Verma modules over the generalized Heisenberg-Virasoro algebra

Ran Shen*, Yucai Su†

*Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, China
†Department of Mathematics, University of Science and Technology of China
Hefei 230026, China
Email: ranshen@sjtu.edu.cn, ycsu@ustc.edu.cn

Abstract. For any additive subgroup G of an arbitrary field F of characteristic zero, there corresponds a generalized Heisenberg-Virasoro algebra $\mathcal{L}[G]$. Given a total order of G compatible with its group structure, and any $h, h_I, c, c_I, c_{LI} \in F$, a Verma module $\tilde{M}(h, h_I, c, c_I, c_{LI})$ over $\mathcal{L}[G]$ is defined. In this note, the irreducibility of Verma modules $\tilde{M}(h, h_I, c, c_I, c_{LI})$ is completely determined.

Key Words: The generalized Heisenberg-Virasoro algebra, Verma modules

Mathematics Subject Classification (2000): 17B56; 17B68.

1. Introduction

Let F be a field of characteristic 0. The well-known twisted Heisenberg-Virasoro algebra is the Lie algebra $\mathcal{L} := \mathcal{L}[\mathbb{Z}]$ with an F-basis $\{L_m, I_m, C, C_I, C_{LI} \mid m \in \mathbb{Z}\}$ subject to the following relations (e.g., [ACKP, B])

$$[L_n, L_m] = (n - m)L_{n+m} + \delta_{n,-m}\frac{n^3 - n}{12}C,$$
$$[L_n, I_m] = -mI_{n+m} - \delta_{n,-m}(n^2 + n)C_{LI},$$
$$[I_n, I_m] = n\delta_{n,-m}C_I,$$
$$[\mathcal{L}, C] = [\mathcal{L}, C_{LI}] = [\mathcal{L}, C_I] = 0.$$

This Lie algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one, which contains an infinite-dimensional Heisenberg subalgebra and the Virasoro subalgebra. The natural action of the Virasoro subalgebra on the Heisenberg subalgebra is twisted with a 2-cocycle. The structure and representation theory for the twisted Heisenberg-Virasoro algebra has been well developed (e.g., [ACKP, B, FO, JJ, SJ]). The structure of the irreducible highest weight modules for the twisted Heisenberg-Virasoro algebra are determined in [ACKP, B].

By replacing the index group \mathbb{Z} by an arbitrary subgroup G of the base field F, it is

1Supported by NSF grants 10471096, 10571120 of China and “One Hundred Talents Program” from University of Science and Technology of China
natural to introduce the so-called generalized Heisenberg-Virasoro algebra $\mathcal{L}[G]$ (cf. Definition 2.1, see e.g., [XLT, LJ]). This is the Lie algebra which is the 3-dimensional universal central extension of the Lie algebra of generalized differential operators of order at least one. The Harish-Chandra modules of intermediate series over generalized Heisenberg-Virasoro algebra $\mathcal{L}[G]$ are discussed in [LJ].

Given any total order of G compatible with its group structure, and given any $h, h_I, c, c_I, c_{LI} \in \mathbb{F}$, there corresponds a Verma module $\widetilde{M}(h, h_I, c, c_I, c_{LI})$ over $\mathcal{L}[G]$. Due to the fact that the representations of generalized Heisenberg-Virasoro algebras are closely related to the representation theory of toroidal Lie algebras as well as some problems in mathematical physics (e.g., [ACKP, FO, JJ]) and the Verma modules play the crucial role in the representation theory, it is very natural to consider the Verma modules over the generalized Heisenberg-Virasoro algebras. In this note, we completely determine the irreducibility of Verma modules $\widetilde{M}(h, h_I, c, c_I, c_{LI})$ over $\mathcal{L}[G]$ for arbitrary G. Namely, if G does not contain a minimal positive element with respect to the total order, then the Verma module $\widetilde{M}(h, h_I, c, c_I, c_{LI})$ is irreducible if and only if $(c_I, c_{LI}) \neq (0, 0)$; in case if G contains the minimal positive element a, then the Verma module $\widetilde{M}(h, h_I, c, c_I, c_{LI})$ is irreducible if and only if the $\mathcal{L}[Za]$-module generated by a fixed highest weight generator is irreducible over the twisted Heisenberg-Virasoro algebra $\mathcal{L}[Za]$ (cf. Theorem 3.1).

