The VLSAT-2 Benchmark Suite
Pierre Bouvier, Hubert Garavel

To cite this version:

Pierre Bouvier, Hubert Garavel. The VLSAT-2 Benchmark Suite. [Technical Report] RT-0514, INRIA Grenoble Rhône-Alpes. 2021, pp.1-8. hal-03337115

HAL Id: hal-03337115
https://inria.hal.science/hal-03337115
Submitted on 7 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The VLSAT-2 Benchmark Suite

Pierre Bouvier, Hubert Garavel
The VLSAT-2 Benchmark Suite

Pierre Bouvier, Hubert Garavel

Project-Team CONVECS

Technical Report n° 0514 — September 2021 — 8 pages

Abstract: This report presents VLSAT-2 (an acronym for “Very Large Boolean SATisfiability problems”), the second part of a benchmark suite to be used in scientific experiments and software competitions addressing SAT-solving issues. VLSAT-2 contains 100 benchmarks (50 satisfiable and 50 unsatisfiable formulas) of increasing complexity, proposed in DIMACS CNF format under a permissive Creative Commons license. 25% of these benchmarks have been used during the 2020 and 2021 editions of the International SAT Competition.

Key-words: benchmark suite, Boolean satisfiability problem, data set, DIMACS CNF, Nested-Unit Petri Net, NUPN, Petri Net, SAT formula, SAT solving
Le jeu de tests VLSAT-2

Résumé : VLSAT-2 (acronyme anglais de "très grands problèmes de satisfaisabilité booléenne") est le second volet d’une suite de tests destinée aux expérimentations scientifiques et aux compétitions de logiciels pour la résolution de problèmes SAT. VLSAT-2 contient 100 tests (50 formules satisfaisables et 50 insatisfaisables) de complexité croissante, fournis en format DIMACS CNF sous une licence Creative Commons permissive. 25% de ces tests ont été utilisés lors des éditions 2020 et 2021 de la compétition internationale sur la résolution SAT.

Mots-clés : DIMACS CNF, ensemble de données, formule SAT, Nested-Unit Petri Net, NUPN, problème SAT, réseau de Petri, satisfaisabilité booléenne, suite de tests
1 Benchmark Description

VLSAT-21 is a collection of 100 SAT formulas. Many of these formulas are difficult to handle by current SAT solvers. One half of these formulas is satisfiable, while the other half is not.

Each formula is provided as a separate file, expressed in Conjunctive Normal Form and encoded in the DIMACS CNF format2. Each file is then compressed using bzip2 to save disk space and allow faster downloads. The 100 formulas require 5.2 gigabytes of disk space and 1.4 gigabytes when compressed using bzip2.

The VLSAT-2 benchmarks are licensed under the CC-BY Creative Commons Attribution 4.0 International License3.

25\% of the VLSAT-2 benchmarks have been selected by the organizers of recent SAT Competitions: 7 satisfiable and 7 unsatisfiable formulas have been chosen for the SAT Competition 2020, and 5 satisfiable and 8 unsatisfiable formulas have been chosen for the SAT Competition 2021 [2].

2 Scientific Context

Interesting Boolean formulas can be generated as a by-product of our recent work [3] on the decomposition of Petri nets into networks of automata, a problem that has been around since the early 70s. Concretely, we developed a tool chain that takes as input a Petri net (which must be ordinary, safe, and hopefully not too large) and produces as output a network of automata that execute concurrently and synchronize using shared transitions. Precisely, this network is expressed as a Nested-Unit Petri Net (NUPN) [4], i.e., an extension of a Petri net, in which places are grouped into sets (called units) that denote sequential components. A NUPN provides a proper structuring of its underlying Petri net, and enables formal verification tools to be more efficient in terms of memory and CPU time. Hence, the NUPN concept has been implemented in many tools and adopted by software competitions, such as the Model Checking Contest4 [8, 7] and the Rigorous Examination of Reactive Systems challenge5 [5, 9, 6]. Each NUPN generated by our tool chain is flat, meaning that its units are not recursively nested in each other, and unit-safe, meaning that each unit has at most one execution token at a time.

Our tool chain works by reformulating concurrency constraints on Petri nets as logical problems, which can be later solved using third-party software, such as SAT solvers, SMT solvers, and tools for graph coloring and finding maximum cliques [3]. We applied our approach to a large collection of more than 12,000 Petri nets from multiple sources, many of which are related to industrial problems, such as communication protocols, distributed systems, and hardware circuits. We thus generated a huge collection of Boolean formulas, from which we carefully selected a subset of formulas matching the requirements of the SAT Competition.

3 Structure of Formulas

Each of our formulas was produced for a particular Petri net. A formula depends on three factors:

\begin{itemize}
 \item 1https://cadp.inria.fr/resources/vlsat/2.html
 \item 2http://www.satcompetition.org/2009/format-benchmarks2009.html
 \item 3License terms available from http://creativecommons.org/licenses/by/4.0
 \item 4https://mcc.lip6.fr
 \item 5http://rers-challenge.org
\end{itemize}
• the set P of the places of the Petri net;
• a concurrency relation \parallel defined over P, such that $p \parallel p'$ iff both places p and p' may simultaneously have an execution token; and
• a chosen number n of units.

