Pathophysiologic Approach to Therapy in Patients With Newly Diagnosed Type 2 Diabetes

RALPH A. DEFRONZO, MD
ROY ELDOR, MD, PHD
MUHAMMAD ABDUL-GHANI, MD, PHD

Two general approaches to the treatment of type 2 diabetes mellitus (T2DM) have been advocated. 1) A “guideline” approach that advocates sequential addition of antidiabetes agents with “more established use” (1); this approach more appropriately should be called the “treat to failure” approach, and deficiencies with this approach have been discussed (2). And 2) a “pathophysiologic” approach using initial combination therapy with agents known to correct established pathophysiologic defects in T2DM (3). Within the pathophysiologic approach, choice of antidiabetes agents should take into account the patient’s general health status and associated medical disorders. This individualized approach, which we refer to as the ABCDE guidelines (4), has been incorporated into the updated American Diabetes Association (ADA) guidelines (5).

A = Age
B = Body weight
C = Complications (microvascular and macrovascular)
D = Duration of diabetes
E = Life Expectancy
E = Expense

Even though physicians must be cognizant of these associated conditions (ABCDE) when initiating therapy in newly diagnosed T2DM patients, we believe that the most important consideration is to select antidiabetes agents that correct specific pathophysiologic disturbances present in T2DM and that have complementary mechanisms of action. Although it has been argued that the pathogenesis of T2DM differs in different ethnic groups (6), evidence to support this is weak. Although the relative contributions of β-cell failure and insulin resistance to development of glucose intolerance may differ in different ethnic groups (6), the core defects of insulin resistance in muscle/liver/adipocytes and progressive β-cell failure (3) are present in virtually all T2DM patients and must be treated aggressively to prevent the relentless rise in HbA1c, that is characteristic of T2DM.

In subsequent sections, we provide a review of the natural history of T2DM, specific pathophysiologic abnormalities responsible for T2DM, currently available antidiabetes agents and their mechanism of action, recommended glycemic goals, and use of combination therapy based upon reversal of pathophysiologic defects present in T2DM. We will not address expense but recognize that this is an important consideration in choosing any antidiabetes regimen.

Overview of T2DM: pathophysiology and general therapeutic approach

T2DM is a complex metabolic/cardiovascular disorder with multiple pathophysiologic abnormalities. Insulin resistance in muscle/liver and β-cell failure represent the core defects (7,8). β-Cell failure occurs much earlier in the natural history of T2DM and is more severe than previously thought (9–12). Subjects in the upper tertile of impaired glucose tolerance (IGT) are maximally/near-maximally insulin resistant and have lost >80% of their β-cell function. In addition to muscle, liver, and β-cells (“triad”), adipocytes (accelerated lipolysis), gastrointestinal tract (incretin deficiency/resistance), α-cells (hyperglucagonemia), kidney (increased glucose reabsorption), and brain (insulin resistance and neurotransmitter dysregulation) play important roles in development of glucose intolerance in T2DM individuals (3). Collectively, these eight players comprise the “ominous octet” (1) and dictate that multiple drugs used in combination will be required to correct multiple pathophysiologic defects, 2) treatment should be based on reversal of known pathogenic abnormalities and not simply on reducing HbA1c, and 3) therapy must be started early to prevent/slow progressive β-cell failure that is well established in IGT subjects. A treatment paradigm shift is recommended in which combination therapy is initiated with agents that correct known pathogenic defects in T2DM and produce desirable reduction in HbA1c rather than just focusing on the glucose-lowering ability of the drug.

Natural history of T2DM

Individuals destined to develop T2DM inherit genes that make their tissues resistant to insulin (2,8,13–15). In liver, insulin resistance is manifested by glucose overproduction during the basal state despite fasting hyperinsulinemia (16) and impaired suppression of hepatic glucose production (HGP) by insulin (17), as occurs following a meal (18). In muscle (17,19,20), insulin resistance is manifest by impaired glucose uptake after carbohydrate ingestion, resulting in postprandial hyperglycemia (18). Although the origins of insulin resistance can be traced to their genetic background (8,14,15), the current diabetes epidemic is related to the
epidemic of obesity and physical inactivity (21), which are insulin-resistant states (22) and place stress on pancreatic β-cells to augment insulin secretion to offset insulin resistance (2,3,8). As long as β-cells augment insulin secretion sufficiently to offset the insulin resistance, glucose tolerance remains normal (2,3,8). However, with time β-cells begin to fail, and initially postprandial plasma glucose levels and subsequently fasting plasma glucose begin to rise, leading to overt diabetes (2,3,8). Thus, it is progressive β-cell failure that determines the rate of disease progression. The natural history of T2DM described above (2,3) is depicted by a prospective study carried out by DeFronzo (3); Jallut, Golay, and Munger (30); and Felber et al. (31) (Fig. 2).

β-Cell function

Although the plasma insulin response to insulin resistance is increased early in the natural history of T2DM (Fig. 2), this does not mean that β-cells are functioning normally (3). Simply measuring the plasma insulin response to a glucose challenge does not provide a valid index of β-cell function (32). β-Cells respond to an increment in glucose (ΔG) with an increment in insulin (ΔI). Thus, a better measure of β-cell function is ΔI/ΔG. However, β-cells also increase insulin secretion to offset insulin resistance and maintain normoglycemia (9,10,12,23,32,33). Thus, the gold standard measure of β-cell function in vivo in man is the insulin secretion/insulin resistance (disposition) index (ΔI/ΔG × IR).

Figure 3 depicts the insulin secretion/insulin resistance index in normal glucose tolerant (NGT), IGT, and T2DM subjects as a function of 2-h plasma glucose during oral glucose tolerance test (OGTT) (2,9,10,12). Subjects in the upper tertile of NGT (2-h plasma glucose 120–139 mg/dL) have lost >50% of β-cell function, while subjects in upper tertile of IGT (2-h plasma glucose 180–199 mg/dL) have lost ~80% of β-cell function (Fig. 3). Similar conclusions are evident from other publications (24,27,34,35). The therapeutic implications of these findings are obvious. When the diagnosis of diabetes is made, the patient has lost ~80% of their β-cell function, and it is essential that physicians intervene with therapies known to correct established pathophysiological disturbances in β-cell function. Even more ominous are observations of Butler et al. (36), who demonstrated that as individuals progress from NGT to IFG, there is significant loss of β-cell mass that continues with progression to diabetes. Similar results have been published by others (37,38) and indicate that significant loss of β-cells occurs long before onset of T2DM, according to current diagnostic criteria (1).

In summary, although insulin resistance in liver/muscle is well established early in the natural history of T2DM, overt diabetes does not occur in the absence of progressive β-cell failure.

Insulin resistance

The liver and muscle are severely resistant to insulin in T2DM (rev. in 2,3,8).

Liver. After an overnight fast, the liver produces glucose at ~2 mg/kg/min (2,16). In T2DM, the rate of basal HGP is increased, averaging ~2.5 mg/kg/min (2,16). This amount to addition of an extra 25–30 g glucose to the systemic circulation nightly and is responsible for the increased fasting plasma glucose concentration. This hepatic overproduction of glucose occurs despite fasting insulin levels that are increased two- to threefold, indicating severe hepatic insulin resistance.

