Expression of Hqk Encoding a KH RNA Binding Protein Is Altered in Human Glioma

Zheng Zhe Li, Tatsuya Kondo, Tomoaki Murata, Thomas A. Ebersole, Toru Nishi, Kenji Tada, Yukitaka Ushio, Ken-ichi Yamamura and Kuniya Abe

The quaking gene family encodes single KH domain RNA-binding proteins that play vital roles in cell differentiation, proliferation, and apoptotic processes. The human quaking gene, Hqk, maps to 6q25–q26, where cytogenetic alterations associated with a variety of human malignancies, including gliomas, have been reported. To assess possible relationships of Hqk with human diseases such as glial tumors, we first isolated the Hqk gene, characterized its structure and expression pattern, and carried out mutational analysis of Hqk in primary tumor samples. The Hqk gene contains 8 exons spanning a ~200 kb genomic region, and generating at least four alternatively spliced transcripts, Hqk-5, Hqk-6, Hqk-7 and Hqk-7B, of which Hqk-7 is abundantly expressed in brain. Analysis of primary tumors demonstrated a high incidence of expression alterations of Hqk in gliomas (30%; 6/20), but not in other tumors such as schwannomas (0/3), or meningiomas (0/8). Among the tumor samples showing expression alterations, two were devoid of all three major transcripts, one was missing only the Hqk-5 message, and only the Hqk-7 message was absent in two cases. Our results thus imply the involvement of Hqk in human glial tumor progression.

Key words: quaking — Gene structure — RNA binding protein — Glioma

The mouse qkI gene, encoding a KH domain RNA-binding protein,1, 2 has been isolated as a candidate gene for quaking or quaking viable mutation which leads to neurological defects.3) Quaking viable (qkV)3) is an autosomal recessive mutation exhibiting hypomyelination phenotype in the central nervous system (CNS).4, 5 It has been shown that qkI genome has a large deletion upstream of the qkI gene,1, 2 resulting in reduced expression of the qkI in myelin-producing cells of the CNS.6) qkI contains a KH domain, an RNA binding motif originally identified in the heterogeneous nuclear ribonucleoprotein (hnRNP) K7, 8) The KH domain is thought to bind directly with cellular RNA.9) The qkI KH domain is embedded in a larger conserved domain of ~200 amino acids, and the whole conserved sequence is called GSG or STAR (signal transduction and activation of RNA) domain.10) The GSG domain was initially identified by aligning the first three of its family members, GRP33, 11) Sam68, 12) and gld-1. 13) GSG domain family members include Artemia salina GRP33, a hnRNP isolated from brine shrimp, SAM68, a phosphoprotein involved in Src signaling.14, 15) and GLD-1, a protein required for germ cell differentiation in Caenorhabditis elegans.16, 17) Genes homologous to qkI were also isolated from Drosophila, Xenopus, and zebrafish. Mutations in the GSG/STAR domain result in cell proliferation or specific developmental defects in various organisms, suggesting the importance of these genes in development. Drosophila who/low gene has been shown to be critical for muscle development18, 19) and Xqua is involved in gastrulation, particularly notochord development.20) In C. elegans, the GLD-1 protein is required for normal oocyte differentiation as well as sex determination.13, 16, 17, 21) In mouse, reduction of qkI expression results in neurological phenotypes such as body tremor and seizures due to hypomyelination in the CNS,5) while disruption of qkI gene activity leads to embryonic lethality.22) Sequences homologous to the qkI were also found in a human EST database, and were named Hqk for human qk gene.23) Although mutation in the Hqk gene has not been reported in human, there is evidence that KH domain-containing RNA binding proteins are involved in human diseases. FMR1, for example, a gene that encodes a protein containing two KH domains, is responsible for the phenotype of the fragile X syndrome.24) Expression of KOC, another KH-RNA binding protein, is elevated in human pancreatic cancer.31) It is also known that HCC (hepatocellular carcinoma), a homologous protein to KOC, is overexpressed in hepatocellular carcinoma.32) Furthermore, it was recently reported that one particular protein isoform of the qkI, QKI-7 is a potent inducer of apoptosis.33) It is thus possible that the Hqk gene is involved...
in cell proliferation as well as disease development processes. As an initial step towards understanding the potential roles of Hqk gene in disease development, we have isolated both cDNA and genomic clones for Hqk, characterized its genomic structure and determined its expression pattern, as well as the chromosomal location of Hqk. Possible involvement of Hqk in human glial tumors was also investigated.

MATERIALS AND METHODS

Chromosome mapping of Hqk The chromosomal location of the Hqk gene was determined by PCR amplification of a human/rodent cell radiation hybrid DNA panel (Genebridge 4 hybrid panel; Research Genetics, Huntsville, AL), which consists of 90 hybrid cell clones covering the entire human genome. The DNAs were amplified with primers qk7C (5′-ATGAGGCAAGAAATTTCCATG-3′) and qk5C (5′-CAAGGGGATTACACGGTGAATATT-3′). The products were digested with AccI to distinguish human and hamster sequences. Results of the panel typing was submitted and analyzed at the radiation hybrid mapping page of the Whitehead Institute for Biomedical Research/MIT Center for Genome Research web site (http://carbon.wi.mit.edu: 8000/cgibin/contig/rhmapper.pl). YAC clones containing STS markers adjacent to Hqk were isolated. The presence of Hqk sequence in these clones were examined by PCR with qk7C and qk5C, or Southern blot analysis with a probe, HQ5K described below.

