Reactive Monte Carlo Simulations for Charge Regulation of Colloidal Particles

Amin Bakhshandeh, Derek Frydel, and Yan Levin

1) Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, RS, Brazil.
2) Department of Chemistry, Federico Santa María Technical University, Campus San Joaquin, 7820275, Santiago, Chile

We use a reactive Monte Carlo simulation method and primitive model of electrolyte to study acid-base equilibrium that controls charge regulation in colloidal systems. The simulations are performed in a semi-grand canonical ensemble in which colloidal suspension is in contact with a reservoir of salt and strong acid. The interior of colloidal particles is modeled as a low dielectric medium, different from the surrounding water. The effective colloidal charge is calculated for different number of surface acidic groups, pH, salt concentrations, and types of electrolyte. In the case of potassium chloride the titration curves are compared with the the experimental measurements obtained using potentiometric titration. A good agreement is found between simulations and experiments. In the case of lithium chloride specific ionic adsorption is taken into account through partial dehydration of lithium ion.

I. INTRODUCTION

The interplay between electrostatic interactions and acid-base equilibrium is of paramount importance in Chemistry and Biology. It often defines the boundary between life and death. The protein functionality can change due to modification of surrounding pH, affecting enzymatic activity and the resulting metabolic processes. The transport of ions through the cellular membranes is strongly affected by pH. The same is true for the binding of heavy metals to bacterial membranes. In biological systems pH, which depends on the activity of proton inside the solution, can be significantly modified by the presence of electrolyte, which at physiological concentration is around 150 mM, affecting the solubility and stability of proteins. In colloidal science both pH and electrolyte concentration regulate colloidal charge and interaction between the particles. The Monte Carlo (MC) titration method which uses explicit ions has been successful in explaining the ionization equilibrium for complex systems such as protein complexation and charge regulation. In these methods, explicit ions are added and removed in constant pH to the system.

In the present paper we will use reactive Monte Carlo simulations to efficiently explore the effective charge of colloidal particles inside an electrolyte solution of a given pH. Differently from constant pH simulations, we treat all ions, including hydronium, explicitly in the semi-grand canonical ensemble. The advantage of this approach is that it automatically enforces uniform electrochemical potential of all ion inside the simulation cell. In this respect our approach is similar to recently introduced grand canonical simulation methods to account for charge regulation. However, the exclusive treatment of all ions makes the method general and so it can be used to treat other surface groups, not just those involving protonation. For example, in this work, we consider adsorption of Li+. Similarly, the method could be used to treat basic surface groups. This leads to the consistency in the method as there is no need to switch from method to method to simulate different surface groups.

This article is organized as follows. In Sec. (2) we introduce and describe the system. In Sec. (3) we discuss the simulation method. In Sec. (4) we compare the simulation method with the experimental results. In Sec. (5) we consider the scenario in which a cation K+ is substituted by Li+, which can specifically adsorb to carboxylate. The work is concluded in Sec. (6).

II. MODEL AND SYSTEM DETAILS

The system consists of a single colloidal particle of radius a fixed at the center of a spherical Wigner-Seitz (WS) cell whose radius R determines the volume fraction of the colloidal suspension of a corresponding experimental system. The cell is allowed to exchange ions with a reservoir containing strong monovalent salt and acid, at concentrations c_s and c_a, respectively, both of which fully dissociate in an aqueous solution, see Fig. 1. All ions have charge $\pm q$, where q is the proton charge. The dielectric constant inside the colloidal sphere, representing a polystyrene latex particle, is $\epsilon_c \approx 2.5$, while the dielectric constant of the surrounding water is $\epsilon_w \approx 80$. One advantage of working with the WS formalism is that contact theorem allows us to calculate the osmotic pressure inside the colloidal suspension directly using ionic densities at contact with the cell boundary.

The colloidal surface contains acidic groups of weak acid that only partially dissociate upon contact with an aqueous solution: the process is governed by the reac-
The deprotonated acidic groups A^- randomly distributed over the colloidal surface are represented by the red spheres and protonated HA groups are represented by the black spheres. The protonation of a titration site, $A^- + H^+ \rightarrow HA$, changes its charge from $-q \rightarrow 0$, at the same time Cl$^-$ is added to the cell with grand canonical probability, to preserve the overall charge neutrality. Deprotonation reaction, $HA \rightarrow A^- + H^+$, results in the change $0 \rightarrow -q$ of the titration site, and a simultaneous removal of Cl$^-$ from the simulation cell.