Muscle. With use of the euglycemic insulin clamp with limb catheterization (2,3,17,19,20,39,40), it has conclusively been demonstrated that lean, as well as obese, T2DM individuals are severely resistant to insulin and that the primary site of insulin resistance resides in muscle. Multiple intramyocellular defects in insulin action have been documented in

Figure 1—The ominous octet (3) depicting the mechanism and site of action of antidiabetes medications based upon the pathophysiologic disturbances present in T2DM.

Figure 2—Natural history of T2DM. The plasma insulin response depicts the classic Starling’s Curve of the Pancreas. See text for a detailed explanation (7). Upper panel: Insulin-mediated glucose disposal (insulin clamp technique) and mean plasma insulin concentration during OGTT. Lower panel: Mean plasma glucose concentration during OGTT. DIAB, T2DM; Hi, high; Lo, low; OB, obese.

Figure 3—Insulin secretion/insulin resistance (disposition) index (ΔI/ΔG ÷ IR) during OGTT in individuals with NGT, IGT, and T2DM as a function of the 2-h plasma glucose (PG) concentration in lean and obese subjects (9–12).
T2DM (rev. in 2,3,8,40), including impaired glucose transport/phosphorylation (17), reduced glycogen synthesis (39), and decreased glucose oxidation (17). However, more proximal insulin signaling defects play a paramount role in muscle insulin resistance (3,40–42).

Ominous octet

In addition to the triumvirate (β-cell failure and insulin resistance in muscle and liver), at least five other pathophysiologic abnormalities contribute to glucose intolerance in T2DM (3) (Fig. 1): I) adipocyte resistance to insulin’s antilipolytic effect, leading to increased plasma FFA concentration and elevated intracellular levels of toxic lipid metabolites in liver/muscle and β-cells that cause insulin resistance and β-cell failure/apoptosis (17); II) decreased incretin (glucagon-like peptide [GLP]-1/glucose-dependent insulinnotropic polypeptide [GIP]) effect resulting from impaired GLP-1 secretion (43) but, more importantly, severe β-cell resistance to the stimulatory effect of GLP-1 and GIP (44,45); III) increased glucagon secretion by α-cells and enhanced hepatic sensitivity to glucagon, leading to increased basal HGP and impaired HGP suppression by insulin (46,47); IV) enhanced renal glucose reabsorption contributing to maintenance of elevated plasma glucose levels (48,49); and V) central nervous system resistance to the anorectic effect of insulin and altered neurosypaptic hormone secretion contributing to appetite dysregulation, weight gain, and insulin resistance in muscle/liver (50–52).

Implications for therapy

The preceding review of pathophysiology has important therapeutic implications: I) effective treatment will require multiple drugs in combination to correct the multiple pathophysiological defects, 2) treatment should be based upon established pathogenic abnormalities and not simply on HbA1c reduction, and 3) therapy must be started early in the natural history of T2DM to prevent progressive β-cell failure.

Figure 1 displays therapeutic options as they relate to key pathophysiologic derangements in T2DM (Fig. 1). In liver, both metformin (53–55) and thiazolidinediones (TZDs) (56–62) are potent insulin sensitizers and inhibit the increased rate of HGP. In muscle, TZDs are potent insulin sensitizers (56–58,61,63), whereas metformin is, at best, a weak insulin sensitizer (53,55,64). Since TZDs work through the insulin signaling pathway (65), whereas metformin works through the AMP kinase pathway (66), combination TZD/metformin therapy gives a completely additive effect to reduce HbA1c (67–72). Further, hypoglycemia is not encountered because these drugs are insulin sensitizers and do not augment insulin secretion. In adipocytes, TZDs are excellent insulin sensitizers and potent inhibitors of lipolysis (73). TZDs also mobilize fat out of muscle, liver, and β-cells, thereby ameliorating lipotoxicity (57,62,63,74–76).

Although weight loss has the potential to improve both the defects in insulin sensitivity and insulin secretion (77), two meta-analyses involving 46 published studies demonstrated that the ability to maintain the initial weight loss is difficult (78,79). In the following sections, we will focus on pharmacologic agents—as monotherapy and combination therapy—that have been proven to reverse pathophysiologic abnormalities in T2DM.

In the β-cell, sulfonylureas and glinides augment insulin secretion (80), but only TZDs (81–83) and GLP-1 analogs (84–86) improve and preserve β-cell function and demonstrate durability of glycemic control (70,82–85,87–93). Importantly, TZDs and GLP-1 analogs cause durable HbA1c reduction for up to 5 and 3.5 years, respectively (82,93). Although dipeptidyl peptidase inhibitors (DPP4i) augment insulin secretion (94), their β-cell effect is weak compared with GLP1 analogs and they begin to lose efficacy (manifested by rising HbA1c) within 2 years after initiation of therapy (95,96). Despite the potent effects of TZDs and GLP-1 agonists on β-cells, the two most commonly prescribed drugs in the U.S. and worldwide are sulfonylureas and metformin, neither of which exerts any β-cell protective effect. This is a major concern, since progressive β-cell failure is the primary pathogenic abnormality responsible for development of T2DM and progressive HbA1c rise (Fig. 3).

GLP-1 analogs augment and preserve β-cell function for at least 3 years (84). This protective effect has its onset within 24 h (86) and persists as long as GLP-1 therapy is continued (84,85,93). Further, both exenatide and liraglutide promote weight loss, inhibit glucagon secretion, and delay gastric emptying, reducing postprandial hyperglycemia (45,93,97–99). Weight loss depletes lipid from muscle and liver, improving muscle and hepatic insulin sensitivity (84,85). GLP-1 analogs also correct multiple cardiovascular risk factors (rev. in 100) and, thus, have the potential to reduce cardiovascular events (101,102). Although DPP4i share some characteristics with GLP-1 analogs, they do not raise plasma GLP-1 levels sufficiently to offset β-cell resistance to GLP-1 (103). Not surprisingly, their ability to augment insulin secretion and reduce HbA1c is considerably less than GLP-1 analogs (94,104,105), and they do not promote weight loss (94). In a 1-year study involving 665 metformin-treated T2DM patients, HbA1c reduction with sitagliptin (0.9%) was significantly less than liraglutide dosed at 1.2 mg/day (∆HbA1c = 1.2%) or 1.8 mg/day (∆HbA1c = 1.8%) (105). In a short-term, mechanism-of-action, crossover study, exenatide was far superior to sitagliptin in reducing glucose area under the curve and 2-h glucose after a meal, increasing insulin secretion, inhibiting glucagon secretion, and promoting weight loss (104). Metformin increases GLP-1 secretion by intestinal L-cells (106–108), and the combination of metformin plus DPP4i may exert a more durable effect on β-cell function. The major mechanism of action of DPP4i to improve glycemic control is mediated via inhibition of glucagon secretion with subsequent decline in HGP (109).

