Economic evaluation of ion-exchange processes for nutrient removal and recovery from municipal wastewater

Xiangjun Huang1, Samuela Guida1, Bruce Jefferson1 and Ana Soares1,2

Ion exchange (IEX) processes are a promising alternative to remove and recover nutrients from municipal wastewater. To assess the feasibility and viability of IEX processes for full-scale application, this study aimed at providing an evaluation of performance and economics on upscaling these processes for two different configurations in a 10,000 population equivalent wastewater treatment plant (WWTP) and compared them with a traditional biological nutrient removal (BNR) plant. The IEX processes were designed based on existing pilot-scale data, and after aerobic or anaerobic carbon removal stages. The nutrients were recovered from spent regenerant in the form of (NH4)2SO4 and hydroxyapatite Ca3(PO4)2(OH)2, allowing regenerant reuse. The 40-year whole life cost (WLC) of IEX coupled with anaerobic carbon removal was estimated to be ~£6.6 M, which was, respectively, 17% and 27% less than the traditional BNR based WWTP. Furthermore, ~98 tonnes of (NH4)2SO4 and 3.4 tonnes of Ca3(PO4)2 could be recovered annually. The benefits of lower costs, reduction in greenhouse gas emissions and nutrient recovery aligned with circular economy, illustrated that IEX processes are attractive for nutrient removal and recovery from municipal wastewater.

npj Clean Water (2020) 3:7; https://doi.org/10.1038/s41545-020-0054-x

INTRODUCTION

Excess nutrients released from wastewater treatment plants (WWTPs) can lead to eutrophication with detrimental effects to the aquatic environment. Consequently, existing legislation provides stringent control of WWTPs discharges, limiting to 1 mg NH4-N/L and as low as 0.5 mg PO4-P/L. On the other hand, nutrients are essential to all life forms, and should be recovered, particularly phosphorus considering the fast depletion of natural reserves. Nutrient recovery can also enable alternative revenue streams and is aligned with the delivery of the circular economy.

Although activated sludge process variations, such as biological nutrient removal (BNR), predominate in WWTPs nowadays, ion exchange (IEX) processes are rarely applied in municipal wastewater treatment. The main reasons are limited media selectivity, bed clogging, and costly regenerations. Nevertheless, recent advances are tackling these limitations, and IEX processes are being considered for nutrient removal and recovery from municipal wastewater. More specifically, recent studies demonstrated that mesolite, a synthetically produced zeolite, has a high capacity for ammonia (NH4-N) adsorption with reported values of 4.6 and 4.9 meq/g, compared with 2.0 meq/g for Clinoptilolite. The outstanding performance of synthetic zeolites is attributed to the increased consistency Si:Al ratios of 1:1, defining a high cation exchange capacity. A comparison experiment with different empty bed contact times (EBCT) suggested 10 min to be a balance point between performance and costs for ammonia removal with mesolite. Furthermore, the tests showed that regenerant can be re-used for consecutive cycles before clean-up, and to reach breakthrough point of 1 mg NH4-N/L, the process could be operated for 1000 bed volumes (BV). Nevertheless, this is dependent on ammonia concentrations and 300–400 BV between regenerations is expected if 10–20 mg NH4-N/L is in the influent. The study also revealed that potassium chloride regenerant was more effective than sodium chloride with the efficiencies ranged between 72 and 94 and 64–68%, respectively. In addition, potassium chloride was less consumed as it still remained effective down to 0.1 M, at the same regeneration efficiency as of 1.0 M sodium chloride. Five BV KCl solution (10%) was found effective to regenerate the mesolite at higher PH value. The pH can be adjusted to 12 by adding 2% NaOH solution.

For phosphorus removal by IEX, one of the most promising media is hybrid ion exchange resins (HAIX) with ferric oxide nanoparticles embedded within the base structure of the resin. The removal of phosphorus with HAIX is believed to be more efficient than chemical precipitation or biological methods, especially when removing down to very low level (<0.1 mg PO4-P/L). The high capacity of HAIX results in extended operating cycles. For instance, the bed life of HAIX, treating a wastewater with an initial phosphorous concentration of 0.26 mg/L, demonstrated an order of magnitude greater (from 200 to 2000 BVs) than that of a conventional ion exchanger, IRA-900. A realistic expectation of operational capacity at full scale was estimated at 4.9–6.2 mg P/g media with an EBCT of 5 min but capacity was reduced to 2.5 and 3.7 mg P/g media after multiple runs. A 10 BV NaOH solution (2–4%) was found effective to regenerate the HAIX and the regenerant could be re-used 10 times before requiring clean-up.

Although these ion-exchange processes look promising, the frequent regenerations with new chemical solution every time and high costs (typically £65/ton) for disposal of spent regenerant as hazardous waste were found non-economic in the long-term run.

