Real elliptic curves and cevian geometry

Igor Minevich and Patrick Morton

August 8, 2018

1 Introduction.

In this paper we will investigate the connection between elliptic curves E defined over the real numbers \mathbb{R} and the cevian geometry which we have worked out in the series of papers [9]–[15].

We will rederive some of the facts relating to barycentric coordinates that we discussed in the unpublished papers [8] and [16].

First, some notation. We let ABC be an ordinary triangle in the extended plane, and $P = (x, y, z)$ be a point not on the sides of ABC or its anticomplementary triangle $K^{-1}(ABC)$, whose homogeneous barycentric coordinates with respect to ABC are (x, y, z). We note that the isotomic map ι for ABC has the representation

$$P' = \iota(P) = \iota(x, y, z) = \left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right) = (yz, xz, xy), \quad xyz \neq 0,$$

and the complement mapping K and its inverse K^{-1} with respect to ABC have the matrix representations

$$K = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad K^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

It follows easily that the equations of the sides of the anticomplementary triangle $K^{-1}(ABC)$ are given by

$$K^{-1}(BC) : y + z = 0, \quad K^{-1}(AC) : x + z = 0, \quad K^{-1}(AB) : x + y = 0.$$

The isotomcomplement Q of P with respect to ABC is the point $Q = K(\iota(P)) = K(P')$, whose barycentric coordinates, in terms of x, y, z, are

$$Q = K(yz, xz, xy)' = (x(y + z), y(x + z), z(x + y)) = (x', y', z').$$

The corresponding point $Q' = K(\iota(P')) = K(P)$ for P' has coordinates

$$Q' = (y + z, x + z, x + y).$$
Since the equations of the sides BC, CA, AB of ABC are, respectively, $x = 0, y = 0$, and $z = 0$, the points $D = (0, y, z), \ E = (x, 0, z), \ F = (x, y, 0)$ are the traces of P on the respective sides, and the unique affine mapping T_P taking ABC to DEF is given in terms of barycentric coordinates by the matrix
\[
T_P = \begin{pmatrix}
0 & x'(x+y) & x'(x+z) \\
y'(x+y) & 0 & y'(y+z) \\
z'(x+z) & z'(y+z) & 0
\end{pmatrix}.
\]
(1)
The traces of the point P' on the sides of ABC are $D_3 = (0, z, y), \ E_3 = (z, 0, x), \ F_3 = (y, x, 0)$, and the corresponding affine map $T_{P'} : ABC \to D_3E_3F_3$ is given by the matrix
\[
T_{P'} = \begin{pmatrix}
0 & z'(y+z) & y'(y+z) \\
z'(x+z) & 0 & x'(x+z) \\
y'(x+y) & x'(x+y) & 0
\end{pmatrix}.
\]
(2)
In [9] we showed that Q is a fixed point of T_P and Q' is a fixed point of $T_{P'}$; further, these are the only ordinary fixed points of these maps, when P and P' are ordinary points. (See [9], Theorems 3.2 and 3.12.)

In [9] and [11] we studied the affine mapping
\[
S = T_P \circ T_{P'} = \begin{pmatrix}
x'(y' + z') & xx' & xx' \\
yy' & y(x' + z') & yy' \\
z'z' & z(x' + y') & z(x' + y')
\end{pmatrix},
\]
(3)
which is a homothety or translation. In [11] our main focus was on the affine map
\[
\lambda = T_{P'} \circ T_{P}^{-1} = \begin{pmatrix}
yz(y+z) & xz(y-z) & xy(z-y) \\
yz(x-z) & xz(x+z) & xy(z-x) \\
yz(x-y) & xz(y-x) & xy(x+y)
\end{pmatrix}.
\]
(4)
Then in [12] we made use of the map
\[
M = T_P \circ K^{-1} \circ T_{P'} = \begin{pmatrix}
x(y-z)^2 & x(y+z)^2 & x(y+z)^2 \\
y(x+z)^2 & y(x-z)^2 & y(x+z)^2 \\
z(x+y)^2 & z(x+y)^2 & z(x-y)^2
\end{pmatrix},
\]
(5)
which is also a homothety or translation. In [14] we studied the points P for which M is a translation, and in [15] we studied the points P for which M is a half-turn.

