Saddle-splay modulus of a particle-laden fluid interface for hard disks

S. V. Lishchuk(a)

Materials and Engineering Research Institute, Sheffield Hallam University - Sheffield S1 1WB, UK, EU

received 5 December 2008; accepted in final form 9 February 2009
published online 17 March 2009

PACS 61.20.Gy – Theory and models of liquid structure
PACS 68.03.Cd – Surface tension and related phenomena
PACS 02.40.Ky – Riemannian geometries

Abstract – The scaled-particle theory equation of state for the two-dimensional hard-disk fluid on a curved surface is proposed and used to determine the saddle-splay modulus of a particle-laden fluid interface. The resulting contribution to saddle-splay modulus, which is caused by thermal motion of the adsorbed particles, is comparable in magnitude with the saddle-splay modulus of a simple fluid interface.

Introduction. – The surface free-energy density of fluid interfaces depends upon their curvature. This dependence affects the nucleation in liquids [1–3], and has an important role in determining the structure and dynamics of the systems with complex fluid interfaces, such as membranes or surfactants [4–6].

For small curvature of the interface, the dependence of the surface free energy $f$ upon the geometry of the interface is conveniently described by the Helfrich curvature expansion [7]

$$f = \sigma + 2\kappa (H - H_0)^2 + \bar{\kappa} K.$$  (1)

In this equation the geometry of the interface is characterized by mean curvature $H = \frac{1}{2}(1/R_1 + 1/R_2)$ and Gaussian curvature $K = 1/(R_1 R_2)$, $R_1$ and $R_2$ being the principal radii of curvature of the interface. The surface tension $\sigma$, bending modulus $\kappa$, spontaneous curvature $H_0$, and saddle-splay modulus (or Gaussian rigidity) $\bar{\kappa}$ are the material parameters of the interface. The Helfrich curvature expansion can be derived from microscopic models, and allows explanation of the basic features and equilibrium shapes of biological membranes, vesicles, and liquid interfaces [4–6].

By virtue of Gauss-Bonnet theorem, the contribution of the last term in eq. (1) to the total free energy of the system depends on the topology of the system. Indeed, the value of the saddle-splay modulus affects the processes which involve changes in the topology of the fluid interfaces [8–13].

An interesting example of a system which can be macroscopically viewed as a complex fluid interface is the fluid interface laden with colloidal micro- or nanoparticles. To minimize the total interfacial energy, particles suspended in a bulk fluid self-assemble on the fluid interface [14]. This process, first observed by Ramsden in 1903 [15], has recently attracted significant scientific attention [16–19]. It has also potential for a range of novel applications [20–24].

On a scale large compared to the size of the adsorbed particles, a particle-laden interface may be viewed as continuous. If the interface is isotropic on this scale, the interfacial free energy can be described by eq. (1), and the interface can be characterized by the material parameters $\sigma$, $\kappa$, $H_0$, and $\bar{\kappa}$.

The present letter is devoted to the study of the saddle-splay modulus $\bar{\kappa}$ of a particle-laden fluid interface at low surface concentration of the adsorbed particles. In this case we can represent the interface as a two-dimensional fluid on a curved surface. The main contribution to the interaction between particles at low concentration comes from the excluded volume (different particles cannot occupy the same space). Hence we approximate the system by a two-dimensional hard-disk fluid on a curved surface.

Hard-disk fluids in curved geometry were used before to study packing of disks [25–28], ordering phase transition [29], topological defects [30], and as a model of glass-forming liquids [26,27,31]. Several equations of state were proposed for hard-disk fluids in spherical [32,33] and hyperbolic [28,34,35] geometries.

In the present work we shall use the scaled-particle theory (SPT) [36] to derive the equation of state of a
two-dimensional hard-disk fluid on a curved surface. We shall then use the resulting equation of state to determine the saddle-splay modulus \( \kappa \) for the particle-laden fluid interface at low concentration of the adsorbed particles.

