oposSOM-Browser: An interactive tool to explore data landscapes in health science

Henry Loeffler-Wirth¹, Jasmin Reikowski¹, Siras Hakobyan², Jonas Wagner³ and Hans Binder¹

¹ Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany
² Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences, 7 Hasratyan str, 0014 Yerevan, Armenia
³ LIFE, Leipzig Research Center for Civilization Diseases, Leipzig University, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany

Supplementary text

1. List of publications using data portraying and oposSOM R-package 2
 1.1. Publications of Loeffler-Wirth, Binder et al. ... 2
 1.2. Publications of external research groups ... 4
2. Guided tour to oposSOM-Browser functionalities .. 5
 2.1. Overview .. 5
 2.2. Gene & function browser .. 6
 2.3. Map browser ... 8
 2.4. Phenotype browser .. 10
 2.5. Signature browser ... 11
 2.6. Pathway signal flow (PSF) browser ... 12
1. List of publications data portraying using oposSOM

1.1. Publications of Loeffler-Wirth, Binder et al.

1) Wirth et al.: Expression cartography of human tissues using self-organizing maps. *BMC Bioinformatics* 2011
2) Binder et al.: Molecular phenotypic portraits - exploring the ‘OMEs’ with individual resolution. *HIBIT conference 2011 proceedings*
3) Binder et al.: Genomic and molecular phenotypic portraits – exploring the ‘OMEs’ with individual resolution. *IEEE Xplore, Health Informatics and Bioinformatics (HIBIT) 2011*
4) Binder et al.: Portraying high-dimensional OMICs data with individual resolution. *CAMDA conference 2011 proceedings*
5) Wirth et al.: MALDI-typing of infectious algae of the genus *Prototheca* using SOM portraits. *Journal of Microbiological Methods* 2012
6) Wirth et al.: Mining SOM expression portraits: Feature selection and integrating concepts of molecular function. *BioData Mining* 2012
7) Steiner et al.: A global genome segmentation method for exploration of epigenetic patterns. *PLOS ONE* 2012
8) Hopp et al.: Portraying the Expression Landscapes of B-Cell Lymphoma - Intuitive Detection of Outlier Samples and of Molecular Subtypes. *Biology* 2013
9) Hopp et al.: Portraying the expression landscapes of cancer subtypes: a glioblastoma multiforme and prostate cancer case study. *Systems Biomedicine* 2013
10) Binder et al.: Analysis of large-scale OMIC data using Self Organizing Maps. *Encyclopedia of Information Science and Technology* 2014
11) Binder et al.: Personalized disease phenotypes from massive OMICs data. *Big Data Analysis in Bioinformatics and Healthcare* 2014
12) Reifenberger et al.: Molecular characterisation of long-term survival with glioblastoma using genome- and transcriptome-wide profiling. *International Journal of Cancer* 2014
13) Charbord et al.: A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. *Cell stem cell* 2014
14) Binder et al.: Time-course human urine proteomics in space-flight simulation experiments – A high resolution and personalized machine learning analysis. *BMC Genomics* 2014
15) Wirth et al.: Analysis of miRNA expression using machine learning. *Methods in Molecular Biology* 2014
16) Cakir et al.: miRNA expression landscapes in stem cells, tissues and cancer. *Methods in Molecular Biology* 2014
17) Ahmad et al.: How Stemlike Are Sphere Cultures From Long-term Cancer Cell Lines? Lessons From Mouse Glioma Models. *Journal of neuropathology and experimental neurology* 2014
18) Weller et al: Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. *Acta Neuropathologica* 2015
19) Hopp et al.: Epigenetic heterogeneity of B-cell lymphoma: DNA methylation, gene expression and chromatin states. *Genes* 2015
20) Hopp et al.: Epigenetic heterogeneity of B-cell lymphoma: Chromatin modifiers. *Genes* 2015
21) Hopp et al.: Function shapes content: DNA-methylation marker genes and their impact for molecular mechanisms of glioma. *Journal of Cancer Research Updates* 2015
22) Nersisyan et al.: Gene set- and pathway- centered knowledge discovery assigns transcriptional activation patterns in brain, blood and colon cancer - A bioinformatics perspective. *International Journal of Knowledge Discovery in Bioinformatics* 2016
23) Rohanisarvestani et al.: Generation of human induced pluripotent stem cells using non-synthetic mRNA. *Stem Cell Research* 2016
24) Arakelyan et al.: Cartography of pathway signal perturbations identifies distinct molecular pathomechanisms in malignant and chronic lung diseases. *Frontiers in Genetics* 2016
25) Hamidouche et al.: Bistable epigenetic states explain age-dependent decline in mesenchymal stem cell heterogeneity. *Stem Cells* 2016
26) Gerber et al.: Mapping heterogeneity in a patient-derived melanoma culture by single-cell RNA-seq. *Oncotarget* 2017
27) Camp et al.: Multilineage communication regulates human liver bud development from pluripotency. *Nature* 2017
28) Cakir et al.: Dysregulated signal propagation in a MYC-associated Boolean gene network in B-cell lymphoma. *Biology, Engineering and Medicine* 2017
29) Binder et al.: Genomic and transcriptomic heterogeneity of colorectal tumours arising in Lynch syndrome. *Journal of Pathology* 2017
30) Arakelyan et al.: Autoimmunity, autoinflammation and inflammation: a systems view on signaling pathway deregulation profiles. *PLOS ONE* 2017
31) Pastushkova et al.: Analysis of the effects of different salt consumption levels on the urine protein composition during a 105-day isolation using the opoSOM program. *Human Physiology* 2017
32) Cakir et al.: Dysregulated Signal Propagation in a MYC-associated Gene Network in B-cell Lymphoma. *Biology, Engineering and Medicine* 2017
33) Loeffler-Wirth et al.: Pseudotime dynamics in melanoma single-cell transcriptomes reveals different mechanisms of tumor progression. *Biology* 2018
34) Hopp et al.: Combined SOM-portrayal of gene expression and DNA methylation disentangles modes of epigenetic regulation in glioma. *Epigenomics* 2018
35) Kunz et al.: RNA-seq analysis identifies different transcriptomic types and developmental trajectories of primary melanomas. *Oncogene* 2018
36) Hopp et al.: Footprints of Sepsis framed within Community Acquired Pneumonia in the blood transcriptome. *Frontiers in Immunology* 2018
37) Thalheim et al.: On the Cooperation between Epigenetics and Transcription Factor Networks in the Specification of Tissue Stem Cells. *Epigenomes* 2018
38) Nikoghosyan et al.: Population levels assessment of the distribution of disease associated variants with emphasis on Armenians - a machine learning approach. *Frontiers in Genetics* 2019
39) Binder et al.: DNA methylation, transcriptome and genetic copy number signatures of diffuse cerebral WHO grade II/III gliomas resolve cancer heterogeneity and development. *Acta Neuropathologica Communications* 2019
40) Loeffler-Wirth et al.: A modular transcriptome map of mature B-cell lymphomas. *Genome Medicine* 2019
41) Arakelyan et al.: Transcriptome-guided drug repositioning. *Pharmaceutics* 2019
42) Bilz et al.: Teratogenic Rubella Virus Alters the Endodermal Differentiation Capacity of Human Induced Pluripotent Stem Cells. *Cells* 2019
43) Nikoghosyan et al.: SOMmelier – Intuitive visualization of the topology of grapevine genome landscapes using artificial neural networks. *Genes* 2020
44) Schmidt et al.: Portrayal of the human blood transcriptome in a population cohort and its relation to ageing and health. *Frontiers in Big Data* 2020
1.2. Publications of external research groups

