Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups

Masayuki ASAOKA *
Department of Mathematics, Kyoto University
January 20, 2011

Abstract

We show the local rigidity of the natural action of the Borel subgroup of $SO_+(n,1)$ on a cocompact quotient of $SO_+(n,1)$ for $n \geq 3$.

1 Introduction

Rigidity theory of actions of non-compact groups has been rapidly developed in the last two decades. It is found that many actions related to Lie groups of real-rank greater than one exhibit rigidity. See Fisher’s survey paper [2], for example. However, there are only few results on actions related to Lie groups of real-rank one. The aim of this paper is to show the local rigidity of some natural actions related to such groups.

Let G be a Lie group and M be a C^∞ manifold. By $C^\infty(M \times G, M)$, we denote the space of C^∞ maps from $M \times G$ to M with the compact-open C^∞-topology. Let $A(M, G)$ be the set of C^∞ right actions of G on M. It is a closed subset of $C^\infty(M \times G, M)$. We say two actions $\rho_1 : M_1 \times G \to M_1$ and $\rho_2 : M_2 \times G \to M_2$ are C^∞-conjugate if there exists a C^∞ diffeomorphism h and an automorphism σ of G such that $h(\rho_1(x,g)) = \rho_2(h(x),\sigma(g))$ for any $x \in M_1$ and $g \in G$. An action $\rho \in A(M, G)$ is called C^∞-locally rigid if the C^∞-conjugacy class of ρ is a neighborhood of ρ in $A(M, G)$. We say an action $\rho \in A(M, G)$ is locally free if the isotropy subgroup $\{g \in G \mid \rho(x,g) = x\}$ is a discrete subgroup of g for any $x \in M$.

Let H be its closed subgroup of a Lie group G and Γ a cocompact lattice of G. We define the standard H-action ρ_0 on $\Gamma\backslash G$ by $\rho_0(\Gamma g, h) = \Gamma(gh)$. It is a locally free action. We say an action is homogeneous if it is C^∞-conjugate to the standard action associated with some cocompact lattice.

Suppose that the Lie group G is connected and semi-simple. Let $G = KAN$ be its Iwasawa decomposition. The dimension of the abelian subgroup A is called the real-rank of G. Let M be the centralizer of A in K. The group $P =$

*Partially supported by JSPS Grant-in-Aid for Young Scientists (B), No.19740085.
Man is called the Borel subgroup associated with the Iwasawa decomposition $G = KAN$. It is known that the conjugacy class of the Borel subgroup does not depend on the choice of the Iwasawa decomposition. When $G = SL(2, \mathbb{R})$ for example, a Borel subgroup P is conjugate to the group GA of the upper triangular matrices in $SL(2, \mathbb{R})$. Fix a cocompact lattice Γ of $SL(2, \mathbb{R})$ and put $M\Gamma = \Gamma \backslash SL(2, \mathbb{R})$. Let ρ_0 be the standard P-action on $M\Gamma$. It is not locally rigid since deformation of lattice Γ gives a non-trivial deformation of actions. However, there are several rigidity results on ρ_0. Ghys [3] proved that if a locally free GA-action on $M\Gamma$ admits an invariant volume, then it is homogeneous. In [4], he remove the assumption on invariant volume when $H^1(M\Gamma)$ is trivial. As a consequence, there exists a non-homogeneous locally free GA-action on $M\Gamma$ when $H^1(M\Gamma)$ is non-trivial. In a forthcoming paper, he will also show that the standard GA-action ρ_0 admits a C^∞ deformation into non-homogeneous actions in this case.

By Mostow’s rigidity theorem, any deformation of a cocompact lattice is trivial if G is a higher-dimensional Lie group of real-rank one. So, it is natural to ask whether the standard P-action is C^∞-locally rigid or not in this case. The main result of this paper answers this question when G is $SO_+(n, 1)$.

Theorem 1.1. Let P be a Borel subgroup of $SO_+(n, 1)$ and Γ be a torsion-free cocompact lattice of $SO_+(n, 1)$. If $n \geq 3$, then the standard P-action on $\Gamma \backslash SO_+(n, 1)$ is C^∞-locally rigid.

To ending the introduction, we remark on the local rigidity of the orbit foliation. Let \mathcal{F}_Γ be the orbit foliation of the standard P-action on $\Gamma \backslash SO_+(n, 1)$. Ghys [5] showed a global rigidity result of \mathcal{F}_Γ for $n = 2$. For $n \geq 3$, Yue [11] proved a partial result and Kanai [6] claimed the local rigidity of \mathcal{F}_Γ. However, Kanai’s proof contains a serious gap and it is not fixed so far. Hence, the local rigidity of \mathcal{F}_Γ is still open. If any foliation sufficiently close to \mathcal{F}_Γ carries an action of P, then the local rigidity of \mathcal{F}_Γ follows from our theorem.

2 Preliminaries

In this section, we introduce some notations and review several known facts which we will use in the proof of Theorem 1.1.

