Clonal Population of *Mycobacterium tuberculosis* Strains Reside within Multiple Lung Cavities

Viral Vadwai, Gustad Daver, Zarir Udwadia, Meeta Sadani, Anjali Shetty, Camilla Rodrigues

P. D. Hinduja National Hospital and Medical Research Centre, Mahim, Mumbai, India

Abstract

Background: Unsuccessful treatment outcomes among patients with multi-/extensively drug resistant tuberculosis (TB) have hampered efforts involved in eradicating this disease. In order to better understand the etiology of this disease, we aimed to determine whether single or multiple strains of *Mycobacterium tuberculosis* (MTB) are localized within lung cavities of patients suffering from chronic progressive TB.

Methodology/Findings: Multiple cavity isolates from lung of 5 patients who had undergone pulmonary resection surgery were analyzed on the basis of their drug susceptibility profile, and genotyped by spoligotyping and 24-loci MIRU-VNTR. The patients past history including treatment was studied. Three of the 5 patients had extensive drug resistant TB. Heteroresistance was also reported within different cavity isolates of the lung. Both genotyping methods reported the presence of clonal population of MTB strain within different cavities of the each patient, even those reporting heteroresistance. Four of the 5 patients were infected with a population of the Beijing genotype. Post-surgery they were prescribed a drug regimen consisting of cycloserine, a fluoroquinolone and an injectable drug. A 6 month post-surgery follow-up reported only 2 patients with positive clinical outcome, showing sputum conversion.

Conclusion: Identical spoligotype patterns and MIRU-VNTR profiles between multiple cavities of each patient, characterize the presence of clonal population of MTB strains (and absence of multiple MTB infection).

Introduction

Infection due to a single strain of *Mycobacterium tuberculosis* (MTB) was considered as the cause of active tuberculosis (TB) until early 1970’s when phage typing reported the presence of more than one infecting strain in a single patient [1,2]. Since then active TB is thought as a result of either due to: primary infection with a single strain of MTB (primary TB)/after endogenous reactivation of primary infection i.e. with same strain (relapse)/exogenous infection with a second MTB strain (reinfection) or due to simultaneous infection with two or more strains of MTB (mixed infection) [1,3]. The latter two forms of TB, possibly the most vulnerable due to the phenomenon of heteroresistance has been proven in clinical tuberculosis [4]. Infection with different MTB strains each having different drug susceptibility pattern makes it difficult to effectively treat the patient with a correct combination of anti-tubercular drugs, leading to multi-/extensive drug resistant (M/XDR) cases. In such cases, the tubercle bacilli overcomes the host immune defense system and does not respond to the anti-tubercular treatment (ATT) leading to chronic progressive disease with formation of cavities, fibrotic lesions and tissue necrosis in the lungs of patients. Previous studies have shown that pulmonary resection has shown to be successful in treatment of such drug resistant cases [5,6]. Thus for effective pre- and post-operative anti-tubercular treatment, accurate identification and differentiation between MTB strains is of prime importance. Few studies have shown the utility of 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR), a fingerprinting tool in detection of mixed infection and sub-clonal population [7,8].

To determine the presence/absence of multiple MTB strains within lung cavities of patients suffering from chronic progressive TB, we analyzed multiple cavities from lungs of each of the 5 patients who underwent pulmonary resection surgery by determining the drug susceptibility profile of each cavity isolate and further characterizing the bacterial populations present by both, spoligotyping and 24-loci MIRU-VNTR.

Results

Patient: clinical findings, treatment history and hospitalization characteristics

Three patients (patients 1, 3 and 5) had previous episodes of TB for which they were treated successfully to complete recovery. None of the patients were HIV seropositive (Table 1. provides details about the demographic and clinical characteristics of patients). All patients had unilateral lung disease with complete destruction, reduced air entry on the affected side and were on anti-tubercular treatment for at least 36 months prior to the date of surgery. Each patient had at least received an average of...
Table 1. Demographic and clinical characteristics of patients.

