RESEARCH ARTICLE

A comprehensive understanding of the biocontrol potential of *Bacillus velezensis* LM2303 against *Fusarium* head blight

Liang Chen¹,²*, Junying Heng¹, Suya Qin¹, Ke Bian¹,²*

¹ Provincial Key Laboratory for Transformation and Utilization of Cereal Resource, College of Bioengineering, Henan University of Technology, Zhengzhou, China, ² Collaborative Innovation Center for Grain Storage Security in Henan Province, Zhengzhou, China

* chen_liang.cl@163.com (LC); kebian@163.com (KB)

Abstract

Fusarium head blight (FHB) mainly caused by *F. graminearum*, always brings serious damage to wheat production worldwide. In this study, we found that strain LM2303 had strong antagonist activity against *F. graminearum* and significantly reduced disease severity of FHB with the control efficiency of 72.3% under field conditions. To gain a comprehensive understanding of the biocontrol potential of strain LM2303 against FHB, an integrated approach of genome mining and chemical analysis was employed. The whole genome of strain LM2303 was obtained and analyzed, showing the largest number of genes/gene clusters associated with biocontrol functions as compared with the known biocontrol strains (FZB42, M75, CAUB946). And strain LM2303 was accurately determined as a member of the *B. velezensis* clade using the phylogenomic analysis of single-copy core genes. Through genome mining, 13 biosynthetic gene clusters (BGCs) encoding secondary metabolites with biocontrol functions were identified, which were further confirmed through chemical analyses such as UHPLC-ESI-MS, including three antifungal metabolites (fengycin B, iturin A, and surfactin A), eight antibacterial metabolites (surfactin A, butirosin, plantazolicin and hydrolyzed plantazolicin, kijanimicin, bacilysin, difficidin, bacillaene A and bacillaene B, 7-o-malonyl macrolactin A and 7-o-succinyl macrolactin A), the siderophore bacillibactin, molybdenum cofactor and teichuronic acid. In addition, genes/gene clusters involved in plant colonization, plant growth promotion and induced systemic resistance were also found and analyzed, along with the corresponding metabolites. Finally, four different mechanisms of strain LM2303 involved in the biocontrol of FHB were putatively obtained. This work provides better insights into a mechanistic understanding of strain LM2303 in control of FHB, reinforcing the higher potential of this strain as a powerful biocontrol strain agent (BCA) for FHB control. The results also provide scientific reference and comparison for other biocontrol strains.
Introduction

Fusarium head blight (FHB), mainly caused by *F. graminearum*, is one of the most devastating diseases of wheat (*Triticum aestivum* L.) and other small grain cereal crops worldwide, causing the reductions in yield and quality as well as the accumulation of mycotoxins in grains [1–3]. Notably, more than 7 million hectares which account for 25% of total areas in China were infected by FHB [4]. Various control strategies have been used to suppress FHB, including chemical fungicides treatment and resistant cultivars breeding, but so far none of them are enough to control this disease [5]. Due to long-term overuse of chemicals in agriculture, a chain of serious problems has arisen, including increased pathogen resistance, chemical residues, environmental pollution and health hazards [1]. Nowadays, owe to the rare pollution potential and health hazards, biocontrol strains have been considered as one of the most promising alternatives to the chemicals and have been commercially developed as biofertilizers and/or BCAs in many countries [6, 7], especially *Bacillus* strains, which were widely used as BCAs to control various plant diseases [6, 7].

Biocontrol activity of microbial strain can be mediated by its secondary metabolites, and the more metabolites that the strain produces, the stronger the biocontrol efficiency is [8, 9]. But, the traditional approach of identifying and characterizing the secondary metabolites was inefficient [10]. Excitingly, the fast development of DNA sequencing technologies has revolutionized almost every aspect of biology including the biocontrol strain, and complete genomes of some important biocontrol strains were obtained [6, 11]. Subsequently, the new effective approach known as genome mining, has provided an effective access to rapidly mining the genetic data and characterize the secondary metabolites potential of the strains.

Strain LM2303 was effective in inhibiting the conidia germination and mycelia growth of *F. graminearum* [12]. To better insight into the biocontrol potential and the mode of action against FHB, this study conducted to (1) evaluate the control efficacy of strain LM2303 in suppressing FHB under field conditions, (2) sequence, and analysis the LM2303 genome, and reclassified the taxonomy of strain LM2303, (3) mining of secondary metabolite BGCs and confirm these productions, (4) identify and analyze genes/gene clusters responsible for plant colonization, plant growth promotion and induced systemic resistance, along with the corresponding metabolites.

Materials and methods

Strains and culture conditions

F. graminearum used in this study was isolated from wheat spikes infected by FHB, and was maintained on potato dextrose agar (PDA) slant at 4°C. The fungus was cultured for 5d at 26°C, 120 r/min in a 250mL flask containing 100mL of CMC medium (CMC-Na 15g, NH₄NO₃·7H₂O 0.5 g, yeast extract 1g, H₂O 1L) to produce conidia. Then conidia suspension was filtered through sterile filter paper to remove mycelia, and adjusted to 2×10⁵ spores/mL using a Hemocytometer.

