Critical Magnetic Prandtl Number for Small-Scale Dynamo

Alexander A. Schekochihin,1 Steven C. Cowley,1,2 Jason L. Maron,3,4 and James C. McWilliams5

1Plasma Physics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2BW, UK
2Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547
3Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627
4Center for Magnetic Reconnection Studies, Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242
5Department of Atmospheric Sciences, UCLA, Los Angeles, CA 90095-1565

(Dated: March 20, 2022)

We report a series of numerical simulations showing that the critical magnetic Reynolds number \(Rm_c \) for the nonhelical small-scale dynamo depends on the Reynolds number \(Re \). Namely, the dynamo is shut down if the magnetic Prandtl number \(Pr_m = Rm/Re \) is less than some critical value \(Pr_m,c \lesssim 1 \) even for \(Rm \) for which dynamo exists at \(Pr_m \geq 1 \). We argue that, in the limit of \(Re \to \infty \), a finite \(Pr_m,c \) may exist. The second possibility is that \(Pr_m,c \to 0 \) as \(Re \to \infty \), while \(Rm \) tends to a very large constant value inaccessible at current resolutions. If there is a finite \(Pr_m,c \), the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-\(Pr_m \) dynamo. If there is a finite \(Rm_c \), our results provide a lower bound: \(Rm_c \gtrsim 220 \) for \(Pr_m \leq 1/8 \). This is larger than \(Rm \) in many planets and in all liquid-metal experiments.

PACS numbers: 91.25.Cw, 95.30.Qd, 47.27.Gs, 47.65.+a

The simplest description of a conducting fluid is in terms of equations of magnetohydrodynamics (MHD):

\[
\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{B} \cdot \nabla \mathbf{B} + \mathbf{f},
\]

\[
\partial_t \mathbf{B} + \mathbf{u} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{u} + \eta \mathbf{B},
\]

where \(\mathbf{u} \) is velocity, \(\mathbf{B} \) is magnetic field, \(\mathbf{f} \) is the external force density, \(\nu \) is viscosity and \(\eta \) is magnetic diffusivity. The pressure gradient \(\nabla p \) is determined by the incompressibility condition \(\nabla \cdot \mathbf{u} = 0 \). We have rescaled \(p \) and \(\mathbf{B} \) by \(\rho \) and \((4\pi \rho)^{1/2} \), respectively (\(\rho \) is density).

A fundamental property of Eqs. (1,2) is the ability of the velocity and magnetic fields to exchange energy. In three-dimensional turbulent flows (and in many other chaotic flows), this can take the form of net amplification of magnetic field with time, a process referred to as MHD dynamo. There are two kinds of dynamo. The first is the mean-field dynamo (growth of \(B \)), which usually requires a net flow helicity. It is a large-scale effect that must be considered in conjunction with such system-specific properties as geometry, rotation, mean shear etc. The second kind is the small-scale dynamo: amplification of the magnetic energy \(\langle B^2 \rangle \) due to random stretching of the field by the turbulent flow, requiring no net helicity [2,3,4,5]. The stretching is opposed by the resistive diffusion, so the dynamo is only possible when the magnetic Reynolds number \(Rm = \langle u^2 \rangle^{1/2} \ell_0 / \nu > Rm \). This is an important issue because \(\langle u^2 \rangle \) is small in stars \((\langle u^2 \rangle \sim 10^{-2} \) at base of the Sun’s convection zone), planets \((\langle u^2 \rangle \sim 10^{-5} \) [6]), and in liquid-metal laboratory dynamos [2,5,10,11]. In three dimensions, most types of turbulence at scales much smaller than the system size are predominantly vortical and well described by Kolmogorov’s dimensional theory [3]. In this theory, the fastest field stretching is done by the small-scale velocities. The essential physics of small-scale dynamo should thus be contained within our homogeneous, isotropic, incompressible model.

The small-scale dynamo is most transparent in the limit of \(Pr_m \gg 1 \). Straightforward estimates show that, while velocity is dissipated at the viscous scale \(\ell_v \sim \nu^{-3/4} \ell_0 \), magnetic field can occupy smaller scales down to the resistive \(\ell_r \sim Pr_m^{-1/2} \ell_v \). The dynamo is driven by the fastest eddies: the viscous-scale ones, which are spatially smooth. The growing fields are organized in folds, with direction reversals at the resistive scale \(\ell_r \) and field lines remaining approximately straight up to the flow scale \(\ell_v \) [11]. This is why a winning configuration is best seen on the example of a linear velocity field (locally uniform rate of strain) [2,11]: the field aligns with the stretching direction of the flow but reverses along the “null” direction, so that compression cannot lead to resistive annihilation of antiparallel fields canceling the effect of stretching. For this mechanism to apply, it is essential that (i) the flow be spatially smooth, so fluid trajectories separate exponentially in time leading to exponential stretching; (ii) a scale separation between the field scale (reversals) and the flow be achievable. The large-\(Pr_m \) turbulent dynamo satisfies both conditions, as do all deterministic chaotic dynamos [4]. Thus, the small-scale dynamo, as it is usually understood, is essentially the large-\(Pr_m \) dynamo. The often simulated case of \(Pr_m = 1 \) belongs to the same class: the magnetic energy is amplified at scales somewhat smaller than the viscous scale and the field structure is similar to the case of \(Pr_m \gg 1 \) [12]. When \(Pr_m \ll 1 \), the field
scale is resistively limited to be comparable to, or larger than, the viscous cutoff. The field interacts with inertial-range motions, which are spatially rough and cannot be thought of as having a locally uniform rate of strain. Is there still a small-scale dynamo?

In order to address this question, we have carried out a series of numerical simulations. Equations (1–2) were solved in a triply periodic box by the pseudospectral method. We used a random nonhelical forcing \(\mathbf{f} \) applied at the box scale and white in time. The average injected power \(\epsilon = \langle u^2 \rangle / \nu k_0 \) was kept fixed. The code units are based on box size 1 and \(\epsilon = 1 \). Defining \(\text{Rm} = \langle u^2 \rangle^{1/2} / \eta \) the box wave number, we have found that the dynamo existed for \(\text{Rm} \geq 1 \) provided \(\text{Rm} \gtrsim 80 \) (cf. Fig. 1a).

Figure 1 shows the time-averaged normalized magnetic-energy spectra for series A and B, as well as velocity spectra multiplied by \(k^2 \). The latter characterize the turbulent rate of strain and peak at the viscous scale. We see that as this scale drops below the resistive scale, the dynamo shuts down. Note that there is no initial-condition dependence: Runs A3 and B4, which decay starting from weak field, also decay if initialized in the saturated state of their \(\text{Pr}_m = 1 \) counterparts (Fig. 1a).

Our main result is, thus, that \(\text{Pr}_{m,c} \) exists even as \(\text{Rm} \) is kept approximately fixed at a value for which small-scale dynamo is possible at larger \(\text{Pr}_m \) (Fig. 1b). In other words, the critical magnetic Reynolds number for growth \(\text{Rm}_c \) increases with \(\text{Re} \). Because of resolution constraints, we cannot afford a parameter scan to produce the dependence \(\text{Rm}_c(\text{Re}) \). What \textit{a priori} statements about this dependence can be made on physical grounds?

Consider first the asymptotic case \(\text{Re} \gg \text{Rm} \gg 1 \). The resistive scale then lies in the inertial range, \(\ell_\eta \gg \ell_\nu \). As, in Kolmogorov turbulence, \(u_\eta / \ell \sim \ell^{-5/3} \), most of the stretching is done by the eddies at the resistive scale \(\ell_\eta \sim \text{Rm}^{-3/4} \ell_\nu \), where stretching is of the same order as diffusion. Since the inertial range is self-similar, the existence of the dynamo should not depend on the exact location of \(\ell_\eta \), and it is the local (in \(k \) space) properties of the turbulent velocity that determine its propensity to amplify magnetic energy. Therefore, if the dynamo fails, it does so at all \(\text{Pr}_m \) below some critical value \(\text{Pr}_{m,c} \) of order unity. The effective transition from the “large-\(\text{Pr}_m \)” to the “small-\(\text{Pr}_m \)” regime occurs at \(\text{Pr}_m = \text{Pr}_{m,c} \). In this case, \(\text{Rm}_c(\text{Re}) \rightarrow \text{Pr}_{m,c} = \text{const} < 1 \) as \(\text{Re} \rightarrow \infty \). Thus, if our results are asymptotic, then the turbulent small-scale dynamo is always, in essence, a large-\(\text{Pr}_m \) one, and the folded direction-reversing fields are the only type of magnetic fluctuations that can be self-consistently generated and sustained by
FIG. 2: Magnetic-energy spectra normalized by $⟨B^2⟩/2$ and averaged over time: (a) Series A, (b) Series B. Also given are velocity spectra multiplied by k^2 and the reference Kolmogorov slope $k^{1/3}$. The time intervals used for averaging are for Runs A1, A2: $5 \leq t \leq 40$; for Run B1: $2.5 \leq t \leq 17.5$; for Runs A3, B2, B3, B4: $10 \leq t \leq 25$.

nonhelical turbulence. As the separation between parallel and transverse scales of the field diminishes at $Prm < 1$ (Fig. 3), no steady fluctuation level can be maintained.

The second possibility is that Rm_c asymptotes to some constant value for Re above those we are able to resolve: $Rm_c \rightarrow \text{const} \gtrsim 220$ and $Prm,c \rightarrow 0$ as $Re \rightarrow \infty$. Our results do not rule out this outcome, whereby asymptotically in Rm and Re, the dynamo persists at low Prm, but very large Rm is needed to achieve it in practice (numerically or experimentally). In stellar convective zones, Rm is, indeed, very large ($10^6...10^9$ for the Sun). On the other hand, in planets and in laboratory dynamos, $Rm \sim 10^2$, which is comparable to Rm in our simulations.

Note that the arguments above assume scale invariance of the inertial range, i.e., neglect the effects of intermittency. An intermittent velocity field will exhibit large coherent fluctuations of the rate of strain, which might be locally effective in stretching the magnetic field in a way similar to the large-Prm dynamo [25]. Whether these fluctuations can provide enough stretching on the average to make a workable dynamo cannot be settled qualitatively. Note that an intermittent growth by rare strong bursts is evident in $Prm < 1$ runs where the dynamo is suppressed but not shut down (most vividly in Run A2, see Fig. 1).

No theory of the dynamo shutdown at low Prm exists at present. Invoking turbulent diffusion (mixing) of magnetic fields by the subresistive-scale motions as the suppression mechanism makes heuristic sense, but does not provide an unambiguous verdict on the existence of the dynamo. Indeed, when $\ell_0 \gg \ell_η \gg \ell_ν$, the dominant contributions to both stretching and mixing are from the resistive scale $\ell_η$, and the outcome of their competition is impossible to predict on a heuristic basis. Many
aspects of small-scale dynamo have received successful theoretical treatment in the framework of the Kazantsev model \[14\], which assumes a Gaussian white-in-time velocity field, \(\langle u(t, x) u(t', x') \rangle = \delta(t - t') \kappa^{ij}(x - x') \). The correlator can be expanded, \(\kappa^{ij}(y) = \kappa^{ij}(0) \sim -y^{\alpha} \), when \(y \sim \ell_B \), the magnetic-field scale. When \(\Pr_m \gg 1 \), \(\ell_B \ll \ell_\nu \), so \(\alpha = 2 \), corresponding to the spatially smooth viscous-scale eddies. On the other hand, when \(\Pr_m \ll 1 \), \(\ell_B \gtrsim \ell_\nu \) and magnetic field interacts with rough inertial-range velocities, which must be modeled by \(\alpha < 2 \). The Kazantsev velocity is not a dynamo if it is too spatially rough, viz., when \(\alpha < 1 \). If we set aside fundamental objections to the Kazantsev model and try to compare it to real turbulence, we still face the difficulty of interpreting the \(\delta \) function. If we write equal-time velocity correlators by replacing the \(\delta \) function by inverse correlation time \(1/\tau_c \), then the relation between \(\alpha \) and the spectral exponent of the turbulence depends on how we choose \(\tau_c \). The usual choice for Kolmogorov turbulence is \(\tau_c \sim y^{2/3} \), the eddy-turnover time. Then \(\alpha = 4/3 > 1 \) and there is dynamo \[12, 23\]. Note that \(Rm_c \) in this case is typically much larger than for \(\alpha = 2 \). Although specific values of \(Rm_c \) calculated from the Kazantsev model cannot be considered as quantitative predictions for real turbulence, they appear to point to the second possibility mentioned above (finite but unresolvably large \(Rm_c \)). We emphasize that all these results depend on the heuristic choice of \(\tau_c \) (e.g., if \(\tau_c \sim \text{const} \), \(\alpha = 2/3 \) and there is no dynamo) and on the universality of the physically nonobvious condition \(\alpha > 1 \). It is fair to observe that our simulations are still too viscous to have a well-developed Kolmogorov scaling (Fig. 2). Thus, if the existence of the dynamo depends on the exact inertial-range scaling of the velocity field and/or only manifests itself at very large \(Rm \), neither the Kazantsev theory nor simulations at current resolutions can lay claim to a definitive answer. Obviously, the Kazantsev theory also cannot capture any role the intermittency of the velocity field might play and, more generally speaking, it is doubtful that a \(\delta \)-correlated Gaussian flow is a suitable model of the inertial-range turbulence.

While, as far as we know, ours is the first systematic study of the small-scale dynamo suppression in homogeneous isotropic MHD turbulence with low \(\Pr_m \), indications of this effect have been reported in the literature in two previous instances. Dynamo suppression at low \(\Pr_m \) was seen by Christensen et al. \[21\] in their simulations of convection in a rotating spherical shell and by Cattaneo \[22\] in simulations of Boussinesq convection. These cases of failed low-\(\Pr_m \) dynamos in inhomogeneous convection-driven turbulence are likely to be related to the same universal mechanism that made the dynamo inefficient in our simulations. Our key conclusion is that the dynamo suppression is a generic effect unrelated to the particular type of driving or other large-scale features of the system.

The mean-field dynamo, which, in contrast, does depend on large-scale features such as helicity and rotation \[1\], may then be the only type of self-sustained field generation for low-\(\Pr_m \) systems. If a mean field is present, it gives rise to a source term \(\mathbf{B} \cdot \nabla \mathbf{u} \) in the induction equation \[2\] and thus induces small-scale magnetic fluctuations. They have a \(k^{-11/3} \) spectrum at \(k \gg k_c \) \[10, 13, 23\], which has been seen in the laboratory \[8\] and in large-eddy simulations \[24\].

We thank S. Boldyrev and F. Cattaneo for discussions of our results and of the Kazantsev model, and M. Vergassola for very useful comments. Our work was supported by PPARC (PPA/G/S/2002/00075), UKAEA (QS06992), NSF (AST 00-98670). Simulations were run at UKAFF (Leicester) and NCSA (Illinois).

* Electronic address: ast629@damtp.cam.ac.uk; Present-time address: DAMTP/CMS, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, UK.

[1] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978).
[2] G. K. Batchelor, Proc. R. Soc. London A 201, 405 (1950).
[3] Y. B. Zeldovich et al., J. Fluid Mech. 144, 1 (1984).
[4] S. Childress and A. Gilbert, Stretch, Twist, Fold: The Fast Dynamo (Springer, Berlin, 1995).
[5] P. H. Roberts and G. A. Glatzmaier, Rev. Mod. Phys. 72, 1081 (2000).
[6] A. Gaulitis et al., Rev. Mod. Phys. 74, 973 (2002).
[7] C. B. Forest et al., Magnetohydrodyn. 38, 107 (2002).
[8] M. Bourgoin et al., Phys. Fluids 14, 3046 (2002).
[9] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).
[10] E. Ott, Phys. Plasmas 5, 1636 (1998).
[11] M. Chertkov et al., Phys. Rev. Lett. 83, 4065 (1999).
[12] A. Schekochihin et al., Phys. Rev. E 65, 016305 (2002).
[13] A. A. Schekochihin et al. (2003), astro-ph/0312046.
[14] K. Moffatt, J. Fluid Mech. 11, 625 (1961).
[15] S. I. Vainshtein, Magnetohydrodyn. 28, 123 (1982).
[16] A. P. Kazantsev, Zh. Eksp. Teor. Fiz. 53, 1806 (1967), [Sov. Phys.–JETP 26, 1031 (1968)].
[17] M. Vergassola, Phys. Rev. E 53 (1996).
[18] I. Rogachevskii and N. Kleedorin, Phys. Rev. E 56, 417 (1997).
[19] D. Vincenzi, J. Stat. Phys. 106, 1073 (2002).
[20] S. Boldyrev and F. Cattaneo (2003), astro-ph/0310780.
[21] U. Christensen et al., Geophys. J. Int. 138, 393 (1999).
[22] F. Cattaneo, in Modeling of Stellar Atmospheres, edited by N. E. Piskunov et al. (ASP Conf. Ser./IAU Publications, 2002), vol. S-210.
[23] G. S. Golitsyn, Dokl. Acad. Nauk SSSR 132, 315 (1960), [Sov. Phys. Doklady 5, 536 (1960)].
[24] Y. Ponty et al. (2003), physics/0311130.
[25] This point was made to us by M. Vergassola.
[26] Note that the EDQNM closure, which effectively makes the same assumption about the correlation time, gives dynamo at low \(\Pr_m \) with \(Rm_c \) independent of \(\text{Re} \) [J. Léorat et al., J. Fluid Mech. 104, 419 (1981)].