Supplemental Information

No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in *Drosophila*

Ben Ewen-Campen, Typhaine Comyn, Eric Vogt, and Norbert Perrimon
Figure S1. Related to Figure 1. Pilot characterization of split-gal4 knock-in reporters for wg and wnt2. (A) Schematic of the knock-in plasmid used to generate split-Gal4 reporters for Wnt genes, illustrated for wg. Not to scale. (B) wg split-Gal4 reporter expression in L3 larval wing disc (anterior is down), and in L3 larvae (anterior is left), revealed for both p65 and Gal4DBD knock-ins by crossing to a ubiquitous reciprocal split-Gal4 reporter. (C) wnt2 is expressed in the presumptive notum at the base of the wing disc, and in the larval testis, consistent with its described roles in thoracic muscle and testis development. Note that reporter expression in the wing pouch begins at later stages of L3 development, as shown in Fig. 1. UAS:EGFP/EYFP expression is shown in green, and DAPI is shown in blue.
Figure S2. Related to Figure 1. Three independent Gal4-based wnt4 knock-in reporters are largely consistent with one another and do not drive reporter expression in the L3 wing margin, despite Gal4 transcription. (A) Schematic of three independent knock-in reporters in the wnt4 locus, in the first exon, first intron, and last exon, and their expression pattern in the L3 wing disc and in the larval CNS. (B) Lineage tracing of a "trojan Gal4" Wnt4 insertion using GTRACE indicates that wnt4-T2A-Gal4 is not expressed during wing development prior to L3. White arrows in (A) and (B) indicate a consistently labeled population of cells on the antero-ventral margin of the wing pouch. (C) wnt4 reporter expression expands in late larval stage (everted spiracles stage) and (D) is visible in the pupal wing margin by ~24 hours after pupal formation. (E) in situ hybridization demonstrates that both endogenous wnt4 and wnt4-T2A-Gal4 transcripts are present in the DV wing margin in L3 wing discs.
Figure S3. Related to Figure 1. Additional characterization of split-Gal4 Wnt reporters in larval and adult tissues. Wnt split-gal4 reporter expression in (A) the ovarian germline stem cells and surrounding tissues of the adult germarium, and (B) the larval CNS.
Figure S4. Related to Figure 1. Multiple Wnt genes are expressed in populations of adult stem cells located at regional junctions of the gut. (A) Wnt split-gal4 reporter expression in stem cells and surrounding tissue of the adult cardia (foregut-midgut juncture) and (B) in a band of cells at the midgut-hindgut junction.
Figure S5. Related to Figure 2. Effective cleavage of Wnt genes, both singly and in pairs, using multiplexed in vivo somatic CRISPR. Two sgRNAs per target Wnt gene were cloned into the pCFD6 backbone, which expresses multiple sgRNAs under UAS\(^i\) control, each separated by tRNAs. UAS:Cas9.P2 and UAS:sgRNAs were expressed in the adult nervous system using elav-Gal4, and T7 assays were conducted on adult heads. (A) In vivo CRISPR-mediated cleavage of each Wnt gene visualized by T7 endonuclease activity. (B) Simultaneous in vivo CRISPR cleavage of pairs of Wnt genes. Target gene is indicated in magenta. Note that each gene is targeted by two sgRNAs, and that in some cases the PCR-amplified fragment used for the T7 endonuclease assay only includes one such target site. Also note that these tissue samples include non-neuronal tissue from whole heads, and thus do not directly reflect cutting efficiency.
Figure S6. Related to Figure 2. Somatic CRISPR of fz, but not fz2, fz3, or fz4 nor any combination thereof, produces planar cell polarity defects in the adult wing. Each of the four fz paralogs was targeted (one sgRNA per target gene, in a modified pCFD4 backbone [see Methods]) in the wing using nub-Gal4 > UAS:Cas9.P2, either singly or in each pairwise combination, and morphology and PCP was assayed in the adult wing. Top panels show whole phenotype (note that wing margin defects are specific to double knock-out of fz + fz2), and bottom panels show higher magnification of wing hair orientation in the of the L2-L3 intervein region. Note PCP phenotypes were exclusively observed when fz was targeted.
Figure S7. Related to Figure 3. Pairwise double RNAi against wg in combination with wnt4 or wnt6 in the notum does not disrupt PCP patterning. (A) Example of a characteristic PCP phenotype (misoriented bristles) in the adult notum caused fz loss-of-function (pnrgal4 > UAS:Cas9.P2, sgRNA-fz-fz2). (B) UAS:RNAi constructs targeting the indicated genes were expressed in the developing notum using pnrgal4, and PCP was analyzed by observing bristle polarity.
Table S1. sgRNAs used in this study. Related to Figures 1-3.

