An Experimental Comparison of Two Exchange Economies: Long-Lived Asset vs. Short-Lived Asset

Enrica Carbone, a John Hey, b Tibor Neugebauer c

a Dipartimento di Scienze Politiche “Jean Monnet,” Università della Campania, “Luigi Vanvitelli,” 81100 Caserta, Italy; b Department of Economics, University of York, Heslington, York YO10 5DD, United Kingdom; c Department of Finance, Faculty of Law, Economics and Finance, Campus Kirchberg, Université du Luxembourg, L-1359 Luxembourg

1. Introduction

The motivation of this paper is to study and compare the performance of two exchange economies, one for a long-lived asset and the other one for a short-lived asset (in both of which agents can indirectly or directly trade consumption through time) with respect to two intertwined key items of interest: (1) whether agents smooth their consumption through time and (2) whether the market manages to reach its equilibrium price.

We start with an experimental test of a particular instantiation of the Lucas (1978) tree model. In its simplest form, this model considers an infinite discrete-period world in which there is perishable money (apples) and a long-lived asset (the tree) which pays a dividend in money. Income, in the form of money, varies from period to period; utility is derived from end-of-period money holdings. With a concave utility function, which is the way we induce preferences for consumption smoothing and trading in the experiment, it is desirable for end-of-period money holdings to be smoothed through time. This can only be achieved by individuals trading the long-lived asset in an asset market; so the role of the asset market is solely to facilitate end-of-period money holdings smoothing.

Key previous experimental papers are those of Crockett et al. (2019), Asparouhova et al. (2016), and Halim et al. (2016). All three papers use oscillating two-cycle fixed incomes to induce motives for trade. Crockett et al. (2019) and Halim et al. (2016) have a long-lived asset with a fixed dividend as the only means of smoothing consumption through time. Asparouhova et al. (2016) have two long-lived assets, one with a stochastic dividend and the other one being a fixed income security, where both can be used to smooth consumption. We advance the literature by using...
three-cycle incomes, which increases the complexity of the problem faced by the subjects and tests the robustness of previous results.

Further, we take the idea of the Asparouhova et al. (2016) paper of two assets and split them between two treatments (having one bond-like and one stock-like asset but both involving fixed income streams like the other two papers), so that we can isolate the comparative static impact of asset duration on price relative to fundamental value.

Splitting the asset duration by treatment, along with the step function simplification (which we shall describe shortly), allows us to see in the data to what extent asset complexity and induced payoff complexity impede convergence to fundamental value and how much relative noise is involved in that process. We report important comparative static results. Our treatments have significant implications in intuitively understandable and interesting directions. It is important and interesting that the markets achieve regularities by treatment despite the increased complexity of a three-cycle income environment.

The Lucas model is set in an infinite horizon world with constant discounting. At the beginning of the problem, each agent is given a one-off endowment of the long-lived asset, which pays in every period a constant dividend, that is, a fixed amount of (perishable) money. In each period, each agent gets, in addition, a time-varying (and deterministic) endowment of money. In order to implement this in the laboratory, we adopted the usual experimenter’s method of replacing an infinite horizon world with constant discounting by a random horizon world with a constant continuation probability; this latter being the equivalent of the constant discount factor. This meant that any particular repetition (which we called a “sequence”) of the Lucas model would last a random number of periods. We told subjects that there would be a random number of sequences. At the beginning of each sequence, the endowments of the asset were reset to their initial values, and everything was started afresh, giving us several repetitions of tests of the Lucas model.

We add to the previous literature by comparing this (long-lived) asset market solution (to a consumption-smoothing problem) with an alternative market for a short-lived asset, which we call the “credit market.”¹ In this market, agents can directly trade consumption in the current period (apples) for claims of consumption in the next period (future apples). With our experimental data, we evaluate the Sharpe ratios of asset returns of short-term and long-term assets in a between-subjects setting. In contrast to the declining term-structure of real-world Sharpe ratios with maturity (van Binsbergen et al. 2012, van Binsbergen and Koijen 2017), we find no such decline with our assets.

In summary, this paper contains three major differences from the previous literature: (1) we extend the two-period (oscillating) framework of Crockett et al. (2019) to a three-period (cyclical) framework; (2) we compare behaviour in the asset market with that in a credit market; (3) we also examine the effect of changing the payoff function from a concave function to a step function. We briefly explain why we have done these three things.

Our move to a three-period (cyclical) framework follows that of Friedman et al. (1984, p. 364). They simply state that they “extend that analysis to 3-period asset markets,” we suspect to test the robustness of their results. It is well known that decision makers have problems in solving dynamic decision problems and are notoriously myopic. The oscillating case studied by Crockett et al. (2019) is relatively simple: in the steady state, decision makers only have to plan one period ahead; in the cyclical case, they have to plan two periods ahead and backwardly induct from two periods hence. If one looks at the optimal strategies in Tables 1 and 2, the solution is by no means obvious, even in structure: buying in two periods and selling in one or buying in one period and selling in two. Note also that the two-period cycle studied by Crockett et al. (2019) is the simplest possible environment of its class, so it is important to study whether consumption smoothing continues to happen if the environment gets more complicated.

Our extension to a comparison of behaviour in an (long-lived) asset market with that in a (short-lived) credit market is motivated by the idea that the equilibrium is more obvious in the latter: the expected value calculation for the short-lived asset is straightforward for subjects as we explain in Section 3. In contrast, the calculation of equilibrium in the (long-lived) asset market requires the computation of the expected value of future dividends over an infinite horizon.

We have not yet mentioned our extension to a step payment function. This will be described in detail later, but it is simple to describe: with this, the mapping from end-of-period token holdings into money for the subject is a step function with a single step (see the left-hand graph in Figure 1)—above this step payment is £1, below it £0. This is effectively telling the subjects that the best thing to do is aim for end-of-period token holdings equal to the step.² We deliberately fix this step at the equilibrium level. Note that this is not telling them how to get to equilibrium—which is the whole point of the trading—but to see if the market can converge to the equilibrium when all subjects know what the equilibrium is. We isolate the equilibrium from the problem of achieving it.

This paper starts with a literature review. We then outline the exchange economy model with the long-lived...
asset, interpreting it from the perspective of our experiment; we derive the key propositions, particularly about the equilibrium asset price and consumption-smoothing, that we test with our experiment. We then derive the corresponding solution for the exchange economy with the short-lived asset. We then discuss our experimental design, before reporting the key findings in the experiment. Finally, we conclude, exploring the implications of our findings.

