Reconstruction procedure in nonlocal cosmological models

Emilio Elizalde1, Ekaterina O Pozdeeva2 and Sergey Yu Vernov1,2

1 Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC), Campus UAB, Facultat de Ciències, Torre C5-Parell-2a planta, E-08193, Bellaterra (Barcelona), Spain
2 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia

E-mail: elizalde@ieec.uab.es, elizalde@math.mit.edu, pozdeeva@www-hep.sinp.msu.ru, vernov@ieec.uab.es, and svernov@theory.sinp.msu.ru

Received 3 October 2012, in final form 3 December 2012
Published 11 January 2013
Online at stacks.iop.org/CQG/30/035002

Abstract
A nonlocal gravity model is considered which does not assume the existence of a new dimensional parameter in the action and includes a function $f(\Box^{−1} R)$, with \Box the d’Alembertian operator. Using a reconstruction procedure for the local scalar-tensor formulation of this model, a function f is obtained for which the model exhibits power-law solutions with the Hubble parameter $H = n/t$, for any value of the constant n. For generic n—namely except for a few special values which are characterized and also specifically studied—the corresponding function f is a sum of exponential functions. Corresponding power-law solutions are found explicitly. Also the case is solved in all detail of a function f such that the model contains both de Sitter and power-law solutions.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.—k

1. Introduction

A large number of observational data [1–6] supports the conclusion that the expansion of the Universe is accelerating now and has been doing so for a considerable part of its existence. The assumption that general relativity is the correct theory of gravity leads to the conclusion that about 70\% of the energy density of the present day Universe should be a smoothly distributed, slowly varying cosmic fluid called dark energy [7]. If, alternatively, one wants to describe the accelerating expansion without this fluid, the gravity equation must be modified (for recent reviews, see, e.g., [8–10]). There has been a lot of discussion on which side of the Einstein equations should be modified, either by adding the cosmological constant, or anything similar, to the matter side of the equation, or by modifying the gravity side of the equation [11].
Note that some of these modified gravity models, for example the $F(R)$ gravity models, can be transformed into general relativity with additional scalar fields by a suitable conformal transformation of the metric [10, 12].

Higher derivative corrections to the Einstein–Hilbert action are being actively studied in the context of quantum gravity (as one of the first papers we can mention [13], see also [14] and references therein). A nonlocal gravity theory obtained by taking into account quantum effects has been proposed in [15]. In a way, this development goes back to string/M-theory, which is usually considered as a possible theory to encompass all known fundamental interactions, including gravity. The appearance of nonlocality within string field theory provides therefore a good motivation for studying nonlocal cosmological models.

The majority of the available nonlocal cosmological models explicitly includes a function of the d’Alembertian operator, \Box, and either define a nonlocal modified gravity [15–28] or contain a nonlocal scalar field, minimally coupled to gravity [29].

In this paper, we consider a nonlocal gravity model that includes a function of the \Box^{-1} operator and does not assume the existence of a new dimensional parameter in the action [15]. The nonlocal model considered has a local scalar-tensor formulation [17]. As was shown in [17], a theory of this kind may actually encompass all known sequence of the Universe history: inflation, radiation/matter dominance and a subsequent and final dark epoch. In [19], the ensuing cosmologies corresponding to the four basic epochs: radiation dominance, matter dominance, acceleration and a general scaling law have been studied for nonlocal models involving, in particular, an exponential form for the function $f(\psi)$. The perturbation analysis of this model and checking of the Solar System test has been done in [20]. An explicit mechanism to screen the cosmological constant in nonlocal gravity was discussed in [23–25].

The cosmological model often includes some function which cannot be deduced from the fundamental theory; usually one can only assume some property of this function, for example, that the function should be a polynomial or more generally an analytic function. Then the questions arise: Why some specific form of the function $f(\Box^{-1})$ is chosen and not a different one, and what is the physical motivation for the final choice? To answer these questions, one has to resort to the reconstruction procedure itself and to understand in depth the expansion history of the Universe in order to match both with care. For this nonlocal model, a technique for choosing the distortion function $f(\Box^{-1})$, so as to fit an arbitrary expansion history has been derived in [21]. In the framework of the local formulation, a reconstruction procedure has been proposed [19] in terms of functions of the scale factor a. The reconstruction method considered in this paper was first proposed in [26] with the aim to obtain models with de Sitter solutions and it has been generalized in [28]. This method uses convenient functions of the cosmic time t.

In this paper, we develop in some detail the reconstruction procedure and use it to find models with power-law solutions. We obtain functions f which correspond to power-law solutions, e.g., solutions for which the Hubble parameter is given by $H = n/t$, where n is a real number. Also, we find functions f for which the model has both the de Sitter and power-law solutions. It should be noted that the reconstruction procedure is widely used in cosmology, in particular, in models with minimally coupled scalar fields [30–33], also non-minimally coupled scalar [34] or Yang–Mills [35] fields, $F(R)$ and Gauss–Bonnet gravity models [33, 36] and $F(T)$ models, with T being the torsion scalar [37].

The paper is organized as follows. In section 2, we consider the action for a general class of nonlocal gravity models and derive the corresponding equations of motion. In section 3, we propose the algorithm which allows us to find $f(\psi)$ and obtain the model with the given cosmological evolution. In section 4, we prove that the model with $f(\psi)$ being a sum of exponential functions can indeed lead to power-law solutions. This is extended in section 5.
where we find sufficient conditions on $f(\psi)$, under which the model has power-law solutions, and present these solutions in explicit form. In section 6, a function $f(\psi)$ is considered which corresponds to a model with both de Sitter and power-law solutions, what is a quite interesting, somehow unexpected finding. In section 7, we consider a few special cases of power-law solutions and obtain for each case the corresponding function $f(\psi)$. In section 8, we consider the reconstruction procedure for the model with many perfect fluids. The last section is devoted to conclusion.

2. Scalar-tensor gravity model

We consider a class of nonlocal gravities, whose action is given by

$$S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} [R(1 + f(\Box^{-1} R)) - 2\Lambda] + L_{\text{matter}} \right\}, \quad (1)$$

where $\kappa^2 = 8\pi G = \frac{8\pi}{M_{\text{Pl}}^2}$, the Planck mass being $M_{\text{Pl}} = \frac{\sqrt{\frac{2}{\kappa^2}}}{1.2 \times 10^{19} \text{ GeV}}$, and f is a differentiable function that characterizes the nature of nonlocality, with \Box^{-1} being the inverse of the d’Alembertian operator, Λ the cosmological constant and L_{matter} the matter Lagrangian. We use the signature $(-, +, +, +)$, with g being the determinant of the metric tensor $g_{\mu\nu}$. Recall the covariant d’Alembertian for a scalar field, which reads

$$\Box \equiv \nabla^\mu \nabla_\mu = \nabla^\mu \partial_\mu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu),$$

where ∇^μ is the covariant derivative.

Introducing two scalar fields, ψ and ξ, one can rewrite action (1) as follows:

$$S = \int d^4x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} [R(1 + f(\psi) + \xi) - \xi \Box \psi - 2\Lambda] + L_{\text{matter}} \right\}, \quad (2)$$

By varying action (2) over ξ, we obtain $\Box \psi = R$. Substituting $\psi = \Box^{-1} R$ into action (2), one reobtains action (1). Action (2) may thus be regarded as a local action.

