Emerging role of circular RNA in intervertebral disc degeneration: Knowns and unknowns (Review)

YONGJIN LI1*, SUZHE ZHOU2*, PENG PENG3*, XUKE WANG1,4, LILONG DU1, ZHENXIN HUO1 and BAOSHAN XU1

1Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211; 2Department of General Practice, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015; 3Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052; 4Department of Minimally Invasive Spine Surgery, Luoyang Orthopedic-Traumatological Hospital, Luoyang, Henan 471002, P.R. China

Received February 1, 2020; Accepted June 4, 2020

DOI: 10.3892/mmr.2020.11437

Correspondence to: Professor Baoshan Xu, Department of Minimally Invasive Spine Surgery, Tianjin Hospital, 406 Jielangnan Road, Hexi, Tianjin 300211, P.R. China
E-mail: baoshanxu99@tmu.edu.cn

*Contributed equally

Key words: intervertebral disc degeneration, circular RNA, nucleus pulposus cell, biofunction

Abstract. Lower back pain (LBP) is one of the predominant factors contributing to dyskinesia and remains a serious social and economic burden worldwide. Intervertebral disc degeneration (IDD) is the leading cause of LBP; the existing IDD treatments cannot completely prevent IDD. Circular RNAs (circRNAs) are non-coding RNAs resulting from back-splicing with unique structural characteristics and functions. Accumulating evidence suggests that circRNAs are involved in the pathological process of IDD and modulate a range of IDD-related genes or proteins. However, the underlying circRNA-mediated regulatory mechanisms remain poorly understood. The aim of the present review is to describe the current understanding of circRNA characteristics, classification, biogenesis and function in relation to its specific roles in IDD. Additionally, the limitations on the current knowledge in the field and the future direction of IDD-related research are also discussed.

Contents

1. Introduction
2. Characteristics
3. Classifications
4. Biogenesis and functions
5. Specific roles of circRNA in IDD
6. Current limitations and future directions
7. Conclusions

1. Introduction

Lower back pain (LBP) is one of the predominant factors contributing to dyskinesia and the second most common cause of hospital visits, leading to a serious social and economic burden worldwide (1,2). Symptomatic intervertebral disc degeneration (IDD) is the most frequent cause of LBP (1,3). Although several factors contribute to IDD, genetic factors are the leading cause (4). The nucleus pulposus (NP) is located in the center of the intervertebral disc (ID) (5); it is the largest avascular tissue in the body and lacks blood oxygenation, which limits its self-repairing ability (6). Existing IDD treatments are not satisfactory and cannot fully recover ID function (7). Non-coding RNA (ncRNA) generated by gene back-splicing can regulate gene post-transcriptional modification to modulate disease development (8). Frapin et al (9) described the pathological process of IDD in detail and inferred that metabolic dysregulation of the extracellular matrix (ECM) in the ID microenvironment was predominantly involved in the pathogenesis of IDD. The various types of IDD-related genes or protein expression disorders can contribute to the synthesis and catabolic imbalance of ECM, giving rise to the alteration of ID morphology, physics and mechanics, leading to ID function loss, thereby triggering IDD (9-11). Gene therapy uses viruses and other vectors to carry ncRNAs formed by genes or genes to target ID, which can reverse or block the pathological process of IDD and recover ID function at the genetic level (10). In view of the aforementioned reasons, gene-based diagnostic and treatment strategies are critical measures for IDD management.

IDD-related genes or proteins can be divided into protective factors and catabolic factors. The former includes hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), collagen type II (COL2), aggrecan (ACAN), SRY-related high mobility group box 9 (SOX9) and a series of antiapoptotic proteins, whereas the latter includes...
matrix metalloproteinases (MMPs), disintegrin and ADAM metallopeptidases with thrombospondin type 1 motifs (ADAMTSs), interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and a number of proapoptotic proteins (4,9-11).

Previous studies have suggested that ncRNAs, including microRNAs (miRNAs/miRs) and circular RNAs (circRNAs), serve a crucial role in the occurrence and progression of IDD (12-17). In particular, circRNAs mediate NP cell (NPC) apoptosis and regulate the expression of inflammatory cytokines, MMP, ADAMTS, various apoptosis-related proteins and key components of the ECM, such as COL2 and ACAN, which serve a role in the pathogenesis of IDD (12-17).

The present article provides an up-to-date review of circRNA characteristics, classification, biogenesis and function, with particular emphasis on the potential future directions of IDD-related research. Additionally, the limitations of current research are also discussed.

