Intracellular pH is a Critical Element in Apoptosis Triggered by GM-CSF Deprivation in TF1 Cells

Suk Ran Yoon and In Pyo Choi

ABSTRACT

Background: Hemopoietic cells require the constant presence of growth factors for survival in vitro and in vivo. Caspases have been known as central executors of apoptotic cell death. We have, therefore, investigated the pathways that regulate caspase activity and apoptosis using the CD34+ cell line, TF-1 which requires GM-CSF for survival.

Methods: Apoptosis was measured by annexin V staining and mitochondrial membrane potential was measured by DiOC6 labelling. Intracellular pH was measured using pH sensitive fluorochrome, BCECF or SNARF-1, followed by flow cytometry analysis. Caspase activation was analyzed by PARP cleavage using anti-PARP antibody. Results: Removal of GM-CSF induced PARP cleavage, a hallmark of caspase activity, concomitant with pH acidification and a drop in mitochondrial potential. Treatment with ZVAD, a competitive inhibitor of caspases, partially rescued cell death without affecting pH acidification and the reduction of mitochondrial potential, suggesting that both these events act upstream of caspases. Overexpression of Bcl-2 prevented cell death induced by GM-CSF deprivation as well as pH acidification and the reduction in mitochondrial membrane potential. In parental cells maintained with GM-CSF, EIPA, a competitive inhibitor of Na+/H+ antiporter induced apoptosis, accompanied by a drastic reduction in mitochondrial potential. In contrast, EIPA induced apoptosis in Bcl-2 transfectants without causing mitochondrial membrane depolarization. Conclusion: Taken together, our results suggest that the regulation of H+ fluxes, either through a mitochondrion-dependent or independent pathway, is central to caspase activation and apoptosis.

Key Words: Apoptosis, caspases, intracellular pH, mitochondrial potential

Introduction

Apoptosis is a programmed cell death that serves as a major mechanism for the precise regulation of immune cell numbers (1) and a defence mechanism to remove unwanted and potentially dangerous cells such as self-reactive lymphocytes (2), virus-infected cells (3) and tumor cells (4). Since apoptosis plays critical role in regulation of immune system including tissue homeostasis and general cell turn-over, aberrant regulations of apoptosis lead to many immunological disorders such as autoimmune diseases (5), cancer and neurodegeneration (6).

Apoptosis was originally defined by morphological characteristics of dead or dying cells that exhibit cytoplasmic blebbing, DNA fragmentation, chromatin condensation, and cell shrinkage (7). A number of biochemical changes have also been identified during induction of apoptosis including intracellular acidification and changes in mitochondria (8,9). A fall of the mitochondrial potential has been known to occur before the fragmentation of the DNA in oligonucleosomal fragment (10,11). Intracellular acidification has also been shown to be an early event that regulates caspase activation resulting in apoptosis (12). However, relationship between these events and the role of these events during apoptosis in relation to other apoptotic regulators have not been clarified.

Several intracellular regulators involved in apoptosis have been identified in Caenorhabditis elegans (13). Among them, caspases and Bel-2 family are mostly well characterized. Cysteine protease of the IL-1β-converting enzyme (ICE) family (caspases) has been reported as a homology to the ced-3 gene product of the nematode, C. elegans, that is required for cell death during development (14). Bel-2 has been known as
mammalian homologue of ced-9 in *C. elegans*, a negative regulator of apoptosis (15). Induction of apoptosis has been observed when caspases were overexpressed in their active form (16) and inhibition of apoptosis has been observed when caspases were specifically inhibited (17), indicating that caspase activation is essential process during apoptosis.

Apoptosis has been reported to occur during hematopoietic as well as neural cell development (4, 20). The tight control of proliferation, survival, and apoptosis of hematopoietic cells in bone marrow has a major role in allowing normal hematopoiesis. A variety of cytokines, including GM-CSF (granulocyte-colony stimulating factor) and IL-3 (interleukin-3), regulate viability, proliferation, differentiation, and function of hematopoietic cells (21). Hematopoietic cells undergo apoptotic cell death in the absence of growth factors, whereas an escape from this regulation may result in leukemogenesis. In hematopoietic cells, it has been shown that IL-3, GM-CSF, and erythropoietin promote cell survival through retardation of DNA break down. GM-CSF has been shown to activate PKC in monocytic cell line, U937 which leads to cell survival (22). Furthermore, exposure of monocytes to GM-CSF results in prolonged activation of the Na+/H+ antiporter, which correlates with cell proliferation (23). As hematopoietic cells express both high and low affinity receptors of GM-CSF, GM-CSF require to maintain survival of hematopoietic cells in vitro (24).

