Research Article

Meta-Analysis of the Efficacy and Safety of Chlorhexidine for Ventilator-Associated Pneumonia Prevention in Mechanically Ventilated Patients

Weiyin Dai, Yao Lin, Xiangying Yang, Pei Huang, Liuqin Xia, and Jianping Ma

Department of Intensive Care Unit, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China

Correspondence should be addressed to Jianping Ma; mjp0416@163.com

Received 17 April 2022; Revised 28 June 2022; Accepted 30 June 2022; Published 30 July 2022

Academic Editor: Qing Li

Copyright © 2022 Weiyin Dai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To explore the efficacy and safety of chlorhexidine oral care in the prevention of ventilator-associated pneumonia (VAP) by means of meta-analysis. Methods. Randomized controlled trials on the effect of chlorhexidine oral care on the incidence of VAP in patients on mechanical ventilation were searched in PubMed, Scopus, Cochrane Library, and Embase from May 1, 2022. Two researchers independently screened and included the study, extracted the data, and evaluated the literature quality. RevMan5.3 software was used for meta-analysis. Results. Meta-analysis of 13 included literature studies involving 1533 patients showed that oral care with chlorhexidine solution could reduce the incidence of VAP in patients with mechanical ventilation and the difference was statistically significant (RR = 0.61, 95% CI (0.46, 0.82), \(P = 0.04 \)). However, the results showed that the incidence of VAP of low concentration (0.02%, 0.12%, and 0.2%) and high concentration (2%) of chlorhexidine in the intervention group was lower than that in the control group and the difference was statistically significant (RR = 0.70, 95% CI (0.51, 0.96), \(P = 0.03 \); RR = 0.41, 95% CI (0.27, 0.62)). There was no significant difference in mortality between the two groups (RR = 1.01, 95% CI (0.85, 1.21), \(P = 0.87 \)). There was no statistical significance in days ventilated or days in ICU between the two groups (RR = −0.02, 95% CI (−0.19, 0.16), \(P = 0.84 \); RR = 0.01, 95% CI (−0.11, 0.14), \(P = 0.85 \)). Conclusion. Existing evidence shows that chlorhexidine used for oral care of patients with mechanical ventilation can reduce the incidence of VAP, and high concentration of chlorhexidine (2%) or low concentration of chlorhexidine (0.02%, 0.12%, 0.2%) has a significant effect on the prevention of VAP. Considering the safety of clinical application, it is recommended to use 0.02%, 0.12%, and 0.2% chlorhexidine solution for oral care.

1. Introduction

Mechanical ventilation can provide essential oxygen supply for patients with respiratory failure due to serious cardiovascular infections and brain trauma, maintain smooth airways of patients, relieve respiratory failure, and provide adequate conditions for patients’ treatment [1]. Mechanical ventilation is a treatment technology that improves patient ventilation and oxygenation and prevents hypoxia and carbon dioxide accumulation with the help of mechanical devices [2]. Ventilator-associated pneumonia (VAP) is a nosocomial infection that occurs at least 48 hours after intubation in mechanically ventilated patients, with an incidence of 15%–60%. The common clinical symptoms of VAP are fever and purulent respiratory secretions. This includes refractory pneumonia with a high mortality rate [3]. The occurrence of VAP increases the risk of death of patients on mechanical ventilation by 8 times [4] and is an important cause of death in patients in intensive care. Proper prevention and control can not only effectively reduce the incidence of VAP and reduce the length of hospital stay of patients but also effectively reduce the mortality of patients and ensure the life safety of patients [5–7]. At present, several studies have discussed the effect of changing the application of oral care solutions to prevent VAP in patients with mechanical ventilation. Patients with mechanical
2.1.1. Inclusion Criteria. Study type: RCT was done with unlimited sample size and limited English literature. Intervention: oral care was performed with chlorhexidine solution in the intervention group, and oral care was performed with normal saline or placebo in the control group. Outcome indicators: the main outcome indicators were mortality, bacterial colonization (oral, oropharyngeal, tracheal), pulmonary infection score, mechanical ventilation time, length of hospital stay, oral ulcer, patient satisfaction, etc.

