Risk factors for pain and functional impairment in people with knee and hip osteoarthritis: a systematic review and meta-analysis

Sandep Sandhar, Toby O Smith, Kavanbir Toor, Franklyn Howe, Nidhi Sofat

ABSTRACT

Objective To identify risk factors for pain and functional deterioration in people with knee and hip osteoarthritis (OA) to form the basis of a future 'stratification tool' for OA development or progression.

Design Systematic review and meta-analysis.

Methods An electronic search of the literature databases, Medline, Embase, CINAHL, and Web of Science (1990–February 2020), was conducted. Studies that identified risk factors for pain and functional deterioration to knee and hip OA were included. Where data and study heterogeneity permitted, meta-analyses presenting mean difference (MD) and ORs with corresponding 95% CIs were undertaken. Where this was not possible, a narrative analysis was undertaken. The Downs & Black tool assessed methodological quality of selected studies before data extraction. Pooled analysis outcomes were assessed and reported using the Grading of Reccomendation, Assessment, Development and Evaluation (GRADE) approach.

Results 82 studies (41 810 participants) were included. On meta-analysis: there was moderate quality evidence that knee OA pain was associated with factors including: Kellgren and Lawrence ≥2 (MD: 2.04, 95% CI 1.48 to 2.81; p<0.01), increasing age (MD: 1.46, 95% CI 0.26 to 2.66; p=0.02) and whole-organ MRI scoring method (WORMS) knee effusion score ≥1 (OR: 1.35, 95% CI 0.99 to 1.83; p=0.05). On narrative analysis: knee OA pain was associated with factors including WORMS meniscal damage ≥1 (OR: 1.83). Predictors of joint pain in hip OA were large acetabular bone marrow lesions (BML; OR: 5.23), chronic widespread pain (OR: 5.02) and large hip BMLs (OR: 4.43).

Conclusions Our study identified risk factors for clinical pain in OA by imaging measures that can assist in predicting and stratifying people with knee/hip OA. A ‘stratification tool’ combining verified risk factors that we have identified would allow selective stratification based on pain and structural outcomes in OA.

INTRODUCTION

Disability worldwide caused by OA increased from 10.5 million to 17.1 million, an increase of 62.9%. Current OA treatment lacks any disease-modifying treatments with a predominance of targeting symptoms rather than modify underlying disease. The clinical symptoms of OA can be assessed using several questionnaires, the most common of which is the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC).

Although pain is recognised as an important outcome measure in OA, it is not clear what the optimal assessment tool is in OA and how they relate to other risk factors.

OA has various subtypes and since current therapies cannot prevent OA progression, early detection and stratification of those at risk may enable effective presymptomatic interventions. Several methods are used to define, diagnose and measure OA progression, including imaging techniques (eg, plain radiography, CT and MRI). Plain radiography provides high contrast and high-resolution images for cortical and trabecular bone, but not for non-ossified structures (eg, synovial...
METHODS

This systematic review has been reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines.

Search strategy

A systematic search of the literature was undertaken from 1 January 1990 to 1 February 2020 using electronic databases: Medline (Ovid), Embase (Ovid), Medline, Web of Science and CINAHL (EBSCO). An example of the Embase search strategy of included search terms and Boolean operators is presented in online supplementary file 1. Unpublished literature databases including Clinicaltrials.gov, the WHO International Registry of Clinical Trials and OpenGrey were also searched.

Study identification

Studies were eligible for inclusion if they were a full-text article that satisfied all of the following:

1. One hundred or more participants analysed in the study (to increase power for comparisons).
2. Convincing definition of OA using American College of Rheumatology criteria,14 based on symptoms of sustained pain and stiffness in the affected joint, radiographic changes including osteophytes, cartilage loss, bone cysts/sclerosis and JSN, with normal inflammatory markers.
3. Abstract/title that must refer to pain and/or structure in relation to OA as a primary disease.
4. Knee or hip OA.

5. Pain and/or function scores.
6. Joint imaged.
7. Minimum 6-month follow-up of pain/function outcome measures.

Non-English studies, letters, conference articles and reviews were excluded.

The titles and abstracts were reviewed by one reviewer (SS). The full text for each paper was assessed for eligibility by one reviewer (SS) and double-checked by a second (TOS). Any disagreements were addressed through discussion and adjudicated by a third reviewer (NS or FH). All studies that satisfied the criteria were included in the review.

Quality assessment

To assess the risk of bias and the power of the methodology, the Downs & Black (D&B) tool was applied.15 These tools assessed the following aspects of each study: reporting quality, external validity, internal validity-bias, selection bias and power. The modified D&B tool was used. Accordingly, the 27-item randomised controlled trial (RCT) version was used for RCTs while the 18-item non-RCT version was used for non-RCT designs (online supplementary file 2). Both 18-item and 27-item tools have been demonstrated to be valid and reliable tools to assess RCT and non-RCT papers.14 Critical appraisal was performed by one reviewer (SS) and verified by a second (KT). Any disagreements were dealt with by discussion and adjudicated through a third reviewer (TOS). In previous literature, D&B score ranges were given corresponding quality: excellent (scored 26–28); good (scored 20–25); fair (scored 15–19); and poor (scored <14).14 Item 4 on the non-RCT and item 5 from the RCT tool are scored two points; hence, the total scores equate to 19 and 28 points, respectively. The D&B tool was used to exclude poor quality studies with a score 15/28 or lower in RCTs and 10/19 or lower in non-RCTs.

Data extraction

Data were extracted including: subject demographic data, study design, pain and function outcome measures, imaging used, OA severity scores, change in pain and function outcomes and change in OA severity scores. After all relevant data had been extracted, authors of these papers were approached to try and attain individual patient data related to baseline and change in pain, function and structural scores for each study. No data were received from authors to inform this analysis.

