Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria

Wipa Suginta,† Natchanok Sritho,† Araya Ranok,‡ David Bulmer,† Yoshihito Kitaoku,† Bert van den Berg,‡ and Tamo Fukamizo†,§

†Biochemistry-Electrochemistry Research Unit, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand,
‡Rajamangala University of Technology Isan, 744 Suranarai Road Muang District Nakhon Ratchasima 30000 Thailand,
§Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,
and †Department of Advanced Bioscience, Kindai University, 3327-204 Nakamachi, Nara 631-8505 Japan,

Running title: Chitooligosaccharide-binding protein from Vibrios

ABSTRACT: Periplasmic solute-binding proteins (SBPs) in bacteria are involved in the active transport of nutrients into the cytoplasm. In marine bacteria of the genus
Vibrio, a chitooligosaccharide-binding protein (CBP) is thought to be the major SBP controlling the rate of chitin uptake in these bacteria. However, the molecular mechanism of the CBP involvement in chitin metabolism has not been elucidated. Here, we report the structure and function of a recombinant chitooligosaccharide-binding protein from Vibrio harveyi, namely VhCBP, expressed in Escherichia coli. Isothermal titration calorimetry (ITC) revealed that VhCBP strongly binds shorter chitooligosaccharides [(GlcNAc)n, n = 2, 3, and 4] with affinities that are considerably greater than those for glycoside hydrolase family 18 (GH18), a β-1,4-linked polysaccharide of N-acetylglucosamine (GlcNAc), which is an important marine biomass, which is efficiently converted by Vibrios. Thus, V. harveyi has an efficient chitin degradation system, including a chitinase A (2-5) belonging to glycoside hydrolase family 18 (GH18), a β-N-acetylglucosaminidase (6,7) belonging to the GH20 family, and a chitin-oligosaccharide deacetylase (8,9) belonging to carbohydrate esterase family 4 (CE4). GH18 chitinases hydrolyze β-1,4-glycosidic linkages of chitin in an endo-splitting mode, producing chitin oligosaccharides (GlcNAc)n (n=2, 3, 4, and 1).
more), which are further hydrolyzed into GlcNAc monomer in an exo-splitting mode by GH20 β-N-acetylglucosaminidase. The CE4 enzyme hydrolyzes the amide bond of the reducing end residue of (GlcNAc)_2 producing the deacetylated derivative (10). V. harveyi also has an efficient uptake system of GlcNAc or (GlcNAc)_n, including an ATP-binding cassette-type (ABC) transporter for GlcNAc or (GlcNAc)_n (11) and a chitoporin for the transport of chitin oligosaccharides (GlcNAc)_n (n=3, 4, 5, and 6) (12-14). In Vibrio species, all proteins described in this study are most likely crucial for efficient degradation/uptake of chitin as nutrients.

On the other hand, it has been recognized that solute-binding proteins (SBPs) localized to the periplasmic space of Gram-negative bacteria are involved in nutrient import as components of ABC transporters (15). The solute binding triggers the association of SBPs with the ABC transporter located in the cytoplasmic membrane. The solute is then released from SBP, and actively transported into the cytoplasm using energy provided by ATPase as one of the components of the transporter (15). In some cases, SBPs are also involved in transduction of solute signals into cytoplasm (16). Most bacterial SBPs investigated to date adopt a similar fold composed of two lobes, which are connected by one or more polypeptide chains. In the solute-free conformation, the two lobes are separated; however, the solute binds to the cleft formed between the two domains, resulting in closure of the two lobes (15). This closed conformation of SBP has been regarded as important for interaction with the transporter; hence, for the active transport of the solute (17).

Similar SBPs also exist in the chitin-catabolizing system of marine Vibrio bacteria. In V. cholera, an SBP has been identified to bind chitooligosaccharides, and thereafter referred to as VcCBP, following its specificity towards these specific sugars. It has been proposed that VcCBP may play essential roles in controlling the rate of chitooligosaccharide transport across phospholipid membranes, as well as acting as a negative regulator of chitin catabolic sensor/kinase that controls expression of proteins involving the chitin degradation cascade (11). However, the exact physiological roles of VcCBP in the chitin metabolism of Vibrios remain to be elucidated. Although crystal structures of VcCBP have been registered in Protein Data Bank as PDB codes, 1ZTY and 1ZU0, no functional data were reported for this protein. We found a homologue of VcCBP in V. harveyi (VhCBP), the amino acid sequence of which is highly homologous (83%) to that of VcCBP, as shown in Fig. 1. Based on the amino acid sequence similarity, these two proteins do not match with any CBM family members in the CAZy database (http://www.cazy.org), but match with the members in the SBP family 5 (https://www.ebi.ac.uk/interpro/entry/IPR00094), which includes oligopeptide-binding proteins, murein-peptide-binding proteins, and nickel-binding proteins. The binding targets of the members of this family are diverse, suggesting that the mechanism of solute binding may differ from each other despite significant sequence similarity.

We herein produced a recombinant protein of VhCBP, which was characterized with respect to the crystal structure and chitooligosaccharide-binding properties. The crystal structure revealed the molecular basis of the strong binding of chitooligosaccharide to VhCBP followed by the drastic conformational change, which may be important for the active transport.