2. Characteristics

CircRNAs are a type of ncRNA with high thermal stability that were first discovered in plant-infecting virions in 1976 by Sanger et al (18). Although circRNAs have been identified in different species (19-22), these molecules were not initially extensively studied. However, circRNAs were later found to exert a previously unrecognized role in a wide spectrum of human diseases, owing to the rapid development of next-generation sequencing technology (23,24). Compared with linear RNAs, covalently closed circRNAs have unique characteristics and biological functions without 5’ to 3’ polarity or a polyadenylated tail (25-27). They are predominantly located in the cytoplasm, abundantly expressed, conserved, highly stable and exonuclease-resistant (28-31). In addition, circRNAs are expressed in a tissue- and time-specific manner (31,32). They can also be carried in exosomes and have potential applications as markers for disease diagnosis (33,34). They can also be carried in exosomes and have potential applications as markers for disease diagnosis (33,34). Direct back-splicing and exon skipping are the main pathways of circRNA synthesis (23,27).

3. Classifications

Currently, seven types of circRNAs have been identified according to the type and quantity of the parental gene the circRNAs originate from. These include exonic circRNA (ecircRNA), intronic circRNA (ciRNA), tRNA intronic circRNA (tricRNA), exon-intron circRNA (eicRNA), read-through circRNA (rt-circRNA), fusion circRNA (f-circRNA) and mitochondria-encoded circRNA (meccRNA). The circularization of at least one intron or one exon from a single gene gives rise to ciRNAs and ecircRNAs, respectively, whereas the formation of eicRNA is based on the cyclization of at least an exon and an intron (24,26) (Fig. 1). TricRNA is a special type of circRNA synthesized through a pre-tRNA intron splicing mechanism (35). Rt-circRNA is the result of circularization of two exons from two different genes (30). F-circRNA is synthesized from the transcribed exons of several nuclear genes as a result of chromosomal translocation (36). Lastly, meccRNA is produced from mitochondrial genes (37). EicircRNAs are the most common type of circRNA.

4. Biogenesis and functions

The biological functions of circRNAs depend on their type and cellular location. In the nucleus, synthetic circRNAs can modulate gene transcription (30,38) and alternative splicing (39). For example, eicRNAs circ-EIF3J and circ-PAI2P2 are largely localized in the nucleus and can interact with U1 small nuclear ribonucleoprotein and RNA polymerase (Pol) II to promote the transcription of their host genes (38). The ciRNA ci-ankrd52 positively regulates the function of RNA Pol II to modulate the transcription of its parental gene (ANKRD52), predominantly converging to the cell nucleus (39). Increased synthesis of circ-Mbl may repress the transcription of its parental gene (40).

After synthesis, ecircRNAs are transferred from the nucleus to the cytoplasm. As shown in Fig. 1, the synthesis of mature miRNAs involves a range of processing steps. First, miRNA genes are transcribed into pri-miRNAs, and then processed into pre-miRNAs in the nucleus, pre-miRNAs are then transported into the cytoplasm via the nuclear export protein Exportin5 to produce mature miRNAs (41). Subsequently, mature miRNAs directly interact with the 3’UTRs of target mRNAs, thereby inhibiting mRNA translation or degrading mRNA (42). EcircRNAs that are primarily located in the cytoplasm can modulate the expression of their parental genes (43,44), sponge miRNAs by acting as competitive endogenous RNAs (ceRNAs) (25,31,43-46), attach miRNAs (47,48), interact with or sponge RNA-binding proteins (RBPs) (25,31,49-52), encode proteins (25,31,43,53-55) and modulate protein translation (56-58) (Fig. 1).

The crosstalk between circRNAs and miRNAs is complex. CircRNAs commonly inhibit miRNA expression through a ‘sponging’ mechanism (25,31,41-44). Additionally, circ-CSNK1JG3 and ci-RS-7 positively regulate the levels of miR-181b/d and miR-7, respectively (45,46). Conversely, miR-200b negatively modulates the expression and function of circRNA-000839 (59). Whether miRNA, in turn, can regulate circRNA expression remains unknown. Moreover, the possibility that circRNAs also interact with each other has yet to be demonstrated. Furthermore, cytoplasmic circRNAs also modulate parental gene expression. For example, F-box and WD repeat domain-containing 7 (FBXW7), a well-known tumor suppressor gene, encodes the FBXW7 protein and circ-FBXW7. Circ-FBXW7 regulates the mRNA and protein levels of FBXW7 to repress the expression of c-Myc in a miRNA-dependent manner (41). Another study suggests that circ-filamin-binding LIM protein 1 (FBLIM1) positively regulates the expression of the FBLIM1 gene by sponging miR-346 (42).

