Planet seeding through gas-assisted capture of interstellar objects

Evgeni Grishin, Hagai B. Perets, Yael Avni

1Physics Department, Technion - Israel institute of Technology, Haifa, Israel 3200002
E-mail: eugeneg@campus.technion.ac.il (EG); lperets@physics.technion.ac.il (HBP); yael.avni10@gmail.com (YA)

24 February 2022

ABSTRACT

Planet formation begins with collisional growth of small planetesimals accumulating into larger ones. Such growth occurs while planetesimals are embedded in a gaseous protoplanetary disc. However, small-planetesimals experience collisions and gas-drag that lead to their destruction on short timescales, not allowing, or requiring fine tuned conditions for the efficient growth of \( \sim 1 \) metre-size objects. Here we show that \( \sim 10^4 \) interstellar objects such as the recently detected 1I/2017-U1 ('Oumuamua) could have been captured, and become part of the young Solar System, together with up to hundreds of \( \sim 1 \) km sized ones. The capture rates are robust even for conservative assumptions on the protoplanetary disc structure, local stellar environment and planetesimal ISM density. ‘Seeding’ of such planetesimals then catalyze further planetary growth into planetary embryos, and potentially alleviate the main-challenges with the meter-size growth-“barrier”. The capture model is in synergy with the current leading planet formation theories, providing the missing link to the first planetesimals. Moreover, planetesimal capture provides a far more efficient route for lithopanspermia than previously thought.

Key words: planets and satellites: formation – comets: general – minor planets, asteroids: general – minor planets, asteroids: individual: 1I/2017 U1 ('Oumuamua) – astrobiology

1 INTRODUCTION

The early stages of planet formation are thought to occur in gaseous protoplanetary-discs (PPD). The primordial PPD consists mostly of gas, and roughly \( \sim 1 \) per cent of dust (Chiang & Youdin 2010). The small dust grains grow into cm-sized pebbles, which later grow into km-sized planetesimals that later form planets.

While the growth up to cm-sized pebbles and the growth of planetesimals into planets are fairly well understood, the formation of the first planetesimals poses a major challenge. While small grains are tightly coupled to the gas flow and can efficiently grow to mm-cm pebbles, larger \( \sim \) metre-sized boulders experience collisional fragmentation and erosion, or interact through bouncing rather than sticking, and are susceptible to strong gas-drag induced radial drift (Weidenschilling 1977b). Such boulders are therefore rapidly lost, not allowing for planetesimal growth beyond these typical sizes.

Various pathways to overcome the metre-size barrier problem were suggested (Chiang & Youdin 2010; Blum 2018). These include the gravitational collapse of overdense regions into large planetesimals, where the overdensity of dust and pebbles is catalyzed by streaming instabilities (Youdin & Goodman 2005; Johansen et al. 2007). Other channels involve rare cases of successful collisional growth into large planetesimals under favourable conditions in terms of velocity distribution and/or composition (Windmark et al. 2012; Booth et al. 2018; Blum 2018). However, all of these scenarios encounter major challenges and are not robust, as they require highly fine-tuned conditions (see refs. Chiang & Youdin 2010; Blum 2018 for an overview). Once planetesimals reach km-size, further growth is achieved by gravitational interactions, and accretion of pebbles is efficient in the presence of massive planetary embryos (Ormel & Klahr 2010; Lambrechts & Johansen 2011). One of the main challenges for planet formation is therefore the initial formation of km-sized planetesimals.

The recent flyby of the interstellar-object ‘Oumuamua (Mech et al. 2017) suggests that encounters of interstellar planetesimals with different solar systems are much more common than previously thought (Do et al. 2018). Such interstellar planetesimals were suggested to be potentially recaptured later-on into other solar-systems through purely dynamical processes (Adams & Spergel 2005; Valtonen et al. 2009; Levison et al. 2010; Belbruno et al. 2012; Perets & Kouwenhoven 2012), but they are inefficient and/or occur at late times after planet-formation processes take-place.

Here we propose that a different efficient gas-assisted capture process takes place when a gaseous PPD still exists. Gas-dust/planetesimal interactions are known to play an important role in planet-formation and the evolution of bound-planetesimals embedded in PPDs (Adachi et al. 1976; Weidenschilling 1977b; Ćuk & Burns 2004; Perets & Murray-Clay 2011; Fujita et al. 2013; Grishin & Perets 2015). Small grains and pebbles are decelerated by aerodynamic gas-drag in the disc. Here we show that gas-drag assisted capture of interstellar planetesimals capture is no-less important.

In this paper, we show that planetesimal-capture through this
process could play an important role in the initialization and catalysis of efficient planet-formation, thereby alleviating the metre-size barrier problem and providing a robust mechanism for the initial ~km-size planetesimal seeds needed for efficient planet-formation. Therefore, gas-assisted capture of interstellar planetesimals can potentially resolve some of the main difficulties in our understanding of planet formation through the provision of planetesimal seeds into young PPDs.

Our paper is organized as follows: In sec. 2 we estimate the encounter rate of ISM planetesimals from the mass function of ejected planetesimals (sec. 2.1) and the local stellar environment (sec. 2.2). In sec. 3 we present the analytical planetesimal capture model. We review the PPD structure (sec. 3.1), derive the capture condition (sec. 3.2) and the capture rates (sec. 3.3). We compare our results with Monte-Carlo simulations (sec. 3.4) and estimate the number of captured objects during the PPD’s lifetime (sec. 3.5). In sec. 4 we discuss the implications and caveats of the model and summarize in sec. 5.

