Reduced Threshold for Luminal Ca\(^{2+}\) Activation of RyR1 Underlies a Causal Mechanism of Porcine Malignant Hyperthermia

Dawei Jiang\(^{1}\), Wenqian Chen\(^{1}\), Jianmin Xiao\(^{1}\), Ruiwu Wang\(^{1}\), Huihui Kong\(^{1}\), Peter P. Jones\(^{1}\), Lin Zhang\(^{1}\), Bradley Fruen\(^{2}\), and S. R. Wayne Chen*\(^{1}\)

From the \(^{1}\)Libin Cardiovascular Institutes of Alberta, Departments of Physiology and Biophysics, and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1, \(^{2}\)Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota.

Running Title: MH and enhanced luminal Ca\(^{2+}\) activation of RyR1

\(^{a}\) DJ and WC contributed equally to this work. Recipients of the Alberta Heritage foundation for Medical Research (AHFMR) Studentship Award.

*AHFMR Scientist. To whom correspondence should be addressed. 3330 Hospital Drive N.W., Calgary, AB, Canada, T2N 4N1. Tel.: 403-220-4235; e-mail: swchen@ucalgary.ca.

Naturally-occurring mutations in the skeletal muscle Ca\(^{2+}\) release channel/ryanodine receptor (RyR1) are linked to malignant hyperthermia (MH), a life-threatening complication of general anesthesia. Although it has long been recognized that MH results from uncontrolled or spontaneous Ca\(^{2+}\) release from the sarcoplasmic reticulum, how MH RyR1 mutations render the sarcoplasmic reticulum susceptible to volatile anesthetic-induced spontaneous Ca\(^{2+}\) release is unclear. Here we investigated the impact of the porcine MH mutation, R615C, the human equivalent of which also causes MH, on the intrinsic properties of the RyR1 channel and the propensity for spontaneous Ca\(^{2+}\) release during store Ca\(^{2+}\) overload, a process we refer to as store-overload-induced Ca\(^{2+}\) release (SOICR). Single channel analyses revealed that the R615C mutation markedly enhanced the luminal Ca\(^{2+}\) activation of RyR1. Moreover, HEK293 cells expressing the R615C mutant displayed a reduced threshold for SOICR compared to cells expressing RyR1-wt. Furthermore, the MH triggering agent, halothane, potentiated the response of RyR1 to luminal Ca\(^{2+}\) and SOICR. Conversely, dantrolene, an effective treatment for MH, suppressed SOICR in HEK293 cells expressing the R615C mutant, but not in cells expressing an RyR2 mutant. These data suggest that the R615C mutation confers MH susceptibility by reducing the threshold for luminal Ca\(^{2+}\) activation and SOICR, while volatile anesthetics trigger MH by further reducing the threshold, whereas dantrolene suppresses MH by increasing the SOICR threshold. Together, our data support a view in which altered luminal Ca\(^{2+}\) regulation of RyR1 represents a primary causal mechanism of MH.

INTRODUCTION

Malignant hyperthermia (MH) is an autosomal dominant, pharmacogenetic disorder of skeletal muscle. MH is triggered by volatile anesthetics (e.g. halothane) and depolarizing muscle relaxants and is characterized by muscle rigidity and a hypermetabolic state (1-5). MH also occurs in pigs, in which it is caused by stress and known as porcine stress syndrome (6, 7). A single point mutation, R615C, in the pig skeletal muscle ryanodine receptor (RyR1) is responsible for all cases of porcine MH (6, 7). A single point mutation, R615C, in the pig skeletal muscle ryanodine receptor (RyR1) is responsible for all cases of porcine MH (6, 7). On the other hand, human MH has been linked to a large number of mutations in RyR1 (4, 5, 8). Some human RyR1 mutations have also been linked to central core disease (CCD), which is often associated with MH. Although the genetic basis of MH has been well defined, the molecular mechanisms by which RyR1 mutations confer MH susceptibility and
volatile anesthetics and stress trigger MH are not completely understood.

The pig model has proved invaluable in investigating the molecular basis of MH, and these studies have consistently demonstrated that Ca\(^{2+}\) release from MH susceptible (MHS) pig skeletal muscle or sarcoplasmic reticulum (SR) membrane vesicles is enhanced upon exposure to various stimuli (1, 4, 9-14). However, to date no clear mechanistic basis of this enhanced responsiveness of MHS RyR1 channels to stimuli has emerged. For example, some studies reported that this enhanced activity of MHS RyR1 channels was associated with changes in the apparent sensitivity of the channel to cytosolic Ca\(^{2+}\) or Mg\(^{2+}\), whereas others found no marked difference in the apparent sensitivity to cytosolic Ca\(^{2+}\) activation between MHS and normal RyR1 channels (1, 13-20). Hence, the intrinsic properties of the RyR1 channel that are altered by the MH R615C mutation have remained undefined.

Increasing evidence has highlighted the importance not only of cytosolic Ca\(^{2+}\), but also of luminal Ca\(^{2+}\) in controlling the activity of the RyR channel (21-23). However, in comparison to the extensive investigations of the sensitivity of MHS RyR1 channels to cytosolic Ca\(^{2+}\) and Mg\(^{2+}\), effects of the MH R615C mutation on the luminal Ca\(^{2+}\) sensitivity of the channel remain largely unexplored. A notable exception is found among the earliest work investigating the effect of the MH R615C mutation on Ca\(^{2+}\) handling by isolated SR membranes (13, 24, 25). Nelson and colleagues originally reported that the luminal Ca\(^{2+}\) load required to trigger spontaneous SR Ca\(^{2+}\) release was markedly reduced in SR membranes isolated from MHS animals, suggesting that a defect in intraluminal Ca\(^{2+}\) regulation may underlie MH (13, 24, 25).

We have recently shown that disease-causing mutations in the cardiac ryanodine receptor (RyR2) increase the sensitivity of the channel to activation by luminal Ca\(^{2+}\) and enhance the propensity for spontaneous Ca\(^{2+}\) release during store Ca\(^{2+}\) overload, a process we have termed store-overload-induced Ca\(^{2+}\) release (SOICR) (26, 27). Interestingly, disease-linked RyR2 mutations are located in regions corresponding to the MH/CCD mutation regions in RyR1 (28). This similar distribution suggests that disease-linked RyR2 and RyR1 mutations may exert similar effects on the intrinsic properties of the channel. To test this hypothesis, in the present study, we assessed the impact of the MH R615C mutation and MH-triggering agent, halothane, on the response of RyR1 to luminal Ca\(^{2+}\) and the propensity for SOICR. We found that the R615C mutation and halothane potentiated luminal Ca\(^{2+}\) response and SOICR. On the other hand, dantrolene, the only treatment for MH, suppressed SOICR. We propose that a reduced threshold for SOICR as a result of augmented luminal Ca\(^{2+}\) activation of RyR1 represents a primary defect underlying the pathogenesis of MH.

