Isolation and characterization of *Toxoplasma gondii* from captive caracals (*Caracal caracal*)

Nan Jiang a, Shilin Xin a, Junbao Li b, Chunlei Su c, Longxian Zhang a, Yurong Yang a,*

a College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
b Zhengzhou Zoo, Zhengzhou, PR China
c Department of Microbiology, University of Tennessee, Knoxville, USA

ABSTRACT

Toxoplasma gondii infects most warm-blooded animals, including humans. Felids can serve as both intermediate and definitive hosts for *T. gondii*. However, there is no direct evidence to prove the caracal (*Caracal caracal*) is an intermediate host for *T. gondii*. Here, we report *T. gondii* infection in two caracals in a zoo from China. Antibodies against *T. gondii* were found in both caracals by modified agglutination test (MAT) (cut-off titer: 1:25). Tissue cysts were observed in the leg and tongue muscles of caracal case1. These cysts were confirmed as *T. gondii* by immunohistochemical staining and *T. gondii* was detected by polymerase chain reaction (PCR). Viable *T. gondii* strain was isolated from the striated muscles of caracal case2 and designated as TgCaracalCHn1. DNA from tachyzoites obtained from cell cultures was characterized by RFLP-PCR using ten markers (*SAG1*, *SAG3*, *SAG2*, *BTUB*, *c22-8*, *GRA6*, *c29-2*, *PK1*, L358, and *Apico*) and the virulence genes (*ROP5* and *ROP18*). The results indicate that this isolate belongs to ToxoDB genotype #2 (Type III). The virulence of this isolate was evaluated in BALB/c mice. A dose of 10^7 TgCaracalCHn1 tachyzoites was non-lethal to mice. Tissue cysts were found in brain tissues of infected mice. This result confirmed that the TgCaracalCHn1 is non-virulent to mice. Current study documents first isolation of viable *T. gondii* strain from caracal and also indicates that caracal can act as new intermediate host for *T. gondii*.

ARTICLE INFO

Keywords:
- Toxoplasma gondii
- Caracal (*Caracal caracal*)
- Isolation
- Intermediate host
- Genotyping
- Virulence
- China

1. Introduction

Toxoplasma gondii is an intracellular parasite that could infect most mammals and birds, including humans (Dubey, 2010). A quarter of the world’s population is infected with this parasite (Pappas et al., 2009; Waldman et al., 2020). Felids, only known definitive host of *T. gondii*, shed unsporulated oocysts in their feces and contaminate environment (Dubey, 2009). Furthermore, cats infected with *T. gondii* for the first time excrete the oocysts, and when antibodies in the body gradually decrease, they can be infected again and re-shed oocysts (Dubey, 1976, 1995; Zulpo et al., 2018). Under warmer and moister environmental conditions, the matured oocysts can remain infective for more than one year (Dubey, 2010). The *T. gondii* infected felids in zoos could be potential contamination source for environment, other animals and tourists.

The caracal (*Caracal caracal*) is a medium-sized cat native to Asia and Africa. The wild caracals prey on small mammals, birds, and rodents (Livingston, 2009). Chickens, rabbits, raw pork and beef are the main food for captive caracals. Currently, only some studies reported the presence of seroconversion antibody to *T. gondii* in caracals (de Camps et al., 2008; Spencer et al., 2003; Gomez-Rios et al., 2019; Serieys et al., 2019; Seltmann et al., 2020; Dubey et al., 2010). Varied rate of *T. gondii* infection has been documented in caracals around the world (Table 1). However, there is no report published on viable *T. gondii* strain isolated from this animal yet. In this study, we investigated *T. gondii* infection in two captive caracals from a zoo in China and demonstrated isolation of a strain from the striated muscles using mice bioassays.

2. Materials and methods

2.1. Samples collection and sites

Two captive caracals died of a respiratory disorder in a zoo (34°46′ N, 113°39′ E, Henan) from China in 2017–18 (Table 2). Fresh kidney,
heart, spleen, lung, liver, lymphonodus, tongue, brain, diaphragm, and leg muscle samples from caracals were submitted to the Laboratory of Veterinary Pathology of Henan Agricultural University (Zhengzhou, Henan, China) for pathological diagnosis; *T. gondii* infection in caracals were investigated.

