Gastrin-stimulated Go13 Activation of Rgnef Protein (ArhGEF28) in DLD-1 Colon Carcinoma Cells*

Miriam Masià-Balagué†1,2, Ismael Izquierdo†1, Georgina Garrido†, Arnau Cordomi‡, Laura Pérez-Benito§, Nichol L. G. Miller¶3, David D. Schlaepfer*, Véronique Gigoux‡4, and Anna M. Aragay*‡

From the 1Molecular Biology Institute of Barcelona, Spanish National Research Council (CSIC), 08028 Barcelona, Spain, the 2Departament de Pediatria, Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain, the 3Université Paul Sabatier Réceptologie et Ciblage Thérapeutique en Cancérologie, INSERM, Toulouse, France, and the 4Moore's Cancer Center, University of California at San Diego, La Jolla, California 92093

Received for publication, December 6, 2014, and in revised form, April 27, 2015 Published, JBC Papers in Press, April 28, 2015, DOI 10.1074/jbc.M114.628164

Background: Rgnef (ArhGEF28) is activated downstream of gastrin and the cholecystokinin receptor to promote colon carcinoma tumor progression.

Results: Rgnef activation by Go13 triggers FAK and paxillin tyrosine phosphorylation in response to gastrin. A C-terminal Rgnef region is necessary for linkage to Go13.

Conclusion: Rgnef is an effector of Go13 signaling.

Significance: Go13 and Rgnef are implicated in colon carcinoma.

The guanine nucleotide exchange factor Rgnef (also known as ArhGEF28 or p190RhoGEF) promotes colon carcinoma cell motility and tumor progression via interaction with focal adhesion kinase (FAK). Mechanisms of Rgnef activation downstream of integrin or G protein–coupled receptors remain undefined. In the absence of a recognized G protein signaling homology domain in Rgnef, no proximal linkage to G proteins was known. Utilizing multiple methods, we have identified Rgnef as a new effector for Go13 downstream of gastrin and the type 2 cholecystokinin receptor. In DLD-1 colon carcinoma cells depleted of Go13, gastrin-induced FAK Tyr(P)-397 and paxillin Tyr(P)-31 phosphorylation were reduced. RhoA GTP binding and promoter activity were increased by Rgnef in combination with active Go13. Rgnef co-immunoprecipitated with activated Go13Q226L but not Go12Q229L. The Rgnef C-terminal (CT, 1279–1582) region was sufficient for co-immunoprecipitation, and Rgnef-CT exogenous expression prevented Go13-stimulated SRE activity. A domain at the C terminus of the protein close to the FAK binding domain is necessary to bind to Go13. Point mutations of Rgnef-CT residues disrupt association with active Go13 but not Go13. These results show that Rgnef functions as an effector of Go13 signaling and that this linkage may mediate FAK activation in DLD-1 colon carcinoma cells.

Intestinal homeostasis is a dynamic process in which stem cells at the base of crypts divide and migrate to the apical region, where they differentiate. During tumor progression, cells can undergo an epithelial to mesenchymal transition associated with increased cell motility. Changes in cytoskeletal dynamics required for cell migration are coordinated in large part by RhoGTPases (1) whose involvement in cancer is well documented (2). Although activation of RhoGTPases can occur by inhibiting GTPase-activating proteins or guanosine nucleotide dissociation inhibitors, a number of studies suggest that the Dbl family of exchange factors known as GEFs5 are the primary mediators of RhoGTPase activation (3).

Rgnef, also termed p190RhoGEF or ArhGEF28, is a member of the Dbl family of RhoGEFs (4). Elevated Rgnef expression promotes colorectal carcinoma cell motility, invasion, and tumor progression (5–7). Rgnef also possesses anti-apoptotic activity (8) and is implicated in the pathogenesis of motor neuron degeneration (9), in the regulation of synapse formation (10), and in signaling associated with dendritic morphogenesis (11, 12). Rgnef knock-out yields homozygous-null mice at less than expected Mendelian ratios, and Rgnef-null fibroblasts exhibit decreased RhoA GTPase activity and cell motility downstream of integrins (6). A link with FAK activity has been described in both normal and tumor cell motility. Rgnef is activated by GPCR signaling cascades (7), but the mechanism of activation downstream ofGPCRs remains unclear. In particular, Rgnef responds to gastrin-type 2 cholecystokinin receptor (CCK2R) stimulating signaling events (7).

As a member of the Dbl family (13), p190RhoGEF/Rgnef is characterized by a central tandem DH–PH domain and also contains an N-terminal leucine-rich region and a large C-ter-
minal region that may form an α-helical coiled-coil domain of unknown function. The DH-PH catalytic region is responsible for RhoGEF activity (14, 15). Rgnef has the highest amino acid similarity to p114RhoGEF (ArhGEF18), GEF-H1 (ArhGEF2), and Lbc (ArhGEF13). Other related RhoGEFs with similar subunits are p115RhoGEF (ArhGEF1), PDZ-RhoGEF (ArhGEF11), and LARG (ArhGEF12) (16, 17) that contain a regulator of G protein signaling homology (RH) domain located within the N-terminal region that confers the capability to bind to G proteins. All of these RhoGEFs preferentially activate RhoA. Lbc N-terminal region that confers the capability to bind to G protein signaling homology (RH) domain located within the N-terminal region that confers the capability to bind to G proteins. All of these RhoGEFs preferentially activate RhoA. Lbc lacks a recognized RH domain in its N-terminal region and thus has not been considered a downstream effector of Go12/13.

The heterotrimeric G proteins, Go12 and Go13, activate RhoA via RH-containing RhoGEFs resulting in actin stress fiber formation and focal adhesion assembly (20, 21). Soon after their discovery, both Go12 and Go13 were demonstrated to induce oncogenic transformation (22–24). Several studies have demonstrated roles for Go12 or Go13 in cell proliferation and migration (25). Additionally, Go13 may alter cell adhesion in a RhoGEF-independent manner (26–28). Invasive breast cancer and prostate adenocarcinoma cells express high levels of Go12 (25, 29, 30). These findings support the hypothesis that GPCRs may signal through G12 proteins to promote tumor progression (31).

Here, we show that gastrin stimulation of DLD-1 colon carcinoma cells acts through CCK2R to promote Go13-stimulated FAK Tyr-97 and paxillin Tyr-31 tyrosine phosphorylation, FAK Tyr-97 and paxillin Tyr-31 tyrosine phosphorylation, and G12 activation of Rgnef (32). Go13 activation of Rgnef may signal through G12 proteins to promote tumor progression (31).

