The clinicopathological characteristics of POLE-mutated/ultramutated endometrial carcinoma and prognostic value of POLE status: a meta-analysis based on 49 articles incorporating 12,120 patients

Qing Wu¹,², Nianhai Zhang¹,² and Xianhe Xie¹,²,³*

Abstract

Objective: This study was designed to investigate the frequency and clinicopathological characteristics of POLE-mutated/ultramutated (POLEmut) in endometrial carcinoma (EC) and assess the prognostic values of POLE status.

Methods: Electronic databases were screened to identify relevant studies. Meta-analysis was used to yield the pooled frequency of POLEmut and prognostic parameters by 95% confidence interval (CI), odd ratio (OR), and hazard ratio (HR).

Results: Totally, 12,120 EC patients from 49 studies were included. The pooled frequency of POLEmut was 7.95% (95% CI: 6.52–9.51%) in EC, 7.95% (95% CI: 6.55–9.46%) in endometrioid endometrial carcinoma, and 4.45% (95% CI: 2.63–6.61%) in nonendometrioid endometrial carcinoma. A higher expression occurred in grade 3 (OR = 0.51, 95% CI: 0.36–0.73, P = 0.0002), FIGO stage I-II (OR = 1.91, 95% CI: 1.29–2.83, P = 0.0013), and myometrial invasion < 50% (OR = 0.66, 95% CI: 0.50–0.86, P = 0.0025). Survival analyses revealed favorable OS (HR = 0.68, 95% CI: 0.55–0.85, P = 0.0008), PFS (HR = 0.74, 95% CI: 0.59–0.93, P = 0.0085), DSS (HR = 0.61, 95% CI: 0.44–0.83, P = 0.0016), and RFS (HR = 0.47, 95% CI: 0.35–0.61, P < 0.0001) for POLEmut ECs. Additionally, the clinical outcomes of POLEmut group were the best, but those of p53-abnormal/mutated (p53abn) group were the worst, while those of microsatellite-instable (MSI)/hypermutated group and p53-wild-type (p53wt) group were medium.

Conclusions: The POLEmut emerged higher expression in ECs with grade 3, FIGO stage I-II, and myometrial invasion < 50%; it might serve as a highly favorable prognostic marker in EC; the clinical outcomes of POLEmut group were the best one among the four molecular subtypes.

Keywords: POLE-mutated/ultramutated, Endometrial carcinoma, Overall survival, Progression free survival, Disease specific survival, Relapse free survival

Introduction

Endometrial carcinoma (EC) is one of the most prevalent among gynecological cancer with a steady increase in incidence worldwide [1, 2]. Histotype and other clinicopathological parameters such as Federation International of Gynecology and Obstetrics (FIGO) stage and
tumor grade] are associated with the prognosis of ECs [3, 4]. However, both histotype and grade assignment are relatively poor reproducible [5–7], which leads to inaccurate findings within clinical trials, and over- or under-treatment of ECs.

In order to improve the clinical/pathology-based risk stratification system, the updated classification of EC identifies four subtype [polymerase-ε-mutated/ultramutated (POLEmut), microsatellite-instable (MSI)/hypermutated or mismatch repair-deficient (MMRD), p53-wild-type (p53wt), and p53-abnormal/mutated (p53abn)] according to The Cancer Genome Atlas (TCGA) and Proactive Molecular Risk Classifier for Endometrial Cancer (ProMisE) based on various genetic and molecular features possesses a potential promise, proving to be reproducible, and demonstrating the associations with clinical outcomes [8–11].

POLE is involved in DNA replication and has recently been recognized as hereditary cancer-predisposing genes. The alterations of POLE are associated with occurrence, development and prognosis of tumors, especially in EC [12]. The group of POLEmut, ECs with mutations in DNA POLE that is responsible for DNA replication and leads to exceedingly high somatic mutation frequencies ("ultramutated": > 100 mutations per megabase) [13, 14], was found to be associated with markedly favorable outcomes, even with poor clinicopathological features [15, 16]. Additionally, they were also candidates for therapy of immune checkpoint inhibitor (ICIs) [17, 18].

However, a consensus has not been reached, with some studies advocating non-superior survival in POLEmut ECs [19, 20]; additionally, the frequency and specific clinicopathological features of POLEmut ECs were various in different studies. Therefore, it remains to be fully illuminated the histopathological features and prognostic of POLEmut ECs. Previous study had preliminarily explored the POLEmut ECs through meta-analysis [21], but it was based on limited histopathological features and prognostic parameters. Consequently, we made a comprehensive survey based on a large scale (49 articles incorporating 12,120 EC patients), multi-level (including eight subgroup analyses), and diverse dimensions (incorporating overall survival (OS), progression free survival (PFS), disease specific survival (DSS), and relapse free survival (RFS)) to summarize the pooled frequency and clinicopathological characteristics of POLEmut ECs and to assess the prognostic value.

Materials and methods

Data sources and literature searches

Studies were screened by a systematic electronic literature retrieval for abstracts of relevant studies in the published literature. PubMed, Cochrane Library, and EMBASE were searched and the data were updated as of December 30th, 2021. The basic search terms were used as follows: “endometrial carcinoma”, “endometrial cancer”, “POLE”, “polymerase epsilon”, and “Polymerase ε”. Full-text papers were scrutinized if abstracts did not provide substantial information. Moreover, the references of relevant articles were reviewed for additional studies. Data retrieval was completed in English.

Selection of studies and definition

Initially, two investigators performed a screening of titles and abstracts respectively, then examined the full-text of articles to acquire eligible studies. For the duplicate studies based on the same study patients, only the latest or most comprehensive data were included.

OS was defined as time from surgery until death of any cause; PFS was defined as time from surgery until there is evidence of progressive disease or if they died of the disease prior to the censoring date; DSS was defined as time from surgery until death due to EC; RFS was defined as time from surgery until there is evidence of recurrent disease.

