Heterotic Models without Fivebranes

Björn Andreas\(^1\) and Gottfried Curio\(^2\)

\(^1\)Institut für Mathematik und Informatik, Freie Universität Berlin
Arnimallee 14, 14195 Berlin, Germany

\(^2\)Arnold-Sommerfeld-Center for Theoretical Physics
Department für Physik, Ludwig-Maximilians-Universität München
Theresienstr. 37, 80333 München, Germany

Abstract

After discussing some general problems for heterotic compactifications involving fivebranes we construct bundles, built as extensions, over an elliptically fibered Calabi-Yau threefold. For these we show that it is possible to satisfy the anomaly cancellation topologically without any fivebranes. The search for a specific Standard model or GUT gauge group motivates the choice of an Enriques surface or certain other surfaces as base manifold. The burden of this construction is to show the stability of these bundles. Here we give an outline of the construction and its physical relevance. The mathematical details, in particular the proof that the bundles are stable in a specific region of the Kähler cone, are given in the mathematical companion paper \texttt{math.AG/0611762}.
1 On problems caused by fivebranes and the H-field

Let us recall first some problems with fivebranes and the H-field which, although known in principle, were sometimes neglected in the literature. These problems lead to some difficulties in the usage of bundles V (say in the observable sector) over a Calabi-Yau space X for a heterotic string compactification. Apart from the standard embedding $F = R$ the anomaly cancellation condition leads in general (already when read just on a cohomological level) to the occurrence of a fivebrane class W. We argue that this enforces the existence of a non-vanishing H-field which is of a markedly singular character. Even when it is possible to avoid this (for example by interpreting this class W as the $c_2(V_{hid})$ of a hidden bundle) one encounters still the same problematic occurrence of the H-field: this is when one realizes that the anomaly condition has actually to be solved on the form level already. A non-trivial H-field however is known to lead, via supersymmetry, to compatibility conditions on the underlying space geometry X, which turns out to be non-Kähler. This has the consequence that the usual Donaldson-Uhlenbeck-Yau (DUY) theorem is no longer applicable. This theorem assured the solvability of the equation of motion $F_{ab}J_{ab} = \frac{1}{2}F \wedge J^2 = 0$ on the form level from the condition $c_1(V)J^2 = 0$ on the cohomological level for bundles V stable with respect to a suitable Kähler class J. A generalisation for the non-Kähler case \cite{2} gives the solvability of the equation of motion for X having a Gauduchon metric, using an appropriate stability notion. Still one has to solve the non-linear anomaly equation exactly in a manner which goes beyond the perturbative arguments arguing by corrections order by order \cite{1}. Recently first steps in that direction were made \cite{26}.

1.1 Problems when fivebranes are present

Besides solving the equation of motion $F \wedge J^2 = 0$, the field strength F must also obey the anomaly equation

$$dH = \frac{\alpha'}{4}(tr R \wedge R - tr F \wedge F) \quad (1.1)$$

Many known vector bundle constructions, such as the spectral cover method, explicitly violate the ensuing topological condition $c_2(X) = c_2(V)$. So one needs to introduce a number of space-time filling fivebranes and has to use the generalised anomaly equation

$$dH = \frac{\alpha'}{4}(tr R \wedge R - tr F \wedge F + 16\pi^2\delta W) \quad (1.2)$$
Here a further four-form arises which is supported on the codimension four world-volume of W; this is a four-form with distribution coefficients, i.e. a current. The possibility of having a $W \neq 0$ has been first treated on a computational level in [3].

The necessary condition for solving (1.2) is the corresponding integrability condition

$$c_2(X) = c_2(V) + W$$

(assuming $c_1(V) = 0$) where W has to be realisable by an effective class of holomorphic curves. However, the condition actually to be solved is (1.2) on the form level.

The presence of fivebranes prevents heterotic models to be interpreted as perturbative nonlinear sigma models. Studies of stability of $(0,2)$ models usually assume the absence of fivebranes. Especially problematic is that the delta-function δW is not cancelled by another term on the right hand side which indicates that one cannot have a consistent solution without an H-field

$$W = c_2(X) - c_2(V) \neq 0 \implies H \neq 0$$

The non-trivial H-field must fulfil even $dH \neq 0$. More precisely, H must be chosen such that dH contains the relevant current. The singular character of H becomes especially severe when one realizes that in (1.2) a consistent H-solution occurs simultaneously on the right hand side, inside the connection with torsion $\omega + aH$ from which the $tr R \land R$ - term is computed (there is an important issue in this framework as to which a has to be used in different places; for our purposes we do not need to enter this discussion).

One solution of this singularity problem, caused by the current contribution, could lie in dissolving the delta-function-like fundamental-brane (given by the small instanton) into a smooth solitonic (gauge-)field configuration. However, although such fivebrane contributions W can occur as singular limits of gauge bundles, where (a part of) the curvature term $tr F \land F$ degenerates to a delta function source, we are not concerned here with such small instanton transitions. These change the rank(V) and/or $c_3(V)$ [3,6,9]; so if one insists on certain values for these invariants of $V_{(obs)}$ (say from phenomenological investigations in the observable sector) giving a $W \neq 0$, it is of no help to change to another bundle $\tilde{V}_{(obs)}$ where these phenomenologically decisive invariants differ and just W is absorbed into $c_2(\tilde{V}_{(obs)})$.

