Renal impairment and its impact on clinical outcomes in patients who are critically ill with COVID-19: a multicentre observational study

M. Gasparini, S. Khan, J. M. Patel, D. Parekh, M. N. Bangash, R. Stümpfe, A. Shah, B. Baharlo, S. Soni and Collaborators

1 Core Trainee, Surgery, Cancer and Cardiovascular Division, 2 Internal Medicine Trainee, Medicine and Integrated Care Division, 4 Consultant, Centre for Peri-operative Medicine and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
3 Consultant, Department of Critical Care Medicine, University Hospital Birmingham, Birmingham, UK
5 NIHR Doctoral Research Fellow, University of Oxford, Oxford, UK
6 Clinical Lecturer, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK

Summary
Renal impairment is common in patients who are critically ill with coronavirus disease-19 (COVID-19). We examined the association between acute and chronic kidney disease with clinical outcomes in 372 patients with coronavirus disease-19 admitted to four regional intensive care units between 10 March 2020 and 31 July 2020. A total of 216 (58%) patients presented with COVID-19 and renal impairment. Acute kidney injury and/or chronic kidney disease was associated with greater in-hospital mortality compared with patients with preserved renal function (107/216 patients (50%) (95%CI 44–57) vs. 32/156 (21%) (95%CI 15–28), respectively; p < 0.001, relative risk 2.4 (95%CI 1.7–3.4)). Mortality was greatest in patients with renal transplants (6/7 patients (86%) (95%CI 47–100)). Mortality rates increased in patients with worsening renal injury according to the Kidney Disease: Improving Global Outcomes classification: stage 0 mortality 33/157 patients (21%) (95%CI 15–28) vs. stages 1–3 mortality 91/186 patients (49%) (95%CI 42–56); p < 0.001, relative risk 2.3 (95%CI 1.7–3.3). Survivors were less likely to require renal replacement therapy compared with non-survivors (57/233 patients (24%) vs. 64/139 patients (46%), respectively; p < 0.001, relative risk 1.9 (95%CI 1.4–2.5)). One-fifth of survivors who required renal replacement therapy acutely in intensive care continued to require renal support following discharge. Our data demonstrate that renal impairment in patients admitted to intensive care with COVID-19 is common and is associated with a high mortality and requirement for on-going renal support after discharge from critical care. Our findings have important implications for future pandemic planning in this patient cohort.

Introduction
Coronavirus disease-19 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a public health emergency of international concern with high levels of community transmission and a high mortality rate in high-risk groups [1]. The care of patients with COVID-19 has
put a significant strain on intensive care unit (ICU) resources worldwide. Reported mortality rates have varied from 40 to 50% and thus remain significant [2, 3].

Patients who are critically ill with COVID-19 often require respiratory support secondary to acute respiratory distress syndrome (ARDS) [4]. However, a large proportion of patients with COVID-19 appear to also manifest extrapulmonary sequelae involving numerous organ systems [5]. The incidence of acute kidney injury (AKI) in patients infected with COVID-19 is between 3 and 6%, rising to 15–58% in those patients who are critically ill. Non-survivors have an incidence of AKI that is considerably higher than survivors (53% vs. 1%), suggesting that the onset of AKI correlates not only with disease severity but may also have prognostic significance [6]. Furthermore, in those patients who require renal replacement therapy (RRT), the impact on resource utilisation is considerable, especially in a pandemic situation where resources may have to be rationed [7, 8].

Patients with chronic kidney disease (CKD) account for approximately 10% of ICU admissions [9, 10]. However, in the current COVID-19 pandemic, outcomes for patients who are critically ill and have CKD, end-stage renal failure (ESRF) or have undergone a renal transplant, are often not included in analyses [11–13]; even when these patient cohorts are analysed, the number of patients included are small [14–18]. In addition, although the estimated rate of RRT following AKI is approximately 5% in ICU [19], there is a paucity of data on RRT requirements for those patients who survive an ICU admission for COVID-19 involving AKI [11]. We aimed to characterise the clinical outcomes of patients who are critically ill with COVID-19 and had AKI, pre-existing CKD and/or ESRF.

Methods
This report was prepared using the strengthening of observational studies in epidemiology (STROBE) guidelines [20]. Ethical approval was not required as this study was carried out as a service evaluation within the NHS and recorded under the auspices of the clinical audit office at Imperial College Healthcare NHS Trust and University Hospitals Birmingham NHS Foundation Trust.