RESULTS

Production of recombinant VhCBP protein by E. coli expression system—Using E. coli strain Origami (DE3) and the pET23a expression plasmid, we successfully produced the recombinant VhCBP protein, which was then purified by Ni²⁺-affinity chromatography followed by anion exchange chromatography (HiTrap Q) and gel-filtration on 16/60 Superdex 200. The profile of the final step of purification is shown in Fig. 2A. SDS-PAGE of the purified VhCBP revealed a single protein band at 61 kDa of molecular mass, which correspond to the calculated molecular mass of VhCBP (61223.41 Da). From 1 liter culture medium, we obtained 10 mg of the purified VhCBP on average. Since prediction of post-translational glycosylation suggested two putative N-glycosylation sites (aa 367-369; Asn-Asn-Thr and aa 493-495; Asn-Thr-Thr) for VhCBP, hence we carried out digestion of the protein by N-glycosidase F to prove the glycosylation status of VhCBP. The results showed no difference in
the migration of VhCBP on SDS-PAGE gel before and after the enzyme digestion, indicating that VhCBP is not N-glycosylated (data not shown).

Chitooligosaccharide binding to VhCBP—Before testing soluble sugars, GlcNAc to (GlcNAc)₆, we conducted the binding experiments using insoluble chitin. As shown in Fig. 2B, the relative amounts of bound proteins were much lower in VhCBP than in chitinase A from *Vibrio harveyi* (VhChiA), which was reported to have a strong affinity to both colloidal α- and β-chitins (18), as a positive control. VhChiA was bound to both the colloidal α- and β-chitins by 50-55 % of the total protein content, whereas the amounts of bound fractions for VhCBP were less than 1 %. VhCBP did not exhibit a significant ability of insoluble chitin binding. Then, we tested soluble sugars from GlcNAc to (GlcNAc)₆ for its binding ability to VhCBP using ITC. The thermograms and theoretical fits for the individual titration experiments are shown in Figs. 3A-3F. Titration of GlcNAc (Fig. 3A) released only a background heat, indicating no significant interaction. The thermograms obtained for (GlcNAc)₂, (GlcNAc)₃, and (GlcNAc)₄ exhibited strong heat releases (Figs. 3B, 3C, and 3D), and their binding isotherms suggested high affinities to VhCBP. The thermodynamic parameters obtained from data-fitting are listed in Table 1. The stoichiometries for (GlcNAc)₂, (GlcNAc)₃, and (GlcNAc)₄ were from 0.7 to 0.8, suggesting a simple 1:1 binding mechanism. The binding affinities were almost identical to each other (∆G° = -38 to -40 kJ/mol). The favorable enthalpy changes (∆H°) for (GlcNAc)₁ and (GlcNAc)₄ (-41.8 and -44.4 kJ/mol) were much lower than that of (GlcNAc)₂ (-91.6 kJ/mol), and the lower enthalpy changes were compensated by the decrease in unfavorable entropy changes (from 51.8 kJ/mol to 3.0 and 6.3 kJ/mol of -7ΔS°), resulting in similar affinities of (GlcNAc)₂, (GlcNAc)₃, and (GlcNAc)₄ also released no significant heat, underlying no binding affinity of VhCBP towards longer-chain chitooligosaccharides. The ITC results suggested that two units of GlcNAc are necessary and sufficient for interaction with VhCBP.

Crystal structure of VhCBP in complex with (GlcNAc)₂—We successfully solved the crystal structure of VhCBP in complex with (GlcNAc)₂ at 1.4 Å resolution, but failed to produce X-ray-diffraction quality crystals of the unliganded VhCBP. The crystallographic and refinement statistics are listed in Table 2. Figure 4A shows the overall structure of VhCBP in complex with (GlcNAc)₂, which adopts a two-domain conformation. The individual domains are designated as the upper domain (colored in magenta) and the lower domain (colored in cyan) in this report. (GlcNAc)₂ (colored in wine red) was observed in the very narrow cleft between the two domains. In the upper domain (Fig. 1; amino acids 1-241, α₁-α₈, and β₁-β₁₁; amino acids 488-530, α₂₁, and β₁₇), a cluster of several α-helices and loop structures is supported from both sides by two major antiparallel β-sheets (β₁-β₈-β₉-β₁₀ and β₄-β₅-β₆-β₇) and two minor antiparallel β-sheets (β₂-β₃ and β₁₁-β₁₇), forming a hat-like fold, which is decorated by two-additional α-helices (α₇ and α₈). The electron density of the C-terminal hexahistidine residues was not observed in this structure. In the lower domain (Fig. 1; amino acids 242-487, α₉-α₂₀, β₁₂-β₁₆), a three-stranded antiparallel β-sheet (β₁₂-β₁₅-β₁₆) and a two-stranded parallel β-sheet (β₁₃-β₁₄) are surrounded by 12 α-helices. A metal ion (colored in orange) was observed in the central part of the lower domain as shown in Fig. 4A. This was successfully modeled as Ni²⁺, but not as Mg²⁺ or Mn²⁺ as found in the crystal structure of *Vc*CBP (PDB code, 1ZU0). The residual Ni²⁺ was likely present during the VhCBP preparation using Ni²⁺-agarose affinity chromatography (see Methods). Two flexible linkers (colored in blue) located between the β₁₁ and β₁₂ (Tyr241, Pro242, and Pro243) and between β₁₆ and β₁₇ (Tyr488 and Met489) connect the two domains as a hinge that forms the sugar-binding cleft, where (GlcNAc)₂ was bound. However, the bound sugar was invisible in the surface model of the structure (Fig. 5A), indicating that (GlcNAc)₂ was buried inside and completely hidden by the surrounding amino acids. The complex structure of VhCBP was very similar to that of the unpublished *Vc*CBP in complex with (GlcNAc)₂ (PDB code, 1ZU0) with an RMSD of 0.46 Å (Fig. 4B). On the other hand, the crystal structure of an unliganded form of VhCBP was also registered in PDB (1ZTV), and considerably differed from that of liganded VhCBP (RMSD = 7.05 Å), as shown in Fig. 4C. The cleft between the upper (colored in yellow)
and lower (colored in brown) domains was widely opened in the unliganded form of VcCBP, as shown in the surface model of the structure (Fig. 5B). (GlcNAc)$_2$ binding to the hinge region of VhCBP appeared to strongly affect the protein conformation and to narrow the cleft between the two domains through a domain motion.