Strain LM2303 was maintained on nutrient agar (NA) slant at 4°C, then inoculated into a 500mL flask containing 175mL of Landy medium (L-glutamic acid 5g, glucose 20g, yeast extract 1g, phenylalanine 2mg, MgSO₄·7H₂O 0.5g, KCl 0.5g, MnSO₄ 5mg, CuSO₄·5H₂O 0.16mg, FeSO₄·7H₂O 0.15mg, KH₂PO₄ 1g, H₂O 1L, pH7.0) to culture for 48h at 33°C, 170 r/min to produce the metabolites. And LBGM broth (Tryptone 10g, yeast extract 5g, Nacl 5g, glycerol 1%(v/v), MnSO₄ 0.1mM, H₂O 1L) was used for biofilm formation.
Field trial
To evaluate the biocontrol efficacy of strain LM2303 against FHB, the field trial was conducted at Beisazhen Village, Muchang Town, Liuan, Anhui province, China (E31˚88’, N116˚54’), in 2016. The wheat cultivar Yangmai 20 was used. The experimental plots (15 m²/plot, random block, 400 heads/plot) consist of 4 rows (2 m/row and 0.2 m between rows). At the initial stage of wheat anthesis, 800 mL of bacterial culture broth (2×10⁸ cfu/mL), 1000-fold dilution of 50% Carbendazim (WP), or sterile water were sprayed towards wheat spikes and roots, respectively. And 300 mL conidia suspension of *F. graminearum* (2×10⁵ spores/mL) were sprayed two days later. The treatments (four replicates per treatment) were both applied in the late afternoon approximately 2h before sunset, by spraying through a commercial sprayer consisting of 5 linear sprinklers and a CO₂ pressure source. The sprayer was adjusted to 40 mbar and flow to 20 mL/s. Twenty one days after pathogen inoculation, the disease index was investigated according to the method described in standard NY/T 1464.15–2007 issued by Ministry of agriculture of the People’s Republic of China [13], and the control efficacy was also calculated as described in standard NY/T 1464.15–2007.

Genome sequencing and analysis
Bacterial genomic DNA was extracted using bacterial genomic DNA kit, and whole genome sequencing was performed using the PacBio RSII single molecule real time sequencing technique with a 20-kb SMRTbellTM library at the Biomarker (Beijing, China). Then gene prediction was further performed by Prodigal 2.50 (E-value<10⁻⁵) [14], and gene annotation was performed by BlastP similarity searches (E-value<10⁻⁵) against Clusters of Orthologous Groups (COGs) database. And to exactly determine the phylogenetic taxonomy of strain LM2303, the orthologous genes were generated using OrthoMCL 2.0.3 via comparison with 15 closely related genomes, and a Neighbor-Joining phylogenetic tree was constructed based on the matrices of single-copy core genes using Tamura-Nei model by MEGA 7.0.

Genome mining of secondary metabolite gene clusters with biocontrol functions
The antibiotics and secondary metabolite analysis shell (antiSMASH) serves as a comprehensive resource for the automatic genomic identification and analysis of biosynthetic gene clusters of any type, facilitating rapid genome mining of both bacterial and fungal strains [15, 16]. Thereby, secondary metabolite BGCs in LM2303 genome were mining by using antiSMASH 4.1.0, and further aligned using NCBI BlastP against different databases.

Production and detection of secondary metabolites from strain LM2303
To produce secondary metabolites, strain LM2303 was firstly cultured as described above, and the cell-free supernatant was collected by centrifugation (4 °C, 12000 g, 15 min) followed by adjusting to pH 2.0 with 6 mol/L HCl. After precipitation overnight at 4 °C, the precipitate was collected by centrifugation (4 °C, 12000 g, 15 min) and extracted with methanol at least three times. Then the filtrated methanol extracts were brought together and evaporated to dryness at 40°C under vacuum using rotary evaporator. The products were dissolved in methanol for further analysis.

Further analysis of secondary metabolites was employed by an Ultra high liquid chromatography (UHPLC) system (Thermo Scientific™ Dionex Ultimate 3000 UHPLC, Germany) coupled with a high resolution mass spectrometer (MS) (Thermo Scientific™ Q Exactive™ Orbitrap MS, Germany). And the MS was integrated with a high-energy collision-dissociation chamber
(HCD) and an electrospray ionization (ESI) interface. A 5 μL aliquot was injected into Syncronis C18 column (100×2.1 mm, 1.7 μm) in the UHPLC system for separation. The mobile phases were H2O (A) and CH3CN (B), both containing 0.1% Formic acid (v/v), elution gradient was as follows: 95%A/ 5%B to 5%A/95%B, 60 min, flow rate at 300 μL/min. The MS instrumental parameters were as follows: high resolution (70000), positive full scan mode (ESI+), mass range of 150–2000 m/z, microscans of 1, AGC target of 3×10^6, maximum IT of 100 ms, sheath gas of 30, auxiliary gas of 5, spray voltage of 3.5 KV, capillary temperature of 350˚C, the interface voltage of 4.5 kv, the detector voltage of 1.2 kv, the desolvation gas temperature of 300 ˚C, the heat block temperature of 400 ˚C, the HCD collision energy of 45 eV, nebulizer gas of Nitrogen, flow rate of nebulizer gas of 3 L/min.

Results and discussion

Field trial result

Field trial showed the FHB disease index of blank control (sterile water) and fungicide control (Carbendazim) was (55.6±2.9) and (39.5±3.2) respectively, while that of strain LM2303 was only (15.4±1.8), significantly decreased by 71.9% to that of the blank control and 60.5% to that of the fungicide control. Accordingly, the control efficacy of FHB by strain LM2303 was 72.3%, a 43.3% significant increase compared with the fungicide control (P<0.01). Thus, strain LM2303 was proved to be a strong potential BCA to prevent wheat from FHB.

Genome features and analysis of strain LM2303

A circular chromosome of strain LM2303 was obtained (Genbank accession number CP018152), with the length of 3989393 bp, G+C content of 46.68%, and 3866 predicted protein-coding genes. And 2889 of the 3866 protein-coding genes were assigned to one or more COG functional categories (S1 Table). More importantly, compared to the three well-known biocontrol strains (FZB42, CAU B946, M75), strain LM2303 harbored the largest number of genes/gene clusters associated with secondary metabolite biosynthesis, transport, and catabolism (119 genes, 3.08% of the whole genome), amino acid transport and metabolism (349 genes, 9.03% of the whole genome), carbohydrate transport and metabolism (252 genes, 6.51% of the whole genome), inorganic ion transport and metabolism (212 genes, 5.48% of the whole genome)(S1 Table), which indicate that this strain has a higher potential as a biocontrol agent than other B. velezensis strains.

