Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure

Zhengwen Cao, Yun Xu, Pengbo Lyu, Michael Dierks, Ángel Morales-García, Wolfgang Schrader, Petr Nachtigall,* and Ferdi Schüth*© 2020 The Authors. ChemSusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Table of Content

Figure S1. Phenol hydrotreatment at 6 bar and 15 bar.
Figure S2. The slab model view along x (a), y (b) and z (c) axes.
Figure S3. First elementary step of phenol hydrogenation on the Ni2P surface.
Figure S4. The critical reaction steps of phenol hydrogenation for low and high hydrogen pressures.
Figure S5. The distribution of the other products for phenol HDO at different H2 pressures
Figure S6. Hydrogen distribution during phenol hydrotreatment at 6 bar and 15 bar partial hydrogen pressure.
Figure S7. The rate-determining activation barriers of the individual reaction steps calculated for low and high surface hydrogen coverages, respectively.
Figure S8. Proposed phenol hydrotreating reaction pathways by deuterium at 573K under low and high pressure.
Figure S9. GC-MS chromatography of the final products from hydrotreatment at different pressures.
Figure S10. Relative intensity distributions of various classes assigned in the positive-ion APCI Orbitrap mass spectra of lignin, lignin pyrolysis products and products of hydrogenation at different pressures.

Table S1. Selectivity of the products and conversion of HDO of phenol over Ni2P/SiO2 at different H2 pressure.
Table S2. Selectivity of the products and conversion of HDO of phenol over Ni2P/SiO2 at different D2 Pressure.
Table S3. Deuteration degree of D-benzene and D-cyclohexane resulted from the reaction Ni2P/SiO2 at different D2 pressure.
Table S4. Activation barriers of elementary steps calculated for lower and higher surface hydrogen coverages.
Table S5: Selectivity of the products and conversion of different model compounds hydrotreatment.
Table S6: Hydrotreating of phenolic compounds at different hydrogen pressures reported in literatures.

Appendix A: Pyrolysis Organosolv Lignin
Appendix B: Products - 5 bar Hyrogen
Appendix C: Products - 8 bar Hyrogen
Appendix D: Products - 20 bar Hyrogen
Materials and Experimental Methods

Materials

Phenol (Aldrich, 99.5%), Hexadecane (Aldrich, 99%), Penta (Aldrich, 95%), Ethyl acetate (Aldrich, 99.7%), Dichloromethane (Aldrich, 99%), Ni/SiO$_2$ (Strem, 64%), trioctylphosphine (Aldrich, 97%), Dioctylehter (Aldrich, 99%), were purchased and used as received.

Catalyst preparation

The commercial Ni/SiO$_2$ catalyst was converted into Ni$_2$P/SiO$_2$ using trioctylphosphine (TOP). The synthesis was performed under absolute air-free conditions using standard schlenk line techniques. In a standard procedure, 0.2 g of the commercial Ni/SiO$_2$ was placed in a schlenk tube together with 3 ml dioctylether (DOE) and 6 ml trioctylphosphine (equal to a Ni:P ratio of 0.1) under argon atmosphere. After careful oxygen removal, the dispersion was heated to 300 °C under argon atmosphere and kept at this temperature for 6 h. After the dispersion was cooled down to room temperature, the catalyst was washed three times with 20 ml isopropanol. The separation was done by centrifugation. Finally, the catalyst was dried at 60 °C under vacuum overnight. The final catalyst has a BET surface of 10 m2/g, the Ni weight and P weight contents are 46% and 17 %, respectively.

HDO of model compounds

For each catalytic reaction on a model compound, the corresponding quantity of substrate (3 mmol), hexadecane (internal standard GC, 20 mg) and pentane (2 mL) were placed into the reactor vessel (a quartz inlet with 33 mL volume in the autoclave). The catalytic conversion was carried out under different pressure (measured at r.t.) of H$_2$ as indicated and at temperatures of 573 K, for the specified times. After the reaction, the reactor was placed in an ice-bath. The resulting product liquid was dissolved in dichloromethane to obtain a homogenous solution. MgSO$_4$ was used to remove water from the product mixture before analysis by GC. All samples were analyzed using a (DB-624 30 m, 0.32mm ID, d$_f$/0.25 µm) column with an Agilent 6850 gas chromatograph. The temperature program began at 35 °C for 2 min, then the temperature was increased at a rate of 10 °C min$^{-1}$ to 90 °C, kept there for 1 min, then increased to 150 °C at 10 °C min$^{-1}$, and afterward to 250 °C at 50 °C min$^{-1}$, followed by an isothermal step at a temperature of 250 °C for 1 min. The conversion, selectivity and the mass balance were determined according to the following equations:
Conversion = \(\frac{n_{t=0}^{\text{substrate}} - n_{t=0}^{t_i}}{n_{t=0}^{\text{substrate}}} \times 100 \% \)

Selectivity = \(\frac{n_{t=0}^{t_i}}{n_{t=0}^{\text{substrate}} - n_{t=0}^{t_i}} \times 100 \% \)

Ring balance = \(\frac{\sum n_{t=0}^{t_i}}{n_{t=0}^{\text{substrate}}} \times 100 \% \)

The hydrogen, hydrogen in water and hydrogen in the product were calculated based on the product distribution. The deuteriation of the phenol was performed in the same way. The deuteriation number in each product was identified by mass spectrometry, and the average D-numbers were calculated, as shown in Table S3.