2.1 The group $SO_+(n, 1)$

Fix $n \geq 3$ and let $I_{n, 1}$ be the diagonal matrix of size $(n + 1)$ whose diagonal elements are $1, \ldots, 1, -1$. Let $SO_+(n, 1)$ be the identity component of the subgroup of $GL(n + 1, \mathbb{R})$ consisting of matrices A satisfying $^tAI_{n, 1}A = I_{n, 1}$. For

1. It is isomorphic to the group of orientation preserving affine transformations of the real line.
2. The C^1-regularity of the strong unstable foliation claimed in the last sentence of p.677 does not hold in general.
any $1 \leq n' \leq n$, the standard embedding $GL(n', \mathbb{R}) \hookrightarrow GL(n+1, \mathbb{R})$ induces an embedding of $SO(n')$ into $SO_+(n, 1)$.

Let $\mathfrak{so}(n, 1)$ be the Lie algebra of $SO_+(n, 1)$. By $E_{i,j}$, we denote the square matrix of size $(n+1)$ such that the (i, j)-entry is one and other entries are zero. Put $X = E_{n(n+1)} - E_{(n+1)n}$, $Y_i = (E_{i(n+1)} + E_{(n+1)i}) - (E_{in} - E_{ni})$, and $Y'_i = (E_{i(n+1)} + E_{(n+1)i}) - (E_{in} - E_{ni})$ for $i, j = 1, \cdots, n$. Then, $\mathfrak{so}(n, 1)$ is generated by $X, Y_1, \cdots, Y_{n-1}, Y'_1, \cdots, Y'_{n-1}$ and the Lie subalgebra corresponding to the subgroup $SO(n-1)$ of $SO_+(n, 1)$. It is easy to check that

$$[Y_i, X] = -Y_i, \quad [Y'_i, X] = Y'_i, \quad [Y_i, Y_j] = [Y'_i, Y'_j] = 0 \tag{1}$$

for any $i, j = 1, \cdots, n-1$, and

$$\text{Ad}_m(X) = X \quad \text{Ad}_m(Y_1, \cdots, Y_{n-1}) = (Y_1, \cdots, Y_{n-1}) \cdot m \tag{2}$$

and for any $m \in SO(n-1)$.

Let $SO_+(n, 1) = KAN$ be the Iwasawa decomposition of $SO_+(n, 1)$ associated with the involution $\theta_0 : g \mapsto (^t g)^{-1}$. Then, $K = SO(n)$ and, A and N are the subgroups of $SO_+(n, 1)$ corresponding to the Lie subalgebras spanned by X and $\{Y_1, \cdots, Y_{n-1}\}$, respectively. Since the centralizer of A in $SO(n)$ is $SO(n-1)$, the Borel subgroup corresponding to θ_0 is $SO(n-1)AN$.

\subsection{Anosov flows}

A C^1 flow Φ on a closed manifold M is called Anosov, if it has no stationary points and there exists a continuous splitting $TM = T\Phi \oplus E^{ss} \oplus E^{uu}$, a constant $\lambda > 0$, and a continuous norm $\| \cdot \|$ on TM which satisfy the following properties:

- $T\Phi$ is the one-dimensional subbundle tangent to the orbit of Φ.
- E^{ss} and E^{uu} are $D\Phi$-invariant subbundles.
- $\|D\Phi^t(v^s)\| \leq e^{-\lambda t}\|v^s\|$ and $\|D\Phi^t(v^u)\| \geq e^{\lambda t}\|v^u\|$ for any $v^s \in E^{ss}, v^u \in E^{uu}$, and $t \geq 0$.

The subbundles $E^{ss}, E^{uu}, T\Phi \oplus E^{ss},$ and $T\Phi \oplus E^{uu}$ are called the strong stable, strong unstable, weak stable, and weak unstable subbundles, respectively. It is known that they generate continuous foliations with C^τ leaves, if Φ is a C^τ flow. The foliations are called the strong stable foliation, etc.

The following proposition may be well-known for experts, but we give a proof for convenience of the readers.

Proposition 2.1. Let Φ_1 and Φ_2 be Anosov flows on a closed manifold M. Suppose that Φ_1 and Φ_2 have the common strong unstable foliation \mathcal{F}^{uu} and $\mathcal{F}^{uu}(\Phi_1^t(x)) = \mathcal{F}^{uu}(\Phi_2^t(x))$ for any $x \in M$ and $t \in \mathbb{R}$. Then, there exists a homeomorphism h of M such that $\Phi_2^t \circ h = h \circ \Phi_1^t$ for any $t \in \mathbb{R}$ and $h(\mathcal{F}^{uu}(x)) = \mathcal{F}^{uu}(x)$ for any $x \in M$.

Proof. Let \mathcal{H} be the set of continuous maps $h : M \to M$ which preserves each leaf of \mathcal{F}^{uu}. Fix a Riemannian metric g of M. Let d^u be the leafwise distance on leaves of \mathcal{F}^{uu} which is determined by the restriction of the metric g to each leaf. We define a distance d on \mathcal{H} by $d(h, h') = \sup_{x \in N_t} d^u_x(h(x), h'(x))$. It is a complete metric on \mathcal{H}.

