Abstract. Green and Ruzsa recently proved that for any \(s \geq 2 \), any small squaring set \(A \) in a (multiplicative) abelian group, i.e. \(|A \cdot A| < K|A| \), has a Freiman \(s \)-model: it means that there exists a group \(G \) and a Freiman \(s \)-isomorphism from \(A \) into \(G \) such that \(|G| < f(s, K)|A| \).

In an unpublished note, Green proved that such a result does not necessarily hold in non-abelian groups if \(s \geq 64 \). The aim of this paper is to improve Green’s result by showing that it remains true under the weaker assumption \(s \geq 6 \).

1. Introduction

We will use the notation \(|X|\) for the cardinality of any set or group \(X \). If \(X \) and \(Y \) are subsets of a given (multiplicative) group, the product \(X \cdot Y \) or simply \(XY \) denotes the set \(\{xy \mid x \in X, y \in Y\} \). For \(X = Y \) we write \(XY = X^2 \). The set \(X^{-1} \) is formed by all the inverse elements \(x^{-1}, x \in X \).

Let \(s \geq 2 \) be an integer and \(A \subset H \) and \(B \subset G \) be subsets of arbitrary (multiplicative) groups. A map \(\pi : A \rightarrow B \) is said to be a Freiman \(s \)-homomorphism if for any \(2s \)-tuple \((a_1, \ldots, a_s, b_1, \ldots, b_s)\) of elements of \(A \) and any signs \(\epsilon_i = \pm 1, i = 1, \ldots, s \), we have

\[
a_{s}^{\epsilon_1} \ldots a_{s}^{\epsilon_s} = b_{1}^{\epsilon_1} \ldots b_{s}^{\epsilon_s} \implies \pi(a_{1})^{\epsilon_1} \ldots \pi(a_{s})^{\epsilon_s} = \pi(b_{1})^{\epsilon_1} \ldots \pi(b_{s})^{\epsilon_s}.
\]

Observe that in the case of abelian groups, we may set, without loss of generality, all the signs to +1. If moreover \(\pi \) is bijective and \(\pi^{-1} \) is also a Freiman \(s \)-homomorphism, then \(\pi \) is called a Freiman \(s \)-isomorphism from \(A \) into \(G \). In this case, \(A \) and \(B \) are said to be Freiman \(s \)-isomorphic.

Green and Ruzsa proved in [2] that a structural result holds for small squaring sets in an abelian (multiplicative) group. The key argument in their proof is Proposition 1.2 of [2] asserting that any small squaring finite set \(A \) in an abelian group has a good Freiman model, that is a relatively small finite group \(G \) and a Freiman \(s \)-isomorphism from \(A \) into \(G \). More precisely, they showed the following effective result:

\[Date: September 12, 2010. \\
Research is partially supported by OTKA grants K 67676, K 81658 and Balaton Program Project. \]
Let \(s \geq 2 \) and \(K > 1 \). There exists a constant \(f(s, K) = (10sK)^{10K^2} \) such that \(A \) is a subset of an abelian group \(H \) satisfying the small squaring property \(|A \cdot A| < K|A| \), then there exists an abelian group \(G \) such that \(|G| < f(s, K)|A| \) and \(A \) is Freiman \(s \)-isomorphic to a subset of \(G \).

It is not difficult to see that this result cannot be literally extended to nonabelian groups by considering a set \(A \) such that \(|A \cdot A|/|A| \) is small and \(|A \cdot A \cdot A|/|A| \) is large (see [6, page 94] for such an example). However it is known (by combining [4, section 1.11] and [6, Proposition 2.40]) that if \(|A \cdot A|/|A| \leq K \) then for any \(n \)-tuple of signs \(\epsilon_1, \ldots, \epsilon_n \in \{-1, 1\} \), we have \(|X^{\epsilon_1} \cdot X^{\epsilon_2} \cdots X^{\epsilon_n}|/|X| \leq K^{O(n)} \) for some large subset \(X \) of \(A \) satisfying \(|X| \geq |A|/2 \). Despite this fact, the existenceness of a good Freiman \(s \)-model for some large subset of an arbitrary set \(A_0 \) satisfying the small squaring property \(|A_0 \cdot A_0| < 2|A_0| \) is not guaranteed. Indeed in his unpublished note [3], Green gave an example of such a set \(A_0 \) with arbitrarily large cardinality and the following property: let \(s \geq 64 \) and \(\delta = 1/23 \); then for any \(A \subset A_0 \) with \(|A| \geq |A_0|^{1-\delta} \) and any finite group \(G \) such that there exists a Freiman \(s \)-isomorphism from \(A \) into \(G \), we have \(|G| \geq |A|^{3+\delta} \). There is no doubt from his proof that the admissible range for \(s \) could be somewhat improved (\(s \geq 32 \) is seemingly the best range that can be read from his proof).

