Infinitely many reducts of homogeneous structures

Bertalan Bodor,
joint work with Peter Cameron and Csaba Szabó

TU Dresden

Novi Sad, 17th June 2017
Basic concepts

Structure: $\mathfrak{A} = \langle A, C, F, R \rangle$, where
Basic concepts

Structure: $\mathcal{A} = \langle A, C, F, R \rangle$, where

- A: underlying set
Basic concepts

Structure: $\mathcal{A} = \langle A, C, F, R \rangle$, where

- A : underlying set
- C : set of constants
Basic concepts

Structure: $\mathcal{U} = \langle A, C, F, R \rangle$, where

- A: underlying set
- C: set of constants
- F: set of functions $A^n \rightarrow A$
Basic concepts

Structure: \(\mathfrak{A} = \langle A, C, F, R \rangle \), where

- \(A \): underlying set
- \(C \): set of constants
- \(F \): set of functions \(A^n \to A \)
- \(R \): set of relations \(\subset A^n \)
Basic concepts

Reducts

Reduct of a structure \mathfrak{A}: another structure on the same domain set; constants, functions and relations are definable in \mathfrak{A}.
Basic concepts

Reducts

Reduct of a structure \mathcal{A}: another structure on the same domain set; constants, functions and relations are definable in \mathcal{A}.

Two reduct are called **interdefinable** iff they are reducts of one another.
Facts

Aut(\(A\)) : closed in Sym(\(A\)).

If \(B\) is a reduct of \(A\), then Aut(\(B\)) \(\supset\) Aut(\(A\)).

All structures: countable, \(\omega\)-categorical

Definition

\(A\) is \(\omega\)-categorical iff for all \(n\) Aut(\(A\)) has finitely many \(n\)-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For \(\omega\)-categorcial structures \(B\) \(\mapsto\) Aut(\(B\)) is a bijection between the reducts of \(A\) (up to interdefinability) and the closed supergroups of Aut(\(A\)).
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For ω-categorical structures $B \mapsto \text{Aut}(B)$ is a bijection between the reducts of \mathcal{A} (up to interdefinability) and the closed supergroups of $\text{Aut}(\mathcal{A})$.

Bertalan Bodor (TU Dresden)

Infinitely many reducts ...
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.

All structures: countable, ω-categorical
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.

All structures: countable, ω-categorical

Definition

\mathcal{A} is ω-categorical iff for all n $\text{Aut}(\mathcal{A})$ has finitely many n-orbits.
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.

All structures: countable, ω-categorical

Definition

\mathcal{A} is ω-categorical iff for all n $\text{Aut}(\mathcal{A})$ has finitely many n-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For ω-categorical structures $\mathcal{B} \mapsto \text{Aut}(\mathcal{B})$ is a bijection between
Reducts and automorphism groups

Facts
- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.

All structures: countable, ω-categorical

Definition
\mathcal{A} is ω-categorical iff for all n $\text{Aut}(\mathcal{A})$ has finitely many n-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)
For ω-categorcial structures $\mathcal{B} \hookrightarrow \text{Aut}(\mathcal{B})$ is a bijection between
- the reducts of \mathcal{A} (up to interdefinability) and
Facts

- $\text{Aut}(\mathcal{A})$: closed in $\text{Sym}(\mathcal{A})$.
- If \mathcal{B} is a reduct of \mathcal{A}, then $\text{Aut}(\mathcal{B}) \supset \text{Aut}(\mathcal{A})$.

All structures: countable, ω-categorical

Definition

\mathcal{A} is ω-categorical iff for all n $\text{Aut}(\mathcal{A})$ has finitely many n-orbits.

Theorem (Ryll-Nardzewski, Engeler, Svenonius)

For ω-categorcial structures $\mathcal{B} \mapsto \text{Aut}(\mathcal{B})$ is a bijection between
- the reducts of \mathcal{A} (up to interdefinability) and
- the closed supergroups of $\text{Aut}(\mathcal{A})$.
Aim in general
To classify all reducts of a structure \(\mathcal{A} \) (up to interdefinability).
Aim in general
To classify all reducts of a structure \mathcal{A} (up to interdefinability).

Algebraic formulation
By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathcal{A})$.
Aim in general

To classify all reducts of a structure \mathfrak{A} (up to interdefinability).

