Cardiovascular health after menopause transition, pregnancy disorders, and other gynaecologic conditions: a consensus document from European cardiologists, gynaecologists, and endocrinologists

Angela H.E.M. Maas¹*, Giuseppe Rosano²,³, Renata Cifkova⁴,⁵, Alaide Chieffo⁶, Dorenda van Dijken⁷, Haitham Hamoda⁸, Vijay Kunadian⁹, Ellen Laan¹⁰, Irene Lambrinoudaki¹¹, Kate Maclaran¹², Nick Panay¹³, John C. Stevenson¹⁴, Mick van Trotsenburg¹⁵, and Peter Collins¹⁴

¹Department of Cardiology, Director Women’s Cardiac Health Program, Radboud University Medical Center, Geert Grooteplein-Zuid 10, Route 616, 6525GA Nijmegen, The Netherlands; ²St George’s Hospitals NHS Trust University of London, Crammer Terrace, London SW17 0RE, UK; ³Department of Medical Sciences, Centre for Clinical and Basic Research, IRCCS San Raffele Pisana, via della Pisana, 235 Rome, Italy; ⁴Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Vitešská 800, 140 59 Prague 4, Czech Republic; ⁵Department of Internal Cardiovascular Medicine, First Medical Faculty, Charles University in Prague and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague 2, Czech Republic; ⁶Interventional Cardiology Unit, IRCCS San Raffaele Hospital, Olgettina Street, 60 - 20132 Milan (Milan), Italy; ⁷Department of Obstetrics and Gynaecology, OLVG location West, Jan Tooropstraat 164, 1061 AE Amsterdam, The Netherlands; ⁸Department Gynaecology, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; ⁹Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Cardiothoracic Centre, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, M4:146 4th Floor William Leech Building, Newcastle upon Tyne NE2 4HH, UK; ¹⁰Department of Sexology and Psychosomatic Gynaecology, Amsterdam University Medical Center, Amsterdam University Medical Center, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; ¹¹Menopause Clinic, 2nd Department of Obstetrics and Gynaecology, National and Kapodistrian University of Athens, Aretaeo Hospital, 30 Panepistimio Str., 10679 Athens, Greece; ¹²Department Gynaecology, Chelsea and Westminster Hospital, NHS Foundation Trust, 69 Fulham Road London SW10 9NH, UK; ¹³Department of Gynaecology, Queen Charlotte’s & Chelsea and Westminster Hospitals, Imperial College, Du Cane Road, London W12 OHS, UK; ¹⁴Department of Cardiology, National Heart & Lung Institute, Imperial College London, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK; and ¹⁵Bureau Gender PRO Vienna and Department of Obstetrics and Gynaecology, University Hospital St. Poelten-Lilienfeld, Probst Fu¨hrer Straße 4 · 3100 St. Poelten, Austria

Received 18 August 2020; revised 29 September 2020; editorial decision 7 December 2020; accepted 8 December 2020

Women undergo important changes in sex hormones throughout their lifetime that can impact cardiovascular disease risk. Whereas the traditional cardiovascular risk factors dominate in older age, there are several female-specific risk factors and inflammatory risk variables that influence a woman’s risk at younger and middle age. Hypertensive pregnancy disorders and gestational diabetes are associated with a higher risk in younger women. Menopause transition has an additional adverse effect to ageing that may demand specific attention to ensure optimal cardiovascular risk profile and quality of life. In this position paper, we provide an update of gynaecological and obstetric conditions that interact with cardiovascular risk in women. Practice points for clinical use are given according to the latest standards from various related disciplines (Figure 1).

Keywords: Coronary artery disease • Ischaemic heart disease • Menopausal hormone therapy • Female-specific risk factors • Hypertensive pregnancy disorders • Menopause • Transgender • Sexual health women

* Corresponding author. Tel: +31 24 3614533, Email: angela.maas@radboudumc.nl

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

ESC REPORT
European Heart Journal (2021) 00, 1–18
doi:10.1093/eurheartj/ehaa1044
Abbreviations

ACOG, American College of Obstetricians and Gynaecologists
ADA, American Diabetes Association
AF, atrial fibrillation
BP, blood pressure
CAC, coronary artery calcium
CAD, coronary artery disease
CEE, conjugated equine oestrogens
CI, confidence interval
CIMT, carotid intima media thickness
CVD, cardiovascular disease
CT, computed tomography
ELITE, Early vs. Late Intervention trial With Estradiol
ESC, European Society of Cardiology
ESHRE, European Society of Human Reproduction and Embryology
HPD, hypertensive pregnancy disorders
HR, hazard ratio
HRT, hormone replacement therapy
IHD, ischaemic heart disease
MI, myocardial infarction
MINOCA, myocardial infarction with no obstructive coronary artery
MHT, menopausal hormone therapy
MPA, medroxyprogesterone acetate
NETA, norethisterone acetate
OGTT, oral glucose tolerance test
POC, progestin-only contraceptives
POI, premature ovarian insufficiency
PPCM, peripartum cardiomyopathy
PVD, peripheral vascular disease
PPCM, peripartum cardiomyopathy
PVD, peripheral vascular disease
RRSO, risk-reducing salpingo-oophorectomy
SCAD, spontaneous coronary artery dissection
TTS, Takotsubo syndrome
VTE, venous thromboembolism
WHI, Women’s Health Initiative

Introduction

Menopause is an important stage in women’s lives, affecting many physical and social changes. The mean onset of menopause is 51 years, but there is substantial inter-individual variation, ranging between 40 and 60 years.1 Oestrogens regulate vascular reactivity, blood pressure (BP), endothelial function and cardiac remodelling.2–4 Alterations in oestrogen levels also affect the immune system, which is closely connected to vascular function and ageing.5,6 After menopause, traditional cardiovascular risk factors are adversely affected particularly hypertension.7–10

Since the first ESC consensus paper on the management of cardiovascular risk in perimenopausal women was published in 2007, we have greater understanding on the role of female-specific risk factors for cardiovascular disease (CVD).11 Our current knowledge of the typical patterns of ischaemic heart disease (IHD) in younger and middle-aged women helps to better diagnose and treat symptomatic women within this age group.12–15 In addition, the growing number of fertile women with stable and unstable IHD requires specific knowledge and attention from both the cardiology and gynaecology communities.

Although sex-specific risk variables related to hormonal and reproductive status are associated with CVD risk, the justified weighting of these variables remains to be elucidated. When considering all age groups together, they do not seem to alter 10-year risk estimation.16,17 However, when focusing on younger patients (<55 years), assessment of female-specific risk variables may help to identify women at premature higher risk.18 The strongest predictors are hypertensive disorders of pregnancy (HPD) and low birth weight, with a two-fold higher IHD risk, which is mediated by hypertension.19–21

Epidemiology of cardiovascular disease in women

Ischaemic heart disease is the most important cause of CVD mortality in women worldwide. The regions with the highest age-standardized prevalence of IHD are Eastern Europe, North Africa and Middle East, and Central Europe, while a lower risk of CVD is noted in Chinese and South Americans.22–25 Most recent European data show that IHD and stroke account for 82% of disability-adjusted life years due to CVD in ESC member countries.26 Although there are small declines in the age-standardized incidence and prevalence rates of IHD and stroke over the last 27 years, rates for peripheral vascular disease (PVD) and atrial fibrillation (AF) remain stable. As most IHD data are still largely derived from men, the true IHD incidence in women may be underestimated.15 Risk calculations are mostly based on mortality and not total IHD rates for which women tend to have higher rates of non-fatal events.27 In addition, women have a lower income and socio-economic status compared to men, which contributes to a lower health status in general.28

Although classic type 1 myocardial infarction (MI) occur three times more commonly in men than in (elderly) women, the number of women under 65 years with MI is gradually increasing.29,30 Especially, the number of type II MIs with no obstructive coronary arteries (MINOCAs) and spontaneous coronary artery dissections

Preamble

This consensus document provides a summary of the views of an expert panel organized by the Task Force on Gender of the European Society of Cardiology (ESC) and an ad hoc multidisciplinary ESC working group on Women’s Health in Menopause. It is compiled in collaboration with experts from the International, European, British and Dutch Menopause Societies. Formal approval was provided by the ESC Clinical Practice Guidelines Committee. The writing task force members provide declaration of interest forms for all relationships that might be perceived as real or potential sources of conflicts of interest. This document provides guidance to the clinical community on diagnostic approach and the management of cardiovascular health during menopause transition, after pregnancy disorders, and other gynaecologic conditions based on existing evidence and the best available current practice.
Menopause, cardiovascular disease risk factors, and ischaemic heart disease

Obstructive CAD occurs 7–10 years later in women than in men, with women having fewer focal coronary artery stenoses at all ages. Women have a lower plaque burden, fewer vascular calcifications, a more diffuse pattern of atherosclerosis and, more often, soft plaques and erosive lesions compared to men. Coronary vasomotor disorders, such as coronary artery spasm and/or coronary microvascular dysfunction represent a major cause of IHD in middle-aged women. These can be present with or without non-obstructive CAD. In a sub-analysis of the ISCHEMIA trial, women have more frequent angina with less extensive CAD and less severe ischaemia than men. This was also shown in the large CorMICA trial. These findings confirm important sex differences in the complex relationships between angina, atherosclerosis, and ischaemia.

Lower oestrogen levels after menopause are related to altered vascular function, enhanced inflammation, and up-regulation of other hormonal systems such as the renin–angiotensin–aldosterone system, the sympathetic nervous system, and reduced nitric oxide-dependent vasodilation. Healthy endothelium is sensitive to the vasodilator properties of oestrogens, but this reverses when vascular stiffness and atherosclerotic disease develops over time.

While CVD risk increases with the menopause, this cannot be distinguished from ageing. The Women’s Ischaemia Syndrome Evaluation study found that the presence of cardiovascular risk factors accounted for comparable CAD lesions among pre- and post-menopausal women. A validated tool to measure CVD risk in middle-aged women is to assess the coronary artery calcium (CAC) score with computed tomography (CT) scanning, having a higher prognostic value than in men. It is recommended to assess the CAC score in symptomatic women and those at intermediate cardiovascular risk.