Outcomes

The primary outcome was to determine the development of pain and functional impairment for those with knee and hip OA. The secondary outcome was to determine which factors are associated with structural changes in knee and hip OA.

Data analysis

All data were assessed for study heterogeneity through scrutiny of the data extraction tables. These identified...
that there was minimum study-based heterogeneity based on: population, study design and interventions-exposure variabilities for given outcomes. Where there was study heterogeneity, a narrative analysis was undertaken. In this instance, the ORs of all predictor variables were tabulated with a range of OR presented. Where there was sufficient data to pool (two or more studies with data available to analyse) and study homogeneity evident, a pooled meta-analysis was deemed appropriate. As interpreted by the Cochrane Collaboration,\(^{16}\) when I\(^2\) was 50% or greater representing high-statistical heterogeneity, a random-effect model meta-analysis was undertaken. When I\(^2\) was less than this figure, a fixed effects model approach was adopted. Continuous outcomes were assessed using mean difference (MD) scores of measures for developing severe OA, whereas dichotomous variables were assessed through OR data. All data were presented with 95% CIs and forest plots.

Due to the presentation of the data, there were minimal data to permit meta-analyses. Where there were insufficient data to pool the analysis (data only available from one study), a narrative analysis was undertaken to assess risk factors for the development of increased pain and functional impairment. Planned subgroup analyses included determine whether there was a difference in risk factors based on: (1) anatomical regions (ie, difference between hip OA and knee OA); (2) geographical region. Analyses were undertaken on STATA V.14.0 (Stata Corp) with forest plots constructed using RevMan Review Manager (RevMan; Computer program; V.5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.)

Patient and public involvement

The research team acknowledges the assistance of both the OA tech network and Engineering and Physical Sciences Research Council. The authors also acknowledge receiving assistance from a meeting that enabled the cohort characteristics (96% and interventions (50 studies; 98%), adoption of reliable/valid outcome measures (51 studies; 100%) and reported high compliance to study processes (37 studies; 73%). Recurrent weaknesses included recruiting cohorts which may not have been reflective of the wider population (19 studies; 37%), in clinic settings which may not have represented typical clinical practice (21 studies; 41%) and poorly adjusting for potential confounders in analyses (26 studies; 51%).

RESULTS

Search strategy

The results of the search strategy are presented in figure 1. In total, 11010 citations were identified. Of these, 141 papers were deemed potentially eligible and screened at full-text level. Of these, 82 met the selected criteria and were included.\(^{17-98}\)

Characteristics of included studies

A summary of the included studies is presented as table 1. This consisted of 31 non-RCTs (27 observational cohort studies/four case-control studies) and 51 RCTs.

In total, 45767 knees were included in the analysis. This consisted of 13870 men and 23497 women; 4 studies did not report the gender of their cohorts.\(^{17-20}\) Thirty-six studies were undertaken in the USA; 30 were undertaken in Europe; 9 were conducted in Australasia and 7 in Asia. Mean age of the cohorts was 61.7 years (SD: 7.56); 36 studies did not report age.\(^{17-21,34}\) Mean follow-up period was 35.4 months (SD: 33.6). The most common measures of pain were WOMAC pain (n=55; 50%) and Visual Analogue Scale (VAS) Pain (n=21; 19%). The most frequently used measures of function were WOMAC function (n=52; 44%), physical tests (n=16; 14%) and SF-36 (n=10; 9%).

Methodological quality assessment

The methodological quality of the evidence was moderate (online supplementary file 2). Based on the results of the D&B non-RCT tool (31 studies; online supplementary file 2), recurrent strengths of the evidence were clear description of the participants recruited (29 studies; 94%), the representative nature that participants were to the population (31 studies; 100%), and variability in data presented for the main outcomes (31 studies; 100%). Furthermore, the main outcome measures were deemed reliable and valid in all studies (31 studies; 100%) with 89% (27 studies; 87%) studies adopting appropriate statistical analyses for their datasets. Recurrent limitations were not clearly reporting the main findings (20 studies; 65%), issues regarding the representation of the cohort from the wider public (18 studies; 58%) and only 6 studies (19%) basing their sample sizes on an a priori power calculation.

The results from the D&B RCT checklist (51 studies; online supplementary file 3) similarly reported findings with strength of the evidence around clear reporting of the cohort characteristics (49 studies; 96%) and interventions (50 studies; 98%), adoption of reliable/valid outcome measures (51 studies; 100%) and reported high compliance to study processes (37 studies; 73%). Recurrent weaknesses included recruiting cohorts which may not have been reflective of the wider population (19 studies; 37%), in clinic settings which may not have represented typical clinical practice (21 studies; 41%) and poorly adjusting for potential confounders in analyses (26 studies; 51%).

Knee OA

Narrative review

Findings from the narrative analysis found the following were predictors for worsening joint pain: KL3 or 4 in women (OR: 11.3; 95% CI 6.2 to 20.4), a WORMS lateral meniscal cyst (MC) score of 1 (OR: 4.3; 95% CI 1.2 to 15.4), presence of chronic widespread pain (CWP; OR: 3.2; 95% CI 1.9 to 5.3), increase of ≥2 in WORMS BML.
score after 15 months (OR: 3.2; 95% CI 1.5 to 6.8), meniscal maceration (OR: 2.8; 95% CI 1.8 to 4.4) or damage \(\geq 2 \) in WORMS (OR: 1.8; 95% CI 0.9 to 3.6). We also found that the following were the highest predictors of worsening function in people with knee OA: KL of \(\leq 3 \) (OR: 3.3; 95% CI 0.7 to 15.9), modified KL 3a (OR: 1.7; 95% CI 0.7 to 3.8), modified KL 4a (OR: 1.5; 95% CI 0.7 to 3.0), presence of osteophytes (OR: 1.3; 95% CI 0.7 to 2.4), female gender (OR: 1.8 (95% CI 1.1 to 3.0) to OR: 2.1 (95% CI 1.2 to 3.5)), ethnicity (OR: 1.03; 95% CI 0.59 to 1.83) and synovitis \(\geq 1 \) (OR: 1.3; 95% CI 0.8 to 1.9).

