Improved bound on vertex degree version of Erdős matching conjecture

Mingyang Guo | Hongliang Lu | Yaolin Jiang

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Correspondence
Hongliang Lu, School of Mathematics and Statistics, Xi’an Jiaotong University, 710049 Xi’an, Shaanxi, China. Email: luhongliang215@sina.com

Funding information
National Natural Science Foundation of China, Grant/Award Number: 12271425; International Science and Technology Cooperation Program of Shaanxi Key Research & Development Plan, Grant/Award Number: 2019KWZ-08

Abstract
For a k-uniform hypergraph H, let $\delta_1(H)$ denote the minimum vertex degree of H, and $\nu(H)$ denote the size of the largest matching in H. In this paper, we show that for any $k \geq 3$ and $\beta > 0$, there exists an integer $n_0(\beta, k)$ such that for positive integers $n \geq n_0$ and $m \leq (\frac{k}{2(k-1)} - \beta)n$, if H is an n-vertex k-graph with $\delta_1(H) > \binom{n-1}{k-1} - \binom{n-m}{k-1}$, then $\nu(H) \geq m$. This improves upon earlier results of Bollobás, Daykin, and Erdős for the range $n > 2k^3(m+1)$ and Huang and Zhao for the range $n \geq 3k^2m$.

KEYWORDS
fractional matching, hypergraph, matching, minimum degree

MATHEMATICAL SUBJECT CLASSIFICATION
05C70

1 | INTRODUCTION

Let k be a positive integer. For a set S, let $\binom{S}{k} := \{T \subseteq S : |T| = k\}$. A hypergraph H consists of a vertex set $V(H)$ and an edge set $E(H)$ whose members are subsets of $V(H)$. A hypergraph H is k-uniform if $E(H) \subseteq \binom{V(H)}{k}$, and a k-uniform hypergraph is also called a k-graph. We use $e(H)$ to denote the number of edges of H.

Let H be a k-graph and $T \subseteq V(H)$. The degree of T in H, denoted by $d_H(T)$, is the number of edges of H containing T. Let ℓ be a nonnegative integer; then $\delta_{\ell}(H) := \min\{d_H(T) : T \in \binom{V(H)}{\ell}\}$ denotes the minimum ℓ-degree of H. Hence, $\delta_0(H)$ is the number of edges in H. Note that $\delta_1(H)$ is often called the minimum vertex degree of H, and $\delta_{k-1}(H)$ is also known as the minimum codegree of H. A matching in H is a set of pairwise disjoint edges of H, and it is called a perfect matching if the union of all edges of the matching is $V(H)$. We use
\(\nu(H)\) to denote the size of the largest matching in \(H\). Let \(K^k_r\) denote a complete \(k\)-graph with \(r\) vertices and edge set \(\binom{\nu(k^k)}{k}\).

Erdős and Gallai [5] determined the threshold of \(\delta_0(G)\) for a 2-graph \(G\) to contain a matching of given size, and Erdős [4] conjectured the following generalization to \(k\)-graphs for \(k \geq 3\): The threshold of \(\delta_0(H)\) for a \(k\)-graph \(H\) on \(n\) vertices to contain a matching of size \(m\) is

\[
\max \left\{ \left(\frac{km - 1}{k} \right), \left(\frac{n}{k} - \frac{n - m + 1}{k} \right) \right\} + 1.
\]

For recent results on this conjecture, we refer the reader to [1, 6, 7, 10].

Rödl, Ruciński, and Szemerédi [19] determined the minimum codegree threshold for the existence of perfect matchings in \(k\)-graphs. It is conjectured in [9, 15] that the \(\ell\)-degree threshold for the existence of a perfect matching in a \(k\)-graph \(H\) is

\[
\delta_\ell(H) > \left(\max \left\{ \frac{1}{2}, 1 - \left(1 - \frac{1}{k} \right)^{\ell-1} \right\} + o(1) \right) \left(\frac{n - \ell}{k - \ell} \right)
\]

for \(k \geq 3\) and \(1 \leq \ell < k\). The first term \((1/2 + o(1))\left(\frac{n - \ell}{k - \ell}\right)\) comes from a parity construction: Take disjoint nonempty sets \(A\) and \(B\) with \(|A| - |B| \leq 2\) and \(|A| \equiv 1 \pmod{2}\), and form a hypergraph \(H\) by taking all \(k\)-subsets of \(A \cup B\) with \(|f \cap A| \equiv 0 \pmod{2}\). The second term is given by the hypergraph obtained from \(K^k_n\) (the complete \(k\)-graph on \(n\) vertices) by deleting all edges from a subgraph isomorphic to \(K^k_{n-k+1}\). Treglown and Zhao [20, 21] determined the minimum \(\ell\)-degree threshold for the appearance of perfect matchings in \(k\)-graphs, for \(k/2 \leq \ell \leq k - 2\). For a 3-graph \(H\), Hán, Person, and Schacht [9] showed that \(\delta_1(H) > (5/9 + o(1))\left(\frac{\nu(H)}{2}\right)\) is sufficient for the appearance of a perfect matching of \(H\). Kühn, Osthus, and Townsend [16] proved a stronger result: There exists a positive integer \(n_0\) such that if \(H\) is a 3-graph with \(|\nu(H)| = n \geq n_0\), \(m\) is an integer with \(1 \leq m \leq n/3\), and \(\delta_1(H) > \left(\frac{n-1}{2}\right) - \left(\frac{n-m}{2}\right)\), then \(\nu(H) \geq m\). For \(k \in \{3, 4\}\), Khan [12, 13] showed that there exists a positive integer \(n_0\) such that if \(H\) is a \(k\)-graph with \(|\nu(H)| = n \geq n_0\) and \(\delta_1(H) > \left(\frac{n-1}{k-1}\right) - \left(\frac{n-m}{k-1}\right)\), then \(H\) has a perfect matching, where \(n \equiv 0 \pmod{k}\).

Bollobás, Daykin, and Erdős [3] proved that for integers \(k \geq 2\) and \(m \geq 1\), if \(H\) is a \(k\)-graph with \(|\nu(H)| = n > 2k^3(m + 1)\) and \(\delta_1(H) > \left(\frac{n-1}{k-1}\right) - \left(\frac{n-m}{k-1}\right)\), then \(\nu(H) \geq m\). The bound for \(\delta_1(H)\) is tight. To see it, we define an \(n\)-vertex \(k\)-graph \(H_k(U, W) = (V, E)\), where \(V\) is partitioned into \(U \cup W\), and \(E = \{e \in \binom{V}{k}: 1 \leq |e \cap W| \leq k - 1\}\). When \(|W| = m - 1\), it is easy to see that \(\delta_1(H_k(U, W)) = \left(\frac{n-1}{k-1}\right) - \left(\frac{n-m}{k-1}\right)\) and \(\nu(H_k(U, W)) = m - 1\). We denote \(H_k(U, W)\) with \(|U| = n - m + 1\) and \(|W| = m - 1\) by \(H_k(n, m)\).

