A new group decision-making framework based on 2-tuple linguistic complex q-rung picture fuzzy sets

Muhammad Akram1, Ayesha Khan1, Uzma Ahmad1, José Carlos R. Alcantud2,* and Mohammed M. Ali Al-Shamiri3,4

1 Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan
2 BORDA Research Unit and Multidisciplinary Institute of Enterprise (IME), Universidad de Salamanca, 37007 Salamanca, Spain
3 Department of Mathematics, Faculty of Science and Arts, Muhayl Asser, King Khalid University, K.S.A
4 Department of Mathematics and Computer, Faculty of Science, Ibb University, Ibb, Yemen

* Correspondence: Email: jcr@usal.es.

Abstract: The need for multi-attribute decision-making brings more and more complexity, and this type of decision-making extends to an ever wider range of areas of life. A recent model that captures many components of decision-making frameworks is the complex q-rung picture fuzzy set (Cq-RPFS), a generalization of complex fuzzy sets and q-rung picture fuzzy sets. From a different standpoint, linguistic terms are very useful to evaluate qualitative information without specialized knowledge. Inspired by the ease of use of the linguistic evaluations by means of 2-tuple linguistic term sets, and the broad scope of applications of Cq-RPFSs, in this paper we introduce the novel structure called 2-tuple linguistic complex q-rung picture fuzzy sets (2TLCq-RPFSs). We argue that this model prevails to represent the two-dimensional information over the boundary of Cq-RPFSs, thanks to the additional features of 2-tuple linguistic terms. Subsequently, some 2TLCq-RPF aggregation operators are proposed. Fundamental cases include the 2TLCq-RPF weighted averaging/geometric operators. Other sophisticated aggregation operators that we propose are based on the Hamacher operator. In addition, we investigate some essential properties of the new operators. These tools are the building blocks of a multi-attribute decision-making strategy for problems posed in the 2TLCq-RPFS setting. Furthermore, a numerical instance that selects an optimal machine is given to guarantee the applicability and effectiveness of the proposed approach. Finally, we conduct a comparison with other existing approaches.

Keywords: 2-tuple linguistic representation model; aggregation function; Hamacher operators; accuracy function; decision matrix
1. Introduction

Multi-attribute decision-making (MADM) is a procedure in which an alternative fulfilling all requirements is chosen from a set of available alternatives. Researchers have studied MADM problems in different areas and provided their solutions. Originally it was concerned with perfectly determined alternatives (crisp formulation) and many competing approaches have been formulated under that assumption. However, after Zadeh [1] presented the idea of a robust theory, fuzzy set (FS) theory, to tackle the vagueness and uncertainties in data during decision-making (DM). In FS theory, a membership function was formed to manage the ambiguities in data. The idea of FS is in fact the main building block as the researchers studied its features theoretically and applied it to solve MADM problems in the fuzzy framework. Researchers studied the interval-valued FSs [2, 3]. Chen and Jong [4] studied the fuzzy query translation for relational database systems. Chen and Niou [5] presented fuzzy multiple-attributes group decision-making based on fuzzy preference relations. FS theory proves to be a foundational stone as it paved the way to scholars and researchers to establish many more general and remarkable extensions, such as intuitionistic fuzzy sets (IFSs) [6–8], Pythagorean fuzzy sets (PyFSs) [9, 10], Fermatean fuzzy sets [11], hesitant fuzzy sets [12, 13], and \(q \)-rung orthopair fuzzy sets (\(q \)-ROFSs) [14]. All these models consider separate a membership degree (MD) and a non-membership degree (NMD) of each object \(a \), namely, \(\gamma(a) \) (MD of \(a \)) and \(\delta(a) \) (NMD of \(a \)), and they respectively operate under the assumptions \(0 \leq \gamma(a) + \delta(a) \leq 1 \), \(0 \leq \gamma(a)^2 + \delta(a)^2 \leq 1 \), \(0 \leq \gamma(a)^3 + \delta(a)^3 \leq 1 \), and \(0 \leq (\gamma(a))^q + (\delta(a))^q \leq 1(q \geq 1) \).

The import of these models grew with the production of elements for analysis like aggregation operators, and decision-making applications in multiple scenarios. In view of these motivations, our main goal in this article is to present a new model (that will be abbreviated as \(2TLCq \)-RPFS), which is designed to contain the interesting features and properties of several models beyond the fuzzy set spirit. By doing so we shall establish a broad generalization of fuzzy sets and related extensions. We shall also investigate aggregation operators and applications to group decision-making for the new model. We proceed to expand the presentation of background and explain the motivation for these targets.

A natural improvement of fuzzy sets consisted of the introduction of a neutral or abstinence degree (AD). To incorporate the idea of a distinct AD, Cuong and Kreinovich [15] presented picture fuzzy sets (PFSs) as an extended version of IFSs. In a PFS we assume that the sum of MD, NMD and AD should not exceed 1 at any object. Inspired by this idea, Li et al. [16] introduced the concept of \(q \)-rung PFS (\(q \)-RPFS), which incorporates the spirit of Yager’s \(q \)-ROFS and relax the restriction to assume that the sum of \(q \)th power of MD, NMD and AD should be equal or less than 1. Akram et al. [17] studied the energy of \(q \)-ROF graphs. Khan et al. [18] studied axiomatically supported divergence measures for \(q \)-rung orthopair fuzzy sets. In DM, sometimes it becomes quite difficult to present the judgements quantitatively. To overcome this difficulty, Zadeh [19] pointed out a difference between numerical and linguistic data. He set up the notion of linguistic variables and presented the idea that qualitative information can be described by means of linguistic terms (LTs). Zhang [20] presented the concept of linguistic IFSs in which the membership functions are represented by the LTs. Garg [21] and Lin et al. [22] introduced the idea of linguistic PyFSs. Lin et al. [23] presented the idea of linguistic \(q \)-ROFS (L\(q \)-ROFS). Akram et al. [24] provided the solution of a group DM problem based on L\(q \)-ROF Einstein models. Herrera and Martínez [25, 26] proposed a new model, namely 2-tuple linguistic representation model (2TLRM) to represent the qualitative information in MADM problems through
Further research work can be studied from [27–31]. Notably, some researchers have presented different optimization models and applied them to solve various types of problems [32–35]. Additional algorithmic solutions and their utilizations can be studied from [36, 37] among others.

The 2TLRM has become a very popular approach for researchers to deal with the MADM problems with linguistic data and gives a freedom to the experts to express their judgements qualitatively, i.e., through LTs. Aggregation operators (AOs) are indispensable tools during DM as they combine the data to produce results. More precisely, AOs play a very crucial role to transform the data in a single outcome. In the last years, researchers investigated, developed and applied many AOs in DM [38–43]. Liu et al. [44] proposed the Lq-ROF generalized point weighted AOs. Particularly inspirational operators were proposed by Hamacher [45]. The Hamacher sum and product on more generalized t-norm and t-conorm have generated extensions to many frameworks. Faizi et al. [46] proposed some Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. For further study, one may refer to [47–52]. Ju et al. [53] presented the q-ROF 2TL Muirhead mean and the dual Muirhead mean operators. Deng et al. [54, 55] introduced 2-tuple linguistic Pythagorean fuzzy Hamy mean and Heronian mean AOs. Wei [56] introduced the 2TIF linguistic AOs and Lu et al. [57] presented the bipolar 2TL AOs. Zhang et al. [58] proposed a DM method using 2TLPyFSs. Recently, Akram et al. [59] presented the 2-tuple linguistic Fermatean fuzzy Hamy mean operators and Akram et al. [60] proposed a DM technique using 2TLPyFSs. However, they were not designed to cope with two-dimensional or periodic information. To handle this matter, Ramot et al. [61, 62] originated the complex FS (CFS) by enlarging the range of MD of a FS, from [0, 1] to the unit circle in the complex plane. Researchers have thoroughly investigated, applied and improved CFS by suitable extensions [63, 64]. Rong et al. [65] presented complex q-ROF 2TL Maclaurin symmetric mean operators. The most necessary tools for their manipulation have been given, and so for example, Bi et al. [66, 67] proposed geometric and arithmetic AOs in the CF environment. Liu et al. [68] presented complex q-rung orthopair fuzzy AOs. Luqman et al. [69] studied the hypergraph representations of complex fuzzy information. Naz et al. [70, 71] established DM methods based on 2TL information. For some additional discussion on AOs in complex settings, the readers are referred to [72–80]. In this paper, we have considered a selection problem [39] which is related to choosing the best machine from a set of available machines. These machines are to be evaluated on the basis of criteria such as flexibility, reliability, etc. The following considerations have motivated us to produce this paper:

- In 2TLRM, the evaluation information is represented by a pair of elements, i.e., by \((s_i, \alpha)\), and this pair is called a 2T. In this 2T, \(s_i\) represents the ordinary LT from a LTS and the value \(\alpha\) indicates the symbolic translation (ST). The 2TLRM proves to be an efficient model and a novel computational approach to represent the linguistic information. This model helps to overcome the drawbacks of the classical linguistic representation model (LRM). In addition, the 2TL model enables us to select the alternative, when different alternatives have the same LTs. These prominent features of the 2TLRM stimulated our work in a 2TL environment.

- The notion of Cq-RPFS is a generalized form of many existing extensions of fuzzy sets, thus it has enormous ability to capture quantitative uncertain information. For example, by fixing the neutral degree to zero and \(q\) to 1, the model turns into complex intuitionistic FS (CIFS). When the neutral degree is zero and \(q\) equals 2, the model becomes complex Pythagorean FS (CPyFS). And by considering all the membership degrees with \(q\) equal to 1, it changes into complex picture FS (CPFS). The 2TLCq-RPFS contains the qualities of both 2TL set and complex \(q\)-rung picture.
FS (Cq-RPFS), therefore, it is quite helpful to overcome complexities in data without loss of information, linguistic or otherwise.

- AOs have great importance during the DM process, as they transform a large number of values into a single value. The Hamacher AOs are a parameterized general type of AOs, which produce the averaging and Einstein operators by suitable choices of the value of a parameter. In addition, they consider the interrelationship between the input arguments. Therefore, the adaptability of the Hamacher operators is a good asset for our purposes.

To summarize, from the analysis above, we observe that there is no work on 2TLCq-RPFS in the existing literature. Apart from this, the Hamacher AOs have not been studied in the present environment. In this article, we have extended the Hamacher AOs to operate on 2TLCq-RPFSs and we have applied them for DM. We now list the major contributions of this article:

- We introduce the concept of 2TLCq-RPFS which is the generalization of 2TL term set and Cq-RPFS. Then we establish the fundamental operational laws between two 2TLCq-RPFNs. Furthermore, we present the 2TLCq-RPFWA and 2TLCq-RPFWG operators.
- We establish Hamacher laws between two 2TLCq-RPFNs. Moreover, we introduce certain AOs for the 2TLCq-RPF environment, namely, the 2TLCq-RPFHW A, 2TLCq-RPFHOW A, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators. We study their fundamental properties.
- We state a step-by-step algorithm for decision making and discuss its utilization with a case study that finds the most feasible alternative from available alternatives. Further, we perform a comparative study with some existing operators.

The remaining of the article is structured as follows: In Section 2, we recall some auxiliary notions related to the q-RPFS, Cq-RPFS, 2TL representation model and Hamacher operators. Section 3 discusses the idea of 2TL complex q-rung picture fuzzy sets along with its related ideas, operational laws, and the 2TLCq-RPFWA and 2TLCq-RPFWG operators. Section 4 introduces Hamacher operations between two 2TLCq-RPFNs and a series of AOs including the 2TLCq-RPFHW A, 2TLCq-RPFHOW A, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators, along with their fundamental properties. In Section 5, we establish a MADM strategy based on the 2TLCq-RPFHW A operator and the 2TLCq-RPFHWG operator. To demonstrate the applicability of our proposed method, we provide a numerical instance in Section 5, the influence of parameters on decision results, conducted a comparative study and discussion. Finally in Section 6, we present conclusions. The abbreviations and notations are presented in Table 1.

2. Preliminaries

There are a considerable number of auxiliary concepts which are very important to understand the forthcoming sections. We have included some fundamental concepts for better understanding. Let us recall them before going to the next section.

Definition 2.1. [16] On a universe H, a q-RPFS ξ (with $q \geq 1$) can be defined as:

$$\xi = \{(z, \alpha(z), \beta(z), \gamma(z)) : z \in H\},$$

(2.1)
where \(\alpha, \beta, \gamma : H \to [0, 1] \) denotes the MD, AD and NMD, respectively, of the element \(z \) in \(\xi \) satisfying the constraint \((\alpha(z))^q + (\beta(z))^q + (\gamma(z))^q \leq 1\). The degree of refusal membership of a \(q \)-RPFS is given by the formula \((1 - (\alpha(z))^q + (\beta(z))^q + (\gamma(z))^q)^{\frac{1}{q}}\), \(\forall z \in H \).

Table 1. Nomenclature of the research work.

Acronyms and Notations	Description
DM	Decision-making
MADM	Multi-attribute DM
FS	Fuzzy set
IFS	Intuitionistic FS
PyFS	Pythagorean FS
\(q \)-ROFS	\(q \)-Rung orthopair FS
PFS	Picture FS
\(q \)-RPFS	\(q \)-Rung PFS
MD	Membership degree
NMD	Non-membership degree
AD	Abstinence degree
AOs	Aggregation operators
2TPLPyF	2-tuple linguistic PyF
2TL	2-tuple linguistic
LRM	Linguistic representation model
CFS	Complex FS
CIFFS	Complex intuitionistic FS
CPyFS	Complex Pythagorean FS
CPFS	Complex picture FS
\(C_q \)-RPFS	Complex \(q \)-rung picture FS
2TLC\(q \)-RPFS	2-tuple linguistic complex \(q \)-rung picture fuzzy set
2TLM	2-tuple linguistic representation model
LTS	Linguistic term set
ST	Symbolic translation
2TLC\(q \)-RPFWA	2TLC\(q \)-RPF weighted averaging (WA)
2TLC\(q \)-RPFWG	2TLC\(q \)-RPF weighted geometric (WG)
2TLC\(q \)-RPFHWA	2TLC\(q \)-RPF Hamacher WA
2TLC\(q \)-RPFHWG	2TLC\(q \)-RPF Hamacher WG
2TLC\(q \)-RPFHOWA	2TLC\(q \)-RPFH ordered WA
2TLC\(q \)-RPFHOWG	2TLC\(q \)-RPFH ordered WG
\(\tilde{S} \)	2-tuple linguistic term set
\(L_k \)	Amplitude term of membership grade of 2TLC\(q \)-RPFN
\(\tilde{S}_{\alpha_k}, A_k \)	Amplitude term of abstinence grade of 2TLC\(q \)-RPFN
\(\tilde{S}_{\gamma_k}, C_k \)	Amplitude term of non-membership grade of 2TLC\(q \)-RPFN
\(\tilde{S}_{\beta_k}, D_k \)	Phase term of membership grade of 2TLC\(q \)-RPFN
\(\tilde{S}_{\gamma_k}, E_k \)	Phase term of abstinence grade of 2TLC\(q \)-RPFN
\(\tilde{S}_{\gamma_k}, F_k \)	Phase term of non-membership grade of 2TLC\(q \)-RPFN
\(x \)	Parameter of Hamacher operator
\(\iff \)	If and only if
\(S \)	Score function of 2TLC\(q \)-RPFN
\(A \)	Accuracy function of 2TLC\(q \)-RPFN
\(\mathcal{A} \)	Alternative
\(C \)	Criteria
Definition 2.2. [73] On a universe H, a Cq-RPFS ξ (with $q \geq 1$) can be defined as:

$$\xi = \{ (z, \alpha(z)e^{i\zeta(z)}, \beta(z)e^{i\eta(z)}, \gamma(z)e^{i\theta(z) }): z \in H \}$$

(2.2)

where $\alpha, \beta, \gamma : H \to [0, 1]$ denotes the amplitude terms of MD, AD and NMD, respectively, of the element z in ξ satisfying the constraint $(\alpha(z))^q + (\beta(z))^q + (\gamma(z))^q \leq 1$. $\zeta, \eta, \theta \in [0, 2\pi]$ denotes the phase terms of MD, AD and NMD, respectively, of the element z in ξ, which satisfy the constraint

$$\left(\frac{\zeta(z)}{2\pi}\right)^q + \left(\frac{\eta(z)}{2\pi}\right)^q + \left(\frac{\theta(z)}{2\pi}\right)^q \leq 1.$$

Definition 2.3. [25, 26] Given a LTS $\tilde{S} = \{ \tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon \}$ having odd cardinality where $\Upsilon + 1$ is the cardinality of \tilde{S} and \tilde{s}_k depicts a possible linguistic term for a LTS \tilde{S}. Let us take an example of a LTS \tilde{S} for $\Upsilon = 5$ as follows:

$$\tilde{S} = \{ \tilde{s}_0 = \text{Verylow}, \tilde{s}_1 = \text{Low}, \tilde{s}_2 = \text{Medium}, \tilde{s}_3 = \text{High}, \tilde{s}_4 = \text{VeryHigh} \}.$$

Following are some initial and basic operations on a LTS:

- $\tilde{s}_k > \tilde{s}_l \iff k > l$ (ordering)
- max(\tilde{s}_k, \tilde{s}_l) = $\tilde{s}_k \iff k \geq l$ (max operator)
- min(\tilde{s}_k, \tilde{s}_l) = $\tilde{s}_l \iff k \leq l$ (min operator)
- $\text{Neg}(\tilde{s}_k) = \tilde{s}_l$ such that $l = \Upsilon - k$ (Negative operator)

The 2TL model originated by Herrera and Martínez [25, 26] is very convenient and effective for representing the qualitative evaluation information through a 2-tuple (\tilde{s}_k, μ_k). Here, \tilde{s}_k is the ordinary LT taken from a LTS and μ_k is the value of ST with $\mu_k \in [-0.5, 0.5]$.