2.2. Serological examination by modified agglutination test (MAT)

Heart fluid (0.5 mL) from caracals was collected directly. Antibodies against *T. gondii* were detected in the heart fluid by MAT (Dubey and Desmonts, 1987). *Toxoplasma gondii* antigen was obtained from the University of Tennessee Research Foundation (Knoxville, TN, USA; https://utrf.tennessee.edu/). Heart fluid was diluted two folds, starting from 1:25 till 1:12,800. Blank control (only reagents, no serum), positive and negative controls (sera from mice with and without *T. gondii* infection, respectively) were included in each plate.

2.3. Histopathological analysis

Collected tissues were fixed in 10% neutral buffered formalin. They were paraffin sectioned, then sections (5 μm thick) were stained with hematoxylin and eosin (H&E) routinely. Sections suspected for the presence of tissue cysts were stained with immunohistochemistry (IHC) (Su et al., 2019). The primary antibody used was rabbit anti-*T. gondii* polyclonal antibody. Anti-rabbit IgG was used as secondary antibody (product code: ab64264, Abcam, Cambridge, MA, USA). Brain sections of VEG *T. gondii*-infected mouse (provided by JP Dubey, ARS, USDA) were used as positive controls.

2.4. Isolation of *T. gondii* from caracal muscle by bioassay in mice

Tissues (50-g, including heart, tongue, leg muscle, and diaphragm) from two caracals were homogenized and digested in pepsin solution, respectively (Dubey, 2010). The homogenates were inoculated into BALB/c mice (n = 4–5) and/or gamma interferon (γ-IFN) knockout mice

Region/Country	No. positive/No. tested	% Positive	Test	Antibody titers	References
United States	2/4	50.0	MAT	1:400 ≥1:3200	de Camps et al. (2008)
United States	1/1	100.0	IFAT	1:100	Spencer et al. (2003)
Mexico	1/1	100.0	ELISA	–	Gomez-Rios et al. (2019)
South Africa	24/29	82.8	IFAT	–	Sereys et al. (2019)
Namibia	10/15	66.7	ELISA	–	Seltsmann et al. (2020)
United Arab Emirates	6/7	85.7	MAT	1:100 (2), 1:200 (3), 1:3200 (1)	Dubey et al. (2010)
China	0/1	–	ELISA	–	Zhang et al. (2001)
China	1/1	100.0	DAT	≥1:16	Zhang et al. (1991)
China	1/1	100.0	DAT	1:16	Shi et al. (1992)
China	2/2	100.0	MAT	1:800 ≥1:200	This study
Total	49/63	77.8			

*: Unknown.

IFAT = Indirect fluorescent antibody.
ELISA = Enzyme-linked immunosorbent assay test.
MAT = Modified agglutination test.
DAT = Direct agglutination test.
(n = 1) subcutaneously. Specific pathogen-free BALB/c mice were provided by Laboratory Animal Center of Zhengzhou University (Zhengzhou, China). IFN-γ−/− mice were supplied by Jackson Laboratory (product code: 002287). After inoculation, tissue (lung, mesenteric lymph nodes or brain) smears of dead mice were examined for *T. gondii* parasites. Survivors were bled on day 60 post-inoculation (DPI), and serum from each mouse was tested for *T. gondii* antibodies by MAT with 1:25 and 1:200 dilution. If parasites were not found in the lung, mesenteric lymph nodes or brain of mice, the tissues (brain, heart, lung, mesenteric lymph nodes, tongue) of mice were ground and subcutaneously passage into new groups of mice (n = 2–4).

2.5. Detection of *T. gondii* DNA by PCR

DNA was extracted from the pepsin digested juice (stirred muscles) using DNA extraction kit (Tiangen Biotec Company, DP304, China). *Toxoplasma gondii* DNA was amplified by PCR using the primer pair TOX5-TOX8. The expected products for *T. gondii* were 450 bp in length (Reischl et al., 2003). Positive and negative controls [DNA extracted from brain of mice infected with *T. gondii* (VEG strain) and not infected, respectively] were included in each batch.

2.6. In vitro cultivation and genetic characterization

Tissue homogenates (brain for chronic infection, lung and mesenteric lymph nodes for acute infection) from *T. gondii*-positive mice were seeded into Vero cells (Dubey, 2010). Cell cultured tachyzoites were counted in hemocytometer, and diluted 10-fold from BALB/c mice (Dubey et al., 2012; Saraf et al., 2017).