Binding mode of (GlcNAc)$_2$— Figure 6A shows a close-up view of the (GlcNAc)$_2$ binding site of VhCBP. Clear electron density for the two sugar units was found at the interface between the upper and lower domains. (GlcNAc)$_2$ was sandwiched between two tryptophan side chains by face-to-face stacking interactions; one is from the upper domain (Trp513) and the other from the lower domain (Trp363). In addition to the stacking interactions, a number of hydrogen bonds are formed between VhCBP and the bound sugar (Fig. 6B). Five direct hydrogen bonds are observed with the non-reducing end GlcNac (NRE). The hydroxyl oxygens of C3 and C4 interact with the main chain nitrogen of Phe222 and side chain nitrogen of Asn204, respectively. The hydroxyl oxygen of C6 also interacts with the side chain carboxylate of Asp365. The acetamido nitrogen and oxygen interact with the side chain carboxylate of Glu10 and the indole nitrogen of Trp513, respectively. On the other hand, three hydrogen bonds appeared to be directly formed with the reducing end GlcNac (RE). The acetamido oxygen forms a hydrogen bond with the guanidyl nitrogen of Arg436, and the C3 hydroxy oxygen also forms a hydrogen bond with the side chain nitrogen of Asn409. The C6 hydroxy oxygen interacts with the side chain oxygen of Glu10. All interacting amino acids described here are conserved in VcCBP (Fig. 1) except Glu10. In addition to these direct hydrogen-bonds, several water-mediated hydrogen bonds are also formed with the bound (GlcNAc)$_2$, as shown in Fig. 6B.

DISCUSSION

When the amino acid sequence of VhCBP was analyzed by the Pfam protein families database (http://pfam.xfam.org), the protein was found to belong to the SBP family 5. Among the proteins belonging to this family, we found two more proteins possessing an ability to interact with (GlcNAc)$_h$. First, periplasmic (GlcNAc)$_2$-binding protein interacting with the corresponding ABC transporter from *Vibrio* sp. JCM19052. The amino acid sequence of the protein is 99 % homologous to that of VhCBP. Second, the chitooligosaccharide-binding protein from *Vibrio cholera* (VcCBP), X-ray crystal structures of which have already been registered in Protein Data Bank. These proteins may play important roles in the active transport of the solutes derived from chitin and the related compounds. However, most sugar-binding proteins, such as maltose- and galactose-binding proteins, are distributed to SBP families 1 and 2 (http://www.ebi.ac.uk/interpro/entry/IPR006059) (19). Maltose-binding proteins belonging to the SBP family 1 and galactose-binding proteins belonging to the SBP family 2 are smaller in size (396 to 438 residues and 296 to 306 residues, respectively) than those of VhCBP and VcCBP belonging to the SBP family 5. The dissociation constants of these binding proteins toward the carbohydrates were reported to be approximately 1.0 µM (19). Nevertheless, no functional data have been reported for these chitooligosaccharide-binding proteins. We first described herein the structural and functional details of the chitooligosaccharide-binding protein from *V. harveyi* (VhCBP), which is highly homologous to that from *V. cholerae* (VcCBP).

Binding experiments for VhCBP revealed that the protein did not bind insoluble chitin polysaccharide but bind chitooligosaccharides with the polymerization degrees from 2 to 4 (Fig. 2B, Fig. 3, and Table 1) with K_ds of 31–66 nM, 15–30 higher affinities than those of maltose- and galactose-binding proteins (19). ITC analysis of (GlcNAc)$_h$ binding were thoroughly conducted for GH18 chitinase B from *Serratia marcescens* and a GH19 chitinase from *Bryum coronatum* (20,21), both of which have a long-extended binding cleft for (GlcNAc)$_h$. In both cases, the longer the chain length of (GlcNAc)$_h$, the higher the favorable free energy changes of binding (ΔG^*). The ΔG^* values of (GlcNAc)$_3$ to (GlcNAc)$_h$ were -20, -31, -35, and -38 kJ/mol for the GH18 enzyme, while -21, -28, -33, and -36 kJ/mol for the GH19 enzyme, respectively. For VhCBP, however, the ΔG^* values (-38 ~ -40 kJ/mol) were much higher than those of the chitinases, and were not clearly dependent on the degree of polymerization of (GlcNAc)$_h$ ($n=2$, 3, and 4). State of the (GlcNAc)$_h$ binding site for VhCBP appears to be different from those for the chitinases. As shown
in Figs. 4, 5, and 6, (GlcNAc)$_2$-binding site of VhCBP is unlikely long-extended but forms a small cavity, which can accommodate only a few sugar moieties. This may be the reason why the affinity toward (GlcNAc)$_2$ is somewhat higher than those toward (GlcNAc)$_3$ and (GlcNAc)$_4$. The third and forth GlcNAc residues may interfere with the binding to VhCBP to some extent.

