Smoking Associates With Visceral Fat Accumulation Especially in Women

Kaori Nakanishi, MD, PhD; Makoto Nishida, MD, PhD; Tohru Ohama, MD, PhD; Toshiki Moriyama, MD, PhD; Keiko Yamauchi-Takihara, MD, PhD

Background: Smoking and metabolic syndrome (MetS) are major public health problems in modern society and are important risk factors of cardiovascular disease (CVD). The association of smoking, MetS, and CVD is widely reported, but reports targeted to women are few. In the present study, we evaluated risk factors, including visceral fat area (VFA), for CVD and development of subclinical atherosclerosis in female smokers especially.

Methods and Results: Subjects consisted of 162 apparent healthy female and male smokers, and 315 age-matched never-smokers who underwent a health examination in the Osaka University Health Care Center. For female smokers, lifestyle and carotid intima-media thickness (IMT) were evaluated. Triglycerides were significantly higher and high-density lipoprotein-cholesterol significantly lower in smokers than in never-smokers for both men and women. However, VFA was significantly high only in smoking women when compared with never-smokers. Multivariate analysis revealed that age, body mass index, and smoking were the independent predictors of high VFA in women. In addition, annual IMT increase was significantly higher in smokers than never-smokers in women.

Conclusions: VFA was notably high in female smokers, but the difference was not observed in men. Smoking habit is an important risk factor of visceral fat accumulation and progression of subclinical atherosclerosis in women. (Circ J 2014; 78: 1259–1263)

Key Words: Intima-media thickness; Metabolic syndrome; Smoking; Visceral fat; Women

Smoking is a risk factor of various diseases, such as cancer, pulmonary disease, and cardiovascular disease (CVD).1–4 The World Health Organization (WHO) reports that nearly 6 million people are killed by smoking each year. In the early 1990s, WHO estimated that there were 1.1 billion smokers, including 900 million men and 200 million women. Among these populations, 700 million men and 100 million women are in developing countries, whereas 200 million men and 100 million women are in developed countries.5 In the recent 5 decades, the population of smoking men has declining slowly, but among women, especially in developing countries, it appears to be rising.6 The increasing number of smoking women is not only a problem for developing countries, but also a major problem in Japan.

Numerous risk factors for CVD have been reported, such as hypertension, diabetes, and dyslipidemia, which are the components of metabolic syndrome (MetS).7,8 Visceral fat accumulation is considered as the major cause of clustering of these risk factors.9–13 Smoking is the number 1 risk factor for the onset of acute myocardial infarction in women, whereas hypertension is the number 1 risk in men.14 In addition, the risk of CVD increases in female smokers with early menopause and use of oral contraceptives.8 In modern society, smoking habit and MetS are major public health problems, and both are important risk factors of CVD.2,15,16

To date, there have been many studies reporting the association of smoking habit, MetS, and CVD,17–19 but only a small number of reports have been targeted to female smokers. In the present study, we assessed and compared the risk factors, including visceral fat accumulation, for CVD, development of subclinical atherosclerosis, and inflammatory response between smokers and never-smokers especially in women.

Study Subjects
Subjects were smokers (55 female, 107 male) and randomly selected age-matched never-smokers (107 female, 208 male) who underwent health examinations in the Osaka University Health Care Center during 2004–2012. All subjects were apparently healthy Japanese, 45–61 years of age, did not take any
Table 1. Characteristics of the Study Subjects

All	Smokers	Never-smokers	P value	Smokers	Never-smokers	P value	
n	477	55	107	107	208		
Age (years)	51.7±4.8	51.7±4.8	51.7±4.8	51.7±4.8	51.7±4.8		
BMI (kg/m²)	22.9±3.0	21.8±3.8	21.0±2.3	0.16	23.9±3.0	23.6±2.6	0.65
WC (cm)	80.6±8.7	74.8±10.2	73.6±6.4	0.42	84.7±7.3	83.4±7.0	0.13
SBP (mmHg)	120±16	117±16	112±14	0.15	126±13	122±16	0.028
DBP (mmHg)	77±13	72±13	69±12	0.10	82±10	81±12	0.27
VFA (cm²)	84.5±39.9	60.1±37.8	47.5±19.1	0.040	105.6±35.8	97.1±34.8	0.05
UA (mg/dl)	5.5±1.3	4.4±1.2	4.4±0.8	0.83	6.1±1.2	5.9±1.2	0.16
TG (mg/dl)	109±88	94±59	70±29	0.027	151±127	111±80	0.001
HDL-C (mg/dl)	60±15	63±15	70±14	0.005	53±14	57±13	0.004
LDL-C (mg/dl)	126±29	123±27	126±27	0.53	124±30	128±30	0.13
FPG (mg/dl)	90±12	86±10	84±6	0.47	93±10	94±13	0.58
HbA1c, %	5.1±0.4	5.2±0.4	5.1±0.3	0.049	5.2±0.5	5.1±0.4	0.24

