Quantification of Andrographolide in *Andrographis paniculata* (Burm.f.) Nees, Myricetin in *Syzygium cumini* (L.) Skeels, and Brazilin in *Caesalpinia sappan* L. by HPLC Method

Eem Masaenah1,2, Berna Elya1,*, Heri Setiawan1, Zahra Fadhilah1, Varda Arianti1

ABSTRACT

Introduction: Andrographolide, myricetin, and brazilin are bioactive compounds from *Andrographis paniculata*, *Syzygium cumini*, and *Caesalpinia sappan* plants that have potential as medicinal ingredients. **Objectives:** To determine the levels of andrographolide in *A. paniculata* herb extract (APE), myricetin in *S. cumini* leaf extract (SCE), and brazilin in *C. sappan* wood extract (CSE) as marker compounds for extract quality control using the HPLC method. **Methods:** The separation was carried out on a reverse-phase C18 column (150 x 4.6 mm; 5 μm). The isocratic was prepared from methanol - water (50:50 v/v); 0.1% orthophosphoric acid - methanol (60:40 v/v); and 0.3% acetic acid - acetonitrile (85.5: 14.5 v/v) as mobile phase with flow rate 1 mL/min for andrographolide, myricetin, and brazilin determination, respectively and detection using UV detector at a wavelength of 284 nm, 369 nm, and 280 nm, respectively. **Results:** The linear regression for andrographolide was y = 14113x + 5948.8 (r^2= 0.9994); myricetin was y = 87766x – 138895 (r^2=0.9996); and brazilin was y = 18520x – 42668 (r^2=0.9992). The andrographolide content in APE was found to be 14.4868 %. The myricetin content in SCE was found to be 0.3190 %. The brazilin content in CSE was found to be 2.1280 %. **Conclusion:** The described HPLC method was successfully used for the analysis of the APE, SCE, and CSE. This method can be used for the identification and quantification of andrographolide, myricetin, and brazilin in herbal raw materials or herbal products containing these three extracts. **Key words:** Andrographis paniculata, Caesalpinia sappan, HPLC, Marker compounds, Syzygium cumini. Quality control.

INTRODUCTION

Andrographis paniculata (Burm.f.) Nees (family: Acanthaceae) is known as "Sambiloto" in Indonesia. It grows in South Asian countries and is used as traditional medicine in China, Hong Kong, the Philippines, Malaysia, Thailand, and Indonesia.1 The major constituents of *A. paniculata* are diterpenoids, flavonoids, and polyphenols.2 Typical contents are diterpene lactones, including andrographolide and its analogs, neoandrographolide, 14-deoxyandrographolide, and 14-deoxy-11-12-didehydroandrographolide.3 Andrographolide is an active component with a very bitter taste has many biological activities, including anti diabetic and antihyperlipidemic,4 anti-inflammatory,5 antiallergic,6 anticytokine,7 anticancer,8 and hepatoprotective.9

Syzygium cumini (L) Skeels (family: Myrtaceae) is known as "Jamblang" in Indonesia, is a tropical plant found across Southeast Asia, including Indonesia. It is known to have various medicinal properties, which have been attributed to the presence of bioactive compounds in various parts of the plant.9 This plant is reported rich in flavonoids and phenolic acids. The most flavonoid content was reported in the *S. cumini* leaves, especially quercetin, myricetin, myricitrin, kaempferol, and their glucoside derivatives, in addition to simple phenols such as ellagic acid, ferulic acid, chlorogenic acid, and gallic acid.10 Myricetin, as one of the bioactive markers in *S. cumini* leaf, has been reported to have various pharmacological activities including antiplatelet,11 antihyperglycemic,12 antioxidant,13,14 neuroprotective,15 and treatment of cardiometabolic diseases.16

Caesalpinia sappan L. (family: Caesalpiniaeae)16 is known as "Secang" in Indonesia. It grows and is widespread in Southeast Asia, including Indonesia. The chemical constituents contained in *C. sappan* are phenolic components including xanthones, coumarin, chalcones, flavones, homoisoflavonoids, and brazilin.17 Brazilin is the major phenolic compound contained in extracts of the *C. sappan* wood and has proven to have many pharmacological activities such as antidiabetic,17,18,19,20 antihypertensive, anti-inflammatory,19 antioxidant,21 and antibacterial.16

