Configuration Optimization and Force Analysis of Parallel Attached Platform for Satellite Docking

XIAO Zhengyi¹, LV jinghui ¹, WU Guowang² and YAO Jiantao²

¹Beijing Engineering Research Center of the Intelligent Assembly Technology and Equipment for Aerospace Product, Beijing Institute of Spacecraft Environment Engineering, Beijing, China
²Yanshan University, Qinhuangdao, China
xzy020822@163.com

Abstract. This paper makes use of the Stewart parallel mechanism acted as a parallel adjustment platform (PAP) on the satellite integrated assembly system, which is applied to carry on the adjustment of real-time high precision position and orientation for satellite integrated assembly. PAP’s configuration optimization using optimization algorithm, which is designed to ensure the force on every limb in the workspace within the range of maximum value. The force of PAP’s every limb is analyzed based on the screw theory, and is verified by the Adams software through simulation under the planning pathway, the result verifies the correctness of theoretical calculation. The research contents possess an important guideline significance for the structural design and performance optimization of PAP.

1. PREFACE

In order to ensure the precise adjustment of the attitude of the satellite integrated assembly, a more mature PAP can be used to assist the engineers to install the satellite. This parallel position adjustment platform adopts six degrees of freedom Gough-Stewart platform as the motion body, and it can achieve the position adjustment of the satellite moving along the X direction, Y direction and Z direction to ±50mm, and rotate around X, Y and Z to ±5°. The overall space size of the PAP is controlled in 2600 X 2600 X 1500mm.

The weight of the satellite is about 5T, which is relatively heavy. It requires that the adjustment mechanism has high positioning accuracy and stiffness. Due to the limited space, the layout of the adjusting mechanism should be tight. The parallel mechanism of Gough-Stewart platform has a good rigidity. The bearing capacity is great. The structure is symmetrical and so on. It is very suitable to adjust the position and position of the satellite as a PAP [1].

Scholars at home and abroad have many literatures about the parallel mechanism of Gough-Stewart platform, and the technology is relatively mature. However, there are few literatures on it as a parallel position adjustment platform for satellite assembly posture adjustment. GENG and HAYNES[2] use neural network to solve the dynamic problem of the Stewart platform. MCAREE and DANIEL[3] have found a robust, fast solution to the dynamics of the Stewart platform. ZHANG[4] has done some research on the semi physical simulation of space docking. Huang and other [5] people have given a number of ways to analyze the Stewart platform. KIM and CHUNG[6] analyzed the six degree of freedom parallel robot with a structured method. YIU[7] lists the advantages of many parallel robots.
In this paper, the basic parameters of the parallel position adjustment platform for satellite attitude adjustment are optimized by using the optimization algorithm. Based on that, the axial force of each branch of the parallel position adjustment platform in the working space is theoretically calculated and simulated.

2. Configuration and optimization of platform

2.1. Configuration of PAP
The PAP for satellite attitude adjustment uses a mature 6-UPS type Stewart parallel mechanism, which can be customized according to the requirements of the system. The height of the parallel position adjustment platform can be controlled by the branched chain movement. The 6 branches support the moving platform with high stiffness, which can meet the high stiffness requirement of the satellite attitude adjustment, and the structure is compact, the performance is advanced, and the positioning accuracy is high. The satellite integrated assembly system under the cabin and adjusting parallel platform is divided into general hoisting system, the satellite is composed of three parts, its structure diagram is shown in Fig. 1.

![Figure 1. Schematic diagram of the structure of a satellite integrated assembly system](image)

2.2. Configuration optimization of PAP
The mechanism diagram of the parallel attitude adjustment platform is shown in Fig. 2.

![Figure 2. Mechanism diagram of parallel attitude adjustment platform](image)
Among them, \(O_B = X_B Y_B Z_B \) is a fixed platform coordinate system, and \(O_A = X_A Y_A Z_A \) is a dynamic platform coordinate system. On the fixed platform, each Hooke hinge point \(B_i \) (\(i = 1, 2, \ldots, 6 \)) evenly distributed on the circumference of the radius \(R \), and the hinges of each ball on the moving platform are \(A_i \) (\(i = 1, 2, \ldots, 6 \)) is evenly distributed at the circumference of the radius \(r \), and the hinge points 1, 3, 5 or hinges 2, 4, 6 are arranged in 120° equal intervals. The \(Y_B(Y_A) \) axis is equally divided into the angle of the hinge point \(B_1, B_6(A_1, A_6) \) and the coordinate origin \(O_B(O_A) \). The \(Z_B(Z_A) \) axis is perpendicular to the fixed (moving) platform, and \(X_B(X_A) \) satisfies the right rule of the right hand. The angle between \(B_1, B_6(A_1, A_6) \) is equal to the join angle of \(A_1(A_6) \) and the center \(O_B(O_A) \) of the fixed platform. The angle between \(\theta_1(\theta_2) \) is the hinge angle \(B_1B_3(A_1A_3) \) and the connection angle of the center \(O_B(O_A) \) of the fixed platform. And \(\phi_1 + \phi_2 = \phi_3 + \phi_4 = \frac{2\pi}{3} \).

