Variational principles for asymptotic variance of general Markov processes

Lu-Jing Huang Yong-Hua Mao Tao Wang∗

Abstract
A variational formula for the asymptotic variance of general Markov processes is obtained. As application, we get a upper bound of the mean exit time of reversible Markov processes, and some comparison theorems between the reversible and non-reversible diffusion processes.

Keywords: Markov process, asymptotic variance, variational formula, the mean exit time, comparison theorem, semi-Dirichlet form

Mathematics subject classification(2020): 60J25, 60J46, 60J60

1 Introduction and main results
Asymptotic variance is a popular criterion to evaluate the performance of Markov processes, and widely used in Markov chain Monte Carlo(see e.g. [1, 5, 19, 20, 24]).

There are numerous studies of the asymptotic variance in the literature. For reversible Markov processes, the asymptotic variance can be presented by a spectral calculation, which brings a lot of applications (see [7, 14, 23] etc.). The comparisons on efficiency of reversible Markov processes, in terms of the asymptotic variance, has been extensively researched(see e.g. [11, 17, 20, 27]). Recently, there are also some comparison results between reversible and non-reversible Markov processes, see e.g. [2, 6, 12, 26] for discrete-time Markov chains, and [8, 13, 22] for diffusions. However, the study of the asymptotic variance of non-reversible Markov processes is still a challenge since the lack of spectral theory of non-symmetric operators. Very recently, [11] gives some variational formulas for the asymptotic variance of general discrete-time Markov chains by solving Poisson equation, and obtains some estimates and comparison results of the asymptotic variance.

In this paper we extend the results in [11] to the general Markov process by constructing the weak solution of Poisson equation with the help of the semi-Dirichlet form.

Let \(X = \{X_t\}_{t \geq 0} \) be a positive recurrent (or ergodic) Markov process on a Polish space \((S, \mathcal{S})\), with strongly continuous contraction transition semigroup \(\{P_t\}_{t \geq 0} \) and stationary distribution \(\pi \). Denote \(L^2(\pi) \) by the space of square integrable functions with scalar product \((u, v) := \int_S u(x)v(x)\pi(dx) \) and norm \(||u|| = (u, u)^{1/2} \). Let \(L^2_0(\pi) \) be the subspace of functions in \(L^2(\pi) \) with mean-zero, i.e.

\[
L^2_0(\pi) = \{ u \in L^2(\pi) : \pi(u) := \int_S u(x)\pi(dx) = 0 \}.
\]

∗Corresponding author: wang_tao@mail.bnu.edu.cn
Suppose that the semigroup

\[\text{Theorem 1.1.} \]

is the completion of \(F \) (in addition the associated semi-Dirichlet form \cite[Chapter 1, Theorem 2.15]{18}) for more details.

(1.3)

exponentially ergodic. Then the limit in

\[\text{Remarkably, if process } X \text{ is reversible:} \]

\[\pi(dx)P_t(x, dy) = \pi(dy)P_t(y, dx), \quad \text{for all } t \geq 0, \ \pi\text{-a.s.} \ x, y \in S, \]

then the sector condition is always true with \(K = 1 \) by Cauchy-Schwartz inequality.

Under the sector condition, we can obtain a unique semi-Dirichlet form \((\mathcal{E}, \mathcal{F}) \), where \(\mathcal{F} \) is the completion of \(\mathcal{D}(L) \) with respect to \(\overline{\mathcal{E}}_1^{1/2} \) (\(\overline{\mathcal{E}}_1 \) is the symmetric part of \(\mathcal{E}_1 \)), see \cite[Chapter 1, Theorem 2.15]{18}) for more details.

We say that the semigroup \(\{P_t\}_{t \geq 0} \) is \(L^2 \)-exponentially ergodic, if there exist constants \(C, \lambda_1 > 0 \) such that for \(u \in L_0^2(\pi) \),

\[\|P_tu\| \leq C\|u\|e^{-\lambda_1 t}. \]

It is well known that when process \(X \) is reversible, \(C \) can be chosen as 1 and (the optimal) \(\lambda_1 \) is nothing but the spectral gap:

\[\lambda_1 = \inf \{ \mathcal{E}(u, u) : u \in \mathcal{F}, \pi(u) = 0 \text{ and } \pi(u^2) = 1 \}. \quad (1.2) \]

Now for \(f \in L_0^2(\pi) \), we consider the following asymptotic variance for \(X \) and \(f \):

\[\sigma^2(X, f) = \limsup_{t \to \infty} \mathbb{E}_x \left[\left(\frac{1}{\sqrt{t}} \int_0^t f(X_s)ds \right)^2 \right]. \quad (1.3) \]

Under the \(L^2 \)-exponential ergodicity and the sector condition, our first main result presents a variational formula for the asymptotic variance as follows.