A. paniculata, *S. cumini*, and *C. sappan* can be combined to be developed into herbal products. The criteria for good herbal medicines are quality, safety, and efficacy. To meet these criteria, as a first step it is necessary to standardize raw materials as a guarantee of product quality.22 The raw materials in the form of plant extracts contain active substances with therapeutic levels. Determination of the concentration of substances in extracts requires a selective method with accuracy and precision that meets the requirement for a valid method. One such method is high-performance liquid chromatography (HPLC). It has been used to identify and determine levels of active compounds in a plant.23

Quantification of andrographolide, myricetin, and brazilin in plant parts is one of the initial steps in the standardization as quality control of herbal
Ingredients for their development as herbal products. Therefore, this study aimed to determine the content of the andrographolide in the herb extract of *A. paniculata*, myricetin in the *S. cumini* leaf extract, and brazilen in the *C. sappan* wood extract.

MATERIALS AND METHOD

Reagent

Andrographolide (≥98%), myricetin (≥96%), and brazilen (≥98%) standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). All reagents, such as methanol and acetonitrile (HPLC-grade), analytical grade orthophosphoric acid, and concentrated acetic acid were obtained from Merck (Germany).

Plant materials

The *A. paniculata* herbs and sappan wood (*C. sappan*) were collected from "UD Herbal Jaya", Karanganyar-Surakarta, Central Java, Indonesia, whereas the *S. cumini* leaves were obtained from "Koperasi Bina Kimia LIPI", Serpong, West Java, Indonesia. The three samples were authenticated by the Indonesian Institute of Sciences, Research Center for Plant Conservation, Botanic Gardens, Bogor, West Java, Indonesia (voucher number: B-890/IPH.3/KS/VII/2020). The samples were cleaned, impurities were removed, powdered using a blender, and stored in airtight containers.

Extraction

The dried powder of *A. paniculata* herbs (500 g), *S. cumini* leaves (500 g), and *C. sappan* wood (500 g) was macerated using 70% ethanol (1:10 w/v) at room temperature for 24 hours, respectively. Subsequently, the filtrate was filtered and collected. The residue was macerated again using the same procedure. After 2 times re-maceration, all filtrate was collected, concentrated with a vacuum rotary evaporator, followed by a water bath to obtain a thick extract.

Each crude extract from *A. Paniculata* (APE), *S. Cumini* (SCE), and *C. Sappan* (CSE) was dissolved in HPLC-grade methanol to 10 mL. The solution was sonicated for 10 minutes, then filtered with Syringe Filter 0.45 μm PTFE. Subsequently, the sample solution was diluted with methanol-water (50:50 v/v); 0.1% orthophosphoric acid-methanol (60:40 v/v); and 0.3% acetic acid-acetonitrile (85:15 v/v) as mobile phase at a flow rate of 1 mL/min and the temperature was set to 25°C for determination of andrographolide, myricetin, and brazilen, respectively. The APE, SCE, and CSE injection volume was 20 μl, and the analyses were monitored with the UV-Vis detector at 254 nm, 369 nm, and 280 nm, respectively. The system and chromatographic conditions are presented in Table 1.

Calibration curve of andrographolide, myricetin, and brazilen standards

Each standard stock solution (100 μg/mL) were diluted with methanol (HPLC-grade) to 6 concentration series on the range of 8 - 48 μg/mL andrographolide; 8.7 - 48 μg/mL myricetin; and 28 - 56 μg/mL brazilen. Furthermore, the series solution concentration of the standard was injected and analyzed according to the chromatographic conditions of each sample and peak areas were recorded. Linearity was determined by three injections of six concentration series. The mean peak area was plotted against the concentration. Then the linearity was evaluated using a calibration curve to calculate the correlation coefficient, slope, and intercept.

Quantification of andrographolide in APE, myricetin in SCE, and brazilen in CSE

Five mg each extract of APE, SCE, and CSE dissolved in HPLC-grade methanol to 10 mL. The solution was sonicated for 10 minutes, then filtered with Syringe Filter 0.45 μm PTFE. Subsequently, the sample was injected into the HPLC system according to chromatographic conditions for each extract test (Table 1). The peak areas were recorded and the concentration of andrographolide, myricetin, and brazilen in the samples were determined using the calibration curve.

