The prevalence of exotoxins, adhesion, and biofilm-related genes in *Staphylococcus aureus* isolates from the main burn center of Tehran, Iran

Zahra Mir 1, Narges Nodeh Farahani 1, Sara Abbasion 1, Faranak Alinejad 2, Mahboubeh Sattarzadeh 2, Ramin Pouriran 3, Mostafa Dahrmardehi 2, Mehdi Mirzai 4, Seyed Sajjad Khoramrooz 5, Davood Darban-Sarokhalil 1*

1 Microbial Biotechnology Research Center, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2 Burn Research Center, Shahid Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
3 School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
5 Cellular and Molecular Research Center, Yasu University of Medical Sciences, Yasu, Iran

ARTICLE INFO

Article type: Original article

Article history:
- Received: Sep 16, 2018
- Accepted: Apr 7, 2019

Keywords: Adhesin and biofilm genes, *Staphylococcus aureus*, Burn, Iran, MRSA, Virulence factors

ABSTRACT

Objective(s): The present study investigated the prevalence of genes encoding for exotoxins, adhesion and biofilm factors in *Staphylococcus aureus* isolates obtained from samples in a referral burn hospital in Tehran, Iran.

Materials and Methods: *S. aureus* isolates obtained from patients, personnel and surfaces in the wards of a burn hospital were identified and confirmed by biochemical and molecular tests, respectively. The susceptibility of isolates was determined using the disk diffusion method. Virulence factors were detected by multiplex PCR.

Results: The frequency of *hla*, *hlb*, *hld*, *hlg*, *tst* and *pvl* genes was 92.8%, 34.7%, 89.8%, 11.9%, 10.7%, and 0.5% respectively. The results revealed that the *hla* gene had the highest frequency among isolates (94.4%) for methicillin-resistant *S. aureus* (MRSA) and 89.8% for methicillin-susceptible *S. aureus* (MSSA). The most prevalent adhesion and biofilm-related gene was *enso* (85.6%). The prevalence of the remaining genes was as follows: *fib* (71.8%), *clfB* (70%), *cna* (59.2%), *fnbB* (17.9%), *icaD* (72.4%), and *icaA* (85.6%). The incidence of *fib*, *hla*, *hlg*, and *tst* genes was significantly higher in MRSA isolates compared to the MSSA isolates. Moreover, the resistance rates for all antibiotics were higher in MRSA isolates except for nitrofurantoin and chloramphenicol antibiotics.

Conclusion: Data indicate the high prevalence rates of virulence factors among *S. aureus* isolates, especially MRSA strains in the burn hospital. This should be taken into account in the development of an effective infection control policy and continuous monitoring of drug resistance in hospitals.

Introduction

Damage to the skin barrier of patients with burn injuries increases the risk of microbial colonization, growth, and infection (1). Burn wound infections are a common dilemma in burn centers and are considered as a significant cause of mortality in burn patients. *Staphylococcus aureus* has been identified as a major etiological agent of infection in hospitalized burn patients (2). The following virulence factors have been identified for *S. aureus*: leukokin (Panton-Valentine leukokin; PVL), hemolysins (α, β, γ, δ), toxic shock syndrome toxin-1 (TSST-1), exfoliative toxins (ETs), and staphylococcal enterotoxin (SE) (3).

The virulence factors of *S. aureus* have various effects on human health. Leukotoxins and hemolysins can affect biological membrane leading to cell death (4). PVL can lead to skin and soft tissue infections, necrotizing pneumonia, and necrotizing fascitis (5). Bacterial attachment to host tissues is the primary stage of infection. At this stage, adherence of *S. aureus* is mediated by microbial surface component-recognizing adhesive matrix molecules (MSCRAMMs) (6) including fibronectin–binding proteins A and B (FnBa and FnBb), fibrinogen-binding proteins (Fib), collagen binding protein (cna), clumping factors A and B (clfA and clfB), and laminin binding protein (eno) (7). A clear *S. aureus* biofilm can be formed on damaged skin, mucosa, and artificial surfaces (8). Furthermore, products of the ica locus and polysaccharide intercellular adhesin (PIA) are critical for intercellular bacterial adherence and biofilm formation (9).