Algebraic formulation

By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathfrak{A})$.
Aim in general
To classify all reducts of a structure \mathfrak{A} (up to interdefinability).

Algebraic formulation
By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathfrak{A})$.

Solved for:
- $\langle \mathbb{Q}, < \rangle$ (Cameron, 1976)

Aim in general

To classify all reducts of a structure \mathfrak{A} (up to interdefinability).

Algebraic formulation

By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathfrak{A})$.

Solved for:

- $(\mathbb{Q}, <)$ ([Cameron, 1976](#))
- random graph ([Thomas, 1991](#))
Reducts and automorphism groups

Aim in general
To classify all reducts of a structure \mathcal{A} (up to interdefinability).

Algebraic formulation
By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathcal{A})$.

Solved for:
- $(\mathbb{Q}, <)$ (Cameron, 1976)
- random graph (Thomas, 1991)
- Henson graphs (Thomas, 1991)
Reducts and automorphism groups

Aim in general

To classify all reducts of a structure \mathfrak{A} (up to interdefinability).

Algebraic formulation

By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathfrak{A})$.

Solved for:

- $(\mathbb{Q}, <)$ (Cameron, 1976)
- random graph (Thomas, 1991)
- Henson graphs (Thomas, 1991)
- random poset (Pach, Pinsker, Pluhár, Pongrácz, Szabó, 2012)
Reducts and automorphism groups

Aim in general
To classify all reducts of a structure \mathcal{A} (up to interdefinability).

Algebraic formulation
By the previous theorem: it is enough to find all closed supergroups of $\text{Aut}(\mathcal{A})$.

Solved for:
- $(\mathbb{Q}, <)$ (Cameron, 1976)
- random graph (Thomas, 1991)
- Henson graphs (Thomas, 1991)
- random poset (Pach, Pinsker, Pluhár, Pongrácz, Szabó, 2012)
- random ordered graph (Bodirsky, Pinsker, Pongrácz, 2014)
Reducts and automorphism groups

All structures above: homogeneous over a finite relational language.
All structures above: homogeneous over a finite relational language.

Definition

Homogeneous: every finite partial isomorphism can be extended to an automorphism.
All structures above: homogeneous over a finite relational language.

Definition

Homogeneous: every finite partial isomorphism can be extended to an automorphism.

Conjecture (Thomas, 1991)

Every homogeneous, finite relational structure has finitely many reducts.
Reducts of the vector space

$\mathcal{V} = F_2^\omega$: countably infinite dimensional vector space over F_2
Reducts of the vector space

\[V = \mathbb{F}_2^\omega: \] countably infinite dimensional vector space over \(\mathbb{F}_2 \)

Difference: it is not homogeneous over a finite relational language.
Reducts of the vector space

\[\mathcal{V} = \mathbb{F}_2^\omega \]: countably infinite dimensional vector space over \(\mathbb{F}_2 \)

Difference: it is not homogeneous over a finite relational language.

Proof:

Claim: \((\mathcal{V}, R_1, R_2, \ldots, R_k) \) is not homogeneous.

Let \(n > \max(\ar(R_i), a_1, a_2, \ldots, a_n) \) be linearly independent.

Then \(a_i \mapsto a_i : i < n, a_n \mapsto a_1 + a_2 + \cdots + a_{n-1} \) does not extend to an automorphism.
Reducts of the vector space

\[\mathcal{V} = \mathbb{F}_2^{\omega} : \text{countably infinite dimensional vector space over } \mathbb{F}_2 \]

Difference: it is not homogeneous over a finite relational language.

Proof:
Suppose \(\text{Aut}(\mathcal{V}) = \text{Aut}(\mathcal{V}, R_1, R_2, \ldots, R_k) \).

Claim: \((\mathcal{V}, R_1, R_2, \ldots, R_k) \) is not homogeneous.

If \(n > \max(\text{ar}(R_i)) \), \(a_1, a_2, \ldots, a_n \) linearly independent.

Then \(a_i \mapsto a_i : i < n, a_n \mapsto a_1 + a_2 + \cdots + a_{n-1} \) does not extend to an automorphism.
Reducts of the vector space

\(\mathcal{V} = F_2^\omega \): countably infinite dimensional vector space over \(F_2 \)

Difference: it is not homogeneous over a finite relational language.