Cloning and sequencing of cDNA of Hqk An oligo-dT primed cDNA was made from 5 µg of total RNA isolated from human fetal heart, brain and adult peripheral blood leukocytes using the SuperScriptII reverse transcriptase (Life Technology, Bethesda, MD). Sequences of human ESTs that showed significant homology with mouse qkl were obtained from the EST database of Genebank with the BLASTN search program and were used to design primers for detection of alternative transcripts and filling the gaps of human EST sequence clusters. Primers e2-4 (5′-GCTGGAATTTCTTGGCCTCAT-3′) and 6CT-1 (5′-TGAGCTGCGGAGCCTGCAATAT-3′) were used to amplify the coding region for the 6 kb transcript, and 7-kd (5′-CAAGGGGATTACACGGTGAATATT-3′) were used to amplify the coding region for the 7 kb transcript. e2-4 (5′-GAAGATGCAGCTGATGGAG-3′) and qk7B (5′-CATGGAATTTCTTGGCCTCAT-3′) were used to amplify the PCR products as a sequencing primer. BAC and PAC clones were also directly sequenced to verify the exon-intron junctions. Distances between exons were determined by measuring sizes of PCR products amplified with primers corresponding to each exon. Briefly, 100 ng of PAC DNA template was amplified with an LA-PCR Kit (TaKaRa Shuzo, Kyoto) in a 50 µl reaction mixture containing 20 pmol of primers, using the following parameters: 94°C, 4 min for denaturation, then 25 cycles of 94°C, 30 s and 65°C, 12 min. Identities of the PCR products were verified by Southern blot hybridization or DNA sequencing. Sizes of introns longer than 20 kb were determined by restriction mapping of genomic fragments. The exon/intron boundaries and the size of introns except for intron 1 were also confirmed by comparing the data with genomic sequence data recently uploaded at the Sanger Center (http://www.sanger.ac.uk/HGP/Chr6/Chr6_blast_server.shtml).

RT-PCR and northern blot analyses To look for expression of Hqk in human embryonic tissue samples, total RNAs were isolated from human fetal heart and brain (18-week) with Trizol reagent according to the manufacturer’s instructions (Life Technology, Bethesda, MD). For amplification of the 7 kb message cDNA, primers EHS-3 (5′-GAAGATGCAGCTGATGGAG-3′) and qk7E (5′-GCA-GCTGATTACACCAGA-3′) were used. The PCR product size was 456 bp. The 492 bp RT-PCR product derived from the 6 kb message were generated with primers EHS-3 (5′-GAAGATGCAGCTGATGGAG-3′) and
Expression Is Altered in Human Gliomas

6CT-1 (5′-TTTCGTTGGAAAGCCATACC-3′). For the 5 kb message cDNA, EH5-3 (5′-TTTCGTTGGAAAGCCATACC-3′) and qk5D (5′-CAAGGGAGCACCAGGGCACT-3′) were used to obtain a PCR product of 604 bp. PCR products were cloned into the pGEM-T vector (Promega) and inserts were sequenced.

Human multiple tissue northern (MTN) blots (Clontech, Palo Alto, CA) were used for northern analysis with HQ2-6, a probe containing exon 2 to exon 6 that includes the conserved KH domain. HQ2-6 was made by amplification of human cDNA with primers e-3 (5′-CGGAAAGACATGTACAATGAC-3′) and qk5a (5′-AGGCTCCATTATGTTAGCACC-3′) and e6-u (5′-GCATGACAGCGGTCTGTATTT-3′). The same blots were rehybridized with other probes corresponding to different alternative transcripts. Probes specific to the alternative transcripts were made by amplification of the Hqk cDNA. For the 5 kb transcript, a probe named HQ5K (Fig. 2B) was amplified using primer pair qk5a (5′-GTTCGTCTTACCATCTAA-3′) and qk5b (5′-AAGCATGGCTTTTACATCCT-3′). For the 7 kb transcript, a specific probe named HQ7K (Fig. 2B) and primer pair 7-kd (5′-ATGCCAGTCATGCCTGATATT-3′) and qk7H (5′-TGTGCAATAGGATACAGCCTC-3′) were used. A Fuji BAS2000 imaging analyzer was used to analyze the hybridization signals.

Expression analysis and mutation screening of Hqk in human tumor samples

We performed PCR amplifications of genomic DNA from a panel of primary tumors including twenty samples of glioma, eight meningioma samples and three schwannoma samples. For all the human samples used in this study, informed consents were obtained. Tumor tissues were taken from surgical operations conducted at the Kumamoto University Hospital and processed by the standard methods as described by Miyakawa et al.

Each tumor specimen was first examined pathologically, and the specimens containing a high percentage of tumor cells, generally more than 95%, were used for the subsequent molecular studies. DNA extraction from the tumor tissues was performed as described by Liang et al.