Phylogenetic analysis of strain LM2303

Originally, strain LM2303 was classified as B. subtilis based on the analysis of morphological, physiological properties and 16S rRNA gene sequences [17]. But, due to the similar morphological, physiological properties and 16S rRNA gene sequences, B. subtilis, B. amyloliquefaciens, and B. velezensis were difficult to differentiate, leading to several re-classifications [18]. In this study, based on the matrices of 2351 single-copy core genes from 15 related strains, strain LM2303 belonged to a different branch with B. subtilis strain and B. amyloliquefaciens strain in the phylogenetic tree, but shared the closest evolutionary relative to the B. velezensis strain (CAU B946 and M75) (Fig 1). Thus strain LM2303 should be a member of the B. velezensis clade, rather than the B. subtilis clade or B. amyloliquefaciens clade. B. velezensis was first described by Ruiz-Garcia et al. in 2005 and closely related to B. subtilis and B. amyloliquefaciens [19]. Until recently, by means of genome sequencing and comparative genomics analysis, several strains including B. amyloliquefaciens subsp. plantarum, B. methylotrophicus have been...
reclassified as *B. velezensis*, such as the well-known strain FZB42 [18], thereby the taxonomic status of some related strains may need to be reconsidered.

Secondary metabolite biosynthetic gene clusters in the LM2303 genome

Through genome mining, a total of 29 putative BGCs were found in the LM2303 genome, and 13 of which were identified, including 4 non-ribosomal peptide synthetases (NRPSs) for
surfactin, fengycin, bacilysin and bacillibactin, 3 polyketide synthases (PKSs) for difficidin, macrolactin and butirosin, 2 PKS-NRPS hybrid synthetases (PKS-NRPS hybrid) for iturin and bacillaene, 1 Microcin synthase for plantazolicin, 1 Thiopeptide synthase for kijanimicin, 2 Cf_putative synthases for molybdenum cofactor and teichuronic acid. Notably, the 13 annotated BGCs span more than 735 kb and represent nearly 18% of the whole genome, and the metabolites were reported to play important roles in pathogen suppression, nutrient uptake, plant colonization or induced systemic resistance (ISR) (Table 1)[3, 7, 20, 21], accentuating the strong potential of strain LM2303 in the biocontrol application. Besides, the synthetase genes in the LM2303 genome for bacillaene, bacillibactin, bacilysin, difficidin, fengycin, macrolactin show 100% similarity to those in other three \textit{B. velezensis} strains, while the synthetase genes for surfactin showed an obvious difference in the four strains (Table 1). Interestingly, the LM2303 genome contained a fragment of the kijanimicin operon which was absent in FZB42 and CAU B946, and the plantazolicin operon which was absent in M75, endowing strain LM2303 with additional activity against some bacterial pathogens (Table 1). Furthermore, strain LM2303 also harbors another 16 unannotated BGCs (data not shown), which was failed to find similar clusters in the MIBiG database due to less similarity to the existing compounds. The metabolites encoded by the unannotated BGCs may be novel in structure or function, which are worthy to be researched.

Antifungal secondary metabolites from strain LM2303

Strain LM2303 harbors 3 annotated BGCs encoding antifungal metabolites (fengycin, iturin, surfactin) (Table 1), while fengycin, iturin, surfactin are both belong to \textit{Bacillus} cyclic lipopeptides (CLPs). \textit{Bacillus} CLPs were known to have strong antifungal activity on phytopathogenic fungi by penetrating cell membranes, forming ion pore channels, causing membrane osmotic imbalance and even cell death [7]. Strain LM2303 exhibited a directly antagonistic effect against \textit{F. graminearum} (Fig 2A), in which the CLPs play an important role. By using PI staining, the red fluorescence was observed in the \textit{F. graminearum} hyphae which was treated with LM2303 CLPs, while the red fluorescence was absent in the normal hyphae, indicating the damage of membrane permeability in the treated hyphae (Fig 3). In addition, strain

Cluster	Synthetase Type	Metabolite	Function	MIBiG accession*	Strains (genes similarity)
bac	PKS-NRPS	Bacillaene	Antibacterial	BGC0001089	100% 100% 100% 100%
dhb	NRPS	Bacillibactin	Nutrient uptake	BGC0000309	100% 100% 100% 100%
bac	NRPS	Bacilysin	Antibacterial	BGC0001184	100% 100% 100% 100%
btr	PKS	Butirosin	Antibacterial	BGC0000693	7% 7% 7% 7%
dif	PKS	Difficidin	Antibacterial	BGC0000176	100% 100% 100% 100%
fen	NRPS	Fengycin	Antifungal	BGC0001095	100% 100% 100% 100%
itu	PKS-NRPS	Iturin	Antifungal	BGC0001098	53% 53% 53% 53%
kijs	Thiopetide	Kijanimicin	Antibacterial	BGC0000082	4% / / /
mln	PKS	Macrolactin	Antibacterial	BGC0000181	100% 100% 100% 100%
moe	Cf_putative	Molybdenum cofactor	Nutrient uptake	BGC0000916	17% 11% 11% 11%
pzn	Microcin	Plantazolicin	Antibacterial	BGC0000569	91% 100% 41% /
srf	NRPS	Surfactin	Antifungal, Antibacterial, Colonization, ISR	BGC0000433	82% 95% 82% 82%
tua	Cf_putative	Teichuronic acid	Nutrient uptake	BGC0000868	87% 100% 100% 100%

* Biosynthetic gene cluster ID in the MIBiG database

https://doi.org/10.1371/journal.pone.0198560.t001
LM2303 also showed a broad-spectrum antifungal activity towards various phytopathogenic fungi including *F. culmorum*, *Aspergillus flavus*, *F. moniliforme*, *Coniothyrium olivaceum*, *Rhizomorpha Roth. ex Fr.*, and *Alternaria tenuissima* (Fig 2B).