2.1.2. Exclusion Criteria. The exclusion criteria were as follows: (1) unable to obtain the full text; (2) data cannot be obtained or converted; (3) reviews, single-arm studies, and other non-RCTs; (4) repeated publications; (5) the intervention measures were chlorhexidine combined with other interventions or not used in the oral care literature; (6) infants- and children-based studies.

2.2. Search Strategy. The literature published in PubMed, the Cochrane Library, Scopus, and Embase was systematically searched from the establishment of the database to May 1st, 2022. Meanwhile, literature including conference papers and the references included in the studies was manually searched. The search terms were determined by the combination of mesh terms and entry terms. Terms include endotracheal intubation, dichlorobenzene biguanide hexane, chlorhexidine, VAP, and ventilator-associated pneumonia.

2.3. Literature Screening and Data Extraction. Literature screening was completed by 2 researchers independently. First, the literature data were imported into the database using Endnote software to remove duplicate literature. Then, the title and abstract were preliminarily screened by reading. Finally, the full text was read to determine whether the bibliography was included or not. Subsequently, data were extracted by two researchers alone, and the extracted information included the following: (1) the basic information of the literature, such as author, publication year, and country; (2) intervention frequency and intervention measures of the two groups; (3) outcome indicators.

2.4. Methodological Quality Evaluation of Included Studies. The authenticity of RCTs was evaluated by 2 researchers according to the Cochrane Collaboration System Evaluation Manual (version 5.1.0), including selection bias, implementation bias, measurement bias, loss of follow-up bias, reporting bias, and other biases. If there is any dispute between two researchers, the dispute should be settled through negotiation.

2.5. Statistical Methods. RevMan 5.3 software was used for statistical analysis. Hazard ratio (RR) and 95% confidence interval (CI) were used as statistics for categorical variables, and standard mean difference and 95% confidence interval (CI) were used as statistics for continuous variables. The heterogeneity was evaluated. When the heterogeneity test is $P < 0.1$ and $I^2 > 50\%$, the reasons for heterogeneity should be analyzed first, such as whether the design scheme and measurement method are the same. If there is still heterogeneity in the results, the random effect model can be used to calculate the pooled results.

3. Results

3.1. Literature Search Results. 485 related literature studies were obtained through preliminary retrieval. After the screening, 13 literature studies were finally included [19–31]. Figure 1 shows the literature screening process and results.

3.2. Basic Information of Included Studies. The 13 included literature studies [19–31] were published in 2005 and 2019, all of which were RCT studies involving 1533 patients with 786 in the intervention group and 747 in the control group (Table 1). The risk of bias for included studies is presented in Figure 2.
3.3. Meta-Analysis

3.3.1. The Incidence of VAP. Thirteen pieces of literature reported the incidence of VAP, involving 1533 patients with mechanical ventilation, with 786 in the intervention group and 747 in the control group. Heterogeneity test results showed that there was heterogeneity between studies ($F = 0.03, I^2 = 45\%$), so a fixed-effect model was adopted for analysis. The results showed that oral care with chlorhexidine can reduce the incidence of VAP in patients with mechanical ventilation, with a statistically significant difference (RR $= 0.61, 95\%$ CI $(0.46,0.82), P = 0.04$).

Further subgroup analysis found no source of heterogeneity, but the results showed that the incidence of low-concentration (0.02%, 0.12%, and 0.2%) and high-concentration (2%) chlorhexidine VAP in the intervention group was lower than that in the control group. Difference was statistically significant (RR $= 0.70, 95\%$ CI $(0.51, 0.96), P = 0.03$; RR $= 0.41, 95\%$ CI $(0.27, 0.62), F < 0.001$) (Figure 3).

Sensitivity analysis showed that Meinberg et al.’s [26] study was the main source of heterogeneity, heterogeneity among studies decreased after excluding this study ($P = 0.24, I^2 = 21\%$), and the results were still statistically significant (RR $= 0.55, 95\%$ CI $(0.45,0.68), F < 0.001$) (Figure 4).