2 ENCLOSED RATE

2.1 Planetesimal mass function

During the planet formation process, a large amount of planetesimals is ejected from a given planet-forming system, and these become unbound interstellar-objects (Dones et al. 1999; Melosh 2003). These ejections occur both during the early planet formation phase, or on longer timescales throughout the stellar and dynamical evolution of the system, long after the PPD dissipates. Adams & Spergel (2005) estimate that for each young star at least \( \geq M_\odot \) of solids are ejected into the interstellar medium (ISM) with a typical ejection velocity of \( \langle \dot{m}_{\text{eject}} \rangle = 6.2 \pm 2.7 \text{ km/s} \). They consider a mass function of \( dN_{\text{eject}}/dm \propto m^{-7.9} \), whence the total number of ejected planetesimals up to mass \( m \) is (Adams & Spergel 2005)

\[
N_{\text{eject}}(m) = \frac{2 - p}{p - 1} \frac{M_T}{m^{p-1}} \frac{1}{m_{\text{up}}^p} 
\]

(1)

where \( M_T \) is the total mass, and \( m_{\text{up}} \) is the upper cutoff of the largest mass possible. Following Adams & Spergel (2005) we adopt \( m_{\text{up}} = 0.1M_\odot \) and \( M_T = M_\odot \) (a conservative value).

The power law depends on the details of the formation of the first planetesimals. Adams & Spergel (2005) use a power-law with \( p = 5/3 \), which is also consistent with recent streaming instability (SI) simulations \( p = 1.6 \pm 0.1 \) (Simon et al. 2017). However, the SI formed planetesimals are too large, \( (R \geq 10 \text{ km}) \), and it is more reasonable to consider Dohnanyi-like distributions (Dohnanyi 1969) of collisional cascade, leading to \( p = 11/6 \) (Raymond et al. 2018a). For \( p = 11/6 \), the number of ejected planetesimals of mass \( m \) is then \( N_{\text{eject}}(m) \sim 0.3 (m_1/M_\odot)^{5/6} \).

Another alternative possibility is that a fraction of interstellar planetesimals was disrupted during ejection (Raymond et al. 2018b) at preferred radius \( r_{\text{dis}} \approx 100 \text{ m} \). Given a total mass of \( M_T \approx 10^{-3}M_\odot \), the number of planetesimals of size \( r_{\text{dis}} \) is \( N = M_T/(4\pi r_{\text{dis}}^2 \rho_p/3) \approx 10^{12}, \) which is comparable to the number density from the original distribution \( N(m_{\text{dis}}) \approx 0.3 \times 10^{12} \). Thus, the enhancement is by at most a factor of a few. If there is a distribution of \( r_{\text{dis}} \), or if \( r_{\text{dis}} \) is increasing, the resulting enhancements will be smaller.

2.2 Encounter rates at different environments

The number of planetesimals entering the disc region is therefore \( N_{\text{enter}} \approx \rho_{\text{ISM}}(v) \tau_{\text{env}} \), where \( \rho_{\text{ISM}} = \rho_\star N_{\text{planet}} \) is the number density of interstellar planetesimals, \( n_\star \) is the number density of stars, \( \tau_{\text{env}} = \pi b_{\text{max}}^2 \) is the cross section, with a maximal impact parameter \( b_{\text{max}} \), above which no significant encounter occurs, \( \langle v \rangle = \sqrt{8/\pi} \sigma \) is the mean velocity where \( \sigma \) is the velocity dispersion of the environment, and \( \tau_{\text{env}} \) is a typical timescale during which encounters with the disc can occur.

One may consider two types of environments; (1) A cluster/stellar-association environment in which a group of stars is bound together and their relative velocities are low; and (2) a field environment where stars and/or interstellar planetesimals are unrelated to each other and the relative velocities between them are high. For the cluster environment we consider a stellar density of \( n_\star \approx 750/\pi N_\star^{1/2} \text{ pc}^{-3} \), where \( N_\star \approx 100 – 1000 \). In this case, the velocity is dominated by the dispersion velocity of ejected planetesimals \( \sigma \approx 6.2 \pm 2.7 \text{ km/s} \) (Adams & Spergel 2005). In the field, the velocity is dominated by the (observed) stellar velocity dispersion \( \sigma \approx 30 \text{ km/s} \), and the stellar density is \( n_\star \approx 0.1 \text{ pc}^{-3} \). Young systems are likely to form in the central parts of the Galactic disc (De Simone et al. 2004). The velocity dispersion of young stars and stars residing in the central part of the disc is therefore typically lower than assumed here (i.e. \( \approx 20 \text{ km/s} \)), and therefore our fiducial choice is likely to be conservative. Moreover, additional environments can be considered, such as globular cluster, and moving stellar group (De Simone et al. 2004) that have larger number density or small velocity dispersion, respectively.

For the cluster, \( \tau_{\text{env}} = \tau_{\text{cross}} \approx 0.3 \text{ Myr} \) is the cluster crossing-time. In the field, the typical time is dominated by the disc lifetime \( \tau_{\text{env}} = \tau_{\text{disc}} = 3 \text{ Myr} \). In the case of a young cluster environment the timing of material ejection is important. In particular, if ejections take place at times much longer than the lifetime of PPDs they will not contribute to the reservoir of interstellar-planetesimals available for capture. However, models suggest the actual timescale for material ejection is comparable to that of the gaseous disc lifetime (Morbidelli 2018).

Plugging in the numbers, the number of planetesimals entering a PPD during its lifetime is \( N_{\text{enter}}(R > 1 \text{ km}) \approx 1.1 \times 10^5 (R/\text{km})^{-5/2} \) in a cluster environment, and \( N_{\text{enter}}(R > 1 \text{ km}) \approx 10^6 (R/\text{km})^{-5/2} \) in the field. This is likely a lower-limit, since the inferred encounter rate of ‘Oumuamua-like objects (with effective diameter of ~ 100 m), given its recent detection, is ~50 times higher than the above-estimated rate for 100 m-size bodies entering the Solar system in today’s field environment (Do et al. 2018).