Definition 2.4. [25, 26] Given a LTS $\tilde{S} = \{ \tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon \}$ and suppose λ be the numerical value obtained after applying an aggregation operation on the indices of LTs taken from a LTS \tilde{S} with $\lambda \in [0, \Upsilon]$. Suppose two values k and μ, where, $k = \text{round}(\lambda), \mu = \lambda - k, k \in [1, \Upsilon]$, and $\mu \in [-0.5, 0.5]$, then μ is called ST.

The numerical value λ is converted into a 2T by means of the function Λ, and a 2T is transformed into a numerical value with the help of a function Λ^{-1}, which are defined in the next definitions.

Definition 2.5. [25, 26] Given a LTS $\tilde{S} = \{ \tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon \}$ and $\lambda \in [0, \Upsilon]$. Then the function $\Lambda : [0, \Upsilon] \to \tilde{S} \times [-0.5, 0.5]$ is defined as:

$$\Lambda(\lambda) = \begin{cases} \tilde{s}_k, & k = \text{round}(\lambda) \\ \mu = \lambda - k, & \mu \in [-0.5, 0.5]. \end{cases}$$

Definition 2.6. [25, 26] Given a LTS $\tilde{S} = \{ \tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon \}$ and a 2-tuple (\tilde{s}_k, μ_k). Then the function $\Lambda^{-1} : \tilde{S} \times [-0.5, 0.5] \to [0, \Upsilon]$ is defined as:

$$\Lambda^{-1}(\tilde{s}_k, \mu) = k + \mu = \lambda, \quad \lambda \in [0, \Upsilon].$$

Definition 2.7. A binary function $T^* : [0, 1] \times [0, 1] \to [0, 1]$ is said to be a t-conorm if there is a t-norm T such that

$$T^*(m, z) = 1 - T(1 - m, 1 - z)$$

for all $(m, z) \in [0, 1]^2$. Recall that a t-norm is $T : [0, 1] \times [0, 1] \to [0, 1]$ which is commutative, associative, monotonic, and for which 1 acts as an identity element.
Hamacher [45] presented the Hamacher operations, namely, the Hamacher sum and product, which are respectively defined as follows:

\[
T^H(m, z) = \frac{mz}{x + (1 - x)(m + z - mz)}, \quad x > 0.
\]

\[
T^{+H}(m, z) = \frac{m + z - mz - (1 - x)mz}{1 - (1 - x)(mz)}, \quad x > 0.
\]

For \(x = 1 \), these expressions return the algebraic t-norm and t-conorm.

\[
T^H(m, z) = mz.
\]

\[
T^{+H}(m, z) = m + z - mz.
\]

For \(x = 2 \), we get the Einstein t-norm and t-conorm.

\[
T^H(m, z) = \frac{mz}{1 + (1 - m)(1 - z)}.
\]

\[
T^{+H}(m, z) = \frac{m + z}{1 + mz}.
\]

3. The 2-tuple linguistic complex \(q \)-rung picture fuzzy sets

This section is devoted to the novel concept of 2-tuple linguistic complex \(q \)-rung picture fuzzy set. Moreover, we establish the operational laws between two \(2\mathrm{TLC}_q \)-RPFNs along a brief description of both the \(2\mathrm{TLC}_q \)-RPFWA and \(2\mathrm{TLC}_q \)-RPFWG operators.

Definition 3.1. We define a \(2\mathrm{TLC}_q \)-RPFS \(L \) as

\[
L = \{(\tilde{s}_a(z), A(z))e^{2\pi i \tilde{s}_a(z)}D(z), (\tilde{s}_b(z), B(z))e^{2\pi i \tilde{s}_b(z)}E(z), (\tilde{s}_\gamma(z), C(z))e^{2\pi i \tilde{s}_\gamma(z)}F(z)\} : z \in K\}, \tag{3.1}
\]

where \((\tilde{s}_a(z), A(z)), (\tilde{s}_b(z), B(z))\) and \((\tilde{s}_\gamma(z), C(z))\) are the amplitude terms of MD, AD and NMD, respectively. This they meet the following restrictions: \(\tilde{s}_a(z), \tilde{s}_b(z), \tilde{s}_\gamma(z) \in L, A(z), B(z), C(z) \in [0, 0.5] \), \(0 \leq \Lambda^{-1}(\tilde{s}_a(z), A(z)) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_b(z), B(z)) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_\gamma(z), C(z)) \leq \Upsilon \) and \(0 \leq (\Lambda^{-1}(\tilde{s}_a(z), A(z)))^q + (\Lambda^{-1}(\tilde{s}_b(z), B(z)))^q + (\Lambda^{-1}(\tilde{s}_\gamma(z), C(z)))^q \leq \Upsilon^q \) with \(q \geq 1 \).

\((\tilde{s}_a, D(z)), (\tilde{s}_b, E(z))\) and \((\tilde{s}_\gamma, F(z))\) are the phase terms of MD, AD and NMD, respectively, having the restrictions \(\tilde{s}_a(z), \tilde{s}_b(z), \tilde{s}_\gamma(z) \in L, D(z), E(z), F(z) \in [0, 0.5] \), \(0 \leq \Lambda^{-1}(\tilde{s}_a(z), D(z)) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_b(z), E(z)) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_\gamma(z), F(z)) \leq \Upsilon \) and \(0 \leq (\Lambda^{-1}(\tilde{s}_a(z), D(z)))^q + (\Lambda^{-1}(\tilde{s}_b(z), E(z)))^q + (\Lambda^{-1}(\tilde{s}_\gamma(z), F(z)))^q \leq \Upsilon^q \).

Remark 3.1. For simplicity, we call \(L = ((\tilde{s}_a, A)e^{2\pi i \tilde{s}_a(z)}D(z), (\tilde{s}_b, B)e^{2\pi i \tilde{s}_b(z)}E(z), (\tilde{s}_\gamma, C)e^{2\pi i \tilde{s}_\gamma(z)}F(z)) \), a \(2\mathrm{TLC}_q \)-RPFN with \(0 \leq \Lambda^{-1}(\tilde{s}_a, A) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_b, B) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_\gamma, C) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_a, D) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_b, E) \leq \Upsilon, 0 \leq \Lambda^{-1}(\tilde{s}_\gamma, F) \leq \Upsilon, 0 \leq (\Lambda^{-1}(\tilde{s}_a, A))^q + (\Lambda^{-1}(\tilde{s}_b, B))^q + (\Lambda^{-1}(\tilde{s}_\gamma, C))^q \leq \Upsilon^q \), and \(0 \leq (\Lambda^{-1}(\tilde{s}_a, A))^q + (\Lambda^{-1}(\tilde{s}_b, B))^q + (\Lambda^{-1}(\tilde{s}_\gamma, C))^q \leq \Upsilon^q \).

Definition 3.2. Given a LTS \(\tilde{S} = \{\tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon\} \) and suppose \(a, b, c\) are the numerical values obtained after applying an aggregation operation on the indices of LTs taken from a LTS \(\tilde{S} \) with \(a, b, c \in [0, \Upsilon]\). In addition, suppose there are six values \(\alpha = \text{round}(a), \beta = \text{round}(b), \gamma = \text{round}(c)\), \(A = a - \alpha, B = b - \beta, C = c - \gamma\) with \(A, B, C \in [-0.5, 0.5]\), then \(A, B, C\) are the values of the ST for
amplitude terms. Similarly, suppose d, e, f are the numerical values obtained after applying an aggregation operation on the indices of LTs taken from a LTS \tilde{S} with $d, e, f \in [0, \Upsilon]$. In addition, suppose there are six values $\zeta = \text{round}(d), \eta = \text{round}(e), \theta = \text{round}(f), D = d - \zeta, E = e - \eta, F = f - \theta$ with $D, E, F \in [-0.5, 0.5]$, then D, E, F are the values of the ST for phase terms.

Definition 3.3. Given a LTS $\tilde{S} = \{\tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon\}$ and $a, b, c, d, e, f \in [0, \Upsilon]$. Then the function $\Lambda : [0, \Upsilon] \rightarrow \tilde{S} \times [-0.5, 0.5]$ is defined as:

$$
\Lambda(a) = \begin{cases}
\tilde{s}_a, & \alpha = \text{round}(a) \\
A = a - \alpha, & A \in [-0.5, 0.5),
\end{cases}$$

$$
\Lambda(b) = \begin{cases}
\tilde{s}_b, & \beta = \text{round}(b) \\
B = b - \beta, & B \in [-0.5, 0.5),
\end{cases}$$

$$
\Lambda(c) = \begin{cases}
\tilde{s}_c, & \gamma = \text{round}(c) \\
C = c - \gamma, & C \in [-0.5, 0.5),
\end{cases}$$

$$
\Lambda(d) = \begin{cases}
\tilde{s}_d, & \zeta = \text{round}(d) \\
D = d - \zeta, & D \in [-0.5, 0.5),
\end{cases}$$

$$
\Lambda(e) = \begin{cases}
\tilde{s}_e, & \eta = \text{round}(e) \\
E = e - \eta, & E \in [-0.5, 0.5),
\end{cases}$$

$$
\Lambda(f) = \begin{cases}
\tilde{s}_f, & \theta = \text{round}(f) \\
F = f - \theta, & F \in [-0.5, 0.5),
\end{cases}$$

where $\text{round}(.)$ indicates the usual round operation.

Definition 3.4. Given a LTS $\tilde{S} = \{\tilde{s}_k : k = 0, 1, 2, \ldots, \Upsilon\}$ and a 2TLCq-RPFN

$$
L = \left((\tilde{s}_a, A)e^{2\pi i (\tilde{s}_b, B)}, (\tilde{s}_c, C)e^{2\pi i (\tilde{s}_d, D)}, (\tilde{s}_e, E)e^{2\pi i (\tilde{s}_f, F)} \right),
$$

then there exists a function $\Lambda^{-1} : \tilde{S} \times [-0.5, 0.5] \rightarrow [0, \Upsilon]$, that restores each 2TLCq-RPFN to its equivalent numerical value $a, b, c, d, e, f \in [0, \Upsilon]$, where

$$
\Lambda^{-1}(\tilde{s}_a, A) = \alpha + A = a, \\
\Lambda^{-1}(\tilde{s}_b, B) = \beta + B = b, \\
\Lambda^{-1}(\tilde{s}_c, C) = \gamma + C = c, \\
\Lambda^{-1}(\tilde{s}_d, D) = \zeta + D = d, \\
\Lambda^{-1}(\tilde{s}_e, E) = \eta + E = d, \\
\Lambda^{-1}(\tilde{s}_f, F) = \theta + F = f.
$$

Example 3.1. Consider a LTS $\tilde{S} = \{\tilde{s}_0, \tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4, \tilde{s}_5, \tilde{s}_6\}$ with $\Upsilon = 7$ and a 2TLCq-RPFN

$$
L = \left((\tilde{s}_1, 0)e^{2\pi i (\tilde{s}_0, 0)}, (\tilde{s}_1, 0)e^{2\pi i (\tilde{s}_2, 0)}, (\tilde{s}_4, 0)e^{2\pi i (\tilde{s}_0, 0)} \right),
$$

(3.2)

where $\alpha = 3, \beta = 1, \gamma = 5, \zeta = 4, \eta = 2, \theta = 4$, and $A = B = C = D = E = F = 0$. For $q = 3$, we see that $0 \leq \Lambda^{-1}(\tilde{s}_3, 0) \leq 7, 0 \leq \Lambda^{-1}(\tilde{s}_1, 0) \leq 7, 0 \leq \Lambda^{-1}(\tilde{s}_5, 0) \leq 7$ and $0 \leq \Lambda^{-1}(\tilde{s}_3, 0) + (\Lambda^{-1}(\tilde{s}_3, 0))^3 = 153 < (7)^3 = 343$. Similarly, $0 \leq \Lambda^{-1}(\tilde{s}_4, 0) \leq 7, 0 \leq \Lambda^{-1}(\tilde{s}_2, 0) \leq 7, 0 \leq \Lambda^{-1}(\tilde{s}_4, 0) \leq 7$ and $0 \leq \Lambda^{-1}(\tilde{s}_4, 0)^3 + (\Lambda^{-1}(\tilde{s}_2, 0))^3 + (\Lambda^{-1}(\tilde{s}_4, 0))^3 = 136 < (7)^3 = 343$. Clearly, Equation (3.2) is a 2TLCq-RPFN.
3.1. The basic theory of 2TLCq-RPFSs

The next tools are designed to enable us to compare two 2TLCq-RPFSs:

Definition 3.5. Consider a 2TLCq-RPFN \(L = ((\tilde{s}_1, A_1)e^{2\pi i(\tilde{s}_1, D_1)}, (\tilde{s}_2, B_1)e^{2\pi i(\tilde{s}_2, E_1)}, (\tilde{s}_3, C_1)e^{2\pi i(\tilde{s}_3, F_1)}) \). The score function for 2TLCq-RPFSs can be defined as follows:

\[
S(L) = \Lambda\left(2^\gamma + \left(\frac{\Lambda^{-1}(\tilde{s}_1, A_1)}{Y}\right)^q - \left(\frac{\Lambda^{-1}(\tilde{s}_2, B_1)}{Y}\right)^q + \left(\frac{\Lambda^{-1}(\tilde{s}_3, D_1)}{Y}\right)^q\right)
\]

and the accuracy function \(\mathcal{A} \) can be defined by the expression:

\[
\mathcal{A}(L) = \Lambda\left(\frac{\Lambda^{-1}(\tilde{s}_1, A)}{Y} + \left(\frac{\Lambda^{-1}(\tilde{s}_2, B)}{Y}\right)^q + \left(\frac{\Lambda^{-1}(\tilde{s}_3, C)}{Y}\right)^q + \left(\frac{\Lambda^{-1}(\tilde{s}_4, E)}{Y}\right)^q\right).
\]

Definition 3.6. Consider two 2TLCq-RPFSs \(L_1 = ((\tilde{s}_1, A_1)e^{2\pi i(\tilde{s}_1, D_1)}, (\tilde{s}_2, B_1)e^{2\pi i(\tilde{s}_2, E_1)}, (\tilde{s}_3, C_1)e^{2\pi i(\tilde{s}_3, F_1)}) \) and \(L_2 = ((\tilde{s}_1, A_2)e^{2\pi i(\tilde{s}_1, D_1)}, (\tilde{s}_2, B_2)e^{2\pi i(\tilde{s}_2, E_2)}, (\tilde{s}_3, C_2)e^{2\pi i(\tilde{s}_3, F_2)}) \). We can compare these two 2TLCq-RPFSs by the following method:

1) If \(S(L_1) > S(L_2) \), then \(L_1 > L_2 \);

2) If \(S(L_1) = S(L_2) \), then

- If \(\mathcal{A}(L_1) > \mathcal{A}(L_2) \), then \(L_1 > L_2 \);
- If \(\mathcal{A}(L_1) = \mathcal{A}(L_2) \), then \(L_1 \sim L_2 \).

