Organizational culture, resources, and innovativeness of shipbuilding companies: Moderating role of external factors

Ahmed Mohammed Kamaruddeen *, Chieng Tiong Koh, Wahida Wahi, Angela Ting Mee Yii

Quantity Surveying Programme, School of Built Environment, University College of Technology Sarawak, Sibu, Malaysia

A B S T R A C T

The considerable attention of Malaysian government on innovativeness, the quest to increase her market share from 1% to 2% of the global shipbuilding industry by 2020, and the strategic regional development plan of the Sarawak state in particular that focuses on the priority sectors including the Maritime industry motivated the conduct of this study. This paper, therefore, assesses the current innovativeness level among the shipbuilding companies; examines the direct relationship between independent variables (company culture and resources), the dependent variable (company innovativeness) and the moderating effect of external factors on the relationship. We used the simple random sampling to collect data from shipbuilding companies in Sarawak. We received 41 valid questionnaires out of 65 questionnaires distributed, yielding 63% response rate. We used descriptive statistics to determine the extent of innovativeness of the shipbuilding companies. PLS SEM was employed to test the direct and moderating effects on the variables. The findings of this research suggest that the extent of organizational innovativeness of the shipbuilding companies in Sarawak is in the category of "early majority" based on the mean score of 3.09 and this is slightly lower compared to the extent of innovativeness among the housing developers in Malaysia which was found to be at "adopter" category based on the mean score of 3.67 in a previous related study. While organizational culture was found to have negative relationship with innovativeness, organizational resources showed a significant positive relationship with innovativeness among the shipbuilding companies. Additionally, external factors moderate the relationships between resources and innovativeness. While the small sample size used in data collection is a major limitation of this study. It is hoped that our findings complement the existing body of knowledge and provides a direction for the future innovativeness studies.

© 2018 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The considerable attention on innovativeness in Malaysia and the strategic regional development plan of the Sarawak state in particular that focuses on the priority sectors including the Maritime industry has become a major drive for Malaysia to aim at improving her position in the global market by moving from 1% in 2010 to capture 2% of the global shipbuilding industry by 2020. Achieving the target of 2% of the global Shipbuilding market share will certainly require a considerable innovativeness among the Shipbuilding companies in all aspects of their operations. Empirical studies have shown that innovativeness would enhance the competitive advantage and the performance of organizations (Ackermann et al., 2015). Learning from previous research and even replicating research hypotheses as well as the methodology will certainly provide numerous benefits in terms of comparability and give deeper value to Shipbuilding studies, greater visibility of Shipbuilding in innovation policies as well as positioning the Shipbuilding research in the mainstream innovation academia. Hence, this paper provides a platform for developing a new knowledge that encompasses the distinct features of the shipbuilding industry (Hjalager, 2010).

Despite the considerable research in the field of industrial innovation and innovativeness, the Shipbuilding industry has only received a limited attention (Hjalager, 2010; Camisón and Monfort-Mir, 2012). To mention the few, Tsekouras et al. (2011) examined the types, nature and the impacts of innovations developed among small shipping
companies in Greece and found that organisational and process innovations are critical to the dynamic strategy among small service companies. Marsh (2012) explored the introduction of cruise ship tourism into historic urban centres, and the mitigation policies that can be implemented to encourage sustainable development of the relationship in South Carolina. The work of Dennett et al. (2014) focused on the complex nature of the activities undertaken by waiters and purser on-board cruise ships in the United Kingdom’s cruise ship port. Previous studies mostly focused on the ship operators and less attention has been directed to studies on the shipbuilding companies particularly in the field of organizational innovativeness. The need for a better empirical research and evidence about innovativeness at the industry level is well documented in the literature (Hall and Williams, 2008; Hjalager, 2010). Such endeavor will enable an adequate representation of industries during any comprehensive or national or international innovation survey. In narrowing the research gap identified in the literature, this paper therefore, seeks to achieve the following objectives:

a. Determine the innovativeness of the Shipbuilding companies operating in Sarawak.
b. Examine the influence of company culture on the innovativeness among the ship building companies operating in Sarawak.
c. Examine the influence of company resources on the innovativeness among the ship building companies operating in Sarawak.
d. Examine the moderating influence of external factors on the relationship between company resources and innovativeness among the ship building companies in Sarawak.

2. Hypothesis development

2.1. Organizational innovativeness

Various definitions of the term organizational innovativeness have been provided by the literature. In this study, organizational or company innovativeness is defined as the propensity or capacity of an organization or company to adopt innovative products, processes, concepts, and business systems and technology that are new to the shipbuilding industry; not just for business survival, but also to meet the needs of the customers or end users, taking into consideration sustainability and the environment.

While previous studies have advanced our understanding about organizational innovativeness (Damanpour and Evan, 1992; Wang and Ahmed, 2004; Kocher et al., 2011; Peters and Naicker, 2013; Kaya and Torlak, 2013), there are varying definitions of the term in the extant literature. Knowles et al. (2008) defined organizational innovativeness as “the propensity of firms to create and/or adopt new products, processes, and business systems”. Accordingly, firm innovativeness is conceptualized as a product, process, and business system (Knowles et al., 2008). However, their study did not considered information technology as an important dimension of innovation, despite several studies associating the adoption of technology with innovation (Kock et al., 2011). This paper adopts Kamaruddeen et al. (2012a)’s definition as organization’s drive or capacity to adopt innovation in shipbuilding products, processes or concepts, businesses and information technology that are new to the shipbuilding companies or the industry in order to attain competitive advantage and meet customers’ needs.

2.2. Organizational internal and external factors

Empirical research shows that certain organizational internal factors, such as culture and structures (Russell and Hoag, 2004; Kamaruddeen et al., 2012b); organizational characteristics, such as firm size (Kamaruddeen et al., 2015); organizational structure and resources (Subramanian and Nilakanta, 1996) will influence the adoption of innovation. However, while organizations are capable of managing their internal factors to enhance innovative capability, the external factors are usually beyond their control. Hence the need to also examine the influence of external factors on organizational innovativeness. Accordingly, factors influencing organizational innovativeness are broadly classified as internal and external factors (Akgun et al., 2007).