Characteristics	1	2	3	4	5
Age (years)/Sex	21/F	26/M	33/F	49/F	25/F
Median (Interquartile range)	26 (25–33)				
History	Family history of pulmonary TB; patient has past history of extra-pulmonary TB at the age of 12 yrs.	None	Family history of pulmonary TB; patient has past history of pulmonary TB at the age of 16 yrs.	None	Past history of pulmonary TB at the age of 17 yrs.
Number of treatment regimens before surgery	7	7	4	8	5
Median (Interquartile range)	7 (5–7)				
Adherence to treatment	Irregular medication	Regular medication	Irregular medication	Regular medication	Regular medication
Previous treatment with a quinolone and injectable agent (other than first-line agents and Streptomycin)	Lfx	Mfx, Sparfloxacin, Lfx, Km	Ofx, Sparfloxacin, Lfx, Cm	Ofx, Km	Past medical records lost by the patient
Treatment with other antibiotics	Cs, Eto, PAS	Eto, PAS	Eto, Cs, Cln	Eto, PAS, Lzd	Past medical records lost by the patient
Other complaints	Fever, cough, breathlessness, vomiting, decrease in appetite	Fever, cough	Cough, increase expectoration during morning hours	Cough, Diabetis	Disturbed sleep, breathlessness
Risk factors for multiple MTB infection	Irregular Medication; family history; patient past history; treatment failure	Treatment Failure	Irregular Medication; family history; patient past history; treatment failure	Patient had completed full course of anti-tubercular treatment; has twice reported negative sputum cultures but after 3 months has documented relapse of the disease without default in treatment.	Past history of TB; this episode was considered as a relapse since the patient developed the disease within a few months after completing the treatment regimen.

*All patients were HIV negative.

1All patients received treatment from private medical practitioners. All patients (except patient 2) on diagnosis were initiated on category I treatment regimens as per the guidelines of the National TB programme but with no improvement in condition even after 1 year, they were started on second- and third- line anti-tubercular drugs.

2Irregular Medication, treatment interrupted for more than a month for reasons due to patient.

3Regular Medication, patient took regular prescribed medication as per the instructions of the private medical practitioner.

4First-line agents, Isoniazid, Rifampin, Ethambutol, Pyrazinamide [Lfx, Levofoxacin; Mfx, Moxifloxacin; Km, Kanamycin; Ofx, Ofloxacin; Cm, Capreomycin; Cs, Cycloserine; Eto, Ethionamide; PAS, para-aminosalicylic acid; Cln, Clarithromycin; Lzd, Linezolid.

5Treatment Failure, culture or AFB smear microscopy remaining positive or turning positive even after 6 months of treatment.

doi:10.1371/journal.pone.0024770.t001

MGIT TB culture, phenotypic drug susceptibility testing and genetic sequence analysis

All cavities (3 cavities per patient) identified within the resected lung of each patient were excised and were found to be positive on AFB smear examination and by MGIT TB culture with an average time to positivity of 20 days. On the basis of their phenotypic DST results, patients 1, 2, 4 and patients 3, 5 were reported as XDR-TB and MDR-TB cases respectively. Patients with extensive drug resistance had received more number of treatment regimens before undergoing surgery than those patients with multi-drug resistance (mean number of regimens ± Standard Deviation, 6.33±0.57 vs 4±0) (Table 1). Three cavity isolates from each of the 3 patients (patients 1, 4 and 2) showed identical drug susceptibility profiles. Patient 1 showed identical drug susceptibility profile for 6 drugs (Km, Am, Cm, Ethambutol [E], para-aminosalicylic acid [PAS], Pyrazinamide [Z]) between its three isolates, while patient 2 showed variable drug susceptibility profile for only 1 drug (PAS). In-house RLBH assay confirmed the variable drug susceptiblity profile for aminoglycosides (Km, Am, Cm) while repeat phenotypic DST confirmed the variable drug susceptibility.
susceptibility pattern for E, PAS and Z. Detailed phenotypic drug susceptibility profile and genetic sequence analysis of all 5 patients has been shown in Table 4.