We next define some operational laws on 2TLCq-RPFSs:

Definition 3.7. Consider three 2TLCq-RPFSs \(L = ((\tilde{s}_1, A_1)e^{2\pi i(\tilde{s}_1, D_1)}, (\tilde{s}_2, B_1)e^{2\pi i(\tilde{s}_2, E_1)}, (\tilde{s}_3, C_1)e^{2\pi i(\tilde{s}_3, F_1)}) \), \(L_1 = ((\tilde{s}_1, A_1)e^{2\pi i(\tilde{s}_1, D_1)}, (\tilde{s}_2, B_1)e^{2\pi i(\tilde{s}_2, E_1)}, (\tilde{s}_3, C_1)e^{2\pi i(\tilde{s}_3, F_1)}) \) and \(L_2 = ((\tilde{s}_1, A_2)e^{2\pi i(\tilde{s}_1, D_2)}, (\tilde{s}_2, B_2)e^{2\pi i(\tilde{s}_2, E_2)}, (\tilde{s}_3, C_2)e^{2\pi i(\tilde{s}_3, F_2)}) \) with \(q \geq 1 \) and \(\rho > 0 \), then

\[
L_1 \oplus L_2 = \left\{ \begin{array}{l}
\Lambda\left(\frac{\Lambda^{-1}(\tilde{s}_1, A_1)}{Y} + \left(\frac{\Lambda^{-1}(\tilde{s}_2, B_1)}{Y}\right)^q + \left(\frac{\Lambda^{-1}(\tilde{s}_3, D_1)}{Y}\right)^q\right) \times \exp\left(\frac{\gamma}{q} + \frac{1}{q} + \frac{1}{q} \right)
+ \Lambda\left(\frac{\Lambda^{-1}(\tilde{s}_1, B_1)}{Y} \right) \times \exp\left(\frac{\gamma}{q} + \frac{1}{q} + \frac{1}{q} \right)
+ \Lambda\left(\frac{\Lambda^{-1}(\tilde{s}_2, C_1)}{Y} \right) \times \exp\left(\frac{\gamma}{q} + \frac{1}{q} + \frac{1}{q} \right)
\end{array} \right\}
\]
3.2. The 2TLCq-RPFWA and 2TLCq-RPFWG operators

This subsection presents two AOs, namely, the 2TLCq-RPFWA and 2TLCq-RPFWG operators, and establish their fundamental properties.

The first operator is defined as follows:

Definition 3.8. The 2TLCq-RPFWA operator is the mapping \(H'' \rightarrow H \) such that: for each collection
Proposition 3.1. Consider a collection of 2TLCq-RPFNs $L_k = ((\tilde{s}_{\alpha_k}, A_k)e^{2\pi i (\tilde{s}_{\alpha_k}, D_k)}, (\tilde{s}_{\beta_k}, B_k)e^{2\pi i (\tilde{s}_{\beta_k}, E_k)}, (\tilde{s}_{\gamma_k}, C_k)e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)})$ $(k = 1, 2, \ldots, n)$,

$$2TLCq - RPFWA(L_1, L_2, \ldots, L_n) = \bigoplus_{k=1}^{n} W_k L_k,$$

(3.5)

where $\mathbf{W} = (W_1, W_2, \ldots, W_n)^T$ is the weight vector of $L_k(k = 1, 2, \ldots, n)$ with $W_k \in [0, 1]$ and \(\sum_{k=1}^{n} W_k = 1 \).

Our next result computes the expression of the 2TLCq-RPFWA operator:

Theorem 3.1. Consider a collection of 2TLCq-RPFNs $L_k = ((\tilde{s}_{\alpha_k}, A_k)e^{2\pi i (\tilde{s}_{\alpha_k}, D_k)}, (\tilde{s}_{\beta_k}, B_k)e^{2\pi i (\tilde{s}_{\beta_k}, E_k)}, (\tilde{s}_{\gamma_k}, C_k)e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)})$ $(k = 1, 2, \ldots, n)$ having weight vector $\mathbf{W} = (W_1, W_2, \ldots, W_n)^T$ with $W_k \in [0, 1]$ and $\sum_{k=1}^{n} W_k = 1$. Then

$$2TLCq - RPFWA(L_1, L_2, \ldots, L_n) =$$

$$\left[\Lambda \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\tilde{s}_{\alpha_k}, A_k)}{\mathbf{T}} \right)^{W_k} e^{\frac{i 2\pi \Lambda}{2} \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\tilde{s}_{\beta_k}, B_k)}{\mathbf{T}} \right)^{W_k} \right)} \right) \right] \left[\Lambda \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\tilde{s}_{\gamma_k}, C_k)}{\mathbf{T}} \right)^{W_k} e^{\frac{i 2\pi \Lambda}{2} \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\tilde{s}_{\gamma_k}, F_k)}{\mathbf{T}} \right)^{W_k} \right)} \right) \right].$$

(3.6)

The proof of this Theorem is given in Appendix A.

We proceed to explore the behavior of our first operator:

Proposition 3.1. Consider two collections of 2TLCq-RPFNs $L_{a_k} = ((\tilde{s}_{\alpha_k}, A_k)e^{2\pi i (\tilde{s}_{\alpha_k}, D_k)}, (\tilde{s}_{\beta_k}, B_k)e^{2\pi i (\tilde{s}_{\beta_k}, E_k)}, (\tilde{s}_{\gamma_k}, C_k)e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)})$ $(k = 1, 2, \ldots, n)$ and $L_{b_k} = ((\tilde{s}_{\alpha_k}, A_k)e^{2\pi i (\tilde{s}_{\alpha_k}, D_k)}, (\tilde{s}_{\beta_k}, B_k)e^{2\pi i (\tilde{s}_{\beta_k}, E_k)}, (\tilde{s}_{\gamma_k}, C_k)e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)})$ $(k = 1, 2, \ldots, n)$. Then the 2TLCq-RPFWA operator has the following properties:

1) (Idempotency) If $L_k = ((\tilde{s}_{\alpha_k}, A_k)e^{2\pi i (\tilde{s}_{\alpha_k}, D_k)}, (\tilde{s}_{\beta_k}, B_k)e^{2\pi i (\tilde{s}_{\beta_k}, E_k)}, (\tilde{s}_{\gamma_k}, C_k)e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)}) = L$ for all $(k = 1, 2, \ldots, n)$, then

$$2TLCq - RPFWA(L_1, L_2, \ldots, L_n) = L.$$

(3.7)

2) (Monotonicity) If $L_{a_k} \leq L_{b_k}$, for all $(k = 1, 2, \ldots, n)$, then

$$2TLCq - RPFWA(L_{a_1}, L_{a_2}, \ldots, L_{a_n}) \leq 2TLCq - RPFWA(L_{b_1}, L_{b_2}, \ldots, L_{b_n}).$$

(3.8)
3) (Boundedness) Consider a collection of 2TLC\(q\)-RPFNs

\[L_{ak} = ((\bar{\zeta}_{ak}, A_{ak})e^{2\pi i(\bar{\zeta}_{ak}D_k)}, (\bar{\zeta}_{ak}, B_{ak})e^{2\pi i(\bar{\zeta}_{ak}E_k)}, (\bar{\zeta}_{ak}, C_{ak})e^{2\pi i(\bar{\zeta}_{ak}F_k)}) \quad (k = 1, 2, \ldots, n) \]

with

\[L_{ak}^+ = (\max_{a_k}(\bar{\zeta}_{ak}, A_{ak})e^{2\pi i(\max_{a_k}(\bar{\zeta}_{ak}, D_k)}), \min_{a_k}(\bar{\zeta}_{ak}, B_{ak})e^{2\pi i(\min_{a_k}(\bar{\zeta}_{ak}, E_k))}, \min_{a_k}(\bar{\zeta}_{ak}, C_{ak})e^{2\pi i(\min_{a_k}(\bar{\zeta}_{ak}, F_k))}) \]

and

\[L_{ak}^- = (\min_{a_k}(\bar{\zeta}_{ak}, A_{ak})e^{2\pi i(\min_{a_k}(\bar{\zeta}_{ak}, D_k)}), \max_{a_k}(\bar{\zeta}_{ak}, B_{ak})e^{2\pi i(\max_{a_k}(\bar{\zeta}_{ak}, E_k))}, \max_{a_k}(\bar{\zeta}_{ak}, C_{ak})e^{2\pi i(\max_{a_k}(\bar{\zeta}_{ak}, F_k))}). \]

then

\[L^+ \leq 2TLC_{q} - RPFWA(L_1, L_2, \ldots, L_n) \leq L^-. \quad (3.9) \]

The second operator is defined as follows:

Definition 3.9. The 2TLC\(q\)-RPFWG operator is the mapping \(H^n \to H\) such that: for each collection of 2TLC\(q\)-RPFNs \(L_k = ((\bar{\zeta}_{ak}, A_{ak})e^{2\pi i(\bar{\zeta}_{ak}D_k)}, (\bar{\zeta}_{ak}, B_{ak})e^{2\pi i(\bar{\zeta}_{ak}E_k)}, (\bar{\zeta}_{ak}, C_{ak})e^{2\pi i(\bar{\zeta}_{ak}F_k)}) \quad (k = 1, 2, \ldots, n),

\[2TLC_{q} - RPFWG(L_1, L_2, \ldots, L_n) = \bigotimes_{k=1}^{n} (L_k)^{W_k}, \quad (3.10) \]

where \(W = (W_1, W_2, \ldots, W_n)^T\) is the weight vector of \(L_k\) \(k = 1, 2, \ldots, n\) with \(W_k \in [0, 1]\) and \(\sum_{k=1}^{n} W_k = 1\).

Our next result computes the expression of the 2TLC\(q\)-RPFWG operator:

Theorem 3.2. Consider a collection of 2TLC\(q\)-RPFNs \(L_k = ((\bar{\zeta}_{ak}, A_{ak})e^{2\pi i(\bar{\zeta}_{ak}D_k)}, (\bar{\zeta}_{ak}, B_{ak})e^{2\pi i(\bar{\zeta}_{ak}E_k)}, (\bar{\zeta}_{ak}, C_{ak})e^{2\pi i(\bar{\zeta}_{ak}F_k)}) \quad (k = 1, 2, \ldots, n)\) having weight vector \(W = (W_1, W_2, \ldots, W_n)^T\) with \(W_k \in [0, 1]\) and \(\sum_{k=1}^{n} W_k = 1\). Then

\[2TLC_{q} - RPFWG(L_1, L_2, \ldots, L_n) = \]

\[\begin{align*}
&\Lambda \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\bar{\zeta}_{ak}D_k)}{\bar{T}} \right)^{W_k} \right) e^{i2\pi A \left(\prod_{k=1}^{n} \left(\frac{\Lambda^{-1}(\bar{\zeta}_{ak}E_k)}{\bar{T}} \right)^{W_k} \right)} \\
&\Lambda \left(\prod_{k=1}^{n} \left(1 - \frac{\Lambda^{-1}(\bar{\zeta}_{ak}B_k)}{\bar{T}} \right)^{W_k} \right) e^{i2\pi A \left(\prod_{k=1}^{n} \left(1 - \frac{\Lambda^{-1}(\bar{\zeta}_{ak}F_k)}{\bar{T}} \right)^{W_k} \right)} \\
&\Lambda \left(\prod_{k=1}^{n} \left(1 - \frac{\Lambda^{-1}(\bar{\zeta}_{ak}C_k)}{\bar{T}} \right)^{W_k} \right) e^{i2\pi A \left(\prod_{k=1}^{n} \left(1 - \frac{\Lambda^{-1}(\bar{\zeta}_{ak}B_k)}{\bar{T}} \right)^{W_k} \right)}.
\end{align*} \quad (3.11) \]

Proof. This proof is similar to the proof of Theorem 3.1.
To conclude this section, we explore the behavior of our second operator:

Proposition 3.2. Consider two collections of 2TLC_{q}-RPFNs $L_{u_{k}}=((\tilde{\sigma}_{u_{k}}, A_{u_{k}})e^{2\pi i(\tilde{\eta}_{u_{k}}, D_{u_{k}})}, (\tilde{\beta}_{u_{k}}, B_{u_{k}})e^{2\pi i(\tilde{\gamma}_{u_{k}}, E_{u_{k}})})$ $(k = 1, 2, \ldots, n)$ and $L_{b_{k}}=((\tilde{\sigma}_{b_{k}}, A_{b_{k}})e^{2\pi i(\tilde{\eta}_{b_{k}}, D_{b_{k}})}, (\tilde{\beta}_{b_{k}}, B_{b_{k}})e^{2\pi i(\tilde{\gamma}_{b_{k}}, E_{b_{k}})})$ $(k = 1, 2, \ldots, n)$. Then the 2TLC_{q}-RPFWG operator has the following properties:

1) (Idempotency) If $L_{k} = ((\tilde{\sigma}_{u_{k}}, A_{u_{k}})e^{2\pi i(\tilde{\eta}_{u_{k}}, D_{u_{k}})}, (\tilde{\beta}_{u_{k}}, B_{u_{k}})e^{2\pi i(\tilde{\gamma}_{u_{k}}, E_{u_{k}})}, (\tilde{\gamma}_{u_{k}}, C_{u_{k}})e^{2\pi i(\tilde{\gamma}_{u_{k}}, F_{u_{k}})}) = L$ for all $(k = 1, 2, \ldots, n)$, then

 $$2\text{TLC}_{q} - \text{RPFWG}(L_{1}, L_{2}, \ldots, L_{n}) = L.$$ \hfill (3.12)

2) (Monotonicity) If $L_{u_{k}} \leq L_{b_{k}}$ for all $(k = 1, 2, \ldots, n)$, then

 $$2\text{TLC}_{q} - \text{RPFWG}(L_{u_{1}}, L_{u_{2}}, \ldots, L_{u_{n}}) \leq 2\text{TLC}_{q} - \text{RPFWG}(L_{b_{1}}, L_{b_{2}}, \ldots, L_{b_{n}}).$$ \hfill (3.13)

3) (Boundedness) Consider a collection of 2TLC_{q}-RPFNs

 $$L_{u_{k}}=((\tilde{\sigma}_{u_{k}}, A_{u_{k}})e^{2\pi i(\tilde{\eta}_{u_{k}}, D_{u_{k}})}, (\tilde{\beta}_{u_{k}}, B_{u_{k}})e^{2\pi i(\tilde{\gamma}_{u_{k}}, E_{u_{k}})}, (\tilde{\gamma}_{u_{k}}, C_{u_{k}})e^{2\pi i(\tilde{\gamma}_{u_{k}}, F_{u_{k}})})$$ $(k = 1, 2, \ldots, n)$

 with

 $$L_{u}^{+} = (\max_{u_{k}}(\tilde{\sigma}_{u_{k}}, A_{u_{k}})e^{2\pi i(\max_{u_{k}}(\tilde{\eta}_{u_{k}}, D_{u_{k}}))), \min(\tilde{\beta}_{u_{k}}, B_{u_{k}})e^{2\pi i(\min_{u_{k}}(\tilde{\gamma}_{u_{k}}, E_{u_{k}}))), \min(\tilde{\gamma}_{u_{k}}, C_{u_{k}})e^{2\pi i(\min_{u_{k}}(\tilde{\gamma}_{u_{k}}, F_{u_{k}})))}$$

 and

 $$L_{u}^{-} = (\min_{u_{k}}(\tilde{\sigma}_{u_{k}}, A_{u_{k}})e^{2\pi i(\min_{u_{k}}(\tilde{\eta}_{u_{k}}, D_{u_{k}}))), \max(\tilde{\beta}_{u_{k}}, B_{u_{k}})e^{2\pi i(\max_{u_{k}}(\tilde{\gamma}_{u_{k}}, E_{u_{k}}))), \max(\tilde{\gamma}_{u_{k}}, C_{u_{k}})e^{2\pi i(\max_{u_{k}}(\tilde{\gamma}_{u_{k}}, F_{u_{k}})))},$$

 then

 $$L_{u}^{-} \leq 2\text{TLC}_{q} - \text{RPFWG}(L_{1}, L_{2}, \ldots, L_{n}) \leq L_{u}^{+}.$$ \hfill (3.14)

4. Hamacher aggregation operators in the 2TLC_{q}-RPF environment

In this section, we present Hamacher laws between 2TLC_{q}-RPFNs, and also certain AOs, including the 2TLC_{q}-RPFHWA, 2TLC_{q}-RPFHOWA, 2TLC_{q}-RPFHWG and 2TLC_{q}-RPFHOWG operators with their properties.