Recovery of the regenerants is critical to ensure economic feasibility. Recent studies indicated that a promising solution is to clean-up and reuse the spent regenerant whilst recovering the nutrients at the same time. The clean-up of KCl regenerant and ammonia recovery in the form of ammonium sulphate can be achieved using commercially available modules of hollow fibre membrane contactor (HFMC) with sulphuric acid. The phosphorus can be recovered in the form of calcium phosphate.
(hydroxyapatite) by adding hydrated lime to the spent NaOH regenerant leading to instant formation of hydroxyapatite Ca$_9$(PO$_4$)$_3$(OH) that can be separated from the liquid by filtration. Media replacement was estimated after 600 regeneration cycles, although this also needs further verification at a demonstration or full scale.

Besides technology, other challenges also remain to hinder the nutrient recovery. These include a lack of viable commercialisation pathway, and limited understanding of the recovered products markets. This study aims at providing an evaluation of performance and economics of IEX processes as tertiary treatment process, for both ammonia and phosphorus removal and recovery, after traditional activated sludge process (aimed at carbon removal) or anaerobic treatment with a combined upflow anaerobic sludge blanket and membrane reactor (anMBR) compared with traditional BNR combined with iron dosing for a 10,000 population equivalent (PE) municipal WWTP.

RESULTS

Design, mass and energy balances

The designed processes and mass balance are shown in Fig. 1. The results demonstrate that all the flowsheets investigated, BNR + iron dosing, ASP + IEX and AnMBR + IEX processes could produce the desired effluent quality of COD <20 mg/L, NH$_4$-N <1 mg/L and PO$_4$-P < 0.5 mg/L. Nevertheless, process stability was different. More specifically, the BNR process was sensitive to low temperature, shock loads and dependent on carbon availability and struggled to reach very high nutrient removal rates (>95%) required to meet stringent nutrient discharge limits (><1 mg NH$_4$-N/L, <0.5 mg PO$_4$-P/L). Fundamentally, the reasons for instability were owing to competition on carbon sources uptake, especially for low-strength wastewater. According to influent characteristics and effluent quality requirement, COD removal rate must be above 93%, and phosphate removal rate must be above 85%, which could not be realised simultaneously with ammonium removal by BNR only. Therefore, supplementary processes were designed for further removal, including ferric dosing and a tertiary filter. The consumption of ferric salt was estimated to be 6438 kg/year, which was double theoretically calculated demand to ensure the removal efficiency. Reported optimum weight ratios for iron, have varied from <1 to as high as 7.5. The US EPA (USEPA, 1987) suggests that a weight ratio between 2 and 3 of Fe:P is needed to achieve 95% percent removal of phosphorus from municipal wastewater. Regarding energy consumption, aeration consumed the most of energy required for the BNR + iron dosing up as anticipated (Fig. 2).

In the ASP + IEX flowsheet, the conventional activated sludge process (ASP) was effective and capable of removing 90% BOD and COD (Fig. 1). The IEX process was effective and capable of removing ammonia and phosphate to the required low level or even very low level such as <0.1 mg PO$_4$-P/L. There was additional benefit of 40–50% COD removal by HAIX media, which was believed to be associated with base resin of the HAIX media. Others have demonstrated that IEX processes can be impacted by changes in temperature and initial pollutant concentrations (e.g., diurnal shock loads) owing to standard chemical kinetics and mass transfer limitations. Nevertheless, the fact regeneration can be triggered dependent on effluent quality, makes IEX less sensitive to low temperature and diurnal shock loads, compared with biological processes. In relation to energy consumption, aeration consumed the majority of total electricity needs, representing 53%, followed 38% by drum filter (Fig. 2). The HFMC was able to clean-up the KCl brine and by adding sulphuric acid, ammonium sulphate (NH$_4$)$_2$SO$_4$ was recovered with annual production of 98 tonnes. The cloth filter was capable of cleaning up NaOH brine and by adding hydrated lime, hydroxyapatite Ca$_9$(PO$_4$)$_3$(OH) was recovered with annual production of 3.4 tonnes.

The UASB-configured AnMBR provided suitable treatment (Fig. 1). The optimised intermittent dead-end biogas sparging regime resulted in low energy demands and low operational costs. The COD removal efficiency in the AnMBR was 87%, but the further 6% removal, to reach the required 93% in total, could be supplemented by IEX, as HAIX media was found capable of removing COD by 40–50%. The specific energy consumption clearly showed the benefits of biogas production as most of the energy consumed was offset by production in the AnMBR with a total energy production of 0.12 kWh/m3 (does not consider the other processes consumption) (Fig. 2).