Experimental Procedures

Antibodies and Reagents

Antibodies to Go13 (32), Go12, Go9/11, and RhoA were from Santa Cruz Biotechnology. Monoclonal anti-Go9 were from BD Biosciences. Anti-Rgnef was described previously (7). Anti-paxillin-Tyr(P)-31, and anti-FAK Tyr(P)-397-phosphospecific antibodies were from Cell Signaling. β-Tubulin monoclonal antibody was from Abcam. IRDye 680 and IRDye 800 goat IgG, goat antirabbit, and anti-mouse IgGs were from LI-COR. Human antimouse IgG was from Abcam. IRDye 680 and IRDye 800 goat IgG, goat antirabbit, and anti-mouse IgGs were from LI-COR. Human antimouse IgG was from Abcam.

Plasmids

pFGFP-C2-mp190RhoGEF, pCDH-mCherry-p190RhoGEF-FL, pCDH-mCherry-p190RhoGEF-CT, and pCDH-mCherry-p190RhoGEFΔFAK were used as described (5). pcDNA3-190RhoGEF (murine cDNA) was a generous gift from W. H. Moolenaar (The Netherlands Cancer Institute). pcDNA3-190RhoGEFΔNT, pcDNA3.1-HA-RgnefΔCT, pcDNA3.1-190RhoGEFΔNT, pcDNA3.1-HA-RgnefΔCT, and pcDNA3.1-HA-Rgnef5M were generated using QuikChange Lightning site-directed mutagenesis (Agilent Technologies). Single or multiple site mutagenesis in Rgnef was accomplished using QuikChange mutagenesis. Mouse Rgnef 5M contained alanine changes at His-1393, Glu-1475, Glu-1481, Leu-1483, and Arg-1487 (corresponding to human residues His-1396, Glu-1478, Glu-1484, Leu-1486, and Arg-1490). pLKO.1 scrambled (Scr), pLKO.1-hGo13-sh1, pLKO.1-hGo13-sh2, pLKO.1-hGo13-sh3, pLKO.1-hGo13-sh4, and pLKO.1-hGo13-sh5 were from Sigma. pSRE-Lmut was from D. Toksoz (Tufts Medical Center). pcDNA3.1-HA-γ1, pcDNA3.1-Gα12 wt, pcDNA3.1-Gα12 (Q229L), pcDNA3.1-Gα13 wt, and pcDNA3.1-Gα13 (Q226L) were obtained from The Missouri S&T CDNA Resource Center. pcDNA3.1Gα13 was described before (34). pGEX-2T-RBD was obtained from Sang-Kyou Han (University of California at San Diego). Plasmid for GST-RhoA577A was a generous gift from K. Burridge (University of North Carolina).

Cells

Cells—HEK293, HEK293T, and DLD-1 cells were grown in DMEM (Invitrogen) supplemented with 10% fetal bovine serum (FBS, Invitrogen), 2 mm L-glutamine (Invitrogen) and 100 units of penicillin/streptomycin (Lonza) in a humidified atmosphere of 5% CO2 in air at 37 °C. Prior to cell treatments, cells were serum-starved for 16 h. Cells were stimulated with gastrin at 200 nM in serum-free medium for the indicated time periods. For transient transfections, cells were plated at 60–70% confluence, and after 24 h, cells were transfected utilizing FuGENE 6 (Roche Applied Science) or Metafectone Pro (Biontex) according to the manufacturer’s instructions. Protein expression was evaluated 24–48 h after transfection.

shRNA Knockdown—Go13 short hairpin-interfering RNA (shRNA) targeted against human GNA13 (TRCN0000036885, Mission shRNA, Sigma) was used for stable knockdown in DLD-1 cells. For lentivirus production, HEK293T cells were co-transfected with pLKO.1 vectors containing the shRNA vector together with pCMVΔR8.91 (HIV Gag and Pol) and pVSVG at a ratio of 4:3:1, respectively. Medium was collected every 24 h for 2 days and sterile-filtered (0.45-μm MCE filter, Millipore). Viral particles were stored at −80 °C. To infect cells by spinoculation, 1 ml of the viral particle supernatant was added to cells, and plates were centrifuged at 1200 × g for 2 h at room temperature. After 24 h, infected cells were selected by adding 2 μg/ml of puromycin (Sigma). The efficiency of shRNA knockdown was confirmed by SDS-PAGE and Western blot analysis of protein extracts.

Immunoprecipitation and Western Blots Analysis

Cells were lysed in RIPA buffer (50 mM Tris, pH 7.4, 0.3 mM NaCl, 0.1% SDS, 0.5% DOC, 10 mM MgCl2, 1 mM Na3VO4, 10 mM NaF, 1% n-dodecyl β-D-maltoside, and protease inhibitors). To undergo AlF4− treatment, 30 μM AlCl3 and 5 mM NaF were added to lysis and wash buffers. Lysates were pre-cleared with 50 μl of IgG-free BSA (10 mg/ml) (Sigma) and 50 μl of protein A-Sepharose (Roche Applied Science) for 1.5 h at 4 °C on a rotating wheel followed by centrifugation. Specific antibodies were added to lysate supernatants and incubated overnight at 4 °C.
with rotation. Protein A-Sepharose (Sigma) or protein G-agarose (Roche Applied Science) beads were added and incubated for 1.5 h at 4 °C with rotation. Samples were centrifuged for 5 min at 425 × g and the beads were washed three times with gentle shaking in RIPA wash buffer (50 mM Tris, pH 7.4, 0.3 M NaCl, 0.1% SDS, 0.5% DOC, 10 mM MgCl₂, 1 mM Na₂VO₄), followed by aspiration, resuspension in SDS loading buffer, and heating at 100 °C. Cell lysates and immunoprecipitates were loaded in SDS-PAGE, immunoblotted to Immobilon-FL membranes (Millipore), and analyzed with the indicated antibodies. Western blots were visualized by infrared detection (Odyssey System) and quantified by Image Studio software (LI-COR) (35).

