Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks

Zhishuai Guo
The University of Iowa
ZHISHUAI-GUO@UIOWA.EDU

Mingrui Liu
The University of Iowa
MINGRUI-LIU@UIOWA.EDU

Zhuoning Yuan
The University of Iowa
ZHUONING-YUAN@UIOWA.EDU

Li Shen
Tencent AI Lab
MATHSHENLI@GMAIL.COM

Wei Liu
Tencent AI Lab
WL2223@COLUMBIA.EDU

Tianbao Yang
The University of Iowa
TIANBAO-YANG@UIOWA.EDU

Abstract

In this paper, we study distributed algorithms for large-scale AUC maximization with a deep neural network as a predictive model. Although distributed learning techniques have been investigated extensively in deep learning, they are not directly applicable to stochastic AUC maximization with deep neural networks due to its striking differences from standard loss minimization problems (e.g., cross-entropy). Towards addressing this challenge, we propose and analyze a communication-efficient distributed optimization algorithm based on a non-convex concave reformulation of the AUC maximization, in which the communication of both the primal variable and the dual variable between each worker and the parameter server only occurs after multiple steps of gradient-based updates in each worker. Compared with the naive parallel version of an existing algorithm that computes stochastic gradients at individual machines and averages them for updating the model parameter, our algorithm requires a much less number of communication rounds and still achieves a linear speedup in theory. To the best of our knowledge, this is the first work that solves the non-convex concave min-max problem for AUC maximization with deep neural networks in a communication-efficient distributed manner while still maintaining the linear speedup property in theory. Our experiments on several benchmark datasets show the effectiveness of our algorithm and also confirm our theory.

1. Introduction

Large-scale distributed deep learning Dean et al. (2012); Li et al. (2014) has achieved tremendous successes in various domains, including computer vision Goyal et al. (2017), natural language processing Devlin et al. (2018); Yang et al. (2019), generative modeling Brock et al. (2018), reinforcement learning Silver et al. (2016, 2017), etc. From the perspective of learning theory and optimization, most of them are trying to minimize a surrogate loss of a spe-

© .
Table 1: Summary of Iteration and Communication Complexities, where K is number of machines and $\mu \leq 1$. NP-PPD-SG denotes the naive parallel version of PPD-SG, which is also a special case of our algorithm, whose complexities can be derived following our analysis.

Alg.	Setting	Iteration Compl.	Comm. Compl.
PPD-SG Liu et al. (2020b)	Single	$O(1/(\mu^2\epsilon))$	-
NP-PPD-SG	Distributed	$O(1/(K\mu^2\epsilon))$	$O(1/(K\mu^2\epsilon))$
CoDA	Distributed	$O(1/(K\mu^2\epsilon))$	$O(1/(\mu^{3/2}\epsilon^{1/2}))$

cific error measure using parallel minibatch stochastic gradient descent (SGD). For example, in the image classification task, the surrogate loss is usually the cross entropy between the estimated probability distribution according to the output of the neural network and the vector encoding the ground-truth label Krizhevsky et al. (2012); Simonyan and Zisserman (2014); He et al. (2016), which is a surrogate loss of the misclassification rate. Based on the surrogate loss, parallel minibatch SGD Goyal et al. (2017) is employed to update the model parameters.

However, when the data for classification is imbalanced, AUC (short for Area Under the ROC Curve) is a more suitable measure Elkan (2001). AUC is defined as the probability that the positive sample has higher score than the negative sample Hanley and McNeil (1982, 1983). Despite the tremendous applications of distributed deep learning in different fields, the study about optimizing AUC with distributed deep learning technologies is rare. The commonly used parallel mini-batch SGD for minimizing a surrogate loss of AUC will suffer from high communication costs in a distributed setting due to the non-decomposability nature of AUC measure. The reason is that positive and negative data pairs that define a surrogate loss for AUC may sit on different machines. To the best of our knowledge, Liu et al. (2020b) is the only work trying to optimize a surrogate loss of AUC with a deep neural network that explicitly tackles the non-decomposability of AUC measure. Nevertheless, their algorithms are designed only for the single-machine setting and hence are far from sufficient when encountering a huge amount of data. Although a naive parallel version of the stochastic algorithms proposed in Liu et al. (2020b) can be used for distributed AUC maximization with a deep neural network, it would still suffer from high communication overhead due to a large number of communication rounds.

In this paper, we bridge the gap between stochastic AUC maximization and distributed deep learning by proposing a communication-efficient distributed algorithm for stochastic AUC maximization with a deep neural network. The focus is to make the total number of communication rounds much less than the total number of iterative updates. We build our algorithm upon the nonconvex-concave min-max reformulation of the original problem. The key ingredient is to design a communication-efficient distributed algorithm for solving the regularized min-max subproblems using multiple machines. Specifically, we follow the proximal primal-dual algorithmic framework proposed by Rafique et al. (2018); Liu et al. (2020b), i.e., by solving a sequence of quadratic regularized min-max saddle-point problems with periodic updated regularizers successively. The key difference is that the inner min-max problem solver is built on a distributed periodic model averaging technique,
which consists of a fixed number of stochastic primal-dual updates over individual machines and a small number of averaging of model parameters from multiple machines. This mechanism can greatly reduce the communication cost, which is similar to Zhou and Cong (2017); Stich (2018); Yu et al. (2019b). However, their analysis cannot be applied to our case since their analysis only works for convex or non-convex minimization problems. In contrast, our algorithm is designed for a particular non-convex concave min-max problem induced by the original AUC maximization problem. Our contributions are summarized as following:

- We propose a communication-efficient distributed stochastic algorithm named CoDA for solving a nonconvex-concave min-max reformulation of AUC maximization with deep neural networks by local primal-dual updating and periodically global variable averaging. To our knowledge, this is the first communication-efficient distributed stochastic algorithm for learning a deep neural network by AUC maximization.

- We analyze the iteration complexity and communication complexity of the proposed algorithm under the commonly used Polyak-Lojasiewicz (PL) condition as in Liu et al. (2020b). Comparing with Liu et al. (2020b), our theoretical result shows that the iteration complexity can be reduced by a factor of K (the number of machines) in a certain region, while the communication complexity (the rounds of communication) is much less than that of a naive distributed version of the stochastic algorithm proposed in Liu et al. (2020b). The summary of iteration and communication complexities is given in Table 1.

- We verify our theoretical claims by conducting experiments on several large-scale benchmark datasets. The experimental results show that our algorithm indeed exhibits good speedup performance in practice.

2. Related Work

Stochastic AUC Maximization. It is challenging to directly solve the stochastic AUC maximization in the online learning setting since the objective function of AUC maximization depends on a sum of pairwise losses between samples from positive and negative classes. Zhao et al. (2011) addressed this problem by maintaining a buffer to store representative data samples, employing the reservoir sampling technique to update the buffer, calculating gradient information based on the data in the buffer, and then performing gradient-based update rule to update the classifier. Gao et al. (2013) did not maintain a buffer, they instead maintained first-order and second-order statistics of the received data to update the classifier by gradient-based update. Both of them are infeasible in big data scenarios since Zhao et al. (2011) suffers from a large amount of training data and Gao et al. (2013) is not suitable for high dimensional data. Ying et al. (2016) addressed these issues by introducing a min-max reformulation of the original problem and solving it by primal-dual stochastic gradient method Nemirovski et al. (2009), in which no buffer is needed and per-iteration complexity is the same magnitude of the dimension of the feature vector. Natole et al. (2018) improved the convergence rate by adding a strongly convex regularizer upon the original formulation. Based on the same saddle point formulation as in Ying et al. (2016), Liu et al. (2018) got an improved convergence rate by developing a multi-stage algorithm without adding the strongly convex regularizer. However, all
of these studies focus on learning a linear model. Recently, Liu et al. (2020b) considered stochastic AUC maximization for learning a deep non-linear model, in which they designed a proximal primal-dual gradient-based algorithm under the PL condition and established non-asymptotic convergence results.

Communication Efficient Algorithms. There are multiple approaches for reducing the communication cost in distributed optimization, including skipping communication and compression techniques. Due to limit of space, we mainly review the literature on skipping communication. For compression techniques, we refer the readers to Jiang and Agrawal (2018); Stich et al. (2018); Basu et al. (2019); Wangni et al. (2018); Bernstein et al. (2018) and references therein. Skipping communication is realized by doing multiple local gradient-based updates in each worker before aggregating the local model parameters together. One special case is so-called one-shot averaging Zinkevich et al. (2010); McDonald et al. (2010); Zhang et al. (2013), where each machine solves a local optimization problem and averages these solutions only at the last iterate. Zhang et al. (2013); Shamir and Srebro (2014); Godichon-Baggioni and Saadane (2017); Jain et al. (2017); Koloskova et al. (2019); Koloskova* et al. (2020) considered one-shot averaging with one-pass of the data and established statistical convergence, which is usually not able to guarantee the convergence of training error. The scheme of local SGD update in each worker with skipping communication is analyzed for convex Stich (2018); Jaggi et al. (2014) and nonconvex problems Zhou and Cong (2017); Jiang and Agrawal (2018); Wang and Joshi (2018b); Lin et al. (2018b); Wang and Joshi (2018a); Yu et al. (2019b,a); Basu et al. (2019); Haddadpour et al. (2019). There are also several empirical studies Povey et al. (2014); Su and Chen (2015); McMahan et al. (2016); Chen and Huo (2016); McMahan et al. (2016); Lin et al. (2018b); Kamp et al. (2018) showing that this scheme exhibits good empirical performance in distributed deep learning. However, all of these works only consider minimization problems and do not apply to the nonconvex-concave min-max formulation as considered in this paper.

Nonconvex Min-max Optimization Stochastic nonconvex min-max optimization has garnered increasing attention recently Rafique et al. (2018); Lin et al. (2018a); Sanjabi et al. (2018); Lu et al. (2019); Lin et al. (2019); Jin et al. (2019); Liu et al. (2020a). Rafique et al. (2018) considered the case where the objective function is weakly-convex and concave and proposed an algorithm based on the spirit of proximal point method Rockafellar (1976), in which a proximal subproblem with periodically updated reference points is approximately solved by an appropriate stochastic algorithm. They established the convergence to nearly stationary point for the equivalent minimization problem. Under the same setting, Lu et al. (2019) designed a block-based algorithm and showed that it can converge to a solution with a small stationary gap, and Lin et al. (2019) considered solving the problem using vanilla stochastic gradient descent ascent and established its convergence to a stationary point under the smoothness assumption. There are also several papers Lin et al. (2018a); Sanjabi et al. (2018); Liu et al. (2020a) trying to solve non-convex non-concave min-max problems. Lin et al. (2018a) proposed an inexact proximal point method for solving a class of weakly-convex weakly-concave problems, which was proven to converge to a nearly stationary point. Sanjabi et al. (2018) exploited the PL condition for the inner maximization problem and designed a multi-step alternating optimization algorithm which was able to
converge to a stationary point. Liu et al. (2020a) considered solving a class of nonconvexnonconcave min-max problems by designing an adaptive gradient method and established an adaptive complexity for finding a stationary point. However, none of them is particularly designed for distributed stochastic AUC maximization problem with a deep neural network.

3. Preliminaries and Notations

The area under the ROC curve (AUC) on a population level for a scoring function \(h : \mathcal{X} \rightarrow \mathbb{R} \) is defined as

\[
\text{AUC}(h) = \Pr(h(x) \geq h(x') | y = 1, y' = -1),
\]

where \(z = (x, y) \) and \(z' = (x', y') \) are drawn independently from \(\mathbb{P} \). By employing the squared loss as the surrogate for the indicator function which is commonly used by previous studies Gao et al. (2013); Ying et al. (2016); Liu et al. (2018, 2020b), the deep AUC maximization problem can be formulated as

\[
\min_{w \in \mathbb{R}^d} \mathbb{E}_{z,z'} \left[(1 - h(w; x) + h(w; x'))^2 | y = 1, y' = -1 \right],
\]

where \(h(w; x) \) denotes the prediction score for a data sample \(x \) made by a deep neural network parameterized by \(w \). It was shown in Ying et al. (2016) that the above problem is equivalent to the following min-max problem:

\[
\min_{w \in \mathbb{R}^d} \max_{(a,b) \in \mathbb{R}^2} f(w, a, b, \alpha) = \mathbb{E}_z[F(w, a, b, \alpha; z)],
\]

where

\[
F(w, a, b, \alpha; z) = (1 - p)(h(w; x) - a)^2 I_{[y=1]} + p(h(w; x) - b)^2 I_{[y=-1]}
+ 2(1 + \alpha)(p h(w; x)) I_{[y=-1]} - (1 - p) h(w, x) I_{[y=1]} - p(1 - p) \alpha^2,
\]

where \(p = \Pr(y = 1) \) denotes the prior probability that an example belongs to the positive class and \(I \) denotes an indicator function. The above min-max reformulation allows us to decompose the expectation over all data into the expectation over data on individual machines.

In this paper, we consider the following distributed AUC maximization problem:

\[
\min_{w \in \mathbb{R}^d} \max_{(a,b) \in \mathbb{R}^2} f(w, a, b, \alpha) = \frac{1}{K} \sum_{k=1}^{K} f_k(w, a, b, \alpha),
\]

where \(K \) is the total number of machines, \(f_k(w, a, b, \alpha) = \mathbb{E}_{z^k}[F_k(w, a, b, \alpha; z^k)] \), \(z^k = (x^k, y^k) \sim \mathbb{P}_k \), \(\mathbb{P}_k \) is the data distribution on machine \(k \), and \(F_k(w, a, b, \alpha; z^k) = F(w, a, b, \alpha; z^k) \). Our goal is to utilize \(K \) machines to jointly solve the optimization problem (3). We emphasize that the \(k \)-th machine can only access data \(z^k \sim \mathbb{P}_k \) of its own. It is notable that our formulation includes both the batch-learning setting and the online learning setting. For the batch-learning setting, \(\mathbb{P}_k \) represents the empirical distribution of data on the \(k \)-th machine and \(p \) denotes the positive ratio in the population level for all data. For the online learning setting, \(\mathbb{P}_k = \mathbb{P}, \forall k \) represents the same population distribution of data and \(p \) denotes the positive ratio in the population level.
Notations. We define the following notations:

\[\mathbf{v} = (\mathbf{w}^T, a, b)^T, \quad \phi(\mathbf{v}) = \max_{\alpha} f(\mathbf{v}, \alpha), \phi_s(\mathbf{v}) = \phi(\mathbf{v}) + \frac{1}{2\gamma} \| \mathbf{v} - \mathbf{v}_{s-1} \|^2, \]

\[\mathbf{v}^*_\phi = \arg \min_{\mathbf{v}} \phi(\mathbf{v}), \quad \mathbf{v}^*_s = \arg \min_{\mathbf{v}} \phi_s(\mathbf{v}). \]

We make the following assumption throughout this paper.