Peripheral blood samples were obtained from patients with gliial tumors, and DNAs were extracted with the DNA Extractor WB Kit (Nippon Gene, Toyama) according to the protocol provided by the supplier. To search for mutation in Hqk of these patients, each exon of the Hqk gene was amplified from genomic DNAs of both tumor and blood samples. Primers used for amplification of each exon are summarized in Table I. Sequences of the PCR products were determined by direct sequencing. For Southern analysis, probe HQAX-1, a 349 bp Apal-XhoI genomic DNA fragment containing exon 1 was used. Probes HQ2-6 and HQ5K were also used for the Southern blot analysis.

To look for alteration in Hqk expression in human tumor samples, total RNAs were isolated from tumors with Trizol reagent according to the manufacturer’s instructions (Life Technology). Five micrograms of total RNA was used for first-strand cDNA synthesis using a cDNA preamplification kit (Life Technology). RT-PCR was performed with the same cycling parameters as described for genomic DNA PCR. Primers used were e2-4 and qk7E for the 7 kb message, e2-4 and 6CT-1 for the 6 kb message, and e2-4 and qk5D for the 5 kb message. Primer sequences were as described above. PCR products were cloned into the pGEM-T vector (Promega) and inserts were sequenced. Some of the tumor samples were analyzed by northern blot hybridization using probes described above.

The nucleotide sequence data reported in this paper have been submitted to DDBJ and have been assigned the accession numbers AB067798 (human quaking gene, 5 kb mRNA), AB067799 (6 kb mRNA), AB067800 (7 kb mRNA), AB067801 (7 kb-B mRNA), AB067802 (exon 1), AB067803 (exon 2), AB067803 (exon 3), AB067804 (exon 4), AB067805 (exon 5), AB067806 (exon 6), AB067807 (exon 7), AB067808 (exon 8).

RESULTS

Chromosome mapping of Hqk

The chromosomal location of the Hqk gene was determined by use of a Gene

Exon No.	Forward primer	Reverse primer	Product size (bp)
2	ATGATAGAATAGGCCAGGAG	CACACTTCAGTTGATGACTGC	412
3	TTCTAGCTGTATACGTGTTCCC	AAAGTGCTGGGATTACAGGCG	505
4	TICAATCACAATTTGAGGACC	TTGAAAGTGATCGTACGTTG	459
5	AGGCTCCATTATGTAGCACCC	AACAGAATAGCTGCAACGCCC	576
6	GCATTTTGTGGTGACTCGGC	ACGAACCCTCAGTACAAAGTG	673
7a	ATACACAGACCAGGCTAGTCAC	TTGTCGTTGTAACAGCAGTGC	1203
7b	AACAGACTGCAGACATGTGGT	TGCAGATAGCTCTAGCTGAC	242
7c	AACATACGTCCTTAACTGTC	TCTCATAGGCTGATTGTTG	294
8	ATGAGGGCGAACAAATCCATG	CAAAGGCGATTACCAGTTAAC	748
bridge 4 radiation hybrid panel. The Hqk locus should be located on chromosome 6 in the region between 6q25 and 6q26 flanked by markers CHLC.GATA81B01 and WI-4442, as shown in Fig. 1. YAC clones positive for these STS markers were isolated, and examined for the presence of the Hqk sequence by PCR or Southern hybridization. These analyses confirmed that Hqk was indeed contained in the YAC clones 837-D-9 and 920-A-3 (Fig. 1).

Cloning of human homolog of the qkl gene, Hqk Zorn et al. previously reported that sequences homologous to the mouse qkl could be retrieved from a human EST database. In order to obtain more complete information on Hqk cDNA sequences, we again searched the current human dbEST database. A total of 41 human EST sequences showed significant similarities to the mouse sequences, and were classified into 14 clusters. For example, an EST sequence (Acc# EB893920) showed strong similarities to the exon 2 sequences of qkl, which encodes the amino-terminus of qkl, while other ESTs were homologous to the carboxyl-terminus of the qkl gene product. To fill gaps between the clusters and to obtain entire sequences for all alternative transcripts, we amplified cDNA templates derived from human RNA using primers specific for 5 kb, 6 kb, and 7 kb alternative messages, and sequenced the products to ensure that they were indeed derived from the Hqk gene. We obtained the entire coding sequence and a portion of the 3′-UTR sequence for each alternative transcript. The predicted open reading frame is 1023 nucleotides in length for the 5 kb message, 957 nucleotides for the 6 kb message, 975 nucleotides for the 7 kb transcript and 1059 nucleotides for the 7kb-B message. The sequences showed strong similarities to the mouse qkl gene. The two genes are highly homologous to each other; the amino acid sequence of each isoform of Hqk is identical to that of mouse qkl, and 96% identity was found even at the nucleotide level. Given the high homology between the human and mouse qk gene, it is likely that the ATG triplet found at nucleotide 553 in the human sequence (Acc#: AB067798) represents a start codon of the human Hqk gene. Genomic fragments upstream to the start codon were isolated from the Hqk-positive BAC clone and a sequence of about 4 kb was obtained. The region approximately 800 bp region upstream to the start codon was highly similar to that of qkl, which corresponds to the putative intron 1 and a part of exon 2 of the qkl gene. Similarity in this 800 bp region is nearly 80%, while the homology sharply drops to ~50% in the further upstream region. PIP analysis showed that this region is CpG or GpC-rich (see Fig. 2B). We have not precisely mapped the transcription initiation site yet. However, it is likely that the 5′-UTR is no larger than 500 bp, since the predicted message size is comparable with the length of the cognate transcript estimated by northern blot hybridization. PIP analysis also showed that the 3′-UTR regions of Hqk were very similar to the corresponding mouse 3′-UTR sequences. The 3′-UTR nucleotide identities between human and mouse are 85%, 73% and 73% in the 5 kb, 6 kb and 7 kb transcripts, suggesting that the 3′-UTRs may share similar gene-regulating functions among species.