**Saddle-splay modulus.** In accordance with eq. (1), the saddle-splay modulus is given by the derivative of the surface free-energy density with respect to the Gaussian curvature,

\[
\kappa = \left. \frac{\partial f}{\partial K} \right|_{K=0}.
\]  

Using the expression for the excess free energy

\[
\frac{\beta F_{\text{ex}}}{N} = \int_0^\rho \frac{Z-1}{\rho} \, d\rho,
\]

where

\[
Z \equiv \frac{\beta P}{\rho}
\]

is the compressibility factor, \( \rho = N/A \) is the number density (number of particles per unit area), \( P \) is pressure, \( \beta = 1/k_B T \) is the inverse temperature, we may represent eq. (2) in the form

\[
\kappa = \frac{\beta}{\beta w_0} \int_0^\rho \frac{1}{\rho} \left( \frac{\partial Z}{\partial K} \right)_{K=0} \, d\rho,
\]

where the derivative is taken at constant particle density \( \rho \).

Equation (5) can be used to calculate the saddle-splay modulus of the interface from the curvature dependence of the compressibility factor, which is generally given by the equation of state of the system. We shall use the SPT equation of state for a hard-disk fluid on a curved surface, which is derived in the following sections.

**SPT equation of state for hard disks.** The scaled-particle theory was originally developed by Reiss et al. [36] and further improved afterwards [37–41]. Applied to the case of hard disks on a 2D plane, SPT leads to a particularly simple equation of state which is nevertheless in good agreement with computer simulation results throughout most of the fluid range of densities [42,43].

SPT for two-dimensional hard-disk fluids in its simplest form can be summarized as follows (see textbook [44] for more details). The reversible work \( W(R_0) \) is considered which is required to create a circular cavity of radius \( R_0 \) in the fluid of hard disks of radius \( R \). The assumption is made that for \( R_0 > 0 \), \( W(R_0) \) is given by a polynomial in \( R_0 \):

\[
W(R_0) = w_0 + w_1 R_0 + S(R_0) P, \quad R_0 > 0.
\]  

The last term \( S(R_0) P \) \((S(R)\) being the area of the disk of radius \( R \)), which is dominant for large cavities \( (R_0 \gg R) \), follows from thermodynamics. For small cavities \((0 \leq R + R_0 \leq R)\), \( W(R_0) \) can be written in form

\[
W(R_0) = -k_B T \ln [1 - \rho S(R_0 + R)], \quad -R \leq R_0 \leq 0.
\]

The coefficients \( w_0 \) and \( w_1 \) are then determined by requiring the work \( W(R_0) \) and its derivative \( W'(R_0) \), given by eqs. (6) and (7), to be continuous at \( R_0 = 0 \). The explicit expression for the excess chemical potential of the fluid, \( \mu_{\text{ex}} = W(R) \), can be determined from eq. (6), and subsequently used to write the SPT equation of state.

In the case of the flat surface, the area of the disk is

\[
S(R) = \pi R^2.
\]  

The corresponding values of the coefficients \( w_i \) are given by

\[
\beta w_0 = -\ln(1-\eta), \quad \beta w_1 = \frac{2\pi R}{1-\eta},
\]

where \( \eta = \pi R^2/\rho \) is the hard-disk packing fraction. The chemical potential of the fluid, \( \mu \), is given by

\[
\beta \mu = \ln \Lambda^2 - \ln(1-\eta) + \frac{2\eta}{1-\eta} + \frac{\beta P}{\rho}
\]

where \( \Lambda \) is the de Broglie thermal wavelength. The SPT equation of state is then obtained from eq. (10) and the thermodynamic relation

\[
\frac{\partial P}{\partial P} = \frac{\partial \mu}{\partial \rho},
\]

and has the form reported by Helfand et al. [42]:

\[
Z = \frac{1}{(1-\eta)^2}.
\]

**SPT equation of state for hard disks on a curved surface.** The SPT equation of state for a hard-disk fluid on a curved surface can be obtained in the same way as in the flat case described above. The difference is that expression (8) for the area of the disk of radius \( R \) is no longer valid on a curved surface. For small Gaussian curvature \((K \ll 1/R^2)\) we shall replace it by the formula for the area of a geodesic disk on a two-dimensional Riemannian manifold, obtained by Bertrand and Diguert in 1848 [45],

\[
S(R) = \pi R^2(1 - \xi) + o(\xi),
\]

where we have introduced the dimensionless quantity

\[
\xi = \frac{K R^2}{12}.
\]

