Antibiotic Resistance Among *Klebsiella pneumoniae*, Molecular Detection and Expression Level of *blaKPC* and *blaGES* Genes by Real-Time PCR

Narjes Mohammadi Bandari, Mohsen Zargar, Hossein Keyvani, Malihe Talebi and Mohammad Reza Zolfaghari

1. Background

The World Health Organization (WHO) has recognized the antimicrobial resistance (AMR) as a major global health problem in recent decades (1). *Klebsiella pneumoniae*, a Gram-negative rod, belongs to the *Enterobacteriaceae* family. It is an opportunistic pathogen, causing septicemia, pneumonia, urinary tract infections, meningitis, diarrhea, and soft tissue infections. The rising multi-drug resistance (MDR) of *K. pneumoniae* isolates has led to limited treatment options for antibiotic therapy and infection control (2). Carpenemases are a major class of *β*-lactam antibiotics for the treatment of serious infections in Gram-negative bacteria. Carpenemase-producing *Enterobacteriaceae* (CPE) in hospitalized patients has been a major concern for more than a decade (3). Carpenemases are a member of molecular classes A, B, and D *β*-lactamases, that could hydrolyze *β*-lactam antibiotics (4).

A functional group 2f in Class A carpenemases have appeared sporadically in clinical isolates for three decades. They founded in *Enterobacter cloacae*, *Serratia marcescens*, and *Klebsiella* spp. (5). The NMC/IMI, SME, KPC and GES enzymes exist in four major families of class A serine carpenemases. An active-site serine requires at position 70 for a hydrolytic mechanism in the Ambler numbering system for class A *β*-lactamases. The KPC and GES have two characteristics that separate from the other func-

Abstract

Background: The prevalent emergence of carpenem-resistant *Enterobacteriaceae*, especially *Klebsiella pneumoniae* carpenemases (KPC) that causes infection associated with multidrug-resistant, is a major clinical and public health concern. Accurate and fast detection of carpenemases is essential for effective infection control.

Objectives: The aims of this study were the detection of *blaKPC* and *blaGES* genes with phenotypic and genotypic methods, evaluation of expression level of these genes in the presence and absence of *β*-lactam antibiotic, and determination of antibiotic resistance patterns among *K. pneumoniae* isolated at Firoozgar Hospital.

Methods: One hundred and eighty-one *K. pneumoniae* strains were collected from patients presenting to Firoozgar Hospital of Tehran, Iran from March 2018 to December 2018. The strains were tested using the disk diffusion method, modified Hodge test (MHT), and minimum inhibitory concentration (MIC). The presence of *blaKPC* and *blaGES* resistance genes was detected by RT-PCR. The *blaKPC* and *blaGES* genes expression level was measured by real-time PCR in the presence and absence of *β*-lactam antibiotic.

Results: The results of this study showed the highest and lowest rates of resistance to cefepime and imipenem were 83.9% and 55.2%, respectively. 100 strains were positive as KPC-producing in MHT. Also, they exhibited resistance to imipenem by E-test. 51% and 49% of these 100 isolates were positive for *blaKPC* and *blaGES*, respectively. Real-time PCR assay showed the higher expression level of *blaKPC* (1.04 folds) and *blaGES* (12.21 folds) increase in resistant strains in the presence of imipenem.

Conclusions: Due to the high resistance of *K. pneumoniae* isolates to common antibiotics, hence, there is an urge for revisiting the antibiotic therapy protocols for prevention and control of the spread of resistant bacteria.

Keywords: Carpenem Resistance, *Klebsiella pneumoniae* carpenemases, *blaKPC*, *blaGES*, Real-Time PCR
tional group 2f enzymes (6). First, these enzymes are found on transferable plasmids; they can be transferred from one bacterium to another, from one person to another, and from one country to another (2), second, KPC and GES are clinically important and active against many β-lactam antibiotics include the cephalosporins and carbapenems. Carbapenemases enzymes destroy the antibiotics before they have a chance to have an effect. Due to the potential for transmission of these genes, recognition of KPC-producing organisms is essential for controlling their prevalent in nosocomial and long-term-care settings (7).