Inclusion criteria

(1) Prospective or retrospective studies to report the frequency and clinicopathological characteristics of POLEmut in EC; (2) the expression of POLE gene was reported using genetic testing (e.g. sequencing, sanger sequencing, next generation sequencing, and polymerase chain reaction); (3) a full paper had been published.

Data extraction

Data extraction was implemented conforming to the PRISMA guidance (Table S1). All eligible studies involved information as follows: the publication year and country, first author’s name, study type, and number of both ECs and POLEmut ECs.

Quality assessment

The quality of included studies was assessed independently by two reviewers using the Newcastle-Ottawa Scale (NOS) for case-control and cohort studies, which encompassed the three dimensions of selection, comparability, and exposure, with a full score of 9 points.

Statistical methods

The primary endpoint was to report the pooled frequency of POLEmut in ECs. Subgroup analyses were accomplished based on histotype, grade, FIGO stage, lymphovascular space invasion (LVSI), myometrial invasion, lymph node status, clinical risk stratification and adjuvant therapy. The measures to summarize them were odd ratios (ORs) and 95% confidence intervals (CIs).
second endpoint was to evaluate the prognostic value (including OS, PFS, DSS, and RFS) of POLE\text{mut} in ECs. The summary measures of survival analysis were hazard ratios (HRs) with corresponding 95% CIs. Funnel plots and Egger's test were implemented to evaluate publication bias. Statistical analysis was performed through R 4.0 statistical software. Heterogeneity was assessed by I-square tests and chi-square. If $P < 0.1$ or $I^2 > 40\%$, remarkable heterogeneity existed. A random effect model was adopted to analysis the pooled data when heterogeneity existed, otherwise, a fixed effect model was employed.

Results
Selection of study
Initially, 273 relevant articles were scrutinized intensively. Of them, 24 were filtered for duplication, and 104 were excluded for digression after screening the titles and abstracts. Then the full text of 145 articles was thoroughly reviewed, and 96 were filtered for: they were not human research, and not in English, commentaries, case reports, review articles, letters to the editor, and studies without enough data for calculation. Finally, a total of 49 articles (Table S2) incorporating 12,120 patients were included in this study. The elaborate procedure was displayed in Fig. 1.

Study traits
Totally, 12,120 individuals in the 49 articles (50 cohorts) published until December 30th, 2021 were included. Studies were published from 2013 to 2021. The sample size ranged from 14 to 982. Of these studies, 8 were prospective, and 41 were retrospective. ORs and 95% CIs were used to report the frequency and clinicopathological characteristics of POLE\text{mut} in ECs, and HRs with corresponding 95% CIs were utilized to assess the value

![Fig. 1 Flowchart on selection including trials in the meta-analysis](image-url)
of POLEmut in clinical prognosis. Of all the adopted studies, 16 cohorts contained data for OS, 10 for PFS, 8 for DSS, and 8 for RFS. The principal characteristics were listed in Table 1.

Data analyses

The frequency of POLEmut in EC

A total of 49 articles containing 12,120 patients were included in the investigation of frequency of POLEmut ECs. The pooled frequency of POLEmut in ECs was 7.95% (95% CI: 6.55–9.46%) with significant heterogeneity among the studies ($I^2 = 79.6, 95\%\text{ CI}: 71.8–85.2\%$, $P<0.0001$) (Fig. 2a). Furthermore, no publication bias was defined via Egger’s tests ($z=1.832, P=0.06695$) and funnel plot (Fig. 2b) in the pooled analysis.

Subgroup analyses

We explored subgroup analyses based on histotype, grade, FIGO stage, LVSI, myometrial invasion, lymph node status, clinical risk stratification, and adjuvant therapy. The outcomes of specific subgroup analysis were shown in Table 2. The pooled ORs with 95% CIs were also calculated for POLEmut ECs according to each subgroup variable (Table 1).

Subgroup analysis was performed based on histotype. A total of 8412 patients with EC from 32 cohorts were obtained for the meta-analysis. The pooled frequency of POLEmut in ECs was 5.35% (95% CI: 3.82–7.87%) in LVSI present and 6.96% (95% CI: 5.32–8.77%) in LVSI absent.

Subgroup analysis was carried out based on myometrial invasion. The pooled frequency of POLEmut ECs was 4.78% (95% CI: 3.47–6.28%) in myometrial invasion ≥ 50 and 6.85% (95% CI: 5.04–8.89%) in myometrial invasion <50. The pooled OR of POLEmut ECs with myometrial invasion ≥ 50 vs. myometrial invasion <50 was 0.66 (95% CI: 0.50–0.86, $P=0.0025$).

Subgroup analysis was performed based on lymph node status. The pooled frequency of POLEmut ECs was 4.97% (95% CI: 3.55–12.07%) in lymph node status present and 9.46% (95% CI: 7.77–11.28%) in lymph node status absent.

Subgroup analysis was accomplished based on clinical risk stratification. The pooled frequency of POLEmut ECs was 5.87% (95% CI: 3.01–8.63%) in low-risk stratification, 7.18% (95% CI: 1.07–16.78%) in intermediate-risk stratification, and 8.87% (95% CI: 6.07–12.09%) in high-risk stratification.

Subgroup analysis was conducted based on with or without adjuvant therapy. The pooled frequency of POLEmut ECs was 9.00% (95% CI: 6.78–11.46%) with adjuvant therapy, and 6.27% (95% CI: 4.11–8.75%) without adjuvant therapy.