2. Generalized Heisenberg-Virasoro algebras

Let $U := U(\mathcal{L})$ be the universal enveloping algebra of the twisted Heisenberg-Virasoro algebra \mathcal{L}. For any $h, h_I, c, c_I, c_{LI} \in \mathbb{F}$, denote by $I(h, h_I, c, c_I, c_{LI})$ the left ideal of U generated by the elements

$$\{L_i, I_j \mid i, j > 0\} \cup \{L_0 - h \cdot 1, I_0 - h_I \cdot 1, C - c \cdot 1, C_I - c_I \cdot 1, C_{LI} - c_{LI} \cdot 1\}.$$

The Verma module with highest weight (h, h_I, c, c_I, c_{LI}) over \mathcal{L} is defined as

$$M(h, h_I, c, c_I, c_{LI}) := U/I(h, h_I, c, c_I, c_{LI}),$$

which is a highest weight module with a basis consisting of all vectors of the form

$$I_{-p_1}I_{-p_2} \cdots I_{-p_s}L_{-j_1}L_{-j_2} \cdots L_{-j_k}v_h, \quad (2.1)$$

where $s, k \in \mathbb{N} \cup \{0\}$, $p_r, j_i \in \mathbb{N}$ and $0 < p_1 \leq p_2 \leq \cdots \leq p_s$, $0 < j_1 \leq j_2 \leq \cdots \leq j_k$.

Definition 2.1 Let $G \subseteq \mathbb{F}$ be an additive subgroup. The generalized Heisenberg-Virasoro algebra $\tilde{\mathcal{L}} := \mathcal{L}[G]$ is a Lie algebra with \mathbb{F}-basis $\{L_\mu, I_\mu, C, I, C_{LI} \mid \mu \in G\}$ subject
to the following relations [XLT, LJ]

\[
\begin{align*}
[L_\mu, L_\nu] &= (\mu - \nu)L_{\mu + \nu} + \delta_{\mu, -\nu} \frac{\mu^3 - \mu}{12} C, \\
[L_\mu, I_\nu] &= -\nu I_{\mu + \nu} - \delta_{\mu, -\nu}(\mu^2 + \mu) C_{LI}, \\
[I_\mu, I_\nu] &= \mu \delta_{\mu, -\nu} C, \\
[\tilde{L}, C] &= [\tilde{L}, C_{LI}] = [\tilde{L}, C_I] = 0.
\end{align*}
\]

For any \(x \in G^* := G \setminus \{0\} \), obviously, \(\mathbb{Z} x \subseteq G \). Let \(\mathcal{L}[\mathbb{Z} x] \) be the \(\mathbb{F} \)-subspace of \(\tilde{L} \) spanned by \(\{ L_{ix}, I_{ix}, C, C_I, C_{LI} | i \in \mathbb{Z} \} \). It is clear that \(\mathcal{L}[\mathbb{Z} x] \) is a Lie algebra isomorphic to the twisted Heisenberg-Virasoro algebra \(\mathcal{L} \). Precisely, we have

Lemma 2.2 The map

\[
\theta : \mathcal{L} \rightarrow \mathcal{L}[\mathbb{Z} x]
\]

\[
\begin{align*}
L_i &\mapsto x^{-1} L_{ix} + \delta_{i,0} \frac{x - x^{-1}}{24} C, \\
I_i &\mapsto x^{-1} I_{ix} + \delta_{i,0}(1 - x^{-1}) C_{LI}, \\
C &\mapsto x C, \\
C_I &\mapsto x^{-1} C_I, \\
C_{LI} &\mapsto C_{LI},
\end{align*}
\]

for \(i \in \mathbb{Z} \), extends uniquely to a Lie algebra isomorphism between \(\mathcal{L} \) and \(\mathcal{L}[\mathbb{Z} x] \).

Proof. This follows from straightforward verifications. \(\square \)

Throughout this note, we fix a total order “\(\succ \)" on \(G \) compatible with its group structure, namely, \(x \succ y \) implies \(x + z \succ y + z \) for any \(z \in G \). Denote

\[G_+ := \{ x \in G \mid x \succ 0 \}, \quad G_- := \{ x \in G \mid x \prec 0 \}. \]

Then \(G = G_+ \cup \{0\} \cup G_- \).

