miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression

Junya Azumi,* Toshiaki Tsubota,* Tomohiko Sakabe and Goshi Shiota

Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan

Key words
Apoptosis, hepatocellular carcinoma, miR-181a, RASSF1, sorafenib

Correspondence
Goshi Shiota, Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Nishi-cho 36-1, Yonago 683-8504, Japan. Tel: +81-859-38-6431; Fax: +81-859-38-6430; E-mail: gshiota@med.tottori-u.ac.jp

Funding Information
This work was supported by Management Expenses Grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan and a Grant-in-Aid for Scientific Research

*These authors contributed equally to this work.

Received April 7, 2016; Revised June 21, 2016; Accepted July 1, 2016

Cancer Sci 107 (2016) 1256–1262
doi: 10.1111/cas.13006

Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related deaths worldwide. (1) Surgical resection and liver transplantation are first-line therapeutic options for early stage HCC patients, and locoregional therapies, including transcatheter chemoembolization and radiofrequency ablation, are used to treat patients who are not suitable for surgery. (2) Sorafenib is the first systemic drug for patients with advanced HCC. (3) Sorafenib inhibits the activity of multi-kinases such as Raf kinase, vascular endothelial growth factor receptor 2 (VEGFR2) and platelet-derived growth factor receptor (PDGFR). (4) Although sorafenib could improve the overall survival of HCC patients from 7.9 to 10.7 months, many patients still do not benefit from this therapy and acquired resistance often develops within 6 months. (3,5) Therefore, identification of signaling networks that are crucial for the antitumor efficacy of sorafenib will contribute to the rational design of the novel therapeutic approach for HCC.

MicroRNA inhibit translation of target mRNA through binding to their 3′ untranslated regions (3′UTR) (5) and regulate critical cellular processes such as proliferation and apoptosis in HCC cells. (9–11) Abnormal regulation of microRNA may correlate with hepatocarcinogenesis and HCC progression. (12) For example, microRNA-122 (miR-122) expression is significantly suppressed in HCC and this down-regulation is associated with poor prognosis. (9–11) In addition, several microRNA, such as miR-222, 1274a and 34a, affect the drug sensitivity of HCC cells. (13–15) MiR-181a is highly expressed in cancer stem cells of HCC (16) and induces epithelial–mesenchymal transition in ovarian cancer. (17) It has also been reported that miR-181a contributes to cancer progression and metastasis in a variety of cancers. (18,19) Notably, HCC cell line HepG2 cells express lower levels of miR-181a (20) and are more sensitive to sorafenib compared to Hep3B cells. (21) These reports suggest that miR-181a may have a role in regulation of sorafenib resistance. In the present study, we found that sorafenib induced more apoptosis in HepG2 cells compared to Hep3B cells. Exogenous miR-181a expression in HepG2 cells reduced apoptosis, whereas inhibition of miR-181a in Hep3B cells increased apoptosis. We also showed that MAPK signaling factor RASSF1 is a target of miR-181a and that knockdown of RASSF1 reduced sorafenib sensitivity. These results suggest that miR-181a plays a critical role in sorafenib resistance through suppression of RASSF1 in HCC cells.
Materials and Methods

Cell culture. HepG2 and Hep3B cells were cultured in DMEM (Nissui Pharmaceautical, Tokyo, Japan) supplemented with 10% FBS (MBL, Nagoya, Japan).

Cell viability assay. HepG2 and Hep3B cells were seeded onto a 96-well plate at a density of 1 × 10^4 and 0.5 × 10^4 cells/well, respectively. After 72 h, viable cells were quantified using the Cell Counting Kit-8 (Dojin Chemical, Kumamoto, Japan) according to the manufacturer’s protocol. Absorbance was measured at 450 nm with a reference wavelength of 600 nm using a microplate reader for 96-well plates (Tecan, Zurich, Switzerland).

Transfection. HepG2 cells and Hep3B cells were transfected with 100 nM pre-miR-181a or anti-miR-181a (Life Technologies, Carlsbad, CA, USA) using Lipofectamine 2000 (Life Technologies) according to the manufacturer’s protocol. Cells were transfected with 20 nM siRASSF1 and negative control siRNA using Lipofectamine 2000.