Although not yet approved by U.S. regulatory agencies, sodium glucose transporter 2 inhibitors (approved in Europe) demonstrate modest efficacy in reducing HbA1c, promote weight loss, reduce blood pressure, and can be added to any antidiabetes agent (48,110).

Instituting therapy in newly diagnosed T2DM patients

When initiating therapy in newly diagnosed T2DM patients, the following considerations are of paramount importance:

1. Therapy should have the ability to achieve the desired level of glycemic control, based upon starting HbA1c. According to the ADA, European Association for the Study of Diabetes (EASD), and American Association of Clinical Endocrinologists (AACE), the desired HbA1c is 6.5% (EASD and AACE) or 7.0% (ADA) (5,111). However, we believe that in newly diagnosed diabetic patients without cardiovascular disease, the optimal HbA1c should be ≤6.0%, while avoiding adverse events, primarily hypoglycemia. This is consistent with the expanded ADA/EASD statement (3).
2. In most newly diagnosed diabetic patients, monotherapy will not reduce HbA1c <6.5–7.0% or, most optimally, <6.0%, and combination therapy will be required.

3. Importantly, medications used in combination therapy should have an additive effect, and individual drugs should correct established pathophysiologic disturbances in T2DM. If antidiabetes medications do not correct underlying pathologic abnormalities, long-term durable glycemic control cannot be achieved.

4. Progressive β-cell failure is responsible for progressive HbA1c rise in T2DM (3). Therefore, medications used to treat T2DM should preserve or improve β-cell function to ensure durable glycemic control.

5. Because insulin resistance is a core defect in T2DM and exacerbates the decline in β-cell function, medications also should ameliorate insulin resistance in muscle/liver.

6. T2DM is associated with an increased incidence of atherosclerotic cardiovascular complications. Therefore, it is desirable that drugs exert beneficial effects on cardiovascular risk factors and decrease cardiovascular events.

7. Since obesity is a major problem in diabetic individuals, combination therapy should be weight neutral and, if possible, promote weight loss.

8. Combination therapy should be safe and not exacerbate underlying medical conditions.

No single antidiabetes agent can correct all of the pathophysiologic disturbances present in T2DM, and multiple agents, used in combination, will be required for optimal glycemic control. Further, the HbA1c decrease produced by a single antidiabetes agent, e.g., metformin, sulfonylurea, TZD, GLP-1 analog, is in the range of 1.0–1.5% depending upon the starting HbA1c (5). Thus, in newly diagnosed T2DM with HbA1c >8.0–8.5%, a single agent is unlikely to achieve HbA1c goal <6.5–7.0%, and virtually no one will achieve HbA1c <6.0%. When maximal-dose metformin, sulfonylurea, or TZD is initiated as monotherapy, <40% of newly diagnosed T2DM subjects can be expected to achieve HbA1c <6.5–7.0%. Thus, most patients with HbA1c >8.0–8.5% will require initial combination therapy to reach HbA1c <6.5–7.0%. Moreover, because different agents lower plasma glucose via different mechanisms, combination therapy will have an additive effect to reduce HbA1c compared with each agent alone. Simultaneous correction of the β-cell defect and insulin resistance is more likely to cause durable HbA1c reduction. Lastly, combination therapy allows use of submaximal doses of each antidiabetes agent, resulting in fewer side effects (112).

In summary, initiating therapy with multiple antidiabetes agents in newly diagnosed T2DM patients, especially those with HbA1c >8.0–8.5%, represents a rational approach to achieve the target HbA1c level while minimizing side effects. Indeed, AACE recommends starting newly diagnosed diabetic subjects with HbA1c >7.5% on multiple antidiabetes agents (111).

“Treat to fail” algorithm

The 2009 ADA/EASD algorithm (1) recommended initiation of therapy with metformin to achieve HbA1c <7.0%, followed by, importantly, sequentially addition of a sulfonylurea. If sulfonylurea addition failed to reduce HbA1c <7.0%, addition of basal insulin was recommended. Although the revised 2012 ADA/EASD algorithm (5) includes newer antidiabetes agents (GLP-1 receptor agonists, DPP4i, and TZDs) as potential choices if metformin fails, the initial box in the treatment algorithms still depicts sequential addition of sulfonylurea and then insulin to maintain HbA1c <7.0%. This algorithm has little basis in pathophysiology and more appropriately should be called the treat to fail algorithm. Moreover, it does not consider the starting HbA1c or need for initial combination therapy in most newly diagnosed T2DM patients, especially if HbA1c goal <6.0–6.5% is desired, as suggested by us (4) and by the 2012 ADA/EASD consensus statement (5). Because β-cell failure is progressive (9–12,24–30,34,35,113,114) and results in loss of β-cell mass (36–38), it is essential to intervene with agents that normalize HbA1c and halt the progressive β-cell demise (Fig. 3). Failure to do so will result in the majority of T2DM patients progressing to insulin therapy, as demonstrated in the UK Prospective Diabetes Study (UKPDS) (113,114).

Sulfonylureas/glinides: the treat to fail approach. Until recently (5), sulfonylur- eas have been considered the drug of choice for add-on therapy to metformin (1). In large part, this is attributed to their low cost and rapid onset of hypoglycemic effect. However, they lack “glycemic durability” and within 1–2 years lose their efficacy, resulting in steady HbA1c rise to or above pretreatment levels (107,108) (Figs. 4 and 5). Although long-term studies examining glycemic durability with glinides (nateglinide, repaglinide) in T2DM are not available, nateglinide failed to prevent prediabetic (IGT) patients from progressing to T2DM (115). In a 2-year study in newly diagnosed T2DM subjects, durability of netaglinide plus metformin was comparable with glyburide plus metformin (116) and both groups experienced a small but progressive HbA1c rise after the first year. Since deterioration in glycemic control is largely accounted for by progressive β-cell failure (3), it is clear that both sulfonylureas and glinides fail to prevent the progressive decline in β-cell function characteristic of T2DM. Consistent with this, in vitro studies have demonstrated a proapoptotic β-cell effect of sulfonylureas and glinides (117–120). UKPDS conclusively demonstrated that sulfonylureas exerted no β-cell protective effect in newly diagnosed T2DM patients (starting HbA1c = 7.0%) over a 15-year follow-up (113,114). After an initial HbA1c drop, sulfonylurea-treated patients experienced progressive deterioration in glycemic control that paralleled HbA1c rise in conventionally treated individuals (Fig. 4). Moreover, some studies have suggested that sulfonylureas may accelerate atherogenesis (121,122). Similarly, metformin-treated patients in UKPDS, after initial HbA1c decline (secondary to inhibition of HGP), also experienced progressive deterioration in glycemic control (123) (Fig. 4). With use of homeostasis model assessment of β-cell function, it was shown that the relentless...
HbA1c rise observed with sulfonylureas and metformin resulted from progressive decline in β-cell function and that within 3–5 years, ~50% of diabetic patients required an additional pharmacologic agent to maintain HbA1c <7.0% (114,124–127). Although there is in vitro evidence that metformin may improve β-cell function (128,129), in vivo data from UKPDS and other studies (130) fail to support any role for metformin in preservation of β-cell function in humans. Metformin did reduce macrovascular events in UKPDS (123), although by today’s standards the number of metformin-treated subjects (n = 342) would be considered inadequate to justify any conclusions about cardiovascular protection. Other than its effect to reduce the elevated rate of basal and postprandial HGP (53,55,64), metformin does not correct any other component of the ominous octet (Fig. 1), and even its muscle insulin-sensitizing effect is difficult to demonstrate in absence of weight loss (53,55,64).