In the crystal structure of VhCBP in complex with (GlcNAc)$_2$, five hydrogen bonds are formed with the non-reducing end GlcNAc (NRE), while three bonds with the reducing end GlcNAc (RE) (Fig. 6B). It appeared that the non-reducing end GlcNAc is more strongly recognized by VhCBP. More importantly, stacking CH-π interactions with the individual sugar residues are formed by two tryptophan residues, Trp363 from the lower domain and Trp513 from the upper domain, respectively (Fig. 6A). In the unliganded structure of VcCBP, the corresponding tryptophan residues are located apart from each other (17.2 Å). In the liganded structure of VcCBP and also VhCBP, the two tryptophans come close to each other (8.0 Å), and then (GlcNAc)$_2$ has been sandwiched between the two tryptophan residues, forming tight stacking interactions. This explains why VhCBP has much higher affinities toward chitin oligosaccharides as compared with GH18 and GH19 chitinases. As seen from the sequence alignment shown in Fig. 1, most amino acids interacting with (GlcNAc)$_2$ are conserved between VhCBP and VcCBP, except Glu10/Asp9, which is only a conservative mutation. The binding affinity of VcCBP toward (GlcNAc)$_2$ is most likely strong as in the case of VhCBP.

Although Ni$^{2+}$ ion was found at the central part of the lower domain, it was far from the (GlcNAc)$_2$ binding site. It is unlikely that the Ni$^{2+}$ ion is directly involved in the (GlcNAc)$_2$ binding. In the crystal structure of VcCBP, Mg$^{2+}$ or Mn$^{2+}$ is located in the lower domain; however, the metal-binding site is markedly different from that of VhCBP. The role of metal ion in the function of CBP is still unclear.

In the binding experiments of VhCBP, we tested only chitin and its oligosaccharides. In the complexed structure, both acetamido groups in bound (GlcNAc)$_2$ are recognized by VhCBP in addition to the hydroxyl groups of the pyranose rings (Fig. 6B). In the complexed structure, both acetamido groups in bound (GlcNAc)$_2$ made substantial interactions with polar residues in the sugar-binding pocket. These functional groups are predicted to play a crucial role in sugar specificity of VhCBP. The deacetylated oligosaccharides may interact, but weak interactions with VhCBP are expected due to the lack of the crucial acetamido groups.

Bacterial chitooligosaccharide-binding proteins are part of the chitin degradation pathway. The proteins usually recognize homochitooligomers not branched sugars. Structural inspection of VhCBP suggested a small, narrow sugar binding pocket, with both ends of the sugar binding sites not open to accommodate long-chain sugars or branched glycans. The feature of the sugar-binding pocket appears to determine the substrate specificity of this protein.

Conformational changes of periplasmic SBPs, such as ribose-binding protein, allose-binding protein, leucine/isoleucine/valine-binding protein, and leucine-binding protein, were intensively studied by X-ray crystallography (22-25). These SBPs adopt a similar fold made of two lobes, which are connected by one or more polypeptide chains, forming a hinge. Most SBP ligands were found to bind to this hinge region between the lobes. The binding of a ligand brings about a dramatic conformational change from opened form to closed form, and the ligand is then clamped between the two lobes. The structural findings for VhCBP including the binding mechanism and the conformational change are consistent with those of periplasmic SBPs reported to date. Thus, these structural aspects appeared to be a general feature among the periplasmic SBPs. However, multiple conformations were found in opened structures of ribose- and allose-binding proteins (23,24), suggesting that the conformational changes of these SBPs do not take place through a one-step transition from open to close conformation. In VhCBP, however, we failed to obtain the crystal structure of the open form. Further structural studies should be conducted to identify the mechanism of conformational
change in CBPs from bacteria. Hollenstein et al. (26) reported that the SBP-ligand complex in closed form possesses a protein-binding surface not present in the open form, suggesting that ligand-binding followed by the conformational change may be essential for SBP to be recognized by membrane-bound transporter protein. To further characterize our VhCBP protein, we are now trying to observe the interaction between VhCBP and the transporter protein from V. harveyi, in addition to the structural studies.

EXPERIMENTAL PROCEDURES

Materials— Solid α-chitin and β-chitin originated from crab and squid pen, respectively, were purchased from Marine BioResources Co. Ltd. (Thailand), and their derivatives, colloidal chitins, were prepared by the method of Roberts and Selitrennikoff (27). Chitin oligosaccharides, (GlcNAc)ₙ (n = 2-6), were purchased from Seikagaku Biobusiness Co. (Tokyo, Japan). E. coli strain Origami (DE3) cells and the expression vector pET23a(+) were from GenScript Co. (Piscataway, NJ). Ni²⁺-affinity resin, Ni-NTA, was also purchased from GebeScript Co. HiTrap Q and 16/60 Superdex 200 were from GE Healthcare (Chicago, IL). All other reagents were of analytic grade.

