The Bianchi I model in terms of nonstandard loop quantum cosmology: quantum dynamics

Przemysław Małkiewicz, Włodzimierz Piechocki and Piotr Dzierżak
Theoretical Physics Department, Institute for Nuclear Studies, Hoża 69, 00-681 Warsaw, Poland
E-mail: pmalk@fuw.edu.pl, piech@fuw.edu.pl and pdzi@fuw.edu.pl

Received 7 November 2010
Published 30 March 2011
Online at stacks.iop.org/CQG/28/085020

Abstract
We analyze the quantum Bianchi I model in the setting of nonstandard loop quantum cosmology. Elementary observables are used to quantize the volume operator, and the spectrum of the volume operator is bounded from below and discrete. The discreteness may imply a foamy structure of spacetime at the semiclassical level. The results are described in terms of a free parameter specifying loop geometry to be determined in astro-cosmo observations. An evolution of the quantum model is generated by the so-called true Hamiltonian, which enables the introduction of a time parameter valued in the set of all real numbers.

PACS numbers: 98.80.Qc, 04.60.Pp, 04.20.Jb

1. Introduction

The quantization of the Belinskii–Khalatnikov–Lifshitz (BKL) theory [1–3] is a great challenge. It is a generic solution of general relativity (GR) that does not rely on any symmetry conditions. It presents an evolution of the universe near the space-like cosmological singularity (CS) with diverging gravitational and matter fields invariants. The singular solution may be applied both to the future singularity (big crunch) and past singularity (big bang). The BKL scheme also appears in the low energy limit of superstring models, where it is linked to the hyperbolic Kac–Moody algebras [4].

The dynamics of the BKL model, close to the singularity, may be approximated by the two key ingredients: (i) Kasner-type evolutions well approximated by the Bianchi I model, and (ii) spike-type transitions described by the Bianchi II model. The former case occurs when time derivatives in the equations of motion are important, whereas the latter case appears when space-like gradients play the crucial role. The general BKL type evolution, near the cosmological singularity, consists of a sequence of epochs (i) and (ii), which may lead to the oscillatory and chaotic type dynamics.
This paper concerns the quantization of the Bianchi I model with massless scalar field. It is a companion paper to our recent one [5], presenting classical dynamics of the Bianchi I model in terms of loop geometry.

Through the paper we apply the reduced phase space (RPS) quantization method developed by us recently [6–10]. It is an alternative method to the Dirac quantization recently applied to the quantization of the Bianchi I model [11–16].

In section 2, we recall some elements of the classical formalism [5] for self-consistency. We redefine an evolution parameter and elementary observables, and introduce the true Hamiltonian. Section 3 is devoted to the quantization of the classical model. Compound observables are quantized in terms of elementary observables. We present a solution to the eigenvalue problem for the volume operators. Examination of an evolution of the quantum system completes this section, and we make conclusions in the last section. Unitarily non-equivalent representations of the volume operators are briefly discussed in appendix A, and we make comments on the operators’ ordering problem in appendix B.

2. Preparations to quantization

The Bianchi I model with massless scalar field is described by the line element

$$ds^2 = -N^2 dt^2 + \sum_{i=1}^{3} a_i^2(t) dx_i^2,$$

(1)

where

$$a_i(\tau) = a_i(0) \left(\frac{\tau}{\tau_0} \right)^{k_i}, \quad d\tau = N \, dt, \quad \sum_{i=1}^{3} k_i = 1 = \sum_{i=1}^{3} k_i^2 + k_{\phi}^2,$$

(2)

and where \(k_{\phi} \) describes the matter field density (\(k_{\phi} = 0 \) corresponds to the Kasner model). For a clear exposition of the classical singularity aspects of the Bianchi I model, in terms of the loop geometry, we recommend [12].

2.1. Hamiltonian constraint

The gravitational part of the classical Hamiltonian, for the Bianchi I model with massless scalar field, reads [5]

$$H_g = -\gamma^{-2} \int_V d^3 x N e^{-1} \varepsilon_{ijk} E^{\alpha i} E^{\beta k} F_{\alpha \beta}^i,$$

(3)

where \(\gamma \) is the Barbero–Immirzi parameter, \(V \subset \Sigma \) is the fiducial volume, \(\Sigma \) is the space-like hypersurface, \(N \) denotes the lapse function, \(\varepsilon_{ijk} \) is the alternating tensor, \(E^\alpha_i \) is a densitized vector field, \(e := \sqrt{|\det E^\alpha_i|} \), and where \(F_{\alpha \beta}^i \) is the curvature of an SU(2) connection \(\mathcal{A}^\alpha_i \).

The resolution of the singularity, obtained within loop quantum cosmology (LQC), is based on rewriting the curvature \(F_{\alpha \beta}^i \) in terms of the holonomy around a loop by making use of the formula [5]

$$F_{\alpha \beta}^i = -2 \lim_{\text{Ar} \Box_{ij} \to 0} \text{Tr} \left(\frac{h_{\Box_{ij}} - 1}{\text{Ar} \, \Box_{ij}} \right) \tau^k \omega_{\alpha a}^j \omega_{\alpha a}^j,$$

(4)

where

$$h_{\Box_{ij}} = h_{\Box_{ij}}^{(\mu_i)} h_{\Box_{ij}}^{(\mu_j)} (h_{\Box_{ij}}^{(\mu_i)})^{-1} (h_{\Box_{ij}}^{(\mu_j)})^{-1},$$

(5)

is the holonomy of the gravitational connection around the square loop \(\Box_{ij} \). The loop is taken over a face of an elementary cell, each of whose sides has length \(\mu_j L_j \) with respect to the flat
fiducial metric \(a q_{ab} := \delta_{ij} a q^i_a a q^j_b \); the fiducial triad \(a e^i_a \) and cotriad \(a \omega^i_a \) satisfy \(a q^i_a a q^j_a = \delta^i_j \). The \(\Box \) denotes the area of the square \(\Box \); \(L_1 L_2 L_3 = V_0 \), where \(V_0 = \int_V \sqrt{g} d^3 x \) is the fiducial volume of \(V \) with respect to the fiducial metric.

The holonomy in the fundamental, \(j = 1/2 \), representation of \(SU(2) \) reads

\[
h^i_j (\mu_i) = \cos (\mu_i c_j / 2) I + 2 \sin (\mu_i c_j / 2) \tau_i,
\]

(6)

where \(\tau_i = -i \sigma_i / 2 \) (\(\sigma_i \) are the Pauli spin matrices). The connection \(A^i_a \) and the density \(\text{weighted triad} \ E^a_k \) are determined by the conjugate variables \(c_k \) and \(p_k \) as follows:

\[
A^i_a = c_i L_i^{-1} a e^i_a, \quad E^a_i = p_i L_j^{-1} L_k^{-1} a e^a_i,
\]

(7)

where

\[
c_i = \gamma \dot{a}_i L_i, \quad \vert p_i \vert = a_j a_k L_j L_k,
\]

(8)

and where \(\{ c_i, p_j \} = 8 \pi G \delta_{ij} \).