CircRNAs regulate the activity and function of proteins in several ways, including via sponging, as a protein scaffold, by encoding proteins and modulating protein translation (Fig. 1). Circ-forckhead box O3 (Foxo3) can bind to both P21 and cyclin-dependent kinase 2 (CDK2) to generate ternary complexes that enhance the inhibitory effect of P21 on CDK2 (47). Circ-Foxo3 also functions as a protein scaffold, stabilizing Foxo3 protein expression by interacting with mouse double minute 2 (Mdm2) and P53 and inhibiting Mdm2-induced Foxo3 ubiquitination (50). Additionally, circ-Foxo3 inhibits the nuclear translocation of transcription factors, including HIF-1α, thereby inhibiting their
functions (49). Circ-ZKSCAN1 sponges fragile X mental retardation protein, preventing it from binding to its downstream target mRNA, cell cycle and apoptosis regulator 1, thereby attenuating the malignant biological behavior of hepatocellular carcinoma (HCC) through the Wnt signaling pathway (48). RBPs also regulate the formation of circRNAs. For example, RNA-binding motif protein 3 (RBM3) increases stearoyl-CoA desaturase-circ-RNA 2 synthesis to promote HCC cell proliferation (60), and Quaking 5 may promote the synthesis of circ-ZKSCAN1 (48). In addition, some circRNAs function through the proteins they encode. Circ-β-catenin encodes a 370-amino-acid β-catenin, which inhibits glycogen synthase kinase 3β (GSK3β)-mediated β-catenin degradation and activates the Wnt/β-catenin pathway in HCC (51). Circ-protein phosphatase 1 regulatory subunit 12a (PPP1R12A)-73aa (a protein encoded by circ-PPP1R12A), but not circ-PPP1R12A itself, accelerates colon cancer growth and metastasis (52). Moreover, circ-FBXW7 encodes the FBXW7 185-amino-acid protein (FBXW7-185aa), and the synergistic action of FBXW7 and FBXW7-185aa stabilizes c-Myc and promotes oncogenesis and tumor progression (42). Lastly, partial circRNAs modulate protein translation in a protein-dependent manner. CircRHT1 regulates the translation of nuclear receptor subfamily 2 group F member 6 (NR2F6) by activating Tat-interacting protein of 60 kDa to the Nr2f6 gene promoter (54). Circ-YY1-associated protein 1 (YAP) regulates the initiation efficiency of YAP protein translation by interacting with Yap mRNA and the proteins eIF4G and PABP (55). More recently, Sun et al (58) reported that circMYBL2 could facilitate fms-related receptor tyrosine kinase 3 (FLT3) protein translation efficiency by recruiting polypyrimidine tract-binding protein 1 to bind to Flt3 mRNA.

Recently, Chen et al (47) suggested that ~90% of circRNAs have an independent regulatory role in cell proliferation, compared with their linear counterparts. Nevertheless, certain circRNAs have functions that are similar to linear RNAs (61,62). Peroxisome proliferator-activated receptors and their associated circRNA, circ-5379-6, both suppress tumor progression (61). Yao et al (62) also reported that circ-ZKSCAN1 and its parental gene both inhibited cell growth through distinct signaling pathways.

5. Specific roles of circRNA in IDD

Biofunctions of circRNA in IDD. A growing body of evidence suggests that circRNAs are extensively involved in a multitude of chronic diseases, including osteoarthritis (63) and cancer (64), as well as cardiovascular (65), neurodegenerative (66,67) and immunological (68,69) diseases. However, the role of circRNA in IDD remains unclear. To the best of our knowledge, only nine upregulated and nine downregulated circRNAs have been identified in degenerative NP samples compared with normal NP samples, and the functions of 12 of these dysregulated circRNAs remain poorly understood (70,71). Using microarray data from the Gene Expression Omnibus (GEO) database, Zhu et al (72)
predicted three circRNA-mediated regulatory pathways in IDD, namely, circRNA-102348/miR-185-5p/TGFβ1/FOS, circRNA-102399/miR-302a-3p/HIF1A and circRNA-100086/miR-509-3p/MAPK1. However, further investigation is needed to elucidate their potential role in IDD (72). Moreover, the detailed biofunctions of circRNAs that have been identified are listed in Table I and Fig. 2. The upregulated circRNAs except circ-0004099 contribute to the occurrence and progression of IDD, whereas circ-0004099 and all downregulated circRNAs function as IDD repressors. CircRNAs act as IDD repressors or enhancers through the regulation of several pathological processes, including NPC apoptosis, proliferation, mitophagy and senescence, as well as the dysregulation of MMP, ADAMTS, inflammatory cytokines and ECM expression.