2. Literature Review

There is a vast experimental literature from the 1980s on asset markets, which has enhanced our understanding of price formation in asset markets. Early studies like Plott and Sunder (1982), Forsythe et al. (1982), and Friedman et al. (1984) motivated agents to trade by providing heterogeneous dividend values. They found that the market price tends to converge toward the rational expectation value. Smith et al. (1988) introduced a design in which all investors receive the same dividend from a known probability distribution at the end of the T trading periods; they found that this design tended to generate price bubbles. In general, researchers have shown that the phenomenon of asset price bubble is robust to a variety of changes in the market structure (see van Boening et al. 1993, Porter and Smith 1995, Caginalp et al. 1998, Lei et al. 2001, Dufwenberg et al. 2005, Haruvy and Noussair 2006, Haruvy et al. 2007, Hussam et al. 2008, and Kirchler et al. 2012). In these

Table 1. Asset Market Parameters and Equilibrium

Periods 1, 4, 7, …	Variable	Type 1 subjects	Type 2 subjects	Type 3 subjects
	Initial assets	0	5	5
	Dividend income from initial assets	0	10	10
	Units of the asset sold	–3	2	1
	Income from selling assets	–30	20	10
	Next period assets	3	3	4
	Tokens income	109	49	59
	End-of-period tokens	79	79	79
Periods 2, 5, 8, …	Initial assets	3	3	4
	Dividend income from initial assets	6	6	8
	Units of the asset sold	2	–4	2
	Income from selling assets	20	–40	20
	Next period assets	1	7	2
	Tokens income	53	113	51
	End-of-period tokens	79	79	79
Periods 3, 6, 9, …	Initial assets (trees)	1	7	2
	Dividend income from initial assets	2	14	4
	Units of the asset sold	1	2	–3
	Income from selling assets	10	20	–30
	Next period assets	0	5	5
	Tokens income	67	45	105
	End-of-period tokens	79	79	79

Notes. Items in bold are exogenous. Items in bold italics are exogenous in the first period of a sequence.

Table 2. Credit Market Parameters and Equilibrium

Periods 1, 4, 7, …	Variable	Type 1 subjects	Type 2 subjects	Type 3 subjects
	Tokens income	109	59	69
	Receipt from making credit contract	–30	20	10
	End-of-period tokens	79	79	79
Periods 2, 5, 8, …	Tokens income	53	123	61
	Receipt from delivering on credit contract	36	–24	–12
	Receipt from making credit contract	–10	–20	30
	End-of-period tokens	79	79	79
Periods 3, 6, 9, …	Tokens income	67	55	115
	Receipt from delivering on credit contract	12	24	–36
	End-of-period tokens	79	79	79

Note. Items in bold are exogenous.
studies, a market was created for a dividend-paying asset with a lifetime of a finite number of periods with the asset structure being common knowledge. Another stream of literature studied the static capital asset pricing model in the laboratory with only asset-derived income and no labour/endowment income; the main studies here are Bossaerts and Plott (2002), Asparouhova et al. (2003), and Bossaerts et al. (2007).

Another relevant strand of experimental literature concerns consumption smoothing. Earlier experimental work on consumption smoothing includes Hey and Dardanoni (1988), Carbone and Hey (2004), Nousair and Matheny (2000), Lei and Nousair (2002), and Ballinger et al. (2003). The received literature considered consumption smoothing as an individual choice problem in the familiar life cycle consumption model (for example, Hey 1980). Differently from the market approach presented here, individuals smooth their income stream over a fixed number of periods through saving at fixed interest rate. The general finding of this literature is that subjects smooth consumption but do so inefficiently (see Duffy 2016 for a survey).

In our experimental design, we follow and extend the design of Crockett et al. (2019) for testing the Lucas model with heterogeneous agents and time-varying private income streams. In each session of Crockett et al. (2019), 12 subjects exchanged assets against cash in an indefinite horizon world. The indefinite horizon was implemented by a roll of a six-sided die, implying a continuing probability of five/six. In this exchange economy, individuals have a motive to trade the asset in order to smooth consumption between periods. Crockett et al. (2019) had subjects trading an asset in the market, which paid a certain dividend (two cash units in one, three in another treatment) at the beginning of each period to asset holders. After each period, one subject rolled the die and a six would terminate the session. Crockett et al. (2019) reported strong evidence for consumption smoothing and found that prices were close to equilibrium in their main treatment. In comparison with the asset market of Crockett et al. (2019), we examine a more complex setting by increasing the level of induced agent heterogeneity: in our design, we have three different types of agents with cyclical incomes, whereas Crockett et al. (2019) had two different types with alternating high and low incomes.

Asparouhova et al. (2016) also investigate the Lucas tree model in an indefinite horizon world, but there are two important differences in their design to ours and also to that of Crockett et al. (2019). First, Asparouhova et al. (2016) had subjects trade two securities for cash; a fixed-income consol that pays 0.5 cash units in each period and a risky asset, which pays zero (bad state) or one cash unit (good state) according to the state of the economy. Half of the subjects are endowed with units of the consol; the other half are endowed with units of the risky asset. Their cash endowments alternated over periods. Our asset corresponds rather to the consol than the risky asset in Asparouhova et al. as the stopping probability is the only exogenous risk in our setting. In the design of Asparouhova et al., subjects simultaneously price two long-lived securities in the market. The risky asset in their design and its transition probabilities from good to bad states implies complications for
subjects’ expectations and forecasts of equilibrium prices (in this context, Asparouhova et al. (2016, p. 2731) refer to “residual price forecasting risk”). Such forecasting risk is absent in our setting. Second, in that paper, subjects consume the cash they hold at the end of the final period only. Thus, Asparouhova et al. induce preference for consumption smoothing through the stopping probability rather than through the choice of the payoff function as we do. The purpose of the study of Asparouhova et al. is to look at risk avoidance via diversification and market reaction. Their results provide support for their qualitative pricing and consumption predictions; prices move with fundamentals and agents smooth consumption. At the same time, nevertheless, the data sharply differ from the quantitative predictions as asset prices display excess volatility to the point that the equity premium is negative in good times, and subjects do not hedge price risks. Asparouhova et al. conclude that the deviations of the data from the model arise through the disagreement of subjects’ expectations with respect to the underlying perfect foresight model.

Crockett et al. (2019) and also Asparouhova et al. (2016) suggest that the consumption smoothing motive can imply a tendency of asset prices to reflect fundamentals. Halim et al. (2016) directly tested this hypothesis in an indefinite horizon setting (with stopping probability one/six), where subjects exchanged a risky asset that paid zero (bad state) or one cash unit (good state) for cash in the market. In their design, some subjects had a constant endowment in each period and thus no induced trading motive; consumption smoothing would require no trade. Other subjects had different endowments in odd and even periods, and thus consumption smoothing required trade. Halim et al. (2016) report that market prices are higher in the presence of subjects with no induced trading motive than when subjects must trade for consumption smoothing. Interestingly, Halim et al. (2016) report overpricing of assets compared with the risk-neutral fundamental value in all their treatments.

In line with Crockett et al. (2019), Asparouhova et al. (2016), and Halim et al. (2016), our participants are motivated to engage in trade in order to offset income fluctuations they face over time; therefore, the main reason for trading should be consumption smoothing. In sharp contrast to these studies, we also study a credit-market where short-lived securities are transacted. Thus, we are able to compare consumption smoothing and price discovery in markets with long-lived versus short-lived securities. This is one of our key contributions.

Noussair and Popescu (2019) also contribute to the experimental literature on the Lucas tree model. Their design involves two long-lived assets with stochastic dividends to study the research question whether asset prices comove with another when an independent shock occurs to one asset but not to the other. Noussair and Popescu (2019) report evidence for comovement in line with theory but report a price drift of the nonshocked asset beyond the theoretical prediction.

