AXISYMMETRIC STRESSED STATE OF THE ADHESIVE JOINT OF TWO CYLINDRICAL SHELLS UNDER AXIAL TENSION

S. Kurennov, K. Barakhov, D. Dvoretskaya

National Aerospace University “Kharkiv Aviation Institute”, 17 Chkalov Str., Kharkiv, Ukraine, 61070; e-mail: kurennov.ss@gmail.com

Abstract: The research of the deflected mode of the construction, composed of two coaxially-glued cylindrical pipes, is done. Pipes are considered as thin-walled axisymmetric shells, which are joined by adhesive layer of a certain thickness. The shearing stresses in the glue are considered to be constant over the thickness of the adhesive layer, and normal stresses are linearly dependent on the radial coordinate. The shearing stresses in the adhesive layer are considered to be proportional to the difference in the longitudinal displacements of the shell sides that are faced to the adhesive layer. Normal stresses are proportional to the difference in radial displacement of the shells. It is supposed that the change in the adhesive layer thickness under deformation does not affect the stress, that is, the linear model is considered. The problem of the joint deflected mode finding is reduced to the system of four ordinary differential equations relative to the radial and longitudinal displacements of the layers. The system is solved by the matrix method. Displacements of layers outside of the adherent area can be found by the joint deflected mode. The tangential and normal stresses in the glue reach the maximum values at the edges of the adhesive line. It is shown that the proposed model describes the stressed state of the joint with high accuracy, and this joint has an influx of glue residues at the distance in some distance from the edge of the line. As a result, the distribution of normal stresses at the edge of the line also substantially changes. Thus, the proposed model with certain restrictions has sufficient accuracy for engineering problems and can be used to solve design problems.

Key words: adhesive joint, cylindrical axisymmetric shells, analytical solution, system of ordinary differential equations, symmetric matrices

DOI: 10.15276/opu.1.57.2019.01
Introduction. Adhesive joints of coaxial cylindrical pipes are common elements in the design of aviation, rocket and space technology. Such joints have several advantages compared with other classical types of compounds. Such advantages are tightness, high aerodynamic efficiency, manufacturability, low weight, etc. However, the control of adhesive joints is difficult, and the operating experience of composite structures shows that the loss of the bearing capacity of the structure often occurs due to the destruction of the connecting nodes. This is due to the fact that it is difficult to achieve uniform transmission of forces from one structural element to another in an overlap joint. As a rule, stress concentration occurs in the joint seam at the edges of the gluing, which reduces the strength of the structure. Therefore, the calculation of connecting elements is an important component of the calculation of aggregates for strength.

Analysis of publications. The task of determining in an analytical form the stress-strain state (SSS) of the connections of cylindrical pipes in the general formulation has not yet been solved. For the description of the coaxial pipe connections, in the analytical form of the SSS, exclusively axisymmetric models are used. Consider connections transmitting torque [1] or longitudinal load [2]. Mathematical models of compounds transmitting longitudinal load can be divided into two types. In the first case, the connected pipes are considered as thin-walled cylindrical shells. In this case, the stress distribution over the thickness of the layers is set a priori, and in the carrier layers the stress distribution is assumed to be linear, and in the adhesive layer, uniform across the layer thickness [3, 4]. Models of the second type consider joints of thick-walled pipes, the local bending of which can be neglected. In order to be able to build an analytical solution, it is assumed in [5, 6] that the normal stresses in the axial direction in the pipes being joined are constant in thickness, and the normal stresses in the radial direction are equal to zero. However, it is obvious that in a real construction the distribution of normal stresses across the thickness of the layers differs from the uniform distribution. A model [7] was also proposed, according to which normal stresses in the radial direction are variable, and stresses in the circumferential and axial directions are constant in thickness. Of course, the finite element method (FEM) is also used to study the SSS of adhesive joints of coaxial pipes, as for example, in [2, 8, 9] and experiments [10]. This approach allows you to explore a wide range of tasks, however, it complicates parametric studies, complicates solving problems for complex structures, solving design and optimization problems, etc. Comparison of the results of numerical calculations performed using FEM with analytical models showed that for thin-walled shells the model [3, 4] shows good results.

