Variations in the dynamic response of structures founded on piles induced by obliquely incident SV waves

Cristina Medina | Guillermo M. Álamo | Juan J. Aznárez | Luis A. Padrón | Orlando Maeso

Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

Correspondence
Cristina Medina, Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI), Universidad de Las Palmas de Gran Canaria, Edificio Central de Parque Científico y Tecnológico del Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Spain.
Email: cristina.medina@ulpgc.es

Funding information
Ministerio de Educación, Cultura y Deporte of Spain, Grant/Award Number: FPU14/06115; Subdirección General de Proyectos de Investigación of the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, the Agencia Estatal de Investigación (AEI) of Spain and FEDER, Grant/Award Number: BIA2014-57640-R and BIA2017-88770-R

Summary
Although the seismic actions generally consist of a combination of waves, which propagates with an angle of incidence not necessarily vertical, the common practice when analyzing the dynamic behavior of pile groups is based on the assumption of vertically incident wave fields. The aim of this paper is to analyze how the angle of incidence of SV waves affects the dynamic response of pile foundations and piled structures. A three-dimensional boundary element-finite element coupling formulation is used to compute impedances and kinematic interaction factors corresponding to several configurations of vertical pile groups embedded in an isotropic homogeneous linear viscoelastic half-space. These results, which are provided in ready-to-use dimensionless graphs, are used to determine the effective dynamic properties of an equivalent single-degree-of-freedom oscillator that reproduces, within the range where the peak response occurs, the response of slender and nonslender superstructures through a procedure based on a substructuring model. Results are expressed in terms of effective flexible-base period and damping as well as maximum shear force at the base of the structure. The relevance and main trends observed in the influence of the wavefront angle of incidence on the dynamic behavior of the superstructure are inferred from the presented results. It is found that effective damping is significantly affected by the variations of the wave angle of incidence. Furthermore, it comes out that the vertical incidence is not always the worst-case scenario.

KEYWORDS
angle of incidence, effective damping, kinematic interaction factors, pile foundations, seismic wave propagation, soil-structure interaction

1 | INTRODUCTION

When studying the seismic behavior of foundations and structures, the system is usually assumed to be subjected to a vertically-incident wave field. Indeed, the seismic actions generally consist of a combination of waves, which impinges on the ground surface with an angle of incidence not necessarily vertical. That assumption is made in current practice in
the light of the usual uncertainty concerning this parameter and often assuming that this hypothesis corresponds to the worst-case scenario.

The dynamic response of deep foundations under nonvertical excitation still demands further investigation. A pioneer work by Mamoon and Ahmad\(^1\) analyzed the effect of obliquely incident SH, SV, and P waves on the seismic response of single piles expressed in terms of kinematic interaction factors. After that, other works (eg, Mamoon and Banerjee,\(^2\) Makris and Badoni,\(^3\) and Kaynia and Novak\(^4\)) addressed this problem for different configurations of pile groups subjected to obliquely incident body waves or Rayleigh waves. Subsequently, Zarzalejos et al\(^5\) analyzed how the type of seismic body wave and its angle of incidence affect bending moments at cap level of single piles and 3 \times 3 pile groups. The relevant influence that the wave angle of incidence exerts on the dynamic response of pile foundations became apparent from the results of these investigations. However, the influence of this parameter on the dynamic response of the superstructure has not received enough attention. Todorovska and Trifunac\(^6,7\) studied the dynamic behaviour of structures supported by embedded foundations and subjected to plane P and SV waves with several angles of incidence using a 2-D model that considers a rigid foundation with semicircular shape. Moreover, Avilés et al\(^8\) analyzed the influence of kinematic interaction effects on the relevant dynamic properties of structures supported by embedded and shallow foundations and subjected to obliquely incident P, SV, and Rayleigh waves. Also, for structures supported by embedded foundations, recently, Fu et al\(^9\) presented a comparative analysis for the estimation of the frequency and damping of a soil-structure interaction system using formulations based on the classical modal analysis including wave passage effects and solving the system eigenvalue problem.

Regarding pile-supported structures, Medina et al\(^10\) analyzed the dynamic response of pile-supported buildings subjected to shear waves but only vertical incidence was considered in that work. Álamo et al\(^11\) employed a boundary element method-finite element method (BEM-FEM) model\(^12,13\) to obtain results for the dynamic response, in terms of maximum shear forces at the base of the structures, of a group of three structures supported on 3 \times 3 pile groups and subjected to planar oblique shear waves. However, to the extent of the authors’ knowledge, there are no parametric studies in the scientific literature examining the effects of the angle of incidence of seismic waves on the dynamic behavior of structures supported on pile foundations consisting of a variable number of piles with different embedment and spacing between them.

In order to contribute to filling this gap, this paper addresses an analysis of the dynamic response of slender and non-slender structures supported on pile groups subjected to SV obliquely incident waves. The harmonic response of the soil-foundation system is obtained by making use of impedance functions and kinematic interaction factors computed through the BEM-FEM model mentioned above.\(^12,13\) Results corresponding to several configurations of vertical pile groups embedded in a homogeneous and viscoelastic half-space are provided in ready-to-use dimensionless graphs. These results allow not only analysing how the angle of incidence of the seismic waves affects the dynamic response of pile foundations, but also that of the superstructures through a procedure based on a substructuring model in the frequency domain that takes into account both kinematic and inertial interaction effects.\(^15\) The variables employed to address this study are the effective period and damping of an equivalent single-degree-of-freedom (SDOF) oscillator able to reproduce the response of the system under investigation within the range where the peak response occurs. This equivalence between both systems is established in terms of the ratio of the shear force at the base of the structure to the effective earthquake force \(Q\).\(^16\) From an engineering point of view, this allows the estimation of the maximum response of the soil-structure system directly from the knowledge of the dynamics characteristics of this equivalent SDOF oscillator and an assumed incidence for the impinging wave field.