1) Cheaib et al.: Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia. *DNA Research* 2015
2) James et al.: Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. *Stem Cell Reports* 2015
3) De Simone, M. et al.: Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. *Immunity* 2016
4) Schwarzer et al.: The non-coding RNA landscape of human hematopoiesis and leukemia. *Nature Communications* 2017
5) Hutchins et al.: Models of global gene expression define major domains of cell type and tissue identity. *Nucleic Acids Research* 2017
6) Lukassen et al. Single-cell RNA sequencing of adult mouse testes. *Scientific data* 2018
7) Xie et al.: Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. *Cell reports* 2018
8) Florian et al.: Aging Alters the Epigenetic Asymmetry of HSC Division. *PLoS Biology* 2018
9) Rennert et al.: The Diurnal Timing of Starvation Differently Impacts Murine Hepatic Gene Expression and Lipid Metabolism – A Systems Biology Analysis Using Self-Organizing Maps. *Frontiers in Physiology* 2018
10) Sanchez et al.: Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, *Salamandra salamandra*. *Journal of Experimental Zoology* 2018
11) Li et al.: Genomic and transcriptional Profiling of tumor infiltrated CD8+ T cells revealed functional heterogeneity of antitumor immunity in hepatocellular carcinoma. *Oncoimmunology* 2018
12) Kesch et al.: Correlation between genomic index lesions and mpMRI and 68Ga-PSMA-PET/CT imaging features in primary prostate cancer. *Scientific Reports* 2019
13) Fischer et al.: Signals trigger state-specific transcriptional programs to support diversity and homeostasis in immune cells. *Science Signalling* 2019
14) Xue et al.: A 3D Atlas of Hematopoietic Stem and Progenitor Cell Expansion by Multi-dimensional RNA-Seq Analysis. *Cell Reports* 2019
15) Locati et al.: Mining of self-organizing map gene-expression portraits reveals prognostic stratification of HPV-positive head and neck squamous cell carcinoma. *Cancers* 2019
16) Ma et al.: Single-cell RNA Sequencing of Lung Adenocarcinoma Reveals Heterogeneity of Immune Response-Related Genes. *JCI Insight* 2019
17) Herberg et al.: Loss of Msh2 and a single-radiation hit induce common, genome-wide, and persistent epigenetic changes in the intestine. *Clinical Epigenetics* 2019
18) Sabino-Pinto et al.: The Role of Plasticity and Adaptation in the Incipient Speciation of a Fire Salamander Population. *Genes* 2019
19) Zamudio et al.: AP-1 imprints a reversible transcriptional programme of senescent cells. *Nature Cell Biology* 2020
20) Malovichko et al.: Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (Pisum sativum L.). *Cells* 2020
21) Kreuz et al.: ProstaTrend—A Multivariable Prognostic RNA Expression Score for Aggressive Prostate Cancer. *European Urology* 2020
2. **Guided tour to oposSOM-Browser functionalities**

2.1. **Overview**

The different data sets provided by oposSOM-Browsers are accessed via a select box in the top panel, which also includes version and citation information, and the main navigation menu (Figure S 1). The overview tab gives general information about the data set currently selected, such as dimensionality and version of oposSOM package used for data processing.

