Introduction

Colorectal cancer (CRC) is the third most common malignant disease in the humans, with 570,000 new cases in the world each year. It is the second most common cause for the lethal outcome of malignancies in the West European countries and eighth in the developing countries. Despite the new surgical techniques and treatment with neoadjuvant and adjuvant chemotherapy, colorectal cancer is the most common tumour of the gastrointestinal tract which incidence and mortality continually increase [1] [2]. Prognosis of colorectal cancer mostly depends on the stage of disease (local growth, positive lymph nodes and distant metastasis-TNM classification) and depends on many other factors such as lymphovascular invasion, histological grade, positive surgical margins, preoperative serum values of carcinoembryonic antigen (CEA) bowel obstruction and many others [3] [4] [5] [6]. It is considered that new biomarkers such as APC, K-ras, DDS, p53, BRAF, TGF- β, CIMP and others can give more pieces of information for disease progression. The finding that some patients with certain mutations (KRAS), who have metastatic disease, do not respond...
to the treatment with monoclonal antibodies represents the basis in the efforts for discovering personalised therapies [7] [8] [9] [10] [11]. This is a motivation for continued investigation of new prognostic factors to determine the disease progression and patient outcome as well as to improve the knowledge for developing new therapies. The role of the immune system in the control of disease progression is the basis for the development of immunotherapy in patients with malignant diseases and is a current topic for research in the field of oncology [9] [10] [11].

The idea that the immune system can recognise a neoplasm was introduced by Paul Ehrlich and was supported by Lewis Thomas and Macfarlane Burnet. Over the course of time, this idea was turned into a concept in which it is considered that the immune cells are capable of eliminating malignant cells. This is how the theory for “immune surveillance” was born. This theory supports hypotheses that the immune system is capable of surveillance of the newly appeared malignant cells and their elimination [12] [13] [14] [15] [16].

It is well known that colorectal cancer progression is influenced by inter-reaction between cancer cells and tumour microenvironment belonging to the patient [12] [13] [14].

It is considered that the immune cells present in tumour-associated stroma are in correlation with tumour progression and patient outcome. According to some authors, the high density of memory T-cells and cytotoxic T-cells in malignant neoplasms (tumour-associated lymphocytes-TAL) is in correlation with prolonged survival of patients [17] [18] [19].

Analysis of stromal inflammatory infiltrate, and tumour-infiltrating lymphocytes in CRC has not attracted the attention of researchers in the Republic of Macedonia recently, but new therapeutic approaches in the treatment of patients with CRC need new basic investigations to provide better management of these patients. According to that, we aimed to determine the density of TAL, the type of some immune cells, “tumour-associated lymphocytes”, and their influence on CRC progression.

Material and Methods

The study included 103 patients with CRC, 68 (66.2%) male, and 35 (33.98%) female with the age of the patients ranged from 33 to 97 years, the mean age 64.57 ± 11.5 years. All of them underwent surgery in our institution, and their operative material was routinely analysed for histopathological diagnosis and pTNM staging at the Institute of Pathology and was additionally analysed for TAL.

In this study the following parameters were examined: localisation of a tumour, local growth (T status), and grade of tumour differentiation (G), the presence of positive lymph nodes (LN) as well as the stage and the density of TAL.

The type of TAL was determined by immunohistochemical staining with antibodies against CD4 (Dako Monoclonal Mouse Anti-Human CD4, Clone 4B12); CD8 (Dako Monoclonal Mouse Anti-Human CD8, Clone C8/144B); CD20 (Dako Monoclonal Mouse Anti-Human CD20, Clone L26); with a standard procedure using Immunoperoxidase LSAB + system.

The density of TAL was determined semiquantitatively. The density of all cells (TAL) was determined in the first step in 4 grades and the density of positively stained cells from the total number of TAL for each marker individually was determined in the second step in the same manner as absent (-), scanty (+), moderate (++) and abundant (+++). To confirm consistency of grading, the cases were scored independently by two investigators. Examples of grading TAL and immune cell staining and their grading are shown in Figure 1.

