THIRD HOMOLOGY OF SL\(_2\) AND THE INDECOMPOSABLE \(K_3\)

BEHROOZ MIRZAI

Abstract. It is known that, for an infinite field \(F\), the indecomposable part of \(K_3(F)\) and the third homology of \(SL_2(F)\) are closely related. In fact, there is a canonical map \(\alpha : H_3(SL_2(F), \mathbb{Z})_{F_*} \to K_3(F)^{\text{ind}}\). Suslin has raised the question that, is \(\alpha\) an isomorphism [9]? Recently Hutchison and Tao have shown that this map is surjective [4]. They also gave some arguments about its injectivity. In this article, we improve their arguments and show that \(\alpha\) is bijective if and only if the natural maps \(H_3(GL_2(F), \mathbb{Z}) \to H_3(GL_3(F), \mathbb{Z})\) and \(H_3(SL_2(F), \mathbb{Z})_{F_*} \to H_3(GL_2(F), \mathbb{Z})\) are injective.

Introduction

For an infinite field \(F\), Suslin has proved that the Hurewicz homomorphism
\[
h_3 : K_3(F) = \pi_3(BSL(F)^+) \to H_3(BSL(F)^+, \mathbb{Z}) \simeq H_3(SL(F), \mathbb{Z})
\]
is surjective with 2-torsion kernel. In fact, he has shown that \(h_3\) sits in the exact sequence
\[
K_2(F) \xrightarrow{l(-1)} K_3(F) \to H_3(SL(F), \mathbb{Z}) \to 0,
\]
where the homomorphism \(l(-1) : K_2(F) \to K_3(F)\) coincides with multiplication by \(l(-1) \in K_1(\mathbb{Z})[10, \text{Lemma 5.2, Corollary 5.2}]\). Let
\[
\alpha : H_0(F^*, H_3(SL_2(F), \mathbb{Z})) \to K_3(F)^{\text{ind}}
\]
be the composition of the following sequence of homomorphisms
\[
H_0(F^*, H_3(SL_2(F), \mathbb{Z})) \xrightarrow{\text{inc}} H_3(SL(F), \mathbb{Z}) \xrightarrow{\sim} K_3(F)/l(-1)K_2(F) \xrightarrow{p} K_3(F)^{\text{ind}} := K_3(F)/K_3^M(F),
\]
where \(\text{inc}\) is induced by the inclusion \(\text{inc} : SL_2(F) \to SL(F)\), and \(p\) is induced by the inclusion \(l(-1)K_2(F) \subseteq \text{im}(K_3^M(F) \to K_3(F))\). For algebraically closed fields, it was known that \(\alpha\) is an isomorphism [1], [9]. Following this, Suslin raised the following question:

Question (Suslin). Is it true that \(H_0(F^*, H_3(SL_2(F), \mathbb{Z}))\) coincides with \(K_3(F)^{\text{ind}}\)? (See [9, Question 4.4]).
In other words, is α bijective for an arbitrary infinite field F? This question is true after killing 2-power torsion elements (i.e. after tensoring the both side of this map with $\mathbb{Z}[1/2]$) or when $F^* = F^{*2} = \{ a^2 | a \in F^* \}$ [6, Proposition 6.4].

Recently Hutchinson and Tao have proved that α is surjective [4, Lemma 5.1]. At the end of their article, they also stated that the injectivity of α is equivalent to the following three conditions:

1) $\text{im}(H_3(\text{SL}_2(F),\mathbb{Z}) \to H_3(\text{SL}(F),\mathbb{Z})) \simeq K_3(F)^\text{ind}$,

2) $H_3(\text{GL}_2(F),\mathbb{Z}) \to H_3(\text{GL}_3(F),\mathbb{Z})$ is injective,

3) $H_0(F^*,H_3(\text{SL}_2(F),\mathbb{Z})) \to H_3(\text{GL}_2(F),\mathbb{Z})$ is injective.

Among these conditions, the first one seems very unnatural. It is also very strong condition. In this article we show that this condition can be dropped from this list. In fact we prove the following result.

Theorem. Let F be an infinite field. The following conditions are equivalent.

(i) The homomorphism $\alpha : H_0(F^*,H_3(\text{SL}_2(F),\mathbb{Z})) \to K_3(F)^\text{ind}$ is bijective.

(ii) The natural homomorphisms $H_3(\text{GL}_2(F),\mathbb{Z}) \to H_3(\text{GL}_3(F),\mathbb{Z})$ and $H_0(F^*,H_3(\text{SL}_2(F),\mathbb{Z})) \to H_3(\text{GL}_2(F),\mathbb{Z})$ are injective.

