Nanotextiles- A Broader Perspective

Jeevani T

Department of Biotechnology, Acharya Nagarjuna University, India

Abstract

Nanotechnology means optimizing performance and providing smart solutions for the future. It means configuring molecules to change in size and properties for enhancement as in the case of smart fabrics. Smart fabrics can help manufacturers and designers with the increased emphasis on lifestyle, aesthetic appeal and form demanded for technological products. Nanosize particles can exhibit unexpected properties different from those of the bulk material. The basic premise is that properties can dramatically change when a substance’s size is reduced to the nanometer range. Nanotechnology has versatile applications in Textile Chemicals industry in manufacturing garments with stain resistance, flame retardant finishes, wrinkle resistance finishes, moisture management, antimicrobial qualities, UV protection, and soil release properties. Incorporating nanomaterials into a textile can affect a host of properties, including shrinkage, strength, electrical conductivity and flammability. Nanotechnology has also made a tremendous impact on functionality and performance. Nan-treated textiles may lead to many inventions as the science develops in future.

Keywords: Nanotechnology; Nanoparticles; Cotton; Textile industry; Nanowhiskers; Superhydrophobicity; Anti-bacterial properties; Nano-silver; Anti-microbial

Abbreviations: GNF: Graphite nanofibres; CNT: Carbon nano-tubes; TiO2: Titanium dioxide; ZnO: Zinc oxide.

Introduction

Nano’s (Greek) means dwarf [1]. One nanometer is defined as 1 billionth meter i.e.1×10⁻⁹m and involves developing materials or devices within that size. Nanotechnology is defined as the precise manipulation of individual atoms and molecules to create layered structures [2]. Nanosize particles can exhibit unexpected properties different from those of the bulk material. Small size of nanoparticles leads to particle–particle aggregation hereby making physical handling of nanoparticles difficult in liquid and dry powder forms. The basic premise is that properties can dramatically change when a substance’s size is reduced to the nanometer range. In bulk form, gold is inert; [3] however, once broken down into small clusters of atoms it becomes highly reactive. It’s the application of functional systems in the sub-µ range. Based on the use of sub-units nanoparticles are systematically arranged [4]. In the field of textiles, nanotechnology has been used in synthesis of quantum dot [5,6] called semiconductor nanocrystals [7]. Dye molecules are used to make fibers. In nanocrystals, the color changes with increase in particle size thus it is possible to create different size particles from a single material having different optical properties that cover the entire visible region [8]. There are many possible routes for nanotechnology [9] to be incorporated into fabrics which provide excellent performance [10]. Nanofinishing in textile technology is very promising due to various end uses like protective textiles for soldiers, medical textiles and smart textiles [11,12].

Cotton is the most commonly used popular clothing material [13,14]. It is the only renewable resource but also biodegradable [15] and readily available. Cotton is composed mainly of cellulose [16] molecules, adding functionalities to cotton fibers [17] is a challenging endeavor as physical and chemical heterogeneities need to be overcome. By assembling metal nano-particles on to the cotton several applications can be envisioned [18].

Nanotechnology also has the real commercial potential for the textile industry [19]. This is mainly due to the fact that conventional methods impart different properties [20] to fabrics which often do not lead to permanent effects, and will lose their functions after laundering or wearing. Nanotechnology can provide high durability for fabrics, because nano-particles have a large surface [21] area-to-volume ratio and high surface energy, thus presenting better affinity for fabrics and leading to an increase in durability of the function. In addition, a coating of nano-particles on fabrics will not affect their breathability or hand feel [22]. Nanofibres have smaller pores and higher surface area than regular fibers which show enormous applications in nanocatalysis, tissue scaffolds, protective clothing, filtration, and optical electronics. The electrospinning process is the one which uses a high voltage electric field to produce electrically charged jets from polymer [23] solution or melts, which on drying by means of evaporation of the solvent produce nanofibres [24]. Fabrication processes for nanomaterials [25] is complex but sometimes hazardous and distant from “green manufacturing” [26].

Nanomaterials when engineered at the atomic and molecular level and are integrated into fabrics can exhibit certain properties which alter the physical properties of a textile. Nanotechnology also has real commercial potential for the textile industry. This is mainly due to the fact that conventional methods used to impart different properties to fabrics often do not lead to permanent effects, and will lose their functions after laundering or wearing. This technology provide high durability for fabrics because nanoparticles [27] have a large surface area-to-volume ratio and high surface energy thus presenting better affinity to fabrics and increase in durability of the function [28]. The nanomulsions particles have given a characteristic property of being easily absorbed by the skin which is sought beneficial in textile industry [29].