Besides the Lucas tree model, the Bewley model is another important heterogeneous-agent dynamic general equilibrium exchange economy model (see the survey by Heathcote et al. 2009). In this model, the consumer’s labour income is subject to a shock. A riskless short-term asset facilitates individual consumption smoothing between periods. Our exchange economy involving short-lived asset claims shares important features with the Bewley model and leads to identical equilibrium consumption as the Lucas tree model in our design. Thus, we are able to compare consumption smoothing and pricing in markets with long-lived versus short-lived securities. We are not aware of any other study that investigates the pricing and consumption smoothing with short-lived asset claims in the laboratory. Van Binsbergen and Koijen (2017) show that the real-world term structure of returns is downward sloping in maturities across various asset classes including bonds and equity. Their finding is at odds with the standard model, which suggests nondecreasing expected returns. In contrast, our laboratory results on Sharpe ratio structure are not in conflict with the standard model.

3. Background Theory

We start by describing the exchange economy of the long-lived security, before we turn to that of the short-lived security. We confine our discussion to one repetition of the Lucas tree model; this is equivalent to one sequence in our experiment—all sequences were identical in structure. The scenario is as follows. There are a number of individuals in society. There is perishable money (apples) and a durable asset (the tree), and there is a market in the asset. There is a fixed aggregate amount of the asset, with the initial endowments differing from individual to individual. Each unit of the asset earns a fixed and known money dividend d each period. Individuals receive, each period, an exogenously determined quantity of money, m_t, with this differing from individual to individual. During each period, individuals can exchange money for the asset. The money holding of individuals at the end of each period is converted into utility and aggregated over the lifetime to determine aggregate utility. Utility in period t is given by $u(c_t)$, where $u(\cdot)$ is the (concave) conversion scale into money and where c_t (end-of-period money) is given by

$$c_t = m_t + d a_t - p_{t|t}(a_{t+1} - a_t),$$

where a_t is the asset holding at the beginning of period t and $p_{t|t}$ is the price of the asset in period t.
The optimising decision for any (risk-neutral) individual in period T is to maximise

$$\sum_{t=T}^{\infty} \beta^{t-T} u(c_t)$$

subject to the expression above. Here β is the individual's discount factor.

The first-order condition for the optimal decision in period t is

$$u'(c_t)p_{Lt} = \beta u'(c_{t+1}) (p_{Lt+1} + d).$$

In equilibrium, because the conversion scale is concave, the individual wants to smooth consumption, so we have that $u'(c_t)=u'(c_{t+1})$, and hence we get $p_{Lt} = \frac{E\beta}{\beta(p_{Lt+1}+d)}$.

In a stationary equilibrium $p_{Lt}=p_{Lt+1}=p_{L}$, and hence

$$p_L = \frac{\beta}{1-\beta} d. \quad (2)$$

This is the constant steady-state equilibrium durable asset price, which implies constant equilibrium returns in our setting. It has the obvious interpretation as being the discounted dividend income from holding one unit of the asset.

We now consider the exchange economy featuring the short-lived security. We will refer to this as the credit market. In this, agents exchange, at some price, perishable money units (apples) in one period for a promise of money units in the following period (future apples). Let us assume a constant credit market price p_S. If an individual wants to buy s_t money units in period t, promising to pay back s_{t+1} money units in period $t+1$, then, at the price p_S, he or she will have to pay back $p_S s_t = s_{t+1}$ money units in $t+1$. The first-order condition for the choice of s_t in period t is

$$u'(c_t) = E\beta u'(c_{t+1}) p_S,$$

where $c_t = m_t - s_t$ and $c_{t+1} = m_{t+1} + p_s s_t$.

Noting that m_t and m_{t+1} are exogenous, the optimality condition is $u'(c_t) = \beta p_S u'(c_{t+1})$. Once again assuming consumption smoothing this reduces to

$$p_S = \frac{1}{\beta}. \quad (3)$$

This is the constant steady-state equilibrium credit price (that is, the short-lived asset price). It has the obvious interpretation: in equilibrium, one unit of money in period t is exchanged for p_S units in period $t+1$. Hence, in equilibrium, the discounted value of one unit of money in $t+1$ is equal to the value of one unit of money in t. The reasoning is straightforward: if I sell one unit today for p_S tomorrow (the price being denoted by p_S), my expected return is equal to βp_S (where β is the continuation probability). Thus, for a risk-neutral agent we need $1 = \beta p_S$, and hence $p_S = 1/\beta$, in equilibrium.

4. The Experimental Implementation

There were 12 subjects in each experimental session. Sessions involved either the (long-lived) asset market or the credit (short-lived asset) market; no subject participated in both. The session started with one of the experimenters reading aloud over the tannoy system the instructions for the experiment and the subjects simultaneously reading written instructions in front of them. Subjects were then asked if they had any questions on the structure of the experiment, and any questions were answered. Afterward, each subject individually watched a video describing the trading mechanism. Subjects were then asked if they had any questions on the trading mechanism in the experiment, and any questions were answered. They were then given a practice period of trading, which continued as long as they wanted. This did not count toward payment.

The trading mechanism can be summarized as follows. Subjects submitted limit orders to buy or sell. The limit order stated a number for a price and a number for a quantity. Both numbers could include decimal places. For limit order submission in the asset market, there were two price/quantity trading masks, one for sells and one for buys. In the credit market, subjects had the same two price/quantity trading masks as in the asset market, but additionally they had two quantity/quantity masks. In the quantity/quantity masks, which they could use alternatively for order submission, subjects detailed the quantity of current tokens and the quantity of next-period tokens in exchange.11 Outstanding limit orders were visible on-screen to all subjects in the order book, always reported in price/quantity display, ordered by price.12 Limit orders of equal prices were ordered chronologically by the time of arrival. Transactions were immediately executed upon arrival of a marketable limit order at the price of the outstanding limit order. Unfilled parts of an outstanding limit order stayed in the order book.

The instructions stated that the experiment would consist of a random number of sequences each divided into a random number of periods. In each period, which lasted three minutes, trading of the asset, or trading in the credit market, could be carried out, using the familiar double-auction mechanism implemented using Z-tree (Fischbacher 2007); for recruitment, we used HRoot (Bock et al. 2014). As already noted, we employed a random stopping mechanism. At the end of every period of trading, one of the subjects publicly rolled a six-sided die: if it showed a number less than six, the sequence would...
continue; if it showed a six, that particular sequence would stop. In that case, if less than one hour had elapsed since the start of the first sequence, a new sequence would be started.\footnote{6}

In each period of the experiment, subjects were endowed with an income denominated in tokens. In our experiment, as we have already noted, there were three types of subjects, four of each type, with their token incomes varying cyclically. Type 1 subjects had token incomes of 109, 53, 67, 109, 53, 67, and so on; type 2 subjects had token incomes of 49, 113, 45, 49, 113, 45, and so on; type 3 subjects had token incomes of 59, 105, 59, 51, 105, and so on. All agents knew what their token incomes would be at the beginning of each period of the experiment. They also knew their endowments of the asset at the beginning of each sequence (these were zero, five, and five for types 1, 2 and 3, respectively). Payment for each and every period depended on how many tokens they had at the end of the period. We had two treatments that differed in terms of the conversion scale from end-of-period tokens to money. These are illustrated in Figure 1. We call them, respectively, the “step payment function” (treatment 1) and the “concave payment function” (treatment 2). With both functions, if a subject ended a period with 79 tokens (the equilibrium end-of-period token balance), they would receive a payment of £1 for that period. With the step payment function, the marginal gains of a subject are infinite in the vicinity of 79 tokens if his or her end-of-period balance falls short of 79 tokens and are zero beyond that point. In contrast, with the concave payment function, the marginal gains are smooth around the 79 tokens benchmark.