We should mention that in the mean time we also establish that the kernel of the homomorphism

$$H_3(\text{inc}) : H_3(\text{GL}_2(F),\mathbb{Z}) \to H_3(\text{GL}_3(F),\mathbb{Z})$$

is equal to

$$\text{im}(H_3(\text{SL}_2(F),\mathbb{Z}) \to H_3(\text{GL}_2(F),\mathbb{Z})) \cap F^* \cup H_3(\text{GL}_1(F),\mathbb{Z})),$$

where the cup product is induced by the natural diagonal inclusion $\text{inc} : F^* \times \text{GL}_1(F) \to \text{GL}_2(F)$. In another article we have shown that the kernel of $H_3(\text{inc})$ is a 2-torsion group [7] (see Theorem 2.1 below).

It seems that, for an arbitrary field, not much is known about the kernel of

$$H_0(F^*,H_3(\text{SL}_2(F),\mathbb{Z})) \to H_3(\text{GL}_2(F),\mathbb{Z})$$

except that it is a 2-power torsion group (see proof of Theorem 6.1 in [6]).

Notation. In this article by $H_i(G)$ we mean the homology of group G with integral coefficients, namely $H_i(G,\mathbb{Z})$. By GL_n (resp. SL_n) we mean the general (resp. special) linear group $\text{GL}_n(F)$ (resp. $\text{SL}_n(F)$), where F is an infinite field. If $A \to A'$ is a homomorphism of abelian groups, by A'/A we mean $\text{coker}(A \to A')$ and we take other liberties of this kind. Here by Σ_n we mean the symmetric group of rank n.
1. The group $H_1(F^*, H_2(\text{SL}_2))$

We start this section by looking at the corresponding Lyndon/Hochschild-Serre spectral sequence of the commutative diagram of extensions

$$
1 \longrightarrow \text{SL}_2 \longrightarrow \text{GL}_2 \longrightarrow F^* \longrightarrow 1
$$

So we get a morphism of spectral sequences

$$
E_2^{p,q} = H_p(F^*, H_q(\text{SL}_2)) \Longrightarrow H_{p+q}(\text{GL}_2),
$$

$$
E_2^{p,q} = H_p(F^*, H_q(\text{SL}_3)) \Longrightarrow H_{p+q}(\text{GL}_3).
$$

By an easy analysis of this spectral sequence we obtain the following commutative diagram with exact rows

$$
\begin{array}{c}
H_3(\text{SL}_2) \\ F^* \longrightarrow H_3(\text{GL}_2)/H_3(\text{GL}_1) \longrightarrow H_1(F^*, H_2(\text{SL}_2)) \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow
\end{array}
$$

$$
\begin{array}{c}
0 \longrightarrow H_3(\text{SL}_3) \\ F^* \longrightarrow H_3(\text{GL}_3)/H_3(\text{GL}_1) \longrightarrow H_1(F^*, H_2(\text{SL}_3)) \longrightarrow 0.
\end{array}
$$

The following theorem is due to Hutchinson and Tao [4, Theorem 3.2], which is very fundamental in their proof of the surjectivity of α.

Theorem 1.1. The inclusion $\text{SL}_2 \longrightarrow \text{SL}_3$ induces a short exact sequence

$$0 \longrightarrow H_1(F^*, H_2(\text{SL}_2)) \longrightarrow H_1(F^*, H_2(\text{SL}_3)) \longrightarrow k^M_3(F) \longrightarrow 0,$$

where $k^M_3(F) := K^M_3(F)/2$.

Since the action of F^* on $H_2(\text{SL}_3)$ is trivial,

$$H_1(F^*, H_2(\text{SL}_3)) \simeq F^* \otimes K^M_2(F).$$

So we consider $H_1(F^*, H_2(\text{SL}_2))$ as a subgroup of $F^* \otimes K^M_2(F)$. It is easy to see that the map

$$H_1(F^*, H_2(\text{SL}_3)) \longrightarrow k^M_3(F)$$

is induced by the natural product map $F^* \otimes K^M_2(F) \longrightarrow K^M_3(F)$. Since the n-th Milnor K-group, $K^M_n(F)$, is naturally isomorphic to the n-th tensor of F^* modulo the two families of relations

$$a_1 \otimes \cdots \otimes a_{n-1} \otimes (1 - a_{n-1}), \quad a_i \in F^*, a_{n-1} \neq 1,$$