Expression plasmid— The pET23a(+) plasmid containing a synthetic gene encoding VhCBP fused with His-6 tag at C-terminus was obtained from GenScript Co., and designated as pET23a(+)VhCBP. The sequence of the VhCBP-encoding region was amplified by PCR, and confirmed to contain the exactly correct sequence of VhCBP from the restriction fragment profile.

Protein expression and purification— The expression plasmid, pET23a(+)VhCBP, was transformed into E. coli strain Origami (DE3) cells, which were inoculated into 10 mL of LB broth containing ampicillin/kanamycin, and grown overnight at 30 °C, while shaking 200 rpm. After centrifugation at 4,500 rpm and 4 °C for 20 min, cells were harvested, resuspended in 10 mL LB broth containing ampicillin/kanamycin, and then transferred to 1 L of LB broth containing ampicillin. The culture was incubated at 37 °C, shaking at 200 rpm, until optical density at 600 nm reached 0.7.

After cooling down the culture by sitting in ice-cold water for 20 min, isopropyl β-D-1-thiogalactopyranoside was added to a final concentration of 0.5 mM to induce expression. The culture was allowed to incubate at 25 °C for 16 h, and then centrifuged at 4,500 rpm for 15 min, to harvest the cells. The cells obtained were resuspended in 20 mM sodium phosphate, pH 7.4, containing 50 mM NaCl, 1 mM phenylmethlysulfonyl fluoride, 10% glycerol, 0.1% Triton X-100, and 3 Units of DNase, and then sonicated for 10 min. The cell debris was removed by centrifuge at 12000 rpm and 4 °C for 20 min, and the supernatant was applied onto a Ni-NTA column (2 mL recharged-resin) equilibrated with 20 mM sodium phosphate buffer pH 7.4, containing 50 mM NaCl and 10 mM imidazole. The eluted protein fractions were pooled and dialyzed against 20 mM sodium phosphate buffer pH 7.4, containing 50 mM NaCl. The resultant protein solution was filtered with 0.45 μm membrane filter, and applied onto a HiTrap Q column (5 mL) equilibrated with the dialysis buffer. After washing the column with the same buffer, the adsorbed protein was eluted with 30 mM of the same buffer containing 150 mM imidazole. The eluted protein fractions were pooled and finally purified by a gel-filtration column of 16/60 Superdex 200. After confirming a single protein band on SDS-PAGE (28) (Fig. 2A), the purified VhCBP fractions were stored at 4 °C, and used for subsequent experiments. Protein concentration was determined by reading absorbance at 280 nm, using the extinction coefficients, 103,375 M⁻¹ cm⁻¹, calculated from the equation proposed by Pace et al. (29).

Chitin binding assay— Binding experiments using insoluble chitins (colloidal α-chitin and colloidal β-chitin) were conducted at 4 °C. A reaction mixture (500 μL) comprising 5 μg VhCBP, 1.0 mg colloidal chitin, and 20 mM Tris-HCl buffer pH 8.0, containing 150 mM NaCl was incubated for 30 min, and then centrifuged at 12,000 rpm and 4 °C for 10 min. The supernatant (100 μL) was mixed with the Coomassie Brilliant Blue G-250 dye solution, and the protein concentration was determined by the method of Bradford (30). The amount of
bound protein was calculated by subtracting the free protein content at the equilibrium from the initial protein content, and then converted to the bound protein fraction (%). Initial protein content, and then converted to the bound protein fraction (%).

Isothermal titration calorimetry (ITC) experiments— The VhCBP solution (80-90 μM) in 20 mM potassium phosphate buffer (pH 8.0) was degassed and its concentration was determined. Individual (GlcNAc)_n (n = 1, 2, 3, 4, 5 and 6) (0.1 mM) were dissolved in the same buffer, and the solution pH was adjusted to 8.0. Then the (GlcNAc)_n solution was degassed and loaded into a syringe, while the protein solution (0.2028 mL) was loaded into the sample cell after confirming the solution pH 8.0. Calorimetric titration was performed with an iTC200 system (Microcal Northampton, MA) at 4 °C. Aliquots (1.0-2.0 μL) of the ligand solution were added to the sample cell with a stirring speed of 1000 rpm. Titrations were completed after 40 injections. For analysis of the ITC data, the Origin software installed in an ITC instrument was used. The One Set of Sites model was employed to fit the experimental data. The other details of the data analysis were previously described (21).