Purpose of the study. One of the drawbacks of the mathematical model SSS of the adhesive layer, which was used in [3, 4], is the hypothesis of a uniform distribution of stresses across the thickness of the adhesive layer. Obviously, this leads to an imbalance of the layers, since the areas of the outer and inner surfaces of the adhesive layer are different. In the joints of flat plates or beams of this imbalance does not occur. The purpose of this work is to create a refined mathematical model of the compound, which relieves it of the indicated disadvantage. It is proposed to consider the tangential stresses acting only in the middle surface of the adhesive layer, and the normal (tear-off) stresses in the adhesive—easily distributed throughout the thickness of the adhesive layer. This approach was previously used to model the SSS of flat adhesive joints [11]. This approach is used for the first time in modeling the SSS of connections of cylindrical coaxial shells.

It should be noted that the new models SSS of the adhesive layer created in recent years make it possible to describe the adhesive SSS with high accuracy and take into account the peculiarities of the adhesive state at the ends of the adhesive joint, taking into account the boundary conditions on the external border of the adhesive layer [12, 13]. However, these mathematical models to describe the SSS of cylindrical compounds have not yet been used.

Formulation of the problem. The joint scheme and its dimensions are shown in Fig. 1.

The origin is placed in the middle of the gluing area. The radii of the middle surfaces of the cylindrical shells are denoted by \(R_1 \) and \(R_2 \) respectively. External and internal diameters of pipes facing the adhesive layer \(D_1 \) and \(D_2 \). The radius of the middle surface of the adhesive layer is \(R_0 \). The thickness of the bearing layers and the adhesive layer is denoted by \(\delta_1, \delta_2 \) and \(\delta_0 \).

Let us consider in more detail the area of gluing. The differential elements of the connection and the acting forces are shown in Fig. 2.
The equilibrium equations of differential elements of a compound are:

\[R_1 \frac{dN_1}{dx} + R_0 \tau_0 = 0; \quad R_2 \frac{dN_2}{dx} - R_0 \tau_0 = 0, \quad (1) \]

\[R_1 \frac{dQ_1}{dx} + D_1 \sigma_1 - T_1 = 0; \quad R_2 \frac{dQ_2}{dx} - D_2 \sigma_2 - T_2 = 0, \quad (2) \]

\[R_1 \frac{dM_1}{dx} - R_0 Q_1 + R_0 \left(s_1 + \delta_0 \frac{2}{2} \right) \tau_0 = 0; \quad R_2 \frac{dM_2}{dx} - R_0 Q_2 + R_0 \left(s_2 + \delta_0 \frac{2}{2} \right) \tau_0 = 0. \quad (3) \]

Here, the values of \(s_1, s_2 \) are the distance from the neutral axis when bending to the outer surface of the base layer facing the adhesive layer. In the case of symmetric (homogeneous) layers, this distance is equal to half the thickness of the base layer.

The equations of physical law:

\[N_i = B_i^{(1)} \frac{du}{dx} + B_i^{(2)} \frac{\mu_{xy}}{R} \frac{d\varphi}{dx}; \quad T_i = B_i^{(3)} \frac{w}{R} + B_i^{(4)} \frac{d\varphi}{dx}, \quad (4) \]

where \(i = 1, 2; \quad B_i^{(1)} = \frac{E_i^{(1)} \delta_i}{1 - \mu_{xy} \mu_{yz}}, \quad B_i^{(2)} = \frac{E_i^{(1)} \delta_i}{1 - \mu_{xy} \mu_{yz}} \) - membrane stiffness of the bearing layers in the longitudinal and circumferential directions. In this case, we assume that the materials of the cylindrical shells being joined are orthotropic;
$E_{ij}^{(i)}$ и $E_{ij}^{(2)}$ - упругие модули слоя несущей при номерах $i = 1, 2$ в соответствующем направлении.