Assumption 1

(i) There exist \(\mathbf{v}_0, \Delta_0 > 0 \) such that \(\phi(\mathbf{v}_0) - \phi(\mathbf{v}^*_\phi) \leq \Delta_0. \) (ii) For any \(\mathbf{x}, \| \nabla h(\mathbf{w}; \mathbf{x}) \| \leq G_h. \) (iii) \(\phi(\mathbf{v}) \) satisfies the \(\mu \)-PL condition, i.e., \(\mu (\phi(\mathbf{v}) - \phi(\mathbf{v}_s)) \leq \frac{1}{2} \| \nabla \phi(\mathbf{v}) \|^2; \phi(\mathbf{v}) \) is \(L_1 \)-smooth, i.e., \(\| \phi(\mathbf{v}_1) - \phi(\mathbf{v}_2) \| \leq L_1 \| \mathbf{v}_1 - \mathbf{v}_2 \|. \) (iv) For any \(\mathbf{x}, h(\mathbf{w}; \mathbf{x}) \) is \(L_h \)-smooth, and \(h(\mathbf{w}; \mathbf{x}) \in [0, 1]. \)

Remark: Assumptions (i), (ii) and (iii) are also assumed in Liu et al. (2020b), which have been justified as well. Assumption (iv) can be justified as follows. \(h \) is bounded when \(h \) is defined as the sigmoid function composited with a forward propagation function of a neural network. \(L \)-smoothness of function \(h \) is a standard assumption in the optimization literature. Finally, it should be noted that \(\mu \) is usually much smaller than 1 Yuan et al. (2019). This is important for us to understand our theoretical result later.

4. Main Result and Theoretical Analysis

In this section, we first describe our algorithm, and then present its convergence result followed by its analysis. For simplicity, we assume that the ratio \(p \) of data with positive label is known. For the batch learning setting, \(p \) is indeed the empirical ratio of positive examples. For the online learning setting with an unknown distribution, we can follow the online estimation technique in Liu et al. (2020b) to do the parameter update.

Algorithm 1 describes the proposed algorithm CoDA for optimizing AUC in a communication-efficient distributed manner. CoDA shares the same algorithmic framework as proposed in Liu et al. (2020b). In particular, we employ a proximal-point algorithmic scheme that successively solves the following convex-concave problems approximately:

\[\min_{\mathbf{v}} \max_{\alpha} f(\mathbf{v}, \alpha) + \frac{1}{2\gamma} \| \mathbf{v} - \mathbf{v}_0 \|^2, \quad (4) \]

where \(\gamma \) is an appropriate regularization parameter to make sure that the regularized function is strongly-convex and strongly-concave. The reference point \(\mathbf{v}_0 \) is periodically updated after a number of iterations. At the \(s \)-th stage our algorithm invokes a communication-efficient algorithm for solving the above strongly-convex and strongly-concave subproblems. After obtaining a primal solution \(\mathbf{v}_s \) at the \(s \)-th stage, we sample some data from individual machines to obtain an estimate of corresponding dual variable \(\alpha_s \).

Our new contribution is the communication-efficient distributed algorithm for solving the above strongly-convex and strongly-concave subproblems. The algorithm referred to as DSG is presented in Algorithm 2. Each machine makes a stochastic proximal-gradient update on the primal variable and a stochastic gradient update on the dual variable at each iteration. After every \(I \) iterations, all the \(K \) machines communicate to compute an
average of local primal solutions \(\mathbf{v}_t^k \) and local dual solutions \(\alpha_t^k \). It is not difficult to show that when \(I = 1 \), our algorithm reduces to the naive parallel version of the PPD-SG algorithm proposed in Liu et al. (2020b), i.e., by averaging individual primal and dual gradients and then updating the primal-dual variables according to the averaged gradient \(^1\). Our novel analysis allows us to use \(I > 1 \) to skip communications, leading to a much less number of communications. The intuition behind this is that, as long as the step size \(\eta_s \) is sufficiently small we can control the distance between individual solutions \((\mathbf{v}_s^k, \alpha_s^k) \) to their global averages, which allows us to control the error term that is caused by the discrepancy between individual machines. We will provide more explanations as we present the analysis.

Below, we present the main theoretical result of CoDA. Note that in the following presentation, \(L_v, H, B, \sigma_v, \sigma_\alpha \) are appropriate constants, whose values are given in the proofs of Lemma 1 and Lemma 2 in the supplement.

Theorem 1 Set \(\gamma = \frac{1}{2L_v} \), \(c = \frac{\mu / L_v}{\mu + \mu / L_v} \), \(\eta_s = \eta_0 K \exp(-(s-1)c) \leq O(1) \), \(I_s = \max(1, 1/\sqrt{K \eta_0}) \), \(T_s = \frac{\max(8, 16G^2_\sigma^2)}{\eta_s L_v \eta_0 K} \exp((s-1)c) \) and \(m_s = \frac{1}{\eta_s T_s 2^p v(1-p)^p} \). To return \(\mathbf{v}_S \) such that \(E[\phi(\mathbf{v}_S)] - \phi(\mathbf{v}_S^*) \leq \epsilon \), it suffices to choose \(S \geq \frac{5L_v + \mu}{\mu} \max \left\{ \log \left(\frac{2 \Delta_n}{\epsilon} \right), \log S + \log \left[\frac{2 \eta_0 6HB^2 + (6 \sigma_v^2 + 15 \sigma_\alpha^2)}{\epsilon} \right] \right\} \).

As a result, the number of iterations is at most \(T = \tilde{O} \left(\max \left(\frac{\Delta_n^{1/2}}{\mu \eta_0 K}, \frac{1}{\mu^2 K \epsilon} \right) \right) \) and the number of communications is at most \(\tilde{O} \left(K/\mu + \frac{\Delta_n^{1/2}}{\mu \eta_0 (\eta_0 K)^{1/2}}, K/\mu + \frac{1}{\mu^3/2^{3/2}} \right) \), where \(\tilde{O} \) suppresses logarithmic factors, and \(H, B, \sigma_v, \sigma_\alpha \) are appropriate constants.

We have the following remarks about Theorem 1.

- First, we can see that the step size \(\eta_s \) is reduced geometrically in a stagewise manner. This is due to the PL condition. We note that a stagewise geometrically decreasing

1 A tiny difference is that we use a proximal gradient update to handle the regularizer \(\frac{1}{2\eta_0} \| \mathbf{v} - \mathbf{v}_0 \|^2 \), while they directly use the gradient update. Using the proximal gradient update allows us to remove the assumption that \(\| \mathbf{v}_s^k - \mathbf{v}_0 \| \) is upper bounded.

Algorithm 1 CoDA

1: Initialize: \((\mathbf{v}_0 = 0 \in \mathbb{R}^{\alpha + 2}, \alpha_0 = 0, \gamma)\).
2: for \(s = 1, \ldots, S \) do
3: \(\mathbf{v}_s = \text{DSG}(\mathbf{v}_{s-1}, \alpha_{s-1}, \eta_s, T_s, m_s, I_s, \gamma)\),
4: Each machine draws a minibatch \(\{\mathbf{z}_{i}^k, \ldots, \mathbf{z}_{m_s}^k\} \) of size \(m_s \) and does:
5: \(h_{s}^{-} = \sum_{i=1}^{m_s} h(\mathbf{v}_s; \mathbf{x}_i^k) I_{y_i = -1}, N_{s}^{-} = \sum_{i=1}^{m_s} I_{y_i = -1}, \)
6: \(h_{s}^{+} = \sum_{i=1}^{m_s} h(\mathbf{v}_s; \mathbf{x}_i^k) I_{y_i = 1}, N_{s}^{+} = \sum_{i=1}^{m_s} I_{y_i = 1}, \)
7: \(\alpha_s = \frac{K}{\sum_{k=1}^{K} N_{s}^{-}} - \frac{\sum_{k=1}^{K} h_{s}^{-}}{\sum_{k=1}^{K} N_{s}^{+}}, \quad \diamond \text{communicate} \)
8: end for
9: Return \(\mathbf{v}_S \).
Algorithm 2 DSG($v_0, \alpha_0, \eta, T, I, \gamma$)

Each machine does intialization: $v_k^0 = v_0, \alpha_k^0 = \alpha_0$,

for $t = 0, 1, ..., T - 1$ do

Each machine k updates its local solution in parallel:

$v_{t+1}^k = \arg\min_v \left[\nabla v F_k(v_t^k, \alpha_t^k; z_t^k)^T v \\
+ \frac{1}{2\eta} \| v - v_t^k \|^2 + \frac{1}{2\gamma} \| v - v_0 \|^2 \right],$

$\alpha_{t+1}^k = \alpha_t^k + \eta \nabla_\alpha F_k(v_t^k, \alpha_t^k; z_t^k),$ if $t + 1 \text{ mod } I = 0$ then

$v_{t+1}^k = \frac{1}{K} \sum_{k=1}^{K} v_{t+1}^k,$ \quad \diamond \text{ communicate}

$\alpha_{t+1}^k = \frac{1}{K} \sum_{k=1}^{K} \alpha_{t+1}^k,$ \quad \diamond \text{ communicate}

end if

end for

Return $\tilde{v} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{T} \sum_{t=1}^{T} v_t^k.$

step size is usually used in practice in deep learning Yuan et al. (2019). Second, by setting $\eta_0 = O(1/K)$ we have $I_s = \Theta(\sqrt{\frac{1}{K} \text{exp}((s - 1)c/2)}$. It means two things: (i) the larger the number of machines the smaller value of I_s, i.e., more frequently the machines need to communicate. This is reasonable since more machines will create larger discrepancy between data among different machines; (ii) the value I_s can be increased geometrically across stages. This is because that the step size η_s is reduced geometrically, which causes one step of primal and dual updates on individual machines diverging less from their averaged solutions. As a result, more communications can be skipped.

• Second, we can see that when $K \leq \Theta(1/\mu)$, we have the total iteration complexity given by $\tilde{O}(\frac{1}{\mu^2 K \epsilon}).$ Compared with the iteration complexity of the PPD-SG algorithm proposed in Liu et al. (2020b) that is $\tilde{O}(\frac{1}{\mu^2 \epsilon}),$ the proposed algorithm CoDA enjoys an iteration complexity that is reduced by a factor of K. This means that up to a certain large threshold $\Theta(1/\mu)$ for the number K of machines, CoDA enjoys a linear speedup.

• Finally, let us compare CoDA with the naive parallel version of PPD-SG, which is CoDA by setting $I = 1$. In fact, our analysis of the iteration complexity for this case is still applicable, and it is not difficult to show that the iteration complexity of the naive parallel version of PPD-SG is given by $O(\frac{1}{\mu^2 K \epsilon})$ when $K \leq 1/\mu$. As a result, its communication complexity is also $\tilde{O}(\frac{1}{\mu^2 K \epsilon}).$ In contrast, CoDA’s communication complexity is $\tilde{O}(\frac{1}{\mu^{3/2} \epsilon^{1/2}})$ when $K \leq \frac{1}{\mu} \leq \frac{1}{\mu^{3/2} \epsilon^{1/2}} \leq \frac{1}{\epsilon}$ according to Theorem 1.²

Hence, our algorithm is more communication efficient, i.e., $\tilde{O}(\frac{1}{\mu^{3/2} \epsilon^{1/2}}) \leq \tilde{O}(\frac{1}{\mu^2 K \epsilon})$

². Assume ϵ is set to be small than $\mu.$
when $K \leq \frac{1}{\mu^3}$. This means that up to a certain large threshold $\Theta(1/\mu)$ for the number K of machines, CoDA has a smaller communication complexity than the naive parallel version of PPD-SG.

4.1 Analysis

Below, we present a sketch of the proof of Theorem 1 by providing some key lemmas. We first derive some useful properties regarding the random function $F_k(v, \alpha, z)$.

Lemma 1 Suppose that Assumption 1 holds and $\eta \leq \min\left(\frac{1}{2p(1-p)}, \frac{1}{2(1-p)}, \frac{1}{2p}\right)$. Then there exist some constants $L_2, B_\alpha, B_v, \sigma_v, \sigma_\alpha$ such that

\[
\begin{align*}
\|\nabla_v F_k(v_1, \alpha; z) - \nabla_v F_k(v_2, \alpha; z)\| &\leq L_2\|v_1 - v_2\|, \\
\|\nabla_v F_k(v, \alpha; z)\|^2 &\leq B_\alpha^2, \\
\|\nabla \alpha F_k(v, \alpha; z^k)\|^2 &\leq B_v^2, \\
\mathbb{E}[\|\nabla_v f_k(v, \alpha) - \nabla \alpha F_k(v, \alpha; z^k)\|^2] &\leq \sigma_v^2, \\
\mathbb{E}[\|\nabla \alpha F_k(v, \alpha; z^k)\|^2] &\leq \sigma_\alpha^2.
\end{align*}
\]

Remark: We include the proofs of these properties in the Appendix. In the following, we will denote $B^2 = \max(B_\alpha^2, B_v^2)$ and $L_v = \max(L_2, L_2)$.

Next, we introduce a key lemma, which is of vital importance to establish the upper bound of the objective gap of the regularized subproblem.

Lemma 2 (One call of Algorithm 2) Let $\psi_v = \max f(v, \alpha) + \frac{1}{\eta}\|v - v_0\|^2$, \tilde{v} be the output of Algorithm 2 and $v^*_\psi = \arg\min \psi_v$, $\alpha^*(v) = \arg\max f(v, \alpha) + \frac{1}{2\eta}\|v - v_0\|^2$. By running Algorithm 2 with given input v_0, α_0 for T iterations, $\gamma = \frac{1}{2L_v}$, and $\eta \leq \min\left\{\frac{1}{L_v + 3G_\alpha^2/\mu_\alpha}, \frac{1}{L_v + 3G_v^2/L_v}, \frac{3}{2p}, \frac{1}{2(1-p)}, \frac{1}{2p}\right\}$, we have

\[
\mathbb{E}[\psi(\tilde{v}) - \min_v \psi(v)] \leq \frac{2\|v_0 - v^*_\psi\|^2 + \mathbb{E}[\|\alpha_0 - \alpha^*(v)\|^2]}{\eta T} + H_\eta^2T^2B^2\|I\|_1 + \frac{\eta(2\sigma_v^2 + 3\sigma_\alpha^2)}{2K},
\]

where $\mu_\alpha = 2p(1-p)$, $L_\alpha = 2p(1-p)$, $G_\alpha = 2\max\{p, 1-p\}G_h$, $G_v = 2\max\{p, 1-p\}G_\alpha$, and $H = \left(\frac{2G_v^2}{\mu_\alpha} + 24L_v + \frac{2G_\alpha^2}{L_v} + \frac{24L_v}{\mu_\alpha}\right)$.

Remark: The above result is similar to Lemma 2 in Liu et al. (2020b). The key difference lies in the second and third terms in the upper bound. The second term arises because of discrepancy of updates between individual machines. The third term is due to the variance reduction by using multiple machines, which is the key to establish the linear speed-up. It is easy to see that by setting $I = \sqrt{\frac{h}{2\eta K}}$, the second term and the third term have the same order. With above lemma, the proof of Theorem 1 follows similar analysis to in Liu et al. (2020b).

Sketch of the Proof of Lemma 2. Below, we present a roadmap for the proof of the key Lemma 2. The main idea is to first bound the objective gap of the subproblem in Lemma 3. Then we further bound every term in the RHS in Lemma 3 appropriately, which are realized by Lemma 4, Lemma 5 and Lemma 6. All the detailed proofs of Lemmas can be found in Appendix.

