Clinical Trials in COVID-19 Management & Prevention: A Meta-epidemiological Study Examining Methodological Quality

Authors:
Kimia Honarmand MD MSc¹, Jeremy Penn BHSc (c)², Arnav Agarwal³,⁴, Reed Siemienuiš³, Romina Brignardello-Petersen⁵, Jessica J Bartoszkio⁶, Dena Zeraatkari⁷, Thomas Agoritisas⁸,⁹, Karen Burns⁵,⁷, Shannon M. Fernando MD MSc⁴, Farid Foroutan¹⁰, Long Ge PhD¹⁰, François Lamontagne¹¹, Mario A Jimenez-Mora MD¹², Srinivas Murthy¹¹, Juan Jose Yepes Nuñez¹²,¹³ MD, MSc, PhD, Per O Vandvik MD, Ph.D¹⁴, Zhikang Ye¹, Bram Rochwerg MD MSc¹⁵,¹⁶

Affiliations:
1. Division of Critical Care, Department of Medicine, Western University, London, Canada
2. Faculty of Health Sciences, McMaster University, Hamilton, Canada
3. Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada
4. Department of Medicine, University of Toronto, Toronto, Canada
5. Department of Biomedical Informatics, Harvard Medical School, Boston, USA
6. Division General Internal Medicine, University Hospitals of Geneva, Geneva, Switzerland
7. Unity Health Toronto, St. Michael’s Hospital, Li Ka Shing Knowledge Institute, Toronto, Canada
8. Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada
9. Ted Rogers Centre for Heart Research, University Health Network, Toronto General Hospital, Toronto, Canada
10. Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
11. Department of Medicine and Centre de recherche du CHU de Sherbrooke, Sherbrooke, Quebec, Canada
12. School of Medicine, Universidad de los Andes, Bogotá D.C, Colombia.
13. Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
14. Pulmonology Service, Internal Medicine Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá D.C, Colombia
15. Department of Health and Society, Faculty of Medicine, University of Oslo, Norway
16. Department of Medicine, McMaster University, Hamilton, Canada

Corresponding Author- Kimia Honarmand, kimia.honarmand@medportal.ca

ABSTRACT

Background: The coronavirus disease (Covid-19) pandemic has produced a large number of clinical trial reports with unprecedented rapidity, raising concerns about methodological quality and potential for research waste.

Objectives: To describe the characteristics of randomized clinical trials (RCTs) investigating prophylaxis or treatment of Covid-19 infection and examine the effect of trial characteristics on whether the study reported a statistically significant effect on the primary outcome(s).

Study Design: Meta-epidemiological study of Covid-19 treatment and prophylaxis RCTs.

Eligibility criteria: English-language RCTs (peer-reviewed or preprint) that evaluated pharmacologic agents or blood products compared to standard care, placebo, or an active comparator among participants with suspected or confirmed Covid-19 or at risk for Covid-19. We excluded trials of vaccines or traditional herbal medicines.

Information sources: We searched 25 databases in the US Centre for Disease Control Downloadable Database from January 1 to October 21, 2020.

Trials appraisal and synthesis methods: We extracted trial characteristics including number of centres, funding sources (industry versus non-industry), and sample size. We assessed risk of bias (RoB) using the modified Cochrane RoB 2.0 Tool. We used descriptive statistics to summarize trial characteristics and logistic regression to evaluate the association between RoB due to the randomization process, centre status (single vs. multicentre), funding source, and sample size, and statistically significant effect in the primary outcome.

Results: We included 91 RCTs (46,802 participants) evaluating Covid-19 therapeutic drugs (n = 76), blood products (n = 9) or prophylactic drugs (n = 6). Of these, 40 (44%) were single-centre, 23 (25.3%) enrolled < 50 patients, and 28 (30.8%) received industry funding. RoB varied across trials, with high or probably high overall RoB in 75 (82.4%) trials, most frequently due to deviations from the intended protocol (including blinding) and randomization processes. Thirty-eight trials (41.8%) found a statistically significant effect in the primary outcome. RoB due to randomization (odds ratio [OR] 3.77, 95% confidence interval [CI], 1.47 to 9.72) and single centre trials (OR 3.15, 95% CI, 1.25 to 7.97) were associated with higher likelihood of finding a statistically significant effect.

Conclusions: There was high variability in RoB amongst Covid-19 trials. RoB attributed to the randomization process and single centre status were associated with a three-fold increase in the odds of finding a statistically significant effect. Researchers, funders, and knowledge users should remain cognizant of the impact of study characteristics, including RoB, on trial results when designing, conducting, and appraising Covid-19 trials.

Registration number: CRD42020192095

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
INTRODUCTION
The rapid rise in the number of cases, hospitalizations, and deaths due to Coronavirus disease 2019 (Covid-19) has been paralleled by an exponential rise in scientific publications related to Covid-19. The number publications with the terms ‘COVID-19’ or ‘SARS-CoV-2’ in their title or abstract was over 17,000 as of May 31st and over 57,000 as of October 5th, 2020.

The global search to identify effective interventions against Covid-19 has led to an unprecedented rise in clinical trial activity worldwide. As of October 5, 2020, the World Health Organization (WHO) Global Coronavirus COVID-19 Clinical Trial Tracker reports that there are currently over 2,300 clinical trials at various stages of completion. The rapidity with which clinical trials in Covid-19 are being planned, completed, and disseminated has triggered concerns about their methodological quality. Flaws in study design may lead to biased estimates of intervention effects, leading to treatment decisions that are at best ineffectual, and at worst harmful to patients. The well-known waste in biomedical research may be enhanced by the COVID-19 pandemic.

Several recent reports have described the design characteristics of registered trials of Covid-19 therapies. These reports, however, are based on registered trials, many of which will not proceed to completion and will therefore not impact clinical knowledge or practice. In addition, the appraisal of trial quality from registries does not include assessment of trial conduct as well as analysis.

We conducted a meta-epidemiological study of published Covid-19 randomized controlled trials (RCTs) to (1) describe trial characteristics, including risk of bias (RoB), and (2) evaluate the association between trial characteristics and the likelihood of finding statistically significant results for the primary outcome.

METHODS

Study Design
We performed this meta-epidemiological study as part of a living systematic review and network meta-analysis of RCTs examining Covid-19 prevention and therapy. We prepared this manuscript in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement.

