Test of CP-invariance of the Higgs boson in vector-boson fusion production and its decay into four leptons

The ATLAS Collaboration

A search for CP violation in the decay kinematics and vector-boson production of the Higgs boson is performed in the $H \rightarrow ZZ' \rightarrow 4\ell$ ($\ell = e, \mu$) decay channel. The results are based on proton–proton collision data produced at the LHC at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. Matrix element-based optimal observables are used to constrain CP-odd couplings beyond the Standard Model in the framework of Standard Model effective field theory expressed in the Warsaw and Higgs bases. Differential fiducial cross-section measurements of the optimal observables are also performed, and a new fiducial cross-section measurement for vector-boson-fusion production is provided. All measurements are in agreement with the Standard Model prediction of a CP-even Higgs boson.
1 Introduction

The observed baryon asymmetry of the universe is one of the important open questions of physics today. To explain this, the Sakharov criteria [1] require sufficient charge conjugation (C) and parity (P) violation. The only known source of CP violation in the Standard Model (SM) is a complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix [2, 3] for quark mixing. Other sources of CP violation may exist in the neutrino sector or the strong interaction. The CKM complex phase does not lead to a sufficient amount of CP violation to explain the baryon asymmetry. This motivates the exploration of potential new sources of CP violation, as performed in the present analysis of the production and decay of the Higgs boson [4, 5].

The spin-parity (J^P) of the Higgs boson is predicted to be 0^- by the Standard Model. Any sign of CP-violation in the production or decay of the Higgs boson would therefore be an unambiguous indication of beyond the Standard Model phenomena (BSM). With 25 fb$^{-1}$ of proton–proton collision data collected from the LHC with a centre-of-mass energy, \sqrt{s}, of 7 and 8 TeV, the ATLAS and CMS experiments excluded the pure spin-parity states $0^-, 1^+, 1^-, 2^+$ and 2^- at more than 99% confidence level (CL) based on the observed Higgs boson decays ($\gamma\gamma$, ZZ, WW) [6–9]. These results also provided the first limits on a possible CP-odd contribution to Higgs boson to vector-boson couplings (HVV) in Higgs boson decays. With the same data set there was a first search for CP-odd HVV couplings in vector-boson fusion (VBF) production in the $H \rightarrow \tau\tau$ decay channel [10]. With an increased integrated luminosity of 139 fb$^{-1}$ of LHC collisions at $\sqrt{s} = 13$ TeV, an order of magnitude more Higgs boson candidates were collected. Constraints on CP-invariance were tightened for the HVV couplings and extended to Higgs Yukawa couplings to fermions in $H \rightarrow \tau\tau$ decays and associated Higgs boson top pair ($t\bar{t}H$) production in both the diphoton and $b\bar{b}$ decay channels [11–21].

For the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel ($\ell = e, \mu$), constraints on CP-even and CP-odd BSM couplings have been set with 139 fb$^{-1}$ at $\sqrt{s} = 13$ TeV for Higgs boson production cross-section measurements, by comparing observations with SM expectations [22]. However, potential deviations of the Higgs boson production cross-sections could be explained by either a CP-even or CP-odd BSM coupling, and would not distinguish between them. The present analysis searches for a visible CP-odd effect in VBF production and the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay by employing optimal observables [23–25], which are CP-odd by construction, with 139 fb$^{-1}$ of data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector [26]. About 200 Higgs bosons decaying into four leptons are expected to be reconstructed in the detector for this sample, including about 10 events in a VBF production phase space.

The optimal observables are constructed from matrix elements of the Standard Model effective field theory (SMEFT) [27], a specific formalism of an effective field theory (EFT). An optimal-observable distribution is symmetric for the CP-even Higgs boson and becomes asymmetric when contributions from CP-odd BSM couplings are present. There are three dimension-six operators with BSM CP-odd couplings in the SMEFT Lagrangian that can contribute to VBF production or the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay, each associated with a Wilson coefficient. In this analysis, these three operators are considered in the Warsaw basis, and each operator has a different sensitivity to VBF production and the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay. The optimal-observable distributions are used in two ways: the observed distributions are used directly to constrain CP-odd couplings, and they are unfolded to a fiducial phase space, complementing the $H \rightarrow ZZ^* \rightarrow 4\ell$ differential cross-section measurements in Ref. [28], to allow reinterpretations in different models. Since the present search is looking for a distinct CP-odd signature, the extraction of the

1 In the following, the J^P label is used to indicate the spin and CP quantum numbers.
CP-odd coupling constraints is based only on the shape of the optimal-observable distributions, ignoring the expected change in cross-section. Including cross-sections has only a small effect on the constraints, as shown in Section 8.1. The fiducial phase space for the unfolded optimal-observable distributions is the same as for the $H \rightarrow ZZ^* \rightarrow 4\ell$ fiducial measurement [28], and is dominated by gluon–gluon fusion ggF production that allows constraints on CP-odd operators which are sensitive to the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay. Extracting the differential distributions for the VBF optimal observables in a VBF-enriched fiducial phase space would improve the sensitivity to the CP-odd operator that is more sensitive to VBF production, however this is not yet within statistical reach. Instead this paper presents an inclusive cross-section measurement in a VBF fiducial phase space. This measurement can be used to constrain BSM models affecting the Higgs boson to ZZ^* vertex through their expected impact on event rates.

2 Theoretical framework and analysis methodology

While the analysis is designed to be sensitive to signatures of CP violation independently of a particular BSM physics model, the SMEFT framework is used to guide the analysis strategy and interpret the results. This framework also provides the coupling scenarios used to define the optimal observables at the centre of the analysis strategy. Both the SMEFT framework and the optimal-observable formalism are described in more detail in the following. In addition, the known dependence of cross-sections on the BSM couplings in the framework of SMEFT is exploited to parameterize the signal prediction in the direct BSM coupling measurement as described in Section 2.3.

2.1 EFT framework

In SMEFT, a complete set of higher-order-in-mass operators invariant under the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ is built from the SM fields [27]. If the dimension-five operator is ignored because it violates lepton number [29], the leading contributions to physical observables are expected to be from dimension-six operators. In this case the SMEFT Lagrangian becomes:

$$ \mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_i \frac{c_i}{\Lambda^6} O_i^{(6)} $$

where $O_i^{(6)}$ are the operators of mass-dimension six, which are invariant under the SM gauge group, the c_i are the corresponding dimensionless real coupling constants, the Wilson coefficients, and Λ is the energy cutoff scale of the effective field theory.

There are several complete sets of these dimension-six operators. One such set, used in many existing LHC EFT interpretations [30–33], is the Warsaw basis, which contains 59 independent operators assuming lepton and baryon number conservation [34, 35]. Three CP-odd operators, listed in the first three rows of Table 1, are composed of the Higgs boson doublet and the gauge-field-strength tensors of the unbroken gauge symmetry. These contribute to the HVH vertex for both VBF production and vector-boson decays ($\gamma\gamma$, ZZ, WW).

The same phenomena are described by an alternative complete set of operators, based on the mass eigenstates after the spontaneous symmetry breaking instead of the fields of the unbroken gauge symmetry. This formulation is expressed in terms of the physical states of SM gauge bosons W^+, W^-, Z, and γ. With these operators it is possible to build another basis [36, 37] that can probe the effects of the Higgs boson
couplings to other particles, and is more closely linked to experimental physical observables than the Warsaw basis. It is called the Higgs basis in which three independent CP-odd couplings, listed in Table 1 together with their operators, mediate the same phenomena as the Warsaw-basis couplings. Each coupling of one basis can be expressed as a linear combination of the three couplings in the other basis.

Finally, a common parameterization used in existing experimental searches for CP-violation at the HVV vertex [10, 30] assumes a single BSM CP-odd Higgs boson coupling denoted by \tilde{d}. In [10], it was considered that the different contributions from the various electroweak gauge-boson fusion processes could not be distinguished experimentally, and assumed that the BSM CP-odd Higgs boson couplings $c_{H\tilde{W}}$ and $c_{H\tilde{B}}$ in the Warsaw basis are equal, leading to the remaining coupling $c_{H\tilde{W}B}$ being zero. The CP-odd parameter \tilde{d} is related to the Warsaw-basis couplings by the parameterization $c_{H\tilde{W}} = c_{H\tilde{B}} = \frac{\Lambda^2}{v^2} \tilde{d}$, where v is the Higgs boson vacuum expectation value. In the Higgs basis, it is equivalent to the direction $\tilde{c}_{\gamma} = 0$, $\tilde{c}_{\gamma\gamma} = \sin^2 \theta_W \cos^2 \theta_W \tilde{c}_{zz}$, where θ_W is the Weinberg angle.

The focus of this paper is on interpretations in the Warsaw-basis framework, but results are also provided for the Higgs basis and \tilde{d} to facilitate comparisons.

Table 1: SMEFT CP-odd dimension-six operators in the Warsaw and Higgs bases relevant for the measurement of CP-invariance in the $H \to ZZ' \to 4\ell$ decay channel. The gauge field strength tensors are denoted $W^I_{\mu\nu}$ and $B_{\mu\nu}$, while Φ is the scalar doublet Higgs boson field. The photon and Z-boson field strength tensors after electroweak symmetry breaking are denoted as $A_{\mu\nu}$ and $Z_{\mu\nu}$, respectively, and h denotes the massive Higgs field after electroweak symmetry breaking. Combinations of couplings in one basis can be translated into equivalent combinations of couplings from the other basis that describe the same phenomena [36, 37].

Operator	Structure	Coupling
$O_{\Phi\tilde{W}}$	$\Phi^I \Phi^{I'} W_{\nu}^{\mu \nu}$	$c_{H\tilde{W}}$
$O_{\Phi\tilde{W}B}$	$\Phi^I \phi^{I'} W_{\nu}^{\mu \nu} B_{\nu}$	$c_{H\tilde{W}B}$
$O_{\Phi\tilde{B}}$	$\Phi^I \phi^{I'} B_{\nu}^{\mu \nu}$	$c_{H\tilde{B}}$
O_{hZZ}	$hZ_{\mu \nu} Z_{\nu}^{\mu}$	\tilde{c}_{zz}
$O_{hZ\bar{A}}$	$hZ_{\mu \nu} \bar{A}_{\nu}^{\mu}$	$\tilde{c}_{\gamma\gamma}$
$O_{hA\bar{A}}$	$hA_{\mu \nu} A_{\nu}^{\mu}$	\tilde{c}_{γ}

2.2 Optimal observables

The cross-section for the combination of a set of CP-odd couplings, c_i, within the SM is proportional to the square of the matrix element composed of the sum of the individual matrix elements:

$$\left| M \right|^2 = \left| M_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} M_{\text{BSM},i} \right|^2$$

$$= \left| M_{\text{SM}} \right|^2 + 2 \sum_i \frac{c_i}{\Lambda^2} \Re \left(M_{\text{SM}}^* M_{\text{BSM},i} \right) + \sum_i \sum_j \frac{c_i c_j}{\Lambda^4} \Re \left(M_{\text{BSM},i}^* M_{\text{BSM},j} \right)$$
The expanded sum has a first term that is the squared SM matrix element, and a last term that represents the quadratic BSM contributions and the interference between BSM terms. These first and last terms are CP-even. The middle term is composed of the cross terms between the SM and BSM couplings (\(\Re \) is the real part) and represents the interference between the SM and BSM processes.\(^2\) This term is CP-odd and therefore suitable as a probe for CP violation.

Normalising the interference term by the SM term forms an ‘optimal observable’ for each coupling, which can be used to detect a CP asymmetry:

\[
OO = \frac{2\Re (M_{\text{SM}}^* M_{\text{BSM}})}{|M_{\text{SM}}|^2}.
\]

These observables are CP-odd by construction, implying a symmetric distribution with a vanishing mean in the absence of CP violation. Any asymmetry observed in the distribution of the optimal observables would be direct evidence for CP-violation in the \(HVV \) coupling. The LO matrix elements entering the optimal observable are calculated using MadGraph5_AMC@NLO [38] with the NNPDF2.3LO [39] parton distribution function (PDF) set. Two types of optimal observables are considered. Production-level optimal observables reflect the VBF production vertex, not considering the Higgs boson decay. They are constructed using VBF production matrix elements calculated from the reconstructed four-momentum of the Higgs boson candidate and the two leading jets assumed to form the VBF topology. The VBF production matrix element calculation is a PDF-weighted sum of matrix elements for several partonic processes. In addition, decay-level optimal observables are constructed using the matrix element describing the Higgs boson decay from the reconstructed four-momenta of the four decay leptons. These decay-level optimal observables are agnostic to the production vertex, and only a single matrix element is needed for an optimal-observable evaluation. For each type of optimal observable, there is a choice of which BSM coupling to assume when calculating the interference term. A dedicated observable is constructed for each of the seven EFT coupling parameters, three for each basis and one for \(\tilde{d} \). While each observable is sufficiently general to be sensitive to CP-violating effects from different couplings to those assumed in its construction, the sensitivity to a CP-odd effect of a particular coupling is maximized using an observable made with the same coupling.

2.3 Morphing method

The distribution of the optimal observable for a signal process with an arbitrary combination of active EFT couplings is predicted as the weighted sum of a limited number of simulated predictions, described in Section 4. The weights entering the sum are polynomial functions of the assumed EFT couplings, calculated using the morphing method [40]. This relies on the fact that, as shown in Eq. (2), the cross-section in each phase space bin, \(\sigma \), is a polynomial function of the EFT coupling,

\[
\sigma = \sum_{k=0}^{4} c^k A_k = \vec{c} \cdot \vec{A}, \text{ with } \vec{c} = \left(1, c, c^2, c^3, c^4\right) \text{ and } \vec{A} = (A_0, A_1, A_2, A_3, A_4)
\]

where \(c \) is the EFT coupling under study and \(A_k \) denotes the component of the cross-section proportional to the \(k \)th power of the BSM coupling. If up to two \(HVV \) vertices are present, one for production and one for the decay, the maximum power in the BSM coupling is 4 as assumed above. The same method applies to combinations of multiple active couplings and to different numbers of \(HVV \) vertices. In this

\[
2\Re (M_{\text{SM}}^* M_{\text{BSM}}) = M_{\text{SM}}^2 M_{\text{BSM}} + M_{\text{SM}} M_{\text{BSM}}^2
\]
case, \(c \) contains all combinations of powers of the BSM couplings appearing in the amplitude, and \(\hat{A} \) the corresponding cross-section contributions. The dimensionality of \(\hat{A} \) and \(c \) then corresponds to the number of such unique coupling power combinations, including the case without any BSM couplings (SM-only amplitude). For example, for one vertex and three BSM couplings denoted \(c_1, c_2, \) and \(c_3, \) there would be ten elements \((1, c_1, c_2, c_3, c_1^2, c_2^2, c_3^2, c_1 c_2, c_1 c_3, c_2 c_3), \) and for two vertices and three BSM couplings, the dimensionality would increase to 35.

A set of simulated samples for different combinations of coupling values \(\tilde{c}_{\text{Sample } i} \) can be interpreted as a vector of cross-sections, which depends on the coupling values via a matrix \(C, \)

\[
\tilde{\sigma}_{\text{simulated}} = C \times \hat{A}, \quad \text{with } C = [\tilde{c}_{\text{Sample } 1}, \tilde{c}_{\text{Sample } 2}, \ldots].
\]

Inverting this relation, which is only possible if the number of simulated samples is equivalent to the dimensionality of \(\hat{A}, \) and inserting into Eq. (3) allows the cross-section for an arbitrary coupling set to be expressed as a linear combination of the existing, simulated cross-sections:

\[
\sigma = \tilde{c} \cdot \hat{A} = \tilde{c} \cdot (\tilde{c}^{-1} \cdot \tilde{\sigma}_{\text{simulated}}) = \sum_j \left(\tilde{c}_j^{-1} \cdot \tilde{c} \right) \sigma_j \wedge_j (\tilde{c})
\]

where the \(w_j (\tilde{c}) \) are the weights to be applied to each of the simulated samples to obtain the signal prediction.