The human myelo-erythroid CD34+ leukemia cell line, TF-1 has been reported to require GM-CSF or IL-3 for cell survival and undergo apoptosis upon growth factor deprivation (25). In the present study, we examined the role of regulations in intracellular acidification and mitochondria during apoptosis induced by GM-CSF deprivation in using hematopoietic cells.

Materials and Methods

Cell lines and growth factors. The human CD34+ hematopoietic cell line, TF1 cell that requires GM-CSF for cell survival was a kind gift from Dr. R. Thosho Kitamura (DNAX, Seattle, WA, USA). The cells were cultured in IMDM (Gibco BRL, Gaithersburg, MD, USA) supplemented with 10% fetal calf serum (Gibco BRL) and 5 ng/ml GM-CSF. The cells were passaged every second day at 1.5×10⁵ cells/ml. Purified recombinant GM-CSF was kindly provided by Dr. Steve Clark (Genetics Institute, Cambridge, MA, USA). Bel-2 transfectant of TF1 was provided by Dr. Trang Hoang.

Chemicals and antibodies. Mouse monoclonal anti-PARP antibody, and rabbit polyclonal anti-caspase-3 antibody were kindly provided by Dr. Serkal in University of Montreal, Canada. ZVAD (carbobenzoxy-Val-Ala-Asp-fluoromethyl ketone) was purchased from Enzyme Systems Products (Livermore, CA, USA). DioC₆(3) (rhodamine 123, 3,3’-dihexyl-oxacarbocyanine iodide) was purchased from Molecular Probes (Eugene, OR, USA). 5-(N-ethyl-N-isopropyl) amiloride (EIPA) was provided by Dr. Trang Hoang.

Apoptosis assay. Apoptosis levels were measured by flow cytometric analysis using annexinV staining (26). Cells were cultured in the presence or absence of GM-CSF. 5×10⁵ cells were washed in PBS and resuspended in 400µl of binding buffer (10 mM Hepes, 150 mM NaCl, 5 mM KCl, 1 mM MgCl₂, 1.8 mM CaCl₂). FITC conjugated annexin V was added and incubated for 10 min at 4°C. Just before analysis, propidium iodide (PI) was added and the cells were analyzed by FACS (Becton Dickinson, Franklin Lakes, NJ, USA).

Measurement of mitochondrial membrane potential. Cells were cultured in the presence or absence of GM-CSF for 48 hrs. Cells were transferred to a bottom plate and centrifuged. 40 nM DioC₆(3) was added to the cell pellet and resuspended. The plate was incubated for 15 min at 37°C in dark condition. The cells were washed with PBS by incubating at 37°C for 30 min. Cells were collected by centrifugation and resuspended in PBS followed by analysis using FACS (Beckton Dickinson).

Intracellular pH monitoring. pH measurement was determined using pH sensitive fluorochrome, bis (carboxyethyl) carboxyfluorescein, BCECF (Molecular Probes) or 1-carboxy-seminaphthorhodafluor-1 (acetyl-methyl ester) (27), SNARF-1 (Molecular Probes) (12). Cells were loaded for 30 min at 37°C in 10µM BCECF in sodium HEPES buffer. After washing, the cells were introduced in thermostated cuvette and the pH sensitive fluorescence was recorded continuously at 37°C. Variations in pH were monitored by on a SPEX model CM1T111 dual excitation spectrophotometer. The ratio of pH sensitive fluorescence (excitation wave length 500 nm) and pH insensitive fluorescence (excitation wave length 450 nm) allows the calculation of pH, that is independent of cell number and dye concentration. For SNARF staining, the ratio was analyzed at 575 nm and 620 nm by FACS.

Western blotting. TF1 cells were cultured in the presence or absence of GM-CSF. Cells were harvested and washed in PBS and lysed with sample buffer (62.5 mM Tris-HCl, pH 6.8, 6 M Urea, 10% glycerol, 2% SDS, 5% 2 ME, 0.00125% bromophenol blue) and boiled for 3 min. Lysates were subjected to 12% SDS-electrophoresis. Gels were transferred to nitrocellulose membrane (Amersham, Piscataway, NJ, USA).
Membranes were blocked with PBS containing 5% skim milk and 0.05% Tween 20 and washed. Then, the membrane was incubated with anti caspase antibody (1:1,000 in 5% skim milk) and PARP antibody (1:1,500 in 5% skim milk) at 4°C, overnight with shaking. The membrane was washed in PBS containing 0.5% Tween 20 and incubated with secondary antibody, anti rabbit HRP and anti mouse HRP for PARP. Detection was achieved by enhanced chemiluminescence (ECL, Amersham) and autoradiography.