$$a_1 \otimes \cdots \otimes a_i \otimes a_{i+1} \cdots \otimes a_n + a_1 \otimes \cdots \otimes a_i \otimes a_{i+1} \cdots \otimes a_n, \quad a_i \in F^*,$$

it easily follows that the kernel of the product map $F^* \otimes K^M_2(F) \longrightarrow K^M_3(F)$ is generated by elements $a \otimes \{b, c\} + b \otimes \{a, c\}$. This proves the following lemma.
Lemma 1.2. As a subgroup of \(H_1(F^*, H_2(SL_3)) = F^* \otimes K_2^M(F) \), the group \(H_1(F^*, H_2(SL_2)) \) is generated by elements \(a \otimes \{b, c\} + b \otimes \{a, c\} \) and \(2d \otimes \{e, f\} \).

To go further, we need to introduce some notations. Let \(G \) be a group and set

\[
c(g_1, g_2, \ldots, g_n) := \sum_{\sigma \in S_n} \text{sign}(\sigma)[g_{\sigma(1)}g_{\sigma(2)} \cdots g_{\sigma(n)}] \in H_n(G),
\]

where \(g_i \in G \) pairwise commute and \(S_n \) is the symmetric group of degree \(n \). Here we use the bar resolution of \(G \) [2, Chapter I, Section 5] to define the homology of \(G \).

Lemma 1.3. Let \(G \) and \(G' \) be two groups.

(i) If \(h_1 \in G \) commutes with all the elements \(g_1, \ldots, g_n \in G \), then

\[
c(g_1h_1, g_2, \ldots, g_n) = c(g_1, g_2, \ldots, g_n) + c(h_1, g_2, \ldots, g_n).
\]

(ii) For every \(\sigma \in S_n \), \(c(g_{\sigma(1)}, \ldots, g_{\sigma(n)}) = \text{sign}(\sigma)c(g_1, \ldots, g_n) \).

(iii) The cup product of \(c(g_1, \ldots, g_p) \in H_p(G) \) and \(c(g'_1, \ldots, g'_q) \in H_q(G') \) is \(c((g_1, 1), \ldots, (g_p, 1), (1, g'_1), \ldots, (1, g'_q)) \in H_{p+q}(G \times G') \).

Proof. The proof follows from direct computations, so we leave it to the interested readers. \(\square \)

2. The kernel of \(H_3(GL_2) \longrightarrow H_3(GL_3) \)

For simplicity, in the rest of this article, we use the following notation

\[
k_{a,b,c} := c(\text{diag}(a, 1), \text{diag}(1, b), \text{diag}(1, c)) \in H_3(GL_2).
\]

The following theorem has been proved in [7, Theorem 3.1].

Theorem 2.1. The kernel of \(\text{inc}_{1*} : H_3(GL_2) \longrightarrow H_3(GL_3) \) consists of elements of the form \(\sum k_{a,b,c} + k_{b,a,c} \) such that

\[
\sum a \otimes \{b, c\} + b \otimes \{a, c\} = 0 \in F^* \otimes K_2^M(F).
\]

In particular \(\ker(\text{inc}_{1*}) \subseteq F^* \cup H_2(GL_1) \subseteq H_3(GL_2) \), where the cup product is induced by the natural diagonal inclusion \(F^* \times GL_1 \longrightarrow GL_2 \). Moreover \(\ker(\text{inc}_{1*}) \) is a 2-torsion group.

Let \(\Psi \) and \(\Phi \) be the following compositions,

\[
F^* \otimes K_2^M(F) \xrightarrow{\id_{F^*} \otimes \iota} F^* \otimes H_2(GL_2) \xrightarrow{\cup} H_3(F^* \times GL_2) \xrightarrow{\text{inc}} H_3(GL_3),
\]

\[
F^* \otimes K_2^M(F) \xrightarrow{\id_{F^*} \otimes \iota} F^* \otimes H_2(GL_2) \xrightarrow{\cup} H_3(F^* \times GL_2) \xrightarrow{\beta} H_3(GL_2),
\]

respectively, where \(\iota : K_2^M(F) \simeq H_2(SL_2)_{F^*} \longrightarrow H_2(GL_2) \) is the natural inclusion given by the formula \(\{a, b\} \mapsto c(\text{diag}(a, 1), \text{diag}(b, b^{-1})) \) [3, Proposition A.11] and \(\beta : F^* \times GL_2 \longrightarrow GL_2 \) is given by \((a, A) \mapsto aA \). It is easy to see that

\[
\Psi(a \otimes \{b, c\}) = c(\text{diag}(a, 1, 1), \text{diag}(1, b, 1), \text{diag}(1, c, c^{-1})),
\]

\[
\Phi(a \otimes \{b, c\}) = c(\text{diag}(a, a), \text{diag}(b, 1), \text{diag}(c, c^{-1})).
\]
Lemma 2.2. Let Θ be the composition

$$H_3(\text{GL}_2)/H_3(\text{GL}_1) \xrightarrow{\varphi} H_1(F^*, H_2(\text{SL}_2)) \hookrightarrow F^* \otimes K_2^M(F).$$

