Research Paper:
Comparison of the Effect of Custom Insole With CAD-CAM and Conventional Insole on FAOS Questionnaire Subscales in Patients With Plantar Fasciitis

Sara Shojaie, Mahmood Bahramizade, Monireh Ahamadi Bani, Mohsen Movahedi Yeganeh, *Mohammad Ebrahimi Moosavi*

1. Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
2. Department of Orthopedic and Trauma Surgery, Milad Hospital, Tehran, Iran.

ABSTRACT

Objective One of the significant causes of foot pain is plantar fasciitis. The use of medical insoles is a conventional treatment for this condition. The purpose of this study was to compare the effect of the customized insole with the CAD-CAM and conventional insole on pain, symptoms, daily activity, exercise and recreational activity, and quality of life in patients with PF.

Materials & Methods This quasi-experimental study was performed on 14 patients with plantar fasciitis (five women and nine men) with the mean age of 40 years. Fourteen patients have been diagnosed with orthopedic pain after being diagnosed with plantar fasciitis according to inclusion criteria. Diagnosis of the complication of plantar fasciitis by orthopedic physician. Patients with flexible flat foot. No neurological disorders or any foot pathology such as diabetes and osteoarthritis. Patients were randomly assigned into two groups of 7 using customized insole with CAD-CAM and conventional (prefabricated) insole. From the outset it was found to be one of two types of insole to be studied: first the patient was given a CNC insole, and the other 13 patients received the same insole and divided into two groups. The instrument of this study was the FAOS questionnaire (foot and ankle outcomes) which measures the five variables of pain, symptoms, daily activities, sports and recreational activities, and quality of life. Both groups completed the questionnaire before using the insole and again after six weeks. Compresive scan of both groups was accomplished using EME foot pressure system. The custom-made insole was designed using Rhino Cross software and then shaved using EVA foam blocks with 50% shore using a CNC machine. In the conventional insole group, patients received conventional polyurethane insoles based on the length measurements of the single leg. Patients completed the questionnaire again after six weeks. Data were analyzed by SPSS software v. 22. After checking the normality of the data by Shapiro-Wilk test, non-parametric Mann-Whitney and Wilcoxon tests were used to analyze the data.

Results In the pre-intervention phase, there was no significant difference in pain, symptoms, daily activities, recreational-sports activities, and quality of life in the two groups, and the two groups were homogeneous. After six weeks, there was a significant difference between the two groups in the FAOS questionnaire (P<0.05). There was no significant difference between the two groups in pain score, symptoms, daily activities, recreational-sport activities, and quality of life (P >0.05).

Conclusion According to the results of this study, both customized insoles with CAD-CAM and conventional insoles are effective in improving FAOS questionnaire subscales. There was no significant difference in the impact between the two types of insoles in foot and ankle.

Keywords: Plantar fasciitis, CAD-CAM, Insoles, Pain, Quality of Life

* Corresponding Author:
Mohammad Ebrahimi Moosavi, PhD.
Address: Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran. Tel: +98 (21) 22180010
E-Mail: e.mousavi2001@gmail.com
Extended Abstract

Introduction

Plantar fasciitis is defined as inflammation or destructive changes in the plantar fascia. Pain and stiffness in the soles of the feet are often a common symptom of the disease, which is often felt when standing after a long period of sitting or sleeping. This complication has a negative effect on foot function and limits a person’s daily activities [1, 2]. In general, 10%-15% of people in the world suffer from plantar fasciitis [1, 2].

Surgical and non-surgical treatments are available for this complication which among non-surgical interventions, orthotic (protective) treatments are widely used to treat plantar fasciitis [3]. Among orthotic treatments, custom-made insoles and prefabricated insoles are significantly prescribed in the treatment of plantar fasciitis [4]. Both custom-made and prefabricated insoles are effective in reducing pain and increasing patient function, but there are conflicting studies about the superiority of custom-made insoles and prefabricated insoles [5].

In these studies, the effect of custom insole with Computer-aided Design-Computer-aided Manufacturing (CAD-CAM) device in the treatment of patients with plantar fasciitis was not investigated [6]. In a review study, it was shown that computer insole fabrication is a valid method that can be used in the field of medical insole fabrication to achieve the best fit between the insole and the patient’s foot [7]. Custom-made medical insole is a factor that is directly related to the proper placement of the insole in the sole of the foot and is associated with reducing the amount of damage to the sole of the foot [8]. The main purpose of using this type of medical insole is to change the pressure distribution of the sole of the foot from a specific point to a wider surface [9, 10].

Insoles made by CAD-CAM method reduce the force applied to high pressure areas through full contact with increasing the level and it was shown during the studies that the mentioned insole reduced the pressure of high-risk points for diabetic wounds [11]. Recent studies have also shown that computer-made insoles reduce pain in people with flat feet [12]. Another study that examined the effect of custom-made insoles made by CAD-CAM method in people with pes cavus foot, the use of this insole was said to reduce the pain of these people due to the proportional distribution of pressure and force distribution from the heel [13].

Considering the reviewed studies and the significant prevalence of plantar fasciitis and its negative impact on patient performance and activity and due to the fact that in these studies, the effect of the insole made by CAD-CAM method in people with plantar fasciitis has not been studied and Reports of other complications, such as diabetes and flat feet, suggest that custom-made insoles distribute pressure evenly across high-risk areas, therefore, in this study, we reviewed and compared the custom insole made by computer method with the prefabricated insole [14].

Materials and Methods

This quasi-experimental study was performed in 2018 in the medical centers of Tehran University of Social Welfare and Rehabilitation Sciences on 14 patients with plantar fasciitis (five women and nine men) with an average age of 40 years. The inclusion criteria of the research were being aged 25-45 years, diagnosis of plantar fasciitis by an orthopedist, existence of flexible flatfoot complication, no neurological disorders or any pathology in the foot such as diabetes and osteoarthritis and lack of surgery on the lower limb joints in the past month and the ability to walk independently without an aid [11, 15-18]. Exclusion criteria were people with a history of surgery on the plantar fasciitis and patients were also excluded from the study if insoles were not used during the study and if they were professional athletes [18].