Data are mean±SD. Values in bold, P<0.05.

BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting plasma glucose; HbA1c, hemoglobin A1c; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; SBP, systolic blood pressure; TG, triglycerides; UA, uric acid; VFA, visceral fat area; WC, waist circumference.

Table 2. Correlation Between Visceral Fat Area and Level of Smoking in Women

Smoking Habit	τ	P value
Cigarettes per day	0.261	0.03
Brinkman index	0.223	0.042

Evaluation of Carotid Atherosclerosis

Carotid atherosclerosis in the women was evaluated by performing ultrasound examination of the carotid artery as described previously. Changes in the IMT (delta [D] maximum IMT and D mean IMT) during 1 year were measured for 69 women who visited annually for medical checkup (31 smokers, 38 never-smokers). Statistical Analysis

Data were analyzed using SPSS 19 (IBM Corp, Armonk, NY, USA). Kendall’s rank correlation coefficient and stepwise multiple regression analysis were used to analyze variables. Student’s t-test or Mann-Whitney U test was used to assess the difference between 2 groups. Statistical significance was set at P<0.05.

Results

Characteristics of Subjects

Characteristics of the study subjects are summarized in Table 1. The mean age of total subjects was 51.7±4.8 years. Triglycerides (TG) were significantly higher and high-density lipoprotein-cholesterol (HDL-C) significantly lower in smokers than never-smokers in both women and men. Systolic blood pressure (SBP) was significantly higher only in male smokers than never-smokers. On the other hand, HbA1c was significantly higher only in female smokers than never-smokers. VFA was also significantly high in female smokers comparing with never-smokers. Male smokers showed higher VFA than male never-smokers, but it was not significant. Moreover, the number of cigarettes smoked per day and Brinkman index significantly correlated with VFA in female smokers (Table 2). In spite of the significant accumulation of visceral fat, WC did not show any significant enlargement in female smokers. In addition, other anthropometric measures of obesity, such as BMI and WC did not show any significant differences between smokers and never-smokers for either women or men.

Determinants of VFA in Women

To elucidate the determinants of visceral fat accumulation in female smokers, the relationship between VFA and possibly af-
factors was analyzed in women. As shown in Table 3, age, BMI, WC, and smoking significantly correlated with VFA. For further analysis, stepwise regression analysis was performed (Table 4), in which WC was excluded as a variable because of high collinearity with BMI. From the stepwise regression analysis, age, BMI, and smoking significantly correlated with VFA, suggesting that these were the independent determinants of visceral fat accumulation.

Table 3. Correlation Between Visceral Fat Area and Its Risk Factors in Women

Factor	\(\tau \)	P value
Age	0.136	0.006
BMI	0.580	<0.0001
WC	0.708	<0.0001
Smoking	0.120	0.040
Alcohol intake	0.022	0.690
Psychological stress	-0.019	0.730
Sleep shortage	0.019	0.746

Values in bold, P<0.05. Abbreviations as in Table 1.

Effect of Smoking on IL-6 and hs-CRP Concentrations in Women

Serum IL-6 and hs-CRP concentration were measured to confirm the mechanism of atherosclerosis in smokers. IL-6 was significantly higher in smokers than in never-smokers, and hs-CRP was also higher in smokers than in never-smokers, but was not significantly different (Figure 2). From the measurement of IL-6 and hs-CRP, inflammatory response was suggested as one of the mechanisms for the progression of subclinical atherosclerosis in female smokers.

