A simple device of three laterally-coupled quantum dots, the central one contacted by metal leads, provides a realization of the ferromagnetic Kondo model, which is characterized by interesting properties like a non-analytic inverted zero-bias anomaly and an extreme sensitivity to a magnetic field. Tuning the gate voltages of the lateral dots allows to study the transition from ferromagnetic to antiferromagnetic Kondo effect, a simple case of a Berezinskii-Kosterlitz-Thouless transition. We model the device by three coupled Anderson impurities that we study by numerical renormalization group. We calculate the single-particle spectral function of the central dot, which at zero frequency is proportional to the zero-bias conductance, across the transition, both in the absence and in the presence of a magnetic field.

PACS numbers: 75.20.Hr, 73.63.Kv, 73.21.La

In spite of its simplicity – being just a magnetic impurity embedded in a conduction bath – the Kondo model exhibits rich many-body physics\[1] that continues to attract scientific interest in a variety of contexts. It is common to distinguish between Kondo models with Fermi-liquid properties \(a' la \) Nozières\[2] and those that instead display non-analytic, hence non-Fermi-liquid, behavior as a function of state variables. The latter class includes under- and over-screened Kondo models\[1 \, 3 \, 4\] as well as clusters of magnetic impurities in particular circumstances\[5 \, 6\]. Non-Fermi liquid properties are not common in traditional magnetic alloys,\[8\] where the metal hosts generally possess enough scattering channels that can perfectly screen the magnetic impurity. They may instead be realized in confined scattering geometries such as a quantum dot or a magnetic atom/molecule contacted by metal leads. Indeed, by means of such devices there are already many experimental realizations of exotic non-Fermi-liquid Kondo models, see e.g. Refs. \[9\], \[10\], \[11\] and \[12\].

One case, however, which so far remains elusive is the ferromagnetic Kondo model (FKM)\[13\] – where the impurity and the conduction electrons are coupled ferromagnetically – except for its indirect manifestation in the under-screened Kondo effect.\[3 \, 4\] It has been proposed that the so-called giant moments induced by 3d transition metal impurities diluted in 4d transition metals may actually be a manifestation of FKM,\[14\] but experiments that could pin it down are still lacking. This is unfortunate since the FKM is the simplest example of non-Fermi liquid behavior; at low temperature the impurity spin behaves essentially as a free local moment apart from logarithmic singularities.\[15\]

Here we present a possible realization of a FKM by means of three laterally-coupled quantum dots. We also discuss the appealing possibility of crossing the Berezinskii-Kosterlitz-Thouless (BKT) phase transition from ferromagnetic to antiferromagnetic Kondo effect, whose spectral weight anomaly change we study here by means of numerical renormalization group (NRG)\[16 \, 18\] in a toy-model for the device.

Our gedanken (but entirely feasible)\[19 \, 21\] set-up, schematically shown in Fig. 1, consists of three quantum dots, labelled as \(\pm 1 \) and 0 in the figure, with the central one contacted by two metal leads, \(R \) and \(L \). We model the isolated three-dot device with a Hamiltonian

\[
\mathcal{H} = \sum_{i=-1}^{+1} \left(\epsilon_i n_i + \frac{U_i}{2} (n_i - 1)^2 \right) - \sum_{\sigma} \left(t_{- \sigma} c_{-1 \sigma}^\dagger c_{0 \sigma} + t_{\sigma} c_{0 \sigma}^\dagger c_{+1} + H.c. \right),
\]

where we keep just one orbital per dot, \(U_i \) are the charging energies, and the dots are mutually coupled by single-particle tunneling. As usual, we shall assume non-interacting leads, coupled to the central dot 0 by tunneling. For convenience, we also assume equivalent \(R \) and \(L \) leads, so that only their symmetric combination matters in the linear response regime of interest to us. Particle-hole symmetry is also assumed. The lead-dot tunneling is thus parametrized by a single quantity, the hybridization

![Figure 1](image.png)

FIG. 1. (Color online) A schematic representation of our device described by Eq. 1 with three quantum dots (in green). Only the central one, labelled as 0, is attached to metallic leads (in red).
width $\Gamma = \pi \sum_k |V_k|^2 \delta(\epsilon_k)$, where ϵ_k is the energy and V_k the tunneling amplitude into the dot of the symmetric $L + R$ combination of the lead electrons at momentum k.