Quantitative-RT PCR of miRNA. Total RNA was isolated from the cells with TRIzol Reagent (Life Technologies). Expression of miR-181a was detected using TaqMan MicroRNA Assays (Applied Biosystems, Foster City, CA, USA), the MicroRNA RT Kit (Applied Biosystems) and the Taqman Universal PCR Master Mix II with UNG (Applied Biosystems) and the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) according to the manufacturer’s protocol. RNU6B was used as an internal control.

Quantitative-RT PCR of mRNA. Total RNA was isolated from the cells with TRIzol reagent. Expression of mRNA was detected using SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA) and FastStart SYBR Green Master (Roche Diagnostics, Mannheim, Germany) by the LightCycler 2.0 (Roche Diagnostics).

Heochst staining. Cells were treated with Heochst 33342 for 30 min and photographed with a microscope (IX-71) (OLYMPUS, Tokyo, Japan) and analyzed using an image analysis system (iForm 2.0) (PerkinElmer, Norwalk, CT, USA).

Caspase 3/7 activity analysis. Apoptosis was quantified using the Caspase-Glo 3/7 Assay (Promega, Madison, WI, USA) according to the manufacturer’s protocol.

Cell cycle analysis. 1 × 10^6 cells were fixed with 70% EtOH overnight at 4°C. Cells were treated with RNase for 30 min at room temperature, stained with PI for 60 min and analyzed using FACSARia (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

Western blot analysis. The primary antibodies used in this study were polyclonal antibodies against human β-ACTIN, RASSF1 (Santa Cruz, CA, USA), ERK, phospho-ERK (Thr202/Tyr204), caspase-3 and PARP (Cell Signaling Technology, Beverly, MA, USA). HRP-labeled secondary antibodies were used for the detection of primary antibodies and the bands were detected by ImageQuant LAS4000 (GE Healthcare UK, Little Chalfont, UK).

DNA constructs. For functional analysis of miR-181a, segments of the 3'-UTR RASSF1 mRNA sequences were synthesized. The products were then subcloned into the HindIII-XbaI site of a pGL3-Promoter Vector (Promega).

Luciferase reporter assay. The cells were co-transfected with firefly luciferase plasmid (Promega), renilla luciferase plasmid and microRNA with Lipofectamine 2000, and luciferase assays were performed with a dual-luciferase reporter assay system (Promega) at 48 h after transfection, in accordance with the protocol described by the manufacturer.

Fig. 1. Sorafenib induced more apoptosis and lower cell viability of HepG2 cells compared to Hep3B cells. (a) HepG2 and Hep3B cells were cultured with sorafenib (0–20 μM) for 72 h and cell viability was analyzed by WST assay. (b, c) HepG2 and Hep3B cells were cultured with 0 or 5 μM of sorafinib for 24 h (b) or 48 h (c) and the number of apoptotic cells was quantified by Heochst staining and presented as a percentage of total cell number. Seven fields were randomly chosen, photographed from each group, and statistically analyzed. *P < 0.05, compared between 0 and 5 μM treatment of sorafenib. (d, e) Cell-cycle analysis was performed by flow cytometry using HepG2 cells (d) or Hep3B cells (e) treated with 0 or 5 μM of sorafenib for 48 h. *P < 0.05, compared between 0 and 5 μM treatment of sorafenib.
manufacturer’s instructions. Luminescent signals were quantified with a luminometer (MiniLumat LB9506; Berthold GmbH&Co. KG, Wildbad, Germany), and each value for firefly luciferase activity was normalized by renilla luciferase activity.

Statistical analysis. All the values were expressed as mean ± SD. The differences between the two groups were analyzed using an unpaired two-tailed Student’s *t*-test. A *P*-value <0.05 was considered to be significant.

