A numerical study on the effect of CO₂ addition for methane explosion reaction kinetics in confined space

Jingyan Wang¹,²,³, Yuntao Liang²,³*, Fuchao Tian²,³ & Chengfeng Chen¹,²,³

To explore the influence of the CO₂ volume fraction on methane explosion in confined space over wide equivalent ratios, the explosion temperature, the explosion pressure, the concentration of the important free radicals, and the concentration of the catastrophic gas generated after the explosion in confined space were studied. Meanwhile, the elementary reaction steps dominating the gas explosion were identified through the sensitivity analysis. With the increase of the CO₂ volume fraction, the explosion time prolongs, and the explosion pressure and temperature decrease monotonously. Moreover, the concentrations of the investigated free radicals also decrease as the increase of the CO₂ volume fraction. For the catastrophic gas, the concentration of the gas product CO increases and the concentrations of CO₂, NO, and NO₂ decrease as the volume fraction of CO₂ increases. When 7% methane is added with 10% CO₂, the increase rate of CO is 76%, and the decrease rates of CO₂, NO, and NO₂ are 27%, 37%, and 39%, respectively. If the volume fraction of CO₂ is constant, the larger the volume fraction of methane in the blend gas, the greater the mole fraction of radical H and the lower the mole fraction of radical O. For radical OH, its mole fraction first increases, and then decreases with the location of peak value of 9.5%, while the CO concentration increases with the increase of the methane concentration. For all the investigated volume fraction of methane, the addition of CO₂ reduces the sensitivity coefficients of each key elementary reaction step, and the sensitivity coefficient of reaction promoting methane consumption decreases faster than that of the reaction inhibit methane consumption, which indicates that the addition of CO₂ effectively suppresses the methane explosion.

Mine gas explosion accidents are one of the biggest factors, which endangers the safe production in coal mines. These accidents cause serious economic losses and casualties¹. In recent years, with the continuous increase in coal production, the gas explosion accidents have occurred frequently²,³.

To prevent the occurrence of gas explosions, many relevant researches had been conducted in the field of inert gas explosion suppression. In terms of the explosion suppression experiments, Lu et al. designed a device that can automatically eject nitrogen during the explosion process. The effects of injection pressure, injection timing, and nozzle arrangement on the explosion suppression function were studied. The results showed that successful explosion suppression can be achieved when the nitrogen pressure reaches or exceeds 0.3 MPa⁴,⁵. Cao et al. studied the suppression effect of ultrafine mist on methane/air explosions. With the increase of ultrafine water/NaCl solution mist, the flame propagation speed, the maximum explosion overpressure, and the maximum pressure rising rate descended⁶–⁸. Based on the eddy dissipation concept combustion model, Wang et al. studied the mechanism and effect of ultrasonic water mist on suppressing gas explosion through experiments and EDC(Eddy-Dissipation Concept) combustion model⁹. Liang et al. investigated the influence of the nitrogen fraction in the blend of on the unstretched laminar flame propagation velocity, unstretched laminar combustion velocity, Markstein length, flame stability, and maximum combustion pressure. It was found that above parameters decrease distinctly with the increase of nitrogen fraction in the gas mixture¹⁰. Qian et al. obtained a fitting formula through experiments under different conditions, which can predict the explosion limit of methane at

¹China Coal Research Institute, Beijing 100020, China. ²State Key Laboratory of Coal Mine Safety Technology, China Coal Technology and Engineering Group Shenyang Research Institute, Fushun 113122, China. ³College of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing 100080, China. *email: liangyuntao@syccri.com
any ratio of N₂ to CO₂. They reported that the limit oxygen volume fraction decreases linearly with the increase in N₂ content in the mixture. Furthermore, some researches had been carried out to research the inhibition effect of N₂, CO₂, and N₂/CO₂ mixture on gas explosion, it was found that both N₂ and CO₂ can inhibit the gas explosion, and the inhibition effect on high concentration gas is better. At the same time, the higher the volume fraction of CO₂ in the mixed gas, the better the inhibition effect. The above researches show that the inert gas can inhibit the explosion, to deeply understand the behavior, many simulation works are performed.