The tool used to measure the variables of symptoms, pain, daily activities, sports and recreational activities and quality of life before and after the test was the Foot and Ankle Outcome Score (FAOS) questionnaire. The scoring of this questionnaire was from 0 to 100, which 0 refers to the worst situation and 100 refers to the best situation.

After the diagnosis of plantar fasciitis by an orthopedist and the evaluation of the patient by an orthopedist and prosthetist based on the reported history (for example, the first step is accompanied by pain in the leg area), clinical tests (such as local pain when touched in the anterior-internal part of the heel tuberosity) or pain during plantar fasciitis of patients if they meet the inclusion criteria to enter the study, 14 patients were assigned by non-probability simple (available) method and were randomly divided into two groups of 7 using custom insole with CAD-CAM device and using conventional (prefabricated) insole group. Patients were initially given a FAOS questionnaire to determine their pain, symptoms, daily activities, sports and recreational activities, and quality of life before using the insole. Then, in both groups, the necessary measurements were performed on each person’s foot. The map of each person’s foot was taken in equal weight bearing condition on both feet and the patients were scanned by EMED Foot Pressure scanner [19].
In the group of patients selected to make custom insoles for by CAD-CAM method, after taking a compression scan of the patient’s foot, the compression scan information of each patient was evaluated separately. Then, based on the scan report in these patients, a custom-made insole was designed for each patient separately using Rhinoceros computer software by the therapist. In the next step, the data obtained from the design in the form of a set of codes called G-code, was given to the CNC (Computer Numerical Control) machine made by Paya-Fanavar Company and as can be seen in Figure 1, the medical insole was shaved on a foam block made of ethyl vinyl acetate with 50% saline. The height of the longitudinal-internal arch in the custom-made insole was considered to be 15 mm [20]. The length of the medial longitudinal arch was also calculated based on the size of the patient’s foot from the talus to the first metatarsus [21]. The width and length of the metatarsal pad were also based on a study by Haslens et al. [10] and based on the foot size of each patient, the length of the metatarsal pads were chosen to be between 65-75 mm and their width were between 63-51 mm and their height were between 9-11 mm and they were made based on these dimensions [22].

In the second group, conventional insoles were prepared based on the measurement of each person’s foot. The mentioned prefabricated insole is made of polyurethane and has a longitudinal-inner arch and metatarsal pad (Figure 2). Patients in both groups were then asked to put insoles inside their shoes. To avoid discrepancies in shoes, patients were asked to provide shoes with laces and appropriate size that have a suitable space in the front of the foot and after the patients’ shoes were approved by the therapist, both groups of patients were told to use insoles for 7-10 hours every day while working and walking outdoors for 6 weeks. At the end of the treatment period, the patients were given the questionnaire again to re-report the studied variables. Then, we calculated the score related to each of the sub-scales of the questionnaire according to its formula in the questionnaire guide, before using the insole and after using the insole for each individual.

The final scores of both groups at the time before the study and also 6 weeks after the study, which were obtained from the questionnaires completed by individuals, were entered into SPSS software V. 22. After calculating the mean scattering indices and standard deviation and measuring the normality of the data using Shapiro–Wilk, Mann-Whitney U and Wilcoxon tests were used to evaluate the data.

Results

The study was performed on 14 patients with plantar fasciitis who referred to the clinic that half of them were studied by conventional insole and the other half by custom insole made using CAD-CAM device. The Mean±SD age of patients in the custom-made insole group was 40.14±5.98 years and the Mean±SD of patients in the conventional insole group was 37.86±5.58 years. The Mean±SD of BMI of patients in the custom-made insole group was 26.07±1.76 and the Mean±SD of BMI of patients in the conventional insole group was 27.04±2.46.

First, the 5 main factors of FAOS questionnaire including pain, symptoms, daily activities, sports and recreational activities, and quality of life in patients with plantar fasciitis were evaluated separately in both types of insole groups and finally, we compared all the factors between the two insole groups. The scoring of FAOS questionnaire factors was such that the higher the score, the more desirable and the lower, the more undesirable.

According to Table 1, which is the result of Wilcoxon statistical test, it can be seen that the rate of improvement of pain, symptoms, daily activities, sports and recreational activities, and quality of life before and after 6 weeks of using custom-made insoles was significant.

According to Table 2, which is the result of Wilcoxon statistical test, it can be seen that the rate of improvement of pain, symptoms, daily activities, sports and recreational ac-
Activities and quality of life before and after 6 weeks of using the conventional insole is significant.

According to the result of Mann-Whitney test in Table 3, we see that in the rate of improvement of pain, symptoms, daily activities, sports and recreational activities and quality of life after 6 weeks of using both types of custom insoles using CAD-CAM and conventional insoles, no significant differences were shown.

Discussion

The results of the present study were in line with the study of Bonanno et al. [23]. They stated that the prefabricated insole distributes the force evenly over a wider area due to full contact with the patient’s sole [24]. Full-length insoles with longitudinal-internal arch reduce these forces further by reducing the vertical forces on the heel and due to the wider surface, they create, and as a result, the pain in this area is reduced [25].

