Universal performance bounds of restart

Dmitry Starkov1,2 and Sergey Belan1,3*

1Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia
2National Research University Higher School of Economics, Faculty of Mathematics, Usacheva 6, 119048 Moscow, Russia
3National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia

As has long been known to computer scientists, the performance of probabilistic algorithms characterized by relatively large runtime fluctuations can be improved by applying a restart, i.e., episodic interruption of a randomized computational procedure followed by initialization of its new statistically independent realization. A similar effect of restart-induced process acceleration could potentially be possible in the context of enzymatic reactions, where dissociation of the enzyme-substrate intermediate corresponds to restarting the catalytic step of the reaction. To date, a significant number of analytical results have been obtained in physics and computer science regarding the effect of restart on the completion time statistics in various model problems, however, the fundamental limits of restart efficiency remain unknown. Here we derive a range of universal statistical inequalities that offer constraints on the effect that restart could impose on the completion time of a generic stochastic process. The corresponding bounds are expressed via simple statistical metrics of the original process such as harmonic mean h, median value m and mode M, and, thus, are remarkably practical. We test our analytical predictions with multiple numerical examples, discuss implications arising from them and important avenues of future work.

Introduction. Restarting was first proposed as a promising optimization tool of probabilistic algorithms in the early 1990s \cite{1,2}. The restart-induced speed up may seem counterintuitive at first glance, but the basic idea behind this technique is quite transparent: if the current realization of the randomized algorithm takes too long, it may be faster (on average) to retry attempt with a new random seed to avoid prolonged wandering in the region of the configuration space far from the actual solution. Since then, restarting has become a routine procedure used to hasten computational tasks whose run-time exhibits significant fluctuations \cite{3,17}. In particular, the option of restart is built into state-of-art constraint satisfaction problem solvers \cite{18,21} (see also \cite{22,23} for other computer science applications).

A current wave of interest to this topic from the statistical physics community has been sparked by the work of Evans and Majumdar \cite{24} who showed that stochastic (Poisson) restart expedites diffusion-mediated search. After that it has been demonstrated on a number of different examples that a specially selected restart frequency makes it possible to minimize the average time for completing random search tasks \cite{25,30}. Also, recent development of a model-independent renewal approach, originally proposed for the purposes of describing the single enzyme kinetics \cite{51}, has provided a shortcut to the exact completion time statistics of an arbitrary stochastic process under an arbitrary restart protocol \cite{52,51}. This fruitful approach helped to reveal unexpected universality in statistics of optimally restarted processes \cite{53}, to establish remarkably simple sufficient conditions for when restart is beneficial \cite{53,55,56} and to rigorously quantify impact of restart on various statistical characteristics of random processes \cite{57,60}.

The natural course of development of the research field poses the following question to us: What, if any, are the fundamental limitations of the optimization via restart? The knowledge of the exact completion time distribution allows to determine the optimal restart strategy (which may be to not restart at all) and the corresponding best possible performance for a given stochastic process. In practice, however, the complete statistics of the completion time is usually unavailable, see, e.g., \cite{2,7,9,10,15,17,51}. The existing literature lacks understanding of how to evaluate the potential performance of restart based on some limited set of statistical characteristics of an observable process. In this Letter we fill this gap by exploring how much restart can lower the expected completion time of a stochastic process with partially specified properties. More specifically, we present the universal lower bound on the mean completion time respected by any stochastic process under an arbitrary restart protocol. Besides, we construct the universal upper bound on the mean completion time of generic stochastic process at optimal restart conditions. Both types of probabilistic inequalities are generalized to the high order statistical moments of random completion time. Being formulated in terms of easily interpreted statistical characteristics of an unperturbed stochastic process, the resulting bounds provide valuable insight into what restart can and cannot do. As a useful corollary, our analysis provides a novel sufficient condition for restart to be beneficial which requires very little information on the statistics of the random process of interest. Finally, we propose a broad generalization of the well-known inequality offering constraint on the relative fluctuation of
the expected completion time of optimally restarted processes.

Model formulation. Consider a generic stochastic process which ends after a random time \(T \) if allowed to take place without interruptions. Statistical properties of the variable \(T \) are described by the probability density \(P(T) \) with a proper normalization \(\int_0^\infty dTP(T) = 1 \). This implies that the process terminates in finite time with probability 1. As discussed below, our key results remain unchanged or require a trivial modification when one introduces the non-zero probability of never stopping.

The restart protocol \(R \) is characterised by a (possibly infinite) sequence of inter-restarts time intervals \(\tau_1, \tau_2, \ldots \). If the process is completed prior to the first restart event, the story ends there. Otherwise, the process will start from scratch and begin anew. Next, the process may either complete prior to the second restart or not, with the same rules. This procedure repeats until the process finally reaches completion. Importantly, we assume that protocol \(R \) is uncoupled from the process internal dynamics: the restart decisions do not use information on the current internal state of the process.

In the simplest case of strictly periodic protocol, which is of particular methodological importance as explained below, the process is restarted whenever \(\tau \) units of time pass. The expected value of the random completion time \(T_\tau \) of the process subject to such a restart procedure can be obtained by averaging of an appropriate renewal equation. The result is given by the following expression

\[
\langle T_\tau \rangle = \int_0^{\tau} P(T)TdT + \tau \int_0^{\infty} P(T)dT,
\]

which, thus, relates the expectation of the random completion time in the presence of periodic restart to the statistics of the "bare" (i.e. restart-free) process.

Restart performance is limited to a quarter of the harmonic mean completion time. First of all, we seek to derive inequality of the form \(\langle T_\tau \rangle \geq CT \), where \(T_\tau \) denotes the random completion time of the generic stochastic process under arbitrary restart protocol \(R \), \(T \) is expressed through some simple statistical characteristics of the original process (such as statistical moments, quantiles or mode of the probability density \(P(T) \)), and \(C \) is the universal positive constant which depends neither on specific form of \(P(T) \) nor on the particular restart schedule \(R \).

Previous works have shown the importance of relative fluctuation \(\sigma/\mu \), where \(\mu = \langle T \rangle \) and \(\sigma = \sqrt{(\langle T^2 \rangle - \langle T \rangle^2)} \), for the analysis of the potential response of stochastic process to restart. Namely, the inequality \(\sigma/\mu > 1 \) represents a sufficient condition for the existence of a restart protocol that reduces the expected completion time \([24, 28, 30] \). Given this result, let us first find out if knowledge of the mean value \(\mu \) and the standard deviation \(\sigma \) allows one to write a lower bound on the average performance of restart. Consider, probability density

\[
P(T) = p\delta(T - t_1) + (1 - p)\delta(T - t_2), \quad 0 \leq t_1 \leq t_2 \quad \text{and} \quad 0 \leq p \leq 1.
\]

Putting \(t_2 = \frac{\mu^2 + \sigma^2}{\mu} \), \(p = \frac{\sigma^2}{\mu^2 + \sigma^2} \), \(\tau = t_1 + 0 \) and \(t_1 \to 0 \), one immediately obtains From Eq. \(\langle T_\tau \rangle = t_2/p \to 0 \). We see that for the fixed values of \(\mu \) and \(\sigma \), the completion time \(\langle T_\tau \rangle \) can be arbitrarily small. Therefore, the pair \((\mu, \sigma) \) does not produce any non-trivial lower bound.