2 PROBLEM DEFINITION

The dynamic response of one mode of vibration of a piled structure is studied in this paper through a three-degree-of-freedom (3DOF) system, as the one depicted in Figure 1B. This system is defined by the foundation horizontal displacement \(u_s\) and rocking \(\varphi_r\), together with the structural horizontal deflection \(u\). In Figure 1C, displacements are written in terms of relative motions, \(u^c_s = u_s - u_g\) and \(\varphi^c_r = \varphi_r - \varphi_g\), where \(u_g\) and \(\varphi_g\) represent, respectively, the horizontal and rocking motions at the pile cap.

The structure is considered to be supported on square regular groups of vertical piles embedded in a homogeneous, viscoelastic and isotropic half-space. Pile heads are constrained by a rigid square pile cap \((2b x 2b)\), which is assumed to be free of contact with the soil and whose mass \(m_o\), moment of inertia \(I_o\), and thickness are supposed to be negligible. All configurations of pile groups under study are symmetrical with respect to planes \(xz\) and \(yz\). Each one of them consists of...
(A) Top view of the pile cap (3 × 3 pile group configuration); (B) problem definition; (C) substructure model of a one-storey structure; and (D) equivalent single-degree-of-freedom oscillator.

FIGURE 1

FIGURE 2 Geometric configuration of 2 × 2, 3 × 3, and 4 × 4 pile groups considered in this study.

\[k_{ij}: \text{soil stiffnesses} \]
\[c_{ij}: \text{soil damping coefficients} \]

\[I_u = \frac{u}{u_{ref}} \]
\[I_v = \frac{v}{v_{ref}} \]

kinematic interaction factors
a certain number of piles having all identical material properties as well as identical geometrical properties defined by length L and sectional diameter d. The center-to-center spacing between adjacent piles is denoted by s (see Figure 1A).

The superstructure consists of a mass m situated at the height h of the resultant of the inertia forces for the mode of vibration under study and supported by massless and inextensible columns. The vibrating mass is assumed to be distributed over a square area and its moment of inertia is denoted by I. The structural dynamic behavior, corresponding to fixed-base condition, is characterized by the structural fundamental period T and its viscous damping ratio ξ.

2.1 Dimensionless parameters

In line with other authors17-20 and for the purpose of characterizing the soil-foundation-structure system, a set of dimensionless parameters, covering the mean features of SSI problems, has been used. These are the same parameters that were previously used in10,15: (a) dimensionless fixed-base natural frequency of the structure $\lambda = \omega_n / \omega$, being ω the excitation circular frequency; (b) fixed-base structure damping ratio ξ; (c) wave parameter $\sigma = c_s T / h$ that measures the soil-structure relative stiffness; (d) structural slenderness ratio h/b; (e) foundation-structure mass ratio m_o/m; (f) mass density ratio $\delta = m / (4 \rho_p \beta^2 h)$ between structure and supporting soil; (g) Poisson’s ratio ν_s; and (h) damping ratio ξ_s of the soil. A hysteretic damping model of the type $\mu_s = \text{Re}[\mu_s](1 + 2i\xi_s)$ is considered in this study for the soil material.

With respect to the pile foundation, the following dimensionless parameters are considered in this work: number of piles composing the pile group ($n \times n$), pile spacing ratio s/d, embedment ratio L/b, pile slenderness ratio L/d, pile-soil Young’s modulus ratio E_p / E_s, and soil-pile densities ratio ρ_s / ρ_p. The dimensionless excitation frequency is defined as $a_o = \omega b / c_s$, $c_s = \sqrt{\mu_s / \rho_s}$ the speed of propagation of shear waves in the halfspace, and μ_s and ρ_s the soil shear modulus of elasticity and mass density, respectively.

2.2 Pile group configurations under investigation

Different configurations of square 2×2, 3×3, and 4×4 vertical pile groups, according to the geometrical parameters defined in Figure 2, are analyzed in the frequency range of interest for seismic loading. The dimensionless parameters corresponding to these configurations are listed in Table 1. Four different values are considered for the structural slenderness ratio (h/b). Although a Poisson’s ratio $\nu_s = 0.08$ is not representative for typical soils, it has been included in this study as a limit value in order to explain some dynamic effects associated with the spatial character of the excitation and the kinematic response.

2.3 Incident field

The excitation (incident field) is considered to be a planar SV wave propagating through the half-space with a generic direction contained in the yz plane and defined by the angle of incidence θ_o measured from the horizontal (see Figure 1B). When non-vertically incident seismic SV body waves hit the free surface, SV waves are reflected back into the half-space together with P waves. These P waves are inhomogeneous waves propagating horizontally when the angle of incidence is smaller than the critical angle θ_{cr}, which depends only on the Poisson’s ratio, as shown in Equation (1).

$$\theta_{cr} = \arccos\left(\frac{1 - 2 \nu_s}{2(1 - \nu_s)}\right).$$

Thus, the mechanism of propagation of the waves in the soil depends on whether the wave angle of incidence is greater or smaller than this critical angle, which will prove relevant when analyzing the dynamic behavior of the superstructure.

