We evaluated a hypothesis that horses are susceptible to avian influenza viruses by in vitro testing, using explanted equine tracheal epithelial cultures, and in vivo testing by aerosol inoculation of ponies. Results showed that several subtypes of avian influenza viruses detectably replicated in vitro. Three viruses with high in vitro replication competence were administered to ponies. None of the three demonstrably replicated or caused disease signs in ponies. While these results do not exhaustively test our hypothesis, they do highlight that the tracheal explant culture system is a poor predictor of in vivo infectivity.

Keywords Avian influenza, equine influenza, host range, interspecies transmission, organ culture.

To elucidate the ability of AIV to infect equine respiratory epithelial cells in vitro, we used explanted equine tracheal cultures as previously described. The source of tracheas was horses/ponies being euthanized by other investigators for reasons unrelated to respiratory disease. Tracheas were excised within 30 minutes of euthanasia. The mucosal/submucosal layers were removed from the cartilage, cut into 1-cm² sections, and cultured in six-well plates with the epithelial surface facing up and awash in Leibovitz L15 medium (Lonza BioWhittaker) buffered with HEPES. Background infectious residue at 0 hour p.i. in this model was approximately 10⁴ EID₅₀/ml.
Using a threshold of 10^5 EID50/ml to signify virus replication, we found that avian H7 virus was replication-competent as expected (since the first-discovered EIVs are subtype H7). Additionally, the viruses of subtype H1, H2, and H6 were also replication-competent (Figure 1). This indicates that AIVs of these HA subtypes have the potential to infect horses. We did not test avian subtype H3N8 virus, as there is already a published example of avian H3N8 virus infecting horses (equine/Jilin/89). Among NA subtypes paired with H3, we found that AIVs of the N1 and N5 subtypes were replication-competent.

We next asked, are those viruses that are replication-competent in equine tracheal explants also replication-competent in horses; that is, can they infect horses resulting in shedding of progeny virus particles? This was studied using our long-established procedure for experimental infection of horses with equine influenza viruses. In brief, the test viruses were aerosolized using a DeVillbis Ultra-Neb 99 nebuliser and pumped into a tented stall (21.5 m^3) where it was inhaled by an assembled group of ponies for 45 minutes. The virus dose used, 5 × 10^7 EID50 units/m^3, was 5–10 times greater than we routinely use for equine influenza virus infection experiments. We used three influenza-seronegative weanling or yearling ponies for each of three test viruses (H1N2, H6N2, H7N2), with the aim of obtaining a qualitative yes/no answer rather than a quantitative incidence rate. Each of these viruses was studied in a separate experiment, using different animals and with the biocontainment stalls disinfected between experiments. Ponies were examined daily for clinical signs of disease. Nasopharyngeal swab samples were obtained daily through Day 7 post-infection for assessment of virus shedding by quantitative real-time RT-PCR (qRT-PCR) using M1-specific primers (InfA Forward, InfA Reverse, InfA Probe; CDC REF. #I-007-05). These primers were tested to verify reactivity with the specific AIV studied in ponies. RNA copy numbers were calculated against a standard curve generated using in vitro-transcribed RNA made from cloned M1 cDNA as described. Sera were obtained at Day 0 and again at Day 14 post-infection, and virus-specific serum antibodies were

Table 1. Avian influenza viruses tested
Subtype
H1N2
H2N2
H4N2
H5N2
H6N2
H7N2
H9N2
H11N2
H13N2
H3N1
H3N2
H3N3
H3N4
H3N5
H3N6
H3N7
H3N8
H3N9

All viruses were obtained from the influenza repository at St. Jude Children’s Research Hospital, Memphis TN, USA, and grown in embryonated hen eggs.
measured using the hemagglutination-inhibition (HI) assay15 using both ether-treated and untreated virus antigens. All animal work was approved by the University of Kentucky's Institutional Animal Care and Use Committee (protocol no. 2007-0153).

Results of these pony infection experiments were almost all negative. No pony exhibited disease signs or seroconverted to the AIV used for infection. Most nasopharyngeal swabs were negative by qRT-PCR (Table 2). Two swabs (one pony in H6N2 group and one in H7N2 group) were weakly positive only on Day 1 post-infection which might be residual from the infection process rather than representative of virus replication. One swab from a pony in the H6N2 group was positive with more strength on Day 3 post-infection, but every other swab from that pony was negative.

Our intention was to isolate and sequence viruses from PCR-positive swabs, to determine whether there were genetic changes associated with virus replication in ponies, but after repeated blind passages in embryonated eggs, we failed to isolate any viruses. Genetic adaptation of avian influenza viruses to the equine host has not been rigorously examined. As several AIV subtypes tested here did exhibit virus replication in explanted equine tracheal epithelium, HA receptor binding is unlikely to be a restricting factor for those subtypes. The PB2 E627K substitution, which features prominently in the adaptation of many zoonotic AIVs to humans, is not present in the PB2 of equine influenza viruses found in GenBank, as per our own inspection. Also the AIV tested here, or similar strains in GenBank, all featured PB2 with E627.

Neither the in vitro tracheal explant experiments nor the in vivo pony infection experiments exhaustively test every AIV subtype, and our results cannot rule out the possibility that some AIVs may be infectious for horses. They do, however, demonstrate that the equine tracheal explant model is a poor predictor of AIV infectivity in the upper respiratory tract of live equines.

