Large-Scale Adversarial Training for Vision-and-Language Representation Learning

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, Jingjing Liu
Image-Text Pre-training

• Tremendous progress has been made for multimodal pre-training
Recap on UNITER

• Pre-training a large-scale Transformer for universal V+L representation learning
What’s Next?

• Aggressive finetuning often falls into the overfitting trap in existing multimodal pre-training methods

• Adversarial training (FreeLB) has shown great potential in improving the generalization ability of BERT

• Beyond FreeLB:
 • How about pre-training?
 • How about image modality?
 • How about AT algorithm itself?
VILLA: Vision-and-Language Large-scale Adversarial Training
Preliminary: What’s Adversarial Attack?

- Neural Networks are prone to label-preserving adversarial examples

Computer Vision:

“pig”

+ 0.005 x

“airliner”

Natural Language Processing:

Original	Changed
What is the oncorhynchus also called? A: chum salmon	What’s the oncorhynchus also called? A: keta
How long is the Rhine? A: 1,230 km	How long is the Rhine?? A: more than 1,050,000

(b) Example for (WP is → WP’s)
(c) Example for (? → ??)

[1] Explaining and harnessing adversarial examples. *arXiv:1412.6572*
[2] Semantically equivalent adversarial rules for debugging nlp models. *ACL (2018)*
Preliminary: What’s Adversarial Training (AT)?

• A min-max game to harness adversarial examples

\[
\min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\delta \in \mathcal{S}} \mathcal{L}(x + \delta, y; \theta) \right]
\]

• Use adversarial examples as additional training samples
 • On one hand, we try to find perturbations that maximize the empirical risk
 • On the other hand, the model tries to make correct predictions on adversarial examples

• *What doesn't kill you makes you stronger!*

Explaining and harnessing adversarial examples. arXiv:1412.6572
What’s Our Recipe?

- **Ingredient #1**: Adversarial pre-training + finetuning
- **Ingredient #2**: Perturbations in the embedding space
- **Ingredient #3**: Enhanced adversarial training algorithm
#1: Adversarial Pre-training + Finetuning

• Pre-training and finetuning are inherently correlated

 • **MLM during pre-training (masking out an object):**
 [CLS] A [MASK] laying on the grass next to a frisbee [SEP]

 • **VQA during finetuning (asking about an object):**
 What animal is lying on the grass?

• Pre-training and finetuning share the same mathematical formulation

\[
\min_\theta \mathbb{E}_{(x_{img}, x_{txt}, y) \sim \mathcal{D}} [L_\theta(x_{img}, x_{txt}, y)].
\]
#2: Perturbations in the Embedding Space

• For image, robustness is often at odds with generalization
 • **Generalization**: Accuracy on clean data
 • **Robustness**: Accuracy on adversarial examples

- To boost performance on clean data, we propose to add perturbation in the feature space instead of pixel space.

Robustness may be at odds with accuracy. *ICLR (2019)*.
#2: Perturbations in the Embedding Space

• For text, generating actual adversarial examples is difficult
 • An adversarial example should *preserve the semantics* as context is important

 Original: He has a natural *gift* for writing scripts.
 Adversarial: He has a natural *talent* for writing scripts. ✓
 Adversarial: He has a natural *present* for writing scripts. ✗

• Use back-translation scores to filter out invalid adversaries: *expensive*
• Searching for semantically equivalent adversarial rules: *heuristic*

• Since we only care about the *end results* of adversarial training, we add perturbations in the embedding space directly

[1] Semantically Equivalent Adversarial Rules for Debugging NLP Models, ACL 2018.
[2] Robust Neural Machine Translation with Doubly Adversarial Inputs, ACL 2019.
#3: Enhanced AT Algorithm

- Training objective:
 \[
 \min_\theta \mathbb{E}_{(x_{img}, x_{txt}, y) \sim D} \left[L_{std}(\theta) + R_{at}(\theta) + \alpha \cdot R_{kl}(\theta) \right]
 \]

- Cross-entropy loss on clean data:
 \[
 L_{std}(\theta) = L(f_\theta(x_{img}; x_{txt}); y)
 \]