Studies show that the epidemiology and virulence factors of *S. aureus* strains in hospitals, particularly in burn centers, are a challenge for infection control programs (10). Environmental surfaces and healthcare personnel are the leading sources of the spread of pathogens causing nosocomial infections. Early identification of *S. aureus* isolates obtained from patients, personnel and surfaces in hospitals can help us determine important virulence factors of the isolates for
a more efficient infection control. The aim of this study was to investigate the prevalence of genes encoding for exotoxins, adhesion, and biofilm factors in *S. aureus* isolates in a burn hospital in Tehran, Iran.

Materials and Methods

Sample collection and identification of bacterial isolates

This cross-sectional study was conducted on samples obtained from Shahid Motahari Hospital (the main specialized burn center in Tehran, Iran) from December 2015 to December 2016. Samples were obtained from hospital personnel (both nostrils) and surfaces (beds, Ambu bags, door knobs, medical trolleys, chairs, suction, etc.). Samples were collected from personnel three times using wet sterile swabs and from surfaces monthly during the study period. All samples were cultured on brain-heart infusion media. Burn wound swabs were also taken as part of the routine screening for MRSA during the study period. Biochemical tests (mannitol salt agar media, susceptibility to bacitracin, catalase, DNase and tube coagulase tests, mannitol fermentation) were performed for bacterial identification.

Antimicrobial susceptibility tests

Antibiotic susceptibility was determined using the standardized Kirby-Bauer disc diffusion method on Mueller-Hinton agar. The antimicrobial agents tested included nitrofurantoin (300 µg), gentamicin (10 µg), mupirocin (20 µg), rifampicin (5 µg), norfloxacin (10 µg), tigecycline (15 µg), trimethoprim-sulfamethoxazole (25 µg), cefoxitin (30 µg), chloramphenicol (30 µg), erythromycin (15 µg), clindamycin (2 µg), tetracycline (30 µg), penicillin (10 units), linezolid (30 µg), synergic (quinupristin/dalfopristin; 15 µg), and imipenem (10 µg). Erythromycin-induced clindamycin resistance was determined using the disk approximation test. The isolate with cefoxitin resistance was MRSA. *S. aureus* ATCC 25923 was used as the control for sensitivity testing.

DNA extraction and molecular identification of MRSA isolates

DNA of *S. aureus* was extracted using the boiling method as described previously (11). For confirmation of *S. aureus* identification and determination of methicillin resistance, all isolates were subjected to the *S. aureus*-specific nuclease (nucA) and mecA-specific PCR (12, 13).

Detection of exotoxin- and biofilm-related genes

Multiplex PCR was used for the detection of virulence factors- encoding genes including *pvl*, *tst* (toxic shock syndrome toxin-1- encoding gene), and *hla*, *hib*, *hld* and *hlg* genes (hemolysin-encoding genes). The following MSCRAMMs were detected using specific primers: clumping factor B (*clfB*), fibrinectin-binding protein (*fnbB*), collagen-binding protein (*cna*), lamina-binding protein (*eno*), fibrinogen-binding protein (*fib*), and biofilm-encoding genes (*icaA* and *icaD*) (7,12-16). The PCR products (3 µl) were run on 1.5% agarose gel and stained with SYBR® Safe DNA stain. Electrophoresis of PCR products was carried out in 0.5×TBE buffer for 90 min at 110 mV. The standard PCR conditions and primers used for the multiplex PCR reactions in this study are listed in Table 1 and Table 2, respectively. The results of antibiotic susceptibility testing and the detection of virulence genes among *S. aureus* isolates were analyzed by Pearson Chi-Square and Fisher’s tests.

Results

Bacterial isolates

In the present experimental study, from a total of 167 *S. aureus* isolates, 108 (65%) were identified as MRSA (79/123 isolates obtained from patients, 22/30 from surfaces, 7/14 from personnel), while 59 (35%) were identified as MSSA (44/123 from patients, 8/30 from surfaces and 7/14 from personnel).

