A substantial hybridization between correlated Ni-\(d\) orbital and itinerant electrons in infinite-layer nickelates

Yuhao Gu\(^{1,2,3}\), Sichen Zhu\(^{2,4}\), Xiaoxuan Wang\(^{2,4}\), Jiangping Hu\(^{1}\) & Hanghui Chen\(^{2,4\#}\)

The discovery of unconventional superconductivity in hole doped NdNiO\(_2\), similar to CaCuO\(_2\), has received enormous attention. However, different from CaCuO\(_2\), RNiO\(_2\) (\(R = \text{Nd, La}\)) has itinerant electrons in the rare-earth spacer layer. Previous studies show that the hybridization between Ni-\(d_{x^2-y^2}\) and rare-earth-\(d\) orbitals is very weak and thus RNiO\(_2\) is still a promising analog of CaCuO\(_2\). Here, we perform first-principles calculations to show that the hybridization between Ni-\(d_{x^2-y^2}\) orbital and itinerant electrons in RNiO\(_2\) is substantially stronger than previously thought. The dominant hybridization comes from an interstitial-s orbital rather than rare-earth-\(d\) orbitals, due to a large inter-cell hopping. Because of the hybridization, Ni local moment is screened by itinerant electrons and the critical \(U_N\) for long-range magnetic ordering is increased. Our work shows that the electronic structure of RNiO\(_2\) is distinct from CaCuO\(_2\), implying that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator.
Since the discovery of high-temperature superconductivity in cuprates\(^1\), people have been attempting to search for superconductivity in other materials whose crystal and electronic structures are similar to those of cuprates\(^2,3\). One of the obvious candidates is La\(_2\)NiO\(_4\) which is isostructural to La\(_2\)CuO\(_4\) and Ni is the nearest neighbor of Cu in the periodic table. However, superconductivity has not been observed in doped La\(_2\)NiO\(_4\). This is in part due to the fact that in La\(_2\)NiO\(_4\), two Ni-\(e_g\) orbitals are active at the Fermi level, while in La\(_2\)CuO\(_4\) only Cu-\(d_{x^2-y^2}\) appears at the Fermi level. Based on this argument, a series of nickelates and nickelate heterostructures have been proposed with the aim of realizing a single orbital Fermi surface in nickelates. Those attempts started from infinite-layer nickelates\(^2,5,6\), to LaNiO\(_3\)/LaAlO\(_3\) superlattices\(^7-10\), to tri-component nickelate heterostructures\(^11,12\) and to reduced Ruddlesden–Popper series\(^13,14\). Eventually, superconductivity with a transition temperature of about 15 K has recently been discovered in hole doped infinite-layer nickelate NdNiO\(_2\)\(^15\), injecting new vitality into the field of high-\(T_c\) superconductivity\(^16-33\).

However, there is an important difference between infinite-layer nickelate RNiO\(_2\) (\(R = \text{Nd, La}\)) and infinite-layer cuprate CaCuO\(_2\) in their electronic structures: in infinite-layer cuprates, only a single Cu-\(d_{x^2-y^2}\) band crosses the Fermi level, while in infinite-layer nickelates, in addition to Ni-\(d_{x^2-y^2}\) band, another conduction band also crosses the Fermi level\(^6,21-23\). First-principles calculations show that the other non-Ni conduction band originates from rare-earth spacer layers\(^6,21-23\). Hepting et al.\(^20\) propose that itinerant electrons on rare-earth-\(d\) orbitals may hybridize with Ni-\(d_{x^2-y^2}\) orbital, rendering RNiO\(_2\) an "oxide-intermetallic" compound. But previous studies find that the hybridization between Ni-\(d_{x^2-y^2}\) and rare-earth-\(d\) orbitals is very weak\(^21-23,29\). Therefore other than the self-doping effect\(^27\), infinite-layer nickelates can still be considered as a promising analog of infinite-layer cuprates\(^21,16\).

In this work, we combine density functional theory (DFT)\(^34,35\) and dynamical mean-field theory (DMFT)\(^36,37\) to show that the hybridization between Ni-\(d_{x^2-y^2}\) orbital and itinerant electrons in rare-earth spacer layers is substantially stronger than previously thought. However, the largest source of hybridization comes from an interstitial-\(s\) orbital due to a large inter-cell hopping. The hybridization with rare-earth-\(d\) orbitals is weak, about one order of magnitude smaller. We also find that weak-to-moderate correlation effects on Ni lead to a charge transfer from Ni-\(d_{x^2-y^2}\) orbital to hybridization states, which provides more itinerant electrons to couple to Ni-\(d_{x^2-y^2}\) orbital. In the experimentally observed paramagnetic metallic state of RNiO\(_2\), we explicitly demonstrate that the coupling between Ni-\(d_{x^2-y^2}\) orbital and itinerant electrons screens the Ni local moment, as in Kondo systems\(^38-40\). Finally we find that the hybridization increases the critical \(U_0\) that is needed to induce long-range magnetic ordering.