One route, employed in the present paper, to avoid the problem at least on the cohomological level is to construct a V with $c_2(X) - c_2(V) = 0$. Alternatively the problem could be
circumvented if one could solve the anomaly constraint with the help of a second bundle in the hidden sector which realises the class W as $c_2(V_{\text{hid}})$ (cf. also [19]), leaving $V = V_{\text{obs}}$ intact. Thereby one stays within the framework of perturbative $(0,2)$ models characterised by stable holomorphic bundles (V, V_{hid}) of $c_1(V) = c_1(V_{\text{hid}}) = 0$ (this condition can be relaxed) with

$$c_2(V) + c_2(V_{\text{hid}}) = c_2(X)$$

(cf. in this connection also [30]). This leads therefore to the following general problem:

- Suppose an effective holomorphic curve class (a sum of irreducible holomorphic curves with non-negative integral coefficients) is given which represents the compact support of the (space-time filling) fivebrane and whose cohomology class is denoted by

$$W \in H^4(X, \mathbb{Z})$$

When can W be represented as second Chern class of a vector bundle (of $c_1(V_{\text{hid}}) = 0$)

$$W = c_2(V_{\text{hid}}) \ ?$$

Here V_{hid} and V have to be stable with respect to the same Kähler class.

Although a precise, or at least sufficient condition is not known, one knows a necessary condition: a holomorphic vector bundle V_{hid} (stable w.r.t. J) satisfies the Bogomolov inequality

$$0 \leq c_2(V_{\text{hid}})J$$

The ensuing necessary condition $0 \leq WJ$ is satisfied in our case as W was an effective class.

In [25] the conjecture is put forward that a stable bundle (more precisely reflexive sheaf) V_{hid} of rank r_{hid} and $c_1(V_{\text{hid}}) = 0$ exists if one has for some ample class D that

$$c_2(V_{\text{hid}}) - \frac{r_{\text{hid}}}{24}c_2(X) = r_{\text{hid}}D^2$$

(1.9)

Assuming this conjecture to be true (1.7) can be solved if (1.9) holds for W. Proving (1.7) this way, one needs not only W effective with $0 \leq WJ \leq c_2(X)J$ (the latter from $0 \leq c_2(V)J$), but even the following condition (note $0 \leq c_2(X)J$ by the Miyaoka-Yau theorem)

$$\frac{r_{\text{hid}}}{24}c_2(X)J \leq WJ \leq c_2(X)J$$

(1.10)

\\

1Strictly speaking the assumption on W is more specific as it is $c_2(X) - c_2(V)$ for a stable bundle V.

2In addition $c_3(V_{\text{hid}})$ can be conjecturally chosen freely if it is $< \frac{16\sqrt{2}}{5}r_{\text{hid}}D^3$.

4
1.2 Problems when no fivebranes are present

Avoiding fivebrane contributions is of course not the end of the problems for consistent heterotic string compactifications caused by the anomaly cancellation requirement. For this let us assume that no need arises for a current representing a fivebrane contribution (something which is already cohomologically detectable); or assume that one has succeeded to represent such a contribution by a bundle in the hidden sector. Then still one has the problem that (1.2) actually has to be solved locally, i.e., on the form level. If one is not in the quite exceptional case of having an $F \neq R$ with $\text{tr} \ F \wedge F = \text{tr} \ R \wedge R$ locally, this will necessitate to turn on of a non-trivial H-field (though this time smooth and not being singular to balance by its dH a delta-function contribution δ_W).

However, having now a non-trivial H-field turned on, the compatibility conditions (stemming from the requirement of supersymmetry) concerning the geometry of the underlying compactification space and the H-field configuration, demand that X is non-Kähler [1], cf. also [21], [22], [23]. The severe consistency problem stems from the fact that the non-trivial H-field (induced from a mismatch between $\text{tr} \ R \wedge R$ and $\text{tr} \ F \wedge F$) has actually to be used at the same time consistently on the right hand side of the anomaly balance for the connection $\omega + aH$ from which $\text{tr} \ R \wedge R$ is computed. Here ω is the torsion-free spin connection and H understood as one-form by suitable contractions with vielbeins. On the level of the three-form H itself this amounts to a cubic relation $H = dB + \alpha'(\Omega_3(\omega + aH) - \Omega_3(A))$ with the corresponding Chern-Simons terms (where $\Omega_3(A) = \text{tr}(A \wedge F - \frac{1}{3}A \wedge A \wedge A)$).

Here we are in the case that the Hodge-type of the H field is $(2, 1) + \text{c.c.}$ as dH has to be of type $(2, 2)$. (More generally one may consider also the case of a Hodge type $(3, 0) + \text{c.c.}$ which could be cancelled in the complete square part of the Lagrangian by a non-trivial gaugino condensate vev [21], [23].) This has the consequence that the DUY theorem, assuring for stable bundles the solvability of the equations of motion from a topological condition, is no longer applicable. Here one has to note that for X being non-Kähler already the notion of stability is slightly modified as the would-be Kähler form J is no longer closed with corresponding consequences for $\int_X c_1(V)J^2$ and the notion of slope [2], [29]. For steps in the direction of a generalisation cf. [26] for the case of a T^2-fibration with base B a $K3$ surface, which from the normal ($H = 0$) perspective would be a rather degenerate exceptional case.
Corresponding problems in the strongly coupled heterotic setup

The need to solve the anomaly constraint actually locally and not only in the global (cohomological) balance becomes especially palpable in the case of heterotic M-theory where

$$(dG)_{IJKL11} \sim \kappa^2 \left(\sum_{i=0}^{1} \delta(x_{11} - x_i) \left(\frac{1}{2} tr R_i \wedge R_i - tr F_i \wedge F_i \right) + 16\pi^2 \sum_{k=1}^{m} \delta(x_{11} - x_k) \delta_W x_k \right) \wedge dx_{11}$$

The (spacetime-filling) fivebrane contribution W consists of m components W_{x_k}, supported (compactly) on various (itself not necessarily irreducible) holomorphic curves C_k (of dual four-forms $\delta_W x_k$ in X_k) lying in the Calabi-Yau space X_k over the point x_k of the interval $I = [x_0, x_1]$. Here the standard embedding $F_{obs} = R$, “spin in the gauge”, can no longer be a solution, although still fulfilling the global balance. The reason is that the local character, here along I, of the condition becomes especially pronounced, demanding that at each end of the interval one of the individual E_8 bundles V_i cancels the term $\frac{1}{2} tr R_i \wedge R_i$. The idea to represent W as $c_2(V_{hid})$ becomes here obsolete as this strategy is not local in I already, let alone locality in X. (For some solutions with $W = 0$ locally in I, though not in X, cf. [27].)