In order to explain our choice of these two payment functions, we need to show the parameters used in the experiment and the implied equilibrium. In the experiment, the dividend payment \(d \) was two and the continuation probability was five/six. Hence, the (long-lived asset) equilibrium price was 10 from Equation (2). Table 1 shows the equilibrium. For example, type 1, who starts off with no assets, should buy three units in period 1, sell two units in period 2, and sell one unit in period 3, thus getting back to zero holdings at the end of the cycle (period 4). It will be seen from the table that all three types in all periods have an end-of-period token holding of 79. So they all smooth consumption and all have the same smoothed consumption. This explains our conversion scale in treatment 1: effectively we were telling them that they should aim for end-of-period token holdings of at least 79; this guarantees them a payment of £1 each period. This, of course, does not guarantee consumption smoothing at 79 but it is a strong hint. It could be argued that the step payment function makes the problem more transparent; indeed that was our main reason for introducing it. There are two elements to the solution: (1) realising that consumption smoothing is optimal and (2) calculating the level of consumption at which to smooth. Treatment 1 effectively tells them the answer to (2) and strongly hints at the answer to (1). It is of interest to see whether the subjects responded to these hints.

In treatment 2, we followed Crockett et al. (2019) and had a smoothly concave conversion scale. Again, end-of-period tokens of 79 lead to a payment of £1, but there is nothing to guarantee that subjects will consumption smooth. Notice that because of the concavity of the scale, end-of-period token holdings of less than 65 lead to losses; subjects were told that losses would be offset against profits. We did not allow them to trade in such a way that their token holding would fall below 45.

As far as the credit market is concerned, as once again we had a continuation probability of five/six, the (short-lived asset) equilibrium price given by Equation (3) is 1.2. Once again, we had token incomes varying cyclically and deterministically: type I subjects had token incomes of 109, 53, 67, 109, 53, 67, and so on; type 2 subjects had token incomes of 59, 123, 55, 59, 123, 55, and so on; type 3 subjects had token incomes of 69, 61, 115, 69, 61, 115, and so on. The equilibrium is shown in Table 2. For example, type 1 should sell 30 tokens in period 1, getting 36 tokens back if period 2 was reached and, if it was, should then sell 10 tokens in period 2, getting back 12 if period 3 was reached, and so on.

5. Main Results

In total, 288 subjects participated in the experiment: 12 subjects in each of six independent sessions for each of the four treatments. The subjects’ average age was 22.23, the average Cognitive Reflection Test-score was 1.46,\footnote{15} and 56.60% were female subjects. By participating in the experiment, subjects earned an average of £18.30. The experiment lasted on average two hours including the reading of the instructions and the private payment of cash to subjects. The various treatments are summarised in Table 3.

As we have made clear from the start, there are two key items of interest: (1) whether subjects managed to consumption-smooth and (2) whether the price

| Table 3. Experimental Treatments—Number of Sessions Each with 12 Subjects |
|-----------------------------|-----|-----|
| Market | Asset | Credit |
| Payment function | Step | 6 | 6 |
| | Concave | 6 | 6 |
reached its equilibrium. We note that (1) is not a necessary but is a sufficient condition for (2), assuming competitive-like behaviour in the markets. This, however, depends on how the subjects behave.

Result 1 (Consumption Smoothing). (a) Consumption smoothing is observed in each treatment. (b) Consumption smoothing works better in the credit market than in the asset market and better with the step payment function than with the concave payment function.

Figures 2 and 3 show the average payoffs in each period of each session of the experiment. Table 4 summarises the average payoff by market and by payment function. The efficient consumption level in the experiment was 79 tokens, which implied a payoff of £1 per period. The no-trade consumption level implied a mean payoff per period of £0.333 with the step payment function and £0.2033 (type 1), £0.1133 (type 2), and £0.68 (type 3) with the concave payment function.

a. The observed average payoff levels significantly exceed the no-trade consumption level in each market and for each payment function (see Table 4).

b. The average payoffs recorded in Table 4 indicate that the credit market has higher consumption levels than the asset market for each payment function. The payoff differences between the asset market and credit market and the differences in the relative frequency of efficient consumption levels are significant at the 5% level for each payment function. The relative frequencies of efficient consumption are also significantly different between the asset market and credit market for both payment functions. In addition, the differences between the payment functions are significant for both markets. The results of the two-tailed two-sample Mann-Whitney tests are indicated in the bottom lines of Table 4. In the first column of Table 5, we report further supportive evidence of the stated treatment effects from a dummy regression with robust standard errors.

Result 2 (Equilibrium Pricing). (a) Close-to-equilibrium pricing is observed in both the asset and credit markets and with both the step and the concave payment functions. (b) The asset market deviations from the equilibrium price are larger in magnitude than in the credit market.

a. Figures 4 and 5 show the average price trajectories and the equilibrium price for each treatment condition. Table 6 records the average prices, the average

Figures 2. (Color online) Average Payoff/Consumption with Step Function (Top: Asset Market, Bottom: Credit Market)

Note. A filled-in circle indicates the end of a sequence; the efficient payoff is £1.
of the relative deviation, and the average of the absolute relative deviation from the equilibrium price. These are standard measures in the experimental asset market literature to identify mispricing (see Stöckl et al. 2010). The relative deviation and the relative absolute deviation are defined as follows.

Relative Deviation (RD) \[\frac{\sum_{t=1}^{T} p_t - Ep}{TEp} \]

Relative Absolute Deviation (RAD) \[\frac{\sum_{t=1}^{T} |p_t - Ep|}{TEp} \]

Figures 3. (Color online) Average Payoff/Consumption with the Concave Function (Top: Asset Market, Bottom: Credit Market)

Note. A filled-in circle indicates the end of a sequence; the efficient payoff is £1.

Table 4. Consumption Smoothing—Average Payoff per Period and Efficient Consumption share

Treatment	Average payoff per period (significantly larger than the no-trade outcome according to a Wilcoxon signed-ranks test)	Efficient consumption share
SA step asset market	0.712**	0.186
SC step credit market	0.855**	0.519
CA concave asset market	0.452**	0.012
CC concave credit market	0.742**	0.076

Two-tailed two-sample Mann-Whitney test results:

- **p-value re treatments SA vs. SC**: 0.004***
- **p-value re treatments CA vs. CC**: 0.005***
- **p-value re SA&CA vs. SC&CC**: 0.030**
- **p-value re SA&SC vs. CA&CC**: 0.000***

Note. The one-sample Wilcoxon signed-ranks test is conducted on the independent cohort average \((n = 6)\); the two-sample Mann-Whitney test is conducted on the independent cohort averages \((n_1 = n_2 = 6)\).

