Effect of dopant atoms on local superexchange in cuprate superconductors: A perturbative treatment

Kateryna Foyevtsova1, Roser Valentí1 and P. J. Hirschfeld2

1Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
2University of Florida, Gainesville, Florida 32611, USA

(Dated: April 21, 2009)

Recent scanning tunneling spectroscopy experiments have provided evidence that dopant impurities in high-T_c superconductors can strongly modify the electronic structure of the CuO$_2$ planes nearby, and possibly influence the pairing. To investigate this connection, we calculate the local magnetic superexchange J between Cu ions in the presence of dopants within the framework of the three-band Hubbard model, up to fifth order in perturbation theory. We demonstrate that the sign of the change in J depends on the relative dopant-induced spatial variation of the atomic levels in the CuO$_2$ plane, contrary to results obtained within the one-band Hubbard model. We discuss some realistic cases and their relevance for theories of the pairing mechanism in the cuprates.

PACS numbers:

1. INTRODUCTION

Scanning tunnelling spectroscopy (STS) experiments on surfaces of several high-T_c materials1 have discovered a host of fascinating phenomena, including checkerboard local density of states (LDOS) modulations and inhomogeneous superconductivity with enormous gap modulations taking place at the nanoscale2,3,4,5. Recently, the size of the local gap was found to be positively correlated with simultaneously imaged atomic scale defects, thought to be interstitial oxygen dopants4. This is a surprising result, since it had been expected that an oxygen, which donates two holes to the CuO$_2$ plane, would overdope the system and lead to a smaller gap nearby. The positive correlation between the positions of the oxygen and the gap led Nunner \textit{et al}.7 to suggest that the dopants might be increasing the pair interaction locally. This could occur if the local electronic structure were altered significantly, so as to modify a spin fluctuation exchange effective interaction, or possibly a local electron-phonon coupling constant. For example, it has been observed that a strong correlation exists between the distance of the apical oxygen from the CuO$_2$ plane and the critical temperature6,7, and it might be imagined that a modulation of this displacement by dopant atoms could change the pairing interaction locally.

Nunner \textit{et al}.7 did not assume any specific microscopic model, but pointed out simply that the general assumption of dopants modulating the pair interaction could explain a remarkable number of experimental results and correlations. Within a generalized inhomogeneous Bardeen-Cooper-Schrieffer (BCS) pairing model adopted in this work, it correctly reproduces the anti-correlation of coherence peak height and position, the correlation of dopant position with gap size, and the detailed frequency dependence of the O:LDOS(ω) correlation. The theory is still controversial; in almost all treatments of disorder in superconductors, impurities are assumed to simply scatter electrons as a screened Coulomb potential, rather than modulate the pair interaction. There are, however, well-known exceptions10, and it is certainly reasonable to expect modulation of the pair interactions to be largest in systems like the cuprates where the coherence length is small. Strong correlations have not been included systematically in the theory, although some first steps have been made when J. X. Zhu showed explicitly using an inhomogeneous slave-boson approach that the proposal of Nunner \textit{et al}. that impurities might modulate the local exchange J was consistent with the STM observations11.

This scenario was investigated beyond the framework of mean field theory by Máška \textit{et al}.12. By assuming that (i) the cuprate superconductors can be described by the t--J model, with the exchange interaction as the main pairing mechanism13,14, and (ii) that the presence of the dopant atoms induces a position-dependent shift of the atomic levels in the CuO$_2$ plane, these authors calculated the effective superexchange interaction J between copper ions in the presence of dopants from a perturbation expansion of the one-band Hubbard Hamiltonian up to second order. They showed that the diagonal disorder in the plane always leads to an enhancement of J; accordingly, with the assumption that pairing is due to superexchange, the superconducting gap increases in the vicinity of the dopant atoms, in agreement with Ref. 7. If true, this conclusion would provide an important, apparently robust way to connect local atomic displacements with the increase of the pairing there, using the results of STS. However, recent results by Johnston \textit{et al}.15 based on cluster model calculations for the three-band Hubbard Hamiltonian16, which account explicitly for the Cu-O hopping processes, showed instead that electrostatic modifications due to the presence of the oxygen dopant locally suppress J. They showed, in addition, that electronic coupling to local phonon modes was
strongly modified by the dopant, and could enhance J. This is consistent with the fact that the gap inhomogeneities are strongly (anti)correlated to a local bosonic mode frequency identified in the tunnelling conductance by Lee et al. [17], but still in apparent contradiction to the result of Máška et al.