The frequency of other molecular subtypes (MSI and p53abn) in ECs

The pooled frequency of MSI in ECs was 27.23% (95% CI: 23.66–30.95%) (Fig. S1a) with significant heterogeneity among studies ($I^2 = 91.1, 95\%\text{ CI}: 88.6–93.0\%, P<0.0001$) (Table S3); the pooled frequency of p53abn in ECs was 23.47% (95% CI: 19.70–27.46%) (Fig. S1b) with significant heterogeneity among studies ($I^2 = 56.0, 95\%\text{ CI}: 33.7–70.8\%, P<0.0001$). The pooled OR of POLEmut EEC vs. NEEC was 1.35 (95% CI: 0.88–2.08, $P=0.1719$) with heterogeneity ($I^2 = 49.6, 95\%\text{ CI}: 17.4–69.2\%, P=0.0047$).

Subgroup analysis was accomplished based on histotype. The pooled frequency of POLEmut ECs was 5.35% (95% CI: 4.16–6.67%) in grade 1–2 and 10.55% (95% CI: 8.35–12.94%) in grade 3. The pooled OR of POLEmut ECs with grade 1–2 vs. grade 3 was 0.51 (95% CI: 0.36–0.73, $P=0.0002$).

Subgroup analysis was executed based on FIGO stage. The pooled frequency of POLEmut ECs was 9.15% (95% CI: 7.06–11.46%) in FIGO stage I–II and 2.89% (95% CI: 1.43–4.67%) in FIGO stage III–IV. The pooled OR of POLEmut ECs with FIGO stage I–II vs. FIGO stage III–IV was 1.91 (95% CI: 1.29–2.83, $P=0.0013$).

Subgroup analysis was implemented based on LVSI. The pooled frequency of POLEmut ECs was 6.40% (95% CI: 3.82–9.48%) in LVSI present and 6.96% (95% CI: 5.32–8.77%) in LVSI absent.

Subgroup analysis was calculated via Egger’s tests (Table S3) and funnel plot (Fig. S2) in the pooled analyses.

Survival analyses

Survival analyses were displayed by pooled HRs with 95% CIs for OS, PFS, DSS, and RFS. Of all the adopted studies, 16 cohorts contained data for OS, 10 for PFS, 8 for DSS, and 8 for RFS. The pooled HRs of POLEmut vs. POLE-wild-type (POLEwt) ECs were 0.68 (95% CI: 0.55–0.85, $P=0.0008$) for OS (Fig. 3a), 0.74 (95% CI: 0.59–0.93, $P=0.0085$) for PFS (Fig. 3b), 0.61 (95% CI: 0.44–0.83, $P=0.0016$) for DSS (Fig. 3c), and 0.47 (95% CI: 0.35–0.61, $P=0.0001$) for RFS (Fig. 3d). These results indicated benefit survival and favorable prognosis in POLEmut EC patients. No publication bias was calculated via funnel plot (Fig. S2) in the pooled analyses.