This result was improved by Huang and Zhao [11], who proved that for \(n > 3k^2m\), if \(\delta_1(H) > \left(\frac{n-1}{k-1}\right) - \left(\frac{n-m}{k-1}\right)\), then \(\nu(H) \geq m\). Huang and Zhao [11] also proposed the following conjecture.
Conjecture 1 (Huang and Zhao [11]). Given positive integers \(m, k, n \) such that \(m < n/k \), let \(H \) be a \(k \)-graph on \(n \) vertices. If \(\delta_1(H) > \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) \), then \(\nu(H) \geq m \).

Kupavskii [14] proved an \(\ell \)-degree version result for \(1 \leq \ell \leq k - 1 \), which confirmed Conjecture 1 for \(n \geq 2k^2 \) and \(k \geq 3(m - 1) \). When \(n \geq 2(k - 1)m \), an asymptotic version of this conjecture was proved by Kühn, Osthus, and Treglown [17]. For fractional matchings, Huang and Zhao [11] proved that when \(n \geq (2m - 1)(k - 1) - m + 2 \), every \(k \)-graph \(H \) on \(n \) vertices with \(\delta_1(H) > \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) \) contains a fractional matching of size \(m \). Frankl and Kupavskii [7] improved the result of Kühn, Osthus, and Treglown [17] and the fractional version result of Huang and Zhao [11] by extending the range of \(n \) to \(n \geq \frac{5}{3}(k - 1)m - \frac{2}{3}m + 1 \).

In the paper, we obtain the following result.

Theorem 2. Let \(k \geq 3 \) be an integer. For any \(\beta > 0 \), there exists an integer \(n_0 = n_0(\beta, k) \) such that the following holds. Let \(n, m \) be integers such that \(n \geq n_0 \) and \(1 \leq m \leq \left(\frac{k}{2(k-1)} - \beta \right)^n \). Let \(H \) be a \(k \)-graph on \(n \) vertices. If \(\delta_1(H) > \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) \), then \(\nu(H) \geq m \).

Given two \(k \)-graphs \(H_1, H_2 \) and a real number \(\varepsilon > 0 \), we say that \(H_2 \) \(\varepsilon \)-contains \(H_1 \) if \(V(H_1) = V(H_2) \) and \(|E(H_1) \setminus E(H_2)| \leq \varepsilon |V(H_1)|^k \). Let \(H \) be an \(n \)-vertex \(k \)-graph. We say that \(H \) \(\varepsilon \)-contains \(H_k(n, m) \) if there exists a partition \(U, W \) of \(V(H) \) with \(|W| = m - 1 \) and \(H \) \(\varepsilon \)-contains \(H_k(U, W) \). Otherwise, we say that \(H \) does not \(\varepsilon \)-contain \(H_k(n, m) \). Our proof of Theorem 2 consists of two parts by considering whether or not \(H \) \(\varepsilon \)-contains \(H_k(n, m) \), which is similar to the arguments in [19].

When \(H \) \(\varepsilon \)-contains \(H_k(n, m) \), Lu, Yu, and Yuan [18] use the structure of \(H_k(n, m) \) to greedily find the desired matching (Lemma 2.3 in [18]).

Lemma 3 (Lu, Yu, and Yuan [18]). Let \(n, m, k \) be integers and \(0 < \varepsilon < (8k^{-1}k^{-5}(k-1)!)^{-3} \), such that \(k \geq 3 \), \(n \geq 8k^2/(1 - 5k^2\varepsilon) \), and \(n/(2k^4) + 1 < m \leq n/k \). Let \(H \) be a \(k \)-graph on \(n \) vertices such that \(\delta_1(H) > \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) \) and \(H \) \(\varepsilon \)-contains \(H_k(n, m) \), then \(\nu(H) \geq m \).

Thus for completing the proof of Theorem 2, it suffices to prove the following lemma. By \(x \ll y \) we mean that \(x \) is sufficiently small compared with \(y \) such that \(x, y \) satisfy finitely many inequalities in the proof.

Lemma 4. Let \(k \geq 3 \) be an integer and let \(\varepsilon, \rho, \beta \) be constants such that \(0 < \varepsilon < (3^{k-2}k^3)^{-1} \) and \(0 < \beta \ll \rho < (\varepsilon^2)/(18k)^2 \). Let \(n, m \) be two positive integers such that \(n \) is sufficiently large, and \(n/\varepsilon^4 \leq m \leq \left(\frac{k}{2(k-1)} - \beta \right)^n \). Let \(H \) be a \(k \)-graph on \(n \) vertices. If \(H \) does not \(\varepsilon \)-contain \(H_k(n, m) \) and \(\delta_1(H) > \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) - \rho n^k \), then \(\nu(H) \geq m \).
To prove Lemma 4, we first construct a k-graph H^k_r from H such that $v(H) \geq m$ if and only if H^k_r has an almost perfect matching. In Section 2, we follow some ideas from [1, 7, 17, 18] to prove that H^k_r has a perfect fractional matching by using a stability result proved by Lu, Yu, and Yuan [18]. In Section 3, we use the two-round randomization method from [1] to show that H^k_r has a nearly regular spanning subhypergraph in which all 2-degrees are much smaller than the vertex degrees. Then a result of Frankl and Rödl [8] implies that H^k_r has an almost perfect matching.

In section 2, we apply the stability result proved by Lu, Yu, and Yuan [18] to an $(n - 1)$-vertex $(k - 1)$-graph. Since their result holds for $m \leq n/(2k)$, we are only able to prove Lemma 7 for $m \leq \frac{n-1}{2(k-1)}$. In section 3, we use randomization method and Lemma 7 to prove Lemma 4. To prove a random subgraph has a perfect fractional matching by using Lemma 7, we need $m \leq \left(\frac{k}{2(k-1)} - \beta\right)^n$, where β is a small positive.