Overall, the IEX processes were more reliable to meet low level or even very low level of nutrients discharge limits compared with BNR. Importantly, nutrient recovery could be achieved during regenerant cleaning up, allowing for >85% nutrient recovery (Tables 7 and 8). Furthermore, IEX processes are generally independent of temperature, resilient to shock loads and consumes relatively low electricity. However, high concentration of suspended solids and competing ions (SO$_4^{2-}$, Ca$^{2+}$, NO$_3^-$ etc.) in the feed can potentially reduce performance efficiency. Column experiments indicated that adsorption capacity was reduced by up to 50% when high level suspended solids were presented. To minimise the impacts of suspended solids on the process performance, pre-treatment with filtration, or similar, is normally required. This increases processes complexity and costs. AnMBR coupling with IEX have more benefits compared with ASP + IEX. Besides energy recovery, a crucial point is that AnMBR provides solid free effluent feeding into IEX, which improve adsorption efficiency, secure stability of IEX process. The influence of SO$_4$ in the influent at the level of 50 mg/L to IEX was considered to be limited. A test with synthetic solution showed that SO$_4$ reduced the capacity of HAIX from 114 mg P/g to 101 mg P/g (at initial P and SO$_4$ concentrations 100 mg/L) but this reduction in capacity did not continue when the sulphate concentration was >100 mg/L. This was linked with the sulphate competing for both sorption sites and ferric nanoparticles embedded in HAIX structure. Presence of high concentration of SO$_4$ (>100 mg/L) may impact the AnMBR process operation and methane yield through the carbon utilisation by sulphate reducing bacteria, but the effect can be mitigated by precipitation of sulphate salt produced from added chemical (Fe$^{3+}$) and optimising solid retention time and specific gas demands. On the other side, Fe$^{3+}$ needs to be balanced with other potential negative impacts downstream, including loss of recoverable phosphate in the IEX regenerant as well as adding potential further competing ions reducing capacity, specifically for the cation IEX process.

Economic evaluation

The CAPEX estimated for the BNR + iron dosing process was £3.94 M (Fig. 3). The largest contribution to the CAPEX was the construction of the BNR concrete tanks accounting for 60%, followed by 17% for tertiary filter, and 15% for installation of aeration systems (Fig. 3). The total operational expenditure (OPEX) was estimated to be £316 k/year. The maintenance costs constituted the majority of the total OPEX, representing 31%. Sludge and labour costs make up 25% and 17% of the annual OPEX, followed by 17% for energy consumption (Fig. 3). Total whole life cost (WLC) was estimated at £8.4 M.

The CAPEX estimated for the ASP + IEX process was £3.48 M (Fig. 3). Installation of IEX (Fig. 3) accounted for the majority of total CAPEX representing 44%, followed by 33% for construction of conventional ASP concrete tanks. Total OPEX was estimated at £282k/year. Operation of ASP accounted for 79% of total OPEX, including electricity consumption for aeration, sludge disposal,
and related maintenance costs (Fig. 3). The WLC was estimated at £7.4 M.

The CAPEX estimated for the AnMBR+IEX process was £3.6 M. The purchase of membrane and construction of UASB reactor accounted for the majority of total CAPEX (Fig. 2). The total OPEX was estimated to be £177k/year accounting with the energy consumption of biogas sparging and recirculation pumps (Fig. 3). The WLC was estimated at £6.1 M.

Comparing the three flowsheets, Fig. 4 shows costs by year as TOTEX, by process and costs by process combination in the designed business scenario. Comparatively, IEX consumed much less electricity. More importantly, regenerant clean-up and reuse substantially lowered down the costs compared with which regenerant was used only once. For N IEX column, reuse of regenerant reduced the total OPEX by 50%, and recovery decreased further 15–65% in comparison with using new...
regenerant every time. For P IEX column, HAIX media costs were expected to be 30–50% lower when using local products for scaled up treatment units. The results also indicated that WLC of ASP + IEX and AnMBR + IEX are 10.5% and 19.8% less than that of BNR + iron dosing, respectively.

When very high removal efficiency is required, such as >95% or even >98%, the costs of biological processes are dramatically increased. An estimation revealed that the operational costs were doubled to reach effluent discharge from <1 mg P/L to 0.1 mg P/L20. Instead, IEX OPEX is less sensitive to stringent nutrient discharge control compared with BNR, especially if the regenerants can be managed in such a way that allow for multiple use and recovery, as here described. Studies also illustrated the operational preference of having high capacity over high durability. For example, when mesolite capacity had a fourfold

Fig. 2 Specific energy consumption for the designed processes.

Fig. 3 Processes CAPEX breakdown by segments and processes OPEX breakdown by classification for a BNR (A2O) with iron dosing and tertiary filtration; b conventional ASP + IEX with clean-up and reuse of regenerant; and c AnMBR + IEX with clean-up and reuse of regenerant.
increase, the yearly OPEX was reduced by ~50%. However, when media life had been prolonged 10 times, the yearly OPEX was reduced by only 10%6.