Our derivation of the desired lower bound limit is based on the special properties of the periodic restart strategy. As shown by Luby et al. \[2\] for discrete time case and generalized to continuous settings by Lorenz \[17\] (see also \[61\] for simpler and even more general proof), if you found a value \(\tau_* \geq 0 \) (probably \(\tau_* = +\infty \)) such that \(\langle T_\tau \rangle \leq \langle T_\tau \rangle \) for any \(\tau \geq 0 \), then \(\langle T_\tau \rangle \leq \langle T_\tau \rangle \) for all \(R \). In other words, optimally tuned periodic restart beats any other restart strategy. In addition, the same authors have proved (see also \[61\]) that the mean performance of an optimal periodic restart obeys the condition

\[
\langle T_\tau \rangle \geq \frac{1}{4} \min_\tau \frac{\tau}{Pr[T \leq \tau]}.
\]

Let us show that using Eq. \[3\] together with the optimal property of the periodic restart strategy leads to a simple performance bound of restart. Namely, applying Markov’s inequality \[4\] to the variable \(\omega = 1/T \) we find \(Pr[T \leq \tau] = Pr[\omega \geq \frac{1}{\tau}] \leq \tau(\omega) = \tau(\frac{1}{\tau}) \). Next, taking into account Eq. \[3\] one obtains \(\langle T_\tau \rangle \geq \frac{1}{4}h \), where \(h = \langle T^{-1} \rangle^{-1} \) is the harmonic mean completion time of the original process. And finally, since \(\langle T_\tau \rangle \geq \langle T_\tau \rangle \) for

![Figure 1. Diagram in the x-y plane, where x = h/(4(T_\tau)) and y = (T_\tau)/(2m), depicting relationship between mean completion time of an optimally restarted process (T_\tau), the median m and the harmonic mean h of the original process. As indicated in a legend, each point in these diagrams corresponds to a specified completion time distribution P(T). In accordance with Eqs. and and probabilistic inequality h ≤ 2m all points belong to the light orange region determined by the conditions 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, y ≤ 1/(4x).](image)
any \(R \), this yields

\[
\langle T_R \rangle \geq \frac{1}{4} h. \tag{3}
\]

No constraints have been imposed on the form of \(P(T) \), and, therefore, Eq. (3) is universally valid for any setting. What is more, this estimate remains valid also when stochastic process may have non-zero probability of never ending, if \(h \) is always understood as the harmonic mean completion time of the halting trials [63].

Particular case of smooth unimodal distribution.

Somewhat less general, but still informative, result can be obtained if we assume that the completion time distribution \(P(T) \) is smooth and exhibits single local maximum at some non-zero value of \(T \). This class of probability densities covers, in particular, vast number of random search models, see, e.g., Refs. [21][27][29][33][36][38][42][44][45]. The efficiency of any restart protocol in this case satisfies the inequality

\[
\langle T_R \rangle \geq \frac{1}{4} M, \tag{4}
\]

where \(M = \text{argmax}_T P(T) > 0 \) is the mode of the probability distribution \(P(T) \), i.e. the value of the random completion time \(T \) that occurs most frequently. To prove this result let us introduce \(\tau_0 = \text{argmin}_T \frac{\tau}{P(T | \tau \leq \tau)} \). Clearly, assumption \(M > 0 \) implies that \(\tau_0 > 0 \). Since the smooth function \(f(\tau) = \frac{\tau}{P(T | \tau \leq \tau)} \) attains its minimal value at \(\tau = \tau_0 \), one obtains \(df(\tau_0)/d\tau = 0 \) or, equivalently, \(P(\tau_0)\tau_0 = \int_0^{\tau_0} P(T)dT \). Next, as the unimodal function \(P(T) \) is non-decreasing on the interval form 0 to \(M \), this extrema condition implies the inequality \(\tau_0 \geq M \) and, therefore, \(\frac{\tau_0}{P(T_0 \leq \tau_0)} \geq \frac{M}{P(T_0 \leq \tau_0)} \geq M \). Together with Eq. (2) this yields inequality \(\langle T_R \rangle \geq \frac{1}{4} M \). Recalling that \(\langle T_R \rangle \geq \langle T_{\tau_0} \rangle \) for all \(R \), we then obtain Eq. (4). Note also, that if the probability distribution \(P(T) \) has multiple local maxima, then \(\langle T_R \rangle \geq \frac{1}{4} M^{\min} \), where \(M^{\min} \) is the leftmost mode. Moreover, similarly to Eq. (3), inequality (4) holds even for potentially non-stopping processes, with the obvious caveat that \(M \) should now be considered as the most frequent completion time of halting trials.

The twice median sets upper bound on the optimized mean completion time. Having considered the lower bounds, we now turn to the opposite question. How good is the best restart strategy? In other words, we wish to construct an inequality of the form \(\langle T_{\tau_0} \rangle \leq C T \), where the time scale \(T \) is determined by the properties of the original stochastic process, and \(C \) is the universal positive constant which depends neither on specific form of \(P(T) \) nor on the optimal restart period \(\tau_0 \).

It is easy to understand that the upper bound limit on optimal performance cannot be expressed via the harmonic mean \(h \) or the mode \(M \). Indeed, for the half-normal distribution \(P(T) = \frac{1}{\sqrt{2\pi}x} e^{-\frac{x^2}{2\sigma^2}} \) one has \(\tau_0 = +\infty \), so that \(\langle T_{\tau_0} \rangle = \langle T \rangle > 0 \), whereas \(h = M = 0 \). Therefore, inequalities of the form \(\langle T_{\tau_0} \rangle \leq C_1 h \) and \(\langle T_{\tau_0} \rangle \leq C_2 M \), where \(C_1 \) and \(C_2 \) are positive constants, cannot be universally valid.

The desired universal upper bound can be expressed in terms of the median completion time \(m \) of the original process obeying by definition the equation \(Pr[T \leq m] = 1/2 \). Indeed, taking into account that \(\langle T_{\tau_0} \rangle \leq \langle T_{\tau} \rangle \) for any \(\tau \geq 0 \), we obtain \(\langle T_{\tau_0} \rangle \leq \frac{\tau}{m} \). Substituting \(m \) for \(\tau \) in the last inequality one obtains

\[
\langle T_{\tau_0} \rangle \leq 2m. \tag{5}
\]

Thus, no matter how heavy the tails of \(P(T) \) are, in the presence of an optimally tuned periodic restart, the average completion time does not exceed twice the median of the unperturbed process. More generally, if the process has non-zero probability of never halting, we arrive at the estimate \(\langle T_{\tau_0} \rangle \leq 2m_1/q \), where \(m_1 \) denotes the median completion times of the halting trials, whereas \(q \) is the probability that process ends for a finite time [61].

Importantly, the bound dictated by Eq. (5) is sharp. Indeed, for \(P(T) = \frac{1}{2} s(T - t) + \frac{1}{2} s(T - 3t) \) one obtains \(m = t \) and \(\langle T_{\tau_0} \rangle = 2t \), where \(\tau_0 = t \). Note also that Eqs. (3) and (5) do not contradict each other since the relation \(h \leq 2m \) is always valid as shown in [61]. Also, Eq. (4) is in accord with Eq. (3) since \(M \leq 2m \) for any continuous unimodal probability distribution (see [61]).

Given this result, it is natural to ask if the median value can be used to construct the bottom bound of restart performance in the spirit of Eqs. (3) and (4). The answer is no. A simple counterexample demonstrating that the inequality \(\langle T_R \rangle \geq \frac{1}{4} M \) is invalid even if the original stochastic process is non-zero constant, cannot be valid is given by the Weibull distribution \(P(T) = \frac{1}{\lambda} T^{\kappa - 1} e^{-T/\lambda} \) with \(0 < \kappa < 1 \) for which \(\langle T \rangle = 0 \), where \(\tau_0 \to 0 \), and \(m > 0 \).