Our aim is to improve Green’s result by showing:

Theorem 1. Let \(n \) be any positive integer and \(\varepsilon \) be any positive real number. Then there exists a finite (nonabelian) group \(H \) and a subset \(A_0 \) in \(H \) with the following properties:

i) \(|A_0| > n \) and \(|A_0 \cdot A_0| < 2|A_0| \);

ii) For any \(A \subset A_0 \) with \(|A| \geq |A_0|^{43/44} \) and for any finite group \(G \) such that there exists a Freiman \(6 \)-isomorphism from \(A \) onto \(G \), we have \(|G| \geq |A|^{33/32-\varepsilon} \).

Our proof in Section 4 is partially based on Green’s approach but also includes new materials. It exploits arguments coming from group theory and Fourier analysis with additional tools, e.g. a recent incidence theorem due to Vinh [7]. It also needs some additional combinatorial arguments.

In Section 3, we include for comparison the proof of a weaker statement that does not use the new materials, but which optimizes, in some sense, Green’s ideas.
Let p be a prime number and \mathbb{F} the fields with p elements. We denote by H the Heisenberg linear group over \mathbb{F} consisting of the upper triangular matrices

$$
[x, y, z] = \begin{pmatrix}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1 \\
\end{pmatrix}, \quad x, y, z \in \mathbb{F}.
$$

We recall the product rule in H:

$$
[x, y, z] \cdot [x', y', z'] = [x + x', y + y', xy' + z + z'].
$$

As shown in [3], this group provides an example of a nonabelian group in which there exists some subset A_0 with small \textit{squaring} property, namely $|A_0^2| < 2|A_0|$, and not having a good Freiman model. That is there is no \textit{relatively big} isomorphic image of A_0 by a Freiman s-isomorphism with a given s in any group G. We will also use the Heisenberg group in order to derive our results.

The proof of Theorem 1 goes in the following manner. We will show that: firstly there exists a non trivial p-subgroup in the subgroup generated by $\pi(A)$ in G; secondly any element in $\pi^{-1}(G)$ is the product of at most 6 elements from A or A^{-1}. The rest of the proof is based on some group-theoretical properties which are mainly taken from [3].

As indicated in [3], there is no hope to obtain an optimal result by this approach, namely a similar result with $s_0 = 2$.

2. \textbf{Some properties of finite nilpotent groups and of the Heisenberg group H}

For any group G, we denote by 1_G the identity element of G. Thus $[0, 0, 0] = 1_H$.

We will use the following partially classical properties:

1. H is a two-step nilpotent group (or nilpotent of class two). Indeed, the commutator of $a_1 = [x_1, y_1, z_1] \in H$ and $a_2 = [x_2, y_2, z_2] \in H$ denoted by $[a_1; a_2]$ is equal to

$$
[a_1; a_2] = a_1 a_2 a_1^{-1} a_2^{-1} = [0, 0, x_1 y_2 - x_2 y_1].
$$

For any $a_3 = [x_3, y_3, z_3] \in H$, we obtain

$$
[[a_1; a_2]; a_3] = [0, 0, 0] = 1_H,
$$

for the double commutator. Hence the result.

2. Any finite nilpotent group is the direct product of its Sylow subgroups (see 6.4.14 of [5]).

3. Any finite p-group of order p or p^2 is abelian (see 6.3.5 of [5]).
4. Assume that \(A \subset H \) and \(\pi \) is a Freiman \(s \)-homomorphism from \(A \) into \(G \) with \(s \geq 5 \). We denote by \(\langle \pi(A) \rangle \) the subgroup generated by \(\pi(A) \). Then \(\langle \pi(A) \rangle \) is a two-step nilpotent group. Indeed, for any \(a, b, c \in A \), one has

\[
aba^{-1}b^{-1}c = caba^{-1}b^{-1}
\]

since \(H \) is a nilpotent group of class two. Hence

\[
\pi(a)\pi(b)\pi(a)^{-1}\pi(b)^{-1}\pi(c) = \pi(c)\pi(a)\pi(b)\pi(a)^{-1}\pi(b)^{-1}
\]

since \(\pi \) is a Freiman \(s \)-homomorphism with \(s \geq 5 \). It thus follows that double commutators satisfy \([a_1; b_1; c_1] = 1_G\) for any \(a_1, b_1, c_1 \in \pi(A) \). In [3], the author observed from a direct argument that it remains true for any \(a_1, b_1, c_1 \in \langle \pi(A) \rangle \): since \(\langle \pi(A) \rangle \) is finite, the result will follow from the next lemma (cf. [3]).