EXPERIMENTAL PROCEDURES

Site-directed mutagenesis

The R615C RyR1 MH mutation in the rabbit RyR1 cDNA was made by the PCR-based overlap extension method (29). The sequence of the PCR-amplified region was confirmed by DNA sequencing. The full-length RyR1 wt and R615C mutant cDNAs were subcloned into the mammalian expression vector pcDNA3.

Single channel recordings

Pig RyR1-wt and R615C mutant proteins were partially purified from normal and MHS pig SR microsomes by sucrose density gradient centrifugation. Heart phosphatidylethanolamine and brain phosphatidylerine (Avanti Polar Lipids), dissolved in chloroform, were combined in a 1:1 ratio (wt/wt), dried under nitrogen gas, and suspended in 30 µl of n-decane at a concentration of 12 mg lipid per ml. Bilayers were formed across a 250 µm hole in a Delrin partition separating two chambers. The trans chamber (800 µl) was connected to the head stage input of an Axopatch 200A amplifier (Axon Instruments, Austin, TX). The cis chamber (1.2 ml) was held at virtual ground. A symmetrical solution containing 250 mM KCl and 25 mM Hepes (pH 7.4), was used for all recordings, unless indicated otherwise. A 4-µl aliquot (≈ 1 µg of protein) of the sucrose density gradient-purified wt or mutant RyR1 proteins was added to the cis chamber. Spontaneous channel activity was always tested for sensitivity to EGTA and Ca\(^{2+}\). The chamber to which the addition of EGTA inhibited the activity of the incorporated channel presumably corresponds to the cytoplasmic side of the Ca\(^{2+}\).
release channel. The direction of single channel currents was always measured from the luminal to the cytoplasmic side of the channel, unless mentioned otherwise. Recordings were filtered at 5,000 Hz. Data analyses were carried out using the pclamp 8.1 software package (Axon Instruments). Free Ca^{2+} concentrations were calculated using the computer program of Fabiato and Fabiato (30).

Generation of stable, inducible HEK293 cell lines

Stable, inducible HEK293 cell lines expressing RyR1 wt and the R615C mutant were generated using the Flp-In T-REx Core Kit from Invitrogen. Briefly, the full-length cDNA encoding the RyR1 wt or mutant channel was subcloned into the inducible expression vector, pcDNA5/FRT/TO. Flp-In T-REx-293 cells were then co-transfected with the inducible expression vector, pcDNA5/FRT/TO containing the RyR1 wt or mutant cDNA and the pOG44 vector encoding the Flp recombinase in 1:5 ratios using the Ca^{2+} phosphate precipitation method. Transfected cells were washed with PBS (137 mM NaCl, 8 mM Na_{2}HPO_{4}, 1.5 mM KH_{2}PO_{4}, 2.7 mM KCl) 1 day after transfection and allowed to grow for 1 more day in fresh medium. The cells were then washed again with PBS, harvested, and plated onto new dishes. After the cells had attached (~4 hrs), the growth medium was replaced with a selective medium containing various concentrations of hygromycin (Invitrogen). The selective medium was changed 4 days until the desired number of cells was grown. The hygromycin-resistant cells were pooled, aliquoted, and stored at −80°C. These positive cells are believed to be isogenic, because the integration of the RyR1 cDNA is mediated by the Flp recombinase at a single FRT site. Each HEK293 cell line was tested for RyR1 expression using Western blotting analysis and immunocytofluorescence staining.

Single cell Ca^{2+} imaging (cytosolic Ca^{2+})

Intracellular Ca^{2+} transients in stable inducible HEK293 cells expressing the RyR1 wt or the R615C mutant channels were measured using single-cell Ca^{2+} imaging and the fluorescence Ca^{2+} indicator dye fura-2 acetoxymethyl ester (fura-2 AM) as described previously (26). Cells grown on glass coverslips for 24 hrs after induction by 1 mg/ml tetracycline (Sigma) were loaded with 5 µM fura-2 AM in Krebs- Ringer- Hepes (KRH) buffer (125 mM NaCl, 5 mM KCl, 1.2 mM KH_{2}PO_{4}, 6 mM glucose, 1.2 mM MgCl_{2}, 25 mM Hepes, pH 7.4) plus 0.02% pluronic F-127 (Molecular Probes) and 0.1 mg/ml BSA for 20 min at room temperature. The coverslips were then mounted in a perfusion chamber (Warner Instruments, Hamden, CT) on an inverted microscope (Nikon TE2000-S) equipped with an S-Fluor 20x/0.75 objective. The cells were continuously perfused with KRH buffer containing various concentrations of CaCl_{2} (0.2-10 mM) at room temperature. 10 mM caffeine was applied at the end of each experiment to confirm the expression of active RyR1 channels. Time-lapse images (0.33 frames s^{-1}) were captured and analyzed with the Compix Inc.

RESULTS

The porcine MH R615C mutation enhances the luminal Ca^{2+} activation of single RyR1 channels

To directly assess the impact of the R615C mutation on luminal Ca^{2+} activation, we incorporated single normal (RyR1-wt) and MHS (RyR1-R615C) RyR1 channels into planar lipid bilayers and examined their responses to increasing concentrations of luminal Ca^{2+}. As shown in Fig.1A, elevating the luminal Ca^{2+}
concentration from ~45 nM to 50 mM had little effect on single wt channels, but markedly activated single R615C mutant channels with an activation threshold about 0.5 mM luminal Ca\(^{2+}\) (Fig.1Ae). For instance, at 1.2 mM luminal Ca\(^{2+}\), the average open probability (Po) for single R615C mutant channels was 0.070 ± 0.024 (n = 14) (Fig.1Ad), which was significantly greater than that of single wt channels (0.001 ± 0.0004, n = 8) (P < 0.05) (Fig.1Ab). These observations directly demonstrate that the R615C mutation enhances the response of the RyR1 channel to luminal Ca\(^{2+}\) activation.