Our work provides the microscopic origin of a substantial hybridization between Ni-\(d_{x^2-y^2}\) orbital and itinerant electrons in RNiO\(_2\), which leads to an electronic structure that is distinct from that of CaCuO\(_2\). As a consequence of the hybridization, spins on Ni-\(d_{x^2-y^2}\) orbital are affected by itinerant electrons and the physical property of RNiO\(_2\) is changed. This implies that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator as in cuprates.

The computational details of our DFT and DMFT calculations can be found in the Method section. For clarity, we study NdNiO\(_2\) as a representative of infinite-layer nickelates. The results of LaNiO\(_2\) are very similar (see Supplementary Note 1 and Note 2 in the Supplementary Information).

Results

Electronic structure and interstitial-\(s\) orbital. In Fig. 1a, b, we show the DFT-calculated band structure and Wannier function fitting of NdNiO\(_2\) and CaCuO\(_2\) in the non-spin-polarized state, respectively. We use altogether 17 Wannier projectors to fit the DFT band structure: 5 Ni/Cu-\(d\) orbitals, 5 Nd/Ca-\(d\) orbitals, 3 O-\(p\) orbitals (for each O atom), and an interstitial-\(s\) orbital. The interstitial-\(s\) orbital is located at the position of the missing apical oxygen. The importance of interstitial-\(s\) orbitals has been noticed in the study of electrides and infinite-layer nickelates\(^22,41,42\). Our Wannier fitting exactly reproduces not only the band structure of NdNiO\(_2\) but also the band structure of CaCuO\(_2\).

Fig. 1 Non-spin-polarized band structures calculated by density functional theory (DFT) and Wannier fitting. **a,** **b** DFT-calculated band structures and 17 Wannier functions fitting of NdNiO\(_2\) (**a**) and CaCuO\(_2\) (**b**). The thick blue lines are DFT-calculated bands and the red thin lines are bands reproduced by the Wannier functions. The red dots show the Wannier projection onto Ni-\(d_{x^2-y^2}\) and Cu-\(d_{x^2-y^2}\) orbitals, respectively. **c–e** Band structures reproduced by Wannier functions in an energy window close to the Fermi level. The dots show the weights of Wannier projections onto Nd-\(d_{2z^2-r^2}\) orbital (**d**), Nd-\(d_{xy}\) orbital (**e**), and interstitial-\(s\) orbital (**f**). The large orange atom is Nd, the gray atom is Ni, and the small red atom is O.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0347-x | www.nature.com/commsphys
the entire transition-metal and oxygen pd manifold, but also the band structure of unoccupied states about 5 eV above the Fermi level. In particular, the Ni/Cu-d_{3z^2-r^2} Wannier projector is highlighted by red dots in Fig. 1a, b. The details of the Wannier fitting can be found in Supplementary Note 3 in the Supplementary Information. For both compounds, Ni/Cu-d_{3z^2-r^2} band crosses the Fermi level. However, as we mentioned in the Introduction, in addition to Ni-d_{3z^2-r^2} band, another conduction band also crosses the Fermi level in NdNiO₂. Using Wannier analysis, we find that the non-Ni conduction electron band is mainly composed of three orbitals: Nd-d_{3z^2-r^2}, Nd-d_{xy}, and interstitial-s orbitals. The corresponding Wannier projectors are highlighted by dots in the panels of Fig. 1c-e. An iso-value surface of the three Wannier functions (Nd-d_{3z^2-r^2}, Nd-d_{xy}, and interstitial-s orbitals) is explicitly shown in Fig. 1f–h. We note that interstitial-s orbital is more delocalized than Nd-d_{3z^2-r^2} and Nd-d_{xy} orbitals. Because all these three orbitals are located in the Nd spacer layer between adjacent NiO₂ planes, if these three orbitals can hybridize with Ni-d_{3z^2-r^2} orbital, then they will create a three-dimensional electronic structure, distinct from that of CaCuO₂²⁰.

Analysis of hybridization. However, from symmetry consideration, within the same cell the hopping between Ni-d_{3z^2-r^2} and any of those three orbitals (Nd-d_{3z^2-r^2}, Nd-d_{xy}, and interstitial-s) is exactly equal to zero²², which leads to the conclusion that the hybridization between Ni-d_{3z^2-r^2} and rare-earth-d orbitals is weak²⁰,²²,²⁹. While this conclusion is correct by itself, the hybridization between Ni-d_{3z^2-r^2} and interstitial-s orbital has been omitted in previous studies²⁰,²³,²⁷,²⁹. We find that due to a large inter-cell hopping, Ni-d_{3z^2-r^2} orbital hybridizes with interstitial-s orbital much more substantially than with rare-earth-d orbitals by about one order of magnitude.