Exon-intron organization of Hqk To determine the
Expression Is Altered in Human Gliomas

The genomic organization of the Hqk locus, human PAC or BAC libraries were screened with a mouse qkI cDNA probe containing the conserved GSG/STAR domain. We isolated three PAC and two BAC clones, which covered approximately 300 kb of a genomic region including the Hqk locus (Fig. 2A). We constructed a library of short genomic DNA fragments derived from the PAC and BAC clones, and clones containing Hqk exons were selected and sequenced to determine exon-intron junctions. These clones were found to contain exons 2–4. By compiling such genomic analysis data, the exon-intron organization of the Hqk was determined to be as shown in Fig. 2B. Hqk contains eight coding exons and two distinct UTRs spanning a genomic region of approximately 200 kb with large introns of 80 kb between the first and the second exon and of ~56 kb between the third and fourth exon (Fig. 2B). The size of the Hqk locus is thus much larger than that of the mouse qkI locus, which is about 70 kb, and the entire locus was covered by three BAC/PAC clones (Fig. 2A). This size difference arises from differences in intron length between the two species. The exons range in size from 89 bp (exon 5) to 5687 bp (exon 7), and all of the exons possess proper splicing donor/acceptor sequences (Table II). However, utilization of the seventh exon is unusual; the exon is used differentially for each alternative transcript (Fig. 2B). For the 7 kb transcript, the entire 5687 bp sequence is used as the exon, of which the first 41 bases represent a coding exon followed by a termination codon, tga, and a 3'-UTR of 5438 bp in size. For the 6 kb message, the first 1329 bp of exon 7 is spliced out, and a smaller exon of 4200 bp containing 23 bp coding exons and a 4177 bp 3'-UTR is present. For the 5 kb message,
Table II. Exon-intron Boundary Sequences of the *Hqk* Gene

Intron sequence	Exon number and sequence	Intron sequence	Exon size (bp)
ttttactttttaacg	1- CTGCTGGACGAAGgtgagcttctcaggg	ND	
ttttttttttctcag	2- AAGAATAACCAGATgtaagtatacttccaggg	144	
cgtaataatttttag	3- GGTACCTCCTCTGCAgtaagtcttgaaaat	117	
gtttttcatgttagct	4- GGTACCTCCTCTGCAgtaagtcttgaaaat	144	
cagccccactcatcag	5- GGTACCTCCTCTGCAgtaagtcttgaaaat	88	
ggcctctactgttagct	6- GGTACCTCCTCTGCAgtaagtcttgaaaat	300	
tgcctttttttttatag	7a- TATTTCCTGACTgtagtttttttttttttttggag	5687(41+5646)	
ttcttattttttagc	7b- TATTTCCTGACTgtagtttttttttttttttggag	4200(23+4177)	
atgcaataattttttag	7c- TATTTCCTGACTgtagtttttttttttttttggag	3183(14+3169)	
gttctacacacag	8- CCGCCAAGGAACCAGGAACCGAG	ND	

Consensus sequence for splice acceptor and donor sites are shown in bold face. The stop codons are underlined. ND, not determined.

*Exon 7a, 7b and 8 are the last exons of the 7 kb, 6 kb, and 5 kb alternative transcripts, respectively. Sizes of the coding sequences in these exons are italicized and shown in parentheses.

Fig. 3. Northern blot analysis of *Hqk* expression in various human tissues. Human multiple tissues northern blots were hybridized separately with a *Hqk* cDNA probe containing the conserved KH domain (A), a probe specific for the 7 kb message as well as 7 kb-B message (B), or a 5 kb message-specific probe (C). Poly A+ RNAs (2 µg/lane) from spleen (lane 1), thymus (lane 2), prostate (lane 3), testis (lane 4), ovary (lane 5), small intestine (lane 6), colon (mucosal lining) (lane 7), peripheral blood leukocytes (lane 8), heart (lane 9), brain (lane 10), placenta (lane 11), lung (lane 12), liver (lane 13), skeletal muscle (lane 14), kidney (lane 15), and pancreas (16) were loaded. Integrity and amount of RNA loaded onto the northern blots were examined by probing with a glyceraldehyde-3'-phosphate dehydrogenase (GAPDH) cDNA. The position of the 7 kb message is indicated by triangle in lane 10 of panels A and B.
only a 75 bp sequence of the exon 7 (exon 7c) is utilized as a part of the coding exons. The first 14 bp sequence of exon 8 belongs to the coding region of this message. In the case of the 7 kb-B, intron 6 is not spliced out, resulting in a C-terminal amino acid sequence distinct from that of the other three protein products (data not shown; see Acc# AB067801). Apart from the intron length difference, the genomic structure of Hqk is similar to that of the mouse qkl. However, there are minor differences in exon-intron organization between the two. For example, the last 69 bp of the mouse exon 5 corresponds to the upstream part of a novel human exon designated as 5 and the first 20 bp of the mouse exon 6 is homologous to that of the human exon 5 (Fig. 2B). From the Hqk locus, at least four alternative messages encoding four different protein products are generated. All of the four alternative transcripts can be found in mice as well.2)