RESULT AND DISCUSSION

Calibration curve of andrographolide, myricetin, and brazilen standards

The linear regression equation of calibration curve for andrographolide was $y = 14113x + 5948.8$ ($r^2 = 0.9994$) (Figure 1); myricetin was $y = 87766x - 138895$ ($r^2 = 0.9996$) (Figure 2); brazilen was $y = 18520x - 42668$ ($r^2 = 0.9992$) (Figure 3). The linear regression equation obtained has good linearity with correlation coefficient value (r^2) > 0.998 was considered as evidence that the assay method used is quite sensitive.24

Sample	Injected concentration (μg/mL)	Area	Slope	Intercept	Concentration obtained (%)
APE	500	1026926	5948.8	14113	Andrographolide 14.4686
SCE	500	1079	-138895	87766	Myricetin 0.3190
CSE	500	154383	-42668	18520	Brazilen 2.1280

Table 1: HPLC condition for determination of andrographolide in the APE, myricetin in the SCE, and brazilen in the CSE.

Table 2: The content of andrographolide in APE, myricetin in SCE, and brazilen in CSE.
Masaenah E, et al.: Quantification of Andrographolide in *Andrographis paniculata* (Burm.f.) Nees, Myricetin in *Syzygium cumini* (L.) Skeels, and Brazilin in *Caesalpinia sappan* L. by HPLC Method

Figure 1: Calibration curve of andrographolide.

\[y = 14113x + 5948.8 \]
\[R^2 = 0.9994 \]

Figure 2: Calibration curve of myricetin.

\[y = 87766x - 138895 \]
\[R^2 = 0.9996 \]

Figure 3: Calibration curve of brazilin.

\[y = 18520x - 42668 \]
\[R^2 = 0.9992 \]
Masaenah E, et al.: Quantification of Andrographolide in *Andrographis paniculata* (Burm.f.) Nees, Myricetin in *Syzygium cumini* (L.) Skeels, and Brazilin in *Caesalpinia sappan* L. by HPLC Method

Figure 4: Representative HPLC Chromatogram of andrographolide standard (A) and APE (B). The mobile phase was methanol-water (50:50 v/v). Detection UV 254 nm.

Figure 5: Representative HPLC Chromatogram of myricetin standard (A) and SCE (B). The mobile phase was 0.1% ortho phosphoric acid-methanol (60:40 v/v). Detection UV 369 nm.
Quantification of andrographolide in APE, myricetin in SCE, and brazilin in CSE

In this study, 70% ethanol was successfully used to extract the andrographolide, myricetin, and brazilin compounds contained in A. paniculata herb; S. cumini leaf; and C. sappan wood, respectively. The retention times obtained for andrographolide, myricetin, and brazilin were 5.930; 10.492, and 5.533 min, respectively. The representative HPLC-chromatogram of andrographolide standard and APE was shown in Figure 4, myricetin standard and SCE was shown in Figure 5, and brazilin standard and CSE was shown in Figure 6.

The andrographolide content in APE was found to be 14.4686 %. The myricetin content in SCE was found to be 0.3190 %. The brazilin content in CSE was found to be 2.1280 %. The result of andrographolide, myricetin, and brazilin determination are shown in Table 2.

The varying levels of bioactive compounds obtained are influenced by several factors, including the area where the plant grows, harvesting and post-harvest processing, as well as the extraction method and solvent used to extract the active compounds. 23,25,26

CONCLUSION

In this study, andrographolide in A. paniculata herb extract, myricetin in S. cumini leaf extract, and brazilin in C. sappan wood extract could be detected and quantified using the HPLC method. The andrographolide, myricetin, and brazilin content was 14.4686 %; 0.3190 %; and 2.1280 %, respectively. The quantification data obtained can be used to assess the biological activity of the raw materials of A. paniculata, S. cumini, and C. sappan singly or in combination. In addition, as a guarantee of quality control of herbal products containing the ingredients of these three extracts.

CONFLICTS OF INTEREST

There is no conflicts of interest.

ACKNOWLEDGMENT

This research was supported by Faculty of Pharmacy, Universitas Indonesia and funded through “Publikasi Terindeks International (PUTI) Q3 Universitas Indonesia”. Grant with contract number NKB-1804/UN2-ST/HKP.05.00/2020.

