Cardiovascular Computed Tomography and Magnetic Resonance: History and Growing Impact in Brazil and in the World

Marcelo Souto Nacif1,2 and Carlos Eduardo Rochitte1,4,5

Hospital Universitário Antônio Pedro - HUAP - Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular1; Pós-graduação em Ciências Cardiovasculares - Universidade Federal Fluminense - UFF2, Niterói, RJ; Instituto do Coração - InCor - Setor de Ressonância Magnética e Tomografia Computadorizada Cardiovascular1, São Paulo, SP; Hospital do Coração – HCOR - Associação do Sanatório Sírio3, São Paulo, SP; Hospital Pro-cardíaco4 - Rio de Janeiro, RJ - Brazil

Growth in Brazil and in the World

Cardiovascular computed tomography and magnetic resonance are an important topic within the area of cardiovascular imaging in Brazil and in the world. In the Arquivos Brasileiros de Cardiologia this is not different, and despite the increased focus in clinical study, these two topics have grown in impact and scientific publications in recent years.

It is notorious the expansion of the national technological park with entrance of countless devices capable of performing advanced studies using cardiovascular tomography and magnetic resonance with increasing impetus for opening more centers specialized in these methods.

When we perform a systematic review using EndNote as a search tool and select only PubMed as a database with the words "magnetic resonance" and "computed tomography", in the Arquivos Brasileiros de Cardiologia alone we observe a total of 182 studies (Figure 1).

In parallel, when we perform a search on PubMed using the word "cardiac" and the MeSH (Medical Subject Headings) terms "computed tomography" and "magnetic resonance imaging", we find a sum of publications close to 45 thousand articles (44,711 articles) (Figure 2).

These graphics turn out to be merely illustrative, but are without doubt markers of the impact of these methods in Brazil (Figure 1) and in the world (Figure 2). It is easy to identify that after the year 2000 and in the last decade there has been a large insertion of these methods in the clinical scenario and we believe that this reflects also in the clinical scenario.

History in the Arquivos Brasileiros de Cardiologia

The first studies published in the Arquivos Brasileiros de Cardiologia were basically clinical studies and case reports in which the methods were able to contribute to a better diagnosis. The first original articles emerged with the use of magnetic resonance imaging in the study by Kalil Filho et al. in the year of 1995. At that same year, guided by Pinto et al., emerged the first Brazilian consensus for the use of cardiac magnetic resonance imaging in clinical cardiology. Computed tomography had its first original study published in 1997, by Kalil et al. One of the pioneering studies in the path of the evaluation of the current calcium score was performed by Feldman et al.

Relationship with International Societies

We currently have two international societies dedicated specifically to these methods. The SCMR (Society for Cardiovascular Magnetic Resonance) was the first society to be founded and by the year 2000, it was already organizing the process of credentialing for those dedicated to cardiovascular magnetic resonance. The SCCT (Society of Cardiovascular Computed Tomography) was founded shortly after, following the advances of the method, and in 2009, made available its guidelines for better practice of the method. In Brazil, the Arquivos Brasileiros de Cardiologia had a fundamental role in the publication of our first guideline, which was updated this year (2014) and is currently undergoing editing for future publication.

Scientific and Educational Organization in Brazil

In the early days of the organization in Brazil, a study group of cardiovascular magnetic resonance and computed tomography called GERT was formed and played a key role in the diffusion of knowledge throughout Brazil. A group of physicians dedicated to cardiovascular computed tomography and magnetic resonance created in Brazil the National Meeting of Cardiac Radiology (Encontro Nacional de Radiologia Cardíaca, ENRC), which will be on its eighth consecutive year in 2015. This group is composed of radiologists and cardiologists supported by SCMR and SCCT, along with national societies, to enhance the methods in Brazil and discuss the experiences in national territory. Similarly, SBC’s Department of Cardiovascular Imaging (DIC), bringing together specialists in nuclear medicine, echocardiography, vascular ultrasound, and cardiovascular magnetic resonance and computed tomography, gathers annually in a meeting with almost 2 thousand participants and maintains the role of diffusing knowledge in the areas of cardiovascular magnetic resonance and computed tomography started with GERT.

