Title
Lipid-based regulators of immunity

Permalink
https://escholarship.org/uc/item/8gk7t84f

Journal
Bioengineering & Translational Medicine, 7(2)

ISSN
2380-6761

Authors
Johnson, Wade T
Dorn, Nicholas C
Ogbonna, Dora A
et al

Publication Date
2022-05-01

DOI
10.1002/btm2.10288

Peer reviewed
Lipid-based regulators of immunity

Wade T. Johnson | Nicholas C. Dorn | Dora A. Ogbonna | Nunzio Bottini | Nisarg J. Shah

1 Department of Nanoengineering, University of California, San Diego, La Jolla, California, USA
2 Chemical Engineering Program, University of California, San Diego, La Jolla, California, USA
3 Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, California, USA
4 Program in Immunology, University of California, San Diego, La Jolla, California, USA

Correspondence
Nisarg J. Shah, University of California, San Diego, La Jolla, CA, USA.
Email: nshah@ucsd.edu

Funding information
Arthritis National Research Foundation, Grant/Award Number: 846186; National Institute of Arthritis and Musculoskeletal and Skin Diseases, Grant/Award Numbers: P30 AR073761, T32 AR064194; National Institute of Dental and Craniofacial Research, Grant/Award Number: R03 DE031009; National Institute of General Medical Sciences, Grant/Award Number: R25 GM083275

Abstract
Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.

KEYWORDS
adjuvants, immunomodulation, lipids, polyunsaturated fatty acids, short-chain fatty acids

1 | INTRODUCTION

Lipids, colloquially called fats, are nonpolar hydrocarbons that have a pleiotropic role in modulating physiological functions, including in energy storage, maintaining cell membrane integrity, and cell signaling. Fatty acids (FAs) are a major class of lipids characterized by a hydrocarbon chain functionalized with a carboxylic acid. FAs are primarily sourced from exogenous sources, such as through dietary essential fatty acids (EFAs) and have been demonstrated to influence the immune response through cell signaling that directly and indirectly activate or suppress cells of both the innate (e.g., neutrophils) and adaptive (e.g., T cells and B cells) immune system. Some FAs are associated with inflammatory diseases and may serve as biomarkers for assessing progression, such as the pro-inflammatory metabolites of FA called eicosanoids, for chronic conditions such as rheumatoid arthritis, asthma, and inflammatory bowel disease (IBD).

In humans, the two principal immunoregulatory FAs are polyunsaturated fatty acids (PUFAs) and short-chain fatty acids (SCFAs), which together constitute about 15% of the total FAs content, with the remainder comprised of monounsaturated and saturated FAs. PUFAs are characterized by multiple unsaturations (double bonds) in the lipid tail and follow a "ω-ω" nomenclature, where "ω" refers to the carbon atom with the first unsaturation on the aliphatic chain from the methyl terminus. The key structural difference between ω-3 and ω-6 PUFAs is in the location of a carbon double bond. This seemingly innocuous change has a significant effect on their metabolic derivatives (eicosanoids) which...
directly modulate immune cells. SCFAs are small molecule metabolites, comprising less than six carbon atoms with no unsaturations and are derived from the breakdown of complex carbohydrates by gut microbiota. These products of bacterial fermentation follow the standard IUPAC naming system for carboxylic acids (e.g., propionate [three carbon atoms], butyrate [four carbon atoms]). By activating G-protein-coupled cell membrane receptors (GPCRs) and inhibiting histone deacetylase (HDAC), SCFAs can modulate the activity of regulatory immune cells. Outside their structural role in maintaining cell membrane fluidity, extracellular PUFAs are found in tissue microenvironments and are relatively enriched as a fraction of total FA in the brain, heart, and blood plasma.

SCFAs diffuse from the gut lumen, which is the primary site for their biosynthesis, via a strong biological gradient and can partition in tissues throughout the body. At homeostasis, SCFA concentration in tissues outside the intestine is negligible, suggesting that SCFAs primarily affect cells associated with the lower gastrointestinal tract.

In this review, we will first describe the structural properties of PUFAs, their derivatives, and target signaling pathways, which leads to either activation of pro-inflammatory immune cells and inflammatory mediators or an anti-inflammatory effect that seeks to resolve inflammation. Next, we will describe the structure of SCFA and their dual role as signaling molecules and as epigenetic modulators of immune function, which have been harnessed in treating inflammatory diseases. We will then review lipids used as adjuvants, the immunostimulatory component that enhances the protective immune response to vaccines. We conclude with an outlook on harnessing the immunoregulatory properties of lipids to develop the next generation of immunomodulating medicines.

2 | POLYUNSATURATED FATTY ACIDS

The human diet comprises several types of PUFAs of which linoleic acid (ω-6 PUFA) and α-linolenic acid (ω-3 PUFA) are the most common. Linoleic acid is converted to arachidonic acid (ARA, 20:4ω-6, pro-inflammatory), whereas α-linolenic acid is converted to eicosapentaenoic acid (EPA, 20:5ω-3, anti-inflammatory) and docosahexaenoic acid (DHA, 22:6ω-3, anti-inflammatory) via the same pathway, leading to enzyme competition between the two classes of PUFA. While the phospholipid composition in human immune cells can vary, in an approximate 70:20:10 mixture of T lymphocytes:B lymphocytes:monocytes, 15%–25% of the phospholipids were ARA while 0.1%–0.8% and 0.1%–4% were EPA and DHA, respectively. By supplementing the diet with ω-3 FAs, the proportion of EPA and DHA in immune cells can be elevated at the expense of ARA and leads to the production of less inflammatory eicosanoids.

2.1 | Eicosanoids and inflammation

Eicosanoids are important regulators of inflammation and comprise prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). These molecules are converted from PUFAs by cyclooxygenase (COX), lipoxygenase (LOX), and Cytochrome P450 enzymes. Eicosanoids released by ARA metabolism are mostly pro-inflammatory and are the target of nonsteroidal anti-inflammatory drugs used in suppressing inflammation. Prior to the synthesis of eicosanoids, ARA is released from the sn-2 position of the membrane phospholipids by the action of phospholipase A2 enzymes, activated by inflammatory stimuli. ARA metabolism results in two-series (two double bonds) PGs and TXs as well as four-series (four double bonds) LTs and LXs. COX-2 is induced in cells by inflammatory stimuli, resulting in a large increase in PG production. PGE2, other two-series PGs, and the four-series LTs are among the best-known activators of inflammation and usually act through GPCRs. ω-3 PUFAs such as EPAs are similarly metabolized by COX, LOX, and Cytochrome P450. However, EPA metabolism yields three-series (three double

![Figure 1: Overview of discussed immunomodulatory lipids.](image-url)
By incorporating more ω-3 PUFAs into the available pool of PUFAs, the amount of pro-inflammatory eicosanoids can be reduced by competition between ARA and the ω-3 PUFAs. However, the metabolism of the ω-3 PUFAs is not regulated solely by supply and demand. EPA itself can negatively regulate COX-2 gene expression and inhibit ARA metabolism. The eicosanoids produced from the metabolism of ω-3 PUFAs such as EPAs are structurally distinct from those produced by ARA and are less biologically potent, potentially due to a reduced receptor affinity. An important class of eicosanoids produced by the metabolism of both ω-3 and ω-6 PUFAs (overwhelmingly ω-3 PUFA) are the specialized pro-resolving lipid mediators (SPMs). This family of mediators includes resolvins produced by EPA (E-series) and DHA (D-series) as well as protectins and maresins produced by DHA. Two series of resolvins and protectins have been identified. One series includes those derived from EPA and DHA via lipoxigenase metabolism, referred to as the S-resolvins, S-protectins, and S-maresins. The second series includes those derived from aspirin-triggered cyclooxygenase (COX-2) or Cytochrome P450 metabolism of EPA and DHA. These lipid mediators are R-resolvins and R-protectins also known as aspirin-triggered resolvins/protectins. This specialized pathway is transcellular, in which different cells start and end the metabolic pathway. For example, lipoxin A₄ is a SPM that determines the extent of granulocyte accumulation and activation during inflammation. Lipoxin A₄ formation is achieved by the transcellular biosynthesis of two sequential oxygenation reactions of ARA catalyzed by LOX in interacting cell types. One of these cells is typically a neutrophil, eosinophil, or macrophage and the other is an endothelial, epithelial, parenchymal cell, or platelet. Cell culture and animal studies have shown these metabolites to be anti-inflammatory and inflammation resolving. For example, resolvin E1, resolvin D1, and protectin D1 all inhibited transendothelial migration of neutrophils, preventing the infiltration of neutrophils into sites of inflammation; resolvin D1 inhibited interleukin-1β (IL-1β) production; and protectin D1 inhibited tumor necrosis factor (TNF) and IL-1β production. SPMs have been shown to influence the adaptive immune system as well. For example, D-series resolvins and maresin 1 reduced cytokine production by activated CD8⁺ T cells and CD4⁺ T helper (Th)1 and Th17 cells while...
TABLE 1 Major pathways and immunomodulatory effects mediated by PUFA metabolites