For $i, j \in \{1, 2\}$, we define continuous flows Θ_{ij} on \mathcal{H} by $\Theta_{ij}^t(h) = \Phi_i^{-t} \circ h \circ \Phi_j^t$. Since Φ_i and Φ_j expand \mathcal{F}^{uu} uniformly, Θ_{ij}^t is a uniform contraction for any sufficiently large $t > 0$. By the contracting mapping theorem, there exists a unique fixed point $h_{ij} \in \mathcal{H}$ of the flow Θ_{ij}. Since both $h_{ij} \circ h_{ji}$ and the identity map of M are fixed point of Θ_{ii}, $h_{ij} \circ h_{ji}$ is the identity map for $i, j \in \{1, 2\}$. In particular, h_{ij} is the inverse of h_{ji}. Therefore, h_{21} is a homeomorphism in \mathcal{H} such that $h_{21} \circ \Phi_{1}^t = \Phi_{2}^t \circ h_{21}$ for any $t \in \mathbb{R}$.

Let Ψ be a flow on a manifold M. A C^∞ function α on $M \times \mathbb{R}$ is a cocycle over Ψ if $\alpha(x, 0) = 0$ and $\alpha(x, t + t') = \alpha(x, t) + \alpha(\Psi^t(x), t')$ for any $x \in M$ and $t, t' \in \mathbb{R}$. We say Ψ is topologically transitive if there exists $x_0 \in M$ whose orbit $\{\Psi^t(x_0) : t \in \mathbb{R}\}$ is a dense subset of M.

Theorem 2.2 (The C^∞ Livschitz Theorem [7]). Let Φ be a C^∞ topologically transitive Anosov flow on a closed manifold M and α be a C^∞ cocycle over Φ. If $\alpha(x, T) = 0$ for any $(x, t) \in M \times \mathbb{R}$ satisfying $\Psi^T(x) = x$, then there exists a C^∞ function β on M such that $\alpha(x, t) = \beta(\Phi^t(x)) - \beta(x)$ for any $x \in M$ and $t \in \mathbb{R}$. Moreover, if α is sufficiently C^∞-close to 0, then we can choose β so that it is C^∞-close to 0.

We say an Anosov flow Φ is s- (resp. u-)conformal if $D\Phi^t$ is conformal on $E^{ss}(x)$ (resp. $E^{uu}(x)$) for any $x \in M$ with respect to some continuous metric on E^{ss}. The following result plays fundamental role in the proof of Theorem 2.3.

Theorem 2.3 (de la Llave [5]). Let Φ_1 and Φ_2 be C^∞ s-conformal topologically transitive Anosov flows on a closed manifold M. For $i = 1, 2$, let \mathcal{F}_i^{ss} be of Φ_i. Suppose that the dimensions of the strong stable foliation of Φ_1 and Φ_2 are greater than one. If a homeomorphism h of M satisfies $\Phi_1^t \circ h = h \circ \Phi_2^t$ for any $t \in \mathbb{R}$, then the restriction of h to a leaf of the strong stable foliation of Φ_1 is a C^∞ diffeomorphism to a leaf of the strong stable foliation of Φ_2. Moreover, if both Φ_1 and Φ_2 are u-conformal in addition, then h is a C^∞ diffeomorphism of M.

We say that an Anosov flow is contact if it preserves a C^1-contact structure. It is easy to see that any contact structure invariant under an Anosov flow is the direct sum of the strong stable subbundle and the strong unstable subbundle.

Proposition 2.4. Let Φ be a contact Anosov flow on a closed manifold M. If Φ is s-conformal, then it is u-conformal.
Proposition 3.1. If \(\rho : M_1 \times P \to M_1 \) is sufficiently \(C^\infty \)-close to \(\rho_1 \) then \(\rho \) is \(C^\infty \)-conjugate to an action in \(\mathcal{A}_*(M_1, P) \) which is \(C^\infty \)-close to \(\rho_1 \).
Proof. It is an immediate corollary of Palais' stability theorem of compact group action (2).

For \(\rho \in A_\ast (M_\Gamma, P) \), we define a flow \(\Phi_\rho \) on \(N_\Gamma \) by \(\Phi_\rho^t(x) = \pi(\rho^{\exp(tX)}(x)) \). It is well-defined since \(\exp(tX) \) commutes with any element of \(SO(n - 1) \). We call the flow \(\Phi_\rho \) the flow induced by \(\rho \).

For \(\rho \in A_\ast (M_\Gamma) \), we define vector fields \(Y_1^\rho, \ldots, Y_{n-1}^\rho \) on \(M_\Gamma \) by \(Y_i^\rho(x) = (d/dt)\rho^{\exp(tY_i)}(x)|_{t=0} \).