3.3.2. Mortality Rate. Five studies [21,23,28,29,31] reported mortality, involving a total of 771 patients with mechanical ventilation, with 407 in the intervention group and 364 in the control group. Heterogeneity test results showed that there was no heterogeneity among studies ($P = 0.52, I^2 = 0\%$). There was no significant difference in mortality between the two groups (RR $= 1.06, 95\%$ CI $(0.87, 1.30), P = 0.54$) (Figure 5).

3.3.3. Days Ventilated. Eight studies [21–23, 25, 26, 28, 29, 31] reported the days ventilated, involving a total of 1205 patients with mechanical ventilation, including 625 in the intervention group and 580 in the control group. Heterogeneity test results showed that heterogeneity existed among studies ($P = 0.004, I^2 = 53\%$), so the random effect model was used for analysis, and the results showed that there was no significant difference in mortality between the two groups (RR $= −0.02, 95\%$ CI $(-0.19, 0.16), P = 0.84$) (Figure 6).

3.3.4. Hospitalization in ICU. Six studies [14–16, 18, 19, 21] reported the days in ICU, involving a total of 999 patients with mechanical ventilation, including 498 in the intervention group and 501 in the control group. Heterogeneity test results showed that heterogeneity existed among studies
Table 1: Basic information of the included study.

Study	Country	Departments	Frequency	Sample size, T/C	Intervention (solution and usage)	Outcomes
Xia Shen, 2018	China	Respiratory medicine	Bid	37/37	0.12% chlorhexidine solution swab Normal saline swab scrub	1
Bellissimo-	Brazil	ICU	—	64/69	Rinse with 0.12% chlorhexidine solution 0.2% chlorhexidine gel scrub Rinse with placebo flushing	1, 2, 3, 4
Rodrigues, 2009						
Cabov, 2010	Croatia	ICU	Tid	17/23	0.2% gel wipe Placebo gel scrub	1, 4
Fourrie, 2005	France	ICU	Tid	114/114	0.2% chlorhexidine solution rinse + scrub Comfort gel scrub	1, 2
Huanhuan Wang,	China	ICU	Tid	30/30	0.2% chlorhexidine solution swab Normal saline rinse + scrub Normal saline swab scrub	1
2013						
Jie Gao, 2019	China	ICU	Qid	45/45	0.12% chlorhexidine solution swab Normal saline swab scrub	
Koeman 2006	Netherlands	ICU	Qid	127/13	2% chlorhexidine gel scrub Saline scrub	1
Meinberg, 2012	Brazil	CSICU	—	28/24	Brush with 0.2% chlorhexidine solution Brush with placebo	1, 3, 4
Ming Liu, 2008	China	ICU	—	32/32	Rinse with 0.12% chlorhexidine solution Normal saline rinse + scrub	1
Scannapieco, 2009	USA	ICU	Bid	97/49	Brush with 0.2% chlorhexidine solution Brush with placebo Brush with placebo	1, 2, 3, 4
Tantipong, 2008	Thailand	ICU	Qid	58/52	Brush with 0.2% chlorhexidine solution Brush with placebo Normal saline rinse + scrub	1
Zoning Wei, 2014	China	ICU	Tid	108/110	Brush with 0.2% chlorhexidine solution Brush with placebo Normal saline rinse + scrub	1
Özçaka, 2012	Turkey	Respiratory ICU	Qid	29/32	0.12% chlorhexidine solution swab Normal saline swab scrub	1, 2, 3, 4
Scannapieco, 2009	USA	ICU	—	32/32	Brush with 0.12% chlorhexidine solution Normal saline rinse + scrub	1

T: chlorhexidine group; C: control group; ICU: intensive care unit; Bid: 2 times per day; Tid: 3 times a day; Qid: 4 times a day; Qd: once a day. 1: the incidence of VAP; 2: mortality; 3: days ventilated; 4: days in ICU.

Figure 2: Risk of bias for included studies.
Evidence-Based Complementary and Alternative Medicine

Figure 3: Meta-analysis of the incidence of ventilator-associated pneumonia between two groups (subgroup analysis).

