Overweight and Obesity in Children under 5 Years: Surveillance Opportunities and Challenges for the WHO European Region

Rebecca E. Jones¹, Jo Jewell²*, Rhea Saksena³, Ximena Ramos Salas²,⁴ and João Breda²

¹Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA, ²Department of Nutrition, Physical Activity, and Obesity, European Region of World Health Organization, Copenhagen, Denmark, ³UCL Medical School, London, UK, ⁴School of Public Health, University of Alberta, Edmonton, Canada

Background: Many children who have overweight or obesity before puberty can develop obesity in early adulthood, which is associated with increased morbidity and mortality. The preschool years (ages 0–5) represents a point of opportunity for children to be active, develop healthy eating habits, and maintain healthy growth. Surveillance of childhood overweight and obesity in this age group can help inform future policies and interventions.

Objective: To review and report available prevalence data in WHO European Region Member States and determine how many countries can accurately report on rates of overweight and obesity in children under 5 years.

Methods: We conducted a rapid review of studies reporting on overweight and obesity prevalence in children ages 0–5 in the WHO European region member states from 1998 to 2015.

Results: Currently, 35 of the 53 member states have data providing prevalence rates for overweight and obesity for children under 5 years. There was little consistency in study methods, impacting comparability across countries. The prevalence of overweight and obesity in children under 5 years ranges from 1 to 28.6% across member states.

Conclusion: Although measuring overweight and obesity in this age group may be challenging, there is an opportunity to leverage existing surveillance resources in the WHO European Region.

Keywords: surveillance, childhood obesity, European region, policy

Abbreviations: NCDs, non-communicable diseases; WHO, World Health Organization; EU, European Union; COSI, WHO Europe Childhood Obesity Surveillance Initiative; DHS, Demographic and Health Survey; MICS, Multiple Indicator Cluster Survey; HBSC, Health Behaviors in School-Aged Children survey.
BACKGROUND

Childhood growth is an important factor that influences health outcomes across the lifecourse, including obesity (1). Emerging evidence indicates that a large proportion of children who have obesity before puberty can develop obesity in early adulthood, with early-life fat deposition associated with later risk of adult obesity (2–6). Although the relationship between childhood obesity and poor health outcomes is highly complex and there are individual variations influenced by genetic, maturational, and socioeconomic factors, it is a major public health priority. This is in part because physiological and psychological health consequences during childhood can continue into adolescence and adulthood to impact population health in the future (7, 8). Specifically, childhood obesity is associated with an increased risk of premature illness and mortality, although improving Body Mass Index (a tool used to measure obesity at the population level) in adulthood does appear to reduce the later risk of morbidity and mortality (9–13). For example, rapidly increasing weight trajectories across the life course have been shown to be a risk factor for the development of non-communicable diseases (NCDs), notably cardiovascular diseases, cancer, and diabetes, which collectively are estimated to cause 75% of deaths by 2020, and musculoskeletal and orthopedic complications (7, 12). Prevention and management of childhood obesity is therefore likely to be an effective way to contribute to preventing chronic diseases in adults.

The prevalence of childhood obesity is increasing across European countries. A quarter of children aged 6–9 years in European Union countries who participated in the WHO Europe Childhood Obesity Surveillance Initiative (COSI) were classified as having overweight or obesity in 2008, increasing to a third in 2010, with estimates ranging from 18.4% (Belgian 6-year-old girls) to 49.0% (Italian 8-year-old boys) (14). This report was based on 12 countries; however, COSI has expanded to currently include the following countries: Albania, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Greece, Hungary, Ireland, Italy, Kazakhstan, Latvia, Lithuania, Malta, Norway, Poland, Portugal, Republic of Moldova, Romania, Slovenia, Spain, Sweden, the former Yugoslav of Macedonia, and Turkey. As a result, many governments and international organizations have recommended some form of policy action to prevent obesity, with a great focus on preventing obesity in children (12, 15, 16).

Identifying policy action to prevent childhood obesity requires a better understanding of potential modifiable factors that drive obesity in particular age groups. Some modifiable risk factors for obesity include dietary and physical activity behaviors, which to a large extent, are learned at an early age (17, 18). In this way, preschool years are increasingly part of the health promotion equation in the context of chronic disease prevention and a point of opportunity for children to be physically active, develop healthy eating habits, and maintain healthy growth trajectories (19–24).

However, in order to plan and evaluate policy interventions designed to change modifiable risk factors, such as social and physical environments in which children live and play, policy makers need good surveillance. While recent studies have shown that the development of obesity may well be initiated in infancy and early childhood (4, 5), in many countries, surveillance data on obesity are missing or not routinely collected at these younger ages. In this article, we review and report on the currently available prevalence data in WHO European Region Member States in order to determine how many countries can accurately estimate the prevalence of obesity in children under 5 years.

METHODS

We undertook a rapid review to identify and synthesize current evidence regarding the prevalence of obesity in children under 5 years in the WHO European Region and to determine how many countries can accurately estimate on this issue. Our specific review questions were

1. What is the current evidence regarding the prevalence of obesity in children under 5 years in the WHO European Region?
2. Can WHO European Region Member States accurately estimate the prevalence of obesity in children under 5 years?

These guiding questions helped us define the scope of the search strategy, as well as the inclusion and exclusion criteria, construct summary tables presenting key information and findings, and synthesize the evidence from the included studies.

