SHORT COMMUNICATION

Sharing Italian Botanic Gardens’ living collections: The role of the National Biodiversity Network

F. ATTORRE1, S. BONACQUISTI1, F. FRANCESCONI1, V. SAMBUCINI2, & S. MARTELLOS3

1Department of Environmental Biology, Sapienza University of Rome, Roma, Italy; 2Institute for Environmental Protection and Research, Roma, Italy and 3Department of Life Sciences, University of Trieste, Trieste, Italy

Abstract

This paper presents the role of the Italian National Biodiversity Network in making available biodiversity data from Italian Botanic Gardens at a national and international level. The case study of the Botanic Garden of Rome is presented explaining procedures and methods for collecting georeferenced data on living plant species and making them available through web-based applications.

Keywords: BioCASE, Botanic Gardens, GBIF, BGCI, web-GIS

Background

Since its institution in May 2012 (Martellos et al. 2011; Attorre et al. 2013), the Italian Biodiversity Network (IBN; http://www.naturaitalia.it/banchediati.do) has been rapidly developing and growing in terms of data availability, partners, and functionalities.

Data availability: at the moment, about 2.3 million records of primary biodiversity data of plant and animal species from about 60 database are aggregated and made accessible through the portal; the latest acquisition is the Italian vegetation database, provided by the Italian Botanical Society, which includes plant species occurrences from georeferenced published phytosociological relevés over the last 20 years (Blasi et al. 2011; Landucci et al. 2012; Chytry et al. 2016; Lucarini et al. 2015) with a total of about 380,000 records for 5519 taxonomic entities across the country.

In the next future, the Portal will integrate also data related to species such as repositories of the ecological data, for instance the re-calibrated ecological indicators developed for the Italian territory (Pignatti 2005), of morpho-anatomical data, which are used in the production of digital identification keys (Martellos 2010) and for morphological analyses (e.g. Viscosi et al. 2009), and of available image archives for several groups of plants and animals (see e.g. Nimis et al. 2003, http://www.dryades.eu).

Partners and data provider: at the moment, six universities, the Institute for Environmental Protection and Research, the National Forest Service, the Toscana Region, the Lazio regional biodiversity observatory, the national park of Abruzzo, Lazio and Molise, and the Civic Natural History Museum of Verona have joined the Network. This result is not surprising since universities are the main collectors and users of primary biodiversity data. However, mechanisms should be put in place to enlarge the number of partners, for instance establishing appropriate monitoring procedures for protected areas, and supporting the digitalization of their collections for natural history museums.

Functionalities: a significant increase in query rate was achieved, thanks to an Extract, Transform, Load process that queries the BioCASE web services (Biological Collection Access Service; http://www.biocase.org) of all the remote nodes (Focal Points). Data are harvested with the BioCASe protocol and returned as Accessing Biodiversity Collections Data (ABCD)-structured documents. Returned data
Figure 1. Map of the woody plants collected in the Botanical Garden of Rome.
are loaded into a staging database where they are transformed to match the data warehouse schema and loaded into the data warehouse database for online analysis. Differential updates of the data warehouse are scheduled periodically. Query results are downloadable in CSV format so as to be immediately used by modeling tools such as Maxent (Phillips & Dudik 2008; Alfaro-Saiz et al. 2015) and Biomod (Thuiller et al. 2009). Species occurrence data are integrated with a geo-portal where ecological maps such as bioclimate, ecoregions, potential natural vegetation, and others (Smiraglia et al. 2013; Blasi et al. 2014), and updated administrative boundaries (Protected areas, Natura 2000 sites) can be visualized and downloaded to be used for analytical and modeling purposes.

Italian Biodiversity Network and Botanic Gardens

Within this context, the IBN can also play an important role in making available to the public biodiversity data from Italian Botanic Gardens (IBGs). A first important step was to include in the Network the database containing the occurrence of both allochthonous and autochthonous species collected from a network of 34 IBGs and listed in the annexes and appendices of the Convention on International Trade in Endangered Species (CITES; also known as the Washington Convention). The database, CITES & IBGs (http://www.societabotanicaitaliana.it/cites/), was created to contribute to the objectives and targets of the Global Strategy for Plant Conservation and currently contains 4901 occurrences, georeferenced according to the centroid of the IBGs, for a total of 1604 taxa many of which, according to IUCN criteria, are seriously threatened of extinction, such as Copiapoa fieidleriana (K.Schum.) Backeb., Encephalartos horridus (Jacq.) Lehm., Euphorbia cylindrifolia Marn.-Lap. & Rauh, Mammillaria carmenae Castañeda, Oroya peruviana (K. Schum.) Britton & Rose, and Swietenia mahagoni (L.) Jacq. (Anzellotti et al. 2014).

However, IBGs host a much greater plant species richness accumulated in the course of decades that deserves to be made available to a number of potential stakeholders including curators, gardeners, conservation biologists, taxonomists, and ecological tourists through the network.

In this paper, we describe the case study of the Botanic Garden of Rome (BGR) that can be replicated at a national scale.

In order to share data through the IBN, it was necessary to record the georeferenced location of all woody plants growing on the ground, being acclimated to the current climatic conditions of area. As a first step, an accurate planimetric map of the BGR was produced using a system composed by a Differential Global Positioning System and Total Station. Then, all the woody plants were mapped using the same system with a centimeter spatial accuracy (Figure 1). A total of 1590 specimens of woody plants were recorded, belonging to 113 families, 278 genera, and 500 species whose nomenclature refers to the Catalogue of Life 2015 checklist (http://www.catalogueoflife.org/).