A formula expresses whether there exists a partition of P into n subsets P_i ($1 \leq i \leq n$) such that, for each i, and for any two places p and p' of P_i, $p \neq p' \implies \neg(p \parallel p')$. A model of this formula is thus an allocation of places into n units, i.e., a valid decomposition of the Petri net. This can also be seen as an instance of the graph coloring problem, in which n colors are to be used for the graph with vertices defined by the places of P and edges defined by the concurrency relation. A formula is only satisfiable if the value of n is large enough (namely, greater than or equal to the chromatic number of the graph), so that at least one decomposition exists.

More precisely, each formula was generated as follows. For each place p and each unit u, we created a propositional variable x_{pu} that is true iff place p belongs to unit u. We then added constraints over these variables:

• For each unit u and each two places p and p' such that $p \parallel p'$ and $\#p < \#p'$, where $\#p$ is a bijection from places names to the interval $[1, \text{card}(P)]$, we added the constraint $\neg x_{pu} \lor \neg x_{p'u}$ to express that two concurrent places cannot be in the same unit.

• For each place p, we could have added the constraint $\lor_u x_{pu}$ to express that p belongs to at least one unit, but this constraint was too loose and allowed $n!$ similar solutions, just by permuting unit names. We thus replaced this constraint by a stricter one that breaks the symmetry between units: for each place p, we added the refined constraint $\lor_{1 \leq \#u \leq \min(\#p, n)} x_{pu}$, where $\#u$ is a bijection from unit names to the interval $[1, n]$.

Figure 1 illustrates, for a typical Petri net, how the resolution time evolves as the chosen number of units increases. If the value of n is small (resp. large) enough, it is relatively easy to prove that the formula is satisfiable (resp. unsatisfiable) because there are not enough (resp. too many) colors. The difficulty comes when n gets close to the chromatic number (which is equal to 13 on Fig. 1), as the number of combinations to be examined for proving unsatisfiability explodes, despite the introduction of symmetry-breaking constraints, which make unsatisfiable formulas much easier and satisfiable formulas slightly harder.

4 Selection of Benchmarks

Using the approach presented in Sections 2 and 3, we previously published a test suite, named VLSAT-1 [1], of 100 formulas. However, VLSAT-1 only contains satisfiable formulas, as it was designed for the Model Counting Competition, which seeks formulas accepting a large number of models. For the SAT Competition, we therefore undertook the production of a different collection containing both satisfiable and unsatisfiable formulas, depending on the number of units chosen for a given Petri net.

We selected 50 satisfiable and 50 unsatisfiable formulas, carefully chosen among a large collection of more than 132,000 formulas generated by our tool chain. We used five SAT solvers (namely, CaDiCal 1.3.0, Kissat 1.0.3, MathSAT 5.6.5, MiniSAT 2.2.0, and Z3 4.8.9) to reject all formulas that can be solved in less than one minute of CPU time by at least one of these solvers, and that can be solved within two hours by each of these solvers (experiments done on a Xeon E5-2630 v4 machine with 256 gigabytes of RAM). We also tried to provide formulas of increasing
complexities, with a good compromise between the size of a formula and the time taken by the fastest solver to process this formula.

Figure 1: Resolution times for a typical NUPN

Figure 2: Dispersion of the VLSAT-2 benchmarks
variables	clauses	type	difficulty
544	873	UNSAT	3
600	11,440	UNSAT	3
684	9417	UNSAT	3
684	13,953	UNSAT	2
708	10,259	UNSAT	3
736	11,022	UNSAT	2
798	17,543	UNSAT	3
1000	22,250	SAT	4
1022	14,955	UNSAT	3
1125	15,705	UNSAT	3
1134	26,703	UNSAT*	4
1155	42,917	UNSAT*	4
1183	26,975	UNSAT	3
1209	29,889	UNSAT	3
1326	35,956	UNSAT	3
1352	42,432	UNSAT	3
1560	54,564	UNSAT	3
1586	57,751	UNSAT	3
2231	68,844	UNSAT	2
2340	70,758	UNSAT	2
2403	100,259	UNSAT	2
2548	119,204	UNSAT	3
3252	372,331	UNSAT	3
3456	192,912	SAT	2
3480	190,496	UNSAT	3
4424	545,056	UNSAT*	3
5152	824,642	UNSAT*	3
5525	327,765	UNSAT	3
5568	1,124,240	UNSAT	3
5600	1,042,700	UNSAT*	3
452	334,035	SAT	3
11,130	1,186,888	SAT*	0 (148 s)
11,280	4,223,777	UNSAT*	3
11,374	1,150,943	SAT*	1 (1802 s)
11,664	5,532,624	UNSAT	4
12,690	1,481,522	SAT	2
14,016	1,374,747	SAT	4
14,280	6,781,327	UNSAT*	3
14,424	7,565,190	UNSAT*	4
14,637	1,778,453	SAT	2
14,640	1,323,246	UNSAT	5
15,249	1,937,993	SAT	2
15,440	1,409,906	UNSAT*	5
15,704	1,804,650	SAT	3
15,960	1,464,039	UNSAT*	5
16,269	2,203,672	SAT	3
16,297	1,562,268	UNSAT	5
16,676	1,598,591	SAT*	2
16,788	9,021,307	UNSAT	3
17,688	1,741,702	UNSAT	5

