KIR2DL4 (CD158d): an activation receptor for HLA-G

Sumati Rajagopalan* and Eric O. Long

Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, MD, USA

INTRODUCTION

The killer cell immunoglobulin-like receptor (KIR) family of activating and inhibitory receptors expressed by natural killer (NK) cells regulates their responsiveness to signals received from their environment. NK cells respond to contact with other cells including tumor cells or virus-infected cells, and to soluble mediators such as cytokines, chemokines, or other soluble ligands. KIR regulate the activation state of NK cells upon recognition of their major histocompatibility complex (MHC) ligands on the surface of target cells (Long, 2008). There is genetic evidence that combinations of KIR and MHC genes contribute directly to different aspects of immunity, such as resistance to infections, susceptibility to autoimmune diseases, transplantation outcomes, and disorders of pregnancy (Parham, 2003). KIR2DL4 (CD158d), the anchor gene in the middle of the KIR complex, is characterized by its low polymorphism, high degree of conservation among primates, and by its central location among the highly variable KIR family members. There are KIR2DL4 alleles with either 9 or 10 consecutive adenines in exon 6, which encodes the transmembrane domain. This 9A/10A transmembrane genetic polymorphism can result in a truncated receptor encoded by 9A, the function of which is unclear (Goodridge et al., 2003). Unlike other KIR genes that display variegated expression among individual NK cells, KIR2DL4 is constitutively expressed by all NK cells and on all KIR haplotypes (Rajagopalan et al., 1999). KIR2DL4 is unusual in many other respects, including its structure, localization, and signaling function (Figure 1). Unlike KIR with two Ig domains (KIR2DL, KIR2DS) that have a D1 and D2 domain structure, and KIR with three Ig domains (KIR3DL, KIR3DS) with D0, D1, and D2 domains, KIR2DL4 has a hybrid D0–D2 domain structure. Despite having a long cytoplasmic tail characteristic of inhibitory KIR, it carries only a single immunoreceptor tyrosine-based inhibitory motif (ITIM) and displays very weak inhibitory potential (Faure and Long, 2002). Similar to the activating KIR (KIR2DS, KIR3DS) that associate with the immunoreceptor tyrosine-based activating motif (ITAM) containing adaptor DAP12 through a charged amino acid (arginine) near the top of its transmembrane region. This arginine endows KIR2DL4 with the ability to pair with the y chain of FcR1 and to signal for cytokoty and cytokine secretion when engaged at the cell surface (Kikuchi-Maki et al., 2005).

ENDOSOMAL LOCALIZATION

Unlike other KIRs that are present on the NK cell surface, KIR2DL4 is undetectable at the surface of primary resting NK cells, and is shed from peripheral blood (Goodridge et al., 2003; Kikuchi-Maki et al., 2003; Rajagopalan et al., 2006). Yet, in primary NK cells, engagement of the receptor using soluble agonist antibodies activates robust cytokine secretion but no cytotoxicity (Rajagopalan et al., 2006). This is due to the constitutive localization of the receptor in endosomes, where it resides. However, surface levels can be transiently up-regulated upon culture of these NK cells in interleukin 2 (IL-2; Kikuchi-Maki et al., 2003; Rajagopalan et al., 2006). Weak cytotoxicity upon KIR2DL4 engagement at the cell surface has been detected in IL-2 dependent NK cell lines and IL-2 activated NK cell cultures activated with IL-2 in which a low level of cell surface KIR2DL4 can be detected by flow cytometry (Goodridge et al., 2003; Kikuchi-Maki et al., 2003). In such cells, there is the potential to signal via the adaptor FcεRγ for cytokotoxic responses (Kikuchi-Maki et al., 2005). However, resting NK cells with no
Rajagopalan and Long

NK activation via KIR2DL4–HLA-G interactions

FIGURE 1 | Overview of the KIR family of inhibitory (red) and activating (green) NK cell receptors. They bind MHC-I molecules and are located on the cell surface, with the exception of KIR2DL4, which is present in endosomes. The activating receptors interact with the adapters DAP12 or FcγR via charge-based interactions in the transmembrane region. The KIR2DL/3DL receptors (except KIR2DL4) use ITIM-based inhibitory signaling pathways to block NK effector functions, while KIR2DS/3DS receptors activate NK cells via ITAM-based pathways. In contrast, KIR2DL4 signals from endosomes for a unique secretory response, but does not activate cytotoxicity.

In apparent surface expression of KIR2DL4 lack the potential to trigger killing, while being fully competent to induce strong cytokine responses (Rajagopalan et al., 2001). Thus, it is important to note that lack of surface KIR2DL4 does not imply lack of receptor expression or the absence of activating function.