The expressions for displacement vectors and amplitudes in function of the angle of incidence, for values over and below the critical angle, can be found eg, in the classical texts of Elastodynamics written by Achenbach,21 or Eringen and Suhubi,22 or more recently, in a summarized form, in Zarzalejos et al.5

ν_s	ξ_s	E_p / E_s	ρ_s / ρ_p	ξ	$1/\sigma$	m_o / m	h/b	
0.08, 0.2, 1/3, 0.4, 0.45	0.05	10^2	0.7	0.05	0.15	0 – 0.5	0	1, 2, 5, 10
As mentioned before, the seismic response of the soil-foundation system is computed through a three-dimensional frequency-domain BEM-FEM formulation previously developed. The dynamic response of the soil region is modelled as a linear, isotropic, homogeneous, viscoelastic medium by using a BEM formulation that considers the tractions at pile-soil interfaces as body forces acting within the domain. The stiffness of piles is introduced by longitudinal finite elements linking the internal nodes of the soil and modelled as Euler-Bernoulli beams. The whole approach is depicted in Figure 3. Its main advantage of this approach is that, being able to produce accurate results, it assumes that soil continuity is not altered by the presence of piles and, consequently, it is not necessary to discretize the pile-soil interfaces by boundary elements, which considerably reduces the number of degrees of freedom in comparison with a pure multi-region boundary element approach. Imposing conditions of equilibrium and compatibility by correlating BEM load lines and FEM piles, a system of equation representing the soil-pile foundation can be obtained. This methodology was validated through comparisons against results computed with a multi-domain BEM formulation in terms of impedances and kinematic interaction factors.14

This BEM-FEM coupling model allows determining the dynamic response of the soil-foundation system in terms of translational $I_\alpha(a_0, \theta_0) = u_\alpha / u_{g\alpha}$ and rotational $I_\phi(a_0, \theta_0) = \phi_g b / u_{g\alpha}$ kinematic interaction factors, being $u_{g\alpha}$ the free-field motion at the surface. The impedance functions at each frequency a_0 can also be computed through this model. These impedance functions are usually written as $K_{ij} = k_{ij} + i a_{ij} c_{ij}$, where k_{ij} and c_{ij} are the frequency-dependent dynamic stiffness and damping coefficients, respectively.

Afterwards, impedances and kinematic interaction factors are used to analyze the 3DOF system dynamic response through a substructuring model in the frequency domain such as that represented in Figure 1C. This model consists of a building-cap structure supported on springs and dashpots representing the soil-foundation stiffness and damping in the horizontal (k_{xx}, c_{xx}), rocking ($k_{\theta\theta}, c_{\theta\theta}$) and cross-coupled horizontal-rocking ($k_{x\theta}, c_{x\theta}$) vibration modes, respectively. The whole system is subjected to the horizontal (u_g) and rocking (ϕ_g) motions measured at the massless pile cap level when subjected to free-field motion at the surface $u_{g\alpha}$. A simple and accurate procedure based on this substructuring model is used in order to determine the dynamic characteristics of an equivalent SDOF oscillator (see Figure 1D) that reproduces, as accurately as possible, the response of the system under investigation (see Figure 1C) within the range where the peak response occurs. This response is expressed in terms of $Q = \omega^2 u / (\omega^2 u_{g\alpha})$, which represents the ratio of the shear force at the base of the structure to the effective earthquake force. This equivalent SDOF system can be defined by its effective damping ratio $\bar{\xi}$ and its undamped natural period \bar{T}.

As it can be seen in the work of Medina et al, the ratio between the effective period of this equivalent SDOF system (\bar{T}) and the structural fundamental period corresponding to fixed-base condition (T) is obtained from the resolution of the eigenvalue problem as the root of Equation (2) and defined as $\lambda = \bar{T} / T$. The equivalence established between the SDOF oscillator and the interacting system in terms of Q enables the computation of the effective damping $\bar{\xi}$ of the equivalent SDOF oscillator as $\bar{\xi} = 1 / (2Q_m)$, being Q_m the maximum value of Q computed from the equations of motion corresponding to the 3DOF system under investigation, which leads to Equation (3).

$$1 - \frac{1}{\lambda^2} - \frac{1}{\lambda^2 a_{xx}(\lambda)} - \frac{1}{\lambda^2 a_{\theta\theta}(\lambda)} = 0,$$
\[\tilde{\xi} = \frac{1}{\tilde{T}} + \tilde{\xi} = \left(I_u + \frac{h}{b} I_{\varphi} \right)^{-1} \frac{1}{\lambda^2} \left[\frac{\varepsilon}{\lambda^2} + \frac{1}{\lambda^2} \left(\frac{\xi_{xx}}{\alpha_{xx}^2 (1 + i 2 \xi_{xx})} + \frac{\xi_{\theta \theta}}{\alpha_{\theta \theta}^2 (1 + i 2 \xi_{\theta \theta})} \right) \right], \] (3)

where

\[\tilde{\zeta} = \frac{1}{\lambda}, \] (4)

\[\alpha_{xx}^2 = \sigma^2 \frac{1}{16 \pi^2} \frac{1}{b \delta} \text{Re}[\tilde{K}_{xx}], \] (5)

\[\xi_{xx} = \frac{\text{Im}[\tilde{K}_{xx}]}{2 \text{Re}[\tilde{K}_{xx}]}, \] (6)

\[\alpha_{\theta \theta}^2 = \sigma^2 \frac{1}{16 \pi^2} \frac{1}{b \delta} \text{Re} \left[\frac{b^2}{(h + D)^2} \tilde{K}_{\theta \theta} \right], \] (7)

\[\xi_{\theta \theta} = \frac{\text{Im} \left[\frac{b^2}{(h + D)^2} \tilde{K}_{\theta \theta} \right]}{2 \text{Re} \left[\frac{b^2}{(h + D)^2} \tilde{K}_{\theta \theta} \right]}, \] (8)

being \(\tilde{K}_{xx} = K_{xx}/(\mu_s b) \) and

\[\tilde{K}_{\theta \theta} = \left(\frac{K_{\theta \theta}}{K_{xx}} \right)^2, \] (9)

\[\frac{b^2}{(h + D)^2} = \left(\frac{h}{b} \right)^2 - 2 \left(\frac{h}{b} \right) \frac{K_{\theta \theta}}{K_{xx}} + \left(\frac{K_{\theta \theta}}{K_{xx}} \right)^2 \right)^{-1}, \] (10)

where \(K_{\theta \theta} = K_{\theta \theta}/(\mu_s b^2) \) and \(D = D(\omega) = -K_{o \varphi}/K_{xx} \) represents the virtual depth of the point at which the soil-foundation interaction must be condensed to obtain a diagonal impedance matrix.