We end this section with additional notations. For any positive integer n, let $[n] := \{1, ..., n\}$. For a k-graph H and $S \subseteq V(H)$, we use $H - S$ to denote the hypergraph obtained from H by deleting S and all edges of H intersecting set S, and we use $H[S]$ to denote the subhypergraph with vertex set S and edge set $\{e \in E(H) : e \subseteq S\}$. For a k-graph H and a vertex $v \in V(H)$, let $N_H(v) := \{e \in \binom{V(H)}{k-1} : e \cup \{v\} \in E(H)\}$. We omit the floor and ceiling functions when they do not affect the proof.

2 | FRACTIONAL MATCHING

A fractional matching in a k-graph H is a function $\varphi : E(H) \rightarrow [0, 1]$ such that for any $v \in V(H)$, $\sum_{e \in E: v \in e} \varphi(e) \leq 1$. A fractional matching is called perfect if $\sum_{e \in E} \varphi(e) = \frac{|V(H)|}{k}$. For a hypergraph H, let

$$v'(H) = \max \left\{ \sum_{e \in E(H)} \varphi(e) : \varphi \text{ is a fractional matching in } H \right\}.$$

A fractional vertex cover of H is a function $w : V(H) \rightarrow [0, 1]$ such that for each $e \in E$, $\sum_{v \in e} w(v) \geq 1$. Let

$$\tau'(H) = \min \left\{ \sum_{v \in V(H)} w(v) : w \text{ is a fractional vertex cover of } H \right\}.$$

Then the strong duality theorem of linear programming gives

$$v'(H) = \tau'(H).$$

For a complete k-graph, we have the following observation.

Observation 5. Let n, k be two integers such that $n > k \geq 2$. Let H be a k-graph on n vertex with edge set $\binom{V(H)}{k}$, then H has a perfect fractional matching.
Proof. Let $V(H) = [n]$ and let $e_i = \{i, ..., i + k - 1\}$ for $i = 1, ..., n$, where the addition is on modular n (except we write n instead of 0). Write $E = \{e_1, ..., e_n\}$. Note that $e_i \in E(H)$. Let $\varphi : E(H) \rightarrow [0, 1]$ such that

$$\varphi(e) = \begin{cases} 1/k, & e \in E, \\ 0, & \text{otherwise}. \end{cases}$$

It is not difficult to see that φ is a perfect fractional matching in H. \hfill \Box

Recall that K_r^k is a complete k-graph with r vertices and edge set $\binom{V(K_r^k)}{k}$. Let $H_r^k = H + K_r^k$ denote a k-graph with vertex set $V(H) \cup V(K_r^k)$ and edge set

$$E(H_r^k) = E(H) \cup \left\{ e \in \binom{V(H) \cup V(K_r^k)}{k} : e \cap V(K_r^k) \neq \emptyset \right\}.$$

In this section, we prove that H_r^k satisfying the conditions in Lemma 7 has a perfect fractional matching. To prove H_r^k has a perfect fractional matching, we need the following lemma for stable k-graphs (Lemma 4.2 in [18]). Let H be a k-graph with vertex set $[n]$. For any $\{u_1, ..., u_k\}, \{v_1, ..., v_k\} \subseteq \binom{[n]}{k}$ with $u_i < u_{i+1}$ and $v_i < v_{i+1}$ for $1 \leq i \leq k - 1$, we write $\{u_1, ..., u_k\} \leq \{v_1, ..., v_k\}$ if $u_i \leq v_i$ for $1 \leq i \leq k$. H is called stable if for $e, f \in \binom{[n]}{k}$ with $e \leq f$, $f \in E(H)$ implies that $e \in E(H)$.

Lemma 6 (Lu, Yu, and Yuan [18]). Let k be a positive integer, and let c and ρ be constants such that $0 < c < 1/(2k)$ and $0 < \rho \leq (1 + 18(k - 1)/c)^{-2}$. Let n, m be positive integers such that n is sufficiently large and $cn \leq m \leq n/(2k)$. Let H be a stable k-graph with vertex set $[n]$. If $e(H) > \binom{n}{k} - \binom{n-m}{k} - \rho n^k$ and $\nu(H) \leq m$, then H $\sqrt{\rho}$-contains $H_k([n] \setminus [m], [m])$.1

Let H be a k-graph on n vertices and U, W be a partition of $V(H)$. Given $0 < \theta < 1$, a vertex $v \in V(H)$ is θ-good with respect to $H_k(U, W)$ if $|N_{H_k(U, W)}(v) \setminus N_{H}(v)| \leq \theta n^{k-1}$. Otherwise v is θ-bad. A set $I \subseteq V(H)$ that contains no edge of H is called an independent set in H. We use $\alpha(H)$ to denote the size of the largest independent set in the hypergraph H.

Lemma 7. Let $k \geq 3$ be an integer and let ρ, ε be constants such that $0 < \varepsilon \leq (3k^2 - 2k)k^{-1}$ and $0 < \rho < \varepsilon^4/(2k^8)$. Let n, m, r be integers such that n is sufficiently large, $\frac{n-1}{2k^4} \leq m \leq \frac{n-1}{2(k-1)}$ and $(r-k)(k-1) \geq n - km$. Let H be a k-graph on n vertices such that $\alpha(H) < n - m - \varepsilon n$. If $\delta_1(H) > \binom{n-1}{k-1} - \binom{n-m}{k-1} - \rho n^{k-1}$, then H_r^k has a perfect fractional matching.

1In [18], the conclusion is H $\sqrt{\rho}$-contains $H_k([n] \setminus [m], [m])$, where $H_k([n] \setminus [m], [m])$ is the k-graph with vertex set $[n]$ and edge set $\{e \in \binom{[n]}{k} : e \cap [m] \neq \emptyset\}$. Since $H_k([n] \setminus [m], [m])$ is a subgraph of $H_k([n] \setminus [m], [m])$, this conclusion implies H $\sqrt{\rho}$-contains $H_k([n] \setminus [m], [m])$.

Proof. Let \(V(H) = [n] \) and let \(Q = V(H^k_r) \setminus V(H) = \{ n + 1, \ldots, n + r \} \). Let \(w : V(H^k_r) \to [0, 1] \) be a minimum fractional vertex cover of \(H^k_r \). Rename the vertices in \([n]\) such that
\[
w(1) \geq w(2) \geq \cdots \geq w(n).
\]
(1)

Let \(H' \) be a \(k \)-graph with vertex set \(V(H^k_r) \) and edge set
\[
E(H') = \left\{ e \in \left(V(H^k_r) \right)_k : \sum_{x \in e} w(x) \geq 1 \right\}.
\]

Since \(\sum_{x \in e} w(x) \geq 1 \) for every \(e \in E(H^k_r) \), \(H' \) is a superhypergraph of \(H^k_r \). Let \(G = H' - Q \). Thus \(G \) is a superhypergraph of \(H \). Let \(G' \) be the \((k-1)\)-graph with vertex set \([n-1]\) and edge set \(N_G(n) \).