Definition 4.1. Consider three 2TLC_{q}-RPFNs $L = ((\tilde{\sigma}_{L}, A_{L})e^{2\pi i(\tilde{\eta}_{L}, D_{L})}, (\tilde{\beta}_{L}, B_{L})e^{2\pi i(\tilde{\gamma}_{L}, E_{L})}, (\tilde{\gamma}_{L}, C_{L})e^{2\pi i(\tilde{\gamma}_{L}, F_{L})}) L_{1} = ((\tilde{\sigma}_{A_{1}}, A_{1})e^{2\pi i(\tilde{\eta}_{A_{1}}, D_{A_{1}})}, (\tilde{\beta}_{A_{1}}, B_{1})e^{2\pi i(\tilde{\gamma}_{A_{1}}, E_{A_{1}})}, (\tilde{\gamma}_{A_{1}}, C_{1})e^{2\pi i(\tilde{\gamma}_{A_{1}}, F_{1})})$ and $L_{2} = ((\tilde{\sigma}_{A_{2}}, A_{2})e^{2\pi i(\tilde{\eta}_{A_{2}}, D_{A_{2}})}, (\tilde{\beta}_{A_{2}}, B_{2})e^{2\pi i(\tilde{\gamma}_{A_{2}}, E_{A_{2}})}, (\tilde{\gamma}_{A_{2}}, C_{2})e^{2\pi i(\tilde{\gamma}_{A_{2}}, F_{2})})$ with $q \geq 1$ and $x, \rho > 0$.

Then the 2TLC_{q}-RPF Hamacher operation between L_{1} and L_{2} are:

1) \[L_{1} \oplus L_{2} = \begin{cases} \Lambda\left(T\left(\sqrt[1-q]{\frac{\sqrt[1-q]{1+q\gamma_{L}} - \sqrt[1-q]{1-x} \sqrt[1-q]{1+q\gamma_{L} + q\gamma_{L}}} {1 - (1-x) \sqrt[1-q]{1+q\gamma_{L}}}}\right)\right), & q \geq 1, \\ \Lambda\left(T\left(\sqrt[1-q]{\frac{\sqrt[1-q]{1+q\gamma_{L}} - \sqrt[1-q]{1-x} \sqrt[1-q]{1+q\gamma_{L} + q\gamma_{L}}} {1 - (1-x) \sqrt[1-q]{1+q\gamma_{L}}}}\right)\right), & 0 < q < 1 \end{cases} \]
2) $L_1 \otimes L_2 = \begin{cases}
\Lambda \left(\sqrt[2]{\frac{x_1 x_2}{\sqrt{1 + (1-x)(2x_1^2 + \sqrt{x_2^2}}}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1 q_2 - q_1 q_2}{1 - \sqrt{1 - x}(2q_1^2 + \sqrt{q_2^2}}}} \right), \\
\Lambda \left(\sqrt[2]{\frac{c_1^2 + c_2^2 - c_1 c_2}{1 - x(2c_1^2 + \sqrt{c_2^2}}}} \right), \\
\end{cases}
\text{ and }
\begin{cases}
\Lambda \left(\sqrt[2]{\frac{x_1 x_2}{\sqrt{1 + (1-x)(2x_1^2 + \sqrt{x_2^2}}}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1 q_2 - q_1 q_2}{1 - \sqrt{1 - x}(2q_1^2 + \sqrt{q_2^2}}}} \right), \\
\Lambda \left(\sqrt[2]{\frac{c_1^2 + c_2^2 - c_1 c_2}{1 - x(2c_1^2 + \sqrt{c_2^2}}}} \right), \\
\end{cases}

3) \rho L = \begin{cases}
\Lambda \left(\sqrt[2]{\frac{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}}{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\end{cases}
\text{ and }
\begin{cases}
\Lambda \left(\sqrt[2]{\frac{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}}{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\end{cases}

4) \rho L^\ast = \begin{cases}
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\Lambda \left(\sqrt[2]{\frac{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}}{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\end{cases}
\text{ and }
\begin{cases}
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\Lambda \left(\sqrt[2]{\frac{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}}{1 + (x-1)(2\rho_1^2 + \sqrt{1 - x}\rho_1^2}} \right), \\
\Lambda \left(\sqrt[2]{\frac{q_1^2}{1 + (x-1)(1-\rho_1^2) + (x-1)(1-\rho_1^2)}} \right), \\
\end{cases}

Here, $\mathcal{A}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, A_1)}{\mathcal{T}}$, $\mathcal{B}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, B_1)}{\mathcal{T}}$, $\mathcal{C}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, C_1)}{\mathcal{T}}$, $\mathcal{X}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, D_1)}{\mathcal{T}}$, $\mathcal{Y}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, E_1)}{\mathcal{T}}$ and $\mathcal{Z}_1 = \frac{\Lambda^{-1}(\bar{\xi}_{11}, F_1)}{\mathcal{T}}$. Similar notations are for L and L_2.

Remark 4.1. For $q = 2$, the 2TLCq-RPF Hamacher operations transform into the 2TLCSF Hamacher operations and for $q = 1$, the 2TLCq-RPF Hamacher operations transform into the 2TLCpD Hamacher operations.

4.1. 2TLCq-RPF Hamacher averaging operators

This subsection presents two Hamacher AOs under the 2TLCq-RPF environment, namely, the 2TLCq-RPFHWA and 2TLCq-RPFHOTA operators.

Definition 4.2. The 2TLCq-RPFHWA operator is a mapping $H^n \rightarrow H$ such that: for each collection of 2TLCq-RPFNs $M_k = ((\bar{\xi}_{11}, A_k)e^{2\pi i(n_1, D_k)}, (\bar{\xi}_{11}, B_k)e^{2\pi i(n_1, F_k)}, (\bar{\xi}_{11}, C_k)e^{2\pi i(n_1, F_k)})(k = 1, 2, \ldots, n)$,

$$2TLCq - RPFHWA(M_1, M_2, \ldots, M_n) = \bigoplus_{k=1}^n W_k M_k,$$

where $W = (W_1, W_2, \ldots, W_n)^T$ is the weight vector of $M_k (k = 1, 2, \ldots, n)$ with $W_k \in [0, 1]$ and $\sum_{k=1}^n W_k = 1$.
Consider a collection of 2TLCq-RPFNs $M_k = ((\tilde{\delta}_d, A_k)e^{2\pi(i\xi_d q B_k)}, (\tilde{\delta}_B, B_k)e^{2\pi(i\xi_B E_k)}, (\tilde{\delta}_e, C_k)e^{2\pi(i\xi_e F_i)}) \ (k = 1, 2, \ldots, n)$ having weight vector $W = (W_1, W_2, \ldots, W_n)^T$ with $W_k \in [0, 1]$ and $\sum_{k=1}^n W_k = 1$. Then

$$2TLCq – RPFHWA(M_1, M_2, \ldots, M_n) =$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

The proof of this theorem is given in Appendix B.

We illustrate the application of this operator with a numerical example:

Example 4.1. Consider three 2TLCq-RPFNs $M_1 = \{ (\tilde{\delta}_1, 0)e^{2\pi(i\xi_1 q 0)}, (\tilde{\delta}_1, 0)e^{2\pi(i\xi_1 q 0)}, (\tilde{\delta}_2, 0)e^{2\pi(i\xi_2 q 0)} \}, M_2 = \{ (\tilde{\delta}_3, 0)e^{2\pi(i\xi_3 q 0)}, (\tilde{\delta}_3, 0)e^{2\pi(i\xi_3 q 0)}, (\tilde{\delta}_3, 0)e^{2\pi(i\xi_3 q 0)} \}$ and $M_3 = \{ (\tilde{\delta}_2, 0)e^{2\pi(i\xi_2 q 0)}, (\tilde{\delta}_4, 0)e^{2\pi(i\xi_4 q 0)}, (\tilde{\delta}_3, 0)e^{2\pi(i\xi_3 q 0)} \}$. Assume that $x = 2, q = 3, T = 7$ and $W = [0.4, 0.3, 0.3]$. From Eq (4.2), we have

$$2TLCq – RPFHWA(M_1, M_2, M_3) =$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

$$\left(\Lambda(T) \left(\psi \prod_{k=1}^n W_{k} \right) \right) \left(\frac{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k)}{\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) + \prod_{k=1}^n (1-\xi_k^q W_k)} \right) e^{i2\pi \Lambda(T) \left(\prod_{k=1}^n (1+\frac{1}{2}\xi_k^q W_k) - \prod_{k=1}^n (1-\xi_k^q W_k) \right) W_k},$$

$$= \left((\tilde{\delta}_3, -0.1764)e^{2\pi(i\xi_3 q -0.3199)}, (\tilde{\delta}_4, -0.1444)e^{2\pi(i\xi_4 q 0.0357)}, (\tilde{\delta}_2, -0.1577)e^{2\pi(i\xi_2 q -0.2281)} \right).$$
The next Proposition explores some properties of our 2TLC-\textit{q-RPFHWA} aggregation operator:

Proposition 4.1. Consider two collections of 2TLC-\textit{q-RPFNs} \(M_{ak} = ((\tilde{s}_{ak}, A_{ak})e^{2\pi i (\tilde{s}_{ak}, D_{ak})}, (\tilde{\eta}_{ak}, B_{ak})e^{i2\pi (\tilde{\eta}_{ak}, E_{ak})}, (\tilde{\eta}_{ak}, C_{ak})e^{i2\pi (\tilde{\eta}_{ak}, F_{ak})}) (k = 1, 2, \ldots, n)\) and \(M_{bk} = ((\tilde{s}_{bk}, A_{bk})e^{2\pi i (\tilde{s}_{bk}, D_{bk})}, (\tilde{\eta}_{bk}, B_{bk})e^{i2\pi (\tilde{\eta}_{bk}, E_{bk})}, (\tilde{\eta}_{bk}, C_{bk})e^{i2\pi (\tilde{\eta}_{bk}, F_{bk})}) (k = 1, 2, \ldots, n)\). Then the 2TLC-\textit{q-RPFHWA} operator has the following properties:

1) (Idempotency) If \(M_k = ((\tilde{s}_{ak}, A_{ak})e^{2\pi i (\tilde{s}_{ak}, D_{ak})}, (\tilde{\eta}_{ak}, B_{ak})e^{i2\pi (\tilde{\eta}_{ak}, E_{ak})}, (\tilde{\eta}_{ak}, C_{ak})e^{i2\pi (\tilde{\eta}_{ak}, F_{ak})}) = M\) for all \((k = 1, 2, \ldots, n)\), then

\[
2\text{TLC}q - \text{RPFHWA}(M_1, M_2, \ldots, M_n) = M.
\] (4.3)

Proof. Suppose \(M_k = ((\tilde{s}_{ak}, A_{ak})e^{2\pi i (\tilde{s}_{ak}, D_{ak})}, (\tilde{\eta}_{ak}, B_{ak})e^{i2\pi (\tilde{\eta}_{ak}, E_{ak})}, (\tilde{\eta}_{ak}, C_{ak})e^{i2\pi (\tilde{\eta}_{ak}, F_{ak})})\) is a collection of 2TLC-\textit{q-RPFNs} such that \(M_k = M\) for all \((k = 1, 2, \ldots, n)\), \(W_k \in [0, 1]\) and \(\sum_{k=1}^{n} W_k = 1\). Moreover,

\[
\eta_k = \frac{\Lambda^{-1}(\tilde{s}_{ak}, A_{ak})}{\mathcal{T}} = \eta, \quad B_k = \frac{\Lambda^{-1}(\tilde{s}_{ak}, B_{ak})}{\mathcal{T}} = B, \quad C_k = \frac{\Lambda^{-1}(\tilde{s}_{ak}, C_{ak})}{\mathcal{T}} = C, \quad X_k = \frac{\Lambda^{-1}(\tilde{s}_{ak}, D_{ak})}{\mathcal{T}} = X, \quad \text{for all } (k = 1, 2, \ldots, n).
\]

From Eq (4.2), we get

\[
2\text{TLC}q - \text{RPFHWA}(M_1, M_2, \ldots, M_n) =
\]

The rest of the proof follows from the properties of the \textit{q-RPFHWA} aggregation operator.
2) (Monotonicity) If $M_{a_k} \leq M_{b_k}$, for all $(k = 1, 2, \ldots, n)$, then

$$2\text{TLCq} - \text{RPFHWA}(M_{a_1}, M_{a_2}, \ldots, M_{a_n}) \leq 2\text{TLCq} - \text{RPFHWA}(M_{b_1}, M_{b_2}, \ldots, M_{b_n}).$$ \hfill (4.4)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

$$M_{a_k} = \left((\tilde{s}_{a_k}, A_k), (\tilde{s}_{b_k}, B_k), (\tilde{s}_{\beta_k}, C_k) e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)} \right) \quad (k = 1, 2, \ldots, n)$$

with

$$M'_{a_k} = \left(\max_{a_k} (\tilde{s}_{a_k}, A_k), \min_{a_k} (\tilde{s}_{b_k}, B_k), \min_{a_k} (\tilde{s}_{\beta_k}, C_k) e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)} \right)$$

and

$$M''_{a_k} = \left(\min_{a_k} (\tilde{s}_{a_k}, A_k), \max_{a_k} (\tilde{s}_{b_k}, B_k), \max_{a_k} (\tilde{s}_{\beta_k}, C_k) e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)} \right)$$

then

$$M'' \leq 2\text{TLCq} - \text{RPFHWA}(M_1, M_2, \ldots, M_n) \leq M'^{+}.$$ \hfill (4.5)

An alternative operator that is born from a different principle follows:

Definition 4.3. The 2TLCq-RPFHWA operator is a mapping $H^n \to H$ such that: for each collection of 2TLCq-RPFNs $M_k = \left((\tilde{s}_{a_k}, A_k), (\tilde{s}_{b_k}, B_k), (\tilde{s}_{\beta_k}, C_k) e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)} \right) \quad (k = 1, 2, \ldots, n)$,

$$2\text{TLCq} - \text{RPFHWA}(M_1, M_2, \ldots, M_n) = \bigoplus_{k=1}^{n} W_k M_{\mu(k)},$$ \hfill (4.6)

where $\mu(k)$ is such that $M_{\mu(k-1)} \geq M_{\mu(k)}$ for all k, $W = (W_1, W_2, \ldots, W_n)^T$ is the weight vector of $M_k \quad (k = 1, 2, \ldots, n)$ with $W_k \in [0, 1]$ and $\sum_{k=1}^{n} W_k = 1$.

Its compact expression is computed in our next theorem:

Theorem 4.2. Consider a collection of 2TLCq-RPFNs $M_k = \left((\tilde{s}_{a_k}, A_k), (\tilde{s}_{b_k}, B_k), (\tilde{s}_{\beta_k}, C_k) e^{2\pi i (\tilde{s}_{\gamma_k}, F_k)} \right) \quad (k = 1, 2, \ldots, n)$ having weight vector $W = (W_1, W_2, \ldots, W_n)^T$ with $W_k \in [0, 1]$ and $\sum_{k=1}^{n} W_k = 1$. Then
2\text{TLC}_q – \text{RPFHOWA}(M_1, M_2, \ldots, M_n) =
\begin{align*}
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{1}{(1 + (x-1)^q s_{\mu(k)})^{W_k} - \frac{1}{1 - (1 - q_Y s_{\mu(k)})^{W_k}} \right) \right) e^{2\pi\lambda} \right) \\
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{\eta_1}{\text{q}_1} \right)^{W_k} \right) e^{2\pi\lambda} \right) \\
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{\text{q}_1}{(1 + (x-1)^q s_{\mu(k)})^{W_k} - \frac{1}{1 - (1 - q_Y s_{\mu(k)})^{W_k}} \right) \right) e^{2\pi\lambda} \right)
\end{align*}

(4.7)

\text{Proof.} This proof is similar to the proof of Theorem 4.1.

For illustration, let us apply the formula above in a numerical case:

Example 4.2. Consider three 2\text{TLC}_q-\text{RPFNs} $M_1 = \{(\tilde{s}_1, 0)e^{2\pi(i, 0)}, (\tilde{s}_3, 0)e^{2\pi(i, 0)}, (\tilde{s}_2, 0)e^{2\pi(i, 0)}\}, M_2 = \{(\tilde{s}_4, 0)e^{2\pi(i, 0)}, (\tilde{s}_3, 0)e^{2\pi(i, 0)}, (\tilde{s}_1, 0)e^{2\pi(i, 0)}\}$ and $M_3 = \{(\tilde{s}_2, 0)e^{2\pi(i, 0)}, (\tilde{s}_4, 0)e^{2\pi(i, 0)}, (\tilde{s}_3, 0)e^{2\pi(i, 0)}\}$. Assume that $x = 2, q = 3, \mathcal{Y} = 7$ and $W = \{0.4, 0.3, 0.3\}$. Now, $S(M_1) = 2.5191, S(M_2) = 2.5190, S(M_3) = 2.5182$. Therefore, $S(M_1) < S(M_2) < S(M_3)$. From Eq (4.7), we have

$$2\text{TLC}_q – \text{RPFHOWA}(M_1, M_2, M_3) =$$

$$\begin{align*}
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{1}{(1 + (x-1)^q s_{\mu(k)})^{W_k} - \frac{1}{1 - (1 - q_Y s_{\mu(k)})^{W_k}} \right) \right) e^{2\pi\lambda} \right) \\
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{3}{(1 + (x-1)^q s_{\mu(k)})^{W_k} - \frac{1}{1 - (1 - q_Y s_{\mu(k)})^{W_k}} \right) \right) e^{2\pi\lambda} \right) \\
\Lambda \left(\mathcal{T} \left(\sum_{k=1}^{n} \left(\frac{3}{(1 + (x-1)^q s_{\mu(k)})^{W_k} - \frac{1}{1 - (1 - q_Y s_{\mu(k)})^{W_k}} \right) \right) e^{2\pi\lambda} \right)
\end{align*}

= \{(\tilde{s}_3, -0.1764)e^{2\pi(i, -0.3199)}, (\tilde{s}_4, -0.1444)e^{2\pi(i, 0.0357)}, (\tilde{s}_2, -0.1577)e^{2\pi(i, -0.2281)}\}.