In view of the present controversy, we investigate here the possibility that the Máška et al. result is an artifact of an oversimplified model of the electronic structure of the CuO$_2$ plane, and analyze the effect of a dopant impurity on J by performing a perturbation expansion on the three-band Hubbard model. As in Ref. 12, we assume initially that the primary effect of the dopant is the shift of the atomic energy levels in the CuO$_2$ plane, but account for the shifts in O levels as well as Cu. Our calculations show that the fifth-order contribution is as important as the fourth-order one, in agreement with the results for the pure case [18]. We find that the sign of these contributions is very susceptible to the relative dopant-induced spatial variation of the atomic levels; in contrast to the single-band case, it may be either positive or negative. Finally, we show how the discrepancies between Refs. 12 and 15 may be understood in terms of limiting considerations.

II. MODEL

Our starting model is the three-band Hubbard Hamiltonian H_{Hub} on the CuO$_2$ plane [16]. The three bands arise from the hybridization of: the Cu 3$d_{x^2-y^2}$ orbital and the two degenerate O 2p_x orbitals, O 2p_x and O 2p_y. In the hole representation, H_{Hub} can be written as:

$$H_{\text{Hub}} = \sum_{i,\sigma} \left(\varepsilon_d + V_i \right) d_{i,\sigma}^\dagger d_{i,\sigma} + \sum_{l,\sigma} \left(\varepsilon_d + \Delta + \delta_l \right) p_{l,\sigma}^\dagger p_{l,\sigma} \vphantom{d_{i,\sigma}}$$

$$+ \sum_{<i,j>\sigma} t_{pd}^{il} \left(d_{i,\sigma}^\dagger p_{l,\sigma} + H.c. \right) \vphantom{d_{i,\sigma}}$$

$$+ \sum_{<i,n>\sigma} t_{pp}^{ln} \left(p_{l,\sigma}^\dagger p_{n,\sigma} + H.c. \right) \vphantom{d_{i,\sigma}}$$

$$+ U_d \sum_i d_{i,\uparrow}^\dagger d_{i,\downarrow}^\dagger d_{i,\downarrow} d_{i,\uparrow} + U_p \sum_l p_{l,\uparrow}^\dagger p_{l,\downarrow}^\dagger p_{l,\downarrow} p_{l,\uparrow}. \quad (1)$$

In Eq. (1), $d_{i,\sigma}$ (or $p_{l,\sigma}$) creates (annihilates) a hole with spin σ in the 3$d_{x^2-y^2}$ orbital of a Cu atom at site i. Correspondingly, $p_{l,\sigma}^\dagger$ (or $d_{i,\sigma}^\dagger$) creates (annihilates) a hole with spin σ in one of the two O 2p orbitals at site l. ε_d is the on-site energy of the Cu 3$d_{x^2-y^2}$ orbital, while Δ is the difference between the Cu 3$d_{x^2-y^2}$ and the O 2p energies in the pure system. t_{pd}^{il} and t_{pp}^{ln} describe the nearest-neighbor Cu-O and O-O hoppings, respectively. Only hoppings within the CuO$_2$ plane are considered. The sign of t_{pd}^{il} and t_{pp}^{ln} depends on the relative phase of the overlapping 3$d_{x^2-y^2}$ and 2p orbitals. U_d (U_p) is the on-site Coulomb repulsion for a pair of holes on a Cu (O) atom. The presence of a dopant shifts the atomic Cu and O energy levels in its neighborhood. We denote the energy shift for a Cu at position i as V_i and for an O at position l between Cu ions at positions i and j as $\delta_l = \delta_{ij}$ (see Fig. 1). Besides these shifts, the dopant is expected to cause local lattice distortions, which lead to the modification of the hopping integrals t_{pd}^{il} and t_{pp}^{ln}. In the present work we neglect this effect, as in Ref. 12 and concentrate on the effects due to the dopant-induced spatial variation of Cu and O atomic energy levels.