Making use of (3) and (4) leads to \(H_g \) in the form \([5]\)

\[
H_g = \lim_{\mu_1, \mu_2, \mu_3 \to 0} H^{(\mu_1, \mu_2, \mu_3)}_g,
\]

(10)

where

\[
H^{(\mu_1, \mu_2, \mu_3)}_g = -\frac{\text{sgn}(p_1 p_2 p_3)}{2 \pi G \gamma^{\frac{3}{2}} \mu_1 \mu_2 \mu_3} \sum_{i k} N \varepsilon^{i j k} \text{Tr}(h^{(\mu_i)}_j h^{(\mu_j)}_i (h^{(\mu_j)}_i)^{-1} (h^{(\mu_k)}_j)^{-1} (h^{(\mu_k)}_i)^{-1} (h^{(\mu_i)}_k)^{-1} V),
\]

(11)

and where \(V = a_1 a_2 a_3 V_0 \) is the volume of the elementary cell \(V \) with respect to the physical metric \(q_{ab} = a_1 a_2 a_3 q_{ab} \).

The total Hamiltonian for the Bianchi I universe with a massless scalar field, \(\phi \), reads

\[
H = H_g + H_{\phi} \approx 0,
\]

(12)

where \(H_g \) is defined by (10). The Hamiltonian of the scalar field reads \(H_{\phi} = N p_\phi^2 / (p_1 p_2 p_3)^{\frac{2}{3}} / 2 \), where \(\phi \) and \(p_\phi \) are the elementary variables satisfying \(\{ \phi, p_\phi \} = 1 \). The relation \(H \approx 0 \) defines the constraint on the phase space of the considered gravitational system.

Making use of (6) we calculate (11) and obtain the modified total Hamiltonian \(H^{(\lambda)}_g \) corresponding to (12) in the form

\[
H^{(\lambda)}_g / N = -\frac{1}{8 \pi G \gamma^2} \frac{\text{sgn}(p_1 p_2 p_3)}{\mu_1 \mu_2 \mu_3} \left[\sin(c_1 \mu_1) \sin(c_2 \mu_2) \mu_3 \text{ sgn}(p_3) \sqrt{|p_1 p_2| / |p_3|} + \text{cyclic} \right] + \frac{p_\phi^2}{2 V}.
\]

(13)

where \(V = \sqrt{|p_1 p_2 p_3|} \). In what follows we assume that

\[
\mu_\lambda := \frac{1}{|p_\lambda|} \lambda,
\]

(14)

where \(\lambda \) is a free parameter of our model.

The choice (14) for \(\mu_\lambda \) leads, in the Dirac quantization \([13, 14, 16]\), to the dependence of dynamics on \(V \subset \Sigma \). In what follows, we specialize our considerations to the case \(V = \Sigma = \mathbb{T}^3 \). In such a case the volume observable, \(V = \int_V \sqrt{q} d^3 x \) (where \(g \) denotes
the determinant of the physical metric \(q_{ab} \) on \(\Sigma \), characterizes the entire space part of the universe. Thus, \(\mathcal{V} \) is chosen unambiguously and \(V \) is physical. In the case when one considers the Bianchi I model with the \(\mathbb{R}^3 \) topology, the volume \(\mathcal{V} \subset \Sigma = \mathbb{R}^3 \) is only an auxiliary tool devoid of any physical meaning\(^1\).

This paper is a quantum version of our recent paper [5], where we consider the Bianchi I model with the \(\mathbb{T}^3 \) topology. The aim of both our papers is to present a quantum Bianchi I model in terms of the nonstandard LQC, which is an alternative to the standard LQC results [14, 15] (with \(\mathcal{V} = \mathbb{T}^3 \) and the choice (14)). The results obtained within these two methods are similar. Detailed comparison is beyond the scope of this paper, but will be presented elsewhere after we complete quantization of the Bianchi II model [18].

Let us analyze the dependence of our results on the choice of coordinates in \(\Sigma \), and consequently on the choice of the fiducial volume \(V_0 = L_1L_2L_3 \). It is clear that \(L_4 \) is a coordinate length, whereas \(a_k L_k \) is the physical one. The latter is invariant with respect to a change of the system of coordinates so we have \(a_k L_k = a'_k L'_k \), while \(L_k \to L'_k \). Since, due to (8), we have

\[
c_i = \gamma \frac{a_j}{a_i} a_j L_i, \quad |p_i| = a_j L_j a_k L_k,
\]

the canonical variables \(c_i \) and \(p_i \) do not depend on the choice of the coordinate system. Thus, the destination variables, defined by equation (20), share this property too. The holonomy variable \(h^i_k \mu_k \) depends on \(\mu_k c_k \), and with our choice (14) leads to

\[
\mu_k c_k = \lambda \frac{c_k}{\sqrt{|p_k|}} = \lambda' \frac{c'_k}{\sqrt{|p_k|}} = \mu'_k c'_k,
\]

which proves that the holonomy variable does not depend on the choice of coordinates\(^2\). The flux variable is \(p_k \) so it does not depend on the choice of coordinates either. Since holonomy and flux are basic variables of the formalism, our final results do not depend on the choice of coordinates (the choice of \(V_0 \)). This is why the variables \(\beta_k \) and \(v_k \) share this property as well. Our results do depend on \(\mathcal{V} \), but it is correct since \(\mathcal{V} = \mathbb{T}^3 \) is the whole space.

We wish to emphasize that (13) is not an effective Hamiltonian for quantum dynamics [13], but a classical Hamiltonian modified by approximating the curvature \(F^a_b \) by holonomy of connection around a loop with finite length. Our approach is quite different from the so-called polymerization method where the replacement \(c \to \sin(c \mu)/\mu \) in the Hamiltonian is treated as some kind of an effective quantization. Our method has been presented with all details and compared with the Dirac quantization method in [6, 7, 9, 10]. For an extended motivation of our approach we recommend an appendix of [9].

In the gauge \(N = V = \sqrt{|p_1 p_2 p_3|} \), the Hamiltonian modified by loop geometry reads

\[
H^{(\lambda)} = -\frac{1}{8\pi G\gamma^2\lambda^2} \left[\text{sgn}(p_1 p_2)|p_1 p_2|^{3/2} \sin \left(\lambda \frac{c_1}{\sqrt{|p_1|}} \right) \sin \left(\lambda \frac{c_2}{\sqrt{|p_2|}} \right) + \text{cyclic} \right] + \frac{p_0^2}{2}.
\]

Since we consider the relative dynamics [5, 7] our results, in what follows, are gauge independent.

Equation (17) corresponds to the effective quantization of the standard LQC. In the nonstandard LQC, equation (17) is treated as the constraint, which is to be imposed into the

\(^1\) It is tempting to introduce the notion of a local volume, i.e. a sort of ‘density’ of the physical volume operator \(V \). It appears that the local volume may be defined in the case of any topology of space; however, it would depend on the choice of coordinates on \(\Sigma \). A similar notion has been used by Martin Bojowald (see the appendix in [17]), while considering lattice refining in LQC.