Nanotechnology to textiles involves

- Manufacturing composite fibers

Corresponding author: Jeevani T, Department Of Biotechnology, Acharya Nagarjuna University, Guntur, India, E-mail: jeevanithot@yahoo.co.in

Received November 05, 2011; Accepted December 07, 2011; Published December 09, 2011

Citation: Jeevani T (2011) Nanotechnology in Agriculture. J Nanomedic Nanotechnol 2:124. doi:10.4172/2157-7439.1000124

Copyright: © 2011 Jeevani T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Current Nanotechnology Applications

Water-repellent property

Nanowhiskers: Nanowhiskers [40] are hydrocarbons and 1/1000 of the size of a typical cotton fiber that is added to the fabric to create a peach fuzz effect without lowering the strength of cotton. The spaces between the whiskers on the fabric are smaller than the typical drop of water, but still larger than water molecules; water thus remains on the top of the whiskers and above the surface of the fabric [41]. However the liquid can still pass through the fabric if pressure applied [11].

Nanospheres: Impregnation involves a three dimensional surface structures with gel-forming additives which repel water and prevent dirt particles from attaching themselves. The mechanism is similar to the lotus leaf effect occurring in nature. Lotus plants [42] have super hydrophobic surfaces which are tough and textured. Once water droplets fall onto them, water droplets the surface slopes slightly, will roll off. As a result, the surfaces stay dry even during a heavy shower. Furthermore the droplets pick up small particles of dirt as they roll, and so the leaves of lotus plant keep clean even during light rain. This hydrophobic [43] property can be imparted to a cotton fabric by coating it with thin nanoparticulate plasma film. The audio frequency plasma of some kinds of fluorocarbon chemical was applied to deposit a nanoparticulate hydrophobic film onto a cotton fabric surface to improve its water repelling property. Superhydrophobicity [44] was obtained due to the roughness of the fabric surface, affecting the softness and abrasion resistance of cotton.

Anti-bacterial property

For imparting anti-bacterial properties, nano-sized silver [45], titanium dioxide and zinc oxide are used. Metallic ions [46,47] and metallic compounds display a certain degree of sterilizing effect [48]. The part of oxygen in the air or water turned into active oxygen by means of catalysis with metallic ions thereby dissolving the organic substance to create a sterilizing effect [49].

Silver nanoparticles

Silver nanoparticles when imparted on fabric kill bacteria [50] which makes clothes odor-resistant. Nanosilver particles have extremely large surface area thus increasing their contact with various microorganisms [51] and improving their bactericidal and fungicidal effectiveness [52,53]. Nano-silver is very reactive with proteins. When coated with bacteria or fungus it will adversely affect the cellular metabolism, inhibits the cell growth [54] and suppress respiration, the basal metabolism of the electron transfer system, and the transport of the substrate into microbial [55] cell membrane [56]. Further inhibits [57] the multiplication and growth of those bacteria and fungi which cause infection, odour, itchiness and sores. Hence nano-silver particles can be applied to socks in order to prohibit the growth [58] of bacteria.

Titanium dioxide

TiO$_2$ is a photocatalyst. It was determined that fabric treated with nano-TiO$_2$ could provide effective protection against bacteria and discoloration of stains due to the photocatalytic activity. Once illuminated by light energy higher than its band gaps, the electrons [59] in titanium dioxide will jump from the valence band to the conduction band and the electron (e$^-$) and the electric hole (h$^+$) pairs will form on the surface of the photocatalyst. The electrons and the oxygen will combine into (O$_2$)$^-$, the positive electric holes and water generate hydroxyl radicals. Since both are unstable when an organic compound
falls on the surface of photocatalyst it will combine with the both and turn in to carbondioxide [60] and water. This cascade reaction is called “oxidation-reduction” [61-63]. Through the reaction the photocatalyst is able to decompose common organic matters in the air such as odour molecules, bacteria and virus [64,65].