The five described IDD repressors have diverse functions: i) Circ-semaphorin 4B (SEMA4B) enhances NPC proliferation; ii) circ-SEMA4B and circ-excision repair cross-complementation group 2 (ERCC2) suppress NPC senescence; iii) circ-growth-factor receptor bound protein 10 (GRB10), circ-vacuolar ATPase assembly factor VMA21 (VMA21) and circ-ERCC2 suppress NPC apoptosis; iv) circ-SEMA4B, circ-0004099, circ-VMA21 and circ-ERCC2 promote ECM synthesis; v) circ-VMA21 and circ-ERCC2 suppress MMP or ADAMTS expression; vi) circ-ERCC2 facilitates mitophagy; and vii) circ-0004099 inhibits IC secretion (12-17). The only known IDD enhancer, circRNA-104670, not only represses NPC proliferation and the synthesis of ECM components, but also promotes NPC apoptosis and MMP2 expression (15). These abnormally expressed circRNAs mediate pathological processes through several signaling pathways, including apoptosis-related pathways and ECM-related pathways.

Circ-VMA21-mediated IDD repression. Circ-VMA21 was the first identified IDD-related circRNA (12), providing invaluable insight into the modulation of IDD pathogenesis by circRNAs. Circ-VMA21 is downregulated in degenerative NP samples from patients with IDD compared with NP samples from controls (12). Similarly, the expression of circ-VMA21 is reduced in NPCs treated with both TNF-α and IL-1β (12). The progression of IDD is associated with the aberrant expression of circ-VMA21 in degenerative and normal NP samples. More specifically, circ-VMA21 blocked the progression of IDD, and its downregulation limited its protective effect. Circ-VMA21 serves a protective role in human NPCs and rat NP tissues predominantly through apoptosis-related pathways and the ECM components metabolism-related pathways.

Circ-VMA21 positively modulates X linked inhibitor-of-apoptosis protein (XIAP) and represses the expression of caspase (CASP) family members (CASP-3, CASP-7 and CASP-9), as well as a number of degrading metabolic enzymes (MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5). Circ-VMA21 also promotes the expression of ECM components, including COL2 and ACAN, by sponging miR-200c (12,73). Luciferase reporter and RNA pull-down assays confirmed that circ-VMA21 has five effective binding sites in miR-200c (12,73).

Pfirrmann classification is the most common method used for the evaluation of IDD severity, according to magnetic resonance imaging grade (74). Circ-VMA21 markedly decreased the Pfirrmann grade of IDD following injection into rat IDs. Altogether, these studies suggested that the circ-VMA21/miR-200c/XIAP axis may be involved in the regulation of IDD pathogenesis, providing novel therapeutic targets for IDD.

IDD repressor circ-GRB10. Lan et al (75) analyzed the microarray data of human lumbar IDD and uploaded it into the GEO database. Our previous study identified three ab normally expressed circRNAs by analyzing circRNA microarray data from the GEO database, of which two were upregulated (circ-FAM169A and circ-SETD2) and one was downregulated (circ-GRB10) (13). The expression of circ-GRB10 was downregulated in 20 degenerative NP samples from patients with IDD undergoing discectomy compared with 20 nondegenerative NP samples from patients with fresh traumatic lumbar fracture (13). Mechanistically, the circ-GRB10-mediated pathological process of IDD is miR-328-5p-dependent. Functionally, circ-GRB10 acts as an IDD repressor of NPC apoptosis under nutrient deprivation conditions by sequestering miR-328-5p and promoting Erb-B2 receptor tyrosine kinase 2 (ERBB2) expression in NPCs. Thus, circ-GRB10 downregulation could decrease NPC survival, leading to IDD onset and progression.

IDD repressor circ-0004099. Wang et al (14) categorized patients with IDD according to the Pfirrmann classification criteria (74). Patients with Pfirrmann grade I/II were assigned to a nondegenerative group, whereas those with Pfirrmann grade IV/V constituted the degeneration group. The authors collected six degenerative NP samples from the patients of the degenerative group who were undergoing spinal surgery and six nondegenerative NP samples from the patients of the nondegenerative group with vertebral fracture or scoliosis (13,14). Using circRNA microarray, circRNA expression profiles in the twelve samples were examined (14). Circ-0004099 was the most frequently upregulated circRNA in the degenerative samples (14). Moreover, circ-0004099 expression was increased in NPCs in a dose and time-dependent manner following treatment with TNF-α. It was also demonstrated that this effect was mediated by MAPK and the NF-κB signaling pathways (14). Notably, circ-0004099 overexpression enhanced (rather than repressed) the expression of Sox9 and ECM proteins, such as ACAN and COL2. Circ-004099 also repressed (rather than enhanced) proinflammatory cytokine secretion (TNF-α, IL-1β and prostaglandin E2), and these changes were reversed by miR-616-5p mimic 14). Sox9 is a chondrocyte-specific transcription factor that promotes COL2 and ACAN synthesis (76,77). Wang et al (14) also confirmed that Sox9 was the direct target of miR-616-5p. In addition, luciferase reporter, RNA immunoprecipitation and RNA pull-down assays indicated that circ-0004099 could bind to miR-616-5p (14). Collectively, these research results reveal that the circ-0004099/miR-616-5p/Sox9 axis might play a protective role in IDD.