Direct greenhouse emissions

Biological treatment processes release CO₂ from the oxidation of organic matter, nitrous oxide (N₂O) from nitrification/denitrification and methane (CH₄) from anaerobic methanogenesis, which contributes to greenhouse gas (GHG) emissions21. Energy consumptions from grid or combined heat and power lead to indirect GHG emission. The estimated GHG emissions for the studied processes BNR + iron dosing, ASP + IEX and AnMBR + IEX were 936 CO₂eq t/y, 507 CO₂eq t/y and 171 CO₂eq t/y, respectively, based on the factors described in Table 1 and assuming emissions from other fugitive emissions, such as methane, to be 5%22.

Compared with BNR, ASP has less GHG emissions owing to lower electricity consumption and no evident N₂O release as there is no nitrification and denitrification reactions. Meanwhile, AnMBR achieved minimal environmental impact because of nearly complete biogas recovery and significant reduction in the energy consumption. IEX consumes very low electricity, with no evident direct GHG emission in the process. The recovered nutrients from the brine also offer a route for resources recycling. IEX coupling with AnMBR considerably reduces direct greenhouse emissions and is aligned with circular economy for sustainable development through both energy and nutrients recovery.

DISCUSSION

IEX processes provide a route to capture the nutrients from wastewater into concentrated brine and offered the possibility for subsequent nutrients extraction processes. “Resources factory” has become a buzzword in recent decades for describing how WWTPs should be designed and operated in the near future. This notion aims at more sustainable pattern for development by maximising recovery, reuse and recycling. A review analysed liquid, gas and solid nitrogen recovery with all the state of art technologies and compared the costs with that of industrial nitrogen synthesis from air23. The result indicated that N recovery from wastewater is neither currently economical nor urgently needed. It is estimated that the costs of IEX-based approach is relatively low at £1.98 ± 0.23/kg N in the case of NH₄NO₃ recovery23 compared with other processes, and the operational costs of (NH₄)₂SO₄ recovery in this study was around £2.35/kg NH₄-N, but it still cannot compete with industrial synthesis approach (£0.28/kg N). A recommended recovery method with minimal technical input is for agricultural irrigation or selling it as liquid or aqua ammonia fertiliser. Notwithstanding, there is a valid argument if considering industrial nitrogen synthesis process (Haber–Bosch approach) consume 1–2% of global power production and emit 4–8 tons of CO₂ per ton of fertiliser produced24. Although nitrogen only recovery process is feasible, they are not extensively implemented so far11. This may change in the future with less availability and rising costs of natural gas that industrial process uses.

On the other side, phosphorus is non-renewable element mined from rock phosphate, and ultimately flows into oceans after usage. Considering the limited reserves of rock phosphate, uneven distribution in different countries and increased prices in recent years25, phosphorus recovery from wastewater becomes increasingly imperative as wastewater is one of the richest sources of phosphorus containing 250,000 tons per year, averagely 25.

Furthermore, the form of recovered phosphorus can be selected based on maturity of the extractive technology, cost of the process and resale value of the product. For example, vivianite is recommended as it has highest value and added iron can simultaneously improve the process performance26. In the studied scenario, the recovered nutrients products were ammonia sulphate and hydroxyapatite and their properties are described in Table 2.

The marketability of the recovered nutrient products depends on product purity and quality, legislation, application industry,
entry points, comparable exiting product sale price and the other aspects. A study using energy-dispersive X-ray spectroscopy analysis suggested high purity of the recovered ammonia sulphate by HFMC from spent regenerant, with only N, O and S elements detected and in proportion close to ideal products. Studies also suggested superior purity of the recovered hydroxyapatite compared with alternative sources or other recovered phosphorus products.

To make the recovered nutrient a marketable product, consistent quality of the recovered nutrients must be reached, such as solid content >95%, dust <1% by weight, 2–3 mm of size for agricultural products, 1–1.25 mm of granular size for golf course turf. Specifications for product to enter a specific market must be met. As fertiliser, the products should have no pathogen or heavy metals, and nutrient content and release rate must reach required level. It is to note that recovered nutrient products from wastewater as fertiliser will not likely be able to be marketed with "certified organic". There are potentially four entry points for recovered nutrients products as fertiliser. The recovered products can be sold directly to end-user, wholesaler, broker and dealer or through wholesaler, broker and dealer network to end-user.

The fertiliser market is the focus for the recovered ammonia sulphate and hydroxyapatite. However, there are also alternative uses in other industries. The prices of commercial ammonia sulphate, calcium phosphate and hydroxyapatite products on the markets as fertiliser and chemical were shown in Table 3.