Table 1. Evaluation of the scores of the subscales evaluated in patients of the custom-made insole group

Custom-made Insole	Mean±SD	Significance Level Before and After Intervention	
	Before Intervention	After Intervention	
Pain	50±20.7	71.03±16.96	0.018
Symptoms	45.92±10.6	58.3±16.96	0.028
Daily activities	56.51±22.65	75.63±15.18	0.018
Sports and recreational activities	33.57±28.97	62.14±20.18	0.018
Quality of life	38.39±26.86	44.64±28.05	0.038

Table 2. Evaluation of scores of subscales evaluated in patients of conventional insole group

Custom-Made Insole	Mean±SD	Significance Level Before and After the Intervention	
	Before Intervention	After Intervention	
Pain	69.44±14.25	81.34±11.08	0.017
Symptoms	47.96±13	59.18±7.95	0.05
Daily activities	71±18.94	87.39±11.42	0.018
Sports and recreational activities	49.29±30.74	73.57±14.35	0.018
Quality of Life	32.14±15.06	45.54±11.81	0.027

Table 3. Comparison of the evaluated subscales between the two groups after 6 weeks

Subscale	Significance Level After Intervention Between the Two Groups
Pain	0.0128
Symptoms	0.902
Daily activities	0.710
Sports and recreational activities	0.535
Quality of Life	0.209
Our study was in line with the study of Michelle Drake [26]. The author stated in this study that custom insoles reduced tensile stress in plantar fascia due to sufficient longitudinal-internal arch height [27, 28] and as a result, pain and disability were significantly reduced [26].

The result of the present study was in line with the result of Burns study [13]. In the Burns study, a significant improvement in pain was reported in a group of patients with pes cavus. The orthosis used in this study was a custom insole using the CAD-CAM system [13], insoles made with CAD-CAM system distributed pressure peak and maximum force distribution from the heel to the inner part of the midfoot area and were used to reduce the maximum pressure concentration at a specific point [14]. Because the sole of the foot is the heel and the removal of pressure from this area helps to improve pain and increase the function of patients with the sole of the foot, it is likely that the custom insole made by our study also distributes the maximum pressure from the heel.

The reduction of pain observed after using both insoles in the present study may also be due to the support of the longitudinal-internal arch of the foot by the insole, including the heel area and also the support of the transverse arch of the foot by the metatarsal pad. According to a Burns study in 2005, these three factors also caused a proportional distribution of plantar pressure and reduced load applied to the heel area, followed by pain in this area [29].

The result of the present study was inconsistent with the study of Pfeffer Glenn; in Glenn’s study, the silicone heel as a prefabricated insole caused more pain in the heel area than the custom insole made in this study, which was made of polypropylene [30]. The author stated that if the custom-made insole used more shock-absorbing material, it might have worked better than the propylene insole to reduce pain [31]. In the study, the author considered the use of soft and shock-absorbing materials as the reason for the superiority of silicone heels and stated that the propylene used is a hard material. Of course, the custom insole made in our study was made of EVA and had less shore than polypropylene (shore=70) [32].

In the field of daily activities and sports and recreational activities of patients with plantar fasciitis, the custom insole made the study by Oliveira et al. more comfortable because it matched the patient’s foot and due to the use of soft foam in the heel area, it was more comfortable for this part [6]. Based on the results obtained in this study, the insole reduced the forces applied to the heel and subsequently reduced the pain and improved performance [26]; we can say that a person’s activity increases due to the reduction of heel pain. Also, the insole we studied improves the performance and thus increases the activity of the person for the same reasons as the study of Oliveira.

In a study by Roos et al., a custom insole was reported to be a better choice in the treatment of plantar fasciitis and was able to increase the level of performance of people with plantar fasciitis compared to nocturnal splints [4]. In a study by Drake Michelle et al., using a custom insole for 2 weeks improved the performance and ability of patients with plantar fasciitis [26]. In a study by Drake Michelle et al., using a custom insole for 2 weeks improved the performance and ability of patients with plantar fasciitis and it was reported that using the insole with daily stretching improved its effects. In a study by Burns et al., Custom-made orthoses were able to increase the level of performance of people with pes cavus [13]. Novak et al. Also concluded that functional orthoses compared to flat insoles (without arch) had a significant effect on increasing the function of patients with rheumatoid arthritis [33].

The results of the present study were consistent with the studies mentioned above. In the prefabricated insole of the present study, due to the presence of the longitudinal-internal arch and the inclusion of the entire surface of the foot, it causes the distribution of force on a larger surface, followed by removal of pressure from the heel area (which is the source of the sole). In addition to all the items mentioned in the prefabricated insole, the softer foam in the substrate can be mentioned in the custom insole made by the patients in this case, which creates a better fit.

Regarding the quality of life of plantar fasciitis patients, Ross et al. measured the effect of insoles and night splints in people with plantar fasciitis and in both groups, an improvement in quality of life was observed [4]. In the Burns study, orthoses improved the quality of life of people with pes cavus and there was a significant difference in the quality of life variable between the group that used orthoses and the control group [13]. In his study, Burns compared a study group that had a custom insole made using the CAD-CAM system with another group that did not have an insole (a simple placebo insole) and therefore, it can be said that it is similar to the present study and their results are in one direction.

Conclusion

Both insoles were effective in improving all subscales of the FAOS questionnaire (pain, symptoms, daily activities, sports and leisure activities, and quality of life) after use for six weeks, but comparing the two insoles numerically, despite The custom insole showed more improvement using the CAD-CAM device than the conventional insole in most
subscales, but there was no statistically significant difference between the two insoles and both insoles improved foot and ankle outcomes. Therefore, due to the lack of significant differences between the two types of insoles and their effectiveness in improving the variables mentioned in the treatment of patients, this study suggests the use of both types of insoles in medical centers.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the University of Social Welfare and Rehabilitation Sciences Medical Center. The principles are considered in this article. The participants were informed about the purpose of the research and its implementation stages; they were also assured about the confidentiality of their information; moreover, they were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

The present paper was extracted from the MSc. thesis of the first author, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, University of Social Welfare and Rehabilitation Sciences.

Authors' contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.
مقایسه تأثیر کفی سفارشی با استفاده از CAD-CAM و کفی مرسوم پزشکی های پرسش نامه FAOS در افراد مبتلا به اهتمام فاشیای کف پا

پژوهش نامه و کفی مرسوم بر زیرمقیاس های پرسش نامه FAOS

یکی از دلایل عمدهی که بر درد پا تأثیرگذار است، پلانتارفاشیاتیس (التهاب فاشیای کف پا) است. این عارضه موجب درد و خشکی در اهداف ناحیه فاشیای کف پا می‌شود. استفاده از کفی های طبی درمان رایج این عارضه است. هدف از مطالعه حاضر مقایسه تأثیر کفی سفارشی ساز و کفی مرسوم بر درد، علائم، فعالیت روزانه، فعالیت ورزشی و تفریحی و کیفیت زندگی افراد مبتلا به التهاب فاشیای کف پا است.