Beyond the mean performance. Inequality constraints given by Eqs. (3), (4) and (5) can be generalized to higher order statistical moments of random completion time. First of all, since \(T_R^{\kappa} \geq (\langle T_R \rangle)^{\kappa} \) for any natural \(k \) due to Jensen’s inequality [62], we immediately find from Eq. (3) that \(\sqrt[\kappa]{\langle T_R \rangle^{\kappa}} \geq \frac{1}{4} h \) for a generic stochastic process under an arbitrary restart protocol. Likewise, Eq. (4) trivially entails inequality \(\sqrt[\kappa]{\langle T_R \rangle^{\kappa}} \geq \frac{1}{4} M \) which is valid in the case of unimodal completion time distribution.

A similar extension of Eq.(5) is more tricky. It turns out that the statistical moments of the optimal completion time \(T_{\tau_0} \) satisfy the inequality

\[
\sqrt[k]{\langle T_{\tau_0}^k \rangle} \leq 2 \sqrt[k]{M}. \tag{6}
\]

To prove Eq. (6) let us assume that the process, which is being restarted periodically in an optimal way,
becomes subject to an additional restart protocol \(R_T \) characterized by random restart-intervals \(\tau_1, \tau_2, \ldots \) independently sampled from Gamma distribution \(\rho(\tau) = \frac{\beta^k}{\Gamma(k)} \tau^{k-1} e^{-\beta \tau} \) with shape parameter \(k \) and infinitesimally small rate parameter \(\beta \). In \([61]\) we show that this produces a deferential correction \(\langle T_{r_1+R_T}^k \rangle - \langle T_{r_1}^k \rangle \approx \frac{1}{k!} \left(\langle T_{r_1}^k \rangle - \tau^k \right) \beta^k \) to the mean completion time attained by the optimal periodic restart. Because of the dominance of a periodic restart over other restart strategies, one can be sure that this difference is positive, and therefore

\[
\frac{\langle T_{r_1}^k \rangle}{\langle T_{r_1}^k \rangle} < k!, \quad (7)
\]

Together with Eq. (5) this yields Eq. (6).

Numerical examples. For the sake of illustration we explored several probability distributions \(P(T) \), whose response to restart has been extensively discussed in the physical and computer science literature: first-passage time densities for one-dimensional \([24, 43]\) and two-dimensional \([27, 41, 43]\) diffusion processes, first-passage time density for one-dimensional drift-diffusion process \([30]\), first-passage time density for one-dimensional diffusion in logarithmic potential \([37]\), log-normal distribution \([15, 17, 22, 51, 55]\), hyper-Erlang distribution \([5, 23, 42, 64]\), hyper-exponential distribution \([5, 23, 52]\), and Pareto distribution \([6, 13, 17]\). The numerical parameters associated with the distributions are given in \([61]\). Numerical data for the average completion time at the optimally chosen frequency of periodic restart are summarized in the diagrams presented in Fig. 1. We see that all points fall into the region determined by Eqs. (3), (4) and (5) together with the inequalities \(h \leq 2m \) and \(M \leq 2m \).

Importantly, theoretical analyses presented above does not answer the question of whether the bounds determined by Eqs. (3) and (4) are sharp. Thus, one may expect, that the constant 1/4 entering the right-hand sides of these equations can potentially be replaced by one larger. Numerical data presented in Fig. 1 allow us to argue that the unknown best possible constants \(C_1 \) and \(C_2 \) in the inequality constraints \(\langle T_R \rangle \leq C_1 h \) and \(\langle T_R \rangle \leq C_2 M \) representing the exact lower bounds on \(\langle T_R \rangle \) lie in the ranges \(1/4 \leq C_1 < 5/4 \) and \(1/4 \leq C_2 < 5/3 \).

Corollary 1: Novel criterion of restart efficiency. A notable implication of the upper bound dictated by Eq. (5) is a previously unknown sufficient condition of when restart is helpful in facilitating the process completion. Namely, as follows from Eq. (5), inequality \(\mu/m > 2 \), where \(\mu = \langle T \rangle \), guarantees that there exists finite restart period decreasing the expected completion time. What is particularly interesting is that this simple inequality makes it possible to capture the benefit of restarting in those cases when analysis of the relative fluctuation cannot. In Fig. 2 we compare the applicability of two criteria, \(\mu/m > 2 \) and \(\sigma/\mu > 1 \), using the mix of two delta-functions as a model distribution. Clearly, there is a region of parameters, where the relative fluctuation is less than unity, \(\sigma/\mu < 1 \), while \(\mu/m > 2 \). More generally, exploiting the well-known probabilistic inequality \(|m - m| \leq \sigma^2/m \) \([65–67]\), it is easy to see that the condition \(\mu/m > 2 \) implies that \(\sigma/\mu > 1/2 \). What is more, the numerical constant 1/2 cannot be replaced by a larger one: in \([61]\) we construct an example of probability density \(P(T) \) with \(\sigma/\mu \to 1/2 \) and \(\mu/m > 2 \).

At the same time it should be noted that the opposite scenario, i.e. \(\sigma/\mu > 1 \) and \(\mu/m < 2 \) is also possible (see Fig. 2). These observations suggest that, since both conditions, \(\sigma/\mu > 1 \) and \(\mu/m > 2 \), are sufficient, but by no means necessary, in practice they should be used together to compensate (at least partially) each other’s shortcomings.

Corollary 2: Generalized fluctuation relation for optimal restart. Let us also note that Eq. (7), which we have derived for auxiliary purposes, is interesting in itself as it represents a higher-order generalization of the well-known inequality constraint \(\langle T_{r_1}^2 \rangle/\langle T_{r_1}^3 \rangle \leq 2 \) first derived by Pal and Reuveni \([51]\). Interestingly, for \(k = 3 \), we find from Eq. (7) an estimate \(\langle T_{r_1}^2 \rangle/\langle T_{r_1}^3 \rangle^3 \leq 6 \) emphasizing the contrast between best periodic protocol and optimally tuned Poisson restart for which one has opposite inequality \(\langle T_{r_1}^2 \rangle/\langle T_{r_1}^3 \rangle^3 \geq 6 \) provided \(0 < r_* < +\infty \), where \(r_* \) is the optimal restart rate \([61]\).
Conclusion and outlook. Revealing explicit performance bounds is crucial in many areas of science and engineering. Say, establishment of the Carnot cycle efficiency [68] played a fundamental role for the development of combustion engines and thermal power plants as it sets a bound on the efficiency of any thermodynamic heat engine. Similarly, Shannon’s limit of information capacity [69] has become a guiding principle in the design of communication systems. Although optimization via restart is widely used in the practice of computer programming and represents active field of academic research in physics, the question of performance limits of this control tool has not been addressed thus far. In this study, we expressed these limits in terms of simple statistical metrics that can be easily estimated based on finite samples of the process completion time.

Importantly, the presented analysis was grounded on the assumption of instantaneous restart events. Although this scenario covers overwhelming majority of the model problems considered in the literature, it should be kept in mind that in real-life settings restart may be accompanied by some time penalty [51, 53, 56, 70, 76]. Say, in the context of single molecule enzyme kinetics, where restart occurs naturally by virtue of intermediate dissociation, some time is required to enzyme which u-binds from its substrate to find a new one in surrounding solution [51, 53, 71]. Similarly, restart of computer program typically involves a time overhead. Also, models with noninstantaneous restarts provide more realistic pictures of colloidal particle diffusion with resetting [76]. How does accounting for delays modifies the bounds constructed here? The straightforward generalization of arguments leading to Eq. [5] brings us to the following simple result (see [61]): \(\langle T_{\tau} \rangle \leq 2m + 2\langle T_{on} \rangle \), where \(\langle T_{on} \rangle \) is the expectation of generally distributed time penalty which collectively accounts for any delays that may arise prior to completion attempt. A similar generalization of the lower bounds given by Eqs. [3] and [4] is an important (and apparently sophisticated) task for future research.