According to the usual method, the attitude of the moving platform can be expressed by three Euler angles: \(\alpha, \beta \) and \(\gamma \), so the attitude transformation matrix of the moving platform relative to the moving platform can be expressed as:

\[
\mathbf{T} = \mathbf{T}_{ZYX}(\alpha, \beta, \gamma)
\]

The position vector of the Hooke hinge point of the fixed platform relative to the fixed platform coordinate system can be expressed as:

\[
\begin{align*}
B_i &= \mathbf{R}(\cos(\pi/2 - \theta_i/2) \sin(\pi/2 - \theta_i/2) 0)^T \\
B_i &= \mathbf{R}(\cos(\pi/2 + \theta_i/2) \sin(\pi/2 + \theta_i/2) 0)^T \\
B_i &= \mathbf{R}(\cos(7\pi/6 - \theta_i/2) \sin(7\pi/6 - \theta_i/2) 0)^T \\
B_i &= \mathbf{R}(\cos(7\pi/6 + \theta_i/2) \sin(7\pi/6 + \theta_i/2) 0)^T \\
B_i &= \mathbf{R}(\cos(11\pi/6 - \theta_i/2) \sin(11\pi/6 - \theta_i/2) 0)^T \\
B_i &= \mathbf{R}(\cos(11\pi/6 + \theta_i/2) \sin(11\pi/6 + \theta_i/2) 0)^T
\end{align*}
\]

Position vector of the platform the ball joint hinge point said in a moving platform coordinate system for \(O_B = X_B Y_B Z_B \):

\[
\begin{align*}
a_i &= (r \cos(\pi/2 - \phi_i/2) \ r \sin(\pi/2 - \phi_i/2) 0)^T \\
a_i &= (r \cos(\pi/2 + \phi_i/2) \ r \sin(\pi/2 + \phi_i/2) 0)^T \\
a_i &= (r \cos(7\pi/6 - \phi_i/2) \ r \sin(7\pi/6 - \phi_i/2) 0)^T \\
a_i &= (r \cos(7\pi/6 + \phi_i/2) \ r \sin(7\pi/6 + \phi_i/2) 0)^T \\
a_i &= (r \cos(11\pi/6 - \phi_i/2) \ r \sin(11\pi/6 - \phi_i/2) 0)^T \\
a_i &= (r \cos(11\pi/6 + \phi_i/2) \ r \sin(11\pi/6 + \phi_i/2) 0)^T
\end{align*}
\]

Position vector of the platform the ball joint hinge point said in a fixed platform coordinate system for \(O_A = X_A Y_A Z_A \):

\[
\mathbf{A}_i = \mathbf{T}_{ZYX}(\mathbf{a}_i, \mathbf{P}) \quad (i = 1, 2, \ldots, 6)
\]

In the formula, \(\mathbf{P} = (P_x, P_y, P_z)^T \) is the position vector expressed in the fixed coordinate system of the coordinates of the coordinate system of the moving platform. The length of each branch rod length \(l_i \) of the parallel attitude adjustment platform can be expressed as:

\[
l_i = |\mathbf{L}_i| = |\mathbf{A}_i - \mathbf{B}_i| \quad (i = 1, 2, \ldots, 6)
\]

According to the actual work of satellite integrated assembly system, adjusting parallel platform platform radius need to cooperate with the size of the satellite cabin interface phase, taking into account
the system space requirements and convenient installation, adjusting parallel platform to determine the dynamic radius of \(r = 1070 \text{mm} \) platform. Optimization flow chart of configuration parameters of parallel attitude adjustment platform, as shown in Fig.3.

 Initialization of mechanism parameters

\(r = 1000, H, R, \theta_1 \text{ and } \theta_2 \) is a discrete value

Solving the maximum length of the rod \(L_{0} \), and solving the maximum change of the length of the rod in the workspace

Whether the installation position of the hinge and the stroke of the branch bar meet the actual requirements

Y

Analysis of the force of each branch of this configuration under various working conditions. Record \(L \)

Solving the force \(f_{\text{max}} \) of each branch bar corresponding to \(L \), and preserving

Find out the relationship between \(L \) and \(F \)

The optimal configuration of this initial rod length \(L \) is as large as possible and the force of the branch rod is as small as possible.

Figure 3. Flow chart of configuration parameter optimization

The parameters of the parallel attitude adjustment platform are optimized according to the calculation flow shown in Figure 3. The basic parameters of the configuration after the optimization are shown as shown in Table 1.