**UV- Protection**

Inorganic UV blockers are more preferable to organic UV blockers as they are non-toxic [66] and chemically stable under exposure to both high temperatures [67] and UV. Inorganic UV blockers are usually certain semiconductor [68,69] oxides such as TiO$_2$, ZnO, SiO$_2$, and Al$_2$O$_3$ [70]. Among these semiconductor devices titanium dioxide (TiO$_2$) and zinc oxide (ZnO) were more efficient at absorbing and scattering UV radiation than the conventional size and were thus able to block UV. This is due to their large surface area per unit mass and volume [71]. UV-blocking treatment for cotton fabrics was developed using the sol-gel method [72]. A thin layer of titanium dioxide is formed on the surface of the treated cotton fabric which provides excellent UV-protection; the effect can be maintained after 50 home launderings. Apart from titanium dioxide, zinc oxide rods of 10 to 50nm in length were applied to cotton fabric to provide UV protection. The fabric treated with zinc oxide nanorods proved an excellent factor (UPF) rating.

The functions depicted here are the main functions of the nano particles on to the fabric. The use of the silver and gold particles [73] enables the odour resistance and anti bacterial and antifungal properties [74,75]. The titanium dioxide is for the uv-protection and nano whiskers for the water repellent property. The commercial products which are already in the market show these great features.

**Commercially Available Products**

Nanotechnology [76] is research-intensive and mostly relies on public as well as on private R&D funding. Using nanotechnology in consumer products is growing at rapid phase and the market for nanotechnology products is being predicted to grow at a very rapid rate [77].

**Nano-Tex**

Nano-Tex in Emeryville Calif, founded in 1998, [78] has been one of the leaders in nano-treatments designed specifically for textiles, which has developed a new fabric that is showing up in Brooks Brothers shirts, travelersm sports jacket. Today, more than eighty textile mills around the world are utilizing Nanotex’s patented nanotreatments. Nanotreated fabrics can be spill resistant, stain proof, wrinkle resistant and static proof. Nano-Tex is already in stores, but now it may be coming to a soldier or police officer.

**Resists**

Resists Spills was one of the first nano treatments offered by Nano-Tex. It can be applied to cotton, polyester, [79] wool, silk or rayon. Stain release was designed to mimic the natural characteristics of a plant’s leaves. The surface of most leaves is hydrophobic. In a rain shower, water droplets roll off the leaf’s surface carrying away contaminants. A leaf’s surface is also rough, decreasing the surface’s ability to soak up water. Like a leaf’s surface, treatments have been developed to make the fabric ultra-hydrophobic. Self-cleaning fibers might eventually replace conventional fluorochemical based finishes currently used to provide water repellency.

**Sensatex**

Sensatex, based in Bethesda, is working with the military, emergency workers and doctors to develop what they call it a “smart shirt” clothing featuring tiny microscopic wires interwoven into fabric itself [80]. By turning garments into communication devices, this kind of technology could help outfit of the soldier of the future keeping track of vital signs, and even heat up or cool down depending on the weather. The technology could remotely monitor home-bound patients who wear these shirts, capturing vital data and then beaming it wirelessly to a doctor, a hospital, a family member wherever it needs to go. Sensatex continues to search for investors. There are many advances in this field of nanotextiles.

The future of nanotextiles can be [81]:

1. Supersensitive bio-filters made of fibers capable of filtering out viruses, bacteria, and hazardous particles and microorganisms [82].
2. Nanolayers when applied to natural fibers showed certain properties and then these are made into protective clothing for firefighters, emergency responders, and military personnel that selectively blocks hazardous gases and minuscule contaminants but allows air and moisture to flow through.
3. Lightweight smart textiles which are more comfortable for hikers, athletes, and environmentally sensitive individuals [80].
4. Fibers that control the movement of medicine to administer time released antibacterial [83] and antiallergenic compounds; for example gloves that deliver arthritis medicine or antibacterial sheets in hospitals.
5. Magnetic nanoparticles [84] when embedded inside a garment or paper document to create a unique signature that can be scanned to detect counterfeit currency or fake passports.
6. Sensors that could swab a food or surgical preparation surface to immediately detect the presence of hazardous bacteria.
7. Biodegradable fibers saturated with time-released pesticides that could be planted with seeds as an alternative to spraying pesticides.
8. Doilies, seat cushions, or wall hangings used in airplanes that would continually absorb particles or gases or other airborne biohazards.