UKPDS was designed as a monotherapy study. However, after 3 years it became evident that monotherapy with neither metformin nor sulfonylureas could prevent progressive β-cell failure and stabilize HbA1c at its starting level (113,114,123–127). Therefore, study protocol was altered to allow metformin addition to sulfonylurea and sulfonylurea addition to metformin. Although addition of a second antidiabetes agent initially improved glycemic control, progressive β-cell failure continued and HbA1c rose progressively.

Numerous long-term (>1.5 years) active-comparator or placebo-controlled studies have demonstrated inability of sulfonylureas to produce durable HbA1c reduction in T2DM patients. These studies (70,83,87–92,113,131–133) showed that after initial HbA1c decline, sulfonylureas (glyburide, glimepiride, and gliclazide) were associated with progressive decline in β-cell function with accompanying loss of glycemic control (Fig. 5). There are no exceptions to this consistent loss of glycemic control with sulfonylureas after the initial 18 months of therapy. Thus, evidence-based medicine demonstrates that the glucose-lowering effect of sulfonylureas is not durable and that loss of glycemic control is associated with progressive β-cell failure.

Sulfonylurea treatment does not correct any pathophysiologic component of the ominous octet (3) (Fig. 1) and is associated with significant weight gain and hypoglycemia (89,90). Although no study has clearly implicated sulfonylureas with an increased incidence of cardiovascular events, a deleterious effect of glibenclamide (glyburide) on the cardioprotective process of ischemic preconditioning has been demonstrated (134), while some (121,122,135–142) but not all (143,144) studies have suggested a possible association between sulfonylureas and adverse cardiovascular outcomes. Since metformin was the comparator in many of these studies (121,122,137,138,140–142), it is difficult to determine whether sulfonylureas increased or metformin decreased cardiovascular morbidity/mortality. In the study by Sillars et al. (143) the increased cardiovascular mortality/morbidity disappeared after adjusting for confounding variables, and failure to do so in other sulfonylurea studies may have clouded their interpretation. Among the sulfonylurea studies, the older sulfonylureas (i.e., glibenclamide) more commonly have been associated with increased adverse cardiovascular outcomes than the newer sulfonylurea agents (i.e., glipizide and gliclazide) (139,144–146).

In summary, we believe that currently available insulin secretagogues (sulfonylureas and glinides) represent a poor option as add-on therapy to metformin. However, in many countries newer antidiabetes agents are not available or are expensive (ABCDE) (4). In such circumstances, sulfonylureas may be the only option.

Antidiabetes agents known to reverse pathophysiologic defects

Pioglitazone: unique benefits, unique side effects. Rosiglitazone has been removed from the market or its use severely restricted because of cardiovascular safety concerns (147). Therefore, pioglitazone is the only representative TZD. Pioglitazone is unique in that it both exerts β-cell protective effects (81) and is a powerful insulin sensitizer in muscle and liver (56–61,65,74–76) Thus, it is the only antidiabetes agent that corrects the core defects of insulin resistance and β-cell failure in T2DM. Not surprisingly, it has a durable effect to reduce HbA1c with low risk of hypoglycemia.

Eight long-term (>1.5 years) studies with TZDs (70,82,81–92) (Fig. 6) have demonstrated that, after initial decline in HbA1c, durability of glycemic control is maintained because of preservation of β-cell function in T2DM patients. Further, five studies demonstrate that TZDs prevent progression of IGT to T2DM (148–152). All five studies showed that, in addition to their insulin-sensitizing effect, TZDs had a major action to preserve β-cell function. In Actos Now for Prevention of Diabetes (ACT NOW), improved insulin secretion/insulin resistance (disposition) index was shown both with OGTT and frequently sampled intravenous glucose tolerance test. Similar results were documented in Troglitazone in Prevention of Diabetes (TRIPOD) and Pioglitazone in Prevention of Diabetes (PIPOD) (148,151). Many in vivo and in vitro studies with human and rodent islets have demonstrated that TZDs exert a β-cell-protective effect (153–157).

Pioglitazone has additional beneficial pleiotropic properties, including increased HDL cholesterol, reduced plasma triglyceride, decreased blood pressure, improved endothelial dysfunction, anti-inflammatory effects (76,158–161), and amelioration of nonalcoholic steatohepatitis (75). In addition to reduced cardiovascular events in PROactive and U.S.
Pathophysiologic approach to therapy in T2DM

...play an important role in the insulin resistance and β-cell dysfunction. Institution of intensive insulin therapy with or without other antidiabetes agents to correct these many metabolic abnormalities, therefore, represents a rational approach to therapy based upon pathophysiology. After a period of sustained metabolic control, the insulin therapy can be continued or the patient can be switched to a non-insulin therapeutic regimen. This approach has recently been examined by Harrison et al. (179). Fifty-eight newly diagnosed T2DM patients in poor metabolic control (HbA1c 10.8%) initially were treated for 3 months with metformin plus insulin to reduce the HbA1c to 5.9%. Subjects then were randomized to continued therapy with insulin-metformin combination therapy with pioglitazone/metformin/gliburide. During 3 years of follow-up, both groups maintained the reduction in HbA1c, but the insulin dose had to be increased, indicating that, despite excellent glycemic control, β-cell failure continued in this group. Further, glycemic control in both groups was achieved at the expense of a relatively high rate of hypoglycemia and weight gain in the insulin/metformin group, consistent with multiple studies demonstrating a high incidence of hypoglycemia in sulfonylurea-treated and insulin-treated subjects.

Metformin plus GLP-1 analog plus pioglitazone: a pathophysiologic option that offers robust glycemic control and weight loss. The combination of biguanide (metformin), TZD (pioglitazone), and GLP-1 analog offers a rational treatment choice, targeting multiple pathophysiological abnormalities in T2DM: muscle insulin resistance (pioglitazone), adipocyte insulin resistance (pioglitazone), pancreatic β-cell failure (GLP-1 analog, pioglitazone), hepatic insulin resistance (metformin, pioglitazone, and GLP-1 analog), and excessive glucagon secretion (GLP-1 analog) (3) with weight loss (GLP-1 analog) and low risk of hypoglycemia (93,97). Studies with exenatide have demonstrated durable glycemic control for 3 years (84,93). β-Cells in T2DM are blind to glucose, and GLP-1 analogs have the unique ability to restore β-cell glucose sensitivity (84–86) (Fig. 7) by augmenting glucose transport, activating glucokinase, increasing Pdx, and replenishing β-cell insulin stores (180,181).