Lemma 3.2. For any \(x \in M_\Gamma \) and \(m \in SO(n - 1) \),

\[
(D\pi(Y_1^\rho(x \cdot m)), \ldots, D\pi(Y_{n-1}^\rho(x \cdot m))) = (D\pi(Y_1^\rho(x)), \ldots, D\pi(Y_{n-1}^\rho(x))) \cdot m.
\]

Proof. For any \(x \in M_\Gamma \), \(t \in \mathbb{R} \), and \(m \in SO(n - 1) \),

\[
\pi \circ \rho(x \cdot m, \exp(tY_i)) = \pi(\rho(x, [m \exp(tY_i)m^{-1}]) \cdot m) = \pi(\rho(x, \exp(t \cdot Ad_m(Y_i)))).
\]

Hence, the equation (2) implies the lemma.

By the above lemma, we can define a \(C^\infty \) subbundle \(E^-_\rho \) of \(TN_\Gamma \) by

\[
E^-_\rho(\pi(x)) = D\pi((Y_1^\rho(x), \ldots, Y_{n-1}^\rho(x))).
\]

There exists a \(C^\infty \) metric \(g_\rho \) on \(E^-_\rho \) such that \((D\pi(Y_1^\rho(x)), \ldots, D\pi(Y_{n-1}^\rho(x))) \) is an orthonormal basis of \(E^-_\rho(x) \) with respect to \(g_\rho \). The subbundle \(E^-_\rho \) is \(D\Phi_\rho \)-invariant and

\[
\|D\Phi_\rho^t(v)\|_{g_\rho} = e^{-t}\|v\|_{g_\rho}
\]

for any \(t \in \mathbb{R} \) and \(v \in E^-_\rho \).

For \(i = 1, \ldots, n-1 \), let \(Y_i^- \) be a vector field on \(M_\Gamma \) given by \(Y_i^-(x) = (d/dt)x \exp(tY_i)|_{t=0} \). Similar to the above, we can define a \(C^\infty \) subbundle \(E^+_\rho_0 \) of \(TN_\Gamma \) and its \(C^\infty \) metric \(g^+ \) such that

\[
E^+_\rho_0(\pi(x)) = D\pi((Y_1^+(x), \ldots, Y_{n-1}^+(x)))
\]

and \((D\pi(Y_1^+(x)), \ldots, D\pi(Y_{n-1}^+(x))) \) is an orthonormal basis of \(E^+_\rho_0(x) \) with respect to \(g^+ \). The subbundle \(E^+_\rho_0 \) is \(D\Phi_\rho_0 \)-invariant and

\[
\|D\Phi_\rho_0^t(v')\|_{g^+} = e^t\|v'\|_{g^+}
\]

for any \(t \in \mathbb{R} \) and \(v' \in E^+_\rho_0 \). The flow \(\Phi_\rho_0 \) is an Anosov flow with the Anosov splitting \(TN_\Gamma = T\Phi \oplus E^-_\rho_0 \oplus E^+_\rho_0 \) and it is \(s \)- and \(u \)-conformal with respect to \(g_\rho_0 \) and \(g^+ \), respectively. It is known that \(E^-_\rho_0 \oplus E^+_\rho_0 \) is a \(\Phi_\rho_0 \)-invariant contact structure.

Since the set of Anosov flows is open in the space of \(C^1 \) flows, the induced flow \(\Phi_\rho \) is Anosov if \(\rho \in A_\ast (M_\Gamma, P) \) is sufficiently \(C^1 \)-close to \(\rho_0 \). In this case, \(E^-_\rho \) is the strong stable subbundle of \(\Phi_\rho \) and the Anosov flow \(\Phi_\rho \) is \(s \)-conformal with respect to \(g_\rho \).
3.2 Reduction to the conjugacy of induced flows

We reduce Theorem 1.1 to the smooth conjugacy problem of the induced flows.

Theorem 3.3. Let \(\rho \) be a locally free action in \(A_n(M_\Gamma, P) \). Suppose that a \(C^\infty \) diffeomorphism \(h \) of \(N_\Gamma \) satisfies \(\Phi_t^\rho \circ h = h \circ \Phi_t^\rho_0 \) for any \(t \in \mathbb{R} \). Then, \(\rho \) is \(C^\infty \)-conjugate to the standard \(P \)-action \(\rho_0 \).

Let \(\text{Fr} E^-_\rho \) be the frame bundle of \(E^-_\rho \). It admits a natural right action of \(GL(n-1, \mathbb{R}) \). The flow \(\Phi_\rho \) induce a flow \(\text{Fr} \Phi_\rho \) on \(\text{Fr} E^-_\rho \). Let \(OE^-_\rho \) be the orthonormal frame bundle of \((E^-_\rho, g_\rho) \). We define a map \(\psi_\rho : M_\Gamma \rightarrow OE^-_\rho \) by

\[
\psi_\rho(x) = (D\pi(Y_1^\rho(x)), \ldots, D\pi(Y_{n-1}(x))).
\]