Meta-analysis

Two studies were identified where data could be evaluated for OA risk factors by meta-analysis.\(^{41,67}\) Three variables significantly associated with the development of knee OA. As illustrated in table 2 and figure 2A–D, age (MD: 1.46, 95% CI 0.26 to 2.66; p=0.02; n=823), KL of \(\geq 2 \) (MD: 2.04, 95% CI 1.48 to 2.81; p<0.01; n=823) and knee effusion score \(\geq 1 \) (OR: 1.35, 95% CI 0.99 to 1.83; p=0.05; n=823) were all associated with the development of knee OA based on moderate quality evidence. The variables of gender and BMI were not shown to be significantly associated with the knee OA development (table 2).

Due to the limited availability of data, it was not possible to conduct the planned subgroup analyses to determine whether there was a difference in risk factors based on anatomical or geographical regions.
Study design	Number joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures	
Ahedi et al.	Observational cohort	198 hips	111:87	Australia	UTD	132	WOMAC Pain	
Akelman et al.	RCT	107 knee	UTD	USA	23.5	84	KOOS pain; SF-36 Physical; AP laxity; IKDC2000	
Amin et al.	Observational cohort	265 knees	152:113	USA	67	30	VAS Pain	
Antony et al.	Observational cohort	463 knees	245:218	USA	63	24	WOMAC Pain	
Arden et al.	RCT	474 knees	185:289	UK	64	36	WOMAC Pain; WOMAC Function	
Ayral et al.	RCT	665 knees	259:406	Australia, Belgium, Canada, Denmark, Finland, France, Hungary, Norway, Spain, UK, USA	61.3	12	WOMAC Pain	WOMAC Function
Baselga Garcia-Escudero and Miguel Hernández Trillos	Observational cohort	118 knees	43:75	Spain	59.1	24	NRS; WOMAC Pain; WOMAC Function	
Bevers et al.	Observational cohort	125 knees	57:68	The Netherlands	57	24	WOMAC Pain; WOMAC Function	
Bingham et al.	RCT	2483 knees	735:1748	USA	UTD	24	WOMAC Pain; LEFS	
Birmingham et al.	Observational cohort	126 knees	100:26	Canada	47.5	24	KOOS Function; SF-36 Physical; SF-36 Function	
Bisicchia et al.	RCT	150 knees	47:103	Italy	UTD	12	VAS Pain; SF-36	
Brandt et al.	RCT	431 knees	0:431	USA	54.9	30	WOMAC Pain; VAS Pain	
Brown et al.	RCT	690 knees	270:420	USA	UTD	32 weeks	WOMAC Pain; NRS weekly pain	
Brown et al.	RCT	621 hips	237:384	USA	UTD	32 weeks	WOMAC Pain; WOMAC Function	

Continued
Study design	Number joints (hip/knee)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
RCT	319 knee	0:319	Belgium	64	36	WOMAC Pain	WOAC Function
RCT	100 knees	28:72	Australia	26	120	American Knee Society; WOMAC Pain	WOAC Function
Study design	Number joints (hip/knee)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
RCT	111 hips	96:90	USA	UTD	UTD	WOMAC Pain	WOAC Function
Case control	186 hips	88:117	France	65	48	WOMAC Pain; NRS walking pain; KOOS Pain	WOAC Function
Case control	3132 knees	UTD	USA	UTD	UTD	WOMAC Pain	WOAC Function
Case control	507 hips	202:305	France	UTD	UTD	İKSS Pain	Lequesne Index
Observational cohort	478 knees	147:331	Australia	UTD	UTD	IWOMAC Pain	NA
Observational cohort	1412 knees	611:801	Austria	UTD	UTD	IWOMAC Pain	NA
Observational cohort	439 knees	131:208	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	3489 knees	867:1206	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	330 knees	111:2111	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	183 knees	112:71	Italy	UTD	UTD	IWOMAC Pain	NA
Observational cohort	4648 knees	918:1486	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	483 knees	185:2888	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	805 knees	416:289	UK	UTD	UTD	IWOMAC Pain	NA
RCT	112:71	112:71	Italy	UTD	UTD	IWOMAC Pain	NA
Case control	183 knees	112:71	Italy	UTD	UTD	IWOMAC Pain	NA
Observational cohort	4648 knees	918:1486	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	483 knees	185:2888	USA	UTD	UTD	IWOMAC Pain	NA
Observational cohort	805 knees	416:289	UK	UTD	UTD	IWOMAC Pain	NA