Proposition 1.1. The maps S, λ, and M have the respective fixed points
\[
X = (xx', yy', zz') = (x^2(y+z), y^2(x+z), z^2(x+y)) = P \cdot Q,
\]
(6)
\[
Z = (x(y-z)^2, y(z-x)^2, z(x-y)^2),
\]
(7)
\[
S = (x(y+z)^2, y(x+z)^2, z(x+y)^2) = Q \cdot Q'.
\]
(8)
Proof. This is a straightforward calculation. For example,

\[
S(X) = \begin{pmatrix}
 x(y' + z') & xx' & xx' \\
 yy' & y(x' + z') & yy' \\
 zz' & zz' & z(x' + y') \\
\end{pmatrix} (xx', yy', zz')^t
= (x + y)(x + z)(y + z)(xx', yy', zz')^t.
\]

Since \(P \) is not on any of the sides of \(K^{-1}(ABC) \), the quantity \((x+y)(x+z)(y+z)\) is nonzero, so \(S(X) = X \). Similarly,

\[
\lambda(Z) = \begin{pmatrix}
 yz(y + z) & xz(y - z) & xy(z - y) \\
 yz(x - z) & xz(x + z) & xy(z - x) \\
 yz(x - y) & xz(y - x) & xy(x + y) \\
\end{pmatrix} (x(y-z)^2, y(z-x)^2, z(x-y)^2)^t \\
= (2xyz)(x(y-z)^2, y(z-x)^2, z(x-y)^2)^t,
\]

where \(xyz \neq 0 \), since \(P \) does not lie on the sides of \(ABC \); and

\[
M(S) = \begin{pmatrix}
 x(y-z)^2 & x(y+z)^2 & x(y+z)^2 \\
 y(x+z)^2 & y(x-z)^2 & y(x+z)^2 \\
 z(x+y)^2 & z(x+y)^2 & z(x-y)^2 \\
\end{pmatrix} (x(y+z)^2, y(x+z)^2, z(x+y)^2)^t \\
= \rho(x(y+z)^2, y(x+z)^2, z(x+y)^2)^t,
\]

where

\[
\rho = x(y^2 + z^2) + y(x^2 + z^2) + z(x^2 + y^2) + 2xyz = (x+y)(x+z)(y+z).
\]

This proves the proposition. \(\square \)

The points \(X \) and \(S \) are the centers of the respective maps \(S \) and \(M \). In the former case, letting \(Y = (a, b, c) \), we have

\[
S(Y) = \begin{pmatrix}
 x(y' + z') & xx' & xx' \\
 yy' & y(x' + z') & yy' \\
 zz' & zz' & z(x' + y') \\
\end{pmatrix} (a, b, c)^t \\
= (ax(y' + z') + (b + c)xx', by(x' + z') + (a + c)yy', cz(x' + y') + (a + b)zz')^t \\
= ((a + b + c)x' + 2axyz, (a + b + c)yy' + 2bxyz, (a + b + c)zz' + 2cxyz)^t \\
= (a + b + c)X + 2xyzY.
\]

It follows that \(X \) is collinear with \(Y \) and \(S(Y) \), for any ordinary point \(Y = (a, b, c) \) (because \(a + b + c \neq 0 \)). This proves the claim that \(X \) is the center of \(S \). The computation

\[
M(Y) = \begin{pmatrix}
 x(y-z)^2 & x(y+z)^2 & x(y+z)^2 \\
 y(x+z)^2 & y(x-z)^2 & y(x+z)^2 \\
 z(x+y)^2 & z(x+y)^2 & z(x-y)^2 \\
\end{pmatrix} (a, b, c)^t \\
= (a + b + c)S - 4xyzY
\]
shows the same for \(S \) and the map \(M \). This verifies that the points \(X \) and \(S \) are the same as the points (with the same names) which are discussed in \([9]\) and \([12]\). Note that these relations also show that \(S \) and \(M \) fix all the points on the line at infinity.