\textbf{Theorem 1.1.} Suppose that the semigroup \(\{P_t\}_{t \geq 0} \) associated with process \(X \) is \(L^2 \)-exponentially ergodic. Then the limit in (1.3) exists and is finite for \(f \in L_0^2(\pi) \). If in addition the associated semi-Dirichlet form \((\mathcal{E}, \mathcal{F}) \) satisfies the sector condition, then for \(f \in L_0^2(\pi) \),

\[2/\sigma^2(X, f) = \inf_{u \in \mathcal{M}_{f,1}} \sup_{v \in \mathcal{M}_{f,0}} \mathcal{E}(u + v, u - v), \quad (1.4) \]

where \(\mathcal{M}_{f,\delta} = \{ u \in \mathcal{F} : (u, f) = \delta \}, \ \delta = 0, 1. \)

Particularly, if process \(X \) is reversible, then (1.4) is reduced to

\[2/\sigma^2(X, f) = \inf_{u \in \mathcal{M}_{f,1}} \mathcal{E}(u, u). \quad (1.5) \]
Remark 1.2. (1) For fixed $f \in L^2_0(\pi)$, from the proof below we will see that functions $Gf := \int_0^\infty P_t f \, dt$ and $G^*f := \int_0^\infty P^*_t f \, dt$ are both in \mathcal{F}, here P^*_t is the dual operator of P_t in $L^2(\pi)$. This is a main reason that we need the semi-Dirichlet form $(\mathcal{E}, \mathcal{F})$ in (1.4). However, if the generator L is bounded in $L^2(\pi)$, then $D(L) = L^2(\pi)$, so that $Gf, G^*f \in D(L)$. In this case,

$$2/\sigma^2(X, f) = \inf_{u \in L^2_0(\pi), v \in L^2(\pi), \pi(u) = 1, \pi(v) = 0} \sup ((-L)(u + v), u - v).$$

The proof of this result can be obtained immediately by replacing $P - I$ by L in the proof of [11, Theorem 1.1].

(2) The assumption of the L^2-exponential ergodicity of $\{P_t\}_{t \geq 0}$ is not too strong for non-reversible Markov processes, since [9] gives a geometrically ergodic Markov chain such that the asymptotic variance is infinite for some $f \in L^2_0(\pi)$.

(3) Variational formula for the asymptotic variance has been studied in [14, Chapter 4]. It is based on a variational formula for positive definite operators in analysis and resolvent equations. Here we obtain a new variational formula.

As a direct application of Theorem 1.1 bound of the mean exit time of the process is obtained. For that, let $\Omega \subset S$ be an open set, denote by $\tau_\Omega = \inf\{t \geq 0 : X_t \notin \Omega\}$ the first exit time from Ω of process X.

Corollary 1.3. Suppose that process X is reversible with L^2-exponentially ergodic semi-group $\{P_t\}_{t \geq 0}$ and stationary distribution π. Let $\Omega \subset S$ be an open set with $\pi(\Omega) \in (0, 1)$, then

$$E_\pi \tau_\Omega \leq \frac{\pi(\Omega)}{2\lambda_1 \pi(\Omega^c)},$$

where λ_1 is the spectral gap defined in (1.2).

Note that in [10, Remark 3.6(1)], we gave another upper bound for the mean exit time. Explicitly, $E_\pi \tau_\Omega \leq 1/(\lambda_1 \pi(\Omega^c))$ for open set $\Omega \subset S$ satisfying $\pi(\Omega^c) > 0$. It is obvious that the upper bound in Corollary 1.3 is more precise than that.

For the reversible case, similar to [11, Theorem 1.3], we could derive variational formula (1.5) without the assumption of the L^2-exponential ergodicity. Since the proof is quite similar, we omit it in this paper.

Theorem 1.4. Suppose that X is a reversible ergodic Markov process with stationary distribution π. Then for fixed $f \in L^2_0(\pi)$,

$$2/\sigma^2(X, f) = \inf_{u \in \mathcal{A}} \mathcal{E}(u, u).$$

Note that in Theorem 1.4, maybe $\sigma^2(X, f) = \infty$ for some $f \in L^2_0(\pi)$.

The remaining part of this paper is organized as follows. In Section 2 we apply our main result in two situations. The first application is extending the comparison result for the asymptotic variance of one dimensional diffusions in [25, Theorem 1] to multi-dimensional reversible diffusions. We note that [25, Theorem 1] is proved by discrete approximation which is different from our idea, and the less assumptions are requested.
in our proof. Another application is a comparison result between reversible and non-reversible diffusions on Riemannian Manifolds, which shows the asymptotic variance of a non-reversible diffusion is smaller. The similar result can be found in [8, 13] (for example, [13] proves a similar result on compact manifolds by using a spectral theorem), we provide a complete different proof by the new variational formula. Finally, the proofs of Theorem 1.1 and Corollary 1.3 are given in Section 3.

2 Applications

2.1 Reversible diffusions

First, we recall the comparison theorem proved in [25, Theorem 1]. Fix a C^1 probability density function $\mu : [I_1, I_2] \rightarrow (0, \infty)$, where $-\infty \leq I_1 < I_2 \leq \infty$. Given a C^1 positive function η on $[I_1, I_2]$ and consider a one-dimensional Langevin diffusion:

$$dX^n_t = \eta(X^n_t) dB_t + \left(\frac{1}{2} \eta^2(X^n_t) \log \mu(\eta(X^n_t)) + \eta(X^n_t) \eta'(X^n_t)\right) dt.$$

Under some additional conditions (see [25, Page 133]), [25] proves that for any $f \in L^2(\mu)$, and two C^1 positive functions η, η_1 on $[I_1, I_2]$ such that $\eta_1(x) \leq \eta(x)$ for all $x \in [I_1, I_2]$,

$$\sigma^2(X^{\eta_1}, f) \geq \sigma^2(X^{\eta}, f).$$

Note that in [25], the above conclusion is proved by discrete approximation. In fact, we can obtain the above result by a direct calculation as follows. For convenience, we only consider the case on half-line.