The prices vary widely because of different quality and purity in different grade, such as fertiliser grade, food grade, or pharmaceutical grade. Unless the recovered products resale price is at the same level with these comparable existing products, it is hard to gain the markets. If all the recovered products are sold as fertiliser, the revenue is only £12,834/year, representing fourfold annual IEX OPEX. But if all the recovered products, particularly hydroxyapatite, are sold as chemical used for health care, the annual revenue can be £450,285/year, representing fourfold annual IEX OPEX, because the unit price of hydroxyapatite as agent is ~400 times of calcium phosphate used as fertiliser. However, considering potential risk and social acceptance, it is still currently impracticable to enter into food and pharmaceutical markets for the recovered products from wastewater.

In conclusion, the ion-exchange processes using mesolite and HAIX present high adsorption capacity for ammonia and phosphorus removal as secondary and tertiary stage of municipal wastewater treatment. Furthermore, nutrients can be recovered from the regenerants and these can be re-used multiple times. Compared with BNR, the benefits of ion-exchange processes include technical reliability, low costs, low GHG emission. Furthermore, nutrient recovery illustrated that IEX is an attractive alternative for nutrient removal and recovery from municipal wastewater, when compared with BNR. Especially, the coupling of AnMBR and ion-exchange processes allows for both energy and nutrient recovery, which is aligned with the circular economy vision.

The ion-exchange processes can be applied to small size or middle scale municipal wastewater plants when very quality effluent is required. For application in large WWTPs, the ion exchange columns can be divided into small units, allowing for simple operation. Overall, IEX processes are attractive for nutrient removal and recovery from municipal wastewater.
METHODS

Process design

Three different flow sheets were designed: 1: BNR + iron dosing, 2: ASP + IEX and 3: upflow anaerobic sludge bioreactor coupled with submerged membrane configuration (AnMBR) + IEX (Fig. 1), for a 10,000 PE municipal WWTP treating settled wastewater to achieve the discharge limits summarised in Table 5. The flow assumed was three dry weather flow (DWF, i.e., the wastewater flow in a sewer system during periods of dry weather with minimum infiltration) at 540 L/(PE.day) corresponding to 4500 L/m² h (key parameter designs were summarised in Supplemental information S1). The design was based on the computation approach described in the Supplemental information S1. The process was assumed under typical UK conditions with an average wastewater temperature of 14°C. The key parameter designs are summarised in Supplemental information S1.

The combined ASP + IEX flow sheet considered a conventional ASP targeted at BOD removal and it was designed based on the "SRT" method[6]. The key parameter designs are summarised in Supplemental information S1. To further remove suspended solids from the ASP effluent, and avoid frequent clogging of IEX bed, high head losses, and inefficient operation owing to resin binding caused by residual organics associated with suspended solids, a drum filter was designed with loading capacity of 4500 L/m² h (key parameters designs were summarised in Supplemental information S1).

The IEX processes design consisted of two columns, regeneration units, clean-up and nutrient recovery systems for ammonia and phosphorus, respectively[6,29]. The design was based on the computation approach described in Table 6 and design parameters are summarised in Tables 7 and 8.

In the AnMBR process, biogas sparging is crucial to control membrane fouling. However, this consumes significant amounts of the energy, which normally accounts for two-third of the total energy demands of AnMBR process. The design was optimised by utilising intermittent regime and innovative gas sparging devices, so that energy demand of dead-end gas sparging could reach as low as 0.13 kWh per m³ permeate, whereas specific gas demand can be reached as low as 0.5 m³/m² h with sustained membrane permeability[17]. This significantly reduced capital costs because of obviation of blowers purchase and less membrane area invested, as well as operational costs owing to less energy consumed[17]. Data from a 3-year run AnMBR process for treatment of municipal wastewater at an average temperature of 14°C supported the feasibility of the designed AnMBR. To recover dissolved methane in AnMBR effluent, a degassing membrane contactor was designed. A study showed that it was effective by a highest recorded recovery of dissolved methane from AnMBR effluent was up to 95%[30]. This makes possible to turn nearly all the methane produced into energy/electricity. The case illustrated that COD removal ratio could be as high as 98% with a COD removal of 850 mg/L. The case study illustrated that COD removal ratio could be as high as 98% with a COD removal of 850 mg/L.