Lemma 2. Let \(\Gamma \) be any group and \(X \) a maximal subset of \(\Gamma \) such that

(1) \([a; b; c] = 1_\Gamma\), for any \(a, b, c \in X \).

Then \(X \) in closed under multiplication.

For the the sake of completeness we include the proof which is in the same way as in [3].

Proof. By (1) and the following identity

(2) \([xy; z] = [x; [y; z]] \cdot [y; z] \cdot [x; z], \ x, y, z \in \Gamma, \)

we obtain for any \(a, b, c, d \in X \), \([ab; c]; d] = [[b; c] \cdot [a; c]; d]. Applying again (2) with \(x = [b; c], y = [a; c] \) and \(z = c \), yields in view of (1),

(3) \([ab; c]; d] = 1_\Gamma, \ for any a, b, c, d \in X \).

By a further application of (2) with \(x = a, y = b \) and \(z = [ab; c] \), we get by (3) \([ab; [ab; c]] = 1_\Gamma \) for any \(a, b, c \in X \). By the maximal property of \(X \), we obtain \(ab \in X \) for any \(a, b \in X \). \(\square \)

3. **Approach of the proof with a slightly weaker result**

Before proving our main result, we explain the principle of the approach by showing the following weaker result in which only Freiman \(s \)-isomorphisms with \(s \geq 7 \) are considered.
Theorem 3. Let n be a positive integer and θ be a real number such that

$$\frac{11}{12} \leq \theta \leq 1$$

and let

$$\varphi_\theta = \frac{12\theta - 9}{2}.$$

Then there exists a finite group H and a subset A_0 in H satisfying the following properties:

i) $|A_0| > n$ and $|A_0 \cdot A_0| < 2|A_0|$;

ii) For any $A \subset A_0$ with $|A| \geq |A_0|^\theta$ and for any finite group G such that there exists a Freiman 7-isomorphism from A onto G, we have $|G| \geq |A|^{\varphi_\theta}$.

For $\theta = 13/14$, it yields the following corollary which can be compared to Theorem 1:

Corollary 4. Let n be any positive integer. Then there exists a finite group H and a subset A_0 in H satisfying the following properties:

i) $|A_0| > n$ and $|A_0 \cdot A_0| < 2|A_0|$;

ii) For any $A \subset A_0$ with $|A| \geq |A_0|^{13/14}$ and for any finite group G such that there exists a Freiman 7-isomorphism from A onto G, we have $|G| \geq |A|^{15/14}$.

Let $\alpha \in (0, 1)$ and A_0 be the subset of H

(4) \quad A_0 := \{[x, y, z] \mid (x, y, z) \in [0, p^\alpha) \times \mathbb{F} \times \mathbb{F}\}.

For p large enough, we plainly have

$$|A_0 \cdot A_0| = 2|A_0| - p^2,$$

thus A_0 is a small squaring subset of H.

Let θ be such that $0 < \theta \leq 1$, on which an additional assumption will be given later. Let A be any subset of A_0 whose cardinality satisfies

(5) \quad |A| \geq |A_0|^\theta.

By an averaging argument, there exists $x_0, y_0, z_0, z'_0, u, v \in \mathbb{F}$ and $X, Y, Z \subset \mathbb{F}$ such that

(6) \quad [X, y_0, z_0] \cup [x_0, Y, z'_0] \cup [u, v, Z] \subset A

(7) \quad |X| \geq \frac{|A|}{p^{2\alpha}}, \quad |Y| \geq \frac{|A|}{p^{1+\alpha}}, \quad |Z| \geq \frac{|A|}{p^{1+\alpha}}.