Protocol Registration

We registered the protocol for this study in the Prospective Register of Systematic Reviews (PROSPERO 2020: CRD42020192095).

Eligibility Criteria

We included English language RCTs of any publications status (peer-reviewed publication or preprint) that enrolled patients with suspected, probable or confirmed COVID-19, or at risk for contracting COVID-19, and compared the effect of pharmacologic agents or blood products against standard care, a placebo, or an active comparator (i.e., another pharmacologic agent or blood product). We excluded trials of vaccines or traditional herbal medicines that included more than one molecule or did not have a specific molecular weight dosing.

Information Sources & Search Strategy

The complete search strategy is shown in Supplementary Material Online 1. We used the ongoing literature search performed by Centre for Disease Control (CDC), which includes 25 databases of published studies and repositories of unpublished studies (medRxiv and bioRxiv), to find potentially relevant articles of therapies related to SARS-CoV-2 and COVID-19 from January 1 to October 21, 2020. For pragmatic reasons, we excluded trials published in languages other than English.

Study Selection
Working in pairs, reviewers screened, independently and in duplicate, titles and abstracts and then full-texts for articles found potentially eligible at the title and abstract screening stage. We resolved discrepancies by discussion and where needed, by third party adjudication.

Data Extraction

Using a pre-developed data extraction form, we extracted study characteristics including: registration status (registered vs. non-registered), publication status (preprint vs. peer reviewed publication), trial design (single-centre or multicentre), funding source (industry vs. non-industry), study interventions (number of study arms, intervention details, type of comparator [active vs. not]). We also extracted details about the trial’s reported primary outcome(s), including whether the outcome was binary vs. continuous vs. ordinal, patient-important or surrogate, event rates and summary statistics for binary and continuous outcomes, respectively, and whether there was a statistically significant difference detected in the primary outcome. For trials that reported more than one primary outcome, we recorded the primary outcome with the highest effect size.

Risk of Bias Assessment

Three reviewers evaluated RoB of included studies using the modified version of the Cochrane RoB 2.0 tool independently (Supplementary Material Online 2). Discrepancies were resolved by consensus. The modified Cochrane RoB tool rates methodological quality of each included study as low, probably low, probably high, or high RoB across each of five domains, reflecting bias: (1) from the randomization process, (2) due to deviations from the intended intervention (which included blinding procedures), (3) due to missing data, (4) due to measurement of the outcome, and (5) in selection of the reported results. We categorized overall study RoB as the highest rating across any of the five domains.
Data Analysis

We used descriptive statistics (means and standard deviations, medians and interquartile ranges, and proportions and confidence intervals, as appropriate) to summarize trial characteristics and RoB for the included trials.

We then conducted logistic regression analyses to assess the association between a trial finding a statistically significant effect (defined as a p-value equal to or less than 0.05) and pre-specified trial characteristics, including:

- RoB due to randomization: dichotomized into low/ probably low RoB and high/ probably high RoB
- Centre status: Multicentre vs. single centre trial
- Funding source: those with any industry funding vs. those without industry funding
- Trial sample size (using the total number randomized as a continuous variable)

We selected these trial characteristics a priori based on the hypothesis that these specific trial characteristics were most important in influencing trial findings. We included RoB due to the randomization process, as opposed to other RoB domains, as we anticipated the randomization process to have the highest association with trial outcomes and due to the anticipated limited variability between trials in other RoB domains, which would not allow for meaningful interpretation or conclusions.

Among the four selected predictor variables, we used purposeful selection of predictor variables according to the approach described by Bursac and colleagues. The process began with univariate analysis of each of the four pre-specified predictors. Then, variables that yield a p-value of less than 0.25 are selected as candidates for the multivariable analysis and entered into the model. Through an iterative process of variable selection, variables are retained in the model only if they (1) have an association with the outcome as defined by a p-value of < 0.1 or (2) have a confounding effect, defined a change in the group coefficient by more than 15% when the variable is removed as compared to the full model. This
approach allows for iterative selection of predictor variables and retains in the model those predictors that are not themselves significantly associated with the outcome but contribute to the effect of other predictors. We planned to perform subgroup analyses to evaluate the impact of trial characteristics on trial outcomes among trials that were preprints compared to those published in peer-reviewed journals but the relatively small number of trials prohibited this analysis. We used Statistical Package for the Social Sciences (SPSS) version 26.0 (IBM Corporation) for all descriptive and regression analyses and Stata/IC 16.1 (StataCorp LLC) to produce the forest plot of effect sizes.

RESULTS

Study Selection

The search identified 13,536 records which were reviewed in duplicate as part of a living network meta-analysis, and yielded 103 trials of therapeutic or prophylactic interventions for Covid-19. We excluded five RCTs published in languages other than English, two trials that reported on a cohort overlapping with another included trial, two that reported preliminary results but not findings related to their primary outcomes, and three unpublished studies that were included in a meta-analysis with insufficient information to include in our review. We included a total of 91 clinical trials (54 peer-reviewed publications, 37 preprints) in this analysis.

Trial Characteristics

Overall trial characteristics

Table 1 presents the aggregate characteristics of included studies. The 91 included trials enrolled a total of 46,802 patients between January 18 (first recruitment) and October 4 (last recruitment). Included trials evaluated one or more drugs (n = 76,12,87) or blood products (n = 9,88-96) to treat patients with suspected or confirmed Covid-19 or drugs used as prophylaxis for patients at risk for Covid-19 (n = 6,97-102). All but one of the trials were parallel group design (one trial was a cluster randomized design). Thirty of 91 trials were conducted by a country in the Western Pacific Region, primarily China (n = 27). Figure 1 illustrates
the proportion of trials that were led by countries in various regions, as defined by the WHO. All but three trials were pre-registered. Fifty-one trials were multicentre whereas 40 were single centre. Trial sample size ranged from 10 to 14,247 (median: 84, interquartile range [IQR]: 151); 23 trials enrolled less than 50 patients, 51 enrolled 50 to 400 patients, and 17 enrolled over 400 patients.

Among 88 studies that reported their funding source, 28 received at least some industry support including complete industry funding in 10 trials, partial industry funding for 7 trials, and provision of intervention/medications by industry in 11. The 60 trials that reported no industry support were funded by governmental sources (n = 31), academic institutions (n = 9), multiple sources (government, academic institutional, and/ or not-for-profit organization; n = 13) or received no funding (n = 7).