| PUFA               | Eicosanoid | Major pathway | Primarily pro-inflammatory or anti-inflammatory |
|--------------------|------------|---------------|-----------------------------------------------|
| ARA (20:4ω-6)      | 2-series PG| COX-2         | Pro-inflammatory                              |
|                    | 2-series TX| COX-1         | Pro-inflammatory                              |
|                    | 4-series LT| 5-LOX         | Pro-inflammatory                              |
|                    | 4-series LX| 5-LOX         | Anti-inflammatory                             |
| EPA (20:5ω-3)      | 3-series PG| COX-2         | Weakly pro-inflammatory                       |
|                    | 3-series TX| COX-1         | Weakly pro-inflammatory                       |
|                    | 5-series LT| 5-LOX         | Weakly pro-inflammatory                       |
|                    | E-resolvins| Aspirin-acetylated COX-2 or Cytochrome P450 | Anti-inflammatory                             |
| DHA (22:6ω-3)      | D-resolvins| Aspirin acetylated COX-2 or Cytochrome P450 | Anti-inflammatory                             |
|                    | Protectins | 15-LOX        | Anti-inflammatory                             |
|                    | Maresins   | 12-LOX        | Anti-inflammatory                             |

Abbreviations: ARA, arachidonic acid; COX, cyclooxygenase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LOX, lipoxygenase; LT, leukotriene; LX, lipoxin; PG, prostaglandin; PUFAs, polyunsaturated fatty acids; TX, thromboxane.

Simultaneously preventing naïve CD4\(^+\) T-cell differentiation into Th1 and Th17.\(^{26}\) SPMs also influence the intracellular production and extracellular release of interferon-\(\gamma\) (IFN-\(\gamma\)) from Th1 cells and IL-17 from Th17 cells. Splenic T cells from mice deficient for elongase 2, the key enzyme involved in the synthesis of DHA from EPA, produced higher amounts of IFN-\(\gamma\) and IL-17 compared to cells from wild-type control mice.\(^{26}\) By culturing naïve CD4\(^+\) T cells under T\(_{reg}\) differentiation in the presence of various SPM, it has been demonstrated that the de novo
generation and function of FoxP3+ regulatory T cells (Treg) in the presence of D-series resolvins and maresin 1 is enhanced. Treg cultured with SPMs showed significantly enhanced FoxP3 expression, as well as increased expression of the immune checkpoint molecule CTLA-4 and higher production of the anti-inflammatory IL-10 cytokine. Diet enrichment of EPA in mice, as well as humans, increased the concentration of resolvins in the blood and serum. Furthermore, resolvins reduced inflammation in a rat arthritis model. Frequent administration of the precursor of aspirin-triggered resolvin D1 prevented joint stiffness but did not modify paw and joint edema in rats. Transgenic mice expressing fat-1, a gene encoding an enzyme that converts ω-6 to ω-3 PUFA, showed significant improvement in a collagen induced arthritis mouse model. Clinical arthritis score, inflammatory cell infiltration, and inflammatory cytokine expression in the spleen and ankle were attenuated while Treg expansion and differentiation was enhanced in fat-1 mice compared to wild-type mice.

2.2 | PUFA-mediated suppression of pro-inflammatory cytokines

Beyond the direct regulation of immune cells, ω-3 PUFA derivatives downregulate the production of pro-inflammatory cytokines such as TNF, IL-1β, IL-6, and IL-8. DHA and EPA have been shown to inhibit lipopolysaccharide (LPS)-stimulated production of IL-6 and IL-8 by cultured human endothelial cells, while EPA inhibits LPS induced TNF production by cultured monocytes. Along with reducing pro-inflammatory cytokine production, ω-3 PUFA derivatives can also increase the production of anti-inflammatory cytokines. Mice fed a diet rich in EPA resulted in systemic macrophages and lymphocytes that secreted higher levels of the anti-inflammatory cytokine IL-10.

The reduction in pro-inflammatory cytokine production has been observed in rheumatoid arthritis patients, in whom ω-3 PUFA dietary supplementation decreased serum TNF concentration. IL-1 production by monocytes, and plasma IL-1β concentrations. Reduction of systemic pro-inflammatory cytokines correlated clinically with a decrease in the severity of inflammatory arthritis. The studies suggest that the disruption of pro-inflammatory cytokine production by diet supplementation of ω-3 PUFA could have a therapeutic benefit.

2.3 | Mechanisms of PUFA-mediated immune modulation

2.3.1 | Disruption of lipid rafts

The modulation of nuclear factor κB (NFκB), one of the main transcription factors involved in upregulation of genes encoding pro-inflammatory cytokines, is the primary theorized mechanism by which ω-3 PUFAs are believed to operate. EPA was shown to decrease endotoxin-induced activation of NFκB in human monocytes whereas DHA has been shown to have the same effect in macrophages and dendritic cells. In contrast, saturated FA, especially lauric acid, enhanced NFκB activation in macrophages and dendritic cells in a toll-like receptor (TLR)-4 dependent manner. Activated TLR-4 and other signaling proteins associate within lipid rafts in inflammatory cells exposed to endotoxin. It was shown that DHA inhibited the ability of both endotoxin and lauric acid to promote recruitment of TLR-4 into rafts. This observation led to one proposed mechanism that PUFAs disrupt raft formation in the membrane of inflammatory cells, thus preventing the association of signaling proteins.

2.3.2 | Regulation of peroxisome proliferator-activated receptor gamma

A second proposed mechanism of PUFA influencing NFκB activation involves the transcription factor peroxisome proliferator activated receptor gamma (PPAR-γ), which acts in an anti-inflammatory manner by physically interfering with the translocation of NFκB to the nucleus. Eicosanoids and lipid mediators produced by the metabolism of PUFAs can bind and regulate PPAR-γ. PPAR-γ can also be activated by ω-3 PUFAs themselves. For example, DHA activates PPAR-γ in dendritic cells, resulting in inhibition of NFκB activation and reduced production of inflammatory cytokines such as IL-6 and TNF postendotoxin stimulation.

In addition, DHA induces many known PPAR-γ target genes in dendritic cells, supporting that DHA is an important anti-inflammatory mediator.

2.3.3 | Agonist of GPR120

A third proposed mechanism of PUFA regulation of NFκB involves GPR120, a GPCR expressed on macrophages. ω-3 PUFAs, agonists of GPR120, inhibited the macrophage response to endotoxin, an effect which involved maintenance of cytosolic inhibitor of nuclear factor kappa B (IkB) and a decrease in production of TNF and IL-6, suggesting that GPR120 is involved in anti-inflammatory signaling.

IκB binds to NFκB to form an inactive complex where the common pathway for NFκB activation is based on phosphorylation-induced, proteasome-mediated degradation of IκB. Therefore, a maintenance of cytosolic IκB regulates activation of NFκB. The effects produced by the synthetic agonist were similar to those produced by DHA and EPA. It was observed that both EPA and DHA, but not ARA enhanced GPR120-mediated gene activation. Moreover, the ability of DHA to inhibit the responsiveness of macrophages to endotoxin was eliminated in GPR120 knockdown cells. These data support that the inhibitory effect of DHA on NFκB might occur via GPR120 due to signal interference with the pathway that activates NFκB.

3 | SHORT-CHAIN FATTY ACIDS

SCFAs are carboxylic acids and are one to six carbon atoms in length. Acetate (two carbons), propionate (three carbons), and butyrate (four...
Carbons) are the most abundant SCFAs produced by anaerobic fermentation of dietary fiber in the gut by bacteria. These two-carbon (acetate), three-carbon (propionate), and four-carbon (butyrate) metabolic products influence the immune system by two modes of action, GPCR activation and HDAC inhibition. SCFAs modulate the innate immune system by activating GPR41, GPR43, and GPR109a, which are expressed on cells such as monocytes, neutrophils, and macrophages. SCFAs modulate the adaptive immune system by inhibiting HDAC, leading to modulation of the mTOR pathway, subsequently modifying the ratio of effector to regulatory T cells. The figure was created with BioRender.com. GPCR, G-protein-coupled cell membrane receptor; HDAC, histone deacetylase; mTOR, mammalian target of rapamycin; SCFA, short-chain fatty acids.

