A review: The use of mangrove for biomonitoring on aquatic environment

R Wilda, A M Hamdan* and R Rahmi
Department of Environmental Engineering, Faculty of Science and Technology, UIN Ar-Raniry Banda Aceh, Indonesia, 23111
Email: abd.mujahid.hamdan@gmail.com

Abstract. Mangroves have been investigated widely as plants that can absorb and accumulate heavy metals in their tissues. Due to that ability, mangroves have been used to reduce heavy metals in the aquatic environment. Furthermore, mangroves have been used for biomonitoring of heavy metals pollution. The use of mangroves for biomonitoring on aquatic environments has been considered as a cheap, rapid, and sufficient method. The mangrove is an organism that has the ability to absorb the contaminants of heavy metal and to function as fine pollutants trap. However, to develop this technique for wide use, research and investigation are still needed. This paper is aimed to describe the future direction of mangrove studies of using mangroves as a biomonitoring agent. Based on the review, *Rhizophora mucronata* and *Avicennia marina* are mangrove species that have a promising ability to be used for biomonitoring in the aquatic environment.

1. Introduction

Industrialization and urbanization have increased the anthropogenic contribution of heavy metals in the biosphere [1-4]. Domestic waste is a major source that contributes to the pollution of the environment [5]. The effect of anthropogenic has altered metal mobility and diversity [6-7]. Human activities in industrial sector, such as mining industry, as well as domestic activities, have a significant contribution to the increasing of heavy metals both in the air and the soil [8-9]. According to [10] the aquatic environments of Indonesia are suspected in certain areas to be contaminated by organic contaminants such as oil, detergent, and organic materials in the form of domestic sewage from the auto industry. In addition, heavy metals are one type of contaminants that attracts attention globally. The heaviest metals contaminant encountered in the aquatic environment [11,12,13]. Sources of heavy metal pollutants can be from mining operations [14] printing, electronic industry, waste [15] traffic activities, dust emissions, and agricultural activities [16]. The pollutants in the water not only can cause a decline in water quality, but also affect public and environmental health and environment health [17,18]. Therefore, the monitoring of heavy metals is necessary to provide a base controlling and maintaining environmental continuity.

Biomonitoring is an environmental monitoring technique that uses certain organisms or bioindicators that can provide information on the changes and quality of the environment [19-23]. Biomonitoring can be an excellent technique for monitoring surface water pollution such us rivers and ocean pollution [24]. Biomonitoring has been used to analyze various types of environments, both environments that change due to anthropogenic activities such as industry and housing, as well as environmental changes due to the influx of pollutants from natural sources [25,26].
In practice, the indicators used in biomonitoring can be animals, microorganisms, humans, and plants. One of the plants that are extensively used in biomonitoring is mangrove plants. Mangrove plants are plants that are commonly found in Indonesia such as in Sumatra, Java, Papua, Sulawesi, and Kalimantan. Mangroves are a community of plants that live in highly saline environments that are affected by tides [27]. The ecosystems of mangroves are intertidal ecosystem where are located between the marine and terrestrial environments in tropical and subtropical areas [28]. Mangrove forest ecosystems provide a variety of ecological benefits, including protection against flooding, prevention of coastline erosion, buffering salinity, and abundance of biodiversity [28].

Ecosystems of mangrove have the ability to tolerate heavy metal in their environment [29,30]. A number of studies have indicated that the plants are able to limit the mobility of contaminants in estuary environments [31]. One of the ecological functions of this plant is to resist toxic material [32,13] and to absorb heavy metals from the environment [33]. Therefore, mangroves have been used as bioremediation agents for heavy metals in the aquatic environment [34,35]. Because of its ability to accumulate heavy metals, the presence of heavy metals in their leaves can be a proxy of heavy metals abundance in the aquatic environment. The heavy metals that can be absorbed by mangroves including Cr, As, Al, Cd, Cu, Mn, Fe, Mo, Pb, Ni and Zn [36,37]. This paper aimed to review the mangroves’ abilities as a heavy metal indicator in the aquatic environment.