Results

Caspase-3 activation by GM-CSF withdrawal. TF1 is a CD34+ hemopoietic cell line that requires the growth factor GM-CSF for cell survival. Apoptosis was induced by GM-CSF withdrawal in TF1 cells. The levels of apoptosis were measured using annexin V which binds to phosphatidylserine on apoptotic cells. As annexin V negative live cells undergo apoptotic cell death, apoptotic cells bind to annexin V and dead cells bind to propidium iodide (26). TF1 cells survived in the presence of GM-CSF, whereas annexin V positive apoptotic cells were induced in the absence of GM-CSF (Fig. 1). In contrast, apoptosis was inhibited in Bel-2 transfectants of TF1 cultured even in the absence of GM-CSF indicating overexpression of Bel-2 rescued apoptosis by GM-CSF withdrawal (Fig. 1). Since caspase-3 has been known as a central executor of apoptotic process in most of cells (28), we investigated caspase activation during apoptosis by Western blot analysis using polyclonal antibody against caspase 3 and PARP in TF1 cells. As shown in Fig. 2, p15 and p17, active forms of caspase 3 (cpp32) were detected in the cells cultured without GM-CSF. Furthermore, the activation of caspase was confirmed by a cleavage of PARP, substrate of caspase-3. 116 kD of PARP was cleaved to 85 kD of apoptotic fragment in the cells cultured without GM-CSF indicating activation of caspase-3. These suggest that activation of caspase-3 involves the apoptosis of TF1 cells induced by growth factor deprivation.

Figure 1. Annexin V and PI staining of apoptotic cells by GM-CSF deprivation in TF1 cells. TF1 cells were cultured for 48 hrs in the absence or presence of GM-CSF. Bel-2 transfectants of TF1 were also cultured for 48 hrs in the absence of GM-CSF. Cells were collected and stained with annexin V-FITC and propidium iodide followed by FACS analysis. Apoptotic cells were represented as annexin-V positive and PI negative cells.
Intracellular pH is a Critical Element in Apoptosis Triggered by GM-CSF Deprivation in Hematopoietic Cell Line, TF1

Growth factor withdrawal triggers apoptosis concomitant with a reduction in mitochondrial potential and intracellular acidification. The dissipation of mitochondrial transmembrane potential (ΔΨ) (10,30) and intracellular acidification have been suggested as early events of the cell death process (12). We observed changes in mitochondrial potential using DiOC6(3), a cationic dye which can be retained by mitochondrial inner membrane. The percentages reflect the cells in which mitochondrial potentials are reduced. Intracellular pH was determined using pH sensitive fluorochrome, bis(carboxyethyl)carboxyfluorescein, BCECF and analyzed by dual excitation spectro-photometer. The 575 nm/620 nm ratio represents intracellular pH (a higher ratio reflects decreased pH).

Figure 3. Effect of ZVAD and Bel-2 on biochemical events of apoptosis. To examine the effect of Bel-2, Bel-2 transfectants of TF1 cells were employed. Cells were treated with caspase-3 inhibitor, ZVAD in the absence of GM-CSF for 30 hr. (A) Apoptotic cells were measured by annexin V and propidium iodide staining followed by FACS analysis. Apoptotic cells were represented as annexinV positive cells. (B) For measurement of mitochondrial potential, cells were stained with 40 nM of DiOC6(3) and analyzed by flow cytometry. DiOC6(3), a cationic dye which can be retained by mitochondrial inner membrane. The percentages reflect the cells in which mitochondrial potentials are reduced. (C) Intracellular pH was determined using pH sensitive fluorochrome, bis(carboxyethyl)carboxyfluorescein, BCECF and analyzed by dual excitation spectro-photometer. The 575 nm/620 nm ratio represents intracellular pH (a higher ratio reflects decreased pH).
dent manner in parental cells maintained with GM-CSF (Fig. 4A). In addition, treatment with EIPA also induced apoptosis in Bcl-2 transfectants in a dose dependant manner (Fig. 4B), indicating EIPA prevents the effect of GM-CSF and Bcl-2 in suppressing apoptosis. Effect of EIPA on mitochondrial potential was also investigated. In parental cells maintained with GM-CSF, EIPA induced apoptosis accompanied by drastic reduction in mitochondrial potential (Fig. 5A). In contrast, EIPA did not affect mitochondrial potential in Bcl-2 transfectant, indicating that inhibition of the Na⁺/H⁺ antiporter in Bcl-2 transfectant induces apoptosis in the absence of mitochondrial membrane depolarization (Fig. 5B). These data suggest that apoptosis by inhibition of Na⁺/H⁺ antiporter might occur in a mitochondria dependant or independent pathway.