The R615C mutation has little effect on the cytosolic Ca\(^{2+}\) dependence of single RyR1 channels

We next determined the response of wt and R615C to cytosolic Ca\(^{2+}\) using single channel recordings. As shown in Fig. 1B, both single wt and R615C channels were maximally activated by ~10 µM cytosolic Ca\(^{2+}\) with an activation threshold about ~100 nM, and were completely inhibited by ~5 mM Ca\(^{2+}\). Although the extent of maximum activation of the R615C channels by cytosolic Ca\(^{2+}\) was greater than that of the wt channels (Fig. 1Ba), the cytosolic Ca\(^{2+}\) dependence of activation or inactivation of the wt and R615C channels was similar, as seen from the normalized Ca\(^{2+}\) responses (Fig. 1Bb). These observations indicate that the R615C mutation does not markedly alter the sensitivity of single RyR1 channels to cytosolic Ca\(^{2+}\) activation or inactivation.

Halothane potentiates the luminal Ca\(^{2+}\) response of single RyR1 channels

The effect of halothane on the luminal Ca\(^{2+}\) activation of single RyR1 channels was also investigated (Fig. 2). A single R615C mutant channel exhibited little activity in the presence of 45 mM cytosolic and luminal Ca\(^{2+}\) (Fig. 2A). The addition of 600 µM luminal Ca\(^{2+}\) slightly activated the channel (Fig. 2B). A subsequent addition of 20 mM halothane to the cytosolic side of the channel markedly increased the channel activity (Fig. 2C). The average Po after the addition of halothane was 0.176 ± 0.049 (n = 6) in the presence of 600 µM luminal Ca\(^{2+}\), which was significantly greater than that before the addition of halothane (0.030 ± 0.004) (n = 6) (P < 0.03). It should be noted that halothane has been shown to have little effect on the apparent affinity of EGTA for Ca\(^{2+}\) (32). Importantly, this halothane-induced enhancement was dependent on the presence of luminal Ca\(^{2+}\). Reducing the luminal Ca\(^{2+}\) from 600 µM to ~35 nM decreased the channel activity to the basal level (Fig. 2D). Similarly, halothane also activated single RyR1-wt channels in a luminal Ca\(^{2+}\) dependent manner (not shown). It should be noted that due to its highly volatile nature, the actual concentration of halothane in the bilayer recording solution would be much lower than that added to the chamber. Nevertheless, these data indicate that at low cytosolic Ca\(^{2+}\), halothane potentiates the response of RyR1 to luminal Ca\(^{2+}\).

Halothane and the R615C mutation enhance the propensity for SOICR in HEK293 cells

It has long been demonstrated that halothane induced spontaneous contracture in MHS muscle, but not in normal muscle in an external Ca\(^{2+}\) dependent manner (33), and that the halothane-induced spontaneous SR Ca\(^{2+}\) release was dependent on SR Ca\(^{2+}\) load (34). To determine whether halothane and the R615C mutation also augment RyR1-mediated spontaneous Ca\(^{2+}\) release or SOICR in a non-muscle environment, we generated stable, inducible HEK293 cell lines expressing wt or R615C. We have previously shown that elevated [Ca\(^{2+}\)]_o induces SOICR in HEK293 cells expressing RyR2 (26, 27). Unlike RyR2-expressing cells, cells expressing RyR1-wt or the R615C mutant did not show SOICR in response to elevated [Ca\(^{2+}\)]_o in the absence of stimuli (Fig. 3Ab). However, in the presence of low concentrations of halothane, elevated [Ca\(^{2+}\)]_o triggered SOICR in both RyR1-wt- and the R615C mutant-expressing HEK293 cells (Fig. 3Aa, Ab). Analyzing a number of oscillating cells revealed that HEK293 cells expressing R615C displayed a greater propensity for SOICR than cells expressing wt (Fig. 3Ab). The frequency of Ca\(^{2+}\) oscillations in cells expressing the R615C mutant was also much higher than that in cells expressing wt (Fig. 3Ac). Similar results were obtained when halothane was replaced with caffeine (Fig. 3Ad, Ae). The parental HEK293 cells do not express a detectable level of RyRs (26, 35). These observations indicate that the MH R615C mutation, halothane, and caffeine can enhance the propensity for SOICR in a non-muscle environment, suggesting that the response of
RyR1 to Ca\(^{2+}\) overload is a major determinant of halothane- or caffeine-induced spontaneous Ca\(^{2+}\) release.

The R615C mutation reduces the luminal Ca\(^{2+}\) threshold at which SOICR occurs

To directly measure the luminal Ca\(^{2+}\) threshold at which SOICR occurs, we used a fluorescence resonance energy transfer (FRET) based endoplasmic reticulum (ER) Ca\(^{2+}\) sensor protein, D1ER (31), to monitor the ER luminal Ca\(^{2+}\) dynamics during store Ca\(^{2+}\) overload in HEK293 cells expressing RyR1-wt or R615C. As shown in Fig. 3Ba and 3Bb, elevated [Ca\(^{2+}\)]\(_{o}\) increased the level of ER luminal Ca\(^{2+}\). When the luminal Ca\(^{2+}\) reached a threshold level, SOICR occurred, displaying as downward deflections in the FRET signal. SOICR was then suppressed by 1.0 mM tetracaine, an inhibitor of RyR1, to estimate the maximum luminal Ca\(^{2+}\) level. Caffeine (20 mM), an activator of RyR1, was then used to estimate the minimum luminal Ca\(^{2+}\) level by emptying the store. Fig. 3Bc shows the luminal Ca\(^{2+}\) threshold (% of maximum luminal Ca\(^{2+}\) store capacity) at which SOICR occurs is significantly lower in cells expressing R615C (76.1 ± 0.8%, n = 243) than in cells expressing wt (89.5 ± 1.0%, n = 106) (p < 0.00001) in the presence of 2 mM caffeine. There was no significant difference in the maximum luminal Ca\(^{2+}\) store capacity between the R615C expressing cells (105.5 ± 6.2%) and the wt expressing cells (100%) (P = 0.25), which was calculated by subtracting the minimum FRET signal (in the presence of 20 mM caffeine) from the maximum FRET signal (in the presence of 1 mM tetracaine). Similarly, the luminal Ca\(^{2+}\) threshold at which SOICR occurs is significantly lower in cells expressing R615C (80.0 ± 3.1%, n = 107) than in cells expressing wt (93.2 ± 0.8%, n = 108) (p < 0.00001) in the presence of 2 mM halothane. The resting luminal Ca\(^{2+}\) level in the presence of near 0 mM external Ca\(^{2+}\) and 2 mM caffeine is also lower in cells expressing R615C (34.0 ± 2.9%) than in cells expressing wt (54.5 ± 4.5%) (p < 0.00001). Similarly, the resting luminal Ca\(^{2+}\) level in the presence of near 0 mM external Ca\(^{2+}\) and 2 mM halothane is lower in cells expressing R615C (62.8 ± 3.3 %) than in cells expressing wt (81.5 ± 2.4%) (p < 0.00001). Taken together, these data are consistent with those of single channel studies showing that the R615C mutation and halothane enhance the response of RyR1 to luminal Ca\(^{2+}\), leading to a reduced SOICR threshold and resting ER Ca\(^{2+}\) level.