Once the dynamic properties characterizing the SDOF equivalent system (\(\tilde{T} \) and \(\tilde{\xi} \)) have been computed, the maximum shear force at the base of the structure per effective earthquake force unit \(Q_m \) can also be determined as that corresponding to the equivalent SDOF system with Equation (11).

\[Q_m = \frac{1}{2 \tilde{\xi}}. \] (11)

The procedure followed to obtain these expressions for the effective period \(\tilde{T} \) (Equation (2)) and damping \(\tilde{\xi} \) (Equation (3)) and \(Q_m \) (Equation (11)) is thoroughly described in the aforementioned work.\(^{15}\) In that paper, this procedure was also validated through comparison against results previously published by other authors.

\section*{4 | RESULTS}

This section presents the results obtained from the application of the methodology explained above to the analysis of the effects that the variation of the angle of incidence \(\theta_o \) of SV waves has on the dynamic response of the configurations under investigation.

\subsection*{4.1 | Kinematic interaction factors}

Figures 4 and 5 depict, respectively, the translational \(I_u = u_g/u_{\varphi} \) and the rotational \(I_{\varphi} = b \varphi/u_{\varphi} \) kinematic interaction factors corresponding to all the \(3 \times 3 \) pile group configurations under investigation. Each graphical area presents results for the following values of the angle of incidence: \(\theta_o = 30^\circ, 40^\circ, 50^\circ, 60^\circ, 70^\circ, 80^\circ, \) and \(90^\circ \) (vertical incidence) represented with different line styles and colors in a superimposed way. Each column shows results for a different value of the soil Poisson’s ratio \(\nu_s \), the corresponding critical angle \(\theta_{cr} \) is also stated at the top of each column. Odd and even rows present, respectively, real and imaginary parts of the kinematic interaction factors corresponding to pile groups with different values of the pile slenderness ratio \(L/d = 7.5, 15, \) and \(30 \). The horizontal axis represents the dimensionless frequency.
FIGURE 4 Translational kinematic interaction factor I_u of 3×3 pile groups for different values of the angle of incidence θ_o of SV waves and several values of the Poisson's ratio ν_s. $E_p/E_s = 10^3$ and $\xi_s = 0.05$. $L/d(s/d) = 7.5(2.5)15(5), 30(10)$
FIGURE 5 Rotational kinematic interaction factor I_ϕ of 3×3 pile groups for different values of the angle of incidence θ_o of SV waves and several values of the Poisson’s ratio ν_s. $E_p/E_s = 10^3$ and $\xi_s = 0.05$. $L/d(s/d) = 7.5 (2.5) 15 (5), 30 (10)$
As can be seen in Figure 4, the strongest filtering of the seismic excitation in terms of horizontal input motion occurs for the more horizontal of the considered angles of incidence ($\theta_o = 30^\circ$ and 40°). A remarkable filtering capacity is also noticed for angles of incidence more vertical than the critical angle while, on the contrary, for $\theta_o = 50^\circ$, the horizontal input motion is amplified by the presence of the pile foundation.

On the other hand, as shown in Figure 5, the highest values of the rotational kinematic interaction factor I_ψ are reached for the values considered for the angle of incidence that are below the critical angle ($\theta_o = 30^\circ, 40^\circ$, and 50°). This may be attributed in part to the way of presenting such information given that the horizontal free-field motion at the surface u_{go} takes small values for these angles (see Figure 6, where the evolution of u_{go}/A^{inc} with θ_o is depicted, being A^{inc} the amplitude of the incident wave). It is worth noting that the responses for $\theta_o = 30^\circ$ and 40° are 180° out of phase with respect to that corresponding to $\theta_o = 50^\circ$ (opposite signs for one angle and the other). This effect plays an important role in the analysis of the structural response, as it will be shown subsequently, and occurs within a certain range of θ_o.

For the purpose of illustrating this fact, Figure 7 shows the evolution of the real part of the kinematic interaction factors ($\text{Re}[I_u]$ and $\text{Re}[I_\psi]$) with θ_o for different 3×3 pile groups configuration when $o/d/c_s = 0.1$. The range of θ_o in which $\text{Re}[I_u]$ and $\text{Re}[I_\psi]$ have opposite signs is indicated with a shaded area.

Figure 8 depicts the moduli of the kinematic interaction factors corresponding to 2×2 (yellow line), 3×3 (blue line), and 4×4 (red line) pile groups embedded in a soil with a Poisson's ratio $\nu_s = 0.4$. Each column shows results for a different value of the angle of incidence: $\theta_o = 30^\circ, 50^\circ, 70^\circ$, and 90° (vertical incidence). Odd and even rows present, respectively, translational and rotational kinematic interaction factors corresponding to pile groups with different values of the pile slenderness ratio $L/d = 7.5, 15$, and 30. The horizontal axis represents the dimensionless frequency. It can be seen that the curves corresponding to configurations with different number of piles all follow the same trend. It is worth noting that for angles of incidence over the critical angle ($\theta_{cr} = 65.9^\circ$), the influence of the number of piles on the rotational kinematic interaction factors is negligible. A reduction of I_ψ is also observed as the pile slenderness ratio L/d increases for angles of incidence over the critical angle.
FIGURE 8 Kinematic interaction factors moduli ($|I_u|$ and $|I_\varphi|$) of 2×2, 3×3, and 4×4 pile groups for different values of the angle of incidence θ_o of SV waves. $E_p/E_s = 10^3$, $\xi_s = 0.05$, and $v_s = 0.4$ ($\theta_{cr} = 65.9^\circ$). $L/d = 7.5, 15, 30$
In the following sections, these kinematic interaction factors, together with the impedance functions for the same pile configurations, are used to determine the dynamic behavior of the superstructure through the substructure model presented in Section 3. These necessary impedance functions have been previously published by the authors15 and are provided in the appendix of the present paper.