Thermal pyrolysis of organosolv Lignin

The preparation of the organosolv lignin is described elsewhere in detail. (1) Briefly, 10 g of organosolv lignin was placed in the oven under argon. Then it was heated to 600 °C within 10 min, and the generated compounds were swept with argon and condensed by a mixture of acetone and dry ice. Afterward, the product was obtained by washing the pipe with methanol, and the methanol was removed by evaporation. The yield of the oil product is around 50 wt.%.

HDO of the mixture obtained by the pyrolysis of organosolv lignin

For hydrodeoxygenation (HDO) reactions of the pyrolysis oil (200 mg), catalyst (100 mg), and pentane (2 mL) were placed into stainless steel, home-made pressure reactor vessel (a quartz inlet with 33 mL volume in the autoclave). The experiments were performed under 5/8/20 bar \(\text{H}_2 \) pressure, measured at r.t. before reaction. The reaction was conducted at 473 K for 2 h, then at 573 (613) K, for 18 h. After the reaction, the reactor was quenched by immersion in an ice-bath. \(\text{MgSO}_4 \) was added to adsorb the water in the product, and the solid was removed by filter paper. By using rotary evaporation at 313 K and 50 mbar, the solvent was removed; the resultant liquid product was obtained and weighed, and roughly 70 wt.% yield is obtained. Then the product was treated with dichloromethane (2 mL), to obtain a homogeneous solution before GCMS. The quantitative and qualitative analysis of final products are listed in appendix B-D. Since most product compounds are hydrocarbons, their response factors can be regarded as the same. In this manner, the area shown in the appendix is equal to the concentration of different compounds.
Sample analysis with Orbitrap Elite

Upgraded pyrolysis oil was diluted with dichloromethane to a final concentration of 250 μg ml\(^{-1}\) and used without further treatment. Mass Spectra was recorded on a research-type Orbitrap Elite mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) equipped with commercially available atmospheric pressure chemical ionization (APCI). The spectra were collected in positive mode. For the measurements, each sample was infused with a flow rate of 20 μl min\(^{-1}\), evaporated at 350 °C with the sheath and auxiliary gas flow of 20 and 10 (arbitrary units), respectively. APCI current was set as 5 kV. Mass spectra were collected using full scan mode with mass window 100 \(\leq m/z \leq 1000\) and resolving power \(R= 480,000\) (full-width half-maximum at \(m/z \approx 400\)). In each case, a total of 200 scans was recorded in reduced mode and summed up before data analysis. Peak assignment was performed using Composer64 (v 1.5.0, Sierra Analytics, Modesto, CA, USA) after internal recalibration according to the following constraints: \(C_{0-200}H_{0-1000}N_{0-2}O_{0-30}S_{0-2}, 0 \leq DBE \leq 60\) and \(\pm 2.0\ ppm\).

Computational details

The DFT calculations were performed using the projected augmented wave (PAW) formalism and Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional as implemented in the Vienna ab initio simulation package (VASP). (2-5) The transition states were localized using the climbing image nudged elastic band method (CI-NEB) (6) and dimer method (7) as implemented in the Transition State Tools for VASP (VTST) (8) and verified with frequency calculations.

Model

The Ni\(_2\)P-0001-A surface determined previously as the thermodynamically most stable surface (9) was modeled with the 3x2 supercell to minimize the lateral interaction between periodic images (Figure S2). Slab model consisting of 5 atomic layers and a vacuum region of 13 Å was used together with the 3x2x1 \(k\)-points grid based on Monkhorst-Pack scheme. (10) The positions of atoms in the bottom layer were fixed in all calculations. The lattice constants were optimized to \(a=17.71\) Å, \(b=11.80\) Å, \(c=18.85\) Å, \(a=\beta=90^\circ\) and \(\gamma=120^\circ\) and kept unchanged for all calculations. The most stable adsorption complex of phenol is on the nickel trimer (Ni\(_3\)) where phenol lies parallel to the surface (Figure S2 d); this complex is characterized by the adsorption energy \(-0.83\) eV. Hydrogen atoms could adsorb on the nickel trimers next to phenol: dissociative adsorption of \(\frac{1}{2} \text{H}_2\) is exothermic \((-0.64\) eV) if there is just one H atom per Ni\(_3\) (H in the hollow
site, Figure S2 d) while the dissociative adsorption of the second H atom on Ni$_3$ is almost energy neutral (on the bridge sites, Figure S2e).