The acidic surface groups are also referred to as titration sites. When reacting, it transfers its charge to them, ψ_n, and in a protonated state it has charge q, see Fig. 1. The charge of titration site is located at its center.

The region outside the colloidal particle is occupied by the ions of a fully dissociated strong salt and acid, KCl $\rightarrow K^+ + Cl^-$ and HCl $\rightarrow H^+ + Cl^-$. All ions are represented by hard spheres of radius 3.3 Å, corresponding to fully hydrated ions. In particular, a proton H^+, does not exist separately, but is a hydronium ion, H_3O^+. The dielectric contrast between the colloidal core and the surrounding water results in induced surface charge density at the interface. The surface charge distribution depends on the location of ions inside the suspension. Therefore, the interaction between any two ions near a colloidal particle will not be given simply by the Coulomb potential, but will also depend on their distance from the colloidal surface. The Green function for the effective interaction between two ions inside the WS cell is accurately approximated by64-66

\[
G(r, r') = \frac{1}{\epsilon_w |r - r'|} + \frac{\gamma a}{\epsilon_w r'[r - \frac{a^2}{r'^2}r']} + \gamma \psi_c(r, r'),
\]

with

\[
\psi_c(r, r') = \frac{1}{\epsilon_w a} \ln \left[\frac{rr' - r \cdot r'}{a^2 - r \cdot r' + \sqrt{a^4 - 2a^2(r \cdot r') + r'^2r''^2}} \right],
\]

where $\gamma = (\epsilon_w - \epsilon_c) / (\epsilon_w + \epsilon_c)$. The first term of Eq. (1) is due to the direct Coulomb potential produced by an ion located at position r' from the center of colloidal particle, while other two terms result from the induced surface charge67,68. Note that the Green function is invariant under the exchange of the source and the observation points $r \leftrightarrow r'$. Eq. (1) is exact in the limit $\epsilon_c/\epsilon_w \rightarrow 0$, $\gamma = 1$. Furthermore, it was shown that it remains very accurate for $\epsilon_c/\epsilon_w \ll 162$, which is appropriate for the present system with $\epsilon_c/\epsilon_w = 2.5/80$.

The expression in Eq. (1) is derived specifically for a spherical colloidal particle. To account for dielectric polarization in more complex geometries, one would need to resort to numerical boundary-element methods, such as the Iterative Dielectric Solver (IDS)69, which is much more computationally intensive.

The electrostatic energy of the system is:

\[
U = \gamma \sum_{i=1}^{N} \left[\frac{q^2 a}{2 \epsilon_w (r_i^2 - a^2)} + \frac{q \psi_{self}(r_i)}{2} \right] + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} q_i q_j G(r_i, r_j),
\]

where N is the total number of particles inside the cell, including the charged surface sites. The term in the square brackets is due to self-interaction of an ion with its own induced surface charge and vanishes for $\gamma = 0$, where ψ_{self} is given by

\[
\psi_{self}(r_i) = \frac{q}{\epsilon_w a} \ln \left(1 - \frac{a^2}{r_i^2} \right).
\]

Hard-sphere interactions between ions is not included in G. Configurations with overlapping hard-spheres are not allowed. Since the hydrated size of all ions is the same, H_3O^+ and K^+ are identical. The difference between the two ions is that H_3O^+ can react with acidic groups. When reacting, it transfers its charge to them, while the remaining neutral hard-sphere disappears. This is physically justifiable since hard-sphere in our model represents a hydrated structure, which vanishes upon the proton transfer.

III. SIMULATION METHOD

The simulations are performed in the semi-grand canonical ensemble, in which the system is in contact
with an infinite reservoir of strong acid and salt. Since the WS cell represents an infinite colloidal suspension at finite concentration, we may think of it as being separated from the reservoir by a semipermeable membrane which allows for a free passage of ions, but not of colloidal particles. The diffusion of ions will result in an electric field across the membrane, establishing a potential difference between the system and the reservoir. This is known as the Donnan potential, \(\varphi_D \). When an ion moves from the reservoir into the system it will, therefore, gain additional energy \(q_i \varphi_D \).