ABBREVIATIONS

APE: Andrographis paniculata herb extract; CSE: Caesalpinia sappan wood extract; HPLC: High-Performance Liquid Chromatography; SCE: Syzygium cumini leaf extract; UV: Ultraviolet.
REFERENCES

1. Sajeeb BK, Kumar U, Halder S, Bachar SC. Identification and quantification of andrographolide from *Andrographis paniculata* (Burm. f.) wall. ex Nees by RP-HPLC method and standardization of its market preparations. Dhaka Univ J Pharm Sci. 2015;14(1):71-8.

2. Kumar S, Dhani T, Shah S. Extraction of three bioactive diterpenoids from *Andrographis paniculata*: Effect of the extraction techniques on extract composition and quantification of three andrographolides using high-performance liquid chromatography. J Chromatogr Sci. 2014;52(9):1043-50.

3. Karioti A, Timoteo P, Bergonzic MJ, Bilia AR. A validated method for the quality control of *Andrographis paniculata* preparations. Planta Med. 2017;83(14-15):1207-13.

4. Nugroho AE, Andrie M, Warditiani NK, Siswanto E, Pramono L. Quantification of andrographolide in *Andrographis paniculata* (Nees) and andrographolide in high-fructose-fat-fed rats. Indian J Pharmacol. 2012;44(3):377-81.

5. Villiedieu-Percheron E, Ferreira V, Campos JF, Destandau E, Pichon C, Berteina-Raboin S. Quantitative determination of andrographolide and related compounds in *Andrographis paniculata* extracts and biological evaluation of their anti-inflammatory activity. Foods. 2019;8(12).

6. Balap A, Lohidasan S, Sinnathambi A, Mahadik K. Herb-drug interaction of *Andrographis paniculata* (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats. J Ethnopharmacol. 2017;195:214-21.

7. Malik Z, Parveen R, Siddiqui S, Khan MA, Khan A et al. Anticancer potential of andrographolide from *Andrographis paniculata* (Bur. f.) Nees and its mechanisms of action. 2021;(February).

8. Nasir A, Abubakar M, Shehu R, Aliyu U, Toge B. Hepatoprotective effect of the aqueous leaf extract of *Syzygium cumini* (L.) Skeels and its formulation using HPLC. 2019;5(1):85-8.

9. Chavan V, Chache TK, Yadav V. Simultaneous quantification of gallic acid, myricetin and quercetin in the extract of *Syzygium cumini* plant and its formulation using HPLC. 2019;5(1):85-8.

10. Chagas VT, Coelho RMR., Gaspar RS, Silva SA, Mastrogiovanni M, Mendonça CJ, et al. Protective effects of a polyphenol-rich extract from *Syzygium cumini* (L.) Skeels leaf on oxidative stress-induced diabetic rats. Oxidative Medicine and Cellular Longevity. 2018;2018:1-5.

11. Vardhan A, Kumar S, Raghavan V. Neuro vigilance of *Syzygium cumini* plant phytochemicals. Int J Res Pharm Sci., 2018;9(3):806-16.

12. Xia Z, Li D, Li Q, Zhang Y, Kang W. Simultaneous determination of brazilin and protosappanin B in *Caesalpinia sappan* sappan by liquid-dispersive liquid-phase microextraction method combined with HPLC. Chem Cent J. 2017;11(114):1-11.

13. Nirmal NP, Rajput MS, Prasad RGV, Ahmad M. Brazilin from *Caesalpinia sappan* sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med. 2015;8(6):421-30.

14. Chagas VT, Coelho RMR., Gaspar RS, Silva SA, Mastrogiovanni M, Mendonça CJ, et al. Protective effects of a polyphenol-rich extract from *Syzygium cumini* (L.) Skeels leaf on oxidative stress-induced diabetic rats. Oxidative Medicine and Cellular Longevity. 2018;2018:1-5.

15. Li Z yuan, Zheng Y, Chen Y, Pan M, Zheng S bei, Huang W, et al. Brazilin ameliorates diabetic nephropathy and inflammation in db/db mice. Inflammation. 2017;40(4):1365-74.