Fix a C^1 probability density function $\pi : [0, \infty) \rightarrow (0, \infty)$. Given a C^1 positive function a on $[0, \infty)$ and consider a one-dimensional diffusion X^a with reflecting boundary 0 and generator:

$$L_a = a(x) \frac{d^2}{dx^2} + b(x) \frac{d}{dx}, \quad (2.1)$$

where $b(x) = a(x)(\pi'(x)/\pi(x)) + a'(x)$. Let $\pi(dx) = \pi(x)dx$. It is easy to see that L_a is symmetric on $L^2(\pi)$. Choose a point $x_0 > 0$ and set

$$c(x) = \int_{x_0}^{x} \frac{b(y)}{a(y)} dy \quad \text{and} \quad \varphi(x) = \int_{0}^{x} e^{-c(y)} dy.$$

So we have

$$\pi(x) = e^{c(x)} \pi(x_0) a(x_0)/a(x). \quad (2.2)$$

Assume that X^a is non-explosive, that is,

$$\int_{0}^{\infty} \varphi'(y) \pi([0, y]) dy = \infty,$$

then X is ergodic with stationary distribution $\pi(dx)$ (see e.g. [31, Table 5.1]).

For fixed function $f \in L^2(\pi)$, consider Poisson equation $-L_a u = f$. By some direct calculations and (2.2), the equation has strong solution

$$u(x) = \int_{0}^{x} e^{-c(y)} \left(\int_{y}^{\infty} f(z) e^{c(z)} a(z) dz \right) dy = \frac{1}{\pi(x_0) a(x_0)} \int_{0}^{\infty} f(z) \varphi(x \wedge z) \pi(dz).$$
Since $\sigma^2(X, f) = 2(u, f)$ by Lemma 3.1 and (3.3) below, from $\pi(f) = 0$ and the integration by parts we have that
\[
{\frac{1}{2}}\sigma^2(X^a, f) = \frac{1}{a(x_0)\pi(x_0)} \int_0^\infty \int_0^x f(x)f(y)\varphi(x \land y)\pi(dy)\pi(dx) \nonumber \\
= \frac{2}{a(x_0)\pi(x_0)} \int_0^\infty \varphi(x)f(x) \int_x^\infty f(y)\pi(dy)\pi(dx) \nonumber \\
= -\frac{2}{a(x_0)\pi(x_0)} \int_0^\infty \varphi(x)f(x) \int_0^x f(y)\pi(dy)\pi(dx) \\n= -\frac{1}{a(x_0)\pi(x_0)} \int_0^\infty \varphi(x) \left[\left(\int_0^x f(y)\pi(dy) \right)^2 \right] ' dx \\
= \int_0^\infty \left(\int_0^x f(y)\pi(dy) \right)^2 \frac{1}{a(x)\pi(x)} dx.
\]

Using the above representation, we obtain the following comparison theorem directly.

Theorem 2.1. Let a, a_1 be two C^1 positive function on $[0, \infty)$. Then Langevin diffusions X^a and X^{a_1}, with generators of form (2.1), possess the same stationary distribution π. Moreover, if $a \geq a_1$, then for any $f \in L^2_0(\pi)$,
\[
\sigma^2(X^a, f) \leq \sigma^2(X^{a_1}, f).
\]

In particular, for fixed $f \in L^2_0(\pi)$, $\sigma^2(X^{ka}, f)$ is non-increasing for $k \in (0, \infty)$.

For multi-dimensional reversible diffusion processes, explicit representation (2.3) for the asymptotic variance is difficult to obtain. However, we could use Theorem 1.4 to get the similar comparison result as follows.

Let $V \in C^2(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} e^{V(x)} dx < \infty$. Consider the reversible diffusion process X^A generated by elliptic operator
\[
L_A = \sum_{i,j} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_i b_i(x) \frac{\partial}{\partial x_i},
\]
where $A(x) = (a_{ij}(x))_{1 \leq i, j \leq d}, x \in \mathbb{R}^d$ are positive definite matrices with $a_{ij} \in C^2(\mathbb{R}^d)$ and
\[
b_i(x) = \sum_j a_{ij}(x) \frac{\partial}{\partial x_j} V(x) + \sum_j \frac{\partial}{\partial x_j} a_{ij}(x).
\]
Assume that X^A is non-explosive. By [21, Theorem 4.2.1], we see that process X^A is ergodic with stationary distribution
\[
\pi(dx) := \frac{e^{V(x)}}{\int_{\mathbb{R}^d} e^{V(y)} dy} dx.
\]
Denote by $(\mathcal{E}_A(\cdot, \cdot), \mathcal{F}_A)$ the Dirichlet form associated with the process X^A. Explicitly, we see that
\[
\mathcal{E}_A(u, v) = \int_{\mathbb{R}^d} \nabla u \cdot A \nabla v \pi dx, \quad \text{for } u, v \in \mathcal{F}_A := \{ u \in L^2(\pi) : \mathcal{E}_A(u, u) < \infty \}.
\]
Theorem 2.2. Let $V \in C^2(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} e^{V(x)} dx < \infty$, $A(x) = (a_{ij}(x))_{1 \leq i, j \leq d}$ and $A_1(x) = (a^1_{ij}(x))_{1 \leq i, j \leq d}$, $x \in \mathbb{R}^d$ be positive definite matrices satisfying $a_{ij}, a^1_{ij} \in C^2(\mathbb{R}^d)$ for $1 \leq i, j \leq d$. Suppose that $A_1 \leq A$ in the sense that $A(x) - A_1(x)$ is non-negative definite for all $x \in \mathbb{R}^d$. Then for any $f \in L^2_0(\pi)$,

$$\sigma^2(X^{A_1}, f) \geq \sigma^2(X^{A}, f).$$

(2.5)

In particular, for fixed $f \in L^2_0(\pi)$, $\sigma^2(X^{kA}, f)$ is non-increasing for $k \in (0, \infty)$.