Our reactive Monte Carlo involves two types of movements. The standard grand canonical insertion/deletion of ions between the reservoir and the simulation cell; and protonation and deprotonation moves for the surface sites. The grand canonical acceptance probabilities for insertion or deletion of an ion of type \(i \) is given by

\[
\phi_{\text{add}} = \frac{V c_i}{N_i + 1} \exp \left[-\beta (\Delta E_{\text{ele}} - \mu_{\text{ex}} + q_i \varphi_D) \right], \\
\phi_{\text{rem}} = \frac{N_i}{V c_i} \exp \left[-\beta (\Delta E_{\text{ele}} + \mu_{\text{ex}} - q_i \varphi_D) \right].
\]

Here \(\Delta E_{\text{ele}} \) is the change in electrostatic energy upon insertion or deletion of an ion, \(c_i \) is the concentration of ion of type \(i \) in the reservoir, \(\mu_{\text{ex}} \) is the excess chemical potential of ions in the reservoir, and \(V \) is the free volume accessible to the ions. Note that since all ions are assumed to have the same radius and are all monovalent, the excess chemical potential of all ions is the same. The Donnan potential \(\varphi_D \) has to be adjusted each few MC steps to keep charge neutrality inside the system. This makes simulations slow. A simple solution to this problem is to perform insertion or deletion of cations-anion pairs, so that the charge neutrality of the cell is always preserved. For example, the probability of insertion/deletion of KCl pair is the product \(\phi_{\text{add}}/\phi_{\text{rem}} \), so that the Donnan potential cancels out.

In the grand canonical ensemble concentrations are controlled indirectly via chemical potentials. One way to establish the correspondence between \(\mu_{\text{ex}} \) and the ionic concentrations is to run simulations for a bulk solution with an isolated weak acid group \(\Lambda^- \), \(\text{H}_3\text{O}^+ + \Lambda^- \leftrightarrow \text{HA} + \text{H}_2\text{O} \). We can think of this process as a removal of a hydronium ion from the reservoir, followed by a reaction with a \(\Lambda^- \) group. The internal partition function of the HA molecule is \(K_{\text{eq}}/\Lambda_{\text{H}^+}^3 \), where \(K_{\text{eq}} \) is the equilibrium constant and \(\Lambda_{\text{H}^+} \) is the hydronium’s de Broglie thermal wavelength. The free energy change of the system + reservoir resulting from the removal of a hydronium ion from the reservoir and bringing it into vicinity of \(\Lambda^- \), where it will undergo a proton transfer reaction, is then \(\beta \Delta F_\text{p} = -\ln (K_{\text{eq}}/\Lambda_{\text{H}^+}^3) - \mu_{\text{H}^+} \), where \(\beta \mu_{\text{H}^+} = \ln (\Lambda_{\text{H}^+}^3 + 1) + \beta \mu_{\text{ex}} \) is the total chemical potential of a hydronium ion inside the reservoir. For the deprotonation reaction the free energy change
is $\Delta F_d = -\Delta F_p$. The acceptance probabilities for protonation and deprotonation moves are, therefore,

$$
\phi_p = \exp \left[-\beta \left(\Delta E_{ele} + \Delta F_p + q \varphi_D \right) \right],
$$
$$
\phi_d = \exp \left[-\beta \left(\Delta E_{ele} + \Delta F_d - q \varphi_D \right) \right],
$$

(7)

respectively. These simplify to

$$
\phi_p = c_{\text{H}^+} K_{eq} \exp \left[-\beta \left(\Delta E_{ele} - \mu_{ex} + q \varphi_D \right) \right],
$$
$$
\phi_d = \frac{1}{c_{\text{H}^+} K_{eq}} \exp \left[-\beta \left(\Delta E_{ele} + \mu_{ex} - q \varphi_D \right) \right].
$$

(8)