Fengycin, recognized strong antifungal activity against filamentous fungi [7], is synthesized by NRPSs encoded by a 37.7-kb gene cluster in LM2303, which shows 100% similarity to the *fen* cluster in FZB42. The *fen* cluster in LM2303 consists of five genes (*fenA-E*), both directly involving in non-ribosomal peptide synthesis. The first three genes each encode two amino
acid modules, the fourth gene (fenD) encode three modules, and the last gene (fenE) harbors one amino acid modules (Fig 4). Ions of m/z values 1449.7838, 1463.8002, 1477.8156, 1491.8315 and 1505.8478 were detected in the culture extracts of strain LM2303 and assigned to C_{13-17} fenygcin B [M+H]^+ by UHPLC-ESI-MS/MS (Fig 4). Unlike fengycin, iturin was encoded by a PKS-NRPS hybrid cluster, which span 37.3-kb in the LM2303 genome. The cluster is an insertion in the genome locating between gene yxjF and xynD, as in B. subtilis RB14, contains four genes (ituA-D) (Fig 5)[22]. The ituD gene encodes malonyl-CoA transacylase, whose disruption results in a specific deficiency in iturin A production, the next three genes ituA, ituB and ituC are encode the NRPSs that harbor one, four and two amino acid modules, respectively (Fig 5). The ions of m/z values 1043.5482, 1057.5630, 1071.5787 and 1085.5953 were observed and assigned to C_{14-17} iturin A [M+H]^+ (Fig 5). Besides, a 26.2-kb srf gene cluster responsible for surfactin biosynthesis was also identified in LM2303. The srf cluster contains 4 genes (srfAA-AD), showing 78% of gene similarity to that of FZB42. In addition,
the sfp gene encoding 4’-phosphopantetheinyl transferase, an essential enzyme for the non-ribosomal synthesis of lipopeptides and the synthesis of polyketides, was also detected together with the regulatory gene yczE, while the comS gene embedded within srfAB in FZB42 was not found in LM2303 (Fig 6). Ions of m/z values 994.6405, 1008.6565, 1022.6711, 1036.6881 and 1050.7035 were detected and assigned to C_{12-17} Fengycin A [M+H]^+”, receptively.

https://doi.org/10.1371/journal.pone.0198560.g004

Fig 4. The biosynthetic gene cluster and MS analysis of Fengycin A in strain LM2303. Ions of m/z values 1449.7838, 1463.8002, 1477.8156, 1491.8315 and 1505.8478 were assigned to C_{13-17} Fengycin B [M+H]^+, receptively.

Unlike fengycin and iturin, which were well-recognized for strong antifungal activity, surfactin is well-known for its powerful surfactant activity and broad-spectrum of antibacterial and antiviral activities, its direct antifungal activity was just reported in recent years. Surfactin was reported to significantly inhibit the hyphae growth of Magnaporthe grisea [23], F. verticillioides [24], F. moniliforme [25], and A. niger [26] through the insertion of the fatty acyl chain into the membrane bilayer, causing a strong destabilization of the membrane and changing the physical properties of the membrane [27, 28]. Besides, a [ΔLeu^+] surfactin derivative was reported to be able to affect the maintenance of DNA integrity in F. moniliforme by binding with DNA [25].
More importantly, the coproduction of three families of CLPs by strain LM2303 may provide the coordinated biocontrol action and ecological advantages due to their synergistic interactions in biocontrol practice of plant diseases.

Antibacterial secondary metabolites from strain LM2303

Strain LM2303 harbors 8 annotated BGCs responsible for antibacterial metabolites including surfactin, butirosin, plantazolicin, kijanimicin, bacilysin, difficidin, bacillaene and macrolactin (Table 1). And this strain exhibited a broad-spectrum antibacterial activity against Gram-
negative bacteria *X. campestris*, Gram-positive bacteria *Staphylococcus aureus*, and *Sarcina lutea* (Fig 2C).

Surfactin was reported to have a broad-spectrum of antibacterial activity, and to significantly inhibit the bacterial diseases in plants, such as Arabidopsis root infection by *Pseudomonas syringae* [29], tomato bacterial wilt caused by *Ralstonia solanacearum* [30]. In addition, another 7 BGCs responsible for other antibacterial metabolites were identified, including butirosin, plantazolicin, kijanimicin, bacilysin, difficidin, bacillaene and macrolactin (Table 1).
These BGCs for plantazolicin, bacilysin, difficidin, bacillaene, and macrolactin in LM2303 were found to show high gene similarity to that of FZB42, respectively (Fig 7). Notably, the BGC for kijanimicin presented in LM2303 was absent in FZB42. Plantazolicin, originally obtained from strain FZB42, was classified as thiazole/oxazole-modified microcin, displaying antibacterial activity toward closely related Gram-positive bacteria such as *B. anthracis* [31] and antagonistic effect against nematodes [32]. A 5.4-kb ribosomally encoded cluster containing 11 genes, was identified in LM2303 (Fig 7). As the hydrolytic instability of plantazolicin, ions corresponding to plantazolicin ([M+H]⁺ = m/z 1336.4773) and hydrolyzed plantazolicin ([M+H]⁺ = m/z 1354.4850) were both detected and verified by comparison with MS data from FZB42 (Fig 8) [33]. Bacilysin, a dipeptide antibiotic with a broad-spectrum antibacterial activity [34], was also synthesized by NRPSs, but not depend on the *sfp* gene. A 4.7-kb gene cluster (*bac*), located between gene *ywfH* and *ywfA* as in FZB42, direct the synthesis of bacilysin in LM2303 (Fig 7). And the ion of m/z values 271.1288 was observed in the culture extracts of strain LM2303 (Fig 8), which was identical to the calculated m/z of bacilysin [M+H]⁺. Bacilysin has been shown to cause the damages of cell wall in the genus *Xanthomonas* which can infect at least 350 different plants, such as wheat bacterial leaf streak caused by *X. translucens* [34–36]. Difficidin was originally isolated from the fermentation broth of a *B. subtilis* strain, displaying the broad-spectrum antibacterial activity [37]. It was synthesized by PKSs encoded by a 69.5-kb gene cluster containing 15 genes (*dif* A–O) in LM2303 (Fig 7), but both difficidin and its hydroxylated derivatives were not detected in the culture extracts...
Fig 8. MS analysis of antibacterial secondary metabolites from strain LM2303. (A) m/z 1336.4773: plantazolicin [M+H]^+; m/z 1354.4850: hydrolyzed plantazolicin [M+H]^+; (B) m/z 271.1288: Bacilysin [M+H]^+; (C1) m/z 581.4113: Bacillaene A [M+H]^+; m/z 603.4241: Bacillaene A [M+Na]^+; (C2) m/z 583.4271: Bacillaene B [M+H]^+; m/z 605.4401: Bacillaene B [M+Na]^+; (D1) m/z 489.3568: 7-o-malonyl macrolactin A [M+H]^+; m/z 511.3701: 7-o-malonyl macrolactin A [M+Na]^+; (D2) m/z 525.3752: 7-o-succinyl macrolactin A [M+Na]^+.