SEARCH STRATEGY

We reviewed published and open access studies reporting on obesity prevalence in children aged 0–5 years (defined as data reporting body mass index; not including growth curves or aggregate data with children above these ages) in the WHO European Region Member States.

Our search strategy used structured relevant terms as follows:
- population: children, infants
- outcomes: body weight, growth, growth and development, body mass index, weight gain, prevalence, and incidence combined with overweight and obesity.

We searched four databases: PubMed, SCOPUS, Web of Science, and EMBASE. This search was conducted on November 16–20, 2015, and the searches were modified to suit the style of each database. We conducted a second search of the literature in 2016 and added a few more studies that were published in 2016. We employed keywords that would be aligned with the Medical Subject Headings used in the MEDLINE database. The following keywords were used: child, infant, ideal body weight, growth, growth and development, body mass index, body weight, weight gain, prevalence, and incidence combined with overweight and obesity. We also reviewed the references of electronically selected articles to see if any other relevant papers turned up. All data
included are from studies whose participants signed a written informed consent form prior to inclusion and received approval from the appropriate ethics committee. We included articles that used various definitions of childhood obesity. For example, some articles used the WHO criterion (defined as the proportion of children with weight-for-height or BMI-for-age z-score values more than 2 SDs and more than 3 SDs, respectively, from the WHO growth standard median), while some used the International Obesity Task Force criterion. Other studies used country-specific criterion for obesity classification. We also included articles that used self-reported and/or measured data.

The inclusion criteria can be summarized as follows:

- population: child, infant
- outcomes: prevalence studies reporting obesity in children using various childhood obesity definitions (e.g., WHO and IOTF definitions) and using self-reported and/or measured data.

The electronic search yielded 5,595 results, with an additional three articles coming from other sources. We retrieved 3,134 from PubMed, 469 from Scopus, 989 from Web of Science, and 1,003 from EMBASE. We used RefWorks to organize and review all literature. After an initial deletion of exact or close duplicates, we were left with 3,357 articles. We then did two rounds of title screening, which left us with 298 articles for further screening. Our second round of screening involved abstract review for relevance. After full-text review, we were left with 66 records for analysis.

EXCLUSION CRITERIA

We extracted studies that were most relevant for the purpose of our review. We assessed relevance based on a number of factors, which included study type, the country in which the research was undertaken (i.e., WHO European Region), whether the research is single center or multi-center, and whether it included more than one measurement cycle. This process of quality and relevance assessment allowed us to determine the quantities of surveillance studies and their overall quality and direction. The studies included in the review were restricted to quantitative studies to ensure they addressed the key review questions and outcomes of interest (i.e., prevalence and reporting). We only included peer-reviewed studies that have been published and undergone methodological and expert scrutiny.

Flowchart of Study Inclusions

As an additional step and to form a cohesive perspective on the prevalence of overweight and obesity in the Region, we used data from existing nutrition surveillance studies. For example, the Demographic and Health Survey (DHS) and the Multiple Indicator Cluster Survey (MICS) monitor the prevalence of undernutrition in children under 5 in several European countries. We used data from the DHS and MICS surveys to calculate overweight and obesity prevalence in European countries that did not have specific overweight and obesity surveillance studies. Data available for Italy arises from WHO field-test data collected when trialing new WHO growth rate charts.
Reference	Survey year	Country/region	Source	Age (years)	Sample (n)	Cutoffs of BMI (kg/m²)	Prevalence of overweight, including obesity (%)
Albania Demographic and Health Survey 2008–2009, Institute of Statistics, Institute of Public Health, and I. Macro (28)	2008–2009	Albania	DHS	0–4	1,575	WHO	22.0
Armenia Demographic and Health Survey 2010, National Statistic Service Armenia, Ministry of Health (Armenia), and I. Macro (29)	2010	Armenia	DHS	0–4	1,491	WHO	15.0
Serbanescu (30)	2001	Azerbaijan	National	0–4	2,426	WHO	4.4
Azerbaijan Demographic and Health Survey 2006, State Statistical Committee (Azerbaijan), Macro International (31)	2006	Azerbaijan	DHS	0–4	2,242	WHO	13.0
UNICEF (32)	2013	Azerbaijan	National	0–4	1,569	WHO	13.0
Greier and Riechelmann (26)	2011–2012	Austria	Subnational	4–5	1,063	German BMI reference	13.0
Belarus Multiple Indicator Cluster Survey 2005, Final Report, Ministry of Statistics and Analysis of the Republic of Belarus (33)	2005	Belarus	MICS	0–4	3,018	WHO	10.0
Bayingana (34)	2004	Belgium	National	1–4	218	IOTF	7.0
Massa (35)	1998–1999	Belgium	Subnational	0–4	970	IOTF	7.0
Verbestel et al. (36)	2008–2009	Belgium	Subnational	0–2	191	WHO	16.9
Multiple Indicator Cluster Survey (MICS) Bosnia and Herzegovina 2011–2012 Final Report, The Agency for Statistics Bosnia and Herzegovina, et al. (37)	2011–2012	Bosnia and Herzegovina	MICS	0–4	2,078	WHO	17.0
Baykova et al. (38)	2004	Bulgaria	National	1–4	315	WHO	19.1 19.8 5.3 8.8
Savva et al. (39)	2004	Cyprus	National	2–4	744	WHO	6.4 10.8 18.0
Savva (40)	2004	Cyprus	National	2–4	647	WHO	5.2 5.4 5.8 10.6
Vignerova et al. (41)	2001	Czech Republic	National	0–4	16,457	WHO	2.1 7.9 5.5 4.8
Larsen et al. (42)	2001	Denmark	National	0–4	5,580	IOTF	Girls: 12.3 boys: 10.8
Mattheissen et al. (43)	2005–2008	Denmark	National	4–6	-	IOTF	Girls: 21.9 boys: 17.6
Morgen et al. (44)	1998–2010	Denmark	Subnational	0–1	155,635	WHO	1.2–7.3

