Polynomial fitting techniques applied to opto-mechanical properties of PDMS Sylgard 184 for given curing parameters

A Santiago-Alvarado¹, A S Cruz-Félix², J González-García², O Sánchez-López³, A J Mendoza-Jasso³ and I Hernández-Castillo³

¹ División de Estudios de Postgrado, Universidad Tecnológica de la Mixteca, Huajuapan de León, México
² Instituto de Física y Matemáticas, Universidad Tecnológica de la Mixteca, Huajuapan de León, México
³ Instituto de Ingeniería Industrial y Automotriz, Universidad Tecnológica de la Mixteca, Huajuapan de León, México

E-mail: santiago@mixteco.utm.mx

Keywords: polysdimethyisiloxane, mechanical characterization, PDMS’ optomechanical properties

Abstract

Mechanical and optical properties of Polydimethylsiloxane (PDMS) have been measured and reported for different applications, however, a full analysis and a compendium of its tension and compression moduli behaviour have not been carried out, nor of its refractive index, for several mixture ratios, temperature and curing time. In this work, samples of PDMS were manufactured and tested to know tension and compression moduli and refractive index as a function of fabrication parameters; Minitab®, Matlab®’s Least-squares fitting in Curve Fitting Toolbox™ and genetic algorithms were employed to yield functional dependencies to describe PDMS’s behavior. The obtained fitting polynomials are shown to have large agreement with experimental data. Finally, a potential application in the design of a gradient index lens for use in artificial vision is presented.

1. Introduction

Technological advancements have allowed innovations in the development of new components in several fields of knowledge; particularly in optics, freeform lenses, micro-components, several types of tunable lenses, and gradient index components have been proposed [1–8]. This has been largely due to the incorporation of new materials in the manufacture of optical components such as Polydimethylsiloxane Sylgard 184, better known as PDMS [9–11]. PDMS is an elastomer with excellent properties, for example is highly flexible, easy manipulable, transparent, light weight, non-toxic, inexpensive, gas permeable, hydrophobic, non-incrusting, electrical non-conductive, non-soluble, surface tension resistant, relatively easy to use in the fabrication of components and suitable to be used as matrix to contain molecules, nano and micro particles [12, 13].

Given its excellent opto-mechanical properties and characteristics, PDMS has been utilized in recent years in the development of several innovations, for example microelectronic components’ coatings [14–16], valves, sensors and filters, parts of microelectromechanical systems (MEMS), biocompatible elements and micro-channels, among other applications; specifically in the optics field, it has been used to fabricate variable focal length liquid lenses [4, 5, 7, 9, 14, 17–27].

Study and characterization of PDMS’s mechanical, chemical and optical properties are reported for specific cases in the literature; some fabrication methods are also mentioned to modify properties such as (a) curing and baking conditions, (b) different proportions of curing base agent, (c) different types of PDMS and other polymers, (d) inclusion of other molecules or particles and (e) elaboration of samples with different forms and sizes [13, 28–41].

Mechanical properties measurements of PDMS’s samples are also detailed for predetermined synthesis parameters; relevant examples are the components’ ratio of base mixture: catalyst (ratios varying from 2:1 to 33:1) [9, 16, 21, 28], the curing temperature applied (from room temperature up to 310 °C) [30, 35], or the curing time (18 min to 48 h) [32, 41]. Reports indicate that Young’s modulus, compressive and shear moduli
vary in the ranges of 12 kPa–3 GPa, 117.8 MPa–186.9 MPa and 100 kPa–3 MPa, respectively [14, 18, 22, 35, 37, 42, 43].

Several of these studies assert that high curing temperatures influence PDMS’s mechanical properties and degradation initiates in the range 300°C–310°C [30].

Results found at low temperatures show that mechanical properties are independent from heating time; in the curing process, mechanical strength decreases when heating temperature is high, and the elastic modulus increases same as mixture proportion up to a ratio of 9:1, after which the modulus reduces [35].

Non-linear models have been established to describe PDMS’s mechanical behavior from stress-strain curves. Modulus of elasticity is dependent on deformation as far as 115%; it has a linear behavior until a deformation of 45%, then it reaches 97% deformation on a non-linear basis and diminishes from here [9].