Additionally, univariable and multivariable analyses were pooled to test the associations among the four molecular subtypes (POLEmut, MSI, p53wt and p53abn) with clinical outcomes (OS, PFS, DSS and RFS) in ECs
Author	Year	Country	Study type	EC size	POLEmut	MSI	p53abn	Sequencing method	Histotype	Location of exounuclease mutations	Outcomes
Abdulfatah et al	2019	USA	retrospective	60	2	20	9	Sanger sequencing	EEC(39); NEEC(21)	Exons 9 and 13	NA
Beinse et al	2020	France	prospective	125	4	35	30	Sequencing	EEC(103); NEEC(22)	NA	NA
Bellone et al	2017	USA and Italy	retrospective	131	11	NA	NA	Sequencing	EEC(96); NEEC(35)	Exons 9–14	OS
Billingsley et al	2015	USA	prospective	544	30	NA	NA	Sanger sequencing	EEC(544); NEEC(10)	Residues 268–471	OS, PFS
Bosquet et al	2021	USA	prospective	239	28	67	70	Sequencing	EEC(1192); NEEC(47)	NA	PFS
Bosset et al	2018	USA, Canada, and Europe	retrospective	376	48	136	79	Sanger or next-generation approaches	EEC(376); NEEC(0)	Exons 9–14	OS, RFS
Church et al	2014	Europe	retrospective	788	48	NA	NA	Sanger sequencing	EEC(770); NEEC(18)	Exons 9 and 13	OS, DSS, RFS
Church et al	2013	Europe	retrospective	173	14	24	NA	Sequencing	EEC(154); NEEC(19)	residues 268–471	NA
Conlon et al	2020	USA	retrospective	37	4	6	NA	Sanger sequencing	EEC(0); NEEC(37)	Exons 9, 13 and 14	NA
Cosgrove et al	2018	USA	prospective	982	39	379	84	Sequencing	EEC(982); NEEC(0)	Exons 9, 13 and 14	OS, PFS, DSS
Crumley et al	2019	USA	retrospective	132	1	NA	NA	Next generation sequencing	EEC(132); NEEC(0)	Exons 9–14	NA
Dai et al	2021	NA	retrospective	473	73	148	170	Sequencing	EEC(363); NEEC(110)	NA	NA
DeLair et al	2017	USA	retrospective	30	2	4	8	Sequencing	EEC(0); NEEC(30)	Exons 9–14	NA
Devereaux et al	2021	USA	prospective	310	15	79	81	SNaPshot technique	EEC(220); NEEC(90)	Exons 9, 11, 13 and 14	NA
Eggink et al	2017	Europe and Australia	retrospective	116	15	19	40	Sanger sequencing	EEC(86); NEEC(30)	Exons 9, 13 and 14	NA
Espinoza et al	2017	Spain	retrospective	21	9	5	NA	Sequencing	NA	Exons 9–14	NA
Espinoza et al	2016	Spain	retrospective	40	1	NA	4	Sequencing	EEC(0); NEEC(20)	Exons 13 and 14	NA
van Esterik et al	2017	Netherlands	retrospective	49	10	11	10	Sanger sequencing	EEC(42); NEEC(7)	Exons 9 and 13	NA
Falcone et al	2019	Italy	retrospective	15	3	4	1	Sequencing	EEC(15); NEEC(0)	NA	NA
Le Gallo et al	2017	USA and Europe	retrospective	63	0	7	25	Sanger sequencing	EEC(0); NEEC(63)	NA	NA
Haraldsdottir et al	2014	USA	retrospective	14	3	NA	NA	Next generation sequencing	EEC(111); NEEC(3)	NA	NA
Haruma et al	2018	Japan	retrospective	138	12	40	NA	Sanger sequencing	EEC(123); NEEC(15)	Exons 9 and 13	NA
He et al	2020	China	retrospective	426	38	94	77	Sanger sequencing	EEC(364); NEEC(62)	Exons 9, 13 and 14	OS, PFS
Hoang et al	2015	Canada	retrospective	14	1	NA	4	Sanger sequencing	EEC(0); NEEC(14)	Exons 9–14	NA
Imboden et al	2019	Sweden	retrospective	599	38	NA	NA	Sanger sequencing	EEC(499); NEEC(100)	Exons 9–14	OS, PFS, DSS, RFS
Joehlin-Price et al	2021	USA	retrospective	95	10	35	18	Next generation sequencing	EEC(95); NEEC(0)	Exons 9, 13 and 14	OS, RFS
Jones et al	2020	USA	retrospective	621	28	203	NA	Next generation sequencing	EEC(621); NEEC(0)	NA	NA
Kim et al	2020	Canada	retrospective	52	1	5	18	Sequencing	EEC(0); NEEC(52)	NA	OS, PFS, DSS
Kolehmainen et al	2021	Finland	retrospective	604	30	287	69	Sequencing	EEC(535); NEEC(69)	Exons 9, 13 and 14	NA
León-Castillo et al	2020	UK, Italy, Canada, France, Australia, New Zealand	retrospective	410	51	137	93	Sequencing	EEC(274); NEEC(136)	Exons 9–14	OS, RFS
Author	Year	Country	Study type	EC size	POLEmut	MSI	p53abn	Sequencing method	Histotype	Location of exonuclease mutations	Outcomes
-----------------	------	-----------------------------	------------------	---------	---------	-----	--------	-----------------------------	----------------	----------------------------------	-----------
Li et al	2020	USA	retrospective	529	55	NA	NA	Sanger sequencing	EEC(396); NEEC(133)	Exons 9, 13 and 14	NA
		China	retrospective	467	34	NA	NA	Sanger sequencing	EEC(398); NEEC(69)	Exons 9, 13 and 14	NA
López-Reig et al	2019	Spain	prospective	96	16	NA	NA	Next generation sequencing	EEC(83); NEEC(13)	NA	OS, RFS
McConechy et al	2016	Canada	retrospective	406	39	NA	NA	Sequencing	EEC(315); NEEC(91)	Exons 9–14	OS, DSS; PFS
Meng et al	2014	Canada	retrospective	102	16	NA	NA	Sanger sequencing	EEC(102); NEEC(0)	Exons 9–14	OS, PFS; DSS
Monsur et al	2021	Japan	retrospective	127	5	NA	NA	Sequencing	EEC(109); NEEC(18)	NA	NA
Da Cruz Paula A et al	2021	USA	retrospective	175	12	49	39	Sequencing	EEC(116); NEEC(59)	NA	NA
Prendergast et al	2019	USA	retrospective	74	1	13	32	Sequencing	EEC(38); NEEC(36)	NA	NA
Riggs et al	2020	Caucasian, African American, Asian	prospective	65	7	NA	NA	Sequencing	EEC(37); NEEC(28)	NA	NA
Rosa-Rosa et al	2016	USA and Europe	retrospective	18	2	8	2	Sequencing	EEC(0); NEEC(18)	Exons 9 and 13	NA
Siraj et al	2019	Riyadh, Saudi Arabia	retrospective	414	2	52	NA	Capture sequencing and Sanger sequencing	EEC(370); NEEC(50)	NA	NA
Stasenko et al	2020	USA	prospective	451	23	NA	NA	Sequencing	EEC(451); NEEC(0)	residues 268–471	NA
Talhouk et al	2015	Canada	retrospective	143	12	41	25	Sequencing	EEC(119); NEEC(24)	Exons 9–14	OS, DSS; RFS
Talhouk et al	2017	Canada	retrospective	319	30	64	86	Sequencing	EEC(215); NEEC(104)	Exons 9–14	OS, PFS; DSS
Tessler-Cloutier et al	2021	Canada, USA, Australia	retrospective	82	6	52	NA	Sequencing	EEC(0); NEEC(82)	Exons 9–14	NA
Cancer Genome Atlas Research Network et al	2013	USA	retrospective	232	17	65	60	Exome sequencing	NA	Pro286Arg and Val-411Leu	PFS
Timmerman et al	2020	Belgium	prospective	108	7	33	24	Sanger sequencing	EEC(87); NEEC(21)	Exons 9, 11, 13 and 14	NA
Wong et al	2016	Singapore	retrospective	47	14	20	NA	Next generation sequencing	EEC(47); NEEC(0)	Exons 9–14	OS, RFS
ZHANG et al	2021	China	retrospective	21	3	11	6	Sanger sequencing	NA	Exons 9–14	NA
Zong et al	2021	China	retrospective	587	49	163	130	Sequencing	EEC(594); NEEC(239)	Exons 9–14	NA
Author	FIGO stage	Grade	LVSI	Myometrial invasion	Lymph node status	Myometrial invasion	Lymph node status	Clinical risk stratification	Adjuvant therapy		
-----------------------	------------	-------	------	---------------------	-------------------	---------------------	-------------------	---------------------------	-----------------		
Abdulfatah et al	46	5	9	0	19, 22, 10	NA, NA	NA, NA	NA, NA	NA, NA		
Beinse et al	84	2	26	9	61, 29, 13	29, 87	NA, NA	NA, NA	40, 21, 40		
Bellone et al	62	23	34	12	16, 42, 73	NA, NA	NA, NA	NA, NA	102, 29		
Billingsley et al	NA	NA	NA	NA	267, NA, NA	181, 343	157, 336	NA, NA	NA, NA		
Bosquet et al	NA	NA	NA	NA	72, 73, 47	NA, NA	NA, NA	NA, NA	NA, NA		
Bosse et al	291	NA	NA	NA	0, 0, 376	NA, NA	NA, NA	NA, NA	NA, NA		
Church et al	742	46	0	0	571, 108, 109	70, 718	560, 228	NA, NA	576, 212		
Church et al	114	18	15	8	64, 59, 45	NA, NA	NA, NA	NA, NA	NA, NA		
Conlon et al	19	1	11	6	NA, NA, NA	NA, NA	NA, NA	NA, NA	NA, NA		
Cosgrove et al	732	91	141	18	407, 423, 152	227, 737	260, 537	NA, NA	NA, NA		
Crumley et al	112	5	13	2	NA, NA, NA	30, 102	30, 102	11, 77	NA, NA		
Dai et al	NA	NA	NA	NA	NA, NA, NA	NA, NA	NA, NA	NA, NA	NA, NA		
DeLair et al	15	0	2	13	NA, NA, NA	NA, NA	NA, NA	NA, NA	NA, NA		
Deveaux et al	177	12	66	24	NA, NA, 32	99, 167	115, 104	NA, NA	NA, NA		
Eggink et al	42	21	41	11	13, 5, 98	55, 40	87, 23	NA, NA	0, 0, 116		
Espinosa et al	10	1	5	5	NA, NA, NA	NA, NA	NA, NA	NA, NA	NA, 12, 6		
Espinosa et al	11	2	2	5	NA, NA, NA	7, 13	NA, NA	NA, NA	NA, 16, 4		
van Esterik M et al	NA	NA	NA	NA	7, 42, 22	27, 27	17, 19	NA, NA	NA, NA		
Falcone et al	0	0	0	0	NA, NA, 0	NA, NA	NA, NA	NA, NA	NA, NA		
Table 1 (continued)