pHₙ acidification in apoptosis is rescued by ectopic expression of Bcl-2. The changes in intracellular pH were measured in parental cells and Bcl-2 transfectant using SNARF-1. Cell viability was also examined using annexin V staining with the same cells. As shown in Fig. 6, EIPA decreased intracellular pH in the presence of GM-CSF to the similar level of pHₙ observed in parental cells cultured without GM-CSF. In contrast, pHₙ acidification by GM-CSF was rescued by overexpression of Bcl-2. However, EIPA induced intracellular acidification in Bcl-2 transfectant. In addition, cell viability was correlated with intracellular acidification in both parental cells and Bcl-2 transfectant, suggesting that the regulation of pHₙ is crucial for the suppression of apoptosis by GM-CSF or Bcl-2.

Discussion

In an attempt to assess the role of cytoplasmic acidification and regulation of mitochondrial membrane potential during apoptosis. Apoptosis was triggered by growth factor deprivation using hemopoietic cell line, TF1 that requires GM-CSF for cell survival. We
Intracellular pH is a Critical Element in Apoptosis Triggered by GM-CSF Deprivation in Hematopoietic Cell Line, TF1

Figure 5. Effect of EIPA on mitochondrial potential maintained by GM-CSF and Bcl-2 over expression. Parental cells (TF1) (A) and Bcl-2 transfectants (B) were treated with different dose of EIPA in the absence or presence of GM-CSF for 40 hrs. Mitochondrial potential was measured using DiOC6(3) as described in Materials and Methods. FACS analysis was performed and reduction of mitochondrial potential was represented as the number of DiOC6(3) negative cells.

Bcl-2 Transfectants	∆Ψ
+GM	11.6%
+EIPA 10 µM	27.4%
+GM +EIPA 20 µM	45.5%
+GM +EIPA 30 µM	81.4%

Parent cells (TF1)	∆Ψ
+GM	4.6%
-GM +EIPA 10 µM	7.8%
-GM +EIPA 20 µM	17.3%
-GM +EIPA 30 µM	16.5%

Figure 6. Effect of EIPA and Bcl-2 on intracellular pH and cell viability. Parental cells (TF1) (A) and Bcl-2 transfectants (B) were treated with antiporter inhibitor, EIPA 20µM for 40 hrs. The cells were performed annexin V staining and measured pHi as described in Materials and Methods. Cell viability was represented as % of annexin V negative viable cells. Intracellular pH was measured using SNARF-1. pH was estimated from standard curves generated in parallel using cells suspended in buffers of known pH.

Bcl-2	GM-CSF	EIPA	pHi (mean ± SEM)
-	+	-	7.5 ± 0.1
+	-	+	7.2 ± 0.05

Bcl-2	GM-CSF	EIPA	Viable cells (%)
-	+	-	95 ± 5
+	-	+	90 ± 3
+	+	+	85 ± 2

Bcl-2	GM-CSF	EIPA	Viable cells (%)
-	+	-	95 ± 5
+	-	+	90 ± 3
+	+	+	85 ± 2
investigated activation of caspase-3 that has emerged as a central executor of apoptosis. Caspases are synthesized as inactive precursors that require proteolytic conversion to become active protease. For instance, during apoptosis triggered by TCR cross-linking in T lymphocytes, the 32 kD caspase proenzyme is first cleaved to release fragment of 12 and 20 kD. Removal of the 3 kD propeptide form p20 generates the p17 form associated with caspase-3 activity and apoptosis (29). Activation of caspase-3 accompanied by a cleavage of the substrate for caspase-3, Poly (ADP-ribose) polymerase (PARP), which cleaved to 80 kD of apoptotic fragment by caspase-3 during apoptosis (30). Our results showing p15 and p17, activated forms of caspase 3 (cpp32) and 85 kDa of cleavage fragment of PARP indicate activation of caspase-3 during the apoptosis.