We retrospectively evaluated all adult patients (aged ≥ 18 years) admitted to ICU with a confirmed diagnosis of COVID-19 pneumonia (made using real-time polymerase chain reaction assay), at three teaching hospitals in London (Hammersmith Hospital, Charing Cross Hospital and St Mary’s Hospital, all part of Imperial College Healthcare NHS Trust) and one hospital in Birmingham (Queen Elizabeth Hospital, part of University Hospitals Birmingham NHS Foundation Trust) from 10 March to 23 July 2020.

Patients were categorised into five groups: those who had no kidney injury; those who developed new onset AKI; those with pre-existing CKD; those with ESRF; and those who underwent a renal transplant. Kidney injury was defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria (see online Supporting Information, Appendix S1). Baseline serum creatinine was defined as the latest serum creatinine value before presentation (if known). Patients with CKD were identified as those who had a formal diagnosis of CKD documented in their medical notes before admission.

The primary outcome measure was in-hospital mortality. Secondary outcome measures included: change in mean creatinine (baseline to peak); and the need for RRT during ICU stay and after discharge from ICU. The following additional data were also recorded: baseline/community renal function; patient baseline characteristics; ICU clinical data including hourly urine output; acute physiology and chronic health evaluation (APACHE 2) score; ventilation requirements; laboratory tests (haematological and biochemical); and model(s) of RRT.

A sample size was not calculated as this was an observational study and all eligible patients were included. Shapiro–Wilks normality tests were carried out and comparisons between groups were performed using ANOVA (with Sidak’s correction for multiple comparison) for parametric data. Categorical data analyses were made using chi-square test with Fisher’s correction. All data were analysed on GraphPad Prism (v8.00; GraphPad Software, San Diego, CA, USA). A value of p < 0.05 was defined as the minimal threshold for statistical significance.

Results
A total of 372 ICU patients were included. Of those, 156 patients (42%) had no renal impairment during their ICU stay, 168 patients (45%) developed AKI and 48 patients (13%) had pre-existing kidney impairment (Fig. 1). Patient baseline characteristics are shown in Table 1. The study cohort had a median (IQR [range]) age of 59 (51–65 [21–89]) years with a male predominance (269 men (72%)) and the majority of patients were from a Black, Asian and minority ethnic (BAME) background (281 patients (76%)). The median (IQR [range]) APACHE-2 score was 15 (11–20 [2–66]). In total, 337 patients (91%) required mechanical ventilation.

Overall, 139 patients (37%) died. Patients with AKI and/or CKD had a greater in-hospital mortality compared with patients with preserved renal function: 107/216 patients (50%)}
In this multicentre retrospective study, we investigated the outcomes of patients who were critically ill with COVID-19 and had pre-existing renal impairment or new kidney injury. We made a number of important findings: first, patients who are critically ill with COVID-19 and have any form of renal impairment experience high mortality rates; second, mortality in patients with new AKI and pre-existing CKD is comparable, with the exception of those patients with renal transplants who are an extremely vulnerable group; third, mortality is increased in patients with worsening KDIGO stages of kidney injury; fourth, a significant proportion of patients who survive need long-term RRT following discharge from ICU; and finally, survivors are less likely to require RRT during their ICU admission. To the best of our knowledge, this is the first comprehensive analysis of outcomes in patients who are critically unwell with COVID-19 and have renal impairment, particularly those patients with pre-existing CKD [21].

The incidence of AKI in patients with non-COVID-19 ARDS is reported as approximately 44% and has a mortality of 42% [22]. However, our data demonstrate that patients are more at risk of developing renal impairment with COVID-19 infection which translates to a higher mortality rate. The high mortality rates observed in our study cohort of patients with AKI and COVID-19 infection is similar to other studies [23]. However, unlike other reports, we also investigated patients with pre-existing renal pathologies and included those patients with a previous, viable renal transplant and those with CKD. The mortality rate of recipients of renal transplants is markedly higher than the other groups and these patients are, therefore, an extremely vulnerable group. There are several possible reasons for this such as the pre-existing immunosuppressed state and associated comorbidities of this patient sub-group [24].

Surprisingly, mortality rates of patients with CKD stages 1–4, new kidney impairment and ESRF were comparable, although these were more than double the mortality rates seen in patients without renal impairment. While there may...
have been selection bias in patients admitted to ICU with a history of renal disease, these encouraging results have potential connotations for future surges, suggesting that ICU admission may be entirely appropriate for patients who are critically ill with COVID-19 and have CKD (including ESRF). We also showed that severity of kidney injury was associated with higher mortality rates. These data highlight that clinicians should aim to recognise and proactively manage worsening kidney injury in patients with COVID-19 before progression to KDIGO stage 2 and beyond, where mortality increases significantly.