4.2 Effective period

As expected in the light of Equation (2), the system effective period does not depend on the incident field. The variation of θ_0 does not affect the system effective period because the kinematic interaction factors are not involved in the estimation of the value of \tilde{T}/T corresponding to the SDOF equivalent system (see Equation (2)).

Figure 9 depicts the variation of the system effective period (\tilde{T}/T) with the structure-soil relative stiffness ($1/\sigma$) for different configurations of pile groups. The left column illustrates how the increment of the undamped natural period \tilde{T} with respect to the fixed-base natural period T becomes more relevant, for instance, when the height of the structure increases. Note that this trend is reversed for nonslender structures when considering stiffer foundations. A similar effect can be observed in the central column when the diameter of the piles decreases (larger L/d with constant L/b). The right column shows a reduction of the effective period for increasing number of piles. Results corresponding to the rest of the pile group configurations under study show the same trends but they are not included in this paper in pursuit of brevity.

A thorough study analysing the influence of the main parameters involved in soil-structure interaction problems on the dynamic characteristics of structures supported on vertical pile groups was performed (for the first time to the authors’ knowledge) by Medina et al.15

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure9.png}
\caption{Influence of the structural slenderness ratio h/b (left column), the pile slenderness ratio L/d (central column), and the number of piles (right column) on the effective period \tilde{T}/T. $E_p/E_s = 10^3$, $\zeta_s = 0.05$, and $\nu_s = 0.4$.}
\end{figure}
4.3 | Effective damping

Figure 10 shows the effective damping for the different configurations of 3×3 pile groups under investigation embedded in a soil such that $v_s = 0.4$. Each row represents the results obtained for a pile group configuration with a different value of the pile slenderness ratio L/d. In turn, each column corresponds to a different value of the structural slenderness ratio $h/b = 1, 2, 5,$ and 10. Results corresponding to several values of the angle of incidence ($\theta_o = 30^\circ, 40^\circ, 50^\circ, 60^\circ, 70^\circ,$ and 90° [vertical incidence]) are depicted. Results obtained involving only inertial interaction, which are computed without considering the kinematic effects of the incident field affecting the foundation, are also shown in this figure. As in Figure 9, the horizontal axis represents the inverse of the wave parameter $1/\sigma$. It can be seen that for angles of incidence over the critical angle ($\theta_o > \theta_{cr}$), the effective damping can be well approximated by that corresponding to vertical incidence. If kinematic interaction is neglected (inertial interaction curve), the computed effective dampings are higher than those obtained when kinematic interaction is taken into account for angles of incidence $\theta_o = 90^\circ, 70^\circ, 40^\circ,$ and 30°. This means that, for all these cases, neglecting kinematic interaction yields significantly non-conservative results and should be avoided. It is worth noting that when $\theta_o = 50^\circ$, a significant increase of ξ occurs for certain values of $1/\sigma$, which implies a great reduction of the maximum shear force Q_m that reaches values close to zero. In order to illustrate this effect, Figure 11 presents Q_m for the same pile group configurations analyzed in Figure 10, which provide complementary results that are more practical from an engineering point of view. Greater values of Q_m are obtained when the angle between the direction of propagation of the wavefront and the horizontal is $\theta_o = 30^\circ$ or 40° and minimum values of Q_m are reached for $\theta_o = 50^\circ$, in most cases. The influence of the foundation stiffness becomes more remarkable for angles of incidence below the critical angle. For slender structures, the maximum shear force increases with $1/\sigma$, reaching values beyond five times those corresponding to vertical incidence for the case in which $h/b = 10$. However, for short- or medium-height buildings ($h/b < 5$), Q_m reaches its maximum for values of the wave parameter such that $1/\sigma < 0.2$.

![Figure 10](image-url)
FIGURE 10 Effective damping ξ for different 3×3 pile groups. $E_p/E_s = 10^3$, $\xi_s = 0.05$, and $v_s = 0.4$ ($\theta_{cr} = 65.9^\circ$). $L/d(s/d) = 7.5 \,(2.5) \, 15 \,(5) \, 30 \,(10)$. Grey line to be read on the right axis provide a zoomed out view.
This behavior of the structural dynamic response when $\theta_o = 50^\circ$ is related with the aforementioned change of sign observed in the rotational kinematic interaction factor I_φ, and it can be explained from the expression of the system effective damping $\tilde{\xi}$ written in Equation (3). It can be inferred that, for a certain configuration, the maximum value of $\tilde{\xi}$ is achieved when