Expression and Purification of GST-RBD and GST-RhoA_{G17A} Constructs—pGEX plasmids were transformed in BL21 Escherichia coli (36). Protein expression was induced by the addition of 0.5 mM isopropyl β-D-thiogalactoside for GST-RBD or 0.1 mM for GST-RhoA_{G17A} and incubated for 16 h at room temperature. Bacteria pellets were resuspended in ice-cold RBD1 (50 mM Tris-HCl, pH 7.2, 150 mM NaCl, 10 mM MgCl₂, 1% Triton X-100, 0.5% NaDOC, 0.1% SDS, and protein inhibitors) or RhoA_{G17A} (20 mM HEPES, pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1% Triton X-100, 1 mM DTT, and protease inhibitors) lysis buffers. Bacteria were lysed by sonication on ice for 1 min and centrifuged at 20,000 × g for 15 min at 4 °C. Supernatants were incubated with 200 µl of 50% glutathione-Sepharose 4B slurry (GE Healthcare) for 45–60 min at 4 °C with rotation. GST-RBD beads were washed six times in RBD wash buffer (50 mM Tris-HCl, pH 7.2, 150 mM NaCl, 10 mM MgCl₂, 1% Triton X-100, and protease inhibitors), and GST-RhoA_{G17A} beads were washed twice in RhoA_{G17A} lysis buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1% Triton X-100, 1 mM DTT, and protein inhibitors) and two more times with HBS wash buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 5 mM MgCl₂, 1 mM DTT). Bead-associated GST-RBD and GST-RhoA_{G17A} protein concentration was estimated by SDS-PAGE and Coomassie Blue staining alongside BSA protein standards. Bead aliquots were stored at −80 °C in 10% glycerol.

RhoA Activation Assays—Cells were transfected with Rgnef and/or Gα₁₃ plasmids utilizing MetafecteneTM Pro (Biontex) and serum-starved overnight 24 h post-transfection. After cell stimulation with gastrin, cells were lysed in RBD2 lysis buffer (50 mM Tris-HCl, pH 7.2, 1% Triton X-100, 0.5% NaDOC, 0.1% SDS, 500 mM NaCl, 10 mM MgCl₂, and protease inhibitors) and centrifuged (13,000 × g for 5 min at 4 °C). Modified Bradford assays were used to determine protein concentration (Bio-Rad). GST-RhoA_{G17A} beads (10 µg) were added to each lysate, rotated for 45–60 min at 4 °C, and washed three times with GST-RhoA_{G17A} lysis buffer. Bead-associated protein complexes were separated by SDS-PAGE followed by anti-HA tag or Rgnef immunoblotting.

SRE Luciferase Assays—The SRE reporter was designed to monitor the activity of serum-response factor (SRF)-mediated signal transduction. pSRE.L luciferase reporter plasmid encodes for firefly luciferase positioned downstream of a mutant SRE that contains SRF-binding sites but eliminates the ternary complex factor-binding site (37). RhoA activation stimulates SRE transcriptional activation (38). HEK293 cells were transfected with the indicated plasmids with pSRE.L (0.1 µg) and the Renilla luciferase thymidine kinase (pRL-TK) (0.01 µg). Cells were serum-starved for 24 h and then stimulated with ligands for the indicated time. Cells were washed with PBS and lysed in 200 µl of 1× Passive[®] lysis buffer (Promega) for 20 min at 4 °C by agitation. Lysates were clarified by centrifugation at 18,000 × g for 15 min. Cell extracts (20 µl) were mixed with 25 µl of Luciferase Assay Reagent II (Promega) and luminescence-quantified (TD-20/20 luminometer, Sirius). Reactions were quenched by 25 µl of Stop & Glow reagent addition (Promega), and Renilla luciferase activity was quantified. Values were normalized and expressed as arbitrary units.

Modeling the Rgnef-Gα₁₃ Complex—RH domain sequences for human p115RhoGEF (ArhGEF1), murine Lsc (ArhGEF1), PDZ-RhoGEF (ArhGEF11), and LARG (ArhGEF12) were retrieved from the Uniprot (UniProt-Consortium, 2010). Entries tagged as reviewed were saved (Q9NZN5, Q8RH42, Q92888, O15085, Q9ES67, Q61210, and Q9Z1I6) and aligned using ClustalW (39). Next, we aligned the C-terminal portion of Rgnef (entries P97433, Q8N1W1, and P0C6P5) to the RH domains of the p115RhoGEF family. RhoGDI-like domain bound to Gα₁₃ using Modeler (40) based on the homology to the RH-like domain of ArhGEF11, for which the structure in complex with Gα₁₃ (Protein Data Bank code 3CX8) is available (41, 42). The molecular complex was refined using energy minimization with AMBER 12.0 employing the Amber99SB-ILDN force field (43).

Statistical Analysis—Data are presented as mean values or as fold induction ± S.E. or ± S.D. as indicated in each figure legend. The sums of all the individual stimulatory effects were compared with the combined effects by using the unpaired t test with two-tailed p values. Differences were considered statistically significant when p < 0.05 (noted with *), p < 0.005 (noted with **), and p < 0.001 (noted with ***).

Results

Gastrin Enhances Paxillin Tyrosine Phosphorylation through CCK2R—DLD-1 colon carcinoma cells will form focal adhesions with enhanced paxillin tyrosine phosphorylation associated with increased cell motility in response to gastrin stimulation (7). To evaluate the involvement of the G protein-coupled CCK2R in gastrin-induced motility-associated signaling, paxillin Tyr-31 phosphorylation was determined by phosphospecific...
addition of the CCK1R antagonist SR27987 increased paxillin Tyr(P)-31 phosphorylation by 54% with gastrin co-stimulation. Accordingly, addition of the CCK1R agonist SR146131 did not enhance paxillin Tyr(P)-31 phosphorylation (Fig. 1, D and E), suggesting that gastrin induction of paxillin phosphorylation is dependent on CCK2R (but not CCK1R) in DLD-1 cells.

The signaling pathway downstream gastrin, CCK2R, and RhoA have not been established. Increased transcriptional activity of an SRE-luciferase reporter containing SRF-binding sites is a defined signaling linkage downstream of RhoA GTPase activation (44). In DLD-1 cells, gastrin-stimulated SRE activity was reduced by the YM022 CCK2R antagonist but not by the SR27987 CCK1R antagonist (Fig. 1F). Compared with gastrin, addition of the SR146131 CCK1R agonist only weakly enhanced SRE promoter activity (Fig. 1G). Together, these results support the notion that gastrin-treated DLD-1 cells signal through CCK2R to stimulate paxillin tyrosine phosphorylation and likely RhoA activation leading to an enhanced SRE transcriptional response.