Observe that $|X||Y||Z|^2 \geq p^3$ if

(8) \quad |A| \geq p^{(8+3\alpha)/4},
which holds true if we fix \(\alpha \) such that
\[
\theta = \frac{8 + 3\alpha}{8 + 4\alpha},
\]
that is
\[
\alpha = \frac{8(1 - \theta)}{4\theta - 3},
\]
assuming that the following condition on \(\theta \) holds:
\[
\theta \geq \frac{11}{12}.
\]

Let \(a = [x, y_0, z_0] \), \(b = [x_0, y, z'_0] \). These are elements of \(A \). Moreover the commutator of \(a \) and \(b \) is
\[
aba^{-1}b^{-1} = [0, 0, xy - x_0y_0].
\]

Let \(c = [u, v, z] \) and \(d = [u, v, z'] \) in \([u, v, Z] \subset A \). We thus have
\[
aba^{-1}b^{-1}cd^{-1} = [0, 0, xy + z - z' - x_0y_0].
\]

For any element \(t \) in \(\mathbb{F} \), let \(N(t) \) be the number of representations of \(t \) under the form
\[
t = xy + z - z' - x_0y_0, \quad x \in X, \quad y \in Y, \quad z, z' \in Z.
\]

One has
\[
N(t) = \frac{1}{p} \sum_{h=0}^{p-1} \sum_{x \in X} \sum_{y \in Y} \sum_{z, z' \in Z} e\left(\frac{h(xy - x_0y_0 + z - z' - t)}{p}\right),
\]
where \(e(\alpha) \) is the usual notation for \(\exp(2i\pi\alpha) \). We get
\[
N(t) \geq \frac{|X||Y||Z|^2}{p} - \frac{1}{p} \sum_{h=1}^{p-1} |S(h)||T(h)|^2,
\]
where
\[
S(h) = \sum_{(x,y) \in X \times Y} e\left(\frac{hxy}{p}\right), \quad T(h) = \sum_{z \in Z} e\left(\frac{hz}{p}\right).
\]

By Vinogradov’s inequality
\[
|S(h)| \leq \sqrt{p|X||Y|} \quad (\text{if } p \nmid h)
\]
and Parseval’s identity
\[
\frac{1}{p} \sum_{h=1}^{p} |T(h)|^2 = |Z|,
\]
we deduce the lower bound
\[
N(t) > \frac{|X||Y||Z|^2}{p} - \sqrt{p|X||Y||Z|}.
\]
Hence by (10), \(N(t) \) is positive. We thus deduce

\[[0, 0, F] \subset B := A^2 A^{-2} AA^{-1}. \]

Let \(G \) be any finite group and \(\pi \) any Freiman \(s \)-isomorphism from \(A \) into \(G \). Our goal is to show that \(|G| \) is big compared to \(|A| \). We thus may assume that \(G = \langle \pi(A) \rangle \).

We assume in the sequel that \(s \geq 7 \). We start from the property that is proven just above:

\[\pi([0, 0, F]) \subset \pi(B). \]

For any \(z \in F \), we let \(g_z = \pi([0, 0, z]) \).

If \(h = \pi([u, v, w]) \in \pi(A) \), then for \(s \geq 7 \) we have

\[\pi([-u, -v, uv - w + z]) = \pi([u, v, w]^{-1}[0, 0, z]) = h^{-1} g_z = g_z h^{-1}. \]

We now show that for some \(i \neq j \),

\[g_{\lambda(i-j)} = g_{\lambda-1(i-j)} g_{i-j}, \quad 0 \leq \lambda \leq p. \]

Since \([u, v, Z] \subset A\) and \(|Z| > 1\) by (7) and (8), \(A \) contains at least two distinct elements \([u, v, i]\) and \([u, v, j]\). We denote \(h_k = \pi([u, v, k]) \) for \(k = i, j \). Since \(\pi \) is a Freiman \(s \)-isomorphism from \(A \) into \(G \) and \(s \geq 7 \), we get \(h_j^{-1} h_i = g_{i-j} \) and by a similar calculation as in (11)

\[g_{\lambda+1(i-j)} h_i^{-1} = g_{\lambda(i-j)} h_j^{-1}, \]

hence

\[g_{\lambda+1(i-j)} = g_{\lambda(i-j) + j} h_j^{-1} h_i = g_{\lambda(i-j)} g_{i-j}. \]

We deduce by induction

\[g_{\lambda(i-j)} = g_{i-j}^{\lambda}, \quad \text{for any } \lambda \geq 1. \]

Thus the order of \(g_{i-j} \) in \(G \) is either 0 or \(p \). Since \(s \geq 2 \), we have \(h_i \neq h_j \) hence \(g_{i-j} = h_j^{-1} h_i \neq 1_G \). This shows that \(g_{i-j} \) is of order \(p \) in \(G \). We then deduce that \(p \) divides the order of \(G \).