Dantrolene abolishes SOICR in HEK293 cells expressing RyR1-R615C, but not in cells expressing RyR2-N4104K

It has also long been shown that dantrolene suppressed caffeine- or halothane-induced spontaneous contracture in MHS muscle (36, 37), and that dantrolene inhibited spontaneous Ca\(^{2+}\) release from skeletal muscle SR, but not from cardiac muscle SR (38). To determine whether dantrolene can also suppress caffeine-induced spontaneous Ca\(^{2+}\) release in a non-muscle environment, we assessed the impact of dantrolene on SOICR in HEK293 cells. As shown in Fig. 4, HEK293 cells expressing the RyR1-R615C mutant exhibited Ca\(^{2+}\) oscillations in the presence of 5 mM [Ca\(^{2+}\)]\(_{o}\) plus 2.0 mM caffeine. The addition of 100 nM dantrolene diminished these oscillations, reducing the number of oscillating cells by ~80% (Figs. 4A,B). Fig. 4C shows that dantrolene suppressed SOICR in HEK293 cells expressing either the R615C mutant or RyR1-wt with an IC\(_{50}\) of ~10-20 nM. Interestingly and in contrast, dantrolene did not abolish Ca\(^{2+}\) oscillations in HEK293 cells expressing the disease-causing RyR2 mutation, N4104K, even at high concentrations (10 µM) (Fig. 4D). These data demonstrate that dantrolene potently suppresses RyR1-mediated, but not RyR2-mediated, SOICR in HEK293 cells, and therefore suggest that the inhibition of RyR1-mediated SOICR may represent a primary therapeutic action of dantrolene.

DISCUSSION

Investigations over the past decades have greatly advanced our understanding of the molecular and cellular mechanisms of MH. However, some fundamental questions still remain, including (1) what intrinsic properties of the RyR1 channel altered by mutations are principally responsible for MH pathogenesis? (2) how do volatile anesthetics trigger MH? and (3) how does dantrolene suppress MH? In the present study, we demonstrated that both the MH R615C mutation and MH-triggering agent, halothane, sensitize the RyR1 channel to activation by luminal Ca\(^{2+}\) and reduce the threshold for SOICR.
In contrast, dantrolene, an effective treatment for MH, suppresses SOICR. Based on these observations, we propose that volatile anesthetics, by further reducing the already reduced threshold for SOICR in the MHS muscle, trigger spontaneous Ca\(^{2+}\) release and thus MH, whereas dantrolene suppresses spontaneous Ca\(^{2+}\) release and MH by increasing the SOICR threshold.

The MH R615C mutation sensitizes the RyR1 channel to luminal Ca\(^{2+}\) activation

Despite the consistent observation that the MHS pig RyR1 channel is more active than the normal RyR1 channel upon stimulation, many studies have failed to detect major changes in the intrinsic sensitivity of the MHS RyR1 channel to cytosolic Ca\(^{2+}\) activation (1, 13, 15, 16, 19, 20). Consistent with these previous observations, we observed little effect of the MH R615C mutation on the cytosolic Ca\(^{2+}\) dependence of single RyR1 channels (Fig. 1B). How then do the MHS and normal RyR1 channels with similar intrinsic sensitivities to cytosolic Ca\(^{2+}\) activation respond so differently to activation by various stimuli? Given the importance of luminal Ca\(^{2+}\) in regulating SR Ca\(^{2+}\) release, we reasoned that MH mutations may alter the response of the RyR1 channel to luminal Ca\(^{2+}\). To address this possibility, in the present study, we directly assessed the impact of the MH R615C mutation on the sensitivity of single RyR1 channels to luminal Ca\(^{2+}\) activation. We found that the MH R615C mutation markedly enhanced the luminal Ca\(^{2+}\) activation of RyR1 (Fig. 1A), and that halothane potentiated this response (Fig.2). These results therefore suggest that an enhanced sensitivity of the RyR1 channel to luminal Ca\(^{2+}\) may be a primary defect resulting from the R615C mutation, which may contribute to the observed enhanced activity.

It remains, however, to be determined how the R615C mutation, which is located in the cytoplasmic domain of the channel, affects luminal Ca\(^{2+}\) activation. It has been proposed that the MH R615C mutation weakens the interactions between the N-terminal and the central domains and consequently destabilizes the closed state of the channel (20). It is possible that these domain-domain interactions are involved in the activation of the channel by luminal Ca\(^{2+}\), and that weakening these interactions facilitates luminal Ca\(^{2+}\) activation.

The R615C mutation and halothane reduce the threshold for SOICR

Since SOICR is triggered by the luminal Ca\(^{2+}\) activation of RyR, an enhanced luminal Ca\(^{2+}\) response would lead to an increased propensity for SOICR. In line with this, we found that halothane and caffeine enhanced SOICR in HEK293 cells expressing the RyR1-wt or the R615C mutant (Fig. 3A), and that HEK293 cells expressing the R615C mutant displayed a reduced threshold for SOICR compared to cells expressing the RyR1-wt (Figs. 3B). Consistent with these observations, a number of human MH RyR1 mutations have also been shown to increase the incidence of spontaneous Ca\(^{2+}\) release when expressed in dyspedic myotubes (39). Hence, an enhanced propensity for SOICR may be a common defect of MH RyR1 mutations.

