Research on Performance of Different Hall-Effect Switch on Smart Meter

Xianguang Dong¹, Yanjie Dai¹, Zhi Zhang¹, Zhiru Chen¹, Qing Wang¹, Pingxin Wang¹, Chao Yu², Xue Zheng², Tingting Wang², Ziqian Xu²

¹State Grid ShanDong electric power research institute, Jinan, Shandong Province, 250002, China
²Department, University, City, Province, ZIP code, Country

Email:1217468383@qq.com

Abstract. With the deepening application of smart meter and improvement of electricity information acquisition system, more and more problem recorded by smart meter being discovered in scene, such as constant magnetic field events, communication failure event. Some smart meter recorded tens of thousands constant magnetic field events and the reason is varied, however, the ultimate cause of the event is the hall-effect switch on smart meter. This paper just analyzed the event of constant magnetic that detected frequently by the electricity information acquisition system, and the result showed that the hall-effect switch from different manufacturers has different performance.

1. Introduction
With the popularization of smart meter and function improvement of electricity information acquisition system, the power grid is more and more intelligent. However, many problems recorded by smart meter showed up as well, such as constant magnetic field events, communication failure event and so on. These events recorded by smart meter is used for the electricity safety and electricity theft prevention, but some events are abnormal that recorded by smart meter acquired from the electricity information acquisition system. For example, the constant magnetic field event was recorded thousands of times in some smart meter, it influenced seriously the normal operation of smart meter and the basic function of electricity stealing prevention. It can know the main reason is the interference of large current nearby that created alternating magnetic field according to scene analysis, and the different hall-effect switch in smart meter that record constant magnetic field event has different performance. This paper just does the research on performance of different hall-effect switch on smart meter.

2. Principle of Hall-Effect Switch
The hall-effect switch on smart meter mainly includes AH9247, APS13221 and SGC610xC that from different manufactures, the different hall-effect switch has different working principle and different performance.

2.1 The hall-effect switch of AH9247
The AH9247 is a high sensitivity Hall-effect switch with internal pull-up resistor on the output, designed for battery-operation, handheld equipments. The functional block diagram is as figure 1. A
chopper stabilized amplifier improves stability of magnetic switch points. A sleep-awake logic controls the IC in sleep time or awake time. This function will reduce the average operating current of the IC. During the awake time, the output is changed with the magnetic flux density. During the sleep time, the output is latched in its previous state and the current consumption will reduce to some µA. The output can be switched on with either north or south pole of sufficient strength. If the magnetic flux density perpendicular to the part marking surface is larger than operating point (BOP), the output will be turned on; if it is less than releasing point (BRP), the output will be turned off.

2.2 The hall-effect switch of SGC610xC
The 3D magnetic switch chip SGC610xC is an omni-directional magnetic field detection chip developed to meet the requirements of smart meter anti-theft application in power grid. The functional block diagram is as figure 2. SGC610xC integrates anisotropic magneto resistive (AMR), comparison operational amplifier circuit, temperature compensation circuit and so on, which fully meets the requirements of omni-directional detection, high sensitivity, low power consumption and wide working range of smart meter anti-theft application.

2.3 The hall-effect switch of APS13221
The APS13221 integrated circuit is an ultrasensitive Hall effect switch with 3D omnipolar magnetic actuation. The functional block diagram is as figure 3.

The single silicon chip includes: three Hall plates, multiplexer, small signal amplifier, chopper stabilization, Schmitt trigger, and an NMOS output transistor. The device output turns on when a magnetic field of sufficient strength is applied to the sensor in any orientation. Removal of the magnetic field will turn the output off. The functional block diagram is such as figure 2. The APS13221 is offered with a combined X+Y+Z output. The low operating supply voltage, 2.5 to 5.5 V, and unique clocking algorithm assist in reducing the average power consumption, making it ideal for battery operation (e.g., the power consumption is less than 25 uW with a 2.5 V supply).
3. Experiment and Analysis

As the hall-effect switch of AH9247 is uniaxial to the constant magnetic field, only if the magnetic flux density perpendicular to the part marking surface is larger than operating point the output can be turned on, and the main hall-effect switch on smart meter is the 3D switch of SGC610xC and APS13221, so this paper just do research on the 3D hall-effect switch of SGC610xC and APS13221.

3.1 Experiment

This paper build test environment firstly, it mainly includes a cuboid magnet of 480mT magnetic field intensity, a digital gauss meter, a infrared imager, a workbench of smart meter and some smart meter from different manufactures that fitted with 3D hall-effect switch of SGC610xC and APS13221. Then let the cuboid magnet perpendicular to the smart meter and make sure if the smart meter recorded the constant magnetic field events through workbench, it can control magnetic field strength through the
distance of cuboid magnet to smart meter. To compare the performance of different hall-effect switch particularly and clarify the reason of abnormal record of constant magnetic field events in some smart meter, this paper divided the three phase smart meter into 38 regions, and then testing the maximum field strength of the meter recording constant field event in every region, the detail of the regions is such as figure 4.