(Continued)
Reference	Survey year	Country/region	Source	Age (years)	Sample (n)	Cutoffs of BMI (kg/m²)	0 year	1 year	2 years	3 years	4 years	Total
Chollet et al. (45)	2007–2009	France	Subnational	3–4	9,558	IOTF	8.4					
Lioret et al. (46)	1998–1999	France	National	3–4	170	IOTF	16.5					
Lioret et al. (47)	2006–2007	France	National	3–4	92	IOTF	10.1					
Unité de surveillance et d’épidémiologie nutritionnelle (48)	2006–2007	France	National	3–4	191	IOTF	11.4	17.9				
Report of the Georgia National Nutrition Survey (GNNS) 2009 (49)	2009	Georgia	National	0–4	–	WHO	20.0					
Multiple Indicator Cluster Survey; Georgia Final Report 2005, State Department of Statistics of Georgia (50)	2005	Georgia	MICS	0–4	1,812	WHO	Girls: 16.2	boys: 14.3				
Kurth and Schaffrath (51)	2003–2006	Germany	National	0–4	4,667	WHO	3.5					
Manios et al. (52)	2003–2004	Greece	Subnational	1–4	2,348	WHO	12.7	13.5	13.6	15.7		
McCarthy et al. (53)	2010–2012	Ireland	Subnational	2	1,189	IOTF	14.0					
Whelton et al. (54)	2001–2002	Ireland	National	4–5	2,109	IOTF	Girls: 29.0	boys: 26.0				
Whelton (40)	2007	Ireland	National	4–5	1,352	IOTF	27.5					
Onyango et al. (55)	2005–2008	Italy	Subnational	0–4	2,977	WHO	2.8	7.3	5.7	10.9	10.2	
The Statistics Committee of the Ministry Economy of the Republic of Kazakhstan (56)	2015	Kazakhstan	MICS	0–4	5,510	WHO	9.3					
2012 Kyrgyz Demographic and Health Survey: Key Findings, National Statistical Committee (Kyrgyz Republic) and Macro International (57)	2012	Kyrgyzstan	DHS	0–4	4,337	WHO	7.0					
Zaborskis et al. (58)	1999–2000	Lithuania	Subnational	3–4	451	WHO	5.1	2.0				
Statistical Office of Montenegro (MONSTAT) and Strategic Marketing Research Agency (SMMRf) (59)	2013	Montenegro	MICS	0–4	1,420	WHO	22.3					
Van den Hurk et al. (60)	2002–2004	Netherlands	National	4–5	1,781	IOTF	Girls: 16.2	boys: 12.3				
Küpers et al. (27)	2006	Netherlands	National	2,5	Dutch reference growth curves	8.4	13.2					
Reference	Survey year	Country/region	Source	Age (years)	Sample (n)	Cutoffs of BMI (kg/m²)	Prevalence of overweight, including obesity (%)					
-----------	-------------	----------------	--------	-------------	------------	------------------------	---					
Total												
Schönbeck et al. (61)	2009	Netherlands	National	2–4	4,382	IOTF	Girls: 9.0 boys: 8.7					
Frenken (40)	2007–2009	Netherlands	National	2	1,878	WHO	9.0					
Juliusson (62)	2003–2006	Norway	Subnational	2–4	2,231	IOTF	16.0 11.0 11.5					
Szponar et al. (63)	2000	Poland	National	1–4	175	WHO	28.6 14.3 12.2 8.7					
Rito (64)	2001	Portugal	Subnational	3–4	1,546	WHO	10.8 10.5					
Bingham (65)	2009	Portugal	Subnational	3–4	3,406	IOTF	17.4 22.9					
National Scientific and Applied Center for Preventive Medicine (NCPM) [Moldova] and ORC Macro (66)	2012	Republic of Moldova	MICS	0–4	1,724	WHO	4.9					
Nanu (67)	2004	Romania	National	0–4	3,971	WHO/UNICEF/ICCIDD	8.0					
Nanu (40)	2004	Romania	National	0–4	3,971	WHO	3.3 8.4 8.3 8.0 5.5					
Nazarova and Kuzmichev (68)	2012–2013	Russia	Subnational	3–4	1,242	WHO	Girls: 18.5 boys: 17.7					
MICS (69)	2014	Serbia	MICS	0–4	2,270	WHO	13.9					
Encuesta Nacional de Salud 2006 (70)	2006	Spain	National	0–4	2,701	WHO	16.8 12.8 18.4 17.1 17.2					
Serra-Majem et al. (71)	1998–2000	Spain	National	2–4	268	WHO	10.2 15.6 12.9					
Huus et al. (72)	1997–2002	Sweden	Subnational	0.5–4	4,242	IOTF	15.4					
Huss (40)	1997–2002	Sweden	Subnational	0–4	10,438	WHO	4.8 6.6 8.0 7.6 4.7					
Holmståck et al. (73)	2002	Sweden	Subnational	4	90	IOTF	18.0					
Holmståck (40)	2002	Sweden	Subnational	4	183	IOTF	21.0					
Enghardt et al. (74)	2003	Sweden	National	4	590	IOTF	18.7					
TLSS (75)	2012	Tajikistan	DHS	0–4	5,478	WHO	6.0					
Hacettepe University Institute of Population Studies (76)	2013	Turkey	DHS	0–4	2,519	WHO	10.9					
The State Committee of Statistics of Turkmenistan and UNICEF (77)	2015–2016	Turkmenistan	MCIS	0–4	3,785	WHO	5.9					