2. Objectives

The objective of our study was the detection of blaKPC and blaGES carbapenemases, evaluation of expression level of these genes in the presence and absence of β-lactam antibiotic, and determination of antibiotic resistance patterns among K. pneumoniae isolated at Firoozgar Hospital.

3. Methods

3.1. Study Period, Sample Collection and Bacterial Isolation

This cross-sectional study was conducted in Firoozgar Hospital, Tehran, Iran. We collected K. pneumoniae strains from clinical samples of the patients who were admitted to different wards between March 2018 and December 2018. The K. pneumoniae colonies were identified via standard biochemical tests including indole, motility, citrate, urease, lactose fermentation, lysine decarboxylase, and MR-VP (8).

3.2. Antimicrobial Susceptibility Testing, Modified Hodge Test and E-Test for Imipenem

Antibiotic disks (MAST Company, UK) were shown in Table 1, used to perform susceptibility tests via the disk diffusion method, based on the Clinical Laboratory Standard Institute guidelines (CLSI 2016) (9) on the Mueller-Hinton agar plate. Klebsiella pneumoniae ATCC 13883 was used as a control strain (8). Carbapenem-resistant strains were identified by PCR-producing by the Modified Hodge Test (MHT) based on CLSI guidelines 2016, using Escherichia coli ATCC 25922 and the eratapenem disk (Mast, UK). Positive control (Klebsiella pneumoniae ATCC 1705) and negative control (Klebsiella pneumoniae ATCC 1706) are streaked on the same plate (10). The last test of resistance to carbapenems was determined minimum inhibitory concentration (MIC) for imipenem by using E-test. Results were categorized as sensitive (S), intermediate (I) and resistant (R) as per CLSI guidelines 2016 (S ≤ 1, I 2, R ≥ 4) (11).

Antibiotic Name	Resistant (R)	Intermediate (I)	Sensitive (S)
Imipenem (10/µg)	100 (55.2)	15 (8.28)	66 (36.5)
Meropenem (10/µg)	102 (56.3)	10 (5.24)	69 (38.2)
Ertapenem (10/µg)	102 (56.3)	14 (7.7)	65 (36)
Doripenem (10/µg)	105 (58)	10 (5.24)	66 (37)
Ceftaxime (30/µg)	150 (83.5)	2 (1.1)	29 (16.02)
Cefazidime (30/µg)	145 (80.1)	5 (2.76)	31 (17.2)
Cefepime (10/µg)	152 (83.9)	3 (1.65)	26 (14.6)
Cefoxitin (10/µg)	121 (66.8)	14 (7.73)	46 (25.4)
Ceftiraxone (30/µg)	148 (81.7)	4 (2.2)	29 (16.02)
Gentamicin (10/µg)	150 (82.7)	3 (1.65)	28 (15.47)
Piperacillin (100/µg)	148 (81.7)	4 (2.2)	29 (16.02)
Aztreonam (30/µg)	108 (59.8)	13 (7.18)	60 (33.4)

* Values are presented as No. (%).

3.3. Molecular Assays

3.3.1. Isolation of Total RNA and cDNA Synthesis

After inoculating the strains from glycerol stocks in nutrient agar (2 mL), they were grown at 37°C overnight. Next, the strains were sub-cultured in the nutrient medium (5 mL) and grown to the mid-exponential phase (OD600 = 1.5 - 2.0). Afterward, total RNA was isolated according to the manufacturer’s guidelines. DNase treatment was applied to remove the residual DNA with 20 U of RQ1 DNase I (Sinaclon, Iran). A reaction mixture, consisting of 5 µg of RNA, was incubated in DEPC-treated water. Next, cDNA synthesis was performed based on the manufacturer’s guidelines (Pars Tous, Iran) and the collected cDNA was stored at -20°C until further analysis.

3.3.2. RT-PCR Technique

Molecular identification of blaKPC and blaGES genes in K. pneumoniae by reverse transcription-polymerase chain reaction (RT-PCR) (12) was applied to evaluate isolates with positive results on the MHT. Specific primer pairs, targeting blaKPC and blaGES genes, were designed by IDT software and synthesized by Macrogen Company (Korea) (Table 2).

3.3.3. Real-Time PCR Assay

The real-time PCR was used to determine the role of blaKPC and blaGES genes in resistance to carbapenemases, in the presence and absence of imipenem, in 36 antibiotic-resistant clinical strains containing two genes. Quantitative PCR (qPCR) was also performed according to the man-
Mohammadi Bandari N et al.