**Conclusion**

Cotton continues to be the most commonly used and popular clothing material. It is the only renewable but also biodegradable and readily available. Since cotton is composed mainly of cellulose molecules, adding functionalities to cotton fibers is a challenging endeavor as physical and chemical heterogeneities need to be overcome. By assembling metal nano-particles on to the cotton several applications can be envisioned. So to this context the development of the nanotextiles came in to existence.

Five properties imparted to textile materials using nanotechnology have been highlighted in this paper. As mentioned, nanotechnology overcomes the limitations of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of textile industry.

**References**

1. Vijaya Shanti B, Mrudula T, Naga Deepth CH, Sree VenkateshwarluY (2011)
Novel Applications of Nanotechnology in Life Sciences. J Bioanal Biomed 311.

2. Menaa B (2011) The Importance of Nanotechnology in Biomedical Sciences. J Biotechnol Biomaterial 1: 105e.

3. Liu YC, Lin LH, Chiu WH (2004) Size-controlled of gold nanoparticles from bulk gold substrates by sonoecochemical methods. J Phys Chem 108: 19237-19240.

4. Kathirvelu S (2008) Nanotechnology applications in textiles Indian Journal of Science and Technology 1.

5. Nguyen KT (2011) Targeted Nanoparticles for Cancer Therapy: Promises and Challenges. J Nanomeric Nanotechnol 2: 103e.

6. Chen MS, Liu CY, Wang WT, Hsu CT, Cheng CM (2011) Probing Real-Time Response to Multitargeted Tyrosine Kinase Inhibitor 4-N-(3′-Bromo-Phenyl) Amino-6, 7 Dimethoxyquinazoline in Single Living Cells Using Biofunctionalized Quantum Dots. J Nanomeric Nanotechnol 2: 117.

7. Nanjwade BK, Derkar GK, Bechra HM, Nanjwade VK, Marvi FV (2011) Design and Characterization of Nanocrystals of Lovastatin for Solubility and Dissolution Enhancement. J Nanomeric Nanotechnol 2: 107.

8. www.fibre2fashion.com/industry-article/67/13nano-textiles1.asp

9. Shih MF, Wu CH, Cheng JY (2011) Bioeffects of Transient and Low-Intensity Ultrasound on Nanoparticles for a Safe and Efficient DNA Delivery. J Nanomeric Nanotechnol S3: 001.

10. http://www.smartgarmentpeople.com/index.php?q=nanotextiles

11. Vigneshwaran N (2006) Nanotechnology finishing in textiles. Nanowerk.

12. Rosen JE, Yoffe S, Meerara A, Verma M, Gu FX (2011) Nanotechnology and Diagnostic Imaging: New Advances in Contrast Agent Technology. J Nanomeric Nanotechnol 2: 115.

13. Hinestroza JP (2007) can nanotechnology be fashionable? Cotton Gets A Makeover, Turning It From An old- Fashioned Material Into A Fabric For The Future. Materials Today 10: 56.

14. Zeng D, Shan W, Xiao Q (2011) Study on the Preparation and Increasing Performance Mechanics of a Novel Environmentally Friendly Cotton Seed Coating Agent. J Glycom Lipidom 1: 102.

15. Sabotakoa MR, Tabatabaiae RM, Mararron A, Ramazano MA (2011) Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. J Nanomeric Nanotechnol S4: 001.

16. Brown L, Webster GK, Kott L, Rao NKR, Luu TA, et al. (2011) Novel Coated Cellulose Carbamate Silica Based Phase to Enhance Selectivity of Compounds Activity in Leaf, Seed Extract and Seed Oil of Seabuckthorn (Hippophae rhamnoides L. Don) Plant. J Pathol Microbiol 2:105.

17. Li GL, Wang GH (1999) Synthesis and characterization of rutile TiO2 Nanoparticles as Targeting of Water-Soluble Taxol by Folic Acid Immobilization. J Nanomedic Nanotechnol 2: 106.

18. Hosseini SH, Simiarj J, Farhadpour B (2007) Chemical and Electrochemical Grafting Of Polyamine onto Chitosan Iranian Polymer Journal 18: 3-13.

19. A.Akbari, S.Desclaux, J.C.Remigy, P.Aptel (2002) Treatment of textile dye effluents using a new photografted nanofiltration membrane, Desalination, vol.149, no.1-3, pp.101-107.

20. Eze SOO, Chilaka FC, Nwagumun BC (2010) Studies on Thermodynamics and Kinetics of Thermo-Inactivation of Some Quality-Related Enzymes in White Yam (Dioscorea rotundata). J Thermodyn Catal 1:104.

