Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
In vitro anti-hepatitis B and SARS virus activities of a titanium-substituted-heteropolytungstate

Yan-fei Qi, Hong Zhang, Juan Wang, Yanfang Jiang, Jinhua Li, Ye Yuan, Shiyao Zhang, Kun Xu, Yangguang Li, Juan Li, Junqi Niu, Enbo Wang

A R T I C L E I N F O

Article history:
Received 2 March 2011
Revised 1 October 2011
Accepted 7 November 2011
Available online 23 November 2011

Keywords:
Heteropolytungstate
Antiviral activity
Hepatitis B virus
SARS virus

A B S T R A C T

A structural determined heteropolytungstate, [K₄(H₂O)₈Cl][K₄(H₂O)₄PTi₂W₁₀O₄₀]·NH₂OH 1, has been synthesized and evaluated for in vitro antiviral activities against hepatitis B (HBV) and SARS virus. The identity and high purity of compound 1 were confirmed by elemental analysis, NMR, IR analysis and single-crystal X-ray diffraction. The compound 1, evaluated in HepG 2.2.15 cells expressing permanently HBV, significantly reduced the levels of HBV antigens and HBV DNA in a dose-dependent and time-dependent manner. EC₅₀ values were determined to be 54 µM for HBeAg, 61 µM for HBsAg and 2.66 µM for supernatant HBV DNA, as compared to 1671, 1570, 169 µM, respectively, for the commercially-available hepatitis B drug adefovir dipivoxil (ADV). Intracellular cccDNA, pgRNA and HBcAg were also found to be decreased by compound 1 in a concentration-dependent manner. Cytotoxicity results showed that compound 1 has low toxicity in HepG 2 cells with CC₅₀ value of 515.20 µM. The results indicate that compound 1 can efficiently inhibit HBV replication in HepG 2.2.15 cells line in vitro. Additionally, compound 1 also shows high anti-SARS activity at an EC₅₀ of 7.08 µM and toxicity with a CC₅₀ of 118.6 µM against MDCK cells.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Hepatitis B virus (HBV) infections continue to be a major public health problem worldwide (Barraud et al., 1999). More than 400 million people worldwide are currently infected with hepatitis B virus. Approximately 20% of HBV patients will develop chronic hepatitis, and are at significant risk of developing cirrhosis or liver hepatocarcinoma. HBV is the prototype of hepadnaviridae, a family of small enveloped hepatotropic DNA viruses that can infect the liver of human (Marion and Robinson, 1983). Chronic hepatitis B patients are commonly treated with either interferon alpha (INF-α), or the nucleoside analog lamivudine (3TC), adefovir, entecavir or telbivudine which are the synthetic reverse transcrip-

dase inhibitors (De Clercq, 1999; Delmas et al., 2002; Buster and Janssen, 2006). However, none of these therapies are completely safe and effective. Although direct antiviral therapy with amivudine or adefovir could efficiently control chronic active hepatitis B, drug resistance or renal toxicity could develop progressively several months after the initiation of therapy. It is thus still urgently required to identify effective anti-HBV agents.

Polyoxometalates (POMs) are inorganic cluster-like complexes and constituted from oxide anion and transition metal cations. These complexes have shown potential applications in mulititudinal fields such as catalysis, medicine and functional materials (Pope and Müller, 1991, 1994). Especially, the medicinal properties of POMs have been a subject of interest (Witvrouw et al., 2000; Judd et al., 2001; Rothenberg et al., 1998). These compounds have low toxicity for cultured cells, and relatively less expensive than the “chemical” antiviral drugs. Recently, POMs have been reported to inhibit the replication of RNA viruses and DNA viruses in vitro and in vivo, such as the human immunodeficiency virus, severe acute respiratory syndrome (SARS) virus, influenza virus and herpes simplex virus (Rhule et al., 1998; Dan et al., 2002). The activity of POMs against hepatitis B virus was also suggested by Zoulim (1999). The mechanism of action of POMs remains to be fully elucidated, but may occur at any of the life cycle stages, including viral adsorption, penetration, or reverse-transcription (Dan et al., 2002; Shigeta et al.,
was applied. The structure was solved by the direct method and refined by the Full-matrix least-squares on F² using the SHELXL-97 software (Sheldrick, 1997). All of the non-hydrogen atoms except the disordered atoms O(1), OW(2), OW(3) and Cl(1) were refined anisotropically. All the crystallographic parameters are tabulated in Table 1. Images were created with the DIAMOND program.