\(^2\) We have \(\lambda = \lambda' \) since \(\lambda \) is a physical length.
classical dynamics. In the standard LQC, one implements this constraint into an operator defining quantum dynamics (the kernel of this operator is used to find the physical Hilbert space). Thus, in the RPS quantization (nonstandard LQC), there is no quantum Hamiltonian constraint, contrary to the Dirac quantization, i.e. the standard LQC (which is motivated from LQG). In both cases one modifies, to some extent, gravity theory: already at the classical level in the reduced phase space quantization, and only at the quantum level in the Dirac quantization.

The Poisson bracket is defined to be
\[\{\cdot, \cdot\} := 8\pi G \gamma \sum_{k=1}^{3} \left(\frac{\partial \cdot}{\partial c_k} \frac{\partial}{\partial p_k} - \frac{\partial \cdot}{\partial p_k} \frac{\partial}{\partial c_k} \right) + \frac{\partial \cdot}{\partial \phi} \frac{\partial}{\partial p_\phi} - \frac{\partial \cdot}{\partial p_\phi} \frac{\partial}{\partial \phi}, \]
(18)
where \((c_1, c_2, c_3, p_1, p_2, p_3, \phi, p_\phi)\) are canonical variables. The dynamics of a function \(\xi\) on a phase space is defined by
\[\dot{\xi} = \{\xi, H(\lambda)\}, \]
\(\xi \in \{c_1, c_2, c_3, p_1, p_2, p_3, \phi, p_\phi\}.\)
(19)
The dynamics are defined by the solutions to (19) satisfying the constraint \(H(\lambda) \approx 0\). The solutions of (19) ignoring the constraint are nonphysical.

In what follows we shift from \((c_k, p_k)\) to another canonical variables \((v_k, \beta_k)\)
\[\beta_k := \frac{c_k}{\sqrt{|p_k|}}, \quad v_k := |p_k|^{3/2}, \]
(20)
where \(k = 1, 2, 3\) since they are proper variables to examine the singularity aspects of our model [5]. In this paper we restrict our considerations to \(v_k \geq 0\), since we wish to ascribe a directional volume observable to it.

2.2. Correspondence with FRW observables

We redefine the original elementary Bianchi observables that have been found in [5] as follows:
\[O_i = \frac{1}{3\kappa^2} v_i \frac{\sin(\lambda \beta_i)}{\lambda}, \]
(21)
\[A_i = \frac{1}{3\kappa} \ln \left(\frac{\tan\left(\frac{\sqrt{G/3}}{2} \right)}{\beta_i} \right) + \frac{3}{2\sqrt{3}} \frac{\text{sgn}(p_\phi)(O_j + O_k) \phi}{\sqrt{O_1 O_2 + O_1 O_3 + O_2 O_3}}, \]
(22)
where \(\kappa^2 := 4\pi G/3\). Dropping subscripts leads to the elementary observables of the FRW model found in [9]. One may verify that the algebra of redefined observables is
\[\{O_i, O_j\} = 0, \quad \{A_i, O_j\} = \delta_{ij}, \quad \{A_i, A_j\} = 0. \]
(23)

Our main concern is quantization of the volume observable defined as follows [5]:
\[V = (v_1 v_2 v_3)^{1/3}, \]
(24)
where
\[v_i = 3\kappa \gamma \lambda |O_i| \cosh \left(\frac{3\sqrt{\pi G} (O_j + O_k) \phi}{\sqrt{O_1 O_2 + O_1 O_3 + O_2 O_3}} - 3\kappa A_i \right). \]
(25)
In an ‘isotropic’ case \((i=j=k)\), we obtain the expression for the volume observable of the FRW model [9].
2.3. Redefinitions of the evolution parameter

Since the observables O_i are constants of motion in ϕ and $\phi \in \mathbb{R}$, it is possible to make the following redefinition of an evolution parameter:

$$\varphi := \frac{\sqrt{3} \phi}{2 \sqrt{O_1 O_2 + O_1 O_3 + O_2 O_3}}$$ \hspace{1cm} (26)

so we have

$$v_i = 3\kappa \gamma \lambda |O_i| \cosh 3\kappa \left((O_j + O_k) \varphi - A_i\right),$$ \hspace{1cm} (27)

which simplifies further considerations.

2.4. Redefinitions of elementary observables

One can make the following redefinitions:

$$A_i := A_i - (O_j + O_k) \varphi.$$ \hspace{1cm} (28)

Thus, the directional volume (27) becomes

$$v_i := |w_i|, \quad w_i = 3\kappa \gamma \lambda O_i \cosh(3\kappa A_i).$$ \hspace{1cm} (29)

The algebra of observables reads

$$\{O_i, O_j\} = 0, \quad \{A_i, O_j\} = \delta_{ij}, \quad \{A_i, A_j\} = 0,$$ \hspace{1cm} (30)

where the Poisson bracket is defined to be

$$\{\cdot, \cdot\} := \sum_{k=1}^{3} \left(\frac{\partial}{\partial A_k} \frac{\partial}{\partial O_k} - \frac{\partial}{\partial O_k} \frac{\partial}{\partial A_k} \right).$$ \hspace{1cm} (31)

2.5. Structure of the phase space

All considerations carried out in the previous section have been done under the assumption that the observables O_1, O_2 and O_3 have no restrictions. The inspection of (22), (25) and (28) shows that the domain of definition of the elementary observables reads

$$D := \{(A_k, O_k) | A_k \in \mathbb{R}, O_1 O_2 + O_1 O_3 + O_2 O_3 > 0\},$$ \hspace{1cm} (32)

where $k = 1, 2, 3$. The restriction $O_1 O_2 + O_1 O_3 + O_2 O_3 > 0$ is a consequence of the Hamiltonian constraint (see [5] for more details).

In what follows we consider two cases:

1. Kasner-unlike dynamics: (a) $O_i > 0, O_j > 0, O_k > 0$, which describes all three directions expanding; (b) $O_i < 0, O_j < 0, O_k < 0$, with all directions shrinking.

2. Kasner-like dynamics: (a) $O_i > 0, O_j > 0, O_k < 0$, which describes two directions expanding and one direction shrinking; (b) $O_i < 0, O_j < 0, O_k > 0$, with two directions shrinking and one expanding.

This classification presents all possible nontrivial cases. Our terminology fits the one used in [13] due to the relation $O_i = 6\kappa k_i K (0 < K = \text{const})$, where constants k_i are defined by (2).
2.6. True Hamiltonian

Now we define a generator of an evolution called a true Hamiltonian H. Making use of (28), and $O_i = \text{const}$ (see [5]), we obtain

\[\{A_i, H\} := \frac{dA_i}{d\varphi} = -(O_j + O_k), \quad \{O_i, H\} := \frac{dO_i}{d\varphi} = 0. \] (33)

The solution to (33) is easily found to be

\[H = O_1O_2 + O_1O_3 + O_2O_3. \] (34)

The true Hamiltonian is defined on the RPS, which is devoid of constraints.

