Some Qi-type integral inequalities involving several weight functions

Jan-David Hardtke

Abstract. We prove some integral inequalities related to Feng Qi’s inequality from [23] and obtain a few corollaries.

In the paper [23], Feng Qi proved the following integral inequality: if \(f : [a, b] \to \mathbb{R} \) is \(n \)-times continuously differentiable such that \(f^{(i)}(a) \geq 0 \) for \(i = 0, \ldots, n - 1 \) and \(f^{(n)}(x) \geq n! \) for all \(x \in [a, b] \), then

\[
\left(\int_a^b f \right)^{n+1} \leq \int_a^b f^{n+2}.
\]

(1)

In the following years, many variants and generalisations of this inequality have been investigated (in particular, versions for real exponents). For a detailed account of the results that have already been established, the reader is referred to the list of references at the end of this paper and further references therein.

Here we will prove some further inequalities related to Feng Qi’s inequality and obtain a few corollaries which might be interesting. The basic methods of proof are the same as in [23] (exploiting the connection between a function’s monotonicity behavior and the sign of its derivative, finite induction for a suitably defined set of auxiliary functions, etc.).

Since we will also be dealing with one-sided derivatives, let us introduce some notations and recall some facts, which will be used later without further mention.

For a given interval \([a, b]\) we denote by \(D_+[a, b] \) (resp. \(D_-[a, b] \)) the set of all continuous functions \(h : [a, b] \to \mathbb{R} \) such that the right-derivative \(h'_+(x) \) (resp. the left-derivative \(h'_-(x) \)) exists for all \(x \in (a, b) \).

The usual sum and product rules also apply for one-sided derivatives. Furthermore, a function \(h \in D_+[a, b] \) is increasing (decreasing) if and only if \(h'_+(x) \geq 0 \) (\(h'_-(x) \leq 0 \)) for all \(x \in (a, b) \) and an analogous statement holds for functions in \(D_-[a, b] \) (see [29, p.358]).

Finally, if \(h \in D_+[a, b] \), \(I \) is an interval which contains the range of \(h \) and \(f : I \to \mathbb{R} \) is differentiable, then \(f \circ h \in D_+[a, b] \) with \((f \circ h)'_+(x) =

Keywords: integral inequalities; growth conditions

AMS Subject Classification (2010): 26D15
A generalisation of Qi’s inequality

1. A generalisation of Qi’s inequality

The first result is a generalisation of (1) to a setting where several weight functions and an additional exponent α are involved.

Proposition 1. Let $n \in \mathbb{N}$ with $n \geq 2$ and let $g : [a, b] \to \mathbb{R}$ be a continuous function with $g \geq 0$. Further, let $h_1, \ldots, h_n \in D_+[a, b]$ or $h_1, \ldots, h_n \in D_-[a, b]$ with $h_i \geq 0$ for each i. Let also $\alpha \leq \frac{n}{n-1}$ and $f : [a, b] \to \mathbb{R}$ be a strictly positive, $(n-1)$-times differentiable function such that $f^{(i)} \geq 0$ for all $i = 1, \ldots, n-1$ and $(n+1-\alpha)f^{(n-1)}f^{(1-\alpha)} \geq n!h_1h_2^2 \ldots h_n^n$.

Suppose that there exists a partition of $\{1, \ldots, n\}$ into two disjoint subsets I and J such that the following conditions hold:

(i) $g \prod_{i \in I} h_i$ is increasing,

(ii) $\prod_{i \in I} h_i \left(\prod_{j \in J} h_j^{j-k} \right)$ is decreasing for all $k = 1, \ldots, n-1$, where J_k denotes the set $\{j \in J : j \geq k+1\}$.

(iii) $\prod_{j \in J_k} h_j^{k+1-j}$ is increasing for $k = 0, \ldots, n-2$, where J_k denotes the set $\{j \in J : j \leq k+1\}$.

Let $M := \inf \{g(x) : x \in [a, b]\}$ and $m_i := \inf \{h_i(x) : x \in [a, b]\}$ for $i = 1, \ldots, n$. Then we have

\[
(b - a)KM^n \prod_{i=1}^{n} m_i^{n-i} + \left(\int_{a}^{b} f^\alpha g \prod_{i=1}^{n} h_i \right)^n \leq \int_{a}^{b} f^{n+1} g^n \prod_{i=1}^{n} h_i^{n-i},
\]

where $K = f^{n+1}(a)$ if $\alpha \geq 0$ and $K = f^{n+1-\alpha}(a)f^\alpha(b)$ if $\alpha < 0$.

Note that the conditions (ii) and (iii) are satisfied in particular if $h_1h_2^2 \ldots h_n^n$ is decreasing and h_j is increasing and strictly positive for each $j \in J$.

Note further that the above inequality not only generalises Qi’s inequality, but it also sharpens the trivial estimate

\[
(b - a)KM^n \prod_{i=1}^{n} m_i^{n-i} \leq \int_{a}^{b} f^{n+1} g^n \prod_{i=1}^{n} h_i^{n-i}.
\]

Proof. Let $h_1, \ldots, h_n \in D_+[a, b]$ (the case of left-derivatives is treated analogously).

We first define the function F by setting

\[
F(x) := \left(\int_{a}^{x} f^\alpha g \prod_{i=1}^{n} h_i \right)^n - \int_{a}^{x} f^{n+1} g^n \prod_{i=1}^{n} h_i^{n-i} \quad \forall x \in [a, b].
\]
Then F' is differentiable with

$$F'(x) = n \left(\int_a^x f^\alpha g \prod_{i=1}^n h_i \right)^{n-1} f^\alpha(x) g(x) \prod_{i=1}^n h_i(x) - f^{n+1}(x) g^n(x) \prod_{i=1}^n h_i^{n-i}(x).$$

(2)

Next we define

$$G(x) := n \left(\int_a^x f^\alpha \prod_{j \in J} h_j \right)^{n-1} \left(\prod_{i \in I} h_i^1(x) \right) \left(\prod_{j \in J} h_j(x) \right) - f^{n+1-\alpha}(x) \prod_{j \in J} h_j^{n-j}(x)$$

and claim that

$$F'(x) \leq f^\alpha(x) g^n(x) G(x) \prod_{i \in I} h_i^{n-i}(x) \quad \forall x \in [a, b].$$

(3)

To see this, note that assumption (i) implies

$$\int_a^x f^\alpha g \prod_{i=1}^n h_i \leq g(x) \left(\prod_{i \in I} h_i(x) \right) \int_a^x f^\alpha \prod_{j \in J} h_j.$$

Combining this with (2) we obtain

$$F'(x) \leq n g^n(x) f^\alpha(x) \left(\int_a^x f^\alpha \prod_{j \in J} h_j \right)^{n-1} \left(\prod_{i \in I} h_i^{n-1}(x) \right) \left(\prod_{i=1}^n h_i(x) \right)$$

$$- f^{n+1}(x) g^n(x) \prod_{i=1}^n h_i^{n-i}(x)$$

which can be easily simplified to (3).