Expression of Hqk messages in human tissues The expression of Hqk was examined by northern blot analysis and RT-PCR. We detected the transcripts of Hqk in fetal heart and brain tissues by RT-PCR (data not shown), suggesting the possibility that Hqk may play an important role in development, as the qkl does in mouse. With a probe containing the highly conserved KH domain sequence, bands with several different sizes were detected on northern blots. Signals were found in most of the tissues examined, except for duodenum. On the other hand, three major transcripts of approximately 5, 6, and 7 kb in size were detected in a variety of human tissues (Fig. 3), probably corresponding to the 5, 6 and 7 kb messages in mouse. In some of the tissues examined, there were also bands with sizes different from the 5, 6, and 7 kb transcripts, which might represent uncharacterized alternative transcripts. Based on the knowledge of Hqk genomic organization, we designed probes specific to each transcript and used them separately for northern analysis (Fig. 3, B and C). There were some variations in relative expression level of the alternative transcripts among different tissues. For example, the 5 kb message was abundant in heart, but scarcely expressed in brain. The situation was opposite for the 7 kb message. When hybridized with the probe specific to the 7 kb and the 7 kb-B messages, it was found that a band of about 7 kb was strongly expressed in brain, while only a weak band was detected in heart. Compared to the 5 kb
message, the 7 kb message showed a more restricted expression pattern. To look for transcripts which were undetectable by northern analysis, RT-PCR was carried out. Based on the genomic structure of the mouse qkl, primers were designed to distinguish six alternative transcripts in human, if they exist. In addition to the major transcripts of the 5, 6, and 7 kb messages, a novel transcript designated 7 kb-B were detected, while other minor transcripts found in mice were not detected in human fetal heart, brain, and adult leukocytes (data not shown). These data suggest that three major alternative transcripts are produced from the Hqk locus, and that their expression levels vary among the human tissues tested.

Alterations of Hqk expression in human tumors Cyto-
genetic studies suggest a high incidence of genomic deletion in the long arm of human chromosome 6 in various tumors including glioblastomas and astrocytomas. To investigate whether Hqk is involved in tumor formation, we first looked for genomic deletion of Hqk in tumor samples including twenty gliomas, eight meningiomas and three schwannomas. Primer pairs that flank each exon were used to detect homoyzogous genomic deletions, but no such deletions were found in the tumor samples tested. Point mutations that would affect amino acid sequence or splice-site consensus sequences were not found in the PCR products. Genomic Southern blot analysis also failed to detect deletions in the Hqk locus. Then, we examined the Hqk expression in a panel of cDNA samples derived from the tumors described above. In human brain, the 7 kb transcript is highly expressed as shown in Fig. 4. RT-PCR assay detected all the major transcripts in normal brain samples. We, however, found that expression of some of the Hqk transcripts was altered in brain tumor samples (Fig. 4A). In six specimens out of 20 glioma samples, Hqk expression was clearly downregulated. For example, in samples No. 5, 17, and 20, the 7 kb transcript was specifically missing, and all three major transcripts were not detected in the samples, No. 8 and 19. Only the 5 kb transcript was downregulated in sample No. 18. In contrast, no alterations were found in three schwannomas and in eight meningioma samples (Fig. 4B). Northern blot analyses using RNAs from samples No. 2, 5, 8, 12, and 17 unambiguously showed that the 7 kb transcript was not expressed in samples No. 5, 8, and 17 (Fig. 5). On the other hand, a band of almost the same size as those in samples 2 and 12 was clearly observed in lane M, on which mouse brain RNA was loaded. This band in lane M represents the 7 kb message of qkl and the 7 kb Hqk band in samples 2 and 12, while the 7 kb message was absent in samples #5, 8 and 17. The lower band in lane 2, 12 or 17 probably represents cross hybridization with 28S ribosomal RNA. Hybridization results with the GAPDH probe (lower panel) revealed that similar amounts of RNA were loaded in all lanes.

![Fig. 5. Northern analysis of Hqk expression in brain tumor samples.](image)

Table III. Summary of Hqk Expression in Human Brain Tumors

Tumor No.	Tumor type	Expression of Hqk-5 RT-PCR	Northern blot analysis	Expression of Hqk-6 RT-PCR	Northern blot analysis	Expression of Hqk-7 RT-PCR	Northern blot analysis
5	AA	+	+	+	ND	−	−
8	AA	−	−	−	ND	−	−
17	GBM	+	+	+	ND	−	−
18	GBM	−	ND	−	ND	−	ND
19	GBM	+	ND	+	ND	+	ND
20	GBM	+	ND	+	ND	+	+
Normal		+	+	+	ND	+	+

+, normal level expression; −, no Hqk expression; ND, not determined.