Figure S1. a) Gibbs free energy (ΔG$_r$) of the phenol hydrotreatment; b) selectivity and conversion of PhOH by hydrotreatment at different H$_2$ pressures; (Reaction condition: 3mmol phenol, 2 mL Pentane and 20 mg hexadecane at different hydrogen pressures, t = 180 min); c) and d) distribution of the main products from the phenol hydrotreatment at different H$_2$ pressures (6 and 15, respectively) as a function of time; (Reaction condition: 3mmol phenol, 2mL Pentane and 20 mg hexadecane at different hydrogen pressures).
Results

Each reaction shown in Figure 2a (main text) consists of two elementary steps, each corresponding to the transfer of one H atom between the surface and the reactant. Calculations were performed under the assumption that hydrogen on the surface is at the equilibrium with the gas phase H\textsubscript{2}. At lower p_{H_2} hydrogen adsorbs at hollow sites while at higher p_{H_2} hydrogen adsorbs at bridge sites. It is assumed that after each elementary step, the hydrogen on the surface is equilibrated with the gas phase. The computational strategy is shown for the first elementary step of phenol hydrogenation in Figure S3. At lower p_{H_2} hydrogen occupies only the hollow sites (denoted 1 H* and corresponding reaction path shown in red in Figure S3). The H atom at the hollow site interacts with the adjacent phenol, corresponding transition state (TS) is localized, and the geometry of the resulting reaction intermediate (denoted FS) is found. At this point, there is no hydrogen on the Ni\textsubscript{3} adjacent to the adsorbed intermediate. Surface equilibration is
assumed, and an H-atom is added to the hollow site before the next reaction step takes place. The same strategy was adopted for the higher p_{H_2} modeled with two H atoms at the bridge sites of Ni$_3$ (denoted 2 H* and depicted in blue in Figure S3). At the end of the first elementary step, there is just one hydrogen left on Ni$_3$ (at the hollow site), and surface equilibration with the gaseous H$_2$ is assumed before the next reaction step is investigated. A similar strategy is adopted for the dehydrogenation steps: upon the transfer of H from any intermediate to the surface, the surface equilibration is assumed (hydrogen is taken away from the surface to the gas phase). The activation barriers calculated as described above are summarized in Table S4.

Figure S3. First elementary step of phenol hydrogenation on the Ni$_2$P surface (energies are in eV). For lower surface hydrogen coverage (1 H*) and higher surface hydrogen coverage (2 H*) the barriers and reaction energies are depicted in red and blue, respectively. Energy zero is defined as bare surface and molecules in the gas phase. See Figure S2 for the color scheme. The results for the second reaction step (from B to C or E) are depicted in Figure S4.
Figure S4. The critical reaction steps $B \rightarrow C$ (hydrogenation of aromatic ring) and $B \rightarrow E$ (deoxygenation) for low and high hydrogen pressures. For low hydrogen pressure (part a, one H atom on the hollow site of the Ni$_3$ trimer), barriers for deoxygenation step $B \rightarrow E$ are lower than those for hydrogenation of aromatic ring $B \rightarrow C$. For high hydrogen pressure (part b, two H atoms on bridge sites of the Ni$_3$ trimer), the barriers for deoxygenation step are higher than those for
aromatic ring hydrogenation. Energy zero is defined as the bare surface and molecules in the gas phase (see caption of Figure S2 for color scheme).

Figure S5. The distribution of the other products for phenol HDO at different H$_2$ pressures: 6 bar (left) and 15 bar (right) as a function of time.

Figure S6. a) and b) hydrogen distribution during phenol hydrotreatment at 6 bar and 15 bar partial hydrogen pressure.
Figure S7. The rate-determining activation barriers of the individual reaction steps calculated for low (a) and high (b) surface hydrogen coverages (in eV), respectively.

Figure S8. Proposed phenol hydrotreating reaction pathways by deuterium at 573K under low and high pressure.
Figure S9. GC-MS chromatography of the final products from hydrotreatment at 20 (a), 8 (b), and 5 (c) bar pH₂, at 573K (20 and 8 bar) and 613K (5 bar). The ratios between selected aromatic and aliphatic products are shown in Table (d).

Figure S10. Relative intensity distributions of various classes assigned in the positive-ion APCI Orbitrap mass spectra of lignin, lignin pyrolysis products and products of hydrogenation at 5, 8 and 20 bar (from top to bottom). The relative intensity is based on the ratio between the intensity of each class and the total intensity calculated by summing all assigned categories in each mass spectra. The fully colored section of the bars represent protonated cations, [M+H]⁺ while the white background sections represents radical ions, M⁺.
Table S1. Selectivity of the products and conversion of HDO of phenol over Ni$_2$P/SiO$_2$ at different H$_2$ pressure (a, up = 6 bar; b, down = 15 bar). Based on the fact that the mass balance is around 98-103% and no other products were detected, the selectivities were modified to a sum = 100%.

Time / min	Benzene	Cyclohexane	Cyclohexene	Cyclohexanone	Cyclohexanol	Sum (saturates)	X(Phenol)	Conversion
5	49%	17%	0%	22%	12%	51%	2%	2%
10	47%	31%	0%	12%	10%	53%	16%	16%
20	54%	32%	2%	8%	5%	46%	37%	37%
40	62%	32%	1%	3%	2%	38%	62%	62%
90	63%	34%	0%	2%	1%	37%	63%	63%
180	72%	28%	0%	1%	0%	28%	75%	75%

Time / min	Benzene	Cyclohexane	Cyclohexene	Cyclohexanone	Cyclohexanol	Sum (saturates)	X(Phenol)	Conversion
5	45%	17%	1%	15%	22%	55%	9%	9%
10	20%	49%	1%	8%	23%	80%	45%	45%
20	19%	57%	1%	6%	17%	81%	77%	77%
40	20%	78%	1%	0%	1%	80%	100%	100%
90	12%	88%	0%	0%	0%	88%	100%	100%
Table S2. Selectivity of the products and conversion of HDO of phenol over Ni$_2$P/SiO$_2$ at different D$_2$ Pressure (3, 6 and 15 bar). Based on the fact that the mass balance is around 97-101% and no other products were detected, the selectivities were modified to a sum = 100%.