Results

Sorafenib induced more apoptosis and lower cell viability of HepG2 cells compared to Hep3B cells. To examine the sorafenib sensitivity of HepG2 cells and Hep3B cells, cell viability assay was performed. HepG2 and Hep3B cells were cultured with sorafenib (0–20 μM) for 72 h and assayed by Cell Counting Kit-8. HepG2 cells showed higher sensitivity to sorafenib than Hep3B cells, which is consistent with a previous report (Fig. 1a).

Next, we investigated whether apoptosis is induced by sorafenib treatment. Cells were stained with Hoechst and apoptotic cells were analyzed. Sorafenib significantly increased the rate of apoptosis of HepG2 cells, but did not increase the rate of apoptosis of Hep3B cells (Fig. 1b,c). Consistently, cell cycle analysis by FACS revealed that sorafenib-treated HepG2 cells clearly increased sub-G1 population, while Hep3B cells did not. These results indicate that sorafenib induced higher apoptotic rate and lower cell viability of HepG2 cells compared to Hep3B cells (Fig. 1d,e).

Apoptosis related-molecules were increased/activated in sorafenib-treated HepG2 cells.

(a) Western blot analysis of phospho-ERK, ERK, PUMA, PARP, caspase-3 and ACTIN using HepG2 or Hep3B cells treated with 5 μM sorafenib for 0–24 h. Quantification of western blot bands using ImageJ software (National Institutes of Health, Bethesda, MD), which are normalized by ACTIN, were displayed as bar graphs. (b) HepG2 and Hep3B cells were treated with sorafenib (0 or 5 μM) for 48 h and activities of caspase-3/7 were measured. *P < 0.05, compared between 0 and 5 μM treatment of sorafenib.
cleaved-caspase-3 in HepG2 but not in Hep3B cells (Fig. 2a). We also measured caspase-3/7 activity. Consistent with western blot analysis, caspase-3/7 activity was significantly increased in HepG2 cells but not in Hep3B cells with sorafenib treatment (Fig. 2b,c). These results indicate that sorafenib induced apoptosis of HepG2 cells through increase/activation of proapoptotic factors.

miR-181a plays a critical role in sorafenib resistance. It has been reported that miR-181a is involved in regulation of proliferation and drug resistance of cancer cells. Thus, we next examined the expression levels of miR-181a in HepG2 cells and Hep3B cells by quantitative-RT PCR (qRT-PCR). Notably, HepG2 cells expressed lower levels of miR-181a compared to Hep3B cells (Fig. 3a). To test whether miR-181a expression levels affect sorafenib sensitivity, pre-miR-181a was transfected into HepG2 cells (Fig. 3b), and the rate of apoptosis was examined by Hoechst staining. As shown in Figure 3c, sorafenib-induced apoptosis was reduced by ectopic expression of miR-181a in HepG2 cells. Conversely, when we inhibited mir-181a by anti-miR-181a treatment in Hep3B cells (Fig. 3d), sorafenib-induced apoptosis was increased (Fig. 3e). These results suggest that miR-181a plays a critical role in sorafenib resistance.

miR-181a downregulates RASSF1 expression. To elucidate the target of miR-181a, we performed a database analysis using miRanda. We searched the candidates in MAPK pathway and apoptosis-related genes and found RASSF1 as a target gene of miR-181a (Fig. 4a). Then, we performed a luciferase assay using reporter plasmid containing WT or mutant sequence of 3’ UTR region of RASSF1 (Fig. 4a). Ectopic expression of WT miR-181a reduced luciferase activity compared to control, whereas that of mutant miR-181a did not (Fig. 4b). In addition, pre-miR-181a suppressed RASSF1 expression in HepG2 cells (Fig. 4c), whereas anti-miR181a in Hep3B cells increased it (Fig. 4d). These results indicate that RASSF1 is a target of miR-181a.