Then

(i) $\Theta(k_{a,b,c} + k_{b,a,c}) = a \otimes \{b,c\} + b \otimes \{a,c\},$
(ii) $\Theta(c(\text{diag}(a,a), \text{diag}(b,1), \text{diag}(c,c^{-1}))) = 2a \otimes \{b,c\},$
(iii) $\Theta(k_{c,a,b}) = b \otimes \{a,c\} - a \otimes \{b,c\}.$

Proof. (i) It is easy to see that the exact sequence

$$0 \to H_3(\text{SL}_3) \xrightarrow{\varphi} H_3(\text{GL}_3)/H_3(\text{GL}_1) \xrightarrow{\psi} H_1(F^*, H_2(\text{SL}_3)) \to 0$$

splits canonically by the map

$$F^* \otimes K_2^M(F) = H_1(F^*, H_2(\text{SL}_3)) \to H_3(\text{GL}_3)/H_3(\text{GL}_1)$$

defined by Ψ. Now consider the commutative diagram

$$H_3(\text{GL}_2)/H_3(\text{GL}_1) \xrightarrow{\varphi} H_1(F^*, H_2(\text{SL}_2)) \to H_3(\text{GL}_3)/H_3(\text{GL}_1) \xrightarrow{\psi} H_1(F^*, H_2(\text{SL}_3)).$$

We have

$$\text{inc}_1(\varphi_{a,b,c}) = c(\text{diag}(a,1,1), \text{diag}(b,1,1), \text{diag}(1,c,1))$$
$$= c(\text{diag}(a,1,1), \text{diag}(1,b,1), \text{diag}(c,1,1))$$
$$+ c(\text{diag}(1,a,1), \text{diag}(b,1,1), \text{diag}(1,1,c))$$
$$= c(\text{diag}(a,1,1), \text{diag}(1,b,1), \text{diag}(1,c,1))$$
$$- c(\text{diag}(b,1,1), \text{diag}(1,a,1), \text{diag}(1,1,c))$$
$$- c(\text{diag}(1,a,1), \text{diag}(b,1,1), \text{diag}(1,c,1))$$
$$- c(\text{diag}(b,1,1), \text{diag}(1,a,1), \text{diag}(1,c,1))$$
$$= \Psi(a \otimes \{b,c\} + b \otimes \{a,c\}) - \text{inc}_1(k_{b,a,c}).$$

Hence $\text{inc}_1(\varphi_{a,b,c} + k_{b,a,c}) = \Psi(a \otimes \{b,c\} + b \otimes \{a,c\}).$ Therefore

$$\Theta(k_{a,b,c} + k_{b,a,c}) = \psi \circ \text{inc}_1(\varphi_{a,b,c} + k_{b,a,c})$$
$$= \psi \circ \Psi(a \otimes \{b,c\} + b \otimes \{a,c\})$$
$$= a \otimes \{b,c\} + b \otimes \{a,c\}.$$

(ii) Consider the composition

$$F^* \otimes K_2^M(F) \xrightarrow{\Phi} H_3(\text{GL}_2)/H_3(\text{GL}_1) \xrightarrow{\Theta} F^* \otimes K_2^M(F).$$
The image of $\Phi(a \otimes \{b, c\}) = c(\text{diag}(a, a), \text{diag}(b, 1), \text{diag}(c, c^{-1}))$ in the group $H_3(\text{GL}_3)/H_3(\text{GL}_1) = H_3(\text{GL}_3)_{F^*} \oplus F^* \otimes K_2^M(F)$ is equal to

$\text{inc}_1 \circ \Phi(a \otimes \{b, c\}) = c(\text{diag}(a, a, 1), \text{diag}(b, 1, 1), \text{diag}(c, c^{-1}, 1))$

$= c(\text{diag}(a, a, a^{-2}), \text{diag}(b, 1, 1), \text{diag}(c, c^{-1}, 1))$