2.4. Cell culture and treatment

HepG 2.2.15 cells (provided by the Department of Infectious Diseases of the 1st Hospital, Jilin University, PR China) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) containing a 10% fetal bovine serum (FBS; Gibco), 100 U/mL penicillin, 100 U/mL streptomycin, and 200 µg/mL G418 (growth medium). During the experiments, the cells were grown in the media as described above without G418. The cell lines were incubated at 37 °C in 5% carbon dioxide atmosphere. Prior to exposures to drugs, the cell viability was verified to be >85% according to the standard trypan blue exclusion test.

HepG 2 (provided by the Department of Infectious Diseases of the 1st Hospital, Jilin University, PR China) were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco) containing a 10% fetal bovine serum (FBS; Gibco), 100 U/mL penicillin, and 100 U/mL streptomycin. The cell lines were incubated at 37 °C in 5% carbon dioxide atmosphere.

SARS virus (provided by Academy of Military Medical Sciences, Beijing, PR China) was propagated in African green monkey kidney cells (Vero-E6). Vero cells were propagated in DMEM supplemented with 10% FBS, 2 mM L-glutamine, 50 U/mL penicillin, 50 µg/mL streptomycin and bicarbonate. The cell lines were incubated at 37 °C in 5% carbon dioxide atmosphere.

Drugs were sterilized by filtration prior to use. Each agent was dissolved in DMEM to generate the appropriate doses for experimentation. Non-treated cells (DMEM alone) were used as negative controls.

2.5. Anti-HBV activity of compound 1

2.5.1. Cytotoxicity analysis

The cytotoxicity of compound 1 was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay (Mosmann, 1983).

Compound	1
Formula	\(\text{H}_2\text{Cl}_6\text{K}_5\text{NO}_3\cdot\text{Pt}_2\text{W}_{10} \)
Fw	3202.75
T (K)	293(2)
Crystal system	Tetragonal
Space group	P4/mnc
a (Å)	14.200(2)
b (Å)	14.200(2)
c (Å)	12.418(3)
α (°)	90
β (°)	90
γ (°)	90
V (Å³)	2503.8(7)
Z	2
μ (g cm⁻³)	4.248
μ (mm⁻¹)	24.041
Rint	0.0562
Reflections collected	16,509
Independent reflections	1501
Goodness-of-fit on F²	1.103

R₁ = \frac{∑|F_{0}| - |F_{c}|}{|F_{0}|},
R_{wp} = \frac{∑|w(F_{0} - F_{c})|}{∑w(F_{0})^{2}}^{1/2}.

| Table 1 Crystal data and structure refinements for 1. |
|----------|---|

2.3. X-ray crystallography

The measurement for compound 1 was collected on a Rigaku R-AXIS RAPID IP diffractometer with Mo-Kα monochromated radiation (\(\lambda = 0.71073 \) Å) at 150 K. Empirical absorption correction
(MTT) assay as previously described (Kodama et al., 1996). The optical absorbance was read on a plate reader (Bio-RAD Co.) at a wavelength of 490 nm. Briefly, HepG2 cells were plated on 96-well plates at a density of 5.0 × 10⁴ cells/mL. After a 24 h period of incubation, the dilutions of 1, and ADV at different doses were added. HepG2 cells in the negative control group were treated with the same volume of medium. After a period of incubation, MTT solution (0.15 mL, 5 mg/mL in 0.01 M PBS) was added to each well. The cells were incubated for another 4 h at 37 °C, and then DMSO (0.15 mL) was added. The cytotoxicity was measured by the reduction of MTT observed in mitochondria at 24, 48, and 72 h after the initial treatment. The CC₅₀ was defined as the concentration of drug that achieved 50% cytotoxicity against cultured cells, as calculated by the Bliss method (Han et al., 2008).