To verify the reliability of hall-effect switch, this paper put the 480mT cuboid magnet to the board of the smart meter directly for one hour, and then observe the variation temperature of the board after putting the cuboid magnet through the infrared imager, the temperature distribution of the board before putting cuboid magnet is such as figure 5.

3.2 Results and analysis
The results of critical magnetic field strength of every area that can cause the record of constant field event is such as table 1. It can know that the hall-effect switch of SGC610xC and APS13221 both can cause constant field event when the magnetic field intensity is large. However, some area of the APS13221 can cause constant field event when the magnetic field strength is 14.1mT but the SGC610xC can not. As a whole, the critical magnetic field strength of the APS13221 is less than SGC610xC, so the hall-effect switch of APS13221 is more sensitive than SGC610xC.

Area	Hall-effect Switch	Critical Magnetic Field Strength	Area	Hall-effect Switch	Critical Magnetic Field Strength
area 1	SGC610xC	19.5mT	area 20	APS13221	37.1mT
area 2	SGC610xC	21.5mT	area 21	APS13221	63.7mT
area 3	APS13221	14.1mT	area 22	SGC610xC	25.2mT
area 4	APS13221	21.1mT	area 23	APS13221	37.1mT
area 5	SGC610xC	35.2mT	area 24	APS13221	14.1mT
area 6	APS13221	31.1mT	area 25	APS13221	37.1mT
area 7	SGC610xC	34.7mT	area 26	APS13221	31.1mT
area 8	APS13221	30.5mT	area 27	SGC610xC	14.1mT
area 9	SGC610xC	51.5mT	area 28	APS13221	46.7mT
Table

Area	Hall-effect Switch	Critical Magnetic Field Strength	Area	Hall-effect Switch	Critical Magnetic Field Strength
area 10	APS13221	19.5mT	area 29	SGC610xC	20.2mT
area 11	SGC610xC	24.8mT	area 30	APS13221	46.7mT
area 12	APS13221	14.1mT	area 31	SGC610xC	20.2mT
area 13	SGC610xC	22.1mT	area 32	APS13221	37.1mT
area 14	APS13221	21.1mT	area 33	APS13221	44.8mT
area 15	SGC610xC	30.5mT	area 34	APS13221	29.6mT
area 16	APS13221	30.5mT	area 35	APS13221	37.1mT
area 17	SGC610xC	44.8mT	area 36	APS13221	14.1mT
area 18	APS13221	36.7mT	area 37	APS13221	36.7mT
area 19	SGC610xC	14.1mT	area 38	APS13221	36.7mT

![Fig 6 The temperature distribution of the board after putting cuboid magnet](image)

The result of reliability of hall-effect switch is such as figure 6, it can know that the location of maximum temperature after putting cuboid magnet for an hour is changing from the power supply to the hall-effect switch and the smart meter can work normally, so the reliability of APS13221 and SGC610xC is enough.

4. Conclusions

This paper does the research on performance of hall-effect switch of SGC610xC and APS13221, the results show that the two switches both have enough reliability to ensure the smart meter normal working in in extreme cases, and the hall-effect switch of APS13221 is more sensitive than the SGC610xC. The result can explain the reason of the abnormal thousands records of constant field event in some smart meter, that’s because the large current nearby the smart meter produced magnetic field whose strength is larger than the critical magnetic field strength, so the smart meter records constant field event incessantly. As well as, the shortcoming of hall-effect switch urge us to research new technology of hall-effect switch to be applied to the smart meter.
Acknowledgments
This work was supported by the Science and Technology Project of State Grid Corporation under Grant No. 520626180046 and the Science and Technology Project of State Grid Shandong Electric Power Company under Grant No. 520626190043.

References
[1] https://www.alldatasheet.com/datasheet-pdf/pdf/785916/DIODES/AH9247.html
[2] https://www.allegromicro.com/
[3] http://www.epri.sgcc.com.cn/
[4] Lejie Liu, Qimeng Shi, Bingjun Qu. A chip magnetic detection sensor: CN.
[5] You Cui, Min He. The influence of constant magnetic field on electronic watt hour meter[J]. Zhejiang electric power, 2009(01):76-78.
[6] Hao Xiong, Xinhua Zhou, Zhijun Deng, et al. The influence of alternating magnetic field on the measurement of electronic watt hour meter[J]. Electrical application, 2015, v.34(S2):134-137+142.
[7] Litao Tang, Gang Li, Zhou Yang, et al. The development and application of the evaluation system of electronic energy meter against constant magnetic field interference[J]. Guangxi electric power, 2016(6).
[8] Zhiquiang Han, Leibing Shi, Bihong Zhou. Research on the test method of anti electromagnetic interference for the verification device of electric energy meter[J]. Electrical application, 2014(17):42-45.
[9] Tao Ding, Anjun Wang, Naigui Yang, et al. Research on Anti-interference of electric energy meter verification device used in EMC test[J]. Metrology technology, 2016(11):47-50.
[10] Bihong Zhou, Leibing Shi, Zhiqiang Han, et al. The influence of power frequency external magnetic field on electronic watt hour meter[J]. Shanghai measurement test, 2011(6):50-53.