3.1 SCFAs modulate innate immune cell through GPCRs

SCFAs activate immune cell associated GPCRs and induce an anti-inflammatory effect. GPR41 (also known as free fatty acid receptor 3 [FFAR3]), GPR43 (FFAR2), and GPR109a (hydroxycarboxylic acid receptor 2) have been identified as receptors for SCFAs and are found in the intestinal epithelial cells (IECs), monocytes, neutrophils, and macrophages. GPR41 is primarily expressed in cells associated with adipose tissue whereas GPR43 is abundant in the aforementioned immune cells. GPR41 and GPR43 are efficiently activated by acetate, propionate, butyrate, and other SCFAs while GPR109a is activated mainly by butyrate. GPR41, GPR43, and GPR109a are coupled with G protein alpha subunit (Gα) and their activation by SCFA inhibits cAMP production. Among all the SCFAs tested, propionate has the strongest agonistic response; acetate is selective for GPR43; butyrate and isobutyrate are selective for GPR41. GPCR-deficient mice exhibit severe and uncontrolled inflammation in models of dextran sulfate sodium induced arthritis, asthma, and colitis. GPR41 is also important for facilitating the immunomodulatory effect of propionate, demonstrated in a model of allergic airway inflammation (AAI). AAI was not mitigated in GPR41+/−/− mice treated with propionate after house dust mite exposure, but the same treatment ameliorated AAI in wild-type and GPR43+/−/− mice. Neutrophil-associated GPR43 has been shown to have a role in the recruitment of polymorphonuclear leukocyte to the site of inflammation, likely in a protein kinase p38-dependant manner. GPR43 activation has also been shown to induce chemotaxis of neutrophils in vitro. GPR43 on IEC activates the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and enhances the production of IL-18, a critical component for maintaining epithelial integrity and intestinal homeostasis. As with ω-3 PUFA derivatives, SCFA suppress cell adhesion molecules expressed by activated monocytes, neutrophils, and
endothelial cells, mitigating the infiltration of inflammatory immune
cells.72-74 Acetate inhibits LPS-stimulated TNF production by periph-
eral blood mononuclear cells in both mice and humans via GPR43.75
GPR43 activation has been demonstrated to induce the differentia-
tion and enhance the function of FoxP3+ Tregs through epigenetic
modulation.76

3.2 | SCFA-mediated adaptive immune cell
modulation by histone deacetylase inhibition

SCFAs can modulate immune cell activity though the inhibition of his-
tone deacetylases (HDACs), which are enzymes that remove the ace-
ty l groups from histones, thereby tightening the chromatin structure
around the DNA and repressing the activity of various transcription
factors.77 Through HDAC inhibition, SCFAs can modulate both the
effector and regulatory functions of T cells. Although it was originally
thought that HDAC inhibition by SCFAs was dependent on GPR43, it
has recently been shown that the absence of GPR43 does not affect
HDAC inhibition by SCFAs.78 Rather, it was demonstrated that the
specific target of acetylation in T lymphocytes is p70 s6 kinase (S6K)
which can be acetylated at lysine 516 by HDAC inhibitors
(e.g., SCFAs) and coactivator p300.79 S6K phosphorylates ribosomal
protein 6 (rS6), which is an important target in the mammalian target
of rapamycin (mTOR) pathway and is a key metabolic pathway in T
cells. In general, mTOR activity promotes effector T cells at high levels
and promotes Treg at low levels. Increased phosphorylation of rS6 was
observed under acetate and propionate supplementation.77 There-
fore, SCFAs can increase mTOR activity and support the generation
of both effector and Treg.

It has also been demonstrated that SCFAs promote the function of
Treg.76 SCFAs increase the activity of FoxP3+ T cells and IL-10 pro-
duction via HDAC inhibition, which regulates gene expression of the
FoxP3 and IL-10 loci at steady state.80,79 SCFA can also boost the
generation of Th1 and Th17 cells during active immune
responses.79,80 These observations lead Park et al. to hypothesize that
SCFAs boost T-cell responses in a manner dependent on host condi-
tions.80 Under homeostatic conditions, SCFAs promote immune toler-
ance. However, during an active immune response, SCFAs promote
the generation of an inflammatory response. Cytotoxic CD8+ T cells
are also influenced by SCFAs, where SCFAs increase the cytotoxic
activity and IL-17 production capacity of CD8+ T cells.81 Furthermore,
butyrate enhances the memory T-cell response upon antigen
rechallenge.82 In addition, chronic SCFA feeding has been
demonstrated to induce Th17-mediated urethritis;80; therefore, the
application of SCFAs for immunoregulation is likely context dependent.

Butyrate and propionate have been demonstrated to inhibit acti-
vation-induced cytidine deaminase (AID) and Blimp1 expression
through dose-dependent epigenetic HDAC inhibitory activity in
mouse and human B cells, which upregulates select miRNAs targeting
Aicda- and Prdm1-3’ UTRs.83 SCFA induced HDAC inhibition of B cell
AID and Blimp1, inhibited class-switch DNA recombination, somatic
hypermutation, and plasma cell differentiation in T-dependent and T-
dependent antibody responses in C57BL/6J mice, T-cell receptor
(TCR)γδ–/– mice, and NOD-scid IL2Rαγαααα (NSG) mice
grafted with purified B cells.84 These effects were extended to auto-
antibody responses in lupus-prone MRL/Fas+–/+ and NZB/W F1
mice, supporting a potential role of SCFA in systemic lupus erythematosus therapy.

3.3 | Therapeutic role of SCFAs in autoimmune
diseases

SCFAs have been demonstrated to be immune modulating in a range of
autoimmune diseases, particularly those that affect the gut. In active
IBDs including Crohn’s disease (CD), and ulcerative colitis (UC), SCFA-
producing bacteria (particularly those of phylum Firmicutes) are reduced,
leaving to dysbiosis. In particular, a decrease in Firmicutes prausnitzii,
a butyrate producing bacteria from the Clostridium cluster IV, is an indica-
ator of IBD.85,86 Dysbiosis results in a decreased amount of SCFAs in the
fetal matter of patients with IBD.87 One study found that acetate
and propionate, but not butyrate, are reduced in UC patients.88 while a
separate study found both butyrate and propionate to be reduced in
IBD patients.87 The apparent differences might be attributed to dietary
differences and the method of analysis.86,87 Directly administering
SCFA enemas show clinical and histological improvement in active UC
patients.88 Butyrate enemas also decrease NF-κB translocation in lam-
ina propria macrophages in tissue sections from distal UC patients,89 as
well as in LPS-induced cytokine expression and NF-κB activation in LP
mononuclear cells and PBMCs from CD patients.89

In a rat sepsis model, butyrate prevented liver, kidney, and lung
damage, thereby improving the survival rates.90 The increase in sur-

vival rate was shown to be caused by downregulation of high-mobility

group box protein 1 (HMGB1) by butyrate supplementation, which is
a pro-inflammatory cytokine that activates multiple membrane recep-
tors, including receptors for advanced glycation end products91 and
possibly TLR-2 and TLR-4. Through these receptors, HMGB1 contrib-
utes to the pathogenesis of inflammatory and infectious disorders
such as sepsis, arthritis, and ischemia reperfusion injury.92 In mouse
models with acute lung injury caused by sepsis, butyrate led to a si-
gnificant attenuation of lipopolysaccharide induced damage in mice as
assessed by lung histopathological changes, lower alveolar hemor-
rhage, and reduced neutrophil infiltration.93 Inhibition of HMGB1
release was postulated to be the cause of the observations. Propio-
nate has been shown to protect from hypertensive cardiovascular
damage by reducing susceptibility to cardiac ventricular arrhythmias,
cardiac hypertrophy, fibrosis, and vascular dysfunction in wild-type
Naval Medical Research Institute (NMRI) and apolipoprotein E
mice. In these mice, hypertension was induced by administration of
angiotensin II and subsequently, the therapeutic effect of infusing the
drinking water with propionate was tested. It was found that there
was a significant reduction in both splenic effector T cells and splenic
Th17 cells in both models as well as a decrease in local cardiac
immune cell infiltration in wild-type NMRI mice fed propionate
compared to controls.94
SCFAs have the potential to exacerbate inflammation. For example, it has been documented that chronic elevation of SCFA higher than physiological levels can cause T-cell-induced inflammatory responses in the renal system. In addition, in mouse models of colonic inflammation, the therapeutic effect of SCFA has been inconsistent and may be context dependent. For example, SCFA enemas did not prevent or reduce intestinal damage in 2,4,6-trinitrobenzene sulfonic-acid (TNBS)-induced colitis in rats but reduced colonic mucosal damage and serum inflammatory cytokines (IL-6, TNF, and IL-1β) in dextran sodium sulfate (DSS)-treated mice. In contrast, butyrate did not prevent DSS-induced intestinal damage in mice exposed to antibiotics. Similarly, butyrate was less effective in eliciting an anti-inflammatory response in the TNBS-induced colitis mouse model, although it induced IL-10 and reduced IL-12 and TNF.