2.5.2. ELISA detection of HBsAg and HBeAg levels

Supernatants of cells treated with compound 1 or ADV and non-treated cells were collected. The semi-quantitative detection of HBsAg and HBeAg were estimated using ELISA assay kits (Shanghai Kehua Co., Ltd., China).

2.5.3. HBV DNA extraction and analysis by quantitative real-time (q)PCR

The supernatants of treated and non-treated cells were collected. The HBV DNA from the medium was extracted using HBV Real Quant PCR kit (QIAGEN kits, China). The ABI 7300 Sequence Detection System (Applied Biosystems) was used to quantify the purified DNA. PCR was performed under the following conditions: 37 °C for 5 min and 94 °C for 1 min, followed by 42 amplification cycles at 95 °C for 5 s and 60 °C for 30 s.

2.5.4. qPCR and RT-PCR of intracellular HBV pgRNA and cccDNA

HepG 2.2.15 cells were harvested by trypsin digestion and washed three times with phosphate buffered saline (PBS, pH 7.3). Cells were counted and used to evaluate the presence of HBV replicative intermediates: 1 × 10⁶ cells for cccDNA, 3 × 10⁶ cells for pgRNA.

Total RNA was isolated from cells using the TRIZOL reagent (Invitrogen). For RT-PCR analysis, RNA was reverse-transcribed at 42 °C for 90 min using a commercially available cDNA synthesis kit (Invitrogen). PCR was performed with gene specific primers for HBV and β-actin: HBV nt2429–2451 (forward), 5′-TCTTACATGCGGAGGTCC-3′ (reverse), 5′-CACAGCTGAGGCTGTAAC-3′. The Taqman MG B probes were: nt1836–1855 (reverse), 5′-FAM-CTTCTCATCTGCCGGACCG-3′. qPCR was performed to detect intracellular cccDNA by using the RealQuant PCR kit (Invitrogen).

2.5.5. Western blot detection of HBeAg

Cell lysates were prepared by using RIPA (radio immunoprecipitation assay) lysis buffer supplemented with 1% (v/v) phenylmethylsulfonylfluoride (PMSF; Biyuntian Co., Ltd., China). Proteins were separated by electrophoresis on an 8% sodium dodecyl sulfate–polyacrylamide gel, transferred onto Immobilon-P membranes (Millipore), and analyzed by standard Western blot technique using anti-HBeAg antibodies (Santa Cruz Biotechnologies), β-Actin (Santa Cruz Biotechnologies) was used as the normalization control.

2.6. Anti-SARS virus activity assay of compound 1

The anti-SARS virus activity was estimated by MTT assay (Sigma). The optical absorbance was read on a plate reader (Bio-RAD Co.) at a wavelength of 570 nm for MTT. Vero-E6 cell cultures (2 × 10⁶ cells/mL) were prepared in a 96-well plate. After a 24 h period of incubation, SARS virus stock (0.1 mL per well) and different doses of compound 1 (0.1 mL per well) were added. In the control group, 0.1 mL medium was added. The plates were incubated at 37 °C in a humidified 5% CO₂ atmosphere for 2 days until maximum cytopathic effects were observed in the untreated, negative control cultures. The cytopathic effects were quantitated by the MTT assay. Briefly, 30 µL of MTT solution prepared in DMEM was added to each well and plates were incubated at 37 °C for 4 h. The MTT solution was removed without disturbing the cells and 60 µL of DMSO was added to each well to dissolve formazan crystals. After gently shaking the plates for 5 min, the absorbance from each well was measured at 540 nm. The percentages of protection were calculated as [(A – B)/(C – B) × 100], where A, B, and C stand for the absorbances of wells containing compound 1 and virus (A), virus (B) and cell (C) only, respectively.