III. PERTURBATION EXPANSION

The fourth- and fifth-order expressions for the superexchange interaction ($J^{(4)}$ and $J^{(5)}$, respectively) in homogeneous cuprates were derived by Eskes and Jefferson [18] using Rayleigh-Schrödinger perturbation theory:

$$J = J^{(4)} + J^{(5)}, \quad (2)$$

$$J^{(4)} = \frac{4t_{pd}^{i}}{\Delta^2} \left\{ \frac{1}{U_d} + \frac{2}{2\Delta + U_p} \right\}, \quad (3)$$

$$J^{(5)} = \frac{4t_{pp}^{i}}{\Delta^2} \left\{ \frac{1}{U_d} + \frac{2}{2\Delta + U_p} \right\} \frac{8t_{pp}^{i}}{\Delta} + \frac{4t_{pp}^{i}}{\Delta^2}, \quad (4)$$

where we have set to zero the Coulomb repulsion U_{pd} between a hole on a Cu ion and a hole on the neighboring O ion, which we neglect in our calculations for the sake of simplicity.

We consider now the three-band Hubbard model for the case with an impurity [Eq. (1)] in the regime where $V_i, \delta_l < \Delta, U_d, U_p$ and apply Rayleigh-Schrödinger perturbation theory. We treat the hopping terms in Eq. (1)
as a perturbation H_1,
\[
H_1 = \sum_{<i,l>,\sigma} t_{pd}^{il} \left(d_{i,\sigma}^{\dagger} n_{l,\sigma} + H.c \right) \\
+ \sum_{<l,n>,\sigma} t_{pp}^{ln} \left(n_{l,\sigma} n_{n,\sigma} + H.c \right).
\] (5)

The ground state of the unperturbed Hamiltonian H_0 ($H_{Hub} = H_0 + H_1$) corresponds in this case to all Cu atoms occupied by one hole each. This state is 2^N-fold-degenerate due to the various possible electron spin distributions
\[
|\sigma_1 \cdots \sigma_N\rangle = \prod_{i=1}^{N} d_{i,\sigma_i}^{\dagger} |\text{vac}\rangle,
\] (6)

where $\sigma_1, \ldots, \sigma_N = \uparrow$ or \downarrow and i runs over Cu sites.

The effective Hamiltonian H_{eff} is calculated as a perturbation expansion in powers of H_1 [19, 20, 21]. For the set of states (4), we can ignore many terms of the perturbation series by making use of the fact that the terms containing PH_1P, where the operator P projects on the ground state manifold Eq. (3), will all vanish since it is not possible to connect any two states out of the ground state manifold Eq. (3) by a single hopping process. This observation leads to the following expression for H_{eff}:

\[
H_{eff} = E_0 P + PH_1 RH_1 P + PH_1 RH_1 RH_1 P \\
+ PH_1 RH_1 RH_1 RH_1 P \\
- \frac{1}{2} PH_1 R^2 H_1 PH_1 RH_1 P - \frac{1}{2} PH_1 RH_1 PH_1 R^2 H_1 P \\
+ PH_1 RH_1 RH_1 RH_1 P \\
- \frac{1}{2} PH_1 RH_1 R^2 H_1 PH_1 RH_1 P \\
- \frac{1}{2} PH_1 RH_1 PH_1 R^2 H_1 RH_1 P \\
- \frac{1}{2} PH_1 R^2 H_1 RH_1 PH_1 RH_1 P \\
- \frac{1}{2} PH_1 RH_1 RH_1 R^2 H_1 P \\
- \frac{1}{2} PH_1 RH_1 R^2 H_1 RH_1 P,
\] (7)

where $R = (1 - P)/(E_0 - H_0)$ so that, for a state $|\phi\rangle$ \in $\{|\sigma_1 \cdots \sigma_N\rangle\}$,
\[
R |\phi\rangle = \frac{1}{E_0 - E_\phi} |\phi\rangle.
\] (8)

E_0 is the ground state energy of H_0 and $E_\phi = \langle \phi | H_0 | \phi \rangle$.