Now, considered locally in I, it seems that fivebrane components W_{x_k} can easily be balanced consistently by a corresponding $G_{2,2,0}$-contribution of the form step function $\theta(x_{11} - x_k)$ times the $(2, 2)$ form $\delta_W x_k$. Similarly, to absorb a mismatch $\frac{1}{2} tr R_i \wedge R_i - tr F_i \wedge F_i$ one can also use a boundary contribution $G = \theta$ times $(2, 2)$ which therefore, it seems, considered just locally in I, could absorb both types of contributions from the right hand side.

However, actually the various contributions, locally constant along x_{11}, have to fit together in the “upstairs picture” on S^1 with a Z_2 action, i.e., the various jumps in total have to compensate each other. As G is odd, jumps in the bulk cancel mutually and the fixpoint contributions remain. So, having no H-type boundary components in G, one ends up with

$$0 = \sum_{i=0}^{1} \left(\frac{1}{2} tr R_i \wedge R_i - tr F_i \wedge F_i \right) + 16\pi^2 \sum_{x_k = x_0 \ or \ x_1} \delta_W x_k \quad (1.11)$$

As the smooth and delta-function parts have to cancel individually, one gets (1.11) just for the smooth terms and no fivebranes on the boundaries (anti-fivebranes being forbidden).

3Boundary $G_{2,1,1}$-components of type $H^{(2,1)}(+c.c.)$ times $\delta(x_{11} - x_0) \wedge dx_{11}$, if possible, would bring one back to the previous problems so we assume these to be absent (also with such a contribution the connection $\omega + a \delta(x_{11} - x_i)H$ used in $1/2 tr R_i \wedge R_i$ would have a problematic delta-function singularity). So a potential consistency problem from the connection $\omega + aH$ is not induced as $H = 0$. Still the volume modulus can be stabilised (without $H^{(2,1)} \neq 0$, X non-Kähler) by worldsheet instantons [23] or the S-Track mechanism [24].
1.3 Discussion

Let us emphasize that $W = 0$, seemingly avoiding $G \neq 0$, is satisfied in the mentioned models \[27\] only at the cohomological level. Realizing that the condition to be solved is on the differential form level one does not get $G = 0$ models. Similar remarks apply to older $(0,2)$ models which solve the anomaly without fivebranes but only on the cohomological level, and to the models we present in this paper. Nevertheless let us point out two things. The ability to avoid the delta-function contribution reduces already substantially the problem of potential inconsistencies when one tries to solve the anomaly constraint \[1.2\] as the problem with singularities occurring on both sides in different orders is avoided. The general expectation is then that some relevant features of the models (understood in the naive $H = 0$ sense) persist, despite the remaining necessity to adjust, perhaps order by order, a non-trivial (but now smooth) H-field configuration. But note the caveat that the radius will be fixed to a finite value, so there will be no large radius limit for a perturbative supergravity treatment; also a stability notion for X non-Kähler is more subtle \[29\]. The same philosophy underlies procedures to check that the number of fivebranes wrapped on elliptic fibers in heterotic spectral cover models matches the number of threebranes in a dual F-theory model \[3, 31\]; or also the numerous phenomenological studies of heterotic compactifications done so far. The other point, specific to our $W = 0$ models, is that they live still on elliptically fibered Calabi-Yau spaces. For many investigations touching more conceptual questions (dualities with other string models is a prominent example) these seemingly more abstract compactifications have turned out to be more suitable than Calabi-Yau spaces given by embeddings in a weighted projective space (or products of them).

In section 2 we discuss the various options for the (bases B of the elliptically fibered) spaces over which we build our bundles. In section 3 we recall some notions related to stability and describe in section 4 the way we build our bundles which enable us to get $W = 0$ (this contrasts with the fact \[3\] that bundles built with the spectral cover method give $W \neq 0$). There the stability of the bundles could be established more directly \[10\] whereas here the issue of stability becomes a major technical point to which we do full justice only in the mathematical companion paper \[28\]. In section 5 we give for B an Enriques surface the relevant stability results and show that within our class of bundles $W \geq 0$ is violated. Stability results and $W = 0$ examples for other bases are given in section 6.
2 The elliptic Calabi-Yau space over various bases

As our procedure to build bundles on X involves an extension of bundles $U_p = \pi^* E_p$ which are themselves pull-backs of bundles E_p on the base B one has to ensure the stability of such pullback bundles U_p if E_p is stable. For this we distinguish two cases among our set of bases, consisting of Hirzebruch surfaces F_r ($r = 0, 1, 2$), del Pezzo surfaces dP_k ($k = 0, \ldots, 8$) and the Enriques surface E. The search for a specific gauge group, be it of a GUT theory or of the Standard model, motivates the choice of a Hirzebruch surface or the Enriques surface as base. On the one hand we will treat the Enriques surface E which is also of special physical importance as a GUT group $SU(5)$ there can be broken to the Standard Model group because of $\pi_1(X_E) = \mathbb{Z}_2$. On the other hand we will treat in section 6 the case where the anticanonical bundles is ample, i.e. the remaining cases except F_2.