2.7. Statistical analysis

Data were expressed as mean ± SD (standard deviation). All experiments were performed in triplicate. Statistical significance was evaluated by the one-way analysis of variance (ANOVA) and Student’s t-test. Multiple comparisons were statistically analyzed using SAS software version 8.0 (significance was established at P < 0.05).

3. Results

3.1. Structure determination of compound 1

X-ray crystallography shows that compound 1 consists of a 3-D polyoxyanion framework [K₂(H₂O)₂[Ti₃₂W₁₀O₄₀]₃]⁻, one-dimen-
sional (1-D) chainlike [K₂(H₂O)₂][Cl]⁺ cations and the isolated hydroxylamine NH₂OH. In compound 1, the polyoxyanion [PTi₂W₁₀O₄₀]⁻² exhibits a well-known Keggin structure (Fig. 1A). The central P atom is surrounded by a cube of eight oxygen atoms with each oxygen site half-occupied. The P–O distance is 1.51(2) Å. In the two crystallographically unique surrounding metal sites of the polyoxyanion, there exists a site occupancy disorder in the W2 center, that is, both Ti and W2 atom share the same site with 25% occupancy, respectively, forming the polyoxyanion [PTi₂W₁₀O₄₀]⁻². Intracellular cccDNA was quantified by selective fluorescent PCR with Taqman® MGB probe capable of amplifying and checking cccDNA more efficiently than rcDNA. The HBV primers were: nt1562–1579 (forward), 5′-TTCTCACTGGCAGCCGAC-3′; nt1883–1896 (reverse), 5′-CACAGCTGAGGCTGTAAC-3′. The Taqman MG B probes were: nt1836–1855 (reverse), 5′-FAM-CTTCTCATC-3′. qPCR was performed to detect intracellular cccDNA by using the RealQuant PCR kit (Invitrogen).
The W(Ti)–O distances can be grouped into three sets: M–O₄ (terminal) 1.614(18)–1.694(12) Å, M–O₅ (central) 2.47(2)–2.51(2) Å, and M–O₆ (bridge) 1.861(14)–1.936(12) Å. It is noteworthy that all the surface oxygen atoms of [PTi₂W₁₀O₄₀]⁷⁻ except the μ₂–O₃ are coordinated with the K centers, exhibiting an unusual high coordination mode (Fig. 1A).

In asymmetric unit of compound 1, the K1 center (see Fig. 1B) is octa-coordinated with four μ₂–O atoms of one polyoxoanion (O₂ and O₅), two terminal oxygen atoms of other two polyoxoanions (O₆), and two coordination water molecules (OW₁ and OW₃A). The K–O distances range from 2.640(11) to 2.900(15) Å. Thus, the K1 centers can be regarded as a joint to connect all the polyoxoanions together. The K2 center (Fig. 1C) also exhibits the eight coordination environment with two terminal O atoms (O₄) of two polyoxoanions, four coordination water molecules (OW₂ and OW₃) and two Cl anions. The K–O distances are in the range of 2.39(2)–2.71(3) Å, while the K–Cl distance is 2.80(4) Å. It is interesting that all coordination atoms are shared by two K2 centers. Based on this connection mode, the K centers form a 1-D chain via these double-bridging atoms (Fig. 2A). In the asymmetric unit of 1, OW₂, OW₃ and Cl possess the 50%, 50% and 12.5% occupancies, respectively, thus, the 1-D chainlike cations can be described as [K₄(H₂O)₈Cl]³⁺. On the basis of above connection mode, a novel 3-D polyoxoanion “host” framework is formed by the polyoxoanion [PTi₂W₁₀O₄₀]⁷⁻ and the K1 centers with 1-D square tunnels along c axis (Fig. 2B). Furthermore, the 1-D chainlike counter-cations [K₄(H₂O)₈Cl]³⁺ serve as the “guest”, residing in the 1-D tunnels of the 3-D polyoxoanion “host”. The isolated NH₂OH molecules are also filled in the interspace of the framework.