During the apoptosis induced by GM-CSF withdrawal in TF1 cells, intracellular acidification and reduction of mitochondrial potential were observed concomitantly with caspase activation. Competitive inhibitor of caspase-3, ZVAD partially recovered apoptosis without affecting mitochondrial potential and intracellular pH. If caspase activation is a prerequisite for intracellular acidification or reduction of mitochondrial potential to occur, then inhibitor of caspase should inhibit acidification or reduction of mitochondrial potential. In our result, ZVAD has no effect on intracellular acidification and reduction of mitochondrial potential, suggesting that caspase activation is not prerequisite, that is, caspase act downstream of both events during apoptosis triggered by growth factor deprivation. On the other hand, ectopic expression Bcl-2 completely rescued cell death in the absence of GM-CSF with preventing from reduction of mitochondrial potential and intracellular acidification. These are supported by report that Bcl-2 family members are upstream of caspase activation (through their association with CED-4), regulate pH, and prevent mitochondrial depolarization (12).

The mitochondria have been known to play an essential role in the apoptotic cell death by releasing various apoptotic proteins including cytochrome c into the cytoplasm. In the process of apoptosis, release of cytochrome c into the cytoplasm activates death promoting caspase, which in turn cleave a set of cellular proteins and promote the death program (9, 31). It has been shown that Bcl-2 family of proteins regulate mitochondrial changes during apoptosis (32) and they can directly control mitochondrial membrane permeability, mainly through regulation of formation of apoptotic proteinconducting pores in the outer mitochondrial membrane (31). It has also been suggested that intracellular acidification results from a change in the set point of Na\(^+\)/H\(^+\) antiporter which might result from its dephosphorylation (33). In order to further dissect the role of the mitochondrion and of Bcl-2 in regulating pH and caspase activation, we prevented H\(^+\) fluxes using 5-(N-ethyl-N-isopropyl) amiloride (EIPA) that specifically block Na\(^+\)/H\(^+\) antiporter. In parental cells maintained with GM-CSF, EIPA induced apoptosis, accompanied by a drastic reduction in mitochondrial potential, whereas EIPA induces apoptosis in Bcl-2 transfectants without causing mitochondrial membrane depolarization. These suggest that intracellular acidification by inhibition of Na\(^+\)/H\(^+\) antiporter might occur mitochondria dependant or independent pathway. These results are in agreement with hypothesis that at least two principle pathways for apoptosis; one requiring the participation of mitochondria, which activate caspase by releasingcytochrome c and another in which mitochondria are bypassed and caspases are activated directly (34,35).

Taken together, our results, as summarized in Fig. 7, show that mitochondrial membrane depolarization followed by intracellular acidification leads to apoptosis through caspase activation in TF1 cells when GM-CSF is deprived. In addition, inhibition of Na\(^+\)/H\(^+\) antiporter can induce apoptosis through intracellular acidification followed by caspase activation without causing mitochondrial depolarization. These suggest that the regulation of H\(^+\) fluxes, either
through a mitochondrion-dependent or independent pathway, is central to caspase activation and apoptosis induced by growth factor deprivation.

Acknowledgement

This work was supported by a grant SC13040 of 21C Frontier Stem Cell Research Project from Ministry of Science and Technology, Republic of Korea