Author	FIGO stage	Grade	LVSI	Myometrial invasion	Lymph node status	Clinical risk stratification	Adjuvant therapy								
	I II III IV			present absent	≥50% <50%										
						low intermediate high	Yes No								
Le Gallo et al	NA NA NA NA	NA NA NA	NA NA NA NA												
Haraldsdottir et al	12 0 2 0	6 3 5	NA NA NA NA	NA NA NA NA	40 98 49 89	NA NA NA NA	74 64								
Haruma et al	93 11 24 10	64 29 45	0 108 48 378	117 309 22 345	NA NA NA NA	NA NA NA NA	NA NA NA NA								
He et al	NA NA NA NA	NA NA NA 108	48 378 117 309	22 345 22 345	NA NA NA NA	NA NA NA NA	NA NA NA NA								
Hoang et al	6 4 3 1	NA NA NA	NA NA NA NA	NA NA NA NA	63 237 238 70	203 84 258	NA NA NA NA								
Imboden et al	447 55 70 27	NA NA 166	162 437 236 309	308 70 203 84	258	40 55	NA NA NA NA								
Joehlin-Price et al	NA NA NA NA	0 0 95	NA NA NA NA	NA NA NA NA	113 172 156	NA NA NA NA	NA NA NA NA								
Jones et al	NA NA NA NA	113 172 156	NA NA NA NA												
Kim et al	30 5 14 3	NA NA NA	NA NA NA	NA NA NA	35 16 13 31	9 25 25 25	NA NA NA NA								
Kolehmainen et al	440 47 97 20	293 155 87	160 444 249 355	NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA								
León-Castillo et al	127 105 178 0	NA NA 113	255 155 223 187	0 0 410 410	0	NA NA	NA NA NA NA								
Li et al	330 51 121 27	96 116 295	NA NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA								
López-Reig et al	388 37 38 4	321 58 63	NA NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA								
McConechy et al	282 28 64 25	125 70 205	NA NA NA NA	NA NA NA	NA NA NA	NA NA	180 220								
Meng et al	29 6 23 12	0 0 102	25 53 25 53	NA NA NA	NA NA NA	NA NA	NA NA NA								
Monsur et al	81 22 21 3	70 23 16	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA								
Da Cruz Paula A et al	129 6 30 10	71 35 10	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA								
Prendergast et al	12 7 28 24	12 15 44	NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA NA								
Author	FIGO stage	Grade	Myometrial invasion	Lymph node status	Clinical risk stratification	Adjuvant therapy									
---------------------------	------------	-------	---------------------	-------------------	-------------------------------	------------------									
	I II III IV	G1	G2	G3	≥50%	<50%	present	absent	present	absent	low	intermediate	high	Yes	No
Riggs et al	31 5 14 12	20 12	33	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Rosa-Rosa et al	6 1 4 4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Siraj et al	267 66 34	140	138	123	88	233	NA	NA	NA	NA	NA	NA	NA	NA	NA
Stasenko et al	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Talhouk et al	102 39 53	51	39	53	58	79	NA	NA	19	120	56	23	64	63	79
Talhouk et al	221 NA	NA	NA	NA	NA	NA	NA	NA	195	190	95	49	173	147	163
Tessier-Cloutier et al	35 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cancer Genome Atlas Research Network et al	NA														
Timmerman et al	76 18 6	61	17	30	28	79	NA	NA	11	66	44	17	14	37	71
Wong et al	24 5	0 0	47	29	18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ZHANG et al	13 0 7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zong et al	543 173 44	NA	NA	454	231	582	219	585	125	497	NA	NA	NA	NA	NA

Note: The details of included studies can be found in the Table S2.
Abbreviations: EC endometrial carcinoma, POLE Polymerase ε, POLEmut POLE-mutated/ultramutated, MSI microsatellite-instable/hypermutated, p53abn p53-abnormal/mutated, NA not available, EEC endometrioid endometrial carcinoma, NEEC nonendometrioid endometrial carcinoma, OS overall survival, PFS progression free survival, DSS disease specific survival, RFS relapse free survival, FIGO Federation International of Gynecology and Obstetrics, LVSI lymphovascular space invasion.
Table 3). The results revealed that the clinical outcomes of POLEmut group were the best, but those of p53abn group were the worst, while those of MSI group and p53wt group were medium.

