Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation

Chen-Yu Wei
University of Southern California
chenyu.wei@usc.edu

Mehdi Jafarnia-Jahromi
University of Southern California
mjafarni@usc.edu

Haipeng Luo
University of Southern California
haipengl@usc.edu

Rahul Jain
University of Southern California
raul.jain@usc.edu

Abstract

We develop several new algorithms for learning Markov Decision Processes in an infinite-horizon average-reward setting with linear function approximation. Using the optimism principle and assuming that the MDP has a linear structure, we first propose a computationally inefficient algorithm with optimal $\tilde{O}(\sqrt{T})$ regret and another computationally efficient variant with $\tilde{O}(T^{3/4})$ regret, where $T$ is the number of interactions. Next, taking inspiration from adversarial linear bandits, we develop yet another efficient algorithm with $\tilde{O}(\sqrt{T})$ regret under a different set of assumptions, improving the best existing result by Hao et al. [16] with $\tilde{O}(T^{2/3})$ regret. Moreover, we draw a connection between this algorithm and the Natural Policy Gradient algorithm proposed by Kakade [22], and show that our analysis improves the sample complexity bound recently given by Agarwal et al. [4].

1 Introduction

Reinforcement learning with value function approximation has gained significant empirical success in many applications. However, the theoretical understanding of these methods is still quite limited. Recently, some progress has been made for Markov Decision Processes (MDPs) with a transition kernel and a reward function that are both linear in a fixed state-action feature representation (or more generally with a value function that is linear in such a feature representation). For example, Jin et al. [21] develop an optimistic variant of the Least-squares Value Iteration (LSVI) algorithm [7, 29] for the finite-horizon episodic setting with regret $O(\sqrt{dT})$, where $d$ is the dimension of the features and $T$ is the number of interactions. Importantly, the bound has no dependence on the number of states or actions.

However, the understanding of function approximation for the infinite-horizon average-reward setting, even under the aforementioned linear conditions, remains underexplored. Compared to the finite-horizon setting, the infinite-horizon model is often a better fit for real-world problems such as server operation optimization or stock market decision making which last for a long time or essentially never end. On the other hand, compared to the discounted-reward model, maximizing the long-term average reward also has its advantage in the sense that the transient behavior of the learner does not really matter for the latter case. Indeed, the infinite-horizon average-reward setting for the tabular case (that is, no function approximation) is a heavily-studied topic in the literature. Several recent works start to investigate function approximation for this setting, albeit under strong assumptions [2, 3, 16].
Motivated by this fact, in this work we significantly expand the understanding of learning MDPs in the infinite-horizon average-reward setting with linear function approximation. We develop three new algorithms, each with different pros and cons. Our first two algorithms provably ensure low regret for MDPs with linear transition and reward, which are the first for this setting to the best of our knowledge. More specifically, the first algorithm Fixed-point OPeration with Optimism (FOPO) is based on the principle of “optimism in the face of uncertainty” applied in a novel way. FOPO aims to find a weight vector (parametrizing the estimated value function) that maximizes the average reward under a fixed-point constraint akin to the LSVI update involving the observed data and an optimistic term. The constraint is non-convex and we do not know of a way to efficiently solve it. FOPO also relies on a lazy update schedule similar to [1] for stochastic linear bandits, which is only for the purpose of saving computation in their work but critical for our regret guarantee. We prove that FOPO enjoys $\tilde{O}(\sqrt{dT})$ regret with high probability, which is optimal in $T$. (Section 2)

Our second algorithm OLSVI.FH addresses the computational inefficiency issue of FOPO with the price of having larger regret. Specifically, it combines two ideas: 1) solving an infinite-horizon problem via an artificially constructed finite-horizon problem, which is new as far as we know, and 2) the optimistic LSVI algorithm of [21] for the finite-horizon setting. OLSVI.FH can be implemented efficiently and is shown to achieve $O((dT)^{2})$ regret. (Section 3)

Our third algorithm MDP-Exp2 takes a very different approach and is inspired by another algorithm called MDP-OOMD from [35]. MDP-OOMD runs a particular adversarial multi-armed bandit algorithm for each state to obtain $O(\sqrt{T})$ regret (ignoring dependence on other parameters) for the tabular case under an ergodic assumption. We generalize the idea and apply a particular adversarial linear bandit algorithm known as EXP2 [11, 8] for each state (only conceptually — the algorithm can still be implemented efficiently). Under the same set of assumptions made in [16] (which does not necessarily require linear transition and reward), we improve their regret bound from $O(T^{\frac{3}{2}})$ to $O(T^{3})$. In Appendix E, we also describe the connection of this algorithm with the Natural Policy Gradient algorithm proposed by Kakade [22], whose sample complexity bound is recently formalized by Agarwal et al. [4]. We argue that under the setting considered in Section 4, their analysis translates to a sub-optimal regret bound of $O(T^{\frac{3}{2}})$, and that our improvement over theirs comes from the way we construct the gradient estimates.

Related work. For the tabular case with finite state and action space in the infinite-horizon average-reward setting, the works [6, 20] are among the first to develop algorithms with provable sublinear regret. Over the years, numerous improvements have been proposed, see for example [28, 14, 33, 15, 38, 35]. In particular, the recent work of [35] develops two model-free algorithms for this problem. We refer the reader to [35, Table 1] for comparisons of existing algorithms. As mentioned, our algorithm MDP-Exp2 is inspired by the MDP-OOMD algorithm of [35]. Also note that their Optimistic Q-learning algorithm reduces an infinite-horizon average-reward problem to a discounted-reward problem. For technical reasons, we are not able to generalize this idea to the linear function approximation setting. Instead, our OLSVI.FH algorithm reduces the problem to a finite-horizon version, which is new to the best of our knowledge and might be of independent interest.

The work of [10] considers learning in infinite-horizon average-reward MDPs with linear function approximation, under the assumption that the learner has access to a sampling oracle from which the learner can sample states and actions under any given distribution. The assumptions they make for the MDP is similar to the ones in our Section 4, and the sample complexity bound they obtain is $O\left(1/\epsilon^{2}\right)$. However, since the oracle assumption is rather strong, it is not clear how to extend their algorithm to the online setting.

The works of [2, 3, 16] are among the first to consider the infinite-horizon average-reward setting with function approximation and provable regret guarantees in the online setting. Their results all depend on some uniformly mixing and uniformly excited feature conditions. As mentioned, under the same assumption, our MDP-Exp2 algorithm with $O(\sqrt{T})$ regret improves the best existing result by Hao et al. [16] with $O(T^{\frac{3}{2}})$ regret. Moreover, our other two algorithms ensure low regret for linear MDPs without these extra assumptions, which do not appear before.

Provable function approximation has gained growing research interest in other settings as well (finite-horizon or discounted-reward). See recent works [36, 21, 37, 12, 34] for example. In particular, our
FOPO algorithm shares some similarity with the algorithm of Zanette et al. [37], which also relies on solving an optimization problem under a constraint akin to LSVI, with no efficient implementation. Adversarial linear bandit is also known as bandit linear optimization. The EXP2 algorithm [8], on top of which our MDP-EXP2 algorithm is built, is also known as Geometric Hedge [11] or ComBand [9] in the literature. A concurrent work by Neu and Olkhovskaya [25] proposes an algorithm called MDP-LINEXP3 for the linear function approximation setting that is also based on the adversarial linear bandit framework. However, their result is incomparable to ours because they focus on finite-horizon MDPs with adversarial reward, and they assume that the learner has access to a sampling oracle.

2 Preliminaries

We consider infinite-horizon average-reward Markov Decision Processes (MDPs) described by \((\mathcal{X}, \mathcal{A}, r, p)\) where \(\mathcal{X}\) is a Borel state space with possibly infinite number of elements, \(\mathcal{A}\) is a finite action set, \(r: \mathcal{X} \times \mathcal{A} \to [-1, 1]\) is the (unknown) reward function, and \(p(\cdot|x, a)\) is the (unknown) transition kernel induced by \(x, a\), satisfying \(\int_{\mathcal{X}} p(dx'|x, a) = 1\) (following integral notation from [19]).

The learning protocol is as follows. A learner interacts with the MDP through \(T\) steps, starting from an arbitrary initial state \(x_1 \in \mathcal{X}\). At each step \(t\), the learner decides an action \(a_t\), and then observes the reward \(r(x_t, a_t)\) as well as the next state \(x_{t+1}\) which is a sample drawn from \(p(\cdot|x_t, a_t)\). The goal of the learner is to be competitive against any fixed stationary policy. Specifically, a stationary policy is a mapping \(\pi: \mathcal{X} \to \Delta_{\mathcal{A}}\) with \(\pi(a|x)\) specifying the probability of selecting action \(a\) at state \(x\). The long-term average reward of a stationary policy \(\pi\) starting from state \(x \in \mathcal{X}\) is naturally defined as:

\[
J^\pi(x) \triangleq \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^{T} r(x_t, a_t) \mid x_1 = x, \forall t \geq 1, a_t \sim \pi(\cdot|x_t), x_{t+1} \sim p(\cdot|x_t, a_t) \right].
\]

The performance measure of the learner, known as regret, is then defined as \(\text{Reg}_T := \max_{\pi} \sum_{t=1}^{T} (J^\pi(x_1) - r(x_1, a_1))\), which is the difference between the total rewards of the best stationary policy and that of the learner.

However, in contrast to the finite-horizon episodic setting where ensuring sublinear regret is always possible, it is known that in our setting a necessary condition is that the optimal policy has a long-term average reward that is independent of the initial state [6]. To this end, throughout the paper we only consider a broad subclass of MDPs where a certain form of Bellman optimality equation holds [19]:

**Assumption 1** (Bellman optimality equation). There exist \(J^* \in \mathbb{R}\) and bounded measurable functions \(v^*: \mathcal{X} \to \mathbb{R}\) and \(q^*: \mathcal{X} \times \mathcal{A} \to \mathbb{R}\) such that the following holds for all \(x \in \mathcal{X}\) and \(a \in \mathcal{A}\):

\[
J^* + q^*(x, a) = r(x, a) + \mathbb{E}_{x' \sim p(\cdot|x, a)}[v^*(x')] \quad \text{and} \quad v^*(x) = \max_{a \in \mathcal{A}} q^*(x, a).
\]

Indeed, under this assumption, the claim is that a policy \(\pi^*\) that deterministically selects an action from argmax\(_a \) \(q^*(x, a)\) at each state \(x\) is the optimal policy, with \(J^\pi^*(x) = J^*\) for all \(x\). To see this, note that for any policy \(\pi\), using the Bellman optimality equation we have

\[
J^\pi(x) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^{T} \left( J^* + \sum_{a \in \mathcal{A}} q^*(x_t, a) \cdot \pi(a|x_t) - v^*(x_{t+1}) \right) \right]
\]

\[
\leq \lim_{T \to \infty} \frac{1}{T} \mathbb{E} \left[ \sum_{t=1}^{T} \left( J^* + q^*(x_t) - v^*(x_{t+1}) \right) \right] = J^*,
\]

with equality attained by \(\pi^*\), proving the claim. Consequently, under **Assumption 1** we simply write the regret as \(\text{Reg}_T := \sum_{t=1}^{T} (J^* - r(x_t, a_t))\).

All existing works on regret minimization for infinite-horizon average-reward MDPs make this assumption, either explicitly or through even stronger assumptions which imply this one. In the tabular case with a finite state space, weakly communicating MDPs is the broadest class to study.
regret minimization in the literature, and is known to satisfy Assumption 1 (see [30]). More generally, Assumption 1 holds under many other common conditions; see [19, Section 3.3].

Note that \( v^*(x) \) and \( q^*(x, a) \) quantify the relative advantage of starting with \( x \) and starting with \((x, a)\) respectively and then acting optimally in the MDP. Therefore, \( v^* \) is sometimes called the state bias function and \( q^* \) is called the state-action bias function.

For a bounded function \( v : \mathcal{X} \to \mathbb{R} \), we define its span as \( \text{sp}(v) \triangleq \sup_{x, x' \in \mathcal{X}} |v(x) - v(x')| \). Notice that if \( (v^*, q^*) \) is a solution of Eq. (1), then a translated version \( (v^* - c, q^* - c) \) for any constant \( c \) is also a solution. In the remaining of the paper, we let \( (v^*, q^*) \) be an arbitrary solution pair of Eq. (1) with a small span \( \text{sp}(v^*) \) in the sense that \( \text{sp}(v^*) \leq 2 \text{sp}(v^t) \) for any other solution \( (v^t, q^t) \). We also assume without loss of generality \( |v^*(x)| \leq \frac{1}{2} \text{sp}(v^*) \) for any \( x \) because we can perform the above translation and center the values of \( v^* \) around zero.

### 3 Optimism-based Algorithms

In this section, we present two optimism-based algorithms with sublinear regret, under only one extra assumption that the MDP is linear (also known as low-rank MDPs). We emphasize that earlier works for linear MDPs in the finite-horizon average-reward setting all require extra strong assumptions [2, 3, 16].

Specifically, a linear MDP has a transition kernel and a reward function both linear in some state-action feature representation, formally summarized as:

**Assumption 2 (Linear MDP).** There exist a known \( d \)-dimensional feature mapping \( \Phi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d \), \( d \) unknown measures \( \mu = (\mu_1, \mu_2, \ldots, \mu_d) \) over \( \mathcal{X} \), and an unknown vector \( \theta \in \mathbb{R}^d \) such that for all \( x, x' \in \mathcal{X} \) and \( a \in \mathcal{A} \),

\[
p(x' \mid x, a) = \Phi(x, a)^\top \mu(x'), \quad r(x, a) = \Phi(x, a)^\top \theta.
\]

Without loss of generality, we further assume that for all \( x \in \mathcal{X} \) and \( a \in \mathcal{A} \), \( \|\Phi(x, a)\| \leq \sqrt{d} \), the first coordinate of \( \Phi(x, a) \) is fixed to 1, and that \( \|\mu(x')\| \leq \sqrt{d}, \|\theta\| \leq \sqrt{d} \), where we use \( \mu(x') \) to denote the vector \( (\mu_1(x'), \ldots, \mu_d(x')) \) and \( \mu(x') \triangleq \int_{\mathcal{X}} d\mu_i(x) \) is the total measure of \( \mathcal{X} \) under \( \mu_i \). (All norms are 2-norm.)

In [21], the same assumption is made except for a different rescaling: \( \|\Phi(x, a)\| \leq 1, \|\mu(x')\| \leq \sqrt{d} \), and \( \|\theta\| \leq \sqrt{d} \). The reason that this is without loss of generality is not justified in [21], and for completeness we prove this in Appendix A. With this scaling, clearly one can augment the feature \( \Phi(x, a) \) with a constant coordinate of value 1 and augment \( \mu(x) \) and \( \theta \) with a constant coordinate of value 0, such that the linear structure is preserved while the scaling specified in Assumption 2 holds.

Under Assumption 2, one can show that the state-action bias function \( q^* \) is in fact also linear in the features.

**Lemma 1.** Under Assumption 1 and Assumption 2, there exists a fixed weight vector \( w^* \in \mathbb{R}^d \) such that \( q^*(x, a) = \Phi(x, a)^\top w^* \) for all \( x \in \mathcal{X} \) and \( a \in \mathcal{A} \), and furthermore, \( \|w^*\| \leq (2 + \text{sp}(v^*))\sqrt{d} \).

Based on this lemma, a natural idea emerges: at time \( t \), build an estimator \( w_t \) of \( w^* \) using observed data, then act according to the estimated long-term reward of each action given by \( \Phi(x_t, a)^\top w_t \). While the idea is intuitive, how to construct the estimator and, perhaps more importantly, how to incorporate the optimism principle well known to be important for learning with partial information, are highly non-trivial. In the next two subsections, we describe two different ways of doing so, leading to our two algorithms FOPO and OLSVI.FH.

#### 3.1 Fixed-point OPtimization with Optimism (FOPO)

We present our first algorithm FOPO which is computationally inefficient but achieves regret \( O(\text{sp}(v^*)\sqrt{dT}) \). This is optimal in \( T \) since even in the tabular case \( O(\sqrt{T}) \) is unimprovable [20]. See Algorithm 1 for the complete pseudocode.