![Figure 1: a) Scanty (+) Ly infiltration in the tumor invasive front (HE×40) b) Abundant (+++) Ly infiltration in the tumor invasive front (HE×40) c) Moderate (+) CD4 Ly infiltration (x40) d) Abundant CD4+ Ly infiltration (x40) e) Higher magnification of CD4+ cells (x200) f) Higher magnification of CD20+ cells in the tumor invasive front of CRC (x200)](https://www.id-press.eu/mjms/index)
statistical analysis of the data. Categorical variables are presented with absolute and relative numbers (%). Fisher’s exact test was used for comparison of categorical variables. Spearman’s correlation coefficient was used to determine the degree of correlation between analysed parameters. The statistical program SPSS for Windows, version 19.0 was used.

Results

Density of TAL

Distribution of patients and density of TAL according to the localisation of a tumour are shown in Table 1.

Localisation	No of patients	Scanty (No = 59)	Moderate (No = 32)	Abundant (No = 12)
Colon	12 (11.83%)	8 (66.67)	2 (16.67)	1 (8.33)
Colon asc	9 (8.74%)	6 (66.67)	3 (33.33)	0
Flex hepat	3 (2.91%)	1 (33.33)	2 (66.67)	0
Colon trans	5 (4.85%)	2 (40)	2 (40)	1 (20)
Flex iilien	3 (2.91%)	2 (66.67)	1 (33.33)	0
Colon des	3 (2.91%)	3 (100)	0	0
Sigma	29 (28.16%)	17 (58.62)	7 (24.14)	5 (17.24)
Rectosig	8 (7.77%)	5 (62.5)	2 (25)	1 (12.5)
Rectum	31 (30.09%)	15 (48.39)	12 (38.71)	4 (12.9)

The density of TAL was higher in patients with lower stage I and II of the disease, in tumours with less local invasion, in patients without nodal metastasis, and in tumours with no lymphatic invasion. On the contrary, in stage III and IV of the disease, the density of TAL was low in the most of the analysed cases and the tumour infiltrating lymphocytes was scanty in patients with advanced local growth, with nodal metastasis and with lymphatic invasion.

Statistical analysis did not show statistical differentiation in the quantity of TAL according to tumour differentiation (P > 0.05).

Different cell types of TAL and their density in CRC

CD20, CD4 and CD8 positive cells in different quantity were found in all analysed cases.

CD20+ Lymphocytes

The density of CD20+ tumour-associated lymphocytes about the stage of disease, T and N category, and lymphatic invasion is presented in Table 3.

Stage	N° of patients	CD20+ Ly not present	CD20+ Ly present	Statistical P value
I	11	0	6	<0.0001**
II	45	1 (2.39)	6	<0.0001**
III	41	0	5	0.0002**
IV	6	0	0	0.27
T category				
1	5	0	3	0.0018**
2	7	1 (14.29)	6	0.0018**
3	60	35 (58.33)	20 (33.33)	0.0001**
4	31	23 (74.19)	6 (19.35)	0.0001**
N category				
N0	56	1 (1.79)	24 (44.44)	<0.0001**
N1/N2	47	41 (87.23)	5 (10.64)	0.0011**
L category				
L0	54	1 (1.85)	26 (48.15)	0.0001**
L1	49	0	20 (41.63)	0.00005**

We found a significant difference in the density of CD20+ lymphocyte (Ly) in all analysed parameters.

Scanty CD20+ Ly infiltrates found in patients with advanced local growth, with nodal metastases, lymphatic invasion and with a higher stage of the disease (100% Stage IV, 88.64% Stage III, 50% Stage II and 0% of patients in Stage I). The density of CD20+ Ly infiltrate lower (scanty) in patients with poorly differentiated tumours but without a statistically significant difference (P = 0.089).

CD4+ Lymphocytes

The density of CD4+ tumour-associated lymphocytes about the stage of disease, T and N...
category, and lymphatic invasion is presented in Table 4.

Table 4: Density of CD4+ tumour-associated lymphocytes about the stage of disease, T and N category, and lymphatic invasion

Stage	The quantity of CD4+ Lymphocytes	P-value				
	No of patients	Scanty	Moderate	Abundant		
I	11	0	10 (90.9)	1 (9.09)	P = 0.11 ns	
II	45	10 (23.8)	26 (58.1)	9 (21.43)		
III	41	4 (9.80)	34 (33.0)	6 (14.62)		
IV	6	0	6 (100)	0		
T category	1	5	0	4 (80)	1 (20)	P = 0.034*
	2	7	0	7 (100)	0	
	3	60	6 (10)	46 (76.7)	8 (13.33)	
	4	31	8 (25.8)	19 (61.3)	4 (12.9)	
N category	N0	56	10 (17.6)	36 (64.2)	10 (17.8)	P = 0.055 ns
	N1/N2	47	4 (8.51)	40 (85.1)	3 (6.38)	
L category	L0	54	11 (20.7)	37 (68.5)	6 (11.1)	P = 0.11 ns
	L1	49	3 (6.12)	39 (79.5)	7 (14.29)	

*P (Kruskal-Wallis test) *P < 0.05; **P < 0.01.