For an \(\tilde{L} \)-module \(V \) and \(\lambda, h_I, c, c_I, c_{LI} \in \mathbb{F} \), denote by

\[V_{\lambda,h_I,c,c_I,c_{LI}} := \{ v \in V | L_0 v = \lambda v, \ I_0 v = h_I v, \ C v = c v, \ C_I v = c_I v, \ C_{LI} v = c_{LI} v \}, \]

the weight space of \(V \). We shall simply write \(V_\lambda \) instead of \(V_{\lambda,h_I,c,c_I,c_{LI}} \). Define

\[\text{supp}(V) := \{ \lambda \in \mathbb{F} | V_\lambda \neq 0 \}, \]

called the weight set (or the support) of \(V \). For any \(h, h_I, c, c_I, c_{LI} \in \mathbb{F} \), let \(\tilde{M}(h, h_I, c, c_I, c_{LI}) \) be the Verma module for \(\tilde{L} \), which is defined by using the order “\(\succ \)" and the same fashion.
as that for \mathcal{L} at the beginning of this section. Then I_0, C, C_I, C_{LI} acts as h_I, c, c_I, c_{LI} respectively on $\widetilde{M}(h,h_I,c,c_I,c_{LI})$ and

$$\text{supp}(\widetilde{M}(h,h_I,c,c_I,c_{LI})) = h + G_+.$$

For any $x \in G_+$, let

$$\widetilde{M}_x(h,h_I,c,c_I,c_{LI}) = U(\mathcal{L}[\mathbb{Z}x])v_h,$$

be the $\mathcal{L}[\mathbb{Z}x]$-submodule of $\widetilde{M}(h,h_I,c,c_I,c_{LI})$ generated by a fixed highest weight generator v_h. Note that the subgroup $\mathbb{Z}x$ is also a “totally ordered abelian group”, inheriting the order “$>$” from G. It is easy to see that

$$ax \succ bx \iff a > b \text{ for } a, b \in \mathbb{Z}.$$

As a result, we have

Corollary 2.3 As an \mathcal{L}-module, we have

$$\widetilde{M}_x(h,h_I,c,c_I,c_{LI}) \cong M(x^{-1}h + \frac{x - x^{-1}}{24}c, x^{-1}h_I + (1 - x^{-1})c_{LI}, xc, x^{-1}c_I, c_{LI}).$$

Proof. This is clear by Lemma 2.2. \qed

3. The main result

Recall that (G, \succ) is a totally ordered abelian group. Denote

$$B(x) = \{y \in G \mid 0 \prec y \prec x\} \text{ for } x \in G_+.$$

The order “\succ” is called *dense* if $\sharp B(x) = \infty$ for all $x \in G_+$; *discrete* if there exists some $a \in G_+$ such that $B(a) = \emptyset$, in this case a is called the *minimal positive element* of G.

For convenience, we denote

$$I_{-j} := I_{-j_1}I_{-j_2} \cdots I_{-j_k} \text{ for } 0 \prec j_1 \preceq j_2 \preceq \cdots \preceq j_k, \ j = (j_1, j_2, \ldots, j_k),$$

$$I_{-p} := I_{-p_s}I_{-p_{s-1}} \cdots I_{-p_1} \text{ for } 0 \prec p_s \preceq \cdots \preceq p_2 \preceq p_1, \ p = (p_s, \ldots, p_2, p_1).$$

Then $U(\mathcal{L}_{-})$ has a basis

$$\{I_{-p}L_{-j} \mid \text{ for all } j, p \text{ as in (3.1) and (3.2)}\}.$$ \hspace{1cm} (3.3)

Denote by $|j|$ the number of components in j. Then $|j| = k$ in (3.1) and $|p| = s$ in (3.2).

The main result in this note is following.

Theorem 3.1 Let $h, h_I, c, c_I, c_{LI} \in \mathbb{F}$.

1. With respect to a dense order “\succ” of G, the Verma module $\widetilde{M}(h,h_I,c,c_I,c_{LI})$ is an irreducible $\mathcal{L}[G]$-module if and only if $(c_I, c_{LI}) \neq (0,0)$.
(2) With respect to a discrete order “⪰” of G with minimal positive element a, the Verma module \(\tilde{M}(h, h_I, c, c_I, c_{LI}) \) is an irreducible \(\mathcal{L}[G] \)-module if and only if \(\tilde{M}_a(h, h_I, c, c_I, c_{LI}) \) (cf. (2.2)) is an irreducible \(\mathcal{L}[\mathbb{Z}a] \)-module.