Table 4. Independent Variables for Visceral Fat Area Increase

Factor	\(\beta \)	P value
Age	0.104	0.011
BMI	0.777	<0.0001
Smoking	0.122	0.003

R=0.822, Adjusted R²=0.670. Abbreviation as in Table 1.

Evaluation of VFA Measurement by Impedance Method

As shown in Table 5, VFA estimated by impedance method in women also correlated with MetS-related factors as did BMI and WC.

Discussion

In this study, the notable result is that the VFA of female smokers was much higher than in never-smokers, whereas BMI and WC showed no significant differences. Generally, women have higher percent body fat than men and the fat distributes peripherally, such as the hips and thighs. Abdominal subcutaneous fat is also rich in women. Therefore, VFA in women is markedly less than that in men when WC is the same. In premenopausal women, body fat is mainly located in peripheral subcutaneous depots, whereas men tend to accumulate more fat in central visceral depots, independent of age. After women enter menopause, body fat distribution changes and it tends to accumulate in visceral depots. Menopause induces estrogen deficiency and results in visceral fat accumulation. Our questionnaires did not include information about menopause, so we divided the subjects into 2 groups at age 50, the average age of menopause, and compared VFA in both groups (data not shown). The VFA of female smokers was significantly higher than in never-smokers in the younger group. On the other hand, in the older group, VFA in smokers was also high compared with that in never-smokers but without significant difference. Further examination is necessary to clarify the underlying mechanism of the difference between the younger and older groups.

Although VFA presented a significant difference by smoking habit in women, no difference in WC was observed. Previous studies have reported that WC correlates with VFA and that measurement of the waist is recommended for VFA evaluation. However measurement of WC has a limitation in women, because their fat distribution differs from that of men, especially in the premenopausal state. WC includes both visceral and subcutaneous fat, and there is high variability by factors such as sex, race and age. Therefore, WC does not always have the same significance as VFA. Generally, WC measurement is adopted to evaluate VFA in a health examination; however from the present study’s results, measurement of VFA seems to be more valuable than WC especially in women.

It is reported that VFA examined by CT well predicts the clustering of metabolic risk factors compared with other anthropometric indexes, such as BMI and WC. In the present study, VFA measured by impedance method showed a significant correlation with MetS-related factors as did BMI and WC (Table 5). Therefore, the evaluation of VFA by impedance method seems to be as useful as BMI and WC. Ryo et al reported that the impedance method is reliable for measuring VFA as compared with CT, and that it is simple, safe and transportable. Dual x-ray absorptiometry provides a roughly accurate measurement of VFA, but it is as costly and complex as CT. It might be useful to adopt the impedance method for evaluating visceral fat in annual health examinations.

The present study showed that age, BMI, and smoking are independent predictors of visceral fat accumulation in women. Although this has been previously reported, it is interesting that smoking presents a stronger correlation with VFA increase than does age in women, as shown in this study. Smoking is a major risk factor for visceral fat accumulation and the development of MetS in women.

Previously, we reported that smoking promoted the progression of IMT in men. Now, we found prominent progression of subclinical atherosclerosis also in female smokers, according to carotid IMT evaluation. Other risk factors, excluding age, did not significantly correlate with the progression of IMT (data not shown). This result parallels that of previous studies that smoking is the major risk factor for the development of atherosclerosis and CVD. Inflammatory response may be involved in the progression of IMT in male smokers. In the current study, a significant increase in the serum IL-6 level was observed even in female smokers. Therefore, inflammatory response may be also involved in the progression of IMT in female smokers. Although a significant association between IL-6 and the progression of IMT was not detected, our previous study with more subjects showed that IMT was associated with serum...
IL-6 concentration in men, but not in women. An increased number of the subjects may reveal direct association between inflammation and the progression of IMT.

Cessation of smoking is an important approach for various health problems in women. Women face particular problems linked to smoking. It is a risk factor of female-specific cancers and affects menstrual function (e.g., abnormal vaginal bleeding and early menopause). Smoking also affects fertility and is involved in the etiologies of adverse pregnancy outcomes, such as increased risk of spontaneous abortion, ectopic pregnancy, low birth weight and sudden infant death syndrome, and also long-term adverse effects on the growth and development of...
the children.5,33 Moreover, the risk of CVD increases in female smokers.9 The present study clearly showed that smoking promotes subclinical atherosclerosis by progression of IMT in women. It is important to clarify the effects of smoking cessation on IMT in a further study.