Assessment of study quality
All the studies were highly qualified (quality assessment of 49 included articles is summarized in Table S4) with relatively satisfying results for bias risk assessment.

Discussion
Worldwide, EC is one of the most common cancers of women with survival rate not improving. TCGA research network firstly identified the molecular cohort of POLEmut EC that features a favorable prognostic potential, despite with bad clinicopathological parameters [22]. Accumulating studies were conducted on the POLEmut, but the frequency and prognostic value of POLEmut in EC patients were variable among previous researches [3, 23–25]. Therefore, this study aimed to estimate the frequency and clinicopathological characteristics of POLEmut and the overall effect on prognosis of EC patients.

Our study revealed that 7.95% (95% CI: 6.52–9.51%) of EC patients harbored POLEmut. The results exhibited that there were no significant differences in histotype (EEC vs. NEEC) of POLEmut ECs; and no significant relations were observed between POLEmut and LVSI, lymph node status, clinical risk stratification, or adjuvant therapy. However, it should be noted that histotype and LVSI are features that generally subjective with interobserver variability and may not be reproducible between series [6, 26]. The vast majority of it presented higher expression at earlier stage and less myometrial invasion, both of which were “traditional” identified as an important marker of low-risk stratification; meanwhile, the POLEmut ECs presented at the highest grade (grade 3), which were generally considered to be associated with a higher risk of recurrence and death [27].

Studies have confirmed that POLEmut ECs had better clinical outcomes with survival analysis, even those at high grade [28–30]. Paradoxically, some investigators advocated that superior survival was not found in POLEmut ECs [19, 20]. Based on our study, EC patients with POLEmut possessed better clinical survivals (including
Table 2 The pooled frequency of POLEmut ECs according to clinicopathology characteristics

Clinicopathological characteristics in EC	Pooled frequency of POLEmut (95% CI), (%)	No. of studies	I² (95% CI), (%)	P for I²	Model	Egger's test
Overall POLEmut	7.95 (6.52–9.51)	50	86.3 (82.7–89.1)	< 0.0001	Random effect	z = 1.832, P = 0.06695
EEC	7.95 (6.55–9.46)	32	79.6 (71.8–85.2)	< 0.0001	Random effect	z = 2.562, P = 0.0104
NEEC	4.45 (2.63–6.61)	30	56.0 (33.7–70.8)	0.0001	Random effect	z = 1.018, P = 0.3087
Grade 1–2	5.35 (4.16–6.67)	23	57.2 (31.9–73.1)	0.0004	Random effect	z = 1.0836, P = 0.2785
Grade 3	10.55 (8.35–12.94)	27	66.6 (50.0–77.7)	< 0.0001	Random effect	z = 0.50043, P = 0.6168
FIGO stage I–II	9.15 (7.06–11.46)	29	80.8 (73.2–86.3)	< 0.0001	Random effect	z = 2.7772, P = 0.005483
FIGO stage II–IV	3.08 (1.72–4.71)	30	51.9 (26.9–68.3)	0.0006	Random effect	z = 0.66061, P = 0.5089
FIGO stage III–IV	2.89 (1.43–4.67)	28	39.4 (4.6–61.6)	0.0180	Random effect	z = 0.25724, P = 0.797
LVS1 absent	6.96 (5.32–8.77)	17	68.3 (47.6–80.8)	< 0.0001	Random effect	z = 1.7728, P = 0.07626
LVS1 present	6.40 (3.82–9.48)	17	75.1 (60.0–84.5)	< 0.0001	Random effect	z = 0.24716, P = 0.8048
Myometrial invasion ≥ 50%	4.78 (3.47–6.28)	11	39.6 (0.0–70.3)	0.0846	Random effect	z = 0.70065, P = 0.4835
Myometrial invasion < 50%	6.85 (5.04–8.89)	11	65.5 (34.5–81.8)	0.0013	Random effect	z = 0.93704, P = 0.3487
Lymph node status absent	9.46 (7.77–11.28)	7	0.0 (0.0–45.4)	0.7823	Fixed effect	z = 0.75094, P = 0.4527
Lymph node status present	4.97 (0.55–12.07)	7	66.0 (23.9–84.8)	0.0072	Random effect	z = 0.30722, P = 0.7587
Risk stratification-low	5.87 (3.81–8.30)	5	0.0 (0.0–0.0)	0.9660	Fixed effect	z = 0, P = 1
Risk stratification-intermediate	7.18 (1.07–16.78)	5	69.4 (21.5–88.0)	0.0110	Random effect	z = 0, P = 1
Risk stratification-high	8.87 (6.07–12.09)	7	52.1 (0.0–79.6)	0.0512	Random effect	z = -0.15019, P = 0.8806
With adjuvant therapy	9.00 (6.78–11.46)	15	60.5 (30.6–77.6)	0.0012	Random effect	z = 0.14846, P = 0.8820
Without adjuvant therapy	6.27 (4.11–8.75)	14	47.0 (1.4–71.5)	0.0266	Random effect	z = 0.4927, P = 0.6222

Abbreviations: EC Endometrial Carcinoma, POLE Polymerase ε, POLEmut POLE-Mutated/Ultramutated, EEC Endometrioid Endometrial Carcinoma, NEEC Nonendometrioid Endometrial Carcinoma, FIGO Federation International of Gynecology and Obstetrics, LVS1 Lymphovascular Space Invasion, CI Confidence Interval.