Because pharmacologic GLP-1 levels (~80–90 pmol/L) are achieved with GLP-1 analogs, they overcome β-cell incretin resistance and augment insulin secretion. Increased insulin and inhibited glucagon secretion reduce basal HGP, reducing fasting plasma glucose concentration and enhancing HGP suppression after a meal (98,99). Although GLP-1 analogs do not have a direct insulin-sensitizing effect, they augment insulin–mediated glucose disposal secondary to weight loss (97). The combination of pioglitazone plus exenatide reduces hepatic fat content and markers of liver damage in T2DM (182). In T2DM patients treated with rosiglitazone, exenatide, or both (as add-on...
to metformin), improved β-cell function and insulin sensitivity were noted, with weight loss in all exenatide-treated groups (177). Similar results have been reported by others (182–183) with combined GLP-1 analog/TZD therapy.

In an ongoing study, we compared triple combination therapy with pioglitazone/metformin/exenatide with the standard ADA approach (metformin followed by sequential addition of sulfonylurea and then basal insulin) in 134 newly diagnosed T2DM patients with starting HbA1c 8.7% (186). After 2 years, HbA1c reduction was greater in the triple therapy versus sequential ADA group (2.7 vs. 2.2%, \(P < 0.01\)), triple therapy subjects lost 1.5 vs. 4.1 kg weight gain with the ADA approach, and hypoglycemia incidence was 13.5-fold higher in the sequential ADA group. These preliminary results indicate that a triple combination approach focused on reversing underlying insulin resistance and β-cell dysfunction is superior to sequential therapy (metformin, add sulfonylurea, add basal insulin) with agents that do not correct core pathophysiologic defects in T2DM.

DPP4i: weak but easy alternative to GLP-1 analogs. DPP4i have gained widespread use in combination with metformin because of their weight neutrality, modest efficacy, and safety (187,188). Metformin has a modest effect to increase GLP-1 secretion (107,189). Thus, combination metformin/DPP4i therapy may result in increased GLP-1 levels (190) and an additive glucose-lowering effect (191,192). When used in triple combination with metformin plus pioglitazone (30 mg/day), albiglutin resulted in better glycemic control and fewer pioglitazone dose-dependent side effects (edema, weight gain) compared with metformin with a higher pioglitazone dose (45 mg/day) (172). Because they correct multiple components of the ominous octet, have superior glucose-lowering efficacy, promote weight loss, and preserve β-cell function, we favor GLP-1 analogs over DPP4i in the triple therapy approach. Nonetheless, because of their ease of administration and safety, DPP4i represent a reasonable alternative.

Conclusions and recommendations

T2DM is a multifactorial, multiorgan disease, and antidiabetes medications should address underlying pathogenic mechanisms rather than solely reducing the blood glucose concentration. Emphasis should be placed on medications that ameliorate insulin resistance and prevent β-cell failure if durable HbA1c reduction is to be achieved. Further, the long-practiced gluco-centric paradigm has become antiquated. Diabetic patients are at high risk for cardiovascular events, and comprehensive evaluation/treatment of all cardiovascular risk factors is essential. Simply focusing on glycemic control will not have a major impact to reduce cardiovascular risk (113,123). Therefore, we favor a therapeutic approach based not only on the drug’s glucose-lowering efficacy/durability but also on its effect on weight, blood pressure, lipids, cardiovascular protection, and side effect profile, especially hypoglycemia.

Initial therapy in newly diagnosed T2DM patients without cardiovascular disease should be capable of achieving the desired glycemic goal, which should be as close to normal as possible: HbA1c ≤ 6.0%. This will require combination therapy in the majority of T2DM patients (3) (Fig. 1). While we favor the physiologic approach, physicians must be cognizant of the ABCDE of diabetes management (4). An approach that emphasizes pathophysiology but allows for individualized therapy will provide optimal results. Evidence-based medicine (UPKDS) has taught us that sequential therapy with metformin followed by sulfonylurea addition with subsequent insulin addition represents the treat to fail approach, and we do not recommend this approach unless cost is the overriding concern.

Acknowledgments—R.A.D. is a member of the Bristol-Myers Squibb, Janssen, Amylin, Takeda, Novo Nordisk, and Lexicon advisory boards; has received grants from Takeda, Amylin, and Bristol-Myers Squibb; and is a member of the following speakers bureaus: Bristol-Myers Squibb, Novo Nordisk, Janssen, and Takeda. No other potential conflicts of interest relevant to this article were reported. R.A.D. wrote the initial draft of the manuscript. R.E. and M.A.-G. revised the manuscript. R.A.D. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