Next we define the point
\[
V = (x(y^2 + yz + z^2), y(x^2 + xz + z^2), z(x^2 + xy + y^2)) \tag{9}
\]
and note that \(V \) can also be given by
\[
V = PQ \cdot P'Q', \quad (P, P' \text{ ordinary, } P \text{ not on a median}). \tag{10}
\]
To see this, we note first that \(V \) is collinear with \(P \) and \(Q \), which is immediate from the equation
\[
V = -(xy + xz + yz)P + (x + y + z)Q, \quad (P, P' \text{ ordinary}).
\]
We convert to absolute barycentric coordinates by dividing each point in this equation by the sum of its coordinates. Since the sum of the coordinates of \(V \) is
\[
x(y^2 + yz + z^2) + y(x^2 + xz + z^2) + z(x^2 + xy + y^2) \\
= x^2(y + z) + y^2(x + z) + z^2(x + y) + 3xyz \\
= (x + y + z)(xy + xz + yz),
\]
then denoting the last expression by \(F(0) \) (see the proof of Proposition 1.2 below) we have the relation
\[
\frac{1}{F(0)}V = -\frac{1}{x + y + z}P + \frac{2}{2(xy + xz + yz)}Q.
\]
It follows from this that \(Q \) is the midpoint of the segment \(PV \), when \(P \) and \(V \) are ordinary. Replacing \(P \) by \(P' \) and \(Q \) by \(Q' \) is effected by the map \(x \rightarrow \frac{1}{x}, y \rightarrow \frac{1}{y}, z \rightarrow \frac{1}{z} \), and on multiplying through by \(x^2 y^2 z^2 \), we obtain the equation
\[
V = -(x + y + z)P' + (xy + xz + yz)Q'.
\]
This shows as above that \(Q' \) is the midpoint of \(PV' \). This proves that \(\text{(10)} \) holds for the point defined by \(\text{(9)}. \)

Proposition 1.2. The point \(Z \) is collinear with \(G = (1, 1, 1) \) and \(V = (x(y^2 + yz + z^2), y(x^2 + xz + z^2), z(x^2 + xy + y^2)) \). We have the relation
\[
Z = (-3xyz)G + V. \tag{11}
\]
If \(P, P', \) and \(Z \) are ordinary points, then we have the signed ratio
\[
\frac{GZ}{ZV} = -\frac{1}{9} \frac{(x + y + z)(xy + yz + xz)}{xyz}. \tag{12}
\]
Proof. Define
\[F(a) = x^2(y + z) + y^2(x + z) + z^2(x + y) + (a + 3)xyz. \] (13)

Equation (11) follows immediately from the identity
\[-3xyz + x(y^2 + yz + z^2) = x(y - z)^2 \]
by cyclically permuting the variables \((x \rightarrow y \rightarrow z \rightarrow x)\). In order to prove (12), we convert to absolute barycentric coordinates by dividing the coordinates of \(Z\) by their sum, which is
\[x(y - z)^2 + y(x - z)^2 + z(x - y)^2 = x^2(y + z) + y^2(x + z) + z^2(x + y) - 6xyz = F(-9). \]

As above, the sum of the coordinates of \(V\) is
\[x^2(y + z) + y^2(x + z) + z^2(x + y) + 3xyz = F(0) = (x + y + z)(xy + xz + yz). \]

This shows that \(V\) is ordinary whenever \(P\) and \(P'\) are ordinary. Putting this into (11) gives
\[\frac{1}{F(-9)} Z = \frac{-9xyz}{F(-9)} \left(\frac{1}{3} \frac{1}{3} \frac{1}{3} \right) + \frac{F(0)}{F(-9)} \left(\frac{1}{F(0)} V \right). \]

Now \(F(0) - 9xyz = F(-9)\), so this relation implies that the signed ratio \(GZ/ZV\) is given by
\[\frac{GZ}{ZV} = \frac{F(0)/F(-9)}{(-9xyz)/F(-9)} = \frac{-1 F(0)}{9xyz}, \]
which agrees with (12). (See [2], p. 28.) \(\Box\)

Proposition 1.3. If the points \(S, V\) are ordinary, we have
\[S = (xyz)G + V \quad \text{and} \quad GS \quad SV = (x + y + z)(xy + xz + yz) \quad 3xyz. \]

In particular, the cross ratio \((GV, SZ) = -3\).