Trial risk of bias

There was variability across various RoB domains. Seventy-five (82.4%) having overall high or probably high RoB (Table 1). Across individual RoB domains, there was high/ probably high RoB from the randomization process in 48 trials (52.7%), due to deviations from the intended protocol (which incorporates blinding procedures) in 75 (82.4%), due to incomplete primary outcome data in 6 (6.6%), due to incomplete primary outcome measurement in 12 (13.2%), and due to selective outcome reporting in 3 (3.3%; Table 1).

Trial primary outcomes

Table 1 presents the primary outcomes of included studies and their characteristics. The primary outcomes were binary in 39 trials, continuous in 37, ordinal in 5, and the remaining 10 trials reported more than one primary outcome. Among the 85 therapy trials, most trials (26 or 28.6%) reported a measure of clinical recovery or symptom resolution as the primary outcome. Thirty-eight studies reported a statistically significant effect (41.8%) and 53 reported no statistically significant difference (58.2%; Table 1).
Association between trial characteristics and findings

We evaluated the association between each of the pre-specified trial characteristics on trial findings (whether or not a statistically significant effect was found). Bias due to the randomization process was high or probably high in 28 of 38 (73.7%) of trials that found a statistically significant effect on their primary outcome, compared with 20 of 53 (37.7%) of trials that found no statistically significant effect. Figure 2 shows the RoB across the five domains on the modified Cochrane RoB tool across the two groups of trials.

Single centre studies accounted for 24 of 38 (63.2%) trials that reported a statistically significant effect compared with 16 of 53 (30.2%) trials that reported no statistically significant effect (OR 3.93, 95% CI, 1.38 to 11.19). Thirteen of 38 trials (34.2%) that found a statistically significant effect were industry funded compared with 18 of 53 (34.0%) trials that found no statistically significant effect (OR 1.82, 95% CI, 0.61 to 5.43). Median sample size was 77 (IQR: 67) among trials that found a statistically significant effect and 102 (IQR: 348) in trials that found no statistically significant effect (OR 1.00 per patient randomized, 95% CI: 1.00 to 1.00, p = 0.74). Bias due to the randomization process was associated with higher odds of finding a statistically significant effect (OR 3.89, 95% CI, 1.46 to 10.36).

In univariate analysis, only bias due to the randomization process was associated with trial outcome (whether or not a statistically significant intervention effect was found); there was no association between trial outcome and centre status, funding source, and sample size (Table 2). In multivariable analysis, we found that higher bias due to the randomization process (OR 3.77, 95% CI, 1.47 to 9.72) and single centre trial status (OR 3.15, 95% CI, 1.25 to 7.97) were predictors of a trial finding a statistically significant effect.

DISCUSSION
In this meta-epidemiological study of clinical trials of Covid-19 prophylaxis and treatments, we found that 82.4% of trials had high or probably high RoB, 82.4% due to deviations from the intended intervention (including blinding) and 52.7% due to the randomization process (including allocation concealment and adequacy of the randomization procedure). Other trial characteristics were highly variable across studies: 44% were single centre trials, slightly less than one-third received at least some support from an industry source and all but 3 trials were registered in advance. Sample sizes were highly variable across studies, ranging from 10 to over 14,247, with one-quarter enrolling less than 50 patients.

The Covid-19 pandemic has seen the global research community embark on a collective search to identify effective prophylactic and therapeutic interventions against the disease. This global response has substantially exceeded that of previous pandemics: in the first six months, thousands of clinical trials had already been registered and hundreds were underway, compared with 71 registered trials after the onset of the H1N1/09 virus pandemic in 2009 and no registered trials after the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) epidemics during the same time frame.103 This pandemic has also seen an unprecedented level of public interest. Early research findings are now routinely disseminated by researchers in preprint form (bypassing the long-held tradition of peer-review process), and on social media by mainstream media and the healthcare community. In most cases, this is done with inadequate attention to issues related to study design and methodologic quality.

Trial characteristics, including RoB, lead to low quality evidence, which may be uninformative at best and may cause harm to patients. In addition, poor quality trials absorb a disproportionate amount of attention from the general public and divert attention and research resources (i.e., efforts, financial support) away from other interventions which may be beneficial but remain under-investigated. These concerns are undoubtedly compounded when we consider the research resources allocated observational studies and RCTs that remain unpublished. The ultimate effect may be diminished public confidence in the scientific process, especially as data from low quality trials may not be reproducible and likely to be
contradicted in subsequent, well-designed trials. In this study, we found that bias due to randomization process and single centre trial status were associated with increased odds of finding a statistically significant effect on the primary outcome, independent of the effect of sample size or industry funding source.

These findings highlight the need for researchers to do everything possible to minimize the risk of misleading trial results by prioritizing rigour in trial design (often competing with expediency), with particular focus on the randomization process. We also found that single centre trials were more likely to report a statistically significant interventional effect relative to multicentre trials, independent of the effect of sample size. The lack of an association between industry funding and the likelihood of finding a statistically significant effect is consistent with the findings of some previous meta-epidemiological studies, but inconsistent with other studies that found that industry funded trials are more likely to report a statistically significant effect. Lastly, we found no association between sample size and the likelihood of a statistically significant effect. While a previous meta-epidemiological study showed that small studies tend to overestimate effect sizes, that study also found that smaller trials had higher RoB across all domains, which may be the more likely explanatory variable.

This study has several strengths. We performed a comprehensive search as part of a living systematic review and NMA peer-reviewed and published in the BMJ, searched a large number of databases, included all Covid-19 RCTs examining drugs or blood products as therapeutics as well as drugs for prophylaxis. This living systematic review is currently informing the WHO living guidelines performed in collaboration with the MAGIC Evidence Ecosystem Foundation. The linkage to these trustworthy guidelines adds further rigor to the assessments of RoB through involvement of methodologists and unconflicted clinical experts making use of GRADE evidence summaries from the systematic review. In addition, we conducted RoB evaluation in duplicate, carefully assessed other trial characteristics that could influence likelihood of findings a statistically significant result. This study has several limitations.
First, we did not include non-English trials which may influence the association between trial characteristics and trial outcomes. Furthermore, the relatively small sample of RCTs precluded our ability to conduct pre-planned subgroup analyses to evaluate the impact of trial characteristics on trial outcomes among trials that were preprints compared to those published in peer-reviewed journals. As such, updates on this report as more trials are published will allow for evaluation of a broader range of trial design characteristics and subgroup analyses to further understand the association between trial characteristics and trial outcomes.