By Lemma 3.2, \(OE^-_\rho(y) = \{ \psi_\rho(x) \mid x \in \pi^{-1}(y) \} \) for any \(y \in N_\Gamma \) and \(\psi_\rho \) is a diffeomorphism from \(M_\Gamma \) to \(OE^-_\rho \). By Equation (1), we have \(\text{Fr} \Phi_t^\rho(\psi_\rho(x)) = e^{-t}\psi_\rho(\rho^\exp(tX)(x)) \). Hence, we can define a flow \(O\Phi_\rho \) on \(OE^-_\rho \) by

\[
O\Phi_t^\rho(\psi_\rho(x)) = e^t \cdot \text{Fr} \Phi_t^\rho(\psi_\rho(x)) = \psi_\rho(\rho^\exp(tX)(x)).
\]

In particular, the map \(\psi_\rho \) is a \(C^\infty \) conjugacy between \(\rho^\exp(tX) \) and \(O\Phi_t^\rho \). By Moore’s ergodicity theorem, the flow \(\rho^\exp(tX) \) is topologically transitive. Hence, so the flow \(O\Phi_\rho \) is.

Fix \(\rho \in A_n(M_\Gamma, P) \) and suppose that there exists a \(C^\infty \) diffeomorphism \(h \) of \(N_\Gamma \) such that

\[
\Phi_t^\rho \circ h = h \circ \Phi_t^\rho_0
\]

for any \(t \in \mathbb{R} \).

Lemma 3.4. \(Dh(E^-_\rho_0) = E^-_\rho \) and there exists a constant \(c_h > 0 \) such that \(\| Dh(v) \|_{g_\rho} = c_h \cdot \| v \|_{g_\rho} \) for any \(v \in E^-_\rho_0 \).

Proof. Recall that the flow \(\Phi_\rho_0 \) is Anosov and \(E^-_\rho_0 \) is its strong stable subbundle. Since \(h \) is a \(C^\infty \) conjugacy between \(\Phi_\rho_0 \) and \(\Phi_\rho \), the flow \(\Phi_\rho \) is also Anosov and its strong stable subbundle is \(Dh(E^-_\rho_0) \). By Equation (3), the subbundle \(E^-_\rho \) is contained in the strong stable subbundle \(Dh(E^-_\rho_0) \). Since their dimensions are equal, we have \(Dh(E^-_\rho_0) = E^-_\rho \).

Let \(SE^-_\rho_0 \) be the unit sphere bundle \(\{ v \in E^-_\rho_0 \mid \| v \|_{g_\rho_0} = 1 \} \) of \(E^-_\rho_0 \) and \(\pi_O : OE^-_\rho_0 \rightarrow SE^-_\rho_0 \) be the projection defined by \((v_1, \ldots, v_{n-1}) \mapsto v_1 \). By Equation (3) for \(\rho_0 \), we can define a flow \(S\Phi_\rho_0 \) on \(SE^-_\rho_0 \) by \(S\Phi_t^\rho_0 = e^t \Phi_t^\rho_0 \). Then, \(\pi_O \circ O\Phi_t^\rho_0 = S\Phi_t^\rho_0 \circ \pi_O \). Since \(O\Phi_\rho_0 \) is topologically transitive, \(S\Phi_\rho_0 \) also is. Take \(v_0 \in SE^-_\rho_0 \) such that the orbit \(\{ S\Phi_t^\rho_0(v_0) \mid t \in \mathbb{R} \} \) is dense in \(SE^-_\rho_0 \). Put \(c_h = \| Dh(v_0) \|_{g_\rho} \). By Equation (3),

\[
\| Dh \circ S\Phi_t^\rho_0(v_0) \|_{g_\rho} = c_h \cdot \| D\Phi_t^\rho_0(v_0) \|_{g_\rho}
\]

for any \(t \in \mathbb{R} \). It implies that \(\| Dh(v) \|_{g_\rho} = c_h \) for any \(v \in SE^-_\rho_0 \). \(\square \)
Proposition 3.5. There exists a C^∞ diffeomorphism H of M_Γ such that $H \circ \rho_0^t = \rho^t \circ H$ for any $g \in \{\exp(tX)\}_t \in \mathbb{R}, m \in SO(n-1)$.

Proof. Let $Fr \h$ be the lift of h to $Fr E_{\rho_0}^{-}$. By the above lemma, we can define a diffeomorphism $Oh : O\h \rightarrow OE_{\rho_0}^{-}$ by $Oh = c_h^{-1} Fr \h$. Then, $O\Phi^t \circ Oh = Oh \circ O\Phi^t_{\rho_0}$ for any $t \in \mathbb{R}$. Since $Fr \h$ commutes with the action of $SO(n-1)$, we have $Oh(z \cdot m) = Oh(z) \cdot m$ for any $z \in OE_{\rho_0}^{-}$ and $m \in SO(n-1)$. Put $H = \psi_p^{-1} \circ Oh \circ \psi_{\rho_0}$. Then, we have

$$H \circ \rho_0^t \exp(tX) = \rho^t \exp(tX) \circ H,$$

$$H(x \cdot m) = H(x) \cdot m$$

for any $t \in \mathbb{R}$ and any $m \in SO(n-1)$. \qed

The proof of Theorem \ref{thm:main} will finish once we show the following

Proposition 3.6. There exists an automorphism θ of P such that $\rho(H(x), \theta(g)) = \rho_0(x, g)$ for any $x \in M_\Gamma$ and $g \in P$.