Our observations are also consistent with the results of early studies of the MHS and normal pig skeletal muscles. Nelson et al. demonstrated that halothane induced spontaneous contracture in MHS muscle, but not in normal muscle, and that this halothane-induced contracture is dependent on the external Ca\(^{2+}\) concentrations (33). Nelson also showed that the threshold amount of SR Ca\(^{2+}\) load required for Ca\(^{2+}\)-induced Ca\(^{2+}\) release (CICR) to occur in MHS pig SR vesicles was lower than that in normal pig SR, and that halothane lowered this threshold. These observations have led to the proposal that a defect in some intraluminal regulatory site for Ca\(^{2+}\) release may underlie MH (13, 24, 25). Notably, these observations preceded the cloning of the RyR1 cDNA and the identification of the porcine MH mutation R615C. Similarly, Ohnishi et al. demonstrated that the SR Ca\(^{2+}\) content required for halothane-induced Ca\(^{2+}\) release in MHS pig SR was also lower than that in normal SR (34). Interestingly, when the SR Ca\(^{2+}\) load was below the threshold level, halothane was unable to induce Ca\(^{2+}\) release from either normal or MHS SR vesicles (34). Consistent with these observations, we found that the activation of single RyR1 channels by halothane was also dependent on luminal Ca\(^{2+}\) (Fig. 2), and that halothane and caffeine increased the propensity for SOICR. Taken together, the results of our single channel and SOICR studies and those of previous SR Ca\(^{2+}\) release studies suggest that a reduced threshold for SOICR as a result of enhanced luminal Ca\(^{2+}\)
activation of RyR1 underlies a causal mechanism of MH.

Suppression of SOICR is a primary action of dantrolene

Dantrolene, an effective treatment for MH, markedly suppresses spontaneous muscle contracture and SR Ca\(^{2+}\) release (36, 37). Despite its remarkable impact on MH, dantrolene up to ~50 µM only partially inhibits voltage- or Ca\(^{2+}\)-induced SR Ca\(^{2+}\) release, suggesting that the primary action of dantrolene is unlikely to lie in the suppression of voltage- or Ca\(^{2+}\)-induced SR Ca\(^{2+}\) release (40-42). On the other hand, if enhanced SOICR activity due to reduced SOICR threshold is the cause of MH, one would expect that dantrolene at clinically relevant concentrations (1-10 µM) would be able to diminish RyR1-mediated SOICR activity even in a non-muscle environment. Indeed, we found that dantrolene inhibited SOICR in HEK293 non-muscle cells expressing the R615C mutant with an IC\(_{50}\) of ~ 20 nM (Fig. 4). Similarly, Zhang et al. have recently shown that azumolene, a dantrolene analog, decreased the frequency of spontaneous Ca\(^{2+}\) sparks in skeletal muscle fibers with an IC\(_{50}\) of ~250 nM (43). The fact that much lower concentrations of dantrolene are required for suppressing RyR1-mediated SOICR compared to those required for inhibiting voltage-triggered SR Ca\(^{2+}\) release suggests that the suppression of RyR1-mediated SOICR may be a primary action of dantrolene.

Whether direct and specific binding of dantrolene to the RyR1 channel may fully account for its therapeutic actions as a skeletal muscle relaxant and antidote for MH has remained an open question (44-46). In this regard, we were unable to detect significant effects of dantrolene on either the cytosolic or luminal Ca\(^{2+}\) activation of single RyR1 channels incorporated into lipid bilayers (not shown), despite the marked effects of dantrolene on RyR1-mediated SOICR that we observed. The reasons for this apparent discrepancy are unknown. It has been shown that dantrolene binds to the N-terminal region of RyR1 and stabilizes domain-domain interactions, indicating that RyR1 or its complex is a direct target of dantrolene (47, 48). However, the functional manifestation of dantrolene binding to RyR1 may require the presence of other factors such as calmodulin, ATP or other RyR1 associated proteins (41, 42). Importantly, we found that dantrolene did not affect SOICR in cells expressing a mutant RyR2 channel (Fig. 4). Thus our results convincingly demonstrate that dantrolene suppression of SOICR is strictly dependent on the expression of the RyR1 isoform. It has recently been shown that RyR1 is associated with components of the store-operated Ca\(^{2+}\) entry pathway (SOCE) and that azumolene suppresses SOCE that is coupled to RyR1 (49, 50). It is, therefore, possible that the interaction between RyR1 and components of SOCE or other unknown RyR1-associated proteins is required for the action of dantrolene. Clearly, further studies are needed to understand the molecular mechanism by which dantrolene suppresses SOICR.

A new view of MH

Our results support a model in which the MH R615C mutation and the MH-triggering agent halothane reduce the threshold for luminal Ca\(^{2+}\) activation of RyR1 and thus the threshold for SOICR, whereas the MH-suppressing agent, dantrolene, inhibits SOICR (Fig.5). In this view, the threshold for SOICR from normal SR is higher than the SR free Ca\(^{2+}\) level under both resting and stimulated conditions (Fig. 5, upper panel). Therefore, there is little or no Ca\(^{2+}\) spillover from normal SR. On the other hand, in the MHS SR, the threshold for SOICR is reduced due to mutations in RyR1 (Fig. 5, middle panel). Under resting conditions, the reduced threshold for mutant channels remains higher than the resting SR free Ca\(^{2+}\) level, so that there is again little or no Ca\(^{2+}\) spillover. However, in the presence of MH-triggering agents (e.g. halothane), the threshold is further reduced and SOICR is more likely to occur. The resulting SR Ca\(^{2+}\) spillover leads to spontaneous muscle contraction and MH. Dantrolene reverses the effect of the MH mutations and of volatile anesthetics by increasing the SOICR threshold.

In this working model, SR Ca\(^{2+}\) handling at rest is expected to be normal, if the reduced SOICR threshold would still be significantly higher than the resting SR free Ca\(^{2+}\) level. Consistent with this prediction, the majority of MHS individuals are asymptomatic in the absence of triggering agents. However, if the
reduced SOICR threshold were too close to the resting SR Ca^{2+} level because of more severe RyR1 mutations, Ca^{2+} spillover could occur even under the resting conditions. Such uncontrolled SR Ca^{2+} release at rest may account for the muscle defects seen in those MHS individuals with CCD (1-5).