سال انجام: 1398

این پژوهش شبه تجربی روی چهارده بیمار مبتلا به عارضه پلانتارفاشیاتیس (پنج زن و نه مرد) با میانگین سنی 45-25 پژوهش: دارا بودن سن بودند. همچنین بیماران در صورت عدم استفاده از کفی در طول مطالعه و ورزشکاران حرفه ای از این پژوهش خارج شدند. بیماران مورد مطالعه به روش غیراحتمالی ساده (درسترس) انتخاب شدند و به صورت تصادفی به دو گروه هفت نفره استفاده از کفی سفارشی ساز با دستگاه CAD-CAM و گروه کفی مرسوم (پیش ساخته) تقسیم بندی شدند. از ابتدا مشخص شد به صورت یکی درمیان به مراجعه‌کنندگان، دو نوع کفی مطالعه داده شد و سیزده بیمار دیگر به همین ترتیب کفی دریافت کردند و به دو گروه تقسیم شدند.

در مرحله قبل از مداخله، تفاوت معناداری در میزان درد، علائم، فعالیت های روزانه، فعالیت های ورزشی و تفریحی و کیفیت زندگی بیماران یافته نشدند. هر دو گروه بیماران، پرسش نامه را قبل از استفاده از کفی و مجدداً پس از مدت شش هفته استفاده از کفی، تکمیل کردند. اسکن فشاری پا از هر دو گروه بیماران توسط دستگاه EMED foot pressure system گرفته شد. کفی سفارشی ساز با استفاده از نرم‌افزار راینو کراس طراحی شد و سپس با استفاده از دستگاه CNC تراشیده شد. در گروه کفی مرسوم، بیماران کفی همچنان از جنس پلی اورتان را که بر اساس اندازه‌گیری طولی از پای هر فرد بودند دریافت گردند. بیماران پس از شش هفته مجدداً پرسش نامه را پر کردند. نمره دهی پرسش نامه توسط فرمول اختصاص یافته به پرسش نامه انجام گرفت. تجزیه و تحلیل نمرات پرسش نامه توسط نرم‌افزار SPSS 22 انجام شد.

مطالعه نشان داد تفاوت معناداری در کیفیت زندگی و کار و فعالیت روزانه در دو گروه نبود. دو گروه بیماران، چه در مرحله قبل از مداخله و چه پس از آن با توجه به نمرات پرسش نامه، که نشان می‌دهد که بیماران در دو گروه بهترین کیفیت زندگی و کار و فعالیت روزانه داشتند، تفاوتی در کیفیت زندگی و کار و فعالیت روزانه بین دو گروه مشاهده نشد.

کلیدواژه‌ها: التهاب فاشیای کف پا، کفی مرسوم، کفی سفارشی ساز با استفاده از CAD-CAM
در مطالعه، بررسی و با استفاده از تکنیک‌های تغییر فشار، فشار در ناحیه پاشنه یکی از نقاط پرخطر در افراد مبتلا به پلانتارفاشیاتیس مورد بررسی قرار گرفته است. هدف اصلی این مطالعه، کاهش فشار در ناحیه پاشنه برای افراد مبتلا به پلانتارفاشیاتیس می‌باشد.

در مطالعه تناوبی و غیرکاراته‌ای برای این عارضه موجود است که در مطالعات قبلی، تأثیر کفی سفارشی ساخت به روش کامپیوتر، یک روش معتبر برای درمان پلانتارفاشیاتیس می‌باشد. در این مطالعه، افراد مبتلا به پلانتارفاشیاتیس در دو گروه تقسیم شدند: گروه کنترل و گروه تحقیق.

در گروه کنترل، پد پاشنه و کفی پیش‌ساخته به کار برده شد. در گروه تحقیق، کف ساخته شده با استفاده از تکنیک CAD-CAM به کار برده شد. نتایج نشان داد که در گروه تحقیق، فشار در ناحیه پاشنه کاهش یافته است.

در مطالعه، با توجه به نتایج، کفی ساخته شده با استفاده از تکنیک CAD-CAM، بهترین نتایج را به‌دست امیزید. در نتیجه، این روش می‌تواند به عنوان یک روش کارکرده در درمان پلانتارفاشیاتیس مطرح شود.

در مطالعه نهایی، نتایج نشان داد که در گروه کفی ساخته شده با استفاده از تکنیک CAD-CAM، فشار در ناحیه پاشنه کاهش یافته است. بنابراین، این روش می‌تواند به عنوان یک روش کارکرده در درمان پلانتارفاشیاتیس مطرح شود.
از فاصله‌ای کیفی سازی با استفاده از CAD-CAM و گروف کیف مرسوم (پیچساخته) تشدید شد.

از قبل تجربه شد که که صورت پیکارمان به مراحل مختلف رنگ درونی و سطحی گرفته شده و سپس بیمار رگید به همین ترتیب کمی

265 تبلیغات فاشیای کف پایی

شماره 2. شماره 21

کفش بیماران توسط درمانگر، به هر دو گروه از بیماران گفته و جلوی پا دارای فضای مناسب باشد. تهیه کنند و پس از تأیید

از بیماران خواسته شد که پاها به یکدیگر ترکبندی شده و ارتفاع قوس طولی بین 25 و 30 میلی‌متر بود. پس از بررسی این

شرکت پایافناوران داده شد و همان طور که در

ogra-15.png

بیماران حرفه‌ای از جمله متخصصان، ورزشکاران و درمانگران به وسیله کامپیوتر راینوکراس

تصویر شماره 15.

عملکرد فعالیت در ورزشکاران و کیفیت زندگی آن‌ها در مطالعه

10. Foot and Ankle Outcome Scale

11. Tuberosity

پلاکت‌ارکتیزاسیون، تیستو پرپتک، طبق میکروهای ورود و

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.