Let \(G_p \) be the Sylow \(p \)-subgroup of \(G \). Since \(s \geq 5 \) and \(H \) is a two-step nilpotent group, \(G \) is also a two-step nilpotent group by Property 4 of Section 2. Then by Property 2 of Section 2, \(G \) can be written as the direct product \(G = G_p \times K \). The projection \(\sigma \) of \(G \) onto \(G_p \) is a homomorphism thus \(\tilde{\pi} = \sigma \circ \pi \) is a Freiman \(s \)-homomorphism. Since for \(z \neq 0 \), \(h_z \) has order \(p \) in \(G \), \(\sigma(h_z) \) has also order \(p \) in \(G_p \).
Let \(a_1 = [x_1, y_1, z_1] \) and \(a_2 = [x_2, y_2, z_2] \) be any elements in \(A \). We have \(a_1a_2a_1^{-1}a_2^{-1} = [0, 0, x_1y_2 - x_2y_1] \). If \(G_p \) were abelian we would obtain by using \(s \geq 4 \)

\[
1_G = \tilde{\pi}(a_1)\tilde{\pi}(a_2)\tilde{\pi}(a_1)^{-1}\tilde{\pi}(a_2)^{-1} = \tilde{\pi}(a_1a_2a_1^{-1}a_2^{-1}) = \tilde{\pi}([0, 0, x_1y_2 - x_2y_1]) = \sigma(g_{x_1y_2-x_2y_1}),
\]
hence \(x_1y_2 - x_2y_1 = 0 \). We would conclude that \(|A| \leq p^2 \), a contradiction by the fact that \(|A| \geq |A_0|\theta \geq p^{(2+\alpha)\theta} > p^2 \) by (9).

Consequently by Property 3 given in Section 2, \(G_p \) is not abelian and \(|G_p| \geq p^3 \). Finally

\[
|G| \geq p^3 = |A_0|^{3/(2+\alpha)} \geq |A|^{(1+\theta-9)/2}.
\]

The proof of Theorem 3 finishes by choosing the prime \(p \) large enough in order to have \(|A_0| > n \).

4. Proof of the main result Theorem 1

Again, \(A_0 \) denotes the set

\[
A_0 = \{ [x, y, z] : 0 \leq x < p^\alpha, \ y, z \in \mathbb{F} \},
\]
and \(A \) any subset of \(A_0 \) such that \(|A| \geq |A_0|^{\theta} \). The parameters \(\alpha \in (0, 1) \) and \(\theta \in (0, 1) \) will be specified below. Again, we have \(|A_0| \geq p^{2+\alpha} \) thus

(12) \[
|A| \geq p^{(2+\alpha)\theta}.
\]

We recall that there exist \(x_0, y_0, z_0, z_0', u, v \in \mathbb{F} \) and \(X, Y, Z \subset \mathbb{F} \) such that :

\[
[X, y_0, z_0] \cup [x_0, Y, z_0'] \cup [u, v, Z] \subset A
\]

(13) \[
|X| \geq \frac{|A|}{p^2}, \ |Y| \geq \frac{|A|}{p^{1+\alpha}}, \ |Z| \geq \frac{|A|}{p^{1+\alpha}}.
\]

For \((x, y, z) \in X \times Y \times Z \), one has

\[
[x, y_0, z_0][x_0, y, z_0'][x, y_0, z_0]^{-1}[x_0, y, z_0']^{-1}[u, v, z] = [u, v, xy + z - x_0y_0].
\]

Our first goal is to show that \([u, v, t] \) is in \(A_2A^{-2}A \) except for \(t \) belonging to a small subset \(E \) of exceptions.

First step: For any \(t \) in \(\mathbb{F} \), let \(r(t) \) be the number of triples \((x, y, z) \in X \times Y \times Z \) such that

\[
t = xy + z - x_0y_0.
\]

One cannot prove that \(r(t) > 0 \) for any \(t \). Nevertheless, we will show that except for a small part of elements \(t \), this property holds. Let \(C \) be the set of those elements of \(t \) for which
\(r(t) > 0 \). Then by the Cauchy-Schwarz inequality

\[|C| \geq \frac{(|X||Y||Z|)^2}{\sum_r r(t)^2}. \]

Furthermore, \(\sum_t r(t)^2 \) coincides with the number of solutions of

\[xy + z = x'y' + z', \quad x, x', y, y', z, z' \in X, Y, Z. \]

If we fix \(x = x_1, x' = x'_1 \) and \(z' = z'_1 \), it gives the equation of an hyperplan \(D_{x_1, x'_1, z'_1} \) in \(\mathbb{F}^3 \):

\[x_1 y - x'_1 y' + z - z'_1 = 0. \]

All these hyperplanes are different and there are \(|X|^2 |Z| \) such hyperplanes. The possible number of points \((y, y', z) \in Y \times Y \times Z\) is \(|Y|^2 |Z| \).