4 | LIPID ADJUVANTS

Advances in pathogen characterization techniques and an improved understanding of the host immune response to an infection have enabled the development of subunit vaccines based on recombinant antigens containing highly purified components with excellent safety profiles. However, the immunogenicity of such defined vaccines may be lower than live attenuated or inactivated whole pathogen vaccine preparations. Therefore, subunit vaccine development often relies on adjuvants, which are molecular components that can safely boost the immunogenicity of the vaccine. Since its initial use in the 1920s, insoluble aluminum salts (alum) remained the only adjuvant in licensed vaccines for several decades. As the overall effectiveness of an immunization regimen can be improved by adjuvancing the vaccine formulation, the development of new adjuvants is an important focus in vaccines formulations. In particular, an evolving understanding of the relationship between lipids and antigen presenting cells has made it possible to design safe lipid adjuvants with strong and robust immune stimulating effects (Figure 4).

4.1 | Free lipids as vaccine adjuvants

It is known that free cationic lipids, such as those with quaternary ammonium head groups, disrupt cell monolayers and can cause hemolysis of red blood cells and damage tissue at the injection site. However, in liposomal formulations where lipids self-assemble into a spherical bilayer with an encapsulated aqueous core, the cationic surface has been demonstrated to promote interaction with the anionic antigen-presenting cells (APCs) leading to a robust adaptive immune response. Cationic lipopolyamines, characterized as an unsaturated lipid tail with a long chain headgroup containing multiple amines.
and/or amides, were recently shown to activate both TLR-4 and TLR-2, resulting in strong humoral and cellular immunity in mice vaccinated against ovalbumin.\textsuperscript{103} The mechanism of the lipopolyamines to activate TLR-2 and TLR-4 is different from bacterial pathogen-associated molecular patterns and likely linked to their fusogenic properties. Here, polyethylenimine (PEI) has long been used as a potent cationic gene delivery system and demonstrated to have adjuvant-like properties.\textsuperscript{104} but remains limited by toxicity.\textsuperscript{105} By attaching a lipid hydrophobic domain to low-molecular-weight PEI, it may be possible to generate immune stimulators with low cytotoxicity.\textsuperscript{106} In contrast to cationic liposomes, anionic lipids are known to be recognized by macrophages via phosphatidylserine (PS) receptors. Apoptotic cell clearance is achieved by recognition of the PS exposed on the outer leaflet of the plasma cell membrane as the cells die. By synthesizing a liposome rich in PS, the target immune system recognized the liposomes and antigens within it as self and stimulated a regulatory immune response in models of multiple sclerosis and Type 1 diabetes.\textsuperscript{107,108} Ionizable lipids in SARS-CoV-2 vaccines were recently shown to have self-adjuvanting activity, supporting the role of charge in the adjuvant potential of free lipids.\textsuperscript{109}

4.2 Virosomes

Virosomes are virus-like particles, consisting of reconstituted influenza virus envelopes lacking the genetic material of the native virus, and have been explored for their enhanced immunogenic effects to improve on current influenza vaccination. By enveloping a liposome in the glycoproteins of a virus, the liposome gains the receptor-binding membrane fusion activity of viral hemagglutinin without infecting the cells.\textsuperscript{110} Virosomes have been of interest to medical research as they retain the infective ability of viruses to bind and penetrate the cell, stimulate both humoral and cellular immunity, and are structurally and morphologically similar to infectious viruses. This technology has been approved in two vaccines, Epaxal\textsuperscript{®} for Hepatitis A\textsuperscript{111,112} and Inflexal\textsuperscript{®} for influenza.\textsuperscript{113} Epaxal\textsuperscript{®} is formulated with a formalin-inactivated Hepatitis A virus that resulted in 88%-97% seroprotection 2 weeks after a single injection. After a second booster dose, Epaxal\textsuperscript{®} has been found to provide robust immunity for up to 20 years.\textsuperscript{114} This was achieved without alum adjuvant, suggesting the adjuvant potential of virosomes. A direct comparison of Epaxal\textsuperscript{®} with an alum-based vaccine showed similar immunogenicity with fewer local reactions.\textsuperscript{112} Inflexal\textsuperscript{®} is formulated of a haemagglutinin surface molecule of the influenza virus, which is attached to the lecithin phospholipid bilayer virosome. This formulation generates spherical vesicles \( \sim 150 \text{ nm} \) in diameter.\textsuperscript{115} Despite its low viral content, Inflexal\textsuperscript{®} imparts a robust immune response compared to conventional influenza vaccines.\textsuperscript{116,117} Virosomes are also being further explored for malaria and respiratory syncytial virus vaccines.\textsuperscript{118,119}

4.3 Monophosphoryl lipid A

Lipid based adjuvants are currently used in clinically approved vaccines. Monophosphoryl lipid A (MPLA) is a detoxified form of the endotoxin LPS by the hydrolytic processing of LPS from Salmonella minnesota to a major species possessing six acyl side chains, no polysaccharide side chains, and one phosphoryl group.\textsuperscript{120} MPLA was tested for toxicity and immunomodulatory function by measuring the amount of MPLA needed for lethal effect in chick embryos and for protection from growth of an intradermally implanted tumor cell line in a guinea pig tumor model. The data showed that MPLA had very low toxicity compared to LPS, while functioning comparably in the tumor protection assay.\textsuperscript{121} While MPLA and LPS are both strong TLR-4 agonists, MPLA’s lower toxicity may be explained by biased signaling of the TLR-4-proximal adapter proteins, myeloid differentiation factor 88 (MyD88) and Toll-interleukin 1 receptor domain-containing adapter inducing interferon-β (TRIF). The low toxicity of MPLA’s adjuvant function is associated with a bias toward TRIF signaling.\textsuperscript{122} MPLA was shown to augment antigen-dependent T-cell activation and expansion through mediated TRIF-biased signaling.\textsuperscript{122} It has also been reported that pro-inflammatory cytokine production by DCs in response to MPLA is dependent on both MyD88 and TRIF signaling but upregulation of DC costimulatory molecule expression is solely TRIF dependent.\textsuperscript{122} MPLA potently facilitated neutrophil mobilization and recruitment, a function that was largely regulated by the CXCR2 ligands CXCL1 and CXCL2, as well as the hematopoietic factor G-CSF, and were reliant on both MyD88 and TRIF-dependent signaling, although some predominance of the MyD88-dependent pathway was evident. MPLA also induced expansion of leukocytes and their progenitors in spleen and bone marrow, as well as modulated the expression of neutrophil adhesion molecules. Those alterations were attenuated in both MyD88- and TRIF-deficient mice, suggesting contributions from both pathways.\textsuperscript{124} Vaccines containing MPLA, such as Cervarix\textsuperscript{®}, have gained approval of the United States Food and Drug Administration (FDA), making MPLA the first adjuvant since the introduction of alum 100 years ago, to be approved for use in prophylactic immunization.