We denote by φ the characteristic function of J in $\{1, \ldots, n\}$, i.e. $\varphi(i) = 1$ for $i \in J$ and $\varphi(i) = 0$ for $i \in I$, and for each $k \in \{1, \ldots, n - 1\}$ we define

$$H_k(x) := \left(\prod_{i=k}^n i \right) \left(\int_a^x f^\alpha \prod_{j \in J} h_j \right)^{k-1} \left(\prod_{i \in I} h_i^1(x) \right) \left(\prod_{i=k}^n h_i^{\varphi(i)(i-k+1)}(x) \right)$$

$$- (n + 1 - \alpha) f^{n(1-\alpha)+(k-1)\alpha}(x) f^{(n-k)}(x) \prod_{i=1}^{k-1} h_i^{k-i-1}(x) \varphi(i) \quad \text{for all } x \in [a, b].$$

We will show inductively that $H_k \leq 0$ for all $k \in \{1, \ldots, n - 1\}$. For $k = 1$ we have $H_1 = n! \prod_{i=1}^n h_i^1 - (n + 1 - \alpha) f^{(n-1)} f^{(1-\alpha)}$, which is negative by assumption.
Now suppose that $k \in \{1, \ldots, n-2\}$ and $H_k \leq 0$. The function H_{k+1} belongs to $D_{+}[a, b]$ and satisfies

\[
(H_{k+1})'_+(x) = f^\alpha(x) \left(\prod_{i=k}^n \int_a^x f^\alpha \prod_{j \in J} h_j \right) \left(\prod_{j \in J} h_j(x) \right) \left(\prod_{i \in I} h_i^\prime(x) \right) \left(\prod_{i=k+1}^n h_i^\phi(i)(i-k)(x) \right) \\
+ \left(\prod_{i=k+1}^n \int_a^x f^\alpha \prod_{j \in J} h_j \right) \left(\prod_{i \in I} h_i^\prime \right) \left(\prod_{i=k+1}^n h_i^\phi(i)(i-k) \right) \left(x \right) \\
- (n + 1 - \alpha) \left(n(1 - \alpha) + k\alpha \right) f^{n-1}(x) f'(x) f^{n-k-1}(x) \prod_{i=1}^k h_i^\phi(i)(k-i)(x)
\]

for each $x \in (a, b)$. By our assumption on f we have $f' \geq 0$ and $f^{n-k-1} \geq 0$. We also have \(\left(\prod_{i=1}^k h_i^\phi(i)(k-i) \right)'_+ \geq 0 \) because of (iii) and

\[
\left(\left(\prod_{i \in I} h_i^\prime \right) \left(\prod_{i=k+1}^n h_i^\phi(i)(i-k) \right) \right)'_+ \leq 0
\]

because of (ii).

Furthermore, the assumption $\alpha \leq \frac{n}{n-1}$ ensures that $n + 1 > \alpha$ and $n(1 - \alpha) + k\alpha \geq 0$. It follows that, for all $x \in (a, b)$,

\[
(H_{k+1})'_+(x) \leq f^\alpha(x) H_k(x) \prod_{i=1}^{k-1} h_i^\phi(i)\left(x \right) \leq 0.
\]

Thus H_{k+1} is decreasing and hence $H_{k+1}(x) \leq H_{k+1}(a) \leq 0$ for all $x \in [a, b]$, which finishes the induction.
Now we define
\[H(x) := nh_i^{(n)}(x) \left(\int_a^x f^a \prod_{j \in J} h_j \right)^{n-1} \left(\prod_{i \in I} h_i^{(i)}(x) \right) - f^{n+1}(x)^{n-1} \prod_{i=1}^{n-1} h_i^{(n-i-1)}(x). \]

Then \(H \in D_+ [a, b] \) and similar to the induction step above one can show that
\[H'_+(x) \leq f^a(x)H_n-1(x) \prod_{i=1}^{n-2} h_i^{(i)}(x) \quad \forall x \in (a, b). \]

Since \(H_{n-1} \leq 0 \) it follows that \(H \) is decreasing and hence \(H(x) \leq H(a) \leq 0 \) for every \(x \in [a, b] \). Also, from the definition \(G \) one can easily see that \(G = H \prod_{i=1}^{n-1} h_i^{(i)} \). Together with (3) we obtain
\[F'(x) \leq f^a(x)H(a)M^n \left(\prod_{i \in I} m_i^{n-i} \right) \left(\prod_{i=1}^{n-1} m_i^{(i)} \right) \quad \forall x \in [a, b] \]

Furthermore, it is easily checked that
\[H(a) \prod_{i=1}^{n-1} m_i^{(i)} \leq -f^{n+1}(a) \prod_{i \in J} m_i^{n-i}. \]

Also, \(f \) is increasing (since \(f' \geq 0 \)) and hence \(f^a \) is increasing for \(\alpha \geq 0 \) and decreasing for \(\alpha < 0 \). Thus we get
\[F'(x) \leq -KM^n \prod_{i=1}^{n} m_i^{n-i} \quad \forall x \in [a, b]. \]

By the mean value theorem this implies
\[F(b) = F(b) - F(a) \leq -(b-a)KM^n \prod_{i=1}^{n} m_i^{n-i}, \]

which is the desired inequality. \(\square \)

Let us explicitly note the following special case of Proposition 1.

Corollary 2. Let \(g, h, p \) be nonnegative functions on \([a, b]\) such that \(h, p \in D_+ [a, b] \) or \(h, p \in D_+ [a, b] \), \(g \) is continuous, \(p \) is decreasing and \(h \) and \(gp \) are increasing.

Suppose further that \(n \in \mathbb{N}, n \geq 2, \) and \(f \) is a strictly positive, \((n-1)\)-times differentiable function on \([a, b]\) with \(f^{(i)} \geq 0 \) for \(i = 1, \ldots, n-1 \) and \((n+1-\alpha)f^{(n-1)}f^{(n-1-\alpha)} \geq n!hp^\nu \) for some \(\nu \in \{2, \ldots, n\} \) and \(\alpha \leq \frac{n}{n-1} \). Let \(M := \inf\{g(x) : x \in [a, b]\} \). Then we have
\[(b-a)KM^n h^{n-1}(a)p^\nu(b) + \left(\int_a^b f^a gh \right)^n \leq \int_a^b f^{n+1}gh^{n-1}p^\nu, \]

where \(K = f^{n+1}(a) \) if \(\alpha \geq 0 \) and \(K = f^{n+1-\alpha}(a)f^\alpha(b) \) if \(\alpha < 0 \).

5 of 17
Proof. Put $h_1 := h$, $h_\nu := p$ and $h_i := 1$ for $i \in \{2, \ldots, n\} \setminus \{\nu\}$ as well as $I := \{\nu\}, J := \{1, \ldots, n\} \setminus I$ and apply Proposition 1.

This yields in particular the following Corollaries.

Corollary 3. Let $\alpha \leq \frac{n}{n-1}$. If f is a strictly positive, $(n-1)$-times differentiable function on $[a, b]$ (where $n \geq 2$) such that $f^{(i)} \geq 0$ for $i = 1, \ldots, n-1$, then

$$(b - a)Kg^n(a) + (n + 1 - \alpha)\frac{A}{n!}\left(\int_a^b f^n g^n\right)^n \leq \int_a^b f^{n+1}g^n$$

holds for every nonnegative function g on $[a, b]$ which is continuous and increasing, where $A := \inf\{f^{(n-1)}(x)f^{(1-\alpha)}(x) : x \in [a, b]\}$ and K is defined as before.

Proof. Put $c := ((n + 1 - \alpha)A/n!)^{-1/(n(1-\alpha)+1)}$ and apply Corollary 2 to the function cf (with $h = p = 1$).

Corollary 4. Let f be a strictly positive function on $[a, b]$ which is n-times differentiable ($n \geq 2$) with $f^{(i)} \geq 0$ for all $i = 1, \ldots, n$. Let g be a nonnegative function on $[a, b]$ which is continuous and increasing and let $\alpha \leq \frac{n}{n-1}$. Then we have

$$(b - a)Kg^n(a)(f^{(n-1)}(a))^{n-1} + (n + 1 - \alpha)\frac{C^{(n-1-\alpha)}}{n!}\left(\int_a^b f^n g f^{(n-1)}\right)^n \leq \int_a^b f^{n+1}g^n(f^{(n-1)})^{n-1},$$

where K is defined as above and $C = f(a)$ if $\alpha \leq 1$, $C = f(b)$ if $\alpha > 1$.

Proof. Set $p := 1$, $h := (n + 1 - \alpha)C^{(n-1-\alpha)}f^{(n-1)}/n!$ and $\nu := 2$ and apply Corollary 2.

Corollary 5. Let f be a strictly positive, n-times differentiable function on $[a, b]$ ($n \geq 2$) satisfying $f^{(i)} \geq 0$ for $i = 1, \ldots, n-2$, $f^{(n-1)}(x) > 0$ for all $x \in [a, b]$, and $f^{(n)} \leq 0$. Let $h \in D_+(a, b)$ or $h \in D_-(a, b)$ be increasing with $0 \leq h \leq 1$ and let $\alpha \leq \frac{n}{n-1}$. Then we have

$$(b - a)K\frac{h^{n-1}(a)}{f^{(n-1)}(a)} + (n + 1 - \alpha)\frac{C^{(n-1-\alpha)}}{n!}\left(\int_a^b f^n h^n\right)^n \leq \int_a^b \frac{f^{n+1}h^{n-1}}{f^{(n-1)}},$$

where K and C are defined as in the previous Corollary.

Proof. Put $p(t) := ((n + 1 - \alpha)C^{(n-1-\alpha)}f^{(n-1)}(t)/n!)^{1/n}$ for $t \in [a, b], g := 1/p$ and $\nu := n$ and apply Corollary 2.
Corollary 6. Let f be a strictly positive, n-times differentiable function on $[a, b]$ $(n \geq 2)$ satisfying $f^{(i)}(a) \geq 0$ for $i = 1, \ldots, n$. Let g be a continuous, increasing function on $[a, b]$ with $g \geq 0$ and let $\alpha \in (-\infty, 1]$. Put $\beta := n(1 - \alpha) + \alpha$. Then we have

$$(b - a)Lg_{\alpha}^{n}(a)(f^{(n-1)}(a))^{n-1} + \frac{n + 1 - \alpha}{n!}\left(\int_{a}^{b} \gamma g(f^{(n-1)})\right)^{n} \leq \int_{a}^{b} f^{n+1}g^{n}f^{(n-1)}h,$$

where $L = f^{n+1}(a)$ for $\alpha \geq 0$ and $L = f^{n+1-\alpha}(a)f(1) - f^{\alpha}(b)$ for $\alpha < 0$.

Proof. Put $h := (n + 1 - \alpha)f^{n-1}/n!$, $p := 1$ and $\nu := 2$ and apply Corollary 2. \hfill \Box

2 An integral inequality for $1/f$

Proposition 1 already provides a Qi-type integral inequality for $1/f$ (consider the case $\alpha = -1$). The next result is another inequality in the spirit of (1) for $1/f$.

Proposition 7. Let $f : [a, b] \rightarrow \mathbb{R}$ be twice differentiable such that $f', f'' \geq 0$ and $f(t) > 0$ for all $t \in [a, b]$. Let further g be an increasing, continuous function on $[a, b]$ with $g \geq 0$ and h be $D_{+}[a, b]$ or h be $D_{-}[a, b]$ be an increasing, nonnegative function.

If $n \in \mathbb{N}$ and $f^{n+1}(a)(f'(a))^{n}h(a) \geq n!(n + 1)^{n-1}$, then

$$(b - a)f^{n+1}(a)g^{n+1}(a)h(a) + \left(\int_{a}^{b} \gamma f\right)^{n+1} \leq \int_{a}^{b} f^{n}g^{n+1}h.$$ \hfill (4)

Note that the conditions $f' \geq 0$ and $f'' \geq 0$ just mean that f is increasing and convex.

Proof. Let $h \in D_{+}[a, b]$ (the other case is completely analogous). We define

$$F(x) := \left(\int_{a}^{x} \frac{g}{f}\right)^{n+1} - \int_{a}^{x} f^{n}g^{n+1}h \forall x \in [a, b]$$

and

$$G(x) := (n + 1)\left(\int_{a}^{x} \frac{1}{f}\right)^{n} - f^{n+1}(x)h(x) \forall x \in [a, b]$$

and claim that

$$F' \leq \frac{g^{n+1}}{f}G.$$ \hfill (4)
To see this first note that
\[
F'(x) = \frac{g(x)}{f(x)} \left((n + 1) \left(\int_a^x \frac{g}{f} \right)^n - f^{n+1}(x)g^n(x)h(x) \right). \tag{5}
\]

Since \(g \) is increasing we have
\[
\int_a^x \frac{g}{f} \leq g(x) \int_a^x \frac{1}{f}.
\]

Combining this with (5) gives (4).

We further have \(G \in D_+[a, b] \) and
\[
G'_+(x) = \frac{n(n+1)}{f(x)} \left(\int_a^x \frac{1}{f} \right)^{n-1} - (n+1)f^n(x)f'(x)h(x) - f^{n+1}(x)h'_+(x).
\]

Since \(h \) is increasing we have \(h'_+ \geq 0 \) and hence
\[
G'_+(x) \leq \frac{n+1}{f(x)} \left(\int_a^x \frac{1}{f} \right)^{n-1} - f^{n+1}(x)f'(x)h(x). \tag{6}
\]

Next we define functions \(H_1, \ldots, H_n \) on \([a, b]\) by
\[
H_k(x) := \left(\prod_{i=k}^{n} \int_a^x \frac{1}{f} \right)^{k-1} - (n+1)^{n-k}f^{n+1}(x)(f')^{n-k+1}(x)h(x).
\]

We will show inductively that \(H_k \leq 0 \) for all \(k = 1, \ldots, n \). First note that
\[
H_1 = n! - (n+1)^{n-1}f^{n+1}(f')^n h
\]
and by our assumptions \(h, f \) and \(f' \) are increasing functions, thus \(H_1 \) is decreasing. Hence \(H_1 \leq H_1(a) \) and again by assumption we have \(H_1(a) \leq 0 \).

Now suppose that \(1 \leq k < n \) and \(H_k \leq 0 \). We have \(H_{k+1} \in D_+[a, b] \) and
\[
(H_{k+1})'_+(x) = \frac{1}{f(x)} \left(\prod_{i=k}^{n} \int_a^x \frac{1}{f} \right)^{k-1} - (n+1)^{n-k}f^{n+1}(x)(f')^{n-k+1}(x)h(x)
- (n+1)^{n-k-1}f^{n+1}(x)((f')^{n-k}h')_+(x).
\]

Since \(f' \) and \(h \) are increasing, it follows that
\[
(H_{k+1})'_+(x) \leq \frac{H_k(x)}{f(x)} \leq 0 \quad \forall x \in (a, b)
\]
and hence \(H_{k+1} \leq H_{k+1}(a) \leq 0 \).

So in particular \(H_n \leq 0 \) and from (6) it follows that \(G'_+ \leq (n+1)H_n/f \).

Thus \(G'_+ \leq 0 \) and consequently, \(G \leq G(a) = -f^{n+1}(a)h(a) \).

Using (4) and the fact that \(g \) is increasing and \(1/f \) decreasing, we obtain
\[
F' \leq -f^{n+1}(a)g^{n+1}(a)h(a)/f(b).
\]

The mean value theorem now implies
\[
F(b) = F(b) - F(a) \leq -(b-a)f^{n+1}(a)g^{n+1}(a)h(a)/f(b),
\]
which is equivalent to the desired inequality. \(\square \)
Let us now collect some corollaries to the above result.

Corollary 8. Let f be a twice differentiable, strictly positive function on $[a, b]$ such that $f'(a) > 0$ and $f'' \geq 0$ and let g be a nonnegative function on $[a, b]$ which is continuous and increasing. Then we have for each $n \in \mathbb{N}$

$$\frac{b - a}{f(b)} g^{n+1}(a) + \frac{(f'(a))^{n(n+1)^{-1}}}{n!} \left(\int_a^b \frac{g}{f} \right)^{n+1} \leq \frac{1}{f(a)} \int_a^b f^n g^{n+1}.$$

Proof. For a given $n \in \mathbb{N}$, put $c := \frac{1}{n!(n+1)^{-1}} \frac{f(a)}{f'(a)} - 1$ and apply Proposition 7 to the functions $c f$ and g (and $h := 1$).

Corollary 9. If f and g are as in the previous corollary, then

$$\int_a^b \frac{g}{f} \leq \frac{1}{ef(a)f'(a)} \liminf_{n \to \infty} \left(\int_a^b f^n g^{n+1} \right)^{1/(n+1)} \leq \frac{f(b)g(b)}{ef(a)f'(a)}.$$

Proof. Since f and g are increasing, we have

$$\left(\int_a^b f^n g^{n+1} \right)^{1/(n+1)} \leq (b - a)^{1/(n+1)} (f(b))^{n/(n+1)} g(b) \quad \forall n \in \mathbb{N}.$$

The righthand side of this inequality converges to $f(b)g(b)$ for $n \to \infty$, thus

$$\limsup_{n \to \infty} \left(\int_a^b f^n g^{n+1} \right)^{1/(n+1)} \leq f(b)g(b).$$

Corollary 8 further implies that

$$\int_a^b \frac{g}{f} \leq \left(\int_a^b f^n g^{n+1} \right)^{1/(n+1)} \left(\frac{n!}{(n+1)^{n-1}} \right)^{1/(n+1)} \frac{1}{f(a)f'(a)} \frac{1}{n/(n+1)}$$

for each $n \in \mathbb{N}$.

Using the well-known limits $\lim_{n \to \infty} \sqrt[n]{n} = 1$ and $\lim_{n \to \infty} n/\sqrt[n]{n!} = e$, we obtain

$$\lim_{n \to \infty} \left(\frac{n!}{(n+1)^{n-1}} \right)^{1/(n+1)} = \lim_{n \to \infty} \frac{n+1}{n+1} ! \sqrt[n+1]{n+1} = 1/e.$$

It follows that

$$\int_a^b \frac{g}{f} \leq \frac{1}{ef(a)f'(a)} \liminf_{n \to \infty} \left(\int_a^b f^n g^{n+1} \right)^{1/(n+1)}.$$

\square
In fact, the inequality $\int_{a}^{b} \frac{g}{f} \leq \frac{f(b)g(b)}{(ef(a)f'(a))}$ also holds under weaker assumptions.

Lemma 10. Let $f : [a, b] \to \mathbb{R}$ be a strictly positive, differentiable function such that f' is increasing and $f'(a) > 0$. Let $g : [a, b] \to \mathbb{R}$ be increasing and nonnegative. Then we have

$$\int_{a}^{b} \frac{g}{f} \leq \frac{f(b)g(b)}{(ef(a)f'(a))}.$$ \hspace{1cm} (7)

For the proof we need the following Lemma (which is surely well-known, but the author was unable to find a reference).

Lemma 11. For every $x > 0$ we have $x^e \leq e^x$. Equality holds if and only if $x = e$.

Proof. Put $h(x) := x - e \log(x)$ for $x > 0$. Then $h'(x) = 1 - e/x$ and hence $h'(x) > 0$ for $x > e$ and $h'(x) < 0$ for $x < e$. Thus h is strictly increasing on $[e, \infty)$ and strictly decreasing on $(0, e]$. This implies $h(x) > h(e) = 0$ for all $x > 0$ with $x \neq e$, which implies the claimed inequality.

Proof. (of Lemma 10) The monotonicity of g and f' implies

$$\int_{a}^{b} \frac{g}{f} \leq \frac{g(b)}{f'(a)} \int_{a}^{b} \frac{f'}{f} = \frac{g(b)}{f'(a)} \log\left(\frac{f(b)}{f(a)}\right),$$

and Lemma 11 implies

$$\log\left(\frac{f(b)}{f(a)}\right) \leq \frac{f(b)}{ef(a)}$$

which concludes the proof.

Next we will derive three more corollaries concerning the logarithm of a function f.

Corollary 12. Let f be as in Corollary 8 and $n \in \mathbb{N}$. Then we have

$$\left(\log\left(\frac{f(b)}{f(a)}\right)\right)^{n+1} + \frac{n!(b-a)}{(n+1)^{n-1}} f'(a) \frac{f'(b)}{f(b)} \leq \frac{n!}{(n+1)^n} \left(\frac{f'(b)}{f'(a)}\right)^n \left(\frac{f^{n+1}(b)}{f^{n+1}(a)} - 1\right).$$

Proof. We apply Corollary 8 with $g := f'$ to get

$$\left(\log\left(\frac{f(b)}{f(a)}\right)\right)^{n+1} = \left(\int_{a}^{b} \frac{f'}{f} \right)^{n+1} \leq \frac{n!}{(n+1)^{n-1} f^{n+1}(a)(f'(a))^n} \int_{a}^{b} f^{n}(f')^{n+1} - (b-a) \frac{n!f'(a)}{f(b)(n+1)^{n-1}}.$$
Since $f' \leq f'(b)$ we have
\[\int_{a}^{b} f^n(f')^{n+1} \leq (f'(b))^n \int_{a}^{b} f^n f' = \frac{(f'(b))^n}{n+1} (f^{n+1}(b) - f^{n+1}(a)). \]
Combining these two estimates and simplifying a little finishes the proof.

Corollary 13. Let f be as in Corollary 8 and assume in addition that $\log(f)$ is convex. Then we have for each $n \in \mathbb{N}$
\[\left(1 - \frac{f(a)}{f(b)} \right)^{n+1} \leq \frac{n!}{(n+1)^{n-1}} \left(\frac{f'(b)}{f'(a)} \right)^n \log \left(\frac{f(b)}{f(a)} \right) - (b - a) \frac{f'(a)}{f(b)}. \]

Proof. Since $\log(f)$ is convex, the derivative $(\log(f))' = f'/f$ is increasing. Thus we can apply Corollary 8 with $g := f'/f$ to get
\[\left(\frac{1}{f(a)} - \frac{1}{f(b)} \right)^{n+1} = \left(\int_{a}^{b} \frac{f'}{f^2} \right)^{n+1} \leq \frac{n!}{(n+1)^{n-1}} \left(\frac{1}{f^{n+1}(a)(f'(a))^n} \int_{a}^{b} \frac{(f')^{n+1}}{f} - (b - a) \frac{f'(a)}{f(b)f^{n+1}(a)} \right). \]
Since f' is increasing we can estimate
\[\int_{a}^{b} \frac{(f')^{n+1}}{f} \leq (f'(b))^n \int_{a}^{b} \frac{f'}{f} = (f'(b))^n \log \left(\frac{f(b)}{f(a)} \right). \]
Combining the two estimates and multiplying by $(f(a))^{n+1}$ gives the desired inequality.

Applying Lemma 10 to $g := f'/f$ also yields the following result.

Corollary 14. If $f \in C^1[a,b]$ is a strictly positive function with a strictly positive derivative such that $\log(f)$ is convex, then
\[1 - \frac{f(a)}{f(b)} \leq \frac{f'(b)f(a)}{f(b)f'(a)} \log \left(\frac{f(b)}{f(a)} \right) \leq \frac{f'(b)}{ef'(a)}. \]

3 Further variants of Qi’s inequality

In the last section of this paper, we present some other variants of Qi’s inequality (1). We start with some results in which we have the same exponent n for the integral and the function f.

Proposition 15. Let f be an $(n - 1)$-times differentiable function on $[a,b]$ $(n \geq 2)$ such that $f^{(i)} \geq 0$ for $i = 0, \ldots, n - 2$. Let further $g \in D_+[a,b]$ or $g \in D_-[a,b]$ be a strictly positive, increasing function and let $\alpha \in (n, \infty)$. Suppose that $g^{\alpha-n}f^{(n-1)} \geq \frac{n!}{\alpha - 1}$. Then we have
\[(b - a)f^n(a)g^\alpha(a) + \left(\int_{a}^{b} fg \right)^n \leq \int_{a}^{b} f^n g^\alpha. \]
3. Further variants of Qi’s inequality

Proof. The proof is similar to the previous ones. Again we assume that \(g \in D_+[a, b] \), define

\[
F(x) := \left(\int_a^x f(x) \right)^n - \int_a^x f^n(x) g^n(x),
\]

\[
G(x) := n \left(\int_a^x f(x) \right)^{n-1} - f^{n-1}(x) g^{a-n}(x)
\]

and show as before that

\[
F' \leq f g^n G.
\]

Next, using the fact that \(g'_+ \geq 0 \) and \(\alpha > n \), we obtain

\[
G'_+(x) \leq (n-1) \left(n f(x) \left(\int_a^x f(x) \right)^{n-2} - f^{n-2}(x) f'(x) g^{a-n}(x) \right). \tag{9}
\]

If \(n = 2 \) this implies \(G'_+ \leq 2f - f' g^{a-2} \), which by assumption is nonpositive. Thus we obtain \(G \leq G(a) = -f(a) g^{a-2}(a) \).

Now consider the case \(n \geq 3 \). We define functions \(H_1, \ldots, H_{n-2} \) on \([a, b] \) by

\[
H_k(x) := n \left(\prod_{i=k+1}^{n-2} i \right) \left(\int_a^x f(x) \right)^k - f^{k-1}(x) f^{(n-k-1)}(x) g^{a-n}(x).
\]

We will show that \(H_k \leq 0 \) for \(k = 1, \ldots, n-2 \). First, we have \((H_1)_+ = f n!/(n-1) - f^{(n-1)}(x) g^{a-n} - f^{(n-2)}(x) (\alpha - n) g^{a-n} g'_+ \). Since \(f^{(n-2)} \), \(g'_+ \geq 0 \) and \(\alpha > n \) this implies \((H_1)_+ \leq f n!/(n-1) - f^{(n-1)}(x) g^{a-n} \), and thus by our assumption on \(f \) and \(g \) we have \((H_1)_+ \leq 0 \). Hence \(H_1 \leq H_1(a) \leq 0 \).

Now suppose that \(H_k \leq 0 \) for some \(k \leq n-3 \). We have

\[
(H_{k+1})_+(x) = n f(x) \left(\prod_{i=k+1}^{n-2} i \right) \left(\int_a^x f(x) \right)^k - k f^{k-1}(x) f^{(n-k-2)}(x) g^{a-n}(x)
\]

\[
- f^{k}(x) f^{(n-k-1)}(x) g^{a-n}(x) - f^{k}(x) f^{(n-k-2)}(x) (\alpha - n) g^{a-n} g'_+(x)
\]

\[
\leq n f(x) \left(\prod_{i=k+1}^{n-2} i \right) \left(\int_a^x f(x) \right)^k - f^{k}(x) f^{(n-k-1)}(x) g^{a-n}(x) = f(x) H_k(x) \leq 0.
\]

Hence \(H_{k+1} \leq H_{k+1}(a) \leq 0 \).

It follows from (9) that \(G'_+ \leq (n-1) f H_{n-2} \leq 0 \) and thus \(G \leq G(a) = -f^{n-1}(a) g^{a-n}(a) \).

Using this together with (8) and the fact that \(f \) and \(g \) are increasing we obtain \(F' \leq -f^{a}(a) g^{a}(a) \). The mean value theorem therefore implies \(F(b) = F(b) - F(a) \leq -(b - a) f^{a}(a) g^{a}(a) \), finishing the proof.

\[\square\]

This yields the following corollary.
Corollary 16. If $n \geq 2$ and f is an $(n-1)$-times differentiable function on $[a, b]$ such that $f^{(i)} \geq 0$ for $i = 0, \ldots, n-2$, $f^{(n-1)}$ is strictly positive and $f/f^{(n-1)}$ is bounded, then

$$(b-a)f^n(a) + \frac{n-1}{n!}A \left(\int_a^b f \right)^n \leq \int_a^b f^n,$$

where $A := \|f/f^{(n-1)}\|_{\infty}$ and $\|\cdot\|_{\infty}$ denotes the usual sup-norm.

Proof. Define g to be constant on $[a, b]$ with value $(n!A/(n-1))^{1/n}$ and $\alpha := 2n$ and apply Proposition 15. □

An analogous result to Proposition 15 for the case $\alpha \leq n$ reads as follows.

Proposition 17. Let f be an $(n-1)$-times differentiable function on $[a, b]$ $(n \geq 2)$ such that $f^{(i)} \geq 0$ for $i = 0, \ldots, n-2$. Let g be a strictly positive, continuous and increasing function on $[a, b]$ and let $\alpha \in (-\infty, n]$ with $f^{(n-1)} \geq \frac{n}{n-1}f\|g\|^{n-\alpha}_{\infty}$. Then we have

$$(b-a)f^n(a)K + \left(\int_a^b fg \right)^n \leq \int_a^b f^ng^\alpha,$$

where $K = g^\alpha(a)$ for $\alpha \geq 0$ and $K = g^\alpha(b)$ for $\alpha < 0$.

Proof. The proof is similar to the last one, so we will only sketch it. First define F exactly as in the previous proof and let

$$G(x) := n\|g\|^{n-\alpha}_{\infty} \left(\int_a^x f \right)^{n-1} - f^{n-1}(x).$$

It is easy to prove that

$$F' \leq fg^\alpha G. \quad (10)$$

Next we define again functions H_k (where $k = 1, \ldots, n-2$) by

$$H_k(x) := n\|g\|^{n-\alpha}_{\infty} \left(\prod_{i=k+1}^{n-2} i \right) \left(\int_a^x f \right)^k - f^{k-1}(x)f^{(n-k-1)}(x).$$

Similar to our previous proofs one can show inductively that $H_k \leq 0$ for $k = 1, \ldots, n-2$ and $G' = (n-1)fH_{n-2}$.

It follows that G is decreasing and hence $G \leq G(a) = -f^{n-1}(a)$. Using this together with (10), the monotonicity of f and g, and the mean value theorem, one obtains

$$F(b) \leq -(b-a)f^n(a)K$$

and the proof is finished. □

Here is yet another result of the above type.
Proposition 18. Let \(f \) be an \((n-1)\)-times differentiable function on \([a, b] \) \((n \geq 2)\) such that \(f^{(i)} \geq 0 \) for \(i = 0, \ldots, n-2 \). Let \(g, h \in D_+[a, b] \) or \(g, h \in D_-[a, b] \) with \(g, h \geq 0 \). Assume further that \(g \) is increasing and \(h \) and \(gh \) are decreasing. Let \(f^{(n-1)} \geq \frac{n}{n-1} f g^{n-l} h^n \) for some \(l \in \{1, \ldots, n\} \). Then we have

\[
(b - a)^{n} f(a) g^l(a) + \left(\int_{a}^{b} f g h \right)^{n} \leq \int_{a}^{b} f^{n} g^l.
\]

Proof. We will only sketch the proof for the case \(g, h \in D_+[a, b] \). First define

\[
F(x) := \left(\int_{a}^{x} f g h \right)^{n} - \int_{a}^{x} f^{n} g^l,
\]

\[
G(x) := n \left(\int_{a}^{x} f g h \right)^{n-1} h(x) - f^{n-1}(x) g^{l-1}(x).
\]

Then \(F' = fgG \).

In the following, we will only treat the case \(2 \leq l \leq n - 1 \). The boundary cases are treated similarly. We define

\[
H_k(x) := n \left(\prod_{i=2}^{k} (n-i) \right) \left(\int_{a}^{x} f g h \right)^{n-k-1} h^{k+1}(x) - f^{(k)}(x) f^{n-k-2}(x) g^{l-k-1}(x),
\]

\[
J_s(x) := n \left(\prod_{i=2}^{l+s-1} (n-i) \right) \left(\int_{a}^{x} f g h \right)^{n-l-s} h^{l+s}(x) g^s(x) - f^{(l+s-1)}(x) f^{n-l-s-1}(x)
\]

for \(k = 1, \ldots, l - 1 \) and \(s = 0, \ldots, n - 1 - l \).

Then \(J_0 = H_{l-1} \). Moreover, using \(h' \leq 0 \) and \(g' \geq 0 \), it is easy to see that \(G'_+ \leq (n-1) fg H_1, (H_k)'_+ \leq fg H_{k+1} \) for each \(k \) and \((J_s)'_+ \leq f J_{s+1} \) for each \(s \) (note that \(h^{l+s} g^s \) is also decreasing (and hence has a negative right-derivative) since \(h^{l+s} g^s = (gh)^s h^l \)).

We further have \(J_{n-1-1}'_+ \leq \frac{n}{n-1} fh^n g^{n-l} - f^{(n-1)} \), whence by assumption \((J_{n-1-1})'_+ \leq 0 \).

Using the usual monotonicity and induction arguments, we obtain that all the functions \(J_k \) and \(H_k \) are negative. It follows in particular that \(G'_+ \leq 0 \) and hence \(G \leq G(a) = -f^{n-1}(a) g^{l-1}(a) \).

Since \(F' = fgG \) and \(f \) and \(g \) are increasing, we obtain \(F' \leq -f^{n}(a) g^{l}(a) \).

From this and the mean value theorem we can deduce the desired inequality.

\(\square \)

An immediate corollary is the following inequality.

Corollary 19. Let \(f \) be an \((n-1)\)-times differentiable function on \([a, b] \) \((n \geq 2)\) such that \(f^{(i)} \geq 0 \) for \(i = 0, \ldots, n-2 \) and \(g \) a strictly positive, increasing function on \([a, b] \) with \(g \in D_+[a, b] \) or \(g \in D_-[a, b] \). If \(f^{(n-1)} g \geq \frac{n!}{n-1} f \), then

\[
(b - a)^{n} f(a) g(a) + \left(\int_{a}^{b} f \right)^{n} \leq \int_{a}^{b} f^{n} g.
\]

14 of 17
implies (for \(i = 1, \ldots, n - 2 \))
\[
\left(g \times \right. \text{differentiable function such that } f \text{ or } h \text{ is increasing is equivalent to } f
\]
\[\text{We will only give a sketch of the proof. Assume that }\]
\[
\text{Proof.}\]
\[
\text{Put } g := n!/(n - 1)(f/f^{(n-1)}) \text{ and apply Corollary 19.}\]
\[
\text{Note that Corollary 5 implies (for } h = 1 \text{ and } \alpha = 1 \text{) the stronger inequality}
\]
\[
(b - a) \frac{f^{n+1}(a)}{f^{(n-1)}(a)} + \frac{1}{(n-1)!} \left(\int_{a}^{b} f \right)^{n} \leq \int_{a}^{b} \frac{f^{n+1}}{f^{(n-1)}}
\]
\[
\text{under the stronger assumption that } f^{(n)} \leq 0 \text{ (the assumption that } f/f^{(n-1)} \text{ is increasing is equivalent to } f^{(n)} \leq f^{(n-1)} f'/f).
\]
\[
\text{Finally, we also have the following generalisation of (1).}
\]
\[
\text{Proposition 21. Let } n \geq 2, \quad k \in \{1, \ldots, n - 1\} \text{ and } f : [a, b] \to \mathbb{R} \text{ a } k-
\]
\[
times \text{differentiable function such that } f^{(i)} \geq 0 \text{ for } i = 0, \ldots, k - 1. \text{ Let } g : [a, b] \to \mathbb{R} \text{ be continuous }
\]
\[
\text{and increasing with } g \geq 0. \text{ Let } h \in D_{+}[a, b] \text{ or } h \in D_{-}[a, b] \text{ be increasing and strictly positive. Suppose that } f^{(k)}(x) \geq
\]
\[
(x - a)^{n-k-1}h(x)^{\frac{(n-1)!!}{(n-k-1)!}} \text{ for all } x \in [a, b]. \text{ Then we have}
\]
\[
(b - a) f^{n+1}(a) g^{n}(a) h^{n-1}(a) + \left(\int_{a}^{b} f g h \right)^{n} \leq \int_{a}^{b} f^{n+1} g^{n} h^{n-1}.
\]
\[
\text{Proof. We will only give a sketch of the proof. Assume that } h \in D_{+}[a, b] \text{ and define}
\]
\[
F(x) := \left(\int_{a}^{x} f g h \right)^{n} - \int_{a}^{x} f^{n+1} g^{n} h^{n-1},
\]
\[
G(x) := n \left(\int_{a}^{x} f h \right)^{n-1} - f^{n}(x) h^{n-2}(x).
\]
\[
\text{Using the monotonicity of } g, \text{ we see as before that } F' \leq g^{n} f h G.
\]
\[
\text{Next we define}
\]
\[
H_{s}(x) := \left(\prod_{i=1}^{s} (n - i) \right) \left(\int_{a}^{x} f h \right)^{n-s-1} - f^{n-s-1}(x) f^{(s)}(x) h^{n-s-2}(x)
\]
\[
\text{for } s = 1, \ldots, k.
\]
Using similar arguments as before we obtain that \(G'_+ \leq nfhH_1 \) and \((H_s)'_+ \leq fhH_{s+1} \) for all \(s \).

We further have, due to the monotonicity of \(f \) and \(h \),

\[
H_k(x) \leq f^{n-k-1}(x)h^{n-k-2}(x)\left(\frac{(n-1)!}{(n-k-1)!}(x-a)^{n-k-1}h(x) - f^{(k)}(x)\right).
\]

Hence our assumption implies \(H_k \leq 0 \).

It follows inductively that \(H_s \leq 0 \) for all \(s \). Hence \(G'_+ \leq 0 \) and thus \(G \leq G(a) = -f^n(a)h^{n-2}(a) \).

This implies \(F' \leq -f^{n+1}(a)g^n(a)h^{n-2}(a) \) and the mean value theorem gives us the desired conclusion. \(\square \)

References

[1] M. Akkouchi, Some integral inequalities, Divulgac. Mat. 11 (2003), no. 2, 121–125.
[2] , On an integral inequality of Feng Qi, Divulgac. Mat. 13 (2005), no. 1, 11–19.
[3] L. Bougoffa, Notes on Qi type integral inequalities, J. Inequal. Pure Appl. Math. 4 (2003), no. 4, 4 p. Article No. 77.
[4] , An integral inequality similar to Qi’s inequality, J. Inequal. Pure Appl. Math. 6 (2005), no. 1, 6 p. Article No. 27.
[5] , Note on an open problem, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, 10 p. Article No. 58.
[6] K. Boukerrioua and A. Guezane-Lakoud, On an open question regarding an integral inequality, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, 7 p. Article No. 77.
[7] K. Brahim, N. Bettaibi, and M. Sellami, On some Feng Qi type \(q \)-integral inequalities, J. Inequal. Pure Appl. Math. 9 (2008), no. 2, 7 p. Article No. 43.
[8] Y. Chen and J. Kimball, Note on an open problem of Feng Qi, J. Inequal. Pure Appl. Math. 7 (2006), no. 1, 4 p. Article No. 4.
[9] N. S. Hoang, Notes on an inequality, J. Inequal. Pure Appl. Math. 9 (2008), no. 2, 11 p. Article No. 42.
[10] V. Krasniqi, Some generalizations of Feng Qi type integral inequalities, Octogon Math. Mag. 20 (2012), no. 2, 464–467.
[11] W.-J. Liu, C.-C. Li, and J.-W. Dong, Note on Qi’s inequality and Bougoffa’s inequality, J. Inequal. Pure Appl. Math. 7 (2006), no. 4, 10 p. Article No. 129.
[12] , On an open problem concerning an integral inequality, J. Inequal. Pure Appl. Math. 8 (2007), no. 3, 10 p. Article No. 74.
[13] , Consolidations of extended Qi’s inequality and Bougoffa’s inequality, J. Math. Inequal. 2 (2008), no. 1, 9–15.
[14] W.-J. Liu, G.-S. Cheng, and C.-C. Li, Further development of an open problem concerning an integral inequality, J. Inequal. Pure Appl. Math. 9 (2008), no. 1, 10 p. Article No. 14.
[15] W.-J. Liu, Q.-A. Ngô, and V. N. Huy, Several interesting integral inequalities, J. Math. Inequal. 3 (2009), no. 2, 201–212.
[16] S. Mazouzi and F. Qi, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math. 4 (2003), no. 2, 6 p. Article No. 31.
References

[17] Y. Miao and J. Li, *Further development of an open problem*, J. Inequal. Pure Appl. Math. 9 (2008), no. 4, 14 p. Article No. 108.

[18] Q. A. Ngô, D. D. Thang, T. T. Dat, and D. A. Tuan, *Notes on an integral inequality*, J. Inequal. Pure Appl. Math. 7 (2006), no. 4, 10 p. Article No. 120.

[19] Q. A. Ngô and P. H. Tung, *Note on an open problem of F. Qi and Y. Chen and J. Kimball*, J. Inequal. Pure Appl. Math. 8 (2007), no. 2, 9 p. Article No. 41.

[20] J. Pečarić and T. Pejković, *On an integral inequality*, J. Inequal. Pure Appl. Math. 5 (2004), no. 2, 15 p. Article No. 47.

[21] , *Note on Feng Qi’s integral inequality*, J. Inequal. Pure Appl. Math. 5 (2004), no. 3, 3 p. Article No. 51.

[22] T. K. Pogány, *On an open problem of F. Qi*, J. Inequal. Pure Appl. Math. 3 (2002), no. 4, 5 p. Article No. 54.

[23] F. Qi, *Several integral inequalities*, J. Inequal. Pure Appl. Math. 1 (2000), no. 2, 7 p. Article No. 19.

[24] F. Qi, A.-J. Li, W.-Z. Zhao, D.-W. Niu, and J. Cao, *Extensions of several integral inequalities*, J. Inequal. Pure Appl. Math. 7 (2006), no. 3, 14 p. Article No. 107.

[25] W. T. Sulaiman, *Notes on integral inequalities*, Demonstr. Math. 41 (2008), no. 4, 887–894.

[26] W. Sulaiman, *New several integral inequalities*, Tamkang J. Math. 42 (2011), no. 4, 505–510.

[27] J.-S. Sun, *A note on an open problem for integral inequality*, RGMIA Res. Rep. Collect. 7 (2004), no. 3, 3 p. Article No. 21.

[28] N. Towghi, *Notes on integral inequalities*, RGMIA Res. Rep. Collect. 4 (2001), no. 2, 2 p. Article No. 12.

[29] W. Walter, *Analysis 1*, 6th ed., Springer, Berlin-Heidelberg, 2001 (german).

[30] A. Witkowski, *On an F. Qi integral inequality*, J. Inequal. Pure Appl. Math. 6 (2005), no. 2, 11 p. Article No. 36.

[31] L. Yin and V. Krasniqi, *Some generalizations of Feng Qi type integral inequalities on time scales*, Preprint, available at arxiv.org/abs/1601.00099.

[32] H. Yong, *A note on Feng Qi type integral inequalities*, Int. J. Math. Anal. 1 (2007), no. 25, 1243–1247.

[33] K.-W. Yu and F. Qi, *A short note on an integral inequality*, RGMIA Res. Rep. Collect. 4 (2001), no. 1, 3 p. Article No. 4.

Department of Mathematics
Freie Universität Berlin
Arnimallee 6, 14195 Berlin
Germany
E-mail address: hardtke@math.fu-berlin.de