By varying this action with respect to ξ and ψ, respectively, one obtains the field equations

$$\Box \psi = R, \quad (3)$$
$$\Box \xi = f'(\psi) R, \quad (4)$$

where the prime denotes derivative with respect to ψ.

Varying action (2) with respect to the metric tensor $g_{\mu\nu}$ yields

$$\frac{1}{2} g_{\mu\nu} \left[R \Psi + \partial_\mu \xi \partial^\nu \psi - 2(\Lambda + \Box \Psi) \right] - R_{\mu\nu} \Psi$$

$$- \frac{1}{2} (\partial_\mu \xi \partial_{\nu} \psi + \partial_{\nu} \psi \partial_{\mu} \xi) + \nabla_\mu \partial_\nu \Psi = -\kappa^2 T_{\mu\nu}, \quad (5)$$

where $\Psi = 1 + f(\psi) + \xi$, the energy–momentum tensor of matter $T_{\mu\nu}$ being defined as

$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\delta L_{\text{matter}}}{\delta g^{\mu\nu}}. \quad (6)$$

The system of equations (5) does not include the function ψ, but only $f(\psi)$ and $f'(\psi)$, together with derivatives of ψ. Note that $f(\psi)$ can be determined up to a constant, because one can add a constant to $f(\psi)$ and subtract the same constant from ξ, without changing any of the equations.

To consider cosmological solutions, we assume a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) universe, with the interval,

$$ds^2 = -dt^2 + a^2(t) \delta_{ij} dx^i dx^j. \quad (7)$$
and consider scalar fields which depend on time only. In the FLRW metric, the system of equations (3)–(5) reduces to

$$3H^2 \Psi = -\frac{1}{2} \ddot{\xi} \dot{\psi} - 3H \dot{\Psi} + \Lambda + \kappa^2 \rho_m,$$

$$2H + 3H^2 \Psi = \frac{1}{2} \ddot{\xi} \dot{\psi} - \ddot{\Psi} - 2H \dot{\Psi} + \Lambda - \kappa^2 P_m,$$

$$\ddot{\xi} = -3H \dddot{\xi} - 6(\dot{H} + 2H^2) f'(\psi),$$

$$\ddot{\Psi} = -3H \dot{\Psi} - 6(\dot{H} + 2H^2),$$

where differentiation with respect to time t is denoted by a dot and the Hubble parameter is $H = \dot{a}/a$. We assume that matter is a perfect fluid with $T_{m00} = \rho_m$ and $T_{mij} = P_m g_{ij}$. The continuity equation reads

$$\dot{\rho}_m = -3H(\rho_m + P_m).$$

Adding up (8) and (9), we obtain the following second-order linear differential equation for Ψ:

$$\ddot{\Psi} + 5H \dot{\Psi} + (2H + 6H^2) \Psi - 2\Lambda + \kappa^2 (P_m - \rho_m) = 0.$$

In the case when $\Lambda = 0$ and matter is absent, equation (13) has a solution $\Psi(t) \equiv 0$. As one can see from equation (8), in this case functions ψ and ξ are both constants. From equation (3), it follows that the space-time is Ricci flat. Therefore, the Minkowski space is a solution in this case.

3. Nonlocal gravitational models with a given cosmological evolution

Let us now consider the question: How to obtain the function $f(\psi)$ that corresponds to a solution with a given Hubble parameter $H(t)$? If the equation of state (EoS) parameter w_m is known, then for any given $H(t)$ one can integrate equation (12) and obtain $\rho_m(t)$, after which one can solve equation (13) and obtain $\Psi(t)$. The knowledge of $H(t)$ also allows us to integrate (3) and obtain $\psi(t)$.

Substituting

$$\xi(t) = \Psi(t) - f(\psi) - 1$$

into equation (10) and using the function $t(\psi)$, we obtain a linear differential equation for $f(\psi)$, namely

$$\dot{\psi}^2 f''(\psi) - 12(\dot{H} + 2H^2)f'(\psi) = \ddot{\Psi} + 3H \dot{\Psi}.$$

It can be more suitable for the calculation to rewrite equation (14) as follows:

$$s \ddot{\Psi} - 12(\dot{H} + 2H^2)s = \ddot{\Psi} + 3H \dot{\Psi},$$

where $s(t) = f'(\psi(t))$. From this first-order differential equation, one can obtain the function $s(t)$, and, after that, obtain $f'(\psi)$ and $f(\psi)$.

Note that equation (14) is a necessary condition for the model to have the solutions in the given form. Substituting the obtained function $f(\psi)$ into equation (8) or equation (9), one can check the existence of solutions of the given form. Note that this method not only allows us to construct the corresponding $f(\psi)$, but it also gives a suitable way to obtain $\xi(t)$ and $\psi(t)$ for a given $H(t)$. In the following sections, we will illustrate this result for some physically important examples of possible $H(t)$ behaviors.
4. Power-law solutions

In [26], we have found the general form of the function \(f(\psi) \) for which the model can have de Sitter solutions. Here, we explore power-law solutions; in other words, we assume that the Hubble parameter is of the form \(H = n/t \).

In general relativity, a power-law solution \(H = n/t \) corresponds to a model involving a perfect fluid, and the EoS parameter \(w_m = P_m/\rho_m \) is equal to \(w_m = -1 + 2/(3n) \) there. In the model considered, we assume that matter has the EoS parameter \(w_m \) being an arbitrary constant, not equal to \(-1\).

For \(H = n/t \), equation (12) has the following general solution:

\[
\rho_m(t) = \rho_0 t^{-3n(w_m+1)},
\]

where \(\rho_0 \) is an arbitrary constant. Equation (13) has, on its turn, the following one.

- For \(n \neq -1 \) and \(n \neq -1/3 \),
 \[
 \psi_0 = C_1 t^{-2n} + C_2 t^{-(3n+1)} + \frac{A}{(n+1)(3n+1)} t^2 - \frac{\rho_0 \kappa^2 (w_m - 1) t^{2-3(1+w_m)n}}{(3n w_m - 1)(n + 3n w_m - 2)}. \tag{17}
 \]

- For \(n = -1 \),
 \[
 \psi_1 = C_1 t^2 + C_2 t^4 - A t^2 \left(\ln(t) + \frac{1}{2} \right) - \frac{\rho_0 \kappa^2 (w_m - 1)}{3(w_m + 1)(3w_m + 1)} t^{5+3w_m}. \tag{18}
 \]

- For \(n = -1/3 \),
 \[
 \psi_2 = C_1 t^2 + C_2 t^{2/3} + \frac{3}{2} A t^2 \left(\ln(t) - \frac{3}{4} \right) - \frac{3 \rho_0 \kappa^2 (w_m - 1)}{(w_m + 1)(3w_m + 7)} t^{3+w_m}. \tag{19}
 \]

where \(C_1 \) and \(C_2 \) are arbitrary constants. \(w_m \) is chosen so that \((3n w_m - 1)(n + 3n w_m - 2) \) be not equal to zero.