IDD repressor circ-SEMA4B. Consistent with Guo’s method (13), Wang et al (16) also analyzed the same circRNA microarray data that was downloaded from the GEO database. Circ-SEMA4B expression was the most significantly downregulated circRNA in 45 IDD specimens and had
Author, year	circRNA	Condition	Expression	Treatment	Spinal type	Pathway	Investigated process	ceRNA mechanism	(Ref.s.)
Guo et al, 2018	circ-GrB10	Fracture vs. IDD disease	Downregulated in IDD disease	N/A	Lumbar	circ-GrB10/miR-328-5p/ERBB2	Inhibition of NPC apoptosis; NPC apoptosis inhibition; ECM degradation; MMP3/13; and ADAMTS4/5 expression	IDD repressor	(13)
Cheng et al, 2018	circ-Vma21	Fracture or scoliosis vs. degenerative spinal disease	Downregulated in IDD disease	TNF-α (5 ng/ml) + IL-1β (5 ng/ml)	Lumbar	circ-Vma21/miR-200c/Xiap/Caspases/ECM	IDD repressor	(12)	
Wang et al, 2018a	circ_0004099	Fracture or scoliosis vs. degenerative spinal disease	Upregulated in IDD disease	TNF-α (50 ng/ml)	Lumbar	TNF-α/MAPK/NF-κB/Sox9/miR-616-5p/Sox9/ECM/TNF-α and IL-1β	ECM synthesis; and TNF-α/IL-1β secretion	IDD repressor	(14)
Wang et al, 2018b	circ-SEMA4B	Mild vs. severe IDD disease	Downregulated in IDD disease	IL-1β (10 ng/ml)	Lumbar	IL-1β/circ-SEMA4B/miR-431/GSK-3β/Sfrp1/Wnt pathway	ECM generation; NPC proliferation; and suppression of NPC senescence	IDD repressor	(16)
Xie et al, 2019	circ-ERCC2	Cervical spondylotic myelopathy vs. Hirayama disease	Downregulated in IDD disease	TBHP (100 µM)	Cervical	circ-ERCC2/miR-182-5p/Sirt1	Inhibition of NPC apoptosis; senescence; mitophagy; COL2; degradation and MMP13 expression expression	IDD repressor	(17)
Song et al, 2018	circRNA_104670	Cervical spondylotic myelopathy vs. Hirayama disease	Upregulated in IDD disease		Cervical	circRNA_104670/miR-17-3p/MMP2	Enhancement of NPCs apoptosis and MMP2 expression; suppression of NPC proliferation and COL2 synthesis	IDD enhancer	(15)

CircRNA, circular RNA; IDD, intervertebral disc degeneration; mR, microRNA; circ-VMA21, circ-vacuolar ATPase assembly factor 21; circ-SEMA4B, circ-semaphorin 4B; circ-ERCC2, circ-excision repair cross-complementation group 2; circ-GRB10, circ-growth factor receptor bound protein 10; MMP, matrix metalloproteinase; NPC, nucleus pulposus cell; cRNA, competing endogenous RNA; ERBB2, erb-B2 receptor tyrosine kinase 2; XIAP, X-linked inhibitor of apoptosis protein; CASPs, caspas; GSK-3β, glycogen synthase kinase-3β; SFRP1, secreted frizzled-related protein 1; SIRT1, silent information regulator 1; COL2, collagen type II; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; TBHP, tert-butyl hydroperoxide.
a negative association with IDD severity, as hard on the Pfirrmann grade (16). Notably, circ-SEMA4B promoted the synthesis of ECM components and NPC proliferation, while inhibiting NPC senescence under IL-1β stimulation. It was also demonstrated that IL-1β exerted these effects by inhibiting circ-SEMA4B expression (16).

Previous studies have demonstrated that the Wnt signaling pathway serves an important role in the regulation of NPC proliferation and senescence (78,79). For instance, circ-SEMA4B regulates the activation of the Wnt signaling pathway by sponging miR-431, the upstream regulator of two well-known Wnt signaling pathway inhibitors, GSK-3β and secreted frizzled-related protein 1 (SFRP1) (16,80,81). Collectively, results from these studies suggest that circ-SEMA4B may be associated with the prognosis of patients with IDD and inhibits IDD development by regulating the miR-431/GSK-3β/SFRP1 axis.

