Prevalence of carbapenem resistance encoding genes and corresponding MIC$_{90}$ in enterobacteriaceae at a tertiary medical care center in Lebanon

Kohar Annie B. Kissoyan, George F. Araj, Ghassan M. Matar

American University of Beirut / Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, Beirut, Lebanon

Corresponding author:
Prof. Ghassan M. Matar

Abstract

Background: The aim of this study was to correlate genes involved in carbapenem resistance to MIC levels among clinical ESBL and non-ESBL producing carbapenem resistant Enterobacteriaceae (CRE) isolates of Escherichia coli and Klebsiella pneumoniae.

Materials and Methods: E. coli (n=76) and K. pneumoniae (n=54), collected between July 2008 and July 2014, were analyzed. The MICs were determined against ertapenem (ERT), imipenem (IMP) and meropenem (MER). PCR was performed on all 130 isolates to amplify the resistance and outer membrane proteins (OMPs) encoding genes: $\text{bla}_{\text{OXA-48}}$, $\text{bla}_{\text{NDM-1}}$, $\text{bla}_{\text{TEM-1}}$, $\text{bla}_{\text{CTX-M-15}}$, ompC and ompF. Sequencing was performed on selected isolates.

Results: The prevalence of $\text{bla}_{\text{OXA-48}}$, $\text{bla}_{\text{NDM-1}}$, $\text{bla}_{\text{TEM-1}}$ and/or $\text{bla}_{\text{CTX-M-15}}$ among E. coli isolates were 36%, 12%, 20% and 80%, respectively, while among K. pneumoniae they were 37%, 28%, 28% and 72%, respectively. K. pneumoniae isolates positive for any of these genes had an MIC$_{90} \geq 32\mu$g/ml against ERT, IMP and MER, while in E. coli isolates there was a variation in the MIC$_{90}$ values. Porin impermeabilities were due to mutations in ompC and ompF genes in E. coli, and loss of ompC and ompF genes in K. pneumoniae, and increased MIC$_{90}$ values. The presence of more than one carbapenem resistance encoding gene and/or ESBL encoding gene did not have an effect on the MIC$_{90}$ value in K. pneumoniae isolates, while in E. coli it showed higher MIC$_{90}$ values.
Introduction

The dissemination of carbapenem resistant Enterobacteriaceae (CRE) globally is an alarming crisis, which attributes to a serious public health, infection control and society threat. Its fast-paced spread intensifies the clinical challenge further, requiring urgent interventions [1-5].

Several risk factors for infections with CRE have been identified including prolonged hospitalization, mechanical ventilation, exposure to broad spectrum antibiotics and previous colonization with these strains. In addition, high mortality rates of around 40% have been associated with CRE, mostly of bloodstream infections and pneumonia [4].

Carbapenem resistance can be ascribed to several enzymes encoded by resistance genes including the production of various carbapenemases: K. pneumoniae carbapenemase (KPC; Ambler class A), Verona integron–encoded metallo-β-lactamase (VIM), imipenemase (IMP), New Delhi metallo-β-lactamase (NDM) (all Ambler class B), and oxacillinase-48 (OXA-48; Ambler class D) [3 &6]. Moreover, a combination of AmpC hyper-production and/or extended spectrum beta lactamase (ESBL) production (such as CTXM-15 enzyme), efflux pump and porin mutation or loss (such as lack of OMPC and/or OMPF enzymes) can also affect carbapenem resistance [4 &7].

In the Middle East in general and in Lebanon in particular, there is a paucity of scientific reports compared to other regions of the world, concerning CRE and underlying mechanisms of resistance. In a previous pilot study [6], we determined in a limited number of carbapenem resistant isolates the mechanism of carbapenem resistance at a tertiary medical center in Lebanon to be due to blaOXA-48 and/or blaNDM-1 and blaCTXM-15 along with outer membrane impermeabilities and to a significantly lesser effect of efflux pump activity.

