A Fermatean fuzzy set is a more powerful tool to deal with uncertainties in the given information as compared to intuitionistic fuzzy set and Pythagorean fuzzy set and has energetic applications in decision-making. Aggregation operators are very helpful for assessing the given alternatives in the decision-making process, and their purpose is to integrate all the given individual evaluation values into a unified form. In this research article, some new aggregation operators are proposed under the Fermatean fuzzy set environment. Some deficiencies of the existing operators are discussed, and then, new operational law, by considering the interaction between the membership degree and nonmembership degree, is discussed to reduce the drawbacks of existing theories. Based on Hamacher’s norm operations, new averaging operators, namely, Fermatean fuzzy Hamacher interactive weighted averaging, Fermatean fuzzy Hamacher interactive ordered weighted averaging, and Fermatean fuzzy Hamacher interactive hybrid weighted averaging operators, are introduced. Some interesting properties related to these operators are also presented. To get the optimal alternative, a multiattribute group decision-making method has been given under proposed operators. Furthermore, we have explicaded the comparison analysis between the proposed and existing theories for the exactness and validity of the proposed work.

1. Introduction

The process of multiattribute group decision-making (MAGDM) yields the best alternative when the list of all possible alternatives has been compiled according to some certain attributes. Previously, the data about alternatives corresponding to attributes and their weights were given in crisp values. However, nowadays, uncertainties play an important part in the decision-making (DM) approach. Each alternative is allotted a preference to some certain degree to deal with the complicated system. However, information regarding real-world system is indefinite and fuzzy with a lot of ambiguities. Such type of conditions is appropriately explained by fuzzy set (FS) [1] and intuitionistic fuzzy set (IFS) [2] rather than crisp values. IFS is a more efficient tool to deal with vague information because it has both the membership degree (MD) and nonmembership degree (NMD), but there are some drawbacks. The sum of MD and NMD is constrained to unit interval in IFS’s model. Pythagorean fuzzy set (PFS) was introduced by Yager [3] to tackle vague decisions more effectively. However, this model also has some restrictions; if MD of an element is 0.8 and NMD is 0.76, then $0.8^2 + 0.76^2 > 1$. Therefore, Yager [4] narrated the theory of q-rung orthopair fuzzy set (q-ROFS) with condition $0 \leq q^3 + \sigma^3 \leq 1$. The basic notions about Fermatean fuzzy set (FFS) were studied by Senapati and Yager [5].

The idea of aggregation operators (AOs) performs a crucial role in getting an optimal solution when there are a lot of choices for one given problem. The idea of aggregation of infinite sequences was presented by Mesiar and Pap [6]. Xu [7] gave the theory of intuitionistic fuzzy (IF) AOs.
Zhao et al. [8] developed the theory of generalized AOs for IFs. The Einstein hybrid AOs under IF environment were studied by Zhao and Wei [9]. The concept of IF AOs using Einstein operations were discussed by Wang and Liu [10]. Garg [11] combined the theories of IFs and interactive averaging AOs. Garg et al. [12] gave the idea of Choquet integral aggregation operators for interval-valued IFs. Garg [13] introduced IF Hamacher AOs with entropy weight. Alcantud et al. [14] elaborated the idea of aggregation of 查看更多

1.1. Motivations of Proposed Work

(i) The proposed operators have the ability to deal with the interaction between the MD and NMD.
(ii) The proposed theory shows that the change in MD will affect the NMD.
(iii) The developed operators show that there will be nonzero NMD of the whole aggregated FF numbers (FFNs) even if at least one of them is zero. Therefore, the others grades of nonmembership function of FFNs perform a significant role in the aggregation process (AP).

1.2. Contributions of Proposed Work

(i) Some novel operators such as Fermatean fuzzy Hamacher interactive weighted averaging (FFHIWA), Fermatean fuzzy Hamacher interactive ordered weighted averaging (FFHIOWA), and Fermatean fuzzy Hamacher interactive hybrid weighted averaging (FFHIHWA) operators are explored here.
(ii) Some special cases of these operators along with their attractive properties are discussed, which reduce the shortcomings of the existing operators.
(iii) Some basic steps for MAGDM under proposed operators are explained with the help of a numerical example.
(iv) The comparison analysis with other developed approaches shows the validity of proposed theory.

1.3. Framework and Organization of the Paper. The remaining paper is arranged as follows: Section 2 recalls some elementary definitions. Section 3 defines the hybrid structure of Hamacher, interactive operators, and FFNs such as FFHIWA operator along with some fundamental properties. In Section 4, we elaborate the idea of FFHIOWA operator with some attractive properties. Section 5 presents the notion of FFHIHWA operator. Section 6 discusses an algorithm to deal with MAGDM along with a numerical example. Section 7 gives a comparison analysis with FF Einstein weighted averaging (FFEWA) operator for the validity and importance of proposed theory. In Section 8, we have summarized the results.

2. Preliminaries

In this section, we recall some basic definitions.

Definition 1 (see [5]). A FFS \mathfrak{P} on nonempty set \mathcal{D} is given by

$$\mathfrak{P} = \{ (r, \varrho_{\mathfrak{P}}(r), \sigma_{\mathfrak{P}}(r)) \} ,$$

where $\varrho_{\mathfrak{P}} : \mathcal{D} \rightarrow [0, 1]$, $\sigma_{\mathfrak{P}} : \mathcal{D} \rightarrow [0, 1]$, and $\omega_{\mathfrak{P}}(r) = \sqrt{1 - (\varrho_{\mathfrak{P}}(r))^3 - (\sigma_{\mathfrak{P}}(r))^3}$ indicate MD, NMD, and indeterminacy degree (InD), respectively.

Definition 2 (see [5]). For FFN $\mathfrak{P} = (\varrho_{\mathfrak{P}}, \sigma_{\mathfrak{P}})$, the score function and accuracy function are given as

$$S(\mathfrak{P}) = \varrho_{\mathfrak{P}}^3 - \sigma_{\mathfrak{P}}^3,$$

$$A(\mathfrak{P}) = \varrho_{\mathfrak{P}}^3 + \sigma_{\mathfrak{P}}^3, A(\mathfrak{P}) \in [0, 1].$$

Definition 3 (see [5]). Consider two FFNs $\mathfrak{P}_1 = (\varrho_{\mathfrak{P}_1}, \sigma_{\mathfrak{P}_1})$ and $\mathfrak{P}_2 = (\varrho_{\mathfrak{P}_2}, \sigma_{\mathfrak{P}_2})$. Then, the following holds:

1. If $S(\mathfrak{P}_1) < S(\mathfrak{P}_2)$, then $\mathfrak{P}_1 \prec \mathfrak{P}_2$.
2. If $S(\mathfrak{P}_1) > S(\mathfrak{P}_2)$, then $\mathfrak{P}_1 \succ \mathfrak{P}_2$.
3. If $S(\mathfrak{P}_1) = S(\mathfrak{P}_2)$, then
 - (a) If $A(\mathfrak{P}_1) < A(\mathfrak{P}_2)$, then $\mathfrak{P}_1 \prec \mathfrak{P}_2$.
 - (b) If $A(\mathfrak{P}_1) > A(\mathfrak{P}_2)$, then $\mathfrak{P}_1 \succ \mathfrak{P}_2$.
 - (c) If $A(\mathfrak{P}_1) = A(\mathfrak{P}_2)$, then $\mathfrak{P}_1 \sim \mathfrak{P}_2$.

\[T(r, \delta) = \frac{rs}{\delta + (1 - \delta)(r + \delta - rs)} \]
\[T^*(r, \delta) = \frac{r + \delta - rs - (1 - \delta)rs}{1 - (1 - \delta)rs} \] (3)

(i) For \(\delta = 1 \), these operations become algebraic t-norm and t-conorm \(T(r, \delta) = rs \) and \(T^*(r, \delta) = r + \delta - rs \).