A [MASK] lying on the grass next to a frisbee

\[
\text{Probability vector} \quad \text{Ground-truth label}
\]
#3: Enhanced AT Algorithm

• Training objective:

$$\min_{\theta} \mathbb{E}_{(x_{img}, x_{txt}, y) \sim \mathcal{D}} \left[L_{std}(\theta) + R_{at}(\theta) + \alpha \cdot R_{kl}(\theta) \right]$$

• Cross-entropy loss on adversarial embeddings:

$$R_{at}(\theta) = \max_{||\delta_{img}|| \leq \varepsilon} L(f_\theta(x_{img} + \delta_{img}, x_{txt}), y) + \max_{||\delta_{txt}|| \leq \varepsilon} L(f_\theta(x_{img}, x_{txt} + \delta_{txt}), y)$$

A [MASK] lying on the grass next to a frisbee
#3: Enhanced AT Algorithm

- Training objective:

 \[
 \min_{\theta} \mathbb{E}_{(x_{img}, x_{txt}, y) \sim \mathcal{D}} \left[\mathcal{L}_{std}(\theta) + \mathcal{R}_{at}(\theta) + \alpha \cdot \mathcal{R}_{kl}(\theta) \right]
 \]

- KL-divergence loss for fine-grained adversarial regularization

 \[
 \mathcal{R}_{kl}(\theta) = \max_{\|\delta_{img}\| \leq \varepsilon} L_{kl}(f_\theta(x_{img} + \delta_{img}, x_{txt}), f_\theta(x_{img}, x_{txt}))
 \]

 \[
 + \max_{\|\delta_{txt}\| \leq \varepsilon} L_{kl}(f_\theta(x_{img}, x_{txt} + \delta_{txt}), f_\theta(x_{img}, x_{txt}))
 \]

 where \(L_{kl}(p, q) = \text{KL}(p||q) + \text{KL}(q||p) \)

- Not only label-preserving, but the confidence level of the prediction between clean data and adversarial examples should also be close
#3: Enhanced AT Algorithm

A [MASK] lying on the grass next to a frisbee

KL Divergence

A [MASK] lying on the grass next to a frisbee

KL Divergence

A [MASK] lying on the grass next to a frisbee

KL Divergence
#3: Enhanced AT Algorithm

Enable AT for large-scale training and promote diverse adversaries

Algorithm 1 “Free” Multi-modal Adversarial Training used in VILLA.

Require: Training samples $\mathcal{D} = \{(x_{\text{img}}, x_{\text{txt}}, y)\}$, perturbation bound ϵ, learning rate τ, ascent steps K, ascent step size α

1: Initialize θ
2: for epoch = 1 \ldots N_{ep} do
3: for minibatch $B \subset X$ do
4: $\delta_0 \leftarrow \frac{1}{\sqrt{N_S}} U(-\epsilon, \epsilon)$, $g_0 \leftarrow 0$
5: for $t = 1 \ldots K$ do
6: Accumulate gradient of parameters θ given $\delta_{\text{img},t-1}$ and $\delta_{\text{txt},t-1}$
7: $g_t \leftarrow g_{t-1} + \frac{1}{K} \mathbb{E}_{(x_{\text{img}}, x_{\text{txt}}, y) \in B} [\nabla_{\theta} (L_{\text{std}}(\theta) + R_{\text{at}}(\theta) + R_{\text{kl}}(\theta))]$
8: Update the perturbation δ_{img} and δ_{txt} via gradient ascends
9: $y = f_{\theta}(x_{\text{img}}, x_{\text{txt}})$
10: $g_{\text{img}} \leftarrow \nabla_{\delta_{\text{img}}} [L(f_{\theta}(x_{\text{img}} + \delta_{\text{img}}, x_{\text{txt}}), y)] + L_{\text{kl}}(f_{\theta}(x_{\text{img}} + \delta_{\text{img}}, x_{\text{txt}}), \tilde{y})$
11: $\delta_{\text{img},t} \leftarrow \Pi_{\|g_{\text{img}}\|_F \leq \epsilon} (\delta_{\text{img},t-1} + \alpha \cdot g_{\text{img}} / \|g_{\text{img}}\|_F)$
12: $g_{\text{txt}} \leftarrow \nabla_{\delta_{\text{txt}}} [L(f_{\theta}(x_{\text{img}}, x_{\text{txt}} + \delta_{\text{txt}}), y)] + L_{\text{kl}}(f_{\theta}(x_{\text{img}}, x_{\text{txt}} + \delta_{\text{txt}}), \tilde{y})$
13: $\delta_{\text{txt},t} \leftarrow \Pi_{\|g_{\text{txt}}\|_F \leq \epsilon} (\delta_{\text{txt},t-1} + \alpha \cdot g_{\text{txt}} / \|g_{\text{txt}}\|_F)$
14: end for
15: $\theta \leftarrow \theta - \tau g_K$
16: end for
17: end for