The virulence protein gene allele types of *ROP5* and *ROP18* were measured as previously reported (Shwab et al., 2016a, 2016b). Briefly, the upstream promoter insertion sequence (UPS) and a repetitive sequence (DEL) of *ROP18* was amplified by PCR using the external primers (ROP18-DefExt: CTGGTGAACACAGACTAAT; ROP18-UPSRext: GA GTGGCTTCTGCGCTCCT; ROP18-UPSRext: TTATGCACTACCCGGCTC; ROP18-UPSRext: GA GTGGCTTCTGCGCTCCT) and internal primers (ROP18-DefInt: AGTCCCTCTTTGGTCTCCT; ROP18-DefRint2: CACCGCAAAGACGGCGCCTC; ROP18-UPSRext: CACACAGTTGCTTTAAGTGTTG; ROP18-UPSRint2: ACAAATGGAGCTGGGTAG). The DEL sequence was double digested with restriction enzymes ScrI and MfeI to distinguish alleles 1, 2 and 4. Type III allele had positive UPS PCR products. *ROP5* was amplified by nested PCR using the outer primers (ROP5-Fext: CGACAGAACCGCTTCTTTC; ROP5-Rext: TCAAGCCCTCTGACACTCG) and internal primers (ROP5-Fint: TGTGGCACTACCCGGCTC; ROP5-Rint: TCAAGACACACGACTTGC). The ROP5 PCR products were digested with restriction enzymes FpBI to distinguish alleles 1, 2, 3 and 4. Restriction enzymes BstUI was used to distinguish alleles 5 and 6. Respective controls of *T. gondii* DNA were included in each batch.

2.7. Virulence assessment of *T. gondii* isolated from caracal in mice

The virulence of *T. gondii* isolated from caracal was evaluated in BALB/c mice (Dubey et al., 2012; Saraf et al., 2017). *Toxoplasma gondii* tachyzoites were counted in hemocytometer, and diluted 10-fold from 10−1 to 10−3 to reach an endpoint of less than 1 tachyzoite. Tachyzoites (1 × 103, 1 × 104, 1 × 105, and 1 × 106) were inoculated into five mice for each dilution, intraperitoneally. The clinical symptoms were observed daily. At 60 DPI, the surviving mice were bled and tested for antibodies against *T. gondii* by MAT with titers 1:25 and 1:200. The mice were euthanized at 61 DPI. *Toxoplasma gondii* cysts were checked and the number of cysts in mouse brains was recorded (Dubey et al., 2012). Either presence of parasite or positive on serology, the mice were considered infected *T. gondii*.

2.8. Ethics

This study was approved by the Beijing Association for Science and Technology (SYXK [Beijing] 2007-0023) and the Institutional Animal Use Protocol Committee of the Henan Agricultural University, China.

2.9. Statistical analysis

Statistical analysis was performed by the GraphPad Prism 6.0 (GraphPad Software Inc., San Diego, CA, USA). Data were analyzed using the chi-squared test. A *P* < 0.05 was considered significant.

3. Results

3.1. Clinical symptoms and pathologic lesions

Two caracals from a zoo were submitted for pathological diagnosis (Table 2, Fig. 1A). Caracal case 1, a male adult, presented signs of dry nose, depression, anorexia, and eventually died in a few days. Grossly, it showed pulmonary congestion, hepatomegaly, enlarged kidney, and spleen atrophy. Microscopically, hepatocyte vacuolar degeneration, severe pulmonary edema caused by bacterial infection was observed (Fig. 1B). Pulmonary edema was the leading cause of respiratory failure and death. Oval-shaped *T. gondii*-like cysts were found in the striated muscle cells of leg and tongue (Fig. 1D–F). Strong immune staining for *T. gondii* in these cysts was observed by IHC (Fig. 1D and E). The sizes of these cysts ranged between 30–45 μm × 26–39 μm in H&E sections. No signs of inflammation were found around the cysts.

Caracal case 2 was a female adult that had a history of fight with other caracals, had hematemesis and died. On gross examination, enlarged pale liver, soft enlarged spleen, multiple consolidation and congestions in lung were observed. Histopathological findings were supplicative pneumonia (Fig. 1C) and acute necrosis splenitis. Both of the caracals did not die of acute toxoplasmosis.

3.2. Serological examination and DNA detection

Antibodies against *T. gondii* were detected in both caracals with MAT titers higher than 1:200. DNA of *T. gondii* was detected in one caracal (case #1; Table 2).