$+ c(\text{diag}(1, 1, a^2), \text{diag}(b, 1, 1), \text{diag}(c, c^{-1}, 1))$

$= c(\text{diag}(a, 1, a^{-1}), \text{diag}(b, 1, b^{-1}), \text{diag}(c, c^{-1}, 1))$

$+ c(\text{diag}(a^2, 1, 1), \text{diag}(1, b, 1), \text{diag}(1, c, c^{-1})).$

Therefore $\Theta \circ \Phi(a \otimes \{b, c\}) = \psi \circ \text{inc}_1 \circ \Phi(a \otimes \{b, c\}) = 2a \otimes \{b, c\}.$

(iii) First note that $\Phi(a \otimes \{b, c\}) = \text{diag}(a, a), \text{diag}(b, 1), \text{diag}(c, c^{-1}))$

$= \text{diag}(a, 1), \text{diag}(b, 1), \text{diag}(c, 1))$

$- k_{c,a,b} + k_{a,b,c} + k_{b,a,c}.$

Therefore $\Theta(k_{c,a,b}) = \Theta(k_{a,b,c} + k_{b,a,c}) - \Theta(\Phi(a \otimes \{b, c\}))$

$= b \otimes \{a, c\} - a \otimes \{b, c\}.$

\square

Proposition 2.3. Let $\text{inc}_{2*} : H_3(\text{SL}_2)_{F^*} \rightarrow H_3(\text{GL}_2)$ be induced by the natural map $\text{inc}_2 : \text{SL}_2 \rightarrow \text{GL}_2.$ Then

$$\text{im}(\text{inc}_{2*}) \cap \left(F^* \cup H_2(\text{GL}_1)\right) = \text{ker}(\text{inc}_{1*}).$$

Proof. By Theorem 2.1, the kernel of $\text{inc}_{1*} : H_3(\text{GL}_2) \rightarrow H_3(\text{GL}_3)$ consists of elements of the form $\sum k_{a,b,c} + k_{b,a,c}$ such that

$$\sum a \otimes \{b, c\} + b \otimes \{a, c\} = 0 \in F^* \otimes K_2^M(F).$$

By Lemma 2.2, we see that

$$\varphi(\sum k_{a,b,c} + k_{b,a,c}) = \sum a \otimes \{b, c\} + b \otimes \{a, c\} = 0.$$

Since the sequence

$$H_3(\text{SL}_2)_{F^*} \xrightarrow{\text{inc}_{2*}} H_3(\text{GL}_2)/H_3(\text{GL}_1) \rightarrow H_1(F^*, H_2(\text{SL}_2)) \rightarrow 0,$$

is exact, $\sum k_{a,b,c} + k_{b,a,c} \in \text{im}(\text{inc}_{2*})$. Therefore

$$\text{ker}(\text{inc}_{1*}) \subseteq \text{im}(\text{inc}_{2*}) \cap \left(F^* \cup H_2(\text{GL}_1)\right).$$

Now let $x \in \text{im}(\text{inc}_{2*}) \cap \left(F^* \cup H_2(\text{GL}_1)\right).$ Then x is of the following form

$$x = \sum c(\text{diag}(a_i, 1), \text{diag}(1, b_i), \text{diag}(1, c_i)).$$
Thus \(\det_*(x) = \sum c(a_i, b_i, c_i) = 0 \), where \(\det_* : H_3(\text{GL}_2) \to H_3(F^*) \) is induced by the determinant. By the inclusion \(\bigwedge^3 F^* \hookrightarrow H_3(F^*) \), we have \(a \wedge b \wedge c \mapsto c(a, b, c) \) (see for example [10, Lemma 5.5]). Thus

\[
\sum a_i \otimes b_i \otimes c_i = \sum a' \otimes a' \otimes b' + \sum a'' \otimes b'' \otimes a'' + \sum b''' \otimes a''' \otimes a'''.
\]

Under the composition \(F^* \otimes \bigwedge^3 \to F^* \otimes H_2(F^*) \to H_3(\text{GL}_2) \) defined by

\[
a \otimes b \otimes c \mapsto a \otimes c(b, c) \mapsto c(\text{diag}(a, 1), \text{diag}(1, b), \text{diag}(1, c)) = k_{a,b,c},
\]

we see that \(x \) has the following form

\[
x = \sum c(\text{diag}(a, 1), \text{diag}(1, a), \text{diag}(1, b)).
\]