In [7], L.A. Vinh established a Szemeredi-Trotter type result by obtaining an incidence inequality for points and hyperplanes in \(\mathbb{F}^d \). It is connected to the Expander Mixing Lemma (see Corollary 9.2.5 in [1]). We have:

Lemma 5 (L.A. Vinh [7]). Let \(d \geq 2 \). Let \(\mathcal{P} \) be a set of points in \(\mathbb{F}^d \) and \(\mathcal{H} \) be a set of hyperplanes in \(\mathbb{F}^d \). Then

\[|\{(P, D) \in \mathcal{P} \times \mathcal{H} : P \in D\}| \leq \frac{|\mathcal{P}||\mathcal{H}|}{p} + (1 + o(1))p^{(d-1)/2}(|\mathcal{P}||\mathcal{H}|)^{1/2}. \]

By this result with \(d = 3 \), we get for any large \(p \)

\[\sum_t r(t)^2 \leq \frac{(|X||Y||Z|)^2}{p} + 2p|X||Y||Z|, \]

which yields by (14)

\[|C| \geq p - \frac{2p^3}{|X||Y||Z|}. \]

Thus the set \(E \) of exceptions \(t \in \mathbb{F} \) with \(r(t) = 0 \) has cardinality

\[|E| \leq \frac{2p^3}{|X||Y||Z|}. \]

Second step: We fix \(z_1 \) any element in \(Z \) and let \(Z_1 = Z \setminus \{z_1\} \). For any \(z \in Z_1 \), we denote

\[m(z) = \max\{m \leq p : z_1 + j(z - z_1) \notin E, \ 2 \leq j \leq m\} \]

if the maximum exists and we let \(m(z) = p \) otherwise. Let

\[T = \left\lceil \frac{|Z_1|}{2|E|} \right\rceil \]

If we denote by \(Z'_1 \) the set of the elements \(z \in Z_1 \) with \(m(z) \leq T \), then

\[|Z'_1| = \sum_{m < T}|\{z \in Z_1 : m(z) = m\}| \leq |E| \leq \frac{|Z_1|}{2}, \]
since $m = m(z)$ implies $z_1 + (m + 1)(z - z_1) \in E$. It follows that $m(z) > T$ for at least one half of the elements z in Z_1. We denote by \tilde{Z}_1 the set of those elements z. We have

$$|\tilde{Z}_1| \geq \frac{|A|}{2p^{1+\alpha}}.$$

Lemma 6. Assume that $23/24 < \theta \leq 1$ and let γ be a positive real number such that

$$\gamma < \frac{2(2 + \alpha)\theta - (3 + 2\alpha)}{3}.$$

If $|E| < p^{\gamma}$, then there exists an integer t with $1 \leq t \leq T$ and two distinct elements $z, z' \in \tilde{Z}_1$ such that

$$z' - z \notin E - E \quad \text{and} \quad z' = z_1 + t(z - z_1)$$

Proof. For $1 \leq t \leq T$, we denote by $s(t)$ the number of pairs z, z' of elements of \tilde{Z}_1 with the required property. It is sufficient to show that

$$\sum_{t=1}^{T} s(t) > 0.$$

This sum can be rewritten as

$$\sum_{t=1}^{T} \frac{1}{p} \sum_{0 \leq |h| \leq p/2} \sum_{z,z' \in -z_1 + \tilde{Z}_1, \ z'-z \notin E-E} e\left(\frac{h(z^{-1}z' - t)}{p}\right).$$

The contribution related to $h = 0$ is plainly bigger than

$$\frac{T}{p}(||\tilde{Z}_1||^2 - ||\tilde{Z}_1|||E - E|),$$

thus

$$\sum_{t=1}^{T} s(t) \geq \frac{T}{p}(||\tilde{Z}_1||^2 - ||\tilde{Z}_1|||E - E|) - \frac{1}{p} \sum_{0 < |h| < p/2} \left|\sum_{t=1}^{T} e\left(\frac{-ht}{p}\right)\right| \sum_{z,z' \in -z_1 + \tilde{Z}_1, \ z'-z \notin E-E} e\left(\frac{hz^{-1}z'}{p}\right).$$