CONCLUSION

We found high variability in RoB amongst covid-19 trials across various RoB domains. RoB due to the randomization process and single centre status were associated with a three-fold increase in the odds of a trial finding a statistically significant effect. In their design and planning of Covid-19 trials, researchers are encouraged to consider the impact of trial characteristics and strive to generate reliable, high quality evidence. Funders should be cognizant of the ongoing research waste in Covid-19, limiting their support to well-designed trials that are likely to yield reliable, high quality evidence. Knowledge users should consider these findings when critically appraising and applying the findings of Covid-19 trials.
Acknowledgements:

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: support from the Canadian Institutes of Health Research. BR is also supported by a Hamilton Health Sciences Early Career Research Award; LG reports grants from Ministry of Science and Technology of China, outside the submitted work; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval: Not applicable. All the work was developed using published/pre-print data.

Funders: This is a substudy of the living network meta-analysis, supported by the Canadian Institutes of Health Research (grant CIHR-IRSC: 0579001321). Dr. Rochwerg is supported by a Hamilton Health Sciences Early Career Research Award. The funders had no role in the conduct of this study.

Contributors:
KH and BR conceptualized the study. RS, RB, JJB, DZ, TA, KB, SMF, FF, LG, FL, MAJ, SM, JJY, PV, and ZY provided methodological guidance in study design, implementation, and interpretation. JJB led the systematic review search and study selection. DZ led data extraction and risk of bias evaluation. KH, JP, and AA collected additional data. FF and LG provided guidance on statistical analysis. KH performed data analysis. KH and BR drafted the manuscript. All authors approved the final version of the manuscript. KH is the guarantor. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Transparency declaration: KH affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Dissemination declaration: It is not applicable to disseminate the results to study participants and or patient organisations.

Data sharing: No additional data available.

Provenance and peer review: Not commissioned; externally peer reviewed.

Patient and public involvement statement: It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicences such use and exploit all subsidiary rights, as set out in our licence.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
References

1 Alexander PE, Debono VB, Mammen MJ, et al. COVID-19 coronavirus research has overall low methodological quality thus far: case in point for chloroquine/hydroxychloroquine. *J Clin Epidemiol* 2020;123:120-26. doi:10.1016/j.jclinepi.2020.04.016

2 Rochwerg B, Parke R, Murthy S, et al. Misinformation During the Coronavirus Disease 2019 Outbreak: How Knowledge Emerges From Noise. *Crit Care Explor* 2020;2(4):e0098. doi:10.1097/CCE.0000000000000098

3 Glasziou PP, Sanders S, Hoffmann T. Waste in covid-19 research. *BMJ* 2020;369:m1847. doi:10.1136/bmj.m1847

4 Dal-Re R, Mahillo-Fernandez I. Waste in COVID-19 clinical trials conducted in western Europe. *Eur J Intern Med* 2020 doi:10.1016/j.ejim.2020.07.002

5 Hsiehchen D, Espinoza M, Hsieh A. Deficiencies in the Designs and Interventions of COVID-19 Clinical Trials. *Med* 2020. doi:10.1016/j.medj.2020.06.007

6 Janiaud P, Axfors C, Van't Hooft J, et al. The worldwide clinical trial research response to the COVID-19 pandemic - the first 100 days. *F1000Res* 2020;9:1193. doi:10.12688/f1000research.26707.2

7 Mehta HB, Ehrhardt S, Moore TJ, et al. Characteristics of registered clinical trials assessing treatments for COVID-19: a cross-sectional analysis. *BMJ Open* 2020;10(6):e039978. doi:10.1136/bmjopen-2020-039978

8 Zhu RF, Gao YL, Robert SH, et al. Systematic review of the registered clinical trials for coronavirus disease 2019 (COVID-19). *J Transl Med* 2020;18(1):274. doi:10.1186/s12967-020-02442-5

9 Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. *BMJ* 2020;370:m2980. doi:10.1136/bmj.m2980

10 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097

11 Bursac Z, Gauss CH, Williams DK, et al. Purposeful selection of variables in logistic regression. *Source Code Biol Med* 2008;3:17. doi:10.1186/1751-0473-3-17

12 Abbaspour Kasgari H, Moradi S, Shabani AM, et al. Evaluation of the efficacy of sofosbuvir plus daclatasvir in combination with ribavirin for hospitalized COVID-19 patients with moderate disease compared with standard care: a single-centre, randomized controlled trial. *J Antimicrob Chemother* 2020;75(11):3373-78. doi:10.1093/jac/dkaa332

13 Abd-Elsalam S, Esmail ES, Khalaf M, et al. Hydroxychloroquine in the Treatment of COVID-19: A Multicenter Randomized Controlled Study. *Am J Trop Med Hyg* 2020;103(4):1635-39. doi:10.4269/ajtmh.20-0873

14 Altay O, Yang H, Aydin M, et al. Combined metabolic cofactor supplementation accelerates recovery in mild-to-moderate COVID-19. *medRxiv* 2020. doi:10.1101/2020.10.02.202614

15 Angus DC, Derde L, Al-Beidh F, et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. *JAMA* 2020;324(13):1317-29. doi:10.1001/jama.2020.17022

16 Ansarin K, Tolouian R, Ardalan M, et al. Effect of bromhexine on clinical outcomes and mortality in COVID-19 patients: A randomized clinical trial. *Bioimpacts* 2020;10(4):209-15. doi:10.34172/bi.2020.27

17 Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the Treatment of Covid-19 - Final Report. *N Engl J Med* 2020;383:1813-26. doi:10.1056/NEJMoa2007764

18 Borba MGS, Val FFA, Sampaio VS, et al. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. *JAMA Netw Open* 2020;3(4):e208857-e57. doi:10.1001/jamanetworkopen.2020.8857
Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* 2020;382(19):1787-99. doi:10.1056/NEJMoa2001282

Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. *J Allergy Clin Immunol* 2020;146:137-46. doi:10.1016/j.jaci.2020.05.019

Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. *N Engl J Med* 2020. doi:10.1056/NEJMoa2019014

Chen C, Zhang Y, Huang J, et al. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial. *medRxiv* 2020. doi:10.1101/2020.03.17.20037432