Requiring work \( W(R_0) \) and its derivative \( W'(R_0) \), as given by eqs. (6) and (7), to be continuous at \( R_0 = 0 \), we obtain the following expressions for the coefficients \( w_i \):

\[
\beta w_0 = -\ln[1 - \pi R^2 \rho(1-\xi)],
\]

\[
\beta w_1 = \frac{2\pi R \rho(1-2\xi)}{1-\pi R^2 \rho(1-\xi)},
\]

and the chemical potential,

\[
\beta \mu = \ln \Lambda^2 - \ln[1 - \eta(1-\xi)] + \frac{2\eta(1-2\xi)}{1-\eta(1-\xi)} + \frac{\beta P \eta(1-\xi)}{\rho}.
\]
Equations (17) and (11) lead to the following form of the SPT equation of state for a hard-disk fluid on a curved surface:

\[ Z = \frac{1 - \eta \xi}{(1 - \eta)(1 - \xi)} \]  

(18)

Figure 1 demonstrates a satisfactory agreement of the compressibility factor \( Z \) calculated from eq. (18) with the Monte Carlo results for hard disks on a sphere reported by Giarritta et al. [29]. In the case of zero Gaussian curvature (\( \xi = 0 \)) eq. (18) coincides with eq. (12).

**Saddle-splay modulus from SPT equation of state.** – The expression for saddle-splay modulus is obtained by substituting the compressibility factor given by the equation of state, eq. (18), into formula (5). The result is

\[ \bar{\kappa}_{SPT} = -k_B T \frac{\eta^2(3 - 2\eta)}{12\pi(1 - \eta)^2}. \]  

(19)

Note that although using the truncated series in \( R \) given by formula (13) for the area of the large disk in the expression (6) is generally not justified, it is still suitable for our purpose of calculating the saddle-splay modulus since we are interested in the limit \( K \to 0 \).

The dependence of the saddle-splay modulus \( \bar{\kappa} \) upon the disk packing fraction \( \eta \), given by eq. (19), is presented in fig. 2. The value of the saddle-splay modulus for particle-laden interfaces appears to be smaller than the values \( |\bar{\kappa}| \sim 10k_B T \) typical for lipid monolayers [46]), but is comparable to the value \(|\bar{\kappa}| \approx \frac{1}{2}k_B T \) for the surfaces of simple fluids [47].

**Conclusion.** – The main message of this letter is that the thermal motion of the particles adsorbed on a fluid interface contributes to the saddle-splay modulus of the interface. This result may have implications in the structure and dynamics particle-laden systems that allow topological changes, for example, fusion of particles in Pickering emulsions, or structural reorganization in particle-stabilized foams.

The simplest version of the scaled-particle theory allows the construction of a rather simple equation of state for a hard-disk fluid on a curved surface. In order to improve the formula obtained for the saddle-splay modulus of a particle-laden fluid interface, it seems reasonable to attempt to construct the equation of state that gives more accurate dependence of the compressibility factor with respect to the Gaussian curvature of the interface, which can be verified by using the virial expansion on the curved surface or the computer modelling of the system. In particular, in molecular-dynamics simulations of hard disks with interfacial curvature it should be possible to calculate specific free energy and saddle-splay modulus directly and compare them with the predictions of the theory.

The result can also be extended by taking into account the influence on the value of the saddle-splay modulus of other contributions to the interparticle interaction, such as capillary, electrostatic, van der Waals etc., as well as the role of particles’ anisotropy. The prediction of the elastic properties of the interfaces with large concentration of particles, in which two-dimensional solid structure forms, presents another interesting and more complicated problem.

***

I thank Prof. C. M. CARE for discussion of the results.