3. Indeed, K can be as large as $\frac{1}{\mu^3}$ for CoDA to be more communication-efficient.
Lemma 3 Define $\tilde{v}_t = \frac{1}{K} k_{1=k}^k \mathbf{v}_t$ and $\alpha_t = \frac{1}{K} k_{1=k}^k \alpha_{t}$. Suppose Assumption 1 holds and by running Algorithm 2, we have

$$
\psi(\tilde{v}) - \min_{\mathbf{v}} \psi(\mathbf{v}) \leq \frac{1}{T} \sum_{t=1}^{T} \left(\nabla_{\alpha} f_\alpha(v_{t-1}, \bar{\alpha}_{t-1}, \mathbf{v}_{t} - \mathbf{v}_\psi) + 2L_{\alpha} (\mathbf{v}_{t-1} - v_{t} - v_\psi) + \nabla_{\alpha} f_\alpha(v_{t-1}, \bar{\alpha}_{t-1}, \alpha^* - \bar{\alpha}_t) \right)$$

$$
\left[\begin{array}{c} A_1 \\ A_2 \\ A_3 \end{array} \right] + \frac{L_{\alpha} + 3G_{\alpha}/\mu_{\alpha}}{2} \|\mathbf{v}_t - \mathbf{v}_{t-1}\|^2 + \frac{L_{\alpha} + 3G_{\alpha}/\mu_{\alpha}}{2} (\bar{\alpha}_t - \bar{\alpha}_{t-1})^2$$

$$
\left[\begin{array}{c} \frac{2L_{\alpha}}{3} \|\mathbf{v}_{t-1} - \mathbf{v}_\psi\|^2 - L_{\alpha} \|\mathbf{v}_t - \mathbf{v}_\psi\|^2 - \frac{1}{3} (\alpha_{t-1} - \alpha^*)^2 \end{array} \right].
$$

Next, we will bound A_1, A_2 in Lemma 4 and Lemma 5. A_3 can be cancelled with similar terms in the following two lemmas. The remaining terms will be left to form a telescoping sum with other similar terms in the following two lemmas.

Lemma 4 Defining $\hat{\mathbf{v}}_t = \arg \min_{\mathbf{v}} \left(\frac{1}{K} \sum_{k=1}^{K} \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}) \right) \mathbf{v} + \frac{1}{2\eta} \|\mathbf{v} - \mathbf{v}_{t-1}\|^2 + \frac{1}{2\eta} \|\mathbf{v} - \mathbf{v}_0\|^2$, we have

$$
A_1 \leq \frac{3G_{\alpha}^2}{2L_{\alpha}} \frac{1}{K} \sum_{k=1}^{K} (\bar{\alpha}_{t-1} - \alpha_{t-1})^2 + \frac{3L_{\alpha}}{2} \frac{1}{K} \sum_{k=1}^{K} \|\mathbf{v}_{t-1} - \mathbf{v}_{t-1}\|^2$$

$$
\left[\begin{array}{c} \eta \left\| \frac{1}{K} \sum_{k=1}^{K} \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}) - \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}; z_{t-1}) \right\|^2 \\
\frac{1}{K} \sum_{k=1}^{K} \|\nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}) - \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}; z_{t-1})\| \hat{\mathbf{v}}_t - \mathbf{v}_\psi \\
\|\hat{\mathbf{v}}_{t-1} - \mathbf{v}_\psi\|^2 - \|\hat{\mathbf{v}}_{t-1} - \hat{\mathbf{v}}_t\|^2 - \|\hat{\mathbf{v}}_t - \mathbf{v}_\psi\|^2 + \frac{L_{\alpha}}{3} \|\hat{\mathbf{v}}_t - \mathbf{v}_\psi\|^2 \end{array} \right].
$$

Lemma 5 Define $\hat{\alpha}_t = \hat{\alpha}_{t-1} + \frac{\eta}{K} \sum_{k=1}^{K} \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1})$. Define another sequence as

$$
\hat{\alpha}_t = \hat{\alpha}_{t-1} + \frac{\eta}{K} \sum_{k=1}^{K} (\nabla_{\alpha} F_\alpha(v_{t-1}, \alpha_{t-1}; \mathbf{z}_{t-1}) - \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1})), \text{ for } t > 0
$$

where $\hat{\alpha}_0 = \alpha_0$. We have,

$$
A_2 \leq \frac{3G_{\alpha}^2}{2\mu_{\alpha}} \frac{1}{K} \sum_{k=1}^{K} \|\hat{\mathbf{v}}_{t-1} - \mathbf{v}_\psi\|^2 + \frac{3L_{\alpha}^2}{2\mu_{\alpha}} \frac{1}{K} \sum_{k=1}^{K} (\bar{\alpha}_{t-1} - \alpha_{t-1})^2$$

$$
\left[\begin{array}{c} \frac{3\eta}{2} \left\| \frac{1}{K} \sum_{k=1}^{K} \nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}) - \nabla_{\alpha} F_\alpha(v_{t-1}, \alpha_{t-1}; \mathbf{z}_{t-1}) \right\|^2 \\
\frac{1}{K} \sum_{k=1}^{K} (\nabla_{\alpha} f_\alpha(v_{t-1}, \alpha_{t-1}) - \nabla_{\alpha} F_\alpha(v_{t-1}, \alpha_{t-1}; \mathbf{z}_{t-1})\| \hat{\alpha}_t - \hat{\alpha}_0 + \frac{\mu_{\alpha}}{3} (\alpha_t - \alpha^*(\hat{\mathbf{v}}))^2 \\
\left(\alpha_{t-1} - \alpha^*(\hat{\mathbf{v}}) \right)^2 - (\bar{\alpha}_{t-1} - \bar{\alpha}_t)^2 + (\bar{\alpha}_t - \alpha^*(\hat{\mathbf{v}}))^2 + \frac{1}{2\eta} \|\alpha^*(\hat{\mathbf{v}}) - \bar{\alpha}_t\|^2 - \frac{1}{2\eta} \|\alpha^*(\hat{\mathbf{v}}) - \bar{\alpha}_{t+1}\|^2 \end{array} \right].
$$
The first two terms in the upper bounds of A_1, A_2 are the differences between individual solutions and their averages, the third term is the variance of stochastic gradient, and the expectation of the fourth term will diminish. The lemma below will bound the difference between the averaged solution and the individual solutions.

Lemma 6 If K machines communicate every I iterations, and update with step size η, then

$$
\frac{1}{K} \sum_{k=1}^{K} E[\|\bar{v}_t - v_t^k\|^2] \leq 4\eta^2 I^2 B_v^2 I_{I>1}
$$

$$
\frac{1}{K} \sum_{k=1}^{K} E[\|\bar{\alpha}_t - \alpha_t^k\|^2] \leq 4\eta^2 I^2 B_\alpha^2 I_{I>1}.
$$

Combining the results in Lemma 3, Lemma 4, Lemma 5 and Lemma 6, we can prove the key Lemma 2.

5. Experiments

In this section, we conduct some experiments to verify our theory. In our experiments, one “machine” corresponds to one GPU. We use a cluster of 4 computing nodes with each computer node having 4 GPUs, which gives a total of 16 “machines.” We would like to emphasize that even 4 GPUs sit on one computing node, they only access to different parts of the data. For the experiment with $K = 1$ GPU, We run one computing node by using one GPU. For experiments with $K = 4$ GPUs, we run one computer node by using all four GPUs, and for those experiments with $K = 16$ GPUs, we use four computing nodes by using all GPUs. We notice that the communication costs among GPUs on one computing node might be less than that among GPUs on different computing nodes. Hence, it should be kept in mind that when comparing with $K = 4$ GPUs on different computer nodes, the margin of using $K = 16$ GPUs over using $K = 4$ GPUs should be larger than what we will see in our experimental results. All algorithms are implemented by PyTorch Paszke et al. (2019).

Data. We conduct experiments on 3 datasets: Cifar10, Cifar100 and ImageNet. For Cifar10, we split the original training data into two classes, i.e., positive class contains 5 original classes and negative class is composed of the other 5 classes. Cifar100 dataset is split in a similar way, i.e., positive class contains 50 original classes and negative class is composed of the other 50 classes. Testing data for Cifar10 and Cifar100 are the same as the original dataset. For ImageNet dataset, we sample 1% of the original training data as testing data and use the remaining data as the training data. The training data is split in a similar way as Cifar10 and Cifar100, i.e., positive class contains 500 original classes and negative class is composed of the other 500 classes. For each dataset, we create two versions of training data with different positive ratio. By keeping all examples in the positive and negative class, we have $p = 50\%$ for all three datasetes. In order to create imbalanced data, we drop some proportion of the negative data for each dataset and keep all the positive examples. In particular, by keeping all the positive data and 40% of the negative data we construct three datasets with positive ratio $p = 71\%$. Training data are shuffled and evenly divided to each GPU, i.e., each GPU has access to $1/K$ of the training data, where K is the number of GPUs. For all data, We use ResNet50 as our neural network He et al. (2016)
and initialize the model as the pretrained model from PyTorch. Due to limit of space, we only report the results on datasets with \(p = 71\% \) positive ratio, and other results are included in the supplement.

Baselines and Parameter Setting. For baselines, we compare with the single-machine algorithm PPD-SG as proposed in Liu et al. (2020b), which is represented by \(K = 1 \) in our results, and the naive parallel version of PPD-SG, which is denoted by \(K = X, I = 1 \) in our results. For all algorithms, we set \(T_s = T_0 3^k \), \(\eta_s = \eta_0 3^k \). \(T_0 \) and \(\eta_0 \) are tuned for PPD-SG and set to the same for all other algorithms for fair comparison. \(T_0 \) is tuned in \([2000, 5000, 10000]\), and \(\eta_0 \) is tune in \([0.1, 0.01, 0.001]\). We fix the batch size for each GPU as 32. For simplicity, in our experiments we use a fixed value of \(I \) in order to see its tradeoff with the number of machines \(K \).

![Figure 1: ImageNet, positive ratio = 71%](image1.png)

![Figure 2: Cifar100, positive ratio = 71%](image2.png)

![Figure 3: Cifar10, positive ratio = 71%](image3.png)

Results. We plot the curve of testing AUC versus the number of iterations and versus running time. We notice that evaluating the training objective function value on all examples is very expensive, hence we use the testing AUC as our evaluation metric. It might cause some gap between our results and the theory, however, the trend should be enough for our purpose to verify that our distributed algorithms can enjoy faster convergence in both the number of iterations and running time. We have the following observations.
6. Conclusion
In this paper, we have designed a communication-efficient distributed stochastic deep AUC maximization algorithm, in which each machine is able to do multiple iterations of local
updates before communicating with the central node. We have proved the linear speedup property and showed that the communication complexity can be dramatically reduced for multiple machines up to a large threshold number. Our empirical studies verify the theory and also demonstrate the effectiveness of the proposed distributed algorithm on benchmark datasets.

References

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-sgd: Distributed sgd with quantization, sparsification and local computations. In Advances in Neural Information Processing Systems, pages 14668–14679, 2019.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar. signsgd: Compressed optimisation for non-convex problems. arXiv preprint arXiv:1802.04434, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Kai Chen and Qiang Huo. Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering. In 2016 ieee international conference on acoustics, speech and signal processing (icassp), pages 5880–5884. IEEE, 2016.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. In Advances in neural information processing systems, pages 1223–1231, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Charles Elkan. The foundations of cost-sensitive learning. In International joint conference on artificial intelligence, volume 17, pages 973–978. Lawrence Erlbaum Associates Ltd, 2001.

Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. One-pass auc optimization. In ICML (3), pages 906–914, 2013.

Antoine Godichon-Baggioni and Sofiane Saadane. On the rates of convergence of parallelized averaged stochastic gradient algorithms. arXiv preprint arXiv:1710.07926, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local sgd with periodic averaging: Tighter analysis and adaptive synchronization. In Advances in Neural Information Processing Systems, pages 11080–11092, 2019.
James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology*, 143(1):29–36, 1982.

James A Hanley and Barbara J McNeil. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. *Radiology*, 148(3):839–843, 1983.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

Martin Jaggi, Virginia Smith, Martin Takác, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, and Michael I. Jordan. Communication-efficient distributed dual coordinate ascent. In *Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, pages 3068–3076, 2014.

Prateek Jain, Praneeth Netrapalli, Sham M Kakade, Rahul Kidambi, and Aaron Sidford. Parallelizing stochastic gradient descent for least squares regression: mini-batching, averaging, and model misspecification. *The Journal of Machine Learning Research*, 18(1):8258–8299, 2017.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse and quantized communication. In *Advances in Neural Information Processing Systems*, pages 2525–2536, 2018.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Minmax optimization: Stable limit points of gradient descent ascent are locally optimal. *arXiv preprint arXiv:1902.00618*, 2019.

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, and Stefan Wrobel. Efficient decentralized deep learning by dynamic model averaging. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 393–409. Springer, 2018.

Anastasia Koloskova, Sebastian U. Stich, and Martin Jaggi. Decentralized stochastic optimization and gossip algorithms with compressed communication. In *Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA*, pages 3478–3487, 2019.

Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning with arbitrary communication compression. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=SkgGCrKvH.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012.
Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 583–598, 2014.

Qihang Lin, Mingrui Liu, Hassan Rafique, and Tianbao Yang. Solving weakly-convex–weakly-concave saddle-point problems as weakly-monotone variational inequality. arXiv preprint arXiv:1810.10207, 2018a.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use local sgd. arXiv preprint arXiv:1808.07217, 2018b.

Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-concave minimax problems. arXiv preprint arXiv:1906.00331, 2019.

Mingrui Liu, Xiaoxuan Zhang, Zaiyi Chen, Xiaoyu Wang, and Tianbao Yang. Fast stochastic auc maximization with $o(1/n)$-convergence rate. In International Conference on Machine Learning, pages 3195–3203, 2018.

Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xiaodong Cui, Payel Das, and Tianbao Yang. Towards better understanding of adaptive gradient algorithms in generative adversarial nets. In International Conference on Learning Representations, 2020a. URL https://openreview.net/forum?id=SJxIm0VtwH.

Mingrui Liu, Zhuoning Yuan, Yiming Ying, and Tianbao Yang. Stochastic auc maximization with deep neural networks. ICLR, 2020b.

Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive approximation for one-sided non-convex min-max problems: Algorithms and applications. arXiv preprint arXiv:1902.08294, 2019.

Ryan McDonald, Keith Hall, and Gideon Mann. Distributed training strategies for the structured perceptron. In Human language technologies: The 2010 annual conference of the North American chapter of the association for computational linguistics, pages 456–464. Association for Computational Linguistics, 2010.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. Communication-efficient learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629, 2016.

Michael Natole, Yiming Ying, and Siwei Lyu. Stochastic proximal algorithms for auc maximization. In International Conference on Machine Learning, pages 3707–3716, 2018.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course, volume 87 of Applied Optimization. Springer, 2004.
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems, pages 8024–8035, 2019.

Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training of dnns with natural gradient and parameter averaging. arXiv preprint arXiv:1410.7455, 2014.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-max optimization: Provable algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060, 2018.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5):877–898, 1976.