(Continued)
RESULTS

Sixty-one studies provided overweight and obesity prevalence data for children under 5 years in WHO European Region member states. These studies analyzed overweight and obesity outcomes in different age ranges. For example, 29 studies analyzed overweight and obesity outcomes in children who were between 0 and 4 years old. While other studies, evaluated overweight and obesity outcomes in one particular age group (e.g., 3 years). The majority \((N = 38)\) of the studies used the WHO criteria for overweight obesity, while other studies \((N = 20)\) used the IOTF cutoffs. Three studies used country-specific cutoff (25–27). Furthermore, these studies provided little consistency in terms of time points of measurements and national representativeness, impacting comparability across countries.

Despite these limitations, currently 38 of the 53 member states in the European Region of the WHO have data providing prevalence rates for overweight and obesity in children under 5 years. More data were available in eastern and northern Europe, with data for the eastern region provided primarily via the DHS and MICS.

Table 1 illustrates the variability in prevalence within the region and within countries, based on all resources for all available countries. In regards to DHS and MICS reports, the most recent report for each available country was used. Sixteen of the 53 Member States have available DHS or MICS reports. The proportion of the population classified as having overweight and obesity varied from 1 to 28.6% in these Member States.

The lack of consistency in methods makes it difficult to assess overweight and obesity trends (both between and within countries at a given point and over time) in children under 5 years. DHS and MICS data also show that there is a large degree of variability in the prevalence of overweight between and even within countries across data collection time points (see Figure 1).

DISCUSSION

Currently, 35 of the 53 member states from the WHO European Region have prevalence data for overweight and obesity for children under the age of 5 years old. However, the current state of surveillance and monitoring in the European Region for children under the age of 5 years is discouraging with pervasive issues of inconsistency in both method of, and occurrence of, collection. For example, one MICS (which uses measured anthropometrics as opposed to self-reported data) for a Central Asian country from 2006 estimates prevalence of overweight and obesity to be 11.3% for children ages 0–4 using WHO cutoffs (82). The next MICS for the same country in 2010–2011 confusingly reports a prevalence of 0.6%, with the same age range and same cutoffs (83, 84). The next MICS for the same country in 2015 estimates prevalence to be 9.3% (56). This phenomenon holds true for multiple countries (29, 37, 85–88). Bosnia & Herzegovina and Armenia show a similar but less dramatic trend in vast differences between survey waves. Though difficult to provide a concrete explanation for these inconsistencies, it does perhaps highlight a general need for better training of interviewers in anthropometric...
measurements and/or careful attention to sampling techniques across survey years.

Furthermore, many of the estimates presented in this paper are outdated with some prevalence estimates reaching as far back as the early 1990s. Current data suggest that overweight and obesity may be increasing in the Central Asian part of the region whereas trends in other parts of the region are not immediately clear (89). Additional and more recent data points are needed to identify current trends and confirm current prevalence rates.

The variability in type of cutoffs used in these studies also reduces the Region's capability of comparing between and within countries. In 2006, the WHO released growth standards based on the finding that well-nourished children of all populations follow similar growth patterns before puberty (82, 90). These can provide the basis and standardized cutoffs for countries to plot child growth and identify overweight and obesity.

Beyond measurement issues affecting the quality of data, there is a lack of data in general. Only 66% of Member States had published literature on prevalence of overweight and obesity in children under 5 years. Of those countries with data, 34% were from DHS or MICS surveys, which primarily focus on the prevalence of undernutrition in children under 5 years.

Considering that preventing childhood obesity and supporting health across the lifespan is an important priority for WHO European Member States, our review indicates that there is an opportunity to strengthen existing surveillance for children under the age of 5 years in order to provide timely, regular and quality data that can inform policy action. The development of surveillance systems is also vital for the successful monitoring and evaluation of population level interventions and policies and can help strengthening advocacy efforts for government action (12).

The European region has been a forerunner in regards to surveillance in other age groups, particularly with the implementation of COSI in nearly 30 countries. COSI routinely measures the prevalence of overweight and obesity in primary school-aged children (6–9 years) to monitor change in prevalence in this population group as well as to permit inter-country comparisons (91, 92). Furthermore, almost all European countries participate in the Health Behaviors in School-Aged Children survey (HBSC), which provides (self-reported) data on overweight and obesity in children and adolescents aged 11, 13, and 15 (91, 92). Both initiatives have been invaluable to countries in monitoring trends, documenting the prevalence of childhood obesity and helping to prioritize policy responses. Similar monitoring exercises for children under the age of 5 years could be used to detect relevant changes within and between countries over time and to support policy action in early-life years.