As mentioned, the key part lies in how the estimator \( w_t \) is constructed. In Algorithm 1, this is done by solving an optimization problem over certain constraints. To understand the first constraint Eq. (2),
Algorithm 1 Fixed-point OPtimization with Optimism (FOPO)

Parameters: $0 < \delta < 1, \quad \beta = 20(2 + \text{sp}(v^*))d\sqrt{\log(T/\delta)}, \quad \lambda = 1$

Initialize: $\Lambda_1 = \lambda I$ where $I \in \mathbb{R}^{d \times d}$ is the identity matrix

1. for $t = 1, \ldots, T$
2.   if $t = 1$ or $\det(\Lambda_t) \geq 2 \det(\Lambda_{s_{t-1}})$
3.     Set $s_t = t$ \quad \triangleright \quad $s_t$ records the most recent update
4.     Let $w_t$ be the solution of the following optimization problem:

\[
\max_{w_t, b_t \in \mathbb{R}^d, J_t \in \mathbb{R}} J_t
\]

subject to
\[
w_t = \Lambda_t^{-1} \sum_{t=1}^{t-1} \Phi(x, \tau, a) (r(x, \tau, a) - J_t + v_t(x_{t+1})) + b_t \tag{2}
\]
\[
q_t(x, a) = \Phi(x, a)^\top w_t, \quad v_t(x) = \max_a q_t(x, a)
\]
\[
\|b_t\|_{\Lambda_t} \leq \beta, \quad \|w_t\| \leq (2 + \text{sp}(v^*))\sqrt{d}
\]

else
5. \quad \begin{align*}
(w_t, J_t, b_t, v_t, q_t, s_t) &= (w_{t-1}, J_{t-1}, b_{t-1}, v_{t-1}, q_{t-1}, s_{t-1}) \\
\text{Play } a_t &= \text{argmax}_a q_t(x_t, a), \text{ observe } r(x_t, a_t) \text{ and } x_{t+1} \\
\text{Update } \Lambda_{t+1} &= \Lambda_t + \Phi(x_t, a_t)\Phi(x_t, a_t)^\top
\end{align*}

end

recall that $q^*(x, a) = \Phi(x, a)^\top w^*$ satisfies the Bellman optimality equation:
\[
\Phi(x, a)^\top w^* = r(x, a) - J^* + \int_x v^*(x') p(dx' | x, a) = r(x, a) - J^* + \int_x \left( \max_{a'} \Phi(x', a')^\top w^* \right) p(dx' | x, a).
\]

While $p$ and $r$ are unknown, we do observe samples $x_1, \ldots, x_{t-1}$ and $r(x_1, a_1), \ldots, r(x_{t-1}, a_{t-1})$. If for a moment we assume $J^*$ was known, then it is natural to try to find $w_t$ such that
\[
\Phi(x, \tau, a) = r(x, \tau, a) - J^* + \max_{a'} \Phi(x_{t+1}, a')^\top w_t, \quad \forall \tau = 1, \ldots, t - 1. \tag{3}
\]

In common variants of Least-squares Value Iteration (LSVI) update, the $w_t$ on the right hand side of Eq. (3) would be replaced with another already computed weight vector $w_t'$ that is either from the last iteration (i.e., $w_{t-1}$) or from the next layer in the case of episodic MDPs. Then solving a least-squares problem with regularization $\lambda \|w_t\|^2$ gives a natural estimate
\[
w_t = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(x, \tau, a) \left( r(x, \tau, a) - J^* + \max_{a'} \Phi(x_{t+1}, a')^\top w_t' \right)
\]

where $\Lambda_t = \lambda I + \sum_{\tau < t} \Phi(x, \tau, a)\Phi(x, \tau, a)^\top$ is the empirical covariance matrix. Based on this formula, what we propose in Algorithm 1 are the following three modifications. First, instead of using an already computed weight $w_t'$, we directly set it back to $w_t$ (and thus $\max_{a'} \Phi(x_{t+1}, a')^\top w_t' = v_t(x_{t+1})$), making the formula a fixed-point equation now. Second, to incorporate uncertainty, we introduce a slack variable $b_t$ with a bounded quadratic norm $\|b_t\|_{\Lambda_t} \equiv \sqrt{b_t^\top \Lambda_t b_t} \leq \beta$ (for a parameter $\beta$) that controls the amount of uncertainty. Last, to deal with the fact that $J^*$ is unknown, we replace it with a variable $J_t$ (arriving at Eq. (2) finally), and apply the well-known principle of optimism in the face of uncertainty --- we maximize the long-term average reward $J_t$ (over $w_t, b_t$, and $J_t$) under the aforementioned constraints and also $\|w_t\| \leq (2 + \text{sp}(v^*))\sqrt{d}$ in light of Lemma 1.

With the vector $w_t$ and the corresponding bias function $q_t$, the algorithm simply plays $a_t = \text{argmax}_a q_t(x_t, a)$ greedily. Note that $w_t$ is only updated when the determinant of $\Lambda_t$ doubles compared to that of $\Lambda_{s_t-1}$ where $s_{t-1}$ is the time step with the most recent update before time $t$ (Line 2). This can happen at most $O(d \log T)$ times. Similar ideas are used in e.g., [1] for stochastic
Next, we present another optimism-based algorithm which can be implemented efficiently, albeit with a suboptimal regret guarantee. The high-level idea is still based on LSVI. However, since we do not know how to efficiently solve a fixed-point problem as in Algorithm 1, we “open the loop” by solving a finite-horizon problem instead. More specifically, we divide the T rounds into T/H episodes each with H rounds, and run a finite-horizon optimistic LSVI algorithm over the episodes as in [21].

The resulted algorithm is shown in Algorithm 2. For simplicity, we replace the time index t with a combination of an episode index k and a step index h within the episode. This gives the relation t = (k − 1)H + h, and (xt, at) is written as (xh, ah). At the beginning of each episode k, the learner computes a set of Q-function parameters w1H, . . . , wH by backward calculation using all historical data (Line 3 to Line 6). Note that Line 4 is now simply an assignment step (as opposed to a fixed-point problem) since V'h+h is computed already when in step h. In Line 5, we introduce optimism by incorporating a bonus term β∥Φ(x, a)∥Λ−1 into the definition of Q'h(x, a), and hence Q'h(x, a). Then in step h of episode k, the learner simply follows the greedy choice suggested by Q'h(xh, ·) (Line 8).

Note that Algorithm 2 is slightly different from the version in [21]: they maintain a different covariance matrix Λh separately for each step h, but we only maintain a single Λk for all h. Similarly, their wh is computed using only data related to step h from all previous episodes, while ours is computed using all previous data. This is because in our problem, the steps within an episode

\[ wh = \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^{H} \Phi(x_{h'}, a_{h'}) \left( r(x_{h'}, a_{h'}) + V'_{h'+1}(x_{h'+1}) - \Phi(x_{h'}, a_{h'}) \right) \]

\[ Q'_h(x, a) = w_h \cdot \Phi(x, a) + \beta \sqrt{\Phi(x, a) \Lambda_k^{-1} \Phi(x, a)} \]

\[ Q_k(x, a) = \min \left\{ Q'_h(x, a), H \right\} \text{ and } V_k(x) = \max_a Q_k(x, a) \]

\[ \Lambda_{k+1} = \Lambda_k + \sum_{h=1}^{H} \Phi(x_h, a_h) \Phi(x_h, a_h)^T \]
share the same transition and reward functions, and consequently they can be learned jointly, which eventually reduces the sample complexity.

Clearly, this reduction ensures that the learner has low regret against the best policy for the finite-horizon problem that we create. However, since our original problem is about average-reward over infinite horizon, we need to argue that the best finite-horizon policy also performs well under the infinite-horizon criteria. Indeed, we show that the sub-optimality gap of the best finite-horizon policy is bounded by some quantity governed by \( sp(v^*)/H \), which is intuitive since the larger \( H \) is, the smaller the gap becomes (see Lemma 13).

In our analysis, for a fixed episode we define \( \pi = (\pi_1, \ldots, \pi_H) \) as the finite-horizon policy (i.e., a length-\( H \) sequence of policies), where each \( \pi_h \) is a mapping \( \mathcal{X} \rightarrow \Delta_A \). For any such finite-horizon policy \( \pi \), we define \( Q^\pi_h(x, a) \) and \( V^\pi_h(x) \) as the value functions for the finite-horizon problem we create, which satisfy: \( V^\pi_{H+1}(x) = 0 \) and for \( h = H, \ldots, 1, \)

\[
Q^\pi_h(x, a) = r(x, a) + \mathbb{E}_{x' \sim p(\cdot|x, a)}[V^\pi_{h+1}(x')], \quad V^\pi_h(x) = \mathbb{E}_{a \sim \pi_x(\cdot|x)}Q^\pi_h(x, a).
\] (4)

The analysis of the algorithm relies on the following key lemma, which shows that \( Q^\pi_h(x, a) \) upper bounds \( Q^\pi_h(x, a) \) for any \( \pi \).

**Lemma 4.** With probability at least \( 1 - \delta \), Algorithm 2 ensures for any finite-horizon policy \( \pi \) that \( 0 \leq Q^\pi_h(x, a) - Q^\pi_h(x, a) \leq \mathbb{E}_{x' \sim p(\cdot|x, a)}[V^\pi_{h+1}(x') - V^\pi_{h+1}(x')] + 2\beta\|\Phi(x, a)\|_{\Lambda^{-1}} \), for all \( x, a, k, h \).

With the help of Lemma 4, we prove the final regret bound of OLSVI.FH stated in the next theorem (proof deferred to the appendix).

**Theorem 5.** Under Assumptions 1 and 2, OLSVI.FH guarantees with probability at least \( 1 - 3\delta \):

\[
\text{Reg}_T = \mathcal{O} \left( \sqrt{sp(v^*)}(dT)^\frac{3}{4} + (sp(v^*)dT)^\frac{3}{4} \right).
\]

Note that although our bound is suboptimal, OLSVI.FH is the first efficient algorithm with sublinear regret for this setting under only Assumptions 1 and 2.

## 4 The MDP-Exp2 Algorithm

There are two disadvantages of the optimism-based algorithms introduced in the last section. First, they require the transition kernel and reward function to be both linear in the feature (Assumption 2), which is restrictive and might not hold especially when \( d \) is small. Second, even for the polynomial-time algorithm OLSVI.FH, it is still computationally intensive because in Line 4 of the algorithm, \( V^\pi_{h+1} \) is applied to all previous states, and every evaluation of \( V^\pi_{h+1} \) requires computing \( \|\Phi(x, a)\|_{\Lambda_h} \). Since this is done for every \( k \), the total computational cost of the algorithm is super-linear in \( T \). In fact, all existing optimism-based algorithms with linear function approximation suffer the same issue [36, 21, 37].

To this end, we propose yet another algorithm based on very different ideas. It is computationally less intensive and it enjoys \( \mathcal{O}(\sqrt{T}) \) regret, albeit under a different (and non-comparable) set of assumptions compared to those in Section 3. Note that these are the same assumptions made in [2, 16]. Below, we start with stating these assumptions, followed by the description of our algorithm.

The first assumption we make is that the MDP is uniformly mixing.

**Assumption 3 (Uniform Mixing).** There exists a constant \( t_{mix} \geq 1 \) such that for any policy \( \pi \), and any distributions \( \nu_1, \nu_2 \in \Delta_\mathcal{X} \) over the state space,

\[
\|\mathbb{P}^\pi \nu_1 - \mathbb{P}^\pi \nu_2\|_{TV} \leq e^{-1/t_{mix}}\|\nu_1 - \nu_2\|_{TV},
\]

where \( (\mathbb{P}^\pi \nu)(x') = \int_\mathcal{X} \sum_{a \in A} \pi(a|x)p(x'|x, a)d\nu(x) \) and \( \| \cdot \|_{TV} \) is the total variation.

Under this uniform mixing assumption, we are able to define the stationary state distribution under any policy as \( \nu^* = (\mathbb{P}^\pi)^\infty \nu^t \) for an arbitrary initial distribution \( \nu^t \). Also, now we not only have the Bellman optimality equation (1) (that is, Assumption 3 implies Assumption 1), but also a Bellman equation for every policy \( \pi \), as shown in the following lemma.
Algorithm 3 MDP-EXP2

Parameter: $N = 8t_{mix} \log T$, $B = 32N \log (dT) \sigma^{-1}$, $\eta = \min \left\{ \sqrt{1/(Tt_{mix})}, \sigma/(24N) \right\}$.

1 for $k = 1, \ldots, T/B$ do  \Comment{$k$ indexes an epoch}
2 \hspace{1em} Define policy $\pi_k$ such that $\pi_k(a|x) \propto \exp \left( \eta \sum_{j=1}^{k-1} \Phi(x, a)^\top w_j \right)$ for every $x \in \mathcal{X}$
3 for $t = (k-1)B + 1, \ldots, kB$ do \Comment{first step of the $m$-th trajectory}
4 \hspace{2em} Play $a_t \sim \pi_k(\cdot|x_t)$, observe $r_t(x_t, a_t)$ and $x_{t+1}$ \Comment{Execute $\pi_k$ in the entire epoch}
5 \hspace{2em} for $m = 1, \ldots, B/2N$ do
6 \hspace{3em} Define $\tau_{k,m} = (k-1)B + 2N(m-1) + N + 1$ \Comment{total reward of the $m$-th trajectory}
7 \hspace{3em} Compute $R_{k,m} = \sum_{t=\tau_{k,m}}^{\tau_{k,m}+N-1} r(x_t, a_t)$ \Comment{total reward of the $m$-th trajectory}
8 \hspace{2em} Compute \Comment{$\lambda_{\min}$ denotes the minimum eigenvalue}
9 \hspace{3em} $M_k = \sum_{m=1}^{B/2N} \sum_a \pi_k(a|x_{\tau_{k,m}}) \Phi(x_{\tau_{k,m}}, a) \Phi(x_{\tau_{k,m}}, a)^\top$
10 \hspace{3em} $w_k = \begin{cases} \lambda_{\min}^{-1} \sum_{m=1}^{B/2N} \Phi(x_{\tau_{k,m}}, a_{\tau_{k,m}})R_{k,m}, & \text{if } \lambda_{\min}(M_k) \geq \frac{B\sigma}{2N}, \\ 0 & \text{else.} \end{cases}$

Lemma 6. Suppose Assumption 3 holds. For any $\pi$, its long-term average reward $J^\pi(x)$ is independent of the initial state $x$, thus denoted as $J^\pi$. Also, the following Bellman equation holds:

$$J^\pi + q^\pi(x, a) = r(x, a) + \mathbb{E}_{x' \sim p(\cdot|x, a)}[v^\pi(x')]$$

and $v^\pi(x) = \sum_{a \in \mathcal{A}} \pi(a|x) q^\pi(x, a)$ for some measurable functions $v^\pi : \mathcal{X} \to [-4t_{mix}, 4t_{mix}]$ and $q^\pi : \mathcal{X} \times \mathcal{A} \to [\min -6t_{mix}, 6t_{mix}]$ with $\int_{\mathcal{X}} v^\pi(x) \mathrm{d}v^\pi(x) = 0$.

On the other hand, with this assumption (stronger than Assumption 1), we can replace Assumption 2 (linear MDP) with the following weaker one that only requires the bias function $q^\pi$ to be linear. (In Lemma 14 in the appendix, we show that this is indeed weaker than the linear MDP assumption.)

Assumption 4 (Linear bias function). There exists a known $d$-dimensional feature mapping $\Phi : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d$ such that for every policy $\pi$, $q^\pi(x, a)$ can be written as $\Phi(x, a)^\top w^\pi$ for some weight vector $w^\pi \in \mathbb{R}^d$. Again, without loss of generality (justified in Appendix A), we assume that for all $x, a$, $\|\Phi(x, a)\| \leq \sqrt{2}$ holds, the first coordinate of $\Phi(x, a)$ is fixed to 1, and for all $\pi$, $\|w^\pi\| \leq 6t_{mix}\sqrt{d}$.

The last assumption we make is uniformly excited features, which intuitively guarantees that every policy is explorative in the feature space.

Assumption 5 (Uniformly excited features). There exists $\sigma > 0$ such that for any $\pi$,

$$\lambda_{\min} \left( \int_{\mathcal{X}} \left( \sum_a \pi(a|x) \Phi(x, a) \Phi(x, a)^\top \right) \mathrm{d}v^\pi(x) \right) \geq \sigma,$$

where $\lambda_{\min}$ denotes the smallest eigenvalue.

This assumption is needed due to the nature of our algorithm that only performs local search of the parameters. It can potentially be weakened if we combine our algorithm with the idea of Abbasi-Yadkori et al. [3] (details omitted).