The solid state FTIR spectrum of the compound 1 showed the characteristic asymmetric stretching vibrational peaks at 788 (W–O₁–W), 593, 488, 885 (W–O₆–W), 959 (W–O₅), and splitting of the triply degenerate PO₄ stretching mode is observed at 1081, 1064, 1050 cm⁻¹. These peaks suggest that the polyoxometallic moiety [PTi₂W₁₀O₄₀]⁷⁻ of the title complex still retain the basic framework of the Keggin structure. The bands in the range 2806–3073 cm⁻¹ is assigned to the hydrogen bonding association N–H. The peaks at 1629 and 3424(s) cm⁻¹ are assigned to the O–H of the water molecule.

3.2. Anti-HBV activity

3.2.1. Cytotoxic effects of compound 1 on HepG 2 cells

The growth of the HepG 2 cells in the presence of various concentrations of compound 1 was examined. The results of the cytotoxicity experiments are given in Fig. 3. The cytotoxicity of...
compound 1 on HepG 2 cells showed that the 50% cytotoxic dose (CC\textsubscript{50}) of 1 and ADV was 515.20 and 1104.10 μM at 72 h, respectively. No obvious cytotoxicity was found for up to 72 h after treatment with compound 1 at lower concentrations (90 μM).

3.2.2. Inhibitory effects of compound 1 on secreted HBeAg, HBsAg and HBV DNA expression in HepG 2.2.15 cultures

The levels of HBsAg, HBeAg and extracellular HBV DNA in the medium were measured at different time points in the control group, ADV group, and compound 1 group, respectively, as shown in Fig. 4. After treatment, the levels of HBeAg, HBsAg and extracellular HBV DNA in the drug-treated groups were decreased significantly compared to that in the control group in a concentration-dependent manner (P < 0.05).

The levels of HBeAg, HBsAg and extracellular HBV DNA decreased with time in HepG 2.2.15 cells, indicating that the anti-HBV activity of compound 1 is time-dependent (P < 0.01). As shown in Fig. 4a, the inhibition ratio of HBeAg in compound 1-treated cultures reached the peak value 65.89% at 93.38 μM at day 9 and still kept about 40.43% at day 11. At the same time, the inhibition ratio of HBsAg (shown in Fig. 4b) reached the peak value of 72.10% at 93.38 μM at day 9 and was still about 37.66% at day 11. The inhibition ratios of HBeAg and HBsAg in the ADV group were 57.03% and 56.22% at 2000 μM, respectively. The inhibitory values of HBeAg and HBsAg in ADV group decreased at day 11. Interestingly, the inhibition rates of compound 1 on extracellular HBV DNA at day 11 (4 days after the end of exposure to the drug) were lower than those observed on day 9. However, they were higher than those on day 7. At the same time, the inhibition values of ADV for extracellular HBV DNA declined and they were lower than the values at day 7, as shown in Fig. 4c. These results indicate that compound 1 may have a persistent effect on suppressing HBV.

The 50% effective concentration (EC\textsubscript{50}) values of HBeAg, HBsAg and extracellular HBV DNA for compound 1 and ADV are shown in Table 2. The therapeutic index (TI) of compound 1 was higher than that of ADV.

3.2.3. Inhibitory effects of compound 1 on intracellular cccDNA replication and pgRNA transcription in HepG 2.2.15 cells

To characterize the anti-HBV mechanism of compound 1, the amounts of intracellular viral pgRNA and DNA were measured in the control group, ADV group, and compound 1 group at different concentrations, respectively, at day 5, as shown in Fig. 5. The results revealed that the levels of intracellular HBV pgRNA and cccDNA were decreased with elevation of the compound 1 concentration, as compared to those detected from the control group (P < 0.05). The maximum inhibition ratios of pgRNA and DNA were 36.50% and 92.57% at 100 μM in the compound 1 group, which are higher than the ratios in the positive control group (ADV group, P < 0.05). These results suggested that compound 1 apparently impacting viral cccDNA replication and viral pgRNA transcription in HepG 2.2.15 cells, and that the anti-HBV mechanism of compound 1 seems to be similar to that of ADV.