Gastrin-stimulated Rho Activation, FAK, and Paxillin Phosphorylation Involved \(\alpha_{13} \)—To test whether \(\alpha_{13} \) could have any role in paxillin-Tyr(P)-31 phosphorylation and in Rho activation of SRE transcription activity following CCK2R stimulation, we generated \(\alpha_{13} \) shRNA targeted against the coding region of \(\alpha_{13} \) for stable knockdown in DLD-1 cells. Expression of \(\alpha_{13} \) shRNA resulted in >75% stable reduction in \(\alpha_{13} \) protein expression compared with Scr shRNA-expressing and Mock-transduced cells (Fig. 2A). \(\alpha_{13} \) shRNA did not affect other Gq subunit expressions (Fig. 2A). DLD-1-depleted \(\alpha_{13} \) cells were analyzed for effects on gastrin-stimulated paxillin Tyr-31 phosphorylation. Compared with Mock-transduced and Scr shRNA-expressing DLD-1 cells, \(\alpha_{13} \) shRNA paxillin Tyr-31 phosphorylation was selectively reduced upon \(\alpha_{13} \) knockdown (Fig. 2, B and C). Together, these results support a gastrin, CCK2R, and \(\alpha_{13} \) signaling linkage upstream of paxillin tyrosine phosphorylation in DLD-1 cells.

Phosphorylation of FAK at Tyr-397 also occurs in response to gastrin stimulation of DLD-1 cells, and pharmacological FAK inhibition can prevent gastrin-stimulated paxillin tyrosine phosphorylation and cell motility (7). \(\alpha_{13} \) shRNA expression reduced gastrin-stimulated FAK Tyr-397 phosphorylation without effects on total FAK expression (Fig. 2D). Gastrin-stimulated SRE-luciferase activity was also reduced in the presence of \(\alpha_{13} \) shRNA compared with mock DLD-1-infected cells (Fig. 2E). Together, these results support a gastrin, CCK2R, \(\alpha_{13} \), and paxillin signaling linkage that may impact gastrin-stimulated SRE transcriptional activity.

\(\alpha_{13} \) Activates Rgf and RhoA in a Linkage to Enhanced SRE Transcription—Rgf functions to promote paxillin tyrosine phosphorylation downstream of integrins in fibroblasts and gastrin-CCK2R stimulation in DLD-1 colon carcinoma cells (5–7). Because we found that \(\alpha_{13} \) is important for gastrin-stimulated paxillin tyrosine phosphorylation and enhanced SRE activity, we investigated whether \(\alpha_{13} \) could activate Rgf via affinity binding to a purified nucleotide-free point mutant (G17A) of RhoA (Fig. 3). In cells expressing CCK2R, gastrin stimulation increased Rgf binding to RhoA(1527-A) (Fig. 3A). In cells expressing \(\alpha_{13} \) or \(\alpha_{14} \), Rgf possessed a higher immunoblotting (Fig. 1). Gastrin increased paxillin Tyr(P)-31 phosphorylation within 15–30 min that was sustained to 60 min (Fig. 1A). The CCK2R antagonist YM022 inhibited gastrin-induced paxillin Tyr-31 phosphorylation (Fig. 1, B and C), suggesting that this linkage was mediated by CCK2R. Conversely,
Gα₁₃ activation of Rgnef

Gα₁₃ activation of Rgnef

A

![Image of gel blots](image1.png)

B

![Image of gel blots](image2.png)

C

![Image of gel blots](image3.png)

D

![Image of gel blots](image4.png)

E

![Image of gel blots](image5.png)

FIGURE 2. Gα₁₃ is necessary for gastrin-stimulated paxillin tyrosine phosphorylation and SRE activation. A, lysates of Mock, Gα₁₃, or Scr shRNA-expressing DLD-1 cells were immunoblotted with antibodies to Rgnef, Gα₁₃, Gα_q, and β-tubulin. B, representative paxillin IPs from lysates of Mock, Scr, and Gα₁₃, shRNA-expressing DLD-1 cells pretreated with gastrin (200 nM, 30 min). Phosphospecific paxillin Tyr(P)-31 was followed by detection of total paxillin levels. C, Image quantification from paxillin IPs shown in B. Control was set to 1, and values are means ± S.E. for fold induction of three independent experiments. D, representative FAK IPs from lysates of Scr- and Gα₁₃ shRNA-expressing DLD-1 cells that stimulated with gastrin (200 nM, 30 min). Phosphospecific FAK-Tyr(P)-397 (pY397) was followed by detection of total FAK levels by immunoblotting. Phosphospecific paxillin Tyr(P)-31 was followed by detection of total paxillin levels by immunoblotting on the corresponding lysates. E, DLD-1 cells transduced with anti-Gα₁₃ or Scr shRNA were transfected with pSRE.L and RLuc vectors. After 24 h, cells were serum-starved and then treated with vehicle or gastrin (200 nM) for 6 h, and lysates were prepared for luciferase detection. Values were set to 1, and data are means ± S.E. for fold induction (relative units, R.U.) from three independent experiments (*, p < 0.05, two-tailed t test).
consistent immunoprecipitation was observed with the active forms of \(\alpha_{12} \) (Fig. 4C), in agreement with the activity data (Fig. 4C). Taken together, the results suggest that active \(\alpha_{13} \) and \(\alpha_q \) form a complex with Rgnef and that \(\alpha_{13} \) and \(\alpha_q \) are upstream activators of Rgnef.

Rgnef C-terminal Domain Immunoprecipitated with Activated \(\alpha_{13} \)—To determine the Rgnef region that mediates \(\alpha_{13} \) immunoprecipitation, a series of HA- or mCherry-tagged N- or C-terminal truncated Rgnef constructs was created and verified to express proteins of different but expected sizes (Fig. 3C).
Anti-HA co-IP analyses show that Gα13 immunoprecipitated with the full-length and the C-terminal (1185–1693) region of Rgnef (Fig. 5B). A weaker co-immunoprecipitation was also observed with the N-terminal region (1–1184) of Rgnef. Because the Rgnef C-terminal region interacts with Gα13, we tested whether Rgnef-CT overexpression could block Gα13 activity. Co-expression of HA-Rgnef-Ct(1185–1693), HA-Rgnef-Ct*(1279–1582), or HA-Rgnef-Ct/H9004 FAK(1302–1582) in HEK293 cells produced a significant reduction of Gα13Q226L-induced SRE-luciferase activity (Fig. 5C). These results support the hypothesis that Rgnef may be proximally activated by Gα13Q226L and that overexpression of the putative Rgnef-Ct interacting region (1279–1582) blocks Gα13Q226L-induced SRE activity independently of FAK binding to Rgnef (Fig. 5C).