Knockdown of RASSF1 reduced sorafenib sensitivity. The finding that RASSF1 is a target of miR-181a suggests that RASSF1 may regulate sensitivity to sorafenib. To test this possibility, we knocked down RASSF1 using two kinds of siRNA against RASSF1 (Fig. 5a) in HepG2 cells, and cell viability assay with sorafenib treatment was performed. Knockdown of RASSF1 significantly increased cell viability against sorafenib (Fig. 5b), suggesting that RASSF1 plays a critical role in sorafenib sensitivity.
Discussion

In the present study, we showed that sorafenib induced more apoptosis and reduced viability of HepG2 cells compared to Hep3B cells. Sorafenib treatment in HepG2 cells but not in Hep3B cells increased expression of apoptosis factor PUMA, and activated PARP and caspase-3. We found that miR-181a expression levels were lower in HepG2 cells than in Hep3B cells, and exogenous miR-181a expression in HepG2 cells reduced apoptosis, whereas inhibition of miR-181a in Hep3B cells increased apoptosis. In addition, we demonstrated that RASSF1 is a target of miR-181a, and knockdown of RASSF1 increased sorafenib resistance. Together, these results suggest that miR-181a provokes sorafenib resistance through repression of RASSF1 expression. Our data provide important insight into a novel therapeutic strategy against sorafenib resistant HCC cells by targeting of miR-181a pathway. A critical future challenge is to explore the relationship between RASSF1 expression level and treatment response for sorafenib-based chemotherapy in HCC patients.

It has been reported that miR-181a has oncogenic functions in various cancers. Consistent with these reports, we here demonstrate that miR-181a induces sorafenib resistance of HCC cells. We showed that miR-181a directly represses expression of RASSF1 in HCC cells, which is consistent with a recent report that miR-181a and miR-181b are highly expressed in acute promyelocytic leukemia and downregulate RASSF1 expression. In addition, as well as miR181-a and miR-181b, miR-181c, which has been shown to promote pancreatic cancer cell chemoresistance, are aberrantly expressed in various cancers, including osteosarcoma and lung adenocarcinoma. These findings raise the possibility that miR-181b and miR-181c have a similar function to miR-181a in HCC cells. In addition, Ji et al. indicate that all members of miR-181s are associated with HCC cells with features of hepatic cancer stem cells, suggesting that HepG2 cells, which have mature features of HCC cells, express lower levels of miR-181s. Indeed, HepG2 cells expressed lower levels of miR-181a in our experiment. Therefore, we have additionally
determined expression levels of miR-181b and miR-181c in HepG2 and Hep3B HCC cells by qPCR analyses (Fig. S1). qPCR results showed that miR-181b was significantly upregulated in Hep3B cells compared to HepG2 cells similar to miR-181a, whereas miR-181c levels were comparable. Taken together, these results suggest that, in addition to miR-181a, miR-181b may also promote sorafenib resistance in HCC cells.

RASSF1 is a tumor suppressor gene and elicits apoptosis through indirect activation of PUMA (Fig. 5c). In contrast, Raf kinase is known to enhance cell survival through activation of ERK (Fig. 5c). Raf also binds to MST2, which is a downstream regulator of RASSF1, and inhibits RASSF1 signal pathway (Fig. 5c). Therefore, inhibition of Raf by sorafenib and low expression of miR-181a may enhance RASSF1-MST2-PUMA-mediated apoptotic signaling (Fig. 5c). In addition to Raf, sorafenib simultaneously inhibits growth factor receptors including VEGFR2 and PDGFR in tumor-associated endothelial cells, thus inhibiting endothelial cell growth and neangiogenesis. Here, we show that miR-181a suppresses apoptotic signaling factor RASSF1, which elicits sorafenib resistance of HCC cells. Based on our results, miR-181a may also impact on apoptotic signaling in endothelial cells. If this is the case, suppression of miR-181a could also enhance sorafenib-induced apoptosis provoked by inhibition of VEGFR and PDGFR of endothelial cells.

Recently, several miRNA delivery systems to the liver have been developed. For example, miR-221 is frequently overexpressed in HCC and systemic delivery of a cholesterol-tagged anti-miR-221 to orthotopic HCC tumors appeared to reduce tumor cell growth and promote survival. In addition, adenovirus-associated virus, lentivirus and nano-sized lipid particles are also useful methods for delivering miRNA to liver cancers. Therefore, based on our data, development of the anti-miR-181a delivery system with low side effects may also be a promising therapeutic approach against HCC.