In this paper, internal factors comprise of organizational culture and resources. We conceptualized organizational culture as adhocracy culture and market orientation; and organizational resource as transformational leadership style and organizational learning. Likewise; external factors comprise environmental uncertainty, market competition and government support.

2.2.1. Organizational culture and innovativeness

Previous studies have also shown that organizational culture plays an important role in innovation capabilities, efficiency and improved productivity within organizations (Alas et al., 2009). The shipbuilding businesses are required to develop and prioritize the culture that supports innovativeness adoption as an avenue for the attainment of competitive edge. In specific terms, researchers like Chertan and Deshpande (1985) argued that organization’s cultural systems do interact with their structure which creates the basis for organizational policy and procedures. These systems in turn, influence all organizational actions, which include innovation performance (Obendhain and Johnson, 2004).

Cameron and Quinn (2005) identified four different cultural dimensions: Adhocracy, clan, hierarchy, and market orientation cultures. These four dimensions of organizational culture exemplify different value orientations. Clan emphasizes
flexibility, change and it focuses on the internal organization. In adhocracy, the external focus is emphasized, in addition to flexibility, continuous growth, adaptation, creativity, and resource acquisition. Hierarchy organizations are also externally focused, but they are control-oriented with emphasis on productivity and accomplishment of fixed objectives to gain more competitive advantage with the external environment. Market orientation culture places emphasis on stability, and focuses on the internal organization. It prioritizes uniformity, co-ordination, internal productivity and a strict adherence to regulations (Shih and Huang, 2010). Even though the competing value framework (CVF) subdivided these cultural dimensions into quadrants with divergent features, it should be noted that organizations hardly align with only one value system.

In this paper, the competing value framework of Cameron and Quinn (2005) was adopted to measure organizational culture to examine the market and adhocracy cultures practiced by shipbuilding companies. Implying that only the adhocracy and market orientation culture dimensions are considered in this to determine the shipbuilding company culture (Duygulu and Özeren, 2009).

Also, previous studies have demonstrated that market-oriented organizations create corporate cultures, which is the basis for attaining a competitive edge, and it is also an essential determinant of organizational performance (Narver and Slater, 1990). The development of market orientation within an organization is to represent the organization’s focus on all its stakeholders, customers, suppliers, competitors and governmental institutions (Slater and Narver, 1995). In this sense, organizations with market orientation are always proactive in developing innovative capabilities to rise above their competitors. Therefore, it can be inferred that market oriented companies are strongly linked with innovativeness. Also, this proposition is consistent with the extant literature (Szymanski and Henard, 2001; Naidoo, 2010) where it was suggested that the adoption of market culture leads to innovativeness. We therefore hypothesize H1 as follows:

Hypothesis 1: Organizational culture will have a positive influence on the innovativeness of Shipbuilding companies.

2.2.2. Organizational resources and innovativeness

Previous studies have examined the extent to which company resources can be employed to entrench innovative capabilities. While the resource based view (RBV) theory has been widely used in this context, organizational learning (Hurley and Hult, 1998), and transformational leadership (Ergeneli et al., 2007) have also been theorized as antecedents to innovativeness. In organizational learning, firm’s ability to learn both new and external information, understand value, assimilate it and subsequently applying it to all business systems is crucial, all these have been demonstrated to assist in innovative capabilities (Cohen and Levinthal, 1990).

Organizations that prioritize members’ transformation of information into knowledge and then into action can afford experimentation and adopt innovativeness more rigorously (Jiménez-Jiménez and Sanz-Valle, 2011). This knowledge acquisition depends on the organization’s knowledge base (Salavou and Lioukas, 2003), as well as on their capacity to acquire external information (Chang and Cho, 2008). Equally, innovation also requires the transformation and utilization of existing organizational knowledge, which implies that firm employees need to continuously share information and knowledge. As noted by Nonaka (2002), innovative capacity is easily earned when members share knowledge within the organization and when this shared information and knowledge engender new insights. In a nutshell, organizational learning produces organizational development, acquisition, and exploitation of novel knowledge that improve organizational innovativeness (Jiménez-Jiménez and Sanz-Valle, 2011). In addition, transformational leadership allows leadership to demonstrate the ability to motivate members to outperform their initial expectations as the organization strives to attain better performance. Jung et al. (2003), demonstrated a significant relationship exists between transformational leadership and organizational innovativeness, in the sense that transformational leaders promote group effectiveness through followership empowerment so that job execution is done without leaders’ interference. We therefore hypothesize H2 as follows:

Hypothesis 2: Organizational resources will have positive influence on the innovativeness of Ship building companies.

2.2.3. External factors as moderator

Baron and Kenny (1986), suggest that a moderator performs the function of a third variable which can be in form of a qualitative or quantitative variable influencing either the direction and/or the strength of the relationship existing between an independent variable and a dependent variable. In other words, the moderating variable is one that has a strong contingent effect on the independent variable-dependent variable relationship. That is, the presence of this third variable (the moderating variable) modifies the original relationship between the independent and the dependent variables” (Sekaran and Bougie, 2016).

The nature of the influence of company culture and resources on firm innovativeness is likely to vary according to the level of certain external factors (Sutcliffe and Zaheer, 1998). This section discusses the role of external factors as a moderator within the
company culture and resources resulting in innovativeness. External factors (conceptualized as environmental uncertainty, market competition and government support) in this study refer to those factors that are beyond the control of an organization. Environmental uncertainty is a well-established factor which exerts a significant influence on organizational success (Sutcliffe and Zaheer, 1998). Irregularity in the external environment always results in high level information-processing demands for organizations (Tushman and Nadler, 1978).

