomy with bilateral salpingo-oophorectomy and a partial omentectomy. Final pathology revealed SCCOHT of the right ovary. The left ovary, bilateral fallopian tubes, uterus and omentum were all negative for disease. She received four cycles of adjuvant chemotherapy with cisplatin (75 mg/m² on day 1) and etoposide (100 mg/m² on days 1, 2 and 3) administered every three weeks. She tolerated the chemotherapy without major toxicities. After completion of chemotherapy, imaging showed no evidence of disease. She was followed on a three-month interval with pelvic exam, CT scan of the abdomen and pelvis, chest radiograph, and CA125 level. Twenty months after completing primary treatment, she developed recurrent disease with an isolated...
imaging at the completion of therapy showed no evidence of disease. The patient has been followed with regular CT scans, chest radiographs and CA125 levels, and remains without evidence of disease fifteen years following the completion of radiotherapy for recurrent disease.

Discussion

SCCOHT is an aggressive disease and most patients develop progressive or recurrent disease despite treatment. No standard approach has been recommended for the treatment of recurrent disease, although multi-modality treatments including surgery, chemotherapy and radiotherapy have been described. Although adjuvant thoracic radiotherapy has been demonstrated to improve survival in conjunction with chemotherapy in limited stage, small-cell lung carcinoma (Van Meerbeeck et al., 2011), the role of radiotherapy in the treatment of primary or recurrent SCCOHT is unclear.

Study author, year	FIGO stage	Age at diagnosis (years)	Primary surgery	Primary adjuvant treatment	Recurrence interval (months)	Recurrence site	Treatment for recurrence	Outcome
Cannon et al. (1975), Young et al. (1994)	IA 23	RSO	None	Surgery: resection of the right broad ligament. Radiotherapy: pelvis Chemotherapy: chlorambucil	12	Pelvis	Surgery: TH, LSO and retroperitoneal LN dissection	NED at 10 years
Dickersin et al. (1982)	IA 26	RSO	Radiotherapy	2	Para-aortic LN and omentum Pelvis Anterior abdominal wall	Surgery: TH and LSO Chemotherapy: doxorubicin, cyclophosphamide, etoposide Radiotherapy: pelvis	NED at 9 months	
Young et al. (1994)	IA 19	RSO	Chemotherapy: cisplatin, velban, bleomycin	4	Pelvis	Surgery: TH, LSO, omentectomy, para-aortic LN dissection. Radiotherapy: whole abdomen	NED at 45 months	
Young et al. (1994)	IA 10	LSO	Chemotherapy: cisplatin, velban	5	Para-aortic LN	Surgery: TH, LSO, omentectomy, para-aortic LN dissection. Radiotherapy: whole abdomen	NED at 7 years	
(Young et al. (1994), Benrubri et al. (1993))	IIB 16	RSO	Chemotherapy: cyclophosphamide, doxorubicin, cisplatin, vincristine, etoposide Surgery: TH, LSO, omentectomy, appendectomy, para-aortic and pelvic LN dissection	6	NR	Surgery: TH, LSO, omentectomy, para-aortic LN dissection. Radiotherapy: whole abdomen	NED at 7 years	
Harrisson et al. (2006)	IC 28	USO, omentectomy	Surgery: USO and omentectomy	9	NR	Surgery: USO and omentectomy	NED at 16 months	
Niimi et al. (2006), Isonishi et al. (2008)	IIC 24	LSO, omentectomy	Chemotherapy: cisplatin, etoposide, docetaxel	8	Uterus	Surgery: TH and pelvic lymphadenectomy. Chemotherapy: docetaxel	NED at 4 years	
Christin et al. (2008)	IIC 12	LSO and para-aortic LN dissection	Chemotherapy: doxorubicin, etoposide, cisplatin, cyclophosphamide, carboplatin Surgery: RSO, omentectomy, pelvic and para-aortic LN dissection	2	Pelvis	Surgery: resection of parietal nodule and TH. Chemotherapy: carboplatin and ifosfamide followed by high-dose chemotherapy (carboplatin, etoposide, melphalan) with autologous bone marrow transplantation	NED at > 14 years	
Christin et al. (2008)	IIC 13	LSO and omentectomy	Chemotherapy: bleomycin, etoposide, cisplatin, ifosfamide Surgery: TAH, RSO, omentectomy, pelvic and para-aortic LN dissection	0	Para-aortic LN	Surgery: ifosfamide and etoposide, followed by high-dose chemotherapy (carboplatin, etoposide, melphalan) with autologous bone marrow transplantation.	NED at > 10 years.	
Callegaro-Filho (2014)	IA 35	TH, BSO, and omentectomy	Chemotherapy: cisplatin, etoposide	20	Para-aortic LN	Surgery: para-aortic LN dissection and biopsy of the omentum. Radiotherapy: para-aortic LN	NED at 15 years	

