On the frequency domain detection of high dimensional time series
ICASSP 2020

A. Rosuel, P. Vallet, P. Loubaton, X. Mestre

Funded by ANR HIDITSA.

May 2020
M–dimensional complex time series \((y_n)_{n \in \mathbb{Z}}\) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

where \(\epsilon_n \sim \mathcal{N}_K(0, I_K)\) is white noise, \(v_n\) are mutually independent additive noise stationary complex Gaussian time series components, \((u_n)_{n \in \mathbb{Z}}\) is the useful signal formed by the output of a causal and stable MIMO filter driven by \(\epsilon_n\).
Introduction - Setting

M-dimensional complex time series \((y_n)_{n \in \mathbb{Z}}\) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

- \((v_n)_{n \in \mathbb{Z}}\) additive noise stationary complex Gaussian time series
- components time series \((v_{1,n})_{n \in \mathbb{Z}}, \ldots, (v_{M,n})_{n \in \mathbb{Z}}\) are mutually independent.
Introduction - Setting

M–dimensional complex time series \((y_n)_{n \in \mathbb{Z}}\) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

- \((v_n)_{n \in \mathbb{Z}}\) additive noise stationary complex Gaussian time series
- components time series \((v_{1,n})_{n \in \mathbb{Z}}, \ldots, (v_{M,n})_{n \in \mathbb{Z}}\) are mutually independent.
- \((u_n)_{n \in \mathbb{Z}}\) useful signal: output of causal and stable \(M \times K\) MIMO filter driven by a white noise \((\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(0, I_K)\)
Introduction - Setting

M–dimensional complex time series \((y_n)_{n \in \mathbb{Z}} \) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

\(= u_n \)

- \((v_n)_{n \in \mathbb{Z}} \) additive noise stationary complex Gaussian time series
- components time series \((v_1,n)_{n \in \mathbb{Z}}, \ldots, (v_M,n)_{n \in \mathbb{Z}} \) are mutually independent.
- \((u_n)_{n \in \mathbb{Z}} \) useful signal : output of causal and stable \(M \times K \) MIMO filter driven by a white noise \((\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(0, I_K) \)
- Denote \((S_y, C_y) \) the spectral (density, coherency) matrix of \((y_n)_n \)
M–dimensional complex time series \((y_n)_{n\in\mathbb{Z}}\) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

- \((v_n)_{n\in\mathbb{Z}}\) additive noise stationary complex Gaussian time series
- components time series \((v_{1,n})_{n \in \mathbb{Z}}, \ldots, (v_{M,n})_{n \in \mathbb{Z}}\) are mutually independent.
- \((u_n)_{n\in\mathbb{Z}}\) useful signal : output of causal and stable \(M \times K\) MIMO filter driven by a white noise \((\epsilon_n)_{n\in\mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(0, I_K)\)
- Denote \((S_y, C_y)\) the spectral (density, coherency) matrix of \((y_n)_{n}\)

Frequency domain detection hypothesis test - \(S_y\)

- \(H_0 : S_y(\nu) = \text{diag}(S_y(\nu)) = S_v(\nu)\) (noise only) vs
- \(H_1 : S_y(\nu) = H(\nu)H(\nu)^* + S_v(\nu) \neq \text{diag}(S_y(\nu))\) (signal+noise)
- \((H(\nu)\) is the Fourier transform of \((H_k)_{k}\)
Introduction - Setting

M–dimensional complex time series \((y_n)_{n \in \mathbb{Z}}\) modeled as

\[
y_n = \sum_{k=0}^{+\infty} H_k \epsilon_{n-k} + v_n \in \mathbb{C}^M
\]

- \((v_n)_{n \in \mathbb{Z}}\) additive noise stationary complex Gaussian time series
- components time series \((v_{1,n})_{n \in \mathbb{Z}}, \ldots, (v_{M,n})_{n \in \mathbb{Z}}\) are mutually independent.
- \((u_n)_{n \in \mathbb{Z}}\) useful signal: output of causal and stable \(M \times K\) MIMO filter driven by a white noise \((\epsilon_n)_{n \in \mathbb{Z}} \sim \mathcal{N}_{\mathbb{C}^K}(0, I_K)\)
- Denote \((S_y, C_y)\) the spectral (density, coherency) matrix of \((y_n)_{n}\)