https://doi.org/10.1371/journal.pone.0198560.g008
of strain LM2303, the culture condition or assay method may have to be changed. Difficidin has been showed to be efficient in suppressing plant pathogenic bacterium X. oryzae [34] and Erwinia amylovora [38]. Bacillaene, a novel inhibitor of procaryotic protein synthesis, was also originally isolated from the fermentation broth of a B. subtilis strain, inhibiting both Gram-positive and Gram-negative bacteria [39]. In the LM2303 genome, bacillaene was synthesized by a PKS-NRPS hybrid cluster consisting of 14 genes (bacb-E, acpK, bacG-H) (Fig 7). The presence of bacillaene was also confirmed by UHPLC-ESI-MS, and ions corresponding to bacillaene A ([M+H]+ = 581.4113, [M+Na]+ = 603.4241) and bacillaene B ([M+H]+ = 583.4271, [M+Na]+ = 605.4401) were observed (Fig 8)[20]. Besides difficidin and bacillaene, the third polyketide macrolactin, was synthesized by a 50.9-kb mln cluster in LM2303. Macrolactin compounds (macrolactin A, 7-O-malonyl macrolactin A and 7-O-succinyl macrolactin) were reported to effectively inhibit the soilborne plant pathogenic bacteria Ralstonia solanacearum [40]. Ions corresponding to 7-o-malonyl macrolactin A ([M+H]+ = 489.3568, [M+Na]+ = 511.3701) and 7-o-succinyl macrolactin A ([M+Na]+ = 525.3752) were detected in the culture extracts of strain LM2303 (Fig 8).

In addition, butirosin is a clinically aminoglycoside antibiotic with antibiotic activity against Gram-negative bacteria as well as antiviral activity [41]. Kijanimicin is a spiropetronate antibiotic with antibiotic activity against Gram-positive bacteria as well as antitumor activity [42]. The two metabolites have exhibited the established medicinal activities, but the roles in biocontrol applications have yet to be established. To clarify, although these antibacterial secondary metabolites did not play a direct role in the control of FHB, they would enhance resistance to bacterial diseases in wheat and favor for the normal growth of Wheat.

Plant colonization

Efficient colonization on plant tissues, is a prerequisite for the biocontrol strains to survive, suppress plant disease or promote plant growth, while the process relies on the surface motility and efficient biofilm formation of bacteria cells [43–45].

The genes/gene clusters for flagellar assembly (flg cluster, fli cluster), bacterial chemotaxis (che cluster) as well as regulatory gene swrAA, swrB, swrC were both found in the LM2303 genome, and strain LM2303 did exhibit good swarming motility (Fig 9). So it is conceivable that strain LM2303 can actively reach the plant surface through passive movement or flagellum active swimming. The next important step of efficient colonization for biocontrol strains is to enable the formation of bacterial biofilm, which was formed by a variety of extracellular matrix including proteins, polysaccharides, charged polymers and amphiphilic molecules [43]. The yqxM-sipW-tasA operon encoding the TasA protein of biofilm, the regulator gene sinR and sinl, and the eps cluster encoding the exopolysaccharide of biofilm, were both found in the LM2303 genome (Table 2). Moreover, a 2.8-kb pgs cluster responsible for the synthesis of poly-γ-glutamic acid (PGA), which is a main charged polymer for biofilm, was also found. Meanwhile, the production of PGA by strain LM2303 was confirmed by using the HPLC method as compared with L-glutamic acid standard (date not shown). And the stable biofilm formed by strain LM2303 was observed under different conditions (nutrient broth: NB, potato dextrose broth: PDB, LBGM broth: LBGM (Fig 9). Besides, a positive correlation between biofilm formation and surfactin production was declared, a deficiency in surfactin production led to a defect of biofilm formation and a partial reduction of disease suppression [44]. Moreover, surfactin was also reported to be able to inhibit biofilm formation of pathogenic bacteria including, thus equipping biocontrol strains with powerful antagonistic advantage during colonization and providing plants with a protective barrier [46].
Bacterium-plant interactions

In the biocontrol system, plant, pathogen and biocontrol strain always interact with one another in a variety of different ways, and certain interaction can be triggered by biocontrol strain itself, such as direct antagonism towards pathogens, plant growth promotion, ISR. Plant growth promotion by biocontrol strain can act by making nutrients available for plants and/or producing plant growth-promoting hormones [47]. In the LM2303 genome, the genes/gene clusters related to plant growth promotion were found and summarized in Table 2.