In spite of negligible levels of KIR2DL4 on the surface of primary, unstimulated NK cells, activation via soluble antibodies resulted in robust interferon gamma (IFN-γ) secretion in the absence of cytotoxicity (Rajagopalan et al., 2006). This is explained by the finding that at steady state, the majority of KIR2DL4 is intracellular. In cells treated with the K44A dominant negative mutant of dynamin, a GTPase with a central role in clathrin-mediated endocytosis, there was a striking redistribution of the receptor to the plasma membrane, suggesting that KIR2DL4 reaches endosomes by endocytosis (Rajagopalan et al., 2006). This is explained by the finding that at steady state, the majority of KIR2DL4 is intracellular. In cells treated with the K44A dominant negative mutant of dynamin, a GTPase with a central role in clathrin-mediated endocytosis, there was a striking redistribution of the receptor to the plasma membrane, suggesting that KIR2DL4 reaches endosomes by endocytosis (Rajagopalan et al., 2006). KIR2DL4 is localized selectively in early endosomes that are associated with Rab5 and not in other endosomal compartments and perforin-containing cytotoxic granules (Rajagopalan et al., 2006).

This endosomal targeting is unique to KIR2DL4 as other KIR family members are expressed at high levels on the cell surface. Interestingly, it is the Ig domains and not the cytoplasmic tail of KIR2DL4 that control endosomal localization (Rajagopalan, 2010). This was shown by expression of wild-type and chimeric KIR2DL4 receptors in HEK 293T cells and determining their localization by confocal microscopy. A chimera consisting of the extracellular portion of a cell surface NK receptor, gp49B, fused to the transmembrane and tail of KIR2DL4 was not targeted to endosomes and was expressed at the cell surface. In contrast, the Ig domains of KIR2DL4 fused to the transmembrane and tail of gp49B was still targeted to endosomes, showing that the Ig domains were sufficient to target the receptor to endosomes (Rajagopalan et al., 2006).

SIGNALING FROM ENDOSOMES

Expression of wild-type and chimeric mutants of KIR2DL4 in 293T, and testing for their ability to induce IL-8 secretion proved to be a useful screen for their signaling capability. Such analysis of engineered mutants showed that KIR2DL4 needed to be in endosomes to signal, as chimeric receptors targeted to the cell surface could not signal upon crosslinking at the cell surface. In addition, the cytoplasmic tail of KIR2DL4 was essential for signaling and this endosomal signaling was shown to be independent of both ITIM- and ITAM-mediated signaling (Rajagopalan, 2010). Unlike other KIR at the cell surface that initiate signals through src family kinases such as fyn and lck, signaling by KIR2DL4 was resistant to inhibitors of src family kinases and of phosphoinositide 3 kinase (PI3K; Rajagopalan et al., 2010). Kinase phosphorylation profiling
Akt activation and KIR2DL4 was identified by mass spectrometry analysis of associated proteins. This approach revealed DNA-PKcs, a DNA damage signaling kinase as the regulator of Akt. Inhibition of DNA-PKcs blocked Akt phosphorylation, showing that Akt acts downstream of DNA-PKcs (Rajagopalan et al., 2010). Moreover, Fab fragments of an agonist antibody to KIR2DL4 can activate NK cells indicating that a monomeric ligand can work (Rajagopalan et al., 2006). The interesting question of how KIR2DL4 signaling is initiated with a monomeric ligand remains to be addressed.

Both soluble HLA-G and HLA-G shed from the cell surface of transfected cells were accumulated into endosomes that contain KIR2DL4 (Rajagopalan et al., 2006). This was detected by confocal microscopy as co-localization of soluble HLA-G and KIR2DL4 in the same vesicular compartments. There was no accumulation of soluble HLA-G in the cytoplasm of transfected cells, an observation which supports that signaling by KIR2DL4 is initiated in the endosomal compartment of the cell. Endosomal HLA-G1 was blocked in the presence of a soluble KIR2DL4-Ig fusion protein, while a soluble KIR2DL4-Ig fusion protein did not block uptake of soluble HLA-G (Rajagopalan, 2010). It is likely that transient passage of KIR2DL4 at the cell surface, either by newly synthesized KIR2DL4 or by recycling of endosomal KIR2DL4, is sufficient to capture soluble HLA-G and transport it to endosomes. Solo-binding receptors also can capture and transport soluble ligands.