The next Proposition explores some properties of our 2\text{TLC}_q-\text{RPFHOWA} aggregation operator:

Proposition 4.2. Consider two collections of 2\text{TLC}_q-\text{RPFNs} $M_{\alpha} = \{(\tilde{s}_{\alpha_1}, A_{\alpha_1})e^{2\pi(i, \tilde{b}_{\alpha_1})}, (\tilde{s}_{\beta_1}, B_{\beta_1})\} \quad (k = 1, 2, \ldots, n)$ and $M_{\beta} = \{(\tilde{s}_{\beta_1}, A_{\beta_1})e^{2\pi(i, \tilde{b}_{\beta_1})}, (\tilde{s}_{\beta_1}, B_{\beta_1})\} \quad (k = 1, 2, \ldots, n)$. Then the 2\text{TLC}_q-\text{RPFHOWA} operator has the following properties:

Mathematical Biosciences and Engineering

Volume 19, Issue 11, 11281–11323.
1) (Idempotency) If \(M_k = ((\tilde{s}_{a_k}, A_k)e^{2\pi(\tilde{s}_{a_k}, D_k)}, (\tilde{s}_{b_k}, B_k)e^{2\pi(\tilde{s}_{a_k}, E_k)}, (\tilde{s}_{c_k}, C_k)e^{2\pi(\tilde{s}_{a_k}, F_k)}) = M \) for all \((k = 1, 2, \ldots, n)\), then

\[
2\text{ TLC}_q - \text{RPFHOWA}(M_1, M_2, \ldots, M_n) = M.
\] (4.8)

2) (Monotonicity) If \(M_{a_k} \geq M_{b_k} \) for all \((k = 1, 2, \ldots, n)\), then

\[
2\text{ TLC}_q - \text{RPFHOWA}(M_{a_1}, M_{a_2}, \ldots, M_{a_n}) \leq 2\text{ TLC}_q - \text{RPFHOWA}(M_{b_1}, M_{b_2}, \ldots, M_{b_n}).
\] (4.9)

3) (Boundedness) Consider a collection of 2TLC\(_q\)-RPFNs

\[
M_{a_k} = ((\tilde{s}_{a_k}, A_k)e^{2\pi(\tilde{s}_{a_k}, D_k)}, (\tilde{s}_{b_k}, B_k)e^{2\pi(\tilde{s}_{a_k}, E_k)}, (\tilde{s}_{c_k}, C_k)e^{2\pi(\tilde{s}_{a_k}, F_k)}) \quad (k = 1, 2, \ldots, n)
\]

with

\[
M_{a_k}^* = (\max_{a_k}(\tilde{s}_{a_k}, A_k)e^{2\pi(\max_{a_k}(\tilde{s}_{a_k}, D_k)}, \min_{a_k}(\tilde{s}_{b_k}, B_k)e^{2\pi(\min_{a_k}(\tilde{s}_{b_k}, E_k)}), \min_{a_k}(\tilde{s}_{c_k}, C_k)e^{2\pi(\min_{a_k}(\tilde{s}_{c_k}, F_k)})
\]

and

\[
M_{a_k}^- = (\min_{a_k}(\tilde{s}_{a_k}, A_k)e^{2\pi(\min_{a_k}(\tilde{s}_{a_k}, D_k)}, \max_{a_k}(\tilde{s}_{b_k}, B_k)e^{2\pi(\max_{a_k}(\tilde{s}_{b_k}, E_k)}), \max_{a_k}(\tilde{s}_{c_k}, C_k)e^{2\pi(\max_{a_k}(\tilde{s}_{c_k}, F_k)})
\]

then

\[
M^- \leq 2\text{ TLC}_q - \text{RPFHOWA}(M_1, M_2, \ldots, M_n) \leq M^*.
\] (4.10)

4.2. 2TLC\(_q\)-RPF Hamacher geometric operators

This subsection presents two Hamacher AOs under the 2TLC\(_q\)-RPF environment, namely, the 2TLC\(_q\)-RPFHGW and 2TLC\(_q\)-RPFHOWG operators.

Definition 4.4. Consider a collection of 2TLC\(_q\)-RPFNs \(M_k = ((\tilde{s}_{a_k}, A_k)e^{2\pi(\tilde{s}_{a_k}, D_k)}, (\tilde{s}_{b_k}, B_k)e^{2\pi(\tilde{s}_{b_k}, E_k)}, (\tilde{s}_{c_k}, C_k)e^{2\pi(\tilde{s}_{c_k}, F_k)}) \) \((k = 1, 2, \ldots, n)\). Then the 2TLC\(_q\)-RPFHGW operator is a mapping \(H^n \rightarrow H \) such that

\[
2\text{ TLC}_q - \text{RPFHGW}(M_1, M_2, \ldots, M_n) = \bigotimes_{k=1}^n M_k^{W_k},
\] (4.11)

where \(\mathbf{W} = (W_1, W_2, \ldots, W_n)^T \) is the weight vector of \(M_k(k = 1, 2, \ldots, n) \) with \(W_k \in [0, 1] \) and \(\sum_{k=1}^n W_k = 1 \).

Its compact expression is computed in our next theorem:

Theorem 4.3. Consider a collection of 2TLC\(_q\)-RPFNs \(M_k = ((\tilde{s}_{a_k}, A_k)e^{2\pi(\tilde{s}_{a_k}, D_k)}, (\tilde{s}_{b_k}, B_k)e^{2\pi(\tilde{s}_{b_k}, E_k)}, (\tilde{s}_{c_k}, C_k)e^{2\pi(\tilde{s}_{c_k}, F_k)}) \) \((k = 1, 2, \ldots, n)\) having weight vector \(\mathbf{W} = (W_1, W_2, \ldots, W_n)^T \) with \(W_k \in [0, 1] \) and \(\sum_{k=1}^n W_k = 1 \). Then

\[
2\text{ TLC}_q - \text{RPFHGW}(M_1, M_2, \ldots, M_n) =
\]
Proposition 4.3. The proof of this Theorem is presented in Appendix C.

A numerical example illustrates the computation of aggregate values by the 2TLC_q-RPFHWG operator:

Example 4.3. Consider three 2TLC_q-RPFNs $M_1 = (\tilde{s}_1, 0) e^{2\alpha(\tilde{s}_1, 0)}, (\tilde{s}_3, 0) e^{2\alpha(\tilde{s}_3, 0)}, (\tilde{s}_2, 0) e^{2\alpha(\tilde{s}_2, 0)}, M_2 = (\tilde{s}_4, 0) e^{2\alpha(\tilde{s}_4, 0)}, (\tilde{s}_3, 0) e^{2\alpha(\tilde{s}_3, 0)}, (\tilde{s}_2, 0) e^{2\alpha(\tilde{s}_2, 0)}$, and $M_3 = (\tilde{s}_5, 0) e^{2\alpha(\tilde{s}_5, 0)}, (\tilde{s}_4, 0) e^{2\alpha(\tilde{s}_4, 0)}, (\tilde{s}_3, 0) e^{2\alpha(\tilde{s}_3, 0)}$. Assume that $x = 2$, $q = 3$, $\gamma = 7$ and $W = \{0.4, 0.3, 0.3\}$.

From Eq (4.12), we have

$$
2\text{TLC}_q - \text{RPFHWG}(M_1, M_2, M_3) = \frac{\Psi^{n} \prod_{k=1}^{n} W_k}{\prod_{k=1}^{n} (1+(x-1)W_k)\prod_{k=1}^{n} (1+(x-1)W_k)} e^{2\alpha(\prod_{k=1}^{n} W_k)}
$$

$$
\begin{aligned}
&= \left((\tilde{s}_2, 0.1098)e^{2\alpha(\tilde{s}_2, 0.1735)}, (\tilde{s}_4, 0.1358)e^{2\alpha(\tilde{s}_4, 0.0248)}, (\tilde{s}_2, 0.2659)e^{2\alpha(\tilde{s}_2, \text{0.0056})} \right).
\end{aligned}
$$

Proposition 4.3. Consider two collections of 2TLC_q-RPFNs $M_i = ((\tilde{s}_{i_a}, A_{i_a}) e^{2\alpha(\tilde{s}_{i_a}, F_{i_a})}, (\tilde{s}_{i_b}, B_{i_b}) e^{2\alpha(\tilde{s}_{i_b}, F_{i_b})}) (k = 1, 2, \ldots, n)$ and $M_j = ((\tilde{s}_{j_a}, A_{j_a}) e^{2\alpha(\tilde{s}_{j_a}, F_{j_a})}, (\tilde{s}_{j_b}, B_{j_b}) e^{2\alpha(\tilde{s}_{j_b}, F_{j_b})}) (k = 1, 2, \ldots, n)$. Then the 2TLC_q-RPFHWG operator has the following properties:

1) (Idempotency) If $M_k = ((\tilde{s}_{a_k}, A_{a_k}) e^{2\alpha(\tilde{s}_{a_k}, F_{a_k})}, (\tilde{s}_{b_k}, B_{b_k}) e^{2\alpha(\tilde{s}_{b_k}, F_{b_k})}) = M$ for all $(k = 1, 2, \ldots, n)$, then

$$
2\text{TLC}_q - \text{RPFHWG}(M_1, M_2, \ldots, M_n) = M. (4.13)
$$
2) (Monotonicity) If $M_{A_k} \leq M_{B_k}$ for all $(k = 1, 2, \ldots, n)$, then
\[2TLCq - RPFHWG(M_{A_1}, M_{A_2}, \ldots, M_{A_n}) \leq 2TLCq - RPFHWG(M_{B_1}, M_{B_2}, \ldots, M_{B_n}). \quad (4.14) \]

3) (Boundedness) Consider a collection of $2TLCq$-RPFNs
\[M_{A_k} = ((\tilde{s}_{\nu_{A_k}}, A_k))e^{2\pi(\tilde{s}_{\nu_{A_k}}, D_{A_k}), (\tilde{s}_{\beta_{A_k}}, B_k)e^{2\pi(\tilde{s}_{\beta_{A_k}}, E_{A_k})}, (\tilde{s}_{\gamma_{A_k}}, C_k)e^{2\pi(\tilde{s}_{\gamma_{A_k}}, F_{A_k})}) \quad (k = 1, 2, \ldots, n) \]
with
\[M_{A_k}^* = (\max(\tilde{s}_{\nu_{A_k}}, A_k))e^{2\pi(\max(\tilde{s}_{\nu_{A_k}}, D_{A_k})), \min(\tilde{s}_{\beta_{A_k}}, B_k)e^{2\pi(\min(\tilde{s}_{\beta_{A_k}}, E_{A_k})), \min(\tilde{s}_{\gamma_{A_k}}, C_k)e^{2\pi(\min(\tilde{s}_{\gamma_{A_k}}, F_{A_k})})} \]
and
\[M_{A_k} = (\min(\tilde{s}_{\nu_{A_k}}, A_k))e^{2\pi(\min(\tilde{s}_{\nu_{A_k}}, D_{A_k})), \max(\tilde{s}_{\beta_{A_k}}, B_k)e^{2\pi(\max(\tilde{s}_{\beta_{A_k}}, E_{A_k})), \max(\tilde{s}_{\gamma_{A_k}}, C_k)e^{2\pi(\max(\tilde{s}_{\gamma_{A_k}}, F_{A_k})})} \]

then
\[M^* \leq 2TLCq - RPFHWG(M_1, M_2, \ldots, M_n) \leq M^+. \quad (4.15) \]

An alternative operator that is born from a different principle follows:

Definition 4.5. Consider a collection of $2TLCq$-RPFNs $M_k = ((\tilde{s}_{\nu_{A_k}}, A_k))e^{2\pi(\tilde{s}_{\nu_{A_k}}, D_{A_k}), (\tilde{s}_{\beta_{A_k}}, B_k)e^{2\pi(\tilde{s}_{\beta_{A_k}}, E_{A_k}), (\tilde{s}_{\gamma_{A_k}}, C_k)e^{2\pi(\tilde{s}_{\gamma_{A_k}}, F_{A_k})}) \quad (k = 1, 2, \ldots, n)$. Then the $2TLCq$-RPFHOWG operator is a mapping $H^n \rightarrow H$ such that
\[2TLCq - RPFHOWG(M_1, M_2, \ldots, M_n) = \bigoplus_{k=1}^n W_k M_{\mu(k)} \quad (4.16) \]
where $\mu(k)$ is such that $M_{\mu(k-1)} \geq M_{\mu(k)}$ for all k, $W = (W_1, W_2, \ldots, W_n)^T$ is the weight vector of $M_k(k = 1, 2, \ldots, n)$ with $W_k \in [0, 1]$ and $\sum_{k=1}^n W_k = 1$.

Let us compute a compact expression for this operator:

Theorem 4.4. Consider a collection of $2TLCq$-RPFNs $M_k = ((\tilde{s}_{\nu_{A_k}}, A_k))e^{2\pi(\tilde{s}_{\nu_{A_k}}, D_{A_k}), (\tilde{s}_{\beta_{A_k}}, B_k)e^{2\pi(\tilde{s}_{\beta_{A_k}}, E_{A_k}), (\tilde{s}_{\gamma_{A_k}}, C_k)e^{2\pi(\tilde{s}_{\gamma_{A_k}}, F_{A_k})}) \quad (k = 1, 2, \ldots, n)$ having weight vector $W = (W_1, W_2, \ldots, W_n)^T$ with $W_k \in [0, 1]$ and $\sum_{k=1}^n W_k = 1$. Then
\[2TLCq - RPFHOWG(M_1, M_2, \ldots, M_n) = \]
Proof. This proof is similar to the proof of Theorem 4.1.