Time / min	Benzene	Cyclohexane	cyclohexene	Selectivity	Cyclohexanone	Cyclohexanol	Sum (saturates)	Conversion X(Phenol)
10	47%	24%	0%	13%	17%	52%	6%	
20	46%	28%	0%	9%	16%	54%	18%	
40	59%	34%	0%	5%	2%	41%	41%	

Time / min	Benzene	Cyclohexane	cyclohexene	Selectivity	Cyclohexanone	Cyclohexanol	Sum (saturates)	Conversion X(Phenol)
10	37%	30%	0%	10%	23%	63%	18%	
20	47%	39%	0%	6%	7%	54%	42%	
40	58%	37%	0%	3%	2%	42%	68%	

Time / min	Benzene	Cyclohexane	cyclohexene	Selectivity	Cyclohexanone	Cyclohexanol	Sum (saturates)	Conversion X(Phenol)
10	31%	46%	0%	6%	17%	69%	37%	
20	29%	57%	0%	2%	12%	71%	85%	
40	26%	72%	0%	0%	2%	75%	98%	
Table S3. Deuteration degree of D-benzene and D-cyclohexane resulted from the reaction Ni_2P/SiO_2 at different D_2 pressure (a, top = 3 bar; b, middle = 6 bar; b, bottom = 15 bar).

D_2/O = 1.4	Benzene	Time / min	Cyclohexane	Time / min
		10 20 40	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	
0	D0	25% 27% 16%	D0	5% 2% 1%
1	D1	37% 40% 33%	D1	4% 14% 9%
2	D2	25% 24% 29%	D2	13% 22% 14%
3	D3	11% 8% 16%	D3	17% 25% 18%
4	D4	2% 1% 5%	D4	20% 19% 18%
5	D5	0% 0% 1%	D5	18% 12% 18%
6	D6	1%	D6	12% 5% 12%
7	D7		D7	7% 1% 7%
8	D8		D8	3% 0% 3%
9	D9		D9	1%
10	D10		D10	0%
11	D11		D11	
12	D12		D12	
Average Dn		1.27 1.17 1.63	Average Dn	4.05 3.08 3.97

D_2/O = 2.8	Benzene	Time / min	Cyclohexane	Time / min
		10 20 40	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	
0	D0	13% 9% 8%	D0	
1	D1	28% 29% 27%	D1	1% 1%
2	D2	28% 33% 36%	D2	4% 6%
3	D3	20% 21% 22%	D3	10% 13%
4	D4	9% 7% 7%	D4	2% 17% 21%
5	D5	2% 1% 1%	D5	11% 21% 23%
6	D6		D6	20% 19% 18%
7	D7		D7	23% 15% 11%
8	D8		D8	21% 9% 5%
9	D9		D9	14% 4% 2%
10	D10		D10	7% 0%
11	D11		D11	3%
12	D12		D12	
Average Dn		1.88 1.92 1.95	Average Dn	7.39 5.36 4.93

D_2/O = 7	Benzene	Time / min	Cyclohexane	Time / min
		10 20 40	D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12	
0	D0	10% 5% 2%	D0	
Table S4. Activation barriers of elementary steps calculated for lower and higher surface hydrogen coverages (1 H* and 2 H*, respectively). Some reaction intermediates show chemical bonding between C6 ring and the surface and such intermediates are denoted with the *.

Reaction steps	$\Delta E^\dagger(1\text{H}^*)$/eV	$\Delta E^\dagger(2\text{H}^*)$/eV
Phenol hydrogenation		
![Reaction 1](image1.png)	1.67	1.11
![Reaction 2](image2.png)	1.56	1.02
![Reaction 3](image3.png)	1.43	0.50
![Reaction 4](image4.png)	1.04	0.47
![Reaction 5](image5.png)	1.27	0.50
![Reaction 6](image6.png)	0.68	0.09
OH elimination

\[
\text{Cyclic C}_6 \text{ hydrogenation/dehydrogenation}
\]

| Reaction |.activation | rate constant |
Table S5: Selectivity of the products and conversion of different model compounds hydrotreatment over Ni\(_2\)P/SiO\(_2\) at different H\(_2\) Pressure (6 and 15 bar). (Reaction conditions: substrate containing 3mmol O (3 mmol Anisole, 1.5 mmol guaiacol or 4-propyl guaiacol, and 1 mmol 2,6 dimethoxyphenol), 2mL Pentane and 20 mg hexadecane at different hydrogen pressures, t = 240 min).

