Proteasome inhibitor-induced coronary vasospasm in multiple myeloma: a case report

Philopatir Mikhail 1,2, James Rogers 1, Cecily Forsyth 2, and Thomas J. Ford 1,3,4*

1 Cardiology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia; 2 Haematology Department, Gosford Hospital, Central Coast Local Health District, Holden St, Gosford, NSW 2250, Australia; 3 University of Newcastle, Newcastle, University Drive, Callaghan, NSW 2308 Australia; and 4 University of Glasgow (ICAMS), Scotland

Background
Coronary vasospasm is an increasingly recognized cause of myocardial infarction or myocardial ischaemia in patients without obstructive coronary artery disease. A thorough medication review may identify drugs or toxins that could trigger coronary vasospasm. This case provides mechanistic insight into the off-target effect of proteasome inhibition leading to coronary vasospasm in a patient referred with chest pain consistent with typical angina.

Case summary
A 72-year-old lady presented with anginal chest pain at rest with electrocardiogram evidence of myocardial ischaemia who was referred for invasive coronary angiography. This demonstrated minor coronary disease without an obstructive lesion. Vasoreactivity testing revealed diffuse coronary vasospasm of the left anterior descending artery. Carfilzomib was identified as the trigger for coronary vasospasm. Symptoms resolved without recurrence after appropriate treatment including cessation of the triggering agent.

Conclusion
Coronary spasm is a rare but important adverse reaction to proteasome inhibitors. This case supports the clinical utility of invasive coronary vasoreactivity testing in patients with ischaemia with no obstructive coronary artery disease.

Keywords
Case report • Carfilzomib • Coronary vasospasm • Vasospastic angina • INOCA

Introduction
Coronary vasospasm is frequently overlooked but a treatable cause of myocardial ischaemia and/or infarction in patients without obstructive coronary disease. Recognition of non-atherosclerotic causes of myocardial ischaemia is important as it helps guide therapy. The prevalence of vasospasm in patients with symptoms and/or signs of myocardial ischaemia may be as high as 40%. Invasive coronary vasoreactivity testing with acetylcholine is supported by consensus guidelines for chronic coronary syndromes. Proteasome inhibitors such as carfilzomib have been shown to induce endothelial impairment and...
increase the risk of vasospasm and myocardial infarction. We present a case detailing vasospastic angina secondary to carfilzomib use.

Timeline

3 months prior to the initial presentation	Intermittent chest pain
Initial presentation to hospital:	Chest pain during carfilzomib administration. Troponin within normal limits
1 week post-initial presentation	Seen by the cardiologist. Transthoracic echocardiogram demonstrated normal left ventricular function and size
2 weeks post-initial presentation	Coronary angiogram with vasoreactivity testing demonstrating coronary vasospasm. Commenced on statin and calcium channel blocker
4 weeks post-coronary angiography	Calcium channel blocker ceased due to intolerance
6 weeks post-coronary angiography	Routine outpatient electrocardiogram while pain free demonstrated resolution of changes previously noted
6 months post-coronary angiography	Well in the community without further chest pain. Electrocardiogram remains normal

Case presentation

A 72-year-old lady was referred to the emergency department with chest pain occurring during her twelfth cycle of carfilzomib infusions (56 mg/m² received on Days 1, 2, 8, 6, 15, and 16 of every 28-day cycle) as a treatment for her multiple myeloma. She had been receiving this therapy for the preceding 12 months but reported 3 months of similar intermittent chest pain. She described her pain as localized, central chest tightness with radiation to her right arm and the right side of her neck. The pain would typically last 5–10 min before spontaneously resolving. This could occur at rest or with exertion and did not have diurnal variation. She also described associated dyspnoea on exertion for the preceding 3 months without orthopnoea, paroxysmal nocturnal dyspnoea, or leg swelling. She had no traditional cardiac risk factors but was referred for cardiovascular assessment given the nature of her presentation. Clinical examination revealed a slim, normotensive woman with a normal cardiopulmonary exam.

Intercurrent medications included dexamethasone, thalidomide, and trimethoprim/sulfamethoxazole in addition to carfilzomib as part of her treatment for multiple myeloma. She was on no other regular medications.