Among the terms in H_{eff}, Eq. (7), we need only to consider those terms that are of the form
\[
\sum_{<i,j>,\sigma} d_{i,\sigma}^{\dagger} d_{j,\sigma}^{\dagger} d_{j,\sigma} d_{i,\sigma},
\] (9)

with $\bar{\sigma} = -\sigma$, since the corresponding prefactor determines J. The terms of interest result from calculating the fourth-order term $PH_1 RH_1 RH_1 RH_1 P$ and the fifth-order term $PH_1 RH_1 RH_1 RH_1 RH_1 P$ in Eq. (7). All other terms will only add a constant energy term to the effective Hamiltonian.

It is convenient to use graphs for deriving expressions for $J^{(4)}$ and $J^{(5)}$. One has to consider all possible fourth- and fifth-order hopping processes resulting in the exchange of spins between two Cu atoms and sum up the corresponding $PH_1 RH_1 RH_1 RH_1 P$ and $PH_1 RH_1 RH_1 RH_1 RH_1 P$ expressions.

There are in total 12 fourth-order graphs (each of the 6 topologically distinct graphs has two versions that differ by flipped spins), one of which is shown in Fig. 2(a). In the pure case they reduce to only two terms in $J^{(4)}$ [Eq. (3)]. In the case of an impurity (dopant-induced spatial variation of Cu and O levels), the terms in the sum for $J^{(4)}$ corresponding to hoppings that start from the Cu ion at site i will differ from those corresponding to hoppings that start from a Cu ion at site j due to the different dopant-induced shifts V_i and V_j. With the notation $t_{pd} = |t_{pd}^{il}|$, $t_{pp} = |t_{pp}^{ln}|$, the local exchange $J^{(4)}_{ij}$ to fourth-order is then

\[
J^{(4)}_{ij} = \left(\frac{4t_{pd}^2}{\Delta^2} U_d + \eta^{(1)}_{ij} \right) \\
+ \left(\frac{4t_{pp}^2}{\Delta^2} \frac{2}{2\Delta + U_p} + \eta^{(2)}_{ij} \right),
\] (10)

FIG. 2: (Color online) Graphs describing the (a) fourth- and the (b) fifth-order hole hopping processes that result in the exchange of spins between two Cu atoms. Black [cyan (gray)] circles represent Cu [O] atoms. Arrows denote hopping processes, with the accompanying number indicating the order, in which the hoppings occur. Symbols σ or $\bar{\sigma}$ stand for the spin of the hole.
with corrections

\[\eta_{ij}^{(1)} = \frac{4t_{\text{pol}}^4}{\Delta^2} \times \frac{a_0 + a_1 U_d + a_2 U_p^2}{a (\Delta - v_i)^2 (\Delta - v_j)^2 ([U_d^2 - (v_j - v_i)]^2),} \tag{11} \]
\[a_0 = (v_j - v_i)^2(\Delta - v_i)^2, \]
\[a_1 = \frac{1}{2} (v_j - v_i)^2 (2 \Delta - v_i + v_j) \Delta^2, \]
\[a_2 = \frac{1}{2} (\Delta - v_j)^2 (2 \Delta - v_i) + \frac{1}{2} (\Delta - v_i)^2 (2 \Delta - v_j) v_j, \]