Proof:
Suppose \(\text{Aut}(\mathcal{V}) = \text{Aut}(\mathcal{V}, R_1, R_2, \ldots, R_k) \).
Claim: \((\mathcal{V}, R_1, R_2, \ldots, R_k) \) is not homogeneous.
Reducts of the vector space

\(V = \mathbb{F}_2^\omega \): countably infinite dimensional vector space over \(\mathbb{F}_2 \)

Difference: it is not homogeneous over a finite relational language.

Proof:
Suppose \(\text{Aut}(V) = \text{Aut}(V, R_1, R_2, \ldots, R_k) \).

Claim: \((V, R_1, R_2, \ldots, R_k) \) is not homogeneous.

\(n > \max(\text{ar}(R_i)) \), \(a_1, a_2, \ldots, a_n \) linearly independent.
$\mathcal{V} = \mathbb{F}_2^\omega$: countably infinite dimensional vector space over \mathbb{F}_2

Difference: it is not homogeneous over a finite relational language.

Proof:
Suppose $\text{Aut}(\mathcal{V}) = \text{Aut}(\mathcal{V}, R_1, R_2, \ldots, R_k)$.

Claim: $(\mathcal{V}, R_1, R_2, \ldots, R_k)$ is not homogeneous.

$n > \max(\text{ar}(R_i)), a_1, a_2, \ldots, a_n$ linearly independent.

Then $a_i \mapsto a_i : i < n$, $a_n \mapsto a_1 + a_2 + \cdots + a_{n-1}$ does not extend to an automorphism.
Reducts of the vector space

Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\[\mathcal{V} = \mathbb{F}_2^\omega \] has exactly 4 reducts.
Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\(V = \mathbb{F}_2^\omega \) has exactly 4 reducts.

Model theoretical formulation

Algebraic formulation
Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\[\mathcal{V} = \mathbb{F}_2^\omega \text{ has exactly 4 reducts.} \]

Model theoretical formulation

1. the vector space \(\mathcal{V} \) itself

Algebraic formulation

1. \(\text{Aut}(\mathcal{V}) \), the automorphism group of \(\mathcal{V} \)
Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\[V = \mathbb{F}_2^\omega \] has exactly 4 reducts.

Model theoretical formulation
1. the vector space \(V \) itself
2. the countably infinite set

Algebraic formulation
1. \(\text{Aut}(V) \), the automorphism group of \(V \)
2. \(\text{Sym}(V) \), the symmetric group
Reducts of the vector space

Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\[V = \mathbb{F}_2^\omega \text{ has exactly 4 reducts.} \]

Model theoretical formulation

1. the vector space \(V \) itself
2. the countably infinite set
3. the countably infinite dimensional affine space

Algebraic formulation

1. \(\text{Aut}(V) \), the automorphism group of \(V \)
2. \(\text{Sym}(V) \), the symmetric group
3. \(\text{Aff}(V) = \text{Aut}(V) \ltimes \text{Tr} \), the group of affine transformations on \(V \)
Reducts of the vector space

Theorem (B., Kalina, Szabó) (Bossière, Bodirsky)

\[\mathcal{V} = F_2^\omega \] has exactly 4 reducts.

Model theoretical formulation

1. the vector space \(\mathcal{V} \) itself
2. the countably infinite set
3. the countably infinite dimensional affine space
4. the countably infinite set with a constant 0

Algebraic formulation

1. \(\text{Aut}(\mathcal{V}) \), the automorphism group of \(\mathcal{V} \)
2. \(\text{Sym}(\mathcal{V}) \), the symmetric group
3. \(\text{Aff}(\mathcal{V}) = \text{Aut}(\mathcal{V}) \rtimes \text{Tr} \), the group of affine transformations on \(\mathcal{V} \)
4. \(\text{Sym}(\mathcal{V})_0 \), the stabilizer of 0 in \(\text{Sym}(\mathcal{V}) \)
Reducts of the vector space

Theorem (B., Kalina, Szabó)
\[\mathcal{V} = F_2^\omega \text{ has exactly 4 reducts}. \]

What if we add a constant?

Theorem (B., Cameron, Szabó)
\[(\mathcal{V}, c) \text{ has infinitely many reducts.} \]

In fact: there exists an infinite ascending chain of reducts.
Reducts of the vector space

Theorem (B., Kalina, Szabó)
\[\mathcal{V} = \mathbb{F}_2^\omega \text{ has exactly 4 reducts.} \]

What if we add a constant?