بیمارانی با عارضه صافی پلانتارفاشیت توسط پژوهشگر، طبق میکروهای

مطالعه شدند. ملاک‌های ورود به پروتکل 120 درصد بود.

لیست شش مخاطب مشتری بالا از پژوهشگر این پروتکل پذیرفته شد.
در طول دوره مطالعه هفته ای دو بار پیگیری تلفنی توسط آزمونگر جهت اطمینان از استفاده بیماران از کف طبی انجام شد. پس از اتمام طول دوره درمان، مجدداً به بیماران پرسش نامه مذکور داده شد تا متغیرهای مورد بررسی را مجدداً گزارش کنند. سپس به محاسبه شاخص‌های پراکندگی میانگین و انحراف معیار افراد به دست آمده بود، وارد نرم‌افزار SPSS شدند. بعد از محاسبه شاخص‌های پراکندگی میانگین و انحراف معیار و تست‌های آزمون‌های شاپیرو ویلکاکسون برای ارزیابی داده‌ها استفاده شد.

یافته‌ها
مطالعه روی چهارده نفر مبتلا به التهاب فاشیای کف پایی درمانهای سفارشی ساخت CAD-CAM و کفی مرسوم بر روی پیشنهاد صورت گرفت. میانگین سن بیماران گروه کفی مرسوم ۴۰/۱۴ ± ۵/۹۸ بیماران گروه کفی سفارشی ساخت ۲۷/۰۴ ± ۲/۴۶ بود.

یافته‌ها	کفی سفارشی ساخت	کفی مرسوم
درد	۰/۰۱۸	۰/۰۱۸
علائم	۰/۰۲۸	۰/۰۲۸
فعالیت روزانه	۰/۰۱۸	۰/۰۱۸
فعالیت ورزشی و تفریحی	۰/۰۱۸	۰/۰۱۸
کیفیت زندگی	۰/۰۳۸	۰/۰۳۸

جدول 2: مقایسه امتیازات زیرمقیاس های FAOS قبل از و بعد از اعمال کفی در گروه‌های مختلف

یافته‌ها	کفی سفارشی ساخت	کفی مرسوم
درد	۰/۰۱۸	۰/۰۱۸
علائم	۰/۰۲۸	۰/۰۲۸
فعالیت روزانه	۰/۰۱۸	۰/۰۱۸
فعالیت ورزشی و تفریحی	۰/۰۱۸	۰/۰۱۸
کیفیت زندگی	۰/۰۳۸	۰/۰۳۸

نتایج آزمون‌های آماری ویلکاکسون و شاپیرو ویلکاکسون نشان داد که نتیجه‌های دو آزمون توضیحاتی در مورد معنی‌نامه‌ی داده‌ها بوده و کف‌های سفارشی ساخت و کف‌های مرسوم در مقایسه کافی با یکدیگر در نظر گرفته شد.
نتیجه مطالعه حاضر با نتیجه مطالعه برتر نیز همسبود [18] در مطالعه برتر بهبودی قابل توجهی درد در گروهی از بیماران مبتلا به عارضه کیووس ظاهر شد اما این مطالعه در مورد استفاده در افراد مبتلا به عارضه کیووس به طور کلی نتیجه مثبتی نداشت. درکی در مقایسه با دو گروه بعد از استفاده از CAD-CAM کفی‌ساز، بهبود مجزا در تنش‌بندی و تنش‌بندی درون‌پایی پد جلوی پد و ناحیه پاشنه و فعالیت ورزشی و تفریحی و کیفیت زندگی بیماران مبتلا به پلنتر فاشیئیس شد. تفاوتی در بهبود پیامدهای پا و مچ پا بین دو گروه در نظر گرفته می‌شود. نتیجه حاصل از مطالعه حاضر با نتیجه مطالعه بونانو و همکارانش همسو بود. بونانو و همکارانش بیان کردند کفی‌ساز به دلیل تماس کامل با کف پای بیمار موجب توزیع متناسب نیرو در سطح وسیع‌تری می‌شود و به عارضه کیووس دستگاه می‌شود. این مطالعه نیز معناداری در نتایج سطح معناداری قبل و بعد از مداخله از دو گروه نشان می‌داد. نتایج مطالعه حاضر با نتیجه مطالعه برنز نیز همسود بود. مطالعه برنز نیز گزارشی در درد در گروهی از بیماران مبتلا به عارضه کیووس نشان داد که کفی‌ساز نیز کافی به دلیل ایجاد متناسب‌ترین شکل وسیع‌تری در پد و به عارضه کیووس کمک می‌کند. این نتایج با نتایج مطالعه اولیویرا، مطالعه مشابه دیگری است که نتیجه آن کافی‌ساز در کنار پاشنه و فعالیت ورزشی و تفریحی و کیفیت زندگی بیماران مبتلا به پلنتر فاشیئیس بود.

سطح مطالعه قبل و بعد از مداخله	کافی‌ساز	کافی مرسوم
کلم مقاله قبل از مداخله	69/44	81/34
انحراف معیار	±14/25	±11/08
کلم مقاله بعد از مداخله	64/37	78/36
انحراف معیار	±17/08	±11/42
درد	0/017	0/018
علائم	47/96	59/18
انحراف معیار	±13/7	±7/95
فعالیت های روزانه	71/18	87/39
انحراف معیار	±18/94	±11/42
فعالیت ورزشی و تفریحی	49/29	73/57
انحراف معیار	±30/74	±14/35
کیفیت زندگی	32/14	45/54
انحراف معیار	±15/06	±11/81

[18] Cavus
[19] Metatarsal Pad

17. Fore Foot
18. Longitudinal Arch Support
19. Strain Force
در این مطالعه، کفی سفارشی ساخت در هنگام راه رفتن باعث کاهش درد بیشتری نسبت به کفی پیش ساخته شد. نویسنده اذعان داشت این تفاوت کاهش درد در کفی مربوط به سفارشی بودن آن طبق ارتفاع قوس طولی پای بیمار و استفاده از ماده EVA بود که کمتر میزان براساس تجربیات کلیپیدی نرخ را از سایر مومه‌ها و اثر بیشتری از آن گزارش نمی‌کرد [4].