Frequency domain detection hypothesis test - \(S_y\)

\(\mathcal{H}_0 : S_y(\nu) = \text{diag}(S_y(\nu)) = S_v(\nu)\) (noise only) vs

\(\mathcal{H}_1 : S_y(\nu) = H(\nu)H(\nu)^* + S_v(\nu) \neq \text{diag}(S_y(\nu))\) (signal+noise)

\((H(\nu))\) is the Fourier transform of \((H_k)_k\)

With \(C_y(\nu) := \text{diag}(S_y(\nu))^{-\frac{1}{2}} S_y(\nu) \text{diag}(S_y(\nu))^{-\frac{1}{2}}\)

Frequency domain detection hypothesis test - \(C_y\)

\(\mathcal{H}_0 : C_y = I_M\) (pure noise) vs \(\mathcal{H}_1 : C_y \neq I_M\) (signal + noise). Use frequency domain estimators of \(C_y\) to test if \(u_n = 0\).
Introduction - Signal detection context

High dimensional regime: \(K \) fixed \(\ll M, N \to +\infty \)
Introduction - Signal detection context

High dimensional regime: $K \text{ fixed } \ll M, N \to +\infty$

Relevant large dimensional regime in econometrics
- late 90’s: Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context
Introduction - Signal detection context

High dimensional regime: K fixed $\ll M, N \to +\infty$

Relevant large dimensional regime in econometrics
- late 90’s: Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing
- finite $K \times \mathcal{O}(1)$ signal eigenvalues vs $M \times \mathcal{O}(1)$ noise eigenvalues
- $\text{SNR} \ \rho = \frac{\mathbb{E} \|u_n\|^2}{\mathbb{E} \|v_n\|^2} = \mathcal{O}\left(\frac{1}{M}\right)$ is of special interest.
High dimensional regime: K fixed $\ll M, N \to +\infty$

Relevant large dimensional regime in econometrics
- late 90’s: Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing
- finite $K \times O(1)$ signal eigenvalues vs $M \times O(1)$ noise eigenvalues
- $\text{SNR } \rho = \frac{\mathbb{E}\|u_n\|^2}{\mathbb{E}\|v_n\|^2} = O\left(\frac{1}{M}\right)$ is of special interest.

Important existing work: so-called spiked model, static / narrowband models
(additive noise is temporally and spatially white and signal is $u_n = H_0 \epsilon_n$)
Introduction - Signal detection context

High dimensional regime: K fixed $\ll M, N \to +\infty$

Relevant large dimensional regime in econometrics
- late 90's: Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing
- finite $K \times O(1)$ signal eigenvalues vs $M \times O(1)$ noise eigenvalues
- $\text{SNR } \rho = \frac{\mathbb{E} \|u_n\|^2}{\mathbb{E} \|v_n\|^2} = O\left(\frac{1}{M}\right)$ is of special interest.

- Important existing work: so-called spiked model, static / narrowband models (additive noise is temporally and spatially white and signal is $u_n = H_0 \epsilon_n$)
- Considerable work still needed for dynamic / wideband models
High dimensional regime: \(K \) fixed \(\ll M, N \to +\infty \)

Relevant large dimensional regime in econometrics
- late 90’s: Generalized dynamic linear factor models
- other underlying assumptions are not relevant in our context

Relevant large dimensional regime in array processing
- finite \(K \times O(1) \) signal eigenvalues vs \(M \times O(1) \) noise eigenvalues
- \(\text{SNR} \ \rho = \frac{\mathbb{E}\|u_n\|^2}{\mathbb{E}\|v_n\|^2} = O\left(\frac{1}{M}\right) \) is of special interest.