Proof. The relation between \(S, G, \) and \(V\) is immediate from (8) and (9). This gives that
\[\frac{1}{F(3)} S = \frac{3xyz}{F(3)} \frac{1}{G} + \frac{F(0)}{F(3)} \frac{1}{F(0)} V, \]
from which the formula \(\frac{GS}{SV} = \frac{F(0)}{3xyz}\) follows. Then
\[(GV, SZ) = \frac{GS}{SV} \frac{VZ}{VS} = \frac{GS}{SV} \frac{VZ}{VS} = -3. \] \(\Box\)
We now determine the homothety ratio of the map \(M \). From [12] we have the generalized circumcenter \(O = T_p^{-1} \circ K(Q) \) given by

\[
O = \begin{pmatrix}
-xx' & x'y' & x'z' \\
y'x & -yy' & y'z' \\
z'x & z'y & -zz' \\
\end{pmatrix} \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{pmatrix} (x(y+z), y(x+z), z(x+y))' \\
\]

\[
= (x(y+z)^2x'', y(x+z)^2y'', z(x+y)^2z''),
\]

where

\[
x'' = xy + xz + yz - x^2, \quad y'' = xy + xz + yz - y^2, \quad z'' = xy + xz + yz - z^2.
\]

We will use the fact that \(M(O) = Q \) to determine the ratio \(SQ/SO \) in the next proposition. Note that the sum of the coordinates of \(O \) is

\[
x(y+z)^2 + y(x+z)^2 + z(x+y)^2 = 8xyz(x+y+z) + 6xyz = F(3).
\]

Proposition 1.4. We have that

\[
(x+y)(x+z)(y+z)Q = 2(xy + xz + yz)S - O
\]

and when \(P' \) and \(S \) are ordinary points, the signed ratio \(SQ/SO \) is given by

\[
\frac{SQ}{SO} = -\frac{QS}{SO} = \frac{-4xyz}{(x+y)(x+z)(y+z)}.
\]

Proof. From the computation following the proof of Proposition 1.1 we have that

\[
M(O) = 8xyz(x+y+z)S - 4xyzO,
\]

from which we obtain

\[
(x+y)(x+z)(y+z)Q = 2(xy + xz + yz)S - O.
\]

Using the fact that \(F(-1) = (x+y)(x+z)(y+z) \), we obtain the relation in absolute barycentric coordinates given by

\[
\frac{F(-1)}{F(3)} \frac{1}{2(xy + xz + yz)}Q + \frac{4xyz}{F(3)} \frac{1}{8xyz(x+y+z)}O = \frac{1}{F(3)} S,
\]

where \(F(-1) + 4xyz = F(3) \). This proves the second assertion. \(\square \)

Corollary 1.5. If \(P, P', Z, \) and \(S \) are ordinary points, the homothety ratio of the map \(M \) is

\[
k = \frac{SQ}{SO} = \frac{4}{9GZ + 1}.
\]

Proof. This follows immediately from Propositions 1.2 and 1.4 using the fact that

\[
-(x+y+z)(xy + xz + yz) + xyz = -(x+y)(x+z)(y+z).
\]

\(\square \)
2 Elliptic curves over \mathbb{R}.

Let the quantity a be defined by

$$a = \frac{G Z}{Z V}.$$

Then Proposition 1.2 gives that

$$a = -\frac{(x + y + z)(xy + yz + xz)}{xyz}.$$

(17)

It follows that the set of ordinary points P, for which Z and V are ordinary, and $G Z / Z V = a / 9$ is fixed, coincides with the set of P whose coordinates satisfy

$$(x + y + z)(xy + yz + xz) + axyz = 0,$$

or

$$E_a : \ x^2(y + z) + y^2(x + z) + z^2(x + y) + (a + 3)xyz = 0.$$

(18)

The left side of this equation is exactly the quantity $F(a)$ that we defined in (13). We note that the set of points, for which Z is infinite, is the set of points for which $F(-9) = 0$, and the set of points, for which V is infinite, is the set of points for which $F(0) = (x + y + z)(xy + xz + yz) = 0$; the latter is the union of the line at infinity l_∞ and the Steiner circumellipse $\iota(l_\infty)$. Thus, if $a \neq 0, -9$ is a real number, equation (18) describes the set of ordinary points for which $G Z / Z V = a / 9$. Also, the set of P for which S is an infinite point is the set of points for which $F(3) = 0$; this set was studied in the paper [14]. Thus, Corollary 1.5 holds for all $a \neq 0, 3, -9$.