Substrate	Hydrogen Pressure / bar	X / %	S / %	S / %	HDO Degree / %
	6	>99	22	76	98
	15	>99	83	16	99
	6	>99	23	73	96
	15	>99	95	2	97
	6	93	13	77	94
	15	>99	93	5	98
	6	88	27	58	90
	15	>99	93	6	99
Table S6: Hydrotreating of phenolic compounds at different hydrogen pressures reported in literatures.

Lines	Model compound	Catalyst	Hydrogen pressures /bar	Aliphatic Selectivity/ %	Aromatic Selectivity/ %	HDO / %	Reference
1	Phenol	Ni,P/SiO₂	6	28	72	>99	Our work
2	Phenol	Ni,P/SiO₂	15	88	12	>99	Our work
3	Propyl Phenol	Pt/H-ZSM-5	1	99	<1	>99	Ohta, Yamamoto et al. Chem. Commun., 2015
4	Phenol mixture	Ru/SZ	2	-	92	>92	Luo, Wang et al. Green Chem., 2016
5	Phenol	Ru/H-ZSM-5	2	23	78	~85	Luo, Zheng et al. Green Chem., 2016
6	Phenol	MoO₃	5	0-22	74-97	>95	Zhang, Tang et al. Catal. Today, 2019
7	Phenol	Co/SiO₂	10	45	54	~93	Mochizuki, Chen et al. Appl. Catal. B-Environ., 2014
8	Phenol mixture	Ru-WOₓ/ZrO₂	10	80-95	-	~99	Jiang, Hu et al. ACS Sustain. Chem. Eng., 2018
9	Phenol	Pd/MOFI40	10	74	4	~18	Chen, He et al. ChemCatChem, 2018
10	Phenol	Pd/MOFI40	20	80	3	~42	Chen, He et al. ChemCatChem, 2018
11	Phenol	Ru-WOₓ/SiAl	20	11	81	>92	Huang, Yan et al. Green Chem., 2015
12	Methyl phenol	Co-MoS₂	30	>99	>99	>99	Liu, Robertson et al. Nat. Chem., 2017
13	Methyl phenol	NiMoW	30	6	94	>99	Wang, Wu et al. Catal. Commun., 2013
14	Phenol	Pd/C+H2ZSM5	40	99	N/A	99	He, Zhao et al. J. Catal., 2014
15	Methyl phenol	MoS₂	40	7-42	57-93	-	Wang, Zhang et al. Ind. Eng. Chem. Res., 2014
16	Phenol	Ru/H-ZSM-5-OM	40	>99	0	94	Wang, Zhang et al. ACS Catal., 2015
17	Phenol	Pd/C+H₂PO₄	50	99	0	>92	Zhao, Kou et al. Angew. Chem. Int. Ed., 2009
18	Phenol	Pd/Al₂O₃	50	86	N/A	~40	Zhao, He et al. J. Catal., 2011
19	Phenol	NiCo/H-ZSM-5	50	94	6	99	Huynh, Armbruster et al. ChemCatChem, 2014
20	Phenol	PtCo/NOMC	100	99	N/A	>99	Wang, Cao et al. Angew. Chem. Int. Ed., 2016
21	Phenol	Ni/ZrO₂	100	92	8	88	Mortensen, Grunwaldt et al. ACS Catal., 2013
22	Phenol	Ru@SILP-1.00	120	>99	N/A	95	Luska, Migowski et al. Angew. Chem. Int. Ed., 2015
23	Anisole	Ru/W/SIO₂	5 bar N₂	0	>99	>99	Meng, Yan et al. Sci. Adv., 2019
24	Phenol	Ru/W/SIO₂	5 bar N₂	0	0	0	Meng, Yan et al. Sci. Adv., 2019
25	Phenol	Ru/W/SIO₂	5 bar N₂	0	0	0	Meng, Yan et al. Sci. Adv., 2019
26	Lignin	Pt/H-ZSM-5	17(650°C)	0	~7(yield)	-	Jan, Marchand et al. Energ. Fuel., 2015
27	Lignin	Pt/H-ZSM-5	17(300°C)	~1(yield)	0	-	Jan, Marchand et al. Energ. Fuel., 2015

1. X. Wang, R. Rinaldi, Bifunctional Ni catalysts for the one-pot conversion of Organosolv lignin into cycloalkanes. *Catalysis Today* **269**, 48-55 (2016).
2. P. E. Blöchl, Projector augmented-wave method. *Physical review B* **50**, 17953 (1994).
3. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical review B* **54**, 11169 (1996).
4. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **59**, 1758 (1999).
5. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. *Physical review letters* **77**, 3865 (1996).
6. G. Henkelman, B. P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. *The Journal of chemical physics* **113**, 9901-9904 (2000).
7. J. Kästner, P. Sherwood, Superlinearly converging dimer method for transition state search. *The Journal of chemical physics* **128**, 014106 (2008).

8. V. T. t. G. Henkelman, can be found in http://theory.cm.utexas.edu/vtstools/.

9. J. He, Á. Morales-García, O. Bludský, P. Nachtigall, The surface stability and equilibrium crystal morphology of Ni$_2$P nanoparticles and nanowires from an ab initio atomistic thermodynamic approach. *CrystEngComm* **18**, 3808-3818 (2016).