Costs estimation

The coefficients of cost curve adopted are listed in Table 11, in which S denotes size parameter, a denotes constant, b denotes multiplier, and n denotes exponent. The purchased equipment cost on a US Gulf Coast basis

| Table 6. Computation approach for IEX process design. |
|----------------|----------------|----------------|----------------|
| Step description |
| 1) Select and obtain media characterisation data. |
| 2) Select optimal empty bed contact time (EBCT). |
| 3) Determine ion exchange column volume and configuration. |
| 4) Select regenerant concentration and EBCT, determine brine tank volume and configuration. |
| 5) Select brine clean-up frequency, determine nutrient concentration in brine. |
| 6) Determine recovery configuration and chemical dosage and production. |

| Table 7. Design parameters for fixed bed IEX process for ammonia removal. |
|----------------|----------------|----------------|----------------|
| Parameter |
| Unit |
| Value |
| Note/reference |
| Media adsorption |
| Mesolite |
| EBCT min |
| 10 |
| Bed volume m³ |
| 37.5 |
| Calculated |
| No. of vessels |
| 7 |
| One spare |
| Vessel diameter m |
| 3 |
| Optimal from 0.5 to 3 m |
| Bed depth m |
| 0.88 |
| <1 m, avoid head loss |
| Media capacity BV |
| 350 |
| Reach breakthrough 1 mg/L |
| KCl concentration % |
| 10 |
| NaOH concentration % |
| 2 |
| Regenerant EBCT min |
| 60 |
| Regenerant required BV |
| 5 |
| No. of cycles /year |
| 148 |
| Calculated |
| Brine tank volume m³ |
| 50 |
| Assumed |
| No. of tanks |
| 4 |
| Calculated |
| N spent regenerant clean-up |
| Frequency |
| Cycles |
| 3 |
| NH₄ concentration mg/L |
| 2917 |
| Calculated |
| Membrane Liqui-cell 4 x 28 |
| Membrane area m² |
| 20 |
| Calculated |
| Flow rate m³/h |
| 5 |
| Calculated |
| Pressure drop bar |
| 0.41 |
| Calculated |
| Brine volume m³ |
| 187.5 |
| Calculated |
| Time to clean-up Day |
| 7 |
| Calculated |
| NaOH required ton/clean-up |
| 0.0075 |
| Adjust PH from 7 to 11 |
| H₂SO₄ required ton/clean-up |
| 1.5 |
| H₂SO₄ + NH₄ = 4.5:1 |
| (NH₄)₂SO₄ formed ton/clean-up |
| 2.01 |
| H₂SO₄ + (NH₄)₂SO₄ = 1:5 |
Ce can be estimated by Eq. 1.

\[Ce = a + b \times S^t \]

The unit costs of other items are listed in Table 12. The cost of each item was obtained by multiplying the unit cost and quantities, which came from design assumptions or calculation results. To ensure the accuracy of the attained results, cross-checking and verification were made through different sources or methods, where possible. All the cost values were converted to British Pounds (£) by applying exchange rate when the source data were in other currencies. Historical cost data were converted to present value using the Chemical Engineering Plant Cost Index by Eq. 2.

\[\text{Cost in year } A = \frac{\text{Cost in year } B \times \text{Cost index in year } A}{\text{Cost index in year } B} \]

The location factor LF were applied for the cost data from US Gulf Coast (USGC) for application in other countries by Eq. 3.

\[\text{Cost of plant in location } A = \text{Cost in plant in USGC} \times LF_A \]

where LF_A = location factor for location A relative to USGC basis.

| Table 8. Design parameters for fixed bed IEX for phosphorus removal. |
|-----------------------------------|-------------------------------|-----------------------------|
| Parameter | Unit | Value |
| P column adsorption | | |
| Media | HAIX | 9 |
| EBCT | min | 5 |
| Bed volume m³ | 18.75 | Calculated |
| No. of vessels | 5 | One spare |
| Vessel diameter m | 3 | Optimal from 0.5–3 m |
| Bed depth m | 0.88 | Calculated |
| Media life cycle cycle | 600 | 9 |
| P column regeneration | | |
| NaOH concentration % | 4 | 10 |
| Regeneration EBCT Minutes | 20 | 10 |
| Regenerant volume BV | 10 | 9 |
| Regenerant reuse BV | 1000 | 36 |
| One cycle time /year | 1.2 | Calculated |
| No. of cycles/year | 297 | Calculated |
| P spent regenerant clean-up | | |
| Clean-up frequency cycles | 10 | 9 |
| No. of clean-up /year | 29.7 | Calculated |
| Time to clean-up day | 12.3 | Calculated |
| P concentration in brine mg/L | 1134 | Calculated |
| Calcium required | 2 | CaP ratio |
| Ca₃(PO₄)₂ precipitated Tonne/ | 0.12 | |
| clean-up | 3Ca(OH)₂ + 2H₃PO₄ = |
| | 6H₂O + Ca₃(PO₄)₂ |

| Table 9. Computation approach for AnMBR process design. |
|-----------------------------------|-------------------------------|-----------------------------|
| Step | Description |
| 1) | Obtain influent characteristic data and effluent discharge limits. |
| 2) | Select appropriate organic load rate and optimal upflow velocity. |
| 3) | Determine the volumes of UASB, calculate COD removal and sludge production. |
| 4) | Calculated the gas and methane yield and electricity production. |
| 5) | Select average flux, SGDₘ, MLSₘ and Q/order based on the pilot tests. |
| 6) | Calculated membrane surface area, biogas demands and electricity consumption. |
| 7) | Prepare the design summary table. |