Inserting \(H = n/t \) into equation (11) and assuming \(n \neq 1/3 \) and \(n \neq 1/2 \), we find the solution for \(\psi(t) \) to be

\[
\psi(t) = \psi_1 t^{1-3n} - \frac{6n(2n-1)}{3n-1} \ln \left(\frac{t}{t_0} \right), \tag{20}
\]

where \(\psi_1 \) and \(t_0 \) are arbitrary constants. In all formulae, we assume that \(t > 0 \), in particular \(t_0 > 0 \). Also, we obtain that the general solution of (11) is

\[
\psi(t) = C_3 t^{-1/2} + C_4, \quad \text{at} \quad n = \frac{1}{2}, \tag{21}
\]

\[
\psi(t) = \frac{1}{2} (\ln(t))^2 + \tilde{C}_3 \ln(t) + \tilde{C}_4, \quad \text{at} \quad n = \frac{1}{3}, \tag{22}
\]

with \(C_3, C_4, \tilde{C}_3 \) and \(\tilde{C}_4 \) being the arbitrary constants. We assume that \(\psi(t) \) is not a constant, so \(C_3 \neq 0 \).

To obtain \(f(\psi) \) in terms of elementary functions for any \(n \), except for the above-mentioned particular values, it is useful to set \(\psi_1 = 0 \) in (20) and to express the time variable \(t \) in terms of \(\psi_0 \), as\(^3\)

\[
t = t_0 \exp \left(\frac{1}{6n(2n-1)} \right). \tag{23}
\]

\(^3\) If \(\psi_1 \neq 0 \), then \(t(\psi) \) includes the Lambert function, so in this case, we do not get \(f(\psi) \) in terms of elementary functions.
We obtain the following general solution of (14):

\[f_0(\psi) = \frac{\Lambda^2}{6n(1+n)} e^{(1-3n)\psi/(3(2n-1))} - \frac{\rho_0 \kappa^2 L_0^2}{3n(n-2+3nw_m)} e^{(3n(1+w_m)-2(3n-1)\psi/(6n(2n-1)))} + D_2 + \frac{(n-1)\mu_0^2 C_1}{2(2n-1)} e^{(3n-1)\psi/(3(2n-1))} + D_1 e^{(3n-1)^2\psi/(3(2n-1))}, \]

(24)

where \(D_1 \) and \(D_2 \) are integration constants. Note that \(C_1 \) is an arbitrary constant as well. To obtain this result we assume that \(n \neq 1/2, n \neq 1/3, n \neq -1/3 \) and \(n \neq -1 \).

Let us consider the case \(n = -1 \). Substituting \(\Psi(t) \), as given by (18), into equation (14), we obtain the following general solution:

\[f_1(\psi) = \frac{C_1}{3} L_0^2 e^{(\psi)^{1/9}} - \frac{\Lambda}{54} (18 \ln(t_0) + 3 + 4\psi) L_0^2 e^{4\psi/9} - \frac{\rho_0 \kappa^2 L_0^2}{w_m + 1} e^{(5+3w_m)\psi/9} + D_1 e^{16\psi/9} + D_2. \]

(25)

Note that this form of \(f(\psi) \) is similar to a function for which there exist de Sitter solutions at \(w_m = 1/3 \) (see section 6). At the same time, \(f_1(\psi) \) is a sum of exponential functions provided \(\Lambda = 0 \).

For \(n = -1/3 \), we use (18) and obtain

\[f_2(\psi) = \frac{2}{5} C_1 L_0^{2/3} e^{(\psi)^{1/5}} - \frac{3}{4} \Lambda L_0 e^{6\psi/5} - \frac{3 \rho_0 \kappa^2 L_0^{1+w_n}}{3w_m + 7} e^{(3(1+w_n)\psi/5} + D_1 e^{12\psi/5} + D_2. \]

Note that \(f_2(\psi) \) coincides with \(f_0(\psi) \) for \(n = -1/3 \), so that formula (24) can be used for \(n = -1/3 \) as well.

The cases \(n = 1/3 \) and \(n = 1/2 \) have special forms, different from (20), will be considered in section 7.

We see that for all values of \(n \), except when \(n = -1, n = 1/3 \) and \(n = 1/2 \), \(f(\psi) \) is equal to either an exponential function or to a sum of exponential functions plus a constant. This is the general form of the function \(f(\psi) \), which can have power-law solutions in the model with the cosmological constant and an ideal perfect fluid. We have not proven that this model has power-law solutions, what we really saw is that other models do not have such solutions (with \(\psi_1 = 0 \)).

5. Power-law solutions for a given \(f(\psi) \)

The full system of equations is (8)–(12). We solve equations (10)–(12) and the sum of equations (8) and (9). Thus, to obtain the solution it is enough to substitute the functions obtained into equation (8).

After this substitution, we obtain that terms which are proportional to \(\Lambda \) and \(\rho_0 \) cancel and that equation (8) takes the form

\[6L_0^2 e^{(3n-1)(2n-1)} D_1 t^{-6n} = 0, \quad D_1 = 0. \]

(26)

Note that the case \(n = 1/2 \) has been excluded (there the function \(\psi(t) \) has a different form). Thus, one can take that model with

\[f(\psi) = \tilde{f}_1 e^{\psi^{1/3}} + \tilde{f}_2 e^{2\psi} + \tilde{f}_3 e^{3\psi} + \tilde{f}_4, \]

(27)

where \(\tilde{f}_1, \tilde{f}_2, \tilde{f}_3, \) and \(\tilde{f}_4 \) are constants, has solutions with \(H = n/t \), where \(n \) is an arbitrary real number; however, \(n \neq -1, n \neq 1/3 \) and \(n \neq 1/2 \). As we noted in section 2, the function \(f(\psi) \) is defined up to a constant, so we can put \(\tilde{f}_4 = 0 \) without loss of generality.
The method employed here allows us not only to obtain the suitable function \(f(\psi) \), but also to obtain solutions in explicit form. Indeed, we have found that the model considered, with \(f(\psi) \) given by (27), has the solution

\[
H(t) = \frac{n}{t},
\]
\[
\rho_m(t) = \rho_0 t^{-3n(w_m+1)},
\]
\[
\psi(t) = -\frac{6n(2n-1)}{3n-1} \ln \left(\frac{t}{t_0} \right),
\]
\[
\Psi(t) = \begin{cases}
\Theta + \frac{\Lambda t^2}{(n+1)(3n+1)}, & n \neq -\frac{1}{3}, \\
\Theta + \frac{3}{2} \Lambda t^2 \left(\ln(t) - \frac{3}{4} \right), & n = -\frac{1}{3},
\end{cases}
\]
\[
\xi(t) = \Psi(t) - f(\psi) - 1,
\]
where

\[
\Theta = C_1 t^{-2n} + C_2 t^{1-3n} - \frac{\rho_0 \kappa^2 (w_m - 1) t^{2-3(1+w_m)}}{(3n w_m - 1)(n + 3n w_m - 2)},
\]
the constants being subject to the following conditions:

\[
\tilde{f}_1 = \frac{\Lambda t_0^2}{6n(1+n)}, \quad \alpha_1 = \frac{1-3n}{3n(2n-1)},
\]
\[
\tilde{f}_2 = -\frac{\rho_0 \kappa^2 t_0^{2-3n-3n w_m}}{3n(2n-2+3n w_m)}, \quad \alpha_2 = \frac{(3n(1+w_m)-2)(3n-1)}{6n(2n-1)},
\]
\[
\tilde{f}_3 = \frac{(n-1)t_0^{-2n} C_1}{2(2n-1)}, \quad \alpha_3 = \frac{3n-1}{3(2n-1)}.
\]