The work was supported by the Russian Science Foundation, project no. 22-72-10052.

Supplementary Material

I. DERIVATION OF EQ. (1) IN THE MAIN TEXT

Let us consider a more general situation than the one described in the main text. Namely, we assume that process initiation and each restart event entail time delays representing statistically independent realizations of some generally distributed random variable \(T_{on} \). Then, the random completion time \(T_\tau \) in the presence of regular restart with period \(\tau \) obeys the stochastic renewal equation [54]

\[
T_{\tau} = T_{on} + TI(T < \tau) + (\tau + T'_{\tau})I(T \geq \tau), \tag{8}
\]

where \(T'_{\tau} \) is a statistically independent copy of \(T_{\tau} \), and \(I(...) \) denotes the indicator random variable which is equal to unity when the inequality in its argument is justified and is zero otherwise. Performing averaging over the statistics of \(T \) and \(T_{on} \) we obtain

\[
\langle T_{\tau} \rangle = \langle T_{on} \rangle + \langle TI(T < \tau) \rangle + \tau \langle I(T \geq \tau) \rangle + \langle T'_{\tau}I(T \geq \tau) \rangle. \tag{9}
\]

Since random variables \(T, T'_{\tau} \) and \(T_{on} \) are statistically independent we can rewritte

\[
\langle T_{\tau} \rangle = \langle T_{on} \rangle + \langle TI(T < \tau) \rangle + \tau \langle I(T \geq \tau) \rangle + \langle T'_{\tau} \rangle \langle I(T \geq \tau) \rangle. \tag{10}
\]

Next, taking into account that \(\langle T'_{\tau} \rangle = \langle T_{\tau} \rangle \) one obtains

\[
\langle T_{\tau} \rangle = \frac{\langle T_{on} \rangle + \langle TI(T < \tau) \rangle + \tau \langle I(T \geq \tau) \rangle}{\langle I(T \geq \tau) \rangle}. \tag{11}
\]

If the original stochastic process halts with unit probability, then the random variable \(T \) is described by probability density \(P(T) \) with standard normalization \(\int_0^\infty dTP(T) = 1 \) and we find \(\langle TI(T < \tau) \rangle = \int_0^\tau P(T)TdT, \langle I(T \geq \tau) \rangle = \int_\tau^\infty P(T)dT, \) and \(1 - \langle I(T \geq \tau) \rangle = \int_0^\tau P(T)dT \). Substituting these expressions into Eq. [11] gives

\[
\langle T_{\tau} \rangle = \frac{\langle T_{on} \rangle + \int_0^\tau P(T)TdT + \tau \int_\tau^\infty P(T)dT}{\int_0^\infty P(T)dT}. \tag{12}
\]

At \(T_{on} = 0 \) this result coincides with Eq. (1) in the main text.
II. SIMPLE PROOF OF GLOBAL DOMINANCE OF STRICTLY REGULAR RESTART

Luby et al. [2] showed that strictly periodic restart strategy is universally optimal for discrete completion time distributions. Pal and Reuveni [54] proved dominance of strictly periodic restart over any stochastic restart protocol with independent and identically distributed inter-restarts intervals in a continuous setting. Finally, the global dominance of strictly periodic restart in the space of all possible restart protocols for continuous case follows from Lemma 3 in Lorenz’s paper [17]. In order to make the presentation of our results complete and intuitively clear, here we developed a more simple line of arguments in support of the optimality of periodic restart. Noteworthy, our proof is not only simpler, but also more general than the previous ones, since we take into account a non-zero delay T_{on} before starting/restarting.

Let τ_* be the best period of regular restart protocol for a given stochastic process, i.e.

$$\langle T_{\tau_*} \rangle \leq \langle T_{\tau} \rangle$$ \hspace{1cm} (13)

for any $\tau \geq 0$. Also, let $R_* = \{\tau_1^*, \tau_2^*, \ldots\}$ be an optimal restart protocol for the same process. By the definition of optimal protocol this means that

$$\langle T_{R_*} \rangle \leq \langle T_{R} \rangle$$ \hspace{1cm} (14)

for any R. Below we show that $\langle T_{\tau_*} \rangle = \langle T_{R_*} \rangle$.

The random completion time in the presence of restart events scheduled accordingly to the protocol R_* can be represented as

$$T_{R_*} = T_{on} + TI(T < \tau_1^*) + (\tau_1^* + T_{R1})I(T \geq \tau_1^*)$$ \hspace{1cm} (15)

where $R_* = \{\tau_2^*, \tau_3^*, \ldots\}$. Averaging over the statistics of original process yields

$$\langle T_{R_*} \rangle = \langle T_{on} \rangle + \langle TI(T < \tau_1^*) \rangle + \tau_1^*\langle I(T \geq \tau_1^*) \rangle = \langle T_{R_{\tau_1}} \rangle$$ \hspace{1cm} (16)

where we exploited statistical independence of T and T_{R1}. Since R_* is optimal, then $\langle T_{R_{\tau_1}} \rangle \geq \langle T_{\tau_*} \rangle$, and, therefore,

$$\langle T_{R_*} \rangle \geq \langle T_{on} \rangle + \langle TI(T < \tau_1^*) \rangle + \tau_1^*\langle I(T \geq \tau_1^*) \rangle = \langle T_{R_1} \rangle$$ \hspace{1cm} (17)

and

$$\langle T_{R_*} \rangle \geq \frac{\langle T_{on} \rangle + \langle TI(T < \tau_1^*) \rangle + \tau_1^*\langle I(T \geq \tau_1^*) \rangle}{\langle I(T < \tau_1^*) \rangle}$$ \hspace{1cm} (18)

Comparing right-hand sides of Eq. (18) and Eq. (11), one obtains

$$\langle T_{R_*} \rangle \geq \langle T_{\tau_1} \rangle.$$ \hspace{1cm} (19)

From Eqs. (13), (14) and (19) we may conclude that $\langle T_{R_*} \rangle = \langle T_{\tau_*} \rangle$, and, therefore, $\langle T_{\tau_*} \rangle \leq \langle T_{R} \rangle$ for any R.

III. DERIVATION OF EQ. (2) IN MAIN TEXT

Luby et al. [2] stated Eq. (2) from the main text for discrete probability distributions. More recently, Lorenz [17] rigorously showed this property for continuous distributions. Here we briefly remind the arguments presented in [17]. Note that in this part of analysis we adopt $T_{on} = 0$.

If $\langle T_{\tau_*} \rangle \geq \frac{\tilde{T} \tau}{2Pr[\tilde{T} \leq \tau]}$, then the inequality $\langle T_{\tau_*} \rangle \geq \frac{1}{2} \min_{T \leq \tau} \frac{\tau}{Pr[T \leq \tau]}$ is evident.