The curve E_a turns out to be an elliptic curve, for $a \neq 0, -1, -9$. To see this, put $z = 1 - x - y$ in the equation (18). This gives the affine equation for E_a in terms of absolute barycentric coordinates $(x, y, 1 - x - y)$:

$$E_a : \ (ax + 1)y^2 + (ax + 1)(x - 1)y + x^2 - x = 0.$$

(19)

We call this curve the geometric normal form of an elliptic curve. The discriminant of the equation (19) with respect to y is

$$D = (ax + 1)^2(x - 1)^2 - 4(ax + 1)(x^2 - x) = (ax + 1)(x - 1)(ax^2 - (a + 3)x - 1).$$

This polynomial has discriminant $d = 256a^2(a + 1)^3(a + 9)$ and is therefore square-free in $\mathbb{R}[x]$ if and only if $a \neq 0, -1, -9$. For these values of a, the curve E_a is birationally equivalent to $Y^2 = D$, where D is quartic in x, a curve which is well-known to be an elliptic curve. Alternatively, we can compute the partial derivatives

$$\frac{\partial F}{\partial x} = 2x(y + z) + y^2 + z^2 + (a + 3)yz,$$

$$\frac{\partial F}{\partial y} = 2y(x + z) + x^2 + z^2 + (a + 3)xz,$$

$$\frac{\partial F}{\partial z} = 2z(x + y) + x^2 + y^2 + (a + 3)xy.$$
\[
\frac{\partial F}{\partial z} = 2z(x + y) + x^2 + y^2 + (a + 3)xy,
\]

and check that the equations \(\frac{\partial F}{\partial x} = \frac{\partial F}{\partial y} = \frac{\partial F}{\partial z} = 0\) have no common solution with \((x, y, z) \neq (0, 0, 0)\), for \(a \notin \{0, -1, -9\}\). For example, subtracting the first two equations gives
\[
2z(x - y) + y^2 - x^2 + (a + 3)z(y - x) = (y - x)((a + 1)z + x + y) = 0.
\]
Hence, \(x = y\) or \(x + y = -(a + 1)z\). Since the above partials arise from each other by cyclically permuting the variables, we also have that \(y = z\) or \(y + z = -(a + 1)x\), and \(z = x\) or \(z + x = -(a + 1)y\). Thus, either: 1) \(x = y = z\); or 2) \(x = y\) and \(z = -(a + 2)x\), or similar equations hold resulting from a cyclic permutation; or 3) \(x + y = -(a + 1)z\) along with the two equations arising from cyclic permutations. In Case 1, \(F(a) = (a + 9)x^3 = 0\); in Case 2, \(F(a) = a(a + 1)x^3 = 0\); and in Case 3, the determinant of the resulting 3 \(\times\) 3 system is \(-a^2(a + 3)\). The first two cases are clearly impossible, so we are left with Case 3, with \(a = -3\). In this case \((x + y - 2z) - (x - 2y + z) = 3y - 3z = 0\), so \(x = y = z\) by symmetry and we are in Case 1 again. Therefore, \(F(a) = 0\) is a non-singular cubic curve, which implies it is an elliptic curve, since it has a rational point.

Remark. The curve \(E_a\) always has a torsion group of order 6 consisting of rational points. The points \(A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1)\) are on the curve, as well as the points \(A_\infty = (0, 1, -1), B_\infty = (1, 0, -1), C_\infty = (1, -1, 0)\), which are the infinite points on the lines \(BC, CA,\) and \(AB\), respectively. We take the base point of the additive group on \(E_a\) to be the point \(O = A_\infty = (0, 1, -1)\). Putting \(x = 0\) in \((18)\) gives \(yz(y + z) = 0\), so the above 6 points are the only points on the sides of \(ABC\) which lie on \(E_a\). See [14].

We summarize the above discussion as follows.

Theorem 2.1. The locus of points \(P\), for which the point \(Z\) is ordinary and \(\frac{\partial Z}{\partial x} = \frac{\partial Z}{\partial y} = \frac{\partial Z}{\partial z} \neq \{0, -1, -9\}\), for some fixed \(a \in \mathbb{R}\), coincides with the set of points on the elliptic curve \(E_a\) defined by \([18]\), minus the points in the set
\[
T = \{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, -1), (1, 0, -1), (1, 1, 0)\}.
\]

In particular, the locus of \(P\) for which the homothety ratio of the map \(M = T_P \circ K^{-1} \circ T_P\) is \(k = \frac{1}{a+1}\), for fixed real \(a \notin \{3, 0, -1, -9\}\), is an elliptic curve minus the points on the sides of triangle \(ABC\).