REFERENCES

[1] Tolman R. C., *J. Chem. Phys.*, 17 (1949) 333.
[2] Schmelzer J. W. P., Gutzow I. and Schmelzer J. jr., *J. Colloid Interface Sci.*, 178 (1996) 657.
[3] Baidakov V. G. and Boltachev G. S., *Phys. Rev. E*, 59 (1999) 469.
[4] Safran S. A., Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley Publishing) 1994.
[5] Seifert U., Adv. Phys., 46 (1997) 13.
[6] Nelson D., Piran T. and Weinberg S. (Editors), Statistical Mechanics of Membranes and Surfaces (World Scientific Publishing) 2004.
[7] Helfrich W., Z. Naturforsch., 28c (1973) 693.
[8] Safran S. A., Phys. Rev. A, 43 (1991) 2003.
[9] Gomezmer G. and Kroll D. M., Phys. Rev. Lett., 81 (1998) 2284.
[10] Le T. D., Olsson U. and Mortensen K., Physica B, 276-278 (2000) 379.
[11] Jung H. T., Lee S. Y., Caldren B. and Zasadzinski J. A., Proc. Natl. Acad. Sci. U.S.A., 99 (2002) 15318.
[12] Siegel D. P. and Kozlov M. M., Biophys. J., 87 (2004) 366.
[13] Kozlovsky Y., Efrat A., Siegel D. A. and Kozlov M. M., Biophys. J., 87 (2004) 2508.
[14] Pieranski P., Phys. Rev. Lett., 45 (1980) 569.
[15] Ramsden W., Proc. R. Soc. London, 72 (1903) 156.
[16] Binks B. P. and Horozov T. S., Colloidal Particles at Liquid Interfaces (Cambridge University Press) 2006.
[17] Binks B. P.,Curr. Opin. Colloid Interface Sci., 7 (2002) 21.
[18] Böker A., He J., Emrick T. and Russel T., Soft Matter, 3 (2007) 1231.
[19] Menner A., Verdejo R., Shaffer M. and Bismarck A., Langmuir, 23 (2007) 2398.
[20] Dinsmore A. D., Hsu M. F., Nikolaides M. G., Marquez M., Bausch A. R. and Weitz D. A., Science, 298 (2002) 1006.
[21] Strohm H. and Löbmann P., J. Mater. Chem., 14 (2004) 2667.
[22] Neirinck B., Fransaer J., Van der Biest O. and Vleugels J., Adv. Eng. Mater., 9 (2007) 57.
[23] Neirinck B., Mattheyes T., Braem A., Fransaer J., Van der Biest O. and Vleugels J., Adv. Eng. Mater., 10 (2008) 246.
[24] Torres L., Iturbe R., Snowdon M. J., Chowdhry B. and Lehrne S., Chemosphere, 71 (2008) 123.
[25] Schreiner W. and Kratky K. W., J. Chem. Soc., Faraday Trans. 2, 78 (1982) 379.
[26] Nelson D. R., Phys. Rev. Lett., 50 (1983) 982.
[27] Rubinstein M. and Nelson D. R., Phys. Rev. B, 28 (1983) 6377.
[28] Modes C. D. and KAMEN R. D., Phys. Rev. E, 77 (2008) 041125.
[29] Giarritlla S. P., Ferrario M. and Giaquinta P. V., Phys. A, 187 (1992) 456.
[30] Giarritlla S. P., Ferrario M. and Giaquinta P. V., Phys. A, 201 (1993) 649.
[31] Sausset F., Taljus G. and Viot P., Phys. Rev. Lett., 101 (2008) 155701.
[32] Tobocnik J. and Chapin P. M., J. Chem. Phys., 88 (1988) 5824.
[33] Lishchuk S. V., Phys. A, 369 (2006) 266.
[34] Modes C. D. and KAMEN R. D., Phys. Rev. Lett., 99 (2007) 235701.
[35] De Haro M. L., Santos A. and Yuste S. B., J. Chem. Phys., 129 (2008) 116101.
[36] Reiss H., Frisch H. L. and Lebowitz J. L., J. Chem. Phys., 31 (1959) 369.
[37] Gibbons R. M., Mol. Phys., 17 (1969) 81.
[38] Tully-Smith D. M. and Reiss H., J. Chem. Phys., 53 (1970) 4015.
[39] Mandell M. J. and Reiss H., J. Stat. Phys., 13 (1975) 113.
[40] Heying M. and Corti D. S., J. Phys. Chem. B, 108 (2004) 19756.
[41] Siderius D. W. and Corti D. S., J. Chem. Phys., 127 (2007) 144502.
[42] HelZand E., Frisch H. L. and Lebowitz J. L., J. Chem. Phys., 34 (1961) 1037.
[43] Cotter M. A. and Stillinger F. H., J. Chem. Phys., 57 (1972) 3356.
[44] Hansen J.-P. and McDonald I. R., Theory of Simple Liquids (Academic Press, Amsterdam) 2007.
[45] Bertrand M. J. and Diguet M., J. Math. Pures Appl., 13 (1848) 80.
[46] Marsh D., Chem. Phys. Liquids, 144 (2006) 146.
[47] van Giessen A. E. and Blokhuis E. M., J. Chem. Phys., 116 (2002) 302.

56001-p4