The decline in endothelial function starts in early menopause even before signs of subclinical atherosclerosis are present. This mechanism may be involved in the pathophysiology of ‘undetermined’ chest pain and dyspnoea, which is often labelled as ‘stress’ or to ‘menopausal symptoms’. However, women with ‘undetermined’ chest pain syndromes have a two-fold increased risk of developing an IHD event in the following 5–7 years. The changing hormonal milieu is associated with alterations in body composition. Fat mass increases predominantly in the central and visceral regions, while lean mass decreases after menopause. Visceral adipose tissue secretes inflammatory cytokines such as tumour necrosis factor-α, interleukin-6, and retinol-binding protein-4. The efflux of free fatty acids to the liver generates reactive oxygen species. Chronic inflammation and oxidative stress respectively increase insulin resistance. Animal studies indicate that post-gonadectomy oestrogen decline is associated with an impairment of pancreatic β-cell function. In clinical practice, post-menopausal women have 2–3 times higher prevalence of metabolic syndrome, compared to similar aged premenopausal women.

Menopause transition results in lipid profile changes, with a 10–15% higher LDL-cholesterol and triglyceride levels and slightly lower HDL cholesterol levels. The sharp rise in BP after menopause may be both a direct effect of hormonal changes on the vasculature and metabolic changes with ageing. Hypertension is a critically important risk factor that affects women in the early post-menopausal years and is often poorly managed. Recent data from Canada report a worsening of hypertension awareness and treatment over the past decade, especially in women. In all, 30–50% of women develop hypertension (BP >140/90 mmHg) before the age of 60 and the onset of hypertension can cause a variety of symptoms, such as palpitations, hot flushes, headaches, chest pain, pain between the shoulder blades, tiredness and sleeping disturbances, which are often attributed to menopause. Sodium sensitivity increases during menopausal transition, frequently leading to intermittent fluid retention (oedema of the legs, hands, and lower eyelids). Physicians should intensify the detection of hypertension in middle-aged women, especially after HPD and pre-eclampsia. Systolic BP is the most important arbiter of risk with ageing and results in greater vascular and myocardial stiffness in women than in men.

Immune reactivity increases in women during and after menopause transition. Autoimmune rheumatic and endocrine disorders such as rheumatic arthritis, systemic lupus erythematosus, antiphospholipid syndrome, Sjogren-syndrome, and thyroid disorders are more prevalent in women than in men and are associated with an increased CVD risk. Patients with these disorders also have a higher clustering of traditional risk factors. These risk variables should be taken into consideration when assessing individual risk around menopause.

Practice points

- Menopause is associated with central adiposity, insulin resistance, and a pro-atherogenic lipid profile
- Assess lipid levels and BP during menopause transition according to prevention guidelines
- Regular control/self-measurement of BP is needed in women after HPD/pre-eclampsia
- Inflammatory co-morbidities increase CVD risk in women around menopause
Healthy lifestyle in menopause

The loss of oestrogen has been associated with reduced energy expenditure. Lower oestrogen levels are associated with feeding behaviours and meal size, promoting hyperphagia and obesity. Obesity is also associated with depression, which enhances food intake and sleep deprivation and reduces physical activity. Effective management of vasomotor symptoms with menopausal hormone therapy (MHT) may reverse this. Regular physical exercise has a beneficial effect on vasomotor symptoms and quality of life. Although oestrogen therapy is not approved to treat perimenopausal depression, there is evidence that it has antidepressant effects and increases well-being in perimenopausal women.

Improvement of quality of life enhances the ability to work. Women suffering from severe menopausal symptoms have an eightfold increased risk of working disability, leading to lower productivity, more absenteeism, earlier termination of workforce participation, and a rise in employer and healthcare community costs.

Practice points

• Adherence to a healthy lifestyle and diet with regular exercise are important factors in the optimal management of menopausal health.
• Menopausal complaints may interfere with working ability and need attention of employers and businesses.

Vasomotor symptoms and cardiovascular disease risk

Women with severe menopausal symptoms have an unfavourable cardiometabolic profile and overactivity of the sympathetic nervous system compared to asymptomatic women. Autonomic dysfunction enhances heart rate variability, which may result in symptoms of dyspnoea on exercise. Increased sympathetic activity with disabling vasomotor symptoms is more often present in women after HPPD. In the Women’s Health Initiative (WHI) observational study, women with severe symptoms of hot flushes and night sweats had a 48% higher risk of incident diabetes at follow-up. They also have evidence of impaired endothelial function and increased subclinical atherosclerosis compared to women without vasomotor symptoms.

Practice points

• Menopausal vasomotor symptoms can be associated with an unfavourable cardiovascular risk profile.
• Autonomic dysfunction enhances heart rate variability after menopause.

Use of menopausal hormone therapy since Women’s Health Initiative

Preliminary findings from the WHI reported a significant increase in IHD events with a combined MHT regimen of conjugated equine oestrogens (CEE) and medroxyprogesterone acetate (MPA) compared with placebo, but this was non-significant in the long-term follow-up. In contrast, MHT with CEE alone resulted in a non-significant decrease in coronary events compared with placebo, especially in those initiating treatment below 60 years of age. In a meta-analysis of 23 randomized clinical trials (RCTs) women initiating MHT treatment below 60 years of age or within 10 years of onset of menopause showed a significant reduction (>30%) of MI or cardiac deaths. In the Danish national registry wherein almost 700,000 women were included, about a quarter of whom were current or past MHT users. Overall, MI risk was not influenced by MHT use, but continuous combined oestrogen–progestogen appeared to increase the risk while a transdermal and vaginal oestrogen reduced the risk. The oestrogen used was almost universally oestradiol and vaginal oestrogen is 80% weaker than transdermal oestrogen. No differences in risk were seen between different progestogens, namely norethisterone acetate (NETA), MPA, or noregestrel. Further RCT data came from the Danish Osteoporosis Prevention Study (DOPS), which included over 1000 women in early post-menopause, randomised to oral MHT, oral oestradiol with or without NETA addition, or to no treatment. Menopausal hormone use was associated with a significant reduction in a composite endpoint of MI, death or admission to hospital with heart failure compared with placebo [hazard ratio (HR) 0.48; 95% confidence interval (CI) 0.26–0.87].

A more recent meta-analysis of RCTs and data from a Finnish register confirm that initiating MHT (oral/transdermal) within 10 years of the onset of menopause significantly reduces MI and death around 50%, whereas discontinuation of MHT resulted in a transient increase in coronary death. Thus, many studies following the initial WHI reports largely support a preventive effect of MHT on CVD. Recent MHT studies such as the Kronos Early Estrogen Prevention Study (KEEPS) and the Early vs. Late Intervention Trial with Estradiol (ELITE) have focused on recruiting mainly younger women (<6 years since menopause) using more favourable MHT regimens with surrogate cardiovascular endpoints. The ELITE trial demonstrated less progression in carotid intima media thickness (CIMT) in younger women randomized to MHT compared to older women who were more than 10 years post-menopause (P = 0.007 for the interaction). Possible mechanisms mediating the CVD benefit of MHT, especially transdermal, include increase in insulin sensitivity, improvement of the lipid profile and body composition, decrease in BP in case of drospirenone-containing regimens, and finally, a direct vasodilatory and anti-inflammatory effect.

Breast cancer remains the main concern of MHT use. A recent meta-analysis of disparate studies with different entry criteria that included over 108,000 women diagnosed with breast cancer concluded that any MHT use would result in up to a two-fold increase in breast cancer risk. This study was dominated by the Million Women Study (MWS) data, a study widely criticized on a number of methodological issues. Few data were included from studies of
modern MHT regimens with non-androgenic progestogens such as dydrogesterone and micronized progesterone. The French E3N cohort study was not included, but showed a lower breast cancer risk in users of micronized progesterone and dydrogesterone. The French E3N modern MHT regimens with non-androgenic progestogens such as dydrogesterone and micronized progesterone. The French E3N cohort study was not included, but showed a lower breast cancer risk in users of micronized progesterone and dydrogesterone. The French E3N cohort study was not included, but showed a lower breast cancer risk in users of micronized progesterone and dydrogesterone.

Modern MHT regimens contain lower doses of systemic and vaginal oestrogens. Oral, but not transdermal, MHT increases the risk of venous thromboembolism (VTE). Current evidence is summarized in Table 1.

### Practice points

- MHT is indicated to alleviate menopausal symptoms
- MHT may be of potential prophylactic benefit in depression
- Doses and types of MHT regimens, and age at initiation are crucial for its safety
- Before starting MHT, assessment of cardiovascular risk factors should be performed
- Consider measuring CAC with CT when there is uncertainty on individual cardiovascular risk
- MHT is not recommended in women at high cardiovascular risk and after a CVD event
- Initiation of MHT is generally not advised in asymptomatic women

### Premature ovarian insufficiency

Women with premature ovarian insufficiency (POI), defined as the loss of ovarian function before the age of 40, have a shorter life expectancy than women with a late menopause due to CVD and osteoporosis. A meta-analysis showed an increased risk of CVD for women with POI, early menopause (age 40–44 years), and relatively early menopause (age 45–49 years). Each year of early menopause was associated with a 3% increased risk of CVD.

Data regarding risk of stroke in early menopause and POI are conflicting. A recent meta-analysis demonstrated an increased risk of stroke in both POI and early menopause, but not in women with relatively early menopause. Adverse effects of POI and early menopause have been shown on lipid profile, body composition, systolic BP, insulin sensitivity, risk of metabolic syndrome, endothelial function, and inflammatory markers. Women with an early menopause have a 1% higher risk of developing diabetes compared to women who experienced menopause at a later age.

Although in non-human primate studies premature atherosclerosis was found in animal models of POI, this was not replicated in human studies on subclinical atherosclerosis as assessed by CIMT and CAC. The lack of endogenous hormones after menopause and an underlying genetic predisposition to abnormal DNA repair may result in an accelerated general ageing phenotype, contributing to both early age at menopause and increased risk of CVD.