Luo et al. used the (DFT) B3LYP/6-31G methods of density functional theory and the GRI-Mech 3.0 to analyze the related elementary reactions. The results indicated that the NH₂ could achieve explosion suppression by competing the free radicals H and OH, and the reactant of O₂ with CH₄. Li et al. indicated that the N₂, CO₂, and H₂O reduced the sensitivity of the elementary reaction steps dominating the gas explosions and the inhibition effect of CO₂ and H₂O were better than that of the N₂. Lu et al. pointed out that the addition of N₂, CO₂, and H₂O would strongly inhibit the generation of free radicals CH₄ and HCO. The inhibitory effect of CO₂ and H₂O is not only from their participation in the three-body collision reaction, but also from their participation in another chain reactions.

Though a number of experiments and simulation had been performed to investigate the suppression effect of inert gas on methane explosion, most of the previous studies focused only on the independent influences of different volume fractions of inert gas on methane explosion mechanism under stoichiometric ratio condition. Because the working condition of coal mine is complicated, and the inhibition effect may be different in different conditions. However, the influence of inert gases with different volume fractions on explosions over wide methane equivalence ratios has not been reported. In this study, the influence of CO₂ volume fraction on methane explosion in confined space under different methane equivalence ratios (θ = 0.8, 1.0 and 1.2) were analyzed. Jia et al. indicated that the N₂, CO₂, and H₂O reduced the sensitivity of the elementary reaction steps dominating the gas explosion, and the inhibition effect on high concentration gas is better. At the same time, the higher the volume fraction of CO₂ in the mixed gas, the better the inhibition effect.

Mathematical model

Governing equation. The composition equation is as follows.

\[\frac{dY_i}{dt} = v_i \cdot \dot{W} \cdot M_i \quad (i = 1, 2, \ldots, k_g) \]

(1)

\[\dot{W} = \sum_{i=1}^{k_g} v_{ik} \cdot K_{ik} \prod_{j=1}^{N_g} \left[X_j \right]^{v_{ij}} \quad (j = 1, 2, \ldots, k_g) \]

(2)

\[K_{ik} = A_{ik} \cdot T^{B_{ik}} \cdot \exp \left(\frac{-E_{ik}}{RT} \right) \quad (k = 1, 2, \ldots, N_g) \]

(3)

where \(Y_i \), \(w_i \), and \(M_i \) denote the mass fraction, chemical reaction rate, and molecular weight of the substance \(i \), respectively, \(t \) is the time, \(v \), \(R \), and \(T \) represent the specific heat capacity, gas constant, and temperature of the mixture, respectively, and \(N_g \) and \(k_g \) are the total number of reaction steps and groups, respectively. The total number of points is the reverse stoichiometric coefficient, forward stoichiometric coefficient, and the difference between the forward and reverse stoichiometric coefficients of substance \(i \) in elementary reaction \(k \). Here, \(K_{ik} \) is the rate constant of the positive reaction in the elementary reaction \(j \), \(\left[X_j \right] \) is the molar concentration of component \(j \), and \(A_{ik} \), \(B_{ik} \), and \(E_{ik} \) are the pre-exponential factors, temperature index, and reaction activation energy of the elementary reaction \(k \), respectively.

The energy equation is

\[c_v \cdot \frac{dT}{dt} + V \cdot \sum_{i=1}^{k_g} \frac{\dot{W} \cdot M_i}{c_i} = 0 \]

(4)

where \(c_v \) is the constant volume specific heat of the mixed gas, and \(c_i \) is the internal energy of component \(i \).

Sensitivity analysis. Sensitivity analysis is a method to determine the sensitivity factors that have an important impact on the overall response from multiple uncertain factors.