Table 3 The pooled OR of POLEmut ECs according to clinicopathology characteristics

Clinicopathological characteristics in EC	Pooled OR (95% CI)	P for pooled OR	No. of studies	I² (95% CI), (%)	P for I²	Model	Egger's test
EEC vs. NEEC	1.35 (0.88–2.08)	0.1719	22	49.6 (17.4–69.2)	0.0047	Random effects	z = 0.98693, P = 0.3237
Grade 1–2 vs. 3	0.51 (0.3–0.73)	0.0002	22	53.5 (24.6–71.3)	0.0016	Random effects	z = -0.14099, P = 0.8879
FIGO stage I–II vs. III–IV	1.91 (1.29–2.83)	0.0013	28	41.4 (8.0–62.7)	0.0125	Random effects	z = 0.19757, P = 0.8434
LVS1 present vs. absent	0.98 (0.77–1.25)	0.8644	17	15.4 (0.0–51.8)	0.2727	Fixed effect	z = -1.647, P = 0.09941
Myometrial invasion ≥ 50% vs. < 50%	0.66 (0.50–0.86)	0.0025	10	0.0 (0.0–42.7)	0.7489	Fixed effect	z = -0.98387, P = 0.3252
Lymph node status present vs. absent	1.01 (0.65–1.57)	0.9641	7	23.0 (0.0–65.8)	0.2537	Fixed effect	z = -1.0513, P = 0.2931
Clinical risk stratification: high vs. low	1.21 (0.73–2.01)	0.4678	5	0.0 (0.0–75.4)	0.4966	Fixed effect	z = 0, P = 1
Adjuvant therapy: yes vs. no	1.16 (0.88–1.54)	0.2939	14	0.0 (0.0–41.7)	0.6918	Fixed effect	z = -0.27372, P = 0.7843

Abbreviations: EC Endometrial Carcinoma; POLE Polymerase ε; POLEmut POLE-Mutated/Ultramutated; EEC Endometrioid Endometrial Carcinoma; NEEC Nonendometrioid Endometrial Carcinoma; FIGO Federation International of Gynecology and Obstetrics; LVS1 Lymphovascular Space Invasion; OR Odds Ratio; vs. Versus.

OS, PFS, DSS, and RFS) than those with POLEwt. Additionally, according to both pooled univariable and multivariable analyses, the POLEmut cohort showed the best clinical prognosis among the four molecular subtypes, with a death risk of any cause lower than that of other three molecular subtypes, and a risk of recurrent/progressive disease lower; while the p53abn group, as expected, showed the worst prognosis. The reason why POLEmut correlates favorable outcomes in the patients remains unclear. Meng et al. [31] had speculated that this
might due to the high mutation burden and the increase in base substitution; Howitt et al. [32] showed that POL-Emut ECs were associated with high neoantigens and elevated CD8+ tumor infiltrating lymphocytes, which was counterbalanced by overexpression of program death-ligand. POLE proofreading mutations might elicit an anti-tumor response [33].

There is now an emerging link between high mutation burden in tumors and improved prognosis in cancer patients. Indeed, POLEmut tumors have been shown to feature higher immune infiltrations and programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) expression [34], which may offset the survival risk caused by higher tumor grades in ultramutated POLE and thus generate a favorable prognosis. Consequently, POLEmut in EC patients was a promising therapeutical target [35].

Talhouk et al. [4] found that half of POLEmut ECs were identified as with “high risk” based on stage, histology, and grade. It is clear that there may be both overtreatment and undertreatment of women based solely on application of the previous risk-assessment tool. In 2020, the European Society of Gynaecological Oncology (ESGO)/European Society for Radiotherapy and Oncology (ESTRO)/European Society of Pathology (ESP) published their joint guidelines for the management of EC, for the first time incorporating the TCGA findings [including groups of POLEmut, MMRd, p53abn and NSMP (surrogate of the copy number low/endometrioid group)] to assess the prognosis of EC in association with classic and distinct clinicopathologic prognostic factors (such as stage, grade, histotype, myometrial invasion or LVSI) in the risk stratification of EC [36]. However, several points remain to be clarified, as the prognostic value of the TCGA molecular group may vary among diverse histotypes of EC [37]. It has been recorded that POLEmut served as the molecular signature least affected by other prognostic clinicopathological factors [38]. Furthermore, based on our study, there was no significant difference in frequency of POLEmut between EC patients with and without adjuvant therapy. For this reason, the clinical practice that many of the patients currently undergo adjuvant treatment may constitute an overtreatment. It is reasonable to identify POLEmut status at the moment of diagnosis and to mete out less intensive treatment for EC patients with POLEmut.

It remains obscure whether the favorable clinical outcomes observed in patients with POLEmut ECs were independent of the receipt of adjuvant therapy. Furthermore, other molecular factors and clinicopathological might have an independent prognostic value in the context of the TCGA classification [38], such as the LVSI [39]. Therefore, novel initiatives stratifying ECs for clinical trials according to molecular subtype are recommended, since they will provide a key step toward precision medicine for ECs.
Table 3 The pooled HRs of OS, PFS, DSS, RFS for four molecular subtypes at univariable and multivariable analyses