Thus, for the model with the given \(f(\psi) \) and \(\Lambda \), the values of the parameters \(C_1 \) and \(t_0 \) are fixed and there is a connection between \(\alpha_1 \) and \(\alpha_3 \). The values of \(\alpha_2 \) and \(\tilde{f}_2 \) define conditions on \(\rho_0 \) and \(w_m \), this not being equal to \(-1\). Note that the solutions include an arbitrary parameter \(C_2 \). Recall also that \(n \neq -1 \), \(n \neq 1/3 \) and \(n \neq 1/2 \), and we demand that \(n - 2 + 3n w_m \neq 0 \) and \(w_m \neq -1 \). As a consequence of these results, it follows that the model without matter can develop power-law solutions only if \(\tilde{f}_2 = 0 \); thus, \(f(\psi) \) is either an exponential function or a sum of two exponentials.

6. Models with both power-law and de Sitter solutions

6.1. The function \(f(\psi) \) for the model with de Sitter solutions

In [26], we obtained that the model admits the de Sitter solution \(H = H_0 \), where \(H_0 \) is a nonzero constant, provided that

\[
f_{\text{as}}(\psi) = c_1 e^{\psi/2} + c_2 e^{3\psi/2} - \frac{\kappa^2 \rho_0}{3(1 + 3w_m)H_0^2} e^{3(w_m+1)\psi/4}, \quad \text{for } w_m \neq -\frac{1}{3},
\]
\[
\tilde{f}_{\text{as}}(\psi) = c_1 e^{\psi/2} + c_2 e^{3\psi/2} + \frac{\kappa^2 \rho_0}{4H_0^2} \left(1 - \frac{1}{3} \psi \right) e^{\psi/2}, \quad \text{for } w_m = -\frac{1}{3},
\]
where \(c_1 \) and \(c_2 \) are arbitrary constants, and \(\rho_0 \) is the initial value of the matter energy density. Note that we include in this model only matter with the same EoS parameter \(w_m \), but that the initial values of the matter energy density, \(\rho_0 \) and \(\rho_0 \), can be actually different.
In [26], a de Sitter solution in its most general form has been found for \(f(\psi) \) being an exponential function. In particular, one obtains that equations (11)–(13), which do not depend on the function \(f(\psi) \), have the following solutions:

\[
H(t) = H_0, \\
\rho_m(t) = \tilde{\rho}_0 e^{-3(1+w_m)H_0(t-\tilde{t})}, \\
\psi(t) = -4H_0(t-\tilde{t}),
\]

\[
\Psi(t) = \begin{cases}
\gamma - \frac{\kappa^2 \tilde{\rho}_0 (w_m - 1)}{3H_0^3 w_m (1 + 3w_m)} e^{-3H_0(t-w_m)(t-\tilde{t})}, & w_m \neq 0, \quad w_m \neq \frac{1}{3}, \\
\gamma - \frac{\kappa^2 \tilde{\rho}_0}{H_0} e^{-3H_0(t-\tilde{t})}(t-\tilde{t}), & w_m = 0, \\
\gamma + \frac{4\kappa^2 \tilde{\rho}_0}{3H_0} e^{-2H_0(t-\tilde{t})}(t-\tilde{t}), & w_m = -\frac{1}{3},
\end{cases}
\]

where

\[
\gamma = c_1 e^{-3H_0(t-\tilde{t})} + 4c_1 e^{-2H_0(t-\tilde{t})} + \frac{\Lambda}{3H_0^2},
\]

with \(c_3 \) and \(\tilde{t} \) being arbitrary constants.

Substituting into equation (8) the solution (32) and \(\xi(t) = \Psi(t) - f(\psi) - 1 \), where \(f(\psi) \) is specified by (30) or (31), we obtain

\[
12c_2H_0^2 e^{-6H_0(t-\tilde{t})} = 0, \quad \Rightarrow \quad c_2 = 0.
\]

Note that we obtain the same results for all values of \(w_m \). Thus, the model has de Sitter solutions provided that

\[
f_{\text{ds}}(\psi) = c_1 e^{\psi/2} - \frac{\kappa^2 \tilde{\rho}_0}{3(1 + 3w_m)H_0^2} e^{3(w_m+1)\psi/2}, \quad \text{for } w_m \neq -\frac{1}{3},
\]

\[
\tilde{f}_{\text{ds}}(\psi) = c_1 e^{\psi/2} + \frac{\kappa^2 \tilde{\rho}_0}{4H_0^2} \left(1 - \frac{1}{3}\psi\right) e^{\psi/2}, \quad \text{for } w_m = -\frac{1}{3},
\]

with arbitrary \(c_1 \).

Let us check for the possibility that the model, with some given function \(f(\psi) \), has both de Sitter and power-law solutions. Such possibility exists only in the case \(w_m \neq -1/3 \). Indeed, from (35) it follows that for \(w_m = -1/3 \) de Sitter solutions exist for the function

\[
f(\psi) = \bar{f}_1 e^{\beta_1 \psi} + \bar{f}_2 e^{\beta_2 \psi},
\]

with \(\beta_2 = 1/2 \) and \(\bar{f}_2 \neq 0 \). A power-law solution does not exist for such a function \(f(\psi) \). It is obvious from (25) that the function \(f(\psi) \) with the term \(\bar{f}_2 e^{\beta_2 \psi} \psi \) can have a power-law solution only for \(\beta_2 = 4/9 \). Therefore, a model of this type cannot have both de Sitter and power-law solutions. We thus conclude that the function \(f(\psi) \) should be either a single exponential function or a sum of two exponential functions. Let us now check these two possibilities separately.

6.2. A single exponential \(f(\psi) \)

Let us consider the model with

\[
f(\psi) = \hat{f}_0 e^{\beta \psi},
\]

where \(\hat{f}_0 \) and \(\beta \) are constant. This case where \(f(\psi) \) is an exponential function has been mostly investigated [17–19, 23–27, 38]. Particular de Sitter and power-law solutions were found
in [17] and, after that, de Sitter solutions have been studied in [24, 26, 27] and power-law solutions in [25, 38], but always separately. Using mainly results in [26, 38], our aim here will be to construct a model which simultaneously exhibits both kinds of solutions: de Sitter and power-law.