Assuming a variable, it is expressed as

\[\frac{dZ}{dt} = F(Z, t, a) \]

(5)
where $Z = (Y_1, Y_2, \ldots, Y_k)^T$ is the mass fraction of each component, and $a = (A_1, A_2, \ldots, A_N)$ is the prefactor of each elementary reaction.

$$w_{l,i} = \frac{\partial Z_l}{\partial a_i}$$

(6)

where $w_{l,i}$ is the sensitivity coefficient, Z_l is the variable number l, and a_i is the prereference factor of the reactions i.

As the derivation of Eq. (6), one obtains

$$\frac{dw_{l,i}}{dt} = \frac{\partial F_l}{\partial Z} w_{l,i} + \frac{\partial F_l}{\partial a_i}$$

(7)

Table 1. Main reactions affecting the change of free radicals.

Reaction step	Elementary reaction
R32	O$_2$ + CH$_2$O \rightarrow HO$_2$ + HCO
R38	H + O$_2$ \rightarrow O + OH
R52	H + CH$_4$($+$ M) \rightarrow CH$_4$($+$ M)
R53	H + CH$_4$ \rightarrow H + CH$_4$
R57	H + CH$_2$O($+$ M) \rightarrow CH$_3$O($+$ M)
R98	OH + CH$_4$ \rightarrow CH$_3$ + H$_2$O
R118	HO$_2$ + CH$_4$ \rightarrow O + CH$_3$
R119	HO$_2$ + CH$_4$ \rightarrow OH + CH$_3$O
R155	H + O$_2$ \rightarrow O + CH$_3$O
R156	CH$_3$ + O$_2$ \rightarrow OH + CH$_3$O
R157	CH$_3$ + H$_2$O \rightarrow OH + CH$_2$O
R161	CH$_3$O + O$_2$ \rightarrow HO$_2$ + CH$_2$O

Table 2. Initial working conditions of methane explosion.

CO$_2$	O$_2$	N$_2$	CO$_2$	O$_2$	N$_2$	CO$_2$	O$_2$	N$_2$
0	19.53	73.47	0	19.005	71.495	0	18.69	70.31
2	19.11	71.89	2	18.585	69.915	2	18.27	68.73
4	18.69	70.31	4	18.165	68.335	4	17.85	67.15
6	18.27	68.73	6	17.745	66.755	6	17.43	65.57
8	17.85	67.15	8	17.325	65.175	8	17.01	63.99
10	17.43	65.57	10	16.905	63.595	10	16.59	62.41

The total chemical reaction formula of gas explosion is CH$_4$ + 2(O$_2$ + 3.76N$_2$) \rightarrow CO$_2$ + 2H$_2$O + 7.52N$_2$ + 882.6 kJ/mol, GRI-Mech 3.0 is selected as the chemical reaction mechanism of methane combustion, the mechanism includes 53 species and 325 elementary reactions. The study is performed by using a closed homogeneous 0-D reactor in CHEMKIN-Pro. Table 1 shows some key elementary reaction steps in the detailed mechanism of gas explosion chain reaction.

Reaction mechanism. The total chemical reaction formula of gas explosion is CH$_4$ + 2(O$_2$ + 3.76N$_2$) \rightarrow CO$_2$ + 2H$_2$O + 7.52N$_2$ + 882.6 kJ/mol, GRI-Mech 3.0 is selected as the chemical reaction mechanism of methane combustion, the mechanism includes 53 species and 325 elementary reactions. The study is performed by using a closed homogeneous 0-D reactor in CHEMKIN-Pro. Table 1 shows some key elementary reaction steps in the detailed mechanism of gas explosion chain reaction.

Simulation condition. To reveal the effect of carbon dioxide on the kinetic characteristics of the methane explosion over wide methane equivalent ratios, the explosion of different methane concentrations within the explosion limit was simulated by using a higher initial temperature instead of the high-temperature heat source (> 650°C). In the present study, the methane explosion is simulated with the constant volume combustion bomb model, with the initial temperature of 1300 K, the initial pressure of 1 atm, and the reaction time of 0.02 s. The specific working conditions are presented in Table 2.