2. Accumulated heavy metals in the mangroves foliage
The mangrove species differ in their ability to tolerate and absorb heavy metals from the environment into their foliage. The difference is caused by the dissimilarity of the root system of each species [33]. In certain conditions, mangroves will be stressed and they cannot grow properly [38]. For example, mangrove species such as Excoecaria agallocha have a higher toxicity in the absorption of Pb in the roots than in the leaf tissue [39]. Heavy metals such as Cu, Zn, Cd, and Hg generally indicate high bioconcentration factors at the root, while the concentration factor for the leaf is usually much lower than the other parts [40,38]. Meanwhile, the type of Avicennia marina in translating Pb to leaves is lower than to the roots [41].

Table 1 shows several reports that use mangrove plants to reduce heavy metal content in water. Although different species, mangrove plants have a function as pollutant traps in absorbing various heavy metal elements in their environment. Avicennia marina and Rhizophora mucronata are mangrove species that have an excellent capability to absorb heavy metals such as Hg, Mn, Zn, Cr, Cu, Cd and Pb [40-43]. A. marina is a mangrove that is mostly found in coastal areas. The root of R. mucronata is hanging and has oval-shaped leaves [44]. According to [45], the roots foliage are the higher tissues in accumulation of heavy metals, because the roots are in direct contact to the sediments. Meanwhile, the absorption ability of heavy metals in mangrove species is differentiated by their root system [33]. The root surface of Rhizophora is broader than the root surface of Avicennia, so the ability of Rhizophora tends to be greater than Avicennia [42].

3. Mechanism of mangroves in accumulating heavy metals
Heavy metals from industrial waste are one of the most destructive contaminants for aquatic ecosystems. Heavy metals introduced into the water will be precipitated to the sediment. The sedimentation process occurs due to the unbiodegradable character of heavy metals, then it will affect the life of aquatic biota such as shellfish, shrimp, and crabs [50]. Furthermore, they affect the food chain system. The heavy metals that transport into the aquatic environment are generally ionic. The heavy metals in the form of compounds such as oxides, sulfides, hydroxides, and carbonate compounds are dissolved easily in the water [37]. A high concentration of heavy metals both essential and non-essential can affect plant growth, even they can threaten plant growth [51]. Therefore, the plants have mechanisms to minimize metal toxicity [18,52-57].
Table 1. Mangroves species that have been used in biomonitoring of heavy metals in the aquatic environment.

Species	Metals	Root (ppm)	Leaf (ppm)	Stem (ppm)	Fruit (ppm)	References	
Avicennia marina	Cu	23.674	16.567	21.674		Handayani, 2006	
	Cd	15.303	16.567				
	Zn	21.143					
Rhizophora mucronata	Cu	24.431					
	Cd	21.342					
	Zn	19.546					
Avicennia marina	Pb	2,19	3,54	5,89	1,71	Arisandy, 2012	
Avicennia marina	Pb	0,0912				Wulandari, 2018	
Rhizophora mucronata	Pb	0,0916					
Avicennia marina	Cu	7,17	7,76			Awaliya, 2018	[46]
	Pb	2,30					
Avicennia marina	Hg	0,002	0,026	0,059		Heriyanto, 2011	[48]
	Pb	5,21				Ali, 2012	
Rhizophora mucronata	Hg	13,82	110,81	66,70			
	Pb	5,19	8,03	10,39			
Sonneratia alba	Pb	4,15	3,74			Khairuddin, 2018	[35]
	Cd	0,19	0,24				
Rhizophora Apicullata	Pb	1,85	3,21				
	Cd	0,18	0,41				

The presence of heavy metals has an impact on the aquatic plants, including mangroves plant. The heavy metals in the mangrove tissues are entered by the mechanism of transportation of heavy metals from the environment into plant organs [58]. The heavy metals that enter into the mangroves tissues are accumulated. The heavy metals are in the form of anion and cation that are through the root systems [59,56]. The absorption occurs through the root epidermis [43]. The process of root system in absorbing is called rhizofiltration. This is a process in which plant roots absorb and precipitate heavy metals [60,37]. According to Rohmawati [61] the accumulation of heavy metals into plant roots by molecular transport in the root membrane, then form a complex metal transport to the xylem. Furthermore, absorption occurs in the two processes, including (i) absorption of ions directly into a meristem cell, and (ii) absorption of ions in the leaves. The mechanism of heavy metal accumulation in mangroves can be seen in figure 1.