AA: anaplastic astrocytoma. GBM: glioblastoma multiforme.
DISCUSSION

In this study, we described the isolation of \(Hqk \), a human homolog of mouse \(qkI \) gene, and its genomic organization and expression pattern in human tissues. Comparison of the genomic structure of \(Hqk \) with that of \(qkI \) revealed remarkable similarities between the two genes. It is striking that there is no sequence differences at the amino acid level, and that there is 96% identity at the nucleotide level for the three major transcripts. Moreover, both 5′-UTR and 3′-UTR sequences are highly conserved; for example, parts of the 5′-UTR of \(Hqk \) are 85–97% homologous to that of mouse \(qkI \) (data not shown). Such a high sequence conservation suggests that this region may play an important role in the stability, localization, and translational control of the \(Hqk \) gene.

The \(Hqk \) gene consists of 8 exons distributed over a genomic region of approximately 200 kb. The exon sizes and the exon boundary locations are conserved between human and mouse. However, minor differences in the exon/intron organization were apparent. For example, comparison between the predicted \(Hqk7-B \) and \(QK17-B \) sequences\(^2\) showed that the human protein is larger, with 4 additional amino acids at the carboxy-terminus (data not shown). Whether this particular isoform is translated in human development. We noticed that the \(Hqk \) expressed not only in adult, but also in fetal heart and brain, suggesting possible roles in human development. We noticed that the \(Hqk \) expression pattern was different from that of mouse, though this might be due to differences in age or sex of individuals from which the RNA samples were derived. In human brain, the 7 kb transcript is more abundant than the 5 kb transcript, while the 5 kb message is predominant in heart. In mouse, similar levels of the three major isoforms were detected in brain. In addition, we found that the 7 kb transcript in testis is shorter, when the northern blot analysis was performed using the 7 kb specific probe, indicating another tissue-specific alternative transcription in this gene. Similarly, a band larger than 7 kb detected in heart (Fig. 3A) might represent an uncharacterized alternative transcript as this does not correspond to either the 7 kb or the 7 kb-B message.

Members of the \(quaking \) gene family are thought to play important roles in various biological processes such as development, cell differentiation and cell proliferation. Mutations in the \(qkI \) homolog, e.g. \(gld-1 \) in nematode or \(who/how \) in fruit fly cause abnormal cell proliferation or cell migration. In the CNS of mice, reduction of \(qkI \) expression results in a hypomyelination phenotype.\(^9\) Considering these facts, it is likely that alterations in the \(Hqk \) gene itself or its gene expression level may lead to disease conditions in humans. We have assigned the \(Hqk \) gene to the chromosomal region 6q25–26, to which no human neurological diseases have been mapped. However, a high incidence of chromosomal aberrations at 6q23.3 to 26 in astrocytic tumors has been reported.\(^5\)–\(^7\) Introduction of a fragment of normal chromosome 6 into a tumor cell line with 6q deletion resulted in suppression of tumorigenicity, suggesting the presence of tumor suppressor gene(s) on the corresponding chromosomal region.\(^30\) On the other hand, a null mutation in the \(gld-1 \) gene, a \(C. \, elegans \) homolog of \(qkI \), leads to excessive oocyte growth, and partial loss-of-function mutation in \(gld-1 \) causes oocytes to arrest at the pachytene stage.\(^13\) These results clearly suggest the involvement of the \(gld-1 \) in the regulation of cell proliferation. More importantly, Pilotte et al.\(^33\) recently reported that the \(QK1-7 \) isoform could act as a potent apoptosis inducer in vitro. \(QK1 \) protein and possibly \(Hqk \) gene product function as RNA-binding proteins. There is increasing evidence for the involvement of RNA-binding proteins in tumorigenesis. \(MCG10 \), a p53 target gene, encodes a protein containing two KH domains, which can suppress cell proliferation by inducing apoptosis and cell cycle arrest at G2–M. Thus, this KH domain RNA-binding protein is considered as a tumor supressor.\(^39\) On the other hand, a KH domain protein, \(KOC \), was overexpressed in cancers.\(^32\) \(Musashi 1 \) containing two ribonucleoprotein (RNP)-type RNA-binding domains (RBDs) is also overexpressed in malignant gliomas.\(^40\) These results suggest that various types of RNA-binding proteins are involved in cell proliferation, and expression alterations of those RNA-binding proteins often cause tumor formation. This prompted us to examine the expression of \(Hqk \) in human tumors. Since \(Hqk-7 \) is highly expressed in brain, and \(Hqk-7 \) is likely to be an apoptosis inducer,\(^23\) we suspected that loss or reduction of \(Hqk-7 \) expression would be detected in brain tumor samples. Our results indeed demonstrated a high incidence of expression alterations of \(Hqk \) in gliomas (30%; 6/20), but not in other tumors such as schwannomas (0/3), or meningiomas (0/8). Among the tumor samples showing expression alter-
ations, two were devoid of all three major transcripts, one was missing only the 5 kb message, and only the 7 kb message was absent in the last two samples (Fig. 4). Studies on mouse qki genomic structure5 suggest that three major alternative messages are transcribed from a single transcription initiation site, and that the expression of each isoform is regulated at the level of splicing. Thus, genetic or epigenetic changes in the promoter region would result in loss of the three alternative transcripts. Specific loss of one of the alternative messages can be caused by alterations in the sequences required for proper splicing. Our examinations of genomic DNA from the glioma patients failed to detect apparent genetic DNA rearrangements or point mutations in coding sequences or splicing donor/acceptor sequences. However, epigenetic changes associated with tumorigenesis may cause silencing in \textit{Hqk} gene expression41 or alterations in splicing regulation. In any case, frequent loss of \textit{Hqk}-7 in high-grade glioma (Figs. 4, 5) may suggest that this expression alteration is directly related to malignant glioma formation. Recent findings by Pilotte et al.33 lend support this notion. The authors reported that among three major qki isoforms, only \textit{QKI}-7 could induce apoptosis \textit{in vitro} and that life or death of qki-expressing cells would be determined by the balance between the \textit{QKI} isoforms generated by alternative splicing. The authors claim that \textit{QKI}-7 is a sufficient apoptotic inducer if present in cytoplasm, while nuclear translocation of \textit{QKI}-7 suppresses its apoptosis-inducing ability. \textit{QKI}-5 predominantly localized in nucleus can form heterodimers with \textit{QKI}-770 and could cause the nuclear translocation of \textit{QKI}-7, resulting in cell survival. The relative level of each isoform would be crucial for cell death/proliferation switching. It is thus possible that not only the total loss of \textit{Hqk} transcripts, but also alterations in the balance between the isoform levels discovered in this study may result in progression of glial cell tumors. It is important to screen \textit{Hqk} gene abnormalities in glioma samples on a larger scale, and to elucidate their precise roles in tumorigenesis using mouse models. Isoform-specific knockout or conditional disruption of the qki gene only in glial cells should yield information on the possible role of the \textit{quaking} gene in tumor formation.