4.4 Oil-in-water nanoemulsions

MF59 is a safe and effective vaccine adjuvant, formulated as an oil-in-water nanoemulsion of squalene that produces approximately 160-nm-sized droplets,\textsuperscript{125} originally approved for use in an influenza vaccine for the elderly in Europe in 1997 (Fluad\textsuperscript{®}). In studies directly comparing MF59 to alum, MF59 was shown to be the more potent adjuvant for the induction of both antibody and CD4\textsuperscript{+} T-cell responses, sparking interest into determining this adjuvant’s mode of action.\textsuperscript{126,127} Since alum is thought to be a long-lasting adjuvant depot, mechanistic studies assessing any similarities in MF59 were conducted at the injection site by monitoring clearance of radio-labeled antigen and squalene in rabbits.\textsuperscript{128} After 6 h, only 10% of the labeled squalene and 25% of the labeled antigen was at the injection site, falling to 5% and 0.05%, respectively, after 120 h. It was also found that antigen binding to the emulsion droplets is not necessary to induce the adjuvant effects. Rather, MF59 was found to create an immune responsive environment at the injection site. If MF59 was
| Study name | Clinicaltrials.gov ID (https://www.clinicaltrials.gov/) | Year | Intervention | Clinical trial phase | Brief summary | Primary outcome | Ref. |
|------------|------------------------------------------------------|------|--------------|----------------------|---------------|-----------------|------|
| **PUFAs**  |                                                      |      |              |                      |               |                 |      |
| VITAL      | NCT01169259                                         | 2010–present | Daily dietary supplements of ω-3 fatty acids (Omacor® fish oil, 1 gram) | 3           | Primary incidence of cancer and cardiovascular disease | Supplementation with ω-3 fatty acids did not reduce major cardiovascular events or cancer compared with a placebo | 140  |
| ASCEND     | NCT00135226                                         | 2005–present | Daily ω-3 fatty acids (1 gram) | 4           | Primary incidence of cardiovascular disease in patients with diabetes | Supplementation with ω-3 fatty acids did not reduce major cardiovascular events compared with a placebo | 141  |
| REDUCE-IT  | NCT01492361                                         | 2011–2018 | Twice daily ethyl-EPA (2 g per dose for 4 g daily) | 3           | Cardiovascular events in statin-treated patients with mixed dyslipidemia | The risk of ischemic events, including cardiovascular death, was significantly lower among those who received 2 g of ethyl-EPA twice daily than among those who received placebo | 138  |
| STRENGTH   | NCT02104817                                         | 2014–2020 | Daily Epanova® (ω-3 fatty acids, 4 grams) | 3           | Incidence of cardiovascular disease in high-risk patients with hypertriglyceridemia and low high-density lipoprotein | Among statin-treated patients at high cardiovascular risk, the addition of omega-3 FA, compared with corn oil, to usual background therapies resulted in no significant difference in a composite outcome of major adverse cardiovascular events | 139  |
| Omega-3 fatty acids in chronic periodontitis | NCT01997853 | 2012–2013 | Daily ω-3 fatty acids for 12 weeks (300 mg) or placebo | Postapproval | Therapeutic outcomes in patients with chronic periodontitis | A significant reduction in the gingival index, sulcus bleeding index, pocket depth, and clinical attachment level was found in the ω-3 FA treatment group compared to the placebo treated group after 12-weeks. No significant changes in serum C-reactive protein levels | 148  |
| **SCFAs**  |                                                      |      |              |                      |               |                 |      |
| FeFiFo study | NCT03275662                                         | 2016–2017 | 20 g/day increased fiber or 6 servings of fermented foods/day | N/A         | General effect on inflammation, microbiota diversity, and SCFA production due to dietary changes | High-fiber diet increased SCFA production but had no effect on cytokine response score; high-fermented food diet decreased inflammatory markers | 142  |
| Study name | Clinicaltrials.gov ID (https://www.clinicaltrials.gov/) | Year | Intervention | Clinical trial phase | Brief summary | Primary outcome | Ref. |
|------------|--------------------------------------------------------|------|--------------|----------------------|---------------|-----------------|-----|
| Lipid adjuvants | | | | | | | |
| Safety and immunogenicity of an adjuvanted trivalent influenza vaccine in children 6 to <72 months of age in Mexico | NCT02255279 2014–2015 | Dose of trivalent influenza vaccine (aTIV) with or without MF59 adjuvant in children (6–72 months old) | 3 | Safety and immunogenicity of aTIV in children | aTIV was highly immunogenic and well tolerated in healthy children. Addition of adjuvant MF59 elicited a greater immune response compared to the nonadjuvanted vaccine | 149 |
| Assess the safety and immunogenicity of stored inactivated influenza H5N1 virus vaccine given with and without stored MF59 adjuvant | NCT02680002 2016–2017 | 2 doses of long-term stored inactivated monovalent influenza A/Vietnam/H5N1 virus vaccine administered intramuscularly with or without MF59 adjuvant | 2 | Assess the safety and immunogenicity of long-term stored vaccine | Stockpiled vaccines were well-tolerated, adverse events were generally mild, and there was no drop in immunogenicity to the oldest stockpiled A(H5N1) vaccine. Compared to unadjuvanted vaccine, greater peak antibody responses were observed in subjects who were vaccinated with MF59-adjuvanted vaccines, regardless of antigen dose | 150 |
| Safety and immunogenicity of MF59C.1 adjuvanted trivalent subunit influenza vaccine in elderly subjects | NCT01162122 2010–2011 | Elderly patients receive one dose of aTIV (adjuvanted) or TIV (nonadjuvanted) | 3 | Safety and immunogenicity of aTIV in the elderly | aTIV was not only noninferior to TIV but also elicited significantly higher antibody responses at Day 22 than TIV against all homologous and heterologous strains, even in subjects with co-morbidities. Reactogenicity was higher in the aTIV group, but reactions were mild to moderate and transient | 151 |
| Human papilloma virus (HPV) vaccine efficacy trial against cervical precancer in young adults with GlaxoSmithKline (GSK) biologicals HPV-16/18 | NCT00122681 2004–2009 | Three doses of HPV-16/18 AS04-adjuvanted vaccine over the course of 6 months | 3 | Vaccine safety and efficacy against HPV in young women | The HPV-16/18 AS04-adjuvanted vaccine showed high efficacy against CIN2+ associated with HPV-16/18 and nonvaccine oncogenic HPV types | 152 |
| Hepatitis A vaccine in patients with | NCT01360970 2009–2011 | Two doses of either Havrix® | 2 | Assess the hepatitis A virus antibody | Two doses of hepatitis A vaccine at a 6-month | 153 |
administered up to 24 h before the antigen at the same injection site, the adjuvant effects were preserved, but not vice versa.128 If the adjuvant and the antigen were administered to different injection sites, no adjuvant effect was observed. It was then hypothesized that MF59 adjuvant injection induces a local chemokine secretion that manifests in the recruitment of mononuclear cells from the blood. A study showed that the cellular influx observed in CCR2+ mice was significantly different than the influx found with CCR2−/− mice, supporting the theory that cellular recruitment is the mode of action of MF59.129 Another study showed that mice deficient in ICAM-1 showed significantly lower antibody titers against a Plasmodium falciparum vaccine than did wild type controls.130 This ICAM-1 dependent immune response was found to be a specific mechanism for emulsion adjuvants such as MF59 but not for immune potentiator adjuvants such as MPLA. In vitro studies with MF59 found that rather than DCs being the target of this adjuvant, monocytes, macrophages, and granulocytes were targeted by MF59.131 Accordingly, it was postulated that a key component of the mechanism of MF59 was chemokine-driven immune cell recruitment and chemokine-release that would create a positive feedback loop, strongly enhancing the numbers of immune cells at the injection site. These cells could then further participate in antigen uptake and transport to the draining lymph nodes. AS03® is another squalene, oil-in-water emulsion adjuvant that was approved for use as an emergency pandemic adjuvant for influenza by the European Medicines Agency. AS03® was more effective than alum in inducing a high antigen-specific antibody response and induced higher levels of cytokines and stimulated more monocyte and granulocyte recruitment to the draining lymph nodes than aluminum hydroxide.132