To determine whether the Rgnef region that blocks Gα13Q226L-induced SRE activity can also form a complex with Gα13Q226L, HEK293 co-transfection and co-IP experiments were performed (Fig. 5D). mCherry-Rgnef-Ct* and mCherry-Rgnef associated with antibodies to Gα13. Additionally, mCherry-RgnefΔFAK associated in a complex with endogenous Gα13. Taken together, these results show that the Rgnef-interactive (and dominant-negative acting) domain for Gα13-induced signaling occurs independently of FAK binding to Rgnef.

Domain in the Coiled Coil of p190RhoGEF C Terminus—To determine potential residues responsible for Rgnef-Ct association with Gα13, we performed sequence alignments with other RhoGEFs known to interact with Gα proteins. In particular, we identified a pattern of sequence similarity with the RH domain-containing subfamily of RhoGEFs: p115, Lsc, PDZ, and LARG (Fig. 6). Alignment is based upon the crystal structure of the RH domain of p115GEF (41, 42). Despite low 32% sequence identities shared between the RH domains of p115RhoGEF and PDZ-RhoGEF, these domains share nearly identical three-dimensional structures, a root mean square deviation of 0.608 Å on Cα values (41, 42).

By performing computer modeling using the coordinates of the p115 RhoGEF and PDZ RhoGEF RH domains, we were able to generate a Rgnef-Ct three-dimensional model (Fig. 7A, yellow) that contains similar secondary structure elements with p115 RhoGEF (Fig. 7A, blue) and PDZ RhoGEF (Fig. 7A, salmon). In particular, the organization of Rgnef residues in the arrangement of helices α1, α3, α8, and α9 suggests that a similar binding interface may form with Gα13 (Fig. 7B).
modeling reveals potential sites of G\textsubscript{\alpha13} interaction mediated by both hydrophobic or ionic amino acid residues within the putative Rgnef-Ct \textalpha3, \textalpha8, and \textalpha9 modeled structure (Fig. 7B).

Based on the modeled Rgnef-G\textsubscript{\alpha13} complex, we designed two mutants (Rgnef-1M and Rgnef-5M) that replaced residues predicted to lie in the putative interface with G\textsubscript{\alpha13} (Fig. 7, A and B). In Rgnef-1M, Arg-1490 was mutated to alanine (R1490A), and in Rgnef-5M, four additional Rgnef residues were mutated to alanine (E1484A, H1396A, E1478A, and L1486A) plus Rgnef R1490A. Upon co-expression in HEK293 cells with activated G\textsubscript{\alpha13}, Rgnef association was determined by co-immunoprecipitation with antibodies to Rgnef (Fig. 7, A and B).

Rgnef-1M and Rgnef-5M exhibited significantly decreased association with G\textsubscript{\alpha13} compared with Rgnef-WT. Because both mutationally activated G\textsubscript{\alpha13} and G\textsubscript{\alpha4} could activate Rgnef (Fig. 3), we determined whether Rgnef-5M mutations disrupted binding to both G\textsubscript{\alpha13} and G\textsubscript{\alpha4} by HEK co-expression and co-immunoprecipitation analyses (Fig. 7E). Surprisingly, G\textsubscript{\alpha4} immunoprecipitated equally well with Rgnef-WT and Rgnef-5M, whereas G\textsubscript{\alpha13} showed selectively decreased association with Rgnef-5M. To determine whether alterations in global protein folding may underlie binding differences between Rgnef-WT and Rgnef-5M, RhoGEF (RhoA G17A) and SRE activity assays were performed (Fig. 7F). Notably, Rgnef-5M exhibited equivalent binding to RhoA G17A and significantly enhanced SRE activity in an equivalent manner compared with Rgnef-WT.

Taken together, these results support the notion that Rgnef residues Glu-1484, His-1396, Glu-1478, Leu-1486, and Arg-1490 (mutated in Rgnef-5M) facilitate a binding and signaling linkage with G\textsubscript{\alpha13}. Of course, Rgnef and G\textsubscript{\alpha13} association may also be indirect, and these residues within the Rgnef-Ct coiled-coil domain are important in mediating this linkage. Nevertheless, these results strongly support a role for Rgnef as a downstream effector for G\textsubscript{\alpha13}, and we have identified a new domain within Rgnef that is important for G\textsubscript{\alpha13} signaling.

Discussion

Although the trophic properties of gastrin are well established (45, 46), the intracellular and molecular mechanisms by which gastrin modulates cell growth in the gastrointestinal tract have yet to be fully elucidated. It has been reported that stimulation of CCK2R by gastrin activates several signal transduction pathways involved in cell proliferation and migration,
such as the mitogen-activated protein kinase (MAPK) that includes ERK, JNK, p38 kinase, and RhoA activation (47). Here, we show that G\(\alpha_{13}\) activates Rgnef, which in turn activates RhoA in human colon cancer DLD-1 cells. Knockdown of G\(\alpha_{13}\) prevented CCK2R-induced gastrin activation of RhoA, FAK-Tyr(P)-397, and paxillin-Tyr(P)-31 tyrosine phosphorylation. Taken together, the results suggest that the signaling pathway between gastrin-induced CCK2R and RhoA downstream activity involves the activation of Rgnef by G\(\alpha_{13}\).

Lacking a recognized RH-like domain, Rgnef was not considered a putative effector of G\(\alpha_{13}\). Rgnef family members AKAP-lbc and p114RhoGEF have been previously shown to be activated by G proteins (18, 19). Our studies place Rgnef as the downstream activator of both G\(\alpha_{13}\) and G\(\alpha_{q}\). However, our data are only suggestive of Rgnef as a direct effector, and biochemical experiments with purified proteins have been problematic to date. Our results show that both the N terminus with the DH-PH domain and the C-terminal domains of Rgnef are each sufficient to immunoprecipitate with G\(\alpha_{13}\). A multiple sequence alignment led us to identify a region at the C terminus of Rgnef with weak homology to the RH domain. RH domains of RH-RhoGEFs substantially differ among the family (48) indicating that structural adaptations in G\(\alpha_{13}\) could allow interaction with several RH domains, despite their considerable divergence. In this study, we showed that this domain is necessary for G\(\alpha_{13}\) effects. The fact that the mutation of residues located at this region reduce its binding to G\(\alpha_{13}\) validates the proposed model for the Rgnef/G\(\alpha_{13}\) interaction. A similar region located at the C-terminal region of AKAP-lbc was suggested to be involved in G\(\alpha_{12}\) interaction (18). However, similar coiled-coil structures in other RhoGEFs proteins have been associated with hetero- and homodimerization (49, 50). Heterodimerization of Rgnef with known RH-RhoGEFs could also explain the effects obtained in this work. Nevertheless, Rgnef is the first RH-GEF demonstrated to be downstream of CCK2R. We also found that G\(\alpha_{13}\) immunoprecipitated with the N terminus of Rgnef containing the DH and PH domains, which should not dimerize. Previous reports on LARG showed simultaneously interaction with the RH domain (at the N-terminal domain of LARG) and DH-PH domain (51). Similarly, it has been shown that activated G\(\alpha_{13}\) can interact with the RH domain and the DH-PH domains of p115RhoGEF (45, 46, 52, 53). Further investigations will examine the functional role of the interaction through the region containing the DH-PH domains, if the association of Rgnef with...
Ga13 activation of Rg1ef