***p < 0.01; **p < 0.05; *p < 0.10.
The average prices are recorded in Table 6.17 in all treatment conditions, we observe no significant differences from equilibrium, as also indicted by the relative deviation. In the step asset market, the deviation is economically large because the price in one market (session SA4, see Figure 5) deviates more from the equilibrium than the others. The two-tailed one-sample Wilcoxon test of the hypothesis of equilibrium pricing results insignifi cant at the 10% level; for the step asset market treatment, the p-value is 0.60. The recorded relative deviations suggest no significant differences between treatments. The p-values are recorded in the table.

b. There are differences in mispricing between treatments. The differences from the equilibrium prediction are suggested in Figures 4 and 5 by the spread around the prediction, which is apparently smaller in the credit market than in the asset market. The

Explanatory variables	Average pay in period	Relative deviation (RD) of average price from equilibrium in period	Relative abs deviation (RAD) of average price from equilibrium in period
Constant	0.713***	−0.131	0.096
	(29.6)	(=1.12)	(1.26)
AssetD	−0.218**	0.099	0.380**
	(2.64)	(0.50)	(2.64)
StepD	0.181***	0.332	0.158
	(6.82)	(1.64)	(1.07)
No. observations	534		
No. clusters	24		
R^2	0.471	0.078	0.164

Notes. AssetD is an Asset Market Dummy equal to 1 in the asset market and 0 in the credit market. StepD is a Step Treatment Dummy equal to 1 in the step treatments and equal to 0 in the concave treatments.

***$p < 0.01$; **$p < 0.05$; *$p < 0.10$.

Figure 4. (Color online) Average Prices with the Step Function (Top: Asset Market, Bottom: Credit Market)

Note. A filled-in circle indicates the end of a sequence; scale is five times the equilibrium price of 10.
absolute relative deviations that measure these deviations from the equilibrium prediction are significantly smaller in the credit market than in the asset market. The p-values of the two-tailed two-sample Mann-Whitney are reported in Table 6. The payment function, on the other hand, has no significant effect on mispricing in terms of Relative Absolute Deviation (RAD), but the price level measured by Relative Deviation (RD) seems a bit lower with concave payment. The regression analysis with robust standard errors reported in Table 5 underlines these observations.

5.1. Robustness Check

We have conducted the analysis in Tables 4 and 6 on the data of the last sequence only, that is, the sequence when subjects have the most familiarity with the setting. All reported significance levels in Tables 4 and 6 are fully supported; in fact, significances tend to increase. There is one difference: the relative deviation

Table 6. Average Price and Mispricing

Treatment	Average price (significant differences of average price from equilibrium would be indicated)	Average relative deviation (RD) (significant differences from equilibrium price would be indicated)	Average relative absolute deviation (RAD)
SA step asset market	13.52	.352	.648
SC step credit market	1.25	.045	.171
CA concave asset market	8.34	−.166	.419
CC concave credit market	1.15	−.046	.127

Two-tailed two-sample Mann-Whitney test results:

p-value re treatments SA vs. SC 0.873 0.036**
p-value re treatments CA vs. CC 0.149 0.010**
p-value re SA&CA vs. SC&CC 0.355 0.002***
p-value re SA&SC vs. CA&CC 0.094* 0.311

Note. The one-sample Wilcoxon signed-ranks test is conducted on the independent cohort average (n = 6) indicating no significant deviation from equilibrium; the two-sample Mann-Whitney test is conducted on the independent cohort averages ($n_1 = n_2 = 6$).

*** $p < 0.01$; ** $p < 0.05$; * $p < 0.10$.

from the equilibrium RD in the concave asset market is significantly different (smaller) from the one in the concave credit market. The Mann-Whitney test to this difference yields a p-value of 0.055, whereas it is 0.149 in Table 6.

We note, in looking at the period-by-period prices in Figures 4 and 5, that there appear to be bubbles (partly burst) in the step asset sessions SA2 and SA5 and (burst) in the concave asset session CA2. We suspect that these deviations from equilibrium are due to hoarding; we explore this possible explanation in Section 7. We also note that bubbles in the credit market sessions (Figures 4 and 5) are conspicuous by their absence.

6. Pricing Uncertainty of Future Returns

One possible explanation for the larger deviations from the equilibrium in the asset market compared with the credit market is the uncertainty about pricing of future claims. This uncertainty impacts the long-term (asset) market differently from the short-term (credit) market. In the credit market, this uncertainty
which hits long-lived returns more than short-lived
of Sharpe ratios to the empirical risk of rare disasters
Collaborators attribute this decreasing empirical pattern
(Binsbergen and Koijen, 2017).Van Binsbergen and
expected return for both short-term and long-lived
Sharpe ratio (van Binsbergen et al., 2012, van
recent empirical literature reports a decreasing pat-
tions across all returns in a session. Note that the
average price of the period and the standard devia-
tions across all returns in a session. Note that the
empirical pattern of Sharpe ratios (van Binsbergen et al., 2012, van
Binsbergen and Koijen, 2017). Van Binsbergen and
and collaborators attribute this decreasing empirical pattern
of Sharpe ratios to the empirical risk of rare disasters
which hits long-lived returns more than short-lived
returns. In our setup, of course, risk of rare disasters
is absent.

Result 3 (Sharpe Ratio Structure). The term structure of
Sharpe ratios is nondecreasing.

Figure 6 shows the term structures of return, standard
deviation, and Sharpe ratio in our experiment. The
Corresponding numbers of average Sharpe ratios,
the average returns, and average standard deviations are
recorded in Table 7 for each treatment. As indicated in
the table, the Sharpe ratio deviates significantly from
the equilibrium prediction in the concave payment
asset market treatment. In the step level payment
treatment, the signs are the same; but statistical sig-
nificance is not achieved at the 10% level. Overall, we
find significantly higher Sharpe ratios for long-lived
than for short-lived asset returns. The Sharpe ratios of
short-lived asset returns are not different from the
equilibrium prediction of zero.

Table 7. Average Return, Standard Deviation and Sharpe Ratio

Treatment	Average return R (significant differences from expected Sharpe ratio of zero indicated)	Average standard deviation σ (significant differences from equilibrium prediction of 0.428 indicated)	Sharpe ratio R/σ (significant differences from expected Sharpe ratio of zero are indicated)
SA (step asset market)	0.038	0.532	0.115
SC (step credit market)	−0.013	0.576**	−0.021
CA (concave asset market)	0.179**	0.577	0.313**
CC (concave credit market)	−0.011	0.480	−0.042
p-value re treatments SA vs. SC	0.262	0.749	0.337
p-value re treatments CA vs. CC	0.055*	0.631	0.078**
p-value re SA&CA vs. SC&CC	0.015**	0.817	0.024**
p-value re SA&SC vs. CA&CC	0.184	0.356	0.184

Note. The one-sample Wilcoxon signed-ranks test is conducted on the independent cohort average (n = 6); the two-sample Mann-Whitney test is conducted on the independent cohort averages (n1 = n2 = 6).