Calculation results and analysis.

Pressure and temperature. The variations of the pressure and temperature during the explosion process of 7% CH$_4$–air with different CO$_2$ additions are plotted in Fig. 1. With the increase of the CO$_2$ volume fraction, the explosion time prolongs and the explosion pressure and temperature decrease monotonously. When the...
The volume fraction of CO₂ increases from 0 to 10%. The maximum gas explosion pressure decreases from 2.12 to 2.04 MPa with the decrease rates of 3.77%. The maximum temperature decreases from 2702.882 K to 2591 K with the decline rates of 4.14%. These results indicate that the increase of the volume fraction of CO₂ would suppress the gas explosions. This conclusion agrees with the effect of water addition on methane explosion.27

Figure 2 further displays the influence of the CO₂ volume fraction on the maximum explosion pressure and explosion temperature with different methane volume fraction. As seen, the maximum explosion pressure and explosion temperature decrease with the increase of the CO₂ volume fraction under all the methane volume fraction. The larger the methane volume fraction, the greater the maximum explosion pressure decrease, and the better the suppression effect on the methane explosion. When the volume fraction of methane is 7%, 9.5%, 11%, the maximum explosion pressure of adding 10% CO₂ is reduced by 3.9% compared with the case with no addition in Fig. 2a. As Fig. 2b shows, for methane with a volume fraction of 11%, the explosion temperature is more sensitive to changes in the CO₂ volume fraction than for 7% and 9.5% volume fractions. When the volume fraction of methane is 7%, 9.5%, 11%, the explosion temperature of the addition of 10% CO₂ decreases by 4.2%, 5.3%, 6.2% compared with the case with no addition. The results indicate that the inhibitory effect of CO₂ addition on the methane explosions increases as the increase of the methane concentration.

Free radicals. The essence of gas explosion is a complex thermal chain reaction. The chain-branching and chain-propagating reactions initiated by free radicals play an important role in the chemical reaction. H + O₂ < = > O + OH and H + CH₄ < = > CH₃ + H₂, which are the most dominant chain branching reactions of methane explosion,28 contribute to the product amounts of free radicals O and OH.29 When the mixed gas absorbs enough energy, the molecular chain breaks. Then, the number of free radicals H, O and OH begin to soar to form a chemical reaction active center with a high concentration of free radicals, which eventually leads to the explosion. As shown in Fig. 3, when the volume fraction of methane is 7% with no CO₂ addition, the maximum mole fraction of the free radicals H, O, and OH are 0.013, 0.016, and 0.021, respectively. Because the addition of CO₂ increases the probability of free radicals collision with the third body to form low-activity stable molecules, as the increase of the CO₂ volume fraction, the location of peak concentration of free radicals prolongs and the peak concentrations of the free radicals H, O, and OH decrease.

Figure 4 shows the effect of CO₂ addition on the peak concentration of radical H, O, and OH over φ = 0.72,1,1.18. It can be found that the CO₂ addition reduces the peak concentration of all the investigated radicals. The greater the methane volume fraction, the greater the decrease rate of radicals H and OH, and the smaller the decrease rate of radical O. When the volume fraction of CO₂ is constant, the increase of the volume fraction...
of methane leads to the increase of the maximum mole fraction of radical H· and the decrease of the maximum mole fraction of radical O. For radical OH, its maximum mole fraction first increases and then decreases with the location of peak value of 9.5%. The larger the equivalence ratio of CH₄, the less O₂ in the mixture, which increases the number of CH₄ molecules and decreases the number of O₂ molecules in the unit volume of the reactant. The concentration of radical H increases, and the concentration of radical O decreases. At the same time, with the increase of CH₄ concentration, the elementary reaction step R52: H + CH₃(+ M) → CH₄(+ M), R11: O + CH₄ → OH + CH₃ tend to promote the consumption of CH₄. It also explains the appearance of Fig. 2.