Accumulate the parameter gradient for “free”

Perturbation update via PGD (Projected Gradient Descent)

Parameter update via SGD (Stochastic Gradient Descent)
Results (VQA, VCR, NLVR2, SNLI-VE)

- Established new state of the art on all the tasks considered
- Gain: +0.85 on VQA, +2.9 on VCR, +1.49 on NLVR2, +0.64 on SNLI-VE
Results (ITR, RE)

- Gain: **+1.52/+0.60** on Flickr30k IR & TR (R@1), and **+0.99** on RE

Method	RefCOCO+	RefCOCO																																					
	val	testA	testB																																				
ViLBERT	-	-	72.34	78.52	62.61		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
VL-BERT_BASE	79.88	82.40	75.01	71.60	77.72	60.99	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
UNITER_BASE	83.66	86.19	78.89	75.31	81.30	65.58	91.64	92.26	90.46	81.24	86.48	73.94	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
VILLA_BASE	**84.26**	**86.95**	**79.22**	**76.05**	**81.65**	**65.70**	**91.93**	**92.79**	**91.38**	**81.65**	**87.40**	**74.48**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
VL-BERT_LARGE	80.31	83.62	75.45	72.59	78.57	62.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
UNITER_LARGE	84.25	**86.34**	79.75	75.90	81.45	66.70	91.84	92.65	91.19	81.41	87.04	74.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-						
VILLA_LARGE	**84.40**	86.22	**80.00**	**76.17**	**81.54**	**66.84**	**92.58**	**92.96**	**91.62**	**82.39**	**87.48**	**74.84**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			

(b) Results on RefCOCO+ and RefCOCO. The superscript d denotes evaluation using detected proposals.

Method	RefCOCOg	Flickr30k IR	Flickr30k TR							
	val	test	val d	test d	R@1	R@5	R@10	R@1	R@5	R@10
ViLBERT	-	-	-	-	58.20	84.90	91.52	86.20	96.30	99.00
Unicoder-VL	-	-	-	-	71.50	90.90	94.90	85.90	97.10	98.80
UNITER_BASE	86.52	86.52	74.31	74.51	72.52	92.36	**96.08**	85.30	**98.00**	**99.20**
VILLA_BASE	**88.13**	**88.03**	**75.90**	**75.93**	**74.74**	**92.86**	95.82	**86.60**	**97.90**	**99.20**
UNITER_LARGE	87.85	87.73	74.86	75.77	75.56	94.08	96.76	87.30	**98.00**	**99.20**
VILLA_LARGE	**88.42**	**88.97**	**76.18**	**76.71**	**76.26**	**94.24**	**96.84**	**87.90**	**97.50**	**98.80**

(c) Results on RefCOCOg and Flickr30k Image Retrieval (IR) and Text Retrieval (TR).
A Closer Look at VQA
Pretraining vs. Finetuning