***p < 0.01; **p < 0.05; *p < 0.10.

The equilibrium Sharpe ratio is constant at zero for
short-lived and long-lived claims. To estimate the
Sharpe ratio from our data, we use the return on
VAR(σ) − σ
Sharpe Ratio = R − Rf
V
Rf
2
which is the return of the risky investment, Rf the
return on the risk-free investment, and the standard
deviation of the risky return measures the risk of
the investment. Standard theory suggests that in-
vestors prefer a high to a low Sharpe ratio. Because
we have no risk-free rate in our experimental setting,
we compute the Sharpe ratio as the ratio of return
to standard deviation of the return. The return on
the long-lived asset is the sum of capital gain yield
and dividend yield, that is, Rf = (pL1 + d)/pL1−1 − 1.
The return on the short-lived asset is simply the price
minus cost, Rf = pS1−1 − 1. In fact, these are the returns
when the sequence does not expire in period t-1. If the
sequence expires, the return is −1. Therefore, the
expected return for both short-term and long-lived
claims is zero in our setup and the variance is 0.183.
20

The equilibrium Sharpe ratio is constant at zero for
short-lived and long-lived claims. To estimate the
Sharpe ratio from our data, we use the return on
the average price of the period and the standard devia-
tions across all returns in a session. Note that the
recent empirical literature reports a decreasing pat-
tern of Sharpe ratios (van Binsbergen et al., 2012, van
Binsbergen and Koijen, 2017). Van Binsbergen and
and collaborators attribute this decreasing empirical pattern
of Sharpe ratios to the empirical risk of rare disasters
which hits long-lived returns more than short-lived
returns. In our setup, of course, risk of rare disasters
is absent.

Result 3 (Sharpe Ratio Structure). The term structure of
Sharpe ratios is nondecreasing.

Figure 6 shows the term structures of return, standard
deviation, and Sharpe ratio in our experiment. The
Corresponding numbers of average Sharpe ratios,
the average returns, and average standard deviations are
recorded in Table 7 for each treatment. As indicated in
the table, the Sharpe ratio deviates significantly from
the equilibrium prediction in the concave payment
asset market treatment. In the step level payment
treatment, the signs are the same; but statistical sig-
nificance is not achieved at the 10% level. Overall, we
find significantly higher Sharpe ratios for long-lived
than for short-lived asset returns. The Sharpe ratios of
short-lived asset returns are not different from the
equilibrium prediction of zero.

Table 8. Regression Results on Efficiency Levels and
Mispri sing of Market Institutions on Concentration
of Claims

Explanatory variable	Average Pay	RD	RAD
Constant	0.779***	0.022	0.140***
(0.21)	(0.710)	(7.84)	
HHI	0.072	0.019	0.112*
(0.73)	(0.11)	(1.73)	
AssetD	−0.063	−0.384	0.028
(−1.08)	(−1.67)	(0.17)	
AssetD x hhi	−0.800***	2.80***	2.09***
(−4.43)	(7.76)	(6.48)	
No. observations	534	534	534
No. clusters	24	24	12
R²	0.352	0.132	0.252

Note. AssetD is an Asset Market Dummy equal to 1 in the asset market and 0 in the credit Market.

***p < 0.01; **p < 0.05; *p < 0.10.
states to prices. whereas theory assumes volatility observed in the data, given a complicated failure of rational expectations to predict price

Asparouhova that investors in the asset market request a premium for the uncertainty about future prices. Asparouhova et al. (2016, p. 2731) reach a related conclusion on for the uncertainty about future prices. The pattern in our data suggests one measure of concentration (in the holding of assets) is the Herfindahl-Hirschman index, which we denote by $hhit$:

$$hhit = \sum_{i=1}^{N} s_{ii}^2,$$

where s_{ii} is the share of future claims of subject $i (= 1..N)$ of outstanding claims at the end of the period. In the asset market, s_{ii} is the subject’s asset holding relative to 40 outstanding assets. In the credit market, s_{ii} is the subject’s number of next-period tokens at the end of the period relative to the endogenous sum of all next-period tokens. One hypothesis, therefore, is that the price in the asset market may be an increasing function of $hhit$, leading to mispricing and allocative inefficiency.

Table 9a. Regression Results on Efficiency Levels and Mispricing of Market Institutions on Concentration of Claims (Concave Treatment)

Explanatory variables	Average Pay	RD	RAD
Constant	0.707***	0.048	0.167***
(13.0)	(0.50)		(7.63)
HHI	0.158	−0.147	−0.034
(0.96)	(−0.57)		(−0.25)
AssetD	−0.123*	−0.846***	−0.214*
(−1.95)	(−5.95)		(−1.97)
AssetD x hhi	−0.822***	3.44***	2.47***
(−4.42)	(6.64)		(7.97)
No. observations	270	270	270
No. clusters	12	12	6
R^2	0.465	0.423	0.415

Note. AssetD is an Asset Market Dummy equal to 1 in the asset market and 0 in the credit Market. ***$p < 0.01$; **$p < 0.05$; *$p < 0.10$.

7. Rationale for Mispricing and Efficiency Losses

As pointed out above, the uncertainty of future prices impacts the long-term (asset) market differently from the short-term (credit) market. To insure against the uncertainty about future prices, subjects in the asset market could start hoarding assets. In the credit market, subjects have no opportunity to hoard the short-term claim, because the claim of today has ceased to live tomorrow.

A way to investigate nonequilibrium behaviour as hoarding is in the measurement of market concentration. Competitive equilibrium assumes a “sufficiently large” number of participants. Although many other, usually simpler, experiments have observed competitive behaviour with $n = 12$ or fewer subjects, perhaps this experiment is too complex and had too few subjects. It is possible that some subjects realised that the market was not truly competitive and hence that they could try and impose some monopolistic power. One obvious way to do this in the asset market sessions was to try and build up a large asset holding and then hold out for high prices when offering to sell. So, if the assets became concentrated in the hands of a small number of subjects, prices could be forced upwards.

Table 9b. Regression Results on Efficiency Levels and Mispricing of Market Institutions on Concentration of Claims (Step Treatment)

Explanatory variables	Average Pay	RD	RAD
Constant	0.876***	0.027	0.137***
(68.8)	(0.46)		(5.73)
HHI	−0.071	0.070	0.166**
(−1.32)	(0.37)		(2.43)
AssetD	−0.079**	−0.057	0.193
(−2.88)	(−0.15)		(0.65)
AssetD x hhi	−0.451***	2.74*	2.03
(−4.87)	(2.00)		(1.68)
No. observations	264	264	264
No. clusters	12	12	12
R^2	0.455	0.132	0.232

Note. AssetD is an Asset Market Dummy equal to 1 in the asset market and 0 in the credit Market. ***$p < 0.01$; **$p < 0.05$; *$p < 0.10$.

Result 3 is rather opposite to the one reported in van Binsbergen and Koijen (2017): under laboratory conditions, we failed to reproduce the declining pattern of term-structure of Sharpe ratios observed in real-world data (van Binsbergen and Koijen 2017). The likely reason is that our experimental design involves no rare disasters risks. The pattern in our data suggests that investors in the asset market request a premium for the uncertainty about future prices. Asparouhova et al. (2016, p. 2731) reach a related conclusion on for the uncertainty about future prices. The result suggests that the difference between treatments in (a) efficiency and (b) mispricing.

a. In the first column of Table 8, we report regression results with robust standard errors that indicate the effect of investor concentration on efficiency. The result suggests that the difference between the asset market and the credit market can be reduced to the difference of the sensitivity of investor concentration. When the claims concentration is high in the asset market, the payoff is significantly reduced compared with the credit market. In Tables 9a and 9b, we report the effect of share concentration for concave payment and step payment separately.
agent model (Ljungqvist and Sargent 2004). Because our experiment has no economic risk other than the continuation risk, both models imply the same equilibrium consumption vectors of agents.