(ii) For \(\delta = 2 \), these operations become Einstein t-norm and t-conorm \(T(r, \delta) = rs/1 + (1 - r)(1 - \delta) \) and \(T^*(r, \delta) = r + \delta/1 + rs \).

3. Fermatean Fuzzy Hamacher Interactive Average Operators

Definition 4. Let \(\mathbf{P}_1 = \langle q_1, \sigma_1 \rangle \), \(\mathbf{P}_2 = \langle q_2, \sigma_2 \rangle \), and \(\mathbf{P} = \langle q, \sigma \rangle \) be three FFNs and \(\beta > 0 \). Then, some arithmetic operations between them by using Hamacher norms are as follows:

\[
\text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n) = \left\{
\begin{array}{l}
\sqrt[n]{\prod_{i=1}^{n} \left(1 + (\delta - 1)q_i^2\right) - \prod_{i=1}^{n} (1 - q_i^2) + (\delta - 1)\prod_{i=1}^{n} (1 - q_i^2) + 3}, \\
\sqrt[n]{\delta \left\{ \prod_{i=1}^{n} (1 - q_i^2) - \prod_{i=1}^{n} (1 - q_i^2), \right\} \prod_{i=1}^{n} (1 + (\delta - 1)q_i^2) + (\delta - 1)\prod_{i=1}^{n} (1 - q_i^2) + 3}. \\
\end{array}
\right.
\] (5)

Proof. For \(\eta = 1, \kappa = \kappa_1 = 1 \),

\[
\text{FFHIWA}(\mathbf{P}_1) = \kappa_1 \mathbf{P}_1 = \mathbf{P}_1 = \langle q_1, \sigma_1 \rangle = \left\{ \frac{1 + (\delta - 1)q_1^2}{1 + (\delta - 1)q_1^2} - \frac{1 - q_1^2}{1 - q_1^2}, \frac{\delta}{1 + (\delta - 1)q_1^2} \right\}. \\
\] (6)

Thus, the result holds for \(\eta = 1 \). Suppose that result holds for \(\eta = \rho \), i.e.,

\[
\text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_p) = \left\{ \frac{1 + (\delta - 1)q_1^2}{1 + (\delta - 1)q_1^2} - \frac{1 - q_1^2}{1 - q_1^2}, \frac{\delta}{1 + (\delta - 1)q_1^2} \right\}. \\
\] (7)

3.1. Weighted Average Aggregation Operators. Let \(\mathbf{P}_1 = \langle q_1, \sigma_1 \rangle \) be a collection of FFNs and \(\kappa = \langle \kappa_1, \kappa_2, \ldots, \kappa_p \rangle \) be its weight vector (WV) such that \(\kappa_j > 0 \) and \(\sum_{1=1}^{n} \kappa_i = 1 \), then FFHIWA: \(\Omega^\beta \rightarrow \Omega \) is defined as

\[
\text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n) = \kappa_1 \mathbf{P}_1 \oplus \kappa_2 \mathbf{P}_2 \oplus \cdots \kappa_n \mathbf{P}_n. \\
\] (4)

Theorem 1. Let \(\mathbf{P}_1 = \langle q_1, \sigma_1 \rangle \) be a collection of FFNs, then
Now, for \(n = p + 1 \),

\[
\text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_p) = \frac{p+1}{\delta} \kappa \mathbf{P}_i
\]

\[
= \sqrt{\frac{\prod_{i=1}^{p} (1 + (\delta - 1)e_i^3)^{\kappa_i} - \prod_{i=1}^{p} (1 - e_i^3)^{\kappa_i}}{\prod_{i=1}^{p} (1 + (\delta - 1)e_i^3)^{\kappa_i} + (\delta - 1)\prod_{i=1}^{p} (1 - e_i^3)^{\kappa_i}}}
\]

\[
\times \sqrt{\frac{\delta \prod_{i=1}^{p} (1 - e_i^3)^{\kappa_i} - \prod_{i=1}^{p} (1 - e_i^3 - \sigma_i^3)^{\kappa_i}}{\prod_{i=1}^{p} (1 + (\delta - 1)e_i^3)^{\kappa_i} + (\delta - 1)\prod_{i=1}^{p} (1 - e_i^3)^{\kappa_i}}}
\]

\[
\Rightarrow \text{Result holds } \forall \eta.
\]

\textbf{Remark 1.} We elaborate two cases of the FFHIWA operator:

(i) For \(\delta = 1 \), FFHIWA operator becomes FF interactive weighted averaging (FFIWA) operator:

\[
\text{FFIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n) = \sqrt{1 - \prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i}} - \prod_{i=1}^{n} (1 - e_i^3 - \sigma_i^3)^{\kappa_i}
\]

(ii) For \(\delta = 2 \), FFHIWA operator becomes FF Einstein interactive weighted averaging (FEEIWA) operator:

\[
\text{FEEIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n) = \sqrt{\prod_{i=1}^{n} (1 + e_i^3)^{\kappa_i} - \prod_{i=1}^{n} (1 + e_i^3 - \sigma_i^3)^{\kappa_i}}
\]

\[
\times \sqrt{2\left[\prod_{i=1}^{n} (1 + e_i^3)^{\kappa_i} - \prod_{i=1}^{n} (1 - e_i^3 - \sigma_i^3)^{\kappa_i}\right]} - \prod_{i=1}^{n} (1 + e_i^3)^{\kappa_i} + \prod_{i=1}^{n} (1 + e_i^3 - \sigma_i^3)^{\kappa_i}
\]

\textbf{Theorem 2.} Let \(\mathbf{P}_i = (\eta_i, \sigma_i) \) be FFNs, then the accumulated value by using FFHIWA operator is a FFN, i.e.,

\[
\text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n) \in \text{FFN}.
\]

\textbf{Proof.} As \(\mathbf{P}_i \)'s are FFNs, \(0 \leq \eta_i, \sigma_i \leq 1 \) and \(0 \leq e_i^3 + \sigma_i^3 \leq 1 \).