21. http://www.fibre2fashion.com/industry-article/13/1284/wrinkle-resistant-cotton-fabrics1.asp

22. Santos JR, Babista RA, Rodrigues SA, Filho LX, Lima AS (2009) Antimicrobial Activity of Broth Fermented with Kombucha Colonies. J Microbial Biochem Technol 1: 072-078.

23. Bakshi DK, Dhandha V, Sagag V, Toor D, Kumar R, et al. (2010) Review and Analysis of Reported Anthrax-Related Military Mail Security Incidents in Washington D.C. Metropolitan Area During March 2005. J Bacteriol Parasitol 1:103.

24. Gupta SM, Gupta AK, Ahmed Z, Kumar A (2011) Antibacterial and Antifungal Activity in Leaf, Seed Extract and Seed Oil of Seabuckthorn (Hippophae rhamnoides L. Don) Plant. J Pathol Microbiol 2:105.

25. Li GL, Wang GH (1999) Synthesis and characterization of rutile TiO2 nanowiskers. J Mater Res 14: 3346-3354.

26. Nakamura J, Nakajima N, Matsumura K, Hyon SH (2011) In Vivo Cancer Targeting of Water-Soluble Taxol by Folic Acid Immobilization. J Nanomeric Nanotechnol 2:106.

27. Jan Beringer (2005) Nanotechnology In Textile Finishing State Of Art And Future Aspects

28. Lu M, Whitelegge JP, Whelan SA, He J, Saxton RE (2010) Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer. J Proteomics Bioinform 3: 029-038.

29. Zhang J, France P, Radomyselsky A, Datta S, Zhao J, et al. (2003) Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. J Appl Polym Sci 88: 101-107.

30. Thomas S, Waterman P, Chen S, Marinelli B, Seaman M, et al. (2011) Development of Secured Protein-Bonded Acidic and Rich in Cysteine (SPARC) Targeted Nanoparticles for the Prognostic Molecular Imaging of Metastatic Prostate Cancer. J Nanomeric Nanotechnol 2: 112.

31. Qian L, Hinestroza JP (2004) Application of nanotechnology for high performance textiles, JTATM 4: 1-7.

32. Salim N, Basri M, Abd. Rahman MB, Abdullah DK, Basri H, et al. (2011) Phase Behaviour, Formation and Characterization of Palm-Based Esters Nanoeumetion Formulation containing Ibufrofen. J Nanomeric Nanotechnol 2: 11.

33. Lobo AO, Marciano FR, Regiani I, Matsushima JT, Ramos SC, et al. (2011) Influence of Temperature and Time For Direct Hydroxysapalid Electrodeposition on Superhydrophilic Vertically Aligned Carbon Nanotube Films. J Nanomeric Nanotechnol S8: 001.

34. Seetharamappa J, Yellapa S, D’Souza F (2006) Carbon Nanotubes- Next generation of electronic Materials. The Electrochemical Society Interface.

35. Anbarasan R, Vasudevan T, Kalanagin GP, Gopalan A (1999) A Chemical Grafting Of Aniline And O-Toluidine Onto Poly(Ethylene Terephthalate) Fiber. J Appl Polym Sci 73: 121-128.

36. Menaa B (2011) The Importance of Nanotechnology in Biomedical Sciences. J Bioanal Biomed 311.

37. Dalvi VB, Jeevani T, Wadke NS, Zata MJ, Deshpande VS (2011) Design and Characterization of Nanocrystals of Lovastatin for Solubility and Dissolution Enhancement. J Nanomeric Nanotechnol 2: 107.

38. www.fibre2fashion.com/industry-article/67/13nano-textiles1.asp

39. Shih MF, Wu CH, Cheng JY (2011) Bioeffects of Transient and Low-Intensity Ultrasound on Nanoparticles for a Safe and Efficient DNA Delivery. J Nanomeric Nanotechnol S3: 001.

40. http://www.smartgarmentpeople.com/index.php?q=nanotextiles

41. Vigneshwaran N (2006) Nanotechnology finishing in textiles. Nanowerk.

42. Brown L, Webster GK, Kott L, Rao NKR, Luu TA, et al. (2011) Novel Coated Cellulose Carbamate Silica Based Phase to Enhance Selectivity of Compounds Activity in Leaf, Seed Extract and Seed Oil of Seabuckthorn (Hippophae rhamnoides L. Don) Plant. J Pathol Microbiol 2:105.