Algorithm. We are now ready to present our MDP-EXP2 algorithm, shown in Algorithm 3. It extends the idea of running an adversarial bandit algorithm at each state from the tabular case [26, 35] to the continuous state case, by using an adversarial linear bandit algorithm EXP2 [8].

Specifically, MDP-EXP2 proceeds in epochs of equal length $B = \tilde{O}(dt_{mix}/\sigma)$. In each epoch $k$, the algorithm executes a fixed policy $\pi_k$ (explained later), and collects $\frac{B}{2N}$ disjoint trajectories, each of
length \( N = \tilde{O}(t_{\text{mix}}) \). Between every two consecutive trajectories, there is a window of length \( N \) in which the algorithm does not collect any samples, so that the correlation of samples from different trajectories is reduced. See Figure 1 in the appendix for an illustration.

In the analysis, we show that the expected total reward of a trajectory is roughly \( q^*(x_\tau, a_\tau) + NJ^n \) (Lemma 15), where \( \pi \) is the policy used to collect that trajectory and \( \tau \) is the first step of the trajectory. By Assumption 4 we have \( q^*(x_\tau, a_\tau) + NJ^n = \Phi(x_\tau, a_\tau)\top (w^{\pi_k} + NJ^e_1) \). This observation allows us to draw a connection between this problem and adversarial linear bandits. To see this, first note that the regret is roughly \( B \sum_{k=1}^{T/B} (J^* - J^{\pi_k}) \). By the standard value difference lemma [23, Lemma 5.2.1], we have

\[
\sum_{k=1}^{T/B} (J^* - J^{\pi_k}) = \int_X \left( \sum_{k=1}^{T/B} \sum_a (\pi^*(a|x) - \pi_k(a|x)) q^{\pi_k}(x,a) \right) d\nu^{\pi^*}(x)
\]

where according to the previous observation and the fact \( \sum_a (\pi^*(a|x) - \pi_k(a|x)) NJ^{\pi_k} = 0 \), the term in the parentheses with respect to a fixed state \( x \) can be further written as \( \sum_{k=1}^{T/B} \sum_a (\pi^*(a|x) - \pi_k(a|x)) \Phi(x,a)\top (w^{\pi_k} + NJ^e_1) \). This is exactly the regret of a standard online learning problem over a set of actions \( \{\Phi(x,a)\}_{a \in A} \) with linear reward functions parameterized by a weight vector \( (w^{\pi_k} + NJ^e_1) \) at step \( k \). Moreover, since we do not observe this weight but have access to the reward of a trajectory whose mean is roughly \( \Phi(x,a)\top (w^{\pi_k} + NJ^e_1) \) as mentioned, we are in the so-called bandit setting. In fact, since the weight can generally change arbitrarily over time (because \( \pi_k \) is changing), this is an adversarial linear bandit problem.

With this connection in mind, the idea behind MDP-EXP2 is clear — it conceptually runs a variant of the linear bandit algorithm EXP2 for each state. Specifically, in epoch \( k \) the algorithm constructs an estimator \( w_k \) for the reward vector \( w^{\pi_k} + NJ^e_1 \). The construction mostly follows the idea of EXP2, with the only difference being the way of controlling the variance — in the original EXP2, a particular exploration scheme is enforced, while in our case, we average multiple trajectories as done in Line 8 making use of the uniformly excited feature assumption (to make sure that \( \|w_k\| \) is not too large, we also set it to 0 if \( \lambda_{\min}(M_k) \) is too small). Finally, with these estimators, the policy for epoch \( k \) is computed by a standard exponential weight update rule (see Line 2).

We emphasize that MDP-EXP2 does not actually need to maintain an instance of EXP2 for each state, but instead only needs to maintain the estimators \( w_k \) and calculate \( \pi(\cdot|x_t) \) on the fly for each \( x_t \), which is even more efficient than optimism-based algorithms. It also enjoys a favorable regret guarantee of order \( \tilde{O}(\sqrt{T}) \), as shown below. Once again, the best existing result under the same set of assumptions is \( \tilde{O}(T^{2/3}) \) from [16].

**Theorem 7.** Under Assumptions 3, 4, 5, MDP-EXP2 ensures \( \mathbb{E}[\text{Reg}_T] = \tilde{O} \left( \frac{1}{\sigma} \sqrt{\frac{T^3}{t_{\text{mix}}} T} \right) \).

Note that while the bound in Theorem 7 seemingly does not depend on \( d \), the dependence is in fact implicit because \( \frac{1}{\sigma} = \Omega(d) \) always holds by the definition of \( \sigma \) (see Remark 1 in the appendix). We provide a proof for this fact along with the proof of Theorem 7 in the appendix.

**Connections to Natural Policy Gradient.** Finally, we remark that although MDP-EXP2 is based on a linear bandit algorithm EXP2, it is related to the (in fact much earlier) reinforcement learning algorithm Natural Policy Gradient (NPG) [22] under softmax parameterization. The connection between softmax-parameterized NPG and the exponential weight update was formalized in a recent work by Agarwal et al. [4]. In Appendix E, we first restate the connection. Then we compare the implementation details of MDP-EXP2 and the NPG algorithm in [4], showing that MDP-EXP2 improves the sample complexity bound of [4] under the considered setting.

## 5 Conclusions and Open Problems

In this work, we provide three new algorithms for learning infinite-horizon average-reward MDPs with linear function approximation, significantly extending and improving previous works. One key open question is how to achieve the optimal \( \tilde{O}(\sqrt{T}) \) regret efficiently under the linear MDP assumption. In Appendix E, we also discuss another open question related to weakening Assumption 5 while maintaining a similar regret bound.
References

[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.

[2] Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International Conference on Machine Learning, pages 3692–3702, 2019.

[3] Yasin Abbasi-Yadkori, Nevena Lazic, Csaba Szepesvari, and Gellert Weisz. Exploration-enhanced politex. arXiv preprint arXiv:1908.10479, 2019.

[4] Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods in markov decision processes. In Conference on Learning Theory, 2020.

[5] Keith Ball et al. An elementary introduction to modern convex geometry.

[6] Peter L. Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement learning in weakly communicating mdps. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 35–42. AUAI Press, 2009.

[7] Steven J Bradtke and Andrew G Barto. Linear least-squares algorithms for temporal difference learning. Machine learning, 22(1-3):33–57, 1996.

[8] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham M Kakade. Towards minimax policies for online linear optimization with bandit feedback. In Conference on Learning Theory, pages 41–1, 2012.

[9] Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System Sciences, 78(5):1404–1422, 2012.

[10] Yichen Chen, Lihong Li, and Mengdi Wang. Scalable bilinear $\pi$ learning using state and action features. In International Conference on Machine Learning, pages 834–843, 2018.

[11] Varsha Dani, Sham M Kakade, and Thomas P Hayes. The price of bandit information for online optimization. In Advances in Neural Information Processing Systems, 2008.

[12] Kefan Dong, Jian Peng, Yining Wang, and Yuan Zhou. $\sqrt{n}$-regret for learning in markov decision processes with function approximation and low bellman rank. In Conference on Learning Theory, 2020.

[13] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory, pages 23–37. Springer, 1995.

[14] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained exploration-exploitation in reinforcement learning. In International Conference on Machine Learning, pages 1573–1581, 2018.

[15] Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Improved analysis of ucr12 with empirical bernstein inequality. arXiv preprint arXiv:2007.05456, 2020.

[16] Botao Hao, Nevena Lazic, Yasin Abbasi-Yadkori, Pooria Joulani, and Csaba Szepesvari. Provably efficient adaptive approximate policy iteration. arXiv preprint arXiv:2002.03069, 2020.

[17] Nick Harvey. Matrix chernoff bounds. In https://www.cs.ubc.ca/~nickhar/Cargese2.pdf.

[18] Elad Hazan and Zohar Karnin. Volumetric spanners: An efficient exploration basis for learning. Journal of Machine Learning Research, 17(119):1–34, 2016.

[19] Onésimo Hernández-Lerma. Adaptive Markov control processes, volume 79. Springer Science & Business Media, 2012.
[20] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(Apr):1563–1600, 2010.

[21] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with linear function approximation. In *Conference on Learning Theory*, 2020.

[22] Sham M Kakade. A natural policy gradient. In *Advances in neural information processing systems*, pages 1531–1538, 2002.

[23] Sham Machandranath Kakade. *On the sample complexity of reinforcement learning*. PhD thesis, University College London, 2003.

[24] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In *International conference on machine learning*, pages 1928–1937, 2016.

[25] Gergely Neu and Julia Olkhovskaya. Online learning in mdps with linear function approximation and bandit feedback. *arXiv preprint arXiv:2007.01612*, 2020.

[26] Gergely Neu, András György, Csaba Szepesvári, and András Antos. Online markov decision processes under bandit feedback. *IEEE Transactions on Automatic Control*, 59:676–691, 2013.

[27] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov decision processes. *arXiv preprint arXiv:1705.07798*, 2017.

[28] Ronald Ortner. Regret bounds for reinforcement learning via markov chain concentration. *Journal of Artificial Intelligence Research*, 67:115–128, 2020.

[29] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In *International Conference on Machine Learning*, pages 2377–2386, 2016.

[30] Martin L Puterman. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.

[31] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pages 1889–1897, 2015.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[33] Mohammad Sadegh Talebi and Odalric-Ambrym Maillard. Variance-aware regret bounds for undiscounted reinforcement learning in mdps. In *Algorithmic Learning Theory*, pages 770–805, 2018.

[34] Ruosong Wang, Ruslan Salakhutdinov, and Lin F Yang. Provably efficient reinforcement learning with general value function approximation. *arXiv preprint arXiv:2005.10804*, 2020.

[35] Chen-Yu Wei, Mehdi Jafarnia-Jahromi, Haipeng Luo, Hiteshi Sharma, and Rahul Jain. Model-free reinforcement learning in infinite-horizon average-reward markov decision processes. In *International Conference on Machine Learning*, 2020.

[36] Lin F Yang and Mengdi Wang. Reinforcement leaning in feature space: Matrix bandit, kernels, and regret bound. In *International Conference on Machine Learning*, 2020.

[37] Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies with low inherent bellman error. In *International Conference on Machine Learning*, 2020.

[38] Zihan Zhang and Xiangyang Ji. Regret minimization for reinforcement learning by evaluating the optimal bias function. In *Advances in Neural Information Processing Systems*, 2019.
A Auxiliary Lemmas Related to Assumption 2 and Assumption 4

In this section, we provide justification for the scaling assumption made in Assumption 2 and Assumption 4, showing that they are indeed without loss of generality as long as one transforms and normalizes the features in some way beforehand.

Lemma 8. Let \( \Phi = \{ \Phi(x,a) : x \in \mathcal{X}, a \in \mathcal{A} \} \subset \mathbb{R}^d \) be a feature set with rank \( d \). Then there exists an invertible linear transformation \( v : \mathcal{X} \times \mathcal{A} \to \mathbb{R}^d \) such that for any function \( F : \mathcal{X} \times \mathcal{A} \to \mathbb{R} \) defined by

\[
F(x,a) = \Phi(x,a)\top z,
\]

for some \( z \in \mathbb{R}^d \), we have \( \|A\Phi(x,a)\| \leq 1 \) and \( \|A^{-1}z\| \leq \sqrt{d}F_{\text{max}} \) where \( F_{\text{max}} = \sup_{x,a} |F(x,a)| \).

This lemma implies that if we use the transformed feature \( \Phi'(x,a) = A\Phi(x,a) \) with \( \|\Phi'(x,a)\| \leq 1 \), then any function \( F(x,a) = \Phi(x,a)\top z \) can be equivalently written as \( F(x,a) = \Phi'(x,a)\top z' \) with \( z' = A^{-1}z \) and \( \|z'\| \leq \sqrt{d}F_{\text{max}} \). Therefore, taking \( z \) to be \( \mu(x) \) or \( \theta \) for Assumption 2, or \( w^\pi \) for Assumption 4, with the corresponding \( F(x,a) \) being \( \int \mathcal{X} p(x'|x,a)dx', r(x,a), \) and \( q^\pi(x,a) \), and \( F_{\text{max}} \) being 1, 1, and \( 6\theta_{\text{mix}} \) (Lemma 6) respectively, justifies the scaling stated in these assumptions.

Notice that the transformation \( A \) only depends on the feature set \( \Phi \), but not \( F \) or \( z \). Thus we can perform this transformation as long as we know the feature map. This is similar to a standard preprocessing step of feature normalizing in machine learning.

Proof of Lemma 8. Define \( -\Phi = \{ -\Phi(x,a) : x \in \mathcal{X}, a \in \mathcal{A} \} \) and \( \mathcal{K}(\Phi) = \Phi \cup -\Phi \). We first argue that for any bounded feature set \( \Phi \subset \mathbb{R}^d \), there exists an invertible linear transformation \( v \to Av \) with \( A \in \mathbb{R}^{d \times d} \) such that the minimum volume enclosing ellipsoid (MVEE) of the transformed feature set \( \mathcal{K}(A\Phi) \) where \( A\Phi = \{ A\Phi(x,a) : x \in \mathcal{X}, a \in \mathcal{A} \} \) is the unit sphere. This can be seen by the following: notice that \( \mathcal{K}(\Phi) \) is always symmetric around the origin, and so is its MVEE. Suppose that the MVEE of \( \mathcal{K}(\Phi) \) is \( \{ u \in \mathbb{R}^d : u\top Bu = 1 \} \) for some invertible \( B \) (otherwise \( \Phi \) is not full-rank). Then if we pick \( A = B^{-\frac{1}{2}} \), the MVEE of \( \mathcal{K}(A\Phi) \) will be the unit sphere.

Now consider this new feature \( \Phi'(x,a) = A\Phi(x,a) \) with the MVEE of \( \mathcal{K}(\Phi') \) being the unit sphere (which implies \( \|\Phi'(x,a)\| \leq 1 \)). Defining \( z' = A^{-1}z \), we have \( \Phi'(x,a)\top z' = \Phi(x,a)\top z = F(x,a) \).

Below, we show that \( \|z'\| \leq \sqrt{d}F_{\text{max}} \).

By Lemma 9 below, there exists a subset \( \mathcal{M} = \{ u_1, \ldots, u_m \} \subseteq \mathcal{K}(\Phi') \) that lie on the unit sphere, and non-negative weights \( c_1, \ldots, c_m \), such that

\[
\sum_{i=1}^m c_i u_i u_i\top = I_d.
\]

Taking trace on both sides, we get \( \sum_{i=1}^m c_i = d \).

Note that we have \( F(x,a) = \Phi'(x,a)\top z' \) for all \( x, a \). Specially, applying this to the elements in \( \mathcal{M} \), and using the fact that \( \|F(x,a)\| \leq F_{\text{max}} \), we get

\[
dF_{\text{max}}^2 = \sum_{i=1}^m c_i F_{\text{max}}^2 \geq \sum_{i=1}^m c_i (u_i\top z')^2 = z'\top \left( \sum_{i=1}^m c_i u_i u_i\top \right) z' = \|z'\|^2,
\]

which implies \( \|z'\| \leq \sqrt{d}F_{\text{max}} \) and finishes the proof.

Lemma 9. ([18, Theorem 6], [5]) Let \( \mathcal{K} \) be a symmetric set such that its MVEE is the unit sphere. Then there exist \( m \leq d(d+1)/2 - 1 \) contact points of \( \mathcal{K} \) and the sphere \( u_1, \ldots, u_m \) and non-negative weights \( c_1, \ldots, c_m \) such that \( \sum_i c_i u_i = 0 \) and \( \sum_i c_i u_i u_i\top = I_d \).

B Auxiliary Lemmas for Self-normalized Processes

In this section, we provide some useful lemmas related to the concentration of self-normalized processes. The first two are taken directly from [21, Appendix D.2].
Lemma 10 (Concentration of Self-Normalized Processes). Let \( \{ \epsilon_t \}_{t=1}^{\infty} \) be a real-valued stochastic process with corresponding filtration \( \{ F_t \}_{t=0}^{\infty} \). Let \( \epsilon_t | F_{t-1} \) be zero-mean and \( \sigma \)-subgaussian, that is, \( \mathbb{E}[\epsilon_t | F_{t-1}] = 0 \) and \( \mathbb{E}[\epsilon_t^2 | F_{t-1}] \leq \sigma^2 \) for all \( \lambda \in \mathbb{R} \).