For simplicity, we assume that \(x = c(\text{diag}(a, 1), \text{diag}(1, a), \text{diag}(1, b)) \). By Lemma 2.2, \(\Theta(x) = a \otimes \{a, b\} - b \otimes \{a, a\} = 0 \). Thus

\[
c(\text{diag}(a, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, b, b^{-1})) = \Psi(a \otimes \{a, b\}) = \Psi(b \otimes \{a, a\}) = c(\text{diag}(b, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, a, a^{-1})),
\]

and so

\[
+c(\text{diag}(a, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, b, 1))
\]

\[
-c(\text{diag}(a, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, 1, b))
\]

\[
= -c(\text{diag}(b, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, 1, a)).
\]

Hence in \(H_3(\text{GL}_3) \) we have

\[
\text{inc}_{1*}(x) = c(\text{diag}(a, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, b, 1))
\]

\[
= c(\text{diag}(a, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, b))
\]

\[
- c(\text{diag}(b, 1, 1), \text{diag}(1, a, 1), \text{diag}(1, 1, a))
\]

\[
= 0.
\]

Therefore \(x \in \ker(\text{inc}_{1*}) \) and this completes the proof of the proposition. \(\Box \)

3. The indecomposable part of \(K_3(F) \)

Define the pre-Bloch group \(p(F) \) of \(F \) as the quotient of the free abelian group \(Q(F) \) generated by symbols \([a], a \in F^* \setminus \{1\}\), by the subgroup generated by elements of the form

\[
[a] - [b] + \left[\frac{b}{a}\right] - \left[\frac{1 - a^{-1}}{1 - b^{-1}}\right] + \left[\frac{1 - a}{1 - b}\right],
\]

where \(a, b \in F^* \setminus \{1\}, a \neq b \). Define

\[
\lambda' : Q(F) \to F^* \otimes F^*, \quad [a] \mapsto a \otimes (1 - a).
\]

By a direct computation, we have

\[
\lambda'([a] - [b] + \left[\frac{b}{a}\right] - \left[\frac{1 - a^{-1}}{1 - b^{-1}}\right] + \left[\frac{1 - a}{1 - b}\right]) = a \otimes \left(\frac{1 - a}{1 - b}\right) + \left(\frac{1 - a}{1 - b}\right) \otimes a.
\]
Let \((F^* \otimes F^*)_{\sigma} := F^* \otimes F^*/(a \otimes b + b \otimes a : a, b \in F^*)\). We denote the elements of \(p(F)\) and \((F^* \otimes F^*)_{\sigma}\) represented by \([a]\) and \(a \otimes b\) again by \([a]\) and \(a \otimes b\), respectively. Thus we have a well-defined map
\[
\lambda : p(F) \longrightarrow (F^* \otimes F^*)_{\sigma}, \quad [a] \mapsto a \otimes (1 - a).
\]
The kernel of \(\lambda\) is called the Bloch group of \(F\) and is denoted by \(B(F)\). Therefore we obtain the exact sequence
\[
0 \longrightarrow B(F) \longrightarrow p(F) \longrightarrow (F^* \otimes F^*)_{\sigma} \longrightarrow K^M_2(F) \longrightarrow 0.
\]
The following remarkable theorem is due to Suslin [10, Theorem 5.2].

Theorem 3.1. Let \(F\) be an infinite field. Then we have the exact sequence
\[
0 \longrightarrow \text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F)) \longrightarrow K_3^{\text{ind}}(F) \longrightarrow B(F) \longrightarrow 0,
\]
where \(\text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F))\) is the unique nontrivial extension of the group \(\text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F))\) by \(\mathbb{Z}/2\) if \(\text{char}(F) \neq 2\) and is equal to \(\text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F))\) if \(\text{char}(F) = 2\).

The following theorem has been proved in [8, Theorem 4.4].

Theorem 3.2. Let \(F\) be an infinite field. Then we have the exact sequence
\[
0 \longrightarrow \text{Tor}_1^\mathbb{Z}(\mu(F), \mu(F)) \longrightarrow \tilde{H}_3(\text{SL}_2(F)) \longrightarrow B(F) \longrightarrow 0,
\]
where \(\tilde{H}_3(\text{SL}_2(F)) := H_3(\text{GL}_2)/(H_3(\text{GL}_1) + F^* \cup H_2(\text{GL}_1))\).