The direct inter-cell hopping between Ni-d_{3z^2-r^2} and any of the three orbitals (Nd-d_{3z^2-r^2}, Nd-d_{xy}, and interstitial-s) is negligibly small. The effective hopping is via O-p orbitals. Figure 2 shows the inter-cell hopping between Ni-d_{3z^2-r^2} orbital and the other three orbitals via one O-p orbital. Among Nd-d_{3z^2-r^2}, Nd-d_{xy} and interstitial-s orbitals, we find that the largest effective hopping (via one O-p orbital) is the one with interstitial-s orbital (see Table 1). The effective hopping between Ni-d_{3z^2-r^2} and Nd-d_{xy}/d_{3z^2-r^2} orbitals is one order of magnitude smaller because Nd atom is located at the corner of the cell, which is further from the O atom than the interstitial site is. Furthermore, the energy difference between interstitial-s and O-p orbitals is about 1 eV smaller than that between Nd-d_{xy}/d_{3z^2-r^2} and O-p orbitals (see Table 1). These two factors combined lead to the fact that Ni-d_{3z^2-r^2} has a significant coupling with interstitial-s orbital, substantially stronger than that with Nd-d orbitals. This challenges the previous picture that the hybridization between Ni-d_{3z^2-r^2} orbital and itinerant electrons in the Nd spacer layer is weak²⁰,²³,²⁷,²⁹.

| Table 1 Hopping and energy difference between different orbitals of NdNiO₂. |
|----------------|----------------|----------------|----------------|
| t_{pd_{xy}} | t_{ps} | t_{pd_{zr}} | t_{pd_{zi}} |
| 1.31 | -0.67 | -0.06 | -0.03 |

The hopping t and energy difference Δ between the five relevant orbitals of NdNiO₂ shown in Fig. 2. d_{xy} is the Ni-d_{xy} orbital, p is the O-p orbital, d_{zi} is the Nd-d_{zi} orbital, d_{sr} is the Nd-d_{sr} orbital, s is the interstitial-s orbital. The hopping and energy difference are obtained from 17 Wannier functions fitting. The unit is eV.

To further confirm that the hybridization is substantial, we downfold the full band structure to a noninteracting model that is based on the above four orbitals (Ni-d_{3z^2-r^2}, Nd-d_{3z^2-r^2}, Nd-d_{xy}, and interstitial-s orbitals). Equation (1) shows the Wannier-based Hamiltonian \(\langle \mathbf{H}_0 | a_1 \rangle = H_0(a_1) \) in the matrix form (not the usual Hamiltonian \(\langle \mathbf{H}_0 | \mathbf{H}_0 \rangle = 0 \)). The important information is in the first row. The largest hopping is the one between neighboring Ni-d_{3z^2-r^2} orbitals (this is due to the σ bond between Ni-d_{3z^2-r^2} and O-p_{xy} orbitals). However, the hopping between Ni-d_{3z^2-r^2} and interstitial-s orbitals is even comparable to the largest hopping. By contrast, the hopping between Ni-d_{3z^2-r^2} and Nd-d_{xy}/d_{3z^2-r^2} orbitals is about one order of magnitude smaller than the hopping between Ni-d_{3z^2-r^2} and interstitial-s orbitals, which is consistent with the preceding analysis.

\[
\begin{pmatrix}
\Delta_{d_{3z^2-r^2}} & \Delta_{d_{xy}} & \Delta_{d_{3z^2-r^2}} \\
-0.37 & -0.22 & 0.03 & 0.02 \\
0.37 & -0.37 & 0.03 & -0.02 \\
-0.22 & -0.22 & 0.68 & 0.45 \\
0.37 & 0.37 & 0.37 & 0.37 \\
-0.02 & -0.02 & 0.45 & 0.19 \\
\end{pmatrix}
\]

Charge transfer and screening of Ni local moment. Since infinite-layer nickelates are correlated materials, next we study correlation effects arising from Ni-d_{3z^2-r^2} orbital. We focus on whether the hybridization between Ni-d_{3z^2-r^2} orbital and itinerant electrons in the rare-earth spacer layer may affect the correlated properties of NdNiO₂, such as magnetism.

We use the above four orbitals (see Eq. (1)) to build an interacting model:

\[
\hat{H} = \sum_{k,m\sigma} \epsilon_{mn} c_{km\sigma}^\dagger c_{mn\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - V_{dc}
\]

where \(mn' \) labels different orbitals, \(i \) labels Ni sites and \(\sigma \) labels spins, \(\hat{n}_{i\sigma} \) is the occupancy operator of Ni-d_{3z^2-r^2} orbital at site \(i \) with spin \(\sigma \) and the onsite Coulomb repulsion is only applied on Ni-d_{3z^2-r^2} orbital.
the Ni-$d_{x^2-y^2}$ orbital. $H_0(k)$ is the Fourier transform of the Wannier-based Hamiltonian $H_0(R)^9$ and V_{dc} is the double counting potential. That we do not explicitly include O-p states in the model is justified by noting that in NdNiO$_2$ O-p states have much lower energy than Ni-d states, which is different from perovskite rare-earth nickelates and charge-transfer-type cuprates20,19. In the model Eq. (2), the Ni-$d_{x^2-y^2}$ orbital is the correlated state while the other three orbitals (interstitial-s and Nd-$d_{3z^2-r^2}$/d_{xy}) are noninteracting, referred to as hybridization states.