Proof. Since $A_1 \leq A$, by (2.4) it is easy to check that $F_A \supseteq F_{A_1}$ and $E_A(u, u) \leq E_{A_1}(u, u)$ for all $u \in F_{A_1}$.

Fix $f \in L^2_0(\pi)$. The inequality (2.5) is trivial when $\sigma^2(X^{A_1}, f) = \infty$. Now assume that $\sigma^2(X^{A_1}, f) < \infty$. It follows from Theorem 1.4 that

$$2/\sigma^2(X^{A_1}, f) = \inf_{u \in F_{A_1}, \pi(fu) = 1} \mathcal{E}_{A_1}(u, u) \leq \inf_{u \in F_A, \pi(fu) = 1} \mathcal{E}_A(u, u) = 2/\sigma^2(X^{A}, f).$$

Hence, the proof is completed. □

2.2 Non-reversible diffusions on Riemannian Manifolds

In this section, we turn to non-reversible case. Let M be a connected, complete Riemannian manifold with empty boundary or convex boundary, and $\langle \cdot, \cdot \rangle$ be the inner product under the Riemannian metric. Denote $d\pi$ and Δ by the Riemannian volume and Laplace operator on M, respectively.

Let $\pi(d\pi) := e^{-U(x)} d\pi$ be a probability measure on M with potential function $U \in C^2(M)$. We consider the following diffusion operator:

$$\mathcal{L}_\varphi = \Delta \varphi - \langle \nabla U - Z, \nabla \varphi \rangle,$$

(2.6)

where Z is a C^1 vector field on M. Denote by \mathcal{L}^* the dual operator of \mathcal{L} on $L^2(\pi)$:

$$\mathcal{L}^* \varphi = \Delta \varphi - \langle \nabla U + Z, \nabla \varphi \rangle - (\text{div } Z - \langle \nabla U, Z \rangle) \varphi,$$

where div is the divergence operator. It is well known that π is the invariant measure of \mathcal{L} if and only if $(\mathcal{L}^*1, \varphi) = 0$ for $\varphi \in C^\infty_0(M)$, i.e.,

$$\int_M (\text{div } Z - \langle \nabla U, Z \rangle) \varphi d\pi = \int_M \text{div}(Ze^{-U}) \varphi d\pi = 0.$$

From now on we assume that

$$\text{div}(Ze^{-U}) \equiv 0.$$

(2.7)

Then by [3] Corollary 3.6], the diffusion X with generator \mathcal{L} is ergodic with stationary distribution π.

Denote the symmetric part of \mathcal{L} with respect to π by $\overline{\mathcal{L}} := \Delta - \langle \nabla U, \nabla \rangle$, and let \overline{X} be the diffusion generated by $\overline{\mathcal{L}}$.
Define \((\mathcal{E}, \mathcal{F})\) as the semi-Dirichlet form generated by \(\mathcal{L}\), and denote its symmetric part and antisymmetric part by \(\mathcal{E}^s\), \(\mathcal{E}^a\) respectively. So from the integration by parts and (2.7), we have

\[
\mathcal{E}(\varphi, \phi) = \int_M \langle \nabla \varphi, \nabla \phi \rangle d\pi \quad \text{and} \quad \mathcal{E}^a(\varphi, \phi) = \int_M \phi \langle Z, \nabla \varphi \rangle d\pi \quad \varphi, \phi \in C_0^\infty(M).
\]

Indeed, it is easy to check that \((\mathcal{E}, \mathcal{F})\) is the Dirichlet form generated by \(\mathcal{L}\).

We suppose that the following Assumption A holds:

(A1) \(|\Delta U| \leq \varepsilon_*|\nabla U|^2 + C_U\) for some \(\varepsilon_* < 1\) and \(C_U \geq 0\);

(A2) there is a constant \(K\) such that \(|Z| \leq K(|\nabla U| + 1)\);

(A3) the symmetric Dirichlet form \((\mathcal{E}, \mathcal{F})\) satisfies the Poincaré inequality, i.e., there exists a constant \(\lambda_1 > 0\) such that

\[
\|\varphi\|^2 \leq \lambda_1^{-1} \mathcal{E}(\varphi, \varphi) \quad \text{for all} \ \varphi \in \mathcal{F},
\]

where \(\|\cdot\|\) is \(L^2(\pi)\)-norm.

We note that (A3) is equivalent to the \(L^2\)-exponential ergodicity of semigroup of diffusion \(X\).

Lemma 2.3. If Assumption A and (2.7) hold, then \((\mathcal{E}, \mathcal{F})\) satisfies the sector condition (1.1). Therefore, Theorem 1.1 holds for the diffusion \(X\).

Proof. Since \((\mathcal{E}, \mathcal{F})\) is symmetric, it satisfies the sector condition, we only need to check the sector condition for the antisymmetric part \(\mathcal{E}^a\).