If we assume that matter is absent, then it follows from (34) that the model has de Sitter solutions only in the case when

\[\beta = \frac{1}{2}. \]

It is easy to see that \(\alpha \neq 1/2\), for any \(n\), so that the model can have power-law solutions if \(\alpha_1 = 1/2\) only. In this case,

\[n = -\frac{1}{4} \pm \frac{\sqrt{57}}{12}. \]

(38)

Thus, we come to the conclusion that for \(\rho(t) = 0\) the model has both de Sitter and power-law solutions if and only if \(\beta = 1/2\) and \(\Lambda \neq 0\). Note that \(f_0\) can be arbitrary and does not get fixed by the value of \(\Lambda\).

Let us consider the opposite case, when matter is present. From (34), we obtain the condition of the existence of de Sitter solutions:

\[\beta = \frac{3}{4}(w_m + 1). \]

(39)

If we also require that this model should have power-law solutions as well, then we obtain from (29) and condition \(\alpha_2 = \beta\) that

\[n = \frac{4}{3(3 - w_m)}. \]

(40)

The equation \(\alpha_1 = \alpha_2\) with \(n\) given by (40) has the unique solution \(w_m = -1\). This actually means that there is no matter, aside from the cosmological constant. As a consequence, these models with matter can admit power-law solutions only if \(\Lambda = 0\).

But it has been found in [38] that, in the case \(\Lambda = 0\), power-law solutions exist only if either \(n = 1/(3w_m)\) or \(n = 1/3\) and \(w_m = -1/3\). Comparing these condition with (40), we obtain that the model has both de Sitter and power-law solutions if and only if \(n = 1/(3w_m)\) and \(w_m = 3/5\). In this case, we obtain \(\beta = 6/5\) and \(n = 5/9\).

Thus, we have reached the conclusion that the model with a single exponential function has both de Sitter and power-law solutions provided that either \(\rho(t) = 0\) or \(\Lambda = 0\) (but not both at once). In the first case, \(\beta = 1/2\). In the second, \(\beta = 6/5\) and \(w_m = 3/5\).

6.3. A sum of two exponential functions

Let us consider de Sitter and power-law solutions for

\[f(\psi) = \tilde{f}_1 e^{\beta_1 \psi} + \tilde{f}_2 e^{\beta_2 \psi}. \]

(41)

We have shown that de Sitter solutions for such \(f(\psi)\) exist only when matter is present. From (34), we obtain

\[\beta_1 = \frac{1}{2}, \quad \beta_2 = \frac{3}{4}(w_m + 1). \]

(42)

Note that \(w_m \neq -1/3\), hence \(\beta_1 \neq \beta_2\).

The de Sitter solution obtained is given by (32), where

\[c_1 = \tilde{f}_1, \quad \tilde{\rho}_0 = -\frac{3(1+3w_m)H_0^2}{\kappa^2} \tilde{f}_2, \quad w_m = \frac{4}{3} \beta_2 - 1, \]

with \(t_0\) and \(c_1\) being arbitrary parameters and \(H_0\) an arbitrary nonzero constant.
Let us consider possible power-law solutions in this model. Because \(\alpha_3 \neq 1/2 \), for any \(n \), we need to set \(\alpha_1 = 1/2 \); thus, the value of \(n \) is fixed by (38). From \(\alpha_2 = \beta_2 \) we then connect \(n \) and \(w_m \) by (40), to obtain
\[
w_m = \frac{25 \pm 3\sqrt{57}}{3 \pm \sqrt{57}}.
\] (43)
The minus sign corresponds to \(w_m \approx -0.517 \), what looks realistic for cosmological models, whereas the sign ‘+’ corresponds to \(w_m \approx 4.517 \).

In summary, we have found the model with \(f(\psi) \) given by (41) has both de Sitter and power-law solutions (a new and quite interesting case) if and only if both \(\Lambda \) and \(\rho(t) \) are not equal to zero and \(w_m \) is given by (43).

7. Special cases of power-law solutions

In the previous sections, when looking for power-law solutions, we have ignored some special values of \(n \). For completion of our search, we will consider those values of \(n \) now. Being precise, formula (27) is not valid for some (we call them here special) values of \(n \). We discuss in what follows such special values and look for the corresponding functions \(f(\psi) \).

We first consider solutions with \(H = 1/(2t) \), what corresponds to \(R = 0 \). In this case, the function \(\psi(t) \) is given by (21). Substituting this \(\psi(t) \) and the function \(\Psi \) in the form (17), into (15), we obtain
\[
s(t) = \frac{2}{C_3} \sqrt{t} - \frac{\sqrt{3 \omega_m - 2}}{C_3} \cdot \rho_0 k^2 t^{1 - 3\omega_m/2} - \frac{16}{15 C_3} \Lambda t^{5/2} + D_1,
\] (44)
where \(D_1 \) is an arbitrary constant. Relation (21) can be rewritten as
\[
\sqrt{t} = \frac{C_3}{\psi - C_4}.
\]
Using it, we integrate (44) and obtain
\[
f(\psi) = \frac{C_1}{C_3} \psi^2 - \left[\frac{2 C_3 C_4}{C_3} - D_1 \right] \psi + D_2 + \frac{4 \Lambda C_3^4}{15 \left(\psi - C_4 \right)^2} + \frac{4 \kappa^2 \rho_0}{3 \left[3 \omega_m - 2 \right]} \left[\frac{C_3}{\psi - C_4} \right]^{1 - 3\omega_m}.
\]
The function \(f(\psi) \) is defined up to a constant, so one can set the integration constant \(D_2 = 0 \).

By direct substitution into (8), the following condition on the constants results:
\[
C_2 = C_3 D_1 + 6 C_4.
\] (45)
This relation fixes the arbitrary parameter in expression (17) for the function \(\Psi(t) \). Thus, we obtain the function \(f(\psi) \), which includes four arbitrary parameters \(C_1, C_3, C_4 \) and \(D_1 \). In particular, we have found that if \(f(\psi) \) is an arbitrary quadratic polynomial, then the model has solutions with \(H = 1/(2t) \) if and only if \(\Lambda = 0 \) and \(\rho_m(t) = 0 \).

Let us consider solutions with \(H = 1/(3t) \). Substituting the functions \(\psi(t) \), given by (22), and \(\Psi(t) \) into equation (15), we obtain the following solution:
\[
s(t) = \frac{1}{2 \ln(t) + 3 C_3} \left[\frac{9}{4} \left(3 C_3 - 1 + 2 \ln(t) \right) \Lambda t^2 + \frac{9 \rho_0 k^2 ((w_m - 1)(2 \ln(t) + 3 C_3) + 2)}{3 \omega_m - 5} t^{1 - w_m} - \frac{2 C_3 (2 \ln(t) + 3 C_3)}{t^{7/5}} + D_1 \right].
\] (46)
Note that for \(w_m = 1 \) the term which is proportional to \(\rho_0 \) can be actually considered as part of the integration constant \(D_1 \).
Equation (8) can be rewritten in the following way:

\[3H^2 \Psi = -\frac{1}{2}(\dot{\Psi} - s \dot{\psi}) \dot{\psi} - 3H \dot{\Psi} + \Lambda + \kappa^2 \rho_m; \]