Molybdenum cofactor, a relic of a nitrogen-fixing gene cluster or a cofactor for nitrogen assimilation, is encoded by the moa cluster containing 5 genes (moaA-E) in LM2303 [43, 48]. Moreover, the genes for nitrate transporter (narK), anaerobic regulatory protein (fnr 1672), probable transcription regulator (arfM), nitrate reductase (narG-J), ammonium transporter (nrgA), nitrogen regulatory PII-like protein (nrgB), nitrate/nitrite response regulator (narP), were also found along with nitrite reductase large subunit (nasD), nitrite reductase small subunit (nasE), which all favor for nitrogen assimilation. The siderophore bacillibactin, is the third kinds of secondary metabolite synthesized by NRPSs in LM2303, except the CLPs (fengycin, surfactin) and the dipeptide (bacilysin). A 11.7-kb dhb cluster containing 5 genes was found in LM2303 (Table 2). The presence of bacillibactin is also detected in culture extracts by UHPLC-ESI-MS, and ions of m/z values 883.2607 and 905.2426 were observed and assigned to bacillibactin [M+H]+ and bacillibactin [M+Na]++ by comparison with previously reported MS data [49]. Siderophores are high affinity Fe3+ chelators, thus the presence of siderophore-producing strains can contribute to plant health by complexing iron and making iron less available to pathogenic fungi [45]. Besides, siderophores are also proved to bind stably with many

Fig 9. Colonial morphology and biofilm of strain LM2303. (A) Colonial morphology of strain LM2303 in NA, (B) biofilm of strain LM2303 under different culture conditions.
heavy metals such as Cd, Cu, Pb and Zn recently, thus being helpful for plants to relieve soil heavy metals stress in soils [50]. Notably, bacillibactin has been reported to significantly inhibit the growth and invasion of *Phytophthora capsici* and *F. oxysporum* and effectively reduce the disease severity [51, 52]. Teichuronic acid, is concerned with the assimilation of bivalent cations and with the maintenance of the negative surface charge carried by the bacterium cells [53]. Its cluster in LM2303 contains 8 genes (*tuaA*-H) as in *B. subtilis* 168. 3-hydroxy-2-butanone and 2, 3-butendiol, the known volatile plant growth-promoting compounds, can also be produced by strain LM2303. The *als* cluster consisting of 3 genes (*alsR, alsS, alsD*), encoding enzymes of the biosynthetic pathway from pyruvate to 3-hydroxy-2-butanone, and the gene
Fig 10. Hypothetical model on the mode of actions of *B. velezensis* LM2303 in control of FHB in wheat. (A) an untreated wheat, (B) wheat treated with strain LM2303. The illustration shows our present knowledge about the complex interactions in the tripartite system consisting of biocontrol bacterium (*B. velezensis* LM2303, light green rod), pathogen (*F. graminearum*, red filled circle) and plant (wheat). Strain LM2303 colonizes the surfaces of wheat tissues relying on its good motility and efficient biofilm formation, and subsequently produces a variety of secondary metabolites so as to form a protective zone (light blue). Cyclic lipopeptides (green circle) act the directly antagonism against *F. graminearum* and other pathogenic fungi by inhibit the conidia germination and mycelia growth, and the antibacterial metabolites (yellow circle) act the antibacterial activity against wheat bacterial diseases such as black embryo and bacterial leaf streak or alter the bacterial community, which may enhance the survival of strain LM2303. Meanwhile, surfactin and volatiles...
bdhA, encoding enzyme for catalyzing 3-hydroxy-2-butanone to 2,3-butanediol, are both found in LM2303. In addition, strain LM2303 also harbors many genes/gene clusters involved in the biosynthesis of other plant growth-promoting hormones, such as indole acetic acid, trehalase and phytase, which are also summarized in Table 2. And the plant growth-promoting effects of strain LM2303 was confirmed on the early growth of wheat under greenhouse conditions, displaying a significantly increase in seed germination rate ($P<0.01$), shoot length ($P<0.05$) and chlorophyll content of wheat seedling ($P<0.01$) over the un-inoculated control.

In addition, some biocontrol strains can protect plants through ISR, which is in the charge of some specific metabolites secreted by biocontrol strains. Interestingly, 3-hydroxy-2-butanone and 2,3-butanediol, the two well-known plant growth-promoting compounds, were reported to act as the volatile elicitors for ISR identified in *Bacillus spp.*, leading to a significantly lower level of disease incidence in *Arabidopsis* [54]. Surfactin was also proved to be the non-volatile and broad-spectrum elicitor for ISR in many *Bacillus* strains [7, 55, 56], providing the ISR-mediated protection against pathogens in plants, e.g. wheat [57], tomato [55]. Further, surfactin was proved to elicit ISR via activation of jasmonate- and salicylic acid-dependent signaling pathways [58]. Besides, C14 and C15 surfactin were showed to trigger a much stronger defense-inducing activity than those of shorter chain length surfactins [55], and the more surfactins that the strain produces, the stronger the defense-inducing activity is [56].

Conclusions

B. velezensis LM2303 showed to significantly reduce the incidence and severity of FHB in wheat under field conditions, with higher biocontrol efficacy than that of chemical fungicide. Ten gene clusters involved in the biosynthesis of antimicrobial metabolites, one gene clusters for the siderophore, and substantial amounts of genes/gene clusters devoted to plant colonization, plant growth promotion, nutrient assimilation, and ISR were identified and confirmed, and their roles in disease control were further clarified.

Biocontrol mechanisms of plant diseases are varied and complex, and the biocontrol efficacy of microbial strain is the result of complex actions which interact with each other [7, 59]. To our present knowledge, *B. velezensis* LM2303 can control FHB in wheat through at least four different mechanisms, as detailed in Fig 10, (i) direct antagonistic action against *F. graminearum* and other pathogens mediated by *Bacillus* lipopeptides (green filled circles) and the antibacterial metabolites (yellow filled circles), and (ii) stimulation of ISR in wheat by surfactin and volatiles, and (iii) plant growth promotion by producing growth-promoting hormones and making nutrients available for wheat, e.g., competition for iron through the action of bacillibactin, and (iv) space and nutrient competition via efficient colonization and long-term persistence. Thus, these results suggested that strain LM2303 could be a useful BCA for FHB control.