Albeit not specific to COVID-19-associated AKI, management strategies include: avoidance of nephrotoxic drugs; lung-protective ventilation to prevent the adverse haemodynamic effects that can be associated with mechanical ventilation; and maintenance of euvolaemia to prevent AKI from either hypovolaemia or fluid overload and resultant congestion [25]. A significant proportion of patients with KDIGO stage-3 AKI required RRT and we were able to demonstrate that modes other than continuous RRT by haemodialysis, such as intermittent haemodialysis and acute peritoneal dialysis, are possible.

While these data clearly demonstrate that COVID-19 infection has an effect on the renal system, the pathophysiology of this is not well understood due to the lack of renal biopsies in patients who are critically ill with COVID-19. Several post-mortem studies have postulated that the renal injury is due to direct infection, with the virus causing an endotheliitis similar to its postulated effect in the lung [26–28], although concerns have been raised

Table 1	Characteristics of 372 patients admitted to four regional intensive care units with COVID-19 stratified into five groups according to the type of observed renal impairment. Values are median (IQR [range]), number (proportion) or mean (SD).				
No renal impairment (n = 156)	New AKI (n = 168)	Pre-existing CKD (stage 1–4) (n = 22)	ESRF (n = 19)	Renal transplant (n = 7)	
Age; years	54 (46–63 [21–89])	60 (52–66 [24–82])	60 (54–66 [32–78])	60 (57–68 [29–88])	60 (55–65 [48–69])
Sex; male	102 (65%)	134 (80%)	18 (82%)	9 (47%)	6 (86%)
Ethnicity, n (%)					
White	37 (24%)	46 (27%)	6 (27%)	3 (16%)	
Asian	31 (20%)	38 (23%)	8 (36%)	5 (26%)	4 (57%)
Black	16 (10%)	19 (11%)	3 (14%)	9 (47%)	1 (14%)
Other	72 (46%)	65 (39%)	5 (23%)	2 (11%)	2 (29%)
APACHE 2 score	12 (10–15 [2–56])	16 (13–20 [4–63])	22 (16–28 [10–63])	25 (23–43 [17–66])	34 (32–42 [19–63])
Serum creatinine; µmol·l⁻¹					
Baseline	76 (18)	77 (18)	221 (217)	643 (455)	244 (123)
Peak	91 (38)	324 (210)*	466 (264)*	1163 (532)*	479 (182)†
No renal replacement therapy	156 (100%)	86 (51%)	7 (32%)	–	2 (29%)
Mode of renal replacement therapy					
Haemodialfiltration	n/a	75 (45%)	13 (59%)	11 (58%)	5 (71%)
Intermittent haemodialysis	n/a	3 (2%)	–	6 (32%)	–
Haemodialfiltration/intermittent haemodialysis	n/a	2 (1%)	2 (9%)	2 (11%)	–
Haemodialfiltration/peritoneal dialysis	n/a	1 (1%)	–	–	–
Peritoneal dialysis	n/a	1 (0.6%)	–	–	–
In-hospital mortality (95%CI)	32 (21% [15–28])	81 (48% [41–56])	11 (50%) [31–69])	9 (47%) [27–68])	6 (86%) [47–100])

AKI, acute kidney injury; CKD, chronic kidney disease; ESRF, end-stage renal failure; APACHE, acute physiology and chronic health evaluation.
* p < 0.001 compared with baseline.
† p < 0.05 compared with baseline.
subsequently about the validity of these data [29]. Recent data also suggest the possibility of lung-to-kidney cross talk, with an initial injury to the lungs followed by kidney failure several days later mediated by inflammatory particles such as cytokines (e.g. tissue necrosis factor) or extracellular vesicles [30–32]. Furthermore, drug toxicity from excessive diuresis, antimicrobial therapy or contrast exposure may also play a role. There may also be other contributing factors such as hypotension, volume depletion, hypercoagulability and cardiac dysfunction [30]. Therefore, it could be postulated that the kidneys are likely to reflect the severity of COVID-19 pneumonitis, with the renal injuries observed due to multimodal pathologies rather than direct viral injury; however, studies involving renal biopsies would be needed to evaluate this. Further urgent mechanistic work is required to greater understand the pathophysiology of kidney injury and failure in patients with COVID-19, which may translate to the development of novel therapies and allow recognition of those patients at particular risk.