(47)

therefore, the knowledge of the functions \(H(t), \dot{\Psi}(t), s(t), \dot{\psi}(t) \) and \(\rho_m(t) \) is enough in order to check the existence of solutions in the given form. One does not need to use the explicit expression of \(f(\psi) \). This property is useful in the case when the actual form of \(f(\psi) \) is too complicated, for instance, when it is given by quadratures. From (47), we obtain the condition:

\[\ddot{D}_1 = 6C_2. \]

After that, we use the relation between \(t \) and \(\psi \):

\[t = e^{(-3C_1 \pm J)/2}, \quad \text{where} \quad J = \sqrt{9C_3^2 + 12\psi - 12C_4}, \]

(48)

to obtain \(f'(\psi) \). Note that the function \(\psi(t) \) has a minimum, what means that we obtain two inverse functions. Integrating this function over \(\psi \),

\[f(\psi) = -\frac{3\kappa^2 \rho_0}{3m - 5} e^{\pm (m-1)C_1} \left[e^{\mp 3i(0-1)C_1} + Ei\left(1, \pm \frac{1}{2}(m-1)J\right) \right] + C_1 e^{C_1} \left[e^{\mp i} + Ei\left(1, \pm \frac{1}{2}\right)\right] + \frac{3A e^{-3C_1}}{8} \left[e^{2J} + Ei(1, \mp J)\right] + \frac{C_2}{2} \ln(3C_3^2 + 4\psi - 4C_4) + \ddot{D}_2, \]

(49)

where \(\ddot{D}_2 \) is a constant and \(Ei(1, -x) \equiv -Ei(x) \), where the exponential integral, for all non-zero values of \(x \), is defined as follows:

\[Ei(x) = \int_{-\infty}^{x} \frac{e^z}{z} \, dz. \]

For positive values of \(x \), the integral has to be understood in terms of the Cauchy principal value, owing to the singularity of the integrand at zero. This example clearly shows that the method considered here allows us to obtain the functions \(f(\psi) \) even in the case when they are not elementary functions, what is a valuable bonus. We also obtain the power-law solution in explicit form.

8. The reconstruction procedure for a model with several perfect fluids

Till now we have considered models with just one perfect fluid of constant parameter \(w_m \).

In this section, we show that the reconstruction procedure allows us to find models with power-law solutions which include a few perfect fluids. We assume that

\[\rho_m = \sum_{k=1}^{N} \rho_i, \quad P_m = \sum_{k=1}^{N} P_i, \quad P_i = w_i \rho_i, \]

where the \(w_i \) are constant. For \(H = n/t \), the corresponding continuity equations

\[\dot{\rho}_i = -3H(w_i + 1) \rho_i, \]

(50)

have the solutions:

\[\rho_i(t) = \rho_{0i} t^{-3(m(w_i+1)).} \]

(51)

Replacing (51) into equation (13), we obtain the following solution

\[\Psi = C_1 t^{-2n + \frac{n}{n+1} + \frac{\Lambda}{(n+1)(3n+1)}} t^2 - \kappa^2 \sum_{k=1}^{N} \rho_{0i} (w_i - 1) t^{2-(3(1+w_i)n)} \frac{1}{(3nw_i - 1)(n + 3nw_i - 2)} \]

(52)
After the substitution of the function $\Psi(t)$ thus obtained into equation (14), and using (23), we get

\[
 f_0(\psi) = \frac{\Lambda_1^2}{6n(1+n)} e^{(1-3n)\psi/(3n(2n-1))} \\
 - \kappa^2 \sum_{k=1}^{N} \frac{\rho_m(t) 2^{-3n-3nw_i}}{3n(n - 2 + 3nw_i)} e^{(3n(1+w_i)-2)(3n-1)\psi/(6n(2n-1))} \\
 + D_2 + \frac{(n - 1)\rho_0 C_1}{2(2n - 1)} e^{(3n-1)\psi/(3(2n-1))} + D_1 e^{(3n-1)\psi/(3n(2n-1))}. \tag{53}
\]

To prove the existence of power-law solutions, we substitute the functions obtained into equation (8). After this substitution, we obtain that terms which are proportional to Λ_1 and ρ_0 cancel and we reach the condition $D_1 = 0$, which coincides with the corresponding condition for the model with just one perfect fluid (equation (26)).

We prove, in this way, that the reconstruction procedure can be actually extended to the case of matter which includes a number of perfect fluids with constant EoS parameters, as well.

9. Conclusion

In this paper, we have extended the reconstruction procedure for the scalar-tensor model proposed in [17], which is a convenient local formulation of the popular nonlocal model [15]. We have explicitly shown that the models with $f(\psi)$ given by (27) with (29) contain power-law solutions with $H = n/t$. The ones obtained include an arbitrary constant, so that what we actually find is a full one-parameter family of solutions. This result has been obtained for an arbitrary n, except for the values $n = -1$, $n = 1/3$ and $n = 1/2$. For these special values of n, the function $f(\psi)$ has a different form, which has been studied in detail, too.

Another result of our work is that some models with $f(\psi)$ being a simple exponential function have both de Sitter and power-law solutions, but this occurs if and only if either the cosmological constant, Λ, or the matter energy density, $\rho_m(t)$, is equal to zero. At the same time, the model with a single exponential $f(\psi)$, which does not include the cosmological constant nor matter contributions, can have either de Sitter solutions or power-law ones, but never of both kind simultaneously. These results characterize, in a clear fashion, all the different possibilities. On top of these findings we have also demonstrated that there are models with both de Sitter and power-law solutions which include a cosmological constant and also matter terms. The function $f(\psi)$ for this kind of models is explicitly given by the sum of two exponential functions, specified by (41) and (42).

We have restricted our considerations in this paper to the unperturbed universe. It should be mentioned that only a detailed study of matter perturbations in the modified gravity models considered can yield a potential way to distinguish between the models in question and general relativity. This could be observed in present or forthcoming cosmological surveys. Indeed, the perturbation analysis of the model without matter allows us to obtain constrains on the function $f(\psi)$ from the Solar System test [20], whereas a detailed study of matter perturbations and of their growth history is important to obtain constrains from the present and already planned observations. To the best of our knowledge, the growth history index in nonlocal cosmological models has never been studied in these situations. We plan to consider those problems, for the models corresponding to the specific functions $f(\psi)$ here obtained, in future publications.
Acknowledgments

The authors thank Sergei D Odintsov and Ying-li Zhang for very useful discussions. EE was supported in part by MICINN (Spain), grant PR2011-0128 and project FIS2010-15640, by the CPAN Consolider Ingenio Project, and by AGAUR (Generalitat de Catalunya), contract 2009SGR-994, and his research was partly carried out while on leave at the Department of Physics and Astronomy, Dartmouth College, NH, USA. Research of EP and SV is supported in part by the RFBR grant 11-01-00894, EP by the RFBR grant 12-02-31109, and SV by the Russian Ministry of Education and Science under grant NSh-3920.2012.2, and by contract CPAN10-PD12 (ICE, Barcelona, Spain).