Let \( \{ \phi_t \}_{t=0}^{\infty} \) be an \( \mathbb{R}^d \)-valued stochastic process where \( \phi_t \in F_{t-1} \). Assume that \( \Lambda_t = \Lambda_1 + \sum_{s=1}^{t-1} \phi_s \phi_s^\top \). Then for any \( \delta > 0 \), with probability at least \( 1 - \delta \), we have for all \( t > 0 \),

\[
\left\| \sum_{s=1}^{t-1} \phi_s \epsilon_s \right\|^2_{\Lambda_t^{-1}} \leq 2 \sigma^2 \log \frac{\det(\Lambda_t)^{1/2} \det(\Lambda_1)^{-1/2}}{\delta}.
\]

Lemma 11. Let \( \{ x_t \}_{t=1}^{\infty} \) be a stochastic process on state space \( \mathcal{X} \) with corresponding filtration \( \{ F_t \}_{t=0}^{\infty} \). Let \( \phi_t \in F_{t-1} \) and \( \| \phi_t \| \leq 1 \), \( \Lambda_t = \lambda I + \sum_{s=1}^{t-1} \phi_s \phi_s^\top \), and \( \mathcal{V} \subseteq \mathbb{R}^X \) be an arbitrary set of functions defined on \( \mathcal{X} \), with \( \mathcal{N}_\varepsilon \) being its \( \varepsilon \)-covering number with respect to \( \dist(v, v') = \sup_{x \in \mathcal{X}} |v(x) - v(x')| \) for some fixed \( \varepsilon > 0 \). Then for any \( \delta > 0 \), with probability at least \( 1 - \delta \), for all \( t > 0 \) and any \( v \in \mathcal{V} \) so that \( \sup_{x} |v(x)| \leq H \), we have

\[
\left\| \sum_{s=1}^{t-1} \phi_s (v(x_s) - \mathbb{E}[v(x_s) | F_{t-1}]) \right\|^2_{\Lambda_t^{-1}} \leq 4H^2 \left( \frac{d}{2} \log \left( \frac{t + \lambda}{\lambda} \right) + \log \frac{N_{\varepsilon}}{\delta} \right) + 8r^2 \varepsilon^2 \lambda.
\]

Lemma 12. Let \( \mathcal{V} \) be a class of mappings from \( \mathcal{X} \) to \( \mathbb{R} \) parametrized by \( \alpha = (\alpha_1, \alpha_2, \ldots, \alpha_P) \in \mathbb{R}^P \) with \( \alpha_i \in [-B, B] \) for all \( i \). Suppose that for any \( v \in \mathcal{V} \) (parameterized by \( \alpha \)) and \( v' \in \mathcal{V} \) (parameterized by \( \alpha' \)), the following holds:

\[
\sup_{x \in \mathcal{X}} |v(x) - v'(x)| \leq L \| \alpha - \alpha' \|_1.
\]

Let \( \mathcal{N}_\varepsilon \) be the \( \varepsilon \)-covering number of \( \mathcal{V} \) with respect to the distance \( \dist(v, v') = \sup_{x \in \mathcal{X}} |v(x) - v(x')| \). Then

\[
\log \mathcal{N}_\varepsilon \leq P \log \left( \frac{2BLP}{\varepsilon} \right).
\]

Proof. If \( \alpha \) and \( \alpha' \) are such that \( |\alpha_i - \alpha'_i| \leq \frac{\varepsilon}{LP} \) for all \( i \), then we have

\[
\dist(v, v') = \sup_{x \in \mathcal{X}} |v(x) - v'(x)| \leq L \times \sum_{i=1}^{P} |\alpha_i - \alpha'_i| \leq \varepsilon.
\]

Therefore, the following set constitutes an \( \varepsilon \)-cover for \( \mathcal{V} \):

\[
\left\{ \alpha \in \mathbb{R}^P : \alpha_i = \frac{k\varepsilon}{LP} \text{ for some } k \in \mathbb{Z} \right\} \cap [-B, B]^P.
\]

The number of elements in this sets is upper bounded by \( \left( \frac{2BLP}{\varepsilon} \right)^P \).}\]

C Omitted Analysis in Section 3

Proof of Lemma 1. By the two assumptions, we have (with \( e_1 = (1, 0, \ldots, 0) \))

\[
q^*(x, a) = r(x, a) - J^* + \mathbb{E}_{x' \sim p(\cdot | x, a)} [v^*(x')]
\]

\[
= \Phi(x, a)^\top \theta - J^* \Phi(x, a)^\top e_1 + \Phi(x, a)^\top \int_{\mathcal{X}} v^*(x') d\mu(x')
\]

\[
= \Phi(x, a)^\top \left( \theta - J^* e_1 + \int_{\mathcal{X}} v^*(x') d\mu(x') \right).
\]

Therefore, we can define \( w^* = \theta - J^* e_1 + \int_{\mathcal{X}} v^*(x') d\mu(x') \), proving the first claim. Furthermore,

\[
\| w^* \| \leq \| \theta \| + 1 + \sup_{x' \in \mathcal{X}} |v^*(x')| \times \| \mu(\mathcal{X}) \| \leq \sqrt{d} + 1 + \frac{1}{2} sp(v^*) \times \sqrt{d} \leq (2 + sp(v^*)) \sqrt{d},
\]

which proves the second claim.\]
C.1 Omitted Analysis in Section 3.1

Proof of Lemma 2. It suffices to show that with probability at least 1 − δ, (w*, b, J*) for some b is a feasible solution of the optimization problem (since J is the optimal solution). To show this, first note that

\[ w^* = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(x_\tau, a_\tau) \Phi(x_\tau, a_\tau) w^* + \lambda \Lambda_t^{-1} w^* \]  
(definition of \( \Lambda_t \))

\[ = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(x_\tau, a_\tau) \left( r(x_\tau, a_\tau) - J^* + E_{x' \sim p(\cdot|x_\tau, a_\tau)} v^*(x') \right) + \lambda \Lambda_t^{-1} w^* \]  
(q* (x_\tau, a_\tau) = \Phi(x_\tau, a_\tau) w^* and Eq. (1))

\[ = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(x_\tau, a_\tau) \left( r(x_\tau, a_\tau) - J^* + v^*(x_{\tau+1}) \right) + \lambda \Lambda_t^{-1} w^* + \epsilon_t^*, \]

where

\[ \epsilon_t^* = \Lambda_t^{-1} \sum_{\tau=1}^{t-1} \Phi(x_\tau, a_\tau) \left( E_{x' \sim p(\cdot|x_\tau, a_\tau)} v^*(x') - v^*(x_{\tau+1}) \right). \]

Using Lemma 10 with \( \varepsilon_t = E_{x' \sim p(\cdot|x_\tau, a_\tau)} v^*(x') - v^*(x_{\tau+1}) \) and \( \phi_\tau = \Phi(x_\tau, a_\tau) \), we have with probability at least 1 − δ (note that given the past \( \varepsilon_t \) is zero-mean and in the range \([-sp(v^*), sp(v^*)]\) thus \( sp(v^*) \)-subgaussian),

\[
\|\epsilon_t^*\|_{\Lambda_t} = \left\| \sum_{\tau=1}^{t-1} \phi_\tau \varepsilon_\tau \right\|_{\Lambda_t^{-1}} \leq \sqrt{2} \text{sp}(v^*) \sqrt{\log \frac{\text{det}(\Lambda_t)^{1/2}}{\text{det}(\Lambda_1)^{1/2}}} \log \frac{1 + 2Td^2}{d} \leq \beta \frac{d}{2},
\]

where we use the fact

\[
\text{det}(\Lambda_t) \leq \left( \frac{\text{Tr} (\Lambda_t)}{d} \right)^d = \left( \frac{\lambda d + \sum_{\tau=1}^{t-1} \|\phi_\tau\|^2}{d} \right)^d \leq \left( \frac{\lambda d + 2T}{d} \right)^d
\]

and the definition of \( \beta \). Also, \( \lambda \|\Lambda_t^{-1} w^*\|_{\Lambda_t} = \lambda \|w^*\|_{\Lambda_t^{-1}} \leq \sqrt{d} \|w^*\| \leq (2 + \text{sp}(v^*)) \sqrt{d} \leq \frac{\beta}{2} \) (Lemma 1). Define \( b = \lambda \Lambda_t^{-1} w^* + \epsilon_t^* \), we have thus proven that \( \|b\|_{\Lambda_t} \leq \beta \) holds with probability at least 1 − δ, which proves that \((w^*, b, J^*)\) is a solution of the optimization problem, finishing the proof. \( \square \)

Proof of Theorem 3. Without loss of generality, we assume \( \text{sp}(v^*) \leq \sqrt{T}, d \leq \sqrt{T}, \) and \( T \geq 16 \) (otherwise the bound is vacuous). Fix \( t \) and let \( s = s_t \). Define

\[ \epsilon_s = \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_\tau, a_\tau) \left( v_s(x_{\tau+1}) - E_{x' \sim p(\cdot|x_\tau, a_\tau)} v_s(x') \right). \]

Using the identity

\[
w^* = \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_\tau, a_\tau) \Phi(x_\tau, a_\tau)^\top w^* + \lambda \Lambda_s^{-1} w^*
\]

\[ = \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_\tau, a_\tau) \left( r(x_\tau, a_\tau) - J^* + E_{x' \sim p(\cdot|x_\tau, a_\tau)} v^*(x') \right) + \lambda \Lambda_s^{-1} w^*, \]
and the definition of \( w_s \), we have
\[
w_s - w^* = \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_{\tau}, a_{\tau}) (r(x_{\tau}, a_{\tau}) - J_s + v_s(x_{\tau+1})) + b_s
\]
\[
- \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_{\tau}, a_{\tau}) (r(x_{\tau}, a_{\tau}) - J^* + \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} v^*(x')) - \lambda \Lambda_s^{-1} w^*
\]
\[
= \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_{\tau}, a_{\tau}) (J^* - J_s + \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} [v_s(x') - v^*(x')]) + \epsilon_s + b_s - \lambda \Lambda_s^{-1} w^*
\]
\[
= \Lambda_s^{-1} \sum_{\tau=1}^{s-1} \Phi(x_{\tau}, a_{\tau}) \Phi(x_{\tau}, a_{\tau})^\top (J^* e_1 - J_s e_1 + \int_X (v_s(x') - v^*(x')) d\mu(x')) + \epsilon_s + b_s - \lambda \Lambda_s^{-1} w^*
\]
\[
= J^* e_1 - J_s e_1 + \int_X (v_s(x') - v^*(x')) d\mu(x') + \epsilon_s + b_s
\]
\[
- \lambda \Lambda_s^{-1} (J^* e_1 - J_s e_1 + \int_X (v_s(x') - v^*(x')) d\mu(x')) - \lambda \Lambda_s^{-1} w^*.
\]

Therefore,
\[
q_s(x_t, a_t) - q^*(x_t, a_t) = \Phi(x_t, a_t)^\top (w_s - w^*)
\]
\[
\leq (J^* - J_s) + \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} [v_s(x') - v^*(x')] + \Phi(x_t, a_t)^\top (\epsilon_s + b_s + \lambda \Lambda_s^{-1} u_s),
\]
where \( u_s \triangleq (J^* e_1 - J_s e_1 + \int_X (v_s(x') - v^*(x')) d\mu(x')) - w^*.

Next, under the event \( J^* \leq J_s \) which holds with probability at least \( 1 - \delta \) (Lemma 2), we continue with
\[
q_s(x_t, a_t) - q^*(x_t, a_t) \leq \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} [v_s(x') - v^*(x')] + \Phi(x_t, a_t)^\top (\epsilon_s + b_s + \lambda \Lambda_s^{-1} u_s),
\]
\[
\leq \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} [v_s(x') - v^*(x')] + \|\Phi(x_t, a_t)\|_{\Lambda_s^{-1}} \|\epsilon_s + b_s + \lambda \Lambda_s^{-1} u_s\|_{\Lambda_s},
\]
\[
\leq \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} [v_s(x') - v^*(x')] + 2 \|\Phi(x_t, a_t)\|_{\Lambda_s^{-1}} \|\epsilon_s + b_s + \lambda \Lambda_s^{-1} u_s\|_{\Lambda_s},
\]
where the second inequality uses Hölder’s inequality and the last one uses the fact \( \Lambda_s \preceq \Lambda_t \preceq 2 \Lambda_s \) according to the lazy update schedule of the algorithm.

By the algorithm, \( \|b_s\|_{\Lambda_s} \leq \beta \). To bound \( \|\epsilon_s\|_{\Lambda_s} \), we use Lemma 11 and Lemma 12: Define \( \varepsilon_\tau = v_s(x_{\tau+1}) - \mathbb{E}_{x' \sim p(x_{\tau}, a_{\tau})} v_s(x') \) and \( \Phi_\tau = \frac{1}{2} \Phi(x_{\tau}, a_{\tau}) \). With Lemma 11 and the fact \( |v_s(x)| \leq \sqrt{2} \|w_s\| \leq (2 + \text{sp}(v^*)) \sqrt{2d} \), we have that with probability at least \( 1 - \delta \), for all \( s \):
\[
\|\epsilon_s\|_{\Lambda_s} = \sqrt{2} \sum_{\tau=1}^{s-1} \|\Phi_\tau \varepsilon_\tau\|_{\Lambda_s^{-1}} \leq 4(2 + \text{sp}(v^*)) \sqrt{\frac{d}{2}} \log \frac{s + \lambda}{\lambda} + \log \frac{N_\varepsilon}{\delta} + 4 \sqrt{\frac{s^2 \varepsilon^2}{\lambda}},
\]
where \( \varepsilon = \frac{1}{T} \) and \( N_\varepsilon \) is the \( \varepsilon \)-cover for the function class of \( v_s \), which can be bounded with the help of Lemma 12 (with \( \alpha = w_s, P = d, B = (2 + \text{sp}(v^*)) \sqrt{d} \), and \( L = \sqrt{2d} \)) by
\[
\log N_\varepsilon \leq d \log \frac{2(2 + \text{sp}(v^*)) \sqrt{d} \times \sqrt{2d}}{T - 2} \leq 7d \log T
\]

(7)

(using the conditions stated at the beginning of the proof). Therefore, we have
\[
\|\epsilon_s\|_{\Lambda_s} \leq 4(2 + \text{sp}(v^*)) \sqrt{8d \log T} + \log(1/\delta) + 4 = \mathcal{O}(\beta),
\]
for all \( s \) with probability at least \( 1 - \delta \). Next, we bound \( \|\Lambda_s^{-1} u_s\|_{\Lambda_s} \) as:
\[
\|\Lambda_s^{-1} u_s\|_{\Lambda_s} = \lambda \|u_s\|_{\Lambda_s^{-1}} \leq \lambda \|u_s\| \leq \mathcal{O}(1) + (2 + \text{sp}(v^*))d = \mathcal{O}(\beta),
\]

(8)
where in the second inequality we use the condition $\|\mu(X)\| \leq \sqrt{d}$ in Assumption 2 to bound $\int_X (v_s(x') - v^*(x')) \, d\mu(X')$ as $\sup_{x \in X} |v_s(x) - v^*(x)| \|\mu(X)\| = O((2 + sp(v^*))d)$. Put together, the above shows $|\epsilon_s + b_s + \Lambda_{s-1} u_s| = O(\beta)$.