3. Quantization

3.1. Representation of elementary observables

We use the Schrödinger representation for algebra (30) defined as

\[O_k \to \hat{O}_k f_k(x_k) := \hbar \frac{d}{dx_k} f_k(x_k), \quad A_k \to \hat{A}_k f_k(x_k) := x_k f_k(x_k), \quad k = 1, 2, 3. \] (35)

One may verify that

\[[\hat{O}_i, \hat{O}_j] = 0, \quad [\hat{A}_i, \hat{A}_j] = 0, \quad [\hat{A}_i, \hat{O}_j] = i\hbar \delta_{ij}. \] (36)

The representation is defined formally on some dense subspaces of a Hilbert space to be specified later.

3.2. Kasner-unlike case

The condition $O_1O_2 + O_1O_3 + O_2O_3 > 0$ is automatically satisfied in this case, because O_1, O_2 and O_3 are of the same sign. To be specific, let us consider (i(a)); case (i(b)) can be done by analogy.

Let us quantize the directional volumes by means of u_i defined in (29). A standard procedure gives

\[\hat{w} := \frac{3\kappa \gamma \lambda}{2} (\hat{O} \cosh(3\kappa \hat{A}) + \cosh(3\kappa \hat{A}) \hat{O}) = -\frac{3ia}{2} \left(2 \cosh(hx) \frac{d}{dx} + b \sinh(hx) \right), \] (37)

where $a := \kappa \gamma \lambda \hbar$ and $b := 3\kappa$, and where we have used the representation for the elementary observables defined by (35).

In what follows we solve the eigenvalue problem for the operator \hat{w} and identify its domain of self-adjointness.

Let us consider the invertible mapping $L^2(\mathbb{R}, dx) \ni \psi \to \hat{U} \psi := f \in L^2(\mathbb{I}, dy)$ defined by

\[\hat{U} \psi(x) := \frac{\psi \left(\ln \left| \frac{1}{b} \left(\frac{dy}{y} \right) \right| \right)}{\sin^{1/2}(by)} := f(y), \quad x \in \mathbb{R}, \quad y \in \mathbb{I} := (0, \pi/b). \] (38)

3 In what follows we drop subscripts of observables to simplify notation.
We have
\[\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^2 \, dx = \int_{0}^{\pi/b} \psi^2 \left(\ln \left| \tan \left(\frac{by}{2} \right) \right| \right) \, dy = \langle \tilde{U} \psi | \tilde{U} \psi \rangle. \] (39)

Thus, mapping (38) is isometric and hence unitary.

Now, let us see how the operator \(\hat{w} \) transforms under the unitary map (38). The transformation consists of the change of an independent variable
\[x \mapsto y := \frac{2}{b} \arctan(e^{bx}), \] (40)
which leads to
\[-i a^2 \left(2 \cosh(bx) \frac{d}{dx} + b \sinh(bx) \right) \mapsto -i a \frac{d}{dy} + i \frac{ab}{2} \cot(by), \] (41)
and re-scaling with respect to a dependent variable
\[-i a \frac{d}{dy} + i \frac{ab}{2} \cot(by) \mapsto \sin^{-1/2}(by) \left(-i a \frac{d}{dy} + i \frac{ab}{2} \cot(by) \right) \sin^{1/2}(by) = -i a \frac{d}{dy}. \] (42)

In the process of mapping
\[\hat{w} \mapsto \tilde{U} \hat{w} \tilde{U}^{-1} = -i a \frac{d}{dy} =: \hat{v}, \] (43)
we have used two identities: \(\sin(by) = 1/\cosh(bx) \) and \(\sinh(bx) = -\cot(by) \).

Since \(w > 0 \) (for \(O > 0 \)), we assume that the spectrum of \(\hat{w} \) consists of positive eigenvalues. To implement this assumption, we define \(\hat{w} := \sqrt{\hat{w}^2} \) and consider the eigenvalue problem
\[-a^2 \frac{d^2}{dy^2} f_v = v^2 f_v, \quad y \in (0, \pi/b). \] (44)

There are two independent solutions for each value of \(v^2 \) (where \(v \in \mathbb{R} \)), namely \(\sin(vy/a) \) and \(\cos(vy/a) \). Removing this degeneracy leads to required positive eigenvalues of \(\hat{w} \). We achieve that in a standard way by requiring that the eigenvectors vanish at the boundaries, i.e at \(y = 0 \) and \(y = \pi/b \). As a result we obtain the following spectrum:
\[f_v = N \sin \left(\frac{v}{a} y \right), \quad v^2 = (nab)^2, \quad n = 0, 1, 2, \ldots. \] (45)

It should be noted that for \(n = 0 \), the eigenvector is a null state and thus the lowest eigenvalue is \(v^2 = (ab)^2 \). Next, we define the Hilbert space to be the closure of the span of eigenvectors (45).

The operator \(\hat{w}^2 = -a^2 \frac{d^2}{dy^2} \) is essentially self-adjoint on this span by the construction. Due to the spectral theorem [19], we may define an essentially self-adjoint operator \(\tilde{w} = \sqrt{-a^2 \frac{d^2}{dy^2}} \) as follows:
\[\tilde{w} f_v := v f_v, \quad v = ab, 2ab, 3ab, \ldots. \] (46)

We have considered the case \(w > 0 \). The case \(w < 0 \) does not require a changing of the Hilbert space. The replacement \(\hat{w} \mapsto -\hat{w} \) leads to \(v \mapsto -v \).
Finally, we find that the inverse mapping from $L^2(I, dy)$ to $L^2(R, dx)$ for the eigenvectors of \tilde{w} yields
\[
\sin \left(\frac{\nu}{a} y \right) = f_\nu(y) \mapsto \tilde{U}^{-1} f_\nu(y) := \psi_\nu(x) = \sin \left(\frac{\nu}{a} \arctg(e^{by}) \right) \cosh^{1/2}(bx).
\] (47)

3.3. Kasner-like case

In case (ii(a)), the conditions $O_1 O_2 + O_1 O_3 + O_2 O_3 > 0$ with $O_1 < 0$, $O_2 > 0$, $O_3 > 0$ are satisfied in the following domains\(^4\) for O_k:
\[
O_1 \in (-d_1, 0), \quad O_2 \in (d_2, \infty), \quad O_3 \in (d_3, \infty),
\] (48)
where $d_2 > d_1$, and where $d_3 = d_1 d_2/(d_2 - d_1)$ so $d_3 > d_1$. The full phase space sector of the Kasner-like evolution is defined as the union
\[
\bigcup_{0 < -d_1 < d_2} (-d_1, 0) \times (d_2, \infty) \times (d_3, \infty).
\] (49)

In the case of O_2 and O_3, the restrictions for domains (48) translate into the restrictions for the corresponding domains for the observables w_2 and w_3, due to (29), and read
\[
w_2 \in (D_2, \infty), \quad w_3 \in (D_3, \infty),
\] (50)
where $D_2 = \kappa \gamma \lambda d_2$ and $D_3 = \kappa \gamma \lambda d_3$. Thus, quantization of the w_2 and w_3 observables can be done by analogy to the Kasner-unlike case. The spectra of the operators \hat{w}_2 and \hat{w}_3 are almost the same as the spectrum defined by (46), with the only difference that now $\nu > D_2$ and $\nu > D_3$, respectively\(^5\).