Remark 3.2 Suppose \(c_I = c_{LI} = 0 \) in case of Theorem 3.1(1). Since

\[\tilde{I} := \text{span}_F \{ I_\mu, C_I, C_{LI} \mid \mu \in G \}, \]

is an ideal of \(\tilde{L} \), the Verma module \(V := \tilde{M}(h, h_I, c, 0, 0) \) over \(\tilde{L} \) has a proper submodule \(U(\tilde{I})V \) such that the quotient module \(W := V/U(\tilde{I})V \) is simply the Verma module over the generalized Virasoro algebra \(\text{Vir}[G] := \text{span}_F \{ L_\mu, C \mid \mu \in G \} \cong \tilde{L}/\tilde{I} \), whose irreducibility is completely determined in [HWZ]. Also note that the irreducibility of a Verma module over the twisted Heisenberg-Virasoro algebra \(L \) is completely determined in [B]. Thus, essentially the above theorem has in fact determined the structure of all Verma modules over \(\tilde{L} \).

Proof of Theorem 3.1. (1) Suppose the order “⪰” of G is dense. Let \(v_h \) be a fixed highest weight generator in \(\tilde{M}(h, h_I, c, c_I, c_{LI}) \) of weight \(h \). Let \(u_0 \notin F v_h \) be any given weight vector in \(V := \tilde{M}(h, h_I, c, 0, 0) \).

Claim 1: There exists a weight vector \(u \in U(\mathcal{L}[G])u_0 \) of weight \(\lambda \) such that

\[u = \sum_p a_p I_{-p} v_h \] (a finite sum) for some \(a_p \in F^* = F\{0\} \). (3.4)

For each \(m \in \mathbb{N} \), set

\[V_m := \sum_{p,j:|j| \leq m} \mathbb{F} I_{-p} L_{-j} v_h. \] (3.5)

It is clear that

\[L_x V_m \subseteq V_m, \ I_x V_m \subseteq V_m \] for \(x \in G_+ \).

We can write \(u_0 \) as (cf. (2.1) and (3.3))

\[u_0 = \sum_{p,j} a_{pj} I_{-p} L_{-j} v_h \] for some \(a_{pj} \in F^* \).

Let \(r := \max \{|j| \mid a_{pj} \neq 0\} \). If \(r = 0 \), then the claim holds clearly. We assume \(r \geq 1 \), and write

\[u_0 \equiv u_0' \pmod{V_{r-1}}, \] where \(u_0' = \sum_{p,j:|j|=r} a_{pj} I_{-p} L_{-j} v_h. \) (3.6)

Let \(x \in G_+ \) such that (cf. (3.2) for notation \(p_l \))

\[x < \min\{j_1 \mid a_{pj} \neq 0\} \] and \(\{x, j_1 - x \mid a_{pj} \neq 0\} \cap \{p_l \mid a_{pj} \neq 0, \forall l\} = \emptyset. \]
Then

\[I_xu'_0 = \sum_{p,j:|j|=r} x_{apj}I_p \left(\sum_{i=1}^{r} L_{-j_1} \cdots L_{-j_{i-1}}x_{-j_i}L_{-j_{i+1}} \cdots L_{-j_r} \right) v_h. \]

If any

\[xa_{pj}I_p L_{-j_1} \cdots L_{-j_{i-1}}x_{-j_i}L_{-j_{i+1}} \cdots L_{-j_r} \]

and

\[xa_{p'j'}I_{p'}L_{-j'_1} \cdots L_{-j'_{i-1}}x_{-j'_i}L_{-j'_{i+1}} \cdots L_{-j'_r}, \]

for \(1 \leq i, s \leq r \), are linear dependent, it is not difficult to see that \(p = p' \) and \(j = j' \). Hence

\[0 \neq u_1 := I_xu'_0 \in V_{r-1}. \]

Similarly, let \(u_1 \equiv u'_1 \) (mod \(V_{r-2} \)) as in (3.6), then \(u'_1 \neq 0 \). For \(k = 2, \cdots, r \). We define recursively and prove by induction that,

\[u_k := I_xu_{k-1} \in V_{r-k}, \; u_k \equiv u'_k \pmod{V_{r-k-1}}, \; u'_k \neq 0. \]

Letting \(k = r \), we get that \(0 \neq u_r \in V_0 \). Our claim follows.