Increasing surveillance in this age group may have its challenges. Previous work in the region for older children [COSI (6–9 years) and HBSC (11–15 years)] has effectively used schools as the location for sampling (11, 91). For children under the age of 5 years old, new sampling approaches would be needed. For example, pediatric offices are potential sampling frames to consider, with many young children having repeat check-ups with health-care professionals. Surveillance among this age group may also bring up new challenges concerning measurement (including ensuring standardized approaches). Nevertheless, clear guidance exists for measuring young children's growth for stunting/wasting, including checklists and step-by-step procedures, and
there is no reason that these could not be adapted as a protocol for measurement of overweight/obesity (55).

CONCLUSION

The need to shift the focus to early-life obesity prevention was underscored by the 2016 “Ending Childhood Obesity Report” and Institute of Medicine’s report “Early Childhood Obesity Prevention Policies.” These called for further research into effective policy interventions to prevent obesity in early childhood (12, 18).

While it is generally recognized that childhood growth surveillance is crucial, despite many countries recommending growth monitoring in health care, routine and representative assessment of the prevalence of overweight and obesity are not common in the majority of the WHO European Member States. In order achieve the best outcomes from any future investment in obesity prevention in early life years, concerted efforts should be made to implement interventions and policies, which are specific and relevant to the target group and sub-groups. To best achieve this aim, there is a need for increased range of coverage and quality of data in surveillance on overweight and obesity in this age group that can be disaggregated according to socioeconomic variables.

More widespread and systematic direct measurement of childhood growth and weight trajectories at younger ages can also provide an improved understanding of how obesity develops in young children. At the European level, the Vienna Declaration committed countries in the European Region to addressing the root causes of obesity and diet-related NCDs and calls on WHO to support Member States monitor population trends. It is fully expected that surveillance programs focusing on younger age groups will complement the good existing work for school-aged children.

REFERENCES

1. Monteiro POA, Victora CG. Rapid growth in infancy and childhood and obesity in later life - a systematic review. Obes Rev (2005) 6(2):143–54. doi:10.1111/j.1467-789X.2005.00183.x
2. Sun SS, Liang R, Huang TT, Daniels SR, Arslanian S, Liu K, et al. Childhood obesity predicts adult metabolic syndrome: the Fels longitudinal study. J Pediatr (2008) 152(2):191–200. doi:10.1016/j.jpeds.2007.07.055
3. Cunningham SA, Kramer MR, Narayan KMV. Incidence of childhood obesity in the United States. N Engl J Med (2014) 370(5):403. doi:10.1056/NEJMoa1309753
4. Eid EH. Follow-up study of physical growth of children who had excessive weight gain in first six months of life. Br Med J (1970) 2(5701):74. doi:10.1136/bmj.2.5701.74
5. Stettler N, Kumanyika SK, Katz SH, Zemel BS, Stallings VA. Rapid weight gain during infancy and obesity in young adulthood in a cohort of African Americans. Am J Clin Nutr (2003) 77(6):1374–8.
6. Lloyd LJ, Langley-Evans S, McMullen S. Childhood obesity and risk of the adult metabolic syndrome: a systematic review. Int J Obes (2012) 36(1):1–11. doi:10.1038/ijo.2011.186
7. Dietz WH. Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics (1998) 101(3):518.
8. World Health Organization. Global Status Report on Non-Communicable Diseases. Geneva: World Health Organization (2014). Available from: http://apps.who.int/iris/bitstream/10665/10665/148114/1/9789241564854_eng.pdf
9. O’Malley G, Santoro N, Northrup V, D’Adamo E, Shaw M, Eldrich S, et al. High normal fasting glucose level in obese youth: a marker for insulin resistance and beta cell dysregulation. Diabetologia (2010) 53(6):1199–209. doi:10.1007/s00125-010-1693-0
10. de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr (2012) 95(5):1257–64. doi:10.3945/ajcn.2010.29786
11. Wijnhoven TM, van Raaij JM, Sjoberg A, Eldin A, Yngve A, Kunešová M, et al. WHO European Childhood Obesity Surveillance Initiative: school nutrition environment and body mass index in primary schools. Int J Environ Res Public Health (2015) 12:11261.
12. World Health Organization. Report of the Commission on Ending Childhood Obesity. (2016). Available from: http://apps.who.int/iris/bitstream/10665/204176/1/9789241510066_eng.pdf
13. Black RE, Victora CG, Walker SP, Bhufta ZA, Christian P, de Onis M, et al. Series: maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet (2013) 382:427–51. doi:10.1016/S0140-6736(13)60937-X
14. Wijnhoven TM, van Raaij JM, Spinelli A, Rito AI, Hovengen R, Kunesová M, et al. WHO European Childhood Obesity Surveillance Initiative 2008: weight, height and body mass index in 6-9-year-old children. Int J Pediatr Obes (2013) 8(2):79–97. doi:10.1111/j.1747-4800.2012.00090.x
15. Akdag R, Danzon M. WHO European Ministerial Conference on Countering Obesity: Diet and Physical Activity for Health. Copenhagen: WHO Regional Office for Europe (2006). Available from: http://www.euro.who.int/__data/assets/pdf_file/0006/96459/E90143.pdf
16. World Health Organization Regional Office of Europe. Vienna Declaration on Nutrition and Non-Communicable Diseases in the Context of Health 2020. Copenhagen: WHO Regional Office for Europe (2013). Available from: http://www.euro.who.int/...
Jones et al.
Weight Status in European Children under 5