3 ATLAS detector

The ATLAS detector at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near \(4\pi \) coverage in solid angle.\(^3\) It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic field, electromagnetic and hadron calorimeters, and a muon spectrometer (MS). The ID covers the pseudorapidity range \(|\eta| < 2.5. \) It consists of silicon pixel, silicon microstrip, and transition radiation tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM) energy measurements with high granularity. A steel/scintillator-tile hadron calorimeter covers the central pseudorapidity range \((|\eta| < 1.7). \) The endcap and forward regions are instrumented with LAr calorimeters for both the EM and hadronic energy measurements up to \(|\eta| = 4.9. \) The MS surrounds the calorimeters and is based on three large superconducting air-core toroidal magnets with eight coils each. The field integral of the toroids ranges between 2.0 and 6.0 T m across most of the detector. The MS includes a system of precision tracking chambers and fast detectors for triggering. A two-level trigger system is used to select events. The first-level trigger is implemented in hardware and uses a subset of the detector information to accept events at a rate below 100 kHz. This is followed by a software-based trigger that reduces the accepted event rate to 1 kHz on average, depending on the data-taking conditions. An extensive software suite [41] is used in data simulation, in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

\(^3\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upwards. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the \(z \)-axis. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2). \) Angular distance is measured in units of \(\Delta R = \sqrt{\Delta \eta^2 + (\Delta \phi)^2}. \)
4 Data set and event simulation

This measurement uses data from proton–proton collisions with a centre-of-mass energy of 13 TeV collected between 2015 and 2018 using single-lepton, dilepton, and trilepton triggers [42, 43] as detailed in Ref. [22]. The combined efficiency of these triggers is approximately 98%, 99%, 97%, and 99% for the 4𝜇, 2e2𝜇, 2µ2e, and 4e final states, respectively, for the simulated $H \rightarrow ZZ^* \rightarrow 4\ell$ events passing the event selection described in Section 5 (assuming $m_H = 125$ GeV). After data-quality requirements are imposed, the integrated luminosity of the data sample is 139 fb$^{-1}$ [44].

Details of the SM Higgs boson Monte Carlo (MC) samples used in this analysis can be found in Refs. [22, 28]. Higgs boson production via the ggF process was modelled at next-to-leading-order (NLO) accuracy in the strong coupling constant α_s using the Powheg NNLOPS generator [45–53] with the PDF4LHC15NNLO set of PDFs [54]. Higgs bosons produced via VBF or in association with a vector boson (VH) or in association with a top-quark pair (tth), were simulated at NLO accuracy with the Powheg Box generator [47–49], using the PDF4LHC15NNLO PDF set. Higgs boson production in association with a top quark (tH) was simulated at NLO accuracy using the MadGraph5_AMC@NLO generator [38, 55] with the NNPDF3.0 PDF set [56]. For all signal processes, theEvtGen 1.6.0 generator [57] was used for the simulation of the bottom- and charm-hadron decays. Correspondingly, the Pythia 8 generator [58] was used for the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay and for parton showering, hadronization, and simulation of the underlying event. These samples were normalized to cross-sections obtained from the most recent predictions provided by the LHC Higgs Working Group [36].

BSM Higgs boson samples with active CP-odd EFT couplings were generated for different coupling values at leading order in α_s with MadGraph5_AMC@NLO and the NNPDF2.3 PDF set. The generation was performed using the effective Lagrangian of the SMEFT framework implemented via the SMEFTsim_A_U35_MwScheme_UFO_v2.1 [27, 59] model. The CKKW-L method [60] was used for the jet merging in the ggF process. The SMEFT v2 model with a $U(3)^3$ flavour symmetry and the m_W input scheme was used. The EFT cutoff scale was set to $\Lambda = 1$ TeV. Separate samples were generated for the ggF production mode and for the combination of the VBF and VH production modes. Each sample was generated at a three-dimensional coupling point for values of the Warsaw basis of Table 1, which also corresponds to a single point in the three Higgs-basis couplings. The choice of simulated coupling values was optimized to maintain high statistical power throughout the three-dimensional coupling space using the morphing method described in Section 2.

The non-resonant ZZ^* background, separated into quark-initiated $q\bar{q} \rightarrow ZZ^*$, gluon-initiated $gg \rightarrow ZZ^*$, and vector-boson scattering (EW ZZ) production, was modelled using the Sherpa 2.2.2 generator [61–64] with the NNPDF3.0NNLO [56] PDF set. NLO EW corrections were applied as a function of the invariant mass of the ZZ^* system, m_{ZZ^*} [65, 66]. These samples were normalized to cross-sections obtained directly from the Sherpa simulation. Alternative $q\bar{q} \rightarrow ZZ^*$ samples, produced with the Powheg Box v2 and MadGraph5_AMC@NLO generators, are used to study the theoretical modelling of the systematic uncertainties. For the alternative samples, the Pythia 8 generator was used for parton showering, hadronization, and simulation of the underlying event.

Background events from WZ and $t\bar{t}$ processes were generated with Powheg Box v2, while contributions from Z bosons produced in association with jets were simulated using the Sherpa 2.2.1 generator. Minor contributions from processes with three electroweak bosons, denoted by VVV, were modelled using Sherpa 2.2.2. Small backgrounds originating from top-quark production in association with one or more electroweak bosons or additional top quarks, such as ttZ, tWZ, tWW, $ttWZ$, $ttZ\gamma$, $ttZZ$, ttt, and tzZ...
(denoted by tXX), were simulated using the MadGraph5_AMC@NLO generator. The Pythia 8 generator was used for parton showering, hadronization, and simulation of the underlying event.

Generated events were processed through the ATLAS detector simulation [67] within the Geant4 framework [68] and reconstructed in the same way as collision data. Additional proton–proton interactions in the same or neighbouring bunch crossings, referred to as pile-up, were included in the simulation. The pile-up events were generated using the Pythia 8 generator with the A3 set of tuned parameters [69] and the NNPDF2.3lo PDF set.

5 Event reconstruction, selection and backgrounds

5.1 Object reconstruction

Muon candidates are reconstructed using a combination of different algorithms [70]. The reconstruction of muon candidates within $|\eta| < 2.5$ is primarily performed by a global fit to reconstructed tracks in the ID and the MS. In the central detector region ($|\eta| < 0.1$), where the MS has reduced geometrical coverage, muons are also identified by matching a reconstructed ID track to either an MS track segment (‘segment-tagged muons’) or a calorimetric energy deposit consistent with a minimum-ionising particle (‘calorimeter-tagged muons’). Calorimeter-tagged muons are required to have transverse momentum $p_T > 15$ GeV to avoid misidentifying leptons at low p_T. For both the segment-tagged and calorimeter-tagged muons, the muon momentum is measured from the ID track alone. In the forward MS region ($2.5 < |\eta| < 2.7$) outside the ID coverage, MS tracks with hits in three MS layers are accepted as ‘stand-alone muons’ and combined with track segments formed from hits in the silicon tracker, if they exist. Additionally, ‘loose’ muon-identification criteria [70] are applied to reject low-quality tracks that have missing hits in the MS or have poor agreement between the reconstructed MS and ID tracks. Muons are required to be isolated by using both calorimeter-based and track-based isolation variables and applying the ‘PflowLoose’ criteria [70]. They are matched to the hard-scatter vertex candidate by imposing a requirement $|z_0 \sin \theta| < 0.5$ mm on their longitudinal impact parameter z_0. Cosmic rays are removed using a criterion $|d_0| < 1$ mm on the transverse impact parameter d_0.

A reconstructed electron consists of a cluster of energy deposits in the calorimeter and a matched ID track [71]. Variable-size clusters are created dynamically from calorimeter-energy deposits, improving the invariant-mass resolution of the four-lepton system, especially when bremsstrahlung photons are present. Electron ID tracks are fitted using an optimized Gaussian-sum filter [72] that accounts for non-linear effects arising from energy loss through bremsstrahlung. Quality criteria are used to improve the purity of selected electron candidates. The quality of an electron candidate is evaluated by using a likelihood method that employs measurements from the tracking system and the calorimeter system, and quantities that combine both tracking and calorimeter information [72]. The ‘loose’ likelihood criteria, together with track hit requirements, are applied to electron candidates. Electrons are required to be isolated using both the calorimeter-based and track-based isolation variables as discussed in Ref. [22]. They are matched to the hard-scatter vertex using the same requirement as for the muons, $|z_0 \sin \theta| < 0.5$ mm.

Jets are reconstructed using a particle flow algorithm [73] from noise-suppressed positive-energy topological clusters [74] in the calorimeter using the anti-k_T algorithm [75, 76] with a radius parameter $R = 0.4$. Energy deposited in the calorimeter by charged particles is subtracted and replaced by the momenta of tracks that are matched to those topological clusters. The jet four-momentum is corrected for the non-compensating calorimeter response, signal losses due to noise threshold effects, energy lost in non-instrumented regions,
and contributions from pile-up \cite{73, 77, 78}. Jets are required to have $p_T > 30$ GeV and $|\eta| < 4.5$. Jets with p_T ranging between 20–60 GeV for $|\eta| < 2.4$ and between 20–120 GeV for $2.5 < |\eta| < 4.5$ are suppressed if tagged as pile-up using two jet-vertex-tagger multivariate discriminants \cite{79–82}.

To avoid the double-counting of particles, a range of overlap removal criteria are applied to the electrons, muons, and jets. If any two leptons share an ID track or, in case of two electrons, have overlapping associated calorimeter energy clusters, only one is retained. Preference is given to higher-p_T leptons and to muons over electrons, unless the muon is identified using only the calorimeter, in which case the electron is maintained. Jets found within $\Delta R < 0.2$ of leptons are removed.

5.2 Event selection

Events are required to contain at least four isolated leptons emerging from a common vertex and forming two pairs of oppositely charged same-flavour leptons. Electrons are required to be within the geometrical acceptance of the ID ($|\eta| < 2.47$) and to have transverse energy $E_T > 7$ GeV, while muons must be within the geometrical acceptance of the MS ($|\eta| < 2.7$) and have $p_T > 5$ GeV (except for calorimeter-tagged muons, as explained in Section 5.1). At most one calorimeter-tagged or stand-alone muon is allowed per Higgs boson candidate. The three higher-(p_T or E_T) leptons in each quadruplet are required to satisfy thresholds of 20, 15, and 10 GeV, respectively. All lepton pairs within the quadruplet must have an angular separation, $\Delta R(\ell, \ell')$, larger than 0.1, and opposite-sign same-flavour pairs must have a mass above 5 GeV to avoid, for example, J/ψ pairs. Contributions from misidentified leptons are reduced by requiring the lepton tracks to have low significances of their transverse impact parameters (less than 3 (5) for e (μ)) and to be compatible with originating from a common vertex. A detailed description of the event selection can be found in Ref. \cite{22}.

The lepton pair with an invariant mass closest to the Z boson mass in each quadruplet is referred to as the leading dilepton, while the remaining pair is referred to as the subleading dilepton. The selected quadruplets are separated into four subchannels, according to the flavour of the leading and subleading pairs. In order of decreasing expected selection efficiency, they are 4μ, $2e2\mu$, $2\mu2e$, and $4e$. Only one quadruplet is selected from each event, based on the mass of the leading dilepton, the final state, and, for events with additional leptons, the largest leading-order matrix element for the Higgs boson decay, as described in Ref. \cite{22}. Finally, final-state radiation photons are searched for in all events following the procedure described in Ref. \cite{22}. These photons are found in 4% of the events and their energy is included in the mass computation.

5.3 Backgrounds

The dominant background contribution is non-resonant ZZ^* production, accounting for approximately 30% of events in the four-lepton invariant mass, $m_{4\ell}$, signal region, 115–130 GeV. The evaluation of the non-resonant ZZ^* is based on MC simulation, with a data-driven normalization obtained using the side-bands of the $m_{4\ell}$ distribution. The backgrounds from Z+jets, $t\bar{t}$ and WZ, denoted by ‘reducible’ in the following, are evaluated from data following the procedures described in \cite{22, 28}. The tri-boson (WWZ, WZZ and ZZZ) and $t\bar{t}X$ backgrounds are evaluated from simulation and together with the reducible backgrounds amount to about 5% of the events in the signal region.
6 Overview of analysis

6.1 Direct coupling measurement

A binned maximum-likelihood fit to the observed distributions of optimal observables allows the EFT coupling parameters under consideration to be directly measured. The measurement targets CP-violating effects on the optimal-observable shapes and is optimized to be insensitive to any potential CP-even signature of BSM physics, which would only affect event rates. To achieve this, the impact of the EFT couplings on the event rates is neglected in the signal model, and only the shapes of the optimal-observable distributions change as a function of the BSM couplings. The rates of the SM signal prediction and background are instead left as free parameters in the statistical model and allowed to float when fitting the model to the data.

The optimal-observable distribution for the signal is predicted using the morphing method described in Section 2. In the case of production-level optimal-observable distributions, only the VBF and VH Higgs boson production modes are sensitive to BSM effects and considered as signal. The observable shape for any combination of the three EFT couplings considered here is predicted using 35 simulated samples with different injected EFT coupling values covering both processes. The number of samples is determined by the number of unique coupling combinations for three BSM couplings and two (production and decay) \(HVV \) vertices as discussed for Eq. (3) in Section 2.3.

All Higgs boson production modes represent a signal when considering decay-level optimal-observable distributions. For ggF, the shape of the observable distributions is predicted using a set of 10 simulated samples. Due to the negligible magnitude of the \(ttH \) and \(tH \) contributions in the study of decay-level observable distributions, no dedicated morphing is performed for them, and their shape is taken from the ggF prediction, with the combined yield accounted for by the free signal rate in the fit. The shape of the decay observable distributions for VBF and VH events is predicted with the same 35 samples described above.

For most of the background processes, the optimal-observable shapes are derived directly from the SM MC samples described in Section 4. This is the case for the dominant \(ZZ^* \) continuum background as well as the minor \(tt\ell\ell \) and triboson background contributions. The background from events with non-prompt leptons has its optimal-observable shape derived from its data-driven analysis, but plays a negligible role in the measurement. When the ggF, \(ttH \) and \(tH \) production modes are taken as background processes in the production-level optimal-observable measurement, the corresponding shape predictions are taken from the SM Higgs bosons samples described in Section 4, rather than from the BSM Higgs boson samples, to benefit from the higher theoretical precision of the prediction.

Three different types of fits are performed: decay-only, production-only, and combined. In each case, events are categorized to maximize analysis sensitivity, and all categories are fitted simultaneously. These categories are described in the following and illustrated in Figure 1.

A decay-only fit exclusively targets CP-violating effects in the Higgs boson decay. Two event categories are used. The signal region, also referred to as ‘inclusive SR’ in the following, comprises all events with 115 GeV < \(m_{4\ell} \) < 130 GeV. Events with invariant masses in the side-band of the resonance, 105 GeV < \(m_{4\ell} \) < 115 GeV or 130 GeV < \(m_{4\ell} \) < 160 GeV, form the background-dominated control region. This side-band, dominated by non-resonant \(ZZ^* \) decays, is denoted by ‘\(ZZ \) CR’. The yield of the Higgs boson decay signal, independent of production mode, is parameterized with a normalization factor relative to the SM prediction. A second normalization factor scales the yield of the non-resonant
Figure 1: Illustration of the regions used in the direct BSM coupling measurement. The horizontal axis represents the jet selection requirements (≥ 2 jets and $m_{jj} \geq 120 \text{ GeV}$) defining the VBF-enriched signal regions (SR), while the vertical axis depicts the separation of the $m_{4\ell}$ range into resonant and non-resonant regions. The ‘inclusive SR’ comprises events populating either the ‘VBF-depleted region’ or any of the VBF signal regions. The side-band control region (CR), dominated by non-resonant ZZ decays, is denoted by ‘ZZ CR’. The multiple signal regions are used differently in the production-only, decay-only and combined fits.

ZZ* background relative to the SM prediction. In both cases, the relative distribution of the yield between the signal and control region is assumed to follow the SM prediction within uncertainties as described in Section 7. Both normalization factors are free parameters in the fit. In this way, the background rate in the signal region is determined by the control region data yield. Decay-level optimal observables are considered in the signal region to test for signs of CP violation in the Higgs boson decay and to measure the BSM couplings under consideration.