This study was undertaken to screen for the prevalent carbapenem resistance (blaCTXM-15, blaOXA-48, blaNDM-1 and blaTEM-1) and outer membrane porin (OMPC and OMPF) encoding genes and correlate their role singly or in combination to MIC levels among CRE producing clinical isolates of E.coli and K.pneumoniae, from Lebanon.

Materials and methods

Clinical isolates

Available phenotypically determined non-duplicate ESBL producing CRE E. coli (n=76) and K. pneumoniae (n=54) were collected at the Clinical Microbiology Laboratory of the Department of Pathology and Laboratory Medicine at the medical center, between July 2008 and July 2014. The CRE isolates were cultured on MacConkey agar (Scharlau, Spain) and stored in Brucella broth (BBL, USA), enriched with 15% glycerol for later use. The origins of each of the 130 isolates are listed in Table 1.

Conclusion: Levels of MIC in CRE may largely depend on the type of resistance encoding genes, and porin impermeabilities. These results may provide information for antibiotic regimen selection and epidemiological monitoring of resistance.

Keywords: CRE; MIC; PCR; Antimicrobial agents
Minimum inhibitory concentrations (MIC)

Minimum inhibitory concentrations (MIC) for ertapenem (ERT), imipenem (IMP) and meropenem (MER) were determined by Etest (bioMérieux, France) following the manufacturer’s guidelines and the results were interpreted using the CLSI standards for MIC interpretation. An MIC value ≥ 2 µg/ml against ERT, IMP or MER is considered resistant reflecting potential CRE of these isolates [8].

DNA extraction

DNA was extracted from the 130 isolates using the QIAamp DNA Mini Kit (QIAGEN, Germany), following the manufacturer’s instructions for DNA extraction from bacteria.

Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) for the metallo-beta-lactamases were previously done on tested isolates (data unpublished). However, due to the absence of these metallo-beta-lactamase encoding genes, only the following resistance encoding genes: blaTEM-1, blaCTX-M-15, blaOXA-48, blaNDM-1, ompC, and ompF were performed on the extracted DNA of each isolate. Primer sequences are listed in Table 1. PCR primers used for the detection resistance and outer membrane porin encoding genes

Table 1. PCR primers used for the detection resistance and outer membrane porin encoding genes

Primer	Sequence (5’-3’)	Ref.
OXA-48-F	5’-TTGGTGGGATCGGTAGTTACG-3’	[27]
OXA-48-R	5’-GAGCACCCTTTTTGTAGGC-3’	
NDM-1-F	5’-GGAAACTGCGGACCCAACG-3’	[7]
NDM-1-R	5’-ATGCGGCGCGTATGAGTGA-3’	
CTX-M-F	5’-GTTTAAGAATCTACTGCGTCG-3’	[28]
CTX-M-R	5’-TTACAAACCCGTCGTCGAG-3’	
OT-3	5’-ATGAGATTGTTCAACATTCCG-3’	[29]
OT-4	5’-CCAATGCTTAATACGTGAG-3’	
ompF-A	5’-CAGGTACTGCAACACGCTGC-3’	[30]
ompF-B	5’-GTCAACATAATGGTGACCATG-3’	
ompC-F	5’-GAACCTGTAACCCAGCCCAACACGC-3’	[29]
ompC-R	5’-GTTAAAGTACTGTCCCTCTTG-3’	

Table 2. Positive and negative controls used for the PCR

Isolate number	Genes
IMP 02	ompC and CTX-M-15
IMP 44	ompF and blaOXA-48
IMP 54	blaNDM-1
IMP 14	blaTEM-1
CDC Strain 06-3637	
Water	

Table 1. Positive and negative controls used for the PCR amplification mentioned in Table 2.

Amplification was achieved using the PCR Sprint Thermal Cycler (Thermo Fisher Scientific, Waltham, MA, USA). The PCR cycling conditions are listed in supplementary table 2.

PCR amplicons were electrophoresed on 1.5% agarose gel using SeaKem® LE Agarose (FMC BioProduct, Rockland, ME, USA). A 50 base pair ladder (Fermentas Life Sciences, Burlington, Ontario, Canada) was run in parallel to the samples and served as a size marker. Amplicons were then observed using ULTRA LUM, Dual Light Transilluminator (Claremont, CA), and photographed using the Digi-Doc It program (Ultra Violet Products Ltd., Cambridge, UK).

Amplified PCR products were extracted from the gel after electrophoresis and purified using a QIAquick Gel Extraction Kit (QIAGEN, Valencia, CA) following the manufacturer’s instructions. Purified DNA was seen on a 1.5% agarose gel. Sequencing reactions were performed using a BigDye® Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) and purified using a DyeEx 2.0 Spin Kit (QIAGEN). Purified sequences were detected using an ABI 3500 Genetic Analyzer (Applied
Results

The prevalence of specific resistance encoding genes \(\text{bla}_{\text{OXA-48}}, \text{bla}_{\text{NDM-1}}, \text{bla}_{\text{TEM-1}}, \text{and} / \text{or} \text{bla}_{\text{CTX-M-15}} \) among \(E. \text{coli} \) isolates were 36%, 12%, 20% and 80%, respectively, while among \(K. \text{pneumoniae} \) isolates were 37%, 28%, 28% and 72%, respectively (Table 3).

Upon calculating the MIC\(_{90}\) values, the results showed that among the \(E. \text{coli} \) isolates positive for the resistance encoding genes, MIC\(_{90}\) was \(\geq 32 \) µg/ml for ERT. IMP had MIC\(_{90}\) of 6 µg/ml for \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{CTX-M-15}} \) positive isolates. As for MER, MIC\(_{90}\) was 1.5 µg/ml and 4 µg/ml for \(\text{bla}_{\text{NDM-1}} \) and \(\text{bla}_{\text{CTX-M-15}} \) positive isolates, respectively. However, among \(K. \text{pneumoniae} \) the MIC\(_{90}\) for the ERT, IPM and MER were all \(\geq 32 \)µg/ml for the isolates harboring either gene: \(\text{bla}_{\text{OXA-48}}, \text{bla}_{\text{NDM-1}}, \text{bla}_{\text{CTX-M-15}} \) or \(\text{bla}_{\text{TEM-1}} \) (Table 4).

Comparing resistance encoding genes with the porin encoding genes it appeared that in \(E. \text{coli} \) the isolates negative for \(\text{ompC} \) or \(\text{ompF} \) for both were 4% (1/27) for \(\text{bla}_{\text{OXA-48}} \) positive isolates, 11% (1/9) for \(\text{bla}_{\text{NDM-1}} \) positive isolates, 5% (3/61) for \(\text{bla}_{\text{CTX-M-15}} \) positive isolates and 0% (0/15) for \(\text{bla}_{\text{TEM-1}} \) positive isolates. As for \(K. \text{pneumoniae} \), the isolates negative for \(\text{ompC} \) or \(\text{ompF} \) both were 35% (7/20) for

Table 3. Distribution of the resistance encoding genes among \(E. \text{coli} \) and \(K. \text{pneumoniae} \)

Presence of Carbanpenem Gene	Number (%) of Gene in	\(E. \text{coli} \) N=76	\(K. \text{pneumoniae} \) N=54	Total N=130
\(\text{bla}_{\text{OXA-48}}+\text{ve} \)	27 (36%)	20 (37%)	47 (36%)	
\(\text{bla}_{\text{NDM-1}}+\text{ve} \)	9 (12%)	15 (28%)	24 (18%)	
\(\text{bla}_{\text{CTX-M-15}}+\text{ve} \)	61 (80%)	39 (72%)	100 (77%)	
\(\text{bla}_{\text{TEM-1}}+\text{ve} \)	15 (20%)	15 (28%)	30 (23%)	

Biosystems) and analyzed using the BioEdit Sequence Alignment Editor (Ibis Biosciences, Carlsbad, CA).

Statistical Analysis

Data statistical analysis was carried out, when applicable, using GraphPad. Chi Square with Yates’ correction, one tailed statistics was carried out. The differences were considered to be statistically significant when the \(p \)-value obtained was less than 0.05.

Table 4. MIC\(_{90}\) in correlation with resistance encoding genes in the \(E. \text{coli} \) and \(K. \text{pneumoniae} \) isolates

Genes	\(\text{bla}_{\text{OXA-48}}+\text{ve} \)	\(\text{bla}_{\text{NDM-1}}+\text{ve} \)	\(\text{bla}_{\text{CTX-M-15}}+\text{ve} \)	\(\text{bla}_{\text{TEM-1}}+\text{ve} \)
\(E. \text{coli} \)	N=27	N=9	N=61	N=15
ERT	>32	>32	>32	>32
IMP	>32	6	4	>32
MER	>32	1.5	4	>32
\(K. \text{pneumoniae} \)	N=20	N=15	N=39	N=15
ERT	>32	>32	>32	>32
IMP	>32	>32	>32	>32
MER	>32	>32	>32	>32
the bla\textsubscript{OXA-48} positive isolates, 73% (11/15) bla\textsubscript{NDM-1}, 54% (21/39) for the bla\textsubscript{CTX-M-15} positive isolates, and 33% (5/15) for bla\textsubscript{TEM-1}-positive isolates (Table 5). Furthermore, these differences in the results between \textit{E. coli} and \textit{K. pneumoniae} isolates were statistically significant (Tables 5 & 6).

The presence of more than one resistance encoding gene did not have an effect on the MIC\textsubscript{90} value in \textit{K. pneumoniae} isolates against the tested carbapenems (results remained ≥ 32 µg/ml). However, in \textit{E. coli} isolates the presence of resistance encoding genes bla\textsubscript{NDM-1}+ve & bla\textsubscript{CTX-M-15}+ve showed higher MIC\textsubscript{90} values when compared to the MIC\textsubscript{90} values of isolates positive for only one of those genes. Furthermore, when the three genes bla\textsubscript{NDM-1}, bla\textsubscript{OXA-48} & bla\textsubscript{CTX-M-15} coexisted in \textit{E. coli} isolates the MIC\textsubscript{90} values against IMP and MER increased however those against ERT decreased. However, it is important to note that since the number of isolates (N) is small (range from 2 to 14) when co-production of genes is concerned the conclusions may not be statistically significant in this regard (Tables 3 & 4).

Sequence analysis of the resistance-encoding genes confirmed that the PCR amplicons were positive for the gene in question. Sequence analysis of the OmpF and OmpC porins showed considerable variability for selected carbapenem-resistant \textit{K. pneumoniae} and \textit{E. coli}, (both carbapenemase- and/or ESBL-producers) in relation to both of the porins when their sequences were compared with those of the reference strain \textit{E. coli} K-12 and with sequences of other susceptible isolates of \textit{E. coli} and \textit{K. pneumoniae}. A number of resistant isolates showed nucleotide substitutions, deletions and insertions, sometimes of multiple nucleotides, throughout the coding region.

Discussion

In our medical center, the prevalence of CRE among \textit{E. coli} and \textit{K. pneumoniae} showed an increase between 2008 and 2014 from 0% in both to 1% and 4%, respectively [9]. In this study, the association between genes involved in CRE resistance and the level of MICs against carbapenems was determined to reveal a possible potential clinical application in this approach for treating patients with CRE infections.

The molecular investigation on these isolates showed that bla\textsubscript{CTXM-15} is the most common resistance encoding gene in both \textit{E. coli} and \textit{K. pneumoniae} isolates followed by bla\textsubscript{TEM-1}, bla\textsubscript{OXA-48} and bla\textsubscript{NDM-1}. This is in concordance with other studies

Table 5. \textit{E. coli} and \textit{K. pneumoniae} number of isolates(%) with regard to bla\textsubscript{OXA-48}, bla\textsubscript{NDM-1}, bla\textsubscript{CTX-M-15} and bla\textsubscript{TEM-1} positive isolates with and without the porin encoding genes ompC and/or ompF

Genes	bla\textsubscript{OXA-48}+ve	bla\textsubscript{NDM-1}+ve	bla\textsubscript{CTX-M-15}+ve	bla\textsubscript{TEM-1}+ve
\textit{E. coli} Number of isolates (%)				
With porins*	26 (96%)	8 (89%)	58 (95%)	15 (100%)
Without porins**	1 (4%)	1 (11%)	3 (5%)	0 (0%)
Total	27	9	61	15
\textit{K. pneumoniae} Number of isolates (%)				
With porins*	13 (65%)	4 (27%)	18 (46%)	10 (67%)
Without porins**	7 (35%)	11 (73%)	21 (54%)	5 (33%)
Total	20	15	39	15

*ompC+ve and/orompF+ve **ompC –ve and/or ompF –ve
\(p\)-value= 0.0032 \(p\)-value= 0.0001 \(p\)-value= 0.0250

© Under License of Creative Commons Attribution 3.0 License
that showed that the CTXM type ESBLs are the most prevalent resistant encoding gene both worldwide and in the Middle East [7 & 10]. Furthermore, and since the first report in Lebanon of bla\textsubscript{OXA-48} in 2008 [11] and bla\textsubscript{NDM-1} in 2012 [12], studies have shown a trend of elevated cases [6,9 &13-17].

Also concerning the geographic region of the Middle East, there are reports implying the spread of bla\textsubscript{CTX-M-15} along with other ESBLs to be predominant in Egypt, Kuwait, Lebanon and the United Arab Emirates [9]. Also in 2013, a study done in Jordan reported high incidence of CTX-M ESBL-producing E. coli to be found associated with fluoroquinolone-resistance and Class I integrons colonizing the intestine of Jordanian infants [10]. Plasmid that harbors OXA-48 among various Enterobacteriaceae, was first identified in Turkey in 2003, then in European countries and in the Middle East [19 &20]. As for NDM-1, it was first identified in India in 2008 and subsequently reported also from the Arabian Peninsula: United Arab Emirates, Sultanate of Oman, Kuwait and Saudi Arabia [21].

Table 6. Comparison of MIC values among E. coli and K. pneumoniae isolates, positive for the resistance encoding genes, tested against ERT, IMP, and MER.

Resistance Encoding Genes	Carbapenems tested against	Isolates	MIC value <32	MIC value ≥32
bla\textsubscript{OXA-48+ve}	ERT	E. coli	18	9
	K. pneumoniae	E. coli	8	12
	IMP*	E. coli	14	3
	K. pneumoniae	K. pneumoniae	23	4
	MER	E. coli	16	4
	K. pneumoniae	K. pneumoniae	7	2
bla\textsubscript{NDM-1+ve}	ERT*	E. coli	7	2
	K. pneumoniae	E. coli	8	12
	IMP*	E. coli	9	0
	K. pneumoniae	K. pneumoniae	6	9
	MER*	E. coli	9	0
	K. pneumoniae	K. pneumoniae	9	6
bla\textsubscript{CTX-M-15+ve}	ERT*	E. coli	46	15
	K. pneumoniae	K. pneumoniae	17	22
	IMP*	E. coli	59	2
	K. pneumoniae	K. pneumoniae	27	12
	MER*	E. coli	59	2
	K. pneumoniae	K. pneumoniae	31	8
bla\textsubscript{TEM-1+ve}	ERT	E. coli	8	7
	K. pneumoniae	E. coli	4	11
	IMP*	E. coli	13	2
	K. pneumoniae	K. pneumoniae	6	9
	MER	E. coli	12	3
	K. pneumoniae	K. pneumoniae	8	7

*P-value < 0.05; thus statistically significant difference.
Determining the simultaneous levels of carbapenem MICs and the genes involved was partly in search of an association pertaining to treatment potential of CRE infections. This approach was not reported in any study from this region, however conducted elsewhere [22 & 23]. In our study the MIC90 revealed that E. coli isolates positive for blaOXA-48 and blaTEM-1 were resistant to the three carbapenems tested (ERT, IMP and MER), while those positive for blaNDM-1 and blaCTXM-15 showed to be resistant only to ERT and IMP, and susceptible to MER. On the other hand K. pneumoniae isolates positive for any one of the three resistance encoding genes, showed resistance to all three carbapenems. Thereby, it may not be advisable to treat CRE infections due to isolates harboring these genes, subsequently with carbapenems. It is suggested that doripenem is more stable against emerging resistance than the other carbapenems [4].

ERT has shown to have higher MIC levels, in both E. coli and K. pneumoniae isolates positive for any of the resistance encoding genes. This phenomenon was explained by Tangden et al., where ERT has shown to have higher MIC levels in ESBL producing isolates as compared to other carbapenems being less affected by the action of the enzymes [4]. Whereby, resistance to IMP and MER is less common. ERT resistance is indeed more frequently reported than resistance to other carbapenems, especially in ESBL-producing strains. In addition, ERT has been heavily used for UTI infections caused by ESBL-producing bacteria and proven effective for these infections, which might explain the generated resistance to this agent [4].

It seems that ERT is more affected by the presence of blaOXA-48 and the other resistance encoding genes, thus ERT may be a good indicator for their detection [12]. Metallo-β-lactamases, such as blaNDM-1, may result in low-grade reduced susceptibility to carbapenems in some instances [4]. This was also observed in our data, and may present a challenge in the detection of the CRE, if based on only the MIC results [16].

Knowing that K. pneumoniae isolates had MIC values ≥ 32µg/ml against the three carbapenems regardless of the type of the resistance encoding genes, it may be concluded that the lack of the porin genes (OMPC and/or OMPF), which was significantly higher in K. pneumoniae than in the E. coli isolates, plays a major role in increasing the MIC levels. Similarly, it has been shown that carbapenem resistance levels intensify when resistance encoding genes such as blaOXA-48 are combined with permeability defects [13]. Yang et al. demonstrated similar results, whereby they confirmed that the combination of SHV-1, CTXM-3, CTXM-14, TEM-1 or OXA-11 production reduced the expression of OMPK-35/36 resulting in increased MIC, which may or may not lead to increased resistance clinically [23].

Furthermore, PCR and sequencing analysis of the K. pneumoniae and E. coli Omp encoding genes, revealed mutations associated with carbapenem resistance. On the other hand a number of K. pneumoniaecarbapenem resistant isolates lacked the OMP encoding genes. Similarly, Little et al. reported the development of carbapenem resistance in K. pneumoniae due to porin disruption by insertion sequence ISEcp1 in CTXM-15 positive isolate [24]. Therefore, the E. coli isolates in this study harboring any of the porin encoding genes, have shown mutations by sequence analysis. This may indicate that High MIC values detected in the TEM-1 positive isolates harboring both porin encoding genes, are mainly due to mutated porins.

The first report of a K. pneumoniae strain co-producing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco was reported by Barguiga et al in 2012 [25]. Further, the first K. pneumoniae isolate co-producing OXA-48 and NDM-1 in Turkey was reported by Kilic et al [26]. The emergence of carbapenem-resistant Gram-negative bacilli in the Mediterranean region, which is in fact the cradle of western civilization representing nearly 475 million inhabitants (6.3% of world population), is of importance, since intermingling of this population
may explain the prominence of the dissemination of carbapenemase producers more rapidly in this region[27]. Thereby, these isolates showing co-production of resistance genes may be the interest of future studies.

In conclusion, levels of MIC in carbapenem resistance may largely depend on the type of carbapenemase and/or ESBL encoding genes in combination with the porin encoding genes. Such information may provide information for antibiotic regimen selection, epidemiological monitoring of resistance.

Funding: Medical Practice Plan (MPP), Faculty of Medicine, American University of Beirut
Competing interests: None declared
Ethical Approval: Not required

References

1. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 2012; 18(9):1503-1507.
2. El-Srougy R, Kalabalik J, Kim C, Song A. Carbapenem-resistant enterobacteriaceae: An emerging threat. U.S. Pharmacist 2013; 38(12):HS2-HS5.
3. Huang S, Liu M, Lin C, Shi Z. Molecular surveillance and clinical outcomes of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae infections. Journal of Microbiology, Immunology and Infection 2014; 47(3):187-196.
4. Tängdén T, Giske CG. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: Clinical perspectives on detection, treatment and infection control. J Intern Med 2015; 277(5):501-512.
5. Lee B, Boucher HW. Targeting antimicrobial-resistant bacterial respiratory tract pathogens: It is time to ‘get smart’. CurrOpinPulm Med 2015; 21(3):293-303.
6. Baroud M, Dandache I, Araj GF, Wakim R, Kanj S, Kanafani Z, et al. Underlying mechanisms of carbapenem resistance in extended-spectrum B-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: Role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents 2013; 41(1):75-79.
7. Paterson DL, Bonomo RA. Extended-spectrum B-lactamases: A clinical update. ClinMicrobiol Rev 2005; 18(4):657-686.
8. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; Twenty First Informational Supplement. Supplement M-100-S24. Wayne, PA: CLSI 2014; 34 (1).
9. Araj GF, Avedissian AZ, Ayyash NS, Hey HA, El Asmar RG, Hammoud RZ, et al. A reflection on bacterial resistance to antimicrobials at a major tertiary care center in Lebanon over a decade. Journal Medical Libanais 2012; 60(3):125-135.
10. Abu Salah MA, Badran EF, Shehabi AA. High incidence of multidrug resistant Escherichia coli producing CTX-M-type ESBLs colonizing the intestine of Jordanian infants. IAJAA 2013; 3(4).
11. Baroud M, Araj GF, Matar GM. Spread of CTX-M-15 extended spectrum B-lactamases encoding genes among Enterobacteriaceae in the Middle Eastern region. IAJAA 2011; 1(1).
12. Matar GM, Cuzon G, Araj GF, Naas T, Corkill J, Kattar MM, et al. Oxacillinase-mediated resistance to carbapenems in Klebsiella pneumoniae from Lebanon. Clin Microbiol Inf 2008; 14(9): 887-888.
13. El-Herte RI, Kanj SS, Matar GM, Araj GF. The threat of carbapenem-resistant Enterobacteriaceae in Lebanon: An update on the regional and local epidemiology. JIPH 2012; 5(3):233-243.
14. Matar GM, Dandache I, Carrèr A, Khairallah M, Nordmann P, Sabra A, et al. Spread of OXA-48-mediated resistance to carbapenems in Lebanese Klebsiella pneumoniae and Escherichia coli that produce extended spectrum B-lactamase. Ann Trop Med Parasitol 2010; 104(3):271-274.
15. El-Herte RI, Araj GF, Matar GM, Baroud M, Kanafani ZA, Kanj SS. Detection of carbapenem-resistant Escherichia coli and Klebsiella pneumoniae producing NDM-1 in Lebanon. JIDC 2012; 6(5):457-461.
16. Kanj SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum B-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 2011; 86(3):250-259.
17. Kanafani ZA, Mehio-Sibai A, Araj GF, Kanaan M, Kanj SS. Epidemiology and risk factors for extended-spectrum B-lactamase- producing organisms: A case control study at a tertiary care center in Lebanon. Am J Infect Control 2005; 33(6):326-332.
18. Araj GF, Ibrahim GY. Tigecycline in vitro activity against commonly encountered multidrug-resistant Gram-negative pathogens in a Middle Eastern country. DiagnMicrobial Infect Dis 2008; 62(4):411-415.
19. Carrèr A, Poirel L, Yilmaz M, Akan ÖA, Feriha C, Cuzon G, et al. Spread of OXA-48-encoding plasmid in Turkey and beyond. Antimicrob Agents Chemother 2010; 54(3):1369-1373.
20. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase producing Enterobacteriaceae. Emerg Infect Dis 2011; 17(10):1791-1798.
21. Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-Type carbapenemases in Gram-negative bacteria. BioMed Research International 2014; 2014.
22. Cho HH, Kwon KC, Kim S, Koo SH. Correlation between virulence genotype and fluoroquinolone resistance in carbapenem-resistant Pseudomonas aeruginosa. Annals of Laboratory Medicine 2014; 34(4):286-292.
23. Yang D, Guo Y, Zhang Z. Combined porin loss and extended
spectrum β-lactamase production is associated with an increasing imipenem minimal inhibitory concentration in clinical Klebsiella pneumoniae strains. Curr Microbiol 2009; 58(4):366-370.

24. Little ML, Qin X, Zerr DM, Weissman SJ. Molecular diversity in mechanisms of carbapenem resistance in paediatric Enterobacteriaceae. Int J Antimicrob Agents 2012; 39(1):52-57.

25. Barguiguia A, El Otmani F, Lakbakbi el yaagoubi F, Talmi M, Zerouali K, Timinouni M. First report of a Klebsiella pneumoniae strain coproducing NDM-1, VIM-1 and OXA-48 carbapenemases isolated in Morocco. APMIS 2013; 121(7):675-677.

26. Kilic A, Baysallar M. The first Klebsiella pneumoniae isolate co-producing OXA-48 and NDM-1 in Turkey. Ann Lab Med 2015; 35(3):382-383.

27. Djahmi N, Dunyach-Remy C, Pantel A, Dekhil M, Sotto A, Lavigne J. Epidemiology of carbapenemase-producing enterobacteriaceae and acinetobacter baumannii in Mediterranean countries. Bio Med Res Int 2014; 2014.

28. Poirel L, Heritier C, Tolun V, Nordmann P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy. 2004; 48(1): p. 15-22.

29. Weill FX, Perrier-Gros-Claude JD, Demartin M, Coignard S, Grimont PAD. Characterization of extended-spectrum-β-lactamase (CTX-M-15)-producing strains of Salmonella enteric isolated in France and Senegal. FEMS Microbiology Letters. 2004; 238(2): p. 353–358.

30. Gaillot O, Maruéjouls C, Abachin É, Lecuru F, Arlet G, Simonet M, et al. Nosocomial Outbreak of Klebsiella pneumoniae Producing SHV-5 Extended-Spectrum β-Lactamase, Originating from a Contaminated Ultrasonography Coupling Gel. J Clin Microbiol 1998; 36(5): p. 1357-1360.

Comment on this article:

http://medicalia.org/

Where Doctors exchange clinical experiences, review their cases and share clinical knowledge. You can also access lots of medical publications for free. Join Now!

Publish with iMedPub
http://www.imed.pub

The Journal is an open access peer-reviewed journal that publishes scientific papers about all aspects of antimicrobials. The journal will publish original research articles, reviews, brief reports and case reports dealing with basic and clinical antibacterial agents, antiviral, antiprotozoals, antituberculuous, antifungal and antihelminthes agents.

All manuscripts must be prepared in English, and are subject to a rigorous and fair peer-review process. Accepted papers will immediately appear online.

The journal aims to advance the knowledge, attitude and the research of chemotherapy in the Arabic world in cooperation with international, national scientific and public societies as well as research centers with similar aims and objectives.