Therefore,

\[
\frac{\prod_{i=1}^{n} (1 + (\delta - 1)e_i^3)^{\kappa_i} - \prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i}}{\prod_{i=1}^{n} (1 + (\delta - 1)e_i^3)^{\kappa_i} + (\delta - 1)\prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i}} = 1 - \frac{\delta \prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i}}{\prod_{i=1}^{n} (1 + (\delta - 1)e_i^3)^{\kappa_i} + (\delta - 1)\prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i}}
\]

\[
\leq 1 - \prod_{i=1}^{n} (1 - e_i^3)^{\kappa_i} \leq 1.
\]
Also, \((1 + (\delta - 1)\eta_i^3) \geq (1 - \eta_i^3)\Rightarrow \prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) - \prod_{i=1}^{n} (1 - \eta_i^3) \geq 0\). Therefore,
\[
\frac{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) - \prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) + (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3} \geq 0,
\]
\[
\Rightarrow \sqrt{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) - \prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3} \geq (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3.
\]
(13)

Thus, Moreover,
\[
\frac{\delta\left[\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3 - \prod_{i=1}^{n} (1 - \eta_i^3\epsilon_i^3)\right]}{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) + (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}
\]
\[
\leq \frac{\delta\left[\prod_{i=1}^{n} (1 - \eta_i^3)\right]}{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) + (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}
\]
\[
\leq \prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3 \leq 1.
\]

Property 1. (idempotency). If \(\mathcal{P}_i = \mathcal{P}_o = (q_o, \rho_o), \forall i\), then
\[
\text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \mathcal{P}_o.
\]
(16)

Proof. Since \(\mathcal{P}_1 = \mathcal{P}_o = (q_o, \rho_o), \forall i\) and \(\sum_{i=1}^{n} \kappa_i = 1\), by Theorem 1,

\[
\text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \left(\sqrt{\frac{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) - \prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) + (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}}\right)^{\frac{\delta\left[\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3 - \prod_{i=1}^{n} (1 - \eta_i^3\epsilon_i^3)\right]}{\prod_{i=1}^{n} (1 + (\delta - 1)\eta_i^3) + (\delta - 1)\prod_{i=1}^{n} (1 - \eta_i^3)\eta_i^3}}
\]
\[
= \left(\frac{(1 + (\delta - 1)\rho_o)\sum_{i=1}^{n} \kappa_i - (1 - \rho_o)}{(1 + (\delta - 1)\eta_o)\sum_{i=1}^{n} \kappa_i + (\delta - 1)(1 - \rho_o)\sum_{i=1}^{n} \kappa_i}\right)^{\frac{\delta\left[(1 - \rho_o)\sum_{i=1}^{n} \kappa_i - (1 - \rho_o - \beta_o)\sum_{i=1}^{n} \kappa_i\right]}{(1 + (\delta - 1)\eta_o)\sum_{i=1}^{n} \kappa_i + (\delta - 1)(1 - \rho_o)\sum_{i=1}^{n} \kappa_i}}
\]
\[
= \left(\frac{(1 + (\delta - 1)\eta_o)^{1 - \rho_o} - (1 - \rho_o)}{(1 + (\delta - 1)\eta_o)^{\rho_o} + (\delta - 1)(1 - \rho_o)}\right)^{\frac{\delta\left[(1 - \rho_o)\sum_{i=1}^{n} \kappa_i - (1 - \rho_o - \beta_o)\sum_{i=1}^{n} \kappa_i\right]}{(1 + (\delta - 1)\eta_o)\sum_{i=1}^{n} \kappa_i + (\delta - 1)(1 - \rho_o)\sum_{i=1}^{n} \kappa_i}}
\]
\[
= (q_o, \rho_o).
\]
(17)

Property 2. (boundedness). Let \(\mathcal{P}_\inf = (\min(q_1), \max(\sigma_1))\) and \(\mathcal{P}_\sup = (\min(q_1), \max(\sigma_1))\), then
\[
\mathcal{P}_\inf \leq \text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \leq \mathcal{P}_\sup.
\]
(18)

Proof. Let \(f(x) = 1 - x + (\delta - 1)x, \forall x \in [0, 1]\), then \(f'(x) = -\delta/((\delta - 1)x)^2 < 0\), so \(f(x)\) is a decreasing function (DF). As \(\theta_{t, \min} \leq \theta_t \leq \theta_{t, \max}, \forall t\), then
\[
f(\theta_{t, \max}) \leq f(\theta_t) \leq f(\theta_{t, \min}), \forall t; \text{ that is, } 1 - \theta_{t, \min}^3/1 + (\delta - 1)\theta_{t, \max}^3 \leq 1 - \theta_t^3/1 + (\delta - 1)\theta_t^3 \geq 1 - \theta_{t, \max}^3/1 + (\delta - 1)\theta_{t, \min}^3, \forall t.
\]
Let \(\kappa_t \in [0, 1]\) and \(\sum_{t=1}^{n} \kappa_t = 1\), we have

\[
\left(\frac{1 - \theta_{t, \max}^3}{1 + (\delta - 1)\theta_{t, \max}^3}\right)^{\kappa_t} \leq \left(\frac{1 - \theta_t^3}{1 + (\delta - 1)\theta_t^3}\right)^{\kappa_t} \leq \left(\frac{1 - \theta_{t, \min}^3}{1 + (\delta - 1)\theta_{t, \min}^3}\right)^{\kappa_t}
\]
\[
\prod_{t=1}^{n} \left(\frac{1 - \theta_{t, \max}^3}{1 + (\delta - 1)\theta_{t, \max}^3}\right)^{\kappa_t} \leq \prod_{t=1}^{n} \left(\frac{1 - \theta_t^3}{1 + (\delta - 1)\theta_t^3}\right)^{\kappa_t} \leq \prod_{t=1}^{n} \left(\frac{1 - \theta_{t, \min}^3}{1 + (\delta - 1)\theta_{t, \min}^3}\right)^{\kappa_t}
\]
\[
\left(\frac{1 - \varrho_1^{3,\text{max}}}{1 + (\delta - 1)\varrho_1^{3,\text{max}}}\right)^{\sum_{i=1}^{n} \kappa_i} \leq \prod_{i=1}^{n} \left(\frac{1 - \varrho_i^{3}}{1 + (\delta - 1)\varrho_i^{3}}\right)^{\kappa_i} \leq \left(\frac{1 - \varrho_1^{3,\text{min}}}{1 + (\delta - 1)\varrho_1^{3,\text{min}}}\right)^{\sum_{i=1}^{n} \kappa_i} \\
\Rightarrow \left(\frac{1 - \varrho_1^{3,\text{max}}}{1 + (\delta - 1)\varrho_1^{3,\text{max}}}\right) \leq \prod_{i=1}^{n} \left(\frac{1 - \varrho_i^{3}}{1 + (\delta - 1)\varrho_i^{3}}\right)^{\kappa_i} \leq \left(\frac{1 - \varrho_1^{3,\text{min}}}{1 + (\delta - 1)\varrho_1^{3,\text{min}}}\right) \\
\Rightarrow (\delta - 1) \left(\frac{1 - \varrho_1^{3,\text{max}}}{1 + (\delta - 1)\varrho_1^{3,\text{max}}}\right) \leq (\delta - 1) \prod_{i=1}^{n} \left(\frac{1 - \varrho_i^{3}}{1 + (\delta - 1)\varrho_i^{3}}\right)^{\kappa_i} \leq (\delta - 1) \left(\frac{1 - \varrho_1^{3,\text{min}}}{1 + (\delta - 1)\varrho_1^{3,\text{min}}}\right) \\
\Rightarrow \frac{1 + (\delta - 1)\varrho_1^{3,\text{min}}}{\delta} \leq \frac{1}{\left(\prod_{i=1}^{n} \left(1 - \varrho_i^{3}/1 + (\delta - 1)\varrho_i^{3}\right)^{\kappa_i}\right)} \leq \frac{1 + (\delta - 1)\varrho_1^{3,\text{max}}}{\delta} \\
\Rightarrow (\delta - 1)\varrho_1^{3,\text{min}} \leq \frac{\delta}{\left(\prod_{i=1}^{n} \left(1 - \varrho_i^{3}/1 + (\delta - 1)\varrho_i^{3}\right)^{\kappa_i}\right)} - 1 \leq (\delta - 1)\varrho_1^{3,\text{max}} \\
\Rightarrow \varrho_1^{3,\text{min}} \leq \frac{\prod_{i=1}^{n} \left(1 + (\delta - 1)\varrho_i^{3}\right)^{\kappa_i} - \prod_{i=1}^{n} \left(1 - \varrho_i^{3}\right)^{\kappa_i}}{\prod_{i=1}^{n} \left(1 + (\delta - 1)\varrho_i^{3}\right)^{\kappa_i} + (\delta - 1)\prod_{i=1}^{n} \left(1 - \varrho_i^{3}\right)^{\kappa_i}} \leq \varrho_1^{3,\text{max}}.
\]

