Toward Optimizing Analytical Methods in Pharmacology

Editorial

The past century has seen great achievements in pharmacology which have also lead to the emergence of new fields of researches as sub-branches of pharmacology or related to therapeutics [1-11]. The research methods have always been key elements in the related experimental approaches. Therefore optimizing them is a necessity for any future advances. Pharmacology represents an illustrative example of a field where laboratory analytical methods are crucial in determining the reliability of the results. Therefore, diver’s publications [12-15] have described analytical approaches in pharmacology.

Selecting the appropriate analytical methods represent the first challenge. Indeed, based what we would like to quantify or identify a method would be more appropriate than another method. For instance, we may have to choose between chromatography and spectroscopy to quantify an element. Although consulting references is important but finding out the best approach in diverse conditions for specific circumstances remain more important.

Selecting the sample on which we would like to apply the selected analytical method could determine the results. For instance, if we want to quantify an organic element within a cells or a tissue we should consider the fact that this molecule may have two types, the part integrated within structures such as DNA or cell membrane and the part which is just “passing” via the metabolic process and that may never be integrated within the structural composition. Thus a pre-analysis separation of the part could optimize our results.

Another key element is the selection of the reagents to use during the analytical process of within the steps of the analytical sample preparation before the analysis. This is important in term of appropriateness. A reagent or a solvent which is supposed to be neutral toward the analytical method may interact with the live cells [16] and thus lead to false results such as when cell culture approach is applied in drug development [6]. In addition, the quality and the purity of the reagents and solvent have a significant influence of such approaches.

Herein, the importance of optimizing such approaches comes from the application they have in pharmacology. Researches in pharmacology need a high analytical precision due to the medicine dosage and drug development. For example the dosage may be the unique different between a drug and a toxic element [5]. Importantly, the new advances in pharmacology such as those related to the G protein coupled receptors [7,17,18] that represent the most important therapeutic target in the modern pharmacology [19,20] could not probably be achieved without the application of optimized analytical methods in the related research works especially for natural products provided by pharmacognosy [7,21-23] in which the analyses are extremely important.

Finally it is important to mention the influence that human manipulations and human-related factors have on the results of the analytical methods such as respecting the working conditions (like the temperature and the concentrations), the equipments maintenance and the laboratory hygiene with standards at least as high as those required in biomedical analysis [9]. Therefore, an appropriate training of the laboratories personal and students about the best ways to conduct experiments is also a key element for a better application of the analytical methods in pharmacology toward drug development.

Acknowledgment

Abdelaziz GHANEMI is the recipient of a 2013 CAS-TWAS President’s Postgraduate Fellowship.

References

1. Lertora JJL, Vanevski KM (2012) Chapter 43 - Clinical Pharmacology and its Role in Pharmaceutical Development. In: Gallin JI & Ognibene FP (Eds.), Principles and Practice of Clinical Research. (3rd edn), Academic Press, Boston, USA, pp.627-639.
2. Brierley DL, Davidson C (2012) Developments in harmine pharmacology — Implications for ayahuasca use and drug-dependence treatment. Prog Neuro-Psychopharmacology Biol Psychiatry 39(2): 263-272.
3. Alexander RC, Preskorn S (2014) Clinical pharmacology in the development of new antidepressants: the challenges. Curr Opin Pharmacol 14: 6-10.
4. Skinner AV (2014) Neonatal pharmacology. Anaesthesia & Intensive Care Medicine 15(3):96-102.
5. Ghanemi A (2014) Is mapping borders between pharmacology and toxicology a necessity? Saudi Pharmaceutical Journal doi: 10.1016/j.jsps.2014.03.001.
6. Ghanemi A, Boubertakh B (2014) Shorter and sturdier bridges...
between traditional Chinese medicines and modern pharmacology. Saudi Pharmaceutical Journal doi: 10.1016/jjsp.2014.02.010.

7. Ghanemi A (2014) Toward the Concept of "Standardized" International Prescriptions. Research in Social and Administrative Pharmacy doi: 10.1016/j.sapharm.2014.10.005.

8. Ghanemi A (2014) How important is pharmacognosy for doctors and dentists? The Saudi Dental Journal doi: 10.1016/j.sdentj.2014.08.002.

9. Ghanemi A (2014) Alzheimer’s disease therapies: Selected Advances and Future Perspectives. Alexandria Journal of Medicine doi: 10.1016/j.ajme.2014.09.006.

10. Ghanemi A (2014) Are we in Need of Dividing Zoology into Two Fields? J Dairy Vet Anim Res 1(1): 1-2.

11. Ghanemi A (2014) How can we Imagine the Future of Anti-Tumors Therapies? J Neurol Stroke 1(6): 1-2.

12. Allenmark S (1989) Drug Stereochemistry: Analytical Methods and Pharmacology. In: Wainer IW & Drayer DE (Eds.), Marcel Dekker, New York, Pages xvi + 376. $145.00 (U.S. and Canada), $174.00 (elsewhere). Talanta 36(3): p. i-ii.

13. Krstulovic AM (1989) Drug stereochemistry. Analytical methods and pharmacology. In: Wainer IW & Drayer DE (Eds.), Marcel Dekker, New York, Basel, XVIII+377 pp., US$ 145.00 (U.S.A. and Canada), US$ 174.00 (rest of the world), ISBN 0-8247-7837-5. J Chromatography B: Biomedical Sciences and Applications 487: 236-238.

14. Cox PJ (1994) Drug Stereochemistry—Analytical Methods and Pharmacology. In: Wainer IW (Ed.), (2nd edn), Dekker, New York, Pages xvi + 425. US$165.00. ISBN 0-8247-8819-2. Talanta 41(2): 343.

15. Jain D, Basnival PK (2013) Tapentadol a novel analgesic: Review of recent trends in synthesis, related substances, analytical methods, pharmacodynamics and pharmacokinetics. Bulletin of Faculty of Pharmacy, Cairo University 51(2): 283-289.

16. Ghanemi A (2014) Biological properties and perspective applications of "Bio-neuter" chemicals? Saudi Pharm J 22(1): 1-2.

17. Ghanemi A (2013) Schizophrenia and Parkinson’s disease: Selected therapeutic advances beyond the dopaminergic etiologies. Alexandria Journal of Medicine 49(4): 287-291.

18. Ghanemi A (2014) Psychiatric neural networks and neuropharmacology: Selected advances and novel implications. Saudi Pharm J 22(2): 95-100.

19. Ghanemi A (2013) Targeting G protein coupled receptors-related pathways as emerging molecular therapies. Saudi Pharmaceutical Journal doi:10.1016/jjsp.2013.07.007.

20. Ghanemi A, He L, Yan M (2013) New factors influencing G protein coupled receptors’s system functions. Alexandria Journal of Medicine 49(1): 1-5.

21. Boubertakh B, Liu XG, Cheng XL, Li P (2013) A Spotlight on Chemical Constituents and Pharmacological Activities of Nigella glandulifera Freyn et Sint Seeds. Journal of Chemistry 2013(2013): 12.

22. Do QT, Bernard P (2006) Reverse pharmacognosy: a new concept for accelerating natural drug discovery. Advances in Phytomedicine 2: 1-20.

23. Phillipson JD (2007) Phytochemistry and pharmacognosy. Phytochemistry 68(22–24): 2960-2972.

Citation: Ghanemi A (2015) Toward Optimizing Analytical Methods in Pharmacology. J Neurol Stroke 2(1): 00043. DOI: 10.15406/jnsk.2015.02.00043