We perform dynamical mean-field theory calculations on Eq. (2). We first study paramagnetic state (paramagnetism is imposed in the calculations). Figure 3a-c shows the spectral function with an increasing U_{Ni} on Ni-$d_{x^2-y^2}$ orbital. At $U_{Ni} = 0$ eV, the system is metallic with all the four orbitals crossing the Fermi level (the main contribution comes from Ni-$d_{x^2-y^2}$). As U_{Ni} increases to 3 eV, a quasi-particle peak is evident with the other three orbitals still crossing the Fermi level. We find a critical U_{Ni} of about 7 eV, where the quasi-particle peak becomes completely suppressed and a Mott gap emerges. As U_{Ni} further increases to 9 eV (not shown in Fig. 3), a clear Mott gap of about 1 eV is opened.

The presence of hybridization states means that there could be charge transfer between correlated Ni-$d_{x^2-y^2}$ orbital and interstitial-s/Nd-d orbitals. We calculate the occupancy of each Wannier function N_a and study correlation-driven charge transfer in NdNiO$_2$. Figure 3d shows N_a of each hybridization state and Ni-$d_{x^2-y^2}$ orbital as well as the total occupancy of hybridization states as a function of U_{Ni}. We first note that at $U_{Ni} = 0$, the total occupancy of hybridization states is 0.14, which is significant. As U_{Ni} becomes larger, the total occupancy of hybridization states first increases and then decreases. This is because when U_{Ni} is small, the system is still metallic with all the hybridization states crossing the Fermi level, while the upper Hubbard band of Ni-$d_{x^2-y^2}$ orbital is just formed and pushed to higher energy. This leads to charge transfer from Ni-$d_{x^2-y^2}$ orbital to hybridization states, providing more itinerant electrons to couple to Ni-$d_{x^2-y^2}$ orbital. However, when U_{Ni} is large, hybridization states are also pushed above the Fermi level, which causes electron to transfer back to Ni-$d_{x^2-y^2}$ orbital (in the lower Hubbard band). In the strong U_{Ni} limit where the Mott gap opens, itinerant electrons in the Nd spacer layer disappear. Figure 3d also shows that for all U_{Ni} considered, the occupancy on interstitial-s orbital is always the largest among the three hybridization states, confirming the importance of the interstitial-s orbital in infinite-layer nickelates. We note that because we calculate the occupancy at finite temperatures, even when the gap is opened, the occupancy of hybridization states does not exactly become zero.

Because of the hybridization, we study possible screening of Ni local magnetic moment by itinerant electrons. We calculate local spin susceptibility of Ni-$d_{x^2-y^2}$ orbital:

$$\chi_{loc}^{\alpha}(T) = \int_0^\beta \chi_{loc}(r) dr = \int_0^\beta g^2 \langle S_z(r) S_z(0) \rangle dr \quad (3)$$

where $S_z(r)$ is the local spin operator for Ni-$d_{x^2-y^2}$ orbital, at the imaginary time τ, g denotes the electron spin gyromagnetic factor and $\beta = 1/(k_B T)$ is the inverse temperature. Figure 3e shows $\chi_{loc}^{\alpha}(T)$ for two representative values of U_{Ni}. The blue symbols are $\chi_{loc}^{\alpha}(T)$ for $U_{Ni} = 7$ eV when the system becomes insulating. The local spin susceptibility nicely fits to a Curie–Weiss behavior, as is shown by the black dashed line in Fig. 3e. $\chi_{loc}^{\alpha}(T)$ has a strong enhancement at low temperatures. However, for $U_{Ni} = 2$ eV when the system is metallic, we find a completely different...
$\chi^{\omega=0}(T)$. The local spin susceptibility has very weak dependence on temperatures (see Fig. 3f for the zoomin). In particular, at low temperatures ($T < 250 \, \text{K}$), $\chi^{\omega=0}(T)$ reaches a plateau. We note that the weak temperature dependence of $\chi^{\omega=0}(T)$ is consistent with the experimental result of LaNiO$_2$ paramagnetic susceptibility5, in particular our simple model calculations qualitatively reproduce the low-temperature plateau feature that is observed in experiment5.

To explicitly understand how the hybridization between itinerant electrons and Ni-$d_{x^2-y^2}$ orbital affects local spin susceptibility, we perform a thought-experiment: we manually “turn off” hybridization, i.e., for each R, we set $\langle b[R]d_{x^2-y^2} \rangle = \langle d_{x^2-y^2} \rangle = 0$. Then we recalculate $\chi^{\omega=0}(T)$ using the modified Hamiltonian with $U_{\text{Ni}} = 2 \, \text{eV}$. The chemical potential is adjusted so that the total occupancy remains unchanged in the modified Hamiltonian. The two local spin susceptibilities are compared in Fig. 3f. With hybridization, $\chi^{\omega=0}(T)$ saturates at low temperatures, implying that μ_{eff} decreases or even vanishes with lowering temperatures. However, without hybridization, $\chi^{\omega=0}(T)$ shows an evident enhancement at low temperatures and a Curie–Weiss behavior is restored (black dashed line). This shows that in paramagnetic metallic NdNiO$_2$, the hybridization between itinerant electrons and Ni-$d_{x^2-y^2}$ orbital is substantial and as a consequence, it screens the Ni local magnetic moment, as in Kondo systems$^{38-40}$. Such a screening mechanism may be used to explain the low-temperature upturn in the resistivity of NdNiO$_2$ observed in experiment22,25. We note that while we only fix the total occupancy by adjusting the chemical potential, the occupancy of Ni-$d_{x^2-y^2}$ orbital is almost the same in the original and modified models. In Fig. 3f, “with hybridization”, Ni-$d_{x^2-y^2}$ occupancy is 0.84 and “without hybridization”, Ni-$d_{x^2-y^2}$ occupancy is 0.83. This indicates that the screening of Ni moment is mainly due to the hybridization effects, while the change of Ni-$d_{x^2-y^2}$ occupancy (0.01 e per Ni) plays a secondary role.