Studies on market competition and organizational innovativeness have a long history. For example, Dasgupta and Stiglitz (1980) showed that organizations in a competitive environment are likely to invest more in R&D than their counterparts. Recently, a number of studies have also examined the influence of a competitive market on firms' innovative activities. By estimating a production function that includes market structure, Slivko and Theilen (2014) showed that, when competition is intense, efficient firms' incentives to innovate tend to improve. In a similar manner, Salavou et al. (2004) argued that market concentration has a diminishing effect on firms' innovative behaviour because the intensity of competition induces firms to be innovative. In this study, external factors are regarded as those factors that company have no control over. They only tend to adapt to those factors through several mechanisms. As shown in the research model depicted in Fig. 1, we hypothesize H3 as follows:

Hypothesis 3: External factors will moderate the influence of company resources on the innovativeness of Shipbuilding companies.

![Research model](image)

3. Research method

3.1. Measures and scale development

A 5-point Likert-type ranging from 1 = “not at all” to 5 = “Completely true” measures used in the study are presented in Table 1. All the measures were obtained from previous studies, with sound validity and reliability. All the indicator variables are modelled reflectively because they are caused by their main constructs, and any of the indicators can be left out without changing the real meaning of the latent constructs (Diamantopoulos and Riefler, 2011). S/N Variables

Source of Measurement Instrument	Scale	Remark	
1. Adhocracy culture	Cameron and Quinn (1999)	5-point	Adopted
2. Market orientation	Jaworski and Kholi (1993)	5-point	Adopted
3. Transformational leader	Garcia-Morales et al. (2006)	5-point	Adopted
4. Organizational learning	Garcia-Morales et al. (2006)	5-point	Adopted
5. Government support	Liu (2007)	5-point	Adopted
6. Environmental uncertainty	Lin (2007)	5-point	Adopted
7. Market competition	Premkumar and Robert (1999)	5-point	Adopted
8. Firm innovativeness	Knowles et al. (2008;)	5-point	Adopted

3.2. Data collection and sample

The data for this study was collected from the Shipbuilding companies operating in Sarawak, Malaysia. Sarawak state was chosen because the majority of the shipbuilding companies are located there (Zhang et al., 2011). The respondents for the survey were executive directors, operating and business managers in each of the companies, who have acquired satisfactory professional experiences to provide the data needed for this study. The population of this study consists of companies that are fully registered with the Association of Shipbuilders in Sarawak. Krejcie and Morgan (1970)’s criteria was used to determine the appropriate sample size for this research and to ascertain the significance of 95% confidence level. It was found that 65 samples were deemed
appropriate for the population of 97 ship building companies. Following Sekaran and Bougie (2013), the simple random sampling was used to select the respondents for this study. The copies of questionnaires were sent by post to the selected companies, accompanied by a cover letter which explained its purpose and also which assured that the responses will be treated with utmost confidentiality throughout the research. Next, all the 41 returned questionnaire were retained for analysis because they were completely filled.

The 41 returned questionnaire corresponds to 63% response rate and this is considered adequate (Akintoye, 2000; Dulaimi et al., 2003). Owing to the fact that this study uses a self-reporting survey, Podsakoff and Organ (1986) Harman’s single factor test was carried out to further examine the common method variance. In conducting Harman’s single-factor test, all variables of interest were entered into the exploratory factor analysis (EFA) with the aid of un-rotated principal components factor analysis. The results suggest that the common method variance is not of great concern in this study, and it is unlikely to inflate the relationships among the variables measured in this study. The characteristics of the sample, as shown in Table 2, consist of the positions, the number of employees, company age and the number of full time employees.

Table 2: Demographic profile of respondent	Respondents	Frequency	%
Position in the Company			
Executive/Managing Director	9	21.9	
Marketing manager	7	17.1	
General Manager	6	14.6	
Operations Manager	8	19.5	
Others	11	26.8	
Work Experience (in years)			
Years			
1-5 years	6	14.6	
6-10 years	16	39.0	
More than 10 years	19	46.3	
Gender			
Male	40	97.5	
Female	1	2.4	
Company Ownership			
Proprietorship	0	0	
Partnership	0	0	
Private Limited (Sdn Bhd)	39	95.1	
Corporation	2	4.9	
Others	0	0	
Company Location			
Within Sarawak state	34	82.9	
Within few states	4	9.8	
Regional	0	0	
Across Malaysia	1	2.4	
International market	2	4.8	
Company age			
1-5 years	11	26.8	
6-10 years	19	46.3	
More than 10 years	11	26.8	
Number of Full Time Employees			
<50	39	95.1	
51-100	1	2.4	
>100	1	2.4	

3.3. Data analysis

To achieve the first objective of this paper, we obtained the mean score of the organizational innovativeness of the shipbuilding companies surveyed. Next, Rogers (2003)’s innovation adoption categories were used to interpret the mean score and to determine the extent of innovativeness among the shipbuilding companies operating in Sarawak, Malaysia. To achieve the second, third and fourth objectives of this paper, we used the Partial least squares (PLS) of the Structural Equation Modelling technique to analyse the data obtained (Goodhue et al., 2007). This analysis technique was chosen based on the following considerations. First of all, PLS-SEM has the ability to model latent constructs either formatively or reflectively. All the latent constructs in this study were modelled reflectively. Secondly, PLS path modelling can be used for the assessment of the psychometric properties of individual latent constructs. Thirdly, the technique has the ability to model latent variables under non-normality conditions. Fourthly, it has the ability to handle the small sample size.
(Chin, 1998). Hence, PLS SEM was considered appropriate for analysing the 41 valid responses. The analyses were then conducted using a two-step procedure (Henseler et al., 2009), comprising (1) the measurement model assessment, where item reliability and validity are assessed, and (2) the structural model assessment, where the significance of path coefficients is tested, and the coefficient of determination (R² value) is determined.