Now let \(u \) be as in (3.4). Set \(P := \{ p \mid a_p \neq 0 \} \neq \emptyset \). We define the total order “\(\succ \)” on \(P \) as follows: For any \(p, p' \in P \), if \(k := |p| > l := |p'| \), we set \(p'_i = 0 \) for \(i = l + 1, \cdots, k \). Then

\[p \succ p' \iff \exists s \text{ with } 1 \leq s \leq k \text{ such that } p_s \succ p'_s \text{ and } p_t = p'_t \text{ for } t < s. \quad (3.7) \]

Let

\[q := (q_{k_0}, \cdots, q_2, q_1), \quad 0 < q_{k_0} \leq \cdots \leq q_1, \]

be the unique maximal element in \(P \). Then

Case 1: If \(c_I \neq 0 \), then by the simple calculations

\[bv_h = I_qu \in U(\mathcal{L}[G])u_0 \text{ for some } b \in \mathbb{F}^*. \]

Case 2: Suppose \(c_I = 0, \; c_{LI} \neq 0 \). Let \(y \in G_+ \) such that

\[\{ x \in G \mid q_1 - y < x < q_2 \} \cap \{ p_1, p_2 \mid p \in P \} = \emptyset. \]

Then

\[u' := L_{q_1-y}u = a'I_{-z}v_h \text{ for some } a' \in \mathbb{F}^*, \]

where

\[z = (z_{k_0}, \cdots, z_2, z_1), \quad 0 < z_{k_0} \leq \cdots \leq z_2 \leq z_1, \quad \text{and} \]

\[\{ z_i \mid i = 1, 2, \cdots, k_0 \} = \{ q_{k_0}, \cdots, q_3, q_2, y \}. \]

(i) If \(\{ z_i \mid i = 1, 2, \cdots, k_0 \} \cap \{ h_I/c_{LI} - 1 \} = \emptyset \), then

\[b'v_h = L_zu' \in U(\mathcal{L}[G])u_0 \neq 0, \text{ where } b' = \prod_{i=1}^{k_0} z_i(h_I - (z_i + 1)c_{LI}) \in \mathbb{F}^*. \]
(ii) If there exists some \(z_i = h_I/c_{LI} - 1 \) with \(1 \leq i \leq k_0 \). We assume
\[
\{z_i\} \cap \{z_k \mid 1 \leq k \leq k_0, k \neq i\} = \emptyset.
\]
Otherwise, we only need to recurse the following proof. Let
\[
w := L_{z_{i-1}} \cdots L_{z_{2}} L_{z_{1}} u' = a'' I_{z_{k_0}} I_{z_{k_0-1}} \cdots I_{z_i} v_h \neq 0 \text{ for some } a'' \in \mathbb{F}^*.
\]
Take \(x' \in G_+ \) such that \(z_i - x' > z_k, i < k \leq k_0 \). Then
\[
w' := L_{z_i-x'} w = \overline{a} I_{z_{k_0}} I_{z_{k_0-1}} \cdots I_{z_{i+1}} I_{x'} v_h \neq 0 \text{ for some } \overline{a} \in \mathbb{F}^*,
\]
and \(\{z_{k_0}, z_{k_0-1}, \ldots, z_{i+1}, x'\} \cap \{h_I/c_{LI} - 1\} = \emptyset \). This becomes case (i) if we take \(u' \) to be \(w' \).

Therefore, \(v_h \in U(\mathcal{L}[G]) u_0 \) in any case. Hence \(\widetilde{M}(h, h_I, c_I, c_{LI}) \) is irreducible.

(2) Suppose the order "\(\succ \)" of \(G \) is discrete with the minimal positive element \(a \). Then \(Za \subseteq G \). For any \(x \in G \), we write \(x \succ Za \) if \(x \succ na \) for all \(n \in \mathbb{Z} \). Let
\[
H_+ := \{x \in G \mid x \succ Za\}, \quad H_- = -H_+.
\]
It is not difficult to see that
\[
G = Za \cup H_+ \cup H_-.
\]
(3.8)
Then one can see that
\[
\mathcal{L}[H_+]\widetilde{M}_a(h, h_I, c, c_I, c_{LI}) = 0 \text{ (recall (2.2))}.
\]
Since
\[
\widetilde{M}(h, h_I, c, c_I, c_{LI}) \cong U(\mathcal{L}[G]) \otimes_{U(\mathcal{L}[Za]+\mathcal{L}[H_+]}) \widetilde{M}_a(h, h_I, c_I, c_{LI}),
\]
it follows that the irreducibility of \(\mathcal{L}[G] \)-module \(\widetilde{M}(h, h_I, c_I, c_{LI}) \) imply the irreducibility of \(\mathcal{L}[Za] \)-module \(\widetilde{M}_a(h, h_I, c, c_{LI}) \).