Our results show that in addition to Ga13, Gaq can also act as an upstream activator of Rg1ef. Interestingly, previous reports show that both Ga13 and Gaq linked CCK stimulation to the activation of Rac in pancreatic acini (54). For many years, the role of Gaq in RhoA stimulation was under discussion, but investigations supported that Gaq can induce Rho-dependent responses via cooperation with several RH-RhoGEFs, including Lbc-RhoGEF and LARG (20, 37, 55). Later on, it was shown that p63RhoGEF interacts and is activated by Ga13 (56, 57). Resolution of the crystal structure of the Gaq/p63RhoGEF complex revealed that Gaq interacts with the DH and PH domains of p63RhoGEF (57). Consistently, the functional interaction between Gaq and LARG requires only the DH-PH domains of LARG. Thus, the interaction between Rg1ef and Gaq and the fact that Gaq promotes RhoA activation through Rg1ef are not surprising. Moreover, the results with the Rg1ef-5M point to a clear difference in the mechanism of activation of Rg1ef between Gaq and Ga13. Further work will be necessary to address which domain in Rg1ef is involved in the activation by Gaq and/or whether p63RhoGEF is also part of this pathway.

Previous studies demonstrated that Rg1ef is a key regulator of Rho reactivation, focal adhesion establishment (5), and cell migration downstream of integrins (6). Rg1ef can directly bind FAK through a motif in the Rg1ef C-terminal region (64), and Rg1ef-null cells showed fewer early adhesions upon fibronectin replating (6). Rg1ef binding to membrane lipids is needed for activation of FAK at the initial steps of early adhesion, but this effect is independent of its RhoGEF activity (58). Rg1ef-GEF activity and Rho activation are required later in cell migration for the process of stability and maturation of adhesion. Interestingly, it has been shown that integrins are noncanonical Ga13-coupled receptors that provide a mechanism for dynamic regulation of RhoA (59), which poses the question whether the link between Ga13 and Rg1ef could also be active downstream of integrin adhesions.

FIGURE 7. Models of putative Rg1ef RH-like domain and the complex with Ga13.

A, structural superposition of the RH domains of human PDZ-RhoGEF (Protein Data Bank code 3CX8; salmon), p115 RhoGEF (Protein Data Bank code 3AB3; blue) and our computer model of the domain of Rg1ef (yellow) in complex with Ga13 (blue). Putative residues of charged or hydrophobic side chain interactions are shown in blue. Residues mutated in the Rg1ef-5 M are shown in black (corresponding to human His-1396, Glu-1478, Glu-1484, Leu-1486, and Arg-1490). C and D, HEK293 cells were transfected with vectors encoding for HA-Rg1ef (full length), HA-Rg1ef 1M (C), or HA-Rg1ef 5M (D) with or without Ga13Q226L. HA-tagged Rg1ef constructs were co-immunoprecipitated with antibodies to Ga13, and detected by Li-COR immunoblotting. Graphical results show immunoblotting band intensities from three independent experiments expressed as fold induction with respect to immunoprecipitated Rg1ef wild type and normalized by the total expression level of Rg1ef. Values are means ± S.D. (*, p < 0.05; **, p < 0.005; two-tailed t test).

E, HEK293 cells expressing HA-Rg1ef or HA-Rg1ef 5M with or without GaqR183C or Ga13Q226L were co-immunoprecipitated with HA tag antibodies and detected by Li-COR immunoblotting. The arrowhead points to an unspecific band detected with the anti-Gq monoclonal antibody. F, HEK293 cells expressing HA-Rg1ef or HA-Rg1ef 5M were incubated with RhoAG17A-GST beads and visualized by anti-HA tag immunoblotting. G, HEK293 cells were transfected with pSRE.L and pRL-TK, together with either empty vector (Ctl), vector encoding Rg1ef or Rg1ef 5M and SRF activities were measured. Data are means ± S.E. of three independent experiments, each conducted in duplicate (***, p < 0.001).
In DLD-1 cells, gastrin enhances FAK and paxillin phosphorylation and increases focal adhesion formation linked to the dissolution of cell-cell contacts associated with the loss of E-cadherin surface expression, a process that requires Rgnef (7). Importantly, our results show that activation of Go13 downstream of gastrin leads to FAK and paxillin phosphorylation and is required for Rgnef activation and Rho activity. Taking into account those results and published records, we propose a model (Fig. 8) whereby, upon gastrin stimulation, Go13 directs Rgnef to the plasma membrane where it associates with and activates FAK. Next, Go13-GTP promotes Rgnef-GEF activity, leading to RhoA activation, which in turn can induce downstream paxillin phosphorylation and, as result of those processes, cell motility (which may involve FAK dissociation). Previous results demonstrated that RgnefΔFAK did not block the phosphorylation of paxillin downstream of gastrin (7). However, Go13-induced-SRE activity was inhibited by RgnefΔFAK indicating that analyses of SRE luciferase activity may not always reflect changes in paxillin tyrosine phosphorylation despite both being enhanced by gastrin or activated Go13 construct expression.

RhoA activation is implicated in colorectal tumor progression (2), and the levels of Rgnef mRNA and protein increase with colon carcinoma tumor progression (7). Although CCK2R is frequently overexpressed in cancers and the oncogenic properties of gastrin in the colonic mucosa of mouse are well established (60), its role in humans is still controversial (61). Nevertheless, the presence of CCK2R is recognized to provide a growth advantage to tumors where it is expressed (60). Together our results suggest a mechanism whereby gastrin stimulation of Go13 activates Rgnef implicating a role in human colon carcinoma. Little is known about the specific functions of Go13 in cancer, and those studies have focused on Go12 (29). It is documented that Go13 expression is markedly increased during prostate cancer progression and that micro RNAs regulate its expression post-transcriptionally (62). Go13 also mediates lysophosphatidic acid-stimulated invasive migration of pancreatic cancer cells (63). The future analysis of Go13 levels will help to elucidate whether its expression varies during colon carcinoma progression and further elucidate its function in colon cancer.