Claim 1.

(i) \(G' \) is stable.
(ii) Let \(S := [m + \varepsilon n] \), then \(G[S] \) is a complete \(k \)-graph.
(iii) For any \(e \in N_G(n) \), if \(i \in [n] \setminus e \), then \(e \in N_G(i) \).

Proof. For two sets \(\{x_1, \ldots, x_{k-1}\}, \{y_1, \ldots, y_{k-1}\} \subseteq \binom{[n-1]}{k-1} \) such that \(x_i \leq y_i \) for \(1 \leq i \leq k-1 \), if \(\{y_1, \ldots, y_{k-1}\} \subseteq E(G') \), then \(\{y_1, \ldots, y_{k-1}, n\} \subseteq E(G) \). Thus \(\sum_{i=1}^{k-1} w(x_i) + w(n) \geq 1 \). By (1), we can derive that \(\sum_{i=1}^{k-1} w(x_i) + w(n) \geq 1 \). That is, \(\{x_1, \ldots, x_{k-1}\} \subseteq E(G') \). Thus \(G' \) is stable, and (i) follows. To prove (ii), suppose that \(G[S] \) is not a complete \(k \)-graph. Then there exists a set \(\{v_1, \ldots, v_k\} \subseteq \binom{S}{k} \) such that \(\{v_1, \ldots, v_k\} \notin E(H') \). Thus \(\sum_{i=1}^{k} w(v_i) < 1 \). Let \(S' := \{m + \varepsilon n - 1, \ldots, n\} \). By (1), for every \(e \in \binom{S}{k} \), we have \(\sum_{x \in e} w(x) \leq \sum_{i=1}^{k} w(v_i) < 1 \). Thus \(S' \) is an independent set in \(G \) with \(|S'| \geq n - m - \varepsilon n \), contradicting the fact that \(\alpha(G) \leq \alpha(H) < n - m - \varepsilon n \). To prove (iii), let \(e \in N_G(n) \). Since \(E(G) \subseteq E(H') \), we have \(\sum_{x \in e} w(x) + w(n) \geq 1 \). Thus by (1), \(\sum_{x \in e} w(x) + w(i) \geq 1 \) for any \(i \in [n] \setminus e \). That is, \(e \in N_G(i) \) for any \(i \in [n] \setminus e \).

One can see that \(w \) is also a fractional vertex cover of \(H' \). Thus \(w \) is also a minimum fractional vertex cover of \(H' \). By Linear Programming Duality Theory, we have \(\nu'(H^k_r) = \tau'(H^k_r) = \tau'(H') = \nu'(H') \). Thus it suffices to prove that \(H' \) has a perfect fractional matching. Suppose that \(n + r \equiv s \pmod{k} \), where \(0 \leq s \leq k - 1 \). Let \(Q' = \{n + 1, \ldots, n + s\} \). We first find a perfect matching in \(H' - Q' \), then use it to construct a perfect fractional matching in \(H' \).

Claim 2. \(\nu(G) \geq m \).
Proof. Let \(W := [m], \, U := [n - 1] \setminus [m] \). Assume \(G' \) does not \(\sqrt{2\rho} \)-contain \(H_{k-1}(U, W) \). Let \(c = 1/(2k^4) \) be a constant as in Lemma 6. Note that \(2\rho < c^h/k^8 < (k!k^5)^{-4} \leq (1 + 18(k - 2)!/c)^{-2}, \, \frac{n - 1}{2k^4} \leq m \leq \frac{n - 1}{2(k - 1)}, \) and \(e(G') = |N_G(n)| > \left(\frac{n - 1}{k - 1} \right) - \left(\frac{n - 1 - m}{k - 1} \right) - 2\rho(n - 1)^{k-1} \). Recall that \(G' \) is stable by Claim 1. We thus derive that \(\nu(G') > m \) by the contrapositive of Lemma 6. Let \(M_i = \{ f_i, \ldots, f_m \} \) be a matching of size \(m \) in \(G' \) and let \(\{ v_1, \ldots, v_m \} \subseteq [n] \setminus \bigcup_{i=1}^m f_i \). By Claim 1(iii), we have \(M_i \subseteq N_G(v) \) for any \(v \in [n] \setminus \bigcup_{i=1}^m f_i \). Thus \(M'_i = \{ f_i \cup \{ v_i \} : i \in [m] \} \) is a matching of size \(m \) in \(G \).

So we may assume that \(G' \sqrt{2\rho} \)-contains \(H_{k-1}(U, W) \). Then \(G' \) contains less than \((k - 1)(2\rho)^{1/4}n \) \((2\rho)^{1/4} \)-bad vertices with respect to \(H_{k-1}(U, W) \). Otherwise,

\[
|E(H_{k-1}(U, W)) \setminus E(G')| \geq \frac{1}{k - 1} \sum_{v \in V(G')} |N_{H_{k-1}(U, W)}(v) \setminus N_G(v)|
\]

\[
> \frac{1}{k - 1} \cdot (k - 1)(2\rho)^{1/4}n \cdot (2\rho)^{1/4}(n - 1)^{k-2}
\]

\[
> \sqrt{2\rho}(n - 1)^{k-1},
\]

a contradiction. Let \(B \) denote the set of \((2\rho)^{1/4} \)-bad vertices in \(W \). Write \(b := |B|. \) So \(b < (k - 1)(2\rho)^{1/4}n. \)

First we find a matching \(M_{21} \) of size \(b \) in \(G[U] \). Let \(S_i := \{ m, \ldots, m + \varepsilon n \}. \) By Claim 1(ii), we know that \(G[S_i] \) is a complete \(k \)-graph. Since \(b < (k - 1)(2\rho)^{1/4}n \) and \(2\rho < c^h/k^8 \), we have \(bk \leq \varepsilon n. \) Thus we can find pairwise disjoint edges \(f_1, \ldots, f_b \) in \(G[S_i]. \) Thus \(M_{21} = \{ f_1, \ldots, f_b \} \) is a matching in \(G[U]. \)