3.3. Isolation of *T. gondii* in mice and cell cultures

The striated muscles of two caracals were bioassayed in mice individually (Table 3). For the *Tox* 24-1 and *Tox* 24-2 group (case #1), none of the mice (n = 5, respectively) had antibodies for *T. gondii*, and no bradyzoite was observed at 60 DPI.

For the *Tox* 24-4 group (case #2), IFN-γ−/− mouse (M# 153) was died at 14 DPI, but no tachyzoite was observed in the lung and mesenteric lymph nodes. The tissues (brain, heart, tongue, lung, and mesenteric lymph nodes) of mouse #153 were ground, and subcutaneously passed to the *Tox* 24-5 group, 1 of 4 mice (M# 358) was dead at 37 DPI, yet no parasites were observed in the lung and brain, then tissues from this mouse was subpassaged as described to *Tox* 24-6 mouse. For the *Tox* 24-6 group, 1 of 4 mice (M# 821) had seroconverted antibodies for *T. gondii*, but no cyst was found in the brain at 234 DPI; this mouse was subpassaged to the *Tox* 24-8 group. Sera of all (3/3) of the mice serum tested positive for anti-*T. gondii* antibody at 30 DPI, and eight cysts in whole brain were detected in mouse #884 at 270 DPI. This isolate from the mouse brain was propagated in cell culture successfully (12 DPI) and designated as TgCaracalChn1. Isolated strain of *T. gondii* was identified as ToxoDB#2 (type III) based on ten genetic makers. The *ROP18* and *ROP5* gene allele type of this isolate was 3/3.
Fig. 1. Histopathological findings in the caracals (Caracal caracal).
A. A caracal from the zoo (China);
B. Pulmonary edema, case #1, lung, caracal, H&E;
C. Suppurative pneumonia, case #2, lung, caracal, H&E;
D. Toxoplasma gondii cyst in the skeletal muscle cell, case #1, tongue, caracal, IHC;
E. Magnified Fig. 1 D, case #1, tongue, caracal, IHC;
F. Toxoplasma gondii cysts in the skeletal muscle cell, case #1, leg muscle, caracal, H&E;
G. Toxoplasma gondii TgCaracalCHn1 cysts in brain, mice, 51 DPI, squashed section, unstained;
H. Toxoplasma gondii TgCaracalCHn1 cysts in the brain, 10^4 tachyzoites, 61 DPI, mice, IHC; Bar = 50 μm.

Table 3
Isolation of T. gondii from caracal muscles by bioassay in mice.

Group	Inoculated Date	Sample	Mice ear tag number	Mice species	Results	Subpassaged	
Tox⁴	20170615	Caracal⁴ 1 tissues	#2411, #2412, #2413, #2414, #2415	Wild	Died at 46 DPI, brain negative other four mice IgG	Tox⁴ 24-1	
	20170615	Caracal⁴ 1 tissues	#2416, #2417, #2418, #2419, #2420	Wild	All mice IgG negative, brain negative at 60 DPI	Discard	
Tox⁴	20170801	Tox⁴ 24-1, M⁴ 2414 tissues	#2462, #2463	Wild	All mice IgG negative, brain negative at 50 DPI	Discard	
Tox⁴	20180323	Caracal⁴ 2 tissues	#153	IFN-γ−/−	Died at 14 DPI, lung, mesenteric lymph nodes negative	M⁴ 153 for Tox⁴	24:5
Tox⁴	20180406	Tox⁴ 24-4, M⁴ 153 tissues	#358, #404, #346, #384, #406	Wild	Died at 37 DPI, lung, brain negative other four mice IgG negative, brain negative at 50 DPI	M⁴ 358 for Tox⁴	24-6
Tox⁴	20180514	Tox⁴ 24-5, M⁴ 358 tissues	#668, #670, #682, #684, #821	Wild	Died at 37 DPI, IgG positive, brain negative	M⁴ 670 for Tox⁴	24:7
Tox⁴	20180720	Tox⁴ 24-6, M⁴ 670 tissues	#808, #812, #686, #926	IFN-γ−/−	All mice IgG negative, brain negative at 50 DPI	Discard	
Tox⁴	20190208	Tox⁴ 24-8, M⁴ 821 tissues	#883, #884, #885	Wild	All mice IgG positive, brain positive at 12-270 DPI	M⁴ 885 for Tox⁴	24-9
Tox⁴	20190220	Tox⁴ 24-9, M⁴ 885 tissues	#886, #887, #888, #889, #890	Wild	All mice IgG positive at 30 DPI	Save	

Bold letters marked Toxoplasma gondii positive mice.