IDD repressor circ-ERCC2. Xie et al (17) analyzed Song’s (15) microarray analysis of circRNAs and Lan’s (75) microarray dataset (GSE67566) and demonstrated that circ-ERCC2 was the most frequently downregulated circRNA in degenerative NP tissue (15,74). Functional analyses also suggested that circ-ERCC2 modulated tert-butyl hydroperoxide-induced NPC apoptosis (through CASP-3, CASP-7 and CASP-9), mitophagy (through PTEN-induced kinase 1, parkin, p62, and LC3II/I) and ECM structure (MMP13 and COL2) in vitro and in vivo (17). Fluorescence in situ hybridization and dual-luciferase assays demonstrated that circ-ERCC2 could bind to miR-182-5p (17).

Previous studies have indicated that silent mating type information regulator 2 homolog 1 (SIRT1) plays a significant role in mitophagy and apoptosis (82-84). SIRT1-small interfering (si)RNA inhibits NPC apoptosis and senescence. Moreover, this effect is suppressed by circ-ERCC2 and miR-182-5p inhibitor, suggesting that circERCC2 exerts a protective effect on NPCs that is dependent on miR-182-5p (17).

IDD enhancer circRNA_104670. CircRNA-104670 is related to cervical IDD and is upregulated ~4.5-fold in degenerative tissues from patients with cervical spondylotic myelopathy compared with normal tissues from patients with Hirayama disease (15). Furthermore, circRNA-104670 may represent a diagnostic marker for IDD. In a previous study, receiver operating characteristic curve analysis indicated that the area under the curve value of circRNA_104670 was 0.96 and the expression of circRNA_104670 was positively associated with...
Pfirrmann grade (15). Functionally, circRNA-104670 increased NPC apoptosis and suppressed NPC proliferation. Moreover, this circRNA also promoted MMP2 and repressed COL2 expression by sequestering miR-17-3p (15). Mice injected with circRNA_104670 siRNA presented lower Pfirrmann grades (15). Thus, circRNA-104670 may act as an IDD enhancer that regulates miR-17-3p and MMP2, leading to IDD progression.

6. Current limitations and future directions

All of the research on IDD-related circRNAs has shortcomings. Although a universal approach to NPC culture with inflammatory cytokine treatment and ID microenvironment stimulation has been developed, it does not account for the fact that different circRNAs have diverse affinities for various inflammatory cytokines. However, as highlighted in Table I, none of the investigations explain why they used IL-1β or TNF-α or both. Recently, Shen et al (63) approached this problem by detecting the expression of circRNAs in the cells stimulated with IL-1β, TNF-α or both.

As the NP is a hypoxic environment, the potential role of HIF-1α in IDD has been reviewed previously. In the development of IDD, HIF-1α activation is involved in the regulation of IDD-related gene or protein expression (9). Thus, HIF-1α is a crucial transcriptional regulator of IDD. Increasing evidence suggests that HIF-1α is a target of ncRNAs in several diseases (26,85,86). Nevertheless, hypoxia-related circRNA pathways in IDD are still poorly characterized.

Exosomes serve an important role in numerous physiological and pathological processes in various diseases (33,87,88). Various factors, including HIF-1α, ncRNAs and proteins, among others, are present in exosomes (89). Thus, circRNAs contained within exosomes could serve as markers for diseases (33,87,88). Importantly, whether HIF-1α affects MMP and the ECM remains unclear (9). Nevertheless, we cannot rule out the possibility of the existence of the circRNA/HIF-1α/MMP/ECM axis in the exosomes of IDD. Further research is needed to elucidate this.

The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) axis regulates numerous biological events, including cell proliferation, apoptosis, metastasis and metabolism (90). Growing evidence also indicates that circRNA-mediated regulation of the PI3K/AKT/mTOR axis serves an essential role in the pathogenesis of several diseases, such as hepatocellular carcinoma and kidney cancer (85,91,92). However, whether this holds true in IDD remains unclear. Recently, bioinformatics analysis predicted that circRNAs could regulate autophagy signaling pathways in IDD via sponging miRNAs (93). So, the role of circRNA-mediated autophagy in IDD cannot be ruled out and is a worthwhile research direction.

7. Conclusions

In conclusion, circRNAs function as ceRNAs to regulate the pathological process of IDD in a miRNA-dependent manner. However, circRNAs also have a number of other functions aside from their role as a ceRNA that have not been reported on in IDD. Whether circRNAs can sponge or interact with RBP, encode proteins, modulate protein translation and gene expression in the context of IDD should also be addressed. Thus, understanding the biological role of circRNAs and their underlying molecular mechanism in the context of IDD would provide further insight into disease prevention strategies and contribute to the development of therapeutic targets for IDD.

Acknowledgements

Not applicable.

Funding

The present study was supported by grants from The National Natural Science Foundation of China (grant nos. 31670983 and 31900967) and The Natural Science Foundation of Tianjin City (grant no. 19JCQNJOC0300).