Thus,
\[
\varrho_1^{3,\text{min}} \leq \left(\sum_{i=1}^{n} \kappa_i \right) \left(\frac{1 - \varrho_1^{3,\text{min}}}{1 + (\delta - 1)\varrho_1^{3,\text{min}}}\right)^{\kappa_i} \leq \left(\frac{1 - \varrho_1^{3,\text{max}}}{1 + (\delta - 1)\varrho_1^{3,\text{max}}}\right)^{\kappa_i} \leq \left(\frac{1 - \varrho_1^{3}}{1 + (\delta - 1)\varrho_1^{3}}\right)^{\kappa_i} \\
\leq \varrho_1^{3,\text{max}}.
\]

Consider \(g(\delta) = \delta - (\delta - 1)\delta/\delta - 1, \delta \in (0, 1], \) then
\(g'(\delta) = -1/\delta^2; \) i.e., \(g(\delta) \) is a DF on \((0, 1].\) Since
\(1 - \varrho_1^{3,\text{max}} \leq 1 - \varrho_1^{3,\text{min}} \leq 1 - \varrho_1^{3,\text{min}}, \forall i, \) then \(g(1 - \varrho_1^{3,\text{max}}) \leq g(1 - \varrho_1^{3,\text{min}}), \forall i, \) that is, \(\delta - (\delta - 1)(1 - \varrho_1^{3,\text{min}})/(\delta - 1)(1 - \varrho_1^{3,\text{max}}) \leq \delta - (\delta - 1)(1 - \varrho_1^{3,\text{min}})/(\delta - 1)(1 - \varrho_1^{3,\text{max}}). \) Then,
Let FFHIWA \((\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \mathcal{P} = \langle \varphi, \sigma \rangle\), then from inequalities (20) and (21), \(\varphi_{\min} \leq \varphi \leq \varphi_{\max}\), \(\sigma_{\min} \leq \sigma \leq \sigma_{\max}\), \(\varphi_{\min} = \min_i \varphi_i\), \(\varphi_{\max} = \max_i \varphi_i\), \(\sigma_{\min} = \min_i \sigma_i\), and \(\sigma_{\max} = \max_i \sigma_i\). So \(S(\mathcal{P}) = \varphi - \sigma_{\max} \leq \max_i \varphi_i - \sigma_{\max} = S(\mathcal{P})\) and \(S(\mathcal{P}) = \varphi - \sigma_{\min} \geq \min_i \varphi_i - \sigma_{\min} = S(\mathcal{P})\).

As \(S(\mathcal{P}) < S(\mathcal{P}^+)\) and \(S(\mathcal{P}) > S(\mathcal{P}^-)\),

\[\mathcal{P}^- \leq \text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \leq \mathcal{P}^+.\] (22)

Property 3. (monotonicity). When \(\mathcal{P}_i \leq \mathcal{T}_i\), \(\forall i\), then

\[\text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \leq \text{FFHIWA}(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_n).\] (23)

Proof. It is similar to above. \(\square\)

Property 4. (shift invariance). If \(\mathcal{T} = (\varphi, \sigma)\) is another FFN, then

\[\text{FFHIWA}(\mathcal{P}_1 \oplus \mathcal{T}, \mathcal{P}_2 \oplus \mathcal{T}, \ldots, \mathcal{P}_n \oplus \mathcal{T}) = \text{FFHIWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \oplus \mathcal{T}.\] (24)

Proof. As \(\mathcal{P}_i, \mathcal{T} \in \text{FFNs},

\[\mathcal{P}_i \oplus \mathcal{T} = \left[\begin{array}{c}
\frac{\delta((\varphi - \sigma_{\max})^{\delta - 1}(1 - \varphi + \delta) - (1 - \varphi + \delta) - (1 - \varphi - \delta) - (1 - \varphi + \delta) - (1 - \varphi - \delta))}{(\varphi - \sigma_{\max})^{\delta - 1}(1 + \varphi - \delta) + (\varphi - \sigma_{\max} + \delta)(1 - \varphi + \delta)}
\end{array}\right].\] (25)

Therefore,

\[\text{FFHIWA}(\mathcal{P}_1 \oplus \mathcal{T}, \mathcal{P}_2 \oplus \mathcal{T}, \ldots, \mathcal{P}_n \oplus \mathcal{T}) = \left[\begin{array}{c}
\frac{\Pi_{i=1}^n((\varphi - \sigma_{\min})^{\delta - 1}(1 - \varphi + \delta) - (1 - \varphi + \delta) - (1 - \varphi - \delta))}{\Pi_{i=1}^n((\varphi - \sigma_{\min})^{\delta - 1}(1 + \varphi - \delta) + (\varphi - \sigma_{\min} + \delta)(1 - \varphi + \delta))}
\end{array}\right].\]
Property 5. (Homogeneity). Let $\beta > 0$, then

$$\text{FFHIWA}(\beta \mathbf{P}_1, \beta \mathbf{P}_2, \ldots, \beta \mathbf{P}_n) = \beta \text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n).$$

Proof. Since $\mathbf{P}_i = (\mathcal{E}_i, \sigma_i)$ are FFNs, for $\beta > 0$,

$$\text{FFHIWA}(\beta \mathbf{P}_1, \beta \mathbf{P}_2, \ldots, \beta \mathbf{P}_n)$$

$$= \beta \text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n).$$

Therefore,

$$\text{FFHIWA}(\beta \mathbf{P}_1, \beta \mathbf{P}_2, \ldots, \beta \mathbf{P}_n) = \beta \text{FFHIWA}(\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_n).$$

(26)
Property 6. Let $\mathfrak{P}_i = (e_{\mathfrak{P}_i}, \sigma_{\mathfrak{P}_i})$ and $\mathcal{F}_i = (e_{\mathcal{F}_i}, \sigma_{\mathcal{F}_i})$ be two collections of FFNs, then

$$\text{FFHIWA}(\mathfrak{P}_1 \oplus \mathcal{F}_1, \mathfrak{P}_2 \oplus \mathcal{F}_2, \ldots, \mathfrak{P}_n \oplus \mathcal{F}_n)$$

$$= \text{FFHIWA}(\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_n) \oplus \text{FFHIWA}(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n).$$

(30)

\[
\mathfrak{P}_i \oplus \mathcal{F}_i = \left\langle \sqrt{\frac{(1 + (\delta - 1)e_{\mathfrak{P}_i}^3)(1 + (\delta - 1)e_{\mathfrak{P}_i}^3) - (1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3)}{(1 + (\delta - 1)e_{\mathfrak{P}_i}^3)(1 + (\delta - 1)e_{\mathfrak{P}_i}^3) + (\delta - 1)(1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3) + (\delta - 1)(1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3) + (\delta - 1)(1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3)}} \right\rangle
\]