The case of w_1 requires special treatment. Let us redefine the elementary observables corresponding to the first direction as follows:
\[
\Omega_1 := -\frac{O_1}{b \cosh(b A_1)}, \quad \Omega_2 := \sinh(b A_1).
\] (51)
Transformation (51) is canonical, since $\{\Omega_1, \Omega_2\} = 1$, and invertible. The domains transform as follows:
\[
O_1 \in (-d_1, 0), \quad A_1 \in R \rightarrow \Omega_1 \in (0, d_1/b) := (0, D_1), \quad \Omega_2 \in R.
\] (52)

The observable v_1 in terms of redefined observables reads
\[
v_1 = \frac{a b}{\hbar} \Omega_1 (1 + \Omega_2^2), \quad v_1 \in (0, \infty),
\] (53)
where $ab/\hbar = 12\pi G \gamma \lambda$. To quantize the observables Ω_1 and Ω_2, we use the Schrödinger representation
\[
\Omega_2 \rightarrow \hat{\Omega}_2 f(x) := -i\hbar \partial_x f(x), \quad \Omega_1 \rightarrow \hat{\Omega}_1 f(x) := x f(x), \quad f \in L^2(0, D_1).
\] (54)

Let us find an explicit form for the operator $\frac{a b}{\hbar} (\hat{\Omega}_1 + \hat{\Omega}_1 \hat{\Omega}_2^2)$, corresponding to (53). Since $\Omega_1 > 0$, the following classical equality holds:
\[
\Omega_1 \Omega_2^2 = \Omega_1 \Omega_2 \Omega_1^{-k-m} \Omega_2 \Omega_1^m.
\] (55)

\(^4\) Case (ii(b)) can be done by analogy.
\(^5\) Spectra are insensitive to unitary transformations.

9
We propose the following mapping (we set $\hbar = 1$):

$$\Omega_1 \Omega_2^2 \rightarrow \Omega_1 \Omega_2^2 := \frac{1}{2} (\hat{\Omega}_1^2 \hat{\Omega}_2 \hat{\Omega}_1^{1-k-m} \hat{\Omega}_2 \hat{\Omega}_1^{k-m} \hat{\Omega}_2 \hat{\Omega}_1^k),$$

$$= -x \hat{\alpha}_x^2 - \hat{\alpha}_x + mkx^{-1},$$

(56)

which formally ensures the symmetricity of $\Omega_1 \Omega_2^2$. The second equality in (56) may be verified via direct calculations.

Now we define the following unitary transformation W:

$$L^2([0, D_1], dx) \ni f(x) \mapsto Wf(x) := \sqrt{\frac{\sqrt{2}}{y^2}} f\left(\frac{y^2}{4} \right) \in L^2([0, 2\sqrt{D_1}], dy).$$

(57)

One may verify that we have

$$W \partial_x W^\dagger = \frac{2}{y} \partial_y - \frac{1}{y^2}, \quad W \partial_{xx} W^\dagger = \frac{4}{y^2} \partial_{yy} + \frac{8}{y^2} \partial_y + \frac{5}{y^2}.$$

(58)

Thus, the operator W transforms (56) into

$$- \partial_{yy}^2 + \frac{1}{y^2} \left(4mk - \frac{1}{4} \right).$$

(59)

The eigenvalue problem for $\hat{\Omega}_1 + \Omega_1 \Omega_2^2$ reads

$$\left(- \partial_{yy}^2 + \frac{1}{y^2} \left(4mk - \frac{1}{4} \right) + \frac{y^2}{4} \right) \Phi = \nu \Phi.$$

(60)

Now, we can see an advantage of the chosen ordering prescription (56). It enables finding a very simple form of the volume operator. Taking $k = m = 1/4$ turns (60) into

$$\left(- \partial_{yy}^2 + \frac{\nu^2}{4} - \nu \right) \Phi = 0.$$

(61)

The problem is mathematically equivalent to the one-dimensional harmonic oscillator in a ‘box’ with an edge equal to $2\sqrt{D_1}$. There are two independent solutions for a given ν:

$$\Phi_{\nu,1} = N_1 e^{y^2/4} F_1 \left(- \frac{1}{2} \nu + \frac{1}{4}, \frac{1}{2}, \frac{y^2}{2} \right).$$

(62)

$$\Phi_{\nu,2} = N_2 y e^{y^2/4} F_1 \left(- \frac{1}{2} \nu + \frac{3}{4}, \frac{3}{2}, \frac{y^2}{2} \right).$$

(63)

where F_1 is a hypergeometric confluent function, and $\Phi_{\nu,1}$ and $\Phi_{\nu,2}$ are even and odd cylindrical functions, respectively. A standard condition for the symmetricity of the operator defining the eigenvalue problem (61) leads to the vanishing of the wavefunctions at the boundaries (as the box defines the entire size of the first direction). The solution (after retrieving \hbar and ab) reads

$$\Phi = N y e^{y^2/4} F_1 \left(- \frac{1}{2} \nu + \frac{3}{4}, \frac{3}{2}, \frac{y^2}{2} \right).$$

(64)

Solution (64) vanishes at $y = 0$ as Φ is an odd function. The requirement of vanishing at $y = 2\sqrt{D_1}$ leads to the equation

$$\frac{1}{2} F_1 \left(- \frac{1}{2} \nu + \frac{3}{4}, \frac{3}{2}, \frac{2D_1}{\hbar} \right) = 0.$$

(65)

6 We ignore the solution $\Phi_{\nu,1}$ because it cannot vanish at $y = 0$.

10
An explicit form of (65) reads
\[
\sum_{n=0}^{\infty} \left(-\frac{1}{2} \nu + \frac{1}{2} \right) \frac{1}{n!} \left(\frac{2D_1}{\hbar} \right)^n = 0,
\]
where \((a)_n = a(a+1) \cdots (a+n-1)\). It results from (66) that the eigenvalues must satisfy the condition \(\nu \geq ab\).

3.4. Quantum volume operator

Classically we have
\[
V = |w_1 w_2 w_3|^{1/3}.
\]
(67)
One may verify that \(v_k\) Poisson commute and \(\hat{v}_k\) commute, so we can take
\[
\hat{V}^3 := \hat{v}_1 \hat{v}_2 \hat{v}_3 = |\hat{w}_1 \hat{w}_2 \hat{w}_3|.
\]
(68)
The eigenfunctions of the operator \(\hat{w}_1 \hat{w}_2 \hat{w}_3\) have the form
\[
F_{\lambda_1, \lambda_2, \lambda_3} := f_{\lambda_1}(x_1)f_{\lambda_2}(x_2)f_{\lambda_3}(x_3),
\]
where \(f_{\lambda_i}(x_i)\) is an eigenvector of \(\hat{w}_i\) with eigenvalue \(\lambda_i\). The closure of the span of \(F_{\lambda_1, \lambda_2, \lambda_3}\) is a Hilbert space, in which \(\hat{V}^3\) is a self-adjoint operator (by construction).