We further assume that each dot is brought by gate voltage into the Coulomb blockade regime with a single unpaired electron, i.e. $\epsilon_i \simeq 0$ and $t_i \ll U_i$, $\forall i$. In this limit, the isolated trimer behaves like a three-site Heisenberg model described by an effective Hamiltonian

$$\hat{H}_{\text{eff}} = J_+ \mathbf{S}_0 \cdot \mathbf{S}_{+1} + J_- \mathbf{S}_0 \cdot \mathbf{S}_{-1},$$

with positive J_{\pm}, where \mathbf{S}_i, $i = 0, \pm 1$, are spin-1/2 operators residing on the corresponding dots. The ground state of (2) has total spin 1/2 and explicitly reads

$$| GS, \sigma \rangle = \cos \theta \ | O, \sigma \rangle - \sin \theta \ | E, \sigma \rangle,$$

where $\sigma = \uparrow, \downarrow$ is the z-component of the total spin, and $2\theta = \sqrt{3} (J_+ - J_-) / (J_+ + J_-)$. In Eq. (3), $| O, \sigma \rangle$ is the state, odd by inversion through dot 0, obtained by coupling dots $+1$ and -1 into a triplet that is coupled to dot 0 to form a spin 1/2. Vice versa, $| E, \sigma \rangle$ is the state, even by reflection, obtained by coupling dots $+1$ and -1 into a singlet, leaving a free spin-1/2 on dot 0.

If on dot 0 the electron is removed or one more electron is added through the leads, the trimer ends up in a triplet or singlet configuration, with probability proportion to $\cos^2 \theta$ and $\sin^2 \theta$, respectively. Specifically, if $V = \sqrt{\sum_k |V_k|^2} \ll U_0$, the Kondo exchange, J_{eff}, can be found by second order perturbation theory:

$$\frac{J_{\text{eff}}}{2V^2} = \langle GS, \uparrow | c_{0\uparrow}^\dagger \frac{1}{H - E_{GS}} c_{0\downarrow} | GS, \downarrow \rangle - \langle GS, \uparrow | c_{0\downarrow}^\dagger \frac{1}{H - E_{GS}} c_{0\uparrow}^\dagger | GS, \downarrow \rangle,$$

where

$$c_{0\downarrow}^\dagger \ | GS, \downarrow \rangle = \pm \frac{\cos \theta}{\sqrt{3}} \ | t, 0 \rangle - \sin \theta \ | s \rangle,$$

and

$$c_{0\uparrow}^\dagger \ | GS, \uparrow \rangle = -\frac{\cos \theta}{\sqrt{3}} c_{0\downarrow}^\dagger c_{0\uparrow}^\dagger \ | t, 0 \rangle + \sin \theta c_{0\downarrow}^\dagger c_{0\uparrow}^\dagger \ | s \rangle,$$

and where

$$\langle t, S_z = 0 \rangle = \frac{1}{\sqrt{2}} (c_{1\uparrow}^\dagger c_{1\downarrow}^\dagger c_{-1\uparrow}^\dagger c_{-1\downarrow}^\dagger - c_{1\downarrow}^\dagger c_{1\uparrow}^\dagger c_{-1\downarrow}^\dagger c_{-1\uparrow}^\dagger) \ | 0 \rangle,$$

and

$$\langle s \rangle = \frac{1}{\sqrt{2}} (c_{1\downarrow}^\dagger c_{1\uparrow}^\dagger c_{-1\downarrow}^\dagger c_{-1\uparrow}^\dagger - c_{1\uparrow}^\dagger c_{1\downarrow}^\dagger c_{-1\uparrow}^\dagger c_{-1\downarrow}^\dagger) \ | 0 \rangle,$$

are the $S_z = 0$ component of the triplet state and the singlet state, respectively. It follows that

$$\frac{J_{\text{eff}}}{2V^2} = -\frac{\cos^2 \theta}{3} \langle t, 0 \ | R \ | t, 0 \rangle + \sin^2 \theta \langle s \ | R \ | s \rangle$$

$$\equiv -\frac{\cos^2 \theta}{3} \gamma_t + \sin^2 \theta \gamma_s,$$

where the resolvent operator

$$R = \frac{1}{\mathcal{H} - E_{GS}} + c_{0\downarrow}^\dagger c_{0\uparrow}^\dagger \frac{1}{\mathcal{H} - E_{GS}} c_{0\uparrow}^\dagger c_{0\downarrow}^\dagger,$$

and $\gamma_t > \gamma_s > 0$ since the intermediate singlet has lower energy than the triplet. The lead-dot exchange is therefore ferromagnetic if $\gamma_t \cos^2 \theta > 3 \gamma_s \sin^2 \theta$, and antiferromagnetic in the opposite case. We observe that, if inversion symmetry holds, $J_+ = J_-$, then $\theta = 0$ hence the lead-dot exchange is ferromagnetic, thus providing a realization of the FKM. We expect that in a real device inversion symmetry is generally broken; nevertheless there still is a good chance for ferromagnetism to survive in a wide region (by definition $\cos^2 \theta \geq 3 \sin^2 \theta$, hence just because $\gamma_s > \gamma_t$ it is possible for the Kondo exchange to turn antiferromagnetic).