Study or Subgroup	chlorhexidine Events	Control Events	Weight (%)	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Bellissimo-Rodrigues 2009	16 64 17 69	108 110 11 36	9.1	0.53 [0.28, 1.03]	
Cabov 2010	1 17 6 23	10 36 12 52	2.7	0.23 [0.03, 1.70]	
Fourrier 2005	13 114 12 114	32 45 12 49	6.4	1.08 [0.52, 2.27]	
Huanhuan Wang 2013	5 30 12 30	97 108 12 49	6.4	0.42 [0.17, 1.04]	
Jie Gao 2018	2 45 9 45	10 36 12 52	4.8	0.22 [0.05, 0.97]	
Koeman 2006	12 127 23 130	114 127 12 114	9.1	0.59 [0.30, 1.18]	
Ming Liu 2008	11 32 17 32	110 127 12 114	2.7	0.65 [0.36, 1.15]	
Scannapieco 2009	14 97 12 49	108 110 12 49	6.4	0.59 [0.30, 1.18]	
Tantipong 2008	11 108 36 110	32 45 12 49	6.4	0.45 [0.16, 1.23]	
Xia Shen 2018	4 37 9 37	108 110 12 49	4.8	0.44 [0.15, 1.32]	
Ozcak 2012	12 29 22 32	114 127 12 114	9.1	0.31 [0.17, 0.58]	
Subtotal (95% CI)	786 747 100.0	124 196	0.61 [0.46, 0.82]		

(P = 0.82, I² = 0%), so a fixed-effect model was adopted for analysis. There was no significant difference in the length of ICU stay between the two groups (RR = 0.01, 95% CI (−0.11, 0.14), P = 0.85). (Figure 7).

Figure 4: Meta-analysis of the incidence of ventilator-associated pneumonia between two groups (sensitivity analysis).

Study or Subgroup	chlorhexidine Events	Control Events	Weight (%)	Risk Ratio M-H, Fixed, 95% CI	Risk Ratio M-H, Fixed, 95% CI
Bellissimo-Rodrigues 2009	16 64 17 69	108 110 11 36	9.1	0.53 [0.28, 1.03]	
Cabov 2010	1 17 6 23	10 36 12 52	2.7	0.23 [0.03, 1.70]	
Fourrier 2005	13 114 12 114	32 45 12 49	6.4	1.08 [0.52, 2.27]	
Huanhuan Wang 2013	5 30 12 30	97 108 12 49	6.4	0.42 [0.17, 1.04]	
Jie Gao 2018	2 45 9 45	10 36 12 52	4.8	0.22 [0.05, 0.97]	
Koeman 2006	12 127 23 130	114 127 12 114	9.1	0.59 [0.30, 1.18]	
Ming Liu 2008	11 32 17 32	110 127 12 114	2.7	0.65 [0.36, 1.15]	
Scannapieco 2009	14 97 12 49	108 110 12 49	6.4	0.59 [0.30, 1.18]	
Tantipong 2008	5 58 10 52	32 45 12 49	5.7	0.45 [0.16, 1.23]	
Xia Shen 2018	4 37 9 37	108 110 12 49	4.8	0.44 [0.15, 1.32]	
Zongting Wei 2014	11 108 36 110	32 45 12 49	5.7	0.45 [0.16, 1.23]	
Ozcak 2012	12 29 22 32	114 127 12 114	9.1	0.31 [0.17, 0.58]	
Subtotal (95% CI)	758 723 100.0	106 185	0.55 [0.45, 0.68]		

(P = 0.82, I² = 0%), so a fixed-effect model was adopted for analysis. There was no significant difference in the length of ICU stay between the two groups (RR = 0.01, 95% CI (−0.11, 0.14), P = 0.85). (Figure 7).

3.4. Publication Bias and Sensitivity Analyses.

The funnel plot was drawn using VAP incidence as an outcome indicator, and the results showed asymmetry of the funnel plot, suggesting possible publication bias. Then, we performed the sensitivity analysis, Figure 8 shows the elimination of all studies included in the meta-analysis one by one. The results did not change, suggesting good stability of the results.