Due to the spectral theorem on self-adjoint operators [19], we have
\[
V = (V^3)^{1/3} = \hat{V} F_{\lambda_1, \lambda_2, \lambda_3} := \Box F_{\lambda_1, \lambda_2, \lambda_3},
\]
(69)
where
\[
\Box := |\lambda_1 \lambda_2 \lambda_3|^{1/3}.
\]
(70)

3.4.1. Kasner-unlike case. In the Kasner-unlike case we use formula (46) to obtain
\[
\Box = |n_1 n_2 n_3|^{1/3} ab, \quad n_1, n_2, n_3 \in 1, 2, 3, \ldots,
\]
(71)
which shows that the spectrum of the volume operator does not have equally distant levels. The volume \(\Box\) equal to zero is not in the spectrum. There exists a quantum of the volume which equals \(\Delta := ab = 12\pi G\gamma \bbar{h}\), and which defines the lowest value in the spectrum.

3.4.2. Kasner-like case. The spectrum in this case reads
\[
\Box := \bigcup_{0 \leq d_1 < d_2} \Box_{d_1, d_2}, \quad \Box_{d_1, d_2} := \{\lambda_{d_1, d_2, \lambda_{d_3}} \mid d_3 = d_1 d_2/(d_2 - d_1)\},
\]
(72)
where \(\lambda_{d_1}\) is any value subject to condition (66), and \(\lambda_{d_2} > D_2\) and \(\lambda_{d_3} > D_3\) are given by (46). The volume \(\Box\) equal to zero is not in the spectrum.

3.5. Evolution

In this section we ignore the restrictions concerning the domains of \(O_1, O_2\) and \(O_3\), and we assume that the Hilbert space of the system is \(L^2(\mathbb{R}^3, dx dy dz)\). An inclusion of the restrictions would complicate the calculations without bringing any qualitative change into the picture of evolution.

The generator of evolution determined in (34) may be formally quantized, due to (35), as follows:
\[
\hat{H} \leftrightarrow \hat{H} = -\hbar^2 (\partial_x^2 + \partial_y^2 + \partial_z^2) + \partial_t \partial_x + \partial_t \partial_y + \partial_t \partial_z).
\]
(73)
Since it is self-adjoint in $L^2(\mathbb{R}^3,\text{d}x\text{d}y\text{d}z)$, a quantum evolution can be defined by a unitary operator
\begin{equation}
U = e^{-i\hat{h}\tau(\hat{b}_1^*+\hat{a}_1^*+\hat{a}_1)} , \quad \tau \in \mathbb{R} .
\end{equation}
Let us study an evolution of the expectation value of the directional volume \hat{v}_1:
\begin{equation}
\langle \psi | U^{-1} \hat{v}_1 U | \psi \rangle .
\end{equation}
Since \hat{v}_1 does not depend on y and z, we simplify our considerations by taking
\begin{equation}
U_1 = e^{-i\hat{h}\tau(\hat{b}_1^*+\hat{a}_1^*+\hat{a}_1)} .
\end{equation}
If we are interested in the action of U_1 on the functions $f(x) \in L^2(\mathbb{R}, \text{d}x)$, then the derivatives $-i\frac{\text{d}}{\text{d}y}$ and $-i\frac{\text{d}}{\text{d}z}$ occurring in U_1 commute and, being self-adjoint, lead finally to real numbers. Let us call them k_1 and k_2, respectively, and let us introduce the parameter $k = k_1 + k_2$. Hence, U_1 further simplifies and reads
\begin{equation}
U_1 = e^{\hat{k}h\tau \hat{a}_1} .
\end{equation}
The action of U_1 on $f(x)$ reads
\begin{equation}
U_1 f(x) = f(x + \hat{k}h\tau) .
\end{equation}
We recall that under the unitary mapping $L^2(\mathbb{R}, \text{d}x) \mapsto L^2(\mathbb{R}, \text{d}y)$, defined by (38), the operator \hat{v}_1 becomes $-i\frac{\text{d}}{\text{d}y}$ on $L^2(\mathbb{R}, \text{d}y)$. Now, let us study an action of operator U_1 on the functions $\phi(y) \in L^2(\mathbb{R}, \text{d}y)$. A straightforward calculation leads to
\begin{equation}
L^2(\mathbb{R}, y) \ni \phi(y) \mapsto \phi\left(\frac{\phi}{\cosh^{1/2}(bx)}\right) \in L^2(\mathbb{R}, x) ,
\end{equation}
and we have
\begin{equation}
U_1 \phi\left(\frac{\phi}{\cosh^{1/2}(bx)}\right) = \phi\left(\frac{\phi}{\cosh^{1/2}(bx + \hat{k}h\tau)}\right) .
\end{equation}
The transformation \hat{U}_1^{-1} gives
\begin{equation}
\frac{\phi\left(\frac{\phi}{\cosh^{1/2}(bx + \hat{k}h\tau)}\right)}{\cosh^{1/2}(bx + \hat{k}h\tau)} \mapsto \frac{\phi\left(\frac{\phi}{\cosh^{1/2}(bx + \hat{k}h\tau) \tan\left(\frac{\phi}{\hat{k}h\tau}\right)}\right)}{\sqrt{\frac{\phi}{\cosh^{1/2}(bx + \hat{k}h\tau) \tan\left(\frac{\phi}{\hat{k}h\tau}\right)}} \tan\left(\frac{\phi}{\hat{k}h\tau}\right) + \cot\left(\frac{\phi}{\hat{k}h\tau}\right) e^{\hat{k}h\tau} =: \varphi_\tau(y) ,
\end{equation}
where $\varphi_{\tau=0}(y) = \phi(y)$. Now, we observe that the symmetricity condition
\begin{equation}
\langle \varphi_\tau(y) | \hat{v}_1 \varphi_\tau(y) \rangle = \langle \hat{v}_1 \varphi_\tau(y) | \varphi_\tau(y) \rangle
\end{equation}
leads to
\begin{equation}
\overline{\varphi_\tau\left(\frac{\pi}{b}\right)} \varphi_\tau\left(\frac{\pi}{b}\right) - \overline{\varphi_\tau(0)} \varphi_\tau(0) = 0 .
\end{equation}
We use result (81) to calculate the limits
\begin{equation}
\lim_{y \to +0} \varphi_\tau(y) = e^{\frac{\text{d}y}{\hat{k}}} \varphi_0(0), \quad \lim_{y \to -\frac{\pi}{b}} \varphi_\tau(y) = e^{-\frac{\text{d}y}{\hat{k}}} \varphi_0\left(\frac{\pi}{b}\right) ,
\end{equation}
which turns (83) into
\begin{equation}
\overline{\varphi_0\left(\frac{\pi}{b}\right)} \varphi_0\left(\frac{\pi}{b}\right) e^{\hat{k}h\tau} - \overline{\varphi_0(0)} \varphi_0(0) e^{\hat{k}h\tau} = 0 .
\end{equation}
It is clear that (85) can be satisfied \(\forall \tau\) iif $\varphi_0\left(\frac{\pi}{b}\right) = 0 = \varphi_0(0)$. States with such a property belong to the domain of \hat{v} defined by (46).
In order to construct the ‘evolving states’ that vanish at the boundaries, consider the basis vectors $f_n(y) = e^{ibky}$. Then, $f_n(y) = f_{-n}(y)$ satisfy condition (85). Making use of (81) we obtain