ACKNOWLEDGMENTS

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the Science and Technology Agency (Special Coordinating Funds for Promoting Science and Technology, to K. A.).

(Received August 20, 2001/Revised November 8, 2001/Accepted November 13, 2001)

REFERENCES

1) Ebersole, T. A., Chen, Q., Justice, M. J. and Artzt, K. The \textit{quaking} gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. \textit{Nat. Genet.}, \textbf{12}, 260–265 (1996).

2) Kondo, T., Furuta, T., Mitsunaga, K., Ebersole, T. A., Shichiri, M., Wu, J., Artzt, K., Yamamura, K. and Abe, K. Genomic organization and expression analysis of the mouse \textit{qkl} locus. \textit{Mamm. Genome}, \textbf{10}, 662–669 (1999).

3) Sidman, R. L., Dickie, M. M. and Apple, S. H. Mutant mice (\textit{quaking} and \textit{jimpy}) with deficient myelination in the central nervous system. \textit{Science}, \textbf{144}, 309–312 (1964).

4) Hardy, R. J. Molecular defects in the dysmyelinating mutant \textit{quaking}. \textit{J. Neurosci. Res.}, \textbf{51}, 417–422 (1998).

5) Samorajski, T., Friede, R. L. and Reimer, P. R. Hypomyelination in the \textit{quaking} mouse. A model for the analysis of disturbed myelin formation. \textit{J. Neuropathol. Exp. Neurol.}, \textbf{29}, 507–523 (1970).

6) Hardy, R. J., Loushin, C. L., Friedrich, V. L., Jr., Chen, Q., Ebersole, T. A., Lazzarini, R. A. and Artzt, K. Neural cell type-specific expression of QKI proteins is altered in the \textit{quaking} viable mutant mice. \textit{J. Neurosci.}, \textbf{16}, 7941–7949 (1996).

7) Siomi, H., Matunis, M. J., Michael, W. M. and Dreyfuss, G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. \textit{Nucleic Acids Res.}, \textbf{21}, 1193–1198 (1993).

8) Gibson, T. J., Thompson, J. D. and Heringa, J. The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NursA and is probably involved in binding to nucleic acid. \textit{FEBS Lett.}, \textbf{324}, 361–366 (1993).

9) Musco, G., Stier, G., Joseph, C., Morelli, M. A. C., Nilges, M., Gibson, T. J. and Pastore, A. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. \textit{Cell}, \textbf{85}, 237–245 (1996).

10) Vernet, C. and Artzt, K. \textit{STAR}, a gene family involved in signal transduction and activation of RNA. \textit{Trends Genet.}, \textbf{13}, 479–484 (1997).

11) Cruz-Alvarez, M. and Pellicer, A. Cloning of a full length complementary cDNA for a Artemia salina glycine-rich protein. \textit{J. Biol. Chem.}, \textbf{271}, 13377–13380 (1987).

12) Wong, G., Muller, O., Clark, R., Conroy, L., Moran, M. F., Polakis, P. and McCormick, F. Molecular cloning and nuclear acid binding properties of the GAP-associated tyrosine phosphoprotein p62. \textit{Cell}, \textbf{69}, 551–558 (1992).

13) Jones, A. R. and Schell, T. Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. \textit{Genes Dev.}, \textbf{9}, 1491–1504 (1995).

14) Courtneidge, R. and Fumagalli, S. A mitotic function for Src? \textit{Trends Cell Biol.}, \textbf{4}, 345–347 (1994).