Gas products. The catastrophic gases, such as CO, CO₂, NO, NO₂, produced in the gas explosions process are the major cause of casualties⁶. After adding CO₂, the change of the mole fraction of catastrophic gas with 7% CH₄-air is shown in Fig. 5.

As seen, with the increase of the CO₂ volume fraction, the mole fraction of CO is increased, whereas the mole fractions of CO₂, NO, and NO₂ are decreased. This is caused by elementary reaction R31: O₂ + CO → O + CO₂, R99: OH + CO → H + CO₂, R120: HO₂ + CO → H + CO₂, R132: CH + CO₂ → HCO + CO, R153: CH₂(S) + CO₂ → CO + CH₂O. When CO₂ is added to the gas mixture, the initial concentration of CO₂ in the gas mixture increases, which causes the above reaction is easier to happen toward the direction of CO₂ consumption, which results in a large amount of CO. Figure 5a reveals that the mole fraction of CO reaches its peak first, then it reacts with the excess oxygen to form CO₂, and eventually tends to a stable value. Under working condition 1, after gas explosion, the mole fractions of CO, CO₂, NO, and NO₂ are 0.0159, 0.0527, 0.0150, and 7.94 × 10⁻⁶, respectively. Under working condition 6, after gas explosion, the mole fractions of CO, CO₂, NO, and NO₂ are 0.0281, 0.0382, 0.0094, and 4.84 × 10⁻⁶. The increase rate of CO is 76%, and the decrease rates of CO₂, NO, and NO₂ are 27%, 37%, and 39%.

Table 3 lists the effect of CO₂ addition on the concentration of the catastrophic gas under different methane volume fractions. It shows that, ϕ = 0.72, 1, 1.18, with the increase of the CO₂ volume fraction, the mole fraction of CO is increased, and the mole fractions of CO₂, NO, and NO₂ are decreased accordingly in all the investigated conditions. When the volume fraction of CO₂ is 10%, with the increase in methane volume fraction, the volume fraction of CO rises while those of CO₂, NO and NO₂ fall. The above results indicate that the addition of CO₂ plays a positive role in inhibiting the formation of NO and NO₂ but promoting the formation of CO.

Key reactions. The key elementary reaction steps during the methane explosion under different conditions are shown in Fig. 6. According to Fig. 6a, when 7% CH₄-Air explodes, the key reaction steps inhibiting CH₄ consumption are R53 and R158. Both reactions consume the free radicals H, O, and OH, which interrupt the chain
reaction. The key reaction steps promoting CH₄ consumption are R118, R155, R157, R156, R38, R52, R119, and R85. These reactions promote the formation of free radicals, and enhance the chain reaction.

According to Fig. 6b, after the addition of 10% CO₂, the key elementary reaction steps inhibiting CH₄ consumption change from R53 and R158 to R158, R53, and R98. The key reaction step promoting CH₄ consumption change from R118, R155, R157, R156, R38, R52, R119, and R85 to R155, R156, R38, R32, R119, R161, and R170. The sensitivity coefficients of each elementary reaction step are decreased, and the time of the maximum sensitivity coefficient of each elementary reaction step prolongs; at the same time, the reduction amplitude of the coefficient to promote methane consumption is greater than to promote methane formation. This indicates that the change in methane concentration is affected by these reaction steps, the influence becomes weaker, and the addition of CO₂ inhibits the combustion of methane.

Figure 6c, d show that, when 9.5% CH₄-Air explodes, the key elementary reaction steps inhibiting CH₄ consumption are R158 and R53, and the key elementary reaction steps promoting CH₄ combustion are R118, R155, R156, R38, R32, R119, R161, and R170. When 10% CO₂ was added, the key elementary reaction steps inhibiting CH₄ consumption are R158, R53, and R57, and the key elementary reaction steps promoting CH₄ combustion are R155, R156, R38, R32, R119, R161, and R170. The key elementary reaction steps promoting and inhibiting CH₄ consumption do not change. The effects of CO₂ addition on the sensitivity coefficients of CH₄ mole fraction under the methane volume fraction of 9.5% are given in Fig. 7. It can be seen that the sensitivity coefficients of these elementary reactions drop gradually with the increase of CO₂ concentration. Meanwhile, the time when the sensitivity coefficient of each elementary reaction step reaches the maximum value moves back. This means that for the methane explosion with a methane equivalence ratio of 1, the addition of CO₂ has little effect on the change in the methane concentration during the explosion, but inhibits the methane explosion.