Genotyping

Since all 5 patients possessed risk factors (Table 1) favoring the presence of multiple MTB infection, both spoligotyping and 24-loci MIRU-VNTR were performed on all cavity isolates of each patient to confirm its presence. But both showed the presence of a clonal population of MTB strain in all cavities of each patient suffering from chronic progressive TB. None of the 24-loci showed the presence of more than one allele at a single locus, also ruling out the possibility of presence of sub-clonal population of the infecting strain. Four patients (patients 1, 2, 4, 5) were found to be infected with a strain belonging to the Beijing family and 3 cavities from a single patient (patient 3) was infected with a strain of T1 family. Fig. 3 shows a Unweighted Pair Group Method with Arithmetic Mean (UPGMA) based phylogenetic tree showing comparison of all cavity isolates from 5 patients based on combined similarities of both the 24-loci MIRU-VNTR and spoligotyping results.

Discussion

Our findings are similar to that of Kaplan et al. [9] that a clonal population of M. tuberculosis had localized within the lung forming multiple cavities, causing tissue necrosis and leading to destruction of the lung.

Our study reports that, 2/5 patients (all on ATT from the past 36 months) had different drug susceptibility profile (for E, Km, PAS, Am, Cm, Z) between strains from different cavities of a single patient i.e. some of them were sensitive for a particular drug while others were resistant against that same drug. The resistance profiles of these strains were confirmed on the basis of presence of mutations in the genes responsible for resistance to R, H, Ofx, Mfx, Km, Am and Cm. In-house RLBH revealed the presence of uniform genetic mutations within all cavities for patients reporting resistance to rifampicin (C531T in rpoB gene), isoniazid (G315C in katG gene), fluoroquinolones (A94G in gyrA gene) and aminoglycosides (A1401G in rrs gene). Variable drug susceptibility profiles for Ethambutol, PAS and Pyrazinamide were confirmed by repeating the phenotypic DST rather than on the genetic basis due to the following reasons: 1) genetic analysis for determining Ethambutol resistance targeting emb306 mutation is debatable since its presence has been reported even in sensitive strains and hence was not tested in this study [10,11], 2) a recent study by Feuerriegel et al. [12] and Mathys et al. [13] have demonstrated that the much hyped Thr202Ala polymorphism in thyA and mutations in other genes like folP1, folP2, thyX and dfrA are not valid makers for PAS resistance and that other mechanisms are responsible for resistance to PAS, and 3) similarly, genetic analysis for determining PZA resistance is controversial since many PZA resistant isolates have shown to have a wild-type sequence, suggesting that phenotypic DST is essential for determination of PZA resistance [14]. Due to these inconsistent and unpredictable results, phenotypic DST was preferred over genetic sequence analysis to confirm the variable drug susceptibility profile for Ethambutol, PAS and Pyrazinamide.

The variable drug susceptibility profile (heteroresistance) reported between different cavity isolates of the same patient could either be due to multiple MTB strain infection or drug resistance, a result of non-adherence to-/inadequate- treatment regimen. To better understand the basis of such heteroresistance, all cavities isolates were genotyped for better identification; spoligotyping identified strains from 12 cavities of 4 patients belonging to the Beijing family and 3 cavities from a single patient to the T1 family. These findings were confirmed by MIRU-
VNTR with absence of double alleles at all 24-loci for all isolates indicating presence of clonal population of MTB strain unlike other studies wherein multiple infection and/or sub-clonal population have been reported in clinical samples [4,7]. The presence of a clonal population and variable drug resistance profile, indicates that resistance against these drugs had been acquired recently and independently at different focal sites in the lung. Subsequently with time, this drug-resistant strain could
to a broad-spectrum of anti-tubercular drugs [18].

mutations conferring drug resistance, thus making the strain resistant with time could have undergone genetic evolution by accumulation of strains but over a treatment period of 36 months, the dominant strain belonging to the Beijing family. Based on the risk factors, we included in the study were infected by M. tuberculosis strain, in some cases exhibiting heteroresistance within multiple cavities of a patient. Inadequate-/non-adherence- to treatment regimen, could be an additional risk factor (needs further evaluation) contributing to this form of the disease. These findings also address the need for the development of novel diagnostic tools for determination of drug susceptibility profile directly from clinical specimens.

Besides the 2 important findings, our study also has several limitations:

1) The small sample size makes it difficult to determine possible risk factors that could lead to chronic progressive disease. Also, all the findings reported need to be confirmed by a study on a larger sample size.

2) The drug susceptibility tests were performed on the culture isolate after in vitro growth of MTB strain and not directly on the specimen itself. In presence of multiple MTB infection, the dominant strain may outgrow the other strain. This could lead to an unreliable and inaccurate determination of drug susceptibility pattern, forming the basis for an ineffective treatment regimen.

This emphasizes the need for development of novel diagnostic tools for determination of drug susceptibility profile directly from clinical specimens.

3) Though 24-loci MIRU-VNTR can detect multiple MTB infections even if one of them is underrepresented at 1% of the total bacterial population, the detection of clonal heterogeneity in clinical isolates is difficult. It requires the analysis of multiple independent colonies unlike this study wherein a single colony isolate was used for genotyping. A recent study by Gardy et al. [19], has reported the use of whole genome sequencing in differentiating strains with identical MIRU-VNTR profiles.

In conclusion, the study reports the presence of clonal population of MTB strain, in some cases exhibiting heteroresistance within multiple cavities of a patient. Inadequate-/non-adherence- to treatment regimen, could be an additional risk factor (needs further evaluation) contributing to this form of the disease. These findings also address the need for the development of alternate rapid interventions that will improve treatment outcomes, as well as interrupt the transmission of this extensively drug resistant TB.

Table 3. Hospitalization characteristics and outcomes of individual patients undergoing pulmonary resection surgery.
Patients
No. of days of hospitalization during the time of surgery
Median (Interquartile Range)
Type of surgery (Affected lung)
No. of months from treatment initiation to surgery
Median (Interquartile Range)
Reason to undergo surgery
Outcome

*Patient 5, underwent a partial right pneumonectomy 1½ years back in another private hospital, and expired with 72 hours post-surgery due to respiratory acidosis and left-sided pneumonia with septic shock.

1Outcome, is based on the follow-up 6-month post-surgery.

doi:10.1371/journal.pone.0024770.t003
Materials and Methods

Study setting and Ethical approval

This study was carried out in a private tertiary referral care hospital in Mumbai. This study was approved by the National Health and Education Society, P. D. Hinduja National Hospital and Medical Research Centre. Written consent was also obtained from each patient.

Patients

Five patients (patients 1–5) unsuccessfully treated for TB underwent pulmonary resection surgery from June 2009 to July 2010 were included in the study. Patient 5 had undergone a partial pneumectomy of the affected lung 1½ years back in another private hospital. Drug susceptibility testing of sputum specimen of each patient was carried out in the Mycobacteriology laboratory of this hospital prior to surgery. Past history and treatment history of each patient was studied.

Table 4. Phenotypic drug susceptibility profile and genetic sequence analysis of all cavities of each patient.

Patient Nos.	Cavity Nos. (Lobe)a	Phenotypic Drug Susceptibility profileb	Genetic sequence analysis: mutation observed (codon number)c	
1	1 (LUL), 2 (LUL), 3 (LUL)	PAS, Cfx	S, H, R, E, Km, Eto, Ofx, Mfx, Am, Cm, Z	C to T (531) G to C (315) A to G (94) A to G (1401)
2	1 (LUL)	Cfx, Z	S, H, R, E, K, Eto, PAS, Ofx, Mfx, Am, Cm	C to T (531) G to C (315) A to G (94) A to G (1401)
3	E, Km, Am, Cm, Z, Cfx	S, H, R, E, Ofx, Mfx	C to T (531) G to C (315) A to G (94) wt4	
4	1 (LUL), 2 (LUL), 3 (LUL)	Cfx	S, H, R, E, Km, Eto, PAS, Ofx, Mfx, Am, Cm, Z	C to T (531) G to C (315) A to G (94) A to G (1401)
5	1 (RUL)	Km, PAS, Am, Cfx, Cm	S, H, R, E, Ofx, Mfx, Am, Cm	C to T (531) G to C (315) A to G (94) wt
6	2 (RUL)	Km, Am, Cfx, Cm	S, H, R, E, Ofx, Mfx, Am, Cm	C to T (531) G to C (315) A to G (94) wt
3 (RLL)	Km, Am, Cfx, Cm	S, H, R, E, Ofx, Mfx, Am, Cm	C to T (531) G to C (315) A to G (94) wt	

aLUL, Left upper lobe; LLL, left lower lobe, RUL, right upper lobe; RLL, right lower lobe.
bS: Streptomycin, H: Isoniazid, R: Rifampicin, E: Ethambutol, Km: Kanamycin, Eto: Ethionamide, PAS: para-aminosalicylic acid, Ofx: Ofloxacin, Mfx: Moxifloxacin, Am: Amikacin, Cfx: Clofaziamine, Cm: Capreomycin, Z: Pyrazinamide.
cCavity isolates showing variable drug susceptibility profiles were analyzed by in-house RLBH (except for Ethambutol, PAS, Pyrazinamide, wherein phenotypic DST were repeated to confirm the variable drug susceptibility profile).
dwt – wild type.
doi:10.1371/journal.pone.0024770.t004

Figure 3. UPGMA tree showing the comparison of the cavity isolates from 5 patients based on the combined similarities of both the 24-loci MIRU-VNTR and spoligotype results determined by using the categorical coefficient.Clustered isolates are labeled with a bar. From left to right are shown: box consisting of the MTB lineage and patient number (cavity no.), and spoligotype pattern.
doi:10.1371/journal.pone.0024770.g003

MGIT TB culture

On arrival of the untreated lung, all cavities (3 cavities in each of the 5 patients) were identified in the resected lung of each patient and excised using a sterile blade in a biosafety cabinet II. These cavities were processed for mycobacterial culture: processed with N-acetyl L-cysteine and sodium hydroxide (NACL-NaOH) [20],
cultivated on both solid medium (egg-based Löwenstein–Jensen) [21] and liquid medium [BACTEC MGIT [mycobacteria growth indicator tube] 960 culture; BD Microbiology Systems]. Culture positives were confirmed for MTB species by p-nitro benzoic acid assay [21].

Phenotypic DST and genetic sequence analysis
Phenotypic drug susceptibility testing (DST) for first- [22] and second-line drugs [23] was carried out on all cavity culture isolates of each patient. Isolates from different cavities within a single patient showing variable phenotypic drug susceptibility profile were confirmed either by repeating the phenotypic DST and/or processing the isolates for genetic sequence analysis using in-house Reverse Line Blot Hybridization (RLBH) assay targeting specific gene mutations conferring resistance to first-line drugs like Rifampicin (R) and Isoniazid (H), and second-line drugs like aminoglycosides (Kanamycin [Km], Amikacin [Am], Capreomycin [Cm]) and fluoroquinolones (Ofloxacin [Ofx], Moxifloxacin [Mfx]) [24].

Genotyping
All culture cavity isolates grown on solid media were genotyped by Spoligotyping (Isogene, Netherlands [as per the manufacturer’s instructions]) and 24-loci MIRU-VNTR [25] to confirm the presence or absence of multiple MTB infection.

Acknowledgments
We thank National Health and Education Society, P. D. Hinduja National Hospital and Medical Research Centre for their encouragement and support.

Mr. Viral Vadhwa has performed all molecular biology related work (genetic sequence analysis, genotyping) and has written the manuscript.

Dr. Gustad Daver is the surgeon who has performed the pulmonary resection surgery.

Dr. Zarir Udwadia is the consulting chest physician at our hospital.

Ms. Meeta Sadani has inoculated mycobacterial cultures and performed phenotypic drug susceptibility testing.

Dr. Anjali Shetty has reviewed the manuscript.

Dr. Camilla Rodrigues is the principal investigator, conceptualized and designed the study and has reviewed the study.

Author Contributions
Conceived and designed the experiments: VV CR. Performed the experiments: VV MS. Analyzed the data: VV CR. Contributed reagents/materials/analysis tools: CR GD. Performed the paper: VV. Performed the pulmonary resection surgery: GD. Consulting chest physician at this hospital: ZU. Reviewed the manuscript: AS. Designed the study: CR.

References
1. Bates JH, Stead WW, Rads TA (1976) Phage type of tubercle bacilli isolated from patients with two or more sites of organ involvement. Am Rev Respir Dis 114: 353–358.
2. Mankiewicz E, Livak M (1975) Phage types of Mycobacterium tuberculosis in cultures isolated from Eskimo patients. Am Rev Respir Dis 111: 307–312.
3. du Plessis DG, Warren R, Richardson M, Joubert JJ, van Helden PD (2001) Demonstration of reinfection and reactivation in HIV-negative autopsied cases of secondary tuberculosis: multilocus variable-number tandem-repeat Genotyping of Mycobacterium tuberculosis utilizing BS210 and other repetitive element-based DNA fingerprinting. Tuberculosis 81: 211–220.
4. Rinder H, Mieskes KT, Loscher T (2001) Heteroresistance in Mycobacterium tuberculosis. J Tuberc Lung Dis 5(4): 339–345.
5. Iseman MD, Madsen L, Goble M, Iseman M (1991) Surgical management of tuberculosis from Northwestern Russia: implications for genotypic resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 35(5): 2100–2109.
6. Schurch AC, Kremer K, Kiers A, Daviena O, Boeree MJ, et al. (2010) The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol 10: 1088–1114.
7. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, et al. (2011) Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 364(4): 739–749.
8. Curry EJ (2008) Treatment. In: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Second Edition National Tuberculosis Center and California Department of Public Health. pp 52–56.
9. Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, et al. (2008) Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs utilizing BACTEC MGIT 960 System. Franklin Lakes, NJ: Beckton, Dickinson.
10. Currie BJ (2001) Public health mycobacteriology (eds): a guide for the Level III laboratory. Atlanta: Centers for Disease Control.
11. Currie BJ (2008) Treatment. In: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Second Edition National Tuberculosis Center and California Department of Public Health. pp 52–56.
12. Mathys V, Wintjen R, Leffeve P, Bertout J, Singha A, et al. (2009) Molecular Genetics of para-Amino-Acyl Acid Resistance in Clinical Isolates and Spontaneous Mutants of Mycobacterium tuberculosis. Antimicrob Agents Chemother 53(5): 2100–2109.
13. Barco P, Cardoso RF, Hirata RDC, Leite CQF, Pandolfi JR, et al. (2006) pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis clinical isolates from the southeast region of Brazil. J Antimicrob Chemother 56(6): 930–935.
14. Curry EJ (2008) Treatment. In: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Second Edition National Tuberculosis Center and California Department of Public Health. pp 52–56.
15. Rodrigues C, Jani J, Shenai S, Thakkar P, Siddiqi S, et al. (2008) Drug susceptibility testing of Mycobacterium tuberculosis against second-line drugs utilizing BACTEC MGIT 960 System. Franklin Lakes, NJ: Beckton, Dickinson.
16. Currie BJ (2008) Treatment. In: Drug-Resistant Tuberculosis: A Survival Guide for Clinicians, Second Edition National Tuberculosis Center and California Department of Public Health. pp 52–56.
17. Morliere S, Wainwright H, Kreiswiirth BN, et al. (2003) Mycobacterium tuberculosis Growth at the Cavity Surface: a Microenvironment with Implications for Drug Susceptibility. J Clin Microbiol. In press. doi:10.1128/JCM.02511-10.