نتایج حاصل از مطالعه اولیویرا همسو با مطالعه حاضر است با این تفاوت که کفی سفارشی ساخت ذکرشده باعث کاهش درد بیشتری از پاشنه در هنگام راه رفتن بوده است. کفی سفارشی ساخت مطالعه اولیویرا به صورت قالب گیری دستی و بر اساس ارتفاع قوس طولی پای بیمار ساخته شده بود. در مورد کفی سفارشی ساخت مطالعه حاضر که با روش کامپیوتر ساخته شده بود، حدس می‌زنیم دقت آن از روش CAD-CAM دستی در این مورد کمتر باشد.

نتیجه مطالعه حاضر با مطالعه پفیفر، ناهمسوب بود، در مطالعه گلن پاشنه سیلیکونی به عنوان کفی پیش ساخته، موجب کاهش درد بیشتری از منطقه پاشنه نسبت به کفی سفارشی ساخت این مطالعه که از جنس پلی‌پروپیلن بود، شد. نویسنده بیان کرده بود که اگر در کفی سفارشی از مواد جاذب ضربه بیشتر استفاده می‌شد، ممکن بود بهتر از کفی پروپیلنی برای کاهش درد عمل می‌کرد.

در مطالعه، نویسنده دلیل برتری پاشنه سیلیکونی را استفاده از مواد نرم و جاذب ضربه آن می‌دانست و بیان کرد پروپیلن استفاده شده ماده سختی است. البته کفی سفارشی ساخت مطالعه و دارای شور کمتری نسبت به پلی‌پروپیلن EVA می‌باشد.

در زمینه فعالیت و ناتوانی شامل فعالیت‌های روزانه و فعالیت‌های ورزشی و تفریحی است. از لحاظ تأثیر و مقایسه ارتزها بر روی فعالیت‌های روزانه با این عنوان خاص تحقیقات محدودی انجام شده است. اما از جمله در مطالعه روس و همکارانش کفی سفارشی ساخت بهتری در درمان پلانتارفاشیاتیس گزارش شد و توانسته به سطح عملکرد افراد مبتلا به پلانتارفاشیاتیس ما گذشته و کفی پیش ساخته اختلاف معناداری وجود نداشت، در صورتی که قبل و بعد از استفاده از کفی در هر دو گروه برای بیماران در این زمینه نسبت به حالت عدم استفاده از کفی اختلاف معناداری مشاهده شد.

از لحاظ تأثیر و مقایسه ارتزها بر روی فعالیت‌های روزانه و ورزشی و تفریحی بیماران مبتلا به پلانتارفاشیاتیس، بین نتایج حاصل از این مطالعه که از این منظر می‌شود که قبل و بعد از استفاده از کفی در هر دو گروه برای بیماران در این زمینه نسبت به حالت عدم استفاده از کفی اختلاف معناداری مشاهده شد. اما از این منظر معناداری باعث کاهش درد بیشتری از منطقه پاشنه و بهبود عملکرد و ناتوانی کیووس را بالاتر ببرد در مطالعه برنز و همکارانش نیز به این نتیجه رسیدند که ارتزهای (بدون قوس) بر افزایش عملکرد فنکشنال نسبت به کفی صاف تأثیر معناداری داشته‌اند. در مطالعه روزنبرگ و همکارانش، کفی سفارشی ساخت و مراقبت ورزشی باعث افزایش عملکرد و توانایی در بیماران مبتلا به پلانتارفاشیاتیس شد.

از لحاظ پدیده‌سنجی و حساسیت بالاتر می‌باشد. بهترین کفی سفارشی ساخت با استفاده از CAD-CAM و کفی مرخوم برای داخلی پا می‌باشد. از جمله در مطالعه برنز و همکارانش نیز به این نتیجه رسیدند که ارتز سفارشی ساخت توانسته بود سطح عملکرد افراد مبتلا به پلانتارفاشیاتیس را بالاتر ببرد. در مطالعه شگری و همکارانش نیز به این نتیجه رسیدند که ارتزهای (بدون قوس) بر افزایش عملکرد فنکشنال نسبت به کفی صاف تأثیر معناداری داشته‌اند. تأثیر پیوسته‌سنجی و حساسیت بالاتر می‌باشد. بهترین کفی سفارشی ساخت با استفاده از CAD-CAM و کفی مرخوم برای داخلی پا می‌باشد.
تیتالگری

FAOS در مطالعه ساخت مطالعه، حافزه‌های تهیه‌کننده مورد گسترش می‌گذارند.

در مورد کشفیات ویژه‌های یکی از اصلی‌ترین ویژگی‌های عالی گرفته شده. به‌طور کلی، در مطالعات مختلف ذکر شده در این مبحث، نباید این حقیقت را از نظر دور داشت که تأثیر ارتزهای پا در حالت‌های مختلف و در حین پیاده‌رفتن مورد ارزیابی قرار گرفته. مطالعات مختلف در مطالعات مختلف و نیز بررسی‌های مختلف در آزمون‌های مختلف از جمله مطالعات مختلف در کشف یا جنس‌های مختلف مورد استفاده قرار گرفته که از دستگاه‌های مختلف مورد استفاده C

نتیجه‌گیری

FAOS در مطالعه، حافزه‌های تهیه‌کننده مورد گسترش می‌گذارند.

در مورد کشفیات ویژه‌های یکی از اصلی‌ترین ویژگی‌های عالی گرفته شده. به‌طور کلی، در مطالعات مختلف ذکر شده در این مبحث، نباید این حقیقت را از نظر دور داشت که تأثیر ارتزهای پا در حالت‌های مختلف و در حین پیاده‌رفتن مورد ارزیابی قرار گرفته. مطالعات مختلف در مطالعات مختلف و نیز بررسی‌های مختلف در آزمون‌های مختلف از جمله مطالعات مختلف در کشف یا جنس‌های مختلف مورد استفاده قرار گرفته که از دستگاه‌های مختلف مورد استفاده C

یکی از اصول اخلاقی

این پژوهش از مرکز درمانی دانشگاه علوم بهزیستی و توانبخشی انجام شد. این پژوهش در مورد مطالعات مختلف متغیرهای مختلف و نیز بررسی‌های مختلف در آزمون‌های مختلف از جمله مطالعات مختلف در کشف یا جنس‌های مختلف مورد استفاده قرار گرفته که از دستگاه‌های مختلف مورد استفاده C

حامي مالی

این مطالعه از پایان نامه کارشناسی ارشد نویسنده اول در گروه ارتز و توابلگری دانشگاه علوم بهزیستی و توانبخشی D

مشارکت نویسندگان

تمامی نویسندگان در تگذیل این مقاله شرکت داشتند.

تعارض منافع

بنابر اظهار نویسندگان، این مقاله تعارض منافع ندارد.
References

[1] Healey K, Chen K. Planter fasciitis: Current diagnostic modalities and treatments. Clinics in Podiatric Medicine and Surgery. 2010; 27(3):369-80. [DOI:10.1016/j.cepms.2010.03.002] [PMID]

[2] Thomas JL, Christensen JC, Kravitz SR, Mendicino RW, Schu- Roos E, Engström M, Söderberg B. Foot orthoses for the treat- ment of plantar fasciitis. The Journal of Foot and Ankle Surgery. 2010; 49(3):S1-S19. [DOI:10.1053/j.jfas.2010.01.001] [PMID]

[3] Nalha’ei Ms, Tahmasbi MN, Karimlou M, Vahab-Kashani R. [Comparison of three orthoses effects on plantar fasciitis (Persian)]. Archives of Rehabilitation. 2008; 9(3):8-15. https://www.researchgate.net/publication/

[4] Hawke F, Burns J, Radford JA, Du Toit V. Custom made foot orthoses for the treatment of foot pain. The Cochrane Library; 2008; 9(3):56-62. [DOI:10.1002/14651858.CD006801.pub2] [PMID]

[5] Roos E, Engström M, Söderberg B. Foot orthoses for the treatment of plantar fasciitis. Foot & Ankle International. 2006; 27(8):606-11. [DOI:10.1177/107110070602700807] [PMID]

[6] Martin JE, Hosch JC, Goforth WP, Murff RT, Lynch DM, Odom RD. Mechanical treatment of plantar fasciitis: A prospective study. Journal of the American Podiatric Medical Association. 2001; 91(2):55-62. [DOI:10.7547/87507315-91-2-55] [PMID]

[7] Chia JK, Suresh S, Kuah A, Ong JL, Phua JM, Seah AL. Comparison of plantar pressure patterns between corrective orthotics, formthotics, bone spur pads and flat insoles in patients with chronic plantar fasciitis. Annals Academy of Medicine Singapore. 2009; 38(10):869-75. https://dl.wprx1x7z.cloudfront.net/34666914/V38N10p869.pdf

[8] Bonanno DR, Landorf KB, Menz HB. Pressure-relieving prop- erties of various shoe inserts in older people with plantar heel pain. Gait & Posture. 2011; 33(3):356-62. [DOI:10.1016/j.gaitpost.2010.12.009] [PMID]

[9] Oliveira HA, Jones A, Moreira E, Jennings F, Natour J. Effectiveness of total contact insoles in patients with plantar fasciitis. The Journal of Rheumatology. 2015; 42(5):870-8. [DOI:10.1181/j.rheum.140429] [PMID]

[10] Oliveira HA, Jones A, Moreira E, Jennings F, Natour J. Effectiveness of total contact insoles in patients with plantar fasciitis. The Journal of Rheumatology. 2015; 42(5):870-8. [DOI:10.3899/jrheum.140429] [PMID]

[11] Chen WP, Ju CW, Tang FT. Effects of total contact insoles on the plantar stress redistribution: A finite element analysis. Clinical Biomechanics. 2003; 18(6):S17-S24. [DOI:10.1053/clinbiomech.2003.06.009] [PMID]

[12] Bus SA, Ulbrecht JS, Cavanagh PR. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. Clinical Biomechanics. 2004; 19(6):629-38. [DOI:10.1016/j.clinbiomech.2004.02.010] [PMID]

[13] Mueller MJ, Lott DJ, Hastings MK, Commean PK, Smith KE, Pilgram TK. Efficacy and mechanism of orthotic devices to unload metatarsal heads in people with diabetes and a history of plantar ulcers. Physical Therapy. 2006; 86(6):833-42. [DOI:10.1093/ptj/86.6.833] [PMID]

[14] Anggoro PK, Tavasijirapulun M, Jamari J, Bayuono A, Barono B, Avelin M. Computer-aided reverse engineering system in the design and production of orthotic insole shoes for patients with diabetes. Cogent Engineering. 2018; 5(1):1470916. [DOI:10.1080/23319162.2018.1470916]

[15] Yurt Y, Şener G, Yakut Y. The effect of different foot orthoses on pain and health related quality of life in painful flexible flat foot: a randomized controlled trial. European Journal of Physical and Rehabilitation Medicine. 2019; 55(1):55-102. [DOI:10.23736/S1973-9087.18.05108-8] [PMID]

[16] Burns J, Crosbie J, Ouvrier R, Hunt A. Effective orthotic therapy for the painful cavus foot: A randomized controlled trial. Journal of the American Podiatric Medical Association. 2006; 96(3):205-11. [DOI:10.7547/0960205] [PMID]

[17] Ki S, Leung A, Li A. Comparison of plantar pressure distribution patterns between foot orthoses provided by the CAD-CAM and foam impression methods. Prosthetics and Orthotics International. 2008; 32(3):356-62. [DOI:10.1080/0309364080216159] [PMID]

[18] Fong DTP, Pang KY, Chung MML, Hung ASL, Chan KM. Evaluation of combined prescription of rocker sole shoes and custom-made foot orthoses for the treatment of plantar fasciitis. Clinical Biomechanics. 2012; 27(10):1072-7. [DOI:10.1016/j.clinbiomech.2012.08.003] [PMID]

[19] Prichasuk S, Subhadradandhu T. The relationship of pes planus and calcaneal spur to plantar heel pain. Clinical Orthopaedics and Related Research. 1994; (306):192-6. [PMID]

[20] Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Academic Emergency Medicine. 2001; 8(12):1153-7. [DOI:10.1111/j.1553-2712.2001.dth0132.x] [PMID]

[21] Hong WH, Lee YH, Chen HC, Pei YC, Wu CY. Influence of heel height and shoe insert on comfort perception and biomechanical performance of young female adults during walking. Foot & Ankle International. 2005; 26(12):1042-8. [DOI:10.1177/1071100705026 01208] [PMID]

[22] Nagahban H, Mazaheri M, Salavati M, Sohani SM, Askari M, Fanian H, et al. Reliability and validity of the foot and ankle outcome score: A validation study from Iran. Clinical Rheumatology. 2016; 29(5):479-86. [DOI:10.1007/s10067-009-1344-3] [PMID]

[23] Huang P, Liang M, Ren F. Assessment of long-term badminton experience on foot posture index and plantar pressure distribution. Applied Biomechanics and Biomechanics. 2019; 2019:8082967. [DOI:10.1155/2019/8082967] [PMID] [PMCID]

[24] Guldemond N, Jeffers P, Schaper N, Sanders A, Nieman F, Willems P, et al. The effects of insole configurations on forefoot plantar pressure and walking convenience in diabetic patients with neuropathic feet. Clinical Biomechanics. 2007; 22(1):81-7. [DOI:10.1016/j.clinbiomech.2006.07.026] [PMID]

[25] Lin TL, Sheen HM, Chung CT, Yang SW, Lin SY, Luo HJ, et al. The effect of removing plugs and adding arch support to foam based insoles on plantar pressures in people with diabetic peripheral neuropathy. Journal of Foot and Ankle Research. 2013; 6(1):29. [DOI:10.1186/1757-1146-6-29] [PMID] [PMCID]
[26] Hastings MK, Mueller MJ, Pilgram TK, Lott DJ, Commean PK, Johnson J.E. Effect of metatarsal pad placement on plantar pressure in people with diabetes mellitus and peripheral neuropathy. Foot & Ankle International. 2007; 28(1):84-8. [DOI:10.3113/FAI.2007.0015] [PMID]

[27] Luke BD. Plantar fasciitis: A new experimental approach to treatment. Medical Hypotheses. 2002; 59(1):95-7. [DOI:10.1016/S0306-9877(02)00120-2]

[28] Menz HB, Zammit GV, Landorf KB, Munteanu SE. Plantar calcaneal spurs in older people: Longitudinal traction or vertical compression? Journal of Foot and Ankle Research. 2008; 1(1):7. [DOI:10.1186/1757-1146-1-7] [PMID] [PMCID]

[29] Gross MT, Byers JM, Kraft JI, Lackey EJ, Melton KM. The impact of custom semirigid foot orthotics on pain and disability for individuals with plantar fasciitis. Journal of Orthopaedic & Sports Physical Therapy. 2002; 32(4):149-57. [DOI:10.2519/jospt.2002.32.4.149] [PMID]

[30] Kitaoka HB, Luo ZP, An KN. Analysis of longitudinal arch supports in stabilizing the arch of the foot. Clinical Orthopaedics and Related Research. 1997; (341):250-6. [DOI:10.1097/00003086-199708000-00036]

[31] Kogler G, Solomonidis S, Paul J. Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clinical Biomechanics. 1996; 11(5):243-52. DOI:10.1016/0268-0033(96)00019-8

[32] Burns J, Croshie J, Hunt A, Ouvrier R. The effect of pes cavus on foot pain and plantar pressure. Clinical Biomechanics. 2005; 20(9):877-82. [DOI:10.1016/j.clinbiomech.2005.03.006] [PMID]

[33] Pfeffer G, Bacchenti P, Deland J, Lewis A, Anderson R, Davis W, et al. Comparison of custom and prefabricated orthoses in the initial treatment of proximal plantar fasciitis. Foot & Ankle International. 1999; 20(4):214-21. [DOI:10.1177/107110079902000402] [PMID]

[34] Nitz H, Reichert P, Römling H, Mühlaupt R. Influence of compatibilizers on the surface hardness, water uptake and the mechanical properties of poly (propylene) wood flour composites prepared by reactive extrusion. Macromolecular Materials and Engineering. 2000; 276(1):51-8. [DOI:10.1002/(SICI)1439-2054(20000301)276:13.0.CO;2-Z]

[35] Drake M, Bittenbender C, Boyles RE. The short-term effects of treating plantar fasciitis with a temporary custom foot orthosis and stretching. Journal of Orthopaedic & Sports Physical Therapy. 2011; 41(4):221-31. [DOI:10.2519/jospt.2011.3348] [PMID]

[36] Rasenberg N, Fuit I, Poppe E, Kruijsen-Terpstra A, Gorter K, Rathleff M, et al. The STAP-study: The (cost) effectiveness of custom made orthotic insoles in the treatment for plantar fasciopathy in general practice and sports medicine: Design of a randomized controlled trial. BMC Musculoskeletal Disorders. 2016; 17(1):31. [DOI:10.1186/s12891-016-0889-3] [PMID] [PMCID]

[37] Novak P, Burger H, Tornsic M, Marineck C, Vidmar G. Influence of foot orthoses on plantar pressures, foot pain and walking ability of rheumatoid arthritis patients—a randomised controlled study. Disability and Rehabilitation. 2009; 31(8):638-45. [DOI:10.1080/09638280802239441] [PMID]