Table 2. Primer Sequences of Studied Virulence Genes in Klebsiella pneumoniae Isolates and Reaction Setup for 2-Step Real-Time PCR

Primer	Sequences	RT-PCR (Step 1)	Real-Time PCR (Step 2)		
		Conditions	Volume Reactions	Conditions	Volume Reactions
blaKPC	F-GGCAGACATTCGTTGATG				
 | R-CAGACAGGCTGAGTTTTCTT | 1 cycle: 25°C - 10 min; 47°C - 60 min; 70°C - 10 min | Total RNA 5 mL, Random hexamer 2 mL, H2O up to 10 mL | 1 cycle: 95°C - 10 min, 40 cycles; 95°C - 30 s; 58°C - 30 s; 72°C - 45 s, 1 cycle: 95°C - 30 min | Real Q Plus 2x Master Mix, green: 12.5 µL, Primer F + R
 | | | | Primer: 2 µL, Template DNA: 5 µL, Nuclease-free water: 5.5 µL, Total reaction volume: 25 µL |
| blaGES | F-GATCTGTGACGCGGAGA
 | R-GCAATAGGCTGAGTTTTCTT | | | |
| rpo B | F-AMCCCGCTGTCTGAGATTAC
 | R-GGGCTTGGATGAGGACA | | | |

The prevalence of KPC-producing K. pneumoniae in hospitals is associated with increased mortality (14). Carbapenems are often applied as first-line treatment for drug-resistant pathogens. while the increasing frequency of KPC-producing organisms has decreased the efficacy of these antibiotics (15). This study is the first report of the expression of blaGES and blaKPC genes from K. pneumoniae strains of Firoozgar Hospital, Tehran, Iran. Our findings revealed the high prevalence of KPC and GES genes, encoding carbapenem resistance among K. pneumoniae isolates. The gene expression level of blaKPC and blaGES was determined by real-time-PCR and the relationship between higher expression of mention genes and drug resistance was investigated for carbapenem-resistant K. pneumoniae (CRKP) strains.
In this work, 56.45% of the \textit{K. pneumoniae} strains were resistant to carbapenems. Based on the antibiotic susceptibility tests, the highest resistance to the antibiotic were related to ceftazidime (83.9%), cefotaxime (83.5%), whereas, the lowest resistance was attributed to imipenem 55.2%, meropenem 56.3%, ertapenem 56.3% and doripenem 58%; that is agreed with the result of Bina et al. (8). MHT was applied as a suitable method for evaluating the production of carbapenemase in the present study. In the MHT, 55.2% (100 of 181) strains were positive for \textit{KPC} that was consistent with Cury et al. (MHT 71% positive) (11). In three studies, 80.5% (33 of 41), 84% (32 of 38) and 12.3% (30 of 244) strains were positive for \textit{KPC}-producing organisms’ strains showed the production of carbapenemase (8, 16, 17). Our study showed that the resistant isolates to imipenem by E-test were 100 out of 181 (55.2%), which is in agreement with the results of Gupta et al. They were reported carbapenem resistance by E-test in 10.8% of the isolates (18). Actually, as the last test of resistance to carbapenems confirmed the results of the MHT test.

Detection of KPC carbapenemases by susceptibility testing is not an authentic method. Due to the heterogeneous expression of \textit{\beta}-lactam resistance by multiple determinants such as AmpC and \textit{CTX-M} \textit{\beta}-lactamase. The method certified by the CLSI is MHT and this method is accepted as a specific and sensitive method for the detection of carbapenemase. However, cannot be used as a confirmatory test for KPC-producing isolates. Also, maybe falsely recognized as carbapenem susceptible, resulting in the inappropriate selection of therapy. The current methods of laboratory diagnosis need to be improved to detect KPC resistance (19). The RT-PCR method provided a convenient molecular tool for the detection and expression of \textit{blaKPC} and \textit{blaGES} genes, providing a precaution for the actual outbreak. We showed that 51% of \textit{K. pneumoniae} isolates which were resistant to carbapenem were positive for the \textit{blaKPC} gene, which is in line with previous studies from USA (20) and China (21), confirming the presence of \textit{blaKPC} gene by PCR. Whereas, other studies were negative for the \textit{blaKPC} gene that had the contrast with our study. This opposition can be related to active drug efflux pump and porin alterations (8, 22). Also, we observed 49 \textit{K. pneumoniae} strains containing \textit{blaGES} gene which these results are
consistent with Poirel et al. and Picao et al. (23, 24).