Example 4.4. Consider three 2TLCq-RPFNs $M_1 = \{(\bar{s}_1, 0)e^{2\pi i(\bar{s}_1, 0)}, (\bar{s}_1, 0)e^{2\pi i(\bar{s}_1, 0)}\} = \{(\bar{s}_4, 0)e^{2\pi i(\bar{s}_4, 0)}\}$, $M_2 = \{(\bar{s}_2, 0)e^{2\pi i(\bar{s}_2, 0)}\}$ and $M_3 = \{(\bar{s}_3, 0)e^{2\pi i(\bar{s}_3, 0)}\}$. Assume that $x = 2$, $q = 3$, $r = 7$ and $z = [0.4, 0.3, 0.3]$. Now, $S(M_1) = 2.5191, S(M_2) = 2.5190, S(M_3) = 2.5182$. Therefore, $S(M_1) < S(M_2) < S(M_3)$. From Eq (4.17), we have

$$2TLC_q - RPFHOWG(M_1, M_2, M_3) =$$

$$\begin{align*}
&= \left(\left(\bar{s}_2, -0.1098\right)e^{2\pi i(\bar{s}_2, 0.1735)}, (\bar{s}_4, 0.1358)e^{2\pi i(\bar{s}_4, 2.4228)}, (\bar{s}_2, 0.2659)e^{2\pi i(\bar{s}_2, -0.0056)}\right)
\end{align*}$$

Proposition 4.4. Consider two collections of 2TLCq-RPFNs $M_{ak} = \{(\bar{s}_{ak}, A_{ak})e^{2\pi i(\bar{s}_{ak}, D_{ak})}, (\bar{s}_{bk}, B_{bk})e^{2\pi i(\bar{s}_{bk}, E_{bk})}, (\bar{s}_{ck}, C_{ck})e^{2\pi i(\bar{s}_{ck}, F_{ck})}\}$ for $k = 1, 2, \ldots, n$ and $M_{bk} = \{(\bar{s}_{bk}, A_{bk})e^{2\pi i(\bar{s}_{bk}, D_{bk})}, (\bar{s}_{bk}, B_{bk})e^{2\pi i(\bar{s}_{bk}, E_{bk})}, (\bar{s}_{bk}, C_{bk})e^{2\pi i(\bar{s}_{bk}, F_{bk})}\}$ for $k = 1, 2, \ldots, n$. Then the 2TLCq-RPFHOWG operator has the following properties:

1) (Idempotency) If $M_k = \{(\bar{s}_{ak}, A_{ak})e^{2\pi i(\bar{s}_{ak}, D_{ak})}, (\bar{s}_{bk}, B_{bk})e^{2\pi i(\bar{s}_{bk}, E_{bk})}, (\bar{s}_{ck}, C_{ck})e^{2\pi i(\bar{s}_{ck}, F_{ck})}\} = M$ for all $k = 1, 2, \ldots, n$, then

$$2TLC_q - RPFHOWG(M_1, M_2, \ldots, M_n) = M. \quad (4.18)$$

2) (Monotonicity) If $M_{ak} \leq M_{bk}$, for all $k = 1, 2, \ldots, n$, then

$$2TLC_q - RPFHOWG(M_{ak}, M_{ak}, \ldots, M_{ak}) \leq 2TLC_q - RPFHOWG(M_{bk}, M_{bk}, \ldots, M_{bk}). \quad (4.19)$$

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

$$M_{ak} = \{(\bar{s}_{ak}, A_{ak})e^{2\pi i(\bar{s}_{ak}, D_{ak})}, (\bar{s}_{bk}, B_{bk})e^{2\pi i(\bar{s}_{bk}, E_{bk})}, (\bar{s}_{ck}, C_{ck})e^{2\pi i(\bar{s}_{ck}, F_{ck})}\} \quad (k = 1, 2, \ldots, n)$$

with

$$M^*_{ak} = (\max_{ak}(\bar{s}_{ak}, A_{ak}))e^{2\pi i(\max_{ak}(\bar{s}_{ak}, D_{ak})), \min_{ak}(\bar{s}_{bk}, B_{bk}))e^{2\pi i(\min_{ak}(\bar{s}_{bk}, E_{bk}))}, \min_{ak}(\bar{s}_{ck}, C_{ck}))e^{2\pi i(\min_{ak}(\bar{s}_{ck}, F_{ck}))}$$

and

$$M^*_{ak} = (\min_{ak}(\bar{s}_{ak}, A_{ak}))e^{2\pi i(\min_{ak}(\bar{s}_{ak}, D_{ak}))}, \max_{ak}(\bar{s}_{bk}, B_{bk}))e^{2\pi i(\max_{ak}(\bar{s}_{bk}, E_{bk}))}, \max_{ak}(\bar{s}_{ck}, C_{ck}))e^{2\pi i(\max_{ak}(\bar{s}_{ck}, F_{ck}))}.$$

then

$$M^* \leq 2TLC_q - RPFHOWG(M_1, M_2, \ldots, M_n) \leq M^*.$$

(4.20)
5. Application

This section is devoted to an MADM algorithm, a flow chart based on the presented operators and a case study related to the selection of a machine from different available models. Furthermore, we shall discuss the impact of the parameter \(x \) on results of case study and a comparison with the already existing AOs.

5.1. Mathematical description

Consider a set of \(m \) alternatives \(\mathbf{\tilde{A}} = \{ \tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_m \} \) with \(n \) attributes or criteria \(C = \{ C_1, C_2, \ldots, C_n \} \). Assume that \(W = (W_1, W_2, \ldots, W_n)^T \) are the weights of attributes having the constraints \(W_j \in [0, 1], \sum_{j=1}^n W_j = 1 \). The numerical steps are presented in Table 2.

Table 2. Algorithm.

Algorithm Steps to solve MADM problem
Step 1. Construct the 2TLC\(_q\)-RPF judgement matrix \(R = [A_{ij}]_{m \times n} = ((\tilde{x}_{\alpha_{ij}}, A_{ij})e^{i2\pi(\tilde{s}_{\alpha_{ij}}, D_{ij})}, (\tilde{x}_{\beta_{ij}}, B_{ij})e^{i2\pi(\tilde{s}_{\beta_{ij}}, E_{ij})}, (\tilde{x}_{\gamma_{ij}}, C_{ij})e^{i2\pi(\tilde{s}_{\gamma_{ij}}, F_{ij})}) \) as below:
\[
R = [A_{ij}]_{m \times n} = \\
\begin{bmatrix}
A_{11} & A_{12} & \ldots & A_{1n} \\
A_{21} & A_{22} & \ldots & A_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m1} & A_{m2} & \ldots & A_{mn}
\end{bmatrix}
\]
where, \(A_{ij} = ((\tilde{x}_{\alpha_{ij}}, A_{ij})e^{i2\pi(\tilde{s}_{\alpha_{ij}}, D_{ij})}, (\tilde{x}_{\beta_{ij}}, B_{ij})e^{i2\pi(\tilde{s}_{\beta_{ij}}, E_{ij})}, (\tilde{x}_{\gamma_{ij}}, C_{ij})e^{i2\pi(\tilde{s}_{\gamma_{ij}}, F_{ij})}) \) \((i = 1, 2, \ldots, m, j = 1, 2, \ldots, n) \) indicates the 2TLC\(_q\)-RPF assessment of the alternative \(A_i \) corresponding to the criteria \(C_j \).
Step 2. Utilize either the 2TLC\(_q\)-RPFHW \(A \) (Eq (4.1)) or 2TL\(_q\)-RPFHWG (Eq (4.12)) operator on the matrix in Step 1 and get an aggregate 2TLC\(_q\)-RPF matrix \(r = [A_{ij}]_{m \times n} \).
Step 3. Apply the score function given in Eq (3.3) on the values in Step 2.
Step 4. Arrange the alternatives in descending order as per the numerical values calculated in Step 3. The alternative with the highest numerical value will be regarded the optimal one.

The flowchart of the developed model is displayed in Figure 1.

5.2. Selection of best machine: A case study

We present a case study adapted from [39] which is related to the purchase a new machine from a set of five different models \(\mathbf{\tilde{A}} = \{ \tilde{A}_1, \tilde{A}_2, \tilde{A}_3, \tilde{A}_4, \tilde{A}_5 \} \). These five models are to be evaluated on the basis of four criteria \(C = \{ C_1, C_2, C_3, C_4 \} \) which are given as follows:

- \(C_1 \) : Reliability
- \(C_2 \) : Safety
- \(C_3 \) : Flexibility
- \(C_4 \) : Productivity for selecting machine.
The weight vector of the criteria is \(W = (0.4, 0.25, 0.15, 0.2)^T \). Consider \(q = 3 \), \(x = 3 \) and nine linguistic terms \(\{\tilde{s}_1, \tilde{s}_2, \tilde{s}_3, \tilde{s}_4, \tilde{s}_5, \tilde{s}_6, \tilde{s}_7, \tilde{s}_8, \tilde{s}_9\} \). We first solve this example by utilizing the 2TLC\(q \)-RPFHW A operator. The steps of the established approach are presented as follows:

Step 1. The 2TLC\(q \)-RPF judgement matrix \(D \) of the alternatives \(\tilde{A}_m \), \(m = 1, 2, 3, 4, 5 \), based on the criteria \(C_j \), \(j = 1, 2, 3, 4 \), is presented in Table 3.

Step 2. The aggregated values (for \(x = 3 \) and \(q = 3 \)) of the 2TLC\(q \)-RPF matrix \(D \) by utilizing 2TLC\(q \)-RPFHW A operator are presented in Table 4.

Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking order of alternatives which are executed in Table 5. It is easy to see that the score value of \(\tilde{A}_1 \) is highest, therefore its ranking order is 1. Similar interpretations can be given for all the remaining alternatives.

Step 4. From Step 3 the ranking order is given as follows:

\[\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3. \]

Clearly, the alternative \(\tilde{A}_1 \) is the best one.

Now we utilize the 2TLC\(q \)-RPFHWG operator to solve the same example.
Table 3. Judgement matrix.

\[
\begin{array}{ccc}
\tilde{A}_1 & \tilde{A}_2 & \tilde{A}_3 \\
((\tilde{s}_7, 0)e^{2\pi i(\tilde{s}_6, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_1, 0)}, (\tilde{s}_r, 0)e^{2\pi i(\tilde{s}_t, 0)}) & ((\tilde{s}_8, 0)e^{2\pi i(\tilde{s}_4, 0)}, (\tilde{s}_1, 0)e^{2\pi i(\tilde{s}_5, 0)}, (\tilde{s}_7, 0)e^{2\pi i(\tilde{s}_4, 0)}) \\
((\tilde{s}_7, 0)e^{2\pi i(\tilde{s}_6, 0)}, (\tilde{s}_1, 0)e^{2\pi i(\tilde{s}_4, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_3, 0)}) & ((\tilde{s}_4, 0)e^{2\pi i(\tilde{s}_3, 0)}, (\tilde{s}_3, 0)e^{2\pi i(\tilde{s}_1, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_3, 0)}) \\
((\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_3, 0)}, (\tilde{s}_6, 0)e^{2\pi i(\tilde{s}_4, 0)}) & ((\tilde{s}_6, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_1, 0)e^{2\pi i(\tilde{s}_5, 0)}, (\tilde{s}_3, 0)e^{2\pi i(\tilde{s}_3, 0)}) \\
((\tilde{s}_4, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_1, 0)e^{2\pi i(\tilde{s}_5, 0)}, (\tilde{s}_5, 0)e^{2\pi i(\tilde{s}_3, 0)}) & ((\tilde{s}_7, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_1, 0)e^{2\pi i(\tilde{s}_5, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_3, 0)}) \\
((\tilde{s}_0, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_0, 0)e^{2\pi i(\tilde{s}_3, 0)}, (\tilde{s}_0, 0)e^{2\pi i(\tilde{s}_3, 0)}) & ((\tilde{s}_5, 0)e^{2\pi i(\tilde{s}_0, 0)}, (\tilde{s}_3, 0)e^{2\pi i(\tilde{s}_2, 0)}, (\tilde{s}_2, 0)e^{2\pi i(\tilde{s}_3, 0)}) \\
\end{array}
\]

Table 4. Aggregated values using 2TLCq-RPFHWA operator when \(x = 3\) and \(q = 3\).

Aggregated values	Score values	Ranking order
\(\tilde{A}_1\)	(\(\tilde{s}_7, 0.202664\)e^{2\pi i(\tilde{s}_6, 0.06640)}, (\(\tilde{s}_1, 0.32012\)e^{2\pi i(\tilde{s}_5, 0.10980)}, (\(\tilde{s}_1, 0.35608\)e^{2\pi i(\tilde{s}_4, -0.18991)})	1
\(\tilde{A}_2\)	(\(\tilde{s}_6, 0.02974\)e^{2\pi i(\tilde{s}_5, -0.16176)}, (\(\tilde{s}_2, -0.35632\)e^{2\pi i(\tilde{s}_1, 0.24737)}, (\(\tilde{s}_2, 0.17002\)e^{2\pi i(\tilde{s}_3, -0.27421)})	2
\(\tilde{A}_3\)	(\(\tilde{s}_5, 0.03376\)e^{2\pi i(\tilde{s}_3, 0.40430)}, (\(\tilde{s}_1, 0.46485\)e^{2\pi i(\tilde{s}_5, 0.32012)}, (\(\tilde{s}_1, -0.48574\)e^{2\pi i(\tilde{s}_3, -0.05829)})	3
\(\tilde{A}_4\)	(\(\tilde{s}_6, -0.46926\)e^{2\pi i(\tilde{s}_5, 0.49515)}, (\(\tilde{s}_1, 0.27510\)e^{2\pi i(\tilde{s}_2, -0.43934)}, (\(\tilde{s}_3, -0.14765\)e^{2\pi i(\tilde{s}_4, 0.05755)})	4
\(\tilde{A}_5\)	(\(\tilde{s}_7, -0.38383\)e^{2\pi i(\tilde{s}_6, 0.03261)}, (\(\tilde{s}_1, 0.31820\)e^{2\pi i(\tilde{s}_5, -0.43002)}, (\(\tilde{s}_2, -0.35394\)e^{2\pi i(\tilde{s}_2, -0.31744)})	5

Table 5. Scores and ranking of alternatives.

Alternatives	Score values	Ranking order
\(\tilde{A}_1\)	7.86399	1
\(\tilde{A}_2\)	7.86350	2
\(\tilde{A}_3\)	7.86275	3
\(\tilde{A}_4\)	7.86322	4
\(\tilde{A}_5\)	7.86344	5

Step 1. The 2TLCq-RPF decision matrix \(D\) of the alternatives \(\tilde{A}_m, m = 1, 2, 3, 4, 5\), based on the criteria \(C_j, j = 1, 2, 3, 4\), is presented in Table 3.

Step 2. The aggregate values (for \(x = 3\) and \(q = 3\)) of the 2TLCq-RPF matrix \(D\) by utilizing 2TLCq-RPFHWA operator.
RPFHWG operator are presented in Table 6.

Table 6. Aggregated values using 2TLC\(q\)-RPFHWG operator when \(x = 3\) and \(q = 3\).

Aggregate values
\(\tilde{A}_1\) \((\tilde{s}_7, 0.11351)\) \(e^{2\pi i (\tilde{s}_1, -0.23605)}\), \((\tilde{s}_2, -0.44058)\) \(e^{2\pi i (\tilde{s}_1, 0.26947)}\), \((\tilde{s}_2, 0.15822)\) \(e^{2\pi i (\tilde{s}_1, 0.33982)}\)
\(\tilde{A}_2\) \((\tilde{s}_6, -0.44217)\) \(e^{2\pi i (\tilde{s}_1, -0.33431)}\), \((\tilde{s}_2, 0.32670)\) \(e^{2\pi i (\tilde{s}_2, -0.16966)}\), \((\tilde{s}_2, 0.27436)\) \(e^{2\pi i (\tilde{s}_2, 0.31202)}\)
\(\tilde{A}_3\) \((\tilde{s}_4, -0.29756)\) \(e^{2\pi i (\tilde{s}_3, -0.01849)}\), \((\tilde{s}_2, -0.30824)\) \(e^{2\pi i (\tilde{s}_3, -0.44058)}\), \((\tilde{s}_5, -0.20871)\) \(e^{2\pi i (\tilde{s}_5, -0.30068)}\)
\(\tilde{A}_4\) \((\tilde{s}_5, 0.18014)\) \(e^{2\pi i (\tilde{s}_1, -0.45132)}\), \((\tilde{s}_2, -0.49005)\) \(e^{2\pi i (\tilde{s}_1, -0.40868)}\), \((\tilde{s}_4, -0.16837)\) \(e^{2\pi i (\tilde{s}_4, -0.12747)}\)
\(\tilde{A}_5\) \((\tilde{s}_6, 0.02063)\) \(e^{2\pi i (\tilde{s}_6, -0.60035)}\), \((\tilde{s}_2, -0.04952)\) \(e^{2\pi i (\tilde{s}_2, -0.23028)}\), \((\tilde{s}_6, 0.0757)\) \(e^{2\pi i (\tilde{s}_6, -0.15858)}\)

Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking order of alternatives are displayed in Table 7.

Step 4. From Step 3 the ranking order is given as follows:

\[\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3. \]

Clearly, \(\tilde{A}_1\) is the best alternative.

Table 7. Scores and ranking of alternatives.

	Score values	Ranking order
\(\tilde{A}_1\)	7.86380	1
\(\tilde{A}_2\)	7.86327	2
\(\tilde{A}_3\)	7.86224	5
\(\tilde{A}_4\)	7.86274	4
\(\tilde{A}_5\)	7.86321	3

Figure 2. Ranking results using 2TLC\(q\)-RPFHW operator and 2TLC\(q\)-RPFHWG operator when \(x = 3\) and \(q = 3\).

Figure 2 graphically displays the decision results of alternatives based on 2TLC\(q\)-RPFHW operator and 2TLC\(q\)-RPFHWG operator (for \(x = 3\) and \(q = 3\)). From inspection of Figure 2, we can observe...
that the score value of alternative \tilde{A}_1 is the highest by using both operators, whereas the score value provided by these operators for alternative \tilde{A}_3 is the lowest. Let us explore the situation when we keep $x = 3$ and we vary $q \in \{1, 2, 3, 4\}$. With these figures, Table 8 presents the score values and ranking order of the alternatives when we use the $2TLC_q$-RPFHWA operator, and Table 9 does the same when we use the $2TLC_q$-RPFHWG operator. Figures 3 and 4 graphically display the comparison of the alternatives when $x = 3$ and $q \in \{1, 2, 3, 4\}$ in terms of the scores and rankings provided by the respective operators.