Figure 1 is the absorption process of heavy metals in mangroves. The mechanism of absorbing heavy metals depends on the root surface and nutrients [62]. The heavy metal transportation and absorption through plasma membrane and tissue of secondary carrier such as a channel protein or H⁺ carrier protein, where membrane negative potential encourages cation uptake through secondary
carrier [33]. Then, the cations are released into the xylem which is assisted by a protein-carrying membrane. Phytocelatin and metallothionein are transport tissues that have a fundamental role in translocating of heavy metals [33]. Phytocelatin is a group of proteins that contain amino acids such as cysteine, glycine, and glutamic acid. These proteins will induce plants if the plant is stressed by heavy metals [63,64]. Phytocystalline binds the heavy metal ions, and then transport them to vacuoles. While metallothionein tissue space stored for excess heavy metal ions, then it also transports protein for excess heavy metals from cells to other cells. Factors that influence the transportation of organic substances in plants are: 1) pressure from the roots that push water upwards, 2) leaf transpiration, and 3) capillarity of xylem [65].

![Figure 1. Mechanisms of heavy metals accumulations of mangroves plants.](image)

The ability of the accumulation of heavy metals in mangrove plants can be determined by using bio concentration factor (BCF) and translocation factor (TF) [66,40]. BCF is used to determine the ability of plants to accumulate heavy metals in roots or leaves to the heavy metal concentrations within sediments [33]. The values > 1000 indicates high ability of acculation, the values of ≥ 250 are medium ability and the values of BCF <250 are low ability. The translocation factor can be used to measure the amount of heavy metal transferred from one organ to another [2, 67-50].

4. Potential use of mangroves
The mangrove forest ecosystem is one of the most prolific and unique [70]. Mangrove vegetation that grows in coastal waters is part of the coastal ecosystem which has the highest level of productivity compared to other coastal ecosystems. The presence of mangrove ecosystems in coastal waters
became vital because mangrove vegetation has the ability to accumulate heavy metals and to reduce the concentration of pollutants in the water [71]. Mangrove are mainly in tropical and subtropical zones [72]. Indonesia has the largest mangrove forest in the world. The Indonesian mangroves forest covers more than 50% of Asia's and nearly 25% of the world's mangrove forests [73]. Indonesia has long coastline, ± 95,181 km where a portion of the coastal area is covered with mangrove forests [74]. The Indonesia mangrove forests are amazingly varied because of the remarkable diversity of physiological conditions on the coast of Indonesia [75,76].

In Indonesia, the mangrove ecosystem is one of the resources endangered in the coastal zone. Anthropogenic is a major contributor to the degradation of mangrove forests, such as agriculture that uses chemicals, industry, and mining [77]. In the last three decades nearly 50% of the total degradation rate of mangrove forests in Indonesia had been lost. About 6.7 million ha is left to be around 3.2 million ha [78]. Logging is one of the causes for the decreasing of mangrove population. Excessive logging has a significant effect on species diversity and natural wealth. Mangrove populations that are converted into functions such as land use as fish ponds, which then influence the concentration of heavy metals in mangrove sediments [79]. The use of mangrove plants in Indonesia is usually used for risk reduction to catastrophic events such as abrasion and a drop of the land as a result of increasing population around the coastal that could result in the rob flood. The root system of mangroves reduces soil erosion and helps to stabilize the nearby coastal landscape. Another role of the mangrove ecosystem could be developed as a medium to neutralize the heavy metals in its surroundings. The followings are the roles of mangrove forests that are very important for the environment and humans: (1) to protect coastal areas from distractions and to provide habitat for different animal species, (2) as pollinators and carbon storage [80] (3) as a barrier to waves and protect from coastal erosion, (4) as an upbringing as a place to feed biota and spawn areas for various kinds of aquatic biota, (5) as strategic places for people who like fishing and as place for ecotourism (6) economically mangrove plants can be used as construction materials, firewood, roofs, docks, traditional medicine and handicrafts [81] mangroves are plants that have ability as hyperaccumulator.