Continuing with Eq. (6) and summing over $t$, we have that with probability at least $1 - 2\delta$,

$$\sum_{t=1}^T (q_s(x_t, a_t) - q^*(x_t, a_t)) \leq \sum_{t=1}^T \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_t}(x') - v^*(x')] + O \left( \beta \sum_{t=1}^T \|\Phi(x_t, a_t)\|_{\Lambda_t^{-1}} \right)$$

$$= \sum_{t=1}^T \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_t}(x') - v^*(x')] + O \left( \beta \sqrt{T} \sqrt{\sum_{t=1}^T \|\Phi(x_t, a_t)\|_{\Lambda_t^{-1}}^2} \right)$$

(Cauchy-Schwarz inequality)

$$= \sum_{t=1}^T \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_t}(x') - v^*(x')] + O \left( \beta \sqrt{dT \log T} \right),$$

where the last equality is by [21, Lemma D.2] with the facts that $\text{det}(\Lambda_1) = \lambda^d$ and $\text{det}(\Lambda_{T+1}) \leq \left( \frac{1}{d} \text{trace}(\Lambda_{T+1}) \right)^d \leq (\lambda + 2T)^d$. Rearranging the last inequality we get

$$\sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v^*(x')] - q^*(x_t, a_t) \right)$$

$$\leq \sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_t}(x')] - q_{s_t}(x_t, a_t) \right) + O \left( \beta \sqrt{dT \log T} \right)$$

$$= \sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_t}(x')] - v_{s_t}(x_t) \right) + O \left( \beta \sqrt{dT \log T} \right)$$

where the last line is by the choice of $a_t$. Next, notice that every time the algorithm updates (i.e. $s_t \neq s_{t-1}$), it holds that $\text{det}(\Lambda_t) = \text{det}(\Lambda_{s_t}) \geq 2 \text{det}(\Lambda_{s_{t-1}})$. Since $\text{det}(\Lambda_{T+1}) / \text{det}(\Lambda_1) \leq (\lambda + 2T)^d$, this cannot happen more than $\log_2 \left( \frac{\lambda + 2T}{\lambda} \right)^d = O \left( (d \log T) \right)$. Using this fact and the range of $v_t$, we continue with

$$\sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v^*(x')] - q^*(x_t, a_t) \right)$$

$$\leq \sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_{t+1}}(x')] - v_{s_t}(x_t) \right) + O \left( \beta \sqrt{dT \log T} + \beta d \log T \right)$$

$$= \sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v_{s_{t+1}}(x')] - v_{s_{t+1}}(x_{t+1}) \right) + O \left( \beta \sqrt{dT \log T} + \beta d \log T \right)$$

$$= O \left( \beta \sqrt{dT \log T} + \beta d \log T \right), \quad (9)$$

where the last step holds with probability at least $1 - \delta$ by Azuma’s inequality. Finally, note that the regret can be written as

$$\text{Reg}_T = \sum_{t=1}^T (J^* - r(x_t, a_t)) = \sum_{t=1}^T \left( \mathbb{E}_{x' \sim p(\cdot|x_t, a_t)} [v^*(x')] - q^*(x_t, a_t) \right)$$

$$= O \left( \beta \sqrt{dT \log T} + \beta d \log T \right).$$

by the Bellman optimality equation, which finishes the proof (combining all the high probability statements with a union bound, the last bound holds with probability at least $1 - 3\delta$).
C.2 Omitted Analysis in Section 3.2

Proof of Lemma 4. By Assumption 2 and the Bellman equation for the finite-horizon problem (Eq. (4)), we have that for any finite-horizon policy $\pi$ and any $h < H$,

$$Q^\pi_h(x, a) = r(x, a) + \mathbb{E}_{x' \sim \mu(x, a)}[V_{h+1}^\pi(x')]$$

$$= \Phi(x, a)^\top \theta + \Phi(x, a)^\top \int_{\mathcal{X}} V_{h+1}^\pi(x') d\mu(x')$$

$$= \Phi(x, a)^\top \left( \theta + \int_{\mathcal{X}} V_{h+1}^\pi(x') d\mu(x') \right).$$

Define $w_h^\pi = \theta + \int_{\mathcal{X}} V_{h+1}^\pi(x') d\mu(x')$. Then we have $Q^\pi_h(x, a) = \Phi(x, a)^\top w_h^\pi$ with $\|w_h^\pi\| \leq \|\theta\| + (H - h)\|\mu(\mathcal{X})\| \leq \sqrt{a} + \sqrt{a}(H - h) \leq \sqrt{a}H$.

We now rewrite $w_k^\pi_h - w_h^\pi$ as follow. For simplicity, we denote $x \sim p(\cdot|x_{h'}^k, a_{h'}^k)$ as $x \sim (k', h')$, $\Phi(x_{h'}^k, a_{h'}^k)$ as $\Phi_{h'}^k$, and $r(x_{h'}^k, a_{h'}^k)$ as $r_{h'}^k$.

$$w_k^\pi_h - w_h^\pi$$

$$= \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ r_{h'}^k + V_{h+1}^\pi(x_{h'}^k+1) \right] - \Lambda_k^{-1} \left( \lambda I + \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \Phi_{h'}^k \right) w_h^\pi$$

$$= \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ r_{h'}^k + V_{h+1}^\pi(x_{h'}^k+1) \right]$$

$$- \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ r_{h'}^k + \mathbb{E}_{x' \sim (k', h')}[V_{h+1}^\pi(x')] \right] - \lambda \Lambda_k^{-1} w_h^\pi$$

(using $Q^\pi_h(x, a) = \Phi(x, a)^\top w_h^\pi$ and the Bellman equation)

$$= \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ V_{h+1}^\pi(x_{h'}^k+1) - \mathbb{E}_{x' \sim (k', h')} V_{h+1}^\pi(x') \right] - \lambda \Lambda_k^{-1} w_h^\pi$$

$$= \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ \mathbb{E}_{x' \sim (k', h')} V_{h+1}^\pi(x') - \mathbb{E}_{x' \sim (k', h')} V_{h+1}^\pi(x') \right] + \epsilon_h - \lambda \Lambda_k^{-1} w_h^\pi$$

(define $\epsilon_h^k = \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \left[ V_{h+1}^\pi(x_{h'}^k+1) - \mathbb{E}_{x' \sim (k', h')} V_{h+1}^\pi(x') \right] \right)$)

$$= \Lambda_k^{-1} \sum_{k'=1}^{k-1} \sum_{h'=1}^H \Phi_{h'}^k \frac{\epsilon_h^k}{\lambda} \mathcal{X} \left( V_{h+1}^\pi(x') - V_{h+1}^\pi(x') \right) d\mu(x') + \epsilon_h - \lambda \Lambda_k^{-1} w_h^\pi$$

$$= (I - \lambda \Lambda_k^{-1}) \int_{\mathcal{X}} (V_{h+1}^\pi(x') - V_{h+1}^\pi(x')) d\mu(x') + \epsilon_h - \lambda \Lambda_k^{-1} w_h^\pi$$

$$= \int_{\mathcal{X}} (V_{h+1}^\pi(x') - V_{h+1}^\pi(x')) d\mu(x') + \epsilon_h - \lambda \Lambda_k^{-1} \left[ \int_{\mathcal{X}} (V_{h+1}^\pi(x') - V_{h+1}^\pi(x')) d\mu(x') \right] - \lambda \Lambda_k^{-1} w_h^\pi.$$
Therefore,
\[
\hat{Q}_h^k(x, a) - Q_h^n(x, a) = \Phi(x, a)\top(w_h^k - w_h^n) + \beta\sqrt{\Phi(x, a)\top\Lambda_k^{-1}\Phi(x, a)}
\]
\[
= \Phi(x, a)\top\int_{X} (V_{h+1}^k(x') - V_{h+1}^n(x')) d\mu(x') + \Phi(x, a)\top\epsilon_h^k + \beta\|\Phi(x, a)\|\Lambda_k^{-1}
\]
\[
- \lambda\Phi(x, a)\top\Lambda_k^{-1} \left[ \int_{X} (V_{h+1}^k(x') - V_{h+1}^n(x')) d\mu(x') \right] - \lambda\Phi(x, a)\top\Lambda_k^{-1} w_h^n
\]
\[
= \mathbb{E}_{x' \sim p(x, a)} [V_{h+1}^k(x') - V_{h+1}^n(x')] + \Phi(x, a)\top\epsilon_h + \beta\|\Phi(x, a)\|\Lambda_k^{-1}
\]
\[
- \lambda\Phi(x, a)\top\Lambda_k^{-1} \left[ \int_{X} (V_{h+1}^k(x') - V_{h+1}^n(x')) d\mu(x') \right] - \lambda\Phi(x, a)\top\Lambda_k^{-1} w_h^n. \tag{10}
\]

Below we bound the manitudes of term_1, term_2, term_3 respectively. For \textbf{term}_1, we use Lemma 11 and Lemma 12: define \(\epsilon_h' = V_{h+1}^k(x'_{h+1}) - \mathbb{E}_{x' \sim (k', h')} [V_{h+1}^k(x')], \phi_{h'}^k = \frac{1}{\sqrt{2}} \phi_{h'}^k.\) By Lemma 11, we have
\[
\|\epsilon_h\|_{\Lambda_k} = \sqrt{2} \left\| \Lambda_k^{-1} \sum_{k'=1}^{H} \sum_{h'=1}^{k-1} \phi_{h'}^k \epsilon_h^k \right\|_{\Lambda_k}
\]
\[
= \sqrt{2} \left\| \sum_{k'=1}^{H} \sum_{h'=1}^{k-1} \phi_{h'}^k \epsilon_h^k \right\|_{\Lambda_k^{-1}}
\]
\[
\leq 2\sqrt{2} T \sqrt{\frac{d \log \frac{T + \lambda}{\lambda}}{\lambda} + \log \frac{N_\epsilon}{\delta}} + \sqrt{2} \times \sqrt{\frac{8T^2 \epsilon^2}{\lambda}}, \tag{11}
\]
for all \(k, h\) with probability at least \(1 - \delta\), where \(N_\epsilon\) is the \(\epsilon\)-cover of the function class that \(V_{h+1}(\cdot)\) lies in. Notice that all \(t, V_{h+1}(\cdot)\) can be expressed as the following:
\[
V_{h+1}(x) = \min \left\{ \max_a w\top\Phi(x, a) + \beta\sqrt{\Phi(x, a)\top\Gamma_\phi(x, a)}, \ H \right\}
\]
for some positive definite \(\Gamma \in \mathbb{R}^{d \times d}\) with \(1 = \frac{1}{\lambda} \geq \lambda_{\text{min}}(\Gamma) \geq \lambda_{\text{min}}(\Gamma) \geq \frac{1}{\lambda + 2T} = \frac{1}{1 + 2T}\) and some \(w \in \mathbb{R}^d\) with \(\|w\| \leq \lambda_{\text{max}}(\Gamma) \times T \times \sup_{x, a, x'} (\|\Phi(x, a)\|H) \leq \sqrt{2}TH\). Therefore, we can write the class of functions that \(V_{h+1}(\cdot)\) lies in as follows:
\[
\mathcal{V} = \left\{ \nu(x) = \min \left\{ \max_a w\top\Phi(x, a) + \beta\sqrt{\Phi(x, a)\top\Gamma_\phi(x, a)}, \ H \right\} : \ w \in \mathbb{R}^d, \|w\| \leq \sqrt{2}TH, \Gamma \in \mathbb{R}^{d \times d} : \frac{1}{1 + 2T} \leq \lambda_{\text{min}}(\Gamma) \leq \lambda_{\text{max}}(\Gamma) \leq 1 \right\}.
\]
Now we apply Lemma 12 to \(\mathcal{V}\), with the following choices of parameters: \(\alpha = (w, \Gamma), P = d^2 + d, \varepsilon = \frac{1}{\lambda}, B = \sqrt{2}TH,\) and \(L = \beta\sqrt{2(1 + 2T)}\) which is given by the following calculation: for any \(\Delta w = \varepsilon e_i,\)
\[
\frac{1}{|e_i|} \left| (w + \Delta w)\top\Phi(x, a) - w\top\Phi(x, a) \right| = |e_i\top\Phi(x, a)| \leq \|\Phi(x, a)\| \leq \sqrt{2},
\]
and for any $\Delta \Gamma = e_i e_j^\top$,
\[
\sum_{i} \left| \beta \sqrt{\Phi(x,a)^\top (\Gamma + \Delta \Gamma) \Phi(x,a)} - \beta \sqrt{\Phi(x,a)^\top \Gamma \Phi(x,a)} \right|
\leq \beta \frac{\sqrt{\Phi(x,a)^\top e_i e_j^\top \Phi(x,a)}}{\sqrt{\Phi(x,a)^\top \Gamma \Phi(x,a)}} \leq \beta \sqrt{2 \beta \frac{1}{\lambda_{\min}(\Gamma)}} \leq \beta \sqrt{2(1 + 2T)}.
\]

Lemma 12 then implies:
\[
\log \mathcal{N} \leq (d^2 + d) \log \left( 2 \times \sqrt{2TH} \times \beta \sqrt{2(1 + 2T)} \times (d^2 + d) \right) \leq 20d^2 \log T,
\]

where in the last step we use the definition of $\beta$ and also assume without loss of generality that $\text{sp}(x^*) \leq \sqrt{T}$, $d \leq \sqrt{T}$, and $T \geq 32$ (since otherwise the regret bound is vacuous). Then by Eq. (11) we have with probability $1 - \delta$, for all $k$ and $h$,
\[
\|\epsilon_k\|_{\Lambda_k} \leq 2\sqrt{2H} \sqrt{\frac{d}{2} \log \frac{T + 1}{1}} + \log \frac{1}{\delta} + 20d^2 \log T + 4 \leq 20dH \sqrt{\log(T/\delta)} = \frac{\beta}{2},
\]
and therefore,
\[
|\text{term}_1| \leq \|\Phi(x,a)\|_{\Lambda_k^{-1}} \|\epsilon_k\|_{\Lambda_k} \leq \frac{\beta}{2} \|\Phi(x,a)\|_{\Lambda_k^{-1}}.
\]

Furthermore,
\[
|\text{term}_2| \leq \|\Phi(x,a)\|_{\Lambda_k^{-1}} \left| \lambda \int \chi \left( V^k_{h+1}(x') - V^\pi_{h+1}(x') \right) d\mu(x') \right|_{\Lambda_k^{-1}}
\leq \|\Phi(x,a)\|_{\Lambda_k^{-1}} \left| \sqrt{\lambda} \int \chi \left( V^k_{h+1}(x') - V^\pi_{h+1}(x') \right) d\mu(x') \right|_{\Lambda_k^{-1}}
\leq \sqrt{\lambda} \|\Phi(x,a)\|_{\Lambda_k^{-1}} \times H \sqrt{d} \leq \sqrt{d} \|\mu(\chi)\| \leq \sqrt{d} \text{ by Assumption 2}
\leq \frac{\beta}{4} \|\Phi(x,a)\|_{\Lambda_k^{-1}}
\]

and
\[
|\text{term}_3| \leq \|\Phi(x,a)\|_{\Lambda_k^{-1}} \|\lambda w_h^\pi\|_{\Lambda_k^{-1}}
\leq \|\Phi(x,a)\|_{\Lambda_k^{-1}} \left| \sqrt{\lambda} w_h^\pi \right|_{\Lambda_k^{-1}}
\leq \frac{\beta}{4} \|\Phi(x,a)\|_{\Lambda_k^{-1}} \text{ (Cauchy-Schwarz inequality)}
\leq \frac{\beta}{4} \|\Phi(x,a)\|_{\Lambda_k^{-1}} \text{ (using } \lambda = 1)
\]

Therefore, $|\text{term}_1| + |\text{term}_2| + |\text{term}_3| \leq \beta \|\Phi(x,a)\|_{\Lambda_k^{-1}}$ for all $k$ and $h$ with probability at least $1 - \delta$. Then by Eq. (10), we have
\[
\hat{Q}^k_h(x,a) - Q^\pi_h(x,a) \leq \mathbb{E}_{x' \sim p(\cdot|x,a)}[V^k_{h+1}(x') - V^\pi_{h+1}(x')] + 2\beta \|\Phi(x,a)\|_{\Lambda_k^{-1}},
\]
proving one inequality in the lemma statement (since $Q^k_h(x,a) \leq \hat{Q}^k_h(x,a)$). To prove the other inequality, note that Eq. (10) together with $|\text{term}_1| + |\text{term}_2| + |\text{term}_3| \leq \beta \|\Phi(x,a)\|_{\Lambda_k^{-1}}$ also implies
\[
\hat{Q}^k_h(x,a) - Q^\pi_h(x,a) \geq \mathbb{E}_{x' \sim p(\cdot|x,a)}[V^k_{h+1}(x') - V^\pi_{h+1}(x')].
\]
Now we fix $k$ and use induction on $h$ to prove $Q^h_k(x, a) \geq Q^h_{\pi}(x, a)$. The base case $h = H$ is clear due to Eq. (12) and the facts $V^H_{h+1}(x) = V^H_H(x) = 0$ and $Q^h_H(x, a) - Q^h_{\pi}(x, a) = \min\{Q^h_H(x, a), H\} - Q^h_{\pi}(x, a) \geq 0$. Next assume $Q^h_{h+1}(x, a) \geq Q^h_{\pi}(x, a)$ for all $x$ and $a$. Then $V^k_{h+1}(x) = \max_a Q^k_{h+1}(x, a) \geq \max_a Q^k_{\pi}(x, a) \geq V^k_{h+1}(x)$. Using Eq. (12) we have $Q^k_h(x, a) - Q^k_{\pi}(x, a) \geq 0$, which again implies $Q^k_h(x, a) = \min\{Q^k_h(x, a), H\} \geq Q^k_h(x, a)$. This finishes the induction and proves the other inequality in the lemma statement.