18. McGuire S. Institute of medicine (IOM) early childhood obesity prevention policies. washington, DC: The national academies press; 2011. Adv Nutr (2012) 3(1):56–7. doi:10.3945/an.111.001347

19. Cole TJ. Children grow and horses race: is the adiposity rebound a critical periodforlaterobesity?BMCPediatr(2004)4(6):doi:10.1186/1471-2434-6-4

20. Ventura AK, Mennella JA, Mennella JA. Innate and learned preferences for sweet taste during childhood. Curr Opin Clin Nutr Metab Care (2011) 14(4):379–84. doi:10.1097/MOC.0b013e32834fd6f5

21. Wardle J, Cooke L. Genetic and environmental determinants of children’s food preferences. Br J Nutr (2008) 99(Suppl 1):S15–21. doi:10.1017/S000711450889246X

22. Birch LL. Development of food acceptance patterns in the first years of life. Proc Nut Soc (1998) 57(4):617–24. doi:10.1079/PNS19980090

23. Harris G. Development of taste and food preferences in children. Curr Opin Clin Nutr Metab Care (2008) 11(3):315–9. doi:10.1097/MOC.0b013e3282e4f228

24. Mennella JA, Jagnow CP, Beauchamp GK. Prenatal and postnatal flavor learning by human infants. Pediatrics (2001) 107(6):E88–8. doi:10.1542/peds.107.6.e88

25. Greier K, Riechelmann H. Effects of migration background on weight status and overweight in children and adolescents. Wien Klin Wochenschr (2011) 123(9–10):374–8. doi:10.1007/s12244-011-0359-7

26. Senior Food Nutritional Survey. Edinburgh, Scotland: Scottish Executive (2005). Available from: https://dhsprogram.com/pubs/pdf/FR230/FR230.pdf

27. Cattaneo A, Monasta L, Seminati E, Liotet S, Castelbon K, Frenken F. Overweight and obesity in infants and preschool children in the European Union: a review of existing data. Obes Rev (2010) 11(5):389–98. doi:10.1111/j.1467-689X.2009.00639.x

28. Vigneron S, Jägerova L, Bricard M, Riedová J, Bláha P. Long-term changes in body weight, BMI, and adiposity rebound among children and adolescents in Czech Republic. Eum Hmun Biol (2007) 3(5):409–25. doi:10.1016/j.ehbb.2007.07.003

29. Armenia Demographic and Health Survey 2010, National Statistical Service (Armenia), Ministry of Health (Armenia), and I. Macro, editors. Tirana, Albania (2010). Available from: https://dhsprogram.com/pubs/pdf/FR252/FR252.pdf

30. 49. Report of the Georgia National Nutrition Survey (GNNS) 2009. Tbilisi, Republic of Georgia (2009). Available from: https://dhsprogram.com/pubs/pdf/FR195/FR195.pdf

31. Ministry of Health of the Republic of Azerbaijan, the State Statistical Committee of Azerbaijan, and the State Committee of the United Nations Children’s Fund (UNICEF) Azerbaijan Nutrition Survey Report. Baku, Republic of Azerbaijan (2014). Available from: https://dhsprogram.com/pubs/pdf/FR252/FR252.pdf

32. 38. Report of the Georgia National Nutrition Survey (GNNS) 2009. Tbilisi, Georgia: NCDC/PH and UNICEF (2010). Available from: http://unicefge.org/imports/Report_of_the_Georgia_National_Nutrition_Survey_2009_-_eng.pdf

33. 50. Multiple Indicator Cluster Survey (MICS) Bosnia and Herzegovina 2011–2012 Final Report. The Agency for Statistics Bosnia and Herzegovina, et al. Sarajevo (2013). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS3/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Bosnia%20and%20Herzegovina/2011–2012/Final/Bosnia%20and%20Herzegovina%202011–2012%20MICS_ENG.pdf

34. 51. Kurth BM, Schaffrath RA. Die Verbreitung von Übergewicht und Adipositas bei Kindern und Jugendlichen in Deutschland. Ergebnisse des bundesweiten Kinder- und Jugendsundheitsurveys (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz (2010) 53:736–43. doi:10.1007/s00103-009-0235-5

35. 52. Manios Y, Costarelli V, Kolotouros M, Kondakis K, Tzavara C, Moschonis G. Prevalence of obesity in preschool Greek children, in relation to parent characteristics and region of residence. BMC Public Health (2007) 7:178. doi:10.1186/1471-2458-7-178
53. McCarthy EK, ni Chaoimh C, Murray DM, Hourihane JB, Kenny LC, Kielty M. Eating behaviour and weight status at 2 years of age: data from the Cork BASELINE Birth Cohort Study. Eur J Clin Nutr (2015) 69:1356–9. doi:10.1038/ejcn.2015.130