5 | CONCLUSIONS

Lipids are important mediators of immune homeostasis and may be leveraged for treating a range of disorders. Their full potential as stand-alone immunomodulators or adjuvants is only now beginning to be realized. In this review, we focused on three classes of lipids—two
| Lipid                  | Disease model                                      | Experimental design                                                                 | Observed effect                                                                                           | Ref. |
|-----------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------|
| DHA (ω-3 PUFA)        | Murine postmenopausal breast cancer                | Ovariectomized, immune-competent female mice orthotopically injected with Py230 mammary tumor cells fed high fat diets with or without DHA | DHA diet reduced inflammation in the obese mammary fat pad in the absence of tumor cells and inhibited Py230 tumor growth in vivo | 156  |
| ω-3/ω-6 PUFA          | Murine NASH-tumor model                           | High fat diets with differing ratios of ω-6 and ω-3 PUFAs were fed to streptozotocin/high-fat diet (STZ/HFD)-treated mice to analyze NAFLD-related liver fibrosis and tumorigenesis | In 20-week-old mice, ω-3 PUFA-rich diets alleviated tumor load significantly, with reduced liver/body weight index, tumor size, and tumor number accompanied by significant increase in survival | 157  |
| ω-6 PUFA              | Murine mammary cancer                             | High-fat (ω-6) diets were fed to pregnant mice and mammary tumor incidence induced by 7,12-dimethylbenz[a]anthracene in offspring | Maternal high-fat diet intake during pregnancy induces a transgenerational increase in offspring mammary cancer risk in mice | 158  |
| DHA (ω-3 PUFA)        | Murine ovarian cancer patient derived xenograft   | PDX OVXF-550 model was fed either a control (0% DHA) or DHA (3% w/w DHA) diet and treated with or without carboplatin and tumor growth analyzed | DHA supplementation reduced cancer cell growth and enhanced the efficacy of carboplatin in preclinical models of ovarian cancer through increased apoptosis and necrosis | 159  |
| Prostaglandin E3 (EPA-derived eicosanoid) | Murine PC3 xenograft model of prostate cancer | PGE3 or saline was injected next to the tumor every 3 days for 4 weeks before tumor excision and analysis | PGE3 inhibited prostate cancer in vivo in immunodeficient (nude) neoplastic mice | 160  |
| DHA (ω-3 PUFA)        | In vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and fat-1 mice) models | Cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation and analysis of EGFR-nanoclustering by super-resolution microscopy | DHA enrichment reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling | 161  |
| Butyrate (SCFA)       | Murine models of colon carcinoma (MC38 and CT26) and fibrosarcoma (MCA101OVA) | Mice were fed diets supplemented with butyrate before inoculation with cancer cells. Mice were treated with anti-CTLA-4 antibodies and progression of cancer was analyzed | Systemic butyrate appeared to limit antitumor activity of anti-CTLA-4 | 162  |
| Butyrate (SCFA, produced by Clostridium butyricum) | Murine model of colorectal cancer induced by high-fat diet in Apcmin/+ mice | Mice were purged of gut bacteria by antibiotics before culturing C. butyricum by diet supplementation three times a week. Mice were fed either a high-fat diet or a basal diet for 12 weeks before euthanasia to determine extent and progression of colorectal cancer | C. butyricum significantly inhibited high-fat diet induced intestinal tumor development in Apcmin/+ mice. Moreover, intestinal tumor cells treated with C. butyricum exhibited decreased proliferation and increased apoptosis | 163  |
| Autoimmune diseases   | Pinolenic acid (ω-6 PUFA)                        | PBMCs isolated from blood of rheumatoid arthritis patients                           | Investigated the transcriptomic profile of pinolenic treatment on LPS activated PBMCs | 164  |
|                       |                                                   |                                                                                      | Pinolenic acid had significant effects on the regulation of metabolic and inflammatory | (Continues) |
| Lipid                     | Disease model                                      | Experimental design                                                                 | Observed effect                                                                                                                                   | Ref. |
|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Resolvin E1 (EPA-derived eicosanoid) | Murine model of psoriasis induced by imiquimod | 30 min before imiquimod administration, vehicle or resolvin E1 were administered intravenously. Ear thickness was measured 24 h after imiquimod treatment | Resolvin E1 significantly impaired imiquimod induced psoriatic dermatitis | 165  |
| Propionate (SCFA, induced by resistant starch high-fiber diet) | Murine model of collagen induced arthritis | Mice were fed either a normal diet or a high-fiber diet with resistant starch. β-acids were added to eliminate SCFAs | RS-HFD significantly reduced arthritis severity and bone erosion in CIA mice and correlated with splenic Treg expansion and increase in serum IL-10. Addition of β-acids significantly reduced serum propionate and eliminated RS-HFD-induced disease improvement | 166  |
| Butyrate (SCFA)          | Murine model of autoimmune hepatitis                | Hepatitis was induced in mice by S100 injection. Mice were then split into control, high-fiber diet, and sodium butyrate enriched diet groups | Mice fed with either high-fiber diet or sodium butyrate showed significantly reduced serum aminotransferases and minor liver injury compared to mice fed with the control diet. Moreover, the ratio of T<sub>Treg</sub>/Th17 was significantly higher in high-fiber diet and sodium butyrate-fed mice than the control group | 167  |
| Various SCFAs            | Murine model of autoimmune experimental uveitis    | Mice were immunized with an emulsion containing IRBP1–20 or IRBP651–670 and incomplete Freund's adjuvant to induce uveitis. Mice were then fed differing SCFAs in the drinking water for three weeks before uveitis induction and during the study | Exogenous administration of SCFAs stabilized subclinical intestinal alterations that occur in inflammatory diseases including uveitis, as well as prevented the trafficking of leukocytes between the gastrointestinal tract and extra-intestinal tissues | 168  |
| Butyrate (SCFA)          | Murine model of dysregulated bile acid synthesis leading to hepatitis | FXR KO mice were fed a western diet with or without butyrate supplementation | Reduced butyrate contributes to the development of hepatitis in the FXR KO mouse model. Butyrate supplementation reverses dysregulated BA synthesis and its associated hepatitis. | 169  |
| DHA (ω-3 PUFA)           | Murine model of systemic lupus erythematosus       | Lupus was induced in female NZBWF1 mice by 4 weekly intranasal instillations with 1 mg cSiO<sub>2</sub>. One week after the final instillation, which marks onset of ELS formation, mice were fed diets supplemented with 0, 4, or 10 g/kg DHA | Dietary intervention with high but not low DHA after cSiO<sub>2</sub> treatment suppressed or delayed: (i) recruitment of T and B cells to the lung, (ii) development of pulmonary ELS, (iii) elevation of a wide spectrum of plasma autoantibodies associated with lupus and other autoimmune diseases, (iv) initiation and | 170  |
naturally occurring FAs: PUFAs and SCFAs, and adjuvant lipids for immune modulation, in which they might promote the activation or suppression of immune cell subsets in a spatially and temporally controlled manner. This effect is derived from the inherent structure of lipids, which is suited to partition and selectively accumulate in tissue microenvironments. We then summarized the mechanism, effect, and their role in disease. While the naturally occurring lipids can result in a pro- or anti-inflammatory immune response, adjuvant lipids are designed to promote immune activation.

Despite showing promise, some important roadblocks must be addressed. A major limitation has been delivering PUFA/SCFA to the target location at sufficient concentrations. For example, enema-based delivery of SCFA to the colon needs to be given frequently, multiple times a day, which render it impractical as a widespread therapy. The use of oral preparations is appealing but thus far has not been successfully used for colonic delivery. Moreover, the primary evidence of the immunomodulatory properties of SCFAs is from preclinical animal models. Besides the inherent limitation of animal models to fully recapitulate human disease, in studies using radiolabeled SCFA, it has been demonstrated that endogenous turnover of SCFAs is much lower in humans than in smaller mammals such as dogs and rats, reflecting differences in the production and utilization of SCFAs between species. Such endogenous variation presents a challenge to identify a therapeutically relevant window in humans and a barrier to the extrapolation of the effects of SCFA from animal models to human disease. The limitation contributes, at least in part, to the elusiveness of consistent benefits in human interventional studies and is compounded by the lack of established methods to directly measure SCFA in vivo.

The immunomodulatory effect of PUFA has been assessed solely based on diet supplementation. Unlike SCFA, the immune modulating properties of PUFA are not due to the PUFA themselves, but rather from the eicosanoids derived from PUFA metabolism. Therefore, an additional consideration is the metabolism of PUFA in target tissues. Reflecting this complexity, clinical trials using ω-3 PUFA have garnered mixed results. For example, dietary supplementation of ω-3 PUFA has been extensively studied in the context of cardiovascular disease. The Reduction of Cardiovascular Events with Icosapent Ethyl-intervention Trial (REDUCE-IT) demonstrated the benefits of an ethyl ester form of EPA on cardiovascular disease endpoints. However, the Long-Term Outcomes Study to Assess Statin Residual Risk with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia (STRENGTH), the Vitamin D and Omega-3 Trial (VITAL), and a Study of Cardiovascular Events in Diabetes (ASCEND) did not find that ω-3 PUFA supplementation significantly reduced major adverse cardiovascular events in high-risk patients. While the dietary route of ω-3 PUFA supplementation is inconclusive, other routes of drug delivery for immunomodulation may provide more conclusive evidence.

Clinical trials using SCFAs are not as extensive as those for PUFAs, and dietary changes that influence the gut microbiome are typically studied rather than direct interventions with SCFAs. For example, the Fermented and Fiber-rich Food (FeFiFo) study asked patients to consume either a diet richer in fiber or higher in fermented food to influence the gut microbiome and modulate the immune system in healthy adults. The FeFiFo study found that a high fiber diet did not decrease inflammation while a diet high in fermented foods did show a decrease in inflammatory markers. In studies where SCFAs are used directly as a therapeutic, the results are inconclusive. In a small study of four diversion colitis patients, treatment with an SCFA enema appeared to improve histological and endoscopy disease scores. However, this effect was less clear in randomized placebo-controlled clinical trials in larger cohorts of patients with active distal uncreatable colitis and diversion colitis, where the SCFA enema treatment did not improve clinical metrics of disease compared to a placebo. As with PUFAs, other routes of drug delivery for immunomodulation may provide more conclusive evidence (Table 2).