Correlation strength and phase diagram. We estimate the correlation strength for NdNiO$_2$ by calculating its phase diagram. We allow spin polarization in the DMFT calculations and study both ferromagnetic and checkerboard antiferromagnetic states. We find that ferromagnetic ordering cannot be stabilized up to $U_{\text{Ni}} = 9 \, \text{eV}$. Checkerboard antiferromagnetic state can emerge when U_{Ni} exceeds 2.5 eV. The phase diagram is shown in Fig. 4a in which M_d is the local magnetic moment on each Ni atom. M_d is zero until $U_{\text{Ni}} \approx 2.5 \, \text{eV}$ and then increases with U_{Ni} and finally saturates to 1 μ_B/Ni which corresponds to a $S = \frac{1}{2}$ state. We note that the critical value of U_{Ni} is model-dependent. If we include O-p states and semi-core states, the critical value of U_{Ni} will be substantially larger43. The robust result here is that with U_{Ni} increasing, antiferromagnetic ordering occurs before the metal-insulator transition. In the antiferromagnetic state, the critical U_{Ni} for the metal-insulator transition is about 6 eV, slightly smaller than that in the paramagnetic phase. The spectral function of antiferromagnetic metallic and insulating states is shown in Fig. 4b and c, respectively. Experimentally long-range magnetic orderings are not observed in NdNiO$_2$. The calculated phase diagram means that NdNiO$_2$ can only be in a paramagnetic metallic state (instead of a paramagnetic insulating state), in which the hybridization between Ni-$d_{x^2-y^2}$ and itinerant electrons screens the Ni local magnetic moment. We note that using our model Eq. (2), the calculated phase boundary indicates that Ni correlation strength is moderate in NdNiO$_2$ with $U_{\text{Ni}}/t_{dd} < 7$.

Fig. 4 Phase diagram and antiferromagnetic spectral function of NdNiO$_2$. a Phase diagram of NdNiO$_2$, calculated by using density functional theory plus dynamical mean-field theory (DFT+DMFT) method based on the 4-orbital interacting model Eq. (2). M_d is the local moment on each Ni atom and U_{Ni} is the Hubbard U on each Ni atom. PM, paramagnetic state; AFM, checkerboard antiferromagnetic state; M, metallic; I, insulating. b Spectral function of the 4-orbital interacting model Eq. (2) in the antiferromagnetic state with $U_{\text{Ni}} = 3 \, \text{eV}$. $A(\omega)$ is the frequency-dependent spectral function and ω represents the frequency. The states above (below) zero correspond to spin up (down). The Fermi level (vertical dashed line) is set at zero energy. The red, blue, magenta, yellow, and green curves represent Ni-$d_{x^2-y^2}$ projected spectral function, Nd-$d_{x^2-y^2}$ projected spectral function, Nd-d_{xy} projected spectral function, interstitial s projected spectral function, and total spectral function, respectively. The inset shows the spectral function of a single Ni atom projected onto its $d_{x^2-y^2}$ orbital. c Same as (b) with $U_{\text{Ni}} = 9 \, \text{eV}$. d The solid symbols are the same as in (a). The open symbols are local moment on each Ni atom recalculated with the hybridization “turned off”.

COMMUNICATIONS PHYSICS | (2020) 3:84 | https://doi.org/10.1038/s42005-020-0347-x | www.nature.com/commsphys

5
physics and include only states that are close to the Fermi level; others include more states which reproduce the electronic band structure within a large energy window around the Fermi level. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature.

Discussion

Our minimal model Eq. (2) is different from the standard Hubbard model (single-orbital, two-dimensional square lattice, and half filling) due to the presence of hybridization. It is also different from a standard periodic Anderson model in that (1) the correlated orbital is a 3d-orbital with a strong dispersion instead of a 4f or 5f orbital whose dispersion is usually neglected; (2) the hybridization of Ni-$d_{x^2-y^2}$ with the three noninteracting orbitals is all inter-cell rather than onsite and anisotropic with different types of symmetries, which may influence the symmetry of the superconducting order parameter in the ground state. The model is used to study the symmetry of hybridization. The dominant hybridization of Ni-$d_{x^2-y^2}$ orbital, the one with interstitial-s orbital, has $d_{x^2-y^2}$ symmetry. Second, the hybridization of Ni-$d_{x^2-y^2}$ with Nd-d_{xy} and Nd-$d_{3z^2-r^2}$ orbitals has $g_{xy}(x^2-y^2)$ and $d_{x^2-y^2}$ symmetries, respectively.

d-wave superconducting states can be stabilized in the doped single-orbital Hubbard model from sophisticated many-body calculations. However, the hybridization between correlated Ni-$d_{x^2-y^2}$ orbital and itinerant electrons fundamentally changes the electronic structure of a single-orbital Hubbard model, in particular when the system is metallic. This probably creates a condition unfavorable for superconductivity, implying that new mechanisms such as interface charge transfer, strain engineering, etc. are needed to fully explain the phenomena observed in infinite-layer nickelates.