If \(a = 3\), then \(S \in l_\infty\), and \(M\) is a translation. The elliptic curve \(E_3\) was considered in [14]. When \(a = -5\), \(k = -1\) and \(M\) is a half-turn. The elliptic curve \(E_{-5}\) was considered in [15].

We have the following result for the \(j\)-invariant of \(E_a\).

Proposition 2.2. For a real number \(a \neq 0, -1, -9\), the \(j\)-invariant of the elliptic curve \(E_a\) is
\[
j(E_a) = \frac{(a + 3)^3(a^3 + 9a^2 + 3a + 3)^3}{a^2(a + 1)^3(a + 9)}.
\]
Proof. We compute the j-invariant of the curve
\[Y^2 = (ax + 1)(x - 1)(ax^2 - (a + 3)x - 1) \tag{20} \]
by converting it to a curve in Legendre normal form:
\[E' : v^2 = u(u - 1)(u - \lambda), \]
and using the formula
\[j(E') = \frac{2^8(\lambda^2 - \lambda + 1)^3}{(\lambda^2 - \lambda)^2}. \]
Putting \(x = \frac{u + 1}{u - a} \) and \(g(x) = (ax + 1)(x - 1)(ax^2 - (a + 3)x - 1) \), we have
\[g\left(\frac{u + 1}{u - a}\right) = \frac{(a + 1)^2}{(u - a)^4} u(-4u^2 + (a^2 + 6a - 3)u + 4a). \]
Hence, \[20\] is birationally equivalent to
\[Y_1^2 = u(-4u^2 + (a^2 + 6a - 3)u + 4a). \tag{21} \]
We let \(\alpha, \beta \) be the roots of the quadratic in \(u \) on the right side of this equation. Then
\[\alpha, \beta = \frac{a^2 + 6a - 3}{8} \pm \frac{(a + 1)}{8} \sqrt{(a + 1)(a + 9)}, \]
and the curve \[21\] is equivalent over \(\mathbb{C} \) to
\[Y_2^2 = u(u - \alpha)(u - \beta), \]
which is in turn equivalent over \(\mathbb{C} \) to
\[E' : v^2 = u(u - 1)\left(\frac{u - \alpha}{\beta}\right). \]
A calculation on Maple with \(\lambda = \alpha/\beta \) gives that
\[j(E') = \frac{(a + 3)^3(a^3 + 9a^2 + 3a + 3)^3}{a^2(a + 1)^3(a + 9)}. \]
This proves the proposition. \(\square \)

We now prove the following result.

Theorem 2.3. Let \(E \) be any elliptic curve whose j-invariant is a real number. Then \(E \) is isomorphic to the curve \(E_a \) over \(\mathbb{R} \) for some real value of \(a \notin \{0, -1, -9\} \).
Proof. Letting \(f(x) \) represent the function
\[
f(x) = \frac{(x + 3)^3(x^3 + 9x^2 + 3x + 3)^3}{x^2(x + 1)^3(x + 9)},
\]
we just have to check that \(f(\mathbb{R} - \{0, -1, -9\}) = \mathbb{R} \). This is a straightforward calculus exercise, which we leave to the reader. We only note that
\[
f'(x) = \frac{6(x + 3)^2(x^3 + 9x^2 + 3x + 3)^2(x^2 + 6x - 3)(x^4 + 12x^3 + 30x^2 + 36x + 9)}{x^3(x + 1)^4(x + 9)^2},
\]
that the minimum value of \(f(x) \) for \(x < -9 \) is 1728; the maximum value of \(f(x) \) for \(-9 < x < -1 \) is also 1728; and that \(f(x) \) approaches \(-\infty\) as \(x \) approaches the asymptotes \(x = -9 \) (from the right) and \(x = -1 \) (from the left). This is enough to prove the assertion. If \(a \in \mathbb{R} \) satisfies \(j(E_a) = f(a) = j(E) \), then \(E \cong E_a \) over \(\mathbb{R} \).