⁴ DXM, Treatment dexamethasone phosphate (10 μg/mL) for 3 days in drinking water.
⁵ DPI, days post inoculation.
3.4. Virulence evaluation of T. gondii TgCaracalCHN1

After the inoculation of mice with TgCaracalCHN1 tachyzoites, till 60 DPI, the positive mice had no symptoms. 10^1 tachyzoites of T. gondii infected 100% (5/5) of mice. Toxoplasma gondii cysts were detected in mouse brains (Fig. 1 G and H). The numbers were from 170 to 5300 cysts per mouse brain. The cysts number in mouse brains was not increased significantly with higher doses of tachyzoites (P > 0.05) (Table 4).

4. Discussion

To the best of our knowledge, this is the first report of isolated viable T. gondii from caracal. This is also the first study to document T. gondii cysts directly from the striated muscles of caracals; however earlier studies only detected the antibodies to T. gondii in caracals (Sereys et al., 2019; de Camps et al., 2008; Zhang et al., 1991, 2001; Shi et al., 1992; Spencer et al., 2005; Gomez-Rios et al., 2019; Seltmann et al., 2020; Dubey et al., 2010). In this study, isolation T. gondii stain from caracal case 1 was unsuccessful. The low cyst load and avirulence of T. gondii may be relevant to the isolation result.

Genotype of the isolate TgCaracalCHN1 was identified as ToxoDB#2 (type III). ToxoDB#2 is widely distributed worldwide, including Asia, Africa, South Europe, North America, South and Central America (Chaichan et al., 2017; Shwab et al., 2018; Halos et al., 2010; Dubey, 2010; Dubey and Crutchley, 2008; Dubey et al., 2013, 2014). ToxoDB#2 T. gondii strains have found in cats (Yang et al., 2015) and sheep (Jiang et al., 2020) from central China, indicating that except for ToxoDB#9, ToxoDB#2 is one of the major endemic genotype in China. The ROP18/ROP5 genotype combination (3/3) suggests that this strain is avirulence for mice (Shwab et al., 2016a), which matched with the mouse virulence evaluation in this study.

The ingestion of bradyzoites is the most effective ways of transmission T. gondii in felids (Dubey, 2006). In this study, caracals were bred in zoo, and their diets were fresh raw beef, pork and mutton. They also eat birds, rodents and insects when available. The seroprevalence of T. gondii infection in swine, cattle, and sheep from China was 32.9%, 9.1% and 11.8%, respectively (Dong et al., 2018). A previous study showed feeding frozen tissues, keeping animals in enclosures using fences with small mesh sizes, and wearing gloves for breeder could decreased T. gondii infections in captive felids (Lücht et al., 2019). Furthermore, oocysts shed by cats may be another possible source of T. gondii infection for felids (Dubey et al., 1996). The seroprevalence of T. gondii IgG antibodies was 88.9% (8/9) in captive felids (Yang et al., 2017), and 80.0% (8/10) in captive tigers (Yang et al., 2019) from central China. The T. gondii oocysts can be spread mechanically by earthworms, cockroaches, and flies. They can also be spread through shoes, or equipment from keepers to other members of the public (de Camps et al., 2008). All of this increases the risk of T. gondii infection in zoo animals, including caracals.

Pre-freeze meat to inactivate T. gondii tissue cysts may be necessary to prevent transmission of T. gondii in zoo felids. Meat frozen at −12 ºC for seven days is a valid strategy to reduce T. gondii infection in caracals or other felids. Felces of caracals or other felids should be cleaned up daily to prevent sporulating oocysts.

Availability of data and material

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

Funding

This study was financed by the Key research projects of Henan higher education institutions (21A230009) and China Postdoctoral Science Foundation (2016M600577).
Dubey, J.P., Pas, A., Rajendran, C., Kwok, O.C.H., Ferreira, L.R., Martins, J., Hebel, C., Hammer, S., Su, C., 2010. Toxoplasmosis in sand cats (Felis margarita) and other animals in the breeding centre for endangered arahian wildlife in the United Arab Emirates and Al Wabra wildlife preservation, the state of Qatar. Vet. Parasitol. 172, 195–203.