- Both adversarial pre-training and finetuning contribute to performance boost

Method	VQA test-dev	VQA Q→A	VQA QA→R	VQA Q→AR	NLVR2 test-P	VE test	Flickr30k IR R@1	Flickr30k IR R@5	Flickr30k IR R@10	RefCOCO testA	RefCOCO testB	RefCOCO Ave.
UNITER (reimp.)	72.70	74.24	76.93	57.31	77.85	78.28	72.52	92.36	96.08	86.48	73.94	78.06
VILLA-pre	73.03	74.76	77.04	57.82	78.44	78.43	73.76	93.02	96.28	87.34	74.35	78.57
VILLA-fine	73.29	75.18	78.29	59.08	78.84	78.86	73.46	92.98	96.26	87.17	74.31	78.88
VILLA	73.59	75.54	78.78	59.75	79.30	79.03	74.74	92.86	95.82	87.40	74.48	79.21

(a) VQA

(b) VCR

+0.51
+0.82
+1.15
VILLA vs. FreeLB

- Adversarial training on image or text modality alone is already effective
 - Most existing work shows that adversarial training for images cannot improve accuracy
- VILLA is consistently better than FreeLB

Method	VQA test-dev	VQA Q→A	VQA QA→R	VQA Q→AR
VILLA_BASE (txt)	73.50	75.60	78.70	59.67
VILLA_BASE (img)	73.50	**75.81**	78.43	59.68
VILLA_BASE (both)	**73.59**	75.54	**78.78**	**59.75**
VILLA_LARGE (txt)	74.55	78.08	**82.31**	64.63
VILLA_LARGE (img)	74.46	78.08	82.28	64.51
VILLA_LARGE (both)	**74.69**	**78.45**	**82.57**	**65.18**

(a) Image vs. Text Modality.

Method	VQA test-dev	VQA Q→A	VQA QA→R	VQA Q→AR
UNITER_BASE (reimp.)	72.70	74.24	76.93	57.31
UNITER_BASE+FreeLB	72.82	75.13	77.90	58.73
VILLA_BASE-fine	**73.29**	**75.49**	**78.34**	**59.30**
UNITER_LARGE (reimp.)	73.82	76.70	80.61	62.15
UNITER_LARGE+FreeLB	73.87	77.19	81.44	63.24
VILLA_LARGE-fine	**74.32**	**77.75**	**82.10**	**63.99**

(b) FreeLB vs. VILLA.
Generalizability of VILLA

• VILLA can be applied to any multimodal pre-training methods (e.g., LXMERT)

Method	VQA	GQA	NLVR²	Meta-Ave.			
	test-dev	test-std	test-dev	test-std	dev	test-P	
LXMERT	72.42	72.54	60.00	60.33	74.95	74.45	69.12
LXMERT (reimp.)	72.50	72.32	59.92	60.28	74.72	74.75	69.12
VILLA-fine	73.02	73.18	60.98	61.12	75.98	75.73	70.00

• Adversarial training as a regularizer
Probing Analysis

- Probing the attention heads (12 layers, and 12 heads in each layer)

- VILLA captures richer visual coreference and visual relation knowledge

Model	Visual Coreference (Flickr30k)	Visual Relation (Visual Genome)	Ave.									
	scene	clothing	animals	instruments	vehicles	on	standing in	wearing	holding	covering		
UNITERBASE	0.151	0.157	0.285	0.244	0.194	0.154	0.107	0.311	0.200	0.151	0.195	
VILLA BASE	0.169	0.185	0.299	0.263	0.202	0.201	0.120	0.353	0.241	0.192	0.223	
Visualization (Text-to-Image Attention)

• VILLA learns more accurate and sharper attention maps than UNITER
Robustness to Paraphrases

- UNITER has already lifted up the performance by a large margin
- VILLA facilitates further performance boost

Data split	MUTAN	BUTD	BUTD+CC	Pythia	Pythia+CC	BAN	BAN+CC	UNITER	VILLA
Original	59.08	61.51	62.44	64.08	64.52	64.97	65.87	70.35	**71.27**
Rephrasing	46.87	51.22	52.58	54.20	55.65	55.87	56.59	64.56	**65.35**

Table 6: Results on VQA-Rephrasings. Both UNITER and VILLA use the base model size. Baseline results are copied from [57].
Takeaway Message

• VILLA is the first known effort that proposes adversarial training for V+L representation learning

• Code is available at

 https://github.com/zhegan27/VILLA

• Adversarial robustness of V+L models could be interesting future work