2.1 The case of B an Enriques surface

Let us describe the different physical and mathematical issues related to the use of the Enriques surface as base.

2.1.1 On the physical motivation for the Enriques surface

One approach to realize the Standard model gauge group within heterotic string compactifications is to build a bundle V of structure group $SU(5)$, leading to an unbroken gauge group given by the grand unified group $SU(5)$ in the observable sector. In that case $\pi_1(X) = \mathbb{Z}_2$ allows for a Wilson line, breaking the commutator $SU(5)$ (in E_8) of a structure group $SU(5)$ to the Standard model gauge group. For this one needs a Calabi-Yau space whose non-trivial fundamental group contains a \mathbb{Z}_2. X is non-simply connected only if the base B of the fibration is given by an Enriques surface E where $\pi_1(X) = \pi_1(B) = \mathbb{Z}_2$ (where $c_1 := c_1(B)$ is a two-torsion class).

This approach is in contrast to the procedure where one starts from a simply connected Calabi-Yau threefold X' having a free involution τ from which the required non-simply connected Calabi-Yau space X is built as $X = X'/\mathbb{Z}_2$. The existence of τ is related to the existence of a second section of the elliptic fibration [11], [12], [13], [14], [15], [16], [17], [18]. Then one searches for τ-invariant bundles having 6 generations.

By contrast, in the case of the Enriques Calabi-Yau, one searches directly on X for bundles
of net generation number $N_{gen} = \pm 3$. This, however, led for spectral bundles to the following problem. From the mismatch of anomaly cancellation between $c_2(V)$ and $c_2(X)$ one has to introduce a number of five-branes of total cohomology class $W = w_B\sigma + a_f F$. One has the effectivity condition $w_B = 12c_1 - \eta = -\eta \geq 0$ where $\eta \in H^2(B, \mathbb{Z})$ is a datum describing the bundle (the spectral surface C has cohomology class $n\sigma + \eta$ where n is the rank of V). η must be an effective class satisfying $\eta \geq nc_1$ which for n even reduces to $\eta \geq 0$ and for n odd to $\eta \geq c_1$; so $\eta = 0$ or c_1, giving $N_{gen} = \lambda \eta(\eta - nc_1) = 0$. (For another attempt cf. [19].)

2.1.2 Mathematical details on the Enriques surface

Consider standard (fibre type A) elliptically fibered CY spaces X with one section [3] and base given by an Enriques surface [20], i.e., $h^{1,0}(B) = 0$ and $K_B^2 = O_B$. B has non-trivial Hodge numbers $h^{1,1} = 10$, $h^{0,0} = h^{2,2} = 1$, so $c_2 = 0$ and $c_2 = 12$, and middle cohomology

$$H^2(B, \mathbb{Z}) = \mathbb{Z}^{10} \oplus \mathbb{Z}_2$$

with intersection lattice

$$\Gamma^{1,1} \oplus E_8^{(-)} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \oplus E_8^{(-)}$$

(orthogonal decompositions). Further $\phi c_1 = 0$ for all $\phi \in H^2(B, \mathbb{Z})$. B is always elliptically fibered with fibre f over $b = \mathbb{P}^1$. However two of the fibers, f_1 and f_2, are double fibers: $f = 2f_i$, which prevents B from having a section and $c_1 = f_1 - f_2$ is not effective.

On a generic ("unnodal") B no smooth rational curves exist and all irreducible curves C have $C^2 \geq 0$. The integral classes in one of the two components of the cone in $H^2(B, \mathbb{R})$ defined by $C^2 \geq 0$ constitute the effective cone (adding the torsion class c_1 does not matter for this if $C \neq 0$). For C nef (i.e., $DC \geq 0$ for all curves C on B) $|C|$ is base-point-free, C is ample if also $C^2 \geq 6$ [20]. $C = xa + yf = (x, y) \in \Gamma^{1,1}$ is nef for $x, y \geq 0$.

B can be represented as the quotion of a K^3 surface by a free involution. The corresponding $\pi_1(B) = \mathbb{Z}_2$ is inherited by the elliptic Calabi-Yau space X which itself is a quotient by a free involution on $K^3 \times T^2$ (also acting as $z \to -z$ on the T^2). The holomorphic two-form Ω_2 of K^3 being odd, the holomorphic three-form $\Omega_2 \wedge dz$ is preserved, the quotient X being a Calabi-Yau space of vanishing Euler number.
3 The condition of stability

We will choose as polarization \(J = z\sigma + \pi^*H \) where \(H \) (chosen in the integral cohomology) is in the Kähler cone \(C_B \) of the base \(B \) and \(z \in \mathbb{R}^{>0} \). For an elliptically fibered Calabi-Yau space \(X \) one has that \(J \) is a Kähler class if \(J \in C_X \iff z > 0 \), \(H - zc_1 \in C_B \).

\[
J \in C_X \iff z > 0 , \quad H - zc_1 \in C_B
\]

(3.1)

Stability of a bundle \(V \) (with respect to \(J \)) means \(\mu_J(V') < \mu(V) \) for all coherent subsheaves \(V' \) of \(V \) of \(rk V' \neq 0, rk V \). Here \(\mu(V) = \frac{1}{rkV} \int c_1(V)J^2 \) is the slope of \(V \) with respect to \(J \). Similarly semistability is defined by the condition \(\mu_J(V') \leq \mu(V) \).