Interestingly, performance in both these key aspects (consumption smoothing and equilibrium pricing) tends to be better in the credit market. Our data analysis shows that concentration of holdings (indicating the use of monopoly power) affects efficiency.

We observe mispricing in the market of the long-lived asset. Our data suggest that uncompetitive behaviour, that is, hoarding of assets, is a key source of this mispricing. For both pricing and efficiency, the market for long-lived assets results in larger deviations from the equilibrium than the market for short-lived assets.

The suggested reason for the larger deviations from the equilibrium in the asset market compared with the credit market is the uncertainty about pricing of future claims. This uncertainty impacts the long-term (asset) market differently from the short-term (credit) market. To insure against the uncertainty about future prices, subjects in the asset market may be motivated to hoard assets. In the credit market, this uncertainty does not exist and subjects have no opportunity to hoard the short-term claim because the claim of today has ceased to live tomorrow.

Our paper contributes to the discussion on the term structure of returns. The recent empirical literature observes a declining term structure of Sharpe ratios in real-world markets (van Binsbergen et al. 2012, van Binsbergen and Kojien 2017). Van Binsbergen and collaborators report that this observation contrasts with the prediction of standard models that suggest no lower risk adjusted returns on long-term assets than on short-term assets. It seems interesting that under controlled laboratory conditions, we find no declining term structure, in particular, because van Binsbergen and Kojien (2017) believe that the declining term structure could be key to the explanation of puzzles in finance as, for instance, related to equity premium and excess volatility. Future experiments shall address the question whether the term structure of returns reverts in the presence of disaster risk. This feature is absent from our study.

8. Conclusions
The key results from this experiment on the Lucas tree model are that subjects do seem to manage to consumption smooth and that prices do approach the equilibrium. These key findings are similar to the results from Crockett et al. (2019), though our experiments generalise theirs in going from an oscillating formulation to a cyclical formulation. Besides the market for long-lived assets, we extend their analysis by analysing also a credit market in which short-lived claims are traded. This appears to be a first implementation in the laboratory of the Bewley heterogeneous

Table 10. Average lhi Measures Across Periods and Treatments

Treatment	Period 1, 4, 7, …	Period 2, 5, 8, …	Period 3, 6, 9, …
Asset market equilibrium	0.085	0.135	0.125
SA (step asset market)	0.149	0.174	0.182
CA (concave asset market)	0.174	0.193	0.204
Credit market equilibrium	0.194	0.139	n/d
SC (step credit market)	0.288	0.261	0.333
CC (concave credit market)	0.257	0.262	0.284
The main question of our study has been whether long-lived assets or short-lived assets are preferable for consumption smoothing. The bottom line would appear to be that a market for long-lived assets can help people to consume smoothly but that a market for short-lived assets does it better.

Acknowledgements
The authors thank the departmental editor, Yan Chen, and three referees whose very helpful and constructive comments led to significant improvements to the paper. The authors also thank Elena Asparouhova, Peter Bossaerts, Subir Chattopadhyay, Sean Crockett, John Duffy, Benjamin Holcblat, Christos Koulovatianos, Julien Penasse, Bill Zame for helpful comments as well as the conference participants at 9th Workshop on Theoretical and Experimental Macroeconomics Berlin, APESA Brisbane, SAET Ischia, Experimental Finance Heidelberg and Experimental Finance Salt Lake City.

Endnotes
1 We considered alternative terminologies—forward market, futures market, cash-in-advance market—and finally settled on this.
2 The step function implies stronger marginal buy/sell incentives, pushing subjects toward consumption smoothing. In a high-income period, a subject starts with extra cash (more than 79) that is worthless unless shifted to the next period, whereas in a low-income (less than 79) period, the subject has a very strong incentive to acquire more cash in the current period to reach the threshold.
3 Earlier contributions like Forsythe et al. (1982) and Friedman et al. (1984), and more recent contributions like Noussair and Tucker (2006), show that the future market is more efficient than the spot market and that if there is a future market available, the spot market converges to the equilibrium price more efficiently. However, these experiments do not have a consumption smoothing dimension.
4 Bewley (1983) proves monetary equilibrium existence. Following Ljungqvist and Sargent (2004), we adopt the term Bewley model, whereas Heathcote et al. (2009) refer to the standard incomplete markets model. In the equilibrium with many agents, households are able to consume or trade units of the endowment. Trade occurs in exchange for a promise of R units of consumption next period, that is, a one-period credit contract.
5 Bosch-Rosa (2017) studies rollover risk of maturities in a bank-run type of laboratory experiment. The data suggest that short-term maturities behave less vulnerable in economic downturns than long-term maturities. The absence of macroeconomic cycles in our experiment could potentially explain why the Sharpe ratio (Sharpe 1994) in our short-lived security does not exceed that of our long-lived security.
6 Note that if() is not the DM (Decision Maker)’s utility function over money but is the conversion (into money) of the end-of-period consumption. Crockett et al. (2019) explore the effect of the DM having a concave function over money earned in the experiment. They show that this implies a lower equilibrium price than that derived here. This may explain some of our experimental findings.
7 This short-term price terminology, which is somewhat unusual for a credit instrument, is in line with our experimental implementation. We chose this implementation to give the predicted equilibrium price a chance to prevail as transaction price in the experiment. Standard discounting terminology, which we have applied to the long-term asset, would require the statement of today’s price in exchange for a promise of one cash-unit tomorrow. The equilibrium price in this formulation would equal the continuation probability of (five/six) in the experiment, which cannot prevail as transaction price in the market as subjects enter their limit orders in decimals.
8 It is a loudspeaker system in the laboratory, so that all subjects could hear.
9 They can be found in the supplementary material.
10 Again available in the supplementary material.
11 For inexperienced subjects, the quantity/quantity mask was apparently useful. It was the more frequent choice for order submission in the first five periods (50.7%–57.6% of limit orders). On average, however, subjects chose more frequently to submit their orders through the price/quantity mask (54.9%).
12 A subject could submit an unlimited number of buy and sell orders to the market. The latest submission would be outstanding in the order book until filled or replaced with a new limit order of the submitter.
13 The program can be found on the site, as can the questionnaire administered at the end of the experiment.
14 In the unlikely event that no six was thrown between one and two hours, we told the subjects that we would stop the experiment that day and continue it on another. In practice, this never happened.
15 Subjects were asked to answer the three questions of the cognitive reflection test CRT (Frederick 2005) in the debriefings. The CRT-score measures the cognitive abilities of subjects. The individual CRT-score can take numbers between zero and three. Subjects with a higher CRT-score usually have a higher payoff in market experiments (e.g., Corgnet et al. 2014, Breaban and Noussair 2015, Charness and Neugebauer 2019). The average CRT-score of our sample is comparable to 1.43 measured with Harvard University students as reported in Frederick (2005). The CRT questions were (1) A hat and a suit cost $110. The suit costs $100 more than the hat. How much does the hat cost? (2) If it takes five machines five minutes to make five widgets, how long would it take 100 machines to make 100 widgets? (3) In a lake, there is a patch of lily pads. Every day the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of it?
16 The differences between the step asset market and the concave credit market treatments are not significant; the p-values are 0.337 (average) and 0.109 (efficient consumption), respectively.
17 Note that in the concave asset market and the concave credit market, average prices are below the equilibrium. This could be because our subjects were risk averse with respect to the money earned in the experiment (see Endnote 7 in Section 3). Elsewhere (particularly in the step asset market), market average prices are above the equilibrium; this seems to be due to the bubbles that we discuss later.
18 We appreciate that the results in this section, and the next depend upon the stochastic specification implicit in the analyses; we have explored alternative specifications and are happy that our results are robust.
19 Crockett et al. (2019) suggested that some subjects hoarded assets, in particular, in the treatment with a linear payoff function.
20 The Expected Return (ER) and the variance of the return (VAR(R)) are given by: E(R) = 0.2 × 5/6 + (−1) × 1/6 = 0, and VAR(R) = 0.2 × 5/6 + (−1) × 1/6, where 0.2 and −1 are the possible returns and 5/6 and 1/6 the corresponding probabilities. The standard deviation in equilibrium is thus 0.428.
21 In equilibrium the hhit cycle varies between periods. In the asset market, the predicted three-period hhit-cycle is [0.085, 0.135, 0.0125] and in the credit market (0.194, 0.139, not defined).
22 For instance, we looked at subjects’ retraction of claims within a period, which is a departure from the equilibrium prediction. In equilibrium, subjects trade the optimal quantity at the equilibrium price in order to smooth their consumption. In the experiment, some subjects
buy and sell, that is, they retrade claims of assets within the same period. Related literature suggests that retraiding of assets would be a symptom of speculation (Lei et al. 2001, Dickhaut et al. 2012, and Gjerstad et al. 2015), and Hirota et al. (2018) report that mispricing increases with the required number of retrades across periods. In our experiment, the transaction volume is related to retraiding behaviour. Retraiding may not be independent of investor concentration. Importantly, we find that the significance of with at explaining deviations from equilibrium is apparently better than the one offered by the retraiding data of subjects. Therefore, we have decided not to report the data analysis on retrade in the paper. We also looked at possible mistakes that subjects make at perceiving continuation probabilities. If subjects exhibit the gambler’s fallacy, perceived continuation probabilities may decrease. To the contrary, if subjects exhibit the hot-hand effect, perceived continuation probabilities can increase. Nonetheless, a regression of the overall data suggests no significant effect of sequence length on mispricing or efficiency. Finally, gender seems also to have no clear effect on efficiency and mispricing in our data.