Physiological relevance of KIR2DL4–HLA-G interactions

HLA-G is unusual among HLA molecules in its unique pattern of expression in healthy individuals. Unlike classical MHC-I molecules that are widely expressed on most somatic cells, HLA-G expression is restricted to fetal trophoblast cells at the maternal–fetal interface. However, there is evidence of up-regulation of HLA-G mRNA in response to transformation, neovascularization, inflammation, and infection (Carcesella et al., 2008). There is also evidence for increased soluble HLA-G secretion in the serum of patients with malignancies such as melanoma, glioma, ovarian, and breast cancer (Rehmann et al., 2003). Increased levels of circulating soluble HLA-G have also been detected in viral infections such as HIV (Huang et al., 2010). In the transplantation setting, induction of HLA-G expression correlates with increased transplant acceptance. In healthy individuals, the best-documented evidence...
of HLA-G protein expression occurs on fetal trophoblast cells that invade the maternal decidua during early pregnancy (Moffett and Loke, 2006). Known receptors for HLA-G are found on NK cells (KIR2DL4 and ILT2) and on monocytic cells (ILT2 and ILT4). All these receptors are present on innate immune cells that comprise the majority of lymphocytes at the maternal–fetal interface in early pregnancy (Moffett-King, 2002).

The presence of soluble HLA-G in human embryo culture supernatants after in vitro fertilization (IVF) correlates with successful pregnancy and reduced levels of HLA-G in maternal circulation has been reported in disorders of pregnancy, such as pre-eclampsia and recurrent spontaneous abortion (Rizzo et al., 2010). What is the role of HLA-G and its interactions with NK cells in early pregnancy? The earlier view that HLA-G is tolerogenic by protecting the fetus from attack by maternal NK cells is losing support, as newer findings do not support the role of HLA-G as a tolerance molecule in this context (van der Meer et al., 2004, 2007; Li et al., 2009). In addition to HLA-G, HLA-C, and HLA-E are present on fetal trophoblast cells. Both HLA-C and HLA-E can block NK lysis upon recognition of combinations of inhibitory KIR and CD94/NKG2A receptors expressed by all uterine NK cells (Moffett-King, 2002). Moreover, much of the inhibitory function ascribed to HLA-G is now recognized to be due to HLA-E, since HLA-G expression in cells promotes HLA-E co-expression. This occurs upon binding of the HLA-G signal peptides to the HLA-E peptide-binding groove, resulting in the proper assembly and cell surface expression of HLA-E. In this way, expression of HLA-E on trophoblast cells allows global inhibition of NK cytotoxicity through CD94/NKG2A. Early reports on the effects of HLA-G on NK cells used total peripheral blood mononuclear cells (PBMC) and not purified NK cells to assess NK cell lytic activity (Rouas-Freiss et al., 1997a,b; Riteau et al., 2001a,b). The inhibitory effect of HLA-G was later shown to be on T cells and not on NK cells. Thus, while HLA-G inhibits the proliferation and cytotoxic activity of T cells, it activates decidual NK cells to secrete cytokines and to proliferate (van der Meer et al., 2004, 2007).

In view of the ability of HLA-G to induce secretion of cytokines and other factors by NK cells and the requirement for soluble mediators to promote the remodeling of the maternal vasculature in early pregnancy, it is likely that HLA-G interacts with KIR2DL4 on NK cells to regulate the production of cytokines and chemokines to promote fetal well being (Figure 2). Several genetic association studies point to a useful role for NK activation in early pregnancy and the presence of activating KIR such as KIR2DS1 has been shown to favor reproductive success (Parham and Guethlein, 2010; Chazara et al., 2011). In agreement with this, the production of proinflammatory cytokines in response to HLA-G has been detected in resting peripheral blood NK cells (Rajagopalan et al., 2006), in uterine NK cells isolated during the window of implantation (van der Meer et al., 2004, 2007) and in activated decidual NK cells.
KIR2DL4 is an unusual member of the KIR family of receptors. It is expressed by all NK cells and by a subset of T cells. Soluble HLA-G inhibits membrane- and soluble NK cell function in HIV-1 infection by interacting with leukocyte immunoglobulin-like receptor B2. J. Virol. 84, 10774–10791.

Kikutani-Maku, A., Catina, T. L., and Campbell, K. S. (2005). Cutting edge: KIR2DL4 transmembrane signals into human NK cells through association with the Fc receptor gamma chain. J. Immunol. 174, 3869–3873.

Kikutani-Maku, A., Yusa, S., Catina, T. L., and Campbell, K. S. (2005). KIR2DL4 is an IL-2-regulated NK cell receptor that exhibits limited expression in humans but triggers strong IFN-gamma production. J. Immunol. 171, 5415–5425.