Genetically impaired DNA repair also contributes to higher risk for cancer and cardiac damage of cancer therapy and to a higher risk for peripartum cardiomyopathy (PPCM).
Management of premature ovarian insufficiency

Prospective randomized data are lacking on the effect of hormone replacement therapy (HRT) as it is termed in women with POI, although most available evidence suggests a beneficial effect on CVD. In women with POI, HRT is recommended until at least the average age of menopause. This is supported by a recent meta-analysis which showed that the largest reduction in CVD incidence was in women with POI or early menopause who used HRT for at least 10 years. Early initiation of HRT had the greatest reduction in CVD, highlighting the importance of timely diagnosis and treatment. Although combined oral contraceptive and HRT are both treatment options in women with POI, the use of HRT has a superior effect metabolically and on bone density. The risks and benefits of HRT in women with POI and early menopause are different from those using MHT in peri- and post-menopause, and accurate individual counselling is therefore vital.

Practice points

- Early menopause is associated with higher risk of diabetes and CVD
- Women with POI and early menopause (<45 years) should have an assessment of their cardiovascular risk factors
- Women with POI are recommended to take HRT until the average age of menopause
- In women with early menopause, HRT should be considered on an individual basis
- A genetic predisposition to POI may also increase risk for cancer

Pregnancy-related disorders and cardiovascular disease risk

Recurrent pregnancy loss

Recurrent miscarriage or recurrent pregnancy loss, the preferred term by the European Society of Human Reproduction and Embryology (ESHRE), includes all pregnancy losses from the time of conception until 24 weeks of gestation. Women with a history of two or more pregnancy losses, consecutive or not, appear to have an increased risk of IHD. Cardiovascular disease and recurrent pregnancy loss share common risk factors such as smoking, obesity, and alcohol intake. Moreover, endothelial dysfunction may be the underlying link between recurrent pregnancy loss, pre-eclampsia, intrauterine growth restriction, and future cardiovascular events. Most studies have not found any relationship between recurrent pregnancy loss and stroke. However, data from Danish registers have shown that women from families with manifest atherosclerotic disease may be predisposed to pregnancy losses which may induce a greater risk of IHD and stroke. Adjustment for antiphospholipid antibodies did not affect the estimates. A detailed family history for CVD and pregnancy history should therefore be an integral part of cardiovascular risk assessment in women.

Preterm delivery

Preterm delivery, defined as delivery before 37 weeks of gestation, affects about 10% of pregnancies in the US. Lower rates are found in Europe, around 5–6%. About 30–35% of preterm deliveries are medically indicated, most frequently due to pre-eclampsia and foetal growth restriction. In the Nurses’ Health Study II, preterm delivery was found to be independently predictive of CVD. Women with a history of preterm delivery appear to have a two-fold increased risk of CVD in later life. No specific follow-up for these women is recommended, except to optimize modifiable cardiovascular risk factors. Small-for-gestational age newborns also increase maternal CVD risk.

Hypertensive pregnancy disorders

HPD affect 5–10% of pregnancies worldwide. These include pre-existing (chronic) hypertension, diagnosed before pregnancy or before 20 weeks of gestation, and gestational hypertension developing after 20 weeks of pregnancy. Pre-eclampsia is now defined as persistent hypertension that develops after 20 weeks of pregnancy or during the post-partum period, associated with proteinuria and/or other maternal organ dysfunction. Pre-existing hypertension is associated with increased risk of developing pre-eclampsia which may complicate up to 25% of cases. Pre-eclampsia is associated with a 4-fold increase in heart failure and hypertension and a 2-fold increased risk in IHD, stroke, and cardiovascular deaths. This finding is now endorsed by the 2018 American College of Cardiology/American Heart Association cholesterol guidelines using a history of pre-eclampsia to justify statin prescription in asymptomatic middle-aged women with an intermediate 10-year risk. Hypertensive complications in pregnancy are also a major risk factor for PPCM. The risk of developing pre-eclampsia can be substantially reduced by a low dose of aspirin, 100 mg up to 150 mg/day in high-risk women, initiated from week 12 and continued to weeks 36–37 of gestation.

Thirty percent of previously pre-eclamptic women have signs of CAC around the age of 50 years compared with 18% in a reference group. Women with a history of HPD have increased risk of arterial stiffness and greater incidence of IHD, heart failure, aortic stenosis, and mitral regurgitation and a three-fold higher risk for vascular dementia later in life. Cardiovascular risk after HPD is largely, but not entirely, mediated by development of chronic hypertension. The severity, parity, and recurrence of these HPD increases the risk of subsequent cardiovascular events. Although women after HPD are recognized as a higher risk population in the 2018 ESC arterial hypertension guidelines, there is still a need to establish systematic follow-up recommendations aimed at timely detection and control of all major risk factors. Regular BP control is needed at least in the first post-partum months and use of eHealth technology with self-monitoring of BP with feedback to the primary care physician should be encouraged.
Gestational diabetes mellitus

Gestational diabetes mellitus (GDM), defined as the first development of glucose intolerance during pregnancy, occurs in about 7% of pregnancies.\textsuperscript{200,203} Although the carbohydrate intolerance of GDM frequently resolves after delivery, an estimated 10% of women with GDM will have diabetes mellitus soon after delivery with another at least 20% being affected by impaired glucose metabolism at post-partum screening. In the remaining women, 20–60% will develop type 2 diabetes mellitus later in life, often within 5–10 years after the index pregnancy.\textsuperscript{201} Gestational diabetes is associated with a two-fold risk of future CVD events, with the risk being apparent within ten years after pregnancy.\textsuperscript{202} There is also growing evidence that HPD are associated with increased risk of developing type 2 diabetes beyond sustained hypertension.\textsuperscript{196} It is recommended that all women with GDM have a screening oral glucose tolerance test (OGTT) test at 4–12 weeks post-partum. The American Diabetes Association (ADA) and American College of Obstetricians and Gynaecologists (ACOG) recommend repeat testing every 1–3 years for women who had GDM and normal post-partum test results.\textsuperscript{200,203}

Pregnancy in women at increased risk for IHD

Due to an increasing maternal age of pregnancy, a greater number of women are at risk for stable or unstable IHD during pregnancy.\textsuperscript{192,204–206} In a large US cohort of 1.6 million pregnancies, HPD were associated with 1.4- to 7.6-fold higher risk of MI, heart failure, and stroke.\textsuperscript{207} Mortality data have been reported as high as 5–10% in elderly cohorts.\textsuperscript{208,209} In the European registry of pregnancy and cardiac disease (ROPAC), women with IHD accounted for about 4% of 5739 included pregnancies.\textsuperscript{210} Although these women were typically older and more often multiparous, no mortality was observed and in only 4%, heart failure was reported. Recent findings in a UK cohort of 79 women with pre-existing IHD reported only 6.6% adverse cardiac events without any maternal deaths.\textsuperscript{211} However, the rates of adverse obstetric and neonatal events were increased, with an occurrence rate of pre-eclampsia in 14%, preterm delivery in 25%, and small-for-gestational age in 25%. Foetal risk may therefore be higher than maternal risk in women with known IHD. In women with a prior SCAD, a new pregnancy seems to be well tolerated without evidence of an increased risk of SCAD recurrence.\textsuperscript{212}

Hormonal dysregulation and cardiovascular disease risk

Polycystic ovarian syndrome and cardiovascular disease risk

Polycystic ovarian syndrome (PCOS) affects 6–16% of women with marked ethnic variation.\textsuperscript{213} Central to the disorder are disovulation, hyperandrogenism, and metabolic disturbances, particularly insulino resistance. Diagnosis is most commonly based on the Rotterdam criteria, requiring 2 out of 3 of oligo- or anovulation, clinical or biochemical evidence of hyperandrogenism, and polycystic ovary(-ies) on ultrasound.\textsuperscript{214} PCOS has been associated with many risk factors for CVD including impaired glucose tolerance, dyslipidaemia, hypertension, metabolic syndrome, type 2 diabetes and raised inflammatory markers.\textsuperscript{215–219} Young women with PCOS have evidence of endothelial dysfunction and subclinical atherosclerosis, as assessed by CIMT and CAC scores.\textsuperscript{220–223} Although most women are diagnosed in their 20s and 30s, long-term follow-up studies are limited. The natural progression of cardiovascular risk factors has been hampered by confounders like obesity and the heterogeneous criteria and various phenotypes of the disorder. Several cardiovascular risk factors associated with PCOS seem to ameliorate over time.\textsuperscript{224} In a meta-analysis performed for the development of the ESHRE/American Society for Reproductive Medicine guidelines on PCOS, and restricted to only higher quality studies, no increased risk of MI, stroke or CAD was found in women with PCOS compared to controls.\textsuperscript{225–227} Another meta-analysis confirmed that the risk of CVD was increased in women of reproductive age, but not in peri- or post-menopausal women.\textsuperscript{228} This may be related to timely modification of cardiovascular risk factors, a cardio-protective effect from a delayed menopause, or other unknown (genetic) factors.\textsuperscript{229–232}

It is recommended that all women with PCOS should have an assessment of BP and OGTT, and a fasting lipid profile.\textsuperscript{227,233} Dietary and lifestyle education is recommended and as women with PCOS have increased risk of diabetes and HPD, they should be offered screening for GDM in pregnancy.

Other chronic gynaecological conditions associated with cardiovascular disease risk

There is considerable overlap between gynaecologic conditions and chronic disease, particularly CVD. In addition to the gynaec-endocrine disorders (e.g. PCOS, POI, hypogonado-trophic hypogonadism), endometriosis, uterine fibroids, and hysterectomy <50 years with ovarian conservation have all been associated with increased CVD risk.\textsuperscript{234–237} Endometriosis is associated with enhanced inflammation, oxidative stress, and an adverse lipid profile.\textsuperscript{238} Although causal relationships have not been proven, the gynaecological and reproductive history may provide important insights into potential long-term health risks in women for which a more systems-wide approach may be beneficial.
Women with heart disease and abnormal uterine bleeding

With the rise in the number of premenopausal women in need of any kind of anticoagulant therapy and/or (dual) antiplatelet therapy including the growing number of young women with congenital heart disease, established IHD and AF, the prevalence of abnormal uterine bleeding is increasing. The levonorgestrel-releasing intra uterine system can be an effective and safe option in these women, both as a contraceptive and for treating heavy menstrual bleeding.