We found that 19% of survivors who had received RRT acutely required dialysis on discharge from the ICU. Although our follow-up period was not long enough to determine the long-term risks of developing CKD or ESRF in patients with new kidney impairment associated with COVID-19, it potentially indicates a higher risk for long-term RRT requirement, compared with unselected critical care cohorts. This would continue to exhibit further recovery of renal function after hospital discharge negating the need for ongoing RRT. Second, if indeed patients with COVID-19 have an increased risk to long-term RRT, then the question remains whether this is due to the underlying pathology or a consequence of practice (such as timing of initiation of RRT) especially in view of recently published evidence [21]. Nevertheless, irrespective of the debate around the long-term requirement for RRT, our data reassuringly showed similar mortality rates in patients who needed to commence acute RRT on ICU and had either AKI or CKD. These findings have potential implications for the management of CKD and ESRF patients in any future surge.

Although this study included a relatively large number of patients with COVID-19 and renal impairment, it has several limitations. First, our cohort of patients included a larger proportion of non-white patients (76% vs. 33%) and patients with pre-existing CKD (13% vs. 8%) compared with the Intensive Care National Audit and Research Centre (ICNARC) database and therefore may not be translatable to the rest of the UK population [33]. Second, this is a retrospective observational study without any non-COVID-19 matched controls or controls with COVID-19 not admitted to ICU. Third, the aetiology of AKI was not determined by renal biopsy, precluding direct evaluation of the renal effects of COVID-19 or any inflammatory response implicated in its pathology. Additionally, while we compared mortality between AKI, CKD stages 1–4 and ESRF, there was likely to be some selection bias in those patients admitted to ICU, which may have had a positive effect on our mortality outcomes. Finally, confounding variables were not controlled for

KDIGO stage	Frequency	Mortality	Requiring RRT
0	157 (43%)	33 (21%)	–
1	43 (12%)	15 (35%)	10 (23%)
2	38 (10%)	23 (61%)	11 (29%)
3	105 (28%)	53 (50%)	75 (71%)
End-stage renal failure	19 (5%)	9 (47%)	19 (100%)
Renal transplant	7 (2%)	6 (86%)	5 (71%)

Mode of renal replacement therapy

Mode of renal replacement therapy	Frequency	Mortality	Requiring RRT
Haemodialfiltration	103 (49%)	59 (57%)	
Intermittent haemodialysis	9 (4%)	4 (44%)	
Haemodialfiltration and intermittent haemodialysis	6 (3%)	1 (17%)	
Haemodialfiltration and peritoneal dialysis	1 (0.5%)	–	
Peritoneal dialysis	1 (0.5%)	–	

© 2020 The Authors. Anaesthesia published by John Wiley & Sons Ltd on behalf of Association of Anaesthetists.
between groups of patients examined in this study (as it was not powered to allow for regression analysis) introducing the possibility of other factors beyond renal function impacting on outcomes. In conclusion, there was a high prevalence of AKI in patients who were critically ill with COVID-19. However, important differences exist between stages of acute and CKD in how they affect mortality in patients with COVID-19, and patients with renal transplantation are an extremely vulnerable group. In view of this, attention needs to be paid to patients with COVID-19 with any form of renal impairment and every effort made to prevent progression of renal injury in order to reduce mortality. Once the need for acute RRT has been established, there was no difference in mortality rates for patients with AKI compared with those with CKD. Furthermore, the overall mortality rates for patients with AKI, CKD and ESRF are broadly similar, which potentially has implications for prognostication and resource allocation.

Acknowledgements
We thank the ICU staff at Imperial College NHS Trust, London and Queen Elizabeth Hospital, Birmingham for their assistance in this project. This work uses data provided by patients and collected by the NHS as part of their care and support at Imperial College Healthcare NHS Trust and University Hospitals Birmingham NHS Foundation Trust. No external funding or competing interests declared.