- Important existing work: so-called spiked model, static / narrowband models (additive noise is temporally and spatially white and signal is \(u_n = H_0 \epsilon_n \))
- Considerable work still needed for dynamic / wideband models
- Temporal approaches also possible, but frequency ones turn out to be simpler.
Fourier frequencies set: \(\mathcal{V}_N = \{0, \frac{1}{N}, \ldots, \frac{N-1}{N}\} \)
Introduction - Notations & Smoothed periodogram estimator

Fourier frequencies set: $\mathcal{V}_N = \{0, \frac{1}{N}, \ldots, \frac{N-1}{N}\}$

Finite Fourier transform:

$$\xi_y(\nu) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n e^{-i2\pi \nu (n-1)}$$
Fourier frequencies set: \(\mathcal{V}_N = \{0, \frac{1}{N}, \ldots, \frac{N-1}{N}\} \)

Finite Fourier transform:

\[
\xi_y(\nu) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n e^{-i2\pi \nu (n-1)}
\]

Smoothed periodogram estimator of the spectral density matrix:

\[
\hat{S}_y(\nu) = \frac{1}{B+1} \sum_{b=-B/2}^{B/2} \xi_y \left(\nu + \frac{b}{N} \right) \xi_y \left(\nu + \frac{b}{N} \right)^* \quad (B: \text{smoothing span})
\]
Fourier frequencies set: $\mathcal{V}_N = \{0, \frac{1}{N}, \ldots, \frac{N-1}{N}\}$

Finite Fourier transform:
\[
\xi_y(\nu) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n e^{-i2\pi \nu(n-1)}
\]

Smoothed periodogram estimator of the spectral density matrix:
\[
\hat{S}_y(\nu) = \frac{1}{B+1} \sum_{b=-B/2}^{B/2} \xi_y(\nu + \frac{b}{N}) \xi_y\left(\nu + \frac{b}{N}\right)^* \quad (B: \text{smoothing span})
\]

Estimator of the spectral coherency matrix:
\[
\hat{C}_y(\nu) = \text{diag}(\hat{S}_y(\nu))^{-\frac{1}{2}} \hat{S}_y(\nu) \text{diag}(\hat{S}_y(\nu))^{-\frac{1}{2}}
\]
Main result on \hat{C}_y

High dimensional regime: consider $B := B(N)$, $M := M(N)$ such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$
Main result on \hat{C}_y

High dimensional regime: consider $B := B(N)$, $M := M(N)$ such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$

Theorem - Wishart approximation of \hat{C}_y

Under proper technical assumptions on the signal and noise, there exists a $M \times (B + 1)$ random matrix $X(\nu)$ with i.i.d. $\mathcal{N}(0, 1)$ entries such that

$$\max_{\nu \in \mathcal{V}_N} \left\| \hat{C}_y(\nu) - \Xi(\nu)^{\frac{1}{2}} \frac{X(\nu)X(\nu)^*}{B + 1} \Xi(\nu)^{\frac{1}{2}} \right\| \xrightarrow{a.s. \ N \to \infty} 0 \quad (1)$$

where $\Xi(\nu) = S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} + I_M$ and $H(\nu) := \sum_{k=0}^{+\infty} H_k e^{-i2\pi \nu k}$
Main result on \hat{C}_y

High dimensional regime: consider $B := B(N)$, $M := M(N)$ such that

$$M, B, N \xrightarrow{N \to \infty} +\infty, \quad \frac{B}{N} \xrightarrow{N \to \infty} 0, \quad \frac{M}{B} \xrightarrow{N \to \infty} c \in (0, 1)$$

Theorem - Wishart approximation of \hat{C}_y

Under proper technical assumptions on the signal and noise, there exists a $M \times (B + 1)$ random matrix $X(\nu)$ with i.i.d. $\mathcal{N}_C(0, 1)$ entries such that

$$\max_{\nu \in \mathcal{V}_N} \left\| \hat{C}_y(\nu) - \Xi(\nu) \frac{1}{2} \frac{X(\nu)X(\nu)^*}{B + 1} \Xi(\nu)^{\frac{1}{2}} \right\| \xrightarrow{a.s.} 0$$

$$N \to \infty$$

where $\Xi(\nu) = S_\nu(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_\nu(\nu)^{-\frac{1}{2}} + I_M$ and $H(\nu) := \sum_{k=0}^{+\infty} H_k e^{-i2\pi \nu k}$

Key idea:
- $\Xi(\nu)$ fixed rank K perturbation of the identity matrix. This is not the case with temporal approaches.
- first order behaviour of $\Xi(\nu)^{\frac{1}{2}} \frac{X(\nu)X(\nu)^*}{B+1} \Xi(\nu)^{\frac{1}{2}}$ known.
Simulation in the pure noise case ($K = 0$)