A bundle \(V \) stable w.r.t. \(J \) satisfies the Bogomolov inequality

\[
c_2(V)J \geq 0
\]

(3.2)

The decomposition of the fivebrane class \(W = w_B\sigma + a_fF = c_2(X) - c_2(V) \) becomes for \(B \) an Enriques surface \(12F - c_2(V) \) which gives then

\[
c_2(V)J = -w_BH + z(12 - a_f)
\]

(3.3)

For bundles built by the spectral cover construction one knows by \[10\], Thm. 7.1 that suitable \(J \) must have \(z \) sufficiently small ("spectral polarizations"). But if \(z \) has to be chosen negligible small, only \(w_B = 0 \) is possible as \(-w_BH \leq 0 \) by the requirement \(w_B \geq 0 \). The latter stems from the condition that the fivebrane class is effective. On the other hand, below we will assure stability for \(z \) sufficiently large; note that on \(B \) the Enriques surface there will be no problem then with the criterion (3.1) when just choosing \(H \in C_B \).

Let us consider now the stability of zero-slope bundles \(V \) constructed as extensions

\[
0 \to U \to V \to W \to 0
\]

(3.4)

Here \(U \) and \(W \) are assumed to be stable. Necessary conditions for the stability of \(V \) are that

- \(\mu(U) < 0 \)

- the \(W \) of \(\mu(W) > 0 \) is not a subbundle of \(V \), i.e., the extension (3.4) is non-split
As mentioned earlier one problem in heterotic model building, especially on elliptically fibered Calabi-Yau spaces X, is the occurrence of a number of space-time filling fivebranes \mathbb{R}, preventing the model to be interpreted as a perturbative nonlinear sigma model. More specifically, this problem occurs within the spectral cover construction \mathbb{R} (equivalently understood as a relative Fourier-Mukai transform $\mathbb{7}$). The advantage of this method is an improved flexibility in the explicitly computed net generation number $\mathbb{5}, \mathbb{6}$.

This problem is circumvented in the present paper as follows. We define a stable $SU(n)$ bundle V as a non-trivial extension of bundles U and W of lower rank, especially when W is a line bundle. The question of stability, and already the existence of a non-split extension, turns out to be non-trivial. The bundles U and W are constructed as pull-backs from the base B, twisted by certain line bundles. For B a Hirzebruch surface F_r we find GUT models with chiral matter, and for B the Enriques surface the Standard Model gauge group. In the GUT case it is possible to avoid fivebranes in the anomaly constraint. Thereby one stays within the framework of perturbative $(0,2)$ models, characterised by stable holomorphic bundles V of $c_1(V) = 0$ (this condition can be relaxed) satisfying

$$c_2(V) = c_2(TX) \quad (4.1)$$

Now, in the spectral cover construction the bundle decomposes on the generic fibre F as

$$V|_F = \bigoplus_{i=0}^{n} \mathcal{O}_F(p_i - p_0) \quad \text{with} \quad \sum p_i = p_0 \quad (4.2)$$

and is adiabatically extended along the base: the system of the (p_i) becomes base-point dependent, leading to a n-fold cover C of B, including a twist by a line bundle $\mathcal{O}_B(\eta)$ on B.

A different starting point is to choose V on F as

$$V|_F = \bigoplus \mathcal{O}_F(x_i p_0) \quad \text{with} \quad \sum x_i = 0 \quad (4.3)$$

One of the simplest possibilities is to choose $x_i = -x$ for $i = 1, \ldots, n$ and $x_0 = nx$. Thus, rewriting (4.3), one starts from a split short exact sequence

$$0 \longrightarrow \mathcal{O}_F^n \otimes \mathcal{O}_F(-xp_0) \longrightarrow V|_F \longrightarrow \mathcal{O}_F(nx p_0) \longrightarrow 0 \quad (4.4)$$

To spread this out along B one chooses now V_{n+1} as the extension

$$0 \longrightarrow \pi^* E_n \otimes \mathcal{O}_X \left(-x \sigma - \pi^* \alpha \right) \longrightarrow V_{n+1} \longrightarrow \mathcal{O}_X \left(n(x \sigma + \pi^* \alpha) \right) \longrightarrow 0 \quad (4.5)$$
Here the non-trivial information about the bundle along the direction \(B \) is encoded in \(E_n \), including a twist by a line bundle \(\mathcal{O}_B(\alpha) \) of the base. More generally, one may consider the case where the set of the \(x_i \) partitions into two sets of \(x_i = px \) for \(p \) i’s and \(x_i = -qx \) for \(p \) i’s, which globally corresponds to the extension (with \(U_p = \pi^* E_p, W_q = \pi^* E_q \) and \(D = x\sigma + \pi^* \alpha \))

\[
0 \longrightarrow U_p \otimes \mathcal{O}_X(-qD) \longrightarrow V_{p+q} \longrightarrow W_q \otimes \mathcal{O}_X(pD) \longrightarrow 0 \quad (4.6)
\]

(where one demands \(D/J^2 > 0 \) so that the slope condition \(\mu(U_p \otimes \mathcal{O}(-qD)) < 0 \) is fulfilled). So the class of bundles we consider is given by bundles \(V_{p+q} \) of rank \(p+q \) defined as non-trivial extensions \((4.6) \) of stable bundles \(U_p \) and \(W_q \) of rank \(p \) and \(q \) with \(c_1(U_p) = 0 = c_1(W_q) \), suitably twisted by powers of a line bundle \(\mathcal{O}(D) \) so as to preserve \(c_1(V_{p+q}) = 0 \).

One can consider in particular the case that \(U_p \) and \(W_q \) are pull-backs \(\pi^* E_p, \pi^* E_q \) of bundles on \(B \). Then \(\pi^* E \) is (semi-)stable if \(E \) is (semi-)stable on \(B \) with respect to \(H \), say for \(B \) the Enriques surface; the detailed arguments for this and all mathematical statements concerning the stability proofs and non-split conditions below are given in the mathematical companion paper \([28]\). Later we will actually show stability of \(V_{p+q} \) only for \(q = 1 \).

One finds with \(c_2(U_p) = uF \) and \(c_2(W_q) = wF \)

\[
c_2(V_{p+q}) = -\frac{1}{2}pq(p+q)D^2 + (u+w)F \quad (4.7)
\]

Let us now come to the physical conditions. One must ensure the effectivity of the class

\[
W = w_B\sigma + a_f F = c_2(X) - c_2(V_1) - c_2(V_2) \quad (4.8)
\]

of the fivebrane. Assuming for simplicity no hidden sector bundle one finds as components

\[
w_B = 12c_1 + \frac{1}{2}pq(p+q)x(2\alpha - xc_1) \quad , \quad a_f = c_2 + 11c_1^2 + \frac{1}{2}pq(p+q)\alpha^2 - (u+w) \quad (4.9)
\]

For the net chiral matter content one finds as generation number

\[
N_{gen} = \frac{1}{2}c_3(V_{p+q}) = \frac{pq}{6}(p^2 - q^2)D^3 + x(qu - pw) + \frac{1}{2}c_3(U_p) + \frac{1}{2}c_3(W_q) \quad (4.10)
\]

Note that in the special case that \(U_p \) and \(W_q \) are pullbacks from the base (so that they have vanishing third Chern class) one finds \(N_{gen} \sim x \) over the Enriques base.

Below we will prove stability of \(V_{p+q} \) for \(q = 1 \) given a stable bundle \(U_p \). To get a concrete stable bundle \(U_p \) we take \(U_p = \pi^* E_p \). Over \(B \) with \(K_B^{-1} \) ample one gets then GUT models with \(W = 0 \) and \(N_{gen} \neq 0 \) (cf. section \([3]\)). Over the Enriques base one can get the Standard model gauge group; then, however, one encounters the side effect that \(N_{gen} \) will run just with \(x \) as \(w_B \) does; furthermore, only the case \(w_B = 0 \) would be allowed (as will be seen below), giving \(x = 0 \); for \(x = 0 \) stability, however, cannot be assured.
5 Standard model groups: Enriques base

For the case \((p, q) = (n, 1)\) \(V_{n+1}\) can be shown to be stable. So let \(V_n\) be a stable bundle of \(c_1(V_n) = 0\) and \(D = x\sigma + \pi^*\alpha\) and define \(V_{n+1}\) as a non-split extension (here \(W_1 = \mathcal{O}\))

\[
0 \to V_n \otimes \mathcal{O}(-D) \to V_{n+1} \to \mathcal{O}(nD) \to 0
\]

(5.1)

Let us first discuss the non-split condition. For this assume \(V_n = \pi^*E_n\) with \(c_1(E_n) = 0\) and \(E_n\) stable. Then one finds for \(x > 0\) and for \(a := \alpha H < 0\) the index condition

\[
I := n - c_2(E) + \frac{n(n+1)^2}{2}\alpha^2 > 0
\]

(5.2)

for precisely when a non-split extension exists. If \(x \leq 0\) then \(\text{Ext}^1 \neq 0\) exactly if \(I < 0\).

Stability of \(V_{n+1}\) and physical constraints

We note the following necessary condition: if \(V_{n+1}\) is stable (so (5.1) is non-split) then

\[
x \neq 0 \implies x \cdot a < 0
\]

(5.3)

where \(a := \alpha H\). \(V_{n+1}\) has now specific stability regimes w.r.t. the Kähler class \(J = z\sigma + \pi^*H\)

\[
0 < x < -a \quad \implies \quad \frac{nx}{-na + 1} \frac{H^2}{2} < z < \frac{nx}{-na} \frac{H^2}{2}
\]

(5.4)

\[-a < x < 0 \quad \implies \quad \frac{nx}{-na} \frac{H^2}{2} < z < \frac{nx}{-na + 1} \frac{H^2}{2}
\]

(5.5)

The physical constraints concern the effectivity of the fivebrane \(W = w_B\sigma + a_f F\) where

\[
w_B = \frac{1}{2}n(n+1)x(2\alpha - xc_1) \geq 0, \quad a_f = 12 + \frac{1}{2}n(n+1)\alpha^2 - c_2(E) \geq 0
\]

(5.6)

and the phenomenological value \(\pm 3\) of the net generation number

\[
N_{gen} = x\left(\frac{1}{2}n(n^2 - 1)\alpha^2 + c_2(E)\right)
\]

(5.7)

Note that, as \(w_B \geq 0\) requires therefore \(x\alpha \geq 0\), one gets in view of (5.3)

\[
w_B \geq 0 \implies x = 0
\]

(5.8)

If a hidden sector bundle of the same type is turned on the argument remains valid as \(w_B = \sum_{i=1}^{2} c_i x_i \alpha_i \geq 0\) (with \(c_i > 0, c_1 = \frac{n(n+1)}{2}\) gives \(w_B H \geq 0\), a contradiction to (5.3).