Practice points

- Abnormal uterine bleeding should be monitored in young women in need of anticoagulant and/or antiplatelet therapy, in collaboration with a GP or gynaecologist

Cardiovascular disease risk in women with BRCA 1/2 mutations and after breast cancer

Breast cancer affects an estimated 2.1 million women worldwide each year. Early detection and improved treatment have increased survival rates; however, breast cancer remains the most common female cancer in Europe. The majority of hereditary breast cancers occur due to mutations in the BRCA 1 and 2 genes, which are also associated with ovarian cancer. Due to the lack of effective screening methods, a risk-reducing salpingo-oophorectomy (RRSO) is recommended at age 35–40 years in BRCA1 and age 40–45 years in BRCA2 mutation carriers. Women with BRCA1/2 mutations may be at increased risk for CVD by iatrogenic early menopause and a potentially elevated CVD risk as a result of abnormal ability of DNA repair. Moreover, BRCA1 is now considered as an important gatekeeper of cardiac function and survival after ischaemia and oxidative stress, making mutation carriers more susceptible for the occurrence of heart failure after an MI. Thus far, data on risk of BRCA 1/2 mutation carriers for cardiotoxicity after chemotherapy are conflicting.

Hormone replacement therapy after risk-reducing salpingooophorectomy

Women who have an early or premature surgical menopause often have debilitating menopausal symptoms. Studies assessing the safety of HRT in this population are limited. A meta-analysis of 3 cohort studies with 1100 BRCA1/2 mutation carriers showed no increased risk of breast cancer with HRT after RRSO (HR 0.98, CI 0.63–1.52). BRCA2 mutation carriers have higher rates of

Practice points

- Combined OCP should be avoided in women with a history of VTE, stroke, CVD, or any other PVD
- Use of OCP is contraindicated in 35 plus women who smoke and in women with severe dyslipidaemia or obesity
- POCs, administered by oral, sub-cutaneous, or intra-uterine routes can be prescribed in women at elevated cardiovascular risk

Contraception in women at high cardiovascular disease risk

Combined oral contraceptive pills (OCP) carry an increased risk for venous thrombosis, MI, and stroke, which is significantly enhanced by cigarette smoking. OCPs containing high-dose ethinyl oestradiol have been associated with increased BP. This is due to increased production of angiotensinogen/angiotensin II and related to OCP formulation/dose. In the Danish Cohort Study, use of combined OCPs containing 20 µg of ethinyl oestradiol increased the relative risk of both thrombotic stroke and MI by 1.60 (95% CI 1.37–1.86) and 1.40 (95% CI 1.07–1.81), respectively, in comparison to non-OCP users. Thus, OCP’s containing ethinyl oestradiol should be avoided in women with a history of VTE, stroke, CVD, or any other PVD. The ACOG has developed guidelines for use of OCP in women at elevated cardiovascular risk. In healthy women below 35 years with pre-existing hypertension, OCP can be used. If BP remains stable after a few months, OCP may be continued. Use of OCP is contraindicated in women older than 35 years who smoke, have severe dyslipidaemia, or obesity. Progestin-only contraceptives (POCs) are not associated with increased vascular risk (arterial or venous), although evidence suggests that MPA use may be associated with a slightly increased risk. In women at CVD risk, POC administered by oral, sub-cutaneous, or intra-uterine routes can be prescribed.

Practice points

- Several chronic gynaecologic conditions may be associated with an adverse CVD risk
- Women with PCOS should have a cardiovascular risk assessment with measurement of BP, OGTT, fasting lipid profiles, and screening for GDM in pregnancy.
- Dietary and lifestyle modifications should be extra emphasized in women with PCOS
prospective analysis of 872 BRCA1 mutation carriers, there was no pause (51–52 years). As in the general menopause population, a RRSO should be offered HRT up until the natural age of menopause. Combined oestrogen and progestogen therapy appears to have a different effect compared to oestrogen therapy alone. Current UK guidance regarding safety and efficacy, although some may have SERM-like effects. Complementary therapies such as isoflavones, soy, red clover, and black cohosh are not recommended as they may have oestrogenic effects and there is a lack of data regarding safety and efficacy, although some may have SERM-like effects (NICE NG101).

Data regarding the safety of MHT in breast cancer survivors are limited, as several studies were terminated early due to an increased risk of recurrence in the interim analysis. Current UK guidance suggests to reserve MHT for those with refractory symptoms after other non-hormonal treatments have been unsuccessful (NICE NG101). Other guidelines advise against MHT in oestrogen receptor-positive breast cancer. If breast cancer risk is low, HRT until natural age of menopause is advised. The use of MHT in women after breast cancer should be individualized with expert advice for menopausal treatment.

**Practice points**
- **BRCA1/2** gene mutation carriers and women treated for breast cancer have increased risk of CVD. Check for their cardiovascular risk factors.
- Short-term (up to 4 years) HRT in women after RRSO does not increase breast cancer risk and reduces the long-term effects of early/premature menopause.
- If breast cancer risk is low, HRT until natural age of menopause is advised.
- The use of MHT in women after breast cancer should be individualized with expert advice for menopausal treatment.

## Sexual health, menopause, and cardiovascular disease

Sexual health concerns are common in patients with all types of CVD. Approximately 60–90% of women with chronic heart failure report having sexual problems, but fewer than 15% have had a consultation with their physician in matters related to sex and intimacy. For women, the most frequently reported problems are diminished feelings of sexual arousal and enjoyment, leading to difficulties in experiencing orgasm, pain during intercourse, and sexual activity being less pleasurable and satisfactory, to decreased desire for sexual activity. Whereas in men CVD coexists with erectile dysfunction, for which endothelial dysfunction is the common underlying pathophysiological mechanism, a definitive pathophysiological link between sexual problems in women and CVD is less clear. However, endothelial dysfunction is unrelated to sexual problems in women with CVD. Sexual problems in women related to low sexual arousal are very common in healthy women. Theoretically, if the heart supplies less blood to the vaginal wall, labia, and clitoris during sexual stimulation, this may lead to reduced capacity to become sexually aroused, resulting in orgasm problems, dyspareunia, and decreased sexual desire. In the first large study investigating the impact of somatic and psychological comorbidities on sexual function in women, CVD was specifically related to lubrication difficulties. Psychological concerns about whether it is safe to be sexually active after a cardiac event may lead to avoidance of physical affection and intimacy. Other symptoms of CVD such as chest pain, shortness of breath, and fatigue may interfere with engaging in and enjoyment of sexual activities. Side effects of medication may also disrupt sexual arousal.

In recent years, a limited number of medical treatment options for women with sexual problems have become available. Flibanserin, a serotonin 5-HT1A-receptor agonist marketed for women with low sexual desire, is associated with considerable risk of syncope and hypotension, and is therefore unsuitable for women with CVD. Bremelanotide, a melanocortin receptor agonist for the treatment of premenopausal women with low sexual desire, was approved in 2019. However, efficacy and safety of the drug in women with CVD are unknown. Although not evidence-based, a recent position statement advises testosterone therapy in post-menopausal women with low sexual desire, supported by measurement of testosterone concentrations in blood to monitor treatment response to prevent overuse. Transdermal testosterone therapy is not associated with increases in BP, blood glucose, or HbA1c levels. However, its safety is not investigated in women at high CVD risk.

**Practice points**
- Sexual health and cardiovascular risk in women needs to be further investigated.
- Transdermal testosterone therapy cannot be recommended in women with established CVD for lack of data.
Cardiovascular disease risks for cross-sex therapy in female transgender persons

Currently, the prevalence of transgender persons is 0.6% in adulthood. Evidence-based recommendations for cardiovascular risk prevention are lacking, as treatment regimens vary globally. Gender-affirming therapy, including sex hormones, enables a life in congruence with a personal gender identity, which significantly improves quality of life. Until recently, only VTE risk has been evaluated in transgender women (meaning persons assigned male at birth) undergoing oestrogen treatment. Other appearances of CVD have only been considered within the range of the cisgender population whose gender identity matches the sex that they were assigned at birth. Current evidence in the ageing transgender population suggests that both transgender men and transgender women are more at risk for various manifestations of CVD compared to others.

Transfeminine hormone therapy

In the late 1990s, reports showed an increase up to 20-fold in VTE with oral ethinyl oestradiol and this led to cessation of the use of this medication in this context. Since then, oestradiol has become the preferred oestrogen for the transfeminine treatment. The hyper-coagulable effect of oestrogen may be one of the mediators of the increased CVD risk in transgender women. Transdermal oestradiol is therefore preferred in transgender females over 40–50 years to avoid the increased risk of a prothrombotic state by oral intake. The VTE risk in transgender women, however, is different compared to cisgender women in whom this risk is mainly present in the first year of use and thereafter reduces over time. In contrast, VTE risk in transgender women increases over time, with a 2-year and 8-year risk of 4.1 (95% CI 1.6–6.7) and 16.7 (95% CI 6.4–27.5) per 1000 person-years, respectively, compared to the reference population of men 3.4 (95% CI 1.1–5.6) and women 13.7 (95% CI 4.1–22.7). Concomitant treatment of transgender women with androgen-lowering agents (e.g. spironolactone or cyproterone acetate) allows for administration of lower doses of exogenous oestrogen. Transgender women receiving hormonal therapy have no increased risk of MI but are at increased risk of stroke (127 per 100 000 person-years) and VTE (320 per 100 000 person-years). This is respectively 80% higher and 355% higher than in cisgender men. In addition, concomitant use of tobacco and other negative lifestyle factors in transgender persons are disproportionally present. Ischaemic stroke appears most pronounced after 6 years of continuous oestrogen use and continues to rise thereafter.

Cessation of cross-sex hormones is not an option for transgender persons. Therefore, they should always be encouraged to reduce modifiable lifestyle risks. The psychosocial benefits of hormone therapy with an improved body image may result in healthier lifestyle choices.