4. Results

4.1. Extent of innovativeness of shipbuilding companies

The result of descriptive statistics showed that the overall mean for innovativeness is 3.09. The Alston and Miller (2001)'s Likert scale interpretation on the 5-point Likert scale in the questionnaire relative to Rogers' (2003)'s innovativeness categories: laggard, late majority, early majority, adopters, and innovators (in ascending order with innovator being the highest) used in this paper are as follows: not at all (1.0-1.49) = laggard, slightly true (1.5-2.49) = late majority, moderately true (2.5-3.49) = early majority, mostly true (3.5-4.49) = adopters, and completely true (4.5-5.00) = innovators. Finally, we determined the extent of innovativeness by examining which of the range above corresponded to the mean score of organizational innovativeness. The organizational innovativeness mean score (3.09) was observed to be within the “early majority” category. In other words, this finding suggests that the extent of innovativeness among the shipbuilding companies in Sarawak is in the category of “early majority”. Table 3 presents the overall mean and standard deviation scores for this study's exogenous and endogenous variables. Also, Table 3 presents the number of items for each variable, their mean scores and standard deviations.

Latent Variables	Number of Items	Mean	Std. Deviation
Environmental Uncertainty	6	3.581	0.550
Market Competition	6	3.329	0.730
Government Support	5	3.512	0.663
Adhocracy	11	3.022	0.650
Market Orientation	10	3.239	0.728
Transformational Leadership	6	3.426	0.738
Organizational Learning	6	3.626	0.803
Product Innovativeness	3	2.910	0.813
Process Innovativeness	4	3.116	0.868
Business innovativeness	4	3.030	0.789
Info-tech Innovativeness	6	3.293	0.794

4.2. Validity and reliability

We evaluated the individual item reliability by examining the outer loadings of the latent variables (Duarte and Raposo, 2010; Hair et al., 2016). This procedure requires items with standardized loadings between 0.40 and 0.70 to be retained (Hair et al., 2016). Out of the 67 items, only one item of Adhocracy (AC1) was deleted because it loaded below the expected threshold of 0.40, while the remaining 66 items loaded well above 0.40. Thus, as indicated in the result, the items had loadings between 0.635 and 0.918. The internal consistency of reliability is explained in terms of the extent to which all parts of a particular scale measure a concept (Sun et al., 2007). Cronbach’s alpha coefficient and composite reliability coefficient are mostly used to estimate this reliability of a scale (McCrae et al., 2011). Therefore, to ascertain the internal consistency of this study’s measures, composite reliability coefficient is considered against the popular Cronbach's alpha coefficient. Organizational researchers (Gotz et al., 2010) claim that composite reliability coefficient has lesser biased estimation of reliability than the Cronbach’s alpha coefficient. Their claim is based on the fact that in Cronbach’s alpha coefficient, items simultaneously contribute to the latent variable without ascertaining the individual items’ contribution. Therefore, the criteria for interpreting internal consistency of reliability using the composite reliability coefficient stated that the reliability coefficient should be 0.70 and above (Bagozzi and Yi, 1988; Hair et al., 2011). Table 4 presents the composite reliability coefficients in this study's latent variables.

4.3. Measurement model results

We adopted the two-step approach for the evaluation of the PLS-SEM path model results in this study. This procedure comprises of the following steps. First is the measurement model assessment, where item reliability and validity are assessed. Second are the structural model assessment, where the significance of path coefficients is tested, and the coefficient of determination (Henseler et al., 2009). In the estimating measurement model, the individual item reliability, internal consistency of reliability, content validity, discriminant validity and convergent validity are determined (Hair et al., 2011;2016).
Additionally, the coefficients ranged from 0.905 to 0.938, implying that the latent variable’s internal consistencies were adequate as they all exceeded the minimum level of 0.70. Table 5 presents the square root of AVE (appearing in bold) is compared to the off-diagonal coefficients, where it was clear that the

Table 4: Loadings, composite reliability (CR) and AVE

Construct and their variables	Loadings
Product innovativeness, AVE = 0.770; Composite reliability = 0.913	
PR1. We tend to be an early adopter of innovative ship building	0.775
materials	
PR2. We are able to adopt innovative ship building used by others.	0.790
PR3. We seek for innovative building materials from outside this organization	0.737
Process innovativeness, AVE = 0.725; Composite reliability = 0.913	
PC1. We tend to be an early adopter of the innovative ship building process	0.746
PC2. We are able to implement the innovative process used by other companies	0.833
PC3. We actively develop the in-house solution to improve our ship building services.	0.772
PC4. We seek for innovative ship building process outside this organization	0.731
Business system innovativeness, AVE = 0.750; Composite reliability = 0.923	
BS1. We see creating new business systems as critical to our success.	0.773
BS2. We tend to be an early adopter of innovative business system	0.918
BS3. We are able to implement innovative business systems used by other companies	0.862
BS4. We actively seek innovative business systems from outside this company	0.904
Information technology innovativeness, AVE = 0.635; Composite reliability = 0.913	
Info1. Most of our employees are computer literate	0.810
Info2. We have a policy that encourages the application of information technology	0.786
Info3. Our company is well computerized	0.703
Info4. Our company has high bandwidth connectivity to the Internet	0.702
Info5. Employees support the application of information technology	0.805
Info6. We conduct most business transactions online	0.748
Adhocracy culture, AVE = 0.602; Composite reliability = 0.938	
AC2. The company is an entrepreneurial place	0.800
AC3. The leadership in our company generally exemplifies innovativeness.	0.813
AC4. The leadership in our company generally exemplifies risk-taking	0.822
AC5. The management style in the company is characterized by freedom	0.797
AC6. The management style in our company is characterized by uniqueness	0.792
AC7. We are committed to innovation	0.791
AC8. We are committed to development	0.717
AC9. The company emphasizes the act of creating new challenges	0.733
AC10. The company emphasizes the acquisition of new resources	0.792
AC11. We define success on the basis of unique services	0.701
Market orientation, AVE = 0.649; Composite reliability = 0.949	
MO1. Our staff share competitive information within the company.	0.798
MO2. We respond rapidly to competitive actions	0.827
MO3. The company’s top management regularly discusses competitors’ strength	0.836
MO4. We target at customers when we have an opportunity for competitive advantage	0.799
MO5. The company pays close attention to after- service	0.796
MO6. Our business objectives are driven by customer satisfaction	0.823
Transformational Leadership, AVE = 0.665; Composite reliability = 0.922	
TSL1. The management team is always on the lookout for new opportunities for the organization	0.714
TSL2. The management team has a clear view of its final goals	0.685
TSL3. The management team succeeds in motivating the rest of the company’s employees	0.794
TSL4. The management team always acts as the organizational leading force	0.712
TSL5. The company leaders are capable of motivating the employees on their job	0.787
TSL6. The company has leaders who are capable of guiding the employees on their job	0.783
Organizational learning, AVE = 0.647; Composite reliability = 0.916	
OL1. The company promotes a learning culture	0.728
OL2. The company has a strong commitment to learn	0.718
OL3. The company promotes open-mindedness	
OL4. The management team acts a learning agent for the company	0.751
OL5. The company proactively questions long-held way routines	0.728
OL6. Our shared vision provides a focus for learning	0.725
Environmental uncertainty, AVE = 0.602; Composite reliability = 0.929	
EU1. Our customers’ preference changes slightly over time	0.798
EU2. Our customers tend to look for new services all the time	0.847
EU3. Other companies are adopting innovation in their services	0.850
EU4. New customers are demanding for our services	0.828
EU5. New customers tend to have needs that are different from our existing customers	0.812
EU6. We currently cater for many of the same customers we used to deal with in the past	0.843
Market competition, AVE = 0.693; Composite reliability = 0.919	
MC1. Competition is intense the ship building industry	0.797
MC2. There are many promotions in the ship building industry	0.856
MC3. Anything that one competitor can offer. others can provide the same	0.863
MC4. Price competition is a hallmark of this industry	0.834
MC5. We hear of a new competitive move almost every time	0.812
Government support, AVE = 0.659; Composite reliability = 0.905	
GS1. Government provides financial support for Innovation	0.635
GS2. Government encourages innovation in the Ship building industry	0.848
GS3. Government agencies provide incentives for innovation	0.829
GS4. Government introduces the regulation that promotes innovation	0.878
GS5. Government policy promotes competition in the ship building industry	0.846