10. H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations. *Physical Review B* **13**, 5188-5192 (1976).
Appendix A: Pyrolysis Organosolv Lignin

31.08.2017
File: 134567b-00.raw
Analyse: ZHC-2B-010-03
STF: Zhengwen, Cao

Messung: GC-MS
Ionisierung: GC-EI
Spektrometer: ISQ
Länge: 30
Temp.: 30-3-70-6-250-5
GC-Nr.: -
MS-Nr.: 13176
Auswerter: Margold (2242)

No.	MW	Comment
1	60	Compare Q100611: Acetic acid
2	152	Compare NJ332797: 3,4-Dimethoxytoluene
3	152	Compare NJ352827: 3,5-Dimethoxytoluene
4	124	Compare Q117172: Phenol, 2-methoxy-
5	128	Compare NJ135426: 2-Methoxy-6-methylphenol
6	166	Similar NJ6254: Phenol, 3-methoxy-2,5,6-trimethyl-
7	122	Compare Q116320: Phenol, 2,5-dimethyl-
8	152	Similar NJ352788: 2,3-Dimethoxytoluene
9	138	Compare NJ233910: Phenol, 2-methoxy-4-methyl-
10	152	Compare NJ332797: 3,4-Dimethoxytoluene
11	94	Compare NJ133909: Phenol
12	152	Compare NJ135148: Phenol, 4-ethyl-2-methoxy-
13	122	Compare Q116289: Phenol, 2-ethyl-
14	122	Compare NJ291090: Phenol, 2,3-dimethyl-
15	108	Compare Q109321: Phenol, 2-methyl-
Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente

1. $\text{B}3228(16:23)$

2. $\text{B}4799(24:21)$

3. $\text{B}4921(24:58)$

4. $\text{B}4986(25:18)$

SIS1: Q100611 60

SIS1: NJ332797 152

SIS1: NJ352827 152

SIS1: Q117172 124
No.	MW	Comment	
16	136	Compare Q125628: Phenol, 2-ethyl-6-methyl-	
17	164	Similar NJ291308: Phenol, 2-methoxy-4-[(1-propenyl)-, (Z)-	
18	154	Compare Q142516: Phenol, 2,6-dimethoxy-	
19	164	Compare Q5454: PHENOL, 2-METHOXY-3- (2-PROPENYL)-	
20	168	Compare NJ1098121: 1,2,4-Trimethoxybenzene	
21	182	Compare U121122: a13047 WAX–WA–027–01	
22	140	Compare NJ118675: 1,2-Benzenedioli, 3-methoxy-	
23	138	Compare NJ236759: 3-Methoxy-5-methylphenol	
24	152	Compare Q139931: Benzaldehyde, 4-hydroxy-3-methoxy-	
25	154	Similar E56950:	
26	124	Compare NJ113391: 1,2-Benzenedioli, 3-methyl-	
27	110	Compare Q109906: 1,2-Benzenedioli	
28	194	Compare Q75808: PHENOL, 2,6-DIMETHOXY-4- (2-PROPENYL)-	
29	124	Compare NJ113391: 1,2-Benzenedioli, 3-methyl-	
30	152	Compare Q139877: Benzoic acid, 4-hydroxy-, methyl ester	
31	182	Compare Q173361: Benzaldehyde, 4-hydroxy-3,5-dimethoxy-	

Zoom 2

RI44/206

30:00
32:00
34:00
36:00
38:00
40:00
42:00
44:00

16 17 18 20 22 23 24 25 26 27 29 30 31

SIS1: Q125628 136

*1

10 20 30 40 50 60 70 80 90 100 110 120 130 140

134567b-00 * ZHC-2B-010-03/GC–MS/GC–EI/ISQ/DB-WAXETR/30/30-3-70-6-250-5/-/13176/

15 27 39 55 65 77 91 103 121 131 149

SIS1: NJ291308 164

*1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

134567b-00 * ZHC-2B-010-03/GC–MS/GC–EI/ISQ/DB-WAXETR/30/30-3-70-6-250-5/-/13176/

15 27 39 55 65 77 91 103 121 131 149

B5933 (30:06)

B6014 (30:30)
Angebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente

*** Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente ***
Angegebene Mol.-Gewichte u. Massenzahlen basieren auf dem häufigsten Isotop der Elemente ***

B8177 (41:28)

B8197 (41:34)

SIS1: Q139877 152

SIS1: Q173361 182

134567b-00 * ZHC-ZB-010-03/GC-MS/GC-EI/ISQ/DB-WAXETR/30/30-3-70-6-250-5/-/13176/

134567b-00 * ZHC-ZB-010-03/GC-MS/GC-EI/ISQ/DB-WAXETR/30/30-3-70-6-250-5/-/13176/*1
Übersichtsanalyse der Probe, Auswertung ohne Lösungsmittelbereich (3,1min bis 3,4min)
Zuordnung nach GC/MS 13310 und 13837 ZHC-ZB-010-04 ELNA: 3610
MS-Zuordnung nur vergleichbar mit Komponenten, keine gesicherten Angaben
prozentuale Ergebnisse ungenau durch Überlagerungen mit anderen Peaks