Subtype	Event	HR (95% CI)	P of HR	I^2 (95% CI)	P of I^2	Number of studies
OS	POLEmut vs. p53wt	0.69 (0.55–0.87)	0.0016	0.0% (0.0–62.5%)	0.6952	5
MSI vs. p53wt	1.15 (0.97–1.37)	0.1054	59.9% (1.6–83.7%)	0.0288	6	
p53mt vs p53 wt	1.40 (1.15–1.71)	0.0007	66.0% (11.3–87.0%)	0.0192	5	
PFS	POLEmut vs. p53wt	0.66 (0.42–1.04)	0.0743	0.0% (0.0–76.3%)	0.6447	3
MSI vs. p53wt	1.29 (0.92–1.82)	0.1421	59.9% (0.0–88.6%)	0.0828	3	
p53mt vs p53 wt	1.81 (1.24–2.36)	0.0023	79.2% (33.7–93.5%)	0.0082	3	
DSS	POLEmut vs. p53wt	0.81 (0.52–1.26)	0.3392	0.0% (0.0–13.3%)	0.9123	4
MSI vs. p53wt	1.04 (0.69–1.57)	0.8534	74.8% (30.1–90.9%)	0.0076	4	
p53mt vs p53 wt	1.77 (1.51–2.09)	< 0.0001	16.5% (0.0–87.2%)	0.3087	4	
RFS	POLEmut vs. p53wt	0.46 (0.29–0.74)	0.0015	0.00%	0.9695	2
MSI vs. p53wt	0.92 (0.81–1.06)	0.2449	0.0% (0.0–86.9%)	0.4521	3	
p53mt vs p53 wt	1.47 (1.14–1.89)	0.0030	50.9% (0.0–85.8%)	0.1306	3	

Abbreviations: POLEmut: POLE-Mutated/Ultramutated; MSI: Microsatellite-Instable/Hypermutated; p53abn: p53 Abnormal/Mutated; p53wt: p53 Wild-Type; OS: Overall Survival; PFS: Progression Free Survival; DSS: Disease Specific Survival; RFS: Relapse Free Survival; CI: Confidence Interval; HR: Hazard Ratio
Limitations
This study came across three drawbacks: firstly, there were only 8 prospective studies despite containing 49 articles involving 12,120 patients, for analyzing the clinicopathological characteristics of POLEmut ECs and prognostic value of POLE status; secondly, bias might exist to some extent for excluding relevant studies published in non-English language; the last was that the heterogeneity of included studies was high to some degree.

Conclusions
The POLEmut emerged higher expression in ECs with grade 3, FIGO stage I-II, and myometrial invasion<50%; it might serve as a highly favorable prognostic marker in EC; the clinical outcomes of POLEmut group were the best one among the four molecular subtypes.

Abbreviations
EC: Endometrial Carcinoma; POLE: Polymerase ε; POLEmut: POLE-Mutated/Ultramutated; MSI: Microsatellite-Instable/Hypermutated; p53abn: p53-Abnormal; p53wt: p53-Wild-Type; ICIs: Immune Checkpoint Inhibitor; NA: Not Available; EEC: Endometrioid Endometrial Carcinoma; NEEC: Nonendometrioid Endometrial Carcinoma; OS: Overall Survival; DFS: Disease Specific Survival; RFS: Relapse Free Survival; FIGO: Federation International of Gynecology and Obstetrics; ProMisE: Proactive Molecular Risk Classifier for Endometrial Cancer; LVSI: Lymphovascular Space Invasion; CI: Confidence Interval; HR: Hazard Ratio; OR: Odd Ratio; NOS: Newcastle-Ottawa Scale; ESGO: Gynaecological Oncology; ESTRO: European Society for Radiotherapy and Oncology; ESP: European Society of Pathology.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12885-022-10267-2.

Additional file 1: Table S1. PRISMA
Additional file 2: Table S2. The list of the included studies.
Additional file 3: Figure S1. Forest plot for the pooled frequency of (a) microsatellite-instable/MSI/Hypermutated and (b) p53-abnormal/mutated (p53abn) in endometrial carcinoma (EC); funnel plot for the pooled frequency of (c) MSI and (d) p53abn in EC.
Additional file 4: Table S3. The proportion of MSI and p53abn molecular subtypes in ECs.
Additional file 5: Figure S2. Funnel plot of (a) overall survival (OS), (b) progression-free survival (PFS), (c) disease specific survival (DSS), and (d) relapse free survival (RFS) for POLEmut compared with POLEwt EC patients.
Additional file 6: Table S4. The Newcastle-Ottawa scale for quality assessment of the studies.

Acknowledgments
None.

Code availability
Not applicable.

Registration and protocol
The review was not registered and the protocol was not prepared.

Authors’ contributions
Qing Wu: Conceptualization, Methodology, Software, Data curation, Formal analysis, Writing-Original Draft; Nianhai Zhang: Visualization, Investigation. Xianhe Xie: Conceptualization, Validation, Writing- Review & Editing. The author(s) read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts of interest to declare that are relevant to the content of this article.

Author details
1Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Chazhong Road No, 20, Fujian 350005 Fuzhou, China. 2Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China. 3Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.

Received: 8 August 2022 Accepted: 2 November 2022
Published online: 10 November 2022

References
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.
3. He D, Wang H, Dong Y, Zhang Y, Zhao J, Lv C, et al. POLE mutation combined with microcytotic, elongated and fragmented (MEFL) pattern invasion in endometrial carcinomas might be associated with poor survival in Chinese women. Gynecol Oncol. 2020;159(1):36–42. https://doi.org/10.1016/j.ygyno.2020.07.102.
4. Talhouk A, McConkey MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N, et al. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer. 2015;113(2):299–310. https://doi.org/10.1038/bjc.2015.190.
5. Murali R, Soslow RA, Wiegelt B. Classification of endometrial carcinoma: more than two types. Lancet Oncol. 2014;15(7):e268–78. https://doi.org/10.1016/S1470-2045(13)70591-6.
6. Gills CB, Oliva E, Soslow RA. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am J Surg Pathol. 2013;37(6):874–81. https://doi.org/10.1097/PAS.0b013e318275776a.
7. Han G, Sidhu D, Duggan MA, Arsineau J, Cesari M, Clement PB, et al. Reproductive history of histological cell type in high-grade endometrial carcinoma. Mod Pathol. 2013;26(12):1594–604. https://doi.org/10.1038/modpathol.2013.102.
8. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. https://doi.org/10.1038/nature12113.