A production-only fit searches for signs of CP-violation at the VBF production vertex. This fit uses events in the resonant $m_{4\ell}$ region ($115 \text{ GeV} < m_{4\ell} < 130 \text{ GeV}$) with at least two jets and $m_{jj} > 120 \text{ GeV}$ for the signal extraction. To further enhance the VBF signal over other Higgs boson production modes, four VBF signal regions are defined as ascending intervals of the VBF score of a three-output neural network discriminant [22] trained to distinguish between VBF, VH and ggF events. The discriminant is trained on two-jet events using the di-jet mass, m_{jj}, the transverse momentum of the full system, $p_T^{4\ell jj}$, and the transverse momentum and η position of the individual leptons and jets, p_T^{ℓ}, η_ℓ, p_T^j and η_j. The discriminant interval boundaries are chosen to yield two regions with a large ggF admixture and two regions with a high VBF purity, while maintaining a steady variation in the event yield across categories. These are denoted by
In all fits, the reducible background is obtained directly from collision data and its normalization constrained to the measured value within its uncertainty.
Figure 2 shows the composition of the predicted SM yield in each of the analysis categories. The ZZ* control region is highly pure in the non-resonant background. The VBF-depleted region and inclusive signal region are both dominated by the resonant signal, with a non-resonant admixture of the order of 30%. The VBF signal regions are increasingly pure in the resonant process, with a 30%-level non-resonant admixture in the first region. The purity of the VBF process relative to the ggF process increases across the four regions, up to a value of 90% in the final VBF SR 4 category.

In the signal regions of all three fits, the optimal-observable distributions are binned in 48 bins for the decay-level observables and in 12 bins for the production-level ones. The binning is optimized for each coupling assumption in the observable definition. The binning is constructed to yield an approximately flat distribution of expected events across the bins for a sample composed of 50% SM events and 25% events each simulated with a positive and a negative BSM coupling value close to the expected 68% CL limit.

To measure a given BSM coupling, the optimal observable evaluated with a BSM matrix element for the same coupling is used, separately for production (jj) and decay (4ℓ). This provides optimal sensitivity, as discussed in Section 2.2. When simultaneously measuring pairs of BSM couplings using decay-level optimal observables, a two-dimensional binning of the observables targeting the \(c_{HW} \) and \(c_{HB} \) couplings yields the largest sensitivity. In this case, six times six bins are used, optimized in the same way as for the one-dimensional binnings. Finally, when simultaneously measuring the \(c_{zz} \) and \(c_{yy} \) couplings using the combined fit set-up, production-level observables targeting the \(c_{zz} \) coupling in the VBF signal regions are combined with decay-level observables targeting the \(c_{yy} \) coupling in the VBF-depleted region. All control regions are treated as single-bin counting experiments.

Figure 3 shows expected optimal-observable distributions for production-level \(OO_{jj}^{c_{zz}} \) and decay-level \(OO_{4\ell}^{c_{HB}} \) for the SM and two BSM samples. The optimal-observable distributions are symmetric in the SM case and asymmetric for CP-odd couplings. The two distributions have different binning: (a) has equal size binning, and (b) has an equally populated one, for a distribution composed of 50% SM and 25% for both \(c_{HB} = \pm 0.75 \). Equally populated binning is used in the present analysis. The distributions of both plots, and the ratios of BSM to SM, clearly demonstrate the importance of the tails for a CP-asymmetry measurement.

6.2 Differential cross-section measurement

The main motivation for performing differential cross-section measurements is to have a model-independent result sensitive to possible deviations from the SM. The differential cross-section measurement of the optimal observables allows any CP-odd effects affecting the Higgs boson coupling to be probed. Unlike the direct coupling measurement, a differential cross-section measurement is sensitive to possible BSM effects on both the yields and the shape of the observable. The measurement is performed by unfolding the corresponding observable distribution within a fiducial phase space.

The fiducial phase space is defined using simulation at particle level and applying selection requirements to minimize model-dependent acceptance extrapolations. These are chosen to closely match the selection requirements of the detector-level analysis after the event reconstruction. The fiducial phase space definition is the same as described in Ref. [22] and summarized in Table 2.

Furthermore, as mentioned in Section 6.1, it is also interesting to investigate CP-odd effects using the VBF Higgs boson production vertex. For this reason, a fiducial cross-section is measured in a VBF-enriched phase space. In addition to the selections in Table 2, the VBF-enriched fiducial region requires the presence
Figure 3: Expected distributions of (a) the O^{zz}_{jj} observable for VBF-produced Higgs boson candidates combining VBF SR1 through SR4 for the SM and for BSM coupling parameter values of $\bar{c}_{zz} = \pm 5$, and (b) the $O^{cH}_{4\ell}$ observable for the decay of ggF produced Higgs boson candidates in the inclusive SR for the SM and for BSM coupling parameter values of $c_{HH} = \pm 1.5$. (a) has 12 equal-size bins, and (b) has 48 equal population bins. In (b) the first and last bins extend up to ±40, but the bin range is truncated to ±4 in the plot for clarity. The lower panels show the ratio of the BSM to the SM optimal-observable distributions.

of at least two jets with an invariant mass $m_{jj} \geq 400$ GeV, and a difference between the η of the leading and of the subleading jet of $|\Delta\eta_{jj}| \geq 3.0$. These selections replace the neural network used to define the VBF SR regions of the direct coupling measurement. Two separate fiducial cross-sections are extracted from the VBF-enriched fiducial region, resulting in different levels of VBF purity. For the first, a ‘combined production mode’ Higgs boson signal is extracted with ggF, VBF, VH and $t\bar{t}H$ considered as signal. For the second the Higgs boson signal is extracted while additionally removing the ggF production mode signal using the MC expectation. This VBF-enriched fiducial region has a signal composition of 59.3% VBF, 37.5% ggF, 1.7% VH and 1.5% $t\bar{t}H$. The VBF purity increases to 95% if the ggF is removed as a background. Although the first fiducial cross-section is less pure in VBF signal, it is less model dependent because it has no assumption on the signal composition. The second fiducial cross-section relies on the assumption of SM ggF production.

To extract the number of signal events in each bin of a differential distribution, invariant mass templates for the Higgs boson signal and the background processes are fitted to the $m_{4\ell}$ distribution in data, following the same strategy as used in Ref. [22]. The non-resonant ZZ* background is fitted simultaneously with the signal and constrained by extending the $m_{4\ell}$ fit range from 115–130 GeV to 105–160 GeV, similar to the control region used in the direct coupling measurement. Furthermore, the SM ZZ* → 4ℓ decay fractions are assumed. To reduce the effects of bin-to-bin statistical fluctuations of the non-resonant ZZ* background, neighbouring bins are combined for this background estimate. The overall normalization and shape of the reducible background from a data-driven evaluation (Section 5.3) are allowed to vary within their associated systematic uncertainties (Section 7).
Table 2: List of event selection requirements that define the fiducial phase space for the cross-section measurement. SFOC lepton pairs are same-flavour opposite-charge lepton pairs. For the mass requirement of the subleading lepton pair, \(m_{\text{threshold}} \) is 12 GeV for \(m_{4\ell} < 140 \) GeV and rises linearly until reaching 50 GeV for \(m_{4\ell} = 190 \) GeV.

Table 2: List of event selection requirements that define the fiducial phase space for the cross-section measurement.
SFOC lepton pairs are same-flavour opposite-charge lepton pairs. For the mass requirement of the subleading lepton pair, \(m_{\text{threshold}} \) is 12 GeV for \(m_{4\ell} < 140 \) GeV and rises linearly until reaching 50 GeV for \(m_{4\ell} = 190 \) GeV.

Leptons and jets
Leptons
\(p_T > 5 \) GeV, \(
Jets
\(p_T > 30 \) GeV, \(

Lepton selection and pairing
Lepton kinematics
\(p_T > 20, 15, 10 \) GeV
Leading pair (\(m_{12} \))
SFOC lepton pair with smallest \(
Subleading pair (\(m_{34} \))
Remaining SFOC lepton pair with smallest \(

Event selection (at most one quadruplet per event)
Mass requirements
\(50 \) GeV \(< m_{12} \) \(< 106 \) GeV and \(m_{\text{threshold}} \) \(< m_{34} \) \(< 115 \) GeV
Lepton/Jet separation
\(\Delta R(\ell_i, \ell_j) > 0.1 \)
J/\psi veto
\(m(\ell_i, \ell_j) > 5 \) GeV for all SFOC lepton pairs
Mass window
\(105 \) GeV \(< m_{4\ell} \) \(< 160 \) GeV

If an extra lepton with \(p_T > 12 \) GeV is found, the quadruplet with the largest matrix element value is kept.

The expected number of events \(N_i \) in each detector-level observable bin \(i \), expressed as a function of \(m_{4\ell} \), is given by

\[
N_i(m_{4\ell}) = \sum_j r_{ij} \cdot (1 + f_i^{\text{nonfid}}) \cdot \sigma_j^{\text{fid}} \cdot \mathcal{P}_i(m_{4\ell}) \cdot L + N_i^{\text{bkg}}(m_{4\ell}) \tag{4}
\]

with the fiducial cross-section in each fiducial bin \(j \) given by

\[
\sigma_j^{\text{fid}} = \sigma_j \cdot A_j \cdot B
\]

where \(A_j \) is the acceptance in the fiducial phase space for a total cross-section \(\sigma_j \) in fiducial bin \(j \), \(L \) is the integrated luminosity, \(B \) is the decay branching ratio and \(N_i^{\text{bkg}}(m_{4\ell}) \) is the background contribution. The index \(j \) runs over all observable bins in the fiducial phase space. The term \(\mathcal{P}_i(m_{4\ell}) \) is the \(m_{4\ell} \) signal shape containing the fraction of events as a function of \(m_{4\ell} \) expected in each reconstruction bin, taken from MC simulation. The term \(r_{ij} \) represents the detector response matrix, created with simulated signal samples and averaged across the different production modes using the expected SM cross-sections [36]. These factors correspond to the probability that an event generated within the fiducial volume in the observable bin \(j \) is reconstructed in bin \(i \). The normalization, \(f_i^{\text{nonfid}} \), represents the fraction of events that are outside of the fiducial region but are reconstructed within the SR. This ranges from 1.1% to 1.7% depending on the bin of the unfolded observable or the final state. The detector response matrix accounts for bin-to-bin migrations in the unfolding of the signal. The binning choice made for all observables ensures a statistical significance of more than two standard deviations for the SM signal process. The binning is also chosen to minimize migrations between bins. In most cases, the bin width is more than twice the experimental resolution.

For the VBF-enriched fiducial cross-section measurements, the signal is extracted by unfolding the two-dimensional distribution \(m_{jj} \) versus \(|\Delta \eta_{jj}| \) that is divided into three bins (see Figure 14), following the strategies explained previously. The difference for the second measurement is that the ggF is considered to be a background and the expected ggF signal is moved from \(\mathcal{P}_i(m_{4\ell}) \) to \(N_i^{\text{bkg}}(m_{4\ell}) \) of Eq. (4).
7 Systematic uncertainties

The statistical uncertainty in the data is generally dominant in all aspects of the analysis, and systematic uncertainties play a minor role. Systematic uncertainties arise from experimental sources, such as lepton and jet momentum scales, resolutions and reconstruction efficiencies, and theoretical uncertainties related to the modelling of the signal and background processes. In addition, a set of uncertainties specific to the cross-section extraction method affect the differential cross-section measurement.

As the rates of all key contributing processes are determined using the collision data, normalization uncertainties affecting their total calculated cross-sections have no impact. Uncertainties in the determination of the kinematic observables characterising the final state, in particular jet and lepton momentum scale and resolutions, affect the analysis in the most direct way through the reconstructed value of the optimal observables. Uncertainties in the relative rates between the various categories, arising for example from theoretical sources, affect the results indirectly via changes in the process composition in the signal regions and migration effects in the cross-section measurement. While still small compared to statistical uncertainties, these composition uncertainties are the leading source of systematic uncertainty in the direct coupling measurement. The measured differential cross-sections are also sensitive to luminosity and lepton reconstruction and isolation efficiency uncertainties, which play a negligible role for the direct coupling measurement.

When predicting BSM effects in the direct coupling measurement, theoretical uncertainties due to the PDF, parton shower, and QCD scale variations are assigned to the signal predictions based on SM signal samples, which are simulated with higher-order precision. The same uncertainties are assigned to all corresponding BSM signal predictions, since it is observed using the MC signal samples simulated at leading-order accuracy that the uncertainties change negligibly as a function of the Wilson coefficients.

An overview of the main sources and their impact on the analysis is provided below.

7.1 Experimental uncertainties

The uncertainty in the measured differential cross-sections due to pile-up modelling is of the order of 1%. The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [83], obtained using the LUCID-2 detector [84] for the primary luminosity measurements. The luminosity uncertainty directly propagates to the measured cross-sections. Neither source affects the direct coupling measurement.

The electron (muon) reconstruction and identification efficiency uncertainties in the extracted cross-sections are of the order of 1–2% (≤ 1%). Isolation efficiency uncertainties affect the results at a similar magnitude. Lepton efficiencies have a negligible impact on the direct coupling measurement since they do not induce asymmetries in the CP-sensitive observables.

Lepton energy, momentum scale and resolution uncertainties affect both the direct coupling measurement and the extracted cross-sections at the order of 1–2% level due to their relation to the reconstructed rest-frame kinematics determining the optimal observables.

The impact of uncertainties in the jet energy scale and resolution is only relevant for production-level optimal observables. There, they affect the differential cross-sections at the 1–5% level and the directly extracted coupling values at the 1–3% level.
The impact of the precision of the Higgs boson mass measurement on the signal acceptance due to the signal region mass-window requirement is considered for the cross-section extraction but found to have a negligible impact (< 1%).

For the data-driven measurement of the reducible background, three sources of uncertainty are considered: statistical uncertainty, overall systematic uncertainty for muon and electron background fake estimates [22], and a shape systematic uncertainty that varies with the differential variable [28]. All of these have a negligible impact on the analysis.

7.2 Theoretical uncertainties

The theoretical modelling of the signal and background processes is affected by uncertainties due to missing higher-order corrections, modelling of parton showers and the underlying event, and PDF plus α_s uncertainties.

One of the dominant sources of theoretical uncertainty is the prediction of the ggF process, in particular its contribution to the dijet signal regions targeting production observables. To estimate the variations due to the impact of higher-order contributions not included in the calculations, the approach described in Refs. [36, 85] is used, which exploits the latest predictions for the inclusive jet cross-sections. In particular, the uncertainty from the choice of factorization and renormalization scales, the choice of resummation scales, and the migrations between the 0-jet and 1-jet phase space bins or between the 1-jet and \geq 2-jet bins are considered. The detailed procedure is described in Ref. [22]. The impact of these uncertainties can reach 5% of the directly measured coupling value and 1–2% of the measured differential cross-sections.

The uncertainties in the acceptance and distribution of yields among the analysis regions due to the modelling of parton showers and the underlying event are estimated with AZNLO tune [86] eigenvector variations and by comparing the results using the parton showering algorithm from PYTHIA 8 with that from HERWIG 7 [87] for all signal processes. The eigenvector variations are correlated between the Higgs boson production modes, while the algorithm uncertainty is treated as uncorrelated. This is the largest individual systematic uncertainty source when considering production-level optimal observables, with a magnitude in the range of 2–10% of the measured cross-sections in the differential measurement and 1–5% of the directly measured BSM coupling values.

For the VBF, VH and ttH production modes, the uncertainty due to missing higher orders in QCD is parameterized using the scheme outlined in Ref. [88]. Compared to the uncertainties in the ggF contribution, both the scale and the shower uncertainties in these predictions are negligible.

The impact of the PDF uncertainty is estimated with the 30 eigenvector variations of the PDF4LHC/n.pc/l.pc/o.pc30 Hessian PDF set following the PDF4LHC recommendations [54]. The modification of the predictions originating from each eigenvector variation is added as a separate source of uncertainty in the model. The same procedure is applied for the ggF, VBF, VH and ttH processes. PDF uncertainties have a negligible impact.