Li, C., House, B. L., Nocita, M. L., and Smale, S. T. (2006). The HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc. Natl. Acad. Sci. U.S.A. 103, 17637–17642.

Long, D. O. (2008). Negative signaling by inhibitory receptors: the NK cell paradigm. J. Immunol. 182, 75–84.

Long, D. O. and Rajagopalan, S. (2008). NK cell 1 recognition by killer cell Ig-like receptors. Semin. Immunol. 20, 101–118.

Masters, A., Bueschel, T. L., and Campbell, K. S. (2008). KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules. J. Immunol. 180, 209–220.

Muk, S. M., Pardy, A. K., Rodin, N. B., Moreau, P., and Shi, B. (2000). Dissection of the HLA-G domain by antibody, cloning, and computer. J. Immunol. 160, 1584–1589.

Moffett, A. (2004). Immunochemistry of placental mammary. Nat. Rev. Immunol. 4, 118–127.

Moffett-Kang, A. (2002). Natural killer cell function. Nat. Rev. 2, 606–613.

Patham, P. (2003). MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 3, 201–214.

Patham, P., and Goedbloed, L. A. (2010). Pregnancy immunogenetics: NK cell education in the womb? J. Clin. Invest. 120, 1380–1384.

Park, G. M., Lau, S., Park, B., Kim, E., Shin, J., Choi, K., and Ahn, K. (2004). Soluble HLA-G generated by proteolytic shedding inhibits NK-mediated cell lysis. Biochem. Biophys. Res. Commun. 315, 606–611.

Pons, M., Cantoni, C., Bassoni, R., Trakas-Cappo, A., Bennstengel, G., Vitale, C., Bertone, S., Moreta, A., Mestora, L., and Mangas, M. C. (1999). Inhibitory receptors sensing HLA-G1 molecules in pregnancy. N. Engl. J. Med. 338, 1618–1625.

Rajagopalan, S. (2010). Endosomal signaling and a novel pathway defined by the natural killer receptor KIR2DL4 (CD158d). Traffic 11, 1340–1350.

Rajagopalan, S., Bryson, Y. T., Kapusam, S. P., Grady, D. E., van der Meer, A., Joosten, I., and Long, D. O. (2006). Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol. 4, e10.1371/journal.pbio.0040009.

Rajagopalan, S., Pa, J., and Long, D. O. (2001). Cutting edge: induction of IFN-gamma production but not cytototoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J. Immunol. 167, 1077–1081.

Rajagopalan, S., and Long, D. O. (1999). A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189, 1595–1600.

Rajagopalan, S., Meylo, M. W., Iwamoto, J., and Long, D. O. (2010). DNA-PKcs controls an endosomal signaling pathway for a proinflammatory/proangiogenic response. The ligand of endosomal KIR2DL4 is soluble HLA-G. The selective expression of HLA-G at the maternal-fetal interface, where NK cells are abundant, implies a role for KIR2DL4 during implantation and placentalization. Since soluble HLA-G expression is also induced in stress and disease settings, such as tumors, transplantation sites, and during certain infections, it will be important to examine how NK cells and T cells respond to HLA-G at these sites.
Rajagopalan and Long

NK activation via KIR2DL4–HLA-G interactions

linked HLA-G dimers. J. Biol. Chem. 281, 10439–10447.
van der Meer, A., Lukassen, H. G., van Cranenbroek, B., Wijnands, F., van Lierop, M. J., and Joosten, I. (2007). Soluble HLA-G promotes Th1-type cytokine production by cytokine-activated uterine and peripheral natural killer cells. Mol. Hum. Reprod. 13, 123–133.
van der Meer, A., Lukassen, H. G., van Lierop, M. J., Wijnands, F., Mosselman, S., Braat, D. D., and Joosten, I. (2004). Membrane-bound HLA-G activates proliferation and interferon-gamma production by uterine natural killer cells. Mol. Hum. Reprod. 10, 189–195.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 09 June 2012; paper pending published: 23 June 2012; accepted: 01 August 2012; published online: 20 August 2012.

Citation: Rajagopalan S and Long E. (2012) KIR2DL4 (CD158d): an activation receptor for HLA-G. Front. Immunol. 3:258. doi: 10.3389/fimmu.2012.00258

This article was submitted to Frontiers in NK Cell Biology, a specialty of Frontiers in Immunology.

Copyright © 2012 Rajagopalan and Long. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any copyright notices concerning any third-party graphics etc.