Next, we assume that $\langle T_{\tau_*} \rangle < \frac{\tilde{T} \tau}{2Pr[\tilde{T} \leq \tau]}$. Let us introduce a variable $\tilde{T} \equiv \min(T, \tau_*)$. It follows from Eq. (11) that $\langle T_{\tau_*} \rangle = \frac{\langle \min(T, \tau_*) \rangle}{Pr[\tilde{T} \leq \tau]}$, and, therefore, $\langle T_{\tau_*} \rangle = \Pr[T \leq \tau_*]$. Next, due to the assumption $\tau_* > 2\langle T_{\tau_*} \rangle Pr[\tilde{T} \leq \tau_*]$ and the Markov’s inequality $Pr[\tilde{T} > 2\langle \tilde{T} \rangle] \leq \frac{1}{2}$, we find $Pr[T > 2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]] = Pr[\tilde{T} > 2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]] = Pr[\tilde{T} > 2\langle \tilde{T} \rangle] \leq \frac{1}{2}$. Therefore

$$Pr[T \leq 2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]] \geq \frac{1}{2}.$$ \hspace{1cm} (20)

Now, let us denote $t \equiv 2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]$. It follows from the inequalities (20) and $Pr[T \leq \tau] \leq 1$ that

$$\min_{T \leq \tau} \frac{\tau}{Pr[T \leq \tau]} \leq t = \frac{2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]}{Pr[T \leq 2\langle T_{\tau_*} \rangle Pr[T \leq \tau_*]],} \leq 4\langle T_{\tau_*} \rangle.$$ \hspace{1cm} (21)

This completes the proof.
Equations (3) and (5) do not contradict each other since \(h \leq 2m \) for any probability density \(P(T) \). Indeed, applying Markov’s inequality we find \(1/2 = \Pr[T \leq m] = \Pr[\omega \geq \frac{1}{m}] \leq \langle \omega \rangle = T_{1/2} / h \), where \(\omega = 1/T \).

Also, Eq. (4) does not contradict Eq. (5) since \(M \leq 2m \) for any continuous unimodal probability density \(P(T) \). To prove this, assume the contrary, that is, let \(M > 2m \) be true for some non-negative random variable \(T \). By the virtue of definition we have \(\int_m^M P(T) dT = \int_m^\infty P(T) dT = 1/2 \). Further, it follows from the definition of the mode that the function \(P(T) \) is non-decreasing on the interval \([0, M]\). Then, on the one hand \(\int_m^M P(T) dT > \int_m^M P(T) dT \geq \int_0^m P(T) dT = 1/2 \), and on the other \(\int_m^M P(T) dT = \int_m^\infty P(T) dT = 1/2 \). We got a contradiction.

One may expect that this is not the first time the simple relations \(h \leq 2m \) and \(M \leq 2m \) have been proven, but we have not found an appropriate reference.

V. Derivation of Eq. (6) in Main Text

Assume that a stochastic process with finite mean completion time \(\langle T \rangle \) becomes subject to the stochastic restart protocol \(R_T = \tau_1, \tau_2, \ldots \), where random intervals between instantaneous restarts are independently sampled from the Gamma distribution \(\rho(\tau) = \frac{e^{-\beta \tau}}{\Gamma(k)} \) with differentially small rate parameter \(\beta \). Let us investigate how this modifies the average completion time.

In the presence of the stochastic restart, the random completion time \(T_{R_T} \) obeys the following renewal equation

\[
T_{R_T} = TI(T < \tau) + (\tau + T'_{R_T}) \mathbb{I}(T \geq \tau),
\]

(22)

where \(T'_{R_T} \) is a statistically independent replica of \(T_{R_T} \). Let us average this relation over the statistics of original process and of the inter-restart intervals. This gives

\[
\langle T_{R_T} \rangle = \langle TI(T < \tau) \rangle + \langle \tau \mathbb{I}(T \geq \tau) \rangle + \langle T_{R_T} \mathbb{I}(T \geq \tau) \rangle.
\]

(23)

Since \(\langle TI(T < \tau) \rangle = \int_0^\infty dT \mathbb{E}(T) \int_0^\tau d\tau \rho(\tau), \langle \tau \mathbb{I}(T \geq \tau) \rangle = \int_0^\infty dT \int_\tau^\infty d\tau \rho(\tau) \cdot \tau, \langle T_{R_T} \mathbb{I}(T \geq \tau) \rangle = \langle T_{R_T} \rangle / \langle I(T \geq \tau) \rangle, 1 - \langle I(T \geq \tau) \rangle = \int_0^\infty dT \int_\tau^\infty d\tau \rho(\tau) \) and \(\langle T_{R_T} \rangle = \langle T_{R_T} \rangle \), we find the closed-form expression for the expected completion time

\[
\langle T_{R_T} \rangle = \frac{\int_0^\infty dT \mathbb{E}(T) \int_0^\tau d\tau \rho(\tau) + \int_0^\infty dT \mathbb{E}(T) \int_\tau^\infty d\tau \rho(\tau) \cdot \tau}{\int_0^\infty dT \mathbb{E}(T) \int_\tau^\infty d\tau \rho(\tau)}.
\]

(24)

In leading order in the small parameter \(\beta \) we obtain

\[
\int_0^\infty dT \mathbb{E}(T) \int_T^\infty d\tau \rho(\tau) = \langle T \rangle - \int_0^\infty dT \mathbb{E}(T) \int_0^T d\tau \rho(\tau) \approx \langle T \rangle - \beta^k k! \langle (T + 1)^{k+1} \rangle.
\]

(25)

\[
\approx \langle T \rangle - \beta^k \frac{1}{(k-1)!} \int_0^\infty dT \mathbb{E}(T) \int_0^T d\tau \tau^{k-1} = \langle T \rangle - \beta^k \frac{1}{k!} \langle (T + 1)^{k+1} \rangle.
\]

(26)

\[
\int_0^\infty dT \mathbb{E}(T) \int_0^T d\tau \rho(\tau) \tau \approx \beta^k \frac{1}{(k-1)!} \int_0^\infty dT \mathbb{E}(T) \int_0^T d\tau \tau^{k-1} = \frac{\beta^k}{(k+1)!} \langle (T + 1)^{k+1} \rangle.
\]

(27)

\[
\int_0^\infty dT \mathbb{E}(T) \int_T^\infty d\tau \rho(\tau) \approx 1 - \int_0^\infty dT \mathbb{E}(T) \int_0^T d\tau \rho(\tau) \approx 1 - \beta^k \frac{1}{k!} \langle (T + 1)^{k+1} \rangle.
\]

(28)

and, therefore,

\[
\langle T_{R_T} \rangle \approx \langle T \rangle + \frac{1}{k!} \left(\langle T \rangle \langle (T + 1)^{k+1} \rangle - \frac{1}{k+1} \langle (T + 1)^{k+1} \rangle \right) \beta^k.
\]

(29)

Now suppose that the stochastic restart protocol is applied to a process that is already subject to optimal periodic restart. Equation (29) tells us that the resulting mean completion time is given by \(\langle T_{R_T+R_T} \rangle = \langle T_{R_T} \rangle + \frac{1}{k!} \left(\langle T_{R_T} \rangle \langle (T + 1)^{k+1} \rangle - \frac{1}{k+1} \langle (T + 1)^{k+1} \rangle \right) \beta^k. \) Because of the dominance of a periodic restart over other restart strategies, one can be sure that \(\langle T_{R_T+R_T} \rangle \geq \langle T_{R_T} \rangle \), and therefore \(\langle T_{R_T+R_T} \rangle \leq \langle T_{R_T+R_T} \rangle \leq (k+1)/\langle T_{R_T} \rangle \langle (T + 1)^{k+1} \rangle \) for any natural \(k \). This immediately implies Eq. (6).
VI. EXAMPLE OF DISTRIBUTION WITH $\sigma/\mu = 1/2$ AND $\mu/m > 2$