Уравнения изгиба оболочек:

$$
\frac{d^2 w_i}{dx^2} = -\frac{M_i}{J_i}.
$$ \(5\)

Где в случае гомогенных несущих слоев жесткость $J_i = \frac{E_{ij}^{(i)}}{1-\nu_{ij}^{(i)}} I_i$, а затем $I_i = \delta_i^2 / 12$ - момент инерции соответствующего несущего слоя.

Уравнение равновесия дифференциального элемента адгезива в радиальном направлении:

$$
\frac{d\tau_0}{dx} = \frac{D_0\sigma_2 - D_1\sigma_1}{\delta_0 D_0}. \quad \text{(6)}
$$

Нормальные напряжения в клею будут представлены в виде:

$$
\sigma_2 = \frac{D_0}{D_2} \left(\sigma_0 + \frac{\delta_0}{2} \frac{d\tau_0}{dx} \right); \quad \sigma_1 = \frac{D_0}{D_1} \left(\sigma_0 - \frac{\delta_0}{2} \frac{d\tau_0}{dx} \right). \quad \text{(7)}
$$

Этот формат позволяет вам переписать уравнение равновесия (6) в виде идентичного. Когда эти напряжения σ_0 будут считаться пропорциональными разности перекрестных перемещений слоев несущей:

$$
\sigma_0 = K(w_2 - w_1), \quad \text{(8)}
$$

где $K = E_{ij}^{(i)}$ - упругость клея в динамике растяжения-сжатия в перекрестных перемещениях. Гармонические напряжения в клее будут считаться пропорциональными разности продольных перемещений внутренних, обращенных к клею, сторон несущих слоев:

$$
\tau_0 = P \left(u_2 - u_1 + \frac{d w_2}{dx} + s_1 \frac{d w_1}{dx} \right), \quad \text{(9)}
$$

где $P = \left(\frac{\delta_0}{G_0} + \frac{\delta_1}{2G_1} + \frac{\delta_2}{2G_2} \right)^{-1}$ - уточненный коэффициент жесткости клея в сдвиге [14].

Решение. Система уравнений (1) – (9) может быть сведена к системе четырех дифференциальных уравнений для продольных и перекрестных (радиальных) перемещений слоев несущей, которые в матричной форме могут быть записаны следующим образом:

$$
A_1 \frac{d^2 \bar{V}}{dx^2} + A_2 \frac{d^2 \bar{V}}{dx^2} + A_1 \frac{d \bar{V}}{dx} + A_0 \bar{V} = 0, \quad \text{(10)}
$$

где $\bar{V} = (u_1, u_2, w_1, w_2)^T$ - вектор функции перемещений слоев.

Используя $A_2 = \frac{R_0 B_{1y}}{R_0 P} \\ \frac{R_0 B_{2y}}{R_0 P} \\ \frac{R_0 B_{1z}}{R_0 P} \\ \frac{R_0 B_{2x}}{R_0 P}$; $A_0 = \frac{-1}{\delta_0^2} \frac{B_{1y}}{R_0 P} + \frac{K}{P}$; $A_0 = \frac{-1}{\delta_0^2} \frac{B_{2y}}{R_0 P} + \frac{K}{P}$
Here $\beta_{xy}^{(i)} = \frac{\mu_{xy}^{(i)} B_{y}^{(i)}}{R_{0} P}$; $\beta_{yx}^{(i)} = \frac{\mu_{yx}^{(i)} B_{x}^{(i)}}{R_{0} P}$. According to the theory of elasticity of an orthotropic body, the equality is $\mu_{xy} E_x = \mu_{yx} E_y$. Consequently, the matrices of equation (10) are symmetric.

We look for the solution of equation (10) in the form $\tilde{V} = \tilde{h} e^{\lambda x}$. Substituting in (10) and simplifying, we obtain the equation:

$$A_{e} \tilde{h} = 0,$$

(11)

where $A_{e} = A_{e} \lambda^4 + A_{e} \lambda^2 + A_{e} \lambda + A_{e}$.