Before we conclude, we briefly discuss other models for RNiO$_2$ ($R =$ Nd, La). In literature, some models focus on low-energy properties and include only states that are close to the Fermi level; others include more states which reproduce the electronic band structure within a large energy window around the Fermi level. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature. Kitatani et al. propose that RNiO$_2$ can be described by the one-band Hubbard model (Ni-$d_{x^2-y^2}$ orbital) with an additional electron reservoir, which is used to directly estimate the superconducting transition temperature.
hybridization states, which provides more itinerant electrons in the rare-earth spacer layer to couple to correlated Ni-d orbital. Further increasing correlation strength leads to a reverse charge transfer, antiferromagnetism on Ni sites, and eventually a metal-insulator transition. In the experimentally observed paramagnetic metallic state of RNI02, we find that the strong coupling between Ni-d_{x2-y2} and itinerant electrons screens the Ni local moment, as in Kondo systems. We also find that the hybridization increases the critical U_{Ni} that is needed to induce long-range magnetic ordering. Our work shows that the electronic structure of RNI02 is fundamentally different from that of CaCuO2, which implies that the observed superconductivity in infinite-layer nickelates does not emerge from a doped Mott insulator as in cuprates.

Methods
We perform first-principles calculations using density functional theory (DFT)
34,35, maximally localized Wannier functions (MLWF) to construct the noninteracting tight-binding models59, and dynamical mean field theory (DMFT)64,67 to solve the interacting models.

DFT calculations. The DFT method is implemented in the Vienna ab initio simulation package (VASP) code60 with the projector augmented wave (PAW) method61. The Perdew–Burke–Ernzerhof (PBE)62 functional is used as the exchange-correlation functional in DFT calculations. The Nd-4f orbitals are treated as core states in the pseudopotential. We use an energy cutoff of 600 eV and sample the Brillouin zone by using a 7-centered k-mesh of 16 × 16 × 16. The crystal structure is fully relaxed with an energy convergence criterion of 10−6 eV, force convergence criterion of 0.01 eV/Å, and strain convergence of 0.1 kbar. The DFT-optimized crystal structures are in excellent agreement with the experimental structures, as shown in our Supplementary Note 1. To describe the checkerboard antiferromagnetic ordering, we expand the cell to a $\sqrt{2} \times \sqrt{2} \times 1$ supercell. The corresponding Brillouin zone is sampled by using a 7-centered k-mesh of 12 × 12 × 16.

MLWF calculations. We use maximally localized Wannier functions59, as implemented in Wannier90 code63 to fit the DFT-calculated band structure and build an ab initio tight-binding model which includes onsite energies and hopping parameters for each Wannier function. We use two sets of Wannier functions to do the fitting. One set uses 17 Wannier functions to exactly reproduce the band structure of entire transition-metal and oxygen pd manifold as well as the occupied states that are a few eV above the Fermi level. The other set uses 4 Wannier functions to reproduce the band structure close to the Fermi level. The second tight-binding Hamiltonian is used to study correlation effects when onsite interactions are included on Ni-d_{x2-y2} orbital.

DMFT calculations. We use DMFT method to calculate the 4-orbital interacting model, which includes a correlated Ni-d_{x2-y2} orbital and three noninteracting orbitals (interstitial-s, Nd-d_{x2-y2}, and Nd-d_{x2-y2}±). We also cross-check the results using a 17-orbital interacting model which includes five Ni-d, five Nd-d, six O-p, and one interstitial-s orbital (the results of the 17-orbital model are shown in Supplementary Note 4 of the Supplementary Information). DMFT maps the interacting lattice Hamiltonian onto an auxiliary impurity problem which is solved using the continuous-time quantum Monte Carlo algorithm based on hybridization expansion64,65. The impurity solver is developed by K. Haule62. For each DMFT iteration, a total of 1 billion Monte Carlo samples are collected to converge the impurity Green function and self-energy. We set the temperature to be 116 K. We check all the key results at a lower temperature of 58 K and no significant difference is found. The interaction strength U_{Ni} is treated as a parameter. We calculate both paramagnetic and magnetically ordered states. For magnetically ordered states, we consider the magnetic ordering and checkerboard antiferromagnetic ordering. For checkerboard antiferromagnetic ordering calculation, we double the cell, and the noninteracting Hamiltonian is 8 × 8. We introduce formally two effective impurity models and use the symmetry that electrons at one impurity site are equivalent to the electrons on the other with opposite spins. The DMFT self-consistent condition involves the self-energies of both spins.