References
Asparouhova E, Bossaerts P, Plott CR (2003) Excess demand and endowment in multi-security financial markets: The empirical evidence. J. Financial Marketing 6(1):1–21.
Asparouhova E, Bossaerts P, Roy N, Zame W (2016) ‘Lucas’ in the laboratory. J. Finance 71(6):2727–2780.
Ballinger TP, Palumbo MG, Wilcox NT (2003) Precautionary savings and social learning across generations: An experiment. Econom. J. (London) 113:920–947.
Bewley T (1983) A difficulty with the optimum quantity of money. Econometrica 51(5):1485–1504.
Bock O, Baetge I, Nicklisch A (2014) hroot: Hamburg registration and trading system for experimental asset markets. J. Political Econom. 51(5):1485–1492.
Carbone E, Hey JD (2004) The effect of unemployment on consumption: An experimental study. Econom. Rev. 23:1–20.
Carbone E, Hey JD, Dardanoni V (1988) Optimal consumption under uncertainty: An experimental investigation. Econom. J. (London), 91:81–112.
Haruvy E, LaBov Y, Noussair CN (2007) Traders’ expectations in asset market experiments: Experimental evidence. Amer. Econom. Rev. 97:1901–1920.
Heathcote J, Storesletten K, Violante GL (2009) Quantitative macroeconomics with heterogeneous households. Annual Rev. Econom. 1:319–354.
Hey JD (1980) Optimal consumption under income uncertainty: An example and a conjecture. Econom. Lett. 5:129–133.
Hey JD, Dardanoni V (1988) Optimal consumption under uncertainty: An experimental investigation. Econom. J. (London), 91:81–112.
Hirota S, Huber J, Stockl T, Sunder S (2018). Speculation and price indeterminacy in financial markets: An experimental study. Preprint, submitted June 7, https://ssrn.com/abstract=3188268.
Hussam RN, Porter D, Smith VL (2008) Thar she blows: Can bubbles be rekindled with experienced subjects? Amer. Econom. Rev. 98(3):924–937.
Kirchner M, Huber J, Stockl T (2012) Thar she bursts: Reducing confusion reduces bubbles. Amer. Econom. Rev. 102(2):865–883.
Lei V, Noussair CN (2002) An experimental test of an optimal growth model. Amer. Econom. Rev. 92(3):549–570.
Lei V, Noussair CN, Plott CR (2001) Non speculative bubbles in experimental asset markets: Lack of common knowledge of rationality vs. actual irrationality. Economometrica 69(4):831–859.
Ljungqvist L, Sargent TJ (2004) Recursive Macroeconomic Theory (MIT Press, Cambridge, MA).
Lucas RE Jr (1978) Asset prices in an exchange economy. Economometrica 46(6):1429–1445.
Noussair CN, Matheny K (2000) An experimental study of decisions in dynamic optimization problems. Econom. Theory 15(2):389–419.
Noussair C, Popescu AV (2019) Contagion and return predictability in asset markets: An experiment with two Lucas trees. Preprint, submitted September 6, https://ssrn.com/abstract=3445324.
Noussair CN, Tucker S (2006) Futures markets and bubble formation in experimental asset markets. Pacific Econom. Rev. 11(2):167–184.
Plott CR, Sunder S (1982) Efficiency of experimental security market with insider information: An application of rational expectations models. J. Political Econom. 90(4):663–698.
Porter DP, Smith VL (1995) Future contracting and dividend uncertainty in experimental asset market. J. Bus. 68(4):509–541.
Sharpe WF (1994) The Sharpe ratio. J. Portfolio Management 21(1):49–58.
Smith VL, Suchanek GL, Williams AW (1988) Bubbles, crashes and endogenous expectations in experimental spot asset markets. Economometrica 56(5):1119–1151.
Stöckl T, Huber J, Kirchler M (2010) Bubble measures in experimental asset markets. Experiment. Econom. 13(3):284–298.
van Binsbergen JH, Koijen RSJ (2017) The term structure of returns: Facts and theory. J. Financial Econom. 124(1):1–21.
van Binsbergen JH, Brandt M, Koijen RSJ (2012) On the timing and pricing of dividends. Amer. Econom. Rev. 102(4):1596–1618.
van Boening MV, Williams AW, LaMaster S (1993) Price bubbles and crashes in experimental call markets. Econom. Lett. 41(2):179–185.