SPECTROPOLARIMETRY CONFIRMS CENTRAL POWERING IN A Lyα NEBULA AT z = 3.09

Melanie Beck1, Claudia Scarlata1, Matthew Hayes2,3,4, Mark Dijkstra5, and Terry J. Jones1

1 Minnesota Institute for Astrophysics, School of Physics and Astronomy, University of Minnesota, 116 Church Street, Minneapolis, MN 55455, USA; beck@astro.umn.edu
2 Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
3 Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse, France
4 CNRS, IRAP, 14 Avenue Edouard Belin, F-31400 Toulouse, France
5 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo, Norway

Received 2015 March 24; accepted 2016 January 3; published 2016 February 17

ABSTRACT

We present a follow-up study to the imaging polarimetry performed by Hayes et al. on LAB1 in the SSA22 protocluster region. Arguably the most well-known Lyα “blob,” this radio-quiet emission-line nebula likely hosts a galaxy that either is undergoing significant star formation or hosts an active galactic nucleus, or both. We obtain deep, spatially resolved spectropolarimetry of the Lyα emission and detect integrated linear polarization of 9%−13% ± 2%−3% at a distance of approximately 15 kpc north and south of the peak of the Lyα surface brightness with polarization vectors lying tangential to the galactic central source. In these same regions, we also detect a wavelength dependence in the polarization that is low at the center of the Lyα line profile and rises substantially in the wings of the profile. These polarization signatures are easily explained by a weak outflowing shell model. The spectral dependence of the polarization presented here provides a framework for future observations and interpretations of the southern portion of LAB1 in that any model for this system must be able to reproduce this particular spectral dependence. However, questions still remain for the northernmost spur of LAB1. In this region we detect total linear polarization of between 3% and 20% at the 5% significance level. Simulations predict that polarization should increase with radius for a symmetric geometry. That the northern spur does not suggests either that this region is not symmetric (which is likely) and exhibits variations in columns density or that it is kinematically distinct from the rest of LAB1 and powered by another mechanism altogether.

Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift

1. INTRODUCTION

First discovered over a decade ago during the course of deep optical narrowband imaging (Francis et al. 1996; Steidel et al. 2000), Lyα “blobs” (LABs) are large, rare, gaseous nebulae in the high-redshift universe detectable by their extensive Lyα luminosity. Found predominantly in regions of galaxy overdensities (Matsuda et al. 2004; Palunas et al. 2004; Prescott et al. 2008; Yang et al. 2009), these objects are some of the most promising candidates for the study of ongoing galaxy formation (Mori & Umemura 2006). Displaying a range of sizes from tens to hundreds of kiloparsecs and luminosities spanning ~10^{43}−10^{44} erg s^{-1}, LABs are reminiscent of high-redshift radio galaxies, yet most are not associated with strong radio sources (Saito et al. 2006). Instead, it seems that LABs are singularly associated with galaxies of one variety or another, as even the famed Nilsson’s Blob (Nilsson et al. 2006), widely cited as the most overt example of a hostless LAB, is now believed to be associated with an active galactic nucleus (AGN; Prescott et al. 2015). Other LABs have been associated with an assortment of galaxy populations, including Lyman break galaxies (LBGs; Matsuda et al. 2004), luminous infrared and submillimeter galaxies (Geach et al. 2005, 2007; Yang et al. 2012), unobscured and obscured quasars (QSOs; Bunker et al. 2003; Basu-Zych & Scharf 2004; Weidinger et al. 2004; Smith et al. 2009), and starbursting galaxies (Scarlata et al. 2009; Colbert et al. 2011).

Though most LABs seem to have in common a host galaxy or galaxies, the debate over the powering mechanism of the extended Lyα emission remains unresolved in part owing to the fact that many of these galaxies seem unable to produce sufficient ionizing flux to light up the surrounding medium (Matsuda et al. 2004; Smith & Jarvis 2007). In addition to photoionization from luminous AGNs and/or young stars as a power source (Haiman & Rees 2001; Jimenez & Haiman 2006; Geach et al. 2009; Cantalupo et al. 2012), other possible mechanisms include mechanical energy injected by supernova winds during powerful starbursts (Taniguchi & Shiory 2000; Scarlata et al. 2009) and radiative cooling (Haiman et al. 2000; Fardal et al. 2001; Dijkstra & Loeb 2009; Faucher-Giguère et al. 2010; Rosdahl & Blaizot 2012). In reality, it is more than likely that LABs are powered by multiple mechanisms simultaneously (Furlanetto et al. 2005). Theoretical studies have shown that polarization of Lyα photons can be induced by scattering, thus providing a potential diagnostic to probe these various powering mechanisms (Lee & Ahn 1998; Loeb & Rybicki 1999; Rybicki & Loeb 1999; Dijkstra & Loeb 2008).

In particular, we focus our attention on a giant LAB (dubbed LAB1) in the SSA22 protocluster region first discovered by Steidel et al. (2000). This nebula is one of the most well studied, with observations ranging from optical to X-ray. LAB1 is known to be loosely associated with an LBG (C11; Steidel et al. 2000; Matsuda et al. 2004), though the peak Lyα surface brightness (SB) is more likely associated with an 850 μm source (Geach et al. 2014) with a weak radio counterpart (Chapman et al. 2004), as well as associated detections in the near-infrared (NIR; Geach et al. 2007), all suggestive of a dust-obscured star-forming galaxy leaking Lyα photons, which interact with the surrounding medium. Deep integral-field spectroscopy of the Lyα emission has been presented by Weijmans et al. (2010) supporting this conclusion.
for the brightest regions of LAB1, though they suggest that this mechanism is less promising in regions of lower Lyα SB. Additionally, McLinden et al. (2013) perform long-slit NIR spectroscopy of portions of LAB1, detecting [O iii] emission in the LBGs C15 and C11 and thus determining their systemic velocity. Hayes et al. (2011, hereafter H11) perform narrow-band imaging polarimetry and report low polarization in the central region, rising to $P = 11.9 \pm 2\%$ within a radius of 7" (45 kpc physical). Coupled with tangential polarization vectors around the central region, they conclude that their observations are consistent with powering from an obscured galaxy, resulting in scattered Lyα photons by H1.