Theorem (B., Cameron, Szabó)
\[(\mathcal{V}, c) \text{ has infinitely many reducts.} \]
Theorem (B., Kalina, Szabó)
\[V = \mathbb{F}^\omega_2 \] has exactly 4 reducts.

What if we add a constant?

Theorem (B., Cameron, Szabó)
\((V, c)\) has infinitely many reducts.

In fact: there exists an infinite ascending chain of reducts.
The construction

Algebraic description

We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.
We want: \(\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots \) closed groups.

Construction:
The construction

Algebraic description

We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $V = W \oplus \langle c \rangle$
The construction

Algebraic description

We want: \(\text{Aut}(V, c) \leq G_0 < G_1 < \ldots \) closed groups.

Construction:

1. \(V = W \oplus \langle c \rangle \)
2. \(W_n \leq W, \text{codim}(W_n) = n \)
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $V = W \oplus \langle c \rangle$
2. $W_n \leq W$, $\text{codim}(W_n) = n$
3. h_n: flipping along W_n ($u \leftrightarrow u + c$ iff $u \in W_n \oplus \langle c \rangle$)

Observations:

G_n only depends on n.

Why are they different?

Bertalan Bodor (TU Dresden) Infinitely many reducts . . . Novi Sad, 17th June 2017
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $\mathcal{V} = W \oplus \langle c \rangle$
2. $W_n \leq W$, codim(W_n) = n
3. h_n: flipping along W_n ($u \leftrightarrow u + c$ iff $u \in W_n \oplus \langle c \rangle$)
4. $G_n = \langle \text{Aut}(\mathcal{V}, c), h_n \rangle$
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $\mathcal{V} = \mathcal{W} \oplus \langle c \rangle$
2. $\mathcal{W}_n \leq \mathcal{W}$, $\text{codim}(\mathcal{W}_n) = n$
3. h_n: flipping along \mathcal{W}_n ($u \leftrightarrow u + c$ iff $u \in \mathcal{W}_n \oplus \langle c \rangle$)
4. $G_n = \langle \text{Aut}(\mathcal{V}, c), h_n \rangle$

Observations:
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $V = W \oplus \langle c \rangle$
2. $W_n \leq W$, $\text{codim}(W_n) = n$
3. h_n: flipping along W_n ($u \leftrightarrow u + c$ iff $u \in W_n \oplus \langle c \rangle$)
4. $G_n = \langle \text{Aut}(\mathcal{V}, c), h_n \rangle$

Observations:

- G_n only depends on n.
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $\mathcal{V} = \mathcal{W} \oplus \langle c \rangle$
2. $\mathcal{W}_n \leq \mathcal{W}$, $\text{codim}(\mathcal{W}_n) = n$
3. h_n: flipping along \mathcal{W}_n ($u \leftrightarrow u + c$ iff $u \in \mathcal{W}_n \oplus \langle c \rangle$)
4. $G_n = \langle \text{Aut}(\mathcal{V}, c), h_n \rangle$

Observations:

- G_n only depends on n.
- $G_n \subset G_{n+1}$
We want: $\text{Aut}(\mathcal{V}, c) \leq G_0 < G_1 < \ldots$ closed groups.

Construction:

1. $V = W \oplus \langle c \rangle$
2. $W_n \leq W$, $\text{codim}(W_n) = n$
3. h_n: flipping along W_n ($u \leftrightarrow u + c$ iff $u \in W_n \oplus \langle c \rangle$)
4. $G_n = \langle \text{Aut}(\mathcal{V}, c), h_n \rangle$

Observations:

- G_n only depends on n.
- $G_n \subset G_{n+1}$

Why are they different?
The construction

Algebraic description

Definition

\[(x_1, \ldots, x_{2^n}) \in R_n \text{ iff}\]

Remark

This is not a first-order definition.

But! \(\text{Aut}(V, c)\) preserves \(R_n\).

Hence \(R_n\) is definable in \((V, c)\).

Result:

\(h_n\) preserves \(R_n + 1\).

In fact:

\(G_n = \text{Aut}(R_n + 1)\)

\(h_n + 1\) does not preserve \(R_n + 1\).