Chen C-P, Lin Y-C, Chen T-C, et al. A Multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate Coronavirus disease 2019 (COVID-19). *medRxiv* 2020. doi:10.1101/2020.07.08.20148841

Chen L, Zhang Z-y, Fu J-g, et al. Efficacy and safety of chloroquine or hydroxychloroquine in moderate type of COVID-19: a prospective open-label randomized controlled study. *medRxiv* 2020. doi:10.1101/2020.06.19.20136993

Chen Z, Hu J, Zhang Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. *medRxiv* 2020. doi:10.1101/2020.03.22.20040758

Cheng LL, Guan WJ, Duan CY, et al. Effect of Recombinant Human Granulocyte Colony-Stimulating Factor for Patients With Coronavirus Disease 2019 (COVID-19) and Lymphopenia: A Randomized Clinical Trial. *JAMA Intern Med* 2020. doi:10.1001/jamainternmed.2020.5503

Corral-Gudino L, Bahamonde A, Arnaiz delas Revillas F, et al. GLUCOCOVID: A controlled trial of methylprednisolone in adults hospitalized with COVID-19 pneumonia. *medRxiv* 2020. doi:10.1101/2020.06.17.20133579

Cruz LR, Baladron I, Rittoles A, et al. Treatment with an Anti-CK2 Synthetic Peptide Improves Clinical Response in Covid-19 Patients with Pneumonia. A Randomized and Controlled Clinical Trial. *medRxiv* 2020. doi:10.1101/2020.09.03.20187112

Dabbous H, El-Sayed M, Assal GE, et al. A Randomized Controlled Study Of Favipiravir Vs Hydroxychloroquine In COVID-19 Management: What Have We Learned So Far? Research Square 2020:pre-print. doi:10.21203/rs.3.rs-83677/v1

Davoodi L, Abedi SM, Salehifar E, et al. Febuxostat therapy in outpatients with suspected COVID-19: A clinical trial. *Int J Clin Pract* 2020;74(11):e13600. doi:10.1111/ijcp.13600

Davoudi-Monfared E, Rahmani H, Khalili H, et al. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19. *Antimicrob Agents Chemother* 2020;64(9):e01061-20. doi:10.1128/aac.01061-20

de Alencar JCG, Moreira CdL, Müller AD, et al. Double-blind, Randomized, Placebo-controlled Trial With N-acetylcysteine for Treatment of Severe Acute Respiratory Syndrome Caused by Coronavirus Disease 2019 (COVID-19). *Clin Infect Dis* 2020. doi:10.1093/cid/ciaa1443

Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. *JAMA Netw Open* 2020;3(6):e2013136. doi:10.1001/jamanetworkopen.2020.13136

Delgado-Enciso I, Paz-Garcia J, Barajas-Saucedo CE, et al. Patient-Reported Health Outcomes After Treatment of COVID-19 with Nebulized and/or Intravenous Neutral Electrolyzed Saline Combined with Usual Medical Care Versus Usual Medical care alone: A Randomized, Open-Label, Controlled Trial. *Research Square* 2020:pre-print. doi:10.21203/rs.3.rs-68403/v1

Dequin PF, Heming N, Meziani F, et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. *JAMA* 2020;324(13):1298-306. doi:10.1001/jama.2020.16761
36 Doi Y, Hibino M, Hase R, et al. A prospective, randomized, open-label trial of early versus late favipiravir in hospitalized patients with COVID-19. *Antimicrob Agents Chemother* 2020. doi:10.1128/AAC.01897-20

37 Duarte M, Pelorosso FG, Nicolosi L, et al. Telmisartan for treatment of Covid-19 patients: an open randomized clinical trial. Preliminary report. *medRxiv* 2020.
doi:10.1101/2020.08.04.20167205

38 Edalatifard M, Akhtari M, Salehi M, et al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. *Eur Respir J* 2020;in press. doi:10.1183/13993003.02808-2020

39 Entrenas-Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". *J Steroid Biochem Mol Biol* 2020;203:105751. doi:10.1016/j.jsbmb.2020.105751

40 Fu W, Liu Y, Xia L, et al. A clinical pilot study on the safety and efficacy of aerosol inhalation treatment of IFN-kappa plus TFF2 in patients with moderate COVID-19. *EClinicalMedicine* 2020;25:100478. doi:10.1016/j.eclinm.2020.100478

41 Furtado RHM, Berwanger O, Fonseca HA, et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. *Lancet* 2020;396(10256):959-67. doi:10.1016/S0140-6736(20)31808-6

42 Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. *N Engl J Med* 2020;383(19):1827-37. doi:10.1056/NEJMoa2015301

43 Recovery Collaboration Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. *Lancet* 2020;396:1345-52. doi:10.1016/S0140-6736(20)32013-4

44 Guvenmez O, Keskin H, Ay B, et al. The comparison of the effectiveness of lincocin® and azitro® in the treatment of covid-19-associated pneumonia: A prospective study. *J Popul Ther Clin Pharmacol* 2020;27(Sp1):e5-e10. doi:10.15586/jptcp.v27iSP1.684

45 Horby P, Lim WS, Emberson J, et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. *medRxiv* 2020. doi:10.1101/2020.06.22.20137273

46 Horby P, Mafham M, Linsell L, et al. Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. *medRxiv* 2020. doi:10.1101/2020.07.15.2015182

47 Hu K, Wang M, Zhao Y, et al. A Small-Scale Medication of Leflunomide as a Treatment of COVID-19 in an Open-Label Blank-Controlled Clinical Trial. *Virol Sin* 2020. doi:10.1007/s12250-020-00258-7

48 Huang M, Tang T, Pang P, et al. Treating COVID-19 with Chloroquine. *J Mol Cell Biol* 2020;12(4):322-25. doi:10.1093/jmcb/mjaa014

49 Huang Y-Q, Tang S-Q, Xu X-L, et al. No Statistically Apparent Difference in Antiviral Effectiveness Observed Among Ribavirin Plus Interferon-Alpha, Lopinavir/Ritonavir Plus Interferon-Alpha, and Ribavirin Plus Lopinavir/Ritonavir Plus Interferon-Alpha in Patients With Mild to Moderate Coronavirus Disease 2019: Results of a Randomized, Open-Labeled Prospective Study. *Front Pharmacol* 2020;11(1071). doi:10.3389/fphar.2020.01071