\(x = 0\) is the case for which the existence of stable bundles could not be assured above.
6 GUT groups: working over B with ample K_B^{-1}

In this section B denotes a surface with ample K_B^{-1}. Now π^*E is (semi-)stable on X with respect to $J = z\sigma + \pi^*H \in \mathcal{C}_X$ if E is (semi-)stable on B with respect to $H = hc_1$; here $H - zc_1 \in \mathcal{C}_B$ gives $z < h$. Given the fact that c_1 is now no longer a two-torsion class, a greater numerical freedom between W and N_{gen} occurs, in particular the common proportionality to the parameter x is lifted. Therefore it is possible here to have $W = 0$ and $N_{gen} \neq 0$.

Concretely the fivebrane class has components (assuming for simplicity $V_{hid} = 0$)

$$w_B = 12c_1 + \frac{1}{2}n(n + 1)x(2\alpha - xc_1), \quad a_f = c_2 + \frac{1}{2}n(n + 1)\alpha^2 - c_2(E) + 11c_1^2$$

(6.1)

In contrast to the case of the Enriques base it is now possible to satisfy $w_B \geq 0$ while having $x \neq 0$. One finds now $W = 0$ (just to get $w_B, a_f \geq 0$ is easy) for the choices

$$\alpha = \left(\frac{x^2}{2} - \frac{12}{n(n + 1)}\right)\frac{c_1}{x} \implies w_B = 0$$

(6.2)

$$c_2(E) = c_2 + 11c_1^2 + \frac{n(n + 1)}{2}\alpha^2 \implies a_f = 0$$

(6.3)

For instance, for building an $SO(10)$ GUT model without fivebranes one can use the twist $D = \sigma - \pi^*c_1/2$ and a rank $n = 3$ bundle E on a base F_r of instanton number 104. Or one may construct an E_6 GUT model without fivebranes from using the twist $D = 2\sigma$ and a plane bundle of $c_2(E) = 92$. (One immediately checks the non-split conditions.)

One gets furthermore that

$$N_{gen} = x\left(\frac{n(n^2 - 1)}{6}(3\alpha^2 - 3x\alpha c_1 + x^2c_1^2) + c_2(E)\right)$$

(6.4)

Let us mention that one can carry through a similar program also for extensions by spectral bundles (without special restrictions on the base surface B), leading to examples of stable bundles without five-branes, cf. [28].

So the general lesson in all the different cases is similar: the greater numerical freedom provided by the twist and the extension can allow one to have $W = 0$, the burden then is however to prove stability of the extensions [28].

We thank H. Kurke, A. Krause and D. Hernández Ruipérez for discussion.
References

1. E. Witten, *New Issues in manifolds of SU(3) Holonomy*, Nucl. Phys **B268** (1986) 79.
 M. Green, J. Schwarz and E. Witten, *Introduction to Superstring Theory*, Vol. II, Cambridge University Press (1988).
 A. Strominger, *Superstrings with Torsion*, Nucl. Phys. **B274** (1986) 253.

2. J. Li and S.T. Yau, *Hermitian Yang-Mills connections on non-Kähler manifolds*, in “Math. aspects of string theory” (S.-T. Yau ed.), World Scientific Publ. 1987.

3. R. Friedman, J.W. Morgan and E. Witten, *Vector Bundles And F Theory*, [hep-th/9701162], Commun.Math.Phys. **187** (1997) 679.

4. R. Donagi, *Principal bundles on elliptic fibrations*, [alg-geom/9702002], Asian J. Math. **1** (1997), 214.

5. G. Curio, *Chiral matter and transitions in heterotic string models*, [hep-th/9803224], Phys.Lett. **B435** (1998) 39.

6. B. Andreas, *On Vector Bundles and Chiral Matter in N=1 Heterotic Compactifications*, [hep-th/9802202], JHEP **9901** (1999) 011.

7. B. Andreas and D. Hernández Ruipérez, *U(n) Vector Bundles on Calabi-Yau Threefolds for String Theory Compactifications*, [hep-th/0410170], Adv. Theor. Math. Phys. 9: 253, 2006.

8. B. Andreas and D. Hernández Ruipérez, *Fourier-Mukai Transforms and Applications to String Theory*, [math.AG/0412328], Rev. R. Acad. Cien. Serie A. Mat. Vol. 99 (1), 2005, 29-77.

9. B. Andreas, *The Fourier-Mukai transform in string theory*, [hep-th/0505263], Encyclopedia of Mathematical Physics, eds. J.-P. Francoise, G. L. Naber and Tsou S. T., Oxford: Elsevier, 2006.

10. B. Andreas and D. Hernandez Ruiperez, *Comments on N=1 Heterotic String Vacua*, [hep-th/0305123], Adv.Theor.Math.Phys. **7** (2004) 751.

11. B.A. Ovrut, T. Pantev and J. Park, *Small Instanton Transitions in Heterotic M-Theory*, [hep-th/0001133], JHEP 0005 (2000) 045.
10. R. Friedman, J.W. Morgan and E. Witten, *Vector Bundles over Elliptic Fibrations*, [alg-geom/9709029](http://arxiv.org/abs/alg-geom/9709029), Jour. Alg. Geom. 8 (1999) 279.

11. R. Donagi, B. Ovrut, T. Pantev and D. Waldram, *Standard-Model Bundles on Non-Simply Connected Calabi–Yau Threefolds*, [hep-th/0008008](http://arxiv.org/abs/hep-th/0008008), JHEP 0108 (2001) 053.

12. R. Donagi, B. Ovrut, T. Pantev and D. Waldram, *Standard-model bundles*, [math.AG/0008010](http://arxiv.org/abs/math.AG/0008010), Adv.Theor.Math.Phys. 5 (2002) 563.

13. R. Donagi, B. Ovrut, T. Pantev and D. Waldram, *Spectral involutions on rational elliptic surfaces*, [math.AG/0008011](http://arxiv.org/abs/math.AG/0008011), Adv.Theor.Math.Phys. 5 (2002) 499.