The differential diagnosis at this time included obstructive coronary artery disease, disorders of coronary vasomotion including microvascular and/or vasospastic angina, congestive cardiac failure, and pulmonary emboli.

An electrocardiogram while pain free in the emergency department demonstrated sinus rhythm at a rate of 70 b.p.m. There was poor R wave progression and ischaemic T wave inversion through the anterior leads without conduction abnormalities (Figure 1). High sensitivity troponin T was 8 ng/L (reference range <16 ng/L). A transthoracic echocardiogram demonstrated normal left ventricular size and function with no regional wall motion abnormalities. There was no evidence of pulmonary hypertension or valvular disease. She was discharged from the emergency department and organized to see a cardiologist as an outpatient for further assessment.

Given the clinical presentation and electrocardiogram (ECG) abnormalities, her cardiologist organized for invasive coronary angiography. The angiogram demonstrated minor irregularities within the coronary vessels but no obstructive stenosis to account for the clinical presentation. Invasive physiological testing for disorders of coronary vasomotion was performed using incremental doses of 2, 20, and 100 μg of acetylcholine manually infused over a period of 3 min into the left coronary artery via the angiographic catheter. Vasoreactivity testing revealed diffuse epicardial coronary spasm with dynamic subtotal occlusion of the mid-distal left anterior descending artery (Figure 2). This was associated with >2 mm ST-segment depression on ECG monitoring with reproduction of the chest pain that triggered the initial presentation. Intra-coronary glyceryl trinitrate (GTN) was used to relieve the spasm. The diagnosis of vasospastic angina was made as per international guidelines and the proteasome inhibitor, carfilzomib, was implicated as a likely trigger given no alternative agent or lifestyle factor could be identified to account for the symptoms and findings.

The management of vasospastic angina typically requires the removal of any offending agents with the addition of anti-spasmodic agents as required. Carfilzomib was withheld and therapy to enhance endothelial function (Rosuvastatin 10 mg daily) and reduce vasospasm (Amlodipine 5 mg daily) was commenced. Cardiology and haematology teams made a joint plan to not re-challenge the patient with carfilzomib and alternative therapy with lenalidomide, ixazomib, and dexamethasone was used (as per haematological guidelines) to manage her progressive multiple myeloma. At 4-week follow-up post-angiography, she ceased the amlodipine due to intolerable facial flushing and ankle oedema.

Repeat ECG as an outpatient 6 weeks post-angiography demonstrated resolution of the anterior ECG changes. At 6-month post-angiography follow-up, she remains angina free in the community without taking regular anti-anginal therapy. Given the timing of symptom resolution and the demonstration of reversible epicardial spasm with carfilzomib, her presentation was most consistent with a proteasome inhibitor-induced coronary endothelial impairment and spasm. Her multiple myeloma is proving increasingly difficult to manage and next-line treatments are being considered.

Discussion

Carfilzomib is a novel proteasome inhibitor used to treat multiple myeloma. Proteasome inhibitors are known to induce endothelial impairment and increase the risk of myocardial infarction. Mechanistic data from an animal model implicated increased vascular tone and exaggerated vascular spasmodic responses due to carfilzomib. We performed a systematic literature review finding no previously reported case of carfilzomib-induced coronary spasm in humans.
although we did note a case of coronary vasospasm associated with
the proteasome inhibitor bortezomib. Additionally, carfilzomib has
also been shown to increase the risk of cardiovascular adverse events
including atherosclerotic mediated acute coronary syndromes. The
mechanism for this remains poorly understood but disruption to the
ubiquitin-proteasome system through off-target proteasome inhib-
it has been implicated.

In general, the pathophysiology of coronary vasospasm relates
to combinations of vascular smooth muscle hypercontractility,
endothelial dysfunction, low-grade inflammation, and oxidative
stress. Carfilzomib-induced endothelial impairment may leave
susceptible individuals prone to altered vascular tone and
enhanced smooth muscle contractility resulting in downstream
myocardial ischaemia.