Let \(U_1 := U \setminus V(M_{21}), \, W_1 := W \setminus B \), and \(G'' := G' - (V(M_{21}) \cup B). \) Thus \(V(G'') = U_1 \cup W_1 \) and \(|W_1| = m - b. \) For every \(x \in W_1 \), since \(x \) is \((2\rho)^{1/4} \)-good in \(G' \) with respect to \(H_{k-1}(U, W) \) and \(N_{H_{k-1}(U, W)}(x) \setminus N_G(x) \subseteq N_{H_{k-1}(U, W)}(x) \setminus N_G'(x), \) we have

\[
|N_{H_{k-1}(U, W)}(x) \setminus N_G(x)| \leq |N_{H_{k-1}(U, W)}(x) \setminus N_G'(x)| \leq (2\rho)^{1/4}(n - 1)^{k-2} < \left(\frac{n/3}{k - 2} \right).
\]

It follows that

\[
N_G'(x) \cap \left(\begin{array}{l}
U_1 \\
k - 2
\end{array} \right) \geq \left| N_{H_{k-1}(U, W)}(x) \cap \left(\begin{array}{l}
U_1 \\
k - 2
\end{array} \right) \right| - \left| N_{H_{k-1}(U, W)}(x) \setminus N_G'(x) \right|
\]

\[
> \left(\begin{array}{l}
|U_1| \\
k - 2
\end{array} \right) - \left(\frac{n/3}{k - 2} \right).
\]

That is, every vertex \(x \in W_1 \) has large degree in \(G''. \)

Now we use vertices in \(W_1 \) to construct a matching \(M_{22} = \{ e_1, \ldots, e_{m-b} \} \) in \(G'' \) such that \(|e_i \cap W_1| = 1 \) for \(i = 1, \ldots, m - b. \) Suppose for some integer \(0 < t \leq m - b - 1, \) we have found a matching \(\{ e_1, \ldots, e_t \} \) in \(G'' \) such that \(|e_i \cap W_1| = 1 \) for \(1 \leq i \leq t. \) Note that
Let $x \in W_1 \setminus \bigcup_{i=1}^{t} e_i$, by inequalities (2) and (3), we have

$$\left| N_{G'}(x) \cap \left(U_i \setminus \bigcup_{i=1}^{t} e_i \right) \right| \geq \left| N_{G'}(x) \cap \left(U_i \setminus k - 2 \right) \right| - \left| \left| U_i \setminus \bigcup_{i=1}^{t} e_i \right| \right| > 0.$$

Thus there exists an edge $e_{+i+1} \subseteq V(G') \setminus \bigcup_{i=1}^{t} e_i$ such that $e_{+i+1} \cap W_i = \{x\}$. Continue this process until $t = m - b - 1$. Then $M_{22} = \{e_1, ..., e_{m-b}\}$ is the desired matching.

Recall that $n \geq km$. Let $v_1, ..., v_{m-b}$ be $m - b$ vertices of $G - V(M_{21} \cup M_{22})$. By Claim 1(iii), we have $M_{22} \subseteq N_{G}(v_i)$ for $1 \leq i \leq m - b$. Thus $M_{22}' = \{e_i \cup \{v_i\} : i \in [m - b]\}$ is a matching of size $m - b$ in $G - V(M_{21})$. Then $M_{21} \cup M_{22}'$ is a matching of size m in G and thus $\nu(G) \geq m$. \hfill \Box

Let M be a matching of size m of G. Note that $N_{H'}(n+i) = \binom{[n+r]-i}{k-1}$ for $1 \leq i \leq r$ and $r - s \geq (n - km)/(k - 1)$.

Thus $H' - Q' - V(M)$ has a perfect matching, say M'. For the case $s = 0$, $M \cup M'$ is a perfect matching in H'. For the case $s \neq 0$, let $f \in M'$. By Observation 5, $H'[f \cup Q']$ has a perfect fractional matching φ. Let $\varphi' : E(H') \to [0, 1]$ such that

$$\varphi'(f) = \begin{cases} 1, & e \in M \cup (M' - f), \\ \varphi(e), & e \in E(H'[f \cup Q']), \\ 0, & \text{otherwise}. \end{cases}$$

Recall that $M \cup (M' - f)$ is a perfect matching in $H' - (Q' \cup f)$. So φ' is a perfect fractional matching in H'. This completes the proof.

3 ALMOST PERFECT MATCHING

The following lemma asserts that the existence of an almost perfect matching in any nearly regular k-graph in which all 2-degrees are much smaller than the vertex degrees (see Theorem 1.1 in [8] or Lemma 4.2 in [1]). For any positive integer ℓ, we use $\Delta_\ell(H)$ to denote the maximum ℓ-degree of a hypergraph H.
Lemma 8 (Frankl and Rödl [8]). For every integer \(k \geq 2 \) and any real \(\sigma > 0 \), there exist \(\tau = \tau(k, \sigma) \), \(d_0 = d_0(k, \sigma) \) such that for every \(n \geq D \geq d_0 \) the following holds: Every \(k \)-graph \(H \) on \(n \) vertices with \((1 - \tau)D < d_H(v) < (1 + \tau)D \) and \(\Delta_2(H) < \tau D \) contains a matching covering all but at most \(\sigma n \) vertices.

Let \(Bi(n, p) \) be the binomial distribution with parameters \(n \) and \(p \). The following lemma on Chernoff bound can be found in Alon and Spencer [2, p. 313].

Lemma 9 (Chernoff). Suppose \(X_1, \ldots, X_n \) are independent random variables taking values in \(\{0, 1\} \). Let \(X = \sum_{i=1}^{n} X_i \) and \(\mu = \mathbb{E}[X] \). Then, for any \(0 < \delta \leq 1 \),

\[
P[X \geq (1 + \delta)\mu] \leq e^{-\delta^2\mu/3} \quad \text{and} \quad P[X \leq (1 - \delta)\mu] \leq e^{-\delta^2\mu/2}.
\]

In particular, when \(X \sim Bi(n, p) \) and \(\lambda \leq \frac{3}{2} np \), then

\[
P(|X - np| \geq \lambda) \leq e^{-\Omega(\lambda^2/np)}.
\]

To find a spanning subgraph in a hypergraph satisfying conditions in Lemma 8, we use the same two-round randomization technique as in [1]. The only difference is that between the two rounds, we also need to bound the independence number of the subgraph. The following lemma (Lemma 5.4 in [18]) was proved by Lu, Yu, and Yuan using hypergraph container method.