To obtain the spectral functions, the imaginary axis self-energy is continued to the real axis using the maximum entropy method67. Then the real axis local Green function is calculated using the Dyson equation, and the spectral function is obtained in the following equation:

$$A_{\omega}(\omega) = -\frac{1}{\pi} \text{Im} G_{\omega}(\omega) = -\frac{1}{\pi} \text{Im} \left\{ \sum_{\omega} \frac{1}{(\omega + \mu) - H_{\omega}(\omega) - \Sigma(\omega) + i\epsilon_{\omega}} \right\}_{\text{mm}}$$

(4)

where m is the label of a Wannier function. I is an identity matrix, $H_{\omega}(\omega)$ is the Fourier transform of the Wannier-based Hamiltonian $H_{\omega}(\omega)$. $\Sigma(\omega)$ is the self-energy, understood as a diagonal matrix only with nonzero entries on the correlated orbitals, μ is the chemical potential. V_{ω} is the fully localized limit (FLL) double counting potential, which is defined as68:

$$V_{\omega} = U |N_{\omega} - \frac{1}{2}|$$

(5)

where N_{ω} is the d occupancy of a correlated site. Here the Hund’s J term vanishes because we have a single correlated orbital Ni-d_{x2-y2}. In the model, a 40 × 40 k-point mesh is used to converge the spectral function. We note that double counting correction affects the energy separation between Ni-d_{x2-y2} and Nd-d_{x2-y2} interstitial-s orbitals. However, because the charge transfer is small (around 0.1e per Ni), the effects from the double counting correction are weak in the 4-orbital model, compared with those in the p-d model in which double counting correction becomes much more important69. That is because O-p states are included in the p-d model. The double counting correction affects the p-d energy separation and thus the charge transfer between metal-d and oxygen-p orbitals, which can be as large as 1e per metal atom for late transition-metal oxides such as rare-earth nickelates69.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability
The electronic structure calculations were performed using the proprietary code VASP60, the open-source code Wannier90, and the open-source impurity solver implemented by Kristian Haule at Rutgers University (http://hauleweb.rutgers.edu/tutorials/). Both Wannier90 and Haule’s impurity solver are freely distributed on academic use under the Massachusetts Institute of Technology (MIT) License.

Received: 23 December 2019; Accepted: 1 April 2020; Published online: 14 May 2020

References
1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. f. Phys. B 64, 189–193 (1986).
2. Anisimov, V. I., Bukhvostov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).
3. Hu, J. Identifying the genes of unconventional high temperature superconductors. Sci. Bull. 61, 561–569 (2016).
4. Rao, C. N. R., Ganguli, A. K. & Nagarajan, R. Superconductivity in layered nickelates. Pramana 32, 1177–1179 (1989).
5. Hammond, M., Green, M., Rosseinsky, M. & Sloan, J. Sodium hydrade as a powerful reducing agent for topotactic oxide deintercalation: Synthesis and characterization of the nickel (I) oxide LaNiO3. J. Am. Chem. Soc. 121, 8843–8854 (1999).
6. Lee, K.-W. & Pickett, W. Infinite-layer LaNiO2: Ni?+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).
7. Freedland, J. et al. Orbital control in strained ultra-thin LaNiO3/LaAlO3 superlattices. Europhys. Lett. 96, 57004 (2011).
8. Chaloupka, J. & Khalifullin, G. Orbital order and possible superconductivity in LaNiO3/LaMnO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).
9. Hansmann, P. et al. Turning a nickelate fermi surface into a cuprate-like one through heterostructuring. Phys. Rev. Lett. 103, 016401 (2009).
10. Han, M. J., Wang, X., Marianetti, C. A. & Millis, A. J. Dynamical mean-field theory of nickelate superlattices. Phys. Rev. Lett. 107, 206804 (2011).
11. Chen, H. et al. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110, 186402 (2013).
12. Dia, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).
13. Botana, A. S., Pardo, V. & Norman, M. R. Electronic doped layered nickelates: Spanning the phase diagram of the cuprates. Phys. Rev. Mater. 1, 021801 (2017).
14. Zhang, J. et al. Large orbital polarization in a metallic square-planar nickelate. Nat. Phys. 13, 864–869 (2017).
15. Liu, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).
16. Botana, A. & Norman, M. Similarities and differences between LaNiO3 and CaCuO2, and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).
17. Sakakibara, H. et al. Model construction and a possibility of cuprate-like pairing in a new d nickelate superconductor (Nd5Sn)2NiO4. Preprint at https://arxiv.org/abs/1909.00060 (2019).
18. Hirsch, J. & Marsiglio, F. Hole superconductivity in infinite-layer nickelates. Physica C 566, 135334 (2019).