No.	Ret.Time	area-%	Peak Name
4	3,00	5,21	MG:72;1 2-Methylbutan
5	3,48	0,45	MG:70;3 1-Penten
12	4,31	0,25	MG:84;4 Methylcyclopentan
15	4,75	6,29	MG:78;5 Benzol
16	4,93	4,16	MG:84;6 Cyclohexan
25	6,07	1,28	MG:100;7 Heptan
26	6,70	4,97	MG:98;8 Methylcyclohexan
28	7,17	0,42	MG:98;9 Ethylcyclopentan
33	8,16	9,93	MG:92;10 Toluol
46	10,88	10,99	MG:114;11 Octan
52	12,68	2,57	MG:112;12 Ethylcyclohexan
58	14,16	4,23	MG:106;13 Ethylbenzol
60	14,80	2,42	MG:106;14 α-Xylo
70	16,83	0,86	MG:106;15 1,2-Dimethylbenzol
84	21,75	1,81	MG:128;16 (1-Methyl)-Cyclohexan
91	23,37	4,15	MG:120;17 Propylbenzol
94	24,33	1,75	MG:120;18 1,2,3-Trimethylbenzol
100	26,28	0,34	MG:120;1 Cumol
105	28,13	0,23	MG:120;2 1,2,3-Trimethylbenzol
107	28,57	0,09	MG:140;3 unknown structure
110	29,35	0,06	MG:112;4 unknown structure
111	29,69	0,13	MG:140;5 Trans-1,4-diethyliclohexan
112	30,09	0,13	MG:134;6 (2-Methylpropyl)-Benzol
113	30,37	0,22	MG:134/ 140;7 unknown structure
114	30,84	0,13	MG:122;8 1-Methoxy-3-methylbenzol
No.	Ret.Time min	area-% %	Peak Name
-----	--------------	----------	---
119	32.53	0.58	MG:118;10 2,3-Dihydro-1H-Indene
123	34.45	0.18	MG:140;11 Butylcyclohexan
126	35.53	0.40	MG:134;12 1-Methyl-3-(1-methylethyl)-benzol
127	35.85	0.84	MG:134;13 1-Methyl-4-propylbenzol
128	36.40	0.53	MG:134;14 Butylbenzol
159	44.15	0.40	MG:148;18 (1,1-Dimethyl(propyl)-Benzol
167	45.46	0.53	MG:128;19 Naphthalene
179	47.20	0.23	MG:146;21 Cyclopentylbenzol
196	48.96	0.68	MG:142;22
200	49.32	0.54	MG:142/160;23 unknown structure
214	50.76	0.32	MG:154;24 1,1'-Biphenyl
218	51.37	0.53	MG:174;25 (Cyclohexylmethyl)-Benzol
221	51.69	0.49	MG:168;28 1,1'-Methylenebisbenzol
235	53.31	0.48	MG:188;28 Cyclohexylethylbenzol + overlapping
247	54.49	0.56	MG:196;29 unknown structure
260	55.63	0.38	MG:210;30 unknown structure
262	55.82	0.50	MG:240/180;31
271	56.74	0.22	MG:178;32 Benz(a)azulene + overlapping MG:224

291 peaks out of 334 (total area percentage = 28.58%) are below threshold.

Instrument parameters:
- Column: 30.0 m
- Temperature: 220/30 1/min 70 10/min 320, 5 min isol 350
- Gas: 0.60 bar Helium
- Sample size: 0.2 µL
Übersichtsanalyse der Probe, Auswertung ohne Lösungsmittelbereich (3,1min bis 3,8min)
Zuordnung nach GC/MS 13287 und 13832 ZHC-ZB-010-04 ELNA: 3610
MS-Zuordnung nur vergleichbar mit Komponenten, keine gesicherten Angaben
prozentuale Ergebnisse ungenau durch Überlagerungen mit anderen Peaks