### Table: Female-specific risk factors and strategies for prevention

| Pregnancy Disorders | Menopause | Other endocrine and gynaecological conditions |
|----------------------|-----------|---------------------------------------------|
| Recurrent pregnancy loss | Central adiposity ↑ | Polycystic ovarian syndrome (PCOS) |
| Preterm delivery | Insulin resistance ↑ | Hypogonadotropic hypogonadism |
| Small-for-gestational-age | Pro-atherogenic lipid profile | Premature ovarian insufficiency (POI) |
| Hypertensive pregnancy disorders (HPD) | Autonomic dysfunction → heart rate variability ↑ | Endometriosis |
| Gestational diabetes mellitus (GDM) | Assess glucose, lipid levels and BP during menopause transition | Women with PCOS should have CV risk assessment: |
| Pregnancy in women at increased risk for IHD | Menopause may interfere with working ability → increased employer awareness | • Measurement of BP |
| | | • OGGTT |
| All women with GDM should have a screening OGTT test at 4–12 weeks postpartum, and repeated every 1–3 years | Healthy lifestyle and diet with regular exercise | • Fasting lipid profiles |
| Pregnancy history | MHT is indicated to alleviate menopausal symptoms. | Screening for GDM in pregnancy. |
| Treatment of women after HPD and GDM according to secondary prevention guidelines | In young women around the menopause MHT may offer cardioprotection | Dietary and lifestyle modifications should be discussed in women with PCOS |
| | MHT is not recommended in women at high CV risk and after a previous CVD event | • All women with POI below the age of 50 should be offered HRT |

Figure 1: Female-specific risk factors and strategies for prevention. BP, blood pressure; CVD, cardiovascular disease; GDM, gestational diabetes mellitus; HPD, hypertensive pregnancy disorders; IHD, ischaemic heart disease; MHT, menopausal hormone therapy; OGTT, oral glucose tolerance test; PCOS, polycystic ovarian syndrome; POI, premature ovarian insufficiency.
Transdermal oestrogens are preferred over oral treatment

Conflict of interest: AHEMM none; GR none; RC none; AC reports personal fees from Abbott, personal fees from Abiomed, personal fees from Cardinal Health, personal fees from Biosensor, personal fees from Magenta, outside the submitted work; DvD none; HH none; VK none; EL none; IL none; KM none; NP reports to have lectured and advised for pharma companies which produce MHT products. JCS reports grants and personal fees from Abbott, personal fees from Mitsubishi Tanabe, grants and personal fees from Mylan, grants and personal fees from Pfizer, personal fees from Bayer, personal fees from Gedeon Richter, outside the submitted work; MVt none; PC reports speaking honoraria from Menarini, outside the submitted work.

References
1. Morabia A, Costanza MC. International variability in ages at menarche, first live-birth, and menopause. World Health Organization Collaborative Study of Neoplasia and Steroid Contraceptives. Am J Epidemiol 1998;148:1195–1205.
2. Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev 2008;60:210–241.
3. Menazza S, Murphy E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ Res 2016;118:994–1007.
4. Turgeon JL, Carr MC, Mali PM, Mendelsohn ME, Wise PM. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: insights from basic science and clinical studies. Endocr Rev 2006;27:575–605.
5. Kovats S. Estrogen receptors regulate innate immune cells and signaling pathways. Cell Immunol 2015;294:63–69.
6. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol 2016;16:626–638.
7. Schenkert H, Danser AHJ, Hense H-W, Derix FHJ, KuiRinger S, Rieger GN, AJ. Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation 1997;95:39–45.
8. Yannes LL, Romero DG, Iliescu R, Zhang H, Davis D, Reckelhoff JF. Postmenopausal hypertension: role of the renin-angiotensin system. Hypertension 2010;56:393–396.
9. Hart EC. Chaskoudian N. Sympathetic neural regulation of blood pressure: influences of sex and aging. Physiology (Bethesda) 2014;29:8–15.
10. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:1223–1249.
11. Collins P, Rosano G, Casey C, Daly C, Gardiner R, Hadji P, Kaaja R, Mikkola T, Sondergaard MM, Hlatky MA, Sttarckik ML, Vittinghoff E, Nah G, Allison M, Gimmir A, Van Horn L, Park K, Salmoingra-Blotcher E, Safi M, Sealy-Jeppen S, Shabah A, Van der Meer MG, van der Graaf Y, Schuit E, Peelen LM, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Richter R, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dts I, Vweiseher WMM, Benso E, Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37:2315–2381.
12. Cuznecov-Achimica M, Fedeli U, Sattar N, Agemeng C, Jenun AK, McEvoy JW, Murphy JD, Brotons C, Eloua N, Bilal U, Kanaya AM, Kandula NR, Martinez-Amezcu A, Comin-Colet J, Pinto X, Epidemiology, risk factors, and opportunities for prevention of cardiovascular disease in individuals of South Asian ethnicity living in Europe. Atherosclerosis 2019;286:105–113.
13. WHO CVD Risk Chart Working Group. World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob Health 2019;7:e1332–e1345.
14. Warkentin T, Torzanc N, Goud M, Torzanc A, Lettino M, Petersen SE, Mossialos E, Mazzoni B, Zanetta 1, Zuckl V, Belfrere JF, Huculeci R, Tavazzi L, Hindricks G, Bax J, Casadei B, Achenbach S, Wright L, Vardas P. European Society of Cardiology. European Society of Cardiology: cardiovascular disease statistics 2019. Eur Heart J 2020;41:12–85.
15. Horngberg MG, Zekata SM, Aragam K, Lirn K, Bhat DL, Scott NS, Pelosa GM, Natarajan P. Long-term cardiovascular risk in women with hypertension. J Am Coll Cardiol 2019;74:2743–2754.
16. Sondergaard MM, Hlatky MA, Sttarckik ML, Vittinghoff E, Nah G, Allison M, Gimmir A, Van Horn L, Park K, Salmoingra-Blotcher E, Safi M, Sealy-Jeppen S, Shabah A, Van der Meer MG, van der Graaf Y, Schuit E, Peelen LM, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Richter R, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dts I, Vweiseher WMM, Benso E, Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37:2315–2381.
16. van de Meer MG, van der Graaf Y, Schuit E, Peelen LM, Verschuren WM, Boer JM, Moons KG, Nathoe HM, Appelman T, van der Schouw Y. Added value of female-specific factors beyond traditional predictors for future cardiovascular disease. J Am Coll Cardiol 2016;67:2084–2086.
17. Parikh NL, Jeppson RP, Berger JS, Eaton CB, Kroenke CH, LeBlanc ES, Lewis CE, Loutcks EB, Parker DR, Rillamas-Sun E, Ryckman KK, Waring ME, Shenkin RS, Johnson KC, Edsedit-Bonamy AK, Allison MA, Howard BV. Reproductive risk factors and coronary heart disease in the Women’s Health Initiative Observational Study. Circulation 2016;133:2149–2158.
18. Chai J, Daskalogiopoulou SS, Thanasoulis G, Karp J, Pelletier R, Behoulj P, Hatile Y. GENESIS-PRAXY Investigators. Sex- and gender-related risk factor burden in patients with premature acute coronary syndrome. Can J Cardiol 2014;30:109–117.
19. Rise HRR, Sulo G, Tell GS, Ilyad J, Egeland G, Nygard O, Selmer R, Iversen AC, Dalvatt AK. Hypertensive pregnancy disorders increase the risk of maternal cardiovascular disease after adjustment for cardiovascular risk factors. Int J Cardiol 2019;282:81–87.
20. Horngberg MG, Zekata SM, Aragam K, Lirn K, Bhat DL, Scott NS, Pelosa GM, Natarajan P. Long-term cardiovascular risk in women with hypertension. J Am Coll Cardiol 2019;74:2743–2754.
21. Sondergaard MM, Hlatky MA, Sttarckik ML, Vittinghoff E, Nah G, Allison M, Gimmir A, Van Horn L, Park K, Salmoingra-Blotcher E, Safi M, Sealy-Jeppen S, Shabah A, Van der Meer MG, van der Graaf Y, Schuit E, Peelen LM, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter R, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dts I, Vweiseher WMM, Benso E, Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 2016;37:2315–2381.
22. Cuznecov-Achimica M, Fedeli U, Sattar N, Agemeng C, Jenun AK, McEvoy JW, Murphy JD, Brotons C, Eloua N, Bilal U, Kanaya AM, Kandula NR, Martinez-Amezcu A, Comin-Colet J, Pinto X, Epidemiology, risk factors, and opportunities for prevention of cardiovascular disease in individuals of South Asian ethnicity living in Europe. Atherosclerosis 2019;286:105–113.

VTE risk in transgender women increases over time.

Transdermal oestrogens are preferred over oral treatment.

Practice points

- Transgender persons are at increased risk for CVD.
- Transdermal oestrogens are preferred over oral treatment.
- Transdermal oestrogens are preferred over oral treatment.
- Transdermal oestrogens are preferred over oral treatment.
32. Adlam D, Alfarone F, Maas A, Vrints C, Al-Hussaini A, Bueno H, Capranzano P, Gevaert S, Hoole SP, Johnson T, Lettieri C, Maeder MT, Motreff P, Ong P, Persu A, Rickli H, Schiele F, Sheppard MN, Swahn E, Writing Committee. European Society of Cardiology, acute cardiovascular care association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2020;41:3385–3418.

33. Collet JP, Thielle H, Barbato E, Barthelmy O, Bauersachs J, Bhatt DL, Dendale P, Dorobantu M, Edwardsen T, Folliguet T, Gale CP, Gilard M, Jobs A, Juni P, Lambriñou E, Lewis BS, Mehlli J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten FH, Sibbing D, Siontis GCP; ESC Scientific Document Group. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J. 2020; doi: 10.1093/eurheartj/ehaa575.

34. Ghadri J-R, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, Cammann VL, Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Johnston N, Schenck-Gustafsson K, Lagerqvist B. Are we using cardiovascular composition and burden detected in symptomatic patients referred for coronary angiography, and are we using cardiovascular composition and burden detected in asymptomatic patients referred for coronary angiography appropriately in men and women with chest pain? Eur Heart J. 2011;32:1331–1336.