- $K = 0$ ($y_n = v_n$ as MA(1)), $M = 100$, $B = 200$, $N = 4000$
- asymptotically, eigenvalues of $\hat{C}_y(\nu) \in [(1 - \sqrt{c})^2, (1 + \sqrt{c})^2]$ (Marchenko & Pastur, 1967)
- good fit even for small dimensions (20 realisations)
Application - Spectral behaviour of \hat{C}_y

Recall $\Xi(\nu) = S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} + I_M \in \mathbb{C}^{M \times M}$, rank K.
Recall $\Xi(\nu) = S_v(\nu) - \frac{1}{2} H(\nu) H(\nu)^* S_v(\nu) - \frac{1}{2} + I_M \in \mathbb{C}^{M \times M}$, rank K.
Define $\nu^*_N \in \mathcal{V}_N$ such that:

$$\nu^*_N \in \arg\max_{\nu \in \mathcal{V}_N} \lambda_1 \left(S_v(\nu) - \frac{1}{2} H(\nu) H(\nu)^* S_v(\nu) - \frac{1}{2} \right)$$
Application - Spectral behaviour of \hat{C}_y

Recall $\Xi(\nu) = S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} + I_M \in \mathbb{C}^{M \times M}$, rank K. Define $\nu^*_N \in \mathcal{V}_N$ such that:

$$\nu^*_N \in \text{argmax} \quad \lambda_1 \left(S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} \right)$$

Assumption - Spike

For all $k \in \{1, \ldots, K\}$, there exists $\gamma_k > 0$ such that

$$\lambda_k \left(S_v(\nu^*_N)^{-\frac{1}{2}} H(\nu^*_N) H(\nu^*_N)^* S_v(\nu^*_N)^{-\frac{1}{2}} \right) \xrightarrow{N \to \infty} \gamma_k$$
Application - Spectral behaviour of \hat{C}_y

Recall $\Xi(\nu) = S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} + I_M \in \mathbb{C}^{M \times M}$, rank K.

Define $\nu_N^* \in V_N$ such that:

$$\nu_N^* \in \argmax_{\nu \in V_N} \lambda_1 \left(S_v(\nu)^{-\frac{1}{2}} H(\nu) H(\nu)^* S_v(\nu)^{-\frac{1}{2}} \right)$$

Assumption - Spike

For all $k \in \{1, \ldots, K\}$, there exists $\gamma_k > 0$ such that

$$\lambda_k \left(S_v(\nu_N^*)^{-\frac{1}{2}} H(\nu_N^*) H(\nu_N^*)^* S_v(\nu_N^*)^{-\frac{1}{2}} \right) \xrightarrow{N \to \infty} \gamma_k$$

Corollary - Behaviour of the spectrum of $\hat{C}_y(\nu)$

Under proper technical assumptions, for all $k = 1, \ldots, K$ and all $\nu \in V_N$,

$$\lambda_k \left(\hat{C}_y(\nu_N^*) \right) \xrightarrow{\text{a.s.}} \begin{cases} \frac{(\gamma_k+1)(\gamma_k+c)}{\gamma_k} > (1 + \sqrt{c})^2 & \text{if } \gamma_k > \sqrt{c} \\ (1 + \sqrt{c})^2 & \text{if } \gamma_k \leq \sqrt{c} \end{cases}$$

whereas

$$\lambda_{K+1} \left(\hat{C}_y(\nu_N^*) \right) \xrightarrow{\text{a.s.}} (1 + \sqrt{c})^2$$
Application - Spectral behaviour of \hat{C}_Y - Simulation

- rank one signal ($h(\nu)$ vector) + M-dimensional noise MA(1) process.
- $K=1$, same $M = 100$, $B = 200$, $N = 4000$, $c = 0.5 \Rightarrow \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \Rightarrow$ detection for low frequencies
Application - Spectral behaviour of \hat{C}_y - Simulation

- rank one signal $(h(\nu) \text{ vector}) + M$-dimensional noise MA(1) process.
- $K=1$, same $M = 100$, $B = 200$, $N = 4000$, $c = 0.5 \implies \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \implies$ detection for low frequencies

\begin{align*}
\|h(\nu)\|^2 &\quad s_\nu(\nu)/M \\
\lambda_1(\nu) &\quad \sqrt{M/B}
\end{align*}
Application - Spectral behaviour of \hat{C}_y - Simulation