A Monte Carlo “reaction” move consists of selecting a random titration site, followed by an attempt to change its “state” from protonated to deprotonated and vice versa. Note that the acceptance probabilities depend on the Donnan potential, which is a priori, unknown. We can overcome this difficulty by again combining a protonation attempt with an insertion of Cl$^-$. The probability of acceptance of a protonation-Cl$^-$-insertion move is then $\min\{1, \phi_p \phi_{\text{add}}\}$. In the product, the Donnan potential once again cancels out. Similarly a deprotonation move is combined with a removal of Cl$^-$, so that the probability is $\min\{1, \phi_d \phi_{\text{rem}}\}$. The final acceptance probabilities for the pair moves are:

$$
\phi_{d+\text{rem}} = \frac{N_{\text{Cl}^-}}{c_{\text{H}^+} K_{eq} V_{\text{CT}}} \exp \left[-\beta \left(\Delta E_{ele} + 2 \mu_{ex} \right) \right],
$$
$$
\phi_{p+\text{add}} = \frac{c_{\text{H}^+} K_{eq} V_{\text{CT}}}{(N_{\text{Cl}^-} + 1)} \exp \left[-\beta \left(\Delta E_{ele} - 2 \mu_{ex} \right) \right],
$$

(9)

where N_{Cl^-} is the number of Cl$^-$ ions inside the cell. In Fig. 4 we have schematically shown these movements.

IV. COMPARISON WITH THE EXPERIMENTAL RESULTS

We now apply the simulation method discussed above to study the effective charge of carboxyl latex particles, the surface sites of which undergo reaction $\text{COOH} \rightleftharpoons \text{COO}^- + \text{H}^+$. The simulated system consists of a spherical cell of radius $R = 120\,\text{Å}$, with a spherical colloidal particle at the center, represented by a hard-sphere of radius $a = 60\,\text{Å}$, with surface titration sites of $r_0 = 2\,\text{Å}$, see Fig. 4.

The mobile ions correspond to the dissociation of KCl and HCl. We are interested in obtaining the effective charge of a colloidal particle as a function of pH and salt concentration in the reservoir. Recall that pH = $-\log[a_{\text{H}^+}]$, where $a_{\text{H}^+} = c_{\text{H}^+} \exp[\beta \mu_{ex}(c_i)]$ is the activity of hydronium ions. Furthermore, the electrochemical potential of each ions inside the system and in the reservoir are the same. Note that inside the simulation cell electrochemical potential includes the Donnan potential. This means that activity of hydronium ion is the same inside the cell and in the reservoir, therefore, pH inside the simulation cell and inside the reservoir are also the same.

We consider two different carboxyl latex colloidal particles, the effective charge of which has been obtained experimentally using potentiometric titration. It is important to remember that the surface association constant K_{eq} is different from the bulk association constant for the same acid. This difference may be attributed to the distinct symmetry of the electronic wave function of a chemical group when it is on the surface of colloidal particle and when it is in the bulk. Our strategy, then, is to adjust K_{eq} to fit the experimental titration curve for colloidal particles with the bare surface charge density $\sigma_T = 78\,\text{mC/m}^2$ determined by the total number of surface carboxyl groups and amounting to about 900 titration sites distributed over the colloidal particle. The electrolyte solution of $c_{\text{KCl}} = 10\,\text{mM}$ will then use the same K_{eq} to calculate the theoretical titration curves for other salt concentrations and different colloidal particle. Recalling that acid dissociation constant is $K_a = 1/K_{eq}$, we obtain an excellent fit of the experimental titration curve using $pK_a = -\log[K_a] = \log[K_{eq}] = 5.02$, see Fig. 3(a). This value is actually very close to the pK_a of bulk acetic acid. We next use the same value of pK_a to calculate the titration curve for a particle of the same bare surface charge inside an electrolyte solution of 300 mM. Only a reasonable agreement between experiment and theory is obtained for this case, Fig. 3(b), with a significant deviation appearing at large pH. Finally, we calculate the titration curves for colloidal particles of surface charge $\sigma_T = 98\,\text{mC/m}^2$, in solutions of 10 mM and 300 mM electrolyte, using the same surface equilibrium constant as before. A good agreement is found between simulations and experiments for both of these concentrations of electrolyte, see Fig. 3 panels (c) and (d). At the moment we do not have a clear understanding of what is the cause of the deviation between theory and experiment observed for particles of surface charge $\sigma_T = 78\,\text{mC/m}^2$ and 300 mM electrolyte solution. The deviation is particularly surprising in view of the fact that for $\sigma_T = 98\,\text{mC/m}^2$ and 300 mM electrolyte we do have a good agreement between theory and experiment.