3 CAPTURE RATES

3.1 Protoplanetary disc structure

The radial and vertical structure of the PPD can be modeled from the Chiang-Goldreich simple flared disc model (Chiang & Goldreich 1997). The radial gas surface density is \( \Sigma_g = \Sigma_g,0 (a/AU)^{-\beta} \), where \( \Sigma_g,0 = 2 \times 10^3 \text{ g cm}^{-2} \). The normalization \( \Sigma_g,0 \) and scaling \( \beta \) corresponds to the Minimal Mass Solar Nebula (MMSN) profile (Weidenschilling 1977a; Hayashi 1981). Larger normalizations and various power laws (\( \beta \sim 0.5 – 2.2 \)) have been invoked in order to explain the formation of Super-Earth planets, though there is a large spread and uncertainty in the observed systems (Chiang & Laughlin 2013; Raymond & Cossou 2014).
The vertical structure is governed by hydrostatic equilibrium, which leads to a Gaussian profile, where in cylindrical coordinates \( \rho_0(r, z) = \rho_0(r, 0) \exp\left(-\frac{z^2}{2h^2}\right) \), where \( h = c_s/\Omega \) is the disc scale height, \( c_s \) and \( \Omega \) is the sound speed and the Keplerian frequency, respectively (Perets & Murray-Clay 2011; Grishin & Perets 2015). The surface density is then \( \Sigma(r) = \int \rho_0(r, z) dz = \sqrt{2\pi} h \rho_0(r, 0) \).

### 3.2 Capture condition

Consider an interstellar object coming from infinity with velocity \( v_\infty \), going through a gaseous PPD around a star of mass \( M_* \). For a spherical body with density \( \rho_p = 1 \text{ g cm}^{-3} \), radius \( R_p \), and relative velocity \( v_{rel} \) which crosses a region of the disc with density \( \rho_g \), the aerodynamic gas drag force is

\[
F_D = \frac{1}{2} C_D \pi R_p^2 \rho_p v_{rel}^2 v_{rel},
\]

where \( C_D(Re) \) is the drag coefficient, which depends on the Reynolds number \( Re = \rho_p v_{rel}/\nu_m \), where \( \nu_m = (1/2) \nu_0 \lambda \) is the molecular viscosity of the gas, \( \nu_0 \) is the thermal velocity and \( \lambda \) is the mean free path of gas-gas collisions.

Large planetesimals are in the ram pressure regime with constant coefficient \( C_D = 0.44 \). Small dust grains are in the Epstein regime, with \( C_D \propto R_p^{-1} \). The transition to Stokes regime occurs at \( R_p = 9\lambda/4 \). In the Stokes regime, \( C_D \propto R_p^{-3/2} \). We follow Perets & Murray-Clay (2011) for prescription for the Reynolds number and drag laws.

For a planetesimal that crosses the disc face on at radial location \( \hat{a} \), the amount of energy loss during the interaction with the disc is the total work applied on the planetesimal

\[
\Delta E = \int F_D \cdot v_{rel} dt = -\frac{\pi C_D R_p^2 \rho_0}{2} \int_{-\infty}^{\infty} \exp\left(-\frac{v_{rel}^2 t^2}{2h^2}\right) v_{rel}^3 dt \approx -\frac{\pi C_D}{2} R_p^2 \rho_0 v_{rel}^2 v_{rel}.
\]

where \( \rho_0 = \rho_0(\hat{a}, z = 0) \) is the density at the midplane, and we assume that the relative velocity \( v_{rel} = v_\infty + \hat{v}_{esc}(\hat{a}) \) is constant throughout the passage, where \( \hat{v}_{esc} = \sqrt{2GM_*/\hat{a}} \) is the escape velocity.

There are two regimes: Either \( v_\infty \gg \hat{v}_{esc} \), the geometrical regime, or \( v_\infty \ll \hat{v}_{esc} \), gravitational focusing regime, letting \( v_{rel}^2 \approx v_\infty^2 + \hat{v}_{esc}^2 \) takes both options into account.

The body is captured if it has dissipated more energy than its initial energy \( E_{init} = m_p v_\infty^2/2 \), or \( |\Delta E| > E_{init} \). In terms of the body’s size, the capture condition is

\[
R_p \lesssim \frac{3}{4} \frac{C_D \Sigma g}{\rho_p} (1 + \Theta_s),
\]

where \( \Theta_s \equiv v_{esc}^2/v_\infty^2 \) is the gravitational focusing Safronov number. For \( \Theta_s \gg 1 \) gravitational focusing is important, while for \( \Theta_s \ll 1 \) the scattering is mostly in the geometric collision regime. Intuitively, in the geometric regime, capture requires a velocity change of order of the incident velocity \( \delta v \sim v_\infty \), thus corresponds to a requirement that the disc surface density exceeds a fixed fraction of the planetesimal mass per unit area.

Fig. 1 shows an example of a typical trajectory and evolution of interstellar planetesimals as they encounter the disc, dissipate their energy and become embedded in the disc. In the following we use a detailed analysis to provide a quantitative study of the capture rate of such planetesimals.

### 3.3 Capture rates

In order to evaluate the fractions and total number of planetesimals captured through this process, we need to consider the properties of the orbits and the PPD, as well as properties of the environment.

For the encounter properties, we consider the distributions of the velocity, impact parameters and relative impact angles to the disc, as well as the size-distribution of the incoming planetesimals. We assume that Interstellar-objects have a Maxwellian velocity dis-
trubution (similar to their progenitor stellar hosts)

\[ f_V(v_{\infty}, \sigma) = \sqrt{\frac{2}{\pi}} \frac{v^2}{\sigma^2} \exp\left(-\frac{v^2}{2\sigma^2}\right) ; \quad v \in [0, \infty], \]  

(5)

where \( \sigma \) is the velocity dispersion. Moreover, faster planetesimals collide more frequently so the distribution of rate of collisions per unit time is further weighted by an additional factor of \( v_{\infty} \). The distribution of impact parameters follows a simple geometric cross-section, i.e. a uniform distribution of the impact parameter \( B^2 \sim U[0, b_{\max}] \) (the trajectory can later change due to gravitational focusing, which we account for when relevant), where \( b_{\max} \) is the maximal impact parameter for an effective close encounter. Both of these depend on the stellar environment.