With this detail, the molecular detection of carbapenemase genes by PCR has been confirmed as the gold standard. Although the genotypic method is a time-consuming process for a clinical microbiology laboratory because that commonly needs isolates to be referred to reference laboratories for detection (25). Several PCR-based methods have been presented including real-time PCR assays and electrospray ionization mass spectrometry. The real-time PCR method is able to detect rapid and affordable to detected carbapenemase genes, identify variants and measurement expression of these genes (26). In our study, all of the K. pneumoniae strains were MDR, hence real-time-PCR revealed a high expression of blaKPC and blaGES at MDR strains. Moreover, the results of real-time-PCR showed a two-fold increase in the expression of blaKPC and blaGES genes in the presence of 2 mg L⁻¹ of imipenem. These results are consistent with a four-to eight-fold increase in MexX and mexY gene expression of Pseudomonas aeruginosa in the presence of tetracycline (2 mg/l) (27). Moreover, the gene expression results are in agreement with the study by Dhabaan et al., who showed the overexpression of 12 pilus genes in resistant Acinetobacter baumannii isolates by three folds when treated with a sub-MIC of imipenem (28).

Based on the findings, most of the broad-spectrum antibiotics did not remove carbapenem-resistant K. pneumoniae and the mortality rate of patients is a significant concern. Real-time PCR assay can reduce the turnaround time for infection control measures and the detection of carbapenemase-producing organisms. Overall, the proposed method in this study can be considered an improvement to these methods. We hope that our findings can be applied for the implementation of an effective systematic strategy to manage infectious diseases and prevent the diffusion and dispersion of KPC-producing K. pneumoniae in Iran.

5.1. Conclusions

Due to the high resistance of K. pneumoniae isolates to common antibiotics, the identification of carbapenemase-producing isolates is essential for antibiotic therapy. Also, revisiting the antibiotic therapy protocols for the prevention and control of the spread of resistant bacteria is an effective strategy.

Acknowledgments

The authors would like to thank the staff of the Microbiology Laboratory in Firoozgar Hospital Tehran and Keyvan Research Lab who contributed to this research.

Jundishapur J Microbiol. 2019; 12(10):e93070.
Footnotes

Authors’ Contribution: Narjes Mohammadi Bandari performed microbiological and molecular studies. Mohsen Zargar and Hossein Keyvani designed the research, Mahihe Talebi and Mohammand Reza Zollaghar advised the research.

Conflict of Interests: None declared by the authors.

Ethical Approval: This is an in vitro study and ethical approval was not required.

Funding/Support: All project costs were funded by Ms. Mohammadi Bandari and the authors did not receive any financial assistance and grant from the companies.

Informed Consent: The research involves anonymous data collection, so it didn’t require consent.

References

1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi: 10.1179/2047721515Y.0000000030. [PubMed: 26341252]. [PubMed Central: PMC4768623].

2. Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) in enterobacteriaceae isolates from clinical samples in Menoufia University hospitals, Egypt. Afr J Microbiol Res. 2016;10(3):3397-407. doi: 10.5897/ajmhr.2016.8075.

3. Jousset AB, Rosinski-Chupin I, Takissian J, Glaser P, Bonnin RA, Naas T. Transcriptional landscape of a bla KPC-2 plasmid and response to imipenem exposure in Escherichia coli Topio. Front Microbiol. 2018;9:2929. doi: 10.3389/fmicb.2018.02929. [PubMed: 30559731]. [PubMed Central: PMC6286996].

4. Chen L, Mediavilla JR, Endimiani A, Rosenthal ME, Zhao Y, Bonomo RA, et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010;54(10):4201-7. doi: 10.1128/AAC.00008-10. [PubMed: 20660648]. [PubMed Central: PMC2944623].