Maziar Sanjabi, Meisam Razaviyayn, and Jason D Lee. Solving non-convex non-concave min-max games under polyak-l ojasiewicz condition. arXiv preprint arXiv:1812.02878, 2018.

Ohad Shamir and Nathan Srebro. Distributed stochastic optimization and learning. In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 850–857. IEEE, 2014.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint arXiv:1805.09767, 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In Advances in Neural Information Processing Systems, pages 4447–4458, 2018.

Hang Su and Haoyu Chen. Experiments on parallel training of deep neural network using model averaging. arXiv preprint arXiv:1507.01239, 2015.

Jianyu Wang and Gauri Joshi. Adaptive communication strategies to achieve the best error-runtime trade-off in local-update sgd. arXiv preprint arXiv:1810.08313, 2018a.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of communication-efficient sgd algorithms. arXiv preprint arXiv:1808.07576, 2018b.
Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-efficient distributed optimization. In *Advances in Neural Information Processing Systems*, pages 1299–1309, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding. In *Advances in neural information processing systems*, pages 5754–5764, 2019.

Yiming Ying, Longyin Wen, and Siwei Lyu. Stochastic online auc maximization. In *Advances in Neural Information Processing Systems*, pages 451–459, 2016.

Hao Yu, Rong Jin, and Sen Yang. On the linear speedup analysis of communication-efficient momentum sgd for distributed non-convex optimization. *arXiv preprint arXiv:1905.03817*, 2019a.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less communication: Demystifying why model averaging works for deep learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 5693–5700, 2019b.

Zhuoning Yuan, Yan Yan, Rong Jin, and Tianbao Yang. Stagewise training accelerates convergence of testing error over SGD. In *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada*, pages 2604–2614, 2019.

Yuchen Zhang, John C Duchi, and Martin J Wainwright. Communication-efficient algorithms for statistical optimization. *The Journal of Machine Learning Research*, 14(1): 3321–3363, 2013.

Peilin Zhao, Rong Jin, Tianbao Yang, and Steven C Hoi. Online auc maximization. In *Proceedings of the 28th international conference on machine learning (ICML-11)*, pages 233–240, 2011.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradient descent algorithm for nonconvex optimization. *arXiv preprint arXiv:1708.01012*, 2017.

Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized stochastic gradient descent. In *Advances in neural information processing systems*, pages 2595–2603, 2010.
Appendix A. Proof of Theorem 1

Proof. Define $\phi_s(v) = \phi(v) + \frac{1}{2}\|v - v_{s-1}\|^2$. We can see that $\phi_s(v)$ is convex and smooth since $\gamma \leq 1/L_v$. The smooth coefficient of ϕ_s is $\tilde{L}_v = L_v + 1/\gamma$. According to Theorem 2.1.5 of Nesterov (2004), we have

$$\|\nabla \phi_s(v_s)\|^2 \leq 2\tilde{L}_v(\phi_s(v_s) - \phi_s(v^*_s))$$ \hspace{1cm} (5)

Applying Lemma 2, we have

$$E_{s-1}[\phi_s(v_{s}) - \phi_s(v^*_{s})] \leq \frac{2}{\eta_i T_s}\|v_{s-1} - v^*_s\|^2 + \frac{1}{\eta_i T_s}(\alpha_{s-1} - \alpha^*(v_s))^2 + H\eta_i^2 s^2 B^2 I_{s>1} + \frac{\eta_s(\sigma^2_v + 3\sigma^2_\alpha)}{2K}$$

It follows that

Define $\alpha^*(v_s) = \arg \max_{\alpha} f(v_s, \alpha) = E_{s}[\frac{1}{2p(1-p)} \frac{1}{K}\sum_{k=1}^{K} [2ph(w_s; x^k)\|y^k = -1 - 2(1-p)h(w_s; x^k)\|y^k = 1]]$. By the update rule of α in Algorithm 1, we can see that

$$E_{s-1}[(\alpha_{s-1} - \alpha^*(v_{s-1}))^2] = \frac{1}{m_s K^2(2p(1-p))^2} \sum_{k=1}^{K} Var(2ph(w; x^k)\|y^k = -1 - 2(1-p)h(w; x^k)\|y^k = 1])$$

$$\leq \frac{1}{m_s K^2 4p^2 (1-p)^2} \sum_{k=1}^{K} Var(\nabla_\alpha F_k(v, \alpha; z))$$

$$\leq \frac{1}{m_s K^2 4p^2 (1-p)^2} \alpha^2_\sigma$$

where (a) holds because for any k, $2ph(w; x^k)\|y^k = -1 - 2(1-p)h(w; x^k)\|y^k = 1$ is independent from any other machine, (b) holds by the definition of $F_k(\cdot)$ and (c) is by Lemma 1.

Since $h(w; x)$ is G_h-Lipschitz, $E[h(w; x)|y = -1] - E[h(w; x)|y = 1]$ is $2G_h$-Lipschitz. It follows that

$$E_{s-1}[(\alpha_{s-1} - \alpha^*(v_{s-1}))^2] = E_{s-1}[(\alpha_{s-1} - \alpha^*(v_{s-1}) + \alpha^*(v_{s-1}) - \alpha^*(v_s))^2]$$

$$\leq E_{s-1}[2\|\alpha_{s-1} - \alpha^*(v_{s-1})\|^2 + 2\|\alpha^*(v_{s-1}) - \alpha^*(v_s)\|^2]$$

$$= E_{s-1}[2\|\alpha_{s-1} - \alpha^*(v_s)\|^2]$$

$$+ 2\left[\frac{1}{K} \sum_{k=1}^{K} \left[E_{s-1}[h(w_{s-1}; x^k)\|y^k = -1] - E_{s-1}[h(w_{s-1}; x^k)\|y^k = 1]\right] - [E_{s-1}[h(w_{s-1}; x)\|y^k = -1] - E_{s-1}[h(w_{s-1}; x)\|y^k = 1]]\right]^2$$

$$\leq \frac{2\sigma^2_\alpha}{m_s K^2 4p^2 (1-p)^2} + 8G_h^2 E_{s-1}[\|v_{s-1} - v_s\|^2].$$

Since $m_s \geq \frac{1}{\eta_i^2 T_s 2p^2 (1-p)^2}$, then we combine (A) and (7) to get

$$E[\phi_s(v_s) - \phi_s(v^*_s)] \leq \frac{2\|v_{s-1} - v^*_s\|^2 + 8G_h^2 E[\|v_{s-1} - v_s\|^2]}{\eta_i T_s} + \frac{\eta_s \sigma^2_\alpha}{K} + H\eta_i^2 s^2 B^2 I_{s>1} + \frac{\eta_s(2\sigma^2_v + 3\sigma^2_\alpha)}{2K}$$

$$\leq \frac{2\|v_{s-1} - v^*_s\|^2 + 8G_h^2 E[\|v_{s-1} - v_s\|^2]}{\eta_i T_s} + H\eta_i^2 s^2 B^2 I_{s>1} + \frac{\eta_s(2\sigma^2_v + 5\sigma^2_\alpha)}{2K}$$ \hspace{1cm} (8)
We define \(I_s' = 1/\sqrt{K\eta_s} = \frac{1}{K\sqrt{\eta_0}} \exp(c^{(s-1)}) \). Applying this and (8) to (5), we get

\[
E[\|\nabla \phi_s(v_s)\|^2] \leq 2\tilde{L}_v \left[\frac{2\|v_{s-1} - v^*_s\|^2 + 8G^2_h E[\|v_{s-1} - v_s\|^2]}{\eta_s T_s} + H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{2K} \right]
\]

\[
\leq 2\tilde{L}_v \left[\frac{2\|v_{s-1} - v^*_s\|^2 + 8G^2_h E[\|v_{s-1} - v_s\|^2]}{\eta_s T_s} + H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{2K} \right].
\]

Taking \(\gamma = \frac{1}{2\tilde{L}_v} \), then \(\tilde{L}_v = 3L_v \). Note that \(\phi_s(v) \) is \((\gamma^{-1} - L_v)\)-strongly convex, we have

\[
\phi_s(v_{s-1}) \geq \phi_s(v^*_s) + \frac{L_v}{2}\|v_{s-1} - v^*_s\|^2
\]

Plug (10) into Lemma 2, we get

\[
E_{s-1}[\phi(v_s) + L_v\|v_s - v_{s-1}\|^2] \\
\leq \phi_s(v^*_s) + \frac{2\|v_{s-1} - v^*_s\|^2 + 8G^2_h E_{s-1}[\|v_{s-1} - v_s\|^2]}{\eta_s T_s} + H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{2K}
\]

\[
\leq \phi_s(v_{s-1}) - \frac{L_v}{2}\|v_{s-1} - v^*_s\|^2 + \frac{2\|v_{s-1} - v^*_s\|^2 + 8G^2_h E_{s-1}[\|v_{s-1} - v_s\|^2]}{\eta_s T_s} + H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{2K}
\]

Noting \(\eta_s T_s L_v = \max(8, 16G^2_h) \) and \(\phi_s(v_{s-1}) = \phi(v_{s-1}) \), we rearrange terms and get

\[
\frac{2\|v_{s-1} - v^*_s\|^2 + 8G^2_h E_{s-1}[\|v_{s-1} - v_s\|^2]}{\eta_s T_s} \leq \phi(v_{s-1}) - E_{s-1}[\phi(v_s)] + H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{2K}
\]

Combining (9) and (12), we get

\[
E_{s-1}[\|\nabla \phi_s(v_s)\|^2] \leq 2\tilde{L}_v \left[\phi(v_{s-1}) - E_{s-1}[\phi(v_s)] + 2H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{K} \right]
\]

\[
= 6L_v \left[\phi(v_{s-1}) - E_{s-1}[\phi(v_s)] + 2H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{K} \right]
\]

Taking expectation on both sides over all randomness until \(v_{s-1} \) is generated and by tower property, we have

\[
E[\|\nabla \phi_s(v_s)\|^2] \leq 6L_v \left(E[\phi(v_{s-1}) - \phi(v^*_s)] - E[\phi(v_s) - \phi(v^*_s)] + 2H\eta_s^2 I_s^2 B^2 + \frac{\eta_s (2\sigma^2 + 5\sigma^2_s)}{K} \right)
\]
Rearranging terms, it yields

\[
\phi(v_{s-1}) \geq \phi(v_s) + \langle \nabla \phi(v_s), v_{s-1} - v_s \rangle - \frac{L_v}{2} \|v_{s-1} - v_s\|^2 \\
= \phi(v_s) + \langle \nabla \phi(v_s) + 2L_v(v_s - v_{s-1}), v_{s-1} - v_s \rangle + \frac{3}{2}L_v \|v_{s-1} - v_s\|^2 \\
= \phi(v_s) + \langle \nabla \phi_s(v_s), v_{s-1} - v_s \rangle + \frac{3}{2}L_v \|v_{s-1} - v_s\|^2 \\
= \phi(v_s) - \frac{1}{2L_v} \langle \nabla \phi_s(v_s), \nabla \phi_s(v_s) - \nabla \phi(v_s) \rangle + \frac{3}{8L_v} \|\nabla \phi_s(v_s) - \nabla \phi(v_s)\|^2 \\
= \phi(v_s) - \frac{1}{8L_v} \|\nabla \phi_s(v_s)\|^2 - \frac{1}{4L_v} \langle \nabla \phi_s(v_s), \nabla \phi(v_s) \rangle + \frac{3}{8L_v} \|\nabla \phi(v_s)\|^2 \\
\]

(15)

Since \(\phi(v)\) is \(L_v\)-smooth and hence is \(L_v\)-weakly convex, we have

\[
\phi(v_{s-1}) \leq \phi(v_s) + \frac{1}{8L_v} \|\nabla \phi_s(v_s)\|^2 + \frac{1}{4L_v} \langle \nabla \phi_s(v_s), \nabla \phi(v_s) \rangle - \frac{3}{8L_v} \|\nabla \phi(v_s)\|^2 \\
\leq \frac{1}{8L_v} \|\nabla \phi_s(v_s)\|^2 + \frac{1}{8L_v} (\|\nabla \phi_s(v_s)\|^2 + \|\nabla \phi(v_s)\|^2) - \frac{3}{8L_v} \|\nabla \phi(v_s)\|^2 \\
= \frac{1}{4L_v} \|\nabla \phi_s(v_s)\|^2 - \frac{\mu}{2L_v} (\phi(v_s) - \phi(v_0^*)) \\
\leq \frac{1}{4L_v} \|\nabla \phi_s(v_s)\|^2 - \frac{\mu}{2L_v} (\phi(v_s) - \phi(v_0^*)) \\
\]

(16)

Define \(\Delta_s = \phi(v_s) - \phi(v_0^*)\). Combining (14) and (16), we get

\[
E[\Delta_s - \Delta_{s-1}] \leq \frac{3}{2} E(\Delta_{s-1} - \Delta_s) + 3H \eta_s^2 I_s^2 B^2 + \frac{\eta_s(6\sigma_v^2 + 15\sigma_\alpha^2)}{2K} - \frac{\mu}{2L_v} E[\Delta_s] \\
\]

(17)

Therefore,

\[
\left(\frac{5}{2} + \frac{\mu}{2L_v}\right) E[\Delta_s] \leq \frac{5}{2} E[\Delta_{s-1}] + 3H \eta_s^2 I_s^2 B^2 + \frac{\eta_s(6\sigma_v^2 + 15\sigma_\alpha^2)}{2K} \\
\]

(18)

Using \(c = \frac{\mu/L_v}{\nu + \mu/L_v}\) as defined in the theorem,

\[
E[\Delta_s] \leq \frac{5L_v}{5L_v + \mu} E[\Delta_{s-1}] + \frac{2L_v}{5L_v + \mu} \left[3H \eta_s^2 I_s^2 B^2 + \frac{\eta_s(6\sigma_v^2 + 15\sigma_\alpha^2)}{2K}\right] \\
= (1 - c) \left[E[\Delta_{s-1}] + \frac{2}{5} \left(3H \eta_s^2 I_s^2 B^2 + \frac{\eta_s(6\sigma_v^2 + 15\sigma_\alpha^2)}{2K}\right)\right] \\
\leq (1 - c)^S E[\Delta_0] + \frac{6HB^2}{5} \sum_{j=1}^{S} \eta_s^2 I_j^2 (1 - c)^{S+1-j} + \frac{(6\sigma_v^2 + 15\sigma_\alpha^2)}{5K} \sum_{j=1}^{S} \eta_j (1 - c)^{S+1-j} \\
\]

(19)

\[
= (1 - c)^S E[\Delta_0] + \frac{6HB^2}{5} \sum_{j=1}^{S} \eta_s^2 I_j^2 (1 - c)^{S+1-j} + \frac{(6\sigma_v^2 + 15\sigma_\alpha^2)}{5K} \sum_{j=1}^{S} \eta_j (1 - c)^{S+1-j} \\
\]

21
We then have
\[E[\Delta_s] \leq (1 - c)^s E[\Delta_0] + \left(\frac{6H B^2}{5K} + \frac{(6\sigma_v^2 + 15\sigma_a^2)}{5K} \right) \sum_{j=1}^{S} \eta_j (1 - c)^{s+1-j} \]
\[\leq \exp(-cS) \Delta_0 + \left(\frac{6H B^2}{5K} + \frac{(6\sigma_v^2 + 15\sigma_a^2)}{5K} \right) \sum_{j=1}^{S} \eta_j \exp(-c(S - j)) \]
\[= \exp(-cS) \Delta_0 + \left(\frac{6H B^2}{5} + \frac{(6\sigma_v^2 + 15\sigma_a^2)}{5} \right) \eta_0 S \exp(-cS) \]

To achieve \(E[\Delta_s] \leq \epsilon \), it suffices to make
\[\exp(-cS) \Delta_0 \leq \epsilon/2 \]
and
\[\left(\frac{6H B^2}{5} + \frac{(6\sigma_v^2 + 15\sigma_a^2)}{5} \right) \eta_0 S \exp(-cS) \leq \epsilon/2 \]

So, it suffices to make
\[S \geq c^{-1} \max \left\{ \log \left(\frac{2 \Delta_0}{\epsilon} \right), \log S + \log \left[\frac{2 \eta_0 6H B^2 + (6\sigma_v^2 + 15\sigma_a^2)}{5} \right] \right\} \]

Taking summation of iteration over \(s = 1, \ldots, S \), we have the total iteration complexity as
\[T = \sum_{s=1}^{S} T_s \leq \frac{\max\{8, 16G^2\} \exp(cS) - 1}{L \eta_0 K \exp(c) - 1} \leq \frac{\max\{8, 16G^2\} 5L \eta_0 K \mu \exp(cS)}{\mu \exp(cS)} \]
\[= \tilde{O} \left(\max \left(\frac{\Delta_0}{\mu \eta_0 K}, \frac{S(6H B^2 + (6\sigma_v^2 + 15\sigma_a^2))}{\mu K} \right) \right) = \tilde{O} \left(\max \left(\frac{\Delta_0}{\mu \eta_0 K}, \frac{1}{\mu^2 K \epsilon} \right) \right) \]

To analyze the total communication complexity, we will analyze two cases: (1) \(\frac{1}{K \eta_0} > 1 \); (2) \(\frac{1}{K \eta_0} \leq 1 \).