References

[1] Perlmutter S et al (SNCP Collaboration) 1999 Measurements of omega and lambda from 42 high-redshift supernovae Astrophys. J. 517 565–86 (arXiv:astro-ph/981213)
[2] Riess A G et al (Supernova Search Team Collaboration) 1998 Observational evidence from supernovae for an accelerating Universe and a cosmological constant Astron. J. 116 1009–38 (arXiv:astro-ph/9805201)
Riess A G et al (Supernova Search Team Collaboration) 2004 Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution Astrophys. J. 607 665–87 (arXiv:astro-ph/0402512)
Astier P. et al 2006 The supernova legacy survey: measurement of Ω_M, Ω_L, and w from the first year data set Astron. Astrophys. 447 31–48 (arXiv:astro-ph/0510447)
[3] Spergel D N et al (WMAP Collaboration) 2003 First year Wilkinson microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters Astrophys. J. Suppl. 148 175–94 (arXiv:astro-ph/0302209)
Spergel D N et al (WMAP Collaboration) 2007 Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology Astrophys. J. Suppl. 170 377 (arXiv:astro-ph/0603449)
Komatsu E et al (WMAP Collaboration) 2009 Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation Astrophys. J. Suppl. 180 330–76 (arXiv:0803.0547)
Komatsu E et al (WMAP Collaboration) 2011 Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation Astrophys. J. Suppl. 192 18 (arXiv:1001.4538)
[4] Tegmark M et al (SDSS Collaboration) 2004 Cosmological parameters from SDSS and WMAP Phys. Rev. D 69 103501 (arXiv:astro-ph/0310723)
Tegmark M et al (SDSS collaboration) 2004 The 3D power spectrum of galaxies from the SDSS Astrophys. J. 606 702–40 (arXiv:astro-ph/0310725)
[5] Seljak U et al (SDSS Collaboration) 2005 Cosmological parameter analysis including SDSS Ly-alpha forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy Phys. Rev. D 71 103515 (arXiv:astro-ph/0407372)
Eisenstein D J et al (SDSS Collaboration) 2005 Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies Astrophys. J. 633 560–74 (arXiv:astro-ph/0501171)
[6] Jain B and Taylor A 2003 Cross-correlation tomography: measuring dark energy evolution with weak lensing Phys. Rev. Lett. 91 141302 (arXiv:astro-ph/0306046)
[7] Padmanabhan T 2003 Cosmological constant—the weight of the vacuum Phys. Rep. 380 235–320 (arXiv:hep-th/0212290)
Frampton P 2004 Dark energy—a pedagogic review arXiv:astro-ph/0409166
Copeland E J, Sami M and Tsujikawa S 2006 Dynamics of dark energy Int. J. Mod. Phys. D 15 1753–936 (arXiv:hep-th/0603057)
Dolgov A D 2012 Cosmology and elementary particles, or celestial mysteries Phys. Part. Nucl. 43 273–93
Bamba K, Capozziello S, Nojiri S and Odintsov S D 2012 Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests Astrophys. Space Sci. 342 155–228 (arXiv:1205.3421)
[8] Nojiri S and Odintsov S D 2007 Introduction to modified gravity and gravitational alternative for dark energy Int. J. Geom. Methods Mod. Phys. 4 115–46 (arXiv:hep-th/0601213)
[9] Nojiri S and Odintsov S D 2011 Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models Phys. Rep. 505 59–144 (arXiv:1011.0544)
[10] Capozziello S and Faraoni V 2011 Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics (Fundamental Theories of Physics vol 170) (New York: Springer)
[11] Elizalde E, Nojiri S and Odintsov S D 2004 Late-time cosmology in (phantom) scalar-tensor theory: dark energy and the cosmic speed-up Phys. Rev. D 70 043539 (arXiv:hep-th/0405034)

Elizalde E, Nojiri S, Odintsov S D and Wang P 2005 Dark energy: vacuum fluctuations, the effective phantom phase, and holography Phys. Rev. D 71 103504 (arXiv:hep-th/0502082)

Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2005 One-loop $f(R)$ gravity in de Sitter universe J. Cosmol. Astropart. Phys. JCAP02(2005)010 (arXiv:hep-th/0501096)

Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2006 Dark energy in modified Gauss–Bonnet gravity: late-time acceleration and the hierarchy problem Phys. Rev. D 73 084007 (arXiv:hep-th/0601008)

Cognola G, Elizalde E, Nojiri S, Odintsov S D, Sebastiani L and Zerbini S 2008 A class of viable modified $f(R)$ gravities describing inflation and the onset of accelerated expansion Phys. Rev. D 77 046009 (arXiv:0712.4017)

[12] de Felice A and Tsujikawa S 2010 $f(R)$ theories Living Rev. Rel. 13 3 (arXiv:1002.4928)

[13] Stelle K S 1977 Renormalization of higher derivative quantum gravity Phys. Rev. D 16 953–69

[14] Buchbinder I L, Odintsov S D and Shapiro I L 1992 Effective Action in Quantum Gravity (Bristol: IOP)

[15] Deser S and Woodard R P 2007 Nonlocal cosmology Phys. Rev. 15 034036 (arXiv:0706.2151)

[16] Arkani-Hamed N, Dimopoulos S, Dvali G and Gabadadze G 2002 Non-local modification of gravity and the cosmological constant problem arXiv:hep-th/0209227

Espriu D, Multamäki T and Vagenas E C 2005 Cosmological significance of one-loop effective gravity Phys. Lett. B 628 197–205 (arXiv:gr-qc/0503033)

Biwas T, Mazumdar A and Siegel W 2006 Bouncing universes in string-inspired gravity J. Cosmol. Astropart. Phys. JCAP03(2006)009 (arXiv:hep-th/0508194)

Calcagni G, Montobbio M and Nardelli G 2008 Localization of nonlocal theories Phys. Lett. B 662 285–9 (arXiv:0712.2337)

Capozziello S, Elizalde E, Nojiri S and Odintsov S D 2009 Accelerating cosmologies from non-local higher-derivative gravity Phys. Lett. B 671 193–8 (arXiv:0809.1535)

Nesseris S and Mazumdar A 2009 Newton’s constant in $f(R)$, $R_{\mu\nu}R^{\mu\nu}$, $\Box R$ theories of gravity and constraints from BBN Phys. Rev. D 79 104006 (arXiv:0902.1185)

Hehl F W and Mashhoon B 2009 A formal framework for a nonlocal generalization of Einstein’s theory of gravitation Phys. Rev. D 79 064028 (arXiv:0902.0560)

Calcagni G and Nardelli G 2010 Cosmological rolling solutions of nonlocal theories Int. J. Mod. Phys. D 19 329–38 (arXiv:0904.4245)

Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2009 One-loop effective action for non-local modified Gauss–Bonnet gravity in de Sitter space Eur. Phys. J. C 64 483–94 (arXiv:0905.0543)

Calcagni G and Nardelli G 2010 Nonlocal gravity and the diffusion equation Phys. Rev. D 82 123518 (arXiv:1004.5144)

Biwas T, Kovisto T and Mazumdar A 2010 Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity J. Cosmol. Astropart. Phys. JCAP11(2010)008 (arXiv:1005.0590)

Barvinsky A O 2012 Serendipitous discoveries in nonlocal gravity theories Phys. Rev. D 85 104018 (arXiv:1112.4340)