### 3.3.1 Geometric regime

In this case \( \Theta_* \ll 1 \) (negligible gravitational focusing), i.e. the trajectory of an incoming interstellar planetesimals follows a straight line before encountering the disc, and is negligibly affected by the gravitational pull from the host star. The capture criteria is then

\[ \frac{3C_0 \Sigma_0}{4 \rho_p R_p} < 1 \]  

(6)

taking a density profile \( \Sigma_y = \Sigma_{y,0} (a/\text{AU})^{-\beta} \) we get

\[ \left( \frac{\alpha}{\lambda} \right)^{\beta} < \frac{3C_0 \Sigma_{y,0}}{4 \rho_p R_p} \]  

(7)

For geometric scattering, the closest approach is \( q \approx b \), so the criteria is

\[ b_c(R_p) = \left( \frac{3C_0 \Sigma_{y,0}}{4 \rho_p R_p} \right)^{1/\beta} \text{AU} \]  

or with the dimensionless parameter \( x = b_c/b_{\max} \), the capture probability is

\[ f_c(R_p) = \frac{b_c}{b_{\max}}^2 = \left( \frac{3C_0 \Sigma_{y,0}}{4 \rho_p R_p} \right)^{2/\beta} \frac{(\text{AU})^2}{b_{\max}^2} \]  

\[ = 0.16 \left( \frac{C_0}{25} \right)^{4/3} \left( \frac{\text{AU}}{130 \text{AU}} \right)^{-2} \left( \frac{R_p}{2 \text{AU}} \right)^{-4/3}, \]  

(9)

where we used \( \beta = 3/2 \) and the disc normalization of sec. 2.1.

The geometric regime is independent of the initial velocity and the PPD profile. The geometric regime is valid mostly for small grains and pebbles, while neglecting gravitational focusing under-predicts the capture probability of large \( \gtrsim 100 \) m planetesimals.

### 3.3.2 Gravitational focusing regime

In the gravitational focusing regime, \( \Theta_* \gtrsim 1 \); which corresponds to small impact parameters and/or low velocities, the capture condition is

\[ \left( \frac{\alpha}{\lambda} \right)^{\beta} v_{\infty}^2 < \frac{3C_0 \Sigma_{y,0}}{2 \rho_p R_p} \frac{GM}{a}, \]  

(10)

which depends both on the velocity and the impact parameter. In order to proceed, we use the parabolic approximation to find the closest approach \( a = q \),

\[ q = \frac{GM}{v_{\infty}^2} \left[ \sqrt{1 + \frac{b_c v_{\infty}^2}{G^2 M^2} - 1} \right] \approx \frac{b_c v_{\infty}^2}{2GM} \]  

(11)

so the capture condition is

\[ b_c v_{\infty}^2 < 2^{(2+\beta)} \frac{3C_0 \Sigma_{y,0}}{2 \rho_p R_p} \frac{GM}{\sigma^2 \text{AU}} \]  

\[ \times \frac{b_{\max}^2}{v_{\infty}^2} \sim 2^{(2+\beta)} \frac{b_{\max}^2}{v_{\infty}^2} \frac{b_{\max}^2}{v_{\infty}^2} \]  

(12)

The velocity dependent capture probability is

\[ P_c(R_p|v_{\infty}) = \frac{b_c(v_{\infty})}{b_{\max}} \]  

(13)

where \( b_c(v_{\infty}) \) is given by equality in Eq. (12). Now we want to look at the different rates of arrival: faster planetesimals have higher encounter rates than slower one. The integrals that involve the probability have an additional \( v \) factor, e.g. \( P \propto \int v f_V(v) dv \). Namely, the weighted capture probability for a given time is

\[ f_c(R_p) = \frac{N_{\text{captured}}(R_p)}{N_{\text{enter}}(R_p)} \]  

\[ = \frac{\int N_{\text{enter}}(v, R_p, b_{\max}) f_V(v) P_c(R_p|v_{\infty}) dv_{\infty}}{\int N_{\text{enter}}(v, R_p, b_{\max}) f_V(v) dv_{\infty}} \]  

(14)

Since \( N_{\text{enter}}(R_p) \propto v_{\infty} \) we have

\[ f_c(R_p) = \frac{1}{\langle v_{\infty} \rangle f_V} \int v_{\infty} v f_V(v) P_c(R_p|v_{\infty}) dv_{\infty} \]  

\[ = \int_{D_c} \frac{2b}{b_{\max}} \frac{v^3}{2\sigma^2} e^{-v^2/2\sigma^2} dv = \sqrt{8\pi} e^{-v_{\infty}^2/2\sigma^2} \]  

(15)

where \( \langle v_{\infty} \rangle f_V = \sqrt{8\pi} \sigma \) is the mean thermal speed. The integration is on the fractional domain \( D_c \) of parameters that result in capture.

The latter is equivalent to drawing the velocity from a \( \chi^{(4)} \) distribution:

\[ \tilde{f}_V(v) = \frac{1}{2} \frac{v^3}{\sigma^4} e^{-v^2/2\sigma^2} \]  

(16)

The capture probability is encapsulated in the new random variable \( x \equiv (b/b_{\max})^\beta (v_{\infty}/\sigma)^2 \), where \( \alpha = (2+\beta)/(2+\beta/2) \). We show in Appendix A that the distribution function for \( x \) can be expressed in terms of incomplete Gamma functions,

\[ f_X(x) = 2^{-(2+\beta)/(1+\beta)} (1+\beta) \frac{\beta}{1+\beta} \Gamma \left( \frac{\beta}{1+\beta} \right) x^{1/(1+\beta)} \]  