Moreover, another role of the mangrove as a beach buffer against natural disasters such as tsunami of hurricane waves and extreme waves [82]. Mangroves do not only play an important role in ensuring the sustainability of coastal ecosystems, but also in providing important socio-economic benefits for communities around the coast [83]. Awareness of the use of mangrove waters is very influential on the state of the environment is polluted, and mangrove ecosystems that have various functions such as the function of ecological, social and economic [84]. Therefore, a monitoring of metal pollutants is necessary to provide a basis for controlling pollution, and biomonitoring is one way to tackle the problem of pollution since it reflects metal biocapability [85].

5. Conclusion
The use of mangroves for biomonitoring of heavy metals is very appropriate. Based on the review, *Rhizophora mucronata* and *Avecennia marina* are mangrove species that have a promising ability to be used for biomonitoring in aquatic environment. The mangrove is an organism that has the ability to absorb the contaminants of heavy metal and to function as fine pollutants trap. The mangroves also play a major role in the prevention of disasters.

References
[1] Lasat M M 2002 Phytoextraction of toxic metals *Journal of Envi Quality*, 31(1) 109
[2] Nagajyoti P C, Lee K D and Sreekanth T V M 2010 Heavy metals, occurrence and toxicity for plants: a review *Environt. Chem, letters* 8(3) 199-216
[3] Wang S L, Xu X-R, Sun Y X, Liu J L and Li H B 2013 Heavy metal pollution in coastal areas of South China: A review *Marine Pollution Bulletin* 76(1-2) 7–15 doi:10.1016/j.marpolbul.2013.08.025
[4] Harnani B R D 2017 Kemampuan *Avicennia marina* dan *Avicennia alba* untuk menurunkan konsentrasi tembaga (Cu) di muara sungai Wonorejo surabaya, (Doctoral dissertation, Institut Teknologi Sepuluh Nopember)

[5] Vijay R, Kho bragade P and Mohapatra P K 2011 Assessment of groundwater quality in Puri City, India: an impact of anthropogenic activities *Environ. monitoring and assessment*, 177(1-4) 409-18

[6] He B Li R Chai M and Qiu G 2013 Threat of heavy metal contamination in eight mangrove plants from the futian mangrove forest, China *Environ Geoc and Health* 36(3) 467–76

[7] Dewi P K, Hastuti E D and Budihastuti R 2018 Kemampuan akumulasi logam berat tembaga (Cu) pada akar mangrove jenis *avicennia marina* (forsk.) dan rhizophora mucronata (lamk.) di lahan tambak *J. Akademika, Biologi* 7(4) 14-9

[8] Lisa N 2013 Skripsi profil penyebaran logam berat di sekitar TPA pakusari Jember

[9] Irhamni I 2017 Serapan logam berat esensial dan non esensial pada air lindi TPA kota Banda Aceh dalam mewujudkan pembangunan berkelanjutan *J. Serambi, Engineering* 2(1)

[10] Makkasau A M, Sahjral N, Jalaluddin and I Raya 2011 Teknik fitoremediasi fitoplankton suatu alternatif pemulihan lingkungan laut yang tercemar ion logam Cd2+ dan Cr6+ Pendidikan Guru Sekolah Dasar 7(2) 155-68

[11] Budia stuti P M, Raharjo and N A Y Dewanti 2016 Analisis pencemaran logam berat timbal di perairan babon kecamatan genuk semarang *J. Kesehatan Masyarakat (e-Journal)*, 4 (5) 119-25

[12] Sun Z, Chen J, Wang X and Lv C 2016 Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China *Ecological. Engineering*, 86 60-8