16. You EJ, Khil LY, Kwak WJ, Won HS, Chae SH, Lee BH, et al. Effects of brazilin on the production of fructose-2,6-bisphosphate in rat hepatocytes. J Ethnopharmacol. 2005;102(1):53-7.

17. Nadiyah, Rezano A, Sudigdoati S. Effect of sappan wood ethanol extracts (*Caesalpinia sappan* L.) to the sperm motility, viability, and concentration of male wistar rats. AMJ. 2017;4(2):228-33.

18. Da’i M, Wikantyasning ER, Suhendi A, Hhairunisa I. Validated HPLC method for determination of andrographolide in mixed herbal extract. Int J Pharm Sci Res. 2015;6(12):229-235.

19. Sarasihan S, Chen Y, Saravanan D, Sundram KM, Latha LY. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med. 2011;8(1):1-10.

20. Alquadeib BT. Development and validation of a new HPLC analytical method for the determination of diclofenac in tablets. Saudi Pharm J. 2019;27(1):66-70.

21. Pandey AK. Harvesting and post-harvest processing of medicinal plants: Problems and prospects. The Pharma Innovation Journal. 2017;6(12):229-235.

22. Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med. 2018;1-26.

23. Sharma S, Sharma YP, Bhardwaj C. HPLC quantification of andrographolide in different parts of *Andrographis paniculata* (Burm.f.) Wall. ex Nees. J Pharmacogn Phytochem. 2018;7(3):168-71.

24. Jadhao DB. Quantitative estimation of andrographolide by reverse-phase-high liquid chromatography method from *Andrographis Paniculata* Nees. Int J Phytopharm. 2012;2(6):149-53.

25. Warinhomhaun S, Sritularak B, Chamvanich D. A simple high-performance liquid chromatographic method for quantitative analysis of brazilin in *Caesalpinia sappan* L. extracts. Thai Journal of Pharmaceutical Sciences. 2018;42(4):208-213.
GRAPHICAL ABSTRACT

The dried powder of (a) *A. paniculata* herbs, (b) *S. cumini* leaves, and (c) *C. sappan* wood were macerated using 70% ethanol (1:10 w/v) at room temperature. Quantitative analysis by HPLC method.

Eem Masaenah is a Pharmacist and a Master of Herbal degree from Faculty of Pharmacy, Universitas Indonesia. She is a Lecturer at Sekolah Tinggi Teknologi Industri dan Farmasi, Bogor, West Java, Indonesia. Currently, the research focuses on natural product; herbal drug development; and pharmacology and toxicology of herbal.

Berna Elya is a Professor and Lecturer at the Department of Pharmacognosy- Phytochemistry, Faculty of Pharmacy, University of Indonesia. She develops works in the field of pharmacognosy, phytochemistry, and natural material chemistry.

Heri Setiawan received Bachelor of Pharmacy from Universitas Indonesia in 2007, Master of Medical Science and Ph.D. in Medical Science from Okayama University in 2012 and 2016 respectively. He joined Faculty of Pharmacy Universitas Indonesia in 2019 as Lecturer in the field of Pharmacology and Toxicology. He is currently engaged in pharmacodynamics and toxicology study of compound to treat diabetes mellitus and gonadal hormones dysfunction.
Masaenah E, et al.: Quantification of Andrographolide in *Andrographis paniculata* (Burm.f.) Nees, Myricetin in *Syzygium cumini* (L.) Skeels, and Brazilin in *Caesalpinia sappan* L. by HPLC Method

ABOUT AUTHORS

Zahra Fadhilah is a Master of Herbal degree from the Faculty of Pharmacy, Universitas Indonesia. Currently, the research focuses in the field of natural material, herbal drug development, pharmacology, and toxicology.

Varda Arianti is a Pharmacist and a Master of Herbal degree from the Faculty of Pharmacy, Universitas Indonesia. Currently, the research focuses in the field of natural material as anti-aging and clinical Trial.

Cite this article: Masaenah E, Elya B, Setiawan H, Fadhilah Z, Arianti V. Quantification of Andrographolide in *Andrographis paniculata* (Burm.f.) Nees, Myricetin in *Syzygium cumini* (L.) Skeels, and Brazilin in *Caesalpinia sappan* L. by HPLC Method. Pharmacogn J. 2021;13(6): 1437-1444.