The low density of CD4+ Ly was detected in 100% of tumours with advanced local tumour growth (T4 category) and on contrary CD4+ low Ly density was not detected in tumours with T1. The statistical analysis confirmed that the density of CD4+ lymphocytes in the infiltrative front of a tumour significantly depended on the local growth of the disease.

Patients with regional lymph nodes metastasis had a lower density of CD4+ Ly infiltrate than patients without metastasis, but there was no a statistically significant difference in the density of CD4+ Ly according to the presence of lymph nodes metastasis. No statistical significance was found in the density of CD4+ Ly infiltrate according to the Stage, lymphatic invasion and grade also.

CD8 Lymphocytes

The density of CD8+ tumour-associated lymphocytes about the stage of disease, T and N category, and lymphatic invasion is presented in Table 5.

Table 5: Density of CD8+ tumour-associated lymphocytes about the stage of disease, T and N category, and lymphatic invasion

Stage	The quantity of CD8+ Lymphocytes	p-value					
	No of patients	Scanty	Moderate	Abundant			
I	11	0	0	11 (100)	0		
II	45	12 (27.8)	12 (27.8)	26 (58.1)	0		
III	41	0	24 (58.5)	20 (48.8)	0		
IV	6	0	3 (50)	3 (50)	0		
T category	1	5	0	5 (100)	0		
	2	7	0	7 (100)	0		
	3	60	22 (36.7)	27 (45.0)	11 (18.3)		
	4	31	0	17 (54.8)	13 (41.9)	1 (3.2)	
N category	N0	56	1 (1.8)	15 (26.8)	39 (69.6)	1 (1.79)	P = 0.024*
	N1/N2	47	24 (51.0)	23 (48.9)	0		
L category	L0	54	18 (33.3)	35 (64.8)	1 (1.85)	0	
	L1	49	1 (2.04)	21 (42.8)	27 (55.1)	0	

*P (Kruskal-Wallis test) *P < 0.05; **P < 0.01.

We found a significant difference in the quantity of CD8+ Ly in all analysed parameters except lymphatic invasion.

The density of CD8+ Ly significantly differs according to the local tumour growth. The low density of CD8+ Ly infiltrate significantly more often was present in patients with T4 and T3 status (54.84%, 36.67% respectively); there were no patients with T1 and T2 with a low density of CD8+ Ly infiltrate.

The density of CD8+ Ly was significantly lower in patients with nodal metastasis, lymphatic invasion and with an advanced stage of the disease.

We did not find a statistical difference in the density of CD8+ Ly according to the histological differentiation of a tumour.

The moderate density of CD8+ lymphocytes decreased when the grade of the differentiation decreased, but the difference was not significant.

Correlations

The correlations of the density of tumour-associated lymphocytes with T tumour status, the involvement of the regional lymph nodes, lymphatic invasion, stage and the grade of differentiation were done using the Spearman's correlation test. Correlations were determined between the different T cell types also.

The results showed a significant negative correlation between the density of CD20+ Ly and T status, stage and G, i.e. the density of CD20+ Ly was lower in less differentiated tumours with advanced local growth and higher stage. The density of CD20+ Ly was in positive correlation with the density of CD8+ Ly and the density of TAL (Table 6).

The density of CD8+ Ly was lower in tumours with advanced local growth and higher stage of the disease. Correlations were not statistically significant except for the density of CD8+ Ly and the stage of the disease (Table 6).