We still have only a few training centers of experts in the field, mostly in the Rio-São Paulo hub, but in the last 5 years

Keywords

Tomography, X-Ray Computed/history; Tomography, X-Ray Computed/trends; Diagnostic Imaging/trends; Diagnostic Imaging/history; Magnetic Resonance Spectroscopy/history.

Mailing Address: Marcelo Souto Nacif • Av. São João, 2400 – 232b. Jd Colinas, Postal Code 12242-000, São José dos Campos, SP - Brazil
E-mail – msnacif@gmail.com

DOI: 10.5935/abc.20140186
an increasing number of private institutions and university hospitals are strengthening teaching and research in the area. Many who are currently in charge of the specialized centers in Brazil sought their expertise in international centers and we believe that in the near future this reality will no longer be true, since we will have large groups throughout the country.

Worldwide Impact of the Latest Publications by Brazilians

The increasing group of people involved in cardiovascular imaging in Brazil and in the world culminated in an explosion of publications dedicated to standardization and proper use of the method over the last years14-31.

Some pioneering work of great international impact has been elaborated by Brazilians and we managed, through this editorial, to draw attention to each one in their area.

- Computed Tomography

Assessment of the coronaries – The study conducted by Miller et al32 had one of the highest scientific impact and collaboration of three Brazilians, one of which was the principal investigator, and also had the largest number of patients included in the study by a Brazilian center. Published in The New England Journal of Medicine, the authors concluded that computed tomography can identify the presence and severity of coronary artery disease with good accuracy, but when positive, could not replace conventional coronary angiography. Recently, tomography showed its value in patients with acute coronary syndrome33.

Assessment of myocardial perfusion – The studies by Cury et al34, first published in Radiology, brought a new proposal for the use of computed tomography in the evaluation of myocardial ischemia. With simple protocols and easy clinical applicability, it managed to demonstrate that myocardial perfusion on
computed tomography has good correlation with SPECT and with conventional coronary angiography in identifying stenosis of native vessels or with stent. The first multicenter study validating this new technique to detect myocardial ischemia was recently published by Rochitte et al. This study reported high accuracy for detecting meaningful stenoses associated with perfusion defects in the same territory evaluated by tomography when compared with the combination of invasive catheterization with SPECT scintigraphy, and with a lower cost of radiation dose. Thus, this new method is able to diagnose hemodynamically meaningful stenoses or those associate with a reduction of myocardial blood flow.

Evaluation of volumes and function – The quantification of ventricular volumes and function has been validated against other methods of great clinical applicability, but recently the use of these measurements demonstrated a great potential for detection of cardiovascular risk and mortality.

Evaluation of focal fibrosis – In studies by Shiozaki et al., we can observe that, in addition to the ability to detect focal fibrosis, tomography can be used to predict ventricular arrhythmias. This field is of great importance because some patients are unable to undergo magnetic resonance and can benefit with this new technique.

Evaluation of interstitial fibrosis – In quantifying interstitial fibrosis by computed tomography, the studies by Nacif et al. were pioneers and open a potential for evaluating subclinical myocardial damage not previously possible in the context of cardiomyopathies.

Epidemiological impact – The studies by Bittencourt et al. demonstrated the prognostic potential of computed tomography in symptomatic patients with nonobstructive and obstructive coronary disease. However, Prazeres et al. were able to summarize in an unique way the potential of the technique for use in the emergency room, with potential of cost reduction for low-probability patients.

- Magnetic Resonance

Assessment of the coronaries – Evaluation of the coronary arteries by magnetic resonance is currently limited to the characterization of the origin or evaluation of the proximal thirds of the main vessels. Recently, new techniques and use of specific vascular contrast created a new horizon for implementation of this method which is free of ionizing radiation. Nacif et al. demonstrated that the intravenous contrast medium Gadofosveset trisodium had a slightly better performance than the contrast media routinely used.

Assessment of myocardial perfusion – Since the initial studies on the characterization of microvascular obstruction by Rochitte et al. in 1998, until the clinical applicability of the evaluation of myocardial ischemia by Curry et al. in 2006, and the use of multimodal (combined) resonance techniques for characterization of coronary artery disease by de Mello et al. in 2012, we are able to observe the current maturity of the method in the country.