(31)

Therefore,

$$\text{FFHIWA}(\mathfrak{P}_1 \oplus \mathcal{F}_1, \mathfrak{P}_2 \oplus \mathcal{F}_2, \ldots, \mathfrak{P}_n \oplus \mathcal{F}_n)$$

$$= \left\langle \frac{\prod_{i=1}^n((1 + (\delta - 1)e_{\mathfrak{P}_i}^3)(1 + (\delta - 1)e_{\mathfrak{P}_i}^3))^\kappa - \prod_{i=1}^n((1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3))^\kappa}{\prod_{i=1}^n((1 + (\delta - 1)e_{\mathfrak{P}_i}^3)(1 + (\delta - 1)e_{\mathfrak{P}_i}^3))^\kappa + (\delta - 1)\prod_{i=1}^n((1 - e_{\mathfrak{P}_i}^3)(1 - e_{\mathfrak{P}_i}^3))^\kappa)} \right\rangle$$

(32)

Property 7. Let $\mathfrak{P}_i = (e_{\mathfrak{P}_i}, \sigma_{\mathfrak{P}_i})$ and $\mathcal{F} = (e_{\mathcal{F}}, \sigma_{\mathcal{F}})$ be FFNs and $\eta > 0$, then

$$\text{FFHIWA}(\eta \mathfrak{P}_1 \oplus \mathcal{F}, \eta \mathfrak{P}_2 \oplus \mathcal{F}, \ldots, \eta \mathfrak{P}_n \oplus \mathcal{F}) = \eta \text{FFHIWA}(\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_n) \oplus \mathcal{F}.$$
Proof. By applying the Properties 1, 5, and 6, we can proof it. □

4. Ordered Weighted Averaging Operator

Definition 5. Let $\mathcal{P}_i = (q_i, \sigma_i)$ be a collection of FFNs and $\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_n)^T$ be its WV such that $\kappa_i > 0$ and $\sum_{i=1}^n \kappa_i = 1$, then FFHIOWA: $\Omega^y \rightarrow \Omega$ is defined as

$$
\text{FFHIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \kappa_1 \mathcal{P}_{\sigma(1)} \oplus \kappa_2 \mathcal{P}_{\sigma(2)} \oplus \cdots \kappa_n \mathcal{P}_{\sigma(n)},
$$

where $(\sigma(1), \sigma(2), \ldots, \sigma(n))$ is a permutation of $(1, 2, \ldots, n)$ such that $\sigma(i-1) \geq \sigma(i)$ for any i.

Theorem 3. Let $\mathcal{P}_i = (q_i, \sigma_i)$ be a collection of FFNs, then

(i) For $\delta = 1$, FFHIOWA operator becomes FF interactive ordered weighted averaging (FFIOWA) operator:

$$
\text{FFIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \left\langle \left(\prod_{i=1}^{n} (1 - \varphi_{\sigma(i)})^{\kappa_i} \right) \right\rangle.
$$

(ii) For $\delta = 2$, FFHIOWA operator becomes FF Einstein interactive ordered weighted averaging (FFEIOWA) operator:

$$
\text{FFEIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \left\langle \left(\prod_{i=1}^{n} (1 - \varphi_{\sigma(i)})^{\kappa_i} \right) \right\rangle.
$$

Property 8. Let $\mathcal{P}_i = (q_i, \sigma_i)$ be a collection of FFNs and $\kappa = (\kappa_1, \kappa_2, \ldots, \kappa_n)^T$ be its WV such that $\kappa_i > 0$ and $\sum_{i=1}^n \kappa_i = 1$.

(i) Idempotency: if $\mathcal{P}_i = \mathcal{P}_o = (q_i, \sigma_i), \forall i$, then

$$
\text{FFHIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) = \mathcal{P}_o.
$$

(ii) Boundedness: let $\mathcal{P}^- = (\min_i(q_i), \max_i(\sigma_i))$ and $\mathcal{P}^+ = (\max_i(q_i), \min_i(\sigma_i))$, then

$$
\mathcal{P}^- \leq \text{FFHIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \leq \mathcal{P}^+.
$$

(iii) Monotonicity: when $\mathcal{P}_i \leq \mathcal{T}_i, \forall i$, then

$$
\text{FFHIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \leq \text{FFHIOWA}(\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_b).
$$

(iv) Shift invariance: if $\mathcal{T} = (q_{\sigma}, \sigma_{\sigma})$ is another FFN, then

$$
\text{FFHIOWA}(\mathcal{P}_1 \oplus \mathcal{T}, \mathcal{P}_2 \oplus \mathcal{T}, \ldots, \mathcal{P}_n \oplus \mathcal{T}) = \text{FFHIOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_n) \oplus \mathcal{T}.
$$
(v) Homogeneity: let \(\beta > 0 \), then
\[
\text{FFHIOWA}(\beta \mathbf{p}_1, \beta \mathbf{p}_2, \ldots, \beta \mathbf{p}_n) = \beta \text{FFHIOWA}(\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n).
\]

Proof. It is similar to the FFHIWA properties. \(\square \)

5. Hybrid Weighted Averaging Operator

Definition 6. Let \(\mathbf{p}_i = (q_i, \sigma_i) \) be a collection of FFNs, then FFHIHWA: \(\Omega^n \rightarrow \Omega \) is defined as

\[
\text{FFHIHWA}(\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n) = \left(\prod_{i=1}^{n} \left(\frac{1 + (\delta - 1) \tilde{c}_{e_i(i)}^{3}}{\prod_{i=1}^{n} (1 + (\delta - 1) \tilde{c}_{e_i(i)}^{3})} \right)^{\kappa_i} \right)^{\frac{1}{\sum_{i=1}^{n} \kappa_i}}.
\]

Proof. It is similar to Theorem 1. \(\square \)

Remark 3. FFHIHWA operator also satisfies the same properties as given in Property 8.

6. MAGDM under Fermatean Fuzzy Environment

In MAGDM problem, it is a biggest challenge for decision makers (DMrs) to choose the best alternative among the list of possible alternatives. Let \(\{ \mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_n \} \) be \(n \) distinct alternatives which can be classified under the set of \(m \) different attributes \(\{ c_1, c_2, \ldots, c_m \} \) by the DMrs. Suppose that DMrs give their preferences in terms of FFNs \(\alpha_{ij} = (\theta_{ij}, \sigma_{ij}) \) \((i = 1, 2, \ldots, n; j = 1, 2, \ldots, m)\), where \(\theta_{ij} \) and \(\sigma_{ij} \) are the satisfaction and dissatisfaction degrees, respectively, of the alternative corresponding to given parameter given by the DMrs such that \(0 \leq \theta_{ij}^{3} + \sigma_{ij}^{3} \leq 1 \). The different steps for MAGDM problem are given as follows:

Step 1. Attain the normalize FF decision matrix by exchanging the assessment value of cost parameter (CP) into benefit parameter (BP) [40], i.e.,
\[
\mathbf{r}_{ij} = \begin{cases}
\tilde{a}_{ij}; & \text{for CP}, \\
\tilde{a}_{ij}^{-1}; & \text{for BP}.
\end{cases}
\]

Step 2. By using the decision matrix of step 1, the overall aggregated value of alternative \(\mathbf{s}_i \) under the distinct choices of attributes \(c_j \) is obtained by using FFHIWA or FFHIOWA or FFHIHWA operator and get the overall value of them.