Table 1: List of VLSAT-2 formulas

Inria
The VLSAT-2 formulas are listed in Table 1. Those marked with a plus (resp. a star) in the table have been selected by the organizers of the SAT Competition 2020 (resp. 2021). The column “difficulty” contains a number from 0 (easy) to 5 (hard) indicating how many of the five aforementioned SAT solvers failed to solve the corresponding formula within two hours. For the easy values 0 and 1, the average number of seconds taken by the tools that managed to solve the formula is given.

Figure 2 shows the dispersion of the VLSAT-2 benchmarks for both satisfiable and unsatisfiable formulas. In general, and as confirmed by Fig. 1, satisfiable formulas need to be much larger (in the number of variables and clauses) than unsatisfiable ones to reach the same level of difficulty.

Acknowledgements

The experiments presented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group hosted by INRIA and including CNRS, RENATER and several Universities as well as other organizations.

References

[1] Pierre Bouvier and Hubert Garavel. The VLSAT-1 Benchmark Suite. Technical Report RT-0510, INRIA, Grenoble, France, November 2020. Available from https://hal.inria.fr/hal-03007233 and https://arxiv.org/abs/2011.11049.

[2] Pierre Bouvier and Hubert Garavel. SAT-Competition Benchmarks Spawning from Concurrency Theory. In Tomáš Baláž, Nils Froleyks, Marijn J. H. Heule, Markus Iser, Matti Järvisalo, and Martin Suda, editors, *Proceedings of SAT Competition 2021 – Solver and Benchmark Descriptions*, pages 47–48. Report B-2021-1, University of Helsinki, Department of Computer Science, July 2021.

[3] Pierre Bouvier, Hubert Garavel, and Hernán Ponce de León. Automatic Decomposition of Petri Nets into Automata Networks – A Synthetic Account. In Ryszard Janicki, Natalia Sidorova, and Thomas Chatain, editors, *Proceedings of the 41st International Conference on Application and Theory of Petri Nets and Concurrency (PETRI NETS’20)*, Paris, France, volume 12152 of *Lecture Notes in Computer Science*, pages 3–23. Springer, June 2020.

[4] Hubert Garavel. Nested-Unit Petri Nets. *Journal of Logical and Algebraic Methods in Programming*, 104:60–85, April 2019.

[5] Marc Jasper, Maximilian Fecke, Bernhard Steffen, Markus Schordan, Jeroen Meijer, Jaco van de Pol, Falk Howar, and Stephen F. Siegel. The RERS 2017 Challenge and Workshop. In Hakan Erdogmus and Klaus Havelund, editors, *Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software (SPIN’17)*, Santa Barbara, CA, USA, pages 11–20. ACM, July 2017.

[6] Marc Jasper, Malte Mues, Alnis Murtovi, Maximilian Schlüter, Falk Howar, Bernhard Steffen, Markus Schordan, Dennis Hendriks, Ramon R. H. Schieffer, Harco Kuppens, and Frits W. Vaandrager. RERS 2019: Combining Synthesis with Real-World Models. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors, *Proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’19)*, Part III: TOOLympics, Prague, Czech Republic, pages 101–115. Springer, April 2019.

[7] Fabrice Kordon, Hubert Garavel, Lon Messan Hillah, Emmanuel Pavliot-Adet, Loïg Jezequel, Francis Hulin-Hubard, Elvio Amparone, Marco Becucci, Bernard Berthomieu, Hugues Evrard, Peter G. Jensen, Didier Le Botlan, Torsten Liebke, Jeroen Meijer, Jiří Srba, Yann Thierry-Mieg, Jaco van de Pol, and Karsten Wolf. MCC’2017 – The Seventh Model Checking Contest. *Transactions on Petri Nets and Other Models of Concurrency*, XIII:181–209, 2018.

http://www.grid5000.fr

RT n° 0514
[8] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-Adet, Loïg Jezequel, César Rodriguez, and Francis Hulin-Hubard. MCC’2015 – The Fifth Model Checking Contest. *Transactions on Petri Nets and Other Models of Concurrency*, XI:262–273, 2016.

[9] Bernhard Steffen, Marc Jasper, Jeroen Meijer, and Jaco van de Pol. Property-Preserving Generation of Tailored Benchmark Petri Nets. In *Proceedings of the 17th International Conference on Application of Concurrency to System Design (ACSD’17), Zaragoza, Spain*, pages 1–8. IEEE Computer Society, June 2017.