(1) If \(\frac{1}{K \eta_0} > 1 \), thus \(I_s = \max(1, \frac{1}{K \eta_0} \exp(\frac{c(s-1)}{2})) = \frac{1}{K \eta_0} \exp(\frac{c(s-1)}{2}) \) for any \(s \geq 1 \).

Total number of communications:
\[\sum_{s=1}^{S} T_s \frac{I_s}{I_s} = \sum_{s=1}^{S} \frac{\max\{8, 16G^2\}}{L \eta_0^{1/2}} \exp \left(\frac{c(s - 1)}{2} \right) = \frac{\max\{8, 16G^2\}}{L \eta_0^{1/2}} \exp(cS/2) - 1 \]
\[= \tilde{O} \left(\max \left(\frac{(2 \Delta_0/\epsilon)^{1/2}}{\mu \eta_0^{1/2}}, \frac{S(6H B^2 + (6\sigma_v^2 + 15\sigma_a^2))^{1/2}}{\mu^{1/2} \epsilon^{1/2}} \right) \right) = \tilde{O} \left(\frac{\Delta_0^{1/2}}{\mu^{1/2} (\eta_0 \epsilon)^{1/2}} + \frac{1}{\mu^{3/2} \epsilon^{1/2}} \right) \]

(2) If \(\frac{1}{K \eta_0} \leq 1 \), thus \(I_s = 1 \) for \(s \leq \left[2 \epsilon^{-1} \log(K \sqrt{\eta_0}) + 1 \right] := S_1 \) and \(I_s = \frac{1}{K \eta_0} \exp(\frac{s-1}{2}) \) for \(s > \frac{2(5+\mu/L \nu)}{\mu L \nu} \log(K \sqrt{\eta_0}) + 1 \).
Obviously, $S_1 \leq \frac{2(5+\mu/L_v)}{\mu/L_v} \log(K \sqrt{\eta_0}) + 2$. The number of iterations from $s = 1$ to S_1 is

$$\sum_{s=1}^{S_1} T_s = \sum_{s=1}^{S_1} \frac{\max\{8, 16G_h^2\}}{\eta_0 L_v K} \exp(c(s - 1))$$

$$= \frac{\max\{8, 16G_h^2\} \exp(cS_1) - 1}{\eta_0 L_v K \exp(c) - 1}$$

$$\leq c^{-1} \frac{\max\{8, 16G_h^2\}}{\eta_0 L_v K} \exp(2 \log(K \sqrt{\eta_0}) + 2c)$$

$$= c^{-1} \frac{\max\{8, 16G_h^2\}}{\eta_0 L_v K} \exp\left(\frac{2 \mu/L_v}{5 + \mu/L_v}\right)$$

$$\leq c^{-1} \max\{8, 16G_h^2\} K \exp(2)$$

Thus, the total number of communications is

$$\sum_{s=1}^{S_1} T_s + \sum_{s=S_1+1}^{S} T_s$$

$$= c^{-1} \max\{8, 16G_h^2\} K \exp(2) + \sum_{s=S_1+1}^{S} \frac{\max\{8, 16G_h^2\}}{L_v \eta_0^{1/2}} \exp\left(\frac{s - 1}{2} \frac{\mu/L_v}{5 + \mu/L_v}\right)$$

$$\leq c^{-1} \max\{8, 16G_h^2\} K \exp(2) + \sum_{s=1}^{S} \frac{\max\{8, 16G_h^2\}}{L_v \eta_0^{1/2}} \exp\left(\frac{s - 1}{2} \frac{\mu/L_v}{5 + \mu/L_v}\right)$$

$$\leq c^{-1} \max\{8, 16G_h^2\} K \exp(2) + \frac{\max\{8, 16G_h^2\}}{L_v \eta_0^{1/2}} \exp\left(\frac{S \mu/L_v}{5 + \mu/L_v}\right) - 1$$

$$\in O\left(\max\left(\frac{K}{\mu} + \frac{\Delta_0}{\mu \eta_0^{1/2} c^{1/2}}, \frac{K}{\mu} + \frac{1}{\mu^{3/2} K c^{1/2}}\right)\right)$$

Appendix B. Proof of Lemma 1

To prove Lemma 1, we need following Lemma 7 and Lemma 8 to show that the trajectory of α, a and b are constrained in closed sets in Algorithm 2.

Lemma 7 Suppose Assumption (1) holds and $\eta \leq \frac{1}{2p(1-p)}$, running Algorithm 2 with input given by Algorithm 1, we have $|\alpha^k_t| \leq \frac{\max\{p, (1-p)\}}{p(1-p)}$ for any iteration t and any machine k.

Proof. Firstly, we need to show that the input for any call of Algorithm (2) satisfies $|\alpha^k_0| \leq \frac{\max\{p, (1-p)\}}{p(1-p)}$. If Algorithm 2 is called by the Algorithm 1 for the first time, we know $|\alpha^k_0| = 0 \leq \frac{\max\{p, (1-p)\}}{p(1-p)}$. Otherwise, by the update of α in Algorithm (1) (lines 4-7), we know that the input for Algorithm (2) satisfies $|\alpha^k_0| \leq 2 \leq \frac{\max\{p, (1-p)\}}{p(1-p)}$ since that $h(w; x^k) \in [0, 1]$ by Assumption 1(iv).
Next, we will show by induction that \(|\alpha^k_t| \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\) for any iteration \(t\) and any machine \(k\) in Algorithm 2. Obviously, \(|\alpha^k_0| \leq 2 \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\) for any \(k\).

Assume \(|\alpha^k_t| \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\) for any \(k\).

(1) If \(t + 1 \mod I \neq 0\), then we have

\[|\alpha^k_{t+1}| = |\alpha^k_t + \eta(2(p\langle \mathbf{w}^k_t; \mathbf{x} \rangle)\mathbb{I}_{[y=y-1]} - (1-p)h(\mathbf{w}^k_t; \mathbf{x})\mathbb{I}_{[y=1]} - 2p(1-p)\alpha_t)|\]

\[\leq (1-2\eta p(1-p))|\alpha^k_t| + 2\eta|p(1-p)h(\mathbf{w}^k_t; \mathbf{x})\mathbb{I}_{[y=1]}|\]

\[\leq (1-2\eta p(1-p))\max\{p.(1-p)\} + 2\eta \max\{p.(1-p)\},\]

\[= (1-2\eta p(1-p))\max\{p.(1-p)\} \frac{\max\{p.(1-p)\}}{p.(1-p)}\] (28)

(2) If \(t + 1 \mod I = 0\), then by same analysis as above, we know that \(|\alpha^k_{t+1}| \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\) before being averaged across machines. Therefore, after being averaged across machines, it still holds that \(|\alpha^k_{t+1}| \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\).

Therefore, \(|\alpha^k_t| \leq \frac{\max\{p.(1-p)\}}{p.(1-p)}\) holds for any iteration \(t\) and any machine \(k\) at any call of Algorithm (2).

Lemma 8 Suppose Assumption (1) (1) holds and \(\eta \leq \min(\frac{1}{2(1-p)}, \frac{1}{2p})\), running Algorithm 2 with the input given by Algorithm (1), we have that \(|\alpha^k| \leq 1\) and \(|b^k| \leq 1\) for any iteration \(t\) and any machine \(k\).

Proof. At the first call of the Algorithm (2), the input satisfies \(|a_0| \leq 1\) and \(|b_0| \leq 1\). Thus \(|a^k_0| \leq 1\) and \(|b^k_0| \leq 1\) for any machine \(k\).

Assume \(|a^k_t| \leq 1\) and \(|b^k_t| \leq 1\), then:

(1) \(t + 1 \mod I \neq 0\), then we have

\[|a^k_t| = \left|\frac{\gamma}{\eta^+}a_{t-1}^k + \frac{\eta}{\eta^+}\alpha_0 - \frac{\eta}{\eta^+}\eta a_{t-1} - \frac{\eta}{\eta^+}\nabla_a F_k(\mathbf{v}^k_{t-1}; \alpha_{t-1}^k, \mathbf{z}^k_{t-1})\right|\]

\[= \left|\frac{\gamma}{\eta^+}a_{t-1}^k + \frac{\eta}{\eta^+}\alpha_0 + \frac{\eta}{\eta^+}(2(1-p)(h(\mathbf{w}^k_{t-1}; \mathbf{x}^k_{t-1}) - a_{t-1}^k))\mathbb{I}_{y^k=1}\right|\]

\[= \left|\frac{\eta}{\eta^+}\alpha_0 + \frac{\gamma}{\eta^+}a_{t-1}^k(1-2\eta(1-p))\mathbb{I}_{y^k=1} + \frac{\eta}{\eta^+}(2(1-p)h(\mathbf{w}^k_{t-1}; \mathbf{x}^k_{t-1}))\mathbb{I}_{y^k=1}\right|\]

\[\leq \left|\frac{\eta}{\eta^+}\alpha_0 + \frac{\gamma}{\eta^+}a_{t-1}^k(1-2\eta(1-p))\mathbb{I}_{y^k=1} + \frac{\eta}{\eta^+}(2(1-p)h(\mathbf{w}^k_{t-1}; \mathbf{x}^k_{t-1}))\mathbb{I}_{y^k=1}\right|\]

\[\leq \left|\frac{\eta}{\eta^+} + \frac{\gamma}{\eta^+}(1-2\eta(1-p)) + \frac{\eta}{\eta^+}(2(1-p)\right|\]

\[= 1\]
(2) If \(t + 1 \mod I = 0 \), then by same analysis as above, we have that \(|a_{t+1}^k| \leq 1\) before being averaged across machines. Therefore, after begin averaged across machines, it still holds that \(|a_{t+1}^k| \leq 1\).

Thus, we can see that \(|a_t^k| \leq 1\) holds for any iteration \(t \) and any machine \(k \) in this call of Algorithm 2. Therefore, the output of the stage also has \(|\tilde{a}| \leq 1\).

Then we know that in the next call of Algorithm (2), the input satisfies \(|a_0| \leq 1\), by same proof, we can see that \(|a_t^k| \leq 1\) holds for any iteration \(t \) and any machine \(k \) in any call of Algorithm (2). With the same techniques, we can prove that \(|b_t^k|\) holds for any iteration \(t \) and any machine \(k \) any call of Algorithm (2). \(\Box\)

With the above lemmas, we are ready to prove Lemma 1 and derive the claimed constants.

By definition of \(F(v, \alpha; z) \) and noting that \(v = (w, a, b) \), we have

\[
\nabla_v F_k(v, \alpha; z) = [\nabla_w F_k(v, \alpha; z)^T, \nabla_a F_k(v, \alpha; z), \nabla_b F_k(v, \alpha; z)]^T
\]

(30)

Addressing each of the three terms on RHS, it follows that

\[
\nabla_w F_k(v, \alpha; z) = \left[(1 - p)(w; x^k) - a \right] \nabla h(w; x^k)I_{[y^k = 1]} \\
+ \left[2p(h(w; x^k) - b) + 2(1 + \alpha)p \right] \nabla h(w; x^k)I_{[y^k = 1]} \\
\nabla_a F_k(v, \alpha; z) = -2(1 - p)(h(w; x^k) - a)I_{[y^k = 1]}, \\
\nabla_b F_k(v, \alpha; z) = -2p(h(w; x^k) - b)
\]

(31)

Since \(|h(w; x^k)| \in [0, 1], \|\nabla h(w; x^k)\| \leq G_h, |\alpha| \leq \frac{\text{max}\{p, 1 - p\}}{p(1 - p)}, \|a| \leq 1\) and \(b \leq 1\), we have

\[
\|\nabla_w F_k(v, \alpha; z)\| \leq \|2(1 - p)(h(w; x^k) - a) - 2(1 + \alpha)(1 - p)\|G_h \\
+ \|2p(h(w; x^k) - b) + 2(1 + \alpha)p\|G_h \\
\leq |6 + 2\alpha|(1 - p)G_h + |6 + 2\alpha|pG_h \leq \left(6 + 2\frac{\text{max}\{p, 1 - p\}}{p(1 - p)}\right)G_h \\
\|\nabla_a F_k(v, \alpha; z)\| \leq 4(1 - p) \\
\|\nabla_b F_k(v, \alpha; z)\| \leq 4p
\]

(32)

(33)

(34)

Thus,

\[
\|\nabla_v F_k(v, \alpha; z)\|^2 = \|\nabla_w F_k(v, \alpha; z)\|^2 + \|\nabla_a F_k(v, \alpha; z)\|^2 + \|\nabla_b F_k(v, \alpha; z)\|^2 \\
\leq \left(6 + 2\frac{\text{max}\{p, 1 - p\}}{p(1 - p)}\right)^2 G_h^2 + 16(1 - p)^2 + 16p^2.
\]

(35)
\[\|\nabla F_k(\mathbf{v}, \alpha; \mathbf{z})\|^2 = \|2p h(\mathbf{w}; x^k) \|_{y^k = 1} - 2(1 - p) h(\mathbf{w}; x^k) \|_{y^k = 1} - 2p(1 - p) \alpha \|^2 \leq (2p + 2(1 - p) + 4 \max\{p, 1 - p\})^2 = (2 + 4 \max\{p, 1 - p\})^2. \] (36)

Thus, \(B_\alpha^2 = \left(6 + \frac{2 \max\{p, 1 - p\}}{p(1 - p)}\right)^2 G^2 h + 16(1 - p)^2 + 16p^2\) and \(B_\alpha^2 = (2 + 4 \max\{p, 1 - p\})^2\).