Proof of Theorem 5. Let $\pi_k = (\pi^1_k, \ldots, \pi^H_k)$ be the finite-horizon policy that our algorithm executes for episode $k$, that is, $\pi_k^h(a|x) = 1[\pi^h(x, a)]$ (breaking ties arbitrarily). Also let $\hat{\pi}^*$ be the optimal finite-horizon policy with value functions $Q^*_h(x, a) = \max_{\pi} Q^h_{\pi}(x, a)$ and $V^*_h(x) = \max_{a} Q^*_h(x, a)$. We first decompose the regret as

$$\text{Reg}_T = \sum_{t=1}^T (J^* - r(x_t, a_t))$$

$$= \sum_{k=1}^{T/H} \left( HJ^* - V^*_1(x^k_1) \right) + \sum_{k=1}^{T/H} \left( V^*_1(x^k_1) - V^*_{\pi}(x_1^k) \right) + \sum_{k=1}^{T/H} \left( V^*_{\pi}(x_1^k) - \sum_{h=1}^H r(x^k_h, a^k_h) \right)$$

(13)

In Lemma 13 (stated after this proof), we connect the optimal reward of the the infinite-horizon setting and the finite-horizon setting and show that $\text{term}_4 \leq \frac{T \exp(\beta)}{H}$. Notice that conditioned on the history before episode $k$, $V^*_{\pi}(x_1^k)$ is the expectation of $\sum_{h=1}^H r(x^k_h, a^k_h)$. Therefore, $\text{term}_5$ is a martingale different sequence, which can be upper bounded by $O\left( H \sqrt{\frac{T}{H}} \log(1/\delta) \right) = O\left( \sqrt{HT \log(1/\delta)} \right)$ with probability at least $1 - \delta$ (via Azuma’s inequality).

Finally, we deal with $\text{term}_5$. Below we assume that the high-probability event in Lemma 4 hold. Then for all $k, h$:

$$Q^h_k(x^k_h, a^k_h) - Q^*_{\pi}(x^k_h, a^k_h) \leq \mathbb{E}_{x' \sim (k, h)}[V^h_{h+1}(x') - V^*_{\pi}(x')] + 2\beta ||\Phi(x^k_h, a^k_h)||_{\Lambda_h}^{-1}$$

$$= V^h_{h+1}(x^k_h) - V^*_{\pi}(x^k_h) + 2\beta ||\Phi(x^k_h, a^k_h)||_{\Lambda_h}^{-1} + e^k_h$$

$$= Q^h_{h+1}(x^k_{h+1}, a^k_{h+1}) - Q^*_{\pi}(x^k_{h+1}, a^k_{h+1}) + 2\beta ||\Phi(x^k_h, a^k_h)||_{\Lambda_h}^{-1} + e^k_h$$

where in the first equality we define

$$e^k_h = \mathbb{E}_{x' \sim (k, h)}[V^h_{h+1}(x') - V^*_{\pi}(x')] = (V^h_{h+1}(x^k_{h+1}) - V^*_{\pi}(x^k_{h+1})), \text{ which has zero mean, and in the second equality we use the facts } V^h_{h+1}(x^k_{h+1}) = Q^h_{h+1}(x^k_{h+1}, a^k_{h+1}) \text{ and } V^*_{\pi}(x^k_{h+1}) = Q^*_{\pi}(x^k_{h+1}, a^k_{h+1}). \text{ Repeating the same argument and using } V^h_{H+1}(\cdot) = 0, \text{ we arrive at}$$

$$Q^h_k(x^k_1, a^k_1) - Q^*_{\pi}(x^k_1, a^k_1) \leq \sum_{h=1}^H \left( 2\beta ||\Phi(x^k_h, a^k_h)||_{\Lambda_h}^{-1} + e^k_h \right).$$

Further using that $V^*_{\pi}(x^k_1) = \max_{a} Q^*_{\pi}(x^k_1, a) \leq \max_{a} Q^k_{\pi}(x^k_1, a) = Q^k_{\pi}(x^k_1, a^k_1)$ (the inequality is by Lemma 4) and that $V^*_{\pi}(x^k_1) = Q^*_{\pi}(x^k_1, a^k_1)$, we have shown

$$\text{term}_5 \leq \sum_{k=1}^{T/H} \sum_{h=1}^H \left( \beta ||\Phi(x^k_h, a^k_h)||_{\Lambda_h}^{-1} + e^k_h \right).$$

The term $\sum_{k=1}^{T/H} \sum_{h=1}^H e^k_h$ is again the sum of a martingale difference sequence with each term’s magnitude bounded by $2H$, and therefore is bounded by $O\left( H \sqrt{\frac{T}{H}} \log(1/\delta) \right)$ with probability
at least $1 - \delta$ using Azuma’s inequality. For the term $\sum_{k=1}^{T/H} \sum_{h=1}^{H} \beta \|\Phi(x_h^k, a_h^k)\|_{\Lambda_k^{-1}}$, we first decompose it into two parts:

$$\sum_{k : \det(\Lambda_{k+1}) \leq 2 \det(\Lambda_k)}^{H} \beta \|\Phi(x_h^k, a_h^k)\|_{\Lambda_k^{-1}} + \sum_{k : \det(\Lambda_{k+1}) > 2 \det(\Lambda_k)}^{H} \beta \|\Phi(x_h^k, a_h^k)\|_{\Lambda_k^{-1}}.$$  

By [1, Lemma 12], $\det(\Lambda_{k+1}) \leq 2 \det(\Lambda_k)$ implies $\Lambda_{k+1} \leq 2 \Lambda_k$ and thus $\Lambda_k^{-1} \leq 2\Lambda_k^{-1}$. Therefore, the first part is upper bounded by $\sqrt{2} \sum_{k,h} \beta \|\Phi(x_h^k, a_h^k)\|_{\Lambda_k^{-1}} \leq \beta \sqrt{2T} \sum_{k,h} \|\Phi(x_h^k, a_h^k)\|_{\Lambda_k^{-1}}^{2}$, by Cauchy-Schwarz inequality. Further invoking [21, Lemma D.2], we upper bound the last term by $O(\beta \sqrt{T \log \frac{\det(\Lambda_k^{T+1})}{\det(\Lambda_k^{T-1})}}) = O\left(\beta \sqrt{T \log \left(\frac{\Lambda^{T+1}}{\Lambda^{T-1}}\right)}\right) = O(\beta \sqrt{T \log (1/\delta)})$. For the second part, notice that since the event $\det(\Lambda_{k+1}) > 2 \det(\Lambda_k)$ cannot happen for more than $O\left(\log \frac{\det(\Lambda_{T+1})}{\det(\Lambda_T)}\right)$ times, this part is upper bounded by $O(\beta dH \log T)$.

To conclude, we have shown that terms $= O\left(\beta \sqrt{T \log T} + \beta dH \log T + H \sqrt{T \log (1/\delta)}\right)$ holds with probability at least $1 - 2\delta$. Combining all the bounds with Eq. (13), we have

$$\text{Reg}_T = \sum_{i=1}^{T} (J^* - r(x_i, a_i)) = O\left(\frac{T \text{sp}(v^*)}{H} + \beta \sqrt{T \log T} + \beta dH \log T + H \sqrt{T \log (1/\delta)}\right)$$

$$= O\left(\frac{T \text{sp}(v^*)}{H} + d^{3/2} H^{1/2} + d^2 H^2\right)$$

with probability at least $1 - 3\delta$. Picking the optimal $H$ (the one specified in Algorithm 2), we get that $\text{Reg}_T = O\left(\sqrt{\text{sp}(v^*)(dT)^{3/2}} + (\text{sp}(v^*)dT)^{3/2}\right)$. \hfill \Box

**Lemma 13.** For any $x$, $|HJ^* - V^*_1(x)| \leq \text{sp}(v^*)$.

**Proof.** Let $\pi^*$ be the optimal policy of the infinite-horizon setting, and $(\pi_1, \ldots, \pi_H)$ be the optimal policy of the finite-horizon setting. Without loss generality assume that both of them are deterministic policy. By the Bellman equation and the optimality of $\pi^*$, we have

$$v^*(x) = \max_a \{r(x, a) - J^* + \mathbb{E}_{x' \sim p(\cdot|x, a)} v^*(x')\}$$

$$= r(x, \pi^*(x)) - J^* + \mathbb{E}_{x' \sim p(\cdot|x, \pi^*(x))} v^*(x). \quad (14)$$

For any $x$, consider a state sequence $x_1 = x, x_2, \ldots, x_H$ generated by $\pi^*$. By the suboptimality of $\pi^*$ in the finite-horizon setting,

$$V^*_1(x) \geq \mathbb{E} \left[ \sum_{h=1}^{H} r(x_h, \pi^*(x_h)) \mid x_1 = x, \pi^* \right]$$

$$= \mathbb{E} \left[ \sum_{h=1}^{H} (J^* + v^*(x_h) - \mathbb{E}_{x' \sim p(\cdot|x_h, \pi^*(x_h))} v^*(x')) \mid x_1 = x, \pi^* \right] \quad \text{(by Eq. (15))}$$

$$= \mathbb{E} \left[ \sum_{h=1}^{H} (J^* + v^*(x_h) - v^*(x_{h+1})) \mid x_1 = x, \pi^* \right]$$

$$= HJ^* + \mathbb{E} [v^*(x_1) - v^*(x_{H+1}) \mid x_1 = x, \pi^*] \geq HJ^* - \text{sp}(v^*).$$
Next, consider a state $x_1 = x, x_2, \ldots, x_H$ generated by $(\pi_1, \ldots, \pi_H)$:

$$V^*_1(x) = \mathbb{E} \left[ \sum_{h=1}^{H} r(x_h, \pi_h(x_h)) \mid x_1 = x, \{\pi_i\}_{i=1}^{H} \right]$$

$$\leq \mathbb{E} \left[ \sum_{t=1}^{H} (J^* + v^*(x_t)) - \mathbb{E}_{x' \sim p(\cdot|x_t, \pi(x_t))} [v^*(x')] \mid x_1 = x, \{\pi_i\}_{i=1}^{H} \right]$$

(by Eq. (14))

$$= \mathbb{E} \left[ \sum_{t=1}^{H} (J^* + v^*(x_h) - v^*(x_{h+1})) \mid x_1 = x, \{\pi_i\}_{i=1}^{H} \right]$$

$$= HJ^* + \mathbb{E} [v^*(x_1) - v^*(x_{H+1}) \mid x_1 = x, \{\pi_i\}_{i=1}^{H}]$$

Combining the two directions finishes the proof.

\[ \square \]

## D Omitted Analysis in Section 4

![Diagram](image.png)

**Figure 1:** An illustration for the data collection scheme of MDP-Exp2. In the figure, we show how the algorithm collects 4 trajectories of length $N$ (the red intervals) in an epoch with length $B = 8N$.

**Figure 1** is an illustration of the data collection scheme of MDP-Exp2. Below, we first provide the proof for Lemma 6.

**Proof of Lemma 6.** Denote $\mathbb{E}[\cdot|x_1 = x, a_t \sim \pi(\cdot|x_t), x_{t+1} \sim p(\cdot|x_t, a_t) \text{ for all } t \geq 1]$ by $\mathbb{E}[\cdot|x_1 = x, \pi]$. For any two initial states $u, u' \in \mathcal{X}$, let $\delta_u$ and $\delta_{u'}$ be the Dirac measures with respect to $u$ and $u'$. Writing $\mathbb{P}^u$ as $\mathbb{P}$ for simplicity, we have for any time $t$,

$$|\mathbb{E} [r(x_t, a_t) \mid x_1 = u, \pi] - \mathbb{E} [r(x_t, a_t) \mid x_1 = u', \pi]|$$

$$= \left| \int_{\mathcal{X}} \sum_{a \in \mathcal{A}} \pi(a|x)r(x, a) d\mathbb{P}^{t-1} \delta_u(x) - \int_{\mathcal{X}} \sum_{a \in \mathcal{A}} \pi(a|x)r(x, a) d\mathbb{P}^{t-1} \delta_{u'}(x) \right|$$

$$\leq 2||\mathbb{P}^{t-1} \delta_u - \mathbb{P}^{t-1} \delta_{u'}||_{TV}$$

$$\leq 2e^{-\frac{t-1}{\text{t}_{\text{min}}}} ||\delta_u - \delta_{u'}||_{TV} \quad \text{(Assumption 3)}$$

$$\leq 2e^{-\frac{t-1}{\text{t}_{\text{min}}}}. \quad (16)$$

Therefore, by the definition of $J^\pi(u)$ in Section 2, we have

$$|J^\pi(u) - J^\pi(u')| \leq \lim_{T \to \infty} \frac{2}{T} \sum_{t=1}^{T} e^{-\frac{t-1}{\text{t}_{\text{min}}}} = 0,$$

proving that $J^\pi(u)$ is a fixed value independent of the initial state $u$ and can thus be denoted as $J^\pi$. 22
Next, define the following two quantities:

\[ v_T^\pi(x) = \mathbb{E} \left[ \sum_{t=1}^{T} (r(x_t, a_t) - J^\pi) \mid x_1 = x, \pi \right], \]

\[ q_T^\pi(x, a) = \mathbb{E} \left[ \sum_{t=1}^{T} (r(x_t, a_t) - J^\pi) \mid (x_1, a_1) = (x, a), x_t \sim p(\cdot|x_{t-1}, a_{t-1}), a_t \sim \pi(\cdot|x_t) \text{ for } t \geq 2 \right]. \]

We will show that \( v^\pi(x) \triangleq \lim_{T \to \infty} v_T^\pi(x) \) and \( q^\pi(x, a) \triangleq \lim_{T \to \infty} q_T^\pi(x, a) \) satisfy the conditions stated in Lemma 6. First we argue that they do exist. Note that \( J^\pi \) can be written as \( \int_X r(x, a) \pi(a|x) d\nu^\pi(x) \) where \( \nu^\pi \) is the stationary distribution under \( \pi \). Therefore, for any \( T \), we have

\[
\mathbb{E} \left[ r(x_{T+1}, a_{T+1}) - J^\pi \mid x_1 = x, \pi \right] = \int_X \sum_{a \in A} \pi(a|x') r(x', a) d\pi^T \delta_x(x') - \int_X \sum_{a \in A} \pi(a|x) r(x, a) d\nu^\pi(x) \\
\leq 2 \| \pi^T \delta_x - \nu^\pi \|_{TV} \\
= 2 \| \pi^T \delta_x - \pi^T \nu^\pi \|_{TV} \quad \text{(by the definition of \( \nu^\pi \))} \\
\leq 2 e^{-\frac{1}{\max_{x} \nu^\pi(x)}},
\]

which goes to zero and implies that \( v^\pi(x) = \lim_{T \to \infty} v_T^\pi(x) \) exists. On the other hand, by the definition we have

\[ q_T^\pi(x, a) = r(x, a) - J^\pi + \mathbb{E}_{x' \sim p(\cdot|x, a)} v_{T-1}^\pi(x'), \]

and taking the limit on both sides shows that \( q^\pi(x, a) = \lim_{T \to \infty} q_T^\pi(x, a) \) exists and satisfies the Bellman equation in the lemma statement:

\[ q^\pi(x, a) = r(x, a) - J^\pi + \mathbb{E}_{x' \sim p(\cdot|x, a)} v^\pi(x'). \]

Finally, Eq. (18) also shows that

\[ |v_T^\pi(x)| \leq 2 \sum_{t=1}^{T} e^{-\frac{1}{\max_{x} \nu^\pi(x)}} \leq 2 \left( 1 - e^{-\frac{1}{\max_{x} \nu^\pi(x)}} \right) = 4 \epsilon_{mix} , \]

and thus the range of \( v^\pi \) is \([-4 \epsilon_{mix}, 4 \epsilon_{mix}]\) while the range of \( q^\pi \) is \([-6 \epsilon_{mix}, 6 \epsilon_{mix}]\) since \( |q^\pi(x, a)| \leq |r(x, a)| + |J^\pi| + \sup_{x'} |v^\pi(x')| \leq 2 + 4 \epsilon_{mix} \leq 6 \epsilon_{mix} \). The last statement \( \int_X v^\pi(x) d\nu^\pi(x) = 0 \) in the lemma is also clear since \( \int_X v_T^\pi(x) d\nu^\pi(x) = 0 \) for all \( T \) by the equality \( J^\pi = \int_X \sum_{a} r(x, a) \pi(a|x) d\nu^\pi(x) \) and the fact that \( x_1, \ldots, x_T \) all have marginal distribution \( \nu^\pi \) when \( x_1 = x \) is drawn from \( \nu^\pi \).