Table 1 Continued
Study design	Number joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
Hill et al^5	202 knees	102:100	Australia	61	12	KOOS Pain	KOOS Function and kinematic assessment
Hochberg et al^70	522 knees	84:438	France, Germany, Poland, Spain	62.7	24	WOMAC Pain	WOMAC Function
Hoeksma et al^71	109 hips	33:76	The Netherlands	72	6	WOMAC Pain; Huskisson's VAS; EQ-5D Pain	WOMAC Function; EQ-5D Function
Housman et al^39	391 knees	130:261	USA, Canada, France, UK, Germany	UTD	6	SF-36 Body Pain; Harris Hip Score; VAS Pain	SF-36 Function; Harris Hip Score; ROM
Huang et al^72	264 knees	39:93	Taiwan	62	6	WOMAC Pain	NA
Huizinga et al^73	Observational cohort	298 knees	The Netherlands	51	12	VAS Pain	Lequesne index; walking speed
Jin et al^6	413 knees	205:208	Australia	63.2	24	WOMAC Pain; VAS Pain	WOMAC Function
Kahn et al^74	Observational cohort	174 knees	USA	67.0	6	WOMAC Pain	WOMAC Function
Karsdal et al^38	2207 knees	773:1424	Denmark	UTD	24	WOMAC Pain	WOMAC Function
Katz et al^77	RCT	330 knees	USA	UTD	12	KOO Pain	WOMAC Function; SF-36 Function
Kim et al^75	RCT	352 knees	Republic of Korea	68.1	144	WOMAC	Knee Society Knee Score Function; ROM; UCLA Activity
Kinds et al^78	RCT	565 knees	The Netherlands	UTD	60	WOMAC Pain	WOMAC Function

Table 1 Continued

Study design	Number joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
Hellio le Graverand et al^9	1457 knees	343:1114	USA, Canada, Australia, Belgium, Czech Republic, Germany, Hungary, Italy, Poland, Russian Federation, Slovakia, Spain, Argentina Peru	61.0	180	Oxford Knee Score; American Knee Society Score; Tegner	Oxford Knee Score; American Knee Society Score; Tegner
Henriksen et al^40	RCT	157 knees	Denmark	UTD	24	WOMAC Pain	WOMAC Function
Hill et al^5	RCT	202 knees	Australia	61	12	KOO Pain	KOOS Function and kinematic assessment
Hochberg et al^70	RCT	522 knees	France, Germany, Poland, Spain	62.7	24	WOMAC Pain	WOMAC Function
Hoeksma et al^71	RCT	109 hips	The Netherlands	72	6	WOMAC Pain; Huskisson's VAS; EQ-5D Pain	WOMAC Function; EQ-5D Function
Housman et al^39	RCT	391 knees	USA, Canada, France, UK, Germany	UTD	6	SF-36 Body Pain; Harris Hip Score; VAS Pain	SF-36 Function; Harris Hip Score; ROM
Huang et al^72	RCT	264 knees	Taiwan	62	6	WOMAC Pain	NA
Huizinga et al^73	Observational cohort	298 knees	The Netherlands	51	12	VAS Pain	Lequesne index; walking speed
Jin et al^6	RCT	413 knees	Australia	63.2	24	WOMAC Pain; VAS Pain	WOMAC Function
Kahn et al^74	Observational cohort	174 knees	USA	67.0	6	WOMAC Pain	WOMAC Function
Karsdal et al^38	RCT	2207 knees	Denmark	UTD	24	WOMAC Pain	WOMAC Function
Katz et al^77	RCT	330 knees	USA	UTD	12	KOO Pain	WOMAC Function; SF-36 Function
Kim et al^75	RCT	352 knees	Republic of Korea	68.1	144	WOMAC	Knee Society Knee Score Function; ROM; UCLA Activity
Kinds et al^78	RCT	565 knees	The Netherlands	UTD	60	WOMAC Pain	WOMAC Function

Continued
Study design	Number of joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures	
Kongtharvonskul et al\(^{36}\)	RCT	148 knees	25:123	Thailand	UTD	6	WOMAC Pain; VAS Pain	
Lequesne et al\(^{76}\)	RCT	163 hips	102:61	France	63.2	24	VAS Pain; Lequesne Index	
Lohmander et al\(^{35}\)	RCT	170 knees	52:116	Bulgaria Canada Croatia Finland Germany Poland Serbia Africa Sweden USA	UTD	12	WOMAC Pain; WOMAC Function	
Maheu et al\(^{8}\)	RCT	345 hips	159:186	France	62.2	36	WOMAC Pain; Global Hip Pain; WOMAC Function; Lequesne Index; Global handicap NRS	
Marsh et al\(^{34}\)	RCT	168 knees	57:112	Canada	UTD	24	WOMAC	WOMAC
McAlindion et al\(^{33}\)	RCT	146 knees	57:89	USA	UTD	24	WOMAC	WOMAC Function; Physical Test
Messier et al\(^{32}\)	RCT	316 knees	89:227	USA	UTD	18	WOMAC	WOMAC Function; Physical Test
Messier et al\(^{77}\)	RCT	142 knees	37:105	USA	68.5	18	WOMAC	WOMAC Function; Physical Test
Messier et al\(^{78}\)	RCT	454 knees	128:325	USA	66	18	WOMAC	WOMAC Function; Physical Test; SF-36 Physical
Michel et al\(^{31}\)	RCT	300 knees	146:154	Switzerland	UTD	24	WOMAC	WOMAC Function; Physical Test
Muraki et al\(^{79}\)	Observational cohort	1558 knees	553:1005	Japan	67.0	40	WOMAC	WOMAC Function
Muraki et al\(^{80}\)	Observational cohort	1525 knees	546:979	Japan	67.0	40	WOMAC	WOMAC Function
Pavelka et al\(^{30}\)	RCT	277 knees; 117 hips	109:285	Czech Republic	58	60	NA	Lequesne Index
Pavelka et al\(^{81}\)	RCT	202 knees	45:157	Czech Republic	UTD	36	WOMAC	WOMAC Function; Lequesne Index
Pham et al\(^{29}\)	Observational cohort	301 knees	97:204	France	UTD	12	VAS Pain	Lequesne Index