[13] Fadillah S 2017 Cemaran logam berat timbal (Pb) pada daging ikan cendro (tylosurus crocodilus) di pesir krueng raya kabupaten aceh besar (contamination of heavy metal lead (Pb) in flesh of needlefish (tylosurus crocodilus) at Krueng Raya Aceh Besar) *J. Ilmiah Mahasiswa Veteriner*, 1(3) 391-7

[14] Herawati N, Suzuki S, Hayashi K, Rivai IF and Koyoma H 2000 Cadmium, copper and zinc levels in rice and soil pf japan , Indonesia and China by soil type *Bull environ contam toxicol* 64 (1) 33-9

[15] Rainbow P S and Luoma SN 2011 Metal tocity, uptake and bioaccumulation inaquatic invertebrates-modelling zin incrustaceans *Aquat. Toxicol*. 105 (3-4) 455-65

[16] Caregnato F F, Koller C E, MacFarlane G R and Moreira J C 2008 The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh. Marine Pollution Bulletin, 56(6) 1119-27

[17] Rondonuvv S B 2014 Fitoremediasi limbah merkuri menggunakan tanaman dan sistem reaktor *J. Ilmiah Sains*, 14(1) 52-9

[18] Jupriyati Ruri,Nirwani Soenardjo and Chrisna Adhi Suryono 2013 Akumulasi logam berat timbal (Pb) dan pengaruhnya terhadap histologi akar mangrove avicennia marina (forssk). Vierh. Di perairan Mangunharjo Semarang *J. Of Marine Research*, 3 (1) 61-8

[19] Day J 2000 Biomonitoring: Appropriate technology for the 21st Century. 1 st WARFSA, 1(2) 1-8

[20] Cairms J 2005 The crucial link between natural systems and society *Mankind quarterly*, 45(3), 289-308