Table 8. Scores and ranking of alternatives based on $2TLC_q$-RPFHWA operator when $x = 3$ and $q \in \{1, 2, 3, 4\}$.

q	$S(\tilde{A}_1)$	$S(\tilde{A}_2)$	$S(\tilde{A}_3)$	$S(\tilde{A}_4)$	$S(\tilde{A}_5)$	Ranking
1	6.31686	6.21564	6.00669	6.13728	6.23058	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
2	7.37451	7.36797	7.35540	7.36335	7.36779	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
3	7.86399	7.86350	7.86275	7.86322	7.86344	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
4	8.13254	8.13250	8.13245	8.13249	8.13250	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$

Table 9. Scores and ranking of alternatives based on $2TLC_q$-RPFHWG operator when $x = 3$ and $q \in \{1, 2, 3, 4\}$.

q	$S(\tilde{A}_1)$	$S(\tilde{A}_2)$	$S(\tilde{A}_3)$	$S(\tilde{A}_4)$	$S(\tilde{A}_5)$	Ranking
1	6.28542	6.17795	5.93863	6.06766	6.19537	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
2	7.37204	7.36495	7.34893	7.35723	7.364946	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
3	7.86380	7.86327	7.86224	7.86274	7.86321	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
4	8.13253	8.13248	8.13242	8.13245	8.13248	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$

Figure 3. Ranking results based on $2TLC_q$-RPFHWA operator when $x = 3$ and $q \in \{1, 2, 3, 4\}$.
5.3. **Influence of parameter**

In this subsection, we discuss the influence of the parameter on the score values and final results. The parameter x play an important role during the selection of alternatives. The experts can maximize their decision assessment space through variation of parameter x based on the 2TLC$_q$-RPFHWA and 2TL$_q$-RPFHWG operators. Apart from this, the effects of parameters on the decision results examine the effectiveness and validity of the developed method. We utilized five different values of the parameter x to examine its influence on decision results. The parameter x represents the optimistic attitude of the decision making expert towards their assessment information and reflects the flexibility during the aggregation process. The ranking results by utilizing 2TLC$_q$-RPFHWA and 2TL$_q$-RPFHWG operators are listed in Tables 10 and 11, respectively. From inspection of these tables, we observe that the ranking order of the five alternatives is the same. The graphical representation of the alternatives’ results based on the 2TLC$_q$-RPFHWA and 2TL$_q$-RPFHWG operators (for five different values of the parameter x, and $q = 3$) is shown in Figures 5 and 6, respectively. Here it is apparent that the ranking positions of the alternatives remains the same irrespective of the values of x.

Table 10. Scores and ranking of alternatives based on 2TLC$_q$-RPFHWA operator when $q = 3$ and $x \in \{1, 2, 3, 4, 5\}$.

x	$S(\tilde{A}_1)$	$S(\tilde{A}_2)$	$S(\tilde{A}_3)$	$S(\tilde{A}_4)$	$S(\tilde{A}_5)$	Ranking
1	7.86405	7.86357	7.86283	7.86335	7.86353	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
2	7.86401	7.86353	7.86278	7.86327	7.86348	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
3	7.86399	7.86350	7.86275	7.86322	7.86344	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
4	7.86397	7.86348	7.86272	7.86319	7.86342	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
5	7.86396	7.86347	7.86270	7.86316	7.86340	$\tilde{A}_1 > \tilde{A}_2 > \tilde{A}_5 > \tilde{A}_4 > \tilde{A}_3$
Table 11. Scores and ranking of alternatives based on 2TLC_q-RPFHWG operator when $q = 3$ and $x \in \{1, 2, 3, 4, 5\}$.

x	$S(\hat{A}_1)$	$S(\hat{A}_2)$	$S(\hat{A}_3)$	$S(\hat{A}_4)$	$S(\hat{A}_5)$	Ranking
1	7.86374	7.86322	7.86219	7.86266	7.86315	$\hat{A}_1 > \hat{A}_2 > \hat{A}_5 > \hat{A}_4 > \hat{A}_3$
2	7.86378	7.86326	7.86222	7.86271	7.86323	$\hat{A}_1 > \hat{A}_2 > \hat{A}_5 > \hat{A}_4 > \hat{A}_3$
3	7.86380	7.86327	7.86224	7.86274	7.86321	$\hat{A}_1 > \hat{A}_2 > \hat{A}_5 > \hat{A}_4 > \hat{A}_3$
4	7.86381	7.86328	7.86226	7.86276	7.86322	$\hat{A}_1 > \hat{A}_2 > \hat{A}_5 > \hat{A}_4 > \hat{A}_3$
5	7.86382	7.86329	7.86227	7.86277	7.86323	$\hat{A}_1 > \hat{A}_2 > \hat{A}_5 > \hat{A}_4 > \hat{A}_3$

Figure 5. Ranking results based on 2TLC_q-RPFHWG operator when $x \in \{1, 2, 3, 4, 5\}$ and $q = 3$.

Figure 6. Ranking results based on 2TLC_q-RPFHWG operator when $x \in \{1, 2, 3, 4, 5\}$ and $q = 3$.
5.4. Comparative study and discussion

Table 12. Scores and ranking of alternatives based on existing aggregation operators.

Operator	$S(\bar{A}_1)$	$S(\bar{A}_2)$	$S(\bar{A}_3)$	$S(\bar{A}_4)$	$S(\bar{A}_5)$
2TLSFWA operator [47]	3.79577	3.50537	3.2002	3.37327	3.68208
2TLSFWG operator [47]	3.74089	3.34797	3.52804	3.18579	3.46598
2TLPFWHM operator [55]	7.90447	6.90636	5.52804	6.68829	7.14383
2TLPFWDHM operator [55]	-1.32204	-3.09574	-4.87609	-3.74791	-2.6580
2TLPFWHM operator [54]	5.07926	3.46813	2.67858	3.03961	4.46286
2TLPFWDHM operator [54]	1.02415	-0.1023	-2.29473	-1.2036	0.11055
2TLCq-RPFHW A operator (proposed)	7.86399	7.86350	7.86275	7.86322	7.86344
2TLCq-RPFHW G operator (proposed)	7.86380	7.86327	7.86224	7.86274	7.86321

This section provides a comparison of the results computed from established AOs with some AOs available in the literature to demonstrate the strength and flexibility of the proposed AOs. The scores and final ranking results of alternatives are executed in Table 12. For comparison, the ranking order of the five machines using those AOs and our proposed AOs are graphically displayed in Figure 7. So this figure basically shows the ranking positions of the alternatives using different AOs. The details are summarized as follows:

- We utilize the 2TLSFWA and 2TLSFWG operators [47] by taking the phase term equal to zero. It can be easily observed that the final results produced by our AOs and the results using [47] are slightly different, however, the best alternative is the same. The proposed AOs are based on the Hamacher operator. The existing operators are based on 2TLSFSs, which is a special case of 2TLCq-RPFSs (when $q = 2$ and the phase term is zero). Therefore, our proposed AOs are more general and flexible to solve DM problems, and produce consistent results with existing solutions.

- We utilize the 2TLPFWHM and 2TLPFWDHM operators [55] ($x = 2$) by considering that the abstinence and phase terms equal zero. These AOs are based on the Hamy and dual Hamy mean operators. Clearly, the results are consistent with our presented AOs too.

- We utilize the 2TLPFWHM and 2TLPFWDHM operators [54] ($\xi = 1, \psi = 2$) by considering the abstinence term and phase terms zero. These AOs are based on the Heronian and dual Heronian mean operators. The reader can observe that the ranking results are consistent with our presented AOs too.

If we consider the overall results of five machines, there is a minor difference among the ranking results.
produced by our presented AOs and the results computed from existing AOs. However, the optimal alternative is the same, which gives support to the authenticity of presented approach.

The 2TL representation model has the prominent feature to choose the best alternative when several alternatives have the same LT but a different value of ST. Besides this, the 2TLCq-RPFS model generalizes many existing models based on fuzzy set theory and its extensions. Therefore, the method presented here, being based on the 2TLCq-RPF environment, has broadened the space of effective assessments for the decision makers and is more general and flexible.

The merits and superiorities of the presented methodology can be summarized as follows: 1) The main advantage of the 2TLCq-RPFS is that it can handle the decision making problems both qualitatively and quantitatively. 2) The developed 2TLCq-RPFS is a new generalization in FS theory as it enables the decision makers to describe their evaluation properly and it has a wide range of applications. 3) The 2TLCq-RPFS has the advantage of adaptability, for it embeds the 2TL picture fuzzy sets when $q=1$ and the 2TL spherical fuzzy sets when $q=2$. 4) We utilize the increasingly popular Hamacher AOs within a more generalized field, i.e, 2TLCq-RPFS. The Hamacher AOs provide more detailed aggregations than other AOs, due to their utilization of a parameter x which makes them significant tools in the presented study.

![Figure 7. Comparative outcomes using existing and presented operators.](image)

To finish this discussion, we proceed to give some highlights of different optimization models:

- In the article presented by Zhao et al. [35], an online-learning based reproduction technique is established, which employs a learning algorithm. The authors have designed a reference vector strategy. The presented strategy employs a learning-based technology to increase its generalization ability.
- In a study proposed by Pasha et al. [33], the authors have given a mathematical optimization model to determine all tactical linear shipping decisions. Moreover, a decomposition based heuristic algorithm is developed to manage large size problems.
- Dulebenets [36] has presented a novel Adaptive Polypoid Memetic Algorithm for the cross-docking trucks. The developed algorithm is evaluated against the new metaheuristics. Dulebenets et al. [32] presented the multiobjective optimization technique for emergency evacuation planning in geographical locations with vulnerable population groups.
• In a paper presented by Pasha et al. [34], the authors have proposed a model for the vehicle routing problem during supply chain management. They established a customized nature-inspired Hybrid Multi-Objective Evolutionary Algorithm to solve the vehicle routing problem.
• Rabbani et al. [37] established a Mixed-integer Linear Programming model to find the best sequence of routes for ambulances to avoid untimely medical services for patients. They divided the patients into three different groups according to their conditions and utilized the Non-dominated Sorting Genetic Algorithm II and Multi-Objective Particular Swarm Optimization to a case study to analyze the model’s performance.

6. Conclusions

The model defined by Cq-RPFS enlarges the range for the MD, NMD and AD, and enables us to represent these three degrees in polar coordinates. In this way the range of degrees is extended from the numerical interval [0, 1] to the unit disk in a complex plane. Besides this, the 2TL terms help the users to better reflect the qualitative attributes. In this article, we have achieved our goal, namely, the successful formulation of the 2TLCq-RPFS framework with fundamental tools to operate with it. The model integrates the traits of the aforementioned frameworks for the representation of uncertain knowledge.

Concerning its relationships with available models, we have noted that the 2TLCq-RPFS can be transformed into the 2TL complex picture fuzzy set and 2TL complex spherical fuzzy set when \(q = 1 \) and \(q = 2 \), respectively. Therefore, the proposed approach outperforms other generalized fuzzy models that represent linguistic information. While the 2TLCq-RPFS accommodates the characteristics of both Cq-RPFS and 2TLS, it can still manage the information in MADM problems. To that purpose, we have established a number of Hamacher-inspired AOs under the 2TLCq-RPF environment. The family of new AOs includes the 2TLCq-RPFWA, 2TLCq-RPFWG, 2TLCq-RPFHWA, 2TLCq-RPFHOWA, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators. We have investigated their properties and we have also provided an example of application for each of the proposed AOs. Then we have provided a step-by-step procedure for decision making, which has been applied to a numerical instance in full detail. The presented method has the ability to assign different weights to the attributes according to the decision maker’s choice. Furthermore, we have estimated the robustness of the results by taking five different values \((x = 1, 2, 3, 4, 5) \) of the parameter \(x \). Finally, we have conducted a comparative analysis of the presented work with previous operators. The proposed research has some limitations. 2TLCq-RPFS can deal with the information under certain conditions. It may not produce fruitful results for a large collection of attributes. In future research, we will study and investigate more AOs based on 2TLCq-RPFSs. We also aim to present different decision-making methods for 2TLCq-RPFSs.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number (R.G.P.2/48/43). Alcantud is grateful to the Junta de Castilla y León and the European Regional Development Fund (Grant CLU-2019-03) for the financial support to the Research Unit of Excellence “Economic Management for Sustainability” (GECOS).
Conflict of interest

The authors declare there is no conflict of interest.

References

1. L. A. Zadeh, Fuzzy sets, *Inf. Control*, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
2. S. M. Chen, W. H. Hsiao, W. T. Jong, Bidirectional approximate reasoning based on interval-valued fuzzy sets, *Fuzzy Sets Syst.*, 91 (1997), 339–353. https://doi.org/10.1016/S0165-0114(97)86594-3
3. S. M. Chen, W. H. Hsiao, Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets, *Fuzzy Sets Syst.*, 113 (2000), 185–203. https://doi.org/10.1016/S0165-0114(98)00351-0
4. S. M. Chen, W. T. Jong, Fuzzy query translation for relational database systems, *IEEE Trans. Man Cybern. Syst. Part B*, 27 (1997), 714–721. https://doi.org/10.1109/3477.604117
5. S. M. Chen, S. J. Niou, Fuzzy multiple-attributes group decision-making based on fuzzy preference relations, *Expert Syst. Appl.*, 38 (2011), 3865–3872. https://doi.org/10.1016/j.eswa.2010.09.047
6. M. I. Ali, J. Zhan, M. J. Khan, T. Mahmood, H. Faizan, Another view on knowledge measures in atanassov intuitionistic fuzzy sets, *Soft Comput.*, 26 (2022), 6507–6517. https://doi.org/10.1007/s00500-022-07127-3
7. K. T. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets Syst.*, 20 (1986), 87–96. https://doi.org/10.1007/978-3-7908-1870-3-1
8. W. Wang, J. Zhan, J. Mi, A three-way decision approach with probabilistic dominance relations under intuitionistic fuzzy information, *Inf. Sci.*, 582 (2022), 114–145. https://doi.org/10.1016/j.ins.2021.09.018
9. R. R. Yager, Pythagorean fuzzy subsets, in *2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS)*, (2013), 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
10. R. R. Yager, Pythagorean membership grades in multi-criteria decision making, *IEEE Trans. Fuzzy Syst.*, 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989
11. T. Senapati, R. R. Yager, Fermatean fuzzy sets, *J. Ambient. Intell. Humaniz. Comput.*, 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0
12. V. Torra, Hesitant fuzzy sets, *Int. J. Intell. Syst.*, 25 (2010), 529–539. https://doi.org/10.1002/int.20418
13. W. Wang, X. Ma, Z. Xu, W. Pedrycz, J. Zhan, A three-way decision method with prospect theory to multi-attribute decision-making and its applications under hesitant fuzzy environments, *Appl. Soft Comput.*, 126 (2022), 109283. https://doi.org/10.1016/j.asoc.2022.109283
14. R. R. Yager, Generalized orthopair fuzzy sets, *IEEE Trans. Fuzzy Syst.*, 26 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005
15. B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420. https://doi.org/10.1109/WICT.2013.7113099

16. L. Li, R. T. Zhang, J. Wang, X. P. Shang, K. Y. Bai, A novel approach to multi-attribute group decision-making with q-rung picture linguistic information, Symmetry, 10 (2018), 172. https://doi.org/10.1109/WICT.2013.7113099

17. M. Akram, S. Alsulami, F. Karaaslan, A. Khan, q-Rung orthopair fuzzy graphs under Hamacher operators, J. Intell. Fuzzy Syst., 40 (2021), 1367–1390. https://doi.org/10.3233/JIFS-201700

18. M. J. Khan, J. C. R. Alcantud, P. Kumam, W. Kumam, A. N. Al-Kenani, An axiomatically supported divergence measures for q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 36 (2021), 6133–6155. https://doi.org/10.1002/int.22545

19. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning Part I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90046-8

20. H. Zhang, Linguistic intuitionistic fuzzy sets and application in MAGDM, J. Appl. Math., 2014 (2014), 1–11. https://doi.org/10.1155/2014/432092

21. H. Garg, Linguistic Pythagorean fuzzy sets and its applications in multiattribute decision-making process, Int. J. Intell. Syst., 33 (2018), 1234–1263. https://doi.org/10.1002/int.21979

22. M. Lin, J. Wei, Z. Xu, R. Chen, Multiattribute group decision-making based on linguistic Pythagorean fuzzy interaction partitioned Bonferroni mean aggregation operators, Complexity, 2018 (2018), 1–24. https://doi.org/10.1155/2018/9531064

23. M. Lin, X. Li, L. Chen, Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators, Int. J. Intell. Syst., 35 (2020), 217–249. https://doi.org/10.1155/2018/9531064

24. M. Akram, S. Naz, S. A. Edalatpanah, R. Mehreen, Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models, Soft. Comput., 25 (2021), 10309–10334. https://doi.org/10.1007/s00500-021-05771-9