Continued
Study design	Number joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
Podsiadlo et al²⁸	Observational cohort	114 knees	49:65 Australia			WOMAC Pain	WOMAC Function
Rat et al²⁹	RCT	300 knees	118:182 France		67	SF-36 Body Pain; OAKHQOL; VAS Pain	Lequense Index; SF-36 Physical Activity
Raynauld et al³⁰	RCT	123 knees	44:79 Canada		24	WOMAC Pain	WOMAC Function
Reginster et al³¹	RCT	212 knees	50:162 Belgium		36	WOMAC Pain	WOMAC Function
Reginster et al³²	RCT	1371 knees	425:946 Australia Austria Belgium Czech Republic	62.9	36	WOMAC Pain; VAS Pain	WOMAC Function
Riddle and Jiranek	Observational cohort	467 knees	209:258 USA		24	KOOS Pain	WOMAC Function
Romagnoli et al³³	Observational cohort	105 knees	16:69 Italy		67.7	Knee Society Score Clinical; VAS Pain	Knee Society Score Function; ROM
Roman-Blas et al³⁴	RCT	158 knees	26:132 Spain		6	WOMAC Pain; VAS Pain	WOMAC Function
Rozendaal et al³⁵	RCT	222 hips	68:154 The Netherlands		24	WOMAC Pain	WOMAC Function
Sanchez-Ramirez et al³⁶	Observational cohort	186 knees	59:127 Canada		61	WOMAC Pain	WOMAC Function
Sawitzke et al³⁷	RCT	662 knees	215:447 USA		57	WOMAC Pain	WOMAC Function
Table 1 Continued

Study design	Number of joints (hip/knees)	Gender (male:female)	Country origin	Mean age (years)	Follow-up duration (months)	Pain outcome measures	Functional outcome measures
Skou et al\(^87\)	1682 knees	434:818	Denmark	62.2	84	WOMAC Pain	PASE; Physical Test
Sowers et al\(^88\)	724 knees	0:363	USA	56	132	NA	WOMAC Function; Physical Test
Spector et al\(^89\)	284 knees	115:169	UK	63.3	12	WOMAC Pain	WOMAC Function
Sun et al\(^90\)	121 knees	31:90	Taiwan	63	6	WOMAC Pain; VAS Pain	WOMAC Function; Lequesne Index; Physical Test
Urish et al\(^92\)	336 knees	96:67	USA	UTD	36	WOMAC Pain	WOMAC Function
Valdes et al\(^17\)	860 knees; 928 hips	UTD	UK	UTD	38	WOMAC Pain	NA
Van der Esch et al\(^98\)	402 knees	64:137	The Netherlands	61.2	24	NRS Pain	WOMAC Function; Physical Test
Weng et al\(^91\)	264 knees	26:106	Taiwan	64	12	VAS Pain	Lequesne Index; ROM; Physical Test
White et al\(^92\)	2110 knees	992:118	USA	61.0	84	VAS Pain	WOMAC Function
Witt et al\(^93\)	294 knees	70:154	Germany	64.0	12	WOMAC Pain; SF-36 Body Pain; VAS Pain	WOMAC Function; SF-36 Function
Yu et al\(^21\)	204 knees	74:130	Australia	UTD	12	KOOS Pain; VAS Pain	KOOS ADL; Physical Function
Yusuf et al\(^94\)	74 knees; 31 hips; 11 hip and knees	19:98	The Netherlands	60	72	WOMAC Pain; SF-36 Body Pain; Pain on movement	WOMAC Function; SF-36 Function

ADLs, activities of daily living; IKDC, International Knee Documentation Committee; KOOS, Knee Injury and Osteoarthritis Outcome Score; LEFS, Lower Extremity Functional Scale; NA, not applicable; NRS, Numerical Rating Scale; OAKHQOL, Osteoarthritis Knee and Hip quality of Life Questionnaire; PASE, Physical Activity Scale for the Elderly; RCT, randomised controlled trial; ROM, range of motion; SF-36, Short Form-36; UTD, unable to determine; VAS, Visual Analogue Scale; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.
Narrative analysis
This was based on low-quality evidence. There was no association between the development of hip BML and BMI or age. Predictors for worsening joint pain for people with hip OA included a large acetabular BML.

Table 2 Meta-analysis results: exhibit knee osteoarthritis

Variable	N	Effect estimate	P value	Statistical heterogeneity (I² %)	GRADE assessment
Gender	823	0.91 (0.48 to 1.72)*	0.78	87	Low-quality evidence†
Age	823	1.46 (0.26 to 2.66)	0.02	0	Moderate-quality evidence‡
KL ≥2	823	2.04 (1.48 to 2.81)	<0.01	35	Moderate-quality evidence‡
Knee effusion score ≥1	823	1.35 (0.99 to 1.83)	0.05	0	Moderate-quality evidence‡
BMI	823	−0.08 (−0.75 to 0.58)	0.81	0	Moderate-quality evidence‡

*Random effects model analysis.
†GRADE—outcomes downgraded one level due to risk of bias, two level due to imprecision and inconsistency.
‡GRADE—outcomes downgraded one level due to risk of bias.
BMI, body mass index; I², inconsistency squared; KL, Kellgren Lawrence Scale; N, number of participants in analysis; NE, not estimable.

Figure 2 (A) Forest plot to present the association between gender and presentation of knee osteoarthritis (OA). (B) Forest plot to present the association between age and presentation of knee OA. (C) Forest plot to present the association between knee effusion score greater or equal to 1 and presentation of knee OA. (D) Forest plot to present the association between body mass index and presentation of knee OA.
fied age and KL grade as predictive factors for developing hip OA. Our systematic review and meta-analysis identified risk factors associated with the development of hip BMLs and pain.

Meta-analysis

There were insufficient data to permit meta-analysis for the hip OA dataset.