For the special case of \( \beta = 3/2, f_X(x) \propto x^{3/5} \left( \frac{2}{3}, \frac{x}{2} \right) \), and the weighted capture probability is

\[ f_c(R_p) = \int_0^{x_c(R_p)} f_X(x) dx \]  

\[ x_c = 2^{(2+\beta)} \frac{3C_0 \Sigma_{y,0}}{2 \rho_p R_p} \frac{GM}{\sigma^2 \text{AU}} \left( \frac{b_{\max}}{v_{\infty}} \right)^{-\alpha(\beta)}. \]  

(18)

Since the gravitational focusing regime is relevant for large planetesimals, it required close approach, which is possible only with either small velocity of impact parameter, or \( x_c \ll 1 \). In this case, the (weighted) probability (Eq. 18) can be expanded into leading terms,

\[ f_c(x_c) = \left( \frac{x}{2} \right)^{(2+\beta)/(1+\beta)} \left( \frac{\beta}{1+\beta} \right) + O(x_c^2). \]  

(19)
For the special case $\beta = 3/2$ we have

$$f_c(R_p) = \frac{1}{2} \frac{(\frac{2}{3}) \pi^2 \sigma^7}{b_{\text{max}}^{14}} + O(x^2)$$

$$\approx 0.86 \left( \frac{3 C D \Sigma_0}{\rho_p R_p} \right)^{2/5} \left( \frac{GM}{\sigma^2 AU} \right)^{7/5} \left( \frac{b_{\text{max}}}{\Lambda U} \right)^{-2}. \quad (20)$$

Note that in either regime of the capture fraction (Eq. 9 and 20) it is proportional to $b_{\text{max}}^{-2}$, which cancels out with the $b_{\text{max}}^{-2}$ from the capture rate. Thus, the total number of captured planetesimals $N_{\text{capture}} f_c$ is independent of $b_{\text{max}}$, hence the choice of $b_{\text{max}}$ is rather arbitrary, as expected. Multiplying by $n_{\text{ISM}} (\sqrt{\sigma/\pi \sigma}) \sigma b_{\text{max}}^2$ yields the total number captures:

$$N(R_p) \approx 4.29 \left( \frac{3 C D \Sigma_0}{\rho_p R_p} \right)^{2/5} \left( \frac{GM}{\sigma^2 AU} \right)^{7/5} n_{\text{ISM}} \sigma \tau_{\text{env}} \Lambda U^2,$n_{\text{ISM}} \sigma \tau_{\text{env}} \Lambda U^2,$

and it is independent of $b_{\text{max}}$, as expected.

### 3.4 Numerical modeling and comparison

In order to better verify the analytical estimates, we run N-body simulations that include gravity and a prescription for gas drag (Eq. 2), based on 4th order Hermite integrator (Hut et al. 1995). We truncate the disc density at $r_{\text{disc}} = 250$ AU. The aspect ratio is $h/r = 0.022(r/\Lambda U)^{2/7}$. The velocity of the gas is slightly sub-Keplerian due to pressure gradients, namely $v_{\text{gas}} = \eta v_{\text{Kep}}$, with $\eta = (1 - (3/2 + \beta + 3/14)(h/r)^2)^{1/2}$ (cf. Grishin & Perets 2015, 2016 for more details). The relative velocity is $v_{\text{rel}} = v_p - v_{\text{gas}}$, where $v_p$ is given in cartesian coordinates after rotation of the hyperbolic orbit to the disc’s reference plane. We initialize the planetesimal to start from $r_0 = 20000$ AU with orbital parameters and disc inclination drawn from distributions described in the main text. We stop the simulation if the distance from the sun exceeds 500000 AU and negative energy and conclude the orbit is unbound. For bound orbits we stop if either the distance is $r < 0.02 \Lambda U$ or the orbital eccentricity is $e < 0.1$.

For each planetesimal-size we run $10^4 - 3 \cdot 10^5$ numerical integrations with $b$ and $v_{\text{gas}}$ distributed from uniform in $b^2$ and $\chi(4)$ distributions, respectively. The relative angles between the planetesimal trajectories and the PPD were drawn from an isotropic distribution (uniform in the argument of pericentre and the longitude of ascending node angles, and uniform in the cosine of the inclination angle).

Fig. 2 shows the comparison between the analytic estimates and the simulations. Small pebbles, up to $\sim 1$ m, are the most susceptible to gas drag, and are efficiently captured. These can be captured even at the lower density regimes of the disc at large separations. Larger planetesimals require progressively close pericentre approach of their trajectory, near the high-density inner regions of the disc. Therefore, large planetesimals are in the gravitational focusing regime, where the gas drag is ram-pressure dominated and the drag coefficient has a constant value $C_D = 0.44$. For geometric scattering we expect to be somewhere near the Epstein-Stokes transition, i.e. near $C_D = 24$.

Fig. 2 shows good converge of the analytical models, both in the power law scaling and in the gas drag regime. Planetesimals in the field have much higher velocities and Reynolds numbers, hence they are rarely in the Epstein regime and have smaller drag coefficients.

### 3.5 Total number of captured planetesimals and radial distribution

Using the size-dependent capture-probability, we obtain the total number of captured planetesimals of a given size.

The left panel of Fig. 3 shows the expected size-dependent number of captured planetesimals for a collisional planetesimal mass function of $p = 11/6$. Many small pebbles and planetesimals up to $\lesssim 100$ m are captured, which could lead to efficient seeding and subsequent planet formation. At least one planetesimal as large as $\sim 6$ km ($\sim 1$ km) is captured in a cluster (field) environment. The inferred rate, based on ‘Oumuamua passage, is enhanced by $\sim 50$ times. The latter would then result in the capture of even $\sim 23$ km ($\sim 4$ km) for a cluster (field) environment. The right panel of Fig. 3 shows the the number of captured plan-

![Figure 2](image-url)
etisimals from SI mass function, \( p = 5/3 \). It this case, there are less planetesimals to begin with, therefore the overall numbers are lower, although still significant.

Fig. 4 shows the empirical cumulative radial distribution of captured planetesimals for different size ranges. As mentioned above, disc dissipation can be efficient for small planetesimals even at the disc outskirts where the gas densities are low. The capture of larger planetesimals, however, requires higher gas densities. Therefore the larger the planetesimals, the more centrally concentrated is their radial distribution.