and

\[\eta_{ij}^{(2)} = \frac{4t_{\text{pol}}^4}{\Delta^2} \times \frac{2}{U_p} \frac{b_0 + b_1 U_p}{(2 \Delta - v_i)^2 ([\Delta - v_j]^2 (\Delta - v_i)^2),} \tag{12} \]
\[b_0 = (\Delta - v_j)^2 (\Delta - v_j + (\Delta - v_j) v_i + (\Delta - v_i)^2 v_i - \frac{1}{2} (\Delta - v_j)^2, \]
\[b_1 = \frac{1}{2} [(\Delta - v_j) v_i + (\Delta - v_i) v_j] \times \left[\Delta - \frac{(v_i + v_j)}{2} + (\Delta - v_i) (\Delta - v_j) \right], \]

where we have defined \(v_i = V_i - \delta_{ij} \) and \(v_j = V_j - \delta_{ij} \). It is easy to check that the correction terms \(\eta_{ij}^{(1)} \) and \(\eta_{ij}^{(2)} \) vanish when the impurity-induced potentials \(v_i \) vanish.

We note that the sign of the total fourth-order correction due to the presence of the dopant, \(\eta_{ij} = \eta_{ij}^{(1)} + \eta_{ij}^{(2)} \), depends on the sign and the magnitude of \(v_i \) and \(v_j \), i.e., the actual energy separation between the dopant-shifted Cu and O levels and, in particular, for \(v_i, v_j << \Delta \), \(\eta_{ij} \) is proportional to \(v_i + v_j \). In general, this result is shown diagrammatically in Fig. 3 for a typical set of model parameters in the Bi superconductors \([U_d = 8.8 \text{ eV}, U_p = 4.1 \text{ eV and } \Delta = 2.92 \text{ eV (Ref. 14)} \) in the space of abscissa \(v_i = V_i - \delta_{ij} \) and ordinate \(v_j = V_j - \delta_{ij} \). White and cyan (gray) regions indicate negative and positive total fourth-order correction to \(J \), respectively. Points (a)-(d) denote the values of \(v_i \) and \(v_j \) used for generating diagrams (a)-(d) in Fig. 4.

The sign of this term depends on \(v_i, v_j, v_i^{v_1} = V_i - \delta_{ij}^{v_1}, v_i^{v_2} = V_i - \delta_{ij}^{v_2}, v_i^{v_3} = V_i - \delta_{ij}^{v_3}, \) and \(v_i^{v_4} = V_i - \delta_{ij}^{v_4} \) (such a symmetry is realized when the dopant atom is located on the line connecting two Cu atoms [15]). For given \(v_i \) and \(v_j \), it is then possible to draw a phase diagram of the sign of the total correction, \(\mu_{ij} + \eta_{ij} \), in the space of \(v_i \) and \(v_j \). In Fig. 4 we present, as an example, four such diagrams corresponding to different sets of \(v_i \) and \(v_j \) (four points in Fig. 3). For calculating these diagrams we chose \(t_{\text{pol}} = 1.2 \text{ eV} \) and \(t_{\text{pp}} = 0.5 \text{ eV} \) as also considered in the cluster calculations Ref. 15. The local Cu and O site energies calculated by Johnston et al. correspond to the choice of \(v_i = -0.13 \) and \(v_j = 0.08 \text{ eV} \) in Fig. 4(d). It can be concluded from examining the diagrams in Fig. 3 that
their energy levels, which we denoted as Δ for the ho-

tively. The point

refers to the energy levels distribution shown in Fig. 2

both positive and negative values while from the one-

that explains why the superexchange corrections due to

J of

ster several˚

one-band calculation of Ref. 12? F or physically reason-

by the impurity uniformly positive, as occurred in the

larger than V

See that for $V < V_c$ line (on the line,

$V_j - V_i = 0$) and indeed J is increased in the first quarter

and reduced in the third quarter of the diagram. In the

second and fourth quarters the relative variation of levels

of Cu atoms, $V_j - V_i$, becomes equally important. The

one-band model excludes completely the O atoms, thus

ignoring one of the two microscopic factors (change in

the Cu-O energy levels separation and the relative shift of

the energy levels of two interacting Cu ions) that govern

the variation of the local superexchange coupling J.