\(R/\text{mm} \)	\(r/\text{mm} \)	\(H/\text{mm} \)	\(\theta_1/\degree \)	\(\theta_2/\degree \)	\(\phi_1/\degree \)	\(\phi_2/\degree \)
1100	1000	1070	105	12	15	108

3. Force analysis of PAP

3.1. Static analysis of PAP

Based on the helix theory, the force analysis of the parallel connection can be obtained as the following equation [5]:

\[F = G_f f \]

where \(F = (f_1, f_2, \ldots, f_6)^T \) is the six dimensional external force load vector of the moving platform, \(f = (f_1, f_2, \ldots, f_6)^T \) is the driving force vector of six branch legs, \(G_f \) is the first order static influence coefficient matrix, which is in the form of:
If G_f is not singular, the formula (6) can be written as:

$$f = G_f'F$$

In the form, $G_f' = (G_f)^{-1}$.

The formula (8) shows that when the load vector F of the six dimensional external force on the moving platform is known, the axial tension pressure on the branches can be calculated. The external load on the moving platform of the parallel position adjustment platform for the satellite integrated assembly system is composed of two parts: one is the load vector caused by the self weight of the moving platform; the other is the load vector caused by the satellite’s self weight. The two is the load vector caused by the self weight of the moving platform. According to the optimization design of adjusting parallel platform before, and according to the actual situation of the satellite integrated assembly system, after processing of the moving platform of $f_0=2500$N satellite gravity, gravity $f_t=49000$N, thus adjusting parallel platform total load $F_s=51500$N, using the formula (8) obtained by adjusting parallel platform of each branch rod in the working space within the scope of the theory of maximum stress $f_{\text{max}}=16659$N. The maximum force of the branch rod is an important parameter designed by the PAP of the satellite integrated assembly system.

3.2. Simulation and analysis of PAP

The 3D entity model in the Adams simulation environment of the satellite integrated assembly system is shown in Fig. 4.

![Figure 4. 3D solid model of Adams PAP](image)

Before the simulation analysis, it is necessary to verify the accuracy of the model. In order to verify the accuracy of the constraints under Adams model and applied, for adjusting parallel platform for dynamic path planning for platform design as shown in Table 2.

Time interval	Motion parameters	Time interval	Motion parameters
0~5s	Moving -50mm along the Z_A	5~10s	5 degrees around the X_A
10~15s	5 degrees around the Y_A	15~20s	5 degrees around the Z_A
20~30s	Moving -50mm along the X_A	30~40s	Moving 100mm along the X_A
Time Range	Description	Time Range	Description
------------	-------------	------------	-------------
40~50s	Moving -50mm along the Y_A	50~60s	Moving -100mm along the X_A
70~80s	Moving 100mm along the Y_A	80~90s	Moving 100mm along the X_A
90~100s	Moving 100mm along the Y_A	100~110s	Moving -100mm along the X_A
110~120s	Moving -100mm along the Y_A		
860~870s	-10 degrees around the Z_A	870~880s	10 degrees around the X_A
880~890s	10 degrees around the Y_A	890~900s	10 degrees around the Z_A

The parallel position adjustment platform moves in accordance with the above planned motion path in the Adams environment, and the force of each branch bar is measured in real time under the condition of precision assurance. The force of each branch of the parallel position adjustment platform simulated by Adams is shown in Fig.5–Fig.10. From Fig.5–Fig.10, we can see that the calculated values of the maximum force of the branches are consistent with the theoretical values, which indicates the correctness of the proposed parallel position adjustment platform model and the applied constraint conditions.

4. conclusion
(1) Optimize the configuration of the parallel position adjustment platform based on the optimization algorithm. Based on the principle that the initial rod length is as large as possible and the force of each
branch is minimum, the basic structural parameters of the parallel position adjustment platform satisfying the requirements of the satellite integrated assembly system are determined.

(2) The maximum force of branch bar is an important design parameter of parallel position adjustment platform. Based on screw theory and virtual simulation software, the theoretical analysis and simulation analysis of the force of the parallel platform are carried out, and the simulation results verify the correctness of the theoretical analysis.

Reference
[1] STEWART D. A platform with six degrees of freedom[J]. Proceedings of the Institution of Mechanical Engineers, 1965, 180(15):371-386.
[2] GENG Z, HAYNES L. Neural network solution for the forward kinematics problem of a Stewart platform[C] Proceedings of the 1991 IEEE International Conference on Robotics and Automation, 1991:2650-2655.
[3] MCAREE P R, DANIEL R W. A fast robust solution to the Stewart platform forward kinematics[J]. Journal of Robotic Systems, 1996, 13(7):407-427.
[4] Zhang Chongfeng. Research on semi physical simulation of six degrees of freedom in space docking [J]. space control, 1999, (1):70-74.
[5] Huang Zhen, Zhao Yongsheng, Zhao Tieshi. Higher space institutions [M]. Beijing: Higher Education Press, 2006.
[6] KIM D, CHUNG W Y. Analytic singularity equation and analysis of six-DOF parallel manipulators using local structuriation method[J]. IEEE Transactions on Robotics and Automation, 1999, 15(4):612-622.
[7] YIU Y K. Kinematic geometry dynamics and control of parallel manipulator[D]. Hong Kong: The Hong Kong University of Science and Technology, 2002:35-49.