Proof. Since $\rho^t \exp(tX) \circ H = H \circ \rho_0^t \exp(tX)$ for any $t \in \mathbb{R}$, we have

$$D\rho^t \exp(tX) (DH(Y_{\rho_0}^t(x))) = DH(D\rho_0^t \exp(tX) (Y_{\rho_0}^t(x))) = e^{-t} DH(Y_{\rho_0}^t(h^t X(x))).$$

We also have

$$DH(\langle Y_{\rho_0}^1(x), \ldots, Y_{\rho_0}^{n}(x) \rangle) = DH(\{v \in T_x M_\Gamma | \lim_{t \rightarrow +\infty} \|D\rho_0^t \exp(tX)(v)\| = 0\})$$

$$= \{v' \in T_{H(x)} M_\Gamma | \lim_{t \rightarrow +\infty} \|D\rho^t \exp(tX)(v')\| = 0\}$$

$$\supset \langle Y_{\rho}^1(H(x)), \ldots, Y_{\rho}^{n-1}(H(x)) \rangle$$

for any $x \in M_\Gamma$. In particular,

$$DH(\langle Y_{\rho_0}^1(x), \ldots, Y_{\rho_0}^{n}(x) \rangle) = \langle Y_{\rho}^1(H(x)), \ldots, Y_{\rho}^{n-1}(H(x)) \rangle.$$

Since the flow $(\rho_0^t \exp(tX))_{t \in \mathbb{R}}$ is topologically transitive, there exists $x_0 \in M_\Gamma$ such that $\{\rho_0^t X(x_0) | t \in \mathbb{R}\}$ is a dense subset of M_Γ. Let $b = (b_{ij})_{i,j=1,\ldots,n-1}$ be the square matrix given by $Y_j^\rho(H(x_0)) = \sum_{i=1}^{n-1} b_{ij} DH(Y_{\rho_0}^i(x_0))$. Remark that it is an invertible matrix. For any $t \in \mathbb{R}$, we have

$$Y_j^\rho(H(\rho_0^t \exp(tX)(x_0))) = Y_j^\rho(\rho^t \exp(tX)(H(x_0)))$$

$$= e^t D\rho^t \exp(tX) (Y_j^\rho(H(x_0)))$$

$$= \sum_{i=1}^{n-1} b_{ij} DH(Y_{\rho_0}^i(\rho_0^t \exp(tX)(x_0))).$$

8
Since the orbit of x_0 is dense, $Y^p_i(H(x)) = \sum_{i=1}^{n-1} b_{ij} DH(Y^p_{i+1})(x)$ for any $x \in M$. In particular,

$$DH(Y^p_1, \ldots, Y^p_{n-1}) = (Y^p_1, \ldots, Y^p_{n-1}) \cdot b^{-1} \tag{7}$$

Recall that

$$D\rho^m(Y^p_1, \ldots, Y^p_{n-1}) = (Y^p_1, \ldots, Y^p_{n-1}) \cdot m,$$
$$D\rho^m(Y_1, \ldots, Y_{n-1}) = (Y_1, \ldots, Y_{n-1}) \cdot m$$

for any $m \in SO(n-1)$. Since $\rho^m \circ H = H \circ \rho^m_0$ for any m, Equation (7) implies

$$(Y^p_1, \ldots, Y^p_{n-1}) \cdot mb^{-1} = (Y^p_1, \ldots, Y^p_{n-1}) \cdot b^{-1} m.$$

Hence, b commutes with any $m \in SO(n-1)$. It is easy to check that

- if $n \geq 4$, then there exists $\alpha \in \mathbb{R} \setminus \{0\}$ such that $b = \alpha I_{n-1}$, where I_{n-1} is the unit matrix of size $(n-1)$,
- if $n = 3$, then there exists $\alpha \in \mathbb{R} \setminus \{0\}$ and $m_0 \in SO(2)$ such that such that $b = \alpha m_0$.

In each case, $\alpha^{-1}b$ is contained in the center of $SO(n-1)$.

We define a map $\theta : P \to SO_{+}(n,1)$ by $\theta(g) = bg^{-1}$. Since $\alpha^{-1}b$ is contained in the center of $SO(n-1)$, we have $\theta(P) = P$. In particular, θ is an automorphism of P such that

$$\theta(Y_1, \ldots, Y_{n-1}) = (Y_1, \ldots, Y_{n-1}) \cdot b^{-1},$$

where θ_* is the induced automorphism of the Lie algebra of P. By Equation (7), $\rho(H(x), \theta(\exp(Y_i))) = H(\rho_0(x, \exp(Y_i)))$ for any $x \in M$ and $i = 1, \ldots, n-1$.

On the other hand, $\theta(g') = g'$ and $\rho^t \circ H = H \circ \rho^t_0$ for any $g' \in \{\exp(tX)m \mid t \in \mathbb{R}, m \in SO(n-1)\}$. Therefore, $\rho(H(x), \theta(g)) = H(\rho_0(x, g))$ for any $x \in M$ and $g \in P$, \hfill \square

3.3 Smooth conjugacy between induced flows

In this subsection, we show the following theorem. With Proposition 3.3 and Theorem 3.3 it completes the proof of the main theorem.