Step 3. By using the score function, calculate the score values of all alternatives.

Step 4. Rank the alternatives \(\{ \mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_n \} \) in the descending order of score values and then select the most suitable alternative.

6.1. Numerical Example

To classify the air quality (AQ) of Guangzhou for the 16th Asian Olympic Games [41] held during November 12-27, 2010, the AQ data in Guangzhou for November 2006, November 2007, November 2008, and November 2009 are collected to find out the trends in the AQ. Suppose that there are three AQ monitoring stations \(E_1, E_2, \) and \(E_3 \), which are considered as DMrs and suppose that the 0.314, 0.355, and 0.331 are weights of \(E_1, E_2, \) and \(E_3 \), respectively. There are three measured indexes, namely, \(SO_2 \) (\(c_1 \)), \(NO_2 \) (\(c_2 \)), and \(PM_10 \) (\(c_3 \)), and their weight is \(\kappa = (0.40, 0.20, 0.40)^T \). Let \(\mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \) and \(\mathbf{s}_4 \) be alternatives, where \(\mathbf{s}_1 = \text{November 2006,} \mathbf{s}_2 = \text{November 2007,} \mathbf{s}_3 = \text{November 2008,} \) and \(\mathbf{s}_4 = \text{November 2009} \).

Suppose that the measured values obtained from the AQ monitoring stations \(E_1, E_2, \) and \(E_3 \) under the measured indexes \(SO_2, NO_2, \) and \(PM_10 \) are shown in Tables 1–3, respectively. We rank the AQ values from Tables 1–3, respectively. We rank the AQ from 2006–2009 by using the proposed method. By FFHIWA operator, the steps are as follows:

Step 1: as all criteria are of same type, decision matrix cannot be normalized. The aggregated decision matrix by using FF weighted averaging operator with WV \(\lambda = (0.314, 0.355, 0.331)^T \) is shown in Table 4.

Step 2: to find the overall assessment of each alternative, we apply the FFHIWA operator for \(\delta = 1 \) as follows. For \(\mathbf{r}_{11} \),
For P_2,

$$\text{FFHIWA}(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}) = \left(1 - (1 - 0.4031)^{0.40} (1 - 0.6208)^{0.20} (1 - 0.5800)^{0.40}, \right)^{0.40} (1 - 0.4031)^{0.40} (1 - 0.6208)^{0.20} (1 - 0.5800)^{0.40} - (1 - 0.4031 - 0.8400)^{0.40} (1 - 0.6208 - 0.4901)^{0.20} (1 - 0.5800 - 0.5889)^{0.40}$$

$$= (0.5374, 0.7106).$$

(46)
For \mathcal{P}_3,

\[
= \text{FFHIWA}(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}) = \sqrt{1 - \left(1 - 0.8998^5\right)^{0.49} \left(1 - 0.7199^3\right)^{0.20} \left(1 - 0.7158^3\right)^{0.40}},
\]
\[
\cdot \sqrt{\left(1 - 0.8998^5\right)^{0.49} \left(1 - 0.7199^3\right)^{0.20} \left(1 - 0.7158^3\right)^{0.40} - \left(1 - 0.8998^5 - 0.3000^3\right)^{0.49} \left(1 - 0.7199^3 - 0.2071^3\right)^{0.20} \left(1 - 0.7158^3 - 0.1623^3\right)^{0.40}}
= (0.8191, 0.2754).
\]

For \mathcal{P}_4,

\[
= \text{FFHIWA}(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}) = \sqrt{1 - \left(1 - 0.9161^5\right)^{0.49} \left(1 - 0.8478^3\right)^{0.20} \left(1 - 0.8552^3\right)^{0.40}},
\]
\[
\cdot \sqrt{\left(1 - 0.9161^5\right)^{0.49} \left(1 - 0.8478^3\right)^{0.20} \left(1 - 0.8552^3\right)^{0.40} - \left(1 - 0.9161^5 - 0.2348^3\right)^{0.49} \left(1 - 0.8478^3 - 0.1343^3\right)^{0.20} \left(1 - 0.8552^3 - 0.3769^3\right)^{0.40}}
= (0.8831, 0.2951).
\]

Step 3: the score values for alternatives are

\[
S(\mathcal{E}_1) = -0.2036, S(\mathcal{E}_2) = -0.2302, S(\mathcal{E}_3) = 0.5287, S(\mathcal{E}_4) = 0.6630.
\]

Step 4: as $\mathcal{E}_1 > \mathcal{E}_3 > \mathcal{E}_1 > \mathcal{E}_2$, the best AQ in Guangzhou is November of 2009.

The whole method which we have adopted in this application is given in Figure 1.

\[
\text{FFEWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_b) = \left(\frac{\prod_{i=1}^{b} \left(1 + e_i^3\right)^{\kappa} - \prod_{i=1}^{b} \left(1 + e_i^3\right)^{\kappa}}{\prod_{i=1}^{b} \left(1 + e_i^3\right)^{\kappa} + \prod_{i=1}^{b} \left(1 + e_i^3\right)^{\kappa}}, \sqrt[\prod_{i=1}^{b} (2 - \sigma_i^3)^{\kappa}] \sqrt[\prod_{i=1}^{b} (2 - \sigma_i^3)^{\kappa}] \prod_{i=1}^{b} \sigma_i^3 \right)
\]

The FF Einstein ordered weighted averaging (FFEOWA) operator is

\[
\text{FFEOWA}(\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_b) = \left(\frac{\prod_{i=1}^{b} \left(1 + e_i^4(i)\right)^{\kappa} - \prod_{i=1}^{b} \left(1 - e_i^4(i)\right)^{\kappa}}{\prod_{i=1}^{b} \left(1 + e_i^4(i)\right)^{\kappa} + \prod_{i=1}^{b} \left(1 - e_i^4(i)\right)^{\kappa}}, \sqrt[\prod_{i=1}^{b} (2 - \sigma_i^4(i))^{\kappa}] \prod_{i=1}^{b} \sigma_i^4(i) \right)
\]

By FFEWA operator, the steps are as follows:

Step 1: same as above.

Step 2: to find the overall assessment of each alternative, we apply the FFEWA operator as

\[
\text{(48)}
\]

\[
\text{(49)}
\]

7. Comparison Analysis

For the validity and importance of proposed operators, we aggregate the same information using different operator, namely, FFEWA or FFEOWA operator [30].