As Fig. 6e, f show, when 11% CH₄-Air explodes, the key elementary reaction steps inhibiting CH₄ consumption are R158 and R53, and the key elementary reaction steps promoting CH₄ combustion are R118, R155, R156, R38, R32, R119, R161, and R170. When 10% CO₂ was added, the key elementary reaction steps inhibiting CH₄ consumption are R158, R53, and R57, and the key elementary reaction steps promoting CH₄ combustion are R155, R156, R38, R32, R119, R161, and R170. The key elementary reaction steps promoting and inhibiting CH₄ consumption do not change.
consumption are basically the same as those without CO2, but the sensitivity coefficients of each elementary reaction step are decreased, and the reduction amplitude of the coefficient of promoting CH4 consumption is greater than inhibiting CH4 consumption. This indicates that the addition of CO2 inhibits the process of methane explosion to a certain extent.

Conclusion
In this study, 2%, 4%, 6%, 8%, and 10% CO2 were sequentially filled into a mixed gas with different methane concentrations. The explosion reaction time prolonged as the increase of CO2 volume fraction and the maximum pressure and temperature of the methane explosion were significantly reduced compared with the case with no CO2 addition. If the volume fraction of CO2 is constant, with the increase of methane concentration, the inhibitory effect of CO2 on methane explosion was increasingly effective.

In the fuel-lean, stoichiometric and fuel-rich conditions, the peak mole fraction of free radicals decreased with the increase of the CO2 volume fraction. When the volume fraction of CO2 is constant, with the increase of methane concentration, the inhibitory effect of CO2 on methane explosion was increasingly effective.

After 10% CO2 was added to the 7% CH4-Air, the mole fraction of CO increased by 76%, while the mole fractions of CO2, NO, and NO2 decreased by 27%, 37%, and 39%, respectively. The higher the volume fraction of CH4, the more CO was produced after the addition of CO2. Although the addition of CO2 played a positive role in inhibiting the formation of NO and NO2, it promoted the formation of CO.
The addition of CO₂ changed the key elementary reaction steps affecting CH₄ concentration, and the time of the maximum sensitivity coefficient of each reaction step prolonged. When CH₄ was in a fuel-lean, stoichiometric and fuel-rich conditions, the sensitivity coefficient of each key elementary reaction step was reduced, and the reaction amplitude of the coefficient promoting the methane consumption was larger than inhibiting the consumption, indicating that the addition of CO₂ could inhibit CH₄ explosion.

In general, the methane explosion can be inhibited by adding CO₂, and the greater the volume fraction of CO₂, the better the inhibition effect. However, more CO₂ will be produced under a higher methane concentration. In the application of CO₂ addition to gas explosion suppression, it is necessary to consider the possibility of CO poisoning under practical working conditions.

Received: 13 July 2021; Accepted: 28 September 2021
Published online: 20 October 2021