Theorem 3.7. If $\rho \in \mathfrak{A}_s(M, P)$ is sufficiently C^∞-close to ρ_0, then there exists a C^∞ diffeomorphism h of N such that $\Phi_h^t \circ h = h \circ \Phi_0^t$ for any $t \in \mathbb{R}$.

Choose $\rho \in \mathfrak{A}_s(M, P)$ such that Φ_ρ is an s-conformal Anosov flow with respect to $g\rho$ and E_ρ^\perp is transverse to $T\Phi_\rho \oplus E_\rho^\perp$. By $\mathcal{F}_\rho^\text{ss}$, $\mathcal{F}_\rho^\text{su}$, $\mathcal{F}_\rho^\text{su}$, $\mathcal{F}_\rho^\text{uu}$, we denote the strong stable, strong unstable, weak stable, weak unstable foliations of Φ_ρ, respectively. Similarly, by $\mathcal{F}_\rho^\text{ss}$, $\mathcal{F}_\rho^\text{su}$, we denote the strong stable and weak stable foliations of Φ_ρ, respectively. Remark that all of them are C^∞ foliations, but the strong unstable and weak unstable foliations of Φ_ρ may not be C^∞.

9
By X_{p_0} and X_p, we denote the vector fields generating the flows Φ_{p_0} and Φ_p. Let $\sigma_1: T N_1 \to E^+_{p_0}$ and $\sigma_2: T N_1 \to E^-_{p_0}$ be the projection with respect to the splittings $E^+_{p_0} \oplus (T \Phi_{p_0} \oplus E^-_{p_0})$ and $E^-_{p_0} \oplus (T \Phi_{p_0} \oplus E^+_{p_0})$ of TN_1, respectively. Put $X_1 = X_{p_0} - \sigma_1(X_{p_0})$ and $X_2 = X_p - \sigma_2(X_p)$. They generates flows Ψ_1 and Ψ_2 on N_1. If ρ is sufficiently C^∞-close to p_0, then Ψ_1 and Ψ_2 are C^∞-close to Φ_{p_0}. Hence, we may assume that they are Anosov flows. Since $[X_1, E^+_{p_0}] \subset E^+_{p_0}$ and $X_1 \in T \Phi_{p_0} \oplus E^+_{p_0}$, we have

$$\Psi_1^t(x) \in F^u_{p_0}(\Phi_{p_0}(x)) \cap F^s_
ho(x).$$

for any $x \in M_1$ and $t \in \mathbb{R}$. If ρ is sufficiently close to p_0, then $D\Psi_1$ expands $E^u_{p_0}$ uniformly. So, we may assume that $E^u_{p_0}$ is the strong unstable subbundle of Ψ_1. Similarly, we may assume

$$\Psi_2^t(x) \in F^s_{\rho}(\Phi_{\rho}(x)) \cap F^u_{p_0}(x)$$

for any $x \in N_1$ and $t \in \mathbb{R}$, and E^u_{ρ} is the strong stable subbundle of Ψ_2. Since both $\Psi_1^t(x)$ and $\Psi_2^t(x)$ are contained in $F^u_{p_0}(x) \cap F^s_{\rho}(x)$, the orbits of Ψ_1 and Ψ_2 coincide. Hence, there exists a C^∞ cocycle over Ψ_2 such that

$$\Psi_1^t(x) = \Psi_2^{\rho(x,t)}(x)$$

for any $x \in N_1$ and $t \in \mathbb{R}$. Since each leaf of $F^u_{p_0}$ is Φ_{p_0}- and Φ_ρ-invariant and it is transverse to both $E^u_{p_0}$ and E^u_ρ, we have

$$\det D\Psi_1^t|_{E^u_{p_0}(x)} = \det D\Psi_2^{\rho(x,t)}|_{E^u_{\rho}(x)}$$

for any $(x, t) \in N_1 \times \mathbb{R}$ satisfying $\Psi_2^{\rho(x,t)}(x) = x$.

By Proposition 2.1, there exist a homeomorphism h_1 of N_1 such that $\Psi_1^t \circ h_1 = h_1 \circ \Phi_{p_0}$ for any $t \in \mathbb{R}$ and $h_1(F^u_{p_0}(x)) = F^u_{p_0}(x)$ for any $x \in N_1$. Since h_1 preserves each leaf of $F^u_{p_0}$, we have

$$\det D\Psi_1^t|_{E^u_{p_0}(x)} = \det D\Phi_{p_0}^t|_{E^u_{p_0}(h_1^{-1}(x))} = e^{-(n-1)t}$$

for any $(x, T') \in N_1 \times \mathbb{R}$ satisfying $\Psi_1^{T'}(x) = x$.