We should note that in our simulation the size of colloidal particles is much smaller than in experiment. We have checked, however, that this does not affect the titration curve, as long as the charge density of the particles is the same. Similarly our calculations are performed for colloidal suspension at finite volume fraction, while experiments were done at infinite dilution. Again the size of the WS cell does not affect the titration curve, as long as the cell is sufficiently large. To demonstrate this in Fig. 4 we present the titration curve for particles with bare surface charge density 98 mC/m2 inside two different WS cells of radius 120 Å and 200 Å. The two titration curves are practically indistinguishable. This shows that the effective colloidal charge does not depend on the volume fraction, for sufficiently dilute suspensions.
We show the effect of fitting the experimental data in the panel (a). The theory and experiment (b), (c) and (d). A very good agreement is observed between other salt concentrations and colloidal bare charge: panels (a) and (b); and (c) and (d). Electrolyte concentration is indicated in each panel. The surface equilibrium constant, \(pK_a = 5.02 \) is obtained by fitting the experimental data in the panel (a). The same equilibrium constant is then used to calculate the effective charges for other salt concentrations and colloidal bare charge: panels (b), (c) and (d). A very good agreement is observed between theory and experiments.

V. SPECIFIC ION ADSORPTION

The specific ion adsorption can be easily incorporated within the simulation formalism introduced above. It is known that Li\(^+\) specifically associate with COO\(^-\). We are, therefore, interested to explore the effect of replacing KCl with LiCl salt. The specific association of Li\(^+\) with COO\(^-\) is a consequence of the law of matching water affinities (LMWA), which suggests that both lithium and carboxylate can lose part of their hydration sheath resulting in strong electrostatic interaction between the two ions. Based on the LMWA we will take the distance of closest approach between lithium and carboxylate contact pair to be \(d = 2.9 \) Å, corresponding to the Latimer diameter of Li\(^+\) ion. We can then say that any lithium ion that is within a distance \(d = 5.3 \) Å — the separation distance between a fully hydrated Li\(^+\) and the adsorption site — is associated with the carboxylate group, and will contribute to the renormalization of the effective charge.

In Fig. 5 (dashed green curves) we show the effect of replacing K\(^+\) with Li\(^+\) on the effective colloidal charge. Note the saturation of colloidal charge at large pH, resulting from the association of Li\(^+\) ions with the carboxylate groups. Specific adsorption of Li\(^+\) also affects the protonation of carboxylate, although the effect appears to be quite small, see Fig. 5. We expect to see a more significant effect if Li\(^+\) is replaced by divalent Ca\(^{++}\) ion, which is known to strongly interact with the carboxylate. This will be explored in the future work.

The degree of protonation for the same pH is lower in the case of LiCl compared to KCl salt, since Li\(^+\) ion effectively competes with H\(^+\) for acidic sites. Although deprotonation is larger for LiCl, this does not imply that the effective colloidal surface charge is also larger. Adsorbed Li\(^+\) ions neutralize sites similarly to H\(^+\) and, therefore, contributed to the effective charge of colloidal particles. Thus, the effective surface charge of colloidal particles in the case of LiCl solutions is lower in modulus compared to solutions of KCl, for which no specific association takes place, see Fig. 5. Again we expect the effect of specific association to be even more important for suspensions containing CaCl\(_2\). One quantity which normally use in Biochemistry and analytical chemistry is Henderson–Hasselbalch (HH) equation which relates \(pK_a^{HH} \) to pH and the ratio of active and titrated molecules of system, however when half of titration is done one can have:

\[
pK_a^{HH} = \text{pH}_{1/2} + \varphi \log 10[\text{e}], \tag{10}
\]

Using the Eq. (10) we compared the value of obtained from titration curve and HH equation which can be seen in Table below:

![FIG. 3. Effective charge obtained using the reactive MC simulations (curves) compared with the experimental data (symbols). The solid black curve is the effective charge in the presence of KCl and dashed green curve in the presence of LiCl. The bare surface charge densities of colloidal particles are 78 mC/m\(^2\) panels (a) and (b); and 98 mC/m\(^2\) panels (c) and (d). Electrolyte concentration is indicated in each panel. The surface equilibrium constant, \(pK_a = 5.02 \) is obtained by fitting the experimental data in the panel (a). The same equilibrium constant is then used to calculate the effective charges for other salt concentrations and colloidal bare charge: panels (b), (c) and (d). A very good agreement is observed between theory and experiments.](image)