Characteristic equation $\det(A_{e}) = 0$ has a root $\lambda = 0$ of multiplicity of the second degree, and ten non-zero roots. We find vectors \tilde{h}_{k} from equation (11) up to an arbitrary factor C_{k}. Therefore, the general solution (10) can be written as:

$$\tilde{V} = \sum_{k=1}^{10} C_{k} \tilde{h}_{k} e^{\lambda_{k} x} + \tilde{H}_{0} + \tilde{H}_{1} x,$$

where \tilde{H}_{0} and \tilde{H}_{1} - eigenvectors corresponding to $\lambda = 0$;

\tilde{h}_{k} - eigenvectors corresponding to eigenvalues $\lambda \neq 0$.

Thus, the formula for displacement includes 12 constants C_{k}. From formulas (1) – (9) we find the efforts N_{i}, Q_{i}, and T_{i} in the bearing layers, bending moments M_{i} and stresses τ_{0} and σ_{i} in the adhesive layer.

Longitudinal and transverse movements of tips we denote u_{3}, w_{3} ($x \in [-L_{1} - L_{1}; +L_{1}]$) and u_{4}, w_{4} ($x \in [L; L + L_{2}]$). Outside the area of gluing, displacements will be described by classical equations of an axisymmetric cylindrical shell:

$$\frac{R_{0}^{2} J_{1}}{B_{y}^{(1)}} \frac{d^{4} w_{3}}{dx^{4}} + \left(1 - \mu_{xy}^{(1)} \mu_{yx}^{(1)}\right) w_{3} = -\frac{\mu_{xy}^{(1)} F_{0}}{2\pi B_{y}^{(1)}}, \quad \frac{R_{0}^{2} J_{2}}{B_{y}^{(2)}} \frac{d^{4} w_{4}}{dx^{4}} + \left(1 - \mu_{xy}^{(2)} \mu_{yx}^{(2)}\right) w_{4} = -\frac{\mu_{xy}^{(2)} F_{0}}{2\pi B_{y}^{(2)}},$$

(12)

$$N_{3} = B_{x}^{(1)} \frac{du_{3}}{dx} + B_{y}^{(1)} \mu_{yx}^{(1)} \frac{w_{3}}{R_{1}}; \quad T_{3} = B_{x}^{(1)} \frac{w_{3}}{R_{1}} + B_{y}^{(1)} \mu_{yx}^{(1)} \frac{du_{3}}{dx};$$

$$N_{4} = B_{x}^{(2)} \frac{du_{4}}{dx} + B_{y}^{(2)} \mu_{yx}^{(2)} \frac{w_{4}}{R_{2}}; \quad T_{4} = B_{x}^{(2)} \frac{w_{4}}{R_{2}} + B_{y}^{(2)} \mu_{yx}^{(2)} \frac{du_{4}}{dx},$$

(13)
where \(F_0 \) - longitudinal force applied to the joint; \(N_3 = \frac{F_0}{2 \pi R_i} \) = const \(N_4 = \frac{F_0}{2 \pi R_o} \) = const.

Solving the differential equations (12) and (13), we find the dependencies describing the displacements on the outer parts of the structure. Shell forces are described by dependencies:

\[
\frac{dQ_3}{dx} = \frac{T_3}{R_1}, \quad \frac{dQ_4}{dx} = \frac{T_4}{R_2}, \quad \frac{dM_3}{dx} = Q_3, \quad \frac{dM_4}{dx} = Q_4, \quad \frac{d^2 w_3}{dx^2} = -\frac{M_3}{J_1}, \quad \frac{d^2 w_4}{dx^2} = -\frac{M_4}{J_2}.
\]

Edge and pairing conditions:

\[
u_i\big|_{x=L-L_i} = \frac{dw_3}{dx}\big|_{x=L-L_i} = Q_3\big|_{x=L-L_i} = 0; \quad N_2\big|_{x=L-L_i} = Q_3\big|_{x=L-L_i} = M_3\big|_{x=L-L_i} = 0; \quad u_3\big|_{x=L-L_i} = u_4\big|_{x=L-L_i};
\]