35. Konst AE, Elias-Smale AE, Lier A, Bode C, Maas AH. Different cardiovascular risk factors and psychosocial burden in symptomatic women with and without obstructive coronary artery disease. Eur J Prev Cardiol. 2019;26:657–659.

36. Vaccarino V, Sullivan S, Hammad M, Wilkint K, Al Mheid I, Ramadan R, Eilon L, Pimpel PM, Garcia EV, Nye J, Shah AJ, Alkohder A, Levantseyvych O, Gay H, Obideem M, Huang M, Lewis TT, Bremner JD, Quyyumi AA, Rapc P. Mental stress-induced myocardial ischemia in young patients with recent myocardial infarction: sex differences and mechanisms. Circulation. 2018;137:794–805.

37. Johnston N, Schenck-Gustafsson K, Lagerqvist B. Are we using cardiovascular medications and coronary angiography appropriately in men and women with chest pain? Eur Heart J. 2011;32:1331–1336.

38. Han SH, Bae JH, Holmes DR Jr, Lennon RJ, Eckehout E, Bariness GW, Riha JS, Lerman A. Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis. Eur J Heart Fail. 2008;10:1339–1369.

39. Shah LJ, Min JK, Nasir K, Al-Mallah MH. Gender differences in coronary plaque composition and burden detected in symptomatic patients referred for coronary computed tomographic angiography. Int J Cardiovasc Imaging. 2013;29:643–669.

40. Sivorin RR, Sampson BA, Abrecht CR, Siegfried JS, Hochman JS, Reynolds HR. Women have less severe and extensive coronary atherosclerosis in fatal cases of ischemic heart disease: an autopsy study. Am Heart J. 2011;161:681–688.

41. Frink RJ. Gender gap, inflammation and acute coronary disease: are women resistant to atheroma growth? Observations at autopsy. J Invasive Cardiol. 2009;21:270–277.

42. Han SH, Bae JH, Holmes DR Jr, Lennon RJ, Eckehout E, Bariness GW, Riha JS, Lerman A. Sex differences in atheroma burden and endothelial function in patients with early coronary atherosclerosis. Eur J Heart Fail. 2008;10:1339–1369.

43. Sharaf B, Wood T, Shaw L, Johnson BD, Kelsey S, Anderson RD, Pepine CJ, Bairey Merz CN, Pepine CJ, Mintz GS, Mintz GS. Sex differences in cardiovascular disease and long-term prognosis. Circulation. 2018;139:3722–3735.

44. Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG, Crea F, Kaski JC, Bairey Merz CN, Pepine CJ, Shiomikawa H, Berry C. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv. 2020;13:1847–1864.

45. Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, Duncker DJ, Fabbri M, Tanotani G, Rinaldi C, Y-Hassan S, Migliore F, Horowitz JD, Shimokawa H, Lüscher TF, Templin C. International Expert Consensus Document on Takotsubo Syndrome (Part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J. 2018;39:2032–2046.

46. Moller C, Stermaier T, Brabant G, Graf T, Thiele H, Lerman I. Comprehensive assessment of sex hormones in Takotsubo syndrome. Int J Cardiol. 2020;280:11–15.

47. Reynolds HR, Shaw LJ, Mankad S, Pepine CJ, Reis SE, Rogers WJ, Shafir BL, Sopko G, Wise Study Group. Hypertension, menopause, and coronary artery disease risk in the Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2020;75:550–558.

48. Moreau KL, Hildreth KL, Meditz AL, Deane KD, Kohrt WM. Endothelial function is impaired across the stages of the menopause transition in healthy women. J Clin Endocrinol Metab. 2012;97:4692–4700.

49. Bechlioulis AP, KalantariZad S, Nak K, ZhiantiNakdi A, Calis KA, Makriniannis A, Papankouloou K, Kaponis A, Katsouras C, Georgiou I, Chrousos GP, Michalis LK. Endothelial function, but not carotid intima-media thickness, is affected early in menopause and is associated with severity of hot flushes. J Clin Endocrinol Metab. 2010;95:1199–1206.

50. Robinson JG, Wallace R, Limacher M, Ren H, Cochrane B, Wassel-Theriol-Smoller S, Ockene J, Blanchette PL, Ko MG. Cardiovascular risk in women with non-specific chest pain (from the Women’s Health Initiative Hormone Trials). Am J Obstet Gynecol. 2008;199:639–649.

51. Gulati M, Cooper-Dahlhoff RM, McClure C, Johnson BD, Shaw LJ, Handberg EM, Zineh I, Kelsey SF, Amsdorf MF, Black HR, Pepine CJ, Merz CN. Adverse cardiovascular outcomes in women with nonobstructive coronary artery disease: a report from the Women’s Ischemia Syndrome Evaluation Study and the St James Women Take Heart Project. Arch Intern Med. 2009;169:843–850.

52. Leeners B, Geary N, Tolbler PN, Asanian L. Ovarian hormones and obesity. Hum Reprod Update. 2017;23:300–321.

53. Stefanik A, Bergmann K, Sypiewska G. Metabolic syndrome and menopause: pathophysiology, clinical and diagnostic significance. Adv Clin Chem. 2015;72:71–75.

54. Mavains-Jarvis F, Manse J, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: evidence, mechanisms, and clinical implications. Endocr Rev. 2017;38:173–188.

55. Hulley SJ, Khoramad M, Isaki N, Karamad Z, Almas-Hashani A, Ayubi E, Qorbani M, Parkad R, Hasanzadeh A, Sullman MJM, Safiri S. Metabolic syndrome and its components in premenopausal and postmenopausal women: a comprehensive systematic review and meta-analysis on observational studies. Menopause. 2018;25:1155–1164.

56. Choo Y, Chang Y, Kim BK, Kang D, Kwon MJ, Kim CW, Jeong C, Ahn Y, Park HY, Ryu S, Cho J. Menopausal stages and serum lipid and lipoprotein abnormalities in middle-aged women. Menopause. 2015;20:399–405.

57. Bairey Merz CN, Handberg EM, Shufelt CL, Mehta PK, Minnissan MBI, Wei J, Thomson LE, Berman DS, Shaw LJ, Petersen JW, Brown GH, Anderson RD, Shuster JJ. Cook-Wiens G, Ragotis A, Pepine CJ, A randomized, placebo-controlled trial of late Na current inhibition (ranalozine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37:1504–1513.

58. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;34:509–515.

59. Anagnostis P, Theocharis P, Lallas K, Konstantis G, Stavrakas G, Boudou J, Lambinoudaki I, Stevenson JC, Goulos DG. Early menopause is associated with increased risk of arterial hypertension: a systematic review and meta-analysis. Menopause. 2020;27:773–787.