1. Nathan DM, Buse JB, Davidson MB, et al.; American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009;32:193–203
2. Schernthaner G, Barnett AH, Betteridge DJ, et al. Is the ADA/EASD algorithm for the management of type 2 diabetes (January 2009) based on evidence or opinion? A critical analysis. Diabetologia 2010;53:1258–1269
3. DeFronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 2009;58:773–795
4. Pozzilli P, Leslie RD, Chan J, et al. The A1C and ABCD of glycemia management in type 2 diabetes: a physician’s personalized approach. Diabetes Metab Res Rev 2010;26:230–244
5. Inzucchi SE, Bergenstal RM, Buse JB, et al.; American Diabetes Association (ADA); European Association for the Study of Diabetes (EASD). Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:1364–1379
6. Abdul-Ghani MA, Matsuda M, Sabbah M, Jenkinson C, Richardson DK, DeFronzo RA. The relative contribution of insulin resistance and beta cell failure to the transition from normal to impaired glucose tolerance varies in different ethnic groups. Diab Metab Syndr 2007;1:105–112
7. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988;37:667–687
8. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Res 1997;5:177–179
9. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, DeFronzo RA. Insulin resistance to the pathophysiological approach. Diabetes Res 1997;36:17–26
10. Abdul-Ghani MA, Matsuda M, Mari A, DeFronzo RA. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab 2005;90:493–500
11. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006;29:1130–1139
12. Abdul-Ghani MA, Jenkinson C, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with...
impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes 2006;55: 1430–1435
13. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 1989;321:337–343
14. Groop L, Lyssenko V. Genes and type 2 diabetes mellitus. Curr Diab Rep 2008;8: 192–197
15. Ahlqvist E, Ahluwalia TS, Groop L. Genetics of type 2 diabetes. Clin Chem 2011;57:241–254
16. DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 1989;38: 387–395
17. Groop LC, Bonadonna RC, DelPrato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989;84: 205–213
18. Ferrannini E, Simonson DC, Katz LD, et al. The disposal of an oral glucose load in patients with non-insulin-dependent diabetes. Metabolism 1988;37:79–85
19. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in non-insulin-dependent (type II) diabetes mellitus. J Clin Invest 1985;76:149–155
20. Pendergrass M, Bertoldo A, Bonadonna R, et al. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am J Physiol Endocrinol Metab 2007;292:E92–E100
21. James WP. The fundamental drivers of the obesity epidemic. Obes Rev 2008;9 (Suppl 1):6–13
22. DeFronzo RA, Soman V, Sherwin RS, Hendler R, Felig P. Insulin binding to monocytes and insulin action in human obesity, starvation, and refeeding. J Clin Invest 1978;62:204–213
23. Diamond MP, Thornton K, Connolly-Diamond M, Sherwin RS, DeFronzo RA. Reciprocal variations in insulin-stimulated glucose uptake and pancreatic insulin secretion in women with normal glucose tolerance. J Soc Gynecol Investig 1993;2:708–715
24. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. Sequential changes in serum insulin concentration during development of non-insulin-dependent diabetes. Lancet 1989;1:1336–1359
25. Lillioja S, Mott DM, Howard BV, et al. Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 1988;318:1217–1225
26. Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993;329:1988–1992
27. Weyer C, Tatarannanni PA, Bogardus C, Pritkle RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care 2001; 24:89–94
28. Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med 1989;15:290–296
29. Bergman RN, Finegood DT, Kahn SE. The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 2002;32(Suppl 3):35–45
30. Jallut D, Golay A, Munger R, et al. Impaired glucose tolerance and diabetes in obesity: a 6-year follow-up study of glucose metabolism. Metabolism 1990; 39:1068–1075
31. Felbser JP, Golay A, Jequer E, et al. The metabolic consequences of long-term human obesity. Int J Obes 1988;12:377–389
32. Ahren B, Taborsky GJ. Beta-cell function and insulin secretion. In Ellenberg and Riffkin’s Diabetes Mellitus. Porte D, Sherin RS, Baron A, Eds. New York, McGraw Hill, 2003, p. 43–65
33. Bergman RN. Lilly lecture 1989. Toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1987;36:274–288
34. Zimmet P, Whitehouse S, Alford F, Chisholm D. The relationship of insulin resistance to a glucose stimulus over a wide range of glucose tolerance. Diabetes 1978;15:23–27
35. Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Mott DM, Bennett PH. The natural history of impaired glucose tolerance in the Pima Indians. N Engl J Med 1988;319:1500–1506
36. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003;52:102–110
37. Rahier J, Guiot Y, Goebels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 2008;10(Suppl 4):32–42
38. Stefan Y, Orci L, Malaissa-Laghe F, Perrelet A, Patel Y, Unger RH. Quanitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 1982;31:694–700
39. Shulman GI, Rothman DL, Smith D, et al. Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest 1983; 76:1229–1236
40. Bajaj M, DeFronzo RA. Metabolic and molecular basis of insulin resistance. J Nucl Cardiol 2003;10:311–323
41. Cusi K, Mazzoni K, Osman A, et al. Insulin resistance differentially affects the PI-3 kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000;105:311–320
42. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53:1270–1287
43. Nauck MA, Vardari I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: what is up, what is down? Diabetologia 2011;54:10–18
44. Knop FK, Vilsboll T, Højberg PV, et al. Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 2007;56:1951–1959
45. Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia 2006;49: 253–260
46. Baron AD, Schaeffer L, Shragg P, Koltermann OG. Role of hyperglycaemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274–283
47. Matsuda M, DeFronzo RA, Glass L, et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metabolism 2002; 51:1111–1119
48. Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 2011; 32:513–531
49. Mogensen CE. Maximum tubular reabsorption capacity for glucose and renal hemodynamics during rapid hypertonic glucose infusion in normal and diabetic subjects. Scand J Clin Lab Invest 1971; 28:101–109
50. Matsuda M, Liu Y, Mahankali S, et al. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes 1999;48:1801–1806
51. Obici S, Feng Z, Karkanianis G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 2002; 5:566–572
52. Obici S, Feng Z, Tan J, Liu L, Karkanianis G, Rossetti L. Central melanocortin
receptors regulate insulin action. J Clin Invest 2001;108:1079–1085
53. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in NIDDM. J Clin Endocrinol Metab 1996;81:4059–4067
54. DeFronzo RA, Goodman AM, The Multicenter Metformin Study Group. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1999;333:541–549
55. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Res Clin Pract 1998;40:189–198
56. Miyazaki Y, Mahankali A, Matsuda M, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 2001;24:710–719
57. Miyazaki Y, Mahankali A, Matsuda M, et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002;87:2784–2791
58. Bajaj M, Suraamornkul S, Hardjes LJ, Pratipanawatr T, DeFronzo RA. Plasma resistin concentration, hepatic fat content, and hepatic and peripheral insulin resistance in pioglitazone-treated type 2 diabetic patients. Int J Obes Relat Metab Disord 2004;28:783–789
59. Gastaldelli A, Miyazaki Y, Mahankali A, et al. The effect of pioglitazone on the liver: role of adipopnectin. Diabetes Care 2006;29:2275–2281
60. Gastaldelli A, Miyazaki Y, Pettiti M, et al. The effect of rosiglitazone on the liver: decreased gluconeogenesis in patients with type 2 diabetes. J Clin Endocrinol Metab 2006;91:806–812
61. Miyazaki Y, DeFronzo RA. Rosiglitazone and pioglitazone similarly improve insulin sensitivity and secretion, glucose tolerance and adipocytokines in type 2 diabetic patients. Diabetes Obes Metab 2008;10:1204–1211
62. Bays H, Mandarino L, DeFronzo RA. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004;89:463–478
63. Bajaj M, Baig R, Suraamornkul S, et al. Effect of pioglitazone on intracellular fat metabolism in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010;95:1916–1923
64. Natali A, Ferrannini E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 2006;49:434–441
65. Miyazaki Y, He H, Mandarino LJ, DeFronzo RA. Rosiglitazone improves downstream insulin receptor signaling in type 2 diabetic patients. Diabetes 2003;52:1943–1950
66. Musi N, Hirshman MF, Nygren J, et al. Metformin improves AMP-activated protein kinase activity in skeletal muscle of subjects with type 2 diabetes. Diabetes 2002;51:2074–2081
67. Einhorn D, Rendell M, Rensenewi J, Egan JW, Mathiesen AL, Schneider RL. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther 2000;22:1395–1409
68. Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000;283:1693–1702
69. Matthews DR, Charbonnel BH, Haneefd M, Brunetti P, Scherthneran G. Long-term therapy with addition of pioglitazone to metformin compared with the addition of glitazide to metformin in patients with type 2 diabetes: a randomized, comparative study. Diabetes Metab Res Rev 2005;21:167–174
70. Charbonnel B, Scherthneran G, Brunetti P, et al. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of glitazide or metformin in patients with type 2 diabetes. Diabetesologia 2005;48:1093–1104
71. Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998;338:867–872
72. Bajaj M, DeFronzo RA. Combination therapy in type 2 diabetes. In International Textbook of Diabetes Mellitus. 3rd ed. DeFronzo RA, Ferrannini E, Keen H, Zimmet P, Eds. Hoboken, NJ, John Wiley & Sons, 2004, p. 915–950
73. Miyazaki Y, Glass L, Tripkitt C, et al. Effect of rosiglitazone on glucose and nonesterified fatty acid metabolism in Type II diabetic patients. Diabetesologia 2001;44:2210–2219
74. Bajaj M, Suraamornkul S, Pratipanawat T, et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with type 2 diabetes. Diabetes 2003;52:1364–1370
75. Bellott R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006;355:2297–2307
76. Yki-Järvinen H. Thiazolidinediones. N Engl J Med 2004;351:1106–1118
77. Lim EL, Hollingsworth KG, Arbisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalization of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011;54:2506–2514
78. Anderson JW, Kozn EC, Federici RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 2001;74:579–584
79. Dansinger ML, Tatsioni A, Wong JB, Chung M, Balk EM. Meta-analysis: the effect of dietary counseling for weight loss. Ann Intern Med 2007;147:41–50
80. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999;131:281–303
81. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab 2007;292:E871–E883
82. Kahn SE, Haffner SM, Heise MA, et al.; ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006;355:2427–2443
83. Kahn SE, Lachin JM, Zinman B, et al.; ADOPT Study Group. Effects of rosiglitazone, glyburide, and metformin on β-cell function and insulin sensitivity in ADOPT. Diabetes 2011;60:1552–1560
84. Bunck MC, Cornér A, Eliasson B, et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 2011;34:2041–2047
85. Bunck MC, Diamant M, Cornér A, et al. One-year treatment with exenatide improves beta-cell function, compared with insulin glargine, in metformin-treated type 2 diabetic patients: a randomized, controlled trial. Diabetes Care 2009;32:762–768
86. Chang AM, Jakobsen G, Sturis J, et al. The GLP-1 derivative NN2211 restores beta-cell sensitivity to glucose in type 2 diabetic patients after a single dose. Diabetes 2003;52:1786–1791
87. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 2006;296:2572–2581
88. Nissen SE, Nichols SJ, Wolski K, et al.; PERISCOPE Investigators. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008;299:1561–1573
89. Hanefeld M, Pfütznner A, Forst T, Liibben G. Glycemic control and treatment failure with pioglitazone versus gliclazide in type 2 diabetes mellitus: a 42-month, open-label, observational, primary care study. Curr Med Res Opin 2006;22:1211–1215
90. Tan MH, Bakir A, Krahnke B, et al.; GLAL Study Group. Comparison of pioglitazone and gliclazide in sustaining