\[
\frac{w_3}{w_1}\big|_{x=L-L_i} = \frac{dw_3}{dx}\big|_{x=L-L_i}; \quad N_1\big|_{x=L-L_i} = N_2\big|_{x=L-L_i}; \quad Q_3\big|_{x=L-L_i} = Q_4\big|_{x=L-L_i}; \quad M_3\big|_{x=L-L_i} = M_4\big|_{x=L-L_i};
\]

\[
N_1\big|_{x=L-L_i} = Q_1\big|_{x=L-L_i} = M_1\big|_{x=L-L_i} = 0; \quad u_3\big|_{x=L-L_i} = w_1\big|_{x=L-L_i}; \quad w_2\big|_{x=L-L_i} = w_2\big|_{x=L-L_i}; \quad \frac{dw_3}{dx}\big|_{x=L-L_i} = \frac{dw_4}{dx}\big|_{x=L-L_i}; \quad N_2\big|_{x=L-L_i} = N_2\big|_{x=L-L_i};
\]

\[
Q_3\big|_{x=L-L_i} = Q_3\big|_{x=L-L_i}; \quad M_3\big|_{x=L-L_i} = M_4\big|_{x=L-L_i}; \quad Q_1\big|_{x=L-L_i} = M_4\big|_{x=L-L_i} = 0.
\]

The boundary conditions lead to a system of linear equations for the unknown coefficients \(C_k \) and coefficients arising from the integration of differential equations (12), (13).

Numerical example. Consider a structure having the following parameters: \(E_x^{(i)} = E_y^{(i)} = 70 \) GPa; \(\mu_x^{(i)} = \mu_y^{(i)} = 0.3 \); \(i = 1, 2 \); \(L = 30 \) mm; \(L_1 = L_2 = 50 \) mm; \(\delta_1 = \delta_2 = 3 \) mm; \(G_0 = 0.36 \) GPa; \(E_0 = 0.9 \) GPa; \(\delta_0 = 0.1 \) mm; radii \(R_1 = 50 \) mm; \(R_0 = R_1 + 0.5 \delta_1 + 0.5 \delta_0 \); \(R_2 = R_0 + 0.5 \delta_2 + 0.5 \delta_0 \).

A longitudinal force is applied to the joint, uniformly distributed along the circumferential coordinate.

Fig. 3 shows graphs of tangential (a) and normal (b) stresses in the middle surface of the adhesive layer.

![Fig. 3. Stresses in the adhesive layer](image)

Stresses are shown in dimensionless form, as the ratio of the acting stresses \(\tau_0 \) and \(\sigma_0 \) to the tangential stresses \(F_0/(4\pi R_0 L) \), which would occur if the stresses were evenly distributed over the middle surface of the adhesive layer.
The stresses \(\sigma_1 \) and \(\sigma_2 \) in this case differ little from the stresses \(\sigma_0 \) and are almost indistinguishable in the graph, and therefore are not shown in the figure, but their average value \(\sigma_0 \) is shown.

To verify the computational model, the stress state of the structure under consideration was calculated using FEM in the Comsol Multiphysics 5.2 system. The finite element model of the structure (Fig. 1) is supplemented with an influx of glue at both ends of the seam in the form of a quarter of a circle with a radius \(5\delta_0 \), and the edge of the part being joined is supplemented with chamfers with a side \(2\delta_0 \). The characteristic size of the final element in the adhesive layer is \(0.2\delta_0 \). Fig. 4 shows the stresses in the vicinity of one of the seam edges. Continuous lines show the graphs of tangent (a) and normal (b) stresses in the middle surface of the adhesive layer, calculated from the proposed model. Dotted lines show stress graphs \(\sigma_0 \), \(\sigma_1 \) and \(\sigma_2 \), calculated using FEM. Power surges outside the area of bonding are due to changes in the geometry of the adhesive layer, such as chamfer and adhesive flow. Jumps have a local character, not exceeding the values at the edge of the adhesive layer.