Evaluation of volumes and function – After years using indexing and morphological, volumetric and functional values of international studies, we can say that in a pioneer way, Macedo et al. were able to demonstrate in a Brazilian population different morphological and volumetric standards for men and women. Nacif et al. demonstrated that there are several ways to quantify atrial volume and that all correlate with one another.

Evaluation of iron deposits – The studies by Fernandes et al. are of great importance for standardization and evaluation of patients with hepatic and myocardial iron storage.

Evaluation of focal fibrosis – In this topic of publications, there are countless contributions by Brazilians in the impact of the method worldwide, but without a doubt one of the most discussed was the study by Azevedo et al. who were able to demonstrate the importance of detection and quantification of delayed myocardial enhancement in patients who underwent aortic valve replacement with great implication in left ventricular functional improvement and evaluation of mortality.

Evaluation of interstitial fibrosis – The studies by Mongeon et al., Coelho-Filho et al., Nacif et al., Sibley et al. and Liu et al. were pioneers in the evaluation of interstitial fibrosis by techniques of T1 map and quantification of extracellular volume.

Epidemiological impact – Without a doubt, magnetic resonance is one of the best methods for quantification of myocardial fibrosis. When present, myocardial fibrosis is associated with increased mortality and worse prognosis. In Brazil, in addition to the diseases commonly evaluated in the world, we have Chagas disease that was very well studied by Rochitte et al., and Liu et al. Now, one of the studies with a major impact on clinical decision using the method was in the risk reclassification using stressor agents.

Impact of the Latest Publications in the Arquivos Brasileiros de Cardiologia

The Arquivos Brasileiros de Cardiologia function as a national thermometer and a main scientific channel reflecting this explosion of publications. The article by Duarte, published in 2010, clearly demonstrates the growth of computed tomography and its impact on the detection of coronary artery disease. Over the past decade, we observed an increasing number of review articles and original articles, which reinforces the impact of tomography and magnetic resonance in current cardiovascular imaging.

Finally, it is not possible to include all studies by Brazilian authors due to the increasing number of publications in the area, but we are sure that we are entering a new era of cardiovascular imaging. The great development of technology applied to medicine causes computed tomography and magnetic resonance to grow increasingly, changing day-to-day the impact on clinical practice.
References

1. Stolf NA, Moreira FA, Beyruti R. [Myxoma of the left atrium: the value of computerized tomography in its diagnosis]. Arq Bras Cardiol. 1982;38(2):125-9.

2. de Medeiros Sobrinho JH, Luiz C, Santos DL, da Silva MV, Fontes VF. [Radiological archway sign in the scimitar syndrome and its importance in surgery. Report of 3 cases]. Arq Bras Cardiol. 1983;41(2):125-30.

3. Brito JC, Ribeiro AC, Carvalho HG, Tedue E, Nery AC, Eloy R, Ribeiro NA. [The scimitar syndrome. Report of 7 cases]. Arq Bras Cardiol. 1984;42(2):139-43.

4. Araujo JA, Torres JM, de Souza Neto JD, Barros RB, da Rocha FA, de Almeida AP. [Difficulties of angiography in the diagnosis of acute aortic dissection. A case report]. Arq Bras Cardiol. 1987;49(1):51-5.

5. Kalil Filho R, Chacra AP, de Albuquerque CP, Soares PR, Antelmi I, Rosenberg L, et al. [Significance of the nuclear magnetic resonance in the detection of coronary artery patency after thrombolysis]. Arq Bras Cardiol. 1995;64(3):221-4.

6. Kalil R, Bocchi EA, Ferreira BM, de Lourdes Higuchi M, Lopes NH, Magalhaes AC, et al. [Magnetic resonance imaging in chronic Chagas cardiopathy. Correlation with endomyocardial biopsy findings]. Arq Bras Cardiol. 1995;65(5):413-6.

7. Pinto IM, da Luz PL, Magalhaes HM, Pavanello R, Abizaid A, Kambara AM, et al. [Consensus SOCESP-SBC on magnetic resonance imaging in cardiology]. Arq Bras Cardiol. 1995;65(5):451-7.