Acknowledgment—We thank Monica Pons for technical assistance.

References

1. Jaffe, A. B., and Hall, A. (2005) Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269
2. Sahai, E., and Marshall, C. J. (2002) RHO-GTPases and cancer. Nat. Rev. Cancer 2, 133–142
3. Leve, F., and Morgado-Díaz, J. A. (2012) Rho GTPase signaling in the development of colorectal cancer. J. Cell Biochem. 113, 2549–2559
4. van Horck, F. P., Ahmadian, M. R., Haesler, L. C., Moodenaar, W. H., and Kranenburg, O. (2001) Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948–4956
5. Lim, Y., Lim, S.-T., Tomar, A., Gardel, M., Bernard-Trifilo, J. A., Chen, X. L., Uryu, S. A., Canete-Soler, R., Zhai, J., Lin, H., Schlaepfer, W. W., Nalbant, P., Bokoch, G., Ilic, D., Waterman-Storer, C., and Schlaepfer, D. D. (2008) PyK2 and FAK connections to p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that regulates RhoA activity, focal adhesion formation, and cell motility. J. Cell Biol. 180, 187–203
6. Miller, N. L., Lawson, C., Chen, X. L., Lim, S.-T., and Schlaepfer, D. D. (2012) Rgnef (p190RhoGEF) knockout inhibits Rhoa activity, focal adhesion establishment, and cell motility downstream of integrins. PLoS One 7, e37830
7. Yu, H.-G., Nam, J.-O., Miller, N. L., Tanjoni, L, Walsh, C., Shi, L., Kim, L., Chen, X. L., Tomar, A., Lim, S.-T., and Schlaepfer, D. D. (2011) p190RhoGEF (Rgnef) promotes colon carcinoma tumor progression via interaction with focal adhesion kinase. Cancer Res. 71, 360–370
8. Wu, J., Zhai, J., Lin, H., Nie, Z., Go, W. W., García-Bermejo, L., Muschel, R. J., Schlaepfer, W. W., and Canete-Soler, R. (2003) Cytoplasmic retention sites in p190RhoGEF confer anti-apoptotic activity to an EGFP-tagged protein. Brain Res. Mol. Brain Res. 117, 27–38
9. Lin, H., Zhai, J., and Schlaepfer, W. W. (2005) RNA-binding protein is involved in aggregation of light neurofilament protein and is implicated in the pathogenesis of motor neuron degeneration. Hum. Mol. Genet. 14, 3643–3659
10. Rico, B., Beggs, H. E., Schahin-Reed, D., Kimes, N., Schmidt, A., and Reichardt, L. F. (2004) Control of axonal branching and synapse formation by focal adhesion kinase. Nat. Neurosci. 7, 1059–1069

FIGURE 8. Model of Go13-dependent activation of Rgnef downstream CCK2R. 1, gastrin stimulation of CCK2 will lead to the activation of Go13 (GTP-bound form) and dissociation from Gβγ. 2, Go13, protein activation will help to recruit Rgnef to the plasma membrane where it can bind and facilitate FAK-Tyr-397 phosphorylation. 3, at later points, Go13 can facilitate activation of the Rgnef-GEF activity leading to the activation of RhoA and signaling cascade that enhances paxillin tyrosine phosphorylation and SRE promoter activity.
Ga13 activation of Rgnef