If there is no adhesive influx, then due to the conditions of tangential stress pairing, the tangential stresses at the seam edge are zero and reach a maximum at a distance of the order of the thickness of the adhesive layer from the edge of the adhesive seam [15, 16]. At the same time, the normal stresses \(\sigma_1 \) and \(\sigma_2 \) in the glue differ significantly (even by the sign) at the edges of the glue line, but they practically coincide in the depth of the region. In the presence of adhesive glue, which exceeds the thickness of the glue layer several times in thickness, as in this case, the shear stresses reach a maximum at the edge of the glue line. A voltage \(\sigma_1 \) and \(\sigma_2 \) differ slightly from each other. Therefore, it can be concluded that the proposed model better describes the SSS of the adhesive layer in the presence of adhesive flow.

Conclusions. A mathematical model of the axisymmetric stress state of the adhesive joint of two coaxial cylindrical shells is proposed. The solution was obtained in analytical form. Solved the model problem. It is shown that the proposed model has good accuracy, although it has some limitations. It can be used to solve problems of connection design. Further development of this model can be aimed at clarifying the mathematical model of the adhesive layer, using the theory of Tymoshenko's shells to describe the SSS bearing layers, taking into account the forces of inertia, temperature deformations, etc. One of the possible ways to generalize this approach is to create a mathematical model, the so-called double-shear connection. This is a combination of three carrier layers, in which the central carrier layer is connected to the two linings on the outer and inner side. Such a constructive solution allows significantly reduce the bending moments and tearing stresses in the adhesive.

Literature

1. Adams R.D., Peppiatt N.A. Stress analysis of adhesive bonded tubular lap joints. *The Journal of Adhesion*, 1977. Vol. 9. P. 1–18.
2. Dragoni E., Goglio L. Adhesive stresses in axially-loaded tubular bonded joints – Part I: Critical review and finite element assessment of published models. *Int. J. of Adhesion and Adhesives*. 2013. Vol. 47. P. 35–45. DOI: 10.1016/j.ijadhdx.2013.09.009.
References

1. Adams, R. D., & Peppiatt, N.A. (1977). Stress analysis of adhesive bonded tubular lap joints. The Journal of Adhesion, 9, 1–18.
2. Dragoni, E., & Goglio, L. (2013). Adhesive stresses in axially-loaded tubular bonded joints - Part I: Critical review and finite element assessment of published models. Int. J. of Adhesion and Adhesives, 47, 35–45. DOI: 10.1016/j.ijadhadh.2013.09.009.
3. Lubkin, J.I., & Reissner, E. (1956). Stress distribution and design data for adhesive lap joints between circular tubes. Trans. ASME, 1956, V.78. P. 1213–1221.
4. Skoryi, I.A., Terekhova, L. P. (1972). Stresses in adhesive joints in cylindrical shells and panels. Polymer Mechanics, 1972. Vol. 8(6). P. 964–972. DOI: 10.1007/BF00858340.
5. Nemes, O., Lachaud, F., & Mojtabi, A. (2006). Contribution to the study of cylindrical adhesive joining. International Journal of Adhesion & Adhesives. 2006. Vol. 26. P. 474–480. DOI: 10.1016/j.ijadhadh.2005.07.009.
6. Pugno, N., Carpinteri, A. Tubular Adhesive Joints Under Axial Load. Journal of Applied Mechanics. 2003. Vol. 70 (6). P. 832–836. DOI: 10.1115/1.1604835.
7. Nemes, O., Lachaud, F. Modeling of Cylindrical Adhesively Bonded Joints. Journal of Adhesion Science and Technology. 2009. Vol. 23. P. 1383–1393. DOI: 10.1163/156856109X432983.
8. Esmaeel, R. A., & Taheri, F. Stress Analysis of Tubular Adhesive Joints with Delaminated Adherend. Journal of Adhesion Science and Technology. 2009. Vol. 23. P. 1827–1844. DOI: 10.1016/j.ijadhadh.2009.05.011.
9. Cognard, J.Y., Devaux, H., & Sohier, L. Numerical analysis and optimisation of cylindrical adhesive joints under tensile loads. International Journal of Adhesion and Adhesives. 2010. Vol. 30(8). P. 706–719. DOI: 10.1016/j.ijadhadh.2010.07.003.
10. Barbosa, D.R., Campilho, R.D.S.G., & Rocha, R.J.B. Experimental and numerical assessment of tensile loaded tubular adhesive joints. The Journal of Materials: Design and Applications. 2018. Vol. 0. P. 1–13. DOI: 10.1177/1464420718780453.
11. Artjohin, Yu. P. Modifievaya teoria Golanda-Reissnere skleennyh plastin. Issled. po teor. plastin i obloch. 1975. №11. C. 136–148.
12. Kurenkov, S.C. Model’ dvauparametricheskogo uprugogo osnovania v raspčet’ naprjagénnoho sostojanja kleevogo soedinenija. Trudy MAI. 2013. № 66. URL: http://trudymai.ru/published.php?ID=40246.
13. Kurennov, S.S. Longitudinal-Flexural Vibrations of a Three-Layer Rod. An Improved Model. Journal of Mathematical Sciences. 2016. Vol. 2. P. 159–169. DOI: 10.1007/s10958-016-2829-7.
14. Kurenkov, S.C. O raspredelenii naprjajennij po tolshhine kleevogo soedinenija. Voprosy proektirovania i proizvodstva konstruktsij l-courtelnyh apparatur. 2016. Nº. 4. C. 80–89.
15. Wang J., Zhang C. Three-parameter elastic foundation model for analysis of adhesively bonded joints. Int. J. of Adhesion and Adhesives. 2009. V. 29. P. 495–502. DOI: 10.1016/j.ijadhadh.2008.10.002.
16. Frostig, Y., Thomesen, O.T., & Mortensen, F. Analysis of adhesive-bonded joints, square-end, and spewfillet-high-order theory approach. J. of Engineering Mechanics. 1999. Vol. 125. P. 1298–1307. DOI: 10.1061/(ASCE)0733-9399(1999)125:11(1298).
9. Cognard, J.Y., Devaux, H., & Sohier, L. (2010). Numerical analysis and optimisation of cylindrical adhesive joints under tensile loads. *International Journal of Adhesion and Adhesives, 30*(8), 706–719. DOI: 10.1016/j.ijadhadh.2010.07.003.