Lemma 10 (Lu, Yu, and Yuan [18]). Let \(0 < \gamma < c, \vartheta, \zeta \) be positive reals and let \(k, n \) be positive integers such that \(n \) is sufficiently large. Let \(H \) be an \(n \)-vertex \(k \)-graph such that \(e(H) \geq cn^k \) and \(e(H[S]) \geq \vartheta e(H) \) for all \(S \subseteq V(H) \) with \(|S| \geq \zeta n \). Let \(R \subseteq V(H) \) be obtained by taking each vertex of \(H \) uniformly at random with probability \(n^{-0.9} \). Then \(\alpha(H[R]) \leq (\zeta + \gamma)n^{0.1} \) with probability at least \(1 - e^{-\Omega(n^{0.1})} \).

Lemma 11. Let \(n, k, m \) be integers such that \(k \geq 3, n \) \(n/2k^4 \leq m < n/k \). Let \(0 < \varepsilon < 1/k \) and \(0 < \varphi < \varepsilon/12 \). Let \(H \) be a \(k \)-graph on \(n \) vertices. If \(\delta_1(H) \geq \left(\frac{n-1}{k-1} \right) - \left(\frac{n-m}{k-1} \right) - \varphi n^{k-1} \) and \(H \) does not \(\varepsilon \)-contain \(H_k(n, m) \), then \(e(H[S]) \geq \frac{cn^k}{2k^2} \) for any set \(S \subseteq V(H) \) with \(|S| \geq \left(1 - \frac{m}{n} - \frac{\varepsilon}{7} \right)n \).

Proof. Suppose that the result does not hold. Then \(H \) has a set \(A \) such that \(|A| \geq \left(1 - \frac{m}{n} - \frac{\varepsilon}{7} \right)n \) and \(e(H[A]) < \frac{cn^k}{2k^2} \). After removing vertices from \(A \) if necessary, we may assume that \(|A| \leq n - m \). Let \(W \subseteq V(H) \setminus A \) such that \(|W| = m - 1 \). Let \(U = V(H) \setminus W \) and \(B = U \setminus A \). One can see that \(|B| \leq \varepsilon n/7 + 1 \). Since \(e(H[A]) < \frac{cn^k}{2k^2} \), the number of edges belonging to \(H[U] \) is at most

\[
\sum_{i=1}^{k} \binom{|B|}{i} \binom{|U \setminus B|}{k-i} + e(H[A]) < \sum_{i=1}^{k} \frac{\left(\frac{cn}{7} + 1 \right)^i n^{k-i}}{i! (k-i)!} + \frac{\varepsilon n^k}{2k^2} \leq \sum_{i=1}^{k} \frac{\varepsilon^i n^k}{i! (k-i)!} + \frac{\varepsilon n^k}{2k^2} \leq \frac{k \varepsilon n^k}{6(k-1)!} + \frac{\varepsilon n^k}{2k^2}.
\]
for sufficiently large n. So we have

$$\sum_{x \in U} |N_{H[U]}(x)| = k \cdot e(H[U]) \leq k \left(\frac{k \epsilon n^k}{6(k-1)!} + \frac{\epsilon n^k}{2k^2} \right).$$

Since every edge of $H_k(U, W)$ intersects U, we may infer that

$$|E(H_k(U, W)) \backslash E(H)| \leq \sum_{x \in U} |N_{H_k(U,W)}(x) \backslash N_H(x)|$$

$$= \sum_{x \in U} \left(|N_{H_k(U,W)}(x)| - |N_H(x) \backslash N_{H[U]}(x)| \right)$$

$$\leq \sum_{x \in U} \left(\binom{n-1}{k-1} - \binom{n-m}{k-1} - \binom{n-1}{k-1} - \binom{n-m}{k-1} \right)$$

$$\leq \varrho n^{k-1} - |N_{H[U]}(x)|$$

$$= |U| \left(\binom{n-1}{k-1} - \binom{n-m}{k-1} - \binom{n-1}{k-1} - \binom{n-m}{k-1} \right)$$

$$\leq |U| \varrho n^{k-1} + k \left(\frac{k \epsilon n^k}{6(k-1)!} + \frac{\epsilon n^k}{2k^2} \right)$$

$$\leq |U| \varrho n^{k-1} + 3\epsilon n^k/4 + \epsilon n^k/2k \quad \text{(since } k \geq 3)$$

$$\leq \epsilon n^k,$$

where the second equality follows from $N_{H_k(U,W)}(x) \cap N_H(x) = N_H(x) \backslash N_{H[U]}(x)$ for each $x \in U$. Hence H ϵ-contains $H_k(U, W)$, a contradiction. \(\square\)

The following lemma can be found in [1, 18] (Lemma 5.5 in [18]), which is the first round of randomization.

Lemma 12. Let $k \geq 3$ be an integer. Let H be a k-graph on n vertices. Take $n^{1.1}$ independent copies of R and denote them by R^i, $1 \leq i \leq n^{1.1}$, where R is chosen from $V(H)$ by taking each vertex uniformly at random with probability $n^{-0.9}$ and then deleting less than k vertices uniformly at random so that $|R| \in k\mathbb{Z}$. For each $S \subseteq V(H)$, let $Y_S := |\{i : S \subseteq R^i\}|$. Then with probability at least $1 - o(1)$, all of the following statements hold:

(i) for every $v \in V$, $Y_{[v]} = (1 + o(1))n^{0.2}$,

(ii) every pair $\{u, v\} \subseteq V$ is contained in at most two copies R^i,

(iii) every edge $e \in E(H)$ is contained in at most one copy R^i,

(iv) for all $i = 1, \ldots, n^{1.1}$, we have $||R^i| - n^{0.1}|| \leq n^{0.95}$, and

(v) if μ, ρ are constants with $0 < \mu < \rho$, $n/k - \mu n \leq m \leq n/k$, and $\delta_i(H) \geq \binom{n-1}{k-1} - \binom{n-m}{k-1} - \rho n^{k-1}$, then for all $i = 1, \ldots, n^{1.1}$ and any positive real $\rho' \geq 2\rho$, we have
\[\delta_1(H[R_i]) > \left(\frac{|R_i| - 1}{k - 1}\right) - \left(\frac{|R_i| - |R_i|/k}{k - 1}\right) - \rho'|R_i|^{k-1}. \]

We summarize the second round of randomization in [1] as the following lemma (see the proof of Claim 4.1 in [1]).

Lemma 13. Assume \(R^i, i = 1, 2, \ldots, n^{1.1} \) satisfy (i)-(v) in Lemma 12, and each \(H[R^i] \) has a perfect fractional matching \(\phi^i \). Then there exists a spanning subgraph \(H' \) of \(H \) such that \(d_{H'}(v) = (1 + o(1))n^{0.2} \) for each \(v \in V \), and \(\Delta_2(H') \leq n^{0.1} \).