Ischaemia and No Obstructive Coronary Artery disease (INOCA)
is a heterogeneous clinical syndrome requiring careful stratified test-
ing to reveal the underlying diagnosis. Invasive coronary vasoreactiv-
ity testing with acetylcholine is supported by consensus guidelines for
chronic coronary syndromes but the recommendations are less clear
after unstable angina.

Meanwhile, the prevalence of vasospasm in patients with symp-
toms and/or signs of INOCA may be as high as 40%. The true preva-
ience of vasospastic angina will depend on the population studied,
timing and type of diagnostic testing as well as the definition used.
Vasospastic angina is a diagnosis requiring three considerations:

1. Nitrate responsive angina during a spontaneous episode with at
 least one of:
 • Rest angina (especially in a nocturnal predominance)
 • Marked diurnal variation in exercise tolerance (reduced in
 the morning)
 • Precipitated by hyperventilation

2. Transient ECG changes during a spontaneous episode including
 any of the following in at least two contiguous leads
 • ST-elevation ≥ 0.1 mV
 • ST-depression ≥ 0.1 mV
 • New negative U waves

3. Coronary artery spasm is defined as transient total or sub-total
 (>90%) coronary artery occlusion with angina and ischaemic ECG
 changes either spontaneously or in response to a provocative
 stimulus.
The diagnosis of vasospastic angina relies on having a high index of suspicion, particularly in patients with the non-cardiac disease, systemic treatments, and a compatible history (GTN responsive angina, diurnal variation, or exposure to potential triggering agents). The use of clear diagnostic criteria helps to establish the diagnosis and apply effective therapy to improve patient outcomes.\(^\text{10}\)

Carfilzomib is a potentially important and reversible cause of coronary vasospasm. This case provides insight into the mechanism of proteasome inhibitors related to acute coronary syndrome. Coronary vasospasm is a frequently overlooked but treatable cause of myocardial ischaemia and/or infarction in patients without obstructive coronary disease.

Lead author biography

Dr Philopatir Mikhail is a Cardiology Advanced Trainee at Gosford Hospital in Australia with a special interest in coronary artery disease and coronary physiology. He hopes to pursue subspecialty training in Interventional Cardiology.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Acknowledgements

The authors thank Central Coast Heart Research Alliance.

Slide sets: A fully edited slide set detailing these cases and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report including images and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: None declared.

Funding: None declared.

References

1. Ford TJ, Stanley B, Rocchiccioli P, McIntegart M, Watkins S et al. Stratified medical therapy using invasive coronary function testing in angina. J Am Coll Cardiol 2018;72:2841–2855.

2. Knuts J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Russ J Cardiol 2020;25:119–180.

3. Hassan SA, Palaskas N, Kim P, Iliescu C, Lopez-Mattei J, Mouhyar E et al. Chemotherapeutic agents and the risk of ischemia and arterial thrombosis. Curr Atheroscler Rep 2018;20:10.

4. Chen-Scarabelli C, Cernetti G, Pasini E, Dioguardi S, Sahni G, Narula J et al. Spasmogenic effects of the proteasome inhibitor carfilzomib on coronary resistance, vascular tone and reactivity. EBioMedicine 2017;21:206–212.

5. Yasui T, Shioyama W, Oboshi M, Nishikawa T, Kamada R, Oka T et al. Coronary spastic angina in a multiple myeloma patient treated with bortezomib, lenalidomide, and dexamethasone. J Cardiol Cases 2020;21:197–199.

6. Waxman AJ, Chandra Clesen S, Garfall AL, Carver JR, Vogl DT, O’Quinn R et al. Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. J Clin Oncol 2017;35:8018–8018.

7. Powell SR, Herrmann J, Lerman A, Patterson C, Wang X. The ubiquitin–proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci 2012;109:295–346.

8. Ford TJ, Rocchiccioli P, Good R, McIntegart M, Eteiba H, Watkins S et al. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J 2018;39:4086–4097.

9. Ford TJ, Ong P, Sechtem U, Beltrame J, Camici PG, Crea F et al. Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc Interv 2020;13:1847–1864.

10. Beltrame JF, Crea F, Kaski JC, Ogawa H, Ong P, Sechtem U, et al. Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for vasospastic angina. Eur Heart J 2017;38:2565–2568.