![FIG. 4. Titration curves for a particle with surface charge density 98 mC/m\(^2\) inside two different WS cells.](image)

![FIG. 5. The fraction of protonated groups in the presence of 300mM of either KCl or LiCl salts. Specific adsorption of Li\(^+\) to carboxylate groups results in stronger deprotonation, in particular at large pH.](image)
Discussion

We have presented a simulation method which allows us to very accurately calculate the titration curves for suspensions of colloidal particles. The results were compared with the experimental measurements of the effective colloidal charge obtained using potentiometric titration. A good agreement was found between simulations and experiments. We have also shown how the specific ion interaction, responsible for the Hofmeister effect, can be easily included in the simulation method. The approach presented in this paper can be also applied to other scientifically and technologically important systems, such as proteins, poly electrolyte gels, polyan- pholytes, etc.

VII. ACKNOWLEDGMENTS

This work was partially supported by the CNPq, CAPES, National Institute of Science and Technology Complex Fluids INCT-FCx. The authors are grateful to the Instituto de Física e Matemática, UFPEl for the use of computer resources. D.F. acknowledges financial support from FONDECYT through grant number 1201192.

VI. CONCLUSIONS

We have presented a simulation method which allows us to very accurately calculate the titration curves for suspensions of colloidal particles. The results were compared with the experimental measurements of the effective colloidal charge obtained using potentiometric titration. A good agreement was found between simulations and experiments. We have also shown how the specific ion interaction, responsible for the Hofmeister effect, can be easily included in the simulation method. The approach presented in this paper can be also applied to other scientifically and technologically important systems, such as proteins, poly electrolyte gels, polyan- pholytes, etc.

TABLE I. The values obtained from HH equation. The value was fitted in simulation $p_{\text{K}_{\text{a}}}$ is 5.02.

σ mCm$^{-2}$	KCl mM	$p_{\text{K}_{\text{a}}}^{\text{HH}}$
78	10	5.47
78	300	5.25
98	10	5.31
98	300	5.32