TH: total hysterectomy; BSO: bilateral salpingo-oophorectomy; LSO: left salpingo-oophorectomy; RSO: right salpingo-oophorectomy; LN: Lymph node; NED: no evidence of disease.
In 1994, Young et al. (1994) described a large series of 150 cases of SCCOHT, with 75 patients (50%) having stage I disease. Fourteen of the forty two patients (33%) with stage IA disease for whom follow-up information was available remained without evidence of disease an average of 5.7 years following surgery (range 1–13 years). The remaining 28 patients (67%) with stage IA disease developed recurrent disease, with the majority dying of their disease. Five of the 14 patients with stage IA disease received adjuvant radiotherapy, and four (80%) are long-term survivors, suggesting that radiotherapy may have a role in the adjuvant therapy of this tumor. A previous study by Dickersin et al. (1982) described 11 patients with stage I/II SCCOHT. All patients were treated with surgery; four patients received adjuvant chemotherapy, four patients received adjuvant radiotherapy, and three patients received no adjuvant treatment. Two patients experienced durable responses with radiotherapy alone after initial surgery. Another series by Harrison et al. (2006) reported on 17 cases of SCCOHT. All patients underwent surgery and adjuvant platinum-based chemotherapy. Seven patients received adjuvant radiotherapy, and five (71%) are long-term survivors. Three of the four patients with stage I disease who did not receive radiotherapy developed recurrent disease. The results of these reports suggest that radiotherapy may play an important role in the primary treatment of SCCOHT.

Additional reports also provide evidence for radiotherapy in the treatment of recurrent SCCOHT. Young et al. (1994) and Cannon et al. (1975) described a patient with stage IA disease who developed a pelvic recurrence 12 months following a right salpingo-oophorectomy without adjuvant treatment. She underwent secondary tumor reductive surgery, pelvic radiotherapy and chemotherapy and remained without evidence of disease 10 years after completing therapy for recurrent disease. Furthermore, the series by Young et al. (1994) described two patients treated with chemotherapy and radiotherapy for recurrent disease that were alive at 3.8 and 7 years after completing treatment.

Given the rarity of SCCOHT, the available literature consists of small case series and single patient case reports. A review of the literature was therefore performed to evaluate patients who had a sustained complete response following treatment for recurrent SCCOHT, similar to the one presented in this report. Including the patient described in our report, 10 patients were identified meeting these criteria (Table 1). The median age at diagnosis was 21 years (range 10–35 years). Six patients had stage I disease (60%), three had stage II disease (30%) and one had stage III disease (10%). Nine patients (90%) underwent initial unilateral salpingo-oophorectomy. Eight patients (80%) initially underwent adjuvant chemotherapy, one (10%) underwent radiotherapy alone, and one (10%) did not receive any adjuvant treatment. All patients developed recurrent disease in the pelvis and/or abdomen. Surgery for recurrent disease was performed in eight patients, with two patients receiving no other adjuvant treatment for recurrence. Two patients had surgery followed by radiotherapy, two had surgery followed by chemotherapy, including one patient treated with high dose chemotherapy followed by autologous bone marrow transplantation; and two had surgery followed by radiotherapy and chemotherapy. Two patients did not undergo surgery and received chemotherapy alone, including one patient treated with high dose chemotherapy followed by autologous bone marrow transplantation. All patients had complete response after recurrent disease and were alive and without evidence of disease at time of publication.

Conclusion

We describe the case of a patient with SCCOHT with long-term survival despite recurrent disease. Rare cases have been reported in the literature suggesting that some patients with recurrent disease may respond to salvage surgery, chemotherapy, radiotherapy or a combination of these modalities.

References

Bennubi, G.J., Pitel, P., Lammert, N., 1993. Small cell carcinoma of the ovary with hypercalcemia responsive to sequencing chemotherapy. South. Med. J. 86 (2), 247–248 (Feb).
Cannon, P.M., Smart, C.R., Wilson, M.L., et al., 1975. Hypercalcemia with ovarian granulosa cell carcinoma. Rocky Mt. Med. J. 72 (2), 72–74 (Feb).
Christin, A., Lhomme, C., Valteau-Couanet, D., et al., 2008. Successful treatment for advanced small cell carcinoma of the ovary. Pediatr. Blood Cancer 50 (6), 1276–1277 (Jun).
Dickersin, G.R., Kline, I.W., Scully, R.E., 1982. Small cell carcinoma of the ovary with hypercalcemia: a report of eleven cases. Cancer 49 (1), 188–197 (Jan 1).
Harrison, M.L., Hoskins, P., du Bois, A., et al., 2006. Small cell of the ovary, hypercalcemic type — analysis of combined experience and recommendation for management. A GOG study. Gynecol. Oncol. 100 (2), 233–238 (Feb).
Isonishi, S1., Nishii, H., Satou, M., et al., 2008. Small cell carcinoma of the ovary: clinical and biological study. Int. J. Clin. Oncol. 13 (2), 161–165 (Apr).
Niimi, S., Kiyokawa, T., Takakura, S., et al., 2006. Recurrent small cell carcinoma of the ovary treated with docetaxel: a case report. Int. J. Gynecol. Cancer 16 (5), 1944–1946 (Sep-Oct).
Pautier, P., Ribrag, V., Duvallard, P., et al., 2007. Results of a prospective dose-intensive regimen in 27 patients with small cell carcinoma of the ovary of the hypercalcemic type. Ann. Oncol. 18 (12), 1985–1989 (Dec, Epub 2007 Aug 30).
Scully, R.E., 1993. Small cell carcinoma of hypercalcemic type. Int. J. Gynecol. Pathol. 12 (2), 148–152 (Apr).
Van Meerbeeck, J.P., Fennell, D.A., De Ruyscher, D.K., 2011. Small-cell lung cancer. Lancet 378 (9804), 1741–1755 (Nov 12).
Young, R.H., Oliva, E., Scully, R.E., 1994. Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. Am. J. Surg. Pathol. 18 (11), 1102–1110 (Nov).