10. Barbosa, D.R., Campilho, R.D.S.G., & Rocha, R.J.B. (2018). Experimental and numerical assessment of tensile loaded tubular adhesive joints. *The Journal of Materials: Design and Applications, 0*, 1–13. DOI: 10.1177/1464420718808543.

11. Artyukhin, Yu.P. (1975). Goland-Reissner modified theory of glued plates. *Issled. po teor. plastin i oblochek, 11*, 136–148.

12. Kurennov, S.S. (2013). The two-parameter elastic foundation model used for the computation of the glued connection stressed state. *Trudy MAI, 66*. Retrieved from: http://trudymai.ru/published.php?ID=40246.

13. Kurennov, S.S. (2016). Longitudinal-Flexural Vibrations of a Three-Layer Rod. An Improved Model. *Journal of Mathematical Sciences, 2*, 159–169. DOI: 10.1007/s10958-016-2829-7.

14. Kurennov, S.S. (2016). O raspredelenii napryazhenij po tolshhine kleevogo soedineniya. *Voprosy proektirovaniya i proizvodstva konstrukcij letatelnykh apparatov, 4*, 80–89.

15. Wang, J., & Zhang, C. (2009). Three-parameter elastic foundation model for analysis of adhesively bonded joints. *International Journal of Adhesion and Adhesives, 29*, 495–502. DOI: 10.1016/j.ijadhadh.2008.10.002.

16. Frostig, Y., Thomsen, O. T., & Mortensen, F. (1999). Analysis of adhesive-bonded joints, square-end, and spewfillet-high-order theory approach. *Journal of Engineering Mechanic, 125*, 1298–1307. DOI: 10.1061/(ASCE)0733-9399(1999)125:11(1298).

Курєннов Сергій Сергійович; Kurennov Sergey, ORCID: 0000-0002-3835-3288
Барахов Костянтин Петрович; Barakhov Konstantin, ORCID: 0000-0003-1714-7917
Дворецька Дар’я Віталіївна; Dvoretskaya Dariya

Received April 16, 2019
Accepted May 03, 2019