$$f_n(y, \tau) = \left(\frac{i - e^{ibk\tau} \tan\left(\frac{by}{2}\right)}{i + e^{ibk\tau} \tan\left(\frac{by}{2}\right)}\right)^{2n} \sqrt{\frac{1 + \tan^2\left(\frac{by}{2}\right)}{e^{-bkh\tau} + e^{bkh\tau} \tan^2\left(\frac{by}{2}\right)}}. \quad (86)$$

where $f_n(y, \tau) := f_{n,\tau}(y)$. Moreover, we have

$$-ia \frac{d}{dy} f_n(y, \tau) = -\frac{ab}{2} \left(1 + \tan^2\left(\frac{by}{2}\right)\right) f_n(y, \tau) \frac{1}{1 + e^{2bkh\tau} \tan^2\left(\frac{by}{2}\right)}$$

$$\times \left(1 - e^{2bkh\tau} \tan\left(\frac{by}{2}\right) + i4ne^{bkh\tau}\right). \quad (87)$$

Using the substitution $x = \tan\left(\frac{by}{2}\right)$, we obtain

$$\left\langle f_m \mid -ia \frac{d}{dy} f_n \right\rangle = -ia \int_0^\infty \left(\frac{i - e^{bkh\tau} x}{i + e^{bkh\tau} x}\right)^{2(n-m)} \frac{(e^{-bkh\tau} - e^{bkh\tau}) x}{(e^{-bkh\tau} + e^{bkh\tau} x)^2} \, dx$$

$$+ 4an \int_0^\infty \left(\frac{i - e^{bkh\tau} x}{i + e^{bkh\tau} x}\right)^{2(n-m)} \frac{1 + x^2}{(e^{-bkh\tau} + e^{bkh\tau} x)^2} \, dx. \quad (88)$$

Another substitution $z = e^{bkh\tau} x$ leads to

$$\left\langle f_m \mid -ia \frac{d}{dy} f_n \right\rangle = -ia(e^{-bkh\tau} - e^{bkh\tau}) \int_0^\infty \left(\frac{i - z^2}{1 + z^2}\right)^{2(n-m)} \frac{z}{(1 + z^2)^2} \, dz$$

$$+ 4an \int_0^\infty \left(\frac{i - z^2}{1 + z^2}\right)^{2(n-m)} \frac{e^{bkh\tau} + e^{-bkh\tau} z^2}{(1 + z^2)^2} \, dz. \quad (89)$$

Finally, we obtain

$$\left\langle f_m \mid -ia \frac{d}{dy} f_n \right\rangle = \begin{cases} \frac{ia}{4(n - m)^2} - 1(1 - 8n(n - m)) \sinh(bkh\tau), & n \neq m \\ ia \sinh(bkh\tau) + 2\pi n a \cosh(bkh\tau), & n = m. \end{cases} \quad (90)$$

Now, let us introduce $g_{nm}(y, \tau) := \frac{f_n(y, \tau) - f_{-n}(y, \tau)}{\sqrt{\tau}}$ so that $\|g_{nm}\| = 1$. One has

$$\left\langle g_{nm} \mid -ia \frac{d}{dy} g_{nm} \right\rangle = (n + m)ab \cosh(bkh\tau) = \frac{n + m}{2} \Delta \cosh(bkh\tau). \quad (91)$$

The expectation value of operator (91), defining the volume operator, is similar to the classical form (29). The vectors g_{nm} may be used in the construction of a basis of the space of states such that $\phi_0\left(\frac{\tau}{\tau}\right) = 0 = \phi_0(0)$.

4. Summary and conclusions

Turning the big bang into the big bounce in the Bianchi I universe is due to modification of the model at the classical level by making use of loop geometry (in complete analogy to the FRW case). The modification is parameterized by a continuous parameter λ to be determined from observational astro-cosmo data.

The RPS of our system is higher dimensional with nontrivial boundaries. This requires the introduction of a few new elements, compared to the FRW case, into our method. (1) Our parameter does not need to coincide with the scalar field, commonly used in LQC, and it
simplifies the form of a volume operator. (2) We introduce the so-called $true$ Hamiltonian. It generates a flow in the family of volume quantities, enumerated by the evolution parameter. It proves an independence of the spectrum of the volume operator on the evolution. (3) We divide the phase space of the system into two distinct regions: Kasner-like and Kasner-unlike. (4) We identify domains, spectra and eigenvectors of self-adjoint directional volumes and total volume operators in the Kasner-unlike case. (5) We identify the peculiarity of the Kasner-like case due to the complicated boundary of the phase space region. We propose to overcome this problem by dividing this region further into smaller regions, but with simpler boundaries. (6) Given a small subregion for the Kasner-like case, we propose a canonical $redefinition$ of phase space coordinates in such a way that we can arrive at a relatively simple form of the volume operator and at the same time can simply encode the boundary of the region into the Schrödinger representation. Then, from a number of different operator orderings, we choose the simplest one. We find domain, spectrum and eigenvectors of the volume operator. The spectrum is given in an implicit form in terms of special functions. (7) Having the true (self-adjoint) Hamiltonian, we introduce an $unitary$ operator with an evolution parameter.

The spectrum of the volume operator, parameterized by λ, is bounded from below and discrete. An evolution of the expectation value of the volume operator is similar to the classical case. We have presented the evolution of only a single directional volume operator. One may try to generalize this procedure to the total volume operator. Analyses, in the case of the Kasner-like dynamics, are complicated and will be presented elsewhere. Discreteness of space at the quantum level may lead to a foamy structure of spacetime at the semi-classical level. A possible astro-cosmo observation of dispersion of photons traveling over cosmological distances across the universe might be used to determine the value of the otherwise free parameter λ. The discreteness is also specific to the FRW case [9]. The difference is that in the Bianchi I case, the variety of possible quanta of a volume is much richer. On the other hand, the Bianchi-type cosmology seems to be more realistic than the FRW case, near the CS. Thus, an expected foamy structure of space may better fit cosmological data. Various forms of discreteness of space may underlay many approaches in fundamental physics, so its examination may be valuable.

Quantum cosmology calculations are plagued by quantization ambiguities. In particular, there exists a huge freedom in ordering of elementary operators defining compound observables, which may lead to different quantum operators. Classical commutativity of variables does not extend to corresponding quantum operators. Such ambiguities can be largely reduced after quantum astro-cosmo data becomes available. Confrontation of theoretical predictions against these data would enable finding realistic quantum cosmology models.

Our nonstandard LQC method, successfully applied so far mainly to the FRW-type models, seems to be highly efficient and deserves further development and application to sophisticated cosmological models of GR.