3.2.4. Inhibitory effects of compound 1 on intracellular HBeAg in HepG 2.2.15 cells

The inhibitory effects of ADV and compound 1 on HBs(c)Ag protein levels were determined with Western blot. HepG 2.2.15 cells were treated with compound 1 and ADV, respectively. The cell extracts were prepared and analyzed at day 5. As shown in Fig. 6, the levels of intracellular protein levels of HBeAg were reduced with elevation of the compound 1 concentration in comparison with that in the control group (P < 0.05), indicating that the anti-HBV HBeAg activity of compound 1 is concentration-dependent. In addition, the inhibitory effect of compound 1 was higher than that of ADV at the same dose.

3.3. Anti-SARS virus activity

Aiming at evaluating the antiviral activity against SARS virus of compound 1, the cytotoxicity of compound 1 in Vero-E6 cells was first measured. The results showed that the maximal noncytotoxic concentration (CC\textsubscript{0}) and the 50% cytotoxic concentration (CC\textsubscript{50}) of compound 1 were 31.2 μM and 118.6 μM, respectively. According
to the cytotoxic results, compound 1 was diluted at five non-toxic concentrations (31.2, 15.6, 7.8, 3.9, and 1.95 μM) and the anti-SARS virus activity was checked with MTT assay. As shown in Fig. 7, the inhibition ratio of compound 1 increased with concentration, indicating that the anti-SARS virus activity of compound 1 is concentration-dependent. It is noteworthy that the SARS virus was completely inhibited at 31.2 μM. The 50% effective concentration (EC50) and the 90% effective concentration (EC90) were 7.08 and 21.0 μM, respectively. TI of compound 1 was 16.75.

4. Discussion

Currently, nucleoside analogs play an important role in the therapy of HBV, however, some disadvantages of these agents include side effects, drug resistance and costs which limit their clinical use in HBV-infected patients. Polyoxometalates, as non-nucleoside analogs, have been proven to exhibit broad inhibitory activity against human immunodeficiency viruses (HIV-1 and HIV-2), herpes simplex virus, and influenza virus. Especially, the titanium-containing polyoxotungstates have shown antiviral activity against a variety of enveloped RNA or DNA viruses. Herein, we synthesized a titanium-substituted heteropolytungstate \[K_4(H_2O)_8Cl]K_4(H_2O)_4PTi_2W_10O_40\] and examined the anti-HBV activities in vitro. HepG 2.2.15 cells as a useful "in vitro" model are widely used for the evaluation of novel anti-HBV drugs and chosen in our experiments. The cell line contains multiple copies of HBV genome that can stably integrate into the host cell genome. The results indicate that compound 1 inhibited HBV DNA, HBsAg and HBeAg antigens in the culture medium in a concentration-and-time dependent manner. A lower concentration of the compound 1 was required to effectively inhibit secreted HBV DNA than to inhibit secreted antigens. It is possible that the compound acts on the exported virions outer protein coats. Although the mechanisms mediating the antiviral effects by compound 1 remain un-

Table 2

	HBeAg	HBSAg	HBV DNA
1 ADV	1 ADV	1 ADV	
EC50* (μM)	54	1671	61
CC50* (μM)	515.20	1104.10	515.20
TIc	9.54	0.66	8.45

* The concentrations of 1 or ADV needed to inhibit HBV-DNA replication, or HBsAg and HBeAg secretions to 50% (EC50).

b The cytotoxicity concentration of 1 or ADV that reduced cell viability to 50% (CC50).

c TI = CC50/EC50.
clear, we have deduced that compound 1 might block the secretion of HBV containing nucleocapsids or destabilize HBV DNA-containing nucleocapsids. Interestingly, we observed that the in vitro anti-HBV properties of compound 1 against rebound of serum HBV DNA, HBsAg and HBeAg were more robust than those of positive group, ADV, as indicated by evaluation of treated cells 4 days after termination of treatment. This result shows that compound 1 has a sustained anti-HBV activity.