In conclusion, the set-up shown in Fig. 1 seems indeed able to realize, as noted earlier \cite{22, 23} the much-sought FKM. Moreover, it suggests a simple way to study experimentally the transition from the FKM to the more conventional antiferromagnetic Kondo model, first described by Anderson, Yuval and Hamann \cite{24}, and expected to be of the BKT type. Indeed, changing the gate voltage ϵ_{+1} with respect to ϵ_{-1} drives the system further away from the inversion symmetric point, eventually turning the exchange from ferromagnetic to antiferromagnetic, as we are going to show in what follows. Alternatively, when inversion symmetry is retained, one could still drive a transition by including a direct hopping or spin-exchange between dots $+1$ and -1. In this case, however, the transition looks profoundly different from what we shall discuss, as it either reflects the level crossing between the two states $| O, \sigma \rangle$ and $| E, \sigma \rangle$, see Eq. (3), or, when the charging energy of dot 0 is suppressed, the singlet-triplet crossing \cite{25} of the above mentioned two-electron states $| t, S_z = 0, \pm 1 \rangle$ and $| s \rangle$, see Eqs. (5) and (6). A different possibility have been put forth by the authors of Ref. \cite{22}, who argue that a transition from ferromagnetic to antiferromagnetic Kondo effect may occur without breaking inversion symmetry if $U_0 \ll U_{-1} = U_{+1}$ and the central dot energy ϵ_0 exceeds a threshold value (see the Supplementary Material for more details).

We shall instead give up inversion symmetry, and investigate the route to a BKT transition by tuning the lateral dot asymmetry $\epsilon_{+1} = -\epsilon_{-1} = \delta e$ with the Hamiltonian (1) in the simple case when $t_+ = t_- = t$, $U_0 = U_{-1} = U_{+1} = U$, analyzed by means of NRG. \cite{17, 18} For simplicity we take a flat conduction-band density of states, $\rho(\epsilon) = \rho_0 = 1/2D$ when $\epsilon \in [-D, D]$ and zero otherwise, with the half-bandwidth D our unit of energy.

We have employed the “NRG Ljubljana” package \cite{26}, implementing the z-averaging technique with $z = 8$, \cite{27} the full-density-matrix approach \cite{28} and the self-energy trick. \cite{29} We used $\Lambda = 2$ as the discretization parameter and a truncation cutoff of 10 ω_N, ($\omega_N = \Lambda^{-N/2}$, N being the N-th NRG iteration). Spectral functions are computed by broadening delta-peaks at zero temperature with a log-Gaussian kernel \cite{30} with $b = 0.3$, and at finite temperature with the kernel of Ref. \cite{28}.

In Fig. 2 we show the single-particle spectral density
The standard, most reliable way to reveal the Kondo-like origin of a zero bias anomaly is by applying a magnetic field B. In the conventional antiferromagnetic Kondo-effect, a magnetic field will split the Abrikosov-Suhl resonance only if sufficiently large, $g\mu_B B \gtrsim 0.5 T_K$ \cite{34}. This is indeed the case on the antiferromagnetic side of the transition, $J_{\text{eff}} > 0$, see panel (b) of Fig. 4. On the contrary, on the ferromagnetic side, $J_{\text{eff}} < 0$, panel (a), any magnetic field, however small, destroys the logarithmic dimple replacing it right away with a symmetric pair of inelastic spin-flip Zeeman excitations. In addition, $A_0(\omega = 0)$, hence the zero-bias conductance, increases with B at low temperature, contrary to the antiferromagnetic side, where it drops. We expect moreover that a finite temperature T will cutoff the logarithmic dimple at low frequency and raise up $A_0(\omega = 0) \sim 1/\ln^2(T/T_0)$, thus leading to an increase of zero-bias conductance, again unlike the regular antiferromagnetic Kondo effect: this is shown in Fig. 4.

Another quantity that transparently highlights the
physics of the model is the entropy, which we plot in Fig. 5 for the same values of δε as in Fig. 2. We observe that, on the ferromagnetic side, the entropy levels off at the ln 2 value of an unscreened spin-1/2 already at substantially high temperatures. On the contrary, on the antiferromagnetic side of the BKT transition, the entropy, after a ln 2 plateau, more visible the closer the transition, finally drops down to zero below T_K.

![Graph](image)

FIG. 5. (Color online) Entropy as a function of temperature with the same parameters as in Fig. 2.