Consequence:

\(G_n \neq G_n + 1\).
Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff } \]

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
The construction

Algebraic description

Definition

\((x_1, \ldots, x_{2^n}) \in R_n\) iff

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(\{i : x_i \in W\}\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(V, c)\) preserves \(R_n\).

Hence \(R_n\) is definable in \((V, c)\).

\(h_n\) preserves \(R_{n+1}\).

In fact:

\(G_n = \text{Aut}(R_{n+1})\) does not preserve \(R_{n+1}\).

Consequence:

\(G_n \neq G_{n+1}\).
The construction
Algebraic description

Definition

\((x_1, \ldots, x_{2^n}) \in \mathcal{R}_n\) iff

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.
The construction
Algebraic description

Definition

\((x_1, \ldots, x_{2^n}) \in \mathcal{R}_n\) iff
- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(\mathcal{V}, c)\) preserves \(\mathcal{R}_n\).
The construction

Algebraic description

Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff}\]

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(\mathcal{V}, c)\) preserves \(\mathcal{R}_n\). Hence \(\mathcal{R}_n\) is definable in \((\mathcal{V}, c)\).
Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff}
\]
- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(V, c)\) preserves \(\mathcal{R}_n\). Hence \(\mathcal{R}_n\) is definable in \((V, c)\).

\(h_n\) preserves \(\mathcal{R}_{n+1}\).
The construction

Algebraic description

Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff}
\]

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(\mathcal{V}, c)\) preserves \(\mathcal{R}_n\). Hence \(\mathcal{R}_n\) is definable in \((\mathcal{V}, c)\).

\(h_n\) preserves \(\mathcal{R}_{n+1}\).

\(h_{n+1}\) does not preserve \(\mathcal{R}_{n+1}\).
The construction
Algebraic description

Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff}\]

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(|\{i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(\mathcal{V}, c)\) preserves \(\mathcal{R}_n\). Hence \(\mathcal{R}_n\) is definable in \((\mathcal{V}, c)\).

\(h_n\) preserves \(\mathcal{R}_{n+1}\).
\(h_{n+1}\) does not preserve \(\mathcal{R}_{n+1}\).
Consequence: \(G_n \neq G_{n+1}\).
The construction

Algebraic description

Definition

\[(x_1, \ldots, x_{2^n}) \in \mathcal{R}_n \text{ iff }\]

- \(x_1, x_1 + c, \ldots, x_{2^n}, x_{2^n} + c\) is a subspace
- \(\{|i : x_i \in W\}|\) is even.

Remark

This is not a first-order definition.

But! \(\text{Aut}(\mathcal{V}, c)\) preserves \(\mathcal{R}_n\). Hence \(\mathcal{R}_n\) is definable in \((\mathcal{V}, c)\).

\(h_n\) preserves \(\mathcal{R}_{n+1}\). **In fact:** \(G_n = \text{Aut}(\mathcal{R}_{n+1})\)

\(h_{n+1}\) does not preserve \(\mathcal{R}_{n+1}\).

Consequence: \(G_n \neq G_{n+1}\).
Remarks:

- this result shows the limits of Thomas’ Conjecture
Remarks:
 - this result shows the limits of Thomas’ Conjecture
 - the construction is related to Reed–Muller codes

Future work:
 - find all the reducts of \((V, c)\)
 - modify construction to disprove Thomas’ Conjecture
Remarks:

- this result shows the limits of Thomas’ Conjecture
- the construction is related to Reed–Muller codes
- the construction works over \mathbb{F}_q
Remarks:
- this result shows the limits of Thomas’ Conjecture
- the construction is related to Reed–Muller codes
- the construction works over \mathbb{F}_q
- countable atomless Boolean algebra has infinitely many reducts

Future work:
- find all the reducts of (V, c)
- modify construction to disprove Thomas’ Conjecture
Remarks:

- this result shows the limits of Thomas’ Conjecture
- the construction is related to Reed–Muller codes
- the construction works over \mathbb{F}_q
- countable atomless Boolean algebra has infinitely many reducts

Future work:

- find all the reducts of (\mathcal{V}, c)
Remarks:
- this result shows the limits of Thomas’ Conjecture
- the construction is related to Reed–Muller codes
- the construction works over \mathbb{F}_q
- countable atomless Boolean algebra has infinitely many reducts

Future work:
- find all the reducts of (\mathcal{V}, c)
- modify construction to disprove Thomas’ Conjecture
Thank you for your attention!