By Proposition 2.1 again, there exist a homeomorphism h_2 of N_1 such that $\Psi_2^t \circ h_2 = h_2 \circ \Phi_\rho$, for any $t \in \mathbb{R}$ and $h_2(F^s_{\rho}(x)) = F^s_{\rho}(x)$ for any $x \in N_1$. Since $F^u_{p_0}$ is a transversely conformal foliation, Ψ_2 is s-conformal. By Theorem 2.3, the restriction of h_2 to each leaf of F^s_{ρ} is smooth. Hence,

$$\det D\Psi_2^t|_{E^s_{\rho}(x)} = \det D\Phi_{\rho}^t|_{E^s_{\rho}(h_2^{-1}(x))} = e^{-(n-1)t}$$

for any $(x, T) \in N_1 \times \mathbb{R}$ satisfying $\Psi_2^T(x) = x$.

By Equations (11), (12), and (13), we have $\alpha(x, T) = T = 0$ for any $(x, T) \in N_1 \times \mathbb{R}$ satisfying $\Psi_2^T(x) = x$. By The C^∞ Livshitz Theorem, there exists a C^∞ function β on N_1 such that

$$\alpha(x, t) - t = \beta(\Psi_2^t(x)) - \beta(x)$$

for any $(x, t) \in N_1$.
for any \(x \in N_{\Gamma} \) and \(t \in \mathbb{R} \). We define a map \(h_3 : N_{\Gamma} \to N_{\Gamma} \) by \(h_3(x) = \Psi_2^{-\beta}(x) \).

Remark that if \(\rho \) is sufficiently \(C^\infty \)-close to \(\rho_0 \), then \(\alpha \) is \(C^\infty \)-close to zero, and hence, we can choose \(\beta \) so that it is \(C^\infty \)-close to 0. So, we may assume that \(h_3 \) is a \(C^\infty \) diffeomorphism sufficiently \(C^\infty \)-close to the identity map. Since \(\Phi_{\rho_0} \) is a contact Anosov flow and the set of contact structures is open in the space of \(C^1 \) hyperplane fields, we also may assume that \(Dh_3(E^-_\rho) \oplus E^+_{\rho_0} \) is a contact structure.

By Equation (10), we have \(\Psi_1^t \circ h_3 = h_3 \circ \Psi_2^t \). In particular, \(Dh_3(E^-_\rho) \) is the strong stable subbundle of \(\Psi_1 \). Since \(E^s_{\rho_0} \) is the strong unstable subbundle of \(\Psi_1 \), the flow \(\Psi_1 \) is a contact Anosov flow. Since \(\Psi_1 \) is s-conformal, it is also \(u \)-conformal by Proposition 2.3. By Theorem 2.3 \(h_1 \) is a \(C^\infty \) diffeomorphism.

Since \(F^s_{\rho_0} \) is a transversely conformal foliation, \(F^s_{\rho_0} = h_1(F^s_{\rho_0}) \) also is. It implies that \(\Phi_{\rho} \) and \(\Psi_2 \) are \(u \)-conformal. Since \(\Phi_{\rho} \) and \(\Psi_2 \) are s-conformal, Theorem 2.3 implies that \(h_2 \) is a \(C^\infty \) diffeomorphism. Now, we put \(h = h_2^{-1} \circ h_3^{-1} \circ h_1 \). Then, \(h \) is a \(C^\infty \) diffeomorphism and \(\Phi_{\rho}^t \circ h = h \circ \Phi_{\rho_0}^t \) for any \(t \in \mathbb{R} \).

The proof of Theorem 3.7 is completed.

References

[1] M. Asaoka, Non-homogeneous locally free actions of the affine group. preprint, arXiv:math/0702833.

[2] D. Fisher, Local rigidity of group actions: past, present, future. Dynamics, ergodic theory, and geometry, 45–97, Math. Sci. Res. Inst. Publ., 54, Cambridge Univ. Press, Cambridge, 2007.

[3] É. Ghys, Sur les actions localement libres du groupe affine. Thèse de 3ème cycle, Lille 1979.

[4] É. Ghys, Actions localement libres du groupe affine. Invent. Math. 82 (1985), no. 3, 479–526.

[5] É. Ghys, Rigidité différentiable des groupes fuchsiens. Inst. Hautes Études Sci. Publ. Math. 78 (1993), 163–185.

[6] M. Kanai, A remark on local rigidity of conformal actions on the sphere. Math. Res. Lett. 6 (1999), no. 5-6, 675–680.

[7] R. de la Llave, J.M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation. Ann. of Math. (2) 123 (1986), no. 3, 537–611.

[8] R. de la Llave, Further rigidity properties of conformal Anosov systems. Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1425–1441.

[9] R.S. Palais, Equivalence of nearby differentiable actions of a compact group. Bull. Amer. Math. Soc. 67 (1961) 362–364.
[10] V. Sadovskaya, On uniformly quasiconformal Anosov systems. *Math. Res. Lett.* **12** (2005), no. 2-3, 425–441.

[11] C. B. Yue, Smooth rigidity of rank-1 lattice actions on the sphere at infinity. *Math. Res. Lett.* **2** (1995), no. 3, 327–338.