Beside the resonant process, uncertainties in the prediction of the main non-resonant $q\bar{q} \rightarrow ZZ^*$ background process affect the analysis. As the normalization of this background is obtained from collision data, the main impact is from migration effects between various regions. The uncertainties due to missing higher-order effects in QCD are estimated by varying the factorization and renormalization QCD scales by a factor of two; the impact of the PDF uncertainty is estimated by using the MC replicas of the NNPDF3.0 PDF set. Uncertainties due to parton shower modelling for the ZZ^* process are considered as well. For the
differential cross-section measurement, a comparison of the \(ZZ' \) predictions of the \(m_{4\ell} \) spectrum used to normalize this background to the ones obtained using the alternative generators described in Section 4 is used to define an additional systematic uncertainty. The impact of these uncertainties is very small, less than 2% on the directly measured couplings and negligible for the differential cross-sections.

7.3 Uncertainties specific to the differential cross-section extraction

Unfolding-related uncertainties arise from the production mode composition that determines the average response matrices, and from residual biases introduced by the unfolding method [28]. For the former, an uncertainty is assessed by varying the production cross-sections within their measured uncertainties taken from Ref. [89], with an impact of less than 1%. The uncertainty arising from unfolding biases is obtained independently for each bin by comparing the unfolded cross-section from simulation with that expected when varying the underlying particle-level cross-sections of the simulated data sample within the expected statistical error. In the same way, the uncertainty is extended to also account for differences that arise from using an SM response matrix to measure observable distributions possibly affected by BSM behaviour by means of signal injection (up to 95% CL of a possible CP-odd coupling). The impact of this uncertainty is typically around 1–2% in the decay optimal observable, where the response matrix is largely diagonal, and increases up to 7% in the production optimal-observable distributions, which have larger bin migrations.

7.4 Monte Carlo statistics

The effect of MC statistical uncertainties is included in the statistical model used for the measurement, as the direct coupling measurement relies on precise shape predictions for the optimal observables and other systematic uncertainties are very small. The signal modelling technique results in a negligible impact of statistical uncertainties on the prediction of BSM effects. The largest contribution to the MC statistical uncertainty is linked to the non-resonant \(q\bar{q} \rightarrow ZZ' \) background prediction, affecting the measured coupling values at the level of few percent. This is negligible compared to statistical uncertainties in the data, but comparable (1–2% impact) to the leading systematic uncertainty sources for coupling measurements using decay-level observables, due to the small size of the systematic uncertainties in these measurements.

8 Results

8.1 Direct coupling measurement results

The number of events observed and the expected (pre-fit) contributions in each of the categories used in the coupling measurements, described in Section 6.1 and Figure 1, are shown in Figure 4 and Table 3. Combined statistical and systematic uncertainties are included for the predictions (see Section 7). As discussed in Section 6.1, the \(ZZ' \) CR and Inclusive SR contribute to the decay observable fits, and the rest contribute to the production-only and combined observable fits. In all categories, the number of events observed and the expectation agree within one to two standard deviations. The largest difference occurs in the most sensitive VBF category, VBF SR4, where the small number of observed events exceeds the expectation by about a factor of two.
Table 3: The numbers of expected and observed events in the event categories for the direct CP measurement, in the mass range 115 GeV < m_H < 130 GeV. The sum of the number of expected SM Higgs boson events and the estimated background yields is compared with the data. Combined statistical and systematic uncertainties are included for the predictions. The Inclusive SR, used in the decay-only fit, is composed of the VBF-depleted Region and VBF SR1 to SR4.

	ZZ* CR	Inclusive SR	VBF-depleted Region	VBF SR1	VBF SR2	VBF SR3	VBF SR4
ggF	8.2 ± 1.3	181 ± 12	165 ± 12	7.5±3.0	5.6±1.8	2.2 ± 0.6	0.49 ± 0.17
bbH	0.087±0.016	1.85 ± 0.05	1.65 ± 0.05	0.11 ± 0.01	0.072±0.009	0.020±0.005	< 0.01
VBF/VH	1.39 ± 0.16	23.8 ± 0.7	13.8 ± 0.6	1.60±0.09	1.89 ± 0.11	3.01 ± 0.18	3.5 ± 0.4
ttH,tH	0.22±0.03	1.89±0.21	0.44 ± 0.05	1.22 ± 0.14	0.179 ± 0.023	0.046±0.009	< 0.01
tV,VVV	6.79 ± 0.13	1.31 ± 0.06	0.62 ± 0.04	0.53 ± 0.04	0.150 ± 0.020	< 0.01	< 0.01
ZZ*	229±20	98±6	92±6	3.5±1.5	1.7 ± 0.6	0.48±0.16	0.086±0.025
Zjet,t,WZ	21 ± 5	13 ± 4	12 ± 3	0.8 ± 0.9	0.3 ± 0.6	0.07 ± 0.26	0.01 ± 0.09
Total SM	267±21	321±14	286±14	15 ± 3	9.9±2.0	5.9 ± 0.7	4.1 ± 0.5
Data	294	311	276	14	9	4	8

Figure 4: The number of observed events and the expected contributions in each of the categories used in the decay-only, production-only, and combined observable fits for the coupling measurements. The contribution from bbH is negligible and not visible in the plot. The lower panel shows the ratio of data to expectation. The shaded bands in both the upper and lower panels correspond to the combined statistical and systematic uncertainties in the predictions.
The observed and expected distributions for the production-level observable $OO_{1j}^{c_{zz}}$ in each of the four VBF signal regions are shown in Figure 5. The corresponding observed and expected distributions for the decay level observables $OO_{4t}^{c_{H\bar{B}}}$, $OO_{4t}^{c_{H\bar{W}B}}$, $OO_{4t}^{c_{H\bar{W}}}$, and $OO_{4t}^{d_{4t}}$ are shown in Figure 6. The expected distributions for the SM are shown as stacked histograms, and the two lines show the expectation for an additional positive or negative CP-odd BSM coupling that has a clear excess in the tail. The combined statistical and systematic uncertainties are shown in the ratio plot below each distribution. Overall there is good agreement between data and the SM expectation. The mean value for the data is given for each distribution, calculated from the observable value for each event. All mean values are compatible with zero, indicating that the data exhibit no measurable asymmetry.

In absence of positive evidence for BSM physics, 68% and 95% confidence intervals on the CP-odd couplings (c_{BSM}) are extracted with the profile likelihood ratio [90] statistical test, using the negative-log likelihood (NLL) test statistic:

$$-2 \ln \lambda(x|c_{BSM}) = -2 \ln \frac{L(x|c_{BSM}, \hat{\theta})}{L(x|\hat{c}_{BSM}, \hat{\theta})}$$ \hspace{1cm} (5)$$

where θ corresponds to the set of systematic uncertainties, or nuisance parameters. The numerator denotes the conditional likelihood estimator of θ, $i.e., \hat{\theta}$ is the value of θ that maximizes the likelihood function for a given c_{BSM}, and the denominator denotes the maximized likelihood estimator ($i.e., \hat{c}_{BSM}$ and $\hat{\theta}$ are the values of c_{BSM} and θ that maximize the unconditional likelihood function). The effect of the nuisance parameters is to broaden the profile likelihood ratio reflecting the loss of information originating from the inclusion of systematic uncertainties. For each BSM coupling, a scan across the values of c_{BSM} of the NLL is performed by fitting all other parameters (normalization parameters, other BSM couplings, and nuisance parameters) to obtain the values that minimize the NLL for the current value of the coupling being scanned, or couplings for two-dimensional scans. This result relies on the assumption that for any value of the coupling being scanned, the NLL behaves as a χ^2 distribution with one degree of freedom (asymptotic approximation [91]). Based on this, the confidence intervals are constructed from the scan parameter values for which the NLL crosses the 68% and 95% quantile locations of a χ^2 distribution with one degree of freedom. The validity of the asymptotic approximation for this measurement was confirmed by sampling the distribution of the test statistic observed on toy datasets obtained by random sampling from the predicted likelihood model.

The expected sensitivity of the seven couplings explored in this analysis (Section 2.3) are given in Table 4. The expected 95% confidence intervals estimated separately for either VBF production or Higgs boson to four-lepton decay and as well for their combination are shown for each coupling. There are about ten VBF events expected in the signal region and over 200 expected Higgs boson decays from all production modes in the inclusive signal region, giving a significant statistical advantage to the decay observable fits. For the Higgs basis that has couplings in the mass Lagrangian, production is predominantly sensitive to the c_{zz} coupling with a limited sensitivity to c_{zy}, and decay is sensitive to both c_{zy} and c_{yy}. This can be understood from the fact that the VBF production includes also W-boson diagrams and occurs at larger energy scales compared to the decay vertex, which happens at the scale of the Higgs mass and exclusively via neutral gauge bosons, enhancing the role of virtual photon diagrams. For the Warsaw basis that has couplings in the interaction Lagrangian before SU(2) symmetry breaking, the physical interpretation is less intuitive: $c_{H\bar{W}}$ has sensitivity to both production and decay with the latter having improved sensitivity due to the larger number of events. $c_{H\bar{B}}$ and $c_{H\bar{W}B}$ are both only sensitive to the decay. Finally d_{4t}, which is proportional to $c_{H\bar{B}}$ with the constraints $c_{H\bar{B}} = c_{H\bar{W}}$ and $c_{H\bar{W}B} = 0$, is mostly sensitive to the decay. The combined observable fits use the VBF SR1 to VBF SR4 for the production
Figure 5: The observed and expected distributions for the production-level observable $O_{\Delta z}$ in each of the four VBF signal regions: (a) SR1, (b) SR2, (c) SR3, and (d) SR4. The expected distribution for the VBF signal and the backgrounds from ggF, ZZ, and reducible backgrounds are shown as a stacked histogram. Also shown are the expected distributions in presence of CP-odd contributions for $c_{\Delta z} = \pm 2.0$, assuming the VBF/VH event rate remains that of the SM. The bin size is variable, optimized for an approximately flat distribution for the SM combined with a positive and negative BSM scenario. The mean value of the optimal observable across the data events is given with its standard deviation. The lower panels show the ratio of data to expectation and the shaded band corresponds to the combined statistical and systematic uncertainties in the predictions.
Figure 6: The observed and expected distributions for the decay level observables: (a) $OO_{4\ell}^{cH\bar{B}}$, (b) $OO_{4\ell}^{cH\bar{W}^+\bar{B}}$, (c) $OO_{4\ell}^{cH\bar{W}}$ and (d) $OO_{4\ell}^{d}$. The expected distribution for the ggF and VBF signals and the backgrounds from ZZ^* and reducible backgrounds are shown as a stacked histogram. Also shown are the expected distributions in presence of CP-odd contributions for (a) $c_{H\bar{B}} = \pm 1.5$, (b) $c_{H\bar{W}^+\bar{B}} = \pm 1.25$, (c) $c_{H\bar{W}} = \pm 1.5$ and (d) $d = \pm 1.25$, assuming the signal event rate remains that of the SM. The bin size is variable, optimized for an approximately flat distribution for the SM combined with a positive and negative BSM scenario. There are no observed events that fall outside the optimal-observable distribution range, with rate expectations below 0.1%. The mean value of the optimal observable across the data events is given with its standard deviation. The lower panels show the ratio of data to expectation and the shaded band corresponds to the combined statistical and systematic uncertainties in the predictions.
observable and the VBF-depleted signal region for the decay observable. This reduces by about 10% the number of events entering the decay observable fit, i.e., those in VBF SR1 to VBF SR4, and can lead to a degraded sensitivity of the combined fit compared to the decay fit in the inclusive signal region. This is the case for \tilde{c}_{zz} and \tilde{d}, since their production sensitivity is poor. Whereas for $c_{H\bar{W}}$, which has a more balanced sensitivity for production and decay, the combination limits improve over either production or decay only.

Table 4: The expected 95% confidence intervals of production-only, decay-only and combined production and decay likelihood scans for the CP-odd Wilson coefficients in the Warsaw and Higgs bases for an integrated luminosity of 139fb^{-1} at $\sqrt{s} = 13$ TeV. Only one Wilson coefficient is fitted at a time while all others are set to zero. Limits denoted by ‘−’ indicates no sensitivity. All couplings scale as $1/\Lambda^2$ with the assumed value of $\Lambda = 1$ TeV.

EFT coupling	Expected 95% CL	production-only	decay-only	combined
$c_{H\bar{B}}$	$-\pm0.37$	$-\pm0.37$	$-\pm0.37$	$-\pm0.37$
$c_{H\bar{W}B}$	$-\pm0.72$	$-\pm0.72$	$-\pm0.72$	$-\pm0.72$
$c_{H\bar{W}}$	±4.8	±1.34	±1.27	±1.27
\tilde{d}	±0.63	±0.018	±0.019	±0.019
\tilde{c}_{zz}	±2.4	$-\pm0.76$	±0.80	±0.80
$\tilde{c}_{z\gamma}$	±6.6	±0.76	±0.80	±0.80
$\tilde{c}_{\gamma\gamma}$	$-\pm0.76$	$-\pm0.76$	$-\pm0.76$	$-\pm0.76$

The expected and observed distributions for the \tilde{c}_{zz} coupling NLL production scans are shown in Figure 7(a). The observed central value for \tilde{c}_{zz} at 0.78 and the non-parabolic shape of the NLL is due to the small excess of VBF candidates at positive \tilde{c}_{zz} in SR1 (Figure 5(a)). The effect of systematic uncertainties, primarily jet-related, is about 15% for the expected 95% CL. In the observed NLL scan, a local enhancement of the impact of systematic uncertainties for small absolute values of the BSM coupling is driven by the ggF parton-shower uncertainty, which primarily affects the migration of ggF events between the control region and the VBF-enriched signal regions, as discussed in Section 7.2. For small couplings, where the VBF optimal-observable distribution is like the SM, this uncertainty allows the fit model to adapt to the observed local downward fluctuation in the central bins of the VBF SR1, leading to a comparably large impact of this uncertainty. In Figure 7(b), the observed NLL distributions are shown for $c_{H\bar{W}}$ for production, decay and their combination, as well as the expected distribution for the combination. The observed central value at 1.5 of the production-only $c_{H\bar{W}}$ scan arises from the same excess of VBF candidates as for \tilde{c}_{zz}. Combining with the decay-only scan (central value about 0.1), reduces the combined central value to 0.6. There is a small effect of systematic uncertainties on the production-only limits, with a local increase of their impact around zero originating from the same effect described above for the \tilde{c}_{zz} coupling. The $c_{H\bar{W}}$ decay-only scan has a better statistical precision than the production-only scan and relies only on the well-measured lepton kinematics, so the effect of systematic uncertainties is negligible.

The observed and expected NLL observable scans for the decay level couplings for the Warsaw basis $c_{H\bar{B}}$, $c_{H\bar{W}B}$, $c_{H\bar{W}}$ and \tilde{d} are shown in Figure 8, and for the Higgs basis $\tilde{c}_{z\gamma}$ and $\tilde{c}_{\gamma\gamma}$ are shown in Figure 9. Similarly to the combined scan of $c_{H\bar{W}}$ in Figure 7(b), the decay-only optimal-observable fits have a negligible contribution from systematic uncertainties. Due to the small upward fluctuation of the data in
Warsaw-basis couplings, SR1 to SR4 are used with the observable V_{BF} where

the first and last observable bins in Figure 6 the observed NLL scans for OO^{c}_{HH}, OO^{c}_{HW} and OO^{c}_{d} are less constraining than expected. The small upward fluctuation around zero for OO^{c}_{d} leads to tighter limits than expected. In the Higgs basis, the observed decay-only scans for OO^{c}_{z} and OO^{c}_{f} are also less constrained.

The observed and expected 68% and 95% CL two-dimensional contours for all three pairings of the Warsaw-basis couplings, c_{HH}, c_{HW} and c_{HW}, are shown in Figures 10(a)–10(c). The two-dimensional observable OO^{c}_{HH} vs OO^{c}_{HW} is used for these decay-only contours. This observable pair is found empirically to have the best expected sensitivity compared with any of the individual observables or other observable pairings. The observed minima in Figures 10(a)–10(c) all lie along the diagonals of the confidence interval ellipses, well within the 68% CL. These diagonals are relatively flat in terms of the likelihood minima. Figure 10(d) shows the two-dimensional contours for scans along c_{zz} versus c_{yy}, where c_{zz} is sensitive only to the production and c_{yy} is sensitive only to the decay. For c_{zz}, the events in the VBF SR1 to SR4 are used with the observable OO_{jj} in 12 bins, as shown in Figure 7(a), and for c_{yy} the events in the VBF-depleted region are used with OO_{ff} in 48 bins as shown in Figure 9(b). As shown in Eq. (1), all couplings of Figures 7–10 scale as $1/L^2$ with the assumed value of $L = 1$ TeV.