4. Discussion

As an important means of life support, mechanical ventilation is widely used in the treatment of respiratory diseases, which can relieve hypoxia and carbon dioxide retention. However, mechanical ventilation can lead to a variety of
complications such as VAP sepsis, bleeding, and digestive dysfunction, among which VAP is the most common [32, 33]. The causes of VAP are mainly due to the following two aspects: On the one hand, patients on mechanical ventilation are in critical condition and lie in bed for a long time, their body immunity is weak, and they are vulnerable to bacterial invasion and inflammation. On the other hand, long-term intubation and placement of a gastric tube in mechanically ventilated patients may easily lead to oral colonization bacteria flowing into the lung tissue with airway secretions or reflux of gastric contents, increasing the chance of lung infection [34]. Therefore, strengthening oral care to reduce oral colonization is one of the important nursing measures to prevent the occurrence of VAP. As an antibacterial agent commonly used in clinical practice, chloramidine has a broad antibacterial spectrum and a long residual effect [35], which can be used to kill most oral colonization bacteria to prevent the occurrence of VAP in patients with mechanical ventilation. There have been a large number of studies on chlorhexidine as oral care solution to prevent the occurrence of VAP in patients with mechanical ventilation. This study systematically evaluated relevant studies and provided reliable evidence-based medical evidence for clinical nursing.

The results of this study show that the oral care of mechanical ventilation patients with chlorhexidine can significantly reduce the incidence of VAP, and a high concentration of chlorhexidine (2%) or low concentration of chlorhexidine (0.02%, 0.12%, 0.2%) has a significant effect on the prevention of VAP and there is no significant difference in mortality between the two groups, ventilation time, and ICU stay time. However, studies have shown that long-term use of high concentrations of chlorhexidine may cause some adverse reactions, such as oral mucosa exfoliation, taste change, and tongue coloring [36]. Therefore, doses of 0.02%, 0.12%, and 0.2% are recommended under the premise of the

Study or Subgroup	chlorhrxidine	Control	Weight (%)	Risk Ratio	Risk Ratio
	Events Total	Events Total		M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Bellissimo-Rodrigues 2009	34 64	32 69	29.5	1.15 [0.81, 1.61]	
Fourrier 2005	31 114	24 114	23.0	1.29 [0.81, 2.06]	
Scannapieco 2009	16 97	8 49	10.2	1.01 [0.46, 2.20]	
Tantipong 2008	36 58	37 52	37.4	0.87 [0.67, 1.14]	
Ozczak 2012	1 29	9 0	Not estimable		

Total (95% CI) 362 284 100.0 1.06 [0.87, 1.30]

Test for overall effect: Z = 0.61 (P = 0.19)

Figure 5: Meta-analysis of mortality rate between two groups.

Study or Subgroup	chlorhrxidine	Control	Weight (%)	Std. Mean Difference
	Mean SD Total	Mean SD Total		IV, Random, 95% CI
Bellissimo-Rodrigues 2009	11.1 4.7 98	11 4.8 96	15.3	0.02 [-0.26, 0.30]
Cabov 2010	17 11.9 30	23 12.1 30	7.9	-0.49 [-1.01, 0.02]
Fourrier 2005	11.7 8.7 114	10.6 8.7 114	16.2	0.13 [-0.13, 0.39]
Koeman 2006	9.16 12 127	6.95 8.1 130	16.9	0.22 [-0.03, 0.46]
Meineberg 2012	8.5 5 28	6 4.8 24	7.1	0.50 [-0.05, 1.06]
Scannapieco 2009	8.9 5.1 97	9.7 6.3 49	12.8	-0.14 [-0.49, 0.20]
Tantipong 2008	4.5 3.4 102	5.2 3.6 105	15.6	-0.20 [-0.47, 0.07]
Ozczak 2012	9 8.3 29	12.28 11.9 32	8.1	-0.31 [-0.82, 0.19]

Total (95% CI) 625 580 100.0 -0.02 [-0.19, 0.16]

Heterogeneity: $I^2 = 14.76$, $d = 7$ ($P = 0.04$); $I^2 = 53$

Test for overall effect: Z = 0.20 ($P = 0.84$)

Figure 6: Meta-analysis of days ventilated between two groups.