References

1. Raff MC: Social control on cell survival and cell death. Nature 356;397-400, 1992
2. Golstein P: Controlling cell death. Science 275;1081-1082, 1997
3. Vaux DL, Haeckler G, Strasser A: An evolutionary prospective on apoptosis. Cell 76;777-779, 1994
4. Williams GT: Programmed cell death: apoptosis and oncogenesis. Nature 356;397-400, 1992
5. Kovacs B, Liossis SN, Dennis GJ, Tsokos GC: Increased apoptosis induced by growth factor deprivation. Cell 81;801-809, 1995
6. Carson DA, Ribeiro JM: Apoptosis and disease. Lancet 341;1251-1254, 1993
7. Kerr JFR, Wyllie AH, Currie AR: Apoptosis: basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26;239-257, 1972
8. Kroemer G, Petit PX, Zamzami N, Vayssiere JL, Mignotte B: The biochemistry of programmed cell death. FASEB J 9;1277-1287, 1995
9. Mignotte B, Vayssier J-L: Mitochondria and apoptosis. Eur J Biochem 252;1-15, 1998
10. Zamzami N, Marchetti P, Castedo S, Zanin C, Vayssiere JL, Petit PX, Kroemer G: Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 181;1661-1672, 1995
11. Adnyah SE, Unlap TM, Wagner F, Kraft AS: Regulation of c-jun expression and AP-1 enhancer activity by grannulocyte-macrophage colony-stimulating factor. J Biol Chem 266;5670-5675, 1991
12. Carson DA, Ribeiro JM: Apoptosis and disease. Lancet 341;1251-1254, 1993
13. Ellis HM, Horvitz HR: Genetic control of programmed cell death in C. elegans. Cell 65;1097-1098, 1991
14. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The ced-9 cell survival gene encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76;665-676, 1994
15. Hengartner MO, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian ced-3 interlinak-1 β converting enzyme. Cell 75;641-652, 1993
16. Matsuyama S, Lloptis J, Deveraux QL, Tsien RY, Reed JC: Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nature Cell Biol 2;318-325, 2000
17. Ellis HM, Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell 44;817-829, 1986
18. Reed JC: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. J Cell Biol 124;1-6,2003
19. Vaux D, Cory S, Adams JM: Bcl-2 gene promotes haematopoietic cell survival and cooperates with e-myc to immortalize pre-B cells. Nature 335;440-442, 1998
20. McConkey DJ, Orrenius S, Jodal M: Cellular signaling in programmed cell death (apoptosis). Immunol Today 11;120-121, 1990
21. Arai KI, Miyajima A, Miyatake S, Arai N, Yokota T: Cytokines: coordinators of immune and inflammatory responses. Anna Rev Biochem 59;783-836, 1990
22. Adnyah SE, Unlap TM, Wagner F, Kraft AS: Regulation of c-Jun expression and AP-1 enhancer activity by granulocyte-macrophage colony-stimulating factor. J Biol Chem 266;5670-5675, 1991
23. Vallance SJ, Downes CP, Cragoe EJ, Whetton AD: Granulocyte-macrophage colony-stimulating factor can stimulate macrophage proliferation via persistent activation Na+ /H+ antport. Evidence for two distinct roles for Na+ /H+ antport activation. Biochem J 265;359-364, 1990
24. Park LS, Waldon PE, Friend D, Sassenfeld HM, Price V, Anderson D, Cosman D, Andrew RG, Bernstein ID, Unlal DL: Interleukin-3, GM-CSF and G-CSF receptor expression on cell lines and primary leukemia cells: receptor heterogeneity and relationship to growth factor responsiveness. Blood 74;55-65, 1989
25. Kolonics A, Apati A, Janossy J, Brozik A, Gati R, Schafer A, Magocsi M: Activation of Raf/ERK1/2 MAP kinase pathway is involved in GM-CSF-induced proliferation and survival but not in erythropoiesis-induced differentiation of TF-1 cells. Cell Signal 13;743-754, 2001
26. Span LFR, Pennings AHM, Vierwinden G, Booxzetn JBM, Raymarker RAP, dde Wittw T: The dynamic process of apoptosis analyzed by flow cytometry using annexin-V/ proidium iodide and a midified in situ and labelling technique. Cytometry 47;24-31, 2002
27. Rajotte D, Haddad P, Haman A, Cragoe Jr EJ, Honag T: Role of protein kinase C and the Na+/H+ antport in suppression of apoptosis by granulocyte-macrophage colony stimulating factor and interleukin-3. J Biol Chem 267;9980-9987, 1992
28. Thornberry NA, Lazebnik Y: Caspases: enzymes within. Science 281;1312-1316, 1998
29. Han Z, Hendrickson EA, bremer Ta, Wylee JH: A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 272;13432-13436, 1997
30. Lazebnik Y;Kaufmann SH; Desnoyers S; Poitier GG; Earnshaw WC: Cleavage of poly (ADP-ribos) polymerase by a proteinase with property like ICE. Nature 371;346-347, 1994
31. Tsujimoto Y: Cell death regulation by the Bcl-2 protein family: new coordinators of immune and inflammatory reponses. Annu Rev Biochem 66;359-384, 1997
32. Shinizu S, Kodama T, Tsujimoto Y: BH4 domain of anti-apoptotic Bcl-2 family members closes VDAC, and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci 97;3100-3105, 2000
33. Wolf CM, Reynolds JE, Morana SJ, Eastman A: The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification and DNA fragmentation in apoptosis. Exp Cell Med 230;22-27, 1997
34. Dixit VM, Ashkenazi A: Death receptors: signaling and modulasion. Science 281;1305-1308, 1998
35. Vaux D, Krosmsger S: Cell death and development. Cell 96;245-254, 1999