DeFronzo, Eldor, and Abdul-Ghani
Pathophysiologic approach to therapy in T2DM

glycemic control over 2 years in patients with type 2 diabetes. Diabetes Care 2005; 28:544–550
91. Rosenstock J, Goldstein BJ, Vinik AI, et al.; RESULT Study Group. Effect of early addition of rosiglitazone to sulphonylurea therapy in older type 2 diabetes patients (>60 years): the Rosi-glitazone Early vs. Sulphonylurea Ti-tration (RESULT) study. Diabetes Obes Metab 2006;8:49–57
92. Home PD, Jones NP, Pocock SJ, et al.; RECORD Study Group. Rosiglitazone RECORD study: glucose control outcomes at 18 months. Diabet Med 2007; 24:626–634
93. Klonoff DC, Buse JB, Nielsen LL, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin 2008;24:275–286
94. Bergenstal RM, Wysham C, Macconell L, et al.; DURATION-2 Study Group. Efficacy and safety of exenatide once weekly versus sitagliptin or pioglitazone as an adjunct to metformin for treatment of type 2 diabetes (DURATION-2): a randomised trial. Lancet 2010;376:431–439
95. Matthews DR, Dejager S, Ahren B, et al. Vildagliptin add-on to metformin produces similar efficacy and reduced hypoglycaemic risk compared with glimepiride, with no weight gain: results from a 2-year study. Diabetes Obes Metab 2010;12:780–789
96. Gallwitz B, Rosenstock J, Rauch T, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet 2012;380:475–483
97. Astrup A, Carraro R, Finer N, et al.; NN8022-1807 Investigators. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, lixisenatide. Int J Obes (Lond) 2012;36:843–854
98. Cervera A, Wajeberg E, Srivijitakamol A, et al. Mechanism of action of exenatide to reduce postprandial hyperglycaemia in type 2 diabetes. Am J Physiol Endocrinol Metab 2008;294:E846–E852
99. Cersosimo E, Gastaldelli A, Cervera A, et al. Effect of exenatide on splanchnic and peripheral glucose metabolism in type 2 diabetic subjects. J Clin Endo-crinol Metab 2011;96:1763–1770
100. Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am J Med 2011;124 (Suppl.5):S35–S53
101. Jenkins AJ, Krishnamurthi B, Best JD, et al. Evaluation of an algorithm to guide patients with type 1 diabetes treated with continuous subcutaneous insulin infusion on how to respond to real-time continuous glucose levels: a randomized controlled trial. Diabetes Care 2010;33: 1242–1248
102. Marso SP, Lindsey JB, Stolker JM, et al. Cardiovascular safety of lixisenatide assessed in a patient-level pooled analysis of phase 2: 3 lixisenatide clinical development studies. Diab Vasc Dis Res 2011; 8:237–240
103. Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on insulin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006;91:4612–4619
104. DeFronzo RA, Okerson T, Viswanathan P, Guan X, Holcombe JH, MacConell L. Effects of exenatide versus sitagliptin on postprandial glucose, insulin and glu-cagon secretion, gastric emptying, and caloric intake: a randomized, cross-over study. Curr Med Res Opin 2008;24:2943–2952
105. Pratley RE, Nauck M, Bailey T, et al. 1860-LIRA-DPP-4 Study Group. Linagliptin versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: a 26-week, randomised, parallel-group, open-label trial. Lancet 2010; 375:1447–1456
106. Mulherin AJ, Oh AH, Kim H, Greco A, Lauffer LM, Brubaker PL. Mechanisms underlying metformin-induced secretion of glucagon-like peptide-1 from the intestinal L cell. Endocrinology 2011; 152:4610–4619
107. Mannucci E, Ognibene A, Cremasco F, et al. Effect of metformin on glucagon-like peptide 1 (GLP-1) and leptin levels in subjects with type 2 diabetes. J Clin Endocrinol Metab 2008;93:1770–1776
108. Tacklind A, Myrianthopoulos NC, et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. Diabetes Res Clin Pract 2007;77:343–350
109. Hambrock A, de Oliveira Franz CB, Hiler S, Osswald H. Glibenclamide-induced apoptosis is specifically enhanced by expression of the sulfonylurea receptor isoform SUR1 but not by expression of SUR2B or the mutant SUR1 (M1289T). J Pharmacol Exp Ther 2006; 316:1031–1037
110. Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced beta-cell apoptosis in cultured human islets. J Clin Endocrinol Metab 2005;90:501–506
111. Kim JY, Lim DM, Park HS, et al. Exendin-4 protects against sulfonylurea-induced B-cell apoptosis. J Pharmacol Sci 2012;118:65–74
112. Johnson JA, Majumdar SR, Simpson SH, Toth EL. Decreased mortality associated with the use of metformin compared with sulfonylurea monotherapy in type 2 diabetes. Diabetes Care 2002;25:2244–2248
113. Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality and adverse cardiovascular outcomes in type 2 diabes: a comparison of patients treated
with sulfonylureas and metformin. Diabetologia 2006;49:930–936

123. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–865

124. U.K. Prospective Diabetes Study Group. UKPDS 28: a randomized trial of efficacy of early addition of metformin in sulfonylurea-treated type 2 diabetes. Diabetes Care 1998;21:87–92

125. Wright A, Burden AC, Paisey RB, Cull CA, Holman RR. U.K. Prospective Diabetes Study Group. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U.K. Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002;25:330–336

126. Matthews DR, Cull CA, Stratton IM, Holman RR, Turner RC. U.K. Prospective Diabetes Study (UKPDS) Group. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabet Med 1998;15:297–303

127. U.K. Prospective Diabetes Study Group. U.K. prospective diabetes study 16. Overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 1995;44:1240–1248

128. Lupi R, Del Guerra S, Tellini C, et al. The biguanide compound metformin prevents desensitization of human pancreatic islets induced by high glucose. Eur J Pharmacol 1999;364:205–210

129. Lupi R, Del Guerra S, Fierabracci V, et al. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 2002;51(Suppl. 1):S134–S137

130. Brown JB, Conner C, Nichols GA. Secondary failure of metformin monotherapy in clinical practice. Diabetes Care 2010;33:501–506

131. Alvarsson M, Berntorp K, Fernqvist-Forbes E, et al. Effects of insulin versus sulphonylurea on beta-cell secretion in recently diagnosed type 2 diabetes patients: a 6-year follow-up study. Rev Diabet Stud 2010;7:225–232

132. Alvarsson M, Sundkvist G, Lager I, et al. Effects of insulin vs. glibenclamide in recently diagnosed patients with type 2 diabetes: a 4-year follow-up. Diabetes Obes Metab 2008;10:421–429

133. Gallwitz B, Guzman J, Dotta F, et al. Exenatide twice daily versus glimepiride for prevention of glycemic deterioration in patients with type 2 diabetes with metformin failure (EUREXA): an open-label, randomised controlled trial. Lancet 2012;379:2270–2278

134. Nieszner E, Posa I, Kocsi E, Pogatsa G, Preda I, Koltai MZ. Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes 2002;110:212–218

135. Panicker GK, Karmad DR, Salvi V, Kothari S. Cardiovascular risk of oral antidiabetic drugs: current evidence and regulatory requirements for new drugs. J Assoc Physicians India 2012;60:56–61

136. Gaskell JN, Brady PA, Hassinger NL, Grill DE, Terzic A, Holmes DR Jr. Sulfonylurea drugs increase early mortality in patients with diabetes mellitus after direct angioplasty for acute myocardial infarction. J Am Coll Cardiol 1999;33:119–124

137. Simpson SH, Majumdar SR, Tsuyluki RT, Urich DT, Johnson JA. Dose-response relation between sulfonylurea drugs and mortality in type 2 diabetes mellitus: a population-based cohort study. CMAJ 2006;176:169–174

138. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 2011;32:1900–1908

139. Johnson SP, Monster TB, Olsen ML, et al. Risk and short-term prognosis of myocardial infarction among users of antidiabetic drugs. Am J Ther 2006;13:134–140

140. Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med 2008;168:2070–2080

141. Rao AD, Kuhadiya N, Reynolds K, et al. Rosiglitazone prevents the impairment of non-renal functions: evidence for a role of PPAR-gamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab 2005;289:E567–E577

142. Finegood DT, McArthur MD, Koivuang D, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 2001;50:1021–1029

143. Kim HI, Cha JY, Kim SY, et al. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes 2002;51:676–685

144. Santini E, Fallahi P, Ferrari SM, Masoni A, Antonelli A, Ferrannini E. Effect of antidiabetic drugs: current evidence and regulatory requirements for new drugs. Am J Ther 2006;13:134–140

145. Knowler WC, Hamman RF, Edelstein SL, et al.; Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2005;54:1150–1156

146. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002;51:517–522

147. Defronzo RA, Tripathy D, Schwaben DC, et al.; ACT NOW Study. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 2011;364:1104–1115

148. Lupi R, Del Guerra S, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPAR-gamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab 2004;286:E560–E567

149. Finegood DT, McArthur MD, Koivwang D, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 2001;50:1021–1029

150. Kim HI, Cha JY, Kim SY, et al. Peroxisomal proliferator-activated receptor-gamma upregulates glucokinase gene expression in beta-cells. Diabetes 2002;51:676–685

151. Santini E, Fallahi P, Ferrari SM, Masoni A, Antonelli A, Ferrannini E. Effect of antidiabetic drugs: current evidence and regulatory requirements for new drugs. Am J Ther 2006;13:134–140

152. Knowler WC, Hamman RF, Edelstein SL, et al.; Diabetes Prevention Program Research Group. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2005;54:1150–1156

153. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002;51:2796–2803

154. Defronzo RA, Tripathy D, Schwaben DC, et al.; ACT NOW Study. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 2011;364:1104–1115

155. Lupi R, Del Guerra S, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPAR-gamma2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab 2004;286:E560–E567

156. Finegood DT, McArthur MD, Koivwang D, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes 2001;50:1021–1029

157. Masuda K, Okamoto Y, Tsuura Y, et al. Effects of Troglitazone (CS-045) on insulin secretion in isolated rat pancreatic islets and HIT cells: an insulinotropic
Pathophysiologic approach to therapy in T2DM

mechanism distinct from glibenclamide. Diabetologia 1995;38:24–30

Betteridge DJ, DeFronzo RA, Chilton RJ. PRoActive: time for a critical appraisal. Eur Heart J 2008;29:969–983

Patrono C, Bachmann F, Baigent C, et al.; S138

Bajaj M, Suraamornkul S, Hardies LJ, Glass L, Musi N, DeFronzo RA. Effects of peroxisome proliferator-activated receptor (PPAR)-alpha and PPAR-gamma agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 2007;50:1723–1731

Betteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab 2007;9:640–647

Dormandy JA, Charbonnel B, Eckland DJ, et al.; PRoActive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PRoActive Study (PROspective pIoglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005;366:1279–1289

Lancot AM, Wolski K, Nicholls S, Sisip S. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007;298:1180–1188

Miyazaki M, De Filippis E, Bajaj M, et al. Initial triple combination therapy is superior to stepwise add-on conventional therapy in newly diagnosed T2DM (Abstract). Diabetes 2013;62(Suppl. 1): A97

Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab 2011;13:7–18

Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H, Sita-glitin Study 023 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:2364–2371

Yasuda N, Inoue T, Nagakura T, et al. Enhanced secretion of glucagon-like peptide 1 by higandine compounds. Biochem Biophys Res Commun 2002;298:779–784

Mathieu C, Degrande E. Vildagliptin: a new oral treatment for type 2 diabetes mellitus. Vasc Health Risk Manag 2008;4:1349–1360

Karyekar C, Donovan M, Allen E, Fleming D, Ravichandran S, Chen R. Efficacy and safety of saxagliptin combination therapy in US patients with type 2 diabetes. Postgrad Med 2011;123:63–70

Goldstein BJ, Fenglos MN, Lunceford JK, Johnson J, Williams-Herman DE, Sitagliptin 036 Study Group. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007;30:1979–1987