The table presents the loadings, composite reliability (CR), and average variance extracted (AVE) for each construct and its variables. The loadings range from 0.685 to 0.849, indicating a high level of construct validity. Composite reliability values range from 0.725 to 0.922, and AVE values range from 0.602 to 0.949, suggesting good internal consistency and discriminant validity.
square roots of all the AVEs along the diagonals are greater than the off-diagonal coefficients both in rows and columns, indicating adequate discriminant validity. Discriminant validity is also assessed by comparing the item loadings with the cross-loadings, where all the item loadings should be greater than other loadings in rows and columns. As shown in Table 6, all item loadings were not only higher than the recommended value of 0.5, but they also higher than the cross loadings. This suggests that discriminant validity of the outer model is satisfactory (Hair et al., 2009).

4.4. Structural model and hypothesis testing

The higher-order model (hierarchical component model, HCM) involves the testing of second-order structures that have two level-components. This model is considered to achieve a more parsimonious theoretical relationship and to reduce the complexity of a model (Hair et al., 2013). This procedure also gives additional evidence in support of this study’s theoretical model as indicated in the structural model, as evidenced in Chin (2010). All the four variables in this study are multi-dimensional, which necessitated the inclusion of higher-order model, and in estimating the model, the latent variable scores of these dimensions were taken as indicators from the Smart PLS analysis report.

As indicated by Byrne (2010), to further advance the knowledge on the existing theoretical basis, the second order constructs should be conceptually explained by their first order constructs (i.e., the dimensions of company culture, company resources, external factors, and firm innovativeness). Before estimating the research model, it is important to establish the suitability of the first order constructs to be able to conceptually describe the second order constructs. This is presented in Table 7 where the results show the suitability of the dimensions of the first order constructs to explain the second order constructs in this study.

In Table 6, the two first orders constructs, which are: adhocracy and market orientation are well explained by company culture as their R² values are 0.977 respectively? Equally, organizational culture was able to explain the two first order constructs (transformational leadership and organizational learning) considering their R² values which are 0.839 and 0.811, respectively. The R² value recorded for the three first order constructs of external factors indicated that they have been well explained by their second order construct with environmental uncertainty having 0.963, market competition with 0.944, and government support with 0.714. Thus, the results in Table 6 confirm the distinct nature of this study’s constructs.
Henseler et al., 2009). As demonstrated in Figs. 3 and 4, the inner model, including the moderating effects, is depicted. Table 7 also explains the result for the full structural model including the moderating variables, which are company resources and external factors.

![Fig. 2: Path coefficient beta values, significance and R² value](image)

Hypothesis	Path	Beta	SE	t-value	p-value	Decision
H1	Culture -> Innovativeness	-0.249***	0.045	5.498***	0.00	Rejected
H2	Resource -> Innovativeness	1.154***	0.039	29.501***	0.00	Supported
H3	Resource * Ext -> Innovativeness	0.045	0.057	2.201**	0.03	Supported

Note: ***Significant at 0.01; **Significant at 0.05 (2 tailed)

Table 7 shows the assessment of the full model, with the moderating effect. The results indicate a significant and unexpected negative relationship between organizational culture and the innovativeness of the ship building companies. Hence, H1 that suggested a positive significant relationship between organizational culture (adhocracy and market orientation) and innovativeness of the ship building companies in Sarawak, was not supported ($\beta = -0.249$, $t = 5.498$, $p< 0.01$). Based on hypothesis H2, the result indicates a significant relationship between company resources and innovativeness of ship building companies operating in Sarawak ($\beta = 1.154$, $t = 29.501$, $p< 0.01$). Hence, H2 was supported. Logically, shipbuilding firms' innovativeness improves with the combination of resources like transformation leadership and organizational learning.