Figure 11 and Table 5 summarize the expected and observed confidence intervals at 68% and 95% CL for the CP-odd Wilson coefficients. The limits for the Higgs-basis Wilson coupling c_{zz} are from a production-only observable fit. Those for the coupling c_{HW} are from a combined-observable fit as this coupling has
Figure 8: The NLL observable scans for the Warsaw-basis couplings for decay-only fits: (a) c_{HB}, (b) c_{HWW}, (c) c_{HH}, and (d) d. The expected and observed distributions are shown with (solid line) and without (dashed line) systematic uncertainties. The p-values for agreement with the SM are 0.86, 0.98, 0.90 and 0.86 for the c_{HB}, c_{HWW}, c_{HH}, and d coupling NLL scans, respectively. All couplings scale as $1/\Lambda^2$ with the assumed value of $\Lambda = 1$ TeV.
sensitivity in both production and decay. The rest of the couplings are from a decay-only observable fit, having little sensitivity to the VBF production, as previously shown in Table 4.

Table 5: The expected and observed confidence intervals at 68% and 95% CL for the CP-odd Wilson coefficients for an integrated luminosity of 139 fb⁻¹ at √s = 13 TeV. Only one Wilson coefficient is fitted at a time while all others are set to zero. The observed best fit value and p-value for agreement with the SM is 0.93 (0.99) for the $c_{z\gamma}$ ($c_{\gamma\gamma}$) coupling NLL scan. All couplings scale as $1/\Lambda^2$ with the assumed value of $\Lambda = 1$ TeV.

EFT coupling parameter	Expected 68% CL	Expected 95% CL	Observed 68% CL	Observed 95% CL	Best-fit value	SM p-value	Fit type
$c_{H\tilde{b}}$	[−0.18, 0.19]	[−0.37, 0.37]	[−0.42, 0.31]	[−0.61, 0.54]	−0.078	0.86	decay
$c_{H\tilde{W}B}$	[−0.36, 0.36]	[−0.72, 0.72]	[−0.56, 0.53]	[−0.97, 0.98]	−0.017	0.99	decay
$c_{H\tilde{H}}$	[−0.63, 0.63]	[−1.26, 1.28]	[−0.07, 1.09]	[−0.81, 1.54]	0.60	0.37	comb
d	[−0.009, 0.009]	[−0.018, 0.018]	[−0.017, 0.014]	[−0.026, 0.025]	−0.003	0.86	decay
$c_{z\gamma}$	[−0.77, 0.79]	[−2.4, 2.4]	[0.37, 1.21]	[−1.20, 1.75]	0.78	0.11	prod
$c_{\gamma\gamma}$	[−0.47, 0.47]	[−0.76, 0.76]	[−0.54, 0.54]	[−0.84, 0.83]	0.083	0.93	decay

The prediction of the optimal-observable distribution using the morphing method described in Section 2.3 includes both a linear and quadratic dependence on the BSM matrix element (see Eq. (2)). Only the linear term generates an asymmetry of the optimal-observable distribution, while the quadratic term leads to a
Figure 10: The observed and expected 68% and 95% CL two-dimensional contours for all three pairings of the Warsaw-basis couplings: (a) $c_{H\tilde{B}}$ versus $c_{H\tilde{B}}$, (b) $c_{\tilde{W}}$ versus $c_{H\tilde{B}}$ and (c) $c_{H\tilde{W}}$ versus $c_{H\tilde{W}}$. These use the two-dimensional observable $O_{4\ell}^{2H\tilde{B}}$ versus $O_{4\ell}^{2H\tilde{W}}$. In (d), the two-dimensional contours for scans along $\tilde{c}_{\gamma\gamma}$, sensitive only to the decay, and \tilde{c}_{zz}, sensitive only to the production are shown, where the observable $O_{4\ell}^{2\gamma\gamma}$ is used for the decay and $O_{4\ell}^{2zz}$ for the production. All couplings scale as $1/\Lambda^2$ with the assumed value of $\Lambda = 1 \text{ TeV}$.

28
symmetric shape modification. The result of the morphing is normalized to the SM to allow a shape-only analysis, but since the quadratic terms contribute to the shapes in a symmetric way, they can still influence the measurements. This is tested using the morphing method with only linear terms for $c_{H B}$ decay-only and $c_{H W}$ production and decay. For both, the 68% CL (95% CL) limits with linear-only terms change by ~1% (~3%), indicating a negligible contribution from the quadratic terms. The effect of extending the shape-only analysis to include the change in total cross-section for each coupling value is also investigated. This can affect the production cross-section (for VBF), the branching fraction and the detector event acceptance. The SM normalization is scaled by the relative total cross-section for each coupling value to that of the SM estimated in the leading-order SMEFT simulation, which for example decreases the cross-section by less than 10% for $c_{H W}$ at its 95% CL limit value of Table 5. The coupling cross-section change has a small effect on the decay-only limits as the predicted 68% (95%) CL exclusion limits tighten by less than 5% (10%). There is an important effect for production-only measurements with the expected limits tightening by 10% (50%). The cross-sections are CP-even quantities and are only affected by the quadratic term, as the linear term integrates to zero over the optimal-observable distribution. Therefore the larger coupling values allowed by the production scans result in a more pronounced effect on the limits from the quadratic term driving the rate change. Finally, the present analysis assumes that the CP-even couplings $c_{H B}, c_{H W B}$ and $c_{H W}$ are all zero. The effects of a non-zero CP-even coupling are evaluated. For couplings on the order of the current experimental limits [92] the effect on the production-only limits.
for the decay analysis, a CP-even coupling would weaken the limits and increase an observed non-zero CP-odd value by a few percent.

Figure 12 provides a comparison of the present measurements with those from [11, 19, 22, 30]. The 68% confidence levels are compared for the Warsaw-basis couplings \((c_{H\bar{B}}, c_{H\bar{W}_B} \text{ and } c_{H\bar{W}})\) and the \(\tilde{d}\) coupling. The \(H \rightarrow ZZ^* \rightarrow 4\ell\) simplified-template-cross-section (STXS) measurements [22] provide two degenerate positive/negative values as the measured cross-sections are only sensitive to the BSM quadratic terms (\(|M_{BSM}|^2\) of Eq. (2)). The STXS measurements are based on event rates in CP-insensitive categories and so cannot distinguish between a CP-even and CP-odd effect. This also explains the higher expected sensitivity of the present measurement that includes the four-lepton decays. The expected values for the present measurement are the most sensitive, except for \(c_{H\bar{W}}\) of the VBF \(H \rightarrow \gamma \gamma\) decay channel measurement [30] that has a larger number of VBF produced events. For \(\tilde{d}\), the improved sensitivity of the present measurement arises from the contribution of the \(H \rightarrow ZZ^* \rightarrow 4\ell\) decays. The CMS result [19] uses rate information in addition to shapes, but less granularity in the decay-level observable binning, and the differences in the expected sensitivity are consistent with this difference in strategy.

In conclusion, the results of the coupling measurement are all in agreement with the SM. A fluctuation in the optimal observables leads to a slight preference for a non-zero BSM coupling in the production-level analysis, which is compatible with the SM at better than two standard deviations and not confirmed by the decay-level analysis.
8.2 Differential optimal-observable cross-section results

The differential cross-sections for the optimal observables are measured using a binned profile likelihood ratio fit, fitting simultaneously the $m_{4\ell}$ distribution in each bin across all bins of a given distribution, as described in Section 6.2.

The measured differential cross-section for the production optimal observable $OO_{jj}^{cH\tilde{W}}$ and those for the decay optimal observables $OO_{4\ell}^{cH\tilde{W}}$, $OO_{4\ell}^{cH\tilde{b}}$ and $OO_{4\ell}^{cH\tilde{W}b}$ are shown in Figure 13. The couplings used for these optimal observables correspond to those with good expected sensitivity for VBF production or four-lepton decay of the direct coupling measurement, as previously described. The first bin of Figure 13(a) is not part of the $OO_{jj}^{cH\tilde{W}}$ differential distribution but rather contains events with fewer than two selected jets with $p_T > 30$ GeV. These events are included as part of the fiducial distribution unfolding as they have a correlation of up to 15% with the cross-section measurements of the $OO_{jj}^{cH\tilde{W}}$ differential bins as can be seen in Figure 15(a) of Appendix A. This correlation arises from the jet energy resolution. The larger number of decay events and the relatively better resolution for leptons allows a finer binning for the decay observable differential distributions. The correlation between neighbouring bins is up to 30% for $OO_{4\ell}^{cH\tilde{W}}$ with 12 bins, and up to 20% for the six bin distributions of $OO_{4\ell}^{cH\tilde{b}}$ and $OO_{4\ell}^{cH\tilde{W}b}$, as shown in Appendix A.

These figures show the measured differential cross-section compared with SM predictions for ggF production provided by NNLOPS and MadGraph5_AMC@NLO-FxFx (MG5 FxFx), which are both normalized to the N3LO calculation [93, 94]. The other Higgs boson production modes, denoted by XH, are normalized to the most accurate predictions available, as given in [28]. All of the figures include the p-values that quantify the probability of compatibility of the measurements and the corresponding SM prediction for ggF + XH, including the theoretical uncertainties in the ggF predictions. For the p-value estimations, QCD scale and PDF uncertainties for NNLOPS are evaluated individually for each bin; however for MG5 FxFx only total QCD scale and PDF uncertainties are available for all bins. In both cases the theoretical uncertainties are treated as correlated across the bins. All p-values reveal a good compatibility of the data with the SM predictions. For $OO_{4\ell}^{cH\tilde{W}}$ in Figure 13(b), the lower p-value is from a large fluctuation in one differential bin.
Figure 13: Results for differential fiducial cross-section for the optimal observables (a) $O^{\ell W}_{jj}$, (b) $O^{\ell W}_{jj} f$, (c) $O^{\ell W\ell}_{4f}$ and (d) $O^{\ell W\ell}_{4f} B$. The first bin of $O^{\ell W\ell}_{4f}$ distribution contains events with fewer than two jets that satisfy the jet selection requirements. The error bars on the data points show the total uncertainties, while the systematic uncertainties are indicated by the boxes. The shaded bands on the expected differential cross-sections indicate the jet selection requirements. The error bars on the data points show the total uncertainties, while the systematic uncertainties are indicated by the boxes. The shaded bands on the expected differential cross-sections indicate the systematic uncertainties. The central panel shows the ratio of different predictions to the data, and the grey area represents the total uncertainty in the measurement. The bottom panel shows the ratios of the fitted values of the ZZ^* normalization factors to the predictions from MC simulation. As indicated by the horizontal error bars, the same ZZ^* normalizations are estimated for different cross-section bins of the distributions.
8.3 VBF-enriched fiducial cross-section results

As described in Section 6.2, the VBF-enriched fiducial cross-section measurement is performed by dividing the two-dimensional plane m_{jj} versus $|\Delta\eta_{jj}|$ into three bins with a signal region defined by $m_{jj} \geq 400$ GeV and $|\Delta\eta_{jj}| \geq 3.0$, and two control regions outside this selection. The expected and observed events in this two-dimensional plane can be seen in Figure 14. Events are unfolded to the corresponding fiducial phase space and two VBF-enriched fiducial cross-sections are extracted: with and without the ggF contribution included as part of the signal region. The results for these two measurements are presented in Table 6.

![Graph](image_url)

Figure 14: The expected and observed events in the m_{jj} vs $|\Delta\eta_{jj}|$ two-dimensional plane for the VBF-enriched fiducial cross-section. The dots depict data and the shaded areas represent the simulated signal for VBF, ggF, and other backgrounds, respectively. The lines depict the bin boundaries for unfolding into the corresponding fiducial phase space.

Table 6: Expected and observed VBF fiducial cross-sections measured in a VBF-enriched fiducial region with and without including the ggF contribution as part of the signal region.

VBF–enriched region	Signal for cross-section estimates	Purity of VBF signal	Expected cross-section [fb]	Observed cross-section [fb]		
$N_{jets} \geq 2$, $m_{jj} \geq 400$ GeV	All production modes	59 %	$0.134^{+0.065}_{-0.053}^{+0.014}_{-0.012}$	$0.215^{+0.075}_{-0.063}^{+0.016}_{-0.013}$		
$	\Delta\eta_{jj}	\geq 3.0$	VBF + VH + ttH	95 %	$0.088^{+0.063}_{-0.053}^{+0.017}_{-0.020}$	$0.172^{+0.072}_{-0.062}^{+0.016}_{-0.018}$
For both cases, the measured fiducial cross-section is larger than the expected, with a signal strength of about 1.6 and 2, but remain compatible with the SM as evaluated from p-values. In the first scenario the p-value compatibility with NNLOPS and MG5 FxFx is 82% and 80%, respectively. In the second scenario, where the ggF is subtracted, the p-value compatibility with the SM predictions for the remaining three production modes is 19%.

These measured fiducial cross-sections can be compared with the VBF production cross-section of \(H \rightarrow ZZ^* \rightarrow 4\ell \) decay channel measured in the context of the STXS framework [22]. The STXS measurement has a relative observed cross-section times branching ratio \((\sigma \cdot B)/(\sigma \cdot B)_{SM}\) of \(1.21 \pm 0.45\) for the VBF production mode. The STXS measurement extracts the VBF signal using neural networks, similar to the direct measurement above, and combines VBF signals from several kinematic bins separated according to the number of jets and \(p_T^{4\ell}\). The present fiducial analysis instead applies explicit selections on \(m_{jj}\) and \(|\Delta\eta_{jj}|\) for events with two jets, which selects events in a different phase space. All three measurements yield cross-sections that are compatible with the SM expectations.

9 Conclusion

A measurement searching for CP violation in VBF Higgs boson production and its decay into four leptons is presented based on proton–proton collision data produced at the LHC at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, corresponding to an integrated luminosity of 139 fb\(^{-1}\). The measurement is performed using optimal observables defined as the ratio of the matrix elements squared for the interference of the SM and CP-odd BSM couplings to the SM matrix element squared. Limits are obtained in both the Higgs and Warsaw bases using the SMEFT. They are dominated by the interference term between the SM and BSM contributions linear in the Wilson coefficients, \(O(\Lambda^{-2})\) in the cross-section, with only a small sensitivity to the pure BSM contributions quadratic in the Wilson coefficients, \(O(\Lambda^{-4})\). This qualitatively implies a low expected sensitivity to missing dimension-eight contributions that also enter at \(O(\Lambda^{-4})\) in the cross-section, and it is therefore an improvement on analyses relying on rates rather than shapes. Measurements of fiducial differential cross-sections of the optimal-observable distributions are also presented, completing the set of fiducial differential cross-section measurements in the Higgs boson to four-lepton channel. In addition, fiducial cross-sections for VBF production are measured for a VBF-enriched fiducial region for two scenarios: with and without the explicit subtraction of the ggF background. All measurements are consistent with the SM expectation of a CP-even Higgs boson. No significant CP-odd component is observed.

The data for all tables and the figures with differential distributions can be viewed at HEPData.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and
MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TENMAK, Türkiye; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; PRIMUS 21/SCI/017 and UNCE SCI/013, Czech Republic; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and MINERVA, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [95].
Appendix

A Additional differential cross-section results

This appendix shows additional results of the differential fiducial cross-section measurements presented in Figure 8.2.

Figure 15 shows the correlation matrices for the differential fiducial cross-sections presented in Figure 13. Non-negligible anti-correlations exist between the cross-sections in neighbouring bins due to detector resolution effects. In addition, there are anti-correlations between the cross-section for $N_{\text{jets}} < 2$ and the four optimal observable bins in the $OO_{jj}^{H,W}$ measurement shown in Figure 15(a), driven by jet energy resolution. Finally, the normalization of the $q\bar{q} \rightarrow ZZ^*$ background is anti-correlated with the signal cross-sections measured in the respective bins.

Figure 16 shows the differential fiducial cross-section for the $OO_{\ell Z}^{Z}$ observable and the associated correlation matrix. This observable is strongly correlated with $OO_{jj}^{H,W}$ and the two measurements thus share many features.

Figure 17(a) shows the per-bin fiducial cross-section values and the correlation matrix for the extraction of the VBF-enriched fiducial cross-section described in Figure 8.3.
Figure 15: Correlation matrices between the measured differential fiducial cross-section and ZZ* normalization bins for the (a) OO_{jj}^{WW}, (b) $OO_{4\ell}^{WW}$, (c) $OO_{4\ell}$ and (d) $OO_{4\ell}^{WW}$ optimal observables. The bin labeled σ_0 of (a) is not part of the OO_{jj}^{WW} differential distribution, but contains events with fewer than two selected jets with $p_T > 30$ GeV.
Figure 16: (a) Results for the differential fiducial cross-section for the \(\sigma_{jj}^{OO} \) optimal observable, along with (b) the corresponding correlation matrix between the measured cross-sections and the \(ZZ^* \) background normalization factors. The first bin of (a) is not part of the \(\sigma_{jj}^{OO} \) differential distribution, but contains events with fewer than two selected jets with \(p_T > 30 \) GeV. This bin corresponds to \(\sigma_0 \) of (b).

Figure 17: (a) Results for the VBF-enriched fiducial cross-section measurement extracted from the double-differential fiducial cross-section for \(m_{jj} \) versus \(|\Delta p_T| \), along with (b) the corresponding correlation matrix between the measured cross-sections and the \(ZZ^* \) background normalization factors.
References

[1] A. D. Sakharov, *Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe*, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32.

[2] N. Cabibbo, *Unitary Symmetry and Leptonic Decays*, Phys. Rev. Lett. 10 (1963) 531.

[3] M. Kobayashi and T. Maskawa, *CP Violation in the Renormalizable Theory of Weak Interaction*, Prog. Theor. Phys. 49 (1973) 652.

[4] ATLAS Collaboration, *Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC*, Phys. Lett. B 716 (2012) 1, arXiv: 1207.7214 [hep-ex].

[5] CMS Collaboration, *Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC*, Phys. Lett. B 716 (2012) 30, arXiv: 1207.7235 [hep-ex].

[6] ATLAS Collaboration, *Evidence for the spin-0 nature of the Higgs boson using ATLAS data*, Phys. Lett. B 726 (2013) 120, arXiv: 1307.1432 [hep-ex].

[7] ATLAS Collaboration, *Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector*, Eur. Phys. J. C 75 (2015) 476, arXiv: 1506.05669 [hep-ex].

[8] CMS Collaboration, *Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs*, Phys. Rev. Lett. 110 (2013) 081803, arXiv: 1212.6639 [hep-ex].

[9] CMS Collaboration, *Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV*, Phys. Rev. D 92 (2015) 012004, arXiv: 1411.3441 [hep-ex].

[10] ATLAS Collaboration, *Test of CP Invariance in vector-boson fusion production of the Higgs boson using the Optimal Observable method in the ditau decay channel with the ATLAS detector*, Eur. Phys. J. C 76 (2016) 658, arXiv: 1602.04516 [hep-ex].

[11] ATLAS Collaboration, *Test of CP invariance in vector-boson fusion production of the Higgs boson in the $H \rightarrow \tau \tau$ channel in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, Phys. Lett. B 805 (2020) 135426, arXiv: 2002.05315 [hep-ex].

[12] ATLAS Collaboration, *Constraints on Higgs boson properties using $WW^{\ast} (\rightarrow e\nu\mu\nu) jj$ production in $36.1 fb^{-1}$ of $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, Eur. Phys. J. C 82 (2021) 622, arXiv: 2109.13808 [hep-ex].

[13] ATLAS Collaboration, *CP Properties of Higgs Boson Interactions with Top Quarks in the $t\bar{t}H$ and tH Processes Using $H \rightarrow \gamma\gamma$ with the ATLAS Detector*, Phys. Rev. Lett. 125 (2020) 061802, arXiv: 2004.04545 [hep-ex].

[14] ATLAS Collaboration, *Measurement of the CP properties of Higgs boson interactions with τ-leptons with the ATLAS detector*, (2022), arXiv: 2212.05833 [hep-ex].

[15] ATLAS Collaboration, *Probing the CP nature of the top-Higgs Yukawa coupling in $t\bar{t}H$ and tH events with $H \rightarrow b\bar{b}$ decays using the ATLAS detector at the LHC*, (2023), arXiv: 2303.05974 [hep-ex].
[16] CMS Collaboration, "Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state," Phys. Lett. B 775 (2017) 1, arXiv: 1707.00541 [hep-ex].

[17] CMS Collaboration, "Constraints on anomalous HVV couplings from the production of Higgs bosons decaying to τ lepton pairs," Phys. Rev. D 100 (2019) 112002, arXiv: 1903.06973 [hep-ex].

[18] CMS Collaboration, "Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state," Phys. Rev. D 99 (2019) 112003, arXiv: 1901.00174 [hep-ex].

[19] CMS Collaboration, "Constraints on anomalous Higgs boson couplings to vector bosons and fermions in its production and decay using the four-lepton final state," Phys. Rev. D 104 (2021) 052004, arXiv: 2104.12152 [hep-ex].

[20] CMS Collaboration, "Measurements of $t\bar{t}H$ Production and the CP Structure of the Yukawa Interaction between the Higgs Boson and Top Quark in the Diphoton Decay Channel," Phys. Rev. Lett. 125 (2020) 061801, arXiv: 2003.10866 [hep-ex].

[21] CMS Collaboration, "Analysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton–proton collisions at $\sqrt{s} = 13$ TeV," JHEP 06 (2022) 012, arXiv: 2110.04836 [hep-ex].

[22] ATLAS Collaboration, "Higgs boson production cross-section measurements and their EFT interpretation in the 4ℓ decay channel at $\sqrt{s} = 13$ TeV with the ATLAS detector," Eur. Phys. J. C 80 (2020) 957, arXiv: 2004.03447 [hep-ex]. Erratum: Eur. Phys. J. C 81 (2021) 29.

[23] D. Atwood and A. Soni, "Analysis for magnetic moment and electric dipole moment form-factors of the top quark via $e^+ e^- \rightarrow t\bar{t}$," Phys. Rev. D 45 (1992) 2405.

[24] M. Davier, L. Duflot, F. Le Diberder and A. Rouge, "The Optimal method for the measurement of tau polarization," Phys. Lett. B 306 (1993) 411.

[25] M. Diehl and O. Nachtmann, ‘Optimal observables for measuring three gauge boson couplings in $e^+ e^- \rightarrow W^+ W^-$’, Physics with $e^+ e^-$: Linear Colliders (The European Working Groups 4 Feb - 1 Sep 1995: Session 2), 1996 301, arXiv: hep-ph/9603207.

[26] ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," JINST 3 (2008) S08003.

[27] I. Brivio and M. Trott, "The Standard Model as an Effective Field Theory," Phys. Rept. 793 (2019) 1, arXiv: 1706.08945 [hep-ph].

[28] ATLAS Collaboration, "Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4ℓ decay channel at $\sqrt{s} = 13$ TeV," Eur. Phys. J. C 80 (2020) 942, arXiv: 2004.03969 [hep-ex].

[29] S. Weinberg, "Baryon- and Lepton-Nonconserving Processes," Phys. Rev. Lett. 43 (1979) 1566.

[30] ATLAS Collaboration, "Study of the CP property of the Higgs boson to electroweak boson coupling in the VBF $H \rightarrow \gamma\gamma$ channel with the ATLAS detector," (2022), arXiv: 2208.02338 [hep-ex].

[31] ATLAS Collaboration, "Measurement of the properties of Higgs boson production at $\sqrt{s} = 13$ TeV in the $H \rightarrow \gamma\gamma$ channel using 139 fb$^{-1}$ of pp collision data with the ATLAS experiment," (2022), arXiv: 2207.00348 [hep-ex].
[32] ATLAS Collaboration, Combined effective field theory interpretation of Higgs boson and weak boson production and decay with ATLAS data and electroweak precision observables, ATL-PHYS-PUB-2022-037, 2022, url: https://cds.cern.ch/record/2816369.

[33] CMS Collaboration, Measurement of the inclusive and differential $t\bar{t}\gamma$ cross sections in the dilepton channel and effective field theory interpretation in proton–proton collisions at $\sqrt{s} = 13$ TeV, JHEP 05 (2022) 091, arXiv: 2201.07301 [hep-ex].

[34] W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavour conservation, Nuclear Physics B 268 (1986) 621, issn: 0550-3213.

[35] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085, arXiv: 1008.4884 [hep-ph].

[36] D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, (2016), arXiv: 1610.07922 [hep-ph].

[37] A. Azatov et al., Off-shell Higgs Interpretations Task Force: Models and Effective Field Theories Subgroup Report, (2022), arXiv: 2203.02418 [hep-ph].

[38] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0301 [hep-ph].

[39] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244, arXiv: 1207.1303 [hep-ph].

[40] ATLAS Collaboration, A morphing technique for signal modelling in a multidimensional space of coupling parameters, ATL-PHYS-PUB-2015-047, 2015, url: https://cds.cern.ch/record/2066980.

[41] ATLAS Collaboration, The ATLAS Collaboration Software and Firmware, ATL-SOFT-PUB-2021-001, 2021, url: https://cds.cern.ch/record/2767187.

[42] ATLAS Collaboration, Performance of the ATLAS muon triggers in Run 2, JINST 15 (2020) P09015, arXiv: 2004.13447 [hep-ex].

[43] ATLAS Collaboration, Performance of electron and photon triggers in ATLAS during LHC Run 2, Eur. Phys. J. C 80 (2020) 47, arXiv: 1909.00761 [hep-ex].

[44] ATLAS Collaboration, ATLAS data quality operations and performance for 2015–2018 data-taking, JINST 15 (2020) P04003, arXiv: 1911.04632 [physics.ins-det].

[45] K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222, arXiv: 1309.0017 [hep-ph].

[46] K. Hamilton, P. Nason and G. Zanderighi, Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator, JHEP 05 (2015) 140, arXiv: 1501.04637 [hep-ph].

[47] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043, arXiv: 1002.2858 [hep-ph].

41
[48] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv: hep-ph/0409146.

[49] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv: 0709.2092 [hep-ph].

[50] K. Hamilton, P. Nason and G. Zanderighi, MINLO: multi-scale improved NLO, JHEP 10 (2012) 155, arXiv: 1206.3572 [hep-ph].

[51] J. M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP 07 (2012) 092, arXiv: 1202.5475 [hep-ph].

[52] K. Hamilton, P. Nason and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082, arXiv: 1212.4504 [hep-ph].

[53] S. Catani and M. Grazzini, Next-to-Next-to-Leading-Order Subtraction Formalism in Hadron Collisions and its Application to Higgs-boson Production at the Large Hadron Collider, Phys. Rev. Lett. 98 (2007) 222002, arXiv: hep-ph/0703012 [hep-ph].

[54] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001, arXiv: 1510.03865 [hep-ph].

[55] M. Wiesemann et al., Higgs production in association with bottom quarks, JHEP 02 (2015) 132, arXiv: 1409.5301 [hep-ph].

[56] R. D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040, arXiv: 1410.8849 [hep-ph].

[57] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152.

[58] T. Sjöstrand, S. Mrenna and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv: 0710.3820 [hep-ph].

[59] I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070, arXiv: 1709.06492 [hep-ph].

[60] L. Lönnblad, Correcting the Colour-Dipole Cascade Model with Fixed Order Matrix Elements, JHEP 05 (2002) 046, arXiv: hep-ph/0112284.

[61] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007, arXiv: 0811.4622 [hep-ph].

[62] T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039, arXiv: 0808.3674 [hep-ph].

[63] F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601, arXiv: 1111.5206 [hep-ph].

[64] E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034, arXiv: 1905.09127 [hep-ph].

[65] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to pp → μ⁺μ⁻e⁺e⁻ + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803, arXiv: 1601.07787 [hep-ph].
[66] B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger,
Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC,
JHEP 01 (2017) 033, arXiv: 1611.05338 [hep-ph].

[67] ATLAS Collaboration, The ATLAS Simulation Infrastructure,
Eur. Phys. J. C 70 (2010) 823,
arXiv: 1005.4568 [physics.ins-det].

[68] GEANT4 Collaboration, S. Agostinelli et al., GEANT4 – a simulation toolkit,
Nucl. Instrum. Meth. A 506 (2003) 250.

[69] ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic
measurements incorporating the Donnachie–Landshoff diffractive model,
ATL-PHYS-PUB-2016-017, 2016, url: https://cds.cern.ch/record/2206965.

[70] ATLAS Collaboration, Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\sqrt{s} = 13$ TeV,
Eur. Phys. J. C 81 (2021) 578,
arXiv: 2012.00578 [hep-ex].

[71] ATLAS Collaboration, Electron and photon performance measurements with the ATLAS detector
using the 2015–2017 LHC proton–proton collision data, JINST 14 (2019) P12006,
arXiv: 1908.00005 [hep-ex].

[72] ATLAS Collaboration, Electron reconstruction and identification in the ATLAS experiment using
the 2015 and 2016 LHC proton–proton collision data at $\sqrt{s} = 13$ TeV,
Eur. Phys. J. C 79 (2019) 639,
arXiv: 1902.04655 [hep-ex].

[73] ATLAS Collaboration,
Jet reconstruction and performance using particle flow with the ATLAS Detector,
Eur. Phys. J. C 77 (2017) 466, arXiv: 1703.10485 [hep-ex].

[74] ATLAS Collaboration,
Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1,
Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].

[75] M. Cacciari, G. P. Salam and G. Soyez, The anti-k_t jet clustering algorithm,
JHEP 04 (2008) 063,
arXiv: 0802.1189 [hep-ph].

[76] M. Cacciari, G. P. Salam and G. Soyez, FastJet user manual,
Eur. Phys. J. C 72 (2012) 1896,
arXiv: 1111.6097 [hep-ph].

[77] ATLAS Collaboration, Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,
Phys. Rev. D 96 (2017) 072002,
arXiv: 1703.09665 [hep-ex].

[78] ATLAS Collaboration, Jet mass reconstruction with the ATLAS Detector in early Run 2 data,
ATLAS-CONF-2016-035, 2016, url: https://cds.cern.ch/record/2200211.

[79] ATLAS Collaboration, Tagging and suppression of pileup jets with the ATLAS detector,
ATLAS-CONF-2014-018, 2014, url: https://cds.cern.ch/record/1700870.

[80] ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector,
Eur. Phys. J. C 76 (2016) 581,
arXiv: 1510.03823 [hep-ex].

[81] ATLAS Collaboration, Forward Jet Vertex Tagging: A new technique for the identification and rejection of forward pileup jets, ATL-PHYS-PUB-2015-034, 2015,
url: https://cds.cern.ch/record/2042098.
[82] ATLAS Collaboration, *Forward jet vertex tagging using the particle flow algorithm*, ATL-PHYS-PUB-2019-026, 2019, url: https://cds.cern.ch/record/2683100.

[83] ATLAS Collaboration, *Luminosity determination in pp collisions at $\sqrt{s}=13$ TeV using the ATLAS detector at the LHC*, ATLAS-CONF-2019-021, 2019, url: https://cds.cern.ch/record/2677054.

[84] G. Avoni et al., *The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS*, JINST 13 (2018) P07017.

[85] I. W. Stewart and F. J. Tackmann, *Theory uncertainties for Higgs mass and other searches using jet bins*, Phys. Rev. D 85 (2012) 034011, arXiv: 1107.2117 [hep-ph].

[86] ATLAS Collaboration, *Measurement of the Z/γ^* boson transverse momentum distribution in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector*, JHEP 09 (2014) 145, arXiv: 1406.3660 [hep-ex].

[87] J. Bellm et al., *Herwig 7.0/Herwig++ 3.0 release note*, Eur. Phys. J. C 76 (2016) 196, arXiv: 1512.01178 [hep-ph].