- rank one signal $(h(\nu)$ vector) + M-dimensional noise MA(1) process.
- $K=1$, same $M = 100$, $B = 200$, $N = 4000$, $c \approx 0.5 \Rightarrow \sqrt{c} \approx 0.7$
- separation starting at $SNR := \gamma_1 = \sqrt{c} \Rightarrow$ detection for low frequencies

![Graphs showing spectral behaviour](image-url)
Application - Simulation - Varying parameters

- $M = 20, B = 40, N = 4000, c = 0.5, \text{ ma parameter } = 0.6, \text{ medium SNR.}$
- as $\frac{B}{N} \to 0$, the finite sample results are closer to the asymptotics

![Graphs showing varying parameters](image-url)

Figure – $B/N = 0.5$ **Figure** – $B/N = 0.1$ **Figure** – $B/N = 0.01$
Application - Spectral detection testing

\[\mathcal{H}_0 : y_n = v_n \quad \text{vs} \quad \mathcal{H}_1 : y_n = u_n + v_n \]
Application - Spectral detection testing

\[\mathcal{H}_0 : y_n = v_n \quad \text{vs} \quad \mathcal{H}_1 : y_n = u_n + v_n \]

New frequency domain detection algorithm

Consider, for some threshold \(\epsilon > 0 \) the following procedure:

\[
\begin{aligned}
&\lambda_1(\hat{C}_y(\nu^*_N)) < (1 + \sqrt{c})^2 + \epsilon \quad \text{absence of} \ u \ \text{is decided} \\
&\lambda_1(\hat{C}_y(\nu^*_N)) > (1 + \sqrt{c})^2 + \epsilon \quad \text{presence of} \ u \ \text{is decided}
\end{aligned}
\]

This leads to define the test statistics:

\[
T_\epsilon = \mathbb{1}
\begin{pmatrix}
(1 + \sqrt{c})^2 + \epsilon, +\infty \\
\max_{\nu \in \mathcal{V}_N} \| \hat{C}_y(\nu) \|
\end{pmatrix}
\]
Application - Spectral detection testing

\[\mathcal{H}_0 : y_n = v_n \quad \text{vs} \quad \mathcal{H}_1 : y_n = u_n + v_n \]

New frequency domain detection algorithm

Consider, for some threshold \(\epsilon > 0 \) the following procedure:

\[
\begin{align*}
\lambda_1(\hat{C}_y(\nu_N^*)) &< (1 + \sqrt{c})^2 + \epsilon & \text{absence of } u \text{ is decided} \\
\lambda_1(\hat{C}_y(\nu_N^*)) &> (1 + \sqrt{c})^2 + \epsilon & \text{presence of } u \text{ is decided}
\end{align*}
\]

This leads to define the test statistics:

\[
T_\epsilon = \mathbb{1}((1+\sqrt{c})^2+\epsilon, +\infty) \left(\max_{\nu \in \mathcal{V}_N} \left\| \hat{C}_y(\nu) \right\| \right)
\]

Theorem - Spectral detection testing

Under proper assumptions, the previous test is consistent iif \(\gamma_1 > \sqrt{c} \) and \(\epsilon \) small enough.
Conclusion

Contributions:

- In the **high dimensional regime**, \hat{C}_y is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix: **spike model**
Conclusion

Contributions:

- In the **high dimensional regime**, \(\hat{\mathbf{C}}_y \) is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix: **spike model**
- Well known results provide first order behaviour of its eigenvalues
Conclusion

Contributions:

- In the **high dimensional regime**, \hat{C}_y is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix: **spike model**

- Well known results provide first order behaviour of its eigenvalues

- Our detection algorithm is based on a phase transition phenomenon of the largest eigenvalues of $\hat{C}_y(\nu)$:
Conclusion

Contributions :

- In the **high dimensional regime**, \hat{C}_y is approximately a Wishart random matrix with covariance matrix as finite rank perturbation of the identity matrix: **spike model**

- Well known results provide first order behaviour of its eigenvalues

- Our detection algorithm is based on a phase transition phenomenon of the largest eigenvalues of $\hat{C}_y(\nu)$:
 - weak energy signals \implies eigenvalue absorbed in the noise bulk
 - high energy signals \implies eigenvalue separated from the noise bulk