References
1. Jia, B. S., Li, Y. H., Zeng, W., Liang, Y. T. & Wen, H. Y. Kinetic simulation for the effect of N₂ content on gas explosion in an constant volume system. Chin. J. Process. Eng. 11, 812–817 (2011).
2. Jia, B. S., Wen, H. Y. & Li, Z. X. Study on mechanism characteristic of N₂ & H₂O on inhibiting gas explosion in coal mine tunnel. J. Nat. Disasters 22, 269–276. https://doi.org/10.13577/j.jnd.2013.0535 (2013).
3. Su, B., Luo, Z. M., Wang, T. & Liu, L. Experimental and numerical evaluations on characteristics of vented methane explosion. J. Central South Univ. 27, 2382–2393. https://doi.org/10.1007/s11771-020-4456-1 (2020).
4. Lu, C., Wang, H. B., Pan, R. K., Zhang, Y. P. & Yu, M. G. Preventing the propagation of gas explosion in ducts using spurted nitrogen. Process Saf. Environ. Prot. 123, 11–23. https://doi.org/10.1016/j.psep.2018.12.028 (2019).
5. Lu, C., Wang, H. B., Zhang, Y. P., Zhou, H. & Yu, M. G. Experimental on the prevention of gas explosion by nitrogen curtain. Chem. Ind. Eng. Prog. 358, 3056–3064. https://doi.org/10.16085/issn.1066-6113.2018-2009 (2019).
6. Cao, X. Y., Ren, J. J., Bi, M. S., Zhou, Y. H. & Li, Y. M. Experimental research on the characteristics of methane/air explosion affected by ultrasonic water mist. J. Hazard. Mater. 324, 489–497. https://doi.org/10.1016/j.jhazmat.2016.11.017 (2016).
7. Cao, X. Y., Ren, J. J., Bi, M. S., Zhou, Y. H. & Wang, Q. J. Experimental research on methane/air explosion inhibition using ultrasonic water mist containing additive. J. Loss Prev. Process Ind. 43, 352–360. https://doi.org/10.1016/j.jlp.2016.06.012 (2016).
8. Cao, X. Y. et al. Suppression of methane/air explosion by ultrasonic water mist containing sodium chloride additive. J. Hazard. Mater. 285, 311–318. https://doi.org/10.1016/j.jhazmat.2014.11.016 (2015).
9. Wang, F. H., Chen, W., Wen, X. P., Zhao, W. L. & Liu, Z. C. Numerical simulation and mechanism analysis of gas explosion suppression by ultrasonic water mist. Energy Sources Part A: Recovery Util Environ Effects 41, 2821–2833. https://doi.org/10.1080/ 15567026.2019.1576077 (2019).
10. Li, C. B., Wu, G. D., Zhou, N. & Luo, Y. Numerical analysis of methane combustion suppression by N₂/CO₂/H₂O. Chin. J. Process. Eng. 34, 10–15. https://doi.org/10.13225/j.cnki.jccs.2013.03.019 (2013).
11. Qian, H. L., Wang, Z. R. & Jiang, J. C. Influence of N₂/CO₂ mixture on methane explosion. Proc. Shock Waves 32, 445–448. https://doi.org/10.3969/j.issn.1003-1455.2012.04.016 (2012).
12. Li, M. H., Xu, J. C., Wang, C. J. & Wang, R. Thermal and kinetics mechanism of explosion mitigation of methane-air mixture by N₂/CO₂ in a closed compartment. Fuel 255, 115747. https://doi.org/10.1016/j.fuel.2019.115747 (2019).
13. Wang, Z. R., Ni, L., Liu, X., Jiang, J. C. & Wang, R. Effects of N₂/CO₂ on explosion characteristics of methane and air mixture. J. Loss Prev. Process Ind. 31, 10–15. https://doi.org/10.1016/j.jlp.2014.06.004 (2014).
14. Zhang, Y. K., Wu, Q., Liu, C. H., Jiang, B. Y. & Zhang, B. Y. Experimental study on coal mine gas explosion suppression with inert gas N₂/CO₂. Explosion Shock Waves 37, 906–912. https://doi.org/10.11888/1001-1457/2015.09.0968-07 (2017).
15. Luo, Z. M., Kang, K. & Ren, J. Y. Microscopic mechanism of NH₃ on chain of methane explosion. J. China Coal Soc. 41, 876–883. https://doi.org/10.13225/j.cnki.jccs.2015.0922 (2016).