Availability of data and materials

Not applicable.

Authors’ contributions

YL, SZ and PP contributed to the concept and the design of the study. ZH searched the literature and collated important reference information. BX critically reviewed the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abukade RS, Abdulle AM, Abebo TA, Abera SF, et al: Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet 390: 1211-1259, 2017.

2. Deyo RA and Tsui-Wu YJ: Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine (Phila Pa 1976) 12: 264-268, 1987.

3. Rishbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol 10: 44-56, 2014.

4. Battie MC, Videman T and Parent E: Lumbar disc degeneration: Epidemiology and genetic influences. Spine (Phila Pa 1976) 29: 2679-2690, 2004.

5. Humzah MD and Soames RW: Human intervertebral disc: Structure and function. Anat Rec 220: 337-356, 1988.

6. Sakai D and Andersson GB: Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat Rev Rheumatol 11: 243-256, 2015.
7. Jacobs WC, van der Gaag NA, Kruyt MC, Tusche1 A, de Kleveur M, Peul WC, Verbout AJ and Oner FC: Total disc replacement for chronic discogenic low back pain: A cochrane systematic review. Spine (Phila Pa 1976) 33: 28-38, 2008.

8. Skvortsova K, Iovino N and Bogdanovitch O: Functions and mechanisms of epigenetic inheritance in animals. Nat Rev Mol Cell Biol 19: 774-790, 2018.

9. Frapin L, Clout J, Delplace V, Fusellier M, Guicheux J and Le Visage C: Lessons learned from intervertebral disc pathology. Front Pediatr 28: 21-58, 2019.

10. Vergroesen PP, Kingma i, e manuel KS, et al.: Current trends in biologics development and design of sequential delivery systems for therapeutic biological factors. Advanced Drug Delivery Reviews 149-150: 40-71, 2019.

11. Fontana G, See e and Pandit a: Identification of meckiRNAs and their molecular determinants in metazoan tricRNA biogenesis. Nucleic Acids Res 47: 6452-6465, 2019.

12. Guo W, Zhao J, Wang B, Mu K, Feng SQ, d ong ZY, ning GZ, li Hr, Wang H, He P, Pan H, long J, Wang J, li Z, liu H, Jiang W and Song J, Wang Hl, Song KH, ding ZW, Wang Hl, Ma XS, lu FZ, et al: Widespread and functional circRNA expression. PLoS Genet 9: e1003777, 2013.

13. Xie l, Huang W, Fang Z, ding F, Zou F, Ma X, Tao J, Guo J, et al.: Widespread and functional circRNA expression. PLoS Genet 9: e1003777, 2013.

14. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

15. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res 25: 981-984, 2015.

16. Schmidt CA, Giusto JD, Bao A, Hopper AK and Matera AG: Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res 47: 6452-6465, 2019.

17. Xie L, Huang W, Fang Z, Ding F, Zou F, Ma X, Tao J, Guo J, Xia X, Wang H, et al: Circular CC2 amirolerated intervertebral disc degeneration by regulating mitophagy and apoptosis through miR-182-5p/SIRT1 axis. Cell Death Dis 10: 751, 2019.

18. Sanger HL, Klotz G, Riesner D, Gross JJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73: 3852-3856, 1976.

19. Grabowski PJ, Zaug AJ and Cech TR: The intervening sequence of the ribosomal RNA precursor is converted to a circular form in isolated nuclei of Tetrahymena. Cell 23: 467-476, 1981.

20. Negro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JK, Kinzler KW and Vogelstein B: Scrambled exons. Cell 64: 607-613, 1991.

21. Capel B, Swain A, Nicolas S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73: 1019-1030, 1993.

22. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z and Sharpless NE: Expression of linear and novel circular forms of GCKR/AREF associated non-coding RNAs regulates with atherosclerosis risk. PLoS Genet 6: e1001233, 2010.

23. Morris KV and Mattick JS: The rise of regulatory RNA. Nat Rev Genet 15: 423-437, 2014.

24. Jeck WR, liu Y, et al: Detecting and characterizing circular RNAs. Nat Biotechnol 32: 453-461, 2014.

25. Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71: 428-442, 2018.

26. Boeckeln JN, Jaë N, Heumüller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S and Dimmeler S: Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117: 884-890, 2015.

27. Vicens Q and Westhof E: Biogenesis of circular RNAs. Cell 159: 13-14, 2014.

28. Jeck WR, Scantlebury JA, Wang K, Slevin MK, Burd CE, Liu J, Mathieu SJ and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19: 141-157, 2013.

29. Suzuki H, Zou Y, Wang J, Zhang MQ, Malhotra A and Mayeda A: Characterization of RNAse R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 33: 28-38, 2005.