Remark. The real values of \(a \) for which \(j(E_a) = 1728 \) are the real roots of the equation
\[
(x^2 + 6x - 3)(x^4 + 12x^3 + 30x^2 + 36x + 9) = 0,
\]
and are given explicitly by
\[
a = -3 \pm 2\sqrt{3}, \quad -3 - \sqrt{3} \pm \sqrt{9 + 6\sqrt{3}}.
\]

As an example, the curve \(E_{-3} \) has \(j(E_{-3}) = 0 \), and affine equation
\[
E_{-3} : \quad (3x - 1)y^2 + (3x - 1)(x - 1)y - x^2 + x = 0.
\]
Putting \(x = \frac{u}{u-2} \) and \(y = -\frac{(3x-1)(x-1)+4x/(u-2)}{2(3x-1)} \) yields the isomorphic curve
\[
E : \quad v^2 = u^3 + 1.
\]
This curve has exactly 6 rational points, namely, the points \((2, \pm 3), (-1, 0), (0, \pm 1)\), and the base point \(O \). For which real quadratic fields \(K = \mathbb{Q}(\sqrt{d}) \) is there a point on \(E \) defined over \(K \)? For which values of \(n \geq 2 \) does \(E \) have a real torsion point of order \(n \)?

References

[1] N. Altshiller-Court, College Geometry, An Introduction to the Modern Geometry of the Triangle and the Circle, Barnes and Noble, New York, 1952. Reprint published by Dover.

[2] H. Busemann and P.J. Kelly, Projective Geometry and Projective Metrics, Dover Publications, 2006.
[3] H.S.M. Coxeter, *The Real Projective Plane*, McGraw-Hill Book Co., New York, 1949.

[4] H.S.M. Coxeter, *Projective Geometry*, 2nd edition, Springer, 1987.

[5] H.S.M. Coxeter, *Introduction to Geometry*, John Wiley & Sons, Inc., New York, 1969.

[6] C. Kimberling, Central points and central lines in the plane of a triangle, Mathematics Magazine 67 (1994), 163-187.

[7] C. Kimberling, *Encyclopedia of Triangle Centers*, at http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.

[8] I. Minevich and P. Morton, Synthetic Cevian Geometry, preprint, IUPUI Math. Dept. Preprint Series pr09-01, 2009, http://math.iupui.edu/research/research-preprints.

[9] I. Minevich and P. Morton, Synthetic foundations of cevian geometry, I: Fixed points of affine maps in triangle geometry, http://arXiv.org/abs/1504.00210, Journal of Geometry 108 (2017), 45-60.

[10] I. Minevich and P. Morton, A quadrilateral half-turn theorem, Forum Geometricorum 16 (2016), 133-139.

[11] I. Minevich and P. Morton, Synthetic foundations of cevian geometry, II: The center of the cevian conic, http://arXiv.org/abs/1505.05381, International J. of Geometry 5 (2016), No. 2, 22-38.

[12] I. Minevich and P. Morton, Synthetic foundations of cevian geometry, III: The generalized orthocenter, http://arXiv.org/abs/1506.06253, Journal of Geometry 108 (2017), 437-455.

[13] I. Minevich and P. Morton, Synthetic foundations of cevian geometry, IV: The TCC-perspector theorem, http://arXiv.org/abs/1609.04297, International J. of Geometry 6 (2017), No. 2, 61-85.

[14] I. Minevich and P. Morton, Vertex positions of the generalized orthocenter and a related elliptic curve, http://arXiv.org/abs/1608.04614, J. for Geometry and Graphics 21 (2017), No. 1, 7-27.

[15] I. Minevich and P. Morton, A cevian locus and the geometric construction of a special elliptic curve, http://arXiv.org/abs/1608.07712, to appear in Forum Geometricorum.
[16] P. Morton, Affine maps and Feuerbach’s Theorem, IUPUI Math. Dept. Preprint Series pr09-05, 2009, http://math.iupui.edu/research/research-preprints.

Dept. of Mathematics, Maloney Hall
Boston College
140 Commonwealth Ave., Chestnut Hill, Massachusetts, 02467-3806
e-mail: igor.minevich@bc.edu

Dept. of Mathematical Sciences
Indiana University - Purdue University at Indianapolis (IUPUI)
402 N. Blackford St., Indianapolis, Indiana, 46202
e-mail: pmorton@iupui.edu