Gomez-Rios, A., Ortega-Pacheco, A., Gutierrez-Blanco, E., Acosta-Viana, K.Y., Guzman-Martin, E., Guirris-Andrade, M.D., Hernandez-Cortazar, I.B., Lopez-Alonso, R., Cruz-Aldan, E., Jimenez-Coello, M., 2019. Toxoplasma gondii in captive wild felids of Mexico: its frequency and capability to eliminate oocysts. Vector Borne Zoonotic Dis. 19, 619–624.

Halos, L., Theault, A., Aubert, D., Thomas, M., Perret, C., Geers, R., Alliot, A., Escotte-Binet, S., Ajzenberg, D., Dard, M.L., Durand, B., Boireau, P., Villena, I., 2010. An innovative survey underlining the significant level of contamination by Toxoplasma gondii of ovine meat consumed in France. J. Parasitol. 40, 193–200.

Jiang, N., Su, R., Jian, F., Su, C., Zhang, L., Yang, Y., 2020. Toxoplasma gondii in mamls of China: heart juice serology, isolation and genotyping. Int. J. Food Microbiol. 322, 108563.

Livingston, S.E., 2009. The nutrition and natural history of the serval (Felis serval) and caracal (Caracal caracal). Vet. Clin. Exot. Anim. Pract. 12, 327–334.

Lücht, M., Stagegaard, J., Conraths, F.J., Shares, G., 2019. Toxoplasma gondii in small exotic felids from zoos in Europe and the Middle East: serological prevalence and risk factors. Parasites Vectors 12 (1), 449.

Pappas, G., Rousou, N., Falagas, M.E., 2009. Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 39, 1385–1394.

Reischl, U., Bretagne, S., Krüger, D., Ernsdorf, P., Costa, J.M., 2003. Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect. Dis. 3, 7.

Saraf, P., Shwab, E.K., Dubey, J.P., Su, C., 2017. On the determination of Toxoplasma gondii virulence in mice. Exp. Parasitol. 174, 25–30.

Selmann, A., Shares, G., Aschenbrener, O.H.K., Heinrich, S.K., Thalwitzer, S., Wachter, B., Czirjak, G.A., 2020. Species-specific differences in Toxoplasma gondii, Neospora caninum and Besnoitia besnoiti seroprevalence in Namibian wildlife. Parasitology 137, 1–11.

Wachter, B., Czirjak, G.A., 2020. Species-specific differences in Toxoplasma gondii, Neospora caninum and Toxoplasma gondii in captive and free-ranging nondomestic felids in the United States. J. Zoo Wildl. Diseases 34, 246–249.

Su, C., Shwab, E.K., Zhou, P., Zhu, X.Q., Dubey, J.P., 2016. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitol. 137, 1–11.

Su, R., Dong, H., Li, T., Jiang, Y., Yuan, Z., Su, C., Zhang, L., Yang, Y., 2019. Toxoplasma gondii in four captive kangaroos (Macropus spp.) in China: isolation of a strain of a new genotype from an eastern grey kangaroo (Macropus giganteus). Int. J. Parasitol.: Parasites and Wildlife 8, 234–239.

Waldmann, B.S., Schwarz, D., Wadsworth, M.H., Saej, J.P., Shalek, A.K., Lourido, S., 2020. Identification of a master regulator of differentiation in Toxoplasma. Cell 180, 359–372 e16.

Yang, Y., Dong, H., Su, R., Jiang, N., Li, T., Su, C., Yuan, Z., Zhang, L., 2019. Direct evidence of an extra-intestinal cycle of Toxoplasma gondii in tigers (Panthera tigris) by isolation of viable strains. Emerg. Microb. Infect. 8 (1), 1550–1552.

Yang, Y.R., Feng, Y.J., Lu, Y.Y., Dong, H., Li, T.Y., Jiang, Y.B., Zhu, X.Q., 2017. Antibody detection, isolation, genotyping, and virulence of Toxoplasma gondii in captive felids from China. Front. Microbiol. 8, 1414.

Zhao, X., Dubey, J.P., Su, C., 2018. Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc. Natl. Acad. Sci. U.S.A. 115 (29), E6956–E6963.

Zhao, X., Dubey, J.P., Su, C., 2018. Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc. Natl. Acad. Sci. U.S.A. 115 (29), E6956–E6963.