https://doi.org/10.1038/s42005-020-0347-x

COMMUNICATIONS PHYSICS | (2020) 3:84 | https://doi.org/10.1038/s42005-020-0347-x | www.nature.com/commsphys
31. Zhou, T., Gao, Y. & Wang, Z. D. Spin excitations in nickelate.
32. Werner, P. & Hoshino, S. Nickelate superconductors: multiorbital nature and
33. Hu, L.-H. & Wu, C. Two-band model for magnetism and superconductivity in
34. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas.
35. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and
36. Hohenberg, P. & Kohn, W. Phys. Rev. B 100, 014510 (2020).
37. Kotliar, G. et al. Electronic structure calculations with dynamical mean-
38. Silver, R. N., Sivia, D. S. & Gubernatis, J. E. Maximum-entropy method for
39. Wilson, K. G. The renormalization group and critical phenomena. Rev. Mod. Phys. 54, 43 (1982).
40. Wilson, K. G. The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983).
41. Sato, T. et al. Nickelate superconductors—formation of a two-dimensional single-component
42. Werner, P. & Hoshino, S. Nickelate superconductors: a renaissance of the one-band
43. Sakuma, R. & Aryasetiawan, F. First-principles calculations of dynamical
44. Lechermann, F. Late transition metal oxides with in
45. Tokura, Y. et al. Cu-o network dependence of optical charge-transfer gaps and
46. Matsuishi, S. et al. High-density electron anions in a nanoporous single
47. Hirayama, M., Tadano, T., Nomura, Y. & Arita, R. Materials design of
48. Ryee, S., Yoon, H., Kim, T. J., Jeong, M. Y. & Han, M. J. Induced magnetic
dimensionality by hole doping in the superconducting infinite-layer nickelate Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. B 100, 064513 (2020).
49. Zhang, H. et al. Effective hamiltonian for nickelate oxides Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. Res. 2, 123144 (2020).
50. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).
51. Wilson, K. G. The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983).
52. Sato, T. et al. Nickelate superconductors—formation of a two-dimensional single-component
53. Werner, P. & Hoshino, S. Nickelate superconductors: a renaissance of the one-band
54. Hirayama, M., Tadano, T., Nomura, Y. & Arita, R. Materials design of
55. Ryee, S., Yoon, H., Kim, T. J., Jeong, M. Y. & Han, M. J. Induced magnetic
dimensionality by hole doping in the superconducting infinite-layer nickelate Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. B 100, 064513 (2020).
56. Zhang, H. et al. Effective hamiltonian for nickelate oxides Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. Res. 2, 123144 (2020).
57. Zhang, G.-M., Yang, Y.-f. & Zhang, F.-C. Self-doped mott insulator for parent
58. Kitatani, M. et al. Nickelate superconductors
59. Werner, P. & Hoshino, S. Nickelate superconductors: a renaissance of the one-band
60. Hirayama, M., Tadano, T., Nomura, Y. & Arita, R. Materials design of
61. Ryee, S., Yoon, H., Kim, T. J., Jeong, M. Y. & Han, M. J. Induced magnetic
dimensionality by hole doping in the superconducting infinite-layer nickelate Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. B 100, 064513 (2020).
52. Dresselhauss, M., Dresselhauss, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag Berlin Heidelberg, 2007).
53. Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
54. Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).
55. Maier, T. A., Jarrell, M., Schulthess, T. C., Kent, P. R. C. & White, J. B. Asymptotic study of a two-dimensional superconductivity in the 2d repulsive Hubbard model. Phys. Rev. Lett. 95, 237001 (2005).
56. Halbboth, C. J. & Metzner, W. D-wave superconductivity and pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162–5165 (2000).
57. Kitatani, M. et al. Nickelate superconductors—a renaissance of the one-band
58. Hirayama, M., Tadano, T., Nomura, Y. & Arita, R. Materials design of
61. Ryee, S., Yoon, H., Kim, T. J., Jeong, M. Y. & Han, M. J. Induced magnetic
dimensionality by hole doping in the superconducting infinite-layer nickelate Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. B 100, 064513 (2020).
52. Dresselhauss, M., Dresselhauss, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag Berlin Heidelberg, 2007).
53. Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
54. Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).
55. Maier, T. A., Jarrell, M., Schulthess, T. C., Kent, P. R. C. & White, J. B. Asymptotic study of a two-dimensional superconductivity in the 2d repulsive Hubbard model. Phys. Rev. Lett. 95, 237001 (2005).
56. Halbboth, C. J. & Metzner, W. D-wave superconductivity and pomeranchuk instability in the two-dimensional Hubbard model. Phys. Rev. Lett. 85, 5162–5165 (2000).
57. Kitatani, M. et al. Nickelate superconductors—a renaissance of the one-band
58. Hirayama, M., Tadano, T., Nomura, Y. & Arita, R. Materials design of
61. Ryee, S., Yoon, H., Kim, T. J., Jeong, M. Y. & Han, M. J. Induced magnetic
dimensionality by hole doping in the superconducting infinite-layer nickelate Nd_{1−x}Sr_{x}NiO_{2}. Phys. Rev. B 100, 064513 (2020).
52. Dresselhauss, M., Dresselhauss, G. & Jorio, A. Group Theory: Application to the Physics of Condensed Matter (Springer-Verlag Berlin Heidelberg, 2007).
53. Zheng, B.-X. et al. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science 358, 1155–1160 (2017).
54. Gull, E., Parcollet, O. & Millis, A. J. Superconductivity and the pseudogap in the two-dimensional Hubbard model. Phys. Rev. Lett. 110, 216405 (2013).
55. Maier, T. A., Jarrell, M., Schulthess, T. C., Kent, P. R. C. & White, J. B. Asymptotic study of a two-dimensional superconductivity in the 2d repulsive Hubbard model. Phys. Rev. Lett. 95, 237001 (2005).