50 Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. *Lancet* 2020;395(10238):1695-704. doi:10.1016/S0140-6736(20)31042-4

51 Idelsis E-M, Jesus P-E, Yaquelin D-R, et al. Effect and safety of combination of interferon alpha-2b and gamma or interferon alpha-2b for negativization of SARS-CoV-2 viral RNA. Preliminary results of a randomized controlled clinical trial. *medRxiv* 2020. doi:10.1101/2020.07.29.20164251
52 Ivashchenko AA, Dmitriev KA, Vostokova NV, et al. AVIFAVIR for Treatment of Patients with Moderate COVID-19: Interim Results of a Phase II/III Multicenter Randomized Clinical Trial. *Clin Infect Dis* 2020. doi:10.1093/cid/ciaa1176
53 Jeronimo CMP, Farias MEL, Val FFA, et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With COVID-19 (Metcovid): A Randomised, Double-Blind, Phase IIb, Placebo-Controlled Trial. *Clin Infect Dis* 2020. doi:10.1093/cid/ciaa1177
54 Kimura KS, Freeman MH, Wessinger BC, et al. Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with coronavirus disease 2019. *Int Forum Allergy Rhinol* 2020. doi:10.1002/alr.22703
55 Lemos ACB, do Espirito Santo DA, Salvetti MC, et al. Therapeutic versus prophylactic anticoagulation for severe COVID-19: A randomized phase II clinical trial (HESACOVID). *Thromb Res* 2020;196:359-66. doi:10.1016/j.thromres.2020.09.026
56 Li C, Xiong N, Xu Z, et al. Recombinant Super-Compound Interferon (rSIFN-co) Versus Interferon Alfa in the Treatment of Moderate-to-Severe COVID-19: A Multicentre, Randomised, Phase 2 Trial. *SSRN Electronic Journal* 2020. doi:10.2139/ssrn.3622363
57 Li T, Sun L, Zhang W, et al. Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled Pilot Study. *Clin Transl Sci* 2020. doi:10.1111/cts.12881
58 Li Y, Xie Z, Lin W, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). *medRxiv* 2020. doi:10.1101/2020.03.19.20038984
59 Lopes MIF, Bonjorno LP, Giannini MC, et al. Beneficial effects of colchicine for moderate to severe COVID-19: an interim analysis of a randomized, double-blinded, placebo controlled clinical trial. *medRxiv* 2020. doi:10.1101/2020.08.06.20169573
60 Lou Y, Liu L, Qiu Y. Clinical Outcomes and Plasma Concentrations of Baloxavir Marboxil and Favipiravir in COVID-19 Patients: an Exploratory Randomized, Controlled Trial. *medRxiv* 2020. doi:10.1101/2020.04.29.20085761
61 Lyngbakken MN, Berdal JE, Eskesen A, et al. A pragmatic randomized controlled trial reports lack of efficacy of hydroxychloroquine on coronavirus disease 2019 viral kinetics. *Research Square* 2020:pre-print. doi:10.1038/s41467-020-19056-6
62 Mansour E, Palma AC, Ulauf RG, et al. Pharmacological inhibition of the kinin-kallikrein system in severe COVID-19 A proof-of-concept study. *medRxiv* 2020. doi:10.1101/2020.08.11.20167353
63 Miller J, Bruen C, Schnaus M, et al. Auxora versus standard of care for the treatment of severe or critical COVID-19 pneumonia: results from a randomized controlled trial. *Crit Care* 2020;24(1):502. doi:10.1186/s13054-020-03220-x
64 Nojomi M, Yasin Z, Keyvani H, et al. Effect of Arbidol on COVID-19: A Randomized Controlled Trial. *Research Square* 2020:pre-print. doi:10.21203/rs.3.rs-78316/v1
65 Pan H, Petro R, Karim QA, et al. Repurposed antiviral drugs for COVID-19 –interim WHO SOLIDARITY trial results. *medRxiv* 2020. doi:10.1101/2020.10.15.2009817
66 Rahmani H, Davoudi-Monfared E, Nourian A, et al. Interferon beta-1b in treatment of severe COVID-19: A randomized clinical trial. *Int Immunopharmacol* 2020;88:106903. doi:10.1016/j.intimp.2020.106903
67 Ren Z, Luo H, Yu Z, et al. A Randomized, Open-label, Controlled Clinical Trial of Azvudine Tablets in the Treatment of Mild and Common COVID-19, A Pilot Study. *Adv Sci* 2020;7:2001435. doi:10.1002/advs.202001435
68 Rosas I, Bräu N, Waters M, et al. Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. *medRxiv* 2020. doi:10.1101/2020.08.27.20183442
69 Sadeghi A, Ali Asgari A, Norouzi A, et al. Sofosbuvir and daclatasvir compared with standard of care in the treatment of patients admitted to hospital with moderate or severe coronavirus infection (COVID-19): a randomized controlled trial. *J Antimicrob Chemother* 2020;75(11):3379-85. doi:10.1093/jac/dkaa334
70 Salehzadeh F, Pourfarzi F, Ateai S. The Impact of Colchicine on The COVID-19 Patients; A Clinical Trial Study. BMC Infect Dis 2020:pre-print. doi:10.21203/rs.3.rs-69374/v1

71 Sekhavati E, Jafari F, SeyedAlinaghi S, et al. Safety and effectiveness of azithromycin in patients with COVID-19: An open-label randomised trial. Int J Antimicrob Agents 2020;56(4):106143. doi:10.1016/j.ijantimicag.2020.106143

72 Skipper CP, Pastick KA, Engen NW, et al. Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19: A Randomized Trial. Ann Intern Med 2020;173(8):623-31. doi:10.7326/M20-4207

73 Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients With Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020;324(11):1048-57. doi:10.1001/jama.2020.16349

74 Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ 2020;369:m1849. doi:10.1136/bmj.m1849

75 Tomazini BM, Maia IS, Cavalcanti AB, et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020;324(13):1307-16. doi:10.1001/jama.2020.17021

76 Ulrich RJ, Troxel AB, Carmody E, et al. Treating COVID-19 With Hydroxychloroquine (TEACH): A Multicenter, Double-Blind Randomized Controlled Trial in Hospitalized Patients. Open Forum Infect Dis 2020;7(10):ofaa446. doi:10.1093/ofid/ofaa446