Crystallization and data collection— Crystal trials were setup by the Sitting Drop Vapor Diffusion method with Morpheus and Structure Screen Kits (Molecular Dimensions Limited, Suffolk, UK) using a Mosquito robot (TTB Labtech). Crystals plated were incubated at 20 °C and small crystals grown were observed under several conditions within three days of incubations. Further optimization was carried out manually using the Hanging Drop Vapor Diffusion method. A one μL aliquot of the protein solution (10-15 mg/mL in 10 mM HEPES, pH 7.5, 150 mM NaCl) was mixed with 1.5 μL of a reservoir solution. Bi-pyramidal crystals were observed with Morpheus conditions B4 (0.09M Halogens (NaF, NaBr, NaI), 0.1M Buffer 2 (HEPES/MOPS) pH 7.5 and 37.5% MPD_P1K_P3350 mix). Crystals were collected, briefly transferred to a solution of mother liquor containing 20% PEG400, and were then flash-frozen in liquid nitrogen. One of the crystals diffracted at the highest resolution of 1.36 Å and the structure was solved in PHENIX (31) using 1ZU0 as a molecular replacement model. For data collection under cryogenic conditions, the crystals were briefly transferred to the mother liquor, and were then flash-cooled by a nitrogen stream at 95 K. The dataset of the crystals was collected at 95 K at the beam-line I04-1 (Diamond Light Source, Didcot UK). The resulting dataset was processed with Dials and scaled with Aimless (32) in PHENIX. The crystals belong to the triclinic space group P31 21, with unit cell dimensions of a = 54.68 Å, b = 54.68 Å, c = 306.45 Å, α = 90.0°, β = 90.0°, and γ = 120.0°. The processing statistics are summarized in Table 2.

Structure determination and refinement— Initial phasing and modeling was done using AUTOSOL within PHENIX (31). Further model building was performed using the program COOT (33). Phase for VhCBP was obtained by molecular replacement (MR) using MOLREP (34) with the structure of VcCBP in complex with (GlcNAc)₂ (PDB code 1ZU0) as the search model. The analyses of the electron density map F_{obs} - F_{cal} and 2F_{obs} - F_{cal} and model building were carried out in COOT and restrained refinement in REFMAC5 (35). The geometry of the final model was validated by MolProbity (36). The final 2F_{obs} - F_{cal} omit map, contoured at 3.0 σ, clearly showed the electron density map for (GlcNAc)₂ with full occupancy. The structures and electron density maps of all the refined structures were created and displayed by PyMOL (37). The refinement statistics are summarized in Table 2.

Funding and Acknowledgments:
WS and TF received funding from Suranaree University of Technology (SUT) and by Office of the Higher Education Commission under the National Research University (NRU) Project of Thailand (Contract number FtR.12/2558). WS was also co-funded by the Thailand Research Fund and Suranaree University of Technology through a Basic Research Grant (BRG578001) and an SUT grant (SUT1-102-58-36-10). The authors gratefully acknowledge the Centre for Scientific and Technological Equipment, Suranaree University of Technology for providing the facilities for carrying out this research.
Author Contributions:
W.S. and T.F. designed this project, analyzed the data, and wrote the manuscript. S.N. and Y.K. and W.S. performed the functional experiments. D.B., A.R. and B.V.D.B. conducted crystallographic experiments and data analysis.

Competing financial interests:
The authors declare no competing financial interests.

REFERENCES

1. Austin, B. and Zhang, X. H. (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 43, 119-124
2. Songsiririthigul, C., Pantoom, S., Aguda, A. H., Robinson, R. C., and Suginta, W. (2008) Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: implications for the catalytic mechanism. J. Struct. Biol. 162, 491-499
3. Suginta, W., Pantoom, S., and Prinz, H. (2009) Substrate binding modes and anomer selectivity of chitinase A from Vibrio harveyi. J. Chem. Biol. 2, 191-202
4. Sritho, N. and Suginta, W. (2012) Role of Tyr-435 of Vibrio harveyi chitinase A in chitin utilization. Appl. Biochem. Biotechnol. 166, 1192-1202
5. Suginta, W. and Sritho, N. (2012) Multiple roles of Asp313 in the refined catalytic cycle of chitin degradation by Vibrio harveyi chitinase A. Biotsci. Biotechnol. Biochem. 76, 2275-2281
6. Meekrathok, P., Bürger, M., Porfetye, A. T., Vetter, I. R., and Suginta, W. (2015) Expression, purification, crystallization and preliminary crystallographic analysis of a GH20 β-N-acetylglucosaminidase from the marine bacterium Vibrio harveyi. Acta Crystallogr F Struct Biol Commun. 71, 427-433
7. Meekrathok, P. and Suginta, W. (2016) Probing the Catalytic Mechanism of Vibrio harveyi GH20 β-N-Acetylglucosaminidase by Chemical Rescue. PLoS One. 11, e0149228
8. Kadokura, K., Rokutani, A., Yamamoto, M., Ikegami, T., Sugita, H., Itoi, S., Hakamata, W., Oku, T. and Nishio, T. (2007) Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl. Microbiol. Biotechnol. 75, 357-365
9. Li, X., Wang, L. X., Wang, X, and Roseman, S. (2007) The chitin catabolic cascade in the marine bacterium Vibrio cholerae: characterization of a unique chitin oligosaccharide deacetylase. Glycobiology. 17, 1377-1387
10. Hirano, T., Kadokura, K., Ikegami, T., Shigeta, Y., Kumaki, Y., Hakamata, W., Oku, T. and Nishio, T. (2009) Heterodisaccharide 4-O-(N-acetyl-β-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes. Glycobiology. 19, 1046-1053
11. Li, X. and Roseman, S. (2004) The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc Natl Acad Sci U S A. 101, 627-631
12. Suginta, W., Chumjan, W., Mahendran, K. R., Janning, P., Schulte, A., and Winterhalter, M. (2013) Molecular uptake of chitooligosaccharides through chitoporin from the marine bacterium Vibrio harveyi. PLoS One. 8, e55126
13. Suginta, W., Chumjan, W., Mahendran, K. R., Schulte, A. and Winterhalter, M. (2013) Chitoporin from Vibrio harveyi, a channel with exceptional sugar specificity. J. Biol. Chem. 288, 11038-11046
14. Chumjan, W., Winterhalter, M., Schulte, A., Benz, R. and Suginta, W. (2015) Chitoporin