Plasmid	Target gene	sgRNA	Note
pCFD6	wg	GGGGCGGCGGCTCCATGTGTGG	Also used for knock-in
pCFD6	wg	CGATCCACCTCTACGTGGAGAAGG	
pCFD6	wnt2	CGCTGGGCCCCGGTCAAGGCCCGG	
pCFD6	wnt2	AATCTACATCTCTGGATTATGG	Also used for knock-in
pCFD6	wnt4	TGTTCAGATTGTAGTCTCTTGG	
pCFD6	wnt4	TCGAGTGTACCCTGGTGATTGG	
pCFD6	wnt5	GCCAGTGACCTGGGACTCGG	
pCFD6	wnt5	GCCAGCCAGTCCTACCGGAGG	
pCFD6	wnt6	ATTTAGCAGAGAAGGATTGG	
pCFD6	wnt6	TGCCCAATAGACTGGATTCCGTGG	Also used for knock-in
pCFD6	wntD	GTGTACATGCTAGTCCTAGGG	Also used for knock-in
pCFD6	wntD	CATGAGTATACGACGACTCTGG	
pCFD6	wnt10	ATGGGCGGATGTCGCGGTGGTGG	
pCFD6	wnt10	CAGAAGCAGACGACAGAAGCAGG	Also used for knock-in
pCFD6	wnt4	CTCCTACTGCGCGTCACCAAGG	For knock-in Gal4 in last exon
pCFD6	wnt5	TGAACGTACCGAGCTCGGTAGG	Used for knock-in, not knock-out
pCFD6	fz	ATGGGCGGATGTCGCGGTGGTGG	Used in Figure 2
pCFD6	fz	GCCATGAGAAGGATTGGATGTTATGG	Used in Figure 2
pCFD6	intergenic	GCCAGACAAGGATGTCGCGGTGG	
pCFD6	intergenic	CAGGACTTTATGCACGAGG	
pCFD4[flpOUT]	fz	AGCGCTGGACCCCGCTGCAGG	Used in Figure S6
pCFD4[flpOUT]	fz2	TATGAGCAGACCCGCTTGAGG	Used in Figure S6
pCFD4[flpOUT]	fz3	CATGACTGCGACTCCGATTGCAGG	Used in Figure S6
pCFD4[flpOUT]	fz4	TGAGACCTCACGCAATCGTCAGGG	Used in Figure S6
Target region & Purpose	F primer	R primer	
--	--	--	
wg - left homology arm	TACTTTCATAGCCAAAAAGCTGAGTTAAAAAGTAA	CCGGCCCCCTCCGGATTT	
wg - right homology arm	TTCATGTTGTGTAAGTTC	AAGTGTAAACATCTGTGGG	
wnt2 - left homology arm	GAACGGATTCCACATCCATC	CCAGAGTATGAGATTAAAGG	
wnt2 - right homology arm	AAGGTATAGTACCCCCATAAAC	CCACTGACAGGAAGGAAATG	
wnt4 (first exon) - left homology arm	GAAAACCCCTCAAGCCCAAG	CTGTGTGCTGCTGTTT	
wnt4 (first exon) - right homology arm	AATCACAATCTGAAACAG	TTTCGATCTCCTGTTT	
wnt5 - left homology arm	GATGGAAATCGGTCGTCGC	GCCCTCTTGTGACTATGGG	
wnt5 - right homology arm	GTACGGTCTAAAGCCCAAG	TTAATCTGCTGATGATCG	
wnt6 - left homology arm	GAATGTGTGGCTTGTGT	TCTGATCATTGGCCATGG	
wnt6 - right homology arm	AGTGGCATTTAATACCCTATTAC	GCAAATATTGTGCAAAGTG	
wntD - left homology arm	AAGCCCTTTTGTATCGCTTCTTGT	CTCCAAACCTGCTGCCAG	
wntD - right homology arm	CTACTACCATGACACCAG	ACGTATTTATGATGCGTTGTG	
wnt10 - left homology arm	TAAACCCCTCTAAACCCCA	TCTGCTGCTGCTTCTG	
wnt10 - right homology arm	CAGCAGACAGCAACAGAC	TGACAAGGCCAGCAACAG	
wg - T7 assay	CGCATGCTAATGATGATGATTGCT	TCCCCAAAAACCCCATTTACCTATC	
wnt2 - T7 assay	GAAACGGCAGAAAGGGAAAGGAAAATTA	CTGCTTTTCTGCTGCTTCTTGT	
wnt4 - T7 assay	GTATCCCAGATTCAGGATCTCC	GCATCCCAATATATCAGGCCAAA	
wnt5 - T7 assay	GTGCAAGAAGATGATGCTTCTTGT	AATAGTAAGAGAAAGGAATAGGAA	
wnt6 - T7 assay	TCTGAAAGGGATTAGTCAGAGCAG	CACAGCTTTTATGCCATTCTTA	
wnt7 - T7 assay	CAGGCTACATTAGCAGAAGCAGTTTTCC	CGATCATTAGCAGAAGCAGAGATA	
wnt10 - T7 assay	AACGCAAATGCGTCAATTAAC	CATGCGATGAAATGGAAACAGTCT	
wnt4 - in situ probe (S' linker for appending T7)	ggcggcgaggTGAGCTGAGATCTG	cccggggcGTTCATTGTTGTAACAGGGCAC	
Gal4 - in situ probe (S' linker for appending T7)	ggcggcgaggAAGAAAAACCGAGATGGGCC	cccggggcATCAGAGGACAGAGGGG	