14. V. Bouchard and R. Donagi, *An SU(5) Heterotic Standard Model*, Phys.Lett. B633 (2006) 783, [hep-th/0512149](http://arxiv.org/abs/hep-th/0512149).

15. V. Bouchard, M Cvetic and R. Donagi, *Tri-linear Couplings in an Heterotic Minimal Supersymmetric Standard Model*, [hep-th/0602096](http://arxiv.org/abs/hep-th/0602096).

16. B. Andreas, G. Curio and A. Klemm, *Towards the Standard Model spectrum from elliptic Calabi-Yau*, [hep-th/9903052](http://arxiv.org/abs/hep-th/9903052), Int.J.Mod.Phys. A19 (2004) 1987.

17. G. Curio, *Standard Model bundles of the heterotic string*, [hep-th/0412182](http://arxiv.org/abs/hep-th/0412182), Int.J.Mod.Phys. A21 (2006) 1261.

18. B. Andreas and G. Curio, *Standard Models from Heterotic String Theory*, [hep-th/0602247](http://arxiv.org/abs/hep-th/0602247).

19. R.P. Thomas, *An obstructed bundle on a Calabi-Yau 3-fold*, Adv. Theor. Math. Phys 3 (1999) 567, [math.AG/9904034](http://arxiv.org/abs/math.AG/9904034).

R.P. Thomas, *Examples of bundles on Calabi-Yau 3-folds for string theory compactifications*, Adv.Theor.Math.Phys. 4 (2000) 231, [math.AG/9912179](http://arxiv.org/abs/math.AG/9912179).

20. F. Cossec and I. Dolgachev, *Enriques Surfaces I*, Birkhäuser 1989.

21. G. L. Cardoso, G. Curio, G. Dall’Agata and D. Lust, *Heterotic String Theory on non-Kaehler Manifolds with H-Flux and Gaugino Condensate*, [hep-th/0310021](http://arxiv.org/abs/hep-th/0310021), Fortsch.Phys. 52 (2004) 483.
G. L. Cardoso, G. Curio, G. Dall’Agata and D. Lust, *BPS Action and Superpotential for Heterotic String Compactifications with Fluxes*, hep-th/0306088, JHEP 0310 (2003) 004.

G. L. Cardoso, G. Curio, G. Dall’Agata, D. Lust, P. Manousselis and G. Zoupanos, *Non-Kaehler String Backgrounds and their Five Torsion Classes*, hep-th/0211118, Nucl.Phys. B652 (2003) 5.

22. K. Becker, M. Becker, K. Dasgupta and S. Prokushkin, *Properties Of Heterotic Vacua From Superpotentials*, hep-th/0304001, Nucl.Phys. B666 (2003) 144.

K. Becker, M. Becker, K. Dasgupta and P.S. Green, *Compactifications of Heterotic Theory on Non-Kahler Complex Manifolds: I*, hep-th/0301161, JHEP 0304 (2003) 007.

K. Becker, M. Becker, K. Dasgupta, P.S. Green and E. Sharpe, *Compactifications of Heterotic Strings on Non-Kahler Complex Manifolds: II*, hep-th/0310058, Nucl.Phys. B678 (2004) 19.

23. G. Curio, A. Krause and D. Lust, *Moduli Stabilization in the Heterotic/IIB Discretuum*, hep-th/0502168, Fortsch.Phys. 54 (2006) 225.

24. G. Curio and A. Krause, *S-Track Stabilization of Heterotic de Sitter Vacua*, hep-th/0606243.

25. M.R. Douglas, R. Reinbacher and S.-T. Yau, *Branes, Bundles and Attractors: Bogomolov and Beyond*, math.AG/0604597.

26. J.-X. Fu and S.-T. Yau, *The theory of superstring with flux on non-Kahler manifolds and the complex Monge-Ampere equation*, hep-th/0604063.

K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, *Anomaly Cancellation and Smooth Non-Kahler Solutions in Heterotic String Theory*, hep-th/0604137, Nucl.Phys. B751 (2006) 108.

27. A. Lukas and B.A. Ovrut, *Symmetric Vacua in Heterotic M-Theory*, hep-th/9908100.

28. B. Andreas and G. Curio, *Stable bundle extensions on elliptic Calabi-Yau threefolds*, math.AG/0611762.
29. V. Brinzanescu and R. Moraru, *Holomorphic rank-2 vector bundles on non-Kahler elliptic surfaces*, math.AG/0306191.
V. Brinzanescu and R. Moraru, *Stable bundles on non-Kahler elliptic surfaces*, math.AG/0306192.

30. M.R. Douglas and C.G. Zhou, *Chirality Change in String Theory*, hep-th/0403018, JHEP 0406 (2004) 014.
M.C. Brambilla, *Semistability of certain bundles on a quintic Calabi-Yau threefold*, math.AG/0509599.

31. B. Andreas and G. Curio, *Three-Branes and Five-Branes in N=1 Dual String Pairs*, hep-th/9706093, Phys.Lett. B417 (1998) 41.
B. Andreas and G. Curio, *On discrete Twist and Four-Flux in N=1 heterotic/F-theory compactifications*, hep-th/9908193, Adv.Theor.Math.Phys. 3 (1999) 1325.
B. Andreas and G. Curio, *Horizontal and Vertical Five-Branes in Heterotic/F-Theory Duality*, hep-th/9912025, JHEP 0001 (2000) 013.

32. H. Kim, *Moduli Spaces of Stable Vector Bundles on Enriques Surfaces*, Nagoya Math. J., Vol. 150 (1998) 85.