Hypothesis H3 which highlights a moderating influence of external factors on the relationship between company resources and firm innovativeness of shipbuilding companies operating in Sarawak was supported ($\beta = 0.045$, $t = 2.201$, $p<0.05$).

4.5. Variance explained in the endogenous latent variables

Another important criterion for the assessment of the inner model is the coefficient of determination (R^2). According to Hair et al. (2011), the R^2 coefficient measures the proportion of an endogenous latent construct's variance that is explained by one or more predictor(s). It is a measure of a model's predictive accuracy, which is usually calculated as the squared correlation that exists between a specific endogenous variable's predicted values (Elliott and Woodward, 2007; Hair et al., 2009). The rule of thumb for an acceptable R^2 level, according to Falk and Miller (1992) is 0.10. Also, Chin (1998) suggested R^2 values of 0.67, 0.33, and 0.19 as substantial, moderate, and weak, respectively. As shown in Table 8, this study's model explains 91% of the total variance in the organizational innovativeness.

Table 8: Variance explained in the endogenous latent construct

Latent Construct	Variance Explained (R^2)
Firm Innovativeness	91%

This, according to Falk and Miller (1992) implies that the three independent latent variables (company culture, company resources and external factors), including the contributions of their dimensions, jointly explain 91% of the variance in the dependent variable, which is firm innovativeness.

4.6. Effect size (F^2) evaluation

In determining the strength of a model, the R^2 value of the endogenous latent variable is calculated, because this procedure is suitable for the estimation of how substantial is the impact of exogenous latent construct (s) on the endogenous construct. The effect size involves running a PLS algorithm while an exogenous construct is removed from the model in order to generate the R^2 excluded value for the same excluded construct.

The same procedure is repeated the second time by returning the exogenous latent construct in the
model to generate the R^2 included value (Hair et al., 2013). All the changes observed in R^2 values are used to compute the effect size (f^2) which is calculated, thus:

$$f^2 = \frac{R^2 \text{ included} - R^2 \text{ excluded}}{1 - R^2 \text{ included}}.$$

(1)

As indicated in Table 9, the effect sizes for company culture, company resources, and external factors on firm innovativeness are 0.141, 2.882 and 0.024 respectively. Thus, following the guideline of Cohen (1988), the effect sizes of these three independent variables on firm innovativeness is considered to be small, large, and small respectively.

4.7. Testing moderating effects of external factors

External factors comprising of environmental uncertainty, market competition, and government support are examined in this study to moderate the relationship between organizational resources and innovativeness. As described earlier, product indicator approach was applied to estimate the strength of this moderating effect. In Figs. 3 and 4 and Table 7, the estimates were established after applying the product indicator approach. It was earlier proposed in Hypothesis 3 that external factors will moderate the relationship between resources and firm innovativeness, in a way that this relationship will become stronger for the shipbuilding companies operating within those external factors than for those without such factors. As indicated in both Figs. 3 and 4 and Table 7, the interaction terms representing resources and external factors ($\beta = 0.095, t = 2.201, p < 0.00$) were statistically significant.

Expectedly, hypothesis 3 was fully supported at 0.10 level of significance. Equally, the path coefficient in the structural model was utilized to plot the moderating effect of external factors on the relationship between company resource and innovativeness, and Figs. 3 and 4 clearly indicated that the relationship between shipbuilding resources and firm innovativeness becomes stronger for ship building companies facing external environmental factors such as environmental uncertainty, market competition and government support.

5. Discussion

The purpose of this study is to determine the extent of innovativeness; examine the influence of organizational culture and resources on the Innovativeness of Shipbuilding companies operating in Sarawak, Malaysia; and to test whether or not the external factors (environmental certainty, market competition and government support) moderate the relationship between organizational resources and innovativeness.

The extent of organizational innovativeness of the shipbuilding companies operating in Sarawak that was found to be in the category of “early majority” with mean score of 3.09 is slightly lower compared to the housing developers operating in Malaysia who Kamaruddeen et al. (2011) found to be in the “adopter” category, with the mean score of 3.67. The “Adopters” have been described as the role model in terms of the adoption and also play an important role in decreasing doubt among other members of the population when they adopt new ideas or concepts. Notwithstanding, the innovativeness of shipbuilding companies operating in Sarawak is higher than the service companies operating in Malaysian which Jantan et al. (2003) found to be in the category of “late majority” based on the mean score of 2.74.

The finding with respect to H1 suggests a negative relationship between organizational culture and innovativeness. Hence, H1 was not supported. While this is an unexpected result because it is not consistent with most previous studies on organizational culture and innovativeness (Cameron and Quinn, 2005; Szymanski and Henard, 2001; Jantan et al., 2003; Hult et al., 2004; Dobni, 2008; Kamaruddeen et al., 2012b) there are few explanations to this surprising result. Firstly, the small sample size might have influenced the negative relationship between the variable. Secondly, the way the respondent perceived adhocracy culture and market orientation might be different due to operational and market differences between ship building and other industries.

Hypothesis 2, which stated that organizational resources would have a significant positive relationship with innovativeness, was supported. The finding suggests a significant positive relationship between resources and innovativeness. This implies that the more transformational leadership style and organizational learning among the shipbuilding companies, the greater their innovativeness would be. Our finding is consistent with Gonzalez and Skerlavaj (2009) who examined the impact of organizational learning on the innovativeness of Spanish companies. The present study is also consistent with Garcia-Morales et al. (2006) who performed correlation and regression

Table 9: Effect Size of exogenous latent constructs on endogenous construct (innovativeness)

	R-squared	R2 incl	R2 excl	R2 incl-R2 excl	1- R2 incl	Total Effect
Company culture	0.915	0.903	0.012	0.988	0.141	
Company resources	0.915	0.670	0.245	0.309	2.882	
External factors	0.915	0.913	0.002	0.085	0.024	
analyses to examine the relationship between transformational leadership and innovativeness among companies operating in Spain.