Conversely, suppose \(\widetilde{M}_a(h, h_I, c_I, c_{LI}) \) is an irreducible \(\mathcal{L}[Za] \)-module. Let \(u_0 \notin \mathbb{F} v_h \) be any weight vector in \(\widetilde{M}(h, h_I, c_I, c_{LI}) \). We want to prove
\[
U(\mathcal{L}[G]) u_0 \cap \widetilde{M}_a(h, h_I, c, c_I, c_{LI}) \neq \{0\}, \quad (3.9)
\]
from which the irreducibility of \(\widetilde{M}(h, h_I, c, c_I, c_{LI}) \) as \(\mathcal{L}[G] \)-module follows immediately.

Case 1: \(c_I \neq 0 \). We can write \(u_0 \) as (cf. (3.8))
\[
u_0 \equiv \sum_{p'j'p_j \in H_+, p, j, j' \in \mathbb{Z} + a, |j'| + |j| = r} a_{p'j'p_j} I_{-p'} L_{-j'} I_p L_{-j} v_h \text{ (mod } V_{r-1}) \text{ for some } a_{p'j'p_j} \in \mathbb{F}^*,
\]
where V_{r-1}, r are defined as in (3.5) and (3.6). Let (cf. notation (3.2))

$$P' = \{ pp' = (p_s, \cdots, p_2, p_1', \cdots, p'_2, p'_1) | 0 < p_s \leq \cdots \leq p_2 \leq p_1 < p'_1 \leq \cdots \leq p'_2 \leq p'_1, \ a_{p'j'pj} \neq 0 \}.$$

If $P' \neq \emptyset$, we define the total order “$>$” on P' as in (3.7). Let q^0 be the maximal element in P'. Then

$$u'_0 := I_{q^0} u_0 = \sum_{j' \in H_+, j' \in \mathbb{Z}_+ a, |j'|+|j|=r} a_{j'j} L_{-j} L_{-j} v_h \ (\text{mod } V_{r-1}) \text{ for some } a_{j'j} \in \mathbb{F}^*.$$

If $P' = \emptyset$, then u_0 has the form of u'_0 naturally. By the proof of [HWZ, Theorem 3.1], there exists a weight vector $0 \neq u \in U(\mathcal{L}[G]) u_0 \cap \widetilde{M}_a(h, h_I, c, c_I, c_{LI})$, which gives (3.9) as required.

Case 2: $c_I = 0$. We can write

$$u_0 = \sum_{p'_1, j'_1 \in H_+, p_s, j_r \in \mathbb{Z}_+ a} b_{p'_j'pj'j} I_{-p'} L_{-j} I_{-p} L_{-j} v_h \text{ for some } b_{p'_j'pj} \in \mathbb{F}^*.$$

If $J := \{ j' | b_{p'_j'pj} \neq 0 \} \neq \emptyset$, we set $j(0) := \min \{ j'_1 | b_{p'_j'pj} \neq 0 \}$. Then there exists some $m \in \mathbb{N}$ such that

$$\{ j'_1 - \varepsilon | b_{p'_j'pj} \neq 0 \} \cap \{ p'_1 | b_{p'_j'pj} \neq 0, \forall j \} = \emptyset, \text{ where } \varepsilon = j(0) - m.$$

Let $n_0 = \max \{ |j'| | b_{p'_j'pj} \neq 0 \}$, then

$$u' := I_{n_0} u_0 = \sum_{p'_j \in H_+, p_s, j_r \in \mathbb{Z}_+ a} b'_{p'_j} I_{-p'} I_{-p} L_{-j} v_h \neq 0 \text{ for some } b'_{p'_j} \in \mathbb{F}^*,$$

by the proof of Claim 1. If $J = \emptyset$, then u_0 has the form of u' naturally. Let

$$Q := \{ p' | b'_{p'j} \neq 0, |p'| = t \}, \text{ where } t = \min \{ |p'| | b'_{p'j} \neq 0 \}.$$