30. Vo Jn, cieslik M, Zhang Y, Shukla S, Xiao l, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell 176: 869-881.e13, 2019.

31. Patop IL, Wüst S and Kadenker S: Past, present, and future of circRNAs. EMBO J 38: e100836, 2019.

32. Selman J, Chen RF, Zusman MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet 9: e1003777, 2013.

33. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

34. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X and Huang S: Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res 25: 981-984, 2015.

35. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

36. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

37. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

38. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

39. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

40. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

41. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.

42. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al.: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer 18: 116, 2019.
51. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Fox3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence response. Eur Heart J 38: 1402-1412, 2017.

52. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Fox3 activity. Cell Death Differ 24: 357-370, 2017.

53. Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM and Zhang JF: Translation of the circular rRNA circZKScan1 by Circ‑CDYL acts specifically in the early stages hepatocellular carcinogenesis. Mol Med Rep 22: 3057-3065, 2020.

54. Zheng X, Chen L, Zhou YF, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis in breast cancer via Hippo-YAP signaling. Mol Cancer 18: 47, 2019.

55. Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110: 304-315, 2018.

56. Wang L, Long H, Zheng Q, Bo X, Xiao X and Li B: Circular RNA circRHT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer 18: 119, 2019.

57. Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, et al: Translation of yes-associated protein (YAP) was induced by its binding to circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 26: 2758-2773, 2019.

58. Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, Huang W, Fang K, Sun LY, Zhou YF, et al: CircMYB2L, a circRNA from MYB2L2, promotes cell proliferation and invasion by up-regulating miR-200b/c in breast cancer under hypoxia/re-oxygenation injury by blocking the Wnt signaling pathway. Lipids Health Dis 15: 72, 2016.

59. Guo J, Shao M, Lu F, Jiang J and Xia X: Role of Sirt1 plays in nucleus pulposus cells and intervertebral disc degeneration. Spine (Phila Pa 1976) 42: E757-E766, 2017.

60. Wang D, Hu Z, Hao J, He B, Guan Q, Zhong X, Zhang X, Shen J, Yang F and Jiang W: SIRT1 inhibits apoptosis of degenerative human disc nucleus pulposus cells through activation of Akt pathway. Age (Dordr) 35: 1741-1753, 2013.

61. Tao J, Abudoukelimu M, Ma YT, Yang YN, Li XM, Chen BD, Liu F, He CH and Li HY: Secreted frizzled related protein 1 protects H9c2 cells from hypoxia/re-oxygenation injury by blocking the Wnt signaling pathway. Kidney Internatinal 76: 826-836, 2019.

62. Shang Q, Yang B, Liu J, Liu R and Ge S: The novel roles of circRNAs in heart disease. Theranostics 9: 588-607, 2019.

63. Chen Z, Shi P, Fang J and Jiang W: Sirt1 inhibits apoptosis of degenerative human disc nucleus pulposus cells through Akt pathway. J Cell Physiol 235: 718-724, 2020.

64. Hou J, Zhang M, Shen J, Yang Y and Zhan X: A novel mechanism of intervertebral disc degeneration: Imbalance between autophagy and apoptosis. Epigenomics: apr 14, 2018.

65. Zhan X: Circular RNA Scd-circrna 2 production. eBioMedicine 45: 155-167, 2019.

66. Yang F: The RNA-binding protein RBM3 promotes cell proliferation in hepatocellular carcinoma by regulating circular RNA circPPP1M2. J Cell Physiol 226: 1139-1148, 2011.

67. Yang BB: Foxo3 circular RNA promotes cardiac senescence by regulating miR-21/PTen axis and inactivating PI3K/akt and nF-kB pathways. J Cell Physiol 235: 130-147, 2020.

68. Ren S, Liu J, Feng Y, Li Z, He L, Li L, Cao X, Wang Z and Zhang Y: Knockdown of circDEDD4D inhibits glycosylation, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. J Exp Clin Cancer Res 38: 388, 2019.

69. Ren GL, Zhu J, Li J and Hou J: Noncoding RNAs in acute kidney injury. J Cell Physiol 234: 2266-2276, 2019.

70. Chai Chian, Shafabakhsh R, Mirhashemi SM, Moazzami B and Asemi Z: Circular RNAs: A novel biomarker for cervical cancer. J Cell Physiol 235: 718-724, 2020.

71. Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-neagoe I and Mochida J: Enhancement of intervertebral disc cell senescence by Wnt/β-catenin signaling induced matrix metalloproteinase expression. Arthritis Rheum 62: 3036-3047, 2010.

72. Liu Y, Hou J, Zhang M, Seleh-Zo e, Wang J, Cao B and An X: fox1-circ-016910 sponges mir-574-5p to regulate cell physiology and cell senescence. Mol Cancer 18: 119, 2019.