In conclusion, we have shown that a three dot device, the central one contacted by metal leads, may provide a realization not only of the ferromagnetic Kondo model, but, upon gating of the lateral dots, also of a Berezinskii-Kosterlitz-Thouless transition from ferromagnetic Kondo to regular, antiferromagnetic Kondo effect. The two phases should differ sharply in their zero-bias conductance anomaly, the ferromagnetic one being inverted and very differently modified by magnetic field and temperature.

More generally, our proposed system illustrates a generic mechanism leading to FKM, namely tunneling across one orbital in presence of other magnetic orbitals. This kind of situation could for example also be realized at selected surface adsorbed molecular radicals and detected in, e.g., STS or photoemission anomalies, an area where there is much active work. However, we should mention that, according to our calculations, the FKM anomalies are more visible when both U and the tunneling amplitude into the leads are larger than the inter-dot tunneling t, which might be hard to achieve in molecular radicals.

This work was supported by PRIN/COFIN 2010LLKJBX_004. We acknowledge useful discussions with P. Wahl and M. Ternes. We are grateful to Rok Žitko for his help with the NRG code.

[1] A. Hewson, *The Kondo problem to heavy fermions* (Cambridge Univ. Press, 1993).

[2] P. Nozières, J. Low Temp. Phys. 17, 31 (1974).
[3] P. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).
[4] I. Affleck and A. W. W. Ludwig, Phys. Rev. B 48, 7297 (1993).
[5] I. Affleck, A. W. W. Ludwig, and B. A. Jones, Phys. Rev. B 52, 9528 (1995).
[6] K. Ingersent, A. W. W. Ludwig, and I. Affleck, Phys. Rev. Lett. 95, 257204 (2005).
[7] M. Ferrero, L. D. Leo, P. Lecheminant, and M. Fabrizio, Journal of Physics: Condensed Matter 19, 433201 (2007).
[8] D. L. Cox and A. Zawadowski, Advances in Physics 47, 599 (1998).
[9] J. J. Parks, A. R. Champagne, W. Shum, A. N. Pasupathy, E. Neuscamman, S. Flores-Torres, P. S. Cornaglia, A. A. Aligia, C. A. Balseiro, G. K.-L. Chan, H. D. Abruna, and D. C. Ralph, Science 328, 1370 (2010).
[10] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Nature 446, 167 (2007).
[11] A. M. Chang and J. C. Chen, Reports on Progress in Physics 72, 096501 (2009).
[12] T. Jamneala, V. Madhavan, and M. F. Crommie, Phys. Rev. Lett. 87, 256804 (2001).
[13] W. Koller, A. C. Hewson, and D. Meyer, Phys. Rev. B 72, 045117 (2005).
[14] P. Gentile, L. D. Leo, M. Fabrizio, and E. Tosatti, EPL (Europhysics Letters) 87, 27014 (2009).
[15] P. Mehta, N. Andrei, P. Coleman, L. Borda, and G. Zaránd, Phys. Rev. B 72, 014430 (2005).
[16] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[17] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1003 (1980).
[18] H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B 21, 1044 (1980).
[19] S. Amaha, T. Hatano, H. Tamura, S. Teraoka, T. Kubo, Y. Tokura, D. G. Austing, and S. Tarucha, Phys. Rev. B 85, 081301 (2012).
[20] C.-Y. Hsieh, Y.-P. Shim, M. Korkusinski, and P. Hawrylak, Reports on Progress in Physics 75, 114501 (2012).
[21] W. Koller, J. M. Taylor, D. P. Divincenzo, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 82, 075403 (2010).
[22] T. Kuzmenko, K. Kikoin, and Y. Avishai, Phys. Rev. B 73, 235310 (2006).
[23] A. K. Mitchell, T. F. Jarrold, and D. E. Logan, Phys. Rev. B 79, 085124 (2009).
[24] P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B 1, 4464 (1970).
[25] M. Vojta, R. Bulla, and W. Hofstetter, Phys. Rev. B 65, 140405 (2002).
[26] R. Žitko, “NRG Ljubljana,” (2006).
[27] R. Žitko and T. Pruschke, Phys. Rev. B 79, 085106 (2009).
[28] A. Weichselbaum and J. von Delft, Phys. Rev. Lett. 99, 076402 (2007).
[29] R. Bulla, A. C. Hewson, and T. Pruschke, Journal of Physics: Condensed Matter 10, 8365 (1998).
[30] R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).
[31] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[32] P. Trocha and J. Barnaš, Phys. Rev. B 78, 075424 (2008).
[33] E. Vernek, P. A. Orellana, and S. E. Ulloa, Phys. Rev. B 84, 014411 (2011).
B 82, 165304 (2010)

[34] T. A. Costi, Phys. Rev. Lett. 85, 1504 (2000)