Owing to the observational expense involved, polarization measurements of spatially extended Lyα emission have so far been attempted only three times. In addition to the work of H11, Prescott et al. (2011) present narrowband imaging polarimetry of a LAB associated with a radio-quiet galaxy at $z = 2.66$, though polarization was not detected. Humphrey et al. (2013) present the spectropolarimetry of the gas surrounding the $z = 2.34$ radio galaxy TXS 0211−122 and report low polarization centrally, rising to $P = 16.4\% \pm 4.6\%$ in some parts of the nebula, and they conclude that at least a portion of the nebula is powered by the scattering of Lyα photons produced by the galaxy within. In this paper we present a follow-up to H11 with the first spectropolarimetric measurement of a radio-quiet LAB. In Section 2 we discuss Lyα radiative transfer, scattering, and polarization basics. In Section 3 we discuss the observations and data analysis. Our methods and initial results are presented in Section 4, and in Section 5 we present a discussion of our results in the context of recent observational work. Finally, in Section 6 we discuss the future of polarization as a diagnostic tool in relation to upcoming space-based polarimeters.

2. Lyα POLARIZATION BASICS

Lyα polarization requires that photons be scattered, imbuing them with a preferential direction or impact angle. Localized (in situ) production of Lyα photons, from either stars or gas, is not expected to have significant polarization as these photons will either not scatter sufficiently or have no preferential orientation. In this section we briefly review the necessary physics behind generating a significant Lyα polarization signal.

The detection of a significant polarization fraction of Lyα emission depends on two crucial factors: wing versus resonant scattering and Doppler boosting by thermal atoms in the surrounding medium. Lyα is the transition between the first excited and ground states of hydrogen and is a resonant transition, a doublet consisting of two fine-structure lines: $1S_{1/2} \rightarrow 2P_{1/2}$ and $1S_{1/2} \rightarrow 2P_{3/2}$. The latter transition can exhibit polarization, while the former cannot, as scattering through this transition does not retain information on the scattering angle, thus producing an isotropized photon. Scattering “near” this doublet is called resonant or core scattering and has been shown to be a superposition of Rayleigh and isotropic scattering, producing a minimum level of polarization (Brandt & Chamberlain 1959; Brasken & Kyrola 1998). In most astrophysical circumstances Lyα undergoes this type of scattering and the Lyα photons are repeatedly absorbed and re-emitted until they either are destroyed by dust or escape the surrounding neutral medium. However, thermal motions within the gas cause “partially” coherent scattering, where the absorbed and emitted photons are equal only in the rest frame of the scattering atom. To the outside observer, the Lyα photons are Doppler boosted with respect to the scattering atom and thus perform a random walk in both frequency and physical space (Neufeld 1990; Loeb & Rybicki 1999). This can cause the Lyα photons to scatter in the wing of the profile, where it has been shown that the phase function and degree of polarization are qualitatively consistent with pure Rayleigh scattering (Stenflo 1980). Furthermore, Stenflo (1980) has shown that wing scattering can produce three times more polarization than resonant scattering. Thus, photons scattering in the wing of the profile are those that are most highly polarized and that see the lowest optical depth in the surrounding medium, enabling them to escape preferentially.

Theoretical predictions have been made by Dijkstra & Loeb (2008) for the expected amount of polarization in the Lyα line for various astrophysical situations. They explore both an expanding shell and a collapsing cloud. The expanding shell is a simple model of backscattering off a galactic outflow and predicts polarization to increase with radial distance from the central source with total Lyα polarization as high as 40%, depending on the assumed column density and velocity of the outflow. Such large values of polarization can be understood owing to the kinematics of the gas. Photons scattering off the “back” of the expanding shell are quickly shifted out of resonance with the gas and into the wing of the line profile, thus allowing many to escape after a single wing scattering.

Similar levels of total polarization ($p \sim 35\%$) are expected in the case of cooling radiation from a collapsing, optically thick gas cloud, with the polarization again increasing as a function of radius from the central source owing to photons emitted over a spatially extended region within the cloud.

In both cases, detecting a high level of polarization through narrowband imaging polarimetry would be able to rule out in situ production of Lyα photons. However, imaging polarimetry alone cannot distinguish between outflows or inflows as both predict similar levels of polarization and increasing polarization as a function of radius from the central source. Instead, the frequency dependence of Lyα polarization is required. For the case of an outflowing thin shell, Dijkstra & Loeb (2008) predict that Lyα polarization will increase redward of the line center. This is because the redder Lyα photons appear farther from resonance in the frame of the gas and scatter less, thus achieving higher levels of polarization. In fact, Dijkstra & Loeb (2008) state that this frequency dependence can be interpreted as a “fingerprint” for outflows and predict that Lyα polarization could be as high as $\sim 60\%$ in the reddest part of the line profile. In stark contrast, polarization increases blueward of line center for a collapsing cloud. Thus, the frequency dependence of Lyα polarization can also constrain the kinematic structure of the surrounding gas.

3. OBSERVATIONS, REDUCTION, AND CALCULATIONS

We now turn our attention to the spectropolarimetry of LAB1. Hayes et al. (2011) present imaging polarimetry of this nebula in which they find significant polarization increasing as a function of radius from the point of brightest Lyα SB as calculated in Voronoi bins. Furthermore, they find polarization vectors that lie tangentially around this central point and conclude that LAB1 is indeed powered by a bright central
galaxy obscured from our line of sight. In this portion of the paper we present follow-up spectropolarimetry in order to confirm and further probe the kinematics of this enigmatic object. In this section we discuss the observations and data reduction methods, as well as the polarization and error calculations performed.

3.1. Observations

We choose as our target one of the largest known Lyα blobs located in the SSA22 protocluster region at $z = 3.09$ (see Steidel et al. 2000). Dubbed LAB1, this object was observed over the course of five consecutive half nights from 2010 October 5 to 9, using the FOCal Reducer and low dispersion Spectrograph (FORS2) (Appenzeller et al. 1998) instrument mounted on the Antu (UT1) node of the Very Large Telescope European Southern Observatory (ESO). The first stage of the dedicated dual-beam polarization optics is the introduction of a strip mask designed to avoid overlapping on the CCD of the two beams of polarized light. Six multi-object spectroscopy (MOS) slits, each 1" wide and 20" long, are then positioned over the objects of interest. The light is passed through a super-achromatic half-wave plate (HWPM) retarder mosaic (RET2A +5), which rotates the angle of the polarized light. We adopt the standard four angles for unambiguous recovery of the $Q$ and $U$ Stokes parameters: $0^\circ$, $22.5^\circ$, $45^\circ$, and $67.5^\circ$. The rotated beam is subsequently passed through a Wollaston prism ($WOLL_34+13$), which splits the randomly polarized and unpolarized light into two orthogonal, linearly polarized outgoing beams, arbitrarily denoted the "ordinary" (ord) and "extraordinary" (ext) beams. Finally, the beams are passed through a prism dispersion element (GRISM_1400V +18) with a central wavelength of 5200 Å ($\sim$1271 Å rest frame), spectral range of 4560–5860 Å, and dispersion of 0.63 Å pixel$^{-1}$. The spectral resolution is approximately 2100 with our 1" slit width. This produces simultaneous ord and ext spectra, which are then projected onto the CCD. Thus, each frame consisted of six spectra: three slits contained only sky, two contained stars that were used in the alignment process (see below), and one was positioned over LAB1. We observed LAB1 at a position angle of $-3.09^\circ$ in the standard $N = 0^\circ$–$E = 90^\circ$ reference frame.

Throughout the course of each night the sequence of four HWP position angles was observed repeatedly, with two full sequences being completed each night. Integration times were 1800 s for each HWP position, with the exception of the first night, where each exposure had 1600 and 2000 s of integration time per HWP position for the first and second sequences, respectively. Thus, at each retarder position angle we obtain a total integration time of 18,000 s.

The entirety of the observing time was classified as clear or photometric with no clouds present on any given night. Since the ord and ext beams are obtained simultaneously, deviations from photometricity would anyway have no impact on the determination of the Stokes parameters. Observations were taken around the new moon in order to minimize the sky background at bluer wavelengths, with moonrise not occurring until after observations were complete each night. Because we observe LAB1 with constant position angle, atmospheric dispersion will vary with airmass over the course of the exposure time. Airmass ranged from 1.1 to 1.53 and was thus well within the FORS instrument’s atmospheric dispersion corrector to compensate. The bulk of the 20 hr of observation time experienced astronomical seeing, which varied between 0.5 and 1.0 arcsec with median seeing at $\sim$0.75. There were three observations that experienced seeing as high as 1.7". These were excluded from the following analysis, although their inclusion does not significantly alter our results—polarization fractions varied only by a few percent. We thus obtain a total of 37 individual observations for a total of 12,600 s of integration.

3.2. Data Reduction

The initial steps of data reduction were carried out in the standard manner for spectroscopic observations. Individual frames were bias subtracted. Master flat frames were created from several dome flats using EsoRex, an ESO recipe execution tool, and applied to individual frames to correct for pixel-to-pixel variations. Each frame was then normalized by exposure time. Cosmic rays were thoroughly removed using L.A. Cosmic (van Dokkum 2001). To account for small variations in the spatial direction during observing, frames were aligned using the shift_sub function in IDL, where the pixel shift was calculated as the average of fitted Gaussians of each stellar continuum in the slits above and below the science spectra. At this stage all the individual frames were split into their ord and ext beams (37 observations × 2 beams = 74 spectra). Only slits 3 (sky) and 4 (LAB1) were considered for the remainder of the analysis.

Each beam of the sky and LAB1 spectra was wavelength calibrated individually via an He–Ar arc lamp spectrum using NOAO/IRAF onedspec and twodspec packages. The identify-reidentify-fitcoords-transform sequence was used on the 2D spectra, yielding a fit rms typically between 0.05 and 0.09 Å. Sky subtraction was performed using the sky spectra in slit 3. For each ord and ext beam, the sky spectrum was median extracted, normalized to the spatial dimension of the 2D LAB1 spectra, and subtracted from the corresponding LAB1 beam. The residual sky background in the wavelength direction was modeled with a linear fit after masking the Lyα line. This was then subtracted from the spectra. This step was appropriate as there is no evidence of UV continuum according to our preliminary analysis of recently acquired MUSE data, which will be published in M. Hayes et al. (2016, in preparation). Atmospheric correction was applied using an extinction coefficient as a function of wavelength obtained from Patat et al. (2011) and the airmass at the midpoint of each observation. Spectra were then co-added using a mean combination with simple minmax rejection of the highest and lowest value at each pixel using IRAF’s imcombine. As mentioned previously, we exclude three observations from further analysis. These include one 45° observation and two 67.5° observations, whose delivered seeing was well above 1". We combine eight groups of 10 spectra to produce science frames for polarimetry (ord and ext at each of the four angles; see the Appendix). We sum each individual frame’s ord and ext beams for a total intensity spectrum for that frame yielding 40 frames. These are then combined by HWP

---

6 http://www.eso.org/sci/software/cpl/esorex.html
7 http://www.astro.yale.edu/~dokkum/lacosmic/
8 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
angle to create four science total intensity frames. Finally, a master total intensity frame is created by averaging these four frames together, as shown in Figure 1.

### 3.3. Polarization and Error Calculations

Polarization of Lyα is expected to be linear; thus, the decomposition of polarized light falls only into $Q$ and $U$ normalized Stokes parameters. The $V$ parameter represents circular polarization and is not expected for Lyα radiation. The fourth parameter $I$ is the total intensity, which is equal to the sum of the $\text{ord}$ and $\text{ext}$ beams. For each HWP position, $\theta$, the normalized flux difference, $F_\theta$, is defined as

$$F_\theta = \frac{f_\theta^\text{ord} - f_\theta^\text{ext}}{f_\theta^\text{ord} + f_\theta^\text{ext}}$$

where $f_\theta^\text{ord}$ and $f_\theta^\text{ext}$ are the flux in the ordinary and extraordinary beam, respectively, for a given $\theta$.

Once the four HWP angles have been obtained, $Q$, $U$, and $I$ relate to the observables by

$$q = \frac{Q}{I} = \frac{1}{2} F_{0.0} - \frac{1}{2} F_{45.0}$$

$$u = \frac{U}{I} = \frac{1}{2} F_{22.5} - \frac{1}{2} F_{67.5}.$$  

From these, the polarization fraction, $p$, and the polarization angle, $\chi$, can be calculated by

$$p = \sqrt{q^2 + u^2}$$

$$\chi = \frac{1}{2} \arctan \frac{u}{q}.$$  

However, we actually desire an estimate of the “true” polarization, $p_0$. When it is assumed that the Stokes parameters $q$ and $u$ are drawn from Gaussian distributions centered around the true values ($q_0$ and $u_0$), each with variance $\sigma$, it can be shown (e.g., Plaszczyński et al. 2014) that the distribution of the polarization follows the Rice distribution:

$$f_p(p) = \frac{p}{\sigma^2} e^{-\frac{p^2 + q^2}{2\sigma^2}} I_0 \left( \frac{pp_0}{\sigma^2} \right)$$

where $p_0$ is the true amplitude of the polarization and $I_0$ is the modified Bessel function of the zeroth order. Equation (3) is considered the naive estimator for this distribution and is known to be strongly biased at low polarization signal-to-noise ratio ($S/N_p$) in part because, in this regime, the Rice distribution can be approximated as a Rayleigh distribution, which is highly skewed to larger values of polarization. Additionally, the naive estimator cannot take experimental noise into account. Several attempts have been made to produce an unbiased estimator for $p_0$ (see Simmons & Stewart 1985, for a review), but most have other undesirable qualities, such as being unphysical at very low $S/N$ or containing discontinuities. Plaszczyński et al. (2014) develop a polarization estimator dubbed the Modified Asymptotic Estimator (MAS), which is less biased in both low (Rayleigh) and high (Gaussian) $S/N_p$ regimes and is continuous between these regions. Furthermore, this estimator also takes into account measurement error in $q$ and $u$. For these reasons we adopt this estimator for the polarization, which goes as

$$\hat{p}_\text{MAS} = p_i - b_i^2 \frac{1 - \exp \left( -\frac{\sigma^2}{2p_i} \right)}{2p_i}$$

where $p_i$ is given by Equation (3) and $b_i^2$ is the noise bias of the estimator given by

$$b_i^2 = q_i^2 \sigma_q^2 + u_i^2 \sigma_u^2 \overline{q_i^2 + u_i^2}$$

where each $i$ is an individual binned measurement of the quantity of interest.

In practice, the quantities $p_i$, $q_i$, and $u_i$ are calculated as given in Equations (1)–(3) in each bin (see below for a discussion on our binning strategy). The $\sigma_q$ and $\sigma_u$ are computed from Monte Carlo simulations, whereby each of the eight science frames is allowed to deviate according to a Gaussian spread wherein the deviates are simply computed as the standard deviation of a large portion of the background of each individual science $\text{ord}$ and $\text{ext}$ frame. Ten thousand realizations are performed, and for each realization $q$ and $u$ are computed. The resulting probability distributions of $q$ and $u$ are Gaussian, as expected, and from these we obtain $\sigma_q$ and $\sigma_u$ by measuring the spread of the distributions.

We consider the polarization $S/N_p$ by computing

$$S/N_p = \frac{\hat{p}_\text{MAS}}{\sqrt{1/2 (\sigma_q^2 + \sigma_u^2)}}$$

where again we allow for measurement error by incorporating both $\sigma_q$ and $\sigma_u$. Following the prescription of Plaszczyński et al. (2014), values of $S/N_p > 3.8$ indicate that the Rice distribution is sufficiently Gaussian and thus unbiased. In this regime one may compute a point estimate along with the estimator variance. Values less than this, however, fall in the Rayleigh regime, wherein one must instead rely on confidence intervals (CIs). As we show below, different binning techniques yield different $S/N_p$, and thus in some cases we report point estimates of the fractional polarization, while in others we provide the 95% CIs according to Equation (26) in Plaszczyński et al. (2014).

Finally, we consider the measurement and error estimates for the polarization angle. It has been shown (e.g., Vinokur 1965; Wardle & Kronberg 1974) that the distribution of $\chi$ is symmetric about the true value of the angle and thus the estimator presented in Equation (3) is already unbiased. At large $S/N_p$ this
distribution also tends toward a Gaussian with a standard deviation of $\sigma_p \approx \sigma_p/2p$. However, at low $S/N_p$, this approximation underestimates the error. In this work we follow Wardle & Kronberg (1974) and approximate the error by their Equation (A6) (see also their Figure 3), which provides the most conservative error estimate for measurements with $S/N_p > 0.5$.

4. POLARIZATION OF Ly$\alpha$ IN LAB1

4.1. Polarization Integrated over the Line Profile

Because our data have low $S/N$ per pixel ($S/N_p \lesssim 1$), binning of the science frames is a necessity. However, any Ly$\alpha$ polarization signal will result from the particular geometry inherent in the H$\alpha$ gas with a unique set of Stokes parameters and polarization angle. If these regions are not azimuthally resolved, one risks overlapping each region’s polarization angles, thus averaging the polarization signal and potentially washing it out entirely (Dijkstra & Loeb 2008). Thus, some binning is necessary, but overbinning will make it unmeasurable.

To aid in the determination of appropriate bins, we examine the slit position over LAB1 as shown in Figure 2. LAB1 fills the slit and contains regions of varying Ly$\alpha$ SB as denoted by the set of arbitrary contours. Also shown in this figure are white boxes corresponding to Ly$\alpha$ emission integral-field spectroscopy as presented by Weijmans et al. (2010). Our slit overlaps their regions R1 and R3, and we adopt this nomenclature throughout. R3 is situated over the brightest peak of the Ly$\alpha$ SB, while R1 is associated with a somewhat dimmer region. Between these two features there exists a distinct gap that can also clearly be seen in the Ly$\alpha$ emission shown in Figure 1. We determine to bin these regions separately as they can exhibit different polarization fractions, as shown in the right panel of Figure 2. Altogether, we bin the slit into eight individual spatial regions, each spanning $2''$–$3''$, as this is large enough to achieve adequate $S/N_p$ in some bins yet small enough that we do not wash out any polarization signal. These spatial elements are labeled A through H, with A being the southernmost portion of the slit and H the northernmost. These spatial bins are shown explicitly in Figure 3.

With these considerations in mind, we first spectrally integrate over the Ly$\alpha$ emission to calculate the total $p$ for comparison with H11. Integration is carried out over the wavelength range 4965–5000 Å. We note that although the range of the Ly$\alpha$ emission varies within each aperture, varying the integration range only changes the fractional polarization by a few percent difference for all but bin H, which has an increase in $p$ of 10%. However, since we are unable to place reasonable constraints on the polarization fraction in this bin, we consider this to be moot. Only two of these spatial bins have $S/N_p > 3.8$, and for these we report the measured polarization and $1\sigma_p$ error. The remaining bins have $S/N_p < 3.8$, and for these we report 95% CIs for those bins in which the 95% lower confidence bound is greater than zero. Our results are summarized in Table 1 and in Figure 3 along with the spatial binning pattern and the polarization measurements from H11 for those bins that our slit overlapped. The fractional polarization values roughly agree when one takes into account the distinct methods used between our two analyses. H11 utilize a Voronoi binning technique whereby the size of each bin is determined by the achieved $S/N$ within that bin. This allows them to have bins of various sizes. Each of their bins only partially overlaps our slit, and we include in Figure 3 all such bins. The largest disparity between data sets occurs in bin F. In this region, H11 measure the fractional polarization to be $p \sim 20\%$, whereas we find, at most, $\sim 12\%$. The reason for this discrepancy is not fully understood. In Table 1 we report the 95% CIs for those spatial bins whose lower 95% confidence bound is greater than zero. We see polarization in spatial bin C that is on the order of a few percent though not quite consistent with zero. The fractional polarization then increases to 13.6% north and 8.6% south of this region as seen in spatial bins B and D. The distance between bin C and these bins is roughly 15 kpc in either direction.

4.2. Polarization across the Line Profile

We next explore $p$ as a function of wavelength. Using the same spatial elements, we further bin each into 5 Å increments in the wavelength direction (see the Appendix for comparison of
Figure 3. Polarization of spectrally integrated Lyα. In the left panel we show the spatial binning of the Lyα emission spectrum with bins ranging from 2″ to 3″ overlaid in red. Lyα emission is integrated over 4965–5000 Å. The blue lines indicate the spatial extent of Weijmans et al. (2010) IFU boxes. Depicted in the right panel are our polarization measurements in orange. Polarization point estimates are denoted by orange boxes with 1σ error bars; 95% CIs are shown as closed brackets; and upper limits are denoted with orange arrows, where we define our upper limits as the upper 95% confidence bound for that spatial bin. Black squares show fractional polarization from H11 as measured in Voronoi bins that overlap with our slit. See the text for discussion on differences and limitations between data sets.

Table 1

| Bin | S/Np | ρmin | ρmax | ρ | σp |
|-----|------|------|------|---|----|
| B   | 4.6  | ...  | ...  | 8.59 | 1.9 |
| C   | 2.6  | 1.00 | 5.92 | ... | ... |
| D   | 4.9  | ...  | ...  | 13.6 | 2.7 |
| F   | 2.8  | 2.78 | 12.4 | ... | ... |
| G   | 2.8  | 4.51 | 20.0 | ... | ... |

Note. For those bins with sufficient S/Np, we report the polarization point estimate and corresponding 1σ error. Otherwise, we report 95% confidence intervals for bins in which the lower 95% confidence bound is greater than zero.

In Figure 4 we present the extracted 1D spectra for each spatial element along with the wavelength response of ρ in orange. For those bins with sufficient S/Np, (as shown in the middle panel of Figure 5), we show the polarization point estimate along with 1σp errors. For those bins that have lower 95% confidence bounds greater than zero, we show the CI as orange closed brackets. Otherwise, we show upper limits defined as the upper 95% confidence bound for that bin. In general, we see a trend of high (low) polarization corresponding to lower (higher) relative Lyα intensity. In particular, bin B displays ρ that is consistent with zero in near 4985 Å but rises substantially in the wings of the profile, reaching up to 45% blueward and with upper limits as high as 65% redward. In spatial bins C and D we see the suggestion of similar behavior with lower polarization in the core of the line and potentially higher polarization in the wings of the profile, although the data do not allow us to further constrain the trend.

It is important to recall that these measurements inform us as to the fraction of the total intensity that is polarized. In the case of box B, for example, the wavelength bin at 4970 Å is 45% polarized. The intensity in this portion of the line is quite low, however, relative to the peak at 4990 Å. It is instructive to compare this to the integrated polarization in Figure 3. In that figure, box B has fractional polarization of ~9%. Thus, we see that spectropolarimetry gives us more information than what can be gained solely through imaging or integrated polarimetry. Highly polarized individual wavelength bins are “washed out” by the relative strength of the core of the profile, which is typically not strongly polarized. The overall fraction of polarized photons decreases when integrating over the entire line, and it is impossible to reconstruct from imaging alone which wavelength regimes are the most highly polarized.

In Figure 5 we present 2D maps of the spectrally binned intensity, S/Np, and polarization of LAB1. In the middle panel we show the S/Np, where we stress that the “noise” in this equation is not the equivalent of a polarization error. This figure instead serves to give the reader a feeling for the relative quality of our measurements. Comparing the middle and top panels, we see that many areas of high intensity have very low S/Np, indicating that these regions most likely have very low or no fractional polarization for us to detect with the current data. However, portions of the spectrum exhibiting relatively less intensity have much more significant S/Np. The fraction of polarized light in these bins is relatively more substantial. We also point out that in this S/Np map we see a range of values from ~2 to ~5, which indicates that for some bins we report point estimates of the fractional polarization while for others we instead provide 95% CIs. In the bottom panel, we show ρ in individual bins in which we either have sufficiently high S/Np or calculate a lower 95% confidence bound greater than zero. In general, we see higher values of ρ in the redder part of the line, although we also note some substantial polarization in the
blue wing. In most cases, we see that the central emission region is characterized by low $S/N_p$ and low fractional polarization.

Finally, in Figure 6 we present the direction of the polarization vectors, $\chi$, for those spatial elements (B–D, F, G) that have $S/N_p > 2$. Errors on the polarization angles range from $\sim6^\circ$ to $15^\circ$. In this figure we also plot polarization vectors from H11 for comparison, including only those that they measured at or above $2\sigma$. We see that both sets are generally consistent. Like H11, our angles lie tangentially around the peak of Ly$\alpha$ SB.

5. DISCUSSION AND CONCLUSIONS

We have presented deep spectropolarimetry of the LAB1 Ly$\alpha$ emission nebula. The data allow us to probe the kinematics and distribution of the neutral gas and reinforce the idea that LAB1 is likely composed of several smaller, more complex regions instead of one large, kinematic structure. In particular, our observations suggest at least a weak outflow in the southern portion of the LAB, as we discuss below.

Simulations predict that polarization due to scattering should exhibit a radial dependence on the sky. The region of highest Ly$\alpha$ SB would not be strongly polarized, but the polarization would rise with increasing radius (Dijkstra & Loeb 2008). The observed polarization of Ly$\alpha$ in the southern portion of the slit is consistent with Ly$\alpha$ photons produced by a luminous galaxy (or galaxies) and scattered at large radii by the surrounding neutral hydrogen. As in H11, we see this signature here, most notably in spatial elements B–D, where the peak of the Ly$\alpha$ SB has little observable polarization as shown in spatial element C. North of this location (D), we find $p = 13.6\% \pm 2.7\%$, which is also consistent with the Voronoi bins from H11 lying on either side of our slit at approximately the same radial distance (see the right side of Figure 2). Similarly to the south (B), we find total $p = 8.59\% \pm 1.9\%$. Thus, we have increasing polarization away from the peak Ly$\alpha$ emission with a radius of $\sim15\,\text{kpc}$. However, this general trend cannot determine between inflowing and outflowing gas as both are predicted to have this observational signature.
Dijkstra & Loeb (2008) also predict that, for an envelope of expanding gas, those photons in the bulk of the line profile should exhibit increasing polarization redward of the line core. The strength of this increase depends strongly on the distance from the center of Lyα SB, as well as the column density and outflow velocity. In other words, for a given column density and outflow speed, polarization will increase weakly (up to ~10%) in the reddest part of the wing at the peak of Lyα SB, but will increase substantially (up to ~70%) at larger radii from this region. We caution that direct comparison of our data with these simulations comes with a caveat since we are not integrating over the entire shell with our long-slit observations. Nevertheless, the spectrally resolved polarization in bins C and B at least suggests this behavior.

To see this trend, we first estimate the systemic velocity of the region as the average from four galaxies measured in [O iii] and known to be components of LAB1 (McLinden et al. 2013; Kubo et al. 2016; see Figure 4). We note that these measurements are all within ~230 km s\(^{-1}\). Given the width of the Lyα profile, this uncertainty has minimal impact. In this context we can see that the polarization in C is well constrained in the red wing to be at most ~20% polarized. Though we are unable to tightly constrain the red wing in bin B, large polarization values are suggested by the detection at 4995 Å and are not ruled out at longer wavelengths. This particular polarization pattern can be explained easily with a weak outflowing shell model whereby Lyα photons emitted from an embedded source interact with the expanding shell. Those photons that interact with the receding portion of the shell (from our point of view) are Doppler shifted into the red wing of the profile. Being in the wing of the line profile, these photons see a lower optical depth and thus preferentially escape the medium, having only scattered a few times, which preserves their polarization. Photons that remain in the core of the profile in the frame of the gas scatter many more times, effectively erasing any polarization signal.

The polarization data presented here provide a framework for future observations of the southern portion of LAB1. The imaging polarimetry of H11, coupled with a recent strong submillimeter source within 1″5 of the peak Lyα intensity (Geach et al. 2014), provides the “smoking gun” that there is indeed at least one powerful source embedded in this region, the photons from which are likely scattering at large radii. If there are indeed multiple sources within about 30 kpc of this region, observations must also provide a mechanism by which these sources can reproduce the spectral polarization signature presented here, namely, a configuration that is consistent with low polarization in the core of the Lyα profile and high polarization in the wings.

However, the picture remains obscure for R1 corresponding to our spatial elements E–F. Were R1 to be part of the same smooth, kinematic structure as R3, we would expect its total Lyα polarization to increase relative to R3 owing to its increased radius from the galactic center. Instead, we see the total polarization drop and flatten across R1. It is possible that the gas in this region is clumpier or denser than the southern portion of the blob. An increase in the column density of the gas will decrease the observed polarization fraction as additional scatterings tend to isotropize the photons. Another possibility is that this region is powered by florescence from ionizing radiation emanating from the central source. This would naturally explain the lower polarization as this type of in situ production of photons is not expected to be highly polarized. Weijmans et al. (2010) present compelling evidence that suggests that this region is kinematically distinct from the rest of LAB1, and thus a third possibility is that this region is instead powered by radiative cooling. Most likely is the possibility that this region is dominated by an embedded source of its own. Though interesting to speculate, the wavelength dependence of the polarization in these spatial bins is not sufficient for us to further probe the kinematics and polarization properties.

### 6. THE FUTURE OF Lyα POLARIZATION

With another successful detection of the spectral dependence of Lyα polarization, the question arises: What does the future hold for Lyα polarization? Additionally, should emphasis be placed on imaging or spectral polarimetry? The integration times for either mode are similar in magnitude and require a substantial commitment, so the choice between methods is not a trivial one.

We have explicitly demonstrated that much information can be gleaned from the spectral dependence of the polarization signal. In particular, features emerge that narrowband imaging polarimetry simply cannot detect. Not only are we able to detect the wavelength dependence for many of our spatial bins, but we also find high polarization upward of 60% in portions of the Lyα profiles—information that is completely lost in imaging polarimetry. While imaging polarimetry can confirm the presence of scattering and probe the overall geometry of the scattering medium, it cannot probe the kinematics of the system to determine potential outflows or inflows. Furthermore, the spectrally integrated polarization can still provide spatial clues as to any existing radial dependence with advantageous slit placement. Because the geometry of the blob is important to the overall detection of a polarization signal, spectropolarimetry should not be conducted blindly but instead be guided by spatial information obtained from the already-existing narrowband surveys of LABs and integral field units (IFUs).
Though it remains to be seen, suggestions have arisen that the next generation of \(\sim 30\) m telescopes could extend Ly\(\alpha\) polarization studies. This is supported in that all projected Extremely Large Telescopes (ELTs) have proposed polarimetry as a necessary part of their instrument suite. On the E-ELT, the Exo-Planet Imaging Camera and Spectrograph (Kasper et al. 2008) includes the EPOL polarimeter (Keller et al. 2010). The Thirty Meter Telescope has discussed plans to include the Second-Earth Imager for TMT (Matsuo & Tamura 2010). And the Giant Magellan Telescope has discussed spectropolarimetric capabilities as necessary to meeting their science goals (GMTO Corporation 2012). Off the ground, several probe-scale NASA space missions have been proposed to study exoplanetary systems, such as the “EXO” missions (Seager et al. 2015; Stapelfeldt et al. 2015), with considerable emphasis given to polarimeters to enrich the science output. While many of these projects focus on imaging polarimetry, the UVMag consortium has proposed the Arago space mission, which would be devoted to unprecedented spectropolarimetry from the far-UV through the NIR (Pertenais et al. 2014). This field is currently driven almost exclusively by exoplanetary science for studying the scattering off planetary atmospheres and circumstellar disks, but it is the development of such instrumentation that is of greatest importance. At this stage, we cannot say whether we will be able to point one of these instruments directly toward a Ly\(\alpha\) blob without slight modification of the initial design or incorporation of additional settings, but it is optically plausible (Hayes & Scarlata 2011).

In the meantime, much can still be accomplished from the ground with 8 m class telescopes. To date, only three Ly\(\alpha\)-emitting sources have been studied in depth: LAB1 (Hayes et al. 2011, and this work), LABd05 (Prescott et al. 2011), and radio galaxy TXS 0211–122, known to be associated with a 100 kpc scale Ly\(\alpha\) nebula (Humphrey et al. 2013). Radio-quiet LABs were first targeted owing to their apparently controversial nature, unlike high-redshift radio galaxies (H\(z\)RGs), which did not pose an energy problem. With the discovery that an H\(z\)RG is at least partially polarized owing to Ly\(\alpha\) scattering, it behooves us to test further what relationship, if any, exists between radio-loud and radio-quiet nebulae. Compact Ly\(\alpha\) sources also remain unexplored with the polarimeter. Though targeting resolved objects ensures that the Stokes parameters do not all cancel, symmetry is likely broken in most systems. Thus, we may expect a measurable signal from LAEs (Lee & Ahn 1998).

Additionally, the interpretation of Ly\(\alpha\) polarization is still a challenging prospect of its own. Most state-of-the-art simulations assume density and kinematic structures that are still unrealistic in that variations proceed smoothly. What is urgently needed is the implementation of Ly\(\alpha\) polarization in all Ly\(\alpha\) radiative transport codes to generate predictions for various applications, including clumpy and filamentary media as well as nonspherically symmetric geometries. While some work has already been done in this area (Dijkstra & Kramer 2012), there is still much to be explored in terms of predicting observable polarized Ly\(\alpha\) line profiles. With the current limitation on instrumentation coupled with exciting observations, we need dedicated theoretical and observational developments that proceed in tandem.

We thank the anonymous referee for the useful comments that significantly improved the analysis and presentation of our results. Additionally, M.B. and C.S. are grateful to Jérémy Blaizot and Maxime Trebitsch for proofing the manuscript and providing feedback that helped to clarify the text.

**APPENDIX**

In this appendix we demonstrate how our final polarization spectra are created. In Figure 7 our eight ord and ext beams provide the basis of all measurements. These 2D spectra are obtained by stacking their corresponding individual frames as described previously. Combining all eight of these frames yields the total intensity frame shown in Figure 1. It is immediately obvious that there are variations between the

![Figure 7](image_url1). Ordinary and extraordinary beams at each HWP angle. Each frame consists of several co-added frames taken over the five nights of observations.

![Figure 8](image_url2). 2D Stokes parameters and polarization maps. The \(q\) and \(u\) maps are computed directly from the science frames of Figure 7 according to the prescription of Equation (2) after binning as described in Section 4. The polarization map in the right panel is then computed via \(q\) and \(u\) according to Equation (5). In all frames, only those bins are shown in which the polarization was deemed significant, as discussed in Section 3.3. The variation between the \(q\) and \(u\) maps is readily seen by eye and is directly related to the amplitude of the polarization measured in that bin.
ord and ext beams at each HWP angle, which fundamentally leads to a measurement of the polarization.

We then bin these frames according to the various prescriptions described above. From the binned science frames we create $Q$ and $U$ images as shown in Figure 8 for the particular case of the 2D binning. In this figure we show only those $Q$ and $U$ bins that correspond to a bin within which we detect a significant polarization signal. One can see by eye the differences in the $Q$ and $U$ frames, which are directly responsible for the strength of polarization shown in the third panel.