In Hypothesis 3, it was hypothesized that external factors moderate the relationship between organizational resources and innovativeness, where the relationship becomes positive and stronger. This implies that the existence of external factors (environmental uncertainty, market competition and government support) will enhance the innovativeness of the shipbuilding companies which have transformational leaders and continuous organizational learning. In response to business uncertainty and high competition, transformational leaders will take advantage of government support and leverage the organizational resources to enhance their innovativeness. This finding extends the work of Prasad and Jinni (2017), who found that environmental uncertainty enhanced the relationship between an organizational behaviour (top management team cognitive conflict) and firm innovativeness.

6. Conclusion

This study contributes to the organizational innovativeness literature and provides some theoretical and practical implications. Drawing upon the innovation adoption theory, this study sheds more light on the relationship between organizational culture, resources and innovativeness. In addition, this paper contributes to the innovativeness literature by examining the moderating effect of external factors on the relationship between organizational resources and
innovativeness. Significantly, this paper demonstrates that organizational culture (adhocracy culture and market orientation) and organizational resources (transformational leadership and organizational learning) have a positive and significant influence on organizational innovativeness. Additionally, external factors (environmental uncertainty, market competition and government support) enhance the relationship between organizational resources and innovativeness.

The findings of this study have shown that while shipbuilding companies can enhance their competitive advantage through organizational innovativeness, certain antecedents such as transformational leadership style and organizational knowledge should be given considerable attention. In addition, shipbuilding companies can leverage their resources to respond adequately to external factors such as environmental uncertainty and organizational knowledge while taking full advantage of any support provided by the government. Hence, this study is relevant to the stakeholders in addressing some of the challenges currently facing the shipbuilding industry. The scope of this research which focuses on Sarawak alone is a major limitation of this paper. Future research could expand the scope to cover all the shipbuilding companies operating in Malaysia.

Acknowledgment

This research was supported by the University College of Technology Sarawak research grant (UCTS/RESEARCH/1/2016/13).

References

Ackermann MS, Stephan M, and Penrose JM (2015). Assessing organizational innovativeness—evidence from corporate narratives. Corporate Communications: An International Journal, 20(4): 399-414.
Akgun AE, Keskin H, Byrne JC, and Aren S (2007). Emotional and learning capability and their impact on product innovativeness and firm performance. Technovation, 27(9): 501-513.
Akintoye A (2000). Analysis of factors influencing project cost estimating practice. Construction Management and Economics, 18(1): 77-89.
Alas R, Niglas K, and Kraus A (2009). Manufacturing strategies and choices in cultural contexts. Journal of Business Economics and Management, 10(4): 279-289.
Alston AJ and Miller WW (2001). Analyzing the barriers and benefits towards instructional technology instruction in north carolina and virginia secondary agricultural education curricula. Journal of Southern Agricultural Education Research, 51(1): 50-62.
Bagozzi R and Yi Y (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1): 74-94.
Baron RM and Kenny DA (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6): 1173-1182.
Byrne B (2010). Structural equation modeling with AMOS. 2nd Ed., Taylor and Francis Group, New York, USA.
Cameron KS and Quinn RE (1999). Diagnosing and changing organizational culture: Based on the competing values framework. Addison Wesley, New York, USA.
Cameron KS and Quinn RE (2005). Diagnosing and changing organizational culture: Based on the competing values framework. John Wiley and Sons, Hoboken, USA.
Camisón C and Monfort-Mir VM (2012). Measuring innovation in tourism from the Schumpeterian and the dynamic-capabilities perspectives. Tourism Management, 33(4): 776-789.
Chang DR and Cho H (2008). Organizational memory influences new product success. Journal of Business Research, 61(1): 13-23.
Cherian J and Deshpande R (1985). The impact of organizational culture on the adoption of industrial innovations. AMA Educators’ Proceedings, Series, 51: 30-34.
Chin WW (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2): 295-336.
Chin WW (2010). How to write up and report PLS analyses. In: Vinzi V, Chin WW, Henseler J, and Wang H (Eds.), Handbook of partial least squares: 655-690. Springer, Berlin, Heidelberg, Germany.
Cohen J (1988). Statistical power analysis for the behavioral sciences. 2nd Edition, Routledge, Abingdon, UK.
Cohen WM and Levintal DA (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1): 128-152.
Damanpour F and Evan WM (1992). The Adoption of Innovations over Time: Structural determinants and consequences in library organizations. Library and Information Science Research, 14(4): 465-482.
Dasgupta P and Stiglitz J (1980). Industrial structure and the nature of innovative activity. The Economic Journal, 90(358): 266-293.
Dennett A, Cameron D, Bamford C, and Jenkins A (2014). An investigation into hospitality cruise ship work through the exploration of metaphors. Employee Relations, 36(5): 480-495.
Diamantopoulos A and Riefler P (2011). Using formative measures in international marketing models: A cautionary tale using consumer animosity as an example. In: Taylor CR (Ed.), The measurement and research methods in international marketing: 11-30. Emerald Group Publishing Limited, Bingley, UK.
Dobni CB (2008). The developments of a generalized innovation culture construct using exploratory factor analysis. European Journal of Innovation Management, 11(4): 539-559.
Duarte PAO and Raposo MLB (2010). A PLS model to study brand preference: An application to the mobile phone market. In: Vinzi V, Chin WW, Henseler J, and Wang H (Eds.), Handbook of partial least squares: 449-485. Springer, Berlin, Heidelberg, Germany.
Dulaimi MF, Ling FY, and Bajracharya A (2003). Organizational motivation and inter-organizational interaction in construction innovation in Singapore. Construction Management and Economics, 21(3): 307-318.
Duygulu E and ÖZeren E (2009). The effects of leadership styles and organizational culture on firm’s innovativeness. African Journal of Business Management, 3(9): 475-485.
Elliott AC and Woodward WA (2007). Statistical analysis quick reference guidebook. With SPSS examples. Sage Publications, Thousand Oaks, California, USA.
Ergeneli A, Gohar R, and Temirbekova Z (2007). Transformational leadership: Its relationship to culture value dimensions.
Kamaruddeen AM, Yusof N, and Said I (2012a). Dimensions of firm innovativeness in housing industry. Emerging Issues in the Natural and Applied Sciences, 2(1):118-133.