These two theorems suggest that \(K_3(F)\) and \(\tilde{H}_3(\text{SL}_2(F))\) should be isomorphism. But there is no natural homomorphism from one of these groups to the other one! But there is a natural maps from \(H_3(\text{SL}_2)_F^*\) to both of them. Hutchinson and Tao have proved that \(H_3(\text{SL}_2)_F^* \longrightarrow K_3(F)\) is surjective [4, Lemma 5.1]. The next lemma claims that this is also true for the other map.

Lemma 3.3. The map \(\varsigma : H_3(\text{SL}_2)_F^* \longrightarrow \tilde{H}_3(\text{SL}_2)\), induced by the natural map \(\text{SL}_2 \longrightarrow \text{GL}_2\), is surjective.

Proof. Consider the exact sequence
\[
H_3(\text{SL}_2)_F^* \longrightarrow H_3(\text{GL}_2)/H_3(\text{GL}_1) \xrightarrow{\varphi} H_1(F^*, H_2(\text{SL}_2)) \longrightarrow 0.
\]
By Lemma 2.2, we have
\[
\Theta(k_{a,b,c} + k_{b,a,c}) = a \otimes \{b, c\} + b \otimes \{a, c\},
\Theta(c(\text{diag}(a, a), \text{diag}(b, 1), \text{diag}(c, c^{-1}))) = 2a \otimes \{b, c\}.
\]
Since \(H_1(F^*, H_2(\text{SL}_2))\) as a subgroup of \(H_1(F^*, H_2(\text{SL}_3)) = F^* \otimes K^M_2(F)\) is generated by elements \(a \otimes \{b, c\}\) and \(2d \otimes \{c, f\}\) and since \(a \cup c(b, c) = k_{a,b,c}\) vanish in \(\tilde{H}_3(\text{SL}_2)_F^*\), \(H_3(\text{SL}_2)_F^* \longrightarrow \tilde{H}_3(\text{SL}_2)_F^*\) must be surjective. \(\square\)

Now we are ready to prove our main theorem.
Theorem 3.4. Let F be an infinite field. The following conditions are equivalent.

(i) The homomorphism $\alpha : H_3(\text{SL}_2)_F^* \rightarrow K_3(F)^{\text{ind}}$ is bijective.

(ii) The natural homomorphisms $\text{inc}_{1*} : H_3(\text{GL}_2) \rightarrow H_3(\text{GL}_3)$ and $\text{inc}_{2*} : H_3(\text{SL}_2)_F^* \rightarrow H_3(\text{GL}_2)$ are injective.

Proof. (ii) \Rightarrow (i) Consider the surjective map $\zeta : H_3(\text{SL}_2)_F^* \rightarrow \tilde{H}_3(\text{SL}_2)$ from Lemma 3.3. Let $\zeta(x) = 0$. Then $\text{inc}_{2*}(x) \in \text{im}(\text{inc}_{2*}) \cap F^* \cup H_3(\text{GL}_1)$. But by Proposition 2.3 and the assumptions

$$\text{im}(\text{inc}_{2*}) \cap F^* \cup H_3(\text{GL}_1) = \ker(\text{inc}_{1*}) = 0.$$

From this we have $\text{inc}_{2*}(x) = 0$ and hence $x = 0$. Therefore ζ is an isomorphism. Now the claim follows by comparing the exact sequence of Theorem 3.2 and Suslin’s Bloch-Wigner exact sequence in Theorem 3.1.

(i) \Rightarrow (ii) Let \bar{F} be the algebraic closure of F. By a theorem of Merkurjev and Suslin, $K_3(F)^{\text{ind}} \rightarrow K_3(\bar{F})^{\text{ind}}$ is injective [5, Proposition 11.3]. Thus from the commutative diagram

$$
\begin{array}{ccc}
H_3(\text{SL}_2)_F^* & \longrightarrow & H_3(\text{SL}_2(\bar{F})) \\
\downarrow & & \downarrow \cong \\
K_3(F)^{\text{ind}} & \longrightarrow & K_3(\bar{F})^{\text{ind}},
\end{array}
$$

and the injectivity of α, we deduce the injectivity of the map $H_3(\text{SL}_2)_F^* \rightarrow H_3(\text{SL}_2(\bar{F}))$. Now the injectivity of $H_3(\text{SL}_2)_F^* \rightarrow H_3(\text{GL}_2)$ follows from the injectivity of $H_3(\text{SL}_2(\bar{F})) \rightarrow H_3(\text{GL}_2(\bar{F}))$ [6, Theorem 6.1] and commutativity of the diagram

$$
\begin{array}{ccc}
H_3(\text{SL}_2)_F^* & \longrightarrow & H_3(\text{SL}_2(\bar{F})) \\
\downarrow & & \downarrow \\
H_3(\text{GL}_2) & \longrightarrow & H_3(\text{GL}_2(\bar{F})).
\end{array}
$$