### 4 DISCUSSION

**The meter size barrier and the first planetesimals:** The gas-assisted capture mechanism can seed a few up to thousands of \( \sim \) km-sized planetesimals in the disc. Such relatively small number of seeds can then rapidly grow to 100 km-size on short timescales before collisional erosion starts (Xie et al. 2010). We therefore expect the effective initial distribution of cores and asteroids to be at large radii, somewhat similar to that expected from the SI models and consistent with suggestions and observations that asteroids were born big and that the asteroids were formed from a small number of asteroid families (Morbidelli et al. 2009; Dermott et al. 2018). A fraction of these grown planetesimals later ejected from the systems, and further replenish the population of interstellar planetesimals. These, in turn, can be recaptured by other systems and further catalyze planet-formation, and so on, i.e. leading to a chain-reaction – like exponential planet-seeding process.

One may still question how did large planetesimals and later planets formed in the first system that initialized the seeding. Formation of km-sized planetesimals is a long-standing problem in planet-formation theories (Chiang & Youdin 2010; Blum 2018). The disc capture scenario can not account for this initial formation, however, it can alleviate the problem, by allowing for the first formation of such planetesimals to be a rare event, and even under fine-tuned condition.

Most stars are thought to form in stellar associations and clusters. If only a few large \( \sim 1 \) km planetesimals are sufficient for seeding a given planetary system (Ormel & Kobayashi 2012; Levison et al. 2015), or a larger number of smaller planetesimals (Booth et al. 2018), then \( N_{\text{captured}} \) (\( > 1 \) km) \( \sim 170 \) large planetesimals are captured by a given system (and numerous smaller ones). Thus, only a small fraction of planetary systems is needed in order to seed all of the other protoplanetary systems in the cluster (\( \sim 0.5% \) with few big planetesimals, or a negligible fraction for smaller planetesimals). In addition, using the \( \sim 50 \) times higher rates directly inferred from ‘Oumuamua detection, a much smaller number is required, and even a field environment could be seeded by older planetesimals formed in the cluster. We finally note that in the optimistic cases, even large planetary embryos of \( 10 \) – \( 30 \) km can be captured directly.

**Planetesimal ablation:** Planetesimal ablation could potentially affect, or even destroy a planetesimal as it crosses a PPD for the first-time at high velocity. However, using simplified ablation models (Pinhas et al. 2016, Appendix B) we find the expected ablation rates of the captured planetesimals in table 1. Most \( \sim 37% \) of icy-planetesimals and \( \sim 16\% \) of rocky-planetesimals of \( 10 \) – \( 10^3 \) m sizes are ablated during crossings in stellar clusters, and \( \sim 78\% \) icy and \( \sim 53\% \) rocky planetesimals of \( 10^3 \) m are ablated in
field environments. Most of the ablated objects are in the range of $10 - 10^3$ m; smaller pebbles are captured far enough, while larger bodies are harder to ablate. These do not significantly affect the overall results.

**Chemical composition:** The composition of meteorites in the Solar System is typically thought to relate to the primordial composition of the PPD. However, there is evidence for the existence of material captured from external sources. In particular, there is evidence for short-lived radioactive nuclei which were likely formed in a relatively nearby supernovae (Ouellette et al. 2010). In addition, analysis of heavy $^{60}$Fe – $^{60}$Ni isotopes in asteroids suggests the early injection of $^{60}$Fe into the primordial PPD of our Sun (Bizzarro et al. 2007). The disc-capture mechanism allows for embedding such external material in the disc, and may help explain its origin.

These issues are not the main focus of our study, but it is interesting to consider the possibility of composition peculiarities in some meteorites originating from capture of material from other systems through this process. In particular, discovery of rocky/solid material older than the Solar system can provide a signature of material exchange.

**Lithopanspermia:** The exchange of rocky material between planetary systems may also be considered the leading mechanism for lithopanspermia (Napier 2004; Wesson 2010; Lingam & Loeb 2018). Even if a small fraction of biologically active material is ejected by interstellar planetesimals, the large efficiency of gas assisted of 1 m sized rocks could be far more efficient (as much as $10^5$ larger) than previously suggested lithopanspermia mechanisms (Adams & Spergel 2005).

5 **SUMMARY**

The current paradigm for planet formation involves a bottom up evolution of dust grains growing into planetesimals, then planetary embryos and finally into planets in gaseous protoplanetary discs (PPDs) around young stars. One of the main open questions over the last forty years deals with the early stages of forming km-size planetesimals from initially small dust grains (Weidenschilling 1977a; Chiang & Youdin 2010). Metre-sized pebbles experience a both significant gas-drag and collisional erosion, and thus rapidly inspiral onto the star or fragment, respectively. Together, these issues give rise to the ‘metre-size barrier’ problem in which the lifetime of small pebbles in the disc is too short compared with their growth rate. Thus, planet formation requires a ‘jump’ over small planetesimals as to already begin with larger-size planetesimals not susceptible to these growth constraints.

In this paper we have shown that the majority of planetary systems could have been ‘seeded’ by large ~ km size interstellar planetesimals. These could have formed elsewhere and then captured via gas-drag experienced by the planetesimal as it passes through the PPD. This gives rise to early insertion of large planetesimals, and it thereby potentially alleviates the meter-size barrier. The gas assisted capture model does not account for the first generation of planetesimals, but rather makes their formation into a much easier exponentially small challenge. Planetesimal formation is no longer required to form in every planetary system in isolation, but rather in a small subset of systems, perhaps under fine tunes conditions. Even one successful planetesimal formation per system could populate the entire young stellar cluster with planetesimals, and perhaps even the young systems in the field.

We present a novel model of gas assisted capture of interstellar planetesimals. We construct a robust, analytical model of the capture probability and overall capture rates as a function of the planetesimal size and orbit distribution, the protoplanetary disc structure and the local environment. We verified the analytical derivation with direct Monte-Carlo integrations and found good correspondence.