15) Taylor, S. J. and Shalloway, D. An RNA-binding protein
associated with Src through its SH2 and SH3 domains in mitosis. Nature, 368, 867–871 (1994).
16) Francis, R., Barton, M. K., Kimbel, J. and Schedl, T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics, 139, 579–606 (1995).
17) Francis, R., Maine, E. and Schedl, T. Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the gpi-1 signaling pathway. Genetics, 139, 607–630 (1995).
18) Bacherecke, E. H. Who encodes a KH RNA binding protein that functions in muscle development. Development, 124, 1323–1332 (1997).
19) Zaffran, S., Astier, M., Grattecos, D. and Semeriva, M. The held out wings (how) Drosophila gene encodes a putative RNA-binding protein involved in the control of muscular and cardiac activity. Development, 124, 2087–2098 (1997).
20) Zorn, A. M. and Krieg, P. A. The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos. Genes Dev., 11, 2176–2190 (1997).
21) Jones, A. R., Francis, R. and Schedl, T. GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol., 180, 165–183 (1996).
22) Kaname, T., Kondo, T., Imanaka, T., Suganuma, T., Suzuki, M., Ebersole, T. A., Artzt, K., Yamamura, K. and Abe, K. In preparation.
23) Justice, M. J. and Bode, V. C. Three ENU-induced alleles of the murine quaking locus are recessive embryonic lethal mutations. Genet. Res., 51, 95–102 (1988).
24) Li, Z. H., Takakura, N., Oike, Y., Suda, T., Kaname, T., Artzt, K., Yamamura, K. and Abe, K. In preparation.
25) Zorn, A. M., Grow, M., Patterson, K. D., Ebersole, T. A., Chen, Q., Artzt, K. and Krieg, P. A. Remarkable sequence conservation of transcripts encoding amphibian and mammalian homologues of quaking, a KH domain RNA-binding protein. Gene, 188, 199–206 (1997).
26) De Bouille, K., Verkerk, A. J., Reyniers, E., Vits, L., Hendrickx, J., Van Roy, B., Van den Bos, F., De Grasff, E., Oostra, B. A. and Willems, P. J. A point mutation in FMR-1 gene associated with fragile X mental retardation. Nat. Genet., 3, 31–35 (1993).
27) Ashley, C., Wilkinson, K. D., Reines, D. and Warren, S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science, 262, 563–566 (1993).
28) Gibson, T. J., Rice, P. M., Thompson, J. D. and Hering, J. KH domains within the FMR1 sequence suggest that fragile X syndrome stems from a defect in RNA metabolism. Trends Biochem. Sci., 18, 331–333 (1993).
29) Siomi, H., Choi, M. C., Nussbaum, R. L. and Dreyfuss, G. The protein product of the fragile X gene, has characteristics of an RNA-binding protein. Cell, 74, 291–298 (1993).
30) Siomi, H., Choi, M., Siomi, M. C., Nussbaum, R. L. and Dreyfuss, G. Essential role for KH domains in RNA-binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell, 77, 33–39 (1994).
31) Muller-Pillasch, F., Lacher, U., Wallrapp, C., Micha, A., Zimmerhacket, F., Hameister, H., Varga, G., Friess, H., Buchler, M., Beger, H. G., Vila, M. R., Adler, G. and Gress, T. M. Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein. Oncogene, 14, 2729–2733 (1997).
32) Zhang, Y. J., Chan, E. K. L., Peng, X. X. and Tan, E. M. A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma. J. Exp. Med., 189, 1101–1110 (1999).
33) Pilotte, J., Larocque, D. and Richard, S. Nuclear translocation controlled by alternatively spliced isoforms inactivates the QUAKING apoptotic inducer. Genes Dev., 15, 845–858 (2001).
34) Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison, R. and Miller, W. PipMarker-a web server for aligning two genomic DNA sequences. Genome Res., 10, 577–586 (2000).
35) Miyakawa, A., Ichimura, K., Schmidt, E. E., Vrmeh-Ziaie, S. and Collins, V. P. Multiple deleted regions on the long arm of chromosome 6 in astrocytic tumours. Br. J. Cancer, 82, 543–549 (2000).
36) Liang, B. C., Ross, D. A., Greenberg, H. S., Meltzer, P. S. and Trent, J. M. Evidence of allelic imbalance of chromosome 6 in human astrocytomas. Neurology, 44, 533–536 (1994).
37) Mitelman, F., Mertens, F. and Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. (Special Issue), April, 417–474 (1997).
38) Trent, J. M., Stanbridge, E. J., McBride, H. L., Meese, E. U., Casey, G., Araujo, D. E., Witkowski, C. M. and Nagle, R. B. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science, 247, 568–571 (1990).
39) Zhu, J. and Chen, X. MCG10, a novel p53 target gene that encodes a KH domain RNA-binding protein, is capable of inducing apoptosis and cell cycle arrest in G2-M. Mol. Cell Biol., 20, 5602–5618 (2000).
40) Tota, M., Iizuka, Y., Yu, W. J., Imai, T., Ikeda, E., Yoshida, K., Kawase, T., Kawakami, Y., Okano, H. and Ueyumura, K. Expression of the neural RNA-binding protein Musashi 1 in human gliomas. Glia, 34, 1–7 (2001).
41) Kane, M., Loda, M., Gaida, G., Lipman, J., Mishra, R., Goldman, H., Jessup, J. M. and Kolodner, R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res., 57, 808–811 (1997).