43. Li GL, Wang GH (1999) Synthesis and characterization of rutile TiO2 nanowiskers. J Mater Res 14: 3346-3354.

44. Nakamura J, Nakajima N, Matsumura K, Hyon SH (2011) In Vivo Cancer Targeting of Water-Soluble Taxol by Folic Acid Immobilization. J Nanomeric Nanotechnol 2:106.

45. Jan Beringer (2005) Nanotechnology In Textile Finishing State Of Art And Future Aspects

46. Lu M, Whitelegge JP, Whelan SA, He J, Saxton RE (2010) Hydrophobic Fractionation Enhances Novel Protein Detection by Mass Spectrometry in Triple Negative Breast Cancer. J Proteomics Bioinform 3: 029-038.

47. Zhang J, France P, Radomyselsky A, Datta S, Zhao J, et al. (2003) Hydrophobic cotton fabric coated by a thin nanoparticulate plasma film. J Appl Polym Sci 88: 101-107.

48. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38: 2143-2147.

49. Narasimhulu K, Rao PS, Vinod AV (2010) Isolation and Identification of Bacterial Strains and Study of their Resistance to Heavy Metals and Antibiotics. J Microbial Biochem Technol 1: 074-076.

50. Liu ZS, Rempel GL (2011) Removal of Transition Metals from Dilute Aqueous Solution by Carboxylic Acid Group containing Absorbent Polymers. Hydrol Current Res 2: 107.

51. Shimizu K, Komuro Y, Tatematsu S, Blajian M (2011) Study of Sterilization and Disinfection in Room Air by Using Atmospheric Microplasma. Pharm Anal Acta S1: 001.
72. Pandey RR, Saini KK, & Dhayal M (2010) Using Nano-Arrayed Structures in Sol-Gel Derived Mn2+ Doped TiO2 for High Sensitivity Urea Biosensor. J Biosens Bioelectro 1: 101.

73. Lukianova-Hleb EY, Oginsky AO, Shenefelt DL, Drezek RA, Hafner JH, et al. (2011) Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters. J Nanomed Nanotechnol 2: 104.

74. Sarker M, Chopra S, Mortelmans K, Kodukula K, Talcott C, et al. (2011) In Silico Pathway Analysis Predicts Metabolites that are Potential Antimicrobial Targets. J Comput Sci Syst Biol 4: 021-026.

75. Mizuno K, Zhiyentayev T, Huang L, Khalil S, Nasim F, et al. (2011) Antimicrobial Photodynamic Therapy with Functionalized Fullerienes: Quantitative Structure-activity Relationships. J Nanomed Nanotechnol 2: 109.

76. Greish K, Muller K, IvanaJay J, Lee DH (2011) The Cooperative Anticancer Effect of Dual Styrerenedal Acid Nano-Micellar System against Pancreatic Cancer J Nanomed Nanotechnol 54: 904.

77. http://www.hse.gov.uk/nanotechnology/shortreport.pdf

78. Hurwitz M (2006) Nano-Tex Expands Into Commercial Interiors.

79. Glashauser A, Denk L, Minuth WW (2011) Polyester Fleeces used as an Artificial Intestinal Influence the Spatial Growth of Regenerating Tubules. J Tissue Sci Eng 2: 105.

80. Coyle S, Diamond D (2010) Smart Nanotextiles: Materials and their Application. Encyclopedia of Materials: Science and Technology 1-5.

81. Clare Ulrich (2006) Nano-Textiles Are Engineering A Safer World.

82. Mirdamad SH, Emtiaz G, Golabi MH, Ghanavati H (2010) Biodegradation of Petroleum and Aromatic Hydrocarbons by Bacteria isolated from Petroleum-Contaminated Soil. J Pet Environ Biotechnol 1: 102.

83. Lindfors NC (2011) Clinical Experience on Bioactive Glass S53P4 in Reconstrutive Surgery in the Upper Extremity Showing Bone Remodelling, Vascularization, Cartilage Repair and Antibacterial Properties of S53P4. J Biotechnol Biomaterial 1: 111.

84. Khan DR (2010) The Use of Nanocarriers for Drug Delivery in Cancer Therapy. J Cancer Sci Ther 2: 058-062.