5. Mosca A, Miragliotta L, Del Prete R, Izaki G, Dalfino L, Bruno F, et al. Rapid and sensitive detection of bla KPC gene in clinical isolates of Klebsiella pneumoniae by a molecular real-time assay. Springerplus. 2013;2(1):31. doi: 10.1186/2193-1801-2-31. [PubMed: 24540269]. [PubMed Central: PMC3581762].

9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA: CLSI; 2016.

In PubMed Central: 44(3):622-32. doi: 10.1179/2047721515Y.0000000030. [PubMed: 26341252]. [PubMed Central: PMC4768623].

Footnotes

Authors’ Contribution: Narjes Mohammadi Bandari performed microbiological and molecular studies. Mohsen Zargar and Hossein Keyvani designed the research, Mahihe Talebi and Mohammand Reza Zollaghar advised the research.

Conflict of Interests: None declared by the authors.

Ethical Approval: This is an in vitro study and ethical approval was not required.

Funding/Support: All project costs were funded by Ms. Mohammadi Bandari and the authors did not receive any financial assistance and grant from the companies.

Informed Consent: The research involves anonymous data collection, so it didn’t require consent.

References

1. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi: 10.1179/2047721515Y.0000000030. [PubMed: 26341252]. [PubMed Central: PMC4768623].

2. Kritsotakis EI, Kontopidou F, Astrinaki E, Roumbelaki M, Ioannidou et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) in enterobacteriaceae isolates from clinical samples in Menoufia University hospitals, Egypt. Afr J Microbiol Res. 2016;10(3):3397-407. doi: 10.5897/ajmhr.2016.8075.

3. Jousset AB, Rosinski-Chupin I, Takissian J, Glaser P, Bonnin RA, Naas T. Transcriptional landscape of a bla KPC-2 plasmid and response to imipenem exposure in Escherichia coli Topio. Front Microbiol. 2018;9:2929. doi: 10.3389/fmicb.2018.02929. [PubMed: 30559731]. [PubMed Central: PMC6286996].

4. Chen L, Mediavilla JR, Endimiani A, Rosenthal ME, Zhao Y, Bonomo RA, et al. Genetic factors associated with elevated carbapenem resistance in KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2010;54(10):4201-7. doi: 10.1128/AAC.00008-10. [PubMed: 20660648]. [PubMed Central: PMC2944623].

5. Mosca A, Miragliotta L, Del Prete R, Izaki G, Dalfino L, Bruno F, et al. Rapid and sensitive detection of bla KPC gene in clinical isolates of Klebsiella pneumoniae by a molecular real-time assay. Springerplus. 2013;2(1):31. doi: 10.1186/2193-1801-2-31. [PubMed: 24540269]. [PubMed Central: PMC3581762].

9. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Wayne, PA: CLSI; 2016.

In PubMed Central: 44(3):622-32. doi: 10.1179/2047721515Y.0000000030. [PubMed: 26341252]. [PubMed Central: PMC4768623].
24. Picao RC, Santos AF, Nicoletti AG, Furtado GH, Gales AC. Detection of GES-5-producing Klebsiella pneumoniae in Brazil. *J Antimicrob Chemother*. 2010;65(4):796-7. doi: 10.1093/jac/dkq024. [PubMed: 20139141].

25. Nordmann P, Poirel L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. *Emerg Infect Dis*. 2012;18(9):1503–7. doi: 10.3201/eid1809.120355. [PubMed: 22932472]. [PubMed Central: PMC3437707].

26. Cole JM, Schuetz AN, Hill CE, Nolte FS. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. *J Clin Microbiol*. 2009;47(2):322–6. doi: 10.1128/JCM.01550-08. [PubMed: 19036932]. [PubMed Central: PMC2643690].

27. Dumas J, van Delden C, Perron K, Kohler T. Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. *FEMS Microbiol Lett*. 2006;254(2):217-25. doi: 10.1111/j.1574-6968.2005.00008.x. [PubMed: 16445748].

28. Dhabaan GN, AbuBakar S, Cerqueira GM, Al-Haroni M, Pang SP, Hassan H. Imipenem treatment induces expression of important genes and phenotypes in a resistant Acinetobacter baumannii isolate. *Antimicrob Agents Chemother*. 2015;59(3):1370-6. doi: 10.1128/AAC.01696-15. [PubMed: 26666943]. [PubMed Central: PMC4775920].