$$I_u(\tilde{T}/T) \approx -\frac{h}{b}I_\varphi(\tilde{T}/T),$$

which is to say

$$\frac{u_u}{b\varphi_y} \approx -\frac{h}{b}.$$ \hspace{1cm} (13)$$

Defining $r = u_g/\varphi_y$ as the vertical distance between the free surface and the system center of rotation (being $r > 0$ when the system center of rotation is under the free surface), it can be inferred that when r reaches values close to the height of the structure ($-r \approx h$), the behavior of the superstructure closely resembles that of a rigid solid whose center of rotation is located in the center of the slab. Consequently, the structural horizontal deflection u and, in turn, the maximum shear force at the base of the structure Q_m, experience a significant reduction which implies a considerable increase of the system effective damping $\tilde{\xi}$. For the purpose of illustrating this effect, Figure 12 shows in each graphical area three curves superimposed that correspond, respectively, to $r/b(h(Q_m)) = \text{Re}[I_u]/\text{Re}[I_\varphi]$, the structural slenderness ratio h/b, and the system effective damping $\tilde{\xi}$ for slender and nonslender structures supported on a 2×2 pile group subjected to SV waves being $\theta_o = 50^\circ$. $a_o(Q_m)$ is the value that takes the dimensionless frequency when the maximum shear force at the base of the structure Q_m occurs. Only the real parts of the kinematic interaction factors, $\text{Re}[I_u]$ and $\text{Re}[I_\varphi]$, have been considered because their imaginary parts are negligible in both cases. As for previous figures, the horizontal axis represents the inverse of the wave parameter $1/\sigma$ and each column depicts results for a different structural slenderness ratio h/b. In turn, each row presents results for different values of the Poisson’s ratio ν_s. In this figure, it can be clearly seen that the maximum values of the system effective damping $\tilde{\xi}$ are reached for those
values of the wave parameter at which the curve corresponding to \(-r/b \) intersects that of \(h/b \), as occurs for \(\nu_s = 0.4 \) and \(\nu_s = 1/3 \).

The bottom row in Figure 12 illustrates that when \(\nu_s = 0.08 \), \(-r/b \) and \(h/b \) functions do never intersect. In this case, the system effective damping \(\xi \) varies with a monotonous trend as the wave parameter decreases. When \(\nu_s = 0.4 \) or \(\nu_s = 1/3 \), the angle between the direction of propagation of the wavefront and the horizontal (\(\theta_o = 50^o \)) is below the critical angle \(\theta_{cr} \), while for \(\nu_s = 0.08 \) (not a representative for typical soils and only used in order to explain this effect), the angle of incidence of the SV wave is over the critical angle.

At this stage, it is worth determining the range of values of the angle of incidence \(\theta_o \) of SV waves for which the superstructure rotates almost as a rigid solid around the center of the slab that remains practically at the same place. For this purpose, the problem has been analyzed for a \(2 \times 2 \) pile group subjected to SV waves with angles of incidence between \(\theta_o = 40^o \) and \(\theta_o = 70^o \) with an increment of \(1^o \). Figure 13 presents the maximum effective damping values obtained for each soil, angle of incidence, and slenderness ratio, together with the values of the other relevant functions for the configuration at which that happens. Each column corresponds to a different value of the soil Poisson’s ratio \(\nu_s \) and, consequently, to a different value of the critical angle \(\theta_{cr} \), which has been depicted in each graphical area with a solid vertical black line. The first and the second rows show the values of the kinematic interaction factors real parts, \(\text{Re}[I_u] \) and \(\text{Re}[I_\varphi] \), for the dimensionless frequency \(a_o(\text{Max}[\xi]) \) at which the maximum value of the system effective damping is reached. The third row of this figure depicts the ratio of the distance between the pile cap center and the system center of rotation to the foundation halfwidth (\(-r/b \)). With the aim of facilitating the interpretation of the presented results, the different values of the structural slenderness ratio are represented, in each graphical area of the third row, with horizontal lines of the corresponding colors. The fourth row shows the maximum value reached for the system effective damping \(\text{Max}[\xi] \) within the range of values considered for the inverse of the wave parameter \(1/\sigma \). For the purpose of providing the reader with complementary information, the bottom row depicts the values of the inverse of the wave parameter \(1/\sigma \) for which the maximum value of \(\xi \) is reached for each value of the angle of incidence \(\theta_o \).
FIGURE 13 Maximum effective damping (Max[ξ]) for structures with different slenderness ratios (h/b) supported on a 2 × 2 pile group with s/d = 7.5, L/d = 15, L/b = 2, and $E_p/E_s = 10^3$. Kinematic interaction factors ($I_u = u_g/u_e$ and $I_\varphi = b_\varphi/u_e$) of the foundation for the dimensionless frequency a_o at which the structural response Q reaches its maximum value (Q_m). System center of rotation $r/b(a_o(Q_m))$.

Values of the wave parameter σ for which the maximum value of the effective damping is reached.

Figure 13 aims at helping the reader to understand the aforementioned effect (a great increase of the system effective damping ξ associated with those values of the angle of incidence θ_o for which (u_g) and (φ_g) are out of phase and the ratio $-r/b$ is close to the structural slenderness ratio h/b) and to delimit the range of θ_o (indicated with a shaded area) in
FIGURE 14 Maximum effective damping ($\text{Max}[\tilde{\zeta}]$) for structures with different slenderness ratios (h/b) supported on a 3×3 pile group with $s/d = 5$, $L/d = 15$, $L/b = 2$, and $E_p/E_s = 10^3$. Kinematic interaction factors ($I_u = u_g/u_o$ and $I_{\phi} = \phi_g/\phi_o$) of the foundation for the dimensionless frequency ω_0 at which the structural response Q reaches its maximum value (Q_m). System center of rotation $r/b(\omega_0(Q_m))$. Values of the wave parameter σ for which the maximum value of the effective damping is reached which this effect occurs for each type of soil. It can be seen that this effect occurs for $45^\circ < \theta_o < \theta_{cr}$. It is worth noting that this range widens for more incompressible soils. The same type of graph is presented in Figure 14 for a 3×3 pile group yielding the same conclusions. In order to enhance the reader understanding of Figures 13 and 14, the evolution
of the location of the system center of rotation within the considered range of θ_0 and its consequences on the structural behavior is illustrated in Figure 15 for the specific configuration of a $h/b = 1$ structure supported on a 2×2 pile group with $s/d = 7.5$ and $L/b = 2$, as a representative instance where the phenomena of interest can be clearly observed. The values of θ_a and θ_β depend on the specific problem. It is worth noting that the range of the vertical axis is adjusted to display clearly the zone in which $-r/b = h/b$ in order to illustrate the aforementioned effect. Thus, the negative values of $-r/b$, reached when $\theta_0 > \theta_\beta$, are not shown. All plots in Figures 13 and 14 show the same four zones: (a) for $\theta_0 < 45^\circ$, the system center of rotation is placed at $0 < -r < h$, and the effective damping is low; (b) for $45^\circ < \theta_0 < \theta_a$ (see Figure 15), the height of the system center of rotation is $r = -h$, which yields a very low effective earthquake shear force Q (a high effective damping); (c) for $\theta_a < \theta_0 < \theta_\beta$, the system center of rotation is placed at $-r > h$, and the effective damping is low again; and (d) for $\theta_0 > \theta_\beta$, the system center of rotation is placed below the free surface and the effective damping keeps low.