DISCUSSION

Our systematic review and meta-analysis identified risk factors for knee and hip OA pain and structural damage based on evaluation of 82 studies. For the knee, increasing pain in knee OA was associated with KL grade 3 or 4 in women, WORMS lateral MC, presence of CWP, increase of ≥2 in WORMS BML score after 15 months and meniscal maceration. In addition, KL <3, KL 3a, KL 4a, osteophyte presence and female gender were associated with worsening function in people with knee OA. On meta-analysis, age, radiological features (KL score of 2 or more) and knee effusion were associated with development and/or progression of knee OA.

Our meta-analysis identified risk factors that are appreciated only when results were pooled together. These were namely WORMS-defined knee effusion score ≥1. To our knowledge, this is currently the largest and most up to date systematic review of its kind, reviewing 82 primary studies in 41,810 participants. Nonetheless, some risk factors from our meta-analysis have been recognised previously. For example, Silverwood et al reported previous injuries are associated to developing knee OA, which could not be included in the analysis.94 Consequently, the small dataset influenced the GRADE assessment that determined the evidence as low to moderate, restricting the strength of the associations of risk factors with OA development and progression. Further work may impact our confidence in the estimated effect, for both studies recruiting participants with hip and knee OA. Second, the eligibility criteria may have been too restrictive, resulting in limited papers including gait analysis or MOAKS. Wet biomarkers were not included in our analyses. Finally, the inability to pool data was partly attributed to variability in methods to report data. Standardising data collection and reporting are important in conducting meta-analyses. We believe the following should be undertaken to improve data pooling in future work: ensuring group comparisons in studies are selected from the same population (people with confirmed OA) to improve internal validity, observational studies should conduct a power analysis to determine sample sizes and all studies should include absolute frequency of events data rather than summary ORs. Such considerations will improve future meta-analyses to identify OA risk factors.

To conclude, our work helps to develop steps towards building a stratification tool for risk factors for knee OA pain and structural damage development. We also highlight the need for collection of core datasets based on defined domains, which has recently also been highlighted by the OMERACT-OARSI core domain set for knee and hip OA.13 Collection of future datasets based on standardised core outcomes will assist in more robust identification of risk factors for large joint OA.

Twitter Toby O Smith @tobyosmith

Contributors Conception and design; drafting of the article; critical revision of the article; final approval of the article: NS, FH, TOS and SS. Analysis and interpretation of the data; collection and assembly of data: TOS, SS and KT. Provision of study materials or patients: N/A. Statistical expertise: TOS. Obtaining of funding: administrative, technical, or logistic support: NS, TOS and FH.

Funding This study was funded by the Engineering and Physical Sciences Research Council under the reference code ‘EP/N027264/1’ and The Wellcome Trust ISSF award to NS (Grant number 204809/Z/16/Z).
Competition interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
Toby O Smith http://orcid.org/0000-0003-1673-2954
Nidhi Sofat http://orcid.org/0000-0002-6963-6475