[21] Komarawidjaja Wage and Titiresmi 2006 Teknik biomonitoring-sebagai alternatif “tool” pemantauan kualitas lingkungan perairan. Jakarta Teknologi Lingkungan, 144-47
[22] Aina L C S D E R and Kaswinarni F 2016 Biomonitoring pencemaran sungai Silugonggo kecamatan juwana berdasarkan kandungan logam berat (Pb) pada ikan lundu. Bioma J. Ilmiah biologi, 5(2)
[23] Riswandi A, Mahmudi M, Kurniawan A and Salamah L N 2019 Biofilm application as biomonitoring agent in heavy metals Pb2+ and Cr6+ in ngimboh coastal, ujung pangkah, Gresik J. Of wetlands environmental management, 7(2) 134-9
[24] Dewi E S, Ni’mah K and Kaswinarni F 2019 The content of heavy metal lead (Pb) on baung fish (Hemibagrus nemurus) as biomonitoring pollution of Wulan River of Demak Regency J. Of Physics: Conference Series, 1217(1) p 012128
[25] Owoade O K, Olise F S, Obioh I B, Olaniyi H B, Ferrero L and Bolzacchini E 2009. EDXRF elemental assay of airborne particulates: a case study of an iron and steel industry, Lagos, Nigeria Scientific Research and Essay, 4(11) 1342–47
[26] Taiwo A M, Beddows D C S, Calzolai G, Harrison R M, Lucarelli F, Nava S and Vecchi R 2014 Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site Science of the total environment, 490 488-500
[27] Panjaitan G C 2009 Akumulasi logam berat tembaga (Cu) dan timbal (Pb) pada pohon avicennia marina di hutan mangrove. Skripsi. Jurusan budaya hutan. Universitas Sumatera Utara. Medan.
[28] Lewis M, Pryor R and Wilking L 2011 Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review Environ. Pollution, 159 2328–46
[29] Nouri H, Borujeni S C, Nirola R, Hassanli A, Beecham S, Alaghmand S and Mulcahy D 2017 Application of green remediation on soil salinity treatment: a review on halophytoremediation Process safety and environmental protection, 107 94-107
[30] Liang Y, Sun W, Zhu YG and Christie P 2007 Mechanisms of siliconmediated alleviation of abiotic stresses in higher plants: a review Environ. Pollut, 147(2) 422–8
[31] Chaudhuri P, Nath B and Birch G 2014 Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: The role of rhizosphere processes Marine Pollution Bulletin, 79(1-2) 284–92
[32] Setiawan H 2013 Akumulasi dan distribusi logam berat pada begetasi mangrove di pesisir Sulawesi selatan J. Ilmu kehutanan, 7(1) 12-24
[33] Wulantari T, Hastuti R B and Hastuti E D 2018 Kemampuan akumulasi timbal (Pb) pada akar mangrove jenis avicennia marina (forsk.) Dan rhizophora mucronata (lamk.) Di lahan Tambak Mangunharjo Semarang J. Akademika Biologi, 7(1) 89-96
[34] Nath B, Birch G and Chaudhuri P 2014 Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination Science of the total environment, 472 1010-22
[35] Khairuddin M Y and Syukur A 2019 Analisis kandungan logam berat pada tumbuhan mangrove J. Biologi Tropis, 18(1) 69-79
[36] Almahasheer H, Serrano O, Duarte C M and Irigoien X 2018 Remobilization of heavy metals by mangrove leaves Frontiers in Marine Science, 5 484
[37] Utami R, Rismawati W and Sanpanli K 2018 Pemanfaatan mangrove untuk mengurangi logam berat di perairan In seminar nasional hari air sedunia, 1(1) 141-53
[38] Yan Z, Sun X, Xu Y, Zhang Q and Li X 2017 Accumulation and tolerance of mangroves to heavy metals: a review Current Pollution Reports, 3(4) 302–17
[39] Yan Z and Tam N F Y 2013 Differences in lead tolerance between Kandelia obovata and Acanthus ilicifolius seedlings under varying treatment times Aquatic toxicology, 126 154-62
[40] MacFarlane G R, Pulkownik and M D Burchett 2007 Accumulation and distribution of heavy metals in grey mangrove, avicennia marina (forsk) vierh: biological indication potential Environt. Pollution, 123 139-51
[41] MacFarlane G R and M D Burchett 2001 Photosynthetic pigments and peroxides activity as indicators of heavy metal stress in the grey mangrove avicennia marina (forsk.) Veirh Marine Pollution Bulletin, 42 233-40
[42] Handayani T 2006 Bioakumulasi logam berat dalam mangrove rhizopora mucronata dan avicennia marina di muara angke Jakarta J. Teknologi Lingkungan, 7(3)
[43] Subiandono E, Bismark M and Heriyanto N M 2013 Kemampuan avicennia marina (forsk.) vierh. Dalam penyerapan polutan logam berat J. Penelitian Hutan dan Konservasi Alam, 10(1) 93-102
[44] Duke N C 2007 Rhizophora apiculata, R. Mucronata, R. Stylosa, R. annamalai, R.Lamarkkii (indo– west pacific stilt mangrove) Permanent Agriculture Resources, 2 (1)
[45] Kusumastuti W 2009 Evaluasi lahan basah bervegetasi mangrove dalam mengurangi pencemaran lingkungan: studi kasus di desa kepenting kabupaten sidoarjo. Thesis (tidak dipublikasikan) Universitas Diponegoro
[46] Awaliyah H F, Yona D and Pratiwi D C 2018 Akumulasi logam berat (pb dan cu) pada akar dan daun mangrove avicennia marina di sungai lamong, jawa timur DEPIK J. Ilmu-Ilmu Perairan, Pesisir dan Perikanan, 7(3) 187-97
[47] Arisandy K R, Herawati E Y and Supraymento E 2012 Akumulasi logam berat timbal (Pb) dan gambaran histologi pada jaringan avicennia marina (forsk.) Vierh di perairan pantai jawa timur J. Penelitian Perikanan, 1(1) 15-25
[48] Heriyanto N M 2017 Kandungan logam berat pada tumbuhan tanah, air ikan dan udang di hutan mangrove J. Penelitian hutan tanaman, 8(4) 197-205
[49] Ali Munawar and Rina 2012 Kemampuan tanaman mangrove untuk menyerap logam berat merkuri (hg) dan timbal (pb). Universitas pembangunan nasional “veteran” jawa timur J. Ilmiah Teknik Lingkungan, 2(2)
[50] Yalcin G, Narin I and Soylak M 2008 Multivariate analysis of heavy metal contents of sediments from gumusler creek, nigde, turkey Environ. Geology, 54 1155-63
[51] Hall J L 2002 Cellular mechanisms for heavy metal detoxification and tolerance J. Of experimental botany, 53(366) 1-11
[52] Lindsey HD, James MM and Hector MG 2004 An assessment of metal contamination in mangrove sediments and leaves from punta mala bay, pacific panama Marine Pollution Bulletin, 50 547-52
[53] Dalvi A A and Bhalaria S A 2013 Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism Ann Plant Sci, 2(9) 362-8
[54] Siahaan M T A, Ambariyanto and Yulianto B 2013 Pengaruh pemberian timbal (Pb) dengan konsentrasi berbeda terhadap klorofil, kandungan timbal pada akar dan daun, serta struktur histologi jaringan akar anakan mangrove Rhizophora sp. Mucronata J. Of Marine Research, 2(2) 111-9
[55] Hamzah F and Pancawati Y 2013 Fitoremidiasi logam berat dengan menggunakan mangrove (phytoremiditation of heavy metals using mangroves) *ILMU KELAUTAN. Indonesian J. Of Marine Sciences*, 18(4) 203-12

[56] Sruthi P, Shackira A M and Puthur J T 2017 Heavy metal detoxification mechanisms in halophytes: an overview *Wetlands ecology and management*, 25(2) 129-48

[57] Mulyadi E, Laksmono R and Aprianti D 2017 Fungsi mangrove sebagai pengendali pencemar logam berat *J. Ilmiah teknik lingkungan*, 1 (Edisi Khusus): 24- 35

[58] Kurniawan A and Mustikasari D 2019 Review: Mekanisme akumulasi logam berat di ekosistem pascatambang timah *J. ilmu lingkungan*, 17(3) 408-15

[59] Machado W, Gueiros B B, Lisboa-Filho S D and Lacerda L D 2005 Trace metals in mangrove seedlings: role of iron plaque formation *Wetlands Ecology and Management*, 13(2) 199-206

[60] Irawanto R 2014 Konsentrasi logam berat (Pb dan Cd) pada bagian tumbuhan aquatik Coix lacryma-jobi (Jali). In *Seminar Nasional Konservasi dan Pemanfaatan Sumber Daya Alam* 2015. Sebelas Maret University

[61] Rohmawati 2007 Uji daya akumulasi tumbuhan *avicennia marina* terhadap logam berat (Cu, Cd Dan Hg) di pantai kenjeran surabaya. Skripsi tidak diterbitkan. Malang: Jurusan biologi fakultas sains dan teknologi universitas islam negeri malang

[62] Hidayanti N 2013 Mekanisme Fisiologis Tumbuhan Hiperakumulator Logam Berat= Heavy Metal Hyperaccumulator Plant Physiology Mechanism *J. Teknologi Lingkungan*, 14(2) 75-82

[63] Prasad M B K, Ramanathan A L, Shrivastav S K and Saxena R 2006 Metal fractionation studies in surfacial and core sediments in the Achankovil river basin in India *Environmental monitoring and assessment*, 121(1-3) 77-102

[64] Priyanto B and Prayitno J 2006 Fitoremediasi sebagai sebuah teknologi pemulihan pencemaran, khususnya logam

[65] Rungkut W, Timur S J and Febriana E 2017 Kandungan logam berat timbal (Pb) pada akar dan daun mangrove *avicennia marina* (forsk.) Di kawasan mangrove

[66] Zhang W, Cai Y, Tu C and Ma L Q 2002 Arsenic speciation and distribution in an arsenic hyperaccumulating plant *Science of The Total Environment*, 300(1-3) 167

[67] Suteja Y and Dirgayusa I G N P 2018 Bioaccumulation and translocation of chromium on crabs and mangroves in Mati River estuary, Bali, Indonesia. *Aquaculture, Aquarium, Conservation and Legislation*, 11(2) 469-75

[68] Takarina N D and Pin T G 2017 Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm *Mahara Journal of Science*, 21(2) 4

[69] Abohassan R A 2013 Heavy metal pollution in *avicennia marina* mangrove systems on the Red Sea coast of Saudi Arabia *J. Of King Abdulaziz University: Metrology, Environment and Arid Land Agricultural Sciences*, 142(579) 1-38

[70] Kaewtubtim, P., Meeinkuirt, W., Seepom, S and Pichtel, J 2016. Heavy metal phytoremediation potential of plant species in a mangrove ecosystem in Pattani Bay, Thailand. *Applied Ecology and Environmental Research*, 14(1) 367-82

[71] Hamzah F and Setiawan A 2010 Akumulasi Logam Berat Pb, Cu, dan Zn di Hutan Mangrove Muara Angke, Jakarta Utara *J. Ilmu dan Teknologi Kelautan Tropis*, 2(2) 41-52

[72] Moreira I T A, Oliveira O M C, Triguis J A, Queiroz A F S, Ferreira S L C, Martin C M S, Silva A C M and Falcao B A 2013 Phytoremediation in mangrove sediments impacted by persistent
total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. *Marine Pollution Bulletin, 67*(1-2) 130-6

[73] Onrizal O 2010 Perubahan tutupan hutan mangrove di pantai timur sumatera utara periode 1977-2006 *J. Biologi Indonesia, 6*(2) 163-72

[74] Kusmana C 2014 Distribution and current status of mangrove forests in Indonesia. In *Mangrove ecosystems of Asia* (pp. 37-60). Springer, New York, NY

[75] Eddy S, Iskandar I, Ridho M R and Mulyana A 2017 Dampak aktivitas antropogenik terhadap degradasi hutan mangrove di Indonesia

[76] Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo SG, Sanciangco JC, Sukardjo S, Wang Y and Yong JWH 2010 The loss of species: mangrove extinction risks and geographic areas of global concern. PLoS One 5(4): e10095. doi:10.1371/journal.pone.0010095

[77] Ilman M, Wibisono I T C and Suryadiputra I N M 2011 State of the Art Information on Mangrove Ecosystems in Indonesia. Wetlands International-Indonesia Programme. Bogor

[78] Fitri R Y and Anwar K 2014 Kebijakan pemerintah terhadap pelestarian hutan mangrove di kecamatan tebing tinggi kabupaten bengkalis. Jom FISI P, 1(2) 1-15

[79] Ngole-Jeme V M, Fonge B A, Tabot P T and Mumbang C 2016. Impact of logging activities in a tropical mangrove on ecosystem diversity and sediment heavy metal concentrations *J. Of Coastal Conservation, 20*(3) 245-55

[80] Purnobasuki H 2012 Pemanfaatan hutan mangrove sebagai penyimpan karbon. *Buletin PSL Universitas Surabaya, 28*(3-5) 1-6

[81] Saprudin and Halidah 2012 Potensi dan nilai manfaat jasa lingkungan hutan mangrove di kabupaten sinjai sulawesi selatan *Jurnal. Penelitian Hutan dan Konservasi Alam*, 9(3) 213-9

[82] Amma P K G and Bhaskaran P K 2020 Role of mangroves in wind-wave climate modeling. A review. *Of Coastal Conservation, 24*(2) doi:10.1007/s11852

[83] Suratman M N 2008 Carbon sequestration potential of mangroves in southeast asia. *Managing Forest Ecosystems*, 297–315 doi:10.1007/978-1

[84] Rizal A, Sahidin A and Herawati H 2018 Economic value estimation of mangrove ecosystems in Indonesia. *Biodiversity International Journal, 2*(1) 98-100

[85] Tien C J and Chen C S 2013 Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession. *Archives of environmental contamination and toxicology, 64*(4) 605-16