![Select dataset here](image-url)

![Version & citation info](image-url)

Main menu

Data set info & id on www.health-atlas.de

Lymphoma (873 tumor samples, MMML consortium, LHA id 7WEWPE12CK-4)

Germina center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of the most heterogenous malignancies.

Here we characterize the variety of transcriptional phenotypes of the disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL), Burkitt's lymphoma; mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma, RF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle cell lymphoma.

We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a holistic view on the transcriptome landscape of lymphomas. To describe the multidimensional nature of gene regulation and to pursue a modular view on co-expression.

The transcriptome map of B cell lymphomas allows visual comparison between the SOM portraits of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this disease rather forms a continuum of expression states than clearly separated phenotypes.

Accompanying publication is available here.

Dimensionality & oposSOM version

- Number of samples: 914
- Number of subgroups: 9
- Number of genes: 22283
- Dimension of the SOM: 50 x 50
- oposSOM version: 1.13.1

Figure S 1: Overview tab and main navigation of oposSOM-Browser
2.2. Gene & function browser

The gene (Figure S 2) and function (Figure S 3) browsers are designed in analogous layouts. They provide tables of all genes and functional gene sets available in the data set, respectively. These tables can be searched for gene and set names, Ensemble-IDs, and terms in the description. After selection of a table row, the expression profile and the mapping of the gene or gene set into the data landscape are generated. The profile plot can be toggled between a single sample barplot and a subgroup-wise boxplot.

Figure S 2: Gene browser
Figure S 3: Function browser
2.3. Map browser

The map browser provides information about expression modules detected in the data landscape, and of mapping of age, gender, and survival information into the data landscape. Module and data maps can be selected on the left-hand side (Figure S 4).

In the module maps, individual expression modules can be selected in the center frame, which will generate the corresponding expression profile across all samples of the study (Figure S 4). Additionally, the table on the right-hand side lists – depending on the selected tab - all genes in the module, enriched functional gene sets, or the subgroups which show high expression of this module, respectively.

In the data maps, single metagenes (i.e. pixels in the mosaic map) can be selected (Figure S 5). Additional information will be shown for all participants expressing this metagene: In the age map, age distribution of the corresponding participants will be shown in terms of a histogram, in the sex map a pie chart, and in the survival map curves of overall survival of patients expressing this metagene compared to those not expressing the metagene. The right-hand table lists all genes and enriched functional gene sets in the metagene, and the subgroups of the participants expressing this metagene, respectively.

Figure S 4: Map browser, selection of a module map
Figure S 5: Map browser, selection of a data map
2.4. Phenotype browser

The phenotype browser allows for the evaluation of different phenotypic stratifications with regard to the sample landscape and to prognostic impact (Figure S 6). General, clinical, or molecular phenotypes can be selected in the top left menu, where also individual phenotype characteristics can be added or removed.

The sample landscape, a correlation network of all samples in the data set, is then colored according to the selection. Clicking into one of the network nodes will open a frame showing the sample expression portrait along with patient age and gender if available.

Curves of overall survival as function of time are also generated given this information is available in the data set. They are stratified by the selected phenotype characteristics to evaluate associated diversification of prognosis.

Figure S 6: Phenotype browser
2.5. Signature browser

In the signature browser, individual lists of genes can be uploaded to benchmark classification using these genes (Figure S 7). Click the gear button to open the menu for uploading the signature genes. They can be provided as Ensemble-IDs or gene names. For a submitted gene signature, the expression profile across all samples and the mapping into the data landscape will be displayed.

The signature is then used to identify samples of the target class in a set of samples that comprises the target class and additional classes/characteristics as selected in the bottom left select boxes. After selection, a click on the ‘Generate ROC’ button will start benchmarking resulting in a ROC curve plot together with the corresponding AUC measure.

Figure S 7: Signature browser
2.6. **Pathway signal flow (PSF) browser**

Activation patterns in the KEGG cellular signalling pathways can be visualized using the pathway signal flow (PSF) browser (Figure S 8). The select boxes on top of the browser are used to access the pathways, and to select the subgroup for visualization of the signal flow in terms of color-coding the pathway nodes. Hovering a node in the pathway will display the gene's position in the data landscape. Further, clicking a node shows a plot of signal flow values in the subtypes considered.

![Pathway signal flow browser](image)

Figure S 8: PSF browser