Implication for stress-induced MH

In addition to volatile anesthetics, physical and emotional stress can also trigger MH in pigs and humans, but the mechanism underlying the stress-induced MH is unclear. It is well known that in the heart, physical and emotional stress activates the β-adrenergic receptor (AR)/cAMP/PKA signaling pathway, leading to an increase in the SR Ca^{2+} load and SR Ca^{2+} release (51). Rudolf et al. have recently demonstrated directly that, as in cardiac muscle, β-AR stimulation also increases the SR Ca^{2+} load and Ca^{2+} release in skeletal muscle (52). Since the occurrence of SOICR is determined not only by its threshold, but also by the SR Ca^{2+} load (Fig. 5), physical and emotional stress may induce SOICR by increasing the SR Ca^{2+} load. Because the threshold for SOICR is reduced in the MHS SR, SOICR and thus spontaneous muscle contraction would be more likely to occur in MHS pigs or individuals during stress-induced SR Ca^{2+} overload. Therefore, conditions that affect either the SOICR threshold or the SR Ca^{2+} loading will have a profound impact on the occurrence of SOICR and thus the susceptibility to MH. This multi-factorial dependence of the occurrence of SOICR may provide an explanation for the unsolved heterogeneity of MH expression in MHS individuals carrying even the same RyR1 mutation.

Conclusion

In summary, the present study sheds novel insight into the causal mechanism of MH and proposes a unifying model for MH-susceptibility, MH-triggering, and MH-suppression. We have demonstrated that both the MH R615C mutation and the MH trigger halothane act to reduce the threshold for luminal Ca^{2+} activation and SOICR, whereas the MH antidote dantrolene suppresses SOICR. Together these data suggest that the sensitivity of the RyR1 channel to luminal Ca^{2+} activation plays a central role in the pathogenesis of MH.
ACKNOWLEDGMENTS This work was supported by research grants from the National Institutes of Health grant 1RO1HL75210 and the Canadian Institutes of Health Research to SRWC. The authors would like to thank Dr. Jonathan Lytton for the use of his single cell Ca²⁺ imaging facility, and Jeff Bolstad for critical reading of the manuscript.

REFERENCES
1. Mickelson, J. R., and Louis, C. F. (1996) Physiol. Rev. 76, 537-592
2. Loke, J., and MacLennan, D. H. (1998) Am. J. Med. 104, 470-486
3. McCarthy, T. V., Quane, K. A., and Lynch, P. J. (2000) Hum. Mutat. 15, 410-417
4. Lyfenko, A. D., Goonasekera, S. A., and Dirksen, R. T. (2004) Biochem. Biophys. Res. Commun. 322, 1256-1266
5. Treves, S., Anderson, A. A., Ducreux, S., Divet, A., Bleunven, C., Grasso, C., Paesante, S., and Zorzato, F. (2005) Neuromuscul. Disord. 15, 577-587
6. Fujii, J., Otsu, K., Zorzato, F., de Leon, S., Khanna, V. K., Weiler, J. E., O'Brien, P. J., and MacLennan, D. H. (1991) Science 253, 448-451
7. MacLennan, D. H., and Phillips, M. S. (1992) Science 256, 789-794
8. Robinson, R., Carpenter, D., Shaw, M., Halsall, J., and Hopkins, P. (2006) Hum. Mutat. 27, 977-989
9. Otsu, K., Nishida, K., Kimura, Y., Kuzuya, T., Hori, M., Kamada, T., and Tada, M. (1994) J. Biol. Chem. 269, 9413-9415
10. Treves, S., Larini, F., Menegazzi, P., Steinberg, T. H., Koval, M., Vilsen, B., Andersen, J. P., and Zorzato, F. (1994) Biochem. J. 301, 661-665
11. Tong, J., Oyamada, H., Demaurex, N., Grinstein, S., McCarthy, T. V., and MacLennan, D. H. (1997) J. Biol. Chem. 272, 26332-26339
12. Dietze, B., Henke, J., Eichinger, H. M., Lehmann-Horn, F., and Melzer, W. (2000) 526, 507-514
13. Nelson, T. E. (2002) Curr. Mol. Med. 2, 347-69.
14. Yang, T., Ta, T. A., Pessah, I. N., and Allen, P. D. (2003) J. Biol. Chem. 278, 25722-25730
15. Fill, M., Coronado, R., Mickelson, J. R., Vilven, J., Ma, J. J., Jacobson, B. A., and Louis, C. F. (1990) Biophys. J. 57, 471-475
16. Shomer, N. H., Louis, C. F., Fill, M., Litterer, L. A., and Mickelson, J. R. (1993) Am. J. Physiol. 264, C125-35
17. Laver, D. R., Owen, V. J., Junankar, P. R., Tasker, N. L., Dulhunty, A. F., and Lamb, G. D. (1997) Biophys. J. 73, 1913-1924
18. Owen, V. J., Tasker, N. L., and Lamb, G. D. (1997) Am. J. Physiol. 272, C203-11
19. Balog, E. M., Fruen, B. R., Shomer, N. H., and Louis, C. F. (2001) Biophys. J. 81, 2050-2058
20. Murayama, T., Oba, T., Haru, H., Wakebe, K., Ikemoto, N., and Ogawa, Y. (2007) Biochem. J. 402, 349-357
21. Balog, E. M., Shi, L., and Meissner, G. (1996) Biophys. J. 70, 2600-215.
22. Sitapesan, R., and Williams, A. J. (1997) J. Membr. Biol. 159, 179-185
23. Gyorke, S., and Terentyev, D. (2008) Cardiovasc. Res. 77, 245-255
24. Nelson, T. E. (1983) J. Clin. Invest. 72, 862-70.
25. Nelson, T., Lin, M., and Volpe, P. (1991) J. Pharmacol. Exp. Ther. 256, 645-649
26. Jiang, D., Xiao, B., Yang, D., Wang, R., Choi, P., Zhang, L., Cheng, H., and Chen, S. R. W. (2004) 101, 13062-13067
27. Jiang, D., Wang, R., Xiao, B., Kong, H., Hunt, D. J., Choi, P., Zhang, L., and Chen, S. R. W. (2005) Circ. Res. 97, 1173-1181
28. Priori, S. G., and Napolitano, C. (2005) J. Clin. Invest. 115, 2033-2038
29. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Gene 77, 51-59
30. Fabiato, A., and Fabiato, F. (1979) J. Physiol. (Paris) 75, 463-505
31. Palmer, A. E., Jin, C., Reed, J. C., and Tsien, R. Y. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 17404-17409
32. Housmans, P. R., and Wanek, L. A. (2000) Anal. Biochem. 284, 60-64
33. Nelson, T. E., Bedell, D. M., and Jones, E. W. (1975) Anesthesiology 42, 301-306
34. Ohnishi, S. T., Taylor, S., and Gronert, G. A. (1983) FEBS Lett. 161, 103-17
35. Tong, J., Du, G. G., Chen, S. R., and MacLennan, D. H. (1999) Biochem. J. 343 Pt 1, 39-44
36. Okumura, F., Crocker, B. D., and Denborough, M. A. (1980) Br. J. Anaesth. 52, 377-383
37. Foster, P. S., and Denborough, M. A. (1989) Br. J. Anaesth. 62, 566-572
38. Van Winkle, W. B. (1976) Science 193, 1130-1131
39. Dirksen, R. T., and Avila, G. (2004) Biophys. J. 87, 3193-3204
40. Hainaut, K., and Desmedt, J. (1974) Nature 252, 728-730
41. Fruen, B. R., Mickelson, J. R., and Louis, C. F. (1997) J. Biol. Chem. 272, 26965-26971
42. Louis, C., Balog, E., and Fruen, B. (2001) Biosci. Rep. 21, 155-168
43. Zhang, Y., Rodney, G. G., and Schneider, M. F. (2005) J. Pharmacol. Exp. Ther. 314, 94-102
44. Nelson, T., Lin, M., Zapata-Sudo, G., and Sudo, R. (1996) Anesthesiology 84, 1368-1379
45. Szentesi, P., Collet, C., Sarkozy, S., Szegedi, C., Jona, I., Jacquemond, V., Kovaes, L., and Csernoch, L. (2001) J. Gen. Physiol. 118, 355-375
46. Cherchedimencko, G., Ward, C. W., Feng, W., Cabrales, E., Michaelson, L., Samso, M., Lopez, J. R., Allen, P. D., and Pessah, I. N. (2008) Mol. Pharmacol.
47. Paul-Pletzer, K., Yamamoto, T., Bhat, M. B., Ma, J., Ikemoto, N., Jimenez, L. S., Morimoto, H., Williams, P. G., and Parness, J. (2002) J. Biol. Chem. 277, 34918-34923
48. Kobayashi, S., Bannister, M. L., Gangopadhyay, J. P., Hamada, T., Parness, J., and Ikemoto, N. (2005) J. Biol. Chem. 280, 6580-6587
49. Sampieri, A., Diaz-Munoz, M., Antaramian, A., and Vaca, L. (2005) J. Biol. Chem. 280, 24804-24815
50. Zhao, X., Weisleder, N., Han, X., Pan, Z., Parness, J., Brotto, M., and Ma, J. (2006) J. Biol. Chem. 281, 33477-33486
51. Bers, D. M. (2002) Nature 415, 198-205.
52. Rudolf, R., Magalhaes, P. J., and Pozzan, T. (2006) J. Cell Biol. 173, 187-193
LEGENDS