Study or Subgroup	chlorhrxidine	Control	Weight (%)	Std. Mean Difference
	Mean SD Total	Mean SD Total		IV, Fixed, 95% CI
Bellissimo-Rodrigues 2009	9.7 8.2 98	10.4 8 96	19.4	-0.09 [-0.37, 0.20]
Fourrier 2005	14 8.5 114	13.3 8.8 114	22.8	0.08 [-0.18, 0.34]
Koeman 2006	13.71 17.4 127	12.48 12.9 130	25.7	0.08 [-0.16, 0.32]
Meineberg 2012	12 10.8 28	11 8.9 24	5.2	0.10 [-0.45, 0.64]
Tantipong 2008	12 11.8 102	12 11.4 105	20.8	0.00 [-0.27, 0.27]
Ozczak 2012	12.17 11.3 29	15.44 13.5 32	6.0	-0.26 [-0.76, 0.25]

Total (95% CI) 498 501 100.0 0.01 [-0.11, 0.14]

Heterogeneity: $I^2 = 2.24$, $d = 5$ ($P = 0.82$); $I^2 = 0$

Test for overall effect: Z = 0.19 ($P = 0.85$)

Figure 7: Meta-analysis of days in ICU between two groups.
same preventive effect and considering the safety of the clinical application.

Limitations of this study: the languages included in the study were limited, only English, and there may be some included parts of publication bias. The literature quality is not high. Among the 13 included studies, only 7 reported allocation hiding, 8 introduced the random grouping method in detail, 7 mentioned the implementation of interventional blindness, and the other studies did not mention or implement interventional blindness, which may be interfered with by interventional subjective factors. The homogeneity of the included studies was not high. Factors such as frequency and method of oral care (such as washing, scrubbing, and brushing), the concentration of chlorhexidine in the intervention measures, and physical fitness and cultural environment caused by different countries and regions of subjects may affect the results.

5. Conclusion

Existing evidence shows that chlorhexidine used for oral care of patients with mechanical ventilation can reduce the incidence of VAP, and high concentration of chlorhexidine (2%) or low concentration of chlorhexidine (0.02%, 0.12%, 0.2%) has a significant effect on the prevention of VAP. Considering the safety of clinical application, it is recommended to use 0.02%, 0.12%, and 0.2% chlorhexidine solution for oral care.

Data Availability

Data are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. R. Grübler, O. Wigger, D. Berger, and S. Blöchlinger, “Basic concepts of heart-lung interactions during mechanical ventilation,” Swiss Medical Weekly, vol. 147, Article ID w14491, 2017.
[2] C. Subirà, G. Hernández, A. Vázquez et al., “Effect of pressure support vs. T-piece ventilation strategies during spontaneous breathing trials on successful extubation among patients receiving mechanical ventilation: a randomized clinical trial,” JAMA, vol. 322, pp. 696–2182, 2019.
[3] L. Papazian, M. Klompas, and C. E. Luyt, “Ventilator-associated pneumonia in adults: a narrative review,” Intensive Care Medicine, vol. 46, no. 5, pp. 888–906, 2020.
[4] L. Y. Xue, S. Gaowa, W. Wang et al., “Ventilator-associated pneumonia in patients with cerebral hemorrhage: impact on mortality and microbiological characterization,” Medicina Clinica, vol. 154, no. 10, pp. 400–405, 2020.
[5] I. Martin-Löeches, A. H. Rodriguez, and A. Torres, “New guidelines for hospital-acquired pneumonia/ventilator-associated pneumonia: USA vs. Europe,” Current Opinion in Critical Care, vol. 24, no. 5, pp. 347–352, 2018.
[6] R. Chacko, A. Rajan, P. Lionel, M. Thilagavathi, B. Yadav, and J. Premkumar, “Oral decontamination techniques and ventilator-associated pneumonia,” British Journal of Nursing, vol. 26, no. 11, pp. 594–599, 2017.
[7] Y. Li, C. Liu, W. Xiao, T. Song, and S. Wang, "Incidence, risk factors, and outcomes of ventilator-associated pneumonia in traumatic brain injury: a meta-analysis," Neurocritical Care, vol. 32, no. 1, pp. 272–285, 2020.
[8] O. Rewa and J. Muscedere, "Ventilator-associated pneumonia: update on etiology, prevention, and management," Current Infectious Disease Reports, vol. 13, no. 3, pp. 287–295, 2011.
[9] N. Malhan, M. Usman, N. Trehan et al., "Oral care and ventilator-associated pneumonia," American Journal of Therapeutics, vol. 26, no. 5, pp. 604–607, 2019.
[10] L. F. Galhardo, G. F. Ruivo, F. O. Santos et al., "Impact of oral care and antisepsis on the prevalence of ventilator-associated pneumonia," Oral Health & Preventive Dentistry, vol. 18, no. 1, pp. 331–336, 2020.
[11] Z. L. S. Brookes, L. A. Belfield, A. Ashworth et al., "Effects of chlorhexidine mouthwash on the oral microbiome," Journal of Dentistry, vol. 113, Article ID 103768, 2021.
[12] A. Stähli, I. Liakhova, B. Cyikl, A. Lussi, A. Sulean, and S. Eick, "Activity of chlorhexidine formulations on oral microorganisms and periodontal ligament fibroblasts," Swiss Dental Journal, vol. 131, no. 9, pp. 705–712, 2021.
[13] I. Chatzigiannidou, W. Teughels, T. Van de Wiele, and N. Boon, "Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile," NPJ Biofilms Microbiomes, vol. 6, no. 1, 2020.
[14] A. Pilloni, S. Ceccarelli, D. Bosco et al., "Effect of chlorhexidine digluconate in early wound healing of human gingival tissues. A histological, immunohistochemical and biomolecular analysis," Antimicrobials, vol. 10, no. 10, 2021.
[15] E. Kocaçal Guler and G. Turk, "Oral chlorhexidine against ventilator-associated pneumonia and microbial colonization"
Evidence-Based Complementary and Alternative Medicine

in intensive care patients,” Western Journal of Nursing Research, vol. 41, no. 6, pp. 901–919, 2019.

[16] L. A. Pineda, R. G. Saliba, and A. A. El Solh, “Effect of oral decontamination with chlorhexidine on the incidence of nosocomial pneumonia: a meta-analysis,” Critical Care, vol. 10, no. 1, p. R35, 2006.

[17] S. Z. Yin, “A meta-analysis of the correlation between chloridride oral care and the incidence of ventilator associated pneumonia,” Chinese journal of practical nursing, vol. 31, no. 04, pp. 277–282, 2015.

[18] Y. E. Yao and J. Li, “Meta-analysis of oral care with chlorhexidine for prevention of ventilator-associated pneumonia,” China coal industry medical journal, vol. 16, no. 07, pp. 1208–1210, 2013.

[19] X. Shen, “Application effect of Chlorhexidine in oral care of patients with mechanical ventilation through oral intubation,” Journal of Contemporary Medicine, vol. 16, no. 01, pp. 242–243, 2018.

[20] J. Gao, Z. Chen, and S. Guo, “Short-term effect of chlorhexidine oral care on prevention of ventilator-associated pneumonia in severe patients,” Modern medical health, vol. 35, no. 04, pp. 602–604, 2019.

[21] F. Bellissimo-Rodrigues, W. T. Bellissimo-Rodrigues, J. M. Viana et al., “Effectiveness of oral rinse with chlorhexidine in preventing nosocomial respiratory tract infections among intensive care unit patients,” Infection Control & Hospital Epidemiology, vol. 30, no. 10, pp. 952–958, 2009.

[22] T. Cabov, D. Macan, I. Husedzinovic et al., “The impact of oral health and 0.2% chlorhexidine oral gel on the prevalence of nosocomial infections in surgical intensive-care patients: a randomized placebo-controlled study,” Wiener Klinische Wochenschrift, vol. 122, no. 13-14, pp. 397–404, 2010.