The gas assisted capture model is compatible with late stage planetesimal growth models (snowball phase, pebble accretion, Xie et al. 2010; Lambrechts & Johansen 2012) and provides the missing link to the initial population of large dust grains and small planetesimals. In addition, the gas assisted capture model supports the observation that asteroids formed big from a small number of asteroid families. The capture model can be tested by future measurements of composition peculiarities in some meteorites, which already has
some evidence for early injection of heavy radioactive nuclei into the primordial protoplanetary disc of our Sun (Bizzarro et al. 2007; Ouellette et al. 2010).

Besides the importance for planet formation, the gas-assisted capture scenario allows for far more efficient exchange of biologically-active material between different planetary systems. In fact, it could be as much as a million times more efficient than previously estimated (Adams & Spiegel 2005), making the possibility for such panspermia events into the Solar System and/or between other planetary systems far more likely.

REFERENCES
Adachi I., Hayashi C., Nakazawa K., 1976, Progress of Theoretical Physics, 56, 1756
Adams F. C., Spiegel D. N., 2005, Astrobiology, 5, 497
Belbruno E., Moro-Martín A., Malhotra R., Savransky D., 2012, Astrobiology, 12, 754
Bizzarro M., Ulfbeck D., Trinquier A., Thrane K., Connelly J. N., Meyer Belbruno E., Moro-Martín A., Malhotra R., Savransky D., 2012, Astrobiology, 12, 754
Bizzarro M., Ulfbeck D., Trinquier A., Thrane K., Connelly J. N., Meyer Belbruno E., Moro-Martín A., Malhotra R., Savransky D., 2012, Astrobiology, 12, 754
Blum J., 2018, preprint, (arXiv:1802.00221)
Booth R. A., Meru F. Lee M. H., Clarke C. J., 2018, MNRAS, 475, 167
Chiang E. I., Goldreich P., 1997, ApJ, 490, 368
Chiang E., Laughlin G., 2013, MNRAS, 431, 3444
Chiang E., Youdin A. N., 2010, Annual Review of Earth and Planetary Sciences, 38, 493
Čuk M., Burns J. A., 2004, Icarus, 167, 369
De Simone R., Wu X., Tremaine S., 2004, MNRAS, 350, 627
Dermott S. F., Christou A. A., Li D., Kehoe T. J. J., Robinson J. M., 2018, Nature Astronomy, 2, 549
Do A., Tucker M. A., Toney J., 2018, preprint, (arXiv:1801.02821)
Dohnanyi J. S., 1969, J. Geophys. Res., 74, 2501
Dones L., Gladman B., Melosh H. J., Duncan M., Moro-Martín A., Malhotra R., Savransky D., 2012, preprint, (arXiv:1801.02821)
Dones L., Gladman B., Melosh H. J., Duncan M., 1999, Icarus, 142, 509
Fujita T., Ohtsuki K., Tanigawa T., Suesugi R., 2013, AJ, 146, 140
Grishin E., Perets H. B., 2015, ApJ, 811, 54
Grishin E., Perets H. B., 2016, ApJ, 820, 106
Hayashi C., 1981, Progress of Theoretical Physics Supplement, 70, 35
Hut P., Makino J., McMillan S., 1995, ApJ Lett., 443, L93
Johansen A., Osishi J. S., Mac Low M.-M., Klahr H., Henning T., Youdin A., 2007, Nature, 448, 1022
Lambrechts M., Johansen A., 2012, A&A, 544, A32
Levison H. F., Duncan M. J., Brasser R., Kaufmann D. E., 2010, Science, 329, 187
Levison H. F., Kretke K. A., Duncan M. J., 2015, Nature, 524, 322
Levison H. F., Kretke K. A., Duncan M. J., 2015, Nature, 524, 322
Lin Y., Loeb A., 2018, preprint, (arXiv:1801.10254)
Lin Y., Loeb A., 2018, preprint, (arXiv:1801.10254)
Meech K. J., et al., 2017, Nature, 552, 378
Melosh H. J., 2003, Astrobiology, 3, 207
Morbidelli A., 2018, ArXiv:1803.06704
Morbidelli A., Bottke W. F., Nesvorný D., Levison H. F., 2009, Icarus, 204, 358
Napier W. M., 2004, MNRAS, 348, 46
Orelm C. W., Klahr H. H., 2010, A&A, 520, A43
Orelm C. W., Kobayashi H., 2012, ApJ, 747, 115
Ouettele L., Desch S. J., Hester J. J., 2010, ApJ, 711, 597
Perets H. B., Kouwenhoven M. B. N., 2012, ApJ, 750, 83
Perets H. B., Murray-Clay R. A., 2011, ApJ, 733, 56
Pinhas A., Madhusudhan N., Clarke C., 2016, MNRAS, 463, 4516
Raymond S. N., Cossou C., 2014, MNRAS, 440, L11
Raymond S. N., Armitage P. J., Veras D., Quintana E. V., Barclay T., 2018a, MNRAS, 476, 3031
Raymond S. N., Armitage P. J., Veras D., 2018b, ApJ Lett., 856, L7
Simon J. B., Armitage P. J., Youdin A. N., Li R., 2017, ApJ Lett., 847, L12
Valtonen M., et al., 2009, ApJ, 690, 210
Weidenschilling S. J., 1977a, A&A, Supplement, 51, 153
Weidenschilling S. J., 1977b, MNRAS, 180, 57
Wesson P. S., 2010, Space Sci. Rev., 156, 239
Windmark F., Birnstiel T., Gittler C., Blum J., Dullemond C. P., Henning T., 2012, A&A, 540, A73
Xie J.-W., Payne M. J., Thebault P., Zhou J.-L., Ge J., 2010, ApJ, 724, 1153
Youdin A. N., Goodman J., 2005, ApJ, 620, 459

ACKNOWLEDGMENTS
We thank Barak A. Katzir and Andrei P. Igoshev for stimulating discussions. EG acknowledges support by the Technion Irwin and Joan Jacobs Excellence Fellowship for outstanding graduate students. EG and HBP acknowledge support by Israel Science Foundation I-CORE grant 1829/12 and the Minerva center for life under extreme planetary conditions.