It follow that
\[|\nabla f_k(\mathbf{v}, \alpha)| = |E[\nabla F_k(\mathbf{v}, \alpha; \mathbf{z})]| \leq B_\nu \] (37)

Therefore,
\[E[|\nabla F_k(\mathbf{v}, \alpha) - \nabla f_k(\mathbf{v}, \alpha; \mathbf{z})|^2] \leq [2|\nabla f_k(\mathbf{v}, \alpha)|^2 + 2|E[\nabla F_k(\mathbf{v}, \alpha; \mathbf{z})]|^2] \leq 4B_\nu^2 \] (38)

Similarly,
\[|\nabla f_k(\mathbf{w}, a, b, \alpha)| = |E[\nabla F_k(\mathbf{w}, a, b, \alpha; \mathbf{z})]| \leq B_\alpha \] (39)

Therefore,
\[E[|\nabla f_k(\mathbf{w}, \alpha) - \nabla f_k(\mathbf{w}, \alpha; \mathbf{z})|^2] \leq 2|\nabla f_k(\mathbf{w}, \alpha)|^2 + 2E[F_k(\mathbf{w}, \alpha; \mathbf{z})]^2 \leq 4B_\alpha^2 \] (40)

Thus, \(\sigma_\nu^2 = 4B_\nu^2\) and \(\sigma_\alpha^2 = 4B_\alpha^2\).

Now, it remains to derive the constant \(L_2\) such that \(\|\nabla f_k(\mathbf{v}_1, \alpha; \mathbf{z}) - \nabla f_k(\mathbf{v}_2, \alpha; \mathbf{z})\| \leq L_2 \|\mathbf{v}_1 - \mathbf{v}_2\|\).

By (31), we get
\[
\|\nabla F_k(\mathbf{v}_1, \alpha; \mathbf{z}) - \nabla F_k(\mathbf{v}_2, \alpha; \mathbf{z})\|
\]
\[
= \left[\left(2(1 - p) h(\mathbf{w}_1; x^k) - a_1 - 2(1 + \alpha)(1 - p)\right) \nabla h(\mathbf{w}_1; x^k) \|_{y^k = 1} + 2p h(\mathbf{w}_1; x^k) - b_1 + 2(1 + \alpha)p \nabla h(\mathbf{w}_1; x^k) \|_{y^k = 1} - \left(2(1 - p) h(\mathbf{w}_2; x^k) - a_2 - 2(1 + \alpha)(1 - p)\right) \nabla h(\mathbf{w}_2; x^k) \|_{y^k = 1} - 2p h(\mathbf{w}_2; x^k) - b_2 + 2(1 + \alpha)p \nabla h(\mathbf{w}_2; x^k) \|_{y^k = 1}\right] \]
\[
= \left[\left(2(1 - p) h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k)\right) \|_{y^k = 1} + 2p h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k) \|_{y^k = 1} \right.
\]
\[
\left. - (2(1 + \alpha))(1 - p) h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k) \|_{y^k = 1} + (2(1 + \alpha)p)(\nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k)) \|_{y^k = 1} \right]
\]
\[
\leq \left[2(1 - p) h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k)\right] \|_{y^k = 1} + 2p h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k) \|_{y^k = 1} + \|2(1 + \alpha)(1 - p)\| \nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k)\|_{y^k = 1} + (2(1 + \alpha)p) \| \nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k)\|_{y^k = 1} \]
\[
+ 2(1 - p) \|a_1 \nabla h(\mathbf{w}_1; x^k) - a_2 \nabla h(\mathbf{w}_2; x^k)\|_{y^k = 1} + 2p \|b_1 \nabla h(\mathbf{w}_1; x^k) - b_2 \nabla h(\mathbf{w}_2; x^k)\|_{y^k = 1}\right] \]
\[
\leq 2(1 - p) \|h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k)\| + 2p \|h(\mathbf{w}_1; x^k) \nabla h(\mathbf{w}_1; x^k) - h(\mathbf{w}_2; x^k) \nabla h(\mathbf{w}_2; x^k)\| + \|2(1 + \alpha)(1 - p)\| \nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k)\| + (2(1 + \alpha)p) \| \nabla h(\mathbf{w}_1; x^k) - \nabla h(\mathbf{w}_2; x^k)\|\]
\[
+ 2(1 - p) \|a_1 \nabla h(\mathbf{w}_1; x^k) - a_2 \nabla h(\mathbf{w}_2; x^k)\| + 2p \|b_1 \nabla h(\mathbf{w}_1; x^k) - b_2 \nabla h(\mathbf{w}_2; x^k)\| \]
\] (41)
Denote $\Gamma_1(w; x^k) = h(w; x^k)\nabla h(w; x^k)$,
\[
\|\nabla \Gamma_1(w; x^k)\| = \|\nabla h(w; x^k)\nabla h(w; x^k)^T + h(w; x^k)\nabla^2 h(w; x^k)\| \\
\leq \|\nabla h(w; x^k)\nabla h(w; x^k)^T\| + \|h(w; x^k)\nabla^2 h(w; x^k)\| \\
\leq G_h^2 + L_h.
\]
Thus, $\|\Gamma_1(w_1; x^k) - \Gamma_1(w_2; x^k)\| = \|h(w_1; x^k)h'(w_1; x^k) - h(w_2; x^k)h'(w_2; x^k)\| \leq (G_h^2 + L_h)\|w_1 - w_2\|$. Define $\Gamma_2(w, a; x^k) = a\nabla h(w; x^k)$, By Lemma 8 and Assumption 1, we have
\[
\nabla_{w,a}\Gamma_2(w, a; x^k) \leq \|\nabla_{w}\Gamma_2(w, a; x^k)\| + \|\nabla_{a}\Gamma_2(w, a; x^k)\| \\
= \|a\nabla^2 h(w; x^k)\| + \|\nabla h(w; x^k)\| \leq L_h + G_h.
\]
Therefore,
\[
|\Gamma_2(w_1, a_1; x^k) - \Gamma_2(w_2, a_2; x^k)| = \|a_1\nabla h(w_1; x^k) - a_2\nabla h(w_2; x^k)\| \\
\leq (L_h + G_h)\sqrt{\|w_1 - w_2\|^2 + \|a_1 - a_2\|^2}.
\]
Similarly, we can prove that
\[
|b_1\nabla h(w_1; x^k) - b_2\nabla h(w_2; x^k)| \leq (L_h + G_h)\sqrt{\|w_1 - w_2\|^2 + \|b_1 - b_2\|^2}.
\]
Then plug (44), (45) and the Assumption 1 into (41), we have
\[
\|\nabla_{w}F_k(v_1, a; z) - \nabla_{w}F_k(v_2, a; z)\| \\
\leq 2(G_h^2 + L_h)\|w_1 - w_2\| + 2(1 + \alpha)G_h\|w_1 - w_2\| \\
+ (L_h + G_h)\sqrt{\|w_1 - w_2\|^2 + \|a_1 - a_2\|^2} + (L_h + G_h)\sqrt{\|w_1 - w_2\|^2 + \|b_1 - b_2\|^2} \\
\leq (2G_h^2 + L_h)[2(1 + \alpha)G_h + 2L_h + 2G_h]\sqrt{\|w_1 - w_2\|^2 + \|a_1 - a_2\|^2 + \|b_1 - b_2\|^2} \\
\leq \left(2G_h^2 + 4L_h + \left(4 + \frac{2\max\{p, 1 - p\}}{p(1 - p)}\right)G_h\right)\|v_1 - v_2\|
\]
From (31), we also have
\[
\|\nabla_{a}F_k(v_1, a; z) - \nabla_{a}F_k(v_2, a; z)\|^2 \leq 4(1 - p)^2(\|h(w_1; x^k) - h(w_2; x^k)\|^2 + \|a_1 - a_2\|^2) \\
\leq 4(1 - p)^2(G_h^2\|w_1 - w_2\|^2 + \|a_1 - a_2\|^2 + \|b_1 - b_2\|^2) \leq 4(1 - p)^2(G_h^2 + 1)\|v_1 - v_2\|^2
\]
and
\[
\|\nabla_{b}F_k(v_1, a; z) - \nabla_{b}F_k(v_2, a; z)\|^2 \leq 4(1 - p)^2(\|h(w_1; x^k) - h(w_2; x^k)\|^2 + \|b_1 - b_2\|^2) \\
\leq 4(1 - p)^2(G_h^2\|w_1 - w_2\|^2 + \|a_1 - a_2\|^2 + \|b_1 - b_2\|^2) \leq 4(1 - p)^2(G_h^2 + 1)\|v_1 - v_2\|^2
\]
\[
\|\nabla_{v}F_k(v_1, a; z) - \nabla_{v}F_k(v_2, a; z)\|^2 = \|\nabla_{w}F_k(v_1, a; z) - \nabla_{w}F_k(v_2, a; z)\|^2 \\
+ \|\nabla_{a}F_k(v_1, a; z) - \nabla_{a}F_k(v_2, a; z)\|^2 + \|\nabla_{b}F_k(v_1, a; z) - \nabla_{b}F_k(v_1, a; z)\|^2 \\
\leq \left(G_h^2 + L_h + 4 + \frac{2\max\{p, 1 - p\}}{p(1 - p)}\right)8(1 - p)^2(G_h^2 + 1)\|v_1 - v_2\|^2
\]
Thus, we get $L_2 = \left(G_h^2 + L_h + 4 + \frac{2\max\{p, 1 - p\}}{p(1 - p)}\right)\left(2G_h^2 + 1\right)^{1/2}$.

27
Appendix C. Proof of Lemma 2

Proof. Plug Lemma 4 and Lemma 5 into Lemma 3, we get

\[
\psi(\tilde{v}) - \psi(v^*_o) \\
\leq \frac{1}{T} \sum_{t=1}^{T} \left[\left(\frac{L_v + 3G^2_v/\mu_o}{2} - \frac{1}{2\eta} \right) \|v_{t-1} - \tilde{v}_t\|^2 + \left(\frac{L_o + 3G^2_v/L_v}{2} - \frac{1}{2\eta} \right) (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2 \right]
\]
\[
+ \frac{1}{2\eta} (\tilde{\alpha}_{t-1} - \tilde{\alpha}_t - \alpha^*(\psi))^2 - \frac{1}{2\eta} (\tilde{\alpha}_t - \alpha^*(\psi))^2 + \frac{2L_v}{3} + \frac{1}{2\eta} \|v_{t-1} - v^*_o\|^2 - \frac{1}{2\eta} \|v_t - v^*_o\|^2
\]
\[
+ \frac{1}{2\eta} \left((\alpha^* - \tilde{\alpha}_{t-1})^2 - (\alpha^* - \tilde{\alpha}_t)^2 \right) + \left(\frac{3G^2_v}{2\mu_o} + 3L_v \right) \frac{1}{K} \sum_{k=1}^{K} \|v_{t-1} - v^*_k\|^2 + \left(\frac{3G^2_o + 3L^2_o}{2L_v} \right) \frac{1}{K} \sum_{k=1}^{K} (\tilde{\alpha}_{t-1} - \alpha_{t-1}^k)^2
\]
\[
+ \eta \left(\frac{1}{K} \sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - \nabla f_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1})\|^2 \right) + \frac{\eta}{2} \left(\frac{1}{K} \sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - \nabla f_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1})\|^2 \right)
\]
\[
+ \eta \left(\frac{1}{K} \sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - F_k(v^*_{t-1}, \alpha_{t-1}^k; z_{t-1})\| \right)
\]
\[
(50)
\]

Since \(\eta \leq \min \left(\frac{1}{L_v + 3G^2_v/\mu_o}, \frac{1}{L_o + 3G^2_v/L_v} \right) \), thus in the RHS of (50), \(C_1 \) can be cancelled. \(C_2, C_3 \) and \(C_4 \) will be handled by telescoping sum. \(C_5 \) can be bounded by Lemma 6.

Taking expectation over \(C_6 \),

\[
E \left[\eta \left(\frac{1}{K} \sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - \nabla f_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1})\|^2 \right) \right]
\]
\[
= E \left[\frac{\eta}{K^2} \left(\sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - \nabla f_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1})\|^2 \right) \right]
\]
\[
= E \left[\frac{\eta}{K^2} \left(\sum_{k=1}^{K} \|\nabla f_k(v^*_{t-1}, \alpha_{t-1}^k) - \nabla f_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1})\|^2 \right) \right]
\]
\[
+ 2 \sum_{i=1}^{K} \sum_{j=i+1}^{K} \left(\nabla f_i(v^*_{t-1}, \alpha_{t-1}^i) - \nabla f_i(v_{t-1}, \alpha_{t-1}^i; z_{t-1}), \nabla f_j(v^*_{t-1}, \alpha_{t-1}^j) - \nabla f_j(v_{t-1}, \alpha_{t-1}^j; z_{t-1}) \right)
\]
\[
\leq \frac{\eta \sigma^2}{K}
\]
\[
(51)
\]
The last inequality holds because \(\| \nabla \psi_{\bar{k}}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}) - \nabla \psi_{\bar{k}}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k}) \|^{2} \leq \sigma_{\psi}^{2} \) for any \(k \) and \(E \left[\left(\nabla \psi_{\bar{k}}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}) - \nabla \psi_{\bar{k}}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k}) \right) - \nabla \psi_{\bar{k}}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k}) \right] = 0 \) for any \(i \neq j \) as each machine draws data independently. Similarly, we take expectation over \(C_{7} \) and have

\[
E \left[\frac{3\eta}{2} \left\| \frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}) - \nabla \alpha_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k})) \right\|^{2} \right] \leq \frac{3\eta\sigma_{\alpha}^{2}}{2K} \tag{52}
\]

Note \(E \left[\left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}) - \nabla \alpha_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k})) \right) \right] = 0 \) and \(E \left[\left(-\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}) - F_{k}(v_{t_{z-1}}^{k}, \alpha_{t_{z-1}}^{k}; z_{t_{z-1}}^{k})) \right) \right] = 0 \). Therefore, \(C_{8} \) and \(C_{9} \) will diminish after taking expectation.