For the purpose of illustrating how the wavefront angle of incidence θ_0 and the dimensionless frequency expressed as $\omega d/c_s$ affect the location of the system center of rotation, Figure 16 depicts results in terms of $-r/b$ for 2×2 pile group configurations with different values of the pile slenderness ratio $L/d(s/d) = 7.5$ (3.75), 15 (7.5), and 30 (15). Those points in which the system center of rotation is located at the structural height ($-r/b = h/b$) are represented with different colors corresponding to the superstructures considered in this study ($h/b = 1$ [red], 2 [blue], 5 [green], and 10 [cyan]). The projection of these points on the horizontal plane is represented in order to facilitate the comprehension of the results. Note that the range in which the structure can behave almost as a rigid solid ($-r \approx h$) whose center of rotation is located in the center of the slab widens as the foundation stiffness decreases (i.e., greater values of L/d).

FIGURE 15 Sketch of the influence of the wavefront angle of incidence θ_0 on the evolution of the location of the system center of rotation for structures with $h/b = 1$ supported on a 2×2 pile group with $s/d = 7.5$, $L/d = 15$, and $L/b = 2$. $E_p/E_s = 10^3$ and $\nu_s = 0.4$.

FIGURE 16 Influence of the wavefront angle of incidence θ_0 and the dimensionless frequency $\omega d/c_s$ on the location of the system center of rotation of 2×2 pile group configurations for $\nu_s = 0.4$.
5 | CONCLUSIONS

This paper addresses an analysis of the influence of the direction of propagation of SV waves on the dynamic response of pile foundations and piled structures. A BEM-FEM coupling formulation is used in this work to compute impedance functions and kinematic interaction factors of several pile group configurations considering different values of the angle of incidence. Subsequently, a simple and accurate substructuring procedure is used to determine the dynamic characteristics of an SDOF equivalent system that reproduces the dynamic response of the interacting system within the range where the peak response occurs. This dynamic response is expressed in terms of shear force at the base of the structure for effective earthquake force Q. The dynamic behavior of structures with different slenderness ratios ($h/b = 1, 2, 5,$ and 10) supported by $2 \times 2, 3 \times 3,$ and 4×4 pile groups and subjected to SV waves with several angles of incidence (θ_o) is analyzed in this work.

The approach used in this work to analyze the influence of the spatial character of the excitation on the dynamic response of piled structures in terms of the effective parameters defining an equivalent SDOF system has been used in previous works7,8 to address analogous analysis for embedded foundations. Many of the conclusions drawn in this study for piled structures are in line with those observed for the same problem in the case of structures supported by embedded rigid foundations.7,8 However, the comprehensive analysis performed, from an exhaustive sweep of possible values for the angle of incidence, has enabled the identification of singular behaviors that have not been published yet.

The main conclusions inferred from the results are summarized below:

- The results obtained for the translational kinematic interaction factor I_t show that the strongest filtering of the seismic excitation can be observed when the angle between the direction of propagation of the wavefront and the horizontal is $\theta_o = 30^\circ$ or 40°, among the cases studied herein. A noticeable filtering capacity is also shown for angles of incidence more vertical than the critical angle. On the contrary, when $\theta_o = 50^\circ$, the ability of the foundation to filter SV waves decreases significantly.
- The highest values of the rotational kinematic interaction factor I_ϕ are reached for angles of incidence below the critical angle ($\theta_o = 30^\circ, 40^\circ, \text{and } 50^\circ$).
- The influence of the foundation stiffness on the maximum structural response Q_m becomes more noticeable for angles of incidence below the critical angle.
- It is shown that the hypothesis usually adopted, vertical incidence, does not always correspond to the worst-case scenario.
- When kinematic interaction is neglected, the computed effective dampings are over those obtained when kinematic interaction is considered for angles of incidence $\theta_o = 90^\circ, 70^\circ, 40^\circ, \text{and } 30^\circ$. Therefore, for all these cases, neglecting kinematic interaction yields significantly nonconservative results, and should be avoided.
- For slender structures, the maximum structural response increases with relative structure-soil stiffness for shallow incidence ($\theta_o = 30^\circ \text{or } 40^\circ$), reaching values beyond five times those corresponding to vertical incidence for the case in which $h/b = 10$. However, for short or medium-height buildings ($h/b < 5$), Q_m reaches its maximum for values of the wave parameter such that $1/\sigma < 0.2$.
- Very low structural responses Q_m can be reached when the angle of incidence is below the critical angle, but above 45°. This effect has not been mentioned by other authors in previous studies and it can be explained attending to the fact that the horizontal (u_g) and rocking (φ_g) motions measured at the pile cap level are out of phase and the instantaneous center of rotation of the structure is close to the center of the vibrating mass $-r/b \approx h/b$. This implies that the superstructure rotates almost as a rigid solid and the structural deflection is close to zero ($u = 0$). The more incompressible the soil, the larger the range of incident angles for which very low maximum structural responses arise. It has also been checked that the influence of the foundation-structure mass ratio m_o/m on this effect (and the general response) is negligible for all the cases under investigation.