8. Kalil RA, Feldman CJ, Ludwig FW, da Silva AD, Prates PR, Sant'Anna JR, et al. [Late evaluation with spiral computed tomography of smooth boxine pericardium grafts]. Arq Bras Cardiol. 1997;69(2):111-5.

9. Feldman C, Vitola D, Schiavo N. Detection of coronary artery disease based on the calcification index obtained by helical computed tomography. Arq Bras Cardiol. 2000;75(6):471-80.

10. Guidelines for credentialing in cardiovascular magnetic resonance (CMR). Society for Cardiovascular Magnetic Resonance (SCMR) Clinical Practice Committee. J Cardiovasc Magn Reson. 2000;2(3):233-4.

11. Abbara S, Arab-Zadeh A, Callister TQ, Desai MM, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190-204.

12. Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ, et al. Society of Cardiovascular Computed Tomography. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3(2):122-36.

13. Sociedade Brasileira de Cardiologia, Departamento de Cardiologia Clínica. Grupo de Estudos de Ressonância e Tomografia Cardiovascular (GERT). [Guideline of Sociedade Brasileira de Cardiologia for Resonance and cardiovascular tomography, Executive Summary]. Arq Bras Cardiol. 2006;87 Suppl 3:S1-12.

14. Hendel RC, Patel MR, Kramer CM, Poon M, Hendel RC, Carr JC, et al; American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group; American College of Radiology; Society of Cardiovascular Computed Tomography; Society for Cardiovascular Magnetic Resonance; American Society of Nuclear Cardiology; North American Society for Imaging; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology. ACCF/ACR/SSC/SCMR/ASC/NASCI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475-97.

15. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al; American College of Cardiology Foundation Appropriateness Criteria Task Force; Society of Cardiovascular Computed Tomography; American College of Radiology; American Heart Association; American Society of Echocardiography; American Society of Nuclear Cardiology; North American Society for Cardiovascular Imaging; Society for Cardiovascular Angiography and Interventions; Society for Cardiovascular Magnetic Resonance. ACCF/SCT/ACR/AHA/ASNC/NASCI/SCSMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography: A Report of the American College of Cardiology Foundation Appropriation Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology; the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology; the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122(13):e525-55.

16. Patel MR, White RD, Abbara S, Bluemke DA, Herfkens RJ, Picard M, et al; American College of Radiology Appropriateness Criteria Committee; American College of Cardiology Foundation Appropriation Use Criteria Task Force. 2013 ACCF/ACR/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriation Use Criteria Task Force. J Am Coll Cardiol. 2013;61(21):2207-31.

17. Russo AM, Stainback RF, Bailey SR, Epstein AE, Heidemann RA, Jessup M, et al; ACCF/AHA/ACR/HRS/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. Heart Rhythm. 2013;10(4):e11-58.

18. White RD, Patel MR, Abbara S, Bluemke DA, Herfkens RJ, Picard M, et al; American College of Radiology; American College of Cardiology Foundation. 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: an executive summary: a joint report of the ACR Appropriateness Criteria RI Committee and the ACCF Appropriate Use Criteria Task Force. J Am Coll Radiol. 2013;10(7):493-500.

19. Mark DB, Anderson JL, Brinker JA, Brophy JA, Casey DE Jr, Cross RR, et al; ACC/AHA/ASNC/HRSA/SCAI/SCCT/SCMR/SMN 2014 health policy statement on use of noninvasive cardiovascular imaging: a report of the American College of Cardiology Clinical Quality Committee. J Am Coll Cardiol. 2014;63(7):698-721.

20. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al; American College of Cardiology Foundation Appropriation Use Criteria Task Force. ACCF/AHA/ASNC/HRS/SCAI/SCCT/SCMR 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriation Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(3):430-406.

21. Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, et al; American College of Cardiology Foundation Task Force on Expert Consensus Documents. ACCF/AHA/ASNC/HRS/SCAI/SCCT/SCSMR 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Catheter Cardiovasc Interv. 2010;76(2):E1-42.

22. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al; Society of Cardiovascular Computed Tomography. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198-224.