REFERENCES

Appenzeller, I., Fricke, K., Fürtig, W., et al. 1998, Msngr, 94, 1
Basu-Zych, A., & Scharf, C. 2004, ApJL, 615, L85
Brandt, J. C., & Chamberlain, J. W. 1959, ApJ, 130, 670
Brasken, M., & Kyrola, E. 1998, A&A, 332, 732
Bunker, A., Smith, J., Spinrad, H., Stern, D., & Warren, S. 2003, Ap&SS, 284, 357
Cantalupo, S., Lilly, S. J., & Haehnelt, M. G. 2012, MNRAS, 425, 1992
Chapman, S. C., Scott, D., Windhorst, R. A., et al. 2004, ApJ, 606, 85
Colbert, J. W., Scarlata, C., Teplitz, H., et al. 2011, ApJ, 728, 59
Dijkstra, M., & Chamberlain, J. W. 1959, ApJ, 130, 670
Dijkstra, M., & Kramer, R. 2012, MNRAS, 424, 1672
Dijkstra, M., & Loeb, A. 2008, MNRAS, 386, 492
Dijkstra, M., & Loeb, A. 2009, MNRAS, 400, 1109
Fardal, M. A., Katz, N., Gardner, J. P., et al. 2001, ApJ, 562, 605
Faucher-Giguère, C.-A., Kereš, D., Dijkstra, M., Hernquist, L., & Zaldarriaga, M. 2010, ApJ, 725, 633
Francis, P. J., Woodgate, B. E., Warren, S. J., et al. 1996, ApJ, 457, 490
Furlanetto, S. R., Schaye, J., Springel, V., & Hernquist, L. 2005, ApJ, 622, 7
Geach, J. E., Bower, R. G., Alexander, D. M., et al. 2014, ApJ, 793, 22
Geach, J. E., Matsuda, Y., Smail, I., et al. 2005, MNRAS, 363, 1398
Geach, J. E., Smail, I., Chapman, S. C., et al. 2007, ApJL, 655, L9
GMTO Corporation 2012, Giant Magellan Telescope Scientific Promise and Opportunities
Haiman, Z., & Rees, M. J. 2001, ApJ, 556, 87
Haiman, Z., Spaans, M., & Quataert, E. 2000, ApJL, 537, L5
Hayes, M., & Scarlata, C. 2011, in SP2A-2011: Proc. Annual Meeting of the French Society of Astronomy and Astrophysics, ed. G. Alecian et al., 129
Hayes, M., Scarlata, C., & Siana, B. 2011, Natur, 476, 304
Humphrey, A., Vernet, J., Villar-Martin, M., et al. 2013, ApJL, 768, L3
Jimenez, R., & Haiman, Z. 2006, Natur, 440, 501
Kasper, M. E., Beuzit, J.-L., Verinaud, C., et al. 2008, Proc. SPIE, 7015, 1
Keller, C. U., Schmid, H. M., Venema, L. B., et al. 2010, Proc. SPIE, 7735, 6
Kubo, M., Yamada, T., Ichikawa, T., et al. 2016, MNRAS, 455, 3533
Lee, H.-W., & Ahn, S.-H. 1998, ApJL, 504, L61
Loeb, A., & Rybicki, G. B. 1999, ApJ, 524, 527
Matsuda, Y., Yamada, T., Hayashino, T., et al. 2004, ApJ, 128, 569
Matsumoto, Y., & Tamura, M. 2010, Proc. SPIE, 7735, 84
McLinden, E. M., Malhotra, S., Rhoads, J. E., et al. 2013, ApJL, 767, 48
Mori, M., & Umemura, M. 2006, Natur, 440, 644
Neufeld, D. A. 1990, ApJ, 357, 321
Nilsson, K. K., Pynbo, J. P. U., Møller, P., Sommer-Larsen, J., & Ledoux, C. 2006, A&A, 452, L23
Palunas, P., Teplitz, H. I., Francis, P. J., Williger, G. M., & Woodgate, B. E. 2004, ApJ, 602, 545
Patat, F., Moehler, S., O’Brien, K., et al. 2011, A&A, 527, A91
Pertensais, M., Neiner, C., Parés, L. F., et al. 2014, Proc. SPIE, 9144, 3
Plaszczynski, S., Montier, L., Levrier, F., & Tristram, M. 2014, MNRAS, 439, 4048
Prescott, M. K. M., Kashikawa, N., Dey, A., & Matsuda, Y. 2008, ApJL, 678, L77
Prescott, M. K. M., Momcheva, I., Brammer, G. B., Fynbo, J. P. U., & Møller, P. 2015, ApJ, 802, 32
Prescott, M. K. M., Smith, P. S., Schmidt, G. D., & Dey, A. 2011, ApJL, 730, L25
Rosdahl, J., & Blaizot, J. 2012, MNRAS, 423, 344
Rybicki, G. B., & Loeb, A. 1999, ApJL, 520, L79
Saito, T., Shimakage, K., Omukai, S., et al. 2006, ApJ, 648, 54
Scarlata, C., Colbert, J., Teplitz, H. I., et al. 2009, ApJ, 706, 1241
Seager, S., Cash, W. C., Kasdin, N. J., et al. 2015, Exo-S: Starshade Probe Class, CL#15-1155, http://exep.jpl.nasa.gov/stdt/Exo-S_Starshade_Probe_Class_Final_Report_URS250118.pdf
Simmons, J. F. L., & Stewart, B. G. 1985, A&A, 142, 100
Smith, D. J. B., & Jarvis, M. J. 2007, MNRAS, 378, L49
Smith, D. J. B., Jarvis, M. J., Simpson, C., & Martínez-Sansigre, A. 2009, MNRAS, 393, 309
Stapelfeldt, K. R., & Brenner, M. P., Warfield, K. R., et al. 2015, Exo-C: Imaging Nearby Worlds, CL#15-1197, http://exep.jpl.nasa.gov/stdt/Exo-C_Final_Report_for_Unlimited_Release_150323.pdf
Steidel, C. C., Adelberger, K. L., Shapley, A. E., et al. 2000, ApJL, 532, 170
Stenflo, J. O. 1980, A&A, 84, 68
Taniguchi, Y., & Shioya, Y. 2000, ApJL, 532, L13
van Dokkum, P. G. 2001, PASP, 113, 1420
Vinokur, M. 1965, AnAp, 28, 412
Wardle, J. F. C., & Kronberg, P. P. 1974, ApJ, 194, 249
Weidinger, M., Møller, P., & Fynbo, J. P. U. 2004, ApJS, 404, 999
Weijmans, A.-M., Bower, R. G., Geach, J. E., et al. 2010, MNRAS, 402, 2245
Yang, Y., Decarli, R., Dannerbauer, H., et al. 2012, ApJ, 744, 178
Yang, Y., Zabludoff, A., Tremonti, C., Eisenstein, D., & Davé, R. 2009, ApJ, 693, 1579