ACKNOWLEDGEMENTS

This work was supported by the Ministerio de Economía, Industria y Competitividad (MINECO) of Spain, the Agencia Estatal de Investigación (AEI) of Spain, and FEDER through Research Projects BIA2014-57640-R and BIA2017-88770-R. G.M. Álamo is a recipient of FPU research fellowship FPU14/06115 from the Ministerio de Educación, Cultura y Deporte of Spain. The authors are grateful for this support.
REFERENCES

1. Mamoon SM, Ahmad S. Seismic response of piles to obliquely incident SH, SV, and P waves. J Geotech Eng. 1990;116:186-204.
2. Mamoon SM, Banerjee PK. Response of piles and pile groups to travelling SH-waves. Earthquake Eng Struct Dyn. 1990;19:597-610.
3. Makris N, Badoni D. Seismic response of pile groups under oblique-shear and Rayleigh waves. Earthquake Eng Struct Dyn. 1995;24(4):517-532.
4. Kaynia AM, Novak M. Response of pile foundations to Rayleigh waves and obliquely incident body waves. Earthquake Eng Struct Dyn. 1992;21:303-318.
5. Zarzalejos JM, Aznárez JJ, Padrón LA, Maeso O. Influences of type of wave and angle of incidence on seismic bending moments in pile foundations. Earthquake Eng Struct Dyn. 2014;43:41-59.
6. Todorovska MI, Trifunac MD. Analytical model for in plane building-foundation-soil interaction: incident P-, SV- and Rayleigh waves. Report CE 90-01, Los Angeles, California, Department of Civil Engineering, University of Southern California; 1990.
7. Todorovska MI, Trifunac MD. The system damping, the system frequency and the system response peak amplitudes during in-plane building-soil interaction. Earthquake Eng Struct Dyn. 1992;21(2):127-144.
8. Avilés J, Suárez M, Sánchez-Sesma FJ. Effects of wave passage on the relevant dynamic properties of structures with flexible foundation. Earthquake Eng Struct Dyn. 2002;31:139-159.
9. Fu J, Liang J, Todorovska MI, Trifunac MD. Soil-structure system frequency and damping: estimation from eigenvalues and results for a 2D model in layered half-space. Earthquake Eng Struct Dyn. 2018;47:2055-2075.
10. Medina C, Padrón LA, Aznárez JJ, Maeso O. Influence of pile inclination angle on the dynamic properties and seismic response of piled structures. Soil Dyn Earthquake Eng. 2015;69:196-206.
11. Álamo GM, Padrón LA, Aznárez JJ, Maeso O. Structure-soil-structure interaction effects on the dynamic response of piled structures under obliquely incident seismic shear waves. Soil Dyn Earthquake Eng. 2015;78:142-153.
12. Padrón LA, Aznárez JJ, Maeso O. BEM-FEM coupling model for the dynamic analysis of piles and pile groups. Eng Anal Boundary Elem. 2007;31(6):473-484.
13. Padrón LA, Aznárez JJ, Maeso O. 3-D boundary element-finite element method for the dynamic analysis of piled buildings. Eng Anal Boundary Elem. 2011;35(3):465-477.
14. Medina C, Padrón LA, Aznárez JJ, Maeso O. Kinematic interaction factors of deep foundations with inclined piles. Earthquake Eng Struct Dyn. 2014;43(13):2035-2050.
15. Medina C, Aznárez JJ, Padrón LA, Maeso O. Effects of soil-structure interaction on the dynamic properties and seismic response of piled structures. Soil Dyn Earthquake Eng. 2013;53:160-175.
16. Chopra AK. Dynamic of structures: theory and applications to earthquake engineering. NJ: Prentice-Hall; 2001.
17. Veletsos AS, Meek JW. Dynamic behaviour of building-foundation systems. Earthquake Eng Struct Dyn. 1974;3:121-138.
18. Veletsos AS, Nair VVD. Seismic interaction of structures on hysteretic foundations. J Struct Div, ASCE. 1974;101:109-129.
19. Avilés J, Pérez-Rocha LE. Evaluation of interaction effects on the system period and the system damping due to foundation embedment and layer depth. Soil Dyn Earthquake Eng. 1996;15:11-27.
20. Avilés J, Pérez-Rocha LE. Effects of foundation embedment during building-soil interaction. Earthquake Eng Struct Dyn. 1998;27:1523-1540.
21. Achenbach JD. Wave propagation in elastic solids. Amsterdam: North-Holland; 1973.
22. Eringen AC, Suhubi ES. Elastodynamics, volume 2 - Linear Theory. NY: Academic Press; 1975.
23. Maeso O, Aznárez JJ, García F. Dynamic impedances of piles and groups of piles in saturated soils. Comput Struct. 2005;83:769-782.
24. Padrón LA, Aznárez JJ, Maeso O, Santana A. Dynamic stiffness of deep foundations with inclined piles. Earthquake Eng Struct Dyn. 2010;39(12):1343-1367.

How to cite this article: Medina C, Álamo GM, Aznárez JJ, Padrón LA, Maeso O. Variations in the dynamic response of structures founded on piles induced by obliquely incident SV waves. Earthquake Engng Struct Dyn. 2019;48:772–791. https://doi.org/10.1002/eqe.3160
APPENDIX A

Figure A1 presents the impedances of 2×2, 3×3, and 4×4 pile groups with $L/d = 7.5$, 15, and 30 as a function of the dimensionless frequency, which are extracted from Medina et al.15 These complex functions, together with those obtained for the kinematic interaction factors, are used to determine the dynamic behavior of the superstructure.

FIGURE A1 Impedance functions of the pile group configurations under study. $E_p/E_s = 10^3$ and $\xi_s = 0.05$