References
1. Wiersinga WJ, Rhodes A, Cheng AC, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. Journal of the American Medical Association 2020; 324: 782–93.
2. Bhatraju PK, Ghassemieh BJ, Nichols M, et al. Covid-19 in critically ill patients in the Seattle region – case series. New England Journal of Medicine 2020; 382: 2012–22.
3. Armstrong RA, Kane AD, Cook TM. Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia 2020; 75: 1340–9.
4. Auld SC, Candi-Scheible M, Blum JM, et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Critical Care Medicine 2020; 48: e799–804.
5. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nature Medicine 2020; 26: 1017–32.
6. Yang X, Jin Y, Li R, et al. Prevalence and impact of acute renal impairment on COVID-19: a systematic review and meta-analysis. Critical Care 2020; 24: 356.
7. Wright SE, Bodenham A, Short AIK, Turney JH. The provision and practice of renal replacement therapy on adult intensive care units in the United Kingdom. Anaesthesia 2003; 58: 1063–9.
8. Lee CCM, Thampi S, Lewin B, Lim TJD, Rippin B, Wong WH, Agrawal RV. Battling COVID-19: critical care and peri-operative healthcare resource management strategies in a tertiary academic medical centre in Singapore. Anaesthesia 2020; 75: 861–71.
9. Forte JC, van der Horst ICC. Comorbidities and medical history essential for mortality prediction in critically ill patients. Lancet Digital Health 2019; 1: E48–49.
10. Fidalgo P, Bagshaw SM. Chronic kidney disease in the intensive care unit. In: Anic M, ed. Managing chronic kidney disease. Berlin: Springer, 2014: 417–38.
11. Peng J, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney International 2020; 97: 829–38.
12. Pei G, Zhang Z, Peng J, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. Journal of the American Society of Nephrology 2020; 31: 1157–65.
13. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. Journal of Infectious Diseases 2020; 80: 388–93.
14. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine 2020; 382: 1708–20.
15. Hu L, Chen S, Fu Y, et al. Risk factors associated with clinical outcomes in 323 COVID-19 hospitalized patients in Wuhan, China. Clinical Infectious Diseases 2020. Epub 3 May. https://doi.org/10.1093/cid/ciaa539
16. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. Journal of the American Medical Association Cardiology 2020; 5: 802–10.
17. Lu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. British Medical Journal 2020; 368: m606.
18. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054–62.
19. Gallagher M, Cass A, Bellomo R, et al. Long-term survival and dialysis dependency following acute kidney injury in intensive care: extended follow-up of a randomized controlled trial. Public Library of Science Medicine 2014; 11: e1001601.
20. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bulletin World Health Organization 2007; 85: 867–72.
21. START-AKI Investigators, Canadian Critical Care Trials Group, Australian and New Zealand Intensive Care Society Clinical Trials Group, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. New England Journal of Medicine 2020; 383: 240–51.
22. Darmon M, Clech C, Adrie C, et al. Acute respiratory distress syndrome and risk of AKI among critically ill patients. Clinical Journal of the American Society of Nephrology 2014; 9: 1347–53.
23. Chaihi K, Dao M, Pham T, et al. Severe acute kidney injury in COVID-19 patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 2020. Epub 31 August. https://doi.org/10.1164/rrc.202005-1524LE.
24. Kotwal S, Webster AC, Cass A, Gallagher M. Comorbidity recording and predictive power of comorbidities in the Australia and New Zealand dialysis and transplant registry compared with administrative data: 2000–2010. Nephrology (Carlton) 2016; 21: 930–7.
25. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respiratory Medicine 2020; 8: 738–42.
26. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet 2020; 395: 1417–8.
27. Su H, Yang M, Wan C, et al. Renal histopathological analysis of postmortem findings of patients with COVID-19 in China. *Kidney International* 2020; 98: 219–27.

28. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. *New England Journal of Medicine* 2020; 383: 120–8.

29. Miller SE, Brealey JK. Visualization of putative coronavirus in kidney. *Kidney International* 2020; 98: 231–2.

30. Gabarre P, Dumas G, Dupont T, et al. Acute kidney injury in critically ill patients with COVID-19. *Intensive Care Medicine* 2020; 46: 1339–48.

31. Cunningham PN, Dyanov HM, Park P, Wang J, Newell KA, Quigg RJ. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. *Journal of Immunology* 2002; 168: 5817–23.

32. Soni S, O’Dea KP, Tan YY, et al. ATP redirects cytokine trafficking and promotes novel membrane TNF signaling via microvesicles. *Federation of American Societies for Experimental Biology Journal* 2019; 33: 6442–55.

33. ICNARC. ICNARC report on COVID-19 in critical care 24th August 2020. 2020. www.icnarc.org/Our-Audit/Audits/Cmp/Reports (accessed 29/08/2020).

Appendix 1. List of collaborating authors

S. Brett, Hammersmith Hospital, London, UK; R. Broomhead, Hammersmith Hospital, London, UK; P. Patel, Hammersmith Hospital, London, UK; U. Waheed, Hammersmith Hospital, London, UK; M. Templeton, Hammersmith Hospital, London, UK; M. Chotalia, University Hospital Birmingham, Birmingham, UK; J. Alderman, University Hospital Birmingham, Birmingham, UK; E. Beesley, University Hospital Birmingham, Birmingham, UK.

Supporting Information

Additional supporting information may be found online via the journal website.

Appendix S1. Diagnostic criteria for the differing Kidney Disease: Improving Global Outcomes (KDIGO) stages.