In Section 4, we mention that Assumption 4 is weaker than Assumption 2 when Assumption 3 holds. Below we provide a proof for this statement.

**Lemma 14.** Under Assumption 3, Assumption 2 implies Assumption 4.

**Proof.** Since Assumption 3 holds, by Lemma 6, we have

\[ q^\pi(x, a) = r(x, a) - J^\pi + \mathbb{E}_{x' \sim p(\cdot|x, a)} v^\pi(x') \]

\[ = \Phi(x, a)^\top \theta - J^\pi \Phi(x, a)^\top e_1 + \Phi(x, a)^\top \int_X v^\pi(x') d\mu(x') \quad \text{(Assumption 2)} \]

\[ = \Phi(x, a)^\top \left( \theta - J^\pi e_1 + \int_X v^\pi(x') d\mu(x') \right). \]
Taking $w^\pi$ to be $\theta - J^\pi e_1 + \int_X v^\pi(x')d\mu(x')$ and noting that $\|w^\pi\| \leq \|\theta\| + 1 + (\max_{x \in X} v^\pi(x))\|\mu(X)\| \leq \sqrt{d} + 1 + 4t_{\text{mix}} \sqrt{d} \leq 6t_{\text{mix}} \sqrt{d}$ finishes the proof.

\section*{D.1 Proof of Theorem 7}

To prove Theorem 7, we first show a couple of useful lemmas.

\begin{lemma}
Let $k$ be any number in \{1, 2, \ldots, $T$\} and $m$ be any number in \{1, 2, \ldots, $B/N$\}. Let $E[\cdot \mid \tau_{k,m}]$ denote the expectation conditioned on $(x_{\tau_{k,m}}, a_{\tau_{k,m}})$ and all history before time $\tau_{k,m}$ (recall the definitions of $\tau_{k,m}$ and $R_{k,m}$ in Algorithm 3). Then we have

$$\left| E[R_{k,m} \mid \tau_{k,m}] - (q^\pi(x_{\tau_{k,m}}, a_{\tau_{k,m}}) + NJ^\pi_k) \right| \leq \frac{1}{T^2}.$$  \tag{19}

\end{lemma}

\begin{proof}
Recalling the definition of $q^\pi_N$ in Eq. (17), we have

$$E[R_{k,m} \mid \tau_{k,m}] = E \left[ \sum_{t=1}^{N} r(x_t, a_t) \mid (x_1, a_1) = (x_{\tau_{k,m}}, a_{\tau_{k,m}}), x_t \sim p(\cdot|x_{t-1}, a_{t-1}), a_t \sim \pi_k(\cdot|x_t) \text{ for } t \geq 2 \right] = q^\pi_N(x_{\tau_{k,m}}, a_{\tau_{k,m}}) + NJ^\pi_k. \tag{19}$$

Then we bound the difference between $q^\pi_N(x, a)$ and $q^\pi(x, a)$ (which is $\lim_{N \to \infty} q^\pi_N(x, a)$ as shown in the proof of Lemma 6) for any $\pi, x, a$:

$$|q^\pi_N(x, a) - q^\pi(x, a)| = E \left[ \sum_{t=N+1}^{\infty} (r(x_t, a_t) - J^\pi) \mid (x_1, a_1) = (x, a), x_t \sim p(\cdot|x_{t-1}, a_{t-1}), a_t \sim \pi_k(\cdot|x_t) \text{ for } t \geq 2 \right] \leq 2 \sum_{t=N+1}^{\infty} e^{-\frac{t-1}{t_{\text{mix}}}} \leq \frac{2e^{-\frac{N}{t_{\text{mix}}}}}{1 - e^{-\frac{1}{t_{\text{mix}}}}} \leq 4t_{\text{mix}} e^{-\frac{N}{t_{\text{mix}}}}. \tag{Eq. (18)}$$

Recall that $N = 8t_{\text{mix}} \log T$, and without loss of generality we assume $t_{\text{mix}} \leq T/4$ (otherwise the regret bound is vacuous). Thus we can bound the last expression by $\frac{4t_{\text{mix}}}{T^2} \leq \frac{1}{T^2}$. Combining this with Eq. (19) finishes the proof.
\end{proof}

\begin{lemma}
Let $E_k[\cdot]$ denote the expectation conditioned on all history before epoch $k$. Then

$$\|E_k[w_k] - (w^\pi_k + NJ^\pi_k e_1)\| \leq \frac{1}{T^2}.$$  \tag{24}

\end{lemma}
Proof. Let $I_k = 1[\lambda_{\min}(M_k) \geq \frac{B\gamma}{24\pi}]$. We proceed as follows:

$$
E_k[w_k] = E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) R_{k,m} \right] \quad \text{(definition of } w_k)$$

$$
= E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) E_k[R_{k,m}|x_{\tau_k,m}, a_{\tau_k,m}] \right] \quad \text{(taking expectation for } R_{k,m} \text{ conditioned on } (x_{\tau_k,m}, a_{\tau_k,m}))
$$

$$
= E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) \left( q^{\tau_k}(x_{\tau_k,m}, a_{\tau_k,m}) + NJ^{\pi_k} \right) \right] + E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) \right] \quad \text{(define } \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) = E_k[R_{k,m}|x_{\tau_k,m}, a_{\tau_k,m}] - \left( q^{\tau_k}(x_{\tau_k,m}, a_{\tau_k,m}) + NJ^{\pi_k} \right))
$$

$$
= E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) \Phi(x_{\tau_k,m}, a_{\tau_k,m})^\top (w^{\pi_k} + NJ^{\pi_k} e_1) \right] + E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \Phi(x_{\tau_k,m}, a_{\tau_k,m}) \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) \right] \quad \text{(by Assumption 4)}
$$

$$
= E_k \left[ I_k (w^{\pi_k} + NJ^{\pi_k} e_1) \right] + \epsilon \\
\text{(define } \epsilon = E_k \left[ I_k M_k^{-1} \sum_{m=1}^{\bar{m}} \sum_a \pi_k(a|x_{\tau_k,m}) \Phi(x_{\tau_k,m}, a) \epsilon_k(x_{\tau_k,m}, a) \right])
$$

$$
= w^{\pi_k} + NJ^{\pi_k} e_1 - E_k \left[ (1 - I_k)(w^{\pi_k} + NJ^{\pi_k} e_1) \right] + \epsilon.
$$

By Lemma 15, we have $|\epsilon_k(x_{\tau_k,m}, a_{\tau_k,m})| \leq 1/T^7$ and thus

$$
\|\epsilon\| \leq E_k \left[ \sum_{m=1}^{\bar{m}} \left\| I_k M_k^{-1} \sum_a \pi_k(a|x_{\tau_k,m}) \Phi(x_{\tau_k,m}, a) \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) \right\| \right]
$$

$$
= E_k \left[ \sum_{m=1}^{\bar{m}} \left\| I_k M_k^{-1} \sum_a \pi_k(a|x_{\tau_k,m}) \Phi(x_{\tau_k,m}, a) \Phi(x_{\tau_k,m}, a)^\top \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) \right\| \right]
$$

$$
= E_k \left[ \sum_{m=1}^{\bar{m}} \left\| I_k e_1 \epsilon_k(x_{\tau_k,m}, a_{\tau_k,m}) \right\| \right] \leq E_k \left[ \sum_{m=1}^{\bar{m}} \frac{1}{T^7} \right] \leq \frac{1}{T^6}.
$$

On the other hand, we also have

$$
\|E_k[(1 - I_k)(w^{\pi_k} + NJ^{\pi_k} e_1)]\| \leq E_k[(1 - I_k)] (6t_{\max} \sqrt{d} + N) \leq \frac{6t_{\max} \sqrt{d} + N}{T^3},
$$

where the last step is by Lemma 17 (stated after this proof). Finally, combining everything proves

$$
\|E_k[w_k] - (w^{\pi_k} + NJ^{\pi_k} e_1)\| \leq \frac{1}{T^6} + \frac{6t_{\max} \sqrt{d} + N}{T^3} \leq \frac{1}{T^2},
$$
where we assume $6t_{\text{mix}}\sqrt{d} + N = 6t_{\text{mix}}\sqrt{d} + 8t_{\text{mix}} \log T$ is at most $\frac{T}{2}$ (otherwise the regret bound is vacuous).

**Lemma 17.** For any $k \in \{1, \ldots, T/B\}$, conditioning on the history before epoch $k$, we have with probability at least $1 - \frac{1}{T^7}$, $\lambda_{\text{min}}(M_k) \geq \frac{B\sigma}{24N}$.

**Proof.** We consider a fixed $k$. Notice that since $N$ is larger than $t_{\text{mix}}$, the state distribution at $\tau_{k,m}$ conditioned on all trajectories collected before (which all happen before $\tau_{k,m} - N$) would be close to the stationary distribution $\nu^{\pi_k}$. For the purpose of analysis, we consider an imaginary world where all history before epoch $k$ remains the same as the real world, but in epoch $k$, at time $t = \tau_{k,m}$, $\forall m = 1, 2, \ldots$, the state distribution is reset according to the stationary distribution, i.e., $x_{\tau_{k,m}} \sim \nu^{\pi_k}$; for other rounds, it follows the state transition driven by $\pi_k$, the same as the real world. We denote the expectation (given the history before epoch $k$) in the imaginary world as $E'_k[\cdot]$. Fro simplicity, define $y_m = x_{\tau_{k,m}}$, $z_m = \{a_{\tau_{k,m}}, R_{k,m}\}$ and $m^* = \frac{B}{2N}$. Note that $M_k$ is a function of $\{y_m\}_{m=1}^{m^*}$ and that $(y_{i-1}, z_{i-1}) \rightarrow y_i \rightarrow z_i$ form a Markov chain. Therefore, by writing $M_k = M_k(y_1, y_1, ..., y_{m^*})$, and considering any function $f$ of $M_k$, we have

$$E_k[f(M_k)] = \int f(M_k(y_1, ..., y_{m^*})) dq(y_1) dq(z_1 | y_1) dq(y_2 | y_1, z_1) dq(z_2 | y_2) \cdots dq(y_{m^*} | y_{m^* - 1}, z_{m^* - 1}) dq(z_{m^*} | y_{m^*})$$

and

$$E'_k[f(M_k)] = \int f(M_k(y_1, ..., y_{m^*})) dq'(y_1) dq(z_1 | y_1) dq'(y_2 | y_1, z_1) dq(z_2 | y_2) \cdots dq'(y_{m^*}) dq(z_{m^*} | y_{m^*})$$

where $q$ and $q'$ denote the probability measure in the real and the imaginary worlds respectively (conditioned on the history before epoch $k$). Note that by our construction, in the imaginary world $y_i$ is independent of $(y_1, z_1, ..., y_{i-1}, z_{i-1})$, while $z_i | y_i$ follows the same distribution as in the real world. By the uniform-mixing assumption, we have that

$$||q'(y_m) - q(y_m | y_{m-1}, z_{m-1})||_{TV} \leq e^{-\frac{\lambda_{\text{min}}}{24}} \leq \frac{1}{T^8},$$

implying that

$$|E_k[f(M_k)] - E'_k[f(M_k)]| \leq \frac{2}{T^8} \times \frac{B}{2N} \times \max |f| \leq \frac{f_{\max}}{T^7},$$

where $f_{\max}$ is the maximum magnitude of $f(\cdot)$. Picking $f(M) = 1 [\lambda_{\text{min}}(M) \leq \frac{B\sigma}{24N}]$ (with $f_{\max} = 1$ clearly), we have shown that

$$Pr_k \left[ \lambda_{\text{min}}(M_k) \leq \frac{B\sigma}{24N} \right] \leq Pr'_k \left[ \lambda_{\text{min}}(M_k) \leq \frac{B\sigma}{24N} \right] + \frac{1}{T^7}.$$  

It remains to bound $Pr'_k \left[ \lambda_{\text{min}}(M_k) \leq \frac{B\sigma}{24N} \right]$. Notice that

$$E'_k[M_k] = \frac{B}{2N} \times \int_X \sum_a \pi_k(a | x) \Phi(x, a) \Phi(x, a)^\top d\nu^{\pi_k}(x) \geq \frac{B}{2N} \times \sigma I$$

by Assumption 5. Using standard matrix concentration results (specifically, Lemma 18 with $\delta = 12$, $n = \frac{B}{2N} = 16.2 \log(dT)$, $X_m = \sum_a \pi_k(a | x_{\tau_{k,m}}) \Phi(x_{\tau_{k,m}}, a) \Phi(x_{\tau_{k,m}}, a)^\top$, $R = 2$, and $r = \frac{B\sigma}{2N} = 16.2 \log(dT)$), we get

$$Pr_k \left[ \lambda_{\text{min}}(M_k) \leq \frac{1}{12} \times \frac{B\sigma}{2N} \right] \leq d \cdot \exp \left( -\frac{121}{144} \times 16 \log(dT) \times \frac{1}{4} \right)$$

$$\leq d \cdot \exp (-3.3 \log(dT)) \leq \frac{1}{T^{3.3}}.$$  

In other words, we have shown

$$Pr_k \left[ \lambda_{\text{min}}(M_k) \leq \frac{B\sigma}{24N} \right] \leq \frac{1}{T^{3.3}} + \frac{1}{T^7} \leq \frac{1}{T^3},$$

which completes the proof. 

\qed
Lemma 18. (Theorem 2 in [17]) Let $X_1, \ldots, X_n$ be independent, random, symmetric, real matrices of size $d \times d$ with $0 \preceq X_m \preceq R I$ for all $m$. Suppose $rI \preceq E[\sum_{m=1}^{n} X_m]$ for some $r > 0$. Then for all $\delta \in [0,1]$, one has

$$
\Pr \left[ \lambda_{\min} \left( \sum_{m=1}^{n} X_m \right) \leq (1-\delta)r \right] \leq d \cdot e^{-\delta^2 r/(2B)}.
$$

Lemma 19. With $\eta \leq \frac{2}{rTN}$, MDP-Exp2 guarantees for all $x$:

$$
E \left[ \sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) q^\pi_k(x,a) \right] \leq O \left( \frac{\ln |A|}{\eta} + \eta \frac{T N^2}{B\sigma} \right).
$$

Proof. Note that by the definition of $w_k$ we have

$$
|w_k^T \Phi(x,a)| \leq \sqrt{2\eta} \|w_k\| \leq \sqrt{2\eta} \times \frac{24N}{B\sigma} \times \frac{B}{2N} \times \sqrt{2N} = \frac{24\eta}{\sigma},
$$

and thus $\eta \|w_k^T \Phi(x,a)\| \leq 1$ by our choice of $\eta$. Therefore, using the standard regret bound of exponential weight (see e.g., [8, Theorem 1]), we have

$$
\sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) (w_k^T \Phi(x,a)) \leq O \left( \frac{\ln |A|}{\eta} + \eta \sum_{k=1}^{T/B} \sum_{a} \pi_k(a|x) (w_k^T \Phi(x,a))^2 \right).
$$

Taking expectation, the left-hand side becomes

$$
E \left[ \sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) (w_k^T \Phi(x,a)) \right]
$$

$$
= E \left[ \sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) ((w^\pi_k + NJ^\pi_k e_1) \cdot \Phi(x,a)) \right] - O(1) \quad \text{(Lemma 16)}
$$

$$
= E \left[ \sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) (w^\pi_k \Phi(x,a) + NJ^\pi_k) \right] - O(1)
$$

$$
= E \left[ \sum_{k=1}^{T/B} \sum_{a} (\pi^*(a|x) - \pi_k(a|x)) w^\pi_k \Phi(x,a) \right] - O(1) \quad \text{(Assumption 4)}
$$