Abbreviations:
SBP, solute-binding protein, VhCBP, chitooligosaccharide-binding protein from Vibrio harveyi; VcCBP, chitooligosaccharide-binding protein from Vibrio cholerae; GlcNAc, N-acetylg glucosamine, (GlcNAc)n, β-1,4-linked oligosaccharide of GlcNAc with a polymerization degree of n; ABC, ATP-binding cassette; ITC, isothermal titration calorimetry;
Multiple open forms of ribose-binding protein trace the path of its conformational change. *J. Mol. Biol.* 279, 651–664

24. Magnusson, U., Chaudhuri, B. N., Ko, J., Park, C., Jones, T. A. and Mowbray, S. L. (2002) Hinge-bending motion of D-allose-binding protein from *Escherichia coli*—Three open conformations. *J. Biol. Chem.* 277, 14077–14084

25. Magnusson, U., Salopek-Sondi, B., Luck, L. A. and Mowbray, S. L. (2004) X-ray structures of the leucine-binding protein illustrate conformational changes and the basis of ligand specificity. *J. Biol. Chem.* 279, 8747–8752

26. Hollenstein K, Frei DC, Locher KP. (2007) Structure of an ABC transporter in complex with its binding protein. *Nature*. 446, 213–216

27. Roberts, W. K. and Selitrennikoff, C. P. (1988) Plant and Bacterial Chitinases Differ in Antifungal Activity. *J. Gen. Microbiol.* 134, 169–176

28. Laemmli U. K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. *Nature* 227, 680–685

29. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. *Protein Sci.* 4, 2411-2423

30. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72, 248–254

31. Adams, P. D. et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D Biol. Crystallogr.* 66, 213–221

32. Evans, P. R. and Murshudov, G. N. (2013) How good are my data and what is the resolution? *Acta Crystallogr D Biol Crystallogr.* 69, 1204–1214

33. Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132

34. Vagin, A. and Teplyakov, A. (1997) **MOLREP:** an automated program for molecular replacement. *J. Appl. Cryst.* 30, 1022-1025
35 Murshudov, G. N. et al. (2011) *REFMAC5* for the refinement of macromolecular crystal structures. *Acta Crystallogr D Biol Crystallogr*. 67, 355–367

36. Chen, V. B. et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol Crystallogr*. 66, 12–21

37. Delano, W.L. The Pymol Molecular Graphics System. (Online). Available: http://www.pymol.org.html.
Table 1. Thermodynamic parameter for ligand binding to *Vh*CBP determined by ITC.

Equilibrium dissociation constants (*K_*d) were obtained from the thermograms shown in Figs. 3B, 3C, and 3D. Values represent means ± SD from three independent sets of the experiments.

Ligands	n (stoichiometry)	*K_*d (nM)	*ΔH*° (kJ/mol)	*ΔG*° (kJ/mol)	-*TΔS*° (kJ/mol)
(GlcNAc)_2	0.7	31±8.3	-91.6	-39.8	51.8
(GlcNAc)_3	0.8	48±10.3	-41.8	-38.8	3.0
(GlcNAc)_4	0.7	66±17.9	-44.4	-38.1	6.3
Table 2. Data collection and refinement statistics

Data collection statistics	
Beamline	I04-1
Wavelength	0.92819
Resolution range (Å)	46.80 - 1.36 (1.40 – 1.36)
Space group	P 3 1 2 1
Unit cell	54.68 54.68 306.45 90.00 90.00 120.00
Total reflections	1105833 (55875)
Unique reflections	115984 (8241)
Multiplicity	9.5 (6.8)
Completeness (%)	99.8 (97.7)
Mean I/σ(I)	7.6 (1.2)
Wilson B-factor	13.92
R-merge	0.132 (1.659)
R-meas	0.139 (1.807)
R-pim	0.044 (0.697)
CC1/2	0.995 (0.067)
Reflections used in refinement	112276
Reflections used for R-free	5458
R-work	0.1706
R-free	0.2027
Number of non-hydrogen atoms	4466
Macromolecules	4369
Ligands	52
Solvent	472
Protein residues	532
RMS (bonds) (Å)	0.010
RMS (angles) (°)	1.055
Ramachandran favored (%)	96.98
Ramachandran allowed (%)	3.02
Ramachandran outliers (%)	0.00
Rotamer outliers (%)	1.48
Clashscore	1.84
Average B-factor (Å²)	21.376
Macromolecules	20.477
Ligands	34.056
Solvent	34.532
Number of TLS groups	10

Statistics for the highest-resolution shell are shown in parentheses.
FIGURE LEGENDS

FIGURE 1. Amino acid sequence and secondary structure alignments of VhCBP and VcCBP. The secondary structures located in the upper domain are drawn in orange (α-helices) and magenta (β-strands), while those located in the lower domain are drawn in blue (α-helices) and cyan (β-strands). Individual secondary structures, α-helices and β-strands, are designated as α1~α21 and β1~β21, respectively, from the N-terminus, and correspond to a1~a21 and b1~b21 in Fig. 4A. Amino acid residues involved in (GlcNAc)2 binding in the crystal structure of VhCBP in complex with (GlcNAc)2 are written in red, and are all conserved in both proteins, except Glu10 of VhCBP. The other conserved amino acids are highlighted by bold in the sequences. The two sequences share 83 % homology.