[88] J. Bendavid et al., *Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report*, 2018, arXiv: 1803.07977 [hep-ph].

[89] ATLAS Collaboration, *Measurement of the Higgs boson coupling properties in the $H \to ZZ' \to 4\ell$ decay channel at $\sqrt{s}=13$ TeV with the ATLAS detector*, JHEP 03 (2018) 095, arXiv: 1712.02304 [hep-ex].

[90] G. Cowan, K. Cranmer, E. Gross and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C 71 (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.

[91] G. Bohm and G. Zech, *Introduction to statistics and data analysis for physicists*, Hamburg: DESY, 2014, isbn: 978-3-935702-88-1.

[92] ATLAS Collaboration, *Measurements of the Higgs boson inclusive and differential fiducial cross-sections in the diphoton decay channel with pp collisions at $\sqrt{s}=13$ TeV with the ATLAS detector*, JHEP 08 (2022) 027, arXiv: 2202.00487 [hep-ex].

[93] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, *Higgs Boson Gluon-Fusion Production in QCD at Three Loops*, Phys. Rev. Lett. 114 (2015) 212001, arXiv: 1503.06056 [hep-ph].

[94] C. Anastasiou et al., *High precision determination of the gluon fusion Higgs boson cross-section at the LHC*, JHEP 05 (2016) 058, arXiv: 1602.00695 [hep-ph].

[95] ATLAS Collaboration, *ATLAS Computing Acknowledgements*, ATL-SOFT-PUB-2021-003, 2021, url: https://cds.cern.ch/record/2776662.
The ATLAS Collaboration

G. Aad 102, B. Abbott 120, K. Abelsing 105, N.J. Abicht 95, S.H. Abidi 29, A. Aboulhorna 35e, H. Abramowicz 131, H. Abreu 150, Y. Aebi 117, A.C. Abuslem 137a, B.S. Acharya 69a,69b, C. Adam Bourdarios 104, L. Adamczyk 35a, L. Adametz 155, S.V. Addepalli 26, M.J. Addison 101, J. Adelman 115, A. Adiguzel 21c, T. Adye 134, A.A. Affolder 136, Y. Aifik 35e, M.N. Agar 13, J. Agarwala 173a, A. Aggarwal 100, C. Agheorghiesei 27c, A. Ahmad 36, F. Ahmadov 38y, W.S. Ahmed 104, S. Ahuja 95, X. Ai 62a, G. Aielli 76a,78b, M. Ait Tamlilat 135e, B. Aitbouchkhi 152a, I. Aizenberg 168, M. Akbijik 100, T.P.A. Åkesson 137, A. Akimov 137, D. Akiyama 167, N.N. Akolkar 124, K. Al Khoury 41, G.L. Alberghi 123b, J. Albert 116, P. Alibocci 135, G.L. Albyou 126a, S. Alderweireldt 52, M. Aleksa 109, I.N. Aleksandrov 58, C. Alexa 27b, T. Alexopoulos 10, A. Alfonsi 114, A. Alford 23b, M. Algren 156, M. Alrhoob 120, B. Ali 132, H.M.J. Ali 180, S. Ali 148, S.W. Alibocus 132, M. Aliev 137, G. Alimonti 114, W. Alkakhli 155, C. Allaire 166, B.B. Allbrooke 146, J.F. Allen 132, C.A. Alendes Flores 137, P.P. Allport 120, A. Aloisio 172a,172b, F. Alonso 190, C. Alpigiani 138, M. Alvarez Estevez 199, A. Alvarez Fernandez 100, M.G. Alviggi 110, L.N. Aleksandrov 38, C. Alexa 27b, T. Alexopoulos 10, A. Alfonsi 114, C. Amelung 36, M. Amer 101, C.G. Ames 109, D. Amidei 106, S.P. Amor Dos Santos 130a, K.R. Amos 162, V. Ananiev 125, C. Anastopoulos 139, T. Andeen 111, J.K. Anders 137, S.Y. Andre 17a,17b, A. Andreazza 71a,71b, S. Angelidakis 97, A. Angerami 141, A.V. Anisenkov 137, A. Anno 74a, C. Antel 136, M.T. Anthony 139, E. Antipov 145, M. Antonelli 153, J.D.A. Antrim 17a, F. Anulli 75a, M. Aoki 136, T. Aoki 153, J.A. Aparisi Pozo 162, M.A. Aparo 146, L. Aperio Bella 148, C. Appelt 18, N. Aranzabal 136, C. Arcangeletti 153, A.T.H. Arce 151, E. Arena 192, J.-F. Arguin 108, S. Argyropoulos 54, J.-H. Arling 48, A.J. Armbruster 136, O. Armaez 14, H. Arnold 114, Z.P. Arrubarrena Tame 109, G. Artoni 135a,75a,75b, H. Asada 121, K. Asai 118, S. Asai 153, N.A. Asbah 161, J. Assaah 153d, K. Assamagian 129, R. Astalo 128a, S. Atashi 159, R.J. Atkin 133a, M. Atkinson 161, N.B. Atlay 118, H. Atman 62a, P.A. Atmasedha 110, K. Augsten 132, S. Auricchio 72a,72b, A.D. Auriol 137, V.A. Austrup 101, G. Avolio 136, K. Axiotis 156, G. Azuelos 108,ac, D. Babal 128b, H. Bachacou 135, K. Bachas 152a, A. Bachu 134, F. Backman 147a,7b, A. Badea 161, P. Bagnaia 135a,75a,75b, M. Bamhani 148, A.J. Bailey 162, V.R. Bailey 161, J.T. Baines 134, C. Bakalis 110, O.K. Baker 147, E. Bakos 15, D. Bakshi Gupta 17a, R. Balasubramanian 114, E.M. Baldin 137, P. Balebek 15a, E. Ballabene 123b,23a, F. Balli 145, L.M. Baltes 163, W.K. Balunas 132, J. Balz 100, E. Banas 186, M. Bandiera 129, A. Bandypadhyay 124, S. Bansal 124, L. Barak 151, M. Barakat 124, E.L. Barberio 105, D. Barberis 157b,7a, M. Barbero 102, G. Barbour 96, K.N. Barned 133a, T. Barillari 110, M.-S. Barisits 136, T. Barklow 143, P. Baron 122, D.A. Baron Moreno 101, A. Barone 122a, G. Barone 129, A.J. Barr 126b, J.D. Barr 196, L. Barranco Navarro 147a,7b, F. Barreiro 199, J. Barrio 144a, U. Barrion 151, M.G. Barros Teixeira 130a, S. Barsov 137, F. Bartels 163a, R. Bartoldus 143, A.E. Barton 91, P. Bartos 28a, A. Basan 100, M. Baselga 49, A. Bassalat 66, M.J. Basso 156a, C.R. Basson 101, R.L. Bates 158, S. Batloumis 5e, J.R. Batley 32, B. Batoi 144, M. Battaglia 130, D. Battaglia 148, M. Bauce 175a,75b, M. Bauer 130, P. Bauer 124, L.T. Bazzano Hurrel 130, J.B. Beacham 15, T. Beau 127, P.H. Beauchemin 158, F. Becherer 154, P. Bechtle 124, H.P. Beck 159,p, K. Becker 166, A.J. Beddall 21d, V.A. Bednyakov 38, C.P. Bee 145, L.J. Beemster 15, T.A. Beermann 136, M. Begalli 182,82d, M. Begel 29, A. Behera 145, J.K. Behr 148, J.F. Beimer 155, F. Beissiegel 124, M. Belfkir 116b, G. Bella 151, L. Bellagamba 23b, A. Bellerive 34, P. Bellos 20, K. Beloborodov 137, N.L. Belyaev 137, D. Benckenhoun 153a, F. Bendebba 155a,
D.P. Mungo 155, D. Munoz Perez 162, F.J. Munoz Sanchez 101, M. Murin 101, W.J. Murray 166, 134, A. Murrone 71a, 71b, J.M. Muse 120, M. Muskinja 17a, C. Mwewa 29, A.G. Myagkov 17a, A.J. Myers 25, A.A. Myers 129, G. Myers 68, M. Myska 132, B.P. Nachman 17a, O. Nackenhorst 49, A.G. Nag Nag 50, K. Nagai 126, K. Nagano 83, J.L. Nagle 29, 6a, E. Nagy 102, A.M. Nairz 36, Y. Nakahama 83, K. Nakamura 83, K. Nakkalil 5, H. Nanjo 124, R. Narayan 14a, E.A. Narayan 112, I. Narышкин 37, M. Naseri 64, S. Nasri 116b, C. Nass 124, G. Navarro 22a, J. Navarro-Gonzalez 162, R. Nayak 151, A. Nayaz 16, P.Y. Neechaeva 37, F. Nechansky 48, L. Nedic 126, T.J. Neep 120, A. Negri 73a, 73b, M. Negrini 23b, C. Nellist 114, C. Nelson 304, K. Nelson 106, S. Nemecek 131, M. Nessi 36, M.S. Neubauer 161, F. Neuhaus 100, J. Neundorf 148, R. Newhouse 163, P.R. Newman 120, C.W. Ng 129, Y.W.Y. Ng 148, B. Ngair 35e, H.D.N. Nguyen 108, R.B. Nickerson 126, R. Nicolaikou 135, J. Nielsen 136, M. Niemeyer 85, J. Niermann 155, 36, N. Nikioufrou 136, V. Nikolaenko 177a, 1, I. Nikolic-Audit 127, K. Nikolopoulos 20, P. Nilsson 59, I. Ninca 148, H.R. Nordhito 56, G. Ninio 151, A. Nisati 175a, N. Nishu 17e, R. Nisius 110, J.-E. Nitschke 50, E.K. Nakdimeng 133g, S.J. Noacco Rosende 90, T. Nobe 153, D.L. Noel 132, T. Nommensen 147, M.B. Norfolk 139, R.R.B. Norisam 96, B.J. Norman 134, J. Novak 193, T. Novak 148, L. Novotny 132, R. Novotny 112, L. Nozka 122, K. Niekas 159, N.M.J. Nunes De Moura Junior 12b, E. Nurse 56, J. Ocariz 127, A. Ochi 38, I. Ochoa 130a, S. Oerdek 160, J.T. Offermann 159, A. Ogrodnik 133, A. Oh 101, C.C. Ohn 144, H. Oide 83, R. Oishi 153, M.L. Ojeda 58, Y. Okazaki 187, M.W. O’Keefe 92, Y. Okumura 153, L.F. Oleiro Seabra 130a, S.A. Oliavres Pino 137d, D. Oliveira Damazio 129, D. Oliveira Goncalves 82a, J.L. Oliver 159, M.J.R. Olsson 159, A. Oliszewski 86, O.O. Öncel 54, D.C. O’Neill 14, A.P. O’Neill 19, A. Onofre 130a, 130b, P.U.E. Onyisi 41, M.J. Oreglia 139, G.E. Orello 190, D. Orestano 177a, 77b, N. Orlando 135, R.S. Orr 155, V. O Shea 59, R. Ospanov 82a, G. Otero y Garzon 50, H. Otono 89, P.S. Ott 63a, G.J. Ottino 17a, M. Ouchrif 15d, J. Ouellette 29, F. Ould-Saada 125, M. Owen 159, R.E. Owen 134, K.Y. Ouylmaz 21a, V.E. Ozcan 21a, N. Ozturk 108, S. Ozturk 21d, H.A. Pacey 32, A. Pacheco Pages 84, C. Padilla Aranda 13, G. Padoyano 37a, 75a, 75b, S. Pagan Griso 17a, G. Palacino 68, A. Palazzo 170a, 70b, S. Palestini 36, J. Pan 171, T. Pan 64a, D.K. Panchal 11, C.E. Pandini 114, J.G. Panduro Vazquez 96, H. Pang 14b, P. Pani 148, G. Panizzo 92a, 69a, 69c, L. Paolozzi 56, C. Papadatos 108, S. Parajuli 44, A. Paramonov 56, C. Paraskevopoulos 10, D. Paredes Hernandez 164b, T.H. Park 155, M.A. Parker 52, F. Parodi 57b, 57a, E.W. Parrish 115, V.A. Parrish 52, J.A. Parsons 41, U. Parzefall 54, B. Paschual Dias 108, L. Pascual Dominguez 151, F. Pasquali 114, E. Pasqualucci 175a, S. Passaggio 57b, F. Pastore 95, P. Pasuwan 177a, 47b, P. Patel 56, U.M. Patel 57, J.R. Pater 101, T. Pauly 36, J. Parkes 143, M. Pedersen 125, R. Pedro 130a, S.V. Peleganchuk 137, O. Penc 36, E.A. Pender 52, H. Peng 152a, K.E. Penski 109, M. Penzin 35, S. Pererla 82d, 82e, A.P. Pereira Peixoto 10, L. Pereira Sanchez 17a, 47b, D.V. Perepelitsa 29, 29ae, E. Perez Codina 156a, M. Perganti 110, L. Perini 71a, 71b, H. Pernegger 36, A. Perrevoort 113, O. Perrin 40, K. Peters 48, R.F.Y. Peters 101, B.A. Petersen 36, T.C. Petersen 42, E. Petit 102, V. Petousis 132, C. Petridou 152e, A. Petrukhin 141, M. Pettee 17a, N.E. Pettersson 36, A. Petukhov 33, K. Petukhova 133, A. Peyaud 135, R. Pezoa 137f, L. Pezzotti 136, G. Pezzullo 171, T.M. Pham 169, T. Pham 105, P.W. Phillips 134, G. Piacquadio 145, E. Pianori 17a, F. Piazza 71ia, 71b, R. Piegaia 155, D. Pietranaub 27b, A.D. Pilkington 151, M. Pinamonti 159a, 69a, 69c, J.L. Pinfold 62, B.C. Pinheiro Pereira 130a, A.E. Pinto Pinoargote 135, C. Pitman Donaldson 49, D.A. Pizzig 34, L. Pizzimento 57a, 76b, A. Pizzini 114, M.-A. Pleier 29, V. Plesanov 54, V. Pleskov 133, E. Plohnikov 38, G. Poddar 104, R. Poetgen 98, L. Poggioli 127, I. Pokkarel 55, S. Polacek 133, G. Polesello 73a, A. Poley 142, 156a, R. Polifka 132, A. Polini 33b, C.S. Pollard 166, Z.B. Pollack 119, V. Polychronakos 129, E. Pompa Pacchi 75a, 75b, D. Ponomarenko 113, L. Pontecorvo 356, S. Popa 27a,
G.A. Popeneciu, A. Porba, D.M. Portillo Quintero, S. Pospisil, M.A. Postill, P. Postolache, K. Potamianos, P.P. Potepa, I.N. Potrap, C.J. Potter, H. Potti, T. Poulsen, J. Poveda, M.E. Pozo Astigarraga, A. Prades Ibanez, D. Price, M. Primavera, M.A. Principe Martin, R. Privara, T. Procter, M.L. Profitt, N. Proklova, K. Prokofiev, G. Proto, S. Protopopescu, J. Proudfoot, M. Przybycien, W.W. Przygoda, J.E. Puddlefoot, D. Pudzha, D. Pyatizibantseva, J. Qian, D. Qichen, Y. Qin, T. Qiu, A. Quadrati, M. Queitsch-Maitland, G. Quetant, G. Rabanal Bolanos, D. Rafanoharana, F. Ragusa, J.L. Rainbolt, J.A. Raine, S. Rajagopalan, E. Ramakoti, K. Ran, 48, N.P. Rapheeha, H. Rasheed, V. Raskina, D.F. Rassloff, S. Rave, B. Ravina, I. Ravinovich, M. Raymond, A.L. Read, N.P. Readioff, D.M. Rebuzzi, G. Redlinger, A.S. Reed, K. Reeves, J.A. Reidelsturz, D. Reikher, A. Rej, C. Rembs, A. Renardi, M. Renda, M.B. Rendel, F. Renner, A.G. Rennie, S. Resconi, M. Ressegotti, S. Rettie, J.G. Reyes Rivera, B. Reynolds, O.L. Rezanova, P. Reznicek, N. Ribaric, E. Ricci, B. Ricci, R. Richter, S. Richter, E. Richter-Was, M. Ridel, S. Ridouani, P. Rieck, P. Riedler, M. Rijssenbeek, A. Rimoldi, M. Rimoldi, L. Rinaldi, T.T. Rinn, M.P. Rinnagel, G. Ripellino, L. Riu, P. Rivadeneira, J.C. Rivera Vergara, F. Rizzadinov, E. Rizvi, B.A. Roberts, B.R. Roberts, S.H. Robertson, M. Robein, D. Robinson, C.M. Robles Gajardo, M. Robles Manzano, A. Robson, A. Rocchi, C. Roda, S. Rodriguez Bosca, Y. Rodriguez Garcia, A. Rodriguez Rodriguez, A.M. Rodriguez Vera, S. Roe, J.T. Roemer, A.R. Roep-Gier, J. Roggel, O. Rohn, R.A. Rojas, C.P.A. Roland, J. Roloff, A. Romanionuk, E. Romano, M. Romano, A.C. Romero Hernandez, N. Rompotis, L. Roos, S. Rosati, B.J. Rosser, E. Rossi, E. Ross, L.P. Rossi, L. Rossini, R. Rosten, M. Rotaru, B. Rottert, C. Rougier, D. Rousseau, L. Roussos, A. Roy, S. Roy-Garand, A. Rozanov, Y. Rozen, X. Ruan, A. Rubio Jimenez, A. Ruby, A. Rueda, V.H. Ruelas Rivera, T.A. Ruggeri, A. Ruggiero, A. Ruiz-Martinez, A. Rummel, Z. Rurikova, N.A. Rusakovich, H.L. Russell, G. Russo, J.R. Rutherford, S. Rutherford Colmeranes, K. Rybacki, M. Rybar, E.B. Rye, A. Ryzhov, J.A. Sabater Iglesias, P. Sabatini, L. Sabetta, H.F.W. Sadrozinski, S. Safai Tehrani, B. Safarzadeh Samani, M. Safdari, S. Saha, M. Sahinsoy, M. Saimpert, M. Saito, T. Saito, D. Salamani, A. Salmanik, J. Salt, A. Salvador Salas, D. Salvatore, D. Salzburger, D. Sammel, D. Sampsonidou, K. Schleicher, J. Sanchez, V. Sanchez Sebastian, H. Sandaker, C.O. Sander, J.A. Sandesara, D. Sandholt, C. Sandoval, D.P.C. Sankey, T. Sano, L. Sansoni, L. Santi, C. Santoni, S.N. Santpur, A. Santra, K.A. Saoucha, J.G. Saravia, O. Sasaki, K. Sato, C. Sauce, F. Sauerburger, E. Saunav, P. Savard, R. Sawada, C. Sawyer, I. Sayago Galvan, C. Sharrar, A. Sbrizzi, T. Scanlon, J. Schaefer, A. Schaffer, H. Schafer, M.M. Schefer, V.A. Schegelesky, D. Scheirich, F. Schenck, M. Schernau, C. Scheuern, C. Schiavi, E.J. Schioppa, M. Schioppa, B. Schlag, K.E. Schleicher, S. Schlenker, J. Schmeing, M.A. Schmidt, K. Schmieden, M. Schmitt, M. Schott, J. Schovancova, A. Schoening, P.G. Scholer, E. Schopf, D. Scholten, M. Schott, J. Schwab, A. Schwenk, J. Schwenk, G. Schild, M. Schieven, B. Schierb, H. Schiess, A. Schierholt, O. Schimper, M. Schiltz, J. Schlenker, C. Schlotter, J. Schlosser, P.G. Scholer, A. Schmidbaur, P. Schiavi, D. Schicchi, G. Schichiltica, M. Schier, G. Schiecke, C. Schofield, T. Schor, J. Schepers, A. Schoenhals, M. Schmitt, J. Schouw, M. Schott, J. Schönhals, P. Schöler, E. Schopf, D. Scholten, M. Schott, J. Schovancova,
L. Wickremasinghe, W. Wiedenmann, C. Wiel, M. Wielers, C. Wiglesworth, D.J. Wilbern, H.G. Wilkens, D.M. Williams, H.H. Williams, S. Williams, S. Willocq, B.J. Wilson, P.J. Windischhofer, F.I. Winkel, F. Winklmeier, B.T. Winter, J.K. Winter, M. Wittgen, M. Wobisch, Z. Wolfs, R. Wölker, J. Wollrath, M.W. Wolter, H. Wolters, H. Wong, S.D. Worm, B.K. Wosiek, K.W. Woźniak, S. Wozniewski, K. Wraight, C. Wu, J. Wu, M. Wu, S.L. Wu, X. Wu, Y. Wu, Z. Wu, J. Wuerzinger, T.R. Wyatt, B.M. Wynne, S. Xella, L. Xia, M. Xia, J. Xiang, X. Xiao, M. Xie, X. Xie, S. Xin, J. Xiong, D. Xu, H. Xu, L. Xu, R. Xu, T. Xu, Y. Xu, Z. Xu, B. Yabsley, S. Yacoob, N. Yamaguchi, Y. Yamaguchi, E. Yamashita, H. Yamauchi, T. Yamazaki, Y. Yamazaki, J. Yan, S. Yan, Z. Yan, H.J. Yang, H.T. Yang, S. Yang, T. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, W.M. Yao, Y.C. Yap, H. Ye, H. Ye, J. Ye, S. Ye, X. Ye, Y. Ye, I. Yeletskikh, B.K. Ye, M.R. Yexley, P. Yin, K. Yorita, S. Younas, C.S.J. Young, C. Young, Y. Yu, M. Yuan, R. Yuan, L. Yue, M. Mazzoua, B. Zabinski, E. Zaid, T. Zakareishvili, N. Zakharchuk, S. Zambito, J.A. Zamora Saa, J. Zang, D. Zanzi, O. Zaplatilek, C. Zeitnitz, H. Zeng, J.C. Zeng, D.T. Zenger Jr., O. Zenin, T. Ženíšek, S. Zenz, S. Zerradi, D. Zerwas, M. Zhai, B. Zhang, D.F. Zhang, J. Zhang, K. Zhang, Z. Zhang, P. Zhang, R. Zhang, S. Zhang, T. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, Z. Zhang, W. Zhao, P. Zhao, T. Zhao, Y. Zhao, Z. Zhao, A. Zhemchugov, K. Zheng, M. Zichichi, M. Zivilkaitis, J. Žinkus, M. Ziolkowski, L. Živković, A. Zoccoli, T.G. Zorbas, O. Zorman, W. Zou, L. Zwalinski.
15 Institute of Physics, University of Belgrade, Belgrade; Serbia.
16 Department for Physics and Technology, University of Bergen, Bergen; Norway.
17 (a) Physics Division, Lawrence Berkeley National Laboratory, Berkeley CA; (b) University of California, Berkeley CA; United States of America.
18 Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
20 School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
21 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Department of Physics, Istanbul University, Istanbul; (d) İstinye University, Sariyer, Istanbul; Turkey.
22 (a) Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; (b) Departamento de Física, Universidad Nacional de Colombia, Bogotá; (c) Pontificia Universidad Javeriana, Bogotá; Colombia.
23 (a) Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna; (b) INFN Sezione di Bologna; Italy.
24 Physikalisches Institut, Universität Bonn, Bonn; Germany.
25 Department of Physics, Boston University, Boston MA; United States of America.
26 Department of Physics, Brandeis University, Waltham MA; United States of America.
27 (a) Transilvania University of Brașov, Brașov; (b) Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest; (c) Department of Physics, Alexandru Ioan Cuza University of Iași, Iași; (d) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca; (e) University Politehnica Bucharest, Bucharest; (f) West University in Timisoara, Timisoara; (g) Faculty of Physics, University of Bucharest, Bucharest; Romania.
28 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29 Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires; Argentina.
31 California State University, CA; United States of America.
32 Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
33 (a) Department of Physics, University of Cape Town, Cape Town; (b) iThemba Labs, Western Cape; (c) Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; (d) National Institute of Physics, University of the Philippines Diliman (Philippines); (e) University of South Africa, Department of Physics, Pretoria; (f) University of Zululand, KwaDlangezwa; (g) School of Physics, University of the Witwatersrand, Johannesburg; South Africa.
34 Department of Physics, Carleton University, Ottawa ON; Canada.
35 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Faculté des Sciences, Université Ibn-Tofail, Kénitra; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat; (f) Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco.
36 CERN, Geneva; Switzerland.
37 Affiliated with an institute covered by a cooperation agreement with CERN.
38 Affiliated with an international laboratory covered by a cooperation agreement with CERN.
39 Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.
40 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.
41 Nevis Laboratory, Columbia University, Irvington NY; United States of America.
42 Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.
43 (a) Dipartimento di Fisica, Università della Calabria, Rende; (b) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.
44 Physics Department, Southern Methodist University, Dallas TX; United States of America.
45 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
46 National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
47 (a) Department of Physics, Stockholm University; (b) Oskar Klein Centre, Stockholm; Sweden.
48 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.
49 Fakultät Physik, Technische Universität Dortmund, Dortmund; Germany.
50 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.
51 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
52 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
53 (a) Department of Physics, Duke University, Durham NC; United States of America.
54 (b) Department of Physics, University of Texas at Dallas, Richardson TX; United States of America.
55 National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.
56 Physics Department, University of Texas at Dallas, Richardson TX; United States of America.
57 (a) Dipartimento di Fisica, Università di Genova, Genova; (b) INFN Sezione di Genova; Italy.
58 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.
59 INFN e Laboratori Nazionali di Frascati, Frascati; Italy.
60 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (c) Department of Physics, University of Hong Kong, Hong Kong; (d) Tsung-Dao Lee Institute, Shanghai; China.
61 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.
62 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; (c) School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai; (d) Department of Physical, University of Hong Kong, Hong Kong; China.
63 Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.
64 (a) Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, University of Hong Kong, Hong Kong; (c) Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.
65 Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
66 IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
67 Centro Nacional de Microelectrónica (IMB-CNM-CSIC), Barcelona; Spain.
68 Department of Physics, Indiana University, Bloomington IN; United States of America.
69 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
70 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
71 (a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano; Italy.
72 (a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
73 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
74 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
75 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
76 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata,
Roma; Italy.