Acknowledgements

We thank Dr. Weisong Zhou (Vanderbilt University) who contributed preliminary studies to this project while a graduate student at the University of Kentucky. We also thank Ms. Felicia Kost and Mr. Jacob Roney for their animal handling and technical assistance, and Drs. Richard Webby and Robert Webster of St. Jude Children’s Research Hospital for their kind provision of the viruses. This work was supported by a research grant from the Kentucky Science and Engineering Foundation (KSEF-2445-RDE-014). It was performed in connection with projects of the Kentucky Agricultural Experiment Station (Project Nos. KY014041 and 014042) and is published with approval of the Director.

Competing interests

The authors have no competing interests.

References

1 Mumford JA, Chambers TM. Equine influenza; in Nicholson KG, Hay AJ, Webster RG (eds): Textbook of Influenza, 1st edn. Oxford: Blackwell Scientific Press, 1998; 146–162.
2 Kawaoka Y, Bean WJ, Webster RG. Evolution of the hemagglutinin of equine H3 influenza viruses. Virology 1989; 169:283–292.
3 Murcia PR, Wood JL, Holmes EC. Genome-scale evolution and phylogenetics of equine H3N8 influenza A virus. J Virol 2011; 85:5312–5322 Epub 2011/03/25.
4 Guo Y, Guo Z, Pan X, Guo C, Wang M, Liu X et al. Etiologic and seroepidemiologic surveys of equine influenza epidemic in northeast China. Chin J Exp Clin Virol 1990; 3:318–323.
5 Guo Y, Wang M, Kawaoka Y, Gorman O, Ito T, Saito T et al. Characterization of a new avian-like influenza A virus from horses in China. Virology 1992; 188:245–255.
6 Chambers TM, Lai ACK, Powell DG, Shortridge KF. Equine influenza in China, including Hong Kong, 1989–1994. A review; in Dodet B, Vicari M (eds): Emergence and Control of Zoonotic Ortho- and Paramyxovirus Diseases. Montrougue (France): John Libbey Eurotext, 2001; 55–64.
7 Morens DM, Taubenberger JK. An avian outbreak associated with panzootic equine influenza in 1872: an early example of highly pathogenic avian influenza? Influenza Other Respi Viruses 2010; 4:373–377.

Table 2. Detection of virus shedding by qRT-PCR following experimental infections of ponies

Virus	Pony	qRT-PCR results
H1N2	L41	Days 0–7: All negative (C\textsubscript{t} > 40)
H1N2	L46	Days 0–7: All negative (C\textsubscript{t} > 40)
H1N2	L55	Days 0–7: All negative (C\textsubscript{t} > 40)
H6N2	L52	Days 0–7: All negative (C\textsubscript{t} > 40)
H6N2	L54	Day 3: C\textsubscript{t} = 33 (24408 RNA copies), all other days negative (C\textsubscript{t} > 40)
H6N2	L72	Day 1: C\textsubscript{t} = 40 (432 RNA copies), Day 7: C\textsubscript{t} = 39 (785 RNA copies). All other days negative (C\textsubscript{t} > 40)
H7N2	M75	Days 0–7: All negative (C\textsubscript{t} > 40)
H7N2	M76	Day 1: C\textsubscript{t} = 37 (2483 RNA copies), All other days negative (C\textsubscript{t} > 40)
H7N2	M89	Days 0–7: All negative (C\textsubscript{t} > 40)

Ponies were infected by inhalation of nebulized virus (5 x 10^7 EID50 units per m3). Nasopharyngeal swabs were collected prior to infection (Day 0) and daily for 7 days post-infection (Days 1–7). Results are expressed as cycle threshold (C\textsubscript{t}) values, in which lower number = stronger signal, and C\textsubscript{t} > 40 is undetectable. In parentheses are calculated RNA copies.
8 Suzuki Y, Ito T, Suzuki T, Holland RE Jr, Chambers TM, Kiso M et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol 2000; 74:11825–11831.
9 Lin C, Holland RE Jr, Williams NM, Chambers TM. Cultures of equine respiratory epithelial cells and organ explants as tools for the study of equine influenza virus infection. Arch Virol 2001; 146:2239–2247.
10 Rees WA, Harkins JD, Lu M, Holland RE Jr, Lehner AF, Tobin T et al. Pharmacokinetics and therapeutic efficacy of rimantadine in horses experimentally infected with influenza virus A2. Am J Vet Res 1999; 60:888–894.
11 Chambers TM, Holland RE, Tudor LR, Townsend HG, Cook A, Bogdan J et al. A new modified live equine influenza virus vaccine: phenotypic stability, restricted spread and efficacy against heterologous virus challenge. Equine Vet J 2001; 33:630–636.
12 Chambers TM, Quinlivan M, Sturgill T, Cullinane A, Horohov DW, Zamarin D et al. Influenza A viruses with truncated NS1 as modified live virus vaccines: pilot studies of safety and efficacy in horses. Equine Vet J 2009; 41:87–92.
13 Adams AA, Sturgill TL, Breathnach CC, Chambers TM, Siger L, Minke JM et al. Humoral and cell-mediated immune responses of old horses following influenza recombinant canarypox virus vaccination and challenge. Vet Immunol Immunopathol 2011; 139:128–140.
14 Lu Z, Dubovi EJ, Zylich NC, Crawford PC, Sells S, Go YY et al. Diagnostic application of H3N8-specific equine influenza real-time reverse transcription polymerase chain reaction assays for the detection of Canine influenza virus in clinical specimens. J Vet Diagn Invest 2010; 22:942–945.
15 OIE. Equine influenza; in: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 7th edn. Paris: World Organisation for Animal Health (OIE), 2012; 865–878.