[23] F. Fournier, D. Dubois, P. Pronnier et al., “Effect of gingival and dental plaque antiseptic decontamination on nosocomial infections acquired in the intensive care unit: a double-blind placebo-controlled multicenter study,” Critical Care Medicine, vol. 33, no. 8, pp. 1728–1735, 2005.

[24] H. Wang and J. Yu, “Oral nursing effect of three different solutions on mechanical ventilation patients,” Nursing Research, vol. 27, no. 17, pp. 1739-1740, 2013.

[25] M. Koeman, A. J. A. M. van der Ven, E. Hak et al., “Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 12, pp. 1348–1355, 2006.

[26] M. C. d A. Meinberg, M. d F. M. Cheade, A. L. D. Miranda, M. M. Fachini, and S. M. Lobo, “Uso de clorexidina 2% gel e escovação mecânica na higiene bucal de pacientes sob ventilação mecânica: efeitos na pneumonia associada a ventilador,” Revista Brasileira de Terapia Intensiva, vol. 24, no. 4, pp. 369–374, 2012.

[27] P. Liu, X. Zeng, F. Liu, J. Zhao, M. Liu, and W. Fan, “[Surgical management of dural injuries and postoperative cerebrospinal fluid fistulas in spinal surgeries],” Chinese Journal of Nursing, vol. 22, no. 6, pp. 715–718, 2008.

[28] F. A. Scannapieco, J. Yu, K. Raghavendran et al., “A randomized trial of chlorhexidine gluconate on oral bacterial pathogens in mechanically ventilated patients,” Critical Care, vol. 13, no. 4, p. R117, 2009.

[29] H. Tantipong, C. Morkchareonpong, S. Jaiyindee, and V. Thamlikitkul, “Randomized controlled trial and meta-analysis of oral decontamination with 2% chlorhexidine solution for the prevention of ventilator-associated pneumonia,” Infection Control & Hospital Epidemiology, vol. 29, no. 2, pp. 131–136, 2008.

[30] W. zongting, W. chuanxiu, L. sun, W. yang, and J. li, “Effect of 2% chlorhexidine oral care solution on prevention of ventilator-associated pneumonia,” Nursing Research, vol. 28, no. 08, pp. 984–985, 2014.

[31] Ö. Özcaka, O. K. Başoğlu, N. Buduneli, M. S. Taşbakan, F. Bacakoğlu, and D. F. Kinane, “Chlorhexidine decreases the risk of ventilator-associated pneumonia in intensive care unit patients: a randomized clinical trial,” Journal of Periodontal Research, vol. 41, no. 5, pp. 584–592, 2012.

[32] G. Vijay, A. Mandal, J. Sankar, A. Kapil, R. Lodha, and S. K. Kabra, “Ventilator associated pneumonia in pediatric intensive care unit: incidence, risk factors and etiological agents,” Indian Journal Pediatrics, vol. 85, no. 10, pp. 861–866, 2018.

[33] R. H. Kallet, “Ventilator bundles in transition: from prevention of ventilator-associated pneumonia to prevention of ventilator-associated events,” Respiratory Care, vol. 64, no. 8, pp. 994–1006, 2019.

[34] A. Coppadoro, G. Bellani, and G. Foti, “Non-pharmacological interventions to prevent ventilator-associated pneumonia: a literature review,” Respiratory Care, vol. 64, no. 12, pp. 1586–1595, 2019.

[35] F. Lin, B. Yu, Q. Wang, M. Yuan, and B. Ling, “Combination inhibition activity of chlorhexidine and antibiotics on multidrug-resistant Acinetobacter baumannii in vitro,” BMC Infectious Diseases, vol. 21, no. 1, 2021.

[36] V. Carlin, M. A. Matsumoto, P. P. Saraiva, A. Artioli, C. T. F. Oshima, and D. A. Ribeiro, “Cytogenetic damage induced by mouthrinses formulations in vivo and in vitro,” Clinical Oral Investigations, vol. 16, no. 3, pp. 813–820, 2012.