60. Reckelhoff JF. Sex steroids, cardiovascular disease, and hypertension: unanswered questions and some speculations. Hypertenston. 2005;45:170–174.
70. Coyelevright M, Rockelhoff JF, Ouyang P. Menopause and hypertension: an age-old debate. Hypertension 2008;51:952–959.
71. Cutler JA, Sorel PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-1994 and 1999-2004. Hypertension 2003;40:818–827.
72. Hage FG, Mansur SJ, Xing D, Oparil S. Hypertension in women. Kidney Int Suppl (2013) 2013;333:S224–S229.
73. Leung AA, Williams JVA, McAlister FA, Campbell NRC, Padwal RS, Tran K, Tsuyuki R, McAlister FA, Campbell NRC, Khan N, Padwal R, Quan H, Leung AA. Hypertension Canada’s Research and Evaluation Committee. Worsening hypertension awareness, treatment, and control rates in Canadian women between 2007 and 2017. J Cardiol 2020;63:732–739.
74. Burt VL, Cutler JA, Higgins M, Horan M, Labarde B, Whelton P, Brown C, Roccella EJ. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension 1995;26:60–69.
75. Wassenhove-Smoller S, Anderson G, Piate BM, Black HR, Manson J, Wong N, Francis J, Grimm R, Kotchen T, Ringer L, Lasser N. Hypertension and its treatment in postmenopausal women: baseline data from the Women’s Health Initiative. Hypertension 2000;36:780–789.
76. Jackson EA, El Khoury SR, Crawford SL, Matthews K, Joffe H, Chae C, Thurstom RC. Hot flash frequency and blood pressure: data from the Study of Women’s Health Across the Nation. J Women’s Health (Larchmt) 2016;25:1204–1209.
77. Pecher-Kertschi A, Burnier M. Gonadal steroids, salt-sensitivity and renal function. Curr Opin Nephrol Hypertens 2007;16:16–21.
78. Tomnaga T, Suzuki H, Ogata Y, Matsukawa S, Saruta T. The role of sex hormones and sodium intake in postmenopausal hypertension. J Hum Hypertens 1999;13:495–500.
79. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, Cheng S. Differences in blood pressure trajectories over the life course. JAMA Cardiol 2020;5:19–26.
80. Pechere-Bertschi A, Burnier M. Gonadal steroids, salt-sensitivity and renal function. Curr Opin Nephrol Hypertens 2007;16:16–21.
81. Ji H, Kim A, Ebinger JE, Niiranen TJ, Claggett BL, Bairey Merz CN, Cheng S. Differences in blood pressure trajectories over the life course. JAMA Cardiol 2020;5:19–26.
82. Pecher-Kertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation. Am J Hypertens 2004;17:994–1001.
83. Manca G. Blood pressure control in the hypertensive population. Is the trend favourable? J Hypertens 2013;31:1094–1095.
84. Dost J, Arnold LJ, Vormnann VJ, de Boer MJ, van Eyk J, van der Schouw YT. Maas AH. Cardiovascular risk factors in women 10 years post early epeelcsia: the Preeclampsia Risk Evaluation in FEMales study (PREVFEM). Eur J Prev Cardiol 2012;19:1138–1144.
85. Regnault V, Thomas F, Safar ME, Osborne-Pellegrin M, Khalil RA, Pannier B, Safar ME. Cardiovascular disease in patients with chronic inflammation: the Preeclampsia Risk Evaluation in Females study (PREVFEM). Eur J Prev Cardiol 2012;19:1138–1144.
86. Peipe C, Merz CNB, El Hajj S, Ferdinand KC, Hamilton MA, Lindley KJ, Nelson MD, Quesada O, Wenger NK, Fleg JL. Heart failure with preserved ejection fraction: similarities and differences between women and men. J Cardiol 2020;304:101–108.
87. Fairweather D. Sex differences in inflammation during atherosclerosis. Clin Med Insights Cardiol 2014;8:49–59.
88. Regitz-Zagrosek V, Brokat S, Tschope C. Role of gender in heart failure. Circulation 2007;116:254–262.
89. de Villiers Tj, Pines A, Paray N, Gambacciani M, Archer D, Baber RJ, Davis SR, Gompel AA, Henderson WV, Langer R, Lobo RA, Pichler Stue; Rees M. Endovascular treatment for midlife conditions. Clin Curr 2013;16:316–337.
90. Aronni E, Lambrino-Idaki I, Caissi I, Deppphie H, Mueck A, Perez-Lopez FR, Schouw YT, Senturk LM, Simoncini T, Stevenson JC, Stute P, Rees M. Assessing postmenopausal risk: a pathway from the European Menopause and Andropause Society (EMAS). Maturitas 2016;89:63–72.
91. Lumsden MA, Davies M, Sarri G. Guideline Development Group for Menopause: Diagnosis and Management (NICE Clinical Guideline No. 23). Diagnosis and Management of Menopause: the National Institute of Health and Care Excellence (NICE) guideline. JAMA Intern Med 2016;176:1205–1206.
92. Neves ECM, Birkerhäuser M, Samsoe G, Lambrinouidi K, Palacios S, Borrego RS, Llaneza P, Caissi I, Deppphie H, Erel CT, Perez-Lopez FR, Schenck-Gustafson K, van der Schouw YT, Simoncini T, Tormolleziers F, Rees M. EMAS position statement: the ten point guide to the integral management of menopause. Maturitas 2015;81:88–92.
93. Bein E, Hammar M, Lindblom H, Lind-Åström L, Ruber M, Spetz Holm-A. Resistance training for hot flushes in postmenopausal women: a randomised controlled trial. Maturitas 2019;126:55–60.
94. Riegler J, Meikl A, Haufe S, Baethgen D, Berliner K, Kerling A, Kueck M, Sterner H, Bara C, Stiesch M, Schipper H, Falk C, Baurachsa J, Thurn T, Lichtinghagen R, Hilfiker-Kleiner D, Teglborg L. Effects of personalized endurance training on cellular age and vascular function in middle-aged sedentary women. Eur J Prev Cardiol 2019;26:1903–1906.
95. Maki PM, Karnstein SG, Joffe H, Birkerhäuser JT, Freeman EW, Ahsapilay G, Bobo WV, Rubin LH, Koleva HK, Cohen LS, Soares CN; on behalf of the Board of Trustees for The North American Menopause Society (NAMS) and the Women and Mood Disorders Task Force of the National Network of Depression Centers. Guidelines for the evaluation and treatment of perimenopausal depression: summary and recommendations. J Women’s Health (Larchmt) 2019;28:117–134.
96. Geukes M, van Aalst MP, Robroek SJ, Laven JS, Oosterhof H. The impact of menopause on work ability in women with severe menopausal symptoms. Maturitas 2016;93:3–10.
97. Griffiths A, Caissi I, Deppphie H, Lambrinouidi K, Mueck A, Perez-Lopez FR, van der Schouw YT, Senturk LM, Simoncini T, Stevenson JC, Stute P, Rees M. EMAS recommendations for conditions in the workplace for menopausal women. Maturitas 2016;85:79–81.
98. van der Schouw YT, Grobbee DE. Menopausal complaints, oestrogen, and heart disease risk: an explanation for discrepant findings on the benefits of post-menopausal hormone therapy. Eur J Heart 2009;30:1358–1361.
99. van der Schouw YT, Grobbee DE, van Gent CJ, Meeuwsen H, van der Schouw YT. Menopausal complaints are associated with cardiovascular risk factors. Hypertension 2008;51:1492–1498.
100. van der Schouw YT, Grobbee DE, van Gent CJ, van der Schouw YT. Menopausal complaints are associated with cardiovascular risk factors. Hypertension 2008;51:1492–1498.
116. Colleen AC, Manheim K, Svendsdottir YB. Sympathetic nerve activity in women 40 years after a hypertensive pregnancy. J Hypertens 2012;30:1203–1210.

117. Drost JT, van der Schouw YT, Herber-Gast GC, Maas AH. More vasomotor symptoms in menopause among women with a history of hypertensive pregnancy diseases compared with women with normotensive pregnancies. Menopause 2012;19:1011–1018.

118. Gray KE, Kato JG, LeBlanc ES, Woods NF, Bastian LA, Reiber GE, Wiltfang J, Nelson KM, LaCroix AZ. Vasomotor symptom characteristics: are they risk factors for incident diabetes? Menopause 2018;25:520–530.

119. Thurston RC, Chang Y, Barinas-Mitchell E, Jennings JR, von Kanel R, Landsittel D, Matthews KA. Physiologically assessed hot flashes and endothelial function among middle-aged women. Menopause 2018;25:1334–1341.

120. Biglia N, Cagnacci A, Gambacciani M, Lello S, Maffei S, Nappi RE. Vasomotor symptoms in menopause: a biomarker of cardiovascular disease risk and other chronic diseases? Climacteric 2017;20:306–312.

121. Thurston RC, Sutton-Tyrrell K, Erson-Rose SA, Hess R, Matthews KA. Hot flashes and subclinical cardiovascular disease: findings from the Study of Women’s Health Across the Nation Heart Study. Circulation 2006;118:1234–1240.

122. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson JD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene JK; Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from The Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321–333.

123. Manson JE, Hu S, Johnson KC, Rossouw JE, Assaf AR, Lasser NL, Trevisan M, Black HR, Heckbert SR, Detrano R, Strickland OL, Wong ND, Grouse JR, Stein E, Cushman M; Women’s Health Initiative Investigators. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003;349:532–543.

124. Manson JE, Chlebowski R, Anderson GL, Prentice RL, Rossouw JE, Kenny K, Anderson B; Collaborative Group on Hormonal Factors in Breast Cancer. Type and timing of hormone replacement therapy and breast cancer risk. JAMA 2003;289:384–397.

125. Anderson GL, Lammi M, Assaf AR, Bassford T, Beresford SA, Black H, Bonds D, Brunnert R, Bryzki R, Caan B, Chlebowski R, Curb D, Daling JR, Dyer A, Gann PH, Hsia J, Jordan KM, Kotchen JM, LaCroix AZ, Larson LD, Lasser R, Lavin P, Le Marchand L, Lew MC, Lin Y, Loh M, Lipsitz SR, Liu S, Lubitz SA, Marshall JR, McClelland RS, Mora S, O’Connor BM, Osmond DH, Parkin DM, Pischon T, Polk BE, Potter JD, Prentice RL, Reynolds K, Rossouw JE, Sacks F, Sarto G, Simonsen A, Stampfer MJ, Trichopoulos D, Tseng CH, Van Den Berg H, Wactawski-Wende J, Wilt TJ; Women’s Health Initiative Steering Committee. Effects of conjugated estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 2004;291:1701–1712.

126. Salpeter SR, Walsh JH, Greyber E, Salpeter EE. Brief report: coronary heart disease events associated with hormone therapy in younger and older women. A meta-analysis. J Gen Intern Med 2006;21:363–366.

127. Lokegaard E, Andreasen AH, Jacobsen RK, Nielsen LH, Agger C, Lidegaard O. Women with breast cancer in early menopause: a population based study. Breast Cancer Res Treat 2016;157:1159–1168.

128. Beral V; Million Women Study Collaborators. Breast cancer and hormone replacement therapy in the Million Women Study. Lancet 2003;362:419–427.

129. Stevenson JC, Farmer RDT; HRT and breast cancer: a million women ride again. Climacteric 2020;23:226–223.

130. Fournier A, Berino F, Clavel-Chapelon F. Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res Treat 2007;107:103–111.

131. Stute P, Wildt L, Neulen J. The impact of micronized progesterone on breast cancer risk: a systematic review. Climacteric 2018;21:111–122.

132. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: systematic review and meta-analysis. BMJ 2008;336:1227–1231.

133. Stuenkel CA, Duvvuri S, Goyal A, Lumsden MA, Murad MH, Pinkerton JV, Santen RJ. Treatment of symptoms of the menopause: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2015;100:3975–4011.

134. Rocca WA, Grossman BR, Shuster LT. Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Br J Nutr 2011;107:188–198.

135. Rivera CM, Grossman BR, Rhodes DJ, Brown RD Jr, Roger VL, Melton L Jr, Rocca WA. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause 2009;16:15–23.

136. Christ JP, Gunnin MN, Palla G, Eijkemans MJC, Lambalk CB, Laven JSE, Fauser BCJM; European Mollee network group. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016;31:926–937.

137. Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Mereu M; Guideline on POI. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016;31:926–937.

138. Stevenson JC, Farmer RDT. HRT and breast cancer: a million women ride again. Climacteric 2020;23:226–223.

139. Fournier A, Berino F, Clavel-Chapelon F. Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res Treat 2007;107:103–111.

140. Stute P, Wildt L, Neulen J. The impact of micronized progesterone on breast cancer risk: a systematic review. Climacteric 2018;21:111–122.

141. Canonico M, Plu-Bureau G, Lowe GD, Scarabin PY. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: systematic review and meta-analysis. BMJ 2008;336:1227–1231.

142. Stuenkel CA, Duvvuri S, Goyal A, Lumsden MA, Murad MH, Pinkerton JV, Santen RJ. Treatment of symptoms of the menopause: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2015;100:3975–4011.

143. Rocca WA, Grossman BR, Shuster LT. Oophorectomy, menopause, estrogen treatment, and cognitive aging: clinical evidence for a window of opportunity. Br J Nutr 2011;107:188–198.

144. Rivera CM, Grossman BR, Rhodes DJ, Brown RD Jr, Roger VL, Melton L Jr, Rocca WA. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause 2009;16:15–23.