(2010) Cₑ can be estimated by Eq. 1.

\[C_e = a + b \times S^t \]

The unit costs of other items are listed in Table 12. The cost of each item was obtained by multiplying the unit cost and quantities, which came from design assumptions or calculation results. To ensure the accuracy of the attained results, cross-checking and verification were made through different sources or methods, where possible. All the cost values were converted to British Pounds (£) by applying exchange rate when the source data were in other currencies. Historical cost data were converted to present value using the Chemical Engineering Plant Cost Index by Eq. 2.

\[\text{Cost in year } A = \frac{\text{Cost in year } B \times \text{Cost index in year } A}{\text{Cost index in year } B} \]

The location factor LF were applied for the cost data from US Gulf Coast (USGC) for application in other countries by Eq. 3.

\[\text{Cost of plant in location } A = \text{Cost in plant in USGC} \times LF_A \]

where LF_A = location factor for location A relative to USGC basis.

| Table 10. Design parameters for AnMBR. |
|-----------------------------------|-------------------------------|-----------------------------|
| Parameter | Unit | Value |
| UASB | °C | 14 |
| Upflow velocity m/h | 0.8 | Range 0.8–0.9 |
| Organic load rate kg COD/m³.d | 1.6 | Assumed |
| SRT day | 155 | Calculated |
| HRT hour | 6 | Calculated |
| Volume m³ | 1350 | Calculated |
| Gas production m³/d | 738 | Calculated |
| Energy production kWh/d | 4928 | Calculated |
| Submerged membrane | | |
| Flux L/m² h | 10 | 33 |
| SGD m³/h | 0.5 | 17 |
| Energy demand kWh/m³ | 0.13 | 17 |
| Chemical cleaning /year | 0.5 | 34 |

| Table 11. Cost curves for major equipment |
|--|-------------------------------|-----------------------------|
| Item | Unit | £/m³/L |
| Tank Capacity | 10 | 4000 |
| Pump flow | 0.2 | 126 |
| Mixer Power | 5 | 75 |
| Blower flow | 200 | 5000 |
| Filter Capacity | 0.4 | 1.4 |
| Drum filter area | 10 | 180 |
| Tank Capacity | 1600 | 1600 |
| Pump Capacity | 240 | 240 |
| Mixer Capacity | 1130 | 1130 |
| Blower Capacity | 57 | 57 |
| Filter Capacity | 89,000 | 89,000 |
| Drum filter area | 73,000 | 73,000 |

Note: S denotes parameter size, a denotes constant, b denotes multiplier, n denotes exponent.

| Table 12. Unit costs of major items and chemicals. |
|--|-------------------------------|-----------------------------|
| Item | Unit | Unit cost |
| N contactor | £/m | 20,105 |
| P vessel | £/m | 4350 |
| Membrane | £/m² | 10 |
| Mesolite | £/L | 1.64 |
| HAIX | £/L | 13.5 |
| Sand | £/ton | 175 |
| Screen | £/m² | 16321 |
| Bag filter | £/bag | 7.52 |
| NaCl | £/ton | 62.53 |
| NaOH | £/ton | 469 |
| H₂SO₄ | £/ton | 70 |
| FeCl₃ | £/ton | 290 |
| Lim decrease | £/ton | 600 |
| Methanol | £/ton | 600 |
| Electricity | £/kWh | 0.085 |
| Sludge disposal | £/kg | 0.279 |
| Labour | £/m h | 26.5 |

Published in partnership with King Fahd University of Petroleum & Minerals
Location factors for international locations have a strong function of currency exchange rates and hence fluctuate with time and this can be estimated by Eq. 4.

\[
LF_{\text{in the year } A} = LF_{\text{in the year } B} \times \frac{\text{Exchange rate in the year } A}{\text{Exchange rate in the year } B}
\]

(4)

Location factors for United Kingdom is 1.02 in 2003.

Capital expenditure

Estimation of capital expenditure (CAPEX) was based on “the factorial method”. Each major equipment component of the process was calculated individually based on the designed specifications, and whole CAPEX was subsequently obtained by multiplying a Lang factor of 4.74 to the sum of the major purchased equipment items (Eq. 5).

\[
C = F \left(\sum C_i \right)
\]

(5)

Where, \(C \) is total plant ISBL (inside battery limits) capital cost, \(\sum C_i \) is the total delivered cost of all the major equipment items and \(F \) is 4.74, an Lang factor for fluids processing plant.