Fix \(\phi, \varphi \in C_0^\infty(M)\). By Cauchy-Schwarz inequality and (A2) we have

\[
\int_M \langle \phi Z, \nabla \varphi \rangle d\pi \leq K \int_M (|\nabla U| + 1)|\phi| |\nabla \varphi| d\pi
\]

\[
\leq K \int_M |\phi| |\nabla \varphi| d\pi + K \mathcal{E}(\varphi, \varphi)^{1/2}||\nabla U||\phi|. \tag{2.8}
\]

For the last term above, the integration by parts on manifold, Cauchy-Schwarz inequality and (A1) yield that

\[
\|\nabla U\|_{\phi}^2 = - \int_M \langle \phi^2 \nabla U, \nabla e^{-U} \rangle dx = \int_M \text{div} (\phi^2 \nabla U) e^{-U} dx
\]

\[
= \int_M \langle 2\phi \nabla \phi, \nabla U \rangle d\pi + \int_M \Delta U \phi^2 d\pi \tag{2.9}
\]

\[
= \int_M \langle 2\phi \nabla \phi, \nabla U \rangle d\pi + \int_M (\epsilon_*|\nabla U|^2 + C_U) \phi^2 d\pi.
\]

Now fix \(\varepsilon > 0\) such that \(\varepsilon_* + \varepsilon < 1\). Combining inequality \(|xy| \leq (x^2/\varepsilon + \varepsilon y^2)/2\) with (2.9) and (A3) we have

\[
\|\nabla U\|_{\phi}^2 \leq 2 \int |\nabla \phi| |\phi \nabla U| d\pi + \int (\epsilon_*|\nabla U|^2 + C_U) \phi^2 d\pi
\]

\[
\leq \frac{1}{\varepsilon} \mathcal{E}(\phi, \phi) + (\epsilon_* + \varepsilon) \|\phi \nabla U\|^2 + C_U \|\phi\|^2
\]

\[
\leq \frac{1}{\varepsilon} \mathcal{E}(\phi, \phi) + (\epsilon_* + \varepsilon) \|\phi \nabla U\|^2 + C_U \lambda_1^{-1} \mathcal{E}(\phi, \phi),
\]

7
which implies that
\[\| \nabla U \| \phi \|^2 \leq \frac{\lambda_1 + C_U \varepsilon}{(1 - \epsilon_\ast \varepsilon) \varepsilon \lambda_1} \mathcal{E}(\phi, \phi). \]
Combining this with (2.8) and (A3), we obtain that \(\hat{\mathcal{E}} \) satisfies the sector condition on \(\mathcal{F} \).

From Lemma 2.3 and Theorem 1.1, we obtain the following comparison result.

Theorem 2.4. Suppose that Assumption A holds. Then for any \(f \in L_0^2(\pi) \),
\[\sigma^2(X, f) \leq \sigma^2(\mathcal{X}, f). \]

Proof. Since the conditions in Theorem 1.1 are satisfied by Lemma 2.3, we obtain by taking \(v = 0 \) that
\[
2/\sigma^2(X, f) = \inf_{u \in \mathcal{M}_f, 1} \sup_{v \in \mathcal{M}_f, 0} \mathcal{E}(u + v, u - v) \\
\geq \inf_{u \in \mathcal{M}_f, 1} \mathcal{E}(u, u) = \inf_{u \in \mathcal{M}_f, 1} \mathcal{E}(u, u) = 2/\sigma^2(\mathcal{X}, f).
\]

Remark 2.5. Similar comparison result in Theorem 2.4 can be found in [8, 13]. For example, [13] proves the comparison theorem by using a spectral theorem (see [13, Section 3.4.3]). Here we provide a completely different proof by the new variational formula.

Example 2.6. ([16, Example 5.2]) Let \(M = \mathbb{R}^2 \), potential function \(U(x) = (1/2\pi)e^{-|x|^2/2} \) and vector field
\[Z = -cx_2 \frac{\partial}{\partial x_1} + cx_1 \frac{\partial}{\partial x_2}, \]
where \(c \) is a positive constant. Consider the 2-dimensional Ornstein-Uhlenbeck diffusion with rotation:
\[\mathcal{L} := \frac{1}{2} \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) - (x_1 + cx_2) \frac{\partial}{\partial x_1} - (x_2 - cx_1) \frac{\partial}{\partial x_2}. \]
Its invariant probability measure is \(\pi(dx) = (1/2\pi)e^{-|x|^2/2}dx \). The symmetric part of \(\mathcal{L} \) with respect to \(\pi \) is
\[\overline{\mathcal{L}} := \left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} \right) - x_1 \frac{\partial}{\partial x_1} - x_2 \frac{\partial}{\partial x_2}. \]
Since the symmetric Ornstein-Uhlenbeck diffusion generated by \(\overline{\mathcal{L}} \) is exponentially ergodic, (A3) is satisfied. A direct calculation shows that \(\text{div}(Ze^{-U}) = 0 \) and (A1), (A2) are satisfied. Hence, Theorems 1.1 and 2.4 are valid.
3 Proofs of Theorem 1.1 and Corollary 1.3

Recall that $X = \{X_t\}_{t \geq 0}$ is a positive recurrent (or ergodic) Markov process on a Polish space (S, \mathcal{S}), with strongly continuous contraction transition semigroup $\{P_t\}_{t \geq 0}$ and stationary distribution π. $(L, \mathcal{D}(L))$, $(\mathcal{E}, \mathcal{F})$ are its associated infinitesimal generator in $L^2(\pi)$ and semi-Dirichlet form, respectively. For fixed $f \in L^2_0(\pi)$, we want to study the asymptotic variance of X and f defined in (1.3). Indeed, from [13, Section 2.5], we see that the asymptotic variance can be represented by

$$\sigma^2(X, f) = 2 \lim_{t \to \infty} \int_0^t (1 - \frac{s}{t})(P_s f, f) ds. \quad (3.1)$$

To prove Theorem 1.1 first we do some preparations. For any $\alpha > 0$, set $G_\alpha f = \int_0^\infty e^{-\alpha s} P_s f ds$ for $f \in L^2(\pi)$. From [13, Chapter 1, Proposition 1.10] we see that $(G_\alpha)_{\alpha > 0}$ is the strong continuous contraction resolvent associated to L and $G_\alpha f \in \mathcal{D}(L)$ for all $f \in L^2(\pi)$. If the semigroup $\{P_t\}_{t \geq 0}$ is L^2-exponentially ergodic, then it is known that $Gf := \int_0^\infty P_s f ds \in L^2(\pi)$ for $f \in L^2_0(\pi)$.

Lemma 3.1. Suppose that the semigroup $\{P_t\}_{t \geq 0}$ is L^2-exponentially ergodic and its corresponding semi-Dirichlet form $(\mathcal{E}, \mathcal{F})$ satisfies the sector condition (1.1). Then for all $f \in L^2_0(\pi)$, we have $Gf \in \mathcal{D}(L)$ and

$$\mathcal{E}(Gf, u) = (f, u), \quad u \in \mathcal{F}.$$

Proof. We first prove that $Gf \in \mathcal{D}(L)$ for all $f \in L^2_0(\pi)$. Note that the generator L is closed and densely defined, that is, $\mathcal{D}(L)$ is complete with respect to the graph norm $\|Lu\| + \|u\|, u \in \mathcal{D}(L)$ (see e.g. [13, Chapter 1, Proposition 1.10]). Thus for fixed $f \in L^2_0(\pi)$, we only need to prove that $\|G_{1/n} f - Gf\| \to 0$ as $n \to \infty$ and $\{G_{1/n} f\}_{n \geq 1}$ is a Cauchy sequence under $\|L \cdot \|$ by $G_{1/n} f \in \mathcal{D}(L), n \geq 1$. Indeed, it follows from L^2-exponential ergodicity and Hölder inequality that

$$\|G_{1/n} f - Gf\| = \left\| \int_0^\infty (1 - e^{-s/n}) P_s f ds \right\| \leq \int_0^\infty (1 - e^{-s/n}) \|P_s f\| ds$$

$$\leq C \|f\| \int_0^\infty (1 - e^{-s/n}) e^{-\lambda_1 s} ds$$

$$= C \|f\| \frac{1/n}{\lambda_1(\lambda_1 + 1/n)} \to 0, \quad as \ n \to \infty. \quad (3.2)$$

On the other hand, since $Lf = (\alpha - G^{-1}_\alpha) f$ for all $\alpha > 0$ and $f \in L^2_0(\pi)$, we have

$$\|L(G_{1/n} f - G_{1/m} f)\| = \|(1/n - G_{1/n}^{-1}) G_{1/n} f - (1/m - G_{1/m}^{-1}) G_{1/m} f\|$$

$$= \|\frac{1}{n} G_{1/n} f - \frac{1}{m} G_{1/m} f\|$$

$$\leq \frac{1}{n} \|G_{1/n} f - G_{1/m} f\| + \frac{1}{m} \|G_{1/m} f\|$$

$$\to 0, \quad as \ n, m \to \infty.$$

Therefore $Gf \in \mathcal{D}(L)$.

9
To prove (1.4), we set
Thus (3.1), exists and
That is,
Using this equality and the fact \(Gf \in \mathcal{D}(L) \) shows that for any \(\alpha > 0 \) and \(f \in L^2_0(\pi) \),
That is, \(-LGf = f\) for all \(f \in L^2_0(\pi) \).

From above analysis and [18, Chapter 1, Corollary 2.10] we could obtain that for any \(f \in L^2_0(\pi), u \in \mathcal{F} \),
\[E(f, u) = (-L)Gf, u = (f, u). \]

We now proceed to prove Theorem 1.1.

Proof of Theorem 1.1 For fixed \(f \in L^2_0(\pi) \), we first claim that the limit in (3.1), i.e. (3.2), exists and \(\sigma^2(X, f) = 2(Gf, f) < \infty \). Indeed, for \(t > 0 \),
\[2 \int_0^t (1 - \frac{s}{t})(P_s f, f)ds = 2 \int_0^t (P_s f, f)ds - \frac{2}{t} \int_0^t s(P_s f, f)ds. \]

Since \(\{P_t\}_{t \geq 0} \) is \(L^2 \)-exponentially ergodic, we arrive at
\[\frac{1}{t} \left| \int_0^t s(P_s f, f)ds \right| \leq \frac{1}{t} \int_0^t s\|P_s f\|\|f\|ds \leq \frac{C\|f\|^2}{t} \int_0^t se^{-\lambda_1 s}ds \]
\[\leq \frac{1}{t} - (1 + \lambda_1 t)e^{-\lambda_1 t}\frac{C\|f\|^2}{t} \rightarrow 0, \text{ as } t \rightarrow \infty, \]
and
\[\left| \int_t^\infty (P_s f, f)ds \right| \leq C\|f\|^2 \int_t^\infty e^{-\lambda_1 s}ds \rightarrow 0, \text{ as } t \rightarrow \infty. \]

Therefore, by combining above analysis, we obtain that the limit in (3.1) exists and
\[\sigma^2(X, f) = 2 \int_0^\infty (P_s f, f)ds < \infty. \]

By the Fubini-Tonelli’s theorem and \(L^2 \)-exponential ergodicity again we get
\[\int_0^\infty (P_s f, f)ds = \int_0^\infty \int_S fP_s f d\pi ds = \int_S \int_0^\infty fP_s f ds d\pi = (Gf, f). \]

Thus
\[\sigma^2(X, f) = 2(Gf, f) < \infty. \quad (3.3) \]

To prove (1.4), we set \(w = Gf/(Gf, f) \), \(w^* = G^* f/(Gf, f) \) and \(u_0 = (w + w^*)/2, v_0 = (w - w^*)/2 \). Then \(u_0 \in \mathcal{M}_{f,1} \) and \(v_0 \in \mathcal{M}_{f,0} \) by noting
\[(Gf, f) = \int_0^\infty (P_s f, f)ds = \int_0^\infty (f, P_s^* f)ds = (G^* f, f). \]
Now let \(v_1 = v - v_0 \) for any \(v \in \mathcal{M}_{f,0} \). By the definition of \(w, w^*, v_0 \) and Lemma 3.1, we have \(\pi(v_1 f) = 0 \) and

\[
\mathcal{E}(v_1, w^*) = \mathcal{E}(w, v_1) = \frac{1}{(Gf,f)} \mathcal{E}(Gf, v_1) = \frac{1}{(Gf,f)} (f, v_1) = 0.
\]

Therefore, using this fact with \(\mathcal{E}(w, w^*) = 1/(Gf, f) \) and \(\mathcal{E}(u, u) \geq 0 \) for all \(u \in \mathcal{F} \) gives that

\[
\mathcal{E}(u_0 + v, u_0 - v) = \mathcal{E}(w - v_1, w^* + v_1) = \mathcal{E}(w, w^*) - \mathcal{E}(v_1, v_1) \leq 1/(Gf, f),
\]

which implies that

\[
1/(Gf, f) \geq \inf_{u \in \mathcal{M}_{f,1}} \sup_{v \in \mathcal{M}_{f,0}} \mathcal{E}(u + v, u - v). \tag{3.4}
\]

For the converse inequality, let \(u_1 = u - u_0 \) for any \(u \in \mathcal{M}_{f,1} \). Since \(u_0 \in \mathcal{M}_{f,1} \), we also have \(\pi(u_1 f) = 0 \). Similar argument shows that

\[
\mathcal{E}(u + v_0, u - v_0) = \mathcal{E}(w + u_1, w^* + u_1) = \mathcal{E}(w, w^*) + \mathcal{E}(u_1, u_1) \geq 1/(Gf, f).
\]

Therefore,

\[
1/(Gf, f) \leq \inf_{u \in \mathcal{M}_{f,1}} \sup_{v \in \mathcal{M}_{f,0}} \mathcal{E}(u + v, u - v). \tag{3.5}
\]

So we obtain (1.4) by combining (3.4), (3.5) and the fact \(\sigma^2(X, f) = 2(Gf, f) \).

When process \(X \) is reversible, \(\mathcal{E}(\cdot, \cdot) \) is symmetric, i.e.,

\[
\mathcal{E}(u, v) = \mathcal{E}(v, u), \quad \text{for } u, v \in \mathcal{F}.
\]

Thus

\[
\mathcal{E}(u + v, u - v) = \mathcal{E}(u, u) - \mathcal{E}(v, v) \leq \mathcal{E}(u, u).
\]

That is, the supremum in (1.4) is attained by \(v = 0 \) for any fixed \(u \in \mathcal{M}_{f,1} \). Hence, we obtain (1.5).

By using Theorem 1.1, we prove Corollary 1.3 as follows.

Proof of Corollary 1.3. Fix an open set \(\Omega \subset S \) with \(\pi(\Omega) \in (0, 1) \). It follows from [10, Theorem 3.3] that

\[
1/E_{\pi} \tau_\Omega = \inf_{u \in \mathcal{N}_{\Omega,1}} \mathcal{E}(u, u), \tag{3.6}
\]

where \(\mathcal{N}_{\Omega,1} := \{ u \in \mathcal{F} : u|_{\Omega^c} = 0 \text{ and } \pi(u) = 1 \} \). Take

\[
f = \frac{1_\Omega - \pi(\Omega)}{1 - \pi(\Omega)}.
\]

It is easy to check that \(\pi(f) = 0 \) and \(\|f\|^2 = \pi(\Omega)/\pi(\Omega^c) \). Notice that for any \(u \in \mathcal{N}_{\Omega,1} \), by simple calculation we have \(\pi(u f) = 1 \), thus \(u \in \mathcal{M}_{f,1} \). So we see that \(\mathcal{N}_{\Omega,1} \subset \mathcal{M}_{f,1} \). Combining this fact with (1.5) and (3.6), we obtain that

\[
2/\sigma^2(X, f) = \inf_{u \in \mathcal{M}_{f,1}} \mathcal{E}(u, u) \leq \inf_{u \in \mathcal{N}_{\Omega,1}} \mathcal{E}(u, u) = 1/E_{\pi} \tau_\Omega.
\]
That is, $\mathbb{E}_\pi \tau_\Omega \leq \sigma^2(X, f)/2$. Moreover, from the reversibility and L^2-exponential ergodicity we have

$$\sigma^2(X, f)/2 = \int_0^\infty (P_s f, f) ds \leq \int_0^\infty \|P_s f\| \|f\| ds \leq \|f\|^2 / \lambda_1.$$

Hence,

$$\mathbb{E}_\pi \tau_\Omega \leq \frac{\|f\|^2}{2\lambda_1} = \frac{\pi(\Omega)}{2\lambda_1 \pi(\Omega^c)}.$$

\[\blacklozenge \]

Acknowledgement Lu-Jing Huang acknowledges support from NSFC (No. 11901096), NSF-Fujian(No. 2020J05036), the Program for Probability and Statistics: Theory and Application (No. IRTL1704), and the Program for Innovative Research Team in Science and Technology in Fujian Province University (IRTSTFJ). Yong-Hua Mao and Tao Wang acknowledge support by the National Key R&D Program of China (2020YFA0712900) and the National Natural Science Foundation of China (Grant No.11771047).

References

[1] C. Andrieu and S. Livingstone. Peskun-Tierney ordering for Markov chain and process Monte Carlo: beyond the reversible scenario. *arXiv:1906.06197*, 2019.

[2] J. Bierkens. Non-reversible Metropolis-Hastings. *Stat. Comput.*, 26(6):1213–1228, 2016.

[3] V. I. Bogachev, M. Rockner, and F.-Y. Wang. Elliptic equations for invariant measures on finite and infinite dimensional manifolds. *J. Math. Pure. Appl.*, 80(2):177–221, 2001.

[4] M.-F. Chen. *Eigenvalues, inequalities, and ergodic theory*. Springer-Verlag London, Ltd., London, 2004.

[5] T.-L. Chen, W.-K. Chen, C.-R. Hwang, and H.-M. Pai. On the optimal transition matrix for Markov chain Monte Carlo sampling. *SIAM J. Control Optim.*, 50(5):2743–2762, 2012.

[6] T.-L. Chen and C.-R. Hwang. Accelerating reversible Markov chains. *Statist. Probab. Lett.*, 83(9):1956–1962, 2013.

[7] Y. Derriennic and M. Lin. The central limit theorem for Markov chains with normal transition operators, started at a point. *Probab. Theory Related Fields*, 119:508–528, 2001.

[8] A.-B. Duncan, T. Lelièvre, and G.-A. Pavliotis. Variance reduction using nonreversible Langevin samplers. *J. Stat. Phys.*, 163:457–491, 2016.

[9] O. Häggström. On the central limit theorem for geometrically ergodic Markov chains. *Probab. Theory Related Fields*, 132:74–82, 2005.
[10] L.-J. Huang, K.-Y. Kim, Y.-H. Mao, and T. Wang. Variational principles for the exit time of Hunt processes generated by semi-Dirichlet forms. ArXiv 2011.04334, 2020.

[11] L.-J. Huang and Y.-H. Mao. Variational formulas of asymptotic variance for general discrete-time Markov chains. arXiv:2012.13895, 2020.

[12] C.-R. Hwang. Accelerating Monte Carlo Markov processes. Cosmos, 1(1):87–94, 2005.

[13] C.-R. Hwang, R. Normanda, and S.-J. Wu. Variance reduction for diffusions. Stoch. Proc. Appl., 125(9):3522–3540, 2015.

[14] C. Kipnis and S.-R.-S. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys., 104(1):1–19, 1986.

[15] T. Komorowski, C. Landim, and S. Olla. Fluctuations in Markov processes: time symmetry and martingale approximation. Springer-Verlag, Berlin, 2012.

[16] S. Kusuoka and I. Shigekawa. Exponential convergence of Markovian semigroups and their spectra on L^p-spaces. Kyoto J. Math., 54(2):367—399, 2014.

[17] F. Leisen and A. Mira. An extension of Peskun and Tierney orderings to continuous time Markov chains. Statist. Sinica, 18:1641–1651, 2008.

[18] Z.-M. Ma and M. Röckner. Introduction to the Theory of (Non-Symmetric) Dirichlet forms. Springer-Verlag Berlin Heidelberg, 1992.

[19] F. Maire, R. Douc, and J. Olsson. Comparison of asymptotic variances of inhomogeneous Markov chains with applications to Markov chain Monte Carlo methods. Ann. Statist., 42(4):1483–1510, 2014.

[20] P.-H. Peskun. Optimum Monte-Carlo sampling using Markov chains. Biometrika, 60(3):607–612, 1973.

[21] G. Da Prato and J. Zabczyk. Ergodicity for Infinite Dimensional Systems. Cambridge University Press, 1996.

[22] L. Rey-Bellet and K. Spiliopoulos. Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity, 7:2081–2103, 2015.

[23] G.-O. Roberts and J.-S. Rosenthal. Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab., 2:13–25, 1997.

[24] G.-O. Roberts and J.-S. Rosenthal. Variance bounding Markov chains. Ann. Appl. Probab., 18(3):1201–1214, 2008.

[25] G. O. Roberts and J. S. Rosenthal. Minimising MCMC variance via diffusion limits, with an application to simulated tempering. Ann. Appl. Probab., 24:131–149, 2014.

[26] Y. Sun, F. Gomez, and J. Schmidhuber. Improving the asymptotic performance of Markov chain Monte-Carlo by inserting vortices. Neural Information Processing Systems, pages 2235–2243, 2010.
[27] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces. *Ann. Appl. Probab.*, 8(1):1–9, 1998.

Lu-Jing Huang: College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, P.R. China. E-mail: huanglj@fjnu.edu.cn

Yong-Hua Mao: Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China. E-mail: maoyh@bnu.edu.cn

Tao Wang: Laboratory of Mathematics and Complex Systems (Ministry of Education), School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China. E-mail: wang_tao@mail.bnu.edu.cn