As \(\eta \leq \frac{1}{L_{\psi} \gamma \sigma_{\psi} \mu_{\alpha}} \), we have \(L_{\psi} \leq \frac{1}{\eta} \). Plugging (51) and (52) into (50), and taking expectation, it yields

\[
E[\psi(\bar{v}) - \psi(v_{t_{z}}^{\bar{k}})] \leq E \left[\frac{1}{T} \left(\frac{2L_{\psi}^{2}}{3} + \frac{1}{2\eta} \right) \| v_{0} - v_{t_{z}}^{*} \|^{2} + \frac{1}{T} \left(\frac{1}{2\eta} - \frac{\mu_{\alpha}}{3} \right) (\bar{\alpha}_{0} - \alpha^{*}(\bar{v}))^{2} + \frac{1}{2\eta T} \| \bar{\alpha}_{0} - \alpha^{*} \|^{2}
\right.
\]

\[
+ \frac{1}{T} \sum_{t=1}^{T} \left(\frac{3G_{\psi}^{2}}{2\mu_{\alpha}} + \frac{3L_{\psi}^{2}}{2} \right) \frac{1}{K} \sum_{k=1}^{K} \| \bar{v}_{t-1} - v_{t-1}^{*} \|^{2} + \frac{1}{T} \sum_{t=1}^{T} \left(\frac{3G_{\psi}^{2}}{2L_{\psi}} + \frac{3L_{\psi}^{2}}{2\mu_{\alpha}} \right) \frac{1}{K} \sum_{k=1}^{K} \| \bar{v}_{t-1} - v_{t-1}^{*} \|^{2}
\]

\[
+ \frac{1}{T} \sum_{t=1}^{T} \frac{\eta\sigma_{\alpha}^{2}}{K} + \frac{1}{T} \sum_{t=1}^{T} \frac{\eta\sigma_{\psi}^{2}}{K} \right]
\leq \frac{2}{\eta T} \| v_{0} - v_{t_{z}}^{*} \|^{2} + \frac{1}{\eta T} (\bar{\alpha}_{0} - \alpha^{*}(\bar{v}))^{2} + \left(\frac{24G_{\psi}^{2}}{\mu_{\alpha}} + 24L_{\psi} + \frac{24G_{\psi}^{2}}{L_{\psi}} + \frac{24L_{\psi}^{2}}{\mu_{\alpha}} \right) \frac{\eta^{2} I^{2} B^{2} I_{1}^{2}}{T} + \frac{\eta(2\sigma_{\alpha}^{2} + 3\sigma_{\psi}^{2})}{2K},
\]

where we use Lemma 6, \(v_{0} = v_{0}, \) \(\alpha_{0} = \bar{\alpha}_{0} = \bar{\alpha}_{0} \) and \(B^{2} = \max\{B_{\alpha}^{2}, B_{\psi}^{2}\} \) in the last inequality. \(\square \)

Appendix D. Proof of Lemma 3

Proof. Define \(\alpha^{*}(\bar{v}) = \arg \max_{\alpha} f(\bar{v}, \alpha) \) and \(\bar{\alpha} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{T} \sum_{t=1}^{T} \alpha_{t}^{k} \).

\[
\psi(\bar{v}) - \min_{v} \psi(v) = \max_{\alpha} \left[f(\bar{v}, \alpha) + \frac{1}{2\gamma} \| \bar{v} - v_{0} \|^{2} \right] - \min_{\alpha} \max_{v} \left[f(v, \alpha) + \frac{1}{2\gamma} \| v - v_{0} \|^{2} \right]
\]

\[
= \left[f(\bar{v}, \alpha^{*}(\bar{v})) + \frac{1}{2\gamma} \| \bar{v} - v_{0} \|^{2} \right] - \max_{\alpha} \left[f(v_{t_{z}}^{*}, \alpha) + \frac{1}{2\gamma} \| v_{t_{z}}^{*} - v_{0} \|^{2} \right]
\]

\[
\leq \left[f(\bar{v}, \alpha^{*}(\bar{v})) + \frac{1}{2\gamma} \| \bar{v} - v_{0} \|^{2} \right] - \left[f(v_{t_{z}}^{*}, \bar{\alpha}) + \frac{1}{2\gamma} \| v_{t_{z}}^{*} - v_{0} \|^{2} \right]
\]

\[
\leq \frac{1}{T} \sum_{t=1}^{T} \left[(f(\bar{v}_{t}, \alpha^{*}(\bar{v})) + \frac{1}{2\gamma} \| \bar{v}_{t} - v_{0} \|^{2}) - (f(v_{t_{z}}^{*}, \bar{\alpha}_{t}) + \frac{1}{2\gamma} \| v_{t_{z}}^{*} - v_{0} \|^{2}) \right]
\]

where the last inequality uses Jensen’s inequality and the fact that \(f(v, \alpha) + \frac{1}{2\gamma} \| v - v_{0} \|^{2} \) is convex in \(v \) and concave in \(\alpha \).
By L_v-weakly convexity of $f(\cdot)$ in v, we have

$$f(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) + \langle \nabla_v f(\bar{v}_{t-1}, \bar{\alpha}_{t-1}), v_{\psi}^* - \bar{v}_{t-1} \rangle - \frac{L_v}{2} \|\bar{v}_{t-1} - v_{\psi}^*\|^2 \leq f(v_{\psi}^*, \bar{\alpha}_{t-1}) \quad (54)$$

and by L_v-smoothness of $f(\cdot)$ in v, we have

$$f(v_t, \alpha^*) \leq f(v_{t-1}, \alpha^*) + \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle + \frac{L_v}{2} \|v_t - \bar{v}_{t-1}\|^2$$

$$= f(v_{t-1}, \alpha^*) + \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle + \frac{L_v}{2} \|v_t - \bar{v}_{t-1}\|^2$$

$$+ \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle - \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle$$

$$= f(v_{t-1}, \alpha^*) + \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle + \frac{L_v}{2} \|v_t - \bar{v}_{t-1}\|^2$$

$$+ \langle \nabla_v f(v_{t-1}, \alpha^*) - \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle$$

$$\leq f(v_{t-1}, \alpha^*) + \langle \nabla_v f(v_{t-1}, \alpha^*), v_t - \bar{v}_{t-1} \rangle + \frac{L_v}{2} \|v_t - \bar{v}_{t-1}\|^2$$

$$+ G_\alpha |\bar{\alpha}_{t-1} - \alpha^*_s| \|v_t - \bar{v}_{t-1}\|$$

(b) holds because that we know $\nabla_v f(\cdot)$ is $G_\alpha = 2\max\{p, 1-p\}$-Lipshitz in α by the definition of $f(\cdot)$ and (b) holds by Young's inequality.

By $\frac{1}{\gamma}$-strongly convexity of $\frac{1}{2\gamma}\|v - v_0\|^2$ in v, we have

$$\frac{1}{2\gamma} \|v_t - v_0\|^2 + \frac{1}{\gamma} \langle v_t - v_0, v_{\psi}^* - v_t \rangle + \frac{1}{2\gamma} \|v_{\psi}^* - v_t\|^2 \leq \frac{1}{2\gamma} \|v_{\psi}^* - v_0\|^2 \quad (56)$$

Adding (54), (55), (56), and rearranging terms, we have

$$f(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) + f(v_t, \alpha^*) + \frac{1}{2\gamma} \|v_t - v_0\|^2 - \frac{1}{2\gamma} \|v_{\psi}^* - v_0\|^2$$

$$\leq f(v_{\psi}^*, \bar{\alpha}_{t-1}) + \langle \nabla_v f(v_{t-1}, \bar{\alpha}_{t-1}), v_t - v_{\psi}^* \rangle + \frac{L_v}{2} \|v_t - v_{\psi}^*\|^2$$

$$+ \frac{L_v}{2} \|v_{t-1} - v_{\psi}^*\|^2 + \frac{2}{\mu_\alpha} \|v_{t-1} - \alpha_s^*\| - \frac{1}{\gamma} \|v_{\psi}^* - v_t\|^2$$

$$+ \frac{2}{\mu_\alpha} \|v_{t-1} - \alpha_s^*\| - \frac{1}{\gamma} \|v_t - v_0, v_t - v_{\psi}^*\|$$

By definition, we know $f(\cdot)$ is $\mu_\alpha := 2\max\{p, 1-p\}$-strong concavity in α ($-f(\cdot)$ is μ_α-strong convexity of α). Thus, we have

$$-f(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) - \nabla_\alpha f(\bar{v}_{t-1}, \bar{\alpha}_{t-1})^T (\alpha^*(\bar{v}) - \bar{\alpha}_{t-1}) + \frac{\mu_\alpha}{2} (\alpha^*(\bar{v}) - \bar{\alpha}_{t-1})^2 \leq -f(\bar{v}_{t-1}, \alpha^*(\bar{v})) \quad (58)$$
By definition, we know $f(\cdot)$ is smooth in α (with coefficient $L_\alpha := 2p(1-p)$), we get

$$-f(v_\psi^*, \tilde{\alpha}_t) \leq -f(v_\psi^*, \tilde{\alpha}_{t-1}) - \langle \nabla_{\alpha} f(v_\psi^*, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle + \frac{L_\alpha}{2} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2$$

$$= -f(v_\psi^*, \tilde{\alpha}_{t-1}) - \langle \nabla_{\alpha} f(v_\psi^*, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle + \frac{L_\alpha}{2} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2$$

$$- \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle + \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle$$

$$\leq -f(v_\psi^*, \tilde{\alpha}_{t-1}) - \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle + \frac{L_\alpha}{2} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2 + G_{v} |\langle v_\psi^* - \tilde{v}_{t-1}, \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle|$$

$$\leq -f(v_\psi^*, \tilde{\alpha}_{t-1}) - \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \rangle + \frac{L_\alpha}{2} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2 + \frac{L_v}{6} \| \tilde{v}_{t-1} - v_\psi^* \|^2$$

$$+ \frac{3G_v^2}{2L_v} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2$$

where (a) holds because that $\nabla_{\alpha} f(\cdot)$ is Lipshitz in α with coefficient $G_v = 2 \max \{p, 1-p\} G_h$ by definition of $f(\cdot)$

Add (58), (59) and arranging terms, we have

$$-f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}) - f(v_\psi^*, \tilde{\alpha}_t) \leq -f(\tilde{v}_{t-1}, \alpha^*(\tilde{v})) - f(v_\psi^*, \tilde{\alpha}_{t-1}) - \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \alpha^*(\tilde{v}) \rangle$$

$$+ \frac{L_\alpha}{2} \| \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \|^2 + \frac{L_v}{6} \| \tilde{v}_{t-1} - v_\psi^* \|^2 + \frac{3G_v^2}{2L_v} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2 - \frac{1}{2\gamma} \| v_\psi^* - v_t \|^2$$

Adding (57) and (60), we get

$$\left[f(v_t, \alpha^*) + \frac{1}{2\gamma} \| \tilde{v}_t - v_0 \|^2 \right] - \left[f(v_\psi^*, \tilde{\alpha}_t) + \frac{1}{2\gamma} \| v_\psi^* - v_0 \|^2 \right] \leq$$

$$\langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{v}_t - v_\psi^* \rangle - \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{\alpha}_t - \alpha^*(\tilde{v}) \rangle$$

$$+ \frac{L_v + \frac{3G_v^2}{\mu_\alpha}}{2} \eta^2 \| \tilde{v}_t - \tilde{v}_{t-1} \|^2 + \left(\frac{L_v}{6} + \frac{L_v}{2} \right) \| \tilde{v}_{t-1} - v_\psi^* \|^2 - \frac{1}{2\gamma} \| v_\psi^* - v_t \|^2$$

$$+ \frac{L_\alpha + \frac{3G_v^2}{L_v}}{2} \eta^2 \| \tilde{\alpha}_t - \tilde{\alpha}_{t-1} \|^2 - \frac{1}{3\mu_\alpha} (\tilde{\alpha}_{t-1} - \alpha^*(\tilde{v}))^2$$

$$+ \frac{1}{\gamma} \langle \tilde{v}_t - v_0, \tilde{v}_t - v_\psi^* \rangle.$$

Applying $\gamma = \frac{1}{2L_v}$ to (61) and then plug into (53), we get

$$\psi(\tilde{v}) - \min_v \psi(v) \leq \frac{T}{T} \sum_{t=1}^{T} \left[\langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \tilde{v}_t - v_\psi^* \rangle + 2L_v \langle \tilde{v}_t - v_0, \tilde{v}_t - v_\psi^* \rangle + \langle \nabla_{\alpha} f(\tilde{v}_{t-1}, \tilde{\alpha}_{t-1}), \alpha^*(\tilde{v}) - \tilde{\alpha}_t \rangle \right]$$

$$+ \frac{L_v + \frac{3G_v^2}{\mu_\alpha}}{2} \| \tilde{v}_t - \tilde{v}_{t-1} \|^2 + \frac{L_\alpha + \frac{3G_v^2}{L_v}}{2} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2$$

$$+ \frac{2L_v}{3} \| \tilde{v}_{t-1} - v_\psi^* \|^2 - L_v \| \tilde{v}_t - v_\psi^* \|^2 - \frac{1}{3\mu_\alpha} (\tilde{\alpha}_{t-1} - \alpha^*(\tilde{v}))^2 \right], \Box$$
Appendix E. Proof of Lemma 4

Proof. According to the update rule of \mathbf{v} and taking $\gamma = \frac{1}{2L\mathbf{v}}$, we have

$$2L\mathbf{v}(\mathbf{v}^k_t - \mathbf{v}_0) = -\nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1}) - \frac{1}{\eta}(\mathbf{v}_t - \mathbf{v}_{t-1})$$ \hspace{1cm} (62)

Taking average over K machines, we have

$$2L\mathbf{v} (\bar{\mathbf{v}}_t - \mathbf{v}_0) = -\frac{1}{K} \sum_{k=1}^{K} \nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1}) - \frac{1}{\eta}(\bar{\mathbf{v}}_t - \bar{\mathbf{v}}_{t-1})$$ \hspace{1cm} (63)

It follows that

$$\langle \nabla \mathbf{v} f(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}), \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \rangle + 2L\mathbf{v} \langle \bar{\mathbf{v}}_t - \mathbf{v}_0, \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \rangle$$

$$= \left\langle \frac{1}{K} \sum_{k=1}^{K} \nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}), \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \right\rangle - \left\langle \frac{1}{K} \sum_{k=1}^{K} \nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1}), \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \right\rangle$$

$$+ \frac{1}{\eta} \langle \bar{\mathbf{v}}_t - \bar{\mathbf{v}}_{t-1}, \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \rangle$$

$$\leq \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1})], \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \right\rangle$$ \hspace{1cm} (1)

$$+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \alpha^k_{t-1}) - \nabla \mathbf{v} f_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1})], \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \right\rangle$$ \hspace{1cm} (2)

$$+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla \mathbf{v} f_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}) - \nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1})], \bar{\mathbf{v}}_t - \mathbf{v}_\psi^* \right\rangle$$ \hspace{1cm} (3)

$$+ \frac{1}{2\eta} (\|\bar{\mathbf{v}}_{t-1} - \mathbf{v}_\psi^*\|^2 - \|\bar{\mathbf{v}}_{t-1} - \bar{\mathbf{v}}_t\|^2 - \|\bar{\mathbf{v}}_t - \mathbf{v}_\psi^*\|^2)$$