145. Christ JP, Gunnin MN, Palla G, Eijkemans MJC, Lambalk CB, Laven JSE, Fauser BCJM; European Mollee network group. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016;31:926–937.

146. Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Mereu M; Guideline on POI. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016;31:926–937.

147. Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Marchetti C, De Felice F, Sassi C, Di Donato V, Perniola G, Palaia I, Pali A, Mereu M; Guideline on POI. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod 2016;31:926–937.

148. Stevenson JC, Farmer RDT. HRT and breast cancer: a million women ride again. Climacteric 2020;23:226–223.

149. Fournier A, Berino F, Clavel-Chapelon F. Unequal risks for breast cancer associated with different hormone replacement therapies: results from the E3N cohort study. Breast Cancer Res Treat 2007;107:103–111.

150. Stute P, Wildt L, Neulen J. The impact of micronized progesterone on breast cancer risk: a systematic review. Climacteric 2018;21:111–122.
angiography in 45- to 55-year-old women with a history of preeclampsia. Circulation 2018;137:877–879.

194. Basi S, Wohlfahrt J, Boyd HA. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. BMJ 2018;363:k3409.

195. Haug EB, Horn J, Markovitz AR, Fraser A, Klykken B, Dahlen H, Vatten LJ, Romundstad PR, Rich-Edwards JW, Asvold BO. Association of conventional cardiovascular risk factors with cardiovascular disease after hypertensive disorders of pregnancy: analysis of the Nord-Trondelag Health Study. JAMA Cardiol 2019;4:628–635.

196. Lykke JA, Langhoff-Roos J, Siibai BM, Funai EF, Triche EW, Paidas MJ. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity among 20,000 women in the mother: Hypertension 2009;53:944–951.

197. Cifkova R. Cardiovascular sequelae of hypertension in pregnancy. J Am Heart Assoc 2018;7:e009300.

198. Smith GN, Louis JM, Saade GR. Pregnancy and the postpartum period as an opportunity for cardiovascular risk identification and management. Obstet Gynecol 2019;134:851–862.

199. Williams B, Manica G, Spiering W, Agabiti Rossi E, Azziz M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfood F, Redon J, Ruijlope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus N, Narkiewicz K, Ritschshutz F, Schneider RE, Shilyakto E, Tsicouls C, Abayans V, Desormais I. ESC Scientific Document Group. 2018 ESC/EAS Guidelines for the management of arterial hypertension. Eur Heart J 2018;39:200–253.

200. Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 201. Buchanan TA, Xiang AH, Page KA. Gestational diabetes mellitus: risks and management during and after pregnancy. Nat Rev Endocrinol 2012;8:639–649.

201. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 2019;62:905–914.

202. American Diabetes Association. 16. Diabetes Advocacy: standards of Medical Care in Diabetes-2019. Diabetes Care 2020;43(Suppl 1):S203–S204.

203. Callaghan WM, Creanga AA, Kuklina EV. Severe maternal morbidity among deliveries and postpartum hospitalizations in the United States. Obstet Gynecol 2012;120:1029–1036.

204. Frymowicz J, Adamson DL. Heart disease in pregnancy: ischaemic heart disease. Best Pract Res Clin Obstet Gynaecol 2014;28:551–562.

205. Ramlakan KP, Johnson MR, Roos-Hessink J.W. Pregnancy and cardiovascular disease. Nat Rev Cardiol 2020;17:718–731.

206. Arnaut R, Nah G, Marcus G, Tseng Z, Foster E, Harris IS, Divanji P, Klein L, Koster W, Kruit M, Lagerweij G, Linstra K, van der Lugt A, Maas A, Maassen van den Brink A, Middeldorp S, Moons KG, van Rijn B, Scheres L, van der Schouw YT, Steegers E, Steegers R, Terwindt G, Veltbuis H, Wemmer M, Zick B, Zoet G, on behalf of the CREW consortium. The cardiovascular risk profile of middle-aged women with polycystic ovarian syndrome. Clin Endocrinol (Oxf) 2020;92:150–158.

207. de Groot PC, Dekkers OM, Romijn JA, Dieben SW, Helmerhorst FM. PCOS, coronary heart disease, stroke and the influence of obesity: a systematic review and meta-analysis. Hum Reprod Update 2018;24:468–469.

208. Zhao L, Zhu Z, Lou H, Zhu G, Huang W, Zhang S, Liu F. Polycystic ovary syndrome (PCOS) and the risk of coronary heart disease (CHD): a meta-analysis. Oncotarget 2016;7:33715–33721.

209. Costello MF, Misso ML, Balen A, Boyle J, Devoto L, Garad RM, Hart R, Klein L, Jordan C, Legro RS, Norman RJ, Mooreau E, Qiao J, Rodgers RJ, Rombauts L, Tassone EC, Thangaratinam S, Vanky E, Teede HJ. International PCOS Network. Evidence summaries and recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome: assessment and treatment of infertility. Hum Reprod Open 2019;2019:hyo021.

210. Rameznai Tehrani F, Amiri M, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Cardiovascular events among reproductive and menopausal age women with polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol 2020;36:12–23.

211. Minoeoe S, Rameznai Tehrani F, Rahmati M, Mansoumnia MA, Aziiz F. Prediction of age at menopause in women with polycystic ovary syndrome. Climacteric 2018;21:29–34.

212. Khatibi A, Ageard CD, Shakir YA, Nerbrand C, Nyberg P, Lidfeldt J, Samsoe G. Could androgens protect middle-aged women from cardiovascular events? A population-based study of Swedish women: the Women’s Health in the Lund Area (WHLA) Study. Clinomet 2007;10:386–392.

213. Carmina E, Fruzziatti F, Lobo RA. Features of polycystic ovary syndrome (PCOS) in women with functional hypothalamic amenorrhoea (FHA) may be reversible with recovery of menstrual function. Gynecol Endocrinol 2018;34:301–304.

214. Li J, Eriksson M, Czene K, Hall P, Rodgers-Willberg KA. Common diseases as predictors of menopausal age. Hum Reprod 2019;34:2836–2846.

215. Legro RS, Arslanian SA, Ehrmann DA, Hoeger-KM, Murad MH, Pasquale R, Welt CK, Endocrine S. Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2013;98:4565–4592.

216. Tan J, Taskin O, Lewis M, Lee AJ, Kan A, Rowe T, Bediawiy MA. Atherosclerotic cardiovascular disease in women with endometriosis: a systematic review of risk factors and prospects for early surveillance. Reprod Biol Online 2019;39:1007–1016.
282. Arcelus J, Bouman WP, Van Den Noortgate W, Claes L, Witcomb G, Fernandez-Aranda F. Systematic review and meta-analysis of prevalence studies in transsexualism. Eur Psychiatry 2015;30:807–815.

283. Kuyper L, Wijnen C. Gender identities and gender dysphoria in the Netherlands. Arch Sex Behav 2014;43:377–385.

284. Hembree WC, Cohen-Kettenis PT, Gooren L, Hannema SE, Meyer WJ, Murad MH, Rosenthal SM, Safer JD, Tangpricha V, T’Sjoen GG. Endocrine treatment of gender-dysphoric/gender-incongruent persons: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2017;102:3869–3903.

285. Safer JD, Tangpricha V. Care of transgender persons. N Engl J Med 2019;381:2451–2460.

286. Asscheman H, Giltay EJ, Megens JA, de Ronde WP, van Trotsenburg MA, Gooren LA. Long-term follow-up study of mortality in transsexuals receiving treatment with cross-sex hormones. Eur J Endocrinol 2011;164:635–642.

287. Asscheman H, Gooren Lj, Eklund P. Mortality and morbidity in transsexual patients with cross-sex hormone treatment. Metabolism 1989;38:869–873.

288. van Kesteren PJ, Asscheman H, Megens JA, Gooren LJ. Mortality and morbidity in transsexual subjects treated with cross-sex hormones. Clin Endocrinol (Oxf) 1997;47:337–342.

289. Wierckx K, Mueller S, Weyers S, Van Caenegem E, Roef G, Heylens G, T’Sjoen G. Long-term evaluation of cross-sex hormone treatment in transsexual persons. J Sex Med 2012;9:2641–2651.

290. Onasanya O, Iyer G, Lucas E, Lin D, Singh S, Alexander GC. Association between exogenous testosterone and cardiovascular events: an overview of systematic reviews. Lancet Diabetes Endocrinol 2016;4:943–956.

291. Martinez C, Suissa S, Rietbrock S, Katholing A, Freedman B, Cohen AT, Handelsman DJ. Testosterone treatment and risk of venous thromboembolism: population-based case-control study. BMJ 2016;355:i5968.

292. Xu L, Freeman G, Cowling BJ, Schooling CM. Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Med 2013;11:108.

293. Nota NM, Wiegjes CM, de Blok CJM, Gooren LJG, Kreukels BPC, den Heijer M. Occurrence of acute cardiovascular events in transgender individuals receiving hormone therapy. Circulation 2019;139:1461–1462.

294. Getahun D, Nash R, Flanders WD, Baird TC, Becerra-Culqui TA, Cromwell L, Hunkeler E, Lash TL, Milliman A, Quinn VP, Robinson B, Robin D, Silverberg MJ, Safer J, Slavis J, Tangpricha V, Goodman M. Cross-sex hormones and acute cardiovascular events in transgender persons: a cohort study. Ann Intern Med 2018;169:205–213.

295. Renoux C, Dell’aniello S, Garbe E, Suissa S. Transdermal and oral hormone replacement therapy and the risk of stroke: a nested case-control study. BMJ 2010;340:c2519.

296. Olie V, Canonico M, Scarabin PY. Risk of venous thrombosis with oral versus transdermal estrogen therapy among postmenopausal women. Curr Opin Hematol 2010;17:457–463.

297. Moore E, Wisniewski A, Dobs A. Endocrine treatment of transsexual people: a review of treatment regimens, outcomes, and adverse effects. J Clin Endocrinol Metab 2003;88:3467–3473.

298. LaHue SC, Torres D, Rosendale N, Singh V. Stroke characteristics, risk factors, and outcomes in transgender adults: a case series. Neurologist 2019;24:66–70.