The levels of intracellular HBV DNA, RNA and HBcAg protein were also reduced by compound 1 in a concentration-dependent manner. The ADV drug competitively inhibits HBV polymerase, which is structurally similar to dATP. It is known to reduce the levels of HBV DNA and HBsAg both in vitro and in vivo by a phosphorylation event that facilitates its physical incorporation into nascent HBV DNA.
HBV-specific transcripts may be affected by compound 1. The HBV pgRNAs were transcribed from cccDNA, we presume that HBV-specific transcripts may be affected by compound 1. It is also important to consider that the HBV pgRNA was inhibited in drug-treated cells (He et al., 2008). HBCAg, HBSAg and HBV polymerase are translated from pregenome mRNA, and the minus strand HBV DNA are transcribed from the pregenome mRNA template. In this study, it was found that compound 1 could inhibit the levels of HBCAg, HBSAg and HBV DNA protein expressed in a concentration-dependent manner in vitro. These results suggested that compound 1 apparently interfered with viral pgRNA transcription in HepG2.2.15 cells.

Moreover, compound 1 shows broad-spectrum antiviral activity. It can efficiently inhibit SARS virus in Vero-E6 cells in vitro with low toxicity against MDCK cells. In summary, a heteropolytungstate shows broad-spectrum antiviral activity and determination of the mechanism of anti-HBV activity of compound 1.

Acknowledgements

This work was financially supported by the National S & T Major Project of China (2009ZX09103–105), Research Foundation of Jilin University (200904014, 200903115 and 20111107), SRDFP (2009 0061 120093), China Postdoctoral Science Foundation (20100481064) and S & T Development Project Foundation of Jilin Province (201101057).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.antiviral.2011.11.003.

References

Barraud, L., Guerret, S., Chevallier, M., Borel, C., Jamard, C., Trépo, C., Wild, C.P., Cova, L., 1999. Enhanced duck hepatitis B virus gene expression following aflatoxin B1 exposure. Hepatology 29, 1317–1323.

Buster, E.H., Janssen, H.L., 2006. Antiviral treatment for chronic hepatitis B virus infection–immune modulation or viral suppression? Neth. J. Med. 64, 175–185.

Dan, K., Miyashita, K., Seto, Y., Fujita, H., Yamase, T., 2002. The memory effect of heteropolyoxotungstate (PM-19) pretreatment on infection by herpes simplex virus at the penetration stage. Pharmacol. Res. 46, 357–361.

Dan, K., Yamase, T., 2006. Prevention of the interaction between HVEM, herpes virus entry mediator, and gD HSV envelope protein, by a Keggin polyoxotungstate, PM-19. Biomed. Pharmacother. 60, 169–173.

De Clercq, E., 1999. Perspectives for the treatment of hepatitis B virus infections. Int. J. Antimicrob. Agents 12, 81–95.

Delmas, J., Schorr, O., Jamard, C., Gibbs, C., Trépo, C., Hantz, O., Zoulim, F., 2002. Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob. Agents Chemother. 46, 425–433.

Dornaille, P.J., Knoth, W.H., 1983. $\text{Ti}_2\text{W}_4\text{O}_{19}^{7-}$ and $\text{[CPFe(CO)Sn]_2}\text{W}_4\text{O}_{19}^{7-}$. Preparation, properties, and structure determination by tungsten-183 NMR. Inorg. Chem. 22, 818–822.

Drosten, C., Günther, S., Preiser, W., van der Werf, S., Brodt, H., Becker, S., Rabenau, H., Panning, M., Kolesnikova, L., Fouchier, R.A.M., Berger, A., Burgüéria, A., Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., Kramme, S., Manuguerra, J., Müller, S., Rickerts, V., Stürmer, M., Vieth, S., Klenk, H., Osterhaus, A.D.M.E., Schnitz, H., Doerr, H.W., 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976.

Fouchier, R.A.M., Kuiken, T., Schutten, M., van Amerongen, G., van Doornum, G.J.J., van den Hoogen, B.G., Peiris, M., Lim, W., Stohr, K., Osterhaus, A.D.M.E., 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423, 240.