FIGURE 2. A, Gel-filtration of VhCBP using a column of 16/60 Superdex 200. Elution was conducted using 20 mM Tris-HCl buffer pH 8.0 containing 150 mM NaCl. Individual protein fractions were analyzed by SDS-PAGE (inset), which was performed according to the method of Laemmli (28). The gel was stained with Coomassie Brilliant Blue. B, Binding abilities of VhCBP toward colloidal α-chitin and β-chitin. A mixture solution (500 μl) comprising 5 μg protein, 1.0 mg colloidal chitin, and 20 mM Tris-HCl buffer pH 8.0, containing 150 mM NaCl was incubated for 30 min at 4 °C, and the bound protein fraction was calculated from the protein content of the supernatant determined by the method of Bradford (30). A chitinase A from Vibrio harveyi (18) was used as a positive control.

FIGURE 3. ITC thermograms (upper panels) and binding isotherms with theoretical fits (lower panels) obtained for the binding of GlcNAc (A), (GlcNAc)2 (B), (GlcNAc)3 (C), (GlcNAc)4 (D), (GlcNAc)5 (E), and (GlcNAc)6 (F) to VhCBP. The buffer used was 20 mM Tris-HCl buffer pH 8.0, containing 150 mM NaCl. Protein concentrations were 80-90 μM. The other experimental details are described in the text.

FIGURE 4. Crystal structure of VhCBP in complex with (GlcNAc)2. A, stereo view of the main chain conformation shown by ribbon model. The upper domain is colored in magenta, while the lower domain is colored in cyan. Two linkers connecting the two domains (Tyr241, Pro242, and Pro243; Tyr488 and Met489) are colored in blue. Secondary structure elements are designated as a1 to a21 for α-helices, and b1 to b17 for β-strands, from the N-terminus, corresponding to α1 to α21 and β1 to β17 in Fig. 1, respectively. The bound (GlcNAc)2 is represented by stick model colored in wine red. N-terminus and C-terminus are indicated by “N” and “C”, respectively. A metal ion located in the lower domain was modeled as Ni2+ and is represented by a sphere colored in orange. B, Superimposition of the Cα trace of the structure of VhCBP-(GlcNAc)2 complex with that of the VcCBP-(GlcNAc)2 complex (PDB code, 1ZU0), in which the upper domain is colored in yellow, while the lower domain is colored in brown. C, Superimposition of the Cα trace of the structure of VhCBP-(GlcNAc)2 complex with that of the unliganded VcCBP (PDB code, 1ZTY). The color system is the same as in B.

FIGURE 5. A, Surface model of the structure of VhCBP in complex with (GlcNAc)2. The bound (GlcNAc)2 is invisible, because it is completely hidden by surrounding amino acids derived from both upper and lower domains. The color system is the same as in Fig. 4A. The binding cleft between the upper and lower domains is closed upon (GlcNAc)2 binding, as shown in the side view (right panel). B, Surface model of the structure of unliganded VcCBP. The color system is the same as in Fig. 4B. The binding cleft between the upper and lower domains is opened, as shown in the side view (right panel).

FIGURE 6. A, Stereo representation of the close-up view of (GlcNAc)2 bound to VhCBP. The main chain structure of VhCBP is colored in magenta for the upper domain, while in cyan for the lower domain. The bound (GlcNAc)2 is represented by ball and stick model colored in wine red. The 2Fo-Fcalc omit map for (GlcNAc)2 is colored in grey, and is contoured at 1σ. The Trp363 side chain from the lower domain interacts with the non-reducing end GlcNAc, while the Trp513 side chain from the
upper domain interacts with the reducing end GlcNAc through CH-π stacking interactions. B, Stereo view of the interactions between VhCBP and (GlcNAc)$_2$. The bound (GlcNAc)$_2$ is shown as stick model colored in wine red, and the amino acid residues interacting with (GlcNAc)$_2$ are shown as stick model colored in cyan. Water molecules are represented by white spheres. Hydrogen bonds are represented as dotted lines. NRE and RE represent the non-reducing end GlcNAc and the reducing end GlcNAc, respectively.
Fig. 1
Absorbance at 280 nm

Fraction number

Bound protein fraction (%)

Colloidal α-chitin

Colloidal β-chitin

VhChIA

VhCBP

Fig. 2
A: \(Vh\text{CBP in complex with (GlcNAc)\(_2\) } \)

B: unliganded \(Vc\text{CBP} \)
Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria
Wipa Suginta, Natchanok Sritho, Araya Ranok, David Bulmer, Yoshihito Kitaoku, Bert van den Berg and Tamo Fukamizo

J. Biol. Chem. published online February 14, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001012

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts