Laparoscopic surgery for colon cancer with intestinal malrotation in adults: Two case reports and review of literatures in Japan

Kazuyoshi Nakatani, Katsuji Tokuhara *, Tatsuma Sakaguchi, Kazuhiko Yoshioka, Masanori Kon

Department of Surgery, Kansai Medical University, 10-15 Fumizonocho, Moriguchi, Osaka 570-8507, Japan

ARTICLE INFO

Article history:
Received 3 June 2017
Received in revised form 8 July 2017
Accepted 8 July 2017
Available online 13 July 2017

Keywords:
Intestinal malrotation
Colon cancer
Laparoscopic surgery

ABSTRACT

INTRODUCTION: Intestinal malrotation is a congenital anomaly, and its occurrence in adults is rare. Colon cancer with intestinal malrotation is far more rare. We herein report two cases of colon cancer with intestinal malrotation treated with laparoscopic surgery and reviewed the literatures in Japan.

PRESENTATION OF CASES: Case 1 involved a 78-year-old man. Abdominal enhanced computed tomography (CT) showed that the tumor was located in the sigmoid colon. Intraoperatively, the cecum and ascending colon were located along the midline and the small intestine occupied the right side of the abdomen. The tumor was located in the cecum, and the patient was diagnosed with cecal cancer with intestinal malrotation. We performed laparoscopy-assisted ileocolic resection. Case 2 involved a 81-year-old man. Colonoscopy revealed a laterally spreading tumor in the cecum. Intraoperatively, the position of the small intestine and the ascending colon was similar to case 1, and Ladd’s band was found in front of the duodenum. Thus, we diagnosed the patient with a laterally spreading cecal tumor with intestinal malrotation and performed laparoscopy-assisted ileocolic resection.

DISCUSSION: A review of the literature revealed 49 cases of colon cancer with intestinal malrotation and laparoscopic surgery performed at 30.6%. If laparoscopic mesenteric excision for colon cancer with intestinal malrotation is unsafe because of the abnormalities of the artery, mesenteric excision should be performed outside the body.

CONCLUSION: If the intestinal malrotation is diagnosed preoperatively, 3D-CT angiography should be used to reveal the vascular anatomic anomalies for safe performance of laparoscopic surgery.

© 2017 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Intestinal malrotation is a congenital anomaly that may cause intestinal obstruction or midgut volvulus in infants. The diagnosis of intestinal malrotation in adults is rare because most patients remain asymptomatic.

The incidence of colorectal cancer has gradually increased. In 2016 in Japan, this cancer was ranked as the second and fourth most common type among women and men, respectively [1]. The laparoscopic approach for colon cancer has recently become a practical technique, but the optimal surgical procedure for treatment of colon cancer with intestinal malrotation has not been established because of the rarity of intestinal malrotation.

We herein report two cases of laparoscopic surgery for colon cancer with intestinal malrotation in adults and reviewed the literatures in Japan.

This case report is compliant with the SCARE Guidelines [2].

2. Presentation of cases

2.1. Case 1

A 78-year-old man visited our clinic because of constipation. Colonoscopy revealed a type II tumor located 50 cm from the anal verge (Fig. 1A). Abdominal enhanced computed tomography (CT) showed that the tumor had thick walls and was located in the center of the abdomen without lymph node swelling or metastatic lesions. From these findings, we diagnosed the patient with sigmoid colon cancer preoperatively. Intestinal malrotation was not suspected preoperatively, but a subsequent review of the imaging study demonstrated that the superior mesenteric vein (SMV) was located on the left side of the superior mesenteric artery (SMA) (Fig. 2A). We scheduled laparoscopy-assisted sigmoid colectomy. Intraoperative examination revealed that the small intestine was

* Corresponding author.
E-mail addresses: nakatak@takii.kmu.ac.jp (K. Nakatani),
tokuhark@takii.kmu.ac.jp (K. Tokuhara), sakaguct@hirakata.kmu.ac.jp
(T. Sakaguchi), yoshiokk@takii.kmu.ac.jp (K. Yoshioka), kon@hirakata.kmu.ac.jp
(M. Kon).

http://dx.doi.org/10.1016/j.ijscr.2017.07.018
2210-2612/© 2017 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
occupied the right side of the abdomen. The ileocecal region was located along the midline of the abdomen, and the marking for the tumor was found in the ascending colon. The ascending colon and cecum were not fixed with the retroperitoneum, and the ligament of Treitz could not be clearly identified. The patient was diagnosed with cecal cancer with intestinal malrotation (nonrotation type) (Fig. 3A, B). Laparoscopic mesenteric excision was considered unsafe because of the vascular and lymphatic anomalies. After mobilization of the ascending colon from the transverse colon, ileocecal region take out outside body from umbilical wound and mesenteric excision was performed outside the body. Because of the abnormalities of the artery, it was unsafe to perform right hemicolecotomy with D3 lymph node dissection. Finally, we performed the ileocecal resection with D1 lymph node dissection. We considered D1 lymph node dissection was not adequate onco logically. Histopathological examination revealed well-differentiated tubular adenocarcinoma of the cecum infiltrating the subserosal layer without lymph node metastasis (pT3N0M0, pStageIIA). Postoperative adjuvant chemotherapy was not performed and he has followed without recurrence for 5 years.

2.2. Case 2

A 81-year-old man visited another hospital because of fecal occult blood. Colonoscopy revealed a laterally spreading tumor in the cecum (Fig. 1B). Abdominal enhanced CT showed that the tumor was located in the center of the abdomen. No lymph node swellings or metastases were present. Intestinal malrotation was not suspected preoperatively. However, a retrospective review of the CT image demonstrated that the SMA was located on the left side of the SMA and that the small intestine and colon occupied the right and left sides of the abdominal cavity (Fig. 2B). These signs were identical to those in Case 1. We scheduled laparoscopy-assisted ileocecal resection. Intraoperative examination revealed that the omentum was extensively adhered to the right wall of the abdomen. Upon peeling off this adhesion, the small intestine was found to occupy the right side of the abdomen. A further search of the intraperitoneal region showed that Ladd’s bands were lying in front of the duodenojejunal junction, and the duodenum (which was free from the retroperitoneum) passed straight down to join the jejunum to right upper quadrant (Fig. 3C, D). We diagnosed the patient with a laterally spreading cecal tumor with intestinal malrotation (nonrotation type). The adhesion between the ascending colon and transverse colon was exfoliated by sharp dissection. After mobilization of the ascending colon, lymphadenectomy was performed outside the body because of the vascular and lymphatic anomalies. Finally, we performed ileocecal resection with D1 lymph node dissection. Histopathological examination revealed well-differentiated tubular adenocarcinoma of the cecum infiltrating the mucosal layer without lymph node metastasis.

3. Discussion

The midgut rotates 270° counterclockwise around the SMA and is fixed to the retroperitoneum at 4–12 weeks of fetal life. The process of rotation has been conveniently divided into three stages [3]. The first stage is essentially that of an umbilical loop with two limbs lying beside one another, the second is the stage of beginning of intestinal rotation, and the third is the stage of fixation of the intestine and fusion of its mesentery. Intestinal malrotation is defined faulty rotation with fixation of the midgut. In several reports, the various forms of intestinal malrotation has been clas-
sified [4–6]. Wang and Welch [5] classified intestinal malrotation into four types depending on the degree of rotation during the second stage of rotation: nonrotation, malrotation, reversed rotation, and paraduodenal hernia.

Intestinal malrotation can cause intestinal obstruction or midgut volvulus in infants. Approximately 64–80% of cases of intestinal malrotation present during the first few months of life [7]. The occurrence of intestinal malrotation in adults is rare because most patients remain asymptomatic. Thus, most cases of intestinal malrotation are incidentally found during abdominal examinations or operations. Moreover colon cancer with intestinal malrotation is very rare.

From 1974 to 2017 in Japan, 49 cases of colon cancer with intestinal malrotation, including our cases, were identified [8–17] (Table 1). However, a search of PubMed revealed seven cases of colon cancer with intestinal malrotation worldwide [11,18]. In the review of the literatures in Japan, the median patient age was 64 years (range, 22–88 years), and 27 patients were male. The tumors were located at the appendix in 1 case, cecum in 10 cases, ascending colon in 11 cases, transverse colon in 12 cases, sigmoid colon in 5 cases, descending colon in 2 cases and rectum in 9 cases. With respect to the type of intestinal malrotation, 34 (69.4%) cases were the nonrotation type, 8 (16.3%) cases were the reversed type, 5 (10.2%) cases were the malrotation type and 1 (2%) case was the paraduodenal hernia. Wang and Welch [5] reported that the malrotation type is the most common of the four types. Intestinal malrotation was diagnosed at surgery in 9 cases, by barium enema in 18 cases, by abdominal CT in 18 cases, by three-dimensional CT (3D-CT) angiography in 6 cases, by 3D-CT colonography in 3 cases, by virtual colonoscopy in 1 case, by multidetector-row CT in 1 case, and by sodium diatrizoate enema in 1 case. Although most cases of intestinal malrotation in adults were diagnosed by barium enema or during surgery until 2005, the development of imaging technology has increased the rate of diagnosis of intestinal malrotation by abdominal CT. At present, CT is one of the most useful diagnostic modalities for intestinal malrotation in adults. Nehra and Goldstein [19] also reported that the diagnostic modality for intestinal malrotation was switched to abdominal CT from upper gastrointestinal series. Conversely, the tumor location is mostly diagnosed by barium enema and colonoscopy.

With respect to the surgical approach, open surgery was performed in 34 of 49 cases; laparoscopic surgery was performed in 15 (30.6%) cases. Until 2012, laparoscopic surgery was performed in only 2 of 27 (7.4%) cases. After 2012, however, laparoscopic surgery was performed 13 (59.1%) of 22 cases. This tendency is because laparoscopic surgery for colon cancer is becoming more widely performed, and the quality of this procedure is advancing. Although conventional laparoscopic colorectal cancer surgery with mesenteric excision is frequently and safely performed in the abdominal cavity, mesenteric excision outside the abdominal cavity was performed in 8 (53.3%) of 15 cases in a review of the literatures. Because intestinal malrotation is associated with abnormalities of the artery [16,20], it is difficult to safely perform laparoscopic lymph node dissection inside the abdominal cavity. A thorough preoperative understanding of the anatomical anomalies is important, especially vascular anomalies, for safe performance of mesenteric excision inside the abdominal cavity. In our review, three of four cases of malrotation diagnosed by 3D-CT angiography involved lymph node dissection inside the abdominal cavity. Therefore we think 3D-CT angiography is a useful modality for safe laparoscopic surgery in patients with colon cancer with intestinal malrotation.

4. Conclusion

The laparoscopic approach for colon cancer with intestinal malrotation has not been established. The present review of the Japanese literature clearly showed that laparoscopic lymphadenectomy for colon cancer with intestinal malrotation is not feasible. If the intestinal malrotation is diagnosed preoperatively, 3D-CT
Case	Author	Publish	Age	Sex	Location	Type	Diagnosis of Intestinal Malrotation	Diagnosis of Tumor Location	Operation	Mesenteric Excision	Histopathology	Stage(UICC7th)
1	Hitatsuka 1974	47 F	cecum	nonrotation	operation	operation	open	unknown	tub1	unknown		
2	Shimamaki 1968	73 M	rectum	nonrotation	barium enema	barium enema	open	tub2	T2,N0,M0,StageIIB			
3	Osbata 1970	68 M	rectum	nonrotation	differentiated adenocarcinoma	barium enema	open	tub2	T3,N2,M0,StageIVA			
4	Isogai 1995	77 F	rectum	nonrotation	barium enema	barium enema	open	tub2	T2,N0,M0,StageIIB			
5	Yokota 1995	66 M	rectum	nonrotation	operation	barium enema	open	tub2	T4b,N1,M0,StageIBC			
6	Ogawa 1997	69 F	Malrotation	unknown	operation	open	unknown	tub1	unknown			
7	Sounaka 1997	22 M	ascending colon	nonrotation	operation	operation	open	tub1	T4a,N3,M0,StageIVB			
8	Kinoue 1998	57 F	rectum	nonrotation	barium enema	barium enema	open	tub2	T3,N0,M0,unknown			
9	Kinoue 1998	62 F	Malrotation	unknown	operation	open	unknown	tub2	T4a,N0,M0,StageIIB			
10	Nagata 1998	72 M	rectum	reversed rotation	barium enema	colonoscopy	open	tub2	T3,N0,M0,unknown			
11	Tanimura 1999	58 M	Malrotation	nonrotation	barium enema	barium enema	open	tub2	T4a,N3,M0,StageIVB			
12	Sato 2001	60 M	appendix	nonrotation	barium enema	barium enema	open	tub2	T3,N1,M0,StageIBB			
13	Sasaki 2003	71 F	cecum	Malrotation	colonoscopy	colonoscopy	open	tub2	T3,N0,M0,StageIIBA			
14	Fujita 2004	55 F	sigmoid colon	nonrotation	barium enema	colonoscopy	open	tub2	T3,N0,M0,StageIIBA			
15	Uchida 2004	57 M	transverse colon	nonrotation	sodium diatrizate enema	colonoscopy,selective	open	tub1	T3,N0,M0,StageIIBA			
16	Oki 2005	56 M	ascending colon	nonrotation	barium enema	barium enema	open	tub1	T1a,X1,H,StageIVA			
17	Tonomatsu 2005	81 F	ascending colon	nonrotation	barium enema	colonoscopy	open	tub1	T3,N2,M1a,X1,H,StageIVA			
18	Sakaizawa 2007	84 M	transverse colon	nonrotation	barium enema, abdominal CT	abdominal CT	open	tub2	T4b,N1,M0,StageIIB			
19	Yamamoto 2007	63 F	rectum	nonrotation	barium enema, MDCT	colonoscopy	laparoscopic	open	tub1	T2,N0,M0,StageI		
20	Seki 2008	88 F	transverse colon	nonrotation	operation	colonoscopy	laparoscopic	unknown	tub2	T3,N0,M0,StageIIB		
21	Nakajima 2009	71 F	sigmoid colon	nonrotation	colonoscopy	colonoscopy	laparoscopic	inside body	tub2	T3,N0,M0,StageIIB		
22	Kobayashi 2009	60 M	ascending colon	reversed rotation	colonoscopy	colonoscopy	laparoscopic	outside body	tub2	T3,N0,M0,StageI		
23	Itanii 2009	61 M	transverse colon	nonrotation	abdominal CT	abdominal CT	open	tub2	T3,N1,M0,StageIBB			
24	Takahashi 2009	84 M	ascending colon	nonrotation	barium enema, abdominal CT	colonoscopy	laparoscopic	inside body	tub2	T3,N1,M0,StageIBB		
25	Ino 2010	67 F	transverse colon	nonrotation	virtual colonoscopy	colonoscopy	open	tub1	T3,N1,M0,StageIBB			
26	Fukuhara 2010	76 F	cecum	nonrotation	operation	colonoscopy	laparoscopic	open	tub1	T3,N1,M0,StageIBB		
27	Kojima 2011	73 M	cecum	reversed rotation	colonoscopy	colonoscopy	laparoscopic	open	tub2	unknown		
28	Tawahashi 2012	53 F	sigmoid colon	nonrotation	abdominal CT	colonoscopy	open	tub1	T3,N1,M0,StageIBB			
29	Sekizawa 2012	56 F	rectum	reversed rotation	abdominal CT	colonoscopy	open	tub2	T4b,N1,M0,StageIBC			
30	Toba 2012	79 M	Malrotation	nonrotation	3D-CT angiography	colonoscopy	laparoscopic	outside body	tub1	T2,N0,M0,StageI		
31	Morimoto 2012	57 M	cecum	reversed rotation	abdominal CT	colonoscopy	laparoscopic	unknown	tub2	T3,N2,M0,StageIBC		
32	Suzuki 2013	53 M	Malrotation	nonrotation	operation	laparoscopic	outside body	tub2	T3,N0,M0,StageIIB			
33	Maeda 2013	56 M	transverse colon	nonrotation	3D-CT colonography	3D-CT colonography	laparoscopic	open	tub2	T3,N0,M0,StageI		
34	Hirano 2013	82 F	transverse colon	reversed rotation	abdominal CT, barium enema	colonoscopy	laparoscopic	outside body	tub2	T3,N0,M0,StageI		
35	Hitano 2013	68 F	Malrotation	descending colon	barium enema	colonoscopy	laparoscopic	unknown	tub1	T3,N0,M0,StageI		
36	Takahashi 2014	53 F	ascending colon	malrotation	barium enema, abdominal CT, 3D-CT colonography	barium enema	laparoscopic	outside body	tub2	T3,N1,M0,StageIBB		
37	Fujii 2014	73 F	cecum	nonrotation	abdominal CT	barium enema	open	tub1	T3,N0,M0,StageI			
38	Enomoto 2014	48 M	ascending colon	nonrotation	abdominal CT	barium enema	laparoscopic	inside body	tub2	T3,N0,M0,StageI		
39	Kuoda 2014	64 F	transverse colon	nonrotation	abdominal CT	barium enema	laparoscopic	inside body	tub2	T4a,N1,M0,StageIBB		
40	Motoda 2015	57 F	cecum	nonrotation	3D-CT angiography	colonoscopy	laparoscopic	unknown	tub2	T3,N1,M0,StageIBB		
41	Kurohara 2015	54 F	transverse colon	nonrotation	abdominal CT, 3D-CT angiography	colonoscopy	laparoscopic	inside body	tub2	T3,N0,M0,StageI		
42	Kobata 2015	82 M	Malrotation	barium enema	colonoscopy	open	tub1	T4a,N2,M0,StageIVB				
43	Ohsawa 2016	75 M	Malrotation	reversed rotation	colonoscopy,barium enema	colonoscopy	laparoscopic	unknown	tub1	T3,N1,M0,StageI		
44	Shimizu 2016	77 M	sigmoid colon	reversed rotation	3D-CT angiography,3D-CT colonography	colonoscopy,barium enema	laparoscopic	unknown	tub2	T3,N1,M0,StageIBB		
45	Nakayama 2016	63 M	Malrotation	nonrotation	colonoscopy	colonoscopy	laparoscopic	open	tub2	T4b,N0,M0,StageIBC		
46	Motoki 2016	66 M	Malrotation	nonrotation	colonoscopy	colonoscopy	laparoscopic	unknown	tub2	T2,N0,M0,StageI		
47	Nichida 2017	57 M	sigmoid colon	nonrotation	colonoscopy	laparoscopic	laparoscopic	open	tub2	T3,N0,M0,StageI		
48	Kimura 2017	54 F	sigmoid colon	paraduodenal hernia	3D-CT angiography,abdominal CT	colonoscopy	laparoscopic	inside body	tub2	T3,N0,M0,StageI		

ACCESS

CASE REPORT – OPEN ACCESS

Nakaido et al. / International Journal of Surgery Case Reports 89 (2017) 85–90
angiography should be used to reveal the vascular anatomic anomalies for safe performance of laparoscopic surgery.

Conflicts of interest

The authors declare that they have no competing interests.

Funding

None.

Ethical approval

This paper was not a research study, so ethical approval not required.

Consent

Written informed consent was obtained from the patient for publication of this case report and any accompanying images.

Author contribution

KT made substantial contribution to conception and drafted the manuscript. KN conducted a literature search and made the contribution for acquisition of data. KT, KN, TS, KY performed the operation. KT, KN, KY and MK reviewed the manuscript and gave final approval for publication. KT was revising it critically for important intellectual content. All authors read and approved the final manuscript.

Guarantor

The Guarantors of this manuscript are Katsuji Tokuhara and Prof. Masanori Kon.

References

[1] Center for cancer control and information services. Cancer information service, in: Projected Cancer Statistics, National Cancer Center, Japan, 2016, Available: http://ganjoho.jp/en/public/statistics/short_pred.html, (Accessed 13 March 2017).

[2] R.A. Agha, A.J. Fowler, A. Saetta, I. Barai, S. Rajmohan, D.P. Orgill, SCARE Group, The SCARE statement: consensus-based surgical case report guidelines, Int. J. Surg. 34 (2016) 180–186.

[3] J.E. Frazier, R.H. Robbins, On the factors concerned in causing rotation of the colon in man, J. Anat. 76 (1940) 121–128.

[4] H.W. Snyder, L. Chaffin, Malrotation of the intestine, Surg. Clin. North Am. 36 (1956) 1479–1485.

[5] C.A. Wang, C.E. Welch, Anomalies of intestinal rotation in adolescents and adults, Surgery 54 (6) (1963) 1389–1395.

[6] N.M. Dott, Anomalies of intestinal rotation: their embryology and surgical aspects with report of five cases, Br. J. Surg. 11 (1923) 251–286.

[7] R.T. Masson, P.A. Franklin, C.W. Wagner, Malrotation in the older child: surgical management, treatment, and outcome, Am. Surg. 61 (1995) 135–138.

[8] T. Oku, Y. Wada, I. Umeda, N. Waga, M. Fujita, Y. Nagamachi, M. Maeda, A case of ascending colon cancer combined with malrotation of the intestine, Gan no Rinshô (Jpn. J. Cancer Clin.) 51 (5) (2005) 399–404.

[9] T. Sakaguchi, K. Tokuhara, S. Iwanoto, Y. Ueyama, K. Yoshida, M. Okuno, Y. Wada, Y. Nakane, A.H. Kwon, A case of colon cancer accompanied with adult malrotation of intestine treated by laparoscopic surgery, Nihon Daicho Komanbyo Gakkai Zasshi (J. Jpn. Soc. Colo-Proctol.) 66 (2) (2013) 105–109.

[10] H. Enomoto, H. Kawahara, M. Tomoda, K. Watanabe, T. Akiba, K. Yanaga, Laparoscopic surgery for the transverse colon carcinoma associated with non-rotation type intestinal malrotation, Jikeikai Med. J. 61 (2014) 87–92.

[11] D. Ray, M. Morimoto, Malrotation of the intestine in adult colorectal cancer, Indian J. Surg. 77 (6) (2015) 525–531.

[12] T. Shimazawa, Y. Yamamoto, T. Masubuchi, K. Tanaka, J. Okuda, K. Uchiyama, Laparoscopic surgery in a patient with advanced sigmoid colon cancer with reversed intestinal malrotation, Nihon Rinshô Geka Gakkai Zasshi (Jpn. J. Surg. Assoc.) 77 (1) (2016) 117–121.

[13] K. Oshiro, M. Koizumi, D. Takahashi, H. Murayama, H. Horie, Double colon cancer with a reversed type intestinal malrotation, Nihon Shikisiki Geka Gakkai Zasshi (Jpn. J. Gastroenterol. Surg.) 49 (7) (2016) 683–689.

[14] Y. Nakayama, M. Akizawa, Y. Sawatsubashi, N. Minagawa, T. Torigoe, K. Hiraoka, A case of advanced descending colon cancer in an adult patient with intestinal malrotation, Case Rep. Gastrointest. Med. 2016 (2016) 3194056, http://dx.doi.org/10.1155/2016/3194056, Epub 2016 Mar 3.

[15] Y. Motoki, K. Nakaguchi, K. Nakano, K. Sugimoto, K. Kan, S. Doi, A case of ascending colon cancer with intestinal malrotation treated via laparoscopic surgery, Gan to Kagaku Ryoho (JPN J. Cancer Chemother) 43 (12) (2016) 1733–1735.

[16] K. Nishida, T. Kato, A.K. Lefor, T. Suganuma, Laparoscopic resection of sigmoid colon cancer with intestinal malrotation: a case report, Int. J. Surg. Case Rep. Case Rep. Gastrointest. Med. 2016 (2016) 3194056, http://dx.doi.org/10.1155/2016/3194056, Epub 2016 Mar 3.

[17] Y. Kimura, M. Morimoto, H. Horie, Y. Kono, K. Koinuma, N. Sato, A case of malrotation of a pradadudodenal hernia with ascending colon carcinoma, Nihon Rinshô Geka Gakkai Zasshi (Jpn. Jpn. Surg. Assoc.) 77 (9) (2017) 2247–2252.

[18] M. Donaire, J. Mariadason, D. Stephens, S. Pillarisetty, M.K. Wallack, Carcinoma of the colon in an adult with intestinal malrotation, Case Rep. Surg. (2013), article ID 525081 4.

[19] D. Nehra, A.M. Goldstein, Intestinal malrotation: varied clinical presentation from infancy through adulthood, Surgery 145 (3) (2011) 386–393.

[20] H. Uchida, Y.J. Kawamura, K. Takegami, K. Matsuda, T. Watanabe, T. Masaki, M. Minami, T. Muto, Colon cancer complicated by vascular and intestinal anomaly, Hepato-Gastroenterol. 51 (2004) 156–158.

Open Access

This article is published Open Access at sciencedirect.com. It is distributed under the IJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.