REFERENCES
1 Cisternas MG, Murphy L, Sacks JJ, et al. Alternative methods for defining osteoarthritis and the impact on estimating prevalence in a US population-based survey. Arthritis Care Res 2016;68:574–80.
2 Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73:1323–30.
3 Wu Y, Goh EL, Wang D, et al. Novel treatments for osteoarthritis: an update. Open Access Rheumat 2018;10:135.
4 Bellamy N, Buchanan WW, Goldsmith CH, et al. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 1989;16:1823–40.
5 Kraus VB, Blanco FJ, Englund M, et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 2015;23:1233–41.
6 Jin X, Jones G, Cicuttini F, et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 2016;315:1005–13.
7 Hill CL, March LM, Atkin D, et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann Rheum Dis 2016;75:23–30.
8 Maheu E, Cadet C, Marty M, et al. Randomised, controlled trial of avocado-soybean unsaponifiable (Plascedine) effect on structure modification in hip osteoarthritis: the ERADIAS study. Ann Rheum Dis 2014;73:378–84.
9 Peterfy CG. Imaging techniques. In: Klippel J, Dieppe P, eds. Rheumatology. 2nd edn. Philadelphia: Mosby; 1998:1:1–14.
10 Kelgren JH, Lawrence JS. Radiological assessment of osteoarthritis. Ann Rheum Dis 1957;16:494–502.
11 Schipf D, Boers M, Biemra-Zeinstra SMA. Differences in descriptions of Kellgren and Lawrence grades of knee osteoarthritis. Ann Rheum Dis 2008;67:1034–6.
12 Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ magnetic resonance imaging score (wors) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004;12:177–90.
13 Smith TO, Hawkew GA, Hunter DJ, et al. The OMERACT-OARSI core domain set for measurement in clinical trials of hip and/or knee osteoarthritis. J Rheumatol 2019;46:981–9.
14 Altman R, Asch E, Bloch D, et al. The American College of rheumatology criteria for the classification and reporting of osteoarthritis of the knee. Arthritis Rheum 1986;29:1039–49.
15 Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health 1998;52:377–84.
16 Deeks JJ, Higgins JPT, Altman DG, Cochrane Statistical Methods Group. Chapter 9: Analysing data and undertaking meta-analyses. In: Higgins JPT, Green S, eds. Cochrane Handbook for systematic reviews of interventions, version 5.1.0. The Cochrane Collaboration, 2008. http://handbook-5-1.cochrane.org/.
17 Valdes AM, Doherty SA, Zhang W, et al. Inverse relationship between preoperative radiographic severity and postoperative pain in patients with osteoarthritis who have undergone total joint arthroplasty. Semin Arthritis Rheum 2012;41:568–75.
18 Kiosd MB, Marijanissas ACA, Vincken KL, et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the check cohort. J Rheumatol 2012;40:548–56.
19 Davis J, Eaton CB, Lo GH, et al. Knee symptoms among adults at risk for accelerated knee osteoarthritis: data from the osteoarthritis initiative. Clin Rheumatol 2017;36:1083–9.
20 Akelman MR, Farade PD, Hulstyn MJ, et al. Effect of matching or Overconstraining knee laxity during anterior cruciate ligament reconstruction on knee osteoarthritis and clinical outcomes: a randomized controlled trial with 84-Month follow-up. Am J Sports Med 2016;44:1660–70.
21 Yu SP, Williams M, Eyles JP, et al. Effectiveness of knee bracing in osteoarthritis: pragmatic trial in a multidisciplinary clinic. Int J Rheumatol 2016;2019:279–86.
22 Uralh KL, Kefalas MG, Durkin JR, et al. T2 texture index of cartilage can predict early symptomatic oa progression: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2013;21:1550–7.
23 RozenaD RL, Koes BW, van Osch GJVM, et al. Effect of glucosamine sulphate on hip osteoarthritis: a randomized trial. Ann Intern Med 2008;148:268–77.
24 Roman-Blas JA, Castañeda S, Sánchez-Pernaute O, et al. Combined treatment with chondroitin sulphate and glucosamine sulphate shows no superiority over placebo for reduction of joint pain and functional impairment in patients with knee osteoarthritis: a six-month multicenter, randomized, double-blind, placebo-controlled clinical trial. Arthritis Rheumatol 2017;69:77–85.
25 Riddle DL, Jiranek WA. Knee osteoarthritis radiographic progression and associations with pain and function prior to knee arthroplasty: a multicenter comparative cohort study. Osteoarthritis Cartilage 2015;23:391–6.
26 Reginster JY, Daroisy L, Rotariu CL, et al. Long-Term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 2001;357:251–6.
27 Raynald J-P, Martel-Pelletier J, Harauv B, et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann Rheum Dis 2011;70:1388–2.
28 Padosiadlo P, Cicuttini FM, Wolski M, et al. Trabecular bone tissue detected by plain radiography is associated with an increased risk of knee replacement in patients with osteoarthritis: a 6 year prospective follow up study. Osteoarthritis Cartilage 2014;22:71–5.
29 Pham T, Le Henaff A, Ravaud P, et al. Evaluation of the symptomatic and structural efficacy of a new hyaluronic acid compound, NRD101, in comparison with diacerein and placebo in a 1 year randomised controlled study in symptomatic knee osteoarthritis. Ann Rheum Dis 2004;63:161–7.
30 Pavelka K, Gattorová J, Gollerová V, et al. A 5-year randomized controlled, double-blind study of glycosaminoglycan polysulfuric acid complex (Rumalon) as a structure modifying therapy in osteoarthritis of the hip and knee. Osteoarthritis Cartilage 2000;8:335–42.
31 Michel BA, Stocki G, Frey D, et al. Chondroitins 4 and 6 in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum 2005;52:779–86.
32 Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the arthritis, diet, and activity promotion trial. Arthritis Rheum 2004;50:1510–1.
33 McAlindon T, LaValley M, Schneider E, et al. Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: a randomized controlled trial. JAMA 2013;309:155–62.
34 Marsh JD, Birmingham TB, Giffin JR, et al. Cost-Effectiveness analysis of arthroscopic surgery compared with non-operative management for osteoarthritis of the knee. BMJ Open 2016;6:e009949.2015–9949.
35 Lohmander LS, Heliot S, Dreher D, et al. Intracartilagenous srtipiferin (reombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol 2014;66:1820–31.
36 Kongtharvonskul J, Woratanarat P, McEvoy M, et al. Efficacy of glucosamine plus diacerein versus monotherapy of glucosamine: a double-blind, parallel randomized clinical trial. Arthritis Res Ther 2016;18:016–1124–9.
37 Katz JN, Brophy RH, Chaisson CE, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med 2013;368:1675–84.
38 Karsdal MA, Bjurfjelde I, Alexandersen P, et al. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: results from two phase 3 trials. Osteoarthritis Cartilage 2015;23:532–43.
A randomised controlled trial. Osteoarthritis Cartilage 2008;16:897–902.

52 Amin S, Guermazi A, Lavalley MP. Association between hip bone marrow lesions and knee osteoarthritis: evidence from two 3-year studies. Menopause 2004;11:138–43.

53 Connorziet, Eyrard M, Afif N, et al. Safety and efficacy of intra-articular injections of a combination of hyaluronic acid and mannosil (HAnOX-M) in patients with symptomatic knee osteoarthritis: results of a double-blind, controlled, multicenter, randomized trial. Knee 2016;23:842–8.

54 Dowsey MM, Nikpour M, Dieppe P, et al. Associations between pre-operative radiographic changes and outcomes after total knee joint replacement for osteoarthritis. Osteoarthritis Cartilage 2012;20:1095–102.

55 Felton DT, Niu J, Yang T, et al. Physical activity, alignment and knee osteoarthritis: data from most and the OAI. Osteoarthritis Cartilage 2013;21:789–95.

56 Felton DT, Niu J, Guermazi A, et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007;56:2986–92.

57 Hamilton TW, Pandit HG, Maurer DG, et al. Anterior knee pain and evidence of osteoarthritis of the patellofemoral joint should not be considered contraindications to mobile-bearing unicompartmental knee arthroplasty: a 15-year follow-up. Bone Joint J 2017;99-B:632–9.

58 Heillo le Grassendar M-P, Clermer RS, Redfier P, et al. A 2-year randomised, double-blind, placebo-controlled, multicentre study of oral selective iNOS inhibitor, cindunistat (SD-6010), in patients with symptomatic osteoarthritis of the knee. Ann Rheum Dis 2013;72:187–95.

59 Hochberg MC, Martel-Pelletier J, Monfort J, et al. Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann Rheum Dis 2016;75:37–44.