We would like to note that, as shown by Eskes and Jef-

ferson [18] for the homogeneous case, even the fifth-order

perturbation expansion for J is insufficient for quantita-

tive estimates of J and gives overestimated values com-

pared with the experimental (and cluster-model calculated)

values of J. Such trends, naturally, are also to be

expected in the disordered case. We calculate the

value of the forth- and fifth-order superexchange cou-

pling corrections with the same model parameters as used

in the cluster-model calculations [15] [Fig. 3 and 4 (d)]

and find that the sign and the order of magnitude of the

correction within our calculation, yielding a suppression

of J by $O(5\%)$, are in good agreement with cluster

calculations [15] when no modulation in the hopping inte-

grals is considered, as it is our case here. Consideration

of other sets of model parameters [22] lead to the same

relative correction values.

IV. ANALYSIS AND DISCUSSION

We are now concerned with trying to answer the follow-

ing questions. Is the sign of the correction to J caused

by the impurity uniformly positive, as occurred in the

one-band calculation of Ref. 12? For physically reason-

able assumptions regarding the magnitude and spatial

dependence of the impurity potential for a dopant sit-

ting several Å from the CuO$_2$ plane, can the modulation

of J be significant at all?

Regarding the first point, there is a simple argument

that explains why the superexchange corrections due to

doping derived from the three-band model can assume

both positive and negative values while from the one-

band model one finds that J is always enhanced. Let

us consider what happens between neighboring Cu and

O ions when their energy levels shift due to a dopant

by V and δ, respectively. The local separation

between their energy levels, which we denoted as Δ for the

homogeneous case, varies as $\Delta_{\text{loc}} = \Delta - (V - \delta)$. For

$(V - \delta) > 0$, Δ_{loc} decreases compared with Δ and vice

versa. Expressing J in terms of Δ_{loc} instead of Δ, one

sees that for $V_j - V_i \ll \Delta_{\text{loc}}$ [in this limit Δ in Eq. 3

and Eq. 4 can be replaced by Δ_{loc}] the variation of lo-

cal Cu and O levels separation Δ_{loc} defines the change

of J: since Δ_{loc} is in the denominator, $(V - \delta) > 0$ leads

to the enhancement of J and $(V - \delta) < 0$ leads to the

IV. CONCLUSIONS

The question of the impact of a dopant atom on the

local electronic properties in the CuO$_2$ plane of the

cuprates has been highlighted by STM measurements, in-

dicating that dopants correlate with regions of large gap

\cite{8}, and the theoretical proposal that the dopant itself

is enhancing the pairing interaction \cite{7}. The appealing

argument of Maška et al. \cite{15}, based on a single-band

analysis, that the perturbation provided by the dopant

necessarily enhances the superexchange locally and may

therefore enhance pairing, has been shown to be a special

result restricted to one-band systems. Within a three-

band Hubbard model appropriate to the CuO$_2$ plane, we

have in this work performed a perturbative calculation to

fifth order in the hoppings t_{pd} and t_{pp}, and shown that

the sign of the correction to J can be positive or negative

depending on the potentials on nearby sites induced by

the dopant impurity. The typical modulation is of order

$d\Delta/\Delta$ times the exchange for the homogeneous system,

where $d\Delta$ is a typical dopant-dependent modulation of

the local charge transfer energy between Cu and O, and

Δ is the homogeneous value of this difference. Using

values of these shifts obtained from cluster calculations \cite{15},

we find that a typical modulation due to an O dopant in

the Bi-2212 system imaged by STM is of order 5\% of the

FIG. 4: (Color online) sign($\eta_{ij} + \mu_{ij}$) diagrams in the space

of abscissa v_i and ordinate v_j. White and cyan (gray) cor-

respond to negative and positive values of $\eta_{ij} + \mu_{ij}$, respec-

tively. The point v_i^0=-0.23 eV, v_j^0=-0.05 eV in diagram (d)

corresponds to the energy levels distribution shown in Fig. 2

of Ref. 13.

the parameters v_i^1, v_i^2, v_i^3, and v_i^4 have to be slightly

larger than v_i and v_j to induce the change of sign of the

correction to J as compared to the fourth-order result.
homogeneous value.