Definition 7. (see [30]). The FFEWA operator is as follows:

\[
\text{(50)}
\]

\[
\text{(51)}
\]
Start

Normalize the decision matrix

Aggregated value of all fermatean fuzzy numbers

Preference values of all alternatives

Calculate the score values of each alternative

Select the optimal alternative

End

Figure 1: Flow chart for the classification of the air quality of Guangzhou.

\[P_1 = \text{FFEWA}\left(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}\right) \]

\[= \sqrt{2} \left((0.8400)^{0.40} (0.4901)^{0.20} (0.5889)^{0.40} \right) \]

\[\left((1 + 0.4031)^{0.40} (1 + 0.6208)^{0.20} (1 + 0.5800)^{0.40} \right) \]

\[\left((1 + 0.4031)^{0.40} (1 + 0.6208)^{0.20} (1 + 0.5800)^{0.40} \right)^{0.40} \]

\[\left((1 + 0.4031)^{0.40} (1 + 0.6208)^{0.20} (1 + 0.5800)^{0.40} \right)^{0.40} \]

\[= (0.5347, 0.6628). \]

\[P_2 = \text{FFEWA}\left(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}\right) \]

\[= \sqrt{2} \left((0.6007)^{0.40} (0.7252)^{0.20} (0.7430)^{0.40} \right) \]

\[\left((1 + 0.4986)^{0.40} (1 + 0.1662)^{0.20} (1 + 0.5048)^{0.40} \right) \]

\[\left((1 + 0.4986)^{0.40} (1 + 0.1662)^{0.20} (1 + 0.5048)^{0.40} \right)^{0.40} \]

\[\left((1 + 0.4986)^{0.40} (1 + 0.1662)^{0.20} (1 + 0.5048)^{0.40} \right)^{0.40} \]

\[= (0.4674, 0.6810). \]

\[P_3 = \text{FFEWA}\left(\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}\right) \]
been extensively used, but these operators have certain
behind proposed approach is that
Table 5 and Figure 2. It is clear that the most suitable al-
(i) We can see the effect of other grades of non-
membership in the aggregated value even if non-
member of any one alternative is zero.
(ii) We can see that there is a proper interaction between
the MD and NMD.
The operators defined in [30] are very concise and have
been extensively used, but these operators have certain
drawbacks. Few of them have been highlighted as follows:
(1) Let \(\mathbf{P}_1 = (0.9, 0) \), \(\mathbf{P}_2 = (0.77, 0.45) \), \(\mathbf{P}_3 = (0.80, 0.63) \), and \(\mathbf{P}_4 = (0.58, 0.67) \) be four FFNs and \(\kappa = (0.3, 0.3, 0.2, 0.2)^\top \) is the WV corresponding to FFNs. By applying the FFEWA operator, we get FFEWA
\(\mathbf{P}_4 = (0.88, 0) \). This shows that NMD of a FFN is independent of the NMD of others FFNs (which are nonzero in \(\mathbf{P}_i \)) and hence does not play
a significant role during the AP. The aggregated
FFNs as FFIWA \(\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\} = (0.81, 0.49) \) for
\(\delta = 1 \) and for \(\delta = 2 \) FFIWA \(\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\} = (0.88, 0.43) \). It can be seen that NMD is nonzero of
the whole aggregated FFNs even if at least one of the
NMD of FFNs is zero. Thus, the others non-
membership values of FFNs play a predominant role
during the AP in the proposed operator.

(2) Let \(\mathbf{P}_1 = (0.53, 0.42) \), \(\mathbf{P}_2 = (0.98, 0.34) \), \(\mathbf{P}_3 = (0.61, 0.54) \), and \(\mathbf{P}_4 = (0.71, 0.46) \) be four FFNs and \(\kappa = (0.4, 0.2, 0.3, 0.1)^\top \) is the WV corresponding to FFNs. By applying the FFEWA operator, we get FFEWA
\(\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\} = (0.78, 0.44) \). If we replace FFNs
\(\mathbf{P}_3 \) and \(\mathbf{P}_1 \) with \(\mathcal{T}_1 = (0.78, 0.34) \) and \(\mathcal{T}_3 = (0.67, 0.54) \), then their corresponding aggregated FFN be-
come \((0.66, 0.44) \). Hence, the NMD part of aggregated
FFN becomes independent of the change in MD’s
values. That is why it is incompatible and does not
produce an accurate information to the decision
maker. The aggregated FFNs as FFIWA \(\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\} = (0.80, 0.53) \) for \(\delta = 1 \) and FFIWA \(\{\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3, \mathbf{P}_4\} = (0.78, 0.55) \) for \(\delta = 2 \), and if we con-
sider modified FFNs, then FFIWA \(\{\mathbf{P}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4\} = (0.67, 0.45) \) for \(\delta = 1 \) and FFIWA \(\{\mathbf{P}_1, \mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_4\} = (0.66, 0.45) \) for \(\delta = 2 \). It can be seen that the
modification in membership function will affect
aggregated value of nonmembership function and is
nonzero. That is why, there is a proper interaction
between the MD and NMD, and hence, the results are
unchangeable and more realistic than the existing
operators results.

\[
\begin{align*}
\mathcal{P}_4 &= \text{FFEWA} (\mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}) \\
&= \sqrt{2} \left(\frac{(0.3000)^{0.40}(0.2071)^{0.20}(0.1623)^{0.40}}{(2 - 0.3000)^{0.40}(2 - 0.2071)^{0.20}(2 - 0.1623)^{0.40}} \right) \\
&= (0.8137, 0.2180).
\end{align*}
\]
8. Conclusions

FFS is a generalized structure of IFS and PFS. It is more powerful tool to solve DM problems involving uncertainty and satisfies the condition $0 \leq \sigma^3 + \sigma^2 \leq 1$. The structure of Hamacher’s t-norm and t-conorm is more generalized that effectively integrates the complex information. The shortcomings of the existing methods and beneficial characteristics of Hamacher AOs motivate us to endeavor for the development of a fruitful fusion with FFNs. In this research article, we have developed a group of novel FF Hamacher interactive averaging AOs, such as FFHIWA, FFHIHOWA, and FFHIHWA operators. These proposed operators have the characteristic of idempotency, boundedness, monotonicity, homogeneity, and shift invariance. These operators reduce the shortcomings of FFEWA operators. We have also discussed some particular cases of proposed operators. Moreover, the developed operators study the interaction between membership and non-membership grades. We have presented an algorithm to deal with MAGDM problems. For the validity and flexibility of proposed work, we have given the comparison analysis. In short, this work focuses on role of Hamacher interactive AOs as well as the propitious characteristics of FFNs. It is concluded that the new model of uncertain data is flexible which aptly depicts imprecise and inexact information in complicated scenarios. Thus, the operators serve as a powerful tool with further applications due to their highly adaptable nature. In future, we will work on the following topics:

1. Neutrality aggregation operators for Fermatean fuzzy sets.
2. Fermatean fuzzy power aggregation operators.
3. Fermatean fuzzy Hamy mean aggregation operators and their application in multiattribute decision making.
4. Fermatean fuzzy soft Dombi aggregation operators.

Data Availability

No data were used to support this study.

Disclosure

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[2] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.
[3] R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57–61, IEEE, Edmonton, Canada, June 2013.
[4] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230, 2016.
[5] T. Senapati and R. R. Yager, “Fermatean fuzzy sets,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 2, pp. 663–674, 2020.
[6] R. Mesiar and E. Pap, “Aggregation of infinite sequences,” Information Sciences, vol. 178, no. 18, pp. 3557–3564, 2008.
[7] Z. Xu, “Intuitionistic fuzzy aggregation operators,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 6, pp. 1179–1187, 2007.
[8] H. Zhao, Z. Xu, M. Ni, and S. Liu, “Generalized aggregation operators for intuitionistic fuzzy sets,” International Journal of Intelligent Systems, vol. 25, no. 1, pp. 1–30, 2010.
[9] X. Zhao and G. Wei, “Some intuitionistic fuzzy Einstein hybrid aggregation operators and their application to multiple attribute decision making,” Knowledge-Based Systems, vol. 37, pp. 472–479, 2013.
[10] W. Wang and X. Liu, “Intuitionistic fuzzy information aggregation using Einstein operations,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 5, pp. 923–938, 2012.
[11] H. Garg, “Some series of intuitionistic fuzzy interactive averaging aggregation operators,” SpringerPlus, vol. 5, no. 1, p. 999, 2016.
[12] H. Garg, N. Agarwal, and A. Tripathi, “Choquet integral-based information aggregation operators under the interval-valued intuitionistic fuzzy set and its applications to decision making process,” International Journal for Uncertainty Quantification, vol. 7, no. 3, 2017.
[13] H. Garg, “Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multicriteria decision-making problems,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 43, no. 3, pp. 597–613, 2019.
[14] J. C. R. Alcantud, A. Z. Khameseh, and A. Kilicman, "Aggregation of infinite chains of intuitionistic fuzzy sets and their application to choices with temporal intuitionistic fuzzy information," *Information Sciences*, vol. 514, pp. 106–117, 2020.