77(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.

78(a) INFN-TIFPA; (b) Università degli Studi di Trento, Trento; Italy.

79 Universität Innsbruck, Department of Astro and Particle Physics, Innsbruck; Austria.

80 University of Iowa, Iowa City IA; United States of America.

81 Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.

82(a) Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJJ), Juiz de Fora; (b) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (c) Instituto de Física, Universidade de São Paulo, São Paulo; (d) Rio de Janeiro State University, Rio de Janeiro; Brazil.

83 KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.

84 Graduate School of Science, Kobe University, Kobe; Japan.

85(a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.

86 Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.

87 Faculty of Science, Kyoto University, Kyoto; Japan.

88 Kyoto University of Education, Kyoto; Japan.

89 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.

90 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.

91 Physics Department, Lancaster University, Lancaster; United Kingdom.

92 Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.

93 Department of Experimental Particle Physics, Jozef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.

94 School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.

95 Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

96 Department of Physics and Astronomy, University College London, London; United Kingdom.

97 Louisiana Tech University, Ruston LA; United States of America.

98 Fysiska institutionen, Lunds universitet, Lund; Sweden.

99 Departamento de Física Teórica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.

100 Institut für Physik, Universität Mainz, Mainz; Germany.

101 School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.

102 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

103 Department of Physics, University of Massachusetts, Amherst MA; United States of America.

104 Department of Physics, McGill University, Montreal QC; Canada.

105 School of Physics, University of Melbourne, Victoria; Australia.

106 Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

107 Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

108 Group of Particle Physics, University of Montreal, Montreal QC; Canada.

109 Fakultät für Physik, Ludwig-Maximilians-Universität München, München; Germany.

110 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München; Germany.

111 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya; Japan.

112 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

113 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen; Netherlands.
114Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam; Netherlands.
115Department of Physics, Northern Illinois University, DeKalb IL; United States of America.
116(a)New York University Abu Dhabi, Abu Dhabi;(b)United Arab Emirates University, Al Ain;(c)University of Sharjah, Sharjah; United Arab Emirates.
117Department of Physics, New York University, New York NY; United States of America.
118Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.
119Ohio State University, Columbus OH; United States of America.
120Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK; United States of America.
121Department of Physics, Oklahoma State University, Stillwater OK; United States of America.
122Palacký University, Joint Laboratory of Optics, Olomouc; Czech Republic.
123Institute for Fundamental Science, University of Oregon, Eugene, OR; United States of America.
124Graduate School of Science, Osaka University, Osaka; Japan.
125Department of Physics, University of Oslo, Oslo; Norway.
126Department of Physics, Oxford University, Oxford; United Kingdom.
127LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris; France.
128Department of Physics, University of Pennsylvania, Philadelphia PA; United States of America.
129Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.
130(a)Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa;(b)Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa;(c)Departamento de Física, Universidade de Coimbra, Coimbra;(d)Centro de Física Nuclear da Universidade de Lisboa, Lisboa;(e)Departamento de Física, Universidade do Minho, Braga;(f)Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain);(g)Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.
131Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
132Czech Technical University in Prague, Prague; Czech Republic.
133Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
134Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
135IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
136Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
137(a)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;(b)Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago;(c)Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena;(d)Universidad Andres Bello, Department of Physics, Santiago;(e)Instituto de Alta Investigación, Universidad de Tarapacá, Arica;(f)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
138Department of Physics, University of Washington, Seattle WA; United States of America.
139Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
140Department of Physics, Shinshu University, Nagano; Japan.
141Department Physik, Universität Siegen, Siegen; Germany.
142Department of Physics, Simon Fraser University, Burnaby BC; Canada.
143SLAC National Accelerator Laboratory, Stanford CA; United States of America.
144Department of Physics, Royal Institute of Technology, Stockholm; Sweden.
145Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
America.

146 Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
147 School of Physics, University of Sydney, Sydney; Australia.
148 Institute of Physics, Academia Sinica, Taipei; Taiwan.
149 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi; (c) University of Georgia, Tbilisi; Georgia.
150 Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
151 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
152 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
153 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
154 Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
155 Department of Physics, University of Toronto, Toronto ON; Canada.
156 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON; Canada.
157 Division of Physics and Tonomaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
158 Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
159 Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
160 Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
161 Department of Physics, University of Illinois, Urbana IL; United States of America.
162 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.
163 Department of Physics, University of British Columbia, Vancouver BC; Canada.
164 Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
165 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.
166 Department of Physics, University of Warwick, Coventry; United Kingdom.
167 Waseda University, Tokyo; Japan.
168 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot; Israel.
169 Department of Physics, University of Wisconsin, Madison WI; United States of America.
170 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.
171 Department of Physics, Yale University, New Haven CT; United States of America.
 a Also Affiliated with an institute covered by a cooperation agreement with CERN.
 b Also at APC, Université Paris Cité, CNRS/IN2P3, Paris; France.
 c Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.
 d Also at Center for High Energy Physics, Peking University; China.
 e Also at Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki; Greece.
 f Also at Centro Studi e Ricerche Enrico Fermi; Italy.
 g Also at CERN, Geneva; Switzerland.
 h Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.
 i Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona; Spain.
 j Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.
 k Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.
Also at Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.
m Also at Department of Physics, California State University, Sacramento; United States of America.

Also at Department of Physics, King’s College London, London; United Kingdom.

Also at Department of Physics, Royal Holloway University of London, Egham; United Kingdom.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Department of Physics, University of Thessaly; Greece.

Also at Department of Physics, Westmont College, Santa Barbara; United States of America.

Also at Hellenic Open University, Patras; Greece.

Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute of Applied Physics, Mohammed VI Polytechnic University, Ben Guerir; Morocco.

Also at Institute of Particle Physics (IPP); Canada.

Also at Institute of Physics and Technology, Ulaanbaatar; Mongolia.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.

Also at Institute of Theoretical Physics, Ilia State University, Tbilisi; Georgia.

Also at Lawrence Livermore National Laboratory, Livermore; United States of America.

Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China.

Also at TRIUMF, Vancouver BC; Canada.

Also at Università di Napoli Parthenope, Napoli; Italy.

Also at University of Colorado Boulder, Department of Physics, Colorado; United States of America.

Also at Washington College, Chestertown, MD; United States of America.

Also at Manhattan College, New York NY; United States of America.

* Deceased