Study Limitations

Generally, physical exercise and eating habit are also important factors in visceral fat accumulation. Although questions on exercise and eating habit were included in our study, neither showed any significant correlation with VFA (data not shown). There might be a more appropriate way to research these factors. In addition, the relatively small numbers of subjects might lead to failure to detect a significant difference of VFA between male smokers and never-smokers. However, the sample size of women was smaller than that of men, but female subjects clearly showed a significant association between smoking and visceral fat accumulation.

In conclusion, VFA was significantly high in female smokers and smoking was the major risk factor for visceral fat accumulation, especially in women. Smoking also associated with subclinical atherosclerosis and CVD risk, not only in men but also women.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research of Japan Ministry of Education, Culture, Sports, Science and Technology.

References

1. Burns DM. Epidemiology of smoking-induced cardiovascular disease. *Prog Cardiovasc Dis* 2003; 46: 11–29.
2. Erhardt L. Cigarette smoking: An undertreated risk factor for cardiovascular disease. *Biol Sex Differ* 2012; 3: 13.
3. Roca M, Roca IC, Mihaescu T. Lung cancer: A comorbidity in chronic obstructive pulmonary disease. *Rev Med Chir Soc Med Nat Iasi* 2012; 116: 1055–1062.
4. Viswanath K, Herbst RS, Land SR, Leischow SJ, Shields PG, Writing Committee for the ATFoT, Cancer. Tobacco and cancer: An American Association for Cancer Research policy statement. *Cancer Res* 2010; 70: 3419–3430.
5. World Health Organization. Tobacco or health: A global status report. Geneva: WHO, 1997.
6. Mackay J, Amos A. Women and tobacco. *Respiriology* 2003; 8: 123–130.
7. Fruchart JC, Nierman MC, Stroes ES, Kastelein JJ, Duriez P. New risk factors for atherosclerosis and patient risk assessment. *Circulation* 2004; 109(Suppl 1): II15–II19.
8. Grundy SM. Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. *Arterioscler Thromb Vasc Biol* 2005; 25: 2243–2244.
9. Kishida K, Funahashi T, Matsuzawa Y, Shimomura I. Visceral adiposity as a target for the management of the metabolic syndrome. *Ann Med* 2012; 44: 233–241.
10. Mathur SK, Jain P, Mathur P, Punjabi P, Agarwal A, Sharma A. Transcriptomic analysis of visceral adipose from healthy and diabetic obese subjects. *Indian J Endocrinol Metab* 2013; 17: 446–450.
11. Rosenquist KD, Pedley A, Massaro DM, Therkelsen KE, Murabito JM, Hoffmann U, et al. Visceral and subcutaneous fat quantity and cardiometabolic risk. *JACC Cardiovasc Imaging* 2013; 6: 762–771.
12. Rothney MP, Catapano AL, Xia J, Wacker WK, Tidone C, Grigore L, et al. Abdominal visceral fat measurement using dual-energy X-ray: Association with cardiometabolic risk factors. *Obesity (Silver Spring)* 2013; 21: 1798–1802.
13. Yamashita K, Kondo T, Ouogi S, Shimokata K, Maeda K, Okumura N, et al. The significance of measuring body fat percentage determined by bioelectrical impedance analysis for detecting subjects with cardiovascular disease risk factors. *Circ J* 2012; 76: 2435–2442.
14. Kawano H, Soejima H, Kojima S, Kitagawa A, Ogawa H. Japanese Acute Coronary Syndrome Study I. Sex differences of risk factors for acute myocardial infarction in Japanese patients. *Circ J* 2006; 70: 513–517.
15. Resnick HE, Jones K, Ruotolo G, Jain AK, Henderson J, Lu W, et al. Strong Heart S. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease in nondiabetic american indians: The Strong Heart Study. *Diabetes Care* 2003; 26: 861 – 867.