54. Whelton H, Harrington J, Crowley E, Kelleher V, Cronin M, Perry IJ. The height-, weight- and BMI-for-age of preschool children from Nizhny Novgorod city, Russia, relative to the international growth references. BMC Public Health (2006) 16:274. doi:10.1186/s12889-016-2946-8

55. Statistical Office of Montenegro (MONSTAT) and Strategic Marketing Research Agency (SMMRI). Montenegro Multiple Indicator Cluster Survey 2005, Final Report. Podgorica (2006). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Montenegro/2005-2006/Final/Montenegro%2005-06%20MICCS_English.pdf

56. Jones et al. Weight Status in European Children under 5

57. Kyrgyz Demographic and Health Survey: Key Findings, National Statistical Committee (Kyrgyz Republic) and Macro International, Bishkek, Kyrgyz Republic, Calverton, MD (2013). Available from: https://dhsprogram.com/pubs/pdf/FR283/FR283.pdf

58. Schönbeck Y, Talma H, van Dommelen P, Bakker B, Buitendijk SE, Hirasing RA, et al. Increase in prevalence of overweight in Dutch children and adolescents: a comparison of nationwide growth studies in 1980, 1997 and 2009. PLoS One (2011) 6(11):e27608. doi:10.1371/journal.pone.0027608

59. Acta Paediatr (2007) 96(Suppl):S67–72. doi:10.1111/j.1651-2227.2006.00189.x

60. van den Hurk K, van Dommelen P, van Buuren S, Verkerk PH, Hirasing RA, et al. Field-testing the WHO child growth standards in four countries. J Nutr (2007) 137(1):149–52.

61. National Scientific and Applied Center for Preventive Medicine (NCPM) and Strategic Marketing Research Agency (SMMRI). Field-testing the WHO child growth standards in four countries. Public Health Nutr (2015) 69:1356–9. doi:10.1007/s11130-016-11540-2

62. Statistical Office of Montenegro (MONSTAT) and Strategic Marketing Research Agency (SMMRI). Montenegro Multiple Indicator Cluster Survey 2005, Final Report. Podgorica (2006). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Montenegro/2005-2006/Final/Montenegro%2005-06%20MICCS_English.pdf

63. Szponar L, Sekula W, Nelson M, Weisell RC. The household food consumption and anthropometric survey in Poland. Medica (Kaunas) (2003) 39(12):1200–7.

64. van den Hurk K, van Dommelen P, van Buuren S, Verkerk PH, Hirasing RA, et al. Increase in prevalence of overweight in Dutch children and adolescents: a comparison of nationwide growth studies in 1980, 1997 and 2009. PLoS One (2011) 6(11):e27608. doi:10.1371/journal.pone.0027608

65. Statistical Office of Montenegro (MONSTAT) and Strategic Marketing Research Agency (SMMRI). Montenegro Multiple Indicator Cluster Survey 2005, Final Report. Podgorica (2006). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Montenegro/2005-2006/Final/Montenegro%2005-06%20MICCS_English.pdf

66. Schönbeck Y, Talma H, van Dommelen P, Bakker B, Buitendijk SE, Hirasing RA, et al. Increase in prevalence of overweight in Dutch children and adolescents: a comparison of nationwide growth studies in 1980, 1997 and 2009. PLoS One (2011) 6(11):e27608. doi:10.1371/journal.pone.0027608

67. National Scientific and Applied Center for Preventive Medicine (NCPM) and Strategic Marketing Research Agency (SMMRI). Field-testing the WHO child growth standards in four countries. Public Health Nutr (2015) 69:1356–9. doi:10.1007/s11130-016-11540-2

68. Nazarova E, Kuzmichev Y. The height-, weight- and BMI-for-age of preschool children from Nizhny Novgorod city, Russia, relative to the international growth references. BMC Public Health (2006) 16:274. doi:10.1186/s12889-016-2946-8

69. Statistical Office of the Republic of Serbia and UNICEF 2014 Serbia Multiple Indicator Cluster Survey and 2014 Serbia Roma Settlements Multiple Indicator Cluster Survey (MICS). Key Findings. Belgrade, Serbia: Statistical Office of the Republic of Serbia and UNICEF (2014). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Serbia/2014/Final/Serbia%20%28National%20and%20Roma%20Settlements%29%202014%20MICS_English.pdf

70. Encuesta Nacional de Salud 2006. Estilos de vida y practicas preventivas. Madrid: Instituto Nacional de Estadistica and Consumo (2008).

71. Serra-Majem L, Aramcat-Butrina J, Perez-Rodrigo C, Ribas-Barba L, Delgado-Rubio A. Prevalence and determinants of obesity in Spanish children and young people. Br J Nutr (2006) 96(Suppl 1):S67–72. doi:10.1079/BJN20061703

72. Holmback U, Fridman J, Gustafsson J, Proos L, Sundelin C, Forslund A. Overweight more prevalent among children than among adolescents. Acta Paediatr (2007) 96(4):577–81. doi:10.1111/j.1651-2227.2006.00189.x

73. Enghardt BH, Pearson M, Becker W. Dietary Habits and Nutrient Intake in Swedish Children 4 Year Old and School Children in Grade 2 and 5 (Raksman-Barn 2003). Uppsala, Uppsala, Sweden: National Food Administration (Livsmedelsverket) (2006).