60 Hoeksema HL, Dekker J, Ronday HK, et al. Comparison of manual therapy and exercise therapy in osteoarthritis of the hip: a randomized clinical trial. Arthritis Rheum 2004;51:722–9.

61 Huang M-H, Wang S-J, Lee Y-S, et al. A comparison of various therapeutic exercises on the functional status of patients with knee osteoarthritis. Semin Arthritis Rheum 2003;32:398–406.

62 Huizinga MR, Gorter J, Demmer A, et al. Progression of medial compartmental osteoarthritis 2–8 years after lateral closing wedge high tibial osteotomy. Knee Surgery, Sports Traumatology, Arthroscopy 2013;25:3679–86.

63 Kahn TL, Soheili A, Schwarzkopf R. Outcomes of total knee arthroplasty in relation to preoperative patient-reported and radiographic measures data from the osteoarthritis initiative. Geriatr Orthop Surg Rehabil 2013;4:117–25.

64 Kim Y-H, Park J-W, Kim J-S. The clinical outcome of Computer-Navigated compared with conventional knee arthroplasty in the same patients: a prospective, randomised, double-blind, long-term study. J Bone Joint Surg Br 2006;88-B:1304–10.

65 Lequesne M, Maheu E, Cadet C, et al. Structural effect of avocado/soybean unsaponifiables on joint space loss in osteoarthritis of the hip. Arthritis Rheum 2002;47:50–8.

66 Messier SP, Gutekunst DJ, Davis C, et al. Weight loss reduces knee-joint loads in overweight and obese adults with knee osteoarthritis. Arthritis Rheumatol 2005;52:2026–32.

67 Messier SP, Mihalko SL, Legault C, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis. The idea randomized clinical trial. JAMA 2013;310:1263–73.

68 Muraki S, Akune T, Nagata K, et al. Association of knee osteoarthritis with onset and resolution of pain and physical functional disability: the road study. Mod Rheumatol 2014;24:966–73.

69 Muraki S, Akune T, Tsukamoto K. Does chondrocytosis at the knee predict health-related quality of life decline? a 3-year follow-up of the road study. Clin Rheumatol 2015;34:1589–97.
81 Pavelká K, Gatterová J, Olejarová M, et al. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med 2002;162:2113–23.

82 Rat A-C, Baumann C, Guillemin F. National, multicentre, prospective study of quality of life in patients with osteoarthritis of the knee treated with hyaluronan G-F 20. Clin Rheumatol 2011;30:1285–93.

83 Reginster J-Y, Badurski J, Bellamy N, et al. Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind, randomised placebo-controlled trial. Ann Rheum Dis 2013;72:179–86.

84 Romagnoli S, Marullo M, Clinical M-T. Mid-Term clinical, functional, and radiographic outcomes of 105 gender-specific Patellofemoral arthropathies, with or without the association of medial Unicompartmental knee arthroplasty. J Arthroplasty 2018;33:688–95.

85 Sanchez-Ramirez D, Leeden M, Esch M, et al. Increased knee muscle strength is associated with decreased activity limitations in established knee osteoarthritis: two-year follow-up study in the Amsterdam osteoarthritis cohort. J Rehabil Med 2015;47:647–54.

86 Sawitzke AD, Shi H, Finco MF, et al. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from galt. Ann Rheum Dis 2010;69:1459–64.

87 Skou ST, Wise BL, Lewis CE, et al. Muscle strength, physical performance and physical activity as predictors of future knee replacement: a prospective cohort study. Osteoarthritis Cartilage 2016;24:1350–6.

88 Sowers M, Karvenen-Gutierrez CA, Jacobson JA, et al. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg Am 2011;93:241–51.

89 Spector TD, Conaghan PG, Buckland-Wright JC, et al. Effect of risendronate on joint structure and symptoms of knee osteoarthritis: results of the BRIStK randomized, controlled trial [SRCTN01928175]. Arthritis Res Ther 2005;7:R625–33.

90 Sun S-F, Hsu C-W, Lin H-S, et al. Comparison of single intra-articular injection of novel hyaluronan (HYA-JOINT plus) with Synvisc-One for knee osteoarthritis: a randomized, controlled, double-blind trial of efficacy and safety. J Bone Joint Surg Am 2017;99:462–71.

91 Weng M-C, Lee C-L, Chen C-H, et al. Effects of different stretching techniques on the outcomes of isokinetic exercise in patients with knee osteoarthritis. Kaohsiung J Med Sci 2009;25:306–15.

92 White DK, Neoji T, Nguyen U-SDT, et al. Trajectories of functional decline in knee osteoarthritis: the osteoarthritis initiative. Rheumatology 2016;55:801–8.

93 Witt C, Brinkhaus B, Jena S, et al. Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet 2005;366:136–43.

94 Yusuf E, Bijsterbosch J, Slagboom PE, et al. Association between several clinical and radiological determinants with long-term clinical progression and good prognosis of lower limb osteoarthritis. PLoS One 2011;6:e25426.

95 Silverwood V, Blagojevic-Bucknall M, Jinks C, et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 2015;23:507–15.

96 Kingsbury SR, Corp N, Watt FE, et al. Harmonising data collection from osteoarthritis studies to enable stratification: recommendations on core data collection from an arthritis research UK clinical studies group. Rheumatology 2016;55:1394–402.

97 Nelson AE, Fang F, Arbeeva L, et al. A machine learning approach to knee osteoarthritis phenotyping: data from the FNIH biomarkers Consortium. Osteoarthritis Cartilage 2019;27:994–1001.

98 van der Esch M, van der Leeden M, Roorda LD, et al. Predictors of self-reported knee instability among patients with knee osteoarthritis: results of the Amsterdam osteoarthritis cohort. Clin Rheumatol 2016;35:3007–13.

99 Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthritis Cartilage 2011;19:990–1002.