1D. Prusty, R. J. Nap, I. Szleifer, and M. Olvera de la Cruz, Soft Matter 16, 8632 (2020).
2C.-Y. Leung, L. C. Palmer, S. Kewalramani, B. Qiao, S. I. Stupp, M. Olvera de la Cruz, and M. J. Bedyzk, Proceedings of the National Academy of Sciences 110, 16369 (2013).
3L. Javidpour, A. Božič, A. Nají, and R. Podgornik, Soft Matter 17, 4296 (2021).
4L. Javidpour, A. L. Božič, R. Podgornik, and A. Nají, Scientific reports 9, 1 (2019).
5L. Fink, C. Allolio, J. Feitelson, C. Tamburu, D. Harries, and U. Raviv, Langmuir 36, 10715 (2020). PMID: 32787004, https://doi.org/10.1021/acs.langmuir.0c05111
6A. Kubincová, P. H. Hünenberger, and M. Krishnan, J. Chem. Phys. 152, 104713 (2020).
7M. Krishnan, J. Chem. Phys. 146, 205101 (2017).
8M. Krishnan, J. Chem. Phys. 138, 114906 (2013).
9A. Behjatian, M. Bespalova, N. Karedla, and M. Krishnan, Phys. Rev. E 102, 042607 (2020).
10B. Ma and M. Olvera de la Cruz, The Journal of Physical Chemistry B 125, 3015 (2021).
11C. Gao, S. Kewalramani, D. M. Valencia, H. Li, J. M. McCourt, M. Olvera de la Cruz, and M. J. Bedyzk, Proceedings of the National Academy of Sciences 116, 22030 (2019) https://www.pnas.org/content/116/44/22030.full.pdf
12Y. Avni, H. Podgornik, and D. Andelman, The Journal of Chemical Physics 158, 024901 (2020).
13Y. Avni, D. Andelman, and R. Podgornik, Curr Opin Electrochem 13, 70 (2019).
14M. Adar, D. Andelman, and H. Diamant, Advances in Colloid and Interface Science 247, 198 (2017).
15Shen and D. D. Frey, J. Chromatogr. A 1079, 92 (2005).
16H. K. Tsao, Langmuir 16, 7200 (2000).
17H. Löwen, A. Esztermann, A. Wysocki, E. Allahyarov, R. Messina, A. Jusufi, N. Hoffmann, D. Gottwald, G. Kahl, and M. Konieczny, Journal of Physics: Conference Series, 11, 021 (2005).
18R. Messina, C. Holm, and K. Kremer, The Journal of Chemical Physics 117, 2947 (2002).
19R. Messina, C. Holm, and K. Kremer, Computer Physics Communications 147, 282 (2002).
20Proceedings of the Europhysics Conference on Computational Physics Modeling and Simulation of Complex Systems.
21M. Borkovec, B. Jönsson, and G. J. M. Koper, “Ionization processes and proton binding in polyprotic systems: Small molecules, proteins, interfaces, and polyelectrolytes,” in Surface and Colloid Science, edited by E. Matijević (Springer US, Boston, MA, 2001) pp. 99–339.
21C. F. Narambuena, P. M. Blanco, A. Rodriguez, D. E. Rodriguez, S. Madurga, J. L. García, and F. Mas, Polymer 212, 123170 (2021).
22W. Worms, D. F. Simon, C. Hassler, and K. Wilkinson, Biochimie 88, 1721 (2006).
23R. Booth, Microbiological reviews 49, 359 (1985).
24J. Antelo, M. Avena, S. Fiol, R. López, and F. Arce, Journal of colloid and interface science 285, 476 (2005).
25M. Brigante and M. Avena, Microporous and Mesoporous Materials 225, 534 (2016).
26P. Hammes and W. Verstraete, Reviews in environmental science and biotechnology 1, 3 (2002).
27A. A. R. Teixeira, M. Lund, and F. L. Barroso da Silva, Journal of chemical theory and computation 6, 3259 (2010).
28A. Kurkdjian and J. Guern, Annual Review of Plant Physiology and Plant Molecular Biology 40, 271 (1989).
29A. Accardi and C. Miller, Nature 427, 803 (2004).
30T. J. Beveridge, Annual review of microbiology 43, 147 (1989).
31A. van der Wal, W. Norde, A. J. Zehnder, and J. Lyklema, Colloids and surfaces B: Biointerfaces 9, 81 (1997).
32H. T. Heinrich, P. J. Bremer, C. J. Daughney, and A. J. McQuillan, Langmuir 23, 2731 (2007).
33B. C. Pressman, Proceedings of the National Academy of Sciences of the United States of America 53, 1076 (1965).
34M. Lund and B. Jönsson, Q. Rev. Biophys. 46, 265 (2013).
35P. Luknad, A. Marmulik, F. Hebbeke, M. Bobili, Z. Tšner, M. Štěpánek, and P. Košovan, Mol. Syst. Des. Eng. 6, 122 (2021).
36P. Luknad, A. Marmulik, Z. Tšner, M. Štěpánek, and P. Košovan, Polymers 13, 214 (2021).
37M. Perutz, Science 201, 1187 (1978).
38B. Svensson, B. Jönsson, and C. Woodward, Biophysical chemistry 38, 179 (1990).
39C. Woodward and B. R. Svensson, The Journal of Physical Chemistry 95, 7471 (1991).
40M. Lund and B. Jönsson, Biochemistry 44, 5722 (2005).
41E. Dickinson and M. E. Leser, Food colloids: self-assembly and material science (Royal Society of chemistry, 2007).
42P. L. B. da Silva and B. Jönsson, Soft Matter 5, 2862 (2009).
43K. Szuttor, F. Weik, J.-N. Grad, and C. Holm, The Journal of Chemical Physics 154, 054901 (2021).
44S. Behrens and D. G. Grier, The Journal of Chemical Physics 115, 6716 (2001).
45M. Lund, T. Åkesson, and B. Jönsson, Langmuir 21, 8385 (2005).
46D. Andelman, Soft condensed matter physics in molecular and cell biology, edited by W. C. Poon and D. Andelman, Vol. 6