If $t = 0$, the theorem holds clearly since u' is a weight vector. We assume $t \geq 1$. Then $Q \neq \emptyset$. Again, we define the total order “$<$” on Q as in (3.7). Let

$$q' := (q'_1, q'_2, \cdots, q'_t), \ 0 < q'_1 \leq q'_2 \leq \cdots \leq q'_t,$$

be the unique minimum element in Q. For $m \in \mathbb{N}$, set

$$V' = \sum_{p'_j \in H_+, p_s, j_r \in \mathbb{Z}_+ a, |p'| \geq m} \mathbb{F} I_{-p'} I_{-p} L_{-j} v_h.$$

Then

$$u' = \sum_{p'_j \in H_+, p_s, j_r \in \mathbb{Z}_+ a, |p'| = t} b'_{p'_j} I_{-p'} I_{-p} L_{-j} v_h \ (\text{mod } V'_{t+1}).$$
We have
\[u(1) := L_{q'_1}u' \equiv \sum_{p^{(1)}(1) \in H_+} b^{(1)}_{p^{(1)}(1)p_j} I_{-p^{(1)}(1)}I_{-a}I_{-p}L_{-j}v_h \pmod{V'_t} \]
for some \(b^{(1)}_{p^{(1)}(1)p_j} \in \mathbb{F}^* \). Define \(Q^{(1)} = \{ p^{(1)} | b^{(1)}_{p^{(1)}(1)p_j} \neq 0 \} \), \(q^{(1)} = (q'_1, q'_2, \ldots, q'_t) \). By our assumption and the commutator relations for \(\mathcal{L}[G] \), we see that \(b^{(1)}_{q^{(1)}(1)p_j} \neq 0 \), hence \(Q^{(1)} \neq \emptyset \).

Moreover, \(q^{(1)} \) is the unique minimum element in \(Q^{(1)} \).

Now for \(s = 2, 3, \ldots, t \), we define recursively and prove by induction that

(i) Let \(u(s) := L_{q'_s}u(s-1) \). Then
\[u(s) \equiv \sum_{p^{(s)}(s) \in H_+} b^{(s)}_{p^{(s)}(s)p_j} I_{-p^{(s)}(s)}I_{-a}I_{-p}L_{-j}v_h \pmod{V'_{t-s+1}} \]
for some \(b^{(s)}_{p^{(s)}(s)p_j} \in \mathbb{F}^* \).

(ii) Let \(Q^{(s)} = \{ p^{(s)} | b^{(s)}_{p^{(s)}(s)p_j} \neq 0 \} \neq \emptyset \). Moreover, \(q^{(s)} = (q'_{s+1}, q'_{s+2}, \ldots, q'_t) \) is the unique minimum element in \(Q^{(s)} \).

Now letting \(s = t \) and noting that \(u(t) \) is a weight vector, we get that \(0 \neq u(t) \in U(\mathcal{L}[G])u_0 \cap \widetilde{M}_a(h, h_I, c, c_I, c_{LI}) \), which gives (3.9) as required. □

REFERENCES

[ACKP] E. Arbarello, C. De Concini, V.G. Kac, C. Procesi, Moduli spaces of curves and representation theory, Comm. Math. Phys., 117(1988), 1-36.

[B] Y. Billig, Representations of the twisted Heisenberg-Virasoro algebra at level zero, Canad. Math. Bulletin, 46(2003), 529-537.

[FO] M.A. Fabbri, F. Okoh, Representations of Virasoro-Heisenberg algebras and Virasoro-toroidal algebras, Canad. J. Math., 51(1999), no.3, 523-545.

[HWZ] J. Hu, X. Wang, K. Zhao, Verma modules over generalized Virasoro algebras Vir[\(G\)], J. Pure Appl. Algebra, 177(2003), no.1, 61-69.

[JJ] Q. Jiang, C. Jiang, Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras, Algebra Colloq., accepted.

[LJ] D. Liu, C. Jiang, The generalized Heisenberg-Virasoro algebra, preprint [arXiv:math.RT/ 0510545].

[SJ] R. Shen, C. Jiang, Derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra, preprint.

[WZ] X. Wang, K. Zhao, Verma modules over the Virasoro-like algebra, J. Aust. Math. Soc., in press.

[XLT] M. Xue, W. Lin, S. Tan, Central extension, derivations and automorphism group for Lie algebras arising from the 2-dimensional torus, Journal of Lie Theory, 16(2005), 139-153.