Table 6: Correlations of the quantity of TAL and all other analysed parameters

Parameter	Spearman R	t-test, P level
CD20 / CD4	0.367	3.37, P = 0.00013***
CD20 / TAL	0.436	4.87, P = 0.0000004***
CD20 / T	-0.407	4.48, P = 0.00022***
CD20 / Stage	-0.564	6.87, P = 0.0001**
CD20 / G	-0.220	2.27, P = 0.025**
CD4	0.387	4.21, P = 0.000000005**
CD4 / CD 8	0.200	0.92, P = 0.34
CD4 / CD 20	0.016	0.16, P = 0.67
CD4 / TAL	0.342	3.66, P = 0.00014***
CD4 / T	-0.155	1.57, P = 0.12
CD4 / Stage	-0.034	0.34, P = 0.74
CD4 / G	-0.091	0.92, P = 0.36
CD8	0.381	4.14, P = 0.000000007***
CD8 / TAL	-0.271	2.83, P = 0.0056**
CD8 / T	-0.324	3.44, P = 0.00084***
CD8 / G	-0.107	1.08, P = 0.29

*P < 0.05; **P < 0.01.

Statistically, a significant correlation was found between CD4+ Ly and CD8+ Ly and the total
Discussion

Rudolf Virchow, 150 years ago, was the first who described inflammatory cells in tumours and established the theory that tumours arise at chronic inflammation sites. It is known that the risk of developing colorectal cancer is greater in patients with ulcerative colitis and those with Crohn's disease. Despite the knowledge that chronic inflammation is a risk for development of a malignant neoplasm, many clinical and experimental studies stress the protective role of immune cells in cancer progression, hence, the statements and cognitions that immune response plays a key role in fighting tumour growth and its dissemination [7].

Some authors consider that the type, density and location of the immune cells in colorectal cancer can be superior and independent prognostic factor for tumour progression [7].

Cancer progression is a complex process that is influenced by genetic, epigenetic and environmental factors, but at the same time, it is a process of interaction between cancer cells and their microenvironment, that is, stroma. Tumour stroma is built of different cells among which are inflammatory cells that belong to congenital and inherited immune system [20] [21] [22]. Former investigations have shown that lymphocytes that infiltrate the tumour-tumour infiltrating lymphocytes (TIL/TAL) are predominantly T lymphocytes among which two subtypes are identified CD4+ and CD8+ T lymphocytes. CD4+ T lymphocytes are T helper cells, whereas CD8+ T lymphocytes are cytotoxic cells capable of killing the “target cell”, i.e. tumour cell which exposed antigens CD8+ T lymphocytes are capable of recognising. They are able to destroy tumor cells in direct cell interaction by releasing lytic components [22] [23] [24] [25] [26] [27]. CD4+ T lymphocytes are helper cells that are stratified in subgroups T helper 1 (Th1) and T helper 2 (Th2) cells. Th1 CD4+ T lymphocytes are responsible for the proliferation of cytotoxic T lymphocytes that participate in the killing of tumour cells.

In addition to T lymphocytes, B CD20+ lymphocytes arranged in aggregates have been found among TAL together with other immune cells. In lymph glands and the remaining lymphoid tissue, B lymphocytes receive signals for growth, differentiation and affinity maturation from follicular T helper immune cells. They differentiate into plasma cells and memory cells with long lifespan [28]. The process of lymphoid neogenesis is described in infectious diseases, chronic inflammation processes, autoimmune diseases and chronic graft rejection [29] [30] [31]. In these conditions, T and B cells cooperate to create a strong immune response when B cells enhance T cell response by antigen presentation, costimulation and modulation of migration and function of dendritic cells [28], [29].

Lymphoid neogenesis is also described in malignant neoplasms, while the role of CD20+ lymphocytes in tertiary lymphoid structures that are found in these neoplasms has not been completely clarified and it is still in the phase of research [29]. Nowadays many patients with malignant neoplasms develop tumour-specific antibodies, and B cells have a significant role in the immune response to neoplasm both by exacerbating cancer-associated inflammation and by the effect they have on T lymphocytes, macrophages and myeloid stem cells.

We found a statistically significant correlation between the examined subtypes of lymphocytes with a negative trend between CD4+ and CD20+ cells and CD8+, CD20+ cells and also a positive trend between CD4+ and CD8+. The correlation implies mutual connection in the function of these cells in one common immune response to tumour antigens.

TAL-tumour infiltrating lymphocytes are concentrated in the stroma of an invasive tumour front. Many authors examined the role of TAL in tumour progression in relation to survival of patients with colorectal cancer [23] [24] [25] [26] [32] [33].

Even though for a long time it was considered that colorectal cancer is a bad immunogenic tumor, the new cognitions suggest that there is a substantial immune response to this disease and that the presence of the immune response is connected with a better prognosis of patients with colorectal cancer, that is, the increased presence of T cytotoxic lymphocytes is associated with absence of early metastases and absence of early recurrence, as well as that the type of density and location of the immune cells have prognostic significance in colorectal cancer [7] [33] [34].