Consider a distribution of the form

$$P(T) = \left(\frac{1}{2} + \varepsilon\right) \cdot \delta(T - t_1) + \left(\frac{1}{2} - \varepsilon\right) \cdot \delta(T - (3 + 6\varepsilon) \cdot t_1),$$ \hfill (31)$$

where $0 < \varepsilon \ll 1$ and $t_1 > 0$. Its median completion time m is equal to t_1, and its mean is given by

$$\mu \equiv <T> = \left(\frac{1}{2} + \varepsilon\right) \cdot t_1 + \left(\frac{1}{2} - \varepsilon\right) \cdot t_1 \cdot (3 + 6\varepsilon) = t_1 \cdot (2 + \varepsilon - 6\varepsilon^2) > 2m,$$ \hfill (32)$$

where the last inequality is fulfilled due to positivity and infinitesimality of ε. Ratio of standard deviation to the mean is thus given by

$$\frac{\sigma}{\mu} = \frac{(1 + 3\varepsilon) \cdot \sqrt{1 - 4\varepsilon^2}}{2 + \varepsilon - 6\varepsilon^2} = \frac{1 + 3\varepsilon}{2} \cdot (1 - 2\varepsilon^2 + O(\varepsilon^4)) \cdot \left(1 - \varepsilon + \frac{13}{4} \varepsilon^2 + O(\varepsilon^3)\right) = \frac{1}{2} + \frac{5\varepsilon}{4} + O(\varepsilon^2) \to \frac{1}{2}. \hfill (33)$$

VII. DETAILS OF DISTRIBUTIONS USED IN NUMERICAL SIMULATIONS

Probability distributions, considered in Fig. 1 in main text, and their corresponding numerical parameters are as follows. In all investigated cases restart is beneficial, i.e. there exists τ_c such that $<T_{\tau_c}> < <T>$.

1) First-passage-time distribution for 1d-diffusion process (Lévi-Smirnov distribution) \[24\]:

$$P(T) = \frac{L}{2\sqrt{\pi DT^{3/2}}} \exp\left(-\frac{L^2}{4DT}\right),$$ \hfill (34)$$
calculated for $L^2/D = 1$, where D is the diffusion coefficient, and L is the initial distance to the target.

2) First-passage-time distribution for 2d-diffusion process \[11\]:

$$P(T) = \frac{2}{\pi} \int_{0}^{\infty} dx \frac{e^{-DTx^2/R^2}}{x} \cdot \frac{J_0\left(\frac{x}{R}\right) \cdot J_0\left(\frac{x}{R}\right) \cdot Y_0(x)}{J_0^2(x) + Y_0^2(x)},$$ \hfill (35)$$

where $J_0(x)$ and $Y_0(x)$ are the Bessel functions of the first and the second kind respectively. Calculated for $D = 1$ and $R/r = 0.4$, where D is the diffusion coefficient, r - is the radius of absorbing disk and R - distance between starting position of the particle and centre of the disk.

3) First-passage time distribution for 1d-diffusion in logarithmic potential \[37\]:

$$P(T) = \frac{T^{-(\nu+1)}}{\Gamma(\nu)} \left(\frac{x_0^2}{4D}\right)^\nu \exp\left(-\frac{x_0^2}{4DT}\right),$$ \hfill (36)$$
calculated for $\nu = 3$, $x_0 = 1$, $D = 1$.

4) First-passage time distribution for drift-diffusion process to an absorbing boundary \[36\]:

$$P(T) = \frac{L}{\sqrt{4\pi DT^3}} \exp\left[-\frac{(L - VT)^2}{4DT}\right],$$ \hfill (37)$$
calculated for $L = 2$, $V = 0.5$, $D = 1$.

5) Mix of two exponential distributions (double exponential distribution):

$$P(T) = pk_1e^{-k_1T} + (1-p)k_2e^{-k_2T},$$ \hfill (38)$$
calculated for $(k_1 = 0.5, k_2 = 2, p = 1/3)$, and $(k_1 = 1, k_2 = 10.25, p = 0.1025)$.

6) Mix of three exponential distributions (triple exponential distribution):

$$P(T) = p_1k_1e^{-k_1T} + p_2k_2e^{-k_2T} + (1-p_1-p_2)k_3e^{-k_3T},$$ \hfill (39)$$
calculated for $k_1 = 1, p_1 = 0.5, k_2 = 6, p_2 = 0.2, k_3 = 15$.
7) Mix of two Erlang distributions (double Erlang distribution):

\[P(T) = pk_1^2Te^{-k_1T} + (1-p)k_2^2Te^{-k_2T}, \]
\((40) \)

calculated for \((k_1 = 22.88, k_2 = 1.42, p = 0.31)\), and \((k_1 = 1.42, k_2 = 22.88, p = 0.31)\),

8) Log-Normal distribution:

\[P(T) = \frac{1}{T\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln(T) - \mu)^2}{2\sigma^2}\right), \]
\((41) \)

calculated for \((\mu = 0, \sigma = 1)\) and \((\mu = 0, \sigma = 0.75)\).

9) Pareto distribution:

\[P(T) = \begin{cases} \alpha k^{\alpha - 1}T^{-\alpha} & T \geq k, \\ 0 & T < k, \end{cases} \]
\((42) \)

calculated for \((k = 1, \alpha = 1)\) and \((k = 1, \alpha = 3)\).

10) Sum of two delta functions:

\[P(T) = \frac{1}{2}\delta(T-t) + \frac{1}{2}\delta(T-3t). \]
\((43) \)

VIII. GENERALIZATION OF EQ. (5) TO THE CASE OF NON-INSTANTANEOUS RESTARTS AND NON-ZERO PROBABILITY OF NON-STOPPING

Here we generalize Eq. (5) from the main text assuming that (a) the original stochastic process ends for finite time with probability \(0 < q \leq 1\), and (b) any start/restart event is accompanied by a random time penalty \(T_{on}\).

Obviously, Eq. (11) can be rewritten as

\[\langle T \rangle = \langle T_{on} \rangle + \min(T, \tau) Pr[T < \tau], \]
\((44) \)

where \(\min(T, \tau)\) is the minimum of \(T\) and \(\tau\) and we used the identity \(\langle I(T < \tau) \rangle = Pr[T < \tau]\). Next, since \(\langle T_{r*} \rangle \leq \langle T_r \rangle\) and \(\min(T, \tau) \leq \tau\), one immediately obtains an estimate

\[\langle T_{r*} \rangle \leq \tau + \langle T_{on} \rangle Pr[T < \tau]. \]
\((45) \)

Let us denote as \(m_s\) the median completion time of the halting realizations. Substituting \(m_s\) for \(\tau\) in the last inequality yields

\[\langle T_{r*} \rangle \leq \frac{2(m_s + \langle T_{on} \rangle)}{q}, \]
\((46) \)

where we took into account that \(Pr[T < m_s] = \frac{1}{2} \times q\).

At \(q = 1\) and \(T_{on} = 0\), Eq. (46) reduces to Eq. (5) in the main text. The special cases \(q < 1\), \(T_{on} = 0\) and \(q = 1, T_{on} > 0\) enter the main text as the inline formulas.

IX. DERIVATION OF INEQUALITY \(\langle T_{r*}^3 \rangle \geq 6\langle T_{r*} \rangle^3\) FOR OPTIMALY TUNED POISSON RESTART

The mean completion time of the process subject to Poisson restart at rate \(r\) is equal to (see [53])

\[\langle T_r \rangle = \frac{1 - \hat{P}(r)}{rP(r)}, \]
\((47) \)

where \(\hat{P}(r) = \int_0^\infty dTP(T)e^{-rT}\) is the Laplace transform of the probability density \(P(T)\).
Let \(r_* \) be the optimal restart rate bringing \(\langle T_r \rangle \) to a minimum so that
\[
\frac{d\langle T_{r_*} \rangle}{dr} = 0, \tag{48}
\]
and
\[
\frac{d^2\langle T_{r_*} \rangle}{dr^2} \geq 0. \tag{49}
\]