Appendix A. Derivation of the Gravitational focusing regime

Here we Derive Eq. 17 and 19. We start from a χ(4) distribution for the velocity:

$$f_{V}(v) = \frac{1}{2} \frac{v^3}{\sigma^4} e^{-v^2/2\sigma^2}$$  (22)

and uniform distribution of $b^2$, namely $f_B(b) \propto b$. In order to proceed, we define a new random variable $x = (b/b_{\text{max}})^2 (v/\sigma)^2$, $f_X(x)$, with $x$ is related to the disc power law density and defined in the main text.

First, we transform to $k = b^2$ and $dk = ab^3 \sigma^{-1} db$, so

$$f_K(k) = f_B(b) \frac{db}{dk} = \frac{2k(2\alpha-1)}{ab_{\text{max}}^3}. \quad (23)$$

Similarly, the distribution function of $u \equiv v^2$ is

$$f_U(u) = f_V(v) \frac{du}{dv} = \frac{1}{4 \sigma^4} e^{-u/2\sigma^3}$$  (24)

Now, the distribution of $z \equiv b^2 u^2$ is given by

$$f_Z(z) = \int f_U(u) f_V(v) f(x) (k(1-z)/z) dk dv du = \frac{1}{2\alpha \sigma^4 b_{\text{max}}^3} \int_0^\infty k(1-z)/z \sigma^2 f(x) \delta(k(z/u-z)) dk du$$

$$= \frac{\Gamma(2\alpha-1)}{2\alpha \sigma^4 b_{\text{max}}^3 \Gamma(\alpha)} \int_0^\infty u(\alpha-2)/\alpha u^{-\alpha/2} e^{-u/2\sigma^2} du, \quad (25)$$

where $\delta(s)$ is Dirac’s delta distribution. Taking $x = z/b_{\text{max}}^2 \sigma^2$ and $u = u/2\sigma^2$ we get

$$f_X(x) = \frac{x^{2(\alpha-1)/\alpha}}{\alpha} 2^{1-\alpha/2} \int_x^{\infty} u^{1-2/\alpha} e^{-u} dw$$

$$= 2^{-(2+\beta)/(1+\beta)} \Gamma(\frac{\beta}{1+\beta}) \Gamma\left(\frac{x}{2}\right) x^{1/(1+\beta)}$$  (26)

where $\Gamma(z, s) = \int_s^{\infty} t^{z-1} e^{-t} dt$ is the upper incomplete Gamma function. By using the integrals of the incomplete Gamma functions

$$\int x^{\beta-1} \Gamma(z, s) dx = \frac{1}{\beta} \left( x^\beta \Gamma(z, s) - \Gamma(z, s+b, x) \right), \quad (27)$$

the cumulative distribution function (CDF) is given by

$$F_X(x) = \int_0^x f_X(x) dx = \frac{1}{\beta} \left( x^\beta \Gamma(\frac{x}{2}) - \Gamma\left(\frac{x}{2}, \frac{x}{2}\right) \right)$$  (28)
The linear expansion of the incomplete Gamma function is
\[ \Gamma(s, x^2) = \Gamma(s) - x^s - \frac{x^{s+1}}{s+1} + O(x^{s+1}) \]
therefore the leading term in CDF is
\[ F_X(x) = \frac{\beta}{1 + \beta} \Gamma \left( \frac{\beta}{1 + \beta} \right) - \frac{1}{\beta} \frac{2}{1 + \beta} x^\beta - 1 + 2x^2. \]
(29)

For \( \beta > 0 \), the first term is the dominant one, thus the capture probability is
\[ f_c(R_p) = F_X(x) - F_X(0) = \frac{\beta}{1 + \beta} \Gamma \left( \frac{\beta}{1 + \beta} \right) + O(x^2) \]
(30)

Appendix B. Planetesimal ablation

The ablation equation is (Pinhas et al. 2016)
\[ \frac{dm}{dt} = \frac{C_H}{2} \rho g v_{\text{rel}}^3 R_p^2 Q_{\text{abl}} \]
(31)

where \( m = 4\pi R_p^3 \rho_p / 3 \) is the mass, \( \rho_p \) is the solid density, \( \rho_g \) is the gas density, \( C_H \) is the dimensionless heat transfer coefficient, \( v_{\text{rel}} \) is the relative velocity, \( R_p \) is the radius and \( Q_{\text{abl}} \) is the specific ablation heat per unit mass. The ablation time is
\[ t_{\text{abl}} = \left| \frac{R_p}{dR_p/dt} \right| \approx \frac{8}{C_H \rho g v_{\text{rel}}^3 \rho_p} R_p \approx 10^4 \left( \frac{R_p}{\text{AU}} \right)^{53/14} \text{s} \]
(32)

Significant ablation occurs if the ablation time is shorter than the minimum of the disc crossing time \( t_{\text{cross}} \) and the stopping time \( t_{\text{stop}} = |mv_{\text{rel}}|/F_D |. For pebbles of \( \gtrsim 1 \text{ m} \) or larger bodies, the crossing time \( t_{\text{cross}} = h/v_{\text{rel}} \) is the relevant. Comparing the timescale gives the condition for ablation. The critical radial disc separation for ablation as a function of the planetesimal size and disc and planetesimal parameters is
\[ a_{\text{abl}} = \left( \frac{R_p}{7.3 \text{ m}} \right)^{1/2} \text{AU} \]
(34)

Figure 5 shows the critical separation as a function of the planetesimal size for various compositions. We compare the critical separation for each composition with the cumulative fraction of captured planetesimal to estimate the fraction of ablated planetesimals. The results are summarized in Table 1.