11. Kim, J.-S., Baresis, S., Kim, K. K., Tatum, R., Han, J.-R., Jin, Y. H., Kim, H., Lu, Q., and Kim, K. (2006) Presenilin-1 inhibits δ-catenin-induced cellular branching and promotes δ-catenin processing and turnover. Biochem. Biophys. Res. Commun. 351, 903–908
12. Kim, H., Oh, M., Lu, Q., and Kim, K. (2008) E-Cadherin negatively modulates δ-catenin-induced morphological changes and RhoA activity reduction by competing with p190RhoGEF for δ-catenin. Biochem. Biophys. Res. Commun. 377, 636–641
13. Gebbink, M. F., Kranenburg, O., Poland, M., van Horck, F. P., Houssa, B., and Moolenaar, W. H. (1997) Identification of a novel, putative Rho-specific GDP/GTP exchange factor and a RhoA-binding protein: control of neuronal morphology. J. Cell Biol. 137, 1603–1613
14. Schmidt, A., and Hall, A. (2002) Guanine nucleotide exchange factors for Rho GTPases: turning on Rho GTPases on the switch. Genes Dev. 16, 1587–1609
15. Rossman, K. L., Der, C. J., and Sondek, J. (2005) GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180
16. Sternweis, P. C., Caflisch, A. M., Chen, Z., Danes, S. M., Hsiung, Y.-F., and Singer, W. D. (2007) Regulation of Rho guanine nucleotide exchange factors by G proteins. Adv. Protein Chem. 74, 189–228
17. Aittaleb, M., Boguth, C. A., and Tesmer, J. J. (2010) Structure and function of heterotrimeric G protein-regulated Rho guanine nucleotide exchange factors. Mol. Pharmacol. 77, 111–125
18. Diviani, D., Soderling, J., and Scott, J. D. (2001) AKAP-Lbc anchors protein kinase A and nuclelates Ga12-selective Rho-mediated stress fiber formation. J. Biol. Chem. 276, 44247–44257
19. Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R., and Voyno-Yasenetskaya, T. (2003) Regulation of RhoA and Rac1 activation of Gq protein-regulated Rho guanine nucleotide exchange factors. Mol. Pharmacol. 74, 115–122
20. Rossmann, K. L., Der, C. J., and Sondek, J. (2005) GEF means go: turning on Rho GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180
21. Siehler, S. (2009) Regulation of RhoGEF proteins by G12/13-coupled restraints. Methods Enzymol. 406, 425–437
22. Niu, J., Profirovic, J., Pan, H., Vaiskunaite, R., and Voyno-Yasenetskaya, T. (2003) G protein βγ subunits stimulate p114RhoGEF, a guanine nucleotide exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Circ. Res. 93, 848–856
23. Dutt, P., Kjoller, L., Giel, M., Hall, A., and Toksoz, D. (2002) Activated Geq family members induce Rho GTPase activation and Rho-dependent actin restraints. Cell 112, 319–322
24. Jones, T. L., and Gutfind, J. S. (1998) Ga12 requires acylation for its transforming activity. Biochemistry 37, 3196–3202
25. Kumar, R. N., Shore, S. K., and Dhanasekaran, N. (2006) Neoplastic transformation by the gep oncogene, Ga12, involves signaling by STAT3. Oncogene 25, 899–906
26. Juneja, J., Cushman, I., and Casey, P. J. (2011) Ga12 Signaling through c-Jun NH2-terminal kinase promotes breast cancer cell invasion. PLoS One 6, e26085
27. Meigs, T. E., Fedor-Chaiken, M., Kaplan, D. D., Brackenbury, R., and Meigs, T. E. (2010) Gβγ subunits stimulate p114RhoGEF, a guanine nucleotide-exchange factor for RhoA and Rac1: regulation of cell shape and reactive oxygen species production. Circ. Res. 93, 848–856
28. Dutt, P., Kjoller, L., Giel, M., Hall, A., and Toksoz, D. (2002) Activated Geq family members induce Rho GTPase activation and Rho-dependent actin restraints. Cell 112, 319–322
29. Ch urb, A. (2005) Comparative protein modeling by satisfaction of spatial restraints. Mol. Med. Today 1, 270–277
30. Chen, Z., Singer, W. D., Danes, S. M., Sternweis, P. C., and Sprang, S. R. (2008) Recognition of the activated states of Ga13 by the GqRGS domain of PDE12RhoGEF. Structure 16, 1532–1543
31. Ch urb, A. (2005) Comparative protein modeling by satisfaction of spatial restraints. Mol. Med. Today 1, 270–277
32. Lindorf-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., and Shaw, D. E. (2010) Improved side-chain torsion potentials for the Amber ff95SB protein force field. Proteins 78, 1950–1958
33. Suzuki, N., Nakamura, S., Mano, H., and Kozasa, T. (2011) Identification of critical residues in Ga13 for stimulation of p115RhoGEF activity and the structure of the Ga13-p115RhoGEF regulator of G protein signaling homology (RH) domain complex. J. Biol. Chem. 286, 20625–20636
34. Taniguchi, T., Takiishi, K., Murayama, T., Ito, M., Iwata, N., Chihara, K., Sasaki, T., Takai, Y., and Matsui, T. (1996) Cholecalciferol-B-gastrin receptors mediate rapid formation of actin stress fibers. Oncogene 13, 1357–1360
35. Sprang, S. R., Chen, Z., and Du, X. (2007) Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins. Adv. Protein Chem. 74, 1–65
36. G ronocka, E., and Wedegaertner, P. B. (2007) Disruption of oligomerization induces nucleocytoplasmic shuttling of leukemia-associated rhodoes Gα13-Guanine-nucleotide exchange factor. Mol. Pharmacol. 72, 993–1002
37. Baisamy, L., Jurisch, N., and Diviani, D. (2005) Leucine zipper-mediated homo-oligomerization regulates the Ras-RhoGEF activity of AKAP-Lbc. J. Biol. Chem. 280, 15405–15412
38. Suzuki, N., Tsumoto, K., Horigue, N., Daigo, K., Tokita, R., Minami, S., Kodama, T., Hamakubo, T., and Kozasa, T. (2009) Activation of leukemia-associated RhoGEF by Ga13 with significant conformational rearrangements in the interface. J. Biol. Chem. 284, 5000–5009
52. Wells, C. D., Liu, M.-Y., Jackson, M., Gutowski, S., Sternweis, P. M., Rothstein, J. D., Kozasa, T., and Sternweis, P. C. (2002) Mechanisms for reversible regulation between G13 and Rho exchange factors. J. Biol. Chem. 277, 1174–1181

53. Chen, Z., Guo, L., Hadas, J., Gutowski, S., Sprang, S. R., and Sternweis, P. C. (2012) Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain. J. Biol. Chem. 287, 25490–25500

54. Sabbatini, M. E., Bi, Y., Ji, B., Ernst, S. A., and Williams, J. A. (2010) CCK activates RhoA and Rac1 differentially through Gα13 and Gαq in mouse pancreatic acini. Am. J. Physiol. Cell Physiol. 298, C592–C601

55. Booden, M. A., Siderovski, D. P., and Der, C. J. (2002) Leukemia-associated Rho guanine nucleotide exchange factor promotes Gαq-coupled activation of RhoA. Mol. Cell. Biol. 22, 4053–4061

56. Lutz, S., Freichel-Blomquist, A., Yang, Y., Rümenapp, U., Jakobs, K. H., Schmidt, M., and Wieland, T. (2005) The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J. Biol. Chem. 280, 11134–11139

57. Lutz, S., Shankaranarayanan, A., Coco, C., Ridilla, M., Nance, M. R., Vettel, C., Baltus, D., Evelyn, C. R., Neubig, R. R., Wieland, T., and Tesmer, J. J. (2007) Structure of Gαq-p63RhoGEF-RhoA complex reveals a pathway for the activation of RhoA by GPCRs. Science 318, 1923–1927

58. Miller, N. L., Lawson, C., Kleinschmidt, E. G., Tancioni, I., Uryu, S., and Schlaepfer, D. D. (2013) A noncanonical role for Rgnef in promoting integrin-stimulated focal adhesion kinase activation. J. Cell Sci. 126, 5074–5085

59. Gong, H., Shen, B., Flevaris, P., Chow, C., Lam, S. C., Voyno-Yasenetskaya, T. A., Kozasa, T., and Du, X. (2010) G protein subunit G 13 binds to integrin Ilb 3 and mediates integrin “Outside-in” signaling. Science 327, 340–343

60. Dufresne, M., Seva, C., and Fourmy, D. (2006) Cholecystokinin and gastrin receptors. Physiol. Rev. 86, 805–847

61. Fourmy, D., Gigoux, V., and Reubi, J. C. (2011) Gastrin in gastrointestinal diseases. Gastroenterology 141, 814–818

62. Rasheed, S. A., Teo, C. R., Beillard, E. J., Voorhoeve, P. M., and Casey, P. J. (2013) MicroRNA-182 and microRNA-200a control G protein subunit α-13 (GNA13) expression and cell invasion synergistically in prostate cancer cells. J. Biol. Chem. 288, 7986–7995

63. Gardner, J. A., Ha, I. H., Jayaraman, M., and Dhanasekaran, D. N. (2013) The gep proto-oncogene Gα13 mediates lysophosphatidic acid-mediated migration of pancreatic cancer cells. Pancreas 42, 819–828

64. Zhai, J., Lin, H., Nie, Z., Wu, J., Cañete-Soler, R., Schlaepfer, W. W., and Schlaepfer, D. D. (2003) Direct interaction of focal adhesion kinase with p190RhoGEF. J. Biol. Chem. 278, 24865–24873

5074–5085