By extending the summation over z and z', we obtain for any $h \neq 0$

$$\left|\sum_{z,z' \in -z_1 + \tilde{Z}_1, \ z'-z \notin E-E} e\left(\frac{hz^{-1}z'}{p}\right)\right| \leq \left|\sum_{z,z' \in -z_1 + \tilde{Z}_1} e\left(\frac{hz^{-1}z'}{p}\right)\right| + ||\tilde{Z}_1|||E - E|,$$

which is less than or equals to

$$(\sqrt{p} + |E - E|)||\tilde{Z}_1||$$

by using Vinogradov’s inequality for the estimation of the sum over z and z'. Hence by the bounds

$$\left|\sum_{t=1}^{T} e\left(\frac{-ht}{p}\right)\right| \leq \frac{p}{2|h|} \quad \text{for} \ 0 < |h| < p/2.$$
and
\[\sum_{h=1}^{(p-1)/2} \frac{1}{h} \leq \ln p, \]
we get
\[\sum_{t=1}^{T} s(t) \geq \frac{T}{p} (|\tilde{Z}_1|^2 - |\tilde{Z}_1||E - E|) - (\sqrt{p} + |E - E|)|\tilde{Z}_1| \ln p. \]
From the trivial bound $|E - E| \leq |E|^2$ and by (16) and (17), this sum is positive whenever $|E| \leq p$ for p is large enough, where γ is any positive number such that
\[\gamma < \min \left(\frac{(2 + \alpha)\theta - (1 + \alpha)}{2}; \frac{4(2 + \alpha)\theta - (7 + 4\alpha)}{2}; \frac{2(2 + \alpha)\theta - (3 + 2\alpha)}{3} \right). \]
The second argument in this minimum is less than or equal to the first since $\theta \leq 1$ and the third is less than the second since $\theta > 23/24$. Thus condition (20) reduces to (18), and the lemma follows.

By (13) and (15), we deduce from the lemma that the condition
\[7 + 2\alpha - 3(2 + \alpha)\theta < \frac{2(2 + \alpha)\theta - (3 + 2\alpha)}{3}, \]
is sufficient in order to ensure that system (19) has at least one solution, assuming p is large enough. This condition reduces to
\[\theta > \frac{24 + 8\alpha}{22 + 11\alpha} \]
or equivalently
\[\alpha > \alpha_0(\theta) := \frac{24 - 22\theta}{11\theta - 8}. \]
Since $\alpha < 1$, we must choose θ such that $\theta > \frac{32}{33}$. Fixing
\[\alpha = \alpha_0(\theta) + \varepsilon, \]
this yields
\[p^3 \geq |A|^{3/(2+\alpha)} \geq |A|^{3(11\theta-8)/8-\varepsilon}, \]
for any $p \geq p_0(\varepsilon)$. For $\theta = 43/44$, it will give the desired exponents in Theorem 1.

Third step: We have at our disposal $z_1, z \in Z$ and $t \in \mathbb{F}$ such that
\[z_1 + j(z - z_1) \notin E, \quad j = 2, \ldots, t, \quad \text{and} \quad z_1 + t(z - z_1) \in Z. \]

Let $\pi : A \to G$, where G is a finite group, be a Freiman 6-isomorphism. As in the proof of Theorem 3, we will show that p divides $|G|$ and that the p-Sylow subgroup of G cannot be abelian. It will ensure the bound $|G| \geq p^3$ and the theorem will follow by (23).
Let
\begin{equation}
(25) \quad h = \pi([0, 0, z - z_1]) = \pi([u, v, z_1])^{-1}\pi([u, v, z]).
\end{equation}

Let us show that for any \(j \) such that \(j(z - z_1) + z_1 \notin E \), we have \(\pi([0, 0, j(z - z_1)]) = h^j \).

If \(1 \leq j \leq t \), we proceed by induction: for \(j = 1 \), the property is plainly true. Let \(2 \leq j \leq t \). We have

\[\pi([u, v, j(z - z_1) + z_1][u, v, z]^{-1}) = \pi([u, v, (j - 1)(z - z_1) + z_1][u, v, z_1]^{-1}) \]

By (24) and by definition of \(E \), both elements \([u, v, (j - 1)(z - z_1) + z_1] \) and \([u, v, j(z - z_1) + z_1] \) belong to \(A^2A^{-2}A \). Moreover \([u, v, z], [u, v, z_1] \in A \) hence, by the fact that \(\pi \) is a Freiman 6-homomorphism, we get

\[\pi([u, v, j(z - z_1) + z_1])\pi([u, v, z])^{-1} = \pi([u, v, (j - 1)(z - z_1) + z_1])\pi([u, v, z_1])^{-1}. \]

Thus, by (25)

\[\pi([u, v, j(z - z_1) + z_1]) = \pi([u, v, (j - 1)(z - z_1) + z_1])h. \]

By multiplying on the left by \(\pi([u, v, z_1])^{-1} \) and using again that \(\pi \) is a Freiman 6-homomorphism, we get

\[\pi([0, 0, j(z - z_1)]) = \pi([0, 0, (j - 1)(z - z_1)])h = h^j \]

by the induction hypothesis.