25. F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332

26. F. Herrera, L. Martínez, An approach for combining linguistic and numerical information based on the 2-tuple fuzzy linguistic representation model in decision-making, Int. J. Uncertain. Fuzz. Knowl. Based Syst., 8 (2000), 539–562. https://doi.org/10.1142/S0218488500000381

27. X. Liu, H. S. Kim, F. Feng, J. C. R. Alcantud, Centroid transformations of intuitionistic fuzzy values based on aggregation operators, Mathematics, 6 (2018), 215. https://doi.org/10.3390/math6110215

28. Y. Liu, Y. Qin, F. Liu, Y. Rong, GIBWM-MABAC approach for MAGDM under multi-granularity intuitionistic 2-tuple linguistic information model, J. Ambient Intell. Hum. Comput., 2021 (2021), 1–17. https://doi.org/10.1007/s12652-021-03476-3

29. A. Luqman, M. Akram, J. C. R. Alcantud, Digraph and matrix approach for risk evaluations under Pythagorean fuzzy information, Expert Syst. Appl., 170 (2021), 114518. https://doi.org/10.1016/j.eswa.2020.114518
11315

30. Y. Qin, Y. Liu, S. Abdullah, G. Wei, Group decision support methodology based upon the multi-granular generalized orthopair 2-tuple linguistic information model, *Int. J. Intell. Syst.*, 36 (2021), 3367–3400. https://doi.org/10.1002/int.22419

31. Y. Xu, H. Wang, Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment, *Appl. Soft Comput.*, 11 (2011), 3988–3997. https://doi.org/10.1016/j.asoc.2011.02.027

32. M. A. Dulebenets, J. Pasha, M. Kavoosi, O. F. Abioye, E. E. Ozguven, R. Moses, et al., Multiobjective optimization model for emergency evacuation planning in geographical locations with vulnerable population groups, *J. Manag. Eng.*, 36 (2020), 04019043. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000730

33. J. Pasha, M. A. Dulebenets, A. M. Fathollahi-Fard, G. Tian, Y. Y. Lau, P. Singh, B. Liang, An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations, *Adv. Eng. Inform.*, 48 (2021), 101299. https://doi.org/10.1016/j.aei.2021.101299

34. J. Pasha, A. L. Nwodu, A. M. Fathollahi-Fard, G. Tian, Z. Li, H. Wang, et al., Exact and meta-heuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings, *Adv. Eng. Inform.*, 52 (2022), 101623. https://doi.org/10.1016/j.aei.2022.101623

35. H. Zhao, C. Zhang, An online-learning-based evolutionary many-objective algorithm, *Inf. Sci.*, 509 (2020), 1–21. https://doi.org/10.1016/j.ins.2019.08.069

36. M. A. Dulebenets, An adaptive polyploid memetic algorithm for scheduling trucks at a cross-docking terminal, *Inf. Sci.*, 565 (2021), 390–421. https://doi.org/10.1016/j.ins.2021.02.039

37. M. Rabbani, N. Oladzad-Abbasabady, N. Akbarian-Saravi, Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms, *J. Ind. Manage. Optim.*, 18 (2022), 1035. https://doi.org/10.3934/jimo.2021007

38. T. Y. Chen, Novel generalized distance measure of Pythagorean fuzzy sets and a compromise approach for multiple criteria decision analysis under uncertainty, *IEEE Access*, 7 (2019), 58168–58185. https://doi.org/10.1109/ACCESS.2019.2914703

39. H. Garg, D. Rani, Robust averaging-geometric aggregation operators for complex intuitionistic fuzzy sets and their applications to MCDM process, *Arab. J. Sci. Eng.*, 45 (2020), 2017–2033. https://doi.org/10.1007/s13369-019-03925-4

40. C. Li, S. Zeng, T. Pan, L. Zheng, A method based on induced aggregation operators and distance measures to multiple attribute decision making under 2-tuple linguistic environment, *J. Comput. Syst. Sci.*, 80 (2014), 1339–1349. https://doi.org/10.1016/j.jcss.2014.03.004

41. J. H. Park, J. M. Park, Y. C. Kwun, 2-tuple linguistic harmonic operators and their applications in group decision making, *Knowl. Based Syst.*, 44 (2013), 10–19. https://doi.org/10.1016/j.knosys.2013.01.006

42. G. W. Wei, Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making, *Comput. Ind. Eng.*, 61 (2011), 32–38. https://doi.org/10.1016/j.cie.2011.02.007
43. F. Zhou, T. Y. Chen, An integrated multicriteria group decision-making approach for green supplier selection under Pythagorean fuzzy scenarios, IEEE Access, 8 (2020), 165216–165231. https://doi.org/10.1109/ACCESS.2020.3022377

44. P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cybern., 13 (2021), 883–906. https://doi.org/10.1007/s13042-021-01425-2

45. H. Hamacher, Über logische verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen, in Progress in Cybernetics and Systems Research (Eds. Trappl, Klir, Riccardi), Hemisphere, Washington DC, 3 (1978), 276–288.

46. S. Faizi, W. Salabun, S. Nawaz, A. U. Rehman, J. Wątróbski, Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets, Expert Syst. Appl., 181 (2021), 115088. https://doi.org/10.1016/j.eswa.2021.115088

47. S. Abdullah, O. Barukab, M. Qiyas, M. Arif, S. A. Khan, Analysis of decision support system based on 2-tuple spherical fuzzy linguistic aggregation information, Appl. Sci., 10 (2020), 276. https://doi.org/10.3390/app10010276

48. M. Akram, G. Shahzadi, J. C. R. Alcantud, Multi-attribute decision-making with q-rung picture fuzzy information, Granul. Comput., 7 (2022), 197–215. https://doi.org/10.1007/s41066-021-00260-8

49. X. P. Jiang, G. W. Wei, Some Bonferroni mean operators with 2-tuple linguistic information and their application to multiple attribute decision making, J. Intell. Fuzzy Syst., 27 (2014), 2153–2162. https://doi.org/10.3233/IFS-141180

50. N. Waseem, M. Akram, J. C. R. Alcantud, Multi-attribute decision-making based on m-polar fuzzy Hamacher aggregation operators, Symmetry, 11 (2019), 1498. https://doi.org/10.3390/sym11121498

51. Z. Zhang, F. Wei, S. Zhou, Approaches to comprehensive evaluation with 2-tuple linguistic information, J. Intell. Fuzzy Syst., 28 (2015), 469–475. https://doi.org/10.3233/IFS-141323

52. H. Jin, S. Ashraf, S. Abdullah, M. Qiyas, M. Bano, S. Zeng, Linguistic spherical fuzzy aggregation operators and their applications in multi-attribute decision making problems, Mathematics, 7 (2019), 413. https://doi.org/10.3390/math7050413

53. Y. Ju, A. Wang, J. Ma, H. Gao, E. D. Santibanez Gonzalez, Some q-rung orthopair fuzzy 2-tuple linguistic Muirhead mean aggregation operators and their applications to multiple-attribute group decision making, Int. J. Intell. Syst., 35 (2020), 184–213. https://doi.org/10.1002/int.22205

54. X. Deng, J. Wang, G. Wei, Some 2-tuple linguistic Pythagorean Heronian mean operators and their application to multiple attribute decision-making, J. Exp. Theor. Artif. Intell., 31 (2019), 555–574. https://doi.org/10.1080/0952813X.2019.1579258

55. X. Deng, J. Wang, G. Wei, M. Lu, Models for multiple attribute decision making with some 2-tuple linguistic Pythagorean fuzzy Hamy mean operators, Mathematics, 6 (2018), 236. https://doi.org/10.3390/math6110236

56. G. W. Wei, 2-tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making, Iran. J. Fuzzy Syst., 16 (2019), 159–174. https://doi.org/10.22111/ijfs.2019.4789
57. M. Lu, G. Wei, F. E. Alsaadi, T. Hayat, A. Alsaedi, Bipolar 2-tuple linguistic aggregation operators in multiple attribute decision making, *J. Intell. Fuzzy Syst.*, **33** (2017), 1197–1207. https://doi.org/10.3233/JIFS-16946

58. Y. Zhang, G. Wei, Y. Guo, C. Wei, TODIM method based on cumulative prospect theory for multiple attribute group decision-making under 2-tuple linguistic Pythagorean fuzzy environment, *Int. J. Intell. Syst.*, **36** (2021), 2548–2571. https://doi.org/10.1002/int.22393

59. M. Akram, R. Bibi, M. A. Al-Shamiri, A decision-making framework based on 2-tuple linguistic Fermatean fuzzy Hamy mean operators, *Math. Probl. Eng.*, **2022** (2022), 1501880. https://doi.org/10.1155/2022/1501880

60. M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, *Granul. Comput.*, **2022** (2022), 1–22. https://doi.org/10.1007/s41066-022-00330-5.

61. D. Ramot, M. Friedman, G. Langholz, G. A. Kandel, Complex fuzzy logic, *IEEE Trans. Fuzzy Syst.*, **11** (2003), 450–461. https://doi.org/10.1109/TFUZZ.2003.814832

62. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, *IEEE Trans. Fuzzy Syst.*, **10** (2002), 171–186. https://doi.org/10.1109/91.995119

63. A. M. D. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, in *AIP Conference Proceedings*, **1482** (2012), 464–470. https://doi.org/10.1063/1.4757515

64. A. U. M. Alkouri, A. R. Salleh, Complex Atanassov’s intuitionistic fuzzy relation, *Abstr. Appl. Anal.*, **2013** (2013), 1–18. https://doi.org/10.1155/2013/287382

65. Y. Rong, Y. Liu, Z. Pei, Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection, *Int. J. Intell. Syst.*, **35** (2020), 1749–1790. https://doi.org/10.1002/int.22271

66. L. Bi, S. Dai, B. Hu, Complex fuzzy geometric aggregation operators, *Symmetry*, **10** (2018), 251, https://doi.org/10.3390/sym10070251.

67. L. Bi, S. Dai, B. Hu, S. Li, Complex fuzzy arithmetic aggregation operators, *J. Intell. Fuzzy Syst.*, **36** (2019), 2765–2771. https://doi.org/10.3233/JIFS-18568

68. P. Liu, T. Mahmood, Z. Ali, Complex q-rung orthopair fuzzy aggregation operators and their applications in multiattribute group decision making, *Information*, **11** (2020), 5. https://doi.org/10.3390/info11010005

69. A. Luqman, M. Akram, A. N. Al-Kenani, J. C. R. Alcantud, A study on hypergraph representations of complex fuzzy information, *Symmetry*, **11** (2019), 1381. https://doi.org/10.3390/sym11111381

70. S. Naz, M. Akram, M. M. A. Al-Shamiri, M. M. Khalaf, G. Yousaf, A new MAGDM method with 2-tuple linguistic bipolar fuzzy Heronian mean operators, *Math. Biosci. Eng.*, **19** (2022), 3843–3878. https://doi.org/10.3934/mbe.2022177

71. S. Naz, M. Akram, M. M. A. Al-Shamiri, M. R. Saeed, Evaluation of network security service provider using 2-tuple linguistic complexq-rung orthopair fuzzy COPRAS method, *Complexity*, **2022** (2022), 1–27. https://doi.org/10.1155/2022/4523287
We prove Eq (3.6) using the induction method for the positive integer n. For $n = 1$, we have

$$\mathcal{W}_1^L_n = \begin{cases}
\Lambda \left(\left[1 - \left(\frac{\Lambda^{-1}(\tilde{\delta}_n, A_k)}{\bar{T}} \right)^{w_1} \right] \right)^{\frac{1}{\varepsilon}} \varepsilon_{\Delta A} \left(\left[\left(\frac{\Lambda^{-1}(\tilde{\delta}_n, D_k)}{\bar{T}} \right)^{w_1} \right] \right)
\end{cases}$$

Appendix A: Proof of Theorem 3.1

Proof. We prove Eq (3.6) using the induction method for the positive integer n. For $n = 1$, we have

$$\mathcal{W}_1^L_n = \begin{cases}
\Lambda \left(\left[1 - \left(\frac{\Lambda^{-1}(\tilde{\delta}_n, A_k)}{\bar{T}} \right)^{w_1} \right] \right)^{\frac{1}{\varepsilon}} \varepsilon_{\Delta A} \left(\left[\left(\frac{\Lambda^{-1}(\tilde{\delta}_n, D_k)}{\bar{T}} \right)^{w_1} \right] \right)
\end{cases}$$
Thus Eq (3.6) holds for \(n = 1 \). Assume that it also holds for \(n = m \),

\[
\bigoplus_{k=1}^{m} W_k \Lambda_k = \left\{ \lambda \left(\prod_{k=1}^{m} \left(1 - \frac{\left(\Lambda^{-1}(\tilde{s}_k, A_k) \right)^{w_k}}{\Lambda} \right)^{\hat{w}_k} \right)^{\hat{w}_k} \right\}_{\hat{w} = 1}^{\hat{w} = \hat{w}_k} \}
\]

For \(n = m + 1 \), by the induction hypothesis, we have

\[
2TLCq - RPFWA(L_1, L_2, \ldots, L_{m+1}, L_m) = 2TLCq - RPFWA(L_1, L_2, \ldots, L_m) \bigoplus W_{m+1} L_{m+1}
\]

\[
\lambda \left(\prod_{k=1}^{m+1} \left(1 - \frac{\left(\Lambda^{-1}(\tilde{s}_k, A_k) \right)^{w_k}}{\Lambda} \right)^{\hat{w}_k} \right)^{\hat{w}_k} \right\}_{\hat{w} = 1}^{\hat{w} = \hat{w}_k}
\]

Hence, Equation (3.6) holds for all positive integers \(n \geq 1 \).
Appendix B: Proof of Theorem 4.1

Proof. We use induction method and Definition 4.1 to prove this theorem. For \(n = 2 \), we have

\[
\mathcal{W}_1 M_1 \bigoplus \mathcal{W}_2 M_2 =
\]

\[
\begin{align*}
\mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad & \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \\
\mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad & \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \\
\mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad & \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \quad \mathcal{A} (\sqrt{ \prod_{\alpha=1}^{n} (1+u_{\alpha}^{-1} - u_{\alpha} - u_{\alpha}^{-1} t_{\alpha})^{w_{\alpha}} }) \\
\end{align*}
\]

Equation (4.2) holds for \(n = 2 \). Assume that Eq (4.2) holds for \(n = m \).

\[
2TLCq - RPFHWA(M_1, M_2, \ldots, M_m) =
\]
For $n = m + 1$ by the induction hypothesis, we have

$$2TLCq - RPFHWA(M_1, M_2, \ldots, M_m, M_{m+1}) = 2TLCq - RPFHWA(M_1, M_2, \ldots, M_m) \bigoplus W_{m+1}M_{m+1}$$

Hence, Equation (4.2) holds for all positive integers $n \geq 1$.

Appendix C: Proof of Theorem 4.3

Proof. We use induction method and Definition 4.1 to prove this theorem. For $n = 2$, we have

$$M_1^{W_1} \bigotimes M_2^{W_2} =$$

$$\begin{align*}
&= \left(\Lambda \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right) \right) e^{2\Delta A} \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right),
&= \left(\Lambda \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right) \right) e^{2\Delta A} \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right),
&= \left(\Lambda \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right) \right) e^{2\Delta A} \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right),
&= \left(\Lambda \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right) \right) e^{2\Delta A} \left(\prod_{k=1}^{n} \left(1 + (x-1)W_k \right) W_k - \prod_{k=1}^{n} \left(1 - W_k \right)^m \right),
\end{align*}$$

Mathematical Biosciences and Engineering
Volume 19, Issue 11, 11281–11323.
\[
\begin{align*}
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n} \\
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n} \\
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n}
\end{align*}
\]

Equation (4.12) holds for \(n = 2 \). Assume that Eq (4.12) holds for \(n = m \), i.e.,

\[2n \text{ TLCq} - \text{ RPFHWG}(M_1, M_2, \ldots, M_m) = \]

\[
\begin{align*}
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n} \\
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n} \\
\Lambda & \left(\frac{\sqrt[\gamma]{\Psi^2 \eta^m}}{\sqrt{\prod_{k=1}^{m-1} (1+k)^2(1-k)^2+w_k}} \right) e_{2n, n}
\end{align*}
\]

To prove that the formula holds for \(n = m + 1 \), by induction hypothesis we have

\[2n \text{ TLCq} - \text{ RPFHWG}(M_1, M_2, \ldots, M_m, M_{m+1}) = 2n \text{ TLCq} - \text{ RPFHWG}(M_1, M_2, \ldots, M_m) \otimes M_{m+1}^{w_{m+1}} \]
Hence, Equation (4.12) holds for all positive integers \(n \geq 1 \).