Acknowledgments
This work was supported by Management Expenses Grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan and Grant-in-Aid for Scientific Research.

Disclosure Statement
The authors have no conflict of interest to declare.

References
1 Siegel R, Ward E, Brawley O et al. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212–36.
2 de Lope CR, Trenosini S, Forner A et al. Management of HCC. J Hepatol 2012; 56(Suppl 1): S75–87.
3 Llovet JM, Ricci S, Mazzaferro V et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 787–90.
4 Wilhelm SM, Carter C, Tang LY et al. BAY 43-9006 exhibits broad spectral inhibition of PTEN tumor suppressor gene in human hepatocellular carcinoma. J Hepatol 2010; 5: 696–704.
5 Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–109.
6 Zhai B, Sun X. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol 2013; 5: 345–52.
7 Filipowicz W, Bhattacharya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–14.
8 Shimizu S, Takehara T, Hikita H et al. The let-7 family of microRNAs: novel tumor suppressor genes in human hepatocellular carcinoma. J Hepatol 2010; 5: 696–704.
9 Xu Y, Huang J, Ma L. MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK pathway. Int J Oncol 2009; 35: 2875–80.
10 Coulouarn C, Factor VM, Andersen JB et al. Induction of DNA damage-inducible gene GADD45β contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 2010; 70: 9309–18.
11 Bai S, Nasser MW, Wang B et al. Induction of DNA damage-inducible gene GADD45β contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK pathway. Int J Oncol 2009; 35: 2875–80.
12 Huang S, He X. The role of microRNAs in liver cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun 2014; 5: 2977.
13 Jones KB, Salah Z, Del Mare S et al. miRNA signatures associate with pathogenesis and progression of oesophageal cancer. Cancer Res 2012; 72: 1865–77.
14 Niu J, Xue A, Chi Y et al. Induction of microRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 2016; 35: 1302–13.
15 Bhattacharya SD, Garrison J, Guo H et al. Micro-RNA-181a regulates osteopontin-dependent metastatic function in hepatocellular carcinoma cell lines. Surgery 2010; 148: 291–7.
16 Ou D-L, Shen Y-C, Yu S-L et al. Induction of DNA damage-inducible gene GADD45β contributes to sorafenib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 2010; 70: 9309–18.
17 Parikh A, Lee C, Joseph P et al. microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun 2014; 5: 2977.
18 Jones KB, Salah Z, Del Mare S et al. miRNA signatures associate with pathogenesis and progression of oesophageal cancer. Cancer Res 2012; 72: 1865–77.
19 Niu J, Xue A, Chi Y et al. Induction of microRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene 2016; 35: 1302–13.
20 Bräuer-Hartmann D, Hartmann JU, Wurm AA et al. PML/RARα-regulated miR-181a/b cluster targets the tumor suppressor RASSF1A in acute promyelocytic leukemia. Cancer Res 2015; 75: 3411–24.
21 Chen M, Wang M, Xu S et al. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget 2015; 6: 44466–79.
22 Cineagilia NC, Andrade SC, Tokar T et al. Integrative transcriptome analysis identifies deregulated microRNA-transcription factor networks in lung adenocarcinoma. Oncotarget 2016; 7: 28920–34.
23 Matalans D, Romano D, Yee K et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 2007; 27: 962–75.
24 Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15: 577–92.
25 Hergovich A, Stegert MR, Schmitz D, Hemmings BA. NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 2006; 7: 253–64.
26 Park JK, Kogure T, Nuovo GJ et al. miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res 2011; 71: 7688–16.
27 Kota J, Chivukula RR, O’Donnell KA et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–17.
28 Hsu SH, Yu B, Wang X et al. Cathionic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine 2013; 9: 1169–80.
Supporting Information

Additional Supporting Information may be found online in the supporting information tab for this article:

Fig. S1. miR-181b and miR-181c expression levels in HepG2 and Hep3B cells.