Let us assume that the process, which is being restarted at rate \(r_* \), becomes subject to additional stochastic (Poisson) restart events with infinitesimally small rate \(\delta r \). Due to the additive property of Poisson events the resulting performance is given by
\[
\langle T_{r_*+\delta r} \rangle = \langle T_{r_*} \rangle + \delta r \frac{d\langle T_{r_*} \rangle}{dr} + \delta r^2 \frac{d^2\langle T_{r_*} \rangle}{dr^2} + o(\delta r^2). \tag{50}
\]
At the same time, using Eq. (47) we obtain
\[
\langle T_{r_*+\delta r} \rangle = 1 - \frac{\hat{P}_{r_*}(\delta r)}{\delta r \hat{P}_{r_*}(0)} = \frac{1}{\delta r} \int_0^\infty e^{-\delta r T_{r_*}} P_{r_*}(T_{r_*})dT_{r_*} = \langle T_{r_*} \rangle + \delta r \left(\langle T_{r_*} \rangle^2 - \frac{1}{2} \langle T_{r_*}^2 \rangle \right) + \delta r^2 \left(\frac{1}{6} \langle T_{r_*}^3 \rangle - \frac{1}{2} \langle T_{r_*}^2 \rangle \langle T_{r_*} \rangle + \langle T_{r_*} \rangle^3 \right) + o(\delta r^2), \tag{51}
\]
where \(P_{r_*}(T_{r_*}) \) denotes the probability density of the random completion time under optimal Poisson restart. and \(\hat{P}_{r_*}(r) = \int_0^\infty e^{-r T_{r_*}} P_{r_*}(T_{r_*})dT_{r_*} \) is its Laplace transform.

Comparing Eqs. (50) and (51) one obtains \(\frac{d\langle T_{r_*} \rangle}{dr} = \langle T_{r_*} \rangle^2 - \frac{1}{2} \langle T_{r_*}^2 \rangle \) and \(\frac{d^2\langle T_{r_*} \rangle}{dr^2} = \frac{1}{6} \langle T_{r_*}^3 \rangle - \langle T_{r_*} \rangle \langle T_{r_*} \rangle^2 + \langle T_{r_*} \rangle^3 \). Substituting these relations into Eqs. (48) and (49) yields
\[
\langle T_{r_*}^3 \rangle \geq 6 \langle T_{r_*} \rangle^3. \tag{52}
\]

[1] H. Alt, L. Guibas, K. Mehlhorn, R. Karp, and A. Wigderson, A method for obtaining randomized algorithms with small tail probabilities. Technical Report TR-91-057, International Computer Science Institute, Berkeley, September 1991.

[2] M. Luby, A. Sinclair, and D. Zuckerman, Optimal speedup of Las Vegas algorithms, Inf. Proc. Lett. 47(4), 173-180 (1993).

[3] Gomes, C. P., Selman, B., and Crato, N. (1997, October). Heavy-tailed distributions in combinatorial search. In International Conference on Principles and Practice of Constraint Programming (pp. 121-135). Springer, Berlin, Heidelberg.

[4] Montanari, A., and Zecchina, R. (2002). Optimizing searches via rare events. Physical review letters, 88(17), 178701.

[5] Van Moorsel, A. P., and Wolter, K. (2004, September). Analysis and algorithms for restart. In First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. (pp. 195-204). IEEE.

[6] H. Wu, (2006). Randomization and restart strategies (Master’s thesis, University of Waterloo).

[7] Wu, H., and Beek, P. V. (2007, September). On universal restart strategies for backtracking search. In International Conference on Principles and Practice of Constraint Programming (pp. 681-695). Springer, Berlin, Heidelberg.

[8] Huang, J. (2007, January). The Effect of Restarts on the Efficiency of Clause Learning. In IJCAI (Vol. 7, pp. 2318-2323).

[9] Streeter, M., Golovin, D., and Smith, S. F. (2007, January). Restart schedules for ensembles of problem instances. In AAAI (pp. 1204-1210).

[10] Gagliolo, M., and Schmidhuber, J. (2007, January). Learning Restart Strategies. In IJCAI (pp. 792-797).

[11] Wolter, K. (2008). Stochastic models for restart, rejuvenation and checkpointing. Technical report, Habilitation Thesis, Humboldt-University, Institut Informatik, Berlin.

[12] Wedge, N. A., and Branicky, M. S. (2008, July). Heavy-tailed runtimes and restarts in rapidly-exploring random trees. In Twenty-third AAAI conference on artificial intelligence (pp. 127-133).

[13] Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability. IOS Press (2009)

[14] Roulet, V., and d’Aspremont, A. (2017). Sharpness, restart and acceleration. Advances in Neural Information Processing Systems, 30.

[15] Lorenz, J. H. (2018, January). Runtime distributions and criteria for restarts. In International Conference on Current Trends in Theory and Practice of Informatics (pp. 493-507). Edizioni della Normale, Cham.

