COUNTING UNLABELED INTERVAL GRAPHS

HUSEYIN ACAN

Abstract. We improve the bounds on the number of interval graphs on \(n \) vertices. In particular, denoting by \(I_n \) the quantity in question, we show that
\[
\log I_n \sim n \log n \quad \text{as} \quad n \to \infty.
\]

A simple undirected graph is an interval graph if it is isomorphic to the intersection graph of a family of intervals on the real line. Several characterizations of interval graphs are known; see [4, Chapter 3] for some of them. Linear time algorithms for recognizing interval graphs are given in [1] and [2].

In this paper, we are interested in counting interval graphs. Let \(I_n \) denote the number of unlabeled interval graphs on \(n \) vertices. (This is the sequence with id A005975 in the On-Line Encyclopedia of Integer Sequences [6].) Initial values of this sequence are given by Hanlon [3]. Answering a question posed by Hanlon [3], Yang and Pippenger [5] proved that the generating function
\[
I(x) = \sum_{n \geq 1} I_n x^n
\]
diverges for any \(x \neq 0 \) and they established the bounds
\[
\frac{n \log n}{3} + O(n) \leq \log I_n \leq n \log n + O(n).
\]

The upper bound in (1) follows from \(I_n \leq (2n - 1)!! = \prod_{j=1}^{n}(2j - 1) \), where the right hand side is the number of matchings on \(2n \) points. For the lower bound, the authors showed
\[
I_{3k} \geq k!/3^{3k}
\]
by finding an injection from \(S_k \), the set of permutations of length \(k \), to three-colored interval graphs of size \(3k \).

Using an idea similar to the one in [5], we improve the lower bound in (1) so that the main terms of the lower and upper bounds match. In other words, we find the asymptotic value of \(\log I_n \).

For a set \(S \), we denote by \((S)_k \) the set of \(k \)-subsets of \(S \).

Theorem 1. As \(n \to \infty \), we have
\[
\log I_n \geq n \log n - 2n \log \log n - O(n).
\]

Proof. We consider certain interval graphs on \(n \) vertices with colored vertices. Let \(k \) be a positive integer smaller than \(n/2 \) and \(\varepsilon \) a positive constant smaller than \(1/2 \). For \(1 \leq j \leq k \), let \(B_j \) and \(R_j \) denote the intervals \([-j - \varepsilon, -j + \varepsilon] \) and \([j - \varepsilon, j + \varepsilon] \), respectively. These \(2k \) pairwise-disjoint intervals will make up \(2k \) vertices in the

2010 Mathematics Subject Classification. Primary 05C30; Secondary 05A16.

Key words and phrases. Interval graphs, counting.

The author is supported by National Science Foundation Fellowship (Award No. 1502650).
graphs we consider. Now let W denote the set of k^2 closed intervals with one endpoint in $\{-k, \ldots, -1\}$ and the other in $\{1, \ldots, k\}$. We color B_1, \ldots, B_k with blue, R_1, \ldots, R_k with red, and the k^2 intervals in W with white.

Together with $S := \{B_1, \ldots, B_k, R_1, \ldots, R_k\}$, each $\{J_1, \ldots, J_{n-2k}\} \in \binom{W}{n-2k}$ gives an n-vertex, three-colored interval graph. For a given $J = \{J_1, \ldots, J_{n-2k}\}$, let G_J denote the colored interval graph whose vertices correspond to n intervals in $S \cup J$, and let \mathcal{G} denote the set of all G_J.

Now let $G \in \mathcal{G}$. For a white vertex $w \in G$, the pair $(d_B(w), d_R(w))$, which represents the numbers of blue and red neighbors of w, uniquely determine the interval corresponding to w; this is the interval $[-d_B(w), d_R(w)]$. In other words, J can be recovered from G_J uniquely. Thus

$$|\mathcal{G}| = \binom{k^2}{n-2k}.$$ Since there are at most 3^n ways to color the vertices of an interval graph with blue, red, and white, we have

$$I_n \cdot 3^n \geq |\mathcal{G}| = \binom{k^2}{n-2k} \geq \left(\frac{k^2}{n-2k}\right)^{n-2k} \geq \left(\frac{k^2}{n}\right)^n$$

for any $k < n/2$. Setting $k = \lfloor n/ \log n \rfloor$ and taking the logarithms, we get

$$\log I_n \geq n \log (k^2/n) - O(n) = n \log n - 2n \log \log n - O(n).$$

Remark 2. Yang and Pippenger [5] posed the question whether

$$\log I_n = Cn \log n + O(n)$$

for some C or not. According to Theorem 1, this boils down to getting rid of the $2n \log \log n$ term in (2). Such a result would imply that the exponential generating function

$$J(x) = \sum_{n \geq 1} I_n \frac{x^n}{n!}$$

has a finite radius of convergence. (As noted in [5], the bound $I_n \leq (2n-1)!$ implies that the radius of convergence of $J(x)$ is at least 1/2.) Of course, a strong result would be finding I_n asymptotically.

References

1. K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci., 13 (1976) no. 3, 335–379.
2. M. Habib, R. McConnell, C. Paul, L. Viennot, Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition, and consecutive ones testing, Theor. Comput. Sci., 234 (2000), 59–84.
3. P. Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383–426.
4. T. A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, SIAM, 1999.
5. J. C. Yang and N. Pippenger, On the enumeration of interval graphs, Proc. Amer. Math. Soc. Ser. B 4 (2017), 1–3.
6. N. J. E. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.