Han, Y.Q., Huang, Z.M., Yang, X.B., Liu, H.Z., Wu, G.X., 2008. In vivo and in vitro anti-hepatitis B virus activity of total phenolics from Oenothera javanica. J. Ethnopharmacol. 118, 148–153.

He, Y.W., Guo, C.X., Pan, Y.F., Peng, C., Weng, Z.H., 2008. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro. World J. Gastroenterol. 14, 1592–1597.

Judd, D.A., Nettles, J.H., Nevin, S., Snyder, J.P., Liotta, D.C., Tang, J., Ermolieff, J., Schinazi, R.F., Hili, C.L., 2001. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. J. Am. Chem. Soc. 123, 886–897.

Kodama, E., Shigeta, S., Suzuki, T., De Clercq, E., 1996. Application of a gastric cancer cell line (MIN-28) for anti-adeno-virus screening using the MITT method. Antiviral Res. 31, 159–164.

Kisakze, T.G., Erdman, D., Goldsmiths, C.S., Zaki, S.R., Perer, T., Emery, S., Tong, S., Urban, C., Coram, J.A., Lim, W., Rollin, P.E., Dowell, S.F., Ling, A.E., Humphrey, C.D., Shiell, W.J., Guarner, J., Paddock, C.D., Koda, D., DeRisi, J., Yang, J.Y., Cox, N., Hughes, J.M., LeDuc, J.W., Bellini, W.J., Anderson, L.J., 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966.

Li, J., Qi, Y.F., Li, J., Wang, H.F., Wu, X.Y., Duan, L.Y., Wang, E.B., 2004a. Heteropolyoxomolybdate–amino acid complexes: synthesis, characterization and biological activity. J. Coord. Chem. 57, 1309–1319.

Li, J., Qi, Y.F., Wang, E.R., Li, J., Wang, H.F., Li, Y.G., Yu, H., Xu, N., Lu, L., Chuy, C., 2004b. Synthesis, structural characterization and biological activity of polyoxometalate-containing protonated amantadine as a cation. J. Coord. Chem. 57, 715–721.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2$^{-}\Delta\Delta C_{T}$ method. Methods 25, 402–408.

Marion, P.L., Robinson, W.S., 1983. Hepadna viruses: hepatitis B and related viruses. Curr. Top. Microbiol. Immunol. 105, 99–121.

Ozeki, T., Yamase, T., 1991. Structure of a dithianodecatungstophosphatate. Acta Crystallogr. Sect. C 47, 693–696.

Pope, M.T., Müller, A., 1991. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl. 30, 34–48.

Pope, M.T., Müller, A., 1994. Polyoxometalates: From Platonic Solids to anti-retroviral Activity. Kluwer Academic Publishers, Dordrecht.

Rhule, J.R., Hili, C.L., Judd, D.A., Schinazi, R.F., 1998. Polyoxometalates in medicine. Chem. Rev. 98, 327–358.

Robel, K., Schinazi, R.F., 1997. SHELEX97. Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany.

Shigeta, S., Mori, S., Kodama, E., Kodama, J., Takahashi, K., Yamase, T., 2003. Broad spectrum anti-RNA virus activities of titanium and vanadium substituted polyoxometalates. Antiviral Res. 58, 265–271.

Stadler, K.M.V., Massignani, V., Eickmann, M., Becker, S., Ahrig, S., Klenk, H.D., Rappuoli, R., 2003. SARS – beginning to understand a new virus. Nat. Rev. Microbiol. 1, 209–218.

Witvrouw, M., Weigold, M., Pannecoque, C., Schols, D., De Clercq, E., Holan, G., 2000. Potent anti-HIV (type 1 and type 2) activity of polyoxometalates: structure–activity relationship and mechanism of action. J. Med. Chem. 43, 778–783.

Yamase, T., 2005. Antitumor, -viral, and -bacterial activities of polyoxometalates for realizing an inorganic drug. J. Mater. Chem. 15, 4773–4782.

Zoulim, F., 1999. Therapy of chronic hepatitis B virus infection: inhibition of the viral polymerase and other antiviral strategies. Antiviral Res. 44, 1–30.