On the other hand, by Proposition 2.3, $\ker(\text{inc}_{1*}) \subseteq H_3(\text{SL}_2)_F^* \subseteq H_3(\text{GL}_2)$. Let $\text{inc}_{1*}(x) = 0$. It easily follows from the commutative diagram

$$
\begin{array}{ccc}
H_3(\text{SL}_2)_F^* & \longrightarrow & H_3(\text{GL}_2) \longrightarrow H_3(\text{GL}_3) \\
\downarrow & & \downarrow \\
H_3(\text{SL}_2(\bar{F})) & \longrightarrow & H_3(\text{GL}_2(\bar{F})) \longrightarrow H_3(\text{GL}_3(\bar{F})).
\end{array}
$$

that $x \in \ker(H_3(\text{GL}_2(\bar{F})) \rightarrow H_3(\text{GL}_3(\bar{F}))) = 0$. Therefore $x = 0$ [6, Theorem 5.4(iii)].

Remark 3.5. (i) From the spectral sequence $E^2_{p,q}$, one get the exact sequence

$$
H_4(\text{GL}_2)/H_4(\text{GL}_1) \rightarrow H_2(F^*, H_2(\text{SL}_2)) \xrightarrow{\partial_2^2} H_3(\text{SL}_2)_F^* \rightarrow H_3(\text{GL}_2)/H_3(\text{GL}_1) \rightarrow H_1(F^*, H_2(\text{SL}_2)) \rightarrow 0.
$$
Thus the injectivity of inc_2^* is equivalent to triviality of the differential $\partial_{2,2}^2$.

(ii) Theorem 2.1 gives a clear description of elements of the kernel of inc_1^*. But there is no such information about the kernel of inc_2^*. It is easy to see that $s_{a,b,c} := c(\text{diag}(a, a^{-1}), \text{diag}(b, b^{-1}), \text{diag}(c, c^{-1}))$ is in the kernel of inc_2^* and is 2-torsion:

$$s_{a,b,c} = c(\text{diag}(a, a^{-1}), \text{diag}(b, b^{-1}), \text{diag}(c, c^{-1})) = c(w.\text{diag}(a, a^{-1}).w^{-1}, w.\text{diag}(b, b^{-1}).w^{-1}, w.\text{diag}(c, c^{-1}).w^{-1}) = c(\text{diag}(a^{-1}, a), \text{diag}(b^{-1}, b), \text{diag}(c^{-1}, c)) = -s_{a,b,c},$$

where $w := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. But it is not clear to us why it should be zero.

It is not difficult to see that $\ker(\text{inc}_2^*)$ is a 2-power torsion group (see for example the proof of Theorem 6.1 in [6]).

References

[1] Bloch, S. J. Higher Regulators, Algebraic K-Theory and Zeta Functions of Elliptic Curves. CRM Monograph Series. 11. Providence, RI: American Mathematical Society (AMS), 2000.

[2] Brown, K. S. Cohomology of Groups. Graduate Texts in Mathematics, 87. Springer-Verlag, New York, 1994.

[3] Elbaz-Vincent, P. The indecomposable K_3 of rings and homology of SL_2. J. Pure Appl. Algebra 132 (1998), no. 1, 27-71.

[4] Hutchinson, K., Tao, L. The third homology of the special linear group of a field. J. Pure Appl. Algebra 213 (2009), no. 9, 1665–1680.

[5] Merkurjev, A. S., Suslin, A. A. The group K_3 for a field. Math. USSR-Izv. 36 (1991), no. 3, 541–565.

[6] Mirzaii, B. Third homology of general linear groups. J. Algebra. 320 (2008), no. 5, 1851–1877.

[7] Mirzaii, B. Third homology of general linear groups over rings with many units. Preprint, available at http://arxiv.org/abs/1108.5454

[8] Mirzaii, B., Yeganeh, Fatemeh. Bloch-Wigner theorem over rings with many units II. Preprint, available at http://arxiv.org/abs/1108.5452

[9] Sah, C. Homology of classical Lie groups made discrete. III. J. Pure Appl. Algebra 56 (1989), no. 3, 269–312.

[10] Suslin, A. A. K_3 of a field and the Bloch group. Proc. Steklov Inst. Math. 1991, 183 no. 4, 217–239.