It is possible that a more accurate microscopic calculation, accounting for the modulations of the hoppings and the apical oxygen degrees of freedom neglected here may produce a reliable description of this modulation. Until then, we have shown that the size and sign of this modulation is not universal but depends on details of the impurity and local electronic structure.

ACKNOWLEDGEMENTS

We acknowledge useful discussions with T. P. Devereaux. KF and RV thank the German Science Foundation (DFG) for financial support through the SFB/TRR49 program. PJH thanks DOE DE-FG02-05ER46236 for partial support.

[1] O. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner, Rev. Mod. Phys. 79, 353 (2007).
[2] S. H. Pan, J. P. O’Neal, R. L. Badzey, C. Chamon, H. Ding, J. R. Engelbrecht, Z. Wang, H. Eisaki, S. Uchida, A. K. Gupta, K.-W. Ng, E. W. Hudson, K. M. Lang, J. C. Davis, Nature 413, 282 (2001).
[3] K.M. Lang, V. Madhavan, J. E. Hoffman, E. W. Hudson, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London) 415, 412 (2002).
[4] C. Howald, P. Fournier, and A. Kapitulnik, Phys. Rev. B 64, 100504(R) (2001).
[5] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, J. C. Davis, Science 315, 1380-1385 (2007).
[6] K. McElroy, J. Lee, J. A. Sle zak, D.-H. Lee, H. Eisaki, S. Uchida, and J. C. Davis, Science 309, 1048 (2005).
[7] T. S. Nunner, B. M. Anderson, A. Melikyan, and P. J. Hirschfeld, Phys. Rev. Lett. 95, 177003 (2005).
[8] Y. Ohta, T. Tohyama, and S. Maekawa, Phys. Rev. B 43, 2968 (1991).
[9] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K. Andersen, Phys. Rev. Lett. 87, 047003 (2001).
[10] H. Suhl, D. R. Fredkin, J. S. Langer, and B. T. Matthias Phys. Rev. Lett. 9, 63 (1962); A.I. Larkin, Sov. Phys. JETP 31, 784 (1970); A. Wein kauf and J. Zittartz, Z. Phys. B 21, 135 (1975); K. Chattopadhyay, R.A. Klemm and D. Sa, J. Phys.: Cond. Matt. 14, L577 (2002).
[11] J.-X. Zhu, cond-mat/0508646
[12] M. M. Maška, Z. Sledž, K. Czajka, and M. Mierzejewski, Phys. Rev. Lett. 99, 147006 (2007).
[13] A.E. Ruckenstein, P.J. Hirschfeld, and J. Appel, Phys. Rev. B 36, 857 (1987).
[14] G. Baskaran, Z. Zou, and P.W. Anderson, Solid State Commun. 63, 973 (1987).
[15] S. Johnston, F. Vernay, and T.P. Devereaux, arXiv:0809.2841 (2008).
[16] V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).
[17] Jinho Lee, K. Fujita, K. McElroy, J. A. Sle zak, M. Wang, Y. Aiura, H. Bando, M. Ishikado, T. Masui, J.-X. Zhu, A. V. Balatsky, H. Eisaki, S. Uchida and J. C. Davis, Nature 442, 546 (2006).
[18] H. Eskes and J. H. Jefferson, Phys. Rev. B 48, 9788 (1993).
[19] I. Lindgren and J. Morrison, Atomic Many-Body Theory (Springer-Verlag, Berlin, 1986).
[20] M. Takahashi, J. Phys. C 10, 1289 (1977).
[21] E. Müller-Hartmann and A. Reischl, Eur. Phys. J. B 28, 173 (2002).
[22] P. R. C. Kent, T. Saha-Dasgupta, O. Jepsen, O. K. Andersen, A. Macridin, T. A. Maier, M. Jarrell, and T. C. Schulthess, Phys. Rev. B 78, 035132 (2008).