Antimicrobial susceptibility testing

The antimicrobial resistance rate in *S. aureus* isolates to penicillin was 78%, imipenem 69%, cefoxitin 65%, norfloxacin 61%, erythromycin 59%, gentamicin 58%, tigecycline 57%, mupirocin 57%, clindamycin 54%, rifampicin 44%, trimethoprim-sulfamethoxazole 28%, ticoplanin 9%, chloramphenicol 2% and nitrofurantoin 1%. The MRSA isolates revealed a significantly higher rate of antimicrobial resistance than the MSSA isolates (Table 3). The highest incidence of drug resistance in MRSA isolates was to penicillin (100%), imipenem (100%), cefoxitin (100%), norfloxacin (87%), and gentamicin (86%). All isolates were susceptible to quinupristin-dalfopristin, linezolid, and tigecycline (Table 3). Statistical analysis of antibiotic susceptibility patterns in MRSA and MSSA isolates are shown in Figure 1. Results show that resistance to all antibiotics (except for chloramphenicol and nitrofurantoin) was significantly higher in MRSA isolates compared to the MSSA isolates.

Exotoxins and adhesin genes

The frequency of *hla*, *hbl*, *hld*, *hlg*, *tst*, and *pvl* genes was 92.8%, 34.7%, 89.8%, 11.9%, 10.7%, and 0.5%, respectively. Results revealed that the *hla* gene was the most frequent gene among isolates (94.4% for MRSA and 89.8% for MSSA). The frequency of other toxin genes in the MRSA and MSSA isolates respectively was 91.6% and 86.4% for *hld*, 48.1 and 10.1% for *hib*, 6.4% and 18.6% for *tst* and 6.7% and 25.4% for *hlg*. The *pvl* gene was detected in 1.6% of MSSA isolates, but was not detected in MRSA.

Among the adhesion genes, the most prevalent was *eno* (85.6%). The incidence of other genes were as follows: *fib* (71.8%), *clfB* (70%), *cna* (59.2%) and *fnbB* (17.9%). The frequency of these genes in MRSA isolates was 87% for *eno*, 79.6% for *fib*, 67.5% for *clfB*, 61.1% for *can*, and 18.5% for *fnbB*. The *clfB* gene was detected in MSSA isolates at a significantly higher rate (7%) compared to the MRSA isolates; *icaA* and *icaD* were positive in 72.4% and 85.6% of isolates, respectively.

Figure 1. The results of statistical analysis on virulence genes among MRSA and MSSA isolates.

MRSA: methicillin resistant *Staphylococcus aureus*; MSSA: methicillin-susceptible *Staphylococcus aureus*
Table 1. Primers and product size of PCR for detection of the exotoxins and biofilm genes

Genes	Sequence (5'-3')	Product size (bp)	Reference
cna	F-GTCAAGCAGGTTATTAAAGACCAGAC	423	7
	R-AAATGAAATATTTGACTGTTGCCACTG		
eno	F-AGTCAGAGGCACTGACT	302	7
	R-CAAGGAGCTCTGATAGCTTCTCC		
fnbB	F-GTACACAGCTATGGAAGTCCTGATACT	524	7
	R-CAAGTTGAGAGTACATTGTTGC		
fib	F-CTACAACATCAATTCCGTCAAACAG	404	7
	R-GCTCTTGTAAAGACATTTTCTCCAC		
clfB	F-ACATCGATTATAGTGGGAGAC	205	7
	R-TTGCAGCTGTGTTGTTTGAC		
icaA	F-GTATCTCTAAACGAAAGGTAGAATAG	1315	14
	R-AAGGATATGACATGAAAGTGC		
icaD	F-AAACGGTAAGAGAGGTGGGCAGAT	381	14
	R-GCCATATTGACATGATAC		
hla	F-CTG ATT ACT ATC CAA GAA ATT GGA TGGG	209	15
	R-CTT TCC AGG CTA CTT TTT TAT CAGT		
hlb	F-GT TAC ATT TAA ACT ATG CACA ATG TGCA	309	15
	R-CTT GAT GAG TAG TTA CTT TCA GT		
hld	F-AAG AAT TTT ATC TTA ATT AAG GAA GGA GTG	111	15
	R-TTA GTG AAT TTG TCC ACT ATG TGC A		
hlg	F-GT CTA AYA GAG TGCA ATA ATG CAT TTA A	535	15
	R-CAC CAA ATG TAT AGC CTA AAG TG		
pvl	F-ATCATTAGGTAAGAATTCGCGACATGAT	433	15
	R-GCATTACGGTAGAGCCCAGAAAGG		
nuc	F-ACCCTTGTGCTCTCATC	326	16
	R-CTTCAGATTTTGGTAAGGCC		
tst	F-GTGGCAATATGATGGCAATTGTTT	664	12
	R-TATGACCTGAATCGACTGGTGTCTT		
mecA	F-CTGGAAGCATATACCAAGGTGATTAT	147	13
	R-ATGCCGCTATAGATTGAAGGAT		