Future work will focus on the mutagenesis, transcriptomics, and metabolomics of strain LM2303 to improve the biocontrol efficacy, and the response of wheat in simultaneous presence of strain LM2303 and *F. graminearum*.

Supporting information

S1 Table. Comparison on COG functional categories of four biocontrol strains. (DOC)
Acknowledgments
We want to thank Wenwu Jiang and Yuanxiao Liu for their extensive help.

Author Contributions
Conceptualization: Junying Heng.
Data curation: Junying Heng.
Formal analysis: Liang Chen, Junying Heng, Suya Qin.
Funding acquisition: Liang Chen, Ke Bian.
Investigation: Liang Chen.
Methodology: Liang Chen, Junying Heng, Suya Qin.
Project administration: Ke Bian.
Supervision: Liang Chen.
Validation: Liang Chen.
Writing – original draft: Liang Chen, Ke Bian.
Writing – review & editing: Liang Chen, Ke Bian.

References
1. Wang LY, Xie YS, Cui YY, Xu J, He W, Chen HG, et al. Conjunctively screening of biocontrol agents (BCAs) against Fusarium root rot and Fusarium head blight caused by Fusarium graminearum. Microbiol Res. 2015; 177: 34–42. https://doi.org/10.1016/j.microres.2015.05.005 PMID: 26211964.
2. Zhang JB, Wang JH, Gong AD, Chen FF, Song B, Li X, et al. Natural occurrence of Fusarium head blight, mycotoxins and mycotoxin-producing isolates of Fusarium in commercial fields of wheat in Hubei. Plant Pathol. 2013; 62(1): 92–102. https://doi.org/10.1111/j.1365-3059.2012.02639.x
3. Zalila-Kolsi I, Ben Mahmoud A, Ali H, Sellami S, Nasfi Z, Tounsi S, et al. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol Res. 2016; 192: 148–58. https://doi.org/10.1016/j.micres.2016.06.012 PMID: 27664733
4. Yao J, Zhou M, Zhang X, Ren L, Yu G, Lu W. Molecular breeding for wheat Fusarium head blight resistance in China. Cereal Res Commun. 2008; 36 (Supplement 2): 603–12.
5. Palazzini JM, Dunlap CA, Bowman MJ, Chuize SN. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol Res. 2016; 192: 30–36. https://doi.org/10.1016/j.micres.2016.06.002 PMID: 27664721
6. Kim SY, Lee SY, Weon H-Y, Sang MK, Song J. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste. J Biotechnol. 2017; 241: 112–115. https://doi.org/10.1016/j.jbiotec.2016.11.023 PMID: 27899334
7. Ongená M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008; 16(3): 115–125. https://doi.org/10.1016/j.tim.2007.12.009 PMID: 18289856.
8. Nguyen PA, Strub C, Fontana A, Schorr-Galindo S. Crop molds and mycotoxins: Alternative management using biocontrol. Biol Control. 2017; 104: 10–27. https://doi.org/10.1016/j.biocontrol.2016.10.004
9. Pal KK, Tilak KV, Saxena AK, Dey R, Singh CS. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani. Microbiol Res. 2000; 155(3): 233–242. https://doi.org/10.1016/S0944-5013(00)80038-5 PMID: 11061193.
10. Rutledge PJ, Challis GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Micro. 2015; 13(8): 509–523. https://doi.org/10.1038/nrmicro3496 PMID: 26119570
11. Chen X, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus...
Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the
Snook ME, Mitchell T, Hinton DM, Bacon CW. Isolation and characterization of Leu7-surfactin from the
Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. Isolation and screening of broad spectrum antagonistic strain in Bacillus amyloliquefaciens FZB42. J Nat Prod. 2007; 70(9): 1417–1423. https://doi.org/10.1021/np070070k PMID: 17844999.

Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol. 2001; 183(21): 6265–6273. https://doi.org/10.1128/JB.183.21.6265-6273.2001 PMID: 11591669.

Tendulkaar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, et al. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J Appl Microbiol. 2007; 103(6): 2331–2339. https://doi.org/10.1111/j.1365-2672.2007.03501.x PMID: 18045418.

Snook ME, Mitchell T, Hinton DM, Bacon CW. Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem. 2009; 57(10): 4287–4292. https://doi.org/10.1021/jf900164h PMID: 19371139.

Jiang J, Gao L, Bie X, Lu Z, Liu H, Zhang C, et al. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol. 2016; 16(1): 31.

Wang Q-Y, Lin Q-L, Peng K, Cao J-Z, Yang C, Xu D. Surfactin variants from Bacillus subtilis natto CSUF5 and their antifungal properties against Aspergillus niger. J Biobased MaterBio. 2017; 11(3): 210–215. https://doi.org/10.1166/jbmb.2017.1665

Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003; 1611(1–2): 91–97. PMID: 12659949.

Falardeau J, Wise C, Novitsky L, Avis TJ. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol. 2013; 39(7): 869–878. https://doi.org/10.1007/s10886-013-0319-7 PMID: 23888387.

Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004; 134(1): 307–319. https://doi.org/10.1104/pp.103.028712 PMID: 14684383.

Xiong H, Li Y, Cai Y, Cao Y, Wang Y. Isolation of Bacillus amyloliquefaciens JK6 and identification of its lipopeptides surfactin for suppressing tomato bacterial wilt. Rsc Advances. 2015; 5(100): 82042–82049. https://doi.org/10.1039/c5ra13142a

The biocontrol potential of Bacillus velezensis LM2303
31. Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Sussmuth RD, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol. 2011; 193(1): 215–224. https://doi.org/10.1128/JB.00784-10 PMID: 20971906.

32. Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R, et al. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol. 2013; 97(23): 10081–10090. https://doi.org/10.1007/s00253-013-5247-5 PMID: 24085393.

33. Wu L, Wu H, Chen L, Yu X, Borriss R, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. J. Antibiot. 1987; 40(12):1677–1681. https://doi.org/10.1094/antibiotics.40.1677 PMID: 3123448.

34. Chen X, Scholz R, Borriss M, Junge H, Mogel G, Kunz S, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. J Antibiot. 1987; 40(12): 1677–1681. https://doi.org/10.1094/antibiotics.40.1677 PMID: 3123448.

35. Mishra S, Arora NK. Evaluation of rhizospheric Pseudomonas and Bacillus as biocontrol tool for Xanthomonas campestris pv. campesstris. World J Microbiol Biotechnol. 2012; 28(2): 693–702. https://doi.org/10.1007/s11274-010-0870-4.

36. Adhikari TB, Hansen JM, Gurung S, Bonman JM. Identification of new sources of resistance in winter wheat to multiple strains of Xanthomonas translucens pv. undulosa. Plant Dis. 2011; 95(5):582–588. https://doi.org/10.1094/PDIS-10-10-0760.

37. Zimmerman S, Schwartz C, Monaghan R, Pelak B, Weissberger B, Gifillian E, et al. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. J. Antibiot. 1987; 40(12):1677–1681. https://doi.org/10.1094/antibiotics.40.1677 PMID: 3123448.

38. Llewellyn NM, Li Y, Spencer JB. Biosynthesis of butirosin: transfer and deprotection of the unique amino acid side chain. Chem Biol. 2007; 14(4): 379–386. https://doi.org/10.1016/j.chembiol.2007.02.005 PMID: 17462573.

39. Zhang H, White-Phillip JA, Melancon CE 3rd, Kwon HJ, Xu WL, Liu HW. Elucidation of the kijanimicin gene cluster: insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J Am Chem Soc. 2007; 129(47): 14670–14683. https://doi.org/10.1021/ja0744854 PMID: 17985890.

40. Guo S, Li X, He P, Ho H, Wu Y, He Y. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol. 2015; 42(6): 925–937. https://doi.org/10.1007/s10295-015-1612-y PMID: 25860123.

41. Zeriouh H, de Vicente A, Perez-Garcia A, Romero D. Surfaceactin triggers biofilm formation of Bacillus subtilis. Food Chem. 2012; 60(12): 2976–2981. https://doi.org/10.1021/jf204868z PMID: 22385216.

42. Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B, et al. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Micr Cell Fact. 2009; 8(1): 63. https://doi.org/10.1186/1475-2859-8-63 PMID: 19941639.

43. Chen XH, Koumouts A, Scholz R, Borriss R. More than anticipated—production of antibiotics and other secondary metabolites for biocontrol of plant pathogens. PLoS One. 2014; 9(8): e104651. https://doi.org/10.1371/journal.pone.0104651 PMID: 24308294.

44. Bird C, Wyman M. Nitrate/nitrite assimilation system of the marine picoplanktonic cyanobacterium Synechococcus sp. strain WH 8103: effect of nitrogen source and availability on gene expression. Appl Environ Microbiol. 2003; 69(12): 7009–7018. https://doi.org/10.1128/AEM.69.12.7009-7018.2003 PMID: 14660343.

45. Mielke M, Klotz O, Linne U, May JJ, Beckering CL, Marahiel MA. Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol. 2006; 61(6): 1413–1427. https://doi.org/10.1111/j.1365-2958.2006.05321.x PMID: 16889643.
50. Rajkumar M, Ae N, Prasad MN, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010; 28(3):142–9. https://doi.org/10.1016/j.tibtech.2009.12.002 PMID: 20044160.

51. Woo S-M, Kim S-D. Structural identification of siderophore AH18 from Bacillus subtilis AH18, a biocontrol agent of Phytophthora blight disease in Red-pepper. Microbiol and Biotechnol Lett. 2008; 36(4):326–335.

52. Yu X, Ai C, Xin L, Zhou G. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol. 2011; 47(2):138–145. https://doi.org/10.1016/j.ejsobi.2010.11.001

53. Heckels JE, Lambert PA, Baddiley J. Binding of magnesium ions to cell walls of Bacillus subtilis W23 containing teichoic acid or teichuronic acid. Biochem J. 1977; 162(2): 359–365. PMID: 15560.

54. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004; 134(3): 1017–1026. https://doi.org/10.1104/pp.103.026583 PMID: 14976231.

55. Henry G, Deleu M, Jourdan E, Thonart P, Ongena M. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cell Microbiol. 2011; 13(11): 1824–1837. https://doi.org/10.1111/j.1462-5822.2011.01664.x PMID: 21838773

56. Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, et al. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact. 2014; 27(2): 87–100. https://doi.org/10.1094/MPMI-09-13-0262-R PMID: 24156767.

57. Khong NG, Randoux B, Tayeh C, Coutte F, Bourdon N, Tisserant B, et al. Induction of resistance in wheat against powdery mildew by bacterial cyclic lipopeptides. Commun Agric Appl Biol Sci. 2012; 77 (3): 39–51. PMID: 23878959.

58. Garcia-Gutierrez L, Zeriouh H, Romero D, Cubero J, Vicente A, Perez-Garcia A. The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbiotechnol. 2013; 6 (3): 264–274. https://doi.org/10.1111/1751-7915.12028 PMID: 23302493

59. Khezri M, Ahmadzadeh M, Jouzani GS, Behboudi K, Ahangaran A, Mousivand M, et al. Characterization of some biofilm-forming Bacillus subtilis strains and evaluation of their biocontrol potential against Fusarium culmorum. J Plant Pathol. 2011; 93(2): 373–382.