77 Vlaar APJ, de Bruin S, Busch M, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol 2020:pre-print. doi:10.1016/S2665-9913(20)30341-6

78 Wang D, Fu B, Peng Z, Dongliang, et al. Tocilizumab Ameliorates the Hypoxia in COVID-19 Moderate Patients with Bilateral Pulmonary Lesions: A Randomized, Controlled, Open-Label, Multicenter Trial SSRN Electronic Journal 2020. doi:10.2139/ssrn.3667681

79 Wang M, Zhao Y, Hu W, et al. Treatment of COVID-19 Patients with Prolonged Post-Symptomatic Viral Shedding with Leflunomide: A Single-Center, Randomized, Controlled Clinical Trial. Clin Infect Dis 2020. doi:10.1093/cid/ciaa1417

80 Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395(10236):1569-78. doi:10.1016/S0140-6736(20)31022-9

81 Wu X, Yu K, Wang Y, et al. Efficacy and safety of triazavirin therapy for coronavirus disease 2019: A pilot randomized controlled trial. Engineering 2020:in press. doi:10.1016/j.eng.2020.08.011

82 Yethindra V, Tagaev T, Uulu MS, et al. Efficacy of umifenovir in the treatment of mild and moderate COVID-19 patients. Int J Pharm Sci Res 2020;11(SPL)(1):506-09. doi:10.26452/ijprsv.11iSPL1.2839

83 Yuan X, Yi W, Liu B, et al. Pulmonary radiological change of COVID-19 patients with 99mTc-MDP treatment. medRxiv 2020. doi:10.1101/2020.04.07.20054767

84 Zhang J, Rao X, Li Y, et al. High-dose vitamin C infusion for the treatment of critically ill COVID-19. Research Square 2020:pre-print. doi:10.21203/rs.3.rs-52778/v1

85 Zhao H, Zhu Q, Zhang C, et al. Tocilizumab combined with favipiravir in the treatment of COVID-19: A multicenter trial in a small sample size. Biomed Pharmacother 2020:in press. doi:10.1016/j.biopha.2020.110825

86 Zheng F, Zhou Y, Zhou Z, et al. SARS-CoV-2 clearance in COVID-19 patients with Novaferon treatment: A randomized, open-label, parallel-group trial. Int J Infect Dis 2020;99:84-91. doi:10.1016/j.ijid.2020.07.053
Zhong M, Sun A, Xiao T, et al. A Randomized, Single-blind, Group sequential, Active-controlled Study to evaluate the clinical efficacy and safety of α-Lipoic acid for critically ill patients with coronavirus disease 2019 (COVID-19). medRxiv 2020. doi:10.1101/2020.04.15.20066266

Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate COVID-19 in India: An open-label parallel-arm phase II multicentre randomized controlled trial (PLACID Trial). medRxiv 2020. doi:10.1101/2020.09.03.20187252

Avendano-Sola C, Ramos-Martinez A, Munez-Rubio E, et al. Convalescent Plasma for COVID-19: A multicenter, randomized clinical trial. medRxiv 2020. doi:10.1101/2020.08.26.20184444

Balcells ME, Rojas L, Le Corre N, et al. Early Anti-SARS-CoV-2 Convalescent Plasma in Patients Admitted for COVID-19: A Randomized Phase II Clinical Trial. medRxiv 2020. doi:10.1101/2020.09.17.20196212

Bandopadhyay P, D’Rozario R, Lahiri A, et al. Nature and dimensions of the cytokine storm and its attenuation by convalescent plasma in severe COVID-19. medRxiv 2020. doi:10.1101/2020.09.21.20199109

Gharbharan A, Jordans CCE, GeurtsvanKessel C, et al. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv 2020. doi:10.1101/2020.07.01.20139857

Gharebaghi N, Nejadrahim R, Mousavi SJ, et al. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis 2020;20(1):786. doi:10.1186/s12879-020-05507-4

Li L, Zhang W, Hu Y, et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020;324(5):460-70. doi:10.1001/jama.2020.10044

Sakoulas G, Geriak M, Kullar R, et al. Intravenous Immunoglobulin (IVIG) Significantly Reduces Respiratory Morbidity in COVID-19 Pneumonia: A Prospective Randomized Trial. medRxiv 2020. doi:10.1101/2020.07.20.20157891

Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020;11(1):361. doi:10.1186/s13287-020-01875-5

Abella BS, Jolkovsky EL, Biney BT, et al. Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers: A Randomized Clinical Trial. JAMA Intern Med 2020. doi:10.1001/jamainternmed.2020.6319

Amat-Santos IJ, Santos-Martinez S, Lopez-Otero D, et al. Ramipril in High-Risk Patients With COVID-19. J Am Coll Cardiol 2020;76(3):268-76. doi:10.1016/j.jacc.2020.05.040

Boulware DR, Pullen MF, Bangdiwala AS, et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N Engl J Med 2020;383(6):517-25. doi:10.1056/NEJMoA2016638

Grau-Pujol B, Campubri D, Marti-Soler H, et al. Pre-exposure prophylaxis with hydroxychloroquine for COVID-19: initial results of a double-blind, placebo-controlled randomized clinical trial. BMC Infect Dis 2020;pre-print. doi:10.21203/rs.3.rs-72132/v1

Mitja O, Ubals M, Corbacho M, et al. A Cluster-Randomized Trial of Hydroxychloroquine as Prevention of Covid-19 Transmission and Disease. medRxiv 2020. doi:10.1101/2020.07.20.20157651

Rajasingham R, Bangdiwala AS, Nicol MR, et al. Hydroxychloroquine as pre-exposure prophylaxis for COVID-19 in healthcare workers: a randomized trial. medRxiv 2020. doi:10.1101/2020.09.18.20197327

Ramanan M, Stolz A, RooplaLSingh R, et al. An evaluation of the quality and impact of the global research response to the COVID-19 pandemic. Med J Aust 2020;213(8):380-80 e1. doi:10.5694/mja2.50790

Janiaud P, Cristea IA, Ioannidis JPA. Industry-funded versus non-profit-funded critical care research: a meta-epidemiological overview. Intensive Care Med 2018;44(10):1613-27. doi:10.1007/s00134-018-5325-3
105 Khan NA, Lombeida JI, Singh M, et al. Association of industry funding with the outcome and quality of randomized controlled trials of drug therapy for rheumatoid arthritis. *Arthritis Rheum* 2012;64(7):2059-67. doi:10.1002/art.34393