Therefore, tumour-associated lymphocytes can provide significant prognostic information about patients with colorectal cancer, which could be used for treatment with adjuvant therapy in a different stage of cancer [29].

The results from the analysis of TAL in the invasive front of cancer in our group of patients with colorectal cancer showed the presence of T (CD4+ and CD8+) and B (CD20+) lymphocytes and their density significantly correlated with clinically-pathologic parameters for disease progression. The density of TAL was higher in patients with lower stage
(I and II) of the disease, in tumours with less local invasion, in patients without nodal metastasis, and in tumours with no lymphatic invasion. The density of CD8+ and CD20+ lymphocytes in a neoplasm was higher in patients without metastases in lymph nodes and with a lower stage of the disease. Lower density of CD20+ lymphocytes was found in neoplasms of patients with advanced local growth and lymphatic tumor invasion. Thus, it can be concluded that the density of tumor-associated lymphocytes can be a parameter for neoplasm progression in patients with colorectal cancer and the density of tumor-associated lymphocytes influences the control of tumor progression.

References

1. Nicholls J, Dozois R, Section IV: Colon and Rectum: neoplasia in Surgery of the colon & rectum. Churchill Livingstone, 1997.

2. Johnson R, Marsh R, Carson J, Seymour K. A comparison of two methods of palliation of large bowel obstruction due to irremovable colon cancer. Ann R Coll Surg Engl. 2004; 86:99–103. doi:10.1017/s0005889404322874 PMid:15059277 PMCid:PMC1616459

3. Rudy DR, Zdon MJ. Update on colorectal cancer. Am Fam Physician. 2000; 61(6):1759–70. PMid:10750881

4. O’Connell JB, Maggard MA, Ko CY. Colon cancer surgery results in colonic obstruction. Chirurg. 1991; 62(3):201–6. doi:10.1055/s-2000-118138

5. Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, et al. (2005) TNM Staging. J Natl Cancer Inst. 2004; 96:1420–8. doi:10.1093/jnci/djh275 PMid:15467030

6. Roscher R, Frank R, Wagner R, Safi F, Veger HG. Surgical treatment results in colonic obstruction. Chirurg. 1991; 62(3):201–5. PMid:2036896

7. Di Caro G, Marchesi F, Laghi L, Grizzi F. Immune cells: plastic players along colorectal cancer. Progression J Cell Mol Med. 2013; 17(9).

8. Kinzler K. Vogelstein Hereditary Colorectal Cancer. Cell. 1996; 86:587–624. doi:10.1016/s0092-8674(00)81333-1

9. Redston MS, Papadopoulos N, Coldas C. Common occurrence of APC and K-ras gene mutation in the spectrum of colitis-associated neoplasias. Gastroenterology. 1995; 108:383–392. doi:10.1016/0016-5085(95)00642-8

10. Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993; 75:1027–1038. doi:10.1016/0092-8674(93)90546-3

11. Levine AJ. The tumor suppressor genes. Annu Rev Biochem. 1993; 62:623–651. doi:10.1146/annurev.bi.62.070193.033203 PMid:8394683

12. Page’s F, Galon J, Dieu-Nosjean M-C, Tartour E, Sauve’s-Fridman C, Fridman W-H. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010; 29:1093–1102. doi:10.1038/onc.2009.416 PMid:19946335

13. Page’s F, Berger A, Camus M, et al. (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. New England J Med. 2005; 352:2654–2666. doi:10.1056/NEJMoa051424 PMid:16371631

14. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predicts clinical outcome. Science. 2006; 313:1960–1964. doi:10.1126/science.1129139 PMid:17008531

15. Di Caro G, Marchesi F, Laghi L, Grizzi F. Immune cells: plastic players along colorectal cancer progression. J Cell Mol Med. 2013; 17(9):1088–109. doi:10.1111/jcm.12117 PMid:24151976 PMCid:PMC4118167

16. Qiang Zhou, Rui-Qing Peng, Xiao-Jun Wu, Qing Xia, Jing-Hui Hou, Ya Ding, Qi-Ming Zhou, Xing Zhang, Zhi-Zhong Pang, De-Sen Wan, Yi-Xin Zeng, Xiao-Shi Zhang. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer. Journal of Translational Medicine. 2010; 8:13. doi:10.1186/1475-2872-8-13 PMid:20141634 PMCid:PMC2841127

17. Valérie C, Han Chong T, Jean-Pierre A. Immune Microenvironment in Tumor Progression: Characteristics and Challenges for Therapy. Journal of Oncology. 2012; 2012:608406.

18. Dzivuen KO, O’Donnell-Torrey J. The immune system and the immune system: The Vital Connection. Cancer Research Institute, 2003.

19. Dieu-Nosjean MC, Goc J, Giraldo NA at al. Tertiary lymphoid structures in cancer. and Beyond. Trends Immunol. 2014; 35:571–80. doi:10.1016/j.ti.2014.09.006 PMid:25443495

20. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010; 6:2059–2072. doi:10.1053/j.gastro.2009.12.065 PMid:20420946 PMCid:PMC24242362

21. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molder R, Mlecnik B, Kirkovsky A, Nilsson M, Damotte D, Meachi T, Bruneval P, Cugnenc P, Trajanoski Z, Fridman W, Galon J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005; 25:2654–2666. doi:10.1056/NEJMoa051424 PMid:16371631

22. Pages F, Galon J, Fridman WH. The essential role of the in situ immune reaction in human colorectal cancer. J Leukoc Biol. 2008; 8:981–987. doi:10.1189/jlb.11b0777 PMid:18559950

23. Shunyakov L, Ryan CK, Sahasrabudhe DM, Khorana AA. The influence of host response on colorectal cancer prognosis. Clin Colorectal Cancer. 2004; 1:38–45. doi:10.3813/CCC.2004.n.008

24. Loose D, Van de Wiele C. The immune system and cancer. Cancer Biother Radiopharm. 2009; 3:369–376. doi:10.1089/cbr.2008.0593 PMid:19538060

25. Watson NF, Ramage JM, Madjid Z, Spendlove I, Ellis IO, Scholefield JH, Durrant LG. Immunosurveillance is active in colorectal cancer as downregulation but not complete loss of MHC class I expression correlates with a poor prognosis. Int J Cancer. 2006; 6:16–10. doi:10.1002/ijc.21303 PMid:16203763

26. Titu LV, Monson JR, Greenwood. J. T-cell function in colorectal cancer. Cancer Immunol Immunother. 2002; 5:235–247. doi:10.1007/s00262-002-0276-4 PMid:12070710

27. Atkinson EA, Bleackley RC. Mechanisms of lysis by cytotoxic T cells. Curr Rev Immunol. 1995; 3:4–39–34838. doi:10.1615/CritRevImmunol.v15.i3.4.90

28. Nelson BH: CD20+ B Cells: The Other Tumor Infiltrating Lymphocytes. J Immunol. 2010; 185(9):4977–4982. doi:10.4049/jimmunol.1001323

29. Bergomas F, Grizz F, Doni A, Pesce S, Lagli L, Allavena P, Mantovani A Marchesi F. Tertiary Intratumor Lymphoid Tissue in Colo-Rectal Cancer. Cancers (Basel). 2012; 4(1):1–10. doi:10.3390/cancers4010001 PMid:24213222 PMCid:PMC3712686

30. Carlsem HS, Baekkedevol ES, Johansen FE, Haraldsen G, Brandtzæg P. B cell attracting chemokine 1 (CXC13) and its receptor CXCXR5 are expressed in normal and aberrant gut associated lymphoid tissue. Gut. 2002; 51:364–371. doi:10.1053/j.gut.2001.06108 PMid:11953818 PMCid:PMC1773345
31. Grabner R, Lotzer K, Dopping S, Hildner M, Radke D, Beer M, Spanbroek R, Lippert B, Reardon CA, Getz GS, et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med. 2009; 206:233-248. https://doi.org/10.1084/jem.20080752 PMid:19139167 PMCID:PMC2626665

32. Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol. 1997; 182:318–324. https://doi.org/10.1002/(SICI)1096-9896(199707)182:3<318::AID-PAT986>3.0.CO;2-6

33. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006; 5795:1960–1964. https://doi.org/10.1126/science.1129139 PMid:17008831

34. Deschoolmeester V, Baay M, Lardon F, Pauwels P, Peeters M. Immune Cells in Colorectal Cancer: Prognostic Relevance and Role of MSI. Cancer Microenvironment. 2011; 4:377-392. https://doi.org/10.1007/s12307-011-0068-5 PMid:21618031 PMCID:PMC3234325