No.	Ret.Time min	area-% %	Peak Name
3	3.00	8.46	MG:72;1 2-Methylbutan
10	4.75	4.48	MG:78;3 Benzol
11	4.92	10.91	MG:84;4 Cyclohexan
22	6.07	1.23	MG:100;5 Heptan
24	6.69	11.95	MG:98;6 Methylcyclohexan
25	7.16	0.64	MG:98;7 Ethylcyclopentan
29	8.15	4.86	MG:92;8 Methylbenzol
35	9.22	0.96	MG:112;9 trans-1,3-Dimethylcyclohexan
42	10.84	6.44	MG:114;10 Octan
48	12.67	5.61	MG:112;11 N-(Diphenylmethyl)-Acetamid
53	14.17	1.78	MG:106;12 Ethylbenzol
55	14.92	0.94	MG:106;13 p-Xylo
64	17.43	0.92	MG:126;14 1-Ethyl-2-methylcyclohexan
70	19.27	0.73	MG:126;15 1-Ethyl-4-methylcyclohexan
78	21.74	4.46	MG:126;16 (1-Methyl)ethyl-Cyclohexan
83	23.38	1.78	MG:120;17 Propylbenzol
85	24.36	0.61	MG:120;18 1,2,3-Trimethylbenzol
90	26.32	0.15	MG:120;1 (1-Methylethyl)-Benzol
94	27.81	0.52	MG:94/124;2 Phenol + overlapping unknown structure
95	28.26	0.40	MG:140;3 Menthan
98	28.55	0.17	MG:140;4 (2-Methylpropyl)-Cyclohexan
99	29.67	0.27	MG:140;5 unknown structure
101	30.34	0.32	MG:140/134;6 Menthan + unknown structure
102	30.83	0.33	MG:122;7 1-Methoxy-3-methylbenzol
103	31.13	0.14	MG:140;8 unknown structure
No.	Ret. Time	area-%	Peak Name
-----	-----------	--------	-----------
106	32,56	0,25	MG:118;9 1-Propenylbenzol
108	33,24	0,12	MG:140;10 (1-Methylpropyl)-Cyclohexan
109	34,43	0,50	MG:140;11 unknown structure
113	35,88	0,32	MG:134;12 1-Methyl-2-propylbenzol
114	36,42	0,28	MG:134/138;13 unknown structure
115	36,88	0,40	MG:108;14 2-Methylphenol
177	48,34	0,38	MG:146;19 Tetrahydroiminaphthalen
181	48,87	0,47	MG:142/146/168;20 unknown structure
185	49,32	0,21	MG:142/160;21 unknown structure
188	49,69	0,36	MG:160;22 Cyclohexylbenzol
201	51,08	0,45	MG:180;24 1,1'-Methylenebiscyclohexan
203	51,36	0,49	MG:174;25 (Cyclohexylmethyl)-Benzol
219	53,14	0,81	MG:194;26 unknown structure
220	53,30	0,38	MG:188;27 (2-Cyclohexylethyl)-Benzol
226	53,92	0,24	MG:208;28

269 peaks out of 309 (total area percentage = 25.28%) are below threshold.

Instrument parameters:

- Column: 30,0 m
- Temperature: 220/30 1/min 70 10/min 320, 5 min iso/350
- Gas: 0,60 bar Helium
- Sample size: 0,2 µL

H. Hausser
Übersichtsanalyse der Probe, Auswertung ohne Lösungsmittelpeak (DCM)
Zuordnung nach GC/MS 14113 ZHC-ZB-010-07 ELNA:3818
MS-Zuordnung nur vergleichbar mit Komponenten, keine gesicherten Angaben
prozentuale Ergebnisse ungenau durch Überlagerungen mit anderen Peaks

No.	Ret.Time	area-%	Peak Name
	min		
12	3,44	1,47	MG:70;3 Cyclopentan
17	4,26	0,29	MG:84;4 Methylcyclopentan
20	4,88	3,67	MG:84;5 Cyclohexan
27	6,01	0,30	MG:100;6 Heptan
29	6,63	3,89	MG:98;7 Methylcyclohexan
30	7,10	0,17	MG:98;8 Ethylcyclopetan
39	9,14	0,47	MG:112;9 1,3-Dimethylcyclohexan
44	10,21	0,14	MG:112;10 1,2-Dimethylcyclohexan
45	10,75	2,44	MG:114;11 Octan
49	12,57	1,70	MG:112;12 Ethylcyclohexan
62	17,30	0,46	MG:126;13 1-Ethyl-3-methylcyclohexan
68	19,13	0,22	MG:126;14 1-Ethyl-2-methylcyclohexan
75	21,59	1,38	MG:126;15 Isopropylcyclohexan
92	28,11	0,19	MG:140;16 m-Menthane
95	29,50	0,13	MG:140;17 1,2-Diethylcyclohexan
104	34,26	0,18	MG:140;18 Buthylcyclohexan
109	36,10	0,11	MG:138;19 Decahydrornaphthalen
121	41,79	0,10	MG:154;20 1-Ethyl-2-propylcyclohexan
126	42,62	0,12	MG:152;21 Decahydro-2-methylnaphthalen
131	43,58	0,07	MG:152;22 1-Methyldecahydronaphthalen
135	44,44	0,08	MG:154;23 Pentylcyclohexan
165	48,07	0,08	MG:180;24 overlapping with 168, 166 unknown structure
172	48,91	0,06	MG:166;25 (Cyclopentylmethyl)-Cyclohexan
178	49,55	0,09	MG:166;26 1,1'-Bicyclohexyl
191	51,03	0,22	MG:180;27 1,1'-Methylenbiscyclohexene
No.	Ret.Time	area-%	Peak Name
-----	----------	--------	---
202	51,96	0,09	MG:194:28 1-((Cyclohexyl)methyl)-4-Methylcyclohexan
213	53,09	0,30	MG:212:29 unknown structure
221	53,87	0,12	MG208:30
229	54,74	0,12	MG:222:31 4-Methyl-4′-propyl-1,1′-bicyclohexyl
241	56,11	0,09	MG:236:32 unknown structure

251 peaks out of 281 (total area percentage= 81,27 %) are below threshold.

Instrument parameters:
- **Column:** 30,0 m
- **Temperature:** 220/30 1/min 70 10/min 320, 5min iso/ 350
- **Gas:** 0,60 bar Helium
- **Sample size:** 0,2 µL

M. Masa – Ed