Appendix A. Unitarily non-equivalent volume operators

In both Kasner-like and Kasner-unlike cases, we have reduced the Hilbert space by removing the double degeneracy of eigenvalues for the volume operators (see the discussion after equations (44) and (61)). We have used the ‘natural’ condition that the wavefunction should vanish at the boundaries of an interval. However, there are also other mathematically well-defined choices for the boundary conditions. We will demonstrate this non-uniqueness for the Kasner-unlike case. Similar reasoning applies to another case.
Let us begin with equation (44)

$$-a^2 \frac{d^2}{dy^2} f = \nu^2 f, \quad y \in (0, \pi/b),$$

(A.1)

which has the solution

$$f_\nu = N_1 \sin \left(\frac{\nu}{a} y \right) + N_2 \cos \left(\frac{\nu}{a} y \right), \quad N_1, N_2 \in \mathbb{C},$$

(A.2)

for each value of $\nu \in \mathbb{R}^+$ ($\nu \mapsto -\nu$ does not produce any new space of solutions). Our task is the determination of self-adjointness of $\mathcal{W} := \sqrt{-a^2 \frac{d^2}{dy^2}}$ and removing the double degeneracy of eigenvalues. The symmetricity condition reads

$$\int_I \overline{f} f'' \bigg|_0^{\pi/b} = \int_I \overline{f} f' \bigg|_0^{\pi/b} + \int_I \overline{f}'' f.$$

(A.3)

We can set

- $f(0) = f'(\pi/b) = 0 \quad \Rightarrow \quad f_\nu = \sin\left(\frac{\nu}{a} y \right), \quad \nu = ab, 2ab, 3ab, \ldots$
- $f''(0) = f''(\pi/b) = 0 \quad \Rightarrow \quad f_\nu = \cos\left(\frac{\nu}{a} y \right), \quad \nu = 0, ab, 2ab, 3ab, \ldots$
- $f(0) = f'(\pi/b) = 0 \quad \Rightarrow \quad f_\nu = \sin\left(\frac{\nu}{a} y \right), \quad \nu = 1/2, 3/2, 5/2, \ldots$

where $ab = 12\pi \hbar G \gamma \lambda$. All these choices are non-equivalent, since they lead to different spectra.

Appendix B. Standard quantization

Let us change the coordinates of the Kasner-like sector phase space (Ω_1, Ω_2), defined by (51), into a new canonical pair as follows:

$$X := \sqrt{2} \Omega_1 \quad \text{and} \quad P := \Omega_2 \sqrt{2} \Omega_1,$$

(B.1)

where

$$\{X, P\} = 1.$$

(B.2)

In the new variables, volume (53) reads

$$\frac{1}{4\pi G \gamma \lambda} v_1 = \frac{1}{2} P^2 + \frac{1}{2} X^2.$$

(B.3)

Thus, in these variables the volume has the form of the Hamiltonian of the harmonic oscillator in a ‘box’ $(0, \sqrt{2d_1/b})$.

In the Schrödinger representation, i.e. $\hat{X} := x$ and $\hat{P} := -i\hbar \partial_x$, a standard quantization yields

$$\frac{1}{4\pi G \gamma \lambda} \hat{v} = -\frac{\hbar^2}{2} \partial_x^2 + \frac{1}{2} X^2,$$

(B.4)

which corresponds to the ‘nonstandard’ quantization (60) with the parameters $m = k = 1/4$ and $y = \sqrt{2}\lambda$ (with $\hbar = 1$).

Thus, we can see that the prescription defined by (55) and (56) includes not only a standard prescription, but many others. We have completed only one, corresponding to the well-known harmonic oscillator, as an illustration.
References

[1] Belinskii V A, Khalatnikov I M and Lifshitz E M 1970 Adv. Phys. 19 525
Belinskii V A, Khalatnikov I M and Lifshitz E M 1982 Adv. Phys. 31 639
[2] Belinskii V A, Khalatnikov I M and Ryan M P 1971 The oscillatory regime near the singularity in Bianchi-type IX universes Preprint order 469, Landau Institute for Theoretical Physics, Moscow (unpublished); published as sections 1 and 2 in: Ryan M P 1972 Ann. Phys. 70 301
[3] Montani G, Battisti M V, Benini R and Imponente O 2008 Classical and quantum features of the mixmaster singularity Int. J. Mod. Phys. A 23 2353 (arXiv:0712.5008 [gr-qc])
[4] Damour T, Henneaux M and Nicolai H 2003 Cosmological billiards Class. Quantum Grav. 20 R145 (arXiv:hep-th/0212256)
[5] Dzierzak P and Piechocki W 2009 Bianchi I model in terms of nonstandard loop quantum cosmology: classical dynamics Phys. Rev. D 80 124033 (arXiv:0906.4211 [gr-qc])
[6] Dzierzak P, Jezierski J, Malkiewicz P and Piechocki W 2010 The minimum length problem of loop quantum cosmology Acta Phys. Pol. B 41 717 (arXiv:0910.3172 [gr-qc])
[7] Dzierzak P, Malkiewicz P and Piechocki W 2009 Turning big bang into big bounce: I. Classical dynamics Phys. Rev. D 80 104001 (arXiv:0907.3433)
[8] Malkiewicz P and Piechocki W 2009 Energy scale of the Big Bounce Phys. Rev. D 80 063506 (arXiv:0903.4352 [gr-qc])
[9] Malkiewicz P and Piechocki W 2010 Turning big bang into big bounce: II. Quantum dynamics Class. Quantum Grav. 27 225018 (arXiv:0908.4029 [gr-qc])
[10] Mielczarek J and Piechocki W 2010 Observables for FRW model with cosmological constant in the framework of loop cosmology Phys. Rev. D 82 043529 (arXiv:1001.3999 [gr-qc])
[11] Bojowald M 2003 Homogeneous loop quantum cosmology Class. Quantum Grav. 20 2595 (arXiv:gr-qc/0303073)
[12] Chiou D W 2007 Loop quantum cosmology in Bianchi type I models: analytical investigation Phys. Rev. D 75 024029 (arXiv:gr-qc/0609029)
[13] Chiou D W 2007 Effective dynamics, big bounces and scaling symmetry in Bianchi type I loop quantum cosmology Phys. Rev. D 76 124037 (arXiv:0710.0416 [gr-qc])
[14] Szulc L 2008 Loop quantum cosmology of diagonal Bianchi type I model: simplifications and scaling problems Phys. Rev. D 78 064035 (arXiv:0803.3559 [gr-qc])
[15] Martin-Benito M, Marugan G A M and Pawlowski T 2009 Physical evolution in loop quantum cosmology: the example of vacuum Bianchi I Phys. Rev. D 80 084036 (arXiv:0906.3751 [gr-qc])
[16] Ashtekar A and Wilson-Ewing E 2009 Loop quantum cosmology of Bianchi I models Phys. Rev. D 79 083535 (arXiv:0903.3397 [gr-qc])
[17] Bojowald M, Cartin D and Khanna G 2007 Lattice refining loop quantum cosmology, anisotropic models and stability Phys. Rev. D 76 064018 (arXiv:0704.1137 [gr-qc])
[18] Geiller M and Piechocki W in progress
[19] Reed M and Simon B 1975 Methods of Modern Mathematical Physics (San Diego, CA: Academic)