16. Luo, Z. M. et al. Study on influence of NH₃ on CH₄ explosion characteristics and reaction kinetics. China Safety Sci. J. 30, 51–58. https://doi.org/10.16265/j.cnki.issn1003-3033.2020.09.008 (2020).
17. Liang, T. T. & Wen, Z. Simulation of the inhibition mechanism of humidity ratio of air in gas explosion process. J. Shenzhen Univ. (Science and Engineering) 30, 48–53. https://doi.org/10.3724/SP.J.1120.2013.01048 (2013).
18. Wang, L. C., Luo, H. Z. & Liang, Y. T. Effects of water on reaction kinetic for gas explosion in shock tube. J. China Coal Soc. 39, 2037–2041. https://doi.org/10.13225/j.cnki.jccs.2013.1383 (2014).
19. Lu, S. X., He, J., Yu, C. H. & Qin, Y. H. Study on the mechanism of water inhibiting gas explosion. J. China Coal Soc. 23, 83–87. https://doi.org/10.13225/j.cnki.jccs.1998.04.017 (1998).
20. Ren, F., Xiang, L. K., Chu, H. Q., Jiang, H. T. & Ya, Y. C. A modelling study of the impact of blending N₂, CO₂ and H₂O on characteristics of CH₄ laminar premixed combustion. Energy Fuels 34, 1184–1192. https://doi.org/10.1021/acs.energyfuels.9b02108 (2019).
21. Jia, B. S., Wen, H. Y., Liang, Y. T. & Wang, X. Y. Chemical kinetics mechanism analysis of N₂/CO₂/H₂O suppressing methane explosion. China Safety Sci. J. 20, 88–92. https://doi.org/10.16265/j.cnki.issn1003-3033.2010.08.011 (2010).
22. Li, C. B., Wu, G. D., Zhou, N. & Luo, Y. Numerical analysis of methane combustion suppression by N₂/CO₂/H₂O. J. Univ. Sci. Technol. China 40, 288–293. https://doi.org/10.3969/j.issn.0253-2778.2010.03.014 (2010).
23. Carrasco, N. et al. Sensitivity of a titan ionospheric model to the ion-molecule reaction parameters. Planet. Space Sci. 56, 1644–1657. https://doi.org/10.1016/j.pss.2008.04.007 (2008).
24. Gregory, P. & Smith, D. G. GRI-Mech 3.0, Preprint at http://combustion.berkeley.edu/gri-mech/version30/text30.html (2007).
25. Gao, N., Zhang, Y. S., Hu, Y. T. & Peng, J. H. Dynamics analysis of gas explosion chain reaction in restricted space. China Safety Sci. J. 24, 60–65. https://doi.org/10.16265/j.cnki.jccs.2010-0333.2014.01.013 (2014).
26. Liang, T. T. & Zeng, W. Numerical study of the effect of water addition on gas explosion. J. Hazard. Mater. 174, 386–392. https://doi.org/10.1016/j.jhazmat.2009.09.064 (2010).
27. Wang, T. et al. Flammability limit behavior of methane with the addition of gaseous fuel at various relative humidities Process Saf. Environ. Prot. 140, doihits =https://doi.org/10.1016/j.psep.2020.05.005 (2020).
28. Wang, T. et al. The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214, doihits =https://doi.org/10.1016/j.energy.2020.119042 (2021).
29. Li, Y. C., Nie, B. S., Yang, C. L. & Chen, J. W. Effect of gas concentration on disastrous gases produced by gas explosion in confined space. China Safety Sci. J. 26, 69–75. https://doi.org/10.16265/j.cnki.jccs.2010-0333.2016.01.012 (2016).
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 51774181); National Natural Science Foundation of China (Grant Nos. 52174229, 52174230); Liaoning Provincial Natural Science Foundation of China (Grant No. 2020-BS-285);

Author contributions
Jingyan Wang: Investigation, Methodology, Data curation, Writing—original draft, Visualization. Yuntao Liang: Conceptualization, Resources, Funding acquisition, Supervision, Writing—review & editing. Fuchao Tian: Investigation, Writing—review & editing. Chengfeng Chen: Investigation, Writing—review & editing.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021