Table 2. Cycles and condition of multiplex PCRs in this study

Genes	Cycles of amplification	Initial denaturation	Denaturation	Annealing	Extension	Final extension	Reference
nucA, mecA	30	5 min at 94	45 s at 94	45 s at 57	1 min at 72	5 min at 72	12, 13
cna, eno, fno, fnbB, clfB	25	5 min at 94	1 min at 94	1 min at 55	1 min at 72	10 min at 72	7
icaA, icaD	30	5 min at 94	45 s at 92	45 s at 49	1 min at 72	7 min at 72	14
hla, hld, hlg	30	5 min at 94	45 s at 94	45 s at 57	1 min at 72	5 min at 72	15
tst	35	5 min at 94	2 min at 94	2 min at 57	1 min at 72	7 min at 72	16
pvl	30	5 min at 95	40 s at 95	40 s at 54	45 s at 72	5 min at 72	15
Table 3. Antibiotics resistance in MRSA and MSSA strains in patients, surfaces and personnel in burn Shahid Motahari Hospital, Tehran, Iran

Antibiotics	Patients N (%)	Surfaces N (%)	Personnel N (%)
Penicillin	79 (100)	16 (36)	22 (100)
Gentamicin	67 (85)	2 (5)	21 (95)
Clindamycin	62 (78)	7 (16)	18 (82)
Erythromycin	60 (63)	9 (20)	18 (82)
Nitrofurantion	1 (1)	0	1 (13)
Rifampicin	40 (61)	3 (7)	17 (77)
Quinupristin	0	0	0
Linezolid	0	0	0
Tetracycline	61 (77)	11 (25)	18 (82)
Norfloxacin	68 (86)	7 (16)	20 (91)
Mupirocin	62 (78)	6 (14)	18 (82)
Trimethoprim	32 (41)	6 (14)	8 (36)
Imipenem	79 (100)	4 (9)	22 (100)
Cefoxitin	79 (100)	0	22 (100)
Tetracycline	61 (77)	11 (25)	18 (82)
Norfloxacin	60 (80)	6 (14)	20 (91)
Mupirocin	62 (78)	6 (14)	18 (82)
Trimethoprim	32 (41)	6 (14)	8 (36)
Imipenem	79 (100)	4 (9)	22 (100)
Cefoxitin	79 (100)	0	22 (100)
Tetracycline	61 (77)	11 (25)	18 (82)
Norfloxacin	60 (80)	6 (14)	20 (91)
Mupirocin	62 (78)	6 (14)	18 (82)
Trimethoprim	32 (41)	6 (14)	8 (36)
Imipenem	79 (100)	4 (9)	22 (100)
Cefoxitin	79 (100)	0	22 (100)
Tetracycline	61 (77)	11 (25)	18 (82)
Norfloxacin	60 (80)	6 (14)	20 (91)
Mupirocin	62 (78)	6 (14)	18 (82)
Trimethoprim	32 (41)	6 (14)	8 (36)
Imipenem	79 (100)	4 (9)	22 (100)
Cefoxitin	79 (100)	0	22 (100)
Tetracycline	61 (77)	11 (25)	18 (82)
Norfloxacin	60 (80)	6 (14)	20 (91)
Mupirocin	62 (78)	6 (14)	18 (82)
Trimethoprim	32 (41)	6 (14)	8 (36)
Imipenem	79 (100)	4 (9)	22 (100)
Cefoxitin	79 (100)	0	22 (100)

Table 4. Distribution of virulence genes in Staphylococcus aureus, MRSA and MSSA isolates of patients, surfaces and personnel in burn Shahid Motahari Hospital, Tehran, Iran

Virulence genes	Patients (123)	Surfaces (30)	Personnel (14)
MRSA (79)	N (%)	N (%)	N (%)
MSSA (44)	Adhesion		
MSSA (22)			
MSSA (7)			
MRSA (7)			
MSSA (7)	hla	74 (93.6)	21 (95.4)
MSSA (7)	hlb	34 (43)	14 (63.6)
MSSA (7)	hld	70 (88.6)	22 (100)
MSSA (7)	hlg	5 (6.3)	0
MSSA (7)	tst	5 (6.3)	11 (25)
MSSA (7)	pel	0	1 (2.2)
MSSA (7)	Biofilm	aoa	56 (70.8)
MSSA (7)		acr	64 (81)

MRSA: methicillin resistant Staphylococcus aureus; MSSA: methicillin-susceptible Staphylococcus aureus
The icaD gene was found at analagic rates in MRSA (85.1%) and MSSA (86.4%) isolates. The frequency of the icaA gene was slightly higher in MRSA (76.8%) than in MSSA (64.4%) isolates.

Overall, no significant difference in terms of virulence genes was found between the MRSA and MSSA isolates. The rates of genes detected from patients, surfaces and personnel are shown in Table 4. The coexistence of adhesion factors-related genes was detected in 8.9% of patient and 10% of surfaces isolates. Both the icaA and icaD genes were detected in 83.3%, 57.7%, and 57.1% of isolates from surfaces, patients and personnel, respectively. The antibiotic resistance profile and gene combination patterns in the MRSA isolates are shown in Table 5. None of the isolates showed the coexistence of toxin genes. Statistical analysis of the distribution of virulence genes among MRSA and MSSA isolates is shown in Figure 2. The results show that the incidence of fib, hlb, hlg, and tst genes was significantly higher in MRSA isolates compared to the MSSA isolates.

Discussion

In the present study, a high prevalence of MRSA (65%) was found in samples obtained from a burn hospital in Tehran, Iran (from patients, healthcare personnel and surfaces). These results are in accordance with the results of other studies from Iran and Bangladesh that reported a high frequency of MRSA in burn patients (17-24). In contrast, Darban-Sarokhalli et al. reported a lower frequency of MRSA in two Iranian hospitals (11). The results of the present study indicated a lower prevalence of MRSA compared to another study in Uganda in which 100% of the isolates obtained from burn units were found to be MRSA (21). These discrepancies could be attributed to different infection control criteria, antibiotic administration, study design and laboratory testing for determination of methicillin resistance.

In the present study, there was a significant increase in the rate of resistance to antibiotics such as penicillin, tetracycline, erythromycin, gentamycin, clindamycin, mupirocin, and rifampicin in MRSA isolates. Data suggest the possibility of multiple antimicrobial resistance in hospital strains. This could be due to the continuous and empirical usage of broad-spectrum antibiotics and the absence of a suitable antibiotic treatment policy (23, 25). Despite the use of vancomycin and linezolid for the treatment of life-threatening infections caused by resistant *S. aureus* strains, all isolates were susceptible to new drugs (quinupristin-dalfopristin, linezolid, and tigecycline). These results are in accordance with those of Bayat et al (26). In the current study, the overall rate of resistance to mupirocin in MRSA isolates was 81%. Mupirocin resistance rate in MRSA isolates obtained from personnel, patients, and surfaces was 100%, 78%, and 82%, respectively. Chen et al. (2) reported high incidence of mupirocin resistance in most MRSA isolates in burn centers. The widespread use of mupirocin for prolonged periods, particularly for decolonization of healthcare personnel, bedsores and other skin lesions could be associated with the development of mupirocin resistance (27, 28).

In addition to antibiotic resistance, another factor that prevents effective treatment of staphylococcal infections in burn patients is biofilm formation (18). The importance of biofilm formation is unique in the medical world. Notably, bacterial species present in biofilms display more resistance to antibiotics and disinfectants (29). In burn wounds, molecules such as collagen, fibronectin, fibrinogen and other factors are present at the wound surface. *S. aureus* encodes many proteins that specifically interact with human cellular matrix components enabling the microorganism to colonize burn wounds (19). In our study, the frequency of eno, ctfB, and cna genes was significantly higher than another study by Motallebi et al. (30).

Another virulent factor that contributes to biofilm formation is PIA which can be encoded by the ica ADBC operon. Of the ica genes, icaA and icaD play an eminent role in biofilm production by *S. aureus* (28). Results show that icaA and icaD genes were present in 76.8% and 85.1% of isolates, respectively. Table 5 shows that the most indispensable genes detected in the MRSA isolates were identified as icaA+icaD followed by icaA+icaD+hla+hld. The frequencies obtained in the current study were significantly higher than those obtained in other studies performed in Iran (28). Satorres et al. (31) reported the frequencies of icaA and icaD genes in *S. aureus* isolates obtained from the hospital staff that were lower than those reported in the current study. The diversity of the prevalence of biofilm-encoded genes could be related to the variety of bacterial strains at different geographical regions.

Hemolysins (alpha, beta, delta and gamma) and PVL are able to damage host cells by their cytolytic effects. TSST-1 has been associated with several acute or chronic human diseases, including TSST (32). In the present study, the frequency of the hla and hld genes were 92.8% and 89.8%, respectively. This is in accordance with the results of Kateete et al. (21) in Uganda who...
reported a frequency of 100% for these genes. It was revealed that the frequency of the coexistence of hla+hld genes in *S. aureus* isolates obtained from patients, surfaces and personnel was 84.5%, 90% and 92.8%, respectively. High rates (93.6% and 88.6%) were recorded for patient-derived MRSA isolates harboring hla and hld genes, respectively. A similar rate for hla and hld were discovered in burn patients by Rodrigues et al. (10). While hla and hld genes were found in all surface-derived MSSA isolates by Gharsa et al. (33), in the current work, these genes were detected in 87.5% and 75% of surface-derived MSSA isolates, respectively.

In the current study, the hlb and hlg genes were detected in 48.1% and 4.6% of the isolates, respectively. The rate of hlb (43%) in patient-derived MRSA isolates was similar to the study conducted by Karmakar et al. (34); however, this rate was lower than that found by Liu et al (35). The frequency of hlb gene in MRSA isolate obtained from personnel and surfaces (57.1% and 63.3%, respectively) was higher than those isolates obtained from patients. The hlg gene was detected in 6.3% of MRSA isolates. Diversity in the prevalence of hemolysin-, adhesion- and biofilm-encoding genes can be associated with the diversity of bacterial strains in different geographical areas.

A key virulence factor in *S. aureus* infections, especially in skin and soft-tissue infections is the PVL. This toxin has been recognized as a virulence factor associated with tissue necrosis (36). Data regarding the danger of infections caused by PVL-producing MRSA strains have raised public health concerns (5). In the current study, no pvl positive MRSA isolate was detected. This could be attributed to the fact that pvl is more related to community acquired MRSA strains. These findings were similar to the findings of Mkrtchyan et al (37). In contrast, a study from Brazil found that 14.6% of MRSA isolates had the pvl gene (10). A study conducted in England reported that 2% of clinical *S. aureus* isolates (MRSA and MSSA) harbored the pvl gene (5). In the current study, only one patient-derived MSSA isolate (2.2%) was positive for pvl gene. Murray et al. (38) reported that pvl was detected in one MRSA isolate obtained from burn patients.

The frequency of the tst gene reported in Germany (39), Iran(40) and Korea(41) was 14%, 26.41% and 72.2%, respectively. In the current study, the frequency of the tst gene was 10.7%. Kateete et al. (21) studied patients, healthcare workers and surfaces in the burn units in a hospital. The rate of hla, hld, and tst in their study were analogous with those from the present study, but hlg and pvl genes were detected at higher frequencies than in the current study. Gharsa et al. (33) detected MSSA isolates on hospital surfaces and found tst in 60% of isolates; however, tst was not detected in MSSA isolates from the surfaces in the present study. The rate of tst in patient-derived MSSA isolates (25%) was higher than in patient-derived MRSA isolates (6.3%), which is similar to the results of a study by Liu et al (35). De Boeck et al. (42) found the prevalence of tst and pvl genes in the isolates obtained from healthcare workers to be 17.5% and 28.5%, respectively. In the present study, these genes were not detected in personnel. In fact, the difference in incidence could be related to the variation in the geographical area and the origin of the strains.

Hospital environments play an important role in the transmission of MRSA and the development of infection in patients (10). In the current study, the results of antibiotic susceptibility patterns and virulence factors, especially pvl, indicate that a potential outbreak in hospitals could be associated with the personnel or the surfaces. Colonized healthcare personnel and environmental sources could serve as a reservoir and disseminator of MRSA in hospitals. Therefore, using proper disinfectant and regular screening for MRSA among healthcare workers and patients, in addition to improved precautions for personnel are essential for infection control (17, 43). Moreover, methods in molecular epidemiology are compulsory for the continuous surveillance and rapid identification of prevalent strains of *S. aureus* and MRSA clones. These methods have been shown to contribute to the control of the spread of bacterial infections in healthcare settings (11, 20, 44).

Conclusion

It was determined that the high prevalence of virulence factors and the elevated rate of antibiotic resistance among isolates obtained from patients, personnel and surfaces of burn hospital necessitate proper implementation of an effective infection control policy and continuous monitoring for drug resistance.

Conflicts of interest

All contributing authors declare no conflicts of interest.

Acknowledgment

The results described in this paper were part of student thesis and this study has been supported by Deputy of Research and Technology, Iran University of Medical Sciences. Grant No:26564-30-04-94.

References

1. Boers SA, van Ess I, Euser SM, Jansen R, Tempelman FR, Diederen BM. An outbreak of a multiresistant methicillin-susceptible *Staphylococcus aureus* (MR-MSSA) strain in a burn centre: the importance of routine molecular typing. Burns: Burns 2011;37:808-813.
2. Chen X, Yang HH, Huangfu YC, Wang WK, Liu Y, Ni YX, et al. Molecular epidemiologic analysis of *Staphylococcus aureus* isolated from four burn centers. Burns : Burns 2012;38:738-742.
3. Sina H, Ahoyo TA, Moussaoui W, Keller D, Bankole HS, Barogui Y, et al. Variability of antibiotic susceptibility and toxin production of *Staphylococcus aureus* strains isolated from skin, soft tissue, and bone related infections. BMC Microbiol 2013;13:188-196.
4. Otto M. *Staphylococcus aureus* toxins. Curr Opin Microbiol 2014;17:32-37.
5. Teare L, Shelley OP, Millership S, Kearns A. Outbreak of Panton-Valentine leucocidin-positive meticillin-resistant *Staphylococcus aureus* in a regional burns unit. J Hosp Infect 2010;76:220-224.
6. Foster TJ, Hook M. Surface protein adhesins of *Staphylococcus aureus*. Trends Microbiol 1998;6:484-488.
7. Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G. Use of multiplex PCR to identify *Staphylococcus aureus* adhesins
involved in human hematogenous infections. J Clin Microbiol 2003;41:4465-4467.
8. den Reijer PM, Haisma EM, Lemmens-den Toom NA, Willemsje M, Konig R, Demmers JA, et al. Detection of allopurinol and other virulence factors in biofilms of Staphylococcus aureus on polystyrene and a human epidermal model. PLoS One 2016;11:e0145722.
9. Archer NK, Mazaalij MJ, Costerton JW, Leid JG, Powers ME, Shirliff ME. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2011;2:445-459.
10. Rodrigues MVP, Fortaleza CMCB, Riboli DFM, Rocha RS, Rocha C, de Souza MdLR. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in a burn unit from Brazil. Burns 2013;39:1242-1249.
11. Darban-Sarokhalil D, Khoramrooz SS, Marashifard M, Hosseini SAAM, Parhizgari N, Yazdanpanah M, et al. Molecular characterization of Staphylococcus aureus isolates from southwest of Iran using spa and SCCmec typing methods. Microb Pathog 2016;98:88-92.
12. Bar-Gal GK, Blum SE, Hadas L, Ehrlich R, Monecke S, Leitner G. Host-specificity of Staphylococcus aureus causing invasive pyogenic infections in dairy animals assessed by genotyping and virulence genes. Vet Microbiol 2015;176:143-154.
13. Japoni A, Jamalidoust M, Farshad S, Ziyaeyan M, Alborzi A, Japoni S, et al. Characterization of SCCmec types and antibacterial susceptibility patterns of methicillin-resistant Staphylococcus aureus in Southern Iran. Jpn J Infect Dis 2011;64:28-33.
14. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 2003;92:179-185.
15. Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey E, et al. Relationship between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 2002;70:631-641.
16. Mehratra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J Clin Microbiol 2000;38:1032-1035.
17. Abbasi-Montazeri E, Khosravi AD, Feizabadi MM, Goodarzi T, Satorres SE, Alcaraz LE. Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Cent Eur J Public Health 2007;15:87-90.
18. Haveri M, Hovinen M, Rosdóf A, Pyorala S. Molecular types and genetic profiles of Staphylococcus aureus strains isolated from bovine intramammary infections and extramammary sites. J Clin Microbiol 2008;46:3728-3735.
19. Gharsa H, Dziri R, Klibi N, Chairat S, Lozano C, Torres C, Patil JB, Gorwitz RJ, Jernigan JA. Mupirocin resistance. Clin Infect Dis. 2009;49:935-941.
20. Khoramrooz SS, Mansouri F, Marashifard M, Hosseini SAAM, Chenarestane-Olia FA, Ganaveheibi B, et al. Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Microb Pathog 2016;97:45-51.
21. Motallebi M, Jabalamel M, Asadollahi K, Taherikalani M, Emaneimi M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog 2016;97:34-37.
22. Hetem DJ, Bonten MJ. Clinical relevance of mupirocin resistance. J Hosp Infect 2013;85:249-256.
23. Khoramrooz SS, Dolatabad SA, Dolatabad FM, Marashifard M, Mirzaei M, Dabinii H, et al. Detection of tetracycline resistance genes, aminoglycoside modifying enzymes, and coagulase gene typing of clinical isolates of Staphylococcus aureus in the Southwest of Iran. Iran J Basic Med Sci 2017;20:912-919.
24. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417-433.
25. Bayat B, Zade MH, Mansouri S, Kalantar E, Kabir K, Zahmatakesh E, et al. High frequency of methicillin-resistant Staphylococcus aureus (MRSA) with SCCmec type III and spa type t030 in Karaf’s teaching hospitals, Iran. Acta Microbiol Immunol Hung 2017;64:331-341.
26. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010;74:417-433.
27. Bayat B, Zade MH, Mansouri S, Kalantar E, Kabir K, Zahmatakesh E, et al. High frequency of methicillin-resistant Staphylococcus aureus (MRSA) with SCCmec type III and spa type t030 in Karaf’s teaching hospitals, Iran. Acta Microbiol Immunol Hung 2017;64:331-341.
recovered at a burn center. Burns 2009;35:1112-1127.

39. Becker K, Roth R, Peters G. Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol 1998;36:2548-2553.

40. Norouzi J, Goudarzi G, Pakzad P, Razavipour R. The isolation and detection of Staphylococcus aureus enterotoxins AE and TSST-1 genes from different sources by PCR method. Qom Univ Med Sci J 2012;6:78-85.

41. Peck KR, Baek JY, Song JH, Ko KS. Comparison of genotypes and enterotoxin genes between Staphylococcus aureus isolates from blood and nasal colonizers in a Korean hospital. J Korean Med Sci 2009;24:585-591.

42. De Boeck H, Vandendriessche S, Hallin M, Batoko B, Alworonga JP, Mapendo B, et al. Staphylococcus aureus nasal carriage among healthcare workers in Kisangani, the Democratic Republic of the Congo. Eur J Clin Microbiol Infect Dis 2015;34:1567-1572.

43. Jaspers M, Breederveld R, Tuinebreijer W, Diederen B. The evaluation of nasal mupirocin to prevent Staphylococcus aureus burn wound colonization in routine clinical practice. Burns 2014;40:1570-1574.

44. Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, Van Bellum A, Asadollahi K, et al. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: A review. Front Microbiol 2018;9:163-178.