Kamaruddeen AM, Yusof N, and Said I (2015). Relevance of firm size on the relationship between organizational culture and innovativeness. Jurnal Teknologi, 77(5): 15-22.

Kamaruddeen AM, Yusof NA, Said I, and Pakir AHK (2012b). Organizational factors and innovativeness of housing developers. American Journal of Applied Sciences, 9(12): 1953-1966.

Kaya N and Torlak NG (2013). The impacts of the elements of individual achievement motive on organisational innovativeness: A study of the turkish public sector. Journal of Academic Studies, 15(59): 97-122.

Knowles C, Hansen E, and Dibrell C (2008). Measuring firm innovativeness: Development and refinement of a new scale. Journal of Forest Products Business Research, 5(5): 1-24.

Kocher PY, Kaudela-Baum S, and Wolf P (2011). Enhancing organisational innovation capability through systemic action research: A case of a Swiss SME in the food industry. Systemic Practice and Action Research, 24(1):17-44.

Kock A, Gemünden HG, Salomo S, and Schultz C (2011). The mixed blessings of technological innovativeness for the commercial success of new products. Journal of Product Innovation Management, 28(1): 28-43.

Kreijcje RV and Morgan DW (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3): 607-610.

Lin CY (2007). Factors affecting innovation in logistics technologies for logistics services providers in China. Journal of Technology Management in China, 1(2): 22-37.

Marsh EA (2012). The effects of cruise ship tourism in coastal heritage cities: A case study of Charleston, South Carolina. Journal of Cultural Heritage Management and Sustainable Development, 2(2): 190-199.

McCrae RR, Kurtz JE, Yamagata S, and Terracciano A (2011). Internal consistency, test-retest reliability, and their implications for personality scale validity. Personality and Social Psychology Review, 15(1): 28-50.

Naidoo V (2010). Firm survival through a crisis: The influence of market orientation, marketing innovation and business strategy. Industrial Marketing Management, 39(9): 1311-1320.

Narver JC and Slater SF (1990). The effect of a market orientation on business profitability. The Journal of Marketing, 54(4): 20-35.

Nonaka I (2002). A dynamic theory of organizational knowledge creation. Choo CW and Bonnis N (Eds.). The strategic management of intellectual capital and organizational knowledge: 437-462. Oxford University Press, Oxford, UK.

Obenhain AM and Johnson WC (2004). Product and process innovation in service organizations: The influence of organizational culture in higher education institutions. Journal of Applied Management and Entrepreneurship, 9(3): 91-113.

Peters R and Naicker V (2013). Small mediums micro enterprise business goals and government support: A South African case study. South African Journal of Business Management, 44(4): 13-24.

Podsakoff PM and Organ DW (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4): 531-544.

Prasad B and Junni P (2017). Understanding top management team conflict, environmental uncertainty and firm innovativeness: Empirical evidence from India. International Journal of Conflict Management, 28(1): 122-143.
Premkumar G and Roberts M (1999). Adoption of new information technology in rural small businesses. Omega International of Management Science, 27: 467-484.

Rogers EM (2003). Diffusion of Innovation. 5th Edition, Free Press, New York, USA.

Russell DM and Hoag AM (2004). People and information technology in the supply chain: Social and organizational influences on adoption. International Journal of Physical Distribution and Logistics Management, 34(2): 102-122.

Salavou H and Lioukas S (2003). Radical product innovations in SMEs: The dominance of entrepreneurial orientation. Creativity and Innovation Management, 12(2): 94-108.

Salavou H, Baltas G, and Lioukas S (2004). Organisational innovation in SMEs: The importance of strategic orientation and competitive structure. European Journal of Marketing, 38(9/10): 1091-1112.

Sekaran U and Bougie R (2013). Research methods of business: A skill-building approach. John Wiley and Sons, Hoboken, USA.

Sekaran U and Bougie R (2016). Research method for business: A skill building approach. John Wiley and Sons, Hoboken, USA.

Shih CC and Huang SJ (2010). Exploring the relationship between organizational culture and software process improvement deployment. Information and Management, 47(5): 271-281.

Slater SF and Narver JC (1995). Market orientation and the learning organization. The Journal of Marketing, 59(3): 63-74.

Slivko O and Thelen B (2014). Innovation or imitation? The effect of spillovers and competitive pressure on firms’ R&D strategy choice. Journal of Economics, 112(3): 253-282.

Subramanian A and Nilakanta S (1996). Organizational innovativeness: Exploring the relationship between organizational determinants of innovation, types of innovations, and measures of organizational performance. Omega, 24(6): 631-647.

Sun W, Chou CP, Stacy A, Ma H, Unger J, and Gallaher P (2007). SAS and SPSS macros to calculate standardized Cronbach's alpha using the upper bound of the phi coefficient for dichotomous items. Behavior Research Methods, 39(1): 71-81.

Sutcliffe KM and Zaheer A (1998). Uncertainty in the transaction environment: An empirical test. Strategic Management Journal, 19(1): 1-23.

Szymanski DM and Henard DH (2001). Customer satisfaction: A meta-analysis of the empirical evidence. Journal of the Academy of Marketing Science, 29(1): 16-35.

Tsekouras G, Pouliis E, and Pouliis K (2011). Innovation and dynamic capabilities in a traditional service sector: evidence from shipping companies. Baltic Journal of Management, 6(3): 320-341.

Tushman ML and Nadler DA (1978). Information processing as an integrating concept in organizational design. Academy of Management Review, 3(3): 613-624.

Wang CL and Ahmed PK (2004). The development and validation of the organisational innovativeness construct using confirmatory factor analysis. European Journal of Innovation Management, 7(4): 303-313.

Zhang X, Platten A, and Shen L (2011). Green property development practice in China: costs and barriers. Building and Environment, 46(11): 2153-2160.