All this information can be visualized through a web-based GIS application developed using ArcGIS Server software with a dedicated Flex–XML graphical interface and available at the BGR website (https://web.uniroma1.it/ortobotanico/). Taxonomic and spatial query tools allow the users to retrieve the information on what and where to find within the BGR.

The final part of the whole process was to insert the georeferenced data (Martellos & Attorre, 2012) in the IBN. The IBN uses the BioCASE protocol, and ABCD as Data Standard. Data from BGR were flagged by selecting in the standard terms catalog the “naturalized” status for the “establishment means” concept.

A further important development for IBGs is the collaboration with international aggregators of biodiversity data such as the Global Biodiversity Information Facility (GBIF – http://www.gbif.org/). While the whole IBN is not aggregated with the GBIF yet, IBGs can ask for an endorsement by a thematic node as the Botanic Gardens Conservation International (https://www.bgci.org/), the largest Botanic Gardens network, which, since 2004, is facilitating the transfer of information from plant institutions into GBIF’s database. Another possible option is to join the BioCASE Europe network as data providers, hence being eventually aggregated with the GBIF together with all BioCASE Europe data.

Acknowledgments

This paper was funded by the Italian Ministry of the Environment (MATTM) in the framework of the project “Sistema Ambiente 2010” for the development of the Italian National Biodiversity Network which is gratefully acknowledged. The planimetric map and the georeferencing of all plant species as well as the web–GIS application were carried out by Andrea Fantini, Edoardo Scepi, and Paolo Sandrea (Tecnostudi Ambiente s.r.l. – http://www.tecnostudi-ambiente.it/). A special thanks to Flavio Tarquini and the staff of the Botanical Garden of Rome for their support and for their knowledge sharing during the survey.
Funding

This paper was funded by the Italian Ministry of the Environment (MATTM).

Supplemental data

Supplemental data for this article can be accessed here. [http://dx.doi.org/10.1080/11263504.2016.1179230]

References

Alfaro-Saiz E, García-González ME, del Río S, Penas Á, Rodríguez A, Alonso-Redondo R. 2015. Incorporating bioclimatic and biogeographic data in the construction of species distribution models in order to prioritize searches for new populations of threatened flora. Plant Biosyst 149: 827–837.

Anzellotti A, Bonacquisti S, Carli E. 2014. Ortobotanici universitari e convenzione di Washington (CITES): tutela e valorizzazione delle piante CITES autoctone. Roma: Ograro Srl. pp. 1–20. ISBN 978-88-97091-01-1.

Attorre F, Fortunato C, Martellos S. 2013. Botanical information in the Italian Biodiversity Network: One year of data aggregation and future perspectives. Plant Biosyst 147: 1101–1103.

Blasi C, Capotorti G, Copiz R, Guida D, Mollo B, Smiraglia D, et al. 2014. Classification and mapping of the ecoregions of Italy. Plant Biosyst 148: 1255–1345.

Blasi C, Marignani M, Copiz R, Fipaldini M, Bonacquisti S, Del Vico E, et al. 2011. Important plant areas in Italy: From data to mapping. Biol Conserv 144: 220–226.

Chytry M, Hennekens SM, Jiménez-Alfaro B, Knollová I, Dengler J, Jansen F, et al. 2016. European Vegetation Archive (EVA): An integrated database of European vegetation plots. Appl Veg Sci 19: 173–180.

Landucci F., Acosta ATR, Agrillo E, Attorre F, Biondi E, Cambria VE, et al. 2012. VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst 146: 756–763.

Lucarini D, Gigante D, Landucci F, Panfilli E, Venanzoni R. 2015. The anArchive taxonomic checklist for Italian botanical data banking and vegetation analysis: Theoretical basis and advantages. Plant Biosyst 149: 958–965.

Martellos S. 2010. Multi-authored interactive identification keys: The FRIDA (FRiendly IDentificAtion) package. Taxon 59: 922–929.

Martellos S, Attorre F. 2012. New trends in biodiversity informatics. Plant Biosyst 146: 749–751.

Martellos S, Attorre F, De Felici S, Blasi C, Sbordoni V, Nimis P. 2011. Plant sciences and the Italian National Biodiversity Network. Plant Biosyst 145: 758–761.

Nimis PL, Martello S, Moro A. 2003. Il progetto Dryades: come identificare una piante, da Gutenberg a Internet. Biologi Italiani 7: 9–15.

Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31: 161–175.

Pignatti S. 2005. Valori di bioindicazione delle piante vascolari della flora d’Italia. Braun-Blanquetia 39: 1–97.

Smiraglia D, Capotorti G, Guida D, Mollo B, Siervo V, Blasi C. 2013. Land units map of Italy. J Maps 9: 239–244.

Thuiller W, Lafourcade B, Engler R, Araújo MB. 2009. BIOMOD – A platform for ensemble forecasting of species distributions. Ecography 32: 369–373.

Viscosi V, Fortini P, Slice D, Loy A, Blasi C. 2009. Geometric morphometric analyses of leaf variation in four oak species of the subgenus Quercus (Fagaceae). Plant Biosyst 143: 575–587.