Lipid adjuvants have greatly enhanced prophylactic vaccination by inducing robust immune responses against pathogens. However, lipid adjuvants are primarily immune activating. Recent examples of engineered lipid biomaterials that mimic apoptotic cells to deliver antigens in a tolerizing fashion support that further development of engineered lipids could yield agents with superior therapeutic potential to that achievable with more traditional agents.

Lipids are intrinsically linked to the maintenance of immunological homeostasis and are a potent weapon in the pharmacological armamentarium for numerous inflammatory disorders (Table 3). The elucidation of the mechanistic basis of their function and of novel targeted approaches for delivery represents a desirable strategy that might achieve consistent and reliable outcomes. These may also be combined with dietary supplementation or other pharmacological interventions to maximize the therapeutic benefit in a wide range of intestinal, metabolic, and inflammatory diseases.
ACKNOWLEDGMENT
The authors are supported in part by the Arthritis National Research Foundation and the National Institutes of Health.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Wade T. Johnson: Conceptualization (lead); writing—original draft (lead); writing—review and editing (lead). Nicholas C. Dorn: Conceptualization (supporting); writing—original draft (supporting); writing—review and editing (supporting). Dora A. Ogbonna: Conceptualization (supporting); writing—original draft (supporting); writing—review and editing (supporting). Nunzio Bottini: Funding acquisition (supporting); supervision (supporting); writing—review and editing (supporting).

Nisarg J. Shah: Conceptualization (equal); funding acquisition (supporting); writing—original draft (supporting); writing—review and editing (supporting).

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Nisarg J. Shah https://orcid.org/0000-0003-1727-5732

REFERENCES
1. Purves M, Sadava J, Orians L, Heller T. Life: The Science of Biology. Vol 7. 7th ed. McGraw Hill; 2004:1-1124.
2. Sano H, Hla T, Maier JAM, et al. In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest. 1992;89(1):97-108. doi:10.1172/JCI115591
3. Wenzel SE. The role of leukotrienes in asthma. Prostaglandins Leukot Essent Fat Acids. 2003;69(2-3):145-155. doi:10.1016/s0095-3278(03)00075-9
4. Nieto N, Torres MI, Ros A, Gil A. Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr. 2002;132(1):11-19. doi:10.1093/jn/132.1.11
5. Salem NM, Lin YH, Moriguchi T, Lim SY, Salem N, Hibbeln JR. Distribution of omega-6 and omega-3 polyunsaturated fatty acids in the whole rat body and 25 compartments. Prostaglandins Leukot Essent Fat Acids. 2015;100:13-20. doi:10.1016/j.plefa.2015.06.002
6. Cummings JH, Pomare EW, Branch HWJ, Naylor CPE, MacFarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221-1227. doi:10.1136/gut.28.10.1221
7. Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem Soc Trans. 2017;45(5):1105-1115. doi:10.1042/BST20160474
8. Calder PC, Grimble RF. Polyunsaturated fatty acids, inflammation and immunity. Eur J Clin Nutr. 2002;56(suppl 3):S14-S19. doi:10.1038/sj.ejcn.1601478
9. Gibney MJ, Hunter B. The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur J Clin Nutr. 1993;47(4):255-259.
10. Yaqoob P, Pala HS, Cortina-Borja M, Newsholme EA, Calder PC. Encapsulated fish oil enriched in α-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions. Eur J Clin Invest. 2000;30(3):260-274. doi:10.1046/j.1365-2362.2000.00623.x
11. Epstein FH, Lewis RA, Austen KF, Soberman RJ. Leukotrienes and Other Products of the 5-Lipoxygenase Pathway. N Engl J Med. 1990;323(10):645-655. doi:10.1056/nejm199009063231006
12. Tilley SL, Cottman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest. 2003;108(1):15-23. doi:10.1172/JCI13416
13. Kalinski P. Regulation of immune responses by prostaglandin E 2. J Immunol. 2012;188(1):21-28. doi:10.4049/jimmunol.1101029
14. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851(4):469-484. doi:10.1016/j.jbmb.2014.08.010
15. Kroetz DL, Zeldin DC. Cytochrome P450 pathways of arachidonic acid metabolism. Curr Opin Lipidol. 2002;13(3):273-283. doi:10.1097/00041433-200206000-00007
16. Calder PC, Ahluwalia N, Albers R, et al. A Consideration of Bio-markers to be Used for Evaluation of Inflammation in Human Nutritional Studies. Br J Nutr. 2013;109(suppl 51):S1-S34. doi:10.1017/s0007114512005119
17. Yaqoob P, Calder P. Effects of dietary lipid manipulation upon inflammatory mediator production by murine macrophages. Cell Immunol. 1995;163(1):120-128. doi:10.1016/cimm.1995.1106
18. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-κB: Its role in health and disease. J Mol Med. 2004;82(7):434-448. doi:10.1007/s00109-004-0555-y
19. Bagga D, Wang L, Farias-Eisner R, Glaspy JA, Reddy ST. Differential effects of prostaglandin derived from ω-6 and ω-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA. 2003;100(4):1751-1756. doi:10.1073/pnas.03324211100
20. Goldman DW, Pickett WC, Goetzl EJ. Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem Biophys Res Commun. 1983;117(1):282-288. doi:10.1016/0006-291X(83)91572-3
21. Wada M, DeLong CJ, Hong YH, et al. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem. 2007;282(31):22254-22266. doi:10.1074/jbc.M703169200
22. Serhan CN, Hong S, Gronert K, et al. Resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. J Exp Med. 2007;206(10):1260-1273. doi:10.1084/jem.20070670
23. Serhan CN, Chand N, Van Dyke TE. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349-361. doi:10.1038/nri2294
24. Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim Biophys Acta Mol Cell Biol Lipids. 2010;1801(12):1260-1273. doi:10.1016/j.jbmb.2010.08.002
25. Gronert K, Clish CB, Romano M, Serhan CN. Transcellular regulation of eicosanoid biosynthesis. Methods Mol Biol. 1999;120:119-144. doi:10.1385/1-59259-263-5:1119
26. Chiurchiù V, Leuti A, Dalli J, et al. Proresolving lipid mediators resolvins D1, resolvins D2, and maresins 1 are critical in modulating T cell responses. Sci Transl Med. 2016;8(353):353ra111. doi:10.1126/scitranslmed.aaf7483
27. Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells: Autacoids in anti-
inflammation. J Biol Chem. 2003;278(17):14677-14687. doi:10.1074/jbc.M300218200
28. Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem. 2012; 58(10):1476-1484. doi:10.1373/clinchem.2012.190199
29. Lima-Garcia JF, Dutra RC, Da Silva KABS, Motta EM, Campos MM, Calixto JB. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. Br J Pharmacol. 2011;164(2):278-293. doi:10.1111/j.1476-5381.2011.03453.x
30. Kim JY, Lim K, Kim KH, Kim JH, Choi JS, Shim SC. N-3 polyunsaturated fatty acids restore TH1 and Treg balance in collagen antibody-induced arthritis. PLoS One. 2018;13(3):e0194331. doi:10.1371/journal.pone.0194331
31. De Caterina R, Cybulslyski MI, Clinton SK, Gimbrone MA, Libby P. The omega-3 fatty acid docosahexaenoic reduces cytokine-induced expression of proatherogenic and proinflammatory proteins in human endothelial cells. Arterioscler Thromb Vasc Biol. 1994;14(11): 1829-1836. doi:10.1161/01.ATV.14.11.1829
32. Khalfoun B, Thibault F, Watier H, Bardos P, Lebranchu Y. Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv Exp Med Biol. 1997;400(B3):597-599.
33. Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J Am Coll Nutr. 2004;23(1):71-78. doi:10.1080/07315724.2010.1719435
34. Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ. NF-κB activity.
35. Sierra S, Lara-Villoslada F, Comalada M, Olivares M, Xaus J. Dietary eicosapentaenoic acid and docosahexaenoic acid equally incorporate as docosahexaenoic acid but differ in inflammatory effects. Nutrition. 2008;24(3):245-254. doi:10.1016/j.nut.2007.11.005
36. Kolahi S, Ghorbaniahgho A, Alizadeh S, et al. Fish oil supplementation decreases serum soluble receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in female patients with rheumatoid arthritis. Clin Biochem. 2010;43(6):576-580. doi:10.1016/j.clinbiochem.2009.12.011
37. Kremer JM, Lawrence DA, Jubiz W, et al. Dietary fish oil and olive oil supplementation in patients with rheumatoid arthritis clinical and immunologic effects. Arthritis Rheum. 1990;33(6):810-820. doi:10.1002/art.1780330607
38. Espensen GT, Grunnet N, Lervang HH, et al. Decreased interleukin-1β levels in plasma from rheumatoid arthritis patients after dietary supplementation with n-3 polyunsaturated fatty acids. Clin Rheumatol. 1992;11(3):393-395. doi:10.1007/BF02207200
39. Lo CJ, Chiu KC, Fu M, Lo R, Helton S. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NFκB activity. J Surg Res. 1999;82(2):216-221. doi:10.1006/jsre.1998.5524
40. Lee JY, Sohn KH, Rhee SH, Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem. 2001;276(20): 16683-16689. doi:10.1074/jbc.M011695200
41. Weatherill AR, Lee JY, Zhao L, Lemay DG, Youn HS, Hwang DH. Saturated and polyunsaturated fatty acids reciprocally modulate dendritic cell functions mediated through TLR4. J Immunol. 2005; 174(9):5390-5397. doi:10.4049/jimmunol.174.9.5390
42. Wong SW, Kwon MJ, Choi AMK, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009; 284(40):27384-27392. doi:10.1074/jbc.M109.044065
43. Vanden Berghe W, Vermeulen L, Derelive P, De Bosscher K, Staels B, Haegeman G. A paradigm for gene regulation: inflammation, NFκB and PPAR. Advances in Experimental Medicine and Biology. Vol 544: Springer; 2003:181-216. doi:10.1007/978-1-4419-9072-3_22
44. Szanto A, Nagy L. The many faces of PPARγ: Anti-inflammatory by any means? Immunobiology. 2008;213(9):789-803. doi:10.1016/j.imbia.2008.07.015
45. Krey G, Braissant O, L’Horset F, et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11(6):779-791. doi:10.1210/mend.11.6.0007
46. Kliewer SA, Sundseth SS, Jones SA, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci USA. 1997;94(9):4318-4323. doi:10.1073/pnas.94.9.4318
47. Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA. 1997;94(9):4312-4317. doi:10.1073/pnas.94.9.4312
48. Kong W, Yen JH, Vassiliou E, Adhikary S, Toscano MG, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Health Dis. 2010;9(1):1-10. doi:10.1186/1476-511X-9-12
49. Zapata-Gonzalez F, Rueda F, Petriz J, et al. Human dendritic cell activities are modulated by the omega-3 fatty acid, docosahexaenoic acid, mainly through PPAR/RXR heterodimers: comparison with other polyunsaturated fatty acids. J Leukoc Biol. 2008;84(4):1172-1182. doi:10.1189/jlb.1007688
50. Oh DY, Talukdar S, Bae EJ, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):678-687. doi:10.1016/j.cell.2010.07.041
51. Karin M. How NF-κB is activated: the role of the IkB kinase (IκK) complex. Oncogene. 1999;18(49):6867-6874. doi:10.1038/sj.onc.1202219
52. Macfarlane S, Macfarlane GT. Regulation of short-chain fatty acid production. Proc Nutr Soc. 2003;62(1):67-72. doi:10.1079/pnns20020207
53. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19(1):29-41. doi:10.1111/1462-2920.13589
54. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1-8. doi:10.1111/j.1574-6968.2009.01514.x
55. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9(1):1-11. doi:10.1038/s41598-019-45467-7
56. McNeill NI, Cummings JH, James WPT. Short chain fatty acid absorption by the human large intestine. Gut. 1978;19(9):819-822. doi:10.1136/gut.19.9.819
57. Vinolo MAR, Rodrigues GH, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858-876. doi:10.3390/nu3100858
58. Zhao Y, Chen F, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018;11(3):752-762. doi:10.1038/mi.2017.118
59. Park J, Kim M, Kang SG, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases
and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8(1):180-93. doi:10.1038/mi.2014.44