To bound the expectation of the right-hand side of Eq. (22), we focus on the key term $E_k \left[ \sum_a \pi_k(a|x)(w_k^T \Phi(x,a))^2 \right]$ ($E_k$ denotes the expectation conditioned on the history before epoch $k$) and use the same argument as done in the proof of Lemma 17 via the help of an imaginary word where everything is the same as the real world except that the first state of each trajectory $x^\tau_{k,m}$ for $m = 1,2, \ldots, B/2N$ is reset according to the stationary distribution $\nu^\pi_k$ ($E^{'}_k$ denotes the conditional expectation in this imaginary world). By the exact same argument (cf. Eq. (20)), we have

$$
E_k \left[ \sum_a \pi_k(a|x)(w_k^T \Phi(x,a))^2 \right] \leq E^{'}_k \left[ \sum_a \pi_k(a|x) (w_k^T \Phi(x,a))^2 \right] + \frac{B}{T^8 N} \times \left( \frac{24N}{\sigma} \right)^2.
$$
where we use the range of \((w_k^\top \Phi(x,a))^2\) derived earlier in Eq. (21). It remains to bound 
\[
\mathbb{E}'_k \left[ \sum_a \pi_k(a|x)(w_k^\top \Phi(x,a))^2 \right],
\]
which we proceed as follows with \(I_k = 1[\lambda_{\min}(M_k) \geq \frac{B\sigma}{2TN}]\):
\[
\mathbb{E}'_k \left[ \sum_a \pi_k(a|x)(w_k^\top \Phi(x,a))^2 \right] = \mathbb{E}'_k \left[ \sum_a \pi_k(a|x) \left( \Phi(x,a)^\top M_k^{-1} \sum_{m=1}^{\frac{B}{N}} \Phi(x_{\tau_k,m},a_{\tau_k,m}) R_{k,m} \right)^2 I_k \right] 
\leq N^2 \mathbb{E}'_k \left[ \sum_a \pi_k(a|x) \left( \Phi(x,a)^\top M_k^{-1} \sum_{m=1}^{\frac{B}{N}} \Phi(x_{\tau_k,m},a_{\tau_k,m}) \right)^2 I_k \right] \quad \text{(R_{k,m} \leq N)}
\leq BN \mathbb{E}'_k \left[ \sum_a \pi_k(a|x) \Phi(x,a)^\top M_k^{-1} \left( \sum_{m=1}^{\frac{B}{N}} \Phi(x_{\tau_k,m},a_{\tau_k,m}) \Phi(x_{\tau_k,m},a_{\tau_k,m})^\top \right) M_k^{-1} \Phi(x,a) I_k \right] \quad \text{(Cauchy-Schwarz inequality)}
\leq \mathcal{O} \left( BN \times \frac{N}{B\sigma} \right) \quad \text{(definition of } I_k \text{)}
\leq \mathcal{O} \left( \frac{N^2}{\sigma} \right).
\]
Combining everything shows
\[
\mathbb{E} \left[ \sum_{k=1}^{T/B} \sum_a \left( \pi^*(a|x) - \pi_k(a|x) \right) q^\pi(x,a) \right] \leq \mathcal{O} \left( \frac{\ln |A|}{\eta} + \frac{\eta T}{B} \left( \frac{N^2}{\sigma} + \frac{NB}{T^2\sigma} \right) \right)
\leq \mathcal{O} \left( \frac{\ln |A|}{\eta} + \frac{\eta TN^2}{B\sigma} \right),
\]
which finishes the proof. 

We are now ready to prove Theorem 7.

Proof of Theorem 7. First, decompose the regret as:
\[
\text{Reg}_T = \mathbb{E} \left[ \sum_{t=1}^T \left( J^* - r(x_t,a_t) \right) \right] = \mathbb{E} \left[ \sum_{k=1}^{T/B} B(J^* - J_k^\pi) \right] + \mathbb{E} \left[ \sum_{k=1}^{kB} \sum_{t=(k-1)B+1}^{kB} (J_k^\pi - r(x_t,a_t)) \right].
\]
For the first term above, we apply the value difference lemma (see e.g., [35, Lemma 15]):

\[
\mathbb{E} \left[ \sum_{k=1}^{T/B} B(J^* - J^{\pi_k}) \right]
\]

\[
= \mathbb{E} \left[ \sum_{k=1}^{T/B} B \int_{X} \sum_{a} (\pi^*(a|x) - \pi_k(a|x))q^{\pi_k}(x,a)dv^{\pi^*}(x) \right]
\]

\[
= O \left( \frac{B \ln |A|}{\eta} + \frac{TN^2}{\sigma} \right). \quad \text{(by Lemma 19)}
\]

For the second term, we first consider a specific \(k\):

\[
\mathbb{E}_k \left[ \sum_{t=(k-1)B+1}^{kB} (J^{\pi_k} - r(x_t, a_t)) \right]
\]

\[
= \mathbb{E}_k \left[ \sum_{t=(k-1)B+1}^{kB} (\mathbb{E}_{x' \sim p(\cdot|x_t, a_t)}[v^{\pi_k}(x')] - q^{\pi_k}(x_t, a_t)) \right] \quad \text{(Bellman equation)}
\]

\[
= \mathbb{E}_k \left[ \sum_{t=(k-1)B+1}^{kB} (v^{\pi_k}(x_{t+1}) - v^{\pi_k}(x_t)) \right]
\]

\[
= v^{\pi_k}(x_{kB+1}) - v^{\pi_k}(x_{(k-1)B+1}).
\]

Therefore,

\[
\mathbb{E} \left[ \sum_{k=1}^{T/B} \sum_{t=(k-1)B+1}^{kB} (J^{\pi_k} - r(x_t, a_t)) \right]
\]

\[
\leq \mathbb{E} \left[ \sum_{k=1}^{T/B} (v^{\pi_k}(x_{kB+1}) - v^{\pi_k}(x_{(k-1)B+1})) \right]
\]

\[
\leq \mathbb{E} \left[ \sum_{k=2}^{T/B} (v^{\pi_{k-1}}(x_{(k-1)B+1}) - v^{\pi_k}(x_{(k-1)B+1})) \right] + O(t_{max}) \quad \text{(23)}
\]

We bound the last summation using the fact that \(\pi_k\) and \(\pi_{k-1}\) are close. Indeed, by the update rule of the algorithm, we have

\[
\pi_k(a|x) - \pi_{k-1}(a|x) = \pi_{k-1}(a|x)e^{\eta \Phi(x,a)^{T}w_{k-1}} - \pi_{k-1}(a|x)
\]

\[
\leq \frac{\pi_{k-1}(a|x)e^{\eta \Phi(x,a)^{T}w_{k-1}} - \pi_{k-1}(a|x)}{\sum_{b \in A} \pi_{k-1}(b|x)} e^{-\min_b \eta \Phi(x,b)^{T}w_{k-1}} - \pi_{k-1}(a|x)
\]

\[
\leq \pi_{k-1}(a|x) \left( e^{2\eta \max_b |\Phi(x,b)^{T}w_{k-1}|} - 1 \right).
\]

Recall that in the proof of Lemma 19, we have shown \(\eta \max_b |\Phi(x,b)^{T}w_{k-1}| \leq 1\) as long as \(\eta \leq \sigma/(24N)\). Combining with the fact \(e^{2x} \leq 1 + 8x\) for \(x \in [0,1]\) we have

\[
\left( e^{2\eta \max_b |\Phi(x,b)^{T}w_{k-1}|} - 1 \right) \leq 8\eta \max_b |\Phi(x,b)^{T}w_{k-1}| = \mathcal{O} \left( \eta \times \frac{N}{\sigma} \right),
\]

where the last step is by Eq. (21). This shows

\[
\pi_k(a|x) - \pi_{k-1}(a|x) \leq \mathcal{O} \left( \frac{\eta N}{\sigma} \pi_{k-1}(a|x) \right).
\]
Similarly, we can show $\pi_{k-1}(a|x) - \pi_k(a|x) = O\left(\frac{\eta}{\sigma} \pi_{k-1}(a|x)\right)$ as well. By the same argument of [35, Lemma 7] (summarized in Lemma 20 for completeness), this implies:

$$|v^{\pi_k}(x) - v^{\pi_{k-1}}(x)| \leq O\left(\eta \frac{N^3}{\sigma} + \frac{1}{T^2}\right).$$

for all $x$. Continuing from Eq. (23), we arrive at

$$E \left[ \frac{T}{B} \sum_{k=1}^{T/B} \sum_{t=(k-1)B+1}^{kB} (J^{\pi_k} - r(x_t, a_t)) \right] = O\left(\eta \frac{T N^3}{B \sigma} + t_{\text{mix}}\right).$$

Combining everything, we have shown

$$\text{Reg}_T = O\left(\frac{B \ln |A|}{\eta} + \eta N^2 T^2 \sigma + \eta N^3 + t_{\text{mix}}\right)$$

which finishes the proof.

Lemma 20. If $\pi'$ and $\pi$ satisfy $|\pi'(a|x) - \pi(a|x)| \leq O\left(\beta \pi(a|x)\right)$ for all $x, a$ and some $\beta > 0$, and $N \geq 4t_{\text{mix}} \log T$, then $|v^{\pi'}(x) - v^{\pi}(x)| \leq O(\eta \beta N^2 + \frac{1}{T}).$

Proof. See the proof of [35, Lemma 7].

Remark 1. Notice that by the definition of $\sigma$,

$$\sigma \leq \lambda_{\min} \left( \int_X \left( \sum_a \pi(a|x) \Phi(x, a)^T \Phi(x, a) \right) d\nu^\pi(x) \right) \leq \frac{1}{d} \text{trace} \left( \int_X \left( \sum_a \pi(a|x) \Phi(x, a)^T \Phi(x, a) \right) d\nu^\pi(x) \right) \leq \frac{1}{d} \int_X \left( \sum_a \pi(a|x) \|\Phi(x, a)\|^2 \right) d\nu^\pi(x) \leq \frac{2}{d},$$

which implies $\frac{1}{\sigma} \geq \frac{d}{2}$. Therefore, the regret bound in Theorem 7 has an implicit $\Omega(d)$ dependence.

### E  Connection between Natural Policy Gradient and MDP-EXP2

The connection between the exponential weight algorithm [13] and the classic natural policy gradient (NPG) algorithm [22] under softmax parameterization has been discussed in [4]. Further connections between exponential weight algorithms and several relative-entropy-regularized policy optimization algorithms (e.g., TRPO [31], A3C [24], PPO [32]) are also drawn in [27]. In this section, we review these connection, and argue that because of the different way of constructing the policy gradient estimator, our MDP-EXP2 is actually more sample efficient than the version of NPG discussed in [4] under the setting considered in Section 4.

#### E.1 Equivalence between NPG with softmax parameterization and exponential weight updates

We first restate [4, Lemma 5.1], which shows that NPG with softmax parameterization is equivalent to exponential weight updates:
Lemma 21 (Lemma 5.1 of [4]). Let \( \pi_\theta(a|x) = \frac{\exp(\Phi(x,a)^\top \theta)}{\sum_b \exp(\Phi(x,b)^\top \theta)} \). Also, let \( \nu_\theta \) be the stationary distribution under policy \( \pi_\theta \), and \( A^\pi(x,a) \) be the advantage function under policy \( \pi \) defined as \( A^\pi(x,a) = q^\pi(x,a) - v^\pi(x) \). Then the update

\[
\theta_{new} = \theta + \eta F_\theta^g g_\theta
\]

with

\[
F_\theta = E_{x \sim \nu_\theta} E_{a \sim \pi_\theta(\cdot|x)} \left[ \nabla_\theta \log \pi_\theta(a|x) \nabla_\theta \log \pi_\theta(a|x)^\top \right]
\]

\[
g_\theta = E_{x \sim \nu_\theta} E_{a \sim \pi_\theta(\cdot|x)} \left[ \nabla_\theta \log \pi_\theta(a|x) A^\pi(x,a) \right]
\]

implies:

\[
\pi_{\theta_{new}}(a|x) = \frac{\pi_\theta(a|x) \exp(\eta A^\pi(x,a))}{Z_\theta(x)}
\]

where \( Z_\theta(x) \) is a normalization factor that ensures \( \sum_a \pi_{\theta_{new}}(a|x) = 1 \).

To see this connection, notice that the update direction \( w = F_\theta^g g_\theta \) is the solution of

\[
\min_{w \in \mathbb{R}^d} E_{x \sim \nu_\theta} E_{a \sim \pi_\theta(\cdot|x)} \left[ \|w^\top \nabla_\theta \log \pi_\theta(a|x) - A^\pi(x,a) \|^2 \right],
\]

and also by definition \( \pi_{\theta_{new}}(a|x) = \frac{\exp(\Phi(x,a)^\top \theta_{new})}{\sum_b \exp(\Phi(x,b)^\top \theta_{new})} \propto \pi_\theta(a|x) \exp \left( \eta \Phi(x,a)^\top \theta_{new} - g_\theta \right) \).

E.2 Comparison between the NPG in [4] and MDP-Exp2

While the general formulations of the NPG in [4] and MDP-Exp2 are of the same form as shown by Lemma 21 (apart from superficial differences, e.g., the average-reward setting versus the discounted setting), they use different ways to construct an estimator of \( A^\pi(x,a) \) (or \( q^\pi(x,a) \)) when the learner does not have access to their true values and has to estimate them from sampling. We argue that under the setting considered in Section 4, our algorithm and analysis achieve the near-optimal regret of order \( \tilde{O}(\sqrt{T}) \) while theirs only obtains sub-optimal regret.

In MDP-Exp2, we construct a nearly unbiased estimator of \( w \) satisfying \( q^\pi(x,a) = w^\top \Phi(x,a) \) (which exists under Assumption 4), and feed it to the exponential weight algorithm. The way we do it is similar to how EXP2 constructs the reward estimators for adversarial linear bandits.

In MDP-Exp2, to construct each estimator (denoted as \( w_k \) there), the learner collects \( \frac{B}{N^2} = \Theta(\frac{1}{\sigma^2}) \) trajectories, with \( \sigma \) defined in Assumption 5, and then aggregate them through a form of importance weighting introduced by \( M_k^{-1} \). With this construction, \( w_k^\top \Phi(x,a) \) has negligible bias (by Lemma 16) compared to \( w^\top \Phi(x,a) \), while having variance upper bounded by a constant related to \( \frac{1}{\sigma} \) (see the proof of Lemma 19).

On the other hand, the estimator used in [4] is an approximate solution of Eq. (24). Under the same assumptions of Assumption 4 and Assumption 5, they use stochastic gradient descent to solve Eq. (24), and obtain an estimator \( \hat{w} \) that makes \( \hat{w}^\top \nabla_\theta \log_\theta(a|x) \) \( \epsilon \)-close to \( w^\top \nabla_\theta \log_\theta(a|x) \). To obtain such \( \hat{w} \), they need to sample \( \mathcal{O}\left(\frac{1}{\epsilon^2}\right) \) trajectories.

Comparing the two approaches, we see that to obtain a single estimator \( \hat{w} \) for the update direction \( w = F_\theta^g g_\theta \) in Lemma 21, MDP-Exp2 algorithm calculates a nearly unbiased one with relatively high variance using a constant number of trajectories, while the NPG in [4] calculates an \( \epsilon \)-accurate one with low variance using \( \mathcal{O}\left(\frac{1}{\epsilon^2}\right) \) trajectories. The advantage of the former is that each estimator is cheaper to get, and the effect of high variance can be amortized over iterations. As shown in Theorem 7, MDP-Exp2 achieves \( \tilde{O}(\sqrt{T}) \) regret bound. On the other hand, to get an \( \epsilon \)-optimal policy, [4] needs to use \( \mathcal{O}\left(\frac{1}{\epsilon^2}\right) \) trajectories per iteration of policy update, and perform \( \mathcal{O}\left(\frac{1}{\epsilon^2}\right) \) iterations of
policy updates, leading to a total sample complexity bound of $O\left(\frac{1}{\epsilon}\right)$. This translates to a regret bound of $O(T^{\frac{3}{4}})$ in our setting at best. In fact, since the algorithms by [2] and [16] are also based on exponential weight, they also can be regarded as variants of NPG. However, the estimators they construct suffer the same issue described above, and can only get $O(T^{\frac{3}{4}})$ or $O(T^{\frac{2}{3}})$ regret.

We remark that the version of NPG by [4] can also learn the optimal policy with a worse sample complexity $O\left(\frac{1}{\epsilon^2}\right)$ under a weaker assumption compared to Assumption 5 (which replaces $\frac{1}{\sigma}$ with the relative condition number $\kappa$ defined in their Section 6.3). It is not clear how our approach can extend to this setting and obtain improved sample complexity. We leave this as a future direction.