Then we will bound (1), (2) and (3) separately,

$$\langle \nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \mathbf{v} F_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1}; \mathbf{z}^k_{t-1}) \rangle$$

$$\leq \frac{3}{2L\mathbf{v}} \left\| \frac{1}{K} \sum_{k=1}^{K} [\nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \mathbf{v} f_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1})] \right\| ^2 + \frac{L\mathbf{v}}{6} \|\bar{\mathbf{v}}_t - \mathbf{v}_\psi^*\|^2$$ \hspace{1cm} (a)

$$\leq \frac{3}{2L\mathbf{v}} \left\| \frac{1}{K} \sum_{k=1}^{K} [\nabla \mathbf{v} f_k(\bar{\mathbf{v}}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \mathbf{v} f_k(\mathbf{v}^k_{t-1}, \alpha^k_{t-1})] \right\| ^2 + \frac{L\mathbf{v}}{6} \|\bar{\mathbf{v}}_t - \mathbf{v}_\psi^*\|^2$$ \hspace{1cm} (b)

$$\leq \frac{3G_\alpha^2}{2L\mathbf{v}} \frac{1}{K} \sum_{k=1}^{K} \|\bar{\alpha}_{t-1} - \alpha^k_{t-1}\|^2 + \frac{L\mathbf{v}}{6} \|\bar{\mathbf{v}}_t - \mathbf{v}_\psi^*\|^2$$ \hspace{1cm} (c)

where (a) follows from Young’s inequality and (b) follows from Jensen’s inequality. (c) holds because $\nabla \mathbf{v} f_k(\mathbf{v}, \alpha)$ is Lipschitz in α with coefficient $G_\alpha = 2 \max(p, 1-p)$ for any \mathbf{v}.
by definition of \(f_k(\cdot) \). By similar techniques, we have

\[
\varphi \leq \frac{3}{2L_\nu} \frac{1}{K} \sum_{k=1}^{K} \| \nabla f_{k}(\nu_{t-1}, \alpha_{t-1}^{k}) - \nabla f_{k}(\nu_{t}^{k}, \alpha_{t-1}^{k}) \|^2 + \frac{L_\nu}{6} \| \nu_{t} - \nu_{\psi}^{*} \|^2 \\
\leq \frac{3L_\nu}{2} \frac{1}{K} \sum_{k=1}^{K} \| \nu_{t-1} - \nu_{t}^{k} \|^2 + \frac{L_\nu}{6} \| \nu_{t} - \nu_{\psi}^{*} \|^2
\]

(66)

Let \(\hat{\nu}_{t} = \arg\min_{\nu} \left(\frac{1}{K} \sum_{k=1}^{K} \nabla f(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) \right)^T \nu + \frac{1}{2\eta} \| \nu - \nu_{t-1} \|^2 + \frac{1}{2\gamma} \| \nu - \nu_{0} \|^2 \), then we have

\[
\hat{\nu}_{t} - \nu_{t} = \frac{\eta \gamma}{\eta + \gamma} \left(\nabla f(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \frac{1}{K} \sum_{k=1}^{K} \nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}) \right)
\]

(67)

Hence we get

\[
\varphi \leq \frac{1}{K} \sum_{k=1}^{K} \left\langle \nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}), \nu_{t} - \hat{\nu}_{t} \right\rangle \\
+ \frac{1}{K} \sum_{k=1}^{K} \left\langle \nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}), \hat{\nu}_{t} - \nu_{\psi}^{*} \right\rangle \\
= \frac{\eta \gamma}{\eta + \gamma} \left\| \frac{1}{K} \sum_{k=1}^{K} \left(\nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}) \right) \right\|^2 \\
+ \frac{1}{K} \sum_{k=1}^{K} \left\langle \nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}), \hat{\nu}_{t} - \nu_{\psi}^{*} \right\rangle \\
\leq \eta \left\| \frac{1}{K} \sum_{k=1}^{K} \left(\nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}) \right) \right\|^2 \\
+ \frac{1}{K} \sum_{k=1}^{K} \left\langle \nabla f_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}) - \nabla F_{k}(\nu_{t-1}^{k}, \alpha_{t-1}^{k}; z_{t-1}^{k}), \hat{\nu}_{t} - \nu_{\psi}^{*} \right\rangle
\]

(68)
Appendix F. Proof of Lemma 5

Proof.

\[
\langle \nabla \alpha_f(\bar{v}_{t-1}, \bar{\alpha}_{t-1}), \alpha^*(\bar{v}) - \bar{\alpha}_t \rangle = \left\langle \frac{1}{K} \sum_{k=1}^{K} \nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}), \alpha^*(\bar{v}) - \bar{\alpha}_t \right\rangle \tag{4}
\]

\[
+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}^k_{t-1})], \alpha^*(\bar{v}) - \bar{\alpha}_t \right\rangle \tag{5}
\]

\[
+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}^k_{t-1}) - \nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}; z_{t-1}^k)], \alpha^*(\bar{v}) - \bar{\alpha}_t \right\rangle \tag{6}
\]

\[
+ \left\langle \frac{1}{K} \sum_{k=1}^{K} \nabla \alpha F_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}^k; z_{t-1}^k), \alpha^*(\bar{v}) - \bar{\alpha}_t \right\rangle \tag{7}
\]

\[
\leq (a) \frac{3}{2\mu_\alpha} \left(\frac{1}{K} \sum_{k=1}^{K} [\nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}^k_{t-1})] \right)^2 + \frac{\mu_\alpha}{6} (\bar{\alpha}_t - \alpha^*(\bar{v}))^2
\]

\[
\leq (b) \frac{3}{2\mu_\alpha} \frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}_{t-1}) - \nabla \alpha f_k(\bar{v}_{t-1}, \bar{\alpha}^k_{t-1}))^2 + \frac{\mu_\alpha}{6} (\bar{\alpha}_t - \alpha^*(\bar{v}))^2 \tag{70}
\]

\[
\leq (c) \frac{3L_\alpha^2}{2\mu_\alpha} \frac{1}{K} \sum_{k=1}^{K} (\bar{\alpha}_{t-1} - \bar{\alpha}^k_{t-1})^2 + \frac{\mu_\alpha}{6} (\bar{\alpha}_t - \alpha^*(\bar{v}))^2,
\]

where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality, (c) holds because \(f_k(\bar{v}, \alpha) \) is smooth in \(\alpha \) with coefficient \(L_\alpha = 2p(1 - p) \) for any \(\bar{v} \) by definition of
(71) \[\frac{1}{2} \sum_{k=1}^{K} [\nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)]^2 + \frac{\mu_\alpha}{6} (\alpha^* - \tilde{\alpha}_t)^2 \]

where (a) follows from Young’s inequality, (b) follows from Jensen’s inequality, and (c) holds because \(\nabla \alpha f_k(v, \alpha) \) is Lipschitz in \(v \) with coefficient \(G_v = 2 \max(p, 1 - p) G_h \) by definition of \(f_k(\cdot) \).

Let \(\tilde{\alpha}_t = \alpha_{t-1} + \eta \sum_{k=1}^{K} \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k) \), then we have

\[
\tilde{\alpha}_t - \alpha_t = \eta \left(\frac{1}{K} \sum_{k=1}^{K} \nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k) \right)
\]

(72) And for the auxiliary sequence \(\tilde{\alpha}_t \), we can verify that

\[
\tilde{\alpha}_t = \arg \min_{\alpha} \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k))^T \alpha + \frac{1}{2\eta} (\alpha - \tilde{\alpha}_{t-1})^2 \right) = \lambda_{t-1}(\alpha)
\]

Since \(\lambda_{t-1}(\alpha) \) is \(\frac{1}{2\eta} \)-strongly convex, we have

\[
\frac{1}{2} (\alpha^*(\tilde{v}) - \tilde{\alpha}_t)^2 \leq \lambda_{t-1}(\alpha^*(\tilde{v})) - \lambda_{t-1}(\tilde{\alpha}_t)
\]

\[
= \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)) \right)^T \alpha^*(\tilde{v}) + \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \tilde{\alpha}_{t-1})^2
\]

\[
- \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)) \right)^T \tilde{\alpha}_t - \frac{1}{2\eta} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2
\]

\[
= \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)) \right)^T (\alpha^*(\tilde{v}) - \tilde{\alpha}_t) - \frac{1}{2\eta} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2
\]

\[
- \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)) \right)^T (\tilde{\alpha}_t - \tilde{\alpha}_{t-1}) - \frac{1}{2\eta} (\tilde{\alpha}_t - \tilde{\alpha}_{t-1})^2
\]

\[
\leq \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k)) \right)^T (\alpha^*(\tilde{v}) - \tilde{\alpha}_{t-1}) + \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \tilde{\alpha}_{t-1})^2
\]

\[
+ \frac{\eta}{2} \left(\frac{1}{K} \sum_{k=1}^{K} (\nabla \alpha F_k(v_{t-1}, \alpha_{t-1}^k; z_{t-1}^k) - \nabla \alpha f_k(v_{t-1}, \alpha_{t-1}^k))^2
\]

(74)
Hence we get

\[\mathbb{E} = \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})], \hat{\alpha}_t - \hat{\alpha}_t \right\rangle \]

\[+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})], \alpha^* - \hat{\alpha}_t \right\rangle \]

\[= \eta \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})] \right\rangle^2 \]

\[+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})], \hat{\alpha}_t - \alpha_t \right\rangle \]

\[+ \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \hat{\alpha}_t)^2 - \frac{1}{2\eta} (\alpha^* - \hat{\alpha}_t)^2 \]

(75)

Combining (74) and (75), we get

\[\mathbb{E} \leq \frac{3\eta}{2} \left(\left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})] \right\rangle^2 \right) \]

\[+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})], \hat{\alpha}_{t-1} - \alpha_t \right\rangle \]

\[+ \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \hat{\alpha}_t)^2 - \frac{1}{2\eta} (\alpha^* - \hat{\alpha}_t)^2 \] (76)

\[\mathbb{E} \leq \frac{3\eta}{2} \left(\left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})] \right\rangle^2 \right) \]

\[+ \left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})], \hat{\alpha}_{t-1} - \alpha_t \right\rangle \]

\[+ \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \hat{\alpha}_t)^2 - \frac{1}{2\eta} (\alpha^* - \hat{\alpha}_t)^2 \] (77)

Adding (70), (71), (76) and (77), we get

\[\langle \nabla_{\alpha} f(v^k_{t-1}, \bar{\alpha}_{t-1}), \alpha^* - \hat{\alpha}_t \rangle \leq \frac{3G^2}{2\mu^2} \frac{1}{K} \sum_{k=1}^{K} \|v^k_{t-1} - \bar{v}^k_{t-1}\|^2 + \frac{3L^2}{2\mu^2} \frac{1}{K} \sum_{k=1}^{K} (\bar{\alpha}_{t-1} - \alpha^k_{t-1})^2 \]

\[+ \frac{3\eta}{2} \left(\left\langle \frac{1}{K} \sum_{k=1}^{K} [\nabla_{\alpha} f_k(v^k_{t-1}, \alpha^k_{t-1}) - \nabla_{\alpha} F_k(v^k_{t-1}, \alpha^k_{t-1}; z^k_{t-1})] \right\rangle^2 \right) \]

\[+ \frac{1}{2\eta} (\alpha^*(\tilde{v}) - \hat{\alpha}_t)^2 - \frac{1}{2\eta} (\alpha^* - \hat{\alpha}_t)^2 \]

Appendix G. Proof of Lemma 6

Proof. If I = 1, \|v^k_t - \tilde{v}^k_t\| = 0 and |\alpha^k_t - \bar{\alpha}^k_t| = 0 for any iteration t and any machine k since v and \alpha are averaged across machines at each iteration.
We prove the case when $I > 1$ in the following. For any iteration t, there must be an iteration with index t_0 before t such that $t \mod I = 0$ and $t - t_0 \leq I$. Since v and α are averaged across machines at t_0, we have $\bar{v}_{t_0} = v_0^k$.

(1) For v, according to the update rule,

$$v_t^k = -\frac{\eta \gamma}{\eta + \gamma} \nabla F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k) + \frac{\gamma}{\eta + \gamma} v_{t-1}^k + \frac{\eta}{\eta + \gamma} v_0$$

and hence

$$\bar{v}_t = -\frac{\eta \gamma}{\eta + \gamma} \frac{1}{K} \sum_{k=1}^{K} \nabla F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k) + \frac{\gamma}{\eta + \gamma} \bar{v}_{t-1} + \frac{\eta}{\eta + \gamma} v_0$$

Thus,

$$\|\bar{v}_t - v_t^k\| \leq \frac{\eta \gamma}{\eta + \gamma} \left| \nabla F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k) - \frac{1}{K} \sum_{i=1}^{K} \nabla F_i(v_{t-1}^i, \alpha_{t-1}^i; z_{t-1}^i) \right| + \frac{\gamma}{\eta + \gamma} \|\bar{v}_{t-1} - v_{t-1}^k\|$$

$$\leq 2B \eta \gamma + \frac{\gamma}{\eta + \gamma} \|\bar{v}_{t-1} - v_{t-1}^k\|$$

(80)

Since $\bar{v}_{t_0} = v_0^k$ (for any k), we can see $\|\bar{v}_{t_0+1} - v_{t_0+1}^k\| \leq 2 \frac{\gamma \eta}{\eta + \gamma} B \leq 2\eta B$. Assume $\|\bar{v}_{t-1} - v_{t-1}^k\| \leq 2(t-1-t_0)\eta B$, then $\|\bar{v}_t - v_t^k\| \leq 2(t-t_0)\eta B$ by (80). Thus, by induction, we know that for any t, $\|\bar{v}_t - v_t^k\| \leq 2(t-t_0)\eta B \leq 2\eta IB$. Hence proved.

(ii) $\alpha_t^k = \alpha_{t-1}^k + \eta \nabla \alpha F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k)$

and

$$\bar{\alpha}_t = \bar{\alpha}_{t-1} + \eta \frac{1}{K} \sum_{k=1}^{K} \nabla \alpha F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k)$$

Thus,

$$|\bar{\alpha}_t - \alpha_t^k| \leq |\bar{\alpha}_{t-1} - \alpha_{t-1}^k| + \eta \left| \nabla \alpha F_k(v_{t-1}^k, \alpha_{t-1}^k; z_{t-1}^k) - \frac{1}{K} \sum_{i=1}^{K} \nabla \alpha F_i(v_{t-1}^i, \alpha_{t-1}^i; z_{t-1}^i) \right|$$

$$\leq |\bar{\alpha}_{t-1} - \alpha_{t-1}^k| + 2\eta B \alpha.$$

(83)

Since $\bar{\alpha}_{t_0} = \alpha_0^k$ (for any k), we can see that $\|\bar{\alpha}_{t_0+1} - \alpha_{t_0+1}^k\| \leq 2\eta B \alpha$. Assume $|\bar{\alpha}_{t-1} - \alpha_{t-1}^k| \leq 2(t-1-t_0)\eta B \alpha$, then $|\bar{\alpha}_t - \alpha_t^k| \leq 2(t-t_0)\eta B \alpha$. Thus, by induction, we know that for any t, $|\bar{\alpha}_t - \alpha_t^k| \leq 2(t-t_0)\eta B \alpha \leq 2\eta IB \alpha$. Hence proved. □

Appendix H. More Experiments

In this section, we include more experiments results. Most of the settings are the same as in the Experiments section, except that in Figure 10, we set $I = I_0 \cdot 3^{(s-1)}$, other than set I to be a constant. This means, later stage will communicate less frequently since the step size is decreased after each stage (see the first remark of Theorem 1).
Figure 6: ImageNet, positive ratio = 50%

Figure 7: Cifar100, positive ratio = 50%

Figure 8: Cifar10, positive ratio = 50%

Figure 9: ImageNet, positive ratio=71%, K=4
Figure 10: $I_s = I_0^3(s-1)$, positive ratio = 71%