60. Kespolé M, Vachharajani N, Luu M, et al. The microbial metabolite butyrate induces expression of Th1- associated factors in CD4+ T cells. Front Immunol. 2017;8:1036. doi:10.3389/fimmu.2017.01036

61. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145(2):396-406.e10. doi:10.1053/j.gastro.2013.04.056

62. Bhutia YD, Ganapathy V. Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain. Immunity. 2015;43(4):629-631. doi:10.1016/j.jimmunol.2015.09.014

63. Hara T, Kashihara D, Ichimura A, Kimura I, Tsujimoto G, Hirasawa A. Role of free fatty acid receptors in the regulation of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841(9):1292-1300. doi:10.1016/j.bbalip.2014.06.002

64. Brown AJ, Goldsworthy SM, Barnes AA, et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312-11319. doi:10.1074/jbc.M211609200

65. Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Biol Chem. 2011;286(37):31173-31182. doi:10.1074/jbc.M111.267817

66. Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem. 2003;278(28):25481-25489. doi:10.1074/jbc.M301403200

67. Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7266):1282-1286. doi:10.1038/nature08530

68. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity. 2019;51(2):285-297.e5. doi:10.1016/j.immuni.2019.06.002

69. Vinolo MAR, Rodrigues HG, Hatanaka E, Hebeda CB, Farsky SHP, Curi R. Short-chain fatty acids stimulate the migration of neutrophils and mononuclear cells. Shock. 2009;32(5):507-513. doi:10.1097/SHK.0b013e3181b9b72a

70. Venegas DP, De La Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs) mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi:10.3389/fimmu.2019.00277

71. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-455. doi:10.1038/nature12726

72. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):445-450. doi:10.1038/nature12721

73. Park J, Goergen CJ, HogenEsch H, Kim CH. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydrenephrosis. J Immunol. 2016;196(5):2388-2400. doi:10.4049/jimmunol.1502046

74. Liu M, Weigand K, Wedi F, et al. Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci Rep. 2018;8(1):1-10. doi:10.1038/s41598-018-32860-x

75. Bachem A, Makhlof C, Binger KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity. 2019;51(2):285-297.e5. doi:10.1016/j.immuni.2019.06.002

76. Sanchez HN, Moroney JB, Gan H, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020;11(1):1-19. doi:10.1038/s41467-019-13603-6

77. Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67(1):108-119. doi:10.1136/gutjnl-2016-312135

78. Frank DN, St. Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104(34):13780-13785. doi:10.1073/pnas.0706625104

79. Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275-1283. doi:10.1136/gutjnl-2013-304833

80. Huda-Faujan N, Abdulamir AS, Fatimah AB, et al. The impact of the microorganism and PPAR pathway on the gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease patients versus healthy subjects. Gut Microbes. 2019;10:1-19. doi:10.1080/19490976.2019.1646871

81. Li N, Liu X, Hong M, et al. Sodium butyrate alleviates LPS-induced acute lung injury in mice via inhibiting HMGB1 release. Int Immunopharmacol. 2018;56:242-248. doi:10.1016/j.intimp.2018.01.017

82. Bartolomeus H, Balogh A, Yakoub M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage.
163. Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020;469:456-467. doi:10.1016/j.canlet.2019.11.019

164. Takala R, Ramji D, Andrews R, Zhou Y, Burston J, Choy E. The therapeutic effects of omega-6 PUFA (pinolenic acid) on the transcriptomic profile of activated peripheral blood mononuclear cells isolated from healthy controls and rheumatoid arthritis patients. Ann Rheum Dis. 2021;80(suppl 1):402-403. doi:10.1136/annrheumdis-2021-eular.747

165. Sawada Y, Honda T, Nakamizo S, et al. Resolvin E1 attenuates murine psoriatic dermatitis. Sci Rep. 2018;8(1):1-9. doi:10.1038/s41598-018-30373-1

166. Bai Y, Li Y, Marion T, et al. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. J Autoimmun. 2021;116:102564. doi:10.1016/j.jaut.2020.102564

167. De HE, Chen DZ, Wu JL, et al. High fiber dietary and sodium butyrate attenuate experimental autoimmune hepatitis through regulation of immune regulatory cells and intestinal barrier. Cell Immunol. 2018;328:24-32. doi:10.1016/j.cellimm.2018.03.003

168. Nakamura YK, Janowitz C, Metea C, et al. Short chain fatty acids ameliorate immune-mediated uveitis partially by altering migration of lymphocytes from the intestine. Sci Rep. 2017;7(1):1-12. doi:10.1038/s41598-017-12163-3

169. Sheng L, Jena PK, Hu Y, et al. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation. J Pathol. 2017;243(4):431-441. doi:10.1002/path.4983

170. Pestka JJ, Akbari P, Wierenga KA, et al. Omega-3 polyunsaturated fatty acid intervention against established autoimmunity in a murine model of toxicant-triggered lupus. Front Immunol. 2021;12:477. doi:10.3389/fimmu.2021.653464

How to cite this article: Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid-based regulators of immunity. Bioeng Transl Med. 2022;7(2):e10288. doi:10.1002/btm2.10288