16. Yun JE, Won S, Sung J, Jee SH. Impact of metabolic syndrome independent of insulin resistance on the development of cardiovascular disease. *Circ J* 2012; 76: 2443–2448.
17. Dzien A, Dzien-Bischinger C, Hopphichler F, Lechleitner M. The metabolic syndrome as a link between smoking and cardiovascular disease. *Diabetes Obes Metab* 2004; 6: 127–132.
18. Ishizaka N, Ishizaka Y, Nogai R, Toda E, Hashimoto H, Yamakado M. Association between serum albumin, carotid atherosclerosis, and metabolic syndrome in Japanese individuals. *Atherosclerosis* 2007; 193: 373–379.
19. Sanada S, Nishida M, Ishii K, Moriyama T, Komuro I, Yamauchi-Takahara K. Smoking promotes subclinical atherosclerosis in apparently healthy men: 2-year ultrasonographic follow-up. *Circ J* 2012; 76: 2884–2891.
20. Matsushita Y, Nakagawa T, Yamamoto S, Takahashi Y, Yokoyama T, Noda M, et al. Associations of visceral and subcutaneous fat areas with the prevalence of metabolic risk factor clustering in 6,292 Japanese individuals. *The Hitachi Health Study. Diabetes Care* 2010; 33: 2117–2119.
21. Ryo M, Maeda K, Onda T, Katsushima O, Okumiyama A, Nishida M, et al. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. *Diabetes Care* 2005; 28: 451–453.
22. Nishida M, Moriyama T, Ishii K, Takashima S, Yoshizaki K, Sugita Y, et al. Effects of IL-6, adiponectin, CRP and metabolic syndrome on subclinical atherosclerosis. *Clin Chim Acta* 2007; 384: 99–104.
23. Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues: The biology of pear shape. *Biol Sex Differ* 2012; 3: 13.
24. Kanaley JA, Sames C, Swisher L, Swick AG, Ploutz-Snyder LL, Steppen CM, et al. Abdominal fat distribution in pre- and postmenopausal women: The impact of physical activity, age, and menopausal status. *Metabolism* 2001; 50: 976–982.
25. Kotani K, Tokunaga K, Fujioka S, Kobatake T, Keno Y, Yoshida S, et al. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. *Int J Obes Relat Metab Disord* 1994; 18: 207–212.
26. Pascot A, Lemieux S, Lemieux I, Prud’homme D, Tremblay A, Bouchard C, et al. Age-related increase in visceral adipose tissue and the metabolic risk profile of premenopausal women. *Diabetes Care* 1999; 22: 1471–1478.
27. Examination Committee of Criteria for ‘Obesity Disease’ in Japan, Japan Society for the Study of Obesity. New criteria for ‘obesity disease’ in Japan. *Circ J* 2002; 66: 987–992.
28. Jansen I, Heymsfield SB, Allison BB, Kottler DP, Ross R. Body mass index and waist circumference independently contribute to the prediction of nonabdominal, abdominal subcutaneous, and visceral fat. *Am J Clin Nutr* 2002; 75: 683–688.
29. Camhi SM, Bray GA, Bouchard C, Greenway FL, Johnson WD, Newton RL, et al. The relationship of waist circumference and BMI to visceral, subcutaneous, and total body fat: Sex and race differences. *Obesity (Silver Spring)* 2011; 19: 402–408.
30. Carroll JF, Chiapa AL, Rodriguez M, Phelps DR, Cardarelli KM, Vishwanath J, et al. Visceral fat, waist circumference, and BMI: Impact of race/ethnicity. *Obesity (Silver Spring)* 2008; 16: 600–607.
31. Komiya H, Mori Y, Yokose T, Tajima N. Smoking as a risk factor for visceral fat accumulation in Japanese men. *Tohoku J Exp Med* 2006; 208: 123–132.
32. Nguyen AB, Rohtagi A, Garcia CK, Ayers CR, Das SR, Lakoski SG, et al. Interactions between smoking, pulmonary surfactant protein B, and atherosclerosis in the general population: The Dallas Heart Study. *Arterioscler Thromb Vasc Biol* 2011; 31: 2136–2143.
33. McKinlay SM, Bifano NL, McKinlay JB. Smoking and age at menopause in women. *Ann Intern Med* 1985; 103: 350–356.