The making of samples with monotonic stiffness in the range 0.24–1.67 MPa has been also presented; this interval is achieved when UV irradiation time is adjusted [41], and fabrication of samples with stiffness gradient in a single direction has been reported as a consequence of imposing a temperature gradient [43].

Following PDMS’s optical characterizations, a waveguide monolithic system has been designed and produced, prepared with a mixture ratio of 10:1 at curing temperatures of 25, 50, 100 and 150 °C, yielding refractive indices in the interval 1.451 to 1.472 [44]; likewise, samples of PDMS were formulated varying mixing composition from 2.5:1 to 20:1 (basis: curing agent) cured at 95 °C over 30 min, attaining refractive indices of 1.422–1.440 [45]. In other works, polydimethylsiloxane’s samples were developed with a proportion of 10:1 and cured between 70°C–150°C, and were diluted with chloroform, benzene and toluene; under these synthesis conditions, refractive indices were found to occur in the interval 1.3986–1.4107 [46]. Similarly, polydimethylsiloxane’s samples cured at 150 °C were made with mixing ratios of 5:1, 9:1 and 19:1, giving indices about 1.40–1.44 [47].

Additionally, there are reports where optomechanical characterizations of Sylgard 184 are carried out, where a proportion of 10:1 and curing temperatures of 40 and 60 °C are utilized to determine refractive index to be 1.4295 for light of 635 nm wavelength [28]. Cruz Felix et al describe physical and chemical characterization of samples with 10:1 concentration cured at 100 °C, where they measured several optical parameters, for instance refractive index as 1.4325, absorbance and transmittance spectra; Raman spectroscopy and optical coherence tomography were used to qualitatively measure thickness and homogeneity of PDMS’s membranes [11].

Recently, a report mentions the combination of PDMS with ZrO2, providing a refractive index in the range of 1.39 to 1.69 depending on mixture concentration [41]. Furthermore, variations of refractive index have been detected with variation of curing temperature [42], or when PDMS is mixed with another diphenylsiloxane group [48] and when samples are subjected to tension, refractive index undergoes small variations [49].

Even though there are reports citing bulk PDMS’s optomechanical properties for certain mixture ratios, temperatures and curing times [50–52], values for refractive index and for Young’s modulus do not exist for many mixing ratios. Therefore it is necessary to have a compilation of the optical and mechanical properties in the previously mentioned synthesis intervals, then this set of properties can be used in potential applications in the field of adaptive optics, refractive systems, gradient index elements, tunable optics and freeform elements.

Thereby, this work presents the characterization of 60 samples (see figure 1) elaborated with PDMS Sylgard 184, so that tension and compression tests were carried out following the ASTM D412 and ASTM D695 standards [53, 54], varying synthesis conditions in order to know mechanical and optical properties at the same time.

As a result, a compendium of relevant PDMS’s optomechanical properties was come up with; mathematical expressions are described for the first time that will permit to know synthesis parameters to use in the fabrication of PDMS’s specimens with a specifically desired refractive index and Young’s modulus. The manufacturing process and characterization of such opto-mechanical properties are described [11]. Particularly, these expressions will facilitate design and fabrication of tunable refractive elements (elements capable of modifying their optical parameters when they are exposed to physical stimulus). Finally, an application is presented in this investigation.

2. Method and measurements

2.1. PDMS synthesis

Synthesis of this elastomer is straightforward considering the procedure recommended by the supplier; PDMS Sylgard 184 by Dow Corning® is presented as a viscous liquid kit of two components, a polymer base and a curing agent (catalyzer), when they are combined become a curable mixture [10]. Table 1 displays a matrix of synthesis parameters for the PDMS’s specimens with several mixing ratios, curing time and temperatures. Twenty combinations of samples were developed to measure mechanical and optical properties of this polymeric composite; these specific combinations served to prepare twenty samples for compressive tests, twenty to be
tested in tension and twenty more to determine optical characteristics, sixty tests were executed overall to achieve this material’s characterization. As mentioned previously, samples were formulated according to ASTM D412 and ASTM D695 standards. These synthesis parameters were taken from recommendations of Dow Corning® and those available in the literature, which use a lower quantity of the polymeric base with the corresponding increment in the catalyst; curing temperatures are in the range of 100–200°C, with an additional temperature of 240 °C with a curing time of 10 min, as shown in table 1.

2.2. Mechanical test

Tensile and compressive tests were performed in a universal testing machine Autograph AG-IS model. Initial length of each sample was marked, later the device stretched or compressed the samples at a constant speed of 200 mm min⁻¹ in tension and 0.08 mm s⁻¹ in compression one at a time until specimen breakage. Data were used to generate stress-strain curves for each sample, obtaining tensile and compressive moduli. Experimental measurements are shown in table 2.

2.3. Measurement of refractive index

Refractive index was measured experimentally with a projection Abbe refractometer model WY1A by Xintian Fine Optical Instrument Corporation; it uses a lamp as illumination source with a wavelength of 589 nm and is...
designed to obtain the bulk refractive index of a transparent solid. The process of measuring the refractive index consisted in calibrating the device using a reference block with a refractive index of 1.536, then the bottom side of the sample was coated with oil (whose properties are known, i.e., 1-bromonaphthalene), whose refractive index is in the range between sample’s and prism’s indices; the oil serves to compel contact with the refracting prism. Finally, samples were placed in the refractometer to take the measurements.

Experimental measurements of refractive index are displayed in table 2; in the first and second columns, the values of the catalyzer and curing temperatures used in each sample are shown respectively.

Catalyzer concentration C_i	Temperature T_i (°C)	Tensile modulus tm_i (MPa)	Compressive modulus cm_i (MPa)	Refractive index n_e
1.0	100	0.93655	2.49975	1.408
1.0	150	1.00353	2.61458	1.420
1.0	200	1.03379	2.65017	1.428
1.0	240	1.10348	2.68080	1.430
1.25	100	1.04941	2.71569	1.410
1.25	150	1.07626	2.76023	1.420
1.25	200	1.11957	2.76236	1.432
1.25	240	1.16817	2.77305	1.432
1.50	100	1.25846	2.84197	1.412
1.50	150	1.27464	2.88806	1.425
1.50	200	1.31356	2.92452	1.434
1.75	100	1.49067	3.16636	1.414
1.75	150	1.56349	3.21033	1.430
1.75	200	1.58242	3.22647	1.438
1.75	240	1.62468	3.30544	1.440
2.0	100	1.70237	3.40352	1.418
2.0	150	1.72761	3.49281	1.434
2.0	200	1.79296	3.59347	1.442
2.0	240	1.83197	3.77605	1.445

3. Analysis and results

Behavior of the experimental data was analyzed, and a polynomial data fit to find a dependency of mechanical parameters and refractive index with respect to synthesis parameters was performed. Higher order polynomials were considered for the fitting of both tensile modulus and compressive modulus, and a third order polynomial was used to fit analytically the experimental refractive index data. Three fitting tools were used to find polynomial coefficients that best fit the experimental data: Minitab®, Least-squares fitting in Curve Fitting Toolbox™ by Matlab® and genetic algorithms (GA). Mean absolute percentage error (MAPE) was considered to know the average of the absolute differences between experimental and fit values of each implemented tool in order to select the polynomials with the least error [57]. Polynomials used in these fittings are shown in equations (1) and (2):

\[
cm(C, T) = tm(C, T) = p_{00} + p_{10} C_i + p_{01} T_i + p_{20} C_i^2 + p_{11} C_i T_i + p_{02} T_i^2 + p_{03} C_i^3 + p_{21} C_i^2 T_i + p_{12} C_i T_i^2 + p_{03} C_i^3 + p_{31} C_i^3 T_i + p_{22} C_i^2 T_i^2 + p_{13} C_i T_i^3
\]

\[
n(C, T) = n_e = p_{00} + p_{10} C_i + p_{01} T_i + p_{20} C_i^2 + p_{11} C_i T_i + p_{02} T_i^2 + p_{03} C_i^3 + p_{21} C_i^2 T_i + p_{12} C_i T_i^2 + p_{03} T_i^3
\]

where C_i is mixture ratio, T_i is temperature, p_{ij} are the polynomial coefficients to be found, $cm(C, T)$, $tm(C, T)$ and $n(C, T)$ represent the compression modulus, the tension modulus and the refractive index respectively.

3.1. Mechanical characterization

First, a polynomial fitting was performed to experimental data of tensile modulus; Minitab® gave the best fit with an MAPE of 0.449%. Equation (3) describes the polynomial found, and figure 2 shows the polynomial graph along with the experimental data.
Likewise, a polynomial fitting was carried out to the compressive modulus’ data of the experimental samples, to find dependency with respect to synthesis parameters. The polynomial found that best fits the experimental data resulted from the application of GA with an MAPE of 0.357% as expressed in equation (4); its graph and the experimental data are presented in figure 3.

\[
tm(C, T) = -1.409 + 4.385C_i + 0.0297T_i - 4.925C_i^2 - 0.028C_iT_i - 0.0001T_i^2 + 2.99C_i^3 \\
+ 0.009C_i^4 + 0.0008C_iT_i^2 + 0.000002T_i^3 - 0.617C_i^4 - 0.0014C_i^4T_i - 0.000005C_i^2T_i^2 - 0.0000001C_iT_i^3.
\]

(3)

Likewise, a polynomial fitting was carried out to the compressive modulus’ data of the experimental samples, to find dependency with respect to synthesis parameters. The polynomial found that best fits the experimental data resulted from the application of GA with an MAPE of 0.357% as expressed in equation (4); its graph and the experimental data are presented in figure 3.

\[
crm(C, T) = -12.077 + 38.074C_i + 0.0126T_i - 38.973C_i^2 - 0.0009C_iT_i - 0.00001T_i^2 \\
+ 17.836C_i^3 + -0.00238C_i^2T_i - 0.00003C_iT_i^2 - 0.00000001T_i^3 \\
- 3.0068C_i^4 - 0.00137C_i^3T_i + 0.0000003C_i^2T_i^2 + 0.00000009C_iT_i^3.
\]

(4)

3.2. Optical characterization

Finally, a polynomial fit was made to the refractive index’s experimental data, where Matlab® achieved the best MAPE with a value of 0.039%; this polynomial and its graph are represented in equation (5) and figure 4,
respectively.

\[n(C, T) = 1.41200 - 0.03739C_i - 0.00008T_i + 0.02023C_i^2 + 0.00011C_iT_i + 0.000002T_i^2 \\
- 0.0040C_i^4 + 0.000027C_i^2T_i - 0.0000047C_iT_i^2 - 0.00000005T_i^3. \] (5)

3.3. Application in adaptive optics

In this section only the design of a GRIN type lens (gradient-index; the refractive index of a GRIN lens is a function of the position) is presented. The proposed lens is composed by several layers to emulate the functioning of the crystalline lens of the human eye, i.e., a lens whose refractive index reduces from its center to its periphery [58].

For this particular GRIN lens, an interval of refractive indices from 1.408 to 1.418 was selected for the layers; the lens is designed to be able to change its shape with the application of a mechanical stimulus over its periphery. The use of PDMS Sylgard 184 is considered within the design of the adaptive lens; in addition, it is contemplated that the lens consists of 9 layers with the profiles of the anterior and posterior surfaces given by the parameters shown in table 3 [59]. By using equation (5), the parameters displayed in figures 5 and 6 were found, each concentration is considered at a curing temperature of 100 °C. The refractive indices and positions of each of the layers are shown in figure 5 and the cross section of the lens is presented in figure 6. As it can be seen, it is possible to develop adaptive optical components with applications in visual optics, counting on a component that replicates the focusing ability of the human eye’s crystalline lens.

A proposed fabrication process of this lens consists in pouring each layer manually and sequentially into the mold, controlling the volume and the curing parameters of the mixture, starting from the outer layers. Through this manual procedure, GRIN lenses with only a few tens of layers are possible to generate. In future works, simulations and a complete analysis of the functioning of a lens with these characteristics will be presented.

4. Conclusions

Compression and tension moduli, and refractive indices were measured in samples of PDMS Sylgard 184, fabricated with different curing parameters and concentration ratios. From these measurements, mathematical expressions are reported for the first time that estimate compressive and tensile moduli, and refractive index as a function of mixture concentration, curing time and temperature. Such polynomials were found by carrying out a fitting of the parameters measured experimentally; three tools were utilized to do it and the polynomial with the best fit for each moduli was selected considering the mean absolute percentage error as the selection criterion, which was lesser than 0.45% for all the cases. Those polynomials were employed to estimate the synthesis parameters to be used in elaborating the layers to construct a GRIN type lens, which can be used in artificial vision applications. These polynomials can be used also to designing several low cost components such as waveguides, sensors, opto-electronic components, etc. It is considered that the expressions have potential applications in diverse fields of science.
Table 3. Characteristics of the lens’ design [59].

Feature	Parameter
Radius of Curvature	Anterior surface = 10.2 mm
	Posterior surface = −6 mm
Conic constant	Anterior surface = −3.1316
	Posterior surface = −1
Thickness	4 mm
Diameter	10 mm
Effective focal length	24.81 mm

Figure 5. Thickness and position of layers as function of refractive index.

Figure 6. Lens design composed of layers with different concentrations and different refractive indices.

ORCID iDs

A S Cruz-Félix © https://orcid.org/0000-0001-5526-0705
References

[1] Lasemi A, Xue D Y and Gu P 2010 Recent development in CNC machining of freeform surfaces: a state-of-the-art review Comput. Des. 42 641–54

[2] Herzig H P 1997 Design of refractive and diffractive micro-optics Micro-Optics Elements, Systems and Applications ed H P Herzig 1st (London: CRC Press) [https://doi.org/10.1201/9781482272802]

[3] Lin Y-C and Cheng C-J 2010 Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy J. Opt. 12 1135402

[4] Carpi F, Fedi Ganni, Turco S Y and De Rossi D 2011 Bioinspired tunable lens with muscle-like electroactive elastomers Adv. Funct. Mater. 21 4152–8

[5] Martin T P, Nicholas M, Orris G J, Cai L-W, Torrent D Y and Sánchez-Dehesa J 2010 Sonic gradient index lens for aqueous applications Appl. Phys. Lett. 97 113503–113503

[6] Beadie G, Sandrock M L, Wiggins M J, LePekowsicz R S, Shirk J S, Ponting M, Yang Y, Karmieczak T, Hiltner A Y and Baer E 2008 Tunable polymer lens Opt. Express 16 11148–57

[7] Santiago-Alvarado A, Vázquez-Montiel S, Gonzalez-García J Y and Licona B 2008 Fabricación y caracterización de membranas elásticas de PDMS para lentes líquidas con longitud focal variable (LLLFV) Óptica Pura Y Aplicada 41 381–8

[8] Lin W-C, Chen C-C A, Huang K-C Y and Wang Y-S 2010 Design and fabrication of soft zoom lens applied in Robot vision Robot Vision ed A Ude (Rijeka: IntechOpen) [https://doi.org/10.5772/9290]

[9] Schneider F, Draheim J, Kamberger R Y and Wallrabe U 2009 Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS Sensors Actuators Sensors and Actuators A: Physical 151 95–9

[10] 2017 Technical Data Sheet SYLGARD 184 Silicone Elastomer The Dow Chemical Company 1–4 (https://www.dow.com/content/dam/docs/en-us/productdatasheet/11/11-31-11-3184-sylgard-184-elastomer.pdf?iframe=true)

[11] Cruz-Felix A, Santiago-Alvarado A y y Licona B 2014 Physical-chemical properties of PDMS samples used in tunable lenses Int. J. Eng. Sci. Innov. Technol. 3 563–71

[12] Kuo A 1999 Poly(dimethylsiloxane) Polymer Data Handbook ed E Mark 1st (New York, USA: Oxford University Press) pp 411–35

[13] Wolf M P, Saleib-Beugelaar G Y and Hynziker P 2018 PDMS with designer functionalities—properties, modifications strategies, and applications Prog. Polym. Sci. 83 97–134

[14] Thanagawang A L, Ruo FR S, Swartz M A Y and Glucksberg M R 2007 An ultra-thin PDMS membrane as a bio- micro nano interface: fabrication and characterization Biomaterials 5787–95

[15] Yang S and Jiang K 2012 Elastomer Application in Microsystem and Microfluidics Advanced Elastomers - Technology, Properties and Applications ed A Boczkowska 1st (Rijeka: IntechOpen) [https://doi.org/10.5772/48121]

[16] Armiani D, Liu C Y and Alurini N 1999 Re-configurable fluidic circuits by PDMS elastomer micromachining Technical Digest. IEEE International MEMS Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Orlando, FL, USA: IEEE) pp 222–7

[17] Fuh Y-K, Hsu K-C, Lin M-X and Fan J-R 2013 Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astigmatism Opt.—Int. J. Light Electron Opt. 124 706–9

[18] Lötters J C, Olthuis W, Velthink P H and Bergveld P 1997 The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications J. Micromechanics Microengineering 7 145–7

[19] Liebertau F, Petsch S, Mönch W and Zappe H 2011 Tunable solid-body elastomer lenses with electromagnetic actuation Appl. Opt. 50 3268–74

[20] Santiago-Alvarado A, Vázquez-Montiel S, Granados-Agustín F-S, Gonzalez-García J and Campos-García M 2010 Measurement of aberrations of a solid elastic lens using a point-diffraction interferometer Optical Engineering 49 123401

[21] Mata A, Fleischman A J and Roy S 2005 Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems Biomed. Microdevic 7 281–93

[22] Palcheshko R N, Zhang L, Sun Y and Feinberg A W 2012 Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve PLoS ONE 7 e51499

[23] Folch A 2013 Introduction to BioMEMS 1st (Boca Raton, FL, USA: CRC Press) [https://doi.org/10.1201/b12263]

[24] Wang S, Kallir A and Goshu A 2011 Fabrication and characterization of PDMS thin film Organic Photonic Materials and Devices XIII 7935 (San Francisco, California, USA) (SPIE) 79350M

[25] Wang T, Mallidi S, Qiu J, Ma L, Paranjape A, Sun J, Kuranov R, Johnston K and Milner T 2011 Comparison of pulsed photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue phantoms J. Biophotonics 4 335–44

[26] Santiago-Alvarado A, Cruz-Felix A, Hernandez-Mendez A and Perez-Maldonado Y 2015 Design and characterization of tunable opto-mechatronic system to mimic the focusing and the regulation of illumination in the formation of images made by the human eye Micro- and Nanotechnology Sensors, Systems, and Applications VII 9467 (Baltimore, Maryland, USA) (SPIE) 94671Y

[27] Cruz-Felix A, Santiago-Alvarado A, Hernandez-Mendez A, Reyes-Perez E and Tepichín-Rodríguez E 2016 Optical performance of a PDMS tunable lens with automatically controlled applied stress Current Developments in Lens Design and Optical Engineering XVII 9947 (San Diego, California, USA) (SPIE) 99470F

[28] Wang Z, Volinsky A A and Gallant N D 2014 Crosslinking effect on polydimethylsiloxane elastic modulus measured by custom-built compression instrument J. Appl. Polym. Sci. 131 41030

[29] Li W H and Nakano M 2013 Fabrication and characterization of PDMS based magnetorheological elastomers Smart Mater. Struct. 22 52035

[30] Liu M, Sun J and Chen Q 2009 Influence of heating temperature on mechanical properties of polydimethylsiloxane Sensors Actuators A: Physical 151 42–5

[31] Lee W S, Yeo K S, Andriaya A, Shee Y G and Mahamad Adikan F R 2016 Effect of cyclic compression and curing agent concentration on the stabilization of mechanical properties of PDMS elastomer Mater. Des. 96 470–5

[32] Seghir R and Arscott S 2015 Extended PDMS stiffness range for flexible systems Sensors Actuators A: Phys. 230 33–9

[33] Joki-Korpela F and Palkkanen T T 2011 Incorporation of polydimethylsiloxane into polyleuranes and characterization of copolymers Eur. Polym. J. 47 1694–708

[34] Kim T K, Kim J K and Jeong O C 2011 Measurement of nonlinear mechanical properties of PDMS elastomer Microelectron. Eng. 88 1982–5

[35] Johnston I D, McCluskey D K, Tan C K L and Tracey M C 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering Journal of Micromechanics and Microengineering 24 035017
[36] Yilgör E and Yilgör I 2014 Silicone containing copolymers: synthesis, properties and applications Prog. Polym. Sci. 39 1165–95

[37] Liu M, Sun J, Sun Y, Bock C and Chen Q 2009 Thickness-dependent mechanical properties of polydimethylsiloxane membranes Journal of Micromechanics and Microengineering 19 035028

[38] Lee S, Shin H J, Yoon S M, Yi D K, Choi J Y and Paik U 2008 Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites J. Mater. Chem. 18 1751–5

[39] Velázquez-González J S, Monzón-Hernández D, Moreno-Hernández D, Martínez-Piñón F and Hernández-Romano I 2017 Simultaneous measurement of refractive index and temperature using a SPR-based fiber optic sensor Sensors Actuators, B Chem. 242 912–20

[40] Bourbaba H, Ren Achaiba C and Mohamed B 2013 Mechanical behavior of polymeric membrane: comparison between PDMS and PMMA for micro fluidic application Energy Procedia 36 231–7

[41] Raczkowska J, Prazun-Bechicki S, Lukas J, Bernasik A, Awski K, Paluszkiewicz C, Pabian J, Lekka M and Budkowski A 2016 Physico–chemical properties of PDMS surfaces suitable as substrates for cell cultures Appl. Surf. Sci. 389 247–54

[42] Liu B and Fu J 2015 Modulating surface stiffness of polydimethylsiloxane (PDMS) with kiieloelectronvolt ion patterning Journal of Micromechanics and Microengineering 25 065006

[43] Wang P Y, Tsai W B and Voelcker N H 2012 Screening of rat mesenchymal stem cell behaviour on polydimethylsiloxane stiffness gradients Acta Biomater. 8 519–30

[44] Chang-Yen D A, Ilich B K and Gale B K 2005 A monolithic PDMS waveguide system fabricated using soft-lithography techniques J. Light. Technol. 23 2088

[45] Qiu W 2012 PDMS Based Waveguides for Microfluidics and EOCh Louisiana State University LSU Master’s Theses 1640 (https://digitalcommons.lsu.edu/gradschool_theses/1640)

[46] Schneider F, Fellner T, Wilde J and Wallrabe U 2008 Mechanical properties of silicones for MEMS J. Micromechanics Microengineering 18 65508

[47] Cai D, Neyer A, Kuckuk R and Heise H M 2010 Raman, mid-infrared, near-infrared and ultraviolet—visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials J. Mol. Struct. 976 274–81

[48] Pražilér V, Nekvindova P, Spírková J and Novotný M 2017 The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique J. Mater. Sci., Mater. Electron. 28 7951–61

[49] Turek I, Tarjányi N, Martinečk I and Káčik D 2014 Effect of mechanical stress on optical properties of polydimethylsiloxane Opt. Mater. (Amst). 36 965–70

[50] Park J S, Caboşky R, Ye Z and Kim I 2018 (Isaac) Investigating the mechanical and optical properties of thin PDMS film by flat-punched indentation Opt. Mater. (Amst). 85 153–61

[51] Cruz-Félix A S, Marquez-Garcia J, González García J and Santiago Alvarado A 2017 Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems III 10372 (San Diego, California, USA) (SPIE) 1037205

[52] Cruz-Félix A S, Santiago Alvarado A, Marquez-Garcia J and Gonzalez Garcia J 2019 PDMS samples characterization with variations of synthesis parameters for tunable optics applications Helyon 6 8

[53] 2016 ASTM D412-16, Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension ASTM International (www.astm.org) (https://doi.org/10.1520/D0412-16)

[54] 2015 ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics ASTM International (www.astm.org) (https://doi.org/10.1520/D0695-15)

[55] Santiago Alvarado A and Vazquez Montiel S 2009 Propiedades Fisico-Químicas de Membranas PDMS Empleadas en Lentes Líquidas Superficies y Vacío 22 61–6

[56] Callister W D 1995 Introducción a la ciencia e ingeniería de los materiales 1st (Barcelona, España: Reverté) 9788429172539

[57] Heizer J and Render B 2009 Principios de Administración de Operaciones 7th (México: Pearson Educación) 978–607–442–099–9

[58] Kashfurirangan S, Markwell E L, Atchison D A and Pope J M 2008 In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation Investig. Ophthal. Vis. Sci. 49 2531–40

[59] Navarro R, Santamaria J and Bescos J 1983 Accommodation-dependent model of the human eye with aspherics J. Opt. Soc. Am. A 2 1273