[15] S.-J. Wu and G.-W. Wei, "Pythagorean fuzzy Hamacher aggregation operators and their application to multiple attribute decision making," *International Journal of Knowledge-Based and Intelligent Engineering Systems*, vol. 21, no. 3, pp. 189–201, 2017.

[16] G. Wei, "Pythagorean fuzzy interaction aggregation operators and their application to multiple attribute decision making," *Journal of Intelligent & Fuzzy Systems*, vol. 33, no. 4, pp. 2119–2132, 2017.

[17] G. Shahzadi, M. Akram, and A. N. Al-Kenani, "Decision-making approach under pythagorean fuzzy yager weighted operators," *Mathematics*, vol. 8, no. 1, p. 70, 2020.

[18] N. Li, H. Garg, and L. Wang, "Some novel interactive hybrid weighted aggregation operators with Pythagorean fuzzy numbers and their applications to decision making," *Mathematics*, vol. 7, no. 12, p. 1150, 2019.

[19] P. Liu, S. M. Chen, and P. Wang, "Multiple-attribute group decision making based on q-rung orthopair fuzzy power macaulin symmetric mean operators," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 50, no. 10, pp. 3741–3756, 2020.

[20] P. Liu and P. Wang, "Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making," *International Journal of Intelligent Systems*, vol. 33, no. 2, pp. 259–280, 2018.

[21] X. Peng, J. Dai, and H. Garg, "Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new score function," *International Journal of Intelligent Systems*, vol. 33, no. 11, pp. 2255–2282, 2018.

[22] B. P. Joshi and A. Gegov, "Confidence levels q-rung orthopair fuzzy aggregation operators and its applications to MCDM problems," *International Journal of Intelligent Systems*, vol. 35, no. 1, pp. 125–149, 2020.

[23] M. Akram and G. Shahzadi, "A hybrid decision-making model under q-rung orthopair fuzzy Yager aggregation operators," *Granular Computing*, 2020.

[24] M. Akram, G. Shahzadi, and X. Peng, "Extension of Einstein geometric operators to multi-attribute decision making under q-rung orthopair fuzzy information," *Granular Computing*, pp. 1–17, 2020.

[25] M. Akram, G. Shahzadi, and S. Shahzadi, "Protraction of Einstein operators for decision-making under q-rung orthopair fuzzy model," *Journal of Intelligent & Fuzzy Systems*, vol. 40, no. 3, pp. 4779–4798, 2021.

[26] A. P. Darko and D. Liang, "Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method," *Engineering Applications of Artificial Intelligence*, vol. 87, Article ID 103259, 2020.

[27] T. Senapati and R. R. Yager, "Fermatean fuzzy weighted averaging/geometric operators and its application in multicriteria decision-making methods," *Engineering Applications of Artificial Intelligence*, vol. 85, pp. 112–121, 2019.

[28] T. Senapati and R. R. Yager, "Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making," *Informatica*, vol. 30, no. 2, pp. 391–412, 2019.

[29] H. Garg, G. Shahzadi, and M. Akram, "Decision making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility," *Mathematical Problems in Engineering*, vol. 2020, Article ID 7279027, 16 pages, 2020.

[30] M. Akram, G. Shahzadi, and A. A. H. Ahmadini, "Decision making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment," *Journal of Mathematics*, vol. 2020, Article ID 3263407, 19 pages, 2020.

[31] M. Akram, A. Bashir, and H. Garg, "Decision making model under complex picture fuzzy Hamacher aggregation operators," *Computational and Applied Mathematics*, vol. 39, no. 3, pp. 1–38, 2020.

[32] M. Akram, W. A. Dudek, and J. M. Dar, "Pythagorean Dombi fuzzy aggregation operators with application in multicriteria decision-making," *International Journal of Intelligent Systems*, vol. 34, no. 11, pp. 3000–3019, 2019.

[33] M. Akram, W. A. Dudek, and F. Ilyas, "Group decision-making based on pythagorean fuzzy TOPSIS method," *International Journal of Intelligent Systems*, vol. 34, no. 7, pp. 1455–1475, 2019.

[34] M. Akram, H. Garg, and F. Ilyas, "Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information," *Soft Computing*, vol. 24, no. 5, pp. 3425–3453, 2020.

[35] X. Peng and G. Selvachandran, "Pythagorean fuzzy set: state of the art and future directions," *Artificial Intelligence Review*, vol. 52, no. 3, pp. 1873–1927, 2019.

[36] M. Sarwar, "Decision making approaches based on color spectrum and D-TOPSIS method under rough environment," *Computational and Applied Mathematics*, vol. 39, no. 4, pp. 1–32, 2020.

[37] M. Sarwar, M. Akram, and F. Zafar, "Decision making approach based on competition graphs and extended TOPSIS method under bipolar fuzzy environment," *Mathematical and Computational Applications*, vol. 23, no. 4, p. 68, 2018.

[38] S. Shahzadi, M. Sarwar, and M. Akram, "Decision making approach with fuzzy type-2 soft graphs," *Journal of Mathematics*, vol. 2020, Article ID 8872446, 25 pages, 2020.

[39] N. Waseem, M. Akram, and J. C. R. Alcantud, "Multi-attribute decision-making based on m-polar fuzzy Hamacher aggregation operators," *Symmetry*, vol. 11, no. 12, p. 1498, 2019.

[40] Z. Xu and H. Hu, "Projection models for intuitionistic fuzzy multiple attribute decision making," *International Journal of Information Technology & Decision Making*, vol. 9, no. 2, pp. 267–280, 2010.

[41] Z. Yue, "Deriving decision maker’s weights based on distance measure for interval-valued intuitionistic fuzzy group decision making," *Expert Systems with Applications*, vol. 38, no. 9, pp. 11665–11670, 2011.

[42] S.-M. Chen, S.-H. Cheng, and W.-H. Tsai, "Multiple attribute group decision making based on interval-valued intuitionistic fuzzy aggregation operators and transformation techniques of interval-valued intuitionistic fuzzy values," *Information Sciences*, vol. 367-368, pp. 418–442, 2016.

[43] H. Garg, "A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making," *International Journal of Intelligent Systems*, vol. 31, no. 9, pp. 886–920, 2016.

[44] H. Hamacher, "Über logische verknupfungeng unsharfer aussagen und deren zugenhорige bewertungsfunktionen," in *Progress in Cybernatics and Systems Research*, R. Trappl, G. H. Klir, and L. Riccardi, Eds., pp. 276–288, Hemisphere, Washington, DC, USA, 1978.