OPEX

Based on unit price and quantities of the items in the process, OPEX was calculated as the sum of: i) energy costs; ii) chemical costs; iii) sludge treatment or disposal costs; iv) maintenance costs (assumed as 2.5% of CAPEX); and v) labour costs.

WLC calculation

The WLC consists of the initial CAPEX and sum of the OPEX for the life span of the process. The life span was assumed as 40 years, and the present value conversion of the OPEX in the future years were performed at the discount rate of 7%, which could be estimated by Eq. 6.

\[
\text{WLC(whole life cost)} = \text{Initial CAPEX} + \left(\text{Annual OPEX} \times 14 \right)
\]

(6)

DATA AVAILABILITY

Data can be made available upon request.

Received: 6 May 2019; Accepted: 12 February 2020; Published online: 18 March 2020

REFERENCES

1. EEC Council. 91/271/EEC of 21 May 1991 concerning urban waste-water treatment. Off. J. Eur. Communities 40–52 (1991). http://eur-lex.europa.eu/legal-content/en/TEN/CE/31991L0271?

2. Koppelaar, R. E. M. & Weikard, H. P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 13, 1454–1466 (2013).

3. Sikosana, M. K. L. N., Randall, D. G. & von Blottnitz, H. A technological and eco-transitioning economy context. 1. EEC Council. 91/271/EEC of 21 May 1991 concerning urban waste-water treatment

4. Pretel, R., Robles, A., Ruano, M. V., Seco, A. & Ferrer, J. The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban waste-water. Sep. Purif. Technol. 126, 30–38 (2014).

5. Viable Treatment Alternative State of the Science and Market Assessment. CELEX:31991L0271.

6. Wang, K. M. et al. Design Manual: Phosphorus Removal EPA/625.1-87/001 (1987).

7. Latimer, R. et al. Economic regeneration of exhausted zeolite. Environ. Technol. 35, 289–297 (2014).

8. Towler, G. & Sinnott, R. Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design (Butterworth-Heinemann, 2013).

9. Wang, K. M., Soares, A., Jefferson, B. & McAdam, E. J. Comparable membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. J. Memb. Sci. 771, 59–68 (2003).

10. Latimer, R., Rohrbacher, J., Nguyen, V., Khunjar, W. O. & Jeyanayagam, S. Towards a Viable Future: Assessing Resource Recovery as a Viable Treatment Alternative Case Studies of Facilities Employing Extractive Nutrient Recovery Technologies (WIFER Research Report Series, 2015).

11. Thornton, A., Pearce, P. & Parsons, S. A. Ammonium removal from solution using ion exchange on to MesoLite, an equilibrium study. J. Hazard. Mater. 147, 883–889 (2007).

12. Cookney, J. et al. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contacts. J. Memb. Sci. 502, 141–150 (2016).

13. Wang, K. M., Soares, A., Jefferson, B. & McAdam, E. J. Sustaining membrane permeability can be achieved in granular and flocculent anaerobic membrane bioreactor for sewage treatment through better sludge blanket control. J. Water Process Eng. 28, 181–189 (2019).

14. Towler, G. & Sinnott, R. Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design (Butterworth-Heinemann, 2013).

15. Wang, K. M., Soares, A., Jefferson, B. & McAdam, E. J. Sustaining membrane permeability during upsteady-state operation of anaerobic membrane biorreactors for municipal wastewater treatment following peak-flow. J. Memb. Sci. 564, 289–297 (2018).

16. Gouveia, J., Plaza, F., Garralon, G., Fdz-Polanco, F. & Peña, M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioreour. Technol. 185, 225–233 (2015).

17. Deng, Q., Dhar, B. R., Elbeshtawy, E. & Lee, H. S. Ammonium nitrogen removal from the permeates of anaerobic membrane bioreactors: Economic regeneration of exhausted zeolite. Environ. Technol. 35, 2008–2017 (2014).

18. European Union. Horizon 2020 research and innovation programme: Scale-up of low-carbon footprint material recovery techniques in existing wastewater treatment plants (2016).

19. Alibaba. Chemical product price enquiry. www.alibaba.com (2018).

20. Olfat. Appendix I: Sludge treatment, transport and disposal—supporting evidence and design options Water 2020: Regulatory framework for wholesale markets and the 2019 price review (2015).
ACKNOWLEDGEMENTS
This project has received funding from the Europe Union’s Horizon 2020 research and innovation programme under grant agreement no. 690323.

AUTHOR CONTRIBUTIONS
X.H. completed all the key calculations for the manuscript and draughted the manuscript. S.G. advised on the manuscript data collection and design and provided minor comments on the manuscript. B.J. acted as an advisor on the project and provided minor comments on the manuscript. A.S. is the project principal investigator, having provided significant input on the data collection interpretation, writing of the manuscript, and competed all the revisions.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/s41545-020-0054-x.

Correspondence and requests for materials should be addressed to A.S.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020