[16] Lorenz, J. H., and Nickler, J. (2019). The Potential of Restarts for ProbSAT. arXiv preprint arXiv:1904.11757.
[17] Lorenz, J. H. (2021). Restart Strategies in a Continuous Setting. Theory of Computing Systems, 1-22.
[18] Schulte, C., Tack, G., and Lagerkvist, M. Z. (2010). Modeling and programming with gecode. Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, 1.
[19] Cire, A., Kadioglu, S., and Sellmann, M. (2014, June). Parallel restarted search. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 28, No. 1).
[20] Amadini, R., Gabbrielli, M., and Mauro, J. (2018). SUNNY-CP and the MiniZinc challenge. Theory and Practice of Logic Programming, 18(1), 81-96.
[21] Wallace, M. (2020). Search Control in MiniZinc. In Building Decision Support Systems (pp. 165-175). Springer, Cham.
[22] Schroeder, M., and Buro, L. (2001). Does the restart method work? Preliminary Results on Efficiency Improvements for Interactions of Web-agents. In Proceedings of the Workshop on Infrastructure for Agents, MAS, and Scalable MAS at the Conference Autonomous Agents.
[23] Van Moorsel, A. P., and Wolter, K. (2006). Analysis of restart mechanisms in software systems. IEEE Transactions on Software Engineering, 32(8), 547-558.
[24] M.R. Evans and S.N. Majumdar, Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601 (2011).
[25] M. R. Evans and S. N. Majumdar, Diffusion with optimal resetting, J. Phys. A 44(43), 435001 (2011).
[26] J. Whitehouse, M. R. Evans, and S. N. Majumdar, Effect of partial absorption on diffusion with resetting, Phys. Rev. E 87(2), 022118 (2013).
[27] M. R. Evans and S. N. Majumdar, Diffusion with resetting in arbitrary spatial dimension, J. Phys. A 47(28), 285001 (2014).
[28] L. Kusmierz, S. N. Majumdar, S. Sabhapandit, and G. Schehr, First order transition for the optimal search time of a Brownian particle with resetting, Phys. Rev. Lett. 113(22), 220602 (2014).
[29] L. Kusmierz and E. Gudowska-Nowak, Optimal first-time resetting in a Brownian particle with resetting, Phys. Rev. E 92(5), 052127 (2015).
[30] A. Pal, A. Kundu, and M.R. Evans, Diffusion under time-dependent resetting, J. Phys. A 49(22), 225001 (2016).
[31] S. Eule, and J. J. Metzger, Non-equilibrium steady states of stochastic processes with intermittent resetting, New Journal of Physics 18(3), 033006 (2016).
[32] A. Nagar and S. Gupta, Diffusion with stochastic resetting at power-law times, Phys. Rev. E 93(6), 060102 (2016).
[33] Evans, M. R., and Majumdar, S. N. (2018). Run and tumble particle under resetting: a renewal approach. Journal of Physics A: Mathematical and Theoretical, 51(47), 475003.
[34] Chechkin, A., and Sokolov, I. (2018). Random search with resetting: a unified renewal approach. Physical review letters, 121(5), 050601.
[35] L. Kusmierz, and Toyozumi, T. (2019). Robust random search with scale-free stochastic resetting. Physical Review E, 100(3), 032110.
[36] Ray, S., Mondal, D., and Reuveni, S. (2019). Péclet number governs transition to acceleratory restart in drift-diffusion. Journal of Physics A: Mathematical and Theoretical, 52(25), 255002.
[37] Ray, S., and Reuveni, S. (2020). Diffusion with resetting in a logarithmic potential. The Journal of chemical physics, 152(23), 234110.
[38] Singh, P. (2020). Random acceleration process under stochastic resetting. Journal of Physics A: Mathematical and Theoretical, 53(40), 405005.
[39] Ahmad, S., and Das, D. (2020). Role of dimensions in first passage of a diffusing particle under stochastic resetting and attractive bias. Physical Review E, 102(3), 032145.
[40] Radice, M. (2021). One-dimensional telegraphic process with noninstantaneous stochastic resetting. Physical Review E, 104(4), 044126.
[41] Faisant, F., Besga, B., Petrosyan, A., Ciliberto, S., and Majumdar, S. N. (2021). Optimal mean first-passage time of a Brownian searcher with resetting in one and two dimensions: experiments, theory and numerical tests. Journal of Statistical Mechanics: Theory and Experiment, 2021(11), 113203.
[42] Abdoli, I., and Sharma, A. (2021). Stochastic resetting of active Brownian particles with Lorentz force. Soft Matter, 17(5), 1307-1316.
[43] Evans, M. R., Majumdar, S. N., and Schehr, G. (2020). Stochastic resetting and applications. Journal of Physics A: Mathematical and Theoretical, 53(19), 193001.
[44] Santra, I., Basu, U., and Sabhapandit, S. (2020). Run-and-tumble particles in two dimensions under stochastic resetting conditions. Journal of Statistical Mechanics: Theory and Experiment, 2020(11), 113206.
[45] Calvert, G. R., and Evans, M. R. (2021). Searching for clusters of targets under stochastic resetting. The European Physical Journal B, 94(11), 1-9.
[46] Mercado-Vásquez, G., and Boyer, D. (2021). Search of stochastically gated targets with diffusive particles under resetting. Journal of Physics A: Mathematical and Theoretical, 54(44), 444002.
[47] Bonomo, O. L., and Pal, A. (2021). First passage under restart for discrete space and time: Application to one-dimensional confined lattice random walks. Physical Review E, 103(5), 052129.
[48] Tucci, G., Gambassi, A., Majumdar, S. N., and Schehr, G. (2022). First-passage time of run-and-tumble particles with non-instantaneous resetting. arXiv preprint arXiv:2203.16066.
[49] Chen, H., and Huang, F. (2022). First passage of a diffusing particle under stochastic resetting in bounded domains with spherical symmetry. Physical Review E, 105(3), 034109.
[50] Ahmad, S., Rijal, K., and Das, D. (2022). First passage in the presence of stochastic resetting and a potential barrier. Physical Review E, 105(4), 044134.
[51] Reuveni, S., Urbakh, M., and Klafter, J. (2014). Role of substrate unbinding in Michaelis-Menten enzymatic reactions. Proceedings of the National Academy of Sciences, 111(12), 4391-4396.
[52] T. Rotbart, S. Reuveni, and M. Urbakh, Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem, Phys. Rev. E 92(6), 060101(R) (2015).
[53] S. Reuveni, Optimal stochastic restart renders fluctuations in first passage times universal, Phys. Rev. Let. 116(17), 170601 (2016).
[54] A. Pal, and S. Reuveni, First Passage under Restart, Phys. Rev. Lett. 118(3), 030603 (2017).
[55] Eliazar, I., and Reuveni, S. (2021). Mean-performance of sharp restart: II. Inequality roadmap. Journal of Physics
A: Mathematical and Theoretical, 54(35), 355001.
[56] Pal, A., Kostinski, S., and Reuveni, S. (2022). The
inspection paradox in stochastic resetting. Journal of
Physics A: Mathematical and Theoretical, 55(2), 021001.
[57] Belan, S. (2018). Restart could optimize the probability
of success in a Bernoulli trial. Physical review letters,
120(8), 080601.
[58] Belan, S. (2020). Median and mode in first passage under
restart. Physical Review Research, 2(1), 013243.
[59] Eliazar, I., and Reuveni, S. (2022). Entropy of Sharp
Restart. arXiv preprint [arXiv:2207.02085]
[60] Eliazar, I., and Reuveni, S. (2022). Diversity of Sharp
Restart. arXiv preprint [arXiv:2207.09200]
[61] See Supplemental Material, which includes derivation of
Eq. [1], proof of global dominance of strictly regular
restart, derivation of Eqs. (2) and (7), details of dis-
tributions used to generate Fig. [1] checking the consist-
sincy of Eqs. (4-5), generalization of Eq. (5) accounting
non-instantaneous restarts and non-zero probability of
non-halting, example of probability density $P(T)$ with
$\sigma/\mu = 1/2$ and $\mu/m > 2$, and analysis of completion
time fluctuations under optimally tuned Poisson restart.
[62] Gallager, R. G. (2013). Stochastic processes: theory for
applications. Cambridge University Press.
[63] Noteworthy, once the probability $q = Pr[T < +\infty]$ of
halting for a given stochastic process is known, one can
improve the estimate given by Eqs. [3] as follows: $\langle T_R \rangle \geq \frac{1}{2} h/q$.
[64] Pal, A., and Prasad, V. V. (2019). Landau-like expansion
for phase transitions in stochastic resetting. Physical Re-
view Research, 1(3), 032001.
[65] Hotelling, H., and Solomon, L. M. (1932). The limits of
a measure of skewness. The Annals of Mathematical
Statistics, 3(2), 141-142.
[66] O’Cinneide, C. A. (1990). The mean is within one stan-
dard deviation of any median. The American Statistician,
44(4), 292-293.
[67] Mallows, C. (1991). Another comment on O’Cinneide.
The American Statistician, 45(3), 257.
[68] Carnot, S. (1824). Reflections on the motive power of
fire, and on machines fitted to develop that power. Paris:
Bachelier, 108.
[69] Shannon, C. E. (1959). Coding theorems for a discrete
source with a fidelity criterion. IRE Nat. Conv. Rec,
4(142-163), 1.
[70] Evans, M. R., and Majumdar, S. N. (2018). Effects of re-
fractory period on stochastic resetting. Journal of Physics
A: Mathematical and Theoretical, 52(1), 01LT01.
[71] Robin, T., Reuveni, S., and Urbakh, M. (2018). Single-
molecule theory of enzymatic inhibition. Nature commu-
nications, 9(1), 1-9.
[72] Ahmad, S., Nayak, I., Bansal, A., Nandi, A., and Das,
D. (2019). First passage of a particle in a potential under
stochastic resetting: A vanishing transition of optimal
resetting rate. Physical Review E, 99(2), 022130.
[73] Pal, A., Kuśmierz L., and Reuveni, S. (2019). Time-
dependent density of diffusion with stochastic resetting
is invariant to return speed. Physical Review E, 100(4),
040101.
[74] Bodrova, A. S., and Sokolov, I. M. (2020). Resetting pro-
cesses with noninstantaneous return. Physical Review E,
101(5), 052130.
[75] Bodrova, A. S., and Sokolov, I. M. (2020). Brownian mo-
motion under noninstantaneous resetting in higher dimen-
sions. Physical Review E, 102(3), 032129.
[76] Tal-Friedman, O., Pal, A., Sekhon, A., Reuveni, S., and
Roichman, Y. (2020). Experimental realization of diffu-
sion with stochastic resetting. The journal of physical
chemistry letters, 11(17), 7350-7355.