Proof of Lemma 4. Let \(V(H) = [n] \) and \(\eta = \beta/3 \). We choose an integer \(r \) such that
\[r = \left\lfloor n - km - \eta n \right\rfloor/k - 1. \]

Let \(Q := V(K_r^k) = \{n + 1, \ldots, n + r\} \). Recall that \(H_r^k = H + K_r^k \) and let \(n_i := n + r \). By \(\delta_1(H) > \left(\frac{n_i - 1}{k - 1}\right) - \left(\frac{n_i - m - \rho n^k}{k - 1}\right) - \rho n^k \), we can derive that
\[\delta_1(H_r^k) > \left(\frac{n_i - 1}{k - 1}\right) - \left(\frac{n_i - m - r}{k - 1}\right) - \rho n^k. \]

It suffices to show that \(\nu(H_r^k) \geq m + r \). Indeed, if there is a matching \(M \) of size \(m + r \) in \(H_r^k \), then there are at most \(r \) edges in \(M \) intersecting \(Q \) and thus \(\nu(H) \geq m \).

Let \(R \subseteq V(H_r^k) \) be obtained by taking each vertex of \(H_r^k \) uniformly at random with probability \(n_i^{-0.9} \). Take \(n_i^{1.1} \) independent copies of \(R \) and denote them by \(R^i, 1 \leq i \leq n_i^{1.1} \).

By Lemma 12(iv), we have
\[n_i^{0.1} - n_i^{-0.095} \leq |R^i| \leq n_i^{0.1} + n_i^{-0.095} \quad \text{for all } i = 1, \ldots, n_i^{1.1} \]
with probability \(1 - o(1) \). One can see that \(|V(H)| \geq \frac{k-1}{k}|V\left(H_r^k\right)| \geq \frac{2}{3}|V\left(H_r^k\right)| \) since \(r(k - 1) < n \) and \(k \geq 3 \). For each \(i \), \(|R^i \cap V(H)| \) is a binomial random variable with expectation \(nn_i^{-0.9} \). Applying Lemma 9 with \(\lambda = n_i^{-0.095} \), we have
\[P\left(|R^i \cap V(H)| - nn_i^{-0.9} \right) \geq n_i^{0.095}\right) \leq e^{-\Omega(n_i^{0.09})}. \]

Thus by the union bound, we have
\[nn_i^{-0.9} - n_i^{-0.095} \leq |R^i \cap V(H)| \leq nn_i^{-0.9} + n_i^{-0.095} \quad \text{for all } i = 1, \ldots, n_i^{1.1} \]
with probability at least \(1 - n_i^{1.1}e^{-\Omega(n_i^{0.09})} \). Write \(r_i := |R^i \cap Q| \). With similar discussion, one can see that
\[rn_i^{-0.9} - n_i^{-0.095} \leq r_i \leq rn_i^{-0.9} + n_i^{-0.095} \quad \text{for all } i = 1, \ldots, n_i^{1.1} \]
with probability at least $1 - n_1^{-1}e^{-\Omega(n_1^{0.09})}$. Thus by (4), (7), and (8), we have

$$ (n - k)(k - 1) \geq \left(rn_1^{-0.9} - n_1^{-0.095} - k \right)(k - 1) $$
$$ \geq (n - km - \eta n)n_1^{-0.9} - \left(n_1^{-0.095} + k \right)(k - 1) $$
$$ \geq |R^i \cap V(H)| - kmn_1^{-0.9} - 2\eta mn_1^{-0.9} \quad \text{for all } i = 1, ..., n_1^{1.1} \tag{9} $$

with probability $1 - o(1)$.

Since H does not ε-contain $H_k(n, m)$, then by Lemma 11, $e(H[S]) \geq \varepsilon n^k/2k^2$ for all $S \subseteq V(H)$ with $|S| \geq \alpha n$, where $\alpha = 1 - m/n - \varepsilon/7$. Since each vertex in Q has degree $\left(n_1^{-1} \right)$, replacing a vertex in S by a vertex in Q will not decrease the number of edges in $H_k^n[S]$. Thus for every $S \subseteq V(H_k^n)$ with $|S| \geq \alpha n$, we have $e(H_k^n[S]) \geq \varepsilon n^k/2k^2 \geq (\frac{k-1}{k})^k \varepsilon n_1^k/2k^2$. Then by Lemma 10, with probability $1 - o(1)$, for each i, $H^k_r[R^i]$ has independence number $\alpha(H^k_r[R^i]) \leq (n_1 - m - r - \varepsilon n/8)n_1^{-0.9} = (n - m - \varepsilon n/8)n_1^{-0.9}$. Note that $\alpha(H[R^i \cap V(H)]) = \alpha(H^k_r[R^i])$. So we have

$$ \alpha(H[R^i \cap V(H)]) \leq (1 - m/n - 2\eta/k - \varepsilon/9)|R^i \cap V(H)| \quad \text{for all } i = 1, ..., n_1^{1.1} \tag{10} $$

with probability $1 - o(1)$.

Note that $n_1/k - 2\eta m_1 \leq m + r \leq n_1/k$, where $2\eta \ll \rho$. By Lemma 12(v) and inequality (5), with probability $1 - o(1)$, for all $i = 1, ..., n_1^{1.1}$, we have

$$ \delta_1(H^k_r[R^i]) > \frac{|R^i| - 1}{k - 1} - \frac{|R^i| - |R^i|/k}{k - 1} - 3\rho |R^i \cap V(H)|^{k-1}. \tag{11} $$

So by inequalities (6), (8), (11) and $n_1/k - 2\eta m_1 \leq m + r \leq n_1/k$, with probability $1 - o(1)$, for all $i = 1, ..., n_1^{1.1}$, we have

$$ \delta_1(H[R^i \cap V(H)]) = \delta_1(H^k_r[R^i]) - \left(\frac{|R^i| - 1}{k - 1} - \frac{|R^i \cap V(H)| - 1}{k - 1} \right) $$
$$ > \left(\frac{|R^i \cap V(H)| - 1}{k - 1} - \frac{|R^i| - |R^i|/k}{k - 1} - 3\rho |R^i \cap V(H)|^{k-1} \right) $$
$$ = \left(\frac{|R^i \cap V(H)| - 1}{k - 1} - \frac{|R^i \cap V(H)| - (|R^i| - kn_i)/k}{k - 1} - 3\rho |R^i \cap V(H)|^{k-1} \right) $$
$$ > \left(\frac{|R^i \cap V(H)| - 1}{k - 1} - \frac{|R^i \cap V(H)| - (m + 2\eta n/k)n_1^{-0.9}}{k - 1} - 4\rho |R^i \cap V(H)|^{k-1} \right). \tag{12} $$

By $\frac{n_1^{-1}}{m} \leq \frac{k}{2(k - 1)} - \beta \frac{n_1^{-1}}{k}$ and inequality (6), we have $\frac{|R^i \cap V(H)| - 1}{k^2} \leq (m + 2\eta n/k)n_1^{-0.9} \leq \frac{|R^i \cap V(H)| - 1}{2(k - 1)}$, with probability $1 - o(1)$, for all $i = 1, ..., n_1^{1.1}$. Hence by Lemma 7 and by (9), (10), and (12), with probability $1 - o(1)$, for all $i = 1, ..., n_1^{1.1}$, $H^k_r[R^i]$ has a perfect fractional matching.
Now for the k-graph H^k_r, we have chosen $n_1^{1.1}$ subgraphs $R^1, \ldots, R^{n_1^{1.1}}$ such that (i)–(v) in Lemma 12 hold and $H^k_r[R^i]$ has a perfect fractional matching for $1 \leq i \leq n_1^{1.1}$. Then by Lemma 13, there is a spanning subgraph H' of H^k_r such that $d_{H'}(v) = (1 + o(1))n_1^{0.2}$ for any vertex v, and $\Delta_2(H') \leq n_1^{0.1}$.

Thus we may apply Lemma 8 to find a matching covering all but at most σn_1 vertices in H^k_r, where $\sigma < 2\eta/3$ is a positive constant. Hence we have $\nu(H^k_r) \geq (n + r - \sigma n_1)/k > m + r$ by (4). This completes the proof.

4 | PROOF OF THEOREM 2

Since the case $n \geq 3k^2m$ was proved by Huang and Zhao [11], we may assume $m \geq n/3k^2$ in the proof. Let ρ, ε be constants such that $0 < \varepsilon < (k^8 - 1)k^{5(k-1)k!} - 3 < (3k^2 - 2k!k^3)^{-1}$ and $0 < \rho < \varepsilon^4/(18k^2)^4$. For the case H does not ε-contain $H_k(n, m)$, let $\beta_0 \leq \beta$ be a constant such that $0 < \beta_0 \ll \rho$. By Lemma 4, $\nu(H) \geq m$ for $n/3k^2 \leq m \leq (\frac{k}{2(k-1)} - \beta_0)n/k$ and sufficiently large n. For the case H ε-contains $H_k(n, m)$, $\nu(H) \geq m$ for $n/3k^2 \leq m \leq n/k$ and sufficiently large n by Theorem 3.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Hao Huang and the anonymous reviewers for their valuable suggestions and comments that greatly improved this paper. Partially supported by the National Natural Science Foundation of China under Grant No. 12271425. Partially supported by The International Science and Technology Cooperation Program of Shaanxi Key Research & Development Plan under grant 2019KWZ-08.

ORCID
Hongliang Lu © http://orcid.org/0000-0003-4447-2416

REFERENCES
1. N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov, Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels, J. Combin. Theory Ser. A. 119 (2012), 1200–1215.
2. N. Alon and J. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., 3rd ed. John Wiley & Sons, Hoboken, NJ, 2008.
3. B. Bollobás, D. E. Daykin, and P. Erdős, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford Ser. 27 (1976), 25–32.
4. P. Erdős, A problem on independent r-tuples, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 8 (1965), 93–95.
5. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
6. P. Frankl, Improved bounds for Erdős matching conjecture, J. Combin. Theory Ser. A. 120 (2013), 1068–1072.
7. P. Frankl and A. Kupavskii, The Erdős matching conjecture and concentration inequalities, J. Combin. Theory Ser. B. 157 (2022), 366–400.
8. P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. Combin. 6 (1985), 317–326.
9. H. Hán, Y. Person, and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math. 23 (2009), 732–748.
10. H. Huang, P. Loh, and B. Sudakov, The size of a hypergraph and its matching number, Combin. Probab. Comput. 21 (2012), 442–450.
11. H. Huang, and Y. Zhao, *Degree versions of the Erdős–Ko–Rado theorem and Erdős hypergraph matching conjecture*, J. Combin. Theory Ser. A. **150** (2017), 233–247.

12. I. Khan, *Perfect matchings in 3-uniform hypergraphs with large vertex degree*, SIAM J. Discrete Math. **27** (2013), 1021–1039.

13. I. Khan, *Perfect matchings in 4-uniform hypergraphs*, J. Combin. Theory Ser. B. **116** (2016), 333–366.

14. A. Kupavskii, *Degree versions of theorems on intersecting families via stability*, J. Combin. Theory Ser. A. **168** (2019), 272–287.

15. D. Kühn and D. Osthus, *Embedding large subgraphs into dense graphs*, Surveys in Combinatorics, London Math. Soc. Lecture Note Series (S. Huczynska, J. D. Mitchell and C. M. Roney-Dougal, eds.), vol. **365**, Cambridge University Press, Cambridge, 2009, pp. 137–167.

16. D. Kühn, D. Osthus, and T. Townsend, *Fractional and integer matchings in uniform hypergraphs*, European J. Combin. **38** (2014), 83–96.

17. D. Kühn, D. Osthus, and A. Treglown, *Matchings in 3-uniform hypergraphs*, J. Combin. Theory Ser. B. **103** (2013), 291–305.

18. H. Lu, X. Yu, and X. Yuan, *Nearly perfect matchings in uniform hypergraphs*, SIAM J. Discrete Math. **35** (2021), 1022–1049.

19. V. Rödl, A. Ruciński, and E Szemerédi, *Perfect matchings in large uniform hypergraphs with large minimum collective degree*, J. Combin. Theory Ser. A. **116** (2009), 613–636.

20. A. Treglown and Y. Zhao, *Exact minimum degree thresholds for perfect matchings in uniform hypergraphs I*, J. Combin. Theory Ser. A. **119** (2012), 1500–1522.

21. A. Treglown and Y. Zhao, *Exact minimum degree thresholds for perfect matchings in uniform hypergraphs II*, J. Combin. Theory Ser. A. **120** (2013), 1463–1482.

How to cite this article: M. Guo, H. Lu, and Y. Jiang, *Improved bound on vertex degree version of Erdős matching conjecture*, J. Graph Theory. 2023;**104**:485–498.

https://doi.org/10.1002/jgt.22974