For larger \(j \), we again induct: let \(j > t \) be such that \(j(z - z_1) + z_1 \notin E \). Then at least one of the two elements \((j - 1)(z - z_1) + z_1\) or \((j - t)(z - z_1) + z_1\) is not in \(E \) since \(z' - z \notin E - E \).

If \((j - 1)(z - z_1) + z_1 \notin E \) we argue by induction as above. If \((j - t)(z - z_1) + z_1 \notin E \) we slightly modify the argument: since

\[\pi([u, v, j(z - z_1) + z_1][u, v, t(z - z_1) + z_1]^{-1}) = \pi([u, v, (j - t)(z - z_1) + z_1][u, v, z_1]^{-1}) \]

and \(\pi \) a Freiman 6-isomorphism, we get

\[\pi([u, v, j(z - z_1) + z_1]) = \pi([u, v, (j - t)(z - z_1) + z_1])\pi([u, v, z_1])^{-1}\pi([u, v, t(z - z_1) + z_1]) \]

and finally by induction

\[\pi([0, 0, j(z - z_1)]) = \pi([u, v, (j - t)(z - z_1) + z_1])h^t = h^{j-t}h^t = h^j. \]

Since \(z_1 \notin E \), we obtain \(h^p = 1 \) in \(G \), thus either \(h = 1 \) or \(h \) has order \(p \). But \(z \neq z_1 \) hence \([0, 0, z - z_1] = [u, v, z][u, v, z_1]^{-1} \neq 1_H \), hence \(h \neq 1_G \) since \(\pi \) is a Freiman 6-isomorphism.

We deduce that \(G \) admits an element of order \(p \), thus the \(p \)-Sylow subgroup \(G_p \) of \(G \) is not

trivial. By considering the canonical homomorphism $\sigma : G \to G_p$, $\tilde{\pi} = \sigma \circ \pi$ is a Freiman 6-homomorphism of A onto G_p. Hence for any $a = [x, y, z]$ and $b = [x', y', z']$ in A

$$[\tilde{\pi}(a); \tilde{\pi}(b)] = \tilde{\pi}([a; b]) = \tilde{\pi}([0, 0, xy' - x'y])$$

which must be equal to 1_G if G_p is assumed to be abelian. It would mean that (x, y) belongs to a single line for any $[x, y, z] \in A$, giving $|A| \leq p^2$ a contradiction to

$$\frac{\ln |A|}{\ln p} \geq \theta(2 + \alpha) > \theta(2 + \alpha_0(\theta)) = \frac{8\theta}{11\theta - 8} > 2,$$

obtained by (12), (21) and (22).

References

[1] Alon, N.; Spencer J.; The probabilistic method, 2nd edition. Wiley Interscience, 2000.
[2] Green, B.; Ruzsa, I. Z.; Freiman’s theorem in an arbitrary abelian group. J. Lond. Math. Soc. (2) 75 (2007), no. 1, 163–175.
[3] Green, B.; A note on Freiman models (2008). Unpublished note available on
http://www.dpmms.cam.ac.uk/~bjg23/notes.html
[4] Ruzsa, I. Z.; Sumsets and structure. Combinatorial number theory and additive group theory, 87–210, Adv. Courses Math. CRM Barcelona, Birkhäuser Verlag, Basel, 2009.
[5] Scott, W. R.; Group theory. Second edition. Dover Publications, Inc., New York, 1987. xiv+479 pp.
[6] Tao, T.; Vu V. H.; Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105. Cambridge University Press, Cambridge, 2006. xviii+512 pp.
[7] Vinh L.A., Szemerédi–Trotter type theorem and sum-product estimate in finite fields, arXiv:0711.4427v1[CO].

Norbert Hegyvári, ELTE TTK, Eötvös University, Institute of Mathematics, H-1117 Pázmány st. 1/c, Budapest, Hungary

E-mail address: heggyvari@elte.hu

François Hennecart, PRES Université de Lyon, Université Jean-Monnet, LAMUSE, 23 rue Michelon, 42023 Saint-Étienne, France

E-mail address: francois.hennecart@univ-st-etienne.fr