Fig. 1. Single RyR1 channels from normal and MHS pig SR differ in their responses to luminal Ca\(^{2+}\) (A) The activities of single RyR1 channel from normal (a,b) and MHS (c,d) pig skeletal muscle SR were recorded in a symmetrical recording solution containing 250mM KCl and 25mM Hepes (pH 7.4) at a holding potential of -20 mV. The Ca\(^{2+}\) concentration on both the cytosolic and luminal side of the channel was adjusted to ~45 nM (a,c). The luminal Ca\(^{2+}\) concentration was then increased to various levels by the addition of aliquots of CaCl\(_2\) solution. Single-channel current traces at 1.2 mM luminal Ca\(^{2+}\) are shown (b,d). The relationships between Po and luminal Ca\(^{2+}\) concentrations are shown in panel e. Data points are mean ± SEM from 8 wt and 14 R615 single channels. Openings are downward. The open probability (Po), arithmetic mean open time (To), and arithmetic mean closed time (Tc) are indicated on the top of each panel. (B) The response of normal and MHS RyR1 channels to cytosolic Ca\(^{2+}\). The responses of normal (RyR1-wt) and MHS (R615C) to cytosolic Ca\(^{2+}\) were assessed using single channel recordings. The luminal Ca\(^{2+}\) concentration was kept at 45 nM. Panel Ba shows relationships between open probability (Po) and cytosolic Ca\(^{2+}\) concentration (pCa) of single wt (open circles) and single R615C mutant (solid circles) channels. The normalized (100%) Po-pCa relationships are shown in Pane Bb. Data points shown are mean ± SEM from 10 wt and 10 R615C mutant channels.

Fig. 2. Halothane potentiates the response of RyR1 to luminal Ca\(^{2+}\) Single channel activities of the R615C mutant were recorded as described in the legend to Fig. 1. The Ca\(^{2+}\) concentration on both the cytosolic and luminal sides of the channel was adjusted to ~45 nM (A). The luminal Ca\(^{2+}\) concentration was then increased to 600 µM (B). (C) Single channel current traces after the addition of halothane to the cytosolic side of the channel. The luminal Ca\(^{2+}\) concentration was then reduced to ~35 nM in the continued presence of halothane (D). The holding potential was -20 mV and openings are downward.

Fig. 3. Halothane and the MH R615C mutation increase the propensity for SOICR (A) Stable, inducible HEK293 cells expressing RyR1-wt and the R615C mutant were induced with tetracycline for ~24 hr and loaded with 5 µM fura-2-AM in Krebs-Ringer-Hepes (KRH) buffer for 20 min at room temperature. The cells were continuously perfused with KRH buffer containing various concentrations of external Ca\(^{2+}\) (0.2-10 mM) and caffeine. Panel Aa shows single cell fluorescent Ca\(^{2+}\) images of cells expressing RyR1-wt (top panels) and the R615C mutant (bottom panels) in the presence of 0.7mM halothane at various [Ca\(^{2+}\)]\(_{o}\). Fura-2 ratios of representative RyR1-wt (green trace) and the R615C mutant (red trace) cells are shown in panel Ab. The fraction (% mean ± SEM) of cells displaying Ca\(^{2+}\) oscillations in the presence or absence of 0.7 mM halothane (panel C) or 0.7 mM caffeine (panel Ad) is shown. The total numbers of RyR1-wt cells analyzed for Ca\(^{2+}\) oscillations were 320 (without halothane or caffeine), 465 (with 0.7 mM halothane), and 305 (with 0.7 mM caffeine). The total numbers of R615C cells analyzed for Ca\(^{2+}\) oscillations were 290 (without halothane or caffeine), 714 (with 0.7 mM halothane), and 339 (with 0.7 mM caffeine). Panels Ac and Ae show the frequency of Ca\(^{2+}\) oscillations at 2 mM [Ca\(^{2+}\)]\(_{o}\), in the presence of 0.7mM halothane (Cb) or 0.7 mM caffeine (Db). Values were normalized to the wt level (100%). Data shown are mean ± SEM from 3-5 separate experiments. (B) The R615C mutation decreases the threshold for SOICR. HEK293 cells expressing wt or R615C were transfected with D1ER cDNA ~48 hours before imaging, and RyR1 expression was induced ~24 hours before imaging. The cells were perfused with KRH buffer containing 2 mM caffeine or 2 mM halothane with various [Ca\(^{2+}\)]\(_{o}\), 1 mM tetracaine or 20 mM caffeine. Representative FRET traces from HEK293 cells expressing either wt (Ba) or R615C (Bb) are shown. The SOICR threshold in cells expressing wt or R615C in the presence of caffeine or halothane is shown in panel Bc. The threshold for SOICR was determined by calculating the
peak luminal Ca\(^{2+}\) level during oscillations as the percentage of the maximum luminal Ca\(^{2+}\) store capacity. The maximum luminal Ca\(^{2+}\) store capacity was estimated by calculating the difference between the maximum luminal Ca\(^{2+}\) level in the presence of tetracaine (1mM) and the minimum luminal Ca\(^{2+}\) level in the presence of caffeine (20mM). Data shown are mean ± SEM from 2-5 separate experiments.

