In-beam γ-ray spectroscopy at the proton dripline: 40Sc

A. Gade a,b,* D. Weisshaar a, B.A. Brown a,b, J.A. Tostevin c, D. Bazin a,b, K. Brown a,d, R.J. Charity e, P.J. Farris a,b, A.M. Hill a,b, J. Li a, B. Longfellow a,b, W. Reviol f, D. Rhodes a,b

A National Superconducting Cyclotron Laboratory, East Lansing, MI 48824, USA
b Department of Physics & Astronomy, Michigan State University, East Lansing, MI 48824, USA
c Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
d Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
e Departments of Chemistry, Washington University, St. Louis, MO 63130, USA
f Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

* Corresponding author.
E-mail address: gade@nscl.msu.edu (A. Gade).

Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb

Abstract

We report on the first in-beam γ-ray spectroscopy of the proton-dripline nucleus 40Sc using two-nucleon pickup onto an intermediate-energy rare-isotope beam of 39Ca. The 39Ca(39Ca,40Sc+γ) reaction at 60.9 MeV/nucleon mid-target energy selectively populates states in 40Sc for which the transferred proton and neutron couple to high orbital angular momentum. In turn, due to angular-momentum selection rules in proton emission and the nuclear structure and energetics of 39Ca, such states in 40Sc then exhibit γ-decay branches although they are well above the proton separation energy. This work uniquely complements results from particle spectroscopy following charge-exchange reactions on 40Ca as well as 40Ti EC/β^+ decay which both display very different selectivities. The population and γ-ray decay of the previously known first (5$^+$) state at 892 keV and the observation of a new level at 2744 keV are discussed in comparison to the mirror nucleus and shell-model calculations. On the experimental side, this work shows that high-resolution in-beam γ-ray spectroscopy is possible with new generation Ge arrays for reactions induced by rare-isotope beams on the level of a few μB of cross section.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

Since its discovery in 1955 [1], the neutron-deficient nucleus 40Sc has attracted attention for a variety of interests ranging from rp-process nucleosynthesis [2,3] to the solar neutrino absorption rate on 40Ar [4,5]. In fact, 40Sc – five neutrons removed from stable 45Sc – is the last proton-bound scandium isotope, with 39Sc shown to be unstable against proton emission [6]. 40Sc is peculiarly located on the nuclear chart (Fig. 1): While it is the proton dripline nucleus of the scandium isotopic chain, it is easily produced from charge-exchange reactions on stable 40Ca (e.g., see [2,7,8]).

Due to the low 40Sc proton separation energy of $S_p = 529.6(29)$ keV [10], only the 4$^{-}$ ground state and the 34-keV first-excited (3$^{-}$) state are nominally below the proton emission threshold. The nuclear structure interest in this neighboring isobar of 40Ca has been focused on the particle-hole nature of the states in 40Sc relative to the doubly-magic $N = Z = 20$ core [7,11], while the quest to constrain the 39Ca(p,γ)40Sc proton capture rate drove the highest-resolution study of 40Sc yet [2]. To obtain the 40Ti\rightarrow^{40}Sc weak decay rate, which allows determination of the 40Ar neutrino absorption rate via isospin symmetry [4], the β decay of 40Ti,
populating high-lying, unbound low-spin states of 40Sc, was studied with proton spectroscopy (e.g., see [5,9]). The work reported here presents the first in-beam γ-ray spectroscopy of this dripline nucleus, 8Be+38Ca,40Sc+γX, including observation of decays from states above S_p.

The 38Ca secondary beam was produced by fragmentation of a 140-MeV/nucleon stable 40Ca beam, accelerated by the Coupled Cyclotron Facility at NSCL [12], impinging on a 799 mg/cm2 9Be production target and separated using a 300 mg/cm2 Al degrader in the A1900 fragment separator [13]. The momentum acceptance of the separator was restricted to $\Delta p/p = 0.25\%$, yielding typical rates of 160,000 18Ca/s. About 86% of the secondary beam composition was 38Ca, with the lighter isotones comprising the less intense beam components. The secondary 9Be reaction target, of 188 mg/cm2 thickness, was located at the target position of the S800 spectograph. The projectile-like reaction products were identified on an event-by-event basis in the S800 focal plane with the standard detector systems [14] (see Fig. 2). The 38Ca projectiles in the entrance channel were selected through a software gate applied on the time-of-flight difference taken between two plastic scintillators before the target.

The high-resolution γ-ray spectrometer GRETINA [15,16], an array of 36-fold segmented high-purity germanium detectors assembled into modules of four crystals each, was used to measure the prompt γ rays emitted by the reaction residues in flight. The 12 detector modules available were arranged in two rings with four located at 58° and eight at 90° with respect to the beam axis. Online pulse-shape analysis provided the γ-ray interaction points for event-by-event Doppler reconstruction of the γ rays emitted in-flight at about 30% of the speed of light [16]. The momentum vector of projectile-like reaction residues as ray-traced through the S800 spectograph was incorporated into the emission-angle determination entering Doppler reconstruction. Fig. 3 displays the Doppler-reconstructed γ-ray spectrum obtained for 40Sc with nearest-neighbor addback included [16].

The inclusive cross section for the two-nucleon pickup from 38Ca to 40Sc was determined from the number of 40Sc detected in the S800 focal plane relative to the number of 38Ca projectiles and the number density of the target. The rigidity of the spectrograph was chosen to center the two-neutron knockout residue 36Ca in the S800 focal plane and, therefore, 40Sc was off-center. Fig. 4 shows the parallel momentum distribution of 40Sc within the acceptance of the spectograph. Assuming that the maximum of the distribution is at about 11.983 GeV/c (see Fig. 4) and has a shape similar to what was observed in [18] for one-proton pickup from a 9Be target, a potential acceptance loss of 20% is estimated. Including this uncertainty, the inclusive cross section amounts to $\sigma_{inc} = 8.0(6)_{-1.6}^{+1.8}\,\mu$b (with 3.75% statistical and 7% systematic uncertainty included in the symmetric error bars and additional +20% of uncertainty accounting for a possible acceptance cut.). The systematic uncertainty is attributed to the determination of a very low cross section in the presence of background from pile-up.

While, due to its unbound target final states, the present reaction mechanism is too complex to allow quantitative dynamical calculations, in common with other linear- and angular-

1 We note that the exact shape and centroid of the momentum distribution from this novel 9Be-induced reaction is not precisely known and future measurements of the shape and energetics may clarify the reaction mechanism and allow for a more precise estimate of the acceptance loss. This is not critical for the results of the present work.
momentum mismatched two-nucleon transfer reactions, such as (α, d) and its inverse, see e.g. [21,22], its strong selectivity of (stretched) transitions involving maximal orbital angular momentum transfer is a firm qualitative feature. Such large ℓ-selectivity in one-neutron pickup at intermediate energy is shown in Fig. 2 of Ref. [23] and where, for a ^6Be target, the reaction proceeds by the pickup of well-bound nucleons leaving the target residue in the continuum [19]. Importantly, unlike the (α, d) reaction, where the transfer vertex selects an np-pair with spin $S = 1$, here there is no such restriction, allowing, for example, for the direct population of $(\pi f_{3/2}, v f_{3/2})^{(J=5^-)}$ final state. This difference is illustrated by the $^{38}\text{Ar}(\alpha, d)^{40}\text{K}$ reaction to the mirror of ^{40}Sc that was found to populate the $(\pi f_{3/2}, v f_{3/2})^{(J=7^+)}$ configuration but not the corresponding 6^+ state [24] or by the $^{40}\text{Ca}(\alpha, d)^{42}\text{Sc}$ reaction to the neighboring Sc isotope that populated the 7^+ and 5^+ states but not the 6^+ [25].

Turning to the γ-ray spectrum and the level structure of ^{40}Sc, the very favorable peak-to-background ratio manifested in Fig. 3 enables the spectroscopy of rare isotopes produced at the level of μb. The γ ray observed at 892(3) keV (see Fig. 3) most certainly corresponds to the decay of the previously reported (5^-) state at 893.5(20) keV to the 4^- ground state [17]. Since this is the first γ-ray spectroscopy of ^{40}Sc, we resort to the mirror nucleus ^{40}K and shell-model calculations for guidance on other potential decay branches from this state. The shell model for ^{40}Sc uses the sdpf-wb effective shell-model interaction [26], a $(sd)^{-1}(fp)^{+1}$ model space for the low-lying negative-parity states, and a $(sd)^{-2}(fp)^{-2}$ model space for the positive-parity states. In ^{40}K, the $5^{-} \to 4^{-}$ transition to the ground state dominates over the decay to the excited 3^{-} state with a branching ratio of 100 vs. 0.15 (see Fig. 5), consistent with the observation of only the 892 keV γ ray here. This is also in agreement with the shell-model calculations that predict the 5^{-} to 3^{-} branch is even more suppressed.

The population of the 5^{-} state in the reaction used here very likely corresponds to the pickup of the proton into the $f_{3/2}$ orbital and the neutron into the partially filled $d_{3/2}$ orbital, consistent with a resulting stretched configuration of $(\pi f_{3/2}^1, v d_{3/2}^{-1})^{(J=5^-)}$.

The selectivity of the reaction mechanism favors population of high-angular-momentum states and, thus, supports this picture. The proton decay of the state is presumably hindered by the angular momentum barrier ($\ell = 3$) and the low Q_{γ} value for the γ emission to the only energetically allowed state in ^{39}Ca, the $3/2^+$ ground state (see Fig. 5). The 4^{-} and 3^{-} ground and first-excited states are expected to have the same $(\pi f_{3/2}^1, v d_{3/2}^{-1})$ particle-hole configuration based on (p,n) reaction studies [7] but their population would not be observable through prompt γ-ray spectroscopy (from the mirror nucleus, the 3^{-} state is expected to be a nanosecond isomer, also with the γ-ray energy below threshold in this work). The reaction mechanism also disfavors population of a 3^{-} configuration due to the lower orbital angular momentum transfer relative to the 5^{-} level.

In the following, we explore the origin of the γ-ray transition at 1852 keV. The next configuration that allows for high angular momentum can be realized by the pickup of the proton and neutron into the corresponding $f_{3/2}$ orbitals; our selectivity to high-angular-momentum configurations is again commensurate with the observation of a γ-ray decay. The highest J^π states of the resulting $(f_{3/2})^2$ multiplet would be 6^+ and 7^+. In ^{40}K, the lowest-lying 7^+ and 6^+ states are reported at about 2.54 and 2.88 MeV excitation energy, respectively, both with decays to the 5^- state and to each other (Fig. 5). For ^{40}Sc, if the 1852-keV γ ray, observed here for the first time, were to feed the (5^-) state, this would place a new excited state at 2744(5) keV in the region where the high-spin positive-parity states are expected. Also, the shell-model calculations performed using the sdpf-wb Hamil-

![Fig. 5. Level schemes of the mirror pair ^{40}Sc and ^{40}K together with shell model for ^{40}Sc (using the sdpf-wb Hamiltonian [28]) and the ^{40}Ca+p system relevant to explore proton emission from the relevant excited states in ^{40}Sc. For all states of ^{40}Sc discussed here, p emission can only reach the $3/2^+$ ground state of ^{40}Ca due to the energetics of the two systems. Levels known in ^{40}Sc but not observed here are indicated by a dashed line. Literature data taken from [17].]
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] N.W. Glass, J.R. Richardson, Phys. Rev. 98 (1955) 1251.
[2] V.Y. Hansey, A.E. Champagne, S.E. Hale, C. Ilidias, D.C. Powell, Phys. Rev. C 61 (2000) 028201.
[3] C. Ilidias, R. Longland, A.E. Champagne, A. Cocc, R. Fitzgerald, Nucl. Phys. A 841 (2010) 31.
[4] W.E. Ormand, P.M. Pizzochero, P.F. Bortignon, R.A. Broglia, Phys. Lett. B 345 (1995) 343.
[5] M. Bhattacharya, A. Garcia, N.J. Kalskamis, E.G. Adelberger, H.E. Swanson, R. Anne, M. Lewitowicz, M.G. Saint-Laurent, W. Trinder, C. Donzaud, D. Guillemaud-Mueller, S. Leenhardt, A.C. Mueller, F. Pougheon, O. Sorlin, Phys. Rev. C 58 (1998) 3677.
[6] L.L. Woods, W.N. Catford, L.K. Fifield, N.A. Orr, Nucl. Phys. A 484 (1988) 145.
[7] T. Chittarakum, B.D. Anderson, A.R. Baldwin, C. Lebo, R. Maney, J.W. Watson, C.C. Leenhardt, Phys. Rev. C 34 (1986) 80.
[8] S.L. Tabor, A. Neuschafer, J.A. Carr, F. Petrovich, C.C. Chang, A. Guterman, M.T. Collins, D.L. Friesel, C. Glover, S.Y. van der Werf, S. Raman, Nucl. Phys. A 422 (1984) 12.
[9] W. Liu, M. Hellström, R. Collatz, J. Benlliure, I. Chulkov, D. Cortina Gil, F. Farget, H. Graze, Z. Hu, N. Iwasa, M. Pfützner, A. Piechaczek, R. Raabe, I. Reusen, E. Roedel, G. Vancraeynest, A. Wöhr, Phys. Rev. C 58 (1998) 2677.
[10] Meng Wang, G. Audi, F.G. Kondev, W.J. Huang, S. Nanni, Xing Xu, Chin. Phys. C 41 (2017) 030003.
[11] J.-M. Loiseaux, G. Brune, P. Kissany-Demai, Ha Duc Long, A. Chaumeaux, Y. Terrien, R. Schaeffer, Phys. Rev. C 4 (1971) 1219.
[12] A. Gade, B.M. Sherrill, Phys. Scr. 91 (2016) 053003.
[13] D.J. Morrissey, B.M. Sherrill, M. Steiner, A. Stoltz, I. Wiedenhöver, Nucl. Instrum. Methods Phys. Res., Sect. B 204 (2003) 90.
[14] D. Bazin, J.A. Caggiano, B.M. Sherrill, J. Yurkun, A. Zeller, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 204 (2003) 629.
[15] S. Paschalis, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 709 (2013) 44.
[16] D. Weißhaar, D. Bazin, P.C. Bender, C.M. Campbell, F. Recchia, V. Bader, T. Baugher, J. Belarge, M.P. Carpenter, H.L. Crawford, M. Czomaz, B. Elman, P. Felon, A. Forney, A. Gade, J. Harker, N. Kobayashi, C. Langer, T. Lauritsen, I.Y. Lee, M. Lennson, B. Longfellow, E. Lunderberg, A.O. Macchiavelli, K. Miki, S. Momiyama, S. Noji, D.C. Radford, M. Scott, J. Sethi, S.R. Stroberg, C. Sullivan, R. Titus, A. Wiens, S. Williams, K. Wimmer, S. Zwu, Nucl. Instrum. Methods Phys. Res., Sect. B 847 (2017) 187.
[17] Retrieved from the National Nuclear Data Center (NNDC) ENDF database, 05/2020.
[18] A. Gade, P. Adrich, D. Bazin, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, K. Hosier, S. McDaniel, D. McGlinchey, A. Obertelli, L.A. Riley, K. Siwek, J.A. Testevin, D. Weißhaar, Phys. Lett. B 666 (2008) 218.
[19] A. Gade, J.A. Testevin, T. Baugher, D. Bazin, B.A. Brown, C.M. Campbell, T. Glasmacher, G.F. Grinyer, S. McDaniel, K. Meierbach, A. Ratkiewicz, S.R. Stroberg, K.A. Walsh, D. Weißhaar, K. Winkler, Phys. Rev. C 83 (2011) 054324.
[20] A. Gade, P. Adrich, D. Bazin, M.D. Bowen, B.A. Brown, C.M. Campbell, J.M. Cook, T. Glasmacher, K. Hosier, S. McDaniel, D. McGlinchey, A. Obertelli, L.A. Riley, K. Siwek, J.A. Testevin, D. Weißhaar, Phys. Rev. C 76 (2007) 061302(R).
[21] U. Fister, R. Jahn, P. von Neumann-Cosel, P. Schenk, T.K. Trelle, D. Wenzel, U. Wiewand, Nucl. Phys. A 569 (1994) 421.
[22] A.H. Wuosmaa, J.P. Schiffer, S. Bedoor, M. Albers, M. Alcorta, S. Almaraz-Calderon, B.B. Back, P.F. Bertone, C.M. Deibel, C.R. Hoffman, J.C. Lighthall, S.T. Marley, R.C. Pardo, K.E. Reim, D.V. Shetty, Phys. Rev. C 90 (2014) 061301(R).
[23] A. Gade, J.A. Testevin, V. Bader, T. Baugher, D. Bazin, J.S. Berryman, B.A. Brown, D.J. Hartley, E. Lunderberg, F. Recchia, S.R. Stroberg, Y. Utsuno, D. Weißhaar, K. Wimmer, Phys. Rev. C 93 (2016) 031301(R).
[24] R.M. Del Vecchio, R.T. Kozues, R. Sherr, Nucl. Phys. A 205 (1976) 220.
[25] H. Nann, W.S. Chen, A. Saha, B.H. Wildenthal, Nucl. Phys. A 292 (1979) 195.
[26] E.K. Warburton, J.A. Becker, B.A. Brown, Phys. Rev. C 41 (1990) 1147.
[27] N.S. Pattabiraman, D.G. Jenkins, M.A. Bentley, R. Wadsworth, C.J. Lister, M.P. Carpenter, R.V.F. Janssens, T.I. Khoo, T. Lauritsen, D. Seweryniak, S. Zhu, G. Lotay, P.J. Woods Krischichayan, P. Van Hacker, Phys. Rev. C 78 (2008) 024301.
[28] W. Kutschera, B.A. Brown, K. Ogawa, Riv. Nuovo Cimento 1 (1978) 1.