Koshelev A S and Vernov S Y 2012 On bouncing solutions in non-local gravity Phys. Part. Nucl. 43 666–8 (arXiv:1202.1289)

Biwas T, Koshelev A S, Mazumdar A and Vernov S Y 2012 Stable bounce and inflation in non-local higher derivative cosmology J. Cosmol. Astropart. Phys. JCAP08(2012)024 (arXiv:1206.6374)

[17] Nojiri S and Odintsov S D 2008 Modified non-local-f(R) gravity as the key for the inflation and dark energy Phys. Lett. B 659 821–6 (arXiv:0708.0924)

[18] Jhingan S, Nojiri S, Odintsov S D, Sami M, Thongkool I and Zerbini S 2008 Phantom and non-phantom dark energy: the cosmological relevance of non-locally corrected gravity Phys. Lett. B 663 424–8 (arXiv:0803.2613)

Kovisto T S 2008 Dynamics of nonlocal cosmology Phys. Rev. D 77 123513 (arXiv:0803.3399)

Kovisto T S 2008 Newtonian limit of nonlocal cosmology Phys. Rev. D 78 123505 (arXiv:0807.3778)

Defayet C and Woodard R P 2009 Reconstructing the distortion function for nonlocal cosmology J. Cosmol. Astropart. Phys. JCAP08(2009)023 (arXiv:0904.0961)

[20] Koshelev N A 2009 Comments on scalar-tensor representation of nonlocally corrected gravity Grav. Cosmol. 15 220–3 (arXiv:0809.4927)

Bronnikov K A and Elizalde E 2010 Spherical systems in models of nonlocally corrected gravity Phys. Rev. D 81 044032 (arXiv:0910.3929)

López-Revelles A J and Elizalde E 2012 Universal procedure to cure future singularities of dark energy models Gen. Rel. Grav. 44 751–70 (arXiv:1104.1123)
Kluson J 2011 Non-local gravity from hamiltonian point of view J. High Energy Phys. JHEP09(2011)001 (arXiv:1105.6056)

[23] Nojiri S, Odintsov S D, Sasaki M and Zhang Y 2011 Screening of cosmological constant in non-local gravity Phys. Lett. B 696 278–82 (arXiv:1010.5375)

[24] Bamba K, Nojiri S, Odintsov S D and Sasaki M 2012 Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities Gen. Rel. Grav. 44 1321–56 (arXiv:1104.2692)

[25] Zhang Y and Sasaki M 2012 Screening of cosmological constant in non-local cosmology Phys. Lett. B 696 278–82 (arXiv:1010.5375)

[26] Elizalde E, Pozdeeva E O and Vernov S Y 2012 De Sitter universe in nonlocal gravity Phys. Rev. D 85 044002 (arXiv:1110.5806)

[27] Elizalde E, Pozdeeva E O and Vernov S Y 2012 Stability of de Sitter solutions in non-local cosmological models Proc. 20th Int. Workshop on High Energy Physics and Quantum Field Theory PoS (QFTHEP2011)038 (arXiv:1202.0178)

[28] Vernov S Y 2012 Nonlocal gravitational models and exact solutions Phys. Part. Nucl. 43 694–6 (arXiv:1202.1172)

[29] Aref’eva I Y 2006 Nonlocal string tachyon as a model for cosmological dark energy p-Adic Mathematical Physics (AIP Conference Proceedings vol 826) ed A Y Khrennikov, Z Rakich and I V V olovich (Melville, NY: AIP) pp 301–11 (arXiv:astro-ph/0410443)

Calcagni G 2006 Cosmological tachyon from cubic string field theory J. High Energy Phys. JHEP05(2006)012 (arXiv:hep-th/0512259)

Koshelev A S 2007 Non-local SFT tachyon and cosmology J. High Energy Phys. JHEP04(2007)029 (arXiv:hep-th/0701103)

Aref’eva I Y, Joukovskaya L V and Vernov S Y 2007 Bouncing and accelerating solutions in nonlocal stringy models J. High Energy Phys. JHEP07(2007)087 (arXiv:hep-th/0701184)

Aref’eva I Y and Volovich I V 2007 Quantization of the Riemann zeta-function and cosmology Int. J. Geom. Methods Mod. Phys. 4 881–95 (arXiv:hep-th/0701284)

Lidsey J E 2007 Stretching the inflaton potential with kinetic energy Phys. Rev. D 76 043511 (arXiv:hep-th/0703007)

Calcagni G, Montobbio M and Nardelli G 2007 A route to nonlocal cosmology Phys. Rev. D 76 126001 (arXiv:0705.3043)

Barnaby N, Biswas T and Cline J M 2007 P-adic inflation J. High Energy Phys. JHEP04(2007)056 (arXiv:hep-th/0612230)

Barnaby N and Cline J M 2007 Large nonGaussianity from nonlocal inflation J. Cosmol. Astropart. Phys. JCAP07(2007)017 (arXiv:0704.3426)

Aref’eva I Y, Joukovskaya L V and Vernov S Y 2008 Dynamics in nonlocal linear models in the Friedmann–Robertson–Walker metric J. Phys. A: Math. Theor. 41 304003 (arXiv:0711.1364)

Calcagni G, Montobbio M and Nardelli G 2008 Localization of nonlocal theories Phys. Lett. B 662 285–9 (arXiv:0712.2237)

Mulryne D J and Nunes N J 2008 Diffusing non-local inflation: solving the field equations as an initial value problem Phys. Rev. D 78 063519 (arXiv:0805.0448)

Lidsey J E 2008 Non-local inflation around a local maximum Int. J. Mod. Phys. D 17 577–82

Calcagni G and Nardelli G 2010 Cosmological rolling solutions of nonlocal theories Int. J. Mod. Phys. D 19 329–38 (arXiv:0904.4245)

Vernov S Y 2010 Localization of nonlocal cosmological models with quadratic potentials in the case of double roots Class. Quantum Grav. 27 035006 (arXiv:0907.1545)

Joukovskaya L V 2007 Dynamics in nonlocal cosmological models derived from string field theory Phys. Rev. D 76 105007 (arXiv:0707.1545)

Barnaby N and Kamran N 2008 Dynamics with infinitely many derivatives: the initial value problem J. High Energy Phys. JHEP02(2008)008 (arXiv:0709.3966)

Calcagni G and Nardelli G 2010 Cosmological rolling solutions of nonlocal theories Int. J. Mod. Phys. D 19 329–38 (arXiv:0904.4245)

Vernov S Y 2010 Localization of nonlocal cosmological models with quadratic potentials in the case of double roots Class. Quantum Grav. 27 035006 (arXiv:0907.1545)

Koshelev A S and Vernov S Y 2011 Analysis of scalar perturbations in cosmological models with a non-local scalar field Class. Quantum Grav. 28 085019 (arXiv:1009.0746)

Barnaby N 2011 A new formulation of the initial value problem for nonlocal theories Nucl. Phys. B 845 1–29 (arXiv:1005.2945)

[30] Saini T D, Raychaudhury S, Saini V and Starobinsky A A 2000 Reconstructing the cosmic equation of state from supernova distances Phys. Rev. Lett. 85 1162–5 (arXiv:astro-ph/9910231)