Fig. 4. Effect of dantrolene on SOICR Stable, inducible HEK293 cells expressing the RyR1-R615C mutant were loaded with fura-2-AM and perfused with KRH buffer containing 5 mM [Ca\(^{2+}\)]\(_o\) plus 2 mM caffeine in the absence or the presence of 100 nM dantrolene (A). The fraction (%, mean ± SEM) of cells that displayed Ca\(^{2+}\) oscillations before (control) and after the addition of 100 nM dantrolene is shown in panel B. The dose-dependence of dantrolene inhibition of SOICR in HEK293 cells expressing R615C (open circles) or expressing RyR1-wt (solid circles) is shown in panel C. The total numbers of cells analyzed were 706 in panel B and 366 for RyR1-wt and 260 for R615C in panel C from 5-8 separate experiments. Panel D shows the effect of dantrolene on SOICR in HEK293 cells expressing the disease-linked RyR2 mutant, N4104K. The cells were perfused with 2 mM [Ca\(^{2+}\)]\(_o\) in the presence of 10 nM to 10 µM dantrolene (D). Similar results were obtained from 4 separate experiments.

Fig. 5. A proposed model for the action of the porcine MH mutation, the MH-triggering agent, halothane, and the MH-suppressing agent, dantrolene The threshold for SOICR and the SR free Ca\(^{2+}\) level in normal (A) and the MHS SR (B) in the resting and stimulated states are schematically shown. The SOICR threshold, which is reduced in the MHS SR as a consequence of the R615C RyR1 mutation (short arrow), is depicted by a red bar. The SR free Ca\(^{2+}\) level is represented by the blue area. The anesthetic-reduced SOICR threshold is depicted by a yellow bar. When the SOICR threshold decreases to the SR free Ca\(^{2+}\) level, SOICR occurs, leading to a large SR Ca\(^{2+}\) spillover, which can trigger spontaneous Ca\(^{2+}\) release, muscle contraction, and MH. Dantrolene restores the reduced SOICR threshold.
A Luminal Ca\(^{2+}\) Response

Condition	Normal RyR1-wt	MHS-R615C
45 nM Ca\(^{2+}\) (cyto)/45 nM Ca\(^{2+}\) (luminal)	Po = 0.00027, T0 = 0.39 ms, Tc = 365 ms	Po = 0.0057, T0 = 0.42 ms, Tc = 18.6 ms
45 nM Ca\(^{2+}\) (cyto)/1.2 mM Ca\(^{2+}\) (luminal)	Po = 0.0013, T0 = 0.46 ms, Tc = 123 ms	Po = 0.072, T0 = 1.57 ms, Tc = 15.0 ms

B Cytosolic Ca\(^{2+}\) Response

- **a**
 Open Probability (Po) vs. pCa (cytosolic)
 - RyR1-wt (○)
 - R615C (●)

- **b**
 Normalized Open Probability (Po [%]) vs. pCa (cytosolic)
Fig. 2

MHS-R615C

A 45 nM Ca$^{2+}$(cyto)/45 nM Ca$^{2+}$(luminal)

Po = 0.0003 T0 = 0.39 ms Tc = 287 ms

B 45 nM Ca$^{2+}$(cyto)/600 μM Ca$^{2+}$(luminal)

Po = 0.021 T0 = 0.49 ms Tc = 10.8 ms

C 45 nM Ca$^{2+}$+20 mM halothane (cyto)

/600 μM Ca$^{2+}$(luminal)

Po = 0.144 T0 = 0.48 ms Tc = 1.49 ms

D 45 nM Ca$^{2+}$+20 mM halothane (cyto)

/35 nM Ca$^{2+}$(luminal)

Po = 0.0006 T0 = 0.46 ms Tc = 252 ms

-20 mV (cyto)
Fig. 4

A RyR1-R615C

B

C

D RyR2-N4104K

[Ca$^{2+}$]$_o$ = 2 mM

Fura-2 Ratio

Time (second)

5 mM [Ca$^{2+}$]$_o$ + 2 mM caff

100 nM dantrolene 10 mM caff

Time (second)

Oscillating Cells (%)

Control 100 nM dantrolene

Oscillating Cells (%)

RyR1(wt) RyR1-R615C

Dantrolene (nM)

[Ca$^{2+}$]$_o$ = 2 mM

Fura-2 Ratio

Time (second)

0 10 100 1 μM 10 μM 5 mM

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Time (second)
A. Normal Sarcoplasmic Reticulum

- Normal RyR1
- No Ca$^{2+}$ spillover

B. MHS Sarcoplasmic Reticulum

- MHS RyR1
- Little or no Ca$^{2+}$ spillover

MH-triggering agents e.g. volatile anesthetics (halothane)

Normal threshold for SOICR

Anesthetics-reduced threshold for SOICR

Resting SR Ca$^{2+}$ level

Severe Ca$^{2+}$ spillover

Muscle contracture

+ Dantrolene

Dantrolene-restored threshold for SOICR

Anesthetics-reduced threshold for SOICR
Reduced threshold for luminal Ca$^{2+}$ activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia
Dawei Jiang, Wenqian Chen, Jianmin Xiao, Ruiwu Wang, Huihui Kong, Peter P. Jones, Lin Zhang, Bradley Fruen and Suirong R. Wayne Chen

J. Biol. Chem. published online May 27, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M801944200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts