Copper-catalysed regioselective sulfenylation of indoles with sodium sulfinates

Xiaojun Luo¹,†, Qiang Liu²,†, Hongxia Zhu¹ and Huoji Chen²

¹Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Shiliugang Road 13th, Guangzhou 510315, People’s Republic of China
²School of Traditional Chinese Medicine, Southern Medical University, No.1023, South Shatadi Road, Baiyun District, Guangzhou 510515, People’s Republic of China

A copper-catalysed sulfenylation of indoles with sodium sulfinates that affords 3-sulfenylindoles in good-to-excellent yields in N,N-dimethyl formamide (DMF) is described. In the process, DMF serves not only as a solvent but also as a reductant. This transformation is easy to carry out and has mild reaction conditions and good functional group tolerance.

1. Introduction

The indole moiety exists in a variety of natural products and synthetic drugs. Therefore, it has always been a hot topic to find a new method for the synthesis of substituted indoles through either construction or modification of indole rings [1,2]. In recent years, 3-sulfenylindoles have attracted more attention because of their broad spectrum of biological and pharmaceutical activities. For example, some 3-sulfenylindoles were investigated as a new class of potent antivirals against the vaccinia virus [3]. Recently, Miller et al. reported a 3-sulfenylindole derivative that was a potent inhibitor of small-molecule autotaxin [4]. Furthermore, many 3-sulfenylindole derivatives have been proved to possess other biological activities, including anticancer activity [5,6], anti-HIV-1 activity [7], anti-allergy activity [8] and so on. The indole rings can be directly functionalized with electrophiles via carbon–carbon or carbon-hetero bonds because of their electron-rich nature. In this regard, the sulfenylation of indoles was the most common method for the synthesis of 3-sulfenylindoles. To date, many sulfenylating agents have been used for the sulfenylation of indoles such as thiols [9–13], disulfides [14–18], sulfonyl chlorides [19–21], sulfonyl hydrazides [22–24], N-thioimides
Scheme 1. Sulfenylation/arylation of indoles with sodium sulfinates.

[25,26] and quinone mono-O,S-acetals [27,28]. However, many of these sulfenylating agents had some disadvantages, such as a foul smell, high cost and being unstable to air and moisture. Furthermore, some methods needed strong oxidants, excess additives or high temperature. Thus, it was desirable to develop a new sulfenylating agent for the synthesis of 3-sulfenylindoles.

Sodium sulfinates can be easily obtained by the reduction of sulfonyl chloride. Because they are inexpensive, stable and easy to handle, they have been widely used as sulfonylating agents [29–32] and arylating agents [33], especially in recent years. In 2014, Deng and co-workers first reported the use of sodium sulfinates as sulfenylating agents for the synthesis of 3-sulfenylindole with dimethyl sulfoxide (DMSO) as the oxidant and diethyl phosphite as the reductant (scheme 1a) [32,34–37]. Thereafter, Kuhakarn’s group carried out similar work with a I2/PPh3 reaction system (scheme 1b) [38]. Some other groups also developed various reaction systems for realizing the sulfenylation of indoles with sodium sulfinates [39]. However, all these reactions have some disadvantages that involve strong oxidants, excess additives or strong acids.

In 2016, Jiang et al. presented excellent work on the copper-catalysed oxysulfenylation reaction of enolates with sodium sulfinates [40]. In the transformation, the sulfur radical was produced in a Cu/N,N-dimethyl formamide (DMF) reaction system in which DMF not only served as the solvent but also as a reductant. Recently, we reported a new palladium-catalysed direct arylation of heteroarenes with sodium sulfinates (scheme 1a) [32]. On the basis of these studies, we wondered whether we could obtain 3-sulfenylindole with sodium sulfinates as sulfenylating agents in a Cu/DMF reaction system. Herein, we present a copper-catalysed sulfenylation of indoles for the synthesis of 3-sulfenylindoles with sodium sulfinates in DMF (scheme 1b).

First, indole (1a) and sodium phenylsulfinate (2a) were chosen as the model substrates for optimization of the conditions, which are summarized in table 1. The desired product 3a was obtained in a 35% isolated yield in the presence of CuBr2 (10 mol %) with PPh3 as the reductant (1 equiv) in DMF under air (1 atm) at 100°C for 24 h (table 1, entry 1). We screened different reductants such as Na2SO3, Na2S and (C2H5O)2POH, and found that they were less efficient (table 1, entries 2–4). Without the reductant, the yield was increased up to 82% due to DMF being a reductive solvent [41] (table 1, entry 5). Other additives such as bases (Na2CO3, NaOH) or acids (HOAc, TsOH) adversely affected the reaction (table 1, entries 6–9). In addition, ligands such as 2,2’-bipyridine, 1,10-phenanthroline and N,N,N’,N’-tetramethylethylenediamine were tested; however, they all resulted in decreased yields (table 1, entries 9–12). Other copper salts such as CuCl2, Cu(OAc)2, Cu(OTf)2, CuI, CuBr and CuCl were all tested, but they were less efficient than CuBr2 (table 1, entries 13–18). When other solvents (e.g. dichloroethane (DCE), DMSO, dioxane and toluene) were used, no products were formed (table 1, entries 19–22). When the reaction was performed under N2, the result was the same as that under air (entry 23). To simplify the operation, we chose to carry out the reaction under air. Thus, the optimized reaction system for this copper-catalysed sulfenylation reaction was: 1a (0.3 mmol), 2a (0.4 mmol), CuBr2 (10 mol%) in DMF (2 ml) at 100°C under air for 24 h.

With the optimized conditions, various sodium arylsulfinites were examined and the results are summarized in table 2. Sodium benzenesulfinites bearing the alkyl substituents at the para position smoothly reacted with indole to give the 3-aryliothiindoles in good yields (table 2, 3a–3c). A strong electron-donating group such as methoxy was also tested for this reaction (table 2, 3d). Notably, halo
substituents such as fluoro, chloro and bromo were well tolerated and provided the corresponding products in 83%, 90% and 88% yields, respectively (table 2, 3e–3g). Ortho- and meta-substituted substrates were also applicable to this reaction (table 2, 3 h–3j).

Next, various substituted indoles were examined and the results are illustrated in table 3. The reaction of N-methylindoles proceeded smoothly and the corresponding product was obtained in an 87% yield (table 3, 3k). For methyl-substituted indoles at C2 and C5, the yields were 66% and 85%, respectively (table 3, 3l, 3p). Various functional groups such as –OMe, –F, –Cl, –Br, –COOMe and NO2 were tolerated, and provided the products in good-to-excellent yields (table 3, 3m–3u). In general, electron-donating groups were good for the transformation. The polysubstituted indoles were also applicable to the reaction system (table 3, 3v–3w).
Table 2. Substrate scope of various sodium sulfinates.a

Substrate	Yield (%)
3a	82%
3b	77%
3c	70%
3d	68%
3e	83%
3f	90%
3g	88%
3h	78%
3i	85%
3j	75%

aReaction conditions: \textbf{1a} (0.3 mmol), \textbf{2} (0.4 mmol), CuBr\textsubscript{2} (10 mol\%), DMF (2 ml), under air at 100 °C for 24 h. Isolated yields.

Table 3. Substrate scope of various indoles.a

Substrate	Yield (%)
3k	87%
3l	66%
3m	92%
3n	84%
3o	71%
3p	85%
3q	91%
3r	87%
3s	84%
3t	62%
3u	80%
3v	78%
3w	76%

aReaction conditions: \textbf{1} (0.3 mmol), \textbf{2a} (0.4 mmol), CuBr\textsubscript{2} (10 mol\%), DMF (2 ml), under air at 100 °C for 24 h. Isolated yields.
To gain some insight into the possible reaction mechanisms, several control experiments were then carried out. Sodium phenylsulfinate could be converted to 1,2-diphenyldisulfane 4 with an 83% yield in the absence of indole under standard conditions (Scheme 2, equation 1). 1,2-Diphenyldisulfane 4 realized the sulfenylation of indole $1a$ and provided product $3a$ with an 85% yield (Scheme 2, equation 2). These two experiments indicated that 1,2-diphenyldisulfane 4 may be a key intermediate in this reaction. In addition, the radical scavenger 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) could suppress the reaction (Scheme 2, equation 3). Based on the control experiments and previous work [9,39–43], plausible reaction mechanisms are proposed in Scheme 3. Initially, 1,2-diphenyldisulfane 4 was generated from sodium phenylsulfinate in the $[\text{Cu}]/\text{DMF}$ reaction system [42–44]. Subsequently, the thio radical A was produced via direct radical cracking and then radical addition to indole resulted in the formation of intermediate B. Finally, a single-electron oxidation followed by aromatization gave the product $3a$ (path A) [9]. However, another reaction mechanism may also be possible. Firstly, 1,2-diphenyldisulfane 4 reacts with CuX_2 to form an electrophilic species intermediate C. Then the final product $3a$ was formed by electrophilic addition/deprotonation of intermediate C (path B) [9].
In conclusion, we have developed a new copper-catalysed method for the synthesis of 3-sulfenylindoles from indoles and sodium sulfinates. Under the optimal reaction conditions, a variety of indoles could be transformed to corresponding 3-sulfenylindoles with good yields and excellent functional group tolerance. Moreover, DMF was used not only as a solvent but also as a reductant in this process. Further study on this topic is currently underway in our laboratory.

Data accessibility. This article does not contain any additional data.

Authors’ contributions. H.C. and H.Z. designed the experiments, performed the experiments, analysed the data and drafted the manuscript. X.L. and Q.L. contributed to the experimental design and data collection. All the authors gave their final approval for publication.

Competing interests. We have no competing interests.

Funding. This research was supported by the Natural Science Foundation of Guangdong Province (2017A030310021), the Science and Technology Program of Guangdong Province (2017A050506027) and the Science and Technology Program of Guangzhou (201807010053).

Acknowledgement. We thank Xiaodong Tang for his assistance with the tests.

References

1. Humphrey GR, Kureeth JT. 2006 Practical methodologies for the synthesis of indoles. Chem. Rev. 106, 2875–2911. (doi:10.1021/cr0505270)
2. Shen M. 2012 Indoles in multicomponent reactions (MCRs). Chem. Rev. 112, 3508–3549. (doi:10.1021/cr2000954)
3. Nutt M, Guan H, Zhukovskaya N, Saw YL, Ricciardi RP. 2013 Design of patent povuxir inhibitors of the heterodimeric processivity factor required for viral replication. J. Med. Chem. 56, 3235–3246. (doi:10.1021/jm301783a)
4. Miller LM et al. 2017 Structure–activity relationships of small molecule autoxin inhibitors with a discrete binding mode. J. Med. Chem. 60, 722–748. (doi:10.1021/acs.jmedchem.6b01597)
5. Coluccia A et al. 2016 New inhibitors of indoleamine 2,3-Dioxygenase 1: molecular modeling studies, synthesis, and biological evaluation. Med. Chem. 59, 9760–9773. (doi:10.1021/acs.jmedchem.6b00310)
6. Regina GL et al. 2015 New indole tubulin assembly inhibitors cause stable arrest of mitotic progression, enhanced stimulation of natural killer cell cytotoxic activity, and repression of hedgehog-dependent cancer. J. Med. Chem. 58, 5789–5807. (doi:10.1021/acs.jmedchem.5b00310)
7. Ragro R et al. 2006 Design, molecular modeling, synthesis, and Anti-HIV-1 activity of new Indolyl Aryl Sulfones. Novel derivatives of the Indole-2-carboxamide. J. Med. Chem. 49, 3172–3184. (doi:10.1021/jm0502490)
8. Unangst PC et al. 1989 Novel indolecarboximidotetrazoles as potential antiallergy agents. J. Med. Chem. 32, 1360–1366. (doi:10.1021/jm00126a036)
9. Yi S, Li M, Mo W, Hu X, Hu B, Sun N, Jin L, Shen Z. 2016 Metal-free, iodine-catalysed regioselective sulfonylation of indoles with thiols. Tetrahedron Lett. 57, 1912–1916. (doi:10.1016/j.tetlet.2016.03.073)
10. Yadav JS, Reddy BVS, Reddy YS. 2007 A rapid synthesis of 3-sulfenyl indoles using Selectfluor™. Tetrahedron Lett. 48, 7034–7037. (doi:10.1016/j.tet.2007.07.130)
11. Zhang H, Bao X, Song Y, Ou W, Wang B. 2015 Lodate-catalysed versatile sulfonylation of indoles with thiophenols: controllable synthesis of mono- and bis-arylthioindoles. Tetrahedron 71, 8885–8891. (doi:10.1016/j.tet.2015.09.070)
12. Saima S, Equbal O, Lavekar AG, Sinha AK. 2016 Cooperative catalysis by bovine serum albumin–iodine towards cascade oxidative coupling-C(sp3)−H sulfonylation of indoles/ hydroxymethyl with thiophenols on water. Org. Biomol. Chem. 14, 6111–6118. (doi:10.1039/c5ob00954a)
13. He Y, Liu S, Wen P, Tian W, Ren X, Zhou Q, Ma H, Huang G. 2016 Lodate-catalyzed regioselective sulfonylation of indoles with thiols in water. ChemistrySelect 1, 1567–1570. (doi:10.1002/slct.201600257)
14. Ge W, Wei Y. 2012 Iodate-catalyzed oxidative system for 3-sulfonylation of indoles with disulfides using DMSO as oxidant under ambient conditions in dimethyl carbonate. Green Chem. 14, 2066–2070. (doi:10.1039/c2gc35337g)
15. Zou L-H, Reball J, Mottweiler J, Bolm C. 2012 Transition metal-free direct C–H bond sulfonation of 1,3,4-oxadiazoles and related heteroarenes. Tetrahedron 68, 11307–11309. (doi:10.1016/j.tet.2012.09.002)
16. Prasad CD, Kumar S, Sattar M, Adhikary A, Kumar S. 2013 Metal free sulfonylation and bis-sulfonation of indoles: persulfate mediated synthesis. Org. Biomol. Chem. 11, 8036–8040. (doi:10.1039/c3ob41601a)
17. Azeredo JB, Geobi M, Martins GM, Silveira CC, Braga AL. 2014 A Solvent- and metal-free synthesis of 3-chalcone-yl-indoles employing DMSO/I2 as a eco-friendly catalytic system. J. Org. Chem. 79, 4123–4130. (doi:10.1021/jo501079)
18. Chen M, Huang Z-T, Zheng Y. 2012 Visible light-induced 3-sulfenylation of N-methylindoles with arylin sulfonamides. Chem. Commun. 48, 1168–1168. (doi:10.1039/c2cc36866h)
19. Kumarasamy G, Raju R, Narayanasamy V. 2015 Metal- and base-free syntheses of ary/alkythioindoles by the iodine-induced reductive coupling of aryl/alkyl sulfonyl chlorides with indoles. RSC Adv. 5, 22718–22723. (doi:10.1039/c5ra06466e)
20. Wang D, Guo S, Zhang R, Lin S, Yan Z. 2016 TBAI–HBr system mediated generation of various thioethers with benzenesulfonyl chloride in PEgus. RSC Adv. 6, 54377–54381. (doi:10.1039/C6RA02302A)
21. Yang Y, Zhang S, Tang L, Hu Y, Zha Z, Wang Z. 2016 Catalyst-free thiolation of indoles with sulfanyl hydrazides for the synthesis of 3-sulfenylindoles in water. Green Chem. 18, 2609–2613. (doi:10.1039/C6GC00313C)
22. Raghuvanshi DS, Verma N. 2017 Regioselective thiolation of electron rich arenes and heterocycles in recyclable catalytic media. ACS Adv. 7, 22860–22868. (doi:10.1021/acs.chemrev.7b00250)
23. Yang L-H, Tamiya M, Sawai H, Hiyama M. 2006 The use of andytronic (C≡S) as a catalyst for the synthesis of 3-sulfenyl indoles. Tetrahedron Lett. 51, 2014–2016. (doi:10.1016/j.tetlet.2010.02.038)
24. Tudge M, Tamiya M, Sawai H, Humphrey GR. 2006 Development of a novel, highly efficient halide-catalysed sulfonylation of indoles. Org. Lett. 8, 565–568. (doi:10.1021/ol050215c)
25. Matsugi M, Murata K, Namibu R, Kita Y. 2001 An efficient sulfonylation of aromatics using highly active quinone monoo, 3-acetyl bearing a pentafluorophenylthio group. Tetrahedron Lett. 42, 1077–1080. (doi:10.1016/S0040-4039(00)02186-9)
26. Matsugi M, Murata K, Gotanda K, Namibu H, Anikumar G, Matsuramoto K, Kita Y. 2001 Facile and efficient sulfonylation method using quinone Mono-OF-Acetates under mild conditions. J. Org. Chem. 66, 2434–2441. (doi:10.1021/jo010070a)
27. Chang Y-M, Chen H-Y, Wang H-S. 2017 Regiocontrolled Synthesis of α-Chlorosulfonylmethyl α-Nitrosoarenes via ZnI2-Mediated Sulfonylation and AgNO3/Ph(PPh3)3 Promoted α-Nitration. J. Org. Chem. 82, 10610–10613. (doi:10.1021/acs.joc.7b02311)
28. Tang J, Liu P, Ning Y, Zanon G, Bi X. 2017 Silver-catalyzed tandem C3-O-C Bond hydroazidation/radical addition/cyclization of biphenyl acetylene: one-pot synthesis of 6-methyl sulfonylated phenanthridines. Org. Lett. 19, 4026–4029. (doi:10.1021/acs.lett.7b01771)
31. Ning Y, Ji Q, Liao P, Anderson EA, Bi X. 2017 Silver-catalyzed stereoselective aminosulfonylation of alkynes. *Angew. Chem. Int. Ed.* **56**, 13 805–13 808. (doi:10.1002/anie.201705122)

32. Tang X, Yang K, Zeng J, Liu Q, Chen H. 2017 Pd-catalyzed desulfitative arylation for the synthesis of 2,5-diarylated oxazole-4-carboxylates using dioxygen as the terminal oxidant. *Org. Biomol. Chem.* **15**, 8504–8507. (doi:10.1039/C7OB01912B)

33. Tang X, Huang L, Xu Y, Yang J, Wu W, Jiang H. 2014 Copper-catalyzed coupling of oxime acetates with sodium sulfinates: an efficient synthesis of sulfone derivatives. *Angew. Chem. Int. Ed.* **53**, 4205–4208. (doi:10.1002/anie.201311217)

34. Liao J, Zhang Z, Tang X, Wu W, Guo W, Jiang H. 2015 Palladium-catalyzed desulfitative oxidative coupling between arenesulfonic acid salts and aliphatic alcohols: a strategy for the selective construction of β-Aryl ketones and aldehydes. *J. Org. Chem.* **80**, 8903–8909. (doi:10.1021/jo5016463)

35. Jiang Y, You Y, Dong W, Peng Z, Zhang Y, An D. 2017 Copper-promoted desulfitative H-Arylation of sulfonamides and sulfoximinines with sodium arylsulfinates. *J. Org. Chem.* **82**, 5810–5818. (doi:10.1021/acs.joc.7b00633)

36. Yuan K, Soule J-F, Doucet H. 2015 Functionalization of C–H bonds via metal-catalyzed desulfitative coupling: an alternative tool for access to Aryl- or Alkyl-Substituted (Hetero)arenes. *ACS Catal.* **5**, 978–991. (doi:10.1021/cs501686d)

37. Xiao F, Xie H, Liu S, Deng G-J. 2014 Iodine-catalyzed regioselective sulfonylation of indoles with sodium sulfinites. *Adv. Synth. Catal.* **356**, 364–368. (doi:10.1002/adsc.201300773)

38. Katrun P, Hongthong S, Hlekhla S, Pohmakotr M, Reutrakul V, Soorakram D, Jaipetch T, Kuhakarn C. 2014 Iodine–PPh3-mediated C3-sulfonylation of indoles with sodium sulfinates. *RSC Adv.* **4**, 18 933–18 938. (doi:10.1039/c4ra02607a)

39. Ding Y, Wu W, Zhao W, Li Y, Xie P, Huang Y, Liu Y, Zhou A. 2016 Generation of thioethers via direct C–H functionalization with sodium benzenesulfinate as a sulfur source. *Org. Biomol. Chem.* **14**, 1428–1431. (doi:10.1039/C5OB02037E)

40. Jiang H, Tang J, Tang X, Wu W. 2016 Divergent syntheses ofIsoquinolines and Indoles[1,1-α]quinazolines by copper-catalyzed cascade annulation from 2-haloaryl oxide acetates with active methylene compounds and indoles. *J. Org. Chem.* **81**, 2053–2063. (doi:10.1021/acs.joc.5b02914)

41. Gao Y, Gao Y, Tang X, Peng J, Hu M, Wu W, Jiang H. 2016 Copper-catalyzed oxysulfenylation of enolates with sodium sulfinites: a strategy to construct sulfonylated cyclic ethers. *Org. Lett.* **18**, 7158–7161. (doi:10.1021/acs.orglett.6b00272)

42. Rao H, Wang P, Wang J, Li Z, Sun X, Cao S. 2014 K2S2O8/arenesulfinate: an unprecedented thiolating system enabling selective sulfonylation of indoles under metal-free conditions. *RSC Adv.* **4**, 49 165–49 169. (doi:10.1039/C4RA08669D)

43. Xu Z-B, Lu G-P, Cai C. 2017 Acid-induced chemoselective arylthiolations of electron-rich arenes in ionic liquids from sodium arylsulfinates: the reducibility of halide anions in [Hmim][Br]. *Org. Biomol. Chem.* **15**, 2804–2808. (doi:10.1039/C6OB02823C)

44. Too PC, Chua SH, Wong SH, Cheib S. 2011 Synthesis of Azaheterocycles from Aryl Ketone O-Acetyl Oximes and Internal Alkynes by Ga–Rh bimetallic relay catalysts. *J. Org. Chem.* **76**, 6159–6168. (doi:10.1021/jo200897q)