106 Montgomery JH, Byerly M, Carmody T, et al. An analysis of the effect of funding source in randomized clinical trials of second generation antipsychotics for the treatment of schizophrenia. *Control Clin Trials* 2004;25(6):598-612. doi:10.1016/j.cct.2004.09.002

107 Falk Delgado A, Falk Delgado A. The association of funding source on effect size in randomized controlled trials: 2013-2015 - a cross-sectional survey and meta-analysis. *Trials* 2017;18(1):125. doi:10.1186/s13063-017-1872-0

108 Zhang Z, Xu X, Ni H. Small studies may overestimate the effect sizes in critical care meta-analyses: a meta-epidemiological study. *Crit Care* 2013;17(1):R2. doi:10.1186/cc11919

109 Lamontagne F, Agoritsas T, Macdonald H, et al. A living WHO guideline on drugs for covid-19. *BMJ* 2020;370:m3379. doi:10.1136/bmj.m3379
TABLES

Table 1. Study characteristics & risk of bias.

Study characteristics	All studies N = 91	Statistically significant effect reported?
	Yes N = 38	No N = 53
Overall Characteristics		
Country†		
African Region	0 (0%)	0 (0%)
Region of the Americas	22 (24.2%)	12 (22.6%)
South-East Asia Region	1 (1.1%)	1 (1.9%)
European Region	17 (18.7%)	12 (22.6%)
Eastern Mediterranean Region	15 (16.5%)	6 (11.3%)
Western Pacific Region	30 (33%)	18 (34%)
> 1 Region	6 (6.6%)	4 (7.5%)
Trial registration		
Registered	88 (96.7%)	52 (98.1%)
Not registered	3 (3.2%)	1 (1.9%)
Publication status		
Peer-reviewed publication	54 (59.3%)	31 (58.5%)
Preprint	37 (40.7%)	22 (41.5%)
Trial status		
Completed	57 (62.6%)	30 (56.6%)
Ongoing, interim data reported	9 (9.9%)	3 (5.7%)
Completed, terminated early	25 (27.5%)	20 (37.7%)
Interventions & Comparators		
Type of intervention		
Therapeutic intervention		
Pharmacological agent	76 (83.5%)	42 (79.2%)
Blood product	9 (9.9%)	5 (9.4%)
Prophylaxis intervention	6 (6.6%)	6 (11.3%)
Design Characteristics		
Centre status		
Single centre	40 (44%)	16 (30.2%)
Multicentre	51 (56%)	37 (69.8%)
Funding source		
No industry funding/ support	60 (65.9%)	35 (66%)
Industry funding/ support/ not reported	31 (34.1%)	18 (34%)
Trial sample size		
Median (IQR)	84 (48, 199)	102 (54.5, 402.5)
Risk of Bias (RoB)	Low/ Probably Low	High/ Probably High
--	-------------------	---------------------
Overall RoB	16 (17.6%)	75 (82.4%)
	6 (15.8%)	32 (84.2%)
	10 (18.9%)	43 (81.1%)
Bias from randomization process	43 (47.3%)	48 (52.7%)
	10 (26.3%)	28 (73.7%)
	33 (62.3%)	20 (37.7%)
Bias due to deviation from intended	16 (17.6%)	75 (82.4%)
intervention	5 (13.2%)	33 (86.8%)
	11 (20.8%)	42 (79.2%)
Bias due to incomplete outcome data	85 (93.4%)	6 (6.6%)
	35 (92.1%)	3 (7.9%)
	50 (94.3%)	3 (5.7%)
Bias due to primary outcome measurement	79 (86.8%)	12 (13.2%)
	31 (81.6%)	7 (18.4%)
	48 (90.6%)	5 (9.4%)
Bias due to selective outcome reporting	88 (96.7%)	3 (3.3%)
	37 (97.4%)	1 (2.6%)
	51 (96.2%)	2 (3.8%)

Primary Outcomes

Primary outcome data type	Binary	Continuous	Ordinal	> 1 type of primary outcome data
	39 (42.9%)	37 (40.7%)	5 (5.5%)	10 (11%)
	13 (34.2%)	16 (42.1%)	1 (2.6%)	8 (21.1%)
	26 (49.1%)	21 (39.6%)	4 (7.5%)	2 (3.8%)

Primary outcome category	Therapeutic studies	Prophylaxis studies	
	Clinical recovery/ symptom resolution	Confirmed/ suspected COVID-19	
	Viral clearance		
	Mortality		
	Outcomes related to organ support		
	Radiological or laboratory results		
	Composite outcome		
	> 1 primary outcome reported		
	Other		
	26 (28.6%)	6 (6.6%)	
	15 (16.5%)	0 (0%)	
	8 (8.8%)		
	5 (5.5%)		
	6 (6.6%)		
	3 (3.3%)		
	15 (16.5%)		
	7 (7.7%)		
	6 (6.6%)		
	0 (0%)		
	18 (34%)		
	10 (18.9%)		
	5 (9.4%)		
	3 (5.7%)		
	5 (9.4%)		
	3 (5.7%)		

Patient important vs. surrogate primary outcome	Patient outcome	Surrogate outcome	Both
	63 (69.2%)	24 (63.2%)	39 (73.6%)
	26 (28.6%)	12 (31.6%)	14 (26.4%)
	2 (2.2%)	2 (5.3%)	0 (0%)

1 Countries categorized according to regions as defined by the World Health Organization.
Table 2. Association between trial characteristics and statistically significant results in primary outcome of Covid-19 clinical trials.

Predictor variables	Univariable analysis	Multivariable model		
	OR (95% CI)	p	OR (95% CI)	p
RoB due to randomization process¹	3.89 (1.46 to 10.36)	0.01	3.77 (1.47 to 9.72)	0.01
Single centre vs. multicentre	3.93 (1.38 to 11.19)	0.01	3.15 (1.25 to 7.97)	0.02
Industry vs. non-industry support	1.82 (0.61 to 5.43)	0.28	-	-
Total sample size	1.00 (1.00 to 1.00)	0.76	-	-

RoB: risk of bias; OR: odds ratio; CI: confidence interval
¹ Dichotomized into low/ probably low vs. high/ probably high
Figure 1. The geographical distribution of trials according to WHO region.

Figure 2. Risk of bias according to trial finding.