74. State Committee on Statistics [Republic of Tajikistan] and UNICEF Tajikistan Living Standards Measurement Surveys (TLSS): Indicators at a Glance. (2007). Available from: http://www.stat.tj/en/img/e4f6e6efc1143d0dd-b1e1ebd9d6fd_1280833182.pdf

75. Stamatakis E. Anthropometric measurements, overweight and obesity. In: Sproston K, Primatesta P, editors. The Health for Children and Young People Health Survey for England 2002. London: Department of Health (2003).

76. Pearce A, Li L, Abbas J, Ferguson B, Graham H, Law C, et al. Is childcare associated with the risk of overweight and obesity in the early years? Findings from the UK Millennium Cohort Study. Int J Obes (2010) 34(7):1160–8. doi:10.1038/j.ijob.2010.15

77. Multiple Indicator Cluster Survey (MICS) Former Yugoslav Republic of Macedonia Final Report 2011, IPPOS Strategic Puls, et al. Former Yugoslav Republic of Macedonia. (2012). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Macedonia%20&%20The%20Former%20Yugoslav%20Republic%20of%20/MICCS%20KFR_English.pdf

78. Multiple Indicator Cluster Survey (MICS) Former Yugoslav Republic of Macedonia Final Report 2011, IPPOS Strategic Puls, et al. Former Yugoslav Republic of Macedonia. (2012). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICCS/Central%20and%20Eastern%20Europe%20and%20the%20Commonwealth%20of%20Independent%20States/Macedonia%20&%20The%20Former%20Yugoslav%20Republic%20of%20/MICCS%20KFR_English.pdf

79. Health for Children and Young People Health Survey for England 2002. London: Department of Health (2003).
Jones et al.

Weight Status in European Children under 5

97. Albanian National Institute of Statistics. Albania Multiple Indicator Cluster Survey 2005, Final Report. Tirana, Albania: Albanian National Institute of Statistics (2007). Available from: http://mics.unicef.org/surveys

98. Albanian National Institute of Statistics. Albania Multiple Indicator Cluster Survey 2000, Final Report. Tirana, Albania: Albanian National Institute of Statistics (2002). Available from: http://mics.unicef.org/surveys

99. United Nations Children’s Fund (UNICEF). Azerbaijan Multiple Indicator Cluster Survey 2000 Final Report. Baku, Azerbaijan: UNICEF (2002). Available from: http://mics.unicef.org/surveys

100. Multiple Indicator Cluster Survey 2006. Kyrgyz Republic. Final Report. National Statistical Committee of the Kyrgyz Republic. United Nations Children’s Fund. (2007). Kyrgyzstan, Bishkek. Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS3/Central%20and%20Eastern%20Europe%20%20and%20the%20Commonwealth%20of%20%20Independent%20States/Kyrgyzstan/2005-2006/Final/Kyrgyzstan%202005-06%20MICS_English.pdf

101. Statistical Office of Montenegro (MONSTAT) and UNICEF. 2013 Montenegro Multiple Indicator Cluster Survey and 2013 Montenegro Roma Settlements Multiple Indicator Cluster Survey. Final Report. Podgorica, Montenegro: Statistical Office of Montenegro (MONSTAT) and UNICEF (2014). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS5/Central%20and%20Eastern%20Europe%20%20and%20the%20Commonwealth%20of%20%20Independent%20States/Montenegro/2013/Final/Montenegro2013%20National%20and%20Roma%20Settlements%20%202013%20MICS_English.pdf

102. Statistical Office of the Republic of Serbia and Strategic Marketing Research Agency. Republic of Serbia Multiple Indicator Cluster Survey 2005, Final Report. Belgrade: Republic of Serbia: Statistical Office of the Republic of Serbia (2006). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS3/Central%20and%20Eastern%20Europe%20%20and%20the%20Commonwealth%20of%20%20Independent%20States/Serbia/2005-2006/Final/Serbia%202005-06%20MICS_English.pdf

103. Hacettepe University Institute of Population Studies, Turkey Demographic and Health Survey. Hacettepe University Institute of Population Studies, Ministry of Health General Directorate of Mother and Child Health and Family Planning, State Planning Organization and European Union. Ankara, Turkey (2003). Available from: https://dhsprogram.com/pubs/pdf/FR160/FR160.pdf

104. Statistical Office of the Republic of Macedonia. Republic of Macedonia Multiple Indicator Cluster Survey 2005–2006, Final Report. Skopje, Republic of Macedonia: Statistical Office of the Republic of Macedonia (2006). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS3/Central%20and%20Eastern%20Europe%20%20and%20the%20Commonwealth%20of%20%20Independent%20States/Serbia/2005-2006/Final/Serbia%202005-06%20MICS_English.pdf

105. Statistical Office of the Republic of Serbia. Serbia Multiple Indicator Cluster Survey 2010. Belgrade, Republic of Serbia: Statistical Office of the Republic of Serbia (2011). Available from: https://mics-surveys-prod.s3.amazonaws.com/MICS3/Central%20and%20Eastern%20Europe%20%20